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7. Find the largest possible area of a right-angled triangle whose

perimeter is P:

8. Find a tangent to the graph of y D x3
C ax2

C bx C c that is

not parallel to any other tangent.

9. (Branching angles for electric wires and pipes)

(a) The resistance offered by a wire to the flow of electric cur-

rent through it is proportional to its length and inversely

proportional to its cross-sectional area. Thus, the resis-

tance R of a wire of length L and radius r is R D kL=r2,

where k is a positive constant. A long straight wire of

length L and radius r1 extends from A to B: A second

straight wire of smaller radius r2 is to be connected be-

tween a point P on AB and a point C at distance h from

B such thatCB is perpendicular toAB: (See Figure 4.72.)

Find the value of the angle � D †BPC that minimizes the

total resistance of the path APC; that is, the resistance of

AP plus the resistance of PC .

B

C

h

P

�
A

Figure 4.72

(b) The resistance of a pipe (e.g., a blood vessel) to the flow

of liquid through it is, by Poiseuille’s Law, proportional to

its length and inversely proportional to the fourth power

of its radius: R D kL=r4. If the situation in part (a)

represents pipes instead of wires, find the value of � that

minimizes the total resistance of the pathAPC . How does

your answer relate to the answer for part (a)? Could you

have predicted this relationship?

10.I (The range of a spurt) A cylindrical water tank sitting on a

horizontal table has a small hole located on its vertical wall at

height h above the bottom of the tank. Water escapes from the

tank horizontally through the hole and then curves down under

the influence of gravity to strike the table at a distance R from

the base of the tank, as shown in Figure 4.73. (We ignore air

resistance.) Torricelli’s Law implies that the speed v at which

water escapes through the hole is proportional to the square

root of the depth of the hole below the surface of the water:

if the depth of water in the tank at time t is y.t/ > h, then

v D k
p

y � h, where the constant k depends on the size of the

hole.

(a) Find the range R in terms of v and h.

(b) For a given depth y of water in the tank, how high should

the hole be to maximize R?

(c) Suppose that the depth of water in the tank at time t D 0

is y0, that the range R of the spurt is R0 at that time, and

that the water level drops to the height h of the hole in T

minutes. Find, as a function of t , the range R of the water

that escaped through the hole at time t .

R

h

y

Figure 4.73

M 11. (Designing a dustpan) Equal squares are cut out of two adja-

cent corners of a square of sheet metal having sides of length

25 cm. The three resulting flaps are bent up, as shown in

Figure 4.74, to form the sides of a dustpan. Find the maximum

volume of a dustpan made in this way.

25 cm

25 cm

Figure 4.74
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C H A P T E R 5

Integration

“
There are in this world optimists who feel that any symbol that starts

off with an integral sign must necessarily denote something that will

have every property that they should like an integral to possess. This

of course is quite annoying to us rigorous mathematicians; what is

even more annoying is that by doing so they often come up with the

right answer.

”E. J. McShane

Bulletin of the American Mathematical Society, v. 69, p. 611, 1963

Introduction The second fundamental problem addressed by calculus

is the problem of areas, that is, the problem of determin-

ing the area of a region of the plane bounded by various curves. Like the problem

of tangents considered in Chapter 2, many practical problems in various disciplines

require the evaluation of areas for their solution, and the solution of the problem of

areas necessarily involves the notion of limits. On the surface the problem of areas ap-

pears unrelated to the problem of tangents. However, we will see that the two problems

are very closely related; one is the inverse of the other. Finding an area is equivalent

to finding an antiderivative or, as we prefer to say, finding an integral. The relation-

ship between areas and antiderivatives is called the Fundamental Theorem of Calculus.

When we have proved it, we will be able to find areas at will, provided only that we

can integrate (i.e., antidifferentiate) the various functions we encounter.

We would like to have at our disposal a set of integration rules similar to the differ-

entiation rules developed in Chapter 2. We can find the derivative of any differentiable

function using those differentiation rules. Unfortunately, integration is generally more

difficult; indeed, some fairly simple functions are not themselves derivatives of simple

functions. For example, ex2
is not the derivative of any finite combination of elemen-

tary functions. Nevertheless, we will expend some effort in Section 5.6 and Sections

6.1–6.4 to develop techniques for integrating as many functions as possible. Later, in

Chapter 6, we will examine how to approximate areas bounded by graphs of functions

that we cannot antidifferentiate.

5.1 Sums and Sigma Notation

When we begin calculating areas in the next section, we will often encounter sums

of values of functions. We need to have a convenient notation for representing sums

of arbitrary (possibly large) numbers of terms, and we need to develop techniques for

evaluating some such sums.

We use the symbol
P

to represent a sum; it is an enlarged Greek capital letter S

called sigma.
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D E F I N I T I O N

1

Sigma notation

If m and n are integers with m � n, and if f is a function defined at the

integers m, mC 1, mC 2, : : : ; n, the symbol
Pn

iDm f .i/ represents the sum

of the values of f at those integers:

n
X

iDm

f .i/ D f .m/C f .mC 1/C f .mC 2/C � � � C f .n/:

The explicit sum appearing on the right side of this equation is the expansion

of the sum represented in sigma notation on the left side.

E X A M P L E 1
5
X

iD1

i
2
D 1

2
C 2

2
C 3

2
C 4

2
C 5

2
D 55:

The i that appears in the symbol
Pn

iDm f .i/ is called an index of summation. To

evaluate
Pn

iDm f .i/, replace the index i with the integers m, m C 1, : : : , n, succes-

sively, and sum the results. Observe that the value of the sum does not depend on what

we call the index; the index does not appear on the right side of the definition. If we

use another letter in place of i in the sum in Example 1, we still get the same value for

the sum:

5
X

kD1

k
2
D 1

2
C 2

2
C 3

2
C 4

2
C 5

2
D 55:

The index of summation is a dummy variable used to represent an arbitrary point where

the function is evaluated to produce a term to be included in the sum. On the other

hand, the sum
Pn

iDm f .i/ does depend on the two numbers m and n, called the limits

of summation; m is the lower limit, and n is the upper limit.

E X A M P L E 2
(Examples of sums using sigma notation)

20
X

j D1

j D 1C 2C 3C � � � C 18C 19C 20

n
X

iD0

x
i
D x

0
C x

1
C x

2
C � � � C x

n�1
C x

n

n
X

mD1

1 D 1C 1C 1C � � � C 1
„ † …

n terms

3
X

kD�2

1

k C 7
D

1

5
C

1

6
C

1

7
C

1

8
C

1

9
C

1

10

Sometimes we use a subscripted variable ai to denote the i th term of a general sum

instead of using the functional notation f .i/:

n
X

iDm

ai D am C amC1 C amC2 C � � � C an:
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In particular, an infinite series is such a sum with infinitely many terms:

1
X

nD1

an D a1 C a2 C a3 C � � � :

When no final term follows the � � �, it is understood that the terms go on forever. We

will study infinite series in Chapter 9.

When adding finitely many numbers, the order in which they are added is unim-

portant; any order will give the same sum. If all the numbers have a common factor,

then that factor can be removed from each term and multiplied after the sum is eval-

uated: ca C cb D c.a C b/. These laws of arithmetic translate into the following

linearity rule for finite sums; if A and B are constants, then

n
X

iDm

�

Af .i/C Bg.i/
�

D A

n
X

iDm

f .i/C B

n
X

iDm

g.i/:

Both of the sums
PmCn

j Dm f .j / and
Pn

iD0 f .i Cm/ have the same expansion, namely,

f .m/C f .mC 1/C � � � C f .mC n/. Therefore, the two sums are equal.

mCn
X

j Dm

f .j / D

n
X

iD0

f .i Cm/:

This equality can also be derived by substituting i Cm for j everywhere j appears on

the left side, noting that i Cm D m reduces to i D 0, and i Cm D mC n reduces to

i D n. It is often convenient to make such a change of index in a summation.

E X A M P L E 3
Express

P17
j D3

p

1C j 2 in the form
Pn

iD1 f .i/.

Solution Let j D i C 2. Then j D 3 corresponds to i D 1 and j D 17 corresponds

to i D 15. Thus,

17
X

j D3

p

1C j 2
D

15
X

iD1

p

1C .i C 2/2:

Evaluating Sums
There is a closed form expression for the sum S of the first n positive integers, namely,

S D

n
X

iD1

i D 1C 2C 3C � � � C n D
n.nC 1/

2
:

To see this, write the sum forwards and backwards and add the two to get

S = 1 C 2 C 3 C � � � C .n� 1/ C n

S = n C .n� 1/ C .n � 2/ C � � � C 2 C 1

2S = .nC 1/C .nC 1/ C .nC 1/C � � � C .nC 1/ C .nC 1/D n.nC 1/

The formula for S follows when we divide by 2.

It is not usually this easy to evaluate a general sum in closed form. We can only

simplify
Pn

iDm f .i/ for a small class of functions f: The only such formulas we will

need in the next sections are collected in Theorem 1.
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D E F I N I T I O N

1

Sigma notation

If m and n are integers with m � n, and if f is a function defined at the

integers m, mC 1, mC 2, : : : ; n, the symbol
Pn

iDm f .i/ represents the sum

of the values of f at those integers:

n
X

iDm

f .i/ D f .m/C f .mC 1/C f .mC 2/C � � � C f .n/:

The explicit sum appearing on the right side of this equation is the expansion

of the sum represented in sigma notation on the left side.

E X A M P L E 1
5
X

iD1

i
2
D 1

2
C 2

2
C 3

2
C 4

2
C 5

2
D 55:

The i that appears in the symbol
Pn

iDm f .i/ is called an index of summation. To

evaluate
Pn

iDm f .i/, replace the index i with the integers m, m C 1, : : : , n, succes-

sively, and sum the results. Observe that the value of the sum does not depend on what

we call the index; the index does not appear on the right side of the definition. If we

use another letter in place of i in the sum in Example 1, we still get the same value for

the sum:

5
X

kD1

k
2
D 1

2
C 2

2
C 3

2
C 4

2
C 5

2
D 55:

The index of summation is a dummy variable used to represent an arbitrary point where

the function is evaluated to produce a term to be included in the sum. On the other

hand, the sum
Pn

iDm f .i/ does depend on the two numbers m and n, called the limits

of summation; m is the lower limit, and n is the upper limit.

E X A M P L E 2
(Examples of sums using sigma notation)

20
X

j D1

j D 1C 2C 3C � � � C 18C 19C 20

n
X

iD0

x
i
D x

0
C x

1
C x

2
C � � � C x

n�1
C x

n

n
X

mD1

1 D 1C 1C 1C � � � C 1
„ † …

n terms

3
X

kD�2

1

k C 7
D

1

5
C

1

6
C

1

7
C

1

8
C

1

9
C

1

10

Sometimes we use a subscripted variable ai to denote the i th term of a general sum

instead of using the functional notation f .i/:

n
X

iDm

ai D am C amC1 C amC2 C � � � C an:
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In particular, an infinite series is such a sum with infinitely many terms:

1
X

nD1

an D a1 C a2 C a3 C � � � :

When no final term follows the � � �, it is understood that the terms go on forever. We

will study infinite series in Chapter 9.

When adding finitely many numbers, the order in which they are added is unim-

portant; any order will give the same sum. If all the numbers have a common factor,

then that factor can be removed from each term and multiplied after the sum is eval-

uated: ca C cb D c.a C b/. These laws of arithmetic translate into the following

linearity rule for finite sums; if A and B are constants, then

n
X

iDm

�

Af .i/C Bg.i/
�

D A

n
X

iDm

f .i/C B

n
X

iDm

g.i/:

Both of the sums
PmCn

j Dm f .j / and
Pn

iD0 f .i Cm/ have the same expansion, namely,

f .m/C f .mC 1/C � � � C f .mC n/. Therefore, the two sums are equal.

mCn
X

j Dm

f .j / D

n
X

iD0

f .i Cm/:

This equality can also be derived by substituting i Cm for j everywhere j appears on

the left side, noting that i Cm D m reduces to i D 0, and i Cm D mC n reduces to

i D n. It is often convenient to make such a change of index in a summation.

E X A M P L E 3
Express

P17
j D3

p

1C j 2 in the form
Pn

iD1 f .i/.

Solution Let j D i C 2. Then j D 3 corresponds to i D 1 and j D 17 corresponds

to i D 15. Thus,

17
X

j D3

p

1C j 2
D

15
X

iD1

p

1C .i C 2/2:

Evaluating Sums
There is a closed form expression for the sum S of the first n positive integers, namely,

S D

n
X

iD1

i D 1C 2C 3C � � � C n D
n.nC 1/

2
:

To see this, write the sum forwards and backwards and add the two to get

S = 1 C 2 C 3 C � � � C .n� 1/ C n

S = n C .n� 1/ C .n � 2/ C � � � C 2 C 1

2S = .nC 1/C .nC 1/ C .nC 1/C � � � C .nC 1/ C .nC 1/D n.nC 1/

The formula for S follows when we divide by 2.

It is not usually this easy to evaluate a general sum in closed form. We can only

simplify
Pn

iDm f .i/ for a small class of functions f: The only such formulas we will

need in the next sections are collected in Theorem 1.
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T H E O R E M

1

Summation formulas

(a)

n
X

iD1

1 D 1C 1C 1C � � � C 1
„ † …

n terms

D n:

(b)

n
X

iD1

i D 1C 2C 3C � � � C n D
n.nC 1/

2
:

(c)

n
X

iD1

i
2
D 1

2
C 2

2
C 3

2
C � � � C n

2
D

n.nC 1/.2nC 1/

6
:

(d)

n
X

iD1

r
i�1
D 1C r C r

2
C r

3
C � � � C r

n�1
D

rn
� 1

r � 1
if r ¤ 1:

PROOF Formula (a) is trivial; the sum of n ones is n. One proof of formula (b) was

given above.

To prove (c) we write n copies of the identity

.k C 1/
3
� k

3
D 3k

2
C 3k C 1;

one for each value of k from 1 to n, and add them up:

23
� 13

D 3 � 12
C 3 � 1 C 1

3
3
� 2

3
D 3 � 2

2
C 3 � 2 C 1

43
� 33

D 3 � 32
C 3 � 3 C 1

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

n3
� .n � 1/3 D 3.n � 1/2 C 3.n � 1/ C 1

.nC 1/3 � n3
D 3 n2

C 3n C 1

.nC 1/3 � 13
D 3

�
Pn

iD1 i
2
�

C 3
�
Pn

iD1 i
�

C n

D 3
�
Pn

iD1 i
2
�

C

3n.nC 1/

2
C n:

We used formula (b) in the last line. The final equation can be solved for the desired

sum to give formula (c). Note the cancellations that occurred when we added up the

left sides of the n equations. The term 23 in the first line cancelled the �23 in the

second line, and so on, leaving us with only two terms, the .nC 1/3 from the nth line

and the �13 from the first line:

n
X

kD1

�

.k C 1/
3
� k

3
�

D .nC 1/
3
� 1

3
:

This is an example of what we call a telescoping sum. In general, a sum of the form
Pn

iDm

�

f .i C 1/ � f .i/
�

telescopes to the closed form f .nC 1/ � f .m/ because all

but the first and last terms cancel out.

To prove formula (d), let s D
Pn

iD1 r
i�1 and subtract s from rs:

.r � 1/s D rs � s D .r C r
2
C r

3
C � � � C r

n
/ � .1C r C r

2
C � � � C r

n�1
/

D r
n
� 1:

The result follows on division by r � 1.

Other proofs of (b) – (d) are suggested in Exercises 36–38.

E X A M P L E 4 Evaluate

n
X

kDmC1

.6k
2
� 4k C 3/, where 1 � m < n.
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Solution Using the rules of summation and various summation formulas from Theorem 1,

we calculate

n
X

kD1

.6k
2
� 4k C 3/ D 6

n
X

kD1

k
2
� 4

n
X

kD1

k C 3

n
X

kD1

1

D 6
n.nC 1/.2nC 1/

6
� 4

n.nC 1/

2
C 3n

D 2n
3
C n

2
C 2n

Thus,

n
X

kDmC1

.6k
2
� 4k C 3/ D

n
X

kD1

.6k
2
� 4k C 3/ �

m
X

kD1

.6k
2
� 4k C 3/

D 2n
3
C n

2
C 2n � 2m

3
�m

2
� 2m:

M Remark Maple can find closed form expressions for some sums. For example,

> sum(i^4, i=1..n); factor(%);

1

5
.nC 1/

5
�

1

2
.nC 1/

4
C

1

3
.nC 1/

3
�

1

30
n �

1

30

1

30
n.2nC 1/.nC 1/.3n

2
C 3n � 1/

E X E R C I S E S 5.1

Expand the sums in Exercises 1–6.

1.

4
X

iD1

i
3 2.

100
X

j D1

j

j C 1

3.

n
X

iD1

3
i 4.

n�1
X

iD0

.�1/i

i C 1

5.

n
X

j D3

.�2/j

.j � 2/2
6.

n
X

j D1

j 2

n3

Write the sums in Exercises 7–14 using sigma notation. (Note that

the answers are not unique.)

7. 5C 6C 7C 8C 9

8. 2C 2C 2C � � � C 2 .200 terms/

9. 22
� 3

2
C 4

2
� 5

2
C � � � � 99

2

10. 1C 2x C 3x2
C 4x

3
C � � � C 100x

99

11. 1C x C x2
C x

3
C � � � C x

n

12. 1 � x C x2
� x

3
C � � � C x

2n

13. 1 �
1

4
C

1

9
�

1

16
C � � � C

.�1/n�1

n2

14.
1

2
C

2

4
C

3

8
C

4

16
C � � � C

n

2n

Express the sums in Exercises 15–16 in the form
Pn

iD1 f .i/.

15.

99
X

j D0

sin.j / 16.

m
X

kD�5

1

k2
C 1

Find closed form values for the sums in Exercises 17–28.

17.

n
X

iD1

�

i
2
C 2i

�

18.

1;000
X

j D1

.2j C 3/

19.

n
X

kD1

.�
k
� 3/ 20.

n
X

iD1

.2
i
� i

2
/

21.

n
X

mD1

lnm 22.

n
X

iD0

e
i=n

23. The sum in Exercise 8. 24. The sum in Exercise 11.

25. The sum in Exercise 12.

26.I The sum in Exercise 10. Hint: Differentiate the sum
P100

iD0 x
i .

27.I The sum in Exercise 9. Hint: The sum is
49
X

kD1

�

.2k/
2
� .2k C 1/

2
�

D

49
X

kD1

.�4k � 1/.

28.I The sum in Exercise 14. Hint: apply the method of proof of

Theorem 1(d) to this sum.

29. Verify the formula for the value of a telescoping sum:

n
X

iDm

�

f .i C 1/ � f .i/

�

D f .nC 1/ � f .m/:

Why is the word “telescoping” used to describe this sum?
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1

Summation formulas

(a)

n
X

iD1

1 D 1C 1C 1C � � � C 1
„ † …

n terms

D n:

(b)

n
X

iD1

i D 1C 2C 3C � � � C n D
n.nC 1/

2
:

(c)

n
X

iD1

i
2
D 1

2
C 2

2
C 3

2
C � � � C n

2
D

n.nC 1/.2nC 1/

6
:

(d)

n
X

iD1

r
i�1
D 1C r C r

2
C r

3
C � � � C r

n�1
D

rn
� 1

r � 1
if r ¤ 1:

PROOF Formula (a) is trivial; the sum of n ones is n. One proof of formula (b) was

given above.

To prove (c) we write n copies of the identity

.k C 1/
3
� k

3
D 3k

2
C 3k C 1;

one for each value of k from 1 to n, and add them up:

23
� 13

D 3 � 12
C 3 � 1 C 1

3
3
� 2

3
D 3 � 2

2
C 3 � 2 C 1

43
� 33

D 3 � 32
C 3 � 3 C 1

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

n3
� .n � 1/3 D 3.n � 1/2 C 3.n � 1/ C 1

.nC 1/3 � n3
D 3 n2

C 3n C 1

.nC 1/3 � 13
D 3

�
Pn

iD1 i
2
�

C 3
�
Pn

iD1 i
�

C n

D 3
�
Pn

iD1 i
2
�

C

3n.nC 1/

2
C n:

We used formula (b) in the last line. The final equation can be solved for the desired

sum to give formula (c). Note the cancellations that occurred when we added up the

left sides of the n equations. The term 23 in the first line cancelled the �23 in the

second line, and so on, leaving us with only two terms, the .nC 1/3 from the nth line

and the �13 from the first line:

n
X

kD1

�

.k C 1/
3
� k

3
�

D .nC 1/
3
� 1

3
:

This is an example of what we call a telescoping sum. In general, a sum of the form
Pn

iDm

�

f .i C 1/ � f .i/
�

telescopes to the closed form f .nC 1/ � f .m/ because all

but the first and last terms cancel out.

To prove formula (d), let s D
Pn

iD1 r
i�1 and subtract s from rs:

.r � 1/s D rs � s D .r C r
2
C r

3
C � � � C r

n
/ � .1C r C r

2
C � � � C r

n�1
/

D r
n
� 1:

The result follows on division by r � 1.

Other proofs of (b) – (d) are suggested in Exercises 36–38.

E X A M P L E 4 Evaluate

n
X

kDmC1

.6k
2
� 4k C 3/, where 1 � m < n.
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Solution Using the rules of summation and various summation formulas from Theorem 1,

we calculate

n
X

kD1

.6k
2
� 4k C 3/ D 6

n
X

kD1

k
2
� 4

n
X

kD1

k C 3

n
X

kD1

1

D 6
n.nC 1/.2nC 1/

6
� 4

n.nC 1/

2
C 3n

D 2n
3
C n

2
C 2n

Thus,

n
X

kDmC1

.6k
2
� 4k C 3/ D

n
X

kD1

.6k
2
� 4k C 3/ �

m
X

kD1

.6k
2
� 4k C 3/

D 2n
3
C n

2
C 2n � 2m

3
�m

2
� 2m:

M Remark Maple can find closed form expressions for some sums. For example,

> sum(i^4, i=1..n); factor(%);

1

5
.nC 1/

5
�

1

2
.nC 1/

4
C

1

3
.nC 1/

3
�

1

30
n �

1

30

1

30
n.2nC 1/.nC 1/.3n

2
C 3n � 1/

E X E R C I S E S 5.1

Expand the sums in Exercises 1–6.

1.

4
X

iD1

i
3 2.

100
X

j D1

j

j C 1

3.

n
X

iD1

3
i 4.

n�1
X

iD0

.�1/i

i C 1

5.

n
X

j D3

.�2/j

.j � 2/2
6.

n
X

j D1

j 2

n3

Write the sums in Exercises 7–14 using sigma notation. (Note that

the answers are not unique.)

7. 5C 6C 7C 8C 9

8. 2C 2C 2C � � � C 2 .200 terms/

9. 22
� 3

2
C 4

2
� 5

2
C � � � � 99

2

10. 1C 2x C 3x2
C 4x

3
C � � � C 100x

99

11. 1C x C x2
C x

3
C � � � C x

n

12. 1 � x C x2
� x

3
C � � � C x

2n

13. 1 �
1

4
C

1

9
�

1

16
C � � � C

.�1/n�1

n2

14.
1

2
C

2

4
C

3

8
C

4

16
C � � � C

n

2n

Express the sums in Exercises 15–16 in the form
Pn

iD1 f .i/.

15.

99
X

j D0

sin.j / 16.

m
X

kD�5

1

k2
C 1

Find closed form values for the sums in Exercises 17–28.

17.

n
X

iD1

�

i
2
C 2i

�

18.

1;000
X

j D1

.2j C 3/

19.

n
X

kD1

.�
k
� 3/ 20.

n
X

iD1

.2
i
� i

2
/

21.

n
X

mD1

lnm 22.

n
X

iD0

e
i=n

23. The sum in Exercise 8. 24. The sum in Exercise 11.

25. The sum in Exercise 12.

26.I The sum in Exercise 10. Hint: Differentiate the sum
P100

iD0 x
i .

27.I The sum in Exercise 9. Hint: The sum is
49
X

kD1

�

.2k/
2
� .2k C 1/

2
�

D

49
X

kD1

.�4k � 1/.

28.I The sum in Exercise 14. Hint: apply the method of proof of

Theorem 1(d) to this sum.

29. Verify the formula for the value of a telescoping sum:

n
X

iDm

�

f .i C 1/ � f .i/

�

D f .nC 1/ � f .m/:

Why is the word “telescoping” used to describe this sum?
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In Exercises 30–32, evaluate the given telescoping sums.

30.

10
X

nD1

�

n
4
� .n � 1/

4
�

31.

m
X

j D1

.2
j
� 2

j �1
/

32.

2m
X

iDm

�

1

i
�

1

i C 1

�

33. Show that
1

j.j C 1/
D

1

j
�

1

j C 1
, and hence evaluate

n
X

j D1

1

j.j C 1/
.

34. Figure 5.1 shows a square of side n subdivided into n2 smaller

squares of side 1. How many small squares are shaded?

Obtain the closed form expression for
Pn

iD1 i by considering

the sum of the areas of the shaded squares.

Figure 5.1

35. Write n copies of the identity .k C 1/2 � k2
D 2k C 1; one

for each integer k from 1 to n, and add them up to obtain the

formula

n
X

iD1

i D
n.nC 1/

2

in a manner similar to the proof of Theorem 1(c).

36. Use mathematical induction to prove Theorem 1(b).

37. Use mathematical induction to prove Theorem 1(c).

38. Use mathematical induction to prove Theorem 1(d).

39. Figure 5.2 shows a square of side
Pn

iD1 i D n.nC 1/=2

subdivided into a small square of side 1 and n � 1

L-shaped regions whose short edges are 2, 3, : : : ; n. Show

that the area of the L-shaped region with short side i is i3, and

hence verify that

n
X

iD1

i
3
D

n2.nC 1/2

4
:

1 2 3 � � � n
1

2

3

:
:
:

n

Figure 5.2

40.I Write n copies of the identity

.k C 1/
4
� k

4
D 4k

3
C 6k

2
C 4k C 1;

one for each integer k from 1 to n, and add them up to obtain

the formula

n
X

iD1

i
3
D

n2.nC 1/2

4

in a manner similar to the proof of Theorem 1(c).

41. Use mathematical induction to verify the formula for the sum

of cubes given in Exercise 40.

M 42. Extend the method of Exercise 40 to find a closed form

expression for
Pn

iD1 i
4. You will probably want to use Maple

or other computer algebra software to do all the algebra.

M 43. Use Maple or another computer algebra system to find
Pn

iD1 i
k for k D 5, 6, 7, 8. Observe the term involving the

highest power of n in each case. Predict the highest-power

term in
Pn

iD1 i
10 and verify your prediction.

5.2 Areas as Limits of Sums
We began the study of derivatives in Chapter 2 by defining what is meant by a tangent

line to a curve at a particular point. We would like to begin the study of integrals by

defining what is meant by the area of a plane region, but a definition of area is much

more difficult to give than a definition of tangency. Let us assume (as we did, for

example, in Section 3.3) that we know intuitively what area means and list some of its

properties. (See Figure 5.3.)

(i) The area of a plane region is a nonnegative real number of square units.

(ii) The area of a rectangle with width w and height h is A D wh.
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(iii) The areas of congruent plane regions are equal.

(iv) If region S is contained in region R, then the area of S is less than or equal to that

of R.

(v) If region R is a union of (finitely many) nonoverlapping regions, then the area of

R is the sum of the areas of those regions.

Using these five properties we can calculate the area of any polygon (a region bounded

by straight line segments). First, we note that properties (iii) and (v) show that the

area of a parallelogram is the same as that of a rectangle having the same base width

and height. Any triangle can be butted against a congruent copy of itself to form a

parallelogram, so a triangle has area half the base width times the height. Finally, any

polygon can be subdivided into finitely many nonoverlapping triangles so its area is the

sum of the areas of those triangles.

We can’t go beyond polygons without taking limits. If a region has a curved

boundary, its area can only be approximated by using rectangles or triangles; calcu-

lating the exact area requires the evaluation of a limit. We showed how this could be

done for a circle in Section 1.1.

