
Depth image Compression Using
Geometrical Wavelets

Majid Yaghouti Jafarabad, Vahid Kiani, Taha Hamedani, Ahad Harati

Robot Perception Laboratory, Computer Engineering Department

Ferdowsi University of Mashhad
Mashhad, Iran

ma.yaghouti@stu-mail.um.ac.ir, vahid.kiani@rocketmail.com, taha.hamedani@stu-mail.um.ac.ir, a.harati@um.ac.ir

Abstract— Depth images are frequently used in robotic and
3D vision for different purposes like mapping or object
recognition. Yet recently, they are encountered in many
other areas such as free viewpoint and 3D television. Their
innate redundancy especially in high frame rates and
resolutions demands an effective compression algorithm or
otherwise the required data rates grow prohibitively large.

Standard lossy image and video compression methods, such
as JPEG2000 and H264, remove high frequency and usually
unimportant components of the signal in intensity images;
which in the case of range or depth images accounts for
edges and are essential for correct reconstruction of the
scene geometry. Therefore, preserving geometrical
properties of depth images should be the main objective in
an effective compression algorithm. In this paper, Wedgelets,
Platelets and Wedge-Platelets are proposed for depth image
compression and are compared with JPEG2000 and H264.
Moreover, for the first time, these methods are applied for
compression of Kinect sensor depth images. Compared with
previous works, it is shown that higher compression ratios
up to 3dB can be achieved.

Keywords- Geometrical Wavelets, Wedgelet, Platelet,
Wedge-Platelet, Depth Image Compression, Kinect,
JPEG2000, H264.

I. INTRODUCTION

Depth images are extensively used in robotic and 3D
vision applications for different purposes like mapping or
object recognition. With advent of Kinect sensor as a
component of Microsoft X-Box 360, range and depth
images are even more common place in such tasks and
applications. Even such cheap sensor is capable of
producing depth images at 30 frames per second.
Therefore, accumulation of raw data soon exhausts any
storage facility and compression is mandatory. On the
other hand, a recent fast growth in 3DTV and free-
viewpoint video fileds, introduces another instance of the
depth image compression problem in a different setup.
Hence, compression of depth images for transmission or
storage is now an important and interesting research
subject. In this paper, depth image is considered to be the

z-map of the scene. In other words, each pixel in a depth
image measures the z-coordinate of the corresponding 3D
point in the scene or equivalently its distance to the xy-
plane. It's worth mentioning that some texts use depth map
to denote an image of distances to a single point, perhaps a
camera, especially in robotic field. We use the word range
image to denote this latter case and reserve depth image or
depth map for the former case.

Main goal of traditional image compression techniques
is preserving subjective quality; however, the aim of
recently emerging depth image compression should be
preserving geometrical characteristics of underlying scene.
In other words, to obtain a reasonable and exact enough
3D reconstruction of the observed scene, one should
preserve angle of corners and aspect ratio in addition of
volume of the observed space. Polyhedral approximations
seem a proper choice in many applications when indoor
environments are considered.

In traditional image compression scope, wavelet
transform is widely used because of its sparse and multi-
resolution representation. By performing a wavelet
transform, most of coefficients tend toward zero or a small
enough number to be safely ignored. Hence, high
compression rates for natural scenes may be achieved.
However, classical wavelets are best suited for
representing point singularities and not higher dimensional
artifacts, i.e. geometries, encountered in multidimensional
data. Edges in 2D images are among well-known examples
of such geometrical artifacts. In natural scenes, edges
usually have some regularity along their extension. But
tensor product multidimensional generalization of 1D
wavelet transform, i.e. separable multidimensional
transform, has no way to benefit such regularity toward
obtaining more sparse representation. Furthermore, indoor
depth images exhibit distinct characteristics like smooth
regions and simple texture-less structures in addition to
sharp edges. Therefore, special purpose transforms which
preserve these characteristics could be successfully used to
compress depth maps. Wedgelets [2] and Platelets [7] are
therefore a proper choice for depth image representation.

