
Variant calling

Robert Bukowski, Qi Sun, Minghui Wang

Bioinformatics Facility

Institute of Biotechnology

http://cbsu.tc.cornell.edu/lab/doc/Variant_workshop_Part2.pdfSlides:

http://cbsu.tc.cornell.edu/lab/doc/Variant_exercise2_2015.pdfExercise instructions:

http://cbsu.tc.cornell.edu/lab/doc/Variant_workshop_Part2.pdf
http://cbsu.tc.cornell.edu/lab/doc/Variant_exercise2_2015.pdf

“Best Practices” for DNA-Seq variant calling

Individual 1 Individual 2 Individual 3

NGS

Align reads to a reference,
do it for each sample

Objective

For each site on the genome determine

• Whether or not there is any variation at this site (across all samples)
• If there is variation, assign a genotype (for diploids: pair of alleles) to each sample
• Report variant sites (positions, alleles, sample genotypes, …)

How it’s done?

The old days:

Call variant base on thresholds (e.g., ratio of reference/non-reference bases)
Assign genotypes based on other thresholds

Now-days: probabilistic framework

• Calculate and report probability of a site being a variant (given read alignments)
• Calculate and report probabilities (or likelihoods) of various sample genotypes (given read

alignments)
• Input: read base quality scores, preferably recalibrated

How to describe variants: Variant Call Format (VCF)

##fileformat=VCFv4.1

[HEADER LINES]

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT ZW155 ZW177

chr2R 2926 . C A 345.03 PASS [ANNOTATIONS] GT:AD:DP:GQ:PL 0/1:4,9:13:80:216,0,80 0/0:6,0:6:18:0,18,166

chr2R 9862 . TA T 180.73 . [ANNOTATIONS] GT:AD:DP:GQ:PL 1/1:0,5:5:15:97,15,0 1/1:0,4:4:12:80,12,0

chr2R 10834 . A ACTG 173.04 . [ANNOTATIONS] GT:AD:DP:GQ:PL 0/0:14,0:14:33:0,33,495 0/1:6,3:9:99:105,0,315

[HEADER LINES]: start with “##”, describe all symbols found later on, e.g.,

##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

ID: some ID for the variant, if known (e.g., dbSNP)

REF, ALT: reference and alternative alleles (on forward strand of reference)

QUAL = -10*log(1-p), where p is the probability of variant being present given the read data

FILTER: whether the variant failed a filter (filters defined by the user or program processing the file)

How to describe variants: Variant Call Format (VCF)

[HEADER LINES]

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT ZW155 ZW177

chr2R 2926 . C A 345.03 PASS [ANNOTATIONS] GT:AD:DP:GQ:PL 0/1:4,9:13:80:216,0,80 0/0:6,0:6:18:0,18,166

chr2R 9862 . TA T 180.73 . [ANNOTATIONS] GT:AD:DP:GQ:PL 1/1:0,5:5:15:97,15,0 1/1:0,4:4:12:80,12,0

chr2R 10834 . A ACTG 173.04 . [ANNOTATIONS] GT:AD:DP:GQ:PL 0/0:14,0:14:33:0,33,495 ./.

GT (genotype):
0/0 reference homozygote
0/1 reference-alternative heterozygote
1/1 alternative homozygote
0/2, 1/2, 2/2, etc. - possible if more than one alternative allele present
./. missing data

AD: allele depths
DP: total depth (may be different from sum of AD depths, a the latter include only reads significantly supporting alleles)

PL: genotype likelihoods (phred-scaled), normalized to the best genotype, e.g.,
PL(0/1) = -10*log[Prob(data|0/1) / Prob(data|best_genotype)]

GQ: genotype quality – this is just PL of the second-best genotype

How to describe variants: Variant Call Format (VCF)
[HEADER LINES]

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT ZW155 ZW177

chr2R 2926 . C A 345.03 PASS [ANNOTATIONS] GT:AD:DP:GQ:PL 0/1:4,9:13:80:216,0,80 0/0:6,0:6:18:0,18,166

chr2R 9862 . TA T 180.73 . [ANNOTATIONS] GT:AD:DP:GQ:PL 1/1:0,5:5:15:97,15,0 1/1:0,4:4:12:80,12,0

chr2R 10834 . A ACTG 173.04 . [ANNOTATIONS] GT:AD:DP:GQ:PL 0/0:14,0:14:33:0,33,495 0/1:6,3:9:99:105,0,315

[ANNOTATIONS]: all kinds of quantities and flags that characterize the variant; supplied by the variant caller (different
callers will do it differently)