Figure 5.3 Properties of area

w wA BA B

A w B

D C D D 0 C C 0

C

S
R hh

h

area ABCD D wh area S < area R area ABC 0D 0
D wh

area ABC = 1
2 wh area of polygon =

sum of areas of triangles

The Basic Area Problem
In this section we are going to consider how to find the area of a region R lying under

the graph y D f .x/ of a nonnegative-valued, continuous function f; above the x-axis

and between the vertical lines x D a and x D b, where a < b. (See Figure 5.4.) To

accomplish this, we proceed as follows. Divide the interval Œa; b� into n subintervals

by using division points:

y

x

y D f .x/

R

a b

Figure 5.4 The basic area problem: find

the area of region R

a D x0 < x1 < x2 < x3 < � � � < xn�1 < xn D b:

Denote by �xi the length of the i th subinterval Œxi�1; xi �:

�xi D xi � xi�1; .i D 1; 2; 3; : : : ; n/:

Vertically above each subinterval Œxi�1; xi � build a rectangle whose base has length

�xi and whose height is f .xi /. The area of this rectangle is f .xi/�xi . Form the

sum of these areas:

Sn D f .x1/�x1Cf .x2/�x2Cf .x3/�x3C� � �Cf .xn/�xn D

n
X

iD1

f .xi /�xi :
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In Exercises 30–32, evaluate the given telescoping sums.

30.

10
X

nD1

�

n
4
� .n � 1/

4
�

31.

m
X

j D1

.2
j
� 2

j �1
/

32.

2m
X

iDm

�

1

i
�

1

i C 1

�

33. Show that
1

j.j C 1/
D

1

j
�

1

j C 1
, and hence evaluate

n
X

j D1

1

j.j C 1/
.

34. Figure 5.1 shows a square of side n subdivided into n2 smaller

squares of side 1. How many small squares are shaded?

Obtain the closed form expression for
Pn

iD1 i by considering

the sum of the areas of the shaded squares.

Figure 5.1

35. Write n copies of the identity .k C 1/2 � k2
D 2k C 1; one

for each integer k from 1 to n, and add them up to obtain the

formula

n
X

iD1

i D
n.nC 1/

2

in a manner similar to the proof of Theorem 1(c).

36. Use mathematical induction to prove Theorem 1(b).

37. Use mathematical induction to prove Theorem 1(c).

38. Use mathematical induction to prove Theorem 1(d).

39. Figure 5.2 shows a square of side
Pn

iD1 i D n.nC 1/=2

subdivided into a small square of side 1 and n � 1

L-shaped regions whose short edges are 2, 3, : : : ; n. Show

that the area of the L-shaped region with short side i is i3, and

hence verify that

n
X

iD1

i
3
D

n2.nC 1/2

4
:

1 2 3 � � � n
1

2

3

:
:
:

n

Figure 5.2

40.I Write n copies of the identity

.k C 1/
4
� k

4
D 4k

3
C 6k

2
C 4k C 1;

one for each integer k from 1 to n, and add them up to obtain

the formula

n
X

iD1

i
3
D

n2.nC 1/2

4

in a manner similar to the proof of Theorem 1(c).

41. Use mathematical induction to verify the formula for the sum

of cubes given in Exercise 40.

M 42. Extend the method of Exercise 40 to find a closed form

expression for
Pn

iD1 i
4. You will probably want to use Maple

or other computer algebra software to do all the algebra.

M 43. Use Maple or another computer algebra system to find
Pn

iD1 i
k for k D 5, 6, 7, 8. Observe the term involving the

highest power of n in each case. Predict the highest-power

term in
Pn

iD1 i
10 and verify your prediction.

5.2 Areas as Limits of Sums
We began the study of derivatives in Chapter 2 by defining what is meant by a tangent

line to a curve at a particular point. We would like to begin the study of integrals by

defining what is meant by the area of a plane region, but a definition of area is much

more difficult to give than a definition of tangency. Let us assume (as we did, for

example, in Section 3.3) that we know intuitively what area means and list some of its

properties. (See Figure 5.3.)

(i) The area of a plane region is a nonnegative real number of square units.

(ii) The area of a rectangle with width w and height h is A D wh.
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(iii) The areas of congruent plane regions are equal.

(iv) If region S is contained in region R, then the area of S is less than or equal to that

of R.

(v) If region R is a union of (finitely many) nonoverlapping regions, then the area of

R is the sum of the areas of those regions.

Using these five properties we can calculate the area of any polygon (a region bounded

by straight line segments). First, we note that properties (iii) and (v) show that the

area of a parallelogram is the same as that of a rectangle having the same base width

and height. Any triangle can be butted against a congruent copy of itself to form a

parallelogram, so a triangle has area half the base width times the height. Finally, any

polygon can be subdivided into finitely many nonoverlapping triangles so its area is the

sum of the areas of those triangles.

We can’t go beyond polygons without taking limits. If a region has a curved

boundary, its area can only be approximated by using rectangles or triangles; calcu-

lating the exact area requires the evaluation of a limit. We showed how this could be

done for a circle in Section 1.1.

Figure 5.3 Properties of area

w wA BA B

A w B

D C D D 0 C C 0

C

S
R hh

h

area ABCD D wh area S < area R area ABC 0D 0
D wh

area ABC = 1
2 wh area of polygon =

sum of areas of triangles

The Basic Area Problem
In this section we are going to consider how to find the area of a region R lying under

the graph y D f .x/ of a nonnegative-valued, continuous function f; above the x-axis

and between the vertical lines x D a and x D b, where a < b. (See Figure 5.4.) To

accomplish this, we proceed as follows. Divide the interval Œa; b� into n subintervals

by using division points:

y

x

y D f .x/

R

a b

Figure 5.4 The basic area problem: find

the area of region R

a D x0 < x1 < x2 < x3 < � � � < xn�1 < xn D b:

Denote by �xi the length of the i th subinterval Œxi�1; xi �:

�xi D xi � xi�1; .i D 1; 2; 3; : : : ; n/:

Vertically above each subinterval Œxi�1; xi � build a rectangle whose base has length

�xi and whose height is f .xi /. The area of this rectangle is f .xi/�xi . Form the

sum of these areas:

Sn D f .x1/�x1Cf .x2/�x2Cf .x3/�x3C� � �Cf .xn/�xn D

n
X

iD1

f .xi /�xi :
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The rectangles are shown shaded in Figure 5.5 for a decreasing function f: For an

increasing function, the tops of the rectangles would lie above the graph of f rather

than below it. Evidently, Sn is an approximation to the area of the region R, and

the approximation gets better as n increases, provided we choose the points a D x0 <

x1 < � � � < xn D b in such a way that the width�xi of the widest rectangle approaches

zero.

Figure 5.5 Approximating the area under

the graph of a decreasing function using

rectangles

y

x

y D f .x/

�x1 �x2 �x3 �xi �xn

x0 x1 x2 x3 xi�1 xi xn�1 xn

D bD a

Observe in Figure 5.6, for example, that subdividing a subinterval into two smaller

subintervals reduces the error in the approximation by reducing that part of the area

under the curve that is not contained in the rectangles. It is reasonable, therefore, to

calculate the area of R by finding the limit of Sn as n ! 1 with the restriction that

the largest of the subinterval widths �xi must approach zero:

Area of R D lim
n!1

max �xi !0

Sn:

y

x

y

x

new error

y D f .x/

old error

y D f .x/

Figure 5.6 Using more rectangles makes

the error smaller

Sometimes, but not always, it is useful to choose the points xi (0 � i � n) in Œa; b� in

such a way that the subinterval lengths �xi are all equal. In this case we have

�xi D �x D
b � a

n
; xi D aC i�x D aC

i

n
.b � a/:

Some Area Calculations
We devote the rest of this section to some examples in which we apply the technique

described above for finding areas under graphs of functions by approximating with

rectangles. Let us begin with a region for which we already know the area so we can

satisfy ourselves that the method does give the correct value.

E X A M P L E 1
Find the area A of the region lying under the straight line y D

x C 1, above the x-axis, and between the lines x D 0 and x D 2.

Solution The region is shaded in Figure 5.7(a). It is a trapezoid (a four-sided polygon

with one pair of parallel sides) and has area 4 square units. (It can be divided into a

rectangle and a triangle, each of area 2 square units.) We will calculate the area as a

limit of sums of areas of rectangles constructed as described above. Divide the interval

Œ0; 2� into n subintervals of equal length by points

x0 D 0; x1 D
2

n
; x2 D

4

n
; x3 D

6

n
; : : : xn D

2n

n
D 2:

The value of y D x C 1 at x D xi is xi C 1 D
2i

n
C 1 and the i th subinterval,

�

2.i � 1/

n
;
2i

n

�

, has length �xi D
2

n
. Observe that �xi ! 0 as n!1.
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The sum of the areas of the approximating rectangles shown in Figure 5.7(a) is

Sn D

n
X

iD1

�

2i

n
C 1

�

2

n

D

�

2

n

�

"

2

n

n
X

iD1

i C

n
X

iD1

1

#

(Use parts (b) and (a) of Theorem 1.)

D

�

2

n

��

2

n

n.nC 1/

2
C n

�

D 2
nC 1

n
C 2:

Therefore, the required area A is given by

A D lim
n!1

Sn D lim
n!1

�

2
nC 1

n
C 2

�

D 2C 2 D 4 square units:

Figure 5.7

(a) The region of Example 1

(b) The region of Example 2

y

x
2
n

4
n

6
n

2n
n

y D x C 1
y

xb
n

2b
n

3b
n

nb
n

Db

.n�1/b
n

y D x2

(a) (b)

E X A M P L E 2
Find the area of the region bounded by the parabola y D x2 and

the straight lines y D 0, x D 0, and x D b, where b > 0.

Solution The areaA of the region is the limit of the sum Sn of areas of the rectangles

shown in Figure 5.7(b). Again we have used equal subintervals, each of length b=n.

The height of the i th rectangle is .ib=n/2. Thus,

Sn D

n
X

iD1

�

ib

n

�2
b

n
D

b3

n3

n
X

iD1

i
2
D

b3

n3

n.nC 1/.2nC 1/

6
;

by formula (c) of Theorem 1. Hence, the required area is

A D lim
n!1

Sn D lim
n!1

b
3 .nC 1/.2nC 1/

6n2
D

b3

3
square units:

Finding an area under the graph of y D xk over an interval I becomes more and more

difficult as k increases if we continue to try to subdivide I into subintervals of equal

length. (See Exercise 14 at the end of this section for the case k D 3.) It is, however,

possible to find the area for arbitrary k if we subdivide the interval I into subintervals

whose lengths increase in geometric progression. Example 3 illustrates this.

E X A M P L E 3
Let b > a > 0, and let k be any real number except �1. Show that

the area A of the region bounded by y D x
k, y D 0, x D a, and

x D b is

A D
b

kC1
� a

kC1

k C 1
square units:
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The rectangles are shown shaded in Figure 5.5 for a decreasing function f: For an

increasing function, the tops of the rectangles would lie above the graph of f rather

than below it. Evidently, Sn is an approximation to the area of the region R, and

the approximation gets better as n increases, provided we choose the points a D x0 <

x1 < � � � < xn D b in such a way that the width�xi of the widest rectangle approaches

zero.

Figure 5.5 Approximating the area under

the graph of a decreasing function using

rectangles

y

x

y D f .x/

�x1 �x2 �x3 �xi �xn

x0 x1 x2 x3 xi�1 xi xn�1 xn

D bD a

Observe in Figure 5.6, for example, that subdividing a subinterval into two smaller

subintervals reduces the error in the approximation by reducing that part of the area

under the curve that is not contained in the rectangles. It is reasonable, therefore, to

calculate the area of R by finding the limit of Sn as n ! 1 with the restriction that

the largest of the subinterval widths �xi must approach zero:

Area of R D lim
n!1

max �xi !0

Sn:

y

x

y

x

new error

y D f .x/

old error

y D f .x/

Figure 5.6 Using more rectangles makes

the error smaller

Sometimes, but not always, it is useful to choose the points xi (0 � i � n) in Œa; b� in

such a way that the subinterval lengths �xi are all equal. In this case we have

�xi D �x D
b � a

n
; xi D aC i�x D aC

i

n
.b � a/:

Some Area Calculations
We devote the rest of this section to some examples in which we apply the technique

described above for finding areas under graphs of functions by approximating with

rectangles. Let us begin with a region for which we already know the area so we can

satisfy ourselves that the method does give the correct value.

E X A M P L E 1
Find the area A of the region lying under the straight line y D

x C 1, above the x-axis, and between the lines x D 0 and x D 2.

Solution The region is shaded in Figure 5.7(a). It is a trapezoid (a four-sided polygon

with one pair of parallel sides) and has area 4 square units. (It can be divided into a

rectangle and a triangle, each of area 2 square units.) We will calculate the area as a

limit of sums of areas of rectangles constructed as described above. Divide the interval

Œ0; 2� into n subintervals of equal length by points

x0 D 0; x1 D
2

n
; x2 D

4

n
; x3 D

6

n
; : : : xn D

2n

n
D 2:

The value of y D x C 1 at x D xi is xi C 1 D
2i

n
C 1 and the i th subinterval,

�

2.i � 1/

n
;
2i

n

�

, has length �xi D
2

n
. Observe that �xi ! 0 as n!1.
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The sum of the areas of the approximating rectangles shown in Figure 5.7(a) is

Sn D

n
X

iD1

�

2i

n
C 1

�

2

n

D

�

2

n

�

"

2

n

n
X

iD1

i C

n
X

iD1

1

#

(Use parts (b) and (a) of Theorem 1.)

D

�

2

n

��

2

n

n.nC 1/

2
C n

�

D 2
nC 1

n
C 2:

Therefore, the required area A is given by

A D lim
n!1

Sn D lim
n!1

�

2
nC 1

n
C 2

�

D 2C 2 D 4 square units:

Figure 5.7

(a) The region of Example 1

(b) The region of Example 2

y

x
2
n

4
n

6
n

2n
n

y D x C 1
y

xb
n

2b
n

3b
n

nb
n

Db

.n�1/b
n

y D x2

(a) (b)

E X A M P L E 2
Find the area of the region bounded by the parabola y D x2 and

the straight lines y D 0, x D 0, and x D b, where b > 0.

Solution The areaA of the region is the limit of the sum Sn of areas of the rectangles

shown in Figure 5.7(b). Again we have used equal subintervals, each of length b=n.

The height of the i th rectangle is .ib=n/2. Thus,

Sn D

n
X

iD1

�

ib

n

�2
b

n
D

b3

n3

n
X

iD1

i
2
D

b3

n3

n.nC 1/.2nC 1/

6
;

by formula (c) of Theorem 1. Hence, the required area is

A D lim
n!1

Sn D lim
n!1

b
3 .nC 1/.2nC 1/

6n2
D

b3

3
square units:

Finding an area under the graph of y D xk over an interval I becomes more and more

difficult as k increases if we continue to try to subdivide I into subintervals of equal

length. (See Exercise 14 at the end of this section for the case k D 3.) It is, however,

possible to find the area for arbitrary k if we subdivide the interval I into subintervals

whose lengths increase in geometric progression. Example 3 illustrates this.

E X A M P L E 3
Let b > a > 0, and let k be any real number except �1. Show that

the area A of the region bounded by y D x
k, y D 0, x D a, and

x D b is

A D
b

kC1
� a

kC1

k C 1
square units:
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Figure 5.8 For this partition the

subinterval lengths increase exponentially

y

xa at at2 at3 atn�1 atn D b

y D xk

Solution Let t D .b=a/1=n and let

BEWARE! This is a long and

rather difficult example. Either skip

over it or take your time and check

each step carefully.

x0 D a; x1 D at; x2 D at
2
; x3 D at

3
; : : : xn D at

n
D b:

These points subdivide the interval Œa; b� into n subintervals of which the i th, Œxi�1; xi �,

has length �xi D at i�1.t � 1/. If f .x/ D xk , then f .xi / D ak tki . The sum of the

areas of the rectangles shown in Figure 5.8 is:

Sn D

n
X

iD1

f .xi/�xi

D

n
X

iD1

a
k
t
ki
at

i�1
.t � 1/

D a
kC1

.t � 1/ t
k

n
X

iD1

t
.kC1/.i�1/

D a
kC1

.t � 1/ t
k

n
X

iD1

r
.i�1/ where r D tkC1

D a
kC1

.t � 1/ t
k r

n
� 1

r � 1
(by Theorem 1(d))

D a
kC1

.t � 1/ t
k t

.kC1/n
� 1

tkC1
� 1

:

Now replace t with its value .b=a/1=n and rearrange factors to obtain

Sn D a
kC1

 

�

b

a

�1=n

� 1

!

�

b

a

�k=n

�

b

a

�kC1

� 1

�

b

a

�.kC1/=n

� 1

D

�

b
kC1
� a

kC1
�

c
k=n c1=n

� 1

c.kC1/=n
� 1

; where c D
b

a
:

Of the three factors in the final line above, the first does not depend on n, and the

second, ck=n, approaches c0
D 1 as n!1. The third factor is an indeterminate form

of type Œ0=0�, which we evaluate using l’Hôpital’s Rule. First let u D 1=n. Then

lim
n!1

c1=n
� 1

c.kC1/=n
� 1
D lim

u!0C

cu
� 1

c.kC1/u
� 1

�

0

0

�

D lim
u!0C

cu ln c

.k C 1/ c.kC1/u ln c
D

1

k C 1
:
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Therefore, the required area is

A D lim
n!1

Sn D
�

b
kC1
� a

kC1
�

� 1 �
1

k C 1
D

b
kC1
� a

kC1

k C 1
square units.

As you can see, it can be rather difficult to calculate areas bounded by curves by the

methods developed above. Fortunately, there is an easier way, as we will discover in

Section 5.5.

Remark For technical reasons it was necessary to assume a > 0 in Example 3. The

result is also valid for a D 0 provided k > �1. In this case we have lima!0C a
kC1
D

0, so the area under y D x
k, above y D 0, between x D 0 and x D b > 0 is

A D bkC1=.k C 1/ square units. For k D 2 this agrees with the result of Example 2.

E X A M P L E 4 Identify the limit L D lim
n!1

n
X

iD1

n � i

n2
as an area, and evaluate it.

Solution We can rewrite the i th term of the sum so that it depends on i=n:

L D lim
n!1

n
X

iD1

�

1�
i

n

�

1

n
:

The terms now appear to be the areas of rectangles of base 1=n and heights 1 � xi ,

.1 � i � n/, where

x1 D
1

n
; x2 D

2

n
; x3 D

3

n
; : : : ; xn D

n

n
:

Thus, the limit L is the area under the curve y D 1 � x from x D 0 to x D 1. (See

Figure 5.9.) This region is a triangle having area 1=2 square unit, so L D 1=2.

y

x

1

y D 1 � x

1
n

2
n

3
n

n
n D1

Figure 5.9 Recognizing a sum of areas

E X E R C I S E S 5.2

Use the techniques of Examples 1 and 2 (with subintervals of equal

length) to find the areas of the regions specified in Exercises 1–13.

1. Below y D 3x, above y D 0, from x D 0 to x D 1.

2. Below y D 2x C 1, above y D 0, from x D 0 to x D 3.

3. Below y D 2x � 1, above y D 0, from x D 1 to x D 3.

4. Below y D 3x C 4, above y D 0, from x D �1 to x D 2.

5. Below y D x2, above y D 0, from x D 1 to x D 3.

6. Below y D x2
C 1, above y D 0, from x D 0 to x D a > 0.

7. Below y D x2
C 2x C 3, above y D 0, from x D �1 to

x D 2.

8. Above y D x2
� 1, below y D 0.

9. Above y D 1 � x, below y D 0, from x D 2 to x D 4.

10. Above y D x2
� 2x, below y D 0.

11. Below y D 4x � x2
C 1, above y D 1.

12.I Below y D ex , above y D 0, from x D 0 to x D b > 0.

13.I Below y D 2
x , above y D 0, from x D �1 to x D 1.

14. Use the formula
Pn

iD1 i
3
D n

2
.nC 1/

2
=4, from

Exercises 39–41 of Section 5.1, to find the area of the region

lying under y D x3, above the x-axis, and between the

vertical lines at x D 0 and x D b > 0.

15. Use the subdivision of Œa; b� given in Example 3 to find the

area under y D 1=x, above y D 0, from x D a > 0 to

x D b > a. Why should your answer not be surprising?

In Exercises 16–19, interpret the given sum Sn as a sum of areas of

rectangles approximating the area of a certain region in the plane

and hence evaluate limn!1 Sn.

16. Sn D

n
X

iD1

2

n

�

1 �
i

n

�

17. Sn D

n
X

iD1

2

n

�

1 �
2i

n

�

18. Sn D

n
X

iD1

2nC 3i

n2
19.I Sn D

n
X

j D1

1

n

p

1 � .j=n/2
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Figure 5.8 For this partition the

subinterval lengths increase exponentially

y

xa at at2 at3 atn�1 atn D b

y D xk

Solution Let t D .b=a/1=n and let

BEWARE! This is a long and

rather difficult example. Either skip

over it or take your time and check

each step carefully.

x0 D a; x1 D at; x2 D at
2
; x3 D at

3
; : : : xn D at

n
D b:

These points subdivide the interval Œa; b� into n subintervals of which the i th, Œxi�1; xi �,

has length �xi D at i�1.t � 1/. If f .x/ D xk , then f .xi / D ak tki . The sum of the

areas of the rectangles shown in Figure 5.8 is:

Sn D

n
X

iD1

f .xi/�xi

D

n
X

iD1

a
k
t
ki
at

i�1
.t � 1/

D a
kC1

.t � 1/ t
k

n
X

iD1

t
.kC1/.i�1/

D a
kC1

.t � 1/ t
k

n
X

iD1

r
.i�1/ where r D tkC1

D a
kC1

.t � 1/ t
k r

n
� 1

r � 1
(by Theorem 1(d))

D a
kC1

.t � 1/ t
k t

.kC1/n
� 1

tkC1
� 1

:

Now replace t with its value .b=a/1=n and rearrange factors to obtain

Sn D a
kC1

 

�

b

a

�1=n

� 1

!

�

b

a

�k=n

�

b

a

�kC1

� 1

�

b

a

�.kC1/=n

� 1

D

�

b
kC1
� a

kC1
�

c
k=n c1=n

� 1

c.kC1/=n
� 1

; where c D
b

a
:

Of the three factors in the final line above, the first does not depend on n, and the

second, ck=n, approaches c0
D 1 as n!1. The third factor is an indeterminate form

of type Œ0=0�, which we evaluate using l’Hôpital’s Rule. First let u D 1=n. Then

lim
n!1

c1=n
� 1

c.kC1/=n
� 1
D lim

u!0C

cu
� 1

c.kC1/u
� 1

�

0

0

�

D lim
u!0C

cu ln c

.k C 1/ c.kC1/u ln c
D

1

k C 1
:
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Therefore, the required area is

A D lim
n!1

Sn D
�

b
kC1
� a

kC1
�

� 1 �
1

k C 1
D

b
kC1
� a

kC1

k C 1
square units.

As you can see, it can be rather difficult to calculate areas bounded by curves by the

methods developed above. Fortunately, there is an easier way, as we will discover in

Section 5.5.

Remark For technical reasons it was necessary to assume a > 0 in Example 3. The

result is also valid for a D 0 provided k > �1. In this case we have lima!0C a
kC1
D

0, so the area under y D x
k, above y D 0, between x D 0 and x D b > 0 is

A D bkC1=.k C 1/ square units. For k D 2 this agrees with the result of Example 2.

E X A M P L E 4 Identify the limit L D lim
n!1

n
X

iD1

n � i

n2
as an area, and evaluate it.

Solution We can rewrite the i th term of the sum so that it depends on i=n:

L D lim
n!1

n
X

iD1

�

1�
i

n

�

1

n
:

The terms now appear to be the areas of rectangles of base 1=n and heights 1 � xi ,

.1 � i � n/, where

x1 D
1

n
; x2 D

2

n
; x3 D

3

n
; : : : ; xn D

n

n
:

Thus, the limit L is the area under the curve y D 1 � x from x D 0 to x D 1. (See

Figure 5.9.) This region is a triangle having area 1=2 square unit, so L D 1=2.

y

x

1

y D 1 � x

1
n

2
n

3
n

n
n D1

Figure 5.9 Recognizing a sum of areas

E X E R C I S E S 5.2

Use the techniques of Examples 1 and 2 (with subintervals of equal

length) to find the areas of the regions specified in Exercises 1–13.

1. Below y D 3x, above y D 0, from x D 0 to x D 1.

2. Below y D 2x C 1, above y D 0, from x D 0 to x D 3.

3. Below y D 2x � 1, above y D 0, from x D 1 to x D 3.

4. Below y D 3x C 4, above y D 0, from x D �1 to x D 2.

5. Below y D x2, above y D 0, from x D 1 to x D 3.

6. Below y D x2
C 1, above y D 0, from x D 0 to x D a > 0.

7. Below y D x2
C 2x C 3, above y D 0, from x D �1 to

x D 2.

8. Above y D x2
� 1, below y D 0.

9. Above y D 1 � x, below y D 0, from x D 2 to x D 4.

10. Above y D x2
� 2x, below y D 0.

11. Below y D 4x � x2
C 1, above y D 1.

12.I Below y D ex , above y D 0, from x D 0 to x D b > 0.

13.I Below y D 2
x , above y D 0, from x D �1 to x D 1.

14. Use the formula
Pn

iD1 i
3
D n

2
.nC 1/

2
=4, from

Exercises 39–41 of Section 5.1, to find the area of the region

lying under y D x3, above the x-axis, and between the

vertical lines at x D 0 and x D b > 0.

15. Use the subdivision of Œa; b� given in Example 3 to find the

area under y D 1=x, above y D 0, from x D a > 0 to

x D b > a. Why should your answer not be surprising?

In Exercises 16–19, interpret the given sum Sn as a sum of areas of

rectangles approximating the area of a certain region in the plane

and hence evaluate limn!1 Sn.

16. Sn D

n
X

iD1

2

n

�

1 �
i

n

�

17. Sn D

n
X

iD1

2

n

�

1 �
2i

n

�

18. Sn D

n
X

iD1

2nC 3i

n2
19.I Sn D

n
X

j D1

1

n

p

1 � .j=n/2
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5.3 The Definite Integral

In this section we generalize and make more precise the procedure used for finding

areas developed in Section 5.2, and we use it to define the definite integral of a func-

tion f on an interval I: Let us assume, for the time being, that f .x/ is defined and

continuous on the closed, finite interval Œa; b�. We no longer assume that the values of

f are nonnegative.

Partitions and Riemann Sums
Let P be a finite set of points arranged in order between a and b on the real line, say

P D fx0; x1; x2; x3; : : : ; xn�1; xng;

where a D x0 < x1 < x2 < x3 < � � � < xn�1 < xn D b. Such a set P is called a

partition of Œa; b�; it divides Œa; b� into n subintervals of which the i th is Œxi�1; xi �. We

call these the subintervals of the partition P . The number n depends on the particular

partition, so we write n D n.P /. The length of the i th subinterval of P is

�xi D xi � xi�1; (for 1 � i � n),

and we call the greatest of these numbers �xi the norm of the partition P and denote

it kP k:

kP k D max
1�i�n

�xi :

Since f is continuous on each subinterval Œxi�1; xi � of P; it takes on maximum and

minimum values at points of that interval (by Theorem 8 of Section 1.4). Thus, there

are numbers li and ui in Œxi�1; xi � such that

f .li / � f .x/ � f .ui / whenever xi�1 � x � xi :

If f .x/ � 0 on Œa; b�, then f .li /�xi and f .ui /�xi represent the areas of rectangles

having the interval Œxi�1; xi � on the x-axis as base, and having tops passing through

the lowest and highest points, respectively, on the graph of f on that interval. (See

Figure 5.10.) If Ai is that part of the area under y D f .x/ and above the x-axis that

lies in the vertical strip between x D xi�1 and x D xi , then

xxi�1 ui li
xi

y D f .x/

Figure 5.10

f .li /�xi � Ai � f .ui /�xi :

If f can have negative values, then one or both of f .li /�xi and f .ui /�xi can be

negative and will then represent the negative of the area of a rectangle lying below the

x-axis. In any event, we always have f .li /�xi � f .ui/�xi .