More than a decade ago, Donoho and Candes [1, 2]
introduced an improved family of wavelets, now widely
called geometrical wavelets, to better capture regularity of

singular points in 2D images considering usually
encountered dominant directionality. Geometrical wavelets
have been extending rapidly in recent years [4,5,8-11,15]
and come in two main groups: adaptive and non-adaptive.

Non-adaptive geometrical wavelets try to represent
image data using a priori fixed set of basis functions which
are usually obtained from classical wavelets by operations
such as rotation or shear transformation. Ridgelets [1],
Curvelets [3], Bandlets [4] and Contourlets [5] are among
the most popular non-adaptive geometrical wavelets
already used toward more sparse image representation.

In contrast, adaptive geometrical wavelets such as
Wedgelets [2], Beamlets [6] and Platelets [7] use a
customized dictionary of basis functions to represent each
image. The dictionary is built by processing the image data
which is to be represented and hence is adapted to the
image at hand. In other words, adaptive geometrical
wavelets exploit an optimal subset of basis functions to
represent each image. A quad-tree is used to represent the
given image using constructed atoms or words in the
dictionary. The adaptation may result a better
representation (smaller error), but the price to pay is higher
computational complexity in discovering the quad-tree
structure and building the dictionary.

Fundamental work on geometrical wavelets began by
Donoho who introduced Wedgelets and Beamlets [2, 6].
Willett in [7] presented a generalization of wedgelets
called platelets which is suitable for representing piecewise
smooth functions and signals. Lisowska in [8] studied
geometrical wavelets for intensity image compression and
denoising. She extended wedgelets into smoothlets [9]
suitable for representing images with smooth edges.
Merkle in [10] used platelets for compression of depth
images in multiple view video streams.

In this paper, we extend Merkle's work [10] by
choosing basis functions more accurately, and applying
these methods to indoor depth images of Kinect.
Considering the fact that images of Kinect are usually
quiet noisy, there are some negative points in the case of
geometry coding; however, we show that our proposed
methods can be successfully used for noisy depth image
compression purposes. In addition, performance of
different geometrical wavelets in compression of depth
images has not been examined.

In the proposed methods a quad-tree based method is
used to evaluate several geometrical wavelets in depth
image compression. In next section, quad-tree based
compression framework is described. Section 3 presents
experimental results and discussions. In section 4, the
paper is concluded and guidelines to future works are
presented.

II. COMPRESSION FRAMEWORK
In this section, different stages of compression

framework are explained. First a complete quad-tree
structure is generated for the whole image. Then four
different modeling functions are used to estimate each
block of image in each resolution. Thereafter, coefficients
of modeling functions are quantized using a uniform

quantization strategy. Finally the quad-tree is pruned and
coded.

A. Image modeling
In this paper to estimate each block of image we use

four modeling functions namely constant, wedge, linear
and plate. A constant function estimates all pixels of the
block with a single gray level and describes uniform parts
of image very well. A wedge function divides each block
into two parts and estimates each part with a single gray
level. To do this, on the boundary of an N by N block, 4N-
2 equidistant vertices could be considered on neighboring
boundary pixels. By connecting every two vertices p1 and
p2 a straight edge could be generated which divides the
block into two disjoint parts called wedges. So every
wedge and its complement can be described as:

       
2 11 2 1 2, 1 ,x b xw x x x x S   

       
2 11 2 1 2, 1 ,x b xw x x x x S

    

where b presents an edge and S is a dyadic block of
image. It should be mentioned that the edge bp1,p2 and bp2,p1
are two different edges. Hence, there are (4N-2)*(4N-3)
possible edges in an N by N block.

Every wedgelet basis function consists of a wedge, its
complement and two coefficients α and α' as below:

 S = αw + α’w’ 

where w' is the complement of w in block S.

All possible wedges for blocks with sizes 2, 4, 8, 16, 32
and 62 are produced and for each block size a separate
dictionary is constructed. Size of each dictionary is shown
in table I. Basis functions of each dictionary will be used
for estimating blocks of the same size.

Each linear basis function describes a dyadic block of
image as below:

 S(x,y) = Ax + By + C 

TABLE I. SPECIFICATION OF WEDGELET DICTIONARIES

Block Size Dictionary Size Bits

2x2 7 3

4x4 75 7

8x8 499 9

16x16 2499 12

32x32 11107 14

64x64 46755 16

B. Quad-tree
Quad-tree is a tree data structure which is used in many

computer graphic and machine vision algorithms. Root of
quad-tree includes the whole image. Each node can divide

into 4 smaller dyadic block and these partitioning can be
continued until pixel level.

