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Preface

This book is intended for quantitative methodologists and graduate
students in methodology programs, but the book will be useful for researchers
and graduate students in the behavioral and social sciences seeking a deeper
understanding of causation, linear causal modeling, and structural equa-
tion modeling than is offered in other texts on the topic. Some sections,
such as those found in the chapter on parameter estimation and polychoric
correlation, will be mathematically challenging requiring a knowledge of cal-
culus, but even there I try to accompany mathematical developments with
verbal explanations and graphs showing what is occurring. These sections
concern the kind of knowledge one needs to understand the inner work-
ings of structural equation modeling programs, and to write these kinds of
programs, of which quantitative methodologists should have some general
knowledge.

Compared with common factor analysis, structural equation modeling is
less intensive in the use of matrix algebra. There are no eigenvectors and eigen-
values. In fact, many commercial programs for structural equation modeling
do not use matrices to input the models, but rather use individual equations,
which are easy to comprehend by anyone with a background in multiple
regression. Still, matrix algebra is a compact notation, and general model
equations are still best expressed with matrices, which I use when appropri-
ate. Perhaps more essential for the reader is a knowledge of college algebra.
To be a scientist in almost any field requires some mastery of mathematics. In
Chapter 2, I briefly lay out the basic ideas of college algebra, linear algebra,
and calculus that the student might need later in the book.

Still this book is not all mathematical. Since it is about causation, and causa-
tion has been a topic of philosophers for over 2000 years, I attempt to sketch
the history of the idea of causation in Chapter 3. (Although my PhD in 1963

xiii
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was in clinical psychology, I had a postdoctoral fellowship in quantitative
psychology at the University of North Carolina and made my career in that
field, teaching factor analysis, multivariate analysis, psychometric theory, and
structural equation modeling. But in dealing with empiricist critics of causal
applications for structural equation modeling in the 1980s, I was led into the
philosophy of causality and from there to seeking to master Immanuel Kant
and Ludwig Wittgenstein. In the process I spent 10 years studying them and
most modern philosophy intensively, especially the philosophy of science. I
am a member of the Philosophy of Science Association and have published
four articles in the Association’s journal, Philosophy of Science, since 1985.)
I seek to present a theory of causation involving variables that is central for
structural equation modeling. I argue that causation is best understood as a
functional relation between variables. I also introduce a conception of proba-
bilistic causal modeling with functional relations between variables inspired
by the remarks of Herbert Simon: Causes determine probability distribu-
tions. The constraints on the functional relation will arise in the links between
causes and effects, found, say, in exchanges of conserved quantities in the case
of physical causation. I also touch on recent developments in experimental
psychology on studies of the perception of causation.

However, my current philosophy of science is naturalistic and cognitive in
approach, which means I draw heavily on the cognitive sciences for under-
standing how the mind works to form concepts and knowledge. I call my
philosophy of science objective realism. I am heavily indebted to the innovative
ideas of the cognitive linguist George Lakoff and his philosopher co-author
Mark Johnson on metaphor and the role it plays in abstract thought and
concept formation. So, I recognize that many causal connections (along with
most concepts) in both the physical and nonphysical sciences are metaphoric,
which is not to say that they are fanciful or merely entertaining, but rather
metaphors are the framework of concepts. This has led me to recognize that
causality concerns objects, as a determining relation between their attributes.
And a cognitive science view of objects (given, say, by J. J. Gibson, 1950, 1966)
is that they are invariants in the perceptual field formed from the stimulus
information. Objects furthermore are independent of the actions, perspec-
tives, and changes in the perceptual field due to the actions and motions
of the observer, information about which is also given to the observer in
perception.

But Lakoff and Johnson (1999) argue that most metaphors underlying our
concepts are taken from our embodied perceptual and motor experience as
schemas that are mapped onto unfamiliar and abstract domains of experience
to give us a structure for understanding those domains. From this it is under-
standable why many causal concepts are metaphors, for the causal schema of
cause and effect is so minimal that it is easily used metaphorically to under-
stand the effects of forces, substances, purposes, settings, and of intentions
and goal-seeking behavior. It also suggests that causal relations are invariants
whose invariance must be tested to establish their “objectivity.”
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This led me then to a realization that science itself functions with a basic
metaphor, that “science is a knowledge of objects.” Not all scientific “objects”
are directly and literally perceived by the human observer. Often they are
regarded as unobservables or latent entities or variables. Their status is
often conceptual, representing metaphoric invariants that unify or synthesize
diverse perceptual experiences recalled from memory or taken from graph-
ically or even electronically recorded information. Their objectivity comes
from successfully passing tests of hypotheses asserted of them as invariants.
This explains why scientists demand replication in different laboratories, with
different instruments, and different observers. It also explains why they seek
to test hypotheses asserted as invariants with data not used in their formula-
tion to make the results of the test not dependent on the researcher’s data. To
begin with, the researcher would have adjusted the hypothesis until it opti-
mally fit the data. So comparing the hypothesis to the same data is then not a
test of the hypothesis, since it cannot logically fail to fit optimally, and a test
must have two possible outcomes, fail or pass. Second, hypotheses that may
be adjusted to fit that data are not unique, so the hypothesis may be an idea
or concept uniquely linked to the researcher—a subjective concept about the
original data and not one with objective credentials obtained by passing a real
test. The data with which to test the hypothesis must be logically independent
of any data used to formulate the hypothesis. In other words, the hypothesis
must add something not in the original data alone that allows the researcher
to deduce something else potentially in the world that could not be deduced
from the original data alone without the hypothesis. It is also the reason that
scientists prefer more parsimonious theories and models, because they are
more testable by asserting more invariants against the data.

Recent developments in computer science and among philosophers of
science have led to graph theoretic analyses of causal relations. I refer
to the works of Judea Pearl (2000) and Spirtes, Glymour, and Scheines
(1993, 2000). In Chapter 4, I survey the basic concepts of graph theory that
will be useful in the formulation of structural models: acyclic and cyclic
graphs, the Markov condition, d-separation, the minimality condition, and
faithfulness.

Chapter 5 concerns structural equation modeling itself. Here I introduce
the student to path diagrams, structural coefficients, disturbances, exogenous
variables, and endogenous variables. I then show how one can write a set of
structural equations corresponding to the path diagram. Then I show two
ways of computing variances and covariances of variables in a structural
equation model: (1) the algebraic method and (2) the use of path tracing rules.
The latter becomes very convenient. Finally, I introduce matrix equations for
the general structural equation model, from which I derive the formulas for
the variances and covariances among the observed variables as functions of
the model parameters.

In Chapter 6, I consider the problem of identification of a model, which
occurs in models that are incompletely specified, requiring the use of free
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parameters that must be estimated. The problem is whether unique solutions
exist for the free parameters.

Chapter 7 concerns parameter estimation. I show how parameter estimates
in identified models depend on the discrepancy functions to minimize. Then I
get into the problem of finding solutions for the free parameters that minimize
a discrepancy function. The mathematically challenged may want to skip this
section, because it involves obtaining partial derivatives of the discrepancy
function with respect to the respective free parameters and then setting the
derivatives to zero and solving the resulting equations using nonlinear opti-
mization algorithms. Since the illustration of these algorithms would be too
complex with a real structural equation model, I instead use contour graphs
for the solution of a simple nonlinear system of equations involving two
variables to show how the algorithms work. I discuss the method of steep-
est descent and the quasi-Newton methods which are universally used in
structural equation modeling programs. This material shows how structural
equation programs work and how to develop the algorithms on which such
programs are based.

Chapter 8 discusses issues involved in designing structural equation
models. I consider the importance of thinking in terms of variables rather
than labels for constructs when formulating models, to force the researcher
to think concretely rather than abstractly. Next, I consider the values of using
multiple indicators to establish the objectivity of latent constructs. But I also
point out circumstances under which, even using multiple indicators, may
be misleading in establishing correct inferences of causal relations among
latent variables. Then I consider a four-step procedure for isolating, where
lack of fit arises in a model using a nested sequence of models implicit in
the structural equation model of interest. I also consider how one would test
invariance of models across groups of subjects sampled from different pop-
ulations. Finally, I end with a discussion of models with mean structures,
followed by a discussion of multigroup comparisons of mean structures.

In Chapter 9 I introduce the application of confirmatory factor analy-
sis, illustrating it with a first-order factor model. Next, I examine a multirater–
multioccasion study that involves first- and second-order common factors
and a correlation between second-order factors that represents an objec-
tive assessment of trait stability over a yearlong interval. I also consider
multitrait–multirater models and their limitations arising from having only
single indicators for a single trait–rater combination.

Chapter 10 introduces students to equivalent models: Models with the
same constraints and free parameters in the same positions, but with rever-
sals in causal direction, or replacement of causal paths with correlations
among disturbances. The existence of equivalent models arises with respect
to incompletely specified models with free parameters that allow for numer-
ous distinct models with the same constraints to fit the covariance matrix
equally well. The existence of equivalent models must be considered when
seeking to infer the validity of a given model.
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Chapter 11 introduces the use of instrumental variables to resolve issues of
causal direction and mediated causation, while Chapter 12 discusses multi-
level models in which subjects may be nested within a hierarchy of categories
or classes. Variation will be due not simply to the causal variables explicit
in the study, but due to variation in influences from the higher levels within
which the subject is classed. I illustrate with a multilevel factor analysis model
and with a multilevel path analysis model.

Chapter 13 concerns longitudinal modeling. I begin with a consideration of
a simplex model and a bi-simplex model. Then I turn to latent curve models.

Chapter 14 takes up the case of nonrecursive models with loops. I intro-
duce basic concepts and then do a brief survey of flow graph analysis to
show how models may be reduced or paths condensed to produce equivalent
models. I consider the effect nonrecursive models have on the variances and
covariances among variables, and on the total effect of causes in such mod-
els, which must be analyzed somewhat differently from the way in which
we do it with recursive, acyclic models. I introduce Mason’s rule for finding
the total effect of a cause on another variable in the model. One consequence
is that correlations between variables in nonrecursive models can be quite
misleading in suggesting the importance and influence of causes in such mod-
els. I also consider the problem of identifying nonrecursive models and the
need for instrumental variables to accomplish this and consider questions of
parameter estimation with nonrecursive models. I end with a discussion of
applications for nonrecursive models.

Chapter 15 is the longest chapter in the book and concerns model evalu-
ation. Models are evaluated on several dimensions: (1) What is the degree
of fit of the reproduced model covariance matrix to the observed covariance
matrix? Does the model have small discrepancy function values, nonsignifi-
cant chi-squares indicating fit to within sampling error, or high approximate
fit indices or near-zero lack of fit indices of approximation? (2) To what degree
has the model been specified with fixed parameters and equality constraints,
leaving the model free to differ from the data, as indicated by the degrees
of freedom of the model, if the model is incorrect? (3) To what extent do the
degrees of freedom of the model approach the number of distinct data ele-
ments to be fit by the model, which indicates the proportion of distinct ways
in which the model could fail to fit the data if it were wrong in some way? Each
of these concerns is discussed as I take up the noncentrality parameter, the
chi-square statistic, the Satorra–Bentler corrected chi-square, the goodness-
of-fit indices of approximation such as LISREL©’s GFI, Steiger’s GFI, Bentler’s
CFI, the Tucker–Lewis Index, McDonald’s μ, Steiger and Lind’s RMSEAindex
of lack of fit, Mulaik’s conversion of the RMSEA to a goodness-of-fit index
by an exponential transformation named by Paul Dudgeon the ER index.
Parsimony in model formulation is discussed as the fewness of estimated
parameters relative to the number of data points to be fit by the model,
expressed as a ratio. Mulaik’s parsimony ratio is discussed as a way of eval-
uating the disconfirmability of a model, and how it may be combined with
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a goodness-of-fit index value. Information theoretic indices of fit such as the
AIC, the BIC and Bozdogan’s ICOMP, used for comparing models, are also
discussed. I also discuss my reservation that these indices are not appropriate
for a hypothesis-testing approach to model evaluation. Furthermore, I derive
results that show that information theoretic indices in samples beyond some
sample size will tend to prefer a less constrained model to a model that has a
small discrepancy but is more constrained and in theory would prefer a satu-
rated model. Information theoretic indices also seem not to take into account
how free parameters make possible the existence of equivalent models and
so they really do not consider parsimony or the importance of degrees of
freedom at extremely large sample sizes to reducing the possibility of equiva-
lent models. I show similar limitations for cross-validation indices involving
two random samples from the same population. I then turn to discussing
the Lagrange multiplier, Wald, and likelihood ratio tests and their derivation.
(The derivation is mathematically challenging in parts.) I consider a related
index used in LISREL, Sorbom’s modification index of expected parameter
change. Given an understanding of the Lagrange multiplier test in EQS and
the modification index in LISREL, I consider the problems with post hoc
modifications of the model under guidance of these tests and indices. Then I
turn to developments reviewed by Ke-Hai Yuan (2005) concerning the prob-
lems of violations of distributional assumptions in using chi-square tests and
indices of approximation and how they may be remedied. A final issue is crit-
icism given of indices of approximation by some researchers. I seek a middle
ground between them and the proponents of the indices of approximation;
both kinds of indices can and should be used. Much of the heat in these dis-
cussions involves the proponents’ use of different metaphors for assessing fit:
distance in parameter space versus improbability as degree of difference and
discounting their antagonists’ metaphor.

Chapter 16 is the final chapter and concerns the polychoric and polyserial
correlation coefficients and their derivation. Polychoric correlation concerns
correlation between two variables that are polytomous, with multiple cate-
gories that nevertheless are regarded as ordered in some way. The assumption
made is that there is an underlying bivariate normal distribution for these
variables but the continuum of each variable has been divided into a finite
number (usually small) of intervals and category scores assigned. The aim is
to first estimate the interval boundaries, and then infer what the correlation
coefficient would be for the underlying bivariate normal distribution under
the constraint that the variances of the underlying continuous variables are
fixed to unity. The polyserial correlation concerns the case when a continuous
variable is paired with a polytomous variable. Again, the underlying corre-
lation between corresponding continuous variables is sought. Since many
variables in the social and behavioral sciences are polytomous, the use of
these indices is now recommended for those cases.
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This should be only the first book on linear causal modeling with struc-
tural equations for the advanced student in quantitative methods, as well
as the researcher who seeks deeper understanding of these methods. There
are now numerous books on special applications of structural equation
modeling.
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1
Introduction

The Rise of Structural Equation Modeling

During the first 60 years of the twentieth century, factor analysis was the
dominant method in the behavioral and social sciences for representing causal
relations between latent variables and observed variables. But in this regard
the method is overly restrictive for representing the great variety of possible
ways in which variables may be related to one another causally by linear
functions and thereby account for the correlations among them.

Given any two variables A and B that have a nonzero correlation between
them, A may be the cause of B, B may be the cause of A, or A and B may have
other variables that are common causes of both. And even if they have a zero
correlation, this may be because causes between them cancel. So, between
pairs of variables, causality is indeterminate from the nature of their correla-
tion. Nevertheless, common factor analysis arbitrarily assumes that if pairs
of variables are correlated, it is due to the presence of latent common causes
of them. Consequently, exploratory factor analysis goes off in search of these
common causes. Sometimes, maybe even often, this is misleading.

Meanwhile, in 1921, a geneticist by the name of Sewell Wright (1921) devel-
oped a different approach to using correlations in connection with the idea
of linear causal relations. Whereas up to that time correlations had been used
in an exploratory fashion to discover which variables were related to other
variables, Wright sought to infer what the correlations or pattern of correla-
tions should be among a set of variables if they had certain specified linear
causal relations between them. He then compared the inferred correlations

1
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among these variables with those observed among them as a way of testing
his inference. His technique came implemented with path diagrams consisting
of arrows between variables representing causal paths, and the method was
dubbed “path analysis.” As for statistical analysis, the method depended
heavily on partial correlations.

In the 1930s, the economist John Maynard Keynes (1936) developed models
of the economy using systems of simultaneous linear equations relating one
set of variables to another set of variables. Some of the variables were inputs
into the system and were not caused by any other variable in the system.
These were exogenous variables. Other variables in the system were depen-
dent on even other variables in the system. These were endogenous variables.
Econometricians saw their problem as a logical extension of regression anal-
ysis, and used matrix algebra to represent the equations. They then sought
various methods for estimating the parameters of the structural equations.
But this led them to become aware of the identification problem. When
does the system of equations have unique solutions for the parameters of
the system? Sometimes it does not. Can we specify conditions in which the
parameters are identified? So, whereas some worked on the identification
problem and others worked on estimation methods such as two-stage and
three-stage least squares, the method came to the attention of a few sociolo-
gists, who saw the connections between simultaneous linear equations and
Wright’s path analysis. They began formulating sociological theories using
path analysis and simultaneous linear equations.

In the meantime, after Bock and Bargmann (1966) proposed a method for
testing models of linear structural equations between variables with covari-
ation among variables, known as “analysis of covariance structures,” Karl
Jöreskog (1969) proposed the general confirmatory factor analysis model and
described the mathematical solution for the maximum-likelihood estimates
of parameters of the model. He additionally helped develop a computer
program to perform these estimates using the algorithm of Fletcher and
Powell (1963), which he so successfully used earlier in developing an efficient
program for performing maximum-likelihood exploratory factor analysis.
Then Jöreskog (1970) saw the similarities of Bock and Bargman’s (1966) model
to the confirmatory factor analysis model and provided a full-information
maximum-likelihood estimation algorithm for estimating the parameters of
the analysis of covariance structures model. Shortly afterward Jöreskog col-
laborated with the well-known econometrician Arthur S. Goldberger and
developed his own general model (Jöreskog, 1973) of simultaneous linear
equations with latent variables (a new twist). Furthermore, he provided it
with an algorithm and subsequent computer program for obtaining estimates
of the parameters and chi-square tests for goodness of fit. The program was
named LISREL for “linear structural relations.” With this program he united
the latent variable idea of common factor analysis with simultaneous struc-
tural equations. In the process, he initiated a methodological revolution in the
behavioral sciences.
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Whereas correlational methodology had been principally exploratory
and hypothesis-developing, the LISREL program led researchers to think in
terms of causal hypotheses and testing these hypotheses. Numerous arti-
cles began to appear using the methodology and program. A new journal,
Structural Equation Modeling, devoted to the method was established in 1994.

Others have followed Jöreskog with programs of their own. Jöreskog’s
structural equation model was formulated in matrix algebra, and this carried
over into the LISREL program, with the user being required to input his/her
model in the form of matrices. The model also required the user to segre-
gate variables according to whether they were dependent on exogenous or
endogenous latent variables. It became difficult to formulate models in which
a variable could depend on both exogenous and endogenous latent variables.
Still tricks were developed, cumbersome though they were to implement, by
which it could be done.

Bentler and Weeks (1982) proposed a different but equivalent way of
modeling the variables in which it was not necessary to segregate the observed
variables according to whether they were dependent on exogenous or endo-
genous latent variables. Any observed variable could be dependent on both
exogenous and endogenous variables. In fact, the latents were not explic-
itly distinguished according to whether they were exogenous or endogenous.
Instead, they were distinguished by being functions or not of other variables,
that is, dependent or independent variables.

One then specified the model by specifying an equation for each dependent
variable in which one indicated those variables that were direct causes of
it. Both latent variables and observed variables could have an equation that
indicated it was dependent on other latent variables and even on an observed
variable. So whether variables were dependent variables or not depended on
whether there was an equation indicating it was a function of other variables
in the system. If there was no equation listing a variable otherwise found
among the equations as a function of other variables, it was an independent
variable.

Bentler then developed a program, EQS (Bentler, 1989, 1992, 1993, 1995),
to implement his approach of specifying a model by specifying linear equa-
tions for each dependent variable in the system. Eventually, his programmers
made this easy to do with a spreadsheet-like window in which one simply
clicked on variables that the variable was dependent on. Subsequently, he and
his programmers worked out a way in which one could specify the model
by simply drawing the model as a path diagram in a program window in
the computer monitor. Programmers of other commercial structural equation
modeling programs adapted some of his ideas to their programs. So, today,
besides LISREL and EQS there are the Amos program (Arbuckle and Wothke,
1999), Steiger’s EZPath and SEPath programs, McDonald’s COSAN, Neale’s
Mx, and Fox’s SEM in R.

At the end of the twentieth century, computer scientists and philoso-
phers of science made contributions to the theory of linear causal modeling.
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Philosophers of science, Glymour et al. (1987), developed algorithms to
implement Spearman’s tetrad-differences criteria in looking for causal con-
nections between variables. Pearl (2000) and Spirtes, Glymour, and Scheines
(1993, 2000) developed causal theory in the context of graph theory, introduc-
ing new concepts into the field such as directed acyclic graphs, Markov condition,
collider, minimality condition, faithfulness, and d-separation, among others. So,
the field of structural equation modeling for linear causal relations is both
widening and deepening conceptually, computationally, and statistically.

As of this writing interest has also shifted to specific applications of
structural equation modeling, such as longitudinal and multilevel modeling.

In many applications of structural equation modeling with latent vari-
ables, a common factor model is embedded within the model, and we will
begin studying examples of the structural equation model by considering the
confirmatory factor analysis model as a special case.

An Example of Structural Equation Modeling

The following example of a structural equation model is taken from a study
(Carlson and Mulaik, 1993) of how person descriptions may drive personal-
ity trait judgments and these in turn drive the ratings judges make of these
persons. The subjects were 280 college students enrolled in undergraduate
psychology courses at a major university in the southern United States. There
were 177 male subjects and 103 female subjects. Each subject was presented
with a written description of a person, and his or her task was then to rate
the described person on 15 trait-rating scales. Unbeknownst to the raters,
the trait-rating scales were deliberately chosen to represent three personal-
ity trait factors found in other personality trait-rating studies: friendliness,
capability, and outgoingness. Each rating scale was a 7-point Likert-type scale
anchored by opposite trait word pairs. The scales were similar to the seman-
tic differential scales used by Osgood, Suci, and Tannenbaum (1957). The
scales were assumed to be equal-interval scales with a true zero point mid-
way between the anchors of the scales (Osgood et al., 1957). The order of the
trait-word anchors was varied to eliminate any bias in favor of one end of
the scale.

Previous studies of other subjects’ ratings with these scales had led
to a theory of how they were related to the friendliness, capability,
and outgoingness factors. There were four indicator scales for friendliness
(friendly–unfriendly, sympathetic–unsympathetic, kind–unkind, and affec-
tionate–unaffectionate), four indicator scales were indicators for capabil-
ity (intelligent–unintelligent, capable–incapable, competent–incompetent,
and smart–stupid), and five indicator scales were indicators for out-
goingness (sociable–unsociable, talkative–untalkative, outgoing–withdrawn,
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gregarious–ungregarious, and extraverted–introverted). Two other scales
were hypothesized to be dependent on both friendliness and capable
(helpful–unhelpful and cooperative–uncooperative).

