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Preface to the Second Edition

The idea when working on the second edition of this book was to provide a
current text for an introductory structural equation modeling (SEM) course
similar to the ones we teach for our departments at Michigan State Univer-
sity and California State University, Fullerton. Our goal is to present an up-
dated, conceptual and nonmathematical introduction to the increasingly
popular in the social and behavioral sciences SEM methodology. The read-
ership we have in mind with this edition consists of advanced undergradu-
ate students, graduate students, and researchers from any discipline, who
have limited or no previous exposure to this analytic approach. Like before,
in the past six years since the appearance of the first edition we could not lo-
cate a book that we thought would be appropriate for such an audience and
course. Most of the available texts have what we see as significant limita-
tions that may preclude their successful use in an introductory course.
These books are either too technical for beginners, do not cover in suffi-
cient breadth and detail the fundamentals of the methodology, or intermix
fairly advanced issues with basic ones.

This edition maintains the previous goal of providing an alternative at-
tempt to offer a first course in structural equation modeling at a coherent
introductory level. Similarly to the first edition, there are no special prereq-
uisites beyond a course in basic statistics that included coverage of regres-
sion analysis. We frequently draw a parallel between aspects of SEM and
their apparent analogs in regression, and this prior knowledge is both help-
ful and important. In the main text, there are only a few mathematical for-
mulas used, which are either conceptual or illustrative rather than
computational in nature. In the appendixes to most of the chapters, we give
the readers a glimpse into some formal aspects of topics discussed in the
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pertinent chapter, which are directed at the mathematically more sophisti-
cated among them. While desirable, the thorough understanding and
mastery of these appendixes are not essential for accomplishing the main
aims of the book.

The basic ideas and methods for conducting SEM as presented in this
text are independent of particular software. We illustrate discussed model
classes using the three apparently most widely circulated programs—EQS,
LISREL, and Mplus. With these illustrations, we only aim at providing read-
ers with information as to how to use these software, in terms of setting up
command files and interpreting resulting output; we do not intend to imply
any comparison between these programs or impart any judgment on rela-
tive strengths or limitations. To emphasize this, we discuss their input and
output files in alphabetic order of software name, and in the later chapters
use them in turn.

The goal of this text, however, is going well beyond discussion of com-
mand file generation and output interpretation for these SEM programs. Our
primary aim is to provide the readers with an understanding of fundamental
aspects of structural equation modeling, which we find to be of special rele-
vance and believe will help them profitably utilize this methodology. Many of
these aspects are discussed in Chapter 1, and thus a careful study of it before
proceeding with the subsequent chapters and SEM applications is strongly
recommended especially for newcomers to this field.

Due to the targeted audience of mostly first-time SEM users, many impor-
tant advanced topics could not be covered in the book. Anyone interested in
such topics could consult more advanced SEM texts published throughout
the past 15 years or so (information about a score of them can be obtained
from http://www.erlbaum.com/) and the above programs’ manuals. We view
our book as a stand-alone precursor to these advanced texts.

Our efforts to produce this book would not have been successful without
the continued support and encouragement we have received from many
scholars in the SEM area. We feel particularly indebted to Peter M. Bentler,
Michael W. Browne, Karl G. Jöreskog, and Bengt O. Muthén for their path-
breaking and far-reaching contributions to this field as well as helpful dis-
cussions and instruction throughout the years. In many regards they have
profoundly influenced our understanding of SEM. We would also like to
thank numerous colleagues and students who offered valuable comments
and criticism on earlier drafts of various chapters as well as the first edition.
For assistance and support, we are grateful to all at Lawrence Erlbaum Asso-
ciates who were involved at various stages in the book production process.
The second author also wishes to extend a very special thank you to the fol-
lowing people for their helpful hand in making the completion of this pro-
ject a possibility: Dr. Keith E. Blackwell, Dr. Dechen Dolkar, Dr. Richard E.
Loyd, and Leigh Maple along with the many other support staff at the UCLA
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and St. Jude Medical Centers. Finally, and most importantly, we thank our
families for their continued love despite the fact that we keep taking on new
projects. The first author wishes to thank Albena and Anna; the second
author wishes to thank Laura and Katerina.

—Tenko Raykov
East Lansing, Michigan

—George A. Marcoulides
Fullerton, California
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C H A P T E R O N E

Fundamentals of Structural
Equation Modeling

WHAT IS STRUCTURAL EQUATION MODELING?

Structural equation modeling (SEM) is a statistical methodology used by so-
cial, behavioral, and educational scientists as well as biologists, economists,
marketing, and medical researchers. One reason for its pervasive use in
many scientific fields is that SEM provides researchers with a comprehen-
sive method for the quantification and testing of substantive theories. Other
major characteristics of structural equation models are that they explicitly
take into account measurement error that is ubiquitous in most disciplines,
and typically contain latent variables.

Latent variables are theoretical or hypothetical constructs of major im-
portance in many sciences, or alternatively can be viewed as variables that
do not have observed realizations in a sample from a focused population.
Hence, latent are such variables for which there are no available observa-
tions in a given study. Typically, there is no direct operational method for
measuring a latent variable or a precise method for its evaluation. Neverthe-
less, manifestations of a latent construct can be observed by recording or
measuring specific features of the behavior of studied subjects in a particu-
lar environment and/or situation. Measurement of behavior is usually car-
ried out using pertinent instrumentation, for example tests, scales, self-
reports, inventories, or questionnaires. Once studied constructs have been
assessed, SEM can be used to quantify and test plausibility of hypothetical
assertions about potential interrelationships among the constructs as well
as their relationships to measures assessing them. Due to the mathematical
complexities of estimating and testing these relationships and assertions,
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computer software is a must in applications of SEM. To date, numerous
programs are available for conducting SEM analyses. Software such as
AMOS (Arbuckle & Wothke, 1999), EQS (Bentler, 2004), LISREL (Jöreskog
& Sörbom, 1993a, 1993b, 1993c, 1999), Mplus (Muthén & Muthén, 2004),
SAS PROC CALIS (SAS Institute, 1989), SEPATH (Statistica, 1998), and
RAMONA (Browne & Mels, 2005) are likely to contribute in the coming
years to yet a further increase in applications of this methodology. Although
these programs have somewhat similar capabilities, LISREL and EQS seem
to have historically dominated the field for a number of years (Marsh, Balla,
& Hau, 1996); in addition, more recently Mplus has substantially gained in
popularity among social, behavioral, and educational researchers. For this
reason, and because it would be impossible to cover every program in rea-
sonable detail in an introductory text, examples in this book are illustrated
using only the LISREL, EQS, and Mplus software.

The term structural equation modeling is used throughout this text as a
generic notion referring to various types of commonly encountered mod-
els. The following are some characteristics of structural equation models.

1. The models are usually conceived in terms of not directly measur-
able, and possibly not (very) well-defined, theoretical or hypothetical
constructs. For example, anxiety, attitudes, goals, intelligence, motiva-
tion, personality, reading and writing abilities, aggression, and socioeco-
nomic status can be considered representative of such constructs.

2. The models usually take into account potential errors of measure-
ment in all observed variables, in particular in the independent (predic-
tor, explanatory) variables. This is achieved by including an error term
for each fallible measure, whether it is an explanatory or predicted vari-
able. The variances of the error terms are, in general, parameters that are
estimated when a model is fit to data. Tests of hypotheses about them can
also be carried out when they represent substantively meaningful asser-
tions about error variables or their relationships to other parameters.

3. The models are usually fit to matrices of interrelationship indices—
that is, covariance or correlation matrices—between all pairs of ob-
served variables, and sometimes also to variable means.1

2 1. FUNDAMENTALS OF STRUCTURAL EQUATION MODELING

1It can be shown that the fit function minimized with the maximum likelihood (ML)
method used in a large part of current applications of SEM, is based on the likelihood function
of the raw data (e.g., Bollen, 1989; see also section “Rules for Determining Model Parame-
ters”). Hence, with multinormality, a structural equation model can be considered indirectly
fitted to the raw data as well, similarly to models within the general linear modeling frame-
work. Since this is an introductory book, however, we emphasize here the more direct process
of fitting a model to the analyzed matrix of variable interrelationship indices, which can be
viewed as the underlying idea of the most general asymptotically distribution-free method of
model fitting and testing in SEM. The maximization of the likelihood function for the raw data
is equivalent to the minimization of the fit function with the ML method, FML, which quantifies



This list of characteristics can be used to differentiate structural equation
models from what we would like to refer to in this book as classical linear
modeling approaches. These classical approaches encompass regression
analysis, analysis of variance, analysis of covariance, and a large part of
multivariate statistical methods (e.g., Johnson & Wichern, 2002;
Marcoulides & Hershberger, 1997). In the classical approaches, typically
models are fit to raw data and no error of measurement in the independent
variables is assumed.

Despite these differences, an important feature that many of the classical
approaches share with SEM is that they are based on linear models. There-
fore, a frequent assumption made when using the SEM methodology is that
the relationships among observed and/or latent variables are linear (al-
though modeling nonlinear relationships is increasingly gaining popularity
in SEM; see Schumacker & Marcoulides, 1998; Muthén & Muthén, 2004;
Skrondal & Rabe-Hesketh, 2004). Another shared property between classi-
cal approaches and SEM is model comparison. For example, the well-
known F test for comparing a less restricted model to a more restricted
model is used in regression analysis when a researcher is interested in test-
ing whether to drop from a considered model (prediction equation) one or
more independent variables. As discussed later, the counterpart of this test
in SEM is the difference in chi-square values test, or its asymptotic equiva-
lents in the form of Lagrange multiplier or Wald tests (e.g., Bentler, 2004).
More generally, the chi-square difference test is used in SEM to examine the
plausibility of model parameter restrictions, for example equality of factor
loadings, factor or error variances, or factor variances and covariances
across groups.

Types of Structural Equation Models

The following types of commonly used structural equation models are con-
sidered in this book.

1. Path analysis models. Path analysis models are usually conceived of
only in terms of observed variables. For this reason, some researchers do
not consider them typical SEM models. We believe that path analysis
models are worthy of discussion within the general SEM framework be-
cause, although they only focus on observed variables, they are an im-
portant part of the historical development of SEM and in particular use
the same underlying idea of model fitting and testing as other SEM mod-
els. Figure 1 presents an example of a path analysis model examining the
effects of several explanatory variables on the number of hours spent
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watching television (see section “Path Diagrams” for a complete list and
discussion of the symbols that are commonly used to graphically repre-
sent structural equation models).

2. Confirmatory factor analysis models. Confirmatory factor analy-
sis models are frequently employed to examine patterns of interrela-
tionships among several latent constructs. Each construct included in
the model is usually measured by a set of observed indicators. Hence, in
a confirmatory factor analysis model no specific directional relation-
ships are assumed between the constructs, only that they are poten-
tially correlated with one another. Figure 2 presents an example of a
confirmatory factor analysis model with two interrelated self-concept
constructs (Marcoulides & Hershberger, 1997).

3. Structural regression models. Structural regression models resem-
ble confirmatory factor analysis models, except that they also postulate
particular explanatory relationships among constructs (latent regres-
sions) rather than these latent variables being only interrelated among
themselves. The models can be used to test or disconfirm theories about
explanatory relationships among various latent variables under investi-
gation. Figure 3 presents an example of a structural regression model of
variables assumed to influence returns of promotion for faculty in higher
education (Heck & Johnsrud, 1994).

4. Latent change models. Latent change models, often also called la-
tent growth curve models or latent curve analysis models (e.g., Bollen &
Curran, 2006; Meredith & Tisak, 1990), represent a means of studying
change over time. The models focus primarily on patterns of growth, de-
cline, or both in longitudinal data (e.g., on such aspects of temporal
change as initial status and rates of growth or decline), and enable re-
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FIG. 1. Path analysis model examining the effects of some variables on television
viewing. Hours Working = Average weekly working hours; Education = Number of
completed school years; Income = Yearly gross income in dollars; Television Viewing
= Average daily number of hours spent watching television.
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FIG. 2. Confirmatory factor analy-
sis model with two self-concept
constructs. ASC = Academic self-
concept; SSC = Social self-concept.

FIG. 3. Structural regression model of variables influencing return to promotion. IC
= Individual characteristics; CPP = Characteristics of prior positions; ESR = Eco-
nomic and social returns to promotion; CNP = Characteristics of new positions.



searchers to examine both intraindividual temporal development and
interindividual similarities and differences in its patterns. The models
can also be used to evaluate the relationships between patterns of
change and other personal characteristics. Figure 4 presents the idea of a
simple example of a two-factor growth model for two time points, al-
though typical applications of these models occur in studies with more
than two repeated assessments as discussed in more detail in Chapter 6.

When and How Are Structural Equation Models Used?

Structural equation models can be utilized to represent knowledge or hy-
potheses about phenomena studied in substantive domains. The models
are usually, and should best be, based on existing or proposed theories that
describe and explain phenomena under investigation. With their unique
feature of explicitly modeling measurement error, structural equation
models provide an attractive means for examining such phenomena. Once
a theory has been developed about a phenomenon of interest, the theory
can be tested against empirical data using SEM. This process of testing is of-
ten called confirmatory mode of SEM applications.

A related utilization of structural models is construct validation. In
these applications, researchers are interested mainly in evaluating the ex-
tent to which particular instruments actually measure a latent variable they
are supposed to assess. This type of SEM use is most frequently employed
when studying the psychometric properties of a given measurement device
(e.g., Raykov, 2004).

Structural equation models are also used for theory development pur-
poses. In theory development, repeated applications of SEM are carried
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FIG. 4. A simple latent
change model.



out, often on the same data set, in order to explore potential relationships
between variables of interest. In contrast to the confirmatory mode of SEM
applications, theory development assumes that no prior theory exists—or
that one is available only in a rudimentary form—about a phenomenon
under investigation. Since this utilization of SEM contributes both to the
clarification and development of theories, it is commonly referred to as
exploratory mode of SEM applications. Due to this development fre-
quently occurring based on a single data set (single sample from a studied
population), results from such exploratory applications of SEM need to be
interpreted with great caution (e.g., MacCallum, 1986). Only when the
findings are replicated across other samples from the same population,
can they be considered more trustworthy. The reason for this concern
stems mainly from the fact that results obtained by repeated SEM applica-
tions on a given sample may be capitalizing on chance factors having lead
to obtaining the particular data set, which limits generalizability of results
beyond that sample.

Why Are Structural Equation Models Used?

A main reason that structural equation models are widely employed in
many scientific fields is that they provide a mechanism for explicitly taking
into account measurement error in the observed variables (both depend-
ent and independent) in a given model. In contrast, traditional regression
analysis effectively ignores potential measurement error in the explanatory
(predictor, independent) variables. As a consequence, regression results
can be incorrect and possibly entail misleading substantive conclusions.

In addition to handling measurement error, SEM also enables researchers
to readily develop, estimate, and test complex multivariable models, as well as
to study both direct and indirect effects of variables involved in a given model.
Direct effects are the effects that go directly from one variable to another vari-
able. Indirect effects are the effects between two variables that are mediated by
one or more intervening variables that are often referred to as a mediating vari-
able(s) or mediator(s). The combination of direct and indirect effects makes
up the total effect of an explanatory variable on a dependent variable. Hence, if
an indirect effect does not receive proper attention, the relationship between
two variables of concern may not be fully considered. Although regression
analysis can also be used to estimate indirect effects—for example by regress-
ing the mediating on the explanatory variable, then the effect variable on the
mediator, and finally multiplying pertinent regression weights—this is strictly
appropriate only when there are no measurement errors in the involved pre-
dictor variables. Such an assumption, however, is in general unrealistic in em-
pirical research in the social and behavioral sciences. In addition, standard
errors for relevant estimates are difficult to compute using this sequential ap-
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plication of regression analysis, but are quite straightforwardly obtained in
SEM applications for purposes of studying indirect effects.

What Are the Key Elements of Structural Equation Models?

The key elements of essentially all structural equation models are their param-
eters (often referred to as model parameters or unknown parameters). Model
parameters reflect those aspects of a model that are typically unknown to the
researcher, at least at the beginning of the analyses, yet are of potential interest
to him or her. Parameter is a generic term referring to a characteristic of a pop-
ulation, such as mean or variance on a given variable, which is of relevance in a
particular study. Although this characteristic is difficult to obtain, its inclusion
into one’s modeling considerations can be viewed as essential in order to facili-
tate understanding of the phenomenon under investigation. Appropriate sam-
ple statistics are used to estimate parameter(s). In SEM, the parameters are
unknown aspects of a phenomenon under investigation, which are related to
the distribution of the variables in an entertained model. The parameters are
estimated, most frequently from the sample covariance matrix and possibly
observed variable means, using specialized software.

The presence of parameters in structural equation models should not
pose any difficulties to a newcomer to the SEM field. The well-known regres-
sion analysis models are also built upon multiple parameters. For example,
the partial regression coefficients (or slope), intercept, and standard error of
estimate are parameters in a multiple (or simple) regression model. Simi-
larly, in a factorial analysis of variance the main effects and interaction(s) are
model parameters. In general, parameters are essential elements of statistical
models used in empirical research. The parameters reflect unknown aspects
of a studied phenomenon and are estimated by fitting the model to sampled
data using particular optimality criteria, numeric routines, and specific soft-
ware. The topic of structural equation model parameters, along with a com-
plete description of the rules that can be used to determine them, are
discussed extensively in the following section “Parameter Estimation.”

PATH DIAGRAMS

One of the easiest ways to communicate a structural equation model is to
draw a diagram of it, referred to as path diagram, using special graphical
notation. A path diagram is a form of graphical representation of a model
under consideration. Such a diagram is equivalent to a set of equations de-
fining a model (in addition to distributional and related assumptions), and
is typically used as an alternative way of presenting a model pictorially. Path
diagrams not only enhance the understanding of structural equation mod-
els and their communication among researchers with various backgrounds,

8 1. FUNDAMENTALS OF STRUCTURAL EQUATION MODELING



but also substantially contribute to the creation of correct command files to
fit and test models with specialized programs. Figure 5 displays the most
commonly used graphical notation for depicting SEM models, which is de-
scribed in detail next.

Latent and Observed Variables

One of the most important initial issues to resolve when using SEM is the
distinction between observed variables and latent variables. Observed vari-
ables are the variables that are actually measured or recorded on a sample
of subjects, such as manifested performance on a particular test or the
answers to items or questions in an inventory or questionnaire. The term
manifest variables is also often used for observed variables, to stress the fact
that these are the variables that have actually been measured by the re-
searcher in the process of data collection. In contrast, latent variables are
typically hypothetically existing constructs of interest in a study. For exam-
ple, intelligence, anxiety, locus of control, organizational culture, motiva-
tion, depression, social support, math ability, and socioeconomic status
can all be considered latent variables. The main characteristic of latent vari-
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FIG. 5. Commonly used symbols for SEM models in path diagrams.



ables is that they cannot be measured directly, because they are not directly
observable . Hence, only proxies for them can be obtained using specifically
developed measuring instruments, such as tests, inventories, self-reports,
testlets, scales, questionnaires, or subscales. These proxies are the indica-
tors of the latent constructs or, in simple terms, their measured aspects. For
example, socioeconomic status may be considered to be measured in terms
of income level, years of education, bank savings, type of occupation. Simi-
larly, intelligence may be viewed as manifested (indicated) by subject per-
formance on reasoning, figural relations, and culture-fair tests. Further,
mathematical ability may be considered indicated by how well students do
on algebra, geometry, and trigonometry tasks. Obviously, it is quite com-
mon for manifest variables to be fallible and unreliable indicators of the un-
observable latent constructs of actual interest to a social or behavioral
researcher. If a single observed variable is used as an indicator of a latent
variable, it is most likely that the manifest variable will generally contain
quite unreliable information about that construct. This information can be
considered to be one-sided because it reflects only one aspect of the mea-
sured construct, the side captured by the observed variable used for its mea-
surement. It is therefore generally recommended that researchers employ
multiple indicators (preferably more than two) for each latent variable in
order to obtain a much more complete and reliable picture of it than that
provided by a single indicator. There are, however, instances in which a sin-
gle observed variable may be a fairly good indicator of a latent variable, e.g.,
the total score on the Stanford-Binet Intelligence Test as a measure of the
construct of intelligence.

The discussed meaning of latent variable could be referred to as a tradi-
tional, classical, or ‘psychometric’ conceptualization. This treatment of latent
variable reflects a widespread understanding of unobservable constructs
across the social and behavioral disciplines as reflecting proper subject charac-
teristics that cannot be directly measured but (a) could be meaningfully as-
sumed to exist separately from their measures without contradicting observed
data, and (b) allow the development and testing of potentially far-reaching
substantive theories that contribute significantly to knowledge accumulation
in these sciences. This conceptualization of latent variable can be traced back
perhaps to the pioneering work of the English psychologist Charles Spearman
in the area of factor analysis around the turn of the 20th century (e.g.,
Spearman, 1904), and has enjoyed wide acceptance in the social and behav-
ioral sciences over the past century. During the last 20 years or so, however, de-
velopments primarily in applied statistics have suggested the possibility of
extending this traditional meaning of the concept of latent variable (e.g.,
Muthén, 2002; Skrondal & Rabe-Hesketh, 2004). According to what could be
referred to as its modern conceptualization, any variable without observed re-
alizations in a studied sample from a population of interest can be considered
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a latent variable. In this way, as we will discuss in more detail in Chapter 6, pat-
terns of intraindividual change (individual growth or decline trajectories) such
as initial true status or true change across the period of a repeated measure
study, can also be considered and in fact profitably used as latent variables. As
another, perhaps more trivial example, the error term in a simple or multiple
regression equation or in any statistical model containing a residual, can also
be viewed as a latent variable. A common characteristic of these examples is
that individual realizations (values) of the pertinent latent variables are con-
ceptualized in a given study or modeling approach—e.g., the individual initial
true status and overall change, or error score—which realizations however are
not observed (see also Appendix to this chapter).2

This extended conceptualization of the notion of latent variable obvi-
ously includes as a special case the traditional, ‘psychometric’ understand-
ing of latent constructs, which would be sufficient to use in most chapters of
this introductory book. The benefit of adopting the more general, modern
understanding of latent variable will be seen in the last chapter of the book.
This benefit stems from the fact that the modern view provides the opportu-
nity to capitalize on highly enriching developments in applied statistics and
numerical analysis that have occurred over the past couple of decades,
which allow one to consider the above modeling approaches, including
SEM, as examples of a more general, latent variable modeling methodology
(e.g., Muthén, 2002).

Squares and Rectangles, Circles and Ellipses

Observed and latent variables are represented in path diagrams by two dis-
tinct graphical symbols. Squares or rectangles are used for observed vari-
ables, and circles or ellipses are employed for latent variables. Observed
variables are usually labeled sequentially (e.g., X1, X2, X3), with the label
centered in each square or rectangle. Latent variables can be abbreviated ac-
cording to the construct they present (e.g., SES for socioeconomic status) or
just labeled sequentially (e.g., F1, F2; F standing for “factor”) with the name
or label centered in each circle or ellipse.

Paths and Two-Way Arrows

Latent and observed variables are connected in a structural equation model
in order to reflect a set of propositions about a studied phenomenon,
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2Further, individual class or cluster membership in a latent class model or cluster analysis
can be seen as a latent variable. Membership to a constituent in a finite mixture distribution
may also be viewed as a latent variable. Similarly, the individual values of random effects in
multi-level (hierarchical) or simpler variance component models can be considered scores on
latent dimensions as well.



which a researcher is interested in examining (testing) using SEM. Typi-
cally, the interrelationships among the latent as well as the latent and ob-
served variables are the main focus of study. These relationships are
represented graphically in a path diagram by one-way and two-way arrows.
The one-way arrows, also frequently called paths, signal that a variable at
the end of the arrow is explained in the model by the variable at the begin-
ning of the arrow. One-way arrows, or paths, are usually represented by
straight lines, with arrowheads at the end of the lines. Such paths are often
interpreted as symbolizing causal relationships—the variable at the end of
the arrow is assumed according to the model to be the effect and the one at
the beginning to be the cause. We believe that such inferences should not
be made from path diagrams without a strong rationale for doing so. For in-
stance, latent variables are oftentimes considered to be causes for their indi-
cators; that is, the measured or recorded performance is viewed to be the
effect of the presence of a corresponding latent variable. We generally ab-
stain from making causal interpretations from structural equation models
except possibly when the variable considered temporally precedes another
one, in which case the former could be interpreted as the cause of the one
occurring later (e.g., Babbie, 1992, chap. 1; Bollen, 1989, chap. 3). Bollen
(1989) lists three conditions that should be used to establish a causal rela-
tion between variables—isolation, association, and direction of causality.
While association may be easier to examine, it is quite difficult to ensure
that a cause and effect have been isolated from all other influences. For this
reason, most researchers consider SEM models and the causal relations
within them only as approximations to reality that perhaps can never really
be proved, but rather only disproved or disconfirmed.

In a path diagram, two-way arrows (sometimes referred to as two-way
paths) are used to represent covariation between two variables, and signal
that there is an association between the connected variables that is not as-
sumed in the model to be directional. Usually two-way arrows are graphi-
cally represented as curved lines with an arrowhead at each end. A straight
line with arrowheads at each end is also sometimes used to symbolize a cor-
relation between variables. Lack of space may also force researchers to even
represent a one-way arrow by a curved rather than a straight line, with an ar-
rowhead attached to the appropriate end (e.g., Fig. 5). Therefore, when
first looking at a path diagram of a structural equation model it is essential
to determine which of the straight or curved lines have two arrowheads and
which only one.

Dependent and Independent Variables

In order to properly conceptualize a proposed model, there is another dis-
tinction between variables that is of great importance—the differentiation
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between dependent and independent variables. Dependent variables are
those that receive at least one path (one-way arrow) from another variable
in the model. Hence, when an entertained model is represented as a set of
equations (with pertinent distributional and related assumptions), each de-
pendent variable will appear in the left-hand side of an equation. Independ-
ent variables are variables that emanate paths (one-way arrows), but never
receive a path; that is, no independent variable will appear in the left-hand
side of an equation, in that system of model equations. Independent vari-
ables can be correlated among one another, i.e., connected in the path dia-
gram by two-way arrows. We note that a dependent variable may act as an
independent variable with respect to another variable, but this does not
change its dependent-variable status. As long as there is at least one path
(one-way arrow) ending at the variable, it is a dependent variable no matter
how many other variables in the model are explained by it.

In the econometric literature, the terms exogenous variables and endo-
genous variables are also frequently used for independent and dependent
variables, respectively. (These terms are derived from the Greek words exo
and endos, for being correspondingly of external origin to the system of
variables under consideration, and of internal origin to it.) Regardless of
the terms one uses, an important implication of the distinction between de-
pendent and independent variables is that there are no two-way arrows
connecting any two dependent variables, or a dependent with an inde-
pendent variable, in a model path diagram. For reasons that will become
much clearer later, the variances and covariances (and correlations) be-
tween dependent variables, as well as covariances between dependent and
independent variables, are explained in a structural equation model in
terms of its unknown parameters.

An Example Path Diagram of a Structural Equation Model

To clarify further the discussion of path diagrams, consider the factor analy-
sis model displayed in Fig. 6. This model represents assumed relationships
among Parental dominance, Child intelligence, and Achievement motiva-
tion as well as their indicators.

As can be seen by examining Fig. 6, there are nine observed variables in
the model. The observed variables represent nine scale scores that were ob-
tained from a sample of 245 elementary school students. The variables are
denoted by the labels V1 through V9 (using V for ‘observed Variable’). The la-
tent variables (or factors) are Parental dominance, Child intelligence, and
Achievement motivation. As latent variables (factors), they are denoted F1,
F2, and F3, respectively. The factors are each measured by three indicators,
with each path in Fig. 6 symbolizing the factor loading of the observed vari-
able on its pertinent latent variable.
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The two-way arrows in Fig. 6 designate the correlations between the la-
tent variables (i.e., the factor correlations) in the model. There is also a re-
sidual term attached to each manifest variable. The residuals are denoted by
E (for Error), followed by the index of the variable to which they are at-
tached. Each residual represents the amount of variation in the manifest
variable that is due to measurement error or remains unexplained by varia-
tion in the corresponding latent factor that variable loads on. The unex-
plained variance is the amount of indicator variance unshared with the
other measures of the particular common factor. In this text, for the sake of
convenience, we will frequently refer to residuals as errors or error terms.

As indicated previously, it is instrumental for an SEM application to de-
termine the dependent and the independent variables of a model under
consideration. As can be seen in Fig. 6, and using the definition of error,
there are a total of 12 independent variables in this model—these are the
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three latent variables and nine residual terms. Indeed, if one were to write
out the 9 model definition equations (see below), none of these 12 vari-
ables will ever appear in the left-hand side of an equation. Note also that
there are no one-way paths going into any independent variable, but there
are paths leaving each one of them. In addition, there are three two-way ar-
rows that connect the latent variables—they represent the three factor cor-
relations. The dependent variables are the nine observed variables labeled
V1 through V9. Each of them receives two paths—(i) the path from the latent
variable it loads on, which represents its factor loading; and (ii) the one
from its residual term, which represents the error term effect.

First let us write down the model definition equations. These are the re-
lationships between observed and unobserved variables that formally de-
fine the proposed model. Following Fig. 6, these equations are obtained by
writing an equation for each observed variable in terms of how it is ex-
plained in the model, i.e., in terms of the latent variable(s) it loads on and
corresponding residual term. The following system of nine equations is ob-
tained in this way (one equation per dependent variable):

V1 = l1F1 + E1,
V2 = l2F1 + E2,
V3 = l3F1 + E3,
V4 = l4F2 + E4,
V5 = l5F2 + E5, (1)
V6 = l6F2 + E6,
V7 = l7F3 + E7,
V8 = l8F3 + E8,
V9 = l9F3 + E9,

where ll to l9 (Greek letter lambda) denote the nine factor loadings. In ad-
dition, we make the usual assumptions of uncorrelated residuals among
themselves and with the three factors, while the factors are allowed to be in-
terrelated, and that the nine observed variables are normally distributed,
like the three factors and the nine residuals that possess zero means. We
note the similarity of these distributional assumptions with those typically
made in the multiple regression model (general linear model), specifically
the normality of its error term, having zero mean and being uncorrelated
with the predictors (e.g., Tabachnick & Fidell, 2001).

According to the factor analysis model under consideration, each of the
nine Equations in (1) represents the corresponding observed variable as
the sum of the product of that variable’s factor loading with its pertinent fac-
tor, and a residual term. Note that on the left-hand side of each equation
there is only one variable, the dependent variable, rather than a combina-
tion of variables, and also that no independent variable appears there.
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Model Parameters and Asterisks

Another important feature of path diagrams, as used in this text, are the as-
terisks associated with one-way and two-way arrows and independent vari-
ables (e.g., Fig. 6). These asterisks are symbols of the unknown parameters
and are very useful for understanding the parametric features of an enter-
tained model as well as properly controlling its fitting and estimation pro-
cess with most SEM programs. In our view, a satisfactory understanding of a
given model can only then be accomplished when a researcher is able to lo-
cate the unknown model parameters. If this is done incorrectly or arbi-
trarily, there is a danger of ending up with a model that is unduly restrictive
or has parameters that cannot be uniquely estimated. The latter problem-
atic parameter estimation feature is characteristic of models that are un-
identified—a notion discussed in greater detail in a later section—which
are in general useless means of description and explanation of studied phe-
nomena. The requirement of explicit understanding of all model parame-
ters is quite unique to a SEM analysis but essential for meaningful utilization
of pertinent software as well as subsequent model modification that is fre-
quently needed in empirical research.

It is instructive to note that in difference to SEM, in regression analysis
one does not really need to explicitly present the parameters of a fitted
model, in particular when conducting this analysis with popular software.
Indeed, suppose a researcher were interested in the following regression
model aiming at predicting depression among college students:

Depression = a + b1Social-Support +
b2Intelligence + b3Age + Error,

(2)

where a is the intercept and b1, b2, and b3 are the partial regression
weights (slopes), with the usual assumption of normal and homoscedas-
tic error with zero mean, which is uncorrelated with the predictors.
When this model is to be fitted with a major statistical package (e.g., SAS
or SPSS), the researcher is not required to specifically define a, b1, b2 and
b3, as well as the standard error of estimate, as the model parameters.
This is due to the fact that unlike SEM, a regression analysis is routinely
conducted in only one possible way with regard to the set of unknown
parameters. Specifically, when a regression analysis is carried out, a re-
searcher usually only needs to provide information about which mea-
sures are to be used as explanatory variables and which as the dependent
variables; the utilized software automatically determines then the model
parameters, typically one slope per predictor (partial regression weight)
plus an intercept for the fitted regression equation and the standard er-
ror of estimate.
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This automatic or default determination of model parameters does not
generally work well in SEM applications and in our view should not be en-
couraged when the aim is a meaningful utilization of SEM. We find it particu-
larly important in SEM to explicitly keep track of the unknown parameters in
order to understand and correctly set up the model one is interested in fitting
as well as subsequently appropriately modify it if needed. Therefore, we
strongly recommend that researchers always first determine (locate) the pa-
rameters of a structural equation model they consider. Using default settings
in SEM programs will not absolve a scientist from having to think carefully
about this type of details for a particular model being examined. It is the re-
searcher who must decide exactly how the model is defined, not the default
features of a computer program used. For example, if a factor analytic model
similar to the one presented in Fig. 6 is being considered in a study, one re-
searcher may be interested in having all factor loadings as model parameters,
whereas others may have reasons to view only a few of them as unknown.
Furthermore, in a modeling session one is likely to be interested in several
versions of an entertained model, which differ from one another only in the
number and location of their parameters (see chapters 3 through 6 that also
deal with such models). Hence, unlike routine applications of regression
analysis, there is no single way of assuming unknown parameters without
first considering a proposed structural equation model in the necessary de-
tail that would allow one to determine its parameters. Since determination of
unknown parameters is in our opinion particularly important in setting up
structural equation models, we discuss it in detail next.

RULES FOR DETERMINING MODEL PARAMETERS

In order to correctly determine the parameters that can be uniquely esti-
mated in a considered structural equation model, six rules can be used (cf.
Bentler, 2004). The specific rationale behind them will be discussed in the
next section of this chapter, which deals with parameter estimation. When
the rules are applied in practice, for convenience no distinction needs to be
made between the covariance and correlation of two independent variables
(as they can be viewed equivalent for purposes of reflecting the degree of
linear interrelationship between pairs of variables). For a given structural
equation model, these rules are as follows.

Rule 1. All variances of independent variables are model parameters.
For example, in the model depicted in Fig. 6 most of the variances of in-
dependent variables are symbolized by asterisks that are associated
with each error term (residual). Error terms in a path diagram are gen-
erally attached to each dependent variable. For a latent dependent vari-
able, an associated error term symbolizes the structural regression
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disturbance that represents the variability in the latent variable unex-
plained by the variables it is regressed upon in the model. For example,
the residual terms displayed in Fig. 3, D1 to D3, encompass the part of
the corresponding dependent variable variance that is not accounted
for by the influence of variables explicitly present in the model and im-
pacting that dependent variable. Similarly, for an observed dependent
variable the residual represents that part of the variance of the former,
which is not explained in terms of other variables that dependent vari-
able is regressed upon in the model. We stress that all residual terms,
whether attached to observed or latent variables, are (a) unobserved
entities because they cannot be measured and (b) independent vari-
ables because they are not affected by any other variable in the model.
Thus, by the present rule, the variances of all residuals are, in general,
model parameters. However, we emphasize that this rule identifies as a
parameter the variance of any independent variable, not only of residu-
als. Further, if there were a theory or hypothesis to be tested with a
model, which indicated that some variances of independent variables
(e.g., residual terms) were 0 or equal to a pre-specified number(s),
then Rule 1 would not apply and the corresponding independent vari-
able variance will be set equal to that number.

Rule 2. All covariances between independent variables are model pa-
rameters (unless there is a theory or hypothesis being tested with the
model that states some of them as being equal to 0 or equal to a given
constant(s)). In Fig. 6, the covariances between independent variables
are the factor correlations symbolized by the two-way arrows connecting
the three constructs. Note that this model does not hypothesize any cor-
relation between observed variable residuals—there are no two-way ar-
rows connecting any of the error terms—but other models may have one
or more such correlations (e.g., see models in Chap. 5).

Rule 3. All factor loadings connecting the latent variables with their in-
dicators are model parameters (unless there is a theory or hypothesis
tested with the model that states some of them as equal to 0 or to a given
constant(s)). In Fig. 6, these are the parameters denoted by the asterisks
attached to the paths connecting each latent variable to its indicators.

Rule 4. All regression coefficients between observed or latent variables
are model parameters (unless there is a theory or hypothesis tested with
the model that states that some of them should be equal to 0 or to a given
constant(s)). For example, in Fig. 3 the regression coefficients are repre-
sented by the paths going from some latent variables and ending at other
latent variables. We note that Rule 3 can be considered a special case of
Rule 4, after observing that a factor loading can be conceived of as a regres-
sion coefficient (slope) of the observed variable when regressed on the
pertinent factor. However, performing this regression is typically impossi-
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ble in practice because the factors are not observed variables to begin with
and, hence, no individual measurements of them are available.

Rule 5. The variances of, and covariances between, dependent vari-
ables as well as the covariances between dependent and independent
variables are never model parameters. This is due to the fact that these
variances and covariances are themselves explained in terms of model
parameters. As can be seen in Fig. 6, there are no two-way arrows con-
necting dependent variables in the model or connecting dependent and
independent variables.

Rule 6. For each latent variable included in a model, the metric of
its latent scale needs to be set. The reason is that, unlike an observed
variable there is no natural metric underlying any latent variable. In
fact, unless its metric is defined, the scale of the latent variable will re-
main indeterminate. Subsequently, this will lead to model-estimation
problems and unidentified parameters and models (discussed later in
this chapter). For any independent latent variable included in a given
model, the metric can be fixed in one of two ways that are equivalent
for this purpose. Either its variance is set equal to a constant, usually
1, or a path going out of the latent variable is set to a constant (typi-
cally 1). For dependent latent variables, this metric fixing is achieved
by setting a path going out of the latent variable to equal a constant,
typically 1. (Some SEM programs, e.g., LISREL and Mplus, offer the op-
tion of fixing the scales for both dependent and independent latent
variable).

The reason that Rule 6 is needed stems from the fact that an application
of Rule 1 on independent latent variables can produce a few redundant and
not uniquely estimable model parameters. For example, the pair consisting
of a path emanating from a given latent independent variable and this vari-
able’s variance, contains a redundant parameter. This means that one can-
not distinguish between these two parameters given data on the observed
variables; that is, based on all available observations one cannot come up
with unique values for this path and latent variance, even if the entire popu-
lation of interest were examined. As a result, SEM software is not able to es-
timate uniquely redundant parameters in a given model. Consequently,
one of them will be associated with an arbitrarily determined estimate that
is therefore useless. This is because both parameters reflect the same aspect
of the model, although in a different form, and cannot be uniquely esti-
mated from the sample data, i.e., are not identifiable. Hence, an infinite
number of values can be associated with a redundant parameter, and all of
these values will be equally consistent with the available data. Although the
notion of identification is discussed in more detail later in the book, we
note here that unidentified parameters can be made identified if one of
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them is set equal to a constant, usually 1, or involved in a relationship with
other parameters. This fixing to a constant is the essence of Rule 6.

A Summary of Model Parameters in Fig. 6

Using these six rules, one can easily summarize the parameters of the
model depicted in Fig. 6. Following Rule 1, there are nine error term pa-
rameters, viz. the variances of E1 to E9, as well as three factor variances
(but they will be set to 1 shortly, to follow Rule 6). Based on Rule 2, there
are three factor covariance parameters. According to Rule 3, the nine fac-
tor loadings are model parameters as well. Rule 4 cannot be applied in
this model because no regression-type relationships are assumed be-
tween latent or between observed variables. Rule 5 states that the rela-
tionships between the observed variables, which are the dependent
variables of the model, are not parameters because they are supposed to
be explained in terms of the actual model parameters. Similarly, the rela-
tionships between dependent and independent variables are not model
parameters.

Rule 6 now implies that in order to fix the metric of the three latent vari-
ables one can set their variances to unity or fix to 1 a path going out of each
one of them. If a particularly good, that is, quite reliable, indicator of a latent
variable is available, it may be better to fix the scale of that latent variable by
setting to 1 the path leading from it to that indicator. Otherwise, it may be
better to fix the scale of the latent variables by setting their variances to 1.
We note that the paths leading from the nine error terms to their corre-
sponding observed variables are not considered to be parameters, but in-
stead are assumed to be equal to 1, which in fact complies with Rule 6
(fixing to 1 a loading on a latent variable, which an error term formally is, as
mentioned above). For the latent variables in Fig. 6, one simply sets their
variances equal to 1, because all their loadings on the pertinent observed
variables are already assumed to be model parameters. This setting latent
variances equal to 1 means that these variances are no more model parame-
ters, and overrides the asterisks that would otherwise be attached to each
latent variable circle in Fig. 6 to enhance pictorially the graphical represen-
tation of the model.

Therefore, applying all six rules, the model in Fig. 6 has altogether 21 pa-
rameters to be estimated—these are its nine error variances, nine factor
loadings, and three factor covariances. We emphasize that testing any spe-
cific hypotheses in a model, e.g., whether all indicator loadings on the Child
intelligence factor have the same value, places additional parameter restric-
tions and inevitably decreases the number of parameters to be estimated, as
discussed further in the next section. For example, if one assumes that the
three loadings on the Child intelligence factor in Fig. 6 are equal to one an-
other, it follows that they can be represented by a single model parameter.
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In that case, imposing this restriction decreases by two the number of un-
known parameters to 19, because the three factor loadings involved in the
constraint are not represented by three separate parameters anymore but
only by a single one.

Free, Fixed, and Constrained Parameters

There are three types of model parameters that are important in conducting
SEM analyses—free, fixed, and constrained. All parameters that are deter-
mined based on the above six rules are commonly referred to as free pa-
rameters (unless a researcher imposes additional constraints on some of
them; see below), and must be estimated when fitting the model to data.
For example, in Fig. 6 asterisks were used to denote the free model parame-
ters in that factor analysis model. Fixed parameters have their value set
equal to a given constant; such parameters are called fixed because they do
not change value during the process of fitting the model, unlike the free pa-
rameters. For example, in Fig. 6 the covariances (correlations) among error
terms of the observed variables V1 to V9 are fixed parameters since they are
all set equal to 0; this is the reason why there are no two-way arrows con-
necting any pair of residuals in Fig. 6. Moreover, following Rule 6 one may
decide to set a factor loading or alternatively a latent variance equal to 1. In
this case, the loading or variance in question also becomes a fixed parame-
ter. Alternatively, a researcher may decide to fix other parameters that were
initially conceived of as free parameters, which might represent substan-
tively interesting hypotheses to be tested with a given model. Conversely, a
researcher may elect to free some initially fixed parameters, rendering them
free parameters, after making sure of course that the model remains identi-
fied (see below).

The third type of parameters are called constrained parameters, also
sometimes referred to as restricted or restrained parameters. Con-
strained parameters are those that are postulated to be equal to one an-
other—but their value is not specified in advance as is that of fixed
parameters—or involved in a more complex relationship among them-
selves. Constrained parameters are typically included in a model if their
restriction is derived from existing theory or represents a substantively in-
teresting hypothesis to be tested with the model. Hence, in a sense, con-
strained parameters can be viewed as having a status between that of free
and of fixed parameters. This is because constrained parameters are not
completely free, being set to follow some imposed restriction, yet their
value can be anything as long as the restriction is preserved, rather than
locked at a particular constant as is the case with a fixed parameter. It is for
this reason that both free and constrained parameters are frequently re-
ferred to as model parameters. Oftentimes in the literature, all free param-
eters plus a representative(s) for the parameters involved in each
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restriction in a considered model, are called independent model parame-
ters. Therefore, whenever we refer to number of model parameters in the
remainder, we will mean the number of independent model parameters
(unless explicitly mentioned otherwise).

For example, imagine a situation in which a researcher hypothesized
that the factor loadings of the Parental dominance construct associated
with the measures V1, V2, and V3 in Fig. 6 were all equal; such indicators are
usually referred to in the psychometric literature as tau-equivalent mea-
sures (e.g., Jöreskog, 1971). This hypothesis amounts to the assumption
that these three indicators measure the same latent variable in the same unit
of measurement. Hence, by using constrained parameters, a researcher can
test the plausibility of this hypothesis. If constrained parameters are in-
cluded in a model, however, their restriction should be derived from exist-
ing theory or formulated as a substantively meaningful hypothesis to be
tested. Further discussion concerning the process of testing parameter re-
strictions is provided in a later section of the book.

PARAMETER ESTIMATION

In any structural equation model, the unknown parameters are estimated
in such a way that the model becomes capable of “emulating” the analyzed
sample covariance or correlation matrix, and in some circumstances sam-
ple means (e.g., Chap. 6). In order to clarify this feature of the estimation
process, let us look again at the path diagram in Fig. 6 and the associated
model definition Equations 1 in the previous section. As indicated in earlier
discussions the model represented by this path diagram, or system of equa-
tions, makes certain assumptions about the relationships between the in-
volved variables. Hence, the model has specific implications for their
variances and covariances. These implications can be worked out using a
few simple relations that govern the variances and covariances of linear
combinations of variables. For convenience, in this book these relations are
referred to as the four laws of variances and covariances; they follow
straightforwardly from the formal definition of variance and covariance
(e.g., Hays, 1994).

The Four Laws for Variances and Covariances

Denote variance of a variable under consideration by ‘Var’ and covariance
between two variables by ‘Cov.’ For a random variable X (e.g., an intelli-
gence test score), the first law is stated as follows:

Law 1:
Cov(X,X) = Var(X).
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Law 1 simply says that the covariance of a variable with itself is that variable’s vari-
ance. This is an intuitively very clear result that is a direct consequence of the defi-
nition of variance and covariance. (This law can also be readily seen in action by
looking at the formula for estimation of variance and observing that it results
from the formula for estimating covariance when the two variables involved coin-
cide; e.g., Hays, 1994.)

The second law allows one to find the covariance of two linear combina-
tions of variables. Assume that X, Y, Z, and U are four random variables—for
example those denoting the scores on tests of depression, social support,
intelligence, and a person’s age (see Equation 2 in the section “Rules for De-
termining Model Parameters”). Suppose that a, b, c, and d are four con-
stants. Then the following relationship holds:

Law 2:
Cov(aX + bY, cZ + dU) = ac Cov(X,Z) +

ad Cov(X,U) + bc Cov(Y,Z) + bd Cov(Y,U).

This law is quite similar to the rule of disclosing brackets used in elementary al-
gebra. Indeed, to apply Law 2 all one needs to do is simply determine each re-
sulting product of constants and attach the covariance of their pertinent
variables. Note that the right-hand side of the equation of this law simplifies
markedly if some of the variables are uncorrelated, that is, one or more of the
involved covariances is equal to 0. Law 2 is extended readily to the case of
covarying linear combinations of any number of initial variables, by including
in its right-hand side all pairwise covariances pre-multiplied with products of
pertinent weights.3

Using Laws 1 and 2, and the fact that Cov(X,Y) = Cov(Y,X) (since the
covariance does not depend on variable order), one obtains the next equa-
tion, which, due to its importance for the remainder of the book, is formu-
lated as a separate law:
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once the definition equations are written down (see section “Rules for Determining Model Pa-
rameters” and Appendix to this chapter). Specifically, Law 2 states that the covariance of any
pair of observed measures is a function of (i) the covariances or variances of the variables in-
volved and (ii) the weights by which these variables are multipled and then summed up in the
equations for these measures, as given in the model definition equations. The variables men-
tioned in (i) are the pertinent independent variables of the model (their analogs in Law 2 are X,
Y, Z, and U); the weights mentioned in (ii) are the respective factor loadings or regression coef-
ficients in the model (their analogs in Law 2 are the constants a, b, c, and d). Therefore, the pa-
rameters of any SEM model are (a) the variances and covariances of the independent variables,
and (b) the factor loadings or regression coefficients (unless there is a theory or hypothesis
tested within the model that states that some of them are equal to constants, in which case the
parameters are the remaining of the quantities envisaged in (a) and (b)).



Law 3:
Var(aX + bY) = Cov(aX + bY, aX + bY)

= a2 Cov(X,X) + b2 Cov(Y,Y) + ab Cov(X,Y) + ab Cov(X,Y),

or simply

Var(aX + bY) = a2 Var(X) + b2 Var(Y) + 2ab Cov(X,Y).

A special case of Law 3 that is used often in this book involves
uncorrelated variables X and Y (i.e., Cov(X,Y) = 0), and for this reason is for-
mulated as another law:

Law 4: If X and Y are uncorrelated, then

Var(aX + bY) = a2 Var(X) + b2 Var(Y).

We also stress that there are no restrictions in Laws 2, 3, and 4 on the values
of the constants a, b, c, and d—in particular, they could take on the values 0 or
1, for example. In addition, we emphasize that these laws generalize straight-
forwardly to the case of linear combinations of more than two variables.

Model Implications and Reproduced Covariance Matrix

As mentioned earlier in this section, any considered model has certain im-
plications for the variances and covariances (and means, if included in the
analysis) of the involved observed variables. In order to see these implica-
tions, the four laws for variances and covariances can be used. For example,
consider the first two manifest variables V1 and V2 presented in Equations 1
(see the section “Rules for Determining Model Parameters” and Fig. 6). Be-
cause both variables load on the same latent factor F1, we obtain the follow-
ing equality directly from Law 2 (see also the first two of Equations (1)):
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To obtain Equation 3, the following two facts regarding the model in Fig. 6
are also used. First, the covariance of the residuals E1 and E2, and the
covariance of each of them with the factor F1, are equal to 0 according to our
earlier assumptions when defining the model (note that in Fig. 6 there are no
two-headed arrows connecting the residuals or any of them with F1); second,
the variance of F1 has been set equal to 1 according to Rule 6 (i.e., Var(F1) = 1).
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Similarly, using Law 2, the covariance between the observed variables V1

and V4 say (each loading on a different factor) is determined as follows:
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where f21 (Greek letter phi) denotes the covariance between the factors F1

and F2.
Finally, the variance of the observed variable V1, say, is determined using

Law 4 and the previously stated facts, as:
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where q1 (Greek letter theta) symbolizes the variance of the residual E1.
If this process were continued for every combination of say p observed

variables in a given model (i.e., V1 to V9 for the model in Fig. 6), one would
obtain every element of a variance-covariance matrix. This matrix will be
denoted by S(g) (the Greek letter sigma), where g denotes the set or vec-
tor of all model parameters (see, e.g., Appendix to this chapter). The ma-
trix S(g) is referred to as the reproduced, or model-implied, covariance
matrix. Since S(g) is symmetric, being a covariance matrix, it has alto-
gether p(p + 1)/2 nonredundant elements; that is, it has 45 elements for
the model in Fig. 6. This number of nonredundant elements will also be
used later in this chapter to determine the degrees of freedom of a model
under consideration, so we make a note of it here.

Hence, using Laws 1 through 4 for the model in Fig. 6, the following repro-
duced covariance matrix S(g) is obtained (displaying only its nonredundant
elements, i.e., its diagonal entries and those below the main diagonal and
placing this matrix within brackets):
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We stress that the elements of S(g) are all nonlinear functions of model pa-
rameters. In addition, each element of S(g) has as a counterpart a corre-
sponding numerical element (entry) in the observed empirical covariance
matrix that is obtained from the sample at hand for the nine observed vari-
ables under consideration here. Assuming that this observed sample
covariance matrix, denoted by S, is as follows:

1.01
0.32 1.50
0.43 0.40 1.22
0.38 0.25 0.33 1.13

S = 0.30 0.20 0.30 0.70 1.06
0.33 0.22 0.38 0.72 0.69 1.12
0.20 0.08 0.07 0.20 0.27 0.20 1.30
0.33 0.19 0.22 0.09 0.22 0.12 0.69 1.07
0.52 0.27 0.36 0.33 0.37 0.29 0.50 0.62 1.16   ,

then the top element value of S (i.e., 1.01) corresponds to l1
2 + q1 in the re-

produced matrix S(g). Similarly, the counterpart of the element .72 in the
sixth row and fourth column of S, is l4l6 in the S(g) matrix; conversely, the
counterpart of the element in the 3rd row and 1st column in S(g), viz. l1l3, is
.43 in S, and so on.

