Solutions Chapter 4

SECTION 4.2

4.2.4 (www)

Problem correction: Assume that @ is symmetric and invertible. (This correction has been made

in the 2nd printing.)

Solution: ‘We have ]
minimize f(z)= ix’Qm

subject to Az = b.

Since z* is an optimal solution of this problem with associated Lagrange multiplier A*, we have
Az =b and Qx* + A’ * =0. (1)

We also have

ge(N) = min Le(x, M),

where

1
Le(x,)) = 2'Qz + X (Az — b) + §||A:c —b|J2.

One way of showing that g.()\) has the given form is to view ¢.(\) as the dual of the penalized

problem:

minimize %x’Qx + gHAx —b||2

subject to Az = b,
which is a quadratic programming problem. Note that x* is also a solution of this problem, so
that the optimal value of the problem is f*. Furthermore, by expanding the term || Az — b||2, the

preceding problem is equivalent to
. 1
minimize 5%'(@ + cA'A)z + b/ Ax + §Cb/b
subject to Az = b.

Because x* is the unique solution of the original problem, () must be positive definite over the

null space of A
y'Qy > 0, Vy#0, Ay=0.
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Then, similar to the proof of Lemma 3.2.1, it can be seen that there exists some positive scalar

¢ such that Q + cA’A is positive definite for all ¢ > ¢, i.e.,
Q+cA’A >0, Ve>e (2)

[this can be shown similar to the proof of Lemma 3.2.1, pg. 298]. By duality theory, there is
no duality gap for the preceding problem [g.(A*) = f*]|, and according to Example 3.4.3 from
Section 3.4, the function g.(A) is quadratic in A, so that the second order Taylor’s expansion is

exact for all ), i.e.,
qe(A) = f*+ Vae(A*) (A = 1) + %(x\ — A*)'V2qe (M) (A =A%), Ve Rm. (3)
We now need to calculate Vge(A*) and V2gc(A*). We have
Vge(A) = h(z(), )
V24, () = —Vh(:c()\,c))/{V%ch(x()\,c)7A)}%Vh(x()\,c)),
where x(\, ¢) minimizes L.(z, A). To find z(A, ¢), we can solve VL.(z,A) = 0, which yields
Qr+ AN+ cA(Ax —b) =0 & (Q + cA’A)x = cA'b — Al ),

so that
(A ) = (Q+ cA’A)~1(cA'b — A’N), VYe>e

[(Q 4+ cA’A)~1 exists as implied by Eq. (2)]. Therefore
Vae(A) = h(z(X, ) = A(Q + cA’A)~1(cA’b — A'X) — b, Ve >, (4)
from which by using Eq. (1), it can be seen that
Vge(A*) = 0. (5)

Moreover, we have

V2g.(\) = —A(Q + cA’A)-1A!, ¥ AeRm, (6)

so that by using the preceding two relations in Eq. (3), we obtain
1
qe(N) = f* — 5()\ — M)V A(Q + cAA) LA/ (X — X*), YieRrm Ve>ec

(a) We have
AL = Xk 4 ¢k Vg k (AF),
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so that
AL — X+ = NF — \x 4 cEVq i (AF).

We now express Vg (A¥) in an equivalent form. In what follows, we assume that ¢k > ¢ for all
k, so that Vgt ()) is linear for all k [cf. Eq. (4)]. By using the first order Taylor’s expansion, we
obtain

Vac(A) = Vae(A*) + V2 (A*) (A — A*), Ve Rm,
and by using Egs. (5) and (6), we have
Vac(A) = —A(Q + cA’A)=LA/(\ — \*), Y AeRm,

Therefore
Aetl — e = Nk — A* — cFA(Q 4+ cFATA) LA/ ( Nk — \*)

= (I —cFA(Q + ckA’A)—lA’)()\’f — A*),
and by applying the results of Section 1.3, we obtain

[[ARFL = X[ < 7 RI[AR = A=,

where

rk = max{|1 — c*E |, |1 — cke.x|},
and E. and e, are the maximum and minimum eigenvalues of A(Q + cA’A)~1A’.

(b) The matrix identity of Appendix A
(A+CBC)-1 = A1 — A-1C(B-1 + ("A-1C)-1C"A-1
applied to (Q + ¢ A’A)~1 yields
1 -1
(Q+ crATA) -1 = Q-1 — Q1A <—I+AQ—1A’> AQ-1
o

and so

1 —1
A(Q + cx AVA)1AT = AQ-1 AT — AQ—1A! (—1 + AQ—lA’> AQ-1A.
C
Let 7 be an eigenvalue of (AQ~1A’)~1. Using the facts that
. 1 :
A = {eigenvalue of A} < 3= {eigenvalue of A-1},

A = {eigenvalue of A} < X + ¢ = {eigenvalue of ¢l + A},

we can see that




is an eigenvalue of
A(Q + cAA)-LA.
Thus

ok
Yi + ¥

rk = max < |1 —
1<i<m

b

(¢) First, for the method to be defined we need ¢k > ¢ for all k sufficiently large. Second, for the

method to converge, we need r* < 1 for all k sufficiently large. Thus

b— <1, Vi,

Yi+c¢
which is equivalent to

<0 or 0< < 2.

vi +c¢ vi +c¢

—2 < —

Since ¢ > 0, we must have «; + ¢ > 0. Then solving the above inequality yields the threshold

value
¢ = max {O7 1r<ni££§n{2%}} .
Hence, the overall threshold value is

¢ = max{c, ¢}.