Personality Descriptions as Variable Stimuli

Each rater was given a sheet on which were three paragraphs describing a
male person in a work situation. Each paragraph represented the degree to
which the described person acted in ways suggestive of one of the judgment
dimensions. For example, the first paragraph described typical behaviors of
the individual relating to his friendliness, kindness, sympathy, and affection-
ateness. The words chosen to describe these behaviors were selected from
a set of words similar in meaning to the rating-scale words according to
Roget’s Pocket Thesaurus (Mawson, 1963). The second and third paragraphs
were similarly constructed with respect to the indicators of capability and
outgoingness.

To allow for a controlled variation of the stimulus paragraphs presented to
the subjects, four versions of each paragraph were written before constructing
the individual’s description. The first version of the first paragraph described
a person who was the friendliest, kindest, most sympathetic, and most affec-
tionate, and this paragraph was assigned the value of 4. These behaviors
deteriorated in degree from version to version, until the fourth version
described a person who was hostile, cruel, unsympathetic, and unaffectionate.
The fourth version was assigned the value of 1. The two intermediate versions
were assigned values of 3 and 2, respectively. In this way, a stimulus variable
was created and its values were assigned for the stimulus variable of friendli-
ness. Four versions were similarly created for each of the other two judgment
dimensions, thus creating stimulus variables for capability and outgoingness.

With three sets of four paragraphs from which to choose a paragraph to
enter into a person’s description, there was a possibility of 64 different per-
sonality descriptions. With only 280 subjects, there was concern that selecting
the paragraphs totally at random would not yield a sufficiently full range of
each stimulus dimension. So, 38 versions of the stimulus person were con-
structed from the pools of stimulus paragraphs. The four versions of each
paragraph were approximately equally represented across the 38 versions. In
approximately one-half of the versions, the levels were similar for the three
paragraphs. In the other half, dissimilar levels of the three paragraphs were
combined, yielding an inconsistent behavior pattern.

Each rater then received a randomly selected version of a stimulus per-
son from the appropriate set of 38 stimulus-person versions. Within the set
of 38 stimulus-person versions, each version was given one of the two digit
numbers between 01 and 38. Then each rater was given one of the 38 descrip-
tions chosen at random according to a random number generator designed
to uniformly generate numbers at random between 01 and 38.
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Then the rater read the person description and proceeded to make his or
her ratings of the person on the 15 trait-rating scales. Each rater was then
assigned a vector of scores representing the values of the three stimulus person
variables of the person rated along with the 15 rated values of the 15 rating
scale variables produced by the rater. So, each rater had 18 scores on 18 vari-
ables representing the values of the stimulus person rated and the ratings on
the 15 rating scales. From these scores on each rater, a covariance matrix for
the 18 variables was obtained, and this was the basis for estimating parame-
ters and testing the fit of a reproduced covariance matrix based on the model
to the data.

A path diagram summarizing the model of causal relations between the
stimulus variables, the mediating judgment variables, and the resulting rating
variables is shown in Figure 1.1. Observed variables are indicated by squares.
Latent variables are indicated by circles. Single-headed arrows indicate causal
pathways with causes proceeding in the direction of the arrows. Each arrow
has corresponding to it a structural parameter that represents how much a unit
change in the causal variable produces a change in the effect variable. Arrows
in bold were given fixed values for their corresponding structural parameters,
meaning they were prespecified by hypothesis and not changed during the
iterations for estimating the remaining “free” parameters. The free parame-
ters were estimated using maximum-likelihood estimation assuming that the
dependent variables had approximately multivariate normal distributions.

Parameter estimates were determined conditional on any fixed or con-
strained parameter values in the model in such a way as to minimize any
discrepancy between the reproduced variance–covariance matrix for the
18 variables and the observed sample covariance matrix for the same 18
variables.

Variances of independent variables are indicated by short two-headed
arrow loops pointing to the same variable. Covariances between different
independent variables are shown by curves with two-headed arrows con-
necting the variables in question. The covariance values are shown on the
curves.

On dependent variables there will be a short arrow pointing to it represent-
ing a “disturbance variable,” which is like a unique factor of factor analysis.
The structural parameter of a disturbance variable is fixed at unity, but the
variance of the disturbance is allowed to be free to be estimated.

What may be initially unusual to those already familiar with structural
equation modeling are the three latent variables on the left with arrows from
them pointing to the three squares of the observed variables to their left. Note
that the arrows are bold and the loadings are also bold 1.00’s. None of the
three observed variables on the left has a disturbance arrow, or, if one wishes,
each has a zero disturbance variance. This means that the three observed
variables on the left and the three latent variables to their immediate right are
the same variable. This was just a device for tricking LISREL into allowing an
observed exogenous cause to be the cause of a latent endogenous variable.
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FIGURE 1.1 Path diagram of the hypothesized causal connections between the variables of
the personality rating study of Carlson and Mulaik (1993). (Adapted from Carlson, M. and
Mulaik, S. A. (1993). Multivariate Behavioral Research, 28, 111–159.)

Because of LISREL’s origins in factor analysis, LISREL allows latent variables
to be causes of other latent variables, but observed variables cannot be causes
of latent variables unless you trick the program by creating the dummy latent
variables standing for the observed stimulus variables on the left.

After obtaining estimates of the free parameters of the model, a reproduced
covariance matrix based on this model was obtained and compared with
the original sample covariance matrix. A chi-square goodness-of-fit index
with 126 degrees of freedom had a value of 322.36, which was significant,
indicating statistical lack of fit. An index of the degree of approximation of
the reproduced covariance matrix to the observed sample covariance matrix
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was the comparative fit index (CFI) of Bentler (1990), and this had a value of
0.964. Researchers deemed that a model with a CFI greater than or equal to
0.95 was a “good fit.” So, while there was a significant statistical lack of fit,
meaning that somewhere in the model there was something wrong with it,
the degree of approximation was high enough to consider tentatively that the
model as specified was worth pursuing further in future research. Although
there are diagnostics that give clues as to the possible sources of lack of fit, any
hypotheses as to what in the world corresponds to these sources would have
to be tested by further studies. One obvious source of potential minor lack
of fit is that the polytomous variables only have approximate multivariate
normal distributions and the chi-square statistic assumes that the variables
have multivariate normal distributions.

Moreover, there was good reason to believe that the model showed that the
person description variables actually drove the ratings via three latent judg-
ment variables serving as mediators. In other words, stimulus variables did
not directly influence the ratings; rather the effects of the stimulus variables on
the ratings were mediated through the judgment variables. This conclusion is
especially strengthened because the stimulus variables were manipulated by
the experimenters and preceded in time the judgments and then the ratings.

Furthermore, the friendly stimulus variable principally influenced (0.614)
the friendly judgment variable, which in turn mostly influenced its four indi-
cators of friendly, sympathetic, kind, and affectionate. However, as expected
the friendly judgment variable also influenced the helpful and cooperative
ratings.

The friendly stimulus variable did not influence the capability judgment
variable, as expected, but did influence slightly (0.144) the outgoing judg-
ment variable, which otherwise was principally influenced by the outgoing
stimulus variable. Furthermore, the friendly judgment variable had a mod-
est (0.203) influence on one of the outgoing rating scales, sociable–unsociable,
which otherwise was influenced principally (0.896) by the outgoing judgment
variable.

On the other hand, the influence of the ability stimulus variable (0.632) was
confined to the capability judgment variable, which in turn influenced only
its indicators, the four ability rating scales, and, as expected, to a modest
degree, the helpful and cooperative ratings. The outgoing stimulus vari-
able principally influenced (0.579) the outgoing judgment variable, and to
a modest degree (0.167) the friendly judgment variable, but to no degree
the capable judgment variable. In turn the outgoing judgment variable had
an unusual negative relationship (−0.179) to the kind–unkind rating scale,
which suggests that kind persons are friendly and loving but not bubbling
overextroverts. Otherwise, the outgoing judgment variable only influenced
its own indicator rating scales.

It is important to understand that what is tested in a structural equation
model are constraints placed upon the parameters. The estimated parameters
are not tested by the chi-square goodness-of-fit statistic. It may be possible to
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formulate numerous different but equivalent models that reproduce the data
in the same way, but all have the same constraints while varying directions
of arrows in paths with free parameters. Furthermore, in early studies of
a research program, you may not have values for structural parameters to
indicate how causes produce their effects. You may simply be able to indicate
that some variables are not causes of other variables by omitting arrows/paths
from the former to the latter in the path diagram. But by specifying effectively
that a path coefficient is zero, meaning there is no linear causal effect of a
variable on another, you introduce a constraint in the model. So, it is important
early on to recognize that what you may not see in a path diagram, that is, an
omitted path, is what is being tested by the model. In later studies, after you
have obtained values for structural parameters by estimating them, you may
then use these values as fixed, constrained parameters of the model in later
studies with new data, and then you will be testing these values in the new
contexts.

One of the most important features of structural equation modeling is that
it allows us to formulate complex models that are more realistic, involving
numerous variables. Unlike factor analysis that always assumes that all vari-
ables are measured simultaneously, structural equation modeling may also
model relations among variables that are not measured simultaneously while
being ordered in time or in space. This occurs in studies of growth and devel-
opment, or even the current example, where stimulus variables preceded the
rating variables in time. And structural equation models can also represent all
forms of linear causation; hence causes are not always latent common causes
but may be direct effects of one variable on another. Next, structural equa-
tion modeling encourages the researcher to make explicit his/her ideas about
what causes what and to what degree in the worldly phenomenon studied
and to put these ideas to the test.

If there is a limitation, and there are several for structural equation model-
ing, it will be that researchers will tend not to attend to experimental controls
when conducting their studies, which may be done in natural settings rather
than in the laboratory. Much thought must be paid to controlling for possible
extraneous causes influencing the outcomes of a study. Finally, another limi-
tation is that structural equation modeling involves linear functional relations
between variables. The physical world, as we know it, behaves according to
nonlinear relations in many important cases. But science often models non-
linear monotonic relations with linear relations as “first approximations,”
and some causal relations are indeed linear relations. So, there is a place, an
important place at this time, in the behavioral and social sciences for structural
equation modeling.
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2
Mathematical Foundations for Structural
Equation Modeling

Introduction

Ideally, one begins a study of structural equations modeling with a
mathematical background of up to a year of calculus. This is not to say that
structural equations modeling requires an extensive knowledge of calculus,
because calculus is used in only a few instances, such as in finding equations
for estimates of parameters using a quasi-Newton algorithm or in finding for-
mulas for polychoric correlation. These are very advanced topics, and since
this text may also be used in courses for quantitative psychologists, they must
be included. Those topics may be skipped over by the usual reader. But having
calculus in one’s background provides sufficient exposure to working with
mathematical concepts so that one will have overcome reacting to a math-
ematical subject such as structural equation modeling as though it were an
esoteric subject comprehensible only to select initiates to its mysteries. One
will have learned those subjects such as trigonometry, college algebra, matrix
algebra, and analytic geometry upon which structural equation modeling
draws heavily.

In practice, however, the author recognizes that many students who now
undertake a study of structural equation modeling come from the behavioral,
social, and biological sciences, where mathematics is not greatly stressed.
Consequently, in this chapter the author will attempt to provide a brief intro-
duction to those mathematical topics from modern algebra, trigonometry,

11
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analytic geometry, and calculus, that will be necessary in the study of struc-
tural equation modeling. The author will also provide a background in
operations with vectors and matrix algebra, which some students with just
first-year calculus will find new to them. In this regard, most students will
find themselves on even ground if they have a knowledge of college-level
algebra, because operations with vectors and matrix algebra are extensions
of algebra using a new notation.

Scalar Algebra

By the term scalar algebra we refer to the ordinary algebra applicable to real
numbers, which the reader should already be familiar with. The use of this
term distinguishes ordinary algebra from operations with vectors and matrix
algebra, which we will take up shortly.

Fundamental laws of scalar algebra. The following laws govern the basic oper-
ations of scalar algebra such as addition, subtraction, multiplication, and
division:

(i) Closure law for addition: a + b is a unique real number.
(ii) Commutative law for addition: a + b = b + a.

(iii) Associative law for addition: (a + b) + c = a + (b + c).
(iv) Closure law for multiplication: ab is a unique real number.
(v) Commutative law for multiplication: ab = ba.

(vi) Associative law for multiplication: a(bc) = (ab)c.
(vii) Identity law for addition: There exists a number 0 such that a + 0 =

0 + a = a.
(viii) Inverse law for addition: a + (−a) = (−a) + a = 0.

(ix) Identity law for multiplication: There exists a number 1 such that
a1 = 1a = a.

(x) Inverse law for multiplication: a(1/a) = (1/a)a = 1.
(xi) Distributive law: a(b + c) = ab + ac.

The above laws are sufficient for dealing with the real-number system.
However, the special properties of zero should be pointed out:

0
a

= 0.

a/0 is undefined.
0/0 is indeterminate.
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Rules of signs. The rule of signs for multiplication is given as

a(−b) = −(ab) and (−a)(−b) = +(ab).

The rule of signs for division is given as

−a
b

= a
−b

and
−a
−b

= a
b

.

The rule of signs for removing parentheses is given as

−(a − b) = −a + b and − (a + b) = −a − b.

Rules for exponents. If n is a positive integer, then xn will stand for

xx · · · x with n terms.

If xn = a, then a is known as the nth root of a. The following rules govern
the use of exponents:

(i) xaxb = xa+b.
(ii) (xa)b = xab.

(iii) (xy)a = xaya.

(iv)
(

x
y

)a

= xa

ya .

(v)
xa

xb
= xa−b.

Solving simple equations. Let x stand for an unknown quantity, and let a, b, c,
and d stand for known quantities. Then, given the following equation,

ax + b = cx + d,

the unknown quantity x can be found by applying operations to both sides
of the equation until only an x remains on one side of the equation and the
known quantities on the otherside. That is,

ax − cx + b = d (subtract cx from both sides),

ax − cx = d − b (subtract b from both sides),

(a − c)x = d − b (by reversing the distributive law),

x = d − b
a − c

(by dividing both sides by a − c).
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Vectors

It may be of some help to those who have not had much exposure to the
concepts of modern algebra to learn that one of the essential aims of mod-
ern algebra is to classify mathematical systems—of which scalar algebra is
an example—according to the abstract rules that govern these systems. To
illustrate, a very simple mathematical system is a group. A group is a set of
elements and a single operation for combining them (which in some cases
is addition and in some others multiplication), behaving according to the
following properties:

(i) If a and b are elements of the group, then a + b and b + a are also
elements of the group, although not necessarily the same element
(closure).

(ii) If a, b, and c are elements of the group, then (a + b) + c = a + (b + c)
(associative law).

(iii) There is an element 0 in the group such that for every a in the group
a + 0 = 0 + a = a (identity law).

(iv) For each a in the group there is an element (−a) in the group such
that a + (−a) = (−a) + a = 0 (inverse law).

One should realize that the nature of the elements in the group has no
bearing upon the fact that the elements constitute a group. These elements
may be integers, real numbers, vectors, matrices, or positions of an equilateral
triangle; it makes no difference what they are as long as under the operator
(+) they behave according to the properties of a group. Obviously, a group
is a far simpler system than the system that scalar algebra exemplifies. Only
four laws govern the group, whereas 11 laws are needed to govern the system
exemplified by scalar algebra, which, by the way, is known to mathematicians
as a field.

Among the various abstract mathematical systems, the system known as a
vector space is the most important for factor analysis. (Note: One should not let
the term space unduly influence one’s concept of a vector space.Avector space
need have no geometric connotations but may be treated entirely as an abstract
system. Geometric representations of vectors are only particular examples of
a vector space.) A vector space consists of two sets of mathematical objects—
a set V of vectors and a set R of elements of a field (such as the scalars of
scalar algebra)—together with two operations for combining them. The first
operation is known as addition of vectors and has the following properties
such that for every u, v, w in the set V of vectors:

(i) u + v is also a uniquely defined vector in V.
(ii) u + (v + w) = (u + v) + w.
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(iii) u + v = (v + w).
(iv) There exists a vector 0 in V such that u + 0 = 0 + u = u.
(v) For each vector in V there exists a unique vector −u such that

u + (−u) = (−u) + u = 0.

(One may observe that under addition of vectors the set V of vectors is a
group.)

The second operation governs the combination of the elements of the field
R of scalars with the elements of the set V of vectors and is known as scalar
multiplication. Scalar multiplication has the following properties such that
for all elements a, b from the field R of scalars and all vectors u, v from the set
V of vectors:

(vi) au is a vector in V.
(vii) a(u + v) = au + av.

(viii) (a + b)u = au + bu.
(ix) a(bu) = ab(u).
(x) 1u = u; 0u = 0.

In introducing the idea of a vector space as an abstract mathematical system,
we have so far deliberately avoided considering what the objects known as
vectors might be. Our purpose in doing so has been to have the reader realize
at the outset that a vector space is an abstract system that may be found in con-
nection with various kinds of mathematical objects. For example, the vectors
of a vector space may be identified with the elements of any field such as the
set of real numbers. In such a case the addition of vectors corresponds to the
addition of elements in the field. In another example, the vectors of a vector
space may be identified with n-tuples, which are ordered sets of real num-
bers. (In the upcoming discussion we will develop the properties of vectors
more fully in connection with vectors represented by n-tuples.) Vectors may
also be identified with the unidimensional random variables of mathemati-
cal statistics. This fact has important implications for multivariate statistics,
and factor analysis and structural equation modeling in particular, because
it means one may use the vector concept to unify the treatment of variables
in both finite and infinite populations. The reader should take note at this
point that the key idea in this book is that, in any linear analysis of variables
of the behavioral, social, or biological sciences, the variables may be treated
as if they are vectors in a linear vector space. The concrete representation of
these variables may differ in various contexts (i.e., may be n-tuples or random
variables), but they may always be considered vectors.

N-tuples as Vectors

In a vector space of n-tuples, by a vector we shall mean a point in
n-dimensional space designated by an ordered set of numbers known as an
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(1, 3, 2)

1 2 3 4

FIGURE 2.1 Graphical representation of vector (1, 3, 2) in three-dimensional space.

n-tuple, which are the coordinates of the point. For example, (1, 3, 2) is a
3-tuple that represents a vector in three-dimensional space that is 1 unit from
the origin (of the coordinate system) in the direction along the x axis, 3 units
from the origin in the direction of the y axis, and 2 units from the origin
in the direction of the z axis. Note that in a set of coordinates the numbers
appearing in special positions indicate the distance one must go along each
of the reference axes to arrive at the point. In graphically portraying a vec-
tor, we shall use the convention of drawing an arrow from the origin of the
coordinate system to the point. For example, the vector (1, 3, 2) is illustrated
in Figure 2.1.

In a vector space of n-tuples, we will be concerned with certain operations to
be applied to the n-tuples that define the vectors. These operations will define
addition, subtraction, and multiplication in the vector space of n-tuples. As
a notational shorthand to allow us to forgo writing the coordinate numbers
in full when we wish to express the equations in vector notation, we will
designate individual vectors by lowercase, bold letters. For example, let a
stand for the vector (1, 3, 2).

Equality of Vectors

Two vectors are equal if they have the same coordinates.
For example, if a = (1, 2, 4) and b = (1, 2, 4), then a = b. A necessary

condition that two vectors are equal is that they have the same number of
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coordinates. For example, if

a = (1, 2, 3, 4) and b = (1, 2, 3),

then a �= b. In fact, when two vectors have different numbers of coordi-
nates, they refer to a different order of n-tuples and cannot be compared
or added.

Scalars and Vectors

Vectors compose a system complete in themselves. But they are of a differ-
ent order from the algebra we normally deal with when using real numbers.
Sometimes we introduce real numbers into the system of vectors. When we
do this, we call the real numbers scalars. In our notational scheme, we distin-
guish scalars from vectors by writing the scalars in italics and the vectors in
lowercase bold characters. Thus a �= a.

In vector notation, we will most often consider vectors in the abstract. Then,
rather than using actual numbers to stand for the coordinates of the vectors,
we will use scalar quantities expressed algebraically. For example, let a general
vector a in five-dimensional space be written as

a = (a1, a2, a3, a4, a5).

In this example, we use the character a to stand for the coordinates by the use
of different subscripts. Whenever possible, algebraic expressions for the coor-
dinates of vectors should take the same character as the character standing
for the vector itself. This will not always be done however.

Multiplying a Vector by a Scalar

Let a be a vector such that

a = (a1, a2,, . . . , an)

and λ a scalar; then the operation

λa = c

produces another vector c such that

c = (λa1, λa2,, . . . , λan).

In other words, multiplying a vector by a scalar produces another vector that
has for components the components of the first vector each multiplied by the
scalar. To cite a numerical example, let a = (1, 3, 4, 5); then

2a = (2 × 1, 2 × 3, 2 × 4, 2 × 5) = (2, 6, 8, 10) = c.
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(3, 2)

(4, 5)

(1, 3)

5

4
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2

1

1 2 3 4

FIGURE 2.2 Graphical representation of sum of vectors (1, 3) and (3, 2) by vector (4, 3) in
two-dimensional space, illustrating the parallelogram law for addition of vectors.

Addition of Vectors

If a = (1, 3, 2) and b = (2, 1, 5), then their sum, denoted as a + b, is another
vector c such that

c = a + b = ((1 + 2), (3 + 1), (2 + 5)) = (3, 4, 7).

When we add two vectors together, we add their corresponding coordinates
together to obtain a new vector.

The addition of vectors is found in physics in connection with the analysis of
forces acting upon a body where vector addition leads to the resultant by the
well-known parallelogram law. This law states that if two vectors are added
together, then lines drawn from the points of these vectors to the point of the
vector produced by the addition will make a parallelogram with the original
vectors. In Figure 2.2 we show the result of adding two vectors (1, 3) and
(3, 2) together.

If more than two vectors are added together, the result is still another
vector. In some factor-analytic procedures this vector is known as a cen-
troid, because it tends to be at the center of the group of vectors added
together.

Scalar Product of Vectors

In some vector spaces, in addition to the two operations of addition of vectors
and scalar multiplication, a third operation known as the scalar product of
two vectors (written as xy for each pair of vectors x and y) is defined, which
associates a scalar with each pair of vectors. This operation has the following
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abstract properties, given that x, y, and z are arbitrary vectors and a is an
arbitrary scalar:

(xi) xy = yx = a scalar.
(xii) x(y + z) = xy + xz.

(xiii) x(ay) = a(xy).
(xiv) xx ≥ 0; xx = 0 implies x = 0.

When the scalar product is defined in a vector space, the vector space is
known as a unitary vector space. In a unitary vector space it is possible to
establish the length of a vector as well as the cosine of the angle between
pairs of vectors. Factor analysis as well as other multivariate linear analyses
is concerned exclusively with unitary vector spaces.

