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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the clas-
sical techniques of applied mathematics. This renewal of interest, both in
research and teaching, has led to the establishment of the series Texts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high
level of excitement on the research frontier as newer techniques, such as
numerical and symbolic computer systems, dynamical systems, and chaos,
mix with and reinforce the traditional methods of applied mathematics.
Thus, the purpose of this textbook series is to meet the current and future
needs of these advances and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman



Preface to the Third Edition

This edition contains four new sections on the following topics: the BDDC
domain decomposition preconditioner (Section 7.8), a convergent adap-
tive algorithm (Section 9.5), interior penalty methods (Section 10.5) and
Poincaré-Friedrichs inequalities for piecewise W 1

p functions (Section 10.6).
We have made improvements throughout the text, many of which were
suggested by colleagues, to whom we are grateful. New exercises have been
added and the list of references has also been expanded and updated.

Some of the new material originated from our research and we would
like to thank the National Science Foundation for support. The first au-
thor would also like to thank the Alexander von Humboldt Foundation for
supporting her visit to Germany in the Summer of 2007, during which the
work on this edition was completed. The second author would also like to
thank the Université Pierre et Marie Curie for supporting his visits to Paris
during the past several years, during which work related to this edition was
carried out.

In the preface to the first edition, we outlined different ways the book
could be used in courses, but since some chapter numbers have changed, we
rephrase these suggestions here. Chapters 0 through 5 form the essential
material for a course (these chapter numbers have not changed). Chapters
6 and 7 provide an introduction to efficient iterative solvers for the linear
systems of finite element equations, but they do not contain material re-
quired by later chapters. A course emphasizing algorithmic aspects would
include them. Similarly, Chapters 8 and 9 are not required in later chapters.
A course covering challenging analysis questions would cover these. The for-
mer develops and applies max-norm error estimates to nonlinear problems,
and the latter introduces the concept of mesh adaptivity. Chapter 10, how-
ever, has an essential role in the subsequent chapters. But one could cover
only the first and third sections of this chapter and then go on to Chapter
11 or 12 to study typical systems of differential equations found in appli-
cations. Chapter 13 is essentially a continuation of Chapter 12. Chapters
10-13 form the core for a course emphasizing basic models in mechanics.
Chapter 14 is an independent topic at a somewhat more advanced level
that only depends on Chapters 0-5. It develops some functional analysis
techniques and their application to finite element methods.

Baton Rouge, LA Susanne C. Brenner
Chicago, IL L. Ridgway Scott
20/07/2007



Preface to the Second Edition

This edition contains two new chapters. The first one is on the additive
Schwarz theory with applications to multilevel and domain decomposition
preconditioners, and the second one is an introduction to a posteriori error
estimators and adaptivity. We have also included a new section on an ex-
ample of a one-dimensional adaptive mesh, a new section on the discrete
Sobolev inequality and new exercises throughout. The list of references has
also been expanded and updated.

We take this opportunity to extend thanks to everyone who provided
comments and suggestions about this book over the years, and to the Na-
tional Science Foundation for support. We also wish to thank Achi Dosanjh
and the production staff at Springer-Verlag for their patience and care.

Columbia, SC Susanne C. Brenner
Chicago, IL L. Ridgway Scott
20/02/2002



Preface to the First Edition

This book develops the basic mathematical theory of the finite element
method, the most widely used technique for engineering design and analysis.
One purpose of this book is to formalize basic tools that are commonly used
by researchers in the field but never published. It is intended primarily for
mathematics graduate students and mathematically sophisticated engineers
and scientists.

The book has been the basis for graduate-level courses at The Uni-
versity of Michigan, Penn State University and the University of Houston.
The prerequisite is only a course in real variables, and even this has not
been necessary for well-prepared engineers and scientists in many cases.
The book can be used for a course that provides an introduction to ba-
sic functional analysis, approximation theory and numerical analysis, while
building upon and applying basic techniques of real variable theory.

Chapters 0 through 5 form the essential material for a course. Chapter 0
provides a microcosm of what is to follow, developed in the one-dimensional
case. Chapters 1 through 4 provide the basic theory, and Chapter 5 develops
basic applications of this theory. From this point, courses can bifurcate in
various directions. Chapter 6 provides an introduction to efficient iterative
solvers for the linear systems of finite element equations. While essential
from a practical point of view (our reason for placing it in a prominent
position), this could be skipped, as it is not essential for further chapters.
Similarly, Chapter 7, which derives error estimates in the maximum norm
and shows how such estimates can be applied to nonlinear problems, can
be skipped as desired.

Chapter 8, however, has an essential role in the following chapters. But
one could cover only the first and third sections of this chapter and then go
on to Chapter 9 in order to see an example of the more complex systems of
differential equations that are the norm in applications. Chapter 10 depends
to some extent on Chapter 9, and Chapter 11 is essentially a continuation
of Chapter 10. Chapter 12 presents Banach space interpolation techniques
with applications to convergence results for finite element methods. This is
an independent topic at a somewhat more advanced level.

To be more precise, we describe three possible course paths that can be



xii Preface to the First Edition

chosen. In all cases, the first step is to follow Chapters 0 through 5. Someone
interested to present some of the “hard estimates” of the subject could then
choose from Chapters 6 through 8, and 12. On the other hand, someone
interested more in physical applications could select from Sect. 8.1, Sect. 8.3
and Chapters 9 through 11. Someone interested primarily in algorithmic
efficiency and code development issues could follow Chapters 6, 8, 10 and 11.

The omissions from the book are so numerous that is hard to begin
to list them. We attempt to list the most glaring omissions for which there
are excellent books available to provide material.

We avoid time-dependent problems almost completely, partly because
of the existence of the book of (Thomée 1984). Our extensive development
of different types of elements and the corresponding approximation the-
ory is complementary to Thomée’s approach. Similarly, our development
of physical applications is limited primarily to linear systems in continuum
mechanics. More substantial physical applications can be found in the book
by (Johnson 1987).

Very little is said here about adaptivity. This active research area is ad-
dressed in various conference proceedings (cf. Babuška, Chandra & Flaherty
1983 and Babuška, Zienkiewicz, Gago & de A. Oliveira 1986).

We emphasize the variety of discretizations (that is, different “ele-
ments”) that can be used, and we present them (whenever possible) as
families depending on a parameter (usually the degree of approximation).
Thus, a spirit of “high-order” approximations is developed, although we
do not consider increasing the degree of approximation (as is done in the
so-called P-method and spectral element method) as the means of obtain-
ing convergence. Rather, we focus on mesh subdivision as the convergence
parameter. The recent book by (Szabo & Babuška 1991) may be consulted
for alternatives in this direction.

Although we provide a brief introduction to mixed methods, the im-
portance of this subject is not appropriately reflected here. However, the
recent book by (Brezzi & Fortin 1991) can be consulted for a thorough
treatment of the subject.

We draw extensively on the book of (Ciarlet 1978), both following
many of its ideas and using it as a reference for further development of
various subjects. This book has recently been updated in (Ciarlet & Lions
1991), which also contains an excellent survey of mixed methods. Moreover,
the Handbook series to which the latter reference belongs can be expected
to provide valuable reference material in the future.

We take this opportunity to thank the many people who have helped
at various stages, and in many different ways, in the preparation of this
book. The many students who struggled through early drafts of the book
made invaluable contributions. Many readers of the preliminary versions
will find their specific suggestions incorporated.

This book was processed by the authors using the TEX macro package
from Springer-Verlag.
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Chapter 0

Basic Concepts

The finite element method provides a formalism for generating discrete (fi-
nite) algorithms for approximating the solutions of differential equations.
It should be thought of as a black box into which one puts the differential
equation (boundary value problem) and out of which pops an algorithm for
approximating the corresponding solutions. Such a task could conceivably
be done automatically by a computer, but it necessitates an amount of
mathematical skill that today still requires human involvement. The pur-
pose of this book is to help people become adept at working the magic
of this black box. The book does not focus on how to turn the resulting
algorithms into computer codes, but this topic is being pursued by several
groups. In particular, the FEniCS project (on the web at fenics.org) utilizes
the mathematical structure of the finite element method to automate the
generation of finite element codes.

In this chapter, we present a microcosm of a large fraction of the book,
restricted to one-dimensional problems. We leave many loose ends, most of
which will be tied up in the theory of Sobolev spaces to be presented in
the subsequent chapter. These loose ends should provide motivation and
guidance for the study of those spaces.

0.1 Weak Formulation of Boundary Value Problems

Consider the two-point boundary value problem

(0.1.1)
−d2u

dx2
= f in (0, 1)

u(0) = 0, u′(1) = 0.

If u is the solution and v is any (sufficiently regular) function such that
v(0) = 0, then integration by parts yields
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(0.1.2)
(f, v) : =

∫ 1

0

f(x)v(x)dx =
∫ 1

0

−u′′(x)v(x)dx

=
∫ 1

0

u′(x)v′(x)dx =: a(u, v).

Let us define (formally, for the moment, since the notion of derivative to
be used has not been made precise)

V = {v ∈ L2(0, 1): a(v, v) < ∞ and v(0) = 0}.

Then we can say that the solution u to (0.1.1) is characterized by

(0.1.3) u ∈ V such that a(u, v) = (f, v) ∀v ∈ V,

which is called the variational or weak formulation of (0.1.1).
The relationship (0.1.3) is called “variational” because the function v

is allowed to vary arbitrarily. It may seem somewhat unusual at first; later
we will see that it has a natural interpretation in the setting of Hilbert
spaces. (A Hilbert space is a vector space whose topology is defined using
an inner-product.) One example of a Hilbert space is L2(0, 1) with inner-
product (·, ·). Although it is by no means obvious, we will also see that the
space V may be viewed as a Hilbert space with inner-product a(·, ·), which
was defined in (0.1.2).

One critical question we have not yet dealt with is what sort of deriva-
tive is to be used in the definition of the bilinear form a(·, ·). Should this be
the classical derivative

u′(x) = lim
h→0

u(x + h)− u(x)
h

?

Or should the “almost everywhere” definition valid for functions of bounded
variation (BV) be used? We leave this point hanging for the moment and
hope this sort of question motivates you to study the following chapter
on Sobolev spaces. Of course, the central issue is that (0.1.3) still embodies
the original problem (0.1.1). The following theorem verifies this under some
simplifying assumptions.

(0.1.4) Theorem. Suppose f ∈ C 0([0, 1]) and u ∈ C 2([0, 1]) satisfy (0.1.3).
Then u solves (0.1.1).

Proof. Let v ∈ V ∩ C 1([0, 1]). Then integration by parts gives

(0.1.5) (f, v) = a(u, v) =
∫ 1

0

(−u′′)vdx + u′(1)v(1).

Thus,
(
f − (−u′′), v

)
= 0 for all v ∈ V ∩ C 1([0, 1]) such that v(1) = 0. Let

w = f + u′′ ∈ C 0([0, 1]). If w �≡ 0, then w(x) is of one sign in some interval
[x0, x1] ⊂ [0, 1], with x0 < x1 (continuity). Choose v(x) = (x−x0)2(x−x1)2
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in [x0, x1] and v ≡ 0 outside [x0, x1]. But then (w, v) �= 0, which is a
contradiction. Thus, −u′′ = f . Now apply (0.1.5) with v(x) = x to find
u′(1) = 0. Of course, u ∈ V implies u(0) = 0, so u solves (0.1.1). �	

(0.1.6) Remark. The boundary condition u(0) = 0 is called essential as it
appears in the variational formulation explicitly, i.e., in the definition of V .
This type of boundary condition also frequently goes by the proper name
“Dirichlet.” The boundary condition u′(1) = 0 is called natural because it is
incorporated implicitly. This type of boundary condition is often referred to
by the name “Neumann.” We summarize the different kinds of boundary
conditions encountered so far, together with their various names in the
following table:

Table 0.1. Naming conventions for two types of boundary conditions

Boundary Condition Variational Name Proper Name
u(x) = 0 essential Dirichlet
u′(x) = 0 natural Neumann

The assumptions f ∈ C 0([0, 1]) and u ∈ C 2([0, 1]) in the theorem
allow (0.1.1) to be interpreted in the usual sense. However, we will see
other ways in which to interpret (0.1.1), and indeed the theorem says that
the formulation (0.1.3) is a way to interpret it that is valid with much less
restrictive assumptions on f . For this reason, (0.1.3) is also called a weak
formulation of (0.1.1).

0.2 Ritz-Galerkin Approximation

Let S ⊂ V be any (finite dimensional) subspace. Let us consider (0.1.3)
with V replaced by S, namely

(0.2.1) uS ∈ S such that a(uS , v) = (f, v) ∀v ∈ S.

It is remarkable that a discrete scheme for approximating (0.1.1) can be
defined so easily. This is only one powerful aspect of the Ritz-Galerkin
method. However, we first must see that (0.2.1) does indeed define an ob-
ject. In the process we will indicate how (0.2.1) represents a (square, finite)
system of equations for uS . These will be done in the following theorem
and its proof.

(0.2.2) Theorem. Given f ∈ L2(0, 1), (0.2.1) has a unique solution.

Proof. Let us write (0.2.1) in terms of a basis {φi : 1 ≤ i ≤ n} of S. Let
uS =

∑n
j=1 Ujφj ; let Kij = a(φj , φi), Fi = (f, φi) for i, j = 1, ..., n. Set



4 Chapter 0. Basic Concepts

U = (Uj),K = (Kij) and F = (Fi). Then (0.2.1) is equivalent to solving
the (square) matrix equation

(0.2.3) KU = F.

For a square system such as (0.2.3) we know that uniqueness is equivalent
to existence, as this is a finite dimensional system. Nonuniqueness would
imply that there is a nonzero V such that KV = 0. Write v =

∑
Vjφj and

note that the equivalence of (0.2.1) and (0.2.3) implies that a(v, φj) = 0
for all j. Multiplying this by Vj and summing over j yields 0 = a(v, v) =∫ 1

0
(v′)2(x) dx, from which we conclude that v′ ≡ 0. Thus, v is constant,

and, since v ∈ S ⊂ V implies v(0) = 0, we must have v ≡ 0. Since {φi : 1 ≤
i ≤ n} is a basis of S, this means that V = 0. Thus, the solution to (0.2.3)
must be unique (and hence must exist). Therefore, the solution uS to (0.2.1)
must also exist and be unique. �	

(0.2.4) Remark. Two subtle points are hidden in the “proof” of Theorem
(0.2.2). Why is it that “thus v is constant”? And, moreover, why does v ∈ V
really imply v(0) = 0 (even though it is in the definition, i.e., why does
the definition make sense)? The first question should worry those familiar
with the Cantor function whose derivative is zero almost everywhere, but is
certainly not constant (it also vanishes at the left of the interval in typical
constructions). Thus, something about our definition of V must rule out
such functions as members. V is an example of a Sobolev space, and we
will see that such problems do not occur in these spaces. It is clear that
functions such as the Cantor function should be ruled out (in a systematic
way) as candidate solutions for differential equations since it would be a
nontrivial solution to the o.d.e. u′ = 0 with initial condition u(0) = 0.

(0.2.5) Remark. The matrix K is often referred to as the stiffness matrix,
a name coming from corresponding matrices in the context of structural
problems. It is clearly symmetric, since the energy inner-product a(·, ·) is
symmetric. It is also positive definite, since

n∑
i,j=1

kijvivj = a(v, v) where v =
n∑

j=1

vjφj .

Clearly, a(v, v) ≥ 0 for all (vj) and a(v, v) = 0 was already “shown” to
imply v ≡ 0 in the proof of Theorem 0.2.3.

0.3 Error Estimates

Let us begin by observing the fundamental orthogonality relation between
u and uS . Subtracting (0.2.1) from (0.1.3) implies

(0.3.1) a(u− uS , w) = 0 ∀w ∈ S.
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Equation (0.3.1) and its subsequent variations are the key to the suc-
cess of all Ritz-Galerkin/finite-element methods. Now define

‖v‖E =
√

a(v, v)

for all v ∈ V , the energy norm. A critical relationship between the energy
norm and inner-product is Schwarz’ inequality:

(0.3.2) |a(v, w)| ≤ ‖v‖E ‖w‖E ∀v, w ∈ V.

This inequality is a cornerstone of Hilbert space theory and will be discussed
at length in Sect. 2.1. Then, for any v ∈ S,

‖u− uS‖2E = a(u− uS , u− uS)
= a(u− uS , u− v) + a(u− uS , v − uS)
= a(u− uS , u− v) (from 0.3.1 with w = v − uS)
≤ ‖u− uS‖E ‖u− v‖E (from 0.3.2).

If ‖u−uS‖E �= 0, we can divide by it to obtain ‖u− uS‖E ≤ ‖u− v‖E ,
for any v ∈ S. If ‖u−uS‖E = 0, this inequality is trivial. Taking the infimum
over v ∈ S yields

‖u− uS‖E ≤ inf{‖u− v‖E : v ∈ S}.
Since uS ∈ S, we have

inf {‖u− v‖E : v ∈ S} ≤ ‖u− uS‖E .

Therefore,
‖u− uS‖E = inf {‖u− v‖E : v ∈ S} .

Moreover, there is an element (uS) for which the infimum is attained, and
we indicate this by replacing “infimum” with “minimum.” Thus, we have
proved the following.

(0.3.3) Theorem. ‖u− uS‖E = min {‖u− v‖E : v ∈ S}.

This is the basic error estimate for the Ritz-Galerkin method, and it
says that the error is optimal in the energy norm. We will use this later to
derive more concrete estimates for the error based on constructing approx-
imations to u in S for particular choices of S. Now we consider the error in
another norm.

Define ‖v‖ = (v, v)
1
2 = (

∫ 1

0
v(x)2dx)

1
2 , the L2(0, 1)-norm. We wish to

consider the size of the error u−uS in this norm. You might guess that the
L2(0, 1)-norm is weaker than the energy norm, as the latter is the L2(0, 1)-
norm of the derivative (this is the case, on V , although it is not completely
obvious and makes use of the essential boundary condition incorporated in
V ). Thus, the error in the L2(0, 1)-norm will be at least comparable with the
error measured in the energy norm. In fact, we will find it is considerably
smaller.
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To estimate ‖u− uS‖, we use what is known as a “duality” argument.
Let w be the solution of

−w′′ = u− uS on [0, 1] with w(0) = w′(1) = 0.

Integrating by parts, we find

‖u− uS‖2 = (u− uS , u− uS)
= (u− uS ,−w′′)
= a(u− uS , w) (since (u− uS)(0) = w′(1) = 0)
= a(u− uS , w − v) (from 0.3.1)

for all v ∈ S. Thus, Schwarz’ inequality (0.3.2) implies that

‖u− uS‖ ≤ ‖u− uS‖E ‖w − v‖E /‖u− uS‖
= ‖u− uS‖E ‖w − v‖E /‖w′′‖.

We may now take the infimum over v ∈ S to get

‖u− uS‖ ≤ ‖u− uS‖E inf
v∈S

‖w − v‖E /‖w′′‖.

Thus, we see that the L2-norm of the error can be much smaller than the
energy norm, provided that w can be approximated well by some function
in S. It is reasonable to assume that we can take v ∈ S close to w, which
we formalize in the following approximation assumption:

(0.3.4) inf
v∈S

‖w − v‖E ≤ ε‖w′′‖.

Of course, we envisage that this holds with ε being a small number. Apply-
ing (0.3.4) yields

‖u− uS‖ ≤ ε ‖u− uS‖E ,

and applying (0.3.4) again, with w replaced by u, and using Theorem 0.3.3
gives

‖u− uS‖E ≤ ε‖u′′‖.
Combining these estimates, and recalling (0.1.1), yields

(0.3.5) Theorem. Assumption (0.3.4) implies that

‖u− uS‖ ≤ ε ‖u− uS‖E ≤ ε2‖u′′‖ = ε2‖f‖.

The point of course is that ‖u− uS‖E is of order ε whereas ‖u− uS‖
is of order ε2. We now consider a family of spaces S for which ε may be
made arbitrarily small.



0.4 Piecewise Polynomial Spaces 7

0.4 Piecewise Polynomial Spaces – The Finite Element
Method

Let 0 = x0 < x1 < ... < xn = 1 be a partition of [0, 1], and let S be the
linear space of functions v such that

i) v ∈ C 0([0, 1])
ii) v|[xi−1,xi] is a linear polynomial, i = 1, ..., n, and
iii) v(0) = 0.

We will see later that S ⊂ V . For each i = 1, .., n define φi by the require-
ment that φi(xj) = δij = the Kronecker delta, as shown in Fig. 0.1.

i0 1x i

Fig. 0.1. piecewise linear basis function φi

(0.4.1) Lemma. {φi : 1 ≤ i ≤ n} is a basis for S.

(0.4.2) Remark. {φi} is called a nodal basis for S, and {v(xi)} are the nodal
values of a function v. (The points {xi} are called the nodes.)

Proof. The set {φi} is linearly independent since
∑n

i=1 ciφi(xj) = 0 implies
cj = 0. To see that it spans S, consider the following:

(0.4.3) Definition. Given v ∈ C 0([0, 1]), the interpolant vI ∈ S of v is
determined by vI : =

∑n
i=1 v(xi)φi.

Clearly, the set {φi} spans S if the following is true.

(0.4.4) Lemma. v ∈ S ⇒ v = vI .

Proof. v − vI is linear on each [xi−1, xi] and zero at the endpoints, hence
must be identically zero. �	

We will now prove the following approximation theorem for the interpolant.

(0.4.5) Theorem. Let h = max1≤i≤n

(
xi − xi−1

)
. Then

‖u− uI‖E ≤ Ch‖u′′‖
for all u ∈ V , where C is independent of h and u.
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Proof. Recalling the definitions of the two norms, it is clearly sufficient to
prove the estimate piecewise, i.e., that∫ xj

xj−1

(u− uI)
′ (x)2 dx ≤ c (xj − xj−1)

2
∫ xj

xj−1

u′′(x)2 dx

as the stated result follows by summing over j, with C =
√

c. Let e = u−uI

denote the error; since uI is a linear polynomial on the interval [xj−1, xj ],
the above is equivalent to∫ xj

xj−1

e′(x)2 dx ≤ c (xj − xj−1)
2
∫ xj

xj−1

e′′(x)2 dx.

Changing variables by an affine mapping of the interval [xj−1, xj ] to the
interval [0, 1], we see that this is equivalent to showing∫ 1

0

ẽ′(x̃)2 dx̃ ≤ c

∫ 1

0

ẽ′′(x̃)2 dx̃,

where x = xj−1 + x̃ (xj − xj−1) and

ẽ(x̃) = e (xj−1 + x̃ (xj − xj−1)) .

Note that we have arrived at an equivalent estimate that does not involve
the mesh size at all. The technique of reducing a mesh-length dependent
estimate to a mesh-independent one in this way is called a homogeneity
argument (or scaling argument) and will be used frequently in Chapter 4
and thereafter.

The verification of the latter estimate is a simple calculus exercise. Let
w = ẽ to simplify the notation, and write x for x̃. Note that w vanishes at
both ends of the interval (the interpolation error is zero at all nodes). By
Rolle’s Theorem, w′(ξ) = 0 for some ξ satisfying 0 < ξ < 1. Thus,

w′(y) =
∫ y

ξ

w′′(x) dx.

By Schwarz’ inequality,

(0.4.6)

|w′(y)| =
∣∣∣∣∫ y

ξ

w′′(x) dx

∣∣∣∣
=

∣∣∣∣∫ y

ξ

1 · w′′(x) dx

∣∣∣∣
≤

∣∣∣∣∫ y

ξ

1 dx

∣∣∣∣1/2

·
∣∣∣∣∫ y

ξ

w′′(x)2 dx

∣∣∣∣1/2

= |y − ξ|1/2

∣∣∣∣∫ y

ξ

w′′(x)2 dx

∣∣∣∣1/2

≤ |y − ξ|1/2

(∫ 1

0

w′′(x)2 dx

)1/2

.
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Squaring and integrating with respect to y completes the verification, with

c = sup
0<ξ<1

∫ 1

0

|y − ξ| dy =
1
2
. �	

(0.4.7) Corollary. ‖u− uS‖+ Ch ‖u− uS‖E ≤ 2 (Ch)2 ‖u′′‖.
Proof. Theorem 0.4.5 implies that the approximation assumption (0.3.4)
holds with ε = Ch. �	

(0.4.8) Remark. The interpolant defines a linear operator I:C 0([0, 1]) → S
where Iv = vI . Lemma 0.4.4 says that I is a projection (i.e., I2 = I). The
estimate (0.4.6) for w′ in the proof of (0.4.5) is an example of Sobolev’s
inequality, in which the pointwise values of a function can be estimated in
terms of integrated quantities involving its derivatives. Estimates of this
type will be considered at length in Chapter 1.

0.5 Relationship to Difference Methods

The stiffness matrix K as defined in (0.2.3), using the basis {φi} described
above, can be interpreted as a difference operator. Let hi = xi−xi−1. Then
the matrix entries Kij = a(φi, φj) can be easily calculated to be

(0.5.1) Kii = h−1
i + h−1

i+1,Ki,i+1 = Ki+1,i = −h−1
i+1 (i = 1, ..., n− 1)

and Knn = h−1
n with the rest of the entries of K being zero. Similarly, the

entries of F can be approximated if f is sufficiently smooth:

(0.5.2) (f, φi) =
1
2
(hi + hi+1)(f(xi) +O(h))

where h = max hi. (This follows easily from Taylor’s Theorem since the
integral of φi is (hi + hi+1)/2. Note that the error is not O(h2) unless
1− (hi/hi+1) = O(h).) Thus, the i− th equation of KU = F (for 1 ≤ i ≤
n− 1) can be written as

(0.5.3)
−2

hi + hi+1

[
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

]
=

2(f, φi)
hi + hi+1

= f(xi) +O(h).

The difference operator on the left side of this equation can also be seen
to be an O(h) accurate approximation to the differential operator −d2/dx2

(and not O(h2) accurate in the usual sense unless 1−hi/hi+1 = O(h).) For
a uniform mesh, the equations reduce to the familiar difference equations
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(0.5.4) −Ui+1 − 2Ui + Ui−1

h2
= f(xi) +O(h2)

which are well known to be second-order accurate. However, for a general
mesh (e.g., hi = h for i even and hi = h/2 for i odd), we know from Corol-
lary 0.4.7 that the answer is still second-order accurate (in L2(0, 1) at least,
but it will also be proved to be so in the maximum norm in Sect. 0.7), even
though the difference equations are formally only consistent to first order.
This phenomenon has been studied in detail by Spijker (Spijker 1971), and
related work has recently been done by (Kreiss, et.al. 1986). See exercises
0.x.11 through 0.x.15 for more details.

We will take this opportunity to philosophize about some power-
ful characteristics of the finite element formalism for generating discrete
schemes for approximating the solutions to differential equations. Being
based on the variational formulation of boundary value problems, it is quite
systematic, handling different boundary conditions with ease; one simply re-
places infinite dimensional spaces with finite dimensional subspaces. What
results, as in (0.5.3), is the same as a finite difference equation, in keeping
with the dictum that different numerical methods are usually more similar
than they are distinct. However, we were able to derive very quickly the
convergence properties of the finite element method. Finally, the notation
for the discrete scheme is quite compact in the finite element formulation.
This could be utilized to make coding the algorithm much more efficient if
only the appropriate computer language and compiler were available. This
latter characteristic of the finite element method is one that has not yet
been exploited extensively, but an initial attempt has been made in the sys-
tem fec (Bagheri, Scott & Zhang 1992). (One could also argue that finite
element practitioners have already taken advantage of this by developing
their own “languages” through extensive software libraries of their own, but
this applies equally well to the finite-difference practitioners.)

0.6 Computer Implementation of Finite Element
Methods

One key to the success of the finite element method, as developed in engi-
neering practice, was the systematic way that computer codes could be im-
plemented. One important step in this process is the assembly of the inner-
product a(u, v) by summing its constituent parts over each sub-interval, or
element, which are computed separately. This is facilitated through the use
of a numbering scheme called the global-to-local index. This index, i(e, j),
relates the local node number, j, on a particular element, e, to its position
in the global data structure. In our one-dimensional example with piecewise
linear functions, this index is particularly simple: the “elements” are based
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on the intervals Ie := [xe−1, xe] where e is an integer in the range 1, . . . , n
and

i(e, j) := e + j − 1 for e = 1, . . . , n and j = 0, 1.

That is, for each element there are two nodal parameters of interest, one
corresponding to the left end of the interval (j = 0) and one at the right
(j = 1). Their relationship is represented by the mapping i(e, j).

We may write the interpolant of a continuous function for the space of
all piecewise linear functions (no boundary conditions imposed) via

(0.6.1) fI :=
∑

e

1∑
j=0

f(xi(e,j))φe
j

where
{
φe

j : j = 0, 1
}

denotes the set of basis functions for linear functions
on the single interval Ie = [xe−1, xe]:

φe
j(x) = φj ((x− xe−1)/(xe − xe−1))

where

φ0(x) :=
{

1− x x ∈ [0, 1]
0 otherwise

and φ1(x) :=
{

x x ∈ [0, 1]
0 otherwise.

Note that we have related all of the “local” basis functions φe
j to a fixed set

of basis functions on a “reference” element, [0, 1], via an affine mapping of
[0, 1] to [xe−1, xe]. (By definition, the local basis functions, φe

j , are extended
by zero outside the interval Ie.)

The expression (0.6.1) for the interpolant shows (cf. Lemma 0.4.4) that
any piecewise linear function f (no boundary conditions imposed) can be
written in the form

(0.6.2) f :=
∑

e

1∑
j=0

fi(e,j)φ
e
j

where fi = f(xi) for all i. In particular, the cardinality of the image of
the index mapping i(e, j) is the dimension of the space of piecewise linear
functions. Note that the expression (0.6.2) represents f incorrectly at the
nodal points, but this has no effect on the evaluation of multilinear forms
involving integrals of f .

The bilinear forms defined in (0.1.2) can be easily evaluated (assem-
bled) using this representation as well. For example,

a(v, w) =
∑

e

ae(v, w)

where the “local” bilinear form is defined (and evaluated) via
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ae(v, w) :=
∫

Ie

v′w′ dx

= (xe − xe−1)
−1

∫ 1

0

(
Σjvi(e,j)φj

)′ (
Σjwi(e,j)φj

)′
dx

= (xe − xe−1)
−1

(
vi(e,0)

vi(e,1)

)t

K
(

wi(e,0)

wi(e,1)

)
.

Here, the local stiffness matrix, K, is given by

Ki,j :=
∫ 1

0

φ′
i−1φ

′
j−1 dx for i, j = 1, 2.

Note that we have identified the space of piecewise linear functions, v, with
the vector space of values, (vi), at the nodes. The subspace, S, of piecewise
linear functions that vanish at x = 0, defined in Sect. 0.4, can be identified
with the subspace {(vi) : v0 = 0}. Including v0 in the data structure (with
a value of zero) makes the assembly of bilinear forms equally easy in the
presence of boundary conditions.

0.7 Local Estimates

We wish to derive estimates for the error, u−uS , in the pointwise sense. As
in the case for the L2-norm, we begin by writing the error that we wish to
bound in terms of the energy bilinear form applied to u−uS and some other
function. In this case, this other function is the so-called Green’s function
for the problem (0.1.1), which in this case is simply

gx(t) :=
{

t t < x
x otherwise

where x is any point in [0, 1]. Integration by parts shows that

v(x) = a(v, gx) ∀v ∈ V

since g′′x is identically zero on either side of x. Therefore,

(u− uS)(x) = a(u− uS , gx)
= a(u− uS , gx − v) ∀v ∈ S.

One conclusion is that, if S is the space of piecewise linear functions defined
on a partition {xi : i = 1, . . . , n} as in Sect. 0.4, then

(u− uS)(xi) = 0 ∀i = 1, . . . , n

since gxi
∈ S in this case. Thus, we conclude that uS = uI , and a variant

of Theorem 0.4.5 yields
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(0.7.1) ‖u− uI‖max ≤ Ch2‖u′′‖max.

(Recall that ‖f‖max = max0≤x≤1 |f(x)|.) Combining the above estimates,
we have proved the following.

(0.7.2) Theorem. Let uS be determined by (0.2.1) using the space of piece-
wise linear functions defined in Sect. 0.4. Then

‖u− uS‖max ≤ Ch2‖u′′‖max.

Local estimates for higher-dimensional problems are much more diffi-
cult to derive, but the use of the Green’s function is similar. However, the
local character of the singularity of the one-dimensional Green’s function
disappears, and the distributed nature of the higher-dimensional Green’s
function requires techniques that are illustrated in the next section.

0.8 Adaptive Approximation

In many cases, the solution to a differential equation is rapidly varying only
in restricted regions. For such problems, it makes sense to adapt the mesh to
match the variation in the solution. The difference in approximation power
between a mesh chosen to solve general problems versus one adapted to a
particular one can be substantial. We present a particularly simple approx-
imation problem here to illustrate this effect. For more complex results, see
(DeVore, Howard & Micchelli 1989).

Let us consider the problem of approximating functions of one variable
whose derivatives are integrable. This is an even weaker condition than what
we used in section 0.3, and we wish to consider approximation in a stronger
norm, the maximum norm. We consider approximation by the space S∆ of
piecewise constant functions on a partition

(0.8.1) ∆ = {x0, x1, . . . , xn : 0 = x0 < x1 < · · · < xn = 1} .

In this case, we will say that size(∆) = n. It is not hard to see that the best
result of the form

(0.8.2) inf
v∈S∆

‖u− v‖max ≤ Cn−p

∫ 1

0

|u′(x)| dx

to hold for all u (with a fixed mesh) is to have p = 0. Indeed, whatever the
mesh, we can let u go from zero at x0 to one at x1 (and stay at one the
rest of the interval). This particular u has

∫ 1

0
|u′(x)| dx = 1 and yet

inf
v∈S∆

‖u− v‖max =
1
2
.
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Of course, writing u as the integral of u′ (cf. (0.4.6)) allows us to prove
(0.8.2) with C = 1 and p = 0, simply by taking v ≡ 0.

On the other hand, suppose that we fix a particular u and ask that
(0.8.2) hold for some partition ∆ as in (0.8.1). That is, what if we are
allowed to choose ∆ based on properties of u? To be more precise, we are
making the distinction between a statement that ∀u ∃∆ such that (0.8.2)
holds versus our earlier statement that, given ∆, (0.8.2) holds ∀u.

To see that there is a better estimate possible with an adaptively chosen
mesh, suppose that we have a u such that

∫ 1

0
|u′(x)| dx = 1. The function

(0.8.3) φ(x) =
∫ x

0

|u′(t)| dt

vanishes at x = 0 and is a non-decreasing function. Moreover, φ(1) = 1, so
there must be a points xi where φ(xi) = i/n and such that xi < xi+1 for all
i. If by chance we have xn < 1 in this process, we set xn = 1. One property
of this partition is that

(0.8.4)
∫ xi

xi−1

|u′(t)| dt = φ(xi)− φ(xi−1) =
1
n

for all i = 1, . . . , n.
To approximate u on the interval [xi−1, xi] we use the constant ci =

u(xi−1). Then for x ∈ [xi−1, xi]

(0.8.3) |u(x)− ci| =
∣∣∣∣∣
∫ x

xi−1

u′(t) dt

∣∣∣∣∣ ≤
∫ xi

xi−1

|u′(t)| dt =
1
n

proving that (0.8.2) holds for all n with p = 1 and C = 1, at least when∫ 1

0
|u′(x)| dx = 1. In the general case, simply divide everything in (0.8.2)

by
∫ 1

0
|u′(x)| dx.

Again to get the quantifiers right, let us define the approximation quo-
tient

(0.8.5) Q(u,∆) = inf
v∈S∆

‖u− v‖max

/∫ 1

0

|u′(x)| dx

for a given u such that 0 <
∫ 1

0
|u′(x)| dx < ∞ and a given partition ∆.

Then the first result we proved is that

(0.8.6) ∀∆ ∃u such that Q(u,∆) ≥ 1
2

and yet in the second result we constructed a ∆ to prove that

(0.8.7) ∀u ∃∆ with size(∆) = n such that Q(u,∆) ≤ 1
n

.
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These results indicate what a dramatic difference in approximation power
there can be in using a fixed mesh versus a mesh adapted to a particular
function.

0.9 Weighted Norm Estimates

Suppose h(x) is a function that measures the local mesh size near the
point x. In particular, we will assume that h is a piecewise linear function
satisfying

h(xj) = hj + hj+1

where hj = xj − xj−1 (and we set hn+1 = hn and h0 = h1). Note that for
all j = 1, . . . , n

(0.9.1) h(x) ≥ hj ∀x ∈ [xj−1, xj ],

since this holds at each endpoint of the interval and h is linear between
them.

We begin by deriving a basic estimate analogous to (0.4.5). From its
proof and (0.9.1), we have

‖u− uI‖2E =
n∑

i=1

∫ xi

xi−1

(u− uI)
′ (x)2 dx

≤ 1
2

n∑
i=1

h2
i

∫ xi

xi−1

u′′(x)2 dx

≤ 1
2

n∑
i=1

∫ xi

xi−1

h(x)2u′′(x)2 dx

=
1
2
‖hu′′‖2.

Therefore,

(0.9.2) ‖u− uS‖E ≤
1√
2
‖hu′′‖.

We next derive an L2 estimate analogous to the first inequality in
Theorem 0.3.5. Choosing w as was done in the proof of that result, we find

‖u− uS‖2 = a(u− uS , w)

where w solves the boundary value problem (0.1.1) with u − uS as right-
hand-side. For simplicity of notation, let e := u − uS . Using the orthogo-
nality relation (0.3.1) and Schwarz’ inequality, we find
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a(e, w) = a(e, w − wI)

=
∫ 1

0

h(u− uS)′(w − wI)′/h dx

≤
(∫ 1

0

(h(u− uS)′)2 dx

)1/2 (∫ 1

0

((w − wI)′/h)2 dx

)1/2

.

From the results of Sect. 0.4 we have∫ 1

0

((w − wI)′(x)/h(x))2 dx =
n∑

i=1

∫ xi

xi−1

((w − wI)′(x)/h(x))2 dx

≤
n∑

i=1

h−2
i

∫ xi

xi−1

(w − wI)
′ (x)2 dx

≤
n∑

i=1

1
2

∫ xi

xi−1

w′′ (x)2 dx.

Combining the previous inequalities, we have

(0.9.3) a(e, w) ≤ ‖he′‖
(

n∑
i=1

1
2

∫ xi

xi−1

w′′ (x)2 dx

)1/2

.

Recalling that −w′′ = e, we find

‖e‖2 = a(e, w)

≤ 1√
2
‖he′‖

(
n∑

i=1

∫ xi

xi−1

e (x)2 dx

)1/2

=
1√
2
‖he′‖ ‖e‖.

Dividing by ‖e‖ and recalling that e = u− uS , we have proved

(0.9.4) ‖u− uS‖ ≤
1√
2

(∫ 1

0

(h(u− uS)′)2 dx

)1/2

.

This says that the L2 error can always be estimated in terms of a weighted
integral of the squared derivative error, where the weight is given by the
mesh function (0.9.1). Now we proceed to estimate the “weighted energy”
norm on the right hand side of (0.9.4).

Let us write e := u− uS for simplicity. Then first observe that∫ 1

0

(h(u− uS)′)2 dx = ‖he′‖2 = a(e, h2e)−
∫ 1

0

2hh′ee′ dx

simply by expanding the expression a(e, h2e). We will begin to make the
assumption that h′ is small, i.e., that the mesh does not change rapidly (for
a uniform mesh, h′ ≡ 0). This will allow us to neglect the term
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0

2hh′ee′ dx

in comparison with the other terms in the preceding equation. To do so, we
will make frequent use of the arithmetic-geometric mean inequality, which
is nothing more than the simple observation that, for any real numbers a
and b,

ab ≤ 1
2
(
a2 + b2

)
(just observe that 0 ≤ (a−b)2 = −2ab+a2+b2). A slightly more complicated
version of the inequality comes by writing

ab = (εa)(b/ε) ≤ 1
2
(
(εa)2 + (b/ε)2

)
.

Writing δ in place of ε2, we find

(0.9.5) ab ≤ δ

2
a2 +

1
2δ

b2

for any δ > 0.
Let M := ‖h′‖max. Then Schwarz’ inequality and the arithmetic-

geometric mean inequality imply∣∣∣∣∫ 1

0

2hh′ee′ dx

∣∣∣∣ ≤ 2M

∫ 1

0

|hee′| dx

≤ 2M‖he′‖ ‖e‖
≤ M

(
‖he′‖2 + ‖e‖2

)
.

Therefore,

‖he′‖2 ≤ a(e, h2e) + M
(
‖he′‖2 + ‖e‖2

)
and hence,

(1−M)‖he′‖2 ≤ a(e, h2e) + M‖e‖2.

We now estimate the term a(e, h2e). Let w := h2e. From (0.9.3) and
the arithmetic-geometric mean inequality,

a(e, h2e) = a(e, w)

≤ 1√
2
‖he′‖

(
n∑

i=1

∫ xi

xi−1

(w′′)2 dx

)1/2

≤ 1−M

2
‖he′‖2 +

1
4(1−M)

n∑
i=1

∫ xi

xi−1

(w′′)2 dx

which, combined with the previous estimate, implies that
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1−M

2
‖he′‖2 ≤ 1

4(1−M)

n∑
i=1

∫ xi

xi−1

(w′′)2 dx + M‖e‖2.

Expanding, we have (on each interval (xi−1, xi) separately)

w′′ = h2e′′ + 4hh′e′ + 2 (h′)2 e

since h′′ ≡ 0. Expanding again, and using the arithmetic-geometric mean
inequality, we find

(w′′)2 ≤h4 (e′′)2 + 16M2 (he′)2 + 4M4e2

+ 8Mh3|e′′||e′|+ 4M2h2|e′′||e|+ 16M3h|e′||e|
≤7h4 (e′′)2 + 28M2 (he′)2 + 14M4e2.

Integrating, we find

1−M

2
‖he′‖2 ≤ 1

4(1−M)

n∑
i=1

∫ xi

xi−1

7h4 (e′′)2 dx

+
7M2

1−M
‖he′‖2 +

(
M +

7M4

2(1−M)

)
‖e‖2,

which implies(
1−M

2
− 7M2

1−M

)
‖he′‖2 ≤ 1

4(1−M)

n∑
i=1

∫ xi

xi−1

7h4 (e′′)2 dx

+
(

M +
7M4

2(1−M)

)
‖e‖2.

Letting c1 =
(

1−M
2 − 7M2

1−M

)−1

and recalling that e′′ = u′′, we have

‖he′‖2 ≤ 7c1

4(1−M)

∥∥h2u′′∥∥2
+ c1

(
M +

7M4

2(1−M)

)
‖e‖2

provided that

M <
1

1 +
√

14
.

Combining with estimate (0.9.4), we find that(
2− c1

(
M +

7M4

2(1−M)

))
‖u− uS‖2 ≤

7c1

4(1−M)

∥∥h2u′′∥∥2
.

Finally, we assume that M is sufficiently small so that

2− c1

(
M +

7M4

2(1−M)

)
> 0
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(observe that c1 → 2 as M → 0), and we conclude that

(0.9.6) ‖u− uS‖2 ≤ C(M)
∥∥h2u′′∥∥2

where C(M) → 7/4 as M → 0.
We summarize the above results in the following theorem.

(0.9.7) Theorem. Without any restrictions on the mesh, we have

‖u− uS‖E ≤
1√
2
‖hu′′‖

and
‖u− uS‖ ≤

1√
2
‖h(u− uS)′‖.

Provided that the mesh-size variation, M := ‖h′‖max, is sufficiently small,
there is a constant, C, depending on M but otherwise independent of the
mesh, such that

‖u− uS‖ ≤ C
∥∥h2u′′∥∥.

The condition that the derivative of h be small is easy to interpret.
From its definition,

h′|(xi−1,xi) =
hi+1 − hi−1

hi
= ri+1 −

1
ri

,

where ri is the ratio of lengths of adjacent mesh intervals, ri = hi/hi−1.
Thus, |h′| is small whenever these ratios are sufficiently close to one. How-
ever, this does not preclude strong mesh gradings, e.g., a geometrically
graded mesh, xi = eδ(i−n) for δ sufficiently small.

0.x Exercises

0.x.1 Verify the expressions (0.5.1) for the “stiffness” matrix K for piece-
wise linear functions. If f is piecewise linear, i.e.,

f(x) =
n∑

i=1

fiφi(x)

determine the matrix M (called the “mass” matrix) such that

KU = MF.

0.x.2 Give weak formulations of modifications of the two-point boundary-
value problem (0.1.1) where
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a) the o. d. e. is −u′′ + u = f instead of −u′′ = f and/or
b) the boundary conditions are u(0) = u(1) = 0.

0.x.3 Explain what is wrong in both the variational setting and the clas-
sical setting for the problem

−u′′ = f with u′(0) = u′(1) = 0.

That is, explain in both contexts why this problem is not well-posed.

0.x.4 Show that piecewise quadratics have a nodal basis consisting of val-
ues at the nodes xi together with the midpoints 1

2 (xi + xi+1). Cal-
culate the stiffness matrix for these elements.

0.x.5 Verify (0.5.2).

0.x.6 Under the same assumptions as in Theorem 0.4.5, prove that

‖u− uI‖ ≤ Ch2‖u′′‖.

(Hint: use a homogeneity argument as in the proof of Theorem 0.4.5.
Using the notation of that proof, show further that∫ 1

0

w(x)2 dx ≤ c̃

∫ 1

0

w′(x)2 dx,

by utilizing the fact that w(0) = 0. How small can you make c̃ if
you use both w(0) = 0 and w(1) = 0?)

0.x.7 Using only Theorems 0.3.5 and 0.4.5, prove that

inf
v∈S

‖u− v‖ ≤ Ch2‖u′′‖.

Exercise 0.x.6 also would imply this result independently. Compare
the different constants, C, derived with the different approaches.

0.x.8 Prove that (0.1.1) has a solution u ∈ C2([0, 1]) provided f ∈
C0([0, 1]). (Hint: write

u(x) =
∫ x

0

(∫ 1

s

f(t) dt

)
ds

and verify the equations.)

0.x.9 Let V denote the space, and a(·, ·) the bilinear form, defined in
Sect. 0.1. Prove the following coercivity result

‖v‖2 + ‖v′‖2 ≤ Ca(v, v) ∀v ∈ V.

Give a value for C. (Hint: see the hint in exercise 0.x.6. For simplic-
ity, restrict the result to v ∈ V ∩ C1(0, 1).)
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0.x.10 Let V denote the space, and a(·, ·) the bilinear form, defined in
Sect. 0.1. Prove the following version of Sobolev’s inequality:

‖v‖2max ≤ Ca(v, v) ∀v ∈ V.

Give a value for C. (Hint: see the hint in exercise 0.x.6. For simplic-
ity, restrict the result to v ∈ V ∩ C1(0, 1).)

0.x.11 Consider the difference method represented by (0.5.3), namely

−2
hi + hi+1

(
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

)
= f(xi).

Prove ũS :=
∑

Uiφi satisfies the following modification to (0.2.1):

a(ũS , v) = Q(fv) ∀v ∈ S

where a(·, ·) is the bilinear form defined in Sect. 0.1, S consists of
piecewise linears as defined in Sect. 0.4 and Q denotes the quadra-
ture approximation based on the trapezoidal rule

Q(w) :=
n∑

i=0

hi + hi+1

2
w(xi).

Here φi, xi and hi are as defined in Sect. 0.4; we further define
h0 = hn+1 = 0 for simplicity of notation.

0.x.12 Let Q be defined as in exercise 0.x.11. Prove that∣∣∣∣Q(w)−
∫ 1

0

w(x) dx

∣∣∣∣ ≤ Ch2
n∑

i=1

∫ xi

xi−1

|w′′(x)| dx.

(Hint: observe that the trapezoidal rule is exact for piecewise linears
and refer to the hint in exercise 0.x.6.)

0.x.13 Let uS solve (0.2.1) where S consists of piecewise linears as defined
in Sect. 0.4 and let ũS be as in exercise 0.x.11. Prove that

|a(uS − ũS , v)| ≤ Ch2 (‖f ′‖+ ‖f ′′‖) (‖v‖+ ‖v′‖) ∀v ∈ S.

(Hint: apply exercise 0.x.12 and Schwarz’ inequality.)

0.x.14 Let uS and ũS be as in exercise 0.x.13. Prove that

‖uS − ũS‖E ≤ Ch2 (‖f ′‖+ ‖f ′′‖) .

(Hint: apply exercise 0.x.13, pick v = uS − ũS and apply exercise
0.x.9.)

0.x.15 Let ũS be as in exercise 0.x.11 and let u solve (0.1.1). Prove that
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‖u− ũS‖max ≤ Ch2 (‖f‖max + ‖f ′‖+ ‖f ′′‖) .

(Hint: apply exercise 0.x.14 and Theorem 0.7.2.)

0.x.16 Give weak formulation of modifications of the two-point boundary-
value problem (0.1.1) where the boundary conditions are u(0) = 0
and u′(1) = λ. (Hint: show that a(u, v) = F (v) where F is the
linear functional F (v) = λ v(1).)



Chapter 1

Sobolev Spaces

This chapter is devoted to developing function spaces that are used in the
variational formulation of differential equations. We begin with a review
of Lebesgue integration theory, upon which our notion of “variational” or
“weak” derivative rests. Functions with such “generalized” derivatives make
up the spaces commonly referred to as Sobolev spaces. We develop only a
small fraction of the known theory for these spaces—just enough to establish
a foundation for the finite element method.

1.1 Review of Lebesgue Integration Theory

We will now review the basic concepts of Lebesgue integration theory, cf.
(Halmos 1991), (Royden 1988) or (Rudin 1987). By “domain” we mean
a Lebesgue-measurable (usually either open or closed) subset of IRn with
non-empty interior. We restrict our attention for simplicity to real-valued
functions, f , on a given domain, Ω, that are Lebesgue measurable; by∫

Ω

f(x) dx

we denote the Lebesgue integral of f (dx denotes Lebesgue measure). For
1 ≤ p < ∞, let

‖f‖Lp(Ω) :=
(∫

Ω

|f(x)|p dx

)1/p

,

and for the case p = ∞ set

‖f‖L∞(Ω) := ess sup {|f(x)| : x ∈ Ω} .

In either case, we define the Lebesgue spaces

(1.1.1) Lp(Ω) := {f : ‖f‖Lp(Ω) < ∞}.

To avoid trivial differences between functions, we identify two functions, f
and g, that satisfy ‖f − g‖Lp(Ω) = 0. For example, take n = 1, Ω = [−1, 1]
and
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(1.1.2) f(x) :=
{ 1 x ≥ 0

0 x < 0
and g(x) :=

{ 1 x > 0
0 x ≤ 0.

Since f and g differ only on a set of measure zero (one point, in this case),
we view them as representing the same function. With a small ambiguity of
notation, we then think of Lp(Ω) as a set of equivalence classes of functions
with respect to this identification. There are some famous (and useful)
inequalities that hold for the functionals defined above:

(1.1.3) Minkowski’s Inequality For 1 ≤ p ≤ ∞ and f, g ∈ Lp(Ω), we
have

‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω) .

(1.1.4) Hölder’s Inequality For 1 ≤ p, q ≤ ∞ such that 1 = 1/p + 1/q,
if f ∈ Lp(Ω) and g ∈ Lq(Ω), then f g ∈ L1(Ω) and

‖f g‖L1(Ω) ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω) .

(1.1.5) Schwarz’ Inequality This is simply Hölder’s inequality in the
special case p = q = 2, viz. if f, g ∈ L2(Ω) then f g ∈ L1(Ω) and∫

Ω

|f(x)g(x)| dx ≤ ‖f‖L2(Ω) ‖g‖L2(Ω) .

In view of Minkowski’s inequality and the definitions of ‖·‖Lp(Ω), the space
Lp(Ω) is closed under linear combinations, i.e., it is a linear (or vector)
space. Moreover, the functionals ‖·‖Lp(Ω) have properties that classify them
as norms.

(1.1.6) Definition. Given a linear (vector) space V , a norm, ‖·‖, is a function
on V with values in the non-negative reals having the following properties:

i) ‖v‖ ≥ 0 ∀ v ∈ V

‖v‖ = 0 ⇐⇒ v = 0
ii) ‖c · v‖ = |c| · ‖v‖ ∀c ∈ IR, v ∈ V, and

iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ ∀ v, w ∈ V (the triangle inequality).

A norm, ‖ · ‖, can be used to define a notion of distance, or metric,
d(v, w) = ‖v − w‖ for points v, w ∈ V . A vector space endowed with the
topology induced by this metric is called a normed linear space. Recall that a
metric space, V , is called complete if every Cauchy sequence {vj} of elements
of V has a limit v ∈ V . For a normed linear space, a Cauchy sequence
is one such that ‖vj − vk‖ → 0 as j, k → ∞, and completeness means
that ‖v − vj‖ → 0 as j → ∞. The following definition encapsulates some
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key features of linear spaces of infinite dimensions needed for theoretical
development.

(1.1.7) Definition. A normed linear space (V, ‖·‖) is called a Banach space
if it is complete with respect to the metric induced by the norm, ‖·‖.

(1.1.8) Theorem. For 1 ≤ p ≤ ∞, Lp(Ω) is a Banach space.

This theorem (whose proof may be found in the references at the begin-
ning of this section) is a cornerstone of Lebesgue integration theory. Note
that it incorporates both Minkowski’s inequality and a limit theorem for
the Lebesgue integral; that is, if fj → f in Lp(Ω) then (cf. exercise 1.x.3)

(1.1.9)
∫

Ω

|fj(x)|p dx →
∫

Ω

|f(x)|p dx as j →∞.

However, Hölder’s inequality and more subtle limit theorems are not re-
flected in this characterization of the Lebesgue spaces.

A key reason that the Lebesgue integral is preferred over the Riemann
integral is the aspect of “completeness” that it enjoys, i.e., that appropriate
limits of integrable functions are integrable, a property that the Riemann
integral does not have. For example, we can easily evaluate an improper
integral to determine that the function log x has a finite integral on any
finite interval of the form [0, a]. Correspondingly, if {rn : n = 1, 2, . . .} is
dense in the interval [0, 1], then the functions

(1.1.10) fj(x) :=
j∑

n=1

2−n log |x− rn|

all have improper integrals, and one easily sees that

(1.1.11)
∣∣∣∣∫ 1

0

fj(x) dx

∣∣∣∣ ≤ 2
∫ 1

0

|log x| dx.

Therefore, the “limit” function

(1.1.12) f(x) :=
∞∑

n=1

2−n log |x− rn|

should have a finite “integral” on [0, 1], again satisfying

(1.1.13)
∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣ ≤ 2
∫ 1

0

|log x| dx.

However, f is infinite at some point in any open sub-interval of [0, 1] and
so it is not Riemann integrable on any sub-interval of [0, 1]. Thus, it is not
possible, even via “improper” Riemann integrals, to determine if f has a
finite integral. On the other hand, one can show (see exercise 1.x.6) that it
is Lebesgue integrable and that (1.1.13) holds.
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1.2 Generalized (Weak) Derivatives

There are several definitions of derivative that are useful in different situa-
tions. The “calculus” definition, viz.

u′(x) = lim
h→0

u(x + h)− u(x)
h

,

is a “local” definition, involving information about the function u only near
the point x. The variational formulation developed in Chapter 0 takes a
more global view, because pointwise values of derivatives are not needed;
only derivatives that can be interpreted as functions in the Lebesgue space
L2(Ω) occur. In the previous section, we have seen that pointwise values
of functions in Lebesgue spaces are irrelevant (cf. (1.1.2)); a function in
one of these spaces is determined only by its global behavior. Thus, it is
natural to develop a global notion of derivative more suited to the Lebesgue
spaces. We do so using a “duality” technique, defining derivatives for a class
of not-so-smooth functions (see Definition 1.2.3) by comparing them with
very-very-smooth functions (introduced in Definition 1.2.1).

First, let us introduce some short-hand notation for (calculus) partial
derivatives, the multi-index notation. A multi-index, α, is an n-tuple of
non-negative integers, αi. The length of α is given by

|α| :=
n∑

i=1

αi.

For φ ∈ C∞, denote by

Dαφ, Dα
x φ,

(
∂

∂x

)α

φ, φ(α), and ∂α
x φ

the usual (pointwise) partial derivative(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

φ.

Given a vector (x1, . . . , xn), we define xα := xα1
1 · xα2

2 · · ·xαn
n . Note that

if x is replaced formally by the symbol ∂
∂x :=

(
∂
∂x1

, . . . , ∂
∂xn

)
, then this

definition of xα is consistent with the previous definition of
(

∂
∂x

)α
. Note

that the order of this derivative is given by |α|.
Next, let us introduce the concept of the support of a function defined

on some domain in IRn. For a continuous function, u, this is the closure of
the (open) set {x : u(x) �= 0}. If this is a compact set (i.e., if it is bounded)
and it is a subset of the interior of a set, Ω, then u is said to have “compact
support” with respect to Ω. (Outside the support of a function, it is natural
to define it to be zero, thus extending it to be defined on all of IRn.) When
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Ω is a bounded set, it is equivalent to say that u vanishes in a neighborhood
of ∂Ω.

(1.2.1) Definition. Let Ω be a domain in IRn. Denote by D(Ω) or C∞
0 (Ω)

the set of C∞(Ω) functions with compact support in Ω.

Before proceeding any further, it would be wise to verify that we have
not just introduced a vacuous definition, which we do in the following:

(1.2.2) Example. Define

φ(x) :=
{

e1/(|x|2−1) |x| < 1
0 |x| ≥ 1 .

We claim that, for any multi-index α, φ(α)(x) = Pα(x)φ(x)/(1 − |x|2)|α|

for some polynomial Pα, as we now show. For |x| < 1, we can differenti-
ate and determine, inductively in α, that φ(α)(x) = Pα(x)e−tt|α| for some
polynomial Pα, where t = 1/(1 − |x|2). Further, φ(α)(x) = 0 for |x| > 1.
Thus, the formula above for φ(α) is verified in the case |x| �= 1. Since the
exponential increases faster than any finite power, φ(α)(x)/

(
1− |x|2

)k =
Pα(x)t|α|+k/et → 0 as |x| → 1 (i.e., as t →∞) for any integer k. Applying
(inductively) these facts with k = 0 shows that φ(α) is continuous at |x| = 1,
and using k = 1 shows it is also differentiable there, and has derivative zero.
Thus, the claimed formula holds for all x. Moreover, we also see from the
argument that φ(α) is bounded and continuous for all α. Thus, φ ∈ D(Ω)
for any open set Ω containing the closed unit ball. By scaling variables
appropriately, we see that D(Ω) �= ∅ for any Ω with non-empty interior.

We now use the space D to extend the notion of pointwise derivative
to a class of functions larger than C∞. For simplicity, we restrict our notion
of derivatives to the following space of functions (see (Schwartz 1957) for a
more general definition).

(1.2.3) Definition. Given a domain Ω, the set of locally integrable functions
is denoted by

L 1
loc(Ω) :=

{
f : f ∈ L1 (K) ∀ compact K ⊂ interior Ω

}
.

Functions in L 1
loc(Ω) can behave arbitrarily badly near the bound-

ary, e.g., the function ee1/dist(x,∂Ω) ∈ L 1
loc(Ω), although this aspect is some-

what tangential to our use of the space. One notational convenience is that
L 1

loc(Ω) contains all of C0(Ω), without growth restrictions. Finally, we come
to our new definition of derivative.
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(1.2.4) Definition. We say that a given function f ∈ L 1
loc(Ω) has a weak

derivative, Dα
wf , provided there exists a function g ∈ L 1

loc(Ω) such that∫
Ω

g(x)φ(x) dx = (−1)|α|
∫

Ω

f(x)φ(α)(x) dx ∀φ ∈ D(Ω).

If such a g exists, we define Dα
wf = g.

(1.2.5) Example. Take n = 1, Ω = [−1, 1], and f(x) = 1 − |x|. We claim
that D 1

wf exists and is given by

g(x) :=
{ 1 x < 0
−1 x > 0.

To see this, we break the interval [−1, 1] into the two parts in which f is
smooth, and we integrate by parts. Let φ ∈ D(Ω). Then∫ 1

−1

f(x)φ′(x) dx =
∫ 0

−1

f(x)φ′(x) dx +
∫ 1

0

f(x)φ′(x) dx

= −
∫ 0

−1

(+1)φ(x) dx + fφ|0−1 −
∫ 1

0

(−1)φ(x) dx + fφ|10

= −
∫ 1

−1

g(x)φ(x) dx + (fφ)(0−)− (fφ)(0+)

= −
∫ 1

−1

g(x)φ(x) dx

because f is continuous at 0. One may check (cf. exercise 1.x.10) that D j
wf

does not exist for j > 1.

One can see that, roughly speaking, the new definition of derivative
is the same as the old one wherever the function being differentiated is
regular enough. In particular, continuity of f in the example was enough
to insure existence of a first-order weak derivative, but not second-order.
This phenomenon depends on the dimension n as well, precluding a simple
characterization of the relation between the calculus and weak derivatives,
as the following example shows.

(1.2.6) Example. Let ρ be a smooth function defined for 0 < r ≤ 1 satisfying∫ 1

0

|ρ′(r)| rn−1 dr < ∞.

Define f on Ω = {x ∈ IRn : |x| < 1} via f(x) = ρ(|x|). Then Dα
wf exists

for all |α| = 1 and is given by

g(x) = ρ′(|x|)xα/|x|.
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The verification of this is left to the reader in exercise 1.x.12.

This example shows that the relationship between the calculus and
weak derivatives depends on dimension. That is, whether a function such
as |x|r has a weak derivative depends not only on r but also on n (cf. exercise
1.x.13). However, the following fact (whose proof is left as an exercise) shows
that the latter is a generalization of the former.

(1.2.7) Proposition. Let α be arbitrary and let ψ ∈ C|α|(Ω). Then the weak
derivative Dα

wψ exists and is given by Dαψ.

As a consequence of this proposition, we ignore the differences in defi-
nition of D and Dw from now on. That is, differentiation symbols will refer
to weak derivatives in general, but we will also use classical properties of
derivatives of smooth functions as appropriate.

1.3 Sobolev Norms and Associated Spaces

Using the notion of weak derivative, we can generalize the Lebesgue norms
and spaces to include derivatives.

(1.3.1) Definition. Let k be a non-negative integer, and let f ∈ L 1
loc(Ω).

Suppose that the weak derivatives Dα
wf exist for all |α| ≤ k. Define the

Sobolev norm

‖f‖W k
p (Ω) :=

⎛⎝ ∑
|α|≤k

‖Dα
wf‖p

Lp(Ω)

⎞⎠1/p

in the case 1 ≤ p < ∞, and in the case p = ∞

‖f‖W k
∞(Ω) := max

|α|≤k
‖D α

w f‖L∞(Ω) .

In either case, we define the Sobolev spaces via

W k
p (Ω) :=

{
f ∈ L 1

loc(Ω) : ‖f‖W k
p (Ω) < ∞

}
.

The Sobolev spaces can be related in special cases to other spaces. For
example, recall the Lipschitz norm

‖f‖Lip(Ω) = ‖f‖L∞(Ω) + sup
{ |f(x)− f(y)|

|x− y| : x, y ∈ Ω;x �= y

}
,
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and the corresponding space of Lipschitz functions

Lip(Ω) =
{

f ∈ L∞(Ω) : ‖f‖Lip(Ω) < ∞
}

.

Then for all dimensions n, we have Lip(Ω) = W 1
∞(Ω) with equivalent

norms, at least under certain conditions on the domain Ω (cf. exercises
1.x.15 and 1.x.14). (Two norms, ‖·‖1 and ‖·‖2, on a linear space V are said
to be equivalent provided there is a positive constant C < ∞ such that
‖v‖1/C ≤ ‖v‖2 ≤ C‖v‖1 ∀v ∈ V .) Moreover, for k > 1

W k
∞(Ω) =

{
f ∈ Ck−1(Ω) : f (α) ∈ Lip(Ω) ∀ |α| ≤ k − 1

}
.

In one dimension (n = 1), the space W 1
1 (Ω) can be characterized as the

set of absolutely continuous functions on an interval Ω (cf. (Hartman &
Mikusinski 1961) and exercises 1.x.17 and 1.x.22).

It is easy to see that ‖·‖W k
p (Ω) is a norm. Thus, W k

p (Ω) is by definition
a normed linear space. The following theorem shows that it is complete.

(1.3.2) Theorem. The Sobolev space W k
p (Ω) is a Banach space.

Proof. Let {vj} be a Cauchy sequence with respect to the norm ‖·‖W k
p (Ω).

Since the ‖·‖W k
p (Ω) norm is just a combination of ‖·‖Lp(Ω) norms of weak

derivatives, it follows that, for all |α| ≤ k, {D α
w vj} is a Cauchy sequence

with respect to the norm ‖·‖Lp(Ω). Thus, Theorem 1.1.8 implies the ex-
istence of vα ∈ Lp(Ω) such that ‖D α

w vj − vα‖Lp(Ω) → 0 as j → ∞. In
particular, vj → v(0,...,0) =: v in Lp(Ω). What remains to check is that
D α

w v exists and is equal to vα.
First, note that if wj → w in Lp(Ω), then for all φ ∈ D(Ω)

(1.3.3)
∫

Ω

wj(x)φ(x) dx →
∫

Ω

w(x)φ(x) dx.

This follows from (1.1.9) and Hölder’s inequality:

‖wjφ− wφ‖Lp(Ω) ≤ ‖wj − w‖Lp(Ω) ‖φ‖L∞(Ω) → 0 as j →∞.

To show that D α
w v = vα, we must show that∫

Ω

vαφ dx = (−1)|α|
∫

Ω

vφ(α) dx ∀φ ∈ D(Ω).

This follows from the definition of the weak derivative, D α
w vj , and two

applications of (1.3.3):∫
Ω

vαφ dx = lim
j→∞

∫
Ω

(D α
w vj) φ dx

= lim
j→∞

(−1)|α|
∫

Ω

vjφ
(α) dx = (−1)|α|

∫
Ω

vφ(α) dx. �	
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There is another potential definition of Sobolev space that could be
made. Let Hk

p (Ω) denote the closure of Ck(Ω) with respect to the Sobolev
norm ‖·‖W k

p (Ω). In the case p = ∞, we have Hk
∞ = Ck, and this is not

the same as W k
∞(Ω). Indeed, we have already identified the latter as being

related to certain Lipschitz spaces. However, for 1 ≤ p < ∞, it turns out
that Hk

p (Ω) = W k
p (Ω). The following result was proved in a paper (Meyers

& Serrin 1964) that is celebrated both for the importance of the result and
the brevity of its title.

(1.3.4) Theorem. Let Ω be any open set. Then C∞(Ω) ∩W k
p (Ω) is dense

in W k
p (Ω) for p < ∞.

(1.3.5) Remark. This result should be contrasted with another kind of den-
sity result, namely, the density of C∞(Ω) in Sobolev spaces. The latter
cannot happen whenever part of the domain lies on both sides of part of
its boundary, as occurs with a slit domain that is frequently used to model
crack propagation problems (cf. exercise 1.x.26). In order for this stronger
density result to hold, some sort of regularity condition must also hold.
For example, it is known (cf. Adams 1975) to be valid if Ω satisfies the
segment condition, i.e., if for all x ∈ ∂Ω there is an open ball Bx containing
x and a non-trivial vector nx such that for all z ∈ Ω ∩ Bx the segment
{z + tnx : 0 < t < 1} ⊂ Ω. The vector nx plays the role of an inward-
directed normal to ∂Ω at x. Many of the domains considered here satisfy
this condition (cf. exercise 1.x.25).

(1.3.6) Remark. The validity of the theorem can be seen in the case Ω = IRn

as follows. (For a more general case, see exercise 1.x.19.) From Example
1.2.2, we see that there exist non-negative φ ∈ D(Ω), and so by normal-
izing appropriately, we can assume that there is such a φ ∈ D(Ω) further
satisfying

∫
Ω

φ(x) dx = 1. For any f ∈ L 1
loc(Ω) and ε > 0, define

fε(x) = ε−n

∫
Ω

f(y)φ ((x− y)/ε) dy,

that is, we have fε = f ∗ φε where φε(y) := ε−nφ(y/ε) ∀y ∈ Ω and “∗”
denotes convolution. From the dominated convergence theorem, it is easy to
see that fε is C∞ and that f ∈ Lp(Ω) implies fε → f in Lp(Ω). Moreover,
if f ∈ W k

p (Ω) then the same can be said of the derivatives of fε and f ,
by differentiating under the integral sign and using the definition of weak
derivative, thus proving the result. The function fε is called a “mollification”
of f .

For technical reasons it is useful to introduce the following notation
for the Sobolev semi-norms.
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(1.3.7) Definition. For k a non-negative integer and f ∈ W k
p (Ω), let

|f |W k
p (Ω) =

⎛⎝ ∑
|α|=k

‖Dα
wf‖p

Lp(Ω)

⎞⎠1/p

in the case 1 ≤ p < ∞, and in the case p = ∞

|f |W k
∞(Ω) = max

|α|=k
‖D α

w f‖L∞(Ω) .

1.4 Inclusion Relations and Sobolev’s Inequality

Given the number of indices defining Sobolev spaces, it is natural to hope
that there are inclusion relations to provide some sort of ordering among
them. Using the Definition 1.3.1 and exercise 1.x.1, it is easy to derive the
following propositions.

(1.4.1) Proposition. Suppose that Ω is any domain, k and m are non-
negative integers satisfying k ≤ m, and p is any real number satisfying
1 ≤ p ≤ ∞. Then Wm

p (Ω) ⊂ W k
p (Ω).

(1.4.2) Proposition. Suppose that Ω is a bounded domain, k is a non-
negative integer, and p and q are real numbers satisfying 1 ≤ p ≤ q ≤ ∞.
Then W k

q (Ω) ⊂ W k
p (Ω).

However, there are more subtle relations among the Sobolev spaces. For
example, there are cases when k < m and p > q and Wm

q (Ω) ⊂ W k
p (Ω).

The existence of Sobolev derivatives imply a stronger integrability condition
of a function. To set the stage, let us consider an example to give us guidance
as to possible relations among k, m, p, and q for such a result to hold.

(1.4.3) Example. Let n ≥ 2, let Ω = {x ∈ IRn : |x| < 1/2} and consider
the function f(x) = log

∣∣ log |x|
∣∣. From Example 1.2.6 (and exercise 1.x.12),

we see that f has first-order weak derivatives

D αf(x) = xα/
(
|x|2 log |x|

)
(|α| = 1). From exercise 1.x.5, we see that D αf ∈ Lp(Ω) provided p ≤ n.
For example,

|D αf(x)|n ≤ ρ(|x|) := 1/
(
|x|n

∣∣ log |x|
∣∣n)
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satisfies the condition of exercise 1.x.5 because ρ(r)rn−1 = 1/ (r| log r|n) is
integrable for all n ≥ 2 on [0, 1/2]. In fact, the change of variables r = e−t

gives ∫ 1/2

0

dr

r| log r|n =
∫ ∞

log 2

dt

tn
< ∞. (n ≥ 2)

Similarly, it is easy to see that f ∈ Lp(Ω) for p < ∞. Thus, f ∈ W 1
p (Ω) for

p ≤ n. Note, however, that in no case is f ∈ L∞(Ω).

This example shows that there are functions that are essentially infinite
at points (such points could be chosen as in (1.1.12) to be everywhere
dense), yet which have p-th power integrable weak derivatives. Moreover,
as the dimension n increases, the integrability power p increases as well.
On the other hand, the following result, which will be proved in Chapter 4,
shows that if a function has p-th power integrable weak derivatives for
sufficiently large p (with n fixed), it must be bounded (and, in fact, can
be viewed as being continuous). But before we state the result, we must
introduce a regularity condition on the domain boundary for the result to
be true.

(1.4.4) Definition. We say Ω has a Lipschitz boundary ∂Ω provided there
exists a collection of open sets Oi, a positive parameter ε, an integer N
and a finite number M , such that for all x ∈ ∂Ω the ball of radius ε
centered at x is contained in some Oi, no more than N of the sets Oi

intersect nontrivially, and each domain Oi ∩ Ω = Oi ∩ Ωi where Ωi is a
domain whose boundary is a graph of a Lipschitz function φi (i.e., Ωi ={
(x, y) ∈ IRn : x ∈ IRn−1, y < φi(x)

}
) satisfying ‖φi‖Lip(IRn−1) ≤ M .

One consequence of this definition is that we can now relate Sobolev
spaces on a given domain to those on all of IRn.

(1.4.5) Theorem. Suppose that Ω has a Lipschitz boundary. Then there is
an extension mapping E : W k

p (Ω) → W k
p (IRn) defined for all non-negative

integers k and real numbers p in the range 1 ≤ p ≤ ∞ satisfying Ev|Ω = v
for all v ∈ W k

p (Ω) and

‖Ev‖W k
p (IRn) ≤ C ‖v‖W k

p (Ω)

where C is independent of v.

For a proof of this result, as well as more details concerning other
material in this section, see (Stein 1970). Of course, the complementary
result is true for any domain, namely, that the natural restriction allows
us to view functions in W k

p (IRn) as well defined in W k
p (Ω). We now return

to the question regarding the relationship between Sobolev spaces with
different indices.
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(1.4.6) Theorem. (Sobolev’s Inequality) Let Ω be an n-dimensional domain
with Lipschitz boundary, let k be a positive integer and let p be a real number
in the range 1 ≤ p < ∞ such that

k ≥ n when p = 1
k > n/p when p > 1.

Then there is a constant C such that for all u ∈ W k
p (Ω)

‖u‖L∞(Ω) ≤ C ‖u‖W k
p (Ω) .

Moreover, there is a continuous function in the L∞(Ω) equivalence class
of u.

This result says that any function with suitably regular weak deriva-
tives may be viewed as a continuous, bounded function. Note that Example
1.4.3 shows that the result is sharp, namely, that the condition k > n/p
cannot be relaxed (unless p = 1), at least when n ≥ 2. When n = 1,
Sobolev’s inequality says that integrability of first-order derivatives to any
power p ≥ 1 is sufficient to guarantee continuity. The result will be proved
as a corollary to our polynomial approximation theory to be developed in
Chapter 4. Note that we can apply it to derivatives of functions in Sobolev
spaces to derive the following:

(1.4.7) Corollary. Let Ω be an n-dimensional domain with Lipschitz bound-
ary, and let k and m be positive integers satisfying m < k and let p be a
real number in the range 1 ≤ p < ∞ such that

k −m ≥ n when p = 1
k −m > n/p when p > 1.

Then there is a constant C such that for all u ∈ W k
p (Ω)

‖u‖W m
∞(Ω) ≤ C ‖u‖W k

p (Ω) .

Moreover, there is a Cm function in the Lp(Ω) equivalence class of u.

(1.4.8) Remark. If ∂Ω is not Lipschitz continuous, then neither Theorem
1.4.5 nor Theorem 1.4.6 need hold. For example, let

Ω =
{
(x, y) ∈ IR2 : 0 < x < 1, |y| < xr

}
where r > 1, and let u(x, y) = x−ε/p, where 0 < ε < r. Then

∑
|α|=1

∫
Ω

|D αu|p dxdy = cε,p

∫ 1

0

x−ε−p+r dx < ∞,



1.5 Review of Chapter 0 35

provided p < 1 + r − ε. In this case, u ∈ W 1
p (Ω) but u is not essentially

bounded on Ω if ε > 0. Choosing ε so that it is possible to have p > 2, we
find that a Lipschitz boundary is necessary for Sobolev’s inequality to hold.
Since Sobolev’s inequality does hold on IRn, it is not possible to extend u to
an element of W 1

2 (IR2). Thus, the extension theorem for Sobolev functions
can not hold if ∂Ω is not Lipschitz continuous.

1.5 Review of Chapter 0

At this point we can tie up many of the loose ends from the previous
chapter. We see that the space V introduced there can now be rigorously
defined as

V =
{
v ∈ W 1

2 (Ω) : v(0) = 0
}

where Ω = [0, 1], and that this makes sense because Sobolev’s inequality
guarantees that pointwise values are well defined for functions in W 1

2 (Ω).
(In fact, we are allowed to view W 1

2 (Ω) as a subspace of Cb(Ω), the Banach
space of bounded continuous functions.)

The derivation of the variational formulation (0.1.3) for solution of
(0.1.1) can now be made rigorous (cf. exercise 1.x.24). We have stated in
Sect. 1.3 (see the related exercises) that functions in W 1

1 (Ω), and a fortiori
those in W 1

2 (Ω), are absolutely continuous, implying that the Cantor func-
tion is not among them. However, we saw in Example 1.2.5 that piecewise
linear functions have weak derivatives that are piecewise constant. Thus, we
can assert that the spaces S constructed in Sect. 0.4 satisfy S ⊂ W 1

∞(Ω),
and therefore that S ⊂ V .

Since Sobolev’s inequality implies that V ⊂ Cb(Ω), exercise 0.x.8 shows
that w in the duality argument leading to Theorem 0.3.5 is well defined (also
see exercise 1.x.23).

In the error estimates for u−uS we make reference to the L2(Ω) norm,
‖·‖, of second derivatives of functions. We can now make those expressions
rigorous by interpreting them in the context of functions in W 2

2 (Ω). In
particular, we can re-state the approximation assumption (0.3.4) as

(0.3.4bis) ∃ε < ∞ such that inf
v∈S

‖w − v‖E ≤ ε‖w′′‖ ∀w ∈ W 2
2 (Ω),

and the only condition needed for Theorem 0.4.5 to hold is f ∈ L2(Ω) (cf.
exercise 1.x.23).

Finally, in the proofs in Chapter 0 we argued that a(v, v) = 0 implied
v ≡ 0. While it certainly implies that the weak derivative of v is zero as a
function in L2(Ω), to conclude that v must be constant requires a notion of
coercivity that will subsequently be developed in detail. For now, consider
the following simple case. From exercise 1.x.16, we know that, for all v ∈ V ,
we can write
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v(x) =
∫ x

0

D1
wv(s) ds

and use Schwarz’ inequality (cf. the proof of Theorem 0.4.5) to estimate

|v(x)|2 ≤ x ·
∫ x

0

D1
wv(s)2 ds.

Integrating with respect to x yields

‖v‖2L2(Ω) ≤
1
2
a(v, v).

In particular, this shows that if v ∈ V satisfies a(v, v) = 0 then v = 0 as an
element of L2(Ω). Moreover, recalling the definition of the W 1

2 (Ω) norm,
we see that

(1.5.1) ‖v‖2W 1
2 (Ω) ≤

3
2
a(v, v) ∀v ∈ V.

Thus, we can conclude that vanishing of a(v, v) for v ∈ V implies v is the
zero element in V (or W 1

2 (Ω)). Inequality (1.5.1) is a coercivity inequality
for the bilinear form a(·, ·) on the space V . Note that this inequality is only
valid on the subspace V of W 1

2 (Ω), not all of W 1
2 (Ω), since it fails if we take

v to be a non-zero constant function (regardless of what constant would be
substituted for 3

2 ).

1.6 Trace Theorems

In the previous section we saw that it was possible to interpret the “bound-
ary condition” v(0) = 0 in the definition of the space V using Sobolev’s
inequality. As a guide to the higher-dimensional cases of interest later,
this is somewhat misleading, in that Sobolev’s inequality, as presented
in Sect. 1.4, will not suffice to interpret boundary conditions for higher-
dimensional problems. For example, we have already seen in Example 1.4.3
that, when n ≥ 2, the analogue of the space V , namely W 1

2 (Ω), contains
unbounded functions. Thus, we cannot interpret the boundary conditions
in a pointwise sense, and Sobolev’s inequality will have to be augmented in
a substantial way to apply when n ≥ 2. On the other hand, the function in
Example 1.4.3 can be interpreted as an Lp function on any line in IR2 since
the function log

∣∣ log | · |
∣∣ is p-th power integrable in one dimension.

The correct interpretation of the situation is as follows. The bound-
ary ∂Ω of an n-dimensional domain Ω can be interpreted as an n − 1-
dimensional object, a manifold. When n = 1 it consists of distinct points—
the zero-dimensional case of a manifold. Sobolev’s inequality gives condi-
tions under which point values are well defined for functions in a Sobolev
space, and thus for boundary values in the one-dimensional case. For higher
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dimensional problems, we must seek an interpretation of restrictions of
Sobolev-class functions to manifolds of dimension n − 1, and in particular
it should make good sense (say, in a Lebesgue class) for functions in W 1

2 (Ω).
We begin with a simple example to explain the ideas. Let Ω denote

the unit disk in IR2:

Ω =
{
(x, y) : x2 + y2 < 1

}
= {(r, θ) : 0 ≤ r < 1, 0 ≤ θ < 2π} .

Let u ∈ C1(Ω), and consider its restriction to ∂Ω as follows:

u(1, θ)2 =
∫ 1

0

∂

∂r

(
r2u(r, θ)2

)
dr

=
∫ 1

0

2
(
r2uur + ru2

)
(r, θ) dr

=
∫ 1

0

2
(

r2u∇u · (x, y)
r

+ ru2

)
(r, θ) dr

≤
∫ 1

0

2
(
r2|u||∇u|+ ru2

)
(r, θ) dr

≤
∫ 1

0

2
(
|u||∇u|+ u2

)
(r, θ) rdr. (r ≤ 1)

Integrating with respect to θ and using polar coordinates (cf. exercise 1.x.4),
we find ∫

∂Ω

u2 dθ ≤ 2
∫

Ω

(
|u||∇u|+ u2

)
dxdy,

where we define the boundary integral (and corresponding norm) in the
obvious way:

(1.6.1)
∫

∂Ω

u2 dθ :=
∫ 2π

0

u(1, θ)2 dθ =: ‖u‖2L2(∂Ω).

Using Schwarz’ inequality, we have

‖u‖2L2(∂Ω) ≤ 2 ‖u‖L2(Ω)

(∫
Ω

|∇u|2 dxdy

)1/2

+ 2
∫

Ω

u2 dxdy.

The arithmetic-geometric mean inequality (cf. exercise 1.x.32), implies that(∫
Ω

|∇u|2 dxdy

)1/2

+
(∫

Ω

u2 dxdy

)1/2

≤
(

2
∫

Ω

(
|∇u|2 + u2

)
dxdy

)1/2

.

Therefore,

(1.6.2) ‖u‖L2(∂Ω) ≤
4
√

8 ‖u‖1/2
L2(Ω) ‖u‖

1/2

W 1
2 (Ω)

.

This is an inequality analogous to Sobolev’s inequality, Theorem 1.4.6, ex-
cept that the L∞(Ω) norm on the left-hand side of the inequality has been
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replaced by ‖u‖L2(∂Ω). Although we have only proved the inequality for
smooth u, we will see that it makes sense for all u ∈ W 1

2 (Ω), and corre-
spondingly that for such u the restriction u|∂Ω makes sense as a function
in L2(∂Ω). But first, we should say what we mean by the latter space.
Using Definition 1.6.1, we can identify it simply with L2([0, 2π]) using the
coordinate mapping θ → (cos θ, sin θ). (More general boundaries will be
discussed shortly.) We can now use inequality (1.6.2) to prove the following
result.

(1.6.3) Proposition. Let Ω denote the unit disk in IR2. For all u ∈ W 1
2 (Ω),

the restriction u|∂Ω may be interpreted as a function in L2(∂Ω) satisfying
(1.6.2).

Proof. We will use (1.6.2) three times in the proof, which so far has only
been derived for smooth functions. However, in view of Remark 1.3.5, such
functions are dense in W 1

2 (Ω), so we may pick a sequence uj ∈ C1(Ω) such
that ‖u− uj‖W 1

2 (Ω) ≤ 1/j for all j. By (1.6.2) and the triangle inequality,

‖uk − uj‖L2(∂Ω) ≤
4
√

8 ‖uk − uj‖1/2
L2(Ω) ‖uk − uj‖1/2

W 1
2 (Ω)

≤ 4
√

8 ‖uk − uj‖W 1
2 (Ω) ≤

4
√

8
(

1
j

+
1
k

)
for all j and k, so that {uj} is a Cauchy sequence in L2(∂Ω). Since this space
is complete, there must be a limit v ∈ L2(∂Ω) such that ‖v − uj‖L2(∂Ω) → 0
as j →∞. We define

u|∂Ω := v.

The first thing we need to check is that this definition does not depend
on the particular sequence that we chose. So suppose that vj is another
sequence of C1(Ω) functions that satisfy ‖u− vj‖W 1

2 (Ω) → 0 as j → ∞.
Using the triangle inequality a few times and (1.6.2) again, we see that

‖v − vj‖L2(∂Ω)

≤ ‖v − uj‖L2(∂Ω) + ‖uj − vj‖L2(∂Ω)

≤ ‖v − uj‖L2(∂Ω) + 4
√

8 ‖uj − vj‖W 1
2 (Ω)

≤ ‖v − uj‖L2(∂Ω) + 4
√

8
(
‖uj − u‖W 1

2 (Ω) + ‖u− vj‖W 1
2 (Ω)

)
→ 0

as j → ∞. Thus, u|∂Ω is well defined in L2(∂Ω). All that remains is to
check that (1.6.2) holds for u. Again, we use the validity of it for smooth
functions:

‖u‖L2(∂Ω) = ‖v‖L2(∂Ω) = lim
j→∞

‖uj‖L2(∂Ω)

≤ lim
j→∞

4
√

8 ‖uj‖1/2
L2(Ω) ‖uj‖1/2

W 1
2 (Ω)

= 4
√

8 ‖u‖1/2
L2(Ω) ‖u‖

1/2

W 1
2 (Ω)

.
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This completes the proof of the proposition. Note that (1.6.2) was used
repeatedly to extend its validity on a dense subspace to all of W 1

2 (Ω); this
is a prototypical example of a density argument. �	

(1.6.4) Remark. Note that this proposition does not assert that pointwise
values of u on ∂Ω make sense, only that u|∂Ω is square integrable on ∂Ω.
This leaves open the possibility (cf. exercise 1.x.28) that u could be infinite
at a dense set of points on ∂Ω. For smooth functions, the trace defined here
is the same as the ordinary pointwise restriction to the boundary.

(1.6.5) Remark. The proposition, at first glance, says that functions in
W 1

2 (Ω) have boundary values in L2(∂Ω), and this is true. However, this
by itself would not be a sharp result (not every element of L2(∂Ω) is the
trace of some element of W 1

2 (Ω)). But on closer inspection it says some-
thing which is sharp, namely, that the L2(∂Ω) norm of a function can be
bounded by just part of the W 1

2 (Ω) norm (the square root of it), together
with the L2(Ω) norm. This result might seem strange until we see that it
is dimensionally correct. That is, suppose that functions are measured in
some unit U , and that L denotes the length unit. Then the units of the
W 1

2 (Ω) norm (ignoring lower order terms) equal U , and those of the L2(Ω)
norm equal U · L. Neither of these matches the units of the square root
of the left-hand side of (1.6.2), U

√
L, but the square root of their product

does. Such a dimensionality argument can not prove an inequality such as
(1.6.2), but it can be used to disprove one, or simplify its proof (cf. exercise
1.x.31).

Now let us describe a generalization of Proposition 1.6.3 to more com-
plex domains. One natural approach is to work in the class of Lipschitz
domains. If ∂Ω is given as the graph of a function φ (cf. (1.4.4)), we can
define the integral on ∂Ω as∫

∂Ω

f dS :=
∫

IRn−1
f(x, φ(x))

√
1 + |∇φ(x)|2 dx.

If φ is Lipschitz, then the weight
√

1 + |∇φ(x)|2 is an L∞ function (cf. ex-
ercise 1.x.14). In this way (cf. Grisvard 1985), we can define the integral on
any Lipschitz boundary, and correspondingly associated Lebesgue spaces.
Moreover, the following result holds.

(1.6.6) Theorem. Suppose that Ω has a Lipschitz boundary, and that p is
a real number in the range 1 ≤ p ≤ ∞. Then there is a constant, C, such
that

‖v‖Lp(∂Ω) ≤ C ‖v‖1−1/p
Lp(Ω) ‖v‖

1/p
W 1

p (Ω) ∀v ∈ W 1
p (Ω).

We will use the notation W̊ 1
p (Ω) to denote the subset of W 1

p (Ω), con-
sisting of functions whose trace on ∂Ω is zero, that is
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(1.6.7) W̊ 1
p (Ω) =

{
v ∈ W 1

p (Ω) : v|∂Ω = 0 in L2(∂Ω)
}

.

Similarly, we let W̊ k
p (Ω) denote the subset of W k

p (Ω) consisting of functions
whose derivatives of order k − 1 are in W̊ 1

p (Ω), i.e.

(1.6.8) W̊ k
p (Ω) =

{
v ∈ W k

p (Ω) : v(α)|∂Ω = 0 in L2(∂Ω) ∀|α| < k
}

.

1.7 Negative Norms and Duality

In this section we introduce ideas that lead to the definition of Sobolev
spaces W k

p for negative integers k. This definition is based on the concept
of duality in Banach spaces. The dual space, B′, to a Banach space, B, is
a set of linear functionals on B. (A linear functional on a linear space B is
simply a linear function from B into the reals, IR, i.e., a function L : B → IR
such that

L(u + av) = L(u) + aL(v) ∀u, v ∈ B, a ∈ IR.)

More precisely, we distinguish between the linear space, B∗, of all linear
functionals on B (cf. exercise 1.x.33), and the subspace B′ ⊂ B∗ of con-
tinuous linear functionals on B. The following observation simplifies the
characterization of such functionals.

(1.7.1) Proposition. A linear functional, L, on a Banach space, B, is con-
tinuous if and only if it is bounded, i.e., if there is a finite constant C such
that |L(v)| ≤ C‖v‖B ∀v ∈ B.

Proof. A bounded linear function is actually Lipschitz continuous, i.e.,

|L(u)− L(v)| = |L(u− v)| ≤ C‖u− v‖B ∀u, v ∈ B.

Conversely, suppose L is continuous. If it is not bounded, then there must
be a sequence {vn} in B such that |L(vn)|/‖vn‖B ≥ n. Renormalizing by
setting wn = vn/n‖vn‖B gives |L(wn)| ≥ 1 but ‖wn‖B ≤ 1/n, and thus
wn → 0. But, by continuity of L, we should have L(wn) → 0, the desired
contradiction. �	

For a continuous linear functional, L, on a Banach space, B, the propo-
sition states that the following quantity is always finite:

(1.7.2) ‖L‖B′ := sup
0�=v∈B

L(v)
‖v‖B

.

Exercise 1.x.34 shows that this forms a norm on B′, called the dual norm,
and one can show (cf. Trèves 1967) that B′ is complete with respect to it,
i.e., that B′ is also a Banach space.
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(1.7.3) Example. The dual space of a Banach space need not be a mysterious
object. One of the key results of Lebesgue integration theory is that the
dual spaces of Lp can be easily identified, for 1 ≤ p < ∞. From Hölder’s
inequality, any function f ∈ Lq(Ω) (where 1

q + 1
p = 1 defines the dual index,

q, to p) can be viewed as a continuous linear functional via

Lp(Ω) � v →
∫

Ω

v(x)f(x) dx.

One version of the Riesz Representation Theorem states that all contin-
uous linear functionals on Lp(Ω) arise in this way, i.e., that (Lp(Ω))′ is
isomorphic to Lq(Ω).

(1.7.4) Example. The dual space of a Banach space can also contain totally
new objects. For example, Sobolev’s inequality shows that the Dirac δ-
function is a continuous linear functional on W k

p , provided k and p satisfy
the appropriate relation given in (1.4.6). Specifically, the Dirac δ-function
is the linear functional

W k
p (Ω) � v → v(y) =: δy(v),

where y denotes a given point in the domain Ω. It can be seen that this can
not arise via an integration process using any locally integrable function
(cf. exercise 1.x.36), i.e., it can not be viewed as a member of any of the
spaces introduced so far.

(1.7.5) Definition. Let p be in the range 1 ≤ p ≤ ∞, and let k be a negative
integer. Let q be the dual index to p, i.e., 1

q + 1
p = 1. Then the Sobolev space

W k
p (Ω) is defined to be the dual space

(
W−k

q (Ω)
)′ with norm given by the

dual norm (cf. (1.7.2)).

(1.7.6) Remark. Note that we have defined the negative-index Sobolev
spaces so that, if the same definition were used as well for k = 0, then
the two definitions (cf. (1.3.1)) would agree for 1 < p < ∞, in view of Re-
mark 1.7.3. Note also that different dual spaces are used to define negative-
index Sobolev spaces, in particular, it is frequently useful to use the dual
of a subspace of W−k

q (Ω), and in view of exercise 1.x.35, this leads to a
slightly larger space. In either case, the negative Sobolev spaces are big
enough to include interesting new objects, such as the Dirac δ-function.
Example 1.7.4 shows that δ ∈ W k

p (Ω) provided k < −n + n/p (or k ≤ −n
if p = ∞).
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1.x Exercises

1.x.1 Suppose that Ω is bounded and that 1 ≤ p ≤ q ≤ ∞. Prove that
Lq(Ω) ⊂ Lp(Ω). (Hint: use Hölder’s inequality.) Give examples to
show that the inclusion is strict if p < q and false if Ω is not bounded.

1.x.2 Show that the set of bounded, continuous functions on a domain Ω
forms a Banach space with norm ‖·‖L∞(Ω).

1.x.3 Suppose that Ω is bounded and that fj → f in Lp(Ω). Using
Hölder’s inequality prove that∫

Ω

fj(x) dx →
∫

Ω

f(x) dx as j →∞.

1.x.4 Just in case you have not seen polar coordinates in n dimensions. De-
fine, inductively, mappings xk from subsets Ωk ⊂ IRk into (the unit
sphere in) IRk+1 via (xk

1 , . . . , xk
k+1)(ω, φ) :=

(
(sin φ)xk−1(ω), cos φ

)
on

Ωk := {(ω, φ) : ω ∈ Ωk−1, 0 ≤ φ < π} ,

with x1(ω) = (cos ω, sin ω) and Ω1 = {ω : 0 ≤ ω < 2π}. Define
the polar coordinate mapping X(ω, r) := rxn−1(ω) for r ≥ 0 and
ω ∈ Ωn−1. Prove that∣∣∣∣det

∂X(ω, r)
∂(ω, r)

∣∣∣∣ = rn−1
n−1∏
j=2

(sin ωj)j−1

for ω = (ω1, . . . , ωn−1) ∈ Ωn−1 and r ≥ 0. (Hint: do the calculation
for n = 2 and then show that

det

⎛⎝ ∂xk+1

∂(ω, φ)
xk+1(ω, φ)

⎞⎠ = (sin φ)k det

⎛⎝ ∂xk

∂ω

xk(ω)

⎞⎠
by induction on k.)

1.x.5 Let n be a positive integer, and suppose that ρ is a non-negative,
smooth function defined for 0 < r ≤ 1 satisfying

lim
ε→0+

∫ 1

ε

ρ(r)rn−1 dr < ∞.

Define f on Ω = {x ∈ IRn : |x| < 1} via f(x) = ρ(|x|). Show that
f ∈ L1(Ω). (Hint: use the Monotone Convergence Theorem, polar
coordinates, cf. exercise 1.x.4, and Fubini’s Theorem.)

1.x.6 Let Ω = [0, 1] and 1 ≤ p < ∞. Show that the function f defined
in (1.1.12) is in Lp(Ω), and moreover, that ‖f − fj‖Lp(Ω) → 0 as
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j →∞. (Hint: first show that log x ∈ Lp(Ω), and then use the fact
that Lp(Ω) is a Banach space.)

1.x.7 Pick your favorite dense sequence {rn}. Graph the function f defined
in (1.1.10) for various values of j.

1.x.8 Prove that
(

∂
∂x

)α |x| = xα/|x| for all x �= 0 and |α| = 1.

1.x.9 Prove Proposition 1.2.7. (Hint: use integration by parts and the fact
that C0(Ω) ⊂ L 1

loc(Ω).)

1.x.10 Prove that weak derivatives of order greater than one of the function,
f , in Example 1.2.5 do not exist.

1.x.11 Show that the condition in Example 1.2.6 implies that

lim
r→0

rn−1|ρ(r)| = 0.

(Hint: First show that rn−1|ρ(r)| ≤
∫ 1

r
tn−1|ρ′(t)| dt + C̃ ≤ C. If the

limit is not zero, then there are points rj tending to zero such that∣∣∣∣∣rn−1
j

∫ rj+γrj

rj

ρ′(t) dt

∣∣∣∣∣ =
∣∣rn−1

j

(
ρ(rj + γrj)− ρ(rj)

)∣∣
≥
∣∣rn−1

j

(
C(rj + γrj)1−n − cr1−n

j

)∣∣
= δ > 0

for appropriate γ > 0. Show this contradicts the condition. Or apply
Hardy’s inequality (Stein 1970).)

1.x.12 Verify the existence of weak derivatives claimed in Example1.2.6.
(Hint: use exercises 1.x.11, 1.x.8, 1.x.5, the Divergence Theorem
and a limit theorem for the Lebesgue integral.)

1.x.13 Let f(x) = |x|r for a given real number r. Prove that f has first-
order weak derivatives on the unit ball provided that r > 1− n.

1.x.14 Prove that Lip(Ω) ⊂ W 1
∞(Ω). (Hint: f ∈ Lip(Ω) is a fortiori Lip-

schitz continuous in each variable separately, so has partial deriva-
tives a.e. Using Fubini’s Theorem, show by contradiction that these
must be essentially bounded on Ω. Show that these derivatives are
actually weak derivatives by using the fact that Lipschitz functions
are absolutely continuous and that integration by parts is justified
for absolutely continuous functions.) What is the constant in the
equivalence relation between the Lipschitz norm and the Sobolev
W 1

∞(Ω) norm corresponding to this inclusion?

1.x.15 Suppose that Ω is convex. Prove that W 1
∞(Ω) ⊂ Lip(Ω). (Hint:

given f ∈ W 1
∞(Ω), φ ∈ D(Ω) and y, z ∈ Ω, write
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f(y)− f(z) = lim
ε→0

∫
Ω

f(x)Dφε(x) dx

where D denotes the directional derivative in the direction ny,z =
(y − z)/|y − z| and

φε(x) = ε−n

∫ ∞

0

φ

(
x− y − tny,z

ε

)
φ

(
x− z − tny,z

ε

)
dt.

Note: the identity above must be proved, cf. the mollification argu-
ment in Remark 1.3.6 and exercise 1.x.18. Show that φε ∈ D(Ω)
and that ‖φε‖L1(IRn) = |y − z| by verifying and using the identity

φε(x) = −ε−n|y − z|
∫ 0

−1

φ

(
x− y − τ(y − z)

ε

)
dτ.

Apply the definition of weak derivative and Hölder’s inequality.)

1.x.16 Let n = 1, Ω = [a, b] and f ∈ W 1
1 (Ω). Prove that∫ b

a

D1
wf(x) dx = f(b)− f(a)

under the assumption that f is continuous at a and b. (Hint: use
the “integration by parts” formula that defines the weak derivative
and choose an appropriate sequence φj ∈ D(Ω) such that φj → 1
on Ω, cf. exercise 1.x.15.)

1.x.17 Prove that absolutely continuous functions on an interval [a, b] are
in W 1

1 ([a, b]). (Hint: use the fact that integration by parts makes
sense for absolutely continuous functions.)

1.x.18 Verify the statements of Remark 1.3.6. (Hints: show that D αfε =
ε−|α|f ∗ (D αφ)ε for all α; prove that fε → f in Lp(Ω); show also
that D αfε = (Dα

wf) ∗ φε = (Dα
wf)ε under appropriate conditions.)

1.x.19 A domain Ω is said to be star-shaped with respect to a point x if
∀y ∈ Ω the line-segment connecting x and y lies within Ω. (Here,
we mean the closed line-segment, so necessarily x ∈ Ω.) Prove that
C∞(Ω) is dense in W k

p (Ω) for 1 ≤ p < ∞ under the assumption
that Ω is star-shaped. (Hint: see (Dupont and Scott 1979); assume
x = 0 and show that the “dilation” uρ(y) = u(ρy) defined for ρ < 1
and y ∈ Ω satisfies uρ → u in W k

p (Ω) as ρ → 1. Mollify uρ as in
Remark 1.3.6 to get a smooth function uρ,ε → u as ρ → 1 and
ε → 0.)

1.x.20 Prove Sobolev’s inequality in the case of n = 1, i.e., let Ω = [a, b]
and show that

‖u‖L∞(Ω) ≤ C ‖u‖W 1
1 (Ω) .
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(Hint: use the fundamental theorem of calculus and Theorem 1.3.4.
See the proof of the trace inequality (1.6.2) for technical help.) How
does the constant, C, depend on a and b?

1.x.21 Let Ω = [a, b] (here n = 1). Prove that all functions in W 1
1 (Ω) are

continuous (have a continuous representative). (Hint: use exercise
1.x.20 and Theorem 1.3.4.)

1.x.22 Prove that functions in W 1
1 ([a, b]) are absolutely continuous on [a, b].

(Hint: use exercises 1.x.16 and 1.x.21 and the “continuity” of the
Lebesgue integral.)

1.x.23 Using the hint in exercise 0.x.8, show that, given f ∈ L2(Ω), there
is a solution u ∈ W 2

2 (Ω) satisfying (0.1.1). Verify that all boundary
conditions make sense and are satisfied and explain in what sense
the differential equation is to be interpreted.

1.x.24 Let u be the solution to (0.1.1) given either by exercise (0.x.8) or
exercise 1.x.23. Justify rigorously that (0.1.3) holds.

1.x.25 Show that any Lipschitz domain satisfies the segment condition
(1.3.5).

1.x.26 Let Ω =
{
(x, y) ∈ IR2 : |x| < 1, |y| < 1, y �= 0 for x ≥ 0

}
. Show

that there are functions in W 1
p (Ω) that cannot be limits of functions

in C0(Ω).

1.x.27 Does a “cusp” domain, Ω = {(x, y) : 0 < x < 1, 0 < y < xr}, with
r > 1, satisfy the segment condition? Does its complement?

1.x.28 Let Ω be the unit disk in the plane. Show that there exist u ∈ W 1
2 (Ω)

that are infinite at a dense set of points on ∂Ω. (Hint: see (1.1.12)
and (1.4.3).)

1.x.29 Let Ω be a domain in the plane. Show that there exist u ∈ W 1
2 (Ω)

that are infinite at a dense set of points in Ω. (Hint: see (1.1.12)
and (1.4.3).)

1.x.30 Suppose Ω is as in Proposition 1.6.3, and let p be a real number in
the range 1 ≤ p ≤ ∞. Prove that there is a constant C such that

‖v‖Lp(∂Ω) ≤ C ‖v‖1−1/p
Lp(Ω) ‖v‖

1/p
W 1

p (Ω) ∀v ∈ W 1
p (Ω).

Explain what this means in the case p = ∞.

1.x.31 Let Ω denote the upper half-plane. Show that no inequality of the
form

‖v‖L2(∂Ω) ≤ C ‖v‖λ
L2(Ω) ‖v‖

µ
W 1

2 (Ω)

holds, unless λ ≤ 1/2 and λ + µ = 1. (Hint: suppose it holds and
consider the functions u(x) = Uv(Lx) for U and L arbitrary to reach
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a contradiction.) Show that, to prove it for λ = µ = 1/2, it suffices
to assume ‖v‖L2(Ω) = ‖v‖W 1

2 (Ω) = 1, i.e., deduce the general case
from this special case. (Hint: use the same scalings.) Use the same
idea to prove the inequality

‖v‖L2(∂Ω) ≤ C ‖v‖1/2
L2(Ω) |v|

1/2

W 1
2 (Ω)

.