Now imagine setting the pairs of counterpart elements in S and S(g)
equal to one another, from the top-left corner of S to its bottom-right cor-
ner; that is, for the model displayed in Fig. 6, set 1.01 = l1

2 + q1, then 0.32 =
l1l2, and so on until for the last elements, 1.16 = l9

2 + q9 is set. As a result of
this equality setting, for the model in Fig. 6 a system of 45 equations (viz.,
the number of nonredundant elements in its matrix S(g) or S) is generated
with as many unknowns as there are model parameters—that is, 21, as
there are 21 asterisks in Fig. 6. Hence, one can conceive of the process of fit-
ting a structural equation model as solving a system of possibly nonlinear
equations. For each equation, its left-hand side is a subsequent numerical
entry of the sample covariance matrix S, whereas its right-hand side is its
counterpart element of the matrix S(g), i.e., the corresponding expression
of model parameters at the same position in the model reproduced
covariance matrix. Therefore, fitting a structural equation model is concep-
tually equivalent to solving this system of equations obtained according to
the consequences of the model, whereby this solution is sought in an opti-
mal way that is discussed in the next section.

The preceding discussion in this section also demonstrates that the
model presented in Fig. 6 implies, as does any structural equation model, a
specific structuring of the elements of the covariance matrix (and some-
times means; e.g., Chapter 6) that is reproduced by that model in terms of

26 1. FUNDAMENTALS OF STRUCTURAL EQUATION MODELING



particular expressions—in general, nonlinear functions—of unknown
model parameters. Hence, if certain values for the parameters were entered
into these expressions or functions, one would obtain a covariance matrix
that has numbers as elements. In fact the process of fitting a model to data
with SEM programs can be thought of as a repeated insertion of appropriate
values for the parameters in the matrix S(g) until a certain optimality crite-
rion, in terms of its proximity to the sample covariance matrix S, is satisfied
(see below).

Every available SEM software has built into its memory the exact way in
which these functions of model parameters in S(g) can be obtained (e.g.,
see Appendix to this chapter). For ease of computation, most programs
make use of matrix algebra, with the software in effect determining each of
the parametric expressions involved in these p(p+1)/2 equations. This oc-
curs quite automatically once a researcher has communicated to the pro-
gram the model with its parameters (and a few other related details
discussed in the next chapter).

How Good Is a Proposed Model?

The previous section illustrated how a given structural equation model
leads to a reproduced covariance matrix S(g) that is fit to the observed sam-
ple covariance matrix S through appropriate choice of values for the model
parameters. Now it would seem that the next logical question is, “How can
one measure or evaluate the extent to which the matrices S and S(g) differ?”
This is a particularly important question in SEM because it permits one to
assess the goodness of fit of the model. Indeed, if the difference between S
and S(g) is small for a particular (optimal) set of values of the unknown pa-
rameters, then one can conclude that the model represents the observed
data reasonably well. On the other hand, if this difference is large, one can
conclude that the model is not consistent with the observed data. There are
at least two reasons for such inconsistencies: (a) the proposed model may
be deficient, in the sense that it is not capable of emulating well enough the
analyzed matrix of variable interrelationships even with most favorable pa-
rameter values, or (b) the data may not be good, i.e., are deficient in some
way, for example not measuring well the aspects of the studied phenome-
non that are reflected in the model. Hence, in order to proceed with model
fit assessment, a method is needed for evaluating the degree to which the
reproduced matrix S(g) differs from the sample covariance matrix S.

In order to clarify this method, a new concept needs to be introduced,
that of distance between matrices. Obviously, if the values to be compared
were scalars, i.e., single numbers, a simple subtraction of one from the
other (and possibly taking absolute value of the resulting difference) would
suffice to evaluate the distance between them. However, this cannot be
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done directly with the two matrices S and S(g). Subtracting the matrix S from
the matrix S(g) does not result in a single number; rather, according to the
rules of matrix subtraction (e.g., Johnson & Wichern, 2002) a matrix con-
sisting of counterpart element differences is obtained.

There are some meaningful ways to evaluate the distance between two
matrices, however, and the resulting distance measure ends up being a sin-
gle number that is easier to interpret. Perhaps the simplest way to obtain
this number involves taking the sum of the squares of the differences be-
tween the corresponding elements of the two matrices. Other more com-
plicated ways involve the multiplication of these squares with some
appropriately chosen weights and then taking their sum (discussed later).
In either case, the single number obtained in the end represents a general-
ized measure of the distance between two matrices considered, in particu-
lar S and S(g). The larger this number, the more different these matrices are;
the smaller the number, the more similar they are. Since in SEM this num-
ber typically results after comparing the elements of S with those of the
model-implied covariance matrix S(g), this generalized distance is a func-
tion of the model parameters as well as the observed variances and
covariances. Therefore, it is customary to refer to the relationship between
the matrix distance, on the one hand, and the model parameters and S, on
the other hand, as a fit function. Being defined as the distance between two
matrices, the fit function value is always positive or 0. Whenever its value is
0, and only then, the two matrices involved are identical.

It turns out that depending on how the matrix distance is defined, sev-
eral fit functions result. These fit functions, along with their corresponding
methods of parameter estimation, are discussed next.

Methods of Parameter Estimation

There are four main estimation methods and types of fit functions in SEM:
unweighted least squares, maximum likelihood, generalized least squares,
and asymptotically distribution free (often called weighted least squares).
The application of each estimation approach is based on the minimization
of a corresponding fit function.

The unweighted least squares (ULS) method uses as a fit function, de-
noted FULS, the simple sum of squared differences between the correspond-
ing elements of S and the model reproduced covariance matrix S(g).
Accordingly, the estimates for the model parameters are those values for
which FULS attains its smallest value. The ULS estimation approach can typi-
cally be used when the same or similar scales of measurement underlie the
analyzed variables.

The other three estimation methods are based on the same sum of squares
as the ULS approach, but after specific weights have been used to multiply
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each of the squared element-wise differences between S and S(g), resulting in
corresponding fit functions. These functions are designated FGLS, FML and
FADF, for the generalized least squares (GLS), maximum likelihood (ML), and
asymptotically distribution free (ADF) method, respectively (see Appendix to
this chapter for their definition). The ML and GLS methods can be used when
the observed data are multivariate normally distributed. This assumption is
quite frequently made in multivariate analyses and can be examined using
general-purpose statistical packages (e.g., SAS or SPSS); a number of conse-
quences of it can also be addressed with SEM software. As discussed in more
detail in alternative sources (e.g., Tabachnick & Fidell, 2001; Khattree &
Naik, 1999), examining multinormality involves several steps. The simplest
way to assess univariate normality, an implication of multivariate normality,
is to consider skewness and kurtosis, and statistical tests are available for this
purpose. Skewness is an index that reflects the lack of symmetry of a univari-
ate distribution. Kurtosis has to do with the shape of the distribution in terms
of its peakedness relative to a corresponding normal distribution. Under nor-
mality, the univariate skewness and kurtosis coefficients are 0; if they are
markedly distinct from 0, the univariate and hence multivariate normality as-
sumption is violated. (For statistical tests of their equality to 0, see
Tabachnick & Fidell, 2001.) There is also a measure of multivariate kurtosis
called Mardia’s multivariate kurtosis coefficient, and its normalized estimate
is of particular relevance in empirical research (e.g., Bentler, 2004). This co-
efficient measures the extent to which the multivariate distribution of all ob-
served variables has tails that differ from the ones characteristic of the normal
distribution, with the same component means, variances and covariances. If
the distribution deviates only slightly from the normal, Mardia’s coefficient
will be close to 0; then its normalized estimate, which can be considered a
standard normal variable under normality, will probably be nonsignificant.

Although it may happen that multivariate normality holds when all ob-
served variables are individually normally distributed, it is desirable to also
examine bivariate normality that is generally not a consequence of univariate
normality. In fact, if the observations are from a multivariate normal distribu-
tion, each bivariate distribution should also be normal, like each univariate
distribution. (We stress that the converse does not hold— univariate and/or
bivariate normality does not imply multivariate normality.) A graphical
method for examining bivariate normality involves looking at the scatter
plots between all pairs of analyzed variables to ensure that they have (at least
approximately) cigar-shaped forms (e.g., Tabachnik & Fidell, 2001). A formal
method for judging bivariate normality is based on a plot of the chi-square
percentiles and the mean distance measure of individual observations (e.g.,
Johnson & Wichern, 2002; Khattree & Naik, 1999; Marcoulides &
Hershberger, 1997). If the distribution is normal, the plot of appropriately
chosen chi-square percentiles and the individual score distance to mean
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should resemble a straight line. (For further details on assessing multivariate
normality, see also Marcoulides & Hershberger, 1997, pp. 48–52.)

In recent years, research has shown that the ML method can also be em-
ployed with minor deviations from normality (e.g., Bollen, 1989; Jöreskog
& Sörbom, 1993b; see also Raykov & Widaman, 1995), especially when one
is primarily interested in parameter estimates. In this text for a first course
in SEM that is chiefly concerned with the fundamentals of SEM, we consider
only the ML method for parameter estimation and model testing purposes
with continuous latent and manifest variables, and refer to its robustness
features in cases with slight deviations from observed variable normality
(e.g., Bentler, 2004). In more general terms, the ML method aims at finding
estimates for the model parameters that maximize the likelihood of observ-
ing the available data if one were to collect data from the same population
again. (For a nontechnical introduction to ML, in particular in the context of
missing data analysis via SEM, see, e.g., Raykov, 2005). This maximization is
achieved by selecting, using a numerical search procedure across the space
of all possible parameter values, numerical values for all model parameters
in such a way that they minimize the corresponding fit function, FML.

With more serious deviations from normality, the asymptotically distribu-
tion free (or weighted least squares) method can be used as long as the ana-
lyzed sample is fairly large. Sample size plays an important role in almost
every statistical technique applied in empirical research. Although there is
universal agreement among researchers that the larger the sample relative to
the population the more stable the parameter estimates, there is no agree-
ment as to what constitutes large, due to the exceeding complexity of this
matter. This topic has received a considerable amount of attention in the lit-
erature, but no easily applicable and clear-cut general rules of thumb have
been proposed. To give only an idea of the issue involved, a cautious and sim-
plified attempt at a rule of thumb might suggest that sample size would desir-
ably be more than 10 times the number of free model parameters (cf. Bentler,
1995; Hu, Bentler, & Kano, 1992). Nevertheless, it is important to emphasize
that no rule of thumb can be applied indiscriminately to all situations. This is
because the appropriate size of a sample depends on many factors, including
the psychometric properties of the variables, the strength of the relationships
among the variables considered and size of the model, and the distributional
characteristics of the variables (as well as, in general, the amount of missing
data). When all these above mentioned issues are considered, samples of
varying magnitude may be needed to obtain reasonable parameter estimates.
If the observed variable distribution is not quite normal and does not demon-
strate piling of cases at one end of the range of values for manifest variables,
researchers are encouraged to use the Satorra-Bentler robust ML method of
parameter estimation (e.g., Bentler, 2004; Muthén & Muthén, 2004; du Toit
& du Toit, 2001). This promising approach is based on corrected statistics
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obtainable with the ML method, and for this reason is frequently referred to
as robust ML method. It is available in all three programs used later in this
book, EQS, LISREL, and Mplus (see, e.g., Raykov, 2004, for evaluation of
model differences with this method) and provides overall model fit test statis-
tics and parameter standard errors (see below) that are all robust to mild de-
viations from normality.

Another alternative to dealing with nonnormality is to make the data ap-
pear more normal by introducing some normalizing transformation on the
raw data. Once the data have been transformed and closeness to normality
achieved, normal theory analysis can be carried out. In general, transforma-
tions are simply reexpressions of the data in different units of measure-
ment. Numerous transformations have been proposed in the literature.
The most popular are (a) power transformations, such as squaring each
data point, taking the square root of it, or reciprocal transformations; and
(b) logarithmic transformations. Last but not least, one may also want to
consider alternative measures of the constructs involved in a proposed
model, if such are readily available.

When data stem from designs with only a few possible response catego-
ries, the asymptotically distribution free method can be used with
polychoric or polyserial correlations, or a somewhat less restrictive categor-
ical data analysis approach can be utilized that is available within a general,
latent variable modeling framework (e.g., Muthén, 2002; Muthén &
Muthén, 2004). For example, suppose a questionnaire included the item,
“How satisfied are you with your recent car purchase?”, with response cate-
gories labeled, “Very satisfied”, “Somewhat satisfied”, and “Not satisfied”. A
considerable amount of research has shown that ignoring the categorical at-
tributes of data obtained from items like these can lead to biased SEM re-
sults obtained with standard methods, such as that based on minimization
of the ordinary ML fit function. For this reason, it has been suggested that
use of the polychoric-correlation coefficient (for assessing the degree of as-
sociation between ordinal variables) and the polyserial-correlation coeffi-
cient (for assessing the degree of association between an ordinal variable
and a continuous variable) can be made, or alternatively the above men-
tioned latent variable modeling approach to categorical data analysis may
be utilized. Some research has also demonstrated that when there are five
or more response categories, and the distribution of data could be viewed
as resembling normal, the problems from disregarding the categorical na-
ture of responses are likely to be relatively minimal (e.g., Rigdon, 1998), es-
pecially if one uses the Satorra-Bentler robust ML approach. Hence, once
again, examining the data distribution becomes essential.

From a statistical perspective, all four mentioned parameter estimation
methods lead to consistent estimates. Consistency is a desirable feature in-
suring that with increasing sample size the estimates converge to the un-
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known, true population parameter values of interest. Hence, consistency
can be considered a minimal requirement for parameter estimates ob-
tained with a given estimation method in order for the latter to be recom-
mendable. With large samples, the estimates obtained using the ML and
GLS approaches under multinormality, or the ADF method, possess the ad-
ditional important property of being normally distributed around their
population counterparts. Moreover, with large samples these three meth-
ods yield under their assumptions efficient estimates, which are associated
with the smallest possible variances across the set of consistent estimates
using the same data information and therefore allow one to evaluate most
precisely the model parameters.

Iterative Estimation of Model Parameters

The final question now is, “Using any of the above estimation methods, how
does one actually evaluate the parameters of a given model in order to ren-
der the empirical covariance matrix S and the model reproduced covari-
ance matrix S(g) as close as possible?” In order to answer this question, one
must resort to special numerical routines. Their goal is to minimize the fit
function corresponding to the chosen method of estimation. These numer-
ical routines proceed in a consecutive, or iterative, manner by selecting val-
ues for model parameters according to the following principle. At each
step, the method specific distance—that is, fit function value—between S
and S(g) with the new parameter values, should be smaller than this dis-
tance with the parameter values available at the preceding step. This princi-
ple is followed until no further improvement in the fit function can be
achieved. At that moment, there is no additional decrease possible in the
generalized distance between the empirical covariance matrix S and the
model reproduced covariance matrix S(g), as defined by the used estima-
tion method (e.g., Appendix to this chapter).

This iterative process starts with initial estimates of the parameters, i.e.,
start values for all parameters. Quite often, these values can be automati-
cally calculated by the SEM software used, although researchers can pro-
vide their own initial values if they so choose with some complicated
models. The iteration process terminates (i.e., converges) if at some step
the fit function does not change by more than a very small amount (typically
.000001 or a very close number, yet this value may be changed by the re-
searcher if they have a strong reason). That is, the iterative process of pa-
rameter estimation converges at that step where practically no further
improvement is possible in the distance between sample covariance matrix
S and model reproduced covariance matrix S(g). The numerical values for
the parameters obtained at that final iteration step represent the required
estimates of the model parameters. We emphasize that in order for a set of
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parameter estimates to be meaningful, it is necessary that the iterative pro-
cess converges, i.e., terminates and thus yields a final solution. If conver-
gence does not occur, a warning sign is issued by the software utilized,
which is easily spotted in the output, and the parameter estimates at the last
iteration step are in general meaningless, except perhaps being useful for
tracking down the problem of lack of convergence.

All converged solutions also provide a measure of the sampling variability
for each obtained parameter estimate, called standard error. The magnitude
of the standard error indicates how stable the pertinent parameter estimate is if
repeated sampling, at the same size as the analyzed sample, were carried out
from the studied population. With plausible models (see following section on
fit indices), the standard errors are used to compute t values that provide infor-
mation about statistical significance of the associated unknown parameter.
The t values are computed by the software as the ratio of parameter estimate to
its standard error. If for a free parameter, for example, its t value is greater than
+2 or less than –2, the parameter is referred to as significant at the used signifi-
cance level (typically .05) and can be considered distinct from 0 in the popula-
tion. Conversely, if its t value lies between +2 and –2, the parameter is
nonsignificant and may be considered 0 in the population. Furthermore,
based on the large-sample normality feature of parameter estimates, adding
1.96 times the standard error to and subtracting 1.96 times the standard error
from the parameter estimate yields a confidence interval (at the 95% confi-
dence level) for that parameter. This confidence interval represents a range of
plausible values for the unknown parameter in the population, and can be
conventionally used to test hypotheses about a prespecified value of that pa-
rameter there. In particular, if this interval covers the preselected value, the hy-
pothesis that the parameter equals it in the population can be retained (at
significance level .05); otherwise, this hypothesis can be rejected. Moreover,
the width of the interval permits one to assess the precision with which the pa-
rameter has been estimated. Wider confidence intervals are associated with
lower precision (and larger standard errors), and narrower confidence inter-
vals go together with higher precision of estimation (and smaller standard er-
rors). In fact, these features of the standard errors as measures of sampling
variability of parameter estimates make them quite useful—along with a num-
ber of model goodness-of-fit indices discussed in the next section—for pur-
poses of assessing goodness of fit of a considered model (see below).

We note that a reason for the numerical procedure of fit function minim-
ization not to converge could be that the proposed model may simply be
misspecified. Misspecified models are inadequate for the analyzed data,
that is, they contain unnecessary parameters or omit important ones
(and/or such variables); in terms of path diagrams, misspecified models
contain wrong paths or two-way arrows, and/or omit important one-way
paths or covariances. Another reason for lack of convergence is lack of
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model identification. A model is not identified, frequently also referred to
as unidentified, if it possesses one or more unidentified parameters. These
are parameters that cannot be uniquely estimated—unlike identified para-
meters—even if one gathers data on the analyzed variables from the whole
population and calculates their population covariance matrix to which the
model is subsequently fitted. It is therefore of utmost importance to deal
only with identifiable parameters, and thus make sure one is working with
an identified model. Due to its special relevance for SEM analyses, the issue
of parameter and model identification is discussed next.

PARAMETER AND MODEL IDENTIFICATION

As indicated earlier in this chapter, a model parameter is unidentified if
there is not enough empirical information to allow its unique estimation. In
that case, any estimate of an unidentified parameter computed by a SEM
program is arbitrary and should not be relied on. A model containing at
least one unidentified parameter cannot generally be relied on either, even
though some parts of it may represent a useful approximation to the stud-
ied phenomenon. Since an unidentified model is generally useless in em-
pirical research (although it may be useful in some theoretical discussions),
one must ensure the positive identification status of a model, which can be
achieved by following some general guidelines.

What Does It Mean to Have an Unidentified Parameter?

In simple terms, having an unidentified parameter implies that it is impos-
sible to compute a defendable estimate of it. For example, suppose one
considers the equation a + b = 10, and is faced with the task of finding
unique values for the two unknown constants a and b. One solution obvi-
ously is a = 5, b = 5, yet another is also a = 1, b = 9. Evidently, there is no
way in which one can determine unique values for a and b satisfying the
above equation, because one is given a single equation with two unknowns.
For this reason, there is an infinite number of solutions to the equation
since there are more unknown values (viz. two parameters) than known
values (one equation, i.e., one known number—namely 10—related to the
two parameters). Hence, the ‘model’ represented by this equation is under-
identified, or unidentified, and any pair of estimates that could be obtained
for a and b—like the above two pairs of values for them—are just as legiti-
mate as any other pair satisfying the equation and hence there is no reason
to prefer any of its infinitely many solutions. As will become clear later, the
most desirable condition to encounter in SEM is to have more equations
than are needed to obtain unique solutions for the parameters; this condi-
tion is called overidentification.
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A similar identification problem occurs when the only information avail-
able is that the product of two unknown parameters l and f, say, is equal to
55. Knowing only that lf = 55 does not provide sufficient information to
come up with unique estimates of either l or f. Obviously, one could choose
a value of l in a completely arbitrary manner (except, of course, 0 for this
example) and then take f = 55/l to provide one solution. Since there are an
infinite number of solutions for l and f, neither of these two unknowns is
identified until some further information is provided, for example a given
value for one of them.

The last product example is in fact quite relevant in the context of our
earlier consideration of Rule 6 for determining model parameters. Indeed,
if neither the variance f of a latent variable nor a path l going out of it are
fixed to a constant, then a situation similar to the one just discussed is cre-
ated in any routinely used structural equation model, with the end result
that the variance of the latent variable and the factor loading for a given indi-
cator of it become entangled in their product and hence unidentified.

Although the two numerical examples in this section were deliberately
simple, they nonetheless illustrate the nature of similar problems that can
occur in the context of structural equation models. Recall from earlier sec-
tions that SEM can be thought of as an approach to solving, in an optimal
way, a system of equations—those relating the elements of the sample co-
variance matrix S with their counterparts in the model reproduced covari-
ance matrix S(g). It is possible then, depending on the model, that for some
of its parameters the system may have infinitely many solutions. Clearly,
such a situation is not desirable given the fact that SEM models attempt to
estimate what the parameter values would be in the population. Only iden-
tified models, and in particular estimates of identified parameters, can pro-
vide this type of information; models and parameters that are unidentified
cannot supply such information. A straightforward way to determine if a
model is unidentified is presented next.

A Necessary Condition for Model Identification

The above introduced parallel between SEM and solving a system of equa-
tions is also useful for understanding a simple and necessary condition for
model identification. Specifically, if the system of equations relating the
elements of the sample covariance matrix S with their counterparts in the
model-implied covariance matrix S(g) contains more parameters than
equations, then the model will be unidentified. This is because that system
has more unknowns than could possibly be uniquely solved for, and
hence for at least some of them there are infinitely many solutions. Al-
though this condition is easy to check, it should be noted that it is not a suf-
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ficient condition. That is, having less unknown parameters than equations
in that system does not guarantee that a model is identified. However, if a
model is identified then this condition must hold, i.e., there must be as
many or fewer parameters in that system of equations than nonredundant
elements of the empirical covariance matrix S.

To check the necessary condition for model identification, one simply
counts the number of (independent) parameters in the model and sub-
tracts it from the number of nonredundant elements in the sample covari-
ance matrix S, i.e., from p(p+1)/2 where p is the number of observed
variables to which the model is fitted. The resulting difference,

p(p + 1)/2 – (Number of model parameters), (6)

is referred to as degrees of freedom of the considered model, and is usually
denoted df. If this difference is positive or zero, the model degrees of free-
dom are nonnegative. As indicated above, having nonnegative degrees of
freedom represents a necessary condition for model identification.

If the difference in Equation 6 is 0, however, the degrees of freedom are
0 and the model is called saturated. Saturated models have as many pa-
rameters as there are nonredundant elements in the sample covariance
matrix. In such cases, there is no way that one can test or disconfirm the
model. This is because a saturated model will always fit the data perfectly,
since it has just as many parameters as there are nonredundant elements
in the empirical covariance matrix S. The number of parameters then
equals that of nonredundant equations in the above mentioned system
obtained when one sets equal the elements of S to their counterpart en-
tries in the model reproduced covariance matrix S(g), which system there-
fore has a unique solution.

This lack of testability for saturated models is not unique to the SEM con-
text, and in fact is analogous to the lack of testability of any other statistical
hypothesis when pertinent degrees of freedom equal zero. For example, in
an analysis of variance design with at least two factors and a single observa-
tion per cell, the hypothesis of factorial interaction is not testable because
its associated degrees of freedom equal 0. In this situation, the interaction
term for the underlying analysis of variance model (decomposition) is con-
founded with the error term and cannot be disentangled from it. For this
reason, the hypothesis of interaction cannot be tested, as a result of lack of
empirical information bearing upon the interaction term. The same sort of
lack of empirical information renders a saturated structural equation
model untestable as well.

Conversely, if the difference in Equation 6 is negative, the model degrees
of freedom are negative. In such cases, the model is unidentified since it vio-
lates the necessary condition for identification. Then the system of equa-
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tions relating the elements of S to their counterpart entries of the implied
covariance matrix S(g) contains more unknown than equations. Such sys-
tems of equations, as is well known from elementary algebra, do not pos-
sess unique solutions, and hence the corresponding structural equation
model is not associated with a unique set of values for its parameters that
could be obtained from the sample data, no matter how large the sample
size is. This is the typical deficiency of unidentified structural equation
models, which renders them in general useless in practice.

From this discussion it follows that since one of the primary reasons for
conducting a SEM analysis is to test the fit of a proposed model, the latter
must have positive degrees of freedom. That is, there must be more nonre-
dundant elements in the data covariance matrix than unknown model pa-
rameters. This insures that there are over-identifying restrictions placed on
the model parameters, which are obtained when the elements of S are set
equal to the corresponding entries of S(g). In such cases, it becomes of in-
terest to evaluate to what extend these restrictions are consistent with the
data. This evaluation is the task of the process of model fit evaluation.

Having said that, we stress that as mentioned earlier the condition of
non-negative degrees of freedom is only a necessary but not a sufficient con-
dition for model identification. As a matter of fact, there are many situations
in which the degrees of freedom for a model are positive and yet some of its
parameters are unidentified. Hence, passing the check for non-negative de-
grees of freedom, which sometimes is also referred to as the t-rule for
model identification, does not guarantee identification and that a model
could be a useful means of description and explanation of a studied phen-
omenon. Model identification is in general a rather complex issue that re-
quires careful consideration and handling, and is further discussed next.

How to Deal with Unidentified Parameters in Empirical
Research?

If a model under consideration is carefully conceptualized, the likelihood
of unidentified parameters will usually be minimized. In particular, using
Rules 1 to 6 will most likely ensure that the proposed model is identified.
However, if a model is found to be unidentified, a first step toward identifi-
cation is to see if all its parameters have been correctly determined or
whether all the latent variables have their scales fixed. In many instances, a
SEM program will signal an identification problem with an error message
and even correctly point to the unidentified parameter, but in some cases
the software may point to the wrong parameter or even may miss an un-
identified parameter and model. Hence, the best strategy is for the re-
searcher to examine the issue of model identification and locate the
unidentified parameter(s) in an unidentified model, rather than rely com-
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pletely on a SEM program. This could be accomplished on a case-to-case ba-
sis, by trying to solve the above system of equations obtained when
elements of the empirical covariance matrix S are set equal to their counter-
part entries in the model implied covariance matrix S(g). If for at least one
model parameter there are infinitely many solutions possible from the sys-
tem, that parameter is not identified and the situation needs to be rectified
(see below). If none of the parameters is unidentified, all of them are identi-
fied and the model is identified as well.

Once located, as a first step one should see if the unidentified parameter
is a latent variance or factor loading, since omitting to fix the scale of a latent
variable will lead to lack of identification of at least one of these two parame-
ters pertaining to that variable. When none of the unidentified parameters
results because of such an omission, a possible way of dealing with these pa-
rameters is to impose appropriate, substantively plausible constraints on
them or functions of them that potentially involve also other parameters.
This way of attempting model identification may not always work, in part
because of lack of such constraints. In those cases, either a completely new
model may have to be contemplated—one that is perhaps simpler and does
not contain unidentified parameters—or a new study and data-collection
process may have to be designed.

MODEL-TESTING AND -FIT EVALUATION

The SEM methodology offers researchers a method for quantification and
testing of theories. Substantive theories are often representable as models
that describe and explain phenomena under investigation. As discussed
previously, an essential requirement for all such models is that they be iden-
tified. Another requirement, one of no lesser importance, is that research-
ers consider for further study only those models that are meaningful from a
substantive viewpoint and present plausible means of data description and
explanation.

SEM provides a number of inferential and descriptive indices that reflect
the extent to which a model can be considered an acceptable means of data
representation. Using them together with substantive considerations allows
one to make a decision whether a given model should reasonably be rejected
as a means of data explanation or could be tentatively relied on (to some ex-
tent). The topic of structural equation model fit evaluation, i.e., the process
of assessing the extent to which a model fits an analyzed data set, is very com-
plex and in some aspects not necessarily uncontroversial. Due to the intro-
ductory nature of this book, this section develops a relatively brief discussion
of the underlying issues, which can be considered a minimalist scheme for
carrying out model evaluation. For further elaboration on these issues, we re-
fer the reader to Bentler (2004), Bollen (1989), Byrne (1998), Jöreskog and
Sörbom (1993a, 1993b), Muthén & Muthén (2004).
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Substantive Considerations

A major aspect of fit evaluation involves the substantive interpretations of re-
sults obtained with a proposed model. All models considered in research
should first be conceptualized according to the latest knowledge about the
phenomenon under consideration. This knowledge is usually obtained via
extensive study of the pertinent literature. Fitted models should try to em-
body in appropriate ways the findings available from previous studies. If a re-
searcher wishes to critically examine aspects of available theories, alternative
models with various new restrictions or relationships between involved vari-
ables can also be tested. However, the initial conceptualization of any pro-
posed model can only come after an informed study of the phenomenon
under consideration that includes also a careful study of past research and ac-
cumulated knowledge in the respective subject-matter domain.

Regardless of the specifics of a model in this regard, the advantages of the
SEM methodology can only be used with variables that have been validly
and reliably assessed. Even the most intricate and sophisticated models are
of no use if the variables included in the model are poorly assessed. A model
cannot do more than what is contained in the data themselves. If the data
are poor, in the sense of reflecting substantial unreliability in assessing as-
pects of a studied phenomenon, the results will be poor, regardless of the
particulars of used models.

Providing an extensive discussion of the various ways of ensuring satis-
factory measurement properties of variables included in structural equa-
tion models is beyond the scope of this introductory book. These issues are
usually addressed at length in books dealing specifically with psych-
ometrics and measurement theory (e.g., Allen & Yen, 1979; Crocker &
Algina, 1986; Suen, 1990). The present text instead assumes that the re-
searcher has sufficient knowledge of how to organize a reliable and valid as-
sessment process for the variables included in a given model.

Model Evaluation and the True Model

Before particular indexes of model fit are discussed, a word of warning is in
order. Even if all fit indexes point to an acceptable model, one cannot claim
in empirical research to have found the true model that has generated the an-
alyzed data. (The cases in which data are simulated according to a known
model are excluded from this consideration.) This fact is related to another
specificity of SEM that is different from classical modeling approaches.
Whereas classical methodology is typically interested in rejecting null hy-
potheses because the substantive conjecture is usually reflected in the alter-
native rather than null hypotheses (e.g., alternative hypotheses of difference
or change), SEM is pragmatically concerned with finding a model that does
not contradict the data. That is, in an empirical SEM session, one is typically
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interested in retaining a proposed model whose validity is the essence of a
pertinent null hypothesis. In other words, statistically speaking, when using
SEM one is usually ‘interested’ in not rejecting the null hypothesis.

However, recall from introductory statistics that not rejecting a null hy-
pothesis does not mean that it is true. Similarly, because model testing in
SEM involves testing the null hypothesis that the model is capable of per-
fectly reproducing with certain values of its unknown parameters the popu-
lation matrix of observed variable interrelationship indices, not rejecting a
fitted model does not imply that it is the true model. In fact, it may well be
that the model is not correctly specified (i.e., wrong), yet due to sampling
error it appears plausible. Similarly, just because a model fits a data set well
does not mean that it is the only model that fits the data well or nearly as
well. There can be a plethora of other models that fit the data equally well,
better, or only marginally worse. In fact, there can be a number (possibly
very many; e.g., Raykov & Marcoulides, 2001; Raykov & Penev, 1999) of
equivalent models that fit the data just as well as a model under consider-
ation. Unfortunately, at present there is no statistical means for discriminat-
ing among these equivalent models—especially when the issue is choosing
one (or more) of them for further consideration or interpretation. Which
one of these models is better and which one is to be ruled out, can only be
decided on the basis of a sound body of substantive knowledge about the
studied phenomenon. This is partly the reason why substantive consider-
ations are so important in model-fit evaluation. In addition, one can also
evaluate the validity of a proposed model by conducting replication stud-
ies. The value of a given model is greatly enhanced if it can be replicated in
new samples from the same studied population.

Parameter Estimate Signs, Magnitude, and Standard Errors

It is worth reiterating at this point that one cannot in general meaningfully
interpret a model solution provided by SEM software if the underlying nu-
merical minimization routine has not converged, that is has not ended after
a finite number of iterations. If this routine does not terminate, one cannot
trust the program output for purposes of solution interpretation (although
the solution may provide information that is useful for tracking down the
reasons for lack of convergence).

For a model to be considered further for fit evaluation, the parameter es-
timates in the final solution of the minimization procedure should have the
right sign and magnitude as predicted or expected by available theory and
past research. In addition, the standard errors associated with each of the
parameter estimates should not be excessively large. If a standard error of a
parameter estimate is very large, especially when compared to other param-
eter estimate standard errors, the model does not provide reliable informa-
tion with regard to that parameter and should be interpreted with great

40 1. FUNDAMENTALS OF STRUCTURAL EQUATION MODELING



caution; moreover, the reasons for this finding should be clarified before
further work with the model is undertaken.

Goodness-of-Fit Indices

The Chi-Square Value Evaluation of model fit is typically carried out
on the basis of an inferential goodness-of-fit index as well as a number of
other descriptive or alternative indices. This inferential index is the so-
called chi-square value. The index represents a test statistic of the goodness
of fit of the model, and is used when testing the null hypothesis that the
model fits the corresponding population covariance matrix perfectly. This
test statistic is defined as

T = (N – 1) Fmin , (7)

where N is the sample size and Fmin denotes the minimal value of the fit func-
tion for the parameter estimation method used (e.g., ML, GLS, ADF).

The name chi-square value derives from the fact that with large samples
the distribution of T approaches a chi-square distribution if the model is
correct and fitted to the covariance matrix S. This large-sample behavior of T
follows from what is referred to as likelihood ratio theory in statistics (e.g.,
Johnson & Wichern, 2002). The test statistic in (7) can be obtained in the
context of comparing a proposed model with a saturated model, which as
discussed earlier fits perfectly the data, using the so-called likelihood ratio.
After multiplication with –2, the distribution of the logarithm of this ratio
approaches with increasing sample size a chi-square distribution under the
null hypothesis (e.g., Bollen, 1989), a result that for our purposes is equiva-
lent to a chi-square distribution of the right-hand side of Equation (7).

The degrees of freedom of this limiting chi-square distribution are equal
to those of the model. As mentioned previously, they are determined by us-
ing the formula df = (p(p+1)/2) – q, where p is the number of observed vari-
ables involved in the model and q is the number of model parameters (see
Equation 6 in section “Parameters and Model Identification”).

When a considered model is fit to data using SEM software, the program
will judge the obtained chi-square value T in relation to the model’s degrees
of freedom, and output its associated p-value. This p-value can be examined
and compared with a preset significance level (often .05) in order to test the
null hypothesis that the model is capable of exactly reproducing the popu-
lation matrix of observed variable relationship indices. Hence, following
the statistical null hypothesis testing tradition, one may consider rejection
of the model when this p-value is smaller than a preset significance value
(e.g., .05), and alternatively retention of the model if this p-value is higher
than that significance level.
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Although this way of looking at statistical inference in SEM may appear to
be the reverse of the one used within the framework of traditional hypothe-
sis testing, as exemplified with the framework of the general linear model, it
turns out that at least from a philosophy-of-science perspective the two are
compatible. Indeed, following Popperian logic (Popper, 1962), one’s inter-
est lies in rejecting models rather than confirming them. This is because
there is in general no scientific way of proving the validity of a given model.
That is, in empirical research no structural equation model can be proved
to be the true model (see discussion in previous section).

In this context, it is also important to note that in general there is a pref-
erence for dealing with models that have a large number of degrees of free-
dom. This is because an intuitive meaning of the notion of degree of
freedom is as a dimension along which a model can be disconfirmed.
Hence, the more degrees of freedom a model has, the more dimensions
there are along which one can reject the model, and hence the higher the
likelihood of disconfirming it when it is tested against data. This is a desir-
able feature of the testing process because, according to Popperian logic,
empirical science can only disconfirm and not confirm models. Therefore,
if one has two models that are plausible descriptions of a studied phenome-
non, the one with more degrees of freedom is a stronger candidate for con-
sideration as a means of data description and explanation. The reason is
that the model with more degrees of freedom has withstood a greater
chance of being rejected; if the model was not rejected then, the results ob-
tained with it may be viewed as more trustworthy. This reasoning is essen-
tially the conceptual basis of the parsimony principle widely discussed in
the SEM literature (e.g., Raykov & Marcoulides, 1999, and references
therein). Hence, Popperian logic, which maintains that a goal of empirical
science is to formulate theories that are falsifiable, is facilitated by an appli-
cation of the parsimony principle. If a more parsimonious model is found
to be acceptable, then one may also place more trust in it because it has
withstood a higher chance of rejection than a less parsimonious model.
However, researchers are cautioned that rigid and routine applications of
the parsimony principle can lead to conclusions favoring an incorrect
model and implications that are incompatible with those of the correct
model. (For a further discussion, see Raykov & Marcoulides, 1999.)

The chi-square value T has received a lengthy discussion in this section
for two reasons. First, historically and traditionally, it has been the index
that has attracted a great deal of attention over the past 40 years or so and
especially in the 1970s through 1990s. In fact, most of the fit indexes de-
vised over the past several decades in the SEM literature are functions of the
chi-square value. Second, the chi-square value has the important feature of
being an inferential fit index. That is to say, by using it one is in a position to
make a generalization about the fit of the model in a studied population.
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This is due to the fact that the large-sample distribution of T is known—
namely central chi-square, when a correct model is fitted to the covariance
matrix—and a p-value can be attached to each particular sample’s value of
T. This feature is not shared by most of the other goodness of fit indexes.

However, it may not be always wise to strictly follow this statistical evalu-
ation of plausibility of a model using the chi-square value T, due to the fact
that with very large samples T cannot be really relied on. The reason is
readily seen from its definition in Equation 7. Since the value of T is ob-
tained by multiplying N – 1 (sample size less 1) by the attained minimum of
the fit function, increasing the sample size typically leads to an increase in T
as well. Yet the model’s degrees of freedom remain the same because the
model has not changed, and hence so does the reference chi-square distri-
bution against which T is judged for significance. Consequently, with very
large samples there is a spurious tendency to obtain large values of T, which
tend to be associated with small p-values. Therefore, if one were to use only
the chi-square’s p-value as an index of model fit, there will be an artificial
tendency with very large samples to reject models even if they were only
marginally inconsistent with the analyzed data.

Alternatively, there is another spurious tendency with small samples for
the test statistic T to remain small, which is also explained by looking at the
above Equation (7) and noting that the multiplier N – 1 is then small. Hence,
with small samples there is a tendency for the chi-square fit index to be associ-
ated with large p-values, suggesting a considered model as a plausible data-
description means. Thus, the chi-square index and its p-value alone cannot
be fully trusted in general as means for model evaluation. Other fit indices
must also be examined in order to obtain a better picture of model fit.

Descriptive Fit Indices The above limitations of the chi-square value
indicate the importance of the availability of other fit indices to aid the pro-
cess of model evaluation. A number of descriptive-fit indices have been pro-
posed mostly in the 1970s and 80s that provide a family of fit measures
useful in the process of assessing model fit.

The first developed descriptive-fit index is the goodness-of-fit index
(GFI). It can be loosely considered a measure of the proportion of variance
and covariance that a given model is able to explain. The GFI may be viewed
as an analog in the SEM field of the widely used R2 index in regression analy-
sis. If the number of parameters is also taken into account in computing the
GFI, the resulting index is called adjusted goodness-of-fit index (AGFI). Its
underlying logic is similar to that of the adjusted R2 index also used in re-
gression analysis. The GFI and AGFI indexes range between 0 and 1, and are
usually fairly close to 1 for well-fitting models. Unfortunately, as with many
other descriptive indices, there are no strict norms for the GFI and AGFI
below which a model cannot be considered a plausible description of the
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analyzed data and above which one could rest assured that the model ap-
proximates the data reasonably well. As a rough guide, it may be suggested
that models with a GFI and AGFI in the mid-.90s or above may represent a
reasonably good approximation of the data (Hu & Bentler, 1999).

There are two other descriptive indices that are also very useful for model-
fit evaluation purposes. These are the normed fit index (NFI) and the non-
normed fit index (NNFI) (Bentler & Bonnet, 1980). The NFI and NNFI are
based on the idea of comparing the proposed model to a model in which no
interrelationships at all are assumed among any of the variables. The latter
model is referred to as the independence model or the null model, and in
some sense may be seen as the least attractive, or “worst”, model that could
be considered as a means of explanation and description of one’s data. The
name independence or null model derives from the fact that this model as-
sumes the variables only have variances but that there are no relationships at
all among them, that is, all their covariances are zero. Thus, the null model
represents the extreme case of no relationships among the studied variables,
and interest lies in comparing a proposed model to the corresponding null
model. When the chi-square value of the null model is compared to that of a
model under consideration, one gets an idea of how much better the model
of concern fits the data relative to how bad a means of data description and
explanation that model could possibly be. This is the basic idea that underlies
the NFI and NNFI descriptive-fit indices.

The NFI is computed by relating the difference of the chi-square value
for a proposed model to the chi-square value for the independence or
null model. The NNFI is a variant of the NFI that takes into account also
the degrees of freedom of the proposed model. This is done in order to
account for model complexity, as reflected in the degrees of freedom.
The reason this inclusion is meaningful, is that for a given data set more
complex models have more parameters and hence fewer degrees of free-
dom, whereas less complex models have less parameters and thus more
degrees of freedom. Therefore, one can consider degrees of freedom as
an indicator of complexity of a model (given a set of observed variables
to which it is fitted).

Similar to the GFI and AGFI, models with NFI and NNFI close to 1 are
considered to be more plausible means of describing the data than models
for which these indices are further away from 1. Unfortunately, once again,
there are no strict norms above which one can consider the indices as sup-
porting model plausibility and below which one can safely reject the model.
As a rough guide, models with NNFI and NFI in the mid-.90s or higher are
viewed likely to represent reasonably good approximations to analyzed
data (Hu & Bentler, 1999).

In addition to the GFI, AGFI, NNFI, and NFI, there are more than a dozen
other descriptive-fit indices that have been proposed in the SEM literature
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over the past 30 years or so. Despite this plethora of descriptive-fit indices,
most of them are directly related to the chi-square value T and represent
reexpressions of it or its relationships to other models’ chi-square values and
related quantities. The interested reader may refer to more advanced SEM
books that provide mathematical definitions of each of these indexes (e.g.,
Bollen, 1989) as well as the program manuals for EQS, LISREL, and Mplus
(Bentler, 2004; Jöreskog & Sörbom, 1993a; Muthén & Muthén, 2004).

Alternative Fit Indices A family of alternative fit indices are based
on an altogether different conceptual approach to the process of hypoth-
esis testing in SEM, which can be referred to as an alternative approach to
model assessment. These indices have been developed over the past 25
years and largely originate from an insightful paper by Steiger and Lind
(1980). The basis for alternative-fit indices is the noncentrality parame-
ter (NCP), denoted d. The NCP basically reflects the extent to which a
model does not fit the data. For example, if a model is correct and the
sample large, the test statistic T presented in Equation 7 follows a (cen-
tral) chi-square distribution, but if the model is not quite correct, i.e., is
misspecified to a small degree, then T follows a noncentral chi-square
distribution. As an approximation, a noncentral chi-square distribution
can roughly be thought of as resulting when the central chi-square distri-
bution is shifted to the right by d units (and its variance correspondingly
enlarged). In this way, the NCP can be viewed as an index reflecting the
degree to which a model under consideration fails to fit the data. Thus, the
larger the NCP, the worse the model; and the smaller the NCP, the better
the model. It can be shown that with not-too-misspecified models, nor-
mality, and large samples, d approximately equals (N – 1)FML,0, where FML,0

is the value of the maximum likelihood fit function when the model is fit
to the population covariance matrix. The NCP is estimated in a given
sample by d� = T – d if T ≥ d, and by 0 if T < d, where for simplicity d
denotes the model degrees of freedom.

Within the alternative approach to model testing, the conventional null
hypothesis that a proposed model perfectly fits the population covariance
matrix is relaxed. This is explained by the observation that in practice every
model is wrong even before it is fitted to data. Indeed, the reason why a
model is used when studying a phenomenon of interest is that the model
should represent a useful simplification and approximation of reality rather
then be a precise replica of it. That is, by its very nature, a model cannot be
correct because then it would have to be an exact copy of reality and there-
fore useless. Hence, in the alternative approach to model testing the con-
ventional null hypothesis of perfect model fit that has been traditionally
tested in SEM by examining the chi-square index and its p-value, is really of
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no interest. Instead, one is primarily concerned with evaluating the extent
to which the model fails to fit the data. Consequently, for the reasonable-
ness of a model as a means of data description and explanation, one should
impose weaker requirements for degree of fit.

This is the logic of model testing that is followed by the so-called root
mean square error of approximation (RMSEA) index that has recently be-
come quite a popular index of model fit. In a given sample, the RMSEA is
evaluated as

p = -(T d)/ (dn) (8)

when T ≥ d, or as 0 if T < d, where n = N – 1 is sample size less 1. The RMSEA,
similar to other fit indices, also takes into account model complexity, as re-
flected in the degrees of freedom. It has been suggested that a value of the
RMSEA of less than .05 is indicative of the model being a reasonable approxi-
mation to the analyzed data (Browne & Cudeck, 1993). Some research has
found that the RMSEA is among the fit indices least affected by sample size;
this feature sets the RMSEA apart from many other fit indices that are sam-
ple-dependent or have characteristics of their distribution, such as the mean,
depending on sample size (Marsh et al., 1996; Bollen, 1989).

The RMSEA is not the only index that can be obtained as a direct function
of the noncentrality parameter. The comparative-fit index (CFI) also fol-
lows the logic of comparing a proposed model with the null model assum-
ing no relationships between the observed measures (Bentler, 1990). The
CFI is defined as the ratio of improvement in noncentrality when moving
from the null to a considered model, to the noncentrality of the null model.
Typically, the null model has considerably higher noncentrality than a pro-
posed model because the former could be expected to fit the data poorly.
Hence, values of CFI close to 1 are considered likely to be indicative of a rea-
sonably well-fitting model. Again, there are no norms about how high the
CFI should be in order to safely retain or reject a given model. CFI’s in the
mid-.90s or above are usually associated with models that are plausible ap-
proximations of the data.

The expected cross-validation index (ECVI) was also introduced as a
function of the noncentrality parameter (Browne & Cudeck, 1993). The
ECVI represents a measure of the degree to which one would expect a
given model to replicate in another sample from the same population. In a
set of several proposed models for the same studied phenomenon, a
model is preferred if it minimizes the value of ECVI relative to the other
models. The ECVI was developed partly as a reaction to the fact that be-
cause the RMSEA is only weakly related to sample size, it cannot account
for the fact that with small samples it would be unwise to fit a very complex
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model (i.e., one with many parameters). The ECVI accounts for this possi-
bility, and when the maximum likelihood method of estimation is used it
will be identical up to a multiplicative constant to the Akaike information
criterion (AIC). The AIC is a special type of fit index that takes into account
both the measure of fit and model complexity (Akaike, 1987), and resem-
bles the so-called Bayesian information criterion (BIC). The two indices,
AIC and BIC, are widely used in applied statistics for purposes of model
comparison. Generally, models with lower values of ECVI, AIC, and BIC
are more likely to be better means of data description than models with
higher such indexes. The ECVI, AIC, and BIC have become quite popular
in SEM and latent variable modeling applications, particularly for the pur-
pose of examining competing models, i.e., when a researcher is consider-
ing several models and wishes to select from them the one with best fit.
According to these indices, models with smaller values on them are pre-
ferred to models with higher values.

Another important feature of this alternative approach to model assess-
ment involves the routine use of confidence intervals, and specifically for
the noncentrality parameter and RMSEA. Recall from basic statistics that a
confidence interval provides a range of plausible values for the population
parameter being estimated, at a given confidence level. The width of the in-
terval is also indicative of the precision of estimation of the parameter using
the data at hand. Of special interest to the alternative approach of model
testing is the left endpoint of the 90% confidence interval of the RMSEA in-
dex for an entertained model. In particular, if this endpoint is considerably
smaller than .05 and the interval not too wide (e.g., the right endpoint not
higher than .08), it can be argued that the model is a plausible means of de-
scribing the analyzed data. Hence, if the RMSEA is smaller than .05 or the
left endpoint of its confidence interval markedly smaller than .05, with this
interval being not excessively wide, the pertinent model could be consid-
ered a reasonable approximation of the analyzed data.

In conclusion of this section on model testing and fit evaluation, we
would like to emphasize that no decision on goodness of fit should be
based on a single index, no matter how favorable for the model that index
may appear. As indicated earlier, every index represents a certain aspect of
the fit of a proposed model, and in this sense is a source of limited infor-
mation as to how good the model is or how well it can be expected to per-
form in the future (e.g., on another sample from the same population).
Therefore, a decision to reject or retain a model should always be based
on multiple goodness-of-fit indices (and if possible on the results of repli-
cation studies). In addition, as indicated in the next section, important in-
sights regarding model fit can be sometimes obtained by also conducting
an analysis of residuals.
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Analysis of Residuals

All fit indices discussed in the previous section should be viewed as overall
measures of model fit. In other words, they are summary measures of fit and
none of them provides information about the fit of individual parts of the
model. As a consequence, it is possible for a given model to be seriously
misspecified in some parts (i.e., incorrect with regard to some of the vari-
ables and their relationships) but very well fitting in others, so that an evalu-
ation of the previously discussed fit criteria suggests that the model may be
judged plausible.

For example, consider a model that is substantially off the mark with re-
spect to an important relationship between two particular observed vari-
ables (e.g., the model omits this relationship). In such a case, the difference
between the sample covariance and the covariance reproduced by the
model at the final solution—called residual for that pair of variables—may
be substantial. This result would suggest that the model cannot be consid-
ered a plausible means of data description. However, at the same time the
model may do an excellent job of explaining all of the remaining covari-
ances and variances in the sample covariance matrix S, and overall result in
a nonsignificant chi-square value and favorable descriptive as well as alter-
native fit indices. Such an apparent paradox may emerge because the chi-
square value T, or any of the other fit indices discussed above, is a measure
of overall fit. Hence, all that is provided by overall measures of model fit is a
summary picture of how well a model fits the entire analyzed matrix, but no
information is contained in them about how well the model reproduces the
individual elements of that matrix.

To counteract this possibility, the so-called covariance residuals—often
also referred to as model residuals—can be examined. There are as many
generic residuals of this kind as there are nonredundant elements of the
sample covariance matrix of the variables to which a model is fitted. They re-
sult from an element-wise comparison of each sample variance and covari-
ance to the value of its counterpart element in the implied covariance
matrix obtained with the parameter estimates when the model is fitted to
data. In fact, there are two types of model residuals that can be examined in
most SEM models and are provided by the used software. The unstandard-
ized residuals index the amount of unexplained variable covariance in
terms of the original metric of the raw data. However, if this metric is quite
different across measured variables, it is impossible to examine meaning-
fully these residuals and determine which are large and which are small. A
standardization of the residuals to a common metric, as reflected in the
standardized residuals, makes this comparison much easier.

