1388-1389

O B <=»

«=

>

o>

A subset S of the plane is called convex if and only if for

any pair of points p, ¢ € S, the line segment pq is
completely contained in S.

DA

A subset S of the plane is called convex if and only if for
any pair of points p, ¢ € S, the line segment pq is
completely contained in S.

convex not convex

e (G4

Convex Set

Definition:
A subset S of the plane is called convex if and only if for
any pair of points p, ¢ € S, the line segment pq is

Yazd Univ.

Computational
i 1 Geometr
completely contained in S. y
Convex hull
Definition
Geometry of problem
1st algorithm
2nd algorithm
. Proof of correctness
Convex Hull:

Higher dimensions

The convex hull CH(S) of a set S is the smallest convex
set that contains S. To be more precise, it is the
intersection of all convex sets that contain S.

It is the unique convex polygon whose vertices are points
from P and that contains all points of P.

DA

It is the unique convex polygon whose vertices are points
from P and that contains all points of P.

DA

given aset P = {p1,p2,...,pn} Of points in the plane,

compute a list that contains those points from P that are
the vertices of CH(P), listed in clockwise order.

DA

given aset P = {p1,p2,...,pn} Of points in the plane,
compute a list that contains those points from P that are
the vertices of CH(P), listed in clockwise order.

Do

. P4
Input= set of points

P1,P2,P3,P4,P5,P6, P7, P8, P9

Output= representation of the convex hull: p2
P4, D5, P8, P2, P9

u]

o)
1}

n
it

DA

If we direct the line through p and ¢ such that CH(P) lies
to the right, then all the points of P must lie to the right of
this line. The reverse is also true: if all points of P\ {p, ¢}

lie to the right of the directed line through p and ¢, then pq
is an edge of CH(P).

it
)
»
i)

Higher dimensions

Geometry of the problem

Property:

If we direct the line through p and ¢ such that CH(P) lies
to the right, then all the points of P must lie to the right of
this line. The reverse is also true: if all points of P\ {p, ¢}

lie to the right of the directed line through p and ¢, then pq
is an edge of CH(P).

Yazd Univ.

Computational
Geometry

Convex hull
Definition

Geometry of problem
1st algorithm

2nd algorithm

Proof of correc tness

Algorithm SLOWCONVEXHULL(P)
Input. A set P of points in the plane.
Output. A list L containing the vertices of CH(P) in clockwise order.
1. E<0.

2. for all ordered pairs (p,q) € P x P with p not equal to ¢

3 do valid < true

4 for all points r € P not equal to p or ¢

5. do if r lies to the left of the directed line from p to ¢
6

7

8

then valid « false.
if valid then Add the directed edge pg to E.
From the set E of edges construct a list £ of vertices of CH(P), sorted ir

u]
o)
1}
n
it

DA

First algorithm

Algorithm SLOWCONVEXHULL(P)
Input. A set P of points in the plane.

Yazd Univ.
Output. A list L containing the vertices of CH(P) in clockwise order.
1 E —0. Computational
2. for all ordered pairs (p,q) € P x P with p not equal to g ey
3 do valid — true
4 for all points r € P not equal to p or g co
5. do if r lies to the left of the directed line from p to ¢ e
6 then valid — false.
7 if valid then Add the directed edge pq to E. e
8

From the set E of edges construct a list £ of vertices of CH(P), sorted in elockwise ord

Higher dimensions

Clarify:

@ How do we test whether a point lies to the left or to
the right of a directed line? (See Exercise 1.4)

@ How can we construct £ from E?

destination of e;

—origin of es

“Origin of o

Q>

Algorithm SLOWCONVEXHULL(P)
Input. A set P of points in the plane.
Output. A list L containing the vertices of CH(P) in clockwise order.
1. E<0.

2. for all ordered pairs (p,q) € P x P with p not equal to ¢

3 do valid < true

4 for all points r € P not equal to p or ¢

5. do if r lies to the left of the directed line from p to ¢
6

7

8

then valid « false.
if valid then Add the directed edge pg to E.
From the set E of edges construct a list £ of vertices of CH(P), sorted ir

Higher dimensions

u]
o)
1}
n
it

DA

Algorithm SLOWCONVEXHULL(P)

Input. A set P of points in the plane.

Output. A list L containing the vertices of CH(P) in clockwise order.
1. E<0.

2. for all ordered pairs (p,q) € P x P with p not equal to ¢

3 do valid < true

4 for all points r € P not equal to p or ¢

5. do if r lies to the left of the directed line from p to ¢
6

7

8

then valid — false.
if valid then Add the directed edge pg to E.

Proof of correctness
From the set E of edges construct a list £ of vertices of CH(P), sorted in elockwise ord

Higher dimensions

Running time: O(n®) + O(n?) = O(n?).]

i
it
)
»
i)

A point r does not always lie to the right or to the left of
the line through p and ¢, it can also happen that it lies on
this line. What should we do then?

DA

Degenerate case (or Degeneracy)

Degenerate Case:

A point » does not always lie to the right or to the left of
the line through p and ¢, it can also happen that it lies on o
this line. What should we do then? Geometry

Yazd Univ.