D E F I N I T I O N

2

Upper and lower Riemann sums

The lower (Riemann) sum,L.f;P /, and the upper (Riemann) sum,U.f;P /,

for the function f and the partition P are defined by:

L.f;P / D f .l1/�x1 C f .l2/�x2 C � � � C f .ln/�xn

D

n
X

iD1

f .li /�xi ;

U.f; P / D f .u1/�x1 C f .u2/�x2 C � � � C f .un/�xn

D

n
X

iD1

f .ui/�xi :

Figure 5.11 illustrates these Riemann sums as sums of signed areas of rectangles; any

such areas that lie below the x-axis are counted as negative.
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Figure 5.11 (a) A lower Riemann sum

and (b) an upper Riemann sum for a

decreasing function f: The areas of

rectangles shaded in green are counted as

positive; those shaded in blue are counted

as negative

x

y D f .x/

x3

Dl3

xn

Dln

x0 x1

Dl1 x2

Dl2

x

xn�1
Dun xn

y D f .x/

x0
Du1

x1
Du2

x2
Du3

(a) (b)

E X A M P L E 1
Calculate lower and upper Riemann sums for the function

f .x/ D 1=x on the interval Œ1; 2�, corresponding to the partition

P of Œ1; 2� into four subintervals of equal length.

Solution The partition P consists of the points x0 D 1, x1 D 5=4, x2 D 3=2,

x3 D 7=4, and x4 D 2. Since 1=x is decreasing on Œ1; 2�, its minimum and maximum

values on the i th subinterval Œxi�1; xi � are 1=xi and 1=xi�1, respectively. Thus, the

lower and upper Riemann sums are

L.f;P / D
1

4

�

4

5
C

2

3
C

4

7
C

1

2

�

D

533

840
� 0:6345;

U.f; P / D
1

4

�

1C
4

5
C

2

3
C

4

7

�

D

319

420
� 0:7595:

E X A M P L E 2
Calculate the lower and upper Riemann sums for the function

f .x/ D x2 on the interval Œ0; a� (where a > 0), corresponding

to the partition Pn of Œ0; a� into n subintervals of equal length.

Solution Each subinterval of Pn has length �x D a=n, and the division points are

given by xi D ia=n for i D 0, 1, 2, : : : , n. Since x2 is increasing on Œ0; a�, its

minimum and maximum values over the i th subinterval Œxi�1; xi � occur at li D xi�1

and ui D xi , respectively. Thus, the lower Riemann sum of f for Pn is

L.f;Pn/ D

n
X

iD1

.xi�1/
2
�x D

a3

n3

n
X

iD1

.i � 1/
2

D

a3

n3

n�1
X

j D0

j
2
D

a3

n3

.n � 1/n.2.n � 1/C 1/

6
D

.n � 1/.2n � 1/a3

6n2
;

where we have used Theorem 1(c) of Section 5.1 to evaluate the sum of squares. Sim-

ilarly, the upper Riemann sum is

U.f;Pn/ D

n
X

iD1

.xi /
2
�x

D

a3

n3

n
X

iD1

i
2
D

a3

n3

n.nC 1/.2nC 1/

6
D

.nC 1/.2nC 1/a3

6n2
:

The Definite Integral
If we calculate L.f;P / and U.f;P / for partitions P having more and more points

spaced closer and closer together, we expect that, in the limit, these Riemann sums

will converge to a common value that will be the area bounded by y D f .x/, y D 0,

x D a, and x D b if f .x/ � 0 on Œa; b�. This is indeed the case, but we cannot fully

prove it yet.
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5.3 The Definite Integral

In this section we generalize and make more precise the procedure used for finding

areas developed in Section 5.2, and we use it to define the definite integral of a func-

tion f on an interval I: Let us assume, for the time being, that f .x/ is defined and

continuous on the closed, finite interval Œa; b�. We no longer assume that the values of

f are nonnegative.

Partitions and Riemann Sums
Let P be a finite set of points arranged in order between a and b on the real line, say

P D fx0; x1; x2; x3; : : : ; xn�1; xng;

where a D x0 < x1 < x2 < x3 < � � � < xn�1 < xn D b. Such a set P is called a

partition of Œa; b�; it divides Œa; b� into n subintervals of which the i th is Œxi�1; xi �. We

call these the subintervals of the partition P . The number n depends on the particular

partition, so we write n D n.P /. The length of the i th subinterval of P is

�xi D xi � xi�1; (for 1 � i � n),

and we call the greatest of these numbers �xi the norm of the partition P and denote

it kP k:

kP k D max
1�i�n

�xi :

Since f is continuous on each subinterval Œxi�1; xi � of P; it takes on maximum and

minimum values at points of that interval (by Theorem 8 of Section 1.4). Thus, there

are numbers li and ui in Œxi�1; xi � such that

f .li / � f .x/ � f .ui / whenever xi�1 � x � xi :

If f .x/ � 0 on Œa; b�, then f .li /�xi and f .ui /�xi represent the areas of rectangles

having the interval Œxi�1; xi � on the x-axis as base, and having tops passing through

the lowest and highest points, respectively, on the graph of f on that interval. (See

Figure 5.10.) If Ai is that part of the area under y D f .x/ and above the x-axis that

lies in the vertical strip between x D xi�1 and x D xi , then

xxi�1 ui li
xi

y D f .x/

Figure 5.10

f .li /�xi � Ai � f .ui /�xi :

If f can have negative values, then one or both of f .li /�xi and f .ui /�xi can be

negative and will then represent the negative of the area of a rectangle lying below the

x-axis. In any event, we always have f .li /�xi � f .ui/�xi .

D E F I N I T I O N

2

Upper and lower Riemann sums

The lower (Riemann) sum,L.f;P /, and the upper (Riemann) sum,U.f;P /,

for the function f and the partition P are defined by:

L.f;P / D f .l1/�x1 C f .l2/�x2 C � � � C f .ln/�xn

D

n
X

iD1

f .li /�xi ;

U.f; P / D f .u1/�x1 C f .u2/�x2 C � � � C f .un/�xn

D

n
X

iD1

f .ui/�xi :

Figure 5.11 illustrates these Riemann sums as sums of signed areas of rectangles; any

such areas that lie below the x-axis are counted as negative.
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Figure 5.11 (a) A lower Riemann sum

and (b) an upper Riemann sum for a

decreasing function f: The areas of

rectangles shaded in green are counted as

positive; those shaded in blue are counted

as negative

x

y D f .x/

x3

Dl3

xn

Dln

x0 x1

Dl1 x2

Dl2

x

xn�1
Dun xn

y D f .x/

x0
Du1

x1
Du2

x2
Du3

(a) (b)

E X A M P L E 1
Calculate lower and upper Riemann sums for the function

f .x/ D 1=x on the interval Œ1; 2�, corresponding to the partition

P of Œ1; 2� into four subintervals of equal length.

Solution The partition P consists of the points x0 D 1, x1 D 5=4, x2 D 3=2,

x3 D 7=4, and x4 D 2. Since 1=x is decreasing on Œ1; 2�, its minimum and maximum

values on the i th subinterval Œxi�1; xi � are 1=xi and 1=xi�1, respectively. Thus, the

lower and upper Riemann sums are

L.f;P / D
1

4

�

4

5
C

2

3
C

4

7
C

1

2

�

D

533

840
� 0:6345;

U.f; P / D
1

4

�

1C
4

5
C

2

3
C

4

7

�

D

319

420
� 0:7595:

E X A M P L E 2
Calculate the lower and upper Riemann sums for the function

f .x/ D x2 on the interval Œ0; a� (where a > 0), corresponding

to the partition Pn of Œ0; a� into n subintervals of equal length.

Solution Each subinterval of Pn has length �x D a=n, and the division points are

given by xi D ia=n for i D 0, 1, 2, : : : , n. Since x2 is increasing on Œ0; a�, its

minimum and maximum values over the i th subinterval Œxi�1; xi � occur at li D xi�1

and ui D xi , respectively. Thus, the lower Riemann sum of f for Pn is

L.f;Pn/ D

n
X

iD1

.xi�1/
2
�x D

a3

n3

n
X

iD1

.i � 1/
2

D

a3

n3

n�1
X

j D0

j
2
D

a3

n3

.n � 1/n.2.n � 1/C 1/

6
D

.n � 1/.2n � 1/a3

6n2
;

where we have used Theorem 1(c) of Section 5.1 to evaluate the sum of squares. Sim-

ilarly, the upper Riemann sum is

U.f;Pn/ D

n
X

iD1

.xi /
2
�x

D

a3

n3

n
X

iD1

i
2
D

a3

n3

n.nC 1/.2nC 1/

6
D

.nC 1/.2nC 1/a3

6n2
:

The Definite Integral
If we calculate L.f;P / and U.f;P / for partitions P having more and more points

spaced closer and closer together, we expect that, in the limit, these Riemann sums

will converge to a common value that will be the area bounded by y D f .x/, y D 0,

x D a, and x D b if f .x/ � 0 on Œa; b�. This is indeed the case, but we cannot fully

prove it yet.
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If P1 and P2 are two partitions of Œa; b� such that every point of P1 also belongs

to P2, then we say that P2 is a refinement of P1. It is not difficult to show that in this

case

L.f;P1/ � L.f;P2/ � U.f;P2/ � U.f;P1/I

adding more points to a partition increases the lower sum and decreases the upper sum.

(See Exercise 18 at the end of this section.) Given any two partitions, P1 and P2, we

can form their common refinement P; which consists of all of the points of P1 and

P2. Thus,

L.f;P1/ � L.f;P / � U.f;P / � U.f;P2/:

Hence, every lower sum is less than or equal to every upper sum. Since the real num-

bers are complete, there must exist at least one real number I such that

L.f;P / � I � U.f;P / for every partition P:

If there is only one such number, we will call it the definite integral of f on Œa; b�.

D E F I N I T I O N

3

The definite integral

Suppose there is exactly one number I such that for every partitionP of Œa; b�

we have

L.f;P / � I � U.f;P /:

Then we say that the function f is integrable on Œa; b�, and we call I the

definite integral of f on Œa; b�. The definite integral is denoted by the symbol

I D

Z b

a

f .x/ dx:

The definite integral of f .x/ over Œa; b� is a number; it is not a function of x. It

depends on the numbers a and b and on the particular function f , but not on the

variable x (which is a dummy variable like the variable i in the sum
Pn

iD1 f .i/).

Replacing x with another variable does not change the value of the integral:

Z b

a

f .x/ dx D

Z b

a

f .t/ dt:

While we normally write the

definite integral of f .x/ as

Z b

a

f .x/ dx;

it is equally correct to write it as

Z b

a

dx f .x/:

This latter form will become

quite useful when we deal with

multiple integrals in Chapter 14.

The various parts of the symbol

Z b

a

f .x/ dx have their own names:

(i)
R

is called the integral sign; it resembles the letter S since it represents the limit

of a sum.

(ii) a and b are called the limits of integration; a is the lower limit, b is the upper

limit.

(iii) The function f is the integrand; x is the variable of integration.

(iv) dx is the differential of x. It replaces �x in the Riemann sums. If an integrand

depends on more than one variable, the differential tells you which one is the

variable of integration.

E X A M P L E 3
Show that f .x/ D x2 is integrable over the interval Œ0; a�, where

a > 0, and evaluate

Z a

0

x
2
dx.
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Solution We evaluate the limits as n ! 1 of the lower and upper sums of f over

Œ0; a� obtained in Example 2 above.

lim
n!1

L.f;Pn/ D lim
n!1

.n � 1/.2n � 1/a3

6n2
D

a3

3
;

lim
n!1

U.f;Pn/ D lim
n!1

.nC 1/.2nC 1/a3

6n2
D

a3

3
:

If L.f;Pn/ � I � U.f;Pn/, we must have I D a3=3. Thus, f .x/ D x2 is integrable

over Œ0; a�, and

Z a

0

f .x/ dx D

Z a

0

x
2
dx D

a3

3
:

For all partitions P of Œa; b�, we have

L.f;P / �

Z b

a

f .x/ dx � U.f;P /:

If f .x/ � 0 on Œa; b�, then the area of the regionR bounded by the graph of y D f .x/,

the x-axis, and the lines x D a and x D b is A square units, where A D
R b

a
f .x/ dx.

If f .x/ � 0 on Œa; b�, the area of R is �
R b

a
f .x/ dx square units. For general f;

R b

a
f .x/ dx is the area of that part of R lying above the x-axis minus the area of that

part lying below the x-axis. (See Figure 5.12.) You can think of
R b

a
f .x/ dx as a

“sum” of “areas” of infinitely many rectangles with heights f .x/ and “infinitesimally

small widths” dx; it is a limit of the upper and lower Riemann sums.

Figure 5.12

Z b

a

f .x/ dx equals

area R1 � area R2 C area R3

y

x

R1

R2

R3

ba

y D f .x/

General Riemann Sums
Let P D fx0; x1; x2; : : : ; xng, where a D x0 < x1 < x2 < � � � < xn D b, be a

partition of Œa; b� having norm kP k D max1�i�n�xi . In each subinterval Œxi�1; xi �

of P; pick a point ci (called a tag). Let c D .c1; c2; : : : ; cn/ denote the set of these

tags. The sum

R.f;P; c/ D

n
X

iD1

f .ci/�xi

D f .c1/�x1 C f .c2/�x2 C f .c3/�x3 C � � � C f .cn/�xn

is called the Riemann sum of f on Œa; b� corresponding to partition P and tags c.

Note in Figure 5.13 that R.f;P; c/ is a sum of signed areas of rectangles between

the x-axis and the curve y D f .x/. For any choice of the tags c, the Riemann sum

R.f;P; c/ satisfies

L.f;P / � R.f;P; c/ � U.f;P /:
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If P1 and P2 are two partitions of Œa; b� such that every point of P1 also belongs

to P2, then we say that P2 is a refinement of P1. It is not difficult to show that in this

case

L.f;P1/ � L.f;P2/ � U.f;P2/ � U.f;P1/I

adding more points to a partition increases the lower sum and decreases the upper sum.

(See Exercise 18 at the end of this section.) Given any two partitions, P1 and P2, we

can form their common refinement P; which consists of all of the points of P1 and

P2. Thus,

L.f;P1/ � L.f;P / � U.f;P / � U.f;P2/:

Hence, every lower sum is less than or equal to every upper sum. Since the real num-

bers are complete, there must exist at least one real number I such that

L.f;P / � I � U.f;P / for every partition P:

If there is only one such number, we will call it the definite integral of f on Œa; b�.

D E F I N I T I O N

3

The definite integral

Suppose there is exactly one number I such that for every partitionP of Œa; b�

we have

L.f;P / � I � U.f;P /:

Then we say that the function f is integrable on Œa; b�, and we call I the

definite integral of f on Œa; b�. The definite integral is denoted by the symbol

I D

Z b

a

f .x/ dx:

The definite integral of f .x/ over Œa; b� is a number; it is not a function of x. It

depends on the numbers a and b and on the particular function f , but not on the

variable x (which is a dummy variable like the variable i in the sum
Pn

iD1 f .i/).

Replacing x with another variable does not change the value of the integral:

Z b

a

f .x/ dx D

Z b

a

f .t/ dt:

While we normally write the

definite integral of f .x/ as

Z b

a

f .x/ dx;

it is equally correct to write it as

Z b

a

dx f .x/:

This latter form will become

quite useful when we deal with

multiple integrals in Chapter 14.

The various parts of the symbol

Z b

a

f .x/ dx have their own names:

(i)
R

is called the integral sign; it resembles the letter S since it represents the limit

of a sum.

(ii) a and b are called the limits of integration; a is the lower limit, b is the upper

limit.

(iii) The function f is the integrand; x is the variable of integration.

(iv) dx is the differential of x. It replaces �x in the Riemann sums. If an integrand

depends on more than one variable, the differential tells you which one is the

variable of integration.

E X A M P L E 3
Show that f .x/ D x2 is integrable over the interval Œ0; a�, where

a > 0, and evaluate

Z a

0

x
2
dx.
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Solution We evaluate the limits as n ! 1 of the lower and upper sums of f over

Œ0; a� obtained in Example 2 above.

lim
n!1

L.f;Pn/ D lim
n!1

.n � 1/.2n � 1/a3

6n2
D

a3

3
;

lim
n!1

U.f;Pn/ D lim
n!1

.nC 1/.2nC 1/a3

6n2
D

a3

3
:

If L.f;Pn/ � I � U.f;Pn/, we must have I D a3=3. Thus, f .x/ D x2 is integrable

over Œ0; a�, and

Z a

0

f .x/ dx D

Z a

0

x
2
dx D

a3

3
:

For all partitions P of Œa; b�, we have

L.f;P / �

Z b

a

f .x/ dx � U.f;P /:

If f .x/ � 0 on Œa; b�, then the area of the regionR bounded by the graph of y D f .x/,

the x-axis, and the lines x D a and x D b is A square units, where A D
R b

a
f .x/ dx.

If f .x/ � 0 on Œa; b�, the area of R is �
R b

a
f .x/ dx square units. For general f;

R b

a
f .x/ dx is the area of that part of R lying above the x-axis minus the area of that

part lying below the x-axis. (See Figure 5.12.) You can think of
R b

a
f .x/ dx as a

“sum” of “areas” of infinitely many rectangles with heights f .x/ and “infinitesimally

small widths” dx; it is a limit of the upper and lower Riemann sums.

Figure 5.12

Z b

a

f .x/ dx equals

area R1 � area R2 C area R3

y

x

R1

R2

R3

ba

y D f .x/

General Riemann Sums
Let P D fx0; x1; x2; : : : ; xng, where a D x0 < x1 < x2 < � � � < xn D b, be a

partition of Œa; b� having norm kP k D max1�i�n�xi . In each subinterval Œxi�1; xi �

of P; pick a point ci (called a tag). Let c D .c1; c2; : : : ; cn/ denote the set of these

tags. The sum

R.f;P; c/ D

n
X

iD1

f .ci/�xi

D f .c1/�x1 C f .c2/�x2 C f .c3/�x3 C � � � C f .cn/�xn

is called the Riemann sum of f on Œa; b� corresponding to partition P and tags c.

Note in Figure 5.13 that R.f;P; c/ is a sum of signed areas of rectangles between

the x-axis and the curve y D f .x/. For any choice of the tags c, the Riemann sum

R.f;P; c/ satisfies

L.f;P / � R.f;P; c/ � U.f;P /:
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Therefore, if f is integrable on Œa; b�, then its integral is the limit of such Riemann

sums, where the limit is taken as the number n.P / of subintervals of P increases to

infinity in such a way that the lengths of all the subintervals approach zero. That is,

lim
n.P /!1

kP k!0

R.f;P; c/ D

Z b

a

f .x/ dx:

As we will see in Chapter 7, many applications of integration depend on recognizing

that a limit of Riemann sums is a definite integral.

Figure 5.13 The Riemann sum R.f; P; c/

is the sum of areas of the rectangles shaded

in green minus the sum of the areas of the

rectangles shaded in blue

y

x

xi�1 xi

ci

x0 x1 x2 xn

D bD a

c1 c2 cn

y D f .x/

T H E O R E M

2

If f is continuous on Œa; b�, then f is integrable on Œa; b�.

Remark The assumption that f is continuous in Theorem 2 may seem a bit super-

fluous since continuity was required throughout the above discussion leading to the

definition of the definite integral. We cannot, however, prove this theorem yet. Its

proof makes subtle use of the completeness property of the real numbers and is given

in Appendix IV in the context of an extended definition of definite integral that is

meaningful for a larger class of functions that are not necessarily continuous. (The

integral studied in Appendix IV is called the Riemann integral.)

We can, however, make the following observation. In order to prove that f is

integrable on Œa; b�, it is sufficient that, for any given positive number �, we should be

able to find a partition P of Œa; b� for which U.f;P / � L.f;P / < �. This condition

prevents there being more than one number I that is both greater than every lower

sum and less than every upper sum. It is not difficult to find such a partition if the

function f is nondecreasing (or if it is nonincreasing) on Œa; b�. (See Exercise 17

at the end of this section.) Therefore, nondecreasing and nonincreasing continuous

functions are integrable; so, therefore, is any continuous function that is the sum of

a nondecreasing and a nonincreasing function. This class of functions includes any

continuous functions we are likely to encounter in concrete applications of calculus

but, unfortunately, does not include all continuous functions.

Meanwhile, in Sections 5.4 and 6.5 we will extend the definition of the definite

integral to certain kinds of functions that are not continuous, or where the interval of

integration is not closed or not bounded.

E X A M P L E 4 Express the limit lim
n!1

n
X

iD1

2

n

�

1C
2i � 1

n

�1=3

as a definite

integral.

Solution We want to interpret the sum as a Riemann sum for f .x/ D .1 C x/1=3.

The factor 2=n suggests that the interval of integration has length 2 and is partitioned
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into n equal subintervals, each of length 2=n. Let ci D .2i � 1/=n for i D 1, 2, 3, : : : ,

n. As n!1, c1 D 1=n! 0 and cn D .2n � 1/=n! 2. Thus, the interval is Œ0; 2�,

and the points of the partition are xi D 2i=n. Observe that xi�1 D .2i � 2/=n < ci <

2i=n D xi for each i , so that the sum is indeed a Riemann sum for f .x/ over Œ0; 2�.

Since f is continuous on that interval, it is integrable there, and

lim
n!1

n
X

iD1

2

n

�

1C
2i � 1

n

�1=3

D

Z 2

0

.1C x/
1=3
dx:

E X E R C I S E S 5.3

In Exercises 1–6, let Pn denote the partition of the given interval

Œa; b� into n subintervals of equal length �xi D .b � a/=n.

Evaluate L.f; Pn/ and U.f; Pn/ for the given functions f and the

given values of n.

1. f .x/ D x on Œ0; 2�, with n D 8

2. f .x/ D x2 on Œ0; 4�, with n D 4

3. f .x/ D ex on Œ�2; 2�, with n D 4

4. f .x/ D lnx on Œ1; 2�, with n D 5

5. f .x/ D sinx on Œ0; ��, with n D 6

6. f .x/ D cosx on Œ0; 2��, with n D 4

In Exercises 7–10, calculate L.f; Pn/ and U.f; Pn/ for the given

function f over the given interval Œa; b�, where Pn is the partition

of the interval into n subintervals of equal length

�x D .b � a/=n. Show that

lim
n!1

L.f; Pn/ D lim
n!1

U.f; Pn/:

Hence, f is integrable on Œa; b�. (Why?) What is
R b

a f .x/ dx?

7. f .x/ D x; Œa; b� D Œ0; 1�

8. f .x/ D 1 � x; Œa; b� D Œ0; 2�

9. f .x/ D x3
; Œa; b� D Œ0; 1�

10. f .x/ D ex
; Œa; b� D Œ0; 3�

In Exercises 11–16, express the given limit as a definite integral.

11. lim
n!1

n
X

iD1

1

n

r

i

n
12. lim

n!1

n
X

iD1

1

n

r

i � 1

n

13. lim
n!1

n
X

iD1

�

n
sin

�

�i

n

�

14. lim
n!1

n
X

iD1

2

n
ln

�

1C
2i

n

�

15. lim
n!1

n
X

iD1

1

n
tan�1

�

2i � 1

2n

�

16. lim
n!1

n
X

iD1

n

n2
C i2

17.I If f is continuous and nondecreasing on Œa; b�, and Pn is the

partition of Œa; b� into n subintervals of equal length

(�xi D .b � a/=n for 1 � i � n), show that

U.f; Pn/ � L.f; Pn/ D

.b � a/

�

f .b/ � f .a/

�

n
:

Since we can make the right side as small as we please by

choosing n large enough, f must be integrable on Œa; b�.

18.I Let P D fa D x0 < x1 < x2 < � � � < xn D bg be a partition

of Œa; b�, and let P 0 be a refinement of P having one more

point, x 0, satisfying, say, xi�1 < x
0
< xi for some i between

1 and n. Show that

L.f; P / � L.f; P
0
/ � U.f; P

0
/ � U.f; P /

for any continuous function f: (Hint: Consider the maximum

and minimum values of f on the intervals Œxi�1; xi �,

Œxi�1; x
0�, and Œx 0; xi �.) Hence, deduce that

L.f; P / � L.f; P
00
/ � U.f; P

00
/ � U.f; P / if P 00

is any refinement of P:

5.4 Properties of the Definite Integral

It is convenient to extend the definition of the definite integral
R b

a
f .x/ dx to allow

a D b and a > b as well as a < b. The extension still involves partitions P having

x0 D a and xn D b with intermediate points occurring in order between these end

points, so that if a D b, then we must have�xi D 0 for every i , and hence the integral

is zero. If a > b, we have �xi < 0 for each i , so the integral will be negative for

positive functions f and vice versa.
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Therefore, if f is integrable on Œa; b�, then its integral is the limit of such Riemann

sums, where the limit is taken as the number n.P / of subintervals of P increases to

infinity in such a way that the lengths of all the subintervals approach zero. That is,

lim
n.P /!1

kP k!0

R.f;P; c/ D

Z b

a

f .x/ dx:

As we will see in Chapter 7, many applications of integration depend on recognizing

that a limit of Riemann sums is a definite integral.

Figure 5.13 The Riemann sum R.f; P; c/

is the sum of areas of the rectangles shaded

in green minus the sum of the areas of the

rectangles shaded in blue

y

x

xi�1 xi

ci

x0 x1 x2 xn

D bD a

c1 c2 cn

y D f .x/

T H E O R E M

2

If f is continuous on Œa; b�, then f is integrable on Œa; b�.

Remark The assumption that f is continuous in Theorem 2 may seem a bit super-

fluous since continuity was required throughout the above discussion leading to the

definition of the definite integral. We cannot, however, prove this theorem yet. Its

proof makes subtle use of the completeness property of the real numbers and is given

in Appendix IV in the context of an extended definition of definite integral that is

meaningful for a larger class of functions that are not necessarily continuous. (The

integral studied in Appendix IV is called the Riemann integral.)

We can, however, make the following observation. In order to prove that f is

integrable on Œa; b�, it is sufficient that, for any given positive number �, we should be

able to find a partition P of Œa; b� for which U.f;P / � L.f;P / < �. This condition

prevents there being more than one number I that is both greater than every lower

sum and less than every upper sum. It is not difficult to find such a partition if the

function f is nondecreasing (or if it is nonincreasing) on Œa; b�. (See Exercise 17

at the end of this section.) Therefore, nondecreasing and nonincreasing continuous

functions are integrable; so, therefore, is any continuous function that is the sum of

a nondecreasing and a nonincreasing function. This class of functions includes any

continuous functions we are likely to encounter in concrete applications of calculus

but, unfortunately, does not include all continuous functions.

Meanwhile, in Sections 5.4 and 6.5 we will extend the definition of the definite

integral to certain kinds of functions that are not continuous, or where the interval of

integration is not closed or not bounded.

E X A M P L E 4 Express the limit lim
n!1

n
X

iD1

2

n

�

1C
2i � 1

n

�1=3

as a definite

integral.

Solution We want to interpret the sum as a Riemann sum for f .x/ D .1 C x/1=3.

The factor 2=n suggests that the interval of integration has length 2 and is partitioned
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into n equal subintervals, each of length 2=n. Let ci D .2i � 1/=n for i D 1, 2, 3, : : : ,

n. As n!1, c1 D 1=n! 0 and cn D .2n � 1/=n! 2. Thus, the interval is Œ0; 2�,

and the points of the partition are xi D 2i=n. Observe that xi�1 D .2i � 2/=n < ci <

2i=n D xi for each i , so that the sum is indeed a Riemann sum for f .x/ over Œ0; 2�.

Since f is continuous on that interval, it is integrable there, and

lim
n!1

n
X

iD1

2

n

�

1C
2i � 1

n

�1=3

D

Z 2

0

.1C x/
1=3
dx:

E X E R C I S E S 5.3

In Exercises 1–6, let Pn denote the partition of the given interval

Œa; b� into n subintervals of equal length �xi D .b � a/=n.

Evaluate L.f; Pn/ and U.f; Pn/ for the given functions f and the

given values of n.

