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Abstract— Depth images are frequently used in robotic and 
3D vision for different purposes like mapping or object 
recognition. Yet recently, they are encountered in many 
other areas such as free viewpoint and 3D television. Their 
innate redundancy especially in high frame rates and 
resolutions demands an effective compression algorithm or 
otherwise the required data rates grow prohibitively large. 

Standard lossy image and video compression methods, such 
as JPEG2000 and H264, remove high frequency and usually 
unimportant components of the signal in intensity images; 
which in the case of range or depth images accounts for 
edges and are essential for correct reconstruction of the 
scene geometry. Therefore, preserving geometrical 
properties of depth images should be the main objective in 
an effective compression algorithm. In this paper, Wedgelets, 
Platelets and Wedge-Platelets are proposed for depth image 
compression and are compared with JPEG2000 and H264. 
Moreover, for the first time, these methods are applied for 
compression of Kinect sensor depth images. Compared with 
previous works, it is shown that higher compression ratios 
up to 3dB can be achieved. 
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I.  INTRODUCTION 

Depth images are extensively used in robotic and 3D 
vision applications for different purposes like mapping or 
object recognition. With advent of Kinect sensor as a 
component of Microsoft X-Box 360, range and depth 
images are even more common place in such tasks and 
applications. Even such cheap sensor is capable of 
producing depth images at 30 frames per second. 
Therefore, accumulation of raw data soon exhausts any 
storage facility and compression is mandatory. On the 
other hand, a recent fast growth in 3DTV and free-
viewpoint video fileds, introduces another instance of the 
depth image compression problem in a different setup. 
Hence, compression of depth images for transmission or 
storage is now an important and interesting research 
subject. In this paper, depth image is considered to be the 

z-map of the scene. In other words, each pixel in a depth 
image measures the z-coordinate of the corresponding 3D 
point in the scene or equivalently its distance to the xy-
plane. It's worth mentioning that some texts use depth map 
to denote an image of distances to a single point, perhaps a 
camera, especially in robotic field. We use the word range 
image to denote this latter case and reserve depth image or 
depth map for the former case. 

Main goal of traditional image compression techniques 
is preserving subjective quality; however, the aim of 
recently emerging depth image compression should be 
preserving geometrical characteristics of underlying scene. 
In other words, to obtain a reasonable and exact enough 
3D reconstruction of the observed scene, one should 
preserve angle of corners and aspect ratio in addition of 
volume of the observed space. Polyhedral approximations 
seem a proper choice in many applications when indoor 
environments are considered. 

In traditional image compression scope, wavelet 
transform is widely used because of its sparse and multi-
resolution representation. By performing a wavelet 
transform, most of coefficients tend toward zero or a small 
enough number to be safely ignored. Hence, high 
compression rates for natural scenes may be achieved. 
However, classical wavelets are best suited for 
representing point singularities and not higher dimensional 
artifacts, i.e. geometries, encountered in multidimensional 
data. Edges in 2D images are among well-known examples 
of such geometrical artifacts. In natural scenes, edges 
usually have some regularity along their extension. But 
tensor product multidimensional generalization of 1D 
wavelet transform, i.e. separable multidimensional 
transform, has no way to benefit such regularity toward 
obtaining more sparse representation. Furthermore, indoor 
depth images exhibit distinct characteristics like smooth 
regions and simple texture-less structures in addition to 
sharp edges. Therefore, special purpose transforms which 
preserve these characteristics could be successfully used to 
compress depth maps. Wedgelets [2] and Platelets [7] are 
therefore a proper choice for depth image representation. 

More than a decade ago, Donoho and Candes [1, 2] 
introduced an improved family of wavelets, now widely 
called geometrical wavelets, to better capture regularity of 



singular points in 2D images considering usually 
encountered dominant directionality. Geometrical wavelets 
have been extending rapidly in recent years [4,5,8-11,15] 
and come in two main groups: adaptive and non-adaptive. 

Non-adaptive geometrical wavelets try to represent 
image data using a priori fixed set of basis functions which 
are usually obtained from classical wavelets by operations 
such as rotation or shear transformation. Ridgelets [1], 
Curvelets [3], Bandlets [4] and Contourlets [5] are among 
the most popular non-adaptive geometrical wavelets 
already used toward more sparse image representation. 