1.2.5 (www)

Using the results of Exercise 4.2.4, updating the multipliers with

AL = Mk 4 ok (Agk — b)

implies
ak
[[AEHL — \*]] gmax{‘l }||)\k>\*|.
i ~i + ¢k
For the method to converge, we need for k > k,
k
1- -2 |<1-¢ Vi
¥i + ¥
or
k
e < <2-—c¢ 1
- i +Ck - ( )

for some € > 0. If Q) is positive definite and ¢ = ¢ for all k, we have v; > 0 for all 7, and if

0 < akF < 2¢, the condition (1) is satisfied for ¢ < min{¢, 2v;}/(c+ ;) for all i.
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In the logarithmic barrier method we have
k— ] k
x argirlelgl{f(x)Jre B(z)},

where S = {z € X | g;(z) <0, j=1,...,r} and B(z) = —Y."_, In(—g;(z)). Assuming that f

j=1

and g; are continuously differentiable, z¥ satisfies
Vf(zk) +efVB(zk) =0

or equivalently

T 619
Vf(xk) — ——Vyg;(zk) =0.
Define pf = —gj?ik) for all j and k. Then we have
k>0, Vi=1,...,r, Vk, (1)
V@) + Y phVg(ak) =0, Vk. (2)
j=1

Suppose that z* is a limit point of the sequence {z¥}. Let {z*}rcx be a subsequence of
{z*} converging to z*, and let A(z*) be the index set of active constraints at z*. Furthermore,
for any z, let Vga(z) be a matrix with columns Vg;(x) for j € A(z*) and Vggr(z) be a matrix
with columns Vg;(z) for j ¢ A(xz*). Similarly, we partition a vector p: pa is a vector with
coordinates pj for j € A(z*) and pg is a vector with coordinates u; for j ¢ A(z*). Then Eq. (2)
is equivalent to

Vf(zF) + VgA(a?k)ufi‘ + VgR(xk)u% =0, vV k. (3)

If j & A(z*), then g;(zF) < —d for some positive scalar ¢ and for all large enough k € K,

which guarantees the boundedness of the sequence {—1/g;(z*)},.. Since e¥ — 0, we have

ek
li k= =0 Vijd&A(x*
h—oor ek koo, ek gj(zF) ’ 7 ¢ Al),

ie., {u% — 0}x. Therefore, by continuity of Vg;, we have

. k k _
poJm  Vgr(zF)ug = 0. (4)

Suppose now that z* is a regular point, i.e., the gradients Vg;(z*) for j € A(x*) are linearly

independent, so that the matrix Vga(z*)'Vga(z*) is invertible. Then, by continuity of Vg;, the
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matrix Vga(ak)'Vga(z*) is invertible for all sufficiently large & € K. Premultiplying Eq. (3) by
(VgA(xk)’VgA(xk))71Vg,4(xk)’ gives

i = = (Vga(at)Vga(@h)) ™ Vaa(ah) (Vf(ah) + Vgr(ah)u).

By letting & — oo over k € K, and by using the continuity of Vf and Vg; and the relation (4),
we obtain

il = —(Vga(er) Vga(e®) T Vaalar )y Vi (a0).

Define p* by pj = 0 and
* li k
HAT o ke HA0

so that by letting £ — oo with k € K, from Eq. (3) we have
Vf(@*) + Vga(z*)wh + Vgr(a*)up = Vf(z*) + Vg(z*)p* =0.

In view of Eq. (1), u* must be nonnegative, so that u* is a Lagrange multiplier. Furthermore,
assuming that z* is a limit point of the sequence {x*}, the regularity of * is sufficient to ensure

the convergence of {p?} to corresponding Lagrange multipliers.

By Prop. 4.1.1, every limit point of {z*¥} is a global minimum of the original problem.
Hence, for the convergence of {Mf} to corresponding Lagrange multipliers, it is sufficient that

every global minimum of the original problem is regular.
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Consider first the case where f is quadratic, f(x) = J2’Qx with @ positive definite and symmetric,
and h is linear, h(z) = Ax — b, with A having full rank. Following the hint, the iteration

A+l = Ak + ah(zF) can be viewed as the method of multipliers for the problem

minimize 1a’'Qx — %HAx —b||2
subject to Ax —b=0.

According to Exercise 4.2.4(c), this method converges if o > @, where the threshold value @ is
a=0 if (>0, (1)

a=-2¢ if ¢ <0, (2)
where ¢ is the minimum eigenvalue of the matrix

(A(Q — adrA)—1 A1)
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To calculate ¢, we use the matrix identity
aA(Q — aA’A) 1A = (1 — aAQ- 1A 1 - T

of Section A.3 in Appendix A. If (3,...,(n are the eigenvalues of (A(Q — aA’A)—lA’)_l, we

have
« 1

A ——
G 1—a&!

where &; are the eigenvalues of (AQ—1A’)~1. This equation can be written as

from which

Ci:&—a.

Let &€ = min{&;, ..., &y, ). Then the condition (1) is written as
0<a<é. (3)

The condition (2) is written as

a>2(a—¢§) with a> ¢,

or

E<a< 2. (4)
Convergence is obtained under either condition (3) or (4), so we see that convergence is obtained
for

0<a<?2E

In the case where f is nonquadratic and/or h is nonlinear, a local version of the above

analysis applies.