1.x.32 Let a, b ∈ IR. Prove that ab ≤ ε
2a2 + 1

2εb
2 for any ε > 0.

(Hint: expand (a + b)2 ≥ 0.) Apply this to show that a + b ≤(
(1 + ε) a2 + (1 + 1/ε) b2

)1/2
.

1.x.33 Show that the set of linear functionals on a linear space is it-
self a linear space, where the operation of addition is given by
(L1 + L2)(v) := L1(v) + L2(v) and scalar multiplication is defined
by (aL)(v) := aL(v).

1.x.34 Show that the expression in (1.7.2) defines a norm on the dual space
of a Banach space, i.e., verify the conditions of (1.1.6).

1.x.35 Let B and C be two Banach spaces with B ⊂ C and with the
inclusion being continuous. Show that C ′ ⊂ B′, with the inclusion
being continuous.

1.x.36 Let Ω be an open set and y ∈ Ω. Show that there is no function
f ∈ L 1

loc(Ω) such that φ(y) =
∫

Ω
f(x)φ(x) dx ∀φ ∈ D(Ω).

1.x.37 Let Ω = [0, 1]. Prove that
{
v ∈ C1([0, 1] : v(0) = 0

}
is dense in the

set {v ∈ W 1
2 (Ω) : v(0) = 0}. (Hint: use the density result in Remark

1.3.5 and Sobolev’s inequality.)

1.x.38 Let Ω = [0, 1]. Prove that
{
v ∈ C1([0, 1] : v′(1) = 0

}
is dense in

W 1
2 (Ω). (Hint: use the density result in Remark 1.3.5 to get a se-

quence vn ∈ C1([0, 1] converging to v in W 1
2 (Ω) and modify each vn

near 1 to make the derivative zero.)

1.x.39 Let Ω be an open set. Suppose that f ∈ L 1
loc(Ω) such that∫

Ω
fφ dx = 0 ∀φ ∈ D(Ω). Prove that f = 0 a.e. (Hint: By con-

tradiction. Show otherwise that ∃ε > 0 such that A = {x ∈ Ω :
±f(x) > ε} has positive measure. Approximate A in measure by a
finite union of balls AN and let ÃN denote concentric balls of slightly
smaller size, also approximating A in measure. Choose φN ∈ D(AN )
with the properties 0 ≤ φN ≤ 1 everywhere and φN ≥ 1

2 on ÃN and
integrate fφN over Ω to reach a contradiction. Construct φN as
follows. Write AN = ∪jBj and ÃN = ∪jB̃j and choose ψj ∈ D(Bj),
such that 0 ≤ ψj ≤ 1 everywhere and ψj = 1 on B̃j . Define

φN (x) =
∑

j

ψj(x)
/(

1 +
∑

j

ψj(x)
)

.
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This can be viewed as an approximate partition of unity argument.)

1.x.40 Show that the weak derivative is unique. (Hint: use exercise 1.x.39.)

1.x.41 Suppose, as in exercise 1.x.39, that B̃j ⊂ Bj are concentric balls,
and let ψj ∈ D(Bj) such that 0 ≤ ψj ≤ 1 everywhere and ψj = 1
on B̃j . Let ε > 0. Define

φε(x) =
∑

j

ψj(x)
/( ε

1− ε
+
∑

j

ψj(x)
)

.

Show that 0 ≤ φε ≤ 1 everywhere and φε ≥ 1 − ε on ∪jB̃j . Can
you construct φ ∈ D(∪jBj) such that 0 ≤ φ ≤ 1 everywhere and
φ = 1 on ∪jB̃j? What can you say if the finite unions are replaced
by infinite ones?

1.x.42 Let vβ(r, θ) = r β sin βθ on Ωβ = {(r, θ) : r < 1, 0 < θ < π/β}
where 1/2 ≤ β < ∞. Determine the optimal values of k, p such that
vβ ∈ W k

p (Ωβ) as a function of β. The case β = 1/2 is called a slit
domain and β = 2/3 a re-entrant corner. What does the case β = 1
correspond to?

1.x.43 The type of finite cone C used for ice cream can be represented as
the union of the sets tξ + Bαt for 0 < t < h, where ξ is the axis
of the cone, α measures the angle, and h is the height. Here Bt is
the ball of radius t. A Lipschitz domain Ω satisfies a cone property:
there is a finite set of finite cones Ci such that for all x ∈ Ω, there
is some i such that x + Ci ⊂ Ω. Prove that smooth functions are
dense in W k

p (Ω) for such a domain. (Hint: Use a mollifier to average
over the set x + tξ + Bαt in defining a smoothed value at x, that is

vt(x) :=
∫

Bαt

v(x + y + tξ)ρt(y) dy.

Prove that vt tends to v in W k
p (Ω).)

1.x.44 A Cantor function can be defined by a limiting sequence of con-
tinuous, piecewise linear functions. Let 0 < ε < 1 and start with
f0(x) = x. Next, let f1(x) be equal to 1

2 in the interval of width
ε around x = 1

2 , and equal to f0 at the ends of the interval [0, 1].
Given fi, define fi+1 inductively. In each interval where fi is not
constant, divide this interval in the way we did for the original one:
let fi+1 be constant in a sub-interval of length 2−iε in the center,
and connect the remaining parts linearly. The constant is chosen to
be the middle value. Show that the sequence fi stays bounded in
the space Lipα of functions which satisfy a uniform bound of the
form

|f(x)− f(y)| ≤ C|x− y|α
for some 1 > α > 0. Show that the best α can tend to one as ε tends
to zero.



Chapter 2

Variational Formulation of Elliptic
Boundary Value Problems

This chapter is devoted to the functional analysis tools required for devel-
oping the variational formulation of differential equations. It begins with
an introduction to Hilbert spaces, including only material that is essential
to later developments. The goal of the chapter is to provide a framework
in which existence and uniqueness of solutions to variational problems may
be established.

2.1 Inner-Product Spaces

(2.1.1) Definition. A bilinear form, b(·, ·), on a linear space V is a mapping
b : V × V −→ IR such that each of the maps v �→ b(v, w) and w �→ b(v, w)
is a linear form on V. It is symmetric if b(v, w) = b(w, v) for all v, w ∈ V .
A (real) inner product, denoted by (·, ·), is a symmetric bilinear form on a
linear space V that satisfies

(a) (v, v) ≥ 0 ∀ v ∈ V and
(b) (v, v) = 0 ⇐⇒ v = 0.

(2.1.2) Definition. A linear space V together with an inner product defined
on it is called an inner-product space and is denoted by (V, (·, ·)).

(2.1.3) Examples. The following are examples of inner-product spaces.

(i) V = IRn, (x, y) :=
∑n

i=1 xiyi

(ii) V = L2(Ω), Ω ⊆ IRn, (u, v)L2(Ω) :=
∫

Ω
u(x)v(x)dx

(iii) V = W k
2 (Ω), Ω ⊆ IRn, (u, v)k :=

∑
|α|≤k(Dαu,Dαv)L2(Ω)

Notation. The inner-product space (iii) is often denoted by Hk(Ω).
Thus, Hk(Ω) = W k

2 (Ω) .
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(2.1.4) Theorem. (The Schwarz Inequality) If
(
V, (·, ·)

)
is an inner-

product space, then

(2.1.5) |(u, v)| ≤ (u, u)1/2(v, v)1/2.

The equality holds if and only if u and v are linearly dependent.

Proof. For t ∈ IR

(2.1.6) 0 ≤ (u− tv, u− tv) = (u, u)− 2t(u, v) + t2(v, v).

If (v, v) = 0, then (u, u) − 2t(u, v) ≥ 0 ∀t ∈ IR, which forces (u, v) = 0,
so the inequality holds trivially. Thus, suppose (v, v) �= 0. Substituting
t = (u, v)/(v, v) into this inequality, we obtain

(2.1.7) 0 ≤ (u, u)− |(u, v)|2/(v, v)

which is equivalent to (2.1.5). Note that we did not use part (b) of Definition
2.1.1 to prove (2.1.5).

If u and v are linearly dependent, one can easily see that equality holds
in (2.1.5).

Conversely, we assume that equality holds. If v = 0, then u and v
are linearly dependent. If v �= 0, take λ = (u, v)/(v, v). It follows that
(u − λv, u − λv) = 0, and property (b) of Definition 2.1.1 implies that
u− λv = 0, i.e. u and v are linearly dependent. �	

(2.1.8) Remark. The Schwarz inequality (2.1.5) was proved without using
property (b) of the inner product. An example where this might be useful
is a(u, v) =

∫
Ω
∇u · ∇v dx on H1(Ω). Thus, we have proved that

a(u, v)2 ≤ a(u, u) a(v, v) for allu, v ∈ H1(Ω),

even though a(·, ·) is not an inner product on H1(Ω).

(2.1.9) Proposition. ‖v‖ :=
√

(v, v) defines a norm in the inner-product
space (V, (·, ·)).
Proof. One can easily show that ‖αv‖ = |α| ‖v‖, ‖v‖ ≥ 0, and ‖v‖ = 0 ⇐⇒
v = 0. It remains to prove the triangle inequality:

‖u + v‖2 = (u + v, u + v)
= (u, u) + 2(u, v) + (v, v)

= ‖u‖2 + 2(u, v) + ‖v‖2

≤ ‖u‖2 + 2‖u‖ ‖v‖+ ‖v‖2 (by Schwarz’ inequality 2.1.5)

= (‖u‖+ ‖v‖)2.
Therefore, ‖u + v‖ ≤ ‖u‖+ ‖v‖. �	



2.2 Hilbert Spaces 51

2.2 Hilbert Spaces

Proposition 2.1.9 says that, given an inner-product space (V, (·, ·)), there is
an associated norm defined on V, namely ‖v‖ =

√
(v, v). Thus, an inner-

product space can be made into a normed linear space.

(2.2.1) Definition. Let (V, (·, ·)) be an inner-product space. If the associated
normed linear space (V, ‖·‖) is complete, then (V, (·, ·)) is called a Hilbert
space.

(2.2.2) Examples. The examples (i) - (iii) of (2.1.3) are all Hilbert spaces.
In particular, the norm associated with the inner product (·, ·)k on W k

2 (Ω)
is the same as the norm ‖·‖W k

2 (Ω) defined in Chapter 1 where W k
2 (Ω) was

shown to be complete.

(2.2.3) Definition. Let H be a Hilbert space and S ⊂ H be a linear subset
that is closed in H. (Recall that S linear means that u, v ∈ S, α ∈ IR =⇒
u + αv ∈ S.) Then S is called a subspace of H.

(2.2.4) Proposition. If S is a subspace of H, then (S, (·, ·)) is also a Hilbert
space.

Proof. (S, ‖·‖) is complete because S is closed in H under the norm ‖·‖. �	

(2.2.5) Examples of subspaces of Hilbert spaces.

(i) H and {0} are the obvious extreme cases. More interesting ones
follow.

(ii) Let T : H −→ K be a continuous linear map of H into another
linear space. Then ker T is a subspace (see exercise 2.x.1).

(iii) Let x ∈ H and define x⊥ := {v ∈ H : (v, x) = 0}. Then x⊥ is a
subspace of H. To see this, note that x⊥ = ker Lx, where Lx is the
linear functional

(2.2.6) Lx : v �→ (v, x).

By the Schwarz inequality (2.1.5),

|Lx(v)| ≤ ‖x‖ ‖v‖

implying that Lx is bounded and therefore continuous. This proves
that x⊥ is a subspace of H in view of the previous example.
Note. The overall objective of the next section is to prove that all
L ∈ H ′ are of the form Lx for x ∈ H, when H is a Hilbert space.

(iv) Let M ⊂ H be a subset and define

M⊥ := {v ∈ H : (x, v) = 0 ∀x ∈ M}.
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Note that
M⊥ =

⋂
x∈M

x⊥

and each x⊥ is a (closed) subspace of H. Thus, M⊥ is a subspace
of H.

(2.2.7) Proposition. Let H be a Hilbert space.

(1) For any subsets M,N ⊂ H,M ⊂ N =⇒ N⊥ ⊂ M⊥.
(2) For any subset M of H containing zero, M ∩M⊥ = {0}.
(3) {0}⊥ = H.
(4) H⊥ = {0}.

Proof. For (2): Let x ∈ M ∩M⊥. Then x ∈ M =⇒ M⊥ ⊂ x⊥ and so

x ∈ M⊥ =⇒ x ∈ x⊥ ⇐⇒ (x, x) = 0 ⇐⇒ x = 0.

For (4): Since H⊥ ⊂ H, (2) implies that

H⊥ = H ∩H⊥ = {0}.

Parts (1) and (3) are left to the reader in exercise 2.x.3. �	

(2.2.8) Theorem. (Parallelogram Law) Let ‖·‖ be the norm associated
with the inner product (·, ·) on H. We have

(2.2.9) ‖v + w‖2 + ‖v − w‖2 = 2
(
‖v‖2 + ‖w‖2

)
.

Proof. A straight-forward calculation; see exercise 2.x.4. �	

2.3 Projections onto Subspaces

The following result establishes an essential geometric fact about Hilbert
spaces.

(2.3.1) Proposition. Let M be a subspace of the Hilbert space H . Let
v ∈ H \M and define δ := inf{ ‖v − w‖ : w ∈ M}. (Note that δ > 0 since
M is closed in H.) Then there exists w0 ∈ M such that

(i) ‖v − w0‖ = δ, i.e., there exists a closest point w0 ∈ M to v, and
(ii) v − w0 ∈ M⊥.

Proof. (i) Let {wn} be a minimizing sequence:
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lim
n→∞

‖v − wn‖ = δ.

We now show that {wn} is a Cauchy sequence. By the parallelogram
law, ‖(wn − v) + (wm − v)‖2 + ‖(wn − v)− (wm − v)‖2 = 2(‖wn − v‖2 +
‖wm − v‖2), i.e.,

0 ≤ ‖wn − wm‖2 = 2(‖wn − v‖2 + ‖wm − v‖2)− 4
∥∥1

2 (wn + wm)− v
∥∥2

.

Since 1
2 (wn + wm) ∈ M , we have∥∥1

2 (wn + wm)− v
∥∥ ≥ δ

by the definition of δ. Thus,

0 ≤ ‖wn − wm‖2 ≤ 2(‖wn − v‖2 + ‖wm − v‖2)− 4δ2.

Letting m, n tend towards infinity, we have

2
(
‖wn − v‖2 + ‖wm − v‖2

)
− 4δ2 → 2δ2 + 2δ2 − 4δ2 = 0.

Therefore, ‖wn − wm‖2 → 0, proving that {wn} is Cauchy. Thus, there
exists w0 ∈ M = M such that wn → w0. Continuity of the norm implies
that ‖v − w0‖ = δ.
(ii) Let z = v−w0, so that ‖z‖ = δ. We will prove that z ⊥ M . Let w ∈ M

and t ∈ IR. Then w0 + tw ∈ M implies that ‖z − tw‖2 = ‖v − (w0 + tw)‖2
has an absolute minimum at t = 0. Therefore,

0 =
d

dt
‖z − tw‖2

∣∣
t = 0

= −2(z, w).

This implies that, for all w ∈ M ,

(v − w0, w) = (z, w) = 0.

Since w ∈ M was arbitrary, this implies v − w0 ∈ M⊥. �	

Proposition 2.3.1 says that, given a subspace M of H and v ∈ H, we
can write v = w0 + w1, where w0 ∈ M and w1(= v − w0) ∈ M⊥. Let us
show that this decomposition of an element v ∈ H is unique. In fact, from

w0 + w1 = v = z0 + z1, w0, z0 ∈ M, w1, z1 ∈ M⊥,

we obtain
M � w0 − z0 = −(w1 − z1) ∈ M⊥.

Since M ∩ M⊥ = {0}, w0 = z0 and w1 = z1. This shows that the
decomposition is unique. Therefore, we can define the following operators

(2.3.2) PM : H −→ M, PM
⊥ : H −→ M⊥

where the respective definitions of PM and PM
⊥ are given by
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(2.3.3) PM v =
{

v if v ∈ M ,
w0 if v ∈ H \M ;

(2.3.4) PM
⊥ v =

{
0 if v ∈ M ,
v − w0 if v ∈ H \M .

The uniqueness of the decomposition implies that PM
⊥ = PM⊥ (see exer-

cise 2.x.5) so we need no longer be careful about where we put the “⊥”.
Summarizing the above observations, we state the following

(2.3.5) Proposition. Given a subspace M of H and v ∈ H, there is a unique
decomposition

(2.3.6) v = PM v + PM⊥v,

where PM : H −→ M and PM⊥ : H −→ M⊥. In other words,

(2.3.7) H = M ⊕M⊥.

(2.3.8) Remark. The operators PM and PM⊥ defined above are linear op-
erators. To see this, note from the above proposition that

αv1 + βv2 = PM (αv1 + βv2) + PM⊥(αv1 + βv2),

where
v1 = PM v1 + PM⊥v1 and v2 = PM v2 + PM⊥v2.

That is
PM (αv1 + βv2) + PM⊥(αv1 + βv2)
= αv1 + βv2

= (αPM v1 + βPM v2) + (αPM⊥v1 + βPM⊥v2).
Uniqueness of decomposition of αv1 + βv2 and the definitions of PM and
PM⊥ imply that

PM (αv1 + βv2) = αPM v1 + βPM v2,

and
PM⊥(αv1 + βv2) = αPM⊥v1 + βPM⊥v2,

i.e., PM and PM⊥ are linear.

(2.3.9) Definition. An operator P on a linear space V is a projection if
P 2 = P , i.e., Pz = z for all z in the image of P .

(2.3.10) Remark. The fact that PM is a projection follows from its definition.
That PM

⊥ is also follows from the observation that PM
⊥ = PM⊥ .
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2.4 Riesz Representation Theorem

Given u ∈ H, recall that a continuous linear functional Lu can be defined
on H by

(2.4.1) Lu(v) = (u, v).

The following theorem proves that the converse is also true.

(2.4.2) Theorem. (Riesz Representation Theorem) Any continuous linear
functional L on a Hilbert space H can be represented uniquely as

(2.4.3) L(v) = (u, v)

for some u ∈ H. Furthermore, we have

(2.4.4) ‖L‖H ′ = ‖u‖H .

Proof. Uniqueness follows from the nondegeneracy of the inner product. For
if u1 and u2 were two such solutions, we would have

0 = L(u1 − u2)− L(u1 − u2)
= (u1, u1 − u2)− (u2, u1 − u2)
= (u1 − u2, u1 − u2)

which implies u1 = u2. Now we prove existence.
Define M := {v ∈ H : L(v) = 0}. In view of Example 2.2.5.ii, M is a

subspace of H. Therefore, H = M ⊕M⊥ by Proposition 2.3.5.

Case (1): M⊥ = {0}.
Thus, in this case M = H, implying that L ≡ 0. So take u = 0.

Case (2): M⊥ �= {0}.
Pick z ∈ M⊥, z �= 0. Then L(z) �= 0. (Otherwise, z ∈ M , which implies
that z ∈ M⊥ ∩M = {0}.) For v ∈ H and β = L(v)

/
L(z) we have

L(v − βz) = L(v)− βL(z) = 0,

i.e.
v − βz ∈ M.

Thus, v − βz = PMv and βz = PM⊥v. In particular, if v ∈ M⊥, then
v = βz (that is, v − βz = 0), which proves that M⊥ is one-dimensional.
Now choose

(2.4.5) u :=
L(z)
‖z‖2H

z .

Note that u ∈ M⊥. We have
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(u, v) =
(
u, (v − βz) + βz

)
= (u, v − βz) + (u, βz)
= (u, βz) (u ∈ M⊥, v − βz ∈ M)

= β
L(z)
‖z‖2H

(z, z) (definition of u)

= βL(z)
= L(v). (definition of β)

Thus, u :=
(
L(z)/‖z‖2

)
z is the desired element of H.

It remains to prove that ‖L‖H ′ = ‖u‖H . Let us first observe that

‖u‖H =
|L(z)|
‖z‖H

from (2.4.5). Now, according to the definition (1.7.2) of the dual norm,

‖L‖H ′ = sup
0�=v∈H

|L(v)|
‖v‖H

(by 1.7.2)

= sup
0�=v∈H

|(u, v)|
‖v‖H

(by 2.4.3)

≤ ‖u‖H (Schwarz’ inequality 2.1.5)

=
|L(z)|
‖z‖H

(by 2.4.5)

≤ ‖L‖H ′ (by 1.7.2)

Therefore, ‖u‖H = ‖L‖H ′ . �	

(2.4.6) Remark. According to the Riesz Representation Theorem, there is
a natural isometry between H and H ′ (u ∈ H ←→ Lu ∈ H ′). For this
reason, H and H ′ are often identified. For example, we can write Wm

2 (Ω) ∼=
W−m

2 (Ω) (although they are completely different Hilbert spaces). We will
use τ to represent the isometry from H ′ onto H.

2.5 Formulation of Symmetric Variational Problems

The purpose of the rest of this chapter is to apply the abstract Hilbert space
theory developed in the previous sections to get existence and uniqueness
results for variational formulations of boundary value problems.

(2.5.1) Example. Recall from Examples 2.1.3.iii and 2.2.2 that H1(0, 1) =
W 1

2 (0, 1) is a Hilbert space under the inner product
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(u, v)H1 =
∫ 1

0

uv dx +
∫ 1

0

u′v′ dx.

In Chapter 0, we defined V = {v ∈ H1(0, 1) : v(0) = 0}. To see that V
is a subspace of H1(0, 1), let δ0 : H1(0, 1) −→ IR by δ0(v) = v(0). From
Sobolev’s inequality (1.4.6), δ0 is a bounded linear functional on H1, so it is
continuous. Hence, V = δ−1

0 {0} is closed in H1. We also defined a(v, w) =∫ 1

0
v′w′ dx. Note that a(·, ·) is a symmetric bilinear form on H1(0, 1), but it

is not an inner product on H1 since a(1, 1) = 0. However, it does satisfy the
coercivity property (1.5.1) on V . In view of the following, this shows that the
variational problem in Chapter 0 is naturally expressed in a Hilbert-space
setting.

(2.5.2) Definition. A bilinear form a(·, ·) on a normed linear space H is said
to be bounded (or continuous) if ∃C < ∞ such that

|a(v, w)| ≤ C ‖v‖H ‖w‖H ∀v, w ∈ H

and coercive on V ⊂ H if ∃α > 0 such that

a(v, v) ≥ α ‖v‖2H ∀v ∈ V.

(2.5.3) Proposition. Let H be a Hilbert space, and suppose a(·, ·) is a sym-
metric bilinear form that is continuous on H and coercive on a subspace V
of H. Then

(
V, a(·, ·)

)
is a Hilbert space.

Proof. An immediate consequence of the coercivity of a(·, ·) is that if v ∈ V
and a(v, v) = 0, then v ≡ 0. Hence, a(·, ·) is an inner product on V .

Now let ‖v‖E =
√

a(v, v), and suppose that {vn} is a Cauchy sequence
in

(
V, ‖·‖E

)
. By coercivity, {vn} is also Cauchy in

(
H, ‖·‖H

)
. Since H is

complete, ∃ v ∈ H such that vn → v in the ‖·‖H norm. Since V is closed
in H, v ∈ V . Now, ‖v − vn‖E ≤ √

c1 ‖v − vn‖H since a(·, ·) is bounded.
Hence, {vn} → v in the ‖·‖E norm, so

(
V, ‖·‖E

)
is complete. �	

In general, a symmetric variational problem is posed as follows. Suppose
that the following three conditions are valid:

(2.5.4)

⎧⎪⎪⎨⎪⎪⎩
(1)

(
H, (·, ·)

)
is a Hilbert space.

(2) V is a (closed) subspace of H.
(3) a(·, ·) is a bounded, symmetric bilinear form

that is coercive on V.

Then the symmetric variational problem is the following.
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(2.5.5) Given F ∈ V ′, find u ∈ V such that a(u, v) = F (v) ∀v ∈ V .

(2.5.6) Theorem. Suppose that conditions (1) − (3) of (2.5.4) hold. Then
there exists a unique u ∈ V solving (2.5.5).

Proof. Proposition 2.5.3 implies that a(·, ·) is an inner product on V and
that

(
V, a(·, ·)

)
is a Hilbert space. Apply the Riesz Representation Theorem.

�	

The (Ritz-Galerkin) Approximation Problem is the following.

Given a finite-dimensional subspace Vh ⊂ V and F ∈ V ′,
find uh ∈ Vh such that

(2.5.7) a(uh, v) = F (v) ∀v ∈ Vh.

(2.5.8) Theorem. Under the conditions (2.5.4), there exists a unique uh that
solves (2.5.7).

Proof.
(
Vh, a(·, ·)

)
is a Hilbert space in its own right, and F |Vh

∈ V ′
h. Apply

the Riesz Representation Theorem. �	

Error estimates for u− uh are a consequence of the following relationship.

(2.5.9) Proposition. (Fundamental Galerkin Orthogonality) Let u and uh

be solutions to (2.5.5) and (2.5.7) respectively. Then

a(u− uh, v) = 0 ∀ v ∈ Vh.

Proof. Subtract the two equations

a(u, v) = F (v) ∀v ∈ V

a(uh, v) = F (v) ∀v ∈ Vh.

�	

(2.5.10) Corollary. ‖u− uh‖E = minv∈Vh
‖u− v‖E.

Proof. Same as (0.3.3). �	

(2.5.11) Remark. (The Ritz Method) In the symmetric case, uh minimizes
the quadratic functional

Q(v) = a(v, v)− 2F (v)

over all v ∈ Vh (see exercise 2.x.6).

Note that (2.5.10) and (2.5.11) are valid only in the symmetric case.
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2.6 Formulation of Nonsymmetric Variational
Problems

A nonsymmetric variational problem is posed as follows. Suppose that the
following five conditions are valid:

(2.6.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1)

(
H, (·, ·)

)
is a Hilbert space.

(2) V is a (closed) subspace of H.
(3) a(·, ·) is a bilinear form onV, not necessarily symmetric.
(4) a(·, ·) is continuous (bounded) onV.
(5) a(·, ·) is coercive on V.

Then the nonsymmetric variational problem is the following.

(2.6.2) Given F ∈ V ′, find u ∈ V such that a(u, v) = F (v) ∀v ∈ V.

The (Galerkin) approximation problem is the following.

Given a finite-dimensional subspace Vh ⊂ V and F ∈ V ′,
find uh ∈ Vh such that

(2.6.3) a(uh, v) = F (v) ∀v ∈ Vh.

The following questions arise.

1. Do there exist unique solutions u, uh?
2. What are the error estimates for u− uh?
3. Are there any interesting examples?

An Interesting Example. Consider the boundary value problem

(2.6.4) −u′′ + u′ + u = f on [0, 1] u′(0) = u′(1) = 0.

One variational formulation for this is: Take

(2.6.5)

V = H1(0, 1)

a(u, v) =
∫ 1

0

(
u′ v′ + u′ v + uv

)
dx

F (v) = (f, v)

and solve the variational equation (2.6.2). Note that a(·, ·) is not symmetric
because of the u′ v term.

To prove a(·, ·) is continuous, observe that

|a(u, v)| ≤ |(u, v)H1 | +
∣∣∣∣∫ 1

0

u′vdx

∣∣∣∣
≤ ‖u‖H1 ‖v‖H1 + ‖u′‖L2 ‖v‖L2 (Schwarz’ inequality 2.1.5)
≤ 2 ‖u‖H1 ‖v‖H1 .
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Therefore, a(·, ·) is continuous (take c1 = 2 in the definition).
To prove a(·, ·) is coercive, observe that

a(v, v) =
∫ 1

0

(
v′ 2 + v′ v + v2

)
dx

=
1
2

∫ 1

0

(v′ + v)2 dx +
1
2

∫ 1

0

(v′2 + v2) dx

≥ 1
2
‖v‖2H1 .

Therefore, a(·, ·) is coercive (take c2 = 1/2 in the definition). �	
If the above differential equation is changed to

(2.6.6) −u′′ + ku′ + u = f,

then the corresponding a(·, ·) need not be coercive for large k.

(2.6.7) Remark. If
(
H, (·, ·)

)
is a Hilbert space, V is a subspace of H, and

a(·, ·) is an inner product on V , then
(
V, a(·, ·)

)
need not be complete if

a(·, ·) is not coercive. For example, let H = H1(0, 1), V = H, a(v, w) =∫ 1

0
v w dx = (v, w)L2(0,1). Then a(·, ·) is an inner product in V , but conver-

gence in the L2 norm does not imply convergence in the H1 norm since
H1(0, 1) is dense in L2(0, 1).

2.7 The Lax-Milgram Theorem

We would like to prove the existence and uniqueness of the solution of the
(nonsymmetric) variational problem:
Find u ∈ V such that

(2.7.1) a(u, v) = F (v) ∀v ∈ V,

where V is a Hilbert space, F ∈ V ′ and a(·, ·) is a continuous, coercive
bilinear form that is not necessarily symmetric. The Lax-Milgram Theorem
guarantees both existence and uniqueness of the solution to (2.7.1). First
we need to prove the following lemma.

(2.7.2) Lemma. (Contraction Mapping Principle) Given a Banach space V
and a mapping T : V −→ V , satisfying

(2.7.3) ‖Tv1 − Tv2‖ ≤ M‖v1 − v2‖
for all v1, v2 ∈ V and fixed M , 0 ≤ M < 1, there exists a unique u ∈ V
such that

(2.7.4) u = Tu,

i.e. the contraction mapping T has a unique fixed point u.
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(2.7.5) Remark. We actually only need that V is a complete metric space
in the lemma.

Proof. First, we show uniqueness. Suppose Tv1 = v1 and Tv2 = v2. Since
T is a contraction mapping,

‖Tv1 − Tv2‖ ≤ M‖v1 − v2‖

for some 0 ≤ M < 1. But ‖Tv1 − Tv2‖ = ‖v1 − v2‖. Therefore,

‖v1 − v2‖ ≤ M‖v1 − v2‖.

This implies that ‖v1 − v2‖ = 0 (otherwise, we have 1 ≤ M). Therefore,
v1 = v2, i.e., the fixed point is unique.

Next, we show existence. Pick v0 ∈ V and define

v1 = Tv0, v2 = Tv1, . . . , vk+1 = Tvk, . . . .

Note that ‖vk+1 − vk‖ = ‖Tvk − Tvk−1‖ ≤ M‖vk − vk−1‖. Thus, by
induction,

‖vk − vk−1‖ ≤ Mk−1‖v1 − v0‖.

Therefore, for any N > n,

(2.7.6)

‖vN − vn‖ =
∥∥∥ N∑

k=n+1

vk − vk−1

∥∥∥
≤ ‖v1 − v0‖

N∑
k=n+1

Mk−1

≤ Mn

1−M
‖v1 − v0‖

=
Mn

1−M
‖Tv0 − v0‖,

which shows that {vn} is a Cauchy sequence. Since V is complete, {vn} is
convergent. Thus, if limn→∞ vn =: v, we have

v = lim
n→∞

vn+1

= lim
n→∞

Tvn

= T
(

lim
n→∞

vn

)
(because T is continuous)

= Tv;

in other words, there exists a fixed point. �	
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(2.7.7) Theorem. (Lax-Milgram) Given a Hilbert space
(
V, (·, ·)

)
, a con-

tinuous, coercive bilinear form a(·, ·) and a continuous linear functional
F ∈ V ′, there exists a unique u ∈ V such that

(2.7.8) a(u, v) = F (v) ∀v ∈ V.

Proof. For any u ∈ V , define a functional Au by Au(v) = a(u, v) ∀v ∈ V .
Au is linear since

Au(αv1 + βv2) = a(u, αv1 + βv2)
= αa(u, v1) + βa(u, v2)
= αAu(v1) + βAu(v2) ∀v1, v2 ∈ V, α, β ∈ IR.

Au is also continuous since, for all v ∈ V ,

|Au(v)| = |a(u, v)| ≤ C‖u‖ ‖v‖,

where C is the constant from the definition of continuity for a(·, ·). There-
fore,

‖Au‖V ′ = sup
v �=0

|Au(v)|
‖v‖ ≤ C‖u‖ < ∞.

Thus, Au ∈ V ′. Similarly, (see exercise 2.x.8), one can show that the map-
ping u → Au is a linear map V −→ V ′. Here we also showed that the linear
mapping A : V −→ V ′ is continuous with ‖A‖L(V,V ′) ≤ C.

Now, by the Riesz Representation Theorem, for any φ ∈ V ′ there exists
unique τφ ∈ V such that φ(v) = (τφ, v) for any v ∈ V (by Remark 2.4.6).
We must find a unique u such that

Au(v) = F (v) ∀v ∈ V.

In other words, we want to find a unique u such that

Au = F (in V ′),

or
τAu = τF (in V ),

since τ : V ′ −→ V is a one-to-one mapping. We solve this last equation
by using Lemma 2.7.2. We want to find ρ �= 0 such that the mapping
T : V −→ V is a contraction mapping, where T is defined by

(2.7.9) Tv := v − ρ
(
τAv − τF

)
∀v ∈ V.

If T is a contraction mapping, then by Lemma 2.7.2, there exists a unique
u ∈ V such that

(2.7.10) Tu = u− ρ
(
τAu− τF

)
= u,

that is, ρ
(
τAu− τF

)
= 0, or τAu = τF.
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It remains to show that such a ρ �= 0 exists. For any v1, v2 ∈ V , let
v = v1 − v2. Then

‖Tv1 − Tv2‖2 =
∥∥v1 − v2 − ρ

(
τAv1 − τAv2

)∥∥2

= ‖v − ρ(τAv)‖2 (τ,A are linear)

= ‖v‖2 − 2ρ(τAv, v) + ρ2‖τAv‖2

= ‖v‖2 − 2ρAv(v) + ρ2 Av(τAv) (definition of τ)

= ‖v‖2 − 2ρ a(v, v) + ρ2 a(v, τAv) (definition ofA)

≤ ‖v‖2 − 2ρα‖v‖2 + ρ2C‖v‖ ‖τAv‖
(coercivity and continuity ofA)

≤
(
1− 2ρα + ρ2C2

)
‖v‖2 (Abounded, τ isometric)

=
(
1− 2ρα + ρ2C2

)
‖v1 − v2‖2

= M2‖v1 − v2‖2.

Here, α is the constant in the definition of coercivity of a(·, ·). Note that
‖τAv‖ = ‖Av‖ ≤ C‖v‖ was used in the last inequality. We thus need

1− 2ρα + ρ2C2 < 1 for some ρ, i.e.,

ρ
(
ρC2 − 2α

)
< 0.

If we choose ρ ∈
(
0, 2α/C2

)
then M < 1 and the proof is complete. �	

(2.7.11) Remark. Note that ‖u‖V ≤
(
1/α

)
‖F ‖V ′ where α is the coercivity

constant (see exercise 2.x.9).

(2.7.12) Corollary. Under conditions (2.6.1), the variational problem (2.6.2)
has a unique solution.

Proof. Conditions (1) and (2) of (2.6.1) imply that
(
V, (·, ·)

)
is a Hilbert

space. Apply the Lax-Milgram Theorem. �	

(2.7.13) Corollary. Under the conditions (2.6.1), the approximation problem
(2.6.3) has a unique solution.

Proof. Since Vh is a (closed) subspace of V , (2.6.1) holds with V replaced
by Vh. Apply the previous corollary. �	

(2.7.14) Remark. Note that Vh need not be finite-dimensional for (2.6.3) to
be well-posed.
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2.8 Estimates for General Finite Element
Approximation

Let u be the solution to the variational problem (2.6.2) and uh be the
solution to the approximation problem (2.6.3). We now want to estimate
the error ‖u− uh‖V . We do so by the following theorem.

(2.8.1) Theorem. (Céa) Suppose the conditions (2.6.1) hold and that u
solves (2.6.2). For the finite element variational problem (2.6.3) we have

(2.8.2) ‖u− uh‖V ≤ C

α
min
v∈Vh

‖u− v‖V ,

where C is the continuity constant and α is the coercivity constant of a(·, ·)
on V .

Proof. Since a(u, v) = F (v) for all v ∈ V and a(uh, v) = F (v) for all v ∈ Vh

we have (by subtracting)

(2.8.3) a(u− uh, v) = 0 ∀v ∈ Vh.

For all v ∈ Vh,

α ‖u− uh‖2V ≤ a(u− uh, u− uh) (by coercivity)
= a(u− uh, u− v) + a(u− uh, v − uh)
= a(u− uh, u− v) (since v − uh ∈ Vh)
≤ C ‖u− uh‖V ‖u− v‖V . (by continuity)

Hence,

(2.8.4) ‖u− uh‖V ≤ C

α
‖u− v‖V ∀v ∈ Vh.

Therefore,

‖u− uh‖V ≤ C

α
inf

v∈Vh

‖u− v‖V

=
C

α
min
v∈Vh

‖u− v‖V . (since Vh is closed)

�	

(2.8.5) Remarks.

1. Céa’s Theorem shows that uh is quasi-optimal in the sense that
the error ‖u− uh‖V is proportional to the best it can be using the
subspace Vh.

2. In the symmetric case, we proved

‖u− uh‖E = min
v∈Vh

‖u− v‖E .
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Hence,

‖u− uh‖V ≤ 1√
α
‖u− uh‖E

=
1√
α

min
v∈Vh

‖u− v‖E

≤
√

C

α
min
v∈Vh

‖u− v‖V

≤ C

α
min
v∈Vh

‖u− v‖V ,

the result of Céa’s Theorem. This is really the remark about the
relationship between the two formulations, namely, that one can be
derived from the other.

2.9 Higher-dimensional Examples

We now show how the theory developed in the previous sections can be
applied in some multi-dimensional problems. Consider a variational form
defined by

a(u, v) =
∫

Ω

A(x)∇u(x) · ∇v(x) +
(
B(x) · ∇u(x)

)
v(x) + C(x)u(x)v(x) dx

where A, B and C are bounded, measurable functions on Ω ⊂ IRn. Of
course, B is vector valued. Formally, this variational form corresponds to
the differential operator

−∇ ·
(
A(x)∇u(x)

)
+ B(x) · ∇u(x) + C(x)u(x),

but the variational formulation is well defined even when the differential
operator makes no sense in a traditional way. Hölder’s inequality implies
that a(·, ·) is continuous on H1(Ω), with the constant c1 in Definition 2.5.2
depending only on the L∞(Ω) norms of the coefficients. However, it is more
complicated to verify coercivity.

To begin with, we consider the symmetric case, B ≡ 0. Next, suppose
there is a constant, γ > 0, such that

(2.9.1) A(x) ≥ γ & C(x) ≥ γ for a.a. x ∈ Ω.

Then a(·, ·) is coercive on all of H1(Ω), with the constant c2 in Definition
2.5.2 equal to γ. Thus, we have the following.
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(2.9.2) Theorem. If B ≡ 0 and (2.9.1) holds, then there is a unique solution,
u, to (2.5.5) with a(·, ·) as above and V = H1(Ω). Moreover, for any Vh ⊂
H1(Ω), there is a unique solution, uh, to (2.5.7) and the estimate (2.5.10)
holds for u− uh.

Note that we have not even assumed continuity of the coefficients A
and C; in fact, discontinuous coefficients occur in many important physical
models. The condition (2.9.1) of positivity for C is necessary to some degree,
since if C ≡ 0 then a(v, v) = 0 for any constant function, v.

Now consider the general case, when B is nonzero. We have, by Hölder’s
inequality and the arithmetic-geometric mean inequality (0.9.5),∣∣∣∣∫

Ω

(
B(x) · ∇u(x)

)
u(x) dx

∣∣∣∣ ≤ ‖ |B| ‖L∞(Ω) |u|H1(Ω) ‖u‖L2(Ω)

≤ ‖ |B| ‖L∞(Ω) ‖u‖
2
H1(Ω) /2.

If (2.9.1) holds and in addition

(2.9.3) ‖ |B| ‖L∞(Ω) < 2γ

then a(·, ·) is coercive on H1(Ω) and the following holds.

(2.9.4) Theorem. If (2.9.1) and (2.9.3) hold, then there is a unique solution,
u, to (2.6.2) with a(·, ·) as above and V = H1(Ω). Moreover, for any Vh ⊂
H1(Ω), there is a unique solution, uh, to (2.6.3) and the estimate (2.8.2)
holds for u− uh.

The conditions given here for coercivity are somewhat restrictive, al-
though they are appropriate in the case of Neumann boundary conditions.
More complex variational problems will be considered in Chapter 5. In
particular, it will be demonstrated that less stringent conditions are neces-
sary in the presence of Dirichlet boundary conditions in order to guarantee
coercivity.

2.x Exercises

2.x.1 Prove (2.2.5.ii).

2.x.2 If M is a subspace, prove that
(
M⊥)⊥ = M .

2.x.3 Prove parts (1) and (3) of Proposition 2.2.7.

2.x.4 Prove Theorem 2.2.8.

2.x.5 Let PM
⊥ be the operator defined in (2.3.4). Prove that PM

⊥ = PM⊥ .
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2.x.6 Prove the claim in Remark 2.5.11.

2.x.7 Prove that a contraction mapping is always continuous (cf. Lemma
2.7.2).

2.x.8 Prove that the mapping u → Au in the proof of the Lax-Milgram
Theorem 2.7.7 is a linear map V −→ V ′.

2.x.9 Prove that the solution u guaranteed by the Lax-Milgram Theorem
satisfies

‖u‖V ≤ 1
α
‖F‖V ′

(cf. Remark 2.7.11).

2.x.10 For the differential equation −u′′ + ku′ + u = f , find a value for k
such that a(v, v) = 0 but v �≡ 0 for some v ∈ H1(0, 1) (cf. (2.6.6)).

2.x.11 Let a(·, ·) be the inner product for a Hilbert space V . Prove that the
following two statements are equivalent for F ∈ V ′ and an arbitrary
(closed) subspace U of V :

a) u ∈ U satisfies a(u, v) = F (v) ∀v ∈ U
b) u minimizes 1

2a(v, v)− F (v) over v ∈ U ,
i.e. show that existence in one implies existence in the other. (Hint:
expand the expression a(u + εv, u + εv) = . . . .)

2.x.12 Let a(u, v) =
∫ 1

0
(u′ v′+u′ v+uv) dx and V = {v ∈ W 1

2 (0, 1) : v(0) =
v(1) = 0}. Prove that a(v, v) =

∫ 1

0
[(v′)2 +v2] dx for all v ∈ V (Hint:

write vv′ = 1
2 (v2)′.)

2.x.13 Let a(·, ·), V and U be as in exercise 2.x.11. For g ∈ V define
Ug = {v + g : v ∈ U} (note U0 = U). Prove that the following
statements are equivalent for arbitrary g ∈ V :
a) u ∈ Ug satisfies a(u, v) = 0 ∀ v ∈ U0

b) u minimizes a(v, v) over all v ∈ Ug .

2.x.14 Show that D(Ω) is dense in L2(Ω). (Hint: use exercise 1.x.39 to
show that D(Ω)⊥ = {0}.)

2.x.15 Let H be a Hilbert space and let v ∈ H be arbitrary. Prove that

‖v‖H = sup
0�=w∈H

(v, w)H

‖w‖H

.

(Hint: apply Schwarz’ inequality (2.1.5) and also consider w = v.)



Chapter 3

The Construction of a Finite Element Space

To approximate the solution of the variational problem,

a(u, v) = F (v) ∀ v ∈ V,

developed in Chapter 0, we need to construct finite-dimensional subspaces
S ⊂ V in a systematic, practical way.

Let us examine the space S defined in Sect. 0.4. To understand fully
the functions in the space S, we need to answer the following questions:

1. What does a function look like in a given subinterval?
2. How do we determine the function in a given subinterval?
3. How do the restrictions of a function on two neighboring intervals

match at the common boundary?

In this chapter, we will define piecewise function spaces that are similar to
S, but which are defined on more general regions. We will develop concepts
that will help us answer these questions.

3.1 The Finite Element

We follow Ciarlet’s definition of a finite element (Ciarlet 1978).

(3.1.1) Definition. Let

(i) K ⊆ IRn be a bounded closed set with nonempty interior and piece-
wise smooth boundary (the element domain),

(ii) P be a finite-dimensional space of functions on K (the space of
shape functions) and

(iii) N = {N1, N2, . . . , Nk} be a basis for P ′ (the set of nodal variables).

Then (K,P,N ) is called a finite element.

It is implicitly assumed that the nodal variables, Ni, lie in the dual
space of some larger function space, e.g., a Sobolev space.
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(3.1.2) Definition. Let (K,P,N ) be a finite element. The basis {φ1, φ2, . . .,
φk} of P dual to N (i.e., Ni(φj) = δij) is called the nodal basis of P.

(3.1.3) Example. (the 1-dimensional Lagrange element) Let K = [0, 1], P =
the set of linear polynomials and N = {N1, N2}, where N1(v) = v(0) and
N2(v) = v(1) ∀v ∈ P. Then (K,P,N ) is a finite element and the noda
basis consists of φ1(x) = 1− x and φ2(x) = x.

In general, we can let K = [a, b] and Pk = the set of all polynomials
of degree less than or equal to k. Let Nk = {N0, N1, N2, . . . , Nk}, where
Ni(v) = v(a + (b − a)i/k) ∀v ∈ Pk and i = 0, 1, . . . , k. Then (K,Pk,Nk)
is a finite element. The verification of this uses Lemma 3.1.4.

Usually, condition (iii) of Definition 3.1.1 is the only one that requires
much work, and the following simplifies its verification.

(3.1.4) Lemma. Let P be a d-dimensional vector space and let {N1, N2, . . . ,
Nd} be a subset of the dual space P ′. Then the following two statements are
equivalent.

(a) {N1, N2, . . . , Nd} is a basis for P ′.
(b) Given v ∈ P with Niv = 0 for i = 1, 2, . . . , d, then v ≡ 0.

Proof. Let {φ1, . . . , φd} be some basis for P. {N1, . . . , Nd} is a basis for P ′

iff given any L in P ′,

(3.1.5) L = α1N1 + . . . + αdNd

(because d = dimP = dimP ′). The equation (3.1.5) is equivalent to

yi := L(φi) = α1N1(φi) + . . . + αdNd(φi), i = 1, . . . , d.

Let B =
(
Nj(φi)

)
, i, j = 1, . . . , d. Thus, (a) is equivalent to Bα = y is

always solvable, which is the same as B being invertible.
Given any v ∈ P, we can write v = β1φ1 + . . . + βdφd. Niv = 0 means

that β1Ni(φ1) + . . . + βdNi(φd) = 0. Therefore, (b) is equivalent to

(3.1.6)
β1Ni(φ1) + . . . + βdNi(φd) = 0 for i = 1, . . . , d

=⇒ β1 = . . . = βd = 0.

Let C=
(
Ni(φj)

)
, i, j = 1, . . . , d. Then (b) is equivalent to Cx = 0 only

has trivial solutions, which is the same as C being invertible. But C = BT .
Therefore, (a) is equivalent to (b). �	

(3.1.7) Remark. Condition (iii) of Definition 3.1.1 is the same as (a) in
Lemma 3.1.4, which can be verified by checking (b) in Lemma 3.1.4. For
instance, in Example 3.1.3, v ∈ P1 means v = a + bx; N1(v) = N2(v) = 0
means a = 0 and a + b = 0. Hence, a = b = 0, i.e., v ≡ 0. More generally, if
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v ∈ Pk and 0 = Ni(v) = v(a + (b − a)i/k) ∀i = 0, 1, . . . , k then v vanishes
identically by the fundamental theorem of algebra. Thus, (K,Pk,Nk) is a
finite element.

We will use the following terminology in subsequent sections.

(3.1.8) Definition. We say that N determines P if ψ ∈ P with N(ψ) =
0 ∀N ∈ N implies that ψ = 0.

(3.1.9) Remark. We will often refer to the hyperplane {x : L(x) = 0}, where
L is a non-degenerate linear function, simply as L.

(3.1.10) Lemma. Let P be a polynomial of degree d ≥ 1 that vanishes on
a hyperplane L. Then we can write P = LQ, where Q is a polynomial of
degree (d− 1).

Proof. Make an affine change of coordinates such that L(x̂, xn) = xn and
the hyperplane L(x̂, xn) = 0 is the x̂-axis. Therefore, P (x̂, 0) ≡ 0. Since
degree(P ) = d, we have

P (x̂, xn) =
d∑

j=0

∑
|̂i|≤d−j

cîj x̂
îxj

n

where x̂ = (x1, . . . , xn−1) and î = (i1, . . . , in−1). Letting xn = 0, we obtain
0 ≡ P (x̂, 0) =

∑
|̂i|≤d cî0x̂

î, which implies that cî0 = 0 for |̂i| ≤ d. Therefore,

P (x̂, xn) =
d∑

j=1

∑
|̂i|≤d−j

cîj x̂
îxj

n

= xn

d∑
j=1

∑
|̂i|≤d−j

cîj x̂
îxj−1

n

= xn Q

= LQ,

where degree Q = d− 1. �	

3.2 Triangular Finite Elements

Let K be any triangle. Let Pk denote the set of all polynomials in two
variables of degree ≤ k. The following table gives the dimension of Pk.
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Table 3.1. Dimension of Pk in two dimensions

k dimPk

1 3
2 6
3 10
...

...
k 1

2 (k + 1)(k + 2)

The Lagrange Element

(3.2.1) Example. (k = 1) Let P = P1. Let N1 = {N1, N2, N3} (dimP1 = 3)
where Ni(v) = v(zi) and z1, z2, z3 are the vertices of K. This element is
depicted in Fig. 3.1.

zz

z

L

L

1 2

3

1

3

L 2

Fig. 3.1. linear Lagrange triangle Fig. 3.2. Crouzeix-Raviart noncon-
forming linear triangle

Note that “•” indicates the nodal variable evaluation at the point where
the dot is located.

We verify 3.1.1(iii) using 3.1.4(b), i.e., we prove that N1 determines
P1. Let L1, L2 and L3 be non-trivial linear functions that define the lines
on which lie the edges of the triangle. Suppose that a polynomial P ∈ P
vanishes at z1, z2 and z3. Since P |L1 is a linear function of one variable
that vanishes at two points, P = 0 on L1. By Lemma 3.1.10 we can write
P = cL1, where c is a constant. But

0 = P (z1) = cL1(z1) =⇒ c = 0

(because L1(z1) �= 0). Thus, P ≡ 0 and hence N1 determines P1. �	

(3.2.2) Remark. The above choice for N is not unique. For example, we
could have defined

Ni(v) = v(midpoint of the ith edge),
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as shown in Fig. 3.2. By connecting the midpoints, we construct a triangle
on which P ∈ P1 vanishes at the vertices. An argument similar to the one
in Example 3.2.1 shows that P ≡ 0 and hence, N1 determines P1.

(3.2.3) Example. (k = 2) Let P = P2. LetN2 = {N1, N2, . . . , N6} (dimP2 =
6) where

Ni(v) =

⎧⎨⎩ v(ith vertex), i=1,2,3;
v(midpoint of the (i− 3) edge),

(or any other point on the i− 3 edge) i=4,5,6.

This element is depicted in Fig. 3.3.

z z z

z

z

LL

L

1 2

3

4

6

z 5

12

3

Fig. 3.3. quadratic Lagrange triangle

z z z z
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z z
L
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L

1

3
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6
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9 10

L 2

Fig. 3.4. cubic Lagrange triangle

We need to check that N2 determines P2. As before, let L1, L2 and
L3 be non-trivial linear functions that define the edges of the triangle.
Suppose that the polynomial P ∈ P2 vanishes at z1, z2, . . . , z6. Since P |L1 is
a quadratic function of one variable that vanishes at three points, P = 0 on
L1. By Lemma 3.1.10 we can write P = L1 Q1 where deg Q1 = (deg P )−1 =
2 − 1 = 1. But P also vanishes on L2. Therefore, L1 Q1|L2 = 0. Hence, on
L2, either L1 = 0 or Q1 = 0. But L1 can equal zero only at one point of L2

since we have a non-degenerate triangle. Therefore, Q1 = 0 on L2, except
possibly at one point. By continuity, we have Q1 ≡ 0 on L2.

By Lemma 3.1.10, we can write Q1 = L2 Q2, where deg Q2 = (degL2)−
1 = 1−1 = 0. Hence, Q2 is a constant (say c), and we can write P = cL1 L2.
But P (z6) = 0 and z6 does not lie on either L1 or L2. Therefore,

0 = P (z6) = cL1(z6)L2(z6) =⇒ c = 0,

since L1(z6) �= 0 and L2(z6) �= 0. Thus, P ≡ 0. �	

(3.2.4) Example. (k=3) Let P = P3. Let N3 = {Ni : i = 1, 2, . . . , 10 (=
dimP3)} where

Ni(v) = v(zi), i = 1, 2, . . . , 9 (zi distinct points on edges as in Fig. 3.4)
and

N10(v) = v(any interior point).

We must show that N3 determines P3.
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Let L1, L2 and L3 be non-trivial linear functions that define the edges
of the triangle. Suppose that P ∈ P3 vanishes at zi for i = 1, 2, . . . , 10.
Applying Lemma 3.1.10 three times along with the fact that P (zi) = 0 for
i = 1, 2, . . . , 9, we can write P = cL1 L2 L3. But

0 = P (z10) = cL1(z10)L2(z10)L3(z10) =⇒ c = 0

since Li(z10) �= 0 for i = 1, 2, 3. Thus, P ≡ 0. �	

In general for k ≥ 1, we let P = Pk. For Nk =
{
Ni : i = 1, 2, . . . ,

1
2 (k + 1)(k + 2)

}
, we choose evaluation points at

3 vertex nodes,
3(k − 1) distinct edge nodes and(3.2.5)
1
2
(k − 2)(k − 1) interior points.

(The interior points are chosen, by induction, to determine Pk−3.) Note
that these choices suffice since

3 + 3(k − 1) +
1
2
(k − 2)(k − 1) = 3k +

1
2
(k2 − 3k + 2)

=
1
2
(k2 + 3k + 2)

=
1
2
(k + 1)(k + 2)

= dimPk.

The evaluation points for k = 4 and k = 5 are depicted in Fig. 3.5.

k = 4 k = 5

Fig. 3.5. quartic and quintic Lagrange triangles

To show that Nk determines Pk, we suppose that P ∈ Pk vanishes at
all the nodes. Let L1, L2 and L3 be non-trivial linear functions that define
the edges of the triangle. As before, we conclude from the vanishing of P at
the edge and vertex nodes that P = QL1 L2 L3 where degree(Q) ≤ k − 3;
Q must vanish at all the interior points, since none of the Li can be zero
there. These points were chosen precisely to determine that Q ≡ 0.
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The Hermite Element

(3.2.6) Example. (k = 3 Cubic Hermite) Let P = P3. Let “•” denote
evaluation at the point and “©” denote evaluation of the gradient at the
center of the circle. Note that the latter corresponds to two distinct nodal
variables, but the particular representation of the gradient is not unique.
We claim that N = {N1, N2, . . . , N10}, as depicted in Fig. 3.6, determines
P3 (dimP3 = 10).

z z

z

z
LL

L1 2

3

4

12

3

Fig. 3.6. cubic Hermite triangle

Let L1, L2 and L3 again be non-trivial linear functions that define the
edges of the triangle. Suppose that for a polynomial P ∈ P3, Ni(P ) = 0
for i = 1, 2, . . . , 10. Restricting P to L1, we see that z2 and z3 are double
roots of P since P (z2) = 0, P ′(z2) = 0 and P (z3) = 0, P ′(z3) = 0, where ′

denotes differentiation along the straight line L1. But the only third order
polynomial in one variable with four roots is the zero polynomial, hence
P ≡ 0 along L1. Similarly, P ≡ 0 along L2 and L3. We can, therefore, write
P = cL1 L2 L3. But

0 = P (z4) = cL1(z4)L2(z4)L3(z4) =⇒ c = 0,

because Li(z4) �= 0 for i = 1, 2, 3. �	

(3.2.7) Remark. Using directional derivatives, there are various distinct
ways to define a finite element using P3, two of which are shown in Fig. 3.7.
Note that arrows represent directional derivatives along the indicated di-
rections at the points. The “global” element to the left has the advantage
of ease of computation of directional derivatives in the x or y directions
throughout the larger region divided up into triangles. The “local” element
to the right holds the advantage in that the nodal parameters of each tri-
angle are invariant with respect to the triangle.

In the general Hermite case, we have
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Fig. 3.7. Two different sets of nodal values for cubic Hermite elements.

(3.2.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3 vertex nodes
6 directional derivatives (2 for each gradient,

evaluated at each of the 3 vertices)
3(k − 3) edge nodes
1
2
(k − 2)(k − 1) interior nodes (as in the Lagrange case).

Note that these sum to 1
2 (k + 1)(k + 2) = dimPk as in the Lagrange case.

(3.2.8) Example. (k = 4) We have (dimP4 = 15). Then N = {N1, N2, . . . ,
N15}, as depicted in Fig. 3.8, determines P4.
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Fig. 3.8. quartic Hermite triangle
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Fig. 3.9. quintic Argyris triangle

The Argyris Element

(3.2.10) Example. (k = 5) Let P = P5. Consider the 21(= dimP5) degrees
of freedom shown in Fig. 3.9. As before, let • denote evaluation at the point
and the inner circle denote evaluation of the gradient at the center. The
outer circle denotes evaluation of the three second derivatives at the center.
The arrows represent the evaluation of the normal derivatives at the three
midpoints. We claim that N = {N1, N2, . . . , N21} determines P5.

Suppose that for some P ∈ P5, Ni(P ) = 0 for i = 1, 2, . . . , 21. Let Li be
as before in the Lagrange and Hermite cases. The restriction of P to L1 is a
fifth order polynomial in one variable with triple roots at z2 and z3. Hence,
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P vanishes identically on L1. Similarly, P vanishes on L2 and L3. Therefore,
P = Q L1 L2 L3, where deg Q = 2. Observe that (∂L1∂L2P )(z3) = 0, where
∂L1 and ∂L2 are the directional derivatives along L1 and L2 respectively.
Therefore,

0 = (∂L1∂L2P )(z3) = Q(z3)L3(z3) ∂L2L1 ∂L1L2,

since ∂Li
Li ≡ 0 & Li(z3) = 0, i = 1, 2. This implies Q(z3) = 0 because

L3(z3) �= 0, ∂L2L1 �= 0 and ∂L1L2 �= 0. Similarly, Q(z1) = 0 and Q(z2) = 0.
Also, since L1(m1) = 0, ∂

∂n1
P (m1) =

(
Q ∂L1

∂n1
L2 L3

)
(m1). Therefore,

0 =
∂

∂n1
P (m1) =⇒ Q(m1) = 0

because ∂L1
∂n1

�= 0, L2(m1) �= 0 and L3(m1) �= 0. Similarly, Q(m2) = 0 and
Q(m3) = 0. So Q ≡ 0 by Example 3.2.3. �	

We leave to the reader the verification of the following generalization
of the Argyris element (exercise 3.x.12).

(3.2.11) Example. Note that dimP7 = 36. The nodal variables depicted in
Fig. 3.10 determine P7.

Fig. 3.10. seventh-degree Argyris triangle

3.3 The Interpolant
Now that we have examined a number of finite elements, we wish to piece
them together to create subspaces of Sobolev spaces. We begin by defining
the (local) interpolant.

(3.3.1) Definition. Given a finite element (K,P,N ) , let the set {φi : 1 ≤
i ≤ k} ⊆ P be the basis dual to N . If v is a function for which all Ni ∈ N ,
i = 1, . . . , k, are defined, then we define the local interpolant by

(3.3.2) IKv :=
k∑

i=1

Ni(v)φi.
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(3.3.3) Example. Let K be the triangle depicted in Fig. 3.11, P = P1,
N = {N1, N2, N3} as in Example 3.2.1, and f = exy. We want to find IKf .

(0,1)

(0,0) (1,0)

Fig. 3.11. coordinates for linear interpolant

By definition, IKf = N1(f)φ1 + N2(f)φ2 + N3(f)φ3. We must therefore
determine φ1, φ2 and φ3. The line L1 is given by y = 1 − x. We can write
φ1 = cL1 = c(1 − x − y). But N1 φ1 = 1 implies that c = φ1(z1) = 1,
hence φ1 = 1 − x − y. Similarly, φ2 = L2(x, y)/L2(z2) = x and φ3 =
L3(x, y)/L3(z3) = y. Therefore,

IKf = N1(f) (1− x− y) + N2(f)x + N3(f) y

= 1− x− y + x + y (since f = exy)
= 1.

�	Properties of the interpolant follow.

(3.3.4) Proposition. IK is linear.

Proof. See exercise 3.x.2. �	

(3.3.5) Proposition. Ni

(
IK(f)

)
= Ni(f) ∀1 ≤ i ≤ d.

Proof. We have

Ni

(
IK(f)

)
= Ni

( k∑
j=1

Nj(f)φj

) (
definition of IK(f)

)
=

k∑
j=1

Nj(f)Ni(φj)
(
linearity of Ni

)
= Ni(f)

(
{φj} dual to {Nj}

)
.

�	

(3.3.6) Remark. Proposition 3.3.5 has the interpretation that IK(f) is the
unique shape function that has the same nodal values as f .
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(3.3.7) Proposition. IK(f) = f for f ∈ P. In particular, IK is idempotent,
i.e., I2

K = IK .

Proof. From (3.3.5),

Ni(f − IK(f)) = 0 ∀i

which implies the first assertion. The second is a consequence of the first:

I2
Kf = IK(IKf) = IKf,

since IKf ∈ P. �	

We now piece together the elements.

(3.3.8) Definition. A subdivision of a domain Ω is a finite collection of
element domains {Ki} such that

(1) intKi ∩ intKj = ∅ if i �= j and
(2)

⋃
Ki = Ω.

(3.3.9) Definition. Suppose Ω is a domain with a subdivision T . Assume
each element domain, K, in the subdivision is equipped with some type of
shape functions, P, and nodal variables, N , such that (K,P,N ) forms a
finite element. Let m be the order of the highest partial derivatives involved
in the nodal variables. For f ∈ Cm(Ω), the global interpolant is defined by

(3.3.10) IT f |Ki
= IKi

f

for all Ki ∈ T .

Without further assumptions on a subdivision, no continuity proper-
ties can be asserted for the global interpolant. We now describe conditions
that yield such continuity. Only the two-dimensional case using triangular
elements is considered in detail here; analogous definitions and results can
be formulated for higher dimensions and other subdivisions.

(3.3.11) Definition. A triangulation of a polygonal domain Ω is a subdivision
consisting of triangles having the property that

(3) no vertex of any triangle lies in the interior of an edge of another
triangle.

(3.3.12) Example. The figure on the left of Fig. 3.12 shows a triangulation
of the given domain. The figure on the right is not a triangulation.
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Fig. 3.12. Two subdivisions: the one on the left is a triangulation and the one
on the right is not.

(3.3.13) Example. Let Ω be the square depicted in Fig. 3.13. The triangu-
lation T consists of the two triangles T1 and T2, as indicated. The finite
element on each triangle is the Lagrange element in Example 3.2.1. The
dual basis on T1 is {1 − x − y, x, y} (calculated in Example 3.3.3) and
the dual basis on T2 is (cf. exercise 3.x.3) {1 − x, 1 − y, x + y − 1}. Let
f = sin

(
π(x + y)/2

)
. Then

IT f =
{

x + y on T1

2− x− y on T2.

(3.3.14) Remark. For approximating the Dirichlet problem with zero bound-
ary conditions, we use a finite-dimensional space of piecewise polynomial
functions satisfying the boundary conditions given by

VT = {IT f : f ∈ Cm(Ω), f |∂Ω = 0}
on each triangulation T . This will be discussed further in Chapter 5.

(3.3.15) Definition. We say that an interpolant has continuity order r (in
short, that it is “Cr”) if IT f ∈ Cr for all f ∈ Cm(Ω). The space, VT =
{IT f : f ∈ Cm}, is said to be a “Cr” finite element space.

(3.3.16) Remark. A finite element (or collection of elements) that can be
used to form a Cr space as above is often called a “Cr element.” Not all
choices of nodes will always lead to Cr continuity, however. Some sort of
regularity must be imposed. For the elements studied so far, the essential
point is that they be placed in a coordinate-free way that is symmetric with
respect to the midpoint of the edge.

(0,1)

(0,0) (1,0)

(1,1)

T

T

1

2

Fig. 3.13. simple triangulation consisting of two triangles
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(3.3.17) Proposition. The Lagrange and Hermite elements are both C0 ele-
ments, and the Argyris element is C1. More precisely, given a triangulation,
T , of Ω, it is possible to choose edge nodes for the corresponding elements
(K,P,N ) , K ∈ T , such that the global interpolant satisfies IT f ∈ Cr

(r = 0 for Lagrange and Hermite, and r = 1 for Argyris) for f ∈ Cm

(m = 0 for Lagrange, m = 1 for Hermite and m = 2 for Argyris). In
particular, it is sufficient for each edge xx′ to have nodes ξi(x′ − x) + x,
where {ξi : i = 1, . . . , k − 1− 2m} is fixed and symmetric around ξ = 1/2.
Moreover, under these hypotheses, IT f ∈ W r+1

∞ .

Proof. It is sufficient to show that the stated continuity holds across each
edge. Let Ti, i = 1, 2, denote two triangles sharing an edge, e. Since we as-
sumed that the edge nodes were chosen symmetrically and in a coordinate-
free way, we know that the edge nodes on e for the elements on both T1

and T2 are at the same location in space. Let w := IT1f − IT2f , where we
view both polynomials, ITi

f to be defined everywhere by extension outside
Ti as polynomials. Then w is a polynomial of degree k and its restriction to
the edge e has one-dimensional Lagrange, Hermite or Argyris nodes equal
to zero. Thus, w|e must vanish. Hence, the interpolant is continuous across
each edge.

Lipschitz continuity of IT f follows by showing that it has weak deriva-
tives of order r + 1 given by(

Dα
(w)IT f

)
|T = DαIT f ∀T ∈ T , |α| ≤ r + 1.

The latter is certainly in L∞. The verification that this is the weak deriva-
tive follows from∫

Ω

(Dαφ) (IT f) dx =
∑
T∈T

∫
T

(Dαφ) (IT f) dx

=
∑
T∈T

(−1)|α|
∫

T

φ (DαIT f) dx

=(−1)|α|
∫

Ω

φ
∑
T∈T

χT (DαIT f) dx,

where χT denotes the characteristic function of T . The second equality
holds because all boundary terms cancel due to the continuity properties
of the interpolant. �	

3.4 Equivalence of Elements

In the application of the global interpolant, it is essential that we find a
uniform bound (independent of T ∈ T ) for the norm of the local interpo-
lation operator IT . Therefore, we want to compare the local interpolation



82 Chapter 3. The Construction of a Finite Element Space

operators on different elements. The following notions of equivalence are
useful for this purpose (cf. Ciarlet & Raviart 1972a).

(3.4.1) Definition. Let (K,P,N ) be a finite element and let F (x) = Ax+b
(A nonsingular) be an affine map. The finite element (K̂, P̂, N̂ ) is affine
equivalent to (K,P,N ) if

(i) F (K) = K̂
(ii) F ∗P̂ = P and

(iii) F∗N = N̂ .

We write (K,P,N ) 	
F (K̂, P̂, N̂ ) if they are affine equivalent.

(3.4.2) Remark. Recall that the pull-back F ∗ is defined by F ∗(f̂) := f̂ ◦ F

and the push-forward F∗ is defined by (F∗N)(f̂) := N
(
F ∗(f̂)

)
.

(3.4.3) Proposition. Affine equivalence is an equivalence relation.

Proof. See exercise 3.x.4. �	

(3.4.4) Examples.

(i) Let K be any triangle, P = P1, N = {evaluation at vertices of K}.
All such elements (K,P,N ) are affine equivalent.

(ii) Let K be any triangle, P = P2, N = {evaluation at vertices and
edge midpoints}. All such elements are affine equivalent.

(iii) Let P = P2. In Fig. 3.14, (T1,P,N1) and (T2,P,N2) are not affine
equivalent, but the finite elements (T1,P,N1) and (T3,P,N3) are
affine equivalent.

Fig. 3.14. inequivalent quadratic elements: noda placement incompatibility

(iv) Let P = P3. The elements (T1,P,N1) and (T2,P,N2) depicted in
Fig. 3.15 are not affine equivalent since the directional derivatives
differ.

(v) Let P = P3. Then the elements (T1,P,N1) and (T2,P,N2) depicted
in Fig. 3.16 are not affine equivalent since the strength of the direc-
tional derivatives (indicated by the length of the arrows) differ.

(3.4.5) Proposition. There exist nodal placements such that all Lagrange
elements of a given degree are affine equivalent.
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Fig. 3.15. inequivalent cubic Hermite elements: direction incompatibility

Fig. 3.16. inequivalent cubic Hermite elements: derivative strength incompati-
bility

Proof. We pick nodes using barycentric coordinates, (b1, b2, b3), for each
triangle. The i-th barycentric coordinate of a point (x, y) can be defined
simply as the value of the i-th linear Lagrange basis function at that point
(bi(x, y) := φi(x, y)). Thus, each barycentric coordinate is naturally as-
sociated with a given vertex; it is equal to the proportional distance of
the point from the opposite edge. Note that the barycentric coordinates
sum to one (since this yields the interpolant of the constant, 1). Thus,
the mapping (x, y) → b(x, y) maps the triangle (invertibly) to a subset of{
b ∈ [0, 1]3 : b1 + b2 + b3 = 1

}
.

For degree k Lagrange elements, pick nodes at the points whose
barycentric coordinates are(

i

k
,
j

k
,

l

k

)
where 0 ≤ i, j, l ≤ k and i + j + l = k.

�	

(3.4.6) Definition. The finite elements (K,P,N ) and (K,P, Ñ ) are inter-
polation equivalent if

IN f = IÑ f ∀f sufficiently smooth,

where IN (resp. IÑ ) is defined by the right-hand side of (3.3.2) with Ni ∈ N
(resp. Ni ∈ Ñ ). We write (K,P,N ) 	

I (K,P, Ñ ).
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(3.4.7) Proposition. Suppose (K,P,N ) and (K,P, Ñ ) are finite elements.
Every nodal variable in N is a linear combination of nodal variables in Ñ
(when viewed as a subset of Cm(K)′) if and only if (K,P,N )	I (K,P, Ñ ).

Proof. (only if ) We must show that IN f = IÑ f ∀f ∈ Cm(K). For Ni ∈
N , we can write Ni =

∑k
j=1 cjÑj since every nodal variable in N is a linear

combination of nodal variables in Ñ . Therefore,

Ni(IÑ f) =

(
k∑

j=1

cj Ñj

)
(IÑ f)

=
k∑

j=1

cj Ñj(IÑ f)

=
k∑

j=1

cj Ñj(f)

= Ni(f).

The converse is left to the reader in exercise 3.x.26. �	

(3.4.8) Example. The Hermite elements in Fig. 3.7 (and 3.15–16) are inter-
polation equivalent (exercise 3.x.29).

(3.4.9) Definition. If (K,P,N ) is a finite element that is affine equivalent
to (K̂, P̂, N̂ ) and (K̂, P̂, N̂ ) is interpolation equivalent to (K̃, P̃, Ñ ), then
we say that (K,P,N ) is affine-interpolation equivalent to (K̃, P̃, Ñ ).

(3.4.10) Example.

(i) All affine equivalent elements (e.g., Lagrange elements with appro-
priate choices for the edge and interior nodes as described in Propo-
sition 3.4.5) are affine-interpolation equivalent.

(ii) The Hermite elements with appropriate choices for the edge and
interior nodes are affine-interpolation equivalent.

(iii) The Argyris elements are not affine-interpolation equivalent (Ciarlet
1978).

The following is an immediate consequence of the definitions.

(3.4.11) Proposition. If (K,P,N ) is affine-interpolation equivalent to
(K̃, P̃, Ñ ) then I ◦ F ∗ = F ∗ ◦ Ĩ where F is the affine mapping K → K̃.
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3.5 Rectangular Elements

In this section we consider finite elements defined on rectangles. Let Qk =
{∑j cj pj(x) qj(y) : pj , qj polynomials of degree ≤ k}. One can show that

(3.5.1) dimQk = (dimP1
k)2,

where P1
k denotes the space of polynomials of degree less than or equal to

k in one variable (cf. exercise 3.x.6).

Tensor Product Elements

(3.5.2) Example. (k = 1) Let K be any rectangle, P = Q1, and N as
depicted in Fig. 3.17.

Suppose that the polynomial P ∈ Q1 vanishes at z1, z2, z3 and z4. The
restriction of P to any side of the rectangle is a first-order polynomial of
one variable. Therefore, we can write P = cL1L2 for some constant c. But

0 = P (z4) = cL1(z4)L2(z4) =⇒ c = 0,

since L1(z4) �= 0 and L2(z4) �= 0. Thus, P ≡ 0. �	

(3.5.3) Example. (k = 2) Let K be any rectangle, P = Q2, and N as
depicted in Fig. 3.18. Suppose that a polynomial P ∈ Q2 vanishes at zi, for
i = 1, . . . , 9. Then we can write P = cL1L2L3L4 for some constant c. But

0 = P (z9) = cL1(z9)L2(z9)L3(z9)L4(z9) =⇒ c = 0,

since Li(z9) �= 0 for i = 1, 2, 3, 4. �	
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Fig. 3.17. bilinear Lagrange rectan-
gle
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Fig. 3.18. biquadratic Lagrange rect-
angle

(3.5.4) Example. (arbitrary k) Let K be any rectangle, P = Qk, and
N denote point evaluations at {(ti, tj) : i, j = 0, 1, . . . k} where {0 = t0 <
t1 < . . . < tk = 1}. (The case k = 3 is depicted in Fig. 3.19.) Then
(K,P,N ) is a finite element (cf. exercise 3.x.7).
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Fig. 3.19. bicubic Lagrange rectangle
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Fig. 3.20. notation for Lemma 3.5.6

The Serendipity Element

(3.5.5) Example. (Quadratic Case) To define the shape functions for this
case, we need the following lemma (see Fig. 3.20 for the notation).

(3.5.6) Lemma. There exist constants c1, . . . , c8 such that

φ(z9) =
8∑

i=1

ci φ(zi) for φ ∈ P2.

Proof. Note that evaluation at z1, . . . , z6 forms a nodal basis for P2. Let
{φ1, . . . , φ6} be the dual basis of P2, i.e., Niφj = δij for i, j = 1, . . . , 6. If
φ ∈ P2, then

φ = N1(φ)φ1 + N2(φ)φ2 + . . . + N6(φ)φ6.

Therefore,

φ(z9) = φ(z1)φ1(z9) + φ(z2)φ2(z9) + . . . + φ(z6)φ6(z9)
= c1 φ(z1) + c2 φ(z2) + . . . + c8 φ(z8)

(let c7 = c8 = 0). �	

Let K be any rectangle, P = {φ ∈ Q2 :
∑8

i=1 ci φ(zi) − φ(z9) = 0},
and N as depicted in Fig. 3.21. Then (K,P,N ) is a finite element because
if φ ∈ P vanishes at z1, . . . , z8 we can write φ = cL1L2L3L4 for some
constant c. But

0 =
8∑

i=1

ci φ(zi) = φ(z9) =⇒ c = 0

(since Li(z9) �= 0, i = 1, . . . , 4). Therefore, φ ≡ 0. �	
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Fig. 3.22. cubic serendipity element

(3.5.7) Example. (Cubic Case) Let K be any rectangle. There exist con-
stants ci

j such that for φ ∈ P3, φ(wi) =
∑12

j=1 ci
j φ(zj) i = 1, 2, 3, 4

(for wi and zj as depicted in Fig. 3.22), then let P = {φ ∈ Q3 :
φ(wi) −

∑12
j=1 ci

j φ(zj) = 0 for i = 1, 2, 3, 4} and N as depicted. Then
(K,P,N ) is a finite element (cf. exercise 3.x.8).

(3.5.8) Remark. The notion of a Cr rectangular element can be defined
similarly to Definition 3.3.15. Following the proof of Proposition 3.3.17, we
can see that all the rectangular elements defined in this section are C0. An
example of a C1 rectangular element is in exercise 3.x.16.

(3.5.9) Remark. The space, P, of shape functions for serendipity elements
is not uniquely defined by the choice of nodal variables. Another way to
choose them is described in Sect. 4.6.

3.6 Higher-dimensional Elements

Higher-dimensional elements can be constructed inductively just the way we
constructed two-dimensional elements using properties of one-dimensional
elements as building blocks. As an illustration, we describe tetrahedral ele-
ments in three dimensions. The Lagrange elements can be defined as before,
inductively in the degree, k, as follows.

We pick nodal variables at the vertices (of which there are four), at k−1
points on the interior of each edge (there are six edges) and at (k−2)(k−1)/2
points in the interior of each face (again four of these). The face points,
which exist only for k ≥ 3, should be chosen so as to determine polynomials
in two variables (in the plane of the face) of degree k − 3. For k ≥ 4,
we also pick points in the interior of the tetrahedron so as to determine
polynomials in three variables of degree k − 4. The existence of the latter
will be demonstrated by induction on k, as in the two-dimensional case.

Suppose these nodal values vanish for v ∈ Pk. The restriction of v
to each face, Fi, of the tetrahedron is a polynomial in two variables (the
coordinates for the plane of Fi), and the nodal variables have been chosen
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to determine this restriction. Thus, v|Fi
is identically zero. Let Li denote a

nontrivial linear function vanishing on Fi. By applying (3.1.10) four times,

v = L1L2L3L4R

where the remainder is a polynomial of degree k− 4. For k ≤ 3 this implies
that R = 0, so that v = 0. In the general case, we use the interior nodes to
determine that R = 0. It simply remains to count the number of nodes and
check that it equals dimPk.

We have enumerated

(3.6.1) C(k) := 4 + 6(k − 1) + 2(k − 2)(k − 1) + dimPk−4

nodes above. The dimension of Pk can be computed as follows. We can de-
compose an arbitrary polynomial, P , of degree k in three variables uniquely
as

(3.6.2) P (x, y, z) = p(x, y) + zq(x, y, z)

where the degree of p is k and the degree of q is k− 1. Simply let p(x, y) :=
P (x, y, 0) and apply (3.1.10) to P − p with L(x, y, z) = z. Therefore,

(3.6.3) dimPk = (k + 1)(k + 2)/2 + dimPk−1 =
k∑

j=0

(j + 1)(j + 2)/2,

where the second equality follows from the first by induction. The first few
of these are given in the following table, and it is easily checked that they
agree with (3.6.1).

Table 3.2. dimension of polynomials of degree k, Pk, in three dimensions

k dim Pk

1 4
2 10
3 20
4 35

Since (3.6.3) implies dimPk is a cubic polynomial in k (with leading
coefficient 1/6), we conclude that C(k) is also a cubic polynomial in k. Since
these cubics agree for k = 1, 2, 3, 4, they must be identical.

The above arguments also show that the nodes can be arranged so as
to insure that the Lagrange elements are C0. As in the proof of Proposition
3.3.17, it suffices to see that the restrictions of the global interpolant to
neighboring tetrahedra agree on the common face. This is possible because
of our choice of facial nodes to determine polynomials in two variables
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on that face. One must again choose the facial nodes in a symmetric and
coordinate free way. In particular, it is sufficient to let the nodes be located
at points whose barycentric coordinates (see (3.4.5)) B on each face satisfy

(b1, b2, b3) ∈ B =⇒ (bσ(1), bσ(2), bσ(3)) ∈ B

for any permutation σ of the indices.

(3.6.4) Remark. The notion of a Cr tetrahedral element can be defined
similarly to Definition 3.3.15. Following the proof of Proposition 3.3.17, we
see that the tetrahedral elements defined in this section are all C0.

3.7 Exotic Elements

All the elements (K,P,N ) studied so far have shape functions consisting of
polynomials. However, this is not at all necessary. We consider some of the
possibilities briefly here. We restrict our discussion to the class of macro-
finite-elements, for which the shape functions, P, are themselves piecewise
polynomials. Other types of shape functions have been proposed, e.g., ra-
tional functions (Wachspress 1975).

Let K denote a triangle, and let it be divided into four subtriangles
by connecting edge midpoints as shown in Fig. 3.23. Define P to be the
set of continuous piecewise linear functions on this subtriangulation. If N
consists of point-evaluations at the vertices and edge midpoints of K, we
clearly have a well defined C0 finite element.

A more complex element is that of Clough and Tocher (Ciarlet 1978).
Let K denote a triangle, and let it be divided into three subtriangles as
shown in Fig. 3.24. Let P be the set of C1 piecewise cubic functions on
this subtriangulation. Let N consist of point- and gradient-evaluations at
the vertices and normal-derivative-evaluations at the edge midpoints of K.
Then (K,P,N ) is a well defined, C1 finite element (Ciarlet 1978).

Fig. 3.23. macro-piecewise-linear tri-
angle

Fig. 3.24. Clough-Tocher C1 macro-
piecewise-cubic triangle
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3.x Exercises
3.x.1 Let m and k be nonnegative integers, and let P be a polynomial

in one variable of degree 2m + k + 1. Suppose that P (j)(a) = 0
for a = 0, 1 and j = 0, . . . , m, and further that P (ξj) = 0 for
0 < ξ1 < . . . < ξk < 1. Prove that P ≡ 0.

3.x.2 Prove that the local interpolant is linear (cf. Proposition 3.3.4).

3.x.3 Find the dual basis for triangle T2 in Example 3.3.13.

3.x.4 Show that affine equivalence is an equivalence relation (cf. Proposi-
tion 3.4.3).

3.x.5 Show that interpolation equivalence is an equivalence relation.

3.x.6 Show that dim Qk = (dim P1
k)2, where P1

k = {polynomials in one
variable of degree less than or equal to k} and {xiyj : i, j = 0, . . . , k}
is a basis of Qk.

3.x.7 Prove that (K,P,N ) in Example 3.5.4 is a finite element.

3.x.8 Prove that (K,P,N ) in Example 3.5.7 is a finite element.

3.x.9 Construct nodal basis functions for K = the rectangle with vertices
(−1, 0), (1, 0), (1, 1) and (−1, 1), P = Q1, and N = evaluation at
the vertices.

3.x.10 Construct nodal basis functions for K = the triangle with vertices
(0, 0), (1, 0) and (0, 1), P = P2, and N = evaluation at the vertices
and at the midpoints of the edges.

3.x.11 Prove that the set of nodal variables

Σn = {P (a), P ′(a), P (3)(a), . . . , P (2n−1)(a) : a = 0, 1}
determine unique polynomials (in one variable) of degree 2n + 1.
(For n = 1, this is just Hermite interpolation, as in exercise 3.x.1.)

3.x.12 Show that the nodal variables for the Argyris element described
in Example 3.2.11 determine P7. Give a general description of the
Argyris element for arbitrary degree k ≥ 5.

3.x.13 Show that if P = Q1, then the nodal variables depicted in Fig. 3.25
do not determine P.

Fig. 3.25. a non-element
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3.x.14 Nonconforming piecewise linear element Show that the edge mid-
points in a triangulation can be used to parametrize the space of
piecewise linear functions (in general discontinuous) that are contin-
uous at each edge midpoint. Can you generalize this to quadratics
(i.e., find a nodal basis for piecewise quadratics that are continuous
at two points on each edge)?

3.x.15 Rotated nonconforming bilinear element Let K be the square
[−1, 1] × [−1, 1], P be the space of shape functions spanned by 1,
x, y and x2 − y2, and N consist of the evaluations of the shape
functions at the four midpoints (cf. Fig. 3.25). Show that (K,P,N )
is a finite element. Let aj(v) = (1/|ej |)

∫
ej

v ds be the mean value
of the function v on the edge ej of K, and N∗ = {a1, . . . , a4}. Show
that (K,P,N∗) is also a finite element. Are these two elements in-
terpolant equivalent?

3.x.16 Bicubic Hermite (Bogner-Fox-Schmit) element Prove that a tensor
product cubic in two variables is uniquely determined by

Σ = {P (ai),
∂P

∂x1
(ai),

∂P

∂x2
(ai),

∂2P

∂x1∂x2
(ai) : i = 1, . . . , 4}

where ai are the rectangle vertices. Will this generate a C1 piecewise
cubic on a rectangular subdivision?

3.x.17 Let I be the interpolation operator associated with continuous,
piecewise linears on triangles, i.e., Iu = u at vertices. Prove that
‖I‖C0→C0 = 1, i.e., for any continuous function u, ‖Iu‖L∞ ≤
‖u‖L∞ . (Hint: where does the maximum of |Iu| occur on a triangle?)
Is this true for piecewise quadratics?

3.x.18 Let “� ” denote the second derivative that is the concatenation of
the directional derivatives in the two directions indicated by the
line segments. Show that P4 is determined by (i) the value, gradient
and “� ” second derivative at each vertex (the directions used for
“� ” at each vertex are given by the edges meeting there, as shown
in Fig. 3.26) and (ii) the value at each edge midpoint.

Fig. 3.26. a quartic finite element

3.x.19 Suppose that the nodes for the Lagrange element are chosen at
the barycentric lattice points introduced in the proof of Proposition
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3.4.5. Show that the corresponding nodal basis functions for Pk can
be written as a product of k linear functions. (Hint: for each node
determine k lines that contain all other nodes.)

3.x.20 Generalize Proposition 3.4.5 and exercise 3.x.19 to three dimensions.

3.x.21 Generalize 3.4.5 and exercise 3.x.19 to n dimensions.

3.x.22 Prove that no analog of the serendipity element exists for biquar-
tic polynomials. (Hint: show that one can not remove all interior
points.)

3.x.23 Show that the decomposition (3.6.2) is unique.

3.x.24 Develop three-dimensional Hermite and Argyris elements. Are the
latter C1?

3.x.25 Develop four-dimensional Lagrange elements.

3.x.26 Prove the “if” part of Proposition 3.4.7.

3.x.27 Show that the Hermite element is not C1.

3.x.28 Can the derivative nodes for the Hermite elements be chosen to give
an affine-equivalent family for arbitrary triangles?

3.x.29 Use (3.4.7) to prove (3.4.8).

3.x.30 Let Pn
k denote the space of polynomials of degree k in n variables.

Prove that dimPn
k =

(
n + k

k

)
, where the latter is the binomial

coefficient. (Hint: show that (3.6.2) holds in n-dimensions and use
this to prove that the numbers dimPn

k form Pascal’s triangle.)

3.x.31 Develop three-dimensional tensor-product and serendipity elements.

3.x.32 Give conditions on rectangular subdivisions that allow the tensor-
product elements to be C0.

3.x.33 Give conditions on rectangular subdivisions that allow the bicubic
Hermite elements to be C1 (see exercise 3.x.16). Are the conditions
the same as in exercise 3.x.32?

3.x.34 What conditions on simplicial subdivisions allow three-dimensional
Lagrange elements to be C0?

3.x.35 Let T be a triangle with vertices pk (1 ≤ k ≤ 3) and λj ∈ P1 satisfy
λj(pk) = δjk for 1 ≤ j ≤ 3. Show that

1
2|T |

∫
T

λ�
1λ

m
2 λn

3 dx =
(�!)(m!)(n!)

(� + m + n + 2)!

where �, m and n are nonnegative integers. What is the correspond-
ing formula for a tetrahedron?



Chapter 4

Polynomial Approximation Theory in
Sobolev Spaces

We will now develop the approximation theory appropriate for the finite
elements developed in Chapter 3. We take a constructive approach, defining
an averaged version of the Taylor polynomial familiar from calculus. The
key estimates are provided by some simple lemmas from the theory of Riesz
potentials, which we derive. As a corollary, we provide a proof of Sobolev’s
inequality, much in the spirit given originally by Sobolev.

Initially, we derive estimates appropriate on individual element do-
mains. Later, we show how these can be combined to provide error estimates
for interpolants that are globally defined on a collection of element domains
that subdivide a larger domain. This will concentrate primarily on the case
of polyhedral domains, but generalizations to “isoparametric” elements are
presented in the last section. These elements are extremely convenient and
effective for approximating problems on domains with curved boundaries.

4.1 Averaged Taylor Polynomials

We turn our attention to finding a polynomial approximation of order m for
a function in a Sobolev space. Let B = {x ∈ IRn : |x−x0| < ρ}. A function
φ ∈ C∞

0 (IRn) with the properties (i) supp φ = B and (ii)
∫
IRn φ(x) dx = 1

will be called a cut-off function. For example, let

ψ(x) =
{

e−(1−(|x−x0|/ρ)2)−1

if |x− x0| < ρ
0 if |x− x0| ≥ ρ.

Let c =
∫
IRn ψ(x) dx (c > 0), then φ(x) =

(
1/c

)
ψ(x) satisfies (i) and (ii),

and max |φ| ≤ constant · ρ−n.
Let us assume that u ∈ Cm−1(IRn).

(4.1.1) Definition. The Taylor polynomial of order m evaluated at y is given
by

(4.1.2) Tm
y u(x) =

∑
|α|<m

1
α!

Dαu(y)(x− y)α,
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where α = (α1, α2, . . . , αn) is an n-tuple of nonnegative integers, x ∈ IRn,
xα =

∏n
i=1 xαi

i , α! =
∏n

i=1 αi! and |α| = ∑n
i=1 αi.

In general, if u is in a Sobolev space, Dαu may not exist in the usual
(pointwise) sense. How do we then define a Taylor polynomial for such a
function? We accomplish this by taking an “average” of Tm

y u(x) over y, as
given in the following definition.

(4.1.3) Definition. Suppose u has weak derivatives of order strictly less than
m in a region Ω such that B ⊂⊂ Ω. The corresponding Taylor polynomial
of order m of u averaged over B is defined as

(4.1.4) Qmu(x) =
∫

B

Tm
y u(x)φ(y) dy,

where Tm
y u(x) is defined as in (4.1.2), B is the ball centered at x0 with

radius ρ and φ is the cut-off function supported in B.

Note that (4.1.4) does indeed make sense for u ∈ Wm−1
p (Ω) since a

typical term takes the form

(4.1.5)
∫

B

1
α!

Dαu(y)(x− y)αφ(y) dy,

which exists because Dαu is in L1
loc(Ω). If we write

(4.1.6) (x− y)α =
n∏

i=1

(
xi − yi

)αi =
∑

γ+β=α

a(γ,β)x
γyβ ,

where γ = (γ1, γ2, . . . , γn) and β = (β1, β2, . . . , βn) are n-tuples of nonneg-
ative integers and a(γ,β) are constants, we find that (4.1.5) may be written
as

(4.1.7)
∑

γ+β=α

1
α!

a(γ,β)x
γ

∫
B

Dαu(y)yβφ(y) dy.

Therefore,

(4.1.8) Qmu(x) =
∑

|α|<m

∑
γ+β=α

1
α!

a(γ,β)x
γ

∫
B

Dαu(y)yβφ(y) dy.

Thus, the next proposition follows directly.

(4.1.9) Proposition. Qmu is a polynomial of degree less than m in x.

In fact, Qmu can be defined for functions in L1(B). We only need to
rewrite (4.1.8) by integrating by parts:



4.1 Averaged Taylor Polynomials 95

(4.1.10)

Qmu(x) =∑
|α|<m

∑
γ+β=α

(−1)|α|

α!
a(γ,β)x

γ

∫
B

u(y)Dα
(
yβφ(y)

)
dy.

(4.1.11) Remark. Note that if u has weak derivatives of all orders less than
m in Ω, then (4.1.8) is equivalent to (4.1.10) by using the definition of weak
derivative (1.2.4).

(4.1.12) Proposition. Qmu is defined for all u ∈ L1(B) and

(4.1.13) Qmu(x) =
∑

|λ|<m

xλ

∫
B

ψλ(y)u(y) dy,

where ψλ ∈ C∞
0 (IRn) and supp ψλ ⊂ B.

Proof. This follows from (4.1.10) if we define

(4.1.14) ψλ(y) =
∑

λ≤α,|α|<m

(−1)|α|

α!
a(λ,α−λ)D

α
(
yα−λφ(y)

)
. �	

(4.1.15) Corollary. If Ω is a bounded domain in IRn, then for any k

(4.1.16) ‖Qmu‖W k
∞(Ω) ≤ Cm,n,ρ,Ω‖u‖L1(B).

Proof. This follows directly from equality (4.1.13) and the fact that both
supy∈B |ψλ(y)| and supx∈Ω |Dαxλ| are bounded. �	

As a result of Corollary 4.1.15, we note that Qm is a bounded map of
L1 into W k

∞.

(4.1.17) Proposition. For any α such that |α| ≤ m− 1,

(4.1.18) DαQmu = Qm−|α|Dαu for all u ∈ W
|α|
1 (B).

Proof. If u ∈ C∞(Ω), then

Dα
x Qmu(x) =

∫
B

Dα
x Tm

y u(x)φ(y) dy

=
∫

B

Tm−|α|
y Dα

x u(x)φ(y) dy (exercise 4.x.1)

= Qm−|α|Dαu(x).

The proof of the proposition is completed via a density argument. �	
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(4.1.19) Remark. The polynomial Qm could be called a Sobolev polynomial,
as the construction of a similar polynomial was given and used by Sobolev
(Sobolev 1963 & 1991) in the study of the spaces that bear his name. Such a
polynomial is not unique, due to the choice of cut-off function φ. Moreover,
the actual construction in (Sobolev 1963 & 1991) apparently does not satisfy
(4.1.18), an identity that leads to certain simplifications later.

4.2 Error Representation

We need the following form of Taylor’s Theorem (cf. exercise 4.x.2). For
f ∈ Cm

(
[0, 1]

)
, we have

(4.2.1) f(1) =
m−1∑
k=0

1
k!

f (k)(0) + m

∫ 1

0

1
m!

sm−1f (m)(1− s) ds.

(4.2.2) Definition. Ω is star-shaped with respect to B if, for all x ∈ Ω, the
closed convex hull of {x} ∪B is a subset of Ω.

(4.2.3) Example. Fig. 4.1 is star-shaped with respect to ball B, but not with
respect to ball B′. Fig. 4.2 is an example of a domain that is not star-shaped
with respect to any ball.

B

B’

Fig. 4.1. domain star-shaped with re-
spect to B but not B′ Fig. 4.2. domain which is not star-

shaped with respect to any ball

From now on, we assume that Ω is star-shaped with respect to B. Let u
be a Cm function on Ω. For x ∈ Ω and y ∈ B, define f(s) = u

(
y+s(x−y)

)
.

Then, by using the chain rule, we obtain

(4.2.4)
1
k!

f (k)(s) =
∑
|α|=k

1
α!

Dαu
(
y + s(x− y)

)
(x− y)α.
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Combining (4.2.1) and (4.2.4), we obtain

(4.2.5)

u(x) =
∑

|α|<m

1
α!

Dαu(y)(x− y)α

+
∑

|α|=m

(x− y)α

∫ 1

0

m

α!
sm−1Dαu

(
x + s(y − x)

)
ds

= Tm
y u(x) + m

∑
|α|=m

(x− y)α

∫ 1

0

1
α!

sm−1Dαu
(
x + s(y − x)

)
ds.

(4.2.6) Definition. The mth-order remainder term is given by

Rmu(x) = u(x)−Qmu(x).

Using Definition 4.2.6, part (ii) of the definition of a cut-off function,
(4.1.4) and (4.2.5) we obtain

(4.2.7)

Rmu(x) =
∫

B

u(x)φ(y)dy −
∫

B

Tm
y u(x)φ(y) dy

=
∫

B

[
u(x)− Tm

y u(x)
]
φ(y) dy

=
∫

B

φ(y)m

( ∑
|α|=m

(x− y)α

×
∫ 1

0

sm−1

α!
Dαu

(
x + s(y − x)

)
ds

)
dy.

Let Cx denote the convex hull of {x} ∪B.

(4.2.8) Proposition. The remainder Rmu := u−Qmu satisfies

(4.2.9) Rmu(x) = m
∑

|α|=m

∫
Cx

kα(x, z)Dαu(z) dz,

where z = x + s(y − x), kα(x, z) =
(
1/α!

)
(x− z)αk(x, z) and

(4.2.10) |k(x, z)| ≤ C

(
1 +

1
ρ
|x− x0|

)n

|z − x|−n.

Proof. We first make a change of variables from the (y, s)-space to the
(z, s)-space, where

(4.2.11) z = x + s(y − x).
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By the change of variable formula,

(4.2.12) ds dy = s−nds dz.

The domain of integration in the (y, s)-space is B × (0, 1] and the corre-
sponding domain in the (z, s)-space is the set

A = {(z, s) : s ∈ (0, 1], |(1/s)(z − x) + x− x0| < ρ}.

Note that

(4.2.13) (z, s) ∈ A implies that
|z − x|

|x− x0|+ ρ
< s.

Also,

(4.2.14) (x− y)α = s−m(x− z)α if |α| = m.

Letting χA be the characteristic function of A, from (4.2.7) and (4.2.14) we
obtain

(4.2.15)
Rmu(x) =

∑
|α|=m

∫∫
χA(z, s)φ

(
x +

(z − x)
s

)
× m

α!
s−n−1(x− z)αDαu(z) ds dz.

The projection of A onto the z-space is Cx. Therefore, by Fubini’s Theorem,

Rmu(x) = m
∑

|α|=m

∫
Cx

1
α!

Dαu(z)(x− z)α

×
[∫ 1

0

φ
(
x + (1/s)(z − x)

)
χA(z, s)s−n−1 ds

]
dz

= m
∑

|α|=m

∫
Cx

kα(x, z)Dαu(z) dz,

if we define k(x, z) =
∫ 1

0
φ
(
x + (1/s) (z − x)

)
χA(z, s) s−n−1 ds and

kα(x, z) = (1/α!)(x − z)αk(x, z). It remains to prove estimate (4.2.10) for
k(x, z).

Let t = |z − x|/
(
|x− x0|+ ρ

)
. Then

|k(x, z)| =
∣∣∣∫ 1

0

χA(z, s)φ
(
x + (1/s)(z − x)

)
s−n−1 ds

∣∣∣
≤
∫ 1

t

∣∣φ(x + (1/s)(z − x)
)∣∣ s−n−1 ds (by 4.2.13)

≤ ‖φ‖L∞(B)

s−n

n

∣∣∣t
1

≤ (1/n) ‖φ‖L∞(B) t−n
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= (1/n) ‖φ‖L∞(B)

(
ρ + |x− x0|

)n|z − x|−n

≤ C ρ−n
(
ρ + |x− x0|

)n|z − x|−n (example in Sect. 4.1)

= C
(
1 +

1
ρ
|x− x0|

)n|z − x|−n.

Note that the use of Fubini’s Theorem above is justified by the following
calculation:∫

Cx

∫ 1

0

∣∣φ(x+(1/s)(z − x)
)∣∣χA(z, s) s−n−1 |x− z|m

α!

∣∣Dαu(z)
∣∣ ds dz

≤
∫

Cx

|Dαu(z)|(1/α!)|x− z|m−nC
(
1 +

1
ρ
|x− x0|

)n
dz

< ∞.

�	

(4.2.16) Definition. Suppose Ω has diameter d and is star-shaped with re-
spect to a ball B. Let ρmax = sup

{
ρ : Ω is star-shaped with respect to a

ball of radius ρ
}
. Then the chunkiness parameter of Ω is defined by

(4.2.17) γ =
d

ρmax
.

(4.2.18) Corollary. The ball B can be chosen so that the function k(x, z) in
Proposition 4.2.8 satisfies the following estimate:

(4.2.19) |k(x, z)| ≤ C (γ + 1)n |z − x|−n, ∀x ∈ Ω,

where γ is the chunkiness parameter of Ω.

Proof. Choose a ball B such that Ω is star-shaped with respect to B and
such that its radius ρ > (1/2)ρmax. Then

|k(x, z)| ≤ C

(
1 +

1
ρ
|x− x0|

)n

|z − x|−n (from 4.2.10)

≤ C

(
1 +

2d

ρmax

)n

|z − x|−n

≤ C2n

(
1 +

d

ρmax

)n

|z − x|−n

= C(1 + γ)n|z − x|−n. (from 4.2.17)

�	
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4.3 Bounds for Riesz Potentials

We have derived bounds for the remainder Rm in terms of a “Riesz poten-
tial.” In this section, we derive various bounds for such potentials.

(4.3.1) Lemma. If f ∈ Lp(Ω) for 1 < p < ∞ and m > n/p, then∫
Ω

|x− z|−n+m |f(z)| dz ≤ Cp dm−n/p ‖f‖Lp(Ω) ∀x ∈ Ω.

This inequality also holds for p = 1 if m ≥ n.

Proof. First assume that 1 < p < ∞ and m > n/p. Let 1/p + 1/q = 1.∫
Ω

|x− z|−n+m |f(z)| dz

≤
(∫

Ω

|x− z|(−n+m)q

)1/q

‖f‖Lp(Ω) (Hölder’s inequality)

≤ C

(∫ d

0

r(−n+m)q+n−1 dr

)1/q

‖f‖Lp(Ω) (using polar coordinates)

= C
(
d(−n+m)q+n

)1/q

‖f‖Lp(Ω) (note that C is different)

= Cdm−(n/p) ‖f‖Lp(Ω) (using 1/q − 1 = −1/p).

Next, we assume p = 1 and m ≥ n. Then∫
Ω

|x− z|−n+m |f(z)| dz ≤ ‖(x− z)−n+m‖L∞(Ω) ‖f‖L1(Ω)

≤ d−n+m ‖f‖L1(Ω) .

�	

(4.3.2) Proposition. For u ∈ Wm
p (Ω),

(4.3.3) ‖Rmu‖L∞(Ω) ≤ Cm,n,γ,p dm−n/p |u|W m
p (Ω),

provided that 1 < p < ∞ and m > n/p, or p = 1 and m ≥ n.

Proof. First assume that u ∈ Cm(Ω) ∩ Wm
p (Ω) so that we can use the

pointwise representation of Rmu(x) in Proposition 4.2.8:

|Rmu(x)| = m
∣∣∣ ∑
|α|=m

∫
Cx

kα(x, z)Dαu(z) dz
∣∣∣ (

by 4.2.9
)

≤ C ′
m,n,γ

∑
|α|=m

∫
Ω

|x− z|m−n|Dαu(z)| dz
(
using 4.2.19

)
≤ Cm,n,γ,p dm−n/p |u|W m

p (Ω) (by Lemma 4.3.1).

The proof is now completed via a density argument (exercise 4.x.18). �	
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As a corollary to Proposition 4.3.2, we obtain the following special case
of Sobolev’s Lemma.

(4.3.4) Lemma. (Sobolev’s Inequality) Suppose Ω has diameter d and is
star-shaped with respect to a ball B. If u is in Wm

p (Ω) where either (i) 1 <
p < ∞ and m > n/p or (ii) p = 1 and m ≥ n, then u is continuous on Ω
and

‖u‖L∞(Ω) ≤ Cm,n,γ,d ‖u‖W m
p (Ω).

Proof. First we show that the inequality holds:

‖u‖L∞(Ω) ≤ ‖u−Qmu‖L∞(Ω) + ‖Qmu‖L∞(Ω) (triangle inequality)

≤ Cm,n,γ |u|W m
p (Ω) + Cm,n,ρ ‖u‖L1(Ω) (using 4.3.3 and 4.1.16)

≤ Cm,n,γ,d ‖u‖W m
p (Ω).

It remains to show that u is continuous on Ω.
Let uj ∈ C∞(Ω) ∩Wm

p (Ω) such that ‖uj − u‖W m
p (Ω) → 0 as j → ∞.

Then the above inequality implies that ‖u − uj‖L∞(Ω) → 0 as j → ∞. In
other words, uj → u uniformly. Therefore, u is continuous on Ω. �	

If we let p →∞ in (4.3.3), then we have

(4.3.5) ‖Rmu‖L∞(Ω) ≤ Cm,n,γ dm |u|W m
∞(Ω).