We will now consider the definition of the scalar product for a vector space
of n-tuples. Let a be the vector (a1, a2, . . . , an) and b the vector (b1, b2, . . . , bn);
then the vector product of a and b, written ab, is the sum of the products of
the corresponding components of the vectors, that is,

ab = a1b1 + a2b2 + · · · + anbn. (2.1)

To use a simple numerical example, let a = (1, 2, 5) and b = (3, 3, 4); then
ab = 29.

As a further note on notation, consider that an expression such as
Equation 2.1, containing a series of terms to be added together that differ
only in their subscripts, can be shortened by using the summational notation.
For example, Equation 2.1 can be rewritten as

ab =
n∑

i=1

aibi. (2.2)

As an explanation of this notation, the expression aibi on the right of the sigma
sign stands for a general term in the series of terms, as in Equation 2.1, to be
added. The subscript i in the term aibi stands for a general subscript. The
expression

∑n
i=1 indicates that one must add together a series of subscripted

terms. The expression i = 1 underneath the sigma sign indicates which sub-
script is pertinent to the summation governed by this summation sign—in the
present example the subscript i is pertinent—as well as the first value in the
series of terms that the subscript will take. The expression n above the sigma
sign indicates the highest value that the subscript will take. Thus we are to add
together all terms in the series, with the subscript i ranging in value from 1 to n.

Distance between Vectors

In high school geometry we learn from the Pythagorean theorem that the
square on the hypotenuse of a right triangle is equal to the sum of the squares
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on the other two sides. This theorem forms the basis for finding the distance
between two vector points. We shall define the distance between two vectors
a and b, written as

|a − b| =
[ n∑

i=1

(ai − bi)
2

]1/2

, (2.3)

where a and b are both vectors with n components. This means that we find
the sum of squared differences between the corresponding components of
the two vectors and then take the square root of that. In Figure 2.3 we have
diagrammed the geometric equivalent of this formula.

|a − b| =
√

(a1 − b1)2 + (a2 − b2)2

Length of a Vector

Using Equation (2.3), we can find an equation for the length of a vector, that
is, the distance of its point from the origin of the coordinate system. If we
define the zero vector as

0 = (0, 0, . . . , 0),

then

|a| = ‖a − 0‖ =
⎡
⎣ n∑

i−1

(ai − 0)2

⎤
⎦

1/2

=
[ n∑

i=1

a2
i

]1/2

. (2.4)

The length of a vector a, denoted |a|, is the square root of the sum of the squares
of its components. (Note: Do not confuse |a| with |A|, which is a determinant.)

b2

a2

b1 a1

a

b
|a – b| = √(a1 – b1)2 + (a2 – b2)2

FIGURE 2.3 Graphical illustration of application of Pythagorean theorem for determination of
the distance between two-dimensional vectors a and b.
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Another Definition for Scalar Multiplication

Another way of expressing scalar multiplication of vectors is given by the
formula

ab = |a| |b| cos θ, (2.5)

where θ is the angle between the vectors. In other words, the scalar product
of one vector times another vector is equivalent to the product of the lengths
of the two vectors times the cosine of the angle between them.

Cosine of the Angle between Vectors

Since we have raised the concept of the cosine of the angle between vectors, we
should consider the meaning of the cosine function as well as other important
trigonometric functions.

In Figure 2.4 there is a right triangle where θ is the value of the angle between
the base of the triangle and the hypotenuse. If we designate the length of the
side opposite the angle θ as a, the length of the base as b, and the length of the
hypotenuse as c, the ratios of these sides to one another give the following
trigonometric functions:

tan θ = a
b

,

sin θ = a
c

,

cos θ = b
c

.

c

b

a

θ

FIGURE 2.4 A right triangle with angle θ between base and hypotenuse.

© 2009 by Taylor and Francis Group, LLC



“K10039_C002.tex” — page 22[#12] 15/4/2009 16:15

22 Linear Causal Modeling with Structural Equations

c

b
a

c

a c

b

(c)

(b)

(a)

a

b
qq q

FIGURE 2.5 Illustrations of different right triangles.

Reflection on the matter will show that these ratios are completely determined
by the value of the angle θ in the right triangle and are independent of the
size of the triangle.

Of particular interest to us here is what happens to the value of cos θ when θ

is close to 0◦ and when θ is close to 90◦. In Figure 2.5a, we illustrate a triangle
in which the angle θ is close to 0◦. Hence the value of cos θ as the ratio of b : c
is close to 1.00.

In Figure 2.5b, we illustrate a triangle in which the angle θ is close to 90◦. In
this case the length b is quite small relative to the length of c. Hence the value
of cos θ is close to 0.

In Figure 2.5c, we illustrate a triangle in which the angle is greater than
90◦. In this case b is given a negative value, because the length of the base
is measured from the origin of the angle in a direction opposite from the
direction in which we normally measure the length of the base. By convention,
the length of the hypotenuse is always positive. Thus the cosine of an angle
between 90◦ and 180◦ is a negative value. Moreover, as the angle θ approaches
180◦, cos θ approaches −1.

The cosine function thus serves as a useful index of relationship between
vectors. When two vectors have a very small angle between them, the cosine
of the angle between them is nearly 1. When the two vectors are 90◦ apart,
nothing projects from one vector onto the other, and the cosine of the angle
between them is 0. When the angle between them is between 90◦ and 180◦,
the cosine of the angle is negative, indicating that one vector points in the
opposite direction, to some extent from the other.

We can use Equation 2.5 to find the cosine of the angle between two vectors
in terms of their components. If we divide both sides of Equation 2.5 by the
expression |a||b|, we have

cos θ = ab
|a||b| . (2.6)
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But if we use Equations 2.2 and 2.4, Equation 2.6 can be rewritten as

cos θ =
∑n

i=1 aibi[(∑n
i=1 a2

i

) (∑n
i=1 b2

i

)]1/2 . (2.7)

Equation (2.7) has a direct bearing on the formula for the correlation coeffi-
cient. To illustrate, let us construct an N-component vector x such that the
components of this vector are the respective deviation scores of N individ-
uals on a variable denoted by X. (A deviation score, by the way, is defined
as the difference between an actual score and the mean of the scores of a
variable. In other words, if Xi is the ith subject’s actual score on variable X,
then the ith subject’s deviation score xi equals Xi − X̄, where X̄ is the mean
of scores on X.) Similarly, let us construct an N-component vector y such
that the components of this vector are the respective deviation scores of the
same N individuals on a variable Y. Then the correlation between variables
X and Y is equivalent to the cosine of the angle between the vectors x and y,
that is,

rXY =
∑n

i=1 xiyi[(∑n
i=1 x2

i

) (∑n
i=1 y2

i

)]1/2 . (2.8)

This formula is equivalent to one of the forms in which the sample correlation
coefficient is given in most statistics texts.

Projection of a Vector onto Another Vector

In Figure 2.6, x and y are two vectors with an angle θ between them. The
projection of x onto y is the vector p obtained by dropping a perpendicular
from x to a line collinear with y and drawing a vector to that point. c and b

q

c

b p

x

y

FIGURE 2.6 The vector p is the projection of the vector x onto the vector y. A line perpendicular
to y is drawn from x to a line through y, and p is the vector collinear with y up to that point.
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are the lengths of x and p, respectively. Because cos θ = b/c, b = c cos θ is the
length of p. Moreover,

c = √
x′x and cos θ = x′y√

x′x
√

y′y
;

hence b = x′y/
√

y′y. The proportion of length of y due to length of p is
b/
√

y′y = x′y/
√

y′y. Projection of x on y is thus p = (x′y/
√

y′y)y. The con-
cept of projection is central to least-squares regression of one variable onto
another. Here p is the predictable part of y due to x.

Types of Special Vectors

The null vector 0 is the origin of the coordinate system in a space and is
defined by

0 = (0, 0, . . . , 0).

The sum vector 1 = (1, 1, . . . , 1) is used when we wish to sum the components
of another vector a as

n∑
i=1

ai = 1a.

Note that 1a �= 1a.
We shall say that two vectors are orthogonal if their scalar product is zero.

That is, if a and b are n-component vectors (neither of which is the null vector),
then a is orthogonal to b if

ab =
n∑

i=1

aibi = 0.

It follows then from Equation 2.7 that any two vectors having for their scalar
product the value zero must have the cosine of the angle between them equal
to zero. Consequently, the angle between them must be 90◦.

Example If a = (1, 3, 5) and b = (1, 3, −2), then

ab = 1 + 9 − 10 = 0.

Anormalized vector is a vector with a length of 1.Any given vector (other than
the null vector) can be transformed into a normalized vector by dividing each
of its components by the value of its length. In other words, if v is a vector,
v can be transformed into a corresponding normalized vector u such that

u = 1
|v|v, where |u| = 1.
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The unit vector is frequently used as a basis vector in a set of basis vectors
from which all other vectors occupying the space can be derived as linear
combinations. The ith unit vector in a space of n dimensions is denoted by
ei, where

e1 = (1, 0, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0),
e3 = (0, 0, 1, . . . , 0),
. . . . . . . . . . . . . . . . . . . .
en = (0, 0, 0, . . . , 1).

Note that any two different unit vectors are orthogonal to one another,
that is,

eiek = 0, j �= k.

Linear Combinations

We shall say that a vector is a linear combination of some other vectors if it
can be obtained as the sum of scalar multiples of the other vectors. That is to
say, let v1, v2, v3, . . . , vn be vectors. Then the vector a is a linear combination
of these vectors if

a = w1v1 + w2v2 + w3v3 + · · · + wnvn, (2.9)

where w1, w2, w3, . . . , wn are scalars (numbers, not vectors). For example, if

a = (1, 1), v1 = (2, 3), and v2 = (3, 5),

it can be shown that

a = 2v1 + (−1)v2 = (4, 6) − (3, 5) = (1, 1).

We can show that any vector in an n-dimensional space is a linear
combination of the n unit vectors in that space. To illustrate, suppose we
have a vector

a = (a1, a2)

and two other vectors a1 = (a1, 0) and a2 = (0, a2); then

a = a1 + a2 = (a1, 0) + (0, a2).

But a1 = a1(1, 0) and a2 = a2(0, 1).
Hence

a = (a1, a2) = a1(1, 0) + a2(0, 1) = a1e1 + a2e2.
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Linear Independence

We shall say that a set of n vectors is linearly independent if no vector in that
set can be derived as a linear combination from the rest of the vectors in the
set. Conversely, if any vector in a set of n vectors is a linear combination of
some of the other vectors in the set, then the set is linearly dependent.

The mathematical definition of linear dependence states that a set of vectors
v1, v2, v3, . . . , vn is linearly dependent if some scalars w1, w2, w3, . . . , wn can be
found (not all zero) such that

w1v1 + w2v2 + · · · + wnvn = 0. (2.10)

If Equation 2.10 is true, we can derive any vector vk in the set of vectors
v1, v2, v3, . . . , vn as a linear combination of the rest. For proof, subtract the kth
term wkvk from both sides of Equation 2.10. Then

w1v1 + w2v2 + · · · + wk−1vk−1 + wk+1vk+1 + · · · + wnvn = −wkvk

or
−w1

wk
v1 − w3

wk
v2 − · · · − wn

wk
vn = vk .

The significance of a linearly independent set is that it is a collection of vectors
that contains no redundant information.

Basis Vectors

In a space of n dimensions, a linearly independent set of vectors occupy-
ing that space can contain at most n vectors. Such linearly independent
sets of vectors, from which all other vectors in the space can be derived as
linear combinations, are known as sets of basis vectors. There are an unlim-
ited number of different sets of basis vectors that may be obtained for any
n-dimensional space.

Matrix Algebra

Matrix algebra is in some ways a logical extension of n-tuple vector algebra.
Whereas n-tuple vector algebra deals with the operations for manipulating
individual vectors, matrix algebra deals with the operations for manipulating
whole collections of n-tuple vectors simultaneously.

Definition of a Matrix

A matrix is defined as a rectangular array of numbers arranged into rows
and columns. The following is the manner in which a matrix expressed
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algebraically is written in full:

⎡
⎢⎢⎣

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45

⎤
⎥⎥⎦ .

This array represents a 4 × 5 matrix (4 rows by 5 columns). As a rule of nota-
tion, brackets [ ], parentheses ( ), or double lines ‖ ‖ are used to enclose the
rectangular array of numbers to designate it as a matrix. Remember that a
matrix has no numerical value. Rather, it can be thought of as a collection of
either row vectors or column vectors of numbers.

Because matrices are two-dimensional arrays of numbers, a system of dou-
ble subscripts must be used to identify the elements in the matrix. According
to convention among mathematicians, the first subscript (reading from left to
right) designates the number of the row in which the element appears. The
second subscript designates the column in which the element appears. Hence
a23 designates an element in the second row and third column; aij refers to a
general element appearing in the ith row and jth column.

The following arrays of numbers are matrices:

[
1 2
3 1

] ⎡
⎣ 3 4 5 4 3

3 6 8 4 2
7 12 8 4 2

⎤
⎦ (4, 5, 6)

⎡
⎣ 2

5
7

⎤
⎦ .

Other conventions that we will follow are the following:
Matrices will be denoted by uppercase, bold letters (A, B, etc.) and elements

by lowercase, italicized letters (aij, bkj, etc.). Usually the elements of a matrix
take the same lowercase, italicized alphabetical letter as the uppercase letter
standing for the matrix, but not always.

If we refer to a matrix as A, this does not tell us how many rows or columns
the matrix has. We must learn this from sources other than the notation before
we start performing operations on the matrix. Usually this is indicated at the
outset of a discussion of a matrix in the following manner: A is an m × n
matrix . . . .

Another short way of denoting a matrix is with double lines and a single
typical element, or with brackets and a single typical element:

A = ‖aij‖, A = [aij].

Matrix Operations

Just as with vectors, matrices also have operations of addition, subtraction,
equality, and multiplication by a scalar and matrix multiplication.
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Equality. Two matrices A and B are said to be equal, written A = B, if they
have identical corresponding elements. That is, A = B only if aij = bij for every
i and j. Both A and B must have the same dimensions. If A is not equal to B,
we write A �= B.

Multiplication by a scalar. Given a scalar v and a matrix A, the product vA is
defined as

vA =

⎡
⎢⎢⎣

va11 · · · va1n
va21 · · · va2n
· · · · · · · · ·

vam1 · · · vamn

⎤
⎥⎥⎦ .

As with vectors, multiplying a scalar by a matrix implies multiplying the
scalar by every element of the matrix. The order of multiplication does not
matter so that

vA = Av.

Examples If

v = 3 and A =
[

2 3
1 0

]
, then vA =

[
6 9
3 0

]
.

If

v = −2 and A =
[

1 3 2
−2 1 3

]
, then vA =

[−2 −6 −4
4 −2 −6

]
.

Addition. The sum of two matrices A and B, both having the same num-
ber of rows and columns, is a matrix C whose elements are the sums of the
corresponding elements in A and B. The sum is written as

A + B = C,

and for any element cij of C

cij = aij + bij.

(Note: If the two matrices A and B do not have the same number of rows and
columns, then addition is undefined and cannot be carried out for them.)

Example Let

A =
[

3 2 1
−1 3 4

]
, B =

[
4 −1 2
7 1 3

]
,

A + B =
[

7 1 3
6 4 7

]
.
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Subtraction. Subtraction is analogous to addition of matrices. In the case of
the matrices A and B just defined,

A − B =
[−1 3 −1
−8 2 1

]
.

Matrix multiplication. If A is an n × m matrix and B an m × p matrix, then the
matrix multiplication of A times B produces another matrix C with n rows
and p columns. This is written as

AB = C. (2.11)

Perhaps the simplest way to understand how matrix multiplication works
is to assume that the premultiplying matrix A consists of n row vectors and
the postmultiplying matrix B consists of p column vectors. Then the matrix C
is a rectangular array containing the scalar products of each row vector in A
multiplied by each column vector in B. Each resulting scalar product is placed
in the corresponding row of A and the corresponding column of B in C.

To illustrate, let us write Equation 2.11 in full, arranging the elements of
A to represent n row vectors and the elements of B to represent p column
vectors:

⎡
⎢⎢⎣

(a11 a12 · · · a1m)

(a21 a22 · · · a2m)

· · · · · · · · · · · ·
(an1 an2 · · · anm)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

b11
b21

...
bm1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b12
b22

...
bm2

⎤
⎥⎥⎥⎦

· · ·
· · ·
· · ·
· · ·

⎡
⎢⎢⎢⎣

b1p
b2p

...
bmp

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

c11 c12 · · · c1p
c21 c22 · · · c2p
· · · · · · · · · · · ·
cn1 cn2 · · · cnp

⎤
⎥⎥⎦ .

To find the matrix C, the number of elements in the rows of A must equal
the number of elements in the columns of B, to allow us to obtain the scalar
products of the row vectors of A times the column vectors of B. In other
words, the number of columns of A must equal the number of rows of B.
C will have as many columns as B.

We begin with the first row vector of A and find the scalar product of this
row vector times each of the column vectors of B. The resulting scalar products
are placed in the first row and corresponding columns of C. Next, we take
the second row of A and multiply it with each of the column vectors of B.
Again the scalar products of these multiplications are placed in the second
row of C in the position corresponding to the respective column of B. The
process continues by multiplying a successive row vector of A times each of
the column vectors of B and placing the resulting scalar product values in the
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respective row and columns of C. In general, if a′
i is the ith row vector in A

and bj is the jth column vector of B, then

cij = a′
ibj =

m∑
k=1

aikbkj,

where cij is the element in the ith row and jth column of C. Defined in terms of
the operation of the scalar product of vectors, matrix multiplication requires
that the number of elements in the rows of the premultiplying matrix equals
the number of elements in the columns of the postmultiplying matrix. This is
necessary so that the components of the row and column vectors, respectively,
will match in performing the scalar product of vectors.

Examples

(1) Let

A =
[

1 3 2 1
−1 2 3 5

]
and B =

⎡
⎢⎢⎣

1 3 4
2 1 2
3 4 5

−2 1 2

⎤
⎥⎥⎦ ;

then

AB = C =
[

11 15 22
2 16 25

]
.

(2) Let

G =
[

1 3 5
2 1 −3

]
and H =

⎡
⎣ 1 2

3 1
−2 5

⎤
⎦ ;

then

GH =
[

0 30
11 −10

]
.

(3) Let

Q =
⎡
⎣1

5
7

⎤
⎦ and QR =

⎡
⎣ 3 4 2

15 20 10
21 28 14

⎤
⎦ .

Unlike in ordinary algebra, it does not always follow (in fact, it rarely fol-
lows) that AB = BA in matrix algebra. This is because by reversing which
matrix is the first matrix on the left, one may upset the match of row elements
to column elements, in which case the necessary scalar product of vectors
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could not be found, leaving matrix multiplication undefined for the pair of
matrices. This is seen in Example 1, where BA is not defined although AB
is. Or the resulting matrix may be different in size if one reverses the order
of multiplication (and multiplication is defined), which is seen in Example 2,
where GH is a 2 × 2 matrix but HG is a 3 × 3 matrix, and in Example 3, where
QR is a 3 × 3 matrix but RQ is a 1 × 1 matrix (or a single element).

However, the following expressions do hold:

(AB)C = A(BC) = ABC (associative law).

A(B + C) = AB + AC (distributive law).

(Note: In manipulating matrix equations, students sometimes forget that the
order of multiplication is important when they apply the distributive law.)
For example,

A(B + C) �= BA + CA

or

(B + C)A �= AB + AC.

Identity Matrix

The identity matrix is a special matrix that plays the role in matrix algebra
that the number 1 plays in ordinary scalar algebra. The identity matrix is
denoted by the symbol I or In, where n is the order (size) of the identity
matrix in question. It is a square matrix having as many rows as columns and
with 1’s running down its main diagonal from the upper left-hand corner to
the lower right-hand corner. Zeros are found in every other position off the
diagonal. That is,

I =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Identity matrices come in different sizes: The second-order identity matrix is

I = I2 =
[

1 0
0 1

]
.

The identity matrix of order 3 is

I = I3 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .
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If A is a square matrix of order n and In the identity matrix of order n, then

InA = AIn.

However, if A is an n × m matrix, then, although AIm is defined, ImA is not
defined. However, InA is defined. The result of these multiplications of A by
the identity matrix yields

InA = AIm = A.

Scalar Matrix

Sometimes we wish to multiply every element in a matrix by a scalar number
v. This can be accomplished by a square scalar matrix S such that

S = vI.

Then if A is a square matrix that commutes with S,

SA = vA.

Diagonal Matrix

A matrix with different values for its main diagonal elements but with zeros
as the values of the off-diagonal elements is known as a diagonal matrix.
D is often (but not always) used to designate a diagonal matrix.

Examples

D =
⎡
⎣3 0 0

0 2 0
0 0 1

⎤
⎦ , U =

[
0.3 0
0 0.1

]
.

Diagonal matrices have some interesting and useful properties. Suppose D is
a diagonal matrix as just shown above and

A =
⎡
⎣4 1 3 2

5 2 6 7
1 3 8 4

⎤
⎦ , B =

⎡
⎢⎢⎣

−2 5 1
3 7 3
4 1 6
5 −1 4

⎤
⎥⎥⎦ ;

then

DA =
⎡
⎣3 0 0

0 2 0
0 0 1

⎤
⎦
⎡
⎣4 1 3 2

5 2 6 7
1 3 8 4

⎤
⎦ =

⎡
⎣12 3 9 6

10 4 12 14
1 3 8 4

⎤
⎦
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whereas

BD =

⎡
⎢⎢⎣

−2 5 1
3 7 3
4 1 6
5 −1 4

⎤
⎥⎥⎦
⎡
⎣3 0 0

0 2 0
0 0 1

⎤
⎦ =

⎡
⎢⎢⎣

−6 10 1
9 14 3

12 2 6
15 −2 4

⎤
⎥⎥⎦ .

Note that when D is the premultiplying matrix, as in DA, its diagonal ele-
ments multiply respectively each of the elements in the corresponding row
of postmultiplying A. When D is the postmultiplying matrix, as in BD, the
diagonal elements of D are multiplied respectively with the elements of the
corresponding columns of the premultiplying B. Knowing these properties
can save you from multiplying by a diagonal matrix in the usual, more com-
plex way. By multiplying the above expressions in the usual way, you will
obtain the same results.

Upper and Lower Triangular Matrices

An n × n square matrix some of whose elements on the principal diagonal
and above the principal diagonal are nonzero, while all elements below the
principal diagonal are zero is known as an upper triangular matrix.

An n × n square matrix whose nonzero elements are on the principal diag-
onal and below the principal diagonal, while those above are zero is a lower
triangular matrix.

⎡
⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n

0 0 0
. . .

...
0 0 0 0 ann

⎤
⎥⎥⎥⎥⎦ is an upper triangular matrix.

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 0 0
a21 a22 0 0 0
a31 a32 a33 0 0

...
...