C. Estimation of Images
Every block of image is estimated by one of the basis

functions (practically the most suitable one). In addition,
coefficients of the appropriate basis function and its type
are stored in the corresponding node of quad-tree. If the
appropriate basis function is a constant function, only one
coefficient must be stored. In fact, this coefficient which
minimizes the MSE of such a block is mean of gray levels
of that block. If the appropriate basis function is a wedge,
two coefficients for that wedge and its complement must
be stored. In order to find the best wedge, an exhaustive
search is done among all wedges in dictionary to identify
the wedge with minimum error. If the appropriate basis
function is a linear function, 3 coefficients must be stored.
Coefficients of the linear function are determined by least-
squares minimization. Finally if the appropriate basis
function is a plate, 6 coefficients must be stored in the
corresponding node of quad-tree. In this case appropriate
edge is found by minimizing estimation error on each
wedge using same least-squares minimization process.

D. Rate-Distorion Optimization
Coefficients of basis functions are continuous so they

must be quantized into discreet numbers during
compression. For this purpose, all coefficients of quad-tree
are quantized by a constant number of bits denoted by K.
So there are 2K quantization levels. It should be mentioned
that we used uniform quantization.

Selection of basis function for each block is based on
minimization of Rate-Distortion criterion. To do this, the
very first stage is determining the bit usage for each basis
function. For each constant basis function, only one gray
level must be stored which needs K bits. To encode edge of
each block we store index of that edge in the corresponding
dictionary, instead of storing indices of start and end
vertices of the edge as done by Merkle [11]. For each
wedge function, 2 gray levels and index of wedge must be
stored which consumes 2K+log2(|Dictionary|) bits. For each
linear function, 3 coefficients must be stored which needs
3K bits. And finally for each plate, 6 coefficients and the
index of used wedge must be stored which needs
6K+log2(|Dictionary|) bits. The best basis function for each
node is determined using the cost function C = D + λR.

where D denotes estimation error of type mean
absolute error (MAE) and R denotes bit usage and λ is
weighting parameter which balances the trade-off between

error and bit usage. The basis function which minimizes
the cost function C is selected as the best estimating
function of block.

Rate-Distortion criterion is also used for pruning the
tree and determining the best quad-tree which represents
the image. Chou in [12] has proved that bottom-up tree
pruning leads to an optimal quad-tree. According to this, by
exploring the tree in bottom-up fashion cost of each node is
compared with its four subtrees. If the cost of current node
is less than its four subtrees, all four subtrees will be
pruned. Otherwise, sum of cost of four subtrees is stored as
cost of current node. There is also a bit to determine that
current node is pruned or not. This bit is also considered in
calculating cost of node. For each leaf node, P bits are
needed to identify type of basis function. Value of P
depends on variety of basis functions which are used.

E. Quantizer Selection
As mentioned in previous section, we quantize

coefficients with constant number of bits K to optimize
rate-distortion. The best number of quantization bits for a
constant value of λ is determined as follow:

     
2,3,4,5,6,7,8

arg min
k

k D K R K


   

where D(K) is error of estimated image using the tree
with K bits for coefficients and R(K) is the bit usage of
tree.

F. Compression of Quad-tree
In order to transform the quad-tree into a bitstream and

compress it, we start from root of the tree. For each
internal node, only one bit is written in file which shows
that its subtrees has not been pruned. For each leaf node, at
first one bit is written in file which shows that its subtrees
has been pruned. Then, P bits are written to determine the
type of basis function used for estimating the block. For
constant function only a k -bit coefficient, and for wedge
function two k -bit coefficients are written in the file. For
linear function only a k -bit coefficient (for constant C) is
written and two coefficients A and B will be written at the
end of file after arithmetic coding. For plate function, two
k -bit coefficients (constants C and C') are written and
four coefficients A, A', B and B' will be written at the end
of file after arithmetic coding. We use arithmetic coder
because there are some blocks in depth images with similar
linear or plate coefficients.