It turns out that the same inequality is true for general Lp spaces. This
result is the Bramble-Hilbert Lemma, which we will now prove. First, how-
ever, we need another result regarding Riesz potentials.

(4.3.6) Lemma. Let f ∈ Lp(Ω) for p ≥ 1 and m ≥ 1 and let

g(x) =
∫

Ω

|x− z|m−n |f(z)| dz.

Then

(4.3.7) ‖g‖Lp(Ω) ≤ Cm,n dm ‖f‖Lp(Ω) .

Proof. First assume 1 < p < ∞. Then

‖g‖p
Lp(Ω) =

∫
Ω

|g(x)|p dx

=
∫

Ω

(∫
Ω

|x− z|m−n |f(z)| dz

)p

dx

≤
∫

Ω

[(∫
Ω

|f(z)|p |x− z|m−n dz

)1/p (∫
Ω

|x− z|m−n dz

)1/q
]p

dx

(by Hölder’s inequality with 1/p + 1/q = 1)
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≤ Cm,n dmp/q

∫
Ω

∫
Ω

|f(z)|p|x− z|m−n dz dx

≤ Cm,n dmp/q

∫
Ω

(∫
Ω

|x− z|m−n dx

)
|f(z)|p dz

(using Fubini’s Theorem)
≤ Cm,nd(1+p/q)m ‖f‖p

Lp(Ω)

= Cm,n dmp ‖f‖p
Lp(Ω) .

Therefore,
‖g‖Lp(Ω) ≤ Cm,n dm ‖f‖Lp(Ω) .

In the case p = 1,

‖g‖L1(Ω) =
∫

Ω

|g(x)| dx

=
∫

Ω

(∫
Ω

|x− z|m−n |f(z)| dz

)
dx

=
∫

Ω

(∫
Ω

|x− z|m−n dx

)
|f(z)| dz (using Fubini’s Theorem)

≤ Cm,n dm ‖f‖L1(Ω) .

In the case p = ∞,

|g(x)| =
∫

Ω

|x− z|m−n |f(z)| dz

≤ ‖f‖L∞(Ω)

∫
Ω

|x− z|m−n dz

≤ Cm,n dm ‖f‖L∞(Ω) .

Therefore, ‖g‖L∞(Ω) ≤ Cm,n dm ‖f‖L∞(Ω). �	

(4.3.8) Lemma. (Bramble-Hilbert) Let B be a ball in Ω such that Ω is star-
shaped with respect to B and such that its radius ρ > (1/2)ρmax. Let Qmu be
the Taylor polynomial of order m of u averaged over B where u ∈ Wm

p (Ω)
and p ≥ 1. Then

(4.3.9) |u−Qmu|W k
p (Ω) ≤ Cm,n,γ dm−k |u|W m

p (Ω) k = 0, 1, . . . , m,

where d = diam (Ω).

Proof. It suffices to assume that diam (Ω) = 1 and to prove that for u ∈
Cm(Ω) ∩Wm

p (Ω) we have

(4.3.10) |u−Qmu|W k
p (Ω) ≤ Cm,n,γ |u|W m

p (Ω) ∀ k = 0, 1, . . . , m.

The general case then follows from a standard homogeneity argument.
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For k = m,
|u−Qmu|W m

p (Ω) = |u|W m
p (Ω).

For k = 0,

‖u−Qmu‖Lp(Ω) = ‖Rmu‖Lp(Ω)

≤ m
∑

|α|=m

∥∥∥∥∫
Ω

kα(x, z)Dαu(z) dz

∥∥∥∥
Lp(Ω)

≤ Cm,n

(
1 + 1/ρ

)n ∑
|α|=m

∥∥∥∥∫
Ω

|x− z|m−n |Dαu(z)| dz

∥∥∥∥
Lp(Ω)

(using 4.2.10)
≤ Cm,n,γ |u|W m

p (Ω). (Lemma 4.3.6 and the fact that 1/ρ < 2γ)

For 0 < k < m,

|u−Qmu|W k
p (Ω) = |Rmu|W k

p (Ω)

=

⎛⎝ ∑
|α|=k

∥∥Rm−k Dαu
∥∥p

Lp(Ω)

⎞⎠1/p

(using 4.1.18)

≤ Cm,n,γ

⎛⎝ ∑
|α|=k

|Dαu|p
W m−k

p (Ω)

⎞⎠1/p

(case k = 0 above)

≤ Cm,n,γ |u|W m
p (Ω).

For a general domain Ω, define

(4.3.11) Ω̂ = {(1/d)x : x ∈ Ω}.

If u ∈ Wm
p (Ω), let û(y) := u(dy). It is clear that û ∈ Wm

p (Ω̂). By a change
of variables, we have

(4.3.12) |û|
W k

p (Ω̂)
= dk−n/p|u|W k

p (Ω) for 0 ≤ k ≤ m.

The definition of Qmu(x) (cf. (4.1.4)) leads to

(4.3.13) Q̂mû = ̂Qmu

(cf. exercise 4.x.3). Therefore,

|û− Q̂mû|
W k

p (Ω̂)
≤ Cm,n,γ |û|W m

p (Ω̂)
(by 4.3.10)

= Cm,n,γdm−n/p |u|W m
p (Ω). (by 4.3.12)

On the other hand,
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|û− Q̂mû|
W k

p (Ω̂)
= |û− ̂Qmu|

W k
p (Ω̂)

(by 4.3.13)

= dk−n/p |u−Qmu|W k
p (Ω).

Putting these together, we have proved that for 0 ≤ k ≤ m,

|u−Qmu|W k
p (Ω) ≤ Cm,n,γ dm−k |u|W m

p (Ω).

�	

As an application of the Bramble-Hilbert Lemma, we prove Friedrichs’
inequality.

(4.3.14) Lemma. (Friedrichs’ Inequality) Suppose Ω is star-shaped with
respect to a ball B. Then for all u ∈ W 1

p (Ω),

(4.3.15) ‖u− u‖W 1
p (Ω) ≤ Cn,γ |u|W 1

p (Ω)

where u = 1
|Ω|

∫
Ω

u(x) dx.

Proof. Observe that, by Hölder’s inequality,

‖φ‖Lp(Ω) ≤ ‖φ‖Lp(Ω) ∀φ ∈ Lp(Ω).

Therefore we have, for any constant c,

‖u− u‖Lp(Ω) = ‖(u− c)− (u− c)‖Lp(Ω) ≤ 2‖u− c‖Lp(Ω)

and hence, by (4.3.9),

‖u− u‖Lp(Ω) ≤ 2 inf
c∈IR

‖u− c‖Lp(Ω) ≤ C∗|u|W 1
p (Ω),

where the constant C∗ depends only on the dimension n and the chunkiness
constant γ of the domain. Consequently the inequality (4.3.15) holds with
Cn,γ = 1 + C∗.

(4.3.16) Remark. Friedrichs’ inequality will be used in Chapter 5 to prove
coercivity for the Neumann problem for the Laplace operator.

In (Dupont and Scott 1980) it is shown how to extend the above results
to domains that are a finite union of star-shaped domains. For example, the
domain in Fig. 4.2 satisfies this condition. More general results have been
established by (Dechevski & Quak 1990) and (Verfürth 1999).
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4.4 Bounds for the Interpolation Error

So far we have estimated Rmu = u − Qmu, which is a local estimate. We
will now estimate the interpolation error. We begin by estimating the norm
of the interpolation operator.

(4.4.1) Lemma. Let (K,P,N ) be a finite element such that diam K = 1,
P ⊆ Wm

∞(K) and N ⊆
(
Cl

(
K
))′ (i.e. the nodal variables in N involve

derivatives up to order l). Then the interpolation operator is bounded from
Cl

(
K
)

into Wm
p (K) for 1 ≤ p ≤ ∞.

Proof. Let N = {N1, . . . , Nk}, and let {φ1, . . . , φk} ⊆ P be the dual basis.
The interpolant is defined by Iu =

∑k
i=1 Ni(u)φi, and each φi ∈ Wm

∞(K) ⊆
Wm

p (K) by assumption. Then

‖Iu‖W m
p (K) ≤

k∑
i=1

|Ni(u)| ‖φi‖W m
p (K) (triangle inequality)

≤
( ∑

1≤i≤k

‖Ni‖Cl(K)′ ‖φi‖W m
p (K)

)
‖u‖Cl(K)

= C ‖u‖Cl(K).

�	

(4.4.2) Definition. If (K,P,N ) satisfies the conditions in Lemma 4.4.1,
then σ(K) is defined to be the operator norm of I : Cl

(
K
)
−→ Wm

p (K).

(4.4.3) Definition. For any bounded region K, we define

K̂ := {(1/diam K)x : x ∈ K}.

Let Pk be the set of polynomials in n variables of degree less than or
equal to k.

(4.4.4) Theorem. Let (K,P,N ) be a finite element satisfying
(i) K is star-shaped with respect to some ball,

(ii) Pm−1 ⊆ P ⊆ Wm
∞(K) and

(iii) N ⊆
(
Cl

(
K
))′.

Suppose 1 ≤ p ≤ ∞ and either m− l−n/p > 0 when p > 1 or m− l−n ≥ 0
when p = 1. Then for 0 ≤ i ≤ m and v ∈ Wm

p (K) we have

(4.4.5) |v − Iv|W i
p(K) ≤ C

m,n,γ,σ(K̂)
(diam K)m−i |v|W m

p (K),

where K̂ = {(1/diam K)x : x ∈ K} and γ is the chunkiness parameter for
K.
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Proof. It suffices to take diam K = 1 (in which case K = K̂). The general
case then follows by a homogeneity argument (cf. exercise 4.x.5). Also, the
interpolation operator is well defined on Wm

p (K) by the Sobolev Lemma
4.3.4.

Let B be a ball in K such that K is star-shaped with respect to B and
such that its radius ρ > (1/2)ρmax. Let Qmv be the Taylor polynomial of
order m of v averaged over B. Since If = f for f ∈ P,

(4.4.6) IQmv = Qmv because Qmv ∈ Pm−1 ⊆ P.

Now

‖v − Iv‖W m
p (K) ≤ ‖v −Qmv‖W m

p (K) + ‖Qmv − Iv‖W m
p (K)

= ‖v −Qmv‖W m
p (K) + ‖I(Qmv − v)‖W m

p (K) (4.4.6)

≤ ‖v −Qmv‖W m
p (K) + σ(K) ‖Qmv − v‖Cl(K)

≤
(
1 + σ(K)Cm,n,γ

)
‖v −Qmv‖W m

p (K) (4.3.4)

≤
(
1 + σ(K)Cm,n,γ

)
C ′

m,n,γ |v|W m
p (K) (Bramble-Hilbert)

= Cm,n,γ,σ(K)|v|W m
p (K).

�	

(4.4.7) Corollary. Under the same hypotheses except i ≤ l,

(4.4.8) |v − Iv|W i
∞(K) ≤ C

m,n,γ,σ(K̂)
(diam K)m−i−n/p |v|W m

p (K).

Proof. Take diam K = 1. Then

|v − Iv|W l
∞(K) ≤ Cm,n,γ ‖v − Iv‖W m

p (K) (Sobolev Lemma 4.3.4)

≤ Cm,n,γ,σ(K) |v|W m
p (K) (Theorem 4.4.4)

The general case then follows by a homogeneity argument. �	

Our goal is to find a uniform bound for C
m,n,γ,σ(K̂)

, where K ranges

over a collection of elements. Thus, we must study the dependence of σ(K̂)
on affine transformations.

Let the reference element (K,P,N ) be affine equivalent (cf. (3.4.1))
to (K̃, P̃, Ñ ) through the transformation Ax = ax + b, a = (aij), with
the coefficients of the inverse of a denoted by

(
a−1

)
ij

. The definition of
affine-equivalence yields

(4.4.9) Ĩ ṽ(x̃) =
∑

N∈N
(A∗N)ṽ · (A−1)∗φN (x̃).

Recall that (A∗N)ṽ = N(A∗ṽ), where (A∗ṽ)x = ṽ(Ax). Therefore,
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|(A∗N)ṽ| = |N(A∗ṽ)|
≤ CN‖A∗ṽ‖Cl(K)

≤ CN,n,l

(
1 + max

1≤i,j≤n
|aij |

)l

‖ṽ‖
Cl
(
K̃
).

Also,

‖(A−1)
∗
φN‖W m

p (K̃)
≤C ′

N,n,m

(
1 + max

1≤i,j≤n

∣∣∣(a−1
)
ij

∣∣∣)m

×

‖φN‖W m
p (K) |det a|1/p.

Since ‖φN‖W m
p (K) is bounded on the reference element, we have

‖Ĩ ṽ‖
W m

p (K̃)
≤Cref

(
1 + max

1≤i,j≤n
|aij |

)l

×(
1 + max

1≤i,j≤n

∣∣∣(a−1
)
ij

∣∣∣)m

|det a|1/p ‖ṽ‖
Cl
(
K̃
),

where

Cref = |N | · max
N∈N

{CN,n,l} · max
N∈N

{C ′
N,n,m} · max

N∈N
{‖φN‖W m

p (K)}

and |N | denotes the number of nodal variables (= dimP). Therefore,

(4.4.10)
σ(K̃) ≤Cref

(
1 + max

1≤i,j≤n
|aij |

)l

×(
1 + max

1≤i,j≤n

∣∣∣(a−1
)
ij

∣∣∣)m

|det a|1/p.

We have proved the following.

(4.4.11) Proposition. Given a reference element (K,P,N ) and an affine-
equivalent element (K̃, P̃, Ñ ) with the affine map Ax = ax + b, we have

(4.4.12) σ(K̃) ≤ Cref χ(a),

where χ is a continuous function on GL(IRn). For example, we can take

χ(a) :=
(
1 + max1≤i,j≤n |aij |

)l
(
1 + max1≤i,j≤n

∣∣∣(a−1
)
ij

∣∣∣)m

|det a|1/p.

(4.4.13) Definition. Let Ω be a given domain and let {T h}, 0 < h ≤ 1, be a
family of subdivisions such that

(4.4.14) max{diam T : T ∈ T h} ≤ h diam Ω.

The family is said to be quasi-uniform if there exists ρ > 0 such that

(4.4.15) min{diam BT : T ∈ T h} ≥ ρ hdiam Ω
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for all h ∈ (0, 1], where BT is the largest ball contained in T such that T is
star-shaped with respect to BT . The family is said to be non-degenerate or
regular if there exists ρ > 0 such that for all T ∈ T h and for all h ∈ (0, 1],

(4.4.16) diam BT ≥ ρdiam T.

(4.4.17) Remarks.

(i) {T h} is non-degenerate if and only if the chunkiness parameter is uni-
formly bounded for all T ∈ T h and for all h ∈ (0, 1].

(ii) If a family is quasi-uniform, then it is non-degenerate, but not con-
versely (cf. exercise 4.x.6).

(iii) If we start with an arbitrary triangulation in two dimensions and sub-
divide by connecting edge midpoints, we obtain a quasi-uniform family
of triangulations. A similar, but more complicated, construction can
be made in three dimensions (Zhang 1995).

Recall (from Definition 3.3.15) that a reference element (K,P,N ) is
said to be a Cr element if r is the largest non-negative integer for which

(4.4.18) V h = IhCl
(
Ω
)
⊆ Cr(Ω) ∩W r+1

∞ (Ω).

Here Ih : Cl
(
Ω
)
−→ L1(Ω) is the global interpolation operator defined by

(4.4.19) Ihu|T := Ih
T u for T ∈ T h, h ∈ (0, 1],

where Ih
T is the interpolation operator for the affine-equivalent element

(T,PT ,NT ).

(4.4.20) Theorem. Let {T h}, 0 < h ≤ 1, be a non-degenerate family of
subdivisions of a polyhedral domain Ω in IRn. Let (K,P,N ) be a reference
element, satisfying the conditions of Theorem 4.4.4 for some l, m and p.
For all T ∈ T h, 0 < h ≤ 1, let (T,PT ,NT ) be the affine-equivalent element.
Then there exists a positive constant C depending on the reference element,
n,m, p and the number ρ in (4.4.16) such that for 0 ≤ s ≤ m,

(4.4.21)

⎛⎝ ∑
T∈T h

‖v − Ihv‖p
W s

p (T )

⎞⎠1/p

≤ C hm−s |v|W m
p (Ω)

for all v ∈ Wm
p (Ω), where the left-hand side should be interpreted, in the

case p = ∞, as maxT∈T h ‖v − Ihv‖W s
∞(T ). For 0 ≤ s ≤ l,

(4.4.22) max
T∈T h

‖v − Ihv‖W s
∞(T ) ≤ C hm−s−n/p |v|W m

p (Ω) ∀v ∈ Wm
p (Ω).
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Proof. We will first prove

(4.4.23) sup{σ(T̂ ) : T ∈ T h, 0 < h ≤ 1} = C(ρ,m, n, p,K) < ∞.

Since (T̂ , P̂T , N̂T ) is also affine equivalent to (K,P,N ) with some affine
map, say Ax = ax + b, we have σ(T̂ ) ≤ Cref χ(a) where χ is continuous
on GL(IRn) by Proposition 4.4.11. We need to show that nondegeneracy
implies that a is an element of a compact subset of GL(IRn), which then
implies (4.4.23). Since the family is non-degenerate, there exists B ⊂ T̂
such that diam B ≥ ρ > 0 (by (4.4.16)). We have

meas B ≤ meas T̂

=
∫

T̂

dx̂

= |det a|
∫

K

dx

≤ |det a| (meas K) .

On the other hand, since diam B ≥ ρ, we have meas B ≥ Cn ρn. There-
fore, 0 < Cn ρn ≤ |det a| (meas K); in other words, |det a| ≥ ε > 0,
where ε depends on ρ, K and n. Thus, a ∈ {b : |det b| ≥ ε > 0},
which is a closed set. Without loss of generality, we may assume that
{(x1, . . . , xn) :

∑n
i=1 xi ≤ t0, xi > 0 for i = 1, . . . , n} ⊂ K, where t0 de-

pends only on K. Let ei be the i-th unit vector. Then A(tei) = taei + b ∈
the closure of T̂ for 0 ≤ t ≤ t0. Therefore, ‖aei‖ ≤ diam T̂ /t0 = 1/t0, for
1 ≤ i ≤ n, which implies that |aij | ≤ 1/t0, i, j = 1, . . . , n. Therefore, a is an
element of the compact set {b : |det b| ≥ ε > 0, |bij | ≤ 1/t0}. Thus, (4.4.23)
holds, and in view of the form of χ(a), it follows that σ(T̂ ) ≤ C, for all
T ∈ T h and 0 < h ≤ 1, where C depends on the reference element, n,m, l
and ρ.

To prove (4.4.21), observe that∑
T∈T h

‖v − Ih
T v‖p

W s
p (T )

≤
∑

T∈T h

Cp

m,n,γ,σ(T̂ )

s∑
i=0

(diam T )p(m−i) |v|pW m
p (T ) (by 4.4.5)

≤
∑

T∈T h

Cp

m,n,γ,σ(T̂ )

s∑
i=0

(h diam Ω)p(m−i) |v|pW m
p (T ) (by 4.4.14)

≤ C hp(m−s)
∑

T∈T h

|v|pW m
p (T ) (by 4.4.23 and sinceh ≤ 1)

= C hp(m−s) |v|pW m
p (Ω),

where C depends on m,n, ρ and the reference element.
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The inequality (4.4.22) is similarly proved by using (4.4.8) (cf. exer-
cise 4.x.7). �	

(4.4.24) Corollary. Let {T h}, 0 < h ≤ 1, be a non-degenerate family of
subdivisions of a polyhedral domain Ω. Let (K,P,N ) be a reference element,
satisfying the conditions of Theorem 4.4.4 for some l, m and p. Suppose
that all (T,PT ,NT ), for all T ∈ T h, 0 < h ≤ 1, are affine-interpolation
equivalent to (K,P,N ) . Then there exists a positive constant C depending
on the reference element, l,m, n, p and the number ρ in (4.4.16) such that
for 0 ≤ s ≤ m,

(4.4.25)

⎛⎝ ∑
T∈T h

‖v − Ihv‖p
W s

p (T )

⎞⎠1/p

≤ C hm−s |v|W m
p (Ω)

for all v ∈ Wm
p (Ω), where the left-hand side should be interpreted, in the

case p = ∞, as maxT∈T h ‖v − Ihv‖W s
∞(T ). For 0 ≤ s ≤ l,

(4.4.26) max
T∈T h

‖v − Ihv‖W s
∞(T ) ≤ C hm−s−n/p |v|W m

p (Ω) ∀v ∈ Wm
p (Ω).

(4.4.27) Remark. In the event that the elements in the previous results form
Cr elements for some r ≥ 0, then for 0 ≤ s ≤ r + 1 we have∑

T∈T h

‖v − Ih
T v‖p

W s
p (T ) = ‖v − Ihv‖p

W s
p (Ω)

and
max
T∈T h

‖v − Ih
T v‖W s

∞(T ) = ‖v − Ihv‖W s
∞(Ω).

Substituting these expressions in the left-hand side leads to estimates of
the form

(4.4.28) ‖v − Ihv‖W s
p (Ω) ≤ C hm−s |v|W m

p (Ω)

for all v ∈ Wm
p (Ω) and 0 ≤ s ≤ min{m, r + 1} and

(4.4.29) ‖v − Ihv‖W s
∞(Ω) ≤ C hm−s−n/p |v|W m

p (Ω)

for all v ∈ Wm
p (Ω) and 0 ≤ s ≤ min{l, r + 1}.

4.5 Inverse Estimates

In this section we discuss the relations among various norms on a finite-
element space.
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Let K be a bounded domain in IRn. If v is a function defined on K,
then v̂ is defined on K̂ = {(1/diam K)x : x ∈ K} by

(4.5.1) v̂(x̂) = v ((diam K)x̂) ∀ x̂ ∈ K̂.

It is clear that v ∈ W k
r (K) iff v̂ ∈ W k

r (K̂) and

(4.5.2) |v̂|
W k

r (K̂)
= (diam K)k−(n/r) |v|W k

r (K).

If P is a vector space of functions defined on K, then P̂ := {v̂ : v ∈ P}.

(4.5.3) Lemma. Let ρh ≤ diam K ≤ h, where 0 < h ≤ 1, and P be a finite-
dimensional subspace of W l

p(K) ∩Wm
q (K), where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞

and 0 ≤ m ≤ l. Then there exists C = C(P̂, K̂, l, p, q, ρ) such that for all
v ∈ P, we have

(4.5.4) ‖v‖W l
p(K) ≤ C hm−l+n/p−n/q‖v‖W m

q (K).

Proof. We will use C to represent a generic constant depending only on
P̂, K̂, l, p, q and ρ.

We first establish (4.5.4) for the case m = 0. For any finite-dimensional
space P satisfying the conditions of the lemma, we have by the equivalence
of norms that

(4.5.5) ‖v̂‖
W l

p(K̂)
≤ C ‖v̂‖

Lq(K̂)
∀v ∈ P.

Therefore, (4.5.2) implies that

(4.5.6) |v|W j
p (K)(diam K)j−n/p ≤ C ‖v‖Lq(K)(diam K)−n/q

for 0 ≤ j ≤ l, from which we deduce that

(4.5.7) |v|W j
p (K) ≤ C h−j+n/p−n/q‖v‖Lq(K) for 0 ≤ j ≤ l.

Since h ≤ 1, we have

(4.5.8) ‖v‖W j
p (K) ≤ C h−j+n/p−n/q‖v‖Lq(K) for 0 ≤ j ≤ l,

which is just (4.5.4) when m = 0 if we take j = l.
For the case of general m ≤ l, we argue as follows. For l −m ≤ k ≤ l

and |α| = k, we may write Dαv = DβDγv for |β| = l−m and |γ| = k+m−l:

‖Dαv‖Lp(K) ≤ ‖Dγv‖W l−m
p (K)

≤ Ch−(l−m)+ n
p −n

q ‖Dγv‖Lq(K) (by 4.5.8 for DγP)

≤ Ch−(l−m)+ n
p −n

q |v|W k+m−l
q (K) .

Since |α| = k was arbitrary, we have
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(4.5.9) |v|W k
p (K) ≤C h−(l−m)+n/p−n/q|v|W k+m−l

q (K)

for any k satisfying l −m ≤ k ≤ l. In particular, this implies that

(4.5.10) |v|W k
p (K) ≤C h−(l−m)+n/p−n/q‖v‖W m

q (K)

for k satisfying l −m ≤ k ≤ l, since the latter implies k + m− l ≤ m. The
estimate (4.5.4) now follows from (4.5.8) with j = l −m and (4.5.10). �	

The following theorem is a global version of Lemma 4.5.3.

(4.5.11) Theorem. Let {T h}, 0 < h ≤ 1, be a quasi-uniform family of
subdivisions of a polyhedral domain Ω ⊆ IRn. Let (K,P,N ) be a reference
finite element such that P ⊆ W l

p(K) ∩Wm
q (K) where 1 ≤ p ≤ ∞, 1 ≤ q ≤

∞ and 0 ≤ m ≤ l. For T ∈ T h, let (T,PT ,NT ) be the affine-equivalent
element, and V h = {v : v is measurable and v|T ∈ PT ∀T ∈ T h}. Then
there exists C = C(l, p, q, ρ) such that

(4.5.12)

⎡⎣ ∑
T∈T h

‖v‖p
W l

p(T )

⎤⎦1/p

≤ Chm−l+min(0, n
p −n

q )

⎡⎣ ∑
T∈T h

‖v‖q
W m

q (T )

⎤⎦1/q

for all v ∈ V h. When p = ∞ (respectively, q = ∞),
[∑

T∈T h ‖v‖p
W l

p(T )

]1/p

(respectively,
[∑

T∈T h ‖v‖q
W l

q(T )

]1/q

) is interpreted as maxT∈T h ‖v‖W l
∞(T )

(respectively, maxT∈T h ‖v‖W m
∞(T )).

Proof. We first observe that Lemma 4.5.3 and the quasi-uniformity of {T h}
imply that

(4.5.13) ‖v‖W l
p(T ) ≤ C(P̂T , T̂ , l, p, q, ρ)hm−l+n/p−n/q ‖v‖W m

q (T ).

for all T ∈ T h and all v ∈ PT .
Also, an argument similar to the one in the proof of Proposition 4.4.11

shows that

(4.5.14) C(P̂T , T̂ , l, p, q, ρ) ≤ ζ(aT )C(l, p, q, ρ),

where Ax = aT x+ bT is the affine transformation that maps K̂ to T̂ , and ζ
is a positive function which depends continuously on aT ∈ GL(IRn). Since
{T h} is non-degenerate, the argument in the proof of Theorem 4.4.20 shows
that {aT : T ∈ T h, 0 < h ≤ 1} is a compact subset of GL(IRn). Therefore,
from (4.5.13) and (4.5.14) we deduce that

(4.5.15) ‖v‖W l
p(T ) ≤ C(l, p, q, ρ)hm−l+n/p−n/q ‖v‖W m

q (T )

for all T ∈ T h and all v ∈ PT (also see exercise 4.x.15). From now on we
will use C to denote a generic constant depending only on l, p, q, and ρ.
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For p = ∞, inequality (4.5.12) follows immediately from the estimate
(4.5.15).

Assume that p < ∞. From (4.5.15) we obtain

(4.5.16)

⎛⎝ ∑
T∈T h

‖v‖p
W l

p(T )

⎞⎠1/p

≤ C hm−l+n/p−n/q

⎛⎝ ∑
T∈T h

‖v‖p
W m

q (T )

⎞⎠1/p

for all v ∈ V h.
If p ≥ q, then (cf. exercise 4.x.8)

(4.5.17)

⎛⎝ ∑
T∈T h

‖v‖p
W m

q (T )

⎞⎠1/p

≤

⎛⎝ ∑
T∈T h

‖v‖q
W m

q (T )

⎞⎠1/q

.

Inequality (4.5.12) in this case follows immediately from (4.5.16) and
(4.5.17).

If p < q, then Hölder’s inequality implies (cf. exercise 4.x.9)

(4.5.18)

⎛⎝ ∑
T∈T h

‖v‖p
W m

q (T )

⎞⎠
1
p

≤

⎛⎝ ∑
T∈T h

1

⎞⎠
1
p − 1

q
⎛⎝ ∑

T∈T h

‖v‖q
W m

q (T )

⎞⎠
1
q

.

It follows from the quasi-uniformity of {T h} that

(4.5.19)
∑

T∈T h

1 ≤ C h−n.

Inequality (4.5.12) in this case follows from estimates (4.5.16), (4.5.18) and
(4.5.19). �	

(4.5.20) Remark. Theorem 4.5.11 is applicable to both conforming and non-
conforming finite elements. In the case of conforming finite elements, one
can replace the summations in (4.5.12) by globally-defined norms.

4.6 Tensor-product Polynomial Approximation

We showed that approximation of order hm can be achieved as long as
polynomials of degree m − 1 are used. These results apply to both the
standard tensor-product polynomial spaces and the serendipity elements as
well. However, one may wonder what the extra terms (of degree ≥ m) in
the tensor-product polynomial spaces provide in terms of approximation, if
they do not affect the order, hm, of approximation. There is a significant
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effect, but it is only visible in the norm appearing in the error term. Define
A =

{
mei : i = 1, . . . , n

}
where the multi-indices ei are the standard basis

vectors, ei
j being the Kronecker delta. Let A0 denote the set of multi-indices

corresponding to tensor-product polynomials of degree less than m; note
that this can be characterized as

(4.6.1) A0 =
{
β : Dαxβ = 0 ∀α ∈ A

}
.

Define

(4.6.2) QAu(x) =
∫

B

∑
α∈A0

1
α!

Dαu(y)(x− y)αφ(y) dy.

As before, we have

(4.6.3) ‖QAu‖W k
∞(Ω) ≤ Cm,n,ρ‖u‖L1(B).

(4.6.4) Proposition. The remainder RAu := u−QAu satisfies

(4.6.5) RAu(x) =
∑
α∈A

∫
Cx

k̃α(x, z)Dαu(z) dz,

where

(4.6.6)

∣∣∣∣∣
(

∂

∂x

)β (
∂

∂y

)γ

k̃α(x, y)

∣∣∣∣∣ ≤ C |x− y||α|−n−|β|−|γ|
.

Proof. We may write

(4.6.7)

u(x) =Qn×mu(x) + Rn×mu(x)

=QAu(x) +
∫

B

∑
α �∈A0

|α|<n×m

1
α!

Dαu(y)(x− y)αφ(y) dy

+ n×m
∑

|α|=n×m

∫
Cx

kα(x, z)Dαu(z) dz.

Note that |α| = n × m implies that α �∈ A0. For any α �∈ A0, we may
write α = β + γ for some β ∈ A and γ a multi-index, that is γi ≥ 0 ∀i.
Integrating by parts, we find

(4.6.8) u(x) = QAu(x) +
∑
α∈A

∫
Cx

k̃α(x, z)Dαu(z) dz.

Estimate (4.6.6) follows from the fact that∣∣∣∣∣
(

∂

∂x

)β (
∂

∂y

)γ

kα(x, y)

∣∣∣∣∣ ≤ C |x− y||α|−n−|β|−|γ|
,

which can be proved as in the proof of Proposition 4.2.8. �	
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From Lemma 4.3.1 it follows that

(4.6.9) |u−QAu|W k
∞(Ω) ≤ Cm,n,γ dm−k−n/p

⎛⎝ ∑
i=1,...,n

∥∥∥∥∂mu

∂xm
i

∥∥∥∥p

Lp(Ω)

⎞⎠1/p

where d is the diameter of Ω, provided that m − k − n/p > 0 when p > 1
or m− k − n ≥ 0 when p = 1. From Lemma 4.3.6 follows, for 0 ≤ k < m,

(4.6.10) |u−QAu|W k
p (Ω) ≤ Cm,n,γ dm−k

⎛⎝ ∑
i=1,...,n

∥∥∥∥∂mu

∂xm
i

∥∥∥∥p

Lp(Ω)

⎞⎠1/p

.

Thus, the proof of Theorem 4.4.4 yields the following.

(4.6.11) Theorem. Let (K,P,N ) be the tensor-product finite element of or-
der m−1, let h = diam (K) and let I denote the corresponding interpolant.
Then for u ∈ Wm

p (K), we have

(4.6.12) |u− Iu|W k
∞(K) ≤ Cm,nhm−k−n/p

⎛⎝ ∑
i=1,...,n

∥∥∥∥∂mu

∂xm
i

∥∥∥∥p

Lp(K)

⎞⎠1/p

,

provided that m − k − n/p > 0 when p > 1 or m − k − n ≥ 0 when p = 1,
and

(4.6.13) |u− Iu|W k
p (K) ≤ Cm,nhm−k

⎛⎝ ∑
i=1,...,n

∥∥∥∥∂mu

∂xm
i

∥∥∥∥p

Lp(K)

⎞⎠1/p

,

for 0 ≤ k < m.

Since the tensor-product finite elements generate C0 elements, we have
the following global estimate for the interpolant.

(4.6.14) Theorem. Let Ih denote the interpolant for tensor-product finite
elements of order m − 1 on a rectangular subdivision of Ω of maximum
mesh-size h. Then for u ∈ Wm

p (Ω) we have

(4.6.15) |u− Ihu|L∞(Ω) ≤ Cm,nhm−n/p

⎛⎝ ∑
i=1,...,n

∥∥∥∥∂mu

∂xm
i

∥∥∥∥p

Lp(Ω)

⎞⎠1/p

,

provided that m− n/p > 0 when p > 1 or m− n ≥ 0 when p = 1, and

(4.6.16) |u− Ihu|W k
p (Ω) ≤ Cm,nhm−k

⎛⎝ ∑
i=1,...,n

∥∥∥∥∂mu

∂xm
i

∥∥∥∥p

Lp(Ω)

⎞⎠1/p

,

for 0 ≤ k ≤ 1.
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Note that the above estimates definitely do not hold with ordinary
polynomial approximation. For example, take m = 2 and u(x, y) = xy.
The right-hand sides in the estimates above are all zero, so we would have
u = Ihu. But this is impossible for linear interpolation; we must include
the additional terms available in bilinear approximation.

Serendipity elements are more complicated due, in part, to the free-
dom available in their definition. Consider quadratic serendipity elements
in two dimensions. The appropriate space of shape functions, P, is any set
containing all quadratic polynomials which can be determined uniquely by
the edge nodes. One way to define such a set is to let

(4.6.17) A = {(3, 0), (0, 3), (2, 2)}

and let P be the set of polynomials with basis given by

A0 =
{
β : Dαxβ = 0 ∀α ∈ A

}
={1, x, y, x2, xy, y2, x2y, xy2}

(no x2y2 term).
First, let us see that P is a valid space of shape functions for a

quadratic serendipity element. Suppose that the element domain, K, is
the unit square, and suppose that all of the serendipity (edge) nodal values
of P ∈ P vanish. Then P = cx(1 − x)y(1 − y) = cx2y2 + · · ·. Thus, we
must have c = 0. Therefore, the serendipity nodal variables, N (depicted
in Fig.3.12), determine P, and (K,N ,P) is a well-defined finite element.

Using A0 above, we can define QA as in (4.6.3) and obtain error esti-
mates as in Theorems 4.6.11 and 4.6.14.

(4.6.18) Theorem. Let (K,P,N ) be the two-dimensional quadratic serendip-
ity finite element defined above using A as given in (4.6.17), and let I denote
the corresponding interpolant. Then for u ∈ W 4

p (K) we have

|u− Iu|W k
∞(K) ≤ C

(∑
α∈A

(diam K)p(|α|−k)−2 ‖Dαu‖p
Lp(K)

)1/p

,

provided that 3− k − 2/p > 0 when p > 1 or k ≤ 1 when p = 1, and

|u− Iu|W k
p (K) ≤ C

(∑
α∈A

(diam K)p(|α|−k) ‖Dαu‖p
Lp(K)

)1/p

,

for 0 ≤ k ≤ 2.
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(4.6.19) Theorem. Let Ih denote the interpolant for the quadratic serendip-
ity finite element defined above using A as given in (4.6.17), on a rectangular
subdivision of Ω of maximum mesh-size h. Then for u ∈ W 4

p (Ω) we have

|u− Ihu|L∞(Ω) ≤ C

(∑
α∈A

hp|α|−2 ‖Dαu‖p
Lp(Ω)

)1/p

and

|u− Ihu|W k
p (Ω) ≤ C

(∑
α∈A

hp(|α|−k) ‖Dαu‖p
Lp(Ω)

)1/p

,

for 0 ≤ k ≤ 1.

Analogous results can be obtained for cubic serendipity elements by
choosing

(4.6.20) A = {(4, 0), (0, 4), (3, 3), (3, 2), (2, 3), (2, 2)}

except that the range of k is increased by one in the analog of Theorem
4.6.18 and more smoothness is required of u. Let P be the space with basis
given by

{
xβ : β ∈ A0

}
where

A0 =
{
β : Dαxβ = 0 ∀α ∈ A

}
.

To see that P is a valid space of shape functions for a cubic serendipity
element, suppose that all of the serendipity (edge) nodal values (as depicted
in Fig. 3.22) of P ∈ P vanish. Then P = x(1− x)y(1− y)B(x, y) where B
is bilinear. Since we must have DαP = 0 for all α ∈ A, we conclude that
B ≡ 0 (start with α = (3, 3) and then continue with decreasing |α|).

(4.6.21) Theorem. Let (K,P,N ) be the two-dimensional cubic serendipity
finite element defined above using A as given in (4.6.20), and let I denote
the corresponding interpolant. Then for u ∈ W 6

p (K) we have

|u− Iu|W k
∞(K) ≤ C

(∑
α∈A

(diam K)p(|α|−k)−2 ‖Dαu‖p
Lp(K)

)1/p

,

provided that 4− k − 2/p > 0 when p > 1 or k ≤ 2 when p = 1, and

|u− Iu|W k
p (K) ≤ C

(∑
α∈A

(diam K)p(|α|−k) ‖Dαu‖p
Lp(K)

)1/p

,

for 0 ≤ k ≤ 3. Furthermore, if Ih denotes the corresponding interpolant on
a rectangular subdivision of Ω of maximum mesh-size h, then
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|u− Ihu|L∞(Ω) ≤ C

(∑
α∈A

hp|α|−2 ‖Dαu‖p
Lp(Ω)

)1/p

and

|u− Ihu|W k
p (Ω) ≤ C

(∑
α∈A

hp(|α|−k) ‖Dαu‖p
Lp(Ω)

)1/p

,

for 0 ≤ k ≤ 1.

4.7 Isoparametric Polynomial Approximation

When using high-order elements for problems with curved boundaries, it
is essential to include some way of approximating the boundary conditions
accurately. One of the most effective ways in engineering practice is using
isoparametric elements, which involve a more general piecewise-polynomial
change of variables in the definition of the approximating spaces than we
have considered so far. In this approach, the element basis functions φe

N ,
defined on a given element domain, Ke, are related to the reference basis
functions, defined on the reference element domain, K, via a polynomial
mapping, ξ → F (ξ), of K to Ke:

(4.7.1) φe
N (x) = φN

(
F−1(x)

)
.

This is analogous to having affine-equivalent elements, except now the map-
ping is allowed to be more general. Elements where the mapping, F , comes
from the same finite element space are called “isoparametric.”

More precisely, we have a base polyhedral domain, Ω̃ ⊆ IRn, and a
base finite element space, Ṽh, defined on Ω̃. We construct (by some means)
a one-to-one continuous mapping F̃ : Ω̃ −→ IRn where each component
F̃i ∈ Ṽh. The resulting space,

(4.7.2) Vh :=
{

v
(
F̃−1(x)

)
: x ∈ F̃ (Ω̃), v ∈ Ṽh

}
,

is called an isoparametric-equivalent finite element space.
The approximation theory for isoparametric-equivalent spaces is quite

simple, invoking only the chain rule. Thus, all of the results derived in the
chapter so far remain valid, the only modification being that the constants
now depend on the Jacobian, J

F̃
, of the mapping, F̃ . Some care must

be exercised to obtain mappings that have regular Jacobians (Ciarlet &
Raviart 1972b). However, the details of how to do this in two and three
dimensions have been presented in (Lenoir 1986).

For example, let Ω be a smooth domain in two or three dimensions,
and let Ωh be a polyhedral approximation to it, e.g., defined by a piecewise
linear interpolation of the boundary having facets of size at most h. Let T h
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denote corresponding triangulations consisting of simplices of size at most
h. Then it is possible to construct piecewise polynomial mappings, Fh, of
degree k − 1 which
1. equal the identity map away from the boundary of Ωh,
2. have the property that the distance from any point on ∂Ω to the closest

point on ∂Fh(Ωh) is at most Chk and
3. ‖JF h‖W k

∞(Ωh) ≤ C and
∥∥J−1

F h

∥∥
W k

∞(Ωh)
≤ C, independent of h.

Note that Ω is only approximated by Fh(Ωh), not equal. However, using
the extension result in (1.45), we can easily view that all functions being
approximated are defined on Fh(Ωh) as needed. Using the techniques in
Sect. 4.4, we easily prove the following.

(4.7.3) Theorem. Let {T h}, 0 < h ≤ 1, be a non-degenerate family of
subdivisions of a family of polyhedral approximations, Ωh, of a Lipschitz
domain Ω. Suppose that piecewise polynomial mappings, Fh, of degree m−1
exist, which satisfy properties 1–3 above. Let (K,P,N ) be a C0 reference
element, satisfying the conditions of Theorem 4.4.4 for some m, p. Suppose
that all (T,PT ,NT ), for all T ∈ T h, 0 < h ≤ 1, are affine-interpolation
equivalent to (K,P,N ) . Then there exists a positive constant C depending
on the reference element, n,m, p and the number ρ in (4.4.16) such that for
0 ≤ s ≤ 1,

(4.7.4) ‖v − Ihv‖W s
p (F h(Ωh)) ≤ C hm−s |v|W m

p (F h(Ωh)) ,

and provided m > s + n/p (m ≥ s + n if p = 1)

(4.7.5) ‖v − Ihv‖W s
∞(F h(Ωh)) ≤ C hm−s−n/p |v|W m

p (F h(Ωh)) .

Here Ihv denotes the isoparametric interpolant defined by Ihv
(
Fh(x)

)
=

Ĩhṽ(x) for all x ∈ Ωh where ṽ(x) = v(Fh(x)) for all x ∈ Ωh and Ĩh is the
global interpolant for the base finite element space, Ṽh.

We note that isoparametric Cr, r ≥ 1, elements are not of much practi-
cal value. The problem is not that the elements would not remain Cr under
a Cr mapping (they will), but rather that, in mapping a polyhedral domain
to a smooth domain, a C1 mapping is inappropriate. Thus, the above result
has been restricted to the case r = 0.

4.8 Interpolation of Non-smooth Functions

In order to be defined, the interpolants in the previous sections all require
a certain amount of smoothness on the part of the function being approx-
imated. In Chapter 14, we present one way to extend such approximation
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results using Banach space interpolation theory. Here we illustrate a con-
structive approach based on the ideas in (Clement 1975 and Scott & Zhang
1990 & 1992). We will not consider the most general form that such an
approach can take, but we will give the simplest version and refer to (Scott
& Zhang 1990 & 1992 and Girault & Scott 2002) for more results.

We begin with a re-interpretation of the global interpolant Ih as fol-
lows. For each node, z, there is a corresponding nodal variable, Nz. This
could be a point evaluation, derivative evaluation, integral on an edge, and
so forth. For a smooth function, we can write

(4.8.1) Ihu =
∑

z

Nz(u)Φz

where Φz denotes the global basis function given by

Φz|K = φK
Nz

and φK
Nz

is a local nodal basis function on K; Φz|K := 0 if z is not a node
associated with K.

We will say that “K contains z” if Nz is one of the nodal variables for
the element with element domain K. By abuse of notation, we will think of
z encoding both the place of the nodal variable as well as some descriptor.
For example, Hermite nodes have multiple nodes z at the same “place”
(e.g., a vertex).

We now pick, for each node z, a particular element domain Kz contain-
ing z, and we then pick a subset K̃z ⊂ Kz. But there is extreme flexibility
in the choice of both Kz and K̃z. The domain K̃z will be used in forming
our new interpolant; the action of Nz will be represented as an integral over
K̃z.

To simplify arguments, we assume that the elements in question are
hierarchical in the sense that restrictions to K̃z of functions in the element
based on Kz are themselves appropriate functions for an element with a
subset of the nodes for the element on Kz. More precisely, suppose that
the basic element is (Kz,Pz,Nz) and let P̃z denote the restrictions of the
element functions in Pz to K̃z:

P̃z =
{

f |
K̃z

: f ∈ Pz

}
.

Then we assume that (K̃z, P̃z, Ñz) is a well defined finite element for some
Ñz ⊂ Nz. The latter condition implies that

(4.8.2) φKz

N |
K̃z

= φK̃z

N ∀N ∈ Ñz and φKz

N |
K̃z
≡ 0 ∀N ∈ Nz\Ñz.

Let us present the details in the case that the basic elements are sim-
plices, as the terminology is simpler in this case. For each z, we let Kz be a
simplex containing z, and we pick K̃z to be a (closed) simplicial subcomplex
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of Kz, i.e., a vertex, edge, face, etc., of Kz. But we allow the dimension of
K̃z to be anything:

0 ≤ dim(K̃z) ≤ d

where d is the dimension of the underlying domain Ω. We only require that
z lie in K̃z. Thus we have

z ∈ K̃z ⊂ Kz and 0 ≤ dim(K̃z) ≤ dim(Kz).

Three examples which fit into this framework are noteworthy. The
first is the standard Lagrange, Hermite, Argyris, etc., interpolant (4.8.1) in
which dim(K̃z) = 0 for every z: K̃z = {z}. A second example is K̃z = Kz,
so that dim(K̃z) = d, for every z, which allows for the maximum amount
of smoothing (Clement 1975). This does not uniquely determine K̃z; one of
the elements to which z belongs would still have to be picked. Finally, it is
often useful to choose K̃z ⊂ ∂Ω whenever z ∈ ∂Ω (Scott & Zhang 1990).

For each node z, consider the corresponding local nodal basis for P̃z:{
φK̃z

N : N ∈ Ñz

}
.

Let

(4.8.3)
{

ψK̃z

N : N ∈ Ñz

}
denote the L2(K̃z)-dual basis for P̃z:

(4.8.4)
∫

K̃z

φK̃z

N (x)ψK̃z

M (x) dx = δMN ∀M,N ∈ Ñz

(δMN is the Kronecker delta). Equivalently, {ψN : N ∈ N} is the repre-
sentation in L2(K̃z) of {N ∈ Ñz} guaranteed by the Riesz Representa-
tion Theorem 2.4.2. We can extend the set of functions (4.8.3) to a set{

ψK̃z

N : N ∈ Nz

}
by setting ψN ≡ 0 for N ∈ Nz\Ñz. Then we have

(4.8.5)
∫

K̃z

φKz

N (x)ψK̃z

M (x) dx = δMN ∀M,N ∈ Nz

by (4.8.2).
We are now in a position to define a global interpolant for more general

functions, say u ∈ L1(K̃z) for all nodes z:

(4.8.6) Ĩhu =
∑

z

(∫
K̃z

ψK̃z

Nz
(x)u(x) dx

)
Φz.

Then we have the following result.
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(4.8.7) Theorem. Ĩh is a projection which equals Ih on Vh, the space
spanned by {Φz}:

Ĩhv = v ∀v ∈ Vh.

Proof. This follows from (4.8.5) since it implies that∫
K

ψK̃z

Nz
(x)v(x) dx = Nz(v) ∀v ∈ Vh. �	

Another key property of Ĩh is that it can be constructed to satisfy
boundary conditions. We state the result in the case of Lagrange elements
for the simple Dirichlet boundary condition. See (Girault & Scott 2002) for
Hermite elements and Dirichlet boundary conditions involving derivatives.

(4.8.3.8) Theorem. Suppose that K̃z ⊂ ∂Ω for all nodes z ∈ ∂Ω, and sup-
pose that all of the elements are Lagrange elements. Then Ĩhv = 0 on ∂Ω
as long as v = 0 on ∂Ω.

We now outline estimates for the approximation error v−Ĩhv; for com-
plete details, see (Scott & Zhang 1990) for Lagrange elements and (Girault
& Scott 2002) for Hermite elements. Let us assume that all elements have
shape functions PK containing Pm−1. Corresponding to Lemma 4.4.1 we
have, for arbitrary K ∈ T h and 1 ≤ p ≤ ∞,∥∥̂̃Ihv

∥∥
W m

p (K̂)
≤ C‖v̂‖

L1(ŜK)

where SK is a domain made of the elements in T h neighboring K

(4.8.9) SK = interior
(
∪
{
Ki : Ki ∩K �= ∅, Ki ∈ T h

})
and the “hats” refer to the corresponding domains (and functions) scaled
by the diameter of K, cf. (4.3.11). For any 0 ≤ s ≤ k ≤ m we have using
the techniques of proof of Theorem 4.4.4 and (Scott & Zhang 1990)

(4.8.10)

∥∥v − Ĩhv
∥∥

W s
p (K)

≤
∥∥v −Qk−1v

∥∥
W s

p (K)

+
∥∥Ĩh(v −Qk−1v)

∥∥
W s

p (K)

≤Chk−s
K |v|W k

p (SK)

where hK := diamK (this holds for s = k = 0 by setting Q−1 ≡ 0). If T h

is non-degenerate then

(4.8.11) sup
{

cardinality
{
K ∈ T h : interior K ⊂ SK

}
: K ∈ T h

}
≤ C

where C is a constant depending only on ρ in (4.4.16). Therefore, the fol-
lowing holds.
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(4.8.12) Theorem. Suppose all elements’ sets of shape functions contain all
polynomials of degree less than m and T h is non-degenerate. Let v ∈ W k

p (Ω)
for 0 ≤ k ≤ m and 1 ≤ p ≤ ∞. Then

(4.8.14)

( ∑
K∈T h

h
p(s−k)
K

∥∥v − Ĩhv
∥∥p

W s
p (K)

)1/p

≤ C |v|W k
p (Ω) ,

for 0 ≤ s ≤ k, where Ĩh is defined in (4.8.6).

Letting s = k and applying the triangle inequality, the following corol-
lary is derived.

(4.8.15) Corollary. Under the conditions of Theorem 4.8.12

(4.8.16)

⎛⎝ ∑
K∈T h

∥∥Ĩhv
∥∥p

W k
p (K)

⎞⎠1/p

≤ C |v|W k
p (Ω) .

Recalling that h = maxK∈T h diam (K), the statement of Theorem
4.8.12 can be simplified as follows:

(4.8.17)

⎛⎝ ∑
K∈T h

∥∥v − Ĩhv
∥∥p

W s
p (K)

⎞⎠1/p

≤ Chk−s |v|W k
p (Ω) ,

for 0 ≤ s ≤ k ≤ m.

4.9 A Discrete Sobolev Inequality

Let Ω be a polygonal domain in IR2 and T h be a regular triangulation of
Ω such that

(4.9.1) | ln hT | ≈ | ln h| ∀T ∈ T h,

where hT = diamT and h = maxT∈T h hT . Note that condition (4.9.1)
is satisfied by many graded meshes (cf. Apel (1999)). Denote by Vh ⊂
H1(Ω) the Pm Lagrange finite element space associated with T h. On the
one hand, Example 1.4.3 indicates that in general H1(Ω) �∈ L∞(Ω), and on
the other hand functions in Vh are continuous on Ω by construction. This
conflict is reconciled by the discrete Sobolev inequality, whose proof below
is essentially the same as the one in (Bramble, Pasciak & Schatz 1986).

(4.9.2) Lemma. (Discrete Sobolev Inequality) The following estimate holds :
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(4.9.3) ‖v‖L∞(Ω) ≤ C(1 + | ln h|)1/2 ‖v‖H1(Ω) ∀ v ∈ Vh ,

where the positive constant C is independent of h.

Proof. First we observe that Ω has the cone property, i.e., each point x ∈ Ω
is the vertex of a cone Kx congruent to the cone (or sector) K defined in
polar coordinates by

K = {(r, θ) : 0 < r < d < ∞ , 0 < θ < ω < 2π} .

Let T be a triangle of T h and c be the centroid of T . Without loss of
generality we may assume that hT = diam T < d/2 (cf. exercise 4.x.19). For
simplicity we may take c to be the origin and Kc to be K. The regularity
of T h implies that there exists a number η which is independent of T such
that 0 < η < 1 and the cone

Kη = {(r, θ) : 0 < r < ηhT , 0 < θ < ω}

is a subset of T .
Let v ∈ Vh be arbitrary and α = v(c). It follows from the fundamental

theorem of calculus that

α = v(r, θ)−
∫ r

0

∂v

∂ρ
(ρ, θ) dρ for

d

2
< r < d ,

and hence

(4.9.4) α2 ≤ 2v2(r, θ) + 2
(∫ r

0

∂v

∂ρ
(ρ, θ) dρ

)2

for
d

2
< r < d .

We can estimate the integral on the right-hand side of (4.9.4) by∫ r

0

∂v

∂ρ
(ρ, θ) dρ =

∫ ηhT

0

∂v

∂ρ
(ρ, θ) dρ +

∫ r

ηhT

∂v

∂r
(ρ, θ) dρ(4.9.5)

≤ ηhT |v|W 1
∞(T ) +

[∫ r

ηhT

(∂v

∂ρ
(ρ, θ)

)2

ρ dρ

]1/2 √
ln(d/ηhT ) .

Combining (4.9.4) and (4.9.5) we obtain

α2

∫ ω

0

∫ d

d/2

r drdθ ≤ 2
∫ ω

0

∫ d

d/2

v2(r, θ)r drdθ + 4(ηhT )2|v|2W 1
∞(T )

∫ ω

0

∫ d

d/2

r drdθ

+ 4 ln(d/ηhT )
∫ ω

0

∫ d

d/2

[∫ r

ηhT

(∂v

∂ρ
(ρ, θ)

)2

ρ dρdθ

]
r dr ,

which implies, by the inverse estimate (4.5.4),

(4.9.6) |v(c)| ≤ C1(1 + | ln hT |)1/2 ‖v‖H1(Ω) ,

where the constant C1 is independent of h and c.
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Let x be an arbitrary point in T . The inverse estimate (4.5.4) implies
that

(4.9.7) |v(x)− v(c)| ≤ hT |v|W 1
∞(T ) ≤ C2|v|H1(T ) ,

where the positive constant C2 is independent of h and x.
The estimate (4.9.3) follows from (4.9.1), (4.9.6), (4.9.7) and the arbi-

trariness of T and x. �	

(4.9.8.) Remark. A proof of the discrete Sobolev inequality in the context
of finite difference grid functions can be found in (Bramble 1966).

(4.9.9) Remark. The estimate (4.9.2) is sharp (cf. (Brenner & Sung 2000a)).

4.x Exercises

4.x.1 Show that for |α| ≤ m − 1, Dα
x Tm

y u(x) = T
m−|α|
y Dα

x u(x) ∀u ∈
C|α|(B) (cf. the proof of Proposition 4.1.17).

4.x.2 Prove the form of Taylor’s Theorem given in (4.2.1).

4.x.3 Verify the claims in (4.3.12) and (4.3.13). (Hint: show that Tm
d ŷu(d x̂)

= T̂m
ŷ û(x̂) where

T̂m
ŷ û(x̂) =

∑
|α|<m

1
α!

Dα
ŷ û(ŷ)(x̂− ŷ)α.)

4.x.4 Show that (4.3.15) is equivalent to the following inequality:

‖u‖Lp(Ω) ≤ C
( ∣∣∣ ∫

Ω

u dx
∣∣∣+ |u|W 1

p (Ω)

)
∀u ∈ W 1

p (Ω),

where the constant C depends only on the dimension n and the
chunkiness parameter γ of Ω. (Hint: See the proof of (5.3.3).)

4.x.5 Complete the proof of the general case of Theorem 4.4.4 by using a
homogeneity argument.

4.x.6 Prove that a family {T h} of triangulations is quasi-uniform if and
only if it is non-degenerate and there exist positive constants c and
C, independent of h, such that cdiam K1 ≤ diam K2 ≤ C diam K1

for any K1,K2 ∈ T h.

4.x.7 Prove the inequality (4.4.22).
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4.x.8 Let {am}∞m=1 be a sequence of nonnegative numbers. Show that if
1 ≤ q ≤ p, then (

∑∞
m=1 ap

m)1/p ≤ (
∑∞

m=1 aq
m)1/q.

4.x.9 Let {am}M
m=1 be a finite sequence of nonnegative numbers. Show

that if p < q ≤ ∞, then(
M∑

m=1

ap
m

)1/p

≤ M1/p−1/q

(
M∑

m=1

aq
m

)1/q

if q < ∞

and (
M∑

m=1

ap
m

)1/p

≤ M1/p max
1≤m≤M

am if q = ∞.

4.x.10 (Minimum angle condition) Let {T h} be a family of triangulations
of Ω ⊆ IR2. Show that {T h} is non-degenerate if and only if all
the angles of the triangles in {T h} are bounded below by a positive
constant.

4.x.11 Let K̂ be the reference triangle with vertices (0, 0), (1, 0) and (0, 1),
and ζ ∈ Wm

p (K̂) for m ≥ 2 and 1 ≤ p ≤ ∞. Show that

‖(∂/∂xj)(ζ − Iζ)‖Lp(K̂) ≤ C|∂ζ/∂xj |W m
p (K̂)

where Iζ is the interpolant of ζ in the Pm−1 Lagrange finite element.
(See (Apel 1999) for other anisotropic interpolation estimates.)

4.x.12 (Maximum angle condition) Let T be a triangulation of a polyg-
onal domain Ω ⊆ IR2, and Vh = {v ∈ C0(Ω) : v|T is linear for all
T ∈ T }. Let u ∈ H2(Ω) and Iu ∈ Vh be the linear interpolant of u.
Show that

‖u− Iu‖L2(Ω) + h |u− Iu|H1(Ω) ≤ ζ(θ)h2 |u|H2(Ω)

where h = maxT∈T diam (T ), θ is the maximum angle in T , and
ζ is an increasing positive function defined on [π/3, π). (Hint: use
Exercise 4.x.10.)

4.x.13 Derive estimates analogous to those in Sect. 4.6 for serendipity ele-
ments in three dimensions.

4.x.14 Prove the following Sobolev inequality:

‖v‖Lq(Ω) ≤ ‖v‖W m
p (Ω) for m +

n

q
≥ n

p

provided q < ∞. (Hint: show that a Riesz potential of order m maps
Lp(Ω) to Lq(Ω) for m+ n

q ≥ n
p , cf. the proof of (4.3.4) and (Sobolev

1963 & 1991).)
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4.x.15 Let P be a finite dimensional space of polynomials, and suppose K is
any open set containing a ball of radius ρdiam K with ρ > 0. Prove
(4.5.4) holds with C independent of K̂. (Hint: let Bρh ⊂ K ⊂ Bh be
balls and replace (4.5.5) by ‖v‖W l

p(Bh) ≤ C ‖v‖Lq(Bρh) ∀v ∈ P.)

4.x.16 Prove that a family {T h} of non-degenerate triangulations is locally
quasi-uniform, in two or higher dimensions (Hint: neighboring ele-
ments are all connected to each other via a sequence of elements
with common faces.),

4.x.17 Consider the stiffness matrix K for piecewise linear functions on
a quasi-uniform mesh in one dimension as in Sect. 0.5. Prove that
the condition number (Isaacson & Keller 1966) of K is bounded by
O(h−2). (Hint: use inverse estimates.)

4.x.18 Complete the density argument for the proof of Proposition 4.3.2.
(Hint: Rm is a continuous operator from Wm

p to Lp by construction
and by Corollary 4.1.15. For a Cauchy sequence of smooth functions
in Wm

p , Rm applied to the sequence will be Cauchy in both L∞ and
Lp. Show that the limits are the same.)

4.x.19 Show that the estimate (4.9.2) is trivial if h ≥ d/2. (Hint: Apply
the inverse estimate (4.5.4).)

4.x.20 Show that the function u in Lemma 4.3.4 is continuous on Ω and

‖u‖L∞(Ω) ≤ Cm,n,γ,d ‖u‖W m
p (Ω),

if Ω satisfies the segment condition. (Hint: Use the density of
C∞(Ω) stated in Remark 1.3.4 and the arguments in the proof of
Lemma 4.3.4.)

4.x.21 Let K̂ be the unit square and K be a convex quadrilateral. Show
that there exists a diffeomorphism F : K̂ −→ K such that the
components of F belong to Q1.

4.x.22 Let {T h} be a non-degenerate family of triangulations of the polyg-
onal domain Ω by convex quadrilaterals, Vh be the Q1-isoparametric
finite element space associated with T h (cf. Section 4.7 and exer-
cise 4.x.20), and Ih : H2(Ω) −→ Vh be the the nodal interpolation
operator. Show that

‖u−Ihu‖L2(Ω) + h|u−Ihu|H1(Ω) ≤ Ch2|u|H2(Ω) ∀u ∈ H2(Ω).

(More on quadrilateral elements can be found in (Girault & Raviart
1979) and (Arnold, Boffi & Falk 2000).)



Chapter 5

n-Dimensional Variational Problems

We now give several examples of higher-dimensional variational problems
that use the theory developed in previous chapters. The basic notation is
provided by the Sobolev spaces developed in Chapter 1. We combine the
existence theory of Chapter 2 together with the approximation theory of
Chapters 3 and 4 to provide a complete theory for the discretization process.
Several examples will be fully developed in the text, and several others are
found in the exercises. Throughout this chapter, we assume that the domain
Ω is bounded.

5.1 Variational Formulation of Poisson’s Equation

To begin with, consider Poisson’s equation

(5.1.1) −∆u = f in Ω

where ∆ denotes the Laplace operator

∆ :=
n∑

i=1

∂2

∂x2
i

.

Augmenting this equation, we again consider boundary conditions of two
types:

u = 0 on Γ ⊂ ∂Ω (Dirichlet)
(5.1.2)

∂u

∂ν
= 0 on ∂Ω\Γ (Neumann)

where ∂u
∂ν denotes the derivative of u in the direction normal to the bound-

ary, ∂Ω. That is, we assume that ∂Ω is Lipschitz continuous, we let ν
denote the outward unit normal vector to ∂Ω, which is by assumption in
L∞(∂Ω)n, and we set
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∂u

∂ν
= ν · ∇u.

To begin with, we assume that Γ is closed and has nonzero measure. Later,
we will return to the case when Γ is empty, the pure Neumann case.

To formulate the variational equivalent of ((5.1.1), (5.1.2)), we define
a variational space that incorporates the essential, i.e., Dirichlet, part of
boundary condition (5.1.2):

(5.1.3) V :=
{
v ∈ H1(Ω) : v|Γ = 0

}
,

where we note that v|Γ = 0 is to be interpreted, using the trace theorem, in
L2(∂Ω). That is, we think of it as meaning v · χΓ = 0 where χ is the usual
characteristic function. The appropriate bilinear form for the variational
problem is determined, as in the one dimensional cases, by multiplying
Poisson’s equation by a suitably smooth function, integrating over Ω and
then integrating by parts. To prepare for this last step, we develop some of
the standard theorems of advanced calculus in the setting of Sobolev spaces.
In the following, we assume that Ω is a Lipschitz domain and ν denotes the
outward unit normal to ∂Ω. Moreover, for any linear space B, we denote
by Bn the linear space of n-tuples of members of B (if B is a normed space,
then we give Bn a norm defined as an appropriate combination of the norms
on each component separately).

(5.1.4) Proposition. Let u ∈ W 1
1 (Ω)n. Then∫

Ω

∇ · u dx =
∫

∂Ω

u · ν ds.

Proof. Recall this result for smooth functions and use a density argument
as in the proof of Proposition 1.6.3. Note that the trace theorem implies
that, if

C∞(Ω)n � uk → u in W 1
1 (Ω)

n
,

then uk · ν converges in L1(∂Ω) to u · ν because νi ∈ L∞(∂Ω) for all
i = 1, . . . , n (Hölder’s inequality). �	

(5.1.5) Proposition. Let v, w ∈ H1(Ω). Then, for i = 1, . . . , n,∫
Ω

(
∂v

∂xi

)
w dx = −

∫
Ω

v

(
∂w

∂xi

)
dx +

∫
∂Ω

vwνi ds.

Proof. Apply the previous proposition to u := vwei, which is in W 1
1 (Ω)n

by Schwarz’ inequality and exercise 5.x.2. �	

(5.1.6) Proposition. Let u ∈ H2(Ω) and v ∈ H1(Ω). Then∫
Ω

(−∆u)v dx =
∫

Ω

∇u · ∇v dx−
∫

∂Ω

∂u

∂ν
v ds.
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Proof. Apply the previous proposition to v := − ∂u
∂xi

and w := v, and sum
over i. �	

Using the latter proposition, if u ∈ H2(Ω) satisfies Poisson’s equation
(5.1.1) with boundary conditions (5.1.2) and v ∈ V , then

(f, v) =
∫

Ω

(−∆u)v dx =
∫

Ω

∇u · ∇v dx−
∫

∂Ω

v
∂u

∂ν
ds

=
∫

Ω

∇u · ∇v dx := a(u, v).

The boundary term vanishes for v ∈ V because either v or ∂u
∂ν is zero on

any part of the boundary. Thus, we have proved the following.

(5.1.7) Proposition. Let u ∈ H2(Ω) solve Poisson’s equation (5.1.1) (this
implies f ∈ L2(Ω)) with boundary conditions (5.1.2). Then u can be char-
acterized via

(5.1.8) u ∈ V satisfies a(u, v) = (f, v) ∀v ∈ V.

The companion result, namely that a solution to the variational prob-
lem (5.1.8) solves Poisson’s equation, can be proved in a similar fashion to
the proof given for Theorem 0.1.4.

(5.1.9) Proposition. Let f ∈ L2(Ω) and suppose that u ∈ H2(Ω) solves the
variational equation (5.1.8). Then u solves Poisson’s equation (5.1.1) with
boundary conditions (5.1.2).

Proof. The Dirichlet boundary condition on u follows since u ∈ V . Using
Proposition 5.1.6 with v ∈ D(Ω) ⊂ V and (5.1.8), we find∫

Ω

(f + ∆u)v dx = (f, v)−
∫

Ω

∇u · ∇v dx = (f, v)− a(u, v) = 0.

Since D(Ω) is dense in L2(Ω) (cf. exercise 2.x.14), the differential equation
(5.1.1) is satisfied in L2(Ω) (compare this with the proof of Theorem 0.1.4.)
Moreover, Proposition 5.1.6 then implies that

0 = (f, v)− a(u, v) =
∫

Ω

(−∆u)v dx−
∫

Ω

∇u · ∇v dx =
∫

∂Ω

v
∂u

∂ν
ds

for all v ∈ V . The Neumann boundary condition on u follows if we can show
that v|∂Ω\Γ can be chosen arbitrarily with v ∈ V . This is a bit technical,
since we are only assuming that ∂Ω is Lipschitz and that Γ is a closed
subset of it. But this means at least that, for any point P in ∂Ω\Γ there
is a neighborhood, N , of P in ∂Ω\Γ that can be written as a graph of a
Lipschitz function φ:
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N = {(x̂, φ(x̂)) : x̂ ∈ ω}

where ω is an open subset of IRn−1 and x̂ := (x1, . . . , xn−1). Moreover, we
can assume that

{(x1, . . . , xn) : x̂ ∈ ω, −ε < xn − φ(x̂) < 0} ⊂ Ω

where ε > 0 depends only on Ω. The boundary integral over N can be
written as ∫

N

v
∂u

∂ν
ds =

∫
ω

(
v
∂u

∂ν

)
(x̂,φ(x̂))

√
1 + |∇φ(x̂)|2 dx̂.

Let w ∈ D(ω) and set

v(x̂, t + φ(x̂)) := w(x̂)(1 + t/ε) ∀x̂ ∈ ω, −ε < t < 0

with v defined to be zero elsewhere. Then v ∈ V and

0 =
∫

∂Ω

v
∂u

∂ν
ds =

∫
N

v
∂u

∂ν
ds =

∫
ω

w(x̂)
∂u

∂ν
(x̂, φ(x̂))

√
1 + |∇φ(x̂)|2 dx̂.

Since the L∞ function
√

1 + |∇φ(x̂)|2 is bounded below by 1 and w was
arbitrary, we conclude that ∂u

∂ν |N = 0 (cf. exercise 1.x.39). Since ∂Ω\Γ is
covered by such neighborhoods, N, we conclude that the Neumann condition
holds on all of ∂Ω\Γ . �	

5.2 Variational Formulation of the Pure Neumann
Problem

In the previous section, we introduced the variational formulation for Pois-
son’s equation with a combination of boundary conditions, and they all
contained some essential (i.e., Dirichlet) component. The situation for the
case of pure Neumann (or natural) boundary conditions

(5.2.1)
∂u

∂ν
= 0 on ∂Ω

(i.e., when Γ = ∅) is a bit different, just as in the one-dimensional case (cf.
exercise 0.x.3). In particular, solutions are unique only up to an additive
constant, and they can exist only if the right-hand side f in (5.1.1) satisfies

(5.2.2)

∫
Ω

f(x) dx =
∫

Ω

−∆u(x) dx

=
∫

Ω

∇u(x) · ∇1 dx−
∫

∂Ω

∂u

∂ν
ds = 0
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using Proposition 5.1.6. We will see later that such behavior is typical for
elliptic operators, such as −∆+λI, in the case when λ is a simple eigenvalue
(in this case, λ = 0). A variational space appropriate for the present case is

(5.2.3) V =
{

v ∈ H1(Ω) :
∫

Ω

v(x) dx = 0
}

.

For any integrable function g, we define the mean, g, of g as follows:

(5.2.4) g :=
1

meas (Ω)

∫
Ω

g(x) dx.

For any v ∈ H1(Ω), note that v − v ∈ V . Using the same techniques as in
the previous section, we can prove the following proposition.

(5.2.5) Proposition. Let u ∈ H2(Ω) solve Poisson’s equation (5.1.1) with
pure Neumann boundary conditions ((5.1.2) with Γ = ∅ or (5.2.1); this
implies f ∈ L2(Ω) satisfies (5.2.2)). Then u − u satisfies the variational
formulation (5.1.8) with V defined as in (5.2.3).

The companion to this result is more complicated than its counterpart
in the previous section.

(5.2.6) Proposition. Let f ∈ L2(Ω) and suppose that u ∈ H2(Ω) solves
the variational equation (5.1.8) with V defined as in (5.2.3). Then u solves
Poisson’s equation (5.1.1) with a right-hand-side given by

f̃(x) := f(x)− f ∀x ∈ Ω

with boundary conditions (5.2.1).

(5.2.7) Remark. The statements of the equivalence of the original and the
variational problems are similar to the previous section, except that the
definition of V has changed and constraints appear on f and u. Note that
the Riesz Representation Theorem guarantees a solution for any f as soon
as we know a(·, ·) to be coercive. Since v ∈ V implies

∫
Ω

v(x) dx = 0, we
have ∫

Ω

v(x)f̃(x) dx =
∫

Ω

v(x)f(x) dx ∀v ∈ V,

so that the variational problems for f and f̃ are identical.

Proof. The previous remark shows that the variational problem is the same
whether we use f or f̃ . Thus, it suffices to suppose that f has mean zero
and to verify (5.1.1) and (5.2.1) in this case. Using the argument of the
previous section, we see that∫

Ω

(−∆u− f)v dx = 0 ∀v ∈ D̃(Ω) :=
{
φ ∈ D(Ω) : φ = 0

}
.
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It is easy to see that the closure of D̃(Ω) in L2(Ω) is the subspace

L̃2(Ω) :=
{
φ ∈ L2(Ω) : φ = 0

}
(cf. exercise 5.x.1). Thus, we conclude that the equation −∆u = f + δ
holds (in L2(Ω)) where δ = −∆u since

∫
Ω

δv(x) dx = 0 for v ∈ V . Using
Proposition 5.1.6 again, we find

0 = (f, v)− a(u, v) =
∫

Ω

(−∆u− δ)v dx− a(u, v)

=
∫

Ω

(−∆u)v dx− a(u, v) = −
∫

∂Ω

v
∂u

∂ν
ds ∀v ∈ V.

But clearly v|∂Ω can be chosen arbitrarily while keeping v ∈ V : let w ∈
H1(Ω) be arbitrary and set v := w − wφ where φ ∈ D(Ω) satisfies φ = 1.
Thus, we conclude that (5.2.1) holds. Finally, applying (5.1.6) one more
time with v ≡ 1 shows then that δ = 0. �	

5.3 Coercivity of the Variational Problem

To apply the theory developed in Chapter 2, we must see that the varia-
tional form a(·, ·) introduced in the previous two sections is coercive on the
corresponding spaces V (that it is bounded on all of H1(Ω) is obvious).
Coercivity in the case of pure Neumann boundary conditions follows from
the approximation theory in Chapter 4. If Ω is a bounded domain that can
be written as a finite union of domains that are star-shaped with respect
to a ball as described there, then

(5.3.1) inf
r∈IR

‖v − r‖L2(Ω) ≤ CΩ |v|H1(Ω) ∀v ∈ H1(Ω).

But we know that

inf
r∈IR

‖v − r‖L2(Ω) = ‖v − v‖L2(Ω)

where v denotes the mean of v on Ω, defined in (5.2.4). With V as defined in
(5.2.3), v ∈ V implies that v = 0, so ‖v‖L2(Ω) ≤ CΩ |v|H1(Ω) = CΩ

√
a(v, v).

Squaring this and adding a(v, v) to both sides yields the desired coercivity
inequality, which we state as the following proposition.

(5.3.2) Proposition. Let Ω be such that (5.3.1) holds, e.g., a finite union
of domains that are star-shaped with respect to a ball. Let V be defined by
(5.2.3) and let CΩ be the approximation constant in (5.3.1). Then

‖v‖2H1(Ω) ≤
(
1 + C 2

Ω

)
a(v, v) ∀v ∈ V.
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Now let us consider the verification of coercivity in the case of Dirichlet
boundary conditions, with V as defined in (5.1.3). We will first establish
the following more general inequality for H1(Ω):

(5.3.3) ‖v‖L2(Ω) ≤ C
( ∣∣∣ ∫

Γ

v ds
∣∣∣+ |u|H1(Ω)

)
∀ v ∈ H1(Ω),

where the positive constant C depends only on Ω and Γ .
Let v ∈ H1(Ω) be arbitrary. We have

‖v‖L2(Ω) ≤ ‖v − v‖L2(Ω) + ‖v‖L2(Ω)

≤ CΩ |v|H1(Ω) +
|Ω|1/2

|Γ |
∣∣∣ ∫

Γ

v ds
∣∣∣ (by 5.3.1)

≤ CΩ |v|H1(Ω) +
|Ω|1/2

|Γ |
( ∣∣∣ ∫

Γ

v ds
∣∣∣+ ∣∣∣ ∫

Γ

(v − v) ds
∣∣∣ )

and∣∣∣ ∫
Γ

(v − v) ds
∣∣∣ ≤ |Γ |1/2‖v − v‖L2(∂Ω)

≤ |Γ |1/2CΩ

(
‖v − v‖L2(Ω) + |v − v|H1(Ω)

)
(Trace Theorem)

≤ |Γ |1/2CΩ |v|H1(Ω), (by 5.3.1)

which together imply (5.3.3).
The following coercivity result is an immediate consequence of (5.3.3).

(5.3.4) Proposition. Let Ω be as in Proposition 5.3.2, and suppose Γ is
closed and meas (Γ ) > 0. Let V be defined by (5.1.3). Then there is a
constant C depending only on Ω and Γ such that

‖v‖2H1(Ω) ≤ Ca(v, v) ∀v ∈ V.

This estimate is also true in an Lp context as well (cf. Exercise 5.x.13).
The special case Γ = ∂Ω is frequently used and is known by a special name.
Recall the notation W̊ 1

p (Ω) (cf. (1.6.7)), for functions in W 1
p (Ω) satisfying

a Dirichlet boundary condition on ∂Ω.

(5.3.5) Proposition. (Poincaré’s Inequality) Let Ω be as in Proposition
5.3.2. Then there is a constant C < ∞ such that

‖v‖W 1
p (Ω) ≤ C |v|W 1

p (Ω) ∀v ∈ W̊ 1
p (Ω).
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5.4 Variational Approximation of Poisson’s Equation

Let T h denote a subdivision of Ω and let Ih denote a global interpolator
for a family of finite elements based on the components of T h. Let us
suppose that Ihu is continuous, i.e., that the family of elements involved
are C0. Further, suppose that the corresponding shape functions have an
approximation order, m, that is

(5.4.1)
∥∥u− Ihu

∥∥
H1(Ω)

≤ Chm−1 |u|Hm(Ω) .

In order to approximate the variational problem (5.1.8) with variational
space (5.1.3), we need to insure two properties of the corresponding space,
Vh. In order to apply Céa’s Theorem 2.8.1, we must have

(5.4.2) Vh ⊂ V.

In order to use the approximation theory derived in Chapter 4, we need to
have

(5.4.3) Ih
(
V ∩ Ck(Ω)

)
⊂ Vh

(k is the highest order of differentiation in the definition of Ih). If both of
these conditions hold, then the following is an immediate consequence of
(2.8.1):

(5.4.4) Theorem. Suppose that conditions (5.4.1), (5.4.2) and (5.4.3) hold.
Then the unique solution, uh ∈ Vh, to the variational problem

a(uh, v) = (f, v) ∀v ∈ Vh

satisfies
‖u− uh‖H1(Ω) ≤ Chm−1 |u|Hm(Ω) .

The requirements (5.4.2) and (5.4.3) place a constraint on the subdivi-
sion in the case that Γ is neither empty nor all of the boundary. In such a
case, it is necessary to choose the mesh so that it aligns properly with the
points where the boundary conditions change from Dirichlet to Neumann.
For example, in two dimensions, if one uses Lagrange elements and insures
that the points where the boundary conditions change are vertices in the
triangulation, then defining

Vh := Ih
(
V ∩ C0(Ω)

)
is equivalent to defining Vh to be the space of piecewise polynomials that
vanish on edges contained in Γ . Since we have chosen the mesh so that the
edges contained in Γ form a subdivision of the latter, it follows that (5.4.2)
holds. On the other hand, if the set of edges where functions in Vh vanish
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is too small, we fail to obtain (5.4.2). If the set of edges where functions in
Vh vanish is too big, (5.4.3) fails to hold. In the case of pure Dirichlet data,
i.e., Γ = ∂Ω, then Vh is just the set of piecewise polynomials that vanish on
the entire boundary. In the case of pure Neumann data, i.e., Γ = ∅, Vh is
the entire set of piecewise polynomials with no constraints at the boundary.

We now consider error estimates for u−uh in the L2 norm. To estimate
‖u− uh‖L2(Ω), we use a “duality” argument that is similar to the one given
in Chapter 0. Let w be the solution of

−∆w = e in Ω

(5.4.5)

w = 0 on Γ ⊂ ∂Ω &
∂w

∂ν
= 0 on ∂Ω\Γ.

where e := u − uh. The variational formulation of this problem is: find
w ∈ V such that

(5.4.6) a(w, v) = (e, v) ∀v ∈ V.

Since u− uh ∈ V ′, the solution exists uniquely. Therefore,

‖u− uh‖2L2(Ω) = (u− uh, u− uh)

= a(w, u− uh)
= a(u− uh, w − Ihw)
≤ C ‖u− uh‖H1(Ω)

∥∥w − Ihw
∥∥

H1(Ω)

≤ Ch ‖u− uh‖H1(Ω) |w|H2(Ω) .

We now suppose that the equivalent problems (5.4.5) and (5.4.6) have the
property that

(5.4.7) |w|H2(Ω) ≤ C ‖e‖L2(Ω) .

Such a condition will be discussed in the following section. With such a
condition holding, we thus have proved the following.

(5.4.8) Theorem. Suppose that conditions (5.4.1), (5.4.2), (5.4.3) and (5.4.7)
hold. Then

‖u− uh‖L2(Ω) ≤ Ch ‖u− uh‖H1(Ω)

≤ Chm |u|Hm(Ω) .

Inhomogeneous boundary conditions are easily treated. For example,
suppose that we wish to solve (5.1.1) with boundary conditions

(5.4.9) u = gD on Γ ⊂ ∂Ω &
∂u

∂ν
= gN on ∂Ω\Γ
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where gD and gN are given. For simplicity, let us assume that gD is defined
on all of Ω, with gD ∈ H1(Ω) and that gN ∈ L2(∂Ω\Γ ). Define V to be
the space (5.1.3). Then the variational formulation of ((5.1.1), (5.4.9)) is as
follows: find u such that u− gD ∈ V and such that

(5.4.10) a(u, v) = (f, v) +
∫

∂Ω\Γ

gNv ds ∀v ∈ V.

This is well-posed since the linear form

F (v) := (f, v) +
∫

∂Ω\Γ

gNv ds

is well defined (and continuous) for all v ∈ V .
The equivalence of these formulations follows from (5.1.6):∫

Ω

(−∆u)v dx =
∫

Ω

∇u · ∇v dx ds−
∫

∂Ω

v
∂u

∂ν
ds

= a(u, v)−
∫

∂Ω\Γ

v
∂u

∂ν
ds

for any v ∈ V . Thus, if u solves ((5.1.1), (5.4.9)) then (5.4.10) follows as a
consequence. Conversely, if u solves (5.4.10) then choosing v to vanish near
∂Ω shows that (5.1.1) holds, and thus∫

∂Ω\Γ

gNv ds−
∫

∂Ω\Γ

v
∂u

∂ν
ds = 0 ∀v ∈ V.

Choosing v as in the proof of (5.1.9), (5.4.9) follows.
The finite element approximation of (5.4.10) involves, typically, the use

of an interpolant, IhgD, of the Dirichlet data. We pick a subspace Vh of V
just as before, and we seek uh such that uh − IhgD ∈ Vh and such that

(5.4.11) a(uh, v) = (f, v) +
∫

∂Ω\Γ

gNv ds ∀v ∈ Vh.

We leave it to the reader (in exercise 5.x.10) to prove the analogs of (5.4.4)
and (5.4.8) for the solution to (5.4.11). We note that further approximation
may be necessary in order to compute efficiently (and accurately) the right-
hand side in (5.4.11). This can also be done using interpolants of f and gN

(cf. exercise 5.x.11).

5.5 Elliptic Regularity Estimates

Consider the validity of the estimate (5.4.7) in this section. To begin with,
we motivate it by studying the problem on all of IRn. We will freely use
properties of the Fourier transform,
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v̂(ξ) :=
∫

IRn

v(x)e−ix·ξ dx,

(cf. Stein & Weiss 1971). This operator diagonalizes differential operators,
that is,

D̂αv(ξ) = (iξ)αv̂(ξ).

The condition (5.4.7) means that we can bound all second derivatives in
terms of a particular combination of them. This follows because

D̂αv(ξ) = (iξ)αv̂(ξ) = − (iξ)α

|ξ|2 ∆̂v(ξ).

The function ξα

|ξ|2 is bounded by 1 if |α| = 2, so∥∥∥D̂αv
∥∥∥

L2(IRn)
≤
∥∥∥∆̂v

∥∥∥
L2(IRn)

.

Since the Fourier transform is an isometry on L2, it follows that

‖Dαv‖L2(IRn) ≤ ‖∆v‖L2(IRn) ∀|α| = 2,

proving (5.4.7) in this special case.
If Ω has a smooth boundary, and Γ is either empty or all of ∂Ω,

then (5.4.7) is known to hold (Friedman 1976, Rauch 1991). In case n = 2
and Ω is convex, with Γ again either empty or all of ∂Ω, then (5.4.7) is
known to hold (Grisvard 1985). More generally, the following estimate holds
(assuming Ω is bounded):

(5.5.1) ‖v‖W 2
p (Ω) ≤ ‖∆v‖Lp(Ω) , 1 < p < µ,

where µ depends on ∂Ω (Dauge 1988). When Ω is neither smooth nor
convex, then (5.4.7) does not hold, as we now show by example.

(5.5.2) Example. Let Ω be a sector of the unit disk with angle π/β:

(5.5.3) Ω := {(r, θ) : 0 < r < 1, 0 < θ < π/β} .

If β < 1, then Ω is not convex. Let v(r, θ) = rβ sin βθ =  (zβ). Being the
imaginary part of a complex analytic function, v is harmonic in Ω. Define
u(r, θ) = (1− r2)v(r, θ). Note that u is zero on ∂Ω. Computing, we find

∆u = (1− r2)∆v + 2∇(1− r2) · ∇v + v∆(1− r2)

= −4r
∂v

∂r
− 4v = −(4β + 4)v.

Since v is bounded, it is in Lp(Ω) for all 1 ≤ p ≤ ∞. However,

∂2u

∂r2
≈ rβ−2 near r = 0,
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so for β < 1, u cannot be in H2(Ω). Note that since β ≥ 1/2 in any case,
we always have u ∈ W 2

p (Ω) for some p > 1 depending only on β.

(5.5.4) Example. In the case that the boundary is regular, but boundary
conditions change from Dirichlet to Neumann type, there is also a lack of
regularity. Consider the domain Ω = {(r, θ) : 0 < r < 1, 0 < θ < π}, and
suppose that

Γ := {(x, 0) : 0 ≤ x ≤ 1} ∪ {(1, θ) : 0 ≤ θ ≤ π} .

We want to study the regularity of the solution to

∆u = f in Ω

u = 0 on Γ &
∂u

∂ν
= 0 on ∂Ω\Γ.

For motivation, consider the domain Ω̃ defined by reflecting Ω with respect
to x-axis. Functions satisfying the above boundary conditions can be ex-
tended by ṽ(x, y) = v(x,−y). Across the segment {(x, 0) : −1 ≤ x ≤ 0},
the extension will be C1 (assuming that v ∈ C1(Ω) to start with). On the
other hand, ṽ will vanish on

{(x, 0) : 0 ≤ x ≤ 1} ∪ {(1, θ) : 0 ≤ θ < 2π} .

These are precisely the boundary conditions in Example 5.5.2 with β = 1/2,
a slit domain. If we pick the solution to that problem, namely u(r, θ) =
(1 − r2)r1/2 sin θ/2, then this solves the above system of equations with
f = −6r1/2 sin θ/2 ∈ L2(Ω). Since the singularity of u is r1/2 the solution
will not, in general, be in H2(Ω) for f ∈ L2(Ω).

(5.5.5) Example. Finally, for completeness, we remark that the restriction
p �= 1,∞ in (5.5.1) is sharp. We give an example to show it is false for
p = ∞. Let u(x, y) = xy log r, where r2 = x2 + y2. Then

∆u = xy∆ log r + 2∇xy · ∇ log r + log r ∆xy

= 2∇xy · ∇ log r

= 2(y, x) · (x, y)/r2

= 4xy/r2.

Thus, ∆u ∈ L∞(Ω), where Ω is, say, the unit disk, and u = 0 on ∂Ω.
However, it is easy to verify that

∂2u

∂x∂y
= log r + v

where v ∈ L∞(Ω). Thus, u does not lie in W 2
∞(Ω).
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5.6 General Second-Order Elliptic Operators

Let us now consider more general elliptic operators and their associated
variational forms. Let aij ∈ L∞(Ω), i, j = 1, . . . , n and aij = aji. The
matrix of coefficients, (aij), is said to be uniformly elliptic provided there
is a positive constant, α, such that

(5.6.1)
n∑

i,j=1

aij(x)ξiξj ≥ α
n∑

i=1

ξ2
i ∀ξ ∈ IRn a.e. in Ω,

that is, if the matrix (aij) is uniformly (a.e.) positive definite. The elliptic
operator associated with an elliptic coefficient matrix is defined via

(5.6.2) Au(x) := −
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi
(x)

)
.

If, for example, (aij(x)) is the identity matrix for all x ∈ Ω, then we obtain
the Laplace operator studied earlier, and the constant α may be taken to
be one. The natural bilinear form associated with (5.6.2) is

(5.6.3) a(u, v) :=
∫

Ω

n∑
i,j=1

aij(x)
∂u

∂xi
(x)

∂v

∂xj
(x) dx.

Note that we do not assume any smoothness of the coefficients, so that
even discontinuous coefficients are allowed. This causes no difficulty for the
variational formulation, but the differentiation of discontinuous functions
in (5.6.2) would require further justification (e.g., via the variational for-
mulation itself). The following estimate follows simply by replacing ξi by
∂v
∂xi

in (5.6.1) and integrating.

(5.6.4) Lemma. Suppose the coefficient matrix satisfies (5.6.1). Then the
associated bilinear form (5.6.3) satisfies

a(v, v) ≥ α |v|2H1(Ω) ∀v ∈ H1(Ω)

where α is the constant in (5.6.1).

The natural boundary conditions associated with the general form
(5.6.3) are more complex than for example (5.2.1). Applying (5.1.5) with
v := −aji

∂u
∂xj

, and summing over i, yields (after switching i and j)∫
Ω

Auw dx = a(u,w)−
∫

∂Ω

n∑
i,j=1

aij
∂u

∂xi
νjw.

Thus, the natural boundary condition associated with (5.6.3), expressed in
operator form, is
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(5.6.5)
n∑

i,j=1

aij
∂u

∂xi
νj = 0.

The variational form (5.6.3) is symmetric. In general, nonsymmetric
problems arise in practice. A problem in the differential form

(5.6.6)

Au(x) :=

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi
(x)

)
+

n∑
k=1

bk(x)
∂u

∂xk
(x) + b0(x)u(x)

is naturally expressed using the variational form

(5.6.7) a(u, v) :=
∫

Ω

n∑
i,j=1

aij
∂u

∂xi

∂v

∂xj
+

n∑
k=1

bk
∂u

∂xk
v + b0uv dx.

The question of coercivity of such a variational form is answered in part by
the following.

(5.6.8) Theorem. (G̊arding’s Inequality) Suppose (5.6.1) holds and that
the coefficients bk ∈ L∞(Ω), k = 0, . . . , n. Then there is a constant,
K < ∞, such that

a(v, v) + K ‖v‖2L2(Ω) ≥
α

2
‖v‖2H1(Ω) ∀v ∈ H1(Ω),

where α is the constant in (5.6.1).

This means that, although a(·, ·) itself may not be coercive, adding
a sufficiently large constant times the L2-inner-product makes it coercive
over all of H1(Ω).

Proof. By (5.6.4), we have

a(v, v) + K ‖v‖2L2(Ω)

≥ α|v|2H1(Ω) +
∫

Ω

n∑
k=1

bk(x)
∂v

∂xk
(x)v(x) + (b0(x) + K)v(x)2 dx.

By Hölder’s inequality,∣∣∣∣∣
∫

Ω

n∑
k=1

bk(x)
∂v

∂xk
(x)v(x) dx

∣∣∣∣∣ ≤
∫

Ω

n∑
k=1

|bk(x)|
∣∣∣∣ ∂v

∂xk
(x)

∣∣∣∣ |v(x)| dx

≤
n∑

k=1

‖bk‖L∞(Ω)

∫
Ω

∣∣∣∣ ∂v

∂xk
(x)

∣∣∣∣ |v(x)| dx

≤
n∑

k=1

‖bk‖L∞(Ω)

∥∥∥∥ ∂v

∂xk

∥∥∥∥
L2(Ω)

‖v‖L2(Ω)

≤ B |v|H1(Ω) ‖v‖L2(Ω) ,
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where

(5.6.9) B2 :=
n∑

k=1

‖bk‖2L∞(Ω) .

Therefore,

a(v, v) + K ‖v‖2L2(Ω)

≥ α|v|2H1(Ω) −B |v|H1(Ω) ‖v‖L2(Ω) +
∫

Ω

(b0(x) + K)v(x)2 dx

≥ α|v|2H1(Ω) −B |v|H1(Ω) ‖v‖L2(Ω) + (β + K) ‖v‖2L2(Ω) ,

where

(5.6.10) β := ess inf {b0(x) : x ∈ Ω} .

From the arithmetic-geometric mean inequality (0.9.5), we conclude that

a(v, v) + K ‖v‖2L2(Ω) ≥
α

2

(
|v|2H1(Ω) + ‖v‖2L2(Ω)

)
,

provided

(5.6.11) K ≥ α

2
+

B2

2α
− β.

Note that K need not be positive, if β > 0. �	

We may interpret G̊arding’s inequality as follows. Given an elliptic op-
erator, A, there is a constant, K0, such that for all K > K0, the variational
problem for A+K is coercive on all of H1, and thus any boundary condition
of the form (5.1.2) leads to a well-posed problem. In general, for K ≤ K0,
there may be further constraints, as occurs with the pure Neumann prob-
lem studied in Sect. 5.2. In particular, one can show (Agmon 1965) that
there is a set of values K1 > K2 > · · · (the eigenvalues of A) with no finite
accumulation point such that there is a unique solution for the variational
problem associated with A+K, provided only that K �= Ki for any i. More-
over, the problems A + Ki each can be solved subject to a finite number of
linear constraints, similar to the ones in Sect. 5.2. Moreover, provided all
the coefficients and the boundary are sufficiently smooth, one has a smooth
solution in the case that the boundary conditions are either pure Neumann
(5.2.1) or pure Dirichlet (Γ = ∂Ω in (5.1.2)) and

(5.6.12) ‖u‖W k
p (Ω) ≤ CK,k,Ω,A,p‖(A + K)u‖W k−2

p (Ω), ∀ 1 < p < ∞.

In general, the index k may depend on the degree of smoothness of the
various ingredients in the problem, but if all are C∞ then k may be taken
arbitrarily large. In the case of Ω being a convex polygon in IR2, (5.6.12)
is known to hold for k ≤ 2 (Grisvard 1985).
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5.7 Variational Approximation of General Elliptic
Problems

In the previous section we observed that there can be well-posed elliptic
problems for which the corresponding variational problem is not coercive,
although a suitably large additive constant can always make it coercive.
In this setting, following the idea of Schatz (Schatz 1974) it is possible to
give estimates for finite element approximations of the variation problems,
although slightly more complicated arguments must be given. To begin
with, let us assume that we have a variational form, a(·, ·), satisfying the
following properties. We assume that a(·, ·) is continuous on H1(Ω),

(5.7.1) |a(u, v)| ≤ C1 ‖u‖H1(Ω) ‖v‖H1(Ω) ∀u, v ∈ H1(Ω),

and that a suitable additive constant, K ∈ IR, makes it coercive,

(5.7.2) a(v, v) + K(v, v) ≥ α ‖v‖2H1(Ω) ∀v ∈ H1(Ω).

We assume that there is some V ⊂ H1(Ω) such that there is a unique
solution, u, to the variational problem

a(u, v) = (f, v) ∀v ∈ V

as well as to the adjoint variational problem

a(v, u) = (f, v) ∀v ∈ V

and that, in both cases, the regularity estimate

(5.7.3) |u|H2(Ω) ≤ CR ‖f‖L2(Ω)

holds for all f ∈ L2(Ω).
Let Vh be a finite element subspace of V , as described in Sect. 5.4, and

define uh ∈ Vh via

(5.7.4) a(uh, v) = (f, v) ∀v ∈ Vh.

On the face of it, (5.7.4) need not have a unique solution, since a(·, ·) may
not be coercive. Indeed, we will not be able to guarantee that it does for
all subspaces, Vh. However, we assume that the following holds:

(5.7.5) inf
v∈Vh

‖u− v‖H1(Ω) ≤ CAh |u|H2(Ω) ∀u ∈ H2(Ω).

The following should be compared with Céa’s Theorem 2.8.1.

(5.7.6) Theorem. Under conditions (5.7.1), (5.7.2), (5.7.3) and (5.7.5), there
are constants h0 and C, such that for all h ≤ h0, there is a unique solution
to (5.7.4) satisfying
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‖u− uh‖H1(Ω) ≤ C inf
v∈Vh

‖u− v‖H1(Ω) ,

where we may take C = 2C1/α, and

‖u− uh‖L2(Ω) ≤ C1CACRh ‖u− uh‖H1(Ω) .

In particular, we may take

h0 = (α/2K)1/2/C1CACR.

Proof. We begin by deriving an estimate for any solution to (5.7.4) that
may exist. Note that in any case, we always have

(5.7.7) a(u− uh, v) = 0 ∀v ∈ Vh.

From (5.7.2), (5.7.7), and (5.7.1), it thus follows that, for any v ∈ Vh,

α ‖u− uh‖2H1(Ω) ≤ a(u− uh, u− uh) + K(u− uh, u− uh)

= a(u− uh, u− v) + K ‖u− uh‖2L2(Ω)

≤ C1 ‖u− uh‖H1(Ω) ‖u− v‖H1(Ω) + K ‖u− uh‖2L2(Ω) .

We apply standard duality techniques to bound ‖u− uh‖L2(Ω). Let w be
the solution (guaranteed by condition (5.7.3)) to the adjoint problem

a(v, w) = (u− uh, v) ∀v ∈ V.

Then, for any wh ∈ Vh,

(u− uh, u− uh) = a(u− uh, w)
= a(u− uh, w − wh) (by 5.7.7)
≤ C1 ‖u− uh‖H1(Ω) ‖w − wh‖H1(Ω) . (by 5.7.1)

Therefore, for appropriate choice of wh,

(u− uh, u− uh)
≤ C1CAh ‖u− uh‖H1(Ω) |w|H2(Ω) (by 5.7.5)

≤ C1CACRh ‖u− uh‖H1(Ω) ‖u− uh‖L2(Ω) (by 5.7.3).

Therefore,

(5.7.8) ‖u− uh‖L2(Ω) ≤ Ch ‖u− uh‖H1(Ω)

where C = C1CACR. Applying this above, we find

α ‖u− uh‖2H1(Ω)

≤ C1 ‖u− uh‖H1(Ω) ‖u− v‖H1(Ω) + KC2h2 ‖u− uh‖2H1(Ω) .
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Thus, for h ≤ h0, where h0 = (α/2K)1/2/C1CACR, we find

(5.7.9) α ‖u− uh‖H1(Ω) ≤ 2C1 ‖u− v‖H1(Ω) ∀v ∈ Vh.

So far, we have been operating under the assumption of the existence of
a solution, uh. Now we consider the question of its existence and uniqueness.
Since (5.7.4) is a finite dimensional system having the same number of un-
knowns as equations, existence and uniqueness are equivalent. Nonunique-
ness would imply the existence of a nontrivial solution, uh, for f ≡ 0. In
such a case, we have u ≡ 0 by (5.7.3). But (5.7.9) then implies that uh ≡ 0
as well, provided h is sufficiently small. In particular, this says that (5.7.4)
has unique solutions for h sufficiently small, since f = 0 implies uh = 0.

Finally, for h ≤ h0, we conclude that the unique solution to (5.7.4)
satisfies (5.7.9) and (5.7.8), thus completing the proof. �	

5.8 Negative-Norm Estimates

The previous section presented, as a byproduct, L2 error estimates which
are improved over H1 estimates by a factor of h. One can, in some cir-
cumstances, continue to get improved error estimates in lower (negative)
norms. Having a higher power of h in an estimate in a negative norm may
be interpreted as saying that the error is oscillatory. Recall that the H−s

norm is defined by

‖u‖H−s(Ω) = sup
0�=v∈Hs(Ω)

(u, v)
‖v‖Hs(Ω)

.

We assume that the regularity estimate

(5.8.1) ‖u‖Hs+2(Ω) ≤ CR‖f‖Hs(Ω)

and the approximation estimate

(5.8.2) inf
v∈Vh

‖u− v‖H1(Ω) ≤ Chs+1‖u‖Hs+2(Ω)

hold for some s ≥ 0.

(5.8.3) Theorem. Under conditions (5.7.1), (5.7.2), (5.8.1) and (5.8.2), there
are constants h0 and C such that for all h ≤ h0, the solution to (5.7.4)
satisfies

‖u− uh‖H−s(Ω) ≤ Chs+1 ‖u− uh‖H1(Ω) .

Proof. We again apply duality techniques. For arbitrary φ ∈ Hs(Ω), we
need to estimate (u−uh, φ). Let w be the solution (guaranteed by condition
(5.8.1)) to the adjoint problem
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a(v, w) = (v, φ) ∀v ∈ V.

Then, for any wh ∈ Vh,

(u− uh, φ) = a(u− uh, w)
= a(u− uh, w − wh) (by 5.7.7)
≤ C ‖u− uh‖H1(Ω) ‖w − wh‖H1(Ω) . (by 5.7.1)

Therefore, for appropriate choice of wh, we have

(u− uh, φ) ≤ Chs+1 ‖u− uh‖H1(Ω) ‖w‖Hs+2(Ω) (by 5.8.2)

≤ Chs+1 ‖u− uh‖H1(Ω) ‖φ‖Hs(Ω) . (by 5.8.1)

Taking the supremum over φ completes the estimate. �	

The theorem implies that the approximation oscillates around the cor-
rect values, since “weighted averages” of the form (u−uh, φ)/‖φ‖H1(Ω) are
smaller by a factor, h, than u− uh itself.

The crucial requirement for the improved rate of convergence in a neg-
ative norm is the regularity estimate (5.8.1). When this does not hold (see
Example 5.5.2), improvement will not occur. We give a simple explanation
of this here. Using (5.7.4), we find

(u− uh, f) =a(u, u− uh)
=a(u− uh, u− uh)

≥α ‖u− uh‖2H1(Ω) .

If f ∈ Hs(Ω), then we have

(5.8.4)

‖u− uh‖H−s(Ω) = sup
0�=φ∈Hs(Ω)

(u− uh, φ)
‖φ‖Hs(Ω)

≥ (u− uh, f)
‖f‖Hs(Ω)

≥α ‖u− uh‖2H1(Ω)

/
‖f‖Hs(Ω) ,

so that the negative norms of the error can never be smaller than the square
of the H1(Ω)-norm of the error. This is often called the “pollution effect”
of the singular point on the boundary (see the article by Wahlbin in Ciarlet
& Lions 1991).

We will now show that ‖u− uh‖H1(Ω) ≥ chβ for the problem in Ex-
ample 5.5.2. In general, if Vh consists of piecewise polynomials of degree
≤ k + 1,
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|u− uh|2H1(Ω) ≥ inf
v∈Vh

∑
T∈T h

∫
T

|∇u−∇v|2 dx

≥
∑

T∈T h

inf
∼
v∈P2

k

∫
T

|∇u−
∼
v|2 dx

≥ inf
∼
v∈P2

k

∫
T

|∇u−
∼
v|2 dx

for any T ∈ T h, where Pk denotes polynomials of degree ≤ k. Choosing T
to be an element with a vertex at the origin, we find

inf
∼
v∈P2

k

∫
T

|∇(rβ sin βθ)−
∼
v|2 dx ≥ c0 diam (T )2β

by a homogeneity argument (exercises 5.x.21 and 5.x.22). Since u−rβ sin βθ
= r2+β sin βθ, we have

inf
∼
v∈P2

k

∫
T

|∇u−
∼
v|2 dx ≥ c0 diam (T )2β − c1 diam (T )2+2β

by the triangle inequality. If T h is quasi-uniform, we conclude that

(5.8.5) ‖u− uh‖H1(Ω) ≥ c2h
β

where c2 > 0, provided h is sufficiently small.