A standardized residual above 2 generally indicates that the model con-
siderably underexplains a particular relationship between two variables.
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Conversely, a standardized residual below –2 generally indicates that the
model markedly overexplains the relationship between the two variables.
Using this residual information, a researcher may decide to either add or re-
move some substantively meaningful paths or covariance parameters,
which could contribute to a smaller residual associated with the involved
two variables and hence a better-fitting model with regard to their relation-
ship (see Appendix to this chapter).

Overall, good-fitting models will typically exhibit a steam-and-leaf plot of
standardized residuals that closely resembles a symmetric distribution. In
addition, examining the so-called Q plot of the standardized residuals is a
useful means of checking the plausibility of a proposed model. The Q plot
graphs the standardized residuals against their expectations if the model
were a good means of data description. With well-fitting models, a line
drawn through the marks of the residuals on that plot will be close to the
dotted, equidistant line provided on it by the software (Jöreskog & Sörbom,
1993c). Marked departures from a straight line indicate serious model
misspecifications or possibly violations of the normality assumption (e.g.,
nonlinear trends in the relationships between some observed variables).

An important current limitation in SEM applications is the lack of evalua-
tion of estimated individual-case residuals. Individual-case residuals are
routinely used in applications of regression analysis because they help re-
searchers with model evaluation and modification. In regression analysis,
residuals are defined as the differences between individual raw data and
their model-based predictions. Unfortunately, SEM developers have only
recently begun to investigate more formally ways in which individual-case
residuals can be defined within this framework (e.g., Bollen & Arminger,
1991; Raykov & Penev, 2001). The development of means for defining indi-
vidual-case residuals is also hampered by the fact that most structural equa-
tion models are based on latent variables, which cannot be directly
observed or precisely measured. Therefore, very important pieces of infor-
mation that are needed in order to arrive at individual-case residuals similar
to those used in regression analysis are typically missing.

Modification Indices

A researcher usually conducts a SEM analysis by fitting a proposed model to
available data. If the model does not fit, one may accept this fact and leave it
at that (which is not really commonly recommended), or alternatively may
consider answering the question, “How could the model be altered in order
to improve its fit?” In the SEM literature, the modification of a specified
model with the aim of improving fit has been termed a specification search
(Long, 1983; MacCallum, 1986). Accordingly, a specification search is con-
ducted with the intent to detect and correct specification error in a pro-
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posed model, that is, its deviation from the true model characterizing a
studied population and relationships among analyzed variables.

Although in theory researchers should fully specify and deductively hy-
pothesize a model prior to data collection and model testing, in practice this
often may not be possible, either because a theory is poorly formulated or be-
cause it is altogether nonexistent. As a consequence, specification searches
have become nearly a common practice in many SEM applications. In fact,
most currently available SEM programs provide researchers with options to
conduct specification searches to improve model fit, and some new search
procedures (e.g., using genetic algorithms, ant colony optimization, and
Tabu search) have also been developed to automate this process (see
Marcoulides, Drezner, & Schumacker, 1998; Marcoulides & Drezner, 2001,
2002; Scheines, Spirtes, Glymour, Meek & Richardson, 1998).

Specification searches are clearly helpful for improving a model that is
not fundamentally misspecified but is incorrect only to the extent that it
has some missing paths or some of its parameters are involved in unneces-
sarily restrictive constraints. With such models, it can be hypothesized
that their unsatisfactory fit stems from overly strong restriction(s) on its
parameters that are either fixed to 0 or set equal to other parameter(s), or
included in a more complex relationship. The application of any means of
model improvement is only appropriate when the model modification
suggested is theoretically sound and does not contradict the results of pre-
vious research in a particular substantive domain. Alternatively, the re-
sults of any specification search that do not agree with past research
should be subjected to further analysis based on new data before any real
validity can be claimed.

The indexes that can be used as diagnostic statistics about which parame-
ters could be changed in a model are called modification indices (a term
used in the LISREL and Mplus programs) or Lagrange multiplier test statis-
tics (a term used in the EQS program). The value of a modification index
(term is used generically) indicates approximately how much a proposed
model’s chi-square would decrease if a particular parameter were freely es-
timated or freed from a constraint it was involved in the immediately pre-
ceding modeling session. There is also another modification index, called
the Wald index, which takes an alternative approach to the problem. The
value of the Wald index indicates how much a proposed model’s chi-
square would increase if a particular parameter were fixed to 0 (i.e., if the
parameter were dropped from a model under consideration).

The modification indexes address the question of how to improve an ini-
tially specified model that does not fit satisfactorily the data. Although no
strict rules-of-thumb exist concerning how large these indexes must be to
warrant a meaningful model modification, based on purely statistical con-
siderations one might simply consider making changes to parameters asso-
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ciated with the highest modification indices (see below for a guideline re-
garding their magnitude). If there are several parameters with high modifi-
cation indices, one may consider freeing them one at a time, beginning with
the largest, because like in the general linear modeling framework a single
change in a structural equation model can affect other parts of the solution
(Jöreskog & Sörbom, 1990; Marcoulides et al., 1998). When LISREL or
Mplus are used, modification indices larger than 5 generally merit close
consideration. Similarly, when EQS is used, parameters associated with sig-
nificant Lagrange-multiplier or Wald-index statistics also deserve close con-
sideration.

It must be emphasized, however, that any model modification must first
be justified on theoretical grounds and be consistent with already available
theories or results from previous research in the substantive domain under
consideration, and only second must be in agreement with statistical
optimality criteria such as those mentioned. Blind use of modification indi-
ces can turn out to be a road to models that lead researchers astray from
their original substantive goals. It is therefore imperative to consider chang-
ing only those parameters that have a clear substantive interpretation. Addi-
tional statistics, in the form of the estimated change for each parameter, can
also be taken into account before one reaches a final decision regarding
model modification.

In conclusion, we emphasize that results obtained from any model-im-
provement specification search may be unique to the particular data set,
and that capitalization on chance can occur during the search (e.g.,
MacCallum, 1986). Consequently, once a specification search is conducted
a researcher is entering a more exploratory phase of analysis. This has also
purely statistical implications in terms of not keeping the overall signifi-
cance level at the initially prescribed nominal value (the preset significance
level, usually .05). Hence, the possibility exists of arriving at such statisti-
cally significant results regarding aspects of the model due only to chance
fluctuations. Thus, the likelihood of falsely declaring at least one of the con-
ducted statistical tests of the model or any of its parameters to be significant,
is increased rather than being the same as that of any single test. For this rea-
son, any models that result from specification searches must be cross-vali-
dated before real validity can be claimed for any of its findings.
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APPENDIX TO CHAPTER 1

The structural equation models considered in this book are special cases
of the so-called general LInear Structural RELationships (LISREL) model.
To define it formally, denote by Y the vector of p observed variables in a
considered study (p > 1), by h that of q latent factors assumed in it (q > 0),
and by e the vector of p pertinent residuals (error terms). Designating by L
the p × q matrix of factor loadings, by n the p × 1 vector of observed vari-
able mean intercepts, by a the q × 1 vector of latent variable intercepts,
and by z the q × 1 vector of corresponding latent disturbance terms, the
general LISREL model is represented by the following pair of equations:

Y = n + Lh + e and (A1.1)

h = a + Bh + z , (A1.2)

where in addition the matrix I – B is assumed invertible. In this introductory
text, for simplicity the additional assumption of normality of the variables
in Y, h, e, and z is made, which are continuous, as well as that of uncorre-
latedness of e and z, e and h, and z and h. Components of each of the vectors
e, z, and h may be correlated among themselves, however, assuming overall
model identification. Further, the model classes considered in this book
also assume n = a = 0, which does not pose any special restriction of gener-
ality in many social and behavioral studies when the units and origins of
measurement are not meaningful (or the analyzed variables may be consid-
ered mean-centered without loss of relevant information for a particular in-
vestigation.) The validity of Equations (A1.1) and (A1.2) is assumed for each
individual in a sample, but for simplicity of notation we suppress the sub-
ject subindex in this Appendix. We stress that the LISREL model defined by
Equations (A1.1) and (A1.2) also includes the case where manifest variables
influence observed and/or latent variables, which is seen by noting that ob-
served predictors can be formally represented by error-free latent variables
(i.e., h’s with corresponding e’s being 0 and unitary pertinent elements of
L) in the right-hand sides of each of these two equations.

Under these assumptions, via simple algebra Equations (A1.1) and
(A1.2) entail that the implied, observed variable covariance matrix S has the
following form:

S = L(I–B)–1Y(I–B')–1L' + Q , (A1.3)

where priming denotes transposition, Y = Cov(x) is the latent disturbance
terms covariance matrix, and Q = Cov(e) is that of the residuals.

A simple inspection of the right-hand side of Equation (A1.3) demon-
strates that the parameters of the general LISREL model are among: (a) the
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factor loadings (elements of L); (b) the latent regression coefficients (ele-
ments of B); and (c) the variances and covariances of the latent disturbance
terms and residuals (the elements of Y and Q) that collectively represent
the independent variables of the model. (In case a considered model has no
latent dependent variable, as in confirmatory factor analysis models, set h =
z and B = 0 in (A1.2) and use the immediately preceding sentence in this
paragraph to obtain its model parameters.) This observation presents the
rationale behind the rules for determining model parameters discussed in
this chapter. Also, denoting by g the vector of all model parameters (i.e., all
variances of and covariances between independent variables as well as all
regression coefficients and factor loadings), Equation (A1.3) states that S =
S(g). That is, an implication of any considered structural equation model is
the structuring of all elements of the pertinent population covariance ma-
trix in terms of fewer in number, more fundamental parameters, viz. those
in g. This is the essence of the model parameterization that is invoked as a
consequence of adopting a particular structural equation model.

The fit function for the model fitting and estimation approach used
throughout this book, that of the maximum likelihood method, is de-
fined as

FML = “distance”(S, S(g)) = –1n|S S(g)–1| + tr(S S(g)–1) – p , (A1.4)

where |.|denotes matrix determinant and tr(.) trace (sum of main diagonal
elements). Using special numerical optimization algorithms, this fit func-
tion is minimized across the parameter space, i.e., the set of all admissible
values of all model parameters (in particular, typically positive variances).
When the model is correct and fitted to the covariance matrix for a large
sample, T = n FML, min follows a central chi-square distribution with degrees
of freedom being those of the fitted model, where FML, min is the minimum of
(A1.4), n = N – 1 and N is sample size. This fit function is derivable in the
context of the likelihood ratio test theory, when comparing a given model
to a saturated model fitted to the same set of observed variables (e.g.,
Bollen, 1989). The minimizer of (A1.4), g�, consists of the point estimates of
all model parameters; their standard errors are obtained as the correspond-
ing elements on the main diagonal of the inverted observed information
matrix.

The unweighted least squares (ULS) method is based on minimizing,
across the set of all possible values for g, the fit function

FULS = .5 tr[(S – S(g))2] , (A1.5)

while the generalized least squares (GLS) approach minimizes the fit function

FGLS = .5 tr[(I – S–1S(g))2] . (A1.6)
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The asymptotically distribution free (ADF) method (also called weighted
least squares method) minimizes the fit function

FADF = (s – s(g))'W–1(s – s(g)) , (A1.7)

where s denotes the strung-out vector of nonredundant elements of S, s(g)
the similar vector of their counterparts in S(g), and W is a weight matrix that
represents a consistent estimate of the large sample covariance matrix of
the elements of S (considered as random variables themselves). As shown in
the literature (e.g., Bollen, 1989), with large samples the ULS, ML, and GLS
estimation methods can be considered special cases of the ADF method, ob-
tained with appropriate choices of the matrix W. Corrections of the chi-
square value and parameter standard errors, which are functions of the ma-
trix W, yield from the ML test statistic and standard errors robust ML test sta-
tistics and robust standard errors, respectively (e.g., Bentler, 2004).

The matrix of covariance residuals, S – S(g�), which is also often referred
to as matrix of model residuals, contains information about local goodness
of fit of the model. These residuals, i.e., the elements of S – S(g�), are ex-
pressed in the original metrics of manifest variables that may be quite dis-
similar across variables, and thus are in general hard to interpret. Their
standardized counterparts, called standardized residuals, are expressed in
a uniform metric across all variables and can therefore be used to locate
pairs of variables whose interrelationship indices are markedly misfit. Like
the individual case residuals in regression analysis, in SEM the model resid-
uals are not unrelated to one another. However, those of them whose stan-
dardized versions are in absolute value higher than 2 generally indicate
parts of the model that are considerably inconsistent with the data. A posi-
tive residual means underprediction by the model of the covariance for the
two variables involved, and may be made smaller by introducing a parame-
ter additionally contributing to their interrelationship index (as reflected in
its counterpart element of S(g�)). Conversely, a negative residual means
overprediction by the model of that covariance, and may be rendered
smaller in magnitude (i.e., absolute value) by deleting a parameter contrib-
uting to this interrelationship index (as reflected in its counterpart in S(g�)).
An examination of model residuals, in particular standardized residuals, is
therefore recommendable as an essential step in the process of model fit
evaluation.
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C H A P T E R T W O

Getting to Know the EQS,
LISREL, and Mplus Programs

In Chapter 1, the basic concepts of the structural equation modeling
methodology were discussed. In this chapter, essential elements of the
notation and syntax used in the EQS, LISREL, and Mplus programs are in-
troduced. The chapter begins by presenting an easy-to-follow flowchart
depicting the general principles behind constructing command files for
SEM software. This material is followed by a discussion of the EQS,
LISREL, and Mplus programming languages. The discussion begins with
EQS since the preceding chapter has already familiarized the reader with a
number of important concepts and notation substantially facilitating an
introduction to this software. The LISREL program, with its somewhat dif-
ferent structure, is dealt with second, followed then by Mplus. For more
detailed and extensive information going beyond the confines of this text,
a study of the latest versions of pertinent software manuals is recom-
mended (Bentler, 2004; duToit & duToit, 2001; Jöreskog & Sörbom,
1999; Muthén & Muthén, 2004).

STRUCTURE OF INPUT FILES FOR SEM SOFTWARE

Each SEM program may be considered a separate language with specific
syntax and rules that must be precisely followed. The syntax is used to com-
municate to the program all needed details about observed data and mod-
els of concern to the researcher. These details are provided to the software
as commands. The results of the program acting on them are presented in
the associated output.
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Obviously, an essential piece of information that must be given to the
software is what a model under consideration looks like. Conveying infor-
mation about the model begins with an appropriate and software specific
reference to the observed and unobserved variables, as well as the way they
relate to one another. As discussed in the previous chapter, each program
has in its memory the formal way in which the model reproduced matrix
S(g) can be obtained, once the software is informed about the model. As il-
lustrated in Chapter 1, especially for newcomers to SEM, it is highly recom-
mendable that one first draws the path diagram of the model and
determines its parameters using Rules 1 to 6, and then proceeds with the ac-
tual model fitting process.

In addition, one must communicate to the program a few details about
the data to which the model will be fit. To this end, information concerning
the location of the data, the name of its file, and possibly the data format
(unless free) must be provided. For example, with respect to data format, it
must be specified whether the data is in raw form, in the form of a
covariance matrix (and means, if needed; see Chap. 6), or in the form of a
correlation matrix. While the pertinent rules to accomplish this are soft-
ware specific, generally it is important to indicate the number of variables
(or their names) in the data set or the location of the analyzed variables
within the file, and to provide information about sample size if other than
raw data is used. SEM programs echo in the first part of their output the
command file (specifically, the number of variables and observations as
well as all submitted commands), and also display the analyzed data in the
form of either a covariance or correlation matrix or alternatively a reference
to raw data file is made (depending on how the data have been supplied to
the software). This feature allows the researcher to quickly check the top
part of the output in order to ensure that the program has indeed correctly
read the data to be analyzed.

SEM software is built upon output defaults that routinely provide most
of the relevant information for many empirical research settings, but on oc-
casion one must specifically communicate to the program which other type
of analysis is desired, e.g., particulars about the model estimation process,
number of iterations to be conducted, particular measures of model fit, or
particular analysis results.

In simple terms, the flowchart given next represents in general the back-
bone of a command file for a model to be fitted with a SEM program.

Location and form of data to be analyzed
Ø

Description of model to be fitted
Ø

Specific information requested about final solution
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The next three sections in the present chapter follow this flow chart for set-
ting up command files in EQS, LISREL, and Mplus. Although this is done
first using only the information likely to be most frequently necessary to
provide to the software, it will prove sufficient for fitting most of the models
encountered in this text. The discussion is extended when more compli-
cated models are dealt with in later chapters (such as multi-sample or mean
structure models in Chap. 6).

INTRODUCTION TO THE EQS NOTATION AND SYNTAX

In Chapter 1, we have in fact laid the grounds for introducing the specific el-
ements needed to set up command files using the EQS syntax and notation.
An input file in EQS is made up of various commands. The beginning of
each command is signaled by a forward slash (/) and its end by a semicolon
(;). A command is typically followed by several keywords, or subcommands,
and can go on for several lines. To begin the introduction to EQS, a list of
commands that arguably are most often used in practice when conducting
SEM analyses are presented next (for further details see Bentler, 2004).
Each command is illustrated using the factor analysis model originally dis-
played in Fig. 6 in Chapter 1. For ease of discussion, the same figure is dis-
played again in Fig. 7. In addition, and to keep all command files visually
separate from the regular text, all command lines are capitalized through-
out the book.

Title Command

One of the first things needed to create an EQS input file is a title command.
This command simply describes in plain English the type of model exam-
ined (e.g., a confirmatory factor analysis model or a path analytic model)
and perhaps some of its specifics (e.g., a study of college students or middle
managers). The title command is initiated by the keyword /TITLE. On the
line immediately following, and for as many lines as needed, an explanatory
title is provided. For example, suppose that the model of concern is the fac-
tor analysis model displayed in Fig. 7. The title command could then be
listed as

/TITLE
EQS INPUT FILE FOR A FACTOR ANALYSIS MODEL OF THREE
INTERRELATED CONSTRUCTS EACH MEASURED BY THREE
INDICATORS;

We emphasize that although a title command can be kept to a single or a
couple of descriptive lines, like in this example, the more details are pro-
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vided in it the better one will recall the purpose of the modeling, especially
when revisiting the command file later.

Data Command

The data command lists details about the data to be analyzed. This is initi-
ated by using the keyword /SPECIFICATIONS. On the next line, the exact
number of variables in the data set are provided using the keyword (sub-
command) VARIABLES= , followed by that number. Then information
about the number of observations in the data set is given using the keyword
CASES= , followed by sample size. The data to be used in the study may be
placed directly in the input file or in a separate data file. If the data are avail-
able as a covariance matrix, the keyword MATRIX=COV can be used (al-
though it is not strictly needed as it is the default option). If the data are in
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raw form (one column per variable, in as many lines as sample size), then
the keyword MATRIX=RAW is used and the name of the file enclosed in
apostrophes (including its location, i.e., path to it) are provided with the
keyword DATA_FILE= (e.g., DATA_FILE=‘C:\DATA\DATAFILE’). If the data
are in the form of a covariance matrix and to be placed directly in the input
file (e.g., the covariance matrix S in Chap. 1), the command /MATRIX is used
later in the input file followed by the matrix itself. (Although the covariance
matrix typically would appear at the very end of the input file for conve-
nience reasons—see final EQS input file below—for continuity reasons we
mention its inclusion into the command file at this point.) If a matrix of vari-
able interrelationships other than the covariance matrix is to be analyzed,
this information is provided using the keyword ANALYSIS= , followed by
MOMENTS if the mean structure is to be analyzed (i.e., variable means
along with covariance matrix, as in Chap. 6), or by CORRELATION if the
correlation matrix is to be analyzed.

The default method of estimation in EQS is maximum likelihood (ML). If
a method other than ML is to be used for estimation purposes, it is stated af-
ter the keyword METHOD=, which is followed by its abbreviation in the
program language (e.g., GLS or LS for unweighted least squares, and
ROBUST for the robust ML method; e.g., Bentler, 2004). Although EQS pro-
vides the option of selecting from among several estimation procedures, as
indicated in Chapter 1, only the use of the ML method will be exemplified in
this introductory text. Utilizing the factor analysis model in Fig. 7 as an illus-
tration, the data command line can then be listed as (in case the model is fit-
ted to data from 245 subjects; we note that the last 3 subcommands of the
command /SPECIFICATIONS are defaults and do not need to be explicitly
stated in the input file):

/SPECIFICATIONS
VARIABLES=9;
CASES=245;
METHOD=ML;
MATRIX=COV;
ANALYSIS=COV;

/MATRIX
1.01
.32 1.50
.43 .40 1.22
.38 .25 .33 1.13
.30 .20 .30 .7 1.06
.33 .22 .38 .72 .69 1.12
.20 .08 .07 .20 .27 .20 1.30
.33 .19 .22 .09 .22 .12 .69 1.07
.52 .27 .36 .33 .37 .29 .50 .62 1.16
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It should be noted that because each of the subcommands ends with a semico-
lon, they can all be stated also in a single line; the only command in which no
semicolon is needed to mark its end is /MATRIX (in addition to the data lines).

Model-Definition Commands

The next commands needed in the EQS input file, following the flowchart
presented earlier, deal with model description. To accomplish this aim, one
can take a close look at the path diagram of the model to be fitted and provide
to the software information about its parameters. Setting up the model defi-
nition commands involves: (a) writing out the equations relating each de-
pendent variable to its explanatory variables; (b) determining the status of all
variances of independent variables (whether free or fixed, and at what value
in the latter case); and (c) determining the status of the covariances for all in-
dependent variables. These activities are achieved by using the commands
/EQUATIONS, /VARIANCES, and /COVARIANCES, respectively.

Each free or constrained parameter in the model is denoted in EQS by an
asterisk. Following closely the path diagram in Fig. 7 results in 21 asterisks
appearing in the model-definition equations and commands, which num-
ber as discussed in Chap. 1 equals that of free model parameters. The com-
mand /EQUATIONS initiates a listing of the model equations, which in the
current example of Fig. 7 is as follows

/EQUATIONS
V1 = *F1 + E1;
V2 = *F1 + E2;
V3 = *F1 + E3;
V4 = *F2 + E4;
V5 = *F2 + E5;
V6 = *F2 + E6;
V7 = *F3 + E7;
V8 = *F3 + E8;
V9 = *F3 + E9;

We stress that model parameters (i.e., the nine l’s in Equations 1 in Chap.
1) have been explicitly represented by asterisks in the listing of model equa-
tions. In addition, if needed, one can also assign a special start value to any
model parameter by writing that value immediately before the asterisk in
the corresponding equation (e.g., V9 = .9*F3 + E9 assigns a start value of .9
to the loading of V9 upon the third latent variable). This does not change
the status of the parameter in question (e.g., from free to fixed), but only
signals to the software that this value will be the one this parameter will re-
ceive at the initial step of the numerical iteration process. Alternatively,
fixed factor loadings are represented by their value placed immediately be-
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fore the latent variable they belong to (i.e., they are not followed by an aster-
isk, unlike free parameters).

The command /VARIANCES is used to inform the software about the sta-
tus of the independent variable variances (recall Rule 1 in Chap. 1). Accord-
ing to Fig. 7, there are nine residual variances and three factor variances,
which represent all variances of independent variables in this model. The
factor variances, however, will be fixed to 1 following Rule 6 in order to in-
sure that the latent variable metrics are set. Hence, we add the following
lines to the input file:

/VARIANCES
F1 TO F3 = 1; E1 TO E9 = *;

Note that one can use the TO convention in order to save tedious writing of
all independent variables in the model, which becomes a particularly handy
feature with large models having many error and/or latent variable variances.

Finally, information about independent variable covariances—that is,
the three factor covariances in Fig. 7—must be communicated to the pro-
gram. This is accomplished with the command /COVARIANCES:

/COVARIANCES
F2,F1=*; F3,F1=*; F3,F2=*;

Using the TO convention, the last line can be shortened to F1 TO F3 = *; .

Once the commands dealing with model definition have been com-
pleted, it is important to ensure that Rules 5 and 6 have not been contra-
dicted in the input file. Thus, for the model in Fig. 7, a final check should
make sure that each of the three factor variances is indeed fixed at 1 (Rule 6)
and in particular that no variance or covariance of dependent variables as
well as no covariance of a dependent and an independent variable have
been declared model parameters (Rule 5). Lastly, in the example of Fig. 7,
counting the number of asterisks one finds 21 model parameters declared
in the input file—just as many as there are asterisks in the path diagram. Ob-
viously, if the two numbers differ, some model parameters have either been
left out or incorrectly declared as such (for the case of no parameter
constraints).

In conclusion of this section, we note that the example considered does
not include any requests for particular information from the final solution
(see last part of earlier flow chart). This is because no additional output in-
formation beyond that provided by the default settings of EQS was needed.
Later in this book we will include such requests, however, which either re-
late to the execution of the iteration process or ask the program to list infor-
mation that it otherwise does not routinely provide.
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Complete EQS Command File for the Model in Fig. 7

Based on the above discussion, the following complete EQS command file
emerges for the confirmatory factor analysis model of concern in this sec-
tion. The use of the command /END signals the end of the EQS input file for
this model.

/TITLE
EQS INPUT FILE FOR A FACTOR ANALYSIS MODEL OF THREE
INTERRELATED CONSTRUCTS EACH MEASURED BY THREE
INDICATORS;
/SPECIFICATIONS
VARIABLES=9; CASES=245; METHOD=ML; MATRIX=COV;
ANALYSIS=COV;
/EQUATIONS
V1 = *F1 + E1;
V2 = *F1 + E2;
V3 = *F1 + E3;
V4 = *F2 + E4;
V5 = *F2 + E5;
V6 = *F2 + E6;
V7 = *F3 + E7;
V8 = *F3 + E8;
V9 = *F3 + E9;
/VARIANCES
F1 TO F3 = 1; E1 TO E9 = *;
/COVARIANCES
F1,F2=*; F1,F3=*; F2,F3=*;
/MATRIX
1.01
.32 1.50
.43 .40 1.22
.38 .25 .33 1.13
.30 .20 .30 .7 1.06
.33 .22 .38 .72 .69 1.12
.20 .08 .07 .20 .27 .20 1.30
.33 .19 .22 .09 .22 .12 .69 1.07
.52 .27 .36 .33 .37 .29 .50 .62 1.16
/END;

A Useful Abbreviation

A particularly helpful feature of EQS (as well as other software) is that each
command and keyword/subcommand can be abbreviated to its first three
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letters. This often saves a considerable amount of time for the researcher
when setting up command files. In this way, the input file of the immedi-
ately preceding subsection can be shortened as follows.

/TIT
EQS INPUT FILE FOR A FACTOR ANALYSIS MODEL OF THREE
INTERRELATED CONSTRUCTS EACH MEASURED BY THREE
INDICATORS;
/SPE
VAR=9; CAS=245; MET=ML; MAT=COV; ANA=COV;
/EQU
V1 = *F1 + E1;
V2 = *F1 + E2;
V3 = *F1 + E3;
V4 = *F2 + E4;
V5 = *F2 + E5;
V6 = *F2 + E6;
V7 = *F3 + E7;
V8 = *F3 + E8;
V9 = *F3 + E9;
/VAR
F1 TO F3 = 1; E1 TO E9 = *;
/COV
F1,F2=*; F1,F3=*; F2,F3=*;
/MAT
1.01
.32 1.50
.43 .40 1.22
.38 .25 .33 1.13
.30 .20 .30 .7 1.06
.33 .22 .38 .72 .69 1.12
.20 .08 .07 .20 .27 .20 1.30
.33 .19 .22 .09 .22 .12 .69 1.07
.52 .27 .36 .33 .37 .29 .50 .62 1.16
/END;

We note that the last three subcommands of the specifications command
can be omitted as they are default options.

Imposing Parameter Restrictions

An issue that frequently arises in empirical research is testing substantively
meaningful hypotheses. For example, suppose that when dealing with the
model in Fig. 7 one were interested in examining the plausibility of the hy-
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pothesis that the first three observed variables—the indicators of the Paren-
tal domination factor—have equal factor loadings (i.e., represent a triplet of
tau-equivalent tests). This assumption is tantamount to the three measures
assessing the same construct, Parental dominance, in the same units of
measurement. In order to introduce this constraint in the model under
consideration, a new command handling parameter restrictions needs to
be included in the input file. This command is /CONSTRAINTS and contains
the following specification of the imposed parameter equalities:

/CONSTRAINTS
(V1,F1)=(V2,F1)=(V3,F1);

We note that within parentheses first comes the dependent and then inde-
pendent variable to which the parameter pertains, in case it is a regression
coefficient; this order is immaterial for variance and covariance parameters.
For consistency reasons, we suggest that all constraints imposed in a model
be included immediately after the /COVARIANCE command, which usually
ends the model-definition part of an EQS input file.

INTRODUCTION TO THE LISREL NOTATION AND SYNTAX

This section deals with the notation and syntax used in the general LISREL
model (also referred to as submodel 3B in the LISREL manual; Jöreskog &
Sörbom, 1993b). In order to keep the discussion simple, the same factor
analysis model dealt with in the previous section is considered here as well.
Although the particular notation and syntax of the LISREL command lines
are quite different from those of EQS, the underlying elements needed to
set up input files are very similar.

The general LISREL model assumes that a set of observed variables (de-
noted Y) is used to measure a set of latent variables (denoted as h–the low-
ercase Greek letter eta; for a more formal discussion of the model, see
Appendix to Chap. 1). The relationships between observed and latent vari-
ables are represented by a factor analysis model, also referred to as mea-
surement model, whose residual terms are denoted by e (the lowercase
Greek letter epsilon).1 Alternatively, the explanatory relationships among
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latent variables constitute what is referred to as structural model. To avoid
any confusion resulting from this tautology, however, throughout this book
these two models are instead correspondingly called measurement part
and structural part of a given structural equation model.

Measurement Part Notation

Consider again the factor analysis example displayed in Fig. 7. The mea-
surement part of this model can be written using the following notation
(note the slight deviation in notation from Equations 1 in Chap. 1; see also
Appendix to Chap. 1 for formal description):

Y
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1

+ e
1
,

Y
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= l
21

h
1

+ e
2
,

Y
3

= l
31

h
1

+ e
3
,

Y
4

= l
42

h
2

+ e
4
,

Y
5

= l
52

h
2

+ e
5
,

Y
6

= l
62

h
2

+ e
6
,

Y
7

= l
73

h
3

+ e
7
,

Y
8

= l
83
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Y
9

= l
93

h
3

+ e
9
. (9)

To facilitate the following discussion, the model in Fig. 7 is reproduced
again in Fig. 8 using this new notation; we stress that this is the same model,
with the only difference being variable notation.

Note that Equations 9 are formally obtained from Equations 1 in Chap. 1
after several simple modifications. First, change the symbols of the ob-
served variables from V1 through V9 to Y1 through Y9, respectively; then
change the symbols of the factors from F1 through F3 to h1 through h3, re-
spectively. Next, change the symbols of the residual terms from E1 through
E9 to e1 through e9, respectively; and finally, add a second subscript to the
factor loadings, which is identical to the factor on which the manifest vari-
able loads and further discussed next.

The last step represents a rather helpful notation in developing LISREL
command files. Specifically, each factor loading or regression coefficient in
a given model is subscripted with two indices. The first equals the index of
the dependent variable, and the second that of the independent variable in
the pertinent equation. For example, in the fifth of Equations 9, Y5 = l52 h2

+ e5, the factor loading l has two subscripts; the first is that of the depend-
ent variable (Y5), and the second is the one of the latent variable (h2) that
with regard to Y5 plays the role of an independent variable. Independent
variable variances and covariances have as subscripts the indices of the vari-
ables they are related to. Therefore, every variance has as subscripts twice
the index of the variable it belongs to, whereas a covariance has as sub-
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scripts the indices of the two variables it relates with one another, with the
order of these subscripts being immaterial (since the covariance is symmet-
ric with respect to the two variables involved).

Structural Part Notation

In the model displayed in Fig. 8, there is no structural part because no ex-
planatory relationships are assumed among the constructs. As an alterna-
tive example, however, if one assumed that the latent variable h2 was
regressed upon h1 and that h3 was regressed upon h2, then the structural
part for this model would be

h
2

= b
21

h
1

+ z
2
,

h
3

= b
32

h
2

+ z
3
. (10)
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In Equations 10, the structural slopes of the two regressions are denoted by
b (the Greek letter beta), whereas the corresponding residual terms are
symbolized by z (the Greek letter zeta). Note again the double indexing of
the b’s in which, as mentioned earlier, the first index is that of the depend-
ent variable and the second is the one of the pertinent independent variable
in the corresponding equation. The indices of the z’s are identical to those
of the latent dependent variables to which they belong as residual terms.
(This type of structural equation models with latent variable regressions are
extensively discussed in Chap. 4.)

Two-Letter Abbreviations

A highly useful feature of the LISREL notation and syntax is the possibility to
use abbreviations consisting of the first two letters of keywords or parameter
names. For example, within the general LISREL model, a factor loading can
be referred to using the notation LY (derived from Lambda for a Y variable)
followed by its indices as discussed in the preceding subsection. A structural
regression coefficient is referred to using BE (for BEta), followed by its indi-
ces. Hence, using the above indexing principle, the loading of the fifth mani-
fest variable on the second factor (see Equations 9) is denoted LY(5,2).
Similarly, the coefficient of the third factor when regressed upon the second
factor (see Equations 10) is denoted BE(3,2). (Although the brackets and de-
limiting comma are not really required, they make the presentation here eas-
ier to follow and for this reason we adopt them in this section.)

Variances of, and covariances between, independent latent variables are
denoted by PS (the Greek letter psi, y), followed by the indices of the con-
structs involved. For example, the covariance between the first two factors
in Fig. 8 is denoted by PS(2,1), whereas the variance of the third factor is
PS(3,3). Finally, variances and covariances for residual terms are denoted
by TE (for the Greek letters Theta and Epsilon). For instance, the variance of
the seventh residual term e7 is symbolized by TE(7,7), whereas the covari-
ance (assuming such a parameter is contained in a model of interest) be-
tween the first and fourth error terms would be denoted TE(4,1).

Hence, in the general LISREL model parameters are among (a) the factor
loadings, denoted as LY’s; (b) the structural regression coefficients, symbol-
ized as BE’s; (c) the latent variable variances and covariances, designated as
PS’s; and (d) the residual variances and covariances denoted as TE’s. Each
parameter is thereby subscripted by an appropriate pair of indices.

Matrices of Parameters—A Helpful Notational Tool

The representation of the indices of model parameters as numbers delin-
eated by a comma and placed within brackets, strongly resembles that of
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matrix elements. Indeed, in the LISREL notation, parameters can be
thought of as being conveniently collected into matrices. For example, the
loading of the fourth observed variable upon the second factor, l42, de-
noted in the LISREL notation as LY(4,2), can be thought of as the second
element (from left to right) in the fourth row (from top to bottom) of a ma-
trix designated LY. Similarly, the structural regression slope of h3 on h1,
b31, denoted in the LISREL notation as BE(3,1), is the first element in the
third row of the matrix BE. The covariance between the third and fifth fac-
tors, y53, is the third element in the fifth row of the matrix PS, viz. PS(5,3);
whereas the covariance between the error terms associated with the first
and second observed variables, q21, is the first element in the second row
of the matrix TE, namely TE(2,1) or simply TE 2 1. These four matrices may
be rectangular or square, symmetric or nonsymmetric (also referred to as
full matrices), have only 0 elements, or be diagonal.

That is, in the LISREL notation of relevance in this text all factor loadings
are considered elements of a matrix denoted LY, which is most often a rect-
angular (rather than square) matrix because in empirical research there are
frequently more observed variables than factors. (This general statement
does not exclude cases where LY may be square, as it would be in some spe-
cial models.) The structural regression coefficients (the regression coeffi-
cients when predicting a latent variable in terms of other constructs) are
elements of a matrix called BE that is square because it represents the ex-
planatory relationships among one and the same set of latent variables. The
factor variances and covariances are entries of a symmetric square matrix PS
(since PS is a covariance matrix), whereas the error variances and covari-
ances are the elements of a symmetric square matrix TE. In empirical re-
search, unless one has some theoretical justification for considering the
presence of covariances among errors, the TE matrix is usually assumed to
be diagonal, that is, containing on its diagonal the error variances of all
observed variables.

Hence, in order to use the general LISREL model, within the LISREL no-
tation and syntax one must consider the following four matrices: LY, BE, PS,
and TE. Describing the model parameters residing in them constitutes a
major part of constructing the LISREL input file.

Setting up a LISREL Command File

Based on the preceding discussion, the process of constructing the input
for a LISREL model can now be examined in more detail. As outlined in the
flowchart presented in section “Structure of Command Files for SEM Pro-
grams”, there are three main parts to an input file—data description, model
description, and user-specified output.

68 2. GETTING TO KNOW THE EQS, LISREL, AND Mplus PROGRAMS



It is recommendable that every LISREL command file begins with a title. For
example, using the factor analysis model displayed in Fig. 8, the title could be

LISREL COMMAND FILE FOR A FACTOR ANALYSIS MODEL OF THREE
INTERRELATED CONSTRUCTS EACH MEASURED BY THREE
INDICATORS

We note that unlike EQS, the LISREL title does not end with a semicolon. In
case the title continues for more than a single line, each line following the
first may not begin with the letters DA (because the program will interpret
that line as a data definition line; see next).

Next, the data to be analyzed are described in what is referred to as a data
definition line. This line includes information about the number of vari-
ables in the data file, sample size, and type of data to be analyzed, e.g.,
covariance or correlation matrix. (When models are fit to data from more
than one group, the number of groups must also be provided in this line;
see Chap. 6.) Therefore, using just the first two letters of any keyword, for
the factor analysis model in Fig. 8 the LISREL command file continues as
follows:

DA NI=9 NO=245

where DA is the abbreviation for “DAta definition line”, NI stands for “Num-
ber of Input variables”, and NO for “Number of Observations”. We do not
need to explicitly state that we wish to fit the model to the covariance
matrix, since this analysis is the default option in LISREL.

Immediately after this line comes the command CM, for “Covariance
Matrix”, followed by the actual covariance matrix to be analyzed:

CM
1.01
.32 1.50
.43 .40 1.22
.38 .25 .33 1.13
.30 .20 .30 .7 1.06
.33 .22 .38 .72 .69 1.12
.20 .08 .07 .20 .27 .20 1.30
.33 .19 .22 .09 .22 .12 .69 1.07
.52 .27 .36 .33 .37 .29 .50 .62 1.16

If the data are available in raw format in a separate file, one can refer to it here
by just stating RA=, followed by the name of the file (e.g., RA=C:\DATA\
DATAFILE). Alternatively, if one has already computed the sample covariance
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matrix and saved it in a separate file, one can also use CM=, followed by the
name of that file. This completes the first part of the LISREL input file, which
pertains to a description of the data to be analyzed.

The description of a model under consideration comes next. This is ac-
complished in what is referred to as the model definition line and subse-
quent specifications. This line contains information about the number of
observed variables (Y’s) and the number of latent variables (h’s) in the
model. For example, because there are nine observed and three latent vari-
ables in Fig. 8, the beginning of that model definition line would read

MO NY=9 NE=3

where MO stands for “MOdel definition line”, NY for “Number of Y vari-
ables”, and NE for “Number of Eta variables”, i.e., number of latent vari-
ables. However, this is only the initial part of the model-description
information. As was done when creating the EQS command file, one must
communicate to LISREL details about the model parameters. In order to ac-
complish this, one must define the status of the four matrices in the general
LISREL model discussed in this book (i.e., the matrices LY, BE, PS and TE),
and if needed provide additional information about their elements that are
model parameters. We note that to describe the confirmatory factor analy-
sis model in Fig. 8, only the matrices LY, PS, and TE are necessary because
there are no explanatory relationships assumed among the latent variables,
and thus the matrix BE is equal to 0 (which is a default option in LISREL).

Based on our experience with the LISREL syntax, the following status
definition of these matrices resembles a great deal of cases encountered in
practice and permits a full description of models with relatively minimal ad-
ditional effort. Accordingly, LY is initially defined as a rectangular (full) ma-
trix with fixed elements, and subsequently the model parameters residing
in it are explicitly declared. This definition is accomplished by stating
LY=FU,FI, where FU stands for “Full” and FI for “Fixed”. (Although this is a
default option in LISREL, it is mentioned explicitly here in order to empha-
size defining the free factor loadings in a subsequent line(s)). Since as men-
tioned earlier there are no explanatory relationships among latent
variables, the matrix BE is equal to 0 (i.e., consists only of 0 elements), and
given that this is also a default option in LISREL the matrix BE is not men-
tioned in the complete model definition line that looks now as follows for
the model in Fig. 8:

MO NY=9 NE=3 LY=FU,FI PS=SY,FR TE=DI,FR

As previously indicated, the factor loading matrix LY is defined as full and
fixed, keeping in mind that some of its elements will be freed next; these el-
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ements are the factor loadings in the model, which according to Rule 3 are
model parameters. The matrix PS is defined as symmetric and consisting of
free parameters, as invoked by PS=SY,FR (SY standing for “Symmetric” and
FR for “Free”, i.e., consisting of free parameters). These parameters are the
variances and covariances of the latent variables, which by Rules 1 and 2 are
model parameters since in this model the latent variables are independent
variables. (Some of these parameters will subsequently be fixed at 1, follow-
ing Rule 6, in order to set the latent variable metrics.) The error covariance
matrix TE contains as diagonal elements the remaining model parameters,
the error variances, and is defined as TE=DI,FR. (This definition of TE is
also a default option in LISREL, but it is included here to emphasize its effect
of declaring the error variances to be the remaining model parameters.)

With respect to factor loading parameters, the model definition line has
only prepared the grounds for their definition. Their complete definition
includes a line that specifically declares the pertinent factor loadings to be
free parameters:

FR LY(1, 1) LY(2, 1) LY(3, 1) LY(4, 2) LY(5, 2)
FR LY(6, 2) LY(7, 3) LY(8, 3) LY(9, 3)

or more simply

FR LY 1 1 LY 2 1 LY 3 1 LY 4 2 LY 5 2 LY 6 2 LY 7 3 LY 8 3 LY 9 3

This definition line starts with the keyword FR that frees the following factor
loading parameters in the model under consideration. Throughout the
command file, it is essential to use the previously mentioned double-index-
ing principle correctly—first state the index of the dependent variable (ob-
served variable in case of a factor loading) and then the index of the
independent variable (latent variable in this case). Because there are nine
observed variables and three latent variables, there are potentially 27 factor
loadings to deal with. However, based on Fig. 8 most of them are 0 because
not all variables load on every factor. Rather, every observed variable loads
only on its corresponding factor. Having declared the factor loading matrix
LY as full and fixed in the model definition line above, one can now quickly
free the relatively limited number of factor-loading model parameters with
the next line.

Up until this point, the factor loadings, independent variable variances
and covariances, and error variances have been communicated to LISREL as
model parameters. That is, all rules outlined in Chap. 1 have been applied
except Rule 6. According to Rule 6, however, the metric of each latent vari-
able in the model must be set. As with EQS, the easiest option here is to fix
their variances to a value of 1. This metric setting can be achieved by first de-
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claring the factor variances to be fixed parameters (because they were de-
fined in the model definition line as free), and then assigning the value of 1
to each one of them. These two steps are accomplished with the following
two input lines:

FI PS(1, 1) PS(2, 2) PS(3, 3)
VA 1 PS(1, 1) PS(2, 2) PS(3, 3)

where FI stands for “Fix” and VA for “Value”. That is, we first fix the three fac-
tor variances and then assign on the next line the value of 1 to each of them.
This finalizes the second part of the LISREL input file and completes the def-
inition of all features of the model under consideration.

The final section of the input file is minimal and refers to the kind of out-
put information requested from the software. There is a simple way of ask-
ing for all possible output–although with more complex models such a
request can often lead to an enormous amount of output—and for now this
option is used. Hence,

OU ALL

is the final line of the discussed LISREL command file, where OU stands for
“output” and ALL requests all available output from the software. (With
more complicated models where the entire output is likely to be volumi-
nous, we only use OU in the last command line, unless having specific fur-
ther requests.)

The Complete LISREL Input File

The following complete LISREL command file can now be used to fit the
model in Fig. 8:

LISREL INPUT FILE FOR A FACTOR ANALYSIS MODEL OF THREE
INTERRELATED CONSTRUCTS EACH MEASURED BY THREE
INDICATORS
DA NI=9 NO=245
CM
1.01
.32 1.50
.43 .40 1.22
.38 .25 .33 1.13
.30 .20 .30 .7 1.06
.33 .22 .38 .72 .69 1.12
.20 .08 .07 .20 .27 .20 1.30
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.33 .19 .22 .09 .22 .12 .69 1.07

.52 .27 .36 .33 .37 .29 .50 .62 1.16
MO NY=9 NE=3 LY=FU,FI PS=SY,FR TE=DI,FR
FR LY(1, 1) LY(2, 1) LY(3, 1) LY(4, 2) LY(5, 2)
FR LY(6, 2) LY(7, 3) LY(8, 3) LY(9, 3)
FI PS(1, 1) PS(2, 2) PS(3, 3)
VA 1 PS(1, 1) PS(2, 2) PS(3, 3)
OU ALL

INTRODUCTION TO THE Mplus NOTATION AND SYNTAX

Like EQS and LISREL, the Mplus programming language is based on com-
mands that are each associated with several subcommands, or options. The
number of basic commands is only 10, and they can be used in any order.
Different models and analyses may happen to use different subsets of these
commands, but all will require two of the 10 commands. They specify the
location of the data and assign names to variables in the data file so that ref-
erence to the appropriate variables can be readily made when building the
Mplus command file for a given model. Each command, except that stating
the title, must end with a semicolon.

Although the TITLE command is not required, as with the other software
described in this book, it is recommended that a title command be used to
describe the essence of an analysis to be carried out with Mplus; the title can
be of any length. The command is simply invoked by the word TITLE, fol-
lowed by colon and some appropriate description. For the confirmatory
factor analysis model example we have been using throughout this chapter
(see, e.g., Fig. 7), one could use the following title:

TITLE: MPLUS INPUT FILE FOR A FACTOR ANALYSIS MODEL OF THREE
INTERRELATED CONSTRUCTS EACH MEASURED BY THREE
INDICATORS

The first required command in all models fit with Mplus, is that providing
the location of the data to be analyzed and name of data file, and is similarly
invoked by DATA . This is accomplished with the keyword FILE IS. In case of
raw data, only the name of the file (with its path) needs to be provided. If
the data is in a covariance matrix form, as will mostly be the case in this text,
after giving the name of the file where that matrix is stored one needs to add
the subcommand (option) TYPE = , followed by COVARIANCE, as well as
indicate sample size with the subcommand NOBSERVATIONS = , followed
by sample size. Thus, for the example model in Fig. 7, given that the data
from 245 subjects is available in a covariance matrix form, the data com-
mand looks now as follows:
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DATA: FILE IS ‘COVARIANCE-MATRIX-FILE-NAME’
TYPE = COVARIANCE;
NOBSERVATIONS = 245;

where ‘covariance-matrix-file-name’ provides the name of the file of the
covariance matrix to be analyzed, possibly preceded by its path (directory
location).

The second required command assigns names to the variables in the data
file and is invoked by VARIABLES . In this command, after the keywords
NAMES ARE, the researcher needs to give names to all variables in the data
file, whereby a dash can be used to shorten long lists of names. For exam-
ple, if the data format is free (e.g., at least one blank space separates vari-
ables within each line), the number of variables equals that of columns in
the data file, and the simplest variable name assignment with this command
could be in the following form:

VARIABLES: NAMES ARE V1-V#;

where # symbolizes the number of columns in the data file. For the above
confirmatory factor analysis example, the simplest form of this command
would be:

VARIABLES: NAMES ARE V1-V9;

Usually, detailed descriptive names will be more helpful to the analyst, but
we keep here the simplest reference to variable names as used in Fig. 7.

Frequently it may be desirable to create within a single modeling session
new variables from existing ones in a given data file, or transform some ini-
tial variables. This is accomplished using the command DEFINE , followed
by the equations defining new variables or transforming already existing
ones. Furthermore, SEM analyses vary in a number of aspects (e.g., covari-
ance structure versus mean structure analyses; see Chap. 6) so the com-
mand ANALYSIS, followed by a selection from its options, states the
particulars of an analysis to be carried out with the model and data under
consideration. The default option for this command is covariance structure
analysis, the one most frequently used in this text.

To define a model that is going to be estimated, one uses the MODEL
command. For the models of concern in this introductory text, Mplus uti-
lizes mostly the special keywords ‘BY’, ‘ON’, and ‘WITH’ for this purpose. A
useful notation here is that latent variables can oftentimes be denoted by
F#, with # standing for their consecutive numbering in a list of constructs
for a considered model. The keyword ‘BY’ is followed by a listing of the indi-
cators of a latent variable under consideration (for “measured by”), thus
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automatically signaling to the software the pertinent factor loadings and er-
ror term variances as parameters. The keyword “ON” indicates which vari-
able(s) are regressed upon which explanatory measures, whereby the
names of the former are mentioned before this keyword while the names of
the latter after it. Furthermore, the keyword ‘WITH’ indicates in the models
of this book covariance (i.e., communicates to the software particular inde-
pendent variable covariances). Residual variances are by default model pa-
rameters as are factor variances and covariances. The default metric setting
for latent variables is internal—that is, the researcher does not need to ex-
plicitly carry it out—and is accomplished by Mplus through fixing to 1 of the
loading of the first listed observed variable declared to load on a given la-
tent variable. To illustrate, for the example in Fig. 7 the model definition
can be accomplished with the following three lines:

MODEL: F1 BY V1-V3;
F2 BY V4-V6;
F3 BY V7-V9;

The remaining of the 10 Mplus commands deal with special output re-
quests, saving particular analysis results as data files, producing graphical
plots, and generation of simulated data. In particular, the command OUT-
PUT asks that additional output results be provided, which are not included
by default. In general, it can be recommended that when fitting a given
model one requests model residuals, which is accomplished by OUTPUT:
RESIDUAL; .2 The command SAVEDATA invokes saving various results from
the current analysis as well as auxiliary data. Requesting graphical displays
of analyzed data as well as results from an analysis is accomplished with the
command PLOT . Last but not least, the command MONTECARLO is uti-
lized when one is interested in carrying out a simulation study with the soft-
ware (for further details on the topic see Muthén & Muthén, 2002). Use of
the four commands briefly discussed in this paragraph goes beyond the
confines of this introductory text.

For the confirmatory factor analysis example in Fig. 7, the entire Mplus
command file now looks as follows:

TITLE: MPLUS INPUT FILE FOR A FACTOR ANALYSIS MODEL OF THREE
INTERRELATED CONSTRUCTS EACH MEASURED BY THREE
INDICATORS
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DATA: FILE IS ‘COVARIANCE-MATRIX-FILE-NAME’
TYPE = COVARIANCE;
NOBSERVATIONS = 245;

VARIABLES: NAMES ARE V1-V9;
MODEL: F1 BY V1-V3;

F2 BY V4-V6;
F3 BY V7-V9;

OUTPUT: RESIDUAL;

This listing of Mplus commands completes the present introductory chap-
ter on notation and syntax underlying three of the most popular SEM pro-
grams, EQS, LIREL, and Mplus. Beginning with the next chapter, we will be
concerned with several widely used types of structural equation models
that are frequently employed in empirical research in the social and behav-
ioral sciences.

76 2. GETTING TO KNOW THE EQS, LISREL, AND Mplus PROGRAMS



C H A P T E R T H R E E

Path Analysis

WHAT IS PATH ANALYSIS?

