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Preface

Generalized linear models provide a unified approach to many of the most
common statistical procedures used in applied statistics. They have appli-
cations in disciplines as widely varied as agriculture, demography, ecology,
economics, education, engineering, environmental studies and pollution,
geography, geology, history, medicine, political science, psychology, and so-
ciology, all of which are represented in this text.

In the years since the term was first introduced by Nelder and Wedder-
burn in 1972, generalized linear models have slowly become well known and
widely used. Nevertheless, introductory statistics textbooks, and courses,
still most often concentrate on the normal linear model, just as they did in
the 1950s, as if nothing had happened in statistics in between. For students
who will only receive one statistics course in their career, this is especially
disastrous, because they will have a very restricted view of the possible
utility of statistics in their chosen field of work. The present text, being
fairly advanced, is not meant to fill that gap; see, rather, Lindsey (1995a).

Thus, throughout much of the history of statistics, statistical modelling
centred around this normal linear model. Books on this subject abound.
More recently, log linear and logistic models for discrete, categorical data
have become common under the impetus of applications in the social sci-
ences and medicine. A third area, models for survival data, also became a
growth industry, although not always so closely related to generalized linear
models. In contrast, relatively few books on generalized linear models, as
such, are available. Perhaps the explanation is that normal and discrete, as
well as survival, data continue to be the major fields of application. Thus,
many students, even in relatively advanced statistics courses, do not have
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an overview whereby they can see that these three areas, linear normal,
categorical, and survival models, have much in common. Filling this gap is
one goal of this book.

The introduction of the idea of generalized linear models in the early
1970s had a major impact on the way applied statistics is carried out. In
the beginning, their use was primarily restricted to fairly advanced statis-
ticians because the only explanatory material and software available were
addressed to them. Anyone who used the first versions of GLIM will never
forget the manual which began with pages of statistical formulae, before
actually showing what the program was meant to do or how to use it.

One had to wait up to twenty years for generalized linear modelling
procedures to be made more widely available in computer packages such
as Genstat, Lisp-Stat, R, S-Plus, or SAS. Ironically, this is at a time when
such an approach is decidedly outdated, not in the sense that it is no longer
useful, but in its limiting restrictions as compared to what statistical models
are needed and possible with modern computing power. What are now
required, and feasible, are nonlinear models with dependence structures
among observations. However, a unified approach to such models is only
slowly developing and the accompanying software has yet to be put forth.
The reader will find some hints in the last chapter of this book.

One of the most important accomplishments of generalized linear models
has been to promote the central role of the likelihood function in inference.
Many statistical techniques are proposed in the journals every year without
the user being able to judge which are really suitable for a given data
set. Most ad hoc measures, such as mean squared error, distinctly favour
the symmetry and constant variance of the normal distribution. However,
statistical models, which by definition provide a means of calculating the
probability of the observed data, can be directly compared and judged:
a model is preferable, or more likely, if it makes the observed data more
probable (Lindsey, 1996b). This direct likelihood inference approach will be
used throughout, although some aspects of competing methods are outlined
in an appendix.

A number of central themes run through the book:

• the vast majority of statistical problems can be formulated, in a uni-
fied way, as regression models;

• any statistical models, for the same data, can be compared (whether
nested or not) directly through the likelihood function, perhaps, with
the aid of some model selection criterion such as the AIC;

• almost all phenomena are dynamic (stochastic) processes and, with
modern computing power, appropriate models should be constructed;

• many so called “semi-” and “nonparametric” models (although not
nonparametric inference procedures) are ordinary (often saturated)
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generalized linear models involving factor variables; for inferences, one
must condition on the observed data, as with the likelihood function.

Several important and well-known books on generalized linear models are
available (Aitkin et al., 1989; McCullagh and Nelder, 1989; Dobson, 1990;
Fahrmeir and Tutz, 1994); the present book is intended to be complemen-
tary to them.

For this text, the reader is assumed to have knowledge of basic statistical
principles, whether from a Bayesian, frequentist, or direct likelihood point
of view, being familiar at least with the analysis of the simpler normal linear
models, regression and ANOVA. The last chapter requires a considerably
higher level of sophistication than the others.

This is a book about statistical modelling, not statistical inference. The
idea is to show the unity of many of the commonly used models. In such
a text, space is not available to provide complete detailed coverage of each
specific area, whether categorical data, survival, or classical linear models.
The reader will not become an expert in time series or spatial analysis
by reading this book! The intention is rather to provide a taste of these
different areas, and of their unity. Some of the most important specialized
books available in each of these fields are indicated at the end of each
chapter.

For the examples, every effort has been made to provide as much back-
ground information as possible. However, because they come from such a
wide variety of fields, it is not feasible in most cases to develop prior the-
oretical models to which confirmatory methods, such as testing, could be
applied. Instead, analyses primarily concern exploratory inference involving
model selection, as is typical of practice in most areas of applied statistics.
In this way, the reader will be able to discover many direct comparisons
of the application of the various members of the generalized linear model
family.

Chapter 1 introduces the generalized linear model in some detail. The
necessary background in inference procedures is relegated to Appendices A
and B, which are oriented towards the unifying role of the likelihood func-
tion and include details on the appropriate diagnostics for model checking.
Simple log linear and logistic models are used, in Chapter 2, to introduce
the first major application of generalized linear models. These log linear
models are shown, in turn, in Chapter 3, to encompass generalized linear
models as a special case, so that we come full circle. More general regres-
sion techniques are developed, through applications to growth curves, in
Chapter 4. In Chapter 5, some methods of handling dependent data are
described through the application of conditional regression models to longi-
tudinal data. Another major area of application of generalized linear models
is to survival, and duration, data, covered in Chapters 6 and 7, followed by
spatial models in Chapter 8. Normal linear models are briefly reviewed in
Chapter 9, with special reference to model checking by comparing them to
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nonlinear and non-normal models. (Experienced statisticians may consider
this chapter to be simpler than the the others; in fact, this only reflects
their greater familiarity with the subject.) Finally, the unifying methods
of dynamic generalized linear models for dependent data are presented in
Chapter 10, the most difficult in the text.

The two-dimensional plots were drawn with MultiPlot, for which I thank
Alan Baxter, and the three-dimensional ones with Maple. I would also like
to thank all of the contributors of data sets; they are individually cited
with each table.

Students in the masters program in biostatistics at Limburgs University
have provided many comments and suggestions throughout the years that
I have taught this course there. Special thanks go to all the members of the
Department of Statistics and Measurement Theory at Groningen University
who created the environment for an enjoyable and profitable stay as Visiting
Professor while I prepared the first draft of this text. Philippe Lambert,
Patrick Lindsey, and four referees provided useful comments that helped
to improve the text.
Diepenbeek J.K.L.
December, 1996
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1
Generalized Linear Modelling

1.1 Statistical Modelling

Models are abstract, simplified representations of reality, often used both
in science and in technology. No one should believe that a model could be
true, although much of theoretical statistical inference is based on just this
assumption. Models may be deterministic or probabilistic. In the former
case, outcomes are precisely defined, whereas, in the latter, they involve
variability due to unknown random factors. Models with a probabilistic
component are called statistical models.

The one most important class, that with which we are concerned, con-
tains the generalized linear models. They are so called because they gen-
eralize the classical linear models based on the normal distribution. As we
shall soon see, this generalization has two aspects: in addition to the linear
regression part of the classical models, these models can involve a variety of
distributions selected from a special family, exponential dispersion models,
and they involve transformations of the mean, through what is called a
“link function” (Section 1.4.3), linking the regression part to the mean of
one of these distributions.

1.1.1 A Motivating Example

Altman (1991, p. 199) provides counts of T4 cells/mm3 in blood samples
from 20 patients in remission from Hodgkin’s disease and 20 other patients
in remission from disseminated malignancies, as shown in Table 1.1. We
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TABLE 1.1. T4 cells/mm3 in blood samples from 20 patients in remission from
Hodgkin’s disease and 20 patients in remission from disseminated malignancies
(Altman, 1991, p. 199).

Hodgkin’s Non-Hodgkin’s
Disease Disease

396 375
568 375

1212 752
171 208
554 151

1104 116
257 736
435 192
295 315
397 1252
288 675

1004 700
431 440
795 771

1621 688
1378 426
902 410
958 979

1283 377
2415 503

wish to determine if there is a difference in cell counts between the two
diseases. To do this, we should first define exactly what we mean by a
difference. For example, are we simply looking for a difference in mean
counts, or a difference in their variability, or even a difference in the overall
form of the distributions of counts?

A simple naive approach to modelling the difference would be to look at
the difference in estimated means and to make inferences using the esti-
mated standard deviation. Such a procedure implicitly assumes a normal
distribution. It implies that we are only interested in differences of means
and that we assume that the variability and normal distributional form are
identical in the two groups. The resulting Student t value for no difference
in means is 2.11.

Because these are counts, a more sophisticated method might be to as-
sume a Poisson distribution of the counts within each group (see Chapter
2). Here, as we shall see later, it is more natural to use differences in log-
arithms of the means, so that we are looking at the difference between
the means, themselves, through a ratio instead of by subtraction. However,
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TABLE 1.2. Comparison of models, based on various distributional assumptions,
for no difference and difference between diseases, for the T4 cell count data of
Table 1.1.

AIC
No Difference Estimate

Model difference Difference in −2 log(L) /s.e.

Normal 608.8 606.4 4.4 2.11
Log normal 590.1 588.6 3.5 1.88
Gamma 591.3 588.0 5.3 2.14
Inverse Gaussian 590.0 588.2 3.8 1.82

Poisson 11652.0 10294.0 1360.0 36.40
Negative binomial 589.2 586.0 5.2 2.36

this model also carries the additional assumption that the variability will
be different between the two groups if the mean is, because the variance of
a Poisson distribution is equal to its mean. Now, the asymptotic Student
t value for no difference in means, and hence in variances, is 36.40, quite
different from the previous one.

Still a third approach would be to take logarithms before calculating the
means and standard deviation in the first approach, thus, in fact, fitting
a log normal model. In the Poisson model, we looked at the difference in
log mean, whereas now we have the difference in mean logarithms. Here, it
is much more difficult to transform back to a direct statement about the
difference between the means themselves. As well, although the variance
of the log count is assumed to be the same in the two groups, that of the
count itself will not be identical. This procedure gives a Student t value of
1.88, yielding a still different conclusion.

A statistician only equipped with classical inference techniques has little
means of judging which of these models best fits the data. For example,
study of residual plots helps little here because none of the models (ex-
cept the Poisson) show obvious discrepancies. With the direct likelihood
approach used in this book, we can consider the Akaike (1973) informa-
tion criterion (AIC) for which small values are to be preferred (see Section
A.1.4). Here, it can be applied to these models, as well as some other mem-
bers of the generalized linear model family.

The results for this problem are presented in Table 1.2. We see, as might
be expected with such large counts, that the Poisson model fits very poorly.
The other count model, that allows for overdispersion (Section 2.3), the
negative binomial (the only one that is not a generalized linear model),
fits best, whereas the gamma is second. By the AIC criterion, a difference
between the two diseases is indicated for all distributions.

Consider now what would happen if we apply a significance test at the
5% level. This might either be a log likelihood ratio test based on the
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difference in minus two log likelihood, as given in the second last column
of Table 1.2, or a Wald test based on the ratio of the estimate to the
standard error, in the last column of the table. Here, the conclusions about
group difference vary depending on which distribution we choose. Which
test is correct? Fundamentally, only one can be: that which we hypothesized
before obtaining the data (if we did). If, by whatever means, we choose a
model, based on the data, and then “test” for a difference between the two
groups, the P -value has no meaning because it does not take into account
the uncertainty in the model choice.

After this digression, let us finally draw our conclusions from our model
selection procedure. The choice of the negative binomial distribution indi-
cates heterogeneity among the patients with a group: the mean cell counts
are not the same for all patients. The estimated difference in log mean for
our best fitting model, the negative binomial, is −0.455 with standard er-
ror, 0.193, indicating lower counts for non-Hodgkin’s disease patients. The
ratio of means is then estimated to be exp(−0.455) = 0.634.

Thus, we see that the conclusions drawn from a set of data depend very
much on the assumptions made. Standard naive methods can be very mis-
leading. The modelling and inference approach to be presented here pro-
vides a reasonably wide set of possible assumptions, as we see from this
example, assumptions that can be compared and checked with the data.

1.1.2 History

The developments leading to the general overview of statistical modelling,
known as generalized linear models, extend over more than a century. This
history can be traced very briefly as follows (adapted from McCullagh and
Nelder, 1989, pp. 8–17):

• multiple linear regression — a normal distribution with the identity
link (Legendre, Gauss: early nineteenth century);

• analysis of variance (ANOVA) designed experiments — a normal dis-
tribution with the identity link (Fisher: 1920s → 1935);

• likelihood function — a general approach to inference about any sta-
tistical model (Fisher, 1922);

• dilution assays — a binomial distribution with the complementary
log log link (Fisher, 1922);

• exponential family — a class of distributions with sufficient statistics
for the parameters (Fisher, 1934);

• probit analysis — a binomial distribution with the probit link (Bliss,
1935);
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• logit for proportions — a binomial distribution with the logit link
(Berkson, 1944; Dyke and Patterson, 1952);

• item analysis — a Bernoulli distribution with the logit link (Rasch,
1960);

• log linear models for counts — a Poisson distribution with the log
link (Birch, 1963);

• regression models for survival data — an exponential distribution
with the reciprocal or the log link (Feigl and Zelen, 1965; Zippin and
Armitage, 1966; Glasser, 1967);

• inverse polynomials — a gamma distribution with the reciprocal link
(Nelder, 1966).

Thus, it had been known since the time of Fisher (1934) that many of
the commonly used distributions were members of one family, which he
called the exponential family. By the end of the 1960s, the time was ripe
for a synthesis of these various models (Lindsey, 1971). In 1972, Nelder
and Wedderburn went the step further in unifying the theory of statistical
modelling and, in particular, regression models, publishing their article on
generalized linear models (GLM). They showed

• how many of the most common linear regression models of classical
statistics, listed above, were in fact members of one family and could
be treated in the same way,

• that the maximum likelihood estimates for all of these models could
be obtained using the same algorithm, iterated weighted least squares

(IWLS, see Section A.1.2).

Both elements were equally important in the subsequent history of this ap-
proach. Thus, all of the models listed in the history above have a distribu-
tion in the exponential dispersion family (Jørgensen, 1987), a generalization
of the exponential family, with some transformation of the mean, the link
function, being related linearly to the explanatory variables.

Shortly thereafter, the first version of an interactive statistical computer
package called GLIM (Generalized Linear Interactive Modelling) appeared,
allowing statisticians easily to fit the whole range of models. GLIM pro-
duces very minimal output, and, in particular, only differences of log like-
lihoods, what its developers called deviances, for inference. Thus, GLIM

• displaced the monopoly of models based on the normal distribution
by making analysis of a larger class of appropriate models possible
by any statistician,

• had a major impact on the growing recognition of the likelihood func-
tion as central to all statistical inference,
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• allowed experimental development of many new models and uses for
which it was never originally imagined.

However, one should now realize the major constraints of this approach, a
technology of the 1970s:

1. the linear component is retained;

2. distributions are restricted to the exponential dispersion family;

3. responses must be independent.

Modern computer power can allow us to overcome these constraints, al-
though appropriate software is slow in appearing.

1.1.3 Data Generating Mechanisms and Models

In statistical modelling, we are interested in discovering what we can learn
about systematic patterns from empirical data containing a random com-
ponent. We suppose that some complex data generating mechanism has
produced the observations and wish to describe it by some simpler, but
still realistic, model that highlights the specific aspects of interest. Thus,
by definition, models are never “true” in any sense.

Generally, in a model, we distinguish between systematic and random
variability, where the former describes the patterns of the phenomenon in
which we are particularly interested. Thus, the distinction between the two
depends on the particular questions being asked. Random variability can
be described by a probability distribution, perhaps multivariate, whereas
the systematic part generally involves a regression model, most often, but
not necessarily (Lindsey, 1974b), a function of the mean parameter. We
shall explore these two aspects in more detail in the next two subsections.

1.1.4 Distributions

Random Component

In the very simplest cases, we observe some response variable on a number
of independent units under conditions that we assume homogeneous in
all aspects of interest. Due to some stochastic data generating mechanism
that we imagine might have produced these responses, certain ones will
appear more frequently than others. Our model, then, is some probability

distribution, hopefully corresponding in pertinent ways to this mechanism,
and one that we expect might represent adequately the frequencies with
which the various possible responses are observed.

The hypothesized data generating mechanism, and the corresponding
candidate statistical models to describe it, are scientific or technical con-
structs. The latter are used to gain insight into the process under study, but
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are generally vast simplifications of reality. In a more descriptive context,
we are just smoothing the random irregularities in the data, in this way
attempting to detect patterns in them.

A probability distribution will usually have one or more unknown pa-
rameters that can be estimated from the data, allowing it to be fitted to
them. Most often, one parameter will represent the average response, or
some transformation of it. This determines the location of the distribution
on the axis of the responses. If there are other parameters, they will de-
scribe, in various ways, the variability or dispersion of the responses. They
determine the shape of the distribution, although the mean parameter will
usually also play an important role in this, the form almost always changing
with the size of the mean.

Types of Response Variables

Responses may generally be classified into three broad types:

1. measurements that can take any real value, positive or negative;

2. measurements that can take only positive values;

3. records of the frequency of occurrence of one or more kinds of events.

Let us consider them in turn.

Continuous Responses

The first type of response is well known, because elementary statistics
courses concentrate on the simpler normal theory models: simple linear
regression and analysis of variance (ANOVA). However, such responses are
probably the rarest of the three types actually encountered in practice.
Response variables that have positive probability for negative values are
rather difficult to find, making such models generally unrealistic, except
as rough approximations. Thus, such introductory courses are missing the
mark. Nevertheless, such models are attractive to mathematicians because
they have certain nice mathematical properties. But, for this very reason,
the characteristics of these models are unrepresentative and quite mislead-
ing when one tries to generalize to other models, even in the same family.

Positive Responses

When responses are measurements, they most often can only take positive
values (length, area, volume, weight, time, and so on). The distribution of
the responses will most often be skewed, especially if many of these values
tend to be relatively close to zero.

One type of positive response of special interest is the measurement of
duration time to some event: survival, illness, repair, unemployment, and
so on. Because the length of time during which observations can be made is
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usually limited, an additional problem may present itself here: the response
time may not be completely observed — it may be censored if the event
has not yet occurred — we only know that it is at least as long as the
observation time.

Events

Many responses are simple records of the occurrence of events. We are often
interested in the intensity with which the events occur on each unit. If only
one type of event is being recorded, the data will often take the form of
counts: the number of times the event has occurred to a given unit (usual
at least implicitly within some fixed interval of time). If more than one type
of response event is possible, we have categorical data, with one category
corresponding to each event type. If several such events are being recorded
on each unit, we may still have counts, but now as many types on each unit
as there are categories (some may be zero counts).

The categories may simply be nominal, or they may be ordered in some
way. If only one event is recorded on each unit, similar events may be
aggregated across units to form frequencies in a contingency table. When
explanatory variables distinguish among several events on the same unit,
the situation becomes even more complex.

Duration time responses are very closely connected to event responses,
because times are measured between events. Thus, as we shall see, many
of the models for these two types of responses are closely related.

1.1.5 Regression Models

Most situations where statistical modelling is required are more complex
than can be described simply by a probability distribution, as just outlined.
Circumstances are not homogeneous; instead, we are interested in how the
responses change under different conditions. The latter may be described
by explanatory variables. The model must have a systematic component.

Most often, for mathematical convenience rather than modelling realism,
only certain simplifying assumptions are envisaged:

• responses are independent of each other;

• the mean response changes with the conditions, but the functional
shape of the distribution remains fundamentally unchanged;

• the mean response, or some transformation of it, changes in some
linear way as the conditions change.

Thus, as in the introductory example, we find ourselves in some sort of
general linear regression situation. We would like to be able to choose from
among the available probability distributions that which is most appropri-
ate, instead of being forced to rely only on the classical normal distribution.
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xi

FIGURE 1.1. A simple linear regression. (The vertical axis gives both the ob-
served yi and its mean, µi.)

Consider a simple linear regression plot, as shown in Figure 1.1. The
normal distribution, of constant shape because the variance is assumed
constant, is being displaced to follow the straight regression line as the
explanatory variable changes.

1.2 Exponential Dispersion Models

As mentioned above, generalized linear models are restricted to members
of one particular family of distributions that has nice statistical properties.
In fact, this restriction arises for purely technical reasons: the numerical al-
gorithm, iterated weighted least squares (IWLS; see Section A.1.2) used for
estimation, only works within this family. With modern computing power,
this limitation could easily be lifted; however, no such software, for a wider
family of regression models, is currently being distributed. We shall now
look more closely at this family.
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1.2.1 Exponential Family

Suppose that we have a set of independent random response variables,
Zi (i = 1, . . . , n) and that the probability (density) function can be written
in the form

f(zi; ξi) = r(zi)s(ξi) exp[t(zi)u(ξi)]

= exp[t(zi)u(ξi) + v(zi) + w(ξi)]

with ξi a location parameter indicating the position where the distribution
lies within the range of possible response values. Any distribution that can
be written in this way is a member of the (one-parameter) exponential
family. Notice the duality of the observed value, zi, of the random variable
and the parameter, ξi. (I use the standard notation whereby a capital letter
signifies a random variable and a small letter its observed value.)

The canonical form for the random variable, the parameter, and the
family is obtained by letting y = t(z) and θ = u(ξ). If these are one-to-
one transformations, they simplify, but do not fundamentally change, the
model which now becomes

f(yi; θi) = exp[yiθi − b(θi) + c(yi)]

where b(θi) is the normalizing constant of the distribution. Now, Yi (i =
1, . . . , n) is a set of independent random variables with means, say µi, so
that we might, classically, write yi = µi + εi.

Examples

Although it is not obvious at first sight, two of the most common discrete
distributions are included in this family.

1. Poisson distribution

f(yi;µi) =
µyi

i e−µi

yi!

= exp[yi log(µi) − µi − log(yi!)]

where θi = log(µi), b(θi) = exp[θi], and c(yi) = − log(yi!).
2. Binomial distribution

f(yi;πi) =

(
ni
yi

)
πyi

i (1 − πi)
ni−yi

= exp

{
yi log

[
πi

1 − πi

]
+ ni log(1 − πi) + log

(
ni
yi

)}

where θi = log
[

πi

1−πi

]
, b(θi) = ni log(1 + exp[θi]), and c(yi) = log

(
ni

yi

)
. 2

As we shall soon see, b(θ) is a very important function, its derivatives
yielding the mean and the variance function.
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1.2.2 Exponential Dispersion Family

The exponential family can be generalized by including a (constant) scale

parameter, say φ, in the distribution, such that

f(yi; θi, φ) = exp

[
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

]
(1.1)

where θi is still the canonical form of the location parameter, some function
of the mean, µi.

Examples

Two common continuous distributions are members of this family.
1. Normal distribution

f(yi;µi, σ
2) =

1√
2πσ2

e
−(yi−µi)

2

2σ2

= exp

{[
yiµi −

µ2
i

2

]
1

σ2
− y2

i

2σ2
− 1

2
log(2πσ2)

}

where θi = µi, b(θi) = θ2i /2, ai(φ) = σ2, and c(yi, φ) = −[y2
i /φ+log(2πφ)]/2.

2. Gamma distribution

f(yi;µi, ν) =

(
ν

µi

)ν
yν−1
i e

−
νyi
µi

Γ(ν)

= exp{[−yi/µi − log(µi)]ν + (ν − 1) log(yi)

+ ν log(ν) − log[Γ(ν)]}

where θi = −1/µi, b(θi) = − log(−θi), ai(φ) = 1/ν, and c(yi, φ) = (ν − 1)
log(yi) + ν log(ν) − log[Γ(ν)]. 2

Notice that the examples given above for the exponential family are also
members of the exponential dispersion family, with ai(φ) = 1. With φ
known, this family can be taken to be a special case of the one-parameter
exponential family; yi is then the sufficient statistic for θi in both families.

In general, only the densities of continuous distributions are members of
these families. As we can see in Appendix A, working with them implies
that continuous variables are measured to infinite precision. However, the
probability of observing any such point value is zero. Fortunately, such
an approximation is often reasonable for location parameters when the
sample size is small (although it performs increasingly poorly as sample
size increases).

1.2.3 Mean and Variance

For members of the exponential and exponential dispersion families, a spe-
cial relationship exists between the mean and the variance: the latter is



12 1. Generalized Linear Modelling

a precisely defined and unique function of the former for each member
(Tweedie, 1947).

The relationship can be shown in the following way. For any likelihood
function, L(θi, φ; yi) = f(yi; θi, φ), for one observation, the first derivative
of its logarithm,

Ui =
∂ log[L(θi, φ; yi)]

∂θi

is called the score function. (When this function, for a complete set of
observations, is set to zero, the solution of the resulting equations, called the
score equations, yields the maximum likelihood estimates.) From standard
inference theory, it can be shown that

E[Ui] = 0 (1.2)

and

var[Ui] = E[U2
i ]

= E

[
−∂Ui

∂θi

]
(1.3)

under mild regularity conditions that hold for these families.
From Equation (1.1), for the exponential dispersion family,

log[L(θi, φ; yi)] =
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

Then, for θi,

Ui =
yi − ∂b(θi)

∂θi

ai(φ)
(1.4)

so that

E[Yi] =
∂b(θi)

∂θi
(1.5)

= µi

from Equation (1.2), and

U′
i = −

∂2b(θi)
∂θ2

i

ai(φ)

from Equation (1.4). This yields

var[Ui] =
var[Yi]

a2
i (φ)

=

∂2b(θi)
∂θ2

i

ai(φ)
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from Equations (1.3), (1.4), and (1.5), so that

var[Yi] =
∂2b(θi)

∂θ2i
ai(φ)

Usually, we can simplify by taking

ai(φ) =
φ

wi

where wi are known prior weights. Then, if we let ∂2b(θi)/∂θ
2
i = τ2

i , which
we shall call the variance function, a function of µi (or θi) only, we have

var[Yi] = ai(φ)τ2
i

=
φτ2
i

wi

a product of the dispersion parameter and a function of the mean only.
Here, θi is the parameter of interest, whereas φ is usually a nuisance pa-
rameter. For these families of distributions, b(θi) and the variance function
each uniquely distinguishes among the members.

Examples

Distribution Variance function

Poisson µ = eθ

Binomial nπ(1 − π) = neθ/(1 + eθ)2

Normal 1
Gamma µ2 = (−1/θ)2

Inverse Gaussian µ3 = (−2/θ)3/2

2

Notice how exceptional the normal distribution is, in that the variance
function does not depend on the mean. This shows how it is possible to
have the classical linear normal models with constant variance.

1.3 Linear Structure

We have noted that one simplifying assumption in a model is often that
some function of the mean response varies in a linear way as conditions
change: the linear regression model. With n independent units observed,
this can be written as a linear predictor. In the simplest case, the canonical
location parameter is equated to a linear function of other parameters, of
the form

θi(µi) =
∑

j

xijβj
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or

θ(µ) = Xβ

where β is a vector of p < n (usually) unknown parameters, the matrix
Xn×p = [xT1 , . . . ,x

T
n ]T is a set of known explanatory variables, the condi-

tions, called the design or model matrix, and Xβ is the linear structure.
Here, θi is shown explicitly to be a function of the mean, something that
was implicit in all that preceded.

For a qualitative or factor variable, xij will represent the presence or
absence of a level of a factor and βj the effect of that level; for a quan-
titative variable, xij is its value and βj scales it to give its effect on the
(transformed) mean.

This strictly linear model (in the parameters, but not necessarily the
explanatory variables) can be further generalized by allowing other smooth
functions of the mean, η(·):

η(µ) = Xβ

called the linear predictor. The model now has both linear and nonlinear
components.

1.3.1 Possible Models

In the model selection process, a series of regression models will be under
consideration. It is useful to introduce terminology to describe the various
common possibilities that may be considered.

Complete, full, or saturated model The model has as many location
parameters as observations, that is, n linearly independent parame-
ters. Thus, it reproduces the data exactly but with no simplification,
hence being of little use for interpretation.

Null model This model has one common mean value for all observations.
It is simple but usually does not adequately represent the structure
of the data.

Maximal model Here we have the largest, most complex model that we
are actually prepared to consider.

Minimal model This model contains the minimal set of parameters that
must be present; for example, fixed margins for a contingency table.

Current model This model lies between the maximal and minimal and
is presently under investigation.
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The saturated model describes the observed data exactly (in fact, if the
distribution contains an unknown dispersion parameter, the latter will of-
ten not even be estimable), but, for this very reason, has little chance of
being adequate in replications of the study. It does not highlight the perti-
nent features of the data. In contrast, a minimal model has a good chance
of fitting as well (or poorly!) to a replicate of the study. However, the im-
portant features of the data are missed. Thus, some reasonable balance
must be found between closeness of fit to the observed data and simplicity.

1.3.2 Notation for Model Formulae

For the expression of the linear component in models, it is often more con-
venient, and clearer, to be able to use terms exactly describing the variables
involved, instead of the traditional Greek letters. It turns out that this has
the added advantage that such expressions can be directly interpreted by
computer software. In this section, let us then use the following convention
for variables:

quantitative variate X,Y,. . .
qualitative factor A,B,. . .

Note that these are abstract representations; in concrete cases, we shall use
the actual names of the variables involved, with no such restrictions on the
letters.

Then, the Wilkinson and Rogers (1973) notation has

Variable Algebraic Model
type Interpretation component term

Quantitative Slope βxi X

Qualitative Levels αi A

Interaction (αβ)ij A·B
Mixed Changing slopes βix B·X

Notice how these model formulae refer to variables, not to parameters.

Operators

The actual model formula is set up by using a set of operators to indicate the
relationships among the explanatory variables with respect to the (function
of) the mean.
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Combine terms + X+Y+A+Y·A
Add terms to previous model + +X·A
Remove terms from model - -Y

No change ·
Interaction · A·B
Nested model / A/B/C

(=A+A·B+A·B·C)
Factorial model * A*B

(=A+B+A·B)
Constant term 1 X-1

(line through origin)

With some software, certain operator symbols are modified. For example,
in R and S-Plus, the colon (:) signifies interaction. These software also allow
direct specification of the response variable before the linear structure:
Y ~ X1+ X2. I shall use the notation in the original article, as shown in the
table, throughout the text.

Example

(A ∗ B) · (C + D) = (A + B + A · B) · (C + D)

= A · C + A · D + B · C + B · D + A · B · C+A · B · D
(A ∗ B)/C = A + B + A · B + A · B · C

A ∗ B ∗ C− A · (B ∗ C) = A + B + C + B · C
A ∗ B ∗ C− ∗B · C = A + B + C + A · B + A · C

A ∗ B ∗ C− /A = A + B + C + B · C

2

1.3.3 Aliasing

For various reasons, the design matrix, Xn×p, in a linear model may not
be of full rank p. If the columns, x1, . . . ,xj , form a linearly dependent
set, then some of the corresponding parameters β1, . . . , βj are aliased. In
numerical calculations, we can use a generalized inverse of the matrix in
order to obtain estimates.

Two types of alias are possible:

Intrinsic alias The specification of the linear structure contains redun-
dancy whatever the observed values in the model matrix; for exam-
ple, the mean plus parameters for all levels of a factor (the sum of
the matrix columns for the factor effects equals the column for the
mean).
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Extrinsic alias An anomaly of the data makes the columns linearly de-
pendent; for example, no observations are available for one level of a
factor (zero column) or there is collinearity among explanatory vari-
ables.

Let us consider, in more detail, intrinsic alias. Suppose that the rank
of X is r < p, that is, that there are p − r independent constraints on p
estimates, β̂. Many solutions will exist, but this is statistically unimportant
because η̂ and µ̂ will have the same estimated values for all possible values
of β̂. Thus, these are simply different ways of expressing the same linear
structure, the choice among them being made for ease of interpretation.

Example

Suppose that, in the regression model,

η = β0 + β1x1 + β2x2 + β3x3

x3 = x1 + x2, so that β3 is redundant in explaining the structure of the
data. Once information on β1 and β2 is removed from data, no further
information on β3 remains. Thus, one adequate model will be

η = β1x1 + β2x2

However,

η = α1x1 + α2x2 + α3x3

is also possible if

α1 = 0

α2 = β2

α3 = β3

or

α1 = (2β1 − β2)/3

α2 = (2β2 − β1)/3

α3 = −(β1 + β2)/3

2

The first parametrization in this example, with say α1 = 0, is called the
baseline constraint, because all comparisons are being made with respect
to the category having the zero value. The second, where α1 +α2 +α3 = 0,
is known as the usual or conventional constraint. Constraints that make
the parameters as meaningful as possible in the given context should be
chosen.
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1.4 Three Components of a GLM

Consider again the simple linear (least-squares) regression plot of Figure
1.1. This model has been written, classically, as

yi = β0 + β1xi + εi where εi ∼ N(0, σ2)

but is more clearly seen to be

µi = β0 + β1xi

where µi is the mean of a normal distribution with constant variance, σ2.
From this simple model, it is not necessarily obvious that three elements

are in fact involved. We have already looked at two of them, the probability
distribution and the linear structure, in some detail and have mentioned
the third, the link function. Let us look at all three more closely.

1.4.1 Response Distribution or “Error Structure”

The Yi (i = 1, . . . , n) are independent random variables with means, µi.
They share the same distribution from the exponential dispersion family,
with a constant scale parameter.

1.4.2 Linear Predictor

Suppose that we have a set of p (usually) unknown parameters, β, and a set
of known explanatory variables Xn×p = [xT1 , . . . ,x

T
n ]T , the design matrix,

are such that

η = Xβ

where Xβ is the linear structure. This describes how the location of the
response distribution changes with the explanatory variables.

If a parameter has a known value, the corresponding term in the linear
structure is called an offset. (This will be important for a number of models
in Chapters 3 and 6.) Most software packages have special facilities to
handle this.

1.4.3 Link Function

If θi = ηi, our generalized linear model definition is complete. However, the
further generalization to noncanonical transformations of the mean requires
an additional component if the idea of a linear structure is to be retained.

The relationship between the mean of the ith observation and its linear
predictor will be given by a link function, gi(·):

ηi = gi(µi)

= xTi β
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This function must be monotonic and differentiable. Usually the same link
function is used for all observations. Then, the canonical link function is
that function which transforms the mean to a canonical location parameter
of the exponential dispersion family member.

Example

Distribution Canonical link function

Poisson Log ηi = log(µi)

Binomial Logit ηi = log
[

πi

1−πi

]
= log

[
µi

ni−µi

]

Normal Identity ηi = µi
Gamma Reciprocal ηi = 1

µi

Inverse Gaussian Reciprocal2 ηi = 1
µ2

i

2

With the canonical link function, all unknown parameters of the linear
structure have sufficient statistics if the response distribution is a member
of the exponential dispersion family and the scale parameter is known.
However, the link function is just an artifact to simplify the numerical
methods of estimation when a model involves a linear part, that is, to allow
the IWLS algorithm to work. For strictly nonlinear regression models, it
loses its meaning (Lindsey, 1974b).

Consider now the example of a canonical linear regression for the bino-
mial distribution, called logistic regression, as illustrated in Figure 1.2. We
see how the form of the distribution changes as the explanatory variable
changes, in contrast to models involving a normal distribution, illustrated
in Figure 1.1.

Link functions can often be used to advantage to linearize seemingly non-
linear structures. Thus, for example, logistic and Gomperz growth curves
become linear when respectively the logit and complementary log log links
are used (Chapter 4).

Example

The Michaelis–Menten equation,

µi =
β1xi

1 + β2xi

is often used in biology because of its asymptotic properties. With a recip-
rocal link, it can be written

1

µi
= α1 +

α2

xi

where α1 = β2/β1 and α2 = 1/β1. 2
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xi

FIGURE 1.2. A simple linear logistic regression.

Thus, generalized linear models, as their name suggests, are restricted to
having a linear structure for the explanatory variables. In addition, they
are restricted to univariate, independent responses. Some ways of getting
around these major constraints will be outlined in the next section and
illustrated in some of the following chapters.

1.5 Possible Models

1.5.1 Standard Models

With GLM software, one can usually fit the following standard distribu-
tions, all members of the exponential dispersion family:

• Poisson

• binomial

• normal (also log normal)

• gamma (also log gamma, exponential, and Pareto)
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• inverse Gaussian

and a series of link functions, only some of which are canonical,

• identity µ

• reciprocal 1
µ

• quadratic inverse 1
µ2

• square root
√
µ

• exponent (µ+ c1)
c2 (c1 and c2 known)

• log log(µ)

• logit log
(

µ
n−µ

)

• complementary log log log
[
− log

(
µ
n

)]

• probit Φ−1
(
µ
n

)

With some software, the user can define other models (distribution and/or
link) if the distribution is a member of the exponential dispersion family.

1.5.2 Extensions

A number of tricks can be used with standard GLM software in order to
fit certain models that are not generalized linear family.

Distributions Close to the Exponential Dispersion Family

If a distribution would be a member of the exponential dispersion family
except for one (shape) parameter, an extra iteration loop can be used to
obtain the maximum likelihood estimate of that parameter.

Example

The Weibull distribution,

f(y;µ, α) = αµ−αyα−1e−(y/µ)α

with known shape parameter, α, is an exponential distribution (gamma
with ν = 1). If we take an initial value of the shape parameter, fit an
exponential distribution with that value, and then estimate a new value,
we can continue refitting until convergence. 2
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Parameters in the Link Function

Two possibilities are to plot likelihoods for various values of the unknown
link parameter or to expand the link function in a Taylor series and include
the first term as an extra covariate. In this latter case, we have to iterate
to convergence.

Example

An exponent link with unknown power parameter ρ

η = µρ

can be estimated by including an extra term

−(ρ− ρ0)µ
ρ0 log(µ)

in the linear model. Change in likelihood will provide a measure of accept-
ability. 2

Parameters in the Variance Function

In models from the exponential dispersion family, the likelihood equations
for the linear structure can be solved without knowledge of the dispersion
parameter (Section A.1.2). Some distributions have a parameter in the
variance function that is not a dispersion parameter and, hence, cannot be
estimated in the standard way. Usually, special methods are required for
each case.

Example

Consider the negative binomial distribution with unknown power param-
eter, ζ, as will be given in Equation (2.4). If it were known and fixed,
we would have a member of the exponential family. One approximate way
in which this parameter can be estimated is by the method of moments,
choosing a value that makes the Pearson chi-squared statistic equal to its
expectation.

Another way, that I used in the motivating example and shall also use
in Chapters 5 and 9, consists in trying a series of different values of the
unknown parameter and choosing that with the smallest deviance. 2

Nonlinear Structure

We can linearize a nonlinear parameter by a Taylor series approximation
(Chapter 9), as for the link function.
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Example

If βh(x, α) is the nonlinear term (for example, βeαx), then

h(x, α)
.
= h(x, α0) + (α− α0)

[
∂h

∂α

]

α=α0

We can use two linear terms:

βh(x, α0) + β∗

[
∂h

∂α

]

α=α0

where β∗ = β(α− α0). At each iteration,

αs+1 = αs +
β∗

β

2

Survival Curves and Censored Observations

Many survival distributions can be shown to have a log likelihood that is
essentially a Poisson distribution plus a constant term (an offset) not de-
pending on the linear predictor (Section 6.3.2). A censored exponential dis-
tribution can be fitted with IWLS (no second iteration), whereas a number
of others, including the Weibull, extreme value, and logistic distributions,
require one simple extra iteration loop.

Composite Link Functions

The link function may vary with (subsets of) the observations. In many
cases, this can be handled as for user-programmed link functions (and dis-
tributions). Examples include the proportional odds models for ordered
variables in a contingency table and certain components of dispersion (of
variance) in random effects and repeated measurements models.

1.6 Inference

Statistical software for generalized linear models generally produce de-
viance values (Section A.1.3) based on twice the differences of the log like-
lihood from that for a saturated model (that is, −2 log[L]). However, as
we have seen, the number of parameters in this saturated model depends
on the number of observations, except in special cases; these models are
a type of “semiparametric” model where the distribution is specified but
the functional form of the systematic part, that is, the regression, is not.
Hence, only differences in deviance, where this saturated term cancels out,
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may be relevant. The one major exception is contingency tables where the
saturated model has a fixed number of parameters, not increasing with the
number of observations.

Thus, “semiparametric” and “nonparametric” models, that is, those where
a functional form is not specified either for the systematic or for the stochas-
tic part, are generally at least partially saturated models with a number of
parameters that increases with the sample size. Most often, they involve a
factor variable whose levels depend on the data observed. This creates no
problem for direct likelihood inference where we condition on the observed
data. Such saturated models often provide a point of comparison for the
simpler parametric models.

In the examples in the following chapters, the AIC (Section A.1.4) is
used for inference in the exploratory conditions of model selection. This
is a simple penalization of the log likelihood function for complexity of
the model, whereby some positive penalizing constant (traditionally unity)
times the number of estimated parameters is subtracted from it. It only
allows comparison of models; its absolute size is arbitrary, depending on
what constants are left in the likelihood function and, thus, has no meaning.

For contingency tables, I shall use an AIC based on the usual deviance
provided by the software. In all other cases, I base it on the complete
minus two log likelihood, including all constants. The latter differs from
the AIC produced by some of these packages by an additive constant, but
has the important advantage that models based on different distributions
can be directly compared. Because of the factor of minus two in these
AICs, the penalty involves the subtraction of twice the number of estimated
parameters. In all cases, a smaller AIC indicates a preferable model in terms
of the data alone.

Generalized linear models provide us with a choice of distributions that
frequentist inference, with its nesting requirements, does not easily allow us
to compare. Direct likelihood inference overcomes this obstacle (Lindsey,
1974b, 1996b) and the AIC makes this possible even with different numbers
of parameters estimated in the models to be compared.

In spite of some impressions, use of the AIC is not an automated process.
The penalizing constant should be chosen, before collecting the data, to
yield the desired complexity of models or smoothing of the data. However,
for the usual sample sizes, unity (corresponding to minus two when the
deviance is used) is often suitable. Obviously, if enough different models
are tried, some will usually be found to fit well; the generalized linear
model family, with its variety of distributions and link functions, already
provides a sizable selection. However, a statistician will not blindly select
that model with the smallest AIC; scientific judgment must also be weighed
into the choice. Model selection is exploratory — hypothesis generation; the
chosen model must then be tested, on new data, the confirmatory part of
the statistical endeavour.
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If the AIC is to be used for model selection, then likelihood intervals for
parameters must also be based on this criterion for inferences to be compat-
ible. Otherwise, contradictions will arise (Section A.1.4). Thus, with a pe-
nalizing constant of unity, the interval for one parameter will be 1/e = 0.368
normed likelihood. This is considerably narrower than those classically
used: for example a 5% asymptotic confidence interval, based on the chi-
squared distribution, has a exp(−3.84/2) = 0.147 normed likelihood. The
AIC corresponding to the latter has a penalizing constant of 1.96, adding
3.84 times the number of estimated parameters, instead of 2 times, to the
deviance. This will result in the selection of much simpler models if one pa-
rameter is checked at a time. (For example, in Section 6.3.4, the exponential
would be chosen over the Weibull.)

For a further discussion of inference, see Appendix A.

Summary

For a more general introduction to statistical modelling, the reader might
like to consult Chapter 1 of Lindsey (1996b) and Chapter 2 of Lindsey
(1993).

Books on the exponential family are generally very technical; see, for
example, Barndorff-Nielsen (1978) or Brown (1986). Chapter 2 of Lind-
sey (1996b) provides a condensed survey. Jørgensen (1987) introduced the
exponential dispersion family.

After the original paper by Nelder and Wedderburn (1972) on generalized
linear models, several books have been published, principally McCullagh
and Nelder (1989), Dobson (1990), and Fahrmeir and Tutz (1994).

For much of their history, generalized linear models have owed their
success to the computer software GLIM. This has resulted in a series of
books on GLIM, including Healy (1988), Aitkin et al. (1989), Lindsey (1989,
1992), and Francis et al. (1993) and the conference proceedings of Gilchrist
1982), Gilchrist et al. (1985), Decarli et al. (1989), van der Heijden et al.

(1992), Fahrmeir et al. (1992), and Seeber et al. (1995).
For other software, the reader is referred to the appropriate section of

their manual.
For references to direct likelihood inference, see those listed at the end

of Appendix A.

1.7 Exercises

1. (a) Figures 1.1 and 1.2 show respectively how the normal and bino-
mial distributions change as the mean changes. Although infor-
mative, these graphics are, in some ways, fundamentally differ-
ent. Discuss why.
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(b) Construct a similar plot for the Poisson distribution. Is it more
similar to the normal or to the binomial plot?

2. Choose some data set from a linear regression or analysis of variance
course that you have had and suggest some more appropriate model
for it than ones based on the normal distribution. Explain how the
model may be useful in understanding the underlying data generating
mechanism.