Convex hull
Definition
Geometry of problem
1st algorithm

Solution:

A directed edge pq is an edge of CH(P) if and only if all
other points € P lie either strictly to the right of the
directed line through p and ¢, or they lie on the open line
segment pq.

outcome of tests.

the computations are done using floating point arithmetic,
then there will be rounding errors that may distort the

If the points are given in floating point coordinates and

DA

Higher dimensions

outcome of tests.

the computations are done using floating point arithmetic,

If the points are given in floating point coordinates and

then there will be rounding errors that may distort the

This algorithm is not robust!

DA

Higher dimensions

upper hull

~ o
e— — — —©

lower hull

o F = = E DA

2nd algorithm: incremental

points deleted

0

Yazd Univ.

Computational
Geometry

Convex hull

Algorithm CONVEXHULL(P)

Input. A set P of points in the plane.

Output. A list containing the vertices of CH(P) in clockwise order.
1. Sort the points by x-coordinate, resulting in a sequence py,..., p,.
2. Put the points p; and p; in a list Lypper, With py as the first point.
3. fori<—3ton
4
5

do Append p; to Lypper-
while Lyppe; contains more than two points and the last three points in
not make a right turn

6. do Delete the middle of the last three points from Lypper. Geometry of problem

7. Put the points p, and p,—; in a list Ljgwer, With p,, as the first point. ;:;a::;:ﬂ

8. fori« n—2downto 1 Proof of correctness

. Other algorithms

9. do ApI.)el'ld pito LIOW?I" . . . Higher dimensions

10. while Ljoyer contains more than 2 points and the last three points in Ljoyer do not
make a right turn

11. do Delete the middle of the last three points from Ljoyer-

12. Remove the first and the last point from Ljgyer to avoid duplication of the points where the
upper and lower hull meet.

13. Append Ljgwer to Lypper, and call the resulting list L.

14. return L

u]
o)

I

i
it
)
»
?)

@ Two points have same z-coordinate.

not a right turn

Proof of correctness
Other algorithms
Higher dimensions

@ Two points have same z-coordinate.
@ Three points on a line

I

not a right turn

Higher dimensions

DA

Robustness:

What does the algorithm do in the presence of
rounding errors in the floating point arithmetic?

@ When such errors occur, it can happen that a point is
removed from the convex hull although it should be
there, or that a point inside the real convex hull is not
removed. But the structural integrity of the algorithm
is unharmed: it will compute a closed polygonal
chain.

@ The only problem that can still occur is that, when
three points lie very close together, a turn that is
actually a sharp left turn can be interpreted as a right
turn. This might result in a dent in the resulting

polygon.

Yazd Univ.

Computational
Geometry

Convex hull

plane can be computed in O(nlogn) time.

f‘pi

DA

plane can be computed in O(nlogn) time.

empty region

D Di

Higher dimensions

Proof of correctness:
Theorem: The convex hull of a set of n points in the
plane can be computed in O(nlogn) time.

Time Complexity:
@ Sorting: O(nlogn).
@ The for-loop is executed a linear number of times.

@ For each execution of the for-loop the while-loop is
executed at least once. For any extra execution a
point is deleted from the current hull.

@ So the time complexity for computing upper hull and
lower hull is O(n).

@ Total running time: O(nlogn).

Yazd Univ.

Computational
Geometry

Convex hull

2nd algorithm

Proof of correctness:
Theorem: The convex hull of a set of n points in the
plane can be computed in O(nlogn) time.

Time Complexity:
@ Sorting: O(nlogn).
@ The for-loop is executed a linear number of times.

@ For each execution of the for-loop the while-loop is
executed at least once. For any extra execution a
point is deleted from the current hull.

@ So the time complexity for computing upper hull and
lower hull is O(n).

@ Total running time: O(nlogn).

Lower bound:

An Q(nlogn) lower bound is known for the convex hull
problem.

Yazd Univ.

Computational
Geometry

Convex hull

Other algorithms:

Algorithm Speed Discovered By
Brute Force O(n?) [Anon, the dark ages]
Gift Wrapping O(nh) [Chand & Kapur, 1970]
Graham Scan | O(nlogn) [Graham, 1972]
Jarvis March O(nh) [Jarvis, 1973]
QuickHull O(nh) [Eddy, 1977], [Bykat, 1978]
Divide-and-Conquer | O(nlogn) | [Preparata & Hong, 1977]
Monotone Chain | O(nlogn) [Andrew, 1979]
Incremental O(nlogn) [Kallay, 1984]
Marriage-before-Conquest O(n 10g h) [Kirkpatrick & Seidel, 1986]

n: number of points

h: number of points on the boundary of convex hull

Yazd Univ.

Computational
Geometry

Convex hull
Definiti

Pr ectness
Other algorithms

Higher dimensions

@ The convex hull can be defined in any dimension.

@ Convex hulls in 3-dimensional space can still be
computed in O(nlogn) time (Chapter 11).

@ For dimensions higher than 3, however, the

complexity of the convex hull is no longer linear in the
number of points.

Higher dimensions

DA

END.

(O> < F> <=>r (=

Q>

	Convex hull
	Definition
	Geometry of problem
	1st algorithm
	2nd algorithm
	Proof of correctness
	Other algorithms
	Higher dimensions