In contrast, adaptive geometrical wavelets such as 
Wedgelets [2], Beamlets [6] and Platelets [7] use a 
customized dictionary of basis functions to represent each 
image. The dictionary is built by processing the image data 
which is to be represented and hence is adapted to the 
image at hand. In other words, adaptive geometrical 
wavelets exploit an optimal subset of basis functions to 
represent each image. A quad-tree is used to represent the 
given image using constructed atoms or words in the 
dictionary. The adaptation may result a better 
representation (smaller error), but the price to pay is higher 
computational complexity in discovering the quad-tree 
structure and building the dictionary.  

Fundamental work on geometrical wavelets began by 
Donoho who introduced Wedgelets and Beamlets [2, 6]. 
Willett in [7] presented a generalization of wedgelets 
called platelets which is suitable for representing piecewise 
smooth functions and signals. Lisowska in [8] studied 
geometrical wavelets for intensity image compression and 
denoising. She extended wedgelets into smoothlets [9] 
suitable for representing images with smooth edges. 
Merkle in [10] used platelets for compression of depth 
images in multiple view video streams.  

In this paper, we extend Merkle's work [10] by 
choosing basis functions more accurately, and applying 
these methods to indoor depth images of Kinect. 
Considering the fact that images of Kinect are usually 
quiet noisy, there are some negative points in the case of 
geometry coding; however, we show that our proposed 
methods can be successfully used for noisy depth image 
compression purposes. In addition, performance of 
different geometrical wavelets in compression of depth 
images has not been examined. 

In the proposed methods a quad-tree based method is 
used to evaluate several geometrical wavelets in depth 
image compression. In next section, quad-tree based 
compression framework is described. Section 3 presents 
experimental results and discussions. In section 4, the 
paper is concluded and guidelines to future works are 
presented. 

II. COMPRESSION FRAMEWORK 
In this section, different stages of compression 

framework are explained. First a complete quad-tree 
structure is generated for the whole image. Then four 
different modeling functions are used to estimate each 
block of image in each resolution. Thereafter, coefficients 
of modeling functions are quantized using a uniform 

quantization strategy. Finally the quad-tree is pruned and 
coded. 

A. Image modeling 
In this paper to estimate each block of image we use 

four modeling functions namely constant, wedge, linear 
and plate. A constant function estimates all pixels of the 
block with a single gray level and describes uniform parts 
of image very well. A wedge function divides each block 
into two parts and estimates each part with a single gray 
level. To do this, on the boundary of an N by N block, 4N-
2 equidistant vertices could be considered on neighboring 
boundary pixels. By connecting every two vertices p1 and 
p2 a straight edge could be generated which divides the 
block into two disjoint parts called wedges. So every 
wedge and its complement can be described as: 

       
2 11 2 1 2, 1 ,x b xw x x x x S   

       
2 11 2 1 2, 1 ,x b xw x x x x S

    

where b presents an edge and S is a dyadic block of 
image. It should be mentioned that the edge bp1,p2 and bp2,p1 
are two different edges. Hence, there are (4N-2)*(4N-3) 
possible edges in an N by N block. 

Every wedgelet basis function consists of a wedge, its 
complement and two coefficients α and α' as below: 

 S = αw + α’w’ 

where w' is the complement of w in block S. 

All possible wedges for blocks with sizes 2, 4, 8, 16, 32 
and 62 are produced and for each block size a separate 
dictionary is constructed. Size of each dictionary is shown 
in table I. Basis functions of each dictionary will be used 
for estimating blocks of the same size. 

Each linear basis function describes a dyadic block of 
image as below: 

 S(x,y) = Ax + By + C 

TABLE I.  SPECIFICATION OF WEDGELET DICTIONARIES 

Block Size Dictionary Size Bits 

2x2 7 3 

4x4 75 7 

8x8 499 9 

16x16 2499 12 

32x32 11107 14 

64x64 46755 16 

 

B. Quad-tree 
Quad-tree is a tree data structure which is used in many 

computer graphic and machine vision algorithms. Root of 
quad-tree includes the whole image. Each node can divide 



into 4 smaller dyadic block and these partitioning can be 
continued until pixel level. 

C. Estimation of Images 
Every block of image is estimated by one of the basis 

functions (practically the most suitable one). In addition, 
coefficients of the appropriate basis function and its type 
are stored in the corresponding node of quad-tree. If the 
appropriate basis function is a constant function, only one 
coefficient must be stored. In fact, this coefficient which 
minimizes the MSE of such a block is mean of gray levels 
of that block. If the appropriate basis function is a wedge, 
two coefficients for that wedge and its complement must 
be stored. In order to find the best wedge, an exhaustive 
search is done among all wedges in dictionary to identify 
the wedge with minimum error. If the appropriate basis 
function is a linear function, 3 coefficients must be stored. 
Coefficients of the linear function are determined by least-
squares minimization. Finally if the appropriate basis 
function is a plate, 6 coefficients must be stored in the 
corresponding node of quad-tree. In this case appropriate 
edge is found by minimizing estimation error on each 
wedge using same least-squares minimization process.  