3. Why is intrinsic alias more characteristic of models for designed ex-
periments whereas extrinsic aliases arises most often in observation
studies such as sample surveys?

4. (a) Plot the likelihood function for the mean parameter of a Poisson
distribution when the estimated mean is ȳ• = 2.5 for n = 10
observations. Give an appropriate likelihood interval about the
mean.

(b) Repeat for the same estimated mean when n = 30 and compare
the results in the two cases.

(c) What happens to the graphs and to the intervals if one works
with the canonical parameter instead of the mean?

(d) How do these results relate to Fisher information? To the use of
standard errors as a measure of estimation precision?
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2
Discrete Data

2.1 Log Linear Models

Traditionally, the study of statistics begins with models based on the nor-
mal distribution. This approach gives students a biased view of what is
possible in statistics because, as we shall see, the most fundamental models
are those for discrete data. As well, the latter are now by far the most
commonly used in applied statistics. Thus, we begin our presentation of
generalized linear regression modelling with the study of log linear models.

Log linear models and their special case for binary responses, logistic
models, are designed for the modelling of frequency and count data, that
is, those where the response variable involves discrete categories, as de-
scribed in Section 1.1.4. Because they are based on the exponential family
of distributions, they constitute a direct extension of traditional regression
and analysis of variance. The latter models are based on the normal dis-
tribution (Chapter 9), whereas logistic and log linear models are based on
the Poisson or multinomial distributions and their special cases, such as
the binomial distribution. Thus, they are all members of the generalized
linear model family.

Usually, although not necessarily, one models either the frequencies of
occurrence of the various categories or the counts of events. Occasionally,
as in some logistic regression models, the individual indicator variables of
the categories are modelled. However, when both individual and grouped
frequency data are available, they both give identical results. Thus, for the
moment, we can concentrate, here, on grouped frequency data.
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TABLE 2.1. A two-way table for change over time.

Time 2
A B

Time A 45 13
1 B 12 54

2.1.1 Simple Models

In order to provide a brief and simple introduction to logistic and log linear
models, I have chosen concrete applications to modelling changes over time.
However, the same principles that we shall study here also apply to cross-
sectional data with a set of explanatory variables.

Observations over Time

Consider a simple two-way contingency table, Table 2.1, where some re-
sponse variable with two possible values, A and B, was recorded at two
points in time. A first characteristic that we may note is a relative stability
over time, as indicated by the large frequencies on the diagonal. In other
words, response at time 2 depends heavily on that at time 1, most often
being the same.

As a simple model, we might consider that the responses at time 2 have a
binomial distribution and that this distribution depends on what response
was given at time 1. Thus, we might have the simple linear regression model

log

(
π1|j

π2|j

)
= β0 + β1xj

where xj is the response at time 1 and πi|j is the conditional probability
of response i at time 2 given the observed value of xj at time 1. Then, if
β1 = 0, this indicates independence, that is, that the second response does
not depend on the first. In the Wilkinson and Rogers (1973) notation, the
model can be written simply as the name of the variable:

TIME1

If the software also required specification of the response variable at the
same time, this would become

TIME2 ˜ TIME1

where TIME2 represents a 2× 2 matrix of the frequencies in the table, with
columns corresponding to the two possible response values at the second
time point.

This logistic regression model, with a logit link, the logarithm of the ratio
of probabilities, is the direct analogue of classical (normal theory) linear
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TABLE 2.2. A two-way table of clustered data.

Right eye
A B

Left A 45 13
eye B 12 54

regression. On the other hand, if xj is coded (−1, 1) or (0, 1), we may
rewrite this as

log

(
π1|j

π2|j

)
= µ+ αj

where µ = β0, the direct analogue of an analysis of variance model, with
the appropriate constraints. With suitable software, TIME1 would simply
be declared as a factor variable having two levels.

Example

The parameter estimates for Table 2.1 are β̂0 = µ̂ = 1.242 and β̂1 =
α̂1 = −2.746, when xj is coded (0, 1), with an AIC of 4. (The deviance
is zero and there are two parameters.) That with α1 = β1 = 0, that is,
independence, has AIC 48.8. Thus, in comparing the two models, the first,
with dependence on the previous response, is much superior, as indicated
by the smaller AIC. 2

Clustered Observations

Let us momentarily leave data over time and consider, instead, the same
table, now Table 2.2, as some data on the two eyes of people. We again
have repeated observations on the same individuals, but here they may be
considered as being made simultaneously rather than sequentially. Again,
there will usually be a large number with similar responses, resulting from
the dependence between the two similar eyes of each person.

Here, we would be more inclined to model the responses simultaneously
as a multinomial distribution over the four response combinations, with
joint probability parameters, πij . In that way, we can look at the association
between them. Thus, we might use a log link such that

log(πij) = φ+ µi + νj + αij (2.1)

With the appropriate constraints, this is again an analogue of classical anal-
ysis of variance. It is called a log linear model. If modelled by the Poisson
representation (Section 2.1.2), it could be given in one of two equivalent
ways:

REYE ∗ LEYE
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or

REYE+ LEYE+ REYE · LEYE

With specification of the response variable, the latter becomes

FREQ ˜ REYE+ LEYE+ REYE · LEYE

where FREQ is a four-element vector containing the frequencies in the table.
Notice that, in this representation of the multinomial distribution, the “res-
ponse variable”, FREQ, is not really a variable of direct interest at all.

Example

Here, the parameter estimates for Table 2.1 are φ̂ = 2.565, ν1 = 1.424,
µ̂1 = 1.242, and α̂11 = −2.746, with an AIC of 8. (Again, the deviance
is zero, but here there are four parameters.) That with α11 = 0 has AIC
52.8. (This is 4 larger than in the previous case because the model has two
more parameters, but the difference in AIC is the same.) The conclusion
is identical, that the independence model is much inferior to that with
dependence. 2

Log Linear and Logistic Models

The two models just described have a special relationship to each other.
With the same constraints, the dependence parameter, α, is identical in
the two cases because

log

(
π1|1π2|2

π1|2π2|1

)
= log

(
π11π22

π12π21

)

The normed profile likelihoods for α = 0 are also identical, although the
AICs are not because of the different numbers of parameters explicitly
estimated in the two models (differences in AIC are, however, the same).
This is a general result: in cases where both are applicable, logistic and
log linear models yield the same conclusions. The choice is a matter of
convenience.

This is a very important property, because it means that such models
can be used for retrospective sampling. Common examples of this include, in
medicine, case-control studies, and, in the social sciences, mobility studies.

These results extend directly to larger tables, including higher dimen-
sional tables. There, direct analogues of classical regression and ANOVA
models are still applicable. Thus, complex models of dependence among
categorical variables can be built up by means of multiple regression. Ex-
planatory variables can be discrete or continuous (at least if the data are
not aggregated in a contingency table).
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2.1.2 Poisson Representation

With a log linear model, we may have more than two categories for the re-
sponse variable(s), so that we require a multinomial, instead of a binomial,
distribution. This cannot generally be directly fitted by standard general-
ized linear modelling software. However, an important relationship exists
between the multinomial and Poisson distributions that makes fitting such
models possible.

Consider independent Poisson distributions with means µk and corre-
sponding numbers of events nk. Let us condition on the observed total
number of events, n• =

∑
k nk. From the properties of the Poisson distribu-

tion, this total will also have the same distribution, with mean µ• =
∑

k µk.
Then, the conditional distribution will be

∏ e−µkµ
nk
k

nk!

e−µ•µn•
•

n•!

=

(
n•

n1 · · ·nK

) K∏

k=1

(
µk
µ•

)nk

a multinomial distribution with probabilities, πk = µk/µ•. Thus, any multi-
nomial distribution can be fitted as a product of independent Poisson dis-
tributions with the appropriate conditioning on the total number of events.

Specifically, this means that, when fitting such models, the product of
all explanatory variables must be included in the minimal log linear model,
in order to fix the appropriate marginal totals in the table:

R1 + R2+ · · ·+E1 ∗ E2∗ · · · (2.2)

where Ri represents a response variable and Ej an explanatory variable.
This ensures that all responses have proper probability distributions (Lind-
sey, 1995b). Much of log linear modelling involves searching for simple
structural models of relationships among responses (Ri) and of dependen-
cies of responses on explanatory variables.

2.2 Models of Change

One of the most important uses of log linear models has been in sample
survey data. A particularly interesting area of this field is panel data. There,
the same survey questions are administered at two or more points in time
to the same people. In this way, we can study changes over time.

For simplicity, let us restrict attention, for the moment, to the observa-
tion of responses at only two points in time, that is, to two-dimensional
tables, as in the simple example above. However, the generalization to more
complex cases is fairly direct.

Suppose that the response has I categories, called the states, so that we
have a I × I table and are studying changes in state over time. Then, our
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dependence parameter, α, in Equation (2.1), will be a I × I matrix, but
with only (I − 1) × (I − 1) independent values, because of the need for
constraints. When I > 2, the idea is to reduce this number of parameters
by structuring the values in some informative way, that is, to be able to
model the specific forms of dependence among successive responses.

The minimal model will be independence, that is, when πij = πi•π•j or,
equivalently, αij = 0 ∀i, j. The maximal model is the saturated or “non-
parametric” one. The latter is often not especially useful. Most interesting
models, in this context, are based on Markov chains: the current response
simply is made to depend on the previous one. These are models describing
the transition probabilities of changing from one state to another between
two points in time.

2.2.1 Mover–Stayer Model

Because, in the example above, we have noticed that there is often a rather
large number of individuals who will give the same response the two times,
let us first see how to model this.

Suppose that we have a mixture of two subpopulations or latent groups,
one of which is susceptible to change while the other is not. This is called
a mover–stayer model. We know that individuals recorded off the main
diagonal will all belong to the first subpopulation, the movers, because they
have changed. However, the main diagonal frequencies are more complex
because they will contain both the stayers and any movers who did not
happen to change within the observation period (more exactly, who were
in the same place on both observation dates).

For a simple model, let us assume that the locations of the movers at
the two points in time are independent. If we ignore the mixture on the
diagonal, we can model the rest of the table by quasi-independence, that is,
independence in an incomplete table where the diagonal is missing. Then,
with this independence assumption, we can obtain estimates of the number
of movers on the diagonal and, hence, of the number of stayers.

Example

A 10% sample is available, from the published migration reports of the
1971 British census, of people migrating between 1966 and 1971 among
four important centres of population in Britain, the Metropolitan Counties.
The results are given in Table 2.3. All are British residents who were born
in the New Commonwealth. Here, the numbers not moving, those on the
diagonal, are very extreme.

For this table, the deviance for independence

MOVE66+ MOVE71

is 19,884 (AIC 19,898) with nine degrees of freedom (d.f.), a strong in-
dication of dependence, whereas that for the mover–stayer model (quasi-
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TABLE 2.3. Place of residence in Britain in 1966 and 1971. (Fingleton, 1984,
p. 142)

1971
1966 CC ULY WM GL

Central Clydesdale 118 12 7 23
Urban Lancs. & Yorks. 14 2127 86 130
West Midlands 8 69 2548 107
Greater London 12 110 88 7712

independence), fitted in the same way but to the table without the main
diagonal, is 4.4 (26.4) with five d.f., a remarkable improvement. The loss
of four d.f. results from eliminating the diagonal entries; this is equivalent
to allowing a separate parameter for each of them. This is taken into ac-
count in the AIC. Because the deviance is zero, the AIC for the saturated
model of a contingency table is just two times the number of entries in the
table, here 32, so that the mover–stayer model is also to be preferred to
the saturated model.

Notice that the dependence arises almost entirely from stayers being in
the same place at the two time points. The numbers of movers on the
diagonal are estimated to be only 1.6, 95.2, 60.3, and 154.6, respectively.
Thus, most people in the table can have their 1971 place of residence exactly
predicted by that of 1966: they will be in the same place. This is the
dependence just detected above. 2

The mover–stayer model allows a different probability of staying within
each response state. The special case where all of these probabilities are
equal is called the loyalty model. This can be fitted by a factor variable
with one level for all diagonal entries and a second for off-diagonal ones,
instead of eliminating the diagonal.

Note, however, that, for calculating conditional probabilities, such mod-
els are really illegitimate. The probability of being in a given state at the
second time point depends on knowledge about whether or not one is a
mover (or loyal), but this cannot be known until the state at the second
time is available.

2.2.2 Symmetry

Because, in panel data, the same response variables are being recorded two
(or more) times, we might expect some symmetry among them.
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Complete Symmetry

Suppose that the probability of changing between any pair of categories is
the same in both directions:

πi|j = πj|i ∀i, j (2.3)

a model of complete symmetry. In terms of Markov chains, this is equivalent
to the combination of two characteristics, reversibility and equilibrium, that
we shall now study. In fact, we can separate the two.

Equilibrium

Consider, first, equilibrium: the marginal probabilities are the same at the
two time points,

πi• = π•i ∀i

In other words, the (marginal) distribution of the states remains the same
at the different time points, hence the name. In the usual analysis of con-
tingency tables, this is called marginal homogeneity; however, it is not a log
linear model and, hence, not a generalized linear model. It requires special
programming to be fitted. In our example below, this model would imply
that the proportion of votes received by each party remained the same in
the two elections.

Reversibility

Reversibility, on the other hand, implies (more or less) equal transition
probabilities both ways between pairs of response categories, within the
constraints of the marginal probabilities being those values observed, that
is, the latter are not necessarily symmetric. In terms of log linear models,
this is called quasi-symmetry. It can be fitted by creating a special factor
variable with pairs of identical values for symmetric positions on either side
of the main diagonal. This variable is fitted along with the two marginal
parameters, whereas the main diagonal is weighted out (as in the mover–
stayer model).

Combining this with marginal homogeneity, by removing the marginal
parameters, we obtain complete symmetry (about the main diagonal) in
the table, as described by Equation (2.3).

Example

A panel of 1651 voters in the elections in Sweden were randomly drawn from
the electorate and followed from 1964 to 1970. They were interviewed im-
mediately after each election. The results for panel members who voted for
one of the four major parties are given in Table 2.4 for the elections of 1968
and 1970. Those who abstained or who voted for a minor party are omitted.
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TABLE 2.4. Sweden election votes in 1968 and 1970. (Upton, 1978, p. 128, from
Sarlvik)

1970
1968 SD C P Con Total

SD 850 35 25 6 916
C 9 286 21 6 322
P 3 26 185 5 219
Con 3 26 27 138 194
Total 865 373 258 155 1651

SD - Social Democrat C - Centre

P - People’s Con - Conservative

The parties have been arranged from left to right. With the relatively large
diagonal values, we may expect that a mover–stayer model would probably
provide a substantial improvement over independence. However, there also
appears to be a “distance” effect, in that a defecting voter seems more likely
to switch to a nearby party on the left–right scale. We shall now examine
this latter phenomenon more closely. Let us see how symmetry models can
help us in this.

For these data, the equilibrium or marginal homogeneity model has a
deviance of 65.2 (AIC 91.2) with three d.f., whereas the reversibility or
quasi-symmetry model

VOTE68+ VOTE70+ SYMMETRY

has 2.5 (28.5) with three d.f., as compared to an AIC of 32 for the saturated
model. The complete symmetry model

SYMMETRY

has deviance and degrees of freedom that are each the sum of those for
the two models just given. The overall election results changed, but, given
this, the transfers between parties were equal in both directions. They are
highest between adjacent parties. As we can see in the table, between the
two years there was a shift in the margins toward the two central parties.2

From now on in the examples, the AIC will be indicated in parentheses
after the deviance.

2.2.3 Diagonal Symmetry

Up until now, the models have not taken into account any ordering or
distance among the response states. Suppose, for example, that all changes
in either direction between adjacent categories have equal probability. In
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the same way, all changes two states apart have the same probability, and so
on. This is called a symmetric minor diagonals model. In terms of Markov
chains, it is a random walk without drift, where, however, jumps of more
than one unit are allowed. (A strict random walk, with only one unit jumps,
would only have positive frequencies, and probabilities, on the first two
minor diagonals, one on either side of the main diagonal.)

Suppose that we keep the model for constant probabilities between all
pairs of states the same distance apart. But now let us allow them to
be different in opposing directions. We, then, have an asymmetric minor

diagonals model. This is a random walk with drift, because the probability
will be higher to shift in one direction on the scale than in the other.

These models may be fitted by constructing the appropriate factor vari-
able with a constant value for all positions on the pertinent diagonal or
pair of diagonals.

Example

For the Swedish election data, the symmetric minor diagonals model has
a deviance of 35.9 (55.9) with six d.f., and the asymmetric, 29.6 (53.6)
with four d.f. Neither is an acceptable simplification of the quasi-symmetry
model. This implies that probabilities of change among parties equal dis-
tances apart are not the same. 2

2.2.4 Long-term Dependence

If we have panel data over more than two points in time, we can study more
long-term dependence. We simply use the series of previous responses as
explanatory variables in the log linear or logistic regression model, with an
additional dimension to the table for each point in time. For example, if
the response at any given point in time only depends on the immediately
preceding one, we have a first-order Markov chain, the model we have been
using above, with two points in time. This hypothesis can easily be checked
by seeing if the log linear regression parameters for dependence further back
in time could be set to zero.

Another possibility is to suppose that the way that the response depends
on previous responses is identical at all points in time, called stationarity.
With a sufficiently long series, this can also easily be checked by setting up
the appropriate log linear regression model. These models will be further
discussed in the Chapter 4.

2.2.5 Explanatory Variables

Usually, we also want to study how the responses depend on other explana-
tory variables, such as sex, age, marital status, medical treatment, and so
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on. Each such variable creates an additional dimension to the table. How-
ever, the variables are still introduced into the log linear model in exactly
the same way.

Thus, for one such variable, our original model would become

log(πi|jk) = φ+ νi + µj + θk + αij + β1xik + β2xjk

or

R1+ R2 + EXP+ R1 · R2 + R1 · EXPL+ R2 · EXPL

where R1 and R2 are the responses at the two time points and EXPL is the
explanatory variable. Here, αij or R1 ·R2 measures the dependence between
the two successive response, as before, whereas β1 or R1 · EXPL measures
the dependence of the first response on the explanatory variable, and β2 or
R2 · EXP that of the second response. Higher order interactions might also
be introduced, if necessary.

As the number of such explanatory variables increases, the size of the
table grows dramatically. Often, it is preferable to model the individual
responses directly. This has the added advantage that the exact values of
continuous explanatory variables can be used, instead of categorizing them
in a table. Such models will be discussed further in Chapter 5.

2.3 Overdispersion

The binomial and Poisson distributions are members of the one-parameter
exponential family. As we saw in Section 1.2.3, the variance of the distri-
bution is related to the mean in a fixed way, var[Yi] = τ2 (that is, nπ[1−π]
and µ, respectively). Often, for count data, that is, several events recorded
on the same units, as with the cell counts on patients in the introductory
example of Chapter 1, the observed variance is greater than this, because
the events will be interdependent. This is known as overdispersion. It may
arise in several ways.

• The subjects in a group may not be homogeneous, as for the cell
counts, so that π or µ is, in fact, different for different members. This
could be corrected by introducing supplementary variables into the
model to explain these differences, variables that, however, will usu-
ally not be available. This phenomenon is known variously as prone-
ness, ability, or frailty, depending on the field of application, when
due to inherent characteristics, but may also arise from differing en-
vironments.

• Each subject may start with the same mean parameter, but this may
evolve over the time in which the count of events is being made,
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perhaps depending on previous events. This can only be detected,
and distinguished from the first type, by recording the timing over
all events. It may be a birth, contagion, or learning process.

To distinguish between these two types of explanations, we require the
timings of the events. Then, we can use the models that will be developed
in Chapters 5 and 7.

2.3.1 Heterogeneity Factor

When only the total counts of events on a unit are available, the simplest
correction for making certain types of approximate inferences is to intro-
duce a heterogeneity factor, φ, into the variance:

var[Yi] = φτ2

Then, for the overdispersed binomial distribution, we have nφπ(1−π) and,
for the Poisson, φµ. This is not a statistical model, properly speaking; it has
no probabilistic basis. All that it does is provide a correction to the standard
errors, something that is not too useful in the direct likelihood approach
where it is known that standard errors only give a crude approximation to
the parameter precision obtained from an asymmetric likelihood function.

As with the normal distribution, the mean deviance for some maximal
model can be used to provide an estimate for this parameter. Such a correc-
tion to inferences is usually only satisfactory if the number of observations
under each explanatory variable condition is roughly equal.

2.3.2 Random Effects

A more complex, but more satisfactory, solution through modelling is to
assume that the mean parameter, that is assumed to be varying in an un-
known way among subjects, has some random distribution. This is known
as a random effects model, obtained as a compound distribution. This cor-
responds to modelling the first way in which overdispersion might arise, as
described above. (We look at the second way in Chapter 5.)

As we can see in Appendix A, each member of the exponential disper-
sion family has a corresponding compounding distribution, known as its
conjugate, that yields an analytically closed-form compound distribution.
For an exponential family distribution

f(y; θ) = exp[yθ − b(θ) + c(y)]

the conjugate distribution for the random parameter is

p(θ; ζ, γ) = exp [ζθ − γb(θ) + s(ζ, γ)]
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where s(ζ, γ) is a term not involving θ. This conjugate is also a member of
the exponential family. The resulting compound distribution, for n obser-
vations, is

f(y; ζ, γ) = exp[s(ζ, γ) + c(y) − s(ζ + y, γ + n)]

This is not generally a member of the exponential family.

Examples

1. For the binomial distribution, the conjugate is the beta distribution,

p(π; ζ, γ) =
πζ−1(1 − π)γ−1

B(ζ, γ)

where B(·) is the beta function, and the compound distribution is called
beta-binomial:

f(y; ζ, γ) =

(
n

y

)
B(ζ + y, γ + n− y)

B(ζ, γ)

2. For the Poisson distribution, the conjugate is the gamma distribution,

p(µ; ζ, γ) =
µζγζ+1e−γµ

Γ(ζ + 1)

where Γ(·) is the gamma function, yielding a negative binomial distribution:

f(y; ζ, γ) =
Γ(y + ζ + 1)

Γ(ζ + 1)y!
γζ+1(γ + 1)−(y+ζ+1)

=
Γ(y + ζ + 1)

Γ(ζ + 1)y!

(
γ

γ + 1

)ζ+1(
1

γ + 1

)y
(2.4)

2

Another common possibility is to use a normal compounding distribu-
tion, but then the model cannot be written in closed form (unless the
original distribution is normal), and numerical integration is necessary in
order to fit it. Still another approach will be presented in Section 3.3.2.

2.3.3 Rasch Model

The mover–stayer model is a special case of a random effects model in
which there are only two values of the random parameter(s), that is, two
latent groups in the population. If a set of discrete responses is available for
each individual, more elaborate groups can be devised. Thus, for example,
with R binary responses, the n individuals might be distinguished by their
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R + 1 different possible total numbers of positive responses. This is the
Rasch model that has its origin in educational research.

In educational testing, items in a test often have a binary, true/false,
response. Each subject replies to a series of questions making up the test.
Responses will vary according to the ability of the subject and to the dif-
ficulty of each item. The latter may be assumed to have some latent, or
unobserved, variable in common, so that taking the total number of posi-
tive responses makes sense. Rasch (1960) introduced a binary data model
whereby the probability of response yik of the subject i to item k is given
by

Pr(yik |κi) =
eyik(κi−υk)

1 + eκi−υk
(2.5)

The data are represented by an n×R matrix of zeros and ones.
In order to allow for variation among individuals, Rasch proposed using

a conditional likelihood approach, because conditioning on the marginal
totals, yi•, eliminates the nuisance parameter, κi, from the likelihood func-
tion.

Subsequently, Tjur (1982) showed that the conditional model can be
fitted as a log linear model. The margins for each item, Rk, are fitted, as
well as a factor variable for TOTAL score, with R+ 1 possible values,

R1 + · · · + RR + TOTAL

This can also be thought of as a model for quasi-independence in a 2R ×
(R+1) table containing structural zeros, because each combination of item
responses can only give one score. It is also a generalization of the quasi-
symmetry model, because all units with the same total number of correct
responses are treated symmetrically. Differences among groups can also be
introduced into the model.

This model obviously has much wider application than simply to educa-
tional testing.

Example

A Danish Welfare Study looked at various personal hazards, as given in
Table 2.5. Each question had five parts, yielding five binary responses. The
question on work asked if the person was often exposed to noise, bad light,
toxic substances, heat, and dust. That for psychic inconvenience asked if
the person suffered from neuroses, sensitivity to noise, sensitivity to mi-
nor difficulties, troubling thoughts, and shyness, whereas that for physi-
cal inconveniences asked about diarrhea, back pain, colds, coughing, and
headaches. (For work hazards, “yes, always” and “yes, sometimes” have
been grouped together as the positive response.) Thus, there is obviously
no relationship between, say, the first question of each of the three types.
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TABLE 2.5. Answers to questions on work, psychic inconvenience, and physical
inconvenience in the Danish Welfare Study. (Andersen, 1991, p. 483)

Answer Work Psychic Physical

YYYYY 70 34 16
YYYYN 15 10 5
YYYNY 34 21 24
YYYNN 6 17 16
YYNYY 39 17 11
YYNYN 21 4 12
YYNNY 38 15 79
YYNNN 49 20 98
YNYYY 103 63 18
YNYYN 39 21 11
YNYNY 129 45 19
YNYNN 66 38 15
YNNYY 115 42 9
YNNYN 116 29 9
YNNNY 217 65 54
YNNNN 409 92 97
NYYYY 4 14 37
NYYYN 8 4 38
NYYNY 7 35 73
NYYNN 3 32 82
NYNYY 12 21 55
NYNYN 22 12 70
NYNNY 16 99 365
NYNNN 60 172 689
NNYYY 24 46 30
NNYYN 27 27 61
NNYNY 54 115 84
NNYNN 99 176 178
NNNYY 63 98 44
NNNYN 193 107 131
NNNNY 168 776 454
NNNNN 1499 2746 2267
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Because there is no such connection among questions, we may expect
that the mean number of positive responses will vary according to subject
area. We can begin by ignoring differences among individuals and fit models
for independence among questions. The simplest model is

Q1 + Q2+ Q3 + Q4 + Q5+ TYPE

that does not allow for these differences among the three types. It has a
deviance of 6803.3 with 88 d.f. (AIC 6819.3), clearly very bad. Introducing
the interaction between type and question,

(Q1 + Q2 + Q3+ Q4+ Q5) ∗ TYPE

gives a deviance of 4015.2 with 78 d.f. (4051.2).
We can now try to take into account individual variation among respon-

dents by classifying them using the only information we have about them,
that is, according to the number of positive replies,

(Q1 + Q2+ Q3 + Q4+ Q5) ∗ TYPE+ SCORE

This model has a deviance of 516.2 with 74 d.f. (560.2), showing that a
very large variability among individuals is present. These differences among
individuals may not act in the same way for all three types of questions,
yielding the model

(Q1 + Q2+ Q3 + Q4+ Q5 + SCORE) ∗ TYPE

that has a deviance of 403.1 with 66 d.f. (463.1), again a considerable
improvement.

However, although we have greatly improved the fit, this final model is
still not satisfactory. (The saturated model has an AIC of 192.) Dependence
among the replies to the five questions for an individual are not completely
explained by heterogeneity of the participating respondents.

Because of the poor fit, it may be useful to examine the residual plots
(Appendix B). Cook’s distances are given in Figure 2.1. We discover one
very large value, that corresponding to the frequency of 776, the second
last in the column psychic. (Elimination of this value, a procedure not to
be recommended without good reason, reduces the deviance by 28.5 for one
d.f., with an AIC of 434.6.) The Q–Q plot is shown in Figure 2.2. It is far
from the 45◦ straight line, confirming the global lack of fit of the model. 2

Residual plots break down the global fit of a model, as measured by its
deviance, into its component parts. If the fit is good, none of the compo-
nents can generally be exceptionally large. Thus, such plots are often a
useful procedure for examining the details of the fit of an unsatisfactory
model. For reasons of space, they will not be discussed in the examples of
the following chapters.
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FIGURE 2.1. Plot of Cook’s distances for the final model for the Danish Welfare
Study of Table 2.5.

-8

-4

0

4

8

O
rd

er
ed

 r
es

id
ua

l

-3 -2 -1 0 1 2 3
Ordered normal

FIGURE 2.2. Q–Q plot for the final model for the Danish Welfare Study of Table
2.5.
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Summary

Standard log linear and logistic models, with their canonical link functions,
have proven their worth, based on their ability to decompose probabilities
in a multiplicative way. Nothing has been said in this chapter about link
functions other than the canonical ones; for example, probit or complemen-
tary log log.

Thus, categorical data models have become one of the most important
areas of statistical modelling. In applied statistics, they have clearly dis-
placed the monopoly of the normal linear models of earlier years. The
general methods are well known and cannot be reproduced in detail here.
A number of special cases will be covered in subsequent chapters. Many
specialized books are now available showing various aspects of categorical
data analysis. The reader may like to consult Agresti (1990), Collett (1991),
Lindsey (1995b), and Morgan (1992).

2.4 Exercises

1. The following table provides voting changes between the British elec-
tions of 1964 and 1966 (Upton, 1978, p.111, from Butler and Stokes)
for a panel of voters.

1964
1966 Conservative Liberal Labour Abstention

Conservative 157 4 17 9
Liberal 16 159 13 9
Labour 11 9 51 1
Abstention 18 12 11 15

The panel members are those staying in the same constituency over
the three-year period. They had only these three choices of parties
for which they could vote. Explore possible models for these data.
We are particularly interested in party loyalty and distance of moves
among parties.

2. A classical study of British intergenerational social mobility (Bishop
et al., 1975, p. 100, from Glass) gave following results:

Father
Son A B C D E
A 50 45 8 18 8
B 28 174 84 154 55
C 11 78 110 223 96
D 14 150 185 714 447
E 3 42 72 320 411
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(The categories are A: Professional, high administrative, B: Manage-
rial, executive, high supervisory, C: Low inspectional, supervisory, D:
Routine nonmanual, skilled manual, and E: Semiskilled and unskilled
manual.) Develop a model for the dependence of the son’s profession
on the father’s. Of special interest will be how far along the profes-
sion scale a family can move in one generation. Is there a drift in one
direction or the other?

3. Employees aged 30–39 in Royal Ordinance factories from 1943 to
1946 had eye tests for unaided distance vision (Stuart, 1953, from
the Association of Optical Practitioners):

Right Left eye grade
eye 4 3 2 1 Total
grade Female

4 1520 266 124 66 1976
3 234 1512 432 78 2256
2 117 362 1772 205 2456
1 36 82 179 492 789

Total 1907 2222 2507 841 7477

Male

4 821 112 85 35 1053
3 116 494 145 27 782
2 72 151 583 87 893
1 43 34 106 331 514

Total 1052 791 919 480 3242

Study the relationship between the two eyes. For example, do both
eyes of a person generally have equally good vision? Is a left eye being
poorer than the right as probable as the reverse? Do any such results
that you find hold for the two sexes?

4. In a study of the social system of adolescents, all students in ten high
schools in the United States of America were given several questions
about the “leading crowd”. Among other things, they were asked if
they considered themselves to be members. One attitude question also
asked was if being a member obliges one sometimes to go against his
or her principles. Responses were recorded at the beginning and end
of the school year, with the results for the boys given below (Coleman,
1964, p. 171):
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Attitude Member Member Attitude 2
1 1 2 Favourable Unfavourable

Favourable Yes Yes 458 140
Unfavourable 171 182
Favourable No 184 75
Unfavourable 85 97
Favourable Yes No 110 49
Unfavourable 56 87
Favourable No 531 281
Unfavourable 338 554

How are membership and attitude interrelated? How do responses at
the end of the year depend on the earlier ones?

5. The Six Cities study looked at the longitudinal effects of air pollution
on health. Part of the data concern children in Steubenville, Ohio,
USA, who were followed each year from ages seven through ten (Fitz-
maurice and Laird, 1993). Each year, the wheezing status of the child
was recorded. Whether the mother smoked or not when the child was
seven is also available (although this could have evolved over time).

Age Smoking

7 8 9 10 No Yes
No No No No 237 118

Yes 10 6
Yes No 15 8

Yes 4 2
Yes No No 16 11

Yes 2 1
Yes No 7 6

Yes 3 4
Yes No No No 24 7

Yes 3 3
Yes No 3 3

Yes 2 1
Yes No No 6 4

Yes 2 2
Yes No 5 4

Yes 11 7

Ignoring for the moment the fact that these are longitudinal data,
determine if there is heterogeneity among the respondents. Does the
child’s wheezing depend on the smoking status of the mother?

6. Responses to three questions on abortion in surveys conducted over
three years (Haberman, 1979, p. 482) are given below.
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Year
Response 1972 1973 1974

YYY 334 428 413
YYN 34 29 29
YNY 12 13 16
YNN 15 17 18
NYY 53 42 60
NYN 63 53 57
NNY 43 31 37
NNN 501 453 430

The questions were: Should a pregnant woman be able to obtain a
legal abortion (1) if she is married and does not want more children;
(2) if the family has very low income and cannot afford any more chil-
dren; (3) if she is not married and does not want to marry the man?
The respondents were white Christians questioned by the General
Social Survey in the United States of America. This is not a panel,
so that the subjects involved are different each year. Interest centres
on what changes in attitude to abortion are occurring over the years?
Use a Rasch model to control for variability among respondents in
the surveys when you study this question.
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3
Fitting and Comparing Probability
Distributions

3.1 Fitting Distributions

We have now seen how to analyze events by means of statistical models.
Next, we are going to discover that all statistical observations can be an-
alyzed as events. Even the record of a theoretically continuous variable,
such as the weight of a person at a given point in time, is an event, and a
discrete one at that, because any instrument can only measure to a finite
precision.

Thus, in Chapter 2, we saw how a multinomial distribution can be fitted
as a product of Poisson distributions if we condition on the total number of
observations. A multinomial distribution is the most general distribution
for independent observations, in the sense that it makes the least assump-
tions about the form. Some would call it a “nonparametric” model because
it follows exactly the empirical data without imposing a smooth functional
form. We can, however, go further and add structure to the distribution,
making it parametric. We can impose a functional form defining a relation-
ship among the probabilities (Lindsey, 1974a, 1995b; Lindsey and Mersch,
1992).

3.1.1 Poisson Regression Models

A Poisson regression model allows the frequencies of events, as represented
in a contingency table, to depend on one or more variables, provided that
the events are independent given these variables. Thus, in its general canon-
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TABLE 3.1. People recalling one stressful event in the preceding 18 months.
(Haberman, 1978, p. 3)

Month 1 2 3 4 5 6 7 8 9
Respondents 15 11 14 17 5 11 10 4 8

Month 10 11 12 13 14 15 16 17 18
Respondents 10 7 9 11 3 6 1 1 4

ical form, it is

log(µi) =
∑

j

βjxij

Conditional on these variables, the events are assumed independently to
follow a Poisson distribution. This is a quite general result that turns out
to be applicable to most observable phenomena for which statistical models
are used. It depends on two critical facts:

• theoretically continuous variables can only be observed to finite pre-
cision, and

• a joint distribution for ordered dependent observations can be de-
composed into a product of independent conditional distributions;
see Equation (5.1).

Thus, one major exception to such applications is spatial data (Chapter 8),
because they cannot generally be ordered.

The simplest example of a contingency table is one-dimensional; it can
be represented by a histogram, where the categories are the values of the
response variable. The multinomial model applied to such data is just a
“nonparametric” model, a saturated model with one parameter for each
category, the only constraint being that the sum of the probabilities for
all categories be unity. However, if the values of the variable have more
structure than just being nominal, we can make the probabilities of the
categories, estimated by using the frequencies in the histogram, depend in
some way on these values. In order to see how to proceed, it will be useful
first to look at an example.

Example

Consider a Poisson regression model applied to a study on the relationship
between life stresses and illnesses. One randomly chosen member of each
randomly chosen household in a sample from Oakland, California, USA,
was interviewed. In a list of 41 events, respondents were asked to note
which had occurred within the last 18 months. The results given in Table
3.1 are for those recalling only one such stressful event. The canonical
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FIGURE 3.1. Data on recall of events over 18 months, with the fitted Poisson
regression model.

Poisson regression model for these data would be

log(µi) = β0 + β1yi (3.1)

where µi is the average number of respondents giving month i and yi = i
is the month or simply

MONTHS

The maximum likelihood estimates are β̂0 = 2.803 and β̂1 = −0.0838. The
model can be rewritten

µ̃i = eβ̂0+β̂1yi

= 16.494e−0.0838yi

where the tilde indicates that µ̃i is not the maximum likelihood estimate
of the mean but is calculated from the estimates for the regression. This
is a model of exponential decline (Chapter 4). The data and the estimated
model for the mean (remember Figures 1.1 and 1.2) can be plotted as in
Figure 3.1

Let us now look at these same data in another way. We take Yi, the
number of months to a recalled event, as our random variable, with an
exponential distribution:

f(yi;φ) = φe−φyi (3.2)
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We can already notice the similarity with the equation for the estimate
of the mean just given. However, our data are grouped into one-month
intervals, so that we have

Pr

(
yi −

∆i

2
< Yi ≤ yi +

∆i

2

)
=

∫ yi+
∆i
2

yi−
∆i
2

φe−φuidui

.
= φe−φyi∆i (3.3)

where ∆i is one month. Let πi = Pr(yi − ∆i/2 < Yi ≤ yi + ∆i/2), the
multinomial probabilities for the table. Multiplying each side of Equation
(3.3) by n• and taking logarithms, we obtain the following relationship
among these probabilities:

log(n•πi) = log(n•φ∆i) − φyi

= β0 + β1yi

where β0 = log(n•φ∆i) and β1 = −φ in Equation (3.1). We thus discover
that this is identical to our Poisson regression model above, with µi =
n•πi. 2

This surprisingly simple result can easily be generalized.

3.1.2 Exponential Family

Our exponential distribution is one of the simplest members of the linear

exponential family (Section 1.2.1):

f(yi;θ) = exp[θT t(yi) − b(θ) + c(yi)]

where t(yi) is the vector of sufficient statistics for the canonical parameters,
θ. However, for any empirically observable data, the probability function,
πi = Pr(yi − ∆i/2 < Yi ≤ yi + ∆i/2), should be used in the likelihood
function, even if the variable is theoretically continuous. We, thus, apply the
same approximation to the integral, as above, for all continuous variables.

If we, again, take logarithms, we may note that

log(n•πi) = θT t(yi) − b(θ) + c(yi) + log(n•∆i)

This, not surprisingly, is linear in t(yi) and in θ. Because c(yi)+ log(n•∆i)
contains no unknown parameters, it can be used as an offset, so that we
have

log(n•πi) = β0 + βT t(yi)

where β = θ and β0 = −b(θ), the latter being the normalizing constant for
the family. (In fact, log[n•] can also be absorbed into β0, and this is often
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simpler.) Thus, for frequency data, the usual likelihood function for any
distribution from the linear exponential family can be exactly represented
as a Poisson linear regression model. The only difference is that the nor-
malizing constant is taken as an additional unknown parameter. Any other
distribution can also be represented as a Poisson regression equation, but
it will no longer be linear.

In the Poisson regression, the “explanatory” variables are the sufficient
statistics of the appropriate member of the exponential family. The model
terms for common distributions include

Distribution Statistic Offset
Uniform —
Geometric yi
Exponential yi
Poisson yi − log(yi!)
Binomial yi log

(
ni

yi

)

Normal yi, y
2
i

Inverse Gaussian yi, y
−1
i −1.5 log(yi)

Gamma yi, log(yi)
Pareto log(yi)

Log normal log(yi), log2(yi)

Examples

1. For the Poisson distribution with mean, λ, we fit

log(µi) = β0 + β1yi

with offset, log(n•/yi!), so that β0 = −λ and β1 = log(λ). Notice that we
are using a Poisson regression model to fit a Poisson distribution, where
the latter has no explanatory variables (for the moment).

2. For the normal distribution, with mean, λ, and variance, σ2, we fit

log(µi) = β0 + β1yi + β2y
2
i

so that β1 = λ/σ2 and β2 = −1/(2σ2), the canonical parameters. 2

Thus, a normal distribution can be fitted as a Poisson regression for
relatively small samples, whereas a Poisson distribution only approaches
normality asymptotically.
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3.2 Setting Up the Model

3.2.1 Likelihood Function for Grouped Data

To recapitulate, for any (conditionally) independent set of events, we have
the multinomial likelihood function

L(p) ∝
∏

πni

i

where ni is the frequency in category i and

πi = f(yi; θ), y discrete

=

∫ yi+
∆i
2

yi−
∆i
2

f(ui; θ)dui, y continuous

.
= f(yi; θ)∆i

Fixing n• =
∑
ni is the condition required in order to have a proper

probability distribution with
∑
πi = 1. The result is equivalent to a Poisson

likelihood

∏ µni

i e−µi

ni!

where log(µi) = θT t(yi)−b(θ)+c(yi)+log(n•∆i) in the exponential family.
In log linear models for categorical data, conditioning on the total num-

ber of observations in the Poisson likelihood ensures that the total multino-
mial probability of all categories included in the model equals unity. This
is accomplished by keeping the intercept in the model to fix the marginal
total. However, we have seen that the intercept is β0 = −b(θ), the normal-
izing constant of the exponential family (Section 1.2.1). Thus, this fitting
procedure ensures that we have a proper probability distribution that sums
to one over the observed categories.

In log linear models, we distinguish between sampling and structural ze-
ros. Sampling zeros occur for categories that did not happen to be observed,
but might have been, in the given data. Structural zeros are categories that
are impossible for the given data. These two must be treated differently:
categories with sampling zeros are included in a log linear model, whereas
those for structural zeros are not. This has pertinence for our present ap-
proach.

For a probability distribution, the response variable usually has some
range such as y > 0. This means that an infinite number of categories,
(yi −∆i/2, yi + ∆i/2], is possible, but only a few have been observed. The
others are sampling zeros and should be included in the model. However,
most have extremely small probabilities and their exclusion does not affect
the accuracy of estimation of the normalizing constant (the intercept), nor
of the parameter estimates. Thus, a small number of sampling zeros can be
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TABLE 3.2. Employment durations of two grades of Post Office staff. (Burridge,
1981)

Grade Grade
Months 1 2 Months 1 2

1 22 30 13 0 1
2 18 28 14 0 0
3 19 31 15 0 0
4 13 14 16 1 1
5 5 10 17 1 1
6 6 6 18 1 0
7 3 5 19 3 2
8 2 2 20 1 0
9 2 3 21 1 3

10 1 0 22 0 1
11 0 0 23 0 1
12 1 1 24 0 0

added in the tails for enough categories to obtain any required precision of
the parameter estimates.

3.2.2 Comparing Models

Once we begin working in the Poisson regression model context, there is no
reason why we should restrict ourselves to “explanatory” variables that are
the sufficient statistics for only one distribution. We saw that such statistics
include yi, y

2
i , log(yi), log2(yi), and y−1

i . Any number of these, and others,
can be included in a Poisson regression model for such frequency data
and standard model selection techniques used to determine which can be
eliminated.

Thus, for example, to compare log normal and gamma distributions, the
statistics yi, log(yi), and log2(yi) would be used. If yi can be eliminated, we
have a log normal distribution, whereas, if log2(yi) is unnecessary, we have
a gamma distribution. This may also mean that some more complex com-
bination proves necessary, not corresponding to any distribution commonly
used.

Example

The employment durations of staff, aged 25 to 44, recruited to the British
Post Office in the first quarter of 1973 and classified into two grades, are
shown in Table 3.2. Losses were due to resignations, deaths, etc.

Burridge (1981) fits a gamma distribution to these data. The correspond-
ing regression model, ignoring grade, with yi and log(yi) gives a deviance
of 77.0 (AIC 85.0) on 44 d.f. If we also try a number other statistics, we
find that a model with yi, y

−2
i , log(yi), log2(yi), and

√
yi has a deviance
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FIGURE 3.2. Fitted gamma and more complex survivor functions for the Post
Office data of Table 3.2.

of 35.4 (49.4) with 41 d.f., although this is still not as good as the AIC
for the saturated model (48). This model yields a survivor function, plot-
ted in Figure 3.2, that, at first, drops more quickly than the gamma, but
then stays at a higher level for long durations. As can be seen, this follows
the observed values much more closely than does the gamma distribution.
Examination of the residuals (not shown) reveals no systematic pattern.2

If categorical explanatory variables are available, we have a generalized
linear model and the data will take the form of a multidimensional con-
tingency table. Again, standard regression techniques can be applied. The
same sufficient statistics for the response are used, but now in interaction
with the explanatory variables, yielding the sufficient statistics for the new
model. If the interaction terms are not necessary in the model, this im-
plies that the corresponding explanatory variable can be eliminated: the
response does not depend on it.