5.9 The Plate-Bending Biharmonic Problem

So far, we have considered only second-order elliptic equations. In later
chapters, we will consider systems of second-order equations, but here we
will briefly describe how the theory developed so far can be applied to
higher-order equations. We will restrict our attention to one problem of
physical interest, the model of plate bending given by the biharmonic equa-
tion. Let a(·, ·) be the bilinear form defined on H2(Ω) given by

a(u, v) :=
∫

Ω

∆u∆v − (1− ν) (2uxxvyy + 2uyyvxx − 4uxyvxy) dxdy

where ν is a physical constant known as Poisson’s ratio. In the model for
the bending of plates, ν is restricted to the range [0, 1

2 ]. However, a(·, ·) is
known (Agmon 1965) to satisfy a G̊arding-type inequality,

(5.9.1) a(v, v) + K ‖v‖2L2(Ω) ≥ α ‖v‖2H2(Ω) ∀v ∈ H2(Ω) ,

where α > 0 and K < ∞, for all −3 < ν < 1. Note that for ν = 1, such
an inequality cannot hold as a(v, v) vanishes in that case for all harmonic
functions, v.
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A simple coercivity estimate can be derived for 0 < ν < 1, as follows.
Write

(5.9.2)

a(v, v)

=
∫

Ω

ν (vxx + vyy)2 + (1− ν)
(
(vxx − vyy)2 + 4v2

xy

)
dxdy

≥ min{ν, 1− ν}
∫

Ω

(vxx + vyy)2 + (vxx − vyy)2 + 4v2
xy dxdy

= 2min{ν, 1− ν}
∫

Ω

v2
xx + v2

yy + 2v2
xy dxdy

= 2min{ν, 1− ν} |v|2H2(Ω) .

From (5.9.2), it follows that a(·, ·) is coercive over any closed subspace,
V ⊂ H2(Ω), such that V ∩P1 = ∅. For if not, there would be a sequence of
vj ∈ H2(Ω) such that a(vj , vj) < 1/j and ‖vj‖H2(Ω) = 1. The set of linear
polynomials, Q2vj , is bounded:∥∥Q2vj

∥∥
H2(Ω)

≤ C ‖vj‖H2(Ω) = C

and hence (see exercise 5.x.18) a subsequence, {Q2vjk
}, converges to some

fixed linear polynomial, L. Since∥∥vj −Q2vj

∥∥
H2(Ω)

≤ C |vj |H2(Ω) → 0,

we conclude, as before, that vjk
converges to L. But since V ∩ P1 = ∅, we

reach a contradiction. Thus, there must be a constant α > 0 such that

(5.9.3) a(v, v) ≥ α ‖v‖2H2(Ω) ∀v ∈ V.

For F ∈ H2(Ω)′ and V ⊂ H2(Ω), we consider the problem: find u ∈ V
such that

(5.9.4) a(u, v) = F (v) ∀v ∈ V.

As a consequence of the Riesz Representation Theorem (cf. (2.5.6)), we
have the following.

(5.9.5) Theorem. If V ⊂ H2(Ω) is a closed subspace such that V ∩ P1 = ∅
and (5.9.2) holds, then (5.9.4) has a unique solution.

If u is sufficiently smooth, then integration by parts can be carried
out, say with v ∈ C∞

0 (Ω), to determine the differential equation satisfied.
For example, if F (v) :=

∫
Ω

f(x, y)v(x, y) dxdy, where f ∈ L2(Ω), then
under suitable conditions on Ω (Blum and Rannacher 1980) we have u ∈
H4(Ω). Note that when integrating by parts, all of the terms multiplied by
1− ν cancel, as they all yield various versions of the cross derivative uxxyy
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(cf. exercise 5.x.4). Thus, we find that ∆2u = f holds in the L2 sense,
independent of the choice of ν.

Various boundary conditions are of physical interest. Let V ss denote
the subset of H2(Ω) consisting of functions which vanish (to first-order
only) on ∂Ω, i.e.,

V ss =
{
v ∈ H2(Ω) : v = 0 on ∂Ω

}
.

With this choice for V in (5.9.4), the resulting model is called the “simply-
supported” plate model, since the displacement, u, is held fixed (at a height
of zero), yet the plate is free to rotate at the boundary. The “clamped” plate
model consists of choosing V c = H̊2(Ω), the subset of H2(Ω) consisting of
functions which vanish to second order on ∂Ω:

V c =
{

v ∈ H2(Ω) : v =
∂v

∂ν
= 0 on ∂Ω

}
.

Here, the rotation of the plate is also prescribed at the boundary.
In the simply-supported case (V = V ss), there is another, natural

boundary condition that holds. In this sense, this problem has a mixture of
Dirichlet and Neumann boundary conditions, but they hold on all of ∂Ω.
The natural boundary condition is found using integration by parts, but
with v having an arbitrary, nonzero normal derivative on ∂Ω. One finds
(Bergman & Schiffer 1953) that the “bending moment” ∆u + (1 − ν)utt

must vanish on ∂Ω, where utt denotes the second directional derivative in
the tangential direction. These results are summarized in the following.

(5.9.6) Theorem. Suppose that V is any closed subspace satisfying H̊2(Ω) ⊂
V ⊂ H2(Ω). If f ∈ L2(Ω), and if u ∈ H4(Ω) satisfies (5.9.4) with F (v) =
(f, v), then u satisfies

∆2u = f

in the L2(Ω) sense. For V = V c, u satisfies

u =
∂u

∂ν
= 0 on ∂Ω

and for V = V ss, u satisfies

u = ∆u + (1− ν)utt = 0 on ∂Ω.

To approximate (5.9.4), we need a subspace Vh of H2(Ω). For exam-
ple, we could take a space based on the Argyris elements (cf. (3.2.10) and
Proposition 3.3.17). With either choice of V as above, if we choose Vh to
satisfy the corresponding boundary conditions, we obtain the following.

(5.9.7) Theorem. If Vh ⊂ V is based on Argyris elements of order k ≥ 5
then there is a unique uh ∈ Vh such that
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a(uh, v) = F (v) ∀v ∈ Vh.

Moreover,
‖u− uh‖H2(Ω) ≤ C inf

v∈Vh

‖u− v‖H2(Ω)

≤ Chk−1‖u‖Hk+1(Ω).

Since the Argyris interpolant is defined for u ∈ H4(Ω), the above result
also holds for k replaced by any integer s in the range 3 ≤ s ≤ k. Provided
sufficient regularity holds (Blum & Rannacher 1980) for the solution of
(5.9.4), namely

(5.9.8) ‖u‖Hs+1(Ω) ≤ C‖f‖Hs−3(Ω) ,

then we also have the following negative-norm estimate (cf. exercise 5.x.17).

(5.9.9) Theorem. Assuming (5.9.8) holds for s = m+3, with 0 ≤ m ≤ k−3,
we have

‖u− uh‖H−m(Ω) ≤ Chm+2 ‖u− uh‖H2(Ω) .

It is interesting to note that we do not immediately get an estimate
in the H1 norm for the error u − uh. In Chapter 14, techniques will be
presented to obtain such estimates. In addition, it will also be shown how
to relax the above condition 3 ≤ s ≤ k. That is, an estimate of the form

‖u− uh‖H2(Ω) ≤ Chs−1‖u‖Hs+1(Ω)

will be proved for any 1 ≤ s ≤ k. For more details regarding the biharmonic
equation model for plate bending, see the survey (Scott 1976).

5.x Exercises

5.x.1 Prove that any function in L̃2(Ω) :=
{
φ ∈ L2(Ω) :

∫
Ω

φ dx = 0
}

can be written as a limit of functions in D̃(Ω) := {φ ∈ D(Ω) :∫
Ω

φ dx = 0}. (Hint: pick a sequence in D(Ω) that converges in L2

and modify it to get a mean-zero sequence.)

5.x.2 Let f, g ∈ H1(Ω). Show that D α
w (fg) exists for all |α| = 1 and

equals D α
w fg + fD α

w g. (Hint: Prove it first for g ∈ C∞(Ω)∩H1(Ω)
and then use the density result (1.3.4).)

5.x.3 State and prove appropriate Lp (p �= 2) versions of Propositions
5.1.5 and 5.1.6.

5.x.4 Show that if u ∈ W k
p (Ω) and |α| ≤ k then D αu ∈ W

k−|α|
p (Ω). Prove

that if |α|+ |β| ≤ k then DβD αu = D αDβu.



152 Chapter 5. n-Dimensional Variational Problems

5.x.5 For solving the potential flow equation (∆u = 0), the follow-
ing method has been proposed by E. Wu, A cubic triangular el-
ement with local continuity — an application in potential flow,
Int. J. Num. Meth. Eng. 17 (1981), 1147–1159. For element, we
take K to be a triangle, P to be cubic polynomials, v, such that∫

∂K
∂v
∂ν ds = 0 and N to be evaluation of v and its gradient at each

vertex. Note that for v ∈ P, the vector field ∇v has zero net flux
through K (whatever goes in must also come out). Prove that this
element is well defined. Using this element, derive results analogous
to those in Sect. 5.4, namely (5.4.4) with m = 4, for solving ∆u = 0
with Neumann boundary conditions. (Hint: First prove the element
(K,P3, Ñ ) where

Ñ = N ∪ {v −→
∫

∂K

∂v

∂ν
ds}

to be well defined, then prove estimates for u − Ĩhu and observe
that ∆u = 0 implies that∫

∂K

∂u

∂ν
ds = 0 ∀K.)

5.x.6 Prove that the reflection used in Example 5.5.4 maps the space{
v ∈ H2(Ω) : v|Γ = 0,

∂v

∂ν

∣∣∣
∂Ω\Γ

= 0
}

to H2(Ω̃).

5.x.7 Prove that the variational problem, a(u, v) = (f, v) ∀v ∈ V , with
form (5.6.7) and using V = H1(Ω) is equivalent to Au = f , where
A is defined by (5.6.6), with boundary conditions (5.6.5).

5.x.8 Formulate the duality arguments for the case of a general second-
order elliptic Dirichlet problem, with form (5.6.7). (Hint: consider
the Dirichlet problem for the adjoint operator

Atv := −
n∑

i,j=1

∂

∂xi

(
aij

∂v

∂xj

)
−

n∑
k=1

∂

∂xk
(bkv) + b0v.

State the needed regularity of all elliptic problems involved.)

5.x.9 Determine the appropriate natural boundary conditions associated
with the adjoint problem in exercise 5.x.8. Formulate the duality
arguments for the case of a general second-order elliptic Neumann
problem, with form (5.6.7) and space V = H1(Ω).

5.x.10 Let uh be the solution of (5.4.11). Show that
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|u− uh|H1(Ω) ≤ inf
v∈Vh

|u− gD − v|H1(Ω) + 2|gD − IhgD|H1(Ω).

Assuming the elliptic regularity (5.4.7) is valid, show also that

‖u−uh‖L2(Ω) ≤ C

[
h inf

v∈Vh

|u− gD − v|H1(Ω) + ‖gD − IhgD‖L2(Ω)

]
.

5.x.11 Prove that analogs of (5.4.4) and (5.4.8) hold for the solution to
a perturbed version of (5.4.11) in which f and gN are replaced by
their respective interpolants.

5.x.12 Consider the equation (5.1.1) with u = 0 on Γ and the Robin bound-
ary condition

αu +
∂u

∂ν
= 0 on ∂Ω\Γ,

where α is a constant.
1) Derive a variational formulation for this problem and give con-
ditions on α and f (if any are required) that guarantee it has a
unique solution in H1. (Hint: multiply by v and integrate by parts,
converting the ∂u

∂ν v term to uv using the boundary condition.)
2) Prove that if u ∈ H2 solves your variational problem, with f ∈ L2,
then it solves the original differential problem in 5.x.12.
3) Prove error estimates for the variational approximation using
piecewise linear functions on a general mesh in both H1 and L2.
(Assume H2 regularity for the problem).
4) Compute the “difference stencil” corresponding to using piece-
wise linear functions on a regular mesh on Ω = [0, 1] × [0, 1] in
the variational approximation (cf. Sect. 0.5). (Hint: away from the
boundary it is the standard 5-point difference stencil, if the mesh
consists of 45◦ right triangles.)

5.x.13 Prove that, for p ≥ 1,

‖v‖Lp(Ω) ≤ C
( ∣∣∣ ∫

Γ

v ds
∣∣∣+ |v|W 1

p (Ω)

)
∀ v ∈ W 1

p (Ω),

where Γ ⊂ ∂Ω has a positive measure and the constant C depends
only on Ω and Γ .

5.x.14 Consider the equation (5.1.1) with periodic boundary conditions on
Ω = [0, 1] × [0, 1]. Show that the variational formulation is similar
to the Neumann problem, except that the variational spaces have
periodicity imposed.

5.x.15 Prove Proposition 5.3.4 for the bilinear form (5.6.3).

5.x.16 Prove that the discrete problem for an indefinite elliptic problem
is uniquely solvable for h sufficiently small, under the conditions
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(5.7.1), (5.7.2) and the assumptions that the continuous problem is
uniquely solvable and satisfies the elliptic regularity estimate (5.7.3).

5.x.17 Prove (5.9.9). (Hint: follow the techniques in Sect. 5.8.)

5.x.18 Prove that a set of polynomials of degree < N , that is closed and
bounded in a Sobolev norm, is a compact set. (Hint: show that the
set corresponds to a closed, bounded subset of Euclidean space by
writing the norm as a metric on the coefficients of the polynomials.)

5.x.19 Formulate inhomogeneous boundary value problems for the plate
bending problem.

5.x.20 Use (5.9.1) to prove (5.9.2) for −3 < ν < 1. (Hint: use Rellich’s
Lemma (Agmon 1965) which says that bounded subsets of Hm(Ω),
m ≥ 1, are precompact in L2(Ω).)

5.x.21 Let Th = {(r, θ) : 0 < r < h, θ0 < θ < θ1}. Prove that

inf
∼
v∈P2

k

∫
Th

|∇(rβ sin βθ)−
∼
v|2 dx = ck,β h2β ,

where Pk denotes polynomials of degree at most k and ck,β > 0
depends only on k and β. (Hint: by a dilation of coordinates, show
that this holds with

ck,β = inf
∼
v∈P2

k

∫
T1

|∇(rβ sin βθ)−
∼
v|2 dx.

Prove that ck,β = 0 leads to the contradiction ∇(rβ sin βθ) ∈ P2
k by

a compactness argument.)

5.x.22 Prove that, for any f ∈ Lp(Ω) and any Ω̃ ⊂ Ω,

inf
v∈W

∫
Ω

|f − v|p dx ≥ inf
v∈W

∫
Ω̃

|f − v|p dx

for any subset W ⊂ Lp(Ω).

5.x.23 Let Ω be the unit disk, and let Ωh be a sequence of regular polygons
with 1/h sides inscribed in Ω. Consider the simply-supported plate
problem on each Ωh. Prove that the solutions of these problems
converge as h → 0 but not to the simply-supported plate problem
on Ω. This is known as Babuška’s Paradox. See (Scott 1977a) for
techniques to insure that finite element approximations converge to
the right solution in this setting.
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Finite Element Multigrid Methods

The multigrid method provides an optimal order algorithm for solving ellip-
tic boundary value problems. The error bounds of the approximate solution
obtained from the full multigrid algorithm are comparable to the theoretical
bounds of the error in the finite element method, while the amount of com-
putational work involved is proportional only to the number of unknowns
in the discretized equations.

The multigrid method has two main features: smoothing on the current
grid and error correction on a coarser grid. The smoothing step has the effect
of damping out the oscillatory part of the error. The smooth part of the
error can then be accurately corrected on the coarser grid.

The discussion in this chapter is based on the papers (Bank & Dupont
1981) and (Bramble & Pasciak 1987). It is restricted to a model problem
for simplicity. We recommend the books (Hackbusch 1985), (McCormick
1987), and (Bramble 1993), the survey article (Bramble & Zhang 2000),
and the references therein for the general theory of multigrid methods.

In practice, higher-order finite element equations would be precondi-
tioned by a low-order solver, so we will only consider the piecewise linear
case. Similarly, we restrict to the two-dimensional case to minimize techni-
calities. For theory regarding the general case, see (Scott & Zhang 1992).

6.1 A Model Problem

Let Ω ⊆ IR2 be a convex polygon and

(6.1.1) a(u, v) =
∫

Ω

(α∇u · ∇v + β u v) dx,

where α and β are smooth functions such that for α0, α1, β1 ∈ IR+ we have
α0 ≤ α(x) ≤ α1 and 0 ≤ β(x) ≤ β1 for all x in Ω. We consider the Dirichlet
problem:
Find u ∈ V := H̊1(Ω) such that

(6.1.2) a(u, v) = (f, v) ∀ v ∈ V
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where f ∈ L2(Ω).
Elliptic regularity (cf. (Grisvard 1985)) implies that u ∈ H2(Ω) ∩

H̊1(Ω). To approximate u, we consider a sequence of triangulations Tk

of Ω determined as follows. Suppose T1 is given and let Tk, k ≥ 2, be
obtained from Tk−1 via a “regular” subdivision: edge midpoints in Tk−1

are connected by new edges to form Tk. Let Vk denote C0 piecewise linear
functions with respect to Tk that vanish on ∂Ω. Note that

(6.1.3) Tk ⊃ Tk−1 =⇒ Vk−1 ⊂ Vk

for all k ≥ 1.
The discretized problem is:

Find uk ∈ Vk such that

(6.1.4) a(uk, v) = (f, v) ∀ v ∈ Vk.

Let hk be the mesh size of Tk, i.e., hk := maxT∈Tk
diam T . Note that

for any T ∈ Tk−1, the four subtriangles in Tk of T are all similar to T and
have half the size of T . Thus,

(6.1.5) hk =
1
2
hk−1.

Similarly, {Tk} is quasi-uniform, since each T ∈ Tk is an exact replica of
some T̂ ∈ T1 in miniature, with the size ratio exactly hk/h1. Thus, we have
from Theorem 5.7.6 and Theorem 4.4.20,

(6.1.6) ‖u− uk‖Hs(Ω) ≤ C h2−s
k ‖u‖H2(Ω) s = 0, 1, k = 1, 2, . . . .

Throughout this chapter, C, with or without subscripts, denotes a generic
constant independent of k.

Let nk = dim Vk. The goal of the multigrid method is to calculate
ûk ∈ Vk in O(nk) operations such that

(6.1.7) ‖uk − ûk‖Hs(Ω) ≤ C h2−s
k ‖u‖H2(Ω), s = 0, 1, k = 1, 2, . . . .

The O(nk) operation count means that the multigrid method is asymptot-
ically optimal.

(6.1.8) Remark. Full elliptic regularity is not essential for the convergence
analysis (cf. (Bank & Dupont 1981), (Bramble, Pasciak, Wang & Xu 1991),
(Zhang 1992), (Bramble & Pasciak 1993)) and (Brenner 2002). It is assumed
here for simplicity.
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6.2 Mesh-Dependent Norms

(6.2.1) Definition. The mesh-dependent inner product (·, ·)k on Vk is de-
fined by

(6.2.2) (v, w)k := h2
k

nk∑
i=1

v(pi)w(pi),

where {pi}nk
i=1 is the set of internal vertices of Tk.

The operator Ak : Vk −→ Vk is defined by

(6.2.3) (Akv, w)k = a(v, w) ∀ v, w ∈ Vk.

In terms of the operator Ak, the discretized equation (6.1.4) can be written
as

(6.2.4) Akuk = fk,

where fk ∈ Vk satisfies

(6.2.5) (fk, v)k = (f, v) ∀ v ∈ Vk.

Since Ak is symmetric positive definite with respect to (·, ·)k, we can define
a scale of mesh-dependent norms ||| · |||s,k in the following way:

(6.2.6) |||v|||s,k :=
√

(As
kv, v)k

where As
k denotes the s power of the symmetric, positive definite operator

Ak (Halmos 1957).
The mesh-dependent norms ||| · |||s,k will play an important role in the

convergence analysis. Observe that the energy norm ‖ · ‖E =
√

a(·, ·) coin-
cides with the ||| · |||1,k norm on Vk. Similarly, ||| · |||0,k is the norm associated
with the mesh-dependent inner product (6.2.2). The following lemma shows
that ||| · |||0,k is equivalent to the L2-norm.

(6.2.7) Lemma. There exist positive constants C1 and C2 such that

C1‖v‖L2(Ω) ≤ |||v|||0,k ≤ C2‖v‖L2(Ω) ∀ v ∈ Vk.

Proof. Using a quadrature formula for quadratic polynomials on triangles,
we have

‖v‖2L2(Ω) =
∑

T∈Tk

∫
T

v2 dx

=
∑

T∈Tk

|T |
3

(
3∑

i=1

v2(mi)

)
(see exercise 6.x.12)
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where |T | denotes the area of T . By definition,

|||v|||20,k = (v, v)k

= h2
k

nk∑
i=1

v2(pi).

The fact that {Tk} is quasi-uniform implies that |T | is equivalent to h2
k.

Since v is linear, we have⎛⎝ v(m1)
v(m2)
v(m3)

⎞⎠ =

⎛⎝ 0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎞⎠⎛⎝ v(p1)
v(p2)
v(p3)

⎞⎠ ,

where p1, p2, and p3 are the vertices of T , and mi is the midpoint of the
edge opposite pi, i = 1, 2, 3. The lemma now follows. �	

The spectral radius, Λ(Ak), of Ak is estimated in the next lemma.

(6.2.8) Lemma. Λ(Ak) ≤ C h−2
k .

Proof. Let λ be an eigenvalue of Ak with eigenvector φ. We have

a(φ, φ) = (Akφ, φ)k

= λ (φ, φ)k

= λ |||φ|||20,k.

Therefore,

λ =
a(φ, φ)
|||φ|||20,k

.

Since |||φ|||20,k is equivalent to ‖φ‖2L2(Ω), the lemma follows from (4.5.3):

(6.2.9) ‖v‖E ≤ C h−1
k ‖v‖L2(Ω) ∀ v ∈ Vk.

�	

We end this section with a useful lemma whose proof is left as an
exercise (cf. exercise 6.x.1).

(6.2.10) Lemma. (Generalized Cauchy-Schwarz Inequality)

|a(v, w)| ≤ |||v|||1+t,k |||w|||1−t,k ∀ v, w ∈ Vk

for any t ∈ IR.
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6.3 The Multigrid Algorithm

The multigrid algorithm is an iterative solver. For each k there is an it-
eration scheme for solving the equation Akz = g on Vk. This scheme has
two main features: smoothing on Vk and error correction on Vk−1, using
the iteration scheme developed on Vk−1. The smoothing step has the effect
of damping out the oscillatory part of the error, as shown in Fig. 6.1. A
randomly chosen initial error is depicted together with three steps of the
smoothing process (to be studied shortly) applied to this initial error. Af-
ter a few such steps, the smooth part of the error is dominant and can be
accurately captured on the coarser grid. This will be seen analytically in
the proof of Theorem 6.5.7. Since the error correction is done on a coarser
grid, less computational work is involved.

(a) (b)

(c) (d)

Fig. 6.1. Effect of smoothing step: (a) initial error, (b-d) one, two and three
smoothing steps, resp., for the model problem (6.1.2) with α ≡ 1 and β ≡ 0 in
(6.1.1).

In order to describe the multigrid algorithm, we need to introduce the
intergrid transfer operators.

(6.3.1) Definition. (Intergrid Transfer Operators) The coarse-to-fine oper-
ator

Ik
k−1 : Vk−1 −→ Vk

is taken to be the natural injection. In other words,

Ik
k−1v = v ∀ v ∈ Vk−1.
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The fine-to-coarse intergrid transfer operator

Ik−1
k : Vk −→ Vk−1

is defined to be the transpose of Ik
k−1 with respect to the (·, ·)k−1 and (·, ·)k

inner products. In other words,

(Ik−1
k w, v)k−1 = (w, Ik

k−1v)k

= (w, v)k ∀ v ∈ Vk−1, w ∈ Vk.

The kth Level Iteration. MG(k, z0, g) is the approximate solution of
the equation

Akz = g

obtained from the kth level iteration with initial guess z0.
For k = 1, MG(1, z0, g) is the solution obtained from a direct method. In
other words,

MG(1, z0, g) = A−1
1 g.

For k > 1, MG(k, z0, g) is obtained recursively in three steps.

Presmoothing Step. For 1 ≤ l ≤ m1, let

zl = zl−1 +
1

Λk

(
g −Akzl−1

)
,

where, from now on, we will assume that Λk denotes some upper-
bound (Lemma 6.2.8) for the spectral radius of Ak satisfying

(6.3.2) Λk ≤ Ch−2
k .

Error Correction Step. Let g := Ik−1
k (g − Akzm1) and q0 = 0. For

1 ≤ i ≤ p, let
qi = MG(k − 1, qi−1, g).

Then
zm1+1 := zm1 + Ik

k−1qp.

Postsmoothing Step. For m1 + 2 ≤ l ≤ m1 + m2 + 1, let

zl = zl−1 +
1

Λk
(g −Akzl−1).

Then the output of the kth level iteration is

MG(k, z0, g) := zm1+m2+1.

Here m1 and m2 are positive integers, and p = 1 or 2. When p = 1, this is
called a V-cycle method; p = 2 is called a W-cycle method.



6.4 Approximation Property 161

In the application of the kth level iteration to (6.2.4), we follow the
following strategy. We take the initial guess to be Ik

k−1ûk−1, where ûk−1

is the approximate solution already obtained for the equation Ak−1uk−1 =
fk−1. Then we apply the kth level iteration r times. The full multigrid
algorithm therefore consists of nested iterations.

The Full Multigrid Algorithm
For k = 1, û1 = A−1

1 f1.
For k ≥ 2, the approximate solutions ûk are obtained recursively from

uk
0 = Ik

k−1ûk−1

uk
l = MG(k, uk

l−1, fk), 1 ≤ l ≤ r,

ûk = uk
r .

6.4 Approximation Property

We will now discuss one of the key ingredients for the convergence analysis
of both the W-cycle and V-cycle algorithms.

(6.4.1) Definition. Let Pk : V −→ Vk be the orthogonal projection with
respect to a(·, ·). In other words, Pkv ∈ Vk and

a(v, w) = a(Pkv, w) ∀w ∈ Vk.

The operator Pk−1 relates the error after presmoothing in the kth level
iteration scheme to the exact solution of the residual equation on the coarser
grid. Recall that in the error correction step of the kth level iteration we
had g = Ik−1

k (g − Akzm1). Let q ∈ Vk−1 satisfy the coarse grid residual
equation Ak−1q = g.

(6.4.2) Lemma. q = Pk−1(z − zm1).

Proof. For w ∈ Vk−1,

a(q, w) = (Ak−1q, w)k−1 (by 6.2.3)
= (g, w)k−1 (definition of q)
= (Ik−1

k (g −Akzm1), w)k−1 (definition of g)
= (g −Akzm1 , w)k (by 6.3.1)
= (Ak(z − zm1), w)k (definition of z)
= a(z − zm1 , w). (by 6.2.3)

�	
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Therefore, if the residual equation is solved exactly on the coarser grid,
the error after the correction step is z − (zm1 + q) = (I − Pk−1)(z − zm1).
Hence, it is important to understand the operator I − Pk−1.

(6.4.3) Lemma. There exists a positive constant C such that

|||(I − Pk−1)v|||0,k ≤ C hk |||(I − Pk−1)v|||1,k ∀ v ∈ Vk.

Proof. From Theorem 5.7.6 we know that

‖(I − Pk−1)v‖L2(Ω) ≤ C hk ‖(I − Pk−1)v‖E = C hk |||(I − Pk−1)v|||1,k.

Using Lemma 6.2.7 completes the proof. �	

We note the resemblance of the following result to, say, Theorem 5.4.4
with m = 2. However, the function, v, being approximated here does not
lie in H2(Ω).

(6.4.4) Corollary. (Approximation Property) There exists a positive con-
stant C such that

|||(I − Pk−1)v|||1,k ≤ C hk |||v|||2,k ∀ v ∈ Vk.

Proof.

|||(I − Pk−1)v|||21,k = ‖v − Pk−1v‖2E
= a(v − Pk−1v, v − Pk−1v)
= a(v − Pk−1v, v)
≤ |||v − Pk−1v|||0,k |||v|||2,k (by 6.2.10)
≤ C hk |||v − Pk−1v|||1,k |||v|||2,k. (Lemma 6.4.3)

�	

6.5 W-cycle Convergence for the kth Level Iteration

In this section we will show that the kth level iteration scheme for aW-cycle
method has a contraction number bounded away from 1 if the number of
smoothing steps is large enough. In the next section we will prove the same
result for a V-cycle method with one smoothing step, which implies that
the number of smoothing steps in the W-cycle method can also be taken to
be one (cf. exercises 6.x.9 and 6.x.10). But, the weaker result in this section
can be obtained with less effort, and the perturbation argument involved is
also of independent interest.
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For simplicity, we will consider the one-sided W-cycle method, i.e.,
p = 2, m1 = m and m2 = 0 in the algorithm in Sect. 6.3. Let ei = z − zi

for 0 ≤ i ≤ m + 1 be the errors in the kth level iteration. Then from the
smoothing step we have for 1 ≤ l ≤ m

(6.5.1)

el = z − zl

= z − zl−1 −
1

Λk
Ak(z − zl−1)

= el−1 −
1

Λk
Akel−1

= (I − 1
Λk

Ak)el−1.

(6.5.2) Definition. Rk := I − 1
Λk

Ak : Vk −→ Vk is the relaxation operator.

Note that (cf. exercise 6.x.3)

(6.5.3)
|||Rkv|||s,k ≤ |||v|||s,k ∀ v ∈ Vk, s ∈ IR and
(Rkv, v)k ≤ (v, v)k ∀ v ∈ Vk.

It follows immediately that the effect of the smoothing step can be described
by

(6.5.4) em = Rm
k e0.

We will first prove the convergence of a two-grid method. Let q ∈ Vk−1

satisfy Ak−1q = g, and define the output of the two-grid method to be

(6.5.5) ẑm+1 = zm + q.

Note that the q2 in the multigrid algorithm in Sect. 6.3 is just an approxi-
mation of q by using the k − 1 level iteration twice. The final error of the
two-grid algorithm is related to the initial error by

êm+1 = z − ẑm+1 (by 6.5.5)
= z − zm − q

(6.5.6) = em − q

= em − Pk−1em (Lemma 6.4.2)
= (I − Pk−1)Rm

k e0. (by 6.5.4)

We already have estimates for the operator I−Pk−1 (the approximation
property). It remains to measure the effect of Rm

k .
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(6.5.7) Theorem. (Smoothing Property for the W-cycle Algorithm)

|||Rm
k v|||2,k ≤ C h−1

k m−1/2 |||v|||1,k ∀ v ∈ Vk.

Proof. Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λnk
be the eigenvalues of the operator

Ak and ψi, 1 ≤ i ≤ nk, be the corresponding eigenvectors satisfying the
orthonormal relation (ψi, ψj)k = δij . We can write v =

∑nk

i=1 νi ψi. Hence,

Rm
k v =

(
I − 1

Λk
Ak

)m
v

=
nk∑
i=1

(
1− λi

Λk

)m
νi ψi.

Therefore,

|||Rm
k v|||22,k =

nk∑
i=1

(
1− λi

Λk

)2m

ν2
i λ2

i

= Λk

{ nk∑
i=1

(
1− λi

Λk

)2m (
λi

Λk

)
λi ν2

i

}
≤ Λk

{
sup

0≤x≤1
(1− x)2m x

} nk∑
i=1

λi ν2
i (|λi| ≤ Λk)

≤ C h−2
k m−1|||v|||21,k. (by 6.3.2)

Hence,
|||Rm

k v|||2,k ≤ C h−1
k m−1/2|||v|||1,k.

�	

(6.5.8) Theorem. (Convergence of the Two-Grid Algorithm) There exists
a positive constant C independent of k such that

‖êm+1‖E ≤ Cm−1/2‖e0‖E .

Therefore, if m is large enough, the two-grid method is a contraction with
contraction number independent of k.

Proof.

‖êm+1‖E = ‖
(
I − Pk−1

)
Rm

k e0‖E (by 6.5.6)
≤ Chk|||Rm

k e0|||2,k (by 6.4.4)

≤ C hk C h−1
k m−1/2 |||e0|||1,k (by 6.5.7)

≤ Cm−1/2‖e0‖E .

�	
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We now use a perturbation argument to prove the convergence of the
kth level iteration.

(6.5.9) Theorem. (Convergence of the kth Level Iteration) For any 0 <
γ < 1, m can be chosen large enough such that

(6.5.10) ‖z −MG(k, z0, g)‖E ≤ γ ‖z − z0‖E , for k = 1, 2, . . . .

Proof. Let C∗ be the constant in Theorem 6.5.8 and let m be an integer
greater than (C∗/(γ − γ2))2. Then (6.5.10) holds for this choice of m. The
proof is by induction. For k = 1, (6.5.10) holds trivially since the left-hand
side is 0. For k > 1, we have

z −MG(k, z0, g) = z − zm+1

= z − zm − q2

= êm+1 + q − q2.

Therefore,

‖z−MG(k, z0, g)‖E

≤ ‖êm+1‖E + ‖q − q2‖E

≤ C∗ m−1/2‖e0‖E + γ2 ‖q‖E (ind. hyp. & Thm. 6.5.8)

≤
(
C∗m−1/2 + γ2

)
‖e0‖E (by 6.4.2 & 6.5.3)

≤ γ ‖e0‖E .

�	

6.6 V-cycle Convergence for the kth Level Iteration

In this section we will consider the symmetric V-cycle algorithm. In other
words, we consider the algorithm in Sect. 6.3 with p = 1 and m1 = m2 = m.

Since our goal is to prove convergence of this algorithm for any m, we
can no longer just perform a two-grid analysis followed by a perturbation
argument. We need to analyze directly the relation between the initial error
z − z0 and the final error z −MG(k, z0, g).

(6.6.1) Definition. The error operator Ek : Vk −→ Vk is defined recursively
by

E1 = 0

Ek = Rm
k

[
I − (I − Ek−1)Pk−1

]
Rm

k k > 1.
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The following lemma shows that Ek relates the final error of the kth

level iteration to the initial error.

(6.6.2) Lemma. If z, g ∈ Vk satisfy Akz = g, then

(6.6.3) Ek(z − z0) = z −MG(k, z0, g), k ≥ 1.

Proof. The proof is by induction. The case k = 1 is trivial since MG(1, z0, g)
= A−1

1 g = z. Assume (6.6.3) holds for k−1. Let q ∈ Vk−1 be the exact solu-
tion on the coarser grid of the residual equation, i.e., Ak−1q = g. Since q1 =
MG(k−1, 0, g), the induction hypothesis implies that q−q1 = Ek−1(q−0).
Hence, by Lemma 6.4.2

(6.6.4)
q1 = (I − Ek−1)q

= (I − Ek−1)Pk−1(z − zm).

Therefore,

z −MG(k, z0, g) = z − z2m+1

= Rm
k (z − zm+1)

= Rm
k (z − (zm + q1))

= Rm
k (z − zm − (I − Ek−1)Pk−1(z − zm))

= Rm
k (I − (I − Ek−1)Pk−1) (z − zm)

= Rm
k (I − (I − Ek−1)Pk−1) Rm

k (z − z0)
= Ek(z − z0).

�	

The operators Ek are clearly linear. It is less obvious that the Ek’s
are positive semi-definite with respect to a(·, ·). In order to prove this fact,
which simplifies the convergence proof, we first need a lemma, whose proof
is left as an exercise (cf. exercise 6.x.6).

(6.6.5) Lemma. For all v, w ∈ Vk,

a(Rkv, w) = a(v,Rkw).

(6.6.6) Proposition. Ek is symmetric positive semi-definite with respect to
a(·, ·) for k ≥ 1.

Proof. The proof is by induction. It is obvious for k = 1. Assume the
proposition is true for k − 1. We first prove that Ek is symmetric with
respect to a(·, ·):
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a(Ekv, w) = a(Rm
k (I − Pk−1 + Ek−1Pk−1)Rm

k v, w) (by 6.6.1)
= a

(
(I − Pk−1 + Ek−1Pk−1)Rm

k v,Rm
k w

)
(Lemma 6.6.5 m times)

= a
(
(I − Pk−1)Rm

k v,Rm
k w

)
+ a

(
Ek−1Pk−1R

m
k v,Rm

k w
)

= a
(
Rm

k v, (I − Pk−1)Rm
k w

)
+ a

(
Ek−1Pk−1R

m
k v,Rm

k w
)

= a
(
Rm

k v, (I − Pk−1)Rm
k w

)
+ a

(
Ek−1Pk−1R

m
k v, Pk−1R

m
k w

)
(by 6.4.1)

= a
(
Rm

k v, (I − Pk−1)Rm
k w

)
+ a

(
Pk−1R

m
k v,Ek−1Pk−1R

m
k w

)
(induction hypothesis)

= a
(
Rm

k v, (I − Pk−1)Rm
k w

)
+ a

(
Rm

k v,Ek−1Pk−1R
m
k w

)
(by 6.4.1)

= a
(
Rm

k v, (I − Pk−1 + Ek−1Pk−1)Rm
k w

)
= a(v,Rm

k (I − Pk−1 + Ek−1Pk−1)Rm
k w)

(Lemma 6.6.5 again)
= a(v,Ekw).

We next show that Ek is positive, semi-definite with respect to a(·, ·):

a(Ekv, v) = a
(
Rm

k (I − (I − Ek−1)Pk−1)Rm
k v, v

)
= a

(
(I − (I − Ek−1)Pk−1)Rm

k v,Rm
k v

)
= a(Rm

k v,Rm
k v)− a

(
(I − Ek−1)Pk−1R

m
k v,Rm

k v
)

= a(Rm
k v,Rm

k v)− a
(
(I − Ek−1)Pk−1R

m
k v, Pk−1R

m
k v

)
(by 6.4.1)

= a(Rm
k v,Rm

k v)− a(Pk−1R
m
k v, Pk−1R

m
k v)

+ a(Ek−1Pk−1R
m
k v, Pk−1R

m
k v)

= a((I − Pk−1)Rm
k v, (I − Pk−1)Rm

k v)
+ a(Ek−1Pk−1R

m
k v, Pk−1R

m
k v)

≥ 0. (induction hypothesis)

�	

(6.6.7) Lemma. (Smoothing Property for the V-Cycle)

a
(
(I −Rk)R2m

k v, v
)
≤ 1

2m
a
(
(I −R2m

k )v, v
)
.
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Proof. We first observe that for 0 ≤ j ≤ l,

a
(
(I −Rk)Rl

kv, v
)

=
(
Ak(I −Rk)Rl

kv, v
)
k

=
(
AkΛ−1

k AkRl
kv, v

)
k

(6.6.8) =
1

Λk

(
Rl

kAkv,Akv
)
k

≤ 1
Λk

(Rj
kAkv,Akv)k (by 6.5.3)

= a
(
(I −Rk)Rj

kv, v
)
.

Hence,

(2m) a
(
(I −Rk)R2m

k v, v
)

= a
(
(I −Rk)R2m

k v, v
)

+ a
(
(I −Rk)R2m

k v, v
)

+ . . .

+ a
(
(I −Rk)R2m

k v, v
)

(2m terms)

≤ a
(
(I −Rk)v, v

)
+ a

(
(I −Rk)Rkv, v

)
+ . . .

+ a
(
(I −Rk)R2m−1

k v, v
)

(by 6.6.8)

≤ a
(
(I −R2m

k )v, v
)
. (telescopic cancellation)

�	

(6.6.9) Proposition. Let m be the number of smoothing steps. Then

(6.6.10) a(Ekv, v) ≤ C∗

m + C∗ a(v, v) ∀ v ∈ Vk,

where C∗ is a positive constant independent of k.

Proof. We first estimate a
(
(I − Pk−1)Rm

k v, (I − Pk−1)Rm
k v

)
.

a
(
(I − Pk−1)Rm

k v, (I − Pk−1)Rm
k v

)
= ‖(I − Pk−1)Rm

k v‖2E
≤ C h2

k |||Rm
k v|||22,k (by 6.4.4)

= C h2
k(A2

kRm
k v,Rm

k v)k (by 6.2.6)
(6.6.11) = C h2

k a(AkRm
k v,Rm

k v) (by 6.2.3)
= C h2

k Λk a
(
(I −Rk)Rm

k v,Rm
k v

)
(by 6.5.2)

≤ C a
(
(I −Rk)Rm

k v,Rm
k v

)
(by 6.2.8)

= C a
(
(I −Rk)R2m

k v, v
)

(by 6.6.5)

≤ C

m
a
(
(I −R2m

k )v, v
)
. (by 6.6.7)

Let C∗ be the constant C in the last inequality. Then (6.6.10) holds for
k ≥ 1. The proof is by induction. For k = 1, (6.6.10) is trivially true since
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E1 = 0. Assume that (6.6.10) holds for k−1. Then if we let γ = C∗/(m+C∗)
(therefore, γ = (1− γ)C∗/m),

a(Ekv, v) =a(Rm
k v,Rm

k v)− a(Pk−1R
m
k v, Pk−1R

m
k v)

+ a(Ek−1Pk−1R
m
k v, Pk−1R

m
k v) (by 6.6.1)

=a((I − Pk−1)Rm
k v, (I − Pk−1)Rm

k v)
+ a(Ek−1Pk−1R

m
k v, Pk−1R

m
k v) (by 6.4.1)

≤a((I − Pk−1)Rm
k v, (I − Pk−1)Rm

k v)
+ γ a(Pk−1R

m
k v, Pk−1R

m
k v) (ind. hyp.)

=(1− γ)a
(
(I − Pk−1)Rm

k v, (I − Pk−1)Rm
k v

)
+ γ a

(
(I − Pk−1)Rm

k v, (I − Pk−1)Rm
k v

)
+ γ a(Pk−1R

m
k v, Pk−1R

m
k v)

=(1− γ) a
(
(I − Pk−1)Rm

k v, (I − Pk−1)Rm
k v

)
+ γ a(Rm

k v,Rm
k v) (by 6.4.1)

≤(1− γ)C∗m−1a
(
(I −R2m

k )v, v
)

+ γa(Rm
k v,Rm

k v) (by 6.6.11)
=γa

(
(I −R2m

k )v, v
)

+ γa(Rm
k v,Rm

k v)
=γa(v, v).

�	

Proposition 6.6.9 implies immediately the following classical result by
Braess and Hackbusch (cf. (Braess & Hackbusch 1983)).

(6.6.12) Theorem. (Convergence of the kth Level Iteration for the V-
cycle) Let m be the number of smoothing steps. Then

‖z −MG(k, z0, g)‖E ≤
C∗

m + C∗ ‖z − z0‖E .

Hence, the kth level iteration for any m is a contraction, with the contrac-
tion number independent of k.

Proof. From Lemma 6.6.2, it suffices to show

‖Ekv‖E ≤
C∗

m + C∗ ‖v‖E ∀ v ∈ Vk.

In view of Proposition 6.6.6 we can apply the spectral theorem to Ek. Let
0 ≤ α1 ≤ . . . ≤ αnk

be the eigenvalues of Ek and η1, η2, . . . , ηnk
be the

corresponding eigenvectors such that a(ηi, ηj) = δij .
Write v =

∑
νiηi. Then a(Ekv, v) =

∑
αiν

2
i . Therefore, (6.6.10) im-

plies that 0 ≤ α1 ≤ . . . ≤ αnk
≤ C∗/(m + C∗). Hence,
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‖Ekv‖2E = a(Ekv,Ekv)

=
nk∑
i=1

α2
i ν

2
i

≤
(

C∗

m + C∗

)2 ∑
ν2

i

=
(

C∗

m + C∗

)2

‖v‖2E .

�	

6.7 Full Multigrid Convergence Analysis and Work
Estimates

The following theorem shows that the convergence of the full multigrid
method is a simple consequence of the convergence of the kth level iteration.

(6.7.1) Theorem. (Full Multigrid Convergence) If the kth level iteration
is a contraction with a contraction number γ independent of k and if r is
large enough, then there exists a constant C > 0 such that

‖uk − ûk‖E ≤ C hk |u|H2(Ω).

Proof. Define êk := uk − ûk. In particular, ê1 = 0. We have

‖êk‖E ≤ γr ‖uk − ûk−1‖E

≤ γr {‖uk − u‖E + ‖u− uk−1‖E + ‖uk−1 − ûk−1‖E}
≤ γr

[
C̃hk|u|H2(Ω) + ‖êk−1‖E

]
. (by 6.1.6 & 6.1.5)

By iterating the above inequality we have

‖êk‖E ≤ C̃ hk γr |u|H2(Ω) + C̃ hk−1 γ2r |u|H2(Ω) + . . . + C̃ h1 γkr |u|H2(Ω)

≤ hk |u|H2(Ω)
C̃ γr

1− 2 γr

if 2 γr < 1. For such choice of r,

‖êk‖E ≤ C hk |u|H2(Ω).

�	

We now turn our attention to the work estimates. First we obtain
an asymptotic estimate for nk (= dim Vk). Let eI

k denote the number of
internal edges of Tk, νI

k denote the number of internal vertices of Tk, and
tk denote the number of triangles in Tk. Euler’s formula implies that

νI
k − eI

k + tk = 1.
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Therefore,
nk = νI

k = 1 + eI
k − tk.

The difference equations for eI
k and tk are

(6.7.2)
eI

k+1 = 2eI
k + 3tk

tk+1 = 4tk.

By solving (6.7.2) (cf. exercise 6.x.11), we obtain

(6.7.3) nk ∼
t1
8

4k.

(6.7.4) Proposition. The work involved in the full multigrid algorithm is
O(nk).

Proof. Let Wk denote the work in the kth level scheme. Together, the
smoothing and correction steps yield

(6.7.5) Wk ≤ C m̃nk + pWk−1,

where m̃ = m1 + m2. Iterating (6.7.5) and using the fact that p < 4 we
obtain

Wk ≤ Cm̃nk + p(Cm̃nk−1) + p2(Cm̃nk−2) + . . . + pk−1(Cm̃n1)
≤ Cm̃4k + pCm̃4k−1 + p2Cm̃4k−2 + . . . + pk−1Cm̃4

≤ Cm̃4k

1− p/4
≤ C 4k

≤ C nk. (by 6.7.3)

Hence,
Wk ≤ C nk.

Let Ŵk denote the work involved in obtaining ûk in the full multigrid
algorithm. Then

(6.7.6) Ŵk ≤ Ŵk−1 + r Wk.

Iterating (6.7.6), we have

Ŵk ≤ rCnk + rCnk−1 + . . . + rCn1

≤ rC(4k + 4k−1 + . . . + 4) (by 6.7.3)

≤ rC4k

1− 1/4

≤ C4k

≤ Cnk. (by 6.7.3)

�	
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6.x Exercises

6.x.1 Prove Lemma 6.2.10. (Hint: see the proof of Theorem 6.5.7.)

6.x.2 Sketch the schedule for grids in the order they are visited for the
W-cycle and V-cycle methods. Explain the reasons for the nomen-
clature.

6.x.3 Establish the inequalities in (6.5.3). (Hint: use the fact that Ak

is self-adjoint in the inner-product (6.2.2) and that (Akv, v)k ≤
Λk(v, v)k for all v ∈ Vk.)

6.x.4 Show that the two-grid algorithm is a contraction for any m. (Hint:
Use (6.6.11).)

6.x.5 Prove the convergence of the kth level iteration in the L2-norm for
the W-cycle method when m is sufficiently large. (Hint: Use the
smoothing property, approximation property and a duality argu-
ment.)

6.x.6 Prove Lemma 6.6.5. (Hint: show that Ak is self-adjoint in the inner-
product a(·, ·).)

6.x.7 Show that the error operator Ek (k > 1), defined by 6.6.1, can also
be written as

Ek = [(I − Pk) + Rm
k Pk]

[
(I − Pk−1) + Rm

k−1Pk−1

]
· · ·

[(I − P2) + Rm
2 P2] [I − P1] [(I − P2) + Rm

2 P2] · · ·[
(I − Pk−1) + Rm

k−1Pk−1

]
[(I − Pk) + Rm

k Pk] .

6.x.8 Show that the error operator Ẽk (k > 1) for the one-sided V-cycle
method with m presmoothing steps can be written as

Ẽk = (I − P1) [(I − P2) + Rm
2 P2] · · ·[

(I − Pk−1) + Rm
k−1Pk−1

]
[(I − Pk) + Rm

k Pk] ,

while the error operator for the one-sided V-cycle method with m
postsmoothing steps is Ẽ∗

k , the adjoint of Ẽk in a(·, ·). Deduce that
both methods converge for any m. (Hint: Use exercise 6.x.7 and
Theorem 6.6.12).

6.x.9 Show that the error operator Ẽw
k for the one-sided W-cycle method

with m presmoothing steps can be written as

Ẽw
k = FkẼk,

where Ẽk is defined as in 6.x.8 and ‖Fk‖E ≤ 1. Deduce the con-
vergence of the one-sided W-cycle method for any m. (Hint: Use
exercise 6.x.8.)



6.x Exercises 173

6.x.10 Show that the error operator Ew
k for the symmetricW-cycle method

with m presmoothing steps and m postsmoothing steps can be writ-
ten as

EW
k = Ẽ∗

kDkẼk,

where Ẽ∗
k and Ẽk are defined in 6.x.8 and ‖Dk‖E ≤ 1. Deduce the

convergence of the symmetric W-cycle method for any m. (Hint:
Use 6.x.8.)

6.x.11 Solve (6.7.2) and establish (6.7.3).

6.x.12 Prove that the edge-midpoint quadrature rule used in the proof of
Lemma 6.2.7 is exact for quadratic polynomials. Does an analogous
result hold in three dimensions, with the quadrature points at the
barycenters of the four faces?

6.x.13 Prove Lemma 6.2.7 in d dimensions. (Hint: use homogeneity and
the fact that the Gram matrix for the Lagrange basis functions is
positive definite.)

6.x.14 Establish the following additive expression for the error operator Ek

(k ≥ 2) of the kth level symmetric V -cycle algorithm.

Ek =
k∑

j=2

Rm
k Ik

k−1 · · ·Rm
j+1I

j+1
j [Rm

j (Idj − Ij
j−1P

j−1
j )Rm

j ]

× P j
j+1R

m
j+1 · · ·P k−1

k Rm
k ,

where P j−1
j : Vj −→ Vj−1 is the restriction of the Ritz projection

Pj−1 to Vj and Idj is the identity operator on Vj . Use this expression
to give another proof of Proposition 6.6.6.

6.x.15 Show that the kth level multigrid iteration is a linear and consistent
scheme, i.e., MG(k, z0, g) = Bkg + Ckz0 where Bk, Ck : Vk −→ Vk

are linear operators and MG(k, z0, Az0) = z0.

6.x.16 Find a recursive definition of the operator Bk in exercise 6.x.15.
(Hint: Use the recursive definition of MG(k, z0, g) in Section 6.3
and the fact that Bkg = MG(k, 0, g).)

6.x.17 Show that the operators Bk and Ck in exercise 6.x.15 satisfy the
relation BkAk +Ck = Idk (the identity operator on Vk) and deduce
that

z −MG(k, z0, g) = (Idk −BkAk)(z − z0),

where Akz = g. (Hint: Use the consistency of MG(k, z0, g).)



Chapter 7

Additive Schwarz Preconditioners

The symmetric positive definite system arising from a finite element dis-
cretization of an elliptic boundary value problem can be solved efficiently
using the preconditioned conjugate gradient method (cf. (Saad 1996)). In
this chapter we discuss the class of additive Schwarz preconditioners, which
has built-in parallelism and is particularly suitable for implementation
on parallel computers. Many well-known preconditioners are included in
this class, for example the hierarchical basis and BPX multilevel precondi-
tioners, the two-level additive Schwarz overlapping domain decomposition
preconditioner, the BPS, Neumann-Neumann, and BDDC nonoverlapping
domain decomposition preconditioners.

For concreteness we present these additive Schwarz preconditioners in
terms of a simple two-dimensional model problem. We refer the readers to
Toselli and Widlund (2004) for additive Schwarz preconditioners in three
dimensions and their applications to elasticity and fluid.

7.1 Abstract Additive Schwarz Framework

Let V be a finite dimensional vector space and V ′ be the dual space of V ,
i.e., the vector space of linear functionals on V . Let 〈·, ·〉 be the canonical
bilinear form on V ′ × V defined by

(7.1.1) 〈α, v〉 = α(v) ∀α ∈ V ′, v ∈ V .

(7.1.2) Definition. A linear operator (transformation) A : V −→ V ′ is sym-
metric positive definite (SPD) if

〈Av1, v2〉 = 〈Av2, v1〉 ∀ v1, v2 ∈ V,(7.1.3)
〈Av, v〉 > 0 ∀ v ∈ V, v �= 0 .(7.1.4)
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Similarly, a linear operator B : V ′ −→ V is SPD if

〈α1, Bα2〉 = 〈α2, Bα1〉 ∀α1, α2 ∈ V ′,(7.1.5)
〈α,Bα〉 > 0 ∀α ∈ V ′ , v �= 0 .(7.1.6)

Note that if A : V −→ V ′ is SPD, then A is invertible and A−1 is a
SPD operator from V ′ to V . The converse is also true.

Let A : V −→ V ′ be SPD. In terms of certain auxiliary vector spaces
Vj (0 ≤ j ≤ J), the SPD operators Bj : Vj −→ V ′

j , and the linear operators
Ij : Vj −→ V that connect the auxiliary spaces to V , we can construct an
abstract additive Schwarz preconditioner B : V ′ −→ V for A:

(7.1.7) B =
J∑

j=0

IjB
−1
j It

j ,

where the transpose operator It
j : V ′ −→ V ′

j is defined by

(7.1.8) 〈It
jα, v〉 = 〈α, Ijv〉 ∀α ∈ V ′, v ∈ Vj .

We assume that

(7.1.9) V =
J∑

j=0

IjVj .

(7.1.10) Remark. We can represent the operators B, Bj , Ij and It
j by ma-

trices with respect to chosen bases for V and Vj , and the corresponding
dual bases for V ′ and V ′

j . Note that the matrix for B−1
j is the inverse of

the matrix for Bj , and the matrix for It
j is the transpose of the matrix

for Ij . Therefore the matrix form of the additive Schwarz preconditioner is
identical with (7.1.7), i.e.,

≈
B =

∑J
j=0 ≈

I j ≈
B−1

j ≈
It

j .

(7.1.11) Lemma. B : V ′ −→ V is SPD.

Proof. It follows easily from (7.1.7), (7.1.8) and the symmetric positive
definiteness of B−1

j that B is symmetric (cf. exercise 7.x.4) and

(7.1.12) 〈α,Bα〉 =
J∑

j=0

〈It
jα,B−1

j It
jα〉 ≥ 0 ∀α ∈ V ′ .

Let α ∈ V ′ satisfy 〈α,Bα〉 = 0. It follows from (7.1.12) and the positive
definiteness of the Bj ’s that

(7.1.13) It
jα = 0 0 ≤ j ≤ J .
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Let v ∈ V be arbitrary. In view of (7.1.9) we can write v =
∑J

j=0 Ijvj ,
where vj ∈ Vj for 0 ≤ j ≤ J , and then (7.1.13) implies

〈α, v〉 = 〈α,
J∑

j=0

Ijvj〉 =
J∑

j=0

〈It
jα, vj〉 = 0 .

We conclude that α = 0 and hence B is positive definite. �	

It follows that B−1 : V −→ V ′ is SPD. The next lemma gives a
characterization of the inner product 〈B−1·, ·〉.

(7.1.14) Lemma. The following relation holds for v ∈ V :

(7.1.15) 〈B−1v, v〉 = min
v=
∑J

j=0
Ijvj

vj∈Vj

J∑
j=0

〈Bjvj , vj〉.

Proof. Since B−1
j : V ′

j −→ Vj is SPD, the bilinear form 〈·, B−1
j ·〉 is an inner

product on V ′
j , and the following Cauchy-Schwarz inequality holds:

(7.1.16) 〈α1, B
−1
j α2〉 ≤

√
〈α1, B

−1
j α1〉

√
〈α2, B

−1
j α2〉 .

Suppose v =
∑J

j=0 Ijvj , where vj ∈ Vj for 0 ≤ j ≤ J . We have

〈B−1v, v〉 = 〈B−1v,

J∑
j=0

Ijvj〉

=
J∑

j=0

〈It
jB

−1v,B−1
j Bjvj〉 (by 7.1.8)

≤
J∑

j=0

√
〈It

jB
−1v,B−1

j It
jB

−1v〉
√
〈Bjvj , B

−1
j Bjvj〉 (by 7.1.16)

≤

⎛⎝ J∑
j=0

〈It
jB

−1v,B−1
j It

jB
−1v〉

⎞⎠1/2 ⎛⎝ J∑
j=0

〈Bjvj , vj〉

⎞⎠1/2

=
〈

B−1v,
( J∑

j=0

IjB
−1
j It

j

)
B−1v

〉1/2
⎛⎝ J∑

j=0

〈Bjvj , vj〉

⎞⎠1/2

(by 7.1.8)

= 〈B−1v, v〉1/2

⎛⎝ J∑
j=0

〈Bjvj , vj〉

⎞⎠1/2

, (by 7.1.7)

which implies that
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(7.1.17) 〈B−1v, v〉 ≤
J∑

j=0

〈Bjvj , vj〉 .

On the other hand, for the special choice of

(7.1.18) vj = B−1
j It

jB
−1v ,

we have vj ∈ Vj , v =
∑J

j=0 Ijvj (cf. exercise 7.x.5), and

J∑
j=0

〈Bjvj , vj〉 =
J∑

j=0

〈BjB
−1
j It

jB
−1v,B−1

j It
jB

−1v〉

=
〈

B−1v,
( J∑

j=0

IjB
−1
j It

j

)
B−1v

〉
(by 7.1.8)(7.1.19)

= 〈B−1v, v〉 . (by 7.1.7)

The relation (7.1.15) follows from (7.1.17) and (7.1.19). �	

(7.1.20) Theorem. The eigenvalues of BA are positive, and we have the
following characterizations of the maximum and minimum eigenvalues :

λmax(BA) = max
v∈V
v �=0

〈Av, v〉
min

v=
∑J

j=0
Ijvj

vj∈Vj

∑J
j=0〈Bjvj , vj〉

,(7.1.21)

λmin(BA) = min
v∈V
v �=0

〈Av, v〉
min

v=
∑J

j=0
Ijvj

vj∈Vj

∑J
j=0〈Bjvj , vj〉

.(7.1.22)

Proof. First we observe that BA : V −→ V is SPD with respect to the inner
product ((·, ·)) = 〈B−1·, ·〉 (cf. exercise 7.x.6). Therefore the eigenvalues of
BA are positive, and the Rayleigh quotient formula (cf. (Golub & Van Loan
1989)) implies that

λmax(BA) = max
v∈V
v �=0

((BAv, v))
((v, v))

= max
v∈V
v �=0

〈Av, v〉
〈B−1v, v〉

= max
v∈V
v �=0

〈Av, v〉
min

v=
∑J

j=0
Ijvj

vj∈Vj

∑J
j=0〈Bjvj , vj〉

.

The proof of (7.1.22) is similar. �	



7.2 The Hierarchical Basis Preconditioner 179

(7.1.23) Remark. The abstract theory of additive Schwarz preconditioners
has several equivalent formulations which are due to many authors (cf.
(Dryja & Widlund 1987, 1989, 1990, 1992, 1995), (Nepomnyaschikh 1989),
(Bjørstad & Mandel 1991), (Zhang 1991), (Xu 1992), (Dryja, Smith & Wid-
lund 1994), (Griebel & Oswald 1995)).

Let Ω be a bounded polygonal domain in IR2. In subsequent sections
we will consider the model problem of finding u ∈ H̊1(Ω) such that

(7.1.24)
∫

Ω

∇u · ∇v dx = F (v) ∀ v ∈ H̊1(Ω) ,

where F ∈ [H̊1(Ω)]′. The abstract theory of additive Schwarz precondition-
ers will be applied to various preconditioners for the system resulting from
finite element discretizations of (7.1.24).

Two multilevel preconditioners are discussed in Sects. 7.2 and 7.3, and
several domain decomposition preconditioners are discussed in Sects. 7.4
to 7.8. Applications to other domain decomposition preconditioners can be
found in (LeTallec 1994), (Chan & Matthew 1994), (Dryja, Smith & Wid-
lund 1994), (Smith, Bjørstad & Gropp 1996), (Xu & Zou 1998), (Quarteroni
& Valli 1999) and (Toselli & Widlund 2004).

In order to avoid the proliferation of constants, we shall use the nota-
tion A <∼ B (B >∼ A) to represent the statement A ≤ constant × B, where
the constant is always independent of the mesh sizes of the triangulations
and the number of auxiliary subspaces. The statement A ≈ B is equivalent
to A <∼ B and B <∼ A.

7.2 The Hierarchical Basis Preconditioner

Let T1 be a triangulation of Ω, and the triangulations T2, . . . ,TJ be obtained
from T1 by regular subdivision. Therefore hj = maxT∈Tj

diam T and hJ =
maxT∈TJ

diam T are related by

(7.2.1) hj = 2J−jhJ for 1 ≤ j ≤ J .

Let Vj ⊆ H̊1(Ω) be the P1 finite element space associated with Tj . The
discrete problem for (7.1.24) is to find uJ ∈ VJ such that

(7.2.2)
∫

Ω

∇uJ · ∇v dx = F (v) ∀ v ∈ VJ .

Let the linear operator AJ : VJ −→ V ′
J be defined by

(7.2.3) 〈AJw, v〉 =
∫

Ω

∇w · ∇v dx ∀ v, w ∈ VJ ,
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and fJ ∈ V ′
J be defined by 〈fJ , v〉 = F (v) for all v ∈ VJ . Then (7.2.2) can

be written as AJuJ = fJ .
Our goal in this section is to study the hierarchical basis preconditioner

for AJ (cf. (Yserentant 1986)).
Let the subspace Wj of Vj (2 ≤ j ≤ J) be defined by

Wj = {v ∈ Vj : v(p) = 0 for all the vertices p of Tj−1} .

It is easy to see that (cf. exercise 7.x.9)

(7.2.4) Vj = Vj−1 ⊕Wj ,

and hence

(7.2.5) VJ = W1 ⊕ · · · ⊕WJ ,

provided we take W1 to be V1. In fact, given v ∈ VJ , the decomposition
(7.2.5) can be written explicitly as

v = Π1v + (Π2v −Π1v) + (Π3v −Π2v) + . . .(7.2.6)
+ (ΠJ−1v −ΠJ−2v) + (v −ΠJ−1v) ,

where Πj : C0(Ω) −→ Vj is the nodal interpolation operator.
The auxiliary spaces W1, W2, . . . , WJ are connected to VJ by the

natural injections Ij : Wj −→ VJ , and we can define SPD operators
Bj : Wj −→ W ′

j by

(7.2.7) 〈Bjw1, w2〉 =
∑

p∈Vj\Vj−1

w1(p)w2(p) ∀w1, w2 ∈ Wj ,

where Vj is the set of internal vertices of Tj (with V0 = ∅).
The hierarchical basis preconditioner for AJ is then given by

(7.2.8) BHB =
J∑

j=1

IjB
−1
j It

j .

Since (7.1.9) is implied by (7.2.5), BHB can be analyzed using Theo-
rem 7.1.20.

Let v =
∑J

j=1 wj , where wj = Πjv −Πj−1v, be the unique decompo-
sition of v ∈ VJ (cf. (7.2.6)). Here Π0v is taken to be 0. Observe that, by a
direct calculation (cf. exercise 7.x.10) we have

(7.2.9) ‖w −Πj−1w‖L2(Ω) <∼ hj |w|H1(Ω) ∀w ∈ Vj , 1 ≤ j ≤ J .

It follows from (7.2.9) and an inverse estimate (cf. (4.5.12)) that

h−1
j ‖wj‖L2(Ω) = h−1

j ‖wj −Πj−1wj‖L2(Ω)(7.2.10)

<∼ |wj |H1(Ω) <∼ h−1
j ‖wj‖L2(Ω) .
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Using (7.2.7), Lemma 6.2.7 and (7.2.10) we find the following relations
for the denominator that appears in (7.1.21) and (7.1.22).

J∑
j=1

〈Bjwj , wj〉 =
J∑

j=1

h−2
j

(
h2

j

∑
p∈Vj\Vj−1

[wj(p)]2
)

(7.2.11)

≈
J∑

j=1

h−2
j ‖wj‖2L2(Ω) ≈

J∑
j=1

|wj |2H1(Ω) .

The following lemma enables us to get a lower bound for λmin(BHBAJ ).

(7.2.12) Lemma. The following estimate holds for 1 ≤ j ≤ J .

(7.2.13) ‖Πjv −Πj−1v‖L2(Ω) <∼ hj

(
1 +

√
J − j

)
|v|H1(Ω) ∀ v ∈ VJ .

Proof. Let vT = |T |−1
∫

T
v dx be the average of v over a triangle T ∈ Tj .

We have

‖Πjv −Πj−1v‖2L2(Ω) = ‖Πjv −Πj−1Πjv‖2L2(Ω)

<∼ h2
j

∑
T∈Tj

|Πjv − vT |2H1(T ) (by 7.2.9)

<∼ h2
j

∑
T∈Tj

‖Πjv − vT ‖2L∞(T ) (by 4.5.3)

<∼ h2
j

∑
T∈Tj

‖v − vT ‖2L∞(T )

<∼ h2
j

∑
T∈Tj

(
1 + | ln(hj/hJ)|

)
|v|2H1(T ) . (by 7.x.11)

The lemma then follows from (7.2.1). �	

Combining (7.2.11) and (7.2.13) we find

J∑
j=1

〈Bjwj , wj〉 <∼
( J∑

j=1

j
)
|v|2H1(Ω)

<∼ J2 |v|2H1(Ω) .

In view of (7.2.1) and (7.2.3), we have

J∑
j=1

〈Bjwj , wj〉 <∼
(
1 + | ln hJ |2

)
〈AJv, v〉 ,

which implies by (7.1.22) that

(7.2.14) λmin(BHBAJ) >∼
(
1 + | ln hJ |2

)−1
.
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We shall need the following lemmas for the estimate of λmax(BHBAJ ).
The first, a discrete version of Young’s inequality on convolutions, is left as
an exercise (cf. exercise 7.x.12).

(7.2.15) Lemma. Let aj and bj be nonnegative for −∞ < j < ∞. Then we
have

∞∑
j=−∞

( ∞∑
k=−∞

aj−kbk

)2

≤
( ∞∑

k=−∞
bk

)2
⎛⎝ ∞∑

j=−∞
a2

j

⎞⎠ .

(7.2.16) Lemma. The following estimate holds for vj ∈ Vj, vk ∈ Vk and
1 ≤ j ≤ k ≤ J .

(7.2.17)
∫

Ω

∇vj · ∇vk dx <∼ 2(j−k)/2|vj |H1(Ω)

(
h−1

k ‖vk‖L2(Ω)

)
.

Proof. On each triangle T ∈ Tj we have∫
T

∇vj · ∇vk dx =
∫

∂T

∂vj

∂n
vk ds

<∼ h−1
j |vj |H1(T )

∫
∂T

|vk| ds (vj ∈ Vj)

<∼
(
h−1

j |vj |H1(T )

)(
hk

∑
p∈Vk∩∂T

|vk(p)|
)

(vk ∈ Vk)

<∼
(
h−1

j |vj |H1(T )

)[
hk

(
hj

hk

)1/2( ∑
p∈Vk∩∂T

|vk(p)|2
)1/2

]
(Cauchy-Schwarz inequality)

<∼
(

hk

hj

)1/2

|vj |H1(T )

(
h−1

k ‖vk‖L2(T )

)
. (by 6.2.7)

The estimate (7.2.17) follows by summing up this last estimate over
all the triangles T ∈ Tj , and applying the Cauchy-Schwarz inequality and
the relation (7.2.1). �	

(7.2.18) Lemma. (Strengthened Cauchy-Schwarz Inequality)
The following estimate holds for wj ∈ Wj, wk ∈ Wk and 1 ≤ j ≤ k ≤ J .

(7.2.19)
∫

Ω

∇wj · ∇wk dx <∼ 2(j−k)/2|wj |H1(Ω)|wk|H1(Ω) .

Proof. Since wk = wk −Πk−1wk, the estimate (7.2.19) follows from (7.2.9)
and (7.2.17). �	
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Given any v ∈ VJ , we have

〈AJv, v〉 =
∫

Ω

∇
( J∑

j=1

wj

)
· ∇

( J∑
k=1

wk

)
dx (by 7.2.3)

<∼
J∑

j,k=1

2−|j−k|/2|wj |H1(Ω)|wk|H1(Ω) (by 7.2.19)

<∼
J∑

j=1

( J∑
k=1

2−|j−k|/2|wk|H1(Ω)

)
|wj |H1(Ω)

<∼

⎡⎣ J∑
j=1

( J∑
k=1

2−|j−k|/2|wk|H1(Ω)

)2

⎤⎦1/2 ⎡⎣ J∑
j=1

|wj |2H1(Ω)

⎤⎦1/2

(Cauchy-Schwarz inequality)

<∼
J∑

i=1

|wj |2H1(Ω) (by 7.2.15)

≈
J∑

j=1

〈Bjwj , wj〉 , (by 7.2.11)

which together with (7.1.21) imply that

(7.2.20) λmax(BHBAJ) <∼ 1 .

Combining (7.2.14) and (7.2.20) we have the following theorem on the
hierarchical basis preconditioner.

(7.2.21) Theorem. There exists a positive constant C, independent of J and
hJ , such that

κ(BHBAJ ) =
λmax(BHBAJ)
λmin(BHBAJ)

≤ C
(
1 + | ln hJ |2

)
.

7.3 The BPX Preconditioner

In this section we discuss the preconditioner introduced by Bramble, Pas-
ciak and Xu (cf. (Bramble, Pasciak & Xu 1990)). We will follow the set-up
in Sect. 7.2. Again, we want to precondition AJ : VJ −→ V ′

J . But this time
we take the auxiliary spaces to be V1, V2, . . . , VJ , which are connected to
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VJ by the natural injections Ij : Vj −→ VJ . Condition (7.1.9) is clearly
satisfied.

Let the symmetric positive definite operators Bj : Vj −→ V ′
j be defined

by

(7.3.1) 〈Bjv1, v2〉 =
∑
p∈Vj

v1(p)v2(p) .

The BPX preconditioner is then given by

(7.3.2) BBPX =
J∑

j=1

IjB
−1
j It

j .

Let v ∈ VJ and v =
∑J

j=1 vj , where vj ∈ Vj , be any decomposition of
v. Observe that by (7.2.17) and an inverse estimate (cf. (4.5.12)) we have

(7.3.3)
∫

Ω

∇vj · ∇vk dx <∼ 2−|j−k|/2
(
h−1

j ‖vj‖L2(Ω)

)(
h−1

k ‖vk‖L2(Ω)

)
,

for 1 ≤ j, k ≤ J .
We can then obtain, as in the proof of Lemma 7.2.18, the estimate

〈AJv, v〉 =
∫

Ω

∇
( J∑

j=1

vj

)
· ∇

( J∑
k=1

vk

)
dx (by 7.2.3)

<∼
J∑

j,k=1

2−|j−k|/2
(
h−1

j ‖vj‖L2(Ω)

)(
h−1

k ‖vk‖L2(Ω)

)
(by 7.3.3)

<∼
J∑

j=1

h−2
j ‖vj‖2L2(Ω) (by 7.2.15)

≈
J∑

j=1

〈Bjvj , vj〉 , (by 7.3.1 & 6.2.7)

which implies, in view of (7.1.21),

(7.3.4) λmax(BBPXAJ ) <∼ 1 .

Now we turn to finding an estimate for λmin(BBPXAJ). For simplicity,
we assume here that Ω is convex, so that we can exploit the full elliptic
regularity of the solution of (7.1.24).

Let Pk : H̊1(Ω) −→ Vk be the Ritz projection operator, i.e.,

(7.3.5)
∫

Ω

∇(Pkφ) · ∇v dx =
∫

Ω

∇φ · ∇v dx ∀ v ∈ Vk .

Given any v ∈ VJ , we define
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(7.3.6) vj = Pjv − Pj−1v for 1 ≤ j ≤ J ,

where we take P0v to be 0. Clearly v =
∑J

j=1 vj and it is easy to see from
(7.3.6) (cf. exercise 7.x.14) that

(7.3.7)
∫

Ω

∇vj · ∇vk dx = 0 for j �= k .

Moreover, by a duality argument, we have

h−2
j ‖vj‖2L2(Ω) = h−2

j ‖Pjv − Pj−1v‖2L2(Ω) (by 7.3.6)

= h−2
j ‖Pjv − Pj−1Pjv‖2L2(Ω) (by 7.x.15)

<∼ |vj |2H1(Ω) (by 5.4.8 & 7.3.6)

for 2 ≤ j ≤ J . This estimate also holds trivially for j = 1 (cf. exer-
cise 7.x.16). It then follows from (7.3.7) that

J∑
j=1

〈Bjvj , vj〉 ≈
J∑

j=1

h−2
j ‖vj‖2L2(Ω)

<∼
J∑

j=1

|vj |2H1(Ω) = |v|2H1(Ω) ,

which implies, by (7.1.22),

(7.3.8) λmin(BBPXAJ) >∼ 1 .

(7.3.9) Remark. The estimate (7.3.8) also holds for nonconvex polygonal
domains (cf. 7.x.17).

Combining (7.3.4) and (7.3.8) we have the following theorem on the
BPX preconditioner.

(7.3.10) Theorem. There exists a positive constant C, independent of J and
hJ , such that

κ(BBPXAJ ) =
λmax(BBPXAJ )
λmin(BBPXAJ)

≤ C .

7.4 The Two-level Additive Schwarz Preconditioner

Let Th be a quasi-uniform triangulation of Ω with mesh size h and Vh ⊂
H̊1(Ω) be the P1 finite element space (cf. (3.2.1)) associated with Th. We
define the SPD operator Ah : Vh −→ Vh by
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(7.4.1) 〈Ahv1, v2〉 =
∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vh ,

and fh ∈ V ′
h by 〈fh, v〉 = F (v) for all v ∈ Vh. Then the discrete problem

for (7.1.24) can be written as Ahuh = fh.
In this section we study an overlapping domain decomposition precon-

ditioner for Ah.
Let TH be a triangulation of Ω with mesh size H such that Th is a

subdivision of TH , VH ⊂ Vh be the P1 finite element space associated with
TH , and AH : VH −→ VH be defined by

(7.4.2) 〈AHv1, v2〉 =
∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ VH .

The space VH and the operator AH are parts of the construction of the two
level additive Schwarz preconditioner.

The other auxiliary spaces are associated with a collection of open
subsets Ω1, Ω2, . . . , ΩJ of Ω, whose boundaries are aligned with Th. We
assume that there exist nonnegative C∞ functions θ1, θ2, . . . θJ (a partition
of unity) defined on IR2 with the following properties:

(7.4.3) θj = 0 on Ω\Ωj .

(7.4.4)
J∑

j=1

θj = 1 on Ω.

(7.4.5) There exists a positive constant δ ≤ H such that

‖∇θj‖L∞(IR2) ≤ C/δ ,

where C is a constant independent of δ, h, H and J .
Furthermore we assume that
(7.4.6) each point in Ω belongs to at most NC subdomains.

(7.4.7) Remark. The conditions (7.4.3) and (7.4.4) imply that the subdo-
mains Ω1, . . . , ΩJ form an overlapping decomposition of Ω. The constant δ
in (7.4.5) measures the the amount of overlap between neighboring subdo-
mains.

We associate with each Ωj the subspace

(7.4.8) Vj =
{

v ∈ Vh : v = 0on Ω\Ωj

}
,

and define the SPD operator Aj : Vj −→ V ′
j by

(7.4.9) 〈Ajv1, v2〉 =
∫

Ωj

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vj .

The two-level additive Schwarz preconditioner (cf. (Dryja & Widlund 1987,
1989) and (Nepomnyaschikh 1989)) is then given by
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(7.4.10) BTL = IHA−1
H It

H +
J∑

j=1

IjA
−1
j It

j ,

where IH : VH −→ Vh and Ij : Vj −→ Vh are natural injections.

(7.4.11) Remark. TH , Tj and Ωj can be constructed in the following way
(cf. Fig. 7.1) to satisfy the assumptions (7.4.3)–(7.4.6).
(i) Construct a coarse triangulation TH .
(ii) Divide Ω into nonoverlapping subdomains Ω̃j , 1 ≤ j ≤ J , which are

aligned with TH .
(iii) Subdivide TH to obtain Th.
(iv) Let Ω̃j,δ be the open set obtained by enlarging Ω̃j by a band of width

δ such that ∂Ω̃j,δ ∩Ω is aligned with Th.
(v) Define Ωj = Ω̃j,δ ∩Ω.

Since the Ω̃j,δ’s form an open cover of Ω, the existence of the partition
of unity with properties (7.4.3)–(7.4.5) is standard (cf. (Rudin 1991)). Note
that in this case the number NC is determined by the number of Ω̃j ’s that
can share a vertex of TH , which is in turn determined by the minimum
angle of TH .

Fig. 7.1. construction of the overlapping domain decomposition

(7.4.12) Lemma. We have Vh =
J∑

j=1

Vj .

Proof. Given v ∈ Vh, let vj = Πh(θjv) for 1 ≤ j ≤ J , where Πh : C(Ω) −→
Vh is the nodal interpolation operator.

Since θjv = 0 on Ω\Ωj by (7.4.3) and ∂Ωj is aligned with Th, we also
have vj = Πh[θjv] = 0 on Ω\Ωj . It follows that vj ∈ Vj by (7.4.8).

The vj ’s also form a decomposition of v because

J∑
j=1

vj =
J∑

j=1

Πh(θjv) = Πh

(
v

J∑
j=1

θj

)
= Πhv = v . �	

In view of Lemma 7.4.12, condition (7.1.9) is satisfied.
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The following lemma will enable us to obtain an upper bound for
λmax(BTLAh).

(7.4.13) Lemma. Let vH ∈ VH, vj ∈ Vj for 1 ≤ j ≤ J and v = vH +
∑J

j=1 vj.
Then the following estimate holds :

〈Ahv, v〉 <∼ 〈AHvH , vH〉+
J∑

j=1

〈Ajvj , vj〉 .

Proof. We have by (7.4.1) and (7.4.2) that

〈Ahv, v〉 =
∫

Ω

∇
(
vH +

J∑
j=1

vj

)
· ∇

(
vH +

J∑
k=1

vk

)
dx

≤ 2

⎡⎣∫
Ω

∇vH · ∇vH dx +
∫

Ω

∇
( J∑

j=1

vj

)
· ∇

( J∑
k=1

vk

)
dx

⎤⎦(7.4.14)

<∼ 〈AHvH , vH〉+
J∑

j,k=1

∫
Ω

∇vj · ∇vk dx .

For each T ∈ Th, we define cjk(T ) =
{

1 if T ⊆ Ωj ∩Ωk,
0 if T �⊆ Ωj ∩Ωk.

Note that

(7.4.15) cjk(T ) = ckj(T ) .

The second term on the right-hand side of (7.4.14) can now be esti-
mated as follows.

J∑
j,k=1

∫
Ω

∇vj · ∇vk dx =
J∑

j,k=1

∑
T∈Th

cjk(T )
∫

T

∇vj · ∇vk dx

≤
J∑

j,k=1

∑
T∈Th

(√
cjk(T )|vj |H1(T )

)(√
cjk(T )|vk|H1(T )

)

≤
∑

T∈Th

J∑
j,k=1

cjk(T )|vj |2H1(T ) (Cauchy-Schwarz & 7.4.15)

≤
∑

T∈Th

J∑
j=1

[
|vj |2H1(T )

(
J∑

k=1

cjk(T )

)]

≤ NC

J∑
j=1

〈Ajvj , vj〉 . (by 7.4.6 & 7.4.9)

The lemma follows from the last estimate and (7.4.14). �	
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Combining (7.4.13) and (7.1.21), we obtain immediately the estimate

(7.4.16) λmax(BTLAh) <∼ 1 .

The next lemma will yield a lower bound for λmin(BTLAh) when com-
bined with (7.1.22).

(7.4.17) Lemma. Given any v ∈ Vh, there exists a decomposition

v = vH +
J∑

j=1

vj

where vH ∈ VH, vj ∈ Vj, such that

〈AHvH , vH〉+
J∑

j=1

〈Ajvj , vj〉 <∼
(

1 +
H

δ

)2

〈Ahv, v〉.

Proof. Let ĨH : H̊1(Ω) −→ VH be the interpolation operator defined in
Sect. 4.8. Let v ∈ Vh and vH = ĨHv. Then we have, by Theorem 4.8.12,

|vH |H1(Ω) <∼ |v|H1(Ω) ,(7.4.18)
‖v − vH‖L2(Ω) <∼ H |v|H1(Ω) .(7.4.19)

Let w = v − vH and define

(7.4.20) vj = Πh(θjw) .

It is easy to check that v = vH +
∑J

j=1 vj (cf. exercise 7.x.18).
It follows from (7.4.2), (7.4.18) and (7.4.1) that

(7.4.21) 〈AHvH , vH〉 = |vH |2H1(Ω)
<∼ |v|

2
H1(Ω) = 〈Ahv, v〉 .

We also have, from (7.4.9),

(7.4.22) 〈Ajvj , vj〉 =
∑

T∈Th
T⊆Ωj

|vj |2H1(T ) .

Let T ∈ Th and T ⊆ Ωj , and a, b and c be the vertices of T . A simple
calculation (cf. exercise 7.x.19) shows that

(7.4.23) |vj |2H1(T ) ≈ |vj(b)− vj(a)|2 + |vj(c)− vj(a)|2 .

We have, by (7.4.20),

vj(b)− vj(a) =
(
θj(b)− θj(a)

)
w(b) + θj(a)

(
w(b)− w(a)

)
,

and hence we obtain using (7.4.4) and (7.4.5)
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|vj(b)− vj(a)|2
<∼ [θj(b)− θj(a)]2[w(b)]2 + [θj(a)]2[w(b)− w(a)]2(7.4.24)

<∼
h2

δ2
[w(b)]2 + [w(b)− w(a)]2 .

Similarly, we find

(7.4.25) |vj(c)− vj(a)|2 <∼
h2

δ2
[w(c)]2 + [w(c)− w(a)]2 .

It follows from (7.4.24), (7.4.25), Lemma 6.2.7 and (7.4.23) that

|vj |2H1(T )
<∼

h2

δ2
[w2(b) + w2(c)] + [w(b)− w(a)]2 + [w(c)− w(a)]2

<∼
1
δ2
‖w‖2L2(T ) + |w|2H1(T ) ,

and hence in view of (7.4.22),

〈Ajvj , vj〉 <∼
∑

T∈Th
T⊆Ωj

[
1
δ2
‖w‖2L2(T ) + |w|2H1(T )

]
.

Summing up this last estimate we find

J∑
j=1

〈Ajvj , vj〉 <∼
J∑

j=1

∑
T∈Th
T⊆Ωj

[
1
δ2
‖w‖2L2(T ) + |w|2H1(T )

]

≤ NC

∑
T∈Th

[
1
δ2
‖w‖2L2(T ) + |w|2H1(T )

]
(by 7.4.6)

(7.4.26) <∼
1
δ2
‖v − vH‖2L2(Ω) + |v − vH |2H1(Ω) (def. of w)

<∼
(

1 +
H2

δ2

)
|v|2H1(Ω) . (by 7.4.18 & 7.4.19)

=
(

1 +
H2

δ2

)
〈Ahv, v〉 (by 7.4.1)

The lemma follows from (7.4.21) and (7.4.26). �	

Lemma 7.4.17 and (7.1.22) immediately yield the estimate

(7.4.27) λmin(BTLAH) >∼
(

1 +
H

δ

)−2

.

Finally we obtain the following theorem on the two-level additive
Schwarz preconditioner by combining (7.4.16) and (7.4.27).
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(7.4.28) Theorem. There exists a positive constant C, independent of H, h,
δ and J , such that

κ(BTLAh) =
λmax(BTLAh)
λmin(BTLAh)

≤ C

(
1 +

H

δ

)2

.

(7.4.29) Remark. The two-level additive preconditioner is optimal if H/δ
is kept bounded above by a constant. When δ is small with respect to H,
the factor 1 + (H/δ)2 becomes significant. Note that the estimates (7.4.24)
and (7.4.25) are very conservative, since θj = 1 at all the nodes in Ωj that
do not belong to any other subdomains. Under certain shape regularity as-
sumptions on the subdomains Ωj , the bound for κ(BTLAh) can be improved
to (cf. (Dryja & Widlund 1994) and exercise 7.x.21)

κ(BTLAh) ≤ C

(
1 +

H

δ

)
.

Furthermore, this bound is sharp (cf. (Brenner 2000)).

(7.4.30) Remark. The results in this section remain valid if the exact solves
(solution operators) A−1

H and A−1
j in (7.4.10) are replaced by spectrally

equivalent inexact solves and the triangulations Th and TH are only assumed
to be regular (with a proper interpretation of H and δ, cf. (Widlund 1999)).

7.5 Nonoverlapping Domain Decomposition Methods

To facilitate the discussion of nonoverlapping domain decomposition pre-
conditioners, we present here a framework for such methods. The notation
set up in this section will be followed in the following sections.

Let Ω be divided into polygonal subdomains Ω1, . . . , ΩJ (cf. the first
figure in Fig. 7.2) such that

Ωj ∩Ωl = ∅ if j �= l,(7.5.1)

Ω =
J⋃

j=1

Ωj ,(7.5.2)

∂Ωj ∩ ∂Ωl = ∅, a vertex or an edge, if j �= l,(7.5.3)

and Th be a quasi-uniform triangulation of Ω which is aligned with the
boundaries of the subdomains.

We assume that the subdomains satisfy the following shape regularity
assumption: There exist reference polygonal domains D1, . . . , DK of unit
diameter and a positive number H such that for each subdomain Ωj there
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is a reference polygon Dk and a C1 diffeomorphism φj,k : Dk −→ Ωj which
satisfies the estimates

(7.5.4) |∇φj,k(x)| <∼ H ∀x ∈ Dk and |∇(φ−1)j,k(x)| <∼ H−1 ∀x ∈ Ωj .

Fig. 7.2. nonoverlapping domain decomposition and coarse grid

(7.5.5) Remark. The shape regularity condition (7.5.4) implies that all the
estimates involving the subdomains follow from corresponding estimates on
the reference domains. It also implies

(7.5.6) diamΩj ≈ H .

For both the BPS and Neumann-Neumann preconditioner, global com-
munication among the subdomains is provided by a coarse grid space. The
coarse grid is constructed by creating a triangulation of each subdomain
using the vertices of the subdomain as the nodes. Together they form a tri-
angulation TH of Ω with mesh size ≈ H (cf. the second figure in Fig. 7.2).

(7.5.7) Definition. Let Γj = ∂Ωj \ ∂Ω. The interface (skeleton) of the do-
main decomposition Ω1, . . . , ΩJ is Γ =

⋃J
j=1 Γj. The set of nodes of Th

which belong to Γj (resp. Γ ) is denoted by Γj,h (resp. Γh).

Let the variational bilinear form a(·, ·) for the model problem (7.1.24)
be defined by

(7.5.8) a(v1, v2) =
∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ H1(Ω) .

The discrete problem for (7.1.24) is to find uh ∈ Vh(Ω), the P1 finite element
space in H̊1(Ω) associated with Th, such that

(7.5.9) a(uh, v) = F (v) ∀ v ∈ Vh .

The space Vh(Ω) can be decomposed, with respect to the interface Γ and
the variational form a(·, ·), into the direct sum of two subspaces.

(7.5.10) Definition. The space Vh(Ω \ Γ ) is the subspace of Vh whose mem-
bers vanish at the interface Γ , i.e.,
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(7.5.11) Vh(Ω \ Γ ) = {v ∈ Vh : v
∣∣
Γ

= 0} .

The interface space Vh(Γ ) ⊂ Vh is the orthogonal complement of Vh(Ω \Γ )
with respect to a(·, ·), i.e.,

(7.5.12) Vh(Γ ) = {v ∈ Vh : a(v, w) = 0 ∀w ∈ Vh(Ω \ Γ )} .

Vh(Γ ) is also known as the space of (global) discrete harmonic functions.

It is clear from Definition 7.5.10 that

(7.5.13) Vh(Ω) = Vh(Ω \ Γ )⊕ Vh(Γ ) .

The solution uh of (7.5.9) can therefore be written as

(7.5.14) uh = u̇h + uh ,

where u̇h ∈ Vh(Ω \ Γ ) and uh ∈ Vh(Γ ). Equation (7.5.9) and the orthogo-
nality between Vh(Ω \ Γ ) and Vh(Γ ) then imply that

a(u̇h, v) = F (v) ∀ v ∈ Vh(Ω \ Γ ) ,(7.5.15)
a(uh, v) = F (v) ∀ v ∈ Vh(Γ ) .(7.5.16)

It is easy to see that (cf. 7.x.22) u̇h,j = u̇h

∣∣
Ωj
∈ Vh(Ωj), the P1 finite

element space in H1
0 (Ωj) associated with the triangulation induced by Th,

and it satisfies

(7.5.17) a(u̇h,j , v) = F (ṽ) ∀ v ∈ Vh(Ωj) ,

where ṽ ∈ Vh is the trivial extension of v. Therefore u̇h,j for 1 ≤ j ≤ J can
be computed from (7.5.17), which amounts to solving a discrete Dirichlet
problem on Ωj and can be done in parallel.

Let the Schur complement operator Sh : Vh(Γ ) −→ Vh(Γ )′ be defined
by

(7.5.18) 〈Shv1, v2〉 = a(v1, v2) ∀ v1, v2 ∈ Vh(Γ ) .

Then (7.5.16) can be written as

(7.5.19) Shuh = fh ,

where fh ∈ Vh(Γ )′ is defined by 〈fh, v〉 = F (v) for all v ∈ Vh(Γ ).
It is clear from (7.5.18) that the operator Sh is SPD. The goal of a

nonoverlapping domain decomposition method is to provide a good pre-
conditioner for Sh, so that uh can be solved efficiently from (7.5.19) by, for
example, the preconditioned conjugate gradient method.

We devote the rest of this section to some basic properties of the in-
terface space Vh(Γ ), which will be used in the next two sections.

Our first observation is that the functions in Vh(Γ ) are completely
determined by their nodal values on Γ .
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(7.5.20) Lemma. Given any function φ : Γh −→ IR, there is a unique v ∈
Vh(Γ ) such that

(7.5.21) v(p) = φ(p) ∀ p ∈ Γh .

Proof. Let w ∈ Vh be determined by

w(p) =
{

φ(p) p ∈ Γh,
0 p is a node not on Γ .

If v ∈ Vh(Γ ) satisfies (7.5.21), then v∗ = v − w ∈ Vh(Ω \ Γ ), and the
orthogonality between Vh(Ω \ Γ ) and Vh(Γ ) implies that

(7.5.22) a(v∗, v) = a(v − w, v) = −a(w, v) ∀ v ∈ Vh(Ω \ Γ ) .

Conversely, if v∗ ∈ Vh(Ω \ Γ ) satisfies (7.5.22), then v = v∗ + w ∈ Vh(Γ )
and (7.5.21) is satisfied.

Since a(·, ·) is an inner product on Vh, equation (7.5.22) has a unique
solution in Vh(Ω \ Γ ). Hence there exists a unique v ∈ Vh(Γ ) satisfying
(7.5.21). �	

(7.5.23) Remark. It follows from (7.5.22) that v ∈ Vh(Γ ) can be obtained
from its nodal values on Γ by solving in parallel a discrete Poisson equation
with homogeneous boundary condition on each subdomain.

We have a minimum energy principle for functions in Vh(Γ ).

(7.5.24) Lemma. Let v ∈ Vh(Γ ) and w ∈ Vh such that v
∣∣
Γ

= w
∣∣
Γ
. Then we

have a(v, v) ≤ a(w,w) .

Proof. Since w − v ∈ Vh(Ω \ Γ ), the orthogonality between Vh(Γ ) and
Vh(Ω \ Γ ) implies that

a(w,w) = a((w−v)+v, (w−v)+v) = a(w−v, w−v)+a(v, v) ≥ a(v, v) . �	

There is an important relation between the energy norm of a function in
Vh(Γ ) and a fractional order Sobolev norm of its trace on Γ . (See Chapter 14
for a discussion of general fractional order Sobolev spaces.) We will first give
a local version of this relation.

Let D be a bounded polygon and V̂ĥ be the P1 finite element space
associated with a quasi-uniform triangulation Tĥ of D. The subspace of V̂ĥ

whose members vanish on ∂D is denoted by V̂ĥ(D). We will denote by d(·, ·)
the bilinear form

d(v1, v2) =
∫

D

∇v1 · ∇v2 dx .

The subspace V̂ĥ(∂D) ⊆ V̂ĥ is the orthogonal complement of V̂ĥ(D) with
respect to d(·, ·).
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(7.5.25) Definition. The fractional order Sobolev semi-norm | · |H1/2(∂D) is
defined by

|v|2H1/2(∂D) =
∫

∂D

[∫
∂D

|v(x)− v(y)|2
|x− y|2 ds(x)

]
ds(y) ,

where ds is the differential of the arc-length. The space H1/2(∂D) consists
of functions v ∈ L2(∂D) such that |v|H1/2(∂D) < ∞, and we define

‖v‖2H1/2(∂D) = ‖v‖2L2(∂D) + |v|2H1/2(∂D) .

(7.5.26) Lemma. It holds that |v|H1/2(∂D) <∼ |v|H1(D) for all v ∈ H1(D).

Proof. By the trace theorem (cf. (Nečas 1967) and (Arnold, Scott & Vogelius
(1988)), we have

|v|2H1/2(∂D) ≤ ‖v‖2H1/2(∂D)
<∼ ‖v‖

2
H1(D)

for all v ∈ H1(D). It follows that, with v = |D|−1
∫

D
v(x) dx, we have

|v|H1/2(∂D) = |v − v|H1/2(∂D) (by 7.x.23)

<∼ ‖v − v‖2H1(D)
<∼ |v|H1(D) . (by 4.3.14)

�	

(7.5.27) Lemma. The following relation holds :

|v|H1(D) ≈ |v|H1/2(∂D) ∀ v ∈ V̂ĥ(∂D) .

Proof. Let v ∈ V̂ĥ(∂D) be arbitrary and v = |∂D|−1
∫

∂D
v ds be the average

of v over ∂D. Note that v − v also belongs to V̂ĥ(∂D).
By the trace theorem, there exists w ∈ H1(D) such that

w
∣∣
∂D

= (v − v)
∣∣
∂D

and ‖w‖H1(D) <∼ ‖v − v‖H1/2(∂D) .

Recall from Section 4.8 that w̃ = Ĩhw ∈ V̂ĥ(D), |w̃|H1(D) <∼ |w|H1(D) and
w̃
∣∣
∂D

= w
∣∣
∂D

(since w
∣∣
∂D

is a piecewise linear function).
Therefore we have

|v|H1(D) = |v − v|H1(D) ≤ |w̃|H1(Ωj) (by 7.5.24)
<∼ ‖v − v‖H1/2(∂D) ≈ |v|H1/2(∂D) . (by 7.x.24)

The lemma follows from the preceding estimate and Lemma 7.5.26. �	

(7.5.28) Remark. The construction of w̃ is known in the literature as a finite
element extension theorem (cf. (Widlund 1986)).
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It follows from (7.5.4), Lemma 7.5.27 and scaling arguments that

(7.5.29) |v|2H1(Ω) ≈
J∑

j=1

|v|2H1/2(∂Ωj)
∀ v ∈ Vh(Γ ) ,

since there are at most K reference domains.
Next we prove two lemmas concerning functions in the space

Lĥ(∂D) = {v ∈ C(∂D) : v is piecewise linear with respect
to the subdivision of ∂D induced by Th},

which is the restriction of V̂h to ∂D.

(7.5.30) Lemma. Let v ∈ Lĥ(∂D), E be an (open) edge of ∂D, and vE ∈
Lĥ(∂D) be defined by

vE(p) =
{

v(p) if the node p ∈ E,
0 if the node p ∈ ∂D \ E.

Then the following estimate holds :

|vE|2H1/2(∂D)
<∼ |v|

2
H1/2(∂D) + (1 + | ln ĥ|)‖v‖2L∞(∂D) .

Proof. Let a and b be the two endpoints of E, Ea and Eb be the two edges
of ∂D neighboring E, and F = ∂D \ E ∪ Ea ∪Eb. Then we have

|vE|2H1/2(∂D) =
∫

E

[∫
E

|vE(x)− vE(y)|2
|x− y|2 ds(x)

]
ds(y)

+ 2
∫

E

[∫
Ea∪Eb

|vE(y)|2
|x− y|2 ds(x)

]
ds(y)

+ 2
∫

E

[∫
F

|vE(y)|2
|x− y|2 ds(x)

]
ds(y)

≈
∫

E

[∫
E

|vE(x)− vE(y)|2
|x− y|2 ds(x)

]
ds(y)

+
∫

E

v2
E(y)

( 1
|y − a| +

1
|y − b|

)
ds(y) + ‖vE‖2L2(E)

<∼ |v|
2
H1/2(∂D) + (1 + | ln ĥ|)‖v‖2L∞(∂D) . (by 7.x.25 & 7.x.26)

�	

(7.5.31) Lemma. Let p be a node on ∂D, and define vp ∈ Lĥ(∂D) such
that it vanishes at all the nodes except p and vp(p) = 1. Then we have
|vp|H1/2(∂D) ≈ 1.

Proof. Let a and b be the two nodes next to p, ĥ1 = |a−p| and ĥ2 = |b−p|.
Then we have (cf. exercise 7.x.27)
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|vp|2H1/2(∂D) ≈ ‖φ‖2L2(I) +
∫

I

[∫
I

|φ(x)− φ(y)|2
|x− y|2 dx

]
dy

+
∫

I

φ2(y)
( 1

y + ĥ2

+
1

ĥ1 − y

)
dy ,

where I = [−ĥ2, ĥ1] and φ is defined by

φ(x) =
{

1− (x/ĥ1) for 0 ≤ x ≤ ĥ1,
1 + (x/ĥ2) for −ĥ2 ≤ x ≤ 0.

A direct calculation then yields the lemma. �	

(7.5.32) Corollary. Let v ∈ V̂h(∂D) vanish at some point on ∂D. Then,
following the notation in Lemma 7.5.30, we have

|vE|2H1/2(∂D)
<∼ (1 + | ln ĥ|)2|v|2H1(D) .

Proof. Let v =
∫

D
v dx/|D| be the mean of v over D. Observe that, since

v = 0 at some point on ∂D, we have

‖v‖L∞(∂D) ≤ ‖v − v‖L∞(∂D) + |v| ≤ 2‖v − v‖L∞(∂D),

and hence

|vE|2H1/2(∂D)
<∼ |v|

2
H1/2(∂D) + (1 + | ln ĥ|)‖v − v‖L∞(∂D) (by 7.5.30)

<∼ |v|
2
H1(D) + (1 + | ln ĥ|)2

(
‖v − v‖2L2(D) + |v|2H1(D)

)
(7.5.27 & 4.9.2)

<∼ (1 + | ln ĥ|)2|v|2H1(D). (by 4.3.14)

�	

7.6 The BPS Preconditioner

In this section we discuss the Bramble-Pasciak-Schatz (BPS) preconditioner
(cf. (Bramble, Pasciak & Schatz 1986)) for the Schur complement operator
Sh and we follow the notation in Sect. 7.5. There are two types of auxiliary
spaces for the BPS preconditioner: those associated with the common edges
of the subdomains and one associated with the coarse triangulation TH .

Let E1, . . ., EL be the (open) edges that are common to two of the
subdomains. We define the edge spaces to be

(7.6.1) Vh(E�) = {v ∈ Vh(Γ ) : v = 0 at all the nodes in Γh\E�} .

The SPD operator S� : Vh(E�) −→ Vh(E�)′ is defined by
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(7.6.2) 〈S�v1, v2〉 = a(v1, v2) ∀ v1, v2 ∈ Vh(E�) .

The edge space Vh(E�) is connected to Vh(Γ ) by the natural injections I�.

(7.6.3) Remark. Note that, by the argument in Lemma 7.5.20, the functions
in Vh(E�) vanish identically on the subdomains whose boundaries do not
contain El (cf. 7.x.28). Also, the number of edges on the boundary of each
Ωj is bounded by a constant since there are at most K reference domains.

The coarse grid space VH ⊆ H̊1(Ω) is the P1 finite element space
associated with TH , and the SPD operator AH : VH −→ V ′

H is defined by

(7.6.4) 〈AHv1, v2〉 = a(v1, v2) ∀ v1, v2 ∈ VH .

Taking advantage of Lemma 7.5.20, we define the connection operator IH :
VH −→ Vh(Γ ) by

(7.6.5) (IHv)|Γ = v|Γ .

The BPS preconditioner is then defined by

(7.6.6) BBPS = IHA−1
H It

H +
L∑

�=1

I�S
−1
� It

� .

(7.6.7) Remark. The inverse operators A−1
H and S−1

� can be replaced by
spectrally equivalent approximate inverses (cf. (Bramble, Pasciak & Schatz
1986)).

(7.6.8) Lemma. The following decomposition holds :

Vh(Γ ) = IHVH ⊕ Vh(E1)⊕ . . .⊕ Vh(EL) .

Proof. Let v ∈ Vh(Γ ) and define vH = ΠHv, the nodal interpolant of v with
respect to TH . According to Lemma 7.5.20, we can define v� ∈ Vh(Γ ) by

(7.6.9) v�(p) =
{

v(p)− vH(p) p ∈ Γh ∩ E�,
0 p ∈ Γh\E�.

It is easy to check (cf. exercise 7.x.29) that

(7.6.10) v = IHvH +
L∑

�=1

v� ,

and it is also the only decomposition for v. �	
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It follows from Lemma 7.6.8 that condition (7.1.9) is satisfied.

(7.6.11) Lemma. The following estimate holds : λmax(BBPSSh) <∼ 1.

Proof. Let v ∈ Vh(Γ ) be arbitrary. According to (7.1.21), we only need to
show that

〈Shv, v〉 <∼ 〈AHvH , vH〉+
L∑

�=1

〈Slv�, v�〉 ,

where vH ∈ VH , v� ∈ Vh(E�) and v = vH +
∑L

�=1 v�. In view of (7.5.8),
(7.5.18), (7.6.4) and (7.6.2), it is equivalent to show that

(7.6.12) |v|2H1(Ω)
<∼ |vH |2H1(Ω) +

L∑
�=1

|v�|2H1(Ω) .

First of all, we have, by (7.6.10) and the Cauchy-Schwarz inequality,

(7.6.13) |v|2H1(Ω)
<∼ |IHvH |2H1(Ω) +

∣∣∣ L∑
�=1

v�

∣∣∣2
H1(Ω)

.

Secondly, Lemma 7.5.24, (7.5.8) and (7.6.5) imply that

(7.6.14) |IHvH |2H1(Ω) ≤ |vH |2H1(Ω) .

Finally, since a(vl, vk) = 0 unless El and Ek share a common subdo-
main (cf. (7.6.3)), we have (cf. exercise 7.x.30)

(7.6.15)
∣∣∣ L∑

�=1

v�

∣∣∣2
H1(Ω)

<∼
L∑

�=1

|v�|2H1(Ω) .

The estimate (7.6.12) follows from (7.6.13)–(7.6.15). �	

(7.6.16) Lemma. The following estimate holds :

λmin(BBPSSh) >∼
[
1 + ln(H/h)

]−2
.