Path analysis is an approach to modeling explanatory relationships be-
tween observed variables. The explanatory variables are assumed to have
no measurement error (or to contain error that is only negligible). The de-
pendent variables may contain error of measurement that is subsumed in
the residual terms of the model equations, that is, the part left unexplained
by the explanatory variables. A special characteristic of path analysis models
is that they do not contain latent variables.1

Path analysis has a relatively long history. The term was first used in the
early 1900s by the English biometrician Sewell Wright (Wright, 1920, 1921).
Wright’s approach was developed within a framework that is conceptually
analogous to the one underlying structural equation modeling, as dis-
cussed in Chap. 1. The basic idea of path analysis is similar to solving a sys-
tem of equations obtained when setting the elements of the sample
covariance matrix S equal to their counterpart elements of the model repro-
duced covariance matrix S(g), where g denotes the model parameter vector.
Wright first demonstrated the application of path analysis to biology by de-
veloping models for predicting the birth weight of guinea pigs, examining
the relative importance of hereditary influence and environment, and
studying human intelligence (Wolfle, 1999). Wright (1921, 1934) provided
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a useful summary of the approach, with estimate calculations and a demon-
stration of the basic theorem of path analysis by which variable correlations
in models can be reproduced by connecting chains of paths. More specifi-
cally, Wright’s path analysis approach included the following steps. First,
write out the model equations relating measured variables. Second, work
out the correlations among them in terms of the unknown model parame-
ters. Finally, try to solve in terms of the parameters the resulting system of
equations in which correlations are replaced by sample correlations.

Using the SEM framework, one can easily fit models constructed within
the path analysis tradition. This is because path analysis models can be
viewed as special cases of structural equation models. Indeed, one can con-
sider any path analysis model as resulting from a corresponding structural
equation model that assumes (i) explanatory relationships between its latent
variables, (ii) the independent variables to be associated with no error of
measurement, and (iii) all latent variables to be measured by single indicators
with (iv) unitary loadings on them (see Appendix to this chapter). Hence, to
fit a path analysis model one can use a SEM program like EQS, LISREL, or
Mplus. Although this SEM application capitalizes on the original idea of fit-
ting models to matrices of interrelationship indices, as developed by Wright
(1934), the actual model-fitting procedure is slightly modified. In particular,
even though the independent variables are still treated as measured without
error, the SEM approach considers all model equations simultaneously.

EXAMPLE PATH ANALYSIS MODEL

To demonstrate a path analysis model, consider the following example
study (cf. Finn, 1974; see also Jöreskog & Sörbom, 1993b, sec. 4.1.4). The
study examined the effects of several variables on university freshmen’s aca-
demic performance. Five educational measures were collected from a sam-
ple of N = 150 university freshmen (for which the normality assumption
was plausible). The following observed variables were used in the study:

1. Grade point average obtained in required courses (abbreviated be-
low to AV-REQRD =V1 ).

2. Grade point average obtained in elective courses (AV-ELECT = V2).
3. High school general knowledge score (SAT = V3).
4. Intelligence score obtained in the last year of high school (IQ = V4).
5. Educational motivation score obtained the last year of high school

(ED-MOTIV = V5).

The path analysis model of interest in this section is presented in Fig. 9
where EQS notation is used to denote the observed variables by V1 to V5, and
the residual (error) terms associated with the two dependent grade point
average variables (AV-REQRD and AV-ELECT) by E1 and E2.
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In Fig. 9, there are three two-headed arrows connecting all independent
variables among themselves and representing the interrelationships among
high school general knowledge score (SAT = V3), intelligence score (IQ =
V4), and motivation score (ED-MOTIV = V5). No measurement errors are
present in any of the independent variables. The dependent variables, how-
ever, are associated with residual terms that may contain measurement er-
ror along with prediction error (which would be confounded in these
terms). The curved two-headed arrow connecting the residuals E1 and E2

symbolizes their possible interrelation that has also been included in the
model. (We note in passing that allowing correlation of residual terms
differs somewhat from the original path analysis method.)

The purpose of this path analysis study is to examine the predictive
power of high school knowledge, intelligence, and motivation on univer-
sity freshmen’s academic performance as evaluated by grade point averages
in required and elective courses. In terms of path analysis, one’s interest lies
in regressing simultaneously the two dependent variables (V1 and V2) on the
three independent variables (V3, V4, and V5). Note that regressing the two
dependent variables on those predictors is not the same as typically done in
a routine multiple regression analysis, in which a single dependent variable
is considered, since here the model represents a multivariate multiple re-
gression. Hence, in terms of equations, the following relationships are
simultaneously postulated:

V1 = g13V3 + g14V4 + g15V5 + E1, and
V2 = g23V3 + g24V4 + g25V5 + E2, (11)
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where g13 to g25 are the six parameters of main interest—partial regression
coefficients, also called path coefficients. These coefficients reflect the pre-
dictive power, in the particular metric used, of SAT, intelligence and moti-
vation on the two dependent variables that assess generally interrelated
aspects of freshmen performance. Furthermore, in Equations 11 the vari-
ables E1 and E2 represent residuals of model equations, which as indicated
earlier may contain measurement error in addition to all influences on the
pertinent dependent variables over and above those captured by a linear
combination of their presumed predictors.

To determine the parameters of the model in Fig. 9, we follow the six
rules outlined in Chap. 1. Since the model does not contain latent variables,
Rule 6 is not applicable. Using the remaining rules, its parameters are (a)
the six regression coefficients (i.e., all g’s in Equations 11), which represent
the paths in Fig. 9 that connect each of the dependent variables V1 and V2

with their predictors V3, V4, and V5; and (b) the variances and covariances of
the independent variables—i.e., the variances and covariances of V3, V4, and
V5—as well as the variances and covariance of the residuals E1 and E2.

Hence, the model under consideration has altogether 15 parameters— six
path coefficients, six variances and covariances of independent variables, as
well as two variances and a covariance of residual terms. Observe that there
are no model implications for the variances and covariances of the predic-
tors. This is because none of them is a dependent variable. Hence, the
covariance matrix of the three predictors SAT, IQ, and ED-MOTIV is not re-
stricted, other then being positive definite of course, in the sense that the
model does not have any consequences with regard to its elements. There-
fore, the estimates of the pertinent six parameters (three predictor variances
and three covariances) will be based entirely on the corresponding values in
the sample covariance matrix S.

We now move on to presenting the command files for this model with
the three SEM programs used in this text, and discuss the associated output
in a later section.

EQS, LISREL, AND Mplus INPUT FILES

EQS Command File

The EQS input file is constructed following the guidelines outlined in Chap.
2. Accordingly, the file begins with a title command:

/TITLE
PATH ANALYSIS MODEL;
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Next, the number of variables in the model, sample size, and method of
estimation are stated in the specification command. Since in this exam-
ple the variable normality assumption was plausible as mentioned ear-
lier, we employ the maximum likelihood (ML) method that is the default
option in all three programs used in this text and hence need not be men-
tioned explicitly:

/SPECIFICATIONS
VARIABLES=5; CASES=150;

To facilitate interpretation of the output, labels are given to all variables. Us-
ing the command /LABELS, the following names are assigned to each vari-
able in the model. (We mention in passing that variable labels should not be
longer than eight symbols in any of the programs utilized in this book, and
their provision in the input file is not an essential software requirement.)

/LABELS
V1=AV-REQRD; V2=AV-ELECT; V3=SAT; V4=IQ; V5=ED-MOTIV;

Next come the two model definition equations (cf. Equations 11):

/EQUATIONS
V1 = *V3 + *V4 + *V5 + E1;
V2 = *V3 + *V4 + *V5 + E2;

followed by the remaining model parameters in the variance and covari-
ance commands:

/VARIANCES
V3 TO V5 = *; E1 TO E2 = *;
/COVARIANCES
V3 TO V5 = *; E1 TO E2 = *;

Finally, the data are provided along with the end-of-input file command:

/MATRIX
.594
.483 .754
3.993 3.626 47.457
.426 1.757 4.100 10.267
.500 .722 6.394 .525 2.675
/END;
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Using the three-letter abbreviations, the complete EQS input file now looks
as follows:

/TIT
PATH ANALYSIS MODEL;
/SPE
VAR=5; CAS=150;
/LAB
V1=AV-REQRD; V2=AV-ELECT; V3=SAT; V4=IQ; V5=ED-MOTIV;
/EQU
V1 = *V3 + *V4 + *V5 + E1;
V2 = *V3 + *V4 + *V5 + E2;
/VAR
V3 TO V5 = *; E1 TO E2 = *;
/COV
V3 TO V5 = *; E1 TO E2 = *;
/MAT
.594
.483 .754
3.993 3.626 47.457
.426 1.757 4.100 10.267
.500 .722 6.394 .525 2.675
/END;

LISREL Command File

The LISREL input file is most conveniently presented with a slight extension
of the general LISREL model notation discussed in Chap. 2, which is not re-
ally essential but simplifies a great deal the application of this software for
purposes of fitting any path analysis model (cf. Appendix to this chapter and
Note 1 to Chap. 1). The discussion in this subsection is substantially facili-
tated by the particular symbols used for path coefficients (partial-regression
coefficients) in Equations 11. According to this notation extension, observed
predictor variables are denoted X whereas dependent variables remain sym-
bolized by Y. That is, V1 and V2 now become Y1 and Y2 in this notation, and V3,
V4, and V5 become X1, X2, and X3, respectively. The covariance matrix of the
predictor variables is referred to as F (the Greek letter phi), denoted PH in
the LISREL syntax, and the same guidelines discussed in Chap. 2 apply when
referring to its elements. The six regression coefficients in Equations 11 are
collected in a matrix G (the Greek letter gamma), denoted GA in the syntax.
The columns of G correspond to the predictors, X1 to X3, and its rows are as-
sociated with the dependent variables, Y1 and Y2. Each entry of the matrix G
represents a coefficient for the regression of a dependent (Y) on an inde-
pendent (X) variable. Thus, the elements of the matrix G in this example are
GA(1, 1), GA(1, 2), GA(1, 3), GA(2, 1), GA(2, 2), and GA(2, 3).
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The following LISREL command file is constructed adhering to the
guidelines outlined in Chap. 2, whereby this input file also includes some
variable labels using the keyword LAbels; we discuss each line of this com-
mand file immediately after presenting it.

PATH ANALYSIS MODEL
DA NI=5 NO=150
CM
.594
.483 .754
3.993 3.626 47.457
.426 1.757 4.100 10.267
.500 .722 6.394 .525 2.675
LA
AV-REQRD AV-ELECT SAT IQ ED-MOTIV
MO NY=2 NX=3 GA=FU,FR PH=SY,FR PS=SY,FR
OU

Using the same title, the data-definition line declares that the model will be
fit to data on five variables collected from 150 subjects. The sample
covariance matrix signaled by CM is provided next, along with the variable
labels that were also used earlier in this chapter. In the model definition
line, the notation NX stands for “Number of X variables”. The matrix GA is,
accordingly, declared to be full of free model parameters—these are the six
g’s in Equations 11. The (symmetric) covariance matrix of the predictors,
PH, is defined as containing free model parameters (as was done when cre-
ating the EQS input file). The elements of the PH matrix correspond to the
variances and covariances of the predictors SAT, IQ, and ED-MOTIV. The
covariance matrix of the residual terms of the dependent variables Y1 and
Y2, that is, the matrix PS, is also defined as symmetric and containing free
model parameters, viz. the residual variances and covariance. Finally, to
save space and redundant information presentation relative to the EQS out-
put discussed first in the next section, we request from LISREL the default
output provided routinely (see Note 2 to Chap. 2).

Mplus Command File

In order to create the Mplus command file for the model in Fig. 9, according
to the pertinent discussion in Chap. 2 we begin with the TITLE command.
Then the DATA command needs to provide information about the analyzed
data. Subsequently, the VARIABLE command assigns names to the variables
in the data set analyzed. Last but not least, the MODEL command describes
the model to be fitted. As mentioned in Chap. 2, when using the DATA com-
mand it is necessary that we also indicate the type of the data if they are not
in raw form, as in the case in this example since we are dealing with a covari-
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ance matrix only; hence, we also need to provide the sample size. With this
in mind, the following Mplus command file results.

TITLE: PATH ANALYSIS MODEL
DATA: FILE IS EX3.1.COV;

TYPE = COVARIANCE;
NOBSERVATIONS=150;

VARIABLE: NAMES ARE AV_REQRD AV_ELECT SAT IQ
ED_MOTIV;

MODEL: AV_REQRD AV_ELECT ON SAT IQ ED_MOTIV;

Note that we specify in the DATA command the name of the file containing
the covariance matrix since we are in possession only of the covariance ma-
trix for the analyzed variables, and then give the sample size. (As indicated
in the preceding chapter, we would not need to provide sample size if the
data were in raw form.) At least as importantly, we stress the particularly
useful feature of Mplus that it needs only a listing of the dependent vari-
ables to appear before the “ON” keyword, and similarly requires merely a
listing of the putative predictors after that keyword. In particular, we do not
need to write out the model equations or indicate matrices containing the
model parameters. A similarly convenient feature of this software, which is
readily capitalized in this path-analysis context, is also the implemented de-
fault options by which the model parameters are accounted for internally
without the researcher having to explicitly point to them (see also Note 2 to
Chap. 2).

MODELING RESULTS

In this section, we discuss in turn the outputs produced by EQS, LISREL,
and Mplus when the corresponding command files discussed earlier in
this chapter are submitted to them. At appropriate places, we insert com-
ments that aim to clarify parts of the immediately preceding portion of
output presented unless it is self-explanatory, and occasionally annotate
the output. We introduce at this point the convention of displaying output
results in a different and proportionate font, so that they stand out from
the main text in the book. In the remainder of this section, for the sake of
saving space, we dispense with repeatedly presenting the command file ti-
tle as found at the beginning of each consecutive page of software output,
as well as recurring statements regarding estimation method after their
first appearance.

EQS Results

The EQS output begins with echoing back the input file submitted to the
program:
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PROGRAM CONTROL INFORMATION
1 /TIT
2 PATH ANALYSIS MODEL;
3 /SPE
4 VAR=5; CAS=150;
5 /LAB
6 V1=AV-REQRD; V2=AV-ELECT; V3=SAT; V4=IQ; V5=ED-MOTIV;
7 /EQU
8 V1 = *V3 + *V4 + *V5 + E1;
9 V2 = *V3 + *V4 + *V5 + E2;
10 /VAR
11 V3 TO V5 = *; E1 TO E2 = *;
12 /COV
13 V3 TO V5 = *; E1 TO E2 = *;
14 /MAT
15 .594
16 .483 .754
17 3.993 3.626 47.457
18 .426 1.757 4.100 10.267
19 .500 .722 6.394 .525 2.675
20 /END;

20 RECORDS OF INPUT MODEL FILE WERE READ

In this part of the output any mistakes made while creating the input can be
easily spotted. It is quite important, therefore, that this section of the out-
put always be carefully examined before looking at other output parts.

COVARIANCE MATRIX TO BE ANALYZED: 5 VARIABLES (SELECTED FROM 5 VARIABLES)
BASED ON 150 CASES.

AV-REQRD AV-ELECT SAT IQ ED-MOTIV
V1 V2 V3 V4 V5

AV-REQRD  V1 .594
AV-ELECT  V2 .483 .754

SAT  V3 3.993 3.626 47.457
IQ  V4 .426 1.757 4.100 10.267

ED-MOTIV  V5 .500 .722 6.394 .525 2.675

BENTLER-WEEKS STRUCTURAL REPRESENTATION:
NUMBER OF DEPENDENT VARIABLES  =  2

DEPENDENT V’S : 1   2

NUMBER OF INDEPENDENT VARIABLES  =  5
INDEPENDENT V’S : 3 4 5
INDEPENDENT E’S : 1 2

NUMBER OF FREE PARAMETERS  =  15
NUMBER OF FIXED NONZERO PARAMETERS  =  2

*** WARNING MESSAGES ABOVE, IF ANY, REFER TO THE MODEL PROVIDED.
CALCULATIONS FOR INDEPENDENCE MODEL NOW BEGIN.

*** WARNING MESSAGES ABOVE, IF ANY, REFER TO INDEPENDENCE MODEL.
CALCULATIONS FOR USER’S MODEL NOW BEGIN.

3RD STAGE OF COMPUTATION REQUIRED 2026 WORDS OF MEMORY.
PROGRAM ALLOCATED 2000000 WORDS

DETERMINANT OF INPUT MATRIX IS .26607D+02
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In this second portion of the output, EQS provides details about the data
(number of independent and dependent variables, and analyzed covari-
ance matrix) as well as the internal organization of the memory to accom-
plish the underlying computational routine. The software then confirms
the number of dependent and independent variables as well as model pa-
rameters. The bottom of this second output page also contains a message
that can be particularly important for detecting numerical difficulties. The
message refers to the DETERMINANT OF THE INPUT MATRIX, which is, in
simple terms, a number reflecting a “generalized variance” of the analyzed
covariance matrix. If this determinant is 0, important matrix calculations
cannot be conducted (in matrix-algebra terminology, the matrix is singu-
lar). In cases where that determinant is very close to 0, matrix computations
can be unreliable and obtained numerical solutions may be quite unstable.
The presence of a determinant rather close to 0 is a clue that there is a prob-
lem of a nearly perfect linear dependency (i.e., multicollinearity) among
observed variables involved in the fitted model. For example, in a regres-
sion analysis the presence of multicollinearity implies that one is using
redundant information in the model, which can easily lead to unstable re-
gression coefficient estimates. A simple solution may be to drop an offend-
ing variable that is (close to) linearly related to other analyzed variables and
respecify correspondingly the model. Hence, examining the determinant
of the input matrix in this output section provides important information
about the accuracy of conducted analyses.

PARAMETER ESTIMATES APPEAR IN ORDER,
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

This is also a very important message as it indicates that the program has
not encountered problems stemming from lack of model identification.
Otherwise, this is the place where one would see a warning message enti-
tled CONDITION CODE that would indicate which parameters are possi-
bly unidentified. For this empirical example, the NO SPECIAL
PROBLEMS message is a reassurance that the model is technically sound
and identified.

RESIDUAL COVARIANCE MATRIX (S-SIGMA) :

AV-REQRD AV-ELECT SAT IQ ED-MOTIV
V1 V2 V3 V4 V5

AV-REQRD  V1 .000
AV-ELECT  V2 .000 .000

SAT  V3 .000 .000 .000
IQ  V4 .000 .000 .000 .000

ED-MOTIV  V5 .000 .000 .000 .000 .000

AVERAGE ABSOLUTE COVARIANCE RESIDUALS   =     .0000
AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS   =     .0000
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STANDARDIZED RESIDUAL MATRIX:

AV-REQRD AV-ELECT SAT IQ ED-MOTIV
V1 V2 V3 V4 V5

AV-REQRD  V1 .000
AV-ELECT  V2 .000 .000

SAT  V3 .000 .000 .000
IQ   V4 .000 .000 .000 .000

ED-MOTIV  V5 .000 .000 .000 .000 .000

AVERAGE ABSOLUTE STANDARDIZED RESIDUALS   =   .0000
AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS   =   .0000

The RESIDUAL COVARIANCE MATRIX contains the resulting variance and
covariance residuals. As discussed in Chap. 1 (see also Appendix to Chap. 1),
these are the differences between the counterpart elements of the empirical
covariance matrix S, given in the last input section /MATRIX, and the one re-
produced by the model at the final solution, S(g�), where g� is the vector com-
prising the values of the model parameters at the last iteration step of the
numerical fit function minimization routine. That is, the elements of the re-
sidual covariance matrix equal the corresponding differences between the
two matrices, S – S(g�). In this sense, the residual covariance matrix is a com-
plex measure of model fit for the variances and covariances, as opposed to a
single number provided by most fit indices. The unstandardized residuals,
presented first in this output section, evaluate the model-to-data discrepancy
in the original metrics of variable assessment, and for this reason cannot in
general be readily evaluated. Instead, their standardized versions, called
standardized residuals, represent the model-to-data inconsistency in a uni-
form metric across all variables and are therefore easier to interpret. In partic-
ular, any large standardized residual—i.e., larger in absolute value than 2—is
indicative of possibly serious deficiencies of the model with regard to the
variable variance or covariance pertaining to the residual. For a given model,
the unstandardized and standardized residuals are often referred to as model
residuals or covariance residuals. We note that like in regression analysis
model residuals are not unrelated to one another, with this degree of interre-
lationship becoming less pronounced in models based on a larger number of
observed variables.

As seen from the last presented output section, in this example there are
no non-zero residuals. The reason is that the fitted model is saturated and
hence exhibits perfect fit to the data. Here we see another aspect of best pos-
sible fit, namely that the model exactly reproduces the analyzed covariance
matrix—all residuals are 0. This finding results from the fact that we are deal-
ing with a model that has as many parameters as there are nonredundant ele-
ments of the covariance matrix (see Chap. 1). Indeed, recall that the model
has 15 parameters, and that with five observed variables there are p(p + 1)/2
= 5(5 + 1)/2 = 15 nonredundant elements in the analyzed covariance
matrix—therefore the model is saturated. Since saturated models will always
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fit the data perfectly, there is no way one can test or disconfirm them (see
Chap. 1 for a more detailed discussion of saturated models).

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

LARGEST STANDARDIZED RESIDUALS:

NO. PARAMETER ESTIMATE NO. PARAMETER ESTIMATE
-—— —---—- ——--—— —-—— ——---—— —--——
1 V1, V1 .000 11 V4, V4 .000
2 V3, V1 .000 12 V4, V3 .000
3 V4, V2 .000 13 V2, V1 .000
4 V3, V2 .000 14 V3, V3 .000
5 V5, V1 .000 15 V5, V5 .000
6 V4, V1 .000
7 V2, V2 .000
8 V5, V4 .000
9 V5, V3 .000
10 V5, V2 .000

DISTRIBUTION OF STANDARDIZED RESIDUALS

— — — — — — — — — — — — — —
! !

20- -
! !
! !
! !
! ! RANGE FREQ PERCENT

15- -
! ! 1 -0.5 - — 0 .00%
! ! 2 -0.4 - -0.5 0 .00%
! ! 3 -0.3 - -0.4 0 .00%
! * ! 4 -0.2 - -0.3 0 .00%

10- * - 5 -0.1 - -0.2 0 .00%
! * ! 6 0.0 - -0.1 4 26.67%
! * ! 7 0.1 - 0.0 11 73.33%
! * ! 8 0.2 - 0.1 0 .00%
! * ! 9 0.3 - 0.2 0 .00%
5- * - A 0.4 - 0.3 0 .00%
! * * ! B 0.5 - 0.4 0 .00%
! * * ! C ++ - 0.5 0 .00%
! * * ! — – – – – – – – – – – – – – – – –
! * * ! TOTAL 15 100.00%
– — — — — — — — — — — — — —

1 2 3 4 5 6 7 8 9 A B C EACH “*” REPRESENTS 1 RESIDUALS

This section of the output provides only rearranged information about the
fit of the model as judged by the model residuals, immediately after a state-
ment of the employed parameter estimation method (in this case ML, as in-
dicated earlier in this chapter). In the case of a less-than-perfect fit, a fair
amount of information about model fit can be obtained from this section.
For instance, the upper part of this output section would then provide a
convenient summary of where to find the largest standardized residuals.
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The lower part of the section contains information about the distribution of
the standardized residuals. In this example, due to numerical estimation in-
volved in fitting the model, the obtained residuals are not precisely equal to
0 to all decimal places used by the software. This is the reason there is a
spike in the center of the residual distribution, and why a few residuals hap-
pen to fall off it. With well-fitting models, one should expect all residuals, in
particular standardized residuals, to be small and concentrated in the cen-
tral part of the distribution of asterisks symbolizing the latter, and the distri-
bution to be in general symmetric.

GOODNESS OF FIT SUMMARY FOR METHOD = ML

INDEPENDENCE MODEL CHI-SQUARE   =   460.156   ON 10 DEGREES OF FREEDOM

INDEPENDENCE AIC   =   440.15570   INDEPENDENCE CAIC   =   400.04935
MODEL AIC   =      .00000          MODEL CAIC   =      .00000

CHI-SQUARE   =   .000   BASED ON     0 DEGREES OF FREEDOM
NONPOSITIVE DEGREES OF FREEDOM. PROBABILITY COMPUTATIONS ARE UNDEFINED.

FIT INDICES
— — — — — -
BENTLER-BONETT    NORMED FIT INDEX  =    1.000

NON-NORMED FIT INDEX WILL NOT BE COMPUTED BECAUSE A DEGREES OF FREEDOM IS
ZERO.

RELIABILITY COEFFICIENTS
— — — — — — — — — — — —
CRONBACH’S ALPHA = .527
COEFFICIENT ALPHA FOR AN OPTIMAL SHORT SCALE = .835
BASED ON THE FOLLOWING 2 VARIABLES
AV-REQRD AV-ELECT
GREATEST LOWER BOUND RELIABILITY = .832
GLB RELIABILITY FOR AN OPTIMAL SHORT SCALE = .835
BASED ON THE FOLLOWING 2 VARIABLES
AV-REQRD AV-ELECT
BENTLER’S DIMENSION-FREE LOWER BOUND RELIABILITY = .682
SHAPIRO’S LOWER BOUND RELIABILITY FOR A WEIGHTED COMPOSITE = .901
WEIGHTS THAT ACHIEVE SHAPIRO’S LOWER BOUND:
AV-REQRD AV-ELECT SAT IQ ED-MOTIV
.338 .395 .692 .431 .255

In this output section, several goodness-of-fit indices are initially pre-
sented. The first feature to note concerns the 0 degrees of freedom for the
model. As discussed previously, this is a consequence of the fact that the
model has as many parameters as there are nonredundant elements in the
observed covariance matrix. The chi-square value is also 0 and indicates,
again, perfect fit. In contrast, the chi-square value of the so-called independ-
ence model is quite large. This result is also expected because that model
assumes no relationships between the variables, and hence represents in
general a poor means of describing analyzed data from variables that are in-
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terrelated as are the ones in the present example. In fact, large chi-square
values for the independence model are quite frequent in practice—particu-
larly when the variables of interest exhibit marked interrelationships. The
Akaike information criterion (AIC) and its consistent-estimator version
(CAIC) are reported as 0 for the fitted model, and much smaller than those
of the independence model. AIC and CAIC indices are generally smaller for
better fitting models, as can also be seen demonstrated in this case when
one compares the model of interest with the independence model. Finally,
because a saturated model was fit in this example, which by necessity has
both a 0 chi-square value and 0 degrees of freedom, the Bentler-Bonett
nonnormed fit index cannot be computed. The reason is that, by definition,
this index involves division by the degrees of freedom of the fitted model,
which equal 0 here. By way of contrast, the Bentler-Bonett normed fit index
is 1, which is its maximum possible value associated with a perfect fit. The
reliability measures routinely reported in this part of the output are not of
concern in this empirical example, since we are not dealing with scale de-
velopment issues or latent variables.

ITERATIVE SUMMARY
PARAMETER

ITERATION ABS CHANGE ALPHA FUNCTION
1 14.688357 1.00000 5.14968
2 14.360452 1.00000 0.00000
3 0.000000 1.00000 0.00000

The iterative summary provides an account of the numerical routine per-
formed by EQS to minimize the maximum likelihood fit function (matrix
distance) used by the ML method. In fact, it took the program three itera-
tions to find the final solution. This was achieved after the fit function
quickly diminished to 0 (see last row). Since this is a saturated model with
perfect fit, the absolute minimum of 0 is achieved by the fit function, which
is generally not the case with nonsaturated models, as demonstrated in
later examples.

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

AV-REQRD=V1 = .086*V3 + .008*V4 - .021*V5 +  1.000 E1
.007 .013 .031

11.642@ .616 - .676

AV-ELECT=V2 = .046*V3 + .146*V4 + .131*V5 +  1.000 E2
.007 .013 .030
6.501@ 11.560@ 4.434@

This is the final solution, presented in nearly the same form as the model
equations submitted to EQS with the command file. However, in this out-
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put the asterisks are preceded by the obtained parameter estimates. (We
emphasize that asterisks used throughout the EQS input and output denote
estimated parameters, and do not have any relation to significance; for the
latter the symbol ‘@’ is used in this program.) Immediately beneath each
parameter estimate is its standard error. The standard errors are measures
of estimate stability, i.e., precision of estimation. Dividing each parameter
estimate by its standard error yields what is referred to as a t test value and
provided beneath the standard error. As mentioned in Chap. 1, if the t value
is outside the interval (–2; +2) one can suggest that the pertinent parame-
ter is likely to be non-zero in the population; otherwise, it could be treated
as 0 in the population. The t value, therefore, represents a simple test statis-
tic of the null hypotheses that the corresponding model parameter equals 0
in the population.

As can be seen in the last presented output section, the t values indicate
that all path coefficients are significant except the impacts of IQ (V4) and
ED-MOTIV (V5) on AV-REQRD (V1), which are associated with nonsignifi-
cant t values—viz. ones that fall inside the interval (–2; +2). Hence, IQ and
ED-MOTIV seem to be unimportant predictors of AV-REQRD. In other
words, there appears to be only weak evidence that IQ and ED-MOTIV
might matter for student performance in required courses (AV-REQRD)
once the impact of SAT is accounted for. (This example is reconsidered later
in the chapter and more qualified statements are made then.)

VARIANCES OF INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — –
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

V F
-——- -——-

V3 - SAT 47.457*I I
5.498 I I
8.631@I I

I I
V4 - IQ 10.267*I I

1.190 I I
8.631@I I

I I
V5 - ED-MOTIV 2.675*I I

.310 I I
8.631@I I

The entries in this table are the estimated variances of independent mani-
fest variables—SAT, IQ, and ED-MOTIV—along with their standard errors
and t values. (From this and next output sections, we observe that none of
the variance estimates in the fitted model is negative; in the remainder of
this text, none of the fitted models will be associated with a negative vari-
ance estimate and while checking for it we will not report this observation
for each of them; see next.)
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VARIANCES OF INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — –
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

E D
-——- -——-

E1 - AV-REQRD .257*I I
.030 I I
8.631@I I

I I
E2 - AV-ELECT .236*I I

.027 I I
8.631@I I

These are the variances of the residual terms along with their standard er-
rors and t values that are significant for both residuals. We stress that these
estimates are nonnegative, as they should be. A negative variance estimate,
regardless of model fit, is an indication of an inadmissible solution and that
the results in the entire output may not be trustworthy. One therefore
should get into the habit of examining all variance estimates in a model, re-
gardless of its type, to make sure that none of them is negative before pro-
ceeding with result interpretation.

COVARIANCES AMONG INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — — — -
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

V F
-——- -——-

V4 - IQ 4.100*I I
V3 - SAT 1.839 I I

2.229@I I
I I

V5 - ED-MOTIV 6.394*I I
V3 - SAT 1.061 I I

6.025@I I
I I

V5 - ED-MOTIV .525*I I
V4 - IQ .431 I I

1.217 I I

These statistics are the covariances among the predictor variables along
with their standard errors and t values.

COVARIANCES AMONG INDEPENDENT VARIABLES
———————————————————-
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

E D
-——- -——-

E2 - AV-ELECT .171*I I
E1 - AV-REQRD .025 I I

6.971@I I
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This is the covariance between the two residuals that exhibits a rather high
t-value and is significant. This suggests that the unexplained parts in the two
dependent variables—graduate point average in required and elective sub-
jects—in terms of the used three predictors, are markedly interrelated. We
return to this finding later in this section.

STANDARDIZED SOLUTION: R-SQUARED
AV-REQRD=V1  =   .771*V3  +   .034*V4   -   .044*V5   +   .657 E1 .568
AV-ELECT=V2  =   .366*V3  +   .539*V4   +   .247*V5   +   .559 E2 .688

The STANDARDIZED SOLUTION results from standardizing all variables in
the model. This solution uses a metric that is uniform across all measures
and, hence, makes possible some assessment of the relative importance of
the predictors. A related way to use the information in the standardized so-
lution involves squaring the coefficients associated with the error terms in
it. The resulting values reveal the percentage of unexplained variance in the
dependent variables. These squared values are analogs to the complements
to 1 of the R2 indices corresponding to regression models for each equa-
tion, when all model equations are simultaneously estimated. As can be
seen from the last column in this standardized solution section, called
“R-squared”, some 43% (= 0.6572 in percentage) of individual differences
in AV-REQRD could not be predicted by SAT, IQ, and ED-MOTIV; similarly,
some 31% of individual differences in AV-ELECT were not explained by SAT,
IQ, and ED-MOTIV.

CORRELATIONS AMONG INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — — — - –

V F
-——- -——-

V4 - IQ .186*I I
V3 - SAT I I

I I
I I

V5 - ED-MOTIV .567*I I
V3 - SAT I I

I I
I I

V5 - ED-MOTIV .100*I I
V4 - IQ I I

CORRELATIONS AMONG INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — — — - –

E D
-——- -——-

E2 - AV-ELECT .696*I I
E1 - AV-REQRD I I

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
E N D  O F  M E T H O D

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
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Finally, at the end of the EQS output, the correlations of all independent
model variables are presented. These values are just reexpressions in a corre-
lation metric of earlier parts of the output dealing with estimated independ-
ent variances and covariances. The magnitude of the correlation between the
two equations’ residuals suggests that the degree of relationship between the
unexplained portions of individual differences in AV-ELECT and AV-REQRD
is quite sizeable. One may suspect that this could be a consequence of com-
mon omitted variables. This possibility can be addressed by a subsequent and
more comprehensive study that includes as predictors other appropriate
variables in addition to the SAT, IQ, and ED-MOTIV used in this example.

LISREL Results

The LISREL command file described previously produces the following re-
sults rounded off to two decimals, which is the default option in LISREL
(unlike EQS and Mplus, in which the default is three digits after the decimal
point). As in the preceding section, when presenting the LISREL output
portions, the font is changed, comments are inserted at appropriate places
(after each output section is discussed), and the logo of the program as well
as recurring first title line are dispensed with in order to save space.

The following lines were read from file PA.LSR:

PATH ANALYSIS MODEL
DA NI=5 NO=150
CM
.594
.483 .754
3.993 3.626 47.457
.426 1.757 4.1 10.267
.500 .722 6.394 .525 2.675
LA
AV-REQRD AV-ELECT SAT IQ ED-MOTIV
MO NY=2 NX=3 GA=FU,FR PH=SY,FR PS=SY,FR
OU

As in EQS, the LISREL output first echoes the input file. This is very useful
for checking whether the model actually fitted is indeed the one intended
to be analyzed.

NUMBER OF INPUT VARIABLES 5
NUMBER OF Y – VARIABLES 2
NUMBER OF X – VARIABLES 3
NUMBER OF ETA - VARIABLES 2
NUMBER OF KSI - VARIABLES 3
NUMBER OF OBSERVATIONS 150
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Next, a summary of the variables in the model is given, in terms of observed,
unobserved variables, and sample size. This section is also quite useful for
checking whether the number of variables in the model have been correctly
specified. Although in this example the number of ETA and KSI variables is
irrelevant since the model does not contain latent variables, the former will
prove to be quite important later in this book when dealing with the general
LISREL model.

Covariance Matrix

AV-REQRD AV-ELECT SAT IQ ED-MOTIV
———————— ———————— ———— ––– ——————–—

AV-REQRD 0.59
AV-ELECT 0.48 0.75

SAT 3.99 3.63 47.46
IQ 0.43 1.76 4.10 10.27

ED-MOTIV 0.50 0.72 6.39 0.53 2.67

The covariance matrix contained in the LISREL input file is also echoed in
the output, and should be examined for potential errors.

Parameter Specifications

GAMMA

SAT IQ ED-MOTIV
———— ——— –––—————

AV-REQRD 1 2 3
AV-ELECT 4 5 6

PHI

SAT IQ ED-MOTIV
———— ——— –––—————

SAT 7
IQ 8 9

ED-MOTIV 10 11 12

PSI

AV-REQRD AV-ELECT
–––————— –––—————

AV-REQRD 13
AV-ELECT 14 15

This is a rather important section that identifies the model parameters as
declared in the input file, and then numbers them consecutively. Each free
model parameter is assigned a separate number. Although not of relevance
in the present example, we note a general rule that all parameters that are
constrained to be equal to one another are given the same number, where-
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as parameters that are fixed are not consecutively numbered—they are in-
stead assigned a 0 (see discussion in next section). According to the last
presented output section, LISREL interpreted that the model had alto-
gether 15 parameters (see Fig. 9). These include the six regression (path)
coefficients in the GAMMA matrix that relate each of the predictors to the
dependent variables (with predictor variables listed as columns and de-
pendent variables as rows of the matrix); the PHI matrix, containing all six
variances and covariances of the predictors; and the PSI matrix, containing
the variances and covariance of the residual terms of the dependent vari-
ables (because both the PHI and PSI matrices are symmetric, only the ele-
ments along the diagonal and beneath it are nonredundant, and hence only
they are assigned consecutive numbers).

LISREL Estimates (Maximum Likelihood)

GAMMA
SAT IQ ED-MOTIV
—— —— ————————

AV-REQRD 0.09 0.01 -0.02
(0.01) (0.01) (0.03)
11.52 0.61 -0.67

AV-ELECT 0.05 0.15 0.13
(0.01) (0.01) (0.03)
6.44 11.44 4.39

Covariance Matrix of Y and X

AV-REQRD AV-ELECT SAT IQ ED-MOTIV
——————— ———————— ——— —— ————————

AV-REQRD 0.59
AV-ELECT 0.48 0.75

SAT 3.99 3.63 47.46
IQ 0.43 1.76 4.10 10.27

ED-MOTIV 0.50 0.72 6.39 0.53 2.67
PHI

SAT IQ ED-MOTIV
—— —— ————————

SAT 47.46
(5.55)
8.54

IQ 4.10 10.27
(1.86) (1.20)
2.21 8.54

ED-MOTIV 6.39 0.53 2.67
(1.07) (0.44) (0.31)
5.96 1.20 8.54

PSI
AV-REQRD AV-ELECT
———————— ————————

AV-REQRD 0.26
(0.03)
8.54
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AV-ELECT 0.17 0.24
(0.02) (0.03)
6.90 8.54

Squared Multiple Correlations for Structural Equations

AV-REQRD AV-ELECT
———————— ————————

0.57 0.69

This is the final solution provided by LISREL. In a way similar to EQS, LISREL
presents the parameter estimates along with their standard errors and t val-
ues in a column format. Note that the matrix presented in this section under
the title COVARIANCE MATRIX OF Y AND X is actually the model repro-
duced covariance matrix S(g�) at the solution point. As can be seen, in this
case S(g�) is identical to the sample covariance matrix S because the model is
saturated and hence fits or reproduces the latter perfectly. The section ends
by providing the squared multiple correlations for the two structural equa-
tions of the model, one per dependent variable. The squared multiple cor-
relations provide information about the percentage of explained variance
in the dependent variables. As mentioned earlier, they are analogs to the R2

indices corresponding to regression models for each equation, accounting
for the fact that both of them are fitted simultaneously (and are the same up
to rounding-off error as those obtained using EQS).

Goodness of Fit Statistics

Degrees of Freedom = 0
Minimum Fit Function Chi-Square = 0.0 (P = 1.00)

Normal Theory Weighted Least Squares Chi-Square = 0.00 (P = 1.00)

The Model is Saturated, the Fit is Perfect !

The goodness-of-fit statistics section of the output is yet another indica-
tion of perfect fit of this saturated model. We stress that with most models
examined in empirical research, which are not saturated, a researcher
should inspect the goodness-of-fit statistics provided in this section of the
output before interpreting parameter estimates. In this way it is ensured
that a researcher’s interpretation of estimates is carried out only for mod-
els that are reasonable approximations of the analyzed data. For models
that are rejected as means of data representation, parameter estimates
should not be generally interpreted because they can yield substantively
misleading results.

Mplus Results

Like EQS and LISREL, Mplus commences its output by echoing back the
command file submitted to it.
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INPUT INSTRUCTIONS

TITLE: PATH ANALYSIS MODEL
DATA: FILE IS EX3.1.COV;

TYPE = COVARIANCE;
NOBSERVATIONS=150;

VARIABLE: NAMES ARE AV_REQRD AV_ELECT SAT IQ ED_MOTIV;
MODEL: AV_REQRD AV_ELECT ON SAT IQ ED_MOTIV;

INPUT READING TERMINATED NORMALLY

The last line of this section is important to also look for, since it is reassuring
to know that there is no miscommunication between the analyst and the
software as far as the submitted command file is concerned.

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 150

Number of dependent variables 2
Number of independent variables 3
Number of continuous latent variables 0

Observed dependent variables

Continuous
AV_REQRD AV_ELECT

Observed independent variables
SAT IQ ED_MOTIV

In this summary output section, the software lists the details obtained from the
command file that pertain to the particular analysis intended to be carried out.

Estimator ML
Information matrix EXPECTED
Maximum number of iterations 1000
Convergence criterion 0.500D-04
Maximum number of steepest descent iterations 20

Input data file(s)
EX3.1.COV

Input data format FREE

THE MODEL ESTIMATION TERMINATED NORMALLY

This portion provides information about the invoked estimation proce-
dure, the upper limit of iteration steps within which Mplus will be monitor-
ing the underlying numerical minimization process for convergence, and
applicable criterion for the latter. After restating the covariance matrix data
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file name and its free format, a very important statement comes that con-
firms convergence has been achieved. Typically in empirical research, this
statement needs to be present in an output in order for the analyst to trust
the output results and move on with interpreting following sections of the
output.

TESTS OF MODEL FIT

Chi-Square Test of Model Fit

Value 0.0000
Degrees of Freedom 0
P-Value 0.0000

Chi-Square Test of Model Fit for the Baseline Model

Value 399.669
Degrees of Freedom 7
P-Value 0.0000

CFI/TLI

CFI 1.000
TLI 1.000

Loglikelihood

H0 Value -1307.784
H1 Value -1307.784

Information Criteria

Number of Free Parameters 9
Akaike (AIC) 2633.567
Bayesian (BIC) 2660.663
Sample-Size Adjusted BIC 2632.180

(n* = (n + 2) / 24)
RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.000
90 Percent C.I. 0.000 0.000
Probability RMSEA <= .05 0.000

SRMR (Standardized Root Mean Square Residual)

Value 0.000

The last presented output part contains information about the fit of the
model. Again, since this is a saturated model, its fit is perfect. The maximum
values of the log-likelihood for the fitted model and saturated model (in this
case identical to the former) are also presented; they are closely related to the
fit function values and will typically differ in empirical research that com-
monly deals with non-saturated models. The information criteria values
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listed become especially important when one is considering several compet-
ing models for a given data set, as later in the book. Specifically, better fitting
models typically are associated with smaller values on these criteria.

MODEL RESULTS
Estimates S.E. Est./S.E.

AV_REQRD ON
SAT 0.086 0.007 11.681
IQ 0.008 0.013 0.618

ED_MOTIV -0.021 0.031 -0.678
AV_ELECT ON

SAT 0.046 0.007 6.523
IQ 0.146 0.013 11.599

ED_MOTIV 0.131 0.029 4.449

The path coefficient estimates are essentially identical, within round-off or
numerical error, to those obtained with EQS and LISREL.

AV_ELECT WITH
AV_REQRD 0.170 0.024 6.995

Residual Variances
AV_REQRD 0.256 0.029 8.660
AV_ELECT 0.235 0.027 8.660

Similarly, essentially identical results are also found for the estimates of the
variances and covariance of the residual terms associated with the depend-
ent variables in this model. We note in conclusion that t-values are pre-
sented in the final column “Est./S.E.”, which equal the parameter estimates
divided by standard error.

TESTING MODEL RESTRICTIONS IN SEM

The model examined in the previous section was a very special one, a
saturated model. As a result, the model fit the data perfectly—some-
thing that one cannot expect to see with most models considered in em-
pirical research. Being saturated, it had 0 degrees of freedom and could
not really be tested. The reason was that models with 0 degrees of free-
dom can never be disproved when tested against observed data, regard-
less of their implications or how that data look. As a consequence,
saturated models are generally not very interesting in substantive re-
search. However, in addition to standard errors for its parameters, a
saturated model provides a very useful baseline against which other
models with positive degrees of freedom can be tested. This is the rea-
son why a saturated model was examined in the first empirical example
in this book.
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Issues of Fit with Nested Models

The model presented in the previous section and displayed in Fig. 9 also fa-
cilitates the introduction of a very important topic in structural equation
model testing—that of nested models. A model M is said to be nested in an-
other model M¢, if M can be obtained from M¢ by constraining one or more
of the parameters in M¢ to be either (a) equal to 0 or some other constant(s),
or (b) following a particular relationship (e.g., a linear combination of them
to equal 0 or another constant). For example, a model obtained from a
given one by setting two or more of its parameters to equal one another, is
nested in the given model. More generally, there is potentially no limit to
the number of nested models in a considered sequence of models, or to the
number/values of parameters that are fixed or constrained in one of them in
order to obtain the more restricted model(s).

Another interesting aspect about a nested model is that it will always
have a greater number of degrees of freedom than the model in which it is
nested—recall that the nested model M is obtained from M¢ by constrain-
ing one or more parameters to 0 or another constant(s), or to follow a
given relationship. As it turns out, the difference in fit of the two models,
relative to their degrees of freedom, can be used as a test of the hypothesis
that the restriction imposed on one or more parameters in M is plausible
in a studied population. This test is generally referred to as the chi-square
difference test and utilizes a chi-square distribution with degrees of free-
dom equal to the difference between the degrees of freedom of the two
models compared.

In empirical research, researchers typically consider only those nested
models that impose substantively interesting restrictions on parameters. By
comparing the fit of nested models and taking into account the difference
in the number of their parameters, researchers examine the plausibility of
imposed restrictions. In general, the more restricted model (being a con-
strained version of another model) will typically be associated with a higher
chi-square value because it imposes more restrictions on the model param-
eters. These restrictions, in effect, make the model less able to emulate the
analyzed covariance matrix, and hence the resulting difference in the chi-
square values will be positive (in case of identified models, as assumed
throughout the rest of this book). Similarly, the difference in degrees of
freedom obtained when the degrees of freedom of the more general model
are subtracted from those of the more restricted one, is also positive
because the more restricted model has fewer parameters and hence more
degrees of freedom.

It can be shown that with large samples the difference in chi-square val-
ues of nested models follows approximately a chi-square distribution with
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degrees of freedom equal to the difference in their degrees of freedom, un-
der the assumption that the imposed restriction is valid in the studied pop-
ulation. For simplicity, in the remainder of this text the difference in
chi-square values is denoted by DT, and the difference between the degrees
of freedom by Ddf. If the increment in the chi-square value, DT, is significant
when assessed against the chi-square distribution with Ddf degrees of free-
dom, it is an indication that the imposed restrictions in the more con-
strained model resulted in a significant decrement in model fit and hence
the constraints can be considered violated in the population. Conversely, if
this difference DT is nonsignificant, one can retain the hypothesis of validity
of the imposed constraints. We stress that model comparison can also pro-
ceed in the other direction—models can have parameters sequentially
freed, and the resulting successive model versions can be compared to as-
sess whether freeing a particular parameter led to a significant improve-
ment in model fit. Hence, in general terms the chi-square difference test can
be considered analogous to the test of change in R2 when adding predictors
to (or removing them from) a set of explanatory variables in conventional
regression analysis, or equivalently to the F test for considering dropping
predictors in a regression model.

Testing Restrictive Hypotheses in the Path-Analysis Example

Returning to the specific model presented in Fig. 9, the hypothesis can be
examined that intelligence (IQ) and motivation (ED-MOTIV) have the same
impact—as reflected in their metrics—on grade point average obtained in
elective subjects (AV-ELECT). To accomplish this, the equality restriction
on the paths leaving IQ and ED-MOTIV and ending at AV-ELECT is intro-
duced. This restriction can be included in the EQS command file by adding
a /CONSTRAINT section, in LISREL by adding an input line that imposes the
particular parameters’ identity (equality), and in Mplus by adding a line as-
signing the same number to the parameters in question (details given be-
low). The necessary changes in the EQS command file are as follows (note
the extended title, indicating the additional restriction feature of this
model):

/TIT
PATH ANALYSIS MODEL WITH IMPOSED CONSTRAINTS;
/SPE
VAR=5; CAS=150;
/LAB
V1=AV-REQRD; V2=AV-ELECT; V3=SAT; V4=IQ; V5=ED-MOTIV;
/EQU
V1 = *V3 + *V4 + *V5 + E1;
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V2 = *V3 + *V4 + *V5 + E2;
/VAR
V3 TO V5 = *; E1 TO E2 = *;
/COV
V3 TO V5 = *; E1 TO E2 = *;
/CON
(V2,V4) = (V2,V5); ! THIS IS THE INTRODUCED RESTRICTION;
/MAT
.594
.483 .754
3.993 3.626 47.457
.426 1.757 4.100 10.267
.500 .722 6.394 .525 2.675
/END;

As indicated by the added comment in the constraint command (after the
exclamation mark in the actual constraint line, which signals beginning of a
comment in all three programs used in this text), the restriction under con-
sideration is imposed by requiring the identity of the path coefficients of the
predictors in question. Note the syntax used in this constraint command—
within brackets symbolizing parameter, first comes the dependent variable
and then the independent one for the two measures pertaining to that
parameter.

In the corresponding LISREL command file the parameter restriction is
introduced by adding an EQuality statement that sets the two involved pa-
rameters equal to one another as follows:

PATH ANALYSIS MODEL WITH IMPOSED CONSTRAINTS
DA NI=5 NO=150
CM
.594
.483 .754
3.993 3.626 47.457
.426 1.757 4.100 10.267
.500 .722 6.394 .525 2.675
LA
AV-REQRD AV-ELECT SAT IQ ED-MOTIV
MO NY=2 NX=3 GA=FU,FR PH=SY,FR PS=SY,FR
EQ GA(2, 2) GA(2, 3) ! THIS IS THE INTRODUCED RESTRICTION
OU

The EQuality command line, followed by a listing of the parameters of con-
cern, sets the two path coefficients equal in the restricted model.
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In the pertinent Mplus command file, one needs to indicate the iden-
tity of the two path coefficients in question. This is accomplished with
the last line of the following command file, which states that these two
listed coefficients are set equal by assigning to them the same number (in
this case it can be 1 as there are no other parameters already constrained
for equality).

TITLE: PATH ANALYSIS WITH IMPOSED CONSTRAINTS
DATA: FILE IS EX3.1.COV;

TYPE = COVARIANCE;
NOBSERVATIONS=150;

VARIABLE: NAMES ARE AV_REQRD AV_ELECT SAT IQ ED_MOTIV;
MODEL: AV_REQRD ON SAT IQ ED_MOTIV;

AV_ELECT ON SAT
IQ ED_MOTIV (1);

Note that the earlier Mplus command line for the second dependent vari-
able equation is ‘broken’ here into two lines, whereby the first one does not
end with a semicolon while the second one contains the names of the pre-
dictors whose path coefficients are set equal to one another.

Because the results produced with the three programs are identical,
only the pertinent EQS output sections are discussed next (interested
readers may verify this by using the corresponding LISREL and/or Mplus
input files as well); the first two pages of the EQS output, which are iden-
tical to those of the model without the constraint in question, are not
presented.

PARAMETER ESTIMATES APPEAR IN ORDER,
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.
ALL EQUALITY CONSTRAINTS WERE CORRECTLY IMPOSED

As indicated before, this message is important because it indicates that the
program has not encountered any problems stemming from lack of model
identification and, in particular, that the model constraints were correctly
introduced.