Example

For the Post Office data, there is no evidence of a difference in the distri-
bution of employment durations between the two grades of employees. 2

We also have a further generalization: the coefficient for a sufficient statis-
tic may be zero in some categories of an explanatory variable and not in
others. This means that we have different distributions for different cate-
gories of the explanatory variables. Thus, in one model, we can fit several
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distributional forms. This might arise, for example, in a mortality study,
where test and control subpopulations have different hazard functions.

3.3 Special Cases

3.3.1 Truncated Distributions

So far, we have only considered sampling zeros in our probability distri-
bution. Suppose, now, that we treat some zero categories as impossible,
although they would otherwise have reasonably large probabilities in the
model. Then, these are structural zeros and must be left out of the data.
In this way, we are fitting a truncated distribution. With this regression ap-
proach, this can be done even more easily than for complete distributions
(because sampling zeros do not need to be added, at least in the direction
of truncation). All of the techniques described above can still be used.

Example

Data were obtained from a postal survey, as given in Table 3.3. Obviously,
houses with zero occupants could not reply to the postal questionnaire, so
that a truncated distribution, without the zero category, is appropriate.
For these counts of numbers of people in houses, the truncated Poisson
distribution

Pr(yi;λ) =
e−λλyi

(1 − e−λ)yi!
(3.4)

might be a suitable hypothesis. Notice that this is still a member of the
exponential family.

We can extend the vector of frequencies, say to length ten, by including
zeros. Then, the number of occupants is fitted with the Poisson offset given
above, including log(n•). The resulting deviance is 12.6 (AIC 16.6) with
eight d.f., although there are now four sampling zeros in the table (the AIC

for the saturated model is 20). The parameter estimates are β̂0 = 6.63 and

TABLE 3.3. Numbers of occupants in houses replying to a postal survey. (Lindsey
and Mersch, 1992)

Occupants Houses

1 436
2 133
3 19
4 2
5 1
6 0
7 1



58 3. Fitting and Comparing Probability Distributions

β̂1 = −0.55. From the latter parameter, we have λ = exp(β1), whereas, from

the former, we have λ = log(e−β0 + 1). Both calculations yield λ̂ = 0.577
for this truncated Poisson distribution. 2

3.3.2 Overdispersion

In Section 2.3, we briefly looked at the problem of overdispersion in cate-
gorical data. Several models have been proposed that are difficult to fit by
the usual methods, but that can be easily handled by the methods of this
chapter. We shall look particularly at overdispersed binomial data, where
the variance is larger than that expected for this distribution: nπ(1 − π).

Altham (1978) proposes two extensions of the binomial distribution, an
additive and a multiplicative one. The latter, which is a member of the
exponential family, interests us here:

f(y;π, ψ) = c(π, ψ)

(
n

y

)
πy(1 − π)n−yψy(n−y)

with sufficient statistics, y and y(n − y), and offset, log
(
n
y

)
, whereas the

binomial distribution only has y.
Efron (1986) develops what he calls the double binomial distribution,

also a member of the exponential family:

f(y;π, ψ) = c(π, ψ)

(
n

y

)
nnψ

nn
yy(n− y)n−y

yyψ(n− y)(n−y)ψ
πyψ(1 − π)(n−y)ψ

with sufficient statistics, y and −y log(y) − (n − y) log(n − y), and offset,
log
(
n
y

)
. In the two cases, setting ψ = 1 yields a binomial distribution. How-

ever, the normalizing constants, c(·) (which are different) are intractable,
so that the models are difficult to fit by standard methods.

Example

Consider the numbers of male and female children in families of a fixed size.
The data in Table 3.4 are for the first 12 children in 6115 families of size
13, obtained from hospital records in the nineteenth century in Saxony.
The deviance for the binomial distribution is 97.0 (AIC 101.0) with 11
d.f., indicating a poor fit as compared with the saturated model that has
an AIC of 24. The multiplicative generalization of the binomial has 14.5
(20.5) with ten d.f., whereas the double binomial has 13.1 (19.1) with the
same degrees of freedom. The fitted proportions for the three models are
plotted in Figure 3.3. 2
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TABLE 3.4. Numbers of male children among the first 12 children in 6115 families
of size 13. (Sokal and Rohlf, 1969, p. 80, from Geissler)

Males Families

0 3
1 24
2 104
3 286
4 670
5 1033
6 1343
7 1112
8 829
9 478

10 181
11 45
12 7
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FIGURE 3.3. Fitted binomial, multiplicative binomial, and double binomial mod-
els for the sibship data of Table 3.4.



60 3. Fitting and Comparing Probability Distributions

3.3.3 Mixture Distributions

One special application of truncated distributions is of particular impor-
tance. Suppose that one category of the response variable contains a mix-
ture of two populations. For example, events may follow a Poisson distri-
bution, but certain, unidentifiable, individuals may not be able to have
events. The zero category will be a mixture of cases not happening to have
an event and those not able to have one. If this category is structurally
eliminated, for example, by weighting it out during the fit, the number of
cases not happening to have an event can subsequently be estimated from
the model. This is the same procedure that we used in Section 2.2.1 for the
mixture on the diagonal in the mover–stayer model.

Example

In the early detection of cancer, the study of genetic lesions, as indicated,
for example, by micronuclei counts, is very important (Lindsey and Lau-
rent, 1996). Common factors causing such damage include chemical agents,
such as ethylene oxide, and radiation. However, the samples obtained will
involve mixtures of affected and unaffected cells. Thus, if the counts of mi-
cronuclei in the affected cells are assumed to follow a Poisson distribution,
an estimate of the proportion of affected cells can be obtained from a Pois-
son regression model representation of a truncated Poisson distribution.

Table 3.5 gives data on micronucleus assays exposed to six levels of x-
rays, with the age and sex of the ten subjects. Notice the large numbers
of zero counts, especially at low levels of x-rays. Under radiation, most, if
not all, cells should be affected, especially if, as here, the study is done in

vitro.
We, first, fit a truncated Poisson model (with zero counts weighted out),

assuming a mixture for the cells without micronuclei, in spite of the fact
that we expect all cells to be exposed. The model with six discrete dose
levels

FACDOSE ∗ COUNT+ SUBJECT ∗ FACDOSE

has a deviance of 276.4 (AIC 465.4, counting each zero count to be esti-
mated as a parameter) with 289 d.f. Adding age,

FACDOSE ∗ COUNT+ AGE ∗ COUNT+ SUBJECT ∗ FACDOSE

decreases the deviance by only 0.22 (AIC, 467.1, one d.f.) whereas adding
sex,

FACDOSE ∗ COUNT+ SEX ∗ COUNT+ SUBJECT ∗ FACDOSE

decreases it by 0.12 (467.2, one d.f.). A linear effect in dose, replacing the
factor variable,

LINDOSE ∗ COUNT+ SUBJECT ∗ FACDOSE
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TABLE 3.5. Micronucleus assays for peripheral blood lymphocytes obtained from
ten people and exposed in vitro to six levels of x-rays (0, 0.5, 1, 2, 3, 4 Gy), the
lines of the table for each subject. (Thierens et al., 1991)

Number of micronuclei
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Male, age 24 Female, age 25

990 10 0 0 0 0 0 987 13 0 0 0 0 0
960 37 3 0 0 0 0 958 39 1 2 0 0 0
919 69 12 0 0 0 0 895 94 11 0 0 0 0
774 187 34 5 0 0 0 794 175 30 1 0 0 0
614 285 85 12 2 2 0 590 281 107 19 2 1 0
429 345 166 47 12 1 0 424 330 169 53 18 6 0

Male, age 28 Female, age 30

990 9 1 0 0 0 0 975 22 3 0 0 0 0
964 33 3 0 0 0 0 934 65 1 0 0 0 0
925 72 3 0 0 0 0 878 109 12 1 0 0 0
795 182 19 4 0 0 0 756 203 36 5 0 0 0
689 213 79 17 2 0 0 599 285 87 22 6 1 0
516 311 28 31 11 3 0 410 347 168 58 15 2 0

Male, age 42 Female, age 39
981 17 1 0 1 0 0 985 15 0 0 0 0 0
931 64 4 1 0 0 0 955 42 3 0 0 0 0
878 110 10 2 0 0 0 901 86 11 2 0 0 0
761 206 25 8 0 0 0 775 174 44 7 0 0 0
563 283 120 27 5 2 0 560 308 109 18 4 0 1
456 281 154 71 34 4 0 428 321 163 68 16 3 1

Male, age 50 Female, age 44

985 14 1 0 0 0 0 983 15 2 0 0 0 0
950 45 5 0 0 0 0 940 55 5 0 0 0 0
900 93 7 0 0 0 0 874 109 16 1 0 0 0
753 206 39 2 0 0 0 740 213 39 8 0 0 0
579 319 78 21 1 1 1 613 295 82 9 1 0 0
421 334 157 72 12 3 1 439 370 155 30 5 1 0

Male, age 54 Female, age 53

976 21 3 0 0 0 0 971 28 1 0 0 0 0
936 61 3 0 0 0 0 939 53 7 1 0 0 0
895 94 11 0 0 0 0 894 91 14 1 0 0 0
760 207 32 1 0 0 0 759 198 35 5 3 0 0
583 302 97 12 6 0 0
485 319 147 35 11 2 1 405 331 186 58 13 5 2
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FIGURE 3.4. Variation in the estimated proportion of susceptible cells with ra-
diation dose.

raises the deviance by 6.45 (463.8, four d.f.), whereas log dose

LOGDOSE ∗ COUNT+ SUBJECT ∗ FACDOSE

raises it 45.15 (502.5, four d.f.). Replacing the sex and age variables by a
ten-level factor variable distinguishing among the individuals

LINDOSE ∗ COUNT+ SUBJECT ∗ COUNT+ SUBJECT ∗ FACDOSE

reduces the deviance (with linear dose) by 78.64 to 204.17 (AIC 403.2) with
284 d.f. Thus, there is more variability among the individuals than can be
accounted for by sex and age alone.

If, instead, we fit the untruncated Poisson model to all of the data, we
obtain a deviance of 1233.8 (1374.8) with 343 d.f. for this same model with
individual differences and linear dose. Thus, the mixture model is very
much better for these data. This places in question the idea that all cells
are equally affected when exposed in vitro to radiation.

Because all cells should be exposed when radiation is applied in vitro,
these results may indicate that some cells are not susceptible ever to pro-
duce micronuclei under these conditions. The estimated proportions of sus-
ceptible cells are plotted against dose in Figure 3.4. This proportion ranges
from about 25% to 50% for low radiation levels and seems to reach a max-
imum of between 75% and 100% at the higher doses. 2
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TABLE 3.6. Numbers of lambs born to ewes in two years. (Plackett, 1965, from
Tallis)

1953
1952 0 1 2

0 58 26 8
1 52 58 12
2 1 3 9

3.3.4 Multivariate Distributions

If there is more than one response variable, a multivariate distribution
can easily be fitted by this method. For the distribution to be proper, the
margins for all combinations of the explanatory variables must be included
so that the model must be based on Equation (2.2). Interdependencies
among the responses are introduced by including interactions among their
sufficient statistics.

Example

The numbers of lambs born to sheep in two consecutive years were recorded,
as in Table 3.6. We can fit a bivariate Poisson distribution to these data
in a way very similar to that used above for the postal survey. With inde-
pendence between the two years, the number of lambs for each year is just
fitted,

BIRTH52+ BIRTH53

with, as offset, minus the log factorial of each of these. The AIC is 74.7, as
compared to 18 for the saturated model. If we add the interaction between
these two variables to allow for dependence,

BIRTH52 ∗ BIRTH53

the AIC is 62.2, indicating dependence, but still a very bad fit. The lack of
fit arises from the small numbers of twins, much less than predicted by a
bivariate Poisson distribution. 2

Summary

We have seen that, using Poisson regression models for categorical data,
we can

• fit a large number of probability distributions, even multiparameter
ones not usually considered;

• estimate the normalizing integration constant numerically, even if it
is analytically complex;
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• fit truncated distributions;

• fit multivariate distributions;

• fit certain simple mixture distributions;

• fit generalized linear models, even with different distributions for dif-
ferent categories of the explanatory variables;

• compare and select models quickly by standard regression techniques.

If nonlinear Poisson regression is available, then any distribution, and not
just members of the exponential family, can be fitted.

However, one should not conclude that this procedure should be univer-
sally used for all data. Its drawback is that there is an additional parameter,
the normalizing constant that is taken to be unknown. It can only be es-
timated if there are sufficient observations in the various categories of the
response variable. In most situations, this constant is a known function
of the other parameters, so that more traditional procedures are more ef-
ficient. These results do, however, have theoretical interest, showing the
unity of all modelling.

For a more detailed presentation of these methods, and other examples,
see Lindsey (1995b, pp. 125–149). We shall see in Chapter 7 that the same
type of procedures can also be applied to proportional hazards models using
a counting process approach.

3.4 Exercises

1. In a classic experiment, Rutherford and Geiger counted alpha parti-
cles from radioactive decay of polonium in 72-second intervals (Hand
et al., 1994, p. 223, from Rutherford and Geiger):

Scintillations Frequency Scintillations Frequency
0 57 8 45
1 203 9 27
2 383 10 10
3 525 11 4
4 532 12 0
5 408 13 1
6 273 14 1
7 139 15 0

What distribution do you expect would fit these data? Does it?

2. In the effort to improve urban methods of transportation, studies
have been made for quite some time in an attempt to estimate the
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number of passengers carried by each car in urban traffic. As shown
in the table below, the numbers of occupants, including the driver,
were recorded in passenger cars passing the intersection of Wilshire
and Bundy Boulevards in Los Angeles, California, USA, on Tuesday,
24 March 1959, between 10:00 and 10:40 (Derman et al., 1973, p. 278,
from Haight):

Occupants Cars

1 678
2 227
3 56
4 28
5 8
6+ 14

Notice that the variable of interest, the number of occupants of a
car, must take values greater than or equal to one. Few distributions
have this characteristic. This indicates that you may need to con-
sider a truncated distribution or to reconstruct a new variable before
proceeding. What distribution might fit these data?

3. Consider another example of the numbers of male and female children
in families of a fixed size, similar to that analyzed above. The data in
the table below are for all children in 53,680 families of size 8 obtained
from the same hospital records in the nineteenth century in Saxony
(Fisher, 1958, p. 67, from Geissler):

Males Families

0 215
1 1485
2 5331
3 10649
4 14959
5 11929
6 6678
7 2092
8 342

Again, one might think that a binomial distribution would be ap-
propriate for these data. What assumptions about births are being
made? Why might it be preferable to ignore the last birth, as in the
example above? Determine if this model is acceptable and if not, try
to find a better one. Because the sample size is so large (almost ten
times that for families of size 12), you may need to adjust the AIC
before beginning, as described at the end of Section A.1.4.
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4. The following table gives the days between coal-mining disasters in
Great Britain, 1851–1962 (Lindsey, 1992, pp. 66–67, from Jarrett,
1979):

Days Disasters

0–20 28
20–40 20
40–60 17
60–80 11
80–100 14

100–120 6
120–140 13
140–200 17
200–260 16
260–320 11
320–380 13
380–440 3
440–500 4
> 500 17

They concern explosions in mines involving more than 10 men killed,
as originally recorded in the Colliery Year Book and Coal Trades Di-

rectory produced by the National Coal Board in London, UK. Can
a distribution be found to describe these data adequately? Notice
the fairly large number of very large times, called censored (Chapter
6), characteristic of this type of duration data. These are not trun-
cated, because we know their minimum value (we never even know
how many values are truncated). Can some way be devised to take
censoring into account?

5. The following table shows the joint distribution of income and wealth
(1000 DKr) in Denmark, 1974 (Andersen, 1991, p. 350):

Wealth
Income 0 1–50 50–150 150–300 300+

0–40 292 126 22 5 4
40–60 216 120 21 7 3
60–80 172 133 40 7 7
80–110 177 120 54 7 4
110+ 91 87 52 24 25

The wealth and income are fairly crudely grouped so that any results
can only be approximate. Can you find a bivariate distribution that
describes the dependencies between these two variables?
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6. Lengths of marriage (years) before divorce were recorded in Liège,
Belgium, in 1984 (Lindsey, 1992, pp. 14–15):

Years Divorces Years Divorces

1 3 27 14
2 18 28 17
3 59 29 12
4 87 30 17
5 82 31 10
6 90 32 11
7 91 33 13
8 109 34 7
9 94 35 9

10 83 36 9
11 101 37 9
12 91 38 10
13 94 39 5
14 63 40 3
15 68 41 3
16 56 42 4
17 62 43 6
18 40 44 0
19 43 45 0
20 41 46 1
21 28 47 0
22 24 48 2
23 39 49 0
24 34 50 0
25 14 51 0
26 22 52 1

These data include all divorces in the city that year and are unusual
for duration data in that they are retrospective, with all marriages
ending at the same time (to the nearest year). Find a distribution to
represent these data.

7. In the Type II Coronary Intervention study, patients with Type II
hyperlipoproteinemia and coronary heart disease were assigned at
random to a daily dose of 24 g of cholestyramine or to placebo. Af-
ter five years, the numbers of vascular lesions were counted on each
patient’s angiogram (Barnhart and Sampson, 1995):
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Number Cholestyramine Placebo

0 5 2
1 4 4
2 6 6
3 5 4
4 7 6
5 7 9
6 6 7
7 6 5
8 7 2
9 2 4

10 2 4
11 1 2
12 0 0
13 0 2
14 1 0

Find an appropriate distribution to determine if there is a difference
between the two treatments. Suggest a better way in which the data
might have been recorded (Chapter 7).
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4
Growth Curves

Longitudinal data involve observations of responses over time that can be
modelled as a stochastic process (Lindsey, 1992, 1993). They differ from
most other types of data in that the dependence of present response on
past history must be taken into account.

Among longitudinal data, growth curves have a number of special char-
acteristics, only some of which they share with other series of observations
over time:

• the growth profile will generally be a nonlinear function of time, often
reaching an asymptote;

• by definition, growth is not stationary; occasionally, the increments,
or innovations, may be;

• random variability will generally increase with size;

• the successive responses are measured on the same subject so that
they will generally not be independent;

• different individuals may have different growth rates or profiles, either
inherently or due to environmental effects.

In a first step, in this chapter, we shall ignore the possibility of dependence,
that is, the last two points, and see how we can use standard regression
techniques to handle some of the other characteristics of such curves.
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4.1 Exponential Growth Curves

4.1.1 Continuous Response

One of the simplest curves for growth has the nonlinear exponential func-
tional form:

y = αeβt

This will only be realistic in the early stages of growth; nothing can continue
growing exponentially forever. On the other hand, with β < 0, it may be a
reasonable model of exponential decline (Section 3.1.1). In addition, as it
stands, it is only a deterministic relationship between response and time.

A stochastic element (the “error structure”) can be introduced in at least
two ways. The log response may have some distribution in the exponential
family, such as the normal or gamma, yielding a log normal or log gamma
distribution with the identity link and linear predictor,

µlog(y) = log(α) + βt (4.1)

This is the type of model, with a normal distribution, favoured by econo-
metricians, those who seem to believe that almost any response is normal
if measured on the log scale!

Another possibility is to use the untransformed response in a normal or
gamma distribution with a log link such that the predictor is

µy = αeβt

or

log(µy) = log(α) + βt (4.2)

Both of these models are easily fitted as generalized linear models; the
resulting curves can differ rather significantly, both in their fit to observed
data and in the predictions they yield.

In the first model, the curve goes through the geometrical mean of the
data, whereas, in the second, it goes through the arithmetic mean. Note
that the variability modelled by the two models is also quite different. For
example, for the first model, with a normal distribution, the variance of
the log response is constant, implying that the variance of the response
is increasing with size. In the second, again with a normal distribution,
the variance of the response is constant. If Equation (4.2) is used with a
gamma distribution, the ratio of standard deviation to mean, the coefficient
of variation, is assumed constant. Other distributions will carry still other
assumptions about how the variance is changing with mean response, that
is, over time.
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TABLE 4.1. Gross domestic fixed capital formation in the United Kingdom,
1948–1967 (read across rows). (Oliver, 1970)

1422 1577 1700 1889 2106 2359 2552 2829 3103 3381
3492 3736 4120 4619 4731 4906 5860 6331 6686 7145

Example

Let us look at a series on one subject, a country. In economics, much atten-
tion is given to comparing growth rates among different countries. The gross
domestic fixed capital formation plays a key role in economic growth. Mod-
els often take it to be growing exponentially, but an important question,
before making comparisons, is how to associate a random component with
this deterministic statement. Estimates for only one country, the United
Kingdom from 1948 to 1967, are shown in Table 4.1 at current prices.
Thus, the growth is due both to investment and to rising prices.

A log normal model, using Equation (4.1), is estimated as

µlog(y) = 7.23 + 0.084t

taking t = 0 in 1947, so that α̂ = 1376.09 and β̂ = 0.084. The AIC is 254.3.
The normal model, using Equation (4.2), yields

log(µy) = 7.26 + 0.081t

with α̂ = 1425.10 and β̂ = 0.081, not very different. The AIC is 256.9,
somewhat worse.

The respective predictions for 1968 are 8047 and 7878; these are quite
different. And, indeed, the value actually observed was 7734, indicating
that the normal distribution with log link predicted better, at least for
that year, although the AIC is poorer.

Another possibility is to fit a gamma distribution with a log link. This
gives the equation

log(µy) = 7.23 + 0.084t

so that α̂ = 1377.46 and β̂ = 0.084. The AIC is 254.3 and the prediction
for 1968 is 8051, both similar to the log normal. Thus, there is indication
of a skewed distribution. These curves are plotted in Figure 4.1 with the
data points. The deviations from the fitted line seem to be indicating that
some form of dependence among successive observations is present. 2

4.1.2 Count Data

When we have count data, the canonical linear predictor for the Poisson
distribution has the form of Equation (4.2), so that simple linear Pois-
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FIGURE 4.1. Fitted curves for the capital formation data in Table 4.1.

son regression yields an exponential growth curve. We already studied an
example of exponential decay, rather than growth, in Section 3.1.1.

Example

The acquired immune deficiency syndrome (AIDS) has had a substantial
impact on the costs of health care for some time now. Thus, it is very
important to be able to project the size of the epidemic accurately into the
future. Here, we shall look at the increases in the numbers of AIDS cases
diagnosed in the United States of America between 1982 and 1990, as shown
in Table 4.2. One major problem with such data is the underreporting in the
last quarters, because all cases have not yet reached the central recording
office. Any projections must take this into account.

The simple exponential growth curve based on the Poisson distribution,
using only the data to the middle of 1986 to avoid the problem of reporting
delays, gives

log(µy) = 5.45 + 0.166t

so that α̂ = 233.1 and β̂ = 0.166. This is plotted as the solid line in Figure
4.2. The AIC is 421.1. Hopefully, the model is unrealistic! 2
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TABLE 4.2. AIDS cases reported, by quarter, as diagnosed in the United States
of America, 1982–1990. (Hay and Wolak, 1994)

Quarter

1982 185 201 293 381
1983 536 705 769 851
1984 1148 1372 1573 1746
1985 2157 2578 2997 3107
1986 3775 4263 4692 4935
1987 5947 6409 6756 6920
1988 7560 7677 7674 7625
1989 8109 8224 7818 6935
1990 5922 329
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FIGURE 4.2. Fitted curves for the AIDS cases in Table 4.2.
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4.2 Logistic Growth Curve

With the exponential growth curve, the response continues to increase in-
definitely. For many phenomena, this is not reasonable, except over short
periods. Another possibility is the symmetric S-shaped logistic curve that
has the deterministic form

y = K
αeβt

1 + αeβt

where K is the asymptotic maximum value of the response.
We can transform this to a linear structure by using a logit link:

log

(
y

K − y

)
= log(α) + βt

This could easily be fitted as a generalized linear model, if K were known.
This is an example of a link function containing an unknown parameter
(Section 1.5.2). Notice that such a model does not allow y to become larger
than K, even randomly.

When the asymptote is unknown, the model can be fitted for a num-
ber of values of K > max(y), in some search pattern, and that with the
maximum likelihood chosen. Note that the deviance produced by most gen-
eralized linear models software will not work here; the complete likelihood
is necessary because K is contained in the combinatorial not included in
the usual deviance.

Example

For the AIDS data, the asymptote is estimated as 7860 cases per quarter
using only the data until the middle of 1986. The curve is plotted in Figure
4.2. The AIC is 260.3, a major improvement on the exponential curve.
However, this model is also obviously unreasonable, because some of the
following partly-recorded quarters already have more cases than predicted
at the asymptote. This problem might be overcome by using more of the
data in the fit.

The normed profile likelihood for the asymptote is plotted in Figure 4.3
using an AIC-based likelihood interval, that is, a normed likelihood of 1/e.
The upper limit of reasonable values of the asymptote lies above the so far
observed values. 2

One big disadvantage of the logistic curve is that it is symmetric so that
the lower bend must be the same as the upper one. In many biological
phenomena, this would not be expected to be the case.
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FIGURE 4.3. Normed profile likelihood for the logistic growth curve, with an
AIC-based likelihood interval.

4.3 Gomperz Growth Curve

A second commonly used growth curve with an asymptote is the Gomperz
curve

y = K
(
1 − e−αeβt

)

where, again, K is the unknown asymptotic maximum value. And again,
we can obtain a linear structure, this time for a complementary log log link:

log

[
− log

(
K − y

K

)]
= log(α) + βt

We can use the same iterative procedure as before.

Example

For the AIDS data, this asymptote is estimated as 5830 cases per quarter,
again using data until the middle of 1986. The curve is plotted in Figure
4.2. This curve, with an AIC of 287.0, is even more unreasonable than the
logistic.

The normed profile likelihood for the asymptote is plotted in Figure 4.4.
The likelihood interval is even narrower than that for the logistic growth
curve, excluding all reasonable values. 2

For the data in this example, all of the curves, although very different,
follow the observations rather closely over the time period used in fitting
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FIGURE 4.4. Normed profile likelihood for the logistic growth curve with an
AIC-based likelihood interval.

the model. We see that it is difficult or impossible to predict the upper
part of such a curve only from information on the lower part. We can also
see that prediction intervals can be very misleading if the model is not
appropriate. Below, we shall look at some more complex models, taking
into account the distribution of reporting delays for these AIDS data.

4.4 More Complex Models

The exponential, logistic, and Gomperz models, in addition to polynomials
(that rarely are justified), are those most frequently used for growth curves.
However, more complex functions of time can also be used; an example
is given in Chapter 10. Obviously, if other supplementary information is
available, this should also be incorporated in the model. In most cases, this
will involve explanatory variables, but, in some cases, multivariate processes
will be required.

A simple function for a bivariate Poisson process can be written

λ(t, u) = λDtλRu (4.3)

where, in our example, t will be the diagnosis time with mean incidence,
λDt, and u the reporting delay, with mean rate, λRu, both growth functions
of unspecified form. In this model, the two processes are assumed to be
independent, so that the reporting delay distribution is the same at all



4.4 More Complex Models 77

points in time; that is, it is stationary. More complex models can be built
up from this, usually by adding the appropriate interaction terms.

Example

For the above data on the growth of the AIDS epidemic, the problem of
reporting delays was mentioned. We shall now incorporate this information
in the model. In this way, we shall be able to use all of the observations, not
just the earlier, complete ones. One problem that was not discussed above
is the large number of observations, 132,170 in the complete data set. This
will mean that the usual inference procedures, including the standard AIC,
will point to very complex models. In spite of this, I shall continue in the
usual way, but discuss the consequences further below.

Data on incidence of AIDS with reporting delays take the form of a
rectangular contingency table with observations in one triangular corner
missing (see Exercise 4.7 for an example). The two dimensions of such a
table are the diagnosis period and the reporting delay. The margin for
diagnosis period (as in Table 4.2) gives the total incidence over time, but
with the most recent values too small because of the missing triangle of
values not yet reported. Hay and Wolak (1994) give diagnoses and reporting
delays in the United States of America by quarter, except for an additional
zero delay category, yielding a 34× 17 table with a triangle of 120 missing
cells (not reproduced here, although one margin was given in Table 4.2).

We are now simultaneously interested in how AIDS cases are occurring
in the population over time (as above) and how these cases, occurring at
a given time point, actually subsequently arrive at the central office. The
latter process may be evolving over time, for example, if reporting improves
or if the increasing number of cases swamps available facilities. Then our
model will be a bivariate process, as described above.

The bivariate Poisson process of Equation (4.3), where we do not specify
how the number of cases is growing, just corresponds to a log linear model
for independence that can be fitted as

FACDELAY+ FACQUARTER

where FACDELAY and FACQUARTER are appropriate factor variables. When
there are missing cells, we have a quasi-independence model where the
triangle of missing data is weighted out (to obtain predictions of incidence
below, it must not be simply left out of the model). The fitted values for the
diagnosis-time margin in this “nonparametric” (quasi-) stationary model
are plotted as the solid line in Figure 4.5. We discover a predicted leveling
off of AIDS cases for 1990. For this model, we obtain a deviance of 5381.6
(AIC 5481.6) with 392 d.f., indicating substantial nonstationarity.

A completely “nonparametric” nonstationary model, that is, the satu-
rated model (FACDELAY*FACQUARTER), will not provide estimates for the
missing triangle of values. Some assumption must be made about the evo-
lution of reporting delays over time, the strongest being stationarity, that
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FIGURE 4.5. Estimated AIDS incidence in the U.S.A. taking into account re-
porting delays.

is, no change, that we have just used. One possible simple nonstationary
model is the following interaction model:

FACDELAY+ FACQUARTER+ LINDELAY · FACQUARTER+ LINQUART · FACDELAY

where LINDELAY and LINQUART are linear, instead of factor, variables. With
such grouped data for LINDELAY, as described above, we use centres of
three-month quarterly periods, but with an arbitrary 0.1 value for the zero
reporting delay category (to allow for logarithms below). Because we are
interested in rates or intensities per unit time (months), we use an off-
set of log(3) for all delay periods, in all models, except for an arbitrarily
log(0.2) for the zero reporting delay. For these data, the deviance decreases
by 2670.0 (AIC 2905.6) on 47 d.f. with respect to the (quasi-) stationary
model, a strong indication of nonstationarity. For comparison with sub-
sequent AICs, those for these two models are given in line (1) of Table
4.3.

This nonstationary model has been plotted as the dashed line in Figure
4.5. It yields completely unstable predictions for the last quarters. Notice
that this and the previous model follow the diagnosed cases exactly for the
period until 1989 (24 quarters), where there were no missing cases due to
reporting delays. 2

A simple parametric bivariate model could have an exponential growth
in one dimension and a Weibull distribution for the other (Chapters 6 and
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TABLE 4.3. Deviances for a series of models fitted to the reporting delay data
of Hay and Wolak (1994).

Stationary Nonstationary
Model d.f. AIC d.f. AIC

(1) “Nonparametric” 392 5481.6 345 2905.6
(2) “Semiparametric” 422 6083.4 390 3385.5
(3) Parametric 435 6295.3 426 4020.8

7). This can be written

λ(t, u) = αeβ2utβ1

This can be fitted as a log linear model using a linear time variable for the
first dimension and the logarithm of the time for the second, instead of the
factor variables above. Again, this is a (quasi-) stationary model. Notice
that we do not include factor variables to fix the marginal totals of the
contingency table at their observed values.

We can generalize this model by taking other transformations of time.
Again, nonstationarity can be introduced by means of interactions between
the (transformed) time variables for the two time dimensions. We might
consider time, its reciprocal, and its logarithm. Such a bivariate (quasi-)
stationary model would be written

λ(t, u) = αeβ1t+β2/ttβ3eβ4u+β5/uuβ6

Example

If we apply this model to the AIDS reporting delays, we use

LINQUART+ RECQUART+ LOGQUART

+ LINDELAY+ RECDELAY+ LOGDELAY

The deviance for this model is 899.7 larger than that for the corresponding
stationary “nonparametric” model, on 43 d.f., indicating a considerably
poorer model. If we add all nine interaction terms to yield a nonstationary
model, we obtain a deviance 2302.5 on nine d.f. smaller than the previous
one, but 1277.2 larger than the corresponding nonstationary “nonparamet-
ric” model above, however with 81 fewer parameters. Again, the AICs for
these two parametric models are summarized in line (3) of Table 4.3.

The fitted values for the margin for diagnoses for this nonstationary
parametric model have been plotted, as the dotted line, in Figure 4.5.
Notice how the curve no longer follows the random fluctuations of the
completed diagnosis counts up until 1987. This accounts for much of the
lack of fit of this model. Not surprisingly, the predictions no longer indicate
a levelling off.

Much of the apparent lack of fit of the parametric models may be due to
the form of the intensity function for delays that is high for short delays,
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FIGURE 4.6. The estimated rates of AIDS reporting in the United States of
America, from the nonstationary parametric model.

but then descends rapidly for longer delays. This can be checked by fitting a
parametric intensity for diagnosis and a “nonparametric” one for the delay.
For (quasi-) stationarity, we find a reasonable model to be

LINQUART+ RECQUART+ LOGQUART+ FACDELAY

where FACDELAY is again a factor variable, and for nonstationarity

RECQUART+ LOGQUART+ FACDELAY

+FACDELAY · (LINQUART+ LOGQUART)

with AICs as given in line (2) of Table 4.3. The fitted values for this non-
stationary “semiparametric” model give substantially lower prediction than
those for our nonstationary parametric model, as can be seen in Figure 4.5.
The difference in deviance between them is 707.3 with 36 d.f. These are
both quite different from the very unstable nonstationary “nonparametric”
model, although the latter has a deviance 569.9 on 45 d.f. smaller than the
“semiparametric” model.

Other nonstationary models, parametric for diagnoses, give fairly similar
results for the bivariate intensity. By playing with various transformations
of time, a somewhat better parametric model can be found, with predic-
tions very close to those for the “semiparametric” model. We discover that
returns with short delays are rapidly increasing with time, but those for
longer delays are growing even more rapidly. This can be seen from the
plot in Figure 4.6. In contrast, a stationary model, such as that used by
Hay and Wolak (1994), has reporting rates increasing at all delays in the



4.4 More Complex Models 81

10

20

30
Quarter

0.

10

20

30

40

Delay

20

40

60

Rate

FIGURE 4.7. The estimated rates of AIDS reporting in the United Kingdom,
from the nonstationary parametric model.

same way. Thus, the missing triangle will contain estimates that are too
low, explaining the leveling off indicated by such a model in 1990.

It is interesting to compare these results with those for England, as seen
in Figure 4.7, where delays are becoming shorter so that the stationary
model, that ignores this, predicts a rise in AIDS cases. See also Lindsey
(1996a) and Exercise 4.7 below. 2

Note that we have not attempted to construct a likelihood interval for
the estimates, as we did above for the marginal data without reporting
delays. This would be an essential further step that needs to be carried out
before the projections from these models are useful. However, they depend
critically on the model, as we saw above. Indeed, the intervals published in
the papers cited above for the two sets of data, using stationary models in
both cases, do not even cover the point projection from our better fitting
nonstationary models!

In this example, the AIC for the saturated model is 916. We saw in Table
4.3 that none of the models fitted comes close to this value. This is due
to the large number of observations in this data set. For such models to
be selected, a factor considerably greater than two times the number of
estimated parameters would have to be added to the deviance. In other
words, to compensate for the extremely large number of observations, the
smoothing factor, a, of Section A.1.4 would have to be smaller.
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Summary

In this chapter, we have been primarily concerned with the nonlinear form
of the regression curve for growth data. So far, we have ignored the depen-
dence within the series of values due to observations coming from the same
individual(s). We look at this in the next chapter. Combining nonlinear
regression models with dependence among observations is only slowly be-
coming feasible (Chapter 10) in the generalized linear model context. The
books on longitudinal data cited in the next chapter are useful references.

4.5 Exercises

1. The area (unreported units) of a bean plant leaf grown at constant
temperature was recorded for 36 consecutive days, with measure-
ments starting at day 17 (Scallon, 1985) (read across rows):

0.745 1.047 1.695 2.428 3.664 4.022 5.447
6.993 8.221 8.829 10.080 12.971 14.808 17.341

19.705 22.597 24.537 25.869 27.816 29.595 30.451
30.817 32.472 32.999 33.555 34.682 34.682 35.041
35.356 35.919 36.058 36.454 36.849 37.200 37.200
37.200

Fit an appropriate growth curve to these data.

2. The following table gives the heights (cm) of two sunflowers measured
at weekly intervals (Sandland and McGilchrist, 1979, from Doyle):

4 2
4.5 3
7 5

10 9
16 13
23 19
32 31
47 51
77 78
130 91
148 93
153 96
154 91
154 93

Find a growth curve to describe these data. Is the difference between
the two plants due to the smaller initial size of the second or to the
rate of growth?
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3. Weights (g) of two pregnant Afghan pikas were recorded over 14
equally spaced periods from conception to parturition (Sandland and
McGilchrist, 1979, from Puget and Gouarderes):

251 258
254 263
267 269
267 266
274 282
286 289
298 295
295 308
307 338
318 350
341 359
342 382
367 390
370 400

Find a growth curve to describe these data. Can you detect any dif-
ference between the two animals?

4. In the study of glucose turnover in human beings, 26 volunteers were
injected with deuterium-labelled glucose and the deuterium enrich-
ment (atom% excess) measured at various time points. The results for
subject 15 are given in the following table (Royston and Thompson,
1995, from Edwards):
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Time Glucose
(min) (atom% excess)

2 1.49
3 1.39
4 1.35
5 1.22
6 1.22
8 1.14

10 1.05
12.5 0.98
15 0.92
20 0.88
30 0.79
40 0.65
50 0.65
60 0.59
75 0.48
90 0.38

120 0.40
150 0.32
180 0.31

It is expected that the resulting curve will be asymptotically zero
after infinite time. Try to find an appropriate model.

5. In progressive exercise tests to exhaustion, human beings require in-
creasing amounts of oxygen to support the increased metabolic rate.
At a certain point, this demand for oxygen increases very rapidly.
The point just below this abrupt change is known as the anaerobic
threshold. In a kinesiology experiment, a subject performed an exer-
cise task at such a gradually increasing level. The oxygen uptake and
the expired ventilation (in unreported units) were recorded (Bennett,
1988, from Hughson):
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Oxygen Expired Oxygen Expired
uptake ventilation uptake ventilation

574 21.9 2577 46.3
592 18.6 2766 55.8
664 18.6 2812 54.5
667 19.1 2893 63.5
718 19.2 2957 60.3
770 16.9 3052 64.8
927 18.3 3151 69.2
947 17.2 3161 74.7

1020 19.0 3266 72.9
1096 19.0 3386 80.4
1277 18.6 3452 83.0
1323 22.8 3521 86.0
1330 24.6 3543 88.9
1599 24.9 3676 96.8
1639 29.2 3741 89.1
1787 32.0 3844 100.9
1790 27.9 3878 103.0
1794 31.0 4002 113.4
1874 30.7 4114 111.4
2049 35.4 4152 119.9
2132 36.1 4252 127.2
2160 39.1 4290 126.4
2292 42.6 4331 135.5
2312 39.9 4332 138.9
2475 46.2 4390 143.7
2489 50.9 4393 144.8
2490 46.5

What form of relationship is there between these two variables? Can
the threshold level be detected?

6. AIDS cases were reported, by quarter, as diagnosed in the United
Kingdom, 1982–1992 (Healy and Tillett, 1988; de Angelis and Gilks,
1994) are given in the following table:
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1982 3 1 3 4
1983 3 2 12 12
1984 14 15 30 39
1985 47 40 63 65
1986 82 120 109 120
1987 134 141 153 173
1988 174 211 224 205
1989 224 219 253 233
1990 281 245 260 285
1991 271 263 306 258
1992 310 318 273 133

Try various growth curves for these data.

7. The values in the previous exercise are the marginal totals from the
table below and on the next page (de Angelis and Gilks, 1994) that
shows reporting delays from 1983 to 1992:

Delay period (quarters)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+

83 2 6 0 1 1 0 0 1 0 0 0 0 0 0 1
2 7 1 1 1 0 0 0 0 0 0 0 0 0 0

84 4 4 0 1 0 2 0 0 0 0 2 1 0 0 0
0 10 0 1 1 0 0 0 1 1 1 0 0 0 0
6 17 3 1 1 0 0 0 0 0 0 1 0 0 1
5 22 1 5 2 1 0 2 1 0 0 0 0 0 0

85 4 23 4 5 2 1 3 0 1 2 0 0 0 0 2
11 11 6 1 1 5 0 1 1 1 1 0 0 0 1
9 22 6 2 4 3 3 4 7 1 2 0 0 0 0
2 28 8 8 5 2 2 4 3 0 1 1 0 0 1

86 5 26 14 6 9 2 5 5 5 1 2 0 0 0 2
7 49 17 11 4 7 5 7 3 1 2 2 0 1 4

13 37 21 9 3 5 7 3 1 3 1 0 0 0 6
12 53 16 21 2 7 0 7 0 0 0 0 0 1 1

87 21 44 29 11 6 4 2 2 1 0 2 0 2 2 8
17 74 13 13 3 5 3 1 2 2 0 0 0 3 5
36 58 23 14 7 4 1 2 1 3 0 0 0 3 1
28 74 23 11 8 3 3 6 2 5 4 1 1 1 3

88 31 80 16 9 3 2 8 3 1 4 6 2 1 2 6
26 99 27 9 8 11 3 4 6 3 5 5 1 1 3
31 95 35 13 18 4 6 4 4 3 3 2 0 3 3
36 77 20 26 11 3 8 4 8 7 1 0 0 2 2
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Delay period (quarters)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+

89 32 92 32 10 12 19 12 4 3 2 0 2 2 0 2
15 92 14 27 22 21 12 5 3 0 3 3 0 1 1
34 104 29 31 18 8 6 7 3 8 0 2 1 2 –
38 101 34 18 9 15 6 1 2 2 2 3 2 – –

90 31 124 47 24 11 15 8 6 5 3 3 4 – – –
32 132 36 10 9 7 6 4 4 5 0 – – – –
49 107 51 17 15 8 9 2 1 1 – – – – –
44 153 41 16 11 6 5 7 2 – – – – – –

91 41 137 29 33 7 11 6 4 – – – – – – –
56 124 39 14 12 7 10 – – – – – – – –
53 175 35 17 13 11 – – – – – – – – –
63 135 24 23 12 – – – – – – – – – –

92 71 161 48 25 – – – – – – – – – – –
95 178 39 – – – – – – – – – – – –
76 181 – – – – – – – – – – – – –
67 – – – – – – – – – – – – – –

Develop a model for dependence between the AIDS cases over the
years and the reporting delay. Show that the latter is decreasing with
time, as in Figure 4.7.
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5
Time Series

When a series of responses is being observed over time on the same subject,
one may expect to find some dependence among them. Thus, responses
closer together in time may usually be expected to be more closely related.
In the simplest models, as in Chapter 4, this dependence may be ignored,
but this is most useful as a null hypothesis to which more complex models
can be compared. Now, we shall look at this dependence, but use simpler
systematic components than in the previous chapter.

Because of the dependence among successive responses, a multivariate
distribution will be required in order to model them. The generalized linear
model family is basically univariate; for multivariate data, tricks are often
possible. (We have already seen some in previous chapters.) Here, we can
use the fact that any multivariate distribution for ordered responses can
be decomposed into univariate distributions as follows:

Pr(y1, y2, y3, . . . |X) = Pr(y1|x1) Pr(y2|y1,x1,x2)

× Pr(y3|y1, , y2,x1,x2,x3) · · · (5.1)

where xt are time-varying explanatory variables. Thus, many such mul-
tivariate structures can be fitted as generalized linear models, at least if
the dependence structure is linear. In this chapter, we shall consider only
discrete time processes; for continuous time, see Chapter 10.
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5.1 Poisson Processes

5.1.1 Point Processes

Suppose that we have a series of identical events randomly spaced over
time, called a point process. Here, we shall be interested in the frequency
with which such events are occurring, but we might also consider the time
between successive events. These are actually just two different aspects of
the same thing. When these events are occurring to an individual subject,
they are a simple case of what is known as an event or life history (Chapter
7). Alternatively, we can consider the accumulating number of events,N(t),
called the counting process (for obvious reasons).

5.1.2 Homogeneous Processes

Suppose that the numbers of events in nonoverlapping time intervals are
independent. Then, the simplest model assumes that these counts of events,
Y , in the nonoverlapping intervals, ∆t, have a Poisson distribution with
constant mean, µ, per unit time, a Poisson process,

f(y) =
(µ∆t)ye−µ∆t

y!

where ∆t is the interval of observation. µ is called the rate or intensity of
the process. Because of the additive property of this distribution, the size of
the time intervals, ∆t, is unimportant although, in more complex models,
the larger it is, the less precisely will the mean or intensity be estimated.

Because the basis of this model is the Poisson distribution, such processes
for subjects under different conditions can easily be constructed as log
linear models in a way similar to what we did in Chapter 3. More complex
processes, that introduce some dependence in time, can be developed by
introducing time-varying explanatory variables.