Proof. Let v ∈ Vh(Γ ) be arbitrary. This time we must estimate |vH |2H1(Ω) +∑L
�=1 |v�|2H1(Ω) by |v|2H1(Ω), where vH and v� are the functions in the de-

composition (7.6.10).
First we consider vH . Recall that vH = ΠHv. Let Vj be the set of the

vertices of TH in Ωj and vj = |Ωj |−1
∫

Ωj
v(x) dx. Then we have
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|ΠHv|2H1(Ωj)
= |ΠH(v − vj)|2H1(Ωj)

<∼
∑
p∈Vj

(v − vj)2(p) (analog of 7.4.23)

(7.6.17) <∼
[
1 + ln(H/h)

](
H−2‖v − vj‖2L2(Ωj)

+ |v − vj |2H1(Ωj)

)
(by 4.9.2 & scaling)

<∼
[
1 + ln(H/h)

]
|v|2H1(Ωj)

. (by 4.3.15 & scaling)

Summing up we obtain

(7.6.18) |vH |2H1(Ω)
<∼
[
1 + ln(H/h)

]
|v|2H1(Ω) .

Next we consider v� defined by (7.6.9). Let E� be the common edge of
Ω�1 and Ω�2 . On each Ωj , for j = �1 or �2, we have

v�(p) =
{

[v(p)− vj ]−ΠH [v − vj ](p) p ∈ ∂Ωj,h ∩ E�,
0 p ∈ ∂Ωj,h\E�,

where ∂Ωj,h is the set of nodes of Th that belong to ∂Ωj . It follows that,
for j = �1 or �2,

|v�|2H1(Ωj)
≈ |v�|2H1/2(∂Ωj)

(by 7.5.27)

<∼ |v − vj |2H1/2(∂Ωj)
+ |ΠH(v − vj)|2H1/2(∂Ωj)

+
[
1 + ln(H/h)

]
‖v − vj‖2L∞(∂Ωj)

(by 7.5.30 & scaling)

<∼
[
1 + ln(H/h)

]
|v|2H1(Ωj)

(by 7.5.26 & 7.6.17)

+
[
1 + ln(H/h)

]2(
H−2‖v − vj‖2L2(Ωj)

+ |v − vj |2H1(Ωj)

)
(by 4.9.2 & scaling)

<∼
[
1 + ln(H/h)

]2|v|2H1(Ωj)
, (by 4.3.15 & scaling)

and hence,

|v�|2H1(Ω)
<∼
[
1 + ln(H/h)

]2(|v|2H1(Ω�1 ) + |v|2H1(Ω�2 )

)
.

Summing up we find

(7.6.19)
L∑

�=1

|v�|2H1(Ω)
<∼
[
1 + ln(H/h)

]2|v|2H1(Ω) .

The lemma follows from (7.1.22), (7.6.18) and (7.6.19). �	
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Combining Lemmas 7.6.11 and 7.6.16 we have the following theorem.

(7.6.20) Theorem. There exists a positive constant C, independent of h, H
and J , such that

κ(BBPSSh) =
λmax(BBPSSh)
λmin(BBPSSh)

≤ C

(
1 + ln

H

h

)2

.

(7.6.21) Remark. The bound in Theorem 7.6.20 is sharp (cf. Brenner and
Sung 2000b).

(7.6.22) Remark. The BPS preconditioner can also be applied to the bound-
ary value problem whose variational form is defined by

a(v1, v2) =
J∑

j=1

ρj

∫
Ωj

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vh ,

where the ρj ’s are positive constants. The bound in (7.6.20) remains valid
and the constant C is independent of h, H, J and the ρj ’s.

(7.6.23) Remark. There are three dimensional generalizations of the BPS
preconditioner (cf. (Bramble, Pasciak & Schatz 1989) and (Smith 1991)).

7.7 The Neumann-Neumann Preconditioner

In this section we discuss the Neumann-Neumann preconditioner (cf. (Dryja
& Widlund 1995)) for the Schur complement operator Sh and we follow
the notation in Sect. 7.5. The auxiliary spaces for the Neumann-Neumann
preconditioner are associated with either a subdomain or a coarse triangu-
lation.

The coarse grid space VH , the SPD operator AH : VH −→ VH and the
connection operator IH are defined as in Sect. 7.6.

To define the auxiliary space associated with a subdomain Ωj , we first
introduce the space Vh(Ωj ∪ Γj), which is the P1 finite element space on
Ωj associated with the triangulation induced by Th and whose members
vanish on ∂Ωj ∩ ∂Ω. Let the inner product âj(·, ·) be defined by

(7.7.1) âj(v1, v2) =
∫

Ωj

∇v1 · ∇v2 dx + H−2

∫
Ωj

v1v2 dx

for all v1, v2 ∈ Vh(Ωj ∪ Γj).
We can now take the auxiliary space Vh(Γj) ⊆ Vh(Ωj ∪ Γj) to be the

âj(·, ·)-orthogonal complement of the space Vh(Ωj) = {v ∈ Vh(Ωj ∪ Γj) :



202 Chapter 7. Additive Schwarz Preconditioners

v
∣∣
∂Ωj

= 0}. It is easy to check (cf. 7.x.32) that a function v ∈ Vh(Γj) is
completely determined by its nodal values on Γj,h. The connection operator
Ij : Vh(Γj) −→ Vh(Γ ) is defined by

(7.7.2) (Ijvj)(p) =
{

0 if p ∈ Γh \ Γj,h,
vj(p)/n(p) if p ∈ Γj,h,

where n(p) = the number of subdomains sharing the node p, and the SPD
linear operator Ŝj : Vh(Γj) −→ Vh(Γj)′ is given by

(7.7.3) 〈Ŝjv1, v2〉 = âj(v1, v2) ∀ v1, v2 ∈ Vh(Γj) .

The Neumann-Neumann preconditioner BNN : Vh(Γ ) −→ Vh(Γ )′ is
then defined by

(7.7.4) BNN = IHA−1
H It

H +
J∑

j=1

IjŜ
−1
j It

j .

(7.7.5) Remark. We use the weighted integral in the second term of the right-
hand side of (7.7.1) so that the bilinear form is invariant under scaling. For
subdomains that have at least one edge on ∂Ω, we could also use the inner
product

aj(v1, v2) =
∫

Ωj

∇v1 · ∇v2 dx .

But, for internal subdomains, the bilinear form aj(·, ·) is only semi–definite,
since 1 ∈ Vh(Ωj ∪ Γj) and aj(1, 1) = 0.

In order to show that condition (7.1.9) is satisfied, we introduce the
restriction maps Rj : Vh(Γ ) −→ Vh(Γj) defined by

(7.7.6) (Rjv)(p) = v(p) ∀ p ∈ Γj,h .

The operators Rj and Ij together yield a partition of unity for Vh(Γ ):

(7.7.7)
J∑

j=1

IjRjv = v ∀ v ∈ Vh(Γ ) ,

which can be verified as follows. According to Lemma 7.5.20, we only need
to check that the two sides of (7.7.7) agree on Γh. Let p ∈ Γh and σp = {j :
p ∈ Γj}. Then we have by (7.7.2) and (7.7.6)⎛⎝ J∑

j=1

IjRjv

⎞⎠ (p) =
∑
j∈σp

1
|σp|

(
Rjv

)
(p) =

∑
j∈σp

1
|σp|

v(p) = v(p) .

Condition (7.1.9) follows immediately from (7.7.7).
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(7.7.8) Lemma. The following estimate holds : λmin(BNNSh) >∼ 1.

Proof. Let ĨH : H̊1(Ω) −→ VH be the interpolation operator defined in
Section 4.8. For an arbitrary v ∈ Vh(Γ ), we define vH = ĨHv and vj =
Rj(v − IHvH) for 1 ≤ j ≤ J . It follows from (7.7.7) that

(7.7.9) IHvH +
J∑

j=1

Ijvj = IHvH + (v − IHvH) = v .

We have

〈AHvH , vH〉 = |vH |2H1(Ω)
<∼ |v|2H1(Ω) . (by 7.6.4 & 4.8.14)

Since vj = v − vH on Γj ,

〈Ŝjvj , vj〉 = âj(vj , vj) (by 7.7.3)
≤ âj(v − vH , v − vH) (by 7.x.33)
= |v − vH |2H1(Ωj)

+ H−2‖v − vH‖2L2(Ωj)
(by 7.7.1)

<∼ |v|
2
H1(Ωj)

, (by 4.8.14)

and hence by (7.5.18)

(7.7.10) 〈AHvH , vH〉+
J∑

j=1

〈Ŝjvj , vj〉 <∼ 〈Shv, v〉 .

The lemma follows from (7.1.22), (7.7.9) and (7.7.10). �	

(7.7.11) Lemma. The following estimate holds :

λmax(BNNSh) <∼ [1 + ln(H/h)]2 .

Proof. Let v ∈ Vh(Γ ) be arbitrary. For any decomposition

(7.7.12) v = IHvH +
J∑

j=1

Ijvj ,

where vH ∈ VH and vj ∈ Vh(Γj) for 1 ≤ j ≤ J , we must show, in view of
(7.1.21), (7.5.18), (7.6.4), (7.7.1) and (7.7.3), that

|v|2H1(Ω)
<∼ [1 + ln(H/h)]2

[
|vH |2H1(Ω)(7.7.13)

+
J∑

j=1

(
|vj |2H1(Ωj)

+ H−2‖vj‖2L2(Ωj)

)]
.
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We have, by (7.7.12), the Cauchy-Schwarz inequality and an argument
analogous to the one in the derivation of (7.6.15),

(7.7.14) |v|2H1(Ω)
<∼ |vH |2H1(Ω) +

J∑
j=1

|Ijvj |2H1(Ω) .

Therefore it only remains to estimate |Ijvj |2H1(Ω).
Note that Ijvj vanishes at all the subdomains Ωk such that ∂Ωk ∩

∂Ωj = ∅. There are three cases (cf. (7.5.3)) where ∂Ωk ∩ ∂Ωj �= ∅:
(1) Ωk = Ωj ,
(2) ∂Ωk ∩ ∂Ωj consists of just one vertex,
(3) ∂Ωk ∩ ∂Ωj consists of an open edge E and its endpoints p1 and p2.
We will concentrate on the third case, since the analysis for the other two
cases are similar.

Let wp1 (resp. wp2) be the function in Vh(Γk) which equals Ijvj at p1

(resp. p2) and vanishes at all the other nodes in Γk, and wE be the function
in Vh(Γk) which equals Ijvj at the nodes in E and vanishes at all the other
nodes in Γk. Then we can write

Ijvj

∣∣
Ωk

= wp1 + wp2 + wE .

We have the following estimate on wpj
for j = 1 or 2:

|wpj
|2H1(Ωk) ≈ |wpj

|2H1/2(∂Ωk) (by 7.5.27)

≈ |wpj
(pj)|2 (by 7.5.31)

<∼ ‖vj‖2L∞(Ωj)
(by 7.7.2)

<∼ [1 + ln(H/h)]
[
|vj |2H1(Ωj)

+ H−2‖vj‖2L2(Ωj)

]
. (by 4.9.2 & scaling)

For the function wE, we have

|wE|2H1(Ωk) ≈ |wE|2H1/2(∂Ωk) (by 7.5.27)

≈ |wE|2H1/2(∂Ωj)
(by 7.x.34)

<∼ |vj |2H1/2(∂Ωj)
+ [1 + ln(H/h)]‖vj‖2L∞(∂Ωj)

(by 7.7.2 & 7.5.30)

<∼ [1 + ln(H/h)]2
[
|vj |2H1(Ωj)

+ H−2‖vj‖2L2(Ωj)

]
.

(by 7.5.26, 4.9.2 & scaling)

The preceding estimates imply

|Ijvj |2H1(Ωk)
<∼ [1 + ln(H/h)]2

[
|vj |2H1(Ωj)

+ H−2‖vj‖2L2(Ωj)

]
in case (3). Since the same estimate holds for cases (1) and (2) using similar
arguments, we have
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(7.7.15) |Ijvj |2H1(Ω)
<∼ [1 + ln(H/h)]2

[
|vj |2H1(Ωj)

+ H−2‖vj‖2L2(Ωj)

]
.

The estimate (7.7.13) (and hence the lemma) follows from (7.7.14) and
(7.7.15). �	

Combining Lemmas 7.7.8 and 7.7.8, we have the following theorem.

(7.7.16) Theorem. There exists a positive constant C, independent of h, H
and J , such that

κ(BNNSh) =
λmax(BNNSh)
λmin(BNNSh)

≤ C

(
1 + ln

H

h

)2

.

(7.7.17) Remark. The bound in (7.7.16) is sharp (cf. Brenner and Sung
2000b).

(7.7.18) Remark. The Neumann-Neumann preconditioner can also be ap-
plied to the boundary value problem in (7.6.22). In this case the definition
of Ij should be modified as

(Ijvj)(p) =
{

0 if p ∈ Γh \ Γj,h,
vj(p)/[

∑
k∈σp

ρt
k] if p ∈ Γj,h,

where σp = {k : p ∈ Γk} and t is any number greater than or equal to 1/2.
The bound in (7.7.16) remains valid, and the constant C is independent of
h, H, J and the ρj ’s.

(7.7.19) Remark. The Neumann-Neumann preconditioner can be general-
ized to three dimensions (cf. (Dryja & Widlund 1995)).

(7.7.20) Remark. The balancing domain decomposition preconditioner of
Mandel (cf. (Mandel 1993), (Mandel & Brezina 1996), (LeTallec, Mandel &
Vidrascu 1998)) is closely related to the Neumann-Neumann preconditioner
and it can also be analyzed as an additive Schwarz preconditioner (cf. (Xu
& Zou 1998), (Brenner & Sung 1999), (Widlund 1999)).

7.8 The BDDC Preconditioner

In this section we discuss the balancing domain decomposition by con-
straints preconditioner (Dohrmann 2003) for the Schur complement opera-
tor Sh.
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Let C (the set of cross points) be the set of the corners of Ω1, . . . , ΩJ

that are interior to Ω andHj (the space of local discrete harmonic functions
on Ωj) be the restriction of V (Γ ) to Ωj . The space

Hc = {v ∈ L2(Ω) : vj = v
∣∣
Ωj
∈ Hj for 1 ≤ j ≤ J

and v is continuous at C}

is the space of discrete harmonic functions that are continuous at the cross
points, and the SPD operator Sc : Hc −→ H′

c is defined by

(7.8.1) 〈Scv, w〉 =
J∑

j=1

aj(vj , wj) ∀ v, w ∈ Hc ,

where aj(vj , wj) =
∫

Ωj
∇vj · ∇wj dx. Note that

(7.8.2) 〈Shv, w〉 = 〈Scv, w〉 ∀ v, w ∈ Vh(Γ ) ⊂ Hc.

Let H̊ be the subspace of Hc whose members vanish at the cross points.
The space Hc admits the decomposition

(7.8.3) Hc = H0 ⊕ H̊,

where

(7.8.4) H0 = {v ∈ Hc : 〈Scv, ẘ〉 = 0 ∀ ẘ ∈ H̊}.

We will denote by I0 the natural injection of H0 into Hc. The space H0 will
serve as the coarse space for the BDDC preconditioner and its members
satisfy a constrainted minimization property (Exercise 7.x.43). We equip
H0 with the SPD operator S0 : H0 −→ H′

0 defined by

(7.8.5) 〈S0v, w〉 = 〈Scv, w〉 ∀ v, w ∈ H0.

The BDDC preconditioner also involves the subspaces H̊j of Hj (1 ≤
j ≤ J) whose members vanish at the corners of Ωj . Each H̊j is embedded
in Hc by the trivial extension map Ej : H̊j −→ Hc defined by

(7.8.6) Ej v̊j =
{

v̊j on Ωj

0 on Ω \Ωj
.

We equipped H̊j with the SPD operator S̊j : H̊j −→ H̊′
j defined by

(7.8.7) 〈S̊j v̊j , ẘj〉 = aj (̊vj , ẘj) ∀ v̊j , ẘj ∈ H̊j .

The last ingredients for the BDDC preconditioner are the operators
that connect the spaces H0 and H̊j to Vh(Γ ). For this we need the operator
PΓ : Hc −→ Vh(Γ ) defined by
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(7.8.8) (PΓ v)(p) =
1
|Jp|

∑
j∈Jp

vj(p) ∀ v ∈ Hc , p ∈ Γh,

where Jp = {1 ≤ j ≤ J : p ∈ Γj} and |Jp| is the number of indices in Jp.
We can then connect H0 (resp. H̊j) to Vh(Γ ) by the map PΓ I0 (resp.

PΓ Ej). The resulting additive Schwarz preconditioner is

(7.8.9) BBDDC = (PΓ I0)S−1
0 (PΓ I0)t +

J∑
j=1

(PΓ Ej)S̊−1
j (PΓ Ej)t.

To verify condition (7.1.9) we take an arbitrary v ∈ Vh(Γ ) and use
(7.8.3) to write v = v0 + v̊, where v0 ∈ H0 and v̊ ∈ H̊. Then we have

(7.8.10) v = PΓ v = PG(I0v0 +
J∑

j=1

Ej v̊j) = (PΓ I0)v0 +
J∑

j=1

(PΓ Ej )̊vj ,

where v̊j = v̊
∣∣
Ωj
∈ H̊j .

(7.8.11) Lemma. The lower bound λmin(BBDDCSh) ≥ 1 holds for the BDDC
preconditioner.

Proof. Let v ∈ Vh(Γ ) be arbitrary. For the decomposition (7.8.10) we have

〈S0v0, v0〉+
J∑

j=1

〈S̊j v̊j , v̊j〉 = 〈Scv0, v0〉+
J∑

j=1

aj (̊vj , v̊j) (7.8.5 and 7.8.7)

= 〈Scv0, v0〉+ 〈Scv̊, v̊〉 (7.8.1 and v̊j = v̊
∣∣
Ωj

)

= 〈Sc(v0 + v̊), (v0 + v̊)〉 (by 7.8.4)
= 〈Shv, v〉. (7.8.2 and v = v0 + v̊)

It follows that

〈Shv, v〉 ≥ min
v = (PΓ I0)v0 +

∑J
j=1(PΓ Ej )̊vj

v0 ∈ H0, v̊j ∈ H̊j

(
〈S0v0, v0〉+

J∑
j=1

〈S̊j v̊j , v̊j〉
)
,

which together with (7.1.22) implies the lower bound. �	

(7.8.12) Remark. It can be proved that λmin(BBDDCSh) = 1 if C �= ∅ and
the multiplicity of 1 as an eigenvalue of BBDDCSh is greater than or equal
to |C| (cf. Brenner and Sung 2007).
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(7.8.13) Lemma. The following upper bound holds :

λmax(BBDDCSh) <∼ [1 + ln(H/h)]2.

Proof. Let v0 ∈ H0, v̊j ∈ H̊j for 1 ≤ j ≤ J and

v = (PΓ I0)v0 +
J∑

j=1

(PΓ Ej )̊vj .

Then we have

〈Shv, v〉 ≤ 2〈ShPΓ v0, PΓ v0〉

+ 2
〈
Sh

( J∑
j=1

(PΓ Ej )̊vj

)
,

J∑
k=1

(PΓ Ek )̊vk

〉
(7.8.14)

<∼ 〈ShPΓ v0, PΓ v0〉+
J∑

j=1

〈Sh(PΓ Ej )̊vj , (PΓ Ej )̊vj〉,

where we have used the fact that 〈Sh(PΓ Ej )̊vj , (PΓ Ek )̊vk〉 = 0 if Ωj and
Ωk are not close to each other.

Let w = v0 − PΓ v0. Then w ∈ H̊ and on a subdomain Ωj with �j

(open) edges e1, . . . , e�j
interior to Ω we can write

(7.8.15) wj = w
∣∣
Ωj

=
�j∑

�=1

wj,�,

where wj,� ∈ Hj , wj,� = wj at the nodes of Th that are on e� (which will
be denoted by e�,h), and wj,� = 0 at all the other nodes of Th that are on
∂Ωj (which will be denoted by ∂Ωj,h \ e�,h).

Let the edge e� of Ωj be a common edge of the subdomains Ωj and
Ωk, and α be the value of v0 at one of the endpoints of e. We define two
functions ṽ0,j ∈ Hj and ṽ0,k ∈ Hk as follows:

(ṽ0,j)(p) =
{(

v0

∣∣
Ωj

)
(p)− α if p ∈ e�,h

0 if p ∈ ∂Ωj,h \ e�,h

,

(ṽ0,k)(p) =
{(

v0

∣∣
Ωk

)
(p)− α if p ∈ e�,h

0 if p ∈ ∂Ωk,h \ e�,h
.

Then (7.8.8) implies

wj,�(p) =
1
2
(
ṽ0,j(p)− ṽ0,k(p)

)
∀ p ∈ e�,h

and we have
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|wj,�|2H1(Ωj)
≈ |wj,�|2H1/2(∂Ωj)

(Lemma 7.5.27)

<∼ |ṽ0,j |2H1/2(∂Ωj)
+ |ṽ0,k|2H1/2(∂Ωk) (by 7.x.34)

≈ [1 + ln(H/h)]2
(
|v0|2H1(Ωj)

+ |v0|2H1(Ωk)

)
,

(Corollary 7.5.32 and scaling)

which together with (7.8.15) implies

(7.8.16) |wj |2H1(Ωj)
<∼ [1 + ln(H/h)]2

∑
k∈Kj

|v0|2H1(Ωk),

where Kj = {1 ≤ k ≤ J : Ωj and Ωk share a common edge}. It follows
from (7.8.16) that

〈ShPΓ v0, PΓ v0〉 =
J∑

j=1

|PΓ v0|2H1(Ωj)

<∼
J∑

j=1

(
|v0|2H1(Ωj)

+ |wj |2H1(Ωj)

)
<∼

J∑
j=1

|v0|2H1(Ωj)
+ [1 + ln(H/h)]2

J∑
j=1

∑
k∈Kj

|v0|2H1(Ωk)(7.8.17)

<∼ [1 + ln(H/h)]2
J∑

j=1

|v0|2H1(Ωj)

= [1 + ln(H/h)]2〈S0v0, v0〉.

Similarly, we have

〈ShPΓ Ej v̊j , PΓ Ej v̊j〉 <∼ [1 + ln(H/h)]2
J∑

k=1

|Ej v̊j |2H1(Ωk)

= [1 + ln(H/h)]2 |̊vj |2H1(Ωj)
(7.8.18)

= [1 + ln(H/h)]2〈S̊j v̊j , v̊j〉.

Combining (7.8.14), (7.8.17) and (7.8.18), we find

〈Shv, v〉 <∼ [1 + ln(H/h)]2
(
〈S0v0, v0〉+

J∑
j=1

〈S̊j v̊j , v̊j〉
)

and hence

〈Shv, v〉 <∼ [1 + ln(H/h)]2 min
v = (PΓ I0)v0 +

∑J
j=1(PΓ Ej )̊vj

v0 ∈ H0, v̊j ∈ H̊j

(
〈S0v0, v0〉+

J∑
j=1

〈S̊j v̊j , v̊j〉
)
,
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which together with (7.1.21) implies the upper bound. �	

Combining Lemma 7.8.11 and Lemma 7.8.13, we have the following
theorem.

(7.8.19) Theorem. There exists a positive constant C, indpendent of h, H
and J , such that

κ(BBDDCSh) =
λmax(BBDDCSh)
λmin(BBDDCSh)

≤ C

(
1 + ln

H

h

)2

.

(7.8.20) Remark. The BDDC method is dual to the FETI-DP method
(Farhat, Lesoinne and Pierson 2000). In fact, excluding the number 1, the
spectra of the preconditioned systems of these two methods are identical
(Mandel, Dohrmann and Tezaur 2005, Li and Widlund 2005, Brenner and
Sung 2007). Because of this connection and the results in (Brenner 2003b),
the bound in (7.8.19) is sharp.

(7.8.21) Remark. The BDDC preconditioner can also be applied to the
boundary value problem in (7.6.22) provided the operator PΓ : Hc −→
Vh(Γ ) is defined by

(PΓ v)(p) =
( 1∑

k∈Jp
ρt

k

) ∑
j∈Jp

ρt
jvj(p) ∀ v ∈ Hc , p ∈ Γh,

where t is any number greater than or equal to 1/2. The bound in (7.8.19)
remains valid and the constant C is independent of h, H, J and the ρj ’s.

(7.8.22) Remark. Results for three-dimensional BDDC preconditioners can
be found in (Mandel and Dohrmann 2003) and (Brenner 2006). The BDDC
algorithm has also been extended to three levels in (Tu 2006).

7.x Exercises

7.x.1 Let a(·, ·) be a bilinear form on V × V . Show that there exists a
unique A : V −→ V ′ such that

a(v1, v2) = 〈Av1, v2〉 ∀ v1, v2 ∈ V,

and that a(·, ·) is an inner product if and only if A is SPD.

7.x.2 Let {v1, . . . , vn} be a basis of V and α1, . . . αn be the dual basis of
V ′. Then the linear operator A : V −→ V ′ is represented by a matrix
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≈
A with respect to these two bases, where the (i, j) component of

≈
A

is 〈Avi, vj〉. Show that A is SPD if and only if the matrix
≈
A is SPD.

7.x.3 Let V = IRn with canonical basis
∼
e1, . . . , ∼

en, and A : V −→ V ′ be
represented by the SPD matrix

≈
A = (aij). Let V1 = V2 = · · · = Vn =

IR, and Bj : Vj −→ V ′
j be defined by the 1×1 matrix [ajj ]. Determine

the matrix representation of the additive Schwarz preconditioner
B =

∑n
j=1 IjB

t
jI

t
j , where Ij : Vj −→ V is defined by Ijx = x

∼
ej .

7.x.4 Show that the preconditioner B defined by (7.1.7) is symmetric.

7.x.5 Verify that the vj ’s defined in (7.1.18) yield a decomposition of v.

7.x.6 Referring to the operators A and B in Theorem 7.1.20, show that
BA is SPD with respect to the inner product 〈B−1·, ·〉.

7.x.7 Let a(·, ·) be an inner product on V , and A : V −→ V ′ be defined
by

〈Av,w〉 = a(v, w) ∀ v, w ∈ V .

Let Vj be a subspace of V for 0 ≤ j ≤ J , Ij : Vj −→ V be the
natural injection, and Aj : Vj −→ V ′

j be defined by

〈Ajv, w〉 = a(v, w) ∀ v, w ∈ Vj .

Show that ( J∑
j=0

IjA
−1
j It

j

)
A =

J∑
j=0

Pj ,

where Pj : V → Vj is the a(·, ·)-orthogonal projection operator.

7.x.8 Let V , a(·, ·), A, Vj and Ij be as in 7.x.7. Let bj(·, ·) be an inner
product on Vj , Bj : Vj −→ V ′

j be defined by

〈Bjv, w〉 = bj(v, w) ∀ v, w ∈ Vj ,

and B be the additive Schwarz preconditioner given by (7.1.7). For
φ ∈ V ′, show that the equation BAu = Bφ can be written as

J∑
j=0

Tju =
J∑

j=0

fj ,

where Tj : V −→ Vj and fj ∈ Vj are defined by

bj(Tjv, vj) = a(v, vj) ∀ v ∈ V , vj ∈ Vj ,

bj(fj , vj) = 〈φ, v〉 ∀ vj ∈ Vj .

7.x.9 Show that v = Πj−1v+(v−Πj−1v) gives the unique decomposition
described in (7.2.4).
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7.x.10 Establish (7.2.9) by a direct calculation over the triangles of Tj−1.

7.x.11 Show that (referring to the notation in Lemma 7.2.12)

‖Πjv − vT ‖L∞(T ) <∼
(
1 + | ln(hj/hJ)|

)1/2|v|H1(T )

by using Lemma 4.9.1, Lemma 4.3.14 and a scaling argument.

7.x.12 Establish the discrete Young’s inequality in Lemma 7.2.15.

7.x.13 Carry out the details in the derivation of (7.3.4).

7.x.14 Prove the orthogonality relation (7.3.7).

7.x.15 Show that Pj−1Pj = Pj−1 for the Ritz projection operators defined
by (7.3.5).

7.x.16 Use Poincaré’s inequality to show that ‖P1v‖L2(Ω) <∼ |v|H1(Ω).

7.x.17 Let Qj : H̊1(Ω) −→ Vj be the L2 orthogonal projection operator
and vj = Qjv − Qj−1v for 1 ≤ j ≤ J (with Q0v = 0). Show that
(cf. (Xu 1992) and (Bramble 1995))

∑J
j=1 h−2

j ‖vj‖2L2(Ω) ≈ |v|2H1(Ω)

for all v ∈ VJ and derive (7.3.8) for nonconvex domains.

7.x.18 Establish the decomposition in the proof of Lemma 7.4.17.

7.x.19 Use a direct calculation on the standard simplex and a homogeneity
(scaling) argument to establish (7.4.23).

7.x.20 Let B =
∑J

j=1 IjA
−1
j It

j be the one-level additive Schwarz precondi-
tioner associated with an overlapping domain decomposition which
satisfies (7.4.3)–(7.4.6). Find an upper bound for κ(BAh).

7.x.21 Let S = (0, 1)× (0, 1) and B = (0, 1)× (0, δ) where 0 < δ < 1. Show
that

‖v‖2L2(B) ≤ Cδ‖v‖2H1(S) ∀ v ∈ H1(S) ,

where the positive constant C is independent of δ. Use this estimate
and a scaling argument to establish the improved bound for the
two-level additive Schwarz preconditioner stated in (7.4.29) in the
case where the subdomains are squares.

7.x.22 Show that uh,j ∈ Vh(Ωj) and (7.5.17) is valid.

7.x.23 Show that the seminorm | · |H1/2(∂D) is invariant under the addition
of a constant.

7.x.24 Let D be a bounded polygon. Prove that

‖v‖L2(∂D) <∼ |v|H1/2(∂D)

for all v ∈ H1/2(∂D) satisfying
∫

∂D
v ds = 0.

(Hint: Use the expression
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∂D

v2(x)ds(x) =
∫

∂D

[
|∂D|−1

∫
∂D

(
v(x)− v(y)

)
ds(y)

]2
ds(x)

and the Cauchy-Schwarz inequality.)

7.x.25 Let 0 = a0 < a1 < · · · < an = 1 be a quasi-uniform partition of the
unit interval I so that aj − aj−1 ≈ ρ = 1/n for 1 ≤ j ≤ n, and Lρ

be the space of continuous functions on [0, 1] which are piecewise
linear with respect to this partition. Given any v ∈ Lρ, we define
v∗ ∈ Lρ by

v∗(aj) =
{

v(aj) 1 ≤ j ≤ n− 1,
0 j = 0, n.

Prove that |v∗|H1/2(I) ≤ C
[
|v|H1/2(I) + ‖v‖L∞(I)

]
for all v ∈ Lρ,

where C is a positive constant independent of ρ.
(Hint: Calculate the H1/2(I) seminorm of the function in Lρ which
equals v at a0 (or an) and vanishes at all the other aj ’s.)

7.x.26 Following the notation in 7.x.25, show that∫ 1

0

v2(x)
(

1
x

+
1

1− x

)
dx ≤ C(1 + | ln ρ|)‖v‖2L∞(I)

for all v ∈ Lρ such that v(0) = v(1) = 0, where C is a positive
constant independent of ρ.
(Hint: Break up the integral

∫ 1

0
[v2(x)/x] dx at the point a1.)

7.x.27 Prove the norm equivalence in the proof of (7.5.31) and estimate
the terms involving φ(x).

7.x.28 Let v ∈ Vh(El) and El �⊂ ∂Ωj . Prove that v = 0 on Ωj .

7.x.29 Show that decomposition defined in the proof of Lemma 7.6.8 is the
unique decomposition of v ∈ Vh(Γ ) with respect to the coarse grid
space VH and the edge spaces Vh(El) for 1 ≤ l ≤ L.

7.x.30 Prove the estimate (7.6.15). (Hint: Consult the proof of (7.4.13).)

7.x.31 Verify the assertion in (7.6.22).

7.x.32 Use an argument similar to the one in the proof of Lemma 7.5.20
to show that a function v ∈ Vh(Γj) is completely determined by its
nodal values on Γj,h.

7.x.33 Show that if v ∈ Vh(Γj) and w ∈ Vh(Ωj ∪ Γj) agree on Γj , then
âj(v, v) ≤ âj(w,w).

7.x.34 Let E be the common (open) edge of the subdomains Ωj and Ωk and
w be a P1 finite element function defined on E such that w vanishes
at the endpoints of E. Let wj = w on E and wj = 0 on ∂Ωj \E, and
let wk = w on E and wk = 0 on ∂Ωk \E. Show that |wk|H1/2(∂Ωk) ≈
|wj |H1/2(∂Ωj). (Hint: Consult the proof of Lemma 7.5.30.)
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7.x.35 Verify the assertion in (7.7.18).

7.x.36 Given any p ∈ Γh, let wp ∈ Vh(Γ ) be defined by

wp(q) =
{

1 if q = p,
0 if q ∈ Γh \ p.

Show that {wp : p ∈ Γh} is a basis of Vh(Γ ).

7.x.37 Given any p ∈ Γh, let ωp ∈ Vh(Γ )′ be defined by

〈ωp, wq〉 =
{

1 if q = p,
0 if q ∈ Γh \ p,

where wq is defined in 7.x.36. Show that {ωp : p ∈ Γh} is a basis of
Vh(Γ )′.

7.x.38 Let v ∈ Vh(Γ ) and Shv =
∑

p∈Γh
αpωp (cf. 7.x.37). Show that αp =

a(v, vp), where vp is the natural nodal basis function of Vh associated
with the node p. Discuss how Shv can be computed from the nodal
values of v on Γh.

7.x.39 Let νH ∈ V ′
H . Show that A−1

H νH is obtained by solving a discrete
Poisson equation on Ω associated with the coarse grid TH .

7.x.40 Let the (open) edge E� be the common edge of Ω�1 and Ω�2 , and
ν� ∈ Vh(E�)′. Show that S−1

� ν� is obtained by solving a discrete
Poisson equation on Ω�1 ∪Ω�2 ∪E� with the homogeneous Dirichlet
boundary condition. What is special about the right-hand side of
this discrete problem?

7.x.41 Let νj ∈ Vh(Γj)′. Show that Ŝ−1
j νj is obtained by solving a dis-

crete stabilized Poisson equation on Ωj , with the Neumann (natural)
boundary condition on Γj and the homogeneous Dirichlet boundary
condition on ∂Ωj \ Γj = ∂Ωj ∩ ∂Ω.

7.x.42 Show that the dimension of the coarse space H0 for the BDDC
preconditioner is |C| and that the matrix for the operator S0 can be
computed by parallel subdomain solves.

7.x.43 Let Vj be the restriction of Vh(Ω) to Ωj . Given any v0 ∈ H0, show
that

J∑
j=1

aj(v0, v0) ≤
J∑

j=1

aj(vj , vj)

for any (v1, . . . , vJ ) ∈ V1 × · · · × VJ that agrees with v0 at C.



Chapter 8

Max–norm Estimates

The finite element approximation is essentially defined by a mean-square
projection of the gradient. Thus, it is natural that error estimates for the
gradient of the error directly follow in the L2 norm. It is interesting to ask
whether such a gradient-projection would also be of optimal order in some
other norm, for example L∞. We prove here that this is the case. Although
of interest in their own right, such estimates are also crucial in establishing
the viability of approximations of nonlinear problems (Douglas & Dupont
1975) as we indicate in Sect. 8.7. Throughout this chapter, we assume that
the domain Ω ⊂ IRd is bounded and polyhedral.

8.1 Main Theorem

To begin with, we consider a variational problem with a variational form

a(u, v) :=∫
Ω

d∑
i,j=1

aij(x)
∂u

∂xi
(x)

∂v

∂xj
(x) +

d∑
i=1

bi(x)
∂u

∂xi
(x)v(x) + b0(x)u(x)v(x) dx

whose leading term is coercive pointwise a.e.:

(8.1.1) Ca|ξ|2 ≤
∑
ij

aij(x)ξiξj ∀0 �= ξ ∈ IRd, for a.a. x ∈ Ω.

We also assume that the coefficients, aij and bi are bounded on Ω. For
simplicity, we consider only the Dirichlet problem, so let V = H̊1(Ω). Re-
garding regularity of the variational problem, we assume that there is a
unique solution to

(8.1.2) a(u, v) = (f, v) ∀v ∈ V

which satisfies

(8.1.3) ‖u‖W 2
p (Ω) ≤ C‖f‖Lp(Ω)
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for 1 < p < µ for some µ > 1 to be chosen later. We also assume the same
regularity for the adjoint problem defined by

(8.1.2′) a(v, u) = (f, v) ∀v ∈ V.

We will also make some independent assumptions on the regularity of the
coefficients, aij and bi.

We consider spaces, Vh, based on general elements, E , in two and three
dimensions. Let us assume, for simplicity, that the elements are conform-
ing, based on a quasi-uniform family of subdivisions, T h. We will utilize
weighted-norm techniques similar to those introduced in Sect. 0.8, follow-
ing very closely the arguments of (Rannacher & Scott 1982).

We introduce the family of weight functions

σz(x) =
(
|x− z|2 + κ2h2

) 1
2 ,

depending on the parameter κ ≥ 1. It is easy to verify that, for any λ ∈ IR,

(8.1.4) max
T∈T h

(
sup
x∈T

σλ
z (x)/ inf

x∈T
σλ

z (x)
)
≤ C

(8.1.5)
∥∥σλ

z

∥∥
L∞(Ω)

≤ C max
{
1, (κh)λ

}
(8.1.6)

∣∣Dβ
xσλ

z (x)
∣∣ ≤ Cσλ−|β|

z (x) ∀x ∈ Ω ∀β

where the constant C depends continuously on λ and is independent of
z ∈ Ω and h.

We introduce the notation∫̃
Ω

· · · dx :=
∑

T∈T h

∫
T

· · · dx.

We assume that the finite element spaces, Vh ⊂ V , consist of piecewise
polynomials of degree less than kmax and have approximation order 2 ≤
k ≤ kmax in the sense that there is an interpolant (or other projection onto
Vh) Ih such that

(8.1.7)

∫
Ω

σλ
z

(
ψ − Ihψ

)2
dx + h2

∫
Ω

σλ
z

∣∣∇ (
ψ − Ihψ

)∣∣2 dx

≤ C

kmax∑
r=k

h2r

∫̃
Ω

σλ
z |∇E,rψ|2 dx,∫

Ω

σλ
z

(
ψ − Ihψ

)2
dx + h2

∫
Ω

σλ
z

∣∣∇ (
ψ − Ihψ

)∣∣2 dx

≤ Ch4

∫̃
Ω

σλ
z |∇2ψ|2 dx,
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for any ψ ∈ H1(Ω) satisfying ψ|τ ∈ Hk(τ) for all τ ∈ T h, and such that

(8.1.8) ∇E,r (ψh|τ ) = 0 ∀τ ∈ T h ∀ψh ∈ Vh ∀k ≤ r ≤ kmax,

where ∇j denotes the vector of all partial derivatives of order j and ∇E,r

denotes a vector of partial derivatives of order r depending on the element
used. Moreover, we assume an inverse estimate of the form

(8.1.9)
∫̃

Ω

σλ
z |∇jψh|2 dx ≤ Ch−2j

∫
Ω

σλ
z ψ2

h dx ∀ψh ∈ Vh, j ≥ 1.

It is assumed that the constants C in (8.1.7) and (8.1.9) depend continu-
ously on λ. It is easily verified that the above assumptions hold for all the
elements studied in Chapter 3 (cf. exercise 8.x.6). For elements based on
triangles and tetrahedra, for which the displacement functions consist of all
polynomials of degree less than k, take ∇E,r = ∇k for r = k (and nothing
otherwise). For the tensor-product elements, we also have ∇E,r to be null
unless r = k; for r = k one takes ∇E,r to consist only of the derivatives Dα

for αi = k for some i (and αj = 0 for i �= j) (cf. Theorem 4.6.11). For the
serendipity elements, see Sect. 4.6 for possible choices of ∇E,r.

As usual, let uh ∈ Vh solve

(8.1.10) a(uh, v) = (f, v) ∀v ∈ Vh.

The main result of the chapter is the following.

(8.1.11) Theorem. Let the finite element spaces satisfy (8.1.7), (8.1.8) and
(8.1.9). We assume (8.1.1) holds, and that aij and bj are all in L∞(Ω).
Suppose that d ≤ 3, aij ∈ W 1

p (Ω) for p > 2 if d = 2 and p ≥ 12/5 if d = 3,
for all i, j = 1, . . . , d, and that (8.1.3) holds for µ > d. Then there is an
h0 > 0 and C < ∞ such that

‖uh‖W 1
∞(Ω) ≤ C ‖u‖W 1

∞(Ω)

for 0 < h < h0.

The theorem can also be proved with∞ replaced by p, with 2 < p < ∞
(cf. exercise 8.x.1). The following corollary is easily derived (cf. exercise
8.x.2).

(8.1.12) Corollary. Under the assumptions of Theorem 8.1.11

‖u− uh‖W 1
∞(Ω) ≤ Chk−1‖u‖W k

∞(Ω).

(8.1.13) Remark. We have not attempted to prove a result with minimal
smoothness requirements, but it is interesting to note that our regularity as-
sumption (8.1.3) with µ > d implies that the solution, u, to (8.1.2) satisfies
u ∈ W 1

∞(Ω), and that this would not hold for µ ≤ d.
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The verification of (8.1.7) and (8.1.9) can be done for most of the ele-
ments studied in Chapters 3 and 4. The inverse estimate (8.1.9) follows from
Lemma 4.5.3 and (8.1.4) provided the mesh is quasi-uniform (cf. exercise
8.x.15). The bound (8.1.7) also follows from (8.1.4) in view of the results of
Sects. 4.4 and 4.6 for most simplicial and tensor-product elements (cf. ex-
ercise 8.x.16).

8.2 Reduction to Weighted Estimates

For z ∈ Kz, let δz ∈ C∞
0 (Kz) satisfy

(8.2.1)

∫
Ω

δz(x)P (x) dx = P (z), ∀P ∈ Pkmax

‖∇kδz‖L∞(Ω) ≤ Ckh−d−k, k = 0, 1, . . . ,

where the constant Ck depends only on the triangulation and ∇k denotes
the vector of all k-th order derivatives (see exercise 8.x.7).

Note that, by construction,

(8.2.2) ν · ∇v(z) = (ν · ∇v, δz) ∀v ∈ Vh

for any direction vector, ν.
Define gz ∈ V by solving the adjoint variational problem

a(v, gz) = (−ν · ∇δz, v) ∀v ∈ V.

Note that both δz and gz depend on h, but we suppress this to simplify the
notation. Let gz

h denote the finite element approximation to gz,

a(v, gz
h) = (−ν · ∇δz, v) ∀v ∈ Vh.

Then the definitions of u, uh, gz and gz
h, together with integration by parts,

yield

(8.2.3)

ν · ∇uh(z) = (ν · ∇uh, δz) = (uh,−ν · ∇δz)
= a(uh, gz) = a(uh, gz

h) = a(u, gz
h)

= a(u, gz)− a(u, gz − gz
h)

= (−ν · ∇δz, u)− a(u, gz − gz
h)

= (δz, ν · ∇u)− a(u, gz − gz
h).

From Hölder’s inequality, we have

|a(gz − gz
h, u)| ≤ C ‖gz − gz

h‖W 1
1 (Ω) ‖u‖W 1

∞(Ω)

≤ C

(∫
Ω

σd+λ
z |∇ (gz − gz

h)|2 dx

) 1
2
(∫

Ω

σ−d−λ
z dx

) 1
2

‖u‖W 1
∞(Ω) .
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Letting

(8.2.4) Mh := sup
z∈Ω

(∫
Ω

σd+λ
z

(
|∇ (gz − gz

h)|2 + (gz − gz
h)2

)
dx

) 1
2

we have

(8.2.5)
|a(gz − gz

h, u)| ≤ CMh

(∫
Ω

σ−d−λ
z dx

) 1
2

‖u‖W 1
∞(Ω)

≤ CMhλ−1/2(κh)−λ/2 ‖u‖W 1
∞(Ω) .

Thus, we need to show that the following holds.

(8.2.6) Lemma. For appropriate λ > 0 and κ sufficiently large, there is an
h0 > 0 such that

sup
z∈Ω

∫
Ω

σd+λ
z

(
|∇ (gz − gz

h)|2 + (gz − gz
h)2

)
dx ≤ Chλ

for all 0 < h < h0.

The proof will be given in a series of propositions in the next section.
As a corollary, we immediately obtain the following.

(8.2.7) Corollary. There is a C < ∞ and an h0 > 0 such that

‖gz − gz
h‖W 1

1 (Ω) ≤ C

for all 0 < h < h0.

In view of (8.2.3), we also have

(δz, ν · ∇u)− ν · ∇uh(z) = a(u− v, gz − gz
h) ∀v ∈ Vh.

Applying Lemma 8.2.6, we prove the following localization result.

(8.2.8) Corollary. For λ > 0 as in Lemma 8.2.6, there is a C < ∞ and an
h0 > 0 such that

|(δz, ν · ∇u)− ν · ∇uh(z)| ≤ C inf
v∈Vh

(∫
Ω

hλσ−d−λ
z |∇(u− v)|2 dx

) 1
2

for all 0 < h < h0 and for all ν.

This result says that ν ·∇uh(z) is very close to an average of ν ·∇u near
z, with the difference bounded only by an approximation error (i.e., best
approximation). The error term is localized in the sense that hλσ−d−λ

z (x) is
a type of smoothed Dirac δ-function which decays to zero for x away from
z, at least as fast as |x− z|−d.
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8.3 Proof of Lemma 8.2.6

We begin by proving a general estimate for the finite element error in
weighted norms. It is similar to those proved in Chapter 0, but slightly
more technical due to the particular nature of the weight, σz.

(8.3.1) Proposition. Suppose that d = 2 or 3 and (8.1.3) holds for some
µ > d. Let the finite element spaces satisfy (8.1.7), (8.1.8) and (8.1.9). Let
w solve (8.1.2) and wh solve (8.1.10). For any λ > 0 and κ > 1, there is a
C < ∞ such that∫

Ω

σd+λ
z |∇ (w − wh)|2 dx ≤ C

(∫
Ω

σd+λ−2
z (w − wh)2 dx

+
∫

Ω

σd+λ−2
z

(
w − Ihw

)2
+ σd+λ

z

∣∣∇ (
w − Ihw

)∣∣2 dx

)
,

for all z ∈ Ω and all h.

Proof. Let e := w − wh, ẽ := Ihw − wh and set ψ = σd+λ
z ẽ. Note that

a(e, v) = 0 for all v ∈ Vh. From (8.1.1),

(8.3.2)

Ca

∫
Ω

σd+λ
z |∇e|2 dx

≤
∫

Ω

σd+λ
z

∑
ij

aije,ie,j dx

= a(e, σd+λ
z e)−

∫
Ω

∑
ij

aije,ie
(
σd+λ

z

)
,j

dx

−
∫

Ω

∑
i

bie,iσ
d+λ
z e + b0σ

d+λ
z e2 dx

= a(e, σd+λ
z (w − Ihw) + ψ)

−
∫

Ω

∑
ij

aije,ie
(
σd+λ

z

)
,j

+
∑

i

bie,iσ
d+λ
z e + b0σ

d+λ
z e2 dx

= a(e, σd+λ
z (w − Ihw)) + a(e, ψ − Ihψ)

−
∫

Ω

∑
ij

aije,ie
(
σd+λ

z

)
,j

+
∑

i

bie,iσ
d+λ
z e + b0σ

d+λ
z e2 dx

where v,j denotes the partial derivative with respect to the j-th coordinate.
The last two terms in (8.3.2) may be estimated as follows:∣∣∣∣∫

Ω

∑
ij

aije,ie
(
σd+λ

z

)
,j

+
∑

i

bie,iσ
d+λ
z e + b0σ

d+λ
z e2 dx

∣∣∣∣
≤ C

∫
Ω

|∇e| |e|σd+λ−1
z + σd+λ

z e2 dx (by 8.1.5 and 8.1.6)
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≤ C

(∫
Ω

σd+λ
z |∇e|2 dx

) 1
2
(∫

Ω

σd+λ−2
z e2 dx

) 1
2

+ C

∫
Ω

σd+λ
z e2 dx (Schwarz’ inequality)

≤ Ca

4

∫
Ω

σd+λ
z |∇e|2 dx + C ′

∫
Ω

σd+λ−2
z e2 dx. (by 8.1.5 and 0.9.5)

Similarly, the first term in (8.3.2) may be estimated:

|a(e,σd+λ
z (w − Ihw))|

≤ C

∫
Ω

|∇e|
(
σd+λ

z

∣∣∇ (
w − Ihw

)∣∣+ σd+λ−1
z

∣∣w − Ihw
∣∣) dx

+ C

∫
Ω

|e|σd+λ
z

∣∣w − Ihw
∣∣ dx (by 8.1.5 and 8.1.6)

≤ C

(∫
Ω

σd+λ
z

(
|∇e|2 + e2

)
dx

) 1
2

(Schwarz’ inequality and 8.1.5)

×
(∫

Ω

σd+λ−2
z

(
w − Ihw

)2
+ σd+λ

z

∣∣∇ (
w − Ihw

)∣∣2 dx

) 1
2

≤ Ca

4

∫
Ω

σd+λ
z

(
|∇e|2 + e2

)
dx (by 0.9.5)

+ C

∫
Ω

σd+λ−2
z

(
w − Ihw

)2
+ σd+λ

z

∣∣∇ (
w − Ihw

)∣∣2 dx.

The second term in (8.3.2) may be estimated similarly:

∣∣a(e, ψ − Ihψ)
∣∣

≤ C

∫
Ω

|∇e|
(∣∣∇ (

ψ − Ihψ
)∣∣+ ∣∣ψ − Ihψ

∣∣)+ |e|
∣∣ψ − Ihψ

∣∣ dx

≤ C

(∫
Ω

σd+λ
z

(
|∇e|2 + e2

)
dx

) 1
2

(Schwarz’ inequality)

×
(∫

Ω

σ−d−λ
z

(∣∣∇ (
ψ − Ihψ

)∣∣2 +
(
ψ − Ihψ

)2)
dx

) 1
2

≤ Ca

4

∫
Ω

σd+λ
z

(
|∇e|2 + e2

)
dx

+ C

∫
Ω

σ−d−λ
z

(∣∣∇ (
ψ − Ihψ

)∣∣2 +
(
ψ − Ihψ

)2)
dx. (by 0.9.5)

Inserting these estimates in (8.3.2) and using (8.1.5) yields
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(8.3.3)

Ca

4

∫
Ω

σd+λ
z |∇e|2 dx ≤ C

(∫
Ω

σd+λ−2
z e2 dx

+
∫

Ω

σ−d−λ
z

(∣∣∇ (
ψ − Ihψ

)∣∣2 +
(
ψ − Ihψ

)2)
dx

+
∫

Ω

σd+λ−2
z

(
w − Ihw

)2
+ σd+λ

z

∣∣∇ (
w − Ihw

)∣∣2 dx

)
.

We see that∫
Ω

σ−d−λ
z

(∣∣∇ (
ψ − Ihψ

)∣∣2 +
(
ψ − Ihψ

)2)
dx

≤
kmax∑
r=k

h2r−2

∫̃
Ω

σ−d−λ
z |∇E,rψ|2 dx (from 8.1.7)

≤ C

kmax∑
r=k

h2r−2
r−1∑
j=0

∫̃
Ω

σd+λ−2(r−j)
z |∇j ẽ|2 dx (from 8.1.8 & 8.1.6)

≤ C

kmax∑
r=k

r−1∑
j=0

h2r−2j−2

∫
Ω

σd+λ−2(r−j)
z ẽ2 dx (from 8.1.9)

≤ C

∫
Ω

σd+λ−2
z ẽ2 dx. (from 8.1.5)

Substituting this into (8.3.3) completes the proof of Proposition 8.3.1.

We note that the previous estimate may be written

(8.3.4)
∫

Ω

σ−d−λ
z

∣∣∇ (
ψ − Ihψ

)∣∣2 dx ≤ C

∫
Ω

σ−d−λ−2
z ψ2 dx.

Such an estimate is often called a superapproximation estimate (cf. Nitsche
& Schatz 1974) since the right hand side involves a weaker norm (and no
negative power of h). �	

To estimate the term involving (w − wh)2 on the right-hand side of
(8.3.1), we use the following.

(8.3.5) Proposition. Suppose that d = 2 or 3, (8.1.3) holds for µ > d and
0 < λ < 2(1 − d

µ ). Let the finite element spaces satisfy (8.1.7), (8.1.8) and
(8.1.9). Let w solve (8.1.2) and wh solve (8.1.10). Let ε > 0. There is a
κ1 < ∞ such that∫

Ω

σd+λ−2
z (w − wh)2 dx ≤ ε

∫
Ω

σd+λ
z |∇ (w − wh)|2 dx

for all κ ≥ κ1 and all h.

Proof. We use a duality argument. Let v ∈ V solve
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(8.3.6) a(φ, v) = (σd+λ−2
z e, φ) ∀φ ∈ V.

Thus,∫
Ω

σd+λ−2
z e2 dx = a(e, v) (8.3.6 with φ = e)

= a(e, v − Ihv) (8.1.2 & 8.1.10)

≤ C

(∫
Ω

σd+λ
z

(
|∇e|2 + e2

)
dx

) 1
2

(Schwarz’ inequality)

×
(∫

Ω

σ−d−λ
z

(∣∣∇ (
v − Ihv

)∣∣2 +
(
v − Ihv

)2)
dx

) 1
2

≤ ε

∫
Ω

σd+λ
z

(
|∇e|2 + e2

)
dx (by 0.9.5)

+
C

ε

∫
Ω

σ−d−λ
z

(∣∣∇ (
v − Ihv

)∣∣2 +
(
v − Ihv

)2)
dx

≤ ε

∫
Ω

σd+λ
z

(
|∇e|2 + e2

)
dx +

Ch2

ε

∫
Ω

σ−d−λ
z |∇2v|2 dx. (by 8.1.7)

In the next section, we will prove the following.

(8.3.7) Lemma. Suppose that d = 2 or 3, (8.1.3) holds for µ > d and λ
satisfies 0 < λ < 2(1− d

µ ). Then the solution to

a(φ, v) = (f, φ) ∀φ ∈ V,

for f ∈ H̊1(Ω), satisfies∫
Ω

σ−d−λ|∇2v|2 dx ≤ Cλ−1ζ−2

∫
Ω

σ4−d−λ|∇f |2 dx

where
σ(x) :=

(
|x− x0|2 + ζ2

) 1
2

and x0 ∈ Ω is arbitrary.

Applying Lemma 8.3.7 with f = σd+λ−2
z e, we find∫

Ω

σ−d−λ
z |∇2v|2 dx ≤ Cλ−1(κh)−2

∫
Ω

σ4−d−λ
z

∣∣∇ (
σd+λ−2

z e
)∣∣2 dx

≤ Cλ−1(κh)−2

(∫
Ω

σd+λ
z |∇e|2 dx +

∫
Ω

σd+λ−2
z e2 dx

)
.

Therefore,∫
Ω

σd+λ−2
z e2 dx ≤ ε

∫
Ω

σd+λ
z

(
|∇e|2 + e2

)
dx

+
C

λεκ2

(∫
Ω

σd+λ
z |∇e|2 dx +

∫
Ω

σd+λ−2
z e2 dx

)
.



224 Chapter 8. Max–norm Estimates

For any fixed ε and λ, we can pick κ1 large enough that

(8.3.8)
∫

Ω

σd+λ−2
z e2 dx ≤ 2ε

∫
Ω

σd+λ
z |∇e|2 dx

for all κ ≥ κ1. Renaming ε completes the proof of (8.3.5). �	

Combining the two Propositions shows that the Galerkin projection
onto finite element spaces is quasi-optimal in certain weighted spaces.

(8.3.9) Theorem. Suppose that d = 2 or 3, (8.1.3) holds for µ > d and
0 < λ < 2(1 − d

µ ). Let the finite element spaces satisfy (8.1.7), (8.1.8) and
(8.1.9). Let w solve (8.1.2) and wh solve (8.1.10). Then∫

Ω

σd+λ
z |∇ (w − wh)|2 + σd+λ−2

z (w − wh)2 dx

≤ C

∫
Ω

σd+λ−2
z

(
w − Ihw

)2
+ σd+λ

z

∣∣∇ (
w − Ihw

)∣∣2 dx

for all z ∈ Ω.

To complete the proof of (8.2.6), we apply Theorem 8.3.9 to w = gz.
Thus, we need to show that

(8.3.10)
∫

Ω

σd+λ
z |∇2g

z|2 dx ≤ Chλ−2.

This is a consequence of the following a priori estimate.

(8.3.11) Lemma. Suppose that d ≤ 3, 0 < λ < 1, and aij ∈ W 1
p (Ω) for

p > 2 if d = 2 and p ≥ 12/5 if d = 3, for all i, j = 1, . . . , d. Suppose that
(8.1.3) holds for µ > 2d

4−λ . Then the solution to

a(φ, v) = (ν · ∇f, φ) ∀φ ∈ V,

for f ∈ H̊1(Ω), satisfies∫
Ω

σd+λ|∇2v|2 dx ≤ C

∫
Ω

σd+λ|∇f |2 dx + Cζ−2

∫
Ω

σd+λf2 dx

where σ is the weight defined in (8.3.7).

8.4 Proofs of Lemmas 8.3.7 and 8.3.11

We begin with Lemma 8.3.7. We have
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Ω

σ−d−λ|∇2v|2 dx

≤
(∫

Ω

σ−(d+λ)p′
dx

)1/p′

‖∇2v‖2L2p(Ω) (Hölder’s inequality)

≤ Cζ−d−λ+d/p′‖v‖2W 2
2p(Ω)

= Cζ−λ−d/p‖v‖2W 2
2p(Ω)

≤ Cζ−λ−d/p‖f‖2L2p(Ω) (by 8.1.3)

≤ Cζ−λ−d/p‖∇f‖2L2pd/(d+2p)(Ω). (exercise 8.x.12)

Provided that p < d/(d − 2) then 2pd/(d + 2p) < 2 so that we may again
apply Hölder’s inequality, with q = (d + 2p)/pd to bound

‖∇f‖
2
q

L2pd/(d+2p)(Ω)
=

∫
Ω

|∇f | 2q dx =
∫

Ω

σ
−(4−d−λ)

q

(
σ

4−d−λ
q |∇f | 2q

)
dx

≤
(∫

Ω

σ−(4−d−λ) q′
q dx

) 1
q′
(∫

Ω

σ4−d−λ|∇f |2 dx

) 1
q

=
(∫

Ω

σ
−(4−d−λ)

q−1 dx

) q−1
q
(∫

Ω

σ4−d−λ|∇f |2 dx

) 1
q

.

Using the definition of σ, we have

(∫
Ω

σ
−(4−d−λ)

q−1 dx

)q−1

≤ Cζ−(4−d−λ)+d(q−1)

= Cζ−2+λ+d/p

provided p > d/(2−λ). Because of our assumption on λ, d/(2−λ) < µ, so we
can pick p satisfying the above constraints. Combining previous estimates,
we prove Lemma 8.3.7.

Now consider Lemma 8.3.11. Expanding the expression∇2

(
σ(d+λ)/2v

)
,

we find

(8.4.1) σd+λ|∇2v|2 ≤
∣∣∣∇2

(
σ(d+λ)/2v

)∣∣∣2 + C
(
σd+λ−2|∇v|2 + σd+λ−4v2

)
.

In order to use (8.1.3), we consider the equation satisfied by σ(d+λ)/2v:
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a(φ, σ(d+λ)/2v) = a(σ(d+λ)/2φ, v) +
( d∑

i,j=1

aijφ,i

(
σ(d+λ)/2

)
,j
, v
)

−
( d∑

i,j=1

aij

(
σ(d+λ)/2

)
,j
v,i, φ

)
−
( d∑

i=1

bi

(
σ(d+λ)/2

)
,i
v, φ

)

= a(σ(d+λ)/2φ, v)−
( d∑

i,j=1

(
aij

(
σ(d+λ)/2

)
,j
v
)
,i
, φ
)

−
( d∑

i,j=1

aij

(
σ(d+λ)/2

)
,j
v,i, φ

)
−
( d∑

i=1

bi

(
σ(d+λ)/2

)
,i
v, φ

)

= (ν · ∇f, σ(d+λ)/2φ)−
( d∑

i,j=1

(
aij

(
σ(d+λ)/2

)
,j
v
)
,i
, φ
)

−
( d∑

i,j=1

aij

(
σ(d+λ)/2

)
,j
v,i, φ

)
−
( d∑

i=1

bi

(
σ(d+λ)/2

)
,i
v, φ

)
= (F, φ),

where the second step is integration by parts and F is defined by

F =σ(d+λ)/2ν · ∇f −
d∑

i,j=1

(
aij

(
σ(d+λ)/2

)
,j
v
)
,i

− aij

(
σ(d+λ)/2

)
,j
v,i − bi

(
σ(d+λ)/2

)
,i
v.

Therefore,
(∫

Ω

∣∣∇2

(
σ(d+λ)/2v

)∣∣2 dx
) 1

2
is bounded by a constant times

‖F‖L2(Ω). Integrating (8.4.1) and using (8.1.6), we thus find

∫
Ω

σd+λ|∇2v|2 dx ≤ C

(∫
Ω

σd+λ|∇f |2 dx +
∫

Ω

σd+λ−2|∇v|2 dx

+
∫

Ω

σd+λ−4v2 dx

)
+
∫

Ω

A(x)2σd+λ−2v2 dx

where A(x) = maxij |aij,i(x)|. To bound the last integral, we apply Hölder’s
and Sobolev’s (exercise 8.x.12) inequalities:

∫
Ω

A(x)2σd+λ−2v2 dx ≤
(∫

Ω

A(x)2r dx

)1/r (∫
Ω

∣∣∣σ(d+λ−2)/2v
∣∣∣2r′

dx

)1/r′

≤
(∫

Ω

A(x)2r dx

)1/r ∫
Ω

∣∣∣∇(
σ(d+λ−2)/2v

)∣∣∣2 dx
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provided that r′ ≤ 2d/d − 2 (r′ < ∞ if d = 2). Thus, we may take r > 1
if d = 2 or r ≥ 2d/(d + 2) for d ≥ 3. We therefore require A ∈ Lp(Ω) for
p > 2 if d = 2 and p ≥ 4d/(d + 2) for d ≥ 3. It is interesting to note that
p ≥ 4d/(d + 2) does not necessarily imply that p > d, the condition for
continuity of the coefficients, aij , for d ≥ 3. Expanding the last term and
inserting the resulting estimate in the previous one yields∫

Ω

σd+λ|∇2v|2 dx ≤ C

(∫
Ω

σd+λ|∇f |2 dx +
∫

Ω

σd+λ−2|∇v|2 dx

+
∫

Ω

σd+λ−4v2 dx

)
.

Recalling (8.3.2) and using the convention that v,0 = v we have

(8.4.2)

Ca

∫
Ω

σd+λ−2
z |∇v|2 dx ≤

∫
Ω

σd+λ−2
z

d∑
i,j=1

aijv,iv,j dx

= a(v, σd+λ−2
z v)−

∫
Ω

d∑
i,j=1

aijv,iv
(
σd+λ−2

z

)
,j

+
d∑

i=0

biv,ivσd+λ−2
z dx

=
(
ν · ∇f, σd+λ−2

z v
)
−
∫

Ω

d∑
i,j=1

aijv,iv
(
σd+λ−2

z

)
,j

+
d∑

i=0

biv,ivσd+λ−2
z dx

=
(
(ν · ∇f)σd+λ−2

z , v
)
−
∫

Ω

d∑
i,j=1

aijv,iv
(
σd+λ−2

z

)
,j

+
d∑

i=0

biv,ivσd+λ−2
z dx.

Estimating as before (see 8.x.9), we find

(8.4.3)
∫

Ω

σd+λ−2
z |∇v|2 dx ≤ C

(∫
Ω

σd+λ|∇f |2 dx +
∫

Ω

σd+λ−4v2 dx

)
.

Hölder’s inequality implies that∫
Ω

σd+λ−4v2 dx ≤
(∫

Ω

σ(d+λ−4)P ′
dx

)1/P ′ (∫
Ω

v2P dx

)1/P

≤ Cζ(d+λ−4)+d/P ′
(∫

Ω

v2P dx

)1/P
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provided that P ′ > d/(4 − λ − d). The proof is completed by a duality
argument.

Let w solve (8.1.2) with right-hand-side given by sign(v)|v|2P−1. Then

‖v‖2P
L2P (Ω) = (sign(v)|v|2P−1, v) = a(w, v) (definition of w)

= (ν · ∇f, w) (definition of v)
= − (f, ν · ∇w) (integration by parts)
≤ ‖f‖Lr(Ω)‖w‖W 1

r′ (Ω) (Hölder’s inequality)

≤ C‖f‖Lr(Ω)‖w‖W 2
2P/2P−1(Ω) (Sobolev’s inequality 4.x.11)

≤ C‖f‖Lr(Ω)

∥∥|v|2P−1
∥∥

L2P/2P−1(Ω)
(by 8.1.3)

= C‖f‖Lr(Ω)‖v‖
2P−1
L2P (Ω)

so that
‖v‖L2P (Ω) ≤ C‖f‖Lr(Ω).

Sobolev’s inequality requires that

1
r′

=
2P − 1

2P
− 1

d
= 1− 1

2P
− 1

d

so that r = 2Pd/(2P + d). The condition P ′ > d/(4− λ− d) translates to

r <
2d

2d− 2 + λ
.

Note that we must have 2P/(2P − 1) = (1− 1/r + 1/d)−1
< µ in order to

apply (8.1.3). This condition, which translates to

r >

(
1− 1

µ
+

1
d

)−1

,

becomes vacuous if µ > d. If µ > 2d
4−λ , then there is an open interval of r’s

that can satisfy both conditions. Therefore, Hölder’s inequality implies∫
Ω

σd+λ−4v2 dx ≤ Cζ2d(1− 1
r )+λ−2‖f‖2Lr(Ω)

≤ Cζ2d(1− 1
r )+λ−2

∫
Ω

σd+λ
z f2 dx

(∫
Ω

σ
−(d+λ) r

2−r
z dx

) 2−r
r

≤ Cζ2d(1− 1
r )+λ−2

∫
Ω

σd+λ
z f2 dx

(
Cζ−(d+λ)+d 2−r

r

)
≤ Cζ−2

∫
Ω

σd+λ
z f2 dx.

Substituting this into an earlier expression completes the proof of Lemma
8.3.11. �	
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(8.4.4) Remark. The proofs of the lemmas use Hölder’s inequality repeatedly
with what may appear to be “magic” indices at first reading. This technique
of proof might be called “index engineering.” There is a basic scientific
principle underlying the inequalities that indicates whether the approach
will work or not. For example, in (8.3.7), both sides of the expression have
the same “units.” The weight σ has the units of length (L) and |∇2v| is
essentially like f . Suppose that f has units F . Then the left-hand side has
units of L−λF 2 since dx has units of Ld. The units of |∇f |2 are L−2F 2,
because differentiation involves dividing by a length. Noting that ζ has
units of L completes the verification. This comparison can be seen more
precisely if we scale the x variable by L, and compare the powers of L on
each side (they will be equal, cf. exercise 8.x.10).

8.5 Lp Estimates (Regular Coefficients)

The proof that Theorem 8.1.11 holds with p finite, at least for 2 ≤ p ≤ ∞,
is given in exercise 8.x.1. Such an estimate can be extended by the following
duality argument for 1 < p ≤ 2. Let aij ∈ C0(Ω). From (Simader 1972),
we have (for 1

p + 1
q = 1)

1
C
‖uh‖W 1

p (Ω) ≤ sup
0�=v∈W̊ 1

q (Ω)

a(uh, v)
‖v‖W 1

q (Ω)

+ ‖uh‖Lp(Ω)

= sup
0�=v∈W̊ 1

q (Ω)

a(uh, vh)
‖v‖W 1

q (Ω)

+ ‖uh‖Lp(Ω)

= sup
0�=v∈W̊ 1

q (Ω)

a(u, vh)
‖v‖W 1

q (Ω)

+ ‖uh‖Lp(Ω) ,

where vh represents the projection of v with respect to a(·, ·). Applying
exercise 8.x.1 and Hölder’s inequality, we find

‖uh‖W 1
p (Ω) ≤ C

(
‖u‖W 1

p (Ω) + ‖uh‖Lp(Ω)

)
.

A bound for ‖uh‖Lp(Ω) can be obtained easily by duality, modifying the
proof of Theorem 5.4.8 only slightly. Consider the variational problem: find
w ∈ V such that

(8.5.1) a(v, w) = (f, v) ∀v ∈ V.

This has the property that for 1 < q ≤ ∞

(8.5.2) ‖w‖W 1
q (Ω) ≤ C ‖f‖Lq(Ω)

as follows from (8.1.3), provided µ > d (see exercise 8.x.14):
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‖w‖W 1
q (Ω) ≤C‖w‖W 2

r (Ω) (Sobolev’s inequality 4.x.11)

≤C‖f‖Lr(Ω) (by 8.1.3)

≤C ‖f‖Lq(Ω) . (Hölder’s inequality)

Applying this to f = |uh|p−1 sign(uh) and with 1
p + 1

p′ = 1 we find

‖uh‖p
Lp(Ω) = a(uh, w) (from 8.5.1)

= a(uh, wh) (wh Galerkin projection of w)
= a(u,wh) (uh Galerkin projection of u)
≤ C ‖u‖W 1

p (Ω) ‖wh‖W 1
p′ (Ω) (Hölder’s inequality)

≤ C ‖u‖W 1
p (Ω) ‖w‖W 1

p′ (Ω) (exercise 8.x.1)

≤ C ‖u‖W 1
p (Ω)

∥∥∥|uh|p−1 sign(uh)
∥∥∥

Lp′ (Ω)
(from 8.5.2)

= C ‖u‖W 1
p (Ω) ‖uh‖p−1

Lp(Ω) .

Therefore,
‖uh‖Lp(Ω) ≤ C ‖u‖W 1

p (Ω) ∀ 1 < p ≤ ∞

as the case 2 ≤ p ≤ ∞ was treated earlier. Combining previous estimates
proves the following.

(8.5.3) Theorem. Under the conditions of Theorem 8.1.11 and assuming
aij ∈ C0(Ω), there is an h0 > 0 and C < ∞ such that

‖uh‖W 1
p (Ω) ≤ C ‖u‖W 1

p (Ω) ∀ 1 < p ≤ ∞

for 0 < h < h0.

Of course, it follows that

(8.5.4) ‖u− uh‖W 1
p (Ω) ≤ C inf

v∈Vh

‖u− v‖W 1
p (Ω) ∀ 1 < p ≤ ∞

by applying the previous result to uh − v and using the triangle inequality
(cf. exercise 8.x.2). We leave to the reader (exercise 8.x.13) the proof of the
following using duality techniques:

(8.5.5) ‖u− uh‖Lp(Ω) ≤ Ch ‖u− uh‖W 1
p (Ω) ∀µ′ < p < ∞

for 0 < h < h0, where 1
µ + 1

µ′ = 1 (cf. (8.1.3)).
The case p = ∞ is special due, in part, to the lack of regularity in

(8.1.3) for p = 1. The best order of approximation by piecewise linears, at
least in two dimensions (Scott 1976 and Haverkamp 1984), is

‖u− uh‖L∞(Ω) ≤ Ch| log h| ‖u− uh‖W 1
∞(Ω) .
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For higher-degree approximation, one can show (Scott 1976) that

‖u− uh‖L∞(Ω) ≤ Ch ‖u− uh‖W 1
∞(Ω) .

Rather than derive more Lp estimates in the case of regular coefficients,
we now show that some estimates can be derived for very rough coefficients.

8.6 Lp Estimates (Irregular Coefficients)

The estimates in the previous section were based on the results from earlier
sections which yielded estimates for the gradient of the error in maximum
norm. In particular, it was necessary to assume some conditions on the
coefficients in the bilinear form that might not always hold. In this section
we give a more general result. For simplicity, we restrict to the symmetric
case, that is, we assume that

(8.6.1) a(u, v) :=
∫

Ω

d∑
i,j=1

aij(x)
∂u

∂xi
(x)

∂v

∂xj
(x) dx

but we only assume that aij are bounded, measurable coefficients.

(8.6.2) Proposition. Suppose that a(·, ·) is as given in (8.6.1), where aij

are bounded, measurable coefficients such that (8.1.1) holds. Then there are
constants α < ∞, h0 > 0 and ε > 0 such that for all 0 < h ≤ h0 and
uh ∈ Vh

|uh|W 1
p (Ω) ≤ α sup

0�=vh∈Vh

a(uh, vh)
|vh|W 1

q (Ω)

,

whenever |2− p| ≤ ε, where q is the dual index to p, 1
p + 1

q = 1.

Before proving this result, let us relate it to estimates for the finite
element projection. Let Phu be the projection with respect to the bilinear
form a(u, v) of an element u ∈ V onto Vh, i.e., Phu is the unique element
of Vh which satisfies

a(u− Phu, v) = 0 ∀ v ∈ Vh.

(8.6.3) Corollary. Under the assumptions of Proposition 8.6.2, the projection
Ph is stable in W 1

p (Ω), i.e., there is a positive constant C, independent of
h and u, such that

‖Phu‖W 1
p (Ω) ≤ C ‖u‖W 1

p (Ω) , |2− p| ≤ ε.

This follows from Proposition 8.6.2 because
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‖Phu‖W 1
p (Ω) ≤ C |Phu|W 1

p (Ω) (Poincaré’s inequality 5.3.5)

≤ C sup
0�=vh∈Vh

a(Phu, vh)
|vh|W 1

q (Ω)

(by 8.6.2)

= C sup
0�=vh∈Vh

a(u, vh)
|vh|W 1

q (Ω)

(definition of Ph)

≤ C |u|W 1
p (Ω) . (Hölder’s inequality)

For simplicity, we use the following definitions for the remainder of the
proof. Define the Lp norm on vector (d component) functions, F, via

‖F‖Lp(Ω)d :=
(∫

Ω

|F(x)|p dx

)1/p

where |F(x)| denotes the Euclidean length of F(x). Note that with this def-
inition of vector norm, Hölder’s inequality takes a convenient form, namely∣∣∣∣∫

Ω

F(x) ·G(x) dx

∣∣∣∣ ≤ ‖F‖Lp(Ω)d‖G‖Lq(Ω)d where
1
p

+
1
q

= 1.

We also use the following definition of Sobolev semi-norm which is equiva-
lent with our earlier Definition 1.3.7, namely

|v|W 1
p (Ω) := ‖∇v‖Lp(Ω)d .

The proof of Proposition 8.6.2 is based on the ideas of (Meyers 1963).
First, we establish the corresponding inequality in the case that the bilinear
form in question is much simpler. Consider the projection P ∗

h : V → Vh

defined by

〈∇(P ∗
hu− u),∇vh〉 = 0 ∀vh ∈ Vh,

where 〈·, ·〉 denotes the vector-L2 inner-product on Ω. The results in the
previous section imply that

(8.6.4) |P ∗
hu|W 1

p (Ω) ≤ C∗ |u|W 1
p (Ω) , 1 < p ≤ ∞.

From (Simader 1972) or (Meyers 1963) we have

(8.6.5) |w|W 1
p (Ω) ≤ cp sup

0�=v∈W̊ 1
q (Ω)

〈∇w,∇v〉
|v|W 1

q (Ω)

∀w ∈ W̊ 1
p (Ω),

where the constant cp was observed to be log-convex (hence continuous) as
a function of 1/p by (Meyers 1963). Obviously, c2 = 1. Thus,
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(8.6.6)

|uh|W 1
p (Ω) ≤ cp sup

0�=v∈W̊ 1
q (Ω)

〈∇uh,∇v〉
|v|W 1

q (Ω)

= cp sup
0�=v∈W̊ 1

q (Ω)

〈∇uh,∇P ∗
hv〉

|v|W 1
q (Ω)

≤ cpCp sup
0�=v∈W̊ 1

q (Ω)

〈∇uh,∇P ∗
hv〉

|P ∗
hv|

W 1
q (Ω)

= cpCp sup
0�=vh∈Vh

〈∇uh,∇vh〉
|vh|W 1

q (Ω)

for all 1 < p < ∞, where

Cp := ‖P ∗
h‖W̊ 1

p (Ω)→W̊ 1
p (Ω) = sup

0�=v∈W̊ 1
p (Ω)

|P ∗
hv|W 1

p (Ω)

|v|W 1
p (Ω)

≤ C∗.

Obviously, C2 = 1. We now wish to show that Cp = ‖P ∗
h‖W̊ 1

p (Ω)→W̊ 1
p (Ω) is

continuous as a function of p, uniformly in h.
We view P ∗

h as inducing a mapping, P∗
h : ∇u −→ ∇uh, of Lp(Ω)d to

itself. More precisely, given F ∈ Lp(Ω)d, let uh(F) ∈ Vh solve

〈∇uh,∇vh〉 = 〈F,∇vh〉 ∀vh ∈ Vh.

Then P∗
h(F) := ∇uh. Similarly, we can let u ∈ W̊ 1

p (Ω) solve

〈∇u,∇v〉 = 〈F,∇v〉 ∀v ∈ W̊ 1
q (Ω),

and we have

|u|W 1
p (Ω) ≤ cp sup

0�=v∈W̊ 1
q (Ω)

〈∇u,∇v〉
|v|W 1

q (Ω)

(by 8.6.5)

= cp sup
0�=v∈W̊ 1

q (Ω)

〈F,∇v〉
|v|W 1

q (Ω)

(definition of u)

≤ cp‖F‖Lp(Ω)d . (Hölder’s inequality)

Therefore,
‖P∗

hF‖Lp(Ω)d ≤ C∗cp‖F‖Lp(Ω)d .

Using operator interpolation (see Chapter 14), we conclude that for
P > 2

‖P∗
hF‖[L2(Ω)d,LP (Ω)d]θ

≤ (C∗cP )θ ‖F‖[L2(Ω)d,LP (Ω)d]θ
.

Whether using the real interpolation method (with appropriate second in-
dex) or the complex interpolation method (Bergh & Löfstrom 1976),
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c(p)−1‖F‖L2(1−θ)+P θ(Ω)d

≤ ‖F‖[L2(Ω)d,LP (Ω)d]θ

≤ c(p)‖F‖L2(1−θ)+P θ(Ω)d

where c(2) = 1 and c(p) is a smooth function of p near p = 2. Therefore,

‖P ∗
h‖W̊ 1

p (Ω)→W̊ 1
p (Ω) ≤ c(p)2 (C∗cP )θ

, p = 2(1− θ) + Pθ.

A similar inequality holds for P < 2. By taking θ small, we can make
(C∗cP )θ as close to one as we like. Thus, for all δ > 0 there exists ε > 0
such that

(8.6.7) |uh|W 1
p (Ω) ≤ (1 + δ) sup

0�=vh∈Vh

〈∇uh,∇vh〉
|vh|W 1

q (Ω)

∀ |2− p| ≤ ε

where 1
p + 1

q = 1 and δ and ε are independent of h
We now consider the general case via a perturbation argument. Let M

be a constant such that

(8.6.8)
d∑

i,j=1

aij(x)ξiξj ≤ M |ξ|2 for almost all x ∈ Ω.

Define a bilinear form B : W 1
p (Ω)×W 1

q (Ω) → IR by

B(u, v) := 〈∇u,∇v〉 − 1
M

a(u, v),

=
∫

Ω

d∑
i,j=1

Bij(x)
∂u

∂xi

∂v

∂xj
dx.

It follows from (8.1.1) and (8.6.8) that the eigenvalues of (Bij(x)) are in
[0, 1− Ca

M ] for almost all x ∈ Ω (see exercise 8.x.17). Note that Ca/M < 1.
Therefore, exercise 8.x.17 and Hölder’s inequality imply that

(8.6.9)
|B(u, v)| ≤

(
1− Ca

M

)∫
Ω

|∇u(x)| |∇v(x)| dx

≤
(

1− Ca

M

)
|u|W 1

p (Ω) |v|W 1
q (Ω) .

Using the identity

〈∇u,∇v〉 = B(u, v) +
1
M

a(u, v),

together with estimates (8.6.7) and (8.6.9) yields(
1

1 + δ
−
(

1− Ca

M

))
|uh|W 1

p (Ω) ≤
1
M

sup
0�=vh∈Vh

a(uh, vh)
|vh|W 1

q (Ω)

.
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Let δ =
(

1
2M − Ca

)
/ (M − Ca) and choose ε to be as given in (8.6.7) for

this choice of δ. This completes the proof of Proposition 8.6.2. Note that ε
and α depend only on the constants Ca in (8.1.1), C∗ in (8.6.4) and M in
(8.6.8). �	

8.7 A Nonlinear Example

We consider a very simple model problem in two dimensions to show how
the refined estimates of the previous section can obtain basic existence
results for nonlinear problems. Let

(8.7.1) a(u, v;w) :=
∫

Ω

A(w)∇u · ∇v dx

where the function A : IR → IR satisfies

(8.7.2) 0 < Ca ≤ A(s) ∀s ∈ IR.

Further, we assume only that A(·) is bounded on bounded subsets of IR.
We seek u such that

(8.7.3) a(u, v;u) = F (v) ∀v ∈ V

with, say, V = H̊1(Ω).
Note that a(u, u;u) is not actually defined for arbitrary u ∈ H1(Ω),

so the variational formulation of such a problem requires some elaboration.
We will not dwell on such issues, but instead we simply show how one can
insure the existence of a solution to the discrete problem

(8.7.4) a(uh, v;uh) = F (v) ∀v ∈ Vh

under suitable conditions. Let

(8.7.5) V K,p
h :=

{
v ∈ Vh : ‖v‖W 1

p (Ω) ≤ K
}

for a given K > 0. Define the simple iteration map, Th : Vh → Vh via

(8.7.6) a(Thuh, v;uh) = F (v) ∀v ∈ Vh.

This is always well defined, since uh ∈ Vh implies A(uh) ∈ L∞(Ω).

(8.7.7) Theorem. Suppose that A is bounded on bounded sets and (8.7.2)
holds. There exists K > 0, p > 2, h0 > 0 and δ > 0 such that for any F
such that ‖F‖W−1

p
≤ δ, Th maps V K,p

h into itself for all 0 < h ≤ h0.

Proof. For any uh ∈ V K,p
h , A(uh) satisfies the conditions of Proposition

8.6.2 with the constant in (8.6.8) bounded by
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(8.7.8) M = sup {A(s) : |s| ≤ cpK}

where cp is the constant in Sobolev’s inequality:

‖v‖L∞(Ω) ≤ cp ‖v‖W 1
p (Ω) ∀v ∈ W 1

p (Ω)

because v ∈ V K,p
h implies ‖v‖L∞(Ω) ≤ cpK and hence ‖A(v)‖L∞(Ω) ≤ M .

For sufficiently small K (e.g., K = C/cp) there is a p > 2 such that the
inequality in Proposition 8.6.2 holds. Then

‖Thuh‖W 1
p (Ω) ≤ α sup

0�=vh∈Vh

a(Thuh, vh;uh)
|vh|W 1

q (Ω)

(from 8.6.2)

= α sup
0�=vh∈Vh

F (vh)
|vh|W 1

q (Ω)

≤ C‖F‖W−1
p

.

Choose δ = K/C. �	

(8.7.9) Corollary. Suppose A is continuous and (8.7.2) holds. Let K > 0,
p > 2, h0 > 0 and δ > 0 be as in Theorem 8.7.7. For ‖F‖W−1

p
≤ δ, (8.7.4)

has a solution uh which satisfies

‖uh‖W 1
p (Ω) ≤ K

for 0 < h ≤ h0.

Proof. Apply the Brouwer fixed-point theorem (cf. Dugundji 1966). �	

Not only does the corollary guarantee a solution to the discrete problem
which remains uniformly bounded as h → 0, it also provides a stability
result because the family of problems (8.7.4) are all uniformly continuous
(and coercive) independent of h. This allows us to establish convergence
estimates as follows:

a(u− uh, v;uh) = a(u, v;uh)− F (v) (from 8.7.4)
= a(u, v;uh)− a(u, v;u) (from 8.7.3)

=
∫

Ω

(A(u)−A(uh))∇u · ∇v dx

for any v ∈ Vh. Assuming u ∈ W 1
p (Ω) and A ∈ W 1

∞(I) for any bounded
interval I ⊂ IR, we find for any v ∈ Vh

a(u−uh, u− uh;uh) = a(u− uh, u− v;uh) + a(u− uh, v − uh;uh)

= a(u− uh, u− v;uh) +
∫

Ω

(A(u)−A(uh))∇u · ∇ (v − uh) dx

≤ M ‖u− uh‖H1(Ω) ‖u− v‖H1(Ω) (from 8.7.8)
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+
∫

Ω

|A(u)−A(uh)| |∇u · ∇ (v − uh)| dx

≤ M ‖u− uh‖H1(Ω) ‖u− v‖H1(Ω)

+ ‖A‖W 1
∞(I)

∫
Ω

|u− uh| |∇u · ∇ (v − uh)| dx

≤ M ‖u− uh‖H1(Ω) ‖u− v‖H1(Ω)

+ ‖A‖W 1
∞(I) ‖|u− uh| |∇u|‖L2(Ω) ‖v − uh‖H1(Ω)

≤ M ‖u− uh‖H1(Ω) ‖u− v‖H1(Ω)

+ ‖A‖W 1
∞(I) ‖u− uh‖Lq(Ω) ‖u‖W 1

p (Ω) ‖v − uh‖H1(Ω)

≤ ‖u− uh‖H1(Ω)

(
M ‖u− v‖H1(Ω) (Sobolev’s inequality 4.x.11)

+ c′p‖A‖W 1
∞(I) ‖u‖W 1

p (Ω) ‖v − uh‖H1(Ω)

)
where I = [0,max{M, ‖u‖L∞(Ω)}], q = 2p/(p−2) and we have used Hölder’s
inequality repeatedly. Therefore,

(8.7.10)
‖u− uh‖H1(Ω) ≤

1
Ca

(
M ‖u− v‖H1(Ω)

+ c′p‖A‖W 1
∞(I) ‖u‖W 1

p (Ω) ‖v − uh‖H1(Ω)

)
.

From the triangle inequality, we find

(1− γ) ‖u− uh‖H1(Ω) ≤
(

M

Ca
+ γ

)
‖u− v‖H1(Ω)

where

γ :=
c′p
Ca
‖A‖W 1

∞(I) ‖u‖W 1
p (Ω) .

Thus, if γ < 1 we obtain a result similar to Ceá’s Theorem:

(8.7.11) ‖u− uh‖H1(Ω) ≤
M + γCa

(1− γ) Ca
‖u− v‖H1(Ω) ∀v ∈ Vh.

Using only slightly more complicated techniques than used above (cf. Mey-
ers 1963, Douglas & Dupont 1975), one can show the existence of a solution
u ∈ W 1

p (Ω) to (8.7.3) under the conditions of Theorem 8.7.7 for sufficiently
small δ > 0, using a map T : W̊ 1

p (Ω) → W̊ 1
p (Ω) defined by

a(Tu, v;u) = F (v) ∀v ∈ W̊ 1
q (Ω).

Such a result follows more simply from the fact that both T and Th are
Lipschitz continuous, provided A is Lipschitz continuous.

We show that Th is Lipschitz continuous, as this also demonstrates
both the uniqueness of the solution and the convergence of the fixed point
iteration,
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(8.7.12) un+1
h := Thun

h ,

to uh as n → ∞. For v, w, φ ∈ Vh, we find using the techniques leading to
(8.7.10) that

|a(Thv−Thw, φ; v)| =
∣∣∣∣∫

Ω

(A(w)−A(v))∇Thw · ∇φ dx

∣∣∣∣
≤ c′p‖A‖W 1

∞(0,M) ‖w − v‖H1(Ω) ‖Thv‖W 1
p (Ω) ‖φ‖H1(Ω) .

Choosing φ = Thv − Thw yields

(8.7.13) ‖Thv − Thw‖H1(Ω) ≤
c′p‖A‖W 1

∞(0,M)K

Ca
‖w − v‖H1(Ω)

for all v, w ∈ V K,p
h . A similar result can be proved for T . Note that K

can be made arbitrarily small by choosing δ appropriately. We collect these
results in the following.

(8.7.14) Theorem. Suppose that A is Lipschitz continuous and (8.7.2) holds.
There exist δ > 0, h0 > 0 and p > 2 such that (8.7.3) and (8.7.4), for all
0 < h ≤ h0, have unique solutions for arbitrary F such that ‖F‖W−1

p
≤ δ.

Moreover, uh can be approximated to arbitrary accuracy via the simple it-
eration (8.7.12), which involves solving only linear equations at each step.
Finally, the error u− uh satisfies (8.7.11).

Using more sophisticated techniques and further assumptions on the
coefficient A, (Douglas & Dupont 1975) prove stronger results of a global
character and consider more efficient iterative techniques such as Newton’s
method. For another application of the results of the previous section to a
different type of nonlinear problem, see (Saavedra & Scott 1991).

8.x Exercises

8.x.1 Prove Theorem 8.1.11 with ∞ replaced by p, for 2 < p < ∞. (Hint:
use Hölder’s inequality in such a way to leave a weighted Lp norm
of ∇u in (8.2.5), integrate the p-th power of (8.2.3) and then apply
Fubini, cf. Rannacher & Scott 1982.)

8.x.2 Prove (8.1.12). (Hint: write u−uh = u−Ihu+(Ihu−uh) and apply
(8.1.11) to Ihu− u playing the role of u.)

8.x.3 Prove (8.1.4). How does the constant depend on κ and h?

8.x.4 Prove (8.1.5). How does the constant depend on κ and h?
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8.x.5 Prove (8.1.6). How does the constant depend on κ and h? (Hint:
consider first the case λ = 1 and then use induction.)

8.x.6 Prove (8.1.7). How does the constant depend on κ and h? (Hint: use
(8.1.4).)

8.x.7 Prove (8.2.1). How does the constant depend on k? (Hint: see (Scott
1976).)

8.x.8 Prove that (8.3.10) follows from Lemma 8.3.11. (Hint: use (8.1.5).)

8.x.9 Derive (8.4.3) from (8.4.2) in detail. (Hint: use Schwarz’ inequality
and 0.9.5, splitting the weight functions appropriately.)

8.x.10 Do the change of variables suggested in Remark (8.4.4) and verify
that the powers of L on each side of the inequality are the same.

8.x.11 Prove Sobolev’s embedding W̊ 1
1 (Ω) ⊂ L2(Ω) in two dimensions.

(Hint: write

u(x1, x2)2 =
∫ x1

−∞

∂u

∂x1
(t, x2) dt

∫ x2

−∞

∂u

∂x2
(x1, s) ds,

integrate with respect to x and use Fubini.)

8.x.12 Prove Sobolev’s inequality ‖u‖Lp(Ω) ≤ cp ‖u‖W 1
q (Ω) for u ∈ W̊ 1

q (Ω),

where 1+ 2
p = 2

q , in two dimensions. How does cp behave as p →∞?
(Hint: write

‖u‖p
Lp(Ω) =

∥∥∥|u|p/2
∥∥∥2

L2(Ω)
≤ C

∥∥∥|u|p/2
∥∥∥2

W 1
1 (Ω)

using exercise 8.x.11. Expand ∇
(
|u|p/2

)
and apply Hölder’s inequal-

ity.)

8.x.13 Prove (8.5.5) under the conditions of Theorem 8.1.11. (Hint: solve
(8.5.1) with f = |u− uh|p−1 sign(u− uh) and follow the subsequent
estimates.)

8.x.14 What value for r should be chosen in the proof of (8.5.2)? (Hint: let
q and r be related by Sobolev’s inequality 4.x.11.)

8.x.15 Prove (8.1.7) for Lagrange, Hermite and Argyris elements in two
and three dimensions on a quasi-uniform family of triangulations
and for tensor-product and serendipity elements on a quasi-uniform
rectangular subdivision. (Hint: see the proof of Theorem 4.4.20 and
use (8.1.4).)

8.x.16 Prove (8.1.9) for all the piecewise-polynomial finite-elements intro-
duced in Chapter 3 on a quasi-uniform subdivision. (Hint: see the
proof of Theorem 4.5.11 and use (8.1.4).)
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8.x.17 Let A = (aij) be a d× d symmetric matrix such that

Ca|ξ|2 ≤
d∑

i,j=1

aijξiξj ≤ M |ξ|2 ∀ξ ∈ IRd

where Ca > 0. Prove that AX = λX for some vector X �= 0 implies
Ca ≤ λ ≤ M . Moreover, show that Ca (resp. M) can be taken to be
the minimum (resp. maximum) of such λ. Finally, show that

d∑
i,j=1

aijξiνj ≤ M |ξ| |ν| ∀ξ, ν ∈ IRd.

8.x.18 Prove Theorem 8.1.11 for the adjoint problem (8.1.2′), with uh de-
fined by a(v, uh) = (f, v) for v ∈ Vh. (Hint: consider the case when

a(u, v) :=
∫

Ω

d∑
i,j=1

aij
∂u

∂xi

∂v

∂xj
+

d∑
i=1

biu
∂v

∂xi
+ b0uv dx

and make appropriate changes to the arguments.)

8.x.19 Suppose Gz
h ∈ Vh is the discrete Green’s function defined by

a(Gz
h, v) = v(z) ∀v ∈ Vh

for some space Vh of piecewise polynomials of degree m in a two-
dimensional domain Ω. Prove that

Gz
h(z) ≤ C| log h|.

(Hint: since Gz
h ∈ Vh, we have Gz

h(z) = a(Gz
h, Gz

h). Apply the dis-
crete Sobolev inequality (4.9.2) to prove that

Gz
h(z) ≤ C| log h|1/2a(Gz

h, Gz
h)1/2.

See also (Bramble 1966).)

8.x.20 Suppose Gz
h ∈ Vh is the discrete Green’s function defined by

a(Gz
h, v) = v(z) ∀v ∈ Vh

for some space Vh of piecewise polynomials of degree m satisfying
Dirichlet boundary conditions on ∂Ω, in a two-dimensional domain
Ω. Suppose also that the distance from z to ∂Ω is O(h). Prove that

Gz
h(z) ≤ C.

(Hint: see exercise 8.x.19. Since Gz
h = 0 on ∂Ω, we have

Gz
h(z) ≤ Ch‖Gz

h‖W 1
∞(Ω).

Use an inverse inequality instead of (4.9.2) to complete the proof.
See also (Draganescu, Dupont & Scott 2002).)



Chapter 9

Adaptive Meshes

In Section 0.8, we demonstrated the possibility of dramatic improvements
in approximation power resulting from adaptive meshes. In current com-
puter simulations, meshes are often adapted to the solution either using
a priori information regarding the problem being solved or a posteriori
after an initial attempt at solution (Babuška et al. 1983 & 1986). The re-
sulting meshes tend to be strongly graded in many important cases, no
longer being simply modeled as quasi-uniform. Here we present some basic
estimates that show that such meshes can be effective in approximating
difficult problems. For further references, see (Eriksson, Estep, Hansbo and
Johnson 1995), (Verfürth 1996), (Ainsworth and Oden 2000), (Becker and
Rannacher 2001), (Babuška and Strouboulis 2001), (Dörfler and Nochetto
2002), (Bangerth and Rannacher 2003), (Neittaanmäki and Repin 2004),
(Han 2005), (Carstensen 2005) and (Carstensen, Hu and Orlando 2007).

First of all, we need to see that the resulting finite element (Galerkin)
method does indeed provide the appropriate approximation on strongly
graded meshes. The approximation theory results of Chapter 4 are suf-
ficiently localized to guarantee good approximation from non-degenerate
meshes, but it must be shown that the Galerkin method, which is based on
global information, will actually provide localized approximation.

Once we know that graded meshes can give local benefit, we turn to the
question of predicting where mesh refinement is needed. Error estimators
provide such a guide. We give a brief introduction to some key ideas in one
simple case, and prove the convergence of an adaptive algorithm following
the ideas in (Mekchay and Nochetto 2005).

Finally, the value of the localized approximation will be lost if the
resulting linear equations are ill-conditioned. We show that under mild
restrictions, this does not happen.

Throughout, we assume Ω is a bounded, polyhedral domain in IRn, n ≥
2 (for the one-dimensional case, see Sect. 0.8). For simplicity we consider
the variational problem of finding u ∈ V = H̊1(Ω) such that

(9.0.1) a(u, v) =
∫

Ω

fv dx ∀ v ∈ V,
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where f ∈ L2(Ω) and

(9.0.2) a(v, w) =
∫

Ω

α(x)∇v · ∇w dx

for a function α(x) in L∞(Ω) such that α1 ≥ α(x) ≥ α0 > 0 for all x ∈ Ω.
However, the coefficient α need not be smooth.

9.1 A priori Estimates

We restrict our attention to a non-degenerate family (see Definition 4.4.13)
of simplicial meshes, T h. Suppose h(x) is a function that measures the
local mesh size near the point x. In particular, we will assume that h is a
piecewise linear function satisfying

(9.1.1) h(x) = max
K∈star(x)

diam (K)

for each vertex x, where star(x) denotes the union of simplices, K ∈ T h,
meeting at x. Note that for all simplices, K ∈ T h,

(9.1.2) h(x) ≥ diam (K) ∀x ∈ K,

since this holds at each vertex of K and h is linear between them. Further-
more,

(9.1.3) h|K ≤ Cdiam (K)

because a non-degenerate mesh is locally quasi-uniform, in two or higher
dimensions (exercise 9.x.1). Correspondingly, we assume that α has com-
parable values on each element, namely

(9.1.4) max {α(x) : x ∈ K} ≤ C min {α(x) : x ∈ K} ∀K ∈ T h.

Note that (9.1.4) does not preclude large jumps in α, it just implies that
the mesh has been chosen to match such jumps. For example, it could be
possible to have α piecewise constant and the constant C = 1 in (9.1.4),
independent of the size of the different constant values of α.

We begin by deriving a basic estimate analogous to Theorem 5.7.6.
Suppose that Vh is a space of piecewise polynomial functions of degree less
than k and let Ih be a corresponding interpolant. From Theorem 4.4.4 and
(9.1.1), it follows that∥∥u− Ihu

∥∥2

H1(K)
≤ C

∑
|β|=k

∫
K

h(x)2k−2
∣∣Dβu

∣∣2 dx ∀K ∈ T h.

Define a natural “energy” (semi-)norm by
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(9.1.5) ‖v‖E :=
(∫

Ω

α(x)|∇v(x)|2 dx

)1/2

.

From (2.5.10) and (9.1.4), it follows that

(9.1.6) ‖u− uh‖E ≤ C

⎛⎝∑
|β|=k

∫
Ω

α(x)h(x)2k−2
∣∣Dβu

∣∣2 dx

⎞⎠1/2

.

This result says that the energy error is always reduced by adapting the
mesh to the solution.

We summarize the above result in the following theorem.

(9.1.7) Theorem. For any non-degenerate mesh, we have

‖u− uh‖E ≤ C
∥∥√αhk−1 |∇ku|

∥∥
L2(Ω)

where |∇ku| (x) :=
(∑

|β|=k

∣∣Dβu(x)
∣∣2)1/2

and C is independent of α and
h.

We next derive an L2 estimate. Choosing w as was done in the proof
of Theorem 5.4.8, we can develop a standard duality argument. The key
new ingredient is to multiply and divide by h, e.g.,

a(e, w − Ihw) =
∫

Ω

αh∇(u− uh)∇(w − Ihw)/h dx

≤
(∫

Ω

α2−λ (h∇(u− uh))2 dx

)1/2 (∫
Ω

αλ
∣∣∇(w − Ihw)

∣∣2 h−2 dx

)1/2

where λ is an arbitrary parameter satisfying 0 ≤ λ ≤ 2. From the results
of Sect. 4.4 we have∫

Ω

αλ
∣∣∇(w − Ihw)(x)

∣∣2 h−2 dx ≤ C

∫
Ω

αλ|∇2w|2 dx.

Assuming (5.4.7) holds, we can bound the second derivatives of w in terms
of u−uh. The choice of λ is open to us. However, full use of this parameter
depends on available estimates such as (5.4.7). For example, we can prove
the following result.

(9.1.8) Theorem. Suppose that (5.4.7) holds for the boundary value problem
with variational form (9.0.2). For any non-degenerate mesh, we have

(9.1.9) ‖u− uh‖L2(Ω) ≤ C

(∫
Ω

α(x)2h(x)2 |∇(u− uh)(x)|2 dx

)1/2

where C depends on α.
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This says that the L2 error can be estimated in terms of a weighted
integral of the squared derivative error, where the weight is given by the
mesh function (9.1.1). It is also possible to estimate “weighted energy”
norms such as the right-hand side of (9.1.9). Since the estimates are similar
to Sect. 0.9, and Chapter 8, we only summarize a typical result.

(9.1.10) Theorem. There is a constant κ > 0 such that if the mesh size
variation, ‖ |∇h| ‖L∞(Ω) < κ, then

‖u− uh‖L2(Ω) ≤ C
∥∥√αh2|∇2u|

∥∥
L2(Ω)

where C is independent of the mesh.

Recall that the condition that the derivative of h be small does not
preclude strong mesh gradings, e.g., a geometrically graded mesh, as de-
picted in Fig. 9.2 below. However, automatic mesh generators may violate
this condition.

9.2 Error Estimators

One successful error estimator is based on the residual. We will consider
such an estimator in a very simple case here. We assume, for simplicity,
that our variational problem is of the form (9.0.2) with α piecewise smooth,
but not necessarily continuous. We will consider the Dirichlet problem on
a polyhedral domain Ω in n dimensions, so that V = H̊1(Ω). Moreover,
we assume that the right-hand side f of the variational problem is also a
piecewise smooth function.

Let Vh be the space of piecewise polynomial functions of degree less
than or equal to k on a mesh T h, and assume that the discontinuities of α
and f fall on mesh faces (edges in two dimensions) in T h. That is, both α
and f are smooth on each T ∈ T h. However, we will otherwise only assume
that T h is non-degenerate, since we will want to allow significant local mesh
refinement.

(9.2.1) Lemma. Let uh ∈ Vh be the standard Galerkin approximation, and
let eh := u− uh. Then eh satisfies the residual equation

(9.2.2) a(eh, v) = R(v) ∀v ∈ V

where R ∈ V ′ is the residual which can be computed by

(9.2.3)

R(v) :=
∑
T

∫
T

(f +∇ · (α · ∇uh))v dx

+
∑

e

∫
e

[αne · ∇uh]ne
v ds ∀v ∈ V
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where ne denotes a unit normal to e.

One way to interpret this lemma is to say that R can be defined equiv-
alently by either (9.2.2) or (9.2.3), with the other being a consequence of
the definition. That is, (9.2.2) and (9.2.3) are equivalent. Although (9.2.3)
can be viewed as just a re-writing of (9.2.2), it gives an expression of the
error in terms of a right-hand side R ∈ V ′.

The key point is that R has two parts. One is the absolutely continuous
part RA which is an L1(Ω) function defined on each element T by

(9.2.4) RA|T := (f +∇ · (α∇uh)) |T .

The other term in the definition of R is the “jump” term

(9.2.5) RJ(v) :=
∑

e

∫
e

[αne · ∇uh]ne
v ds ∀v ∈ V

where [φ]n denotes the jump in φ (across the face in question). More pre-
cisely,

[φ]n(x) := lim
ε→0

φ(x + εn)− φ(x− εn)

so that the expression in (9.2.5) is independent of the choice of normal n
on each face.

Proof. The relations (9.2.2)–(9.2.3) are derived simply by integrating by
parts on each T , and the resulting boundary terms are collected in the
term RJ . If A is the differential operator formally associated with the form
(9.0.2), namely, Av := −∇·(α∇v), then we see that RA = A(u−uh) = Aeh

on each T . Note that we used the fact that ∇uh is a polynomial on each T ,
as well as our assumptions about α and f . �	

Inserting v = eh in (9.2.2), we see that

(9.2.6) α0 |eh|2H1(Ω) ≤ |R(eh)| ≤ ‖R‖H−1(Ω) ‖eh‖H1(Ω) .