RESIDUAL COVARIANCE MATRIX (S-SIGMA) :

AV-REQRD AV-ELECT SAT IQ ED-MOTIV
V1 V2 V3 V4 V5

AV-REQRD V1 .000
AV-ELECT V2 .000 .000

SAT V3 .000 .000 .000
IQ V4 .017 .023 .000 .000

ED-MOTIV V5 -.017 -.023 .000 .000 .000

AVERAGE ABSOLUTE COVARIANCE RESIDUALS   =   .0054
AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS    =   .0080
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STANDARDIZED RESIDUAL MATRIX:

AV-REQRD AV-ELECT SAT IQ ED-MOTIV
V1 V2 V3 V4 V5

AV-REQRD V1 .001
AV-ELECT V2 .000 .000

SAT V3 .000 .000 .000
IQ V4 .007 .008 .000 .000

ED-MOTIV V5 -.013 -.016 .000 .000 .000

AVERAGE ABSOLUTE STANDARDIZED RESIDUALS   =   .0031
AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS   =   .0045

LARGEST STANDARDIZED RESIDUALS:

NO. PARAMETER ESTIMATE NO. PARAMETER ESTIMATE
–-— ———-————— -————-—— ——— ———-————— -————-——
1 V5, V2 -.016 11 V4, V4 .000
2 V5, V1 -.013 12 V2, V2 .000
3 V4, V2 .008 13 V5, V3 .000
4 V4, V1 .007 14 V5, V4 .000
5 V1, V1 .001 15 V5, V5 .000
6 V2, V1 .000
7 V3, V1 .000
8 V3, V3 .000
9 V3, V2 .000
10 V4, V3 .000

DISTRIBUTION OF STANDARDIZED RESIDUALS
— — — — — — — — — — — — — —
! !

20- -
! !
! !
! !
! ! RANGE FREQ PERCENT

15- -
! ! 1 -0.5 - — 0 .00%
! * ! 2 -0.4 - -0.5 0 .00%
! * ! 3 -0.3 - -0.4 0 .00%
! * ! 4 -0.2 - -0.3 0 .00%

10- * - 5 -0.1 - -0.2 0 .00%
! * ! 6 0.0 - -0.1 2 13.33%
! * ! 7 0.1 - 0.0 13 86.67%
! * ! 8 0.2 - 0.1 0 .00%
! * ! 9 0.3 - 0.2 0 .00%
5- * - A 0.4 - 0.3 0 .00%
! * ! B 0.5 - 0.4 0 .00%
! * ! C ++ - 0.5 0 .00%
! * * ! — – – – – – – – – – – – – – – – –
! * * ! TOTAL 15 100.00%
— — — — — — — — — — — — — —
1 2 3 4 5 6 7 8 9 A B C EACH “*” REPRESENTS 1 RESIDUALS

As expected, the constrained model does not perfectly reproduce the ob-
served covariance matrix, unlike the saturated model discussed earlier in
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this chapter. This is because most models fit in empirical research are not
perfect representations of the analyzed data and therefore do not com-
pletely reproduce the sample matrices of variable interrelationships. In the
case under consideration, the largest standardized residuals are, however,
all fairly small. This result suggests that the model reproduces all elements
of the sample covariance matrix fairly well.

GOODNESS OF FIT SUMMARY FOR METHOD = ML

INDEPENDENCE MODEL CHI-SQUARE   =  460.156 ON   10 DEGREES OF FREEDOM

INDEPENDENCE AIC   =   440.15570      INDEPENDENCE CAIC =   400.04935
MODEL AIC   =    -1.77899             MODEL CAIC =    -5.78963

CHI-SQUARE    =          .221 BASED ON       1 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS              .63827

THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS       .221.

FIT INDICES
— — — — — -
BENTLER-BONETT NORMED FIT INDEX      =      1.000
BENTLER-BONETT NON-NORMED FIT INDEX  =      1.017
COMPARATIVE FIT INDEX (CFI)          =      1.000

RELIABILITY COEFFICIENTS
— — — — — — — — — — — — –
CRONBACH’S ALPHA                                        =      .527
COEFFICIENT ALPHA FOR AN OPTIMAL SHORT SCALE            =      .835
BASED ON THE FOLLOWING 2 VARIABLES
AV-REQRD AV-ELECT
GREATEST LOWER BOUND RELIABILITY                        =      .832
GLB RELIABILITY FOR AN OPTIMAL SHORT SCALE              =      .835
BASED ON THE FOLLOWING 2 VARIABLES
AV-REQRD AV-ELECT
BENTLER’S DIMENSION-FREE LOWER BOUND RELIABILITY        =      .682
SHAPIRO’S LOWER BOUND RELIABILITY FOR A WEIGHTED COMPOSITE =   .901
WEIGHTS THAT ACHIEVE SHAPIRO’S LOWER BOUND:
AV-REQRD    AV-ELECT     SAT      IQ    ED-MOTIV

.338        .395    .692    .431        .255

ITERATIVE SUMMARY
PARAMETER

ITERATION ABS CHANGE ALPHA FUNCTION
1 14.687760 1.00000 5.15066
2 14.361550 1.00000 .00170
3 .000366 1.00000 .00148

As mentioned before, a saturated model provides a highly useful bench-
mark against which the fit of any nonsaturated model can be tested. Con-
sider the fact that the model examined here is nested in the saturated
model in Fig. 9. The current model differs only in one aspect from that sat-
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urated model—namely in the imposed restriction of equality on the two
path coefficients that pertain to the substantive query—and therefore can
be examined by using the chi-square difference test. Subtracting the val-
ues of the two chi-squares, i.e., 0.221 - 0 = 0.221, and subtracting the de-
grees of freedom of the two model, i.e., 1 - 0 = 1, yields a nonsignificant
chi-square value difference when judged against the chi-square distribu-
tion with 1 degree of freedom. This is because the cut-off value for the chi-
square distribution with 1 degree of freedom is 3.84 at a significance level
.05 (and obviously higher for any smaller level), as can be found in any
table of chi-square critical values. Therefore, the conclusion is that there is
no evidence in the data to warrant rejection of the introduced restriction.
That is, the hypothesis of equality of the impacts of IQ and ED-MOTIV on
AV-ELECT can be retained.

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

AV-REQRD = V1  = .085*V3   + .006*V4   - .012*V5 + 1.000 E1
.007 .013 .024

12.109@ .508 -.488
AV-ELECT = V2  = .045*V3   + .144*V4   + .144*V5 +1.000 E2

.006 .012 .012
7.057@ 12.337@ 12.337@

As requested in the input file, the solution equalizes the impact of IQ (V4)
and ED-MOTIV (V5) on AV-ELECT (V2). Indeed, both pertinent path coeffi-
cients are estimated at .144, have the same standard errors and t-values, and
are significant. Note that all other path coefficients are significant except the
ones relating IQ (V4) and ED-MOTIV (V5) to AV-REQRD (V1). This issue is
considered further at the end of the discussion of the entire output.

VARIANCES OF INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — –

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

V F
-— —-

V3 - SAT 47.457*I I
5.498 I I
8.631@I I

I I
V4 - IQ 10.267*I I

1.190 I I
8.631@I I

I I
V5 - ED-MOTIV 2.675*I I

.310 I I
8.631@I I
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VARIANCES OF INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — –

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

E D
-— —-

E1 - AV-REQRD .257*I I
.030 I I
8.631@I I

I I
E2 - AV-ELECT .236*I I

.027 I I
8.631@I I

COVARIANCES AMONG INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — — — -

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

V F
-— —-

V4 - IQ 4.100*I I
V3 - SAT 1.839 I

2.229@I I
I I

V5 - ED-MOTIV 6.394*I I
V3 - SAT 1.061 I I

6.025@I I
I I

V5 - ED-MOTIV .525*I I
V4 - IQ .431 I I

1.217 I I

COVARIANCES AMONG INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — — — -

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

E D
-— —-

E2 - AV-ELECT .171*I I
E1 - AV-REQRD .025 I I

6.974@I I

As can also be seen from the saturated model in the preceding section, the
covariance between IQ and ED-MOTIV is not significant. This suggests that
there is weak evidence in the analyzed data for a discernible (linear) rela-
tionship between these two high school variables.

STANDARDIZED SOLUTION: R-SQUARED

AV-REQRD=V1  =   .761*V3  +   .027*V4  -   .025*V5  +   .658 E1 .567
AV-ELECT=V2  =   .354*V3  +   .530*V4  +   .271*V5  +   .559 E2 .687
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We emphasize that the standardized solution has not upheld the intro-
duced restriction. Indeed, the standardized path coefficients of V4 and V5
on V2 are not equal, unlike in the immediately preceding unstandardized
solution. This violation of constraints in the standardized solution is a com-
mon result with restricted models, partly because in practice constraints
are typically imposed on parameters that do not have identical units of mea-
surement to begin with. Therefore, standardization of the variable metrics,
which underlies the standardized solution, destroys the restrictions since it
affects differentially the original units of assessment in various variables.
Nonetheless, the restriction imposed in the model of this section has an ef-
fect and leads to a standardized solution distinct from the one for the unre-
stricted model presented earlier, as shown in the last presented output
portion. The reason for this is that the standardization is carried out on the
solution obtained with the constrained model, by subsequently modifying
its parameter estimates appropriately.

CORRELATIONS AMONG INDEPENDENT VARIABLES
V4 -  IQ .186*
V3 -  SAT
V5 - ED-MOTIV .567*
V3 -  SAT
V5 - ED-MOTIV .100*
V4 -  IQ

CORRELATIONS AMONG INDEPENDENT VARIABLES
E2 - AV-ELECT .696*
E1 - AV-REQRD

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
E N D  O F  M E T H O D

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

As with the model presented in Fig. 9, the last output portion shows that there
is a substantial degree of interrelationship between the error terms. That is,
those parts of AV-REQRD and AV-ELECT that are unexplained (linearly) by the
common set of predictors used are markedly interrelated. This finding again
provides some hint concerning the possibility of common omitted variables, as
mentioned at the end of the discussion of the unconstrained model.

MODEL MODIFICATIONS

The restricted model examined in the preceding section indicated that the
path coefficients relating the predictors IQ and ED-MOTIV to the depend-
ent variable AV-REQRD were nonsignificant. An interesting question to con-
sider is whether one or both of these paths can be excluded in a modified
model while maintaining a good fit to the analyzed data. As indicated in

MODELING RESULTS 109



Chap. 1, modification of a given model with the aim of fit improvement has
been termed a specification search (Long, 1983; MacCallum, 1986). A speci-
fication search is typically conducted with the intent to detect and correct
specification errors between a proposed model and the unknown, true
model characterizing the population and variables in a study. Although
some new search procedures (e.g., ant colony, genetic algorithms, Tabu
search) have been developed to automate the process of model modifica-
tion using computer algorithms, in this introductory book only model mod-
ifications are discussed that can be carried out with available SEM programs
(for more extensive discussions, see Marcoulides et al., 1998; Marcoulides
& Drezner, 2001, 2003).

Consider a modification of the model in which the path coefficients relat-
ing IQ and ED-MOTIV to AV-REQRD were found to be nonsignificant. Since
it is well known that a single change in a model can affect other parts of the
solution, only one change at a time is to be made in the model. By proceed-
ing step by step—i.e., by setting equal to 0 one parameter at a time—the
possibility of missing a tenable restrictive model or misspecifying a model,
which might occur if all the nonsignificant parameters were fixed to 0 at
once, is excluded. In a sense, this strategy is analogous to backward selec-
tion in regression analysis, particularly the rule not to drop from the regres-
sion equation more than a single predictor at a time (although automated
model-selection search procedures have also been developed for regres-
sion analyses; see Drezner, Marcoulides, & Salhi, 1999; Marcoulides &
Drezner, 1999).

With user-specified (nonautomated) model specification searches
there are no rules concerning which nonsignificant parameters to fix first
to 0. One strategy might be to consider setting to 0 the parameter with the
smallest nonsignificant t value taken at its absolute value, which in a sense
appears ‘most nonsignificant’. In the present empirical example, this is
the path coefficient of ED-MOTIV on AV-REQRD. Fixing this path coeffi-
cient to 0 yields a nested model because the resulting model is obtained
from that in Fig. 9 after introducing this particular parameter restriction in
addition to the equality of intelligence and motivation effect upon perfor-
mance on elective subjects, which was examined in the preceding subsec-
tion and found plausible. This fixing at 0 is achieved by simply not
mentioning the constrained parameter as free when defining the model
or, alternatively, by fixing it after the model definition line. Provided here
is only the LISREL input file for this model with the restricted parameter
between ED-MOTIV and AV-REQRD, GA (1, 3). (The earlier EQS and
Mplus command files are only minimally modified to introduce this re-
straint, following exactly the same notational guidelines used in the con-
strained model of the preceding section.)
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PATH ANALYSIS MODEL FOR RESTRICTED MODEL WITH THE PATH OF ED-MOTIV TO
AV-REQRD FIXED AT ZERO

DA NI=5 NO=150
CM
.594
.483 .754
3.993 3.626 47.457
.426 1.757 4.100 10.267
.500 .722 6.394 .525 2.675
LA
AV-REQRD AV-ELECT SAT IQ ED-MOTIV
MO NY=2 NX=3 GA=FU,FR PH=SY,FR PS=SY,FR
EQ GA(2, 2) GA(2, 3)
FI GA(1, 3) ! THIS IS THE ADDED LINE IN ORDER TO FIX THE PARAMETER g13
OU

From here onward, to save space, we will only report those parts of the out-
put, or fit indices if pertinent, that are relevant for answering the substan-
tive query that has led to a fitted model under consideration.

The model for the LISREL command file just presented yields a
chi-square value T = 0.46 for 2 degrees of freedom. Hence, the difference
in chi-square values between this model and the immediately preceding
one with only the constraint of two equal path coefficients, is DT = 0.24 for
Ddf = 1. Because this difference is nonsignificant when compared to the
cutoff of 3.84 for the chi-square distribution with 1 degree of freedom,
one can conclude that there is no evidence in the data concerning any in-
fluence of ED-MOTIV on AV-REQRD, after accounting for the impact of
SAT and IQ on that dependent variable. (Note that the last mentioned two
predictors are still present in the equation for the dependent variable in
this modified model.)

Since the imposed restriction was found to be plausible, it is retained in
the model and the next nonsignificant path, that is, the one between IQ and
AV-REQRD, is now considered for fixing at 0. For this model version, we
present the Mplus command files and results. Introducing this model con-
straint is readily carried out in the Mplus syntax by setting the parameter in
question equal to 0, which is achieved with the following input:

TITLE: THIS IS AN EXAMPLE OF PATH ANALYSIS WITH
IMPOSED CONSTRAINTS: TWO PATHS ARE SET
EQUAL AND TWO OTHERS ARE FIXED AT 0

DATA: FILE IS EX3.1.COV;
TYPE = COVARIANCE;
NOBSERVATIONS=150;

VARIABLE: NAMES ARE AV_REQRD AV_ELECT SAT IQ ED_MOTIV;
MODEL: AV_REQRD ON SAT IQ ED_MOTIV;

AV_ELECT ON SAT
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IQ ED_MOTIV (1);
AV_REQRD ON IQ@0;
AV_REQRD ON ED_MOTIV@0;

OUTPUT: RESIDUAL;

Fixing a path coefficient to 0, or any other constant, is accomplished by stat-
ing the path followed by the symbol “@” and the value to which it is to be set
equal to; alternatively, in this case of fixing paths to 0, the same effect is ac-
complished by simply not mentioning the predictors in question when
writing in Mplus code the equation for the pertinent dependent variable.
The final command, OUTPUT, requests the matrix of model residuals. This
command file yields a tenable model version: T = 0.88 for df = 3 that is
non-significant and a pertinent RMSEA index being 0 with a 90%-confi-
dence interval (0, .080). The increase in the chi-square goodness of fit is
DT = 0.42 for Ddf = 1 and is similarly nonsignificant. One can therefore
conclude that there is no evidence in the data for an impact of IQ on
AV-REQRD, once that of SAT on the latter variable is accounted for.

Following these modifications, the model does not have any more
nonsignificant parameters and represents the most restrictive, yet tena-
ble model examined in this chapter. The results of the last part of this
specification search are presented here (with some redundant sections
eliminated):

MODEL RESULTS
Estimates S.E. Est./S.E.

AV_REQRD ON
SAT 0.084 0.006 13.975
IQ 0.000 0.000 0.000

ED_MOTIV 0.000 0.000 0.000

AV_ELECT ON
SAT 0.045 0.006 7.472
IQ 0.141 0.008 16.949
ED_MOTIV 0.141 0.008 16.949

AV_ELECT WITH
AV_REQRD 0.171 0.024 6.999

Residual Variances
AV_REQRD 0.256 0.030 8.660
AV_ELECT 0.234 0.027 8.660

Residuals for Covariances/Correlations/Residual Correlations
AV_REQRD AV_ELECT SAT IQ ED_MOTIV
________ ________ ____ ____ ________

AV_REQRD 0.000
AV_ELECT 0.006 0.008
SAT 0.000 0.000 0.000
IQ 0.080 0.047 0.000 0.000
ED_MOTIV -0.038 -0.019 0.000 0.000 0.000
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Although this final model does not perfectly reproduce the analyzed
covariance matrix, as seen from the very last output section (see Appendix
to this chapter), the fit criteria mentioned above clearly indicate that it is a
plausible model. Similar to the preceding two models considered in this
section, the last one fitted shows that in order for a path-analysis model to
be a plausible representation of analyzed data it is not necessary that it per-
fectly or nearly so reproduces the data (covariance matrix).

In conclusion of this chapter, we emphasize that despite the good fit cri-
teria obtained with the last fitted model, results obtained from any model
specification search may be unique to the particular data set analyzed and
that chance elements may affect the search. In fact, once a specification
search is begun, a researcher actually enters a more exploratory phase of
analysis. Hence, the possibility exists that at least some results with interme-
diate as well as final model versions are due only to chance fluctuations at
work in the analyzed data. For this reason, any models that result from spec-
ification searches should always be cross-validated, i.e., replicated on other
data sets from the studied population, before any real validity for results
obtained with them can be claimed.

MODELING RESULTS 113



APPENDIX TO CHAPTER 3

The general path analysis model can be written as follows, using the general
LISREL model notation introduced in Chap. 1 and its Appendix:

Y = B Y + V , (A3.1)

where Y is the p x 1 vector of observed variables (p > 1), B is the p x p regres-
sion coefficient (path coefficient) matrix, V is the p x 1 vector of error terms
(p > 1); and the matrix Ip – B is assumed to be invertible, with Ip denoting
the p x p identity matrix. The error terms are assumed normal and with zero
mean, with those pertaining to dependent variables being uncorrelated
with their predictors (see below). (In terms of the LISREL notation used in
this chapter to refer to path coefficients, G= B also holds.)

Equation (A3.1) can be thought of as relating several dependent vari-
ables (a subset of Y) simultaneously to its putative predictors (the remain-
ing part of Y). Equation (A3.1) results from that of the general LISREL
model, (A1.1), by assuming error-free measurement of p corresponding
latent variables, i.e.,

Y = Ip h+ 0, (A3.2)

where h is a p x 1 vector of “unobservable constructs” (dummy latent vari-
ables, correspondingly equal to the observed variables). With this assump-
tion, (A3.1) becomes identical to Equation (A1.2) in the Appendix to Chap.
1, and with L= Ip Equation (A3.2) is the same as (A1.1).

Hence, all modeling developments presented in Chap. 1 and its Appen-
dix apply to the general path-analysis model (and all its special cases of rele-
vance in a given empirical setting).

The particular model used for demonstration purposes in this chapter is
a special case of the general path-analysis model, and thus of the general
LISREL model. Indeed, denoting by Y1 through Y5 the five observed vari-
ables of interest in that empirical setting, using (A3.2) one first assigns a
dummy latent variable to each observed variable, i.e., sets

Yi = hi, i = 1, 2, …, 5 . (A3.3)

The path analysis model equations are then a special case of (A1.2) and look
as follows:
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(A3.4)

where the residual covariance matrix is assumed block-diagonal, with the
vector (V1, V2)' being unrelated to (V1, V2, V3)'(‘'’ denoting transposition).
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C H A P T E R F O U R

Confirmatory Factor Analysis

WHAT IS FACTOR ANALYSIS?

Factor analysis is a modeling approach that was first developed by psychol-
ogists as a method to study unobservable, hypothetically existing variables,
such as intelligence, motivation, ability, attitude, and opinion. Latent vari-
ables typically represent not directly measurable dimensions that are of
substantive interest to social and behavioral scientists, and a widely ac-
cepted interpretation of a latent variable is that an individual’s standing on
this unobserved dimension can be indicated by various proxies of the di-
mension, which are generally referred to as indicators. These are directly
measurable manifestations of the underlying latent dimension, such as
scores on particular tests of intelligence that indicate one’s intellectual abil-
ity (see Chap. 1).

Like path analysis, factor analysis has a relatively long history. The origi-
nal idea dates back to the early 1900s, and it is generally acknowledged that
the English psychologist Charles Spearman first applied early forms of this
approach to study the structure of human abilities. Spearman (1904) pro-
posed that an individual’s ability scores were manifestations of a general
ability (called general intelligence, or just g) and other specific abilities,
such as verbal or numerical abilities. The general and specific factors com-
bined to produce the ability performance. This idea was labeled the
two-factor theory of human abilities. However, as more researchers be-
came interested in this approach (e.g., Thurstone, 1935), the theory was ex-
tended to accommodate more factors and the corresponding analytic
method was referred to as factor analysis.
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In general terms, factor analysis is a modeling approach for studying hy-
pothetical constructs by using a variety of observable proxies or indicators of
them that can be directly measured. The analysis is considered exploratory,
also referred to as exploratory factor analysis (EFA), when the concern is with
determining how many factors, or latent constructs, are needed to explain
well the relationships among a given set of observed measures. Alternatively,
the analysis is confirmatory, formally referred to as confirmatory factor analy-
sis (CFA), when a preexisting structure of the relationships among the mea-
sures is being quantified and tested. Thus, unlike EFA, CFA is not concerned
with discovering a factor structure, but with confirming and examining the
details of an assumed factor structure. In order to confirm a specific factor
structure, one must have some initial idea about its composition. In this re-
spect, CFA is considered to be a general modeling approach that is designed
to test hypotheses about a factor structure, when the factor number and in-
terpretation in terms of indicators are given in advance. Hence, in CFA (a) the
theory comes first, (b) the model is then derived from it, and finally (c) the
model is tested for consistency with the observed data. For the latter pur-
pose, structural equation modeling can be used. Thereby, as discussed at
length in Chap. 1, the unknown model parameters are estimated so that, in
general, the model reproduced matrix S(g) comes as close as possible to the
sample matrix S (i.e., the model is ‘given’ the best chance to emulate S). If the
proposed model emulates S to a sufficient extent, as measured by the good-
ness-of-fit indices, it can be treated as a plausible description of the phenome-
non under investigation and the theory from which the model has been
derived is supported. Otherwise, the model is rejected and the theory—as
embodied in the model—is disconfirmed. We stress that this testing rationale
is valid for all applications of the SEM methodology, not only those within the
framework of confirmatory factor analysis, with its origins being traditionally
rooted partly in the factor analytic approach.

This discussion of confirmatory factor analysis (CFA) suggests an impor-
tant limitation concerning its use. The starting point of CFA is a very demand-
ing one, requiring that the complete details of a proposed model be specified
before it is fitted to the data. Unfortunately, in many substantive areas this
may be too strong a requirement since theories are often poorly developed
or even nonexistent. Due to these potential limitations, Jöreskog & Sörbom
(1993a) distinguished aptly between three situations concerning model fit-
ting and testing: (a) a strictly confirmatory situation in which a single formu-
lated model is either accepted or rejected; (b) an alternative-models or
competing-models situation in which several models are formulated and
preferably one of them is selected; and (c) a model-generating situation in
which an initial model is specified and, in case of unsatisfactory fit to the data,
is modified and repeatedly tested until acceptable fit is obtained.
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The strictly confirmatory situation is rare in practice because most re-
searchers are unwilling to reject a proposed model without at least suggest-
ing some alternative model. The alternative- or competing-model situation
is not very common because researchers usually prefer not to specify, or
cannot specify, particular alternative models beforehand. Model genera-
tion seems to be the most common situation encountered in empirical re-
search (Jöreskog & Sörbom, 1993a; Marcoulides, 1989). As a consequence,
many applications of CFA actually bear some characteristic features of both
explanatory and confirmatory approaches. In fact, it is not very frequent
that researchers are dealing with purely exploratory or purely confirmatory
analyses. For this reason, results of any repeated modeling conducted on
the same data set should be treated with a great deal of caution and be con-
sidered tentative until a replication study can provide further information
on the performance of these models.

AN EXAMPLE CONFIRMATORY FACTOR ANALYSIS MODEL

To demonstrate a confirmatory factor analysis model, consider the follow-
ing example model with three latent variables: Ability, Achievement Motiva-
tion, and Aspiration. The model proposes that three variables are indicators
of Ability, three variables are proxies of Motivation, and two variables are in-
dicative of Aspiration. Here the primary interest lies in estimating the rela-
tionships among Ability, Motivation, and Aspiration. For the purposes of
this chapter, assume data are available from a sample of N = 250 second-
year college students for which the normality assumption is plausible. The
following observed variables are used in this study:

1. A general ability score (ABILITY1).
2. Grade point average obtained in last year of high school

(ABILITY2).
3. Grade point average obtained in first year of college (ABILITY3).
4. Achievement motivation score 1 (MOTIVN1).
5. Achievement motivation score 2 (MOTIVN2).
6. Achievement motivation score 3 (MOTIVN3).
7. A general educational aspiration score (ASPIRN1).
8. A general vocational aspiration score (ASPIRN2).

The example confirmatory factor analysis model is presented in Fig. 10
and the observed covariance matrix in Table 1. The model is initially de-
picted in EQS notation using V1 to V8 for the observed variables, E1 to E8 for
the error terms associated with the observed variables, and F1 to F3 for the
latent variables.
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To determine the parameters of the model in Fig. 10, which are desig-
nated by asterisks there, we follow the six rules outlined in Chap. 1. Accord-
ing to Rule 1, all eight error-term variances are model parameters, and
according to Rule 3 the eight factor loadings are also model parameters. In
addition, the three construct variances are tentatively designated model pa-
rameters (but see the use of Rule 6 later in this paragraph). Following Rule
2, the three covariances between latent variables are also model parame-
ters. Rule 4 is not applicable to this model with regard to latent variables be-
cause no explanatory relationships are assumed among any of them. For
Rule 5, observe that there are no two-way arrows connecting dependent
variables, or a dependent and independent variable in the model in Fig. 10.
Finally, Rule 6 requires that the scale of each latent variable be fixed. Be-
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cause this study’s primary interest is in estimating the correlations between
Ability, Motivation, and Aspiration (which are identical to their covariances
if the variances of the latent variables are set equal to 1), the variances of the
latent variables are fixed to unity. This decision makes the construct vari-
ances fixed parameters rather than free model parameters. Hence, the
model in Fig. 10 has altogether 19 parameters (8 factor loadings + 3 factor
covariances + 8 error variances = 19), which are symbolized by asterisks.

EQS, LISREL, and Mplus COMMAND FILES

EQS Input File

The EQS input file is constructed following the guidelines outlined in Chap.
2. Accordingly, the file begins with a title command line followed by a specifi-
cation line providing the number of variables in the model and sample size.

/TITLE
EXAMPLE CONFIRMATORY FACTOR ANALYSIS;
/SPECIFICATIONS
CASES=250; VARIABLES=8;

120 4. CONFIRMATORY FACTOR ANALYSIS

TABLE 1

Covariance Matrix for Confirmatory Factor Analysis Example of Ability,
Motivation, and Aspiration

Variable AB1 AB2 AB3 MOT1 MOT2 MOT3 ASP1 ASP2

AB1 .45

AB2 .32 .56

AB3 .27 .32 .45

MOT1 .17 .20 .19 .55

MOT2 .20 .21 .18 .30 .66

MOT3 .19 .25 .20 .30 .36 .61

ASP1 .08 .12 .09 .23 .27 .22 .58

ASP2 .11 .10 .07 .21 .25 .27 .39 .62

Note. AB denotes ability; MOT, motivation; ASP, aspiration. Sample size = 250.



To facilitate interpretation of the output, labels are provided for all vari-
ables included in the model using the command line /LABELS.

/LABELS
V1=ABILITY1; V2=ABILITY2; V3=ABILITY3; V4=MOTIVN1;
V5=MOTIVN2; V6=MOTIVN3; V7=ASPIRN1; V8=ASPIRN2;
F1=ABILITY; F2=MOTIVATN; F3=ASPIRATN;

Next the model definition equations are stated followed by the remaining
model parameters in the variance and covariance commands. The /LMTEST
command requests the modification indices discussed in Chapter 1.

/EQUATIONS
V1=*F1+E1;
V2=*F1+E2;
V3=*F1+E3;
V4=*F2+E4;
V5=*F2+E5;
V6=*F2+E6;
V7=*F3+E7;
V8=*F3+E8;
/VARIANCES
F1 TO F3=1; E1 TO E8=*;
/COVARIANCES
F1 TO F3=*;
/LMTEST;

Finally, the data are provided along with the end of input file command.

/MATRIX
.45
.32 .56
.27 .32 .45
.17 .20 .19 .55
.20 .21 .18 .30 .66
.19 .25 .20 .30 .36 .61
.08 .12 .09 .23 .27 .22 .58
.11 .10 .07 .21 .25 .27 .39 .62
/END;

The complete EQS command file, using the appropriate abbreviations,
looks now as follows:
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/TIT
CONFIRMATORY FACTOR ANALYSIS MODEL;
/SPE
CAS=250; VAR=8;
/LAB
V1=ABILITY1; V2=ABILITY2; V3=ABILITY3; V4=MOTIVN1;
V5=MOTIVN2; V6=MOTIVN3; V7=ASPIRN1; V8=ASPIRN2;
F1=ABILITY; F2=MOTIVATN; F3=ASPIRATN;
/EQU
V1=*F1+E1;
V2=*F1+E2;
V3=*F1+E3;
V4=*F2+E4;
V5=*F2+E5;
V6=*F2+E6;
V7=*F3+E7;
V8=*F3+E8;
/VAR
F1 TO F3=1; E1 TO E8=*;
/COV
F1 TO F3=*;
/LMTEST;
/MAT
.45
.32 .56
.27 .32 .45
.17 .20 .19 .55
.20 .21 .18 .30 .66
.19 .25 .20 .30 .36 .61
.08 .12 .09 .23 .27 .22 .58
.11 .10 .07 .21 .25 .27 .39 .62
/END;

LISREL Command File

After stating a title and data details, the LISREL input file describes as fol-
lows the CFA model under consideration that is based on 8 observed and 3
latent variables, and with model parameters being appropriate elements of
corresponding matrices.
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CONFIRMATORY FACTOR ANALYSIS MODEL
DA NI=8 NO=250
CM
.45
.32 .56
.27 .32 .45
.17 .20 .19 .55
.20 .21 .18 .30 .66
.19 .25 .20 .30 .36 .61
.08 .12 .09 .23 .27 .22 .58
.11 .10 .07 .21 .25 .27 .39 .62
LA
ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2 MOTIVN3 C
ASPIRN1 ASPIRN2
MO NY=8 NE=3 PS=SY,FR TE=DI,FR LY=FU,FI
LE
ABILITY MOTIVATN ASPIRATN
FR LY(1, 1) LY(2, 1) LY(3, 1)
FR LY(4, 2) LY(5, 2) LY(6, 2)
FR LY(7, 3) LY(8, 3)
FI PS(1, 1) PS(2, 2) PS(3, 3)
VA 1 PS(1, 1) PS(2, 2) PS(3, 3)
OU MI

Specifically, after the same title the data definition line declares that the
model will be fit to data on eight variables collected from 250 subjects. The
sample covariance matrix CM is given next, along with the variable labels
(note the use of C, for Continue, to wrap over to the second label line). The
latent variables are also assigned labels by using the notation LE (for Labels
for Etas, following the notation of the general LISREL model in which the
Greek letter eta represents a latent variable). Next, in the model command
line the three matrices PS, TE, and LY are defined. The latent covariance ma-
trix PS is initially declared to be symmetric and free (i.e., all its elements are
free parameters), which defines all factor variances and covariances as model
parameters. Subsequently, for reasons discussed in the previous section, the
variances in the matrix PS are fixed to a value of 1. The error covariance ma-
trix TE is defined as diagonal (i.e., no error covariances are introduced) and
therefore only has as model parameters the error variances along its main di-
agonal. Defining then the matrix of factor loadings LY as a fixed and full (rect-
angular) matrix relating the eight manifest variables to the three latent
variables, permits those loadings that relate the corresponding indicators to
their factors to be declared freed in the next lines. Last but not least, to illus-
trate use and interpretation of modification indices, which we may wish to
examine if model fit comes out as unsatisfactory, we include on the OUtput
line the request for them with the keyword MI.
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Mplus Command File

Here we override some default options available in Mplus, given our inter-
est in estimating factor correlations as model parameters, as mentioned
earlier in this chapter. This is accomplished by fixing the factor variances at
1, while the default arrangement in this software is to alternatively fix at 1
the loading of the first listed indicator for each latent variable. The following
command file will accomplish our aim.

TITLE: CONFIRMATORY FACTOR ANALYSIS MODEL
DATA: FILE IS EX4.COV;

TYPE=COVARIANCE;
NOBSERVATIONS=250;

VARIABLE:NAMES ARE ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2
MOTIVN3 ASPIRN1 ASPIRN2;

MODEL: F1 BY ABILITY1*1 ABILITY2 ABILITY3;
F2 BY MOTIVN1*1 MOTIVN2 MOTIVN3;
F3 BY ASPIRN1*1 ASPIRN2;
F1-F3@1;

OUTPUT: MODINDICES(5);

After giving a title to this modeling session, the data location is provided.
Since we only have access to the covariance matrix of the eight analyzed
variables, the type of data is declared and the sample size stated. Next we
give names to the variables in the study, and in the model definition part
declare each of the three constructs as being measured by its pertinent indi-
cators. The default options built into Mplus consider the factor covariances
as well as error term variances as model parameters, which is what we need.
To override the other default arrangement regarding fixing a factor loading
instead of latent variance as we would like, we list all latent variable indicat-
ors and after the first of them add an asterisk that signals a start value being
stated next for that factor loading. In this way, we free all factor loadings per
latent variable. With the last line of the MODEL command, we fix the latent
variances at 1, which is not a default arrangement and therefore needs to be
explicitly done. The OUTPUT command requests the printing of modifica-
tion indices in excess of 5, which we may wish to examine if fit of this model
turns out not to be satisfactory.

MODELING RESULTS

EQS Results

The EQS input described in the previous section produces the following re-
sults. In presenting the output sections with this and the other two pro-
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grams, comments are inserted at appropriate places; similarly, the pages
echoing the input and the recurring page titles as well as estimation method
line, after its first occurrence, are omitted in order to save space.

PARAMETER ESTIMATES APPEAR IN ORDER,
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

This message indicates that the program has not encountered problems
stemming from lack of model identification or other numerical difficulties,
and it is reassuring that the model is technically sound.

RESIDUAL COVARIANCE MATRIX (S-SIGMA):

ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2
V1 V2 V3 V4 V5

ABILITY1 V1 .000
ABILITY2 V2 .001 .000
ABILITY3 V3 -.001 -.001 .000
MOTIVN1 V4 .001 .000 .020 .000
MOTIVN2 V5 .004 -.022 -.017 -.004 .000
MOTIVN3 V6 -.007 .017 .002 -.004 .007
ASPIRN1 V7 -.008 .016 .001 .016 .022
ASPIRN2 V8 .019 -.008 -.022 -.011 -.007

MOTIVN3 ASPIRN1 ASPIRN2
V6 V7 V8

MOTIVN3 V6 .000
ASPIRN1 V7 -.029 .000
ASPIRN2 V8 .013 .000 .000

AVERAGE ABSOLUTE COVARIANCE RESIDUALS   =   .0077
AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS   =   .0099

STANDARDIZED RESIDUAL MATRIX:

ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2
V1 V2 V3 V4 V5

ABILITY1 V1 .000
ABILITY2 V2 .002 .000
ABILITY3 V3 -.001 -.001 .000
MOTIVN1  V4 .002 .000 .041 .000
MOTIVN2  V5 .007 -.037 -.031 -.006 .000
MOTIVN3  V6 -.012 .029 .005 -.008 .011
ASPIRN1  V7 -.016 .027 .003 .028 .035
ASPIRN2  V8 .036 -.013 -.041 -.019 -.010

MOTIVN3 ASPIRN1 ASPIRN2
V6 V7 V8

MOTIVN3 V6 .000
ASPIRN1 V7 -.049 .000
ASPIRN2 V8 .021 .000 .000

AVERAGE ABSOLUTE STANDARDIZED RESIDUALS   =   .0137
AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS   =   .0176
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LARGEST STANDARDIZED RESIDUALS:

NO. PARAMETER ESTIMATE NO. PARAMETER ESTIMATE
–-— ———-————— -————-—— ——— ———-————— -————-——
1 V7, V6 -.049 11 V8, V6 .021
2 V8, V3 -.041 12 V8, V4 -.019
3 V4, V3 .041 13 V7, V1 -.016
4 V5, V2 -.037 14 V8, V2 -.013
5 V8, V1 .036 15 V6, V1 -.012
6 V7, V5 .035 16 V6, V5 .011
7 V5, V3 -.031 17 V8, V5 -.010
8 V6, V2 .029 18 V6, V4 -.008
9 V7, V4 .028 19 V5, V1 .007
10 V7, V2 .027 20 V5, V4 -.006

DISTRIBUTION OF STANDARDIZED RESIDUALS

— — — — — — — — — — — — — — — — — — — —
! !

40- -
! !
! !
! !
! ! RANGE FREQ PERCENT

30- -
! ! 1 -0.5 - —0 .00%
! ! 2 -0.4 - -0.5 0 .00%
! ! 3 -0.3 - -0.4 0 .00%
! * ! 4 -0.2 - -0.3 0 .00%

20- * - 5 -0.1 - -0.2 0 .00%
! * ! 6 0.0 - -0.1 22 61.11%
! * ! 7 0.1 - 0.0 14 38.89%
! * * ! 8 0.2 - 0.1 0 .00%
! * * ! 9 0.3 - 0.2 0 .00%

10- * * - A 0.4 - 0.3 0 .00%
! * * ! B 0.5 - 0.4 0 .00%
! * * ! C ++ - 0.5 0 .00%
! * * !———————————————-
! * * ! TOTAL 36 100.00%
— — — — — — — — — — — — — — — — — — —

1 2 3 4 5 6 7 8 9 A B C EACH “*” REPRESENTS 2 RESIDUALS

None of the residuals presented in this section of the output are a cause for
concern; in particular, all standardized residuals are well below 2 in abso-
lute value. This is typically the case for well-fitting models. We note the ef-
fectively symmetric shape of the standardized residual distribution
(observe also the range of variability of their magnitude on the right-hand
side of this output portion).

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

GOODNESS OF FIT SUMMARY FOR METHOD   =   ML

NDEPENDENCE MODEL CHI-SQUARE   =   801.059 ON 28 DEGREES OF FREEDOM
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INDEPENDENCE AIC  =  745.05883    INDEPENDENCE CAIC  =  618.45792
MODEL AIC  =  -13.41865           MODEL CAIC  =  -90.28348

CHI-SQUARE   =   20.581  BASED ON      17 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS     .24558
THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 18.891.

FIT INDICES
— — — — — -
BENTLER-BONETT NORMED FIT INDEX       =   .974
BENTLER-BONETT NON-NORMED FIT INDEX   =   .992
COMPARATIVE FIT INDEX (CFI)           =   .995

RELIABILITY COEFFICIENTS
— — — — — — — — — — — —
CRONBACH’S ALPHA =  .835
COEFFICIENT ALPHA FOR AN OPTIMAL SHORT SCALE =  .835
BASED ON ALL VARIABLES
RELIABILITY COEFFICIENT RHO =  .891
GREATEST LOWER BOUND RELIABILITY =  .913
GLB RELIABILITY FOR AN OPTIMAL SHORT SCALE =  .913
BASED ON ALL VARIABLES
BENTLER’S DIMENSION-FREE LOWER BOUND RELIABILITY =  .913
SHAPIRO’S LOWER BOUND RELIABILITY FOR A WEIGHTED COMPOSITE =  .916
WEIGHTS THAT ACHIEVE SHAPIRO’S LOWER BOUND:
ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2 MOTIVN3
.343 .372 .293 .307 .364 .403

ASPIRN1 ASPIRN2
.365 .368

ITERATIVE SUMMARY
PARAMETER

ITERATION ABS CHANGE ALPHA FUNCTION
1 .308231 1.00000 .54912
2 .141164 1.00000 .24514
3 .061476 1.00000 .10978
4 .013836 1.00000 .08281
5 .001599 1.00000 .08266
6 .000328 1.00000 .08266

The goodness-of-fit indices are satisfactory and indicate a tenable model.
Note in particular that the Bentler-Bonett indices, as well as the compara-
tive fit index, are all in the high .90s range and suggest a fairly good fit. The
ITERATIVE SUMMARY, which provides an account of the numerical routine
performed by EQS to minimize the ML fit function, also indicates a quick
and uneventful convergence to the parameter solution reported next.
Since we are not interested in developing scales but only in testing the
model as presented in Fig. 10, the reliability related output is not of concern
to us here.
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MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

ABILITY1=V1  = .519*F1 + 1.000 E1
.039

13.372@
ABILITY2=V2  = .615*F1 + 1.000 E2

.043
14.465@

ABILITY3=V3  = .521*F1 + 1.000 E3
.039

13.461@
MOTIVN1 =V4  = .511*F2 + 1.000 E4

.045
11.338@

MOTIVN2 =V5  = .594*F2 + 1.000 E5
.049

12.208@
MOTIVN3 =V6  = .595*F2 + 1.000 E6

.046
12.882@

ASPIRN1 =V7  = .614*F3 + 1.000 E7
.049

12.551@
ASPIRN2 =V8  = .635*F3 + 1.000 E8

.051
12.547@

This is the final model solution presented in nearly the same form as the
model equations submitted to EQS with the input file (recall that in EQS as-
terisks denote the estimated parameters rather than significance). Immedi-
ately beneath each parameter estimate its standard error appears, and
below it the pertinent t value is listed. These measurement equations sug-
gest that some of the latent variable indicators load to a very similar degree
on their factors. (This issue is revisited in a later section of the chapter when
some restricted hypotheses are tested.)

VARIANCES OF INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — –

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
V F
-— —-

I F1 -ABILITY 1.000 I
I I
I I
I I
I F2-MOTIVATN 1.000 I
I I
I I
I I
I F3-ASPIRATN 1.000 I
I I
I I
I I
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VARIANCES OF INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — –

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
E D
— —

E1 -ABILITY1 .181*I I
.023 I I
7.936@I I

I I
E2 -ABILITY2 .182*I I

.027 I I
6.673@I I

I I
E3 -ABILITY3 .178*I I

.023 I I
7.846@I I

I I
E4 -MOTIVN1 .288*I I

.032 I I
8.965@I I

I I
E5 -MOTIVN2 .308*I I

.037 I I
8.362@I I

I I
E6 -MOTIVN3 .256*I I

.033 I I
7.760@I I

I I
E7 -ASPIRN1 .203*I I

.040 I I
5.109@I I

I I
E8 -ASPIRN2 .217*I I

.042 I I
5.118@I I

This output section begins with a restatement of the unitary factor vari-
ances, followed by the error term variances that are all significant. This find-
ing indicates that for each of the indicators some nonnegligible portion of
its variance is due to unaccounted by the model sources of variability, in-
cluding measurement error. This type of result is typical in social and be-
havioral research that as widely appreciated is plagued by considerable and
nearly ubiquitous error of measurement. We note in particular that none of
these variances is estimated at a negative value (and similarly none of the
variances that follow below in this model output). As indicated before, a
negative variance estimate would render the entire output not trustworthy
since it would represent a clear sign of an inadmissible solution that cannot
be relied on.
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COVARIANCES AMONG INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — — — -
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

V F
— —

I F2 -MOTIVAT .636*I
I F1 -ABILITY .055 I
I 11.678@I
I I
I F3-ASPIRATN .276*I
I F1 -ABILITY .073 I
I 3.764@I
I I
I F3-ASPIRATN .681*I
I F2-MOTIVATN .054 I
I 12.579@I

These are the latent variable correlations along with their standard errors and
t values. Due to our fixing all latent variances to 1 in the model construction
phase, these reported covariances in fact equal the factor correlations.
Hence, the provided standard errors and t-values actually pertain to the fac-
tor correlations and allow one to readily test hypotheses about these correla-
tions as well as construct confidence intervals for any of them. For example, if
one were interested in interval estimation of the correlation between Aspira-
tion and Motivation, adding and subtracting twice the indicated standard er-
ror to the estimate of this correlation, .681, renders an approximate
(large-sample) 95%-confidence interval for it as (.573, .789). Hence, if one
was concerned with testing a hypothesis of this correlation being equal to any
prespecified number that happens to lie within this interval, that hypothesis
could not be rejected at the significance level of a = .05; if that number was
not covered by the interval, the pertinent hypothesis would be rejected. (We
stress that we are discussing here testing of hypotheses that are formulated
before looking at the data and in particular the SEM analysis output.)

STANDARDIZED SOLUTION: R-SQUARED
ABILITY1 = V1  = .773*F1    + .634 E1 .598
ABILITY2 = V2  = .822*F1    + .570 E2 .675
ABILITY3 = V3  = .777*F1    + .629 E3 .604
MOTIVN1  = V4  = .690*F2    + .724 E4 .476
MOTIVN2  = V5  = .731*F2    + .683 E5 .534
MOTIVN3  = V6  = .762*F2    + .648 E6 .581
ASPIRN1  = V7  = .807*F3    + .591 E7 .651
ASPIRN2  = V8  = .806*F3    + .592 E8 .650

As discussed in Chap. 3, this STANDARDIZED SOLUTION results from stan-
dardizing all variables in the model. Since the standardized solution uses a
metric that is uniform across all measures, it is possible to address the issue
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of relative importance of manifest variables in assessing the underlying con-
structs by comparing their loadings.

CORRELATIONS AMONG INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — — — – –

V F
— —

I F2-MOTIVATN .636*I
I F1 -ABILITY I
I I
I F3-ASPIRATN .276*I
I F1 -ABILITY I
I I
I F3-ASPIRATN .681*I
I F2-MOTIVATN I

These are the same latent correlations that we discussed earlier in this sec-
tion. There are medium-sized relationships between Ability and Motivation
(estimated at .64), as well as between Motivation and Aspiration (estimated
at .68). In contrast, the correlation between Ability and Aspiration appears
to be much weaker (estimated at .28).

LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS)

ORDERED UNIVARIATE TEST STATISTICS:

HANCOCK STAND-
CHI- 17 DF PARAMETER ARDIZED

NO CODE PARAMETER SQUARE PROB. PROB. CHANGE CHANGE
–— ———— ——-—————- —————— ——-—— ———– —————— ——————
1 2 12 V5, F1 .958 .328 1.000 -.069 -.085
2 2 12 V6, F3 .515 .473 1.000 -.055 -.071
3 2 12 V5, F3 .387 .534 1.000 .049 .061
4 2 12 V3, F3 .324 .569 1.000 -.022 -.033
5 2 12 V6, F1 .246 .620 1.000 .034 .044
6 2 12 V4, F1 .244 .621 1.000 .032 .043
7 2 12 V8, F2 .110 .740 1.000 -.057 -.072
8 2 12 V7, F2 .110 .740 1.000 .055 .072
9 2 12 V8, F1 .110 .740 1.000 -.018 -.022
10 2 12 V7, F1 .110 .740 1.000 .017 .022
11 2 12 V1, F3 .088 .767 1.000 .011 .017
12 2 12 V2, F3 .067 .796 1.000 .011 .015
13 2 12 V4, F3 .016 .900 1.000 .009 .012
14 2 12 V3, F2 .011 .916 1.000 -.006 -.008
15 2 12 V2, F2 .003 .955 1.00 .003 .005
16 2 12 V1, F2 .002 .962 1.000 .003 .004
17 2  0 F2, F2 .000 1.000 1.000 .000 .000
18 2  0 F3, F3 .000 1.000 1.000 .000 .000
19 2  0 F1, F1 .000 1.000 1.000 .000 .000

***** NONE OF THE UNIVARIATE LAGRANGE MULTIPLIERS IS SIGNIFICANT,
***** THE MULTIVARIATE TEST PROCEDURE WILL NOT BE EXECUTED.
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As discussed previously in Chapter 1, modification indices (in this case so-called
Lagrange Multipliers) found to be larger than 5 could merit closer inspection. The
above results indicate no large modification indices among those presented indi-
cating thatnochangesshouldbemadetotheproposedmodel (seenextsection).

LISREL Results

As before, for brevity we dispense with the echoed input file, analyzed
covariance matrix, and the recurring first title line.

Parameter Specifications

LAMBDA-Y

ABILITY MOTIVATN ASPIRATN
———–——— ––—————— ––——————

ABILITY1 1 0 0
ABILITY2 2 0 0
ABILITY3 3 0 0
MOTIVN1 0 4 0
MOTIVN2 0 5 0
MOTIVN3 0 6 0
ASPIRN1 0 0 7
ASPIRN2 0 0 8

PSI

ABILITY MOTIVATN ASPIRATN
— — — – — — — – – – — — — —

ABILITY 0
MOTIVATN 9 0
ASPIRATN 10 11 0

THETA-EPS

ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2 MOTIVN3
— — — — — — — — — — — — — — — — — — — — — — — — —

12 13 14 15 16 17

THETA-EPS

ASPIRN1 ASPIRN2
— — — — — — — —

18 19

We observe from this section that the command file we submitted has cor-
rectly communicated to the software the number and exact location of the
19 model parameters—the eight factor loadings, three factor covariances,
and eight error variances.
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LISREL Estimates (Maximum Likelihood)

LAMBDA-Y
ABILITY MOTIVATN ASPIRATN
— — — – — — — – – – — — — —

ABILITY1 0.52 - - - -
(0.04)
13.37

ABILITY2 0.61 - - - -
(0.04)
14.46

ABILITY3 0.52 - - - -
(0.04)
13.46

MOTIVN1 - - 0.51 - -
(0.05)
11.34

MOTIVN2 - - 0.59 - -
(0.05)
12.21

MOTIVN3 - - 0.60 - -
(0.05)
12.89

ASPIRN1 - - - - 0.61
(0.05)
12.55

ASPIRN2 - - - - 0.63
(0.05)
12.55

This part of the output presents the factor loading estimates in the LY matrix
along with their standard errors and t values, in a column format. The esti-
mates of the loadings for each indicator appear quite similar within a factor.
This will have a bearing on the ensuing formal tests of the tau-equivalence
hypotheses, i.e., the assumption that the indicators measure the same la-
tent variable in the same units of measurement, with regard to the indica-
tors of Ability, Motivation, and Aspiration.

Covariance Matrix of ETA

ABILITY MOTIVATN ASPIRATN
— — — – — — — – – – — — — —

ABILITY 1.00
MOTIVATN 0.64 1.00
ASPIRATN 0.28 0.68 1.00
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PSI

ABILITY MOTIVATN ASPIRATN
— — — – — — — – – – — — — —

ABILITY 1.00

MOTIVATN 0.64 1.00
(0.05)
11.68

ASPIRATN 0.28 0.68 1.00
(0.07) (0.05)
3.76 12.58

From here one can infer that there are significant and medium-size relation-
ships between Ability and Motivation (estimated at .64), as well as between
Motivation and Aspiration (estimated at .68). Since the variances of the la-
tent variables are fixed to 1, the COVARIANCE MATRIX OF ETA is identical
to the PSI matrix in this example. Differences between these two matrices
will emerge in the next chapter, where there will be explanatory relation-
ships postulated between some of the constructs. Using the approximate
confidence interval of the correlation between Ability and Aspiration,
which at the 95% confidence level is (.28 - 2 x .07; .28 + 2 x .07) = (.14; .42),
we conclude that there is evidence suggesting that this correlation is non-
zero in the studied population. As mentioned in earlier chapters, a signifi-
cance test is also readily carried out by looking at the t-value associated with
a given parameter in a structural equation model; for the presently consid-
ered correlation, since its t-value being 3.76 is outside the interval (-2, +2),
it is concluded that the correlation is significant (at the .05 level). We stress,
however, that examining the earlier confidence interval provides to the re-
searcher a whole range of plausible values for this unknown population
correlation rather than only a test of its significance (i.e., a p-value associ-
ated with the pertinent null hypothesis).