...
. . . 0

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎦

is a lower triangular matrix.

Null Matrix

A matrix of whatever dimensions having only zeros in its cells is known as
a null matrix. It is denoted as 0. A null matrix has the following algebraic
properties, provided that it commutes with the matrices in question:

A + 0 = A, A − A = 0, A0 = 0.
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However, if AB = 0, this does not necessarily imply that either A or B is a
null matrix. It is easy to find nonnull matrices A, B whose product AB = 0.
This is an instance where matrix algebra is not like ordinary algebra.

Transpose Matrix

The transpose of a matrix A is another matrix designated A′, which is formed
from A by interchanging rows and columns of A so that row i becomes column
i and column j becomes row j of A′. That is, if

A = ∥∥aij
∥∥ , then A′ = ∥∥aji

∥∥ .

Examples

A =
[

1 3 2
2 0 1

]
, A′ =

⎡
⎣1 2

3 0
2 1

⎤
⎦ .

B =
[

1 3
2 4

]
, B′ =

[
1 2
3 4

]
.

A way of visualizing transposing a matrix is to imagine that it is flipped over,
using as a hinge the first diagonal elements of the original matrix going from
left to right and down. For example, the elements 1 in the first row and 0 in
the second row of A constitute the first diagonal of A. The elements 1 and 4
in the first and second row are the principal diagonal of B.

The transpose matrix (AB)′ equals B′A′, reversing the order of multiplica-
tion and then transposing the individual matrices. The pattern holds for any
number of multiplied matrices

(ABCDE · · · XYZ) = (Z′Y′X′ · · · E′D′C′B′A′).

But there is no effect on summing matrices, except to transpose them
individually:

(A + B + C)′ = A′ + B′ + C′.

Note that
I′ = I and (A′)′ = A.

Symmetric Matrices

Asymmetric matrix is a square matrix for which its transpose is equal to itself.
It is a matrix in which any element aij equals the corresponding element aji.
That is, let R be a square symmetric matrix; then

R′ = R.
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All covariance and intercorrelation matrices for a single set of variables are
symmetric matrices.

Example

R =
⎡
⎣ 1.00 −0.21 0.32

−0.21 1.00 0.43
0.32 0.43 1.00

⎤
⎦ .

Matrix Inverse

In scalar algebra, if ab = 1, then b is a special element with respect to a, that is,
1/a, such that multiplying a by b yields 1. Is there an analogous relationship
among matrices? If such a matrix exists for a given matrix A, we shall call it
the matrix inverse of A. It will be denoted by A−1.

The following necessary (but not sufficient) condition must be met for the
matrix A to have an inverse: the matrix must be square to have an inverse.
However, not every square matrix has an inverse.

When the inverse matrix exists for a matrix, the following algebraic
relationships hold:

(AB)−1 = B−1A−1,

(A−1)−1 = A,

(A′)−1 = (A−1)′,

(A−1)′A′ = A′(A−1)′ = I.

Methods for finding the inverse of any given square matrix are too compli-
cated to be given here. However, for matrices up to order 3, a method based on
determinants can be used to find the matrix inverse, if it exists. Before going
into this method, we should therefore take up the topic of determinants.

Orthogonal Matrices

A square matrix P is said to be orthogonal if

PP′ = P′P = I.

Looking at this on the level of vector multiplication, we see that different
column (or row) vectors of the matrix are orthogonal to one another, and the
length of each column (row) vector is 1. It also follows that the inverse of an
orthogonal matrix is its transpose.
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Example

P =
⎡
⎣1/

√
3 1/

√
6 −1/

√
2

1/
√

3 1/
√

6 1/
√

2
1/

√
3 −2/

√
6 0

⎤
⎦ , P′ =

⎡
⎣ 1/

√
3 1/

√
3 1/

√
3

1/
√

6 1/
√

6 −2/
√

6
−1/

√
2 1/

√
2 0

⎤
⎦ ,

PP′ =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

Orthogonal matrices will be important to exploratory factor analysis because
maximum likelihood and other solutions obtain eigenvector matrices that are
orthogonal matrices.

Sometimes an orthogonal matrix is called an orthonormal matrix because
its column or row vectors have unit lengths and are mutually orthogonal.

Trace of a Matrix

Let

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

⎤
⎥⎥⎥⎥⎦ ;

then

trA = a11 + a22 + a33 + a44 + a55

is known as the trace of A. The trace of any square matrix is the sum of its
diagonal elements. The result is a scalar. In general,

trA =
n∑

i=1

aii.

Invariance of traces under cyclic permutations. Suppose the n × n square matrix
A is itself the product of other matrices that are not all square: Given

An×n = Fn×rCr×rF′
r×n,

then

trAn×n = trFn×rCr×rF′
r×n = trF′

r×nFn×rCr×r = trCr×rF′
r×nFn×r.
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Although the products of the matrices in the equality above are all square
matrices, they are not of the same dimension. The first product produces an
n × n matrix, and the second and third produce r × r matrices. Nevertheless,
each of their traces will be the same. Note that the square matrices are pro-
duced by cycling the rightmost matrix of a matrix product around to the
leftmost position. This produces a different ordering or permutation of the
component matrices, and hence cyclic permutations. In general, if ABCDE is
square,

tr(ABCDE) = tr(EABCD) = tr(DEABC) = tr(CDEAB) = tr(BCDEA).

Traces are often used in defining in matrix notation a least-squares criterion
to be optimized in least-squares estimation. For example, given S we seek a
matrix Σ = ΛΦΛ′ + Ψ2 by varying the elements of the matrices Λ, Φ, Ψ2 on
the right, such that E = S − Σ = S − (ΛΦΛ′ + Ψ2) and trE′E is a minimum.
E represents the element-by-element difference between the matrix S and the
matrix Σ. The diagonal elements of E′E contain the column sum of squares
of the elements of E, which are corresponding differences between elements
of S and Σ. Then by summing the column sum of squares, trE′E contains the
sum of all squared differences between elements of S and Σ. And the values
for elements of Λ, Φ, Ψ2, which make trE′E a minimum, are least-squares
estimates of them.

Determinants

For any square matrix A, there exists a number uniquely determined by the
elements of A known as the determinant of A. This number is designated |A|
but is also written as

|A| =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
,

that is, by enclosing the matrix elements within vertical straight lines.
For a 1 × 1 matrix A = a, the determinant of A is simply a. For a 2 × 2 matrix

A, the determinant of A is

|A| =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.
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For a 3 × 3 matrix A, the determinant of A is written as

|A| =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33.

One computational device for finding determinants of 2 × 2 and 3 × 3 matri-
ces is to copy all but the last column of the determinant to the right side of
the determinant. Then draw arrows through the elements as shown. Then for
each

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31

+ + +

–––

a32

arrow, multiply together the terms through which the arrow passes. Multiply
the product by +1 if the arrow points down, and multiply the product by −1
if the arrow points up. Add the products together, each multiplied by 1 or −1,
respectively. (Note: This does not work with 4 × 4 matrices or larger.)

Unfortunately in factor analysis and structural equation modeling, the
determinants are of matrices that are much larger. Usually they are deter-
minants of the covariance or correlation matrix among a large number of
variables subjected to analysis. So, we need a more general definition of a
determinant to include large matrices.

The determinant of an nth-order n × n matrix A is defined by mathemati-
cians as

|A| =
∑

(−1)ta1ia2ha3r · · · ans,

where the sum is taken across all n! permutations of the right-hand subscripts,
and t is the number of inversions or interchanges of pairs of adjacent ele-
ments in the product needed to bring the right-hand subscripts into ascending
numerical order. In effect, the different product terms in the sum are obtained
by selecting each element to enter the term from a different row and column
of the matrix. (One should recognize that this does not denote the absolute
value of a number because the symbol between the vertical lines is a matrix
and not a scalar).
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An interchange means exchanging the position of two adjacent numbers
in a permutation of the integers 1, 2, 3, . . . , n, so that if one number is smaller
than the other, it is placed before the larger number on the left in the resulting
new permutation. For example, suppose n = 6, and we have the permutation

3 1 4 2 6 5

of the first six integers; then an interchange would be

3 1 4 2 6 5 −→ 1 3 4 2 6 5,

where the pair 3 1 is interchanged to become 1 3 because 1 comes before 3.
Another interchange might then be to interchange 4 2 to 2 4, so we would have

1 3 4 2 6 5 −→ 1 3 2 4 6 5.

And even further, we would interchange 3 2 to become 2 3:

1 3 2 4 6 5 −→ 1 2 3 4 6 5.

And finally we could interchange 6 5 to 5 6:

1 2 3 4 6 5 −→ 1 2 3 4 5 6.

Now, in the present example, we made four interchanges to bring the origi-
nal permutation into ascending order. The quantity t in the formula for the
determinant is the number of interchanges of the elements of the permutation
needed to bring its right-hand subscripts into ascending order. If t is odd then
(−1)t is equal to −1, and if t is even then (−1)t is equal to 1.

Although considerable mathematical research was conducted on deter-
minants in the nineteenth and early twentieth centuries, their importance
today has somewhat lessened. Many of their uses, in the theory of inverses,
areas of parallelopipeds, in the concept of rank of a matrix, in the theory of
multiple correlation, have been replaced by other concepts that allow one
to achieve much the same thing as with determinants. However, they do
play an important role in multivariate statistics, insofar as the determinant
of a covariance matrix is found in the formula for the multivariate normal
distribution, and the concept of a generalized variance is based on the deter-
minant of the variance–covariance matrix of a set of variables. The concept
of the rank of a matrix, of nonsingular and singular matrices, and tests for
linear independence of variables also derive from the theory of determinants,
and these are important concepts in factor analysis and structural equation
modeling.

Nevertheless, in some cases the use of determinants leads to the simplest
way of deriving some mathematical results. Computationally, the formula in
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the definition of a determinant is not a very efficient way of obtaining the value
of a determinant. Alternative methods for finding the value of determinants
usually involve transforming the matrix into an upper or lower triangular
matrix or into a diagonal matrix, and then multiplying the diagonal elements
of the resulting matrix together to yield the determinant. In factor analysis
the correlation matrix is transformed into a diagonal matrix of eigenvalues,
and then the eigenvalues are multiplied together to obtain the determinant
of the correlation matrix.

Examples

∣∣∣∣1 2
3 4

∣∣∣∣ = −2

∣∣∣∣∣∣
3 2 1
1 2 2
3 1 3

∣∣∣∣∣∣ = 13.

Minors of a Matrix

The determinant of an rth-order square submatrix of a square matrix A is
known as a minor of the matrix A. In the above examples, the individual
elements of the two matrices are first-order minors, whereas in the case of the
3 × 3 matrix

∣∣∣∣3 2
1 2

∣∣∣∣
∣∣∣∣1 2
3 3

∣∣∣∣
∣∣∣∣2 2
1 3

∣∣∣∣
are second-order minors.

Rank of a Matrix

The rank of a matrix is the order of the highest order nonzero determinant
obtainable from square submatrices of elements of the matrix obtained by
deleting rows and/or columns of the matrix. For example, the matrix

⎡
⎢⎢⎣

2 3 5
1 1 6
3 5 6
3 1 7

⎤
⎥⎥⎦

has at most a rank of 3 because the largest square submatrix that can be formed
from this matrix by deleting rows and/or columns is a 3 × 3 matrix, and no
determinants of larger order may be formed. It will have a rank of 3 if there
exists a 3 × 3 submatrix of this matrix with a determinant not equal to zero.
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If no 3 × 3 submatrix has a determinant not equal to zero, then the rank may
be 2, and will be determined to be 2 if at least one 2 × 2 nonzero determinant
can be formed by deleting rows and columns of the original matrix. And it
will have a rank of 1 if at least one nonzero element exists in the matrix. The
matrix will have rank zero if all elements in the matrix are zero, for then all
1 × 1 determinants will be zero.

The rank of a matrix indicates the maximum number of linearly indepen-
dent rows (columns) of the matrix.

Thurstone (1947) used the concept of minimum rank of a correlation matrix
whose diagonal elements had been replaced with communalities as the
number of common factors to retain.

Cofactors of a Matrix

In a matrix A, we will designate Aij to be the cofactor of the element aij,
found by deleting the ith row and jth column from the matrix A, taking the
determinant of the remaining submatrix of elements, and giving it the sign
of (−1)i+j.

Example

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ , A12 = −

∣∣∣∣a21 a23
a31 a33

∣∣∣∣ .

Expanding a Determinant by Cofactors

Let A be an n × n matrix. The determinant of A can be found by taking any
row or column of the matrix and summing the products of the elements of that
row or column, each multiplied by its corresponding cofactor. For example,
if we choose the second row of the matrix A to find the determinant of A, we
have

|A| = a21A21 + a22A22 + · · · + a2nA2n.

Example

A =
⎡
⎣1 3 5

4 2 3
1 4 2

⎤
⎦ ,

|A| = −4
∣∣∣∣3 5
4 2

∣∣∣∣+ 2
∣∣∣∣1 5
1 2

∣∣∣∣− 3
∣∣∣∣1 3
1 4

∣∣∣∣
= −4(6 − 20) + 2(2 − 5) − 3(4 − 3) = 47.
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Adjoint Matrix

If A is an n × n matrix, the transpose of a matrix obtained from A by replacing
its elements by their corresponding cofactors is known as the adjoint matrix
for A and is designated by A+. For example, if

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ , A+ =

⎡
⎣A11 A21 A31

A12 A22 A32
A13 A23 A33

⎤
⎦ .

The inverse of a matrix A can be obtained by multiplying its adjoint matrix
A+ by the reciprocal of the determinant of A, that is,

A−1 = 1
|A|A+.

Example

A =
⎡
⎣1 3 5

4 2 3
1 4 2

⎤
⎦ , A−1 = 1

47

⎡
⎣−8 14 1

−5 −3 17
14 −1 −10

⎤
⎦ .

For proof that the right-hand matrix is the inverse of the left-hand matrix,
multiply the matrices together to see if the result is an identity matrix.

Important Properties of Determinants

1. The determinant of the transpose matrix equals the determinant of
the original matrix, that is, |A′| = |A|.

2. Any theorem about |A| that is true for rows (columns) of a matrix A
is also true for columns (rows).

3. If any two rows (columns) of the matrix A are interchanged, the
determinant of the resulting matrix equals −|A|.

4. Let B be a matrix formed from the matrix A by multiplying one of
its rows (columns) by k; then |B| = k|A|.

5. Adding k times one row (column) of A to another row (column) of
A produces a matrix whose determinant is still |A|.

6. If two rows (columns) of a matrix A are identical, then |A| = 0.
7. If any column of a matrix A is a linear combination of other columns

of A, then |A| = 0.
8. If any row (column) of A consists of only zero’s, then |A| = 0.
9. If the determinant of a square matrix A is zero, we say the matrix is

singular; otherwise we say that the matrix is nonsingular. Singular
matrices have no inverses.
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10. If A and B are n × n square matrices, then |AB| = |A||B|. This result
extends to the determinant of the product of any number of n × n
matrices.

11. The determinant of a diagonal matrix equals the product of its
diagonal elements, that is, |D| =∏n

i=1 dii.
12. The determinant of an upper (lower) triangular matrix equals the

product of the elements in its principal diagonal, |Δ| =∏n
i=1 δii.

13. The determinant of an orthogonal matrix P equals ±1.

14. |A−1| = 1
|A| .

15. |I| = 1.
16. |0| = 0.

Simultaneous Linear Equations

Consider the following system of simultaneous linear equations in which
there are n equations and n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x1 + an2x2 + · · · + annxn = bn.

This system can be expressed in matrix form as

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1
b2
...

bn

⎤
⎥⎥⎥⎦ , (2.12)

or in equation form as

Ax = b, (2.13)

where A is the square matrix of known coefficients, x is the n-component
column vector of unknown values x1, x2, . . . , xn, and b is the n-component
column vector of known quantities. The task is to solve for the unknown
quantities x1, x2, . . . , xn in terms of known quantities in A and b.

Although there is a way of solving for the unknown quantities using deter-
minants, known as Cramer’s rule, we will instead consider how we might do
this using matrix algebra. This is more practical. Suppose we multiply both
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sides of Equation 2.13 by A−1, we obtain

A−1Ax = A−1b,

x = A−1b. (2.14)

In other words, the column vector can be solved for by premultiplying both
sides of the equation by the inverse matrix of A.

If A is singular, that is, has a 0 determinant, then no solution is possible,
because there will be no inverse matrix.

Treatment of Variables as Vectors

We indicated in Section 2.3 that the key idea of this book is that variables may
be treated as vectors. In this section we intend to show how this may be done.

There are several ways to define a variable. A common definition is that
a variable is a quantity that may take any one of a set of possible values.
Another definition is that a variable is a property on which individuals of
a population differ. For the purposes of this book, however, we will use the
following definition, with qualification: a variable is a functional relation that
associates members of a first set (population) with members of a second set
of ordered sets of real numbers in such a way that no member of the first
set (population) is associated with more than one ordered set of real numbers
at a time. This definition is quite general for it includes both the familiar case
of the unidimensional variable (involving a single quantifiable property or
attribute) and the case of the multidimensional variable (involving simultane-
ously several quantifiable properties or attributes). Because most theoretical
work, however, deals with relations among individual attributes, we shall
hereafter usually mean by the term variable a unidimensional variable that
as a functional relation associates each member of a population with only one
real number at a time.

There are several ways to classify variables. For example, statisticians
frequently classify variables according to whether they are discrete or con-
tinuous. A discrete variable can take on at most a countably infinite number
of values, whereas a continuous variable can take on an uncountably infi-
nite number of values. (A set is said to have a countably infinite number of
members if it is infinite and each member of the set can be put in a one-to-one
correspondence with members of the set of integers.) Mathematical oper-
ations on discrete variables involve only algebra, whereas on continuous
variables they involve calculus. Discrete variables may be represented by
N-tuples but continuous variables must be represented in other ways. Amajor
concern is not whether variables are discrete or continuous but whether they
involve finite or infinite populations.
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Variables in Finite Populations

Variables in finite populations are treated as vectors in a unitary vector space
of N-tuples. For example, suppose we have a finite population of five indi-
viduals whose scores on a variable are 3, 1, 1, 4, and 2, respectively. Let us
represent these scores by a 5-tuple (3, 1, 1, 4, 2). Each coordinate of the 5-tuple
corresponds to an individual member of the population and takes on the
values of the variable for that individual.

When more than one variable is defined for the members of a finite popu-
lation, we represent the variables by N-tuples arranged in the form of N × 1
column vectors (with N the number of individuals in the population. When
the variables are dealt with collectively (as in the case of finding linear com-
binations of the variables), we transpose the column vectors to row vectors
and arrange them as the rows of an n × N matrix (with n the number of vari-
ables). For example, let x1, x2, . . . , xn be n N-tuple column vectors standing for
n variables X1, X2, . . . , Xn defined in a finite population of N individuals. By
X we mean the n × N matrix, whose row vectors are the transposed variable
vectors x1, x2, . . . , xn.

X =

⎡
⎢⎢⎢⎣

x′
1

x′
2
...

x′
n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

x11 x12 · · · x1N
x21 x22 · · · x2N
· · · · · · · · · · · ·
xn1 xn2 · · · xnN

⎤
⎥⎥⎦ . (2.15)

Consider now the linear combination

y′ = a′X = (a1, a2, . . . , an)

⎡
⎢⎢⎢⎣

x′
1

x′
2
...

x′
n

⎤
⎥⎥⎥⎦ = (y1, y2, . . . , yN). (2.16)

An important matrix in factor analysis and structural equation modeling
would be the matrix of variances and covariances among these variables:

SXX = 1
N

[
XX′ − 1

N
X11′X′

]
. (2.17)

Here 1 is the column sum vector consisting of all 1’s. X is defined in
Equation 2.15. XX′ is a square symmetric n × n matrix of sums of squares
and cross-products among the variables, summed across individuals.

XX′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑N
i=1 X2

1i
∑N

i=1 X1iX2i · · · ∑N
i=1 X1iXni∑N

i=1 X2iX1i
∑N

i=1 X2
2i · · · ∑N

i=1 X2iXni

...
...

. . .
...∑N

i=1 XniX1i
∑N

i=1 XniX2i
∑N

i=1 X2
ni

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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X1 is an n × 1 column vector of sums of scores in each respective row of X.
The column of variable means would be given by

X̄ = 1
N

X1 = 1
N

⎡
⎢⎢⎣

x11 x12 · · · x1N
x21 x22 · · · x2N
· · · · · · · · · · · ·
xn1 xn2 · · · xnN

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎦ = 1

N

⎡
⎢⎢⎢⎢⎢⎢⎣

∑N
i=1 X1i∑N
i=1 X2i

...∑N
i=1 Xni

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

X̄1
X̄2
...

X̄n

⎤
⎥⎥⎥⎦ .

Another important matrix derivable from the matrix X is the symmetric n × n
matrix RXX containing the intercorrelation coefficients for pairs of variables in
X. To obtain RXX let D2

X = [diagSXX]. Here
[
diagSXX

]
means extract the diag-

onal elements of SXX and place them in the principal diagonal of a diagonal
matrix with zero off-diagonal elements. Then

RXX = D−1
X SXXD−1

X . (2.18)

The matrix D2
X has as its diagonal elements the variances of the respective

variables in X.

Variables in Infinite Populations

Variables defined for a countably infinite population may be represented
by N-tuples with infinitely many coordinates; however, not all operations
defined on N-tuples with a finite number of coordinates apply to N-tuples
with infinitely many coordinates. In particular, the definition given for the
scalar product of N-tuples of finite order does not work on n-tuples of infi-
nite order, because in the case of N-tuples of infinite order sums of infinitely
many product terms are involved, and these normally do not converge to
finite scalar values. Because of this difficulty and because of the additional
difficulty that variables in uncountably infinite populations are not express-
ible as N-tuples, other notations have been sought to represent variables in
infinite populations.

Mathematical statisticians have developed a useful notation for dealing
with variables defined on infinite populations. They let a capital letter stand
for a variable and use a corresponding lowercase letter to stand for a particular
value of the variable. For example, X is a variable, and x is some particu-
lar value of the variable X. Mathematical statisticians have also adopted the
convention of combining variables in this notation as if variables were ele-
ments of a scalar algebra. For example, U, V, W, X, Y, and Z are variables
defined on a population; then the expression U = V/W + XY − Z2 is a per-
missible expression and means that if u, v, w, x, y, and z are the respective
real values of these variables for any arbitrary member of the population,
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then u = v/w + xy − z2. Thus there is a 1 : 1 correspondence between expres-
sions involving variables and expressions involving scalars, which reveals
that variables form a field under the operations of addition and multiplica-
tion. An immediate consequence of this fact is that variables may serve as
vectors in a vector space, with the operation of addition of vectors in the vec-
tor space corresponding to the operation of addition of variables in the field
of variables.