1. f .x/ D x on Œ0; 2�, with n D 8

2. f .x/ D x2 on Œ0; 4�, with n D 4

3. f .x/ D ex on Œ�2; 2�, with n D 4

4. f .x/ D lnx on Œ1; 2�, with n D 5

5. f .x/ D sinx on Œ0; ��, with n D 6

6. f .x/ D cosx on Œ0; 2��, with n D 4

In Exercises 7–10, calculate L.f; Pn/ and U.f; Pn/ for the given

function f over the given interval Œa; b�, where Pn is the partition

of the interval into n subintervals of equal length

�x D .b � a/=n. Show that

lim
n!1

L.f; Pn/ D lim
n!1

U.f; Pn/:

Hence, f is integrable on Œa; b�. (Why?) What is
R b

a f .x/ dx?

7. f .x/ D x; Œa; b� D Œ0; 1�

8. f .x/ D 1 � x; Œa; b� D Œ0; 2�

9. f .x/ D x3
; Œa; b� D Œ0; 1�

10. f .x/ D ex
; Œa; b� D Œ0; 3�

In Exercises 11–16, express the given limit as a definite integral.

11. lim
n!1

n
X

iD1

1

n

r

i

n
12. lim

n!1

n
X

iD1

1

n

r

i � 1

n

13. lim
n!1

n
X

iD1

�

n
sin

�

�i

n

�

14. lim
n!1

n
X

iD1

2

n
ln

�

1C
2i

n

�

15. lim
n!1

n
X

iD1

1

n
tan�1

�

2i � 1

2n

�

16. lim
n!1

n
X

iD1

n

n2
C i2

17.I If f is continuous and nondecreasing on Œa; b�, and Pn is the

partition of Œa; b� into n subintervals of equal length

(�xi D .b � a/=n for 1 � i � n), show that

U.f; Pn/ � L.f; Pn/ D

.b � a/

�

f .b/ � f .a/

�

n
:

Since we can make the right side as small as we please by

choosing n large enough, f must be integrable on Œa; b�.

18.I Let P D fa D x0 < x1 < x2 < � � � < xn D bg be a partition

of Œa; b�, and let P 0 be a refinement of P having one more

point, x 0, satisfying, say, xi�1 < x
0
< xi for some i between

1 and n. Show that

L.f; P / � L.f; P
0
/ � U.f; P

0
/ � U.f; P /

for any continuous function f: (Hint: Consider the maximum

and minimum values of f on the intervals Œxi�1; xi �,

Œxi�1; x
0�, and Œx 0; xi �.) Hence, deduce that

L.f; P / � L.f; P
00
/ � U.f; P

00
/ � U.f; P / if P 00

is any refinement of P:

5.4 Properties of the Definite Integral

It is convenient to extend the definition of the definite integral
R b

a
f .x/ dx to allow

a D b and a > b as well as a < b. The extension still involves partitions P having

x0 D a and xn D b with intermediate points occurring in order between these end

points, so that if a D b, then we must have�xi D 0 for every i , and hence the integral

is zero. If a > b, we have �xi < 0 for each i , so the integral will be negative for

positive functions f and vice versa.
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Some of the most important properties of the definite integral are summarized in

the following theorem.

T H E O R E M

3

Let f and g be integrable on an interval containing the points a, b, and c. Then

(a) An integral over an interval of zero length is zero.

Z a

a

f .x/ dx D 0:

(b) Reversing the limits of integration changes the sign of the integral.

Z a

b

f .x/ dx D �

Z b

a

f .x/ dx:

(c) An integral depends linearly on the integrand. If A and B are constants, then

Z b

a

�

Af .x/C Bg.x/
�

dx D A

Z b

a

f .x/ dx C B

Z b

a

g.x/ dx:

(d) An integral depends additively on the interval of integration.

Z b

a

f .x/ dx C

Z c

b

f .x/ dx D

Z c

a

f .x/ dx:

(e) If a � b and f .x/ � g.x/ for a � x � b, then

Z b

a

f .x/ dx �

Z b

a

g.x/ dx:

(f) The triangle inequality for sums extends to definite integrals. If a � b, then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

�

Z b

a

jf .x/j dx:

(g) The integral of an odd function over an interval symmetric about zero is zero. If

f is an odd function (i.e., f .�x/ D �f .x/), then

Z a

�a

f .x/ dx D 0:

(h) The integral of an even function over an interval symmetric about zero is twice

the integral over the positive half of the interval. If f is an even function (i.e.,

f .�x/ D f .x/), then

Z a

�a

f .x/ dx D 2

Z a

0

f .x/ dx:

The proofs of parts (a) and (b) are suggested in the first paragraph of this section.

We postpone giving formal proofs of parts (c)–(h) until Appendix IV (see Exercises

5–8 in that Appendix). Nevertheless, all of these results should appear intuitively

reasonable if you regard the integrals as representing (signed) areas. For instance,

properties (d) and (e) are, respectively, properties (v) and (iv) of areas mentioned in

the first paragraph of Section 5.2. (See Figure 5.14.)
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Figure 5.14

(a) Property (d) of Theorem 3

(b) Property (e) of Theorem 3

y

x

R1

R

R2

area R1 + area R2 = area R
Z b

a
f .x/ dx C

Z c

b
f .x/ dx D

Z c

a
f .x/ dx

a b c

y D f .x/

y

x

y D g.x/

y D f .x/

a b

S

R

area S � area R
Z b

a
f .x/ dx �

Z b

a
g.x/ dx

(a) (b)

Property (f) is a generalization of the triangle inequality for numbers:

jx C yj � jxj C jyj; or more generally,

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1

xi

ˇ

ˇ

ˇ

ˇ

ˇ

�

n
X

iD1

jxi j :

It follows from property (e) (assuming that jf j is integrable on Œa; b�), since

�jf .x/j � f .x/ � jf .x/j. The symmetry properties (g) and (h), which are illus-

trated in Figure 5.15, are particularly useful and should always be kept in mind when

evaluating definite integrals because they can save much unnecessary work.

Figure 5.15

(a) Property (g) of Theorem 3

(b) Property (h) of Theorem 3

y

x

y D f .x/ (odd)

R2

R1

area R1 � area R2 = 0
Z a

�a
f .x/ dx D 0

a

�a

y

x

y D f .x/ (even)

R1 R2

area R1 + area R2 D 2 � area R2

Z a

�a
f .x/ dx D 2

Z a

0
f .x/ dx

�a a

(a) (b)

As yet we have no easy method for evaluating definite integrals. However, some

such integrals can be simplified by using various properties in Theorem 3, and others

can be interpreted as known areas.

E X A M P L E 1
Evaluate

(a)

Z 2

�2

.2C 5x/ dx, (b)

Z 3

0

.2C x/ dx, and (c)

Z 3

�3

p

9 � x2 dx.

y

x

y D 2

�2 2

Figure 5.16

y

x

y D x C 2

2

3

.3; 5/

Figure 5.17

y

x�3 3

y D
p

9 � x2

Figure 5.18

9780134154367_Calculus   328 05/12/16   3:19 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 5 – page 308 October 5, 2016

308 CHAPTER 5 Integration

Some of the most important properties of the definite integral are summarized in

the following theorem.

T H E O R E M

3

Let f and g be integrable on an interval containing the points a, b, and c. Then

(a) An integral over an interval of zero length is zero.

Z a

a

f .x/ dx D 0:

(b) Reversing the limits of integration changes the sign of the integral.

Z a

b

f .x/ dx D �

Z b

a

f .x/ dx:

(c) An integral depends linearly on the integrand. If A and B are constants, then

Z b

a

�

Af .x/C Bg.x/
�

dx D A

Z b

a

f .x/ dx C B

Z b

a

g.x/ dx:

(d) An integral depends additively on the interval of integration.

Z b

a

f .x/ dx C

Z c

b

f .x/ dx D

Z c

a

f .x/ dx:

(e) If a � b and f .x/ � g.x/ for a � x � b, then

Z b

a

f .x/ dx �

Z b

a

g.x/ dx:

(f) The triangle inequality for sums extends to definite integrals. If a � b, then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

�

Z b

a

jf .x/j dx:

(g) The integral of an odd function over an interval symmetric about zero is zero. If

f is an odd function (i.e., f .�x/ D �f .x/), then

Z a

�a

f .x/ dx D 0:

(h) The integral of an even function over an interval symmetric about zero is twice

the integral over the positive half of the interval. If f is an even function (i.e.,

f .�x/ D f .x/), then

Z a

�a

f .x/ dx D 2

Z a

0

f .x/ dx:

The proofs of parts (a) and (b) are suggested in the first paragraph of this section.

We postpone giving formal proofs of parts (c)–(h) until Appendix IV (see Exercises

5–8 in that Appendix). Nevertheless, all of these results should appear intuitively

reasonable if you regard the integrals as representing (signed) areas. For instance,

properties (d) and (e) are, respectively, properties (v) and (iv) of areas mentioned in

the first paragraph of Section 5.2. (See Figure 5.14.)
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Figure 5.14

(a) Property (d) of Theorem 3

(b) Property (e) of Theorem 3

y

x

R1

R

R2

area R1 + area R2 = area R
Z b

a
f .x/ dx C

Z c

b
f .x/ dx D

Z c

a
f .x/ dx

a b c

y D f .x/

y

x

y D g.x/

y D f .x/

a b

S

R

area S � area R
Z b

a
f .x/ dx �

Z b

a
g.x/ dx

(a) (b)

Property (f) is a generalization of the triangle inequality for numbers:

jx C yj � jxj C jyj; or more generally,

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

iD1

xi

ˇ

ˇ

ˇ

ˇ

ˇ

�

n
X

iD1

jxi j :

It follows from property (e) (assuming that jf j is integrable on Œa; b�), since

�jf .x/j � f .x/ � jf .x/j. The symmetry properties (g) and (h), which are illus-

trated in Figure 5.15, are particularly useful and should always be kept in mind when

evaluating definite integrals because they can save much unnecessary work.

Figure 5.15

(a) Property (g) of Theorem 3

(b) Property (h) of Theorem 3

y

x

y D f .x/ (odd)

R2

R1

area R1 � area R2 = 0
Z a

�a
f .x/ dx D 0

a

�a

y

x

y D f .x/ (even)

R1 R2

area R1 + area R2 D 2 � area R2

Z a

�a
f .x/ dx D 2

Z a

0
f .x/ dx

�a a

(a) (b)

As yet we have no easy method for evaluating definite integrals. However, some

such integrals can be simplified by using various properties in Theorem 3, and others

can be interpreted as known areas.

E X A M P L E 1
Evaluate

(a)

Z 2

�2

.2C 5x/ dx, (b)

Z 3

0

.2C x/ dx, and (c)

Z 3

�3

p

9 � x2 dx.

y

x

y D 2

�2 2

Figure 5.16

y

x

y D x C 2

2

3

.3; 5/

Figure 5.17

y

x�3 3

y D
p

9 � x2

Figure 5.18
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Solution See Figures 5.16–5.18.

(a) By the linearity property (c),
R 2

�2
.2C 5x/ dx D

R 2

�2
2 dx C 5

R 2

�2
x dx. The first

integral on the right represents the area of a rectangle of width 4 and height 2

(Figure 5.16), so it has value 8. The second integral on the right is 0 because its

integrand is odd and the interval is symmetric about 0. Thus,

Z 2

�2

.2C 5x/ dx D 8C 0 D 8:

(b)
R 3

0
.2Cx/ dx represents the area of the trapezoid in Figure 5.17. Adding the areas

While areas are measured in

squared units of length, definite

integrals are numbers and have

no units. Even when you use an

area to find an integral, do not

quote units for the integral.

of the rectangle and triangle comprising this trapezoid, we get

Z 3

0

.2C x/ dx D .3 � 2/C
1

2
.3 � 3/ D

21

2
:

(c)
R 3

�3

p

9� x2 dx represents the area of a semicircle of radius 3 (Figure 5.18), so

Z 3

�3

p

9� x2 dx D
1

2
�.3

2
/ D

9�

2
:

A Mean-Value Theorem for Integrals
Let f be a function continuous on the interval Œa; b�. Then f assumes a minimum

value m and a maximum value M on the interval, say at points x D l and x D u,

respectively:

m D f .l/ � f .x/ � f .u/ DM for all x in Œa; b�:

For the 2-point partition P of Œa; b� having x0 D a and x1 D b, we have

m.b � a/ D L.f;P / �

Z b

a

f .x/ dx � U.f;P / DM.b � a/:

Therefore,

f .l/ D m �
1

b � a

Z b

a

f .x/ dx �M D f .u/:

By the Intermediate-Value Theorem, f .x/ must take on every value between the two

values f .l/ and f .u/ at some point between l and u (Figure 5.19). Hence, there is a

number c between l and u such that

f .c/ D
1

b � a

Z b

a

f .x/ dx:

That is,
R b

a
f .x/ dx is equal to the area .b � a/f .c/ of a rectangle with base width

b � a and height f .c/ for some c between a and b. This is the Mean-Value Theorem

for integrals.

T H E O R E M

4

The Mean-Value Theorem for integrals

If f is continuous on Œa; b�, then there exists a point c in Œa; b� such that

Z b

a

f .x/ dx D .b � a/f .c/:
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Figure 5.19 Half of the area between

y D f .x/ and the horizontal line

y D f .c/ lies above the line, and the other

half lies below the line

y

x

y D f .x/

M

f .c/

m

a l c u b

Observe in Figure 5.19 that the area below the curve y D f .x/ and above the line

y D f .c/ is equal to the area above y D f .x/ and below y D f .c/. In this sense,

f .c/ is the average value of the function f .x/ on the interval Œa; b�.

D E F I N I T I O N

4

Average value of a function

If f is integrable on Œa; b�, then the average value or mean value of f on

Œa; b�, denoted by Nf, is

Nf D
1

b � a

Z b

a

f .x/ dx:

E X A M P L E 2
Find the average value of f .x/ D 2x on the interval Œ1; 5�.

Solution The average value (see Figure 5.20) is

Nf D
1

5 � 1

Z 5

1

2x dx D
1

4

�

4 � 2C
1

2
.4 � 8/

�

D 6:

y

x

4

4

8

2

1 5

y D 2x

Figure 5.20

Z 5

1

2x dx D 24

Definite Integrals of Piecewise Continuous Functions
The definition of integrability and the definite integral given above can be extended to

a wider class than just continuous functions. One simple but very important extension

is to the class of piecewise continuous functions.

Consider the graph y D f .x/ shown in Figure 5.21(a). Although f is not con-

tinuous at all points in Œa; b� (it is discontinuous at c1 and c2), clearly the region lying

under the graph and above the x-axis between x D a and x D b does have an area.

We would like to represent this area as

Z c1

a

f .x/ dx C

Z c2

c1

f .x/ dx C

Z b

c2

f .x/ dx:

This is reasonable because there are continuous functions on Œa; c1�, Œc1; c2�, and Œc2; b�

equal to f .x/ on the corresponding open intervals, .a; c1/, .c1; c2/, and .c2; b/.
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Solution See Figures 5.16–5.18.

(a) By the linearity property (c),
R 2

�2
.2C 5x/ dx D

R 2

�2
2 dx C 5

R 2

�2
x dx. The first

integral on the right represents the area of a rectangle of width 4 and height 2

(Figure 5.16), so it has value 8. The second integral on the right is 0 because its

integrand is odd and the interval is symmetric about 0. Thus,

Z 2

�2

.2C 5x/ dx D 8C 0 D 8:

(b)
R 3

0
.2Cx/ dx represents the area of the trapezoid in Figure 5.17. Adding the areas

While areas are measured in

squared units of length, definite

integrals are numbers and have

no units. Even when you use an

area to find an integral, do not

quote units for the integral.

of the rectangle and triangle comprising this trapezoid, we get

Z 3

0

.2C x/ dx D .3 � 2/C
1

2
.3 � 3/ D

21

2
:

(c)
R 3

�3

p

9� x2 dx represents the area of a semicircle of radius 3 (Figure 5.18), so

Z 3

�3

p

9� x2 dx D
1

2
�.3

2
/ D

9�

2
:

A Mean-Value Theorem for Integrals
Let f be a function continuous on the interval Œa; b�. Then f assumes a minimum

value m and a maximum value M on the interval, say at points x D l and x D u,

respectively:

m D f .l/ � f .x/ � f .u/ DM for all x in Œa; b�:

For the 2-point partition P of Œa; b� having x0 D a and x1 D b, we have

m.b � a/ D L.f;P / �

Z b

a

f .x/ dx � U.f;P / DM.b � a/:

Therefore,

f .l/ D m �
1

b � a

Z b

a

f .x/ dx �M D f .u/:

By the Intermediate-Value Theorem, f .x/ must take on every value between the two

values f .l/ and f .u/ at some point between l and u (Figure 5.19). Hence, there is a

number c between l and u such that

f .c/ D
1

b � a

Z b

a

f .x/ dx:

That is,
R b

a
f .x/ dx is equal to the area .b � a/f .c/ of a rectangle with base width

b � a and height f .c/ for some c between a and b. This is the Mean-Value Theorem

for integrals.

T H E O R E M

4

The Mean-Value Theorem for integrals

If f is continuous on Œa; b�, then there exists a point c in Œa; b� such that

Z b

a

f .x/ dx D .b � a/f .c/:
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Figure 5.19 Half of the area between

y D f .x/ and the horizontal line

y D f .c/ lies above the line, and the other

half lies below the line

y

x

y D f .x/

M

f .c/

m

a l c u b

Observe in Figure 5.19 that the area below the curve y D f .x/ and above the line

y D f .c/ is equal to the area above y D f .x/ and below y D f .c/. In this sense,

f .c/ is the average value of the function f .x/ on the interval Œa; b�.

D E F I N I T I O N

4

Average value of a function

If f is integrable on Œa; b�, then the average value or mean value of f on

Œa; b�, denoted by Nf, is

Nf D
1

b � a

Z b

a

f .x/ dx:

E X A M P L E 2
Find the average value of f .x/ D 2x on the interval Œ1; 5�.

Solution The average value (see Figure 5.20) is

Nf D
1

5 � 1

Z 5

1

2x dx D
1

4

�

4 � 2C
1

2
.4 � 8/

�

D 6:

y

x

4

4

8

2

1 5

y D 2x

Figure 5.20

Z 5

1

2x dx D 24

Definite Integrals of Piecewise Continuous Functions
The definition of integrability and the definite integral given above can be extended to

a wider class than just continuous functions. One simple but very important extension

is to the class of piecewise continuous functions.

Consider the graph y D f .x/ shown in Figure 5.21(a). Although f is not con-

tinuous at all points in Œa; b� (it is discontinuous at c1 and c2), clearly the region lying

under the graph and above the x-axis between x D a and x D b does have an area.

We would like to represent this area as

Z c1

a

f .x/ dx C

Z c2

c1

f .x/ dx C

Z b

c2

f .x/ dx:

This is reasonable because there are continuous functions on Œa; c1�, Œc1; c2�, and Œc2; b�

equal to f .x/ on the corresponding open intervals, .a; c1/, .c1; c2/, and .c2; b/.
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D E F I N I T I O N

5

Piecewise continuous functions

Let c0 < c1 < c2 < � � � < cn be a finite set of points on the real line.

A function f defined on Œc0; cn� except possibly at some of the points ci ,

(0 � i � n), is called piecewise continuous on that interval if for each i

(1 � i � n) there exists a function Fi continuous on the closed interval

Œci�1; ci � such that

f .x/ D Fi .x/ on the open interval .ci�1; ci /:

In this case, we define the definite integral of f from c0 to cn to be

Z cn

c0

f .x/ dx D

n
X

iD1

Z ci

ci�1

Fi .x/ dx:

E X A M P L E 3 Find

Z 3

0

f .x/ dx, where f .x/ D

8

<

:

p

1 � x2 if 0 � x � 1

2 if 1 < x � 2

x � 2 if 2 < x � 3.

Solution The value of the integral is the sum of the shaded areas in Figure 5.21(b):

Z 3

0

f .x/ dx D

Z 1

0

p

1 � x2 dx C

Z 2

1

2 dx C

Z 3

2

.x � 2/ dx

D

�

1

4
� � � 1

2

�

C .2 � 1/C

�

1

2
� 1 � 1

�

D

� C 10

4
:

Figure 5.21 Two piecewise continuous

functions

y

x

y D f .x/

a c1 c2 b

y

x

yD
p

1�x2

yD2

.3;1/
yDx�2

1 2 3

1

(a) (b)

E X E R C I S E S 5.4

1. Simplify

Z b

a

f .x/ dx C

Z c

b

f .x/ dx C

Z a

c

f .x/ dx.

2. Simplify

Z 2

0

3f .x/ dx C

Z 3

1

3f .x/ dx �

Z 3

0

2f .x/ dx

�

Z 2

1

3f .x/ dx.

Evaluate the integrals in Exercises 3–16 by using the properties of

the definite integral and interpreting integrals as areas.

3.

Z 2

�2

.x C 2/ dx 4.

Z 2

0

.3x C 1/ dx

5.

Z b

a

x dx 6.

Z 2

�1

.1 � 2x/ dx

7.

Z

p
2

�
p

2

p

2 � t2 dt 8.

Z 0

�
p

2

p

2 � x2 dx

9.

Z �

��

sin.x3
/ dx 10.

Z a

�a

.a � jsj/ ds

11.

Z 1

�1

.u
5
� 3u

3
C �/ du 12.

Z 2

0

p

2x � x2 dx

13.

Z 4

�4

.e
x
� e

�x
/ dx 14.

Z 3

�3

.2C t /

p

9 � t2 dt

15.I

Z 1

0

p

4 � x2 dx 16.I

Z 2

1

p

4 � x2 dx
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Given that

Z a

0

x
2
dx D

a3

3
, evaluate the integrals in Exercises

17–22.

17.

Z 2

0

6x
2
dx 18.

Z 3

2

.x
2
� 4/ dx

19.

Z 2

�2

.4 � t
2
/ dt 20.

Z 2

0

.v
2
� v/ dv

21.

Z 1

0

.x
2
C

p

1 � x2/ dx 22.

Z 6

�6

x
2
.2C sinx/ dx

The definition of lnx as an area in Section 3.3 implies that

Z x

1

1

t
dt D lnx

for x > 0. Use this to evaluate the integrals in Exercises 23–26.

23.

Z 2

1

1

x
dx 24.

Z 4

2

1

t
dt

25.

Z 1

1=3

1

t
dt 26.

Z 3

1=4

1

s
ds

Find the average values of the functions in Exercises 27–32 over

the given intervals.

27. f .x/ D x C 2 over Œ0; 4�

28. g.x/ D x C 2 over Œa; b�

29. f .t/ D 1C sin t over Œ��; ��

30. k.x/ D x2 over Œ0; 3�

31. f .x/ D
p

4 � x2 over Œ0; 2�

32. g.s/ D 1=s over Œ1=2; 2�

Piecewise continuous functions

33. Evaluate

Z 2

�1

sgnx dx. Recall that sgnx is 1 if x > 0 and �1

if x < 0.

34. Find

Z 2

�3

f .x/ dx, where f .x/ D

�

1C x if x < 0

2 if x � 0.

35. Find

Z 2

0

g.x/ dx, where g.x/ D

�

x2 if 0 � x � 1

x if 1 < x � 2.

36. Evaluate

Z 3

0

j2 � xj dx.

37.I Evaluate

Z 2

0

p

4 � x2 sgn.x � 1/ dx.

38. Evaluate

Z 3:5

0

bxc dx, where bxc is the greatest integer less

than or equal to x. (See Example 10 of Section P.5.)

Evaluate the integrals in Exercises 39–40 by inspecting the graphs

of the integrands.

G 39.

Z 4

�3

�

jx C 1j � jx � 1j C jx C 2j

�

dx

G 40.

Z 3

0

x2
� x

jx � 1j
dx

41. Find the average value of the function

f .x/ D jx C 1j sgnx on the interval Œ�2; 2�.

42. If a < b and f is continuous on Œa; b�, show that
Z b

a

�

f .x/ � Nf

�

dx D 0.

43.A Suppose that a < b and f is continuous on Œa; b�. Find the

constant k that minimizes the integral

Z b

a

�

f .x/ � k

�2

dx.

5.5 The Fundamental Theorem of Calculus
In this section we demonstrate the relationship between the definite integral defined in

Section 5.3 and the indefinite integral (or general antiderivative) introduced in

Section 2.10. A consequence of this relationship is that we will be able to calculate

definite integrals of functions whose antiderivatives we can find.

In Section 3.3 we wanted to find a function whose derivative was 1=x. We solved

this problem by defining the desired function .lnx/ in terms of the area under the graph

of y D 1=x. This idea motivates, and is a special case of, the following theorem.

T H E O R E M

5

The Fundamental Theorem of Calculus

Suppose that the function f is continuous on an interval I containing the point a.

PART I. Let the function F be defined on I by

F.x/ D

Z x

a

f .t/ dt:

Then F is differentiable on I; and F 0.x/ D f .x/ there. Thus, F is an antiderivative

of f on I W

9780134154367_Calculus   332 05/12/16   3:20 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 5 – page 312 October 5, 2016

312 CHAPTER 5 Integration

D E F I N I T I O N

5

Piecewise continuous functions

Let c0 < c1 < c2 < � � � < cn be a finite set of points on the real line.

A function f defined on Œc0; cn� except possibly at some of the points ci ,

(0 � i � n), is called piecewise continuous on that interval if for each i

(1 � i � n) there exists a function Fi continuous on the closed interval

Œci�1; ci � such that

f .x/ D Fi .x/ on the open interval .ci�1; ci /:

In this case, we define the definite integral of f from c0 to cn to be

Z cn

c0

f .x/ dx D

n
X

iD1

Z ci

ci�1

Fi .x/ dx:

E X A M P L E 3 Find

Z 3

0

f .x/ dx, where f .x/ D

8

<

:

p

1 � x2 if 0 � x � 1

2 if 1 < x � 2

x � 2 if 2 < x � 3.

Solution The value of the integral is the sum of the shaded areas in Figure 5.21(b):

Z 3

0

f .x/ dx D

Z 1

0

p

1 � x2 dx C

Z 2

1

2 dx C

Z 3

2

.x � 2/ dx

D

�

1

4
� � � 1

2

�

C .2 � 1/C

�

1

2
� 1 � 1

�

D

� C 10

4
:

Figure 5.21 Two piecewise continuous

functions

y

x

y D f .x/

a c1 c2 b

y

x

yD
p

1�x2

yD2

.3;1/
yDx�2

1 2 3

1

(a) (b)

E X E R C I S E S 5.4

1. Simplify

Z b

a

f .x/ dx C

Z c

b

f .x/ dx C

Z a

c

f .x/ dx.

2. Simplify

Z 2

0

3f .x/ dx C

Z 3

1

3f .x/ dx �

Z 3

0

2f .x/ dx

�

Z 2

1

3f .x/ dx.

Evaluate the integrals in Exercises 3–16 by using the properties of

the definite integral and interpreting integrals as areas.

3.

Z 2

�2

.x C 2/ dx 4.

Z 2

0

.3x C 1/ dx

5.

Z b

a

x dx 6.

Z 2

�1

.1 � 2x/ dx

7.

Z

p
2

�
p

2

p

2 � t2 dt 8.

Z 0

�
p

2

p

2 � x2 dx

9.

Z �

��

sin.x3
/ dx 10.

Z a

�a

.a � jsj/ ds

11.

Z 1

�1

.u
5
� 3u

3
C �/ du 12.

Z 2

0

p

2x � x2 dx

13.

Z 4

�4

.e
x
� e

�x
/ dx 14.

Z 3

�3

.2C t /

p

9 � t2 dt

15.I

Z 1

0

p

4 � x2 dx 16.I

Z 2

1

p

4 � x2 dx
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Given that

Z a

0

x
2
dx D

a3

3
, evaluate the integrals in Exercises

17–22.

17.

Z 2

0

6x
2
dx 18.

Z 3

2

.x
2
� 4/ dx

19.

Z 2

�2

.4 � t
2
/ dt 20.

Z 2

0

.v
2
� v/ dv

21.

Z 1

0

.x
2
C

p

1 � x2/ dx 22.