Example:

AC=2;AF=0.333;AN=6;DP=16;FS=0.000;GQ_MEAN=16.00;GQ_STDDEV=10.54;MLEAC=2;MLEAF=0.33

3;MQ=25.00;MQ0=0;NCC=1;QD=22.51;SOR=3.611

All ANNOTATION parameters are defined in the HEADER LINES on to of the file

…

##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">

##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered">

##INFO=<ID=FS,Number=1,Type=Float,Description="Phred-scaled p-value using Fisher's exact test to detect strand bias">

##INFO=<ID=GQ_MEAN,Number=1,Type=Float,Description="Mean of all GQ values">

##INFO=<ID=MQ,Number=1,Type=Float,Description="RMS Mapping Quality">

##INFO=<ID=NCC,Number=1,Type=Integer,Description="Number of no-called samples">

##INFO=<ID=QD,Number=1,Type=Float,Description="Variant Confidence/Quality by Depth">

##INFO=<ID=SOR,Number=1,Type=Float,Description="Symmetric Odds Ratio of 2x2 contingency table to detect strand bias">

…

Sample-by-sample or joint (cohort-level) variant calling?

Sample A

Sample B

Site 2

If calling samples individually, Site 2 will
be reported only for Sample B. Is Site 2
invariant in sample A, or is it just missing
data (no read coverage)?

“Seeing” reads from multiple samples (mapped to a region of
reference genome) allows for smarter decisions about which
alleles are real and which are sequencing or alignment
errors…

Error?

Site 1

More confidence in variant calling

Multiple samples data allow calling a variant even if individual
sample calls are of low quality

Genomes

Reads
from many
samples

Joint calling is better

Two approaches to variant calling

Call SNPs and indels
separately by considering
each variant locus
independently

Call SNPs, indels together
from haplotypes assembled
de novo in regions of interest
(i.e., of high variability)

Fast, but less accurate, especially
for indels, needs indel realignment

More accurate, but sloooow….
Indel realignment step not needed?

Implemented in GATK as

UnifiedGenotyper
Implemented in GATK as

HaplotypeCaller

FreeBayes
(not GATK)

Garrison E, Marth G. Haplotype-based variant detection from short-
read sequencing. arXiv preprint arXiv:1207.3907 [q-bio.GN] 2012

=1
Reported as PL
in our VCF
example

Haplotype likelihood function for UnifiedGenotyper:

From base quality score

Substitution-specifc rates
(confusion matrix) may also be
used here

Reported in QUAL
field of VCF

HaplotypeCaller: what does it do?

P{D|H} determined from scores of reads alignments to haplotypes (based on base qualities)

1. Define active regions
The program determines which regions of the genome it needs to operate on, based on the presence of significant
evidence for variation.

2. Determine haplotypes by re-assembly of the active region
For each ActiveRegion, the program builds a De Bruijn-like graph to reassemble the ActiveRegion, and identifies what
are the possible haplotypes present in the data. The program then realigns each haplotype against the reference
haplotype using the Smith-Waterman algorithm in order to identify potentially variant sites.

3. Determine likelihoods of the haplotypes given the read data
For each ActiveRegion, the program performs a pairwise alignment of each read against each haplotype using the
PairHMM algorithm. This produces a matrix of likelihoods of haplotypes given the read data. These likelihoods are
then marginalized to obtain the likelihoods of alleles for each potentially variant site given the read data.

4. Assign sample genotypes
For each potentially variant site, the program applies Bayes’ rule, using the likelihoods of alleles given the read data
to calculate the likelihoods of each genotype per sample given the read data observed for that sample. The most
likely genotype is then assigned to the sample.

Haplotype caller: what does it do?

FreeBayes: haplotype-based an alternative to GATK

Local realignment around indels not needed.
• It is accomplished internally, discordant alignments are dramatically reduced through the direct detection

of haplotypes.
• True also for GATK’s HaplotypeCaller

Base quality recalibration not needed
• Sequencing platform errors tend to cluster (e.g. at the ends of reads), and generate unique, non-repeating

haplotypes at a given locus, which can be discarded
• Should be true also for GATK’s HaplotypeCaller

Reported variant quality more reliable
• Better (than GATK’s) Bayesian model, directly incorporating a number of metrics, such as read placement

bias and allele balance
• No variant quality recalibration of complex variant filtering needed

In our tests – order of magnitude faster than GATK HaplotypeCaller (+ savings on BAM preparation)!