5.1.3 Nonhomogeneous Processes

In a nonhomogeneous Poisson process, the rate is varying over time. For
example, suppose that the rate depends on the time, t, since the previous
event in one of the following ways:

log(µt) = νt+
∑

i

βixi

an extreme value process, or

log(µt) = ν log(t) +
∑

i

βixi

a Weibull process; both are simple log linear models. The rate may also
depend on the total time since the process began, giving rise to a trend.
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TABLE 5.1. Suicides in the United States of America, 1968–1970. (Haberman,
1978, pp. 44 and 51)

Year Jan. Feb. Mar. Apr. May June

1968 1720 1712 1924 1882 1870 1680
1969 1831 1609 1973 1944 2003 1774
1970 1867 1789 1944 2094 2097 1981

July Aug. Sept. Oct. Nov. Dec.

1968 1868 1801 1756 1760 1666 1733
1969 1811 1873 1862 1897 1866 1921
1970 1887 2024 1928 2032 1978 1859

Example

Consider the number of suicides each month in the United States of America
for 1968, 1969, and 1970, from the National Center for Health Statistics,
as given in Table 5.1. These are highly aggregated data.

Suppose, first, that we only have available the data for 1968 and wish to
construct a model for them. We readily see that they are varying consider-
ably over time, but the appropriate form of the dependence is not obvious.
One possibility is to use a four-level factor variable to have a different sui-
cide rate for each season. This gives a deviance of 12.6 with eight d.f. (AIC
20.6), whereas the saturated model, with a different intensity each month,
has an AIC of 24. However, spring (March, April, May) has a considerably
higher rate than all of the other seasons; thus, we can group the latter
together, for a model with a deviance of 14.4 on ten d.f. (18.4).

A second possible approach is to fit harmonics, that is, sines and cosines
(for example, sin[tπ/p] where p is the period) to describe the variation over
the year. First and second harmonic models have deviances of 18.7 with
nine d.f. (24.7) and 7.5 with seven d.f. (17.5), respectively. These curves
are plotted in Figure 5.1.

Now we can apply our estimated models for 1968 to the three years
simultaneously. Suicides are increasing, so we use a linear trend over the
three years, along with the respective parameter values estimated from
the models for 1968 to predict suicides in the two following years. The
deviances for the two seasonal models are 74.40 and 74.81, whereas those
for the harmonic models are 117.79 and 102.10, respectively. The harmonic
models have overcompensated for the exceptionally low rate in June 1968
that does not recur in the following years.

Of course, once the data for these years are available, we would go on
to use them to improve the model, obtaining better information about the
choice between the two types of model and better parameter estimates. 2
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FIGURE 5.1. First and second harmonic models for the suicide data of Table 5.1.

5.1.4 Birth Processes

One important case of a nonhomogeneous Poisson process is the birth,
learning, or contagion process, mentioned in Section 2.3, where the intensity
depends on the number of previous events. In a pure birth process, we have
the log linear model

log(µt) = log(Nt) +
∑

i

βixi

where Nt is the total number of events up until time t.
This can easily be generalized in many ways. For example, log(Nt) can

be multiplied by an unknown parameter to be estimated. A Weibull birth
process would be

log(µt) = log(Nt) + ν log(t) +
∑

i

βixi

Such a “birth” variable can also be introduced into other models, such as
logistic regression.

This is one way of taking time dependence among responses into account,
rather than just letting the intensity change over time. It is closely related
to the Rasch model (Section 2.3.3). In a longitudinal context, the latter has
the number of (previous) events as a factor variable, so that dependence
on the number of previous events is nonlinear. This might be called a
“nonparametric” birth model.
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Example

A panel study was conducted to follow the interurban moves of people in
the United States of America, as shown in Table 5.2. A model where moving
or not in the fifth period depends only on age and ownership status (and
their interaction),

M5 ∗ AGE ∗ OWNER+ M1 ∗ M2 ∗ M3 ∗ M4 ∗ AGE ∗ OWNER

has an AIC of 370.0 (as compared to 256 for the saturated model).
When dependence on the number of previous moves (0–4, not the loga-

rithm, which fits more poorly) is added to the model,

M5 ∗ AGE ∗ OWNER+ M5 · NUMBER+ M1 ∗ M2 ∗ M3 ∗ M4 ∗ AGE ∗ OWNER

the AIC is reduced to 344.5. When this number is used as a factor variable,
the Rasch model,

M5 ∗ AGE ∗ OWNER+ M5 · FNUMBER+ M1 ∗ M2 ∗ M3 ∗ M4 ∗ AGE ∗ OWNER

it becomes 325.8. The probability of moving increases with the number of
previous moves, but not in a linear fashion. This can also be interpreted as
there being considerable heterogeneity in the population. A mover–stayer
model, eliminating those who did not move in the first four periods (the
fifth move cannot be included in a model to predict if there will be a move
then!), could also be fitted, but it fits more poorly than the previous two.
Although we have not found an adequate simple model, the main conclusion
is that older owners are less likely to be moving. We shall come back to
these data in the next section. 2

5.2 Markov Processes

Another simple way to take the time dependence into account, as we saw
in Chapter 2, is to condition on the type of previous response, taking it
to be a given constant, once it has been observed. Thus, the value of the
response, Yt, will depend on that at time t−1, that is, on yt−1. If Yt|yt−1 is
independent of earlier responses, we have the (first-order) Markov property.

Thus, we can create a new explanatory variable, say xt = yt−1. Such a
variable is called the lagged response. However, this means that we have
no value for the first time period and must drop that response from the
model, except as a fixed value upon which y2 is conditioned.
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TABLE 5.2. Interurban moves of a sample of people over five two-year periods in
Milwaukee, Wisconsin, USA. M indicates that the person moved in the two-year
period and S that he or she stayed in the same place during that period. (Crouch-
ley et al., 1982, from Clark et al.)

Renters Owners
Age

Sequence 25–44 46–64 25–44 46–64

SSSSS 511 573 739 2385
SSSSM 222 125 308 222
SSSMS 146 103 294 232
SSSMM 89 30 87 17
SSMSS 90 77 317 343
SSMSM 43 24 51 22
SSMMS 27 16 62 19
SSMMM 28 6 38 5
SMSSS 52 65 250 250
SMSSM 17 20 48 14
SMSMS 26 19 60 25
SMSMM 8 4 10 3
SMMSS 8 9 54 21
SMMSM 11 3 18 1
SMMMS 10 3 21 1
SMMMM 4 1 8 2
MSSSS 41 29 134 229
MSSSM 16 15 23 10
MSSMS 19 13 36 25
MSSMM 2 4 1 0
MSMSS 11 10 69 24
MSMSM 11 2 15 3
MSMMS 1 9 13 2
MSMMM 2 2 2 0
MMSSS 7 5 40 18
MMSSM 4 2 9 2
MMSMS 8 1 15 3
MMSMM 1 0 5 0
MMMSS 8 1 22 7
MMMSM 3 2 7 2
MMMMS 5 0 9 2
MMMMM 6 3 5 0
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5.2.1 Autoregression

The simple Markov model with the normal distribution is called (first-
order) autoregression or an AR(1):

µt|t−1 = ρyt−1 +
∑

i

βixit

where ρ is the autoregression coefficient and µt|t−1 is the conditional mean
response.

The unconditional, or marginal, mean in this model is somewhat more
complicated:

µt =

t∑

k=1

ρt−k
∑

i

βixik

Thus, the current mean response depends on all of the previous values of the
explanatory variables, in a geometrically decreasing fashion if 0 < ρ < 1.
This marginal model is fitted implicitly when the conditional model is used.

However, as it stands, this model makes no constraint on the value of
ρ. Obviously, if |ρ| > 1, the situation rapidly becomes explosive. When
|ρ| < 1, the series is said to be stationary and ρ is the autocorrelation. As
its name suggests, ρ is then the correlation between consecutive responses.
Responses t time units apart have a correlation of ρt. By adding lags further
back in time, say p, we can check if the process is of higher than first order,
an AR(p).

Thus, in this model, ρ plays two roles simultaneously. It describes the
(decreasing) dependence of the marginal mean of all previous values of the
explanatory variables. But it also gives the dependence among responses.

An apparently simpler model would have the marginal mean only depen-
dent on the current explanatory variables:

µt =
∑

i

βixit

However, this yields a conditional model of the form

µt|t−1 = ρ

(
yt−1 −

∑

i

βixi,t−1

)
+
∑

i

βixit (5.2)

This may also be written

µt|t−1 −
∑

i

βixit = ρ

(
yt−1 −

∑

i

βixi,t−1

)

The current expected (fitted value) residuals are being correlated with the
previous observed residuals. Because the βi appear twice in Equation (5.2),
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TABLE 5.3. Canadian lynx trapped from 1821 to 1934 (read across rows). (An-
drews and Herzberg, 1985, p. 14)

269 321 585 871 1475 2821 3928 5943 4950 2577
523 98 184 279 409 2285 2685 3409 1824 409
151 45 68 213 546 1033 2129 2536 957 361
377 225 360 731 1638 2725 2871 2119 684 299
236 245 552 1623 3311 6721 4254 687 255 473
358 784 1594 1676 2251 1426 756 299 201 229
469 736 2042 2811 4431 2511 389 73 39 49
59 188 377 1292 4031 3495 587 105 153 387

758 1307 3465 6991 6313 3794 1836 345 382 808
1388 2713 3800 3091 2985 3790 374 81 80 108
229 399 1132 2432 3574 2935 1537 529 485 662

1000 1590 2657 3396

once as a product with ρ, this model has a nonlinear structure and is more
difficult to fit.

In the latter model, ρ has exactly the same interpretation as in the
former, in terms of autocorrelation, but it no longer also relates the previous
explanatory variables to the marginal mean. Thus, we can either have a
simple marginal model and a complex conditional model or vice versa. A
further generalization introduces another set of regression parameters:

µt|t−1 = ρyt−1 +
∑

i

αixi,t−1 +
∑

i

βixit

This is a linear model. Note, however, that, if none of the xit are varying
over time, these three models are identical.

Example

The counts of lynx trapped in the MacKenzie River District of Northwest
Canada over 114 years, given in Table 5.3, are a classical time series that has
been analyzed many times. These data have traditionally been modelled
by a log normal distribution.

We do not have any explanatory variables, but we can look at various
autoregression models. A quick check readily reveals that an AR(2),

LAG1+ LAG2

is required but that an AR(3) is unnecessary. Models with various distribu-
tional assumptions and with lagged counts or lagged log counts might be
considered. The AICs for some of these are given in the first panel of Table
5.4 for the AR(1) and AR(2) (we ignore the delay column for the moment).
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TABLE 5.4. AICs for various autoregression models for the Canadian lynx data
of Table 5.3.

Dependence variable
Counts Log counts

Distribution Link Lag1 Lag2 Delay Lag1 Lag2 Delay

Normal Identity 1895 1848 1825 1900 1878 1873
Log 1913 1893 1867 1889 1835 1824

Log normal Identity 1818 1786 1772 1771 1684 1669
Log 1824 1800 1787 1774 1684 1674

Gamma Reciprocal 1843 1838 1828 1800 1769 1769
Log 1814 1769 1761 1755 1679 1665

Log gamma Reciprocal 1840 1821 1812 1788 1706 1701
Log 1835 1807 1798 1782 1697 1686

Inverse Rec. quad. — — — — — —
Gaussian Log 1839 1814 1789 1809 1770 1749

Log inverse Rec. quad. 1853 1840 1833 1804 1734 1733
Gaussian Log 1843 1815 1808 1791 1710 1699

Poisson Log 94851 73446 58555 65794 34651 30475
Negative

binomial Log 1846 1804 1794 1789 1728 1730

Here, the log normal depending on lagged log counts, with either identity
or log link, fits best.

The number of lynx trapped should, however, depend on the previous
birth rate. Lynx require two years to mature to mating age; that may
explain the second-order model. But the dependence is positive with the
previous year’s count and negative with that two years before. Hence, the
series seems to be measuring trapping pressure and not population size or
density.

There may also by a threshold size of the population, over which births
decrease (Tong, 1990, pp. 376–377). We can make trappings depend dif-
ferently on previous values according to this threshold by introducing an
interaction term:

(LAG1+ LAG2) ∗ THRESHOLD

I shall take THRESHOLD as a binary indicator, unity if the count two years
before exceeded 1800 and zero otherwise, a value found after some experi-
mentation. The AICs for this “delay” model are also given in the first panel
of Table 5.4. The log normal distribution with an identity link is preferred.
We find that the positive dependence for the previous year and negative for
two years before are accentuated when the threshold is passed. The more
lynx are trapped one year, the fewer two years hence. 2



98 5. Time Series

Random Walks

In autoregressive models, ρ < 1 if the situation is not rapidly to become
explosive. Otherwise, the series is nonstationary. A case of special interest
occurs when ρ = 1. Let us write Equation (5.2) in still another way:

µt|t−1 − ρyt−1 =
∑

i

βixit −
∑

i

ρβixi,t−1

=
∑

i

βi(xit − ρxi,t−1)

With ρ = 1, we are fitting successive differences, between the expected
response and the previous one and between values of the explanatory vari-
ables. This is called first differencing. It implies that differences between
successive responses will be stationary and, hence, is often used in an at-
tempt to eliminate nonstationarity. The model, for the original response,
not the differences, is known as a random walk; it is a generalized linear
model because ρ is now known. Obviously, any explanatory variables that
are not changing over time will drop out of the model when first differences
are taken.

5.2.2 Other Distributions

Often, a log normal distribution, by taking logarithms of the responses, and
their lagged values, is used in place of the normal, because responses are
only positive and the distribution is skewed. An alternative rarely used, but
that should be considered, is to take a log link, as we did for the exponential
growth curve in Section 4.1. This can give a better prediction, because it
fits a curve through the centre of the untransformed responses, in the least-
squares sense, whereas the log normal distribution does not. However, the
direct interpretation of ρ, as explained above, is lost.

If some other exponential family distribution is used, such as the gamma
or inverse Gaussian, the identity link will no longer be canonical. Again,
the interpretation of ρ is lost.

If a link other than the identity is used, it may often be useful to trans-
form the lagged responses in the same way:

g(µt) = ρg(yt−1) +
∑

i

βixit

although this is a rather peculiar model, as compared to transforming the
response before taking the mean, which was what was done for the log
normal distribution. As we have seen, transforming the mean through a
link function is not at all the same as transforming the responses.
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FIGURE 5.2. Gamma AR(2) models for the lynx data of Table 5.3.

Example

We continue with our example of lynx trappings. Among possible distribu-
tions, we see from Table 5.4 that the gamma distribution with a log link
fits better than the log normal. Although these are count data, the Poisson
model fits extremely poorly and, in fact, would require a higher-order au-
toregression. On the other hand, the negative binomial, fitted by plotting a
normed profile likelihood of values of the power parameter (Section 1.5.2),
is competitive, indicating the presence of substantial overdispersion.

For the gamma distribution with a log link, the estimated delay model
is

log(µt) = 1.47 + 1.23xt−1 − 0.40xt−2

when xt−2 ≤ 1800 and

log(µt) = 4.98 + 1.46xt−1 − 1.11xt−2

when xt−2 > 1800. The models for the gamma distributions, with and
without threshold, are plotted in Figure 5.2. We see that the extremely
large and small values are not well followed by the models.

In many respects, this has been an academic model fitting exercise, as
is often the case with this data set. There does not appear to be any the-
oretical reason why such count data would follow a gamma distribution.
We shall never be able to disaggregate the events to know the timings of
individual trappings, and this probably would not make much sense any-
way because they occurred over a vast geographical area. Thus, we should
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perhaps look for more reasonable models in the direction of compound dis-
tributions other than the negative binomial. However, we may have isolated
one interesting biological aspect of the phenomenon, the impact of trapping
pressure two years before. 2

Autoregression

In Equation (5.2), we saw how the current mean could be made to depend
on the previous (fitted value) residual. When the distribution used in the
model is not normal, several types of residuals are available (Section B.2).
Thus, we can define an autoregression by

µt|t−1 = ρε̂t−1 +
∑

i

βixit (5.3)

where ε̂t−1 is an estimated residual from the previous time period. Because
this residual is a function of the regression coefficients, β, the model is
nonlinear and requires extra iterations as compared to standard IWLS for
generalized linear models. (The likelihood function is very complex.) How-
ever, estimation of this model can easily be implemented as an additional
loop in standard generalized linear modelling software. Here, we shall use
the deviance residuals.

Example

Beveridge (1936) gives the average rates paid to agricultural labourers for
threshing and winnowing one rased quarter each of wheat, barley, and oats
in each decade from 1250 to 1459. These are payments for performing the
manual labour of a given task, not daily wages. He obtained them from the
rolls of eight Winchester Bishopric Manors (Downton, Ecchinswel, Overton,
Meon, Witney, Wargrave, Wycombe, Farnham) in the south of England.
As well, he gives the average price of wheat for all of England, both as
shown in Table 5.5. All values are in money of the time (pence or shillings),
irrespective of changes in the currency: in fact, silver content was reduced
five times (1300, 1344, 1346, 1351, and 1412) during this period.

Interestingly, at first sight, the Black Death of the middle of the four-
teenth century seems to have had little effect. Beveridge (1936) states that,
for the first 100 years of the series, the labourers’ wages seemed to follow
the price of wheat, but this is difficult to see for the rates plotted in Figure
5.3. He suggests that, during this period, such payments may only have
been a substitute for customary service or allowances in kind, so that they
were closely related to the cost of living. In the second part of the series, a
true market in labour had begun to be established.

We shall consider models with the normal, gamma, and inverse Gaus-
sian distributions, each with the identity and log links. Because we shall
be looking at lagged values of the two variables, we weight out the first
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TABLE 5.5. Rates (pence) for threshing and winnowing and wheat prices
(shillings per quarter) on eight Winchester manors. (Beveridge, 1936)

Agricultural Wheat
Decade rate price

1250– 3.30 4.95
1260– 3.37 4.52
1270– 3.45 6.23
1280– 3.62 5.00
1290– 3.57 6.39
1300– 3.85 5.68
1310– 4.05 7.91
1320– 4.62 6.79
1330– 4.92 5.17
1340– 5.03 4.79
1350– 5.18 6.96
1360– 6.10 7.98
1370– 7.00 6.67
1380– 7.22 5.17
1390– 7.23 5.45
1400– 7.31 6.39
1410– 7.35 5.84
1420– 7.34 5.54
1430– 7.30 7.34
1440– 7.33 4.86
1450– 7.25 6.01

value. However, we should not expect strong relations with previous val-
ues because these are ten-year averages. The plot of yearly rates published
by Beveridge shows more discontinuity, especially from 1362 to 1370 (but
he does not provide a table of these individual values). He interprets the
irregularities in this decade as an (unsuccessful) attempt by William of
Wykeham to reduce wages to their former level.

For a model with rates depending only on current wheat prices,

RESIDUAL+ WHEAT

the normal distribution with an identity link, a classical autoregression
model, fits best with an AIC of 249.7. Nevertheless, all of the models are
fairly close, the worst being the gamma with log link that has 255.4. A
normal model for dependence of rates on wheat prices, without the autore-
gression on the residuals, has an AIC of 265.3, showing the dependence over
time. However, the need for regression on the residuals, here and below,
probably arises because we have an inadequate set of explanatory vari-
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FIGURE 5.3. Plot of the labouring rates and wheat prices for the data of Table
5.5.

ables. Adding dependence on wheat prices in the previous decade does not
improve the model.

If we add a variable for the change due to the Black Death, at about
1370,

RESIDUAL+ WHEAT+ WHEAT1+ BDEATH

the picture alters considerably. The gamma distribution with identity link
now fits best (AIC 221.9 — a model with the break one decade earlier
fits almost as well). In this model, the mean rate depends on present and
lagged wheat prices, with a different intercept before and after this date.
However, the dependence of the rate on wheat prices does not change at the
break. In other words, there is no need for an interaction between the break
indicator and these variables. The mean rate jumped up by an estimated
three pence at this date, perhaps as an aftereffect of the Black Death. The
dependence on the current and lagged wheat prices is almost identical, with
coefficients of 0.25. This model is shown in Figure 5.3. We see that it does
not follow the agricultural rate series very closely, but is irregular, like the
wheat price series. Of course, the only information allowing prediction of
changes in rate, besides the overall change in mean arising from the break
variable, comes from these prices.

If we take into account the rate in the previous decade, we obtain a
considerably better fit. Here, the previous wheat price is also necessary,
but the break variable is not, so that there are three explanatory variables
in the model (the current wheat price and the previous rate and wheat
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price),

RESIDUAL+ LAG1+ WHEAT+ WHEAT1

that is, the same number as in the previous model (lagged rate replacing
the break variable). The inverse Gaussian distribution with identity link
fits best, with an AIC of 169.2. (The normal model now has 171.5 and the
gamma 169.8.) As might be expected, current rates depend most strongly
on previous rates, but about four times as much on previous wheat price
as on the current one. This conditional model is also plotted in Figure 5.3.
It follows much more closely the agricultural rates, as would be expected.

In all of these models, we have not directly taken into account the time
trend in the rate. We can do almost as well as the previous model with two
simple regression lines on time, before and after the break due to the Black
Death. In contrast to all of the previous models, here the autoregression
on the residuals is not necessary:

YEAR ∗ BDEATH

The best model is the normal distribution with a log link (AIC 174.3). The
two regression models are

log(µt) = 1.02 + 0.06103t, t ≤ 12

log(µt) = 1.92 + 0.00342t, t > 12

This model can be only slightly improved by adding the logged rate, de-
pendence on wheat prices not being necessary. 2

This example shows how distributional assumptions can be very depen-
dent on the type of dependence incorporated in the regression model.

5.2.3 Markov Chains

The above autoregressive approach can be applied directly to discrete data
as well. This is what we were doing in Chapter 2. Suppose, first, that the
subject can be in either one of two states at any given time. We have a
binary response variable, the state, and can use logistic regression. Our
model will be

log

(
πt|t−1

1 − πt|t−1

)
= ρyt−1 +

∑

i

βixit

where yt is a binary (0, 1) variable. This is called a two-state, discrete time
Markov chain.

The estimated conditional probabilities of staying in the same state or
changing state at time t, given the state at the previous time, t− 1, can be
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obtained by tabulation. We saw in Section 2.2.2 that these are known as
the transition probabilities; they form a square matrix.

If there are more than two states, we must turn to log linear models.
These are easier to represent with the Wilkinson and Rogers notation:

Yt ∗ Yt−1 + Yt−1 ∗ X1 ∗ · · · ∗ Xp

If the dependence between yt and yt−1 is the same for all t, we have station-
arity. This can easily be checked by comparing the appropriate log linear
models, with an interaction between yt and t.

Once again, by adding further lags, we can check the order of the Markov
chain. We studied some special models related to Markov chains in Chapter
2. We thus see that, in the context of generalized linear models, autoregres-
sion and Markov chains are the same, but for a change of distributional
assumptions.

Example

Let us consider again the mobility data of Table 5.2. With dependence on
the previous status (mover or not), as well as ownership and age,

M5 ∗ AGE ∗ OWNER+ M5 ∗ M4+ M1 ∗ M2 ∗ M3 ∗ M4 ∗ AGE ∗ OWNER

the AIC is 342.5, not as good as the Rasch model. Dependence two periods
back

M5 ∗ AGE ∗ OWNER+ M5 ∗ M4+ M5 ∗ M3+ M1 ∗ M2 ∗ M3 ∗ M4 ∗ AGE ∗ OWNER

gives a further reduction to 304.4. Adding the Rasch model factor variable

M5 ∗ AGE ∗ OWNER+ M5 · NUMBERF+ M5 ∗ M4+ M5 ∗ M3
+M1 ∗ M2 ∗ M3 ∗ M4 ∗ AGE ∗ OWNER

reduces this to 284.5. Only by introducing most of the two-way interactions
among the lagged variables and the other explanatory variables can the
AIC be brought down to 241.3. The result is a complex model, including
individual variability and time dependence, not easily interpretable. 2

5.3 Repeated Measurements

Repeated measurements is a term most frequently used in medical statis-
tics. It refers to studies where the same type of response is recorded several
times on each of several subjects. The repetitions may occur more or less
simultaneously, yielding clustered data, or extending over time, as longitu-
dinal data. In the social sciences, the latter are often known as panel data,
as we saw in Chapter 2.
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The observations may be some response measured as a continuous vari-
able, a series of events, categorized as some nominal or ordinal variable,
or the durations between such events, event histories. If the observation
of each subject extends over time, then time series methods, of the kinds
just described, will need to be applied. However, responses may also occur
more or less simultaneously, as when the individual members of families
are studied. Additional variables must be introduced into the models to
account for differences among the subjects, such as different treatments.

Due to the repetition of observations, a second source of variability, be-
sides that over time, will often be present. The set of observations on one
subject will often be more similar than a random set across subjects. For
example, some subjects, or the members of some families, will tend to have
consistently higher responses than others. This can be called intraclass de-

pendence.
One common approach to handling this is through a random effects

model. The models are closely related to those for overdispersion presented
in Section 2.3, including the Rasch model of Section 2.3.3. However, in
general, they do not lead to generalized linear models and are often rather
difficult to analyze.

Many of the examples in this chapter and others involve repeated mea-
surements. No new examples will be provided here.

Summary

Books on time series abound, especially in the econometrics literature. For
a simple introduction, readers might like to consult Diggle (1990). Those
on statistical applications of more general stochastic processes are rarer;
see Lindsey (1992). Recent books on longitudinal data and repeated mea-
surements include Lindsey (1993), Diggle et al. (1994), Fahrmeir and Tutz
(1994), and Hand and Crowder (1996).

5.4 Exercises

1. In Section 5.2, we looked at a classical data set modelled by au-
toregression techniques, the lynx data. Another such set involves the
annual Wölfer sunspot numbers between 1770 and 1869 (Hand et al.

1994, pp. 85–86) (read across rows):
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101 82 66 35 31 7 20 92 154 125
85 68 38 23 10 24 83 132 131 118
90 67 60 47 41 21 16 6 4 7
14 34 45 43 48 42 28 10 8 2
0 1 5 12 14 35 46 41 30 24

16 7 4 2 8 17 36 50 62 67
71 48 28 8 13 57 122 138 103 86
63 37 24 11 15 40 62 98 124 96
66 64 54 39 21 7 4 23 55 94
96 77 59 44 47 30 16 7 37 74

They measure the average number of sunspots on the sun each year.
Can you find a Markov model of an appropriate order to describe
these data adequately? A number of different suggestions have been
made in the literature.

2. The following table gives the enrollment at Yale University, 1796–
1975 (Anscombe, 1981, p. 130) (read across rows):

115 123 168 195 217 217 242 233 200
222 204 196 183 228 255 305 313 328
350 352 298 333 349 376 412 407 481
473 459 470 454 501 474 496 502 469
485 536 514 572 570 564 561 608 574
550 537 559 542 588 584 522 517 531
555 558 604 594 605 619 598 565 578
641 649 599 617 632 644 682 709 699
724 736 755 809 904 955 1031 1051 1021

1039 1022 1003 1037 1042 1096 1092 1086 1075
1134 1245 1365 1477 1645 1784 1969 2202 2350
2415 2615 2645 2674 2684 2542 2712 2816 3142
3138 3806 3605 3433 3450 3312 3282 3229 3288
3272 3310 3267 3262 2006 2554 3306 3820 3930
4534 4461 5155 5316 5626 5457 5788 6184 5914
5815 5631 5475 5362 5493 5483 5637 5747 5744
5694 5454 5036 5080 4056 3363 8733 8991 9017
8519 7745 7688 7567 7555 7369 7353 7664 7488
7665 7793 8129 8221 8404 8333 8614 8539 8654
8666 8665 9385 9214 9231 9219 9427 9661 9721

The primary irregularities in these data occur during the two World
Wars. Develop an adequate Markov model for these count data. Among
other possibilities, compare a normal model that uses differences in
enrollment between years with a Poisson model that involves ratios
of successive enrollment rates. Is there evidence of overdispersion?
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3. Annual snowfall (inches) in Buffalo, New York, USA, was recorded
from 1910 to 1972 (Parzen, 1979) (read across rows):

126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5
25.0 69.3 53.5 39.8 63.6 46.7 72.9 79.7 83.6
80.7 60.3 79.0 74.4 49.6 54.7 71.8 49.1 103.9
51.6 82.4 83.6 77.8 79.3 89.6 85.5 58.0 120.7

110.5 65.4 39.9 40.1 88.7 71.4 83.0 55.9 89.9
84.8 105.2 113.7 124.7 114.5 115.6 102.4 101.4 89.8
71.5 70.9 98.3 55.5 66.1 78.4 120.5 97.0 110.0

Find an appropriate model to describe these time series data. Is there
evidence of a trend or of a cyclical phenomenon?

4. Beveridge (1936) also gives the average daily wages (pence) of several
other classes of labourers each decade from 1250 to 1459 on several
Winchester manors in England. Those for carpenters and masons
(both in Taunton manor) are shown below, as well as the rates for
agricultural labourers and the price of wheat used in the example
above.

Agricultural Carpenter’s Mason’s Wheat
Decade rate wage wage price
1250– 3.30 3.01 2.91 4.95
1260– 3.37 3.08 2.95 4.52
1270– 3.45 3.00 3.23 6.23
1280– 3.62 3.04 3.11 5.00
1290– 3.57 3.05 3.30 6.39
1300– 3.85 3.14 2.93 5.68
1310– 4.05 3.12 3.13 7.91
1320– 4.62 3.03 3.27 6.79
1330– 4.92 2.91 3.10 5.17
1340– 5.03 2.94 2.89 4.79
1350– 5.18 3.47 3.80 6.96
1360– 6.10 3.96 4.13 7.98
1370– 7.00 4.02 4.04 6.67
1380– 7.22 3.98 4.00 5.17
1390– 7.23 4.01 4.00 5.45
1400– 7.31 4.06 4.29 6.39
1410– 7.35 4.08 4.30 5.84
1420– 7.34 4.11 4.31 5.54
1430– 7.30 4.51 4.75 7.34
1440– 7.33 5.13 5.15 4.86
1450– 7.25 4.27 5.26 6.01
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Can models similar to those for agricultural labourers be developed
for the other two types of workers? Does it make any difference that
these are wages and not rates for piece work?

5. A number of women in the United States of America were followed
over five years, from 1967 to 1971, in the University of Michigan
Panel Study of Income Dynamics. The sample consisted of white
women who were continuously married to the same husband over
the five-year period. Having worked in the year is defined as having
earned any money during the year. The sample paths of labour force
participation are given in the following table (Heckman and Willis,
1977):

1971
1970 1969 1968 1967 Yes No

Yes Yes Yes Yes 426 38
No 16 47
Yes No 11 2
No 12 28
Yes Yes No 21 7
No 0 9
Yes No 8 3
No 5 43
Yes Yes Yes No 73 11
No 7 17
Yes No 9 3
No 5 24
Yes Yes No 54 16
No 6 28
Yes No 36 24
No 35 559

Study how the most recent employment record of each woman de-
pends on her previous history. Is there indication of heterogeneity
among the women? Notice that here there are two types of stable
behaviour that might be classified stayers.

6. The numbers of deaths by horse kicks in the Prussian army from
1875 to 1894 for 14 corps (Andrews and Herzberg, 1985, p. 18) are
as follows:
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Corps Year

G 0 2 2 1 0 0 1 1 0 3 0 2 1 0 0 1 0 1 0 1
I 0 0 0 2 0 3 0 2 0 0 0 1 1 1 0 2 0 3 1 0
II 0 0 0 2 0 2 0 0 1 1 0 0 2 1 1 0 0 2 0 0
III 0 0 0 1 1 1 2 0 2 0 0 0 1 0 1 2 1 0 0 0
IV 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0
V 0 0 0 0 2 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0
VI 0 0 1 0 2 0 0 1 2 0 1 1 3 1 1 1 0 3 0 0
VII 1 0 1 0 0 0 1 0 1 1 0 0 2 0 0 2 1 0 2 0
VIII 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1
IX 0 0 0 0 0 2 1 1 1 0 2 1 1 0 1 2 0 1 0 0
X 0 0 1 1 0 1 0 2 0 2 0 0 0 0 2 1 3 0 1 1
XI 0 0 0 0 2 4 0 1 3 0 1 1 1 1 2 1 3 1 3 1
XIV 1 1 2 1 1 3 0 4 0 1 0 3 2 1 0 2 1 1 0 0
XV 0 1 0 0 0 0 0 1 0 1 1 0 0 0 2 2 0 0 0 0

G indicates the guard corps. This and corps I, VI, and XI have dif-
ferent organizations than the others. Can you detect any trends with
time? Are there systematic differences among the corps?

7. Reanalyze the data on children wheezing in Exercise 2.5, taking into
account the longitudinal aspect of the data.
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6
Survival Data

6.1 General Concepts

6.1.1 Skewed Distributions

A duration is the time until some event occurs. Thus, the response is a
non-negative random variable. If the special case of a survival time is be-
ing observed, the event is considered to be absorbing, so that observation
of that individual must stop when it occurs. We first consider this case,
although most of the discussion applies directly to more general durations
such as the times between repeated events, called event histories (Chapter
7). Usually, the distribution of durations will not be symmetric, but will
have a form like that in Figure 6.1 (this happens to be a log normal distri-
bution). This restricts the choice of possible distributions to be used. For
example, a normal distribution would not be appropriate. Suitable distri-
butions within the generalized linear model family include the log normal,
gamma, and inverse Gaussian.

6.1.2 Censoring

Because individuals are to be observed over time, until the prescribed event,
and because time is limited and costly, not all individuals may be followed
until an event. Such data are called censored. Censored observations are
incomplete, but they still contain important information. We know that
the event did not occur before the end of the observation period.
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FIGURE 6.1. A typical density function for a survival curve.

Censoring can occur for a number of reasons. For example, the proto-
col for the study may specify observation over a fixed period of time or
individual cases may disappear from the study for some reason.

Planned censoring may occur in two main ways:

• If recording of an event must stop after a fixed time interval, we have
Type I or time censoring, most often used in medical studies.

• If the study must continue until complete information is available on
a fixed number of cases, we have Type II or failure censoring, most
common in industrial testing.

However, cases may drop out for reasons not connected with the study or
beyond the control of the research worker. These may or may not be linked
to the response or explanatory variables; for example, through side effects
under a medical treatment. If they are related, the way in which censoring
occurs cannot simply be ignored in the model. Thus, in complex cases,
where censoring is not random, a model will need to be constructed for
it, although generally very little information will be available in the data
about such a model.

It is important to distinguish situations where censoring only depends on
information already available at the censoring point from other possibilities
because, for that case, such modelling may be possible. For example, the
censoring indicator could be made to depend on the available explanatory
variables in some form of regression model.
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Even with ignorable causes of censoring, the analysis is further compli-
cated because we cannot simply use the density function as it stands.

6.1.3 Probability Functions

If the probability density function is f(t) and the cumulative probability
function is F (t), then the survivor function is

S(t) = 1 − F (t)

and the hazard function

h(t) =
f(t)

S(t)

= −d logS(t)

dt

This is the rate or intensity of the point processes of the previous chapter.
Then, we have

S(t) = exp

[
−
∫ t

0

h(u)du

]

f(t) = h(t) exp

[
−
∫ t

0

h(u)du

]

where
∫
h(u)du is called the integrated hazard or intensity.

Suppose that Ii is a code or indicator variable for censoring, with Ii = 1
if the observation i is completely observed and Ii = 0 if it is censored.
Then, the probability for a sample of n individuals will be approximately
(because the density assumes that one can actually observe in continuous
time) proportional to

∏
[f(ti)]

Ii [S(ti)]
1−Ii (6.1)

and a likelihood function can be derived from this. In most cases, this does
not yield a generalized linear model.

6.2 “Nonparametric” Estimation

Before looking at specific parametric models for a set of data, it is often
useful to explore the data by means of a “nonparametric” estimation pro-
cedure similar to those used in some of the previous chapters. As usual,
such models are, in fact, highly parametrized, generally being saturated
models. The most commonly used for survival data is the Kaplan–Meier

product limit estimate (Kaplan and Meier, 1958).
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TABLE 6.1. Remission times (weeks) from acute leukaemia under two treatments,
with censored times indicated by asterisks. (Gehan, 1965, from Freireich et al.)

6-mercaptopurine

6 6 6 6* 7 9* 10 10* 11* 13 16 17* 19* 20* 22 23 25* 32* 32* 34* 35*

Placebo

1 1 2 2 3 4 4 5 5 8 8 8 8 11 11 12 12 15 17 22 23

If πj is the probability of having an event at time tj , conditional on not
having an event until then, that is, on surviving to that time, the likelihood
function is

L(π) =

k∏

j=1

π
dj

j (1 − πj)
nj−dj

where nj is the number having survived and still under observation, and
hence still known to be at risk just prior to tj , called the risk set, dj is the
number having the event at time tj , and πj is the hazard or intensity at tj .
This is a special application of the binomial distribution, with maximum
likelihood estimates, π̂j = dj/nj . Then, the product limit estimate of the
survivor function is just the product of the estimated probabilities of not
having the event at all time points up to the one of interest:

Ŝ(t) =
∏

j|tj<t

(
nj − dj
nj

)

a special application of Equation (5.1). This may be plotted in various
ways (Lindsey, 1992, pp. 52–57) to explore what form of parametric model
might fit the data. It provides a saturated model to which others can be
compared.

Example

Table 6.1 gives a classical data set on the time maintained in remission for
cases of acute leukaemia under two treatments. In this trial, conducted se-
quentially so that patients were entering the study over time, 6-mercaptopurine
was compared to a placebo. The results in the table are from one year after
the start of the study, with an upper limit of the observation time of about
35 weeks.

The Kaplan–Meier estimates of the survivor functions for these two
groups are plotted in Figure 6.2. We see how the treatment group has
longer estimated survival times than the placebo group. 2
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FIGURE 6.2. Kaplan–Meier curves for the survival data of Table 6.1.

6.3 Parametric Models

6.3.1 Proportional Hazards Models

Suppose now that the hazard function can be written in the form

h(t;x) = h0(t)e
xTβ (6.2)

where x is a vector of explanatory variables. This is called a proportional

hazards model. Notice how h0 depends only on time, t, and the other factor
only on the explanatory variables, x, so that hazard curves for different
values of the explanatory variables will be proportional to h0 at all time
points, hence the model’s name. If h0(t) = 1, a constant, we have the hazard
function for an exponential distribution, and if h0(t) = αtα−1, that for a
Weibull distribution. If h0(t) is left unspecified, so that a factor variable in
time must be used, we have the “semiparametric” Cox model.

Such models can simply be fitted as generalized linear models, based
on the Poisson distribution, in at least two ways. We study one here for
survival data and the other in the next chapter for event histories (as well
as in Section 4.4). The second may be more computer intensive but has the
advantage of easily allowing time-varying explanatory variables.

6.3.2 Poisson Representation

Aitkin and Clayton (1980) have demonstrated a useful relationship between
proportional hazards models and the Poisson distribution that allows one
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to fit censored data for proportional hazards as generalized linear models,
although usually with one nonlinear parameter (Section 1.5.2).

With h0(·) the baseline hazard, as above, we have

S(ti) = exp
[
−H0(ti)e

xT
i β
]

f(ti) = h(ti)S(ti)

= h0(ti) exp
[
xTi β −H0(ti)e

xT
i β
]

where

H0(t) =

∫ t

0

h0(u)du

is the integrated hazard. Then, from Equation (6.1), the likelihood function
is

L(β) =
∏

i

[f(ti)]
Ii [S(ti)]

1−Ii

=
∏

i

[
h0(ti) exp(xTi β)

]Ii
exp

[
−H0(ti)e

xT
i β
]

=
∏

i

[
µIi

i e−µi

] [ h0(ti)

H0(ti)

]Ii

with µi = H0(ti) exp(xTi β). Here, Ii can be interpreted as the cumulative
number of events at time ti for individual i, either zero or one.

In this equation, the first term is the likelihood function for the Poisson
variables, Ii. The second term does not contain β, but there may be other
parameters, such as the α of the Weibull distribution, in H0(t). We can
take the linear model to be

log(µi) = log[H0(ti)] + xTi β (6.3)

for fixed values of the parameters in H0(t) and use log[H0(ti)] as an offset.
Iterations may then be performed on any unknown parameters in H0(t).

6.3.3 Exponential Distribution

For the exponential distribution, we have

H0(t) = t

h0(t) = 1

so that there are no extra parameters. Then, from Equation (3.2),

f(ti) = φie
−tiφi

= exp
[
xTi β − tie

xT
i β
]
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with 1/φi = E[Ti] = exp[−xTi β] so that

log(µi) = log(ti) + xTi β

Here, φi is the constant (over time) intensity function under conditions xi.

Example

For the leukaemia survival data of Table 6.1, each starred value will have
a “response” value, Ii, of zero and the others a value of one. The offset is
the logarithm of the time. Then, the exponential model without treatment
differences has an AIC of 235.5, whereas that with such differences has
221.0. The constant difference in log risk is estimated to be β̂ = 1.527. 2

6.3.4 Weibull Distribution

For the Weibull distribution, we have

H0(t) = tα

h0(t) = αtα−1

so that
h0(t)

H0(t)
=
α

t

Then,

f(ti) = αtα−1
i φie

−tαi φi (6.4)

= αtα−1
i exp

[
xTi β − tie

xT
i β
]

with

E[Ti] = Γ

(
1 +

1

α

)
e−xT

i β/α

so that

log(µi) = α log(ti) + xTi β

for a fixed value of α. On the other hand, the full log likelihood for unknown
α is

log(L) =
∑

i

Ii log(α) +
∑

i

[Ii log(µi) − µi]

and the score equation for α is

∂ log(L)

∂α
=

∑
i Ii
α

+
∑

i

(Ii − µi) log(ti)
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Setting this equal to zero and solving, we obtain

α̂ =

∑
i Ii∑

i(µ̂i − Ii) log(ti)

This can be used to update the value of α in successive iterations.

Example

For the leukaemia survival data of Table 6.1, the Weibull model without
treatment differences has an AIC of 236.5 and α̂ = 1.139, whereas that
with such differences has 218.9 with α̂ = 1.364. The latter AIC is smaller
than for the exponential model, indicating that α > 1. The difference in
log risk is estimated to be 1.726. 2

6.4 “Semiparametric” Models

6.4.1 Piecewise Exponential Distribution

In the Weibull model, the hazard function changes continuously over time,
whereas in the exponential model, it is constant at all time points. As we
saw in the Section 5.1.3, the former represents a nonhomogeneous Poisson
process. If the hazard function can be assumed to be constant in given
intervals of time (perhaps simply because we have no information about
what is happening in the interval), but to jump to a new level at the moment
of changing interval, we have a piecewise exponential model. If the points
where the hazard changes are known, this model can easily be fitted, using
a factor variable to indicate the changes in level of the hazard, in place of
the continuous function, log[H0(ti)], in Equation (6.3).

6.4.2 Cox Model

In the models of the previous section, the baseline hazard, h0(·), was given
a specific form. If this form is left undefined (that is, “nonparametric”)
before observing the data, the only information that we have is at the time
points where an event occurs. Thus, the maximum likelihood estimates will
have the hazard function changing at these points — its form is unknown in
between and, hence, can be assumed to be constant. This yields the “semi-
parametric” Cox model that is, thus, equivalent to a piecewise exponential
model, where the change points occur at the events. This is one of several
possible ways in which it can be fitted. It requires special programming,
available in many software packages.
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Example

For the leukaemia survival data of Table 6.1, the Cox model without treat-
ment differences has an AIC of 255.8, whereas that with such differences
has 242.4. Although these are data originally used by Cox (1972) to il-
lustrate use of this model, these values are both larger than and, hence,
inferior to those obtained for the exponential and Weibull models above.
This is due to the large number of parameters that must be estimated in
this “semiparametric” model. The difference in log risk is now estimated
to be 1.521, very similar to that for the exponential model. 2

Summary

Techniques for analyzing survival data are widely known and well docu-
mented. Because they are not generalized linear models, at least in the
approaches described in this chapter, we shall not consider them further
here. Many books on survival analysis are available; standard texts include
those by Kalbfleisch and Prentice (1980), Lawless (1982), Cox and Oakes
(1984), Fleming and Harrington (1991), and Andersen et al. (1993).