Therefore

(9.2.7) ‖eh‖H1(Ω) ≤ C‖R‖H−1(Ω).

Thus we find that the error may be estimated simply by computing the
H−1(Ω) norm of the residual, and we note that the residual is something
that involves only the data of the problem (f and α) and uh. Although
all of these are explicitly available, there are two complications. First of
all, it is difficult to compute a negative norm explicitly. Instead, we will
estimate it. Moreover, since R has two radically different parts, one an
integrable function, the other consisting of “interface Delta functions,” it
is challenging to estimate the combination of the two terms.
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The residual has special properties. In particular, the fundamental or-
thogonality implies that

(9.2.8) R(v) := a(eh, v) = 0 ∀v ∈ Vh.

Suppose we have an interpolant Ih as defined in Sect. 4.8 that satisfies

(9.2.9)
∥∥v − Ihv

∥∥
L2(T )

≤ γ0hT |v|H1(T̂ )

for all T ∈ T h and

(9.2.10)
∥∥v − Ihv

∥∥
L2(e)

≤ γ0h
1/2
e |v|

H1(T̂e)

for some constant γ0 and for all faces e in T h, where T̂ (resp. T̂e) denotes
the neighborhood of elements touching T (resp. Te). For each interior face
e, let Te denote the union of the two elements sharing that face. From now
on, we will drop the subscript “e” when referring to a normal n to e. Then

|R(v)| =|R(v − Ihv)|

=
∣∣ ∫

Ω

RA(v − Ihv) dx + RJ(v − Ihv)|

=
∣∣∑

T

∫
T

RA(v − Ihv) dx

+
∑

e

∫
e

[αn · ∇uh]n(v − Ihv) ds
∣∣

≤
∑
T

‖RA‖L2(T )

∥∥v − Ihv
∥∥

L2(T )

+
∑

e

‖ [αn · ∇uh]n ‖L2(e)

∥∥v − Ihv
∥∥

L2(e)

≤
∑
T

‖RA‖L2(T )γ0hT |v|H1(T̂ )
(see 9.2.10)

+
∑

e

‖ [αn · ∇uh]n ‖L2(e)γ0h
1/2
e |v|

H1(T̂e)

≤γ
(∑

T

‖RA‖2L2(T )h
2
T

+
∑

e

‖ [αn · ∇uh]n ‖2L2(e)he

)1/2

|v|H1(Ω)

where he (resp. hT ) is a measure of the size of e (resp. T ). For this reason,
we define the local error indicator Ee by

(9.2.11)
Ee(uh)2 :=

∑
T⊂Te

h2
T ‖f +∇ · (α∇uh)‖2L2(T )

+ he‖ [αn · ∇uh]n ‖2L2(e),
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where a natural choice for hK (with K = T or e) is the measure of K raised
to the power 1/dim(K). With this definition the previous inequalities can
be summarized as

(9.2.12) |R(v)| ≤ γ
(∑

e

Ee(uh)2
)1/2

|v|H1(Ω) ,

which in view of (9.2.6) implies that

(9.2.13) |eh|H1(Ω) ≤
γ

α0

(∑
e

Ee(uh)2
)1/2

where γ is a constant only related to interpolation error.
Note that we have chosen to define the local error estimator based on

an “edge” (or “face”) point of view. This turns out to be more convenient
in describing lower bound estimates (see Sect. 9.3). However, one could also
take an “element” point of view, viz.,

(9.2.14) ET (uh)2 := h2
T ‖RA‖2L2(T ) +

∑
e⊂∂T

he‖ [αn · ∇uh]n ‖2L2(e)

which would provide similar results.
Returning to (9.2.13), we take γ = c0γ0 where c0 depends only on the

constant in (9.1.3) and the maximum number of neighbors of an element
K in T h. Thus c0 depends only on the non-degeneracy of the mesh T h.

Summarizing these arguments, we have proved the following.

(9.2.15) Theorem. Suppose that the coefficient α in (9.0.2) and the right-
hand side f are piecewise smooth on the non-degenerate mesh family T h.
Under the assumptions (9.2.9) and (9.2.10), the upper bound (9.2.13) holds,
where γ depends only on the non-degeneracy of the mesh T h and α0 is a
lower bound for α on Ω.

9.3 Local Error Estimates

In the previous section, we established an estimate for the global error
|eh|H1(Ω) in terms of locally defined error estimators (9.2.11). It is reason-
able to ask about the correlation between the local estimator (9.2.11) and
the local error. It is possible to establish an inequality in one direction un-
der fairly general conditions. First of all, note that for any T ∈ T h, (9.2.2)
implies

(9.3.1) a(eh, v) = (RA, v) ∀v ∈ H̊1(T ).

Therefore
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T

RAv dx

∣∣∣∣ ≤α1|eh|H1(T )|v|H1(T )

and thus

α1|eh|H1(T ) ≥ sup
0�=v∈H̊1(T )

∣∣∫
T

vRA dx
∣∣

|v|H1(T )

.

We need some way to control the information content of α and f in order
to derive a rigorous estimate. For this reason, we assume that α and f
are piecewise polynomials (not necessarily continuous) of degree at most
r − k + 2 and r, respectively. Thus RA is a piecewise polynomial of degree
at most r. It can be shown by a homogeneity argument (see exercise 9.x.5
for a proof) that for any polynomial P of degree r

(9.3.2) sup
v∈H̊1(T )

∫
T

vP dx

|v|H1(T )

≥ crhT ‖P‖L2(T )

where cr depends only on the degree r and the chunkiness of the mesh.
Applying this with P = RA proves

(9.3.3) α1|eh|H1(T ) ≥ c1hT

(∫
T

R 2
A dx

)1/2

.

We can obtain a similar bound involving the jump terms. Again, make
the previous assumptions that imply RA is a piecewise polynomial of degree
at most r. Note that for any face e in T h, (9.2.2) implies

a(eh, v) =
∫

e

[αn · ∇uh]nv ds ∀v ∈ Ve

where Te denotes the union of the two elements, T+
e and T−

e , sharing e, and

Ve =
{

v ∈ H̊1(Te) :
∫

T+
e

vP dx =
∫

T−
e

vP dx = 0 ∀P ∈ Pr

}
.

Then ∣∣∣∣∫
e

[αn · ∇uh]nv ds

∣∣∣∣ ≤ α1|eh|H1(Te)|v|H1(Te) ∀v ∈ Ve

and thus

α1|eh|H1(Te) ≥ sup
0�=v∈Ve

∣∣∫
e
[αn · ∇uh]nv ds

∣∣
|v|H1(Te)

.

Since [αn · ∇uh]n is a polynomial of degree at most r + 1 on e, it can be
shown (cf. exercise 9.x.7) that

(9.3.4) sup
0�=v∈H̊1(Te)

∣∣∫
e
[αn · ∇uh]nv ds

∣∣
|v|H1(Te)

≥ c′rh
1/2
e ‖ [αn · ∇uh]n ‖L2(e)
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where c′r > 0 depends only on r and the non-degeneracy constant for T h.
Combining these estimates proves that

(9.3.5) α1|eh|H1(Te) ≥ c Ee(uh)

where c > 0 depends only on the non-degeneracy constant for T h.
Collecting these arguments, we have proved the following.

(9.3.6) Theorem. Suppose that α and f are piecewise polynomials (not nec-
essarily continuous) of degree at most r − k + 2 and r, respectively, on a
non-degenerate mesh T h. Then the lower bound (9.3.5) holds for all faces e
in T h, where c depends only on r and the non-degeneracy of the mesh T h

and where α1 is an upper bound for α on Ω.

One corollary of this theorem is the reverse inequality to (9.2.13),
namely, a global lower bound. Squaring the lower bound (9.3.5) and sum-
ming over all elements yields the following.

(9.3.7) Theorem. Suppose that α and f are as in Theorem 9.3.6. Then

α1|eh|H1(Ω) ≥ c
(∑

e∈T h

Ee(uh)2
)1/2

where c > 0 and α1 are as in Theorem 9.3.6.

The reverse inequality to (9.3.5), i.e., a local upper bound is not true
in general. However, the message of the local lower bound (9.3.5) is that
one should refine the mesh wherever the local error indicator Ee(uh) is
big. Unfortunately, we cannot be sure that where it is small the error will
necessarily be small. Distant effects may pollute the error and make it large
even if the error indicator Ee(uh) is small nearby.

9.4 Estimators for Linear Forms and Other Norms

Suppose that, instead of wanting to estimate the energy norm of the error,
we want to estimate just some (continuous) linear functional L of the error.
For example, this might be some integral of the solution that we are partic-
ularly interested in. In this case, we want to know that L(uh) approximates
L(u) well, and we do not particularly care about anything else. This means
that we just want to know that L(eh) is small.

To estimate L(eh), we introduce a dual function φL ∈ V by solving

(9.4.1) a(v, φL) = L(v) ∀v ∈ V.

Note that the norm of φL can be estimated from L(φL):
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(9.4.2) a(φL, φL) = L(φL),

and the (positive) number L(φL) depends only on L. Then

L(eh) = a(eh, φL) = R(φL)

and the estimate (9.2.12) implies

|L(eh)| ≤ γ
(∑

e

Ee(uh)2
)1/2

|φL|H1(Ω) .

In view of (9.4.2) we have proved the following.

(9.4.3) Theorem. Suppose that L is a continuous linear functional on V and
that φL is defined by (9.4.1). Then

|L(eh)| ≤ C
(∑

e

Ee(uh)2
)1/2√

L(φL)

where C is a constant related only to interpolation error and the coefficient
α.

The local, lower-bound error estimate (9.3.5) also provides an esti-
mate in other norms. For example, under the conditions of Theorem 9.3.6,
Hölder’s inequality implies that

h−n/2
e Ee(uh) ≤ Ch−n/2

e |eh|H1(Te) ≤ C|eh|W 1
∞(Te).

Note that h
−n/2
e Ee(uh) is equivalent (exercise 9.x.12) to

(9.4.4) E∞e (uh) := max
T⊂Te

hT ‖f +∇ · (α∇uh)‖L∞(T ) + ‖ [αn · ∇uh] ‖L∞(e)

and hence we have proved the following.

(9.4.5) Theorem. Under the conditions of Theorem 9.3.6, the estimator
E∞e (uh) in (9.4.4) satisfies

E∞
e (uh) ≤ C|eh|W 1

∞(Te) ∀e ∈ T h.

To get an upper bound for the error, we modify the derivation of
(9.2.11). Let g be the smoothed derivative Green’s function (for a given
direction ν) introduced following (8.2.2). Then
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|a(eh, g)| =|R(g)|
=|R(g − Ihg)|

=
∣∣∑

T

∫
T

RA(g − Ihg) dx

+
∑

e

∫
e

[αn · ∇uh](g − Ihg) ds
∣∣

≤
∑
T

‖RA‖L∞(T )

∥∥g − Ihg
∥∥

L1(T )

+
∑

e

‖ [αn · ∇uh] ‖L∞(e)

∥∥g − Ihg
∥∥

L1(e)

≤C
∑

e

E∞e (uh)he

∫
Te

|∇2g(x)| dx

and therefore we have (recall (8.2.3))

|(ν · ∇u, δz)− ν · ∇uh(z)| ≤ C
∑

e

E∞e (uh)he

∫
Te

|∇2g(x)| dx.

Let us define a piecewise constant function E on each T ∈ T h by

(9.4.6) E(x) = max
e⊂T

heE∞e (uh) ∀x ∈ T

for all T ∈ T h. Then the above estimates imply that

|(ν · ∇u, δz)− ν · ∇uh(z)| ≤ C

∫
Ω

E(x)|∇2g(x)| dx.

Applying (8.3.11) we find(∫
Ω

|∇2g(x)|E(x) dx

)2

≤
∫

Ω

σn+λ
z |∇2g(x)|2 dx

∫
Ω

σ−n−λ
z E(x)2 dx

≤ C

(∫
Ω

σn+λ
z |∇δz(x)|2 dx

+h−2
z

∫
Ω

σn+λ
z |δz(x)|2 dx

)∫
Ω

σ−n−λ
z E(x)2 dx.

Recalling the definition of σz in Sect. 8.1 and the definition of δz in Sect. 8.2,
we see (exercise 9.x.15) that the following holds.

(9.4.7) Theorem. Under the assumptions of Lemma 8.3.11, we find

|(ν · ∇u, δz)− ν · ∇uh(z)| ≤ C

(
hλ−2

z

∫
Ω

σ−n−λ
z E(x)2 dx

)1/2

.
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Note that we estimate how well ν · ∇uh(z) approximates an explicit
average (using the kernel δz) of ν ·∇u(z). If u is smooth enough, (ν ·∇u, δz)
will be very close to ν · ∇u(z), but in general we have no way of estimating
this. Since uh is defined on a mesh of finite size, we can only expect ν ·
∇uh(z) to approximate some appropriate average of ν · ∇u(z) on the scale
of the mesh. By comparing with this particular average, which is naturally
associated with uh, we avoid introducing further approximation conditions
on u, such as (9.4.8) which appears subsequently in the context of L1 error
estimators.

We can interpret the estimate in the theorem in different ways. In
particular, if E∞T (uh) = ε for all T ∈ T h and h(x) = h is constant, then
E(x) = εh for all x. In this case, the above expression simplifies to

|(ν · ∇u, δz)− ν · ∇uh(z)| ≤ Cε

as expected. Given the simple nature of E and σz we can re-write this as
the following

|(ν · ∇u, δz)− ν · ∇uh(z)|

≤ C
(∑

T

hλ−2
z h2+n

T E∞T (uh)2(hz + dist(z, T ))−(n+λ)
)1/2

≤ C

(∑
T

(
hT

hz

)2+n

E∞T (uh)2
(

1 +
dist(z, T )

hz

)−(n+λ)
)1/2

where E∞T (uh) is defined analogous to (9.2.14).
See (Nochetto 1995) for results with less restrictive assumptions than

those of (8.3.11). In (Liao and Nochetto 2003), results with weighted error
estimators suitable for non-convex domains are given.

Estimates for the error in W 1
1 are a bit more complex. Under the

conditions of Theorem 9.3.6 we find, using (4.5.4), that

h
n/2
T ET (uh) ≤Ch

n/2
T |eh|H1(T̂ )

≤Ch
n/2
T

(∣∣u− Ihu
∣∣
H1(T̂ )

+
∣∣Ihu− uh

∣∣
H1(T̂ )

)
≤C

(
h

n/2
T

∣∣u− Ihu
∣∣
H1(T̂ )

+
∣∣Ihu− uh

∣∣
W 1

1 (T̂ )

)
We make a saturation assumption that

(9.4.8)
∣∣u− Ihu

∣∣
H1(T̂ )

≤ Ch
−n/2
T

∣∣u− Ihu
∣∣
W 1

1 (T̂ )
.

Then we have

h
n/2
T ET (uh) ≤C

(∣∣u− Ihu
∣∣
W 1

1 (T̂ )
+
∣∣Ihu− uh

∣∣
W 1

1 (T̂ )

)
≤C

(∣∣u− Ihu
∣∣
W 1

1 (T̂ )
+ |eh|W 1

1 (T̂ )

)
.
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Observe that we can write u − Ihu = eh − Iheh. Now suppose that the
interpolant Ih is bounded in W 1

1 (see Sect. 4.8), namely, that

(9.4.9)
∥∥Ihv

∥∥
W 1

1 (T̂ )
≤ C‖v‖W 1

1 (S
T̂

).

Then (9.4.9) implies that

(9.4.10) h
n/2
T ET (uh) ≤ C‖eh‖W 1

1 (S
T̂

).

Note that h
n/2
T ET (uh) is equivalent (exercise 9.x.13) to

(9.4.11) E1
T (uh) := hT ‖f +∇ · (α∇uh)‖L1(T ) + max

e⊂∂T
‖ [αn · ∇uh] ‖L1(e)

and hence we have proved the following.

(9.4.12) Theorem. Under the assumptions (9.4.8) and (9.4.9),

E1
T (uh) ≤ C|eh|W 1

1 (S
T̂

).

9.5 A Convergent Adaptive Algorithm

We can use the error estimators in Section 9.2 to define an adaptive al-
gorithm (Mekchay and Nochetto 2005) for the variational problem (9.0.1)
where a(·, ·) is defined by (9.0.2) and α(x) is assumed to be Lipschitz contin-
uous on Ω. The algorithm will generate a non-degenerate sequence {T j}j≥1

of nested triangulations of Ω and the corresponding Galerkin approxima-
tions uj to u from the finite element space Vj consisting of piecewise poly-
nomial functions of degree less than or equal to k. The key ingredients for
proving the convergence of the algorithm are certain relations between the
finite element solutions on two consecutive levels of mesh refinement.

Let T j and T j+1 be two consecutive triangulations in {T j}j≥1 so that
T j+1 is a refinement of T j . We assume that there exists a positive constant
0 < γ1 < 1 such that

(9.5.1) γ1hT ≤ hT ′ if T ∈ T j , T ′ ∈ T j+1 and T ′ ⊂ T.

Instead of Theorem 9.3.7, which requires α and f to be piecewise poly-
nomial functions, we will use local error estimates involving the oscillation
of RA,j , where we have included the subscripts j to signify the error estima-
tor corresponding to uj . Let Qj be the L2 orthogonal projection onto the
space of (discontinuous) piecewise polynomials of degree k− 1 with respect
to the triangulation T j . We define
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(9.5.2) oscj(T ) = hT ‖RA,j −QjRA,j‖L2(T ) ∀T ∈ T j ,

where hT = diam T , and

oscj(Ω) =
( ∑

T∈T j

oscj(T )2
)1/2

.

The energy semi-norm on an element T is defined by

|||v|||T =
(∫

T

α|∇v|2dx
)1/2

so that ‖v‖2E =
∑

T∈T |||v|||2T .

(9.5.3) Lemma. Suppose an element T ∈ T j contains a node of T j+1 in its
interior. Then we have

(9.5.4) h2
T ‖RA,j‖2L2(T ) ≤ C

(
|||uj+1 − uj |||2T + oscj(T )2

)
,

where the positive constant C depends only on the shape regularity of
{T j}j≥1, the upper bound α1 of α(x), and the constant γ1 in (9.5.1).

Proof. Let p be a node of T j+1 interior to T and ζ be a piecewise linear
function with respect to T j+1 that equals 1 at p and 0 at all the other nodes.
Then v = ζQjRA,j belongs to Vj+1 and vanishes identically outside T . In
particular, v vanishes on all the faces of T j . It follows from (9.2.2)–(9.2.4)
and exercise 9.x.18 that

‖QjRA,j‖2L2(T ) ≤ C

∫
Ω

ζ(QjRA,j)2 dx

= C
(∫

Ω

(QjRA,j −RA,j)ζQjRA,j dx +
∫

Ω

RA,jv dx
)

(9.5.5)

≤ C
(
‖RA,j −QjRA,j‖L2(T )‖QjRA,j‖L2(T ) + a(u− uj , v)

)
.

Here and below C is a generic positive constant depending on the shape
regularity of {T j}j≥1 and the constants γ1 and α1. We have, in view of
(9.5.1) and the inverse estimate (4.5.4),

a(u− uj , v) = a(uj+1 − uj , v)
≤ |||uj+1 − uj |||T |||v|||T
≤ √α1|||uj+1 − uj |||T |v|H1(T )(9.5.6)

≤ Ch−1
T |||uj+1 − uj |||T ‖v‖L2(T )

≤ Ch−1
T |||uj+1 − uj |||T ‖QjRA,j‖L2(T ).

Combining (9.5.5) and (9.5.6), we find

‖QjRA,j‖L2(T ) ≤ C
(
h−1

T |||uj+1 − uj |||T + ‖RA,j −QjRA,j‖L2(T )

)
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and hence, in view of (9.5.2),

h2
T ‖QjRA,j‖2L2(T ) ≤ C

(
|||uj+1 − uj |||2T + oscj(T )2

)
which implies (9.5.4). �	

(9.5.7) Lemma. Let e be an interior face of T j and Te be the set of the two
elements in T j sharing the common face e. Suppose e and the triangles in
Te contain interior nodes belonging to T j+1. Then we have

(9.5.8) he‖Jj‖2L2(e) ≤ C
∑

T∈Te

(
|||uj+1 − uj |||2T + oscj(T )2

)
,

where

Jj

∣∣
e

= [αne · ∇uj ]ne

and the positive constant C depends only on the shape regularity of {T j}j≥1,
the upper and lower bounds α1 and α0 of α(x), and the constant γ1 in
(9.5.1).

Proof. Let p be a node of T j+1 interior to e and ζ be a piecewise linear
function with respect to T j+1 that equals 1 at p and 0 at all the other
nodes. Let w be the polynomial of degree less than or equal to k − 1 that
equals to [n · ∇uj ]n on e and constant in the direction normal to e. Then
v = ζw belongs to Vj+1 and vanishes identically outside the two triangles
in Te. In particular, v vanishes at all faces of T j except e. Moreover, we
have

(9.5.9) ‖v‖2L2(T ) ≤ Che‖v‖2L2(e) ≤ Che‖Jj‖2L2(e) for T ∈ Te.

Here and below C stands for a generic positive constant that depends only
on α1, α0, γ1 and the shape regularity of {T j}j≥1.

It follows from (9.2.2)–(9.2.4) and exercise 9.x.18 that

‖Jj‖2L2(e) ≤ α1‖w‖2L2(e)

≤ C

∫
e

ζ|w|2 ds(9.5.10)

≤ Cα−1
0

∫
e

[αn · ∇uj ]nv ds

= C
(
a(u− uj , v)−

∑
T∈Te

∫
T

RA,jv dx
)
.

The right-hand side of (9.5.10) can be estimated as follows:
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a(u− uj , v) = a(uj+1 − uj , v)

≤
∑

T∈Te

|||uj+1 − uj |||T |||v|||T

≤ C
√

α1

∑
T∈Te

|||uj+1 − uj |||T |v|H1(T )

≤ Ch−1
e

∑
T∈Te

|||uj+1 − uj |||T ‖v‖L2(T ) (by 4.5.4)

≤ Ch−1/2
e

∑
T∈Te

|||uj+1 − uj |||T ‖Jj‖L2(e), (by 9.5.9)

∑
T∈Te

∫
T

RA,jv dx ≤
∑

T∈Te

‖RA,j‖L2(T )‖v‖L2(T )

≤ Ch−1/2
e ‖Jj‖L2(e)

∑
T∈Te

(
|||uj+1 − uj |||T + oscj(T )

)
.

(9.5.4 and 9.5.9)

These estimates together with (9.5.10) imply (9.5.8). �	

Combining Lemma 9.5.3 and Lemma 9.5.7, we obtain the following
corollary on the error estimator Ee defined in 9.2.11.

(9.5.11) Corollary. Under the assumptions of Lemma 9.5.8, we have

Ee(uj)2 ≤ C
∑

T∈Te

(
|||uj+1 − uj |||2T + oscj(T )2

)
,

where the positive constant C depends only on the shape regularity of
{T j}j≥1, the upper and lower bounds α1 and α0 of α(x), and the constant
γ1 in (9.5.1).

Note that we can use Galerkin orthogonality to write

(9.5.12) ‖uj+1 − uj‖2E = ‖u− uj‖2E − ‖u− uj+1‖2E .

Therefore ‖uj+1 − uj‖E measures the reduction of the global energy error.
Since oscj(T ) is small for sufficiently smooth data, Corollary 9.5.11 shows
that the error estimator Ee(uj) provides a local estimate for the reduction of
energy error when T j is refined. Furthermore, the following example from
(Morin, Nochetto and Siebert 2000) shows that the conditions requiring new
interior nodes in Lemma 9.5.3 and Lemma 9.5.7 are necessary for reducing
the energy error through mesh refinement.
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(9.5.13) Example. Consider the variational problem (9.0.1) on the unit
square Ω = (0, 1) × (0, 1) with α = 1 = f . Let T 1 be the triangulation
of Ω obtained by drawing the two diagonals (cf. Fig. 9.1), and the triangu-
lation T 2 be obtained from T 1 by two newest-vertex bisections (cf. Fig. 9.1),
using (1/2, 1/2) as the newest vertex of T 1. Then u1, the conforming piece-
wise linear finite element solution associated with T 1, is identical with u2,
the conforming piecewise linear finite element solution associated with T 2.
The proof, which involves simple calculations, is left as an exercise (cf. ex-
ercise 9.x.19). Note that osc1(Ω) = 0 = ‖u2 − u1‖E in this example, which
shows that Lemma 9.5.3 and Lemma 9.5.7 do not hold if the mesh is not
properly refined.

Fig. 9.1. Refinement without new nodes interior to the elements in the coarse
mesh

Next we consider the relation between oscj and oscj+1.

(9.5.14) Lemma. Let T ∈ T j be subdivided into elements in T j+1 so that

(9.5.15) hT ′ ≤ γ2hT if T ′ ∈ T j+1 and T ′ ⊂ T,

where the positive constant γ2 is less than or equal to 1. Then we have, for
any positive number δ less than 1,∑

T ′∈TT,j+1

oscj+1(T ′)2 ≤ (1 + δ)γ2
2 oscj(T )2 + Cδ−1|||uj+1 − uj |||2T ,

where TT,j+1 = {T ′ ∈ T j+1 : T ′ ⊂ T} is the collection of elements in
T j+1 that refine T and the positive constant C depends only on α0, α1,
‖∇α‖L∞(Ω), and the shape regularity of {T j}j≥1.

Proof. First we note that, on T ′ ∈ TT,j+1,

RA,j+1 = f +∇ · (α∇uj+1)

= f +∇ · (α∇uj) +∇ ·
(
α∇(uj+1 − uj)

)
= RA,j +∇ ·

(
α∇(uj+1 − uj)

)
and hence,

oscj+1(T ′)2 = h2
T ′‖RA,j+1 −Qj+1RA,j+1‖2L2(T ′)

≤ (1 + δ)h2
T ′‖RA,j −Qj+1RA,j‖2L2(T ′)

+ (1 + δ−1)h2
T ′‖(Id−Qj+1)∇ ·

(
α∇(uj+1 − uj)

)
‖2L2(T ′)

≤ (1 + δ)h2
T ′‖RA,j −QjRA,j‖2L2(T ′)

+ (1 + δ−1)h2
T ′‖∇ ·

(
α∇(uj+1 − uj)

)
‖2L2(T ′).
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It follows that∑
T ′∈TT,j+1

oscj+1(T ′)2 ≤ (1 + δ)γ2
2h2

T

∑
T ′∈TT,j+1

‖RA,j −QjRA,j‖2L2(T ′)

+ Cδ−1h2
T

(
‖∇α‖2L∞(Ω)|uj+1 − uj |2H1(T )

+ α2
1|∆(uj+1 − uj)|2L2(T )

)
≤ (1 + δ)γ2

2oscj(T )2 + Cδ−1|uj+1 − uj |2H1(T ) (by 4.5.4)

≤ (1 + δ)γ2
2oscj(T )2 + Cα−1

0 δ−1|||uj+1 − uj |||2T ,

where the constant Cα−1
0 depends only on ‖∇α‖L∞(Ω), α1, α0 and the

shape regularity of {T j}j≥1. �	

Let T 1 be a given initial triangulation of Ω, and 0 < θ1, θ2 < 1. The
adaptive algorithm, which consists of loops of the form

SOLVE −→ ESTIMATE −→ MARK −→ REFINE,

is defined as follows.
For j = 1, 2, . . . until convergence

• Compute uj ∈ Vj such that

a(uj , v) =
∫

Ω

fv dx ∀ v ∈ Vj .

• Compute Ee(uj) for all interior faces e of T j and oscj(T ) for all
elements T ∈ T j .

• Let Fj be the set of interior faces of T j . Choose a subset F̂j of Fj

so that

(9.5.16) θ2
1

∑
e∈Fj

Ee(uj)2 ≤
∑

e∈F̂j

Ee(uj)2,

and choose a subset T̂ j of T j so that

(9.5.17) θ2
2 oscj(Ω)2 ≤

∑
T∈T̂ j

oscj(T )2.

• Refine T j to obtain T j+1 so that (i) the non-degeneracy of the
triangulations is maintained, (ii) each face in F̂j contains a node
of T j+1 in its interior, (iii) if e ∈ F̂ j is a face of T ∈ T j , then
T contains a node of T j+1 in its interior and the refinement of T
satisfies the condition (9.5.1), (iv) the refinement of all T ∈ T̂ j

satisfy the condition (9.5.15) with γ2 < 1.
Next j
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The following theorem (Mekchay and Nochetto 2005) shows that uj

converges to u in the energy norm.

(9.5.18) Theorem. Let {uj}j≥1 be the sequence of finite element solutions
generated by the adaptive algorithm. There exist positive constants θ and η
so that 0 < θ < 1 and

(9.5.19) ‖u− uj+1‖2E + η oscj+1(Ω)2 ≤ θ
(
‖u− uj‖2E + η oscj(Ω)2

)
.

The numbers θ and γ depend only on α(x), the shape regularity of {T j}j≥1,
the constants γ1 and γ2 in (9.5.1) and (9.5.15), and the constants θ1 and
θ2 in (9.5.16) and (9.5.17).

Proof. We will use C�, 1 ≤ � ≤ 4, to denote positive constants that are
greater than 1 and depend only on α(x), γ1, γ2 and the shape regularity of
{T j}j≥1.

It follows from (9.2.13), (9.5.16) and Corollary 9.5.11 that

θ2
1‖u− uj‖2E ≤ C1θ

2
1

∑
e∈Fj

Ee(uj)2

≤ C1

∑
e∈F̂j

Ee(uj)2(9.5.20)

≤ C1C2

(
‖uj+1 − uj‖2E + oscj(Ω)2

)
,

which implies, in view of (9.5.12),

(9.5.21) ‖u− uj+1‖2E ≤
(
1− θ2

1

C1C2

)
‖u− uj‖2E + oscj(Ω)2.

From Lemma 9.5.14 we obtain

oscj+1(Ω)2 =
∑

T∈T j

∑
T ′∈TT,j+1

oscj+1(T ′)2

≤
∑

T∈T̂ j

∑
T ′∈TT,j+1

oscj+1(T ′)2 +
∑

T∈T j\T̂ j

∑
T ′∈TT,j+1

oscj+1(T ′)2(9.5.22)

≤ (1 + δ)
(
γ2
2

∑
T∈T̂ j

oscj(T )2 +
∑

T∈T j\T̂ j

oscj(T )2
)

+ C3δ
−1‖uj+1 − uj‖2E ,

where γ2 < 1. Furthermore, it follows from (9.5.17) that

γ2
2

∑
T∈T̂ j

oscj(T )2 +
∑

T∈T j\T̂ j

oscj(T )2 = oscj(Ω)2 − (1− γ2
2)

∑
T∈T̂ j

oscj(T )2

≤
(
1− (1− γ2

2)θ2
2

)
oscj(Ω)2,
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which together with (9.5.12) and (9.5.22) implies that

(9.5.23) oscj+1(Ω)2 ≤ ρ oscj(Ω)2 + C4

(
‖u− uj‖2E − ‖u− uj+1‖2E

)
,

where δ > 0 is chosen so that

ρ = (1 + δ)
(
1− (1− γ2

2)θ2
2

)
< 1

and C4 = C3δ
−1.

Now we choose τ so that

χ = ρ +
1
τ

< 1.

It then follows from (9.5.21) and (9.5.23) that

‖u− uj+1‖2E + τ oscj+1(Ω)2 ≤
(
1− θ2

1

C1C2

)
‖u− uj‖2E

+ τC4

(
‖u− uj‖2E − ‖u− uj+1‖2E

)
+ (τρ + 1) oscj(Ω)2

and hence

(1 + τC4)‖u− uj+1‖2E + τ oscj+1(Ω)2

≤
(
1 + τC4 −

θ2
1

C1C2

)
‖u− uj‖2E + χτ oscj(Ω)2,

which implies (9.5.19) if we take

η =
τ

1 + τC4
and θ = max

(
1− 1− θ2

1

C1C4(1 + τC4)
, χ
)
.

�	

(9.5.24) Remark. A discussion on refinement algorithms that fulfill the re-
quirements of the adaptive algorithm in this section can be found in (Bren-
ner and Carstensen 2003) and (Schmidt and Siebert 2005). The results
in this section can be extended to general second order elliptic problem
(where the initial triangulation must be sufficiently fine) and piecewise Lip-
schitz coefficients (where the definition of the oscillation also involves the
jumps across faces). Details can be found in (Mekchay and Nochetto 2005).
Other convergence analyses for adaptive finite element methods can be
found in (Dörfler 1996), (Morin, Nochetto and Siebert 2000 & 2002), and
(Carstensen and Hoppe 2006a & 2006b).

(9.5.25) Remark. In practice the meshes generated by the adaptive algo-
rithm appear to be optimal (see the numerical examples in Mekchay and
Nochetto (2005)). Theoretical results on the optimality of adaptive algo-
rithms can be found in (Binev, Dahmen and DeVore 2004) and (Stevenson
2007).
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9.6 Conditioning of Finite Element Equations

So far, we have addressed only the question of quality of approximation
using highly refined meshes. But what if large mesh variation causes the
corresponding linear systems (cf. Sect. 0.2) to degenerate in some sense? In
the remaining sections of the chapter, we show that this need not happen
when the mesh is refined locally, provided certain restrictions on the mesh
are met and a natural scaling of the basis functions is used. Much of the
material is drawn from (Bank & Scott 1989).

The convergence properties of iterative methods, such as the conjugate-
gradient method, for solving such linear systems can be estimated (cf. Luen-
berger 1973) in terms of the condition number of the system. The sensitivity
of the solution to perturbations in the right hand side can be estimated us-
ing the condition number, and error bounds for direct methods, such as
Gaussian elimination, also imply a degradation of performance for an ill-
conditioned system (cf. Isaacson and Keller 1966). Thus without further
justification, it would not be a remedy simply to use a standard direct
method for an ill-conditioned system. Fortunately, the condition number of
linear systems for finite element methods need not degrade unacceptably
as the mesh is refined.

A particular setting that we have in mind is the refinement of meshes
(perhaps adaptively) to resolve singularities arising at angular points on
the domain boundary or at points of discontinuity of the coefficients of the
differential equation. It might seem, näıvely, that there would be large ratios
of eigenvalues of the linear system (which would imply a large condition
number) resulting from large mesh ratios. However, we show that this is
not the case if a natural scaling of the finite element basis functions is used
and the mesh is non-degenerate (Definition 4.4.13).

On a regular mesh of size h, the condition number of the finite element
equations for a second-order elliptic boundary value problem can easily be
seen to be O(h−2) using inverse estimates (see Sect. 4.6). Also, the number,
N , of degrees of freedom in this case is O(h−n). Thus, the condition number
can be expressed in terms of the number of degrees of freedom as O(N2/n).
In the case that n ≥ 3, we shall show that the condition number is bounded
by O(N2/n) for non-degenerate meshes. In the case n = 2, estimates for
the condition number increase slightly by a logarithmic factor depending
essentially on the ratio of the largest and smallest mesh sizes.

We consider a variational problem with form as in (9.0.2). We now write
T h = TN to focus on the number of elements as the key parameter rather
than the mesh size. Let VN denote the corresponding finite element space.
Let us write the variational equation (9.0.2) as a matrix equation utilizing
a particular basis for VN . Specifically, suppose that {ψi : i = 1, · · · , N} is
a given basis for VN , and define a matrix, A, and a vector, F, via

Aij := a(ψi, ψj) and Fi := f(ψi) ∀i, j = 1, · · · , N.
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Let uN denote the solution of the standard variational problem (2.5.7) with
the form in (9.0.1) on VN . Then this problem is equivalent to solving

AU = F

where uN =
∑N

i=1 uiψi and U = (ui). We now give conditions on VN

and the basis {ψi : i = 1, · · · , N} that will be used to guarantee that the
condition number of A is well behaved.

For all VN studied in Chapter 4, we note that following holds, namely,
that {ψi : i = 1, · · · , N} is a local basis:

(9.6.1) max
1≤i≤N

cardinality {T ∈ TN : supp(ψi) ∩ T �= ∅} ≤ α5

on a non-degenerate mesh.
The main assumption concerning the scaling of the basis is that for all

T ∈ TN

(9.6.2) C−1hn−2
T ‖v‖2L∞(T ) ≤

∑
supp(ψi)∩T �=∅

v2
i ≤ Chn−2

T ‖v‖2L∞(T )

where C < ∞, v =
∑N

i=1 viψi and (vi) is arbitrary.
We assume the domain Ω is Lipschitz, ruling out “slit” domains. When

n ≥ 3, we thus have Sobolev’s inequality (cf. exercise 8.x.11)

(9.6.3) ‖v‖L2n/n−2(Ω) ≤ CS ‖v‖H1(Ω) ∀v ∈ H1(Ω).

In two dimensions (n = 2), since we assume that Ω is bounded, the Sobolev
imbedding H1(Ω) ⊂ Lp(Ω) holds for all p < ∞. Moreover, it has a norm,
σ(p), that is bounded by a constant times the norm of the Sobolev imbed-
ding H1

0 (B) ⊂ Lp(B) for a sufficiently large ball, B, namely, σ(p) ≤ CS
√

p
(cf. Gilbarg & Trudinger 1983, especially the proof of Theorem 7.15). Thus
for n = 2 we have the following Sobolev inequality:

(9.6.4) ‖v‖Lp(Ω) ≤ CS
√

p ‖v‖H1(Ω) ∀v ∈ H1(Ω), p < ∞.

In practice we have only a finite number of (finite) triangulations to
deal with, and any finite family is non-degenerate. However, all constants
discussed below will be bounded in terms of the parameter, ρ, in Definition
4.2.16.

(9.6.5) Example. Let VN denote the Lagrange space of C0 piecewise poly-
nomials of degree k on the mesh TN that are contained in the subspace
V . We denote by {φi : i = 1, · · · , N} the standard Lagrangian nodal basis
for VN consisting of functions that equal one at precisely one nodal point
in the triangulation. We also introduce a scaled basis that is of interest in
three (and higher) dimensions. Define a new basis {ψi : i = 1, · · · , N} by

ψi := h(zi)(2−n)/2φi
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where h is the function defined in (9.1.1), {zi : i = 1, · · · , N} denotes the
set of nodal points and n is the dimension of Ω. Note that this basis does
not differ from the original one if n = 2.

Our choice of scaling yields (9.6.2), with C depending only on ρ and
k, in view of (9.1.1) and (9.1.3). �	

(9.6.6) Example. To obtain (9.6.2) for Hermite elements in two dimensions,
one chooses the basis functions corresponding to derivative nodes to have
the corresponding derivative of order O

(
h(zi)−1

)
, with the remaining basis

functions scaled as in the Lagrangian case. The other assumptions for this
element follow as in the Lagrangian case. �	

Fig. 9.2. two highly graded meshes with similar triangles

(9.6.7) Example. Let us show that our assumption of non-degeneracy does
not exclude radical mesh refinements, as we have already observed in (9.1.1)
and (9.1.3) that it does imply local quasi-uniformity. Let Ω0 denote the
square of side 1 centered at the origin, i.e.,

Ω0 =
{

(x, y) ∈ IR2 : |x| < 1
2
, |y| < 1

2

}
.

Let TN0 denote the triangulation of Ω0 generated by its diagonals and the
two axes, i.e., consisting of eight isosceles, right triangles (each having two
sides of length 1/2). We subdivide to construct TN1 by adding the edges of
the square, Ω1, of side 1/2 centered at the origin together with eight more
edges running parallel with the diagonals. We obtain 24 similar triangles in
this way. Also note that TN1 restricted to the square Ω1 is a triangulation
similar to TN0 . Thus we may repeat the process above to this part of the
domain alone to define a triangulation TN2 consisting of isosceles, right
triangles. Continuing in this way, we obtain a sequence of triangulations,
TNi

, consisting of similar triangles. Fig. 9.2 shows the cases i = 3, 4. The
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ratio of largest to smallest side length is 2i yet only 16i + 8 triangles are
used. (There are 8i + 1 interior vertices in TNi

, so Ni = 8i + 1 in the
case of Lagrange piecewise linear approximation of the Dirichlet problem.)
Such a geometric refinement is far more severe than is often used to resolve
boundary or interface singularities, but it shows that the assumption of
non-degeneracy in Definition 4.4.13 need not restrict mesh refinement. �	

9.7 Bounds on the Condition Number

We now give bounds on the condition number of the matrix A := (a(ψi, ψj)),
where {ψi : i = 1, · · · , N} is the (scaled) basis for VN specified by our as-
sumptions (and defined explicitly in the previous examples). Applications
of these results to convergence rates for the conjugate-method for solving
AX = F will be given in Sect. 9.8. We begin with the general case n ≥ 3.

(9.7.1) Theorem. Suppose the basis {ψi : i = 1, · · · , N} satisfies (9.6.2).
Then the l2-condition number, κ2(A), of A is bounded by

κ2(A) ≤ CN2/n.

Proof. First note that if we set u =
∑

i uiψi then

(9.7.2) a(u, u) = UtAU

where U = (ui), because a(·, ·) is bilinear. Observe that

a(u, u) ≤ C ‖u‖2H1(Ω) (continuity)

= C
∑

T∈TN

‖u‖2H1(T ) (TN is a subdivision)

≤ C
∑

T∈TN

hn−2
T ‖u‖2L∞(T ) (by 4.5.3)

≤ C
∑

T∈TN

∑
supp(ψi)∩T �=∅

u2
i (by 9.6.2)

≤ C UtU. (by 9.6.1)

Here hT denotes the diameter of T . A complementary inequality can be
derived as follows:

UtU ≤
∑

T∈TN

∑
supp(ψi)∩T �=∅

u2
i

≤ C
∑

T∈TN

hn−2
T ‖u‖2L∞(T ) (by 9.6.2)
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≤ C
∑

T∈TN

‖u‖2L2n/n−2(T ) (by 4.5.3)

≤ C

( ∑
T∈TN

1
)2/n

‖u‖2L2n/n−2(Ω) (Hölder’s inequality)

≤ CN2/n‖u‖2L2n/n−2(Ω)

≤ CN2/n ‖u‖2H1(Ω) (Sobolev’s inequality)

≤ CN2/na(u, u). (coercivity)

Using these estimates we show

C−1N−2/nUtU ≤ UtAU ≤ CUtU

where C < ∞. This proves that

C−1N−2/n ≤ λmin(A) and λmax(A) ≤ C

where λmin(A) and λmax(A) denote, respectively, the smallest and largest
eigenvalues of A. Recall (cf. Isaacson and Keller 1966) that the �2-condition
number, κ2(A), of A satisfies

κ2(A) = λmax(A)/λmin(A).

Thus the previous two estimates yield the stated result. �	

A similar result can be given in two dimensions (n = 2) as follows.

(9.7.3) Theorem. Suppose the basis {ψi : i = 1, · · · , N} satisfies (9.6.2).
Then the l2-condition number, κ2(A), of A is bounded by

κ2(A) ≤ CN
(
1 +

∣∣log
(
N hmin(N)2

)∣∣)
where hmin = min {hT : T ∈ TN}.
Proof. As in the proof of Theorem 9.7.1, it is sufficient to prove that

C−1
(
N
(
1 +

∣∣log
(
N hmin(N)2

)∣∣))−1
UtU ≤ UtAU ≤ CUtU

where C < ∞. The proof of these inequalities is quite similar to the case
n ≥ 3. For u ∈ VN , we again write u =

∑
i uiψi and recall from (9.7.2)

that a(u, u) = UtAU. Then the same argument as in the proof of Theorem
9.7.1 yields

a(u, u) ≤ C UtU.

For the remaining inequality, we have (for p > 2)
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UtU ≤
∑

T∈TN

∑
supp(ψi)∩T �=∅

u2
i

≤ C
∑

T∈TN

‖u‖2L∞(T ) (by 9.6.2)

≤ C
∑

T∈TN

h
−4/p
T ‖u‖2Lp(T ) (by 4.5.3)

≤ C

( ∑
T∈TN

h
−4/(p−2)
T

)(p−2)/p

‖u‖2Lp(Ω) (Hölder’s inequality)

≤ C

( ∑
T∈TN

h
−4/(p−2)
T

)(p−2)/p

p ‖u‖2H1(Ω) (Sobolev’s inequality)

≤ C

( ∑
T∈TN

h
−4/(p−2)
T

)(p−2)/p

p a(u, u). (coercivity)

A crude estimate yields( ∑
T∈TN

h
−4/(p−2)
T

)(p−2)/p

≤ hmin(N)−4/p (CN)(p−2)/p

= C1−2/p
(
N hmin(N)2

)−2/p
N.

Thus the estimate above can be simplified to

UtU ≤ C
(
p
(
N hmin(N)2

)−2/p
)

Na(u, u).

Choosing p = max{2,
∣∣log

(
N hmin(N)2

)∣∣} in this estimate yields the stated
result. �	

(9.7.4) Remark. In (Bank & Scott 1989), it is shown that the estimate of
Theorem 9.7.3 is sharp for the special mesh introduced in Example 9.6.7.

9.8 Applications to the Conjugate-Gradient Method

The conjugate-gradient method for solving a linear system of the form
AU = F is an iterative method whose convergence properties can be esti-
mated in terms of the condition number of A (cf. Luenberger 1973). Specif-
ically, define

‖U‖A :=
(
UtAU

)1/2
,

and let U(k) denote the sequence of vectors generated by the conjugate-
gradient method starting with U(0) = 0. Then
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‖U−U(k)‖A ≤ C exp
(
−2k/

√
κ2(A)

)
‖U‖A

where U denotes the solution to AU = F. This can be easily interpreted
in terms of norms on V . Define the energy norm on V by

(9.8.1) ‖u‖a :=
√

a(u, u).

Then (9.7.2) implies that, for v =
∑

i yiψi,

‖v‖a = ‖Y‖A

where Y = (yi). Let uN =
∑

i uiψi and u
(k)
N =

∑
i u

(k)
i ψi, where (ui) = U

and (u(k)
i ) = U(k). Then the above estimate may be written

‖u− u(k)‖a ≤ C exp
(
−2k/

√
κ2(A)

)
‖u‖a.

This estimate says that to reduce the relative error
∥∥u− u(k)

∥∥
a
/‖u‖a to

O(ε) requires at most k = O
(√

κ2(A) | log ε |
)

iterations.

Suppose that we only require ε = O(N−q) for some q < ∞. In n ≥ 3
dimensions, the above estimate says that this order of accuracy will be
achieved after only O(N1/n log N) iterations. In two dimensions the above
estimate becomes slightly more complicated. In typical applications, even
with very severe refinements, we have hmin = O(hp

max) = O(N−p/2) for
some p < ∞, as we shall now assume. In this case, the estimate above says
that O(ε) accuracy will be achieved after only O

(
N1/2(log N)2

)
iterations.

Each conjugate-gradient iteration requires O (N) operations. Thus the
final work estimates for the conjugate-gradient method on refined meshes
as described previously would be

O
(
N1+ 1

n log N
)

in n ≥ 3 dimensions. The work estimates for multigrid method are O (N)
operations. Thus it would appear that the relative benefit of multigrid over
conjugate-gradient iteration decreases as n increases. However, typically N
might also increase with n as well. Comparisons with direct methods are
given in (Bank & Scott 1989).

9.x Exercises

9.x.1 Prove that a non-degenerate mesh is locally quasi-uniform, in two
or higher dimensions. (Hint: neighboring elements are all connected
to each other via a sequence of elements with common faces.)

9.x.2 Prove Theorem 9.1.10.
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9.x.3 Compute ‖∇h‖L∞(Ω) for the mesh in Fig. 9.2. How does this depend
on the level i?

9.x.4 Prove that the condition number of the matrix A in Sect. 9.7 satisfies
κ(A) = O

(
h−2

)
on a regular mesh of size h.

9.x.5 Let T be the right-triangle {(x, y) : x, y > 0; x + y < 1}, and let
VT = H̊1(T ). Prove that for any polynomial P of degree r

sup
v∈VT

∫
T

vP dx

|v|H1(T )

≥ cr‖P‖L2(T )

where cr depends only on the degree r. (Hint: it suffices to take VT

consisting of polynomials of fixed degree; use equivalence of norms
on finite-dimensional spaces, and see (12.5.2).)

9.x.6 Prove the result in exercise 9.x.5 in the case r = 0 (P = constant)
by explicit construction. (Hint: let v be a “bubble” function, e.g.,
a cubic polynomial that is positive in the interior of T and zero on
∂T .)

9.x.7 Let T be the right-triangle {(x, y) : x, y > 0; x + y < 1}, and let e
denote one edge. Let Ve denote functions vanishing on ∂T\e that
are orthogonal on T to polynomials of degree r. Prove that for any
polynomial P of degree r

sup
v∈Ve

∫
e
vP ds

|v|H1(T )

≥ cr‖P‖L2(e)

where cr depends only on the degree r. (Hint: it suffices to take Ve

consisting of polynomials of fixed degree; use equivalence of norms
on finite-dimensional spaces, and see (12.5.2).)

9.x.8 Prove the result in exercise 9.x.7 in the case r = 0 (P = constant) by
explicit construction. (Hint: consider the cubic finite element with
the usual Lagrange nodes on the edges and the remaining nodal
value being the integral over the triangle. Construct a cubic in Ve

that is positive in the interior of e.)

9.x.9 Formulate and prove the results in exercises 9.x.5 and 9.x.7 in the
case of d ≥ 3 dimensions (for T a simplex).

9.x.10 Prove Theorem 9.2.15 for α and f piecewise polynomials of a fixed
degree r, with the constant c depending only on r and the chunkiness
of T h. (Hint: use exercises 9.x.5 and 9.x.7.)

9.x.11 Prove that, if |h|W 1
∞(Ω) is sufficiently small and (5.4.7) holds, then

‖u− uh‖L2(Ω) ≤ C
∥∥√αh2∇2u

∥∥
L2(Ω)

.

(Hint: see Sect. 0.9.)
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9.x.12 Prove that h
−n/2
T ET (uh) and E∞T (uh) are equivalent for α and f

piecewise polynomials of degree r, that is
1
cr
E∞T (uh) ≤ h

−n/2
T ET (uh) ≤ crE∞T (uh) ∀T

where cr depends only on the degree r. (Hint: use inverse estimates
and Hölder’s inequality.)

9.x.13 Prove that h
n/2
T ET (uh) and E1

T (uh) are equivalent for α and f piece-
wise polynomials of degree r, that is

1
cr
E1

T (uh) ≤ h
n/2
T ET (uh) ≤ crE1

T (uh) ∀T

where cr depends only on the degree r. (Hint: use inverse estimates
and Hölder’s inequality.)

9.x.14 Show that it is necessary to restrict the space in (9.3.2) that P lies
in by showing that

inf
P∈L2(T )

sup
v∈VT

∫
T

vP dx

‖P‖L2(T )|v|H1(T )

= 0

where T and VT are as in exercise 9.x.5. (Hint: let T h be a triangula-
tion of T and take P to be orthogonal to constants on each triangle
in T h. Approximate v by piecewise constants on T h and let h go to
zero.)

9.x.15 Recall σz and δz from Sect. 8.1 and Sect. 8.2, respectively. Prove
that ∫

Ω

σn+λ
z |∇δz(x)|2 dx + h−2

z

∫
Ω

σn+λ
z |δz(x)|2 dx ≤ Chλ−2

z .

9.x.16 Recall σz from Sect. 8.1. Prove that∫
Ω

σ−n−λ
z dx ≤ Ch−λ

z .

9.x.17 Let e be an interior face of T h. Prove that

Ee(uh)2 ≤ C
∑

T∈Te

(
‖u− uh‖2H1(T ) + osc(T )2

)
under the assumptions in Section 9.5, where the positive constant
C depends only on the coefficient α and the shape regularity of T h.

9.x.18 Let D1 ⊂ D2 be two nondegenerate simplexes in IRn. Show that

‖p‖L2(D2) ≤ C‖p‖L2(D1) ∀ p ∈ Pk,

where the positive constant C depends only on k, the shapes of D1

and D2, and the ratio |D2|/|D1|. Use this result to justify the first
inequality in (9.5.5) and the second inequality in (9.5.10).

9.x.19 Prove the assertion in Example 9.5.13.



Chapter 10

Variational Crimes

Consider the Dirichlet problem

−∆u = f in Ω ⊆ IR2

(10.0.1)
u = 0 on ∂Ω.

We have already considered this problem when Ω is a convex polygonal
domain with Vh being the set of piecewise polynomials that vanish on ∂Ω.
The error estimate is based on Ceá’s Theorem (cf. (2.8.2)), which uses the
fact that

(10.0.2) Vh ⊆ V = H̊1(Ω).

In this chapter we consider two cases where (10.0.2) is violated. In
the first case we consider (10.0.1) on a domain Ω with smooth, curved
boundary. We consider two approaches to approximating such problems.
Suppose we have a triangulation T h where the “triangles” at the boundary
have one curved side. Let Vh be a Lagrange finite element space associated
with T h satisfying the Dirichlet boundary condition at points on ∂Ω. In
general, we cannot expect the homogeneous Dirichlet boundary conditions
to be satisfied exactly by members of Vh. We are therefore in the situation
where Vh ⊆ H1(Ω) but Vh �⊆ V = H̊1(Ω). The other technique to be
considered is the use of isoparametric finite elements described in Sect. 4.7.

The other case in which (10.0.2) is violated arises because of the use
of “nonconforming” or “discontinuous” finite elements. This is illustrated
with elements that are not C0. Thus, (10.0.2) fails since the finite element
functions are not sufficiently smooth; this can happen on a polygonal do-
main where the boundary conditions are satisfied exactly. In addition, the
definition of the variational form must be altered.

The theory developed here will also find application in later chapters.
For example, in Chapter 12 we consider “mixed” finite element approxi-
mations. We develop the basic convergence theory for mixed methods from
the point of view of a variational crime.
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10.1 Departure from the Framework

Let H denote a Hilbert space and let V ⊂ H be a subspace. We first derive
an abstract error estimate for variational problems in which Vh �⊂ V . We
assume that a(·, ·) is a bilinear form defined on H but we do not assume it
to be symmetric in the following lemma.

(10.1.1) Lemma. Let V and Vh be subspaces of H. Assume that a(·, ·) is
a continuous bilinear form on H which is coercive on Vh, with respective
continuity and coercivity constants C and γ. Let u ∈ V solve

a(u, v) = F (v) ∀ v ∈ V,

where F ∈ H ′. Let uh ∈ Vh solve

a(uh, v) = F (v) ∀ v ∈ Vh.

Then

(10.1.2)
‖u− uh‖H ≤

(
1 +

C

γ

)
inf

v∈Vh

‖u− v‖H

+
1
γ

sup
w∈Vh\{0}

|a(u− uh, w)|
‖w‖H

.

Proof. For any v ∈ Vh,

‖u− uh‖H ≤ ‖u− v‖H + ‖v − uh‖H (triangle inequality)

≤ ‖u− v‖H +
1
γ

sup
w∈Vh\{0}

|a(v − uh, w)|
‖w‖H

(coercivity)

= ‖u− v‖H +
1
γ

sup
w∈Vh\{0}

|a(v − u,w) + a(u− uh, w)|
‖w‖H

≤ ‖u− v‖H +
1
γ

sup
w∈Vh\{0}

|a(v − u,w)|
‖w‖H

(10.1.3) +
1
γ

sup
w∈Vh\{0}

|a(u− uh, w)|
‖w‖H

(triangle inequality)

≤ ‖u− v‖H +
C

γ
‖v − u‖H (continuity)

+
1
γ

sup
w∈Vh\{0}

|a(u− uh, w)|
‖w‖H

=
(

1 +
C

γ

)
‖u− v‖H +

1
γ

sup
w∈Vh\{0}

|a(u− uh, w)|
‖w‖H

.

�	
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The second term on the right-hand side of (10.1.2) would be zero if
Vh ⊆ V . Therefore, it measures the effect of Vh �⊆ V .

Also note that, by continuity,

(10.1.4)
|a(u− uh, w)|

‖w‖H
≤ C ‖u− uh‖H

so that

(10.1.5) ‖u− uh‖H ≥ 1
C

sup
w∈Vh\{0}

|a(u− uh, w)|
‖w‖H

.

Combining (10.1.5) and (10.1.2) gives

(10.1.6)

max

{
1
C

sup
w∈Vh\{0}

|a(u− uh, w)|
‖v‖H

, inf
v∈Vh

‖u− v‖H

}
≤ ‖u− uh‖H

≤
(

1 +
C

γ

)
inf

v∈Vh

‖u− v‖H +
1
γ

sup
w∈Vh\{0}

|a(u− uh, w)|
‖w‖H

.

Inequality (10.1.6) indicates that the term infv∈Vh
‖u−v‖H , together with

supw∈Vh\{0} |a(u− uh, w)|/‖w‖H truly reflect the size of the discretization
error ‖u− uh‖H .

When the variational form a(·, ·) is symmetric positive-definite, we can
improve Lemma 10.1.1 by using the natural norm

‖v‖a :=
√

a(v, v)

as follows.

(10.1.7) Lemma. Let V and Vh be subspaces of H and dim Vh < ∞. Assume
that a(·, ·) is a symmetric positive-definite bilinear form on H. Let u ∈ V
and uh ∈ Vh be as in Lemma 10.1.1. Then

(10.1.8) ‖u− uh‖a ≤ inf
v∈Vh

‖u− v‖a + sup
w∈Vh\{0}

|a(u− uh, w)|
‖w‖a

.

Proof. Exercise 10.x.5. �	

In Sect. 10.2 we will apply the abstract error estimate (10.1.2) to finite
element approximations of (10.0.1) with interpolated boundary conditions.
In Sect. 10.4 we will do the same for isoparametric finite element approxima-
tions of (10.0.1). In Sect. 12.5 we show that finite element approximations
of the Stokes equations can be studied via (10.1.8).

The second case where (10.0.2) is violated arises from the use of non-
conforming finite elements, where Vh �⊆ H1(Ω). Since elements of Vh do not
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have global weak derivatives, we must use ah(·, ·), a modification of a(·, ·),
in the discretized problem. We have the following abstract error estimate.

(10.1.9) Lemma. Assume dim Vh < ∞. Let ah(·, ·) be a symmetric positive-
definite bilinear form on V + Vh which reduces to a(·, ·) on V . Let u ∈ V
solve

a(u, v) = F (v) ∀ v ∈ V,

where F ∈ V ′ ∩ V ′
h. Let uh ∈ Vh solve

ah(uh, v) = F (v) ∀ v ∈ Vh.

Then

(10.1.10) ‖u− uh‖h ≤ inf
v∈Vh

‖u− v‖h + sup
w∈Vh\{0}

|ah(u− uh, w)|
‖w‖h

,

where ‖ · ‖h =
√

ah(·, ·).
Proof. Let ũh ∈ Vh satisfy

(10.1.11) ah(ũh, v) = ah(u, v) ∀ v ∈ Vh,

which implies that

(10.1.12) ‖u− ũh‖h = inf
v∈Vh

‖u− v‖h.

Then

(10.1.13)
‖u− uh‖h ≤ ‖u− ũh‖h + ‖ũh − uh‖h

= ‖u− ũh‖h + sup
w∈Vh\{0}

|ah(ũh − uh, w)|
‖w‖h

.

The estimate (10.1.10) follows from (10.1.11)-(10.1.13). �	

Again, the second term on the right-hand side of (10.1.10) is zero if
Vh ⊆ V . This term, therefore, measures the effect of Vh �⊆ V . Also, an
inequality analogous to (10.1.6) holds here. In Sect. 10.3, we will apply the
abstract error estimate (10.1.10) to the nonconforming, piecewise linear (see
Fig. 3.2) finite element approximation of (10.0.1).

10.2 Finite Elements with Interpolated Boundary
Conditions

Let Ω ⊆ IR2 be a bounded domain with smooth boundary, and T h be a
triangulation of Ω, where each triangle at the boundary has at most one
curved side (cf. Fig. 10.1).
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Fig. 10.1. Smooth domain triangulated with curved triangles

We assume that there exists ρ > 0 such that for each triangle T ∈ T h

we can find two concentric circular discs D1 and D2 such that

(10.2.1) D1 ⊆ T ⊆ D2 and
diam D2

diam D1
≤ ρ.

It follows from a homogeneity argument (see the proof of Lemma 4.5.3)
that

(10.2.2) ‖φ‖W k−1
∞ (D2)

≤ Ck,ρ(diam D2)1−k‖φ‖H1(D1)

for any polynomial φ of degree ≤ k − 1.
In order to describe the finite element space Vh, we need to use the

nodes of the Lobatto quadrature formula. Therefore, we first briefly describe
the basic facts concerning Lobatto quadrature. Let the polynomial Lk(ξ)
of degree k be defined by

(10.2.3) Lk(x) =
(

d

dx

)k−2

(x(1− x))k−1
.

Lk(ξ) has k distinct roots 0 = ξ0 < ξ1 < . . . < ξk−1 = 1 (cf. exercise
10.x.1).

For each j, 0 ≤ j ≤ k−1, let Pj be the Lagrange interpolating polyno-
mial of degree k−1 (see Remark 3.1.7) such that Pj(ξi) = δij (the Kronecker
delta), and let

(10.2.4) ωj =
∫ 1

0

Pj(x) dx.

(10.2.5) Lemma. For any polynomial P of degree less than 2k − 2, we have

(10.2.6)
∫ 1

0

P (x) dx =
k−1∑
j=0

ωjP (ξj).

Proof. For any polynomial f of degree less than k, we have by the definition
of ωj that
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∫ 1

0

f(x) dx =
∫ 1

0

k−1∑
j=0

f(ξj)Pj(x) dx(10.2.7)

=
k−1∑
j=0

ωjf(ξj).

Let PI be the Lagrange interpolant of P of degree ≤ k − 1 such that
PI(ξj) = P (ξj) for 0 ≤ j ≤ k − 1. Then (10.2.7) implies

∫ 1

0

P (x) dx−
k−1∑
j=0

ωjP (ξj) =
∫ 1

0

(P − PI)(x) dx.

Since (P − PI) vanishes at ξj , 0 ≤ j ≤ k − 1, we can write (P − PI)(x) =
Lk(x)q(x), where deg q < k− 2. It follows from (10.2.3) and integration by
parts k − 2 times that

(10.2.8)

∫ 1

0

Lk(x)q(x) dx =
∫ 1

0

(( d

dx

)k−2(
x(1− x)

)k−1
)

q(x) dx

= (−1)k−2

∫ 1

0

(
x(1− x)

)k−1
( d

dx

)k−2

q(x) dx

= 0,

because all boundary terms vanish and deg q < k − 2. �	

(10.2.9) Corollary. Given k, there exists a positive constant Ck such that
for all h > 0∣∣∣∣∣

∫ h

0

f(x) dx− h

k−1∑
j=0

ωjf(hξj)

∣∣∣∣∣ ≤ Ck h2k−1 ‖f (2k−2)‖L∞(0,k)

for any C2k−2 function f on [0, h].

Proof. Exercise 10.x.2. �	

We are now ready to define Vh. For each boundary edge

e = {x(s) : s ∈ [se, se + he], s = arc length} ,

let the boundary nodes be x(se+heξj), j = 0, . . . , k−1. In Fig. 10.2, the case
k = 3 is depicted. Note that for h = maxT∈T h(diam T ) small enough, the
boundary nodes can be used as part of the nodal variables that determine
Pk−1 (see exercise 10.x.3 and (Scott 1975)). This will be assumed from now
on.
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Fig. 10.2. Nodal variables for curved-triangle Lagrange quadratics

The finite element space Vh is defined by

(10.2.10)
Vh =

{
v ∈ C0(Ω) : v|T ∈ Pk−1 and

v vanishes at the boundary nodes
}
.

Let a(v, w) =
∫

Ω
∇v · ∇w dx. Then the variational form of (10.0.1) is to

find u ∈ V = H̊1(Ω) such that

(10.2.11) a(u, v) = F (v) ∀ v ∈ V = H̊1(Ω),

where F (v) =
∫

Ω
fv dx (see Chapter 5). The solution uh ∈ Vh of the dis-

cretized problem satisfies

(10.2.12) a(uh, v) = F (v) ∀ v ∈ Vh.

In order to use the abstract estimate (10.1.2) we must estimate

sup
{
|a(u− uh, w)|/‖w‖H1(Ω) : w ∈ Vh \ {0}

}
and verify that a(·, ·) is coercive on Vh. By Green’s Theorem, we have

(10.2.13)

a(u− uh, w) = a(u,w)− (f, w)

= (−∆u,w) +
∫

∂Ω

∂u

∂ν
w ds− (f, w)

=
∫

∂Ω

∂u

∂ν
w ds.

We first do a local estimate.

(10.2.14) Lemma. Let T be a triangle satisfying (10.2.1) with a curved edge
e. Assume that u ∈ W 2k−1

∞ (T ), and w ∈ Pk−1 vanishes at the Lobatto nodes
along e. Then there exists a constant Ck,ρ such that

(10.2.15)
∣∣∣∣∫

e

∂u

∂ν
w ds

∣∣∣∣ ≤ Ck,ρh
2k−1
e (diam D2)1−k ‖u‖W 2k−1

∞ (T )‖w‖H1(T )

where he = length of e.
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Proof. Let s denote arc length. In terms of the parameterization x(s), 0 ≤
s ≤ he,

(10.2.16)
∫

e

∂u

∂ν
w ds =

∫ he

0

∂u

∂ν

(
x(s)

)
w(x(s)) ds.

Then ∣∣∣∣∣
∫ he

0

∂u

∂ν

(
x(s)

)
w(x(s)) ds

∣∣∣∣∣
≤ Ck h2k−1

e

∥∥∥∥∂u

∂ν

∥∥∥∥
W 2k−2

∞ (T )

‖w‖W k−1
∞ (T ) (Corollary 10.2.9)

≤ Ck,ρ h2k−1
e (diam D2)1−k‖u‖W 2k−1

∞ (T ) ‖w‖H1(T ).(using 10.2.2)

Using (10.2.16) completes the lemma. �	

From the local estimate (10.2.15) we deduce the following global esti-
mate.

(10.2.17) Lemma. Assume that u ∈ W 2k−1
∞ (Ω). For small h and fixed k,

there exists Cρ > 0 such that

sup
w∈Vh\{0}

|a(u− uh, w)|
‖w‖H1(Ω)

≤ Cρ hk− 1
2 ‖u‖W 2k−1

∞ (Ω).

Proof. Since ∂Ω is smooth, for h small enough, we have

(10.2.18) he < 2 diam T < 2 diam D2

in Lemma 10.2.14. Therefore,

(10.2.19)
∣∣∣∣∫

e

∂u

∂ν
w ds

∣∣∣∣ ≤ Cρ hk
e ‖u‖W 2k−1

∞ (Ω) ‖w‖H1(T ).

By summing over all boundary edges, it follows from (10.2.19) that∣∣∣∣∫
Ω

∂u

∂ν
w ds

∣∣∣∣ ≤∑
e

∣∣∣∣∫
e

∂u

∂ν
w ds

∣∣∣∣
≤ Cρ hk− 1

2 ‖u‖W 2k−1
∞ (Ω)

(∑
e

h
1
2
e ‖w‖H1(T )

)

≤ Cρ hk− 1
2 ‖u‖W 2k−1

∞ (Ω)

(∑
e

he

) 1
2

‖w‖H1(Ω).

Since
∑

e he = length of ∂Ω, the lemma follows from (10.2.13). �	
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We next turn to the question of coercivity of a(·, ·) on Vh. We need the
following lemma, where Ω is assumed to be connected.

(10.2.20) Lemma. There exists a positive constant β such that for all v ∈
H1(Ω), we have

(10.2.21) β ‖v‖H1(Ω) ≤ |v|H1(Ω) +
∣∣∣∣∫

∂Ω

v ds

∣∣∣∣ .
Proof. Assume that the lemma is false. Then there exists a sequence vj ∈
H1(Ω) such that

(10.2.22) ‖vj‖H1(Ω) = 1

and

(10.2.23) |vj |H1(Ω) +
∣∣∣∣∫

∂Ω

vj ds

∣∣∣∣ <
1
j
.

From Friedrichs’ inequality (4.3.15) and (10.2.23) we have

(10.2.24) ‖vj − vj‖L2(Ω) ≤ C |vj |H1(Ω) ≤
C

j

where vj = |Ω|−1
∫

Ω
vj dx. Then (10.2.23) and (10.2.24) imply

(10.2.25)

lim
j→∞

‖vj − vj‖2H1(Ω) = lim
j→∞

(
|vj − vj |2H1(Ω) + ‖vj − vj‖2L2(Ω)

)
= lim

j→∞

(
|vj |2H1(Ω) + ‖vj − vj‖2L2(Ω)

)
= 0.

It follows from (10.2.25) and Theorem 1.6.6 that

(10.2.26) lim
j→∞

∫
∂Ω

(vj − vj) ds = 0.

Hence, we have from (10.2.23) and (10.2.26) that

(10.2.27) lim
j→∞

∫
∂Ω

vj ds = lim
j→∞

(∫
∂Ω

(vj − vj) ds +
∫

∂Ω

vj ds

)
= 0.

Therefore, limj→∞ vj = 0 and we conclude from (10.2.25) that

(10.2.28) lim
j→∞

‖vj‖H1(Ω) = 0.

But (10.2.28) contradicts (10.2.22). �	

We are now ready to prove the coercivity of a(·, ·) on Vh.
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(10.2.29) Lemma. There exists a positive constant γ such that for h small
enough, we have

(10.2.30) a(v, v) ≥ γ‖v‖2H1(Ω) ∀v ∈ Vh.

Proof. Without loss of generality we may assume that Ω is connected. From
Lemma 10.2.17 we have

(10.2.31)
∣∣∣∣∫

∂Ω

∂u

∂ν
v ds

∣∣∣∣ ≤ Cρ hk− 1
2 ‖u‖W 2k−1

∞ (Ω) ‖v‖H1(Ω)

for any u ∈ W 2k−1
∞ (Ω).

Let u∗ ∈ C∞(Ω) satisfy

(10.2.32)
∂u∗
∂ν

≡ 1 on ∂Ω,

then (10.2.31) becomes

(10.2.33)
∣∣∣∣∫

∂Ω

v ds

∣∣∣∣ ≤ Cρ hk− 1
2 ‖v‖H1(Ω).

Combining (10.2.21) and (10.2.33) we have

(10.2.34) β ‖v‖H1(Ω) ≤ |v|H1(Ω) + Cρ hk− 1
2 ‖v‖H1(Ω),

and hence

(10.2.35)
(
β − Cρ hk− 1

2

)
‖v‖H1(Ω) ≤ |v|H1(Ω) =

√
a(v, v).

The coercivity estimate (10.2.30) therefore holds if we let γ = β2/4, pro-
vided that Cρ hk− 1

2 < β/2. �	

In view of Lemmas 10.1.1, 10.2.17, 10.2.29, and standard interpolation
error estimates (cf. Theorem 4.4.20), we have proved the following theorem.

(10.2.36) Theorem. Assume that u ∈ W 2k−1
∞ (Ω) and (10.2.1) holds for a

ρ > 0 independent of h. When (10.0.1) is discretized using Vh, the Lagrange
finite element space of continuous piecewise polynomials with degree ≤ k−1
which vanish at the Lobatto boundary nodes, we have the following error
estimate:

(10.2.37) ‖u− uh‖H1(Ω) ≤ Cρ hk−1‖u‖W 2k−1
∞ (Ω),

for h sufficiently small.

It is not necessary to assume that u ∈ W 2k−1
∞ (Ω) in order to conclude

that ‖u−uh‖H1(Ω) ≤ Cρ hk−1. In particular, it can be shown (exercise 10.x.4
and (Scott 1975)) that this holds for u ∈ Hk(Ω), the best possible norm.
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10.3 Nonconforming Finite Elements

In this section we look at a variational crime as in Lemma 10.1.9. Recall
that the variational formulation of (10.0.1) is to find u ∈ V = H̊1(Ω) such
that

(10.3.1) a(u, v) = F (v) ∀ v ∈ V = H̊1(Ω),

where a(u, v) =
∫

Ω
∇u ·∇v dx and F (v) =

∫
Ω

fv dx. We assume that Ω is a
convex polygonal domain, and f ∈ L2(Ω). Therefore, u belongs to H2(Ω)
by elliptic regularity.

Let T h be a non-degenerate family of triangulations of Ω. The non-
conforming P1 finite element space (see Fig. 3.2) is defined to be

Vh := {v : v|T is linear for all T ∈ T h, v is continuous
at the midpoints of the edges of T h and v = 0(10.3.2)
at the midpoints of the edges on ∂Ω}.

Note that since functions in Vh are no longer continuous, they are no
longer in H̊1(Ω). We must therefore use a modified variational form ah(·, ·)
in the discretized problem.

We define the following bilinear form on Vh + V

(10.3.3) ah(v, w) =
∑

T∈T h

∫
T

∇v · ∇w dx

and its associated norm

(10.3.4) ‖v‖h :=
√

ah(v, v).

The form ah(·, ·) is coercive on V = H̊1(Ω) because ah(·, ·) ≡ a(·, ·)
on V . It is positive-definite on Vh because ah(v, v) = 0 implies v is piece-
wise constant, and the zero boundary condition together with continuity at
midpoints imply v ≡ 0.

The discretized problem is to find uh ∈ Vh such that

(10.3.5) ah(uh, v) = F (v) ∀ v ∈ Vh.

We want to estimate ‖u − uh‖h, using the abstract error estimate
(10.1.10). Let Ihu ∈ Vh be the nodal interpolant of u, i.e., Ihu agrees
with u at the midpoints of the edges of T h. Since u ∈ H2(Ω) ∩ H̊1(Ω),
Theorem 4.4.20 yields

(10.3.6) inf
v∈Vh

‖u− v‖h ≤ ‖u− Ihu‖h ≤ C h |u|H2(Ω),

where C is a positive constant that depends only on the parameter ρ in
(4.4.16). For the second term on the right-hand side of (10.1.10), we have
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ah(u− uh, w)

=
∑

T∈T h

∫
T

∇u · ∇w dx−
∫

Ω

fw dx (10.3.3 and 10.3.5)

=
∑

T∈T h

[∫
∂T

∇u · wn ds−
∫

T

∆u w dx
]
−
∫

T

fw dx(10.3.7)

=
∑

T∈T h

∫
∂T

∇u · wn ds (by 10.0.1)

=
∑
e∈Eh

∫
e

∇u · [[w]] ds

where Eh is the set of the edges in T h, n is the unit outer normal along
∂T , and the jump [[w]] across an edge e is a vector defined as follows.

Let e be an interior edge shared by two triangles T1 and T2 in T h, and
wj = w

∣∣
Tj

for j = 1, 2. We define on e

[[w]] = w1n1 + w2n2,

where nj is the unit normal of e pointing towards the outside of Tj . If e is
an edge on the boundary of Ω, then we define on e

[[w]] = wn,

where n is the unit outer normal of e pointing towards the outside of Ω.
The next step is to estimate

∑
e∈Eh

∫
e
∇u · [[w]] ds, which uses the fol-

lowing trace estimates.
Let e be an edge of the triangle T . Then we have, by the Trace Theorem

with scaling (cf. exercise 10.x.7),

(10.3.8) |e|−1‖ζ‖2L2(e) ≤ C
(
h−2

T ‖ζ‖2L2(T ) + |ζ|2H1(T )

)
∀ ζ ∈ H1(T ),

where |e| denotes the length of e, hT = diam T , and the positive constant
depends only on the chunkiness parameter of T . Furthermore, since [[w]] = 0
at the midpoint of every edge, it follows from a simple calculation (exer-
cise 10.x.8) that

(10.3.9) |e|‖[[w]]‖2L2(e) ≤ C
∑

T∈Te

h2
T |w|2H1(T ),

where Te is the set of triangles in T h having e as an edge and the positive
constant C depends only on the chunkiness parameter of T .

Using the midpoint rule and the fact that [[w]] vanishes at the midpoints
of all the edges, we can write∑

e∈Eh

∫
e

∇u · [[w]] ds =
∑
e∈Eh

∫
e

(∇u · ne − ce)ne · [[w]] ds,
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where ne is a unit normal of e and ce is an arbitrary constant. Therefore
we have∑
e∈Eh

∫
e

∇u · [[w]] ds

≤
∑
e∈Eh

|e|−1/2‖∇u · ne − ce‖L2(e)|e|1/2 ‖[[w]]‖L2(e) (Cauchy-Schwarz)

≤
( ∑

e∈Eh

|e|−1‖∇u · ne − ce‖2L2(e)

)1/2

×
( ∑

e∈Eh

|e| ‖[[w]]‖2L2(e)

)1/2

(Cauchy-Schwarz)

≤ C
[ ∑

e∈Eh

min
T∈Te

(
h−2

T ‖∇u · ne − ce‖2L2(T ) + |u|2H2(T )

)]1/2

×
[ ∑

e∈Eh

∑
T∈Te

h2
T |w|2H1(T )

]1/2

(10.3.8 and 10.3.9)

which implies, since ce is arbitrary,

∑
e∈Eh

∫
e

∇u · [[w]] ds

≤ C
[ ∑

e∈Eh

min
T∈Te

(
h−2

T inf
ce∈IR

‖∇u · ne − ce‖2L2(T ) + |u|2H2(T )

)]1/2

×
[ ∑

e∈Eh

∑
T∈Te

h2
T |w|2H1(T )

]1/2

≤ Ch|u|H2(Ω)‖w‖h. (by 4.3.8)

It follows from (10.3.7) and the previous estimate that

(10.3.10) |ah(u− uh, w)| ≤ C h |u|H2(Ω)‖w‖h.

Combining (10.1.10), (10.3.6) and (10.3.10), we have therefore established
the following theorem.

(10.3.11) Theorem. Let Ω be a convex polygonal domain, f ∈ L2(Ω), and
uh be the solution of the nonconforming P1 discretization (10.3.5). Then
the following discretization error estimate holds :

‖u− uh‖h ≤ C h |u|H2(Ω),

where the positive constant C depends only on the parameter ρ in (4.4.16).
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It is also possible to obtain an L2 error estimate by modifying the
duality argument in Section 5.4. Let z ∈ H2(Ω) ∩ H̊1(Ω) satisfy

(10.3.12) a(v, z) =
∫

Ω

v(u− uh) dx ∀ v ∈ H̊1(Ω),

and zh ∈ Vh satisfy

(10.3.13) ah(v, zh) =
∫

Ω

v(u− uh) dx ∀ v ∈ Vh.

It follows from (10.3.12) and (10.3.13) that

‖u− uh‖2L2(Ω) = a(u, z)− ah(uh, zh)
= ah(u− uh, z − zh) + ah(u− uh, zh)(10.3.14)

+ a(uh, z − zh).

The first term on the right-hand side of (10.3.14) can be estimated using
Theorem 10.3.11 (applied to u and z) and elliptic regularity:

ah(u− uh, z − zh) ≤ ‖u− uh‖h‖z − zh‖h(10.3.15)
≤ Ch2|u|H2(Ω)|z|H2(Ω).

We can rewrite the second term on the right-hand side of (10.3.14) as

(10.3.16) ah(u− uh, zh) = ah(u− uh, zh − Ihz) + ah(u− uh, Ihz).

We have, by (10.3.11) and (4.4.20),

ah(u− uh, zh − Ihz) ≤ ‖u− uh‖h‖zh − Ihz‖h(10.3.17)
≤ Ch2|u|H2(Ω)|z|H2(Ω).

Note that (10.3.7) implies

ah(u− uh, Ihz) =
∑
e∈Eh

∫
e

∇u · [[Ihz]] ds

=
∑
e∈Eh

∫
e

∇u · [[Ihz − z]] ds

=
∑
e∈Eh

∫
e

(∇u · ne − ce)ne · [[Ihz − z]] ds

for arbitrary constants ce, where we have used the midpoint rule and the
fact that [[z]] = 0, and hence, as before,
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ah(u− uh, Ihz)

≤
∑
e∈Eh

|e|−1/2‖∇u · ne − ce‖L2(e)|e|1/2‖Ihz − z‖L2(e)

≤ C
[ ∑

e∈Eh

min
T∈Te

(
h−2

T inf
ce∈IR

‖∇u · ne − ce‖2L2(e) + |u|2H2(T )

)]1/2

×
[ ∑

e∈Eh

(
|e|2

∑
T∈Te

(
h−2

T ‖Ihz − z‖2L2(T ) + |Ihz − z|2H1(T )

)]1/2

(10.3.18)

(Cauchy-Schwarz and 10.3.8)
≤ C|u|H2(Ω)

(
h2|z|H2(Ω)

)
. (4.3.8 and 4.4.20)

Combining (10.3.16)–(10.3.18) we find

(10.3.19) ah(u− uh, zh) ≤ Ch2|u|H2(Ω)|z|H2(Ω),

and similarly,

(10.3.20) ah(uh, z − zh) ≤ Ch2|u|H2(Ω)|z|H2(Ω).

Putting (10.3.14), (10.3.15), (10.3.19) and (10.3.20) together, we arrive
at the estimate

‖u− uh‖2L2(Ω) ≤ Ch2|u|H2(Ω)|z|H2(Ω),

and, in view of the elliptic regularity estimate

‖z‖H2(Ω) ≤ CΩ‖u− uh‖L2(Ω),

we have proved the following result.

(10.3.21) Theorem. Let Ω be a convex polygonal domain, f ∈ L2(Ω), and
uh be the solution of the nonconforming P1 discretization (10.3.5). Then
the following discretization error estimate holds :

‖u− uh‖L2(Ω) ≤ C h2 |u|H2(Ω),

where the positive constant C only depends on the parameter ρ in (4.4.16).

It is reasonable to ask why one would want to use nonconforming finite
elements. There are situations where nonconforming methods are clearly
desirable. One example is the incompressible fluid flow problem. If one
uses the vector conforming, piecewise linear Lagrange finite element, the
only function in Vh which satisfies the divergence-free condition is the zero
function on generic meshes. In order to obtain a good approximate solution
by a conforming method, one must therefore use higher-order polynomials.
On the other hand, the vector nonconforming piecewise linear finite element
space can be used to solve such a problem (cf. (12.4.12)).
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Another example is the biharmonic equation (cf. Section 5.9). Since
this is a fourth order problem, the conforming finite elements are C1 ele-
ments, for example the Argyris finite element, which involves fifth degree
polynomials. On the other hand, it can be solved using the nonconforming
quadratic Morley finite element, which is depicted in Fig. 10.3. The prop-
erties of this finite element and its application to the biharmonic equation
can be found in exercises 10.x.9 through 10.x.14 (see also (Shi 1990)). Note
also that the Morley element can be used to construct preconditioners for
the system resulted from the discretization of the biharmonic equation by
the Argyris element (cf. (Brenner 1996b)).

Fig. 10.3. Morley finite element

10.4 Isoparametric Finite Elements

The use of isoparametric finite elements (Sect. 4.7) also entails a variational
crime; one can envisage either that (10.0.2) is violated or that there is a
modified bilinear form. However, this approach is simpler to estimate than
the previous one. When one interpolates the boundary conditions using
polynomials, it can happen that v ∈ Vh differs from zero significantly on
∂Ω. The use of Lobatto interpolation points minimizes the effect of this
by guaranteeing that the error oscillates in such a way as to cancel any
deleterious effects. On the other hand, isoparametric finite elements are
no longer polynomials in the coordinates of Ω, being transformed via a
piecewise polynomial mapping from some domain Ωh. Thus, they are able
to match Dirichlet boundary conditions more closely in a pointwise sense.

We begin with the formulation for the model problem (10.0.1). Recall
that we have a polyhedral approximation, Ωh, to Ω, and a mapping Fh

such that Fh(Ωh) closely approximates Ω. Suppose that properties 1–3 of
Sect. 4.7 hold for the isoparametric mapping. In particular, we will assume
there is an auxiliary mapping F : Ωh → Ω and that Fh

i = IhFi for each
component of the mapping. Further, we assume that conditions 1 and 3 in
Sect. 4.7 hold as well for F . The construction of such an F is not trivial,
but it is done in (Lenoir 1986). Define
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ah(v, w) =
∫

F h(Ωh)

∇v(x) · ∇w(x) dx.

For the purposes of analysis, we will need the mapping Φh : Ω → Fh(Ωh)
defined by Φh(x) = Fh(F−1(x)). Note that we can write

ah(v, w) =
∫

Ω

JΦh(x)−t∇v̂(x) · JΦh(x)−t∇ŵ(x) detJΦh(x) dx

where for any function v defined on Fh(Ωh) we set

(10.4.1) v̂(x) := v
(
Φh(x)

)
and JΦh denotes the Jacobian of Φh. The key point is that

(10.4.2) JΦh − I = O(hk−1).

Let Vh be defined as in (4.7.2), where Ω̃ = Ωh and F̃ = Fh, and define
uh ∈ Vh by

(10.4.3) ah(uh, v) =
∫

F h(Ωh)

f(x)v(x) dx.

First we derive an estimate analogous to (10.1.10). We define V̂h =
{v̂ : v ∈ Vh}, and let v̂h denote the projection of u onto V̂h:

(10.4.4) a(v̂h, ŵ) = a(u, ŵ) ∀ŵ ∈ V̂h.

Note that V̂h ⊂ V , that is, the Dirichlet boundary conditions are satisfied
exactly for ŵ ∈ V̂h. Then for any w ∈ Vh

a(v̂h − ûh, ŵ) = a(u− ûh, ŵ) (by 10.4.4)

(10.4.5) = (f, ŵ)− a(ûh, ŵ)

= (f, ŵ)−
∫

F h(Ωh)

fw dx + ah(uh, w)− a(ûh, ŵ).(by 10.4.3)

We thus find

‖u− ûh‖a ≤‖u− v̂h‖a + ‖v̂h − ûh‖a (triangle inequality)
= inf

v∈Vh

‖u− v̂‖a + ‖v̂h − ûh‖a (see 10.1.12)

(10.4.6) = inf
v∈Vh

‖u− v̂‖a + sup
w∈Vh\{0}

|a(v̂h − ûh, ŵ)|
‖ŵ‖a

(see 2.x.16)

≤ inf
v∈Vh

‖u− v̂‖a + sup
w∈Vh\{0}

|ah(uh, w)− a(ûh, ŵ)|
‖ŵ‖a

+ sup
w∈Vh\{0}

∣∣∣(f, ŵ)−
∫

F h(Ωh)
fw dx

∣∣∣
‖ŵ‖a

. (by 10.4.5)



288 Chapter 10. Variational Crimes

The second term above may be expanded as

ah(uh, w)− a(ûh, ŵ) =
∫

Ω

J−t
Φh∇ûh · J−t

Φh∇ŵ det JΦh dx

−
∫

Ω

∇ûh · ∇ŵ dx

=
∫

Ω

(
J−t

Φh − I
)
∇ûh · J−t

Φh∇ŵ det JΦh dx

+
∫

Ω

∇ûh · J−t
Φh∇ŵ det JΦh dx−

∫
Ω

∇ûh · ∇ŵ dx

=
∫

Ω

(
J−t

Φh − I
)
∇ûh · J−t

Φh∇ŵ det JΦh dx

+
∫

Ω

∇ûh ·
(
(det JΦh)J−t

Φh − I
)
∇ŵ dx.

From (10.4.2) we conclude that

(10.4.7) sup
w∈Vh\{0}

|ah(uh, w)− a(ûh, ŵ)|
‖ŵ‖a

≤ Chk−1‖ûh‖a .

The term involving f can be estimated similarly:∣∣∣∣∣(f, ŵ)−
∫

F h(Ωh)

fw dx

∣∣∣∣∣ =
∣∣∣∣∫

Ω

(
f(x)− f(Φh(x)) det JΦh(x)

)
ŵ(x) dx

∣∣∣∣
≤
∣∣∣∣∫

Ω

(
f(x)− f(Φh(x))

)
det JΦh(x)ŵ(x) dx

∣∣∣∣
+
∣∣∣∣∫

Ω

f(x) (1− det JΦh(x)) ŵ(x) dx

∣∣∣∣
≤C

(
hk‖f‖W 1

∞(Ω) + hk−1 ‖f‖L2(Ω)

)
‖ŵ‖L2(Ω) .

Combining this with (10.4.6) and (10.4.7), we have the following.

(10.4.8) Theorem. Let u be defined by (10.0.1) and let uh be defined by
(10.4.3) where Vh is defined in (4.7.2) (with Ω̃ = Ωh and F̃ = Fh). Then

‖u− ûh‖H1(Ω) ≤ C hk−1
(
‖u‖Hk(Ω) + ‖f‖W 1

∞(Ω)

)
for h sufficiently small (see (10.4.1) for the definition of ûh).
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10.5 Discontinuous Finite Elements

Consider (10.0.1) for a bounded polygonal domain Ω ⊂ IR2 and f ∈ L2(Ω).
The ultimate variational crime is committed by using discontinuous finite
elements, which can be defined on a family of partitions Ph of Ω with
hanging nodes (cf. Fig. 10.4). More precisely, for each h, the partition Ph

consists of open triangles such that

Ω =
⋃

T∈Ph

T and Ti ∩ Tj = ∅ if Ti, Tj ∈ Ph, Ti �= Tj .

Fig. 10.4. A partition with hanging nodes

The set of vertices of the triangles in Ph is denoted by Vh, and Eh is the
set of open line segments on the boundaries of the triangles in Ph whose
endpoints belong to Vh. We shall refer to the line segments in Eh as the
edges of Ph. For example, the partition of the square in Fig. 10.6 has 17
edges. For e ∈ Eh, we will denote by Pe the set of triangles in Ph containing
e on their boundaries. (Pe has two elements if e ⊂ Ω and one element if
e ⊂ ∂Ω.)

(10.5.1) Definition. A family of partitions is said to be non-degenerate (or
regular) if there exist positive numbers θ∗ and � independent of h such that
(i) if T ∈ Ph, then the angles of T are greater than or equal to θ∗;
(ii) if e ∈ Eh and T ∈ Pe, then |∂T |/|e| ≤ �.
Here |∂T | (resp. |e|) denotes the length of ∂T (resp. e).

Roughly speaking, a family of partitions Ph is non-degenerate (or reg-
ular) if and only if the chunkiness parameters (cf. Definition 4.2.16) of
the triangles in Ph are uniformly bounded and the hanging nodes are dis-
tributed in a quasi-uniform manner on the boundaries of the triangles in
Ph. Exercise 10.x.29 gives an equivalent condition for a family of parti-
tions to be non-degenerate. We will assume throughout this section that
Ph is a non-degenerate family of partitions and refer frequently below to
the constants θ∗ and �.

The discontinuous P1 finite element space is defined to be

(10.5.2) Vh = {v ∈ L2(Ω) : vT = v
∣∣
T
∈ P1(T ) ∀T ∈ Ph}.
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We will consider two interior penalty methods for (10.0.1) based on Vh.
Let u be the solution of (10.0.1), v ∈ Vh and T ∈ Ph. For simplicity,

we assume that Ω is convex so that u ∈ H2(Ω) and the following Green’s
formula is obviously valid:

(10.5.3)
∫

T

∇u · ∇v dx =
∫

T

fv dx +
∫

∂T

∇u · (vn) ds,

where n is the unit outer normal along ∂T . (In fact, the Green’s for-
mula (10.5.3) can be justified without the convexity assumption, see ex-
ercise 10.x.30.)

Summing up (10.5.3) over all the triangles in Ph, we have∑
T∈Ph

∫
T

∇u · ∇v dx =
∫

Ω

fv dx +
∑

T∈Ph

∫
∂T

∇u · (vn) ds(10.5.4)

=
∫

Ω

fv dx +
∑
e∈Eh

∫
e

∇u · [[v]] ds,

where the jump [[v]] is defined as in Section 10.3.
Since [[u]] = 0 and ∇u has a well-defined trace on the edges of Ph, we

can rewrite (10.5.4) as∑
T∈Ph

∫
T

∇u · ∇v dx−
∑
e∈Eh

∫
e

{{∇u}} · [[v]] ds(10.5.5)

±
∑
e∈Eh

∫
e

{{∇v}} · [[u]] ds =
∫

Ω

fv dx,

where on an edge e

{{∇u}} = (1/2)
[
∇(u|T1) +∇(u|T2)

]
if e is an interior edge shared by the triangles T1 and T2, and

{{∇u}} = ∇u

if e is a boundary edge.
Finally, for any positive number (penalty parameter) η, we can also

include the vanishing term

η

|e|
∑
e∈Eh

∫
e

[[u]] · [[v]] ds

in (10.5.5) to arrive at

(10.5.6) a±
h (u, v) =

∫
Ω

fv dx ∀ v ∈ Vh,

where the mesh-dependent bilinear forms a±
h (·, ·) are defined by
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a±
h (w, v) =

∑
T∈Ph

∫
T

∇w · ∇v dx−
∑
e∈Eh

∫
e

{{∇w}} · [[v]] ds(10.5.7)

±
∑
e∈Eh

∫
e

{{∇v}} · [[w]] ds +
η

|e|
∑
e∈Eh

∫
e

[[w]] · [[v]] ds.

We can now define the interior penalty methods: Find u±
h ∈ Vh such

that

(10.5.8) a±
h (u±

h , v) =
∫

Ω

fv dx ∀ v ∈ Vh.

(10.5.9) Remark. The symmetric interior penalty method (corresponding to
the negative sign) was first studied in Wheeler (1978) and Arnold (1982).
The nonsymmetric interior penalty method (corresponding to the positive
sign) was introduced in Rivière, Wheeler and Girault (2001). The nonsym-
metric method with η = 0 was introduced earlier by Baumann and Oden
and analyzed in Oden, Babuška and Baumann (1998).

In view of (10.5.6), the interior penalty methods defined by (10.5.8)
are consistent. Hence the convergence of these methods depend on their
stability, which involves boundedness and coercivity of the bilinear forms
a±

h (·, ·).
Let the mesh-dependent energy norm ‖ · ‖h be defined by

‖v‖2h =
∑

T∈Ph

‖∇v‖2L2(T ) + η−1
∑
e∈Eh

|e|‖{{∇v}}‖2L2(e)(10.5.10)

+ 2η
∑
e∈Eh

|e|−1‖[[v]]‖2L2(e),

where we have suppressed the dependence on η to keep the notation simple.
It follows from the Cauchy-Schwarz inequality (cf. exercise 10.x.32) that
a±

h (·, ·) is bounded by ‖ · ‖h, i.e.,

(10.5.11)
∣∣a±

h (w, v)
∣∣ ≤ ‖w‖h‖v‖h ∀ v, w ∈ H̊1(Ω) + Vh.

For the coercivity of the bilinear forms a±
h (·, ·) on Vh, we need another

mesh-dependent energy norm ||| · |||h defined by

(10.5.12) |||v|||2h =
∑

T∈Ph

‖∇v‖2L2(T ) + η
∑
e∈Eh

|e|−1‖[[v]]‖2L2(e),

where the dependence on η is also suppressed in the notation.
It follows immediately from (10.5.7) that

(10.5.13) a+
h (v, v) = |||v|||2h ∀ v ∈ Vh,
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i.e., a+
h (·, ·) is coercive with respect to |||·|||h, which implies in particular that

the discrete problem is uniquely solvable. In view of (10.5.11) and (10.5.13),
we can establish the stability of the nonsymmetric interior penalty method
by relating the two norms ‖ · ‖h and ||| · |||h.

Clearly we have

(10.5.14) |||v|||h ≤ ‖v‖h ∀ v ∈ H̊1(Ω) + Vh.

In the other direction, we have the following result.

(10.5.15) Lemma. There exists a positive constant C depending only on the
constants θ∗ and � in Definition 10.5.1 such that

(10.5.16) ‖v‖h ≤ C(1 + η−1)|||v|||h ∀ v ∈ Vh.

Proof. Let v ∈ Vh be arbitrary. Since ∇v is a piecewise constant vector, we
have, by the definition of {{∇(·)}},∑

e∈Eh

|e|‖{{∇v}}‖2L2(e) ≤ C
∑
e∈Eh

|∂T |2
∑

T∈Pe

|∇(v|T )|2

≤ C
∑
e∈Eh

∑
T∈Pe

‖∇v‖2L2(T )(10.5.17)

≤ C
∑

T∈Ph

‖∇v‖2L2(T ),

where C is a generic positive constant depending only on θ∗ and �. Note
that we have used the fact that the number of edges of Ph that appear
on the boundary of any triangle in Ph is uniformly bounded because of
condition (ii) in Definition (10.5.1).

The estimate (10.5.16) follows from (10.5.10), (10.5.12) and (10.5.17).
�	

We can now prove an abstract error estimate for the nonsymmetric
interior penalty method.

(10.5.18) Lemma. Let u be the solution of (10.0.1) and u+
h ∈ Vh satisfy

a+
h (u+

h , v) =
∫

Ω

fv dx ∀ v ∈ Vh.

There exists a positive constant C depending only on the constants θ∗ and
� in Definition 10.5.1 such that

‖u− u+
h ‖h ≤ C(1 + η−1)2 inf

v∈Vh

‖u− v‖h.

Proof. Let v ∈ Vh be arbitrary. We have
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‖u− u+
h ‖h ≤ ‖u− v‖h + ‖u+

h − v‖h

≤ ‖u− v‖h + C(1 + η−1)|||u+
h − v|||h (by 10.5.16)

≤ ‖u− v‖h + C(1 + η−1) sup
w∈Vh\{0}

|a+
h (u+

h − v, w)|
|||w|||h

(by 10.5.13)

= ‖u− v‖h + C(1 + η−1) sup
w∈Vh\{0}

|a+
h (u− v, w)|
|||w|||h

(10.5.6 and 10.5.8)

≤ C(1 + η−1)2‖u− v‖h, (10.5.11 and 10.5.16)

and the lemma follows. �	

The following lemma shows that the symmetric interior penalty method
is also coercive with respect to ||| · |||h provided the penalty parameter η is
sufficiently large.

(10.5.19) Lemma. There exists a positive number η∗, depending only on the
constants θ∗ and � in Definition 10.5.1, such that

(10.5.20) a−
h (v, v) ≥ 1

2
|||v|||2h ∀ v ∈ Vh, η ≥ η∗.

Proof. Let v ∈ Vh be arbitrary. From (10.5.17) and the Cauchy-Schwarz
inequality we obtain, for any ε > 0,∑

e∈Eh

∫
e

{{∇v}} · [[v]] ds ≤
∑
e∈Eh

|e|1/2‖{{∇v}}‖2L2(e)|e|−1/2‖[[v]]‖2L2(e)

≤
( ∑

e∈Eh

|e|‖{{∇v}}‖2L2(e)

)1/2( ∑
e∈Eh

|e|−1‖[[v]]‖2L2(e)

)1/2

≤
(
C∗

∑
T∈Ph

‖∇v‖2L2(T )

)1/2( ∑
e∈Eh

|e|−1‖[[v]]‖2L2(e)

)1/2

≤ εC∗
2

∑
T∈Ph

‖∇v‖2L2(T ) +
1
2ε

∑
e∈Eh

|e|−1‖[[v]]‖2L2(e),

where the positive constant C∗ depends only on θ∗ and �. It then follows
from (10.5.7) that

a−
h (v, v) ≥ (1− εC∗)

∑
T∈T h

‖∇v‖2L2(T ) + (η − 1
ε
)
∑
e∈Eh

|e|−1‖[[v]]‖2L2(e),

and (10.5.20) is valid if we choose ε = 1/(2C∗) and η∗ = 2−1 + ε−1. �	

In particular, the discrete problem for the symmetric interior penalty
method is uniquely solvable if η ≥ η∗. The following result for the symmetric
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interior penalty method can then be established using (10.5.11), (10.5.20)
and arguments similar to the ones in the proof of Lemma 10.5.18.

(10.5.21) Lemma. Let u be the solution of (10.0.1), η ≥ η∗, and u−
h ∈ Vh

satisfy

a−
h (u−

h , v) =
∫

Ω

fv dx ∀ v ∈ Vh.

There exists a positive constant C depending only on the constants θ∗ and
� in Definition 10.5.1 such that

‖u− u−
h ‖h ≤ C(1 + η−1)2 inf

v∈Vh

‖u− v‖h.

Let e ∈ Eh. It follows from the trace theorem with scaling, conditions
(i) and (ii) in Definition 10.5.1, and the definitions of {{∇(·)}} and [[·]] that

|e|‖{{∇(u− v)}}‖2L2(e) ≤ C
∑

T∈Pe

|∂T |‖∇(u− v)‖2L2(∂T )

≤ C
∑

T∈Pe

(
|u− v|2H1(T ) + h2

T |u|2H2(T )

)
,

|e|−1‖[[u− v]]‖2L2(e) ≤ C
∑

T∈Pe

( |∂T |
|e|

) 1
|∂T | ‖u− v‖2L2(T )

≤ C
∑

T∈Pe

(
h−2

T ‖u− v‖2L2(T ) + |u− v|2H1(T )

)
,

where hT = diam T , and the (generic) positive constant C depends only on
θ∗ and �. Summing up these estimates over all the edges in Eh, we find∑

e∈Eh

|e|‖{{∇(u− v)}}‖2L2(e)(10.5.22)

≤ C
∑

T∈Ph

(
|u− v|2H1(T ) + h2

T |u|2H2(T )

)
,

∑
e∈Eh

|e|−1‖[[u− v]]‖2L2(e)(10.5.23)

≤ C
∑

T∈Ph

(
h−2

T ‖u− v‖2L2(T ) + |u− v|2H1(T )

)
.

Combining (10.5.10), (10.5.22) and (10.5.23), we have the following
lemma, which shows that ‖u− v‖h can be estimated element by element.

(10.5.24) Lemma. There exists a positive constant C depending only on the
constants θ∗ and � in Definition 10.5.1 such that, for any v ∈ Vh,
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‖u− v‖2h ≤
∑

T∈Ph

|u− v|2H1(T ) + Cη−1
∑

T∈Ph

(
|u− v|2H1(T ) + h2

T |u|2H2(T )

)
+ Cη

∑
T∈Ph

(
h−2

T ‖u− v‖2L2(T ) + |u− v|2H1(T )

)
.

The following theorem provides concrete error estimates for the interior
penalty methods.

(10.5.26) Theorem. Let u be the solution of (10.0.1) and u±
h ∈ Vh satisfy

(10.5.8), where we assume η is greater than or equal to the constant η∗ in
Lemma 10.5.19 for the symmetric interior penalty method. There exists a
positive constant C depending only on the constants θ∗ and � such that

(10.5.27) ‖u− u±
h ‖h ≤ C(η + η−5)1/2h|u|H2(Ω),

where h = maxT∈Ph hT .

Proof. Let Ihu ∈ Vh be the piecewise linear interpolant of u, i.e., for any
T ∈ Ph, (Ihu)

∣∣
T

agrees with u at the three vertices of T . It follows from
Lemma 10.5.18, Lemma 10.5.21 and Lemma 10.5.24 that

‖u− u±
h ‖2h ≤ C(1 + η−1)4‖u− Ihu‖2h

≤ C(η + η−5)
( ∑

T∈Ph

h−2
T ‖u− Ihu‖2L2(T ) +

∑
T∈Ph

|u− Ihu|2H1(T )

+
∑

T∈Ph

h2
T |u|2H2(T )

)
,

which together with Theorem 4.4.20 implies (10.5.27). �	

Note that when Ph is actually a family of triangulations we can take
advantage of the continuity of Ihu to replace (10.5.27) by

‖u− u±
h ‖h ≤ C(1 + η−5)1/2h|u|H2(Ω),

i.e., the rate of convergence is independent of the penalty parameter η as
long as it is bounded away from 0.