Z 6

�6

x
2
.2C sinx/ dx

The definition of lnx as an area in Section 3.3 implies that

Z x

1

1

t
dt D lnx

for x > 0. Use this to evaluate the integrals in Exercises 23–26.

23.

Z 2

1

1

x
dx 24.

Z 4

2

1

t
dt

25.

Z 1

1=3

1

t
dt 26.

Z 3

1=4

1

s
ds

Find the average values of the functions in Exercises 27–32 over

the given intervals.

27. f .x/ D x C 2 over Œ0; 4�

28. g.x/ D x C 2 over Œa; b�

29. f .t/ D 1C sin t over Œ��; ��

30. k.x/ D x2 over Œ0; 3�

31. f .x/ D
p

4 � x2 over Œ0; 2�

32. g.s/ D 1=s over Œ1=2; 2�

Piecewise continuous functions

33. Evaluate

Z 2

�1

sgnx dx. Recall that sgnx is 1 if x > 0 and �1

if x < 0.

34. Find

Z 2

�3

f .x/ dx, where f .x/ D

�

1C x if x < 0

2 if x � 0.

35. Find

Z 2

0

g.x/ dx, where g.x/ D

�

x2 if 0 � x � 1

x if 1 < x � 2.

36. Evaluate

Z 3

0

j2 � xj dx.

37.I Evaluate

Z 2

0

p

4 � x2 sgn.x � 1/ dx.

38. Evaluate

Z 3:5

0

bxc dx, where bxc is the greatest integer less

than or equal to x. (See Example 10 of Section P.5.)

Evaluate the integrals in Exercises 39–40 by inspecting the graphs

of the integrands.

G 39.

Z 4

�3

�

jx C 1j � jx � 1j C jx C 2j

�

dx

G 40.

Z 3

0

x2
� x

jx � 1j
dx

41. Find the average value of the function

f .x/ D jx C 1j sgnx on the interval Œ�2; 2�.

42. If a < b and f is continuous on Œa; b�, show that
Z b

a

�

f .x/ � Nf

�

dx D 0.

43.A Suppose that a < b and f is continuous on Œa; b�. Find the

constant k that minimizes the integral

Z b

a

�

f .x/ � k

�2

dx.

5.5 The Fundamental Theorem of Calculus
In this section we demonstrate the relationship between the definite integral defined in

Section 5.3 and the indefinite integral (or general antiderivative) introduced in

Section 2.10. A consequence of this relationship is that we will be able to calculate

definite integrals of functions whose antiderivatives we can find.

In Section 3.3 we wanted to find a function whose derivative was 1=x. We solved

this problem by defining the desired function .lnx/ in terms of the area under the graph

of y D 1=x. This idea motivates, and is a special case of, the following theorem.

T H E O R E M

5

The Fundamental Theorem of Calculus

Suppose that the function f is continuous on an interval I containing the point a.

PART I. Let the function F be defined on I by

F.x/ D

Z x

a

f .t/ dt:

Then F is differentiable on I; and F 0.x/ D f .x/ there. Thus, F is an antiderivative

of f on I W
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d

dx

Z x

a

f .t/ dt D f .x/:

PART II. If G.x/ is any antiderivative of f .x/ on I; so that G 0.x/ D f .x/ on I; then

for any b in I; we have

Z b

a

f .x/ dx D G.b/ �G.a/:

PROOF Using the definition of the derivative, we calculate

F
0
.x/ D lim

h!0

F.x C h/ � F.x/

h

D lim
h!0

1

h

 

Z xCh

a

f .t/ dt �

Z x

a

f .t/ dt

!

D lim
h!0

1

h

Z xCh

x

f .t/ dt by Theorem 3(d)

D lim
h!0

1

h
hf .c/ for some c D c.h/ (depending on h)

between x and x C h (Theorem 4)

D lim
c!x

f .c/ since c ! x as h! 0

D f .x/ since f is continuous.

Also, ifG 0.x/ D f .x/, then F.x/ D G.x/CC on I for some constant C (by Theorem

13 of Section 2.8). Hence,

Z x

a

f .t/ dt D F.x/ D G.x/C C:

Let x D a and obtain 0 D G.a/ C C via Theorem 3(a), so C D �G.a/. Now let

x D b to get

Z b

a

f .t/ dt D G.b/C C D G.b/ �G.a/:

Of course, we can replace t with x (or any other variable) as the variable of integration

on the left-hand side.

Remark You should remember both conclusions of the Fundamental Theorem; they

are both useful. Part I concerns the derivative of an integral; it tells you how to differ-

entiate a definite integral with respect to its upper limit. Part II concerns the integral

of a derivative; it tells you how to evaluate a definite integral if you can find an anti-

derivative of the integrand.

D E F I N I T I O N

6

To facilitate the evaluation of definite integrals using the Fundamental Theo-

rem of Calculus, we define the evaluation symbol:

F.x/

ˇ

ˇ

ˇ

ˇ

b

a

D F.b/ � F.a/:
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Thus,

Z b

a

f .x/ dx D

�Z

f .x/ dx

�
ˇ

ˇ

ˇ

ˇ

b

a

;

where
R

f .x/ dx denotes the indefinite integral or general antiderivative of f: (See

Section 2.10.) When evaluating a definite integral this way, we will omit the constant of

integration (CC ) from the indefinite integral because it cancels out in the subtraction:

.F.x/C C/

ˇ

ˇ

ˇ

ˇ

b

a

D F.b/C C � .F.a/C C/ D F.b/ � F.a/ D F.x/

ˇ

ˇ

ˇ

ˇ

b

a

:

Any antiderivative of f can be used to calculate the definite integral.

E X A M P L E 1 Evaluate (a)

Z a

0

x
2
dx and (b)

Z 2

�1

.x
2
� 3x C 2/ dx.

Solution

(a)

Z a

0

x
2
dx D

1

3
x

3

ˇ

ˇ

ˇ

ˇ

a

0

D

1

3
a

3
�

1

3
0

3
D

a3

3
(because

d

dx

x3

3
D x

2).

BEWARE! Be careful to keep

track of all the minus signs when

substituting a negative lower limit.

(b)

Z 2

�1

.x
2
� 3x C 2/ dx D

�

1

3
x

3
�

3

2
x

2
C 2x

�
ˇ

ˇ

ˇ

ˇ

2

�1

D

1

3
.8/ �

3

2
.4/C 4 �

�

1

3
.�1/ �

3

2
.1/C .�2/

�

D

9

2
:

E X A M P L E 2
Find the area A of the plane region lying above the x-axis and

under the curve y D 3x � x2.

Solution We need to find the points where the curve y D 3x � x2 meets the x-axis.

These are solutions of the equation

0 D 3x � x
2
D x.3 � x/:

The only roots are x D 0 and x D 3. (See Figure 5.22.) Hence, the area of the region

is given by

y

x

y D 3x � x2

A

3

Figure 5.22

A D

Z 3

0

.3x � x
2
/ dx D

�

3

2
x

2
�

1

3
x

3

�
ˇ

ˇ

ˇ

ˇ

3

0

D

27

2
�

27

3
� .0 � 0/ D

27

6
D

9

2
square units:

E X A M P L E 3
Find the area under the curve y D sin x, above y D 0, from x D 0

to x D � .

Solution The required area, illustrated in Figure 5.23, is

A D

Z �

0

sin x dx D � cos x

ˇ

ˇ

ˇ

ˇ

�

0

D �

�

�1 � .1/
�

D 2 square units:

y

x

y D sin x

A

�

Figure 5.23

Note that while the definite integral is a pure number, an area is a geometric quantity

that implicitly involves units. If the units along the x- and y-axes are, for example,

metres, the area should be quoted in square metres (m2). If units of length along the

x-axis and y-axis are not specified, areas should be quoted in square units.

9780134154367_Calculus   334 05/12/16   3:20 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 5 – page 314 October 5, 2016

314 CHAPTER 5 Integration

d

dx

Z x

a

f .t/ dt D f .x/:

PART II. If G.x/ is any antiderivative of f .x/ on I; so that G 0.x/ D f .x/ on I; then

for any b in I; we have

Z b

a

f .x/ dx D G.b/ �G.a/:

PROOF Using the definition of the derivative, we calculate

F
0
.x/ D lim

h!0

F.x C h/ � F.x/

h

D lim
h!0

1

h

 

Z xCh

a

f .t/ dt �

Z x

a

f .t/ dt

!

D lim
h!0

1

h

Z xCh

x

f .t/ dt by Theorem 3(d)

D lim
h!0

1

h
hf .c/ for some c D c.h/ (depending on h)

between x and x C h (Theorem 4)

D lim
c!x

f .c/ since c ! x as h! 0

D f .x/ since f is continuous.

Also, ifG 0.x/ D f .x/, then F.x/ D G.x/CC on I for some constant C (by Theorem

13 of Section 2.8). Hence,

Z x

a

f .t/ dt D F.x/ D G.x/C C:

Let x D a and obtain 0 D G.a/ C C via Theorem 3(a), so C D �G.a/. Now let

x D b to get

Z b

a

f .t/ dt D G.b/C C D G.b/ �G.a/:

Of course, we can replace t with x (or any other variable) as the variable of integration

on the left-hand side.

Remark You should remember both conclusions of the Fundamental Theorem; they

are both useful. Part I concerns the derivative of an integral; it tells you how to differ-

entiate a definite integral with respect to its upper limit. Part II concerns the integral

of a derivative; it tells you how to evaluate a definite integral if you can find an anti-

derivative of the integrand.

D E F I N I T I O N

6

To facilitate the evaluation of definite integrals using the Fundamental Theo-

rem of Calculus, we define the evaluation symbol:

F.x/

ˇ

ˇ

ˇ

ˇ

b

a

D F.b/ � F.a/:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 5 – page 315 October 5, 2016

SECTION 5.5: The Fundamental Theorem of Calculus 315

Thus,

Z b

a

f .x/ dx D

�Z

f .x/ dx

�
ˇ

ˇ

ˇ

ˇ

b

a

;

where
R

f .x/ dx denotes the indefinite integral or general antiderivative of f: (See

Section 2.10.) When evaluating a definite integral this way, we will omit the constant of

integration (CC ) from the indefinite integral because it cancels out in the subtraction:

.F.x/C C/

ˇ

ˇ

ˇ

ˇ

b

a

D F.b/C C � .F.a/C C/ D F.b/ � F.a/ D F.x/

ˇ

ˇ

ˇ

ˇ

b

a

:

Any antiderivative of f can be used to calculate the definite integral.

E X A M P L E 1 Evaluate (a)

Z a

0

x
2
dx and (b)

Z 2

�1

.x
2
� 3x C 2/ dx.

Solution

(a)

Z a

0

x
2
dx D

1

3
x

3

ˇ

ˇ

ˇ

ˇ

a

0

D

1

3
a

3
�

1

3
0

3
D

a3

3
(because

d

dx

x3

3
D x

2).

BEWARE! Be careful to keep

track of all the minus signs when

substituting a negative lower limit.

(b)

Z 2

�1

.x
2
� 3x C 2/ dx D

�

1

3
x

3
�

3

2
x

2
C 2x

�
ˇ

ˇ

ˇ

ˇ

2

�1

D

1

3
.8/ �

3

2
.4/C 4 �

�

1

3
.�1/ �

3

2
.1/C .�2/

�

D

9

2
:

E X A M P L E 2
Find the area A of the plane region lying above the x-axis and

under the curve y D 3x � x2.

Solution We need to find the points where the curve y D 3x � x2 meets the x-axis.

These are solutions of the equation

0 D 3x � x
2
D x.3 � x/:

The only roots are x D 0 and x D 3. (See Figure 5.22.) Hence, the area of the region

is given by

y

x

y D 3x � x2

A

3

Figure 5.22

A D

Z 3

0

.3x � x
2
/ dx D

�

3

2
x

2
�

1

3
x

3

�
ˇ

ˇ

ˇ

ˇ

3

0

D

27

2
�

27

3
� .0 � 0/ D

27

6
D

9

2
square units:

E X A M P L E 3
Find the area under the curve y D sin x, above y D 0, from x D 0

to x D � .

Solution The required area, illustrated in Figure 5.23, is

A D

Z �

0

sin x dx D � cos x

ˇ

ˇ

ˇ

ˇ

�

0

D �

�

�1 � .1/
�

D 2 square units:

y

x

y D sin x

A

�

Figure 5.23

Note that while the definite integral is a pure number, an area is a geometric quantity

that implicitly involves units. If the units along the x- and y-axes are, for example,

metres, the area should be quoted in square metres (m2). If units of length along the

x-axis and y-axis are not specified, areas should be quoted in square units.
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E X A M P L E 4
Find the area of the regionR lying above the line y D 1 and below

the curve y D 5=.x2
C 1/.

Solution The region R is shaded in Figure 5.24. To find the intersections of y D 1

and y D 5=.x2
C 1/, we must solve these equations simultaneously:

1 D
5

x2
C 1

;

so x2
C 1 D 5, x2

D 4, and x D ˙2.

The area A of the region R is the area under the curve y D 5=.x2
C 1/ and above

the x-axis between x D �2 and x D 2, minus the area of a rectangle of width 4 and

height 1. Since tan�1
x is an antiderivative of 1=.x2

C 1/,

A D

Z 2

�2

5

x2
C 1

dx � 4 D 2

Z 2

0

5

x2
C 1

dx � 4

D 10 tan�1
x

ˇ

ˇ

ˇ

ˇ

2

0

� 4 D 10 tan�1
2 � 4 square units:

Observe the use of even symmetry (Theorem 3(h) of Section 5.4) to replace the lower

limit of integration by 0. It is easier to substitute 0 into the antiderivative than �2:

y

x

y D
5

x2
C 1

y D 1

�2 2

R

Figure 5.24

E X A M P L E 5
Find the average value of f .x/ D e

�x
C cos x on the interval

Œ��=2; 0�.

Solution The average value is

Nf D
1

0 �

�

�

�

2

�

Z 0

�.�=2/

.e
�x
C cos x/ dx

D

2

�
.�e

�x
C sin x/

ˇ

ˇ

ˇ

0

�.�=2/

D

2

�

�

�1C 0C e
�=2
� .�1/

�

D

2

�
e

�=2
:

Beware of integrals of the form
R b

a
f .x/ dx where f is not continuous at all points in

the interval Œa; b�. The Fundamental Theorem does not apply in such cases.

E X A M P L E 6 We know that
d

dx
ln jxj D

1

x
if x ¤ 0. It is incorrect, however,

to state that

Z 1

�1

dx

x
D ln jxj

ˇ

ˇ

ˇ

ˇ

1

�1

D 0 � 0 D 0;

even though 1=x is an odd function. In fact, 1=x is undefined and has no limit at x D 0,

and it is not integrable on Œ�1; 0� or Œ0; 1� (Figure 5.25). Observe that

lim
c!0C

Z 1

c

1

x
dx D lim

c!0C
� ln c D1;

so both shaded regions in Figure 5.25 have infinite area. Integrals of this type are called

y

x

y D
1

x

�1

1

Figure 5.25

improper integrals. We deal with them in Section 6.5.

The following example illustrates, this time using definite integrals, the relation-

ship observed in Example 1 of Section 2.11 between the area under the graph of its

velocity and the distance travelled by an object over a time interval.
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E X A M P L E 7
An object at rest at time t D 0 accelerates at a constant 10 m/s2

during the time interval Œ0; T �. If 0 � t0 � t1 � T; find the

distance travelled by the object in the time interval Œt0; t1�.

Solution Let v.t/ denote the velocity of the object at time t , and let y.t/ denote the

distance travelled by the object during the time interval Œ0; t �, where 0 � t � T: Then

v.0/ D 0 and y.0/ D 0. Also v 0.t/ D 10 and y 0.t/ D v.t/. Thus,

v.t/ D v.t/ � v.0/ D

Z t

0

v
0
.u/ du D

Z t

0

10 du D 10u

ˇ

ˇ

ˇ

ˇ

t

0

D 10t

y.t/ D y.t/� y.0/ D

Z t

0

y
0
.u/ du D

Z t

0

v.u/ du D

Z t

0

10u du D 5u
2

ˇ

ˇ

ˇ

ˇ

t

0

D 5t
2
:

On the time interval Œt0; t1�, the object has travelled distance

y.t1/ � y.t0/ D 5t
2
1 � 5t

2
0 D

Z t1

0

v.t/ dt �

Z t0

0

v.t/ dt D

Z t1

t0

v.t/ dt m:

Observe that this last integral is the area under the graph of y D v.t/ above the interval

Œt0; t1� on the t axis.

We now give some examples illustrating the first conclusion of the Fundamental

Theorem.

E X A M P L E 8
Find the derivatives of the following functions:

(a) F.x/ D

Z 3

x

e
�t2

dt , (b) G.x/ D x2

Z 5x

�4

e
�t2

dt , (c) H.x/ D

Z x3

x2

e
�t2

dt .

Solution The solutions involve applying the first conclusion of the Fundamental The-

orem together with other differentiation rules.

(a) Observe that F.x/ D �
R x

3
e

�t2

dt (by Theorem 3(b)). Therefore, by the Funda-

mental Theorem, F 0
.x/ D �e

�x2

.

(b) By the Product Rule and the Chain Rule,

G
0
.x/ D 2x

Z 5x

�4

e
�t2

dt C x
2 d

dx

Z 5x

�4

e
�t2

dt

D 2x

Z 5x

�4

e
�t2

dt C x
2
e

�.5x/2

.5/

D 2x

Z 5x

�4

e
�t2

dt C 5x
2
e

�25x2

:

(c) Split the integral into a difference of two integrals in each of which the variable x

appears only in the upper limit:

H.x/ D

Z x3

0

e
�t2

dt �

Z x2

0

e
�t2

dt

H
0
.x/ D e

�.x3/2

.3x
2
/ � e

�.x2/2

.2x/

D 3x
2
e

�x6

� 2x e
�x4

:

Parts (b) and (c) of Example 8 are examples of the following formulas that build the

Chain Rule into the first conclusion of the Fundamental Theorem:
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E X A M P L E 4
Find the area of the regionR lying above the line y D 1 and below

the curve y D 5=.x2
C 1/.

Solution The region R is shaded in Figure 5.24. To find the intersections of y D 1

and y D 5=.x2
C 1/, we must solve these equations simultaneously:

1 D
5

x2
C 1

;

so x2
C 1 D 5, x2

D 4, and x D ˙2.

The area A of the region R is the area under the curve y D 5=.x2
C 1/ and above

the x-axis between x D �2 and x D 2, minus the area of a rectangle of width 4 and

height 1. Since tan�1
x is an antiderivative of 1=.x2

C 1/,

A D

Z 2

�2

5

x2
C 1

dx � 4 D 2

Z 2

0

5

x2
C 1

dx � 4

D 10 tan�1
x

ˇ

ˇ

ˇ

ˇ

2

0

� 4 D 10 tan�1
2 � 4 square units:

Observe the use of even symmetry (Theorem 3(h) of Section 5.4) to replace the lower

limit of integration by 0. It is easier to substitute 0 into the antiderivative than �2:

y

x

y D
5

x2
C 1

y D 1

�2 2

R

Figure 5.24

E X A M P L E 5
Find the average value of f .x/ D e

�x
C cos x on the interval

Œ��=2; 0�.

Solution The average value is

Nf D
1

0 �

�

�

�

2

�

Z 0

�.�=2/

.e
�x
C cos x/ dx

D

2

�
.�e

�x
C sin x/

ˇ

ˇ

ˇ

0

�.�=2/

D

2

�

�

�1C 0C e
�=2
� .�1/

�

D

2

�
e

�=2
:

Beware of integrals of the form
R b

a
f .x/ dx where f is not continuous at all points in

the interval Œa; b�. The Fundamental Theorem does not apply in such cases.

E X A M P L E 6 We know that
d

dx
ln jxj D

1

x
if x ¤ 0. It is incorrect, however,

to state that

Z 1

�1

dx

x
D ln jxj

ˇ

ˇ

ˇ

ˇ

1

�1

D 0 � 0 D 0;

even though 1=x is an odd function. In fact, 1=x is undefined and has no limit at x D 0,

and it is not integrable on Œ�1; 0� or Œ0; 1� (Figure 5.25). Observe that

lim
c!0C

Z 1

c

1

x
dx D lim

c!0C
� ln c D1;

so both shaded regions in Figure 5.25 have infinite area. Integrals of this type are called

y

x

y D
1

x

�1

1

Figure 5.25

improper integrals. We deal with them in Section 6.5.

The following example illustrates, this time using definite integrals, the relation-

ship observed in Example 1 of Section 2.11 between the area under the graph of its

velocity and the distance travelled by an object over a time interval.
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E X A M P L E 7
An object at rest at time t D 0 accelerates at a constant 10 m/s2

during the time interval Œ0; T �. If 0 � t0 � t1 � T; find the

distance travelled by the object in the time interval Œt0; t1�.

Solution Let v.t/ denote the velocity of the object at time t , and let y.t/ denote the

distance travelled by the object during the time interval Œ0; t �, where 0 � t � T: Then

v.0/ D 0 and y.0/ D 0. Also v 0.t/ D 10 and y 0.t/ D v.t/. Thus,

v.t/ D v.t/ � v.0/ D

Z t

0

v
0
.u/ du D

Z t

0

10 du D 10u

ˇ

ˇ

ˇ

ˇ

t

0

D 10t

y.t/ D y.t/� y.0/ D

Z t

0

y
0
.u/ du D

Z t

0

v.u/ du D

Z t

0

10u du D 5u
2

ˇ

ˇ

ˇ

ˇ

t

0

D 5t
2
:

On the time interval Œt0; t1�, the object has travelled distance

y.t1/ � y.t0/ D 5t
2
1 � 5t

2
0 D

Z t1

0

v.t/ dt �

Z t0

0

v.t/ dt D

Z t1

t0

v.t/ dt m:

Observe that this last integral is the area under the graph of y D v.t/ above the interval

Œt0; t1� on the t axis.

We now give some examples illustrating the first conclusion of the Fundamental

Theorem.

E X A M P L E 8
Find the derivatives of the following functions:

(a) F.x/ D

Z 3

x

e
�t2

dt , (b) G.x/ D x2

Z 5x

�4

e
�t2

dt , (c) H.x/ D

Z x3

x2

e
�t2

dt .

Solution The solutions involve applying the first conclusion of the Fundamental The-

orem together with other differentiation rules.

(a) Observe that F.x/ D �
R x

3
e

�t2

dt (by Theorem 3(b)). Therefore, by the Funda-

mental Theorem, F 0
.x/ D �e

�x2

.

(b) By the Product Rule and the Chain Rule,

G
0
.x/ D 2x

Z 5x

�4

e
�t2

dt C x
2 d

dx

Z 5x

�4

e
�t2

dt

D 2x

Z 5x

�4

e
�t2

dt C x
2
e

�.5x/2

.5/

D 2x

Z 5x

�4

e
�t2

dt C 5x
2
e

�25x2

:

(c) Split the integral into a difference of two integrals in each of which the variable x

appears only in the upper limit:

H.x/ D

Z x3

0

e
�t2

dt �

Z x2

0

e
�t2

dt

H
0
.x/ D e

�.x3/2

.3x
2
/ � e

�.x2/2

.2x/

D 3x
2
e

�x6

� 2x e
�x4

:

Parts (b) and (c) of Example 8 are examples of the following formulas that build the

Chain Rule into the first conclusion of the Fundamental Theorem:
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d

dx

Z g.x/

a

f .t/ dt D f
�

g.x/
�

g
0
.x/

d

dx

Z g.x/

h.x/

f .t/ dt D f
�

g.x/
�

g
0
.x/� f

�

h.x/
�

h
0
.x/

E X A M P L E 9 Solve the integral equation f .x/ D 2C 3

Z x

4

f .t/ dt .

Solution Differentiate the integral equation to get f 0.x/ D 3f .x/, the DE for ex-

ponential growth, having solution f .x/ D Ce3x . Now put x D 4 into the integral

equation to get f .4/ D 2. Hence 2 D Ce12, so C D 2e�12. Therefore, the integral

equation has solution f .x/ D 2e3x�12.

We conclude with an example showing how the Fundamental Theorem can be used to

evaluate limits of Riemann sums.

E X A M P L E 10 Evaluate lim
n!1

1

n

n
X

j D1

cos

�

j�

2n

�

:

Solution The sum involves values of cos x at the right endpoints of the n subintervals

of the partition

0;
�

2n
;

2�

2n
;

3�

2n
; : : : ;

n�

2n

of the interval Œ0; �=2�. Since each of the subintervals of this partition has length

�=.2n/, and since cos x is continuous on Œ0; �=2�, we have, expressing the limit of a

Riemann sum as an integral (see Figure 5.26),

y

x

y D cos x

�
2n

2�
2n

3�
2n

n�
2n

Figure 5.26

lim
n!1

�

2n

n
X

j D1

cos

�

j�

2n

�

D

Z �=2

0

cos x dx D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

D 1 � 0 D 1:

The given sum differs from the Riemann sum above only in that the factor �=2 is

missing. Thus,

lim
n!1

1

n

n
X

j D1

cos

�

j�

2n

�

D

2

�
:

E X E R C I S E S 5.5

Evaluate the definite integrals in Exercises 1–20.

1.

Z 2

0

x
3
dx 2.

Z 4

0

p

x dx

3.

Z 1

1=2

1

x2
dx 4.

Z �1

�2

�

1

x2
�

1

x3

�

dx

5.

Z 2

�1

.3x
2
� 4x C 2/ dx 6.

Z 2

1

�

2

x3
�

x
3

2

�

dx

7.

Z 2

�2

.x
2
C 3/

2
dx 8.

Z 9

4

�

p

x �
1
p

x

�

dx

9.

Z ��=6

��=4

cosx dx 10.

Z �=3

0

sec2
� d�

11.

Z �=3

�=4

sin � d� 12.

Z 2�

0

.1C sinu/ du

13.

Z �

��

e
x
dx 14.

Z 2

�2

.e
x
� e

�x
/ dx
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15.

Z e

0

a
x
dx .a > 0/ 16.

Z 1

�1

2
x
dx

17.

Z 1

�1

dx

1C x2
18.

Z 1=2

0

dx
p

1 � x2

19.I

Z 1

�1

dx
p

4 � x2
20.I

Z 0

�2

dx

4C x2

Find the area of the region R specified in Exercises 21–32. It is

helpful to make a sketch of the region.

21. Bounded by y D x4, y D 0, x D 0, and x D 1

22. Bounded by y D 1=x, y D 0, x D e, and x D e2

23. Above y D x2
� 4x and below the x-axis

24. Bounded by y D 5 � 2x � 3x2, y D 0, x D �1, and x D 1

25. Bounded by y D x2
� 3x C 3 and y D 1

26. Below y D
p

x and above y D
x

2

27. Above y D x2 and to the right of x D y2

28. Above y D jxj and below y D 12 � x2

29. Bounded by y D x1=3
� x1=2, y D 0, x D 0, and x D 1

30. Under y D e�x and above y D 0 from x D �a to x D 0

31. Below y D 1 � cosx and above y D 0 between two

consecutive intersections of these graphs

32. Below y D x�1=3 and above y D 0 from x D 1 to x D 27

Find the integrals of the piecewise continuous functions in

Exercises 33–34.

33.

Z 3�=2

0

j cos xj dx 34.

Z 3

1

sgn .x � 2/

x2
dx

In Exercises 35–38, find the average values of the given functions

over the intervals specified.

35. f .x/ D 1C x C x2
C x3 over Œ0; 2�

36. f .x/ D e3x over Œ�2; 2�

37. f .x/ D 2x over Œ0; 1= ln 2�

38. g.t/ D

�

0 if 0 � t � 1

1 if 1 < t � 3
over Œ0; 3�

Find the indicated derivatives in Exercises 39–46.

39.
d

dx

Z x

2

sin t

t
dt 40.

d

dt

Z 3

t

sinx

x
dx

41.
d

dx

Z 0

x2

sin t

t
dt 42.

d

dx
x

2

Z x2

0

sinu

u
du

43.
d

dt

Z t

��

cosy

1C y2
dy 44.

d

d�

Z cos �

sin �

1

1 � x2
dx

45.
d

dx
F.
p

x/; if F.t/ D

Z t

0

cos.x2
/ dx

46. H 0
.2/; if H.x/ D 3x

Z x2

4

e
�

p
t
dt

47. Solve the integral equation f .x/ D �

�

1C

Z x

1

f .t/ dt

�

.