6.5 Exercises

1. Survival times (weeks) were recorded for patients with acute myelo-
geneous leukaemia, along with white blood cell counts (wbc) in thou-
sands and AG-factors (Feigl and Zelen, 1965):

Time wbc Time wbc Time wbc Time wbc

Positive AG-factor

65 2.3 156 0.8 100 4.3 134 2.6
108 10.5 121 10.0 4 17.0 39 5.4
56 9.4 26 32.0 22 35.0 1 100.0
5 52.0 65 100.0 56 4.4 16 6.0

143 7.0 1 100.0

Negative AG-factor

65 3.0 17 4.0 7 1.5 16 9.0
3 10.0 4 19.0 2 27.0 3 28.0
4 26.0 3 21.0 30 79.0 4 100.0

22 5.3 8 31.0 43 100.0

Patients were classified into the two groups according to morpholog-
ical characteristics of their white blood cells: AG positive had Auer
rods and/or granulature of the leukaemia cells in the bone marrow
at diagnosis, whereas AG negative did not. No patients had palpable
enlargement of the liver or spleen at diagnosis. The four largest white
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blood cell counts were actually greater than 100,000. Notice that none
of the survival times are censored. Do either of these variables help
to predict survival time? Try transformations of the white blood cell
counts.

2. A total of 90 patients suffering from gastric cancer were randomly
assigned to two groups. One group was treated with chemotherapy
and radiation, whereas the other only received chemotherapy, giving
the following survival times in days (Gamerman, 1991, from Stablein
et al.) (asterisks indicate censoring):

Chemotherapy Chemotherapy
+ radiation

17 167 315 1174* 1 356 524 977
42 170 401 1214 63 358 535 1245
44 183 445 1232* 105 380 562 1271
48 185 464 1366 125 383 569 1420
60 193 484 1455* 182 383 675 1460*
72 195 528 1585* 216 388 676 1516*
74 197 542 1622* 250 394 748 1551
95 208 567 1626* 262 408 778 1690*
103 234 577 1736* 301 460 786 1694
108 235 580 301 489 797
122 254 795 342 499 955
144 307 855 354 523 968

Is there any evidence that radiation lengthens survival times?

3. The Eastern Cooperative Oncology Group in the United States of
America conducted a study of lymphocytic nonHodgkin’s lymphoma.
Patients were judged either asymptomatic or symptomatic at the
start of treatment, where symptoms included weight loss, fever, and
night sweats. Survival times (weeks) of patients were classified by
these symptoms (Dinse, 1982) (asterisks indicate censoring):

Asymptomatic Symptomatic
50 257 349* 49
58 262 354* 58
96 292 359 75

139 294 360* 110
152 300* 365* 112
159 301 378* 132
189 306* 381* 151
225 329* 388* 276
239 342* 281
242 346* 362*
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Patients with missing symptoms are not included. Do the symptoms
provide us with a means of predicting differences in the survival time?

4. Fifty female black ducks, Anas rubripes, from two locations in New
Jersey, USA, were captured by the U.S. Fish and Wildlife Service
over a four-week period from 8 November to 14 December, 1983. The
ducks were then fitted with radio emitters and released at the end
of the year. Of these, 31 were born in the year (age 0) and 19 the
previous year (age 1). Body weight (g) and wing length (mm) were
recorded. Usually, these are used to calculate a condition index, the
ratio of weight to wing length. The status of each bird was recorded
every day until 15 February 1984 by means of roof-mounted antennae
on trucks, strut-mounted antennae on fixed-wing airplanes, and hand-
held antennae on foot and by boat. The recorded survival times were
(Pollock et al., 1989) (asterisks indicate censoring):

Age Weight Wing Time Age Weight Wing Time

1 1160 277 2 0 1040 255 44
0 1140 266 6* 0 1130 268 49*
1 1260 280 6* 1 1320 285 54*
0 1160 264 7 0 1180 259 56*
1 1080 267 13 0 1070 267 56*
0 1120 262 14* 1 1260 269 57*
1 1140 277 16* 0 1270 276 57*
1 1200 283 16 0 1080 260 58*
1 1100 264 17* 1 1110 270 63*
1 1420 270 17 0 1150 271 63*
1 1120 272 20* 0 1030 265 63*
1 1110 271 21 0 1160 275 63*
0 1070 268 22 0 1180 263 63*
0 940 252 26 0 1050 271 63*
0 1240 271 26 1 1280 281 63*
0 1120 265 27 0 1050 275 63*
1 1340 275 28* 0 1160 266 63*
0 1010 272 29 0 1150 263 63*
0 1040 270 32 1 1270 270 63*
1 1250 276 32* 1 1370 275 63*
0 1200 276 34 1 1220 265 63*
0 1280 270 34 0 1220 268 63*
0 1250 272 37 0 1140 262 63*
0 1090 275 40 0 1140 270 63*
1 1050 275 41 0 1120 274 63*

What variables, including constructed ones, influence survival?
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7
Event Histories

An event history is observed when, in contrast to survival data, events are
not absorbing but repeating, so that a series of events, and the correspond-
ing durations between them, can be recorded for each individual.

Many simple event histories can be handled in the generalized linear
model context. Some of these were covered in Chapter 4. If the intervals
between events are independently and identically distributed, we have a re-

newal process that can be fitted in the same way as ordinary survival mod-
els. This is generally only realistic in engineering settings, such as the study
of times between breakdowns of machines or the replacement of burned out
light bulbs. If the distribution of the intervals only depends on what has
happened before an interval begins, the time series methods of Chapter 5
can be applied, by conditioning on the appropriate information.

However, if there are variables that are changing within the intervals, that
is, time-varying explanatory variables, the probability distribution can no
longer easily be modelled directly. Instead, one must work with the intensity
function, as for the nonhomogeneous Poisson processes of Chapter 5.

In even more complex situations, an event signals a change of state of
the subject, so that there will be a number of different intensity functions,
one for each possible change of state. This is known as a semiMarkov or
Markov renewal process.
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7.1 Event Histories and Survival Distributions

An event history follows an individual over time, recording the times of
occurrence of events. As we have seen, survival data are a special case,
where the first event is absorbing so that the process stops. If the successive
intervals in an event history are independent, they may simply be modelled
as survival distributions. Then, we have a renewal process, so that things
start over “as new” at each event. Usually, this will not be the case, because
we are interested in modelling the evolution of each individual over time.

As we have seen in Chapter 6, survival data can be modelled equivalently
by the probability density, the survival function, or the intensity function.
Common survival distributions include the exponential, gamma, Weibull,
extreme value, log normal, inverse Gaussian, and log logistic. Two impor-
tant families of models are the proportional hazards, discussed in Chapter
6, with

h(t;α, β) = h0(t;α)g−1(β)

where g(·) is a link function, usually the log link, giving Equation (6.2),
and the accelerated lifetime models with

h(t;β) = h0(t e
−β)e−β

Both of these model the intensity, instead of the probability density, al-
though they cover some of the densities mentioned above. The most famous
example is the Cox proportional hazards model. In the present context, this
is often called a multiplicative intensities model.

When the probability density is modelled directly, all conditions describ-
ing the subjects must be assumed constant within the complete duration
until an event occurs, because that total duration is the response variable.
Thus, even in the case of survival data, time-varying explanatory variables
cannot easily be modelled by the density function. The solution is to allow
the intensity function to vary over time and to model it directly: a non-
homogeneous Poisson process. This may, however, render certain effects
of interest difficult to interpret. For example, what does a difference in
treatment effect in a randomized clinical trial really mean if time-varying
variables are changing in different ways in the treatment groups after ran-
domization?

In fact, except for the exponential distribution, the intensity function
does change, in any case, over time, but only as a strict function of time
since the beginning of the period. Thus, for example, for the Weibull dis-
tribution, the intensity function can be written

h(t;α, β) = tα−1g−1(β)

a member of both families mentioned above. However, we now would like
to introduce observed explanatory variables that may change over time,
even in between events.
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7.2 Counting Processes

To go further, it is fruitful to consider the counting process approach, al-
ready mentioned in Chapter 5. As its name suggests, a counting process is
a random variable over time, N(t), that counts the number of events that
have occurred up to t. We then study changes in this variable, dN(t). To
do this, let the corresponding intensity of the process be h(t|Ft−;β) such
that

h(t|Ft−;β)dt = Pr[dN(t) = 1|Ft−]

where β is a vector of unknown parameters and Ft− represents any relevant
aspects of the history of the process up to, but not including t, called the
filtration.

Then, the log likelihood function for observation over the interval (0, T ]
can be shown to be

log[L(β)] =

∫ T

0

log[h(t|Ft−;β)]dN(t) −
∫ T

0

h(t|Ft−;β)I(t)dt

where I(t) is an indicator variable, with value one if the process is under
observation at time t and zero otherwise.

Now, in any empirical situation, the process will only be observed at
discrete time intervals, such as once an hour, once a day, or once a week.
Suppose that these are sufficiently small so that generally at most one event
occurs in any interval, although there will be a finite nonzero probability
of more than one.

With M intervals of observation, not all necessarily the same size, the
log likelihood becomes

log[L(β)] =

M∑

t=1

log[h(t|Ft−;β)]∆N(t) −
M∑

t=1

h(t|Ft−;β)I(t)∆t

where ∆t is the width of the tth observation interval and ∆N(t) is the
change in the count during that interval, generally with possible values zero
and one. This is just the log likelihood of a Poisson distribution for response,
∆N(t), with mean, h(t|Ft−;β)∆t. Conditional on the filtration, it is the
likelihood for a (local) Poisson process (Lindsey, 1995c). The structure that
we shall place on this likelihood will determine what stochastic process we
are modelling.

7.3 Modelling Event Histories

Consider now, in more detail, the event history of one individual. For sim-
plicity of notation, take all observation intervals to be equal. Suppose that
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we have a stochastic process where the waiting times between events, mea-
sured in these units, are the random variables, {Yk; k = 1, . . . ,K}, none
being censored for the moment. Then, the number of observation inter-
vals will be M =

∑
Yk and the series {∆N(t); t = 1, . . . ,M} will con-

tain K ones, because that many events occurred, and M − K zeros, the
number of observation points where no event occurred. For example, the
observed waiting times {5, 3, 2, 4} between events would give the series
{0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1}, a point process (Section 5.1.1).

If we fit a Poisson regression model with constant mean to such an ob-
served point process, we obtain the maximum likelihood estimate of the
(constant) intensity,

h(t|Ft−;λ) = λ

of a homogeneous Poisson process, that is, with exponentially distributed
waiting times (Sections 5.1.2 and 6.3.3).

Note that we are fitting a Poisson model to what appear to be binary
data. If, instead, we fit the binomial logistic model that has been more
usual for discrete time counting processes, we exclude the finite probability
of more than one event occurring to an individual in each discrete observa-
tion interval. This would be acceptable for survival data, where events are
absorbing, but it is not for most event history data.

7.3.1 Censoring

Suppose now that some of the observations are censored, under the usual
assumptions about such censoring, that is, that it only depends on the
information available up until that time (Section 6.1.2). Then, the last value
in the observation period will be a zero instead of a one. In the example,
if the third time between events, of two units, were, in fact, censored, the
one at position ten in the series would be a zero, and the same log linear
model would be fitted.

7.3.2 Time Dependence

Next we can assume that the intensity varies as a function of time since
the previous event, say zt. The vector z starts at one and increases by one
at each observation interval up until and including the time of an event,
after which it is reinitialized to one. For our example without censoring, it
would be {1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 1, 2, 3, 4}.

Thus, if

h(t|Ft−;β) = eβ0zβ1

t

we have a Weibull intensity. This is a Poisson regression model in log(zt).
For the Weibull model, the maximum likelihood estimate of the usual
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exponent of the Weibull distribution in Equation (6.4) will be given by

α̂ = β̂1 + 1.
In the same way, any proportional hazards model, with log link, can be

fitted as a Poisson regression model. This includes the Cox model that is
fitted by using zt as a factor variable. In other words, it has a different
intensity for each observed waiting time, a piecewise exponential distribu-
tion.

Thus, the well-known continuous time Nelson–Aalen (Poisson model)
and Kaplan–Meier (binomial model, discussed in Section 6.2) estimates
can be obtained by this procedure, because they are identical to discrete
time estimates with mass points at the event times.

Time-varying explanatory variables that are predictable processes are
easily included in the model. Instead of an explanatory variable vector
being constant over all observation intervals for an individual, it is allowed
to vary. With “continuous” monitoring, it may change in every observation
interval.

For our example with 14 observation periods, suppose that a variable
changes three times, taking the successive values {1, 3, 2} in the time peri-
ods {5, 5, 4}. Then, the appropriate variable would be {1, 1, 1, 1, 1, 3, 3, 3, 3,
3, 2, 2, 2, 2}. This is introduced into the Poisson regression model in the
usual way.

Examples

1. We can, first, try applying this method to the leukaemia survival
data of Table 6.1. The total vector length is 541, corresponding to the
total number of weeks of observation for all patients. For the exponential
model, the results are exactly those obtained in Chapter 6. For the Weibull
distribution, the AICs are 237.5 and 221.5, respectively without and with
treatment effect. The latter is estimated as 1.662 with α̂ = 1.268. These
results are perhaps more accurate than the previous ones, because they do
not assume that times are measured exactly. Here, there is little indication
that α 6= 1 because the AIC for the exponential distribution with treatment
effect was 221.0. Finally, for the Cox model, the AICs are 256.1 and 242.9,
whereas the treatment effect is 1.509. These are very close to those obtained
previously.

2. A baboon troop was studied in the Amboseli reserve in Kenya for a
period of a year. In the dynamics of social behaviour, birth–immigration
and death–emigration are of interest. Thus, times of births, deaths, emi-
gration, and immigration were recorded, as in Table 7.1. Here, we have four
different events that may depend on the size of the troop and on the time
since a previous event of the same type or since any previous event. There
are ten births, 12 deaths, three immigrations, and three emigrations, for a
total of 28 events in 373 days of observation. The event (response) vector
contains four parts, one for each type of event, for a total length of 1492.



128 7. Event Histories

TABLE 7.1. Times of four types of events in a baboon troop (Andersen et al.,
1993, p. 41, from Altmann and Altmann)

Days Troop size Number Event

41 40 1 Birth
5 41 1 Birth

22 42 1 Birth
2 43 1 Death

17 42 1 Death
26 41 2 Immigration
55 43 1 Birth
35 44 1 Immigration
20 45 1 Emigration
5 44 1 Death
6 43 1 Emigration

32 42 1 Death
4 41 2 Death

22 39 1 Death
10 38 2 Birth
7 40 1 Death
4 39 1 Birth

17 40 1 Death
11 39 1 Emigration
3 38 1 Birth
4 39 1 Death
8 38 1 Death
2 37 1 Death
5 36 1 Birth

10 37 1 Birth

The basic model with the same intensity for all events has an AIC of
284.8, whereas that with a factor variable, TYPE, allowing for four different
intensities, reflecting the relative numbers of events, has 280.9. Letting each
intensity depend on the troop size

NUMBER ∗ TYPE

reduces the AIC to 276.7. Dependence on log time from any previous event

(NUMBER+ LOGTIME) ∗ TYPE

further lowers it to 275.6. Dependence on log times since a previous birth,
death, and immigration, but where dependence on births is the same for
all types of events, yields the model,

(NUMBER+ LOGTIME+ LOGDTIME+ LOGITIME) ∗ TYPE+ LOGBTIME
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where LOGTIME, LOGDTIME, LOGITIME, and LOGBTIME denote respectively
the logarithms of total time since any previous event, time since a death,
since an immigration, and since a birth. This gives a final AIC of 254.7
with 21 parameters (there are only 28 events).

The size of the troop most positively influences emigration but negatively
for the births. Total log time since any previous event positively influences
migration and negatively affects births and deaths. All events except births
are negatively influenced by log time since a death, whereas only emigration
is negatively affected by log time since immigration. Finally, log time since
a birth positively affects the risk of all events. 2

With the small sample size in this example, even the standard AIC has
led us to a model that is very complex. We may suspect that additional ex-
planatory variables, and more observations, would be necessary to develop
a satisfactory model, but they would surely be difficult to obtain in such a
context.

7.4 Generalizations

The approach outlined in this chapter is an extension of the standard mod-
elling of Markov chains in discrete time to Markov processes. It also directly
applies to semiMarkov processes or Markov renewal processes; these allow
a change of state at each event.

The linear regression model for intensities of Aalen (1989) can be fitted
by replacing the log link by the identity link, although there is a clear risk of
obtaining negative intensities. Doubly stochastic processes can be handled
by adding random effects to the log linear model (Section 2.3.2). Certain
parametric models, other than the multiplicative intensities models, can
be analyzed by adding a special iteration step to the log linear model
algorithm.

The “exact” estimates of the continuous time model can be approached,
to any degree of numerical precision, by reducing the size of the observation
intervals. However, this is largely illusory, because more precision is being
imputed to the estimates than is available in the empirically observable
data.

This approach has the inconvenience that the variable vectors may be
rather large if a number of individuals are observed over considerable peri-
ods of time. However, because the risk set is calculated automatically, the
handicap in total computing time required will not be nearly as great as it
might appear.

This general approach of disaggregating data to the level of individual
observation points can and should be generally used for event histories.
Aggregating event counts over longer periods carries the assumption that
the intensity within that period is constant, something that may be con-
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tradicted by the unaggregated data. (Of course, “long” is always relative
to the intensity of events occurring.) The Poisson or binomial distribution
may be chosen depending on whether or not more than one event is possible
at each observation time point.

7.4.1 Geometric Process

Baskerville et al. (1984) present a novel form of clinical trial for evaluat-
ing therapeutic differences. The general principle is that the best available
treatment should be provided to each patient so that, when there are al-
ternatives, the appropriate treatment must be determined for each patient.
Suppose that a trial will have a fixed length determined by v regularly
scheduled visits to a clinic, but variable treatment lengths. Thus, each
patient is assigned the series of treatments under study in a sequence de-
termined in the standard way for crossover trials. However, as the trial
proceeds, double blinded, each patient remains on the assigned first treat-
ment in the sequence between all visits until either clinical deterioration or
adverse effects of the treatment indicate that a change is necessary. Then,
at the following visit, the patient is switched to the next treatment in the
assigned sequence, and so on. Thus, certain patients may remain on the
first treatment for all visits in the trial if that treatment proves effective or
may run out of new treatments before the v visits and stop the trial if no
treatment proves effective.

A model based on the geometric distribution can be used to describe the
number of continuations of the same treatment on such a trial (Lindsey
and Jones, 1996). If πj is the probability of changing treatment when on
treatment j and Nij is the random variable representing the number of
continuations for patient i under treatment j, then the model for that
treatment is

Pr(Nij = nij) =

{
πj(1 − πj)

nij if nij < u
(1 − πj)

u if nij ≥ u

where u is the number of remaining visits in the trial at the moment when
patient i begins treatment j; for the first treatment, u = v, the total num-
ber of visits. Then, the complete model for individual i is the product of
these probabilities for all treatments used by the patient. This is a sim-
ple duration or event history model in discrete time. In the usual way for
crossover trials, we can allow πj to depend on the history of the patient:
carryover effect, period effect, and so on.

At any point in time, an individual on treatment j has probability πj of
requiring a change. If we ignore the history of the patient for the moment,
this can be set up as a simple binary logistic regression with

log

(
πj

1 − πj

)
= µ+ αj
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where the response vector is a series of zeros for visits where no change
is made, and a one for each change of treatment. Here, j indicates the
treatment during the interval since the previous visit, not that to which a
change can be made at the present visit. We can now begin to complicate
our model by adding aspects specific to patients. As usual in crossover
trials, the model should be stratified by individual patient or a random
effect introduced. Here, we shall use the former.

A carryover effect can be introduced as a factor variable indicating the
previous treatment. However, the interpretation of this is not as clear as in a
classical crossover design, because the period during which each treatment
is applied is not of constant length. For example, one might easily imagine
that the carryover effect of the previous treatment diminishes with time on
the present treatment; this can be incorporated in the model, as we shall
do below.

The period effect is also not as clearly defined as in the classical case.
Do periods correspond to visits or to treatment regimes? An alternative
approach is perhaps more useful. The probability of change may depend
in some way on the time, that is, the number of visits that the patient
has been on the present treatment. We can look at both this time and its
logarithm in the logistic model. The probability may also be a function of
the number of previous changes of treatment. These two variables together
may account for period effects and provide a more informative description
of the treatment change mechanism.

In summary, we have a number of variables, describing each patient’s
position in the trial, that can be introduced into the logistic regression
model:

• individual;

• treatment in the previous interval leading up to the visit;

• previous treatment (before the last change);

• (a function of) time, that is, number of visits since the last treatment
change;

• (a function of) the number of previous treatment changes.

Once the data are set up for these variables, the analysis is straightforward.

Example

Baskerville et al. (1984) provide data on clinical decisions in a trial of three
bronchodilators (A, B, C) in the treatment of chronic asthma involving 36
patients, as shown in Table 7.2. Nine weekly visits were programmed. Only
three patients remained on the same treatment throughout the trial, two
on A and one on B; six others completed the treatment sequence (that is,
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TABLE 7.2. Data for preferences from a crossover trial. (Baskerville et al., 1984)

Sequence Sequence
1 AABBBBBBB 4 BBBBBBBCA

AAAAAAAAA BBBBBBBCC
AAAAABBBC BCCCCCCCC
ABBBBCCCC BBBBBBCCA
AAAAAABBC BBCCCCCCA
AAAAAAAAA BCCCAAA

2 AAACBBBBB 5 CCABBBBBB
AACCCCCCC CAB
ACCBBBBBB CCAAAAABB
AAAAAACCC CAABB
AAAAAAACC CCCCCCABB
ACB CCAABBBBB

3 BBBBBBBBB 6 CBBBBBBBB
BACCCCCCC CBBBBBBBB
BBBBBBAAA CCCBBBBBB
BBBBAC CCCCBBBAA
BACCCCCCC CCCCBBBAA
BBAAAAACC CBBBA

TABLE 7.3. Coded data for individual 3 with sequence, AAAAABBBC, from
Table 7.2.

Previous Time on Number of
Change Visit Treatment treatment treatment changes

0 1 1 0 1 0
0 2 1 0 2 0
0 3 1 0 3 0
0 4 1 0 4 0
1 5 1 0 5 0
0 6 2 1 1 1
0 7 2 1 2 1
1 8 2 1 3 1
0 9 3 2 1 2
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ran out of new treatments) and stopped early. An example of the way the
data are set up for the model is given in Table 7.3 for patient 3.

The basic model with only treatment and individual effects,

TREATMENT+ SUBJECT

has a deviance of 250.00 (AIC 326.0) with 261 d.f., but this deviance has
no absolute meaning because we are modelling binary data. The addition
of the carryover effect from previous treatment

TREATMENT+ PREVIOUS+ SUBJECT

reduces the deviance by 17.97 (314.0) on three d.f. The inclusion of an
interaction between treatment and carryover,

TREATMENT ∗ PREVIOUS+ SUBJECT

only further reduces it by 4.54 (315.5) on three d.f.
If we now take into account the period effect through the number of

previous changes and the time since a change (that is, the number of visits
between changes), we discover that carryover is no longer necessary. A
model with only treatment, individual, number of changes, and time since
a change

TREATMENT+ NUMBER+ TIME+ SUBJECT

has a deviance of 215.32 (295.3) with 259 d.f., as compared to 232.03 (314.0)
with 258 d.f. for the model described above with treatment, individual,
and previous treatment. However, the model may be further simplified by
combining treatments B and C, for a deviance of 215.84 (293.8) with 260 d.f.
A log transformation of either the number of previous changes or the time
since change does not improve the model. These results are summarized in
the first three panels of Table 7.4.

The parameter estimates are −1.268 for treatments B and C as opposed
to A, −1.656 for the number of previous changes, and 0.237 for the time
since a change. The changes in deviance for removing these effects are re-
spectively 6.08 (AIC 297.9), 33.63 (325.5), and 4.88 (296.7), each with one
d.f. Thus, the probability of change is less when a patient is on treatment
B and C than for A; it decreases as the number of changes increases; and it
increases with time from the previous change. The carryover effect previ-
ously detected has apparently disappeared when some of the other aspects
of the patients history are properly taken into account.

Above, we mentioned the theoretical possibility of a diminishing effect of
carryover as time passes without treatment change. This can be modelled
as an interaction between time and the previous treatment:

TREATMENT+ NUMBER+ TIME ∗ PREVIOUS+ SUBJECT
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TABLE 7.4. Deviances, AICs, and degrees of freedom for various models applied
to the preference data of Baskerville et al. (1984).

AIC d.f.

Treatment 326.0 261

Carryover
Treatment + Carryover 314.0 258
Treatment + Carryover + Interaction 315.5 255

Period
Treatment + Changes 298.3 260
Treatment + Changes + Time 295.3 259
Treatment (A/B+C) + Changes + Time 293.8 260

Carryover + period
Treatment (A/B+C) + Changes + Time

+ Time×Carryover 289.1 254
Treatment (A/B+C) + Changes + Time

+ Time×Carryover (A/B+C+0) 288.7 258

When this is added to our previously retained model, the deviance reduces
to 199.09 (289.1) with 254 d.f., a useful improvement. Again, this can be
simplified by contrasting treatment A with the others, including no previous
treatment (at the beginning of the trial). The deviance is increased by only
7.63 (288.7) with four d.f. These results are summarized in the last panel
of Table 7.4. The corresponding parameter estimates for this final model
are 4.133 for carryover and −0.758 for its interaction with time: if the
previous treatment is A, the probability of change is increased, although
this effect diminishes with time since the last change. Thus, we finally do
detect the dependence of continuation on previous drug, although with B
and C similar, rather than A and C, as Baskerville et al. suggested. Finally,
the parameter estimate for treatment difference for B and C as opposed to
A is now −2.344 with a change in deviance of 9.54 (296.2) on one d.f. if it
is removed from the model. This is a larger estimate, with a larger change
in deviance, than in the simpler model above. The same type of change is
also observed for the effects of the number of previous events and the time
since the last change. (Lindsey and Jones, 1996) 2

7.4.2 Gamma Process

Proportional hazards models can easily be fitted by Poisson regression. In-
tensities based on other distributions are more difficult because the Poisson
regression is no longer linear. In pioneering work, Hurley (1992) has applied
this approach to nonhomogeneous gamma processes. Because the gamma
distribution can be thought of as a sum of ν exponentially distributed
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TABLE 7.5. AICs for various gamma process models fitted to the stream data of
Tables 7.6 and 7.7.

Model ν = 1 ν = 2 ν = 3
Intercept 1341.5 1390.4 1493.0
One-year cycle 1322.2 1344.3 1420.0
Linear trend 1303.4 1300.1 1350.3
Six-month cycle 1299.7 1288.0 1329.8
Four-month cycle 1305.3 1288.4 1325.6

times, the intensity function can be written

h(t;β) = h0(t;β) Pr[Z(t) = ν − 1|Z(t) ≤ ν − 1] (7.1)

where Z(t) is a Poisson random variable with mean
∫ t
0 h0(u;β)du and h0

is the baseline intensity. For ν = 1, we have a Poisson process. Then, the
baseline intensity can be used in a regression model. When the log link is
used,

log[h0(t;β)] = βTx(t) (7.2)

this is called a modulated gamma process. Such a model is relatively dif-
ficult to fit because β appears both in the baseline intensity and in the
conditional probability of Equation (7.1). For a fixed value of ν, an itera-
tive procedure can be developed (Hurley, 1992).

Example

Two small unregulated streams in the Lake District of England, Great
Eggleshope and Carl Becks, were monitored for bedload throughput in a
study to investigate effects of human activities on salmonid fish (Salmo

trutta). A bedload event is any discharge that transports coarse sand and
granules, greater than 2 mm, into a specially constructed trap dug across
each stream close to the catchment outlets. These events usually occur
during heavy rainfall and may influence spawning success of the fish. The
series for the two becks over a period of about five years are shown in Tables
7.6 and 7.7. Bedload events display a seasonal cycle with winter peaks and
summer lows. A longer-term trend over time is also possible. Thus, five
models were fitted with each of ν = 1, 2, and 3, including, successively,
constant intensity, one-year cycle, linear trend, six-month cycle, and four-
month cycle. The corresponding AICs are given in Table 7.5. We see that
a gamma process with ν = 2, linear trend, and both year and six-month
cycles is indicated. This has separate parameters for each stream. When a
common model is fitted to the two, the AIC becomes 1273.0. Interestingly,
the linear trend is negative (−0.00066). The intensity function over a year
is plotted in Figure 7.1. 2
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TABLE 7.6. Times of bedloads in Carl Beck. (Hurley, 1992)

Time Date Magnitude Time Date Magnitude

0 5 10 78 4.67 629 25 6 80 35.40
8 13 10 78 0.57 634 30 6 80 14.20

41 15 11 78 34.02 664 30 7 80 96.8
49 23 11 78 117.96 672 7 8 80 12.80
64 8 12 78 6.31 732 6 10 80 22.40
80 24 12 78 302.54 743 27 10 80 72.90
93 6 1 79 135.57 771 14 11 80 23.90

119 1 2 79 2.63 777 20 11 80 5.46
144 26 2 79 206.29 781 24 11 80 115.00
151 5 3 79 795.80 798 11 12 80 103.40
157 11 3 79 800.00 820 3 1 81 21.35
166 20 3 79 111.64 831 14 1 81 86.00
174 28 3 79 19.48 838 21 1 81 3.63
187 10 4 79 6.66 851 3 2 81 127.85
215 8 5 79 3.79 884 7 3 81 27.00
225 18 5 79 8.05 887 10 3 81 106.95
235 28 5 79 1.27 899 22 3 81 205.90
356 26 9 79 15.94 900 23 3 81 69.20
375 15 10 79 3.57 936 28 4 81 46.80
391 31 10 79 0.84 1087 26 9 81 141.60
394 3 11 79 6.75 1092 1 10 81 194.60
402 11 11 79 4.23 1099 8 10 81 10.30
407 16 11 79 0.49 1149 27 11 81 314.80
416 25 11 79 365.00 1185 3 1 82 1410.00
423 2 12 79 238.8 1245 3 3 82 35.5
424 3 12 79 21.20 1305 2 5 82 73.20
425 4 12 79 255.7 1360 26 6 82 78.90
429 8 12 79 21.50 1462 6 10 82 38.70
433 12 12 79 2.67 1508 21 11 82 344.30
436 15 12 79 2.39 1525 8 12 82 261.10
447 26 12 79 40.40 1553 6 1 83 94.50
456 4 1 80 30.40 1617 10 3 83 65.10
481 29 1 80 27.10 1661 23 4 83 32.50
491 8 2 80 96.00 1698 30 5 83 41.30
505 22 2 80 2.48 1829 8 10 83 6.10
523 11 3 80 1.85 1837 16 10 83 101.96
537 25 3 80 18.10 1891 9 12 83 22.20
541 29 3 80 2.61 1915 3 1 84 311.40
610 6 6 80 5.72 1932 20 1 84 115.50
618 14 6 80 17.20 1953 10 2 84 980.00
624 20 6 80 3.97 1999 20 3 84 22.30
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TABLE 7.7. Times of bedloads in Great Eggleshope Beck. (Hurley, 1992)

Time Date Magnitude Time Date Magnitude

0 8 12 78 1881.72 680 26 10 80 62.95
17 25 12 78 5438.17 710 17 11 80 9.27
81 27 2 79 217.49 713 20 11 80 9.41
85 3 3 79 5438.17 717 24 11 80 33.40
91 9 3 79 3641.50 725 2 12 80 9.88

107 25 3 79 715.05 734 11 12 80 24.70
114 1 4 79 351.88 737 14 12 80 550.10
124 11 4 79 2333.33 746 23 12 80 96.35
149 6 5 79 35.63 767 14 1 81 18.34
163 20 5 79 27.60 774 21 1 81 125.50
170 27 5 79 17.29 786 2 2 81 5440.00
292 26 9 79 7.39 820 7 3 81 629.78
300 4 10 79 15.85 837 24 3 81 593.19
309 13 10 79 61.76 872 28 4 81 709.94
321 25 10 79 6.06 1023 26 9 81 1590.05
330 3 11 79 30.14 1028 1 10 81 5438.17
338 11 11 79 29.60 1076 18 11 81 193.50
343 16 11 79 15.80 1081 23 11 81 5438.17
352 25 11 79 3461.71 1121 3 1 82 5438.17
359 2 12 79 159.30 1174 25 2 82 665.50
360 3 12 79 126.90 1241 2 5 82 33.00
361 4 12 79 1795.00 1302 2 7 82 168.70
369 12 12 79 105.40 1398 6 10 82 3401.40
374 17 12 79 30.50 1409 17 10 82 31.50
384 27 12 79 543.00 1435 12 11 82 119.10
392 4 1 80 32.90 1444 21 11 82 2590.00
418 30 1 80 151.60 1461 8 12 82 66.60
428 9 2 80 871.00 1472 19 12 82 2196.00
441 22 2 80 18.30 1489 6 1 83 692.80
459 11 3 80 9.98 1546 3 3 83 118.40
474 26 3 80 89.60 1597 23 4 83 548.20
480 1 4 80 14.00 1636 1 6 83 132.00
545 5 6 80 2276.00 1773 16 10 83 274.38
554 14 6 80 1970.00 1827 9 12 83 307.20
564 24 6 80 155.10 1842 24 12 83 2540.00
570 30 6 80 52.40 1861 13 1 84 1840.00
600 30 7 80 17.03 1883 4 2 84 4730.00
608 7 8 80 36.20 1935 26 3 84 277.40
630 29 8 80 10.20 2007 6 6 84 37.20
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FIGURE 7.1. Variation in intensity of bed disturbances of the streams of Tables
7.6 and 7.7 over 365 days.

Summary

With the increasing possibilities of accumulating long series of data, event
history analyses are growing in importance. Fortunately, analysis is fairly
simple if somewhat computer intensive. For more details, see Blossfeld et

al. (1989), Andersen et al. (1993), and Lindsey (1993, 1995b).
For crossover trials, see Jones and Kenward (1989) or Senn (1993).

7.5 Exercises

1. Repeat the exercises of the previous chapter using the methods of
this chapter.

2. The following table gives the successive times (sec) at initiations of
mating between flies (Aalen, 1978).

Ebony flies

143 180 184 303 380 431 455 475
500 514 521 552 558 606 650 667
683 782 799 849 901 995 1131 1216

1591 1702 2212

Oregon flies

555 742 746 795 934 967 982 1043
1055 1067 1081 1296 1353 1361 1462 1731
1985 2051 2292 2335 2514 2570 2970
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Is there a difference over time in the intensity of mating between the
two species?

3. In the Solomon–Wynne experiment (Kalbfleisch, 1985b, pp. 83–88),
30 dogs were taught to avoid an electrical shock. A dog was in a
compartment with a floor through which a shock could be applied.
The lights were turned out and a barrier raised; ten sec later, the
shock occurred. Thus, the dog had ten sec, after the lights went out, to
jump the barrier and avoid the shock. Each of the dogs was subjected
to 25 such trials. Each line gives the results of the 25 successive trials
for one dog, with a 1 indicating avoidance:

00101 01111 11111 11111 11111
00000 00100 00001 11111 11111
00000 11011 00110 10111 11111
01100 11110 10101 11111 11111
00000 00011 11111 11111 11111
00000 01111 00101 11111 11111
00000 10000 00111 11111 11111
00000 00110 01111 11111 11111
00000 10101 10100 01111 10110
00001 00110 10111 11111 11111
00000 00000 11111 10111 11111
00000 11111 00111 11111 11111
00011 01001 11111 11111 11111
00001 01101 11111 11111 11111
00010 11011 11111 11111 11111
00000 00111 11111 11111 11111
01010 00101 11101 11111 11111
00001 01011 11101 11111 11111
01000 01000 11111 11111 11111
00001 10101 10101 11111 11111
00011 11101 11111 11111 11111
00101 01111 11111 10011 11111
00000 00111 11111 11111 11111
00000 00011 10100 01101 11111
00000 01011 11010 11111 11111
00101 11011 01111 11111 11111
00001 01111 11111 11111 11111
00010 10111 01011 11111 11111
00001 10011 10101 01011 11111
00001 11111 01011 11111 11111

By conditioning on the numbers of previous events, determine if the
dogs learn more from receiving or avoiding a shock.
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4. The following table gives the June days with measurable precipitation
(1) at Madison, Wisconsin, 1961–1971 (Klotz, 1973):

Year
1961 10000 01101 01100 00010 01010 00000
1962 00110 00101 10000 01100 01000 00000
1963 00001 01110 00100 00010 00000 11000
1964 01000 00000 11011 01000 11000 00000
1965 10001 10000 00000 00001 01100 01000
1966 01100 11010 11001 00001 00000 11100
1967 00000 11011 11101 11010 00010 00110
1968 10000 00011 10011 00100 10111 11011
1969 11010 11000 11000 01100 00001 11010
1970 11000 00000 01000 11001 00000 10000
1971 10000 01000 10000 00111 01010 00000

Is there evidence of variation in periods without rainfall over the 11
years? Is there more chance of rain on a given day if it rained the day
before?

5. The times (in days of service) at which valve seats were replaced on
41 diesel engines in a service fleet are shown in the following table
(Lawless and Nadeau, 1995, from Nelson and Doganakov):

761 593
759 573 589

98 667 165 408 604 606
326 653 653 667 249 594

665 344 497 613
84 667 265 586 595
87 663 166 206 348 389
646 653 601
92 653 410 581 601
651 611

258 328 377 621 650 608
61 539 648 587

254 276 298 640 644 367 603
76 538 642 202 563 570 585
635 641 587

349 404 561 649 578
631 578
596 586

120 479 614 585
323 449 582 582
139 139 589
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The engines had 16 valves, but we do not know which ones were re-
placed. The last time for each engine is censored. We are interested
in how the average number of valves replaced changes with age and
whether the replacement rate increases with time. Develop an appro-
priate event history model for these data.

6. In the National Cooperative Gallstone Study (United States of Amer-
ica), an important point of interest was the safety of the drug chen-
odiol. A major concern was that, as the gallstones dissolve, they might
pass into the biliary tree and lead to increased gallbladder symp-
toms. Progression of the disease is indicated by the occurrence of bil-
iary tract pain, perhaps accompanied by other symptoms that might
require surgical removal of the gallbladder, called cholecystectomy.
Thus, in this study of the disease progression of floating gallstones,
biliary pain may be experienced, and, if so, it may be followed by
cholecystectomy. If the former does not occur, the latter will also be
censored. A series of observations on 113 patients under two treat-
ments, placebo and the drug chenodiol (Wei and Lachin, 1984), are
presented on the next page.
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Placebo Treatment

741* 741* 35 118 735* 735* 742* 742*
234 234 175 493 29 29 360* 360*
374 733* 481 733* 748* 748* 750 750*
184 491 738* 738* 671 671 360* 360*
735* 735* 744* 744* 147 147 360* 360*
740* 740* 380 761* 749 749 726* 726*
183 740* 106 735* 310* 310* 727* 727*
721* 721* 107 107 735* 735* 725* 725*
69 743* 49 49 757* 757* 725* 725*
61 62 727 727* 63 260 288 810*

742* 742* 733* 733* 101 744* 728* 728*
742* 742* 237 237 612 763* 730* 730*
700* 700* 237 730* 272 726* 360* 360*
27 59 363 727* 714* 714* 758* 758*
34 729* 35 733* 282 734* 600* 600*
28 497 615 615* 743* 743*
43 93 35 749* 743* 743*
92 357 728* 728* 733* 755*
98 742* 600* 600* 188 762*

163 163 612 730* 600* 600*
609 713* 735* 735* 613* 613*
736* 736* 32 32 341 341
736* 736* 600* 600* 96 770*
817* 817* 750* 750* 360* 360*
178 727 617 793* 743* 743*
806* 806* 829* 829* 721* 721*
790* 790* 360* 360* 726* 726*
280 737* 96 720* 363 582
728* 728* 355 355 324 324
908* 908* 733* 733* 518 518
728* 728* 189 360* 628 628
730* 730* 735* 735* 717* 717*
721* 721* 360* 360*

[First column: time (days) to pain; second column: time (days) to
cholecystectomy; with asterisks indicating censoring.] Although pa-
tients were randomly assigned to high dose (305), low dose (306), or
placebo (305), the table only contains the results for high dose and
placebo. Patients could be followed for as long as 28 months. Find an
intensity model for these two events. Does treatment have an effect
on either of them?
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8
Spatial Data

Spatial data are similar to longitudinal data that evolve over time (Chapters
4, 5, and 7) in that there will generally be dependence among the responses.
However, they are more complex because dependence can be on neighbours
in all directions and not just through ordered unidimensional history. Thus,
we shall not be able to develop a multivariate model that decomposes in
a simple way, as in Equation (5.1). Generally, approximations have to be
made.

8.1 Spatial Interaction

8.1.1 Directional Dependence

One of the simplest types of spatial data is the equivalent of a discrete time
point process (Section 5.1.1): a record of presence or absence of some event
at each point of a regular lattice. An important question that does not
occur with time series data is whether dependence is directional. This can
be studied by constructing a model whereby the probability of an event at
each given point depends on the presence or absence of a neighbour in pos-
sibly different ways in each direction. This generally could involve a simple
logistic model conditional on the nearest neighbours, a Markov process.
If we are to construct a model for dependence on nearest neighbours, we
lose the boundary cells because we do not have information on all of their
neighbours (just as we lost the first observation of a time series). However,
if all remaining observations are used, there will be a “circular” effect from
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the illegitimate decomposition of the multivariate distribution. Each point
would be used too many times because of the reciprocal dependencies. One
possible remedy, with substantial loss of information, is to use only every
other point (Besag, 1974).

One common multivariate model with dependence on neighbours in a
lattice is the Ising model:

Pr(y;α, β) = c(α,β) exp


∑

i

yiαi +
∑

i

∑

j 6=i

βijyiyj


 (8.1)

where i indexes each position and j its neighbours and c(·) is the normal-
izing constant, generally an intractable function of the parameters. This
distribution is a member of the exponential family. To be estimable, the
model must have βij = 0 for j outside some neighbourhood of i.

For binary data, yi must be coded (−1, 1) instead of (0, 1). Generally, the
model is simplified by assuming stationarity, that is, that the parameters
do not vary with i:

Pr(y;α, β) = c(α,β) exp


∑

i

yiα+
∑

i

∑

j 6=i

βjyiyj




Usually, either four or eight neighbours are used so that β has this dimen-
sion. The original Ising model held βj constant so that the probability just
depends on the total sum (

∑
j 6=i yj) of neighbours and not on where they

are located.
In spite of the complex normalizing constant, this model can be estimated

by the techniques of Chapter 3 (see also Lindsey, 1995b, pp. 129–132).
For example, the simplest model, for total number of neighbours, can be
estimated from a cross-tabulation of an indicator of presence at each point
by number of neighbours. Then, the Poisson regression has the model

C + C · SUM

where C is the binary indicator (−1/1) for each point and SUM is the sum
of the four neighbouring values. The one with four different neighbours
requires tabulation of the 25 table of all possible combinations of presence
at a point with these neighbours, giving the Poisson regression,

C + C · (N + E + S + W)

where the four letters are binary indicators (−1/1) for a neighbour in the
four directions. Notice how the main effects for number or for the directions
are not included in the model. If they were, we would have a multivariate
“distribution” for each point and its neighbours whereby each point would
be included five times.
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TABLE 8.1. Grid indicating presence of Carex arenaria. (Strauss, 1992, from
Bartlett)

0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0
0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0
0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1
0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1
0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Example

Consider a 24 × 24 grid indicating the presence or absence of the plant,
Carex arenaria, as shown in Table 8.1. The influence of neighbours can be
summarized in a contingency table giving their numbers, as in Table 8.2.
The plants obviously tend to have neighbours!

None of the Ising models described above fit well for the reason, from
Table 8.2, that the probabilities of presence and absence are not varying
monotonically in opposite ways with numbers of neighbours. 2

Because of the intractable normalizing constant, this multivariate model
has generally not been used. Instead, conditional models are applied, with
the difficulties mentioned above. A simple conditional logistic (Ising) model
has each lattice point depending on its four neighbours:

N + E + S + W
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TABLE 8.2. Numbers of neighbours for the plant data of Table 8.1.

Number of neighbours
Presence 0 1 2 3 4

0 128 105 77 23 6
1 20 49 46 25 5

In terms of the Poisson regression above, this is

C ∗ (N + E + S + W)

so that, in comparison to the multivariate Ising model above, it has the
main effects for the neighbours (illegitimately) included. It does not cor-
respond to the correct likelihood because of the circular effect mentioned
above.

This approach, that has been called “pseudo-likelihood”, may be mis-
leading because of the misspecification of the multivariate distribution and,
hence, of the likelihood function. The analysis can be repeated with every
other point, once using only odd points and again only even points. Each
of these analyses thus eliminates the dependency but loses information.

Example

For our plant data, using all of the points, this model has an AIC of 569.4.
The north and south parameters, of similar size, are slightly large than the
east and west ones, that are also of similar size. We can also add dependence
on diagonal neighbours:

N + E + S + W + NE + SE + SW+ NW

for an AIC of 566.2. Here, the north–west and south–east estimates are
slightly smaller, although all are of similar size. Elimination of north–west
reduces the AIC to 565.7, but no other parameter can be removed. The
latter is most likely an artifact, because, if we remove two rows around the
edge, its elimination is no longer possible. Adding dependence on points
two steps away does not reduce the AIC.