For the symmetric interior penalty method, the Galerkin orthogonality
relation

a−
h (u− uh, v) = 0 ∀ v ∈ Vh,

which follows from (10.5.6) and (10.5.8), allows the application of the stan-
dard duality argument to yield the following L2 error estimate:

(10.5.28) ‖u− u−
h ‖L2(Ω) ≤ C(η + η−5)h2|u|H2(Ω).

However, such an estimate is not available for the nonsymmetric interior
penalty method because it is not adjoint consistent.
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(10.5.29) Remark. Interior penalty methods belong to the class of discontin-
uous Galerkin methods. A general analysis of discontinuous Galerkin meth-
ods for elliptic problems is given in Arnold, Brezzi, Marini and Cockburn
(2001). Applications of discontinuous Galerkin methods to other problems
can be found in Cockburn, Karniadakis and Shu (2000).

10.6 Poincaré-Friedrichs Inequalities for Piecewise W 1
p

Functions

Let Ω ⊂ IR2 be a bounded and connected polygonal domain and 1 ≤ p ≤ ∞.
The goal of this section is to extend the following versions of the Poincaré-
Freidrichs inequalities (cf. Exercise 4.x.4 and Exercise 5.x.13) to piecewise
W 1

p functions:

‖u‖Lp(Ω) ≤ C
(∣∣∣ ∫

Ω

u dx
∣∣∣+ |u|W 1

p (Ω)

)
∀u ∈ W 1

p (Ω),(10.6.1)

‖u‖Lp(Ω) ≤ C
(∣∣∣ ∫

∂Ω

u ds
∣∣∣+ |u|W 1

p (Ω)

)
∀u ∈ W 1

p (Ω),(10.6.2)

where the positive constant C depends only on Ω. Such inequalities can be
applied to the finite element functions in Section 10.3 and Section 10.5.

Let T be a simplicial triangulation of Ω and W 1
p (Ω, T ) be the space

of piecewise W 1
p functions with respect to T , i.e.,

(10.6.5) W 1
p (Ω, T ) = {v ∈ Lp(Ω) : vT = v

∣∣
T
∈ W 1

p (T ) ∀T ∈ T }.

The set of the interior (resp. boundary) edges of T will be denoted by E i(T )
(resp. Eb(T )) and the set of the vertices of T will be denoted by V(T ).

In order to extend (10.6.1) and (10.6.2) to W 1
p (Ω, T ), we first establish

Poincaré-Friedrichs inequalities for the space P0(Ω, T ) of piecewise constant
functions with respect to T .

(10.6.6) Lemma. Let 1 ≤ p < ∞. There exists a positive constant C, de-
pending only on the minimum angle of T , such that

‖c‖Lp(Ω) ≤ C
[ ∣∣∣ ∫

Ω

c dx
∣∣∣+ ( ∑

e∈Ei(T )

|e|1−p‖[[c]]‖p
Lp(e)

)1/p ]
(10.6.7)

∀ c ∈ P0(Ω, T ), and

‖c‖Lp(Ω) ≤ C
[ ∣∣∣ ∫

∂Ω

c ds
∣∣∣+ ( ∑

e∈Ei(T )

|e|1−p‖[[c]]‖p
Lp(e)

)1/p ]
(10.6.8)

∀ c ∈ P0(Ω, T ), where the jump [[c]] is defined as in Section 10.3.
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Proof. Given any c ∈ P0(Ω, T ), we define Ec to be the continuous piecewise
linear function (with respect to T ) that takes the average value of c at any
vertex of T , i.e.,

(Ec)(x) =
1
|Tx|

∑
T∈Tx

cT ∀x ∈ V(T ),

where Tx is the set of the triangles in T that share the common vertex x
and |Tx| is the number of triangles in Tx.

Let T ∈ T be arbitrary and VT be the set of the vertices of T . We have

‖c− Ec‖p
Lp(T ) ≤ Ch2

T

∑
x∈VT

∣∣cT − (Ec)(x)
∣∣p

≤ Ch2
T

∑
x∈VT

∣∣∣ 1
|Tx|

∑
T ′∈Tx

(
cT − cT ′

)∣∣∣p (definition of Ec)

≤ Ch2
T

∑
x∈VT

1
|Tx|

∑
T ′∈Tx

|cT − cT ′ |p, (Hölder’s inequality)

where hT = diam T and C is a (generic) positive constant that only depends
on the minimum angle of T .

Note that any triangle T ′ ∈ Tx can be connected to T by a chain of
triangles in Tx, where any two consecutive triangles share a common edge.
In other words there exist triangles T1, T2, . . . Tk ∈ Tx (k ≤ |Tx|) such that
T1 = T ′, Tk = T , and Tj and Tj+1 share a common edge ej for 1 ≤ j ≤ k−1.
Therefore, we also have

|cT − cT ′ |p =
∣∣∣ k−1∑

j=1

(cTj+1
− cTj

)
∣∣∣p

≤ (k − 1)p−1
k−1∑
j=1

|cTj+1
− cTj

|p (Hölder’s inequality)

≤ |Tx|p−1
k−1∑
j=1

1
|ej |

‖[[c]]‖p
Lp(ej)

. (definition of [[·]])

Since the edge ej must be an interior edge, we can combine the two
previous estimates to obtain

‖c− Ec‖p
Lp(Ω) =

∑
T∈T

‖c−Ec‖p
Lp(T )

≤ C
∑
T∈T

h2
T

∑
x∈VT

|Tx|p−2
∑
e∈Ei

x

1
|e| ‖[[c]]‖

p
Lp(e)(10.6.9)

≤ C( max
x∈V(T )

|Tx|)p−2
∑

e∈Ei(T )

|e|‖[[c]]‖p
Lp(e),
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where E i
x is the set of interior edges of T emanating from the vertex x.

It also follows from (10.6.9) and Lemma 4.5.3 that( ∑
T∈T

|c− Ec|pW 1
p (T )

)1/p

≤ C
( ∑

T∈T
h−p

T ‖c− Ec‖p
Lp(T )

)1/p

(10.6.10)

≤ C( max
x∈V(T )

|Tx|)1−(2/p)
( ∑

e∈Ei(T )

|e|1−p‖[[c]]‖p
Lp(e)

)1/p

.

We can now complete the proof of (10.6.7) as follows.

‖c‖Lp(Ω) ≤ ‖Ec‖Lp(Ω) + ‖c− Ec‖Lp(Ω)

≤ C
[ ∣∣∣ ∫

Ω

Ec dx
∣∣∣+ |Ec|W 1

p (Ω) +
( ∑

e∈Ei(T )

|e|‖[[c]]‖p
Lp(e)

)1/p ]
(10.6.1 and 10.6.9)

≤ C
[ ∣∣∣ ∫

Ω

c dx
∣∣∣+ ‖c− Ec‖Lp(Ω) +

( ∑
T∈T

|Ec|pW 1
p (T )

)1/p

+
( ∑

e∈Ei(T )

|e|‖[[c]]‖p
Lp(e)

)1/p ]
(Hölder’s inequality)

= C
[ ∣∣∣ ∫

Ω

c dx
∣∣∣+ ‖c− Ec‖Lp(Ω) +

( ∑
T∈T

|Ec− c|pW 1
p (T )

)1/p

+
( ∑

e∈Ei(T )

|e|‖[[c]]‖p
Lp(e)

)1/p ]
≤ C

[ ∣∣∣ ∫
Ω

c dx
∣∣∣+ ( ∑

e∈Ei(T )

|e|1−p‖[[c]]‖p
Lp(e)

)1/p ]
,

(10.6.9 and 10.6.10)

where we have also used the fact that (maxx∈V(T ) |Tx|)1−(2/p) is bounded
by a constant that depends only on the minimum angle of T .

Similarly, we have

‖c‖Lp(Ω) ≤ ‖Ec‖Lp(Ω) + ‖c− Ec‖Lp(Ω)

≤ C
[ ∣∣∣ ∫

∂Ω

Ec ds
∣∣∣+ |Ec|W 1

p (Ω) +
( ∑

e∈Ei(T )

|e|‖[[c]]‖p
Lp(e)

)1/p ]
(10.6.2 and 10.6.9)

≤ C
[ ∣∣∣ ∫

∂Ω

c ds
∣∣∣+ ( ∑

e∈Ei(T )

|e|‖[[c]]‖p
Lp(e)

)1/p

+
∣∣∣ ∫

∂Ω

(Ec− c) ds
∣∣∣+ ( ∑

T∈T
|Ec− c|pW 1

p (T )

)1/p ]
,
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and, repeating the arguments that led to (10.6.9),∣∣∣ ∫
∂Ω

(Ec− c) ds
∣∣∣p ≤ |∂Ω|p−1

∫
∂Ω

|Ec− c|p ds

= |∂Ω|p−1
∑

e∈Eb(T )

‖Ec− c‖p
Lp(e)

≤ C|∂Ω|p−1
∑

e∈Eb(T )

|e|
∑
x∈Ve

∣∣(Ec)(p)− cTe

∣∣p
≤ C( max

x∈V(T )
|Tx|)p−2

∑
e∈Ei(T )

‖[[c]]‖p
Lp(e),

where Ve is the set of the two endpoints of the edge e and Te is the triangle
in T such that e ⊂ ∂T .

The inequality (10.6.8) follows from these estimates and (10.6.10). �	

With Lemma 10.6.6 in hand, we can now extend the Poincaré-Friedrichs
inequalities to W 1

p (Ω, T ).
Let Me be the map defined by

Mev =
1
|e|

∫
e

v ds ∀ v ∈ L1(e).

Note that Hölder’s inequality implies

(10.6.11) ‖Mev‖Lp(e) ≤ ‖v‖Lp(e) ∀ v ∈ Lp(e), 1 ≤ p ≤ ∞.

(10.6.12) Theorem. Let 1 ≤ p < ∞. There exists a positive constant C,
depending only on the minimum angle of T , such that

‖v‖Lp(Ω) ≤ C
[ ∣∣∣ ∫

Ω

v dx
∣∣∣+ ( ∑

T∈T
|v|pW 1

p (T )

)1/p

(10.6.13)

+
( ∑

e∈Ei(T )

|e|1−p‖Me[[v]]‖p
Lp(e)

)1/p ]
∀ v ∈ W 1

p (Ω, T ),

‖v‖Lp(Ω) ≤ C
[ ∣∣∣ ∫

∂Ω

v ds
∣∣∣+ ( ∑

T∈T
|v|pW 1

p (T )

)1/p

(10.6.14)

+
( ∑

e∈Ei(T )

|e|1−p‖Me[[v]]‖p
Lp(e)

)1/p ]
∀ v ∈ W 1

p (Ω, T ).

Proof. Let v ∈ W 1
p (Ω, T ) be arbitrary and v ∈ P0(Ω, T ) be the piecewise

constant function that equals the mean of v on each T ∈ T . We have
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‖v‖Lp(Ω) ≤ ‖v − v‖Lp(Ω) + ‖v‖Lp(Ω)

≤ C
[( ∑

T∈T
‖v − v‖p

Lp(T )

)1/p

+
∣∣∣ ∫

Ω

v dx
∣∣∣

+
( ∑

e∈Ei(T )

|e|1−p‖Me[[v]]‖p
Lp(e)

)1/p ]
(10.6.7 and Me[[v]] = [[v]])

≤ C
[( ∑

T∈T
hp

T |v|
p
W 1

p (T )

)1/p

+
∣∣∣ ∫

Ω

v dx
∣∣∣+( ∑

e∈Ei(T )

|e|1−p‖Me[[v]]‖2L2(e)

)1/p

+
( ∑

e∈Ei(T )

|e|1−p‖Me[[v − v]]‖p
Lp(e)

)1/p ]
,

(triangle inequality and (4.3.15) with scaling)

where C is a (generic) positive constant that depends only on the minimum
angle of T .

Since( ∑
e∈Ei(T )

|e|1−p‖Me[[v − v]]‖p
Lp(e)

)1/p

≤ C
( ∑

T∈T
h1−p

T ‖v − v‖p
Lp(∂T )

)1/p

(by 10.6.11)

≤ C
[ ∑

T∈T
h2−p

T

(
h−2

T ‖v − v‖p
Lp(T ) + hp−2

T |v − v|pW 1
p (T )

)]1/p

(Trace Theorem with scaling)

≤ C
( ∑

T∈T
|v|pW 1

p (T )

)1/p

, (4.3.15 with scaling)

we have established (10.6.13).
Similarly, we have

‖v‖Lp(Ω) ≤ ‖v − v‖Lp(Ω) + ‖v‖Lp(Ω)

≤ C
[( ∑

T∈T
hp

T |v|
p
W 1

p (T )

)1/p

+
∣∣∣ ∫

∂Ω

v ds
∣∣∣

+
( ∑

e∈Ei(T )

|e|1−p‖Me[[v]]‖p
Lp(e)

)1/p]
(4.3.15 with scaling and 10.6.8)

≤ C
[ ∣∣∣ ∫

∂Ω

v ds
∣∣∣+ ( ∑

T∈T
|v|pW 1

p (T )

)1/p

+
( ∑

e∈Ei(T )

|e|1−p‖Me[[v]]‖p
Lp(e)

)1/p

+
∣∣∣ ∫

∂Ω

(v − v) ds
∣∣∣ ]
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and∣∣∣ ∫
∂Ω

(v − v) ds
∣∣∣ ≤ |∂Ω|p−1

(∫
∂Ω

|v − v|p ds
)1/p

= |∂Ω|p−1
( ∑

e∈Eb(T )

‖v − v‖p
Lp(e)

)1/p

≤ C
( ∑

T∈T

∫
∂T

‖v − v‖p
Lp(∂T )

)1/p

≤ C
( ∑

T∈T
hp−1

T |v|pW 1
p (T )

)1/p

,

which together imply (10.6.14). �	

The following result is obtained by letting p ↑ ∞ in Theorem 10.6.12.

(10.6.15) Theorem. There exists a positive constant C, depending only on
the minimum angle of T , such that

‖v‖L∞(Ω) ≤ C
( ∣∣∣ ∫

Ω

v dx
∣∣∣+ max

T∈T
|v|W 1

∞(T ) + max
e∈Ei(T )

|e|−1‖Me[[v]]‖L∞(e)

)
,

‖v‖L∞(Ω) ≤ C
( ∣∣∣ ∫

∂Ω

v ds
∣∣∣+ max

T∈T
|v|W 1

∞(T ) + max
e∈Ei(T )

|e|−1‖Me[[v]]‖L∞(e)

)
,

∀ v ∈ W 1
∞(Ω, T ).

As an application we consider a nonconforming P1 finite element func-
tion v associated with T such that either

∫
Ω

v dx = 0 or v vanishes
at the midpoints of the boundary edges. A direct application of Theo-
rem 10.6.12, Theorem 10.6.15 and the midpoint rule gives the following
Poincaré-Friedrichs inequalities:

‖v‖Lp(Ω) ≤ C
( ∑

T∈T
|v|pW 1

p (T )

)1/p

for 1 ≤ p < ∞

and
‖v‖L∞(Ω) ≤ C max

T∈T
|v|W 1

∞(T ),

where the positive constant C depends only on the minimum angle of T .
Finally, we extend the Poincaré-Friedrichs inequalities to functions that

are piecewise W 1
p with respect to a simplicial partition P of Ω. Such in-

equalities can be applied to the discontinuous finite element functions in
Section 10.5.

Let W 1
p (Ω,P) be the space of piecewise W 1

p functions with respect to
P, i.e.,

W 1
p (Ω,P) = {v ∈ Lp(Ω) : vT = v

∣∣
T
∈ W 1

p (T ) ∀T ∈ P}.

The set E(P) of edges of P and the set V(P) of vertices of P are defined
as in Section 10.5, and we use E i(P) to denote the set of interior edges of
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P. The regularity of P is quantified by the minimum angle of P and the
number �(P) defined by

�(P) = max{|∂T |/|e| : T ∈ P, e ∈ E(P), e ⊂ ∂T}.

(10.6.16) Theorem. There exists a positive constant C depending only on
the minimum angle of P and �(P) such that

‖v‖Lp(Ω) ≤ C
[ ∣∣∣ ∫

Ω

v dx
∣∣∣+ ( ∑

T∈P
|v|pW 1

p (T )

)1/p

+
( ∑

e∈Ei(P)

|e|1−p‖Me[[v]]‖p
Lp(e)

)1/p ]
,

‖v‖Lp(Ω) ≤ C
[ ∣∣∣ ∫

∂Ω

v ds
∣∣∣+ ( ∑

T∈P
|v|pW 1

p (T )

)1/p

+
( ∑

e∈Ei(P)

|e|1−p‖Me[[v]]‖p
Lp(e)

)1/p ]
,

∀ v ∈ W 1
p (Ω,P) and 1 ≤ p < ∞, and

‖v‖L∞(Ω) ≤ C
( ∣∣∣ ∫

Ω

v dx
∣∣∣+ max

T∈P
|v|W 1

∞(T ) + max
e∈Ei(P)

|e|−1‖Me[[v]]‖L∞(e)

)
,

‖v‖L∞(Ω) ≤ C
( ∣∣∣ ∫

∂Ω

v ds
∣∣∣+ max

T∈P
|v|W 1

∞(T ) + max
e∈Ei(P)

|e|−1‖Me[[v]]‖L∞(e)

)
,

∀ v ∈ W 1
∞(Ω,P).

Proof. Let T be the simplicial triangulation of Ω created by connecting the
center of each T ∈ P to the vertices of P that belong to ∂T . Then the
minimum angle of T depends on the minimum angle of P and �(P). Since
W 1

p (Ω,P) ⊂ W 1
p (Ω, T ) and the jump of v ∈ W 1

p (Ω,P) is zero across any
edge of T that is not an edge of P, the Poincaré-Friedrichs inequalities for
W 1

p (Ω,P) follow immediately from Theorem 10.6.12 and Theorem 10.6.15.
�	

(10.6.17) Remark. In view of (10.6.11), the inequalities in Theorems 10.6.12,
10.6.15 and 10.6.16 remain valid without the operator Me.

(10.6.18) Remark. The Poincaré-Friedrichs inequalities in this section can
be extended to general partitions and three dimensional domains (see Bren-
ner 2003a). Their applications to the analyzes of discontinuous Galerkin
methods can be found for example in Cockburn, Kanschat and Schötzau
(2005), Carrero, Cockburn and Schötzau (2006), Gudi and Pani (2007), and
Brenner and Owens (2007).
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10.x Exercises

10.x.1 Prove that the polynomial Lk defined in (10.2.3) has distinct roots
0 = ξ0 < ξ1 < . . . < ξk−1 = 1. (Hint: let ξ1 < . . . < ξr be the roots
in (0, 1) of odd multiplicity. Show that Lk(x)

∏r
i=1(x− ξi) does not

change sign in [0, 1]. Show that r < k−2 yields a contradiction using
(10.2.8).)

10.x.2 Prove Corollary 10.2.9. (Hint: add and subtract Q2k−2f and apply
the techniques of Sect. 4.4.)

10.x.3 Show that Lagrange elements on curved triangles are well defined
for h sufficiently small. (Hint: use a dilation to map to a family
of reference elements of size one with one curved edge. Observe
that this edge is only O(h) from a fixed straight edge and use a
perturbation argument.)

10.x.4 Show that Theorem 10.2.36 can be improved to say that

‖u− uh‖H1(Ω) ≤ Cρ hk−1 ‖u‖Hk(Ω)

for h sufficiently small. (Hint: approximate ∂u
∂ν by a polynomial P (s)

and estimate separately the two terms∫
∂Ω

(
∂u

∂ν
− P

)
w ds &

∫
∂Ω

Pw ds.

Use the fact that w = O(h2) on ∂Ω if ‖w‖W 1
∞(Ω) = 1.)

10.x.5 Prove Lemma 10.1.7. (Hint: choose v to be the orthogonal projection
of u onto Vh and follow (10.1.3).)

10.x.6 Can Theorem 10.4.8 be improved with respect to the norm on f in
the error estimate? For example, could it say that

‖u− ûh‖H1(Ω) ≤ Cρ hk−1
(
‖u‖Hk(Ω) + ‖f‖Hk−2(Ω)

)
for k ≤ 3 + n/2? (Hint: consider a bound for

∥∥f − f ◦ Φh
∥∥

H−1(Ω)
.)

10.x.7 Prove the trace estimate (10.3.8). (Hint: Apply the trace theorem
on the reference simplex and then use a homogeneity/scaling argu-
ment.)

10.x.8 Prove the discrete estimate (10.3.9).

10.x.9 Show that the Morley finite element depicted in Fig. 10.5 is a finite
element. Here K = triangle, P = {quadratic polynomials} and N =
{evaluations at the vertices and evaluations of the normal deriva-
tives at the midpoints}. (Hint: a quadratic that vanishes at triangle
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vertices attains an extremum at edge midpoints. Use this to show
N v = {0} implies ∇v ≡ 0 for v ∈ P.)

10.x.10 Consider the biharmonic problem described in Sect. 5.9 and define
a nonconforming bilinear form ah(u, v) by∑

T∈T h

∫
T

∆u∆v − (1− ν) (2uxxvyy + 2uyyvxx − 4uxyvxy) dxdy

where T h is a triangulation of Ω and 0 < ν < 1. Let Vh be the
Morley finite element space associated with T h. Show that ah(·, ·)
is non-degenerate on V ∪Vh. (Hint: use (5.9.2) and see the discussion
following (10.3.4).)

10.x.11 Let G be the union of two non-degenerate triangles having a com-
mon edge e, and diamG = 1. Let V = {z : z|Ti

is quadratic, z
is continuous at the end points of e, and ∇z is continuous at the
midpoint of e}. Prove that there exists C < ∞ such that

inf
P∈P1

‖z − P‖L2(G) ≤ C

2∑
i=1

|z|H2(Ti)

for all z ∈ V . (Hint: show that ‖z‖L2(T ) ≤ C|z|H2(T ) for all z ∈ P2

that vanish at the vertices of an edge of T and that have a vanishing
normal derivative at the midpoint of that edge.)

10.x.12 Let Dkf (1 ≤ k ≤ 3) denote derivatives of f of order k which come
from the integration by parts formula∫

T

(
∆z∆ζ − (1− ν)(2zxxζyy + 2zyyζxx − 4zxyζxy)

)
dxdy

=
∫

∂T

(D1zD2ζ + zD3ζ) ds +
∫

T

z∆2ζ dxdy.

Let G be the union of two non-degenerate triangles having a com-
mon edge e, and diamG = 1. Let V = {z : z|Ti

is quadratic, z
is continuous at the end points of e, and ∇z is continuous at the
midpoint of e}. Prove that there exists C < ∞ such that∣∣∣∣∫

e

D1(z|T1 − z|T2)D2ζ ds +
∫

e

(z|T1 − z|T2) D3ζ ds

∣∣∣∣
≤ C|z|G

(
|ζ|H3(G) + ‖∆2ζ‖L2(G)

)
,

where z ∈ V , ζ ∈ H3(G), ∆2ζ ∈ L2(G) and

|z|2G =
2∑

i=1

∫
Ti

(
(%z)2 − (1− ν)(4zxxzyy − 4z2

xy)
)

dxdy .
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(Hint: use the integration by parts formula to prove that the bound-
ary term is bounded by |z|G|ζ|G + ‖z‖L2(G)‖∆2ζ‖L2(G) and then
apply the Bramble-Hilbert Lemma 4.3.8 and exercise 10.x.11, uti-
lizing the fact that the boundary term does not change if we add a
quadratic to ζ and any smooth function to z.)

10.x.13 Let ah(·, ·) and Vh be as in exercise 10.x.10, and let uh ∈ Vh be such
that

ah(uh, v) =
∫

Ω

fv dx ∀ v ∈ Vh.

Assuming that the data f and solution u of (5.9.4) satisfy f ∈ L2(Ω)
and u ∈ H3(Ω), show that

‖u− uh‖h ≤ C h
(
|u|H3(Ω) + h‖f‖L2(Ω)

)
.

where the associated energy norm is defined by ‖u‖h :=
√

ah(u, u).
(Hint: apply exercise 10.x.12.)

10.x.14 Consider the nonconforming method for the biharmonic problem
described in exercise 10.x.13 based on the Morley element. Assuming
only that the solution u of (5.9.4) is in H3(Ω), can you show that

‖u− uh‖h ≤ C h |u|H3(Ω)

without assuming that f ∈ L2(Ω)?

10.x.15 The use of numerical quadrature to approximate the right-hand-
side, as in exercise 0.x.11, is a very simple form of variational crime.
Suppose the variational problem is as in Sect. 5.4, namely,

a(uh, v) = (f, v) ∀v ∈ Vh

where Vh consists of piecewise polynomials of degree ≤ r, and sup-
pose that ũh ∈ Vh is defined by

a(ũh, v) = Q(fv) ∀v ∈ Vh

where the quadrature approximation Q satisfies∣∣∣∣∫
Ω

v(x)w(x) dx−Q(vw)
∣∣∣∣ ≤ Chk

∑
T∈T h

‖v‖Hk(T )‖w‖Hk(T )

for some k. Prove that

‖uh − ũh‖H1(Ω) ≤ Chk−r+1 ‖f‖Hk(Ω) .

(Hint: see exercises 0.x.13 and 0.x.14, and use inverse estimates.)
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10.x.16 In addition to the assumption on the quadrature rule in exercise
10.x.15, assume that Q(w) =

∑
T∈T h QT (w) where

|QT (w)| ≤ Cmeas (T )‖w‖L∞(T ) ∀T ∈ T h.

Improve the estimate in exercise 10.x.15 to read

‖uh − ũh‖H1(Ω) ≤ Chk−r+1‖f‖Hk−r+1(Ω)

under the assumption that k − r + 1 > n/2. (Hint: subtract an
interpolant from f .)

10.x.17 The use of numerical quadrature to approximate the variational
form in the case of variable coefficients (see Sect. 5.7) leads to a
variational crime of the sort covered by Lemma 10.1.9. Let a(·, ·) be
as in (5.6.3) and define

ah(u, v) := Q

⎛⎝ n∑
i,j=1

aij(x)
∂u

∂xi
(x)

∂v

∂xj
(x)

⎞⎠
where Q satisfies the condition in exercise 10.x.15. Assuming Vh

consists of piecewise polynomials of degree≤ r, that a(·, ·) is coercive
on V , and that k > 2r−2, show that ah(·, ·) is coercive on Vh. (Hint:
use inverse estimates to show that

|a(v, v)− ah(v, v)| ≤ Chk−2r+2 ‖v‖2H1(Ω) ∀v ∈ Vh.

Note that we do not need to assume that the weights in the quadra-
ture rule are positive.)

10.x.18 Under the assumptions of exercise 10.x.17, let ũh ∈ Vh be defined
by

ah(ũh, v) = (f, v) ∀v ∈ Vh.

Prove that

‖u− ũh‖H1(Ω) ≤ Chr‖u‖Hk+1(Ω)

(
1 + max

ij
‖aij‖W k

∞(Ω)

)
.

(Hint: see exercises 0.x.13 and 0.x.14, apply Lemma 10.1.9 and use
inverse estimates.)

10.x.19 Under the assumptions of exercises 10.x.16 and 10.x.17, improve the
norms on u and aij in exercise 10.x.18. (Hint: subtract interpolants
from u and aij .)

10.x.20 Consider the variational approximation of Poisson’s equation as de-
scribed in Sect. 5.4 using piecewise linear functions on a simplicial
mesh T h but with a quadrature approximation for the right-hand-
side as in exercise 10.x.15. In particular, let Q(w) =

∑
T∈T h QT (w)

with

QT (w) := meas (T )
n∑

i=1

w(zT
i ) ∀T ∈ T h
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where
{
zT

i : i = 1, . . . , n
}

are the vertices of T . (This is the
n-dimensional version of the trapezoidal rule.) Show that the “dif-
ference stencil” corresponding to a regular mesh on Ω = [0, 1]×[0, 1]
consisting of 45◦ right triangles (cf. Sect. 0.5) is the standard
5-point difference stencil in the interior of Ω. Describe the stencil at
the boundary for both Neumann and Dirichlet conditions. Compute
the difference stencil for a regular mesh in three dimensions.

10.x.21 Prove that the n-dimensional trapezoidal rule defined in exercise
10.x.20 satisfies the condition in exercise 10.x.16 as well as∣∣∣∣∫

T

v(x)w(x) dx−QT (vw)
∣∣∣∣ ≤ Ch2‖v‖H2(T )‖w‖H2(T ) ,

provided n ≤ 3 where h := diam (T ). (Hint: show that QT is exact
for linear functions and apply Sobolev’s inequality and approxima-
tion results from Chapter 4.)

10.x.22 A two-dimensional generalization of the difference method (0.5.3)
(also see exercise 0.x.11) for Poisson’s equation can be generated
using piecewise linears together with the trapezoidal rule on the
following mesh. Let 0 = x0 < x1 < · · · < xm = 1 and 0 = y0 < y1 <
· · · < yn = 1 be partitions of [0, 1], and define a triangular mesh
based on the vertices

{(xi, yj) : 0 ≤ i ≤ m, 0 ≤ j ≤ n}

with, say, all edges either parallel to one of the axes or running
diagonally from (xi, yj) to (xi+1, yj+1). Show that the difference
method is essentially second-order accurate in the maximum norm,
that is,

max
i,j

|u(xi, yj)− Uij | ≤ Ch2| log h|

under suitable hypotheses on u and f . (Hint: use exercises 10.x.18,
10.x.20 and 10.x.21 and the fact that ‖v‖L∞(Ω) ≤ C| log h| ‖v‖H1(Ω)

for piecewise linear functions, v. Also see Sect. 8.5 and (Scott 1976).)

10.x.23 Consider the quadrature rule in exercise 6.x.11. For which piecewise
polynomial degrees will this give optimal order approximations for
problems with variable coefficients? State and prove an appropriate
convergence theorem. (Hint: use exercise 10.x.18.)

10.x.24 State and prove a convergence theorem combining the effect of
quadrature for variable coefficients and the right-hand side, i.e.,
where ũh ∈ Vh is defined by

ah(ũh, v) = Q(fv) ∀v ∈ Vh.
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10.x.25 Let Vh be the nonconforming P1 finite element space associated with
the triangulation T h defined in (10.3.2) and Ṽh ⊂ H1

0 (Ω) be the P2

Lagrange finite element space associated with T h. Let Eh : Vh −→
Ṽh be defined by

(i) (Ehv)(m) = v(m) at a midpoint m,
(ii) (Ehv)(p) = average value of v at the midpoints adjacent

to the vertex p,
and Fh : Ṽh −→ Vh be defined by

(Fhṽ)(m) = ṽ(m) at a midpoint m.

Show that
(a) FhEhv = v for all v ∈ Vh.
(b) ‖v − Ehv‖L2(Ω) ≤ Ch‖v‖h for all v ∈ Vh,
(c) ‖ṽ − Fhṽ‖L2(Ω) ≤ Ch|v|H1(Ω) for all ṽ ∈ Ṽh.

10.x.26 Use the results from exercise 10.x.25 to prove the following Poincaré
inequality for the nonconforming P1 finite element:

‖v‖L2(Ω) ≤ C‖v‖h ∀ v ∈ Vh .

(Hint: Use the Poincaré inequality (cf. Proposition 5.3.5) and inverse
estimates (cf. Theorem 4.5.11 and Remark 4.5.20).)

10.x.27 The P2 Lagrange finite element is a conforming relative of the non-
conforming P1 finite element (Brenner 1996a), in the sense that the
shape functions and nodal variables of the latter are also shape func-
tions and nodal variables of the former. Find a conforming relative
for the rotated Q1 element (cf. exercise 3.x.15) and construct Eh

and Fh with similar properties. Derive a Poincaré inequality for the
rotated Q1 element.

10.x.28 Find a conforming relative (cf. exercise 10.x.27) for the Morley finite
element.

10.x.29 Let Ph be a family of partitions of a bounded polygonal domain
Ω ⊂ IR2, and T h be the corresponding family of triangulations
obtained by joining the center of each triangle in Ph to the points
in Vh that belong to the boundary of that triangle. Show that Ph

is non-degenerate if and only if T h is non-degenerate.

10.x.30 In this exercise we prove (10.5.3) under the assumption that Ω is
a bounded polygonal domain. Since elliptic regularity implies u is
H2 away from the re-entrant corners, it suffices to consider the case
where a vertex p of the triangle T is a re-entrant corner of Ω with
angle ω > π. Elliptic regularity theory (cf. Grisvard 1985, Dauge
1988, or Nazarov and Plamenevsky 1994) provides a representation
of u near p :

(∗) u = uR + κ rπ/ω sin
(
(π/ω)θ

)
,
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where uR ∈ H2(Ω), κ ∈ IR and (r, θ) are the polar coordinates at p
so that the two edges of Ω emanating from p is given by θ = 0 and
θ = ω. Use (∗) to establish (10.5.3) by letting δ ↓ 0 in the equation∫

Tδ

∇u · ∇v dx =
∫

Tδ

fv dx +
∫

∂Tδ

∇u · vn ds,

where Tδ = {x ∈ T : |x− p| > δ}.
10.x.31 Show that ‖ · ‖h and ||| · |||h defined in (10.5.10) and (10.5.12) are

norms on H̊1(Ω) + Vh.

10.x.32 Verify (10.5.11) using the Cauchy-Schwarz inequality for L2(e) and
the discrete Cauchy-Schwarz inequality.

10.x.33 Explain why the results of Section 10.1 can not be applied to the
interior penalty methods in Section 10.5.

10.x.34 Check that the constant in (10.6.10) is independent of p.

10.x.36 Provide details for the proof of Theorem 10.6.15.



Chapter 11

Applications to Planar Elasticity

In most physical applications, quantities of interest are governed by a sys-
tem of partial differential equations, not just a single equation. So far, we
have only considered single equations (for a scalar quantity), although much
of the theory relates directly to systems. We consider one such system com-
ing from solid mechanics in this chapter.

We apply the theory developed in Chapters 1 through 4 and Chapter 10
to boundary value problems in linear planar elasticity. Much of the work
is in establishing the coercivity of the variational formulation. Once this is
done, applications of the basic theory are immediate for the general case.

A new phenomenon arises because we have a system of partial differen-
tial equations. We discuss the phenomenon of “locking” which arises when
the elastic material becomes nearly incompressible, and show that it can
be overcome, if appropriate finite elements are used.

11.1 The Boundary Value Problems

We begin with some notation. We adopt the convention that an undertilde
denotes vector-valued operators, functions, and their associated spaces.
Double undertildes are used for matrix-valued functions and operators.

Let p, ∼v = (v1, v2)t and
≈
τ = (τij)1≤i,j≤2 be functions of two variables.

We define

g∼rad p =
(

∂p/∂x1

∂p/∂x2

)
, c∼url p =

(
∂p/∂x2

−∂p/∂x1

)
,

div ∼v = ∂v1/∂x1 + ∂v2/∂x2, rot ∼v = −∂v1/∂x2 + ∂v2/∂x1,

g≈rad ∼v =
(

∂v1/∂x1 ∂v1/∂x2

∂v2/∂x1 ∂v2/∂x2

)
, c≈url ∼v =

(
∂v1/∂x2 −∂v1/∂x1

∂v2/∂x2 −∂v2/∂x1

)
,

≈
ε(∼v) =

1
2

(
g≈rad ∼v +

(
g≈rad ∼v

)t
)
,

and
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∼div
≈
τ =

(
∂τ11/∂x1 + ∂τ12/∂x2

∂τ21/∂x1 + ∂τ22/∂x2

)
.

We also define

≈
δ =

(
1 0
0 1

)
,

≈
χ =

(
0 −1
1 0

)
,

and the following inner product between matrices

≈
σ :

≈
τ =

2∑
i=1

2∑
j=1

σijτij .

The trace of a matrix is defined by

tr(
≈
τ) =

≈
τ :

≈
δ = τ11 + τ22 ,

and we have the following relation (cf. exercise 11.x.1)

(11.1.1)
≈
ε(∼v) = g≈rad ∼v −

1
2
(rot ∼v)

≈
χ.

We consider an isotropic elastic material in the configuration space
Ω ⊆ IR2. Let ∼u(x) be the displacement and

∼
f(x) be the body force. Then

in the static theory of linear elasticity, the equation satisfied by ∼u is

(11.1.2) − ∼div
≈
σ(∼u) =

∼
f in Ω,

where the stress tensor
≈
σ(∼u) is defined by

(11.1.3)
≈
σ(∼u) = 2µ

≈
ε(∼u) + λ tr

(
≈
ε(∼u)

)
≈
δ.

The positive constants µ and λ are called the Lamé constants. We assume
that (µ, λ) ∈ [µ1, µ2]× (0,∞) where 0 < µ1 < µ2.

Let Γ1 and Γ2 be two open subsets of ∂Ω such that ∂Ω = Γ 1∪Γ 2 and
Γ1 ∩ Γ2 = ∅. We impose the displacement boundary condition on Γ1

(11.1.4) ∼u|Γ1 =
∼
g,

and the traction boundary condition on Γ2 (where ∼ν is the unit outer nor-
mal)

(11.1.5)
(

≈
σ(∼u) ∼ν

)∣∣∣
Γ2

= ∼t.

If Γ1 = ∅ (resp. Γ2 = ∅), the boundary value problem is called a pure
traction (resp. displacement) problem.

Note that
≈
ε has a nontrivial kernel. Let

(11.1.6) ∼RM :=
{

∼v : ∼v = ∼c + b (x2,−x1)t, ∼c ∈ IR2, b ∈ IR
}
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be the space of infinitesimal rigid motions. Then it is easily verified (cf.
exercise 11.x.2) that

(11.1.7)
≈
ε(∼v) =

≈
0 ∀ ∼v ∈ ∼RM.

Therefore, ∼RM is in the kernel of the homogeneous pure traction problem,
and

∼
f , ∼t must satisfy certain constraints for the pure traction problem to

be solvable.
Lebesgue and Sobolev spaces and associated norms (and inner prod-

ucts, where appropriate) are defined analogously. For example, the space

≈
L2(Ω) has the inner product

(
≈
σ,

≈
τ)

≈
L2(Ω) :=

∫
Ω

≈
σ :

≈
τ dx.

The space ∼H
1(Ω) has the inner product

(∼u, ∼v)
∼H

1(Ω) := (g≈rad ∼u, g≈rad ∼v)
≈
L2(Ω) + (∼u, ∼v)

∼L
2(Ω).

We leave the definition of other inner products (including the one most
recently used) and norms as an exercise.

11.2 Weak Formulation and Korn’s Inequality

Assume that ∼u ∈ ∼H
2(Ω) satisfies (11.1.2). Then given any ∼v ∈ ∼H

1(Ω) and

∼v|Γ1 = 0, it follows from integration by parts (assuming it can be done)
that ∫

Ω
∼
f · ∼v dx

= −
∫

Ω ∼div
≈
σ(∼u) · ∼v dx

=
∫

Ω

{
2µ

≈
ε(∼u) + λ tr

(
≈
ε(∼u)

)
≈
δ
}

: g≈rad ∼v dx−
∫

Γ2
≈
σ(∼u)∼ν · ∼v ds.

Therefore, we have the following weak formulation of (11.1.2) through
(11.1.5).

Find ∼u ∈ ∼H
1(Ω) such that ∼u|Γ1 =

∼
g and

(11.2.1) a(∼u, ∼v) =
∫

Ω
∼
f · ∼v dx +

∫
Γ2

∼t · ∼v ds

for all ∼v ∈ ∼V , where
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(11.2.2)
a(∼u, ∼v) :=

∫
Ω

(
2µ

≈
ε(∼u) :

≈
ε(∼v) + λ div ∼u div ∼v

)
dx ,

∼V :=
{

∼v ∈ ∼H
1(Ω) : ∼v|Γ1 = ∼0

}
.

The first question we must ask is: does (11.2.1) have a unique solution?
In other words, we need to establish the coercivity of the bounded bilinear
form a(·, ·) on ∼V . We begin with a lemma regarding an underdetermined
boundary value problem (note: there is no uniqueness) that will be used
frequently in this chapter and in Chapter 12. Its proof uses Sobolev-space
techniques beyond what we have developed in Chapter 1, but we include a
sketch of its proof for the sake of completeness. For the rest of this section
we assume that either Ω is a polygon or ∂Ω is smooth.

(11.2.3) Lemma. There exists a positive constant C such that for all p ∈
L2(Ω) there is a ∼v ∈ ∼H

1(Ω) satisfying

div ∼v = p

and
‖∼v‖∼H

1(Ω) ≤ C ‖p‖L2(Ω) .

If, furthermore, p satisfies
∫

Ω
p dx = 0, then we may assume that ∼v ∈

∼̊H
1(Ω).

Proof. This lemma holds for Ω with smooth boundary and for polygonal Ω.
Here we give the proof for the smooth boundary case and refer the reader to
(Girault & Raviart 1986, Arnold, Scott & Vogelius 1988) for the polygonal
case. There exists a unique w ∈ H2(Ω) satisfying

−∆w = p in Ω

w = 0 on ∂Ω .

By elliptic regularity (see Sect. 5.5) we have

‖w‖H2(Ω) ≤ CΩ ‖p‖L2(Ω) .

Then ∼v = −g∼radw satisfies the conditions of the Lemma.
Now suppose

∫
Ω

p dx = 0. Then there exists a unique w ∈ H2(Ω)
satisfying

−∆w = p in Ω

(11.2.4)
∂w

∂ν
= 0 on ∂Ω,

and ∫
Ω

w dx = 0

(see Sect. 5.2). By elliptic regularity we have

‖w‖H2(Ω) ≤ CΩ ‖p‖L2(Ω) .
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Let ∼v1 = −g∼radw. Then ∼v1 ∈ ∼H
1(Ω),

div ∼v1 = p(11.2.5)
and

‖∼v1‖∼H
1(Ω) ≤ CΩ ‖p‖L2(Ω) .(11.2.6)

Recall that ∼ν is the unit outer normal vector to ∂Ω. Observe that

(11.2.7) ∼v1|∂Ω · ∼ν = −g∼radw|∂Ω · ∼ν = 0

by (11.2.4). Let ∼τ be the positively oriented unit tangent vector. Then the
trace theorem (cf. Adams 1975) implies that there exists ψ ∈ H2(Ω) such
that

ψ|∂Ω = 0
∂ψ

∂ν

∣∣
∂Ω

= ∼v1|∂Ω · ∼τ

and

(11.2.8) ‖ψ‖H2(Ω) ≤ Cτ ‖∼v1‖∼H
1(Ω)

for some positive constant Cτ . Let ∼v2 = c∼url ψ. Then we have

∼v2|∂Ω · ∼ν = g∼radψ|∂Ω · ∼τ = 0,(11.2.9)

and

∼v2|∂Ω · ∼τ = −g∼radψ|∂Ω · ∼ν = −∼v1|∂Ω · ∼τ .(11.2.10)

Combining (11.2.7), (11.2.9) and (11.2.10) we conclude that

(11.2.11) ∼v2|∂Ω = −∼v1|∂Ω .

Let ∼v = ∼v1 + ∼v2. Then div ∼v = div ∼v1 = p by (11.2.5), ∼v|∂Ω = ∼0 by
(11.2.11), and

‖∼v‖H1(Ω) ≤ ‖∼v1‖∼H
1(Ω) + ‖∼v2‖∼H

1(Ω) (triangle inequality)

≤ ‖∼v1‖∼H
1(Ω) + C‖ψ‖H2(Ω) (∼v2 = c∼urlψ)

≤ C ‖∼v1‖∼H
1(Ω) (by 11.2.8)

≤ C ‖p‖L2(Ω) . (by 11.2.6)

�	

Let ∼̂H
k(Ω) be defined by

∼̂H
k(Ω) := {∼v ∈ ∼H

k(Ω) :
∫

Ω
∼v dx = ∼0,

∫
Ω

rot ∼v dx = 0}.

These are closed subspaces of ∼H
k(Ω) for k ≥ 1.
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(11.2.12) Theorem. (Second Korn Inequality) There exists a positive con-
stant C such that

(11.2.13) ‖
≈
ε(∼v)‖

≈
L2(Ω) ≥ C ‖∼v‖∼H

1(Ω) ∀ ∼v ∈ ∼̂H
1(Ω).

Proof. Let ∼v ∈ ∼̂H
1(Ω). Since

∫
Ω

rot ∼v dx = 0, Lemma 11.2.3 gives the exis-
tence of ∼w ∈ ∼̊H

1(Ω) such that

(11.2.14)
div ∼w = rot ∼v

‖∼w‖∼H
1(Ω) ≤ C1 ‖∼v‖∼H

1(Ω)

for some positive constant C1. Then∫
Ω

≈
ε(∼v) :

(
g≈rad ∼v − c≈url ∼w

)
dx

=
∫

Ω

(
g≈rad ∼v −

1
2
(rot ∼v)

≈
χ

)
:
(
g≈rad ∼v − c≈url ∼w

)
dx (by 11.1.1)

= ‖g≈rad ∼v‖2
≈
L2(Ω) −

∫
Ω

g≈rad ∼v : c≈url ∼w dx

− 1
2

∫
Ω

(rot ∼v)
(

≈
χ : g≈rad ∼v − ≈

χ : c≈url ∼w
)

dx

= ‖g≈rad ∼v‖2
≈
L2(Ω) −

1
2

∫
Ω

(rot ∼v)
(
rot ∼v − div ∼w

)
dx

(by 11.x.3, 11.x.4, 11.x.5)
= ‖g≈rad ∼v‖2

≈
L2(Ω) . (by 11.2.14)

Therefore, Schwarz’ inequality (2.1.5) and (11.2.14) imply

(11.2.15)
‖g≈rad ∼v‖2

≈
L2(Ω) ≤ ‖≈

ε(∼v)‖
≈
L2(Ω) ‖g≈rad ∼v − c≈url ∼w‖≈

L2(Ω)

≤ C ‖
≈
ε(∼v)‖

≈
L2(Ω) ‖∼v‖∼H

1(Ω) .

The theorem now follows from (11.2.15) and Friedrichs’ inequality (4.3.15)
because

∫
Ω ∼v dx = ∼0. �	

(11.2.16) Theorem. (Korn’s Inequality) There exists a positive constant α
such that

(11.2.17) ‖
≈
ε(∼v)‖

≈
L2(Ω) + ‖∼v‖∼L

2(Ω) ≥ α ‖∼v‖∼H
1(Ω) ∀ ∼v ∈ ∼H

1(Ω).

Proof. Observe first that ∼H
1(Ω) = ∼̂H

1(Ω)⊕ ∼RM (cf. exercise 11.x.6), where
“⊕” is understood only in the algebraic sense (they are not orthogonal
in ∼H

1(Ω)). Therefore, given any ∼v ∈ ∼H
1(Ω), there exists a unique pair

(∼z, ∼w) ∈ ∼̂H
1(Ω)× ∼RM such that

∼v = ∼z + ∼w.
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In particular, ∼w is of the form given in (11.1.6) with

(11.2.18)
b :=

−1
2 meas (Ω)

∫
Ω

rot ∼v dx ,

∼c :=
1

meas (Ω)

∫
Ω

(
∼v(x)− b (x2,−x1)t

)
dx .

Therefore, ‖∼w‖∼H
1(Ω) ≤ C‖∼v‖∼H

1(Ω), where C depends only on meas (Ω). By
the triangle inequality, there exists a positive constant C1 (cf. also exer-
cise 11.x.7), such that

(11.2.19) C1

(
‖∼z‖∼H

1(Ω) + ‖∼w‖∼H
1(Ω)

)
≤ ‖∼v‖∼H

1(Ω) .

We establish the theorem by contradiction. If we assume that (11.2.17)
does not hold for any positive constant C, then there exists a sequence
{∼vn} ⊆ ∼H

1(Ω) such that

‖∼vn‖∼H
1(Ω) = 1(11.2.20)

and

‖
≈
ε(∼vn)‖

≈
L2(Ω) + ‖∼vn‖∼L

2(Ω) <
1
n

.(11.2.21)

For each n, let ∼vn = ∼zn + ∼wn, where ∼zn ∈ ∼̂H
1(Ω) and ∼wn ∈ ∼RM. Then

‖
≈
ε(∼zn)‖

≈
L2(Ω) = ‖

≈
ε(∼vn)‖

≈
L2(Ω) (by 11.1.7)

<
1
n

. (by 11.2.21)

The second Korn inequality then implies that ∼zn → ∼0 in ∼H
1(Ω).

It follows from (11.2.19) and (11.2.20) that {∼wn} is a bounded sequence
in ∼H

1(Ω). But since ∼RM is three-dimensional, {∼wn} has a convergent subse-
quence {∼wnj

} in ∼H
1(Ω). Then the subsequence {∼vnj

= ∼znj
+∼wnj

} converges
in ∼H

1(Ω) to some ∼v ∈ ∼RM. We conclude from (11.2.20) and (11.2.21) that

‖∼v‖∼H
1(Ω) = 1 and ‖∼v‖∼L

2(Ω) = 0,

which is a contradiction. �	

(11.2.22) Corollary. Let ∼V be defined by (11.2.2) where meas (Γ1) > 0. There
exists a positive constant C such that

(11.2.23) ‖
≈
ε(∼v)‖

≈
L2(Ω) ≥ C ‖∼v‖∼H

1(Ω) ∀ ∼v ∈ ∼V.
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Proof. The same proof by contradiction yields the existence of some ∼v ∈
∼RM ∩ ∼V such that

(11.2.24) ‖∼v‖∼H
1(Ω) = 1.

But the only ∼v ∈ ∼RM satisfying ∼v|Γ1 = ∼0 is ∼v ≡ ∼0 because meas (Γ1) > 0
(cf. exercise 11.x.9). This contradicts (11.2.24). �	

In the case where Γ2 = ∅ we immediately find the following.

(11.2.25) Corollary. (First Korn Inequality) There exists a positive constant
C such that

(11.2.26) ‖
≈
ε(∼v)‖

≈
L2(Ω) ≥ C ‖∼v‖∼H

1(Ω) ∀ ∼v ∈ ∼̊H
1(Ω).

(11.2.27) Remark. Korn’s inequalities actually hold for Ω ⊆ IRn with a
Lipschitz boundary. For a proof of the general case we refer the reader
to (Duvaut & Lions 1972, Nitsche 1981). They can also be extended to
piecewise H1 vector fields (Brenner 2004).

Observe now that the coercivity of a(·, ·) on ∼V (when meas(Γ1) > 0)
follows immediately from Corollary 11.2.22, and the unique solvability of
(11.2.1) follows.

(11.2.28) Theorem. Assume that
∼
f ∈ ∼H

−1(Ω) ,
∼
g = ∼w|Γ1 where ∼w ∈ ∼H

1(Ω),

∼t ∈ ∼L
2(Γ2), and meas(Γ1) > 0. Then the variational problem (11.2.1) has a

unique solution.

Proof. Let ∼u
∗ = ∼u−∼w. Then (11.2.1) is equivalent to the problem of finding

∼u
∗ ∈ ∼V such that for all ∼v ∈ ∼V ,

(11.2.29)

a(∼u
∗, ∼v) =

∫
Ω

∼
f · ∼v dx +

∫
Γ2

∼t · ∼v ds

−
∫

Ω

{2µ
≈
ε(∼w) :

≈
ε(∼v) + λ div ∼w div ∼v} dx

=: F (∼v),

where F ∈ ∼V
′ by the conditions on

∼
f , ∼t and ∼w. Therefore, by Theorem

2.5.6, (11.2.29) has a unique solution, which implies that (11.2.1) also has
a unique solution. �	

Note that ∼V becomes ∼H
1(Ω) in the case of the pure traction problem.

Since the homogeneous pure traction problem has a nontrivial kernel ∼RM,

∼
f and ∼t must satisfy some compatibility conditions before problem (11.2.1)
can be solved.
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(11.2.30) Theorem. Assume
∼
f ∈ ∼L

2(Ω) and ∼t ∈ ∼L
2(Γ ). Then the variational

problem

(11.2.31)
find ∼u ∈ ∼H

1(Ω) such that

a(∼u, ∼v) =
∫

Ω
∼
f · ∼v dx +

∫
Γ

∼t · ∼v ds ∀ ∼v ∈ ∼H
1(Ω)

is solvable if and only if the following compatibility condition holds:

(11.2.32)
∫

Ω
∼
f · ∼v dx +

∫
Γ

∼t · ∼v ds = 0 ∀ ∼v ∈ ∼RM.

When (11.2.31) is solvable, there exists a unique solution in ∼̂H
1(Ω).

Proof. (Necessary:) If (11.2.31) is solvable, then∫
Ω

∼
f · ∼v dx +

∫
Γ

∼t · ∼v ds = a(∼u, ∼v) ∀ ∼v ∈ ∼RM

= 0. (by 11.1.7)

(Sufficient:) Assume that (11.2.32) holds. By the second Korn inequal-
ity (11.2.13) and Theorem 2.5.6, there exists a unique ∼u

∗ ∈ ∼̂H
1(Ω) such

that
a(∼u

∗, ∼v) =
∫

Ω
∼
f · ∼v dx +

∫
Γ

∼t · ∼v ds ∀ ∼v ∈ ∼̂H
1(Ω).

But (11.1.7) and the compatibility condition (11.2.32) imply that

a(∼u
∗, ∼v) =

∫
Ω

∼
f · ∼v dx +

∫
Γ

∼t · ∼v ds ∀ ∼v ∈ ∼RM.

Since ∼H
1(Ω) = ∼̂H

1(Ω)⊕ ∼RM, ∼u
∗ is a solution of (11.2.31). �	

Under certain conditions on the boundary of Ω, the fact that
∼
f ∈

∼L
2(Ω), ∼g = ∼w1|Γ1 where ∼w1 ∈ ∼H

2(Ω), and ∼t = ∼w2|Γ2 where ∼w2 ∈ ∼H
1(Ω)

imply that the solution ∼u of (11.2.1) belongs to ∼H
2(Ω), and then the tech-

niques of Proposition 5.1.9 show that ∼u actually satisfies the boundary
value problem (11.1.2) through (11.1.5). For example, this is true when ∂Ω
is smooth and Γ 1 ∩ Γ2 = ∅ (cf. (Valent 1988)), or if Ω is a convex polygon
and either Γ1 or Γ2 is empty (cf. (Grisvard 1986 and 1989)). Moreover, in
these cases (cf. (Vogelius 1983) and (Brenner & Sung 1992)), there exists a
positive constant C independent of (µ, λ) ∈ [µ1, µ2]× (0,∞) such that

(11.2.33)
‖∼u‖∼H

2(Ω) + λ ‖div ∼u‖∼H
1(Ω)

≤ C
(
‖

∼
f‖

∼L
2(Ω) + ‖∼w1‖∼H

2(Ω) + ‖∼w2‖∼H
1(Ω)

)
.
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11.3 Finite Element Approximation and Locking

For simplicity, we assume that Ω is a convex polygonal domain, and either
Γ1 or Γ2 is empty. For the pure displacement problem (Γ2 = ∅) we only
consider the case of homogeneous boundary conditions.

Let T h be a non-degenerate family of triangulations of Ω. For the pure
displacement problem (Γ2 = ∅), we use the finite element space

(11.3.1) ∼̊Vh := {∼v ∈ ∼̊H
1(Ω) : ∼v|T is linear ∀T ∈ T h},

and for the pure traction problem (Γ1 = ∅) we use (cf. exercise 11.x.13)

(11.3.2) ∼̂Vh := {∼v ∈ ∼̂H
1(Ω) : ∼v|T is linear ∀T ∈ T h}.

By the theory developed in Chapters 2 and 4 we obtain the following the-
orems.

(11.3.3) Theorem. Let ∼u ∈ ∼H
2(Ω) ∩ ∼̊H

1(Ω) satisfy the pure displacement
problem and ∼uh ∈ ∼̊Vh satisfy

a(∼uh, ∼v) =
∫

Ω
∼
f · ∼v dx ∀ ∼v ∈ ∼̊Vh.

Then there exists a positive constant C(µ,λ) such that

(11.3.4) ‖∼u− ∼uh‖∼H
1(Ω) ≤ C(µ,λ) h ‖∼u‖∼H

2(Ω) .

(11.3.5) Theorem. Let ∼u ∈ ∼̂H
2(Ω) satisfy the pure traction problem. Let

∼uh ∈ ∼̂Vh satisfy

a(∼uh, ∼v) =
∫

Ω
∼
f · ∼v dx +

∫
Γ

∼t · ∼v ds ∀ ∼v ∈ ∼̂Vh.

Then there exists a positive constant C(µ,λ) such that

‖∼u− ∼uh‖∼H
1(Ω) ≤ C(µ,λ) h ‖∼u‖∼H

2(Ω) .

For a convergence theorem in the general case ∅ �= Γ1 �= ∂Ω, see
exercise 11.x.25.

For fixed µ and λ, Theorems 11.3.3 and 11.3.5 give satisfactory con-
vergent finite element approximations to the elasticity problem. But the
performance of these finite element methods deteriorates as λ approaches
∞. This is known as the phenomenon of locking, which we will explain in
the rest of this section.

Let Ω = (0, 1) × (0, 1). We consider the pure displacement boundary
value problem for µ = 1:
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(11.3.6) ∼div
{

2
≈
ε(∼u

λ) + λtr (
≈
ε(∼u

λ))
≈
δ
}

=
∼
f in Ω

∼u
λ|∂Ω = ∼0.

Note that for given
∼
f , as λ →∞, (11.2.33) implies that ‖div ∼u

λ‖
∼H

1(Ω) → 0.
In other words, we are dealing with an elastic material that becomes nearly
incompressible. To emphasize the dependence on λ we will denote the stress
tensor (11.1.3) by

≈
σλ(∼v) and the variational form (11.2.2) by aλ(∼v, ∼w), that

is,

≈
σλ(∼v) =2

≈
ε(∼v) + λ tr (

≈
ε(∼v))

≈
δ

aλ(∼v, ∼w) =
∫

Ω

{
2
≈
ε(∼v) :

≈
ε(∼w) + λ div∼v div ∼w

}
dx .

Let T h be a regular triangulation of Ω (cf. Fig. 11.1), and ∼̊Vh be defined
as in (11.3.1). For each ∼u ∈ ∼H

2(Ω) ∩ ∼H
1
0 (Ω), we define ∼u

λ
h ∈ ∼̊Vh to be the

unique solution of

aλ(∼u
λ
h, ∼v) =

∫
Ω

[
− ∼div

≈
σλ(∼u)

]
· ∼v dx ∀ ∼v ∈ ∼̊Vh.

T
T

T

1

3

2

Fig. 11.1. a regular triangulation of the unit square

Let Lλ,h be defined by

Lλ,h := sup

{
|∼u− ∼u

λ
h|∼H1(Ω)

‖ ∼div
≈
σλ(∼u)‖

∼L
2(Ω)

: ∼0 �= ∼u ∈ ∼H
2(Ω) ∩ ∼̊H

1(Ω)

}
.

We want to show that there exists a positive constant C independent of h
such that

(11.3.7) lim inf
λ→∞

Lλ,h ≥ C.

The meaning of (11.3.7) is: no matter how small h is, if λ is large
enough, then we can find ∼u ∈ ∼H

2(Ω) ∩ ∼̊H
1(Ω) such that the relative error
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|∼u− ∼uh|∼H1(Ω)/‖ ∼div
≈
σλ(∼u)‖

∼L
2(Ω) is bounded below by a constant independent

of h. In other words, the performance of the finite element method will
deteriorate for large λ.

To prove (11.3.7), we begin with the observation that

(11.3.8)
{

∼v ∈ ∼̊Vh : div ∼v = 0
}

= {∼0}

(cf. exercise 11.x.14). Therefore, the map ∼v → div ∼v is a one-to-one map
from the finite-dimensional space ∼̊Vh into ∼L

2(Ω), and there exists a positive
constant C1(h) such that

(11.3.9) ‖∼v‖∼H
1(Ω) ≤ C1(h) ‖div ∼v‖∼L

2(Ω) ∀ ∼v ∈ ∼̊Vh.

Let ψ be a C∞ function on Ω such that c∼urlψ = ∼0 on the boundary

of Ω and ‖
≈
ε(c∼urlψ)‖

≈
L2(Ω) = 1. Let ∼u := c∼urlψ. Then ∼u ∈ H2(Ω) ∩ ∼̊H

1(Ω),
and we have

div ∼u = 0,(11.3.10)
‖
≈
ε(∼u)‖

≈
L2(Ω) = 1,(11.3.11)

≈
σλ(∼u) = 2

≈
ε(∼u).(11.3.12)

It follows from (11.3.10), (11.3.11) and the integration by parts at the
beginning of Sect. 11.2 that

(11.3.13) −
∫

Ω ∼div
≈
ε(∼u) · ∼u dx =

∫
Ω

≈
ε(∼u) :

≈
ε(∼u) dx = 1.

Hence we deduce by (11.3.12) and (11.3.13) that

(11.3.14) lim
λ→∞ ∼div

≈
σλ(∼u) = 2 ∼div

≈
ε(∼u) �= ∼0.

By Corollary 2.5.10,

aλ(∼u− ∼u
λ
h, ∼u− ∼u

λ
h) = min

∼v∈∼V̊h

aλ(∼u− ∼v, ∼u− ∼v)(11.3.15)

≤ aλ(∼u, ∼u).

From (11.3.10) and (11.3.11) we obtain

(11.3.16) aλ(∼u, ∼u) = 2.

Therefore, for λ sufficiently large we have

(11.3.17) aλ(∼u− ∼u
λ
h, ∼u− ∼u

λ
h) ≤ 2.
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It follows from (11.3.10) and (11.3.17) that
√

λ ‖div ∼u
λ
h‖∼L

2(Ω) =
√

λ ‖div (∼u− ∼u
λ
h)‖L2(Ω)

≤
√

aλ(∼u− ∼u
λ
h, ∼u− ∼u

λ
h)

≤
√

2

for sufficiently large λ, which implies that

lim
λ→∞

‖div ∼u
λ
h‖L2(Ω) = 0.

By (11.3.9) we therefore have

(11.3.18) lim
λ→∞

‖∼u
λ
h‖∼H

1(Ω) = 0.

Finally, we obtain (cf. exercise 11.x.16)

lim inf
λ→∞

Lλ,h ≥ lim inf
λ→∞

|∼u− ∼u
λ
h|∼H1(Ω)

‖ ∼div
≈
σλ(∼u)‖

∼L
2(Ω)

(11.3.19)

=
|∼u|∼H1(Ω)

‖ ∼div
≈
σ(∼u)‖

∼L
2(Ω)

> 0.

This concludes our discussion of locking for this particular example.
For more information on locking we refer the reader to (Babuška & Suri
1992).

11.4 A Robust Method for the Pure Displacement
Problem

Roughly speaking, the reason behind the locking phenomenon described
in the previous section is the following. The finite element space ∼̊Vh is a
poor choice for approximating nearly incompressible material because the
set {∼v ∈ ∼̊Vh : div ∼v = 0} = {∼0}. Since div ∼u = 0, for aλ(∼u−∼u

λ
h, ∼u−∼u

λ
h) to be

small, ‖div ∼u
λ
h‖∼L

2(Ω) must be small. But then ‖∼u
λ
h‖∼H

1(Ω) is small and hence

∼u
λ
h cannot approximate ∼u very well in the ∼H

1-norm.
We will now show that locking can be overcome if we use a noncon-

forming piecewise linear finite element space. The key to its success lies
in its extra freedom which allows good approximation of functions with
divergence-zero constraints. We refer the readers to the papers (Arnold,
Brezzi & Douglas 1984), (Arnold, Douglas & Brezzi 1984) and (Stenberg
1988) for more sophiscated robust finite element methods.

For simplicity we will consider (11.1.2) with homogeneous pure dis-
placement boundary condition on a convex polygonal domain Ω. (See (Falk

11.4 A Robust Method for the Pure Displacement Problem
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1991) for the treatment of the pure traction boundary condition.) Observe
that the pure displacement problem can be written as

−µ ∆∼u− (µ + λ) g∼rad (div ∼u) =
∼
f in Ω

(11.4.1)

∼u = ∼0 on ∂Ω,

where
∼
f ∈ ∼L

2(Ω). It has the following weak formulation:

(11.4.2) find ∼u ∈ ∼̊H
1(Ω) such that as(∼u, ∼v) =

∫
Ω

∼
f · ∼v dx ∀∼v ∈ ∼̊H

1(Ω),

where the bounded bilinear form as(·, ·) on ∼̊H
1(Ω) is defined by

(11.4.3) as(∼v1, ∼v2) := µ

∫
Ω

g≈rad ∼u : g≈rad ∼v dx+(µ+λ)
∫

Ω

(div ∼u)(div ∼v) dx.

Note that a(·, ·) and as(·, ·) differ only in the corresponding natural bound-
ary conditions. Thus, they are completely equivalent for the pure displace-
ment problem.

The coercivity of as(·, ·) follows from Poincaré’s inequality (5.3.5).
Therefore, (11.4.2) has a unique solution which actually belongs to ∼H

2(Ω)∩
∼̊H

1(Ω) (cf. the discussion at the end of Sect. 11.2). Moreover, from (11.2.33)
we have the elliptic regularity estimate

(11.4.4) ‖∼u‖∼H
2(Ω) + λ ‖div ∼u‖∼H

1(Ω) ≤ C ‖
∼
f‖

∼L
2(Ω),

where the positive constant C is independent of (µ, λ) ∈ [µ1, µ2]× (0,∞).
Let T h be a non-degenerate family of triangulations of Ω, and let

∼V
∗
h := Vh×Vh where Vh is defined in (11.3.2) based on the element depicted

in Fig. 3.2, that is,

(11.4.5)

∼V
∗
h =

{
∼v : ∼v ∈ ∼L

2(Ω), ∼v|T is linear for all T ∈ T h, ∼v is con-

tinuous at the midpoints of interelement boundaries

and ∼v = ∼0 at the midpoints of edges along ∂Ω
}

.

Since ∼V
∗
h �⊆ ∼H

1(Ω) (i.e., ∼V
∗
h is nonconforming), any differential opera-

tor on ∼V
∗
h must be defined piecewise. For ∼v ∈ ∼V

∗
h we define g≈radh and divh

by

(11.4.6)
(
g≈radh∼v

)
|T = g≈rad

(
∼v|T

)
and

(
divh∼v

)
|T = div

(
∼v|T

)
for all T ∈ T h. The discretized problem is the following.

(11.4.7) Find ∼uh ∈ ∼V
∗
h such that as

h(∼uh, ∼v) =
∫

Ω
∼
f · ∼v dx ∀∼v ∈ ∼V

∗
h ,
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where the symmetric positive definite bilinear form as
h(·, ·) on ∼V

∗
h + ∼̊H

1(Ω)
is defined by

(11.4.8)
as

h(∼v, ∼w) := µ

∫
Ω

g≈radh∼v : g≈radh∼w dx

+ (µ + λ)
∫

Ω

(divh∼v) (divh∼w) dx.

Note this definition of the nonconforming bilinear form is identical to one
given using sums of integrals over each T ∈ T h (cf. (11.3.3)). Equation
(11.4.7) has a unique solution because as

h(·, ·) is positive definite, which can
be proved in a way similar to what was done in Chapter 10.

We define the nonconforming energy norm ‖ · ‖h on ∼V
∗
h + ∼̊H

1(Ω) by

(11.4.9) ‖∼v‖h = as
h(∼v, ∼v)1/2.

It is clear that

(11.4.10) ‖g≈radh∼v‖≈
L2(Ω) ≤ µ

−1/2
1 ‖∼v‖h.

Our goal is to show that the finite element method (11.4.7) is robust
in the sense that the error estimates are uniform with respect to (µ, λ) ∈
[µ1, µ2]× (0,∞). For this we need two ingredients. The first is the property
of the divergence operator stated in Lemma 11.2.3, which holds in the case
of polygonal domains by the results in (Girault & Raviart 1986, Arnold,
Scott & Vogelius 1988). The other ingredient is an interpolation operator
Πh : ∼H

2(Ω) ∩ ∼̊H
1(Ω) −→ ∼V

∗
h with the property that

(11.4.11) div
∼
φ = 0 =⇒ divh(Πh∼

φ) = 0.

We can define Πh by

(11.4.12)
(
Πh∼

φ
)
(me) :=

1
|e|

∫
e

∼
φ ds,

where me is the midpoint of edge e. Then

(11.4.13) div
(
Πh∼

φ
)
|T =

1
|T |

∫
T

div
∼
φ dx ∀T ∈ T h,

and there exists a positive constant C independent of h such that

(11.4.14) ‖
∼
φ−Πh∼

φ‖
∼L

2(Ω) + h‖g≈radh(
∼
φ−Πh∼

φ)‖
≈
L2(Ω) ≤ C h2 |

∼
φ|

∼H
2(Ω)

(cf. exercises 11.x.18 and 11.x.19 and Sect. 4.8).

(11.4.15) Theorem. There exists a positive constant C independent of h and
(µ, λ) ∈ [µ1, µ2]× (0,∞) such that

(11.4.16) ‖∼u− ∼uh‖h ≤ C h ‖
∼
f‖

∼L
2(Ω) .

11.4 A Robust Method for the Pure Displacement Problem
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Proof. In this proof, C represents a generic constant independent of h and
(µ, λ) ∈ [µ1, µ2]× (0,∞). From (11.1.10) we have

(11.4.17) ‖∼u− ∼uh‖h ≤ inf
∼v∈∼Vh

‖∼u− ∼v‖h + sup
∼v∈∼Vh\{∼0}

|as
h(∼u, ∼v)−

∫
Ω ∼

f · ∼v dx|
‖∼v‖h

.

By the same techniques employed in the proof of Theorem 11.3.12 (i.e.,
using the Bramble-Hilbert Lemma and homogeneity arguments) we have

(11.4.18)

∣∣∣∣∫
Ω

g≈rad ∼u : g≈radh∼v dx +
∫

Ω

∆∼u · ∼v dx

∣∣∣∣
≤ C h |∼u|∼H2(Ω) ‖g≈radh∼v‖≈

L2(Ω),

and

(11.4.19)

∣∣∣∣∫
Ω

div ∼u divh∼v dx +
∫

Ω

g∼rad (div ∼u) · ∼v dx

∣∣∣∣
≤ C h |div ∼u|H1(Ω) ‖g≈radh∼v‖≈

L2(Ω) .

Combining (11.4.1), (11.4.8), (11.4.18), (11.4.19), (11.4.4) and (11.4.10) we
have

(11.4.20)

∣∣∣∣as
h(∼u, ∼v)−

∫
Ω

∼
f · ∼v dx

∣∣∣∣
≤ C h ‖g≈radh∼v‖≈

L2(Ω)

(
µ |∼u|∼H2(Ω) + (µ + λ) |div ∼u|H1(Ω)

)
≤ C h ‖∼v‖h ‖∼

f‖
∼L

2(Ω) .

By an analog of Lemma 11.2.3 (cf. (Brenner & Sung 1992)), there exists

∼u1 ∈ ∼H
2(Ω) ∩ ∼̊H

1(Ω) such that

div ∼u1 = div ∼u(11.4.21)

and
‖∼u1‖∼H

2(Ω) ≤ C ‖div ∼u‖H1(Ω) .(11.4.22)

Combining (11.4.22) and (11.4.4) we have

(11.4.23) ‖∼u1‖∼H
2(Ω) ≤

C

1 + λ
‖
∼
f‖

∼L
2(Ω) .

Note that (11.4.11) and (11.4.21) imply that

(11.4.24) divhΠh∼u1 = divhΠh∼u.
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Then

inf
∼v∈∼Vh

‖∼u− ∼v‖h

≤ ‖∼u−Πh∼u‖h

=
(
µ
∥∥g≈radh

(
∼u−Πh∼u

)∥∥2

≈
L2(Ω)

+ (µ + λ)
∥∥divh

(
∼u−Πh∼u

)∥∥2

L2(Ω)

)1/2

(11.4.25) (by 11.4.9)

=
(
µ
∥∥g≈radh

(
∼u−Πh∼u

)∥∥2

≈
L2(Ω)

+ (µ + λ)
∥∥divh

(
∼u1 −Πh∼u1

)∥∥2

L2(Ω)

)1/2

(11.4.21 & 11.4.24)

≤ C h ‖
∼
f‖

∼L
2(Ω) . (11.4.14, 11.4.23 & 11.4.4)

The theorem now follows by combining (11.4.17), (11.4.20) and (11.4.25).
�	

11.x Exercises

11.x.1 Verify (11.1.1).

11.x.2 Show that {∼v ∈ ∼H
1(Ω) :

≈
ε(∼v) =

≈
0} = ∼RM.

11.x.3 Show that rot ∼v =
≈
χ : g≈rad ∼v.

11.x.4 Show that div ∼v =
≈
χ : c≈url ∼v.

11.x.5 Show that
∫

Ω
g≈rad ∼v : c≈url ∼w dx = 0 for ∼v ∈ ∼H

1(Ω) and ∼w ∈ ∼̊H
1(Ω).

11.x.6 Show that ∼H
1(Ω) = ∼̂H

1(Ω)⊕ ∼RM. (Hint: use (11.2.18).)

11.x.7 Let A, B be closed subspaces of a Banach space V such that V =
A⊕B. Show that there exists a positive constant C such that given
any v ∈ V , we have v = v1 +v2, where v1 ∈ A, v2 ∈ B and C(‖v1‖+
‖v2‖) ≤ ‖v‖. (Hint: use the Open Mapping Theorem (Rudin 1987).)

11.x.8 Show that the second Korn inequality follows from the Korn in-
equality.

11.x.9 Show that if ∼v ∈ ∼RM and ∼v �≡ ∼0, then ∼v = ∼0 at at most one point.

11.x.10 Establish the first Korn inequality (11.2.26) directly through inte-
gration by parts and Poincaré’s inequality.

11.x.11 Prove Theorem 11.2.12 on ∼H
1
⊥(Ω) := {∼v ∈ ∼H

1(Ω) : (∼v, ∼w)
∼L

2(Ω) =
0 ∀ ∼w ∈ ∼RM}.
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11.x.12 Does (11.3.7) contradict (11.3.4)? If not, what is the implication?

11.x.13 Show that given any ∼v ∈ ∼̂H
2(Ω), there exists a ∼vh ∈ ∼̂Vh such that

‖∼v − ∼vh‖∼H
1(Ω) ≤ C h ‖∼v‖∼H

2(Ω) ,

where the constant C is independent of h. (Hint: use (11.2.18) to
correct the standard interpolant.)

11.x.14 Verify (11.3.8). (Hint: referring to Fig. 11.1, show that ∼v = ∼0 on T1

and div ∼v = 0 on T2 and T3 implies that ∼v = ∼0 on T2 and T3. Then
repeat this argument.)

11.x.15 Verify (11.3.12) and (11.3.16).

11.x.16 Carry out the estimate of lim infλ→∞ Lλ,h in (11.3.19). (Hint: use
(11.3.11), (11.3.14), and (11.3.18).)

11.x.17 Show that equation (11.1.2) is equivalent to (11.4.1).

11.x.18 Establish (11.4.13). Show that it implies (11.4.11).

11.x.19 Prove the interpolation error estimate (11.4.14). (Hint: use the
Bramble-Hilbert Lemma and a homogeneity argument. If necessary,
consult (Crouzeix & Raviart 1973).)

11.x.20 Work out the details of the proofs of (11.4.18) and (11.4.19).

11.x.21 Work out the details of (11.4.20).

11.x.22 Use a duality argument to show that there exists a positive constant
C independent of h and (µ, λ) ∈ [µ1, µ2]× (0,∞) such that

‖∼u− ∼uh‖∼L
2(Ω) ≤ C h2 ‖

∼
f‖

∼L
2(Ω) .

(Hint: consult (Brenner & Sung 1992).)

11.x.23 Prove the following discrete version of Lemma 11.2.3. Let Ω be a
convex polygonal domain. Given any p ∈ L2(Ω) such that p|T is
a constant for all T ∈ T h and

∫
Ω

p dx = 0, there exists a pos-
itive constant C and ∼v ∈ ∼V

∗
h such that (i) divh∼v = p and (ii)

‖g≈radh∼v‖≈
L2(Ω) ≤ C ‖p‖L2(Ω). (Hint: use Lemma 11.2.3, the inter-

polation operator Πh and (11.4.13).)

11.x.24 Let ∼V
∗
h be defined by (11.4.5). The subspace ∼Wh := {∼v ∈ ∼V

∗
h :

divh∼v = 0} of ∼V
∗
h is useful for incompressible fluid flow problems.

Denote by ψe the piecewise linear function that takes the value 1 at
the midpoint of the edge e and 0 at all other midpoints. The first
kind of basis functions of ∼Wh are associated with internal edges.
Let e be an internal edge of T h and ∼te be a unit vector tangen-
tial to e, then

∼
φe := ψe ∼te. The second kind of basis functions are

associated with internal vertices. Let p be an internal vertex and
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let e1, e2, . . . , el be the edges in T h that have p as an endpoint,
then

∼
φp :=

∑l
i=1

1
|ei| ψei ∼nei

, where ∼nei
is a unit vector normal to ei

pointing in the counterclockwise direction with respect to p (cf. Fig.
11.2). Show that a basis for ∼Wh is given by the union of the two sets

{
∼
φe : e is an internal edge of T h}

and
{
∼
φp : p is an internal vertex of T h}.

(Hint: if necessary, consult (Thomasset 1981).)

p

Fig. 11.2. basis function
∼
φp

11.x.25 Formulate and prove a convergence theorem for the piecewise linear
approximation of the variational problem (11.2.1) in the general case
∅ �= Γ1 �= ∂Ω. (Hint: see Sect. 5.4.)



Chapter 12

Mixed Methods

The name “mixed method” is applied to a variety of finite element methods
which have more than one approximation space. Typically one or more of
the spaces play the role of Lagrange multipliers which enforce constraints.
The name and many of the original concepts for such methods originated
in solid mechanics where it was desirable to have a more accurate approxi-
mation of certain derivatives of the displacement. However, for the Stokes
equations which govern viscous fluid flow, the natural Galerkin approxima-
tion is a mixed method.

One characteristic of mixed methods is that not all choices of finite
element spaces will lead to convergent approximations. Standard approx-
imability alone is insufficient to guarantee success. In fact, we will study
mixed methods in the context of a variational crime.

We will focus on mixed methods in which there are two bilinear forms
and two approximation spaces. There are two key conditions (cf. (Babuška
1971), (Brezzi 1974)) that lead to the success of a mixed method. Both are
in some sense coercivity conditions for the bilinear forms. One of these will
look like a standard coercivity condition, while the other, often called the
inf-sup condition, takes a new form.

12.1 Examples of Mixed Variational Formulations

The Stokes equations for steady flow of a (very) viscous fluid are

(12.1.1)
−∆∼u + g∼rad p =

∼
f

div ∼u = 0

in Ω ⊂ IRn, where ∼u denotes the fluid velocity and p denotes the pressure.
Here we use the “under-tilde” notation introduced in the previous chapter
for vectors, vector operators and matrices. However, we also use the obvious
extensions to three dimensions in some cases. To make the dimensionality
clear in all cases, we use the notation Hs(Ω)n instead of ∼H

s(Ω), L2(Ω)n

instead of ∼L
2(Ω), etc.
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Equations (12.1.1) represent the limiting case of zero Reynolds’ num-
ber for the Navier-Stokes equations (13.4.1) to be discussed subsequently. It
is unusual to have a nonzero forcing term,

∼
f , but the linearity of these equa-

tions allow us to convert the more likely case of inhomogeneous boundary
data to a homogeneous one. Thus, we assume, for example, that we have
Dirichlet boundary conditions, ∼u = ∼0, on ∂Ω.

Integrating by parts, we can derive a variational identity for suitable

∼v and q:

a(∼u, ∼v) + b(∼v, p) =
∫

Ω
∼
f · ∼v dx ,(12.1.2)

b(∼u, q) = 0 ,(12.1.3)

where the forms a(·, ·) and b(·, ·) are defined as

a(∼u, ∼v) :=
∫

Ω

n∑
i=1

g∼radui · g∼rad vi dx(12.1.4)

b(∼v, q) := −
∫

Ω

(
div ∼v

)
q dx.(12.1.5)

Let ∼V = H̊1(Ω)n and Π =
{
q ∈ L2(Ω) :

∫
Ω

q dx = 0
}
. It is well

known (Girault & Raviart 1979 & 1986, Temam 1984) that the following
has a unique solution.

Given F ∈ ∼V
′, find functions ∼u ∈ ∼V and p ∈ Π such that

(12.1.6)
a(∼u, ∼v) + b(∼v, p) = F (∼v) ∀∼v ∈ ∼V ,

b(∼u, q) = 0 ∀q ∈ Π .

The well-posedness of this problem follows in part from the coercivity of
a(·, ·) on H̊1(Ω)n (see exercise 12.x.1).

A model for fluid flow in a porous medium occupying a domain Ω takes
the form (5.6.6), namely,

(12.1.7) −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂p

∂xj
(x)

)
= f(x) in Ω,

where p is the pressure (again we take an inhomogeneous right-hand-side
for simplicity). Darcy’s Law postulates that the fluid velocity ∼u is related
to the gradient of p by

n∑
j=1

aij(x)
∂p

∂xj
(x) = ui(x) ∀i = 1, . . . , n.

The coefficients aij , which we assume form a symmetric, positive-definite
system (almost everywhere), are related to the porosity of the medium. Of
course, numerous other physical models also take the form (12.1.7).
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A variational formulation for (12.1.7) of the form (12.1.6) can be de-
rived by letting

≈
A(x) denote the (almost everywhere defined) inverse of the

coefficient matrix (aij) and by writing g∼rad p =
≈
A∼u. Define

(12.1.8) a(∼u, ∼v) :=
∫

Ω

n∑
i,j=1

Aijuivj dx

with b(·, ·) as before. Then the solution to (12.1.7) solves

(12.1.9)
a(∼u, ∼v) + b(∼v, p) = 0 ∀∼v ∈ ∼V ,

b(∼u, q) = F (q) ∀q ∈ Π

where Π = L2(Ω) and

∼V :=
{

∼v ∈ L2(Ω)n : div ∼v ∈ L2(Ω)
}

.

The latter space, called H(div), has a natural norm given by

(12.1.10)
∥∥

∼v
∥∥2

H(div)
=
∥∥

∼v
∥∥2

L2(Ω)n +
∥∥div ∼v

∥∥2

L2(Ω)
,

(see exercise 12.x.2). Unlike the previous problem, the bilinear form a(·, ·)
is not coercive on all of ∼V . However, it is coercive on the critical subspace
of divergence-zero functions. The role of this subspace will be made clear
in the abstract setting to which we now turn our attention.

12.2 Abstract Mixed Formulation

We now abstract the key features of the above two problems. We have two
Hilbert spaces V and Π and two bilinear forms a(·, ·) : V × V → IR and
b(·, ·) : V ×Π → IR. It is natural to assume that these forms are continuous:

(12.2.1)
a(u, v) ≤C‖u‖V ‖v‖V ∀u, v ∈ V

b(v, p) ≤C‖v‖V ‖p‖Π ∀v ∈ V, p ∈ Π,

but for the moment we postpone discussion of the appropriate notion of
coercivity for either form.

There is no unique relationship between V and Π, but there is an
operator between them that provides a link. We will assume that D : V →
Π is continuous,

(12.2.2) ‖Dv‖Π ≤ C‖v‖V ,

and, moreover, we make the simplifying assumption that

(12.2.3) b(v, p) = (Dv, p)Π .
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We consider the variational problem to find u ∈ V and p ∈ Π such that

(12.2.4)
a(u, v) + b(v, p) = F (v) ∀v ∈ V

b(u, q) = G(q) ∀q ∈ Π

where F ∈ V ′ and G ∈ Π ′.
We note that alternative formulations exist (Ciarlet & Lions 1991) in

which there is an operator D ′ : Π → V and b(v, p) = (v,D ′ p)V .
Define a closed subspace of V via

(12.2.5) Z = {v ∈ V : b(v, q) = 0 ∀q ∈ Π} .

Suppose for the moment that G = 0 in (12.2.4). Then the way (12.2.4)
determines u is equivalent to the following: find u ∈ Z such that

(12.2.6) a(u, v) = F (v) ∀v ∈ Z.

This is well-posed provided a(·, ·) is coercive, namely

(12.2.7) α‖v‖2V ≤ a(v, v)

for all v ∈ Z, in view of the Lax-Milgram Theorem 2.7.7.
The coercivity condition (12.2.7) holds for both problems considered in

the previous section. For the Stokes formulation based on the form a(·, ·) in
(12.1.4), it holds for all v ∈ V , although for other formulations (see exercise
12.x.3) it will hold only on the subset Z of divergence zero functions. For
the scalar elliptic problem it is essential that we are allowed to restrict to
z ∈ Z where in this case

Z =
{

∼v ∈ H(div) : div ∼v = 0
}

.

For ∼v ∈ Z,
∥∥

∼v
∥∥

H(div)
=
∥∥

∼v
∥∥

L2(Ω)n and coercivity follows from the fact that
the coefficients aij are bounded.

If G in (12.2.4) is not zero, we can reduce to the case G = 0 as follows.
Suppose u0 ∈ V is any solution to b(u0, q) = G(q) ∀q ∈ Π. For the
examples considered previously, this amounts to solving div ∼u0

= g which
can be done in a variety of ways (cf. Lemma 11.2.3 and (Arnold, Scott &
Vogelius 1988)). Then the solution u to (12.2.4) is of the form u = u1 + u0

where u1 ∈ Z satisfies

a(u1, v) = F (v)− a(u0, v) ∀v ∈ Z

which is again of the form (12.2.6). Thus, for the remainder of the section
we will focus on the problem

(12.2.8)
a(u, v) + b(v, p) = F (v) ∀v ∈ V

b(u, q) = 0 ∀q ∈ Π

where F ∈ V ′. We return to the general case in Sect. 12.5.
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With u well defined by (12.2.6), we then determine p ∈ Π such that

(12.2.9) b(v, p) = −a(u, v) + F (v) ∀v ∈ V.

The well-posedness of this problem follows from a new kind of coercivity.
To motivate the new coercivity condition, let us re-examine the use of
conditions such as (12.2.7). Such a condition implies

α‖v‖V ≤ sup
w∈V

a(w, v)
‖w‖V

∀v ∈ V

(take w = v), and the latter condition is sufficient for the types of estimates
where we have employed a coercivity condition. Applying this idea to b(·, ·),
we consider the condition (cf. (Babuška 1971), (Brezzi 1974))

(12.2.10) β‖p‖Π ≤ sup
w∈V

b(w, p)
‖w‖V

∀p ∈ Π.

Problem (12.2.9) is of the form

(12.2.11) b(v, p) = F̃ (v) ∀v ∈ V

where F̃ (v) = 0 for all v ∈ Z. Condition (12.2.10) (with β > 0) implies
uniqueness of a solution. Existence of a solution also follows from (12.2.10),
but this requires a bit more explanation.

(12.2.12) Lemma. Suppose that (12.2.1) and (12.2.10) hold with β > 0. Then
(12.2.11) has a unique solution.

Proof. Let Z⊥ denote the orthogonal complement (Sect. 2.2) of Z in V (re-
call V is a Hilbert space). Since the behavior of b(·, ·) is trivial on Z, we may
as well restrict our attention to v ∈ Z⊥ in (12.2.11). Recall (Proposition
2.2.4) that we can consider Z⊥ as a Hilbert space with the inner-product
(·, ·)V inherited from V . Given p ∈ Π, the linear form v → b(v, p) is con-
tinuous on Z⊥, so the Riesz Representation Theorem 2.4.2 guarantees the
existence of Tp ∈ Z⊥ such that

(12.2.13) (Tp, v)V = b(v, p) ∀v ∈ Z⊥.

Moreover, part of Theorem 2.4.2 assures that T is linear, and (2.4.4) implies

‖Tp‖V = sup
v∈Z⊥

b(v, p)
‖v‖V

≤ C‖p‖Π ,

where the inequality is the assumption (12.2.1). Let R denote the image
of T in Z⊥. If we can show that R = Z⊥, then another application of the
Riesz Representation Theorem completes the proof, since it implies we can
always represent F̃ as

F̃ (v) = (u, v)V ∀v ∈ Z⊥
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for some u ∈ Z⊥. We simply pick p such that Tp = u.
To show that R is all of Z⊥, we begin by showing it to be closed.

Suppose that pj ∈ Π is a sequence with the property that Tpj → w in Z⊥.
Then {Tpj} is Cauchy in Z⊥, and

β‖pj − pk‖Π ≤ sup
w∈Z⊥

b(w, pj − pk)
‖w‖V

(by 12.2.10)

= sup
w∈Z⊥

(w, Tpj − Tpk)V

‖w‖V

(by 12.2.13)

= ‖Tpj − Tpk‖V (exercise 2.x.16)

so that {pj} is Cauchy in Π. Let q = limj→∞ pj . By the continuity of T ,
Tq = w, so R is closed. If R �= Z⊥, pick 0 �= v ∈ R⊥. Then b(v, q) =
(v, Tq)V = 0 for all q ∈ Π. But this implies that v ∈ Z, a contradiction. So
R = Z⊥ and the proof is complete. �	

Condition (12.2.10) holds for the problems introduced in the previous
section, and the proof is similar in both cases. It follows from the fact
(Lemma 11.2.3) that one can solve the underdetermined system div ∼w = p
for ∼w ∈ H1(Ω)n with ∥∥

∼w
∥∥

H1(Ω)n ≤ (1/β) ‖p‖L2(Ω)

by taking β = 1/C where C is the constant in Lemma 11.2.3. If further∫
Ω

p dx = 0, then we may take ∼w ∈ H̊1(Ω), that is, we may assume ∼w
vanishes on the boundary (cf. (Arnold, Scott & Vogelius 1988)). Thus, in
either of the cases studied in the previous section, there is a ∼w ∈ ∼V such
that

β ‖p‖L2(Ω) = β
b(∼w, p)
‖p‖L2(Ω)

≤ b(∼w, p)∥∥
∼w
∥∥

H1(Ω)n

≤
√

n
b(∼w, p)∥∥
∼w
∥∥

H(div)

,

and this verifies condition (12.2.10) for both cases.

12.3 Discrete Mixed Formulation

Now let Vh ⊂ V and Πh ⊂ Π and consider the variational problem to find
uh ∈ Vh and ph ∈ Πh such that

(12.3.1)
a(uh, v) + b(v, ph) = F (v) ∀v ∈ Vh ,

b(uh, q) = 0 ∀q ∈ Πh .

(The case of an inhomogeneous right-hand side in the second equation is
considered in Sect. 12.5.) Similarly, define

(12.3.2) Zh = {v ∈ Vh : b(v, q) = 0 ∀q ∈ Πh} .
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Then (12.3.1) is equivalent to the following. Find uh ∈ Zh such that

(12.3.3) a(uh, v) = F (v) ∀v ∈ Zh,

and then determine ph ∈ Πh such that

(12.3.4) b(v, ph) = −a(uh, v) + F (v) ∀v ∈ Vh.

If Zh ⊂ Z, we can apply Céa’s Theorem 2.8.1 to obtain

(12.3.5) ‖u− uh‖V ≤ C

α
inf

v∈Zh

‖u− v‖V .

If Zh �⊂ Z, then we have a variational crime and must apply the theory
developed in Sect. 10.1. We find from Lemma 10.1.1 that

‖u− uh‖V ≤
(

1 +
C

α

)
inf

v ∈Zh

‖u− v‖V +
1
α

sup
w ∈Zh\{0}

|a(u− uh, w)|
‖w‖V

provided (12.2.7) holds as well on Zh. We now identify the latter term. For
w ∈ Zh

a(u− uh, w) = a(u,w)− F (w) (by 12.3.3)
(12.3.6) = −b(w, p) (by 12.2.8 since w is in V )

= −b(w, p− q) ∀ q ∈ Πh. (w is in Zh)

But inequality (12.2.1) implies

|b(w, p− q)| ≤ C‖w‖V ‖p− q‖Π .

Since q was arbitrary, we find

|a(u− uh, w)| ≤ C‖w‖V inf
q∈Πh

‖p− q‖Π .

Thus, we have proved the following result (cf. (Brezzi 1974, Remark 2.1)).

(12.3.7) Theorem. Let Vh ⊂ V and Πh ⊂ Π, and define Z and Zh by
(12.2.5) and (12.3.2), respectively. Suppose that (12.2.7) holds for all z ∈
Z ∪ Zh. Let u and p be determined by (12.2.8), and let uh be determined
equivalently by (12.3.1) or (12.3.3). Then

‖u− uh‖V ≤
(

1 +
C

α

)
inf

v ∈Zh

‖u− v‖V +
C

α
inf

q∈Πh

‖p− q‖Π

where C is given in (12.2.1).

The main point of this theorem is that the error u− uh depends only
on approximability of the spaces Zh and Πh and the coercivity condition
(12.2.7). Bounds regarding ph require more, in fact ph may not even be
stably determined. We note that the approximation properties of Zh may
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not be very good, but nevertheless, uh is at least stably determined if
(12.2.7) holds.

12.4 Convergence Results for Velocity Approximation

As the first application of the above theory, we consider families of spaces for
approximating the Stokes equations (12.1.1) in two dimensions. Condition
(12.2.7) holds for the form (12.1.4) for all ∼z ∈ ∼V , so we only need to prove
approximability.

Let V k
h denote C0 piecewise polynomials of degree k on a non-

degenerate triangulation of a polygonal domain Ω ⊂ IR2 of maximum tri-
angle diameter h. Let

(12.4.1) ∼Vh =
{

∼v ∈ V k
h × V k

h : ∼v = 0 on ∂Ω
}

and let Πh be any subset of Π =
{
q ∈ L2(Ω) :

∫
Ω

q(x) dx = 0
}

which
satisfies

(12.4.2) inf
q∈Πh

‖p− q‖L2(Ω) ≤ Chs‖p‖Hs(Ω) , ∀p ∈ Π ∩Hs(Ω)

for all 0 ≤ s ≤ k. One family of such spaces is the Taylor-Hood family of
pressure spaces (Brezzi & Falk 1991), as described in the following result.

(12.4.3) Lemma. Condition (12.4.2) holds for

(12.4.4) Πh =
{

q ∈ V k−1
h :

∫
Ω

q(x) dx = 0
}

.

Proof. From Corollary 4.4.24 (also see Theorem 4.8.12), we have

inf
q∈V k−1

h

‖p− q‖L2(Ω) ≤ Chs‖p‖Hs(Ω) , 0 ≤ s ≤ k.

The infimum is achieved by PV k−1
h

p, the L2(Ω) projection of p onto V k−1
h .

Since constant functions are contained in V k−1
h , we have

∫
Ω

PV k−1
h

p(x) dx =∫
Ω

p(x) dx = 0, so that PV k−1
h

p ∈ Πh. �	

(12.4.5) Theorem. Let ∼Vh be as given in (12.4.1) and let Πh satisfy (12.4.2).
Let ∼u and ∼uh

be as in Theorem 12.3.7. Suppose that k ≥ 4. Then for 0 ≤
s ≤ k ∥∥

∼u− ∼uh

∥∥
H1(Ω)2

≤ Chs
(∥∥

∼u
∥∥

Hs+1(Ω)2
+ ‖p‖Hs(Ω)

)
provided the solution (∼u, p) to (12.1.6) satisfies (∼u, p) ∈ Hs+1(Ω)2×Hs(Ω).

Proof. In view of (12.4.2) and Theorem 12.3.7, we only need to show that
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(12.4.6) inf
∼v ∈Zh

∥∥
∼u− ∼v

∥∥
H1(Ω)2

≤ Chs
∥∥

∼u
∥∥

Hs+1(Ω)2
.

Observe that ∼u ∈ Z implies that ∼u = c∼urlψ for ψ ∈ Hs+2(Ω) ∩ H̊2(Ω)
(Arnold, Scott & Vogelius 1988), where c∼url was defined in Sect. 10.1.
Using the Argyris element ((3.2.10) and following) on T h (also see (Morgan
& Scott 1975)), there is a C1 piecewise polynomial, ψh ∈ H̊2(Ω), of degree
s + 1 such that

‖ψ − ψh‖H2(Ω) ≤ Chs|ψ|Hs+2(Ω) .

Since c∼urlψh ∈ Zh (∼Vh ∩ Z ⊂ Zh always), we have completed the proof.
Note that |ψ|Hs+2(Ω)2 ≤ C

∣∣
∼u
∣∣
Hs+1(Ω)2

since ∼u = (ψx,−ψy). �	

(12.4.7) Remark. In the next section, we prove the result for k = 2. The
case k = 3 is treated by (Brezzi & Falk 1991).

To approximate the scalar elliptic problem (12.1.7) by a mixed method,
we have to contend with the fact that the corresponding form a(·, ·) is not
coercive on all of ∼V , as it was in the case of the Stokes problem. It is clearly
coercive on the space

Z =
{

∼v ∈ H(div) : div ∼v = 0
}

so that (12.2.6) is well-posed. However, some care is required to assure that
it is well-posed as well on Zh, as given in (12.3.2). One simple solution is
to insure that Zh ⊂ Z and we will present one way this can be done.

Returning to the general notation of the previous section, we note
that Πh is naturally paired with DVh (in both of the examples studied so
far, D = −div ). If we take Πh = DVh, then the definition (12.3.2) of Zh

guarantees Zh ⊂ Z, and this, in turn, guarantees coercivity. For example,
we could take ∼Vh = V k

h × V k
h (cf. (12.4.1)), and the proof of (12.4.6) shows

that

(12.4.8) inf
∼v ∈Zh

∥∥
∼u− ∼v

∥∥
H1(Ω)2

≤ Chk
∥∥

∼u
∥∥

Hk+1(Ω)2
,

since this holds with Zh replaced by ∼Vh ∩
{

∼v ∈ H1(Ω)2 : div ∼v = 0
}

, and
the latter is a subset of Zh. In the next chapter we will study algorithms that
allow one to compute using Πh = DVh without having explicit information
about the structure of Πh. As a corollary to (12.3.5) and (12.4.8), we have
the following result.

(12.4.9) Theorem. Consider the mixed-method for the scalar elliptic prob-
lem (12.1.7) for n = 2, where the form a(·, ·) is given in (12.1.8). Let (cf.
(12.4.1))

∼Vh = V k
h × V k

h

and let Πh = div ∼Vh. Suppose that k ≥ 4. Then for 0 ≤ s ≤ k
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≈
a g∼rad p− ∼uh

∥∥∥
L2(Ω)2

≤ Chs+1
∥∥∥

≈
a g∼rad p

∥∥∥
Hs+1(Ω)2

provided the solution p to (12.1.7) satisfies
≈
a g∼rad p ∈ Hs+1(Ω).

Similarly, the following result is a consequence of (12.3.5) and (12.4.6).

(12.4.10) Theorem. Let ∼Vh be as given in (12.4.1) and let Πh = div ∼Vh. Let

∼u and ∼uh
be as in Theorem 12.3.7. Suppose that k ≥ 4. Then for 0 ≤ s ≤ k∥∥

∼u− ∼uh

∥∥
H1(Ω)2

≤ Chs
∥∥

∼u
∥∥

Hs+1(Ω)2

provided the solution ∼u to (12.1.6) satisfies ∼u ∈ Hs+1(Ω)2.

The above theory can also be developed for nonconforming finite ele-
ment approximation of the Stokes equations. Define (cf. (11.4.6))

ah(∼u, ∼v) :=
∑

T∈T h

∫
T

g≈radh∼v : g≈radh∼w dx

bh(∼v, q) := −
∑

T∈T h

∫
T

divh∼v q dx

and let
∥∥

∼v
∥∥

h
:=

√
ah(∼v, ∼v). Let ∼V

∗
h be the space defined in (11.4.5), that

is, ∼V
∗
h := Vh × Vh where Vh is the space defined in (10.3.2). Let Πh denote

piecewise constant functions, q, on T h satisfying
∫

Ω
q dx = 0. Define ∼uh

∈
∼V

∗
h and ph ∈ Πh by

(12.4.11)
ah(∼uh

, ∼v) + bh(∼v, ph) =
∫

Ω
∼
f · ∼v dx ∀∼v ∈ ∼V

∗
h ,

bh(∼uh
, q) = 0 ∀q ∈ Πh .

(12.4.12) Theorem. If ∼u ∈ H2(Ω)2 and p ∈ H1(Ω), then∥∥
∼u− ∼uh

∥∥
h
≤ Ch

(∥∥
∼u
∥∥

H2(Ω)2
+ ‖p‖H1(Ω)

)
.

Proof. Let Zh =
{

∼v ∈ ∼V
∗
h : bh(∼v, q) = 0 ∀q ∈ Πh

}
. From (10.1.10) we

have

‖∼u− ∼uh
‖h ≤ inf

∼v∈Zh

‖∼u− ∼v‖h + sup
∼w∈Zh\{0}

|ah(∼u− ∼uh
, ∼w)|

‖∼w‖h
.

Note that ah(·, ·) is coercive on ∼V = H1(Ω)2 since ah(·, ·) = a(·, ·) on ∼V . It
is non-degenerate on ∼V

∗
h since ah(∼v, ∼v) = 0 implies ∼v is piecewise constant,

and the zero boundary condition together with continuity at midpoints
imply ∼v ≡ ∼0. Then
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ah(∼u− ∼uh
, ∼w) = ah(∼u, ∼w)−

∫
Ω

∼
f · ∼w dx (by 12.4.11)

= ah(∼u, ∼w)−
∫

Ω

(−∆∼u + g∼rad p) · ∼w dx (by 12.1.1)

=
∑

e

∫
e

∑
i=1,2

∂ui

∂∼ν
[wi]− p[∼w · ∼ν] ds− bh(∼w, p)

after integrating by parts, where for simplicity of notation we make the
convention that ∼w is defined to be zero outside Ω, so that the “jump” [∼w]
is the same as ∼w on the boundary edges. From Lemmas 10.3.7 and 10.3.9,
we find∣∣∣∣∣∑

e

∫
e

∑
i=1,2

∂ui

∂∼ν
[wi]− p[∼w · ∼ν] ds

∣∣∣∣∣ ≤ Ch
(∥∥

∼u
∥∥

H2(Ω)2
+ ‖p‖H1(Ω)

)
‖∼w‖h.

Following the derivation of Theorem 12.3.7, we find that∣∣bh(∼w, p)
∣∣ ≤ √2

∥∥
∼w
∥∥

h
inf

q∈Πh

‖p− q‖L2(Ω)

≤ Ch
∥∥

∼w
∥∥

h
‖p‖H1(Ω)

for all ∼w ∈ Zh. Thus, we only need to show that

inf
∼v∈Zh

∥∥
∼u− ∼v

∥∥
h
≤ Ch

∥∥
∼u
∥∥

H2(Ω)2
.

Let Mh denote the Morley space depicted in Fig. 10.5. Then c∼urlMh ⊂ Zh

(exercise 12.x.11). Choosing ∼v = c∼url Ihφ where ∼u = c∼urlφ (as in the proof
of Theorem 12.4.5) completes the proof. �	

12.5 The Discrete Inf-Sup Condition

In the previous section, we saw that error estimates could be derived for
the (velocity) error, u − uh, in terms of approximation properties of the
spaces Zh and Πh. We now consider the well-posedness of the problem for
ph, (12.3.4). As a by-product, we will simplify the approximation problem
for Zh, reducing it to one for Vh. In Theorems 12.4.5, 12.4.9 and 12.4.12, the
approximation problem for Zh was easy to resolve, but in other instances
it is far more complex. We show that a counterpart of (12.2.10) restricted
to (Vh,Πh) is crucial both to approximability for Zh and to solvability for
ph, starting with the latter.
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(12.5.1) Lemma. (Inf-Sup Condition) In order for (12.3.4) to have a unique
solution, it is necessary and sufficient that

(12.5.2) 0 < β := inf
q∈Πh

sup
v∈Vh

|b(v, q)|
‖v‖V ‖q‖Π

.