THETA-EPS

ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2 MOTIVN3
— — — — — — — — — — — — — — — — — — — — — — — — — —

0.18 0.18 0.18 0.29 0.31 0.26
(0.02) (0.03) (0.02) (0.03) (0.04) (0.03)
7.94 6.67 7.85 8.97 8.36 7.76

THETA-EPS

ASPIRN1 ASPIRN2
— — — — — — — —
0.20 0.22
(0.04) (0.04)
5.11 5.12
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Squared Multiple Correlations for Y - Variables

ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2 MOTIVN3
— — — — — — — — — — — — — — — — — — — — — — — — — —

0.60 0.67 0.60 0.48 0.53 0.58

Squared Multiple Correlations for Y - Variables

ASPIRN1 ASPIRN2
— — — — — — — —

0.65 0.65

Based on this output portion, apart from the first indicator of Motivation
(MOTIVTN1), more than half of the variance in any of the remaining seven
measures is explained in terms of latent individual differences on the corre-
sponding factor.

Goodness of Fit Statistics

Degrees of Freedom   =   17
Minimum Fit Function Chi-Square   =   20.58 (P = 0.25)

Normal Theory Weighted Least Squares Chi-Square   =   18.89 (P = 0.33)
Estimated Non-centrality Parameter (NCP)   =   1.89

90 Percent Confidence Interval for NCP    =   (0.0 ; 16.78)

Minimum Fit Function Value   =   0.083
Population Discrepancy Function Value (F0)   =   0.0076
90 Percent Confidence Interval for F0   =   (0.0 ; 0.067)
Root Mean Square Error of Approximation (RMSEA)   =   0.021
90 Percent Confidence Interval for RMSEA   =   (0.0 ; 0.063)

P-Value for Test of Close Fit (RMSEA < 0.05)   =   0.84

Expected Cross-Validation Index (ECVI)   =   0.23
90 Percent Confidence Interval for ECVI   =   (0.22 ; 0.29)

ECVI for Saturated Model   =   0.29
ECVI for Independence Model   =   4.87

Chi-Square for Independence Model with 28 Degrees of Freedom   =   1196.96
Independence AIC   =   1212.96

Model AIC   =   56.89
Saturated AIC   =   72.00

Independence CAIC   =   1249.13
Model CAIC   =   142.80

Saturated CAIC   =   234.77

Normed Fit Index (NFI)   =   0.98
Non-Normed Fit Index (NNFI)   =   0.99

Parsimony Normed Fit Index (PNFI)   =   0.60
Comparative Fit Index (CFI)   =   1.00
Incremental Fit Index (IFI)   =   1.00
Relative Fit Index (RFI)   =   0.97

Critical N (CN)   =   405.22
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Root Mean Square Residual (RMR)   =   0.011
Standardized RMR   =   0.020

Goodness of Fit Index (GFI)   =   0.98
Adjusted Goodness of Fit Index (AGFI)   =   0.96
Parsimony Goodness of Fit Index (PGFI)   =   0.46

All of the goodness-of-fit indices indicate an acceptable model (cf. Jöreskog
& Sörbom, 1993c). In particular, given normality of the data, the pertinent
chi-square value denoted “minimum fit function chi-square” is of approxi-
mately the same magnitude as the model degrees of freedom, which is typi-
cal for well-fitting models (see also its p-value that is nonsignificant). The
root mean square error of approximation (RMSEA), a highly popular fit
measure in contemporary structural equation modeling literature, simi-
larly indicates a well-fitting model. Its value is .021 that is lower than the
suggested threshold of .05, and the left endpoint of its 90%-confidence in-
terval is 0 and much smaller than that same threshold (e.g., Browne &
Cudeck, 1993).

Modification Indices and Expected Change

Modification Indices for LAMBDA-Y
ABILITY MOTIVATN ASPIRATN
— — — – — — — – – – — — — —

ABILITY1 - - 0.00 0.09
ABILITY2 - - 0.00 0.07
ABILITY3 - - 0.01 0.32
MOTIVN1 0.24 - - 0.02
MOTIVN2 0.96 - - 0.39
MOTIVN3 0.25 - - 0.52
ASPIRN1 0.11 0.11 - -
ASPIRN2 0.11 0.11 - -

Expected Change for LAMBDA-Y

ABILITY MOTIVATN ASPIRATN
— — — – — — — – – – — — — —

ABILITY1 - - 0.00 0.01
ABILITY2 - - 0.00 0.01
ABILITY3 - - -0.01 -0.02
MOTIVN1 0.03 - - 0.01
MOTIVN2 -0.07 - - 0.05
MOTIVN3 0.03 - - -0.06
ASPIRN1 0.02 0.05 - -
ASPIRN2 -0.02 -0.06 - -
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No Non-Zero Modification Indices for PSI

Modification Indices for THETA-EPS

ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2 MOTIVN3
— — — — — — — — — — — — — — — — — — — — — — — — — —

ABILITY1 - -
ABILITY2 0.07 - -
ABILITY3 0.01 0.02 - -
MOTIVN1 0.11 0.30 2.09 - -
MOTIVN2 1.19 1.28 0.40 0.08 - -
MOTIVN3 1.13 1.66 0.00 0.18 0.49 - -
ASPIRN1 2.81 1.47 0.39 1.80 2.09 7.48
ASPIRN2 4.30 0.79 1.88 1.13 1.23 4.67

Modification Indices for THETA-EPS
ASPIRN1 ASPIRN2
— — — — — — — —

ASPIRN1 - -
ASPIRN2 - - - -

Expected Change for THETA-EPS
ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2 MOTIVN3
— — — — — — — — — — — — — — — — — — — — — — — — — —
ABILITY1 - -
ABILITY20.01 - -
ABILITY30.00 0.00 - -
MOTIVN1-0.01 -0.01 0.03 - -
MOTIVN20.02 -0.02 -0.01 -0.01 - -
MOTIVN3-0.02 0.03 0.00 -0.01 0.02 - -
ASPIRN1-0.03 0.02 0.01 0.03 0.04 -0.06
ASPIRN20.04 -0.02 -0.02 -0.02 -0.03 0.05

Expected Change for THETA-EPS
ASPIRN1 ASPIRN2
— — — — — — — —

ASPIRN1 - -
ASPIRN2 - - - -

Maximum Modification Index is 7.48 for Element ( 7, 6) of THETA-EPS

In Chap. 1, the topic of modification indices was discussed and it was sug-
gested that all indices found to be larger than 5 could merit closer inspec-
tion. It was also indicated that any model changes based on modification
indices should be justified on theoretical grounds and be consistent with
available theory. Although there is a modification index larger than 5 in this
output—the element (7,6) of the TE matrix—adding it to the proposed
model cannot be theoretically justified since there does not appear to be a
substantive reason for the error terms of ASPIRTN1 and MOTIVTN3, an As-
piration and a Motivation indicator, to correlate. In addition, since fit is al-
ready tenable no change really needs to be made to the model that is
considered to be an acceptable means of data description.
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Mplus Results

After echoing back the input file and providing the location of analyzed data
and numerical details regarding method of estimation, the software pres-
ents information about model fit.

THE MODEL ESTIMATION TERMINATED NORMALLY

TESTS OF MODEL FIT

Chi-Square Test of Model Fit
Value 20.664
Degrees of Freedom 17
P-Value 0.2417

Chi-Square Test of Model Fit for the Baseline Model

Value 804.276
Degrees of Freedom 28
P-Value 0.0000
CFI/TLI
CFI 0.995
TLI 0.992

Loglikelihood

H0 Value -1853.657
H1 Value -1843.325

Information Criteria

Number of Free Parameters 19
Akaike (AIC) 3745.315

Bayesian (BIC) 3812.223
Sample-Size Adjusted BIC 3751.991
(n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.029
90 Percent C.I. 0.000 0.067
Probability RMSEA <= .05 0.778

SRMR (Standardized Root Mean Square Residual)

Value 0.020

We note that the fit indices that are essentially the same (within numerical
procedure accuracy) as those provided by the preceding two programs for
the current model and data, as are the following parameter estimates.
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MODEL RESULTS
Estimates S.E. Est./S.E.

F1     BY
ABILITY1 0.518 0.039 13.399
ABILITY2 0.614 0.042 14.494
ABILITY3 0.520 0.039 13.488

F2     BY
MOTIVN1 0.510 0.045 11.360
MOTIVN2 0.592 0.048 12.230
MOTIVN3 0.594 0.046 12.911

F3     BY
ASPIRN1 0.613 0.049 12.578
ASPIRN2 0.634 0.050 12.571

F2     WITH
F1 0.636 0.054 11.700

F3     WITH
F1 0.276 0.073 3.770
F2 0.681 0.054 12.604

We stress that all factor loadings are model parameters and that the latent
covariances output are in fact the factor correlations that are therefore di-
rectly estimated and presented with a standard error and t-value.

Variances
F1 1.000 0.000 0.000
F2 1.000 0.000 0.000
F3 1.000 0.000 0.000

Residual Variances
ABILITY1 0.180 0.023 7.952
ABILITY2 0.181 0.027 6.687
ABILITY3 0.177 0.023 7.861
MOTIVN1 0.287 0.032 8.983
MOTIVN2 0.307 0.037 8.380
MOTIVN3 0.255 0.033 7.773
ASPIRN1 0.202 0.039 5.118
ASPIRN2 0.216 0.042 5.130

MODEL MODIFICATION INDICES
Minimum M.I. value for printing the modification index 5.000

Std StdYX
M.I. E.P.C. E.P.C. E.P.C.

WITH Statements
ASPIRN1 WITH MOTIVN3 7.511 -0.064 -0.064 -0.108

As seen from this section, the maximum modification index (and the only
one higher than 5) is that associated with the covariance of the error terms
pertaining to the first Aspiration and last Motivation indicators. As men-
tioned earlier in this section, when discussing the corresponding LISREL
output part, adding this error covariance to the model cannot be theoreti-
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cally justified since there does not appear to be a substantive reason for
these error terms to correlate; further, and no less importantly, fit is tenable
so no change really needs to be made to the model.

TESTING MODEL RESTRICTIONS: TRUE SCORE EQUIVALENCE

The model examined in the previous section focused on estimating the
degree of interrelationship among Ability, Motivation, and Aspiration. In
examining the results, however, it appeared that the loadings on each fac-
tor were quite similar within factor. Suppose a researcher hypothesized
that the factor loadings of the Ability construct associated with the mea-
sures ABILITY1, ABILITY2, and ABILITY3 were indeed equal. In the
psychometric literature, such a model is referred to as a model with true
score equivalent, or alternatively tau-equivalent, measures. A tau-equiva-
lent indicator model embodies the assumption that a latent variable’s in-
dicators assess the same construct in the same units of measurement.
Specifically, this assumption is equivalent to a statement that the indica-
tors in question evaluate the same true score (e.g., Lord & Novick, 1968;
McDonald, 1999).

For each of the three latent variables included in the empirical study under
consideration in this chapter—Ability, Motivation, and Aspiration—the as-
sumption of true score equivalence can be tested by imposing appropriate
restrictions on their indicators. To this end, the equality of loading constraint
is introduced for the pertinent measures, and the resulting difference in chi-
square values is evaluated (for a more detailed discussion of the chi-square
difference test, see Chap. 3). This procedure is carried out in the present sec-
tion using the three SEM software of concern in this text.

We begin by imposing equality constraints on the factor loadings of the
Ability construct. This restriction is included in the EQS input file by simply
adding a /CONSTRAINT section:

/CONSTRAINT
(V1,F1)=(V2,F1)=(V3,F1);

In LISREL, this constraint is accomplished by introducing the following
equality line

EQ LY(1, 1) LY(2, 1) LY(3, 1)

In Mplus, one needs to indicate that the factor loadings are to be kept the
same, which is achieved with the following extension of the corresponding
model command line:

F1 BY ABILITY1*1 ABILITY2 ABILITY3 (1)
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Note the added number within parentheses at the end of the line, whose ef-
fect is the restriction to identity of all preceding factor loadings (referred to
in that line).

The result of introducing this restriction in the initial model is a nested
model and an increase in the chi-square value up to T = 25.74 with df = 19.
(Recall that the model without the true score equivalence assumption
yielded a chi-square value of T = 20.58 with df = 17.) The difference in the
chi-square values between this model and the original one (displayed in Fig.
10) is therefore DT = 5.16 for Ddf = 2, and is thus nonsignificant. (The critical
value of the chi-square distribution with 2 degrees of freedom is 5.99 at the
.05 significance level, and higher for any lower level.) One can therefore con-
clude that the imposed factor loading identity is plausible, and hence that the
Ability measures are tau-equivalent. Because the restriction is found to be ac-
ceptable, it is retained in the model for the following analyses.

Next, we test whether the Motivation indicators are also true score equiv-
alent by imposing the identity restriction on their factor loadings. This is
achieved by including the line

(V4,F2)=(V5,F2)=(V6,F2);

as a second line of the /CONSTRAINTS section in the EQS input; by adding
the line

EQ LY(4, 2) LY(5, 2) LY(6, 2)

as a second EQuality line in the LISREL input; and by modifying the second
MODEL command line in the Mplus input to

F2 BY MOTIVN1*1 MOTIVN2 MOTIVN3 (2);

Note that in this Mplus line we use a different number placed within brack-
ets at its end, since we are not willing to constrain to identity all six indica-
tors of the Ability and Motivation constructs, but only the three loadings of
Motivation. (That is, the equal Motivation loadings need not be the same as
the loadings of the Ability latent variable.)

The newly-restricted model is nested in the preceding one and associ-
ated with a chi-square value of T = 28.56 with df = 21. The difference in
chi-square values, compared to the preceding model is DT = 2.82, with the
difference in degrees of freedom being Ddf = 2, and is thus nonsignificant
as well. These results lead to the conclusion that there is not enough evi-
dence in the data to warrant rejection of the restriction of identical factor
loadings for the Motivation construct. Therefore one can consider these to
be tau-equivalent measures of Motivation. Due to this nonsignificant find-
ing, this loading equality is also retained in the model.
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Finally, imposing the restriction of tau-equivalence on the Aspiration in-
dicators is accomplished by adding in the /CONSTRAINTS section of the
EQS input file the line

(V7,F3)=(V8,F3);

in the LISREL input file the line:

EQ LY(7, 3) LY(8, 3)

and by modifying the last line in the MODEL command in the Mplus input to

F3 BY ASPIRN1*1 ASPIRN2 (3);

The result of the last imposed restriction that leads to another nested model
brings about only a slight increase in the chi-square value to T = 28.71 with
df = 22. Hence, the change in chi-square is only DT = 0.15, for a difference
in degrees of freedom of Ddf = 1, and is thus nonsignificant. (Recall that the
critical value of the chi-square distribution with 1 degree of freedom is 3.84
at the .05 significance level, and higher for any lower level.) Based on these
results, one can conclude that there is not enough evidence in the data to
warrant rejection of the restriction of identical factor loadings for the Aspi-
ration construct, and hence one can consider these indicators to be tau-
equivalent measures of Aspiration.

To summarize, the above results indicate that there is not enough evi-
dence in the data to disconfirm the true score (tau-) equivalence hypothesis
for any of the three sets of measures respectively assessing Ability, Motiva-
tion, and Aspiration. One can suggest therefore that the indicators of Abil-
ity, Motivation, and Aspiration assess their underlying latent variables each
in the same units of measurement.

By way of concluding this chapter, only the Mplus output file for the last,
most restricted model is presented next, with comments inserted at appro-
priate places and repetitive material omitted (interested readers can easily
verify that the results of the EQS and LISREL runs are essentially identical by
submitting the appropriate input files).

TESTS OF MODEL FIT

Chi-Square Test of Model Fit
Value 28.713
Degrees of Freedom 22
P-Value 0.1532

Chi-Square Test of Model Fit for the Baseline Model
Value 804.276
Degrees of Freedom 28
P-Value 0.0000
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CFI/TLI
CFI 0.991
TLI 0.989

Loglikelihood
H0 Value -1857.682
H1 Value -1843.325

Information Criteria
Number of Free Parameters        14
Akaike (AIC) 3743.364
Bayesian (BIC) 3792.664
Sample-Size Adjusted BIC 3748.283

(n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.035
90 Percent C.I. 0.000 0.067
Probability RMSEA <=       .05 0.747

SRMR (Standardized Root Mean Square Residual)
Value 0.042

We note that the fit indices clearly indicate a plausible model. Relative to
the three models fitted in this section, this one has the smallest informa-
tion criteria values. This corroborates further our preference for the pres-
ent model.

MODEL RESULTS
Estimates S.E. Est./S.E.

F1     BY
ABILITY1 0.546 0.030 18.455
ABILITY2 0.546 0.030 18.455
ABILITY3 0.546 0.030 18.455

F2     BY
MOTIVN1 0.563 0.033 16.992
MOTIVN2 0.563 0.033 16.992
MOTIVN3 0.563 0.033 16.992

F3     BY
ASPIRN1 0.623 0.036 17.243
ASPIRN2 0.623 0.036 17.243

F2     WITH
F1 0.640 0.055 11.712

F3     WITH
F1 0.275 0.074 3.743
F2 0.683 0.054 12.613

Variances
F1 1.000 0.000 0.000
F2 1.000 0.000 0.000
F3 1.000 0.000 0.000
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Residual Variances
ABILITY1 0.172 0.021 7.992
ABILITY2 0.210 0.024 8.595
ABILITY3 0.168 0.021 7.928
MOTIVN1 0.273 0.031 8.752
MOTIVN2 0.316 0.035 9.107
MOTIVN3 0.269 0.031 8.714
ASPIRN1 0.192 0.030 6.470
ASPIRN2 0.226 0.032 7.161

The true relationship (latent correlation) between Ability and Aspiration
is not impressive—being estimated at .28 means that just above 8% of indi-
vidual true differences on Ability are explained in the present model in
terms of these differences on Aspiration. On the contrary, the relation-
ships between Ability and Motivation as well as that between Motivation
and Aspiration are considerably stronger, being estimated in the mid to
high .60s. Hence, more than 40% of true individual differences in motiva-
tion are explained in terms of such differences in Ability and alternatively
in Aspiration.
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APPENDIX TO CHAPTER 4

The general confirmatory factor analysis (CFA) model is a special case of the
general LISREL model (see Appendix to Chap. 1). This special case is ob-
tained when B = 0 is set in the second defining equation, (A1.2), of the gen-
eral LISREL model (the structural part equation). That is, any CFA model is a
LISREL model with vanishing explanatory relationship coefficients for its la-
tent variables.

The particular generic model used for illustration purposes in this chap-
ter, is a special case of the general CFA model and thus also a special case of
the general LISREL model. Denoting by Y1 through Y8 the observed vari-
ables (three Ability, three Motivation, and two Aspiration measures), by e1

through e8 their pertinent error terms, and by l’s factor loadings, the initial
empirical model we were concerned with in this chapter was
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, (A4.1)

with the additional assumption of normality for all latent variables and re-
sidual terms, zero mean residuals, and uncorrelated residuals with factors
in pertinent equations; in that model, we also assumed that the covariance
matrix of the eight error terms, e1 through e8, was diagonal, and that the di-
agonal of the latent variable covariance matrix was fixed at 1.

The true score equivalence versions of this model added consecutively the
assumptions

l11 = l21 = l31 (A4.2)

for the Ability indicators, then

l42 = l52 = l62 (A4.3)
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l11 0 0

l21 0 0

l31 0 0

0 l42 0

0 l52 0

0 l62 0

0 0 l73

0 0 l83



for the Motivation measures, and finally

l73 = l83 (A4.4)

for the Aspiration measures.
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C H A P T E R F I V E

Structural Regression Models

WHAT IS A STRUCTURAL REGRESSION MODEL?

In chapter 4, confirmatory factor analysis was presented as a method for ex-
amining interrelationships among latent constructs. No specific directional
relationships were assumed among the constructs, only that they were cor-
related with one another. In many scientific fields, however, models that
postulate specific explanatory relationships among constructs are often
proposed and of interest to examine. To set these models apart from others
discussed in this book, we will refer to them in the remainder as structural
regression models.

Although structural regression models resemble confirmatory factor
analysis models, they possess the noteworthy characteristic that some of
their latent variables—that is, elements of the structure of the phenomenon
under investigation—are regressed on other constructs. Hence, once the
constructs have been assessed, structural regression models can be used to
test the plausibility of hypothetical assertions about explanatory relation-
ships among these latent dimensions. In terms of their path diagrams, struc-
tural regression models have at least one path (one-way arrow) leaving a
putative explanatory latent variable and ending at another construct.
Hence, structural regression models can also be viewed as extensions of
path analysis models discussed in Chap. 3, with the qualification that in-
stead of being conceived only in terms of observed variables they also in-
clude latent variables.



AN EXAMPLE STRUCTURAL REGRESSION MODEL

To demonstrate a structural regression model, consider the following ex-
ample concerning mental ability. General mental ability is one of the most
extensively studied constructs in the behavioral sciences. According to a
popular theory (e.g., Horn, 1982), human intellectual capabilities can be
roughly classified into two main clusters, fluid and crystallized intelli-
gence. Fluid intelligence is the component of general intelligence that re-
flects an individual’s ability to quickly process a potentially large amount
of information in order to solve content-free tasks based on contexts that
they are not familiar with from their education or prior socialization pro-
cess. Metaphorically, fluid intelligence can be thought of as resembling a
human brain’s hardware, or the mechanics of our brain. Fluid intelligence
does not include our abilities to retrieve knowledge obtained earlier in
life through systems of acculturation or education, but instead refers to
our ability to solve unfamiliar problems. Crystallized intelligence, on the
other hand, is one’s ability to retrieve knowledge likely obtained earlier in
life through culture and education, and in this sense can be considered
the software of our brains. In pragmatic terms, tests of fluid intelligence
frequently contain series of context-free symbols arranged following a
special rule that must be discovered and subsequently used in order to ar-
rive at a correct solution. Alternatively, measures of crystallized intelli-
gence typically contain items that assess subjects’ levels of knowledge in
certain areas.

The example structural regression model considered here focuses on
two fluid intelligence subabilities, Induction and Figural relations (in a con-
trived empirical setting). Induction relates to one’s capability to reason us-
ing analogies and rules of generalization to more comprehensive contexts.
Figural relations pertains to our ability to see patterns of relationships be-
tween parts of figures, mentally rotate them, and also use forms of inductive
reasoning with figural elements. A total of nine measures were collected
from a sample of N = 220 high school students, with normality being plau-
sible for the data. The following observed variables were used in the study:

1. Induction score 1 obtained in junior year (IND1).
2. Induction score 2 obtained in junior year (IND2).
3. Induction score 3 obtained in junior year (IND3).
4. Figural relations score 1 obtained in junior year (FR11).
5. Figural relations score 2 obtained in junior year (FR12).
6. Figural relations score 3 obtained in junior year (FR13).
7. Figural relations score 1 obtained in senior year (FR21).
8. Figural relations score 2 obtained in senior year (FR22).
9. Figural relations score 3 obtained in senior year (FR23).
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The example structural regression model is presented in Fig. 11 and
the observed covariance matrix is displayed in Table 2. The model is ini-
tially formulated in LISREL notation using Y1 to Y9 for the observed vari-
ables, e1 to e9 for the error terms associated with the observed variables,
and h1 to h3 for the latent variables. The model assumes that Induction in
junior year of high school (h1) plays an explanatory role for Figural rela-
tions during both junior (h2) and senior (h3) years. In addition, the model
posits that a student’s junior-year Figural relations affects his or her
senior-year Figural relations.

To determine the parameters of the model in Fig. 11, we can follow the
six rules outlined in Chap. 1. According to Rule 1, all nine error term vari-
ances are model parameters and, according to Rule 3, the nine factor load-
ings are also model parameters. In addition, the variances of the structural
regression disturbance terms z2 and z3 are also model parameters. These
disturbances pertain to the latent variables h2 to h3, respectively (i.e., ju-
nior- and senior-year Figural relations). Thereby, z2 represents the part of
junior-year Figural relations that is not accounted for in terms of its postu-
lated (linear) explanatory relationship to Induction. Similarly, z3 stands for
the part of senior-year Figural relations that is not explained in terms of its
assumed (linear) relationships to Induction and junior-year Figural rela-
tions. Note that Rule 2 is not applicable in this model because it does not

FIG. 11. Example structural regression model using LISREL notation.
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have any latent covariances. Indeed, the relationship between Induction
and both Figural relation constructs are explained in terms of their struc-
tural regression coefficients, which, following Rule 4, are model parame-
ters. Utilizing the LISREL notation discussed in Chap. 2, these coefficients
can be denoted as b21, b31, and b32. These parameters correspondingly relate
Induction (h1 ) to junior-year Figural relations (h2 ) and senior-year Figural
relations (h3 ), and junior-year Figural relations (h2 ) to senior-year Figural
relations (h3 ). Finally, Rule 6 requires that the scale of each latent variable
be fixed. Since this study is focused on determining the explanatory role of
the Induction and junior-year Figural relations latent dimensions, it is eas-
ier to achieve latent scale fixing by simply setting the loading of the first indi-
cator on each latent variable to 1. Using this approach ensures that the
Figural relations construct is assessed in the same metric on both occasions.
Hence, as can be directly counted, the structural regression model in Fig.
11 has altogether 21 parameters that are symbolized by asterisks.

EQS, LISREL, AND Mplus COMMAND FILES

EQS Command File

The EQS input file includes two new definitions. The first deals with the
specification of the equations that relate the latent variables to one another.

TABLE 2

Covariance matrix for the structural regression model example

Variable IND1 IND2 IND3 FR11 FR12 FR13 FR21 FR22 FR23

IND1 56.21

IND2 31.55 75.55

IND3 23.27 28.30 44.45

FR11 24.48 32.24 22.56 84.64

FR12 22.51 29.54 20.61 57.61 78.93

FR13 22.65 27.56 15.33 53.57 49.27 73.76

FR21 33.24 46.49 31.44 67.81 54.76 54.58 141.77

FR22 32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33

FR23 30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35

Notes. INDi = ith INDuction indicator at first assessment; FR1i = ith Figural Relations indi-
cator at first assessment, and FR2i = ith Figural Relations indicator at second assessment (i
= 1, 2, 3).
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Since the model in Fig. 11 includes structural regression relationships, the
following two equations must be introduced in the input file: (a) F2 = *F1
+ D2, and (b) F3 = *F1 + *F2 + D3. The second definition concerns the
two structural-disturbance terms in the model, i.e., D2 and D3 in these
equations. (These terms denote the latent residuals z2 and z3.) Given that
D2 and D3 are independent variables, their variances are model parameters
as indicated in the /VARIANCE section next. Thus, the following EQS com-
mand file results:

/TITLE
STRUCTURAL REGRESSION MODEL;
/SPECIFICATIONS
CASES=220; VARIABLES=9;
/LABELS
V1=IND1; V2=IND2; V3=IND3; V4=FR11; V5=FR12; V6=FR13;
V7=FR21; V8= FR22; V9=FR23; F1=INDUCTN; F2=FIGREL1;
F3=FIGREL2;
/EQUATIONS
V1= F1+E1;
V2=*F1+E2;
V3=*F1+E3;
V4= F2+E4;
V5=*F2+E5;
V6=*F2+E6;
V7= F3+E7;
V8=*F3+E8;
V9=*F3+E9;
F2=*F1+D2;
F3=*F1+*F2+D3;
/VARIANCES
F1=*; D2 TO D3=*; E1 TO E9=*;
/MATRIX
56.21
31.55 75.55
23.27 28.30 44.45
24.48 32.24 22.56 84.64
22.51 29.54 20.61 57.61 78.93
22.65 27.56 15.33 53.57 49.27 73.76
33.24 46.49 31.44 67.81 54.76 54.58 141.77
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35
/END;
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LISREL Input File

The LISREL input file is constructed similarly following the guidelines out-
lined in Chap. 2. The file begins with a title command line succeeded by in-
formation about the number of analyzed variables, sample size and
covariance matrix, and observed variable labels. Then, in the model com-
mand line, the matrices PS, TE, LY, and BE are defined, and subsequently
specific elements of them appropriately declared. Hence, the following
LISREL input file results:

STRUCTURAL REGRESSION MODEL
DA NI=9 NO=220
CM
56.21
31.55 75.55
23.27 28.30 44.45
24.48 32.24 22.56 84.64
22.51 29.54 20.61 57.61 78.93
22.65 27.56 15.33 53.57 49.27 73.76
33.24 46.49 31.44 67.81 54.76 54.58 141.77
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35
LA
IND1 IND2 IND3 FR11 FR12 FR13 FR21 FR22 FR23
MO NY=9 NE=3 PS=SY,FI TE=DI,FR LY=FU,FI BE=FU,FI
LE
INDUCTN FIGREL1 FIGREL2
FR LY(2, 1) LY(3, 1)
FR LY(5, 2) LY(6, 2)
FR LY(8, 3) LY(9, 3)
VA 1 LY(1, 1) LY(4, 2) LY(7, 3)
FR BE(2, 1) BE(3, 1) BE(3, 2)
FR PS(1, 1) PS(2, 2) PS(3, 3)
OU

As can be seen, the covariance matrix of the Induction construct and the
two structural disturbances associated with Figural relations are initially de-
clared to be fixed (in order to fix their covariances), but that construct’s
variance and disturbance variances are freed in the last line before the OUt-
put command. The structural regression matrix is also declared to be fixed
and only those elements of interest according to the model, that is b21, b31,
and b32, are defined as free two lines before the output command. This strat-
egy of fixing model matrices first and then freeing only their elements of in-
terest, is oftentimes a more economical way of setting up LISREL command
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files. Similarly, the factor loading matrix LY is first declared to be fixed and
in the next three lines only those of its elements are defined as free, which
pertain to the six factor loadings that are model parameters. Subsequently,
the latent variable scales are fixed by setting the pertinent first indicator
loading to a value of 1. Finally, by declaring the error covariance matrix TE
to be diagonal and free already in the model definition line, all its nine ele-
ments along the main diagonal are defined as parameters—they represent
the nine error-term variances.

Mplus Command File

The main difference in this file relative to the Mplus command file for the
confirmatory factor analysis model in Chap. 4, is that here we need to de-
clare explanatory relationships between latent variables, which as men-
tioned in Chap. 2 is achieved by correspondingly using the keyword “on”.

TITLE: STRUCTURAL REGRESSION MODEL
DATA: FILE IS EX5.1.COV;

TYPE=COVARIANCE;
NOBSERVATIONS=220;

VARIABLE: NAMES ARE IND1 IND2 IND3 FR11 FR12 FR13 FR21
FR22 FR23;

MODEL: F1 BY IND1-IND3;
F2 BY FR11-FR13;
F3 BY FR21-FR23;
F2 ON F1;
F3 ON F1 F2;

We note that the default features of Mplus permit one in a very economical
way to create the command file and in particular fix latent variable metrics.

MODELING RESULTS

EQS Results

The output produced by the EQS input file created in the previous section
is presented next (interested readers can easily verify that they are essen-
tially the same as those obtained with LISREL and Mplus, by submitting the
above command files). As before, comments are inserted at appropriate
places to clarify presented output portions. In addition, the echoed input
file, analyzed covariance matrix, and recurring title line as well as method of
estimation statement are omitted. (We also dispense with presenting the re-
liability related output section, since we are not dealing with scale construc-
tion in this chapter.)
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PARAMETER ESTIMATES APPEAR IN ORDER,
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

As indicated in previous chapters, this message is a reassurance that the pro-
gram has not encountered problems stemming from lack of identification
or other numerical difficulties, and that the model is technically sound.

RESIDUAL COVARIANCE MATRIX (S-SIGMA) :

IND1 IND2 IND3 FR11 FR12
V1 V2 V3 V4 V5

IND1 V1 .000
IND2 V2 -.552 .000
IND3 V3 .790 -.210 .000
FR11 V4 -.228 .905 .617 .000
FR12 V5 -.165 .783 .472 .882 .000
FR13 V6 1.007 .111 -3.891 -.576 -.423
FR21 V7 -2.149 1.609 .011 2.579 -5.106
FR22 V8 1.487 .962 -2.016 -1.457 -.236
FR23 V9 -.889 .859 -.027 -2.747 .644

FR13 FR21 FR22 FR23
V6 V7 V8 V9

FR13 V6 .000
FR21 V7 -2.561 .000
FR22 V8 -2.433 1.631 .000
FR23 V9 9.127 -.464 -.665 .000

AVERAGE ABSOLUTE COVARIANCE RESIDUALS   =   1.1393
AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS   =   1.4242

STANDARDIZED RESIDUAL MATRIX:

IND1 IND2 IND3 FR11 FR12
V1 V2 V3 V4 V5

IND1 V1 .000
IND2 V2 -.008 .000
IND3 V3 .016 -.004 .000
FR11 V4 -.003 .011 .010 .000
FR12 V5 -.002 .010 .008 .011 .000
FR13 V6 .016 .001 -.068 -.007 -.006
FR21 V7 -.024 .016 .000 .024 -.048
FR22 V8 .018 .010 -.028 -.015 -.002
FR23 V9 -.012 .010 .000 -.029 .007

FR13 FR21 FR22 FR23
V6 V7 V8 V9

FR13 V6 .000
FR21 V7 -.025 .000
FR22 V8 -.026 .013 .000
FR23 V9 .103 -.004 -.006 .000

AVERAGE ABSOLUTE STANDARDIZED RESIDUALS   =   .0134
AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS   =   .0167
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LARGEST STANDARDIZED RESIDUALS:

NO. PARAMETER ESTIMATE NO. PARAMETER ESTIMATE
-—— ——-—————- ————-——— —— ——-—————- ————-———
1 V9, V6 .103 11 V3, V1 .016
2 V6, V3 -.068 12 V6, V1 .016
3 V7, V5 -.048 13 V7, V2 .016
4 V9, V4 -.029 14 V8, V4 -.015
5 V8, V3 -.028 15 V8, V7 .013
6 V8, V6 -.026 16 V9, V1 -.012
7 V7, V6 -.025 17 V4, V2 .011
8 V7, V1 -.024 18 V5, V4 .011
9 V7, V4 .024 19 V8, V2 .010
10 V8, V1 .018 20 V5, V2 .010

DISTRIBUTION OF STANDARDIZED RESIDUALS

— — — — — — — — — — — — — — — — — — – –
! !

40- -
! !
! !
! !
! ! RANGE FREQ PERCENT

30- -
! ! 1 -0.5 - — 0 .00%
! ! 2 -0.4 - -0.5 0 .00%
! * ! 3 -0.3 - -0.4 0 .00%
! * ! 4 -0.2 - -0.3 0 .00%

20- * * - 5 -0.1 - -0.2 0 .00%
! * * ! 6 0.0 - -0.1 20 44.44%
! * * ! 7 0.1 - 0.0 24 53.33%
! * * ! 8 0.2 - 0.1 1 2.22%
! * * ! 9 0.3 - 0.2 0 .00%

10- * * - A 0.4 - 0.3 0 .00%
! * * ! B 0.5 - 0.4 0 .00%
! * * ! C ++ - 0.5 0 .00%
! * * ! — — — — — — — — — — — — — – – –
! * * * ! TOTAL 45 100.00%
— — — — — — — — — — — — — — — — — — – –

1 2 3 4 5 6 7 8 9 A B C EACH “*” REPRESENTS 2 RESIDUALS

From this output part, informally it appears that there is a residual indica-
tive of some misfit of the model, which may be potentially important. The
residual is first stated in the section LARGEST STANDARDIZED RESIDUALS,
and also appears to the right of the remaining residuals in the graphical dis-
tribution of standardized residuals. This residual is associated with the last
indicators of Figural relations (i.e., the third measure of Figural relations
taken during the junior and senior high school years). In fact, the residual in
question is nearly two times larger in magnitude than the next one, whereas
the residuals following gradually trail off to 0. Now we scrutinize the model
fit indices to see if in addition to this apparent local deficiency there may be
marked lack of overall fit.
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GOODNESS OF FIT SUMMARY FOR METHOD  = ML

INDEPENDENCE MODEL CHI-SQUARE   =   1177.363 ON   36 DEGREES OF FREEDOM

INDEPENDENCE AIC   =   1105.36278   INDEPENDENCE CAIC   =    947.19219
MODEL AIC   =   4.09683             MODEL CAIC   =   -101.35023

CHI-SQUARE   =   52.097 BASED ON 24    DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS               .00076

THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS      48.276.

FIT INDICES
— — — — — -
BENTLER-BONETT     NORMED FIT INDEX =   .956
BENTLER-BONETT NON-NORMED FIT INDEX =   .963
COMPARATIVE FIT INDEX (CFI)         =   .975

The goodness-of-fit indices do suggest that this is not a well-fitting model. For
example, the chi-square value and its p value are unsatisfactory, and the Bentler-
Bonett indicesaswell as thecomparative fit indexarenot impressivelyhigh.Based
on these results, one may suggest that there is evidence in the data pointing to the
model not being a reasonably good means of data representation (at the level of
analyzed variances and covariances). One therefore should not fully trust the out-
put results. For this reason we do not present the rest of the output.

Since a considerable positive standardized residual corresponding to a par-
ticular part of the model was found, perhaps the model can be improved by
making some modifications that relate to that model section. In particular, that
residual suggests the model underpredicts the relationship between repeated
assessments with the third Figural relation measure. When multiple measure-
ments are conducted using the same set of indicators, it is possible and in fact
likely that the residual terms associated with these measures contain some spe-
cific variance that is not explained by the latent variables involved. This seems to
be the most likely explanation in the present case as well, with regard to the last
indicator of Figural relations. Recall our discussion in the previous chapter on
model modification, with the recommendation that such modifications should
only be made in a model that can be theoretically justified. In the present empiri-
cal case, as just mentioned, there appears to be a good substantive reason for the
error terms of the Figural relations indicators FR13 and FR23 to correlate,
namely as pertaining to the repeated assessment with the same Figural relations
measure. Therefore, in the next model version we free this particular error co-
variance that canbe viewed as resulting from assessmentmethod sourcesof vari-
ability specific to this fluid measure. In terms of software use for this purpose, we
add thepertinentparameter to theEQS input file1 with the followingcommand:

1 In the LISREL command file for this model with correlated errors, declare in the model
definition line TE = SY, FI, and add the following line before the last one: FR (TE(1,1) TE(2,2)
TE(3,3) TE(4,4) TE(5,5) TE(6,6) TE(7,7) TE(8,8) TE(9,9) TE(9,6) (see below in the present
section of the chapter). In the Mplus command file for the same model, add as a final line the
following one: FR13 WITH FR23.
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/COVARIANCE
E9,E6=*;

The corresponding parts of the resulting output are presented next, beginning
with the reassuring message that the model is technically sound and the under-
lying numerical optimization routine has been carried out uneventfully.

PARAMETER ESTIMATES APPEAR IN ORDER,
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

RESIDUAL COVARIANCE MATRIX (S-SIGMA) :
IND1 IND2 IND3 FR11 FR12
V1 V2 V3 V4 V5

IND1 V1 .000
IND2 V2 -.429 .000
IND3 V3 .764 -.300 .000
FR11 V4 -.649 .308 .087 .000
FR12 V5 .199 1.188 .656 -.078 .000
FR13 V6 1.710 .950 -3.397 -.573 1.197
FR21 V7 -2.459 1.126 -.486 2.300 -3.406
FR22 V8 1.332 .686 -2.348 -1.487 1.448
FR23 V9 -.516 1.255 .113 -1.807 3.197

FR13 FR21 FR22 FR23
V6 V7 V8 V9

FR13 V6 .101
FR21 V7 -.011 .000
FR22 V8 -.015 .322 .000
FR23 V9 .101 -.113 -.038 .007

AVERAGE ABSOLUTE COVARIANCE RESIDUALS   =    .8257
AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS   =   1.0292

STANDARDIZED RESIDUAL MATRIX:

IND1 IND2 IND3 FR11 FR12
V1 V2 V3 V4 V5

IND1 V1 .000
IND2 V2 -.007 .000
IND3 V3 .015 -.005 .000
FR11 V4 -.009 .004 .001 .000
FR12 V5 .003 .015 .011 -.001 .000
FR13 V6 .027 .013 -.059 -.007 .016
FR21 V7 -.028 .011 -.006 .021 -.032
FR22 V8 .016 .007 -.033 -.015 .015
FR23 V9 -.007 .014 .002 -.019 .035

FR13 FR21 FR22 FR23
V6 V7 V8 V9

FR13 V6 .001
FR21 V7 .000 .000
FR22 V8 .000 .002 .000
FR23 V9 .001 -.001 .000 .000

AVERAGE ABSOLUTE STANDARDIZED RESIDUALS   =   .0102
AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS   =   .0127
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LARGEST STANDARDIZED RESIDUALS:

NO. PARAMETER ESTIMATE NO. PARAMETER ESTIMATE
-— ———-————— -————-—— —— ———-————— -————-——
1 V6, V3 -.059 11 V5, V2 .015
2 V9, V5 .035 12 V3, V1 .015
3 V8, V3 -.033 13 V8, V5 .015
4 V7, V5 -.032 14 V8, V4 -.015
5 V7, V1 -.028 15 V9, V2 .014
6 V6, V1 .027 16 V6, V2 .013
7 V7, V4 .021 17 V5, V3 .011
8 V9, V4 -.019 18 V7, V2 .011
9 V8, V1 .016 19 V4, V1 -.009
10 V6, V5 .016 20 V8, V2 .007

DISTRIBUTION OF STANDARDIZED RESIDUALS
— — — — — — — — — — — — — — — — — — — —
! !

40- -
! !
! !
! !
! ! RANGE FREQ PERCENT

30- -
! * ! 1 -0.5 - — 0 .00%
! * ! 2 -0.4 - -0.5 0 .00%
! * ! 3 -0.3 - -0.4 0 .00%
! * ! 4 -0.2 - -0.3 0 .00%

20- * - 5 -0.1 - -0.2 0 .00%
! * * ! 6 0.0 - -0.1 18 40.00%
! * * ! 7 0.1 - 0.0 27 60.00%
! * * ! 8 0.2 - 0.1 0 .00%
! * * ! 9 0.3 - 0.2 0 .00%

10- * * - A 0.4 - 0.3 0 .00%
! * * ! B 0.5 - 0.4 0 .00%
! * * ! C ++ - 0.5 0 .00%
! * * ! — — — — — — — — — — — — — — —
! * * ! TOTAL 45 100.00%
— — — — — — — — — — — — — — — — — — — —

1 2 3 4 5 6 7 8 9 A B C EACH “*” REPRESENTS 2 RESIDUALS

There are no ‘gaps’ in the magnitude of standardized residuals now, unlike
the preceding fitted model, and none of these residuals is a cause for con-
cern—as indicated previously, this is typically the case with well-fitting
models. Specifically, the residuals listed in the LARGEST STANDARDIZED
RESIDUALS section are much more uniform and smaller in magnitude than
in the previous model version, and the distribution of standardized residu-
als is more symmetric. The overall fit indices further contribute to the im-
pression of a well-fitting model and are displayed next.
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GOODNESS OF FIT SUMMARY FOR METHOD = ML

INDEPENDENCE MODEL CHI-SQUARE   =   1177.363 ON    36 DEGREES OF FREEDOM
INDEPENDENCE AIC   =   1105.36278    INDEPENDENCE CAIC   =    947.19219

MODEL AIC   =   -25.44764            MODEL CAIC   =   -126.50107

CHI-SQUARE =        20.552 BASED ON       23 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS        .60840

THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS       20.011.

FIT INDICES
— — — — — -
BENTLER-BONETT NORMED FIT INDEX       =        .983
BENTLER-BONETT NON-NORMED FIT INDEX   =       1.003
COMPARATIVE FIT INDEX (CFI)           =       1.000

These goodness-of-fit indices are quite satisfactory. Note in particular that
the chi-square value is comparable to its degrees of freedom and the associ-
ated p value is well in excess of any reasonable significance level. In addi-
tion, the Bentler-Bonett normed and nonnormed fit indices, as well as the
comparative fit index are all close to 1—the NNFI is actually slightly above 1,
which sometimes happens with well-fitting models. We also notice that the
information criteria values (AIC and CAIC) are considerably lower than in
the preceding model, another indication of a better fit with the present one.
We conclude, therefore, that this model is a reasonably good means of data
description.

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

IND1 =V1 = 1.000 F1 + 1.000 E1

IND2 =V2 = 1.271*F1 + 1.000 E2
.157
8.073@

IND3 =V3 = .894*F1 + 1.000 E3
.116
7.713@

FR11 =V4 = 1.000 F2 + 1.000 E4

FR12 =V5 = .888*F2 + 1.000 E5
.064

13.885@

FR13 =V6 = .833*F2 + 1.000 E6
.062

13.465@

FR21 =V7 = 1.000 F3 + 1.000 E7

FR22 =V8 = .875*F3 + 1.000 E8
.051

17.202@



FR23 =V9 = .864*F3 + 1.000 E9
.047

18.391@

CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

FIGREL1 =F2 = .999*F1 + 1.000 D2
.150
6.676@

FIGREL2 =F3 = .749*F2 + .671*F1 + 1.000 D3
.105 .180
7.103@ 3.736@

We note that all structural regression coefficients are significant—their t val-
ues are well outside the nonsignificance region (–2 ; +2). These results indi-
cate that there are marked relationships between the Induction and Figural
relations latent dimensions in junior and senior years. That is, the Induction
construct (F1) has marked explanatory power for individual differences in
Figural relations at both assessment points (i.e., F2 and F3) because its regres-
sion coefficients, .999 and .671, are significant. Furthermore, these signifi-
cance results indicate that in the presence of the Induction latent variable,
Figural relations in junior year is also important for predicting individual dif-
ferences in senior-year figural ability, as one might expect when measuring a
latent construct at two consecutive assessments. Conversely, adding Induc-
tion in the equation for Figural relations in senior year explains significantly
more variance in the latter construct than when Induction is not included in
this equation.

VARIANCES OF INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — –

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
E D
-— —-

E1 - IND1 31.045*I D2 -FIGREL1 39.881*I
3.880 I 6.264 I
8.002@I 6.366@I

I I
E2 - IND2 34.912*I D3 -FIGREL2 39.365*I

5.052 I 6.050 I
6.911@I 6.506@I

I I
E3 - IND3 24.322*I I

3.060 I I
7.948@I I

I I
E4 - FR11 19.667*I I

3.352 I I
5.868@I I

I I
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E5 - FR12 27.709*I I
3.533 I I
7.842@I I

I I
E6 - FR13 28.541*I I

3.463 I I
8.242@I I

I I
E7 - FR21 29.401*I I

4.279 I I
6.871@I I

I I
E8 - FR22 31.342*I I

3.952 I I
7.930@I I

I I
E9 - FR23 22.501*I I

3.280 I I
6.860@I I

I I

COVARIANCES AMONG INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — — — -

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

E D
-— —-

E9 - FR23 12.264*I I
E6 - FR13 2.460 I I

4.985@I I
I

STANDARDIZED SOLUTION: R-SQUARED

IND1 =V1 = .669 F1 + .743 E1 .448
IND2 =V2 = .733*F1 + .680 E2 .538
IND3 =V3 = .673*F1 + .740 E3 .453
FR11 =V4 = .876 F2 + .482 E4 .768
FR12 =V5 = .806*F2 + .593 E5 .649
FR13 =V6 = .783*F2 + .622 E6 .613
FR21 =V7 = .890 F3 + .455 E7 .793
FR22 =V8 = .856*F3 + .517 E8 .733
FR23 =V9 = .888*F3 + .460 E9 .788

FIGREL1 =F2 = .621*F1 + .783 D2 .386
FIGREL2 =F3 = .569*F2 + .317*F1 + .592 D3 .650

This output part presents the variance of the Induction latent variable and
the variances of the disturbance terms (D2 and D3) for the Figural relations
constructs. The covariance between error terms of the fluid measures
FR13 and FR23 are also reported in the section entitled COVARIANCES
AMONG INDEPENDENT VARIABLES and, as could be anticipated, this
value is found to be significant (see last estimate before the standardized
solution above).
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CORRELATIONS AMONG INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — — — - –

E D
-— —-

E9 - FR23 .484*I I
E6 - FR13 I I

I I

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
E N D  O F  M E T H O D

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

The error term relationship of the Figural relations measures (FR13 and
FR23) is given here in the form of a correlation coefficient. As indicated ear-
lier, despite the fact that this correlation is only moderately strong in magni-
tude, it contributes to a substantial improvement in fit. This improvement
can be easily judged by comparing the chi-square values for the two models
fitted in this section—the model with the correlated error terms versus the
model without their correlation. The difference in chi-square values of the
two proposed models is found to be DT = 52.097 - 20.552 = 31.545, with
the difference in degrees of freedom being Ddf = 24 - 23 = 1, and is there-
fore significant (as mentioned before, the cut-off value of the chi-square dis-
tribution with 1 df is 3.84 at significance level .05). Hence, including the
correlated error term leads to a significant improvement in model fit.