We repeat the analysis only using odd or even points. The four and eight
directional AICs are summarized in the first panel of Table 8.3. We see,
indeed, that the two half-models are not independent: if they were, their
deviances (not their AICs) would add to give that for the complete set of
points.

The parameter values are considerably different for the three analyses.
Consider, for example, those for the four main directions, as shown in
Table 8.4. (These values remain similar when the four diagonal directions
are introduced.) Evidently, there is some east–west relationship that is not
detected when all of the data are used. The negative value indicates some
form of repulsion. 2
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TABLE 8.3. AICs for spatial models for the plant data of Table 8.1.

Neighbours All Odd Even

Directions

Four 569.4 276.3 281.4
Eight 566.2 279.0 277.1

Total

Four 563.6 281.6 285.8
Four + four 554.5 279.6 280.3
Eight 552.7 278.4 278.3

TABLE 8.4. Directional parameters for the plant data of Table 8.1.

Direction All Odd Even

North 0.564 0.545 0.540
South 0.606 0.919 0.525
East 0.481 −0.311 1.200
West 0.475 1.169 −0.264

The logistic model looks at the presence or absence of the event. How-
ever, more than one event may have occurred at a point. If the counts are
available, the Poisson log linear model can be used. Instead, suppose that
we only have the binary indicator. The Poisson probability of no event is
exp(−µ), so that the probability of one or more events is 1− exp(−µ). If µ
in a Poisson regression model were to have a log link, this latter expression
can be transformed, for binary data, as a complementary log log link.

Example

For our grid of plants, replacing the logit by the complementary log log link
yields a slightly poorer model, with a marginally larger AIC. Apparently,
presence of plants, and not their number at each point, is important in this
plot. 2

8.1.2 Clustering

Another important question is if events appear together on the lattice. This
is closely related to birth processes for longitudinal data. Clustering can be
studied in a number of ways. One traditional way has been to divide the
area up in to a reasonably coarse grid and count the number of events in
each square. If these counts have a Poisson distribution, it is an indication
that they are distributed randomly. However, if the variance is much larger
than the mean, it is an indication of clustering.



148 8. Spatial Data

TABLE 8.5. Distribution of the plants in Table 8.1 divided into 3 × 3 squares.

Count 0 1 2 3 4 5 6 7 8 9
Frequency 8 9 17 7 10 6 7 0 0 0

Example

We can divide our lattice of plants up into a grid of 64 nonoverlapping
3× 3 squares. The resulting frequencies of the different counts are given in
Table 8.5. The Poisson distribution fitted to these data has µ̂ = 2.75. The
variance is estimated to be 3.41, considerably larger. The AIC is 20.5 for a
Poisson distribution as compared to 20 for the saturated model, indicating
a reasonable fit, although there is some possibility of nonrandomness. 2

We can also look to see if the probability of an event at a given point de-
pends primarily on the number of neighbours. This was the simplest Ising
model described above. Positive values indicate clustering and negative val-
ues repulsion. Such a conditional logistic model, depending on the number
of neighbours, is identical to the Poisson regression,

C + FACNUMBER+ C · NUMBER

where FACNUMBER is the appropriate factor variable for the total number of
neighbours.

Example

In the study of the lattice of plants above, we noticed that the parameters
for the various directions were of similar size, at least when all points are
used. This is an indication that only the number of neighbouring plants is
important.

A Poisson model with separate counts for east–west and for north–south,

NNS + NEW

has an AIC of 565.4 for all points, better than the Markov processes above.
A model for a combined four-directional count has 563.6 (notice that this
model could be fitted directly from Table 8.2 as a linear trend). If we add
a parameter for the total of diagonal neighbours, we reach 554.5, whereas
if we take one count for all neighbours in the eight directions, we have
552.7. Thus, when we use all points, we have a very strong indication of
clustering without directional influence. However, when we perform the
analysis separately for odd and even points, we see, in the lower panel of
Table 8.3, that the earlier directional model is superior. Thus, clustering is
not a sufficient explanation for these data.

The linearity of the dependence on numbers of neighbours can be checked
by fitting a factor variable (replacing NUMBER by FACNUMBER in the interac-
tion in the Poisson regression), a spatial Rasch model. There can be from
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zero to four four-directional neighbours and from zero to eight in all direc-
tions. Introduction of such variables, for all points, raises the AIC, hence
providing no indication of nonlinearity. 2

8.1.3 One Cluster Centre

Unfortunately, such techniques as already presented only indicate the gen-
eral presence of clustering. They do not show where the clusters are located,
a more difficult problem. If only one point of clustering is thought to occur
on the grid, as, for example, might occur with illness events around a pol-
lution site, a response surface (Sections 9.1 and 9.3) can be added to the
Ising model to determine the area of highest probability of an event. This
involves making αi in Equation (8.1) depend on the coordinates of each
point. In the conditional logistic regression, this might give, in the simplest
case,

log

(
πhv

1 − πhv

)
= α0 + α1h+ α2v + α3h

2 + α4v
2 + α5hv + βnhv

where h and v are the coordinates and nhv is the number of neighbours at
each point. If not only the probability of an event but also the dependence
on neighbours varies with position, βij can also be made to depend on the
coordinates.

Example

For our grid of plants, the introduction of the response surface models raises
the AIC. There is no evidence of a single maximum. 2

If several centres of clustering are to be detected, more descriptive “non-
parametric” techniques will generally be required.

8.1.4 Association

A common problem in spatial studies is to determine what different events
are associated together. Here, we are not concerned with the distance to
neighbours or with the number of close neighbours of the same kind, but
with what different kinds of neighbouring events are found most often to-
gether. If the space is fairly uniform so that association is not changing,
such data can be summarized as a square contingency table, with the size
determined by the number of possible events. A number of the models in
Section 2.2 may be of use here.

Example

Consider the species of trees that are associated together in a Michigan,
USA, hardwood forest, as shown in Table 8.6. For each species, the num-
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TABLE 8.6. Association between tree species in a hardwood forest. (Hand et al.

1994, p. 19, from Digby and Kempton)

Neighbour
Red White Black

Species oak oak oak Hickory Maple Other Total

Red oak 104 59 14 95 64 10 346
White oak 62 138 20 117 95 16 448
Black oak 12 20 27 51 25 0 135
Hickory 105 108 48 355 71 16 703
Maple 74 70 21 79 242 28 514
Other 11 14 0 25 30 25 105

TABLE 8.7. Parameter estimates for the tree association data of Table 8.6.
Estimate

Red oak White oak 0.000
Black oak −1.538
Hickory 0.503
Maple 0.132
Other −1.751

White oak Black oak −1.107
Hickory 0.620
Maple 0.310
Other −1.395

Black oak Hickory −0.201
Maple −0.967
Other −13.80

Hickory Maple 0.215
Other −1.082

Maple Other −0.735
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ber of times that any given species is its nearest neighbour was counted.
Notice that this table does not have a uniformly large diagonal, as in mo-
bility studies. Only certain species, such as hickory and maple, seem to be
clustered in more uniform groups.

If we apply the symmetry model of Section 2.2.2, we find that it fits
very well. The AIC is 50.72 as compared to 72 for the saturated model.
The parameter estimates for symmetry are given in Table 8.7. We see that
the most frequent associations are red and white oaks each with hickory,
whereas the least frequent are red and black oaks with other (the latter
with none!), and red with black oak. However, recall that this model only
looks at different neighbours, ignoring the main diagonal. 2

8.2 Spatial Patterns

8.2.1 Response Contours

The search for patterns in spatial data is often complex. In most cases,
there is no reason to expect a theoretical functional model, describing the
shape of the pattern, to hold. Thus, “nonparametric” procedures, such as
splines and kernel smoothing, will be appropriate to provide a descriptive
plot that can be interpreted.

In simple cases, mainly if there is only one maximum or minimum, stan-
dard response surface methodology (Sections 9.1 and 9.3) can be applied,
although it ignores the dependency among adjacent responses. This often
simply means fitting a quadratic equation to the coordinates of the points,
perhaps with transformations of the variables.

Example

Three sites, in Nevada, Texas, and Washington, USA, were proposed for
high-level nuclear waste. The chosen site would eventually contain more
than 68,000 canisters placed in holes, buried deep in the ground and sur-
rounded by salt, about 30 ft apart over an area of about two square miles.
The radioactive heat could cause tiny quantities of water in the salt to
move toward the canisters until they were surrounded by water. The chem-
ical reaction between salt and water could create hydrochloric acid that
would corrode the canisters. Hence, the danger of leaks. Here, we consider
the proposed site in Deaf Smith County, Texas.

Groundwater flow was measured in the region surrounding the proposed
site to determine which way pollution might run if there was leakage. Piezo-
metric head data were collected for the Wolfcamp Aquifer in West Texas
and New Mexico by drilling 85 narrow pipes into the aquifer and letting
the water find its own level in each pipe. Water level, above sea level (ft),
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FIGURE 8.1. Linear response surface for the aquifer data in Table 8.8.

was measured (miles) at the 85 points, from an arbitrary origin, as shown
in Table 8.8.

Because of the possibility of an irregular shape, it is perhaps best to start
with at least a cubic surface. After elimination of some unnecessary terms,
we obtain a model with a normal distribution and the equation

µhv = 3523− 6.718h+ 0.01526h2 − 0.09097hv− 0.00007912h3

+ 0.0003995h2v − 0.0001011hv2

(150 miles have been added to each h-value to make them all positive.) This
model has an AIC of 1131 as compared to a full cubic model with 1135 and
a full quadratic model with 1137. The h3 term could also be eliminated
without increasing the AIC, but, in this descriptive situation, it seems best
to leave it in.

Neither transformation of the explanatory variables, nor change of distri-
bution, nor change of link function improves the model. We see, in Figure
8.1, that the water level decreases sharply toward the higher values of the
two coordinates. Although smoother, this figure has the same basic shape
as that found by Cressie (1989) by much more complicated methods. It
clearly answers the question about leakage. 2
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TABLE 8.8. Coordinates (miles), from an arbitrary origin, and water level (ft
above sea level) around a proposed nuclear waste site. (Cressie, 1989)

h v Level h v Level

42.78275 127.62282 1464 103.26625 20.34239 1591
−27.39691 90.78732 2553 −14.31073 31.26545 2540
−1.16289 84.89600 2158 −18.13447 30.18118 2352

−18.61823 76.45199 2455 −18.12151 29.53241 2528
96.46549 64.58058 1756 −9.88796 38.14483 2575

108.56243 82.92325 1702 −12.16336 39.11081 2468
88.36356 56.45348 1805 11.65754 18.73347 2646
90.04213 39.25820 1797 61.69122 32.49406 1739
93.17269 33.05852 1714 69.57896 33.80841 1674
97.61099 56.27887 1466 66.72205 33.93264 1868
90.62946 35.08169 1729 −36.65446 150.91456 1865
92.55262 41.75238 1638 −19.55102 137.78404 1777
99.48996 59.15785 1736 −21.29791 131.82542 1579

−24.06744 184.76636 1476 −22.36166 137.13680 1771
−26.06285 114.07479 2200 21.14719 139.26199 1408

56.27842 26.84826 1999 7.68461 126.83751 1527
73.03881 18.88140 1680 −8.33227 107.77691 2003
80.26679 12.61593 1806 56.70724 171.26443 1386
80.23009 14.61795 1682 59.00052 164.54863 1089
68.83845 107.77423 1306 68.96893 177.24820 1384
76.39921 95.99380 1722 70.90225 161.38136 1030
64.46148 110.39641 1437 73.00243 162.98960 1092
43.39657 53.61499 1828 59.66237 170.10544 1161
39.07769 61.99805 2118 61.87429 174.30178 1415

112.80450 45.54766 1725 63.70810 173.91453 1231
54.25899 147.81987 1606 5.62706 79.08730 2300
6.13202 48.32772 2648 18.24739 77.39191 2238

−3.80469 40.40450 2560 85.68824 139.81701 1038
−2.23054 29.91113 2544 105.07646 132.03181 1332
−2.36177 33.82002 2386 −101.64278 10.65106 3510
−2.18890 33.68207 2400 −145.23654 28.02333 3490
63.22428 79.49924 1757 −73.99313 87.97270 2594

−10.77860 175.11346 1402 −94.48182 86.62606 2650
−18.98889 171.91694 1364 −88.84983 76.70991 2533
−38.57884 158.52742 1735 −120.25898 80.76485 3571

83.14496 159.11558 1376 −86.02454 54.36334 2811
−21.80248 15.02551 2729 −72.79097 43.09215 2728
−23.56457 9.41441 2766 −100.17372 42.89881 3136
−20.11299 22.09269 2736 −78.83539 40.82141 2553
−16.62654 17.25621 2432 −83.69063 46.50482 2798

29.90748 175.12875 1024 −95.61661 35.82183 2691
100.91568 22.97808 1611 −87.55480 29.39267 2946
101.29544 22.96385 1548
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TABLE 8.9. Locations (km) of brain cancer cases in San Francisco, California,
USA, (1977–1986). (Selvin, 1991, p. 123)

h v Distance h v Distance

−1.136 0.718 1.007 −4.865 −1.154 3.169
−0.163 −3.429 4.067 −6.156 −1.854 4.636
−2.718 4.185 4.049 1.036 −0.013 3.043
−3.090 −0.532 1.313 0.474 −0.568 2.590
−4.103 0.111 2.105 −0.141 −5.267 5.774
−4.664 2.567 3.564 −2.741 4.196 4.064
−5.528 −1.899 4.105 −2.865 −2.249 2.597
−0.842 −0.363 1.288 −4.036 −1.093 2.412

2.330 −5.074 6.824 −4.513 3.042 3.794
−1.393 −2.411 2.681 −4.849 −1.142 3.149
−1.636 −5.274 5.486 −6.265 −0.282 4.292
−2.732 4.177 4.044 1.257 4.304 5.239
−3.055 −0.513 1.273 0.748 −1.574 3.271
−4.346 −3.017 3.982

8.2.2 Distribution About a Point

The distribution of cases of illness about some point source, such as a site
of pollution, is often of critical interest. This problem may be attacked in
a number of ways. For example, one may check if the cases are uniformly
distributed with distance from the source, or one may fit a response surface
based on a Poisson distribution to the numbers of events in squares of a
lattice around the source. One major problem is that population density
may vary in the area. For Poisson regression, one can allow for this by using
the logarithm of the population in each square as an offset, so that rates
can be studied.

Example

A large microwave tower located near the centre of San Francisco, Cali-
fornia, USA, was considered to be a possible source of exposure for brain
cancer. In the period 1977 to 1986, 27 cases were found in white people
under 21 years old, located as in Table 8.9. The tower is at (−2.0, 0.2). Un-
fortunately, we have no information about the distribution of population
densities.

If we categorize the distances into 14 0.5-km groups. we obtain Table 8.10.
The area covered in a 0.5-km ring increases with the distance, so that we
use its logarithm as an offset. (Thus, we implicitly assume that population
density is uniform over this area.) When we fit a Poisson regression, the null
model has an AIC of 33.7 and the saturated model 28, whereas the models
linear and quadratic in distance have 24.9 and 21.2. The coefficients of the



8.2 Spatial Patterns 155

TABLE 8.10. Counts of brain cancer cases at distances grouped by 0.5 km, from
Table 8.9.

Distance Count Distance Count
0.25 0 3.75 3
0.75 0 4.25 6
1.25 4 4.75 1
1.75 0 5.25 2
2.25 2 5.75 1
2.75 3 6.25 0
3.25 4 6.75 1

TABLE 8.11. Counts of brain cancer cases in one-km squares, from Table 8.9.
h

v −6.5 −5.5 −4.5 −3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5

−5.5 0 0 0 0 0 1 1 0 0 1
−4.5 0 0 0 0 0 0 0 0 0 0
−3.5 0 0 1 0 0 0 1 0 0 0
−2.5 0 0 0 0 1 1 0 0 0 0
−1.5 1 1 3 0 0 0 0 1 0 0
−0.5 1 0 0 2 0 0 1 1 1 0

0.5 0 0 1 0 0 1 0 0 0 0
1.5 0 0 0 0 0 0 0 0 0 0
2.5 0 0 1 0 0 0 0 0 0 0
3.5 0 0 1 0 0 0 0 0 0 0
4.5 0 0 0 0 3 0 0 0 1 0

latter model are estimated to be −0.788, 0.805, and −0.163, indicating a
maximum number of cancer cases at about 2.5 km from the tower.

If we divide the region into nonoverlapping one km squares, we obtain
the results in Table 8.11. Fitting a quadratic Poisson response surface, even
nonlinear, provides very little indication that the surface is not flat. This
may be because of the low number of events or because the surface is too
complex to be captured by such a simple model.

Thus, the first model, only taking into account distance but not direc-
tion, with its strong assumptions, detects a variation in cancer rates with
distance from the point source. However, when the assumptions are weak-
ened, by allowing differences with direction, the paucity of data prevent us
from even detecting this. 2

Summary

Spatial modelling is a difficult subject for which generalized linear models
are not well suited, although they should form the basis for more sophist-
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icated models. Most approaches are rather ad hoc and descriptive, using
nonparametric methods. Texts include Cressie (1993), Ripley (1981, 1988),
Stoyan et al. (1987), and Upton and Fingleton (1985, 1989).

8.3 Exercises

1. The ants, Messor wasmanni, in northern Greece build nests under-
ground with a single opening at ground level. The following table
gives the counts of nests in July, 1980, on an 8× 8 grid, the northern
part of which is open scrub land and the southern is a field (Harkness
and Isham, 1983):

Scrub

1 0 1 1 1 0 0 1
0 1 0 1 0 1 1 1
2 1 1 0 2 0 0 0
1 1 1 0 1 0 1 2

Field
1 1 1 0 1 2 0 1
1 1 1 1 0 1 0 1
1 1 0 2 0 0 1 1
0 1 0 1 0 0 1 0

The ants are unable to build nests in some parts of the scrub because
of the bushes.

This species of ants begin their journeys, to collect seeds for food,
in columns following trails from which individuals branch off. The
trails of different nests never cross. We are interested in any spatial
relationship among the nests. Is there any indication of randomness,
clustering, or repulsion?

2. On a smaller 4 × 8 grid, overlapping with that in the previous exer-
cise, ant nests of the above species, Messor wasmanni, and another,
Catagliphis bicolor, were enumerated (Harkness and Isham, 1983):

Messor Catagliphis

2 1 1 0 3 0 2 0 0 1 2 0 1 1 0 0
0 1 1 2 1 1 2 1 0 0 1 0 1 0 0 0
1 2 0 2 0 1 0 1 0 1 1 1 0 1 1 0
0 2 1 2 1 0 0 1 0 0 0 1 0 0 0 2

(Thus, these two subtables should be superimposed.) The latter leave
their nests singly in all directions, often travelling 15 m or more. They
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collect dead insects, mainly Messor ants. Large numbers of the latter
are killed by a hunting spider, Zodarium frenatum, around the nest
entrances.

Can a model be set up to describe the interactions between these two
species on the same plot (the field)?

3. During World War II, German flying bombs were landing in London,
England. It was important to learn if the bombs possessed a guidance
system or were landing at random. South London was divided into 576
small subdivisions of equal area of about 0.25 km2 and the number
of hits in each recorded (Feller, 1957, p. 150):

Count 0 1 2 3 4 5
Frequency 229 211 93 35 7 1

Check whether or not the hits could be considered to be at random.

4. Cases of oral/pharyngeal cancer were recorded from 1978 to 1981
in Contra Costa County, California, USA, separately for males and
females. The longitude and latitude of each point are given below
(Selvin, 1991, p. 137):

Females Males

121.91 38.15 121.60 38.02
121.90 37.88 121.25 38.20
122.05 37.93 122.01 37.95
122.10 37.95 122.04 37.91
122.00 37.85 122.05 37.88
122.15 37.88 122.08 37.98
122.12 37.80 122.01 37.81
122.25 37.78 122.11 38.15
122.20 37.95 122.32 37.83

122.31 37.84

One possible source of influence might be the oil refining industry that
we can take to be located at (122.3, 38.1). Is there any indication of
difference in clustering between the sexes? Is there a link with distance
to the oil refinery?

5. A uniformity trial studies the yield of one variety of grain over a lattice
of plots. The Plant Breeding Institute in Cambridge, England, carried
out such a trial for spring barley in 1978. The yield (kg) in each plot,
5 ft wide and 14 ft long, is given in the following table (Kempton and
Howes, 1981):
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2.97 2.83 2.67 2.53 2.08 2.14 2.21
3.00 2.72 2.46 2.39 2.06 1.86 2.47
2.85 2.77 2.15 2.18 2.07 2.10 2.67
2.89 2.82 2.64 2.35 2.06 1.99 2.74
3.11 2.80 2.64 2.29 2.07 2.20 2.75
2.99 2.85 2.67 2.50 2.02 2.40 2.82
2.79 2.45 2.71 2.47 2.21 2.32 2.89
2.76 2.25 2.87 2.75 2.52 2.45 2.81
2.81 2.39 2.71 2.74 2.52 2.48 2.91
2.59 2.63 2.55 2.79 2.22 2.54 3.09
2.40 2.52 2.55 2.73 2.44 2.73 3.27
2.20 2.93 2.48 2.54 2.37 2.64 3.29
2.25 2.64 2.28 2.38 2.36 2.75 3.11
2.00 2.88 2.69 2.58 2.47 2.98 3.21
2.29 2.81 2.69 2.62 2.79 3.02 3.20
2.48 2.64 2.52 2.61 2.51 3.06 3.36
2.46 2.78 2.61 2.75 2.58 3.14 3.55
2.40 2.56 2.25 3.07 2.39 2.93 3.40
2.40 2.49 2.44 3.16 2.51 2.95 3.02
2.22 2.44 2.32 2.72 2.43 3.04 3.32
2.23 2.24 2.35 2.64 2.32 3.25 2.98
1.98 2.46 2.64 3.06 2.54 3.20 3.17
2.29 2.43 2.84 3.17 2.71 2.96 3.28
2.09 2.33 2.95 3.08 2.58 2.68 2.76
2.36 2.46 2.85 3.02 2.43 2.77 2.92
2.20 2.34 2.64 2.69 2.72 2.45 2.76
2.69 2.85 2.73 2.67 2.79 2.52 2.89
2.56 2.80 2.47 2.60 2.43 2.36 3.19

There appears to be considerable variability among the plots due
to soil heterogeneity, perhaps caused by differences in water stress,
depth, compaction, nutrients, or previous croppings. Can you con-
struct a model to take into account the dependence among yields on
neighbouring plots?

6. Contact sampling for vegetation in an area involves randomly select-
ing points in a habitat of interest. Then, the species covering the
point and its closest neighbour of a different species are recorded.
(Notice the difference with respect to Table 8.6.) Counts of nearest
neighbours were recorded by this kind of sampling in a field in British
Columbia, Canada, in the spring of 1980 (de Jong and Greig, 1985):
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Neighbour
Point 1 2 3 4 5 6 7 8 9 10

1 Agropyron repens — 4 43 0 8 1 23 24 2 12
2 Agrostis alba 1 — 6 3 3 0 11 7 1 3
3 Dact. glomerata 41 10 — 10 106 12 123 156 13 60
4 Holcus lanatus 0 1 9 — 2 3 10 8 0 2
5 Lolium perenne 10 1 83 2 — 4 22 32 6 7
6 Phleum pratense 0 0 18 0 2 — 9 12 1 2
7 Poa compressa 15 5 59 4 15 3 — 52 4 29
8 Trifolium repens 10 11 55 4 12 3 34 — 3 11
9 Plant. lancelotata 1 0 7 1 2 2 4 2 — 1

10 Tar. officinale 9 0 32 0 4 0 11 12 2 —

Are neighbouring relationships symmetrical within pairs of different
species?

7. As shown below and on the next page, coal ash (%) was measured
on the Roberta Mine Property in Greene County, Pennsylvania, USA
(Cressie, 1986, from Gomez and Hazen). Grid spacings are 2500 ft2.

1 2 3 4 5 6 7 8

24
23
22 11.62 10.91
21 10.39 10.65 10.36 9.58
20 9.79 9.06 10.70 11.21 8.98
19 10.74 12.80 10.03 9.36 8.57
18 11.21 9.89 10.34 8.20 9.82
17 9.97 9.70 9.84 10.29 9.84 10.01
16 11.17 10.14 9.93 10.27 10.21 11.09 10.83 8.82
15 9.92 10.82 11.65 8.96 9.88 8.90 10.18 9.34
14 10.21 10.73 9.46 9.35 9.78 10.38 9.79 8.91
13 12.50 9.63 10.82 10.12 9.40 9.48
12 9.92 11.05 10.11 11.46 10.41 8.45 8.90
11 11.31 9.41 9.37 11.21 9.93 10.70 9.27
10 11.15 9.91 10.17 10.55 11.61 9.16 10.04
9 10.82 11.75 0.78 11.00 9.79 10.19
8 10.01 8.23 11.04 10.28 13.07 10.47 11.58
7 10.39 11.11 10.96 10.83 10.09 8.69
6 10.41 10.82 17.61 10.87 13.06
5 9.76 11.10 10.80 8.86 9.48 9.22
4 10.93 10.94 9.53 10.61 10.27 9.59
3 9.64 9.52 10.06 12.65 9.63
2 9.29 8.75 8.96 8.27 8.14
1 10.59 10.43 9.32
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9 10 11 12 13 14 15 16

23 8.59 9.00 11.86 8.91 9.99
22 8.76 8.89 9.10 7.62 9.65
21 10.66 8.92 7.80 7.84 9.03 8.60
20 9.27 8.19 7.88 7.61 8.20 8.77
19 9.01 9.04 7.28 9.58 9.69 9.96 9.91
18 10.06 8.58 8.89 8.64 7.04 8.81 7.95
17 9.01 7.68 9.25 7.83 9.14 7.63 9.07
16 10.18 9.34 8.61
15 10.56 9.06
14 9.22 11.43
13 10.99 9.92 7.85 8.21
12 8.07 7.96 7.00 7.90
11 9.28 10.13 8.61 8.78
10 11.19 8.10 11.30
9 9.15 8.15 9.20
8 9.46 8.54 10.87
7 11.17 9.39 9.56
6 11.41 9.96 9.15
5 9.61 8.20
4 9.82 7.81

Use a regression model in an attempt to find pattern in these data.

8. The following table shows iron ore (%Fe2O3) on a grid with 50 m by
50 m spacing of 50 m2, where north is to the right (Cressie, 1986):

47.1 45.6
50.5 46.9

50.4 51.4 53.5 56.2 54.3 55.1 57.8 60.8
54.0 55.8 52.1 55.4 51.9 59.6 58.1 54.8
51.3 47.5 53.5 54.3 52.0 53.2 57.8 58.9
47.8 5109 55.7 50.0 56.7 58.4 56.1 59.1
52.6 55.0 52.2 58.9 57.8 55.9 58.7 57.4
50.5 48.0 47.2 56.5 50.3 59.6 58.7 59.1
51.2 45.4 54.1 51.6 58.2 56.1 57.3 57.9

55.9 52.1 56.9 57.6 57.1 58.3 58.5 58.1 54.4
55.1 53.5 53.7 58.7 58.4 59.0 56.9 51.5
53.1 56.7 57.5 58.6 55.7 58.9 56.3 54.2

51.5 55.1 59.1 59.6 59.7 56.6
56.2 53.5 56.1 56.6 52.9 54.3
56.8 47.5 56.7 56.9 52.8 52.5
59.7 57.6 55.0 59.0 57.1 54.3

60.3 56.4 51.3

Use a regression model in an attempt to find pattern in these data.
A north–south trend is suspected.
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9
Normal Models

The classical normal linear models are especially simple mathematically,
as compared to other members of the exponential dispersion family, for a
number of reasons:

• the canonical link function for the normal distribution is the identity;

• the variance function does not depend on the mean;

• all cumulants after the second are zero;

• all dependence relationships in the multivariate normal distribution
are contained in the (second-order) covariance or correlation matrix;

• in a multivariate normal distribution, the conditional distribution of
one variable given the others is just the linear multiple regression
model.

These simple features have made conceptualizing generalizations to other
distributions more difficult and not always very obvious. Think, for exam-
ple, of the choice of a transformed lagged response or of residuals in Chapter
5 for extending autoregression to other distributions than the normal.

Traditionally, in most situations, a normal linear model has simply been
used for convenience. However, there is no longer any reason for this to
be so with the wide availability of generalized linear modelling software.
Instead, all of the assumptions should be checked in any data analysis.
Here, we shall be particularly interested in looking at the distributional
form, the link function, and linearity.
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9.1 Linear Regression

One important application of classical linear regression is to response sur-
faces from designed experiments where some optimal combination of factors
is being sought. Generally, two or three explanatory variables are varied
over a range where the optimum is believed to occur. Then, in the sim-
plest cases, a multiple regression, quadratic in these variables, is fitted to
determine the maximum or minimum response.

Such techniques were originally developed for the control of industrial
processes, such as chemical reactions, but very quickly came to be much
more widely used. More complex models are often required in order to
explore the whole shape of the surface in some region and not just to find the
optimum. However, in most cases, no functional equation is available; thus,
polynomials must still be used, interpreted as a Taylor series approximation
to the function.

Example

In a classical experiment in fisheries biology (Fry and Hart, 1948), the
effects of acclimation and test temperatures on the cruising speed of young
goldfish, Carassius auratus, were studied. Speed measurements were carried
out in a rotating annular chamber with a glass outer wall and metal inner
wall. When the chamber was rotated, the fish reacted by swimming to
maintain place with respect to the room. One rotation required the fish to
swim about 2.5 ft.

A fish was subjected to a constant temperature for sufficiently long for
it to become thermally adapted. It was then introduced into the chamber,
generally at a different temperature, and allowed to settle down at a slow
speed, after which the rotation rate was increased by gradual steps, lasting
two minutes each, until the fish consistently fell behind. This usually lasted
a total of about 20–25 min. Although three fish were used at each temper-
ature combination, unfortunately, only the average is available. From the
layout of the data in Table 9.1, we clearly see the area of temperature com-
binations in which the experimenters believed the maximum speed would
be attained.

The simple quadratic normal regression model with response equation

µi = 21.84 + 0.9744x1i + 4.493x2i

− 0.1842x2
1i − 0.2052x2

2i + 0.2803x1ix2i

where x1i is acclimation and x2i test temperature, or

LINTEST+ LINACCLIM+ SQUTEST+ SQUACCLIM+ LINTEST.LINACCLIM

gives an AIC of 163.9. The optimum is at x1 = 23 and x2 = 27 where the
mean speed is 93 ft/min, considerably lower than several of the observed
values.
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TABLE 9.1. Cruising speed (ft/min) of goldfish depending on acclimation and
test temperatures (◦C). (Fry and Hart, 1948; Lindsey et al. 1970)

Test Acclimation temperature
temperature 5 10 15 20 25 30 35

5 44 44
10 58 57
15 68 71 55
20 68 79 100 79 30
25 41 77 96 58
30 100 98 70
35 68 76
38 84

The corresponding gamma distribution with identity link has an AIC of
160.6, suggesting that the distribution may be skewed or the variance may
not be constant. The log normal distribution has an AIC of 161.1. Both
give responses equations similar to that above. 2

Notice that, for interpretability of the response surface equation, all
terms in the multidimensional polynomial of a given order are required,
although some may be eliminated if found to be unnecessary. Thus, if an
interaction is included, the squared terms are as well.

9.2 Analysis of Variance

Traditional analysis of variance (ANOVA) is just a special case of multiple
regression where indicator variables or orthogonal polynomials are used to
describe the discrete levels of factor variables. Such indicator variables are
created automatically by most generalized linear modelling software. As we
saw in Section 1.3.3, there is generally no unique way of specifying such
indicators. The software often provides a reasonable choice. Obviously, such
factor variables can be mixed with continuous variables, in what was once
known as analysis of covariance.

The term analysis of variance refers, not to the model, but to the method
of determining which effects are statistically significant. Any given normal
model is assumed to have a constant variance. However, for different mod-
els, the value of this constant variance will change, smaller variances corre-
sponding to higher likelihoods. Thus, the variances of various models can
be analyzed in this way, using the likelihood, in order to determine which
is most suitable, hence the name.

Because a response surface experiment is based on factors, analysis of
variance techniques can be used to check the linearity of the model, a kind
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of “semiparametric” model. However, if the model is found to be nonlinear,
factor variables do not yield a smoothed surface, like the quadratic model,
from which an optimum can easily be determined.

Example

If we fit a full factorial model to the goldfish data, the variance will be
estimated to be zero because we do not have available the replications at
the response points. Instead, we can fit the two main effects as factors and
add a linear interaction,

FACTEST+ FACACCLIM+ LINTEST.LINACCLIM

This gives an AIC of 161.8 for the normal model, 171.2 for the gamma,
and 165.6 for the log normal, each with nine more parameters than in
the quadratic regression. Only for the first do we have a hint of such
nonlinearity. 2

When the assumptions of the normal linear model are not fulfilled, one
classical solution (Box and Cox, 1964) has been to transform the response
variable in an attempt simultaneously to obtain normality, constant vari-
ance, and additive effects. This, in fact, generates a new family of distri-
butions based on the normal distribution. By taking the log response, we
have already used one member several times, the log normal distribution.
With generalized linear models, it is possible to supplement this approach
with other changes of distribution to alleviate normality constraints and
constant variance, and with changes of link function that may facilitate
additivity.

Example

A study was made for the International Wool Textile Organization on the
behaviour of worsted yarn under cycles of repeated loading. Box and Cox
(1964) analyze this 3× 3× 3 factorial design to study the number of cycles
to failure of the yarn, as shown in Table 9.2.

These authors find a log transformation of the response, that is, a log
normal distribution, in an additive no-interaction model with logarithms
of the explanatory variables

LOGLENGTH+ LOGAMPLITUDE+ LOGLOAD

Their model has an AIC of 332.6. The comparable model with additive
factor variables, instead of logarithms,

FACLENGTH+ FACAMPLITUDE+ FACLOAD
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TABLE 9.2. Cycles to failure of worsted wool. (Box and Cox, 1964, from Barella
and Sust)

Length Amplitude Load
(mm) (mm) (g) Cycles

250 8 40 674
45 370
50 292

9 40 338
45 266
50 210

10 40 170
45 118
50 90

300 8 40 1414
45 1198
50 634

9 40 1022
45 620
50 438

10 40 442
45 332
50 220

350 8 40 3636
45 3184
50 2000

9 40 1568
45 1070
50 566

10 40 1140
45 884
50 360
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TABLE 9.3. AICs for various models for the wool data of Table 9.2.
Distribution Link No interaction Interaction

Normal Identity 418.3 337.7
Log 352.5 312.8

Log normal Identity 336.7 321.2

Gamma Reciprocal 377.3 307.3
Log 336.5 321.4

Log gamma Reciprocal 344.2 318.4

Inverse Rec. quad. — 358.7
Gaussian Log 332.8 307.1

Log inverse
Gaussian Rec. quad 356.3 316.2

Poisson Log 751.9 356.9
Negative
binomial Log 335.1 321.5

has an AIC of 336.7, making the former preferable. However, the addition of
the three first-order interactions of the factor variables to the latter model

FACLENGTH ∗ FACAMPLITUDE+ FACLENGTH ∗ FACLOAD
+FACAMPLITUDE ∗ FACLOAD

reduces the AIC to 321.2.
The AICs for a series of other models are summarized in Table 9.3.

Both the gamma distribution with canonical link and the inverse Gaussian
with a log link give comparable, and much improved, models. The latter
has the advantage in that it can be slightly simplified by eliminating the
amplitude by load interaction to give an AIC of 305.6. On the other hand,
the Poisson and negative binomial models for counts are comparable with
the log normal, even though overdispersion has been taken into account in
the second of these.

Although Box and Cox argue that a normal model, additive in the logs
of all variables, can have a physical interpretation, we see that it does not
approach the goodness of fit of the nonnormal models. Indeed, even a model
with the log inverse Gaussian distribution and identity link that is additive
in the logs of all variables gives a slightly better fit, with an AIC of 331.1.2

9.3 Nonlinear Regression

9.3.1 Empirical Models

As we have seen in Section 9.1, a multiple regression with continuous ex-
planatory variables fits a smooth response surface to the data. However,
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generally low-order polynomials are used, very much restricting the form
of surface possible. On the other hand, factor variables simply follow the
empirically observed mean values at each point in the response space, per-
forming no smoothing at all. They can be used for checking the adequacy
of a model, but, being “semiparametric”, are of little use for interpreting
the form of the surface. If no theory dictates what the model might be,
one useful approach is to transform the explanatory variables (Box and
Tidwell, 1962). Most commonly, a power transformation is estimated and
some rounded value close to it chosen, as with the Box and Cox transforma-
tion of the response. This can be calculated by the linearization procedure
described in Section 1.5.2 (see Lindsey, 1972, 1995b, pp. 234 and 265–266).

Example

For the goldfish data, with a normal distribution, the power transformed
model has an AIC of 154.2, whereas the gamma with the identity link has
150.4 and the log normal 144.5. With a better response model, the need
for a skewed distribution is confirmed; the log normal is now superior to
the gamma. Thus, of all the models we have fitted, we choose the former.
The response equation is

µi = 3.632− 0.0004799x1.64
1i + 0.02886x1.29

2i − 0.00002636x3.28
1i

− 0.0004457x2.57
2i + 0.0001637x1.64

1i x1.29
2i

where µi here refers to average log speed. For these data, there appear to
be no useful values to which the powers could be rounded so we keep the
estimates as they are. The optimum is at about x1 = 26 and x2 = 27 where
the mean speed is 100 ft/min. A three-dimensional plot of the fitted model
is shown in Figure 9.1. 2

9.3.2 Theoretical Models

As we saw in Section 1.4.3, the link function can be used to linearize certain
nonlinear models. This is especially important when the response model has
a particular nonlinear functional form predicted by some scientific theory.
We have already used this for growth curves in Chapter 4. Another more
general example is inverse polynomials (Nelder, 1966).

Example

An experiment was performed to calibrate a Stormer rotational viscome-
ter. This instrument measures the viscosity of a liquid as the time taken
to complete a number of revolutions of its inner cylinder. The weight con-
trolling the cylinder can also be varied. From theoretical considerations,
the mean time depends on the viscosity (x1) and the weight (x2) in the
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FIGURE 9.1. Nonlinear response surface for the goldfish data in Table 9.1.

following way:

µi =
α1x1i

x2i − α2

The parameter α2 can be interpreted as the weight required to overcome
internal friction in the machine. Notice that the theory does not specify
the distributional form of measurements around this mean. This equation
may be linearized as

1

µi
= β1z1i + β2z2i

where β1 = 1/α1, β2 = α2/α1, z1 = x2/x1, and z2 = −1/x1.
In calibration, liquids of known viscosity are used and times for 100

revolutions recorded under different weights. Those from one study are
given in Table 9.4. When we fit a normal distribution with reciprocal link,
the parameter estimates are β̂1 = 0.0340 and β̂2 = 0.0755, so that α̂1 =
29.40 and α̂2 = 2.218. This model has an AIC of 153.6. Setting β2 = 0 is
equivalent to α2 = 0, for a model with an AIC of 160.4.

The corresponding results for a gamma distribution with canonical link
are β̂1 = 0.0314 and β̂2 = 0.0905, so that α̂1 = 31.85 and α̂2 = 2.880, with
an AIC of 185.2, considerably poorer. Setting α2 = 0 here yields an AIC of
185.0. This probably indicates that variability is almost completely due to
symmetric measurement error about the theoretical equation for the mean.

The fitted response surface for the first model, with a normal distribution,
has been plotted in Figure 9.2. 2
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TABLE 9.4. Measurements (sec) used to calibrate a Stormer viscometer.
(Williams, 1959, p. 66)

Viscosity Weight (g)
(centipoise) 20 50 100

14.7 35.6 17.6
27.5 54.3 24.3
42.0 75.6 31.4
75.7 121.2 47.2 24.6
89.7 150.8 58.3 30.0

146.6 229.0 85.6 41.7
158.3 270.0 101.1 50.3
161.1 92.2 45.1
298.3 187.2 89.0,86.5
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FIGURE 9.2. Nonlinear response surface for the viscometer data in Table 9.4.
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Summary

Besides the basic material on normal linear models covered in any intro-
ductory statistics text, a vast number of more specialized books are avail-
able. To name just two, the reader may like to consider Searle (1971) and
Jørgensen (1993), as well as the books on generalized linear models listed
at the end of Chapter 1.

A number of good books on nonlinear models are available, including
Bates and Watts (1988), Seber and Wild (1989), Ross (1990), and Huet et

al. (1996).

9.4 Exercises

1. Above, we performed a reanalysis of the wool data that Box and Cox
(1964) used to illustrate the use of transformations. In the following
table, we have the other data set that they used:

Treatment
Poison A B C D

I 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71
0.46 0.88 0.63 0.66
0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56
0.29 0.61 0.35 1.02
0.40 0.49 0.31 0.71
0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31
0.23 0.29 0.22 0.33

These are survival times, in ten hour units, of animals in a 3×4 com-
pletely randomized factorial experiment with three types of poison
and four treatments. The authors find a reciprocal transformation of
the response (with a normal distribution). Check to see if this is a
reasonable model.

2. The following table gives weight gains (g) in rats under six diets in a
completely randomized experiment (Snedecor and Cochran, 1967, p.
347):
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Protein

High Low
Beef Cereal Pork Beef Cereal Pork

73 98 94 90 107 49
102 74 79 76 95 82
118 56 96 90 97 73
104 111 98 64 80 86
81 95 102 86 98 81

107 88 102 51 74 97
100 82 108 72 74 106
87 77 91 90 67 70

117 86 120 95 89 61
111 92 105 78 58 82

Develop an appropriate model for this replicated factorial experiment.
Take care to check for interaction effects.

3. Merino wether sheep are an important meat production animal in
Australia. To assess energy maintenance requirements, weight (kg)
and daily energy needs (mcal/sheep/day) were recorded on 64 grazing
sheep (Wallach and Goffinet, 1987):

Weight Energy Weight Energy Weight Energy

22.1 1.31 25.1 1.46 25.1 1.00
26.2 1.27 27.0 1.21 30.0 1.23
33.2 1.25 33.2 1.32 33.2 1.47
34.3 1.14 34.9 1.00 42.6 1.81
49.0 1.78 49.2 2.53 51.8 1.87
52.6 1.70 53.3 2.66 23.9 1.37
27.6 1.39 28.4 1.27 28.9 1.74
31.0 1.47 31.0 1.50 31.8 1.60
32.6 1.75 33.1 1.82 34.1 1.36
44.6 2.25 52.1 2.67 52.4 2.28
52.6 3.73 46.7 2.21 37.1 2.11
28.6 2.13 29.2 1.80 26.2 1.05
34.4 1.85 34.4 1.63 26.4 1.27
25.7 1.20 25.9 1.36 52.7 3.15
30.2 1.01 30.2 1.12 31.8 1.39
33.9 1.03 33.8 1.46 45.9 2.36
43.7 1.73 44.9 1.93 27.5 0.94
51.8 1.92 52.5 1.65 53.1 2.73
25.1 1.39 26.7 1.26 36.1 1.79
29.3 1.54 29.7 1.44 36.8 2.31
32.0 1.67 32.1 1.80
34.2 1.59 44.4 2.33
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How successful are such energy requirements in predicting meat pro-
duction?

4. A three-period crossover trial was performed on 12 subjects to deter-
mine gastric half-emptying time in minutes (Keene, 1995):

Treatment

A B C
Period Response Period Response Period Response

1 84 2 62 3 58
3 87 2 108 1 38
3 85 1 85 2 96
1 82 3 46 2 61
2 83 1 70 3 46
2 110 3 110 1 66
3 215 2 86 1 42
1 50 3 46 2 34
2 92 3 50 1 80
1 70 2 61 3 55
3 97 1 40 2 78
2 95 1 147 3 57

Each line corresponds to the treatment and response of one subject.
This is an analysis of variance type design for duration data. Find an
appropriate model to determine if there are treatment effects.

5. Specimens from 50 species of timber were measured for modulus
of rigidity, modulus of elasticity, and air-dried density (Brown and
Maritz, 1982):
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Rigidity Elasticity Density Rigidity Elasticity Density

1000 99 25.3 1897 240 50.3
1112 173 28.2 1822 248 51.3
1033 188 28.6 2129 261 51.7
1087 133 29.1 2053 245 52.8
1069 146 30.7 1676 186 53.8
925 91 31.4 1621 188 53.9

1306 188 32.5 1990 252 54.9
1306 194 36.8 1764 222 55.1
1323 195 37.1 1909 244 55.2
1379 177 38.3 2086 274 55.3
1332 182 39.0 1916 276 56.9
1254 110 39.6 1889 254 57.3
1587 203 40.1 1870 238 58.3
1145 193 40.3 2036 264 58.6
1438 167 40.3 2570 189 58.7
1281 188 40.6 1474 223 59.5
1595 238 42.3 2116 245 60.8
1129 130 42.4 2054 272 61.3
1492 189 42.5 1994 264 61.5
1605 213 43.0 1746 196 63.2
1647 165 43.0 2604 268 63.3
1539 210 46.7 1767 205 68.1
1706 224 49.0 2649 346 68.9
1728 228 50.2 2159 246 68.9
1703 209 50.3 2078 237.5 70.8

Develop a model to describe how the modulus of rigidity depends on
the other variables.