48. Solve the integral equation f .x/ D 1 �

Z x

0

f .t/ dt .

49.A Criticize the following erroneous calculation:

Z 1

�1

dx

x2
D �

1

x

ˇ

ˇ

ˇ

ˇ

ˇ

1

�1

D �1C
1

�1
D �2:

Exactly where did the error occur? Why is �2 an

unreasonable value for the integral?

50.I Use a definite integral to define a function F.x/ having

derivative
sinx

1C x2
for all x and satisfying F.17/ D 0.

51.I Does the function F.x/ D

Z 2x�x2

0

cos

�

1

1C t2

�

dt have a

maximum or a minimum value? Justify your answer.

Evaluate the limits in Exercises 52–54.

52.I lim
n!1

1

n

 

�

1C
1

n

�5

C

�

1C
2

n

�5

C � � � C

�

1C
n

n

�5
!

53.I lim
n!1

�

n

�

sin
�

n
C sin

2�

n
C sin

3�

n
C � � � C sin

n�

n

�

54.I lim
n!1

�

n

n2
C 1
C

n

n2
C 4
C

n

n2
C 9
C � � � C

n

2n2

�

5.6 The Method of Substitution
As we have seen, the evaluation of definite integrals is most easily carried out if we

can antidifferentiate the integrand. In this section and Sections 6.1–6.4 we develop

some techniques of integration, that is, methods for finding antiderivatives of functions.

Although the techniques we develop can be used for a large class of functions, they will

not work for all functions we might want to integrate. If a definite integral involves an

integrand whose antiderivative is either impossible or very difficult to find, we may

wish, instead, to approximate the definite integral by numerical means. Techniques for

doing that will be presented in Sections 6.6–6.8.

Let us begin by assembling a table of some known indefinite integrals. These

results have all emerged during our development of differentiation formulas for ele-

mentary functions. You should memorize them.
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d

dx

Z g.x/

a

f .t/ dt D f
�

g.x/
�

g
0
.x/

d

dx

Z g.x/

h.x/

f .t/ dt D f
�

g.x/
�

g
0
.x/� f

�

h.x/
�

h
0
.x/

E X A M P L E 9 Solve the integral equation f .x/ D 2C 3

Z x

4

f .t/ dt .

Solution Differentiate the integral equation to get f 0.x/ D 3f .x/, the DE for ex-

ponential growth, having solution f .x/ D Ce3x . Now put x D 4 into the integral

equation to get f .4/ D 2. Hence 2 D Ce12, so C D 2e�12. Therefore, the integral

equation has solution f .x/ D 2e3x�12.

We conclude with an example showing how the Fundamental Theorem can be used to

evaluate limits of Riemann sums.

E X A M P L E 10 Evaluate lim
n!1

1

n

n
X

j D1

cos

�

j�

2n

�

:

Solution The sum involves values of cos x at the right endpoints of the n subintervals

of the partition

0;
�

2n
;

2�

2n
;

3�

2n
; : : : ;

n�

2n

of the interval Œ0; �=2�. Since each of the subintervals of this partition has length

�=.2n/, and since cos x is continuous on Œ0; �=2�, we have, expressing the limit of a

Riemann sum as an integral (see Figure 5.26),

y

x

y D cos x

�
2n

2�
2n

3�
2n

n�
2n

Figure 5.26

lim
n!1

�

2n

n
X

j D1

cos

�

j�

2n

�

D

Z �=2

0

cos x dx D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

D 1 � 0 D 1:

The given sum differs from the Riemann sum above only in that the factor �=2 is

missing. Thus,

lim
n!1

1

n

n
X

j D1

cos

�

j�

2n

�

D

2

�
:

E X E R C I S E S 5.5

Evaluate the definite integrals in Exercises 1–20.

1.

Z 2

0

x
3
dx 2.

Z 4

0

p

x dx

3.

Z 1

1=2

1

x2
dx 4.

Z �1

�2

�

1

x2
�

1

x3

�

dx

5.

Z 2

�1

.3x
2
� 4x C 2/ dx 6.

Z 2

1

�

2

x3
�

x
3

2

�

dx

7.

Z 2

�2

.x
2
C 3/

2
dx 8.

Z 9

4

�

p

x �
1
p

x

�

dx

9.

Z ��=6

��=4

cosx dx 10.

Z �=3

0

sec2
� d�

11.

Z �=3

�=4

sin � d� 12.

Z 2�

0

.1C sinu/ du

13.

Z �

��

e
x
dx 14.

Z 2

�2

.e
x
� e

�x
/ dx
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15.

Z e

0

a
x
dx .a > 0/ 16.

Z 1

�1

2
x
dx

17.

Z 1

�1

dx

1C x2
18.

Z 1=2

0

dx
p

1 � x2

19.I

Z 1

�1

dx
p

4 � x2
20.I

Z 0

�2

dx

4C x2

Find the area of the region R specified in Exercises 21–32. It is

helpful to make a sketch of the region.

21. Bounded by y D x4, y D 0, x D 0, and x D 1

22. Bounded by y D 1=x, y D 0, x D e, and x D e2

23. Above y D x2
� 4x and below the x-axis

24. Bounded by y D 5 � 2x � 3x2, y D 0, x D �1, and x D 1

25. Bounded by y D x2
� 3x C 3 and y D 1

26. Below y D
p

x and above y D
x

2

27. Above y D x2 and to the right of x D y2

28. Above y D jxj and below y D 12 � x2

29. Bounded by y D x1=3
� x1=2, y D 0, x D 0, and x D 1

30. Under y D e�x and above y D 0 from x D �a to x D 0

31. Below y D 1 � cosx and above y D 0 between two

consecutive intersections of these graphs

32. Below y D x�1=3 and above y D 0 from x D 1 to x D 27

Find the integrals of the piecewise continuous functions in

Exercises 33–34.

33.

Z 3�=2

0

j cos xj dx 34.

Z 3

1

sgn .x � 2/

x2
dx

In Exercises 35–38, find the average values of the given functions

over the intervals specified.

35. f .x/ D 1C x C x2
C x3 over Œ0; 2�

36. f .x/ D e3x over Œ�2; 2�

37. f .x/ D 2x over Œ0; 1= ln 2�

38. g.t/ D

�

0 if 0 � t � 1

1 if 1 < t � 3
over Œ0; 3�

Find the indicated derivatives in Exercises 39–46.

39.
d

dx

Z x

2

sin t

t
dt 40.

d

dt

Z 3

t

sinx

x
dx

41.
d

dx

Z 0

x2

sin t

t
dt 42.

d

dx
x

2

Z x2

0

sinu

u
du

43.
d

dt

Z t

��

cosy

1C y2
dy 44.

d

d�

Z cos �

sin �

1

1 � x2
dx

45.
d

dx
F.
p

x/; if F.t/ D

Z t

0

cos.x2
/ dx

46. H 0
.2/; if H.x/ D 3x

Z x2

4

e
�

p
t
dt

47. Solve the integral equation f .x/ D �

�

1C

Z x

1

f .t/ dt

�

.

48. Solve the integral equation f .x/ D 1 �

Z x

0

f .t/ dt .

49.A Criticize the following erroneous calculation:

Z 1

�1

dx

x2
D �

1

x

ˇ

ˇ

ˇ

ˇ

ˇ

1

�1

D �1C
1

�1
D �2:

Exactly where did the error occur? Why is �2 an

unreasonable value for the integral?

50.I Use a definite integral to define a function F.x/ having

derivative
sinx

1C x2
for all x and satisfying F.17/ D 0.

51.I Does the function F.x/ D

Z 2x�x2

0

cos

�

1

1C t2

�

dt have a

maximum or a minimum value? Justify your answer.

Evaluate the limits in Exercises 52–54.

52.I lim
n!1

1

n

 

�

1C
1

n

�5

C

�

1C
2

n

�5

C � � � C

�

1C
n

n

�5
!

53.I lim
n!1

�

n

�

sin
�

n
C sin

2�

n
C sin

3�

n
C � � � C sin

n�

n

�

54.I lim
n!1

�

n

n2
C 1
C

n

n2
C 4
C

n

n2
C 9
C � � � C

n

2n2

�

5.6 The Method of Substitution
As we have seen, the evaluation of definite integrals is most easily carried out if we

can antidifferentiate the integrand. In this section and Sections 6.1–6.4 we develop

some techniques of integration, that is, methods for finding antiderivatives of functions.

Although the techniques we develop can be used for a large class of functions, they will

not work for all functions we might want to integrate. If a definite integral involves an

integrand whose antiderivative is either impossible or very difficult to find, we may

wish, instead, to approximate the definite integral by numerical means. Techniques for

doing that will be presented in Sections 6.6–6.8.

Let us begin by assembling a table of some known indefinite integrals. These

results have all emerged during our development of differentiation formulas for ele-

mentary functions. You should memorize them.
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Some elementary integrals

1.

Z

1 dx D x C C 2.

Z

x dx D
1

2
x

2
C C

3.

Z

x
2
dx D

1

3
x

3
C C 4.

Z

1

x2
dx D �

1

x
C C

5.

Z

p

x dx D
2

3
x

3=2
C C 6.

Z

1
p

x
dx D 2

p

x C C

7.

Z

x
r
dx D

1

r C 1
x

rC1
C C .r ¤ �1/ 8.

Z

1

x
dx D ln jxj C C

9.

Z

sinax dx D �
1

a
cos ax C C 10.

Z

cos ax dx D
1

a
sin ax C C

11.

Z

sec2
ax dx D

1

a
tanax C C 12.

Z

csc2
ax dx D �

1

a
cot ax C C

13.

Z

sec ax tan ax dx D
1

a
sec ax C C 14.

Z

csc ax cot ax dx D �
1

a
csc ax C C

15.

Z

1
p

a2
� x2

dx D sin�1 x

a
CC .a > 0/ 16.

Z

1

a2
C x2

dx D
1

a
tan�1 x

a
C C

17.

Z

e
ax
dx D

1

a
e

ax
C C 18.

Z

b
ax
dx D

1

a ln b
b

ax
C C

19.

Z

cosh ax dx D
1

a
sinh ax C C 20.

Z

sinh ax dx D
1

a
cosh ax C C

Note that formulas 1–6 are special cases of formula 7, which holds on any interval

where xr makes sense. The linearity formula

Z

.Af .x/C B g.x// dx D A

Z

f .x/ dx C B

Z

g.x/ dx

makes it possible to integrate sums and constant multiples of functions.

E X A M P L E 1
(Combining elementary integrals)

(a)

Z

.x
4
� 3x

3
C 8x

2
� 6x � 7/ dx D

x5

5
�

3x4

4
C

8x3

3
� 3x

2
� 7x C C

(b)

Z �

5x
3=5
�

3

2C x2

�

dx D
25

8
x

8=5
�

3
p

2
tan�1 x

p

2
C C

(c)

Z

.4 cos 5x � 5 sin 3x/ dx D
4

5
sin 5x C

5

3
cos 3x C C

(d)

Z �

1

�x
C a

�x

�

dx D
1

�
ln jxj C

1

� ln a
a

�x
C C , .a > 0/.

Sometimes it is necessary to manipulate an integrand so that the method can be applied.

E X A M P L E 2

Z

.x C 1/3

x
dx D

Z

x3
C 3x2

C 3x C 1

x
dx

D

Z �

x
2
C 3x C 3C

1

x

�

dx

D

1

3
x

3
C

3

2
x

2
C 3x C ln jxj C C:
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When an integral cannot be evaluated by inspection, as those in Examples 1–2 can,

we require one or more special techniques. The most important of these techniques is

the method of substitution, the integral version of the Chain Rule. If we rewrite the

Chain Rule, d
dx
f
�

g.x/
�

D f 0�g.x/
�

g0.x/, in integral form, we obtain

Z

f
0�
g.x/

�

g
0
.x/ dx D f

�

g.x/
�

C C:

Observe that the following formalism would produce this latter formula even if we did

not already know it was true:

Let u D g.x/. Then du=dx D g0.x/, or in differential form, du D g0.x/ dx. Thus,

Z

f
0
.g.x// g

0
.x/ dx D

Z

f
0
.u/ du D f .u/C C D f .g.x//C C:

E X A M P L E 3
(Examples of substitution) Find the indefinite integrals:

(a)

Z

x

x2
C 1

dx; (b)

Z

sin.3 ln x/

x
dx; and (c)

Z

e
x
p

1C ex dx:

Solution

(a)

Z

x

x2
C 1

dx Let u D x2
C 1.

Then du D 2x dx and

x dx D
1
2
du

D

1

2

Z

du

u
D

1

2
ln juj C C D

1

2
ln.x2

C 1/C C D ln
p

x2
C 1C C:

(Both versions of the final answer are equally acceptable.)

(b)

Z

sin.3 ln x/

x
dx Let u D 3 ln x.

Then du D
3

x
dx

D

1

3

Z

sinudu D �
1

3
cosuC C D �

1

3
cos.3 ln x/C C:

(c)

Z

e
x
p

1C ex dx Let v D 1C ex .

Then dv D ex dx

D

Z

v
1=2

dv D
2

3
v

3=2
C C D

2

3
.1C e

x
/
3=2
C C:

Sometimes the appropriate substitutions are not as obvious as they were in Example 3,

and it may be necessary to manipulate the integrand algebraically to put it into a better

form for substitution.

E X A M P L E 4 Evaluate (a)

Z

1

x2
C 4x C 5

dx and (b)

Z

dx
p

e2x
� 1

.

Solution

(a)

Z

dx

x2
C 4x C 5

D

Z

dx

.x C 2/2 C 1
Let t D x C 2.

Then dt D dx.

D

Z

dt

t2 C 1

D tan�1
t C C D tan�1

.x C 2/C C:
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Some elementary integrals

1.

Z

1 dx D x C C 2.

Z

x dx D
1

2
x

2
C C

3.

Z

x
2
dx D

1

3
x

3
C C 4.

Z

1

x2
dx D �

1

x
C C

5.

Z

p

x dx D
2

3
x

3=2
C C 6.

Z

1
p

x
dx D 2

p

x C C

7.

Z

x
r
dx D

1

r C 1
x

rC1
C C .r ¤ �1/ 8.

Z

1

x
dx D ln jxj C C

9.

Z

sinax dx D �
1

a
cos ax C C 10.

Z

cos ax dx D
1

a
sin ax C C

11.

Z

sec2
ax dx D

1

a
tanax C C 12.

Z

csc2
ax dx D �

1

a
cot ax C C

13.

Z

sec ax tan ax dx D
1

a
sec ax C C 14.

Z

csc ax cot ax dx D �
1

a
csc ax C C

15.

Z

1
p

a2
� x2

dx D sin�1 x

a
CC .a > 0/ 16.

Z

1

a2
C x2

dx D
1

a
tan�1 x

a
C C

17.

Z

e
ax
dx D

1

a
e

ax
C C 18.

Z

b
ax
dx D

1

a ln b
b

ax
C C

19.

Z

cosh ax dx D
1

a
sinh ax C C 20.

Z

sinh ax dx D
1

a
cosh ax C C

Note that formulas 1–6 are special cases of formula 7, which holds on any interval

where xr makes sense. The linearity formula

Z

.Af .x/C B g.x// dx D A

Z

f .x/ dx C B

Z

g.x/ dx

makes it possible to integrate sums and constant multiples of functions.

E X A M P L E 1
(Combining elementary integrals)

(a)

Z

.x
4
� 3x

3
C 8x

2
� 6x � 7/ dx D

x5

5
�

3x4

4
C

8x3

3
� 3x

2
� 7x C C

(b)

Z �

5x
3=5
�

3

2C x2

�

dx D
25

8
x

8=5
�

3
p

2
tan�1 x

p

2
C C

(c)

Z

.4 cos 5x � 5 sin 3x/ dx D
4

5
sin 5x C

5

3
cos 3x C C

(d)

Z �

1

�x
C a

�x

�

dx D
1

�
ln jxj C

1

� ln a
a

�x
C C , .a > 0/.

Sometimes it is necessary to manipulate an integrand so that the method can be applied.

E X A M P L E 2

Z

.x C 1/3

x
dx D

Z

x3
C 3x2

C 3x C 1

x
dx

D

Z �

x
2
C 3x C 3C

1

x

�

dx

D

1

3
x

3
C

3

2
x

2
C 3x C ln jxj C C:
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When an integral cannot be evaluated by inspection, as those in Examples 1–2 can,

we require one or more special techniques. The most important of these techniques is

the method of substitution, the integral version of the Chain Rule. If we rewrite the

Chain Rule, d
dx
f
�

g.x/
�

D f 0�g.x/
�

g0.x/, in integral form, we obtain

Z

f
0�
g.x/

�

g
0
.x/ dx D f

�

g.x/
�

C C:

Observe that the following formalism would produce this latter formula even if we did

not already know it was true:

Let u D g.x/. Then du=dx D g0.x/, or in differential form, du D g0.x/ dx. Thus,

Z

f
0
.g.x// g

0
.x/ dx D

Z

f
0
.u/ du D f .u/C C D f .g.x//C C:

E X A M P L E 3
(Examples of substitution) Find the indefinite integrals:

(a)

Z

x

x2
C 1

dx; (b)

Z

sin.3 ln x/

x
dx; and (c)

Z

e
x
p

1C ex dx:

Solution

(a)

Z

x

x2
C 1

dx Let u D x2
C 1.

Then du D 2x dx and

x dx D
1
2
du

D

1

2

Z

du

u
D

1

2
ln juj C C D

1

2
ln.x2

C 1/C C D ln
p

x2
C 1C C:

(Both versions of the final answer are equally acceptable.)

(b)

Z

sin.3 ln x/

x
dx Let u D 3 ln x.

Then du D
3

x
dx

D

1

3

Z

sinudu D �
1

3
cosuC C D �

1

3
cos.3 ln x/C C:

(c)

Z

e
x
p

1C ex dx Let v D 1C ex .

Then dv D ex dx

D

Z

v
1=2

dv D
2

3
v

3=2
C C D

2

3
.1C e

x
/
3=2
C C:

Sometimes the appropriate substitutions are not as obvious as they were in Example 3,

and it may be necessary to manipulate the integrand algebraically to put it into a better

form for substitution.

E X A M P L E 4 Evaluate (a)

Z

1

x2
C 4x C 5

dx and (b)

Z

dx
p

e2x
� 1

.

Solution

(a)

Z

dx

x2
C 4x C 5

D

Z

dx

.x C 2/2 C 1
Let t D x C 2.

Then dt D dx.

D

Z

dt

t2 C 1

D tan�1
t C C D tan�1

.x C 2/C C:
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(b)

Z

dx
p

e2x
� 1
D

Z

dx

ex
p

1 � e�2x

D

Z

e�x dx
p

1 � .e�x/2
Let u D e�x .

Then du D �e�x dx.

D �

Z

du
p

1 � u2

D � sin�1
uC C D � sin�1

.e
�x
/C C:

The method of substitution cannot be forced to work. There is no substitution that

will do much good with the integral
R

x.2 C x7/1=5 dx, for instance. However, the

integral
R

x6.2Cx7/1=5 dx will yield to the substitution u D 2Cx7. The substitution

u D g.x/ is more likely to work if g0.x/ is a factor of the integrand.

The following theorem simplifies the use of the method of substitution in definite

integrals.

T H E O R E M

6

Substitution in a definite integral

Suppose that g is a differentiable function on Œa; b� that satisfies g.a/ D A and g.b/ D

B . Also suppose that f is continuous on the range of g. Then

Z b

a

f
�

g.x/
�

g
0
.x/ dx D

Z B

A

f .u/ du:

PROOF Let F be an antiderivative of f ; F 0.u/ D f .u/. Then

d

dx
F
�

g.x/
�

D F
0�
g.x/

�

g
0
.x/ D f

�

g.x/
�

g
0
.x/:

Thus,

Z b

a

f
�

g.x/
�

g
0
.x/ dx D F

�

g.x/
�

ˇ

ˇ

ˇ

ˇ

b

a

D F
�

g.b/
�

� F
�

g.a/
�

D F.B/ � F.A/ D F.u/

ˇ

ˇ

ˇ

ˇ

B

A

D

Z B

A

f .u/ du:

E X A M P L E 5 Evaluate the integral I D

Z 8

0

cos
p

x C 1
p

x C 1
dx.

Solution METHOD I. Let u D
p

x C 1. Then du D
dx

2
p

x C 1
. If x D 0, then

u D 1; if x D 8, then u D 3. Thus,

I D 2

Z 3

1

cosudu D 2 sinu

ˇ

ˇ

ˇ

ˇ

3

1

D 2 sin 3 � 2 sin 1:

METHOD II. We use the same substitution as in Method I, but we do not transform

the limits of integration from x values to u values. Hence, we must return to the

variable x before substituting in the limits:

I D 2

Z xD8

xD0

cosudu D 2 sinu

ˇ

ˇ

ˇ

ˇ

xD8

xD0

D 2 sin
p

x C 1

ˇ

ˇ

ˇ

ˇ

8

0

D 2 sin 3 � 2 sin 1:
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Note that the limits must be written x D 0 and x D 8 at any stage where the variable

is not x. It would have been wrong to write

I D 2

Z 8

0

cosudu

because this would imply that u, rather than x, goes from 0 to 8. Method I gives the

shorter solution and is therefore preferable. However, in cases where the transformed

limits (the u-limits) are very complicated, you might prefer to use Method II.

E X A M P L E 6 Find the area of the region bounded by y D
�

2C sin
x

2

�2

cos
x

2
,

the x-axis, and the lines x D 0 and x D � .

Solution Because y � 0 when 0 � x � � , the required area is

A D

Z �

0

�

2C sin
x

2

�2

cos
x

2
dx Let v D 2C sin

x

2
.

Then dv D
1

2
cos

x

2
dx

D 2

Z 3

2

v
2
dv D

2

3
v

3

ˇ

ˇ

ˇ

ˇ

3

2

D

2

3
.27 � 8/ D

38

3
square units:

Remark The condition that f be continuous on the range of the function u D g.x/

(for a � x � b) is essential in Theorem 6. Using the substitution u D x2 in the

integral
R 1

�1
x csc.x2

/ dx leads to the erroneous conclusion

Z 1

�1

x csc.x2
/ dx D

1

2

Z 1

1

cscudu D 0:

Although x csc.x2/ is an odd function, it is not continuous at 0, and it happens that

the given integral represents the difference of infinite areas. If we assume that f is

continuous on an interval containing A and B; then it suffices to know that u D g.x/

is one-to-one as well as differentiable. In this case the range of g will lie between A

and B; so the condition of Theorem 6 will be satisfied.

Trigonometric Integrals
The method of substitution is often useful for evaluating trigonometric integrals. We

begin by listing the integrals of the four trigonometric functions whose integrals we

have not yet seen. They arise often in applications and should be memorized.

Integrals of tangent, cotangent, secant, and cosecant
Z

tan x dx D ln j sec xj C C;

Z

cot x dx D ln j sin xj C C D � ln j csc xj C C;

Z

sec x dx D ln j sec x C tanxj C C;

Z

csc x dx D � ln j csc x C cot xj C C D ln j csc x � cot xj C C:
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(b)

Z

dx
p

e2x
� 1
D

Z

dx

ex
p

1 � e�2x

D

Z

e�x dx
p

1 � .e�x/2
Let u D e�x .

Then du D �e�x dx.

D �

Z

du
p

1 � u2

D � sin�1
uC C D � sin�1

.e
�x
/C C:

The method of substitution cannot be forced to work. There is no substitution that

will do much good with the integral
R

x.2 C x7/1=5 dx, for instance. However, the

integral
R

x6.2Cx7/1=5 dx will yield to the substitution u D 2Cx7. The substitution

u D g.x/ is more likely to work if g0.x/ is a factor of the integrand.

The following theorem simplifies the use of the method of substitution in definite

integrals.

T H E O R E M

6

Substitution in a definite integral

Suppose that g is a differentiable function on Œa; b� that satisfies g.a/ D A and g.b/ D

B . Also suppose that f is continuous on the range of g. Then

Z b

a

f
�

g.x/
�

g
0
.x/ dx D

Z B

A

f .u/ du:

PROOF Let F be an antiderivative of f ; F 0.u/ D f .u/. Then

d

dx
F
�

g.x/
�

D F
0�
g.x/

�

g
0
.x/ D f

�

g.x/
�

g
0
.x/:

Thus,

Z b

a

f
�

g.x/
�

g
0
.x/ dx D F

�

g.x/
�

ˇ

ˇ

ˇ

ˇ

b

a

D F
�

g.b/
�

� F
�

g.a/
�

D F.B/ � F.A/ D F.u/

ˇ

ˇ

ˇ

ˇ

B

A

D

Z B

A

f .u/ du:

E X A M P L E 5 Evaluate the integral I D

Z 8

0

cos
p

x C 1
p

x C 1
dx.

Solution METHOD I. Let u D
p

x C 1. Then du D
dx

2
p

x C 1
. If x D 0, then

u D 1; if x D 8, then u D 3. Thus,

I D 2

Z 3

1

cosudu D 2 sinu

ˇ

ˇ

ˇ

ˇ

3

1

D 2 sin 3 � 2 sin 1:

METHOD II. We use the same substitution as in Method I, but we do not transform

the limits of integration from x values to u values. Hence, we must return to the

variable x before substituting in the limits:

I D 2

Z xD8

xD0

cosudu D 2 sinu

ˇ

ˇ

ˇ

ˇ

xD8

xD0

D 2 sin
p

x C 1

ˇ

ˇ

ˇ

ˇ

8

0

D 2 sin 3 � 2 sin 1:
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Note that the limits must be written x D 0 and x D 8 at any stage where the variable

is not x. It would have been wrong to write

I D 2

Z 8

0

cosudu

because this would imply that u, rather than x, goes from 0 to 8. Method I gives the

shorter solution and is therefore preferable. However, in cases where the transformed

limits (the u-limits) are very complicated, you might prefer to use Method II.

E X A M P L E 6 Find the area of the region bounded by y D
�

2C sin
x

2

�2

cos
x

2
,

the x-axis, and the lines x D 0 and x D � .

Solution Because y � 0 when 0 � x � � , the required area is

A D

Z �

0

�

2C sin
x

2

�2

cos
x

2
dx Let v D 2C sin

x

2
.

Then dv D
1

2
cos

x

2
dx

D 2

Z 3

2

v
2
dv D

2

3
v

3

ˇ

ˇ

ˇ

ˇ

3

2

D

2

3
.27 � 8/ D

38

3
square units:

Remark The condition that f be continuous on the range of the function u D g.x/

(for a � x � b) is essential in Theorem 6. Using the substitution u D x2 in the

integral
R 1

�1
x csc.x2

/ dx leads to the erroneous conclusion

Z 1

�1

x csc.x2
/ dx D

1

2

Z 1

1

cscudu D 0:

Although x csc.x2/ is an odd function, it is not continuous at 0, and it happens that

the given integral represents the difference of infinite areas. If we assume that f is

continuous on an interval containing A and B; then it suffices to know that u D g.x/

is one-to-one as well as differentiable. In this case the range of g will lie between A

and B; so the condition of Theorem 6 will be satisfied.

Trigonometric Integrals
The method of substitution is often useful for evaluating trigonometric integrals. We

begin by listing the integrals of the four trigonometric functions whose integrals we

have not yet seen. They arise often in applications and should be memorized.

Integrals of tangent, cotangent, secant, and cosecant
Z

tan x dx D ln j sec xj C C;

Z

cot x dx D ln j sin xj C C D � ln j csc xj C C;

Z

sec x dx D ln j sec x C tanxj C C;

Z

csc x dx D � ln j csc x C cot xj C C D ln j csc x � cot xj C C:
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All of these can, of course, be checked by differentiating the right-hand sides. The first

two can be evaluated directly by rewriting tanx or cot x in terms of sinx and cos x and

using an appropriate substitution. For example,
Z

tan x dx D

Z

sin x

cos x
dx Let u D cos x.

Then du D � sin x dx.