However, a vector space of variables is not a unitary vector space—which
we require for multivariate linear analysis—unless we can find a way to define
for the vector space an operation having the properties of the scalar product
of vectors. The simple product XY of two variables X and Y does not satisfy
the requirements of a scalar product because the result is a variable and not
a scalar. However, we might consider the possibility that the simple product
XY is part of but not all the solution to the requirements for a scalar product.
What we need to look for is an operation that takes a random variable and
produces from it a unique number known as its scalar product. Since XY is
a random variable representing a unique combination of the variables X and
Y, applying this operation to XY will produce a unique scalar corresponding
to this pair.

The operation we have in mind is the expected value operator, denoted by
E( ), that obtains the mean of a random variable. Applied to a discrete variable
(a variable that takes on only a finite number of distinct values), this operator
resembles in many ways the operation for finding the mean of a variable
for a finite population (or sample) by the method of grouping of individuals
by scores. In the latter method, for each value on the discrete variable X, one
obtains the proportion p(xi) = fi/N of individuals in the finite population with
value xi on the discrete variable, where fi is the number of individuals with
value xi and N is the number of individuals in the population (or sample).
Then the mean is given as E(X) =∑m

i=1 xip(xi), with m the number of possible
values of X in the population.

Regardless, in the general discrete case with countably infinite populations,
for each value xi mathematical statisticians assume that there exists a non-
negative number p(xi), which, roughly speaking, represents the proportion
of the total population with value xi of the variable X. Then the expected
value of X, denoted E(X), is given as

E(X) =
∑

xip(xi) for all p(xi) > 0. (2.19)

In the case of an uncountably infinite population, it is not possible to obtain
the proportions of the total population by a process of counting. In fact, if a
value xi on a variable X has only a finite or countably infinite individuals in
an uncountably infinite population associated with it, then it still has, para-
doxically, a zero proportion of the total population associated with it. We will
not attempt to explain the basis for this paradox since it is based on one of
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the subtle features of measure theory, which is beyond the scope of this book
(cf. Singh, 1959).

The expected value of a continuous random variable (a variable that can
take on any of the values in a continuum of values on any interval or intervals
of the real numbers) has to be defined differently. Given the continuous vari-
able X, it is postulated that there exists a function f (x), known as the density
function of X, that allows one to determine the proportion P(X | a < x ≤ b) of
the total population with values x in any continuous interval a < x ≤ b over
which the variable is defined. Since this is a density function, the total area
under the curve f (x) equals unity. If one refers to the graph of the function
f (x) in Figure 2.7, the proportion P(X | a < x ≤ b) corresponds to the area
under the curve of the function f (x) in the interval a < x < b. This area may
be obtained by the integral calculus from the integral equation

P(X | a < x ≤ b) =
∫ b

a
f (x) dx.

The expected value of the continuous variable X is given as

E(x) =
∫ b

a
xf (x) dx. (2.20)

Returning now to the problem of defining the scalar product xy of two vectors
x and y representing two random variables X and Y defined on an infinite
population, it would be possible to define

xy = E(XY) and |x| =
√

E(X2).

If X and Y are both discrete variables, then

E(XY) = E(XY) =
∑

xiyip(xi, yi) over all p(xi, yi) > 0,

f (x)

P(X | a < x ≤ b)=     f (x) dxb
aÚ

xba

FIGURE 2.7 The probability that random variable X takes on values greater than a or less than
or equal to b is given by the area under density function f (x) between a and b on the x axis.
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where p(xi, yi) > 0 is the probability in the population of having simultane-
ously the values xi and yi on the variables X and Y, respectively. If X and Y
are continuous random variables, then

E(XY) =
∫ +∞

−∞

∫ +∞

−∞
xyf (x, y) dx dy,

where f (x,y) is the joint density function of X and Y.
But E(XY) and

√
E(XX) = √E(X2) are not pivotal concepts in multivariate

statistics. They do become pivotal if we consider

xy = cov(X, Y ) = E(XY ) − E(X)E(Y) = E[(X − E(X))(Y − E(Y))],
where cov(X, Y) denotes the covariance between variables X and Y. Here X
and Y have their means subtracted from them before obtaining the products.
The resulting transformed variables X∗ = X − E(X) and Y∗ = Y − E(Y) now
have zero means, because E(X∗) = E[X − E(X)] = E(X) − E(X) = 0 and the
same for ÊE(Y∗). Then cov(X∗, Y∗) = E(X∗Y∗) − E(X∗)E(Y∗) = E(X∗Y∗). This
suggests that without loss of generality in those cases involving linear algebra,
we may assume that all variables under consideration have zero means. In
much of this book, we will make this assumption (there will be exceptions and
these will be noted). Consequently, we will assume that for variables having
zero means xy = E(XY) = cov(X, Y) and

|x| = √
xx = √E(XX) =

√
E(X2) = √var(X), (2.21)

where |x| denotes the length of the vector x corresponding to the variable X,
and var(X) denotes the variance of the variable X. So, the length of a vector
corresponding to a random variable is the standard deviation of the variable.

The point of all this discussion of how to define a scalar product between
vectors representing random variables is to establish that most multivariate
statistics implicitly assumes that the linear algebra of unitary vector spaces
applies to its topics. Although the notation may not explicitly reveal the vec-
tors involved, they are there in the random variables under operations of
addition and scalar multiplication and the expected value of the product of
two random variables.

Random Vectors of Random Variables

Mathematical statisticians do not readily acknowledge that the random vari-
ables they pack into what they call random vectors are themselves vectors.
Nor do they explicitly indicate that much of multivariate statistics with ran-
dom vectors of random variables is an application of linear algebra. But
when they use their random-vector notation to obtain covariance matri-
ces, they are using the scalar product of vectors, applied simultaneously
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to many vectors, each corresponding to a random variable. We will not
dwell excessively on this fact beyond this point, since we will conform
to convention and work with the random-vector notation. But it pays to
recognize that the underlying structure of multivariate statistics is linear
algebra.

As we may have already indicated, in mathematical statistics a random
variable is a random real-valued quantity whose values depend on the out-
comes of an experiment governed by chance. A single random variable is
represented by an italicized, uppercase letter, with particular values of the
variable represented by subscripted lowercase versions of the same letter.
Several random variables are treated collectively as the coordinates of what
is known as a random vector. For example, if X1, X2, . . . , Xn are n random
variables with zero means, then the random vector X is defined as the
column vector with coordinates being the random variables X1, X2, . . . , Xn,
that is,

X =

⎡
⎢⎢⎢⎣

X1

X2
...

Xn

⎤
⎥⎥⎥⎦ .

Although this looks like an ordinary n-tuple, it is not because the ele-
ments of an ordinary n-tuple are constants, and here they are random
variables. Assume now that the random variables have zero means. We
may now wish to obtain a linear combination of these random variables
Y = a1X1 + a2X2 + · · · + anXn with the a’s constant weights. This linear com-
bination may be written in matrix notation as Y = a′X. The result Y, however,
is not a constant but also a random variable. Now, consider the n × n
matrix

ΣXX = E(XX′).

An arbitrary element σjk of the matrix ΣXX has its value σjk = E(XjXk) since
the expected value of any matrix (in this case the expected value of the matrix
XX′) is the matrix of expected values of the corresponding elements of the
original matrix. The matrix XX′ is itself a random matrix of random variables
for its elements:

XX’ =

⎡
⎢⎢⎢⎢⎣

X1
X2
...

Xn

⎤
⎥⎥⎥⎥⎦ (X1 X2 · · · Xn) =

⎡
⎢⎢⎢⎢⎣

X1X1 X1X2 · · · X1Xn

X2X1 X2X2 · · · X2Xn
...

...
. . .

...
XnX1 XnX2 · · · XnXn

⎤
⎥⎥⎥⎥⎦ .
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Hence

E(XX′) =

⎡
⎢⎢⎢⎣

E(X1X1) E(X1X2) · · · E(X1Xn)

E(X2X1) E(X2X2) · · · E(X2Xn)
...

...
. . .

...
E(XnX1) E(XnX2) · · · E(XnXn)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n

⎤
⎥⎥⎥⎥⎦ .

Again, if X is an n × 1 random vector of random variables X1, X2, . . . , Xn and
Y is a p × 1 vector of random variables Y1, Y2, . . . , Yp, then

ΣXY = E(XY′)

is an n × p covariance matrix of cross-covariances between the two sets of
variables with typical element σgh = E(XgYh). In effect, covariance matrices
are matrices of scalar products of vectors.

Maxima and Minima of Functions

There are numerous occasions scattered throughout multivariate statistics,
including multiple regression, factor analysis, and structural equation mod-
eling, where we must find the value or (values) of an independent variable
(or variables) that will maximize (or minimize) some function. For example,
in multiple regression, we seek values of weights to assign to predictor vari-
ables in a regression equation that minimizes the average value of the squared
differences between the predictive composite scores and the actual scores on
the criterion. In principal components analysis, we seek the weights of a lin-
ear combination (under the restraint that the sum of squares of the weights
add up to 1) of a set of variables that will have the maximum variance over
all possible such linear combinations. In the varimax method of rotation, we
seek values of the elements of the orthogonal transformation matrix that will
rotate the factors so that the sum of the variances of the squared loadings
on the respective factors will be a maximum. In maximum-likelihood factor
analysis we seek values for the factor loadings, and unique variances that will
maximize the joint-likelihood function. In structural equation modeling using
maximum-likelihood estimation, we seek values of the free model parameters
that will minimize the likelihood fit function.
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In this section, we expect the student who is fresh to the topic of calculus
to obtain nothing more than an intuitive understanding of what is involved
in the solution of maximization and minimization problems by calculus. To
obtain a more thorough background in this subject, the student should take a
course in elementary calculus. Those sections in this book involving obtaining
the solution to the maximization or minimization of some function will be
marked with an asterisk in front of the title to the section heading and may be
passed over by those who are mathematically challenged. Much of this book
does not require calculus.

Slope as the Indicator of a Maximum or Minimum

Consider the graphical representation of the function y = f (x) in Figure 2.8.
The function portrayed in this figure is not designed to represent any partic-
ular function other than one having a minimum and maximum value over
the range of the values of x depicted.

Now, consider the effects of drawing straight lines tangent to the surface of
the curve at those points on the curve corresponding to the values of x1, x2, x3,
and x4. We see, going from left to right along the x axis, that the slope of the
line tangent at the point corresponding to x1 is downward, indicating the
function is descending at that point. At x2 the tangent line is horizontal, and
the function is at a local minimum. At x3 the tangent line is sloping upward,
indicating a rise in the function at that point. And at x4 the tangent line is
again horizontal, but this time at a maximum for the function. We see at this
point that lines tangent to minima or maxima are horizontal. On the basis of
this simple observation, calculus builds the methodology for finding points
that correspond to maxima or minima or functions.

y = f (x)

y

x2x1
x

x4x3

FIGURE 2.8 Graph of function y = f (x) showing slopes of curve of function corresponding to
different values of x.
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An Index for Slope

Let us now consider quantifying what we mean by the slope of a straight
line drawn tangent to a point on the curve of some function. Consider the
graph of the function y = f (x) in Figure 2.9. Let the point R be a point on the
curve with coordinates (x, f (x)). Draw a line tangent to the curve at point R.
Next, consider a line drawn from the point R to another point S on the curve
a short distance away from the point R in the direction of increasing x. The
coordinates of the point S are (x + Δx, f (x + Δx)), where Δx is some small
increment added to x. Intuitively, we can see that if we make Δx smaller and
smaller, the point S will come closer and closer to the point R. Also, the slope
of the line passing through R and S will come closer and closer to the slope of
the line tangent to the curve at R. Using this fact, let us first define the slope
of the line passing through R and S as

Slope(RS) = f (x + Δx) − f (x)

Δx
.

We see that this is simply the ratio of the side opposite to the side adjacent in
a right triangle. Next, we will define the slope of the line tangent to the curve
at point R, written as dy/dx, to be

dy
dx

= lim
Δx→0

f (x + Δx) − f (x)

Δx
. (2.22)

Although to those not familiar with taking the limit of an expression,
Equation 2.22 may appear to involve dividing by 0, such is not the case. Gen-
erally, we can simplify the right-hand expression so that the denominator Δx

Tangent line

y

Secant line

x

y = f (x)

x x + Dx

f (x)

f (x + Dx) – f (x)

S(x + Dx,  f (x + Dx))

R(x ,  f (x))

f (x + Dx)

Δx

FIGURE 2.9 Graph of function y = f (x) showing how the line tangent to the curve at point
R(x, f (x)) may be approximated by the secant line drawn between points R(x, f (x)) and S(x + Δx,
f (x + Δx)). The approximation improves as Δx approaches 0.
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cancels out with quantities in the numerator before we take the limit when
Δx approaches zero.

Derivative of a Function

An important point to realize about Equation 2.22 is that it also represents
a function of the variable x. In this case, Equation 2.22 is a function relating
the values of the slope of a line drawn tangent to the curve of the function
y = f (x) to the values of x corresponding to the points to which the line is
drawn tangent. The slope function corresponding to the function y = f (x) is
known as the derivative of the function y = f (x) with respect to x.

For example, consider the function y = x2 shown in Figure 2.10. Let us look
for the derivative of this function, using the definition in Equation 2.22:

dy
dx

= lim
Δx→0

(x + Δx)2 − x2

Δx

= lim
Δx→0

x2 + 2xΔx + Δx2 − x2

Δx
= 2xΔx + Δx2

Δx

= lim
Δx→0

2x + Δx = 2x.

Using the derivative, we can find the value of the slope of a line drawn
tangent to any point on the curve y = x2 corresponding to a given value of

0

2

4

6

8

10

y

–6 –4 –2 0 2 4 6
x

FIGURE 2.10 Graph of function y = x2 which is minimized when x = 0.
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x. Consider, for example, the slope of a line at the point on the curve where
x equals 1. Substituting the value of 1 for x in the derivative dy/dx = 2x, we
find that the slope is equal to 2 at this point. When x is 3, we find that the line
drawn tangent to a corresponding point on the curve has a slope of 6.

But in the equation y = x2, at what value of x is y a minimum? This can be
found by setting the derivative equal to zero and solving for x.

If 2x = 0 then x = 0.

When x is zero, the slope is zero, indicating that the tangent line drawn to the
curve at the point where x equals 0 is horizontal. If we examine our graph for
y = x2, we will see that this corresponds to the minimum point on the curve.

Derivative of a Constant

Consider the function y = k, where k is some constant. By using Equation 2.22,
we have f (x + Δx) = k and f (x) = k, so that

dy
dx

= lim
Δx→0

k − k
Δx

= lim
Δx→0

0 = 0.

Again, we do not have to divide by zero because (k − k) = 0 and 0/Δx = 0.
Geometrically the curve of y = k is a horizontal straight line at altitude k. At
any point on the line, the slope is 0.

Derivative of Other Functions

The derivatives for different functions are normally different themselves.
As a consequence, one must determine for each function what its deriva-
tive is. This might seem to involve a bit of labor, especially if we had to apply
the definition in Equation 2.22 to complicated functions. But fortunately this
is not necessary, because most functions can be analyzed into parts and the
derivatives of these parts taken separately and then added together. More-
over, it is possible to memorize tables of derivatives of common elementary
functions that have already been derived using Equation 2.22. Some common
derivatives are given in Table 2.1.

As an example of the use of Table 2.1, consider the problem of finding
values of x that will either maximize or minimize the function

y = x3

3
− x2

2
− 2x + 1.

By rule 8 in Table 2.1, we see that the derivative of a function that is the sum
of some other functions is equal to the sum of the derivatives of the other
functions.
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TABLE 2.1

Derivatives of Common Functions

Function Derivative

1. y = k
dy
dx

= 0

2. Y = x
dy
dx

= 1

3. Y = kx
dy
dx

= k

4. y = axn dy
dx

= anxn−1

5. Y = ex dy
dx

= ex

6. y = ax dy
dx

= ax ln a

7. y = ln x
dy
dx

= 1
x

If u = u(x) and v = v(x) are functions of x, then for

8. y = u + v
dy
dx

= du
dx

+ dv
dx

9. Y = uv
dy
dx

= u
dv
dx

+ v
du
dx

10. y = u
v

dy
dx

= v(du/dx) − u(dv/dx)

v2

11. y = sin x
dy
dx

= cos x

12. y = cosx
dy
dx

= − sin x

13. y = tan x
dy
dx

= sec2 x

Hence

dy
dx

= x2 − x − 2.

To find the points of x that correspond to maximum or minimum values of y,
we need to set the derivative of y equal to zero, and then solve for x, that is,
solve

x2 − x − 2 = 0.

The solution to this is obtained by factoring, so that we have

(x + 1)(x − 2) = 0.
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We see that solutions that will make the left-hand side of the equation equal
to zero are x = −1 and x = 2. In other words, at x = −1 and x = +2, y is either
a maximum or a minimum.

When a function is known to have only a maximum or a minimum, there
is no question of whether one has found either a maximum or a minimum
when he or she finds an x that makes the derivative of the function equal to
zero. However, in those cases where both maximum and minimum solutions
exist, ambiguity exists.

Several methods may be used to resolve this ambiguity: (1) By direct com-
putation, one can compute values of the function y = f (x) for values in the
vicinity of xm, where xm is a value of x at which the derivative of the function
equals zero. If xm leads to a value for y that is less than the values of y in
the vicinity of xm, then xm is where the minimum is located. If the value of y
at xm is greater than the values of y in the vicinity of xm, then xm is likely a
maximum. (2) A more certain method to use is based on finding the second
derivative of y = f (x). The second derivative is simply the derivative of the
function that is the derivative of y = f (x). One then finds the value of the
second derivative when x = xm. If the second derivative is positive, then xm
corresponds to a minimum y. If the second derivative is negative, then xm
corresponds to a maximum y.

To illustrate the use of the second derivative, consider the problem thus
cited in which

dy
dx

= x2 − x − 2.

The second derivative is

d2y
dx2 = 2x − 1,

where d2y/dx2 is the symbol for the second derivative. Substituting –1 for x
into the equation for the second derivative, we have

2(−1) − 1 = −3.

Since the value of the second derivative when x = −1 is negative, y must be
a maximum when x = −1. Substitute x = 2 into the equation for the second
derivative:

2(2) − 1 = 3.

Since the value of the second derivative is positive when x = 2, y must be a
minimum when x = 2.

A word of caution is necessary regarding using zero slope as a sufficient
indication of a maximum or minimum for a function. Some functions will have
zero slope where there is neither a maximum nor a minimum; for example,
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the function y = x3 has a zero derivative when x equals 0, but the function is
at neither a maximum nor a minimum at that point. So, zero derivative of the
function at some point is only a necessary but not a sufficient condition that
there exists a maximum or a minimum at that point. A sufficient condition for
a maximum or a minimum is that the second derivative does not equal zero
at the point where the function has zero slope.

Partial Differentiation

In multivariate techniques such as structural equation modeling, we are con-
cerned with functions not of a single independent variable but of many
independent variables. Thus we may be interested in knowing how to treat
change in the function in connection with changes in the independent vari-
ables. This may be done by allowing only one variable at a time to change
while holding the other variables constant and by observing the degree of
change in the value of the function. In this connection it is possible to obtain
the derivative of the function in the direction of one of the independent vari-
ables, treating all other independent variables as constants. Such a directional
derivative is known as a partial derivative. For example, suppose we wish
to know the rate of change of the function y = 3x2 + 12xz + 4z2 when we
change x while holding z constant. We can obtain the partial derivative of y
with respect to x as

∂y
∂x

= 6x + 12z.

Here we obtained the derivative in the usual way, but we treated the other
independent variable, z, as a constant for the differentiation. On the other
hand, the partial derivative of y with respect to z is

∂y
∂z

= 12x + 8z.

Again, we now treated x as if it were a constant while taking the derivatives
of the terms with respect to z. So, there is very little new to learn to obtain
partial derivatives.

Maxima and Minima of Functions of Several Variables

In Figure 2.11, we illustrate a function z = f (x, y) of two independent variables
x and y with a relative maximum. Consider that at a maximum or a minimum
for the function z = f (x, y), there must be some point (x, y) on the plane surface
defined by the x and y axes, where the slopes of the function in the directions
of the x and y axes are zero, respectively. In other words, a necessary condition

© 2009 by Taylor and Francis Group, LLC



“K10039_C002.tex” — page 59[#49] 15/4/2009 16:15

Mathematical Foundations for Structural Equation Modeling 59

y

z

x
(x, y)

FIGURE 2.11 Graph of a function of two variables illustrating point (x, y) at which function
z = f (x, y) is a maximum. Note that tangents to surface of function in directions of x and y axes
at point (x, y) are horizontal, indicating zero slopes in those directions.

for a maximum or a minimum is that at some point (x, y)

∂z
∂x

= 0,

∂z
∂y

= 0.

To establish the sufficient conditions for a maximum or a minimum, define
the Jacobian matrix of second derivatives of z evaluated at (x, y) as

J =

⎡
⎢⎢⎢⎣

∂2z
∂x2

∂2z
∂x∂y

∂2z
∂y∂x

∂2z
∂y2

⎤
⎥⎥⎥⎦ .

A sufficient condition that there exists a maximum or a minimum at this
point (x, y), where ∂z/∂x = 0 and ∂z/∂y = 0, is that the determinant |J| �= 0.
If |J| < 0, then z is a relative maximum at (x, y); on the other hand, if |J| > 0,
then z is a relative minimum at (x, y).

For example, investigate the relative maxima or minima of the function
f (x, y) = 2x2 + y2 + 4x + 6y + 2xy. Taking the partial derivatives of f (x, y)
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with respect to x and y and setting them equal to zero, we obtain

∂f
∂x

= 4x + 4 + 2y = 0,

∂f
∂y

= 2y + 6 + 2x = 0

or

4x + 2y = −4,

2x + 2y = −6.

Solving this system of simultaneous linear equations for x and y, we obtain
x = 1 and y = −4 as the point where f (x, y) is at a possible extremum. The
second derivatives of f (x, y) are

∂2f
∂x2 = 4,

∂2f
∂x∂y

= 2,

∂2f
∂y∂x

= 2,
∂2f
∂y2 = 2.

Hence the Jacobian matrix is

J =
[

4 2
2 2

]
,

whose determinant is |J| = 4. Hence, with the determinant of the Jacobian
matrix positive, an extremum must exist and it is a minimum.