6. Dumbbell shapes of high-density polyethylene (Rigidex HO60–45P
from BP Chemicals) were made using injection moulding, cut in two,
and hot plate welded back together. The quality of the weld was mea-
sured as the ratio of the yield stress of the welded bar to the mean
yield stress of unwelded bars, called the weld factor. Four variables
were controlled: hot-plate temperature (◦C), heating time (sec), weld-
ing time (sec), and pressure on the weld (bars), with results as follows
(Buxton, 1991):
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Hot-plate Heating Welding Pressure Weld
temperature time time on weld factor

295 40 25 3.0 0.82
295 40 25 2.0 0.87
295 40 15 3.0 0.83
295 40 15 2.0 0.86
295 20 25 3.0 0.82
295 20 25 2.0 0.80
295 20 15 3.0 0.77
295 20 15 2.0 0.58
245 40 25 3.0 0.89
245 40 25 2.0 0.86
245 40 15 3.0 0.84
245 40 15 2.0 0.82
245 20 25 3.0 0.67
245 20 25 2.0 0.77
245 20 15 3.0 0.74
245 20 15 2.0 0.40
320 30 20 2.5 0.83
270 50 20 2.5 0.88
270 10 20 2.5 0.66
270 30 30 2.5 0.84
270 30 10 2.5 0.81
270 30 20 3.5 0.88
270 30 20 1.5 0.81
270 30 20 2.5 0.82
270 30 20 2.5 0.86
270 30 20 2.5 0.80
270 30 20 2.5 0.84
270 30 20 2.5 0.86
270 30 20 2.5 0.83
270 30 20 2.5 0.81
270 30 20 2.5 0.79
270 30 20 2.5 0.80
270 30 20 2.5 0.82
270 30 20 2.5 0.86

The goal of the experiment was to develop a suitable empirical model.
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10
Dynamic Models

10.1 Dynamic Generalized Linear Models

An approach to longitudinal data, similar in some ways both to autoregres-
sion and to random effects, and in fact able to encompasses both, involves
allowing the regression coefficients to be random, evolving over time ac-
cording to a Markov process. This is called a dynamic generalized linear

model and is usually estimated by a procedure called the Kalman filter.
(Unfortunately, the usual software for generalized linear models generally
cannot easily be adapted for this algorithm.) Although originally proposed
as the dynamic linear model for normal data, it can be extended to other
distributions.

10.1.1 Components of the Model

The regression model for the location parameter, now called the observation

or measurement equation, will be written

gi(µit) = λTitxit

where λit is a random vector of coefficients, defining the state of individual
i at time t, with a distribution conditional on the previous responses and on
the explanatory variables, xit. In contrast to the random effects model, here
coefficients can vary (over time) on the same individual, as well as across
individuals. The state is simply the minimum past and present information
necessary to predict a future response, the filtration of Chapter 7.
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The state of the system is, then, taken to evolve over time according to
a state transition equation

E[λit] = Titλi,t−1 (10.1)

where Tit is a first-order Markovian state transition matrix. Note that λit
may contain values before time t as well as present values. The distribu-
tions of Yit and λit are assumed to be independent. Then, the multivariate
probability is given by the recursive relationship

Pr(y1, . . . , yt) = Pr(y1) Pr(y2|y1) · · ·Pr(yt|y1, . . . , yt−1) (10.2)

as in Equation (5.1).

10.1.2 Special Cases

The dynamic generalized linear model for an autoregression of order M has
measurement and state equations that can be written

gi(µit) = [1, 0, . . .]λit

E







λit
λi,t−1

...
λi,t−M+1





 =




ρi1 · · · ρi,M−1 ρiM
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0







λi,t−1

λi,t−2

...
λi,t−M




On the other hand, for a random effects model, the equations are

gi(µit) = µ+ λit

E[λit] = 0

a special case of the model

gi(µi) = λi + xTi β

Simple models, such as these, can be combined in any desired way.

10.1.3 Filtering and Prediction

Filtering means estimating the current state, given responses up to the
present. The Kalman filter is a sequential or recursive procedure, yielding
new distributions at each time point. Using Bayes’ formula (Section A.3.1),
we have

p(λit|Fit) =
Pr(yit|λit,Fi,t−1)p(λit|Fi,t−1)

Pr(yit|Fi,t−1)
(10.3)
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where Fit denotes the history of responses for individual i up to and includ-
ing time t, that is, the vector of responses (yi1, . . . , yit)

T , with all pertinent
relationships among them. In Equation (10.3),

Pr(yit|Fi,t−1) =

∫ ∞

−∞

Pr(yit|λit,Fi,t−1)p(λit|Fi,t−1)dλit

whereas Pr(yit|λit,Fi,t−1) is the usual distribution, if there were no random
coefficients, defined by the observation equation, and p(λit|Fit) is called the
filtering or observation update.

The one-step-ahead prediction or time update,

p(λit|Fi,t−1) =

∫ ∞

−∞

p(λit|λi,t−1)p(λi,t−1|Fi,t−1)dλi,t−1 (10.4)

is defined by the transition equation. Both of these integrals are usu-
ally complicated when the distributions are not normal and the link is
not the identity. We shall be interested in the conditional distribution,
Pr(yit|Fi,t−1), to calculate the likelihood function.

Most often, such dynamic models are used in forecasting. However, here,
they are particularly important as a unifying framework for many of the
models of change over time, as well as a means of calculating the likelihood
function and estimating the parameters in difficult cases (see, for example,
de Jong, 1988). Thus, two advantages of this Kalman filter-type approach,
even in the case of a model based on the normal distribution, are that it
can be extended to handle unequally spaced time intervals and (randomly)
missing observations and that it encompasses many useful models as special
cases.

10.2 Normal Models

Dynamic models based on the normal distribution are generally called dy-
namic linear models. However, here we shall also be concerned with non-
linear regression models.

In general, we shall often wish to model responses that are unequally
spaced in time, either because the study was planned that way or because
some responses are randomly missing. When only heterogeneity across in-
dividuals is present, this creates no problem. However, time series methods
will almost always be necessary and the problem becomes more complex.
The usual autoregression models, such as the AR(1) (Section 5.2), cannot
directly be applied, because the autocorrelation parameter, ρ, measures the
constant stochastic dependence among equally spaced observations. Thus,
it cannot account for the different degrees of stochastic dependence among
successive responses that are not the same distance apart.
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What we require is a continuous time autoregression (Priestley, 1981,
pp. 156-174; Harvey, 1989, pp. 479-501). Such a continuous AR(1) process
is defined by the linear differential equation

E[dYit] = −κiyitdt

the mean of a normal distribution with variance ξdt. This gives an auto-
correlation function

ρi(∆t) = e−κi|∆t| (10.5)

Thus, with some generalization, one possible autocorrelation function for
this model is given by

ρ(u) = e−κu
ν

In the same way as for the discrete time AR(1), a location model, that,
if linear, might be represented by βTi zit, will usually be included in the
model to produce either a serial correlation or state dependence model.

In a general continuous time model such as this, there are a number of
nonlinear parameters so that estimation is usually difficult. Direct max-
imization of the likelihood function is possible (Jennrich and Schluchter,
1986; Jones and Ackerson, 1990). This approach is especially useful when
the numbers of responses on an individual is not too large.

A more interesting approach is to consider the continuous autoregression
as a special case of a dynamic linear model (Jones, 1993) as described above.
Estimation in this way gives the same results as by direct maximization of
the likelihood function and is most suitable when the series of responses on
an individual is fairly long.

10.2.1 Linear Models

The general observation or measurement equation (10.1) for responses fol-
lowing a normal distribution with an identity link can be written

E[Yit] − βTi zit = λTitvit (10.6)

with the state transition equation as in Equation (10.1).
Let us first look at the discrete time, state space representation of a

first-order autoregression with a random effect. The measurement and state
equations are

E[Yit] − βTi zit = λ1it + λ2it

with conditional variance, say ψ2, fixed initial conditions, and

E[λ1it] = ρiλ1i,t−1

E[λ2it] = 0
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with variances ξ and δ.
For a continuous AR(1), the measurement equation remains the same,

whereas the state equation (Jones and Boadi-Boateng, 1991) for λ1it is now
assumed to be a continuous AR(1), so that

E[dλ1it] = −κiλ1itdt

that is, the mean of a normal distribution with variance ξdt. The state
equation for the random effect is now

E[dλ2it] = 0

with variance δdt. In this way, we have expressed our continuous time,
serial correlation model with a random effect for heterogeneity as a dynamic
linear model.

The Kalman filter of Equations (10.3) and (10.4) is applied in order to
obtain the estimates. Because only the mean and variance are required to
define the normal distribution, these equations can be written in a simple
closed form, and the procedure is relatively straightforward. We move for-
ward in time from the first observation, estimating the expected value of
each successive response before going on to the next, building up the to-
tal multivariate probability as a product of conditional probabilities using
Equation (10.2).

For simplicity, let us consider how this works with a discrete time series.
The one-step-ahead prediction or time update for E[Yit]−βTi zit has mean

λ̂it|t−1 = Titλ̂i,t−1

and covariance matrix

Ait|t−1 = TitAi,t−1T
T
it + Ξ̂

where Ξ is a diagonal covariance matrix. In the random effects AR(1) model
above, this would contain the covariance elements ξ and δ. Ai,t−1 is the
prior covariance of the estimation error

Ait = E[(λit − λ̂it)(λit − λ̂it)T ]

The filtering or observation update, using the next response, yit, has pos-
terior mean

λ̂it = λ̂it|t−1 + Ait|t−1vit(yit − λ̂
T

it|t−1vit − βTi zit)/cit

and posterior covariance matrix

Ait = Ait|t−1 −Ait|t−1vitv
T
itAit|t−1/cit

where

cit = vTitAit|t−1vit + ψ2 (10.7)
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As is usual for time series, the initial conditions must be chosen for λi0 and
for Ai0.

To obtain the likelihood function, we can rewrite the observation equa-
tion (10.6) as

E[Yit] − βTi zit = λ̂
T

i,t−1vit + (λit − λ̂i,t−1)
Tvit

from which the conditional distribution of Yit given Fi,t−1 has mean

E[Yit|Fi,t−1] = βTi zit + λ̂
T

i,t−1vit

with variance given by Equation (10.7). Then, the likelihood function for
one individual is

log(Li) = −1

2

R∑

t=1

[
log(2πcit) + (yit − E[Yit|Fi,t−1])

2/cit
]

For a discrete serial correlation AR(1) with the first observation stationary,
E[Yi1|F0] = βTi zi1 and ci1 = ξ/(1 − ρ2), whereas E[Yit|Fi,t−1] = βTi zit +
ρyi,t−1 and cit = ξ for t > 1. These results are readily generalized to
continuous time.

Example

In the context of nonlinear growth curves, Heitjan (1991b) provides a pio-
neering analysis of data on the treatment of multiple sclerosis. In a random-
ized double-blinded clinical trial, patients received either (1) two placebos
(P), (2) real azathioprine (AZ) and a placebo, or (3) real doses of azathio-
prine and methylprednisolone (MP). Blood samples were drawn from the
48 patients one or more times prior to therapy, at initiation, and in weeks
4, 8, and 12 plus every 12 weeks thereafter, and a measure of autoimmunity
(AFCR) made. More details will be given below.

The data are plotted in Figure 10.1. The responses were measured at
highly irregular periods in time. Except for the profiles of two or three
patients with placebo, all three of the plots seem rather similar, although
the placebo group does not approach as closely to the zero level of AFCR
as do the two other groups. The responses are decreasing in time, except,
perhaps, at the very end, and the average profiles appear to be nonlinear.

For the moment, we shall fit a number of linear and quadratic poly-
nomial models, with and without treatment effects, and with a number
of covariance structures, including random effects and/or AR(1). For the
polynomials, time has been centred at the mean of 501.5 days. We follow
Heitjan (1991b) in using a square root transformation on the AFCR re-
sponses. The AICs for these models are summarized in the upper panel of
Table 10.1.

We see that the random effects models fit better than the AR(1) models.
The quadratic location model with treatment differences and interaction
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FIGURE 10.1. Plots of AFCR level against time in days for three treatments.
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TABLE 10.1. AICs for models fitted to the multiple sclerosis data of Figure 10.1.

Indep. RE AR RE + AR
Without dose

Polynomial curve

Null 3516.2 3440.1 – 3175.4
Linear 3380.6 3105.7 3292.7 2998.4
+ Treatment 3335.7 3086.4 3183.3 3000.2
+ Interaction 3215.8 3062.6 3175.4 2996.7
Quadratic 3314.1 2985.8 3261.1 2984.8
+ Treatment 3147.3 2966.3 3118.8 2959.8
+ Interaction 3100.8 2898.0 3088.6 2898.6

Logistic curve

Null 3324.0 2996.6 3265.5 2983.8
Treatment 3120.5 2918.3 3104.7 2913.9

With dose
Linear curve

Null 3474.1 3218.4 3328.0 3176.4
Treatment 3316.9 3157.1 3243.4 3135.6

Logistic curve

Null 3444.8 3067.9 3323.5 3044.7
Treatment 3172.2 2913.1 3151.1 2908.8

fits much better than the others. For this model, the AR(1) is not neces-
sary. This indicates considerable variability among the patients, but little
stochastic dependence among successive responses of a given patient. Of the
polynomial curves, this model, with a AIC of 2898.0 and 11 parameters,
appears to be the best.

For our chosen model, the variance is ξ̂ = 13.37 and the additional vari-
ance component, and covariance, is δ̂ = 6.35, giving a uniform intrapatient
correlation of 0.32. The polynomial models are

E[Y 0.5
i1t ] = 14.53− 0.0038t+ 0.0000039t2

E[Y 0.5
i2t ] = 7.33− 0.0096t+ 0.000015t2

E[Y 0.5
i3t ] = 8.84− 0.0095t+ 0.000014t2

The corresponding estimated profiles are plotted in Figure 10.2. The slight
rise at the end of the time period is plausible in light of the plots in Figure
10.1. The double placebo group is much worse than the other two. This may
be due, in part, to the two or three control patients having high profiles. The
two groups receiving real medicine are fairly close and show no significant
difference. That the azathioprine and placebo group appears to be slightly
better than the no placebo group may be due to one patient who had a
higher profile in the latter group, as seen in Figure 10.1. 2
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FIGURE 10.2. Response profiles of AFCR for the three treatments, using a
quadratic polynomial model, from Figure 10.1.

10.2.2 Nonlinear Curves

Nelder (1961, 1962) has suggested a generalized form of the logistic growth
curve, that Heitjan (1991a, 1991b) has further generalized by adding auto-
correlation and random effects. Suppose that the change in mean response
obeys the following differential equation:

dµt
dt

= κ3µt[s(e
κ2 , κ4) − s(µt, κ4)]

where

s(µ, κ4) = µκ4−1
κ4

, κ4 6= 0

= log(µ), κ4 = 0

with initial condition µ0 = exp(κ1) at t0. The solution is

µt = eκ2
[
1 +

(
e(κ2−κ1)κ4 − 1

)
e−κ3(t−t0)e

κ2κ4
]− 1

κ4 , κ4 6= 0

= eκ2+(κ1−κ2)e
−κ3(t−t0)

, κ4 = 0
(10.8)

Then, κ1 = log(µ0) is the initial condition and κ2 = limt→∞ log(µt), the
asymptote. The parameters κ3 and κ4 control the rate of growth. If κ3 <
0 and κ2 > κ1, or κ3 > 0 and κ2 < κ1, we have negative growth or
decay. The parameter κ4 determines the type of the curve, varying from
the Mitscherlich (κ4 = −1) through the Gomperz (κ4 = 0), and the logistic
(κ4 = 1) to the exponential (κ4 → ∞ and s[eκ2 , κ4] → constant).
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TABLE 10.2. Location parameter estimates for the generalized logistic model
fitted to the multiple sclerosis data of Figure 10.1.

P + P AZ + P AZ + MP

κ1j 5.745 5.750 5.752
κ2j 5.032 3.939 4.268
κ3j 1.462 1.460 1.466
κ4j -1.563 -1.564 -1.561

Example

We can now apply this generalized logistic model to the multiple sclerosis
data of Figure 10.1. We can expect this to be a negative growth curve be-
cause the AFCR level is decreasing over time. We fit models with identical
generalized logistic curves for all three treatments and with completely dif-
ferent curves for each treatment. The covariance structure is kept the same
for all treatments, as for the polynomial curve above. The AICs for the
four possible covariance structures for each location model are given in the
second panel of Table 10.1 above. The treatment differences are significant.
However, now, the autocorrelation cannot be set to zero. The variance is
ξ̂ = 4.33, the additional variance component, and part of the covariance,
is δ̂ = 6.69, and the autocorrelation ρ̂ = 0.82. However, this model, with
four more parameters, has an AIC larger by 15.9 than the quadratic model
without autocorrelation and, thus, is not as acceptable as that model.

These parameters may be compared with those for the quadratic model
with autocorrelation: 13.40, 21.82, and 0.51. The logistic model has higher
autocorrelation, but the intrapatient correlation is about the same: 0.62 as
compared to 0.61 for the quadratic model with autocorrelation and 0.32 for
that without. The logistic and quadratic models without autocorrelation
have almost identical estimates for ξ and δ.

The parameters for the three treatments in our new model are given
in Table 10.2. The estimated parameter values in the curves for the two
treatment groups are more similar than that for the placebo group. The
parameter for the asymptote, κ2j , shows the main difference. The three
location models are

g(E[g−1(Yi1t)]) = e5.03
[
1 +

(
e1.16 − 1

)
e−1.46(t−t0)e

−7.87
]0.64

g(E[g−1(Yi2t)]) = e3.94
[
1 +

(
e2.83 − 1

)
e−1.46(t−t0)e

−6.16
]0.64

g(E[g−1(Yi3t)]) = e4.27
[
1 +

(
e2.32 − 1

)
e−1.47(t−t0)e

−6.87
]0.64

Here, the function g(·), both the link function and the inverse of the trans-
formation of the data, is the square.

The curves are plotted in Figure 10.3. In contrast to the polynomial
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FIGURE 10.3. Response profiles of AFCR for the three treatments, using a gen-
eralized logistic model, from Figure 10.1.

curves in Figure 10.2, these cannot rise at the end of the period, but instead
reach an asymptote. This may be part of the explanation for the poorer fit
of this model. The autocorrelation parameter is attempting to compensate
for this. 2

Often, in growth studies, as elsewhere, time-varying covariates are avail-
able. One way in which to modify Equation (10.8) to incorporate them is
to have them influence the asymptote, κ2 (Heitjan, 1991b). Suppose, for
treatment j, that this parameter is a function of time,

κ2jt = κ1 + log

(
2

1 + eβjzjt

)

Then, if zjt = 0, the asymptote is constant at the initial condition. If
zjt = zj is constant in time, the mean grows or decays from its initial
condition, eκ1 , to

2eκ1

1 + eβjzj

a new equilibrium level. If βj = 0, no growth or decay occurs for that
treatment. If zjt is a step function, the mean follows a piecewise generalized
logistic curve. Then, if zjt returns to zero, the mean goes back to the initial
condition.

Example

For our multiple sclerosis study, the dose of the medication for each patient
was varied in time as a function of the patient’s condition. The changes in
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dose occurred at irregular periods that did not correspond to the times
when the response, AFCR, was measured. The profiles of dose changes are
plotted in Figure 10.4. The doses were all zero up until time zero, at which
point a dose of one unit was given to all patients. This was rapidly increased
to a maximum value of around two, but, subsequently, often drastically
reduced and increased, depending on the condition of the patient. Patients
in the complete placebo group were matched with patients in the other
groups and their doses followed that of the paired patient, so that neither
the patient nor the physician would know who was on placebo.

The dose appears to be following a stochastic process that may be in-
terdependent with that for AFCR, an internal time-dependent covariate in
the terminology of Kalbfleisch and Prentice (1980, pp. 122–127), what is
called an endogenous variable in the econometrics literature. However, here
we follow Heitjan (1991b) in conditioning on the dose at a given time in
modelling AFCR.

Our model has zijt as the strength of dose currently being administered,
when the response is measured. Models with and without differences among
groups were fitted using this model, with the four usual covariance struc-
tures. These give individual curves for each patient, instead of a mean curve
for each group, because the dose profile varies among the patients. The var-
ious curves have the general form of those in Figure 10.3, but with visible
wobble, following the dose of each patient.

The AICs are given in the bottom panel of Table 10.1. The model with
differences in treatment has a consistently larger AIC than the correspond-
ing model (quadratic or logistic) without the dose variable. However, the
present model has fewer parameters than any of the latter models. For ex-
ample, it has an AIC 10.2 larger than the corresponding quadratic model,
with only three fewer parameters, and 10.8 larger than the quadratic with-
out autocorrelation, with two fewer parameters.

Heitjan (1991b) also fits a linear model in dose for comparison. Here, the
response only depends on time through the dose being administered. The
AICs are given in the second last panel of Table 10.1. These are the poorest
fitting models of all, although they have more parameters than many of the
others. 2

In this example, a sophisticated and theoretically appealing growth model
has been found to fit less well than a simple polynomial. The reason ap-
pears to be that the response does not reach an asymptote. This should
stimulate further theoretical developments to derive a more satisfactory
biological model.
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FIGURE 10.4. Plots of dose level against time in days for the three treatments.
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10.3 Count Data

Dynamic generalized linear models are particularly useful when one needs
to predict the evolution of several series of responses. However, they also
provide a general means of estimating parameters for trend and seasonal
effects.

In this section, we shall be specifically interested in models applicable
to counts and categorical data. For the former, the Poisson and negative
binomial processes are often suitable, and, for the latter, the binomial pro-
cess. The conjugate distribution for the Poisson is the gamma, yielding a
negative binomial likelihood, whereas that for the negative binomial is the
beta distribution, giving a hypergeometric distribution. The conjugate for
the binomial is also the beta distribution, yielding a beta-binomial distri-
bution (Section 2.3.2). Here, we shall use an example of count data, so as
to compare those two possible distributions for that type of data.

To estimate the parameters of the model, a Kalman filter procedure
will be applied chronologically to the observations. Let us look, in more
detail, at the steps for the gamma-Poisson process. The model has the
mean parameter λij from a Poisson distribution,

Pr(yij |λij) =
e−λijλ

yij

ij

yij !

taken to have a gamma distribution with density

p(λij) =
υ
−κj

j λ
κj−1
ij e

−
λij

υj

Γ(κj)

over the individuals i in treatment j. Integration over λij yields the marginal
negative binomial distribution of Yij ,

Pr(yij) =
υ
−κj

j

∫
e−λijλ

yij

ij λ
κj−1
ij e

−
λij

υj dλij

Γ(κj)yij !

=
Γ(yij + κj)

yij !Γ(κj)

(
1

1 + υj

)κj
(

υj
1 + υj

)yij

(10.9)

Here, the parameter estimates are updated dynamically. Thus, starting
with some initial values, for one series, we have the prediction equations

κt|t−1 = ζκt−1

1

υt|t−1
=

ζ

υt−1
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and the updating equations

κt = κt|t−1 + yt (10.10)

1

υt
=

1

υt|t−1
+ 1

where ζ is a discount factor between zero and one. Then, the deviance,
derived from Equation (10.9), is given by

−2
∑

t

{log[Γ(yt + κt|t−1)] − log[Γ(κt|t−1)] − κt|t−1 log[υt|t−1]

− (κt|t−1 + yt) log[1/υt|t−1 + 1]}

This must be minimized by some numerical procedure in order to estimate
the regression parameters and, perhaps, the discount.

In the case of repeated measurements, we have several series. The most
complex model involves applying the above procedure separately to each
series, so that all parameters are different. For “parallel” series, υt and the
regression coefficients are the same for all series, whereas κt is allowed to be
different. The latter are updated, in Equation (10.10), using the respective
values of yt for each series. To fit a common model to all series, the mean
response may be used in Equation (10.10). Similar procedures may be used
for the models for other types of data mentioned above.

Example

The reported total numbers of deaths in the United Kingdom from bronchi-
tis, emphysema, and asthma each month from 1974 to 1979, distinguished
by sex, are presented in Table 10.3. Notice the particularly high values in
the winter of 1975–76 that correspond to months 24 to 26.

We are interested in seeing if the number of deaths is changing over the
years, a linear time trend. As well, we shall require a seasonal component,
because the number of deaths varies regularly over the year. We shall use
seasonal harmonics for the 12-month period. Thus, three models will be
fitted: (1) separately to the data for each sex, (2) with the same trend and
seasonal, but a different level for each sex, and (3) with all components the
same for each sex. The resulting AICs for the gamma-Poisson (negative
binomial) and beta-negative binomial (hypergeometric) are displayed in
Table 10.4. We arbitrarily take a fixed discount of 0.7, although this could
also have been estimated.

Although there is no clear saturated model, we take our most complex
model as a baseline, giving it zero deviance, so that it can easily be com-
pared with the others. We immediately see that all of the gamma-Poisson
models are unacceptable as compared to the beta-negative binomial ones.
A trend is not necessary and the seasonal components can be the same for
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TABLE 10.3. Monthly numbers of deaths from bronchitis, emphysema, and
asthma in the United Kingdom, 1974-1979. (Diggle, 1990, p. 238, from Appleton)
(read across rows)

Males

2134 1863 1877 1877 1492 1249 1280 1131 1209 1492
1621 1846 2103 2137 2153 1833 1403 1288 1186 1133
1053 1347 1545 2066 2020 2750 2283 1479 1189 1160
1113 970 999 1208 1467 2059 2240 1634 1722 1801
1246 1162 1087 1013 959 1179 1229 1655 2019 2284
1942 1423 1340 1187 1098 1004 970 1140 1110 1812
2263 1820 1846 1531 1215 1075 1056 975 940 1081
1294 1341

Females

901 689 827 677 522 406 441 393 387 582
578 666 830 752 785 664 467 438 421 412
343 440 531 771 767 1141 896 532 447 420
376 330 357 445 546 764 862 660 663 643
502 392 411 348 387 385 411 638 796 853
737 546 530 446 431 362 387 430 425 679
821 785 727 612 478 429 405 379 393 411
487 574

TABLE 10.4. AICs and numbers of parameters for various models for the monthly
deaths of Table 10.3.

Separate Different Sexes
Effect sexes levels together

Gamma-Poisson
Trend 7522.16 6 7520.18 5 29243.84 3
Seasonal 697.91 26 700.97 14 22426.61 13
Both 695.72 28 701.86 15 22427.55 14

Beta-negative binomial

Trend 296.30 8 293.36 6 487.81 4
Seasonal 56.27 28 36.62 16 475.72 14
Both 60.00 30 38.62 17 477.72 15
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FIGURE 10.5. Monthly deaths from bronchitis, emphysema, and asthma, from
Table 10.3, with the fitted dynamic generalized linear model.

deaths of both sexes. However, the level must be different for the two sexes.
This model has a deviance of only 4.62 greater than the most complex one,
but with 14 fewer parameters. The only further simplification is to reduce
the number of harmonics. It is only possible to eliminate the two highest
ones, with a further increase in deviance of 3.76. The fitted values of the
final model are plotted in Figure 10.5, along with the observed numbers
of deaths. The fitted lines follow the observed deaths fairly closely, with
the exception of three high counts of male deaths and one of females. Male
deaths are consistently higher than female, but with the same seasonal
variation. There is no indication of a change in the number of deaths over
the years. (Lindsey, 1993, pp. 206–209; Lindsey and Lambert, 1995) 2

10.4 Positive Response Data

Dynamic generalized linear models can be applied to duration data, or
at least to longitudinal data having positive response values that might
follow a gamma, inverse Gaussian, or log normal distribution. Thus, the
model is based on the density, not on the intensity function. Here, we shall
use the gamma distribution, whose conjugate is also a form of gamma,
allowing for frailty or heterogeneity among the individuals. The procedure
for estimating the parameters is essentially the same as that described
in Section 10.3, except for the change in distributions, and need not be
repeated here.
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TABLE 10.5. Plasma citrate concentrations (µmol/l) for ten subjects at 14 suc-
cessive times during the day. (Andersen et al., 1981, from Toftegaard Nielsen et

al.)

93 109 114 121 101 109 112 107 97 117
89 132 121 124

116 116 111 135 107 115 114 106 92 98
116 105 135 83
125 166 180 137 142 114 119 121 95 105
152 154 102 110

144 157 161 173 158 138 148 147 133 124
122 133 122 130
105 134 128 119 136 126 125 125 103 91
98 112 133 124

109 121 100 83 87 110 109 100 93 80
98 100 104 97

89 109 107 95 101 96 88 83 85 91
95 109 116 86

116 138 138 128 102 116 122 100 123 107
117 120 119 99

151 165 156 149 136 142 121 128 130 126
154 148 138 127
137 155 145 139 150 141 125 109 118 109
112 102 107 107

Example

A study was conducted to find possible relationships between daily rhythms
of plasma citrate and those of carbohydrate metabolites during feeding
with a citrate-poor diet. Measurements of plasma citrate concentration
(µmol/l) were made for ten subjects over 14 successive hourly observation
points between eight in the morning and nine in the evening. The data are
reproduced in Table 10.5. Meals were at eight in the morning, noon, and
five in the afternoon.

Because interest centres on daily rhythms, a dynamic generalized linear
model with harmonics may be appropriate. With short series, as in this
example, fitting a different dynamic generalized linear model to each se-
ries is not reasonable; there would be too many parameters. Instead we
fit “parallel” and identical series, with 12 harmonics for a half-day and
a trend that might pick up a longer period. The resulting deviances are
given in Table 10.6. The ten series are not identical, but have different
levels, as already could be seen from Table 10.5. For example, subjects one
and seven have consistently lower plasma citrate concentrations than the
others. There is some indication of a trend. The harmonics can be reduced
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TABLE 10.6. AICs for several dynamic generalized linear models for the plasma
citrate data of Table 10.5.

Null Trend Harmonics Both
Identical 1156.92 1155.57 1166.05 1164.96
“Parallel” 1103.68 1099.17 1099.87 1097.96

from 12 to 4 with a reduction in AIC of 7.55. The observations are plotted,
along with the fitted model, in Figure 10.6, arbitrarily separated into two
plots to make them clearer. We see that the plasma citrate concentration
is generally highest at about ten or eleven in the morning and lowest about
four or five in the afternoon. There seems to be no relationship to the meal
times of eight in the morning, noon, and five in the afternoon. 2

10.5 Continuous Time Nonlinear Models

Let us now consider again the gamma-Poisson process of Section 10.3,
with a time-dependent conditional mean, λijexp(βTijxij) and unequally
spaced observation times (ti1, . . . , tiJi

). We shall follow Lambert (1996).
Here, log(λij) is the residual part of the mean at time tij for individual i
that is not modelled by explanatory variables. If the data are autocorre-
lated, the values of two such residuals at time points close together on the
same individual should be closely related. One way to allow for this is to
give, at any time point, a gamma distribution to λij with mean κi,j|j−1

and variance κi,j|j−1/υi,j|j−1.
Once an observation is available, the prior distribution (that is, the pos-

terior distribution at the previous observation time) has to be updated to
account for the observed residual that it has “generated”. In continuous
time, the longer the time since the previous observation, the less weight is
given to the prior in constructing the corresponding posterior distribution.

One way to allow residuals observed at near time points to be more
closely related than those further back in time is to let the prior distribution
p(λij |Fi,j|j−1) at tij have the same mode, but a larger Fisher information
than the posterior distribution p(λi,j−1|Fi,j−1) at time ti,j−1. Thus, we
may take

κi,j|j−1 = κi,j−1

υi,j|j−1 = ρ(∆tij)υi,j−1

where ∆tij = tij − ti,j−1 and ρ(·) is a monotonically decreasing function
with values on [0, 1] such that ρ(0) = 1. Here, we shall use ρ(∆t) = e−φ∆t,
as in Equation (10.5).
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FIGURE 10.6. Hourly plasma citrate concentrations, from Table 10.5, with the
fitted dynamic generalized linear model.
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The distribution of λij has to be updated, using Bayes’ formula, once yij
has been observed. The corresponding posterior will be gamma with

κij = κi,j|j−1 +
yij − κi,j|j−1e

βT
ijxij

υi,j|j−1 + eβ
T
ij

xij

υij = υi,j|j−1 + eβ
T
ijxij

Because no past information on residuals is available at time ti0, initial
conditions have to be specified for starting the above iteration procedure.
This can be done by using a vague prior for log(λi1). One could, for example,
take κi1|0 = 1 and υi1|0 = 0.

Conditional on the first observation for each time series, the likelihood
is a product over individuals of negative-binomial distributions:

∏

i

ni∏

j=2

υ
κi,j|j−1υi,j|j−1

i,j|j−1

yij(υi,j|j−1 + eβ
T
ij

xij )κi,j|j−1υi,j|j−1+yij

eβ
T
ijxijyij

B(κi,j|j−1υi,j|j−1, yij)

Heterogeneity can, at least partially, be accounted for by assuming a pos-
sibly different evolution of the residuals for different individuals.

Additional flexibility can be allowed by introducing two further param-
eters:

1. The Poisson-gamma model can include the simple Poisson distribu-
tion as a special case by taking λ

′

ij , where

p(λ
′

ij |Fi,j|j−1) ∝ p(λij |Fi,j|j−1)
δ

The gamma mixing distribution will reduce to a point if δ tends to
zero and to a vague distribution if δ tends to infinity.

2. For robustness to extreme observations, another parameter, 0 ≤ α ≤
1, can be added, such that the final equations are

κ
′

ij = κ
′

i,j|j−1 + α
yij − κ

′

i,j|j−1e
βT

ijxij

υ
′

i,j|j−1δ + eβ
T
ij

xij

υ
′

ij = υ
′

i,j|j−1 + α
eβ

T
ijxij

δ

Example

Consider the growth of three closed colonies of Paramecium aurelium in
a nutritive medium consisting of a suspension of the bacterium, Bacillus

pyocyaneous, in salt solution, as shown in Table 10.7. At the beginning of
each experiment, 20 Paramecia were placed in a tube containing 5 ml of
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TABLE 10.7. Sizes of three closed colonies of Paramecium aurelium (Diggle, 1990,
p. 239, from Gause).

Day Replicates

0 2 2 2
2 17 15 11
3 29 36 37
4 39 62 67
5 63 84 134
6 185 156 226
7 258 234 306
8 267 348 376
9 392 370 485

10 510 480 530
11 570 520 650
12 650 575 605
13 560 400 580
14 575 545 660
15 650 560 460
16 550 480 650
17 480 510 575
18 520 650 525
19 500 500 550

the medium at a constant 26◦ C. Each day, starting on the second, the
tube was stirred, a sample of 0.5 ml taken, and the number of individuals
counted. The remaining suspension was centrifuged, the medium drawn
off, and the residue washed with bacteria-free salt solution to remove waste
products. After a second centrifuging to remove this solution, fresh medium
was added to make up the original volume.

One striking feature of this data set is the stabilization of the colony sizes
after about ten days. Therefore the systematic part of the model should
tend to an asymptote as time passes. The Nelder–Heitjan generalized logis-
tic growth curve, discussed earlier, may be appropriate. On the other hand,
the model considered by Diggle (1990, pp. 155), a quartic polynomial in
time, does not allow for this.

We shall look at two families of models:

• ignoring the longitudinal aspect of the data set and simply assuming
that the counts have a negative binomial distribution;

• taking the above gamma-Poisson dynamic model.

For each family of models, the two different systematic parts for the mean
are fitted to the data.
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TABLE 10.8. AICs and numbers of parameters for several models for the growth
data of Table 10.7.

Negative binomial Gamma-Poisson
Polynomial 565.7 6 562.2 8
Generalized logistic 566.5 5 562.8 7
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FIGURE 10.7. Plot of growth curves for three closed colonies of Paramecium

aurelium from Table 10.7.

The AICs for the above four models are given in Table 10.8. We see that
the gamma-Poisson model performs better than the independence nega-
tive binomial model. This indicates the need to model the serial associa-
tion within individuals. Although the AIC provides no clear-cut choice for
the systematic part, the gamma-Poisson model with a generalized logistic
growth curve seems preferable for theoretical reasons as can be seen in Fig-
ure 10.7. It models the asymptotic behaviour of the colony development at
the later times more appropriately.

The serial association parameters for the above models are respectively
estimated to be φ̂ = 0.2245, δ̂ = 0.000084, α̂ = 0.05937 and φ̂ = 0.1944,
δ̂ = 0.000077, α̂ = 0.04837 for the two best models. (Lambert, 1996) 2

Summary

Procedures for dynamic generalized linear models are not yet well devel-
oped, other than in the normal case. There, they are very useful for fitting
random effects and autoregression models when the observation times are
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unequally spaced. In the more general case, the intractability of the in-
tegrals means that time-consuming numerical methods must be used or
approximations made. Here, only the first two moments of the conjugate
distribution were employed. However, the power of the procedure makes it
one of the most promising avenues of research both in generalized linear
models and in repeated measurements.

The development of dynamic generalized linear models is a fairly re-
cent activity; see, especially, West et al. (1985), Kitagawa (1987), Fahrmeir
(1989), Harvey (1989), West and Harrison (1989), and Harvey and Fernan-
des (1989). Other specialized books covering aspects of this topic include
Jones (1993), Lindsey (1993), and Fahrmeir and Tutz (1994).
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Appendix A
Inference

Most modern inference techniques have the likelihood function as a ba-
sis. Direct likelihood inference looks only at this, whereas frequentist and
Bayesian inference make additional assumptions (Lindsey, 1996b). We shall
only consider some aspects of the latter two approaches that are specific to
generalized linear models, leaving the reader to consult a general inference
book for more details.

A.1 Direct Likelihood Inference

A.1.1 Likelihood Function

In general, the probability of n observed response values, yT = (y1, . . . , yn),
of a random variable, Y , is given by the joint probability distribution,
Pr(y11 < Y1 ≤ y21, . . . , y1n < Yn ≤ y2n). Notice that the observed value,
yi, of the random variable can only be known to some finite precision, that
is, to lie within a unit of measurement, y1i < yi ≤ y2i, determined by
the resolution of the instrument used. For independent observations, this
probability becomes

Pr(y11 < Y1 ≤ y21, . . . , y1n < Yn ≤ y2n)

=

n∏

i=1

Pr(y1i < Yi ≤ y2i)



200 Appendix A. Inference

=

n∏

i=1

[F (Yi ≤ y2i;ψ) − F (Yi ≤ y1i;ψ)]

where ψ is an unknown parameter vector. If observations are dependent,
but occur serially, in time for example, the product of the appropriate
conditional probabilities can be used, as in Equation (5.1).

In probability theory, the parameter values are assumed fixed and known,
whereas the random variable is unknown so that probabilities of various
possible outcomes can be calculated. However, for inference, because the
random variable has been observed, the vector y is fixed and no longer
variable.

Thus, the likelihood function is defined as the model taken as a function
of the unknown parameter vector, ψ, for the fixed given observed value of
y:

L(ψ;y) = Pr(y11 < Y1 ≤ y21, . . . , y1n < Yn ≤ y2n;ψ)

where yi has unit of measurement, ∆i = y2i − y1i. In direct likelihood
inference, a model that makes the observed data more probable, that is, best
predicts them, is said to be more likely (to have generated those data).

Example

The likelihood function for the binomial distribution is

L(π; y, n) =

(
n

y

)
πy(1 − π)n−y

Because we have a discrete distribution, the unit of measurement is one.2

For independent continuous response variables, the exact likelihood func-
tion is

L(ψ;y) =

n∏

i=1

∫ y2i

y1i

f(ui;ψ)dui (A.1)

This is based on the probability of empirically observing values from a
continuous variable, thus providing the link between a theoretical model
with such continuous variables and the discreteness of empirical data. Most
often, the integral in this function is approximated by

L(ψ;y)
.
=

n∏

i=1

f(yi;ψ)∆i (A.2)

where ∆i is usually not a function of the parameters of interest.
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Examples

1. An approximate likelihood for n observations from a normal distribu-
tion is

L(µ, σ2;y)
.
=

e−
Σ(yi−µ)2

2σ2

(2πσ2)
n
2

∏
∆i

2. For censored survival times, if censoring occurs at the fixed time, tc,
the unit of measurement is (tc,∞) for events occurring after that time.
Thus, Equation (A.2) will not provide a valid approximation and the ex-
act factor in Equation (A.1), for example exp(−tc/µ) for an exponential
distribution, must be used, as we do in Section 6.1.3. 2

Except in very special cases, the likelihood function of Equation (A.1)
will not be of the form of the exponential family (Section 1.2.1), even
when the density is of this form. In particular, sufficient statistics will
only exist, for continuous distributions, if measurements are assumed to
be made with infinite precision, so that Equation (A.2) is applicable. This
approximation depends not only on the ∆i being reasonably small but
also on the sample size being small. For fixed measurement precision, the
quality of the approximate likelihood function in Equation (A.2) degrades
rather rapidly as n increases, because it involves a growing product of small
approximation errors.

A.1.2 Maximum Likelihood Estimate

A (vector of) parameter value(s) in a model function that makes the ob-
served data most probable (given the model function) is called the maxi-

mum likelihood estimate (m.l.e). This need not be unique; several models
may be equally likely for a given data set. Although this can create nu-
merical problems for optimization routines, it is not a problem for drawing
inferential conclusions.

For the classical normal linear model, the (approximate, in the sense
above) likelihood surface is quadratic with respect to location parameters,
meaning that the maximum likelihood estimates are unique. For other mod-
els, even in the generalized linear model family, it is not quadratic; there
may be more than one maximum or a maximum at infinite parameter
values. However, it is unique for the canonical link functions (sufficient
statistics), as well as for probit and complementary log log links for the
binomial distribution. There is no guarantee of uniqueness for the gamma
distribution with an identity link.
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Iterative Weighted Least Squares

Fitting the Model

When we use the method of maximum likelihood to estimate the linear
parameters, βj , by parametrization invariance, we also obtain estimates
for the linear predictors, ηi, and the fitted values, µi.

Let

I = XTV−X

and

c = XTV−z

where

V = diag

[
τ2
i

(
dηi
dµi

)2
φ

wi

]
(A.3)

= diag[vi]

say, with V− its generalized inverse and

zi = ηi + (yi − µi)
dηi
dµi

The v−1
i are called the iterative weights.

Then, we can solve

Iβ̂ = c

iteratively. These are the score equations for weighted least squares with
random variable Z having E[Z] = η, var[Z] = V, that is, with iterative
weights, v−1. When we solve them, we obtain

β̂ = I−c

where β̂ is the maximum likelihood estimate of β. We also have var[β̂]
.
=

(XTV−X)−. Then, the estimates of η and µ are Xβ̂ and g−1(Xβ̂), re-
spectively.

Proof:

For one observation from an exponential dispersion family, recall that

log[L(θi, φ; yi)] =
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

=
wi[yiθi − b(θi)]

φ
+ c(yi, φ)
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µi =
∂b(θi)

∂θi

τ2
i =

∂2b(θi)

∂θ2i

=
dµi
dθi

and that the score function for a linear regression coefficient is

∂ log[L(θi, φ; yi)]

∂βj
=

wi(yi − µi)

φ

dθi
dµi

dµi
dηi

xij

=
wi(yi − µi)

τ2
i φ

dµi
dηi

xij

For independent observations, the (approximate) score equations are based
on

∑
i

[
wi(yi − µi)

τ2
i φ

dµi
dηi

xij

]
=

∑
i

[
yi − µi
vi

dηi
dµi

xij

]

The Hessian is

∂2 log(L)

∂βj∂βk
=

∂2 log(L)

∂η2
i

xijxik

=

{
∂2 log(L)

∂θ2i

(
dθi
dηi

)2

+
∂ log(L)

∂θi

d2θi
dη2
i

}
xijxik

=

{[
−τ2

i

(
dθi
dµi

)2(
dµi
dηi

)2

+ (yi − µi)
d2θi
dη2
i

]
wi
φ

}
xijxik

=

{[
−
(
dµi
dηi

)2
1

τ2
i

+ (yi − µi)
d2θi
dη2
i

]
wi
φ

}
xijxik

Then, its expected value is

E

[
∂2 log(L)

∂βj∂βk

]
= −

(
dµi
dηi

)2
wixijxik
τ2
i φ

= −xijxik
vi

so that the Fisher expected information matrix is

I = XTV−X

given above.
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The Newton–Raphson method, using expected second derivatives, called
Fisher’s scoring technique, has

I(β̂s+1 − β̂s) = c∗

β̂s+1 = β̂s + I−c∗

to pass from iterative step s to s + 1, where c∗ = XTV−(zs − ηs) is a
vector of length p. 2

The conventional constraints (Section 1.3.3), although the most easily
interpretable constraints in balanced cases like contingency tables, are not
computationally simple and may not be helpful for unbalanced designs.
Thus, unfortunately, they are not always provided by computer software
for generalized linear models. Instead, a sweep operation can be used to
evaluate the parameters sequentially and drop any that are aliased with
previous ones (this is equivalent to setting them to zero). If we choose

I− to give such a solution, then var(β̂)
.
= I−, with rows and columns

corresponding to aliased parameters set to zero. This also often could solve
the problem of extrinsic alias, except for numerical approximation. Thus,
with this method, we must watch out for one or more inflated standard
errors of the parameters, indicating extrinsic alias.