D �

Z

du

u
D � ln juj C C

D � ln j cos xj C C D ln

ˇ

ˇ

ˇ

ˇ

1

cos x

ˇ

ˇ

ˇ

ˇ

C C D ln j sec xj C C:

The integral of sec x can be evaluated by rewriting it in the form
Z

secx dx D

Z

sec x.sec x C tan x/

sec x C tan x
dx

and using the substitution u D sec x C tan x. The integral of csc x can be evaluated

similarly. (Show that the two versions given for that integral are equivalent!)

We now consider integrals of the form
Z

sinm
x cosn

x dx:

If either m or n is an odd, positive integer, the integral can be done easily by sub-

stitution. If, say, n D 2k C 1 where k is an integer, then we can use the identity

sin2
x C cos2 x D 1 to rewrite the integral in the form
Z

sinm
x .1 � sin2

x/
k cos x dx;

which can be integrated using the substitution u D sinx. Similarly, u D cos x can be

used if m is an odd integer.

E X A M P L E 7 Evaluate (a)

Z

sin3
x cos8

x dx and (b)

Z

cos5
ax dx.

Solution

(a)

Z

sin3
x cos8

x dx D

Z

.1 � cos2
x/ cos8

x sin x dx Let u D cos x,

du D � sin x dx:

D �

Z

.1 � u
2
/ u

8
du D

Z

.u
10
� u

8
/ du

D

u11

11
�

u9

9
C C D

1

11
cos11

x �
1

9
cos9

x C C:

(b)

Z

cos5
ax dx D

Z

.1 � sin2
ax/

2 cos ax dx Let u D sin ax,

du D a cos ax dx:

D

1

a

Z

.1 � u
2
/
2
du D

1

a

Z

.1 � 2u
2
C u

4
/ du

D

1

a

�

u �
2

3
u

3
C

1

5
u

5

�

C C

D

1

a

�

sin ax �
2

3
sin3

ax C
1

5
sin5

ax

�

C C:

If the powers of sin x and cos x are both even, then we can make use of the double-

angle formulas (see Section P.7):

cos2
x D

1

2
.1C cos 2x/ and sin2

x D
1

2
.1 � cos 2x/:
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E X A M P L E 8
(Integrating even powers of sine and cosine) Verify the integra-

tion formulas

Z

cos2
x dx D

1

2
.x C sin x cos x/C C;

Z

sin2
x dx D

1

2
.x � sinx cos x/C C:

These integrals are encountered frequently and are worth remembering.

Solution Each of the integrals follows from the corresponding double-angle identity.

We do the first; the second is similar.

Z

cos2
x dx D

1

2

Z

.1C cos 2x/ dx

D

x

2
C

1

4
sin 2x C C

D

1

2
.x C sin x cos x/C C (since sin 2x D 2 sin x cos x):

E X A M P L E 9 Evaluate

Z

sin4
x dx.

Solution We will have to apply the double-angle formula twice.

Z

sin4
x dx D

1

4

Z

.1 � cos 2x/2 dx

D

1

4

Z

.1 � 2 cos 2x C cos2
2x/ dx

D

x

4
�

1

4
sin 2x C

1

8

Z

.1C cos 4x/ dx

D

x

4
�

1

4
sin 2x C

x

8
C

1

32
sin 4x C C

D

3

8
x �

1

4
sin 2x C

1

32
sin 4x C C

(Note that there is no point in inserting the constant of integration C until the last

integral has been evaluated.)

Using the identities sec2 x D 1 C tan2 x and csc2 x D 1 C cot2 x and one of the

substitutions u D sec x, u D tan x, u D cscx, or u D cot x, we can evaluate integrals

of the form

Z

secm
x tann

x dx or

Z

cscm
x cotn x dx;

unless m is odd and n is even. (If this is the case, these integrals can be handled by

integration by parts; see Section 6.1.)

E X A M P L E 10
(Integrals involving secants and tangents) Evaluate the follow-

ing integrals:

(a)

Z

tan2
x dx, (b)

Z

sec4
t dt , and (c)

Z

sec3
x tan3

x dx.
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All of these can, of course, be checked by differentiating the right-hand sides. The first

two can be evaluated directly by rewriting tanx or cot x in terms of sinx and cos x and

using an appropriate substitution. For example,
Z

tan x dx D

Z

sin x

cos x
dx Let u D cos x.

Then du D � sin x dx.

D �

Z

du

u
D � ln juj C C

D � ln j cos xj C C D ln

ˇ

ˇ

ˇ

ˇ

1

cos x

ˇ

ˇ

ˇ

ˇ

C C D ln j sec xj C C:

The integral of sec x can be evaluated by rewriting it in the form
Z

secx dx D

Z

sec x.sec x C tan x/

sec x C tan x
dx

and using the substitution u D sec x C tan x. The integral of csc x can be evaluated

similarly. (Show that the two versions given for that integral are equivalent!)

We now consider integrals of the form
Z

sinm
x cosn

x dx:

If either m or n is an odd, positive integer, the integral can be done easily by sub-

stitution. If, say, n D 2k C 1 where k is an integer, then we can use the identity

sin2
x C cos2 x D 1 to rewrite the integral in the form
Z

sinm
x .1 � sin2

x/
k cos x dx;

which can be integrated using the substitution u D sinx. Similarly, u D cos x can be

used if m is an odd integer.

E X A M P L E 7 Evaluate (a)

Z

sin3
x cos8

x dx and (b)

Z

cos5
ax dx.

Solution

(a)

Z

sin3
x cos8

x dx D

Z

.1 � cos2
x/ cos8

x sin x dx Let u D cos x,

du D � sin x dx:

D �

Z

.1 � u
2
/ u

8
du D

Z

.u
10
� u

8
/ du

D

u11

11
�

u9

9
C C D

1

11
cos11

x �
1

9
cos9

x C C:

(b)

Z

cos5
ax dx D

Z

.1 � sin2
ax/

2 cos ax dx Let u D sin ax,

du D a cos ax dx:

D

1

a

Z

.1 � u
2
/
2
du D

1

a

Z

.1 � 2u
2
C u

4
/ du

D

1

a

�

u �
2

3
u

3
C

1

5
u

5

�

C C

D

1

a

�

sin ax �
2

3
sin3

ax C
1

5
sin5

ax

�

C C:

If the powers of sin x and cos x are both even, then we can make use of the double-

angle formulas (see Section P.7):

cos2
x D

1

2
.1C cos 2x/ and sin2

x D
1

2
.1 � cos 2x/:
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E X A M P L E 8
(Integrating even powers of sine and cosine) Verify the integra-

tion formulas

Z

cos2
x dx D

1

2
.x C sin x cos x/C C;

Z

sin2
x dx D

1

2
.x � sinx cos x/C C:

These integrals are encountered frequently and are worth remembering.

Solution Each of the integrals follows from the corresponding double-angle identity.

We do the first; the second is similar.

Z

cos2
x dx D

1

2

Z

.1C cos 2x/ dx

D

x

2
C

1

4
sin 2x C C

D

1

2
.x C sin x cos x/C C (since sin 2x D 2 sin x cos x):

E X A M P L E 9 Evaluate

Z

sin4
x dx.

Solution We will have to apply the double-angle formula twice.

Z

sin4
x dx D

1

4

Z

.1 � cos 2x/2 dx

D

1

4

Z

.1 � 2 cos 2x C cos2
2x/ dx

D

x

4
�

1

4
sin 2x C

1

8

Z

.1C cos 4x/ dx

D

x

4
�

1

4
sin 2x C

x

8
C

1

32
sin 4x C C

D

3

8
x �

1

4
sin 2x C

1

32
sin 4x C C

(Note that there is no point in inserting the constant of integration C until the last

integral has been evaluated.)

Using the identities sec2 x D 1 C tan2 x and csc2 x D 1 C cot2 x and one of the

substitutions u D sec x, u D tan x, u D cscx, or u D cot x, we can evaluate integrals

of the form

Z

secm
x tann

x dx or

Z

cscm
x cotn x dx;

unless m is odd and n is even. (If this is the case, these integrals can be handled by

integration by parts; see Section 6.1.)

E X A M P L E 10
(Integrals involving secants and tangents) Evaluate the follow-

ing integrals:

(a)

Z

tan2
x dx, (b)

Z

sec4
t dt , and (c)

Z

sec3
x tan3

x dx.
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Solution

(a)

Z

tan2
x dx D

Z

.sec2
x � 1/ dx D tan x � x C C .

(b)

Z

sec4
t dt D

Z

.1C tan2
t/ sec2

t dt Let u D tan t ,

du D sec2 t dt:

D

Z

.1C u
2
/ du D uC

1

3
u

3
C C D tan t C

1

3
tan3

t C C:

(c)

Z

sec3
x tan3

x dx

D

Z

sec2
x .sec2

x � 1/ secx tan x dx Let u D sec x,

du D sec x tan x dx:

D

Z

.u
4
� u

2
/ du D

u5

5
�

u3

3
C C D

1

5
sec5

x �
1

3
sec3

x C C:

E X E R C I S E S 5.6

Evaluate the integrals in Exercises 1–44. Remember to include a

constant of integration with the indefinite integrals. Your answers

may appear different from those in the Answers section but may

still be correct. For example, evaluating I D
R

sinx cosx dx

using the substitution u D sinx leads to I D 1
2

sin2
x C C ; using

u D cosx leads to I D � 1
2

cos2 x C C ; and rewriting

I D
1
2

R

sin.2x/ dx leads to I D � 1
4

cos.2x/C C . These

answers are all equal except for different choices for the constant

of integration C : 1
2

sin2
x D �

1
2

cos2
C

1
2
D �

1
4

cos.2x/C 1
4

.

You can always check your own answer to an indefinite

integral by differentiating it to get back to the integrand. This is

often easier than comparing your answer with the answer in the

back of the book. You may find integrals that you can’t do, but you

should not make mistakes in those you can do because the answer

is so easily checked. (This is a good thing to remember during

tests and exams.)

1.

Z

e
5�2x

dx 2.

Z

cos.ax C b/ dx

3.

Z

p

3x C 4 dx 4.

Z

e
2x sin.e2x

/ dx

5.

Z

x dx

.4x2
C 1/5

6.

Z

sin
p

x
p

x
dx

7.

Z

x e
x2

dx 8.

Z

x
2
2

x3C1
dx

9.

Z

cosx

4C sin2
x
dx 10.

Z

sec2 x
p

1� tan2 x
dx

11.I

Z

ex
C 1

ex
� 1

dx 12.

Z

ln t

t
dt

13.

Z

ds
p

4 � 5s
14.

Z

x C 1
p

x2
C 2x C 3

dx

15.

Z

t dt
p

4 � t4
16.

Z

x2 dx

2C x6

17.I

Z

dx

ex
C 1

18.I

Z

dx

ex
C e�x

19.

Z

tanx ln cos x dx 20.

Z

x C 1
p

1� x2
dx

21.

Z

dx

x2
C 6x C 13

22.

Z

dx
p

4C 2x � x2

23.

Z

sin3
x cos5

x dx 24.

Z

sin4
t cos5

t dt

25.

Z

sin ax cos2
ax dx 26.

Z

sin2
x cos2

x dx

27.

Z

sin6
x dx 28.

Z

cos4
x dx

29.

Z

sec5
x tanx dx 30.

Z

sec6
x tan2

x dx

31.

Z

p

tanx sec4
x dx 32.

Z

sin�2=3
x cos3

x dx

33.

Z

cosx sin4
.sinx/ dx 34.

Z

sin3 lnx cos3 ln x

x
dx

35.

Z

sin2
x

cos4 x
dx 36.

Z

sin3
x

cos4 x
dx

37.

Z

csc5
x cot5 x dx 38.

Z

cos4 x

sin8
x
dx

39.

Z 4

0

x
3
.x

2
C 1/

� 1
2 dx 40.

Z

p
e

1

sin.� lnx/

x
dx

41.

Z �=2

0

sin4
x dx 42.

Z �

�=4

sin5
x dx

43.

Z e2

e

dt

t ln t
44.

Z

�2

9

�2

16

2sin
p

x cos
p

x
p

x
dx

45.I Use the identities cos 2� D 2 cos2 � � 1 D 1 � 2 sin2
� and

sin � D cos
�

�

2
� �

�

to help you evaluate the following:

Z �=2

0

p

1C cos x dx and

Z �=2

0

p

1 � sinx dx
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46. Find the area of the region bounded by

y D x=.x2
C 16/, y D 0, x D 0, and x D 2.

47. Find the area of the region bounded by

y D x=.x4
C 16/, y D 0, x D 0, and x D 2.

48. Express the area bounded by the ellipse

.x2=a2/C .y2=b2/ D 1 as a definite integral. Make a

substitution that converts this integral into one representing

the area of a circle, and hence evaluate it.

49.I Use the addition formulas for sin.x ˙ y/ and cos.x ˙ y/ from

Section P.7 to establish the following identities:

cosx cosy D
1

2

�

cos.x � y/C cos.x C y/
�

;

sinx siny D
1

2

�

cos.x � y/ � cos.x C y/
�

;

sinx cosy D
1

2

�

sin.x C y/C sin.x � y/
�

:

50.I Use the identities established in Exercise 49 to calculate the

following integrals:
Z

cos ax cos bx dx,

Z

sinax sin bx dx,

and

Z

sin ax cos bx dx.

51.I If m and n are integers, show that:

(i)

Z �

��

cosmx cosnx dx D 0 if m ¤ n,

(ii)

Z �

��

sinmx sinnx dx D 0 if m ¤ n,

(iii)

Z �

��

sinmx cos nx dx D 0.

52.I (Fourier coefficients) Suppose that for some positive integer

k,

f .x/ D
a0

2
C

k
X

nD1

.an cosnx C bn sinnx/

holds for all x in Œ��; ��. Use the result of Exercise 51 to

show that the coefficients am (0 � m � k) and bm

(1 � m � k), which are called the Fourier coefficients of f

on Œ��; ��, are given by

am D
1

�

Z �

��

f .x/ cosmx dx; bm D
1

�

Z �

��

f .x/ sinmx dx:

5.7 Areas of Plane Regions

In this section we review and extend the use of definite integrals to represent plane

areas. Recall that the integral
R b

a
f .x/ dx measures the area between the graph of f

and the x-axis from x D a to x D b, but treats as negative any part of this area that

lies below the x-axis. (We are assuming that a < b.) In order to express the total area

bounded by y D f .x/, y D 0, x D a, and x D b, counting all of the area positively,

we should integrate the absolute value of f (see Figure 5.27):

Z b

a

f .x/ dx D A1 � A2 and

Z b

a

jf .x/j dx D A1 C A2:

There is no “rule” for integrating
R b

a
jf .x/j dx; one must break the integral into a sum

y

x

y D f .x/
y D jf .x/j

A1
A2

A2

a b

Figure 5.27

of integrals over intervals where f .x/ > 0 (so jf .x/j D f .x/), and intervals where

f .x/ < 0 (so jf .x/j D �f .x/).

E X A M P L E 1
The area bounded by y D cos x, y D 0, x D 0, and x D 3�=2

(see Figure 5.28) is
y

x

y D cos x

�
2

3�
2

Figure 5.28

A D

Z 3�=2

0

j cos xj dx

D

Z �=2

0

cos x dx C

Z 3�=2

�=2

.� cos x/ dx

D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

� sin x

ˇ

ˇ

ˇ

ˇ

3�=2

�=2

D .1 � 0/ � .�1 � 1/ D 3 square units:
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Solution

(a)

Z

tan2
x dx D

Z

.sec2
x � 1/ dx D tan x � x C C .

(b)

Z

sec4
t dt D

Z

.1C tan2
t/ sec2

t dt Let u D tan t ,

du D sec2 t dt:

D

Z

.1C u
2
/ du D uC

1

3
u

3
C C D tan t C

1

3
tan3

t C C:

(c)

Z

sec3
x tan3

x dx

D

Z

sec2
x .sec2

x � 1/ secx tan x dx Let u D sec x,

du D sec x tan x dx:

D

Z

.u
4
� u

2
/ du D

u5

5
�

u3

3
C C D

1

5
sec5

x �
1

3
sec3

x C C:

E X E R C I S E S 5.6

Evaluate the integrals in Exercises 1–44. Remember to include a

constant of integration with the indefinite integrals. Your answers

may appear different from those in the Answers section but may

still be correct. For example, evaluating I D
R

sinx cosx dx

using the substitution u D sinx leads to I D 1
2

sin2
x C C ; using

u D cosx leads to I D � 1
2

cos2 x C C ; and rewriting

I D
1
2

R

sin.2x/ dx leads to I D � 1
4

cos.2x/C C . These

answers are all equal except for different choices for the constant

of integration C : 1
2

sin2
x D �

1
2

cos2
C

1
2
D �

1
4

cos.2x/C 1
4

.

You can always check your own answer to an indefinite

integral by differentiating it to get back to the integrand. This is

often easier than comparing your answer with the answer in the

back of the book. You may find integrals that you can’t do, but you

should not make mistakes in those you can do because the answer

is so easily checked. (This is a good thing to remember during

tests and exams.)

1.

Z

e
5�2x

dx 2.

Z

cos.ax C b/ dx

3.

Z

p

3x C 4 dx 4.

Z

e
2x sin.e2x

/ dx

5.

Z

x dx

.4x2
C 1/5

6.

Z

sin
p

x
p

x
dx

7.

Z

x e
x2

dx 8.

Z

x
2
2

x3C1
dx

9.

Z

cosx

4C sin2
x
dx 10.

Z

sec2 x
p

1� tan2 x
dx

11.I

Z

ex
C 1

ex
� 1

dx 12.

Z

ln t

t
dt

13.

Z

ds
p

4 � 5s
14.

Z

x C 1
p

x2
C 2x C 3

dx

15.

Z

t dt
p

4 � t4
16.

Z

x2 dx

2C x6

17.I

Z

dx

ex
C 1

18.I

Z

dx

ex
C e�x

19.

Z

tanx ln cos x dx 20.

Z

x C 1
p

1� x2
dx

21.

Z

dx

x2
C 6x C 13

22.

Z

dx
p

4C 2x � x2

23.

Z

sin3
x cos5

x dx 24.

Z

sin4
t cos5

t dt

25.

Z

sin ax cos2
ax dx 26.

Z

sin2
x cos2

x dx

27.

Z

sin6
x dx 28.

Z

cos4
x dx

29.

Z

sec5
x tanx dx 30.

Z

sec6
x tan2

x dx

31.

Z

p

tanx sec4
x dx 32.

Z

sin�2=3
x cos3

x dx

33.

Z

cosx sin4
.sinx/ dx 34.

Z

sin3 lnx cos3 ln x

x
dx

35.

Z

sin2
x

cos4 x
dx 36.

Z

sin3
x

cos4 x
dx

37.

Z

csc5
x cot5 x dx 38.

Z

cos4 x

sin8
x
dx

39.

Z 4

0

x
3
.x

2
C 1/

� 1
2 dx 40.

Z

p
e

1

sin.� lnx/

x
dx

41.

Z �=2

0

sin4
x dx 42.

Z �

�=4

sin5
x dx

43.

Z e2

e

dt

t ln t
44.

Z

�2

9

�2

16

2sin
p

x cos
p

x
p

x
dx

45.I Use the identities cos 2� D 2 cos2 � � 1 D 1 � 2 sin2
� and

sin � D cos
�

�

2
� �

�

to help you evaluate the following:

Z �=2

0

p

1C cos x dx and

Z �=2

0

p

1 � sinx dx
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46. Find the area of the region bounded by

y D x=.x2
C 16/, y D 0, x D 0, and x D 2.

47. Find the area of the region bounded by

y D x=.x4
C 16/, y D 0, x D 0, and x D 2.

48. Express the area bounded by the ellipse

.x2=a2/C .y2=b2/ D 1 as a definite integral. Make a

substitution that converts this integral into one representing

the area of a circle, and hence evaluate it.

49.I Use the addition formulas for sin.x ˙ y/ and cos.x ˙ y/ from

Section P.7 to establish the following identities:

cosx cosy D
1

2

�

cos.x � y/C cos.x C y/
�

;

sinx siny D
1

2

�

cos.x � y/ � cos.x C y/
�

;

sinx cosy D
1

2

�

sin.x C y/C sin.x � y/
�

:

50.I Use the identities established in Exercise 49 to calculate the

following integrals:
Z

cos ax cos bx dx,

Z

sinax sin bx dx,

and

Z

sin ax cos bx dx.

51.I If m and n are integers, show that:

(i)

Z �

��

cosmx cosnx dx D 0 if m ¤ n,

(ii)

Z �

��

sinmx sinnx dx D 0 if m ¤ n,

(iii)

Z �

��

sinmx cos nx dx D 0.

52.I (Fourier coefficients) Suppose that for some positive integer

k,

f .x/ D
a0

2
C

k
X

nD1

.an cosnx C bn sinnx/

holds for all x in Œ��; ��. Use the result of Exercise 51 to

show that the coefficients am (0 � m � k) and bm

(1 � m � k), which are called the Fourier coefficients of f

on Œ��; ��, are given by

am D
1

�

Z �

��

f .x/ cosmx dx; bm D
1

�

Z �

��

f .x/ sinmx dx:

5.7 Areas of Plane Regions

In this section we review and extend the use of definite integrals to represent plane

areas. Recall that the integral
R b

a
f .x/ dx measures the area between the graph of f

and the x-axis from x D a to x D b, but treats as negative any part of this area that

lies below the x-axis. (We are assuming that a < b.) In order to express the total area

bounded by y D f .x/, y D 0, x D a, and x D b, counting all of the area positively,

we should integrate the absolute value of f (see Figure 5.27):

Z b

a

f .x/ dx D A1 � A2 and

Z b

a

jf .x/j dx D A1 C A2:

There is no “rule” for integrating
R b

a
jf .x/j dx; one must break the integral into a sum

y

x

y D f .x/
y D jf .x/j

A1
A2

A2

a b

Figure 5.27

of integrals over intervals where f .x/ > 0 (so jf .x/j D f .x/), and intervals where

f .x/ < 0 (so jf .x/j D �f .x/).

E X A M P L E 1
The area bounded by y D cos x, y D 0, x D 0, and x D 3�=2

(see Figure 5.28) is
y

x

y D cos x

�
2

3�
2

Figure 5.28

A D

Z 3�=2

0

j cos xj dx

D

Z �=2

0

cos x dx C

Z 3�=2

�=2

.� cos x/ dx

D sin x

ˇ

ˇ

ˇ

ˇ

�=2

0

� sin x

ˇ

ˇ

ˇ

ˇ

3�=2

�=2

D .1 � 0/ � .�1 � 1/ D 3 square units:
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Areas Between Two Curves
Suppose that a plane region R is bounded by the graphs of two continuous functions,

y D f .x/ and y D g.x/, and the vertical straight lines x D a and x D b, as shown in

Figure 5.29(a). Assume that a < b and that f .x/ � g.x/ on Œa; b�, so the graph of f

lies below that of g. If f .x/ � 0 on Œa; b�, then the area A of R is the area above the

x-axis and under the graph of g minus the area above the x-axis and under the graph

of f W

A D

Z b

a

g.x/ dx �

Z b

a

f .x/ dx D

Z b

a

�

g.x/� f .x/
�

dx:

Figure 5.29

(a) The region R lying between two

graphs

(b) An area element of the region R

y

x

y D f .x/

y D g.x/

R

a b

y

x

y D f .x/

y D g.x/

R

a b

g.x/ � f .x/

dx

x

(a) (b)

It is useful to regard this formula as expressing A as the “sum” (i.e., the integral) of

infinitely many area elements

dA D .g.x/ � f .x// dx;

corresponding to values of x between a and b. Each such area element is the area

of an infinitely thin vertical rectangle of width dx and height g.x/ � f .x/ located at

position x (see Figure 5.29(b)). Even if f and g can take on negative values on Œa; b�,

this interpretation and the resulting area formula

A D

Z b

a

�

g.x/� f .x/
�

dx

remain valid, provided that f .x/ � g.x/ on Œa; b� so that all the area elements dA have

positive area. Using integrals to represent a quantity as a sum of differential elements

(i.e., a sum of little bits of the quantity) is a very helpful approach. We will do this

often in Chapter 7. Of course, what we are really doing is identifying the integral as a

limit of a suitable Riemann sum.

More generally, if the restriction f .x/ � g.x/ is removed, then the vertical rect-

angle of width dx at position x extending between the graphs of f and g has height

jf .x/� g.x/j and hence area

dA D jf .x/� g.x/j dx:

(See Figure 5.30.) Hence, the total area lying between the graphs y D f .x/ and

y D g.x/ and between the vertical lines x D a and x D b > a is given by

A D

Z b

a

ˇ

ˇf .x/� g.x/
ˇ

ˇdx:
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Figure 5.30 An area element for the

region between y D f .x/ and y D g.x/

y

x

jf .x/ � g.x/j

dx

a x b

y D f .x/

y D g.x/

In order to evaluate this integral, we have to determine the intervals on which f .x/ >

g.x/ or f .x/ < g.x/, and break the integral into a sum of integrals over each of these

intervals.

E X A M P L E 2
Find the area of the bounded, plane region R lying between the

curves y D x2
� 2x and y D 4 � x2.

Solution First, we must find the intersections of the curves, so we solve the equations

simultaneously:

x
2
� 2x D y D 4� x

2

2x
2
� 2x � 4 D 0

2.x � 2/.x C 1/ D 0 so x D 2 or x D �1.

The curves are sketched in Figure 5.31, and the bounded (finite) region between them

is shaded. (A sketch should always be made in problems of this sort.) Since 4 � x2
�

y

x

y D 4 � x2

y D x2
� 2x

�1 2

R

Figure 5.31

x2
� 2x for �1 � x � 2, the area A of R is given by

A D

Z 2

�1

�

.4 � x
2
/ � .x

2
� 2x/

�

dx

D

Z 2

�1

.4 � 2x
2
C 2x/ dx

D

�

4x �
2

3
x

3
C x

2

�
ˇ

ˇ

ˇ

ˇ

2

�1

D 4.2/ �
2

3
.8/C 4 �

�

�4C
2

3
C 1

�

D 9 square units:

Note that in representing the area as an integral we must subtract the height y to the

lower curve from the height y to the upper curve to get a positive area element dA.

Subtracting the wrong way would have produced a negative value for the area.

E X A M P L E 3
Find the total area A lying between the curves y D sin x and y D

cos x from x D 0 to x D 2� .
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Areas Between Two Curves
Suppose that a plane region R is bounded by the graphs of two continuous functions,

y D f .x/ and y D g.x/, and the vertical straight lines x D a and x D b, as shown in

Figure 5.29(a). Assume that a < b and that f .x/ � g.x/ on Œa; b�, so the graph of f

lies below that of g. If f .x/ � 0 on Œa; b�, then the area A of R is the area above the

x-axis and under the graph of g minus the area above the x-axis and under the graph

of f W

A D

Z b

a

g.x/ dx �

Z b

a

f .x/ dx D

Z b

a

�

g.x/� f .x/
�

dx:

Figure 5.29

(a) The region R lying between two

graphs

(b) An area element of the region R

y

x

y D f .x/

y D g.x/

R

a b

y

x

y D f .x/

y D g.x/

R

a b

g.x/ � f .x/

dx

x

(a) (b)

It is useful to regard this formula as expressing A as the “sum” (i.e., the integral) of

infinitely many area elements

dA D .g.x/ � f .x// dx;

corresponding to values of x between a and b. Each such area element is the area

of an infinitely thin vertical rectangle of width dx and height g.x/ � f .x/ located at

position x (see Figure 5.29(b)). Even if f and g can take on negative values on Œa; b�,

this interpretation and the resulting area formula

A D

Z b

a

�

g.x/� f .x/
�

dx

remain valid, provided that f .x/ � g.x/ on Œa; b� so that all the area elements dA have

positive area. Using integrals to represent a quantity as a sum of differential elements

(i.e., a sum of little bits of the quantity) is a very helpful approach. We will do this

often in Chapter 7. Of course, what we are really doing is identifying the integral as a

limit of a suitable Riemann sum.