FACTORIAL INVARIANCE ACROSS TIME IN REPEATED
MEASURE STUDIES

An important question in studies that involve repeated measurements of la-
tent variables concerns indicator invariance over time and pertains to the
basic query about comparability of construct assessment across time. Im-
posing the condition of invariance deals with the requirement that the same
construct be measured at all occasions, and in particular that its structure
remains the same. Since a necessary condition for measuring the same con-
structs at repeated assessments is the identity of the associated factorial
structure, the term factorial invariance is commonly used. Examination of
factorial invariance in a given model is conducted by imposing an equality
constraint on the factor loadings of the same indicators over time and test-
ing the resulting difference in the chi-square values of the two involved
nested models.2

A test of factorial invariance in our example concerning mental ability
deals with examining whether the construct Figural relations is character-

2A stronger test of measurement invariance over time includes also the identity across as-
sessment occasions of corresponding mean intercepts, which is not pursued in this introduc-
tory text (for details, see, e.g., Raykov, 2004).
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ized by the same factor loadings on its measures in junior and senior high
school years. This test is accomplished by introducing the loading equality
restriction on these indicators across both assessments. The equality re-
straint can be included in the EQS input file by adding a /CONSTRAINT sec-
tion; in the LISREL command file by adding an EQuality line; and in the
Mplus input file by assigning the same integer number to the loadings of the
same indicator over time. More specifically, this is accomplished with the
following constraint command within the last EQS input file, leaving
unchanged the rest:

/CONSTRAINTS
(V5,F2)=(V8,F3);
(V6,F2)=(V9,F3);

That is, the EQS command file for testing factorial invariance in the present
empirical setting looks as follows (using three-letter abbreviations):

/TIT
TESTING FOR FACTORIAL INVARIANCE IN A STRUCTURAL
REGRESSION MODEL (WITH CORRELATED MEASUREMENT
ERRORS);
/SPE
CAS=220; VAR=9;
/LAB
V1=IND1; V2=IND2; V3=IND3; V4=FR11; V5=FR12; V6=FR13;
V7=FR21; V8= FR22; V9=FR23;
F1=INDUCTN; F2=FIGREL1; F3=FIGREL2;
/EQU
V1= F1+E1;
V2=*F1+E2;
V3=*F1+E3;
V4= F2+E4;
V5=*F2+E5;
V6=*F2+E6;
V7= F3+E7;
V8=*F3+E8;
V9=*F3+E9;
F2=*F1+D2;
F3=*F1+*F2+D3;
/VAR
F1=*; D2 TO D3=*; E1 TO E9=*;
/COV
E6,E9=*;
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/CON
(V5,F2)=(V8,F3);
(V6,F2)=(V9,F3);
/MAT
56.21
31.55 75.55
23.27 28.30 44.45
24.48 32.24 22.56 84.64
22.51 29.54 20.61 57.61 78.93
22.65 27.56 15.33 53.57 49.27 73.76
33.24 46.49 31.44 67.81 54.76 54.58 141.77
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35
/END;

To accomplish the same goal in the LISREL input file for the last fitted
model, we add the following equality restrictions:

EQ LY(5, 2) LY(8, 3)
EQ LY(6, 2) LY(9, 3)

Hence, the LISREL command file for testing factorial invariance in the pres-
ent empirical context looks as follows (see also Note 1 to this chapter):

TESTING FACTORIAL INVARIANCE IN A STRUCTURAL REGRESSION
MODEL (WITH CORRELATED MEASUREMENT ERRORS)
DA NI=9 NO=220
CM
56.21
31.55 75.55
23.27 28.30 44.45
24.48 32.24 22.56 84.64
22.51 29.54 20.61 57.61 78.93
22.65 27.56 15.33 53.57 49.27 73.76
33.24 46.49 31.44 67.81 54.76 54.58 141.77
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35
LA
IND1 IND2 IND3 FR11 FR12 FR13 FR21 FR22 FR23
MO NY=9 NE=3 PS=SY,FI TE=SY,FI LY=FU,FI BE=FU,FI
LE
INDUCTN FIGREL1 FIGREL2
FR LY(2, 1) LY(3, 1)
FR LY(5, 2) LY(6, 2)



TESTING FACTORIAL INVARIANCE ACROSS TIME 165

FR LY(8, 3) LY(9, 3)
VA 1 LY(1, 1) LY(4, 2) LY(7, 3)
FR BE(2, 1) BE(3, 1) BE(3, 2)
FR PS(1, 1) PS(2, 2) PS(3, 3)
FR TE(1, 1) TE(2, 2) TE(3, 3) TE(4, 4) TE(5, 5) TE(6, 6) TE(7, 7)
FR TE(8, 8) TE(9, 9) TE(9, 6)
EQ LY(5, 2) LY(8, 3)
EQ LY(6, 2) LY(9, 3)
OU RS

In the Mplus command file for this model, we correspondingly define the
measurement of the 2nd and 3rd constructs (Figural relations at the 1st and at
2nd occasions, respectively) as follows:

F2 BY FR11
FR12(1)
FR13(2);
F3 BY FR21
FR22(1)
FR23(2);

(Note that a semicolon comes only after all indicators are listed, for each
construct in question.) That is, the Mplus command file with the factorial
invariance constraint looks in the current empirical setting as follows (see
also Note 1 to this chapter):

TITLE: THIS IS AN EXAMPLE STRUCTURAL EQUATION MODEL
WITH THE FACTORIAL INVARIANCE CONSTRAINT IMPOSED

DATA: FILE IS EX5.COV;
TYPE=COVARIANCE;
NOBSERVATIONS=220;

VARIABLE:  NAMES ARE IND1 IND2 IND3 FR11 FR12 FR13
FR21 FR22 FR23;

MODEL: F1 BY IND1-IND3;
F2 BY FR11
FR12(1)
FR13(2);
F3 BY FR21
FR22(1)
FR23(2);
F3 ON F1 F2;
F2 ON F1;
FR13 WITH FR23;
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The result of introducing the factorial invariance restriction is a chi-square
value of T = 20.937, with df = 25 (recall that the model tested without the
equality restriction resulted in a chi-square value of T = 20.552, with df =
23). The difference in chi-square values between the restricted model and
the previous one is DT = 20.937 - 20.552 = 0.385, with Ddf = 2, and is non-
significant (recall that the cut-off value of the chi-square distribution, at
significance level .05, is 5.99). This indicates that the time-invariance re-
striction imposed on the loadings of the Figural relations indicators is plau-
sible. Since this restriction is found to be acceptable, it is retained in the
model.

We conclude this chapter by discussing the LISREL output file for the last
fitted, restricted model, starting with the sections after the echoed back in-
put, data, and model related details. (To request model residuals, given that
this will be the only software output we will discuss in the rest of this sec-
tion, we add RS to the final OUtput line; see Note 2 to Chap. 2.)

Parameter Specifications

LAMBDA-Y
INDUCTN FIGREL1 FIGREL2
— — — — — — — — — — — —

IND1 0 0 0
IND2 1 0 0
IND3 2 0 0
FR11 0 0 0
FR12 0 3 0
FR13 0 4 0
FR21 0 0 0
FR22 0 0 3
FR23 0 0 4

As seen from this portion, all parameters constrained to be equal to one an-
other are given the same number, whereas parameters that are fixed are not
numbered. Accordingly, LISREL interpreted that this is a model with only
four free factor loading parameters to be estimated. The remaining 16 pa-
rameters come next.

BETA
INDUCTN FIGREL1 FIGREL2
— — — — — — — — — — — —

INDUCTN 0 0 0
FIGREL1 5 0 0
FIGREL2 6 7 0

PSI
INDUCTN FIGREL1 FIGREL2
— — — — — — — — — — — —

8 9 10
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THETA-EPS
IND1 IND2 IND3 FR11 FR12 FR13
— — — — — — — — — — — — — — — — — —

IND1 11
IND2 0 12
IND3 0 0 13
FR11 0 0 0 14
FR12 0 0 0 0 15
FR13 0 0 0 0 0 16
FR21 0 0 0 0 0 0
FR22 0 0 0 0 0 0
FR23 0 0 0 0 0 19

THETA-EPS
FR21 FR22 FR23

— — — — — — — — — — — —
FR21 17
FR22 0 18
FR23 0 0 20

Recall that one had to declare the error variance matrix TE as symmetric, in
order to accommodate as a model parameter the error covariance pertain-
ing to both assessments with the third Figural relations indicator (see Note
1 to this chapter).

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y
INDUCTN FIGREL1 FIGREL2
— — — — — — — — — — – –

IND1 1.000 - - - -

IND2 1.271 - - - -
(0.157)
8.073

IND3 0.894 - - - -
(0.116)
7.712

FR11 - - 1.000 - -

FR12 - - 0.879 - -
(0.040)
22.130

FR13 - - 0.855 - -
(0.041)
20.678

FR21 - - - - 1.000

FR22 - - - - 0.879
(0.040)
22.130



FR23 - - - - 0.855
(0.041)
20.678

In this factor loading matrix, notice in particular the restrained loadings
that have identical estimates, standard errors, and t values.

BETA
INDUCTN FIGREL1 FIGREL2
— — — — — — — — — — — —

INDUCTN - - - - - -

FIGREL1 0.992 - - - -
(0.146)
6.776

FIGREL2 0.674 0.758 - -
(0.180) (0.100)
3.747 7.617

Although the model parameter estimates have changed slightly due to the
imposed restrictions, the same substantive conclusions are warranted with
respect to the structural regression coefficients as in the earlier fitted model
version without the factorial invariance constraint.

Covariance Matrix of ETA

INDUCTN FIGREL1 FIGREL2
— — — — — — — — — — — —

INDUCTN 25.171
FIGREL1 24.965 64.179
FIGREL2 35.891 65.484 113.456

PSI
Note: This matrix is diagonal.

INDUCTN FIGREL1 FIGREL2
— — — — — — — — — — — —
25.179 39.426 39.625
(5.130) (5.806) (5.927)
4.908 6.790 6.686

In the LISREL output discussed in Chap. 4, for the confirmatory factor analy-
sis model of interest there, the values in the COVARIANCE MATRIX OF ETA
and those in the PSI matrix were identical. The results here, however, pres-
ent quite different values for the diagonal of the COVARIANCE MATRIX OF
ETA and the PSI matrices. The reason for this difference is that in this model
explanatory relationships are assumed between the latent variables. As a re-
sult, the PSI matrix now contains the variance of the first latent variable, In-
duction (INDUCTN), and the residual variances of the other two latent
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variables, Figural relations in junior and senior high school years (FIGREL1
and FIGREL2). Hence, only the first element on the diagonal of PSI is identi-
cal to the corresponding element of the COVARIANCE MATRIX OF ETA
from that earlier model fitted in Chap. 4. This is because the variance of the
first latent factor (Induction) is the common predictor for the other two
constructs (Figural relations in junior and senior years) and is not regressed
on any construct in either of the two models in question. We also note that
the structural residual variances are both significant in the last fitted model
(see second and third diagonal elements of the matrix PSI), which reflects
the fact that the latent relationships assumed in this model are not capable
of explaining all individual variability in junior- and senior-year Figural rela-
tions, the dependent variables in the structural part of this model.

Squared Multiple Correlations for Structural Equations

INDUCTN FIGREL1 FIGREL2
— — — — — — — — — — — —
- - 0.386 0.651

THETA-EPS
IND1 IND2 IND3 FR11 FR12 FR13
— — — — — — — — — — — — — — — — — –

IND1 31.031
(3.879)
7.999

IND2 - - 34.901
(5.052)
6.908

IND3 - - - - 24.339
(3.061)
7.952

FR11 - - - - - - 19.854
(3.170)
6.262

FR12 - - - - - - - - 27.999
(3.433)
8.157

FR13 - - - - - - - - - - 28.191
(3.411)
8.266

FR21 – - - - - - - - - - - -
FR22 – - - - - - - - - - - -
FR23 - - - - - - - - - - 12.225

(2.461)
4.967

THETA-EPS
FR21 FR22 FR23
— — — — — — — — —

FR21 29.207
(4.210)
6.937
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FR22 - - 31.142
(3.921)
7.943

FR23 - - - - 22.742
(3.250)
6.998

Squared Multiple Correlations for Y - Variables

IND1 IND2 IND3 FR11 FR12 FR13
— — — — — — — — — — — — — — — — — –
0.448 0.538 0.452 0.764 0.639 0.625

Squared Multiple Correlations for Y - Variables

FR21 FR22 FR23
— — — — — — — — —
0.795 0.738 0.785

Based on this output part dealing with squared multiple correlation coeffi-
cients, the model is less successful in predicting junior-year Figural rela-
tions than senior year Figural relations, and an obvious reason would be
that the latter is explained here by two rather than a single construct, unlike
the former latent variable. Regarding the explained variance in junior year
Figural relations, one may suggest that a follow-up study could also con-
sider other variables beyond Induction that may contribute to a better ex-
planation of individual differences in Figural relations ability in junior high
school year.

Goodness of Fit Statistics
Degrees of Freedom = 25

Minimum Fit Function Chi-Square = 20.937 (P = 0.696)
Normal Theory Weighted Least Squares Chi-Square = 20.310 (P = 0.730)

Estimated Non-centrality Parameter (NCP) = 0.0
90 Percent Confidence Interval for NCP = (0.0 ; 9.101)

Minimum Fit Function Value = 0.0956
Population Discrepancy Function Value (F0) = 0.0

90 Percent Confidence Interval for F0 = (0.0 ; 0.0416)
Root Mean Square Error of Approximation (RMSEA) = 0.0

90 Percent Confidence Interval for RMSEA = (0.0 ; 0.0408)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.981

Expected Cross-Validation Index (ECVI) = 0.297
90 Percent Confidence Interval for ECVI = (0.297 ; 0.338)

ECVI for Saturated Model = 0.411
ECVI for Independence Model = 5.458

Chi-Square for Independence Model with 36 Degrees of Freedom = 1177.363
Independence AIC = 1195.363

Model AIC = 60.310
Saturated AIC = 90.000

Independence CAIC = 1234.905
Model CAIC = 148.182

Saturated CAIC = 287.713
Normed Fit Index (NFI) = 0.982
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Non-Normed Fit Index (NNFI) = 1.005
Parsimony Normed Fit Index (PNFI) = 0.682

Comparative Fit Index (CFI) = 1.000
Incremental Fit Index (IFI) = 1.004
Relative Fit Index (RFI) = 0.974

Critical N (CN) = 464.534
Root Mean Square Residual (RMR) = 1.462

Standardized RMR = 0.0182
Goodness of Fit Index (GFI) = 0.980

Adjusted Goodness of Fit Index (AGFI) = 0.964
Parsimony Goodness of Fit Index (PGFI) = 0.544

All goodness-of-fit indices point to the conclusion that the model repre-
sents a reasonable approximation to the data. In particular, note the low
magnitude of both point estimate and left endpoint of the 90%-confidence
interval of the RMSEA index, which are well below the widely followed
threshold of .05.

Standardized Residuals
IND1 IND2 IND3 FR11 FR12 FR13
— — — — — — — — — — — — — — — — — –

IND1 - -
IND2 -0.379 - -
IND3 0.663 -0.285 - -
FR11 -0.197 0.206 0.114 0.245
FR12 0.203 0.555 0.406 0.550 0.426
FR13 0.475 0.145 -1.556 -0.740 0.435 -0.526
FR21 -0.901 0.295 -0.244 1.023 -0.695 -0.373
FR22 0.345 0.092 -1.011 -0.518 0.599 -0.416
FR23 -0.152 0.560 0.113 -0.486 1.344 -0.296

Standardized Residuals
FR21 FR22 FR23
— — — — — — — — —

FR21 -0.245
FR22 -0.448 -0.426
FR23 -0.054 -0.215 0.396

Summary Statistics for Standardized Residuals
Smallest Standardized Residual = -1.556
Median Standardized Residual = 0.000
Largest Standardized Residual = 1.344

Stemleaf Plot

- 1|6
- 1|0
- 0|977555
- 0|4444433222221000
0|1111222334444
0|566667
1|03



None of the standardized residuals is very large, which is another indication
that the model also locally fits well, that is, beyond being a good overall
means of data description as indicated by its goodness of fit indices men-
tioned earlier. One can therefore consider the last fitted model with facto-
rial invariance to be an acceptable means of data description.
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APPENDIX TO CHAPTER 5

The general structural regression (SR) model is subsumed under the gen-
eral LISREL model (see Appendix to Chap. 1). Hence, all modeling develop-
ments presented in Chap. 1 and its Appendix apply to the general SR model
(and all its special cases in relevance in a given empirical setting).

The particular generic model used for illustration purposes in the pres-
ent chapter is a special case of the general SR model, and therefore of the
general LISREL model. Indeed, denoting by Y1 through Y9 the observed vari-
ables (three Induction test scores and altogether six Figural relations test
scores), by e1 through e9 their pertinent error terms, by b21, b31 and b32 the
structural regression coefficients of interest in this setting, and by l’s perti-
nent factor loadings, the initial empirical model we dealt with in this chap-
ter consists of the following measurement part
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and the following structural part
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(A5.2)

with the additional assumption of normality for all latent variables and re-
sidual terms, zero mean residuals, and uncorrelated residuals with predic-
tors in pertinent equations as well as across the measurement and
structural parts; in that model, we also assumed that the covariance matrix
of the nine error terms, e1 through e9, was diagonal.

In the second fitted model with correlated errors pertaining to the last
(third) Figural relations indicator, we added the assumption
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0 0 0

b21 0 0

b31 b32 0

1 0 0

l21 0 0

l31 0 0

0 l 0

0 l52 0

0 l62 0

0 0 1

0 0 l83

0 0 l93



Cov(e6, e9) � 0. (A5.3)

In the last fitted model in this chapter, with the added restriction of
invariance over time of the factorial structure for the Figural relations con-
struct, we also assumed

l52 = l83 and (A5.4)

l62 = l93 . (A5.5)
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C H A P T E R S I X

Latent Change Analysis

WHAT IS LATENT CHANGE ANALYSIS?

Repeated measurements are used quite often in research studies to exam-
ine temporal change processes in individuals or groups. One reason for
their popularity in the social and behavioral disciplines is that repeated
measurements allow researchers to investigate individual (intraindividual)
development across time as well as between-individual (interindividual)
differences and similarities in change patterns. For example, educational
researchers may be interested in examining patterns of growth in ability
exhibited by a group of subjects in longitudinally administered measures
following some treatment program and relating them to various character-
istics of students and environments they live in. The researchers may also be
interested in comparing the rates of change in these variables across several
student populations, or in studying the correlates and predictors of growth
in ability over time in an effort to determine which students exhibited the
fastest improvement in ability. Alternatively, developmental scientists may
be interested in studying cognitive functioning decline in later life, compar-
ing its pattern across gender, socio-economic, or education related sub-
populations of elderly, as well as finding out the antecedents, correlates,
and predictors of this decline.

A powerful methodology for addressing these type of questions exists
within the traditional analysis of variance (ANOVA) and analysis of covari-
ance (ANCOVA) frameworks. Some of the assumptions needed to use this
methodology, however, can often be untenable, especially in social and be-
havioral research involving multiple assessments. Specifically, assumptions
concerning the homogeneity of the variance-covariance matrix across levels
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of the between-subjects factors, and particularly the assumption of spheric-
ity (implying the same patterns of correlation for repeated assessments) can
be problematic (e.g., Marcoulides & Hershberger, 1997; Raykov, 2001;
Tabachnick & Fidell, 2001). Similarly, when studying correlates and predic-
tors of growth or decline via ANCOVA, assumptions concerning the use of
perfectly measured covariate(s) and regression homogeneity may also be
questionable and their violation may result in misleading substantive con-
clusions (e.g., Huitema, 1980).

The structural equation modeling methodology offers a highly useful
and readily applicable alternative framework allowing one to address com-
prehensively issues pertaining to studying change over time. This frame-
work has been available and used for a number of years, and has become
known under different though related names. Throughout this chapter, we
will refer to this framework as latent change analysis (LCA), since its focus is
the study of change over time in latent dimensions. LCA has been primarily
formalized and popularized in the social and behavioral sciences over the
past couple of decades as a general means for studying growth or decline at
the unobserved variable level as well as their correlates and predictors. In
several aspects, the traditional repeated measures analysis of variance mod-
els can be considered special cases of a more general LCA model (Meredith
and Tisak, 1990) that provides in some ways more flexibility in the study of
change than those traditional models. The underlying LCA model also re-
sembles the confirmatory factor analysis model discussed in Chap. 4 with
one qualification. Since the LCA model is based on data obtained from re-
peated measurements, the latent variables are generally interpreted as
chronometric variables representing individual differences over time; their
specific interpretation depends on the particular model and is developed
within the extended conceptualization of latent variable that we discussed
in Chap. 1.

The term latent change analysis (LCA) is used in this book as a general
category for a large number of possible models that can be used in re-
peated-assessment studies. Many of these models have been referred to in
the literature under alternative names, such as latent growth curve models,
latent curve analysis models, or just growth curve models. We prefer the ref-
erence latent change analysis models, to emphasize that the models are
equally applicable to all cases in which one is interested in studying growth
or decline along unobservable dimensions, even those with a more com-
plex pattern of change such as growth followed by decline or vice versa.
Due to the introductory nature of this book, only two LCA models are dis-
cussed in this chapter, which however are widely applicable as demon-
strated later: (a) the one-factor model; and (b) the level-and-shape (LS)
model. For more extensive and advanced treatments of the subject, several
excellent sources are available (e.g., Bollen & Curran, 2006; Duncan,
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Duncan, Strycker, Li, and Alpert, 1999; McArdle, 1998; Meredith & Tisak,
1990; Singer & Willett, 2003; Willett & Sayer, 1996).

ONE-FACTOR LATENT CHANGE ANALYSIS MODEL

To introduce the reader to latent change modeling, the discussion of LCA
begins with a simple one-factor model. In this model, to prepare the
ground for the following empirical example it is assumed that a set of k = 4
repeated measurements of cognitive ability give rise to a covariance matrix
and means that can be explained in terms of a single latent variable (such a
model is provided in Fig. 12). However, we stress that the following devel-
opments are immediately generalizable to any larger number, k ≥ 5, of lon-
gitudinal assessments, and are equally well applicable even with 3
measurement points. This one-factor LCA model has been discussed in the
literature on several earlier occasions, and McArdle (1988) has termed it a
curve model because the latent variable can be interpreted as a time factor
that governs the intraindividual latent change processes or curves (see also
McArdle & Epstein, 1987). Alternatively, the time factor can be thought of as
initial true status of the underlying ability that is being repeatedly mea-
sured. As indicated later, the loadings of the repeated measures on this fac-
tor can be interpreted as rates of mean change in the studied ability.
Meredith and Tisak (1990) chose to term this model a monotonic stability
model because, although significant changes in mean levels may occur in
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FIG. 12. Example one-factor LCA model.



the studied ability, the rank order of the observations tends to stay the same
over repeated assessments (Duncan et al., 1999).

Analysis of Mean Structures

One important aspect in which LCA models differ from all preceding ones
discussed in this book, is that the variable means and their development
over time are taken into account in addition to variable variances and
covariances. This is achieved by what is referred to as mean structure analy-
sis (MSA). A MSA includes in the analysis not only the covariance matrix of
the repeated measures, but also the manifest variable means. In order to ac-
complish this, a model must be fit to the so-called covariance/mean matrix,
rather than only to the covariance matrix that has been used for modeling
purposes up to this point (the slash in ‘covariance/mean matrix’ is meant to
indicate extension rather than division). The covariance/mean matrix re-
sults after the observed variable means are added as a last row and column
to the covariance matrix. That is, the covariance/mean matrix is the
covariance matrix augmented by the manifest variable means as a last added
row and column.

Why Is It Necessary to Include Variable Means into an Analysis
of Change?

The inclusion of observed variable means and their development over time
into a change analysis complies with the conceptual basis of the classical ap-
proaches to studying change. Accordingly, temporal development in the
means of observed variables under investigation is of special importance.
Indeed, one cannot imagine a repeated measures ANOVA, for example,
which would exclude the information about change over time that is con-
tained in the means. Because the use of LCA has the same goal of studying
development, it is only natural to include variable means in the analysis. If
the model were fitted only to the covariance matrix, however, one would
omit the observed variable means and their dynamic from the analysis. The
reason is that any covariance coefficient, and similarly any correlation coef-
ficient, is based on the sum of cross-products around the means (e.g., Hays,
1994). That is, any covariance (as well as correlation) disregards the means
of the two involved variables, and as a result the observed means and their
development over time are inconsequential for the covariance matrix.
Hence, different patterns of change over time (e.g., increase over time; de-
cline; or growth followed by decline, or vice versa) can be equally consis-
tent with a given covariance matrix resulting in a repeated measure context.
Therefore, to fit a model only to the covariance matrix is tantamount to be-
ing wasteful of information about the development of the studied phenom-
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enon over time, which information is contained in the observed variable
means and their dynamic. Hence, in an analysis of change the observed
means are to be included since without them one cannot achieve the goal of
examining growth or decline over time.

As a result of this inclusion of variable means, there are more data
points to which the model is fit. That is, in addition to the elements of the
covariance matrix, there are also as many means to count as data points as
there are observed variables. For example, with k = 4 repeated measure-
ments assessments, there are k(k + 1)/2 = 4(5)/2 = 10 nonredundant ele-
ments of the covariance matrix plus k = 4 observed means that the model
must also ‘emulate’. As a result, in a mean structure analysis of k = 4 longi-
tudinally administered measures there are altogether q = k(k + 1)/2 + k
= 4(5)/2 + 4 = 14 pieces of empirical information to which the model is
fitted. From this number q one needs to subtract the number of model pa-
rameters in order to obtain the model degrees of freedom. As shown later,
conducting a MSA makes necessary the introduction of additional model
parameters concerning the structure of the variable means and in fact may
be unique to this structure; that is, these mean structure specific parame-
ters may not have implications for the variable variances and covariances.
This issue will be discussed further after details concerning LCA models
are presented.

How Is a Model Fit to the Covariance/Mean Matrix?

SEM accomplishes the inclusion of observed variable means in the analy-
sis—that is, achieves fitting a model to the sample covariance/mean
matrix—by extending the fit function with a special term (see discussion of
fit function in Chap. 1 and its Appendix). Hence, when fitting models to the
covariance/mean matrix, one uses an extended fit function relative to the
case when the model is fitted only to the covariance matrix (covariance
structure) of a given model. This special term that extends the original fit
function represents a weighted sum of the squared differences between the
observed means and those reproduced by the model, with the weights be-
ing the corresponding elements of the inverse of the model-reproduced
covariance matrix S (for the maximum likelihood method used throughout
this book). Just as the model has certain implications for the variances and
covariances of the analyzed variables, it also has consequences for the vari-
able means. These consequences can easily be worked out by noting that
the mean of any linear combination of variables, whether observed or latent
or of both types, is simply the same linear combination of their means. In or-
der to understand and conceptualize the LCA model implications and the
reproduced covariance/mean matrix, as relevant for this introductory text,
a fifth law is now added to those presented earlier in Chap. 1.
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Law 5 of Variable Means

The relationship between means of a linear combination of variables and
means of its constituents is given in the form of a specific law as follows,
which for the purposes of this chapter is to be considered added to the four
laws of variable variances and covariances discussed in Chap. 1:

Law 5. For any two random variables X and Y and any given constants a and b,

M(aX + bY) = aM(X) + bM(Y),

where M(.) denotes mean.

The validity of this law follows directly from the additive property of the
mean (e.g., Hays, 1994). Law 5 can obviously be generalized to any number
of variables—the mean of a linear combination of variables, regardless of
their number (and whether observed, latent or mixed), is identical to that
same combination of their means.

Once advised to perform a mean structure analysis, SEM programs will
automatically extend the fit function by the special term mentioned above,
which evaluates model fit with regard to means. A minimization of this fit
function therefore implies that when fitting a model to the mean structure
one is seeking estimates of its parameters that render the reproduced co-
variance/mean matrix as close as possible to the observed covariance/mean
matrix. Hence, at the final computed solution, the observed variances, co-
variances, and means are emulated as well as possible by the fitted model.

The One-Factor Latent Change Analysis Model

Returning to the one-factor model presented in Fig. 12, we note that the
model path diagram is presented in LISREL notation and includes the four
observed variables (Y¢s), each indexed according to its measurement occa-
sion. The model also proposes that each observed variable Y loads on a single
latent construct h1, which represents the time factor underlying their change
as indicated previously, and involves k = 4 successive measurements.

To determine the parameters of the model presented in Fig. 12, desig-
nated by asterisks there, we begin by following the six rules outlined in
Chap. 1. According to Rule 1, all error-term variances and the variance of
the factor h1 are parameters. Following Rule 3, all factor loadings are also
parameters. Rule 2 is not applicable to this model because there are no vari-
able covariances—there are no two-way arrows in Fig. 12. Rule 6 requires
that the scale of the latent variable be fixed, which can be accomplished by
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fixing either the variance of h1 or one of the factor loadings to a value of 1 (or
another constant). Here, we set the scale of the latent variable by fixing the
first measurement loading to a value of 1, that is, by setting the loading of Y1

equal to 1. Using this approach effectively sets the metric of the first mea-
surement as a baseline against which the subsequent change across the re-
peated assessments is estimated. This facilitates parameterization of the
rates of change in means over time into the factor loadings (see below).

To demonstrate an analysis on the basis of this proposed model, con-
sider the following data based partly on a cognitive intervention study by
Baltes, Dittmann-Kohli, and Kliegl (1986). (We thank Drs. Baltes, Dittmann-
Kohli, and Kliegl for making their data available.) The goal of their original
study was to examine the extent of reserve capacity of older adults in test
performance on repeatedly presented fluid-intelligence measures. As part
of the study, N = 161 older adults were administered tutor-guided training
in test-relevant skills that focused among other things on a specific compo-
nent of fluid intelligence, Induction. (See Chap. 5 for a discussion concern-
ing the construct of Fluid intelligence.) Four longitudinal assessments were
carried out using Thurstone’s Standard Induction test: (a) before the train-
ing program was administered (Y1), and then (b) one week after (Y2), (c)
one month after (Y3), and (d) 6 months after completion of training (Y4).
The covariance matrix and observed variable means are provided in Table
3. The means of the four repeated assessments are presented in the last col-
umn of Table 3 to emphasize that they are essential for achieving the goals
of latent change analysis of concern to us in this chapter.

EQS, LISREL, AND Mplus COMMAND FILES FOR A ONE-FACTOR
LCA MODEL

The input files for the EQS, LISREL, and Mplus software must indicate that
the model should be fit to both the covariance matrix and means. Accom-

TABLE 3

Covariance Matrix and Means of the Four Consecutive
Administrations

of Thurstone’s Standard Induction Test

THU_IND1 THU_IND2 THU_IND3 THU_IND4 Means

THU_IND1 307.46 37.48

THU_IND2 296.52 377.21 53.30

THU_IND3 295.02 365.10 392.47 54.82

THU_IND4 291.02 355.88 358.25 376.84 52.63

Note. THU_INDi = Thurstone’s Standard Induction test at ith assessment (i = 1, 2, 3, 4).



plishing this necessitates a slight modification of command files used when
fitting a model only to the covariance matrix. The modification follows from
an observation about model-reproduced means discussed in the previous
section: Just as there is a model-reproduced covariance matrix S(g), so are
there also model-reproduced means—denoted m(g)—that are obtained by
applying Law 5 to the model-definition equations.

For example, consider the following equation for Y2 in Fig. 12:

Y2 = l2 h1 + e2 , (5.1)

where l2 is the factor loading of Y2 on h1 and e2 is the corresponding error
term. Applying Law 5 to Equation (5.1), the following mean value for Y2 is
obtained:

M(Y2) = l2 M(h1) + M(e2) , (5.2)

but because M(e2) = 0 as a residual mean, Equation (5.2) becomes

M(Y2) = l2 M(h1) . (5.3)

In other words, the one-factor model under consideration reproduces the
mean of Y2 as the product of the latent variable mean and that measure’s fac-
tor loading. The same relationship applies to the means of all observed vari-
ables (keeping in mind that l1 = 1 due to the earlier decision to set the
latent metric by fixing that loading to 1).

As mentioned earlier in this chapter, in order to analyze latent change it
is necessary to analyze the mean structure of the observed variables, that is,
fit the model to the covariance/mean matrix. This makes meaningful also
the introduction of the latent variable mean M(h1) as a model parameter.
Otherwise, if no latent variable mean is introduced one would be effectively
assuming that its value is equal to zero. Obviously, this would lead to all the
observed variable means being reproduced as zero, as implied from Equa-
tions (5.1) and (5.3), and in general would lead to a misfit of a proposed
model. Hence, in the one-factor model under consideration in this section,
one needs to include (at least) the latent mean as a separate parameter in
order to ensure that the model is given a chance to fit the data as well as it
possibly can.1

Returning to the earlier discussion of parameters, the model under con-
sideration in Fig. 12 has a total of nine parameters—four error variances,
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1There is a more general treatment of mean structure analysis models with additional mean
structure parameters, the mean intercepts, which we will not deal with in this introductory
text. We refer the reader to Jöreskog & Sörbom (1993b, 1999), Bentler (2004), Muthén &
Muthén (2004), and Raykov (2004).
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three factor loadings, one latent variance, and the latent variable mean.
Since this is a LCA model, it is fit to the covariance/mean matrix as discussed
previously. Therefore, with four repeated assessments corresponding to
the four observed variables, it is fit to a total of 4(5)/2 + 4 = 14 data points;
these are the 10 nonredundant elements of the covariance matrix plus the
four manifest means. Hence, the model has 14 - 9 = 5 degrees of freedom.

Equation (5.3) also permits a direct interpretation of the factor loadings
as rates of mean change. For example, if Law 5 is applied to the equation for
the first occasion of measurement, Y1 = h1 + e1, the mean value, M(Y1) =
M(h1) is obtained; if one now inserts the value M(Y1) for M(h1) in Equation
(5.3) and expresses the equation in terms of l2, one obtains l2 =
M(Y2)/M(Y1). This implies that the value of the factor loading l2, under the
considered model, corresponds to the ratio of the means for that measure-
ment occasion and the first assessment (that we used to fix the scale of the
latent variable). The same relationship holds for the remaining factor load-
ings (as can be seen by simple analogy). Hence, the value of any factor load-
ing included in the model is obtained as a ratio of two means—for that
measurement occasion and the first assessment.

EQS Command File

The EQS input file for conducting a latent change analysis requires that the
latent variable mean be introduced using a special auxiliary variable. The
name of this variable is V999 and it can be thought of as a dummy variable
with two features: (a) it takes on the value of 1 for all subjects in the sample,
and (b) it is added internally by the program once it finds a reference to it in
the input file. By regressing the latent variable on this dummy variable, one
obtains in the resulting slope estimate the sample value of the latent mean.
Indeed, this is equivalent to using a simple regression model in which the
latent variable is the dependent variable, V999 is the single predictor, and
no intercept term is included; then the estimate of the slope of V999 will ob-
viously be the latent mean. This is, alternatively, equivalent to using a sim-
ple regression model with an intercept only, which will then evidently be
estimated at the mean of the dependent variable—in this case the latent
variable mean. Regressing the latent variable on the variable V999 implies
also that a residual term would have to be associated with the factor. Recall
the discussion in Chap. 1, in which it was emphasized that in general any de-
pendent variable should be associated with a residual (disturbance) term.
This requirement leads to an additional model equation for the latent mean
in the model, and thus an added equation for the one factor in the model in
Fig. 12. Specifically, the equation F1 = *V999 + D1 is used in the EQS com-
mand file to regress the factor on the dummy variable V999, and as a result
the residual term D1 receives the variance of the latent variable as a parame-



ter. This is due to two reasons: (a) D1 is formally an independent variable of
the model and hence its variance is a model parameter, and (b) applying
Law 4 for variances on the equation F1 = *V999 + D1 (see Chap. 1), one sees
that its variance equals that of the latent factor; the latter follows from the
fact that D1 is assumed to be unrelated to F1 and that V999 has no variance
because it is a dummy, constant variable.

Since the command file being created is for an LCA model, EQS must also
be provided with data to fit the model to a covariance/mean matrix. In order
to add the means of the observed variables to the input file, the command
/MEANS is used, typically included below the statement of the covariance
matrix. (Variable means must appear in the same order as in the covariance
matrix.) Once this is done, an analysis of the mean structure with EQS is in-
voked by using the keyword ANALYSIS=MOMENTS in the specification sec-
tion of the input file (see also Chap. 2). This keyword, ANALYSIS=
MOMENTS, signals to EQS that both the first-order and second-order mo-
ments of the observed variables are to be analyzed (recall from introductory
statistics that means are first-order moments, and their variances and co-
variances are second-order moments). Hence, the following EQS com-
mand file is created:

/TITLE
ONE-FACTOR LATENT CHANGE ANALYSIS MODEL;
/SPECIFICATIONS
VARIABLES=4; CASES=161; ANALYSIS=MOMENTS;
/LABELS
V1=THU-IND1; V2=THU-IND2; V3=THU-IND3; V4=THU-IND4;
F1=TIME-FAC;
/EQUATIONS
V1= F1+E1;
V2=*F1+E2;
V3=*F1+E3;
V4=*F1+E4;
F1=*V999+D1;
/VARIANCES
D1=*; E1 TO E4=*;
/MATRIX
307.46
296.52 377.21
295.02 365.10 392.47
291.02 355.88 358.25 376.84
/MEANS
37.48 53.30 54.82 52.63
/END;
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LISREL Command File

The LISREL input file for conducting a LCA requires that the latent variable
mean be introduced. Accordingly, latent variable means are referred to as
part of an A matrix (the Greek letter alpha), denoted as AL in the LISREL
syntax, and the same principles discussed in Chap. 2 apply when referring
to its elements. The matrix A is actually a row vector—a special matrix that
has only one row, but as many columns as there are latent variables in the
model. Hence, the elements of the ALpha matrix in the current one-factor
LCA example are AL(1), or simply AL(1, 1)—as there is only one latent vari-
able mean. The default setting for the ALpha matrix in LISREL is that it is
fixed, i.e., consists only of elements fixed at 0, unless the program is advised
otherwise. Thus, once ALpha is mentioned in the model-definition line,
LISREL is prepared for any instructions concerning latent means.

The LISREL command file for the present example is constructed follow-
ing the guidelines outlined in Chap. 2 and includes the definition of the AL-
pha matrix.

ONE-FACTOR LATENT CHANGE ANALYSIS MODEL
DA NI=4 NO=161
CM
307.46
296.52 377.21
295.02 365.10 392.47
291.02 355.88 358.25 376.84
ME

37.48 53.30 54.82 52.63
LA
THU-IND1 THU-IND2 THU-IND3 THU-IND4
MO NY=4 NE=1 AL=FR LY=FU, FR
LE
TIME-FAC
FI LY(1, 1)
VA 1 LY(1, 1)
OU

There are several points in this command file that are worth mentioning
here. First, there is a new line immediately following the covariance matrix,
which corresponds to the four means of the observed variables. This is the
reason the command line uses the keyword ME (for MEans). The observed
variables are subsequently labeled according to the four consecutive assess-
ments using Thurstone’s Induction test, i.e., THU-IND1 to THU-IND4. The
MOdel definition line also includes the new command, AL=FR. By freeing
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all elements of Alpha, this command tells the LISREL program that the la-
tent means are to be considered free model parameters. Since the model
being fitted contains only one factor, ALpha has only one element, and
hence this latent mean is hereby declared a free parameter. Then, for sim-
plicity, the matrix LY is declared to be full of free parameters. Because LY
has here only one column containing all four factor loadings (since this
model has just one latent variable), this in effect says that all of them are free
model parameters. (The first loading is later fixed to 1 to set the scale met-
ric.) Note that the PS matrix, here consisting of only one latent variance, has
not been mentioned. This is because PS=DI, FR (i.e., PS having free ele-
ments along its diagonal) is the default option for it, which is exactly what
the model under consideration entails. Similarly, the TE matrix containing
all error variances has not been mentioned, because TE=DI, FR is also the
default and just what is needed to specify all error variances as model pa-
rameters in this example. Finally, below the MOdel definition line, a label
TIME-FAC (for TIME-FACTOR) is provided for the single latent variable in
the model.

Mplus Command File

The Mplus input file has a few new features that we discuss in turn after pre-
senting it.

TITLE: ONE-FACTOR LATENT CHANGE MODEL
DATA: FILE IS EX6.1.MCM;

TYPE= MEANS COVARIANCE;
NOBSERVATIONS=161;

VARIABLE: NAMES ARE THU_IND1 THU_IND2 THU_IND3
THU_IND4;

ANALYSIS: TYPE=MEANSTRUCTURE;
MODEL: F1 BY THU_IND1@1 THU_IND2-THU_IND4;

[THU_IND1-THU_IND4@0];
[F1];

The first feature to mention is that the file containing the data to be ana-
lyzed, in this case variable variances and covariances as well as means, con-
sists of a first row containing the variable means, followed in the next rows
by the covariance matrix. To indicate this, we mention in the TYPE subcom-
mand of the DATA command that the data file represents both the covari-
ance matrix and means. Since we do not point to raw data, we need to also
mention the sample size subsequently. Given that we will analyze the mean
structure, it is necessary that we indicate this detail with the command
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ANALYSIS where the option TYPE states that analyzed will be the mean
structure. The MODEL command indicates THU_IND1 through THU_IND4
as indicators of a latent factor, F1, whereby its first loading is fixed at 1, as
discussed earlier. The default mean structure model in Mplus contains also
the variable mean intercepts (see Note 1 to this chapter), which can each be
thought of as the intercept in a formal regression model relating each mani-
fest variable to the underlying latent factor. In the present one-factor model
for growth, a main assumption is that the mean aspects of this change over
time are explained entirely in terms of the latent mean and factor loadings.
For this reason, none of the mean intercepts is a model parameter. (Note
that there are four mean intercepts, and if they were all declared additional
parameters the model would not be identified as it will have 15 parameters
whereas there would be only 14 data points to which it could be fitted—10
variances and covariances plus 4 means, as mentioned above; thus, the
model would fail the necessary condition for identification, see Chap. 1.)
Therefore, the intercepts of the observed variables—referred to in the
Mplus syntax by the name of the variable enclosed in brackets—need to be
fixed at 0, as done in the 2nd line of the MODEL command. However, the la-
tent mean is a model parameter and thus it needs to be declared as such. To
this end, the factor mean is referred to in the last MODEL command line by
the factor name enclosed in brackets.

MODELING RESULTS, ONE-FACTOR LCA MODEL

In this chapter, due to more extensive information provided in software
outputs, we present analytic results of a single SEM program in turn across
sections. In this section, we discuss the EQS results and note their essential
identity to those obtained with alternative software used in this book.

EQS Program Results

After verifying from the echoed input file that the model fitted is identical to
the one intended and that the data analyzed are those we wanted to fit the
model to, we need to know whether the model is technically sound and
whether EQS encountered any numerical difficulties while handling it.

PARAMETER ESTIMATES APPEAR IN ORDER,
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

This message is a reassurance that the results in the following output sec-
tions are trustworthy.
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RESIDUAL COVARIANCE/MEAN MATRIX (S-SIGMA) :

THU-IND1 THU-IND2 THU-IND3 THU-IND4 V999
V1 V2 V3 V4 V999

THU-IND1 V1 49.719
THU-IND2 V2 36.906 .396
THU-IND3 V3 28.687 -7.147 -14.974
THU-IND4 V4 34.865 -2.141 -9.037 -3.840

V999 V999 -.658 -.004 .137 .036 .000

AVERAGE ABSOLUTE COVARIANCE RESIDUALS   =   12.5697
AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS   =   11.9616

STANDARDIZED RESIDUAL MATRIX:

THU-IND1 THU-IND2 THU-IND3 THU-IND4 V999
V1 V2 V3 V4 V999

THU-IND1 V1 .162
THU-IND2 V2 .108 .001
THU-IND3 V3 .083 -.019 -.038
THU-IND4 V4 .102 -.006 -.023 -.010

V999  V999 -.037 .000 .007 .002 .000

AVERAGE ABSOLUTE STANDARDIZED RESIDUALS   =   .0399
AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS   =   .0388

LARGEST STANDARDIZED RESIDUALS:

NO. PARAMETER ESTIMATE NO. PARAMETER ESTIMATE
— — — — — — — — — — — — — — — — — — — — — —
1 V1, V1 .162 11 V4, V2 -.006
2 V2, V1 .108 12 V999, V4 .002
3 V4, V1 .102 13 V2, V2 .001
4 V3, V1 .083 14 V999, V2 .000
5 V3, V3 -.038 15 V999, V999 .000
6 V999, V1 -.037
7 V4, V3 -.023
8 V3, V2 -.019
9 V4, V4 -.010
10 V999, V3 .007



DISTRIBUTION OF STANDARDIZED RESIDUALS
— — — — — — — — — — — — — — — — — — — —

! !
20- -
! !
! !
! !
! ! RANGE FREQ PERCENT

15- -
! ! 1 -0.5 - — 0 .00%
! ! 2 -0.4 - -0.5 0 .00%
! ! 3 -0.3 - -0.4 0 .00%
! ! 4 -0.2 - -0.3 0 .00%

10- - 5 -0.1 - -0.2 0 .00%
! ! 6 0.0 - -0.1 7 46.67%
! ! 7 0.1 - 0.0 5 33.33%
! * ! 8 0.2 - 0.1 3 20.00%
! * ! 9 0.3 - 0.2 0 .00%
5- * * - A 0.4 - 0.3 0 .00%
! * * ! B 0.5 - 0.4 0 .00%
! * * * ! C ++ - 0.5 0 .00%
! * * * ! — — — — — — — — — — — — — — —
! * * * ! TOTAL 15 100.00%

— — — — — — — — — — — — — — — — — — — —
1 2 3 4 5 6 7 8 9 A B C EACH “*” REPRESENTS 1 RESIDUALS

There seem to be no impressively large residuals, and the model appears to
fit reasonably well locally. We note that the residuals for the means are pre-
sented in the last row of the matrix called “Residual covariance/mean ma-
trix” above. We now want to assess overall model fit.

GOODNESS OF FIT SUMMARY FOR METHOD = ML
INDEPENDENCE MODEL CHI-SQUARE   =   978.875 ON      10 DEGREES OF FREEDOM

INDEPENDENCE AIC   =   958.87451 INDEPENDENCE CAIC   =   918.06047
MODEL AIC   =      .86043 MODEL CAIC   =   -19.54659

CHI-SQUARE   =   10.860 BASED ON 5 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .05422

THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 10.724.

FIT INDICES (BASED ON COVARIANCE MATRIX ONLY, NOT THE MEANS)
— — — — —
BENTLER-BONETT NORMED FIT INDEX      =   .990
BENTLER-BONETT NON-NORMED FIT INDEX  =   .960
COMPARATIVE FIT INDEX (CFI)          =   .992

Overall, the model seems to present a plausible means of data description.
Note that the degrees of freedom for this model are five because this LCA
model is fitted not only to the variance-covariance matrix of the four re-
peated assessments but also to their means.
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ITERATIVE SUMMARY
PARAMETER

ITERATION ABS CHANGE ALPHA FUNCTION
1 146.573300 1.00000 5.87053
2 182.487600 1.00000 .58563
3 11.850730 1.00000 .07043
4 1.159758 1.00000 .06788
5 .031294 1.00000 .06788
6 .001690 1.00000 .06788
7 .000085 1.00000 .06788

After an initially fairly large fit-function value, a subsequent clean conver-
gence to the final solution is observed, which is what eventually matters
most of the time for data analysis purposes.

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

THU-IND1=V1 = 1.000 F1 + 1.000 E1

THU-IND2=V2 = 1.398*F1 + 1.000 E2
.024

57.505@

THU-IND3=V3 = 1.434*F1 + 1.000 E3
.026

55.685@

THU-IND4=V4 = 1.379*F1 + 1.000 E4
.025

55.042@

CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

TIME-FAC=F1 = 38.138*V999 + 1.000 D1
1.250
30.504@

VARIANCES OF INDEPENDENT VARIABLES
— — — — — — — — — — — — — — — — — –
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

E D
-— —-

E1 -THU-IND1 71.993*I D1 -TIME-FAC 185.748*I
8.435 I 21.977 I
8.535@I 8.452@I

I I
E2 -THU-IND2 13.958*I I

3.067 I I
4.551@I I

I I



E3 -THU-IND3 25.563*I I
4.047 I I
6.317@I I

I I
E4 -THU-IND4 27.429*I I

4.079 I I
6.725@I I

I I

STANDARDIZED SOLUTION: R-SQUARED

THU-IND1=V1 = .849 F1 + .529 E1 .721
THU-IND2=V2 = .981*F1 + .192 E2 .963
THU-IND3=V3 = .968*F1 + .250 E3 .937
THU-IND4=V4 = .963*F1 + .268 E4 .928
TIME-FAC=F1 = .000*V999 + 1.000 D1 .000

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
E N D  O F  M E T H O D

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

We note first that the latent mean is estimated at 38.138. As discussed earlier
for the EQS command file, this is the estimated slope of the regression of
the latent factor on the dummy variable V999.

We next evaluate the factor loading estimates by taking note of their esti-
mates and standard errors. This suggests that there is evidence of mean
growth along the studied dimension at all the posttests (V2 to V4 ) compared
to the pretest (V1 ). For example, we can see it by comparing the confidence
intervals (CI) of each posttest factor loading with that of the pretest, that is,
the factor loading fixed at 1. Adding twice the standard errors to and sub-
tracting twice the standard errors from each of the posttest loadings results
in the following approximate 95% CI (rounded off to 2 decimals): (1.35;
1.45), (1.38; 1.50), and (1.33; 1.43). Because none of these includes the
value of the factor loading at pretest, namely 1, it is suggested that each of
the posttest loadings is markedly higher than the pretest loading. Given the
earlier discussed interpretation of factor loadings as ratios of means to ini-
tial assessment mean, it appears that at each posttest there is considerable
growth in performance compared to pretest.

We emphasize, however, that using this confidence-interval approach is
not equivalent to formal hypothesis testing. Specifically, it is possible that
conclusions arrived at with this method may not be confirmed by a formal
hypothesis test, especially when more than two parameters are simulta-
neously compared. It is therefore recommended that in general this confi-
dence-interval based approach be used only as a rough explorative method
to informally examine parameter relationships.

The three CIs considered here also overlap to a considerable degree,
suggesting informally that the posttest factor loadings may be fairly similar
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in magnitude. To examine this suggestion formally, that is, via a statistical
test, one can impose a restriction on this LCA model and add the following
CONSTRAINT command in the EQS input file:

/CONSTRAINT
(V2,F1)=(V3,F1)=(V4,F1);

This equality constraint leads to a substantial decrement in model fit and is
associated with a chi-square value of T = 25.757 with df = 7. The difference in
chi-square values compared to the original model is DT = 14.897 with Ddf =
2, and hence significant (as the cut-off for the pertinent chi-square distribu-
tion with 2 degrees of freedom is 5.99 at significance level .05). This finding
indicates that the rate of change in means is not the same over all posttests.

LEVEL AND SHAPE MODEL

The one-factor LCA model presented in the previous sections is a rather re-
stricted means of longitudinal data description because only one factor is
postulated to account for change over time. A substantially less restrictive
model, called the level and shape model (LS), was described and popular-
ized by McArdle and colleagues as a very useful two-factor LCA model in
longitudinal research (McArdle, 1988; McArdle & Anderson, 1990). The LS
model was specifically developed to study two important aspects of the pro-
cess of latent change: (a) initial true status at the beginning of a study, re-
ferred to as Level factor; and (b) the change (increase or decrease) along the
underlying latent dimension of interest across all repeated assessments,
called Shape factor. An example path diagram of a LS model with four suc-
cessive measurement occasions (denoted by Y¢s) is presented in Fig. 13 us-
ing LISREL notation.

As can be seen by examining the model in Fig. 13, each observed variable Y
loads on two factors (except that for Y1 the loading on the second factor is set
to 0 – see discussion below), the Level and the Shape factors, denoted by h1

and h2, respectively. Interpretation of the Level and Shape factors as indi-
cated above is accomplished by fixing the majority of the factor loadings to a
value of 1, as seen from Fig. 13 where 1s are attached to most of the paths.
Specifically, fixing the loadings of the four assessment occasions on the Level
factor to 1 ensures that it is interpreted as an initial true (i.e., error-free) sta-
tus, that is, as a baseline level of the underlying developmental process under
investigation. Fixing the loading of the last assessment occasion on the Shape
factor to 1 as well and that of the first assessment occasion on it to 0, ensures
that this factor is interpreted as a true overall change factor, i.e., shape of the
change process along the studied latent dimension. Freeing the loadings of
the second and third assessment occasions on the Shape factor implies that
they denote the part of overall true change that occurs between the first and
each of these later two measurement occasions (McArdle & Anderson, 1990;
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Duncan et al., 1999). Finally, the Level and Shape factors are assumed to be
correlated, although their degree of interrelationship need not necessarily
be strong or even notable in an empirical setting.

We note that this interpretation of the Level factor and especially of the
Shape factor does not really fall within the boundaries of the traditional,
‘psychometric’ conceptualization of latent constructs, which we discussed
in some detail in Chap. 1. Specifically, here we interpret the Level and
Shape constructs as containing information about the individual develop-
ment on the studied, unobserved latent dimension of interest. Accordingly,
the Level factor represents the individual true scores of starting position,
i.e., the scores on the underlying latent dimension of the entire group of
studied subjects at the beginning of the investigation. The Shape factor, on
the other hand, represents the individual scores of true change across the
repeated assessments of the study. These scores, on both the Level or Shape
variables, are not observed but are associated with each individual in an
available sample. Therefore, in a sense these individual-specific scores can
be considered realizations, although unobserved, of random variables. The
scores describe the pattern of change over time along the underlying di-
mension, by representing the individual locations on the latter at the start
of the study and the amount of change that each individual undergoes
across the period of repeated assessment. That is, the Level and Shape
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FIG. 13. Example two-factor LCA model.



latent variables describe specific aspects of the individual trajectories over
time, rather than capture proper, unobserved traits that would be of sepa-
rate substantive interest per se (like intelligence, motivation, aptitude, etc.)
as would traditionally conceptualized latent variables. This distinction be-
tween the conventional, ‘psychometric’ conceptualization of the notion of
latent variable and that of unobserved variable containing scores on specific
characteristics of individual developmental trajectories over time becomes
even more pronounced in more complex latent change models (see Appen-
dix to this chapter for further discussion), but we stress that both ‘types’ of
latent variables can be included in a single model as done later in this
chapter when studying correlates and predictors of change.