Figure 1. Test Depth images of Cones (Left), and Teddy (Right)

(a) (b) (c) (d) (e)

Figure 2. Quality of compression with different basis functions on (a) Cones image, and (b) Teddy image.

Figure 3. A part of compressed depth image of Teddy with bpp≈0.15 which compressed with (a) constant and wedge functions (b) constant, wedge
and linear functions (c) constant, wedge, linear and plate functions (d) H264 (e) JPEG2000

Figure 4. Comparison of geometrical wavelets with JPEG2000 on Dancer image (a) depth image (b) quality of compression

Figure 5. Performance of different compression schemes in preserving edges of depth image in 0.01 bpp (a) original color image (b) original depth
image (c) original point-cloud (d) reconstructed point-cloud using geometrical wavelets (e) reconstructed point-cloud using JPEG2000

(a) (b)

(a) (b) (c) (d) (e)

(a) (b)

III. EXPERIMENTAL RESULTS

In order to compare different methods of
compression, we compressed depth images of Teddy and
Cones, at first with constant and wedge functions, then
with constant, wedge and linear functions and finally
with all types of basis functions (i.e. constant, wedge,
linear and plate). When we use constant and wedge
functions to compress an image, P equals to log2(2) = 1.
If three or four types of basis functions are used, P will
be 2.

In addition to these geometrical wavelets, we
compressed Teddy and Cones with intra-coded mode of
JPEG2000 and H264 coding standards. We used Jasper
and JM 14.2 libraries for JPEG2000 and H264
compression standards, respectively. Depth images of
Teddy and Cones from Middlebury dataset [13] are
shown in Fig. 1. Depth compression results in terms of
rate-distortion performance are shown in Fig. 2.

Compared to JPEG2000, geometrical wavelets achieved
notably higher quality in the same bit-rates. In addition,
they outperform H264 coding in most bit-rates.
However, depending on the geometry of captured scene,
performance of different geometrical basis functions is
comparable to each other; e.g. on the cones image
performance of wedgelets is higher, while on teddy
image composition of all basis functions performs better.
A similar image compression framework proposed by
Morvan in [11]. Compared to results of Morvan, we
achieved up to 5 dB higher quality on cones image, and
up to 3 dB higher performance on teddy image.

For the sake of visual comparison, a part of original
and compressed depth maps is shown in Fig. 3.
Geometrical wavelets successfully preserved sharp edges
around teddy bear and house, while H264 blurred them
and JPEG2000 strongly corrupted them.

 In another experiment, we compared platelet based
coding scheme with JPEG2000 on the first frame of

(a) (b) (c) (d)

Figure 6. Compression of Desk image with bpp≈0.22 (a) original color image (b) original depth image (c) reconstructed depth image using
geometrical wavelets with PSNR=37.45 dB, and (d) reconstructed depth image using JPEG2000 with PSNR=32.15 dB.

(a) (b) (c)

(d)

Figure 7. Compression of Table image with bpp≈0.2 (a) original color image (b) original depth image (c) reconstructed depth image using
geometrical wavelets with PSNR=44.92 dB and (d) reconstructed depth image using JPEG2000 with PSNR=36.02 dB.

(a)

(b)

Figure 8. Quality of compression with geometrical wavelets and JPEG2000 on (a) Desk image, and (b) Table image.

Dancer sequence with size of 1920x1088 pixels [14].
This scene has simple structures like wall, floor, and
column. As shown in Fig. 4 geometrical wavelets have
higher performance than JPEG2000 in all bit-rates. We
reconstructed point cloud of the scene using compressed
and original depth maps. Fig. 5 shows parts of sample
reconstructed point clouds in bit-rate of 0.01 bpp. As
shown in Fig. 5 geometrical wavelets preserve sharp
edges around the dancer's head; while JPEG2000
corrupts these edges and smooth them.