Constrained Maxima and Minima

Up to now we have considered maximizing (or minimizing) a function of
the type z = f (x, y), where x and y are independent of one another. We shall
now consider maximizing (minimizing) a function of the type z = f (x, y),
where x and y must maintain certain dependent relationships between them
as defined by one or more equations of the type g(x, y) = 0. The most general
and powerful method for finding solutions for x and y that maximize f (x, y)

under constraints is the method of Lagrangian multipliers. Assuming there
is one equation of constraint g(x, y) = 0, we first form the function

F(x, y) = f (x, y) + θg(x, y),
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where θ is an unknown multiplier (to be determined) multiplied by the
equation of constraint. Then we form the equations

∂F
∂x

= ∂f
∂x

+ θ
∂g
∂x

= 0,

∂F
∂y

= ∂f
∂y

+ θ
∂g
∂y

= 0,

∂F
∂θ

= g(x, y) = 0,

which we then solve for x, y, and θ.
For example, maximize the function f (x, y) = 10 − 2x2 − y2 subject to

the constraint x + y − 1 = 0. First, form the equation F = 10 − 2x2 − y2 +
θ(x + y − 1).

Then

∂F
∂x

= −4x + θ = 0,

∂F
∂y

= −2y + θ = 0,

∂F
∂g

= x + y − 1 = 0.

Solving this system of equations for x, y, and θ, we obtain x = 1/3, y = 2/3,
and θ = 4/3. In other words, f (x, y) is a maximum at x = 1/3 and y = 2/3
when x and y are constrained so that x + y − 1 = 0.

The method of Lagrangian multipliers just described may be general-
ized to functions of more than two independent variables and problems
with more than one equation of constraint. In general, given a function
f (x1, x2, . . . , xn) to maximize subject to the constraints defined by the equations
g1(x1, x2, . . . , xn) = 0, . . . , gm(x1, x2, . . . , xn) = 0, m ≤ n, form the function

F(x1, x2, . . . , xn) + θ1g1(x1, x2, . . . , xn) + · · · + θmgm(x1, x2, . . . , xn).

Then obtain the equations

∂F
∂x1

= ∂F
∂x2

= · · · = ∂F
∂xn

= 0,

which may be combined with the m equations of constraint to form a system
of n + m equations in n + m unknowns which may then be solved. In factor
analysis and structural equation modeling, we find that the solutions for such
systems of equations require iterative, numerical methods instead of direct
algebraic manipulation.
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Causation

Historical Background

After completing work on confirmatory factor analysis and analysis of
covariance structures around the end of 1968, Karl Jöreskog had laid the
groundwork for a methodological development that was to have consider-
able impact on the behavioral and social sciences in the years to follow. His
interests turned to structural equation modeling, a topic that had its first ori-
gins in the field of genetics in the work of Sewell Wright (1921, 1931, 1934)
on path analysis, but which had been extended by biometricians (Turner and
Stephens, 1959) and sociologists (e.g., Blalock, 1964, 1969; Duncan, 1966; Land,
1969; Heise, 1969; Costner, 1969) and approached independently from the the-
ory of regression by econometricians (e.g., Klein, 1953, 1969; Wold and Jureen,
1953; Koopmans and Hood, 1953; Goldberger, 1964; Fisher, 1966). Jöreskog’s
contribution to this literature was to merge the latent variable idea of com-
mon factor analysis with the traditional theory of systems of linear structural
equations of measured variables, to produce a new and more general model
along with an efficient algorithm for the estimation of its parameters. By the
fall of 1970, he had completed a paper on his new system and presented it
at a conference cosponsored by the Social Science Research Council and the
Social Systems Research Institute of the University of Wisconsin at Madison,
Wisconsin, November 12–16, 1970. This paper, published as Jöreskog (1973),
was the first of many papers from his and others’ laboratories that was to
be concerned with the new field of structural equation modeling with latent

63
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variables. The conference also brought key figures concerned with path anal-
ysis, structural equations modeling, and causal modeling with correlational
data from many fields and gave new impetus to the development of this
methodological area. Because of the generality of Jöreskog’s model and the
practicality of the computing packages that he made available for its imple-
mentation, much of the direction of this field in the years to follow were to be
in terms of this model. Amajor consequence of Jöreskog’s model and the com-
puter programs available for its implementation was an awakened interest of
researchers who traditionally conducted correlational research in the issues
of causality and the study of causal models, because the new methodology
made this seemingly possible.

A question naturally arises, why did such interest not develop among this
kind of researcher earlier? Why was the emphasis for so long primarily upon
exploratory analysis and correlation and not on hypothesis testing and causal-
ity? It is not easy to determine precisely why this was the case, although it
is clear that, at its inception, the earliest form of structural equation model-
ing, path analysis (Wright, 1921), met considerable hostile resistance. Niles
(1922) attempted to discredit Wright’s contrast of causality with correlation
with copious citations from Pearson’s The Grammar of Science (Pearson, 1911).
Pearson, who provided the maximum-likelihood estimate of the correlation
coefficient and the seminal work on multiple correlation, was also a noted
philosopher of science, perhaps the last of the great nineteenth-century British
empiricists and a forerunner of the logical positivist movement that sprang up
later in Vienna. Pearson regarded causality as association and believed that
the physics of his day was moving away from determinism to probabilism. As
with most nineteenth-century empiricists, he stressed induction (generalizing
from particulars) as opposed to the use of hypotheses and hypothesis test-
ing (see Mulaik, 1985, 1987). He regarded correlation as the new replacement
of causation, with correlations less than unity indicative of the imperfect or
probabilistic nature of causation. Niles (1922) thus argued that the distinction
between causality and correlation was nonsense, because in the new way of
thinking causality is correlation. He also rejected path analysis because he
believed it required one to formulate causal hypotheses totally a priori, and
he believed there was no point at which one could stop in tracing back the
causes of things.

That did not dissuade Wright from persisting in developing his new tech-
nique. Wright (1923) argued that causality implied directionality, whereas
correlation did not. He argued that researchers had the knowledge needed
within an area to formulate causal hypotheses, so hypotheses are not gener-
ated purely a priori. And he believed it was possible to isolate a portion of the
universe to study the causal influences on and within such a limited system.
Other geneticists were also not dissuaded from exploring Wright’s path ana-
lytic methods. But it is not clear why psychologists and sociologists at this
time did not discover this methodology and seek to incorporate it into their
own research. Perhaps they did not read the genetics journals.
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There were other influences that inhibited the development of a hypothesis-
testing methodology designed to study causal relations using correlation and
covariance. Although by the beginning of the twentieth century physicists
were developing hypothesis-testing approaches to science, there were still
strong beliefs in some fields of science, held over from the nineteenth cen-
tury, that science is basically inductive and should avoid hypotheses and
stick to description and careful generalizations from “the facts” (Laudan,
1980; Mulaik, 1985). And then, just before and after World War II, when so
many members of the logical positivist movement, then centered in Vienna,
migrated to English-speaking universities to escape Naziism, there arose
among philosophers of science the claim that science had abandoned causal-
ity. Some claimed causality is a metaphysical concept, whereas others claimed
causality is simply determinism in the form of functional relationship and no
longer compatible with the probabilism of the new quantum physics (Schlick,
1932/1959). Causality was also displaced by logical implication in the efforts
of logical empiricists to express all scientific relations in logical form (Hempel,
1965). Not the least influence was a feeling that the behavioral and social sci-
ences were still in an exploratory mode, with insufficient knowledge on which
to base causal hypotheses. There was also the maxim Correlation does not imply
causation, which because of Pearson’s influence on the field of correlational
statistics became the received wisdom, no doubt with the encouragement of
experimentalists.

Causation among the Ancients

The idea of causation, of course, is ancient, being closely associated with the
abandonment of mythic forms of explanation and the rise of science among
the Greeks. Aristotle regarded causation as explanation and synthesized the
major forms of explanation developed by his predecessors into four forms of
causation: (1) material, (2) formal, (3) efficient, and (4) teleological. Causal expla-
nations explain something by showing how it is dependent on something
else. Explaining things in terms of material causes involves showing how cer-
tain properties of things are due to substances of which they are made or the
effects of certain substances. For example, a statue is heavy and hard because
it is made out of stone. Ice forms at the top of milk containers at temperatures
below 0◦C because milk contains water. A man dies because his wife puts
arsenic in his food. Formal causes explain things in terms of their forms. An
arrow penetrates the flesh because of the shape of its wedge-like point, which
concentrates the force at a point and moves aside the flesh as it penetrates by
the principle of the inclined plane. A fist-sized rock moved by a similar force
as imparted to an arrow does not penetrate flesh, because, due to its shape,
the rock’s force is spread out over a greater area that results in insufficient
force at any point to penetrate the flesh. The shape of a wing causes lift when
air moves across it. Many psychological explanations today invoke formal
causation: Some people get higher grades in school because they are more
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intelligent. Intelligence is a form of behavior as measured by tests in which
a person demonstrates the ability to correctly infer the nature of a rule from
seeing simply some instances of the rule (Guttman, 1965). Some people are
prone to anxiety attacks because they have more labile parasympathetic ner-
vous systems. Efficient causes explain things in terms of the agents or events
that make the things take on the forms they have: A slab of marble looks like a
man because a sculptor hewed at the stone until it took the shape of a man. The
tree fell because it was struck by lightning. The boat turned to the left because
the helmsman pushed the tiller to the right. Some dogs salivate whenever a
bell rings because they have been conditioned to do so by giving them meat
powder immediately after ringing the bell. Teleological explanations explain
things in terms of the final forms or states that the things are changing into:
An acorn develops as it does because its final state is to be a tree. A statue is
made to achieve the final state of a pleasing representation of a man for others
to see. A man goes into a restaurant because he wants to eat.

Aristotle’s writings were lost to the West during the Dark Ages after the fall
of Rome and were found again only during the later Middle Ages. Aristotle
had rejected the purposeless view of nature held by his atomist predecessors
to argue that the universe is like a living, growing, developing thing, which
was to be explained not just materially, formally, and in terms of efficient
causes, but teleologically, in terms of its final ends and purposes. During
the Renaissance other Greek writers were studied, and platonist/atomist
and, subsequently, mechanistic forms of thought reemerged to challenge
Aristotelian thought, and these rejected especially teleological explanations
and favored efficient causation as the basic form of explanation.

Causation in the Seventeenth Century

Descartes

The rationalist French philosopher René Descartes (1596–1650) held that the
mind gains knowledge by means of the processes of analysis and synthesis,
which he called intuition and deduction. Analysis or intuition breaks things
down into clear and distinct component elements or parts, and synthesis or
deduction forms composites of them by putting parts together. He sought
certain knowledge by analyzing philosophical problems into fundamental
and certain ideas, and then synthesizing them by a “deduction” involving a
continuous and uninterrupted action of the mind that joins them successively
together into complex truths. Descartes further held that while many ideas
arise solely from experience or imagination, some ideas do not, but rather are
innate, being stimulated or caused to appear before the mind by experience.
The ideas of extension, solidity, quantity, and mobility of substances he held
are innate to the mind. In fact, reason, the laws by which thinking proceeds, is
innate, and the principle of causation, of noncontradiction, that nothingness
cannot be the efficient cause of anything; the ideas of geometry are all innate.
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However, Descartes’ theory of causation is not well developed compared with
that of philosophers who followed him. Descartes is also a major founder of
the school of Continental rationalist philosophers such as Spinoza, Leibniz,
and Wolf, who followed him. The rationalist school sought certain knowledge
that could be deduced logically from fundamental, self-evident truths.

Locke

In England, a younger contemporary of Descartes, John Locke (1632–1704),
while admiring and even adopting some features of Descartes’ method of
analysis and synthesis, rejected Descartes’ ideal of certain and incorrigible
knowledge. Locke, as a physician, regarded human knowledge as verifiable
and corrigible by experience, but rarely, if never, absolutely certain, while still
probable to a degree by experience. Locke rejected outright Descartes’ idea of
innate ideas. He sought then to develop an alternative theory of how ideas
and knowledge are obtained from experience and the role of reasoning from
experience in acquiring knowledge. As a consequence, Locke is considered
to be the founder of the school of British empiricism, which includes Locke,
George Berkeley, David Hume, James Mill, John Stuart Mill, and even Karl
Pearson.

For Locke (1694/1905/1962), all of our ideas have their origins in expe-
rience. Reason then operates upon our experience-derived ideas to achieve
knowledge. His method then shows by analysis the origins of our ideas in
simple ideas of sensory and reflective experience, and then by synthesis how
more complex ideas are derived from the simple ideas. Some of his atten-
tion is directed to showing how what Descartes regarded as innate ideas are
derived from experience. He also focuses on an analysis of the “powers of the
mind,” which is a kind of faculty theory of mind. Our interest here, however,
is principally upon Locke’s view of causation. This is closely joined with
Locke’s view of “power,” which is a fundamental concept in his system of
thought.

The idea of power, Locke says (1694/1905/1962, p. 128), contains in it a
relation between substances and things. There are two forms of power: active
and passive. Active power is the potential that an agent’s acting in certain
ways or a substance’s having certain properties will make certain kinds of
changes in certain other things. Passive power is the potential to change in
a certain way when operated on in a certain way by an agent or a certain
substance. Thus power inheres in things or substances. However, our idea of
power is nothing more than an inductive generalization from what we have
observed in the past, “that like changes will for the future be made in the
same things by like agents, and by the like ways” (p. 127). But because Locke
believes that some simple ideas such as extension, size, form, and motion
reflect corresponding properties in external things, which thus are the causes
of these simple ideas, he believes that power also may be a simple idea caused
by the acts and reactions of external things. Nevertheless, for power involving
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action, we have the clearest idea of the power that produces action: For the
beginning of motion, by reflecting on what occurs in ourselves, we find that by
willing it we move parts of our bodies at rest. This Locke believes is a clearer
and more distinct source for the idea of power than gained by observing
objects (Locke, 1694, p. 130). Locke thus wants to reduce the idea of power to
our own experience of the ability to will our bodies to act in certain ways.

An associated idea of causation is substance. The word means “that which
stands under.” This is a central concept of the rationalists because substance is
supposed to be that to which qualities and properties such as color and weight
inhere. Since powers are qualities and properties, they inhere in substances.
But people in Locke’s time had little knowledge derived from experience of
the substrate of things and how the properties and qualities are supported
by the “substance” underlying them. So substance effectively, for Locke, was
“the supposed, but unknown, support for those qualities we find existing,
which we imagine cannot exist sine re substante, ‘without something to support
them’ ” (Locke, 1694/1905/1962, p. 195). But once we have the general notion
of a “substance,” we have the idea of particular substances, such as gold, a
man, horse, blood, etc. Locke then says “It is the ordinary qualities observable
in iron or a diamond, put together, that make the true complex idea of those
substances . . .” (p. 195). And one “. . . has no other idea of those substances
than what is framed by a collection of those simple ideas which are to be
found in them . . .” (p. 196). At best, for Locke, the notion of a substance was
something in thought on which to hang the qualities and to provide for a
convenient, shortened way to think about collections of simple ideas. But
there was no substance to “substance.”

Power for Locke was the major part of our ideas of complex substances.
Passive powers of substances were capacities to be changed by other sub-
stances. Thus the capacity for iron to be drawn toward a magnet was a passive
power of iron. A magnet had the active power to draw iron to it. In short,
an active power functions as a cause and a passive power as an effect. Fur-
thermore, these powers are simply the potential to make sensible changes
in sensible qualities in other objects or to be changed by changes in the sen-
sible qualities of other objects. But the simple idea of a power of a specific
substance resides in the changes observed in the sensible qualities of a thing
(Locke, 1694/1905/1962, p. 199). (For Locke, perception of change in sensible
qualities itself is a simple idea given by the senses, on which point, we shall
see, he differs from successor empiricist philosophers.) And so causation is
grounded in sensible changes in qualities. Substances are “nothing else but
a collection of a certain number of simple ideas, considered as united in one
thing” (p. 206).

Also important for Locke was that things do exist independently of our
minds and cause the sensible ideas we have. He held that there were three
kinds of qualities of physical things. Primary qualities, such as extension, mag-
nitude, quantity, shape, and motion, or rest, are given to us as simple ideas.
By means of the senses, these are directly and immediately given properties
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of things as they truly are. Then there are secondary qualities, such as color,
taste, warmth, smells, and sounds, which are produced by primary qualities
of things. These are sensed qualities, but they do not have immediate and
exact counterparts in things, and are merely effects on the senses of the pri-
mary qualities of things. Finally, there are powers to make changes in bulk,
figure, texture, and motion of another body.

Eighteenth-Century Empiricists

Berkeley

George Berkeley (1685–1753) was an English cleric who was appalled at the
degree to which the various atheists of his time depended on the so-called
existence of material substance while holding that it is difficult to understand
how it could be created out of nothing by God’s divine command. He sought
to show that nothing exists independently of mind. Furthermore, he rejected
both Descartes’ and Locke’s dualism of mind and matter. All we have given
to us is in the mind and to think of something beyond as an independent
world is unnecessary. There is but one reality, and to be is to be perceived. As
for things that we do not perceive but which we believe nevertheless exist,
we are justified in so believing by our belief that God perceives them when
we do not, which is a hypothesis that accounts for all the facts of experience.
However, beyond his preoccupation with the Divine, in general, Berkeley’s
system was simply Locke’s stripped of an external reality. All we have
are ideas.

Hume

It fell to David Hume (1711–1776) to work out in unflinching detail the logical
implications of Locke’s empiricism with Berkeley’s addendum that there is
no need to consider an external reality, and Hume’s exclusion of God’s mind
(Hume, 1739, 1777). The fundamental reality is mental, and the atomic ele-
ments of that reality are the vivid impressions of sense or reflection. Ideas in
turn are but less vivid copies of impressions. (Hume avoids saying where
ideas are kept or come from. They just appear at some points in the mind.)
Complex ideas are composites of simple ideas. We observe furthermore that
complex ideas occur in certain categories that suggest the existence of uni-
form principles of how the mind functions. Hume distinguished three kinds
of principles involved in forming three general categories of complex con-
cepts: (1) resemblance, (2) contiguity, and (3) cause and effect. Together they
represented different forms of association of ideas: (1) association or grouping
of simple ideas into single (complex) ideas because of similarity; (2) associ-
ation of ideas because they occur together in space; and (3) association of
distinct ideas because they seem to regularly follow one another in time.
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For the empiricists, causality was a learned association between certain
kinds of events. Causality is not a necessary connection. John Locke argued
that the idea of causality arises initially in our experience where we learn to
associate our actions with certain consequences and then we observe “con-
stantly” that certain actions produce certain results and generalize that the
same actions will produce the same results in the future. In fact, causality,
David Hume argued, is a kind of illusory connection because there is noth-
ing in experience that corresponds to the causal connection. There is just the
mysterious association of one kind of event with another that follows it on a
regular basis that leads to our expecting the second kind of event whenever
we experience the first. But logically, there is no necessity that the preceding
event will always be followed by the second kind of event. Some other kind
of event might follow. Thus Hume’s concept of causality is an event–event
concept, wherein the cause, so-called, is an event that precedes the effect event
in time. An event is some kind of complex of sense impressions that occurs
at a given point in time.

Similarly, the idea of substance, Hume held, was also an illusion, for there
is no necessity to posit an external reality beyond what is given to us imme-
diately in our minds. Substances, things, are simply certain kinds of collages
of simple ideas that we experience regularly and come to expect will thus
co-occur in a similar way in the future. In fact, the idea of the self seems to be
nothing more than the introspected collection of ideas and impressions that
we regularly experience. Nowhere do we experience in our minds an entity
that is the self. In this way Hume pushed empiricism to a skeptical conclu-
sion, that there is no external world, only the mind’s construction of the world
through associative processes, and there is no necessity in our ideas about the
world. And there is no “self.” Consequently, later empiricist philosophers
tended to debunk the ideas of substance, causality, and of the self, and to
attempt to drive the idea of causation out of science.

Immanuel Kant

Toward the end of the eighteenth century, Immanuel Kant (1724–1804) in
Prussia, although trained in the rationalist tradition, and functioning as a
professional philosophy professor, came to deeply admire the works of Isaac
Newton on mechanics. Newton had claimed not to feign hypotheses for
his explanations of physical phenomena, but rather used experiment and
the testimony of the senses. Rationalist “natural philosophers” or scientists,
on the other hand, tended to proceed by formulating systems grounded in
fundamental self-evident truths from which they would seek to deduce the
phenomena observed. The physicist Isaac Newton obviously succeeded way
beyond anything rationalist philosophers had produced, in using simple basic
assumptions and experimental findings in understanding and predicting a
broad range of physical phenomena that held up with experiment. Newton’s
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system was one that combined reason with experience, on the assumption that
the world was understandable with reason. But Hume had driven a wedge
between reason and experience, and the challenge was to find how reason
could operate with experience (Jones, 1952).

At age 57, in 1781, Kant published Critique of Pure Reason, arguing that the
way of pure reason was a failure in understanding the world. He sought to
reconcile rationalist and empirical thought in arguing that we do not know
things as they are in themselves independent of the mind. Rather we know
things only in terms of a priori categories or schemas by which we synthesize
(join together, combine) what is given to us by the senses. Causality is an
a priori schema by which the mind organizes and synthesizes experience by
showing how certain attributes of things are dependent on other attributes of
things. However, causal connections are not logically necessary connections.
Logic demonstrates necessity by establishing identity under the principle of
contradiction. The conclusion of a syllogism can contain nothing more than
what is in its premisses. But an effect is more than or different from its cause.
The necessary connection in causation is an aspect of the synthesizing schema
of causation, but the necessity is not in the material provided by the senses,
but in the a priori synthetic form provided by the mind. This form presumes a
schema whose components are the attributes of the causal substance or object
and the attributes of the affected substance or object, and their relation is one
in which the effect is dependent on the cause for its existence.

Thus we can reason about the implications of causal connections, using the
necessity of the a priori synthetic form in the reasoning. But the conclusions
would be corrigible by experience because the component of the reasoning
about the world introduced by experience via the senses is necessarily incom-
plete, limited, and conditioned, simply because the knower is incapable of
perceiving the whole of existence, past, present, or future from a finite point
of view.

Watkins (2005) argues from a comprehensive review and understanding
of Kant’s works and the works of his contemporaries and predecessors that,
contrary to some commentators on Kant in the English-speaking world, Kant
did not write a refutation of Hume in the Critique of Pure Reason. The German-
speaking world of Kant’s time did not take Hume’s skeptical stance seriously,
and no one felt the need to write a refutation of Hume. This was the case
for Kant, who wrote for a German-speaking, professional, rationalist philo-
sophical audience. Kant simply offered his view of how pure reason alone
was ineffective in understanding the world and yet reason and experience
together can work.

In fact, Watkins (2005) argues that Kant’s views on causality are so dif-
ferent from Hume’s that there is no common ground from which to write
a refutation relevant to the other. Whereas Hume takes an event–event suc-
cession of sensations in time as a given, and regards causation as a familiar,
regular succession of events, Kant treats causation in a manner rather like
Locke, as involving powers of substances to produce certain effects in certain
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other substances. The powers are grounded in the essential yet empirical
nature of the substances. The essential nature of a substance concerns those
attributes without which the substance would not be what it is. This contrasts
with accidental attributes that can change without changing the substance’s
essential nature.