Still suffers from “N+1” problem

Erik Garrison et al., https://github.com/ekg/freebayes

https://github.com/ekg/freebayes

Comparison of GATK and FreeBayes (how many known NA12878 SNPs/indels
are called correctly/incorrectly)

Comparison of GATK and FreeBayes (how many known NA12878 SNPs/indels
are called correctly/incorrectly)

From sample alignments (BAM files) files to raw variants (VCF file)

sample1.dedup.realign.bam sample2.dedup.realign.bam sampleM.dedup.realign.bam…

GATK HaplotypeCaller
In gVCF mode
(1 sample calls,
possibly in parallel)
Haplotype-based

GATK HaplotypeCaller
(joint SNP calling)
Haplotype-based

GATK GenotypeGVCFs
(joint SNP calling)

sample1.g.vcf
sample2.g.vcf
…
sampleN.g.vcf

M-sample VCF file

GATK UnifiedGenotyper
(joint SNP calling)
Site-by-site

M-sample VCF file

FreeBayes
(joint SNP calling)
Haplotype-based

M-sample VCF file

*.g.vcf: Per-sample Intermediate files summarizing genotype likelihoods
over the whole genome (or region of interest)

Used later to make joint calls on the cohort

Addresses the “N+1” problem: no need to reprocess everything just to add one
more sample

M-sample VCF file

GATK HaplotypeCaller
In gVCF mode
(1 sample calls,
possibly in parallel)
Haplotype-based

GATK GenotypeGVCFs
(joint SNP calling)

sample1.g.vcf
sample2.g.vcf
…
sampleN.g.vcf

M-sample VCF file

java -jar GenomeAnalysisTK.jar \

-T HaplotypeCaller \

-R genome.fa \

-I sample1.sorted.dedup.realigned.fixmate.recal.bam \

--emitRefConfidence GVCF \

--variant_index_type LINEAR \

--variant_index_parameter 128000 \

-o sample1.g.vcf

Run for each sample (on a multi-CPU machine, run a few simultaneously)

java –Xmx2g -jar GenomeAnalysisTK.jar \

-T GenotypeGVCFs \

-R genome.fa \

--variant sample1.g.vcf \

--variant sample2.g.vcf \

--variant sample3.g.vcf \

--variant sample4.g.vcf \

-stand_call_conf 30 \

-stand_emit_conf 10 \

-o 4samples.vcf

Run once after all *.g.vcf files are obtained

Running HaplotypeCaller in gVCF mode

Slow

Fast

GATK HaplotypeCaller
(joint SNP calling)
Haplotype-based

M-sample VCF file

java –jar GenomeAnalysisTK.jar \

-T HaplotypeCaller \

-R genome.fa \

-I sample1.sorted.dedup.realigned.fixmate.recal.bam \

-I sample2.sorted.dedup.realigned.fixmate.recal.bam \

-I sample3.sorted.dedup.realigned.fixmate.recal.bam \

-I sample4.sorted.dedup.realigned.fixmate.recal.bam \

-L chr2R \

-stand_call_conf 30 \

-stand_emit_conf 10 \

-o 4samples_joint_call.chr2R.vcf

Running HaplotypeCaller (variant-only mode)

Note:

Haplotype assembly uses reads from all samples (rather than one at a time), and so…

…resulting VCF file will not be exactly equivalent to that obtained from gVCF mode runs followed by GenotypeGVCFs

May be parallelized by genome region (using –L option)
i.e., different regions run on different processors

GATK UnifiedGenotyper
(joint SNP calling)
Site-by-site

M-sample VCF file

java -Djava.io.tmpdir=$TMP -jar GenomeAnalysisTK.jar \

-T UnifiedGenotyper \

-R genome.fa \

-I sample1.sorted.dedup.realigned.fixmate.recal.bam \

-I sample2.sorted.dedup.realigned.fixmate.recal.bam \

-I sample3.sorted.dedup.realigned.fixmate.recal.bam \

-I sample4.sorted.dedup.realigned.fixmate.recal.bam \

-L chr2R \

-stand_call_conf 30 \

-stand_emit_conf 10 \

-o 4samples.UG.chr2R.vcf

Running UnifiedGenotyper

Broad recommends running HaplotypeCaller-based pipeline instead if this

However, still recommended for
Pooled sample cases
High ploidity cases

May be parallelized by genome region (using –L option)
i.e., different regions run on different processors

Options to pay attention to in HaplotypeCaller,
GenotypeVCFs, and UnifiedGenotyper

-stand_emit_conf [number]

Variants with quality score (QUAL) less than [number] will not be written to VCF file. Good to set this
low – better have too many raw variants than too few. Can always filter VCF file later. Default 30.