We also used geometrical wavelets for compressing
Kinect depth images which have more complicated
scenes with considerable noise. Depth images of Desk
and Table from Washington dataset [15] are shown in
Fig. 6 (a) and Fig. 7 (a). As shown in Fig. 6 (c) and (d),
geometrical wavelets preserved sharp edges around
monitor and window while JPEG2000 blurred and
corrupted them. Similarly, the same happened in Fig. 7
(c) and (d) around box, cap and the edge between wall
and window. Depth compression results for Desk and
Table images in terms of rate-distortion performance are
shown in Fig. 8. In the presence of noise, geometrical
wavelets achieved notably higher quality than JPEG2000
in the same bit-rates.

IV. CONCLUSION

In this paper we evaluated performance of wedgelets,
platelets and mix of them in depth image compression.
Results of the proposed methods on Teddy, Cones,
Dancer, Desk and Table depth images were compared
with JPEG2000 and H264 coding standards.

It was shown that narrow field of view indoor depth
images can be sparsely represented using geometrical
wavelets due to their simple geometry and piecewise
smoothness. Our results suggested that comparing with
JPEG2000 and H264, the proposed methods better
preserve edges and geometry of the scene which
generally leads to 3dB gain in PSNR.

However, a big disadvantage of the proposed
methods is long run time. While JPEG2000 and H264
use only a few seconds for compressing a 512x512
pixels image, wedgelets and platelets need several
minutes. Our future work focuses on reducing run time.

REFERENCES

[1] E.J. Candes, Ridgelets: Theory and Applications, Ph.D Thesis,
Dept. Statistics, Stanford Univ., CA, 1998.

[2] D.L. Donoho, Wedgelets: Nearly-Minimax Estimation of Edges,
Ann. Statist., vol. 27, pp. 859-897, 1999.

[3] E.J. Candes, and D.L. Donoho, Curvelets – A Surprisingly
Effective Nonadaptive Representation For Objects with Edges,
in Curves and Surface Fitting. Nashville, TN: Vanderbilt Univ.
Press, 1999, pp. 105-120.

[4] C. Dossal, E.L. Pennec, and S. Mallat, Bandlet image estimation
with model selection, Signal Processing, Vol. 91(12): p. 2743-
2753, 2011.

[5] M.N. Do, and M. Vetterli, The contourlet transform: an efficient
directional multiresolution image representation, IEEE
Transactions on Image Processing, Vol. 14(12): p. 2091-2106,
2005.

[6] D.L Donoho, and X. Huo, Beamlet Pyramids: A New Form of
Multiresolution Analysis, suited for Extracting Lines, Curves,
and Objects from Very Noisy Image Data, Proc. SPIE, vol.
4119, pp. 434-444, 2000.

[7] R.M. Willet, and R.D. Nowak, Platelets: A Multiscale Approach
for Recovering Edges and Surfaces in Photon-Limited Medical
Imaging, IEEE Transactions on Medical Imaging, vol. 22, no. 3,
pp. 332-350, Mar. 2003.

[8] A. Lisowska, Geometrical Wavelets and their Generalizations in
Digital Image Coding and Processing, Ph.D. Thesis, Faculty of
Computer Science and Materials Science, Univ. Silesia, Poland,
2005.

[9] A. Lisowska, Smoothlets—Multiscale Functions for Adaptive
Representation of Images, IEEE Transactions on Image
Processing, vol. 20, no. 7, 2011.

[10] P. Merkle, et al., The effects of multiview depth video
compression on multiview rendering, Signal Processing: Image
Communication, vol. 24(1–2), pp. 73-88, 2009.

[11] Y. Morvan, Acquisition, compression and rendering of depth
and texture for multi-view video, Eindhoven University of
Technology, Eindhoven, 2009.

[12] P.A. Chou, T.D. Lookabaugh, and R.M. Gray, Optimal pruning
with applications to tree-structured source coding and modeling.
IEEE Transaction on Information Theory, vol. 35, no. 2, pp. 299
– 315, 1989.

[13] http://vision.middlebury.edu/stereo/data/scenes2003/.
[14] http://mpeg3dv.research.nokia.com/sequence.html.
[15] L. Kevin, B. Liefeng, R. Xiaofeng, and F. Dieter, A Large-Scale

Hierarchical Multi-View RGB-D Object Dataset, In IEEE
International Conference on Robotics and Automation (ICRA),
May 2011, available at:
http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes/.