In terms of analytic opportunities, the LS model achieves in general
more than the simple one-factor model presented earlier in this chapter. In
particular, with this two-factor modeling approach individual differences in
change over the longitudinal occasions are explicitly captured in the Shape
factor. The reason this is not possible in the one-factor model, is that the lat-
ter cannot effectively separate initial status from change in a studied con-
struct. This limitation becomes particularly important when one is
interested in studying correlates and predictors of growth or decline. In
such instances, as shown in a later section, the LS model advantages come
to the fore.

The LS model has also certain advantages over a particularly popular
growth curve model, the so-called Intercept-and-Slope (IS) model (e.g.,
Duncan et al., 1999). This model is obtained as a special case of the LS
model, when the loadings of the Shape factor in the LS model are fixed at
the times at which the repeated assessments occur. In the empirical case
under consideration in this chapter, with k = 4 measurements, the IS
model would be obtained directly from the LS model by setting the 2nd load-
ing of the Shape factor equal to a value of 2, the third to a 3, and the last one
to 4 rather than 1 as in the LS model. (To keep also this detail of the LS
model unchanged, fix the 2nd Shape loading to 1/3 and its 3rd loading to 2/3.)
A main assumption of the IS model is that latent change specifically pro-
gresses in a linear fashion. This assumption may oftentimes not be fulfilled
in social and behavioral research, however. In those cases, the more relaxed
LS model would be expected to fit the data better, since it does not impose
any specific form upon the pattern of latent change. In fact, the LS model is
equally applicable when change progresses in a nonlinear (as well as linear)
manner, and also when it is not monotonic—e.g., growth followed by de-
cline or vice versa, or with intermediate or initial/final periods of no change.
The LS model can be alternatively looked at as obtained from the IS model
when the fixing of all but first and last loadings on the Slope factor is given
up. Hence, the LS model is more general than the IS model in that it allows
nonlinear change as well, with the IS model being a special case of the LS
model. This relationship will become of particular relevance when discuss-
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ing the Mplus input file for the LS model. Since the IS model is a special case
of the LS model, the rest of this chapter is developed around the more gen-
eral model, the Level-and-Shape model. Hence, all discussion and develop-
ments in the remainder of the chapter are applicable to the IS model as well,
after the corresponding fixing (see above in this paragraph) of intermediate
loadings on the Shape factor is carried out in the LS model.

To demonstrate a latent change analysis based on the LS model, consider
again the data from the cognitive intervention study that we used with the
one-factor model. Recall that four repeated assessments on N = 161 older
adults were carried out in that study using Thurstone’s Standard Induction
test. To determine the parameters of the LS model in Fig. 13, we follow the
six rules outlined in Chap. 1. Rules 1 and 2 imply that all error variances and
latent variances and covariances are parameters. Rule 3 suggests that all fac-
tor loadings are parameters (except of course those that are already speci-
fied as fixed). Rule 4 is not applicable here because there are no explanatory
relationships among latent variables. Rule 6 has already been taken care of
in this model because, by fixing most of the factor loadings to 1, the metric
of each latent variable is already set.

EQS, LISREL, AND Mplus COMMAND FILES, LEVEL AND SHAPE
MODEL

In order to set up the software input files, we follow guidelines discussed in
Chap. 2, and in the case of Mplus take advantage of some additional default
features. Given that the same developmental process is followed at the four
repeated assessments, we also incorporate into the LS model the reason-
able assumption of equal measurement error impact upon subject perfor-
mance over all measurement occasions.

EQS Command File

/TITLE
LEVEL AND SHAPE MODEL;
/SPECIFICATIONS
VARIABLES=4; CASES=161; ANALYSIS=MOMENTS;
/LABELS
VI=THU-IND1; V2=THU-IND2; V3=THU-IND3; V4=THU-IND4;
F1=LEVEL; F2=SHAPE;
/EQUATIONS
V1=F1+E1;
V2=F1+*F2+E2;
V3=F1+*F2+E3;
V4=F1+F2+E4;



F1=*V999+D1;
F2=*V999+D2;
/VARIANCES
D1 TO D2=*; E1 TO E4=*;
/COVARIANCES
D1,D2=*;
/CONSTRAINTS
(E1,E1)=(E2,E2)=(E3,E3)=(E4,E4);
/MATRIX
307.46
296.52 377.21
295.02 365.10 392.47
291.02 355.88 358.25 376.84
/MEANS
37.48 53.30 54.82 52.63
/END;

We note that error impact identity over time is accomplished by setting all
error variances equal to one another with the CONSTRAINT command. The
command ANALYSIS=MOMENTS ensures that a covariance and mean
structure matrix is to be analyzed.

LISREL Command File

LEVEL AND SHAPE MODEL
DA NI=4 NO=161
CM
307.46
296.52 377.21
295.02 365.10 392.47
291.02 355.88 358.25 376.84
ME
37.48 53.30 54.82 52.63
LA
THU-IND1 THU-IND2 THU-IND3 THU-IND4
MO NY=4 NE=2 AL=FR PS=SY,FR
LE
LEVEL SHAPE
VA 1 LY(1, 1) LY(2, 1) LY(3, 1) LY(4, 1)
VA 1 LY(4, 2)
FR LY(2, 2) LY(3, 2)
EQ TE(1)-TE(4)
OU
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We note the use of dash to connect the simpler references to first and last as-
sessment error variances in the last line before the output command, which
readily accomplishes introduction of the error variance constancy over
time.

Mplus Command File

TITLE: LEVEL AND SHAPE MODEL
DATA: FILE IS EX6.2.MCM;

TYPE IS MEANS COVARIANCE;
NOBSERVATIONS=161;

VARIABLE: NAMES ARE THU_IND1 THU_IND2 THU_IND3
THU_IND4;

ANALYSIS: TYPE IS MEANSTRUCTURE;
MODEL: I S | THU_IND1@0 THU_IND2*.9 THU_IND3*1

THU_IND4@1;
THU_IND1-THU_IND4 (1);

OUTPUT: RESIDUAL;

Relative to the Mplus command file for the one-factor latent change
model in the preceding section, the only new part in this file is found in
the MODEL command. The first line of this command begins with a refer-
ence to the Intercept-and-Slope model (that as discussed earlier is a spe-
cial case of the more general Level-and-Shape model of concern to us in
this chapter), stating formally the initials of its two factors, Intercept and
Slope. Subsequently in the same line, however after the vertical bar to
separate I and S from the rest in that line, we free the intermediate two
loadings on the Slope factor. The effect of this, as indicated in an earlier
section of this chapter, is to generalize the IS model to the LS model that
is thereby completely defined as a generic model. In the second line of
the MODEL command, we fix the error variances of the observed vari-
ables to be the same, by just listing their names and attaching an integer
number (e.g., 1) within parentheses at the end of that line. (We include
the request for model residuals in the last command line since the Mplus
output will be the only one for this model, which we will discuss shortly.)

MODELING RESULTS FOR THE LEVEL AND SHAPE MODEL

In this section, in continuation of the last part of the preceding subsection,
we discuss the output obtained with Mplus (which is essentially identical to
those furnished by EQS and LISREL as can be seen by submitting their above
provided inputs).
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Mplus Results

After dispensing with the echoed back command file and technical details
on the execution of the numerical optimization routine, we look for a reas-
surance that Mplus has not had problems translating our command file.

INPUT READING TERMINATED NORMALLY
THE MODEL ESTIMATION TERMINATED NORMALLY

The above two statements confirm that compiling the input was not prob-
lematic and that the fit function minimization process was uneventful.

TESTS OF MODEL FIT
Chi-Square Test of Model Fit

Value 6.836
Degrees of Freedom 6
P-Value 0.3361

Chi-Square Test of Model Fit for the Baseline Model
Value 984.992
Degrees of Freedom 6
P-Value 0.0000

CFI/TLI
CFI 0.999
TLI 0.999

Loglikelihood
H0 Value -2319.729
H1 Value -2316.311

Information Criteria
Number of Free Parameters 8
Akaike (AIC) 4655.458
Bayesian (BIC) 4680.109
Sample-Size Adjusted BIC 4654.783

(n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.029
90 Percent C.I. 0.000 0.110
Probability RMSEA <= .05 0.571

SRMR (Standardized Root Mean Square Residual)
Value 0.004

The fit indices of the model point to it being a plausible overall means of
data description and explanation. (That the model fits well also locally is
seen by an examination of the covariance and means residuals presented
later in the output and discussed below.) We now proceed to interpreting
its parameter estimates.



MODEL RESULTS
Estimates S.E. Est./S.E.

I   |
THU_IND1 1.000 0.000 0.000
THU_IND2 1.000 0.000 0.000
THU_IND3 1.000 0.000 0.000
THU_IND4 1.000 0.000 0.000

S   |
THU_IND1 0.000 0.000 0.000
THU_IND2 1.034 0.033 31.596
THU_IND3 1.138 0.035 32.893
THU_IND4 1.000 0.000 0.000

S   WITH
I 8.682 12.164 0.714

There is evidence of growth from pretest to first posttest, as well as from
pretest to 2nd posttest. Indeed, the second and third Shape loadings are
significant; in addition, their approximate 95%-confidence intervals (ob-
tained by subtracting and adding twice the standard error to correspond-
ing loading estimate) are respectively (.968, 1.100) and (1.068, 1.208),
and thus completely to the right of the value of 0 that this factor has as a
loading on pretest. At delayed posttest (4th assessment), elderly are on
average at about the same position as at 1st posttest, since the confidence
interval for the second Shape loading covers 1, its loading at the last mea-
surement point. Given that the confidence interval for 3rd assessment is
completely above 1, it is suggested that on average subjects perform at 3rd

posttest better than they do at delayed posttest (last assessment occasion,
at the end of the study). Hence, there seems to be some indication of a
drop in performance at the last measurement point relative to the best av-
erage achievement in the study, which is at 3rd assessment.

Means
I 37.476 1.377 27.213
S 15.238 0.756 20.152

The significance of the mean of the Shape factor, as seen from its t-value be-
ing 20.152 and thus outside the nonsignificance interval (-2, 2), indicates
that overall there has been an improvement in average performance. This
suggests average ability growth across the six months of this study.

Intercepts
THU_IND1 0.000 0.000 0.000
THU_IND2 0.000 0.000 0.000
THU_IND3 0.000 0.000 0.000
THU_IND4 0.000 0.000 0.000

The intercept parameters are kept at 0 since they are not relevant in the con-
text of modeling repeated assessments along a given dimension using a sin-
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gle indicator of the latter; this empirical setting is precisely the one we are
dealing with in the present example.

Variances
I 283.233 34.058 8.316
S 50.070 8.976 5.578

The significant Level and Shape variances (t-values being 8.316 and 5.578,
respectively) indicate marked individual differences in starting position as
well as in the amount of ability change over the course of the study.

Residual Variances
THU_IND1 22.147 1.745 12.689
THU_IND2 22.147 1.745 12.689
THU_IND3 22.147 1.745 12.689
THU_IND4 22.147 1.745 12.689

All error variances are significant, suggesting considerable portions of ob-
served variance in the Induction measure as being a result of error of mea-
surement with stable variance.

RESIDUAL OUTPUT

ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)

Model Estimated Means/Intercepts/Thresholds
THU_IND1 THU_IND2 THU_IND3 THU_IND4
________ ________ ________ ________

1 37.476 53.227 54.812 52.714

Residuals for Means/Intercepts/Thresholds
THU_IND1 THU_IND2 THU_IND3 THU_IND4
________ ________ ________ ________

1 0.004 0.073 0.008 -0.084

Model Estimated Covariances/Correlations/Residual Correlations
THU_IND1 THU_IND2 THU_IND3 THU_IND4
________ ________ ________ ________

THU_IND1 305.379
THU_IND2 292.207 376.827
THU_IND3 293.111 360.968 389.944
THU_IND4 291.915 352.645 358.757 372.814

Residuals for Covariances/Correlations/Residual Correlations
THU_IND1 THU_IND2 THU_IND3 THU_IND4
________ ________ ________ ________

THU_IND1 0.171
THU_IND2 2.471 -1.960
THU_IND3 0.077 1.865 0.089
THU_IND4 -2.703 1.024 -2.732 1.685
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These mean and covariance residuals indicate that the model fits well the
data also locally, i.e., with regard to all means, variances, and covariances.
Specifically, the relatively low magnitude of the mean and covariance re-
siduals (compare their magnitude to those of observed means and of the
variances and covariances, respectively) demonstrates that the model has
been in a position to reproduce quite well the analyzed data. Together
with the above discussed finding of satisfactory overall fit, these results al-
low one to place trust in the provided interpretations of model parame-
ters in this section.

STUDYING CORRELATES AND PREDICTORS OF LATENT CHANGE

The LS model we have been dealing with in the preceding section is also
very useful for purposes of examining correlates and predictors of change.
These type of concerns arise frequently in empirical research when a scien-
tist is interested in determining those characteristics of individuals, which
are related to patterns of change over time. For example, in the cognitive in-
tervention study of older adults presented earlier, there may be an interest
in finding out which individuals exhibit the most salient improvement or
least pronounced decline along the studied dimensions. The special prop-
erty of the LS model that makes it a very useful means for addressing these
kinds of queries is the fact that it parameterizes overall ability change in one
of its latent variables, the Shape factor.

To permit the study of correlates and predictors of change, we extend
the LS model to include putative covariates and relate them to the Level and
Shape factors. Specifically, by focusing on the correlations of the Shape fac-
tor with presumed predictors, one obtains estimates of the degrees of inter-
relationship between the latter and overall latent change. For example, if
these correlations are notable and positive like the mean of this factor, indi-
viduals with high values on the correlates tend to be among those who im-
prove most, and individuals with low values tend to improve the least.
Conversely, if the correlations are negative then, individuals with high cor-
relate values tend to be among those who improve least, and individuals
with low correlate values tend to improve the most. Alternatively, when
studying correlates of decline (and the average of the Shape factor is nega-
tive), if these correlations are marked and positive then individuals with
high correlate values tend to be among those who decline least, and individ-
uals with low correlate values tend to decline the most. If the correlations
are negative then, individuals with high correlate values tend to be among
those who decline the most, and individuals with low correlate values tend
to decline the least.

This extension of the LS model is displayed graphically in Fig. 14 for the
case of a latent covariate (h3) with two indicators (Y5 and Y6) using the cogni-
tive intervention study on older adults presented earlier, which is examined
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further in the next section. The only difference between the LS models pre-
sented in Figures 13 and 14 is the added latent covariate. We emphasize that
for the purposes of studying correlates of change one can include any num-
ber of covariates in an appropriately extended LS model. In fact, the covari-
ates may be (a) manifest or latent, (b) perfectly measured or fallible, or (c)
once or repeatedly assessed. In case (c), one may also consider modeling
the repeated assessments of the covariates themselves in terms of a perti-
nent LS model (e.g., Raykov, 1995).

Before proceeding to the analyses of the cognitive intervention data based
on the LS model in Fig. 14, a useful generalization of the modeling approach
for studying multiple groups, called a multisample analysis, is introduced.

FIG. 14. Example latent covariate LCA model.



Multisample Analysis

Many studies, especially in the behavioral and social sciences, examine dif-
ferences or similarities between two or more groups in the structure of a
phenomenon under investigation. For example, groups may differ in terms
of age, educational level, nationality, ethnicity, religious or political affilia-
tion. When the same phenomenon is studied in all groups, it is important to
have a methodological means that allows researchers to compare the
groups along special dimensions of interest as well as to pinpoint their simi-
larities or lack thereof. SEM offers a widely and readily applicable method
for conducting these types of comparisons using a modification of its gen-
eral model-fitting approach. This generalization accounts for the fact that
group comparisons necessitate the simultaneous estimation of models in
all samples involved. The generalization is applicable both to models fitted
only to the covariance matrix of a set of observed variables (i.e., in analyses
of their covariance structure only), and to models fitted to their covariance/
mean matrix (i.e., in analyses of their mean structure).

To accomplish this generalization, the model(s) of interest are postu-
lated within each of the groups and then their simultaneous estimation is
carried out. This is accomplished by minimizing a compound fit function
that results by adding the fit functions across all study groups, thereby
weighting them proportionately to the sizes of the available samples. This
permits the simultaneous estimation of all parameters of the models in all
groups. At the minimum of the compound fit function, a test of the overall
model is possible, just as in the case of a single group or population (see
Chap. 1). It is also possible to impose restrictions on model parameters
within as well as across groups, and to estimate and test the overall model
subject to these constraints. This is achieved in a way that is very similar to
fitting a model to a single group, and accounts for the fact that one is dealing
with an extended simultaneous model across all groups in which the
(cross-group) restricted parameters satisfy the imposed constraint(s).

Correlates of Change in a Cognitive Intervention Study

In this section, the multisample approach is demonstrated in an example
study of correlates of change with the extended LS model presented in Fig.
14. The approach is applied to data based partly on the Baltes et al. (1986)
investigation, which was originally conceptualized and conducted as a
two-group study. In the previous sections, only the data from the experi-
mental group (N = 161) was analyzed. In fact, there was also a no contact
control group in that investigation, with N = 87 older adults, who did not
receive any cognitive training nor feedback on how they did on the intelli-
gence tests administered to them. All elderly in the control group were
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given the same test battery at the same assessment points as the experimen-
tal group. Now a two-group comparison can be conducted to determine
whether the Figural relations construct can be considered to be a covariate
of performance improvement. Two measures are used next as indicators of
the Figural relations construct, a figural relations test and a culture-fair test,
which were administered to both groups of elders before the training was
administered in the experimental group. By conducting the multisample
analysis, we will be able to accomplish the following: (a) ascertain if there is
performance improvement in the control and experimental groups, (b) ex-
amine group similarities and differences in the pattern of change across the
six months of the study, (c) see whether the construct of Figural relations is
predictive of subsequent improvement in Induction test performance, and
(d) explore whether the two groups differ with respect to the prediction
mentioned in point (c).

For the demonstration purposes of this section, we use the LISREL pro-
gram that we must advise of our request to carry out a multisample analysis.
In order to convey this information, a number of new commands lines are
introduced in the following input file.

STUDYING COVARIATES AND PREDICTORS OF CHANGE * EXP. GR
DA NI=6 NO=161 NG=2
CM
307.46
296.52 377.21
295.02 365.10 392.47
291.02 355.88 358.25 376.84
203.47 229.25 221.49 229.92 260.76
169.40 180.76 185.95 181.70 155.22 159.38
ME
37.48 53.30 54.82 52.63 49.48 48.39
LA
THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
MO NY=6 NE=3 AL=FR PS=SY,FR
LE
LEVEL SHAPE FIG-REL1
VA 1 LY(1, 1) LY(2, 1) LY(3, 1) LY(4, 1)
VA 1 LY(4, 2)
FR LY(2, 2) LY(3, 2)
VA 1 LY(5, 3)
FR LY(6, 3)
EQ TE(1)-TE(4)
ST .1 ALL
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ST 100 PS(1, 1) PS(2, 2) PS(3, 3) TE(1)-TE(6)
OU NS RS
* CONTROL GROUP
DA NI=6 NO=87
CM
319.22
326.42 410.25
318.80 378.98 409.07
333.06 388.68 390.59 432.70
171.01 209.41 215.96 213.76 262.79
149.82 192.75 193.69 200.82 148.86 161.98
ME
38.62 44.96 47.88 48.01 51.97 49.81
LA
THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
MO LY=PS PS=PS TE=PS AL=PS
LE
LEVEL SHAPE FIG-REL1
OU

The LISREL command file has two main parts that pertain to the model
specification for each of the two groups under consideration. Note that in
the title line (which will recur as a page title throughout the output for the
first group) there is an indication that the first portion of the input contains
the information for the experimental group. The keyword NG=2 on the fol-
lowing line in the input advises the program that a two-group analysis is to
be performed (NG stands there for “Number of Groups”). Also note that the
number of analyzed variables is now six because the earlier LS model has
been extended to include the two indicators of the covariate factor, as pre-
sented in Fig. 14. The remaining portion of the first part of the input file is
largely the same as that for the single-group LS model in the previous sec-
tion; this is because the portion defines exactly the same model for the ex-
perimental group. The only difference is that here there are three latent
variables—in addition to the Level and Shape factors, that of Figural rela-
tions is also included in the model.

The three latent means are next declared to be model parameters by the
keyword AL=FR. Then the latent covariance matrix is defined as having all
its elements as parameters by the keyword PS=SY,FR, that is, as being sym-
metric and consisting of free parameters only. The remaining three matri-
ces (LY, BE, and TE) are not mentioned in this line because they being at
their defaults serve exactly our purposes. (At the default settings, LY is full
and fixed; BE is a zero matrix, i.e., there are no latent explanatory relation-
ships; and TE is diagonal and free, i.e., having model parameters along its
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diagonal that are all error variances and parameters.) The free factor load-
ings are then declared: one for a Figural relations indicator, using the key-
word FR LY(5, 3); and two pertaining to the repeated assessments with the
Induction test. Next the scale of the Figural relations construct is set by
fixing its other factor loading to 1.

After imposing the time-invariance constraint on the corresponding four
error variances, one provides start values for all the model parameters. This
activity is sometimes needed in empirical research because SEM programs
are not always able to come up with their own good start values. Hence they
need an initial jump start to find the way toward the final solution. To
achieve this, first start all parameters at a value of 0.1 and then, with the next
line, override this choice only for the variances by starting them at a value of
100. This choice of large start values for all variance parameters (pertaining
to both latent and observed variables) and small values for all the other
model parameters (including factor loadings and independent variable co-
variances) is in general a good way of providing initial values for model pa-
rameters if needed. The choice contributes to the stability of the numerical
subroutine during the fit function minimization process, and especially at
its start. The last line pertaining to the experimental group signals the end
of the input by the keyword OU, and asks the program to use the supplied
start values instead of computing its own, as it would otherwise. This is
achieved by the added keyword NS (for “No Start values”).

The next input line provides a title for the output portions pertaining
to the results for the second group, i.e., the control group. This title line
will also appear at the beginning of any output page that displays results
of analyses for the control group. Hence, it is advisable to always have a
title line to label each group in a multisample analysis. The next data line
advises the program of the number of variables underlying the following
covariance matrix and means row, as well as sample size in the control
group. The model line then notifies the program that in this group a
model is being defined in which all matrices have the same pattern and
start values as those of the preceding group, the experimental group.
This is achieved by stating each matrix name followed by the keyword PS
(for “Same Pattern and Same Start values”; matrices not mentioned in
this line are assumed to be invariant across groups). The effect of this is
that exactly the same model is defined in the control group as in the ex-
perimental one, and its parameters are assigned the same initial values in
both groups.

The last line OU signals the end of the input file for the current group,
and hence for the whole model because it is being fitted to two groups.

This LISREL command file generates the following output (again, omit-
ting irrelevant or redundant sections and inserting comments where
appropriate).
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EXPERIMENTAL GROUP

LAMBDA-Y
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

THU-IND1 0 0 0
THU-IND2 0 1 0
THU-IND3 0 2 0
THU-IND4 0 0 0

FR11 0 0 0
FR12 0 0 3

PSI
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 4
SHAPE 5 6
FIG-REL1 7 8 9

THETA-EPS
THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — — — – –

10 10 10 10 11 12

ALPHA
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

13 14 15

CONTROL GROUP

LAMBDA-Y
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

THU-IND1 0 0 0
THU-IND2 0 16 0
THU-IND3 0 17 0
THU-IND4 0 0 0
FR11 0 0 0
FR12 0 0 18

PSI
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 19
SHAPE 20 21
FIG-REL1 22 23 24

THETA-EPS
THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — — — – –

25 25 25 25 26 27

ALPHA
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

28 29 30
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First, make sure that the numbering and positions of the model parameters
are correct for both groups. Note that the numbering of model parameters
begins in the experimental group and continues in the control group,
rather than starts anew there. This is due to the fact that we requested a si-
multaneous two-group analysis rather than two separate analyses. This fea-
ture will become especially important in the next fitted model, when
cross-group parameter constraints are introduced.

Before beginning the parameter estimate interpretation, inspect the global
goodness-of-fit section of the output.

Global Goodness of Fit Statistics

Degrees of Freedom = 24
Minimum Fit Function Chi-Square = 27.33 (P = 0.29)

Normal Theory Weighted Least Squares Chi-Square = 26.14 (P = 0.35)
Estimated Non-centrality Parameter (NCP) = 2.14

90 Percent Confidence Interval for NCP = (0.0 ; 18.80)
Minimum Fit Function Value = 0.11

Population Discrepancy Function Value (F0) = 0.0087
90 Percent Confidence Interval for F0 = (0.0 ; 0.076)
Root Mean Square Error of Approximation (RMSEA) = 0.027
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.080)

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.70
Expected Cross-Validation Index (ECVI) = 0.35

90 Percent Confidence Interval for ECVI = (0.29 ; 0.37)
ECVI for Saturated Model = 0.17

ECVI for Independence Model = 9.61
Chi-Square for Independence Model with 30 Degrees of Freedom = 2351.89

Independence AIC = 2375.89
Model AIC = 86.14

Saturated AIC = 84.00
Independence CAIC = 2430.05

Model CAIC = 221.55
Saturated CAIC = 273.56

Normed Fit Index (NFI) = 0.99
Non-Normed Fit Index (NNFI) = 1.00

Parsimony Normed Fit Index (PNFI) = 0.79
Comparative Fit Index (CFI) = 1.00
Incremental Fit Index (IFI) = 1.00
Relative Fit Index (RFI) = 0.99

Critical N (CN) = 387.88

All indices point to an acceptable fit of the overall two-group model. Note
the low magnitude of the chi-square value compared to the model degrees
of freedom (observe its p value), as well as the RMSEA index, which is well
below the proposed threshold level of .05. Furthermore, the left endpoints
of the confidence intervals for RMSEA, the noncentrality parameter, and the
population minimal fit-function value are all at their best value of 0. Ob-
serve that the degrees of freedom are twice those for the extended LS model
when it is fitted only to a single group. The same holds true for the model
parameters—their number is twice that of the extended LS model when fit-
ted to only one group. This result will always be true whenever the same
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model is postulated in two distinct groups and no cross-group parameter
constraints are imposed—both the degrees of freedom and number of pa-
rameters in the overall two-group model are exactly twice those if the
model were fitted to either of the groups separately.

Given the satisfactory fit indices of the overall two-group model, one can
now continue with parameter interpretation.

EXPERIMENTAL GROUP

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

THU-IND1 1.00 - - - -
THU-IND2 1.00 1.03 - -

(0.03)
31.43

THU-IND3 1.00 1.14 - -
(0.03)
32.72

THU-IND4 1.00 1.00 - -
FR11 - - - - 1.00
FR12 - - - - 0.97

(0.02)
61.34

The first four lines of the factor loading matrix contain essentially the same
results as those in the preceding section in which only data from the experi-
mental group data was analyzed with the LS model, and hence warrant the
same interpretations (see also the significantly positive Shape factor mean
below). The last two lines of the factor loadings matrix pertain to the added
covariate indicators, and it is clear that they load quite similarly on the Figural
relations factor—observe the standard error of the free factor loading and its
readily obtained approximate confidence interval (0.93; 1.01), which in-
cludes 1 that is the factor loading of the other latent covariate indicator.

Covariance Matrix of ETA

LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 285.00
SHAPE 8.74 50.32
FIG-REL1 182.51 15.44 150.63

Mean Vector of Eta-Variables

LEVEL SHAPE FIG-REL1
— — — — — — — — — — –
37.48 15.23 49.78



PSI

LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 285.00
(34.38)
8.29

SHAPE 8.74 50.32
(12.27) (9.05)
0.71 5.56

FIG-REL1 182.51 15.44 150.63
(23.32) (9.17) (19.92)
7.83 1.68 7.56

From the last set of lines in the PSI matrix one can infer that there is a weak
(linear) relationship between Figural relations as a putative correlate of
change along the Induction dimension in the experimental group. The co-
variance between the Shape factor and the Figural relations construct falls
short of statistical significance: estimate = 15.44, standard error = 9.17,
and t value = 1.68. Although this result may be a consequence of the limited
sample size (as mentioned before), it appears that although the Figural rela-
tions construct represents a correlate of the initial status in inductive-rea-
soning ability, it has a limited capability for predicting the amount of
improvement along the Induction dimension in this group.

THETA-EPS

THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

22.29 22.29 22.29 22.29 80.44 28.07
(1.76) (1.76) (1.76) (1.76) (10.98) (6.71)
12.65 12.65 12.65 12.65 7.32 4.18

Squared Multiple Correlations for Y - Variables

THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

0.93 0.94 0.94 0.94 0.65 0.83

ALPHA
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –
37.48 15.23 49.78
(1.39) (0.76) (1.19)
27.04 20.03 41.66

Group Goodness of Fit Statistics

Contribution to Chi-Square = 22.42
Percentage Contribution to Chi-Square = 82.05
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Root Mean Square Residual (RMR) = 14.38
Standardized RMR = 0.055

Goodness of Fit Index (GFI) = 0.96

The goodness-of-fit statistics represent the chi-square contribution by the
experimental group to the overall fit of the model. Although it is rather diffi-
cult to judge this single-group contribution quantity in a simultaneous
modeling analysis, one can always relate it to the degrees of freedom for a
model involving no group constraints. In this case, the degrees of freedom
are 12 (half these of the overall model) and so this chi-square value does not
seem excessively large. Thus, informally, in the experimental group there is
no indication of serious model misfit.

CONTROL GROUP

LAMBDA-Y
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

THU-IND1 1.00 - - - -
THU-IND2 1.00 0.70 - -

(0.07)
9.56

THU-IND3 1.00 0.98 - -
(0.08)
12.03

THU-IND4 1.00 1.00 - -
FR11 - - - - 1.00
FR12 - - - - 0.96

(0.02)
43.40

Although the results for the control group share some similarities with
those observed in the experimental group (i.e., the loadings of the
covariates on the Figural relations construct are quite similar to one an-
other), there are some differences. Despite the fact that there is also
growth in mean performance for the control group (i.e., the Shape factor
loadings are significant; see also the significant and positive Shape factor
mean below in this section), looking closely at the approximate 95%-con-
fidence intervals for the third Induction assessment (0.82; 1.14) reveals
that performance at that measurement point is the same as at delayed
posttest (i.e., at final assessment). This is an aspect in which the two
groups differ. Although in the experimental group there is a drop at the
last assessment occasion, in the control group there is an indication of
steady mean performance at the last two assessment occasions. (See also
the estimate and confidence interval for the 2nd assessment loading on the
Shape factor, whereby this interval is completely to the left of 1 that is the
last loading on this factor.)
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Covariance Matrix of ETA

LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 293.33
SHAPE 38.71 27.51

FIG-REL1 161.28 49.40 153.54

Mean Vector of Eta-Variables

LEVEL SHAPE FIG-REL1
— — — — — — — — — — –
38.57 9.40 52.02

PSI
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 293.33
(49.23)
5.96

SHAPE 38.71 27.51
(17.13) (12.61)
2.26 2.18

FIG-REL1 161.28 49.40 153.54
(31.00) (13.53) (27.76)
5.20 3.65 5.53

Unlike the experimental group, in the control group there is a significant
(linear) relationship between Figural relations as a correlate of change
along the Induction dimension. The covariance between the Shape factor
and the Figural relations construct is significant here: parameter estimate =
49.40, standard error = 13.53, and t value = 3.65. This difference in signifi-
cance of covariance coefficients across groups may be explainable with the
fact that there was no training in the control group, whereas in the experi-
mental group its effect may have capitalized on the particular modules of
Induction-related tutor-guided instructions and part of them may have
been forgotten by the elderly six months after training.

THETA-EPS
THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

30.72 30.72 30.72 30.72 104.14 22.36
(3.31) (3.31) (3.31) (3.31) (18.69) (9.66)
9.27 9.27 9.27 9.27 5.57 2.32

Squared Multiple Correlations for Y - Variables

THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

0.91 0.92 0.93 0.93 0.60 0.86
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ALPHA
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –
38.57 9.40 52.02
(1.94) (1.00) (1.72)
19.88 9.37 30.24

As in the experimental group, overall mean performance improvement is
significant in the control group. This is reflected in the mean of the Shape
factor: estimate = 9.40, standard error = 1.00, and a significant t value =
9.37. This is perhaps a reflection of the practice effects at work in both
groups, due to the repeated assessment with the same instruments. Never-
theless, it is interesting to compare the mean overall growth across groups,
to find out if there is significant training gain in the experimental group over
and above these practice effects. As shown next, this comparison can be ac-
complished by examining restricted versions of the model. Another inter-
esting comparison involves the Shape mean across the control and
experimental groups. Because the two groups were randomly formed at
pretest, their means were comparable then. Regarding the Shape mean
(control = 9.40 and experimental = 15.23), one can explore informally if
the overall change was higher in the experimental group by comparing
their confidence intervals. As it turns out, the approximate 95% CI for the
Shape mean in the control group is (7.40; 11.40) and to the left of that in the
experimental group, (13.71; 16.76), which suggests informally that mean
overall change is considerably more pronounced in the experimental than
the control group. We return to this issue in the next subsection where we
examine it more precisely.

Studying Plausibility of Group Restrictions

As discussed in chapter 1, in general one can make more precise state-
ments about parameter comparability across and within groups with
more restrictive versions of a proposed model, as long as the restricted
model is found tenable as a means of data description. This is due to the
fact that parameter estimates in a more restrictive model are generally as-
sociated with smaller standard errors and hence shorter confidence inter-
vals that lead to more accurate statements. This is part of the reason for
looking for more parsimonious models that in addition have higher de-
grees of freedom and are associated with more dimensions along which
they could be disconfirmed.

In the two-group analyses of the cognitive intervention data of interest in
this section, one can further gain in model parsimony by observing that the
groups were randomly formed in that study after the pretest was con-
ducted. Therefore, no differences are expected across groups in any of the
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variable characteristics at pretest. That is, one would expect that if group
equality restrictions were imposed on variances, covariances, means, and
covariate factor loadings at pretest, the fit of the model would not deterio-
rate markedly. This is what the nested two-group model fitted next will do.
In this constrained model all details pertaining to the pretests of Induction
and Figural relations will be fixed for equality across groups—the factor
loadings of the two covariate indicators, the variances and covariance of
their construct and of the Level factor, as well as the means of these two fac-
tors. This is accomplished by adding the following LISREL command lines
(one per constrained parameter) immediately before the last line of the
whole input file.

EQ PS(1, 1, 1) PS(1, 1)
EQ PS(1, 3, 3) PS(3, 3)
EQ PS(1, 3, 1) PS(3, 1)
EQ LY(1, 6, 3) LY(6, 3)
EQ AL(1, 1) AL(1)
EQ AL(1, 3) AL(3)

In each of these new command lines, a parameter from Group 1 (the experi-
mental group) is fixed to equal the same parameter in Group 2 (the control
group). In LISREL notation, this is accomplished by having three indices,
where the first refers to the group number and the following two refer to pa-
rameter location. Thus, PS(1, 1, 1) refers to element 1,1 of the PSI matrix in
Group 1. Hence, the equality constraint EQ PS(1, 1, 1) PS(1, 1) sets that pa-
rameter of the current (control) group, which is listed second, equal to the
same parameter in the experimental group (i.e., in Group 1, the experi-
mental group) which is listed first in this constraint line. Using this nota-
tion, the first two command lines fix for group equality the variances of the
Level and Figural relations factors (first and third factors), the third line
fixes their covariance, and the fourth line fixes the factor loading of the sec-
ond indicator of Figural relations. Finally, the means of the first and third
factors (the Level and Figural relations factors, respectively) are set identi-
cal in both groups, as they similarly are not expected to differ across groups.
(Note the reference by only two indices because the pertinent matrix ALpha
is actually only a row vector and hence one needs to refer just to the posi-
tion of the parameter of interest within it.) Each of the six parameters fixed
in this way pertains to a characteristic of a variable assessed at pretest. Be-
cause the groups were randomly formed after pretest, it seems reasonable
to assume that these characteristics are identical across groups; this is being
examined by testing these six restrictions. (We also note as an aside that fit-
ting this restricted model has also the added benefit that if the results fail to



support lack of differences in this way, that is, if the chi-square deteriorates
significantly, one may actually question the efficacy of the randomization
procedure performed at the first assessment occasion of the study.)

This constrained model is associated with a chi-square value T = 33.04
with df = 30, p = .32, and an RMSEA = .025 with a 90% confidence interval
(0; .074). These indices suggest an acceptable model fit. For future refer-
ence, we will call this model M1 and the one fitted immediately before it M0.
M1 is nested in M0 because it can be obtained from the former by imposing
the proposed six parameter restrictions. Thus, M1 has six more degrees of
freedom because it has six fewer parameters than M0.

The difference in chi-squares between the two nested models M1 and M0,
is DT = 33.04 - 27.33 = 5.71 with Ddf = 6. Because the cut-off of the perti-
nent chi-square distribution with 6 degrees of freedom is 12.59 (at signifi-
cance level .05, and obviously higher for any smaller level), this difference is
nonsignificant. This implies that the imposed constraints are plausible, and
can be retained in the ensuing analyses.

We now also examine whether there may be evidence in this data favor-
ing group invariance of the relationships among the three latent variables.
To obtain the input for this model that will be nested in M1 (and thus in M0

as well), one only needs to change the keyword PS=PS to PS=IN (for
“group INvariance”) in the second-group model command line of the in-
put. This constraint yields an increase in the chi-square value up to T =
44.54 with df = 33. Hence, the resulting difference in chi-squares is DT =
44.54 - 33.04 = 11.50 with Ddf = 3, and is significant (even at a significance
level .01 that one may want to adopt for protection in this multiple testing
procedure with an unknown overall significance level). Thus, one can con-
clude that it is not likely that the same latent correlation matrix applies for
both groups in the population. That is, the correlation structure among the
Level, Shape, and Figural relation factors is not group invariant. Interest-
ingly, even adding the constraint of identical latent means instead of the last
imposed group restriction, accomplished by changing the keyword AL=PS
to AL=IN in the control group, yields a similar outcome. The chi-square
value once again goes up to T = 62.05 with df = 31, and the chi-square dif-
ference test yields DT = 62.05 - 33.04 = 29.01 with Ddf =1, which is also sig-
nificant. One can therefore conclude that the latent mean of the Shape
factor is not the same across groups (because this is the only latent mean
not already set as group invariant in model M1). Finally, restraining instead
the factor loadings of the Shape factor across the groups (by changing the
keyword LY=PS to LY=IN in the control group) yields DT = 46.68 - 33.04 =
13.64 with Ddf = 2, which is similarly significant and indicates that these
loadings are not group invariant. Hence, the two groups differ also in the
proportion of overall ability change that occurred from pretest to first and
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second assessment occasions. (We note however that these proportions are
out of different overall changes, as found earlier; thus, the last group
difference statement refers only to relative, or proportionate, rather than
absolute change.)

We present now relevant portions of the output of model M1, the most
restrictive and tenable of the models fitted in this section.

EXPERIMENTAL GROUP

Parameter Specifications

LAMBDA-Y
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

THU-IND1 0 0 0
THU-IND2 0 1 0
THU-IND3 0 2 0
THU-IND4 0 0 0

FR11 0 0 0
FR12 0 0 3

PSI
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 4
SHAPE 5 6

FIG-REL1 7 8 9

THETA-EPS

THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

10 10 10 10 11 12

ALPHA
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

13 14 15

CONTROL GROUP

Parameter Specifications

LAMBDA-Y
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

THU-IND1 0 0 0
THU-IND2 0 16 0
THU-IND3 0 17 0
THU-IND4 0 0 0

FR11 0 0 0
FR12 0 0 3
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PSI
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 4
SHAPE 18 19

FIG-REL1 7 20 9

THETA-EPS
THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

21 21 21 21 22 23

ALPHA
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

13 24 15

Note the identical numbers attached to the parameters constrained for
equality across the two groups. Thus, model M1 has altogether 24 parame-
ters in both groups, six of which relate to the pretest assessment of the two
groups obtained randomly after the first measurement occasion, and are set
identical for experimental and control subjects. We turn now to the overall
model fit statistics to evaluate whether this two-group model represents a
plausible means of description and explanation of the analyzed data.

Global Goodness of Fit Statistics

Degrees of Freedom = 30
Minimum Fit Function Chi-Square = 33.04 (P = 0.32)

Normal Theory Weighted Least Squares Chi-Square = 32.35 (P = 0.35)
Estimated Non-centrality Parameter (NCP) = 2.35

90 Percent Confidence Interval for NCP = (0.0 ; 20.33)

Minimum Fit Function Value = 0.13
Population Discrepancy Function Value (F0) = 0.0096
90 Percent Confidence Interval for F0 = (0.0 ; 0.083)
Root Mean Square Error of Approximation (RMSEA) = 0.025
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.074)

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.75

Expected Cross-Validation Index (ECVI) = 0.33
90 Percent Confidence Interval for ECVI = (0.27 ; 0.35)

ECVI for Saturated Model = 0.17
ECVI for Independence Model = 9.61

Chi-Square for Independence Model with 30 Degrees of Freedom = 2351.89
Independence AIC = 2375.89

Model AIC = 80.35
Saturated AIC = 84.00

Independence CAIC = 2430.05
Model CAIC = 188.67

Saturated CAIC = 273.56
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Normed Fit Index (NFI) = 0.99
Non-Normed Fit Index (NNFI) = 1.00

Parsimony Normed Fit Index (PNFI) = 0.99
Comparative Fit Index (CFI) = 1.00
Incremental Fit Index (IFI) = 1.00
Relative Fit Index (RFI) = 0.99

Critical N (CN) = 379.87

All overall indices point to a tenable model so we can move on to interpreta-
tion of its parameter estimates. (Examination of the model residuals within
each group that are not included here, none of which is particularly large,
corroborates this conclusion.)

EXPERIMENTAL GROUP

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

THU-IND1 1.00 - - - -
THU-IND2 1.00 1.03 - -

(0.03)
31.84

THU-IND3 1.00 1.14 - -
(0.03)
33.15

THU-IND4 1.00 1.00 - -
FR11 - - - - 1.00
FR12 - - - - 0.97

(0.01)
75.07

The factor loading estimates and standard errors are essentially the same as
those discussed earlier for model M0, and hence lead to the same interpreta-
tions. Only the standard error of the second Figural relations indicator
loading is slightly smaller (due to this model M1 being a more parsimonious
one than M0), but this is a finding of marginal relevance in these analyses
that are primarily concerned with studying change over time and latent vari-
able relationships.

Covariance Matrix of ETA

LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 287.41
SHAPE 5.70 51.73

FIG-REL1 175.72 16.45 151.08
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Mean Vector of Eta-Variables

LEVEL SHAPE FIG-REL1
— — — — — — — — — — –
37.87 15.35 50.52

PSI
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 287.41
(28.16)
10.21

SHAPE 5.70 51.73
(12.15) (9.16)
0.47 5.65

FIG-REL1 175.72 16.45 151.08
(18.64) (9.04) (16.16)
9.43 1.82 9.35

Note again that in the experimental group there does seems to be only a
weak (linear) relationship between the Level and Shape factors—the esti-
mate of their covariance is 5.70, with a standard error = 12.15 and a t value
= 0.47 that is nonsignificant. That is, for experimental subjects starting po-
sition on Induction is not predictive of amount of change along that dimen-
sion. Similarly, there is a weak evidence of relatedness between the Shape
and Figural relations factors—their covariance is estimated at 16.45, with a
standard error = 9.04 and a t value = 1.82 that is not significant either.
Hence, in the experimental group there is a weak (linear) relationship be-
tween starting position on Figural relations and change along the Induction
dimension. As mentioned before, this may have been related to the specific
modules of the cognitive training. Nevertheless, in this model, M1, the sub-
stantive statements just made are more precise due to the model having
more degrees of freedom than M0. Specifically, the standard errors of all
covariance estimates are on average markedly lower in M1 than in M0, which
generally allows one to arrive at more accurate conclusions.

THETA-EPS
THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

22.08 22.08 22.08 22.08 81.18 24.77
(1.74) (1.74) (1.74) (1.74) (11.19) (6.51)
12.68 12.68 12.68 12.68 7.25 3.81

Squared Multiple Correlations for Y - Variables

THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

0.93 0.94 0.94 0.94 0.65 0.85
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ALPHA
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –
37.87 15.35 50.52
(1.13) (0.75) (0.98)
33.60 20.43 51.50

The findings about mean change with this model are essentially the same as
those obtained with M0 in the experimental group. Further, as can be seen
in the control group output, the results in it are also quite similar to the
ones with model M0 discussed previously. We therefore present next only
the control group results regarding latent variable relationships, in which
the two groups were found with M0 to differ. The question now is whether a
similar interpretation would be warranted with the more parsimonious
model M1 that as such allows more precise statements.

Covariance Matrix of ETA

LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 287.41
SHAPE 48.14 23.82

FIG-REL1 175.72 47.44 151.08

Mean Vector of Eta-Variables

LEVEL SHAPE FIG-REL1
— — — — — — — — — — –
37.87 9.02 50.52

PSI
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –

LEVEL 287.41
(28.16)
10.21

SHAPE 48.14 23.82
(15.17) (12.05)
3.17 1.98

FIG-REL1 175.72 47.44 151.08
(18.64) (11.71) (16.16)
9.43 4.05 9.35

THETA-EPS
THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

31.46 31.46 31.46 31.46 105.00 29.34
(3.37) (3.37) (3.37) (3.37) (18.61) (9.17)
9.34 9.34 9.34 9.34 5.64 3.20
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Squared Multiple Correlations for Y - Variables

THU-IND1 THU-IND2 THU-IND3 THU-IND4 FR11 FR12
— — — — — — — — — — — — — — — — — — — — — — – – – –

0.90 0.92 0.93 0.93 0.59 0.83

ALPHA
LEVEL SHAPE FIG-REL1
— — — — — — — — — — –
37.87 9.02 50.52
(1.13) (0.91) (0.98)
33.60 9.90 51.50

Unlike the experimental group, in the control group one again finds evi-
dence of a significant relationship between the Level and Shape fac-
tors—their covariance is estimated at 48.14, with a standard error = 15.17
and a t value = 3.17 that is significant. The correlation of the two factors us-
ing the values of the variance and covariance estimates in the PSI matrix is
readily computed as .58, indicating a moderately strong (linear) relation-
ship. This suggests that in the control group, in which subjects did not re-
ceive any information about how well they were doing, individuals starting
high on Induction tended to be among those exhibiting the most improve-
ment along this dimension. Furthermore, the relationship between pretest
Figural relations and change along the Induction dimension is also signifi-
cant in the control group—their covariance is estimated at 47.44, with a
standard error = 11.71 and t value = 4.05 that is significant. This leads to a
correlation estimated at .79, indicating a close to strong relationship.
Hence, individuals in the control group that start high on Figural relations
tend to be among those improving most along the Induction dimension.

In conclusion, as illustrated in this section, the Level-and-Shape model
represents a highly useful and at the same time readily and widely applica-
ble approach to the analysis of change patterns, including the study of cor-
relates and predictors of growth or decline, in longitudinal studies with at
least three assessment occasions. The model does not impose the restric-
tion of linear growth over time, unlike the Intercept-and-Slope model, and
similarly to the latter assumes that all subjects are measured at the same
time points.



APPENDIX TO CHAPTER 6

The one-factor latent change model as well as the Level-and-Shape model
(and its more restrictive version, the Intercept-and-Slope model) are spe-
cial cases of the general LISREL model. For the one-factor latent change
model, this inclusive relationship immediately follows from the discussion
in the main text. With regard to the LS model, we first note that at the indi-
vidual subject level it assumes the following relations between the repeated
assessments Yti of a given characteristics:

Yti = li + lt si + eti , (A6.1)

where t = 1, 2, …, T denotes measurement occasion (T > 2; see Chap. 1 for
the case T = 2), li is the true level of the ith subject (i.e., his/her true starting
position on the measured characteristic), si his/her shape or true change
over the entire set of repeated assessments, lt the part of overall mean true
change that occurs between first and tth occasion (with l1 = 0 and lT = 1),
and i is the subject index (i =1, 2, …, n; n being sample size).

We next rewrite (A6.1) as follows:

Yti = li + lt si + eti (A6.2)

= 1 li + lt si + eti (i =1, 2, …, n, t = 1, 2, …, T).

The first line of Equation (A6.2), when considered across all assessment oc-
casions, is readily seen as describing the individual trajectory, on the stud-
ied variable, of the ith individual across the T repeated assessments (i = 1,
2, …, n); while the second line is seen as representing a restricted CFA
model. In the latter, according to the extended conceptualization of latent
variable (see Chap. 1 and main text of present chapter), (a) the individual
starting positions are viewed as scores on the first factor, F1, which loads 1
on each consecutive assessment; whereas the individual true changes
across the study period are considered scores on the second factor, F2, with
time-specific loadings on each repeated assessment.

Note that in discussing the components of Equation (A6.2) we depart
from the traditional, ‘psychometric’ conceptualization of a latent variable.
Specifically, the two factors of this CFA model, F1 and F2, are not viewed as
proper behavioral traits that are of separate interest on their own. Rather,
F1 = l is a latent variable with individual scores being the subject-specific
starting positions, while F2 = s is a latent variable whose individual scores
are the subject true change across the study period. Thus, F1 and F2 can be
considered unobserved random variables whose individual realizations in a
given study (i) are similarly not observed (as in the entire studied popula-
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tion, for the same matter), and (ii) represent theoretically and empirically
motivated aspects of the underlying developmental process of concern. In
this feature, F1 and F2 can be considered extensions of the traditional be-
havioral conceptualization of latent variable, with means, variances and
covariance that are of special interest in longitudinal analyses using the LS
model.

This discussion shows that the LS model (A6.2) is a special case of a con-
firmatory factor analysis model, which itself is a special case of the general
LISREL model. The same inclusive relationship holds for more general la-
tent change analysis models (also referred to as latent curve analysis mod-
els), as shown in Meredith & Tisak (1990).
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Epilogue

With this text, we aimed to introduce readers to the basics of the increasingly
popular in the educational, medical, social, and behavioral sciences struc-
tural equation modeling (SEM) methodology. We discussed a number of is-
sues that in our view are of special relevance for a newcomer to this field or
someone having limited experience with this analytic approach. Our view is
that while the SEM methodology can nowadays be readily and quickly ap-
plied on one’s data, at times with minimal effort, there are nonetheless a mul-
titude of fundamentals of this method whose understanding and mastery will
greatly help its user benefit much more significantly from it.

Due to the introductory nature of this book, whose goal was to offer a
first exposure to a number of important issues underlying much of the the-
ory and practice of SEM, we could not cover many more advanced topics.
We therefore caution the reader that having mastered the material pre-
sented in this book she or he only has what we hope to be a sound basis in
this field, and thus should feel prepared for a study of those advanced top-
ics; such a study needs to be undertaken before dealing with more compli-
cated structural equation models. These issues include handling of missing
data, analysis of categorical data, modeling with non-normal data, analyses
of nonlinear relationships, and the more general framework of latent vari-
able modeling with all its many ramifications and opportunities to analyze
data and designs not touched upon here. A number of highly instructive
books and treatments of these issues have appeared in the last decade or so
(some of which can be found at http://www.erlbaum.com), and we recom-
mend the reader study them for her/his dealing with advanced structural
equation and latent variable models. We hope our text has provided the
reader with most of what may be needed for this worthwhile journey ahead
of them.
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