-stand_call_conf [number]

Variants with QUAL< [number] will be marked as LowQual in FILTER field of VCF. Default: 30

-dcov [int]

Read depth at any locus will be capped at [number]; the goal is to provide even distribution of read
start positions while removing excess coverage. For truly unbiased down-sampling, use -dfrac
Defaults are usually high (250) – can be reduced to speed things up.

What to do with a freshly obtained set of called variants?

java -jar GenomeAnalysisTK.jar \

-T VariantFiltration \

-R genome.fa \

-filter "MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)" \

-filter “FS>=10.0" \

-filter “AN>=4" \

-filter "DP>100 || DP<4" \

-filterName HARD_TO_VALIDATE \

-filterName SNPSBFilter \

-filterName SNPNalleleFilter \

-filterName SNPDPFilter \

-cluster 3 \

-window 10 \

--variant chr2R.4samples.vcf \

-o chr2R.4samples.filtered.vcf

Useful tool: VariantFiltration – hard filtering on various criteria

Example:

Whenever any of the “-filter” conditions satisfied, the corresponding “-filterName” will be added to the FILTER field in
VCF.

Filtering options for SNPs may be
different than for indels (see
exercise)

Commonly used filtering parameters
DP
Total depth of read coverage at the site (shouldn’t be too low)

MQ0
Number of zero mapping quality reads spanning the site (should be low)

MQ
RMS mapping quality of reads spanning the site

FS
P-value (phred-scaled) of the strand bias contingency table (should be low)

QD
QUAL/(depth of non-reference reads) – should be large (e.g, >2)

ReadPosRankSum
Parameter showing how close the variant site is to ends of reads (typically more positive for good
variants) – available only for heterozygous sites

MQRankSum
Parameter comparing mapping qualities of reads carrying an alternative allele to reference reads –
available only for heterozygous sites (typically more positive for good variants).

Variant Quality Score Recalibration (VSQR)

Recommended instead of hard (threshold-based) filtering when a set of true, reliable variants is
available.

Good
variants

Raw
variants

Gaussian mixture model
(clusters variants in
parameter space)

QD

training

Annotation parameters

VQSLOD score
For each variant, more
informative than QUAL

2D cross-section though cluster of variants in multi-D parameters space

Useful tool: VariantEval – summary stats and comparison of
callsets

java -Xmx2g -jar GenomeAnalysisTK.jar \

-R genome.fa \

-T VariantEval \

-o file1.file2.comp.gatkreport \

--eval:set1 file1.vcf \

--comp file2.vcf

Will summarize various properties of variants in file1.vcf
• Classes of variants
• Indel characteristics
• Ti/Tv
• Multi-allelic variants
• ….

Will compare to variants in file2.vcf
• Common variants and extra variants in file1.vcf (compared to file2.vcf)
• Concordance rate

Other VCF analysis and manipulation package: vcftools
vcftools (A. Auton, A. Amrcketta, http://vcftools.sourceforge.net/)

Obtain basis VCF statistics (number of samples and variant sites):

vcftools --vcf hc.chr2R.vcf

Extract subset of variants (chromosome chr2R, between positions 1M and 2M) and write tem a new VCF file

vcftools –vcf hc.chr2R.vcf --chr chr2R --from-bp 1000000 --to-bp 2000000

--recode –recode-INFO-all -c > subset.vcf

Get allele frequencies for all variants and write them to a file

vcftools --vcf hc.chr2R.vcf --freq -c > hc.chr2R.freqs

Compare two VCF files (will print out various kinds of compare info in files hc.ug.compare.*):

vcftools --vcf hc.chr2R.vcf --diff ug.chr2R.vcf --out hc.ug.compare

Vcftools can also compute
• LD statistics
• Fst between populations

http://vcftools.sourceforge.net/

All call optimization effort in GATK directed towards detection and removal of sequencing errors and small alignment
errors

Reference genome assumed to be adequate (similar to those pf re-sequenced individuals), i.e., reads assumed to be
decently mapped to right locations possibly with small alignment ambiguities

Elaborate GATK pipeline will not help in case of massive misalignments (reads mapping to completely wrong locations)
resulting from large diversity

What to do then?

Filter raw set of variants (most of them wrong) based on data for a large population (if you have one)

Identity by Descent (IBD): exploit local identity within pairs of samples
local Linkage Disequilibrium (LD): true variant should be in LD with nearby ones

Word of caution