A.1.3 Parameter Precision

Normed Likelihood

When only one functional form of statistical model is under consideration,
it is often useful to compare all other models with that form to the most
likely one using a special likelihood ratio, the normed or relative likelihood

function:

R(ψ;y) =
L(ψ;y)

L(ψ̂;y)

This function can be directly used to obtain interval estimates of the pa-
rameter, that is, a set of plausible models. This is done by taking the set of
all values of a (scalar) parameter with normed likelihood greater than some
value, say a. However, the normed likelihood is only easily interpretable if
the dimension of the parameter vector is one or two, in which case it can,
for example, be plotted. We consider how to choose an appropriate value
for a and how to handle vector parameters in the next subsection.

Example

Suppose that 3 heads are observed in 10 tosses of a coin. If we can assume
the tosses to be independent and the probability of heads to be the same
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FIGURE A.1. Normed likelihood functions for two binomial experiments.

each time, then we can choose a binomial distribution as our model, yielding
the normed likelihood,

R(π) =
( π

0.3

)3
(

1 − π

0.7

)7

We can plot this, as in Figure A.1. We see, for example, that any value of
π in the interval [0.10, 0.58] is at least one-fifth (that is, a = 0.2) as likely
as π̂ = 0.3. Note that this interval is not symmetric about the m.l.e.

The same coin tossed 100 times yields, say, 32 heads. Now π̂ = 0.32 and
the normed likelihood is

R(π) =
( π

0.32

)32
(

1 − π

0.68

)68

This is the broken line in Figure A.1. The a = 0.2 likelihood interval is
now [0.23, 0.41]. As might be expected, with more information available,
our interval is narrower (and more symmetric). 2

When the likelihood function has several local maxima, a disjoint likeli-

hood region may be required. This will generally not be the case for gener-
alized linear models.

Deviance

The log likelihood function

l(ψ;y) = log[L(ψ;y)]
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FIGURE A.2. Normed deviance functions for two binomial experiments.

is often convenient because it allows models (that can be decomposed as a
product) to be compared additively instead of multiplicatively.

Often the log normed likelihood is used, but because it is always non-
positive, it can be multiplied by an arbitrary negative number. When this
number is −2, it has come to be called the deviance (at least for one-
parameter exponential family models):

D(ψ) = −2[l(ψ;y) − l(ψ̂;y)] (A.4)

a nonnegative number, that will be used in Section A.2.1. The larger the
deviance, the further the model under consideration is from the most likely
model, in the set under study, given the observed data.

Example

The same coin experiments can be plotted as log normed likelihoods or
deviances, as is seen in Figure A.2. 2

Again, such plots allow the range of plausible values of the parameter,
given the observed data, to be determined.

Profile Likelihood

When the parameter vector of a given model is of high dimension, one often
wishes to be able to study one parameter component in isolation. Let us
call this component i of the parameter vector, ψ, the parameter of interest,
λ, and the other, nuisance, parameters, φ, so that ψ = (λ,φT )T . Then, a
(normed) profile likelihood for the parameter of interest is defined by

Rp(λ;y) = maxψ|λR(ψ;y)
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= R(φ̂λ;y)

where φ̂λ is the m.l.e. of φ for the given fixed value of λ.

Example

For n independent observations generated from a normal distribution, the
(approximate) likelihood is

L(µ, σ2;y) = (2πσ2)−
n
2 e−

Σ(yi−µ)2

2σ2

where ∆i is taken to be unity.
Suppose that the mean, µ, is of interest. For any given value of µ, σ̂2

µ =∑
(yi − µ)2/n so that the normed profile likelihood is

Rp(µ) =

[∑
(yi − µ̂)2∑
(yi − µ)2

]n
2

This just involves a ratio of sums of squared deviations from the mean,
where

∑
(yi − µ̂)2 is the smallest such sum for the observed data and the

given model. Thus, inferences about the mean involve comparing estimates
of the variance for the corresponding models (Section 9.2). 2

A profile likelihood function for one parameter may be plotted in the
same way as a one-dimensional normed likelihood.

Example

Suppose that we have a family of models indexed by two parameters, α
and β, and observe data yielding a likelihood function such as that in
Figure A.3, where three contours of constant likelihood are represented.
The maximum likelihood estimate, (α̂, β̂), lies at the diamond in the centre.
In this figure, the two diagonal dashed lines trace the profile likelihoods for
α and β. Each of these could be plotted as a two-dimensional curve like
those in Figure A.1. 2

Greater care must be taken in using this procedure than for the simpler
normed likelihoods of one-dimensional models because it produces the pro-
file from what may be a complex multidimensional surface. Thus, it can
give a narrower range of likely values of the parameter of interest than is
necessarily appropriate. This is because, at each point, it takes all other
parameters to be fixed at their m.l.e. and does not take into account the
varying width of the likelihood surface in those directions, that is, the vary-
ing amounts of information about these other parameters.

A.1.4 Model Selection

With a wide set of possible models available, as in the family of gener-
alized linear models, model selection is very important. It often involves
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FIGURE A.3. Contours of constant normed likelihood for a two-parameter model,
with submodels for α = 0 and β = 0.

searching for the simplest reasonable model that will adequately describe
the observed data. As we have seen, normed likelihoods and deviances can
provide a measure of the distance of each model from the data, of relative

goodness of fit. However, if enough parameters are included, the model can
be brought to follow all of the irregularities of the observed data exactly
and patterns of interest will not be isolated. Some smoothing is required.

The degrees of freedom provide a corresponding measure of complexity
of a set of models; a model with a smaller number of estimated parameters
generally smoothes the data more. The normed likelihood must be cali-
brated with the degrees of freedom to be interpretable. Thus, similar-sized
normed likelihoods or deviances, for a series of different models, are not
comparable if their degrees of freedom differ.

Two different types of model selection may be distinguished:

1. A complex model containing many parameters may be under consid-
eration. A simpler submodel is to be selected by eliminating some of
the parameters (or, conversely, some parameter may be added to a
simple model).

2. Several distinct model functions, usually with different parameter
sets, may be in competition.

Both situations require some means of calibrating normed likelihoods for
models of different complexity to make them comparable.
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Parameter Elimination

The clearest case of the procedures required for parameter elimination oc-
curs when all parameters are independent of each other.

Example

Imagine that a series of p independent experiments, each yielding n obser-
vations, is generated from some distributions, each with one parameter, ψj .
We wish to see if each parameter could be eliminated, say by setting it to
zero. The likelihood function for all parameters being zero is the product
of the individual functions. Suppose that we require the normed likelihood
for an individual experiment, j, to be at least a for ψj = 0 to be plausible,
that is, to be able to eliminate that one parameter. In this case of indepen-
dent experiments, we would like to obtain the same final result whatever
sequence we use to eliminate the parameters, one or more at a time, in a
series of steps. Then, for all inferences to be compatible in this way, the
combined likelihood for r (≤ p) experiments need only be greater than ar

for it to be plausible that this set of parameters are all zero, that is, to
eliminate these r parameters. 2

Now let us look more closely at how we can interpret a multidimensional
likelihood function. For simplicity, suppose again that we have a family of
models indexed by only two parameters, α and β, and observe data yielding
a likelihood function such as that in Figure A.3. First, we shall consider
all models within the outer contour, say 4%, as being reasonably plausible
given the data. The model with α = β = 0 lies within this region.

Next, let us, instead, check to see if either parameter individually could
be zero. From our previous discussion, we believe that we could use a region
of 20% for compatible inferences, because 0.22 = 0.04. If this is the middle
contour, we discover that models with α = 0, the solid vertical line, and
those with β = 0, the lower dashed horizontal line, each lie just on that
contour. Thus, both sets of models, or at least one member of each of them,
are plausible. We can decide to eliminate either α or β from our model.
If we first eliminate α, the likelihood function for the remaining models of
interest now lies on the solid vertical line through α = 0 in Figure A.3.

By the decision to eliminate a parameter, we are excluding all models in
the old 4% region defined by the outer contour, except those in the new
subspace intersecting that region, the vertical line. In Figure A.3, when
α is eliminated, all models within the outer contour are excluded, even
although they are plausible, except for those on the line segment, α = 0,
contained within the contour. As well, our new most plausible model, with
the constraint, α = 0, will generally be considerably less plausible than
the old most plausible model. The danger with this stepwise approach is
that, at each step, we obtain a region with many plausible models, but
then select only one subset as being of interest. The advantage is that we
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obtain a simpler model. We have been obliged to decide what reduction in
possible plausibility we are prepared to trade for a simpler model.

To continue, after eliminating only α, we now renormalize this likelihood,
with α = 0, to make inferences about β. To do this, we divide all likelihood
values on this vertical line by the constrained maximum, at say β̂α, with
α = 0, indicated by the triangle on that line. By this act of renormalization,
we assume that only this family with α = 0 now contains models of interest.

We would, then, like the new likelihood interval of plausible values to be
that between the two points where the vertical line cuts the outer contour
of 4%, our region for two parameters. With one parameter, we again take
a 20% interval, the end points of which will lie on this contour of the
two-dimensional normed likelihood surface, as required. Notice, however,
that, if α = 0 had lain within the 20% contour, the likelihood at β̂α would
be greater than that on the 20% contour; a 20% interval for β, with α
eliminated, will generally be narrower than the 4% contour. By eliminating
unnecessary parameters, we can increase the precision of the remaining
ones; see Altham (1984).

Suppose, now, instead that β = 0 is the upper horizontal dashed line in
Figure A.3. Then, either α or β can be eliminated individually, but the sec-
ond parameter will not subsequently be removed. Thus, two distinct models
will result, depending on the order of the operations. Indeed, the point for
both parameters being zero lies outside the 4% contour, so that they can-
not simultaneously be removed. When parameters are not orthogonal, as
indicated by the slope of the contours with respect to the axes, stepwise
elimination can yield different results depending on the order followed. Of
course, the likelihood surface will usually have a more complex shape than
that in Figure A.3.

The only way in which successively renormalized likelihoods can provide
compatible inferences is if all are calibrated as ap, where p is the number
of estimated parameters and a is some positive constant (chosen before
beginning the study). If we start with a one-parameter region of 20%, we
have a = 0.2 and the comparable two-parameter region will be 4%, and so
on. The smaller the value chosen for a, the less plausible need be the simpler
model with parameters eliminated. Thus, the smaller a is, the wider will
be the precision interval about each parameter, giving more chance for it
to include zero, so that the simpler will be the model chosen. Then, a can
be called the smoothing factor, because simpler models smooth the data
more.

Nonnested Models

As we see in Chapter 3, for independent observations, the most complex
model that can be fitted to given data will be based on a multinomial distri-
bution. These multinomial probabilities can often be structured in several
different ways by the use of various competing model functions, perhaps of
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different complexity. The simplest case is that just studied, where succes-
sive functions are obtained by adding or removing parameters. However,
there is no reason that models need be nested in this way. Comparison of
completely different functional forms for the multinomial probabilities may
be of interest.

Our calibration of normed likelihood contours by ap, according to the
complexity of the models, does not require the models to be nested. It is
applicable for all model selection procedures on a given set of data. Thus,
for example, the calibrated deviance can be written

Dc = D − 2p log(a) (A.5)

where p is the number of estimated parameters and a the smoothing factor.
Then, before beginning the data analysis (preferably before collecting the
data), a can be chosen to obtain the required level of simplicity of the
model selected. Equation (A.5) is based on what is sometimes called a
penalized likelihood, because a provides a penalty against complex models
(its logarithm is called the penalizing constant in Section 1.6). However,
for it to be possible to compare models from different distributions, each
likelihood or deviance must contain the complete probability distribution
of the data, not just those factors involving the parameters (as is usually
done).

Often, a = 1/e is a reasonable choice; this is called the Akaike (1973) in-
formation criterion (AIC). It has been used throughout this book, although
cases where it may be inappropriate are pointed out. Thus, an example is
given in Section 4.4 where it is not really appropriate because the sample
size is too large; there, a smaller value of a would be more suitable. The
AIC was originally derived by asymptotic arguments that are inapplicable
for direct likelihood inference, and even in contradiction with it. Here, the
smoothing factor, a = 1/e, of the AIC is only appropriate if a reasonably
small sample is available, not an asymptotically large one.

Other possibilities for the choice of a have also been proposed, including
making it a function of the sample size, for example, a = 1/

√
n or a =

1/
√

log(n), the former sometimes called the Bayesian information criterion
(BIC). Although they will asymptotically select the “correct” model among
two (or a finite number of) possible alternatives, this is not pertinent in
the usual model selection conditions, where the set of possible models is
not a limited and none is the “true” one. Here, these choices of a tend to
select rather simple models as n increases, indicating a null model, with
only one parameter, as n becomes very large. A subsidiary problem is the
definition of n, itself. Is it the number of independent individuals observed
or the number of distinct response values observed? In the former case, n
would be unity for a single time series! But, in the latter case, for correlated
responses, n does not convey the amount of information in the data.
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Orthogonal Parameters

If the inclusion of parameter set A in the model produces the same reduc-
tion in deviance whether parameter set B is already in or not, sets A and
B are said to be orthogonal, usually by the design of the experiment. If
the sets are not orthogonal, the order of inclusion can be important for
the conclusions. Parameters are generally only orthogonal, in this sense,
for normal linear models.

A.1.5 Goodness of Fit

We can compare the likelihood of the current model (Lc) with that of
the full or saturated model (Lf ), as described in Section 1.3.1. The scaled

deviance is often defined as

D(c, f) = −2 log

(
Lc
Lf

)

in GLM terminology. However, this can be confusing, because in the general
statistical literature, as in Equation (A.4) above, it is usually simply called
the deviance.

For the exponential dispersion family,

D(c, f) = 2
∑

i
[yi(θ̂i − θ̃i) + b(θ̃i) − b(θ̂i)]/ai(φ)

where the tilde (˜) indicates the current model and the hat (ˆ) the saturated
model. With ai(φ) = φ/wi, the deviance, in GLM terminology, is

DU (c, f) = φD(c, f)

= 2
∑

i

wi[yi(θ̂i − θ̃i) + b(θ̃i) − b(θ̂i)]

that can be calculated from the data. However, it is perhaps clearer to call
this the unscaled deviance.

Example

Deviance Unscaled deviance

Poisson
∑[

yi log
(

yi

µ̂i

)
− yi + µ̂i

]
Same

Binomial
∑[

yi log
(

yi

µ̂i

)
+ (ni − yi) log

(
ni−yi

ni−µ̂i

)]
Same

Normal 1

σ2

∑
(yi − µ̂i)

2
∑

(yi − µ̂i)
2

Gamma 2ν
∑[

log
(

yi

µ̂i

)
+ yi−µ̂i

µ̂i

]
2
∑[

log
(

yi

µ̂i

)
+ yi−µ̂i

µ̂i

]
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For the normal distribution with the identity link, the unscaled deviance
gives the residual sum of squares for the current model. For the Poisson
distribution with the log link, the deviance gives the log likelihood ratio
statistic (G2) for contingency tables. 2

In a linear regression context, the mean parameter, µ, is allowed to vary
with some explanatory variables. This regression model will contain a num-
ber of parameters, less than the number of independent observations, n. For
a probability distribution with known scale parameter, say f(y;µ), or when
there are replicated observations for at least some values of the explanatory
variables, a special kind of a saturated model can be developed. This has a
different µi for every distinct combination of the explanatory variables. One
potential problem with this approach is that the number of parameters in
such a saturated “semiparametric” model is not necessarily fixed but may
increase with the number of observations. In certain cases, comparison to
such a saturated model may be relatively uninformative about goodness of
fit.

Example

For n Bernoulli observations yi, with probabilities πi, the deviance for good-
ness of fit of the model πi = π, a constant, as compared to the saturated
model is given by

D(π) = 2

n∑

i=1

[
yi log

(yi
π

)
+ (1 − yi) log

(
1 − yi
1 − π

)]

= 2n[ȳ• log(π) + (1 − ȳ•) log(1 − π)]

because yi is either zero or one. This contains only ȳ•, the m.l.e. of π, and
not the individual observations, and so is, in fact, of little use for measur-
ing goodness of fit. If information is available on the order in which the
responses were generated, a suitable saturated model might be developed
from that. 2

The situation is not so simple when the probability distribution has more
than one parameter. One will usually be a mean parameter and the regres-
sion model will be constructed in terms of it. In the simplest cases, the
other parameter(s) are held constant for all values of the explanatory vari-
ables. If the mean is allowed to take a different value for each observation
when the values of the explanatory variables are all different, there will be
more parameters than observations and no information will remain in the
data about the other parameter(s) in the probability distribution once the
mean parameters are estimated. Although the model is saturated, it is of
little use, unless there are replications of observations of the response for
at least some values of the explanatory variables.
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A.2 Frequentist Decision-making

The frequentist approach is primarily concerned with the long-run prop-
erties of statistical decision-making procedures — how they perform in
repeated applications. It is based on probabilities obtained by integration
over the sample space, thus depending on all possible outcomes and not
just those actually observed. Thus, conclusions are critically dependent on
the choice of the distribution of the responses in the model (explaining
the attractiveness of nonparametric methods). The procedures are always
implicitly testing this choice, as well as the explicit hypotheses under con-
sideration.

This approach concentrates on testing if hypotheses are true and on
the point estimation of parameters, based on the distributions of statistics
calculable from the data. Parameter precision (confidence intervals) is based
on testing. Asymptotic methods, for large sample sizes, are important and
will be emphasized here.

In contrast to direct likelihood, this approach, and the next, must make
the assumption that some model (function) is true in order to be able to
draw conclusions.

A.2.1 Distribution of the Deviance Statistic

In order to calculate probabilities on the sample space for use in tests
and confidence intervals, we require the distribution of available statistics,
the most important of which is the deviance. Suppose that the parameter
vector, β, has a fixed length p. Then, asymptotically, for a known value of
β (the hypothesis), the (scaled) deviance has a chi-squared distribution:

−2{log[L(β;y)] − log[L(β̂;y)]} ∼ χ2
p if E[β̂] = β

under mild regularity conditions.

Proof:

For the gradient or score function, U, and the Hessian (or negative observed
information), H = ∂U/∂θ, of the log likelihood,

E[U] = 0

E[UUT ] = E[−H]

= I

the expected information matrix. Suppose that there exists a unique max-
imum of the log likelihood function at β̂ that is near the true value of
β.

The second-order Taylor series approximation to the log likelihood func-
tion is

log[L(β;y)]
.
= log[L(β̂;y)] + (β − β̂)TU(β̂)
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+
1

2
(β − β̂)TH(β̂)(β − β̂)

Because, by definition, U(β̂)=0, and replacing H(β̂) by −I,

−2{log[L(β;y)] − log[L(β̂;y)]} .
= (β − β̂)T I(β − β̂)

Now, the first-order Taylor series approximation for the score is

U(β)
.
= U(β̂) + H(β̂)(β − β̂)

where H(β̂) is evaluated at β̂. Because, asymptotically, H equals its ex-
pected value, for large samples,

U(β)
.
= U(β̂) − I(β − β̂)

But, by definition, U(β̂)=0, so

(β̂ − β)
.
= I−1U

With I fixed,

E[β̂ − β]
.
= I−1E[U]

= 0

as might be expected, and

E[(β − β̂)(β − β̂)T ]
.
= I−1E[UUT ]I−1

= I−1

Thus, for large samples,

β̂ − β ∼ N(0, I−1)

and

(β − β̂)T I(β − β̂) ∼ χ2
p

Therefore,

−2{log[L(β;y)] − log[L(β̂;y)]} ∼ χ2
p

2

If I depends on β, one often uses I(β̂) or, even better, −H(β̂), because
it is not an average over the sample space.

Notice that this proof does not generally hold for saturated models be-
cause then β is not a vector of fixed length, but grows with sample size.
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However, consider a log linear model for a contingency table of fixed size.
To compare the current to the saturated model, we have

D(c, f) = −2 log[Lc(β̂;y)/Lf (β̂;y)]

= −2{[logLf (β;y) − log Lf (β̂;y)]

− [log Lc(β;y) − log Lc(β̂;y)]

− [log Lf (β;y) − log Lc(β;y)]}

Under certain regularity conditions, the first term has a χ2
n distribution

(where n is here the number of cells in the table), the second, χ2
p, and the

third is a positive constant, near zero if the current model describes the
data well. Thus

D(c, f) ∼ χ2
n−p

if the current model is good.
More generally, under mild regularity conditions, suppose that model 2

is nested in model 1, that is, that the parameter space under model 2 is
a subspace of that of model 1 (and that the latter has a fixed number of
parameters). If model 2 is correct, D(2, 1) = −2 log(L2/L1) is distributed
as χ2 with p1 − p2 d.f., where pi is the (fixed) number of independent
parameters estimated under model i.

The distribution is exact for the normal distribution with the identity
link and known variance, but approximate otherwise. However, generally,
the deviance, D(2, 1), is a function of φ. In the exponential dispersion fam-
ily, φ is usually unknown. But the ratio of mean deviances, D(i, j)/(pi−pj),
does not involve the scale parameter, so that it has approximately an F
distribution. (Again, this is exact for the normal distribution with the iden-
tity link and variance now unknown.) The approximation, for nonnormal
models, will generally be better for the difference between two deviances,
expressing the effect of adding or removing a term, than for the deviance
with respect to the saturated model. The latter would give the goodness of
fit of the current model under the conditions explained above. Specifically,
for binary data, as we have seen (Section A.1.5), this absolute deviance is
uninformative because it only depends on the sufficient statistics.

A.2.2 Analysis of Deviance

Suppose that model 2 has parameters β1, . . . , βt, βt+1, . . . , βp, all linearly
independent, whereas model 3 has only β1, . . . , βt, with the models other-
wise identical. Then, under model 3, D(3, 2) ∼ χ2

p−t. We can test βt+1 =
βt+2 = · · · = βp = 0 by comparing D(3, 2) to a χ2

p−t (or a ratio of them to
F ). Note also that E[χ2

p−t] = p− t, so that large deviances, say more than
twice the degrees of freedom, are suspect.
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Suppose now model 1 to be saturated while model 2 has p independent
parameters. As we have seen, D(2, 1) can represent a test for lack of fit. If
model 3, nested in model 2, has t (< p) independent parameters,

D(3, 1) − D(2, 1) = −2 log(L3/L1) + 2 log(L2/L1)

= −2 log(L3/L2)

= D(3, 2)

is distributed as χ2
p−t when model 3 correct. Thus, for a sequence of k nested

models, each with pi independent parameters, form D(i, 1) (i = 1, . . . , k).
We, then, can create a table of differences of deviance analogous to sums
of squares of an ANOVA table.

An alternative method for the elimination of individual parameters, in-
cluding levels of factor variable, is to use the fact that β̂/s.e.(β̂) has an
(approximate) Student t distribution with n − t d.f. However, this should
be used with great care for nonnormal models, where it can be very mis-
leading. It is a useful quick rule of thumb that should be checked by looking
at the corresponding change in deviance.

A.2.3 Estimation of the Scale Parameter

Much can be learned about generalized linear models without estimation
of the scale parameter. However, it is often useful to have an estimate of
this as well.

We know that D(c, f) ∼ χ2
n−p for a model with p independent param-

eters, whereas DU (c, f) can be calculated from the data. Then, under a
reasonable model, we shall have E[D(c, f)] = n− p and

φ̂
.
=

DU (c, f)

E[D(c, f)]

=
DU (c, f)

n− p

This is not the maximum likelihood estimate (that divides by n), but a
moment estimate and also the conditional maximum likelihood estimate.

A.3 Bayesian Decision-making

Often, when studying statistical models, prior beliefs about the unknown
parameters are available. If these can be quantified as a prior probability

distribution, they can be combined with the new information from the
data just observed, contained in the likelihood function, to provide a new
posterior distribution. This is known as the Bayesian approach.
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In contrast to the frequentist approach that integrates over the sam-
ple space, this approach requires integration over the space of all possible
models. These must all be specified before beginning the study, and a prior
probability given to each. Any model with zero prior probability must have
a zero posterior probability, so that this method excludes unexpected dis-
coveries. Through the likelihood principle, it can provide conclusions only
from the observed data, but only conditional on one of the models being
true. The set of models (for example, defined by a model function) being
used cannot. itself, be placed in question. This contrasts with the frequen-
tist approach that cannot draw any conclusions without simultaneously
questioning the validity of the whole set (that is, of the model function
itself).

A.3.1 Bayes’ Formula

Suppose that we have an accepted (true) model function containing the pa-
rameter, θ. Now suppose that this parameter is itself taken to be a random
variable. We can imagine at least two ways in which this might occur. A
population may be heterogeneous, so that some parameter, such as a mean,
varies, in an unknown way not of direct interest, among subgroups (Sec-
tion 2.3.2). Or, as here, we have some relative weights representing beliefs
about the possible true value of θ before making observations, that could
be described by a probability distribution. Now consider Bayes’ formula

p(θ|y) =
f(y|θ)p(θ)

f(y)
(A.6)

Here, p(θ) is the prior distribution for θ and p(θ|y) its posterior distribu-
tion, whereas f(y|θ) is just the likelihood function. Note that distributions
of observable quantities will be denoted, as usual, by f(·), and those for
parameters by p(·).

Thus, posterior probability statements can simply be made about the
parameter lying in any region of the parameter space. Because they involve
integration, however, they may often be computationally complex.

A.3.2 Conjugate Distributions

One class of prior distributions is of particular interest in the context of
generalized linear models. It would seem to be a desirable property that
p(θ|y) and p(θ) have the same functional form. Then, p(·) is called the
conjugate prior for f(y;θ). It is said to be closed under sampling, because
the distribution has the same form before and after observing the sample
data. This implies that the marginal distribution of Y , in the denominator
of Equation (A.6), called a compound distribution,

f(y) =

∫

Θ

f(y|θ)p(θ)dθ
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must have an analytically tractable form. In the two families that interest
us most, conjugate distributions exist and can even be written down in
general for each family.

Exponential Family

Recall, for an exponential family in canonical form, that

log[f(y|θ)] = θy − b(θ) + c(y)

In order for the prior and posterior to have the same form within this
family, it is easy to demonstrate that the conjugate prior must have the
general form

log[p(θ; ζ, γ)] = θζ − γb(θ) + s(ζ, γ) (A.7)

where ζ and γ are new parameters, with γ > 0 and s(ζ, γ) is not a function
of θ. This is still an exponential family, but with two parameters and with
canonical statistics, θ and b(θ). Thus, when we multiply the prior distri-
bution and the likelihood function for n observations together in Bayes’
formula, ζ and γ in the prior become ζ + y• and γ + n in the posterior
distribution. It is as if we had γ more observations than the n actually
observed. Then, the marginal compound distribution is given by

log[f(y; ζ, γ)] = s(ζ, γ) + c(y) − s(ζ + y•, γ + n)

Although the prior and posterior for θ are members of the exponential
family, the compound distribution for Y generally will not be.

Example

The Poisson distribution, with θ = log(µ),

f(y|µ) = exp[y log(µ) − µ− log(y!)]

is a member of both the linear exponential and exponential dispersion fam-
ilies. The conjugate prior distribution for µ is

p(µ; ζ, γ) = exp[ζ log(µ) − µγ + s(ζ, γ)]

that is a gamma distribution with

s(ζ, γ) = (ζ + 1) log(γ) − log[Γ(ζ + 1)]

The resulting marginal compound distribution is

f(y; ζ, γ) = exp[s(ζ, γ) − log(y!) − s(ζ + y, γ + 1)]

=
Γ(ζ + y + 1)γζ+1

Γ(ζ + 1)y!(γ + 1)ζ+y+1
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that is a negative binomial distribution. The latter is commonly used when
the fixed relationship between the mean and variance of the Poisson distri-
bution does not hold, so that there is overdispersion of the random variable
(see Section 2.3).

For n observations, the posterior distribution will be

p(µ|y; ζ, γ) = exp{(ζ + y•) log(µ) − µ(γ + n)

+(ζ + y• + 1) log(γ + n) − log[Γ(ζ + y• + 1)]}

again a gamma distribution. 2

Exponential Dispersion Family

Consider now the exponential dispersion family,

log[f(y|θ;φ)] =
yθ − b(θ)

φ
+ c(φ, y)

Here, a conjugate prior, for θ alone, can still be written in the general form
of Equation (A.7). Then, the marginal distribution is given by

log[f(y; ζ, γ)] = s(ζ, γ) + c(φ,y) − s

(
ζ +

y•
φ
, γ +

n

φ

)

that will generally not be an exponential dispersion model.

Example

Because the normal distribution, with θ = µ, is given by

f(y|µ;σ2) = exp

[
yµ− µ2

2

σ2
− y2

2σ2
− 1

2
log(2πσ2)

]

the conjugate prior distribution for µ is

p(µ; ζ, γ) = exp

[
ζµ− γµ2

2
+ s(ζ, γ)

]

that is, itself, a normal distribution with mean ζ/γ, variance 1/γ, and

s(ζ, γ) = − ζ2

2γ
− log(2π/γ)

2

The resulting marginal compound distribution is also normal,

f(y; ζ, γ, σ2) = exp

{
s[ζ, γ] − y2

2σ2
− 1

2
log(2πσ2)
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−s
[
ζ +

y

σ2
, γ +

1

σ2

]}

= exp

{
ζy

γσ2 + 1
− ζ2

2γ(γσ2 + 1)

− γy2

2(γσ2 + 1)
− log[2π(γσ2 + 1)/γ]

2

}

with mean ζ/γ and variance σ2 + 1/γ. For n observations, this becomes
a multivariate normal distribution with mean and variance as given, and
constant covariance 1/γ. Models based on it are called random effects or
variance components models.

For n observations, the posterior distribution will be

p(µ|y; ζ, γ, σ2) = exp
{(
ζ +

y•
σ2

)
µ

− (γ + n/σ2)µ2

2
− (ζ + y•/σ

2)2

2(γ + n/σ2)
− log[2π/(γ + n/σ2)]

2

}

a normal distribution, as expected. 2

In the absence of prior knowledge, a flat prior, often called improper
because it does not have a finite integral, is frequently used. For this non-
informative situation, such a prior can usually be obtained from the con-
jugate by choosing (limiting) special values of the parameters, (ζ, γ). For
the exponential family, Jeffreys’ prior is a special case of the corresponding
conjugate distribution, usually with γ → 0.

Example

For the Poisson distribution, the conjugate gamma distribution for prior
ignorance can be taken with ζ = 1

2 and γ = 0, yielding Jeffreys’ prior. 2

Because γ = 0, the sample size, n, is not being increased when such an
noninformative prior is used.

Summary

Considerable debate exists among statisticians as to the ways in which
inferences or decision-making should be carried out, with an especially
sharp opposition between Bayesians and frequentists. However, the like-
lihood function is a common factor underlying all of these approaches.
Thus, in this book, we only present results in terms of likelihoods, or, more
exactly, deviances, with the corresponding value of the AIC to allow for dif-
fering numbers of parameters. From this information, any reader can make
the necessary adjustments for his or her preferred method of inference.

Introductory books on likelihood inference and modelling include Ed-
wards (1972), Kalbfleisch (1985a, 1985b), King (1989), and Lindsey (1995a).
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A more advanced text is Lindsey (1996b). For likelihood-based frequentist
inference, see Cox and Hinkley (1974), and Bayesian inference, Box and
Tiao (1973), Berger and Wolpert (1988), and Gelman et al. (1995).
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Appendix B
Diagnostics

B.1 Model Checking

Comparisons of models based on likelihoods usually only provide global
indications of lack of fit of a model of interest. If the latter is found to be
wanting, a saturated model would not usually be an acceptable alternative.
Instead, unexpected ways in which the data depart from the model must be
studied in order to discover means of improving the old model of interest.
Thus, for example, if the old model assumes independence among observa-
tions, the new model might require some specific form of dependence.

If one is aware of the type of departure, embedding a model in more com-
plex ones will be the most useful procedure to follow. The methods outlined
in this appendix are more exploratory. Basically, we shall decompose global
measures of goodness of fit, such as the deviance, into the individual terms
arising from each observation. This may allow us to discover which aspects
of the models of interest are unsatisfactory, leading to the development
of more complex or functionally different ones. The study of residuals is
generally only useful if the sample size is relatively small, say at most 100
observations or so, and the model under consideration is far from being
saturated.

Departures from Models

Two types of departures from a model may be distinguished:

1. the observations on one, or a small number of units, may not be well
represented by the model, or
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2. the whole data set may show systematic departure from the model.

The study of such departures is known as diagnostics. In realistic cases,
departures from a model will often be difficult to interpret. As well, if
several explanatory variables are present in a model, it will not even be
easy to represent the complete model graphically.

B.2 Residuals

The study of departures from a model has classically primarily been con-
cerned with the expected values of the responses under some model and
with their differences from the observed responses, called residuals. This
reflects the fact that this approach was originally developed for normal lin-
ear regression models. However, the concept of residual has subsequently
acquired several more general definitions that are of much wider applica-
tion. Thus, the role of residuals is central in diagnostics. As we shall see,
for the normal distribution, most of the more recently derived definitions of
residuals collapse to the same quantities, aside from standardizing factors.

Plots of residuals can sometimes be useful in detecting departures from
the model for many types of response variables. However, when the response
can only take a few values, as in Bernoulli trials, they may be of limited
usefulness.

B.2.1 Hat Matrix

The estimated expected value of the response in a regression model is

Ê[Yi] = µ̂i

= ŷi

This is usually, although somewhat misleadingly, called the fitted value. It
could mistakenly be taken to imply that all values “should” be at their
expected value, with no random variation. That would never be the case
in a nondeterministic, probability-based, statistical model. Indeed, it may
not even be near the most common observed values if the distribution is
very skewed.

For models with a linear structure, we can show that

ŷ = Hy

so that H is called the hat matrix, because it puts the hat on y. This matrix
is idempotent and symmetric; its trace is equal to p, the dimension of the
parameter vector, and its elements cannot exceed one.

The reciprocals of the diagonal elements, hii, called the effective replica-

tion, can be roughly interpreted as the number of observations providing
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information about ŷi. If this value is close to unity, the observation is iso-
lated or self-estimating. Because of the continuity (the smoothing) of an
unsaturated model, neighbouring points provide additional information in
predicting a given response.

Examples

1. For normal linear regression,

ŷ = Xβ̂

= X(XTX)−1XTy (B.1)

so that

H = X(XTX)−1XT (B.2)

The variance of ŷi is hiiσ
2.

2. For a generalized linear model, X in the above hat matrix is replaced
by V

1
2 X, where the weights, from Equation (A.3), are

V = diag[Jηiηi
(η)] (B.3)

The hat matrix,

H = V
1
2 X(XTVX)−1XTV

1
2 (B.4)

now generally depends on the parameter values through V. 2

B.2.2 Kinds of Residuals

Deviance Residuals

For independent observations, the deviance is a sum of terms. Then, the
standardized deviance residuals (Pregibon, 1981) decompose the goodness
of fit of a model, measured by the likelihoods comparing the model of
interest embedded in a saturated model, as in Section A.1.5. These terms
may indicate which individual observations contribute most to the lack of
fit. They are defined as the square root of the (corrected) contribution of
the ith observation to the deviance:

εDi =
sign(η̃i − η̂i)

√
2l(η̃i; yi) − 2l(η̂i; yi)√
1 − hii

where hii is the ith diagonal element of the hat matrix and η̃i is the value
of the linear structure, η, that maximizes the unconstrained likelihood for
the data, the saturated model. For exponential dispersion models with un-
known dispersion parameter, and the generalized linear models based on
them, the deviance can be calculated for fixed dispersion parameter and
then an estimate of that parameter supplied.
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Examples

1. For the normal distribution, the deviance residuals are

εDi =
yi − µ̂i√
σ̂2(1 − hii)

(B.5)

for fixed σ2.
2. For the logistic regression, the deviance residuals are

εDi =

±
√

2yi log
(

yi

niπ̂i

)
+ 2(ni − yi) log

(
ni−yi

ni−niπ̂i

)

√
1 − hii

where the sign is chosen to be the same as that of yi − niπ̂i. 2

Fitted Value Residuals

The raw fitted value residual for each response is simply its difference from
its fitted value:

εRi = yi − ŷi (B.6)

These are the classical, well-known residuals.
In normal linear regression models, for which such an approach is most

useful, the variance of the response variable is assumed constant for all
values of the explanatory variable. However, the variance of the raw resid-
uals is not constant, as an explanatory variable changes, but is larger for
responses near the mean of that variable. Thus, it is useful to standardize
the raw fitted value residuals by dividing them by their standard error to
obtain a standardized studentized (fitted value) residual :

εFi =
yi − µ̂i√

(1 − hii) ̂var[Yi]

This is also sometimes called the standardized Pearson residual because
(yi − ŷi)

2/ ̂var[Yi] is the contribution of the ith observation to the Pearson
(score) statistic.

Examples

1. For the normal regression model, from Equations (B.1), (B.2), and
(B.6), the variance of the raw residuals is given by

var[εR] = σ2(In −H)

where In is the identity matrix. Thus, the studentized residuals are

εFi =
yi − µ̂i√
σ̂2(1 − hii)
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They are the (standardized) proportional contributions of the raw residuals
to the standard deviation and are identical to the deviance residuals for this
model, given in Equation (B.5).

2. For a logistic regression model, the studentized residuals are

εFi =
yi − niπ̂i√

niπ̂i(1 − π̂i)(1 − hii)

2

Except for the normal distribution, these residuals will generally have a
skewed distribution.

Score Residuals

Maximum likelihood estimates for a model are obtained by solving the score
equations. For independent responses, these involve a sum of terms, one
for each observation, set equal to zero. Thus, we can inspect the individual
terms of the sum, called score residuals, to see which are furthest from
zero. As above, these will be standardized by correcting for their standard
deviation:

εSi =
Ui√

(1 − hii)vi

where Ui is the term for the ith individual in the score and vi is the ith
diagonal element of the weight matrix in Equation (B.3).

In a generalized linear model, if the score for the linear structure, η,
is used, the score residuals are identical to the studentized fitted value
residuals given above.

Likelihood Residuals

Another possibility is to compare the deviance for a fitted model for the
complete set of observations with that when each observation, in turn, is
omitted. This requires substantial calculation, but may be approximated
by the likelihood residuals,

εLi = sign(η̃i − η̂i)
√
hii(εSi )2 + (1 − hii)(εDi )2 (B.7)

a weighted average of deviance and score residuals (Williams, 1987).
In certain circumstances, those discussed in Section A.1.5, the sum of

squares of these various residuals provides a global measure of lack of fit.

B.2.3 Residual Plots

Any of these residuals can be plotted against a variety of statistics and
other indices, each providing different information about departures from
the model.
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In an index plot, the residuals are shown against the corresponding obser-
vation number. Ordering in this way may make identification of departures
from the model easier. If the order has intrinsic meaning, for example, as
the order of collection of the data in time, the plot may indicate systematic
variability in this sense. In this case, it may also be helpful to plot the
residuals against their lagged values at one or more previous time points.

Residuals can be plotted against the estimated means or estimated linear
structure. They may also be plotted against each of the available explana-
tory variables, including those not in the model under consideration.

Finally, a normal probability or Q–Q (quantile) plot shows the standard-
ized residuals, arranged in ascending order, against an approximation to
their expected values, that is given by a standard normal distribution,
Φ−1[(i− 3/8)/(n+ 1/4)]. If the model fits well, this should yield a straight
line at 45◦. If the distribution of residuals is too skewed, the line will not
pass through the origin, and if it is too long-tailed, the line will be curved.
Remember, however, that residuals for nonnormal models are generally
skewed.

All of these graphics can be inspected, both to look for patterns in the
residuals and to detect certain extreme values.

B.3 Isolated Departures

When only a very few observations do not fit the model, several possibilities
may be considered.

• there may be some error in choosing certain members of the popula-
tion sampled or it may not be homogeneous for the factors considered;

• there may be some error in recording the results, either on the part
of people doing the recording or transcribing it or on the part of the
individuals concerned, for example, when respondents do not under-
stand a question;

• some rare, but possible, occurrence may have been observed;

• the model may not be sufficiently well specified to account for com-
pletely acceptable observations, thus, pointing to unforeseen aspects
of the phenomenon under study.

If there is no error, one will eventually have to decide if the departure is
important enough to modify the model to take it into account.
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B.3.1 Outliers

Any individual observation that departs in some way from the main body
of the data is called an outlier. This implies that extreme observations can
only be determined in relation to some model.

Example

The data set {240, 194, 215, 194, 450, 240, 215, 215} appears to contain the
outlier, 450. However, these are weekly salaries of a random sample of
employees, where the large figure is for a manager and the others for junior
staff, a proportion reflecting the pay structure of the company where the
sample was taken (McPherson, 1989). 2

Outliers may be due to extreme values of the response variable or of
one or more of the explanatory variables. The possibility that the ith ob-
servation is an outlier can be studied by fitting the model without that
observation. This yields a reduction in deviance for the possibility that it
is an outlier. If one wishes to check all observations in this way, the approx-
imation using the likelihood residuals of Equation (B.7) can considerably
reduce the number of calculations required.

In complex situations, it is rarely wise simply to eliminate an outlier,
unless it is known to be an error. In such case, it should, if possible, be
corrected! Eliminating one outlier and refitting the model will quite often
result in a second outlier appearing, and so on. It is usually preferable either
to find out why the model cannot easily accommodate the observation or
to accept it as a rare value.

Note, however, that the definition of an observation may not always be
clear in this context. If Bernoulli trials are aggregated as frequencies in a
contingency table, should one trial or one frequency be omitted?

B.3.2 Influence and Leverage

An influential observation is one that, if changed by a small amount or
omitted, will modify substantially the parameter estimates of the model.
It is an observation that may have undue impact on conclusions from the
model. However, it may not be an outlier, in the sense that it may not be
too far from the main body of data. It may have a small residual.

Leverage is one indication of how much influence an observation has. The
general definition of the leverage of the jth observation on the ith fitted
value is the magnitude of the derivative of the ith fitted value with respect
to the jth response value. In a generalized linear model, this is given by the
hat matrix, H. Thus, a measure of the leverage effect of the observation,
i, in the determination of µ̂i is the diagonal element of the hat matrix, hii,
with 0 ≤ hii ≤ 1. Note, however, from Equations (B.3) and (B.4), that this
depends both on the explanatory variables and on the parameter estimates.
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It is a measure of the distance of that observation from the remaining ones,
in the space of these variables. The trace of H is equal to p, the dimension
of the vector of regression parameters, β, so that the average leverage is
p/n. Values much larger than, say twice, this should be examined.

Cook’s distance (Cook, 1977) is used to examine how each observation
affects the complete set of parameter estimates. The estimates, with and
without each observation, can be compared using

Ci =
1

p
(β̂ − β̂(i))

TXTVX(β̂ − β̂(i))

where β̂(i) is the parameter estimate without the ith observation. This

statistic measures the squared distance between β̂ and β̂(i). Again, to avoid
refitting the model n times, one with each observation removed, this dis-
tance can be approximated by

Ci
.
=

hii(ε
F
i )2

p(1 − hii)

It is a combination of leverage and residuals and is most usefully presented
as a plot against index values.

B.4 Systematic Departures

Systematic departures from a model can sometimes be detected from the
residual plots already described. Certain patterns may appear when the
residuals are plotted against some other statistic or against explanatory
variables.

In a very general regression model, we would have

g(µi) = η(xi,β)

where µi is the mean of the random variable following some probability
distribution. Misspecification of such a model may come about in a number
of ways:

• an incorrect choice of probability distribution,

• an incorrect specification of the way in which the mean changes with
the explanatory variables,

– the systematic component, η(·), may be misspecified,

– the link function, g(·), may not be appropriate,

• missing explanatory variables,
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• incorrect functions of the explanatory variables in the model, includ-
ing missing interactions among them, or not enough such different
functions,

• dependence among the observations, for example over time.

These can be verified by fitting the appropriate models and comparing the
likelihoods, as in Section A.1.5.

Summary

A number of good books on diagnostics exist, although they concentrate
primarily on normal linear models. See, for example, Cook and Weisberg
(1982) and Barnett and Lewis (1984). More generally, for generalized linear
models, see Pregibon (1981), Pierce and Schafer (1986), Williams (1987),
and Davison and Tsai (1992).
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