More generally, if the restriction f .x/ � g.x/ is removed, then the vertical rect-

angle of width dx at position x extending between the graphs of f and g has height

jf .x/� g.x/j and hence area

dA D jf .x/� g.x/j dx:

(See Figure 5.30.) Hence, the total area lying between the graphs y D f .x/ and

y D g.x/ and between the vertical lines x D a and x D b > a is given by

A D

Z b

a

ˇ

ˇf .x/� g.x/
ˇ

ˇdx:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 5 – page 329 October 5, 2016

SECTION 5.7: Areas of Plane Regions 329

Figure 5.30 An area element for the

region between y D f .x/ and y D g.x/

y

x

jf .x/ � g.x/j

dx

a x b

y D f .x/

y D g.x/

In order to evaluate this integral, we have to determine the intervals on which f .x/ >

g.x/ or f .x/ < g.x/, and break the integral into a sum of integrals over each of these

intervals.

E X A M P L E 2
Find the area of the bounded, plane region R lying between the

curves y D x2
� 2x and y D 4 � x2.

Solution First, we must find the intersections of the curves, so we solve the equations

simultaneously:

x
2
� 2x D y D 4� x

2

2x
2
� 2x � 4 D 0

2.x � 2/.x C 1/ D 0 so x D 2 or x D �1.

The curves are sketched in Figure 5.31, and the bounded (finite) region between them

is shaded. (A sketch should always be made in problems of this sort.) Since 4 � x2
�

y

x

y D 4 � x2

y D x2
� 2x

�1 2

R

Figure 5.31

x2
� 2x for �1 � x � 2, the area A of R is given by

A D

Z 2

�1

�

.4 � x
2
/ � .x

2
� 2x/

�

dx

D

Z 2

�1

.4 � 2x
2
C 2x/ dx

D

�

4x �
2

3
x

3
C x

2

�
ˇ

ˇ

ˇ

ˇ

2

�1

D 4.2/ �
2

3
.8/C 4 �

�

�4C
2

3
C 1

�

D 9 square units:

Note that in representing the area as an integral we must subtract the height y to the

lower curve from the height y to the upper curve to get a positive area element dA.

Subtracting the wrong way would have produced a negative value for the area.

E X A M P L E 3
Find the total area A lying between the curves y D sin x and y D

cos x from x D 0 to x D 2� .
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Figure 5.32

y

x

y D sin x

y D cos x

�
4

2�

5�
4

Solution The region is shaded in Figure 5.32. Between 0 and 2� the graphs of sine

and cosine cross at x D �=4 and x D 5�=4. The required area is

A D

Z �=4

0

.cos x � sin x/ dx C

Z 5�=4

�=4

.sin x � cos x/ dx

C

Z 2�

5�=4

.cos x � sinx/ dx

D .sin x C cos x/

ˇ

ˇ

ˇ

ˇ

�=4

0

� .cos x C sinx/

ˇ

ˇ

ˇ

ˇ

5�=4

�=4

C .sin x C cos x/

ˇ

ˇ

ˇ

ˇ

2�

5�=4

D .
p

2 � 1/C .
p

2C
p

2/C .1C
p

2/ D 4
p

2 square units:

It is sometimes more convenient to use horizontal area elements instead of vertical

ones and integrate over an interval of the y-axis instead of the x-axis. This is usually

the case if the region whose area we want to find is bounded by curves whose equations

are written in terms of functions of y. In Figure 5.33(a), the region R lying to the right

of x D f .y/ and to the left of x D g.y/, and between the horizontal lines y D c and

y D d > c, has area element dA D
�

g.y/� f .y/
�

dy. Its area is

A D

Z d

c

�

g.y/ � f .y/
�

dy:

Figure 5.33

(a) A horizontal area element

(b) The finite region bounded by

x D y2
� 12 and x D y

y

x

R

g.y/ � f .y/

dy

d

c

x D g.y/

y

x D f .y/

y

x

�3

4

x D y2
� 12

x D y

�12

(a) (b)

E X A M P L E 4
Find the area of the plane region lying to the right of the parabola

x D y2
�12 and to the left of the straight line y D x, as illustrated

in Figure 5.33(b).

Solution For the intersections of the curves:

y
2
� 12 D x D y

y
2
� y � 12 D 0

.y � 4/.y C 3/ D 0 so y D 4 or y D �3.
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Observe that y2
� 12 � y for �3 � y � 4. Thus, the area is

A D

Z 4

�3

�

y � .y
2
� 12/

�

dy D

�

y2

2
�

y3

3
C 12y

�
ˇ

ˇ

ˇ

ˇ

4

�3

D

343

6
square units:

Of course, the same result could have been obtained by integrating in the x direction,

but the integral would have been more complicated:

A D

Z �3

�12

�p

12C x � .�
p

12C x/
�

dx C

Z 4

�3

�p

12C x � x
�

dxI

different integrals are required over the intervals where the region is bounded below

by the parabola and by the straight line.

E X E R C I S E S 5.7

In Exercises 1–16, sketch and find the area of the plane region

bounded by the given curves.

1. y D x; y D x
2 2. y D

p

x; y D x
2

3. y D x2
� 5; y D 3 � x

2

4. y D x2
� 2x; y D 6x � x

2

5. 2y D 4x � x2
; 2y C 3x D 6

6. x � y D 7; x D 2y
2
� y C 3

7. y D x3
; y D x 8. y D x3

; y D x
2

9. y D x3
; x D y

2

10. x D y2
; x D 2y

2
� y � 2

11. y D
1

x
; 2x C 2y D 5

12. y D .x2
� 1/

2
; y D 1 � x

2

13. y D
1

2
x

2
; y D

1

x2
C 1

14. y D
4x

3C x2
; y D 1

15. y D
4

x2
; y D 5 � x

2 16. x D y2
� �

2
; x D siny

Find the areas of the regions described in Exercises 17–28. It is

helpful to sketch the regions before writing an integral to represent

the area.

17. Bounded by y D sinx and y D cos x, and between two

consecutive intersections of these curves

18. Bounded by y D sin2
x and y D 1, and between two

consecutive intersections of these curves

19. Bounded by y D sinx and y D sin2
x, between x D 0 and

x D �=2

20. Bounded by y D sin2
x and y D cos2 x, and between two

consecutive intersections of these curves

21. Under y D 4x=� and above y D tanx, between x D 0 and

the first intersection of the curves to the right of x D 0

22. Bounded by y D x1=3 and the component of y D tan.�x=4/

that passes through the origin

23. Bounded by y D 2 and the component of y D sec x that

passes through the point .0; 1/

24. Bounded by y D
p

2 cos.�x=4/ and y D jxj

25. Bounded by y D sin.�x=2/ and y D x

G 26. Bounded by y D ex and y D x C 2

27. Find the total area enclosed by the curve y2
D x2

� x4.

28. Find the area of the closed loop of the curve y2
D x4.2C x/

that lies to the left of the origin.

29. Find the area of the finite plane region that is bounded by the

curve y D ex , the line x D 0, and the tangent line to y D ex

at x D 1.

30.I Find the area of the finite plane region bounded by the curve

y D x3 and the tangent line to that curve at the point .1; 1/.

Hint: Find the other point at which that tangent line meets the

curve.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ sigma notation ˘ a partition of an interval

˘ a Riemann sum ˘ a definite integral

˘ an indefinite integral ˘ an integrable function

˘ an area element ˘ an evaluation symbol

˘ the triangle inequality for integrals

˘ a piecewise continuous function
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Figure 5.32

y

x

y D sin x

y D cos x

�
4

2�

5�
4

Solution The region is shaded in Figure 5.32. Between 0 and 2� the graphs of sine

and cosine cross at x D �=4 and x D 5�=4. The required area is

A D

Z �=4

0

.cos x � sin x/ dx C

Z 5�=4

�=4

.sin x � cos x/ dx

C

Z 2�

5�=4

.cos x � sinx/ dx

D .sin x C cos x/

ˇ

ˇ

ˇ

ˇ

�=4

0

� .cos x C sinx/

ˇ

ˇ

ˇ

ˇ

5�=4

�=4

C .sin x C cos x/

ˇ

ˇ

ˇ

ˇ

2�

5�=4

D .
p

2 � 1/C .
p

2C
p

2/C .1C
p

2/ D 4
p

2 square units:

It is sometimes more convenient to use horizontal area elements instead of vertical

ones and integrate over an interval of the y-axis instead of the x-axis. This is usually

the case if the region whose area we want to find is bounded by curves whose equations

are written in terms of functions of y. In Figure 5.33(a), the region R lying to the right

of x D f .y/ and to the left of x D g.y/, and between the horizontal lines y D c and

y D d > c, has area element dA D
�

g.y/� f .y/
�

dy. Its area is

A D

Z d

c

�

g.y/ � f .y/
�

dy:

Figure 5.33

(a) A horizontal area element

(b) The finite region bounded by

x D y2
� 12 and x D y

y

x

R

g.y/ � f .y/

dy

d

c

x D g.y/

y

x D f .y/

y

x

�3

4

x D y2
� 12

x D y

�12

(a) (b)

E X A M P L E 4
Find the area of the plane region lying to the right of the parabola

x D y2
�12 and to the left of the straight line y D x, as illustrated

in Figure 5.33(b).

Solution For the intersections of the curves:

y
2
� 12 D x D y

y
2
� y � 12 D 0

.y � 4/.y C 3/ D 0 so y D 4 or y D �3.
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Observe that y2
� 12 � y for �3 � y � 4. Thus, the area is

A D

Z 4

�3

�

y � .y
2
� 12/

�

dy D

�

y2

2
�

y3

3
C 12y

�
ˇ

ˇ

ˇ

ˇ

4

�3

D

343

6
square units:

Of course, the same result could have been obtained by integrating in the x direction,

but the integral would have been more complicated:

A D

Z �3

�12

�p

12C x � .�
p

12C x/
�

dx C

Z 4

�3

�p

12C x � x
�

dxI

different integrals are required over the intervals where the region is bounded below

by the parabola and by the straight line.

E X E R C I S E S 5.7

In Exercises 1–16, sketch and find the area of the plane region

bounded by the given curves.

1. y D x; y D x
2 2. y D

p

x; y D x
2

3. y D x2
� 5; y D 3 � x

2

4. y D x2
� 2x; y D 6x � x

2

5. 2y D 4x � x2
; 2y C 3x D 6

6. x � y D 7; x D 2y
2
� y C 3

7. y D x3
; y D x 8. y D x3

; y D x
2

9. y D x3
; x D y

2

10. x D y2
; x D 2y

2
� y � 2

11. y D
1

x
; 2x C 2y D 5

12. y D .x2
� 1/

2
; y D 1 � x

2

13. y D
1

2
x

2
; y D

1

x2
C 1

14. y D
4x

3C x2
; y D 1

15. y D
4

x2
; y D 5 � x

2 16. x D y2
� �

2
; x D siny

Find the areas of the regions described in Exercises 17–28. It is

helpful to sketch the regions before writing an integral to represent

the area.

17. Bounded by y D sinx and y D cos x, and between two

consecutive intersections of these curves

18. Bounded by y D sin2
x and y D 1, and between two

consecutive intersections of these curves

19. Bounded by y D sinx and y D sin2
x, between x D 0 and

x D �=2

20. Bounded by y D sin2
x and y D cos2 x, and between two

consecutive intersections of these curves

21. Under y D 4x=� and above y D tanx, between x D 0 and

the first intersection of the curves to the right of x D 0

22. Bounded by y D x1=3 and the component of y D tan.�x=4/

that passes through the origin

23. Bounded by y D 2 and the component of y D sec x that

passes through the point .0; 1/

24. Bounded by y D
p

2 cos.�x=4/ and y D jxj

25. Bounded by y D sin.�x=2/ and y D x

G 26. Bounded by y D ex and y D x C 2

27. Find the total area enclosed by the curve y2
D x2

� x4.

28. Find the area of the closed loop of the curve y2
D x4.2C x/

that lies to the left of the origin.

29. Find the area of the finite plane region that is bounded by the

curve y D ex , the line x D 0, and the tangent line to y D ex

at x D 1.

30.I Find the area of the finite plane region bounded by the curve

y D x3 and the tangent line to that curve at the point .1; 1/.

Hint: Find the other point at which that tangent line meets the

curve.

C H A P T E R R E V I E W

Key Ideas

� What do the following terms and phrases mean?

˘ sigma notation ˘ a partition of an interval

˘ a Riemann sum ˘ a definite integral

˘ an indefinite integral ˘ an integrable function

˘ an area element ˘ an evaluation symbol

˘ the triangle inequality for integrals

˘ a piecewise continuous function
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˘ the average value of function f on Œa; b�

˘ the method of substitution

� State the Mean-Value Theorem for integrals.

� State the Fundamental Theorem of Calculus.

� List as many properties of the definite integral as you can.

� What is the relationship between the definite integral and the

indefinite integral of a function f on an interval Œa; b�?

� What is the derivative of
R g.x/

f .x/
h.t/ dt with respect

to x?
� How can the area between the graphs of two functions be

calculated?

Review Exercises

1. Show that
2j C 1

j 2.j C 1/2
D

1

j 2
�

1

.j C 1/2
; hence evaluate

n
X

j D1

2j C 1

j 2.j C 1/2
.

2. (Stacking balls) A display of golf balls in a sporting goods

store is built in the shape of a pyramid with a rectangular base

measuring 40 balls long and 30 balls wide. The next layer up is

39 balls by 29 balls, etc. How many balls are in the pyramid?

3. Let Pn D fx0 D 1; x1; x2; : : : ; xn D 3g be a parti-

tion of Œ1; 3� into n subintervals of equal length, and let

f .x/ D x2
� 2x C 3. Evaluate

Z 3

1

f .x/ dx by finding

limn!1
Pn

iD1 f .xi /�xi :

4. Interpret Rn D

n
X

iD1

1

n

r

1C
i

n
as a Riemann sum for a certain

function f on the interval Œ0; 1�; hence evaluate limn!1Rn.

Evaluate the integrals in Exercises 5–8 without using the Funda-

mental Theorem of Calculus.

5.

Z �

��

.2 � sinx/ dx 6.

Z

p
5

0

p

5 � x2 dx

7.

Z 3

1

�

1 �
x

2

�

dx 8.

Z �

0

cos x dx

Find the average values of the functions in Exercises 9–10 over the

indicated intervals.

9. f .x/ D 2 � sinx3 on Œ��; ��

10. h.x/ D jx � 2j on Œ0; 3�

Find the derivatives of the functions in Exercises 11–14.

11. f .t/ D

Z t

13

sin.x2
/ dx 12. f .x/ D

Z sin x

�13

p

1C t2 dt

13. g.s/ D

Z 1

4s

e
sin u

du 14. g.�/ D

Z ecos �

esin �

lnx dx

15. Solve the integral equation 2f .x/C 1 D 3

Z 1

x

f .t/ dt .

16. Use the substitution x D � � u to show that

Z �

0

x f .sin x/ dx D
�

2

Z �

0

f .sin x/ dx

for any function f continuous on Œ0; 1�.

Find the areas of the finite plane regions bounded by the indicated

graphs in Exercises 17–22.

17. y D 2C x � x2 and y D 0

18. y D .x � 1/2; y D 0; and x D 0

19. x D y � y4 and x D 0 20. y D 4x � x2 and y D 3

21. y D sinx; y D cos 2x; x D 0; and x D �=6

22. y D 5 � x2 and y D 4=x2

Evaluate the integrals in Exercises 23–30.

23.

Z

x
2 cos.2x3

C 1/ dx 24.

Z e

1

lnx

x
dx

25.

Z 4

0

p

9t2 C t4 dt 26.

Z

sin3
.�x/ dx

27.

Z ln 2

0

eu

4C e2u
du 28.

Z 4
p

e

1

tan2 � lnx

x
dx

29.

Z

sin
p

2s C 1
p

2s C 1
ds 30.

Z

cos2 t

5
sin2 t

5
dt

31. Find the minimum value of F.x/ D

Z x2�2x

0

1

1C t2
dt . Does

F have a maximum value? Why?

32. Find the maximum value of
R b

a .4x�x
2/ dx for intervals Œa; b�,

where a < b. How do you know such a maximum value ex-

ists?

33. An object moves along the x-axis so that its position at time t

is given by the function x.t/. In Section 2.11 we defined the

average velocity of the object over the time interval Œt0; t1� to

be vav D

�

x.t1/ � x.t0/

�

=.t1 � t0/. Show that vav is, in fact,

the average value of the velocity function v.t/ D dx=dt over

the interval Œt0; t1�.

34. If an object falls from rest under constant gravitational acceler-

ation, show that its average height during the time T of its fall

is its height at time T=
p

3.

35. Find two numbers x1 and x2 in the interval Œ0; 1� with x1 < x2

such that if f .x/ is any cubic polynomial (i.e., polynomial of

degree 3), then

Z 1

0

f .x/ dx D
f .x1/C f .x2/

2
:

Challenging Problems

1. Evaluate the upper and lower Riemann sums, U.f; Pn/ and

L.f; Pn/, for f .x/ D 1=x on the interval Œ1; 2� for the par-

tition Pn with division points xi D 2
i=n for 0 � i � n. Verify

that limn!1 U.f; Pn/ D ln 2 D limn!1L.f; Pn/.

2.I (a) Use the addition formulas for cos.a C b/ and cos.a � b/

to show that

cos
�

.j C
1
2
/t

�

� cos
�

.j �
1
2
/t

�

D �2 sin. 1
2
t / sin.jt/;

and hence deduce that if t=.2�/ is not an integer, then

n
X

j D1

sin.jt/ D
cos t

2
� cos

�

.nC
1
2
/t

�

2 sin t
2

:

(b) Use the result of part (a) to evaluate
R �=2

0 sinx dx as a

limit of a Riemann sum.
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3. (a) Use the method of Problem 2 to show that if t=.2�/ is not

an integer, then

n
X

j D1

cos.jt/ D
sin
�

.nC
1
2
/t

�

� sin t
2

2 sin t
2

:

(b) Use the result to part (a) to evaluate
R �=3

0 cos x dx as a

limit of a Riemann sum.

4. Let f .x/ D 1=x2 and let 1 D x0 < x1 < x2 < � � � < xn D 2,

so that fx0; x1; x2; : : : ; xng is a partition of Œ1; 2� into n subin-

tervals. Show that ci D
p

xi�1xi is in the i th subinter-

val Œxi�1; xi � of the partition, and evaluate the Riemann sum
Pn

iD1 f .ci /�xi . What does this imply about
R 2

1 .1=x
2/ dx?

5.I (a) Use mathematical induction to verify that for every pos-

itive integer k;
Pn

j D1 j
k
D

nkC1

k C 1
C

nk

2
C Pk�1.n/;

where Pk�1 is a polynomial of degree at most k�1. Hint:

Start by iterating the identity

.j C 1/
kC1
� j

kC1
D .k C 1/j

k
C

.k C 1/k

2
j

k�1

C lower powers of j

for j D 1, 2, 3, : : : , k and adding.

(b) Deduce from (a) that

Z a

0

x
k
dx D

akC1

k C 1
:

M 6. Let C be the cubic curve y D ax3
C bx2

C cx C d , and let

P be any point on C . The tangent to C at P meets C again at

pointQ. The tangent to C atQ meets C again atR. Show that

the area between C and the tangent at Q is 16 times the area

between C and the tangent at P:

M 7. Let C be the cubic curve y D ax3
C bx2

C cx C d , and let

P be any point on C . The tangent to C at P meets C again at

point Q. Let R be the inflection point of C . Show that R lies

between P and Q on C and that QR divides the area between

C and its tangent at P in the ratio 16/11.

M 8. (Double tangents) Let line PQ be tangent to the graph C of

the quartic polynomial f .x/ D ax4
C bx3

C cx2
C dx C e

at two distinct points: P D .p; f .p// and Q D .q; f .q//. Let

U D .u; f .u// and V D .v; f .v// be the other two points

where the line tangent to C at T D ..pCq/=2; f ..pCq/=2//

meets C . If A and B are the two inflection points of C , let

R and S be the other two points where AB meets C . (See

Figure 5.34. Also see Challenging Problem 17 in Chapter 2 for

more background.)

(a) Find the ratio of the area bounded by UV and C to the

area bounded by PQ and C .

(b) Show that the area bounded by RS and C is divided at A

and B into three parts in the ratio 1 W 2 W 1.

Q

P

A

R

U

B

S

V

T

Figure 5.34
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˘ the average value of function f on Œa; b�

˘ the method of substitution

� State the Mean-Value Theorem for integrals.

� State the Fundamental Theorem of Calculus.

� List as many properties of the definite integral as you can.

� What is the relationship between the definite integral and the

indefinite integral of a function f on an interval Œa; b�?

� What is the derivative of
R g.x/

f .x/
h.t/ dt with respect

to x?
� How can the area between the graphs of two functions be

calculated?

Review Exercises

1. Show that
2j C 1

j 2.j C 1/2
D

1

j 2
�

1

.j C 1/2
; hence evaluate

n
X

j D1

2j C 1

j 2.j C 1/2
.

2. (Stacking balls) A display of golf balls in a sporting goods

store is built in the shape of a pyramid with a rectangular base

measuring 40 balls long and 30 balls wide. The next layer up is

39 balls by 29 balls, etc. How many balls are in the pyramid?

3. Let Pn D fx0 D 1; x1; x2; : : : ; xn D 3g be a parti-

tion of Œ1; 3� into n subintervals of equal length, and let

f .x/ D x2
� 2x C 3. Evaluate

Z 3

1

f .x/ dx by finding

limn!1
Pn

iD1 f .xi /�xi :

4. Interpret Rn D

n
X

iD1

1

n

r

1C
i

n
as a Riemann sum for a certain

function f on the interval Œ0; 1�; hence evaluate limn!1Rn.

Evaluate the integrals in Exercises 5–8 without using the Funda-

mental Theorem of Calculus.

5.

Z �

��

.2 � sinx/ dx 6.

Z

p
5

0

p

5 � x2 dx

7.

Z 3

1

�

1 �
x

2

�

dx 8.

Z �

0

cos x dx

Find the average values of the functions in Exercises 9–10 over the

indicated intervals.

9. f .x/ D 2 � sinx3 on Œ��; ��

10. h.x/ D jx � 2j on Œ0; 3�

Find the derivatives of the functions in Exercises 11–14.

11. f .t/ D

Z t

13

sin.x2
/ dx 12. f .x/ D

Z sin x

�13

p

1C t2 dt

13. g.s/ D

Z 1

4s

e
sin u

du 14. g.�/ D

Z ecos �

esin �

lnx dx

15. Solve the integral equation 2f .x/C 1 D 3

Z 1

x

f .t/ dt .

16. Use the substitution x D � � u to show that

Z �

0

x f .sin x/ dx D
�

2

Z �

0

f .sin x/ dx

for any function f continuous on Œ0; 1�.

Find the areas of the finite plane regions bounded by the indicated

graphs in Exercises 17–22.

17. y D 2C x � x2 and y D 0

18. y D .x � 1/2; y D 0; and x D 0

19. x D y � y4 and x D 0 20. y D 4x � x2 and y D 3

21. y D sinx; y D cos 2x; x D 0; and x D �=6

22. y D 5 � x2 and y D 4=x2

Evaluate the integrals in Exercises 23–30.

23.

Z

x
2 cos.2x3

C 1/ dx 24.

Z e

1

lnx

x
dx

25.

Z 4

0

p

9t2 C t4 dt 26.

Z

sin3
.�x/ dx

27.

Z ln 2

0

eu

4C e2u
du 28.

Z 4
p

e

1

tan2 � lnx

x
dx

29.

Z

sin
p

2s C 1
p

2s C 1
ds 30.

Z

cos2 t

5
sin2 t

5
dt

31. Find the minimum value of F.x/ D

Z x2�2x

0

1

1C t2
dt . Does

F have a maximum value? Why?

32. Find the maximum value of
R b

a .4x�x
2/ dx for intervals Œa; b�,

where a < b. How do you know such a maximum value ex-

ists?

33. An object moves along the x-axis so that its position at time t

is given by the function x.t/. In Section 2.11 we defined the

average velocity of the object over the time interval Œt0; t1� to

be vav D

�

x.t1/ � x.t0/

�

=.t1 � t0/. Show that vav is, in fact,

the average value of the velocity function v.t/ D dx=dt over

the interval Œt0; t1�.

34. If an object falls from rest under constant gravitational acceler-

ation, show that its average height during the time T of its fall

is its height at time T=
p

3.

35. Find two numbers x1 and x2 in the interval Œ0; 1� with x1 < x2

such that if f .x/ is any cubic polynomial (i.e., polynomial of

degree 3), then

Z 1

0

f .x/ dx D
f .x1/C f .x2/

2
:

Challenging Problems

1. Evaluate the upper and lower Riemann sums, U.f; Pn/ and

L.f; Pn/, for f .x/ D 1=x on the interval Œ1; 2� for the par-

tition Pn with division points xi D 2
i=n for 0 � i � n. Verify

that limn!1 U.f; Pn/ D ln 2 D limn!1L.f; Pn/.

2.I (a) Use the addition formulas for cos.a C b/ and cos.a � b/

to show that

cos
�

.j C
1
2
/t

�

� cos
�

.j �
1
2
/t

�

D �2 sin. 1
2
t / sin.jt/;

and hence deduce that if t=.2�/ is not an integer, then

n
X

j D1

sin.jt/ D
cos t

2
� cos

�

.nC
1
2
/t

�

2 sin t
2

:

(b) Use the result of part (a) to evaluate
R �=2

0 sinx dx as a

limit of a Riemann sum.
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3. (a) Use the method of Problem 2 to show that if t=.2�/ is not

an integer, then

n
X

j D1

cos.jt/ D
sin
�

.nC
1
2
/t

�

� sin t
2

2 sin t
2

:

(b) Use the result to part (a) to evaluate
R �=3

0 cos x dx as a

limit of a Riemann sum.

4. Let f .x/ D 1=x2 and let 1 D x0 < x1 < x2 < � � � < xn D 2,

so that fx0; x1; x2; : : : ; xng is a partition of Œ1; 2� into n subin-

tervals. Show that ci D
p

xi�1xi is in the i th subinter-

val Œxi�1; xi � of the partition, and evaluate the Riemann sum
Pn

iD1 f .ci /�xi . What does this imply about
R 2

1 .1=x
2/ dx?

5.I (a) Use mathematical induction to verify that for every pos-

itive integer k;
Pn

j D1 j
k
D

nkC1

k C 1
C

nk

2
C Pk�1.n/;

where Pk�1 is a polynomial of degree at most k�1. Hint:

Start by iterating the identity

.j C 1/
kC1
� j

kC1
D .k C 1/j

k
C

.k C 1/k

2
j

k�1

C lower powers of j

for j D 1, 2, 3, : : : , k and adding.

(b) Deduce from (a) that

Z a

0

x
k
dx D

akC1

k C 1
:

M 6. Let C be the cubic curve y D ax3
C bx2

C cx C d , and let

P be any point on C . The tangent to C at P meets C again at

pointQ. The tangent to C atQ meets C again atR. Show that

the area between C and the tangent at Q is 16 times the area

between C and the tangent at P:

M 7. Let C be the cubic curve y D ax3
C bx2

C cx C d , and let

P be any point on C . The tangent to C at P meets C again at

point Q. Let R be the inflection point of C . Show that R lies

between P and Q on C and that QR divides the area between

C and its tangent at P in the ratio 16/11.

M 8. (Double tangents) Let line PQ be tangent to the graph C of

the quartic polynomial f .x/ D ax4
C bx3

C cx2
C dx C e

at two distinct points: P D .p; f .p// and Q D .q; f .q//. Let

U D .u; f .u// and V D .v; f .v// be the other two points

where the line tangent to C at T D ..pCq/=2; f ..pCq/=2//

meets C . If A and B are the two inflection points of C , let

R and S be the other two points where AB meets C . (See

Figure 5.34. Also see Challenging Problem 17 in Chapter 2 for

more background.)

(a) Find the ratio of the area bounded by UV and C to the

area bounded by PQ and C .

(b) Show that the area bounded by RS and C is divided at A

and B into three parts in the ratio 1 W 2 W 1.

Q

P

A

R

U

B

S

V

T

Figure 5.34
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