D. Rate-Distorion Optimization 
Coefficients of basis functions are continuous so they 

must be quantized into discreet numbers during 
compression. For this purpose, all coefficients of quad-tree 
are quantized by a constant number of bits denoted by K. 
So there are 2K quantization levels. It should be mentioned 
that we used uniform quantization. 

Selection of basis function for each block is based on 
minimization of Rate-Distortion criterion. To do this, the 
very first stage is determining the bit usage for each basis 
function. For each constant basis function, only one gray 
level must be stored which needs K bits. To encode edge of 
each block we store index of that edge in the corresponding 
dictionary, instead of storing indices of start and end 
vertices of the edge as done by Merkle [11]. For each 
wedge function, 2 gray levels and index of wedge must be 
stored which consumes 2K+log2(|Dictionary|) bits. For each 
linear function, 3 coefficients must be stored which needs 
3K bits. And finally for each plate, 6 coefficients and the 
index of used wedge must be stored which needs 
6K+log2(|Dictionary|) bits. The best basis function for each 
node is determined using the cost function  C = D + λR. 

where D denotes estimation error of type mean 
absolute error (MAE) and R denotes bit usage and λ is 
weighting parameter which balances the trade-off between 

error and bit usage. The basis function which minimizes 
the cost function C is selected as the best estimating 
function of block. 

Rate-Distortion criterion is also used for pruning the 
tree and determining the best quad-tree which represents 
the image. Chou in [12] has proved that bottom-up tree 
pruning leads to an optimal quad-tree. According to this, by 
exploring the tree in bottom-up fashion cost of each node is 
compared with its four subtrees. If the cost of current node 
is less than its four subtrees, all four subtrees will be 
pruned. Otherwise, sum of cost of four subtrees is stored as 
cost of current node. There is also a bit to determine that 
current node is pruned or not. This bit is also considered in 
calculating cost of node. For each leaf node, P bits are 
needed to identify type of basis function. Value of P 
depends on variety of basis functions which are used. 

E. Quantizer Selection 
As mentioned in previous section, we quantize 

coefficients with constant number of bits K to optimize 
rate-distortion. The best number of quantization bits for a 
constant value of λ is determined as follow: 

     
2,3,4,5,6,7,8

arg min
k

k D K R K


   

where D(K) is error of estimated image using the tree 
with K bits for coefficients and R(K) is the bit usage of 
tree. 

F. Compression of Quad-tree 
In order to transform the quad-tree into a bitstream and 

compress it, we start from root of the tree. For each 
internal node, only one bit is written in file which shows 
that its subtrees has not been pruned. For each leaf node, at 
first one bit is written in file which shows that its subtrees 
has been pruned. Then, P bits are written to determine the 
type of basis function used for estimating the block. For 
constant function only a k -bit coefficient, and for wedge 
function two k -bit coefficients are written in the file. For 
linear function only a k -bit coefficient (for constant C) is 
written and two coefficients A and B will be written at the 
end of file after arithmetic coding. For plate function, two 
k -bit coefficients (constants C and C') are written and 
four coefficients A, A', B and B' will be written at the end 
of file after arithmetic coding. We use arithmetic coder 
because there are some blocks in depth images with similar 
linear or plate coefficients. 

 

Figure 1.  Test Depth images of Cones (Left), and Teddy (Right) 
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Figure 2.  Quality of compression with different basis functions on (a) Cones image, and (b) Teddy image. 

 

Figure 3.  A part of compressed depth image of Teddy with bpp≈0.15 which compressed with (a) constant and wedge functions (b) constant, wedge 
and linear functions (c) constant, wedge, linear and plate functions (d) H264 (e) JPEG2000 

 

Figure 4.  Comparison of geometrical wavelets with JPEG2000 on Dancer image (a) depth image (b) quality of compression 

 

Figure 5.  Performance of different compression schemes in preserving edges of depth image in 0.01 bpp (a) original color image (b) original depth 
image (c) original point-cloud (d) reconstructed point-cloud using geometrical wavelets (e) reconstructed point-cloud using JPEG2000 
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III. EXPERIMENTAL RESULTS 

In order to compare different methods of 
compression, we compressed depth images of Teddy and 
Cones, at first with constant and wedge functions, then 
with constant, wedge and linear functions and finally 
with all types of basis functions (i.e. constant, wedge, 
linear and plate). When we use constant and wedge 
functions to compress an image, P equals to log2(2) = 1. 
If three or four types of basis functions are used, P will 
be 2. 