Kant differs from Locke regarding the concepts of substances having
attributes as a synthetic a priori category on which the human understanding
depends for its reasoning about experience. The way in which humans think
about the world depends on the use of this category. This category can only
be used as a framework to reason about experience. It cannot be used as do
the rationalists, apart from experience. The idea of substance is not useless or
unnecessary, because without it we cannot reason about things and objects in
the world. In fact, the whole set of synthetic a priori concepts was necessary
to have a concept of the world as a unity for the knower.

Kant was also intrigued with concepts that came in threes. In fact, his famous
table of categories of objective judgment has four major classes: (1) of quantity,
(2) of quality, (3) of relation, and (4) of modality. In each of these classes, there
are three categories. Kant’s explanation of his categories in the Critique of
Pure Reason is sparse, and many scholars have puzzled over their manner
of formation in threes. My understanding of them is based on a footnote in
Kant’s (1790) Critique of Judgment, which is a clearer statement of the principle
of the categories’ occurrence in threes.

That my divisions in pure philosophy almost always turn out tripartite
has aroused suspicion. Yet that is the nature of the case. If a division is to
be made a priori, then it will be either analytic or synthetic. If it is analytic,
then it is governed by the principle of contradiction and hence is always
bipartite (quodlibet ens est aut A aut non A [Any entity is either A or not A].
If it is synthetic, but is to be made on the basis of a priori concepts (rather
than, as in mathematics, on the basis of the intuition corresponding a priori
to the concept), then we must have what is required for a synthetic unity in
general, namely, (1) a condition, (2) something conditioned, (3) the concept
that arises from the union of the conditions with its condition; hence the
division must of necessity be a trichotomy. (Kant, p. 198; 1790/1987, p. 38)

For Kant, following Descartes, the mind functions in terms of analysis
and synthesis. Analysis breaks things down into more fundamental distinct
components or concepts, whereas synthesis puts components and concepts
together into new compositions and concepts. Kant’s threes or triples just
represent the different aspects of synthesis. First, there are categories consid-
ered by themselves, without reference to other categories. This is a first-level
concept. Second, given one category, one considers another category as it is
distinct from or contrasted with the first. This is a second-level concept. It
represents a form of synthesis, in that the two categories must be consid-
ered together to note their distinctness. Third, one considers a pair of seconds
joined or synthesized together into a new whole to be treated as a unit. The
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act of joining these together is a distinct act of the mind from that of form-
ing simple pairs of distinct categories or even from considering individual
categories. It involves a third-level concept, a synthesis. Consider an example
in linguistics: Suppose we have a noun phrase, then a verbal phrase, and next
we note they are distinct. Then consider their further synthesis in a sentence.

Kant (1787/1996) considered the triple in the class of relation that contains
causality: First, one begins with an attribute of some object without con-
sideration in awareness for any other attribute or object. Kant draws upon
Aristotelian philosophy that divides an object’s attributes into substance (the
essential attributes without which the object would not be what it is) and
accidents (attributes that may change or be changed without destroying the
object’s essential nature). Then one considers another attribute of the same or
some other object that depends on the original attribute for its state or exis-
tence. This requires simultaneously being aware of both attributes and their
distinction, as might occur in vision when one sees simultaneously two dis-
tinct objects and their respective attributes. This is what originally causality
concerned, a relation of dependence between attributes of objects (note that
attribute and object stand in a relation also, known as inherence). Kant then
went on to form a third-level concept from these pairs in the idea of “commu-
nity,” which today we would call a system. This again requires being able to
represent all these pairwise relations simultaneously in awareness and how
they are interrelated. Consider a community of objects acting on one another’s
attributes by mutual and reciprocal causation.

Whereas Hume took time and succession in time for granted, Kant held
that the categories under the mode of relation are essential to determinations
of time. Kant held that the sense of change in time was grounded in the
substance–attribute relation. The essential or enduring substrate of attributes
that do not change determines a substance, whereas accidents are changes in
some of the attributes of the substance that are not essential to the substance,
without which it would not be what it is. Change is sensed in the contrast
of the change with the enduring permanence of the substance. Thus, time
determination depends on something permanent against which changes can
be compared.

Kant held that all changes in time occur according to the law of cause
and effect. Hence the determination of objective succession in time depends
on relations of cause and effect between the attributes of substances. For
example, a clock consists of parts of a mechanism made of enduring and
relatively unchanging materials, which nevertheless change in their motions
or states according to causes governing the mechanism of the clock. Against
the clock we are able to compare objectively the order in which events in
appearance occur.

Finally, Kant asserted that “all substances as they can be perceived in
space as simultaneous are in thorough-going interaction” (Kant, p. A211).
Again mutual interactive causality in a community of substances determines
simultaneity.
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Whereas Hume’s concept of causation involves certain events being
succeeded regularly in time by other events, Kant held that causes are not
events but powers of substances (here thought of as objects) to produce effects
in other substances. Powers are derived from the essential natures of the sub-
stances. Furthermore, unlike Hume’s concept of successions of events in time,
effects occur simultaneously with their causes and not successively in time.
Kant (1787) says “The majority of efficient causes in nature are simultaneous
with their effects, and the temporal sequence of the latter is occasioned only
by the fact that the cause cannot achieve its entire effect in one instant. But in
the instant in which the effect first arises, it is always simultaneous with the
causality of its cause, since if the cause had ceased to be an instant before, then
the effect would never have arisen” (pp. A203, B248). The effect of a change
in motion on one billiard ball when struck by another in motion (the cause)
is simultaneous with the cause. A billiard ball placed on a pillow causes, by
the force of gravity due to its weight, the effect of an indentation in the pillow
that is simultaneous with the cause. The die press forces the die into sheet
metal, which simultaneously conforms its shape to the die.

Kant also gives the mind more freedom in imagination than Hume to for-
mulate causal hypotheses rather than being passively driven by processes
of association based on the order in which sensory impressions are given to
the mind.

I think Kant’s introduction of synthetic a priori concepts was a fundamen-
tal insight gained from studying Newton’s Principia that provided laws of
motion. The first law, of inertia, states that an object at rest will remain at rest,
and an object in motion will remain in motion in a straight line with constant
velocity, unless acted upon by some external force. We have no experience of
objects at absolute rest, nor of those in motion without forces acting on them.
So this concept does not come from experience. Yet Newton’s law of universal
gravitation argues that the force of attraction between every pair of bodies
in the universe is directly proportional to the product of their masses and
inversely proportional to the square of the distance between them. So every
body in the universe has a force of attraction acting between it and every other
body. For Kant the law of inertia represented an a priori principle by which
in combination with other principles based on experience and quantities also
derived from experience, we may understand the motions of objects. So what
Kant teaches us is that reasoning about the world involves both experience
and synthesizing concepts introduced a priori that provide a framework or
scaffold on which experience is built.

Something analogous occurs in our modeling. To represent phenomena by a
model, we must introduce a priori a minimum set of constraints on the entities
of our models so that they may be put in correspondence with observed
entities and from which empirical values may be estimated. When this occurs,
the number of observed parameters in the phenomenon equals the number
of estimated parameters in the model. But any number of such models may
be constructed that all reproduce the same observed entities. So, such models
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cannot be tested for lack of fit, because they necessarily always fit. Hence
additional constraints must be imposed a priori on the model’s entities so that a
possibility may exist that the model does not conform to the observed entities.
Some of these additional constraints may be taken from prior experience. But
there will remain some constraints that by themselves cannot be proven true
or false, but simply provide a framework within which additional constraints
may be inserted that together with the original constraints may constitute a
model that can be tested against observed phenomena.

Causation among Nineteenth-Century Empiricists

British scientific thought in the nineteenth century was basically empiricist
and inductive (generalizing from particulars) and mostly unaware of Kant.
The British empiricist John Stuart Mill (1874) revived Francis Bacon’s method
of eliminative induction in developing four methods of discovering causa-
tion. Karl Pearson, the founder of modern multivariate statistics at the end
of the nineteenth century, was perhaps the last leading nineteenth-century
British empiricist. Trained as a physicist, and influenced by the empiricist
Austrian physicist Ernst Mach, Pearson (1892/1911) wrote a popular book,
The Grammar of Science, on the philosophy of science from an empiricist stand-
point. Pearson emphasized the idea of causation as association, and linked
the new idea of correlation with causality, because correlation was an index of
association. At the turn of the twentieth century, Bertrand Russell in England
further emphasized causality as association.

Causation in the Twentieth Century

In Germany Kant’s idealism evolved into forms he would have hardly recog-
nized as his own. Toward the end of the nineteenth century, however,Austrian
philosophers and scientists were more sympathetic with Humean empiri-
cism than German idealism. They initially stressed induction and association.
Ernst Mach regarded causation as having been replaced in science by the
use of mathematical forms that stressed functional interrelationships among
variables such as between the temperature, pressure, and volume of a gas.
In Vienna, after World War I, a group of ex-NeoKantian Austrian philoso-
phers of science were impressed with Russell’s Principia Mathematica, which
attempted to derive all mathematics from logic. What impressed them was
the fine detail with which one could express relations in experience with the
forms of logical propositions. They sought to express all scientific concepts in
logical form. This led, as we have already noted, to their reliance on the log-
ical form of material implication, for example, IF A, THEN B, as the relation
for expressing contingent dependency relations in experience, but qualifying
that by saying that no necessity is inherent in this use of “logical implica-
tion”; the logical connections are (as Kant might have argued) provided by

© 2009 by Taylor and Francis Group, LLC



“K10039_C003.tex” — page 76[#14] 18/4/2009 16:06

76 Linear Causal Modeling with Structural Equations

the logical language by which concepts are expressed. This group of philoso-
phers became the logical positivists and then the logical empiricists. Because
many of them were Jewish, they almost all emigrated from Austria to England
and the United States after the rise of Fascism in Germany and Austria in the
1930s, eclipsing pragmatic and realist forms of thought in philosophy of sci-
ence circles extant in those countries. We have already noted that the logical
empiricists held critical views of the causality concept. However, in the late
1960s, logical empiricism underwent severe criticism and philosophers of
science since then have diverged into several schools.

Perception of Causation

Hume’s Doctrine

David Hume (1777) developed an introspectionist psychology which was
very influential in the nineteenth and twentieth centuries. For him the sole
reality was what appeared in the mind as vivid impressions of sense and the
fainter ideas based upon them. Try as we might to discern what joined ideas
together either in space or through time, we never discover an impression
of the link or connection between them. Objects are merely familiar collages
of impressions or their corresponding ideas arranged in a certain way in
space. Causality is a familiar succession of kinds of events through time. Both
joinings, either in space or in time, are regarded as associations, which are
forms of synthesis. Hume likened association to gravity, which draws objects
together but acts at a distance without any perceived link or connection. We
can apply the concept of gravity without the need for the idea of a substance
linking the objects together, since there is none, nor any impression on which
it would be based. Similarly we can apply the concept of association with-
out the need for a link between the ideas that is the basis of the association.
Associations simply are driven by the order, arrangement, or successions by
which impressions and their corresponding ideas in thought are given in the
mind. Causal associations are formed and strengthened through repetition in
experience, such as event-kind A’s always being followed by event-kind B.
We may be aware of an impression of familiarity that accompanies a collage of
impressions encountered in the past or a sequence of certain kinds of events
experienced previously. The familiarity will lead us, in the case of succes-
sions through time, to judge that causation has occurred and that, given that
A has occurred, B will follow. But, Hume argued, there is no logical neces-
sity for B to follow A, only that it always has in the past. We can always
conceive, logically, that something else may follow A when it occurs. So,
causation for Hume was a familiar, regular succession of events in experience
that had no more to it than a familiar association and no logical necessity
of occurring.
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Contemporary Cognitive Psychology

Contemporary cognitive psychology regards empiricism’s phenomenalist
psychology as limited in a number of ways. To begin with, phenomenalism
assumes that everything that occurs in the mind is given in conscious aware-
ness. For the empiricist, knowledge begins with sensory impressions, which
become ideas when later the impressions are retrieved in weaker images from
memory. The sensory impressions visually are like patches and small blobs
of color positioned in space and moving through time. One thinks of the
later nineteenth-century impressionist paintings by Monet and Pissarro with
their short strokes of light and color, or of the pointilist technique of Georges
Seurat using tiny dots of paint. The mind forms these impressions into objects
by associating them with similar collages of light and color with which the
observer previously became familiar through repetitious experience of them.

J. J. Gibson

Twentieth-century psychologists such as J. J. Gibson (1950, 1966) rejected the
impressionist account of empiricism, arguing that we are immediately and
directly conscious of solid, invariant objects with textured, three-dimensional
surfaces, and edges. There is no such thing as sensation as a conscious aware-
ness of each receptor cell’s detection of a stimulus. Rather perception is the
gathering and processing of information provided in the physical stimulus,
beginning at the receptor, organizing it, and synthesizing it so that we perceive
objects and their interactions. So, we are aware of objects and not sensa-
tions. Perceptual processing, in fact, most mental functions, occurs outside
of conscious awareness. The concept of the cognitive unconscious, that men-
tal operations occur beyond the knower’s direct awareness, is now a central
concept of cognitive psychology. Consciousness begins with attention to the
contents of short-term working memory (Baars, 1997).

Next, empiricism’s associationist psychology does not endow the animal
nervous system with a sufficiently rich set of analyzers and synthesizers that
are tuned, practically at birth, to features of the environment that the organism
uses to survive. Empiricism was proposed before the theory of evolution and
took no account of how organisms’ perceptual processes have evolved so that
the organisms dealt more efficiently with their physical environments from
the time of their births.

As for causality, we shall argue that we directly and immediately perceive
causal connections between things. We do that by perceiving quantities in
magnitudes and motions of causes that are conserved in the effects of causal
exchanges.

Michotte

Michotte (1946/1963) is regarded as the psychologist who first systematically
studied the perception of causes experimentally, using animated displays of
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colliding objects. Michotte’s displays were crude mechanical representations
of motion and collision of objects. Nevertheless, he was able to create the
appearance of one object moving and colliding with another and the second
object moving off as a result. By adjusting the timing between when the first
object contacted the second and the second object moved off, he was able
to elicit or fail to elicit a judgment of causation in his observers (Twardy
and Bingham, 2002). Contrary to Hume’s assertion that causality involves an
association formed by a repeated regular succession, observers often declared
causation occurred on the first trial, and in other cases, as with a long delay
between contact of the first object with the second object and then the moving
off of the second object, no judgment of causation was made, regardless of
repeated presentations of the sequence (Twardy and Bingham, 2002).

Twardy and Bingham

Drawing upon Dowe’s (1999, 2000) conserved-quantity (CQ) theory of cau-
sation, Twardy and Bingham (2002) argue that what perception works with
to perceive causal connections is the information of conserved quantities in
the exchanges of causal and effect events: “According to the CQ theory, causal
interactions are marked by the exchange of CQs between or among causal
processes. A causal process is a (space–time) trajectory of an object, be it a
photon or a baseball. CQs are whatever quantities are actually conserved in
nature, and these are taken to be those indicated by current physics, such as
charge, energy, momentum, and angular momentum” (Twardy and Bingham,
2002, p. 956). They then cite as an example, “. . . a moving billiard ball has
energy and momentum in proportion to its speed. It will also have other CQs
such as angular momentum . . .. During a collision, the trajectories of two bil-
liard balls briefly intersect, and the objects (processes) exchange energy and
momentum. That constitutes a causal interaction” (p. 957). The senses take in
information about these quantities and perception processes them. Visually
what is seen in a causal event involving two objects is that something in the
object regarded as cause is transferred to the object that receives the effect. It can
be a component of the causal object’s trajectory, or velocity, or shape, or mass
(in inelastic collisions) to name a few cases. In structural equation modeling,
the structural coefficient is multiplied with the value of the causal variable
to obtain the component that is “transferred” to the object bearing the effect.
However, Dowe (2000) remains agnostic about the transfer of any stuff in one
object to the other. Sums of quantities are just conserved. Hence his physical
theory is not a transference theory but has other aspects similar to one.

This is not to argue, Twardy and Bingham (2002) indicate, that our per-
ceptual processes have a built-in precise knowledge of Newton’s mechanics.
Rather our perceptual systems are sensitive to aspects of the physical deter-
minants of causal interactions, such as energy and momentum, at least to
a degree of approximation. Observers can discriminate forms of motion in
the trajectories of objects. “The form of the trajectories by which objects
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exchange energy and momentum over time constitutes the structure of an
event” (Twardy and Bingham, 2002, p. 957). Momentum is a vector quantity.

To see how a component of an object’s attribute is transferred to another in
a causal exchange, consider that a first billiard ball A with a mass of 1 unit
moving at a constant velocity of 1.3 units at an angle of 270◦ collides off-center
with a second ball B with a mass also of 1 mass unit, moving somewhat in
the opposite direction at 104◦ with a velocity of 1.7 units. The second ball
abruptly moves off to the upper right at 36◦ with a velocity of 1.4 units. At
the same time the first ball moves off toward the lower left at 201◦ and with
an increased velocity of 1.6 units. Something has changed. The first ball has
changed direction and picked up 3 units of velocity from the second ball while
the second ball also changed direction and has lost 3 units of velocity. So,
we will say, “The first ball caused the second ball to move toward the upper
right at a somewhat slower speed than it moved before the collision.” But we
are also authorized to say, “The second ball caused the first ball to be deflected
toward the lower left at a somewhat faster speed.” Which object is cause and
which is effect depends on your focus of interest.

What is exchanged in this collision is some momentum. Momentum is
mass × velocity. (Velocity is the rate at which an object’s position changes
with time, roughly “speed,” like miles per hour. Acceleration is the rate with
which velocity changes with time. Starting at 0 mph, pressing on the gas pedal
will make a car accelerate from 0 to 60 mph in a short interval of time. The
acceleration at any point in time is how much the velocity is changing at that
point. Mass is a measure of an object’s resistance to acceleration, and when
measured against the force of the earth’s gravity, it is measured in units of
weight. Force is equal to mass × acceleration.)

To see how a component of momentum is transferred in the above example,
consider the diagram in Figure 3.1.

Figure 3.1 is a diagram of the collision between two balls, A and B, repre-
sented by the circles. The vectors shown are momentum vectors. With equal
and unit masses for the balls, the lengths of the momentum vectors are directly
proportional to the velocities with which the balls are moving in the direc-
tions indicated by the vectors. The exchange of momentum in the collision
between the two balls takes place on the axis of collision on the line between
the centers of the two balls. Each ball contributes a vector of momentum to
the other ball equal to the projection of the initial momentum vector onto the
axis of collision. (We show the projections although they are also shown again
added to the reactive momentum of the other ball.) So PBA is the momentum
vector given by A to B, by projecting PA1 onto the axis of collision. PAB is the
momentum vector “given” by B to A, and is the projection of PB1 onto the
axis of collision. (The recipient is listed first, then the donor.) But by Newton’s
third law—to every action there is an equal and opposite reaction—each ball
generates a negative momentum vector corresponding to the component of
its momentum gained by the other ball. This effectively subtracts from one
ball the momentum gained by or transferred to the other. So, we combine the
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PAB

–PBA A

B

PBA

PAB

PBA

–PAB

PB1

PB2

PA1

PA2

FIGURE 3.1 Physics of collision between two balls of equal mass, moving somewhat in opposite
directions. The first ball A moves initially down in the direction of the vector PA1 with a velocity
equal to its length. The second ball B moves up and to the left in the direction given by PB1 with
a velocity equal to its length. The exchange of momentum between the two balls is on the axis
of collision connecting their centers. Ball A then moves in the direction of PA2, whereas B moves
in the direction of PB2.

momentum vector gained by the other ball with the negative reaction vector
of the ball in question to get a vector equal to their sum along the axis of col-
lision. So, for ball A the vector PAB is added to −PBA, and the resulting vector
is then added to the initial vector of momentum PA1 to obtain the resulting
vector PA2, the new direction and momentum of A. (By the parallelogram law
of vector addition, we can construct the resultant vector which points in the
direction in which the ball will then move.) Similarly for ball B we add −PAB
to PBA to obtain a vector that we in turn add to PB1 to get the new momentum
and direction PB2 for B. Causally, the effect of A’s collision on B is PBA, whereas
the effect of B’s collision with A on A is PAB. Because in each case the effect
constitutes a transfer of a component vector of momentum to the other ball,
it must also be subtracted from the original ball.

Wolff

Kinetic models of perceived causation seek to map visible physical properties
of an event onto perceptual judgments, for example, shapes, sizes, positions,
trajectories, points of contact, velocities, and accelerations of entities in a sit-
uation. These are given in the case of the collision of two moving balls by the
velocity and directions of their motion. These quantities are easily perceived
in most instances, although they may not by themselves yield exact causal
knowledge. Dynamic models concern the “invisible properties,” for exam-
ple, underlying energies and forces (mass × acceleration) and momentum
(mass × velocity). People also perceive forces, momentums, and energies,
at least approximately (Wolff, 2007). So, there is much information in the
physical world involving causality that is available to perception.
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But Wolff (2007) argues that any model of the perception of causality (he
prefers just a dynamic model, which I think is too limited, since kinetic infor-
mation is often sufficient) must map the physics to perceptual categories.
He considers four causation-related perceptual categories: CAUSE, ENABLE,
PREVENT, and DESPITE. I accept these as genuine concepts. However, I
have reservations about the manner in which he analyzes these into more
fundamental components, although I think he is on the right track when he
seeks to understand them in terms of objects interacting. The major prob-
lem is that Wolff (2007) analyzes these concepts in terms of just two objects,
an affector and a patient, whether the patient initially is tending toward the
endstate to be produced by the cause, whether affector and patient are in
concordance in their forces, and whether the result approaches the endstate
or not. ENABLE, PREVENT, and DESPITE, in my view, based on Lakoff and
Johnson’s (1999) event-structure schemas, concern movements of an object
along a path toward a prespecified goal of a sentient being, where movement
is a metaphor for causal action and the path is whatever requires specific
causes to be applied to reach the goal. But these three concepts also require
the presence or absence of third objects that provide forces which Wolff’s
account lacks. ENABLE is instanced by sentences such as “A crank enabled
him to close the window” (Wolff, 2007, p. 84) or “John’s help enabled Bill to
build his boat.” PREVENT is instanced by “The fence prevented the aliens
from entering the country” or “The use of doxycycline prevents an infec-
tion with malaria.” DESPITE is instanced by “The river flooded the town
despite the dikes” (Wolff, 2007, p. 88), “The wind caused the boat to capsize
despite their reefing the sails,” or “The aliens entered the country despite
the fence.”