Proof. If β = 0, then the finite-dimensionality of Πh would imply that there
is a q ∈ Πh such that b(v, q) = 0 for all v ∈ Vh (exercise 12.x.7). This proves
the necessity of the inf-sup condition.

On the other hand, β > 0 implies uniqueness for (12.3.4) since (12.5.2)
is equivalent to

(12.5.3) β‖q‖Π ≤ sup
v∈Vh

|b(v, q)|
‖v‖V

∀q ∈ Πh.

We now consider the solvability of (12.3.4).

The right-hand side of (12.3.4) vanishes for all v ∈ Zh. Thus, (12.3.4)
is equivalent to

(12.5.4) b(v, ph) = −a(uh, v) + F (v) ∀v ∈ Z⊥
h

where

(12.5.5) Z⊥
h := {v ∈ Vh : (v, z)V = 0 ∀z ∈ Zh} .

Once we see that dim Z⊥
h = dimΠh, then (12.5.4) represents a square

system, and uniqueness implies existence. But we may view Zh as the kernel
of the mapping

T : Vh → IRdim Πh where (Tv)i := b(v, qi)

and {qi : i = 1, . . . ,dim Πh} is a basis for Πh. If T were not onto, then
there would be a nontrivial vector of coefficients, (ci), such that

dim Πh∑
i=1

ci (Tv)i = 0

for all v ∈ Vh. Define 0 �= q ∈ Πh by q =
∑dim Πh

i=1 ciqi. Then b(v, q) = 0 for
all v ∈ Vh, contradicting β > 0. Thus, T must be onto, and consequently

dim Zh = dim kernel T = dimVh − dim image T = dimVh − dimΠh.

Of course, dim Vh = dimZh + dimZ⊥
h since Vh = Zh ⊕ Z⊥

h . Therefore,
dimZ⊥

h = dimVh − dimZh = dimΠh. �	

Let us introduce a solution operator related to the problem (12.3.4).
Define M : Z⊥

h → Πh by
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(12.5.6) b(v,Mu) = (u, v)V ∀v ∈ Vh.

It is easy to see (exercise 12.x.8) that

‖M‖V →Π := sup
0�=u∈Vh

‖Mu‖Π

‖u‖V

≤ 1
β

where β is the constant in (12.5.2).
There is an operator L : Πh → Z⊥

h (see (12.5.5)) defined by

(12.5.7) b(Lp, q) = (p, q)Π ∀q ∈ Πh

since (12.5.7) represents a square system (see the proof of Lemma 12.5.1),
and uniqueness is guaranteed by the fact that Zh ∩ Z⊥

h = {0}. L is adjoint
to M in the sense that

(12.5.8) (p,Mu)Π = b(Lp,Mu) = (u, Lp)V ∀u ∈ Vh, p ∈ Πh.

The norms of M and L are related by

‖L‖Π→V := sup
0�=p∈Πh

‖Lp‖V

‖p‖Π

= sup
0�=p∈Πh

sup
0�=u∈Vh

(u, Lp)V

‖u‖V ‖p‖Π

(exercise 2.x.16)

= sup
0�=p∈Πh

sup
0�=u∈Vh

(Mu, p)Π

‖u‖V ‖p‖Π

(by 12.5.8)

= sup
0�=u∈Vh

‖Mu‖Π

‖u‖V

(exercise 2.x.16)

= ‖M‖V →Π .

We can characterize Lp as the minimum-norm solution to the underdeter-
mined problem to find v ∈ Vh such that

b(v, q) = (p, q)Π ∀q ∈ Πh.

More precisely, Lp ∈ Z⊥
h implies (see exercise 12.x.9) that

(12.5.9) ‖Lp‖V = min
v∈Zp

h

‖v‖V

where Zp
h := {v ∈ Vh : b(v, q) = (p, q)Π ∀q ∈ Πh} . Therefore,

1
‖L‖Π→V

= inf
0�=p∈Πh

‖p‖Π

‖Lp‖V

= inf
0�=p∈Πh

sup
0�=v∈Zp

h

‖p‖Π

‖v‖V

(by 12.5.9)
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= inf
0�=p∈Πh

sup
0�=v∈Zp

h

(p, p)Π

‖p‖Π‖v‖V

= inf
0�=p∈Πh

sup
0�=v∈Zp

h

b(v, p)
‖p‖Π‖v‖V

(definition of Zp
h)

≤ inf
0�=p∈Πh

sup
0�=v∈Vh

b(v, p)
‖p‖Π‖v‖V

(Zp
h ⊂ Vh)

which implies that ‖L‖Π→V ≥ 1/β. We summarize the above results in the
following.

(12.5.10) Lemma. Condition (12.5.2) is equivalent to the existence of op-
erators L and M , defined in (12.5.7) and (12.5.6) respectively, that satisfy
‖L‖Π→V = ‖M‖V →Π = 1/β.

Proof. The existence of L and M together with evaluation of their norms
has just been demonstrated. The converse is left to the reader in exercise
12.x.10. �	

Error estimates for p − ph are derived as follows. By subtracting the
first equations in each of (12.2.8) and (12.3.1) we find the relation

(12.5.11) b(v, p− ph) = −a(u− uh, v) ∀v ∈ Vh.

For any q ∈ Πh, we find

β‖q − ph‖Π ≤ sup
v∈Vh

|b(v, q − ph)|
‖v‖V

(by 12.5.3)

= sup
v∈Vh

|b(v, p− ph) + b(v, q − p)|
‖v‖V

= sup
v∈Vh

| − a(u− uh, v) + b(v, q − p)|
‖v‖V

(by 12.5.11)

≤ C
(
‖u− uh‖V + ‖q − p‖Π

)
. (by 12.2.1)

The following result is then a consequence of the triangle inequality.

(12.5.12) Theorem. Let Vh ⊂ V and Πh ⊂ Π. Let u and p be determined
equivalently by (12.2.8) or (12.2.6) and (12.2.9), and let uh be determined
equivalently by (12.3.1) or (12.3.3). Suppose that β > 0 in (12.5.2). Then
there is a unique solution, ph, to (12.3.4) which satisfies

‖p− ph‖Π ≤ C

β
‖u− uh‖V +

(
1 +

C

β

)
inf

q∈Πh

‖p− q‖Π

where C is given in (12.2.1).

Combining Theorems 12.5.12 and 12.3.7, we obtain the following.
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(12.5.13) Corollary. Under the conditions of Theorems 12.5.12 and 12.3.7,

‖p− ph‖Π ≤ c inf
v ∈Zh

‖u− v‖V + (1 + c) inf
q∈Πh

‖p− q‖Π ,

where c := C
β

(
1 + C

α

)
.

We now show how (12.5.2) is involved in the approximability of Zh.
In doing so, we return to the full problem (12.2.4), and we consider the
approximation of it by the following.

For Vh ⊂ V and Πh ⊂ Π, and F ∈ V ′ and G ∈ Π ′,
find uh ∈ Vh and ph ∈ Πh such that

(12.5.14)
a(uh, v) + b(v, ph) = F (v) ∀v ∈ Vh

b(uh, q) = G(q) ∀q ∈ Πh .

Observe that uh lies in the affine set

(12.5.15) ZG
h :=

{
v ∈ Vh : b(v, q) = G(q) ∀q ∈ Πh

}
.

In particular, Z0
h = Zh. Similarly, we can define

(12.5.16) ZG :=
{
v ∈ V : b(v, q) = G(q) ∀q ∈ Π

}
.

If (u, p) denotes the solution to (12.2.4), then u ∈ ZG, and Z0 = Z.
We now study the relation between approximation of u from ZG

h and
the full space Vh. For any v ∈ Vh, let w ∈ Vh satisfy

b(w, q) = b(u− v, q) ∀q ∈ Πh.

Thus, w = LPΠh
D(u − v) (see 12.5.7), and Lemma 12.5.10 and (12.2.2)

imply

‖w‖V ≤ 1
β
‖D(u− v)‖Π ≤ C

β
‖u− v‖V .

By the definition of w we have v + w ∈ ZG
h , provided u ∈ ZG. Moreover,

‖u− (v + w)‖V ≤ ‖u− v‖V + ‖w‖V

≤
(

1 +
C

β

)
‖u− v‖V .

Thus, we have proved the following.

(12.5.17) Theorem. Let Vh ⊂ V and Πh ⊂ Π, and define ZG and ZG
h by

(12.5.16) and (12.5.15), respectively. Suppose that β > 0 in (12.5.2). Then
for all u ∈ ZG

inf
z ∈ZG

h

‖u− z‖V ≤
(

1 +
C

β

)
inf

v ∈Vh

‖u− v‖V .
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(12.5.18) Corollary. Let (u, p) denote the solution to (12.2.4), and let
(uh, ph) denote the solution to (12.5.14). There is a constant c depending
only on the constants C in (12.2.1), α in (12.2.7) and β in (12.5.2) such
that

‖u− uh‖V + ‖p− ph‖Π ≤ c

(
inf

v ∈Vh

‖u− v‖V + inf
q∈Πh

‖p− q‖Π

)
.

Proof. Modifying the proof of Lemma 10.1.1 (cf. exercise 12.x.13), we find

(12.5.19)

‖u− uh‖V ≤
(

1 +
C

α

)
inf

v ∈ZG
h

‖u− v‖V

+
1
α

sup
0�=w ∈Z0

h

|a(u− uh, w)|
‖w‖V

.

From the proof of Theorem 12.3.7, we have

|a(u− uh, w)| ≤ C‖w‖V inf
q∈Πh

‖p− q‖Π

for all w ∈ Z0
h. Thus, the estimate for u−uh follows from Theorem 12.5.17.

The estimate for p− ph follows from Theorem 12.5.12. �	

There is no universal way to verify (12.5.2), but there is one simple
situation that we indicate here. Suppose that the following assumption
holds.

(12.5.20)
There is an operator Th : V → Vh with the properties that

DThv = PΠh
Dv and ‖Thv‖V ≤ B‖v‖V ∀v ∈ V,

for some constant B < ∞, where PΠh
denotes the projection onto Πh with

respect to the inner product (·, ·)Π . Suppose further that D is boundedly
invertible, that is,

(12.5.21)
for any p ∈ Π there exists v ∈ V such that

Dv = p and ‖v‖V ≤ C‖p‖Π .

Then for any p ∈ Πh we find

(p, p)Π =(p,Dv) (from 12.5.21)
=(p, PΠh

Dv) (since p ∈ Πh)
=(p,DThv) (from 12.5.20)
=b(Thv, p). (from 12.2.3)

Therefore,
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‖p‖Π =
b(Thv, p)
‖p‖Π

≤C
b(Thv, p)
‖v‖V

(by 12.5.21)

≤CB
b(Thv, p)
‖Thv‖V

. (by 12.5.20)

Thus, we have proved the following result.

(12.5.22) Lemma. Suppose conditions (12.5.20) and (12.5.21) hold. Then
(12.5.2) holds with β = 1

CB .

In the next section, we give an example of the construction of the
required operator Th. Such a construction is not obvious in the general
case, but we now indicate that (12.5.2) implies such a Th must always
exist. Given u ∈ V , define uh = Thu by solving

a(uh, w) + b(v, ph) =a(u, v) ∀v ∈ Vh

b(uh, q) =b(u, q) ∀q ∈ Πh,

which corresponds to the approximation of (12.2.4) with F (v) := a(u, v)
and G(q) := b(u, q). The second equation is simply the statement that
Duh = PΠh

Du in view of (12.2.3). The solution to (12.2.4) with this data
is of course the pair (u, 0), so Corollary 12.5.18 implies that

‖u− uh‖V ≤ c‖u‖V

so that (12.5.20) holds with B = 1+c by the triangle inequality. Therefore,
we have proved the following theorem.

(12.5.23) Theorem. Suppose that (12.5.21) holds. Then conditions (12.5.2)
and (12.5.20) are equivalent.

12.6 Verification of the Inf-Sup Condition

We now derive (12.5.2) for the particular case of the Taylor-Hood spaces,
that is, ∼Vh given by (12.4.1) and Πh as in (12.4.4), for approximating the
Stokes equations. We limit our discussion to the case k = 2. We use a
general technique that reduces the problem to local estimates.

Let p ∈ Πh. Since Πh ⊂ H1(Ω) in this case, we have

b(∼v, p) =
∫

Ω
∼v · g∼rad p dx.
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For each edge e of a triangle in T h, let ∼τe denote a unit vector tangential
to e, ∼νe denote a unit normal and me denote the edge midpoint. For each
interior edge, choose

∼v(me) · ∼τe =
(
|Te,1|+ |Te,2|

)[
∼τe · g∼rad p(me)

]
,

∼v(me) · ∼νe = 0,

where Te,1 and Te,2 are the two triangles in T h having e as a common edge.
Note that ∼τe · g∼rad p(me) is unambiguous, since the tangential component
of g∼rad p is continuous across the edge. We set ∼v = ∼0 at all vertices and all
boundary edge midpoints. Let rT denote the number of interior edges of
T ∈ T h, that is, rT = 3 if T is in the interior and rT = 2 if one edge lies on
∂Ω. We assume that no triangle in T h has two edges on ∂Ω. For a given
T ∈ T h, let ei (1 ≤ i ≤ rT ) denote the interior edges. Then we have∫

T
∼v · g∼rad p dx =

|T |
3

rT∑
i=1

(∼v · g∼rad p)(mei) (from exercise 6.x.11)

=
|T |
3

rT∑
i=1

( 2∑
j=1

|Tei,j |
∣∣

∼τei · g∼rad p(mei)
∣∣2) (definition of ∼v)

=
|T |
3

rT∑
i=1

( 2∑
j=1

|Tei,j |
∣∣

∼τei ·
(
g∼rad p|T

)∣∣2) (g∼rad p is constant on T )

≥ |T |2 cρ

∣∣(g∼rad p|T
)∣∣2 (T is non-degenerate)

= cρ|T |
∫

T

∣∣ g∼rad p
∣∣2 dx.

Summing over T ∈ T h yields

(12.6.1) b(∼v, p) ≥ cρ

∑
T∈T h

|T | |p|2H1(T ) .

The definition of ∼v also implies (cf. exercise 12.x.15)

(12.6.2)
∥∥

∼v
∥∥

H1(Ω)2
≤ C

[ ∑
T∈T h

|T | |p|2H1(T )

]1/2

.

Let K > 0 be an arbitrary constant (to be chosen later), and define

ΠK
h =

{
q ∈ Πh : ‖q‖L2(Ω) ≤ K

[ ∑
T∈T h

|T | |q|2H1(T )

]1/2
}

.

For p ∈ ΠK
h and with ∼v defined as above,
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b(∼v, p)∥∥
∼v
∥∥

H1(Ω)2

≥ cρ

∑
T∈T h |T | |p|2H1(T )∥∥

∼v
∥∥

H1(Ω)2

(by 12.6.1)

≥ cρ

K

[∑
T∈T h |T | |p|2H1(T )

]1/2

‖p‖L2(Ω)

‖∼v‖H1(Ω)2

(
p ∈ ΠK

h

)
≥ cρ

CK
‖p‖L2(Ω) . (by 12.6.2)

This proves (12.5.3) for p ∈ ΠK
h for a given K.

For p �∈ ΠK
h , we proceed as follows. From Lemma 11.2.3 or (Girault

& Raviart 1986, Arnold, Scott & Vogelius 1988) we may pick ∼u ∈ H̊1(Ω)2

such that

(12.6.3)
−div ∼u = p in Ω∥∥

∼u
∥∥

H1(Ω)2
≤ C̃ ‖p‖L2(Ω) .

Let ∼uh
∈ ∼Vh satisfy

(12.6.4) ‖∼uh‖H1(Ω)2 +
[ ∑

t∈T h

|T |−1‖∼u− ∼uh‖2L2(T )2

]1/2

≤ C∗‖∼u‖H1(Ω)2

(see Sect. 4.8 for a construction). Then

b(∼uh, p) = ‖p‖2L2(Ω) − b(∼u− ∼uh, p) (since − div ∼u = p)

≥ ‖p‖2L2(Ω) −
[ ∑

T∈T h

|T |−1‖∼u− ∼uh‖2L2(T )2

]1/2[ ∑
T∈T h

|T | |p|2H1(T )

]1/2

(by 2.1.5)

≥ ‖p‖2L2(Ω) − C̃∗C‖p‖L2(Ω)

[ ∑
T∈T h

|T | |p|2H1(T )

]1/2

(by 12.6.3 & 12.6.4)

≥ ‖p‖2L2(Ω)

(
1− C̃C∗

K

)
(since p �∈ ΠK

h )

≥ ‖p‖L2(Ω)

(
1

C̃C∗ −
1
K

)
‖∼uh‖H1(Ω)2 . (by 12.6.3 & 12.6.4)

Thus, for K sufficiently large, we have proved (12.5.3) for p �∈ ΠK
h .

Combining the two cases, we have proved the following.
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(12.6.6) Theorem. Suppose T h is non-degenerate and has no triangle with
two edges on ∂Ω. Let ∼Vh be as in (12.4.1) and let Πh be as in (12.4.4).
Then condition (12.5.3), namely

β ‖q‖L2(Ω) ≤ sup
∼v∈∼Vh

|b(∼v, q)|∥∥
∼v
∥∥

H1(Ω)2

∀q ∈ Πh,

(or the equivalent version 12.5.2) holds with β > 0 independent of h for the
case k = 2.

As a consequence of this and Corollary 12.5.18, we have the following
result.

(12.6.7) Theorem. Suppose T h is non-degenerate and has no triangle with
two edges on ∂Ω. Let ∼Vh be as in (12.4.1) and let Πh be as in (12.4.4) for
k = 2. Let (∼u, p) be the solution to (12.1.6). Let (∼uh

, ph) solve (12.3.1) with
the forms given in (12.1.4) and (12.1.5). Then for 0 ≤ s ≤ 2∥∥

∼u− ∼uh

∥∥
H1(Ω)2

+ ‖p− ph‖L2(Ω) ≤ Chs
(∥∥

∼u
∥∥

Hs+1(Ω)2
+ ‖p‖Hs(Ω)

)
provided (∼u, p) ∈ Hs+1(Ω)2 ×Hs(Ω).

Theorems 12.6.6 and 12.6.7 hold for all k ≥ 2 (cf. Brezzi & Falk 1991).
The case k ≥ 4 is a consequence of Theorem 12.6.10 below under some
mild restrictions on the mesh. Similar techniques work for other choices of
spaces ∼Vh and Πh. The basic philosophy is to pick div ∼v to match p for
“local” p ∈ ΠK

h and then use the general argument (12.6.5) for p �∈ ΠK
h

(Scott & Vogelius 1985a).
Because of the natural pairing of div ∼Vh with Πh, it is interesting to ask

whether the choice Πh = div ∼Vh would always satisfy (12.5.2). In Sect. 13.1,
we show how (12.5.14) can be solved efficiently without the need for an
explicit basis for Πh = div ∼Vh, greatly simplifying the solution process.
Since any p ∈ Πh is of the form p = div ∼w for some ∼w ∈ ∼Vh, choosing ∼v = ∼w
in (12.5.2) leads to the conclusion that β > 0 for ∼Vh finite dimensional, by
a compactness argument. However, what is more critical to ask is whether
β may be chosen independently of h. This turns out to depend strongly on
the degree k of piecewise polynomials.

Let ∼Vh denote the spaces defined in (12.4.1) for k ≥ 1 and let
Πh = div ∼Vh. For verification of the following results, we refer to (Scott
& Vogelius 1985b). For k = 1 on quite general meshes, the corresponding
Zh consists only of the function identically zero (cf. (11.3.8)). Comparison
with Theorem 12.5.17 shows that β must tend to zero at least as fast as h,
since the results of Chapter 4 yield∥∥

∼u
∥∥

H1(Ω)2
= inf

∼v∈Zh

∥∥
∼u− ∼v

∥∥
H1(Ω)2

≤
(

1 +
1
β

)
Ch

∥∥
∼u
∥∥

H2(Ω)2
.
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Other examples where β → 0 for k = 2 and 3 are given in (Scott & Vogelius
1985b). On the other hand, (Scott & Vogelius 1985a) showed that β may
be chosen independent of h as soon as k ≥ 4 under very mild restrictions
on the mesh which we now recall.

An interior vertex in a triangulation at which four triangles meet is
called singular if the corresponding edges that meet there lie on two straight
lines. If we label the angles θj formed by consecutive edges at such a vertex,
we can rephrase the condition by saying that θi + θi+1 = π for i = 1, 2, 3.
Similarly, we say a vertex on the boundary is singular if r ≤ 4 triangles
meet there and θi + θi+1 = π for i = 1, . . . , r − 1. (Four triangles can
only meet at the vertex of a slit.) The case r = 1 is somewhat special and
the condition must be modified; it occurs when one triangle has two edges
on the boundary. In such a case, any piecewise polynomial vanishing on
the boundary will have its gradient vanish at such a vertex. For this and
other reasons, we will ban such vertices from our triangulations. With the
exception of triangles with two edges on the boundary, singularity of vertices
poses no problem. However, if a family of triangulations has a sequence of
vertices which are nonsingular but tend toward being singular, there is a
theoretical possibility of a deterioration of the constant β.

(12.6.8) Definition. We say a family of triangulations T h has no nearly
singular vertices if there is a σ > 0 independent of h such that

(12.6.9)
r−1∑
i=1

|θi + θi+1 − π| ≥ σ

holds for all nonsingular vertices in the interior where four triangles meet
(r = 4 in this case) and all nonsingular vertices on the boundary where
2 ≤ r ≤ 4 triangles meet.

The following is a consequence of the results in (Scott & Vogelius
1985a). In the case ∼Vh = V k

h ×V k
h , no restriction is needed regarding nearly

singular vertices on the boundary, nor is any difficulty caused by having
triangles with two edges on the boundary, but we ignore this distinction
from the case of Dirichlet conditions.

(12.6.10) Theorem. Suppose T h is non-degenerate, has no triangle with two
edges on the boundary, and has no nearly singular vertices. Let ∼Vh be either
V k

h × V k
h or as in (12.4.1), and let Πh := div ∼Vh. Then condition (12.5.3),

namely

β ‖q‖L2(Ω) ≤ sup
∼v∈∼Vh

|b(∼v, q)|∥∥
∼v
∥∥

H1(Ω)2

∀q ∈ Πh,

(or the equivalent version (12.5.2)) holds with β > 0 independent of h for
k ≥ 4.
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In the next chapter we will study algorithms that allow one to compute
using Πh = DVh without having explicit information about the structure
of Πh. The only obstacle to this choice of Πh is to know that a condition
such as (12.4.2) holds. When no Dirichlet boundary conditions are imposed
on the functions in ∼Vh, (12.4.2) is a simple consequence of approximability
results for ∼Vh, as we now show.

(12.6.11) Lemma. Condition (12.4.2) holds for Πh := div
(
V k

h

)n
.

Proof. Let B be a ball containing Ω, and let Ep be an extension of p (i.e.
Ep|Ω = p) to B so that (see Theorem 1.4.5)

‖Ep‖Hs(B) ≤ C‖p‖Hs(Ω) .

Define φ by solving ∆φ = Ep in B with Dirichlet boundary conditions,
φ = 0 on ∂B. From elliptic regularity (Sect. 5.5),

‖φ‖Hs+2(B) ≤ C‖Ep‖Hs(B) ≤ C ′‖p‖Hs(Ω).

Write ∼w = g∼radφ and note that
∥∥

∼w
∥∥

Hs+1(Ω)n ≤ C‖p‖Hs(Ω). Then p = div ∼w

in Ω and

inf
q∈Πh

‖p− q‖L2(Ω) = inf
∼v∈∼Vh

∥∥div ∼w − div ∼v
∥∥

L2(Ω)
(Πh = div ∼Vh)

≤ inf
∼v∈∼Vh

√
n
∥∥

∼w − ∼v
∥∥

H1(Ω)n

≤Chs
∥∥

∼w
∥∥

Hs+1(Ω)n (by 4.4.25)

≤Chs‖p‖Hs(Ω) .

�	

Condition (12.4.2) for Πh = div ∼Vh does not appear to follow directly
from approximability results for ∼Vh when Dirichlet boundary conditions
are imposed on functions in ∼Vh. However, for spaces like (12.4.1), (Scott
& Vogelius 1985a) identified div ∼Vh and these results allow one to prove
(12.4.2) for Πh = div ∼Vh for k ≥ 4. The following is a simple corollary of
those results.

(12.6.12) Lemma. Suppose that T h is a triangulation of a polygonal domain
Ω ⊂ IR2 having no triangles with two edges on the boundary. Let k ≥ 4.
Then

V k−1
h ⊂ div

(
V k

h × V k
h

)
and {

q ∈ V k−1
h :

∫
Ω

q(x) dx = 0
}
⊂ div ∼Vh

where ∼Vh is given by (12.4.1).



12.x Exercises 353

In particular, Lemma 12.6.12 implies that condition (12.4.2) holds for
Πh := div ∼Vh in both of these cases. Applying this result yields the follow-
ing in view of Corollary 12.5.13 and the velocity approximation results in
Sect. 12.4.

(12.6.13) Theorem. Suppose T h is non-degenerate, has no triangle with
two edges on the boundary, and has no nearly singular vertices. For ∼Vh

as in (12.4.1) with k ≥ 4 and Πh := div ∼Vh, the error in the pressure
approximation to the solution (∼u, p) of (12.1.6) satisfies

‖p− ph‖L2(Ω) ≤ Chs
(∥∥

∼u
∥∥

Hs+1(Ω)2
+ ‖p‖Hs(Ω)

)
, 0 ≤ s ≤ k,

provided (∼u, p) ∈ Hs+1(Ω) × Hs(Ω). For ∼Vh = V k
h × V k

h with k ≥ 4 and
Πh := div ∼Vh, the error in the pressure approximation to the scalar elliptic
problem (12.1.7) satisfies

‖p− ph‖L2(Ω) ≤ Chs+1
∥∥∥

≈
a g∼rad p

∥∥∥
Hs+1(Ω)2

+ Chs‖p‖Hs(Ω) , 0 ≤ s ≤ k,

provided
≈
a g∼rad p ∈ Hs+1(Ω) and p ∈ Hs(Ω).

Recall that corresponding results for the velocity error were proved in
Theorems 12.4.10 and 12.4.9, respectively. Thus, for high degree approxima-
tions, convergence criteria become simplified and provide few restrictions,
whereas low degree approximation can yield widely differing results.

We finish the section by considering the nonconforming method intro-
duced prior to Theorem 12.4.12. We note that D = −divh in this case satis-
fies (12.5.20) in view of (11.4.13), (11.4.14) and the techniques of Sect. 4.8.
Therefore, the following can be proved (see exercise 12.x.14).

(12.6.14) Theorem. The solution to (12.4.11) satisfies

‖p− ph‖L2(Ω) ≤ Ch
(∥∥

∼u
∥∥

H2(Ω)2
+ ‖p‖H1(Ω)

)
provided ∼u ∈ H2(Ω)2 and p ∈ H1(Ω).

12.x Exercises

12.x.1 Prove that the form defined in (12.1.4) is coercive on H̊1(Ω). (Hint:
apply (5.3.4).)

12.x.2 Prove that H(div) is a Hilbert space with inner-product given by

(∼u, ∼v)H(div) = (∼u, ∼v)L2(Ω)n + (div ∼u,div ∼v)L2(Ω).



354 Chapter 12. Mixed Methods

(Hint: see the proof of Theorem 1.3.2.)

12.x.3 Define a variational form for the Stokes equations by

a(∼u, ∼v) := 2
∫

Ω

n∑
i,j=1

eij(∼u)eij(∼v) dx,

where eij(∼u) := 1
2 (ui,j +uj,i). Prove that this is equal to (12.1.4) for

∼u, ∼v ∈ Z. (Hint:
∑n

i=1 vi,i = 0 for ∼v ∈ Z.)

12.x.4 Prove that the variational form defined in exercise 12.x.3 is coercive
on Z. (Hint: see Korn’s inequality in Chapter 11.)

12.x.5 Show that the nonconforming version of the variational form defined
in exercise 12.x.3 is not coercive (independent of h) on the space ∼V

∗
h

defined in (11.4.5) (see Theorem 12.4.12). (Hint: consider a regular
mesh on IR2 and look for ∼u having a repetitive pattern such that
a(∼u, ∼v) = 0 for all ∼v ∈ ∼V

∗
h having compact support.)

12.x.6 Show that the results of Sect. 12.2 can be applied using the varia-
tional form defined in exercise 12.x.3. (Hint: see exercise 12.x.4.)

12.x.7 Suppose Πh is finite dimensional. Prove that β = 0 in (12.5.2) im-
plies that there is a q ∈ Πh such that b(v, q) = 0 for all v ∈ Vh.
(Hint: use the fact that {q ∈ Πh : ‖q‖Π ≤ 1} is compact.)

12.x.8 Prove that the operator M defined in (12.5.6) is bounded, with norm
bounded by 1/β, where β is defined in (12.5.2). (Hint: apply (12.5.3)
with q = Mu and use (12.5.6).)

12.x.9 Prove (12.5.9). (Hint: show that any w ∈ Zp
h satisfies Lp − w ∈ Zh

and hence (Lp,Lp− w)V = 0.)

12.x.10 Prove that if the operator L in (12.5.7) is well defined, then (12.5.2)
holds with β = 1/‖L‖Π→V . (Hint: choose v = Lq in (12.5.2).)

12.x.11 Prove that the curl operator maps the Morley space depicted in
Fig. 10.5 into the nonconforming piecewise linear space in Theorem
12.4.12. (Hint: the tangential derivative of the Morley elements is
continuous at the edge midpoints because the jump across an edge
is a quadratic that vanishes at the two vertices.)

12.x.12 Determine a bound for the constant, c, in Corollary 12.5.18 in terms
of C, α and β.

12.x.13 Prove (12.5.19).

12.x.14 Prove Theorem 12.6.14.

12.x.15 Prove (12.6.2).



Chapter 13

Iterative Techniques for Mixed Methods

Equations of the form (12.3.1) or (12.5.14) are indefinite and require special
care to solve. We will now consider one class of algorithms which involve
a penalty method to enforce the second equation in (12.3.1) or (12.5.14).
These algorithms transform the linear algebra to positive-definite problems
in many cases. Moreover, the number of unknowns in the algebraic system
can also be significantly reduced.

We begin with the case when Πh = DVh, which naturally arises from
the iterated penalty method. One benefit of this approach is that the degrees
of freedom of Πh do not enter the solution procedure directly, making the
linear-algebraic problem smaller. In fact, it is not necessary even to have
a basis of Πh; the iterated penalty method produces ph = Dwh for some
wh ∈ Vh.

Subsequently, we consider the general case Πh �= DVh. We show that
the augmented Lagrangian method (Fortin & Glowinski 1983, Glowinski
1984) can be analyzed in a way analogous to the special case Πh = DVh.
We give some examples of the use of these techniques in the solution of the
Navier-Stokes equations.

13.1 Iterated Penalty Method

Consider a general mixed method of the form (12.2.4) studied in the pre-
vious chapter, namely,

(13.1.1)
a(uh, v) + b(v, ph) = F (v) ∀v ∈ Vh

b(uh, q) = (g, q)Π ∀q ∈ Πh,

where F ∈ V ′ and g ∈ Π. Here V and Π are two Hilbert spaces with
subspaces Vh ⊂ V and Πh ⊂ Π, respectively. We assume that the bilinear
forms satisfy the continuity conditions

(13.1.2)
a(u, v) ≤ Ca‖u‖V ‖v‖V ∀u, v ∈ V

b(v, p) ≤ Cb‖v‖V ‖p‖Π ∀v ∈ V, p ∈ Π
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and the coercivity conditions

(13.1.3)
α‖v‖2V ≤ a(v, v) ∀v ∈ Z ∪ Zh

β‖p‖Π ≤ sup
v∈Vh

b(v, p)
‖v‖V

∀p ∈ Πh.

Here Z and Zh are defined by (12.2.5) and (12.3.2), respectively. Also recall
that we are assuming (12.2.3), namely b(v, p) = (Dv, p)Π .

Let r ∈ IR and ρ > 0. The iterated penalty method defines un ∈ Vh

and pn by

(13.1.4)
a(un, v) + r (Dun − g,Dv)Π = F (v)− b(v, pn) ∀v ∈ Vh

pn+1 = pn + ρ (Dun − PΠh
g)

where PΠh
g denotes the Π-projection of g onto Πh. Note that the second

equation in (13.1.1) says that

(13.1.5) PΠh
Duh = PΠh

g.

The algorithm does not require PΠh
g to be computed, only b(v, PΠh

g) =
(Dv, PΠh

g)Π = (PΠh
Dv, g)Π for v ∈ Vh.

The key point of the iterated penalty method is that the system of
equations represented by the first equation in (13.1.4) for un, namely

a(un, v) + r (Dun,Dv)Π = F (v)− b(v, pn) + r (g,Dv)Π ∀v ∈ Vh,

will be symmetric if a(·, ·) is symmetric, and it will be positive definite if
a(·, ·) is coercive and r > 0.

If g = 0 and we begin with, say, p0 = 0, then pn ∈ DVh for all n. In
particular pn = Dwn where wn ∈ Vh satisfies

a(un, v) + r (Dun,Dv)Π = F (v)− (Dv,Dwn)Π ∀v ∈ Vh

wn+1 = wn + ρun.

Thus, the iterated penalty method implicitly produces an approximation
closely connected with the choice of Πh = DVh . If we can show that un →
uh ∈ Vh and pn → ph ∈ Πh, then it follows that Dun → 0 and that (uh, ph)
solves (13.1.1). Note that wn = ρ

∑n−1
i=0 ui will not in general converge to

anything. See (Scott, Ilin, Metcalfe & Bagheri 1996) for the case of g �= 0.
To study the convergence properties of (13.1.4), let us introduce en :=

un − uh and εn := pn − ph where (uh, ph) solves (13.1.1). We assume that
Πh = DVh, in which case (13.1.5) simplifies to Duh = PΠh

g. Then

(13.1.6) a(en, v) + r (Den,Dv)Π = −b(v, εn) ∀v ∈ Vh

by subtracting (13.1.1) from (13.1.4), and

(13.1.7) εn+1 = εn + ρ (Dun − PΠh
g) = εn + ρDen.
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Note that en ∈ Z̃⊥
h where we use the tilde to distinguish the space

(13.1.8) Z̃⊥
h = {v ∈ Vh : a(v, w) = 0 ∀w ∈ Zh}

from the space Z⊥
h defined in (12.5.5) based on the inner-product (·, ·)V .

Observe that Zh = {v ∈ Vh : Dv = 0} since Πh = DVh. Thus, we can
characterize en ∈ Z̃⊥

h by

(13.1.9) a(en, v) + r (Den,Dv)Π = −b(v, εn) ∀v ∈ Z̃⊥
h .

We can then relate the new error to the old by

a(en+1, v) + r (Den+1,Dv) = −b(v, εn+1) (13.1.9 for n + 1)
= −b(v, εn)− ρ b(v,Den) (from 13.1.7)

(13.1.10) = −b(v, εn)− ρ (Dv,Den)Π (from 12.2.3)
= a(en, v) + r (Den,Dv)Π − ρ (Dv,Den)Π (13.1.9 for n)
= a(en, v) + (r − ρ)(Den,Dv)Π .

Dividing by r, choosing v = en+1 and applying Schwarz’ inequality (2.1.5)
and the assumptions (13.1.2) we find

(13.1.11)

∥∥Den+1
∥∥2

Π
+

1
r
a(en+1, en+1) ≤ Ca

r

∥∥en+1
∥∥

V
‖en‖V

+
∣∣∣1− ρ

r

∣∣∣ ∥∥Den+1
∥∥

Π
‖Den‖Π

≤
(

Ca

r
+ C2

b

∣∣∣1− ρ

r

∣∣∣) ∥∥en+1
∥∥

V
‖en‖V .

The key point (which we will make precise shortly) is that the bilinear form
(Dv,Dv)Π is coercive on Z̃⊥

h , provided (12.5.2) holds. Thus, for any ρ in
the interval 0 < ρ < 2r, we find that en → 0 as n → ∞. From (13.1.6) it
follows that εn → 0 as n →∞ as well, provided (12.5.2) holds.

For Πh = DVh (as we are assuming), the second condition in (13.1.3) is
equivalent (see Lemma 12.5.10 and Scott & Vogelius 1985a) to the existence
of a right-inverse, L : Πh → Vh, for the operator D, that is

(13.1.12) D(Lq) = q ∀q ∈ Πh,

which satisfies

(13.1.13) ‖Lq‖V ≤ 1
β
‖q‖Π ∀q ∈ Πh.

We now consider the coerciveness of (Dw,Dw)Π on w ∈ Z̃⊥
h . Note that

since we have defined Z̃⊥
h using the bilinear form a(·, ·) instead of (·, ·)V ,

we cannot use Hilbert-space properties. Thus, we must re-examine our def-
initions. Firstly, Z̃⊥

h is a closed linear subset of Vh, since a(·, ·) is bilinear
and continuous. Secondly, Z̃⊥

h ∩ Zh = {0}, since a(·, ·) is coercive on Zh.
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Finally, any w ∈ Vh can be decomposed into w = z + z⊥, with z ∈ Zh and
z⊥ ∈ Z̃⊥

h , as follows. Let z ∈ Zh solve

a(z, v) = a(w, v) ∀v ∈ Zh,

which exists in view of Cea’s Theorem 2.8.1. Then z⊥ := w − z satisfies
a(z⊥, v) = 0 for all v ∈ Zh, that is, z⊥ ∈ Z̃⊥

h . Therefore, Vh = Zh ⊕ Z̃⊥
h .

Define La : Πh → Vh as follows. For q ∈ Πh, let zq ∈ Zh solve

a(zq, v) = a(Lq, v) ∀v ∈ Zh

and set Laq = Lq − zq. We have from Cea’s Theorem 2.8.1 that

‖zq‖V ≤ Ca

α
‖Lq‖V

using the coercivity and continuity of a(·, ·). Thus,

(13.1.14) ‖Laq‖V ≤
(

1 +
Ca

α

)
‖Lq‖V ≤

(
1 +

Ca

α

)
1
β
‖q‖Π

for all q ∈ Πh, from the triangle inequality and (13.1.13). Observe that

(13.1.15) DLaq = DLq = q ∀q ∈ Πh

from the definition of La and (13.1.12).
Now we claim that for w ∈ Z̃⊥

h , w = LaDw. For

a(LaDw, v) = a(Lq − zq, v) = 0 ∀v ∈ Zh

(here q := Dw) so that LaDw ∈ Z̃⊥
h . Therefore, w − LaDw ∈ Z̃⊥

h . But
(13.1.15) implies

D (w − LaDw) = 0.

This implies w − LaDw ∈ Zh. Since Zh ∩ Z̃⊥
h = {0}, we conclude that

w = LaDw. From (13.1.14), it follows that

(13.1.16) ‖w‖V = ‖LaDw‖V ≤
(

1
β

+
Ca

αβ

)
‖Dw‖Π

for all w ∈ Z̃⊥
h .

Applying this to (13.1.11) and using (13.1.2)–(13.1.3), we find

(13.1.17)
(
1 +

c1

r

)∥∥Den+1
∥∥

Π
≤
(∣∣∣1− ρ

r

∣∣∣+ c2

r

)
‖Den‖Π .

Thus, for 0 < ρ < 2r and for r sufficiently large, Den → 0 geometrically as
n →∞. From (13.1.10), it follows that en → 0 as well (see exercise 13.x.1).
On the other hand, using the coercivity of a(·, ·), we find

(13.1.18)

((
1
β

+
Ca

αβ

)−2

+
α2

r

)∥∥en+1
∥∥

V
≤
(

Ca

r
+ C2

b

∣∣∣1− ρ

r

∣∣∣) ‖en‖V .
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Collecting the above results, we have

(13.1.19) Theorem. Suppose that the form (13.1.1) satisfies (13.1.2) and
(13.1.3). Suppose that Vh and Πh = DVh satisfy (13.1.3). Then the algo-
rithm (13.1.4) converges for any 0 < ρ < 2r for r sufficiently large. For the
choice ρ = r, (13.1.4) converges geometrically with a rate given by

Ca

(
1
β

+
Ca

αβ

)2 /
r .

Note that (with r = ρ) (13.1.18) implies convergence (e1 → 0 as
r →∞) of the standard penalty method. However, the expression (13.1.6)
for ε1 deteriorates as r → ∞ so we cannot conclude anything about ε1.
Thus, the iterated penalty method is needed to insure convergence of the p
approximation.

13.2 Stopping Criteria

For any iterative method, it is of interest to have a good stopping criterion
based on information that is easily computable. For the iterated penalty
method, this is extremely simple. We will assume that PΠh

g can be easily
computed by some means. In many applications, g = 0 so that this becomes
trivial. However, in others it would require some additional work. We show
subsequently how this can be avoided.

The error en = un − uh is bounded by

‖un − uh‖V = ‖en‖V

(13.2.1) ≤
(

1
β

+
Ca

αβ

)
‖Den‖Π (by 13.1.16)

=
(

1
β

+
Ca

αβ

)
‖Dun − PΠh

g‖Π . (by 13.1.5)

The error εn = pn − ph is bounded by

β ‖pn − ph‖Π = β ‖εn‖Π

≤ sup
v∈Vh

|b(v, εn)|
‖v‖V

(by 13.1.3)

= sup
v∈Vh

|a(en, v) + r (Den,Dv)Π |
‖v‖V

(by 13.1.6)

≤ Ca‖en‖V + rCb ‖Den‖Π (by 13.1.2)
= Ca‖un − uh‖V + rCb ‖Dun − PΠh

g‖Π . (by 13.1.5)

Combining the previous estimates, the following theorem is proved.
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(13.2.2) Theorem. Suppose that the form (13.4.9) satisfies (13.1.2) and
(13.1.3). Suppose that Vh and Πh = DVh satisfy (13.1.3). Then the errors
in algorithm (13.1.4) can be estimated by

(13.2.3) ‖un − uh‖V ≤
(

1
β

+
Ca

αβ

)
‖Dun − PΠh

g‖Π

and

(13.2.4) ‖pn − ph‖Π ≤
(

Ca

β
+

C2
a

αβ
+ rCb

)
‖Dun − PΠh

g‖Π .

By monitoring ‖Dun − PΠh
g‖Π as the iteration proceeds, we can de-

termine the convergence properties of the iterated penalty method. Once
‖Dun − PΠh

g‖Π is sufficiently small, the iteration can be terminated.
The main drawback with this approach is that PΠh

g has to be com-
puted to determine the error tolerance. Since Dun ∈ Πh,

‖Dun − PΠh
g‖Π = ‖PΠh

(Dun − g)‖Π ≤ ‖Dun − g‖Π ,

and the latter norm may be easy to compute (or bound) in some cases,
avoiding the need to compute PΠh

g. We formalize this observation in the
following result.

(13.2.5) Corollary. Under the conditions of Theorem 13.2.2 the errors in
algorithm (13.1.4) can be estimated by

(13.2.6) ‖un − uh‖V ≤
(

1
β

+
Ca

αβ

)
‖Dun − g‖Π

and

(13.2.7) ‖pn − ph‖Π ≤
(

Ca

β
+

C2
a

αβ
+ rCb

)
‖Dun − g‖Π .

(13.2.8) Remark. As the above estimates indicate, it can be expected that
taking r arbitrarily large will affect the p approximation adversely, although
it may have minimal effect on the u approximation.

The results of this and the previous section can be applied directly to
several of the mixed methods in Chapter 12. For example, with ∼Vh as in
Theorem 12.6.13 (and Πh := div ∼Vh), the algorithm (13.1.4) converges for
both the Stokes problem (12.1.6) (see exercise 13.x.3) and for the scalar
elliptic problem (12.1.7) (see exercise 13.x.4).



13.3 Augmented Lagrangian Method 361

13.3 Augmented Lagrangian Method

In the case of general Vh and Πh �= DVh, the equations (13.1.1) have the
matrix representation

≈
A∼U +

≈
Bt

∼P = ∼F

≈
B∼U = ∼G,

where ∼U (resp. ∼P ) denote the coefficients of uh (resp. ph) expanded with
respect to a basis for Vh (resp. Πh). The (iterative) augmented Lagrangian
method (Fortin & Glowinski 1983, Glowinski 1984) consists of solving

(13.3.1)
≈
A∼U

n + r
≈
Bt

(
≈
B∼U

n − ∼G
)

= ∼F −
≈
Bt

∼P
n

∼P
n+1 = ∼P

n + ρ
(

≈
B∼U

n − ∼G
)

for r and ρ non-negative parameters. When Πh = DVh, (13.3.1) reduces to
the iterated penalty method (13.1.4).

The augmented Lagrangian method requires an explicit basis for Πh in
order to construct

≈
B, unlike the iterated penalty method. However, it can

be used more generally, viz., when Πh �= DVh. Like the iterated penalty
method, the augmented Lagrangian method reduces the linear-algebraic
system to be solved by eliminating the degrees of freedom associated with
Πh, potentially leading to considerable savings in terms of time and storage.
Moreover,

≈
A + r

≈
Bt

≈
B is symmetric if a(·, ·) is symmetric, and it will be

positive definite if a(·, ·) is coercive and r > 0.
To analyze the convergence properties of (13.3.1), we reformulate it

variationally. Let PΠh
denote the Π-projection onto Πh. Then (13.3.1) is

equivalent (exercise 13.x.7) to

(13.3.2)
a(un, v) + rb(un − g, PΠh

Dv) = F (v)− b(v, pn) ∀v ∈ Vh

pn+1 = pn − ρPΠh
(Dun − g) ,

where g is represented by the coefficients ∼G in the basis for Πh and similarly
F denotes a linear form in (13.3.2) with coefficients ∼F in the representation
(13.3.1). Note that

b(w,PΠh
Dv) = (Dw,PΠh

Dv) = (PΠh
Dw,PΠh

Dv)

is a symmetric bilinear form on Vh. We now show it is coercive on Z̃⊥
h (see

(13.1.8)), provided (13.1.3) holds.
Recall the operator L : Πh → Z⊥

h given by (12.5.7). We can rephrase
(12.5.7) as PΠh

(DLq) = q (exercise 13.x.5). Define La as in the previous
section satisfying (13.1.14). Note that PΠh

(DLaq) = q since z ∈ Zh is
equivalent to PΠh

(Dz) = 0 (exercise 13.x.6). Similarly, for any w ∈ Z̃⊥
h ,

w = La (PΠh
(Dw)). Therefore,
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(13.3.3)
‖w‖V = ‖LaPΠh

Dw‖V

≤
(

1
β

+
Ca

αβ

)
‖PΠh

Dw‖Π

for all w ∈ Z̃⊥
h . Analogous to (13.1.10), we have

(13.3.4)
a(en+1, v)+r (PΠh

Den+1, PΠh
Dv)Π

= a(en, v) + (r − ρ)(PΠh
Den, PΠh

Dv)Π .

Using the same techniques in the previous section, the following is proved.

(13.3.5) Theorem. Suppose that the form (13.4.9) satisfies (13.1.3) and
(13.1.2). Suppose that Vh and Πh satisfy (13.1.3). Then the algorithm
(13.3.1) converges for any 0 < ρ < 2r for r sufficiently large. For the
choice ρ = r, (13.3.1) converges geometrically with a rate given by

Ca

(
1
β

+
Ca

αβ

)2 /
r .

(13.3.6) Remark. The matrix
≈
Bt

≈
B has a large null space (all of Zh), but

(13.3.3) shows that it is positive definite when restricted to Z̃⊥
h . However,

a lower bound for the minimal eigenvalue on this subspace depends pre-
cisely on the complementary space Z̃⊥

h and is not an invariant dependent
only on

≈
B.

Stopping criteria can also be developed as in the previous section, based
on the following result.

(13.3.7) Theorem. Suppose that the form (13.4.9) satisfies (13.1.3) and
(13.1.2). Suppose that Vh and Πh satisfy (13.1.3). Then the error in al-
gorithm (13.1.4) can be estimated by

(13.3.8)
‖un − uh‖V ≤

(
1
β

+
Ca

αβ

)
‖PΠh

(Dun − g)‖Π

≤
(

1
β

+
Ca

αβ

)
‖Dun − g‖Π

and

(13.3.9)
‖pn − ph‖Π ≤

(
C

(
1
β

+
Ca

αβ

)
+ rCb

)
‖PΠh

(Dun − g)‖Π

≤
(

C

(
1
β

+
Ca

αβ

)
+ rCb

)
‖Dun − g‖Π .
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Exercise 13.x.7 implies that

‖PΠh
(Dun − g)‖2Π =(

≈
B∼U

n − ∼G)t(
≈
B∼U

n − ∼G),

where ∼U
n (resp. ∼G) denotes the coefficients of un (resp. PΠh

g) with respect
to the given basis, so the expressions in Theorem 13.3.7 are easily computed.

The results of this section can be applied directly to the Taylor-Hood
methods in Chapter 10 for the Stokes problem. With ∼Vh as in (12.4.1) and
Πh as in (12.4.4), the algorithm (13.3.2) (or equivalently (13.3.1)) converges
for the Stokes problem (12.1.6) for all k ≥ 2 (see exercise 13.x.9).

13.4 Application to the Navier-Stokes Equations

We now consider a more complex application of the theory developed in the
previous sections, regarding time-stepping schemes for the Navier-Stokes
equations. The Navier-Stokes equations for the flow of a viscous, incom-
pressible, Newtonian fluid can be written

(13.4.1)
−∆∼u +∇p = −R

(
∼u · ∇∼u + ∼ut

)
div ∼u = 0.

in Ω ⊂ IRd, where ∼u denotes the fluid velocity and p denotes the pres-
sure. The expression ∼u · ∇∼v is the vector function whose i-th component
is ∼u · ∇vi. These equations describe both two- and three-dimensional flows
(d = 2 and 3, respectively); in the case of two dimensions, the flow field is
simply independent of the third variable, and the third component of ∼u is
correspondingly zero. These equations must be supplemented by appropri-
ate boundary conditions, such as the Dirichlet boundary conditions, ∼u = 0
on ∂Ω.

The parameter R in (13.4.1) is called the Reynolds number. When this
is very small, the equations reduce to the Stokes equations studied earlier.
Numerical techniques for solving (13.4.1) often involve different issues re-
lating separately to the solution of the Stokes (or Stokes-like) equations and
to the discretization of the advection term that R multiplies. We will fo-
cus here on particularly simple time-stepping schemes, putting emphasis on
the affect this has on the particular form of the corresponding Stokes-like
equations. More complex time-stepping schemes yield similar Stokes-like
equations. For more information, we refer to the survey of (Glowinski &
Pironneau 1992).

A complete variational formulation of (13.4.1) takes the form

(13.4.2)
a
(
∼u, ∼v

)
+ b

(
∼v, p

)
+ R

(
c
(
∼u, ∼u, ∼v

)
+
(
∼ut, ∼v

)
∼L

2

)
= 0 ∀∼v ∈ V ,

b(∼u, q) = 0 ∀q ∈ Π ,
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where e.g. a(·, ·) and b(·, ·) are given in (12.1.4) and (12.1.5), respectively,
(·, ·)

∼L
2 denotes the L2(Ω)d-inner-product, and

(13.4.3) c(∼u, ∼v, ∼w) :=
∫

Ω

(
∼u · ∇∼v

)
· ∼w dx.

The spaces V and Π are the same as for the Stokes equations, as defined
in the paragraph following (12.1.5).

One of the simplest time-stepping schemes for the Navier-Stokes equa-
tions (13.4.1) is implicit with respect to the linear terms and explicit with
respect to the nonlinear terms. Expressed in variational form, it is

(13.4.4)

a
(
∼u

�, ∼v
)

+ b
(
∼v, p�

)
+ R c

(
∼u

�−1, ∼u
�−1, ∼v

)
+

R

∆t

(
∼u

� − ∼u
�−1, ∼v

)
∼L

2 = 0,

b
(
∼u

�, q
)

= 0,

where, here and below, ∼v varies over all V (or Vh) and q varies over all Π
(or Πh) and ∆t denotes the time-step size. At each time step, one has a
problem to solve of the form (13.1.1) for (∼u

�, p�) but with the form a(·, ·)
more general, namely

(13.4.5) ã(∼u, ∼v) := a(∼u, ∼v) + τ
(
∼u, ∼v

)
∼L

2

where the constant τ = R/∆t. Numerical experiments will be presented in
the next section for such a problem. Note that the linear algebraic problem
problem to be solved at each time step is the same.

Equation (13.4.4) may now be written as a problem for
(
∼u

�, p�
)

of the
form (13.1.1):

ã
(
∼u

�, ∼v
)

+ b
(
∼v, p�

)
= −R c

(
∼u

�−1, ∼u
�−1, ∼v

)
+ τ

(
∼u

�−1, ∼v
)
∼L

2 ,

b
(
∼u

�, q
)

= 0.

The iterated penalty method (with r = ρ) for (13.4.4) thus takes the form

(13.4.6)

ã
(
∼u

�,n, ∼v
)

+ r
(
div ∼u

�,n,div ∼v
)
L2 = −R c

(
∼u

�−1, ∼u
�−1, ∼v

)
+τ

(
∼u

�−1, ∼v
)
∼L

2 −b
(
∼v, p�,n

)
p�,n+1 = p�,n − rdiv ∼u

�,n.

This would be started with, say, p�,0 = 0 and n = 0, and continued un-
til a stopping criterion, such as in Sect. 13.2, is met. At this point we set

∼u
� = ∼u

�,n and increment �, going on to the next time step. For purposes of
definiteness, we can set p� = p�,n, but this does not figure in the advance-
ment of the time step.
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With the choice p�,0 = 0, (13.4.6) can be written

(13.4.7)

ã
(
∼u

�,n, ∼v
)

+ r
(
div ∼u

�,n,div ∼v
)
L2 = −R c

(
∼u

�−1, ∼u
�−1, ∼v

)
+τ

(
∼u

�−1, ∼v
)
∼L

2 +
(
div ∼v,div ∼w

�,n
)
L2

∼w
�,n+1 = ∼w

�,n + r∼u
�,n

where ∼w
�,0 = 0. If for some reason p� = p�,n = −div ∼w

�,n were desired, it
could be computed separately.

A more complex time-stepping scheme could be based on the varia-
tional equations

(13.4.8)

a
(
∼u

�, ∼v
)

+ b
(
∼v, p�

)
+ R c

(
∼u

�−1, ∼u
�, ∼v

)
+

R

∆t

(
∼u

� − ∼u
�−1, ∼v

)
∼L

2 = 0,

b
(
∼u

�, q
)

= 0,

in which the nonlinear term has been approximated in such a way that
the linear algebraic problem changes at each time step. It takes the form
(13.1.1) with a form ã(·, ·) given by

(13.4.9) ã
(
∼u, ∼v; ∼U

)
= a(∼u, ∼v) +

∫
Ω

τ∼u · ∼v + ∼U · ∇∼u · ∼v dx

where ∼U = R∼u
n arises from linearizing the nonlinear term. The iterated

penalty method (with r = ρ) for (13.4.8) takes the form

(13.4.10)

ã
(
∼u

�,n, ∼v;R∼u
�−1

)
+ r

(
div ∼u

�,n,div ∼v
)
L2 = τ

(
∼u

�−1, ∼v
)
∼L

2

− b
(
∼v, p�,n

)
p�,n+1 = p�,n − r div ∼u

�,n,

with p�,0 initialized in some way and ∼u
� = ∼u

�,n for appropriate n. If p�,0 = 0,
then (13.4.10) becomes

(13.4.11)

ã
(
∼u

�,n, ∼v;R∼u
�−1

)
+ r

(
div ∼u

�,n,div ∼v
)
L2 = τ

(
∼u

�−1, ∼v
)
∼L

2

+
(
div ∼v,div ∼w

�,n
)
L2

∼w
�,n+1 = ∼w

�,n + r∼u
�,n

where ∼w
�,0 = 0.

Even though the addition of the ∼U term makes it non-symmetric, ã(·, ·)
will be coercive for τ sufficiently large (i.e., for ∆t sufficiently small, cf. the
proof of G̊arding’s inequality, Theorem 5.6.8), as we now assume:

(13.4.12) α
∥∥

∼v
∥∥2

V
≤ ã(∼v, ∼v) ∀∼v ∈ V

for α > 0. Of course, a(·, ·) is continuous:
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(13.4.13) ã(∼v, ∼w) ≤ Ca

∥∥
∼v
∥∥

V

∥∥
∼w
∥∥

V
∀∼v, ∼w ∈ V

but now Ca depends on τ and ∼U . Applying the theory in Sect. 13.1, we
prove the following.

(13.4.14) Theorem. Let Vh and Πh be as in Theorem 12.6.13. Suppose that
(13.4.12) and (13.4.13) hold. Then the algorithms (13.4.6) (or 13.4.7) and
(13.4.10) (or 13.4.11) converge geometrically for r sufficiently large. The
error can be estimated by∥∥p�,n − p�

∥∥
L2(Ω)

+
∥∥

∼u
�,n − ∼u

�
∥∥

H1(Ω)2
≤ C

∥∥div ∼u
�,n
∥∥

L2(Ω)
.

(13.4.15) Remark. If the constant τ in (13.4.9) is very large, then the ratio
Ca/α will be as well (more precisely, Ca will be comparable to τ for τ
large, while α will stay fixed). Computational experience (Bagheri, Scott
& Zhang, 1994) indicates that it is necessary to take r comparable to τ for
large τ , whereas the estimate in Theorem 13.1.19 suggests that it might
be necessary to take r much larger. It is unclear whether the constant in
(13.1.16) is sharp with regard to the dependence on Ca/α.

We will leave the formulation of algorithms and convergence results
regarding other discretizations as exercises. In particular, we formulate the
use of augmented Lagrangian methods for the Taylor-Hood spaces as exer-
cises 13.x.10 and 13.x.11.

13.5 Computational Examples

We give here the results of some computational experiments which indicate
the performance of the iterated penalty method. In keeping with the results
described at the end of Sect. 12.6, we consider Vh as defined in Theorem
12.4.5 for k = 4 and 6. We pick a problem for which the solution is nontrivial
yet can be computed by independent means, namely, Jeffrey-Hamel flow in
a converging duct (Bagheri, Scott & Zhang, 1994). This similarity solution
is of the form

(13.5.1) ∼u(x, y) :=
u(atan(y/x))

x2 + y2 ∼x , ∼x = (x, y) ∈ Ω

where the (scaled) radial velocity u satisfies

(13.5.2) u′′ + 4u + u2 = CJH, u(0) = u(θ) = 0,

where differentiation is with respect to the polar angle φ and θ is the an-
gle of convergence of the channel. We have taken Ω to be the segment
of the wedge depicted in Fig. 13.1, namely the quadrilateral with vertices
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{(1, 0), (2, 0), (1, 1), (2, 2)}, and we have used (13.5.1) to provide Dirichlet
boundary conditions on all of ∂Ω. Fig. 13.1 shows the velocity field for
Jeffrey-Hamel flow in Ω with CJH = 104 (normalizing by the maximum
velocity yields a Reynolds number of approximately 600). Depicted is the
velocity field calculated with two different meshes and with k = 4 on the
finer mesh and k = 6 on the coarser mesh. These yield an error in L2(Ω)-
norm of less than 0.028 (resp. 0.038) times ‖u‖L2(Ω) for k = 4 (resp. k = 6).

Fig. 13.1. Jeffrey-Hamel flow computed using fourth- and sixth-degree piecewise
polynomials

The equations (13.4.1) were approximated by the time-stepping scheme
(13.4.4) (Bagheri, Scott & Zhang, 1994) which involves solving, at each time
step, a problem of the form (13.1.1) with ã(·, ·) as in (13.4.5) with τ = 105.
Note that the maximum velocity

∥∥
∼u
∥∥

L∞(Ω)2
is approximately 600 in these

calculations, and this may be taken as a good measure of the Reynolds
number. If the equations were scaled so that the maximum velocity were
unity, then the corresponding time-step would be increased by a factor of
approximately 600, and τ would be decreased to less than 200. However, the
coercivity constant α would be correspondingly decreased, with the ratio
τ/α being invariant.

We are particularly interested in the number of penalty iterations
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needed to reduce
∥∥D∼u

n
∥∥

a
/
∥∥

∼u
n
∥∥

a
to be, say, less than 10−10, for different

values of the penalty parameter r = ρ (these are taken equal for simplic-
ity). Typically, the number of penalty iterations was the same for each time
step, after the initial step. Table 13.1 indicates the results by giving this
“typical” number of penalty iterations for each case.

Table 13.1. Typical number of penalty iterations per solution of (13.1.1), with

r = ρ, needed to make
∥∥div ∼u

n
∥∥

a

/∥∥
∼u

n
∥∥

a
< 10−10.

r = 104 r = 105 r = 106 r = 107

k = 4 46 6 5 4
k = 6 51 11 6 4

In view of the estimate for the pressure error in Theorem 13.2.2, we
are also interested in the number of penalty iterations needed to reduce∥∥div ∼u

n
∥∥

a

/∥∥
∼u

n
∥∥

a
to be less than a fixed parameter times r for different

values of r. Again, the number of penalty iterations was the same for each
time step, after the initial step. Table 13.2 indicates the results by giving
this “typical” number of penalty iterations for each case.

Table 13.2. Typical number of penalty iterations per solution of (13.1.1), with

r = ρ, needed to make
∥∥div ∼u

n
∥∥

a

/∥∥
∼u

n
∥∥

a
< 10−5/r.

r = 104 r = 105 r = 106 r = 107 r = 108

k = 4 38 6 6 5 4
k = 6 43 11 6 5 4

In both experiments, note that the higher-degree approximation can
require a larger number of iterations. This is consistent with the fact that
β decreases as k increases (Jensen & Vogelius 1990) since Theorem 13.1.19
predicts a convergence rate proportional to β2. In view of Theorem 13.2.2,
it might be appropriate to require

∥∥div ∼u
n
∥∥

a

/∥∥
∼u

n
∥∥

a
to be even smaller for

larger k (to guarantee the same accuracy), leading possibly to a slightly
larger number of iterations.

The main conclusion to be drawn from the experiments is that the iter-
ated penalty method is extremely robust and efficient, for r = ρ sufficiently
large.
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(13.5.3) Remark. We note the strong similarity, for large τ , between the
form ã(·, ·) defined in (13.4.5) and τa(·, ·) where a(·, ·) is the form defined
in (12.1.8) for (aij) (and hence

≈
A) being the identity matrix. Thus, we can

expect convergence properties for the iterated penalty method applied to
the problem (12.1.8–12.1.9) similar to the experiments described here.

13.x Exercises

13.x.1 Prove that ‖Den‖Π ≤ Cγn for some C < ∞ and 0 < γ < 1 implies
en → 0 using (13.1.10). (Hint: pick v = en+1 − en in (13.1.10) and
show that {en} is a Cauchy sequence in V .)

13.x.2 Prove that the iterated penalty method (13.1.4), for suitable ρ, con-
verges geometrically even with r = 0 in the case a(·, ·) is symmetric.
(Hint: show that for suitable ρ, there is a γ < 1 such that

|a(u, v)− ρ (Du,Dv)|2 ≤ γa(u, u)a(v, v).

See Appendix III of (Glowinski 1984).)

13.x.3 Suppose T h satisfies the conditions of Theorem 12.6.13. For ∼Vh as
in (12.4.1) with k ≥ 4, prove that the iteration (13.1.4) with r = ρ
sufficiently large converges to the solution of the mixed formulation
of the Stokes equations, cf. (12.1.6). Show that the linear system
that needs to be solved in (13.1.4) is symmetric, positive definite.
Describe stopping criteria for the iteration and give error estimates.

13.x.4 Suppose T h satisfies the conditions of Theorem 12.6.13. For ∼Vh =
V k

h ×V k
h with k ≥ 4, prove that the iteration (13.1.4) with r = ρ suf-

ficiently large converges to the solution of the mixed formulation of
the scalar elliptic problem, cf. (12.1.9). Show that the linear system
that needs to be solved in (13.1.4) is symmetric, positive definite.
Describe stopping criteria for the iteration and give error estimates.

13.x.5 Prove that (12.5.7) implies PΠh
(DLp) = p for any p ∈ Πh. (Hint:

recall that b(v, q) = (Dv, q)Π .)

13.x.6 Prove that z ∈ Zh is equivalent to PΠh
(Dz) = 0. (Hint: recall that

b(v, q) = (Dv, q)Π .)

13.x.7 Prove that (13.3.1) and (13.3.2) are equivalent. (Hint: let W denote
the coefficients of v with respect to the given basis of Vh and show
that W tBtBUn = b(un, PΠh

Dv).)
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13.x.8 Prove that the augmented Lagrangian method (13.3.1), for suitable
ρ, converges geometrically even with r = 0 in the case a(·, ·) is
symmetric. (Hint: show that for suitable ρ, there is a γ < 1 such
that

|a(u, v)− ρ (PΠh
Du, PΠh

Dv)|2 ≤ γa(u, u)a(v, v)

as in 13.x.2.)

13.x.9 Let ∼Vh be as in (12.4.1) and Πh as in (12.4.4), for k ≥ 2. Prove that
the algorithm (13.3.2) (or equivalently (13.3.1)) converges to the so-
lution of the mixed formulation of the Stokes equations, cf. (12.1.6).
Show that the linear system that needs to be solved in (13.1.4) is
symmetric, positive definite.

13.x.10 Formulate the augmented Lagrangian method for solving the equa-
tions associated with the Taylor-Hood discretization (see Theorem
12.6.6) of the time-stepping scheme (13.4.4). State and prove the
corresponding convergence result.

13.x.11 Formulate the augmented Lagrangian method for solving the equa-
tions associated with the Taylor-Hood discretization (see Theorem
12.6.6) of the time-stepping scheme (13.4.8). State and prove the
corresponding convergence result.



Chapter 14

Applications of Operator-Interpolation
Theory

Interpolation spaces are useful technical tools. They allow one to bridge
between known results, yielding new results that could not be obtained di-
rectly. They also provide a concept of fractional-order derivatives, extending
the definition of the Sobolev spaces used so far. Such extensions allow one
to measure more precisely, for example, the regularity of solutions to elliptic
boundary value problems.

There are several ways to define interpolation spaces, and hence several
(not necessarily equivalent) definitions of fractional order Sobolev spaces.
Two of these are the “real” and “complex” methods. For the special case
of Hilbert spaces, there is also a technique based on fractional powers of an
operator. Finally, for Sobolev spaces, there are intrinsic norms that can be
defined. For s a real number in the interval (0, 1), for 1 ≤ p < ∞ and for k
a non-negative integer, we define

(14.0.1) ‖u‖p

W k+s
p (Ω)

:= ‖u‖p
W k

p (Ω) +
∑
|α|=k

∫
Ω

∫
Ω

|u(α)(x)− u(α)(y)|p
|x− y|n+sp

dxdy.

Furthermore, in the case of special domains (e.g. IRn) it is possible to give
alternate characterizations of Sobolev norms using the Fourier transform
(Adams 1975).

It is known (Adams 1975) that the real and complex methods of
interpolation yield different spaces when applied to the Sobolev spaces
with p �= 2. Some of the possible relationships are discussed in (Bergh
& Löfstrom 1976).

14.1 The Real Method of Interpolation

Given two Banach spaces, B0 and B1, we will define Banach spaces that
“interpolate” between them. For simplicity, we will make the assumption
that B1 ⊂ B0. For example, one can think of B0 = W k

p (Ω) and B1 =
Wm

p (Ω) where k ≤ m. For any u ∈ B0 and t > 0, define

K(t, u) := inf
v∈B1

(
‖u− v‖B0

+ t‖v‖B1

)
.
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In a sense, K measures how well u can be approximated by B1 with a
penalty factor t times the B1-norm of the approximant.

Some simple behavior for K(t, u) can be deduced immediately. For
u ∈ B1, we conclude that K(t, u) ≤ t‖u‖B1

by choosing v = u. On the
other hand, K(t, u) ≤ ‖u‖B0

by choosing v = 0. For 0 < θ < 1 and
1 ≤ p < ∞, define a norm

(14.1.1) ‖u‖[B0,B1]θ,p
:=

(∫ ∞

0

t−θpK(t, u)p dt

t

)1/p

.

When p = ∞, we define

‖u‖[B0,B1]θ,∞
:= sup

0<t<∞
t−θK(t, u).

The set

[B0, B1]θ,p = Bθ,p :=
{

u ∈ B0 : ‖u‖[B0,B1]θ,p
< ∞

}
forms a Banach space with norm (14.1.1) (Bergh & Löfstrom 1976).

Some simple properties can be deduced immediately from the defini-
tion. First, suppose that Ai and Bi are two pairs of Banach spaces as above,
and that Bi ⊂ Ai (i = 0, 1). Then Bθ,p ⊂ Aθ,p (see exercise 14.x.1). An
application of this is the following. Let Ω ⊂ Ω̃. Then

(14.1.2)
[
W k

p (Ω̃),Wm
p (Ω̃)

]
θ,p
⊂
[
W k

p (Ω),Wm
p (Ω)

]
θ,p

together with the corresponding norm inequality (see exercise 14.x.2).
The interpolation spaces form a “scale” because of our simplifying

assumption that B1 ⊂ B0: we always have B1 ⊂ Bθ,p ⊂ B0 (cf. exercise
14.x.4). The second of these inclusions follows in part from the estimate
(cf. exercise 14.x.3)

(14.1.3) K(t, u) ≤ Cθ,pt
θ‖u‖Bθ,p

.

This can be interpreted as saying that u ∈ Bθ,p implies that u can be
approximated to order tθ in B0. In fact, if p < ∞, then u ∈ Bθ,p implies
(exercise 14.x.5) that

(14.1.4) K(t, u) = o(tθ).

An application of this more-refined approximation estimate will be given
in the section on finite element applications.

One immediate consequence of (14.1.3) is that Bθ,p ⊂ Bθ,∞ for all
1 ≤ p ≤ ∞. Further, it is known (Bergh & Löfstrom 1976) that Bθ,1 ⊂ Bθ,p

for all 1 ≤ p ≤ ∞. If θ1 ≤ θ2 then Bθ2,p ⊂ Bθ1,p for all 1 ≤ p ≤ ∞, and if
p ≤ q then Bθ,p ⊂ Bθ,q for all 0 < θ < 1 (Bergh & Löfstrom 1976).

The key result of interpolation theory concerns operators on Banach
spaces.
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(14.1.5) Proposition. Suppose that Ai and Bi are two pairs of Banach spaces
as above, and that T is a linear operator that maps Ai to Bi (i = 0, 1). Then
T maps Aθ,p to Bθ,p. Moreover,

(14.1.6) ‖T‖Aθ,p→Bθ,p
≤ ‖T‖1−θ

A0→B0
‖T‖θ

A1→B1
.

Proof. Let Mi := ‖T‖Ai→Bi
. For any v ∈ A1,

KB(t, Tu) ≤ ‖Tu− Tv‖B0
+ t‖Tv‖B1

≤ M0‖u− v‖A0
+ tM1‖v‖A1

.

Taking the infimum over v ∈ A1, we find

KB(t, Tu) ≤ M0KA(tM1/M0, u).

Integrate this and make the change of variables s = tM1/M0 in the integral
on the right-hand side of the inequality. �	

There are two additional results regarding the real method of interpo-
lation that we require but will not prove. For proofs, see (Bergh & Löfstrom
1976). The first, called the “reiteration” theorem, says that

(14.1.7)
[
[B0, B1]θ0,p0

, [B0, B1]θ1,p1

]
λ,q

= [B0, B1](1−λ)θ0+λθ1,q

for any 0 ≤ θ0 < θ1 ≤ 1, 1 ≤ p0, p1, q ≤ ∞ and 0 < λ < 1. The second
relates to dual spaces. Let us assume that B1 is dense in B0. Then

(14.1.8) [B0, B1]
′
θ,p = [B′

1, B
′
0]1−θ,p′

for any 0 < θ < 1 and 1 ≤ p < ∞, where 1
p + 1

p′ = 1. Applications of
these results will be given in the next section with regard to negative-index
Sobolev spaces.

Finally, we note that the restriction B1 ⊂ B0 is unnecessary. In general,
it is only necessary that sums v0 + v1 be well defined for vi ∈ Bi. It then
holds that [B0, B1]θ,p = [B1, B0]1−θ,p. Thus, the duality theorem can be
written [B0, B1]

′
θ,p = [B′

0, B
′
1]θ,p′ .

14.2 Real Interpolation of Sobolev Spaces

The most basic interpolation result, the Riesz convexity theorem, relates
Lebesgue spaces. In our setting, this is just the result that

(14.2.1) Lp(Ω) =
[
L1(Ω), L∞(Ω)

]
1− 1

p ,p
∀1 < p < ∞
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(cf. Bergh & Löfstrom 1976 and Stein & Weiss 1971). This also extends to
the Sobolev spaces:

(14.2.2) W k
p (Ω) =

[
W k

1 (Ω),W k
∞(Ω)

]
1− 1

p ,p
∀1 < p < ∞

with equivalent norms, cf. (DeVore & Scherer 1979). So far, we have only
interpolated in the p variable, with k fixed. Now we consider keeping p fixed
and varying k.

Another possible definition of fractional-order Sobolev space is given
by interpolation. We will prove the following result which shows their equiv-
alence.

(14.2.3) Theorem. Let 0 < s < 1. If Ω has a Lipschitz boundary, then

W k+s
p (Ω) =

[
W k

p (Ω),W k+1
p (Ω)

]
s,p

and the norms are equivalent.

Proof. When Ω = IRn, it is known that the two definitions yield identical
spaces and equivalent norms. For example, this is proved in (Adams 1975)
using an interpolation method (method of traces) that is equivalent (Bergh
& Löfstrom 1976) to the “K” method described earlier. Also see Theorem
6.4.5, item (4), together with exercise 7 of Chapter 6, in (Bergh & Löfstrom
1976).

From the extension result (1.4.5) of Stein mentioned earlier, we know
that there is an operator ES : W k

p (Ω) −→ W k
p (IRn) for all k. Interpolating

this operator, we find

‖u‖W k+s
p (Ω) = ‖ESu‖W k+s

p (Ω)

≤ ‖ESu‖W k+s
p (IRn) (by 14.0.1)

≤ C‖ESu‖[W k
p (IRn),W k+1

p (IRn)]
s,p

(using the IRn case)

≤ C‖u‖[W k
p (Ω),W k+1

p (Ω)]
s,p

(by 14.1.5).

Note that it is important to know that the operator ES is defined for both
W k

p (Ω) and W k+1
p (Ω) in this argument, otherwise operator interpolation

would not be applicable.
Conversely, in (Grisvard 1985), it is stated that there exists an exten-

sion operator, EG, that maps W k+s
p (Ω) to W k+s

p (IRn) such that EGu|Ω = u,
provided that Ω is a Lipschitz domain, where, the definition of fractional-
order Sobolev norm is as given in (14.0.1). See (DeVore & Sharpley 1993)
for a proof. Then

‖u‖[W k
p (Ω),W k+1

p (Ω)]
s,p

= ‖EGu‖[W k
p (Ω),W k+1

p (Ω)]
s,p

≤ ‖EGu‖[W k
p (IRn),W k+1

p (IRn)]
s,p

(by 14.1.2 & 14.x.2)

≤ C‖EGu‖W k+s
p (IRn) (using the IRn case)

≤ C‖u‖W k+s
p (Ω).
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Note that we can allow EG to depend on s. Thus, we conclude that the in-
trinsic norm (14.0.1) is equivalent to the one obtained by real interpolation
in the case of a Lipschitz domain. �	

For more complex domains, it is not clear that the spaces considered
in Theorem 14.2.3 would necessarily be equivalent.

The spaces W k+1
p (Ω) and

[
W k

p (Ω),W k+2
p (Ω)

]
1
2 ,p

are not the same,

unless p = 2, although they are known (Bergh & Löfstrom 1976) to be very
close, in that[

W k
p (Ω),W k+2

p (Ω)
]

1
2 ,1
⊂ W k+1

p (Ω) ⊂
[
W k

p (Ω),W k+2
p (Ω)

]
1
2 ,∞ .

However, the proof of Theorem 14.2.3 also shows that

(14.2.4)
[
Wm

p (Ω),W k
p (Ω)

]
θ,p

= W (1−θ)m+θk
p (Ω),

provided that (1 − θ)m + θk is not an integer. Moreover, the reiteration
theorem (14.1.7) allows us to conclude that (14.2.4) holds even if m and k
are not integers.

We can define Sobolev spaces for negative, fractional indices by duality
as was done in the integer case, that is, W−s

p (Ω) := W s
p′(Ω)′. The dual-

ity theorem (14.1.8) allows us to conclude that (14.2.4) holds as well for
negative indices.

We emphasize that the relation (14.2.4) does hold without restriction
when p = 2, that is

(14.2.5)
[
Hm(Ω),Hk(Ω)

]
θ,2

= H(1−θ)m+θk(Ω).

The proof of Theorem 14.2.3 demonstrates this, once we know the result
is true for the case Ω = IRn. The latter can be shown by using another,
equivalent definition of the Hs(IRn) norm, namely

(14.2.6) ‖u‖Hs
F

(IRn) :=
(∫

IRn

(
1 + |ξ|2

)s

|û|2 dξ

)1/2

,

where û denotes the Fourier transform of u. Using this as an intermediary
(cf. exercises 14.x.6 and 14.x.7), one completes the equivalence.

Finally, we observe that (14.2.5) actually holds without the assumption
that m and k have the same sign. To begin with[

H−k(Ω),Hk(Ω)
]
1/2,2

= L2(Ω) = H0(Ω)

(cf. Bergh & Löfstrom 1976). Using the reiteration theorem (14.1.7), the
following is obtained.

(14.2.7) Theorem. If Ω has a Lipschitz boundary, then (14.2.5) holds for
arbitrary real numbers m and k, and the norms are equivalent.
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14.3 Finite Element Convergence Estimates

Consider a situation in which the solutions u ∈ Hm(Ω) and uh ∈ Vh to a
variational problem and its approximation satisfy (cf. Cea’s Theorem 2.8.1)

(14.3.1) ‖u− uh‖Hm(Ω) ≤ c0 inf
v∈Vh

‖u− v‖Hm(Ω) .

Provided there is an interpolant Ihu ∈ Vh (as in Theorem 4.4.20) such that∥∥u− Ihu
∥∥

Hm(Ω)
≤ Chk−m‖u‖Hk(Ω)

and u is sufficiently smooth, this implies

(14.3.2) ‖u− uh‖Hm(Ω) ≤ c1h
k−m‖u‖Hk(Ω).

However, if u is less smooth, say such that Ihu is not well defined, we might
not be able to conclude anything. For example, the standard Hermite cubic
interpolant is not defined on functions in H2(Ω) in two dimensions, yet
the above holds for m = 1 and k = 4. The Argyris element gives rise to
an example with m = 2 and k ≥ 6, yet its standard nodal interpolant is
undefined on H3(Ω). Since the data of the problem may not guarantee a
smooth solution, these restrictions can be a serious concern. However, we
can use Banach-space interpolation to extend (14.3.2) to apply for values of
k unrelated to a given interpolant. (Alternatively, the techniques in Section
4.8 could also be used.)

(14.3.3) Theorem. Suppose that (14.3.1) holds for any u ∈ Hm(Ω) and
(14.3.2) holds for any u ∈ Hk(Ω). Let m < s < k. Then for any u ∈ Hs(Ω),

(14.3.4) ‖u− uh‖Hm(Ω) ≤ Chs−m‖u‖Hs(Ω).

Proof. Let us define an operator, T , that maps u to the error u− uh, that
is,

Tu := u− uh.

Estimate (14.3.2) implies that T maps Hk(Ω) to Hm(Ω), with

‖T‖Hk(Ω)→Hm(Ω) ≤ c1h
k−m.

In addition, (14.3.1) implies (take v = 0)

‖T‖Hm(Ω)→Hm(Ω) ≤ c0.

Thus, we have the setting of Banach-space interpolation: A0 = Hm(Ω),
A1 = Hk(Ω), and B0 = B1 = Hm(Ω). We conclude that

‖T‖Hs(Ω)→Hm(Ω) ≤ Chs−m
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for any m < s < k. This is equivalent to (14.3.4). �	

Note that we have assumed in this result that (14.3.1) holds for any
u ∈ Hm(Ω) and (14.3.2) holds for any u ∈ Hk(Ω). This is true, for exam-
ple, when solving a Neumann problem with a bilinear form that is coercive
on all of H1(Ω). In that case, the variational space V = H1(Ω). For Dirich-
let problems, a result similar to Theorem 14.3.3 would be more complex,
since it would require interpolation between spaces that satisfy boundary
conditions (Lions & Magenes 1972, Grisvard 1985).

It is important to know that the constant, C, in (14.3.4) does not de-
pend on h or Vh in any way. A key to this is the fact that the constant in
inequality (14.1.6) is equal to one. However, there is an additional techni-
cality regarding the constants involved. Proposition 14.1.5 implies that

‖T‖[Hm(Ω),Hk(Ω)]θ,2→Hm(Ω) ≤ c1−θ
0 cθ

1h
s−m, s = m + θ(k −m).

Of course,
[
Hm(Ω),Hk(Ω)

]
θ,2

= Hs(Ω) = W s
2 (Ω), but if the norm of

the latter is given by (14.0.1), the norm of
[
Hm(Ω),Hk(Ω)

]
θ,2

will not be
identical, only equivalent. Thus, the constant, C, in (14.3.4) depends on the
constant in the equivalence of norms in Theorem 14.2.3. How this constant
depends on k, s, p and Ω is beyond the scope of this book. However, it is
easy to see that C in (14.3.4) can be taken to be a continuous function of
s in the open interval m < s < k.

Estimates such as (14.3.2), which relate to the order of approximation
of piecewise polynomial spaces, are sharp, that is

∥∥u− Ihu
∥∥

Hm(Ω)
would

not in general go to zero faster than O(hk−m), as can be seen by applying
the interpolant to a polynomial of higher order. However, when the function
u being approximated is less smooth, the degree of smoothness no longer
determines the order of approximation so precisely (Scott 1977b).

(14.3.5) Theorem. Suppose that (14.3.1) holds for any u ∈ Hm(Ω) and
(14.3.2) holds for any u ∈ Hk(Ω). Let m < s < k. Then for any u ∈ Hs(Ω),

(14.3.6) ‖u− uh‖Hm(Ω) = o(hs−m).

Proof. Recall the definition of T in the proof of Theorem 14.3.3. For any
v ∈ Hk(Ω),

‖u− uh‖Hm(Ω) = ‖Tu‖Hm(Ω)

≤ ‖Tu− Tv‖Hm(Ω) + ‖Tv‖Hm(Ω)

≤ c0 ‖u− v‖Hm(Ω) + c1h
k−m‖v‖Hk(Ω) .

Taking the infimum over all v ∈ Hk(Ω), we find

‖u− uh‖Hm(Ω) ≤ c0K((c1/c0)hk−m, u).
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Applying (14.1.4), we conclude that (14.3.6) holds. �	

Such techniques are not restricted to the Hilbert spaces. In Chapter 8,
estimates of the form

(14.3.7) ‖uh‖W 1
p (Ω) ≤ C ‖u‖W 1

p (Ω)

are proved for p �= 2. From this it follows that

(14.3.8) ‖u− uh‖W 1
p (Ω) ≤ Chk−1 ‖u‖W k

p (Ω)

provided u is sufficiently smooth, again using an interpolant. Via Banach-
space interpolation as above, this result can be extended to hold as follows:

(14.3.9) ‖u− uh‖W 1
p (Ω) ≤ Chs−1‖u‖W s

p (Ω), 1 < s < k.

Moreover, for u ∈ W s
p (Ω), we also conclude that

(14.3.10) ‖u− uh‖W 1
p (Ω) = o(hs−1).

So far we have considered estimates of u−uh in the case that u lies in
an intermediate (interpolation) space. Banach-space interpolation can also
be applied to obtain estimates of u−uh in intermediate spaces. Recall that
in deriving estimates for the biharmonic problem in Sect. 5.9, an estimate in
H1(Ω) was not obtained, only estimates in H2(Ω) and H−s(Ω) for s ≥ 0.
Moreover, the techniques of proof, say for Theorem 5.9.9, require an ap-
proximation result of the sort discussed above for functions with less than
maximal regularity. Thus, we may only know that

(14.3.11) ‖u− uh‖H−r(Ω) ≤ Chr+k ‖u‖Hk(Ω) .

The following captures this situation.

(14.3.12) Theorem. Suppose that (14.3.2) and (14.3.11) hold for all u ∈
Hk(Ω). Let −r < s < m. Then

‖u− uh‖Hs(Ω) ≤ Chk−s ‖u‖Hk(Ω) .

Proof. We apply (14.1.6) to the operator, T , defined in the proof of Theorem
14.3.3 that maps u to the error u−uh, except that we now take A0 = A1 =
Hk(Ω), and B0 = Hm(Ω) and B1 = H−r(Ω). �	
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14.4 The Simultaneous Approximation Theorem

There have been several instances in the book, and numerous more in the
literature, where it is essential to know that a particular approximant (such
as an interpolant) has appropriate orders of approximation in two differ-
ent norms simultaneously. Assumption (8.1.7) is just one such example. It
turns out that in many cases, such an assumption is redundant, with the
simultaneous approximability being a consequence of approximability in a
single norm. We give a simple example of this and refer to (Bramble &
Scott 1978) for the general theory.

Let us suppose that we have a family of spaces Vh ⊂ Hm(Ω) with the
property that, for all u ∈ Hk(Ω) and 0 < h ≤ 1,

(14.4.1) inf
v∈Vh

‖u− v‖Hm(Ω) ≤ Chk−m‖u‖Hk(Ω) .

The following result can be found in (Bramble & Scott 1978).

(14.4.2) Theorem. Suppose that condition (14.4.1) holds, and let s < m and
m ≤ r ≤ k. Then there is a constant C such that

inf
v∈Vh

(
hs‖u− v‖Hs(Ω) + hm ‖u− v‖Hm(Ω)

)
≤ Chr‖u‖Hr(Ω)

provided u ∈ Hr(Ω). If r < k and u ∈ Hr(Ω), then

inf
v∈Vh

(
hs‖u− v‖Hs(Ω) + hm ‖u− v‖Hm(Ω)

)/
hr → 0 as h → 0.

Note that s can be negative in the theorem, and the result can easily
be extended to any finite sum of norms instead of just two. Corresponding
results for other Sobolev spaces (p �= 2) can be derived from (Bramble &
Scott 1978). However, a condition such as (8.1.7) would not follow so easily,
as it involves a family of weighted norms where the weights depend on the
approximation parameter h.

14.5 Precise Characterizations of Regularity

So far, the second interpolation index has not been used in a significant way.
However, it allows precise characterizations of various regularity properties.
Examples of this are sharp Sobolev inequalities and trace theorems (Scott
1977b). For 1 < p < ∞, functions in

[
Lp(Ω),W 1

p (Ω)
]
1/p,q

are all continuous
for q = 1 but not for q > 1; corresponding trace theorems also hold (Scott
1977b).

Another example is that piecewise smooth functions (Scott 1979) lie
in the space

[
L2(Ω),H1(Ω)

]
1/2,∞ but do not lie in any smaller space (e.g.,
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functions with discontinuities across an internal boundary do not lie in
H1/2), cf. exercise 14.x.8. If such a function, f , is the data for a varia-
tional problem as discussed in Chapter 5, then the solution u will lie in a
corresponding interpolation space. For example, suppose that a regularity
estimate

(14.5.1) ‖u‖Hk+2m(Ω) ≤ C ‖f‖Hk(Ω)

holds for some k > 1/2 (cf. Dauge 1988) for the solution to

a(u, v) = (f, v) ∀v ∈ V

where a(·, ·) is continuous and coercive on V ⊂ Hm(Ω). Recall that (cf. ex-
ercise 2.x.9) we also have ‖u‖Hm(Ω) ≤ C‖f‖Hm(Ω)′ ≤ C‖f‖H−m(Ω). Inter-
polating the solution operator f → u we find

(14.5.2) ‖u‖[H2m(Ω),H2m+1(Ω)]1/2,∞
≤ C‖f‖[H0(Ω),H1(Ω)]1/2,∞

.

Combining this regularity result with the techniques used to prove Theorem
14.3.3, we obtain the following.

(14.5.3) Theorem. Suppose that f is piecewise smooth (Scott 1979), that
(14.5.1) holds for some k > 1/2 and that (14.3.2) holds for k ≥ 2m + 1.
Then

‖u− uh‖Hm(Ω) ≤ Chm+ 1
2 .

14.x Exercises

14.x.1 Suppose that Ai and Bi are two pairs of Banach spaces as above,
and that Bi ⊂ Ai where the embeddings are continuous (i = 0, 1).
Prove that Bθ,p ⊂ Aθ,p. (Hint: let C be such that ‖v‖Ai

≤ C‖v‖Bi

and prove that KA(t, u) ≤ CKB(t, u)).

14.x.2 Prove that the norm of the inclusion operator (14.1.2) is 1.

14.x.3 Prove (14.1.3). (Hint: observe that min{1, s/t}K(t, u) ≤ K(s, u) and
integrate this inequality.)

14.x.4 Given that B1 ⊂ B0, prove that B1 ⊂ Bθ,p ⊂ B0, where all inclu-
sions are continuous. (Hint: suppose that ‖v‖B0

≤ C‖v‖B1
and show

that ‖u‖B0
≤ K(C, u), then use exercise 14.x.3 to verify the second

inclusion. To prove the first, show that K(t, u) ≤ min{C, t}‖u‖B1

using the choices for v given just prior to (14.1.1).)

14.x.5 Prove (14.1.4). (Hint: observe that t−θK(t, u) is in Lp(0,∞; dt/t)
and hence must go to zero as t → 0.)
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14.x.6 Prove (14.2.6) is an equivalent norm for Hs(Ω) in the case s is
an integer. (Hint: recall that D̂αu = (iξ)αû and that the Fourier
transform is an isomorphism in L2. Note that |ξ|r ≤ 1 + |ξ|s if
0 < r < s.)

14.x.7 Prove (14.2.6) is equivalent to (14.0.1) in the case s is fractional.
(Hint: use Plancherel’s and Fubini’s Theorems to write∫

IRn

∫
IRn

|u(x + r)− u(x)|2

|r|d+2s
dxdr

=
∫

IRn

∫
IRn

∣∣û(ξ)
(
eir·ξ − 1

)∣∣2 dξ
dr

|r|d+2s

and prove that ∫
IRn

∣∣eir·ξ − 1
∣∣2

|r|d+2s
dr ≤ C

(
1 + |ξ|2

)s

for ξ ∈ IRn and 0 < s < 1.)

14.x.8 Let Ω denote the interval [−1, 1] and let f be the Heavyside
function: f ≡ 0 for x < 0 and f ≡ 1 for x > 0. Prove that
f ∈ [L2(Ω),H1(Ω)]1/2,∞. (Hint: for each 1 > t > 0, let v be the
continuous, piecewise linear function that satisfies v ≡ 0 for x < −t
and v ≡ 1 for x > t and is linear on [−t, t]. Use this function to
show that K(t, f) ≤ ‖f − v‖L2(Ω) + t ‖v‖H1(Ω) ≤ Ct1/2.)
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157-180

Gudi, T., Pani, A.K. (2007) Discontinuous Galerkin methods for quasi-linear
elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45 (2007)
163-192

Hackbusch, W. (1985) Multi-grid Methods and Applications. Springer-Verlag,
Berlin, 1985

Halmos, P.R. (1957) Introduction to Hilbert Space and the Theory of Spectral
Multiplicity. 2nd ed. Chelsea Pub. Co., New York, 1957

Halmos, P.R. (1991) Measure Theory. Springer-Verlag, New York, 1991
Han, W. (2005) A Posteriori Error Analysis Via Duality Theory. Springer-Verlag,

New York, 2005
Hartman, S., Mikusinski, J. (1961) The Theory of Lebesgue Measure and Integra-

tion. Pergamon Press, New York, 1961
Haverkamp, R. (1984) Eine Aussage zur L∞-Stabilität und zur genauen Konver-

genzordnung der H1
0 -Projektionen. Numer. Math. 44 (1984) 393-405

Hughes, T.J.R. (2000) The Finite Element Method. Dover, New York, 2000
Isaacson, E., Keller, H.B. (1966) Analysis of Numerical Methods. John Wiley and

Sons, New York, 1966
Jensen, S., Vogelius, M. (1990) Divergence stability in connection with the

p-version of the finite element method. RAIRO Math. Modeling &
Numer. Anal. 24 (1990) 737-764

Johnson, C. (1987) Numerical Solutions of Partial Differential Equations by the
Finite Element Method. Cambridge University Press, Cambridge, 1987

Kreiss, H.-O., Manteuffel, T.A., Swartz, B., Wendroff, B., White, A.B., Jr. (1986)
Supra-convergent schemes on irregular grids. Math. Comp.47 (1986) 537-
554

Lenoir, M. (1986) Optimal isoparametric finite elements and error estimates for
domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986)
562-580

LeTallec, P. (1994) Domain decomposition methods in computational mechanics.
Computational Mechanics Advances 1 (1994) 121-220

LeTallec, P., Mandel, J., Vidrascu, M. (1998) A Neumann-Neumann domain de-
composition algorithm for solving plate and shell problems. SIAM J.
Numer. Anal. 35 (1998) 836-867

Li, J., Widlund, O. (2005) FETI-DP, BDDC, and block Cholesky methods. Int.
J. Numer. Methods Engrg. 66 (2005) 250-271

Liao, X., Nochetto, R.H. (2003) Local a postriori error estimates and adaptive
control of pollution effects. Numer. Methods Partial Differential Equa-
tions 19 (2003) 421-442

Lions, J.L., Magenes, E. (1972) Non-homogeneous Boundary Value Problems and
Applications. Springer-Verlag, New York, 1972

Luenberger, D.G (1973) Introduction to Linear and Nonlinear Programming.
Addison-Wesley, Reading, MA., 1973

Mandel, J. (1993) Balancing Domain Decomposition. Comm. Numer. Methods
Engrg. 9 (1993) 233-241

Mandel, J., Brezina, M. (1996) Balancing domain decomposition for problems
with large jumps in coefficients. Math. Comp. 65 (1996) 1387-1401

Mandel J., Dohrmann, C.R. (2003) Convergence of a balancing domain decompo-
sition by constraints and energy minimization. Numer. Linear Algebra
Appl. 10 (2003) 639-659

Mandel, J., Dohrmann, C.R., Tezaur, R. (2005) An algebraic theory for primal
and dual substructuring methods by constraints. Appl. Numer. Math.
54 (2005) 167-193



References 389

McCormick, S.F., ed. (1987) Multigrid Methods. SIAM Frontiers in Applied
Mathematics 3. Society for Industrial and Applied Mathematics,
Philadelphia, 1987

Mekchay, K., Nochetto, R.H. (2005) Convergence of adaptive finite element meth-
ods for general second order linear elliptic pdes. SIAM J. Numer. Anal.
43 (2005) 1803–1827

Meyers, N.G. (1963) An Lp-estimate for the gradient of solutions of second order
elliptic divergence equations. Annali della Scuola Normale Superiore di
Pisa. Ser. III. XVII (1963) 189-206

Meyers, N.G., Serrin, J. (1964) H = W. Proc. Nat. Acad. Sci. USA 51 (1964)
1055-1056

Morgan, J., Scott, R. (1975) A nodal basis for C1 piecewise polynomials of degree
n ≥ 5. Math. Comp. 29 (1975) 736-740

Morin, P., Nochetto, R.H., Siebert, G. (2000) Data oscillation and convergence
of adaptive fem. SIAM J. Numer. Anal. 38 (2000) 466–488

Morin, P., Nochetto, R.H., Siebert, G. (2002) Convergence of adaptive finite ele-
ment methods. SIAM Rev. 44 (2002) 631-658

Nazarov, S.A., Plamenevsky, B.A. (1994) Elliptic Problems in Domains with
Piecewise Smooth Boundaries. de Gruyter, Berlin-New York, 1994
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adaptive approximation, 0.8
affine equivalent, (3.4.1)
affine-interpolation equivalent, (3.4.9)
approximation property, (6.4.4)
Argyris finite element, (3.2.10), (3.2.11)
arithmetic-geometric mean inequality, (0.9.4)

Babuška’s paradox, (5.x.23)
Banach space, (1.1.7)
bilinear form, (2.1.1)
biharmonic equation, 5.9
bounded (continuous) bilinear form, (2.5.2)
boundary conditions

clamped, 5.9
Dirichlet, (0.1.6), (5.1.2)
displacement, (11.3.1)
Neumann, (0.1.6), (5.1.2), 5.2
simply supported, 5.9
traction, (11.3.2)

Bramble-Hilbert Lemma, (4.3.8)

Céa’s Theorem, (2.8.1)
chunkiness parameter, (4.2.17)



394 Index

clamped boundary condition, 5.9
Clough-Tocher finite element, Fig. 3.24
coercive bilinear form, (2.5.2)
conditioning of finite element equations, 9.6, 9.7
continuous (bounded) bilinear form, (2.5.2)
Contraction Mapping Principle, (2.7.2)
cross points, (7.8.1)
Crouzeix-Raviart nonconforming finite element, (3.2.2), 3.x.14, (10.3.2)

density argument, (1.6.3)
difference equations, 0.5
Dirichlet boundary condition, (0.1.6), (5.1.2)
discrete harmonic functions, (7.5.12)
discrete Sobolev inequality, (4.9.2)
discrete Young’s inequality, (7.2.15)
displacement boundary condition, (11.1.4), (11.3.1)
dual space, 1.7
duality argument, 0.3, 1.2, 5.4, 5.7, 5.8, 8.3, 8.5

elasticity equations, (11.1.2)
element domain, (3.1.1)
elliptic regularity estimates, 5.5
equation(s)

biharmonic, 5.9
elasticity, (11.1.2)
Navier-Stokes, (13.4.1)
Poisson, (5.1.1), 5.1, 5.4
Stokes, (12.1.1)

error estimators, 9.2, 9.4

finite element, (3.1.1)
finite elements

macro
piecewise linear, Fig. 3.23
Clough-Tocher, Fig. 3.24

mixed
Taylor-Hood, (12.4.3)

rectangular
rotated Q1, 3.x.15
serendipity, (3.5.5), (3.5.7)
tensor product, (3.5.2), (3.5.3), (3.5.4)

tetrahedral, 3.6
triangular

Argyris, (3.2.10), (3.2.11)
Bogner-Fox-Schmit, 3.x.16
Crouzeix-Raviart nonconforming, (3.2.2), 3.x.14, 10.3, (10.3.2)
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Hermite, (3.2.6), (3.2.7), (3.2.8)
Lagrange, (3.2.1), (3.2.3), (3.2.4)
Morley, Fig. 10.5

Friedrichs’ inequality, (4.3.14), (4.x.4), 10.6
Fundamental Galerkin Orthogonality, (2.5.9)

G̊arding’s inequality, (5.6.8)
Green’s function, 0.7

hanging node, (10.5.1)
Hermite finite element, (3.2.6), (3.2.7), (3.2.8)
Hilbert space, (2.2.1), 2.2
Hölder’s inequality, (1.1.4)
homogeneity argument, (0.4.5), (4.3.10), (4.4.8), 4.x.4, 5.x.21, 5.x.22,

6.x.12, (10.2.1), (10.3.10), (11.4.18), 11.x.19

inf-sup condition, (12.5.1), 12.5, 12.6
infinitesimal rigid motions, (11.1.6)
inner-product, (2.1.1)
inner-product space, (2.1.2), 2.1
interior penalty methods, (10.5.8)
interpolant, (0.4.3), (3.3.1), (3.3.9)

global, (3.3.1)
local, (3.3.9)

interpolated boundary conditions, 10.2
interpolation equivalent, (3.4.6)
interpolation error bounds, 4.4
inverse estimates, 4.5
isoparametric finite element approximation, 10.4
isoparametric polynomial approximation, 4.7

Korn’s inequality
first, (11.2.16)
second, (11.2.12)

L∞ estimates, 8.1
Lp estimates

irregular coefficients, 8.5
regular coefficients, 8.6

Lagrange finite element, (3.2.1), (3.2.3), (3.2.4)
Lamé constants, (11.1.3)
Lax-Milgram Theorem, (2.7.7)
Lipschitz boundary, (1.4.4)
Lipschitz norm, (1.3.1)
Lobatto quadrature, (10.2.3)
local error estimates, 9.3
local error indicator, (9.2.11)
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locally integrable functions, (1.2.3)
locking, 11.3, (11.3.5)

macro piecewise-linear finite element, Fig. 3.23
max-norm estimates, 8.1
Minkowski’s inequality, (1.1.3)
mollification, (1.3.6)

Navier-Stokes equations, (13.4.1)
nearly singular vertices, (12.6.8)
negative-norm estimate, 5.8
Neumann boundary condition, (0.1.6), (5.1.2), 5.2
nodal basis, (0.4.2)
nodal values, (0.4.2)
nodes, (0.4.2)
nonconforming, (3.2.2), 3.x.14, 10.3, (10.3.2)
non-degenerate, (4.4.16), (10.5.1)
non-smooth functions, 4.8
norm, (1.1.6)

oscillation, (9.5.2)
orthogonality relation, (2.5.9)

parallelogram law, (2.2.8)
partition, (10.5.1)
plate bending biharmonic problem, 5.9
Poincaré inequality, (5.3.3), (5.3.5), 10.6
Poisson equation, (5.1.1), 5.1, 5.4
pollution effect, (5.8.4)
preconditioners

abstract additive Schwarz, (7.1.7)
BDDC, (7.8.9)
BPS, (7.6.6)
BPX, (7.3.2)
hierarchical basis, (7.2.8)
Neumann-Neumann, (7.7.4)
two-level additive Schwarz, (7.4.10)

projection operator, (2.3.9)

quasi-uniform, (4.4.15)

real method of interpolation, 14.1, 14.2
regular, (4.4.16), (10.5.1)
Riesz potential, 4.3
Riesz Representation Theorem, (2.4.2)
rigid motions (infinitesimal), (11.1.6)
Ritz method, (2.5.11)
Ritz-Galerkin method, (2.5.7)
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saturation assumption, (9.4.8)
Schur complement, (7.5.18)
Schwarz’ inequality, (1.1.5)
scaling argument — see homogeneity argument
segment condition, (1.3.5)
serendipity finite element, (3.5.5), (3.5.7)
shape functions, (3.1.1), (3.3.6), (3.5.5), (3.5.9), 3.7, (4.6.16), (4.6.17),

(4.6.20), (4.8.7)
simply supported boundary condition, 5.9
singular vertices, 12.6
smoothing property, (6.5.7), (6.6.7)
Sobolev’s inequality, (1.4.6), (4.3.4)
Sobolev norm, (1.3.1)
Sobolev space, (1.3.1), 1.3
star-shaped, (4.2.2)
stiffness matrix, 0.6
Stokes equations, (12.1.1)
strengthened Cauchy-Schwarz inequality, (7.2.18)
subdivision, (3.3.8)
superapproximation estimate, (8.3.4)

Taylor polynomial, (4.1.1)
Taylor-Hood mixed finite elements, (12.4.3)
tensor product finite element, (3.5.2), (3.5.3), (3.5.4)
tensor product polynomial approximation, 4.6
tetrahedral finite element, 3.6
Trace Theorem, 1.6
traction boundary condition, (11.1.5), (11.3.2)
triangle inequality, (1.1.6)
triangulation, (3.3.11)

variational problem
nonsymmetric, 2.6
symmetric, 2.5

weak derivative, (1.2.4)
weak formulation, (0.1.3), 0.1
weight function, 8.1
weighted norm, 0.9
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