In addition to these geometrical wavelets, we 
compressed Teddy and Cones with intra-coded mode of 
JPEG2000 and H264 coding standards. We used Jasper 
and JM 14.2 libraries for JPEG2000 and H264 
compression standards, respectively. Depth images of 
Teddy and Cones from Middlebury dataset [13] are 
shown in Fig. 1. Depth compression results in terms of 
rate-distortion performance are shown in Fig. 2. 

Compared to JPEG2000, geometrical wavelets achieved 
notably higher quality in the same bit-rates. In addition, 
they outperform H264 coding in most bit-rates. 
However, depending on the geometry of captured scene, 
performance of different geometrical basis functions is 
comparable to each other; e.g. on the cones image 
performance of wedgelets is higher, while on teddy 
image composition of all basis functions performs better. 
A similar image compression framework proposed by 
Morvan in [11]. Compared to results of Morvan, we 
achieved up to 5 dB higher quality on cones image, and 
up to 3 dB higher performance on teddy image. 

For the sake of visual comparison, a part of original 
and compressed depth maps is shown in Fig. 3. 
Geometrical wavelets successfully preserved sharp edges 
around teddy bear and house, while H264 blurred them 
and JPEG2000 strongly corrupted them.  

 In another experiment, we compared platelet based 
coding scheme with JPEG2000 on the first frame of 

(a) (b) (c) (d) 

Figure 6.  Compression of Desk image with bpp≈0.22 (a) original color image (b) original depth image (c) reconstructed depth image using 
geometrical wavelets with PSNR=37.45 dB, and (d) reconstructed depth image using JPEG2000 with PSNR=32.15 dB. 

(a) (b) (c) 
 

(d) 

Figure 7.  Compression of Table image with bpp≈0.2 (a) original color image (b) original depth image (c) reconstructed depth image using 
geometrical wavelets with PSNR=44.92 dB and (d) reconstructed depth image using JPEG2000 with PSNR=36.02 dB. 

(a) 
 

(b) 

Figure 8.  Quality of compression with geometrical wavelets and JPEG2000 on (a) Desk image, and (b) Table image. 



Dancer sequence with size of 1920x1088 pixels [14]. 
This scene has simple structures like wall, floor, and 
column. As shown in Fig. 4 geometrical wavelets have 
higher performance than JPEG2000 in all bit-rates. We 
reconstructed point cloud of the scene using compressed 
and original depth maps. Fig. 5 shows parts of sample 
reconstructed point clouds in bit-rate of 0.01 bpp. As 
shown in Fig. 5 geometrical wavelets preserve sharp 
edges around the dancer's head; while JPEG2000 
corrupts these edges and smooth them. 

We also used geometrical wavelets for compressing 
Kinect depth images which have more complicated 
scenes with considerable noise. Depth images of Desk 
and Table from Washington dataset [15] are shown in 
Fig. 6 (a) and Fig. 7 (a). As shown in Fig. 6 (c) and (d), 
geometrical wavelets preserved sharp edges around 
monitor and window while JPEG2000 blurred and 
corrupted them. Similarly, the same happened in Fig. 7 
(c) and (d) around box, cap and the edge between wall 
and window. Depth compression results for Desk and 
Table images in terms of rate-distortion performance are 
shown in Fig. 8. In the presence of noise, geometrical 
wavelets achieved notably higher quality than JPEG2000 
in the same bit-rates. 

IV. CONCLUSION 

In this paper we evaluated performance of wedgelets, 
platelets and mix of them in depth image compression. 
Results of the proposed methods on Teddy, Cones, 
Dancer, Desk and Table depth images were compared 
with JPEG2000 and H264 coding standards. 

It was shown that narrow field of view indoor depth 
images can be sparsely represented using geometrical 
wavelets due to their simple geometry and piecewise 
smoothness. Our results suggested that comparing with 
JPEG2000 and H264, the proposed methods better 
preserve edges and geometry of the scene which 
generally leads to 3dB gain in PSNR. 

However, a big disadvantage of the proposed 
methods is long run time. While JPEG2000 and H264 
use only a few seconds for compressing a 512x512 
pixels image, wedgelets and platelets need several 
minutes. Our future work focuses on reducing run time. 
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