Lakoff and Johnson

Lakoff and Johnson (1999) would analyze PREVENT as someone’s doing
something ahead of time to provide counterforce against the movement of
the object to its goal, say, by erecting a barrier in its path or deflecting the
movement into a different path. DESPITE would be the inadequacy of the
counterforce to stop the movement of the object to the goal. ENABLE has
many schemas to which it could apply: A bridge or boat could enable one to
cross a stream, a ladder enables one to climb a fence, a handle enables one to
crank a window up, and a key unlocks a gate through which one must pass.
Here the enabler is a third object that does something (cause) that makes
it possible for the causal efforts of attaining the goal to function. Here the
enabler is a nonlinear moderator of the affector’s causation. Or enabling via
helping could be another object providing extra force (cause) to overcome
any counterforce (difficulties, barriers, and deflectors). Here helping is addi-
tive in its effect. Or enabling may be accomplished by allowing or letting,
that is, some third object removing any barriers, so that pre-existent causes
may function.
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Wolff (2007) tries to represent causation by a resultant of forces approach-
ing an endstate, equating the endstate of CAUSE with the endstates for the
other concepts, which are prespecified. For Wolff, a cause is an object (affector)
whose motion or force alters the initial motion or location of another object (patient)
to approach a specific endstate. But causes can occur whether or not there is a
prespecified endstate to attain. There just has to be an altering of motion or loca-
tion of the patient in a regular way. Regularity is not the same as a prespecified
goal to be attained. Furthermore, the causal object may be altered itself in its
motion away from the endstate for the patient. We see this in the example
of the collision of two billiard balls. This reflects Newton’s third law that to
every action there is an equal and opposed reaction. Consideration of this law
is not found in Wolff’s account, but it is part of the effect on the patient.

Wolff (2007) next considers how perceptual concepts of physical causa-
tion can be mapped to social and psychological situations analogically, which
leads us to Lakoff’s metaphor theory of causal concepts.

Contemporary metaphor theory (Lakoff, 1987, 1993; Lakoff and Johnson,
1980, 1999; Lakoff and Nuñez, 2000) would then argue that the perceptual
schema of a physical causal exchange can become the basis of a metaphor
for conceptually joining in working memory percepts from memory and
from graphic materials to form concepts of “causal connections.” The schema
involves a cause and an effect and something exchanged between them.
Lakoff and Johnson (1999) argue that causality is a “radial concept,” meaning
that it has a central core schema that is extended in different ways in different
concepts of causation. We will discuss this in more detail later.

Causality

Is Causality Material Implication?

Empiricist philosophers since Hume (1739/1969, 1777/1975) had analyzed
causes and effects in terms of binary events. If A occurs, then B occurs. If A
does not occur, B does not occur. This fostered analyses of causation along the
lines of logical implication, which works with the binary true/false system.
The binary treatment of causation was also accompanied by the belief that all
events are logically independent of one another. David Hume, the empiricist,
had argued that logically there is no logical necessity that any kind of event
in experience must accompany or follow another. Events are logically inde-
pendent. It was on the basis of such an idea that Wittgenstein (1922/1978)
together with Russell (1918, 1919) formulated the theory of logical atom-
ism, the idea that fundamental elements of experience can be represented
by elementary propositions that are either true or false and logically inde-
pendent of one another. Connections between atoms of experience were to
be supplied by association, which, following Hume, does not represent a
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logically necessary connection. This was the key idea underlying the later
logical empiricism of the Viennese positivists who believed relations of empir-
ical dependence between scientific propositions must be expressed in the form
of material implication, but without the notion of logical necessity inherent in
the form.

Nevertheless, there are paradoxes if one uses “logical implication” as the
form of the causal relation. “IfAthen B” implies logically “If not B, then notA.”
For example, “If it is raining, then the ground is wet” implies “If the ground is
not wet, then it is not raining.” If one treats material implication as causality,
then “The ground’s not being wet causes it not to rain” is a consequence, and
this seems to contradict our sense of causal order and agency here. Further-
more, what instances correspond to “not wet” and “it is not raining?” If we
assume all events and attributes are logically independent, “not wet” can be
any attribution other than “wet,” say, “rocky,” and “it is not raining” can be
“it is windy.” Hence, “If the ground is rocky, then it is windy” is an instance of
the same relation. But our sense that there are constraints on the way in which
we categorize events not represented in the formal logic makes us suspect its
use here for causality.

Wittgenstein (1975) finally came to the realization of a fundamental mistake
in logical atomism: We do not describe experience in terms of logically inde-
pendent atomic propositions. If we did, then we would be able to say, “The bar
is 45 cm long” and “The bar is 42 cm long,” at the same time. But when we state
that “The bar is 45 cm long,” we imply at the same time that the propositions,
“The bar is 41 cm long,” “The bar is 42 cm long,” and so on are all necessarily
false. Their truth or falsity is not independent of the truth of “The bar is 42 cm
long” and so on. If we say “The ball is red” is true, we at the same time imply
‘The ball is green,” “The ball is blue,” “The ball is yellow,” and so on are false.
In other words, attributes in our languages come joined logically in sets of
mutually exclusive categories, frequently having more than two categories or
values, and to any object we assign only one of the possible values in the set
of values, thus constituting a variable. Within such classes of attributes that
constitute a variable, the varying attributes are not mutually independent.

Is Causality a Functional Relation between Variables?

With the decline of logical empiricism in the late 1960s, the attitudes of
philosophers of science became more tolerant of the concept of causality.
Bunge (1959) reawakened interest in causality among philosophers of science
by his thorough survey of the topic. Simon (1952, 1953, 1977) and Simon and
Rescher (1966) argued that causality does not take the form of logical impli-
cation but rather of an asymmetric functional relation between variables. A
functional relation is a relation between two sets, a first set and a second set,
wherein to each element in the first set there is assigned one and only one
member from the second set (Shapiro and Whitney, 1967, p. 53). Typically in
science, the two sets correspond to the sets of values taken on by the variables.
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Thus one could designate Y as a dependent or effect variable and X as an
independent or causal variable and write y = f (x), which states that a value
y of the variable Y is a function of the value x of the variable X.

The implication I drew from this (Mulaik, 1986, 1987) was that, in support
of Simon’s view, causality, which concerns relations of dependence between
attributes of things in the world, must be expressed between variables and
not just specific values of variables. The quantification of attributes leads
us to treat the attributes of objects as quantities, varying across objects, and
hence as variables. Within variables there are logical dependencies among
values of the variable. Between variables there are only contingent dependen-
cies. The attention philosophers have given to the relations between specific
pairs of events is a limited perspective. The whole of causality involves a
functional relation between variables—the form for expressing relations of
dependence between variables. It is true that in a functional relation there
are relations or links between the elements of the domain and the range, but
there are numerous such links, and none of them is the functional relation,
but a component of the functional relation, which integrates them in a higher-
level synthesis that concerns the dependence of the variable of the range on
the variable of the domain. It is also important to see the big picture, that
“causality” is a relation expressed in a language of objects, where accord-
ing to the “grammar,” so to speak, of this language, objects are bearers of
properties, and causality concerns functional relations of dependence
between the attributes of objects, with attributes grouped into logically inter-
dependent families known as variables (Mulaik, 1987, 2004). Contemporary
science thus expresses causal relations as functional relations between vari-
ables. In this book, however, we focus principally on those causal relations
that are linear relations.

Still, Why Variables?

Some may still demur at the idea that we need to discuss causality in terms
of variables. Aristotle, and also Hume, Mill, Kant, and the logical empiricists,
and many modern philosophers of science, did not treat causality in terms
of variables.

We discussed earlier how Kant formed concepts in threes. His tripartite
formation of inherence, causality, and community was one way in which
attributes of objects could be organized in three categories. But this is not the
only three-level concept that we can form by synthesizing distinct attributes.
The idea of a variable is itself a third-level synthesis. First there is an attribute.
Then there is another attribute distinct from it such that if the first attribute
describes an object, the second attribute cannot also do so at the same time. If
something is 100 kg in weight, it cannot also be 101, 95, or 99 kg, and so on. That
attributes fall into sets of mutually exclusive application is just the way our
brains work in categorizing things. Wittgenstein (1953) held that this is just a
matter of a priori “grammar” that lays down the rules of how the attributes
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are to be applied. There is no need, he held, for any further explanation. In
other words, this is how we do it, how we play the game. A variable is a set
of attributes such that no two members of the set can apply or describe the
same object at the same time. We say the members of this set are mutually
exclusive with respect to applying to another.

The nineteenth-century philosopher of science C. S. Peirce, whom many
philosophers believe was way ahead of his time in logic and scientific method,
drew heavily on Immanuel Kant’s (Kant, 1787/1996) insight that many con-
cepts come in threes. Considering the set of mutually exclusive attributes or
properties as a whole is a third, in Peirce’s terminology. It is a synthesis of all
those pairs of attributes that stand in the relation of mutual exclusivity with
respect to applying to some object. A variable is a higher-level concept than
the concept of a simple attribute, or a simple pair of attributes that stand in
a relation of mutual exclusivity. A variable concerns all such pairs simultane-
ously. A comprehensive logic of causality must recognize the way in which
attributes are joined into sets of mutual exclusive attributes with respect to
their application to objects.

Sciences begin, Peirce held, by making qualitative distinctions: Object A
does or does not have a certain quality. This functions at the level of second-
level concepts. But for a science to advance, it has to attain the level of thirds as
well. This occurs “. . . when, no longer content with such rough distinctions,
we require to insert a possible half-way between every two possible conditions
of the subject [or object] in regard to its possession of the quality indicated by
the predicate. Ancient mechanics recognized forces as causes which produce
motions as their immediate effects, looking no further than the essentially
dual relation of cause and effect. That was why it could make no progress
with dynamics” (Peirce, 1931, 1.359). Modern physics developed only when
the concept of a quantitative variable came into physics to deal with dynamics,
which involves third-level, continuous quantities.

So, if there are variables, distinct variables are different sets of mutually
exclusive attributes or quantities that may themselves be applied simultane-
ously to the same object. But once we have come to regard a variable as a
unity in thought, we may regard a variable then as a first-level concept in a
new hierarchy of syntheses. A functional relation between variables is then
a second-level concept, a synthesis of pairs of variables, such that given two
variables, if a value of a first variable is assigned to an object, it maps by a
causal relation to one, and only one value of the second variable also assigned
to the object. Athird level involving a second level of synthesis would be a lin-
ear causal model involving functional and correlational relations among sets
of variables, including reciprocal causal relations between them in some cases.

Causality and Counterfactuals

According to Wikipedia, the philosopher David Lewis (1973, 1979, 2000) held
that causal statements are to be understood as counterfactual statements.
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A counterfactual statement is a statement about something that is imagined
or nonfactual. Because causal relations are often stated as occurring between
events, for example, “A is a cause of B,” we interpret this as implying “If A
occurs then B occurs” (an imagined antecedent A and consequence B). We
furthermore take this as allowing us to argue that “If A had occurred, then
B would have occurred,” even though A in fact had not occurred. “If A had
occurred, then B would have occurred” is a counterfactual statement.

Regarding a causal relation as a functional relation between variables pro-
vides a perspicuous view not only of all the possible values of the causal
variable in the first set of the functional relation and all the possible values
of the effect variable in the second set, but also of the “causal links” between
these values in these two sets as given by the mapping between the elements
of these sets by the functional relation. Now, no object can take on more than
one attribute value of a variable at a time. If A and B are two attribute vari-
ables, then at any instance we should observe only one value of both A and
B to occur. If the variables A and B are attribute variables related by a func-
tional relation in which the value Ai maps to Bj, then suppose we observe
Ai occur, we should then expect to observe Bj occur. Suppose another pair
in the functional relation is (Ah, Bk); then even though neither of them has
occurred, are not a fact of existence, we would still be licensed by the func-
tional relation between A and B to say “If Ah had occurred, then Bk would
have occurred. In fact, all pairs (Ah, Bk) in the mapping of the functional
relation are potential components of a counterfactual statement “If Ah had
occurred, then Bk would have occurred,” given some other pair (Ai, Bj) in fact
has occurred.

Now, it is my contention that philosophers in their analysis of causality
and counterfactuality have been all too wedded to the schema of a relation
between binary variables (A, not A) and (B, not B), perhaps because functional
relations are mathematically challenging for them. But then they wish to assert
the negative counterfactual statement “If A had not occurred, then B would
not have occurred.” This is true as far as it goes, as long as A and B are binary
variables. But can this binary paradigm apply to the cases when A and B
are not binary variables but multivalued variables, connected by a functional
relation in which it just happens that more than one value of A maps to the
same value of B? Consider a sine function. Could we then say something like
“If Ai had not occurred, then Bj would not have occurred,” if another value
of A, Am maps to Bj as well? Being able to state this negation counterfactually
depends on the nature of the functional relation between the variables in
question and whether or not Bj is linked to more than one value of the causal
variable. So, negative counterfactual statements are not the same as positive
ones and are not as generally true counterfactually.

What we have considered so far concerned counterfactuality in connection
with relations between values of variables of a functional relation between
multivalued variables. Problems arise in understanding causality if one tries
to impose binary relations on such cases. One must have the perspicuous
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view of all the possible values of a variable that rules out other values not
considered.

But another, analogous problem arises if one fails to consider causality coun-
terfactually within a system of variables, where more than one variable may
be the cause of a given variable. Structural equation modeling considers sys-
tems of variables wherein it is possible for more than one variable to be a cause
of a given variable. Again one must have the perspicuous view of a closed,
self-contained system of variables, because one cannot establish a functional
relationship between two variables if one cannot control for all other imme-
diate causes of the effect variable than the causal variable in question. If more
than one value of an effect variable B occurs in the presence of a given value
of the causal variable A, either A is not really a causal variable for B, or there
is some other variable U, unmeasured or unobserved, that is also a cause of
B. We cannot then state counterfactually that “if A had been Ai then B would
have been Bj.” B might then be Bj + Bn, and this varies with the value of Bn,
and this in turn with the value Ug of U, because of the causal relation between
U and B that maps Ug to Bn.

Consequently, an assumption, often implicitly made, but it should be explic-
itly evaluated for empirical validity when feasible, is that our models involve
closed, self-contained systems of variables. Attempts to make this happen
involve closing off the effects of extraneous causal variables by shielding,
by holding extraneous variables constant when not including them in the
model, by manipulation of causal variables so that causes are independent of
any other unmeasured effects, by randomization of the occurrence of value of
causal variables (again to achieve independence), and by isolation. By includ-
ing otherwise extraneous causal variables explicitly within a model, one can
also control for their effects mathematically by conditioning on the extraneous
variables when studying the relation between a focal cause and focal effect.

Probabilistic Causality

A common approach to probabilistic causality among philosophers of science
today is that causes increase the probability of effects (Dowe and Noordhof,
2004). But this reflects a lack of a full understanding of probability theory and
a failure to consider causality in terms of variables. If some event increases
in probability, then necessarily the probability of its complement decreases.
So, causes both increase and decrease the probability of events, depending on
one’s focus. It is more important to know the probability of an event given the
occurrence of some cause. But how might we reconcile that with causality as
a functional relation between variables? There are those who still argue that
because causality as a functional relation implies determinism, causality has
now been abandoned because modern science now views the world proba-
bilistically. That argument too can be defeated by showing how functional
relations can be combined with probability. Simon (1977) gave a hint of how
to do this when he wrote, “. . . we can replace the causal ordering of the
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variables in the deterministic model by the assumption that the realized
values of certain variables at one point or period in time determines the
probability distribution of certain variables at later points in time” (p. 54).

Exploiting Simon’s hint, I argued (Mulaik, 1986) that probabilistic causal-
ity can be expressed using functional relations in the following way: Causal
variables determine the probability distributions by which the values of
dependent variables occur. Max Born (1951) had a similar idea for retain-
ing causality in quantum physics. Thus with causality a functional relation
between two sets, the first set, the domain, contains the values of a causal
variable, the second set, the range, contains as its “elements” probability dis-
tributions defined on the dependent variable, so that for each value of the
causal variable there is assigned to it one and only one probability distribution
from the set of probability distributions in the second set. This is illustrated in
Figure 3.2. Thus, even though pure determinism is ruled out in a probabilis-
tic world, so that causes no longer determine individual events, there is still
enough determinism to determine the probabilities with which events occur.
A more formal “epistemological” definition of probabilistic causality follows,
adapted from Mulaik (1986):

Y « N (my(x),s 2)

my(x) = f (x)

y

my(x)

x x

FIGURE 3.2 An illustration of an example of a probabilistic causal relation wherein a causal
variable x determines by a functional relation μy(x) = f (x) the mean of a normally distributed
probability distribution, and thereby the distribution itself (assuming invariant variance), by
which a dependent variable y occurs. (Adapted from Mulaik, S. A. (1993). Objectivity and
multivariate statistics. Multivariate Behavioral Research, 28, 171–203.)
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Definition: A variable X, representing states of nature, is said to be a prima
facie probabilistic cause of a variable Y, also representing states of nature,
if—given certain background conditions C establishing causal direction and
order, mediating mechanisms and connections, relevance criteria, closure,
stability, and (where appropriate) the form of the joint probability distribution
of the system of variables—there exists a function P : X → P(Y) that assigns
to each value x of X a unique probability distribution function Px( y) in the
set P(Y) of probability distribution functions defined on Y and the following
conditions hold: In the domain of the relation there exist at least two distinct
elements xi and xj corresponding to two distinct probability distributions
Pxi( y) and Pxj( y) in the range of the function and the states corresponding to
the values of X occur before or simultaneously with the states represented by
the values of Y.

This definition of probabilistic causality is broadly applicable. It can apply
to both formal and efficient causation, but efficient causation usually requires
additional assumptions involving the specification of agents and how changes
in the states of agents, reflected in changes in certain variables describing these
agents, produce changes in the effect variables or their probability distribu-
tions. It will also include not only cases of linear causal modeling, where
the disturbance or error variables introduce probabilistic elements into the
dependent variables, but also other cases in psychological measurement. In
fact, my inspiration for the idea that causal variables determine probabili-
ties was the Rasch model of item response theory. In that case the subject
ability and item difficulty parameters are variables that determine the prob-
ability distribution of a binary response variable, “the answer is correct vs.
the answer is incorrect.” (Note: the Rasch model and other IRT models are
models of formal causation and not efficient causation, although under some
circumstances variables such as item difficulty and subject ability might be
altered as effects of other causal variables).

The function Px( y) is realized in the matrix P = [pij] of Markov transition
probabilities, where pij = p( yj | xi) is the conditional probability of yj given
xi. Mathematicians have studied Markov transition probabilities extensively
in connection with sequences of random variables X(1), X(2), . . . , X(n − 1)

known as Markov processes. In such sequences the probability of a value of a
variable X( j) in the sequence is stochastically dependent on only the value of
the immediately preceding variable in the sequence, and none preceding that.
This property is known as the Markov property and is given by the equation

p(x( j) | x(j − 1)) = p[x( j) | x( j − 1), x(j − 2), . . . , x(1)], (3.1)

which shows the independence of X( j) from all those variables preceding
X( j − 1).

As an example, consider two discrete random variables X and Y, where
X is measured at time t and Y is measured at time t′, t < t′. We will assume
that X takes on four values and Y takes on five values. A matrix of transition
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probabilities for the variables X and Y is given by

P =

Y1 Y2 Y3 Y4 Y5
X1 p11 p12 p13 p14 p15
X2 p21 p22 p23 p24 p25
X3 p31 p32 p33 p34 p35
X4 p41 p42 p43 p44 p45

.

An element in this matrix pij is a transition probability which is the conditional
probability of Yj given Xi has occurred. The elements in each row of P must
add up to unity. Thus there is a functional relation between the values of X
and the conditional probability distributions of Y given X.

The following is a useful property of Markov processes that is relevant to the
concept of probabilistic causality. If X is a probabilistic cause of Y, and Y is a
probabilistic cause of Z, then X is a probabilistic cause of Z, that is, probabilistic
causality is transitive. For example, if X is a probabilistic cause of Y, this implies
the function P : X → P(Y). Similarly, if in turn Y is a probabilistic cause of Z,
this implies the function Q : Y → Q(Z). PQ is then the function PQ : X →
PQ(Z), where PQ is realized in the matrix product PQ. This result implies
that pq(zk | xi) =∑j p( yj | xi)q(zk | yj) =∑j pijqjk . This is a well-known result
for Markov processes. It generalizes to causal series such as

X
P−→ Y

Q−→ Z
R−→ V

S−→ W,

with W a function of X given by PQRS : X → PQRS(W), where P, Q, R, and
S are Markov transition matrices containing the probabilities by which each
succeeding variable’s values occur given a certain value of the preceding
causal variable occurs.

When is a variable causally independent of another variable? We will say
that, conditional on any other direct causes of Y, Y is causally independent of
X, if for each value x of the variable X, the conditional probability distribution
p( y | x) is the same distribution as p( y). In other words, variation in x makes
no difference to the probabilities with which y occurs. This implies, in the case
of Markov transition probability matrices, that such matrices will have rank
1, since the elements in each row will be the same.

So far, we have indicated that a causal variable affects the probability distri-
bution with which an effect variable occurs. There are many ways by which
this might be modeled. For example, if the form of the probability distribu-
tion of the effect is given by background conditions (e.g., the distribution of
the effect is normal), then a causal variable may determine some or all the
values of the parameters of the distribution, so that the parameters of the
distribution are functions of the causal variable. The causal effect is shown in
the variation in the values of the parameters of the mean and/or variance of
the effect variable. In linear models with normal distributions for the effects,
a unit change of the causal variable will produce a specified change in the
mean of the effect distribution.
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As I indicated in Mulaik (1986), the concept of Markov processes is useful
for elucidation of probabilistic causation between two variables, but does not
provide the whole story about probabilistic causality. I noted: “Variables in
nature can be connected together in complex causal networks in which a vari-
able can be the combined effect of numerous independently acting causes and
in turn the cause of numerous other variables. The simple model of a Markov
process, which involves a simple sequence or chain of ‘singly connected’ vari-
ables . . . is inadequate as a representation of the complexities involved in such
networks. The value of the analysis in terms of a Markov process is to show
how causality between a cause variable and an effect variable operates, if one
isolates the two variables in question from varying causal influences of other
variables” (p. 323).

But in cases where a single variable Y is the effect of each of k other causal
variables, X1, X2, . . . , Xk , which we will call, after Pearl (2000), the Markovian
parents of Y, we may treat the causal variables jointly as a single variable. In this
case the causal variables span a space of k dimensions, and the points in this
space, whose coordinates (x1, x2, . . . , xk) are given jointly by the respective
values of each of the k variables, are then the elements of the domain of a
functional relation that maps these points onto a set of conditional probability
distributions f ( y | x1, x2, . . . , xk) defined on the variable Y, such that at least
two of these probability distributions are distinct.

Local Independence

In the early development of probabilistic models, authors frequently intro-
duced an assumption known as the conditional independence assumption
(Anderson, 1955, 1959) or the axiom of local independence (Lazerfeld and Henry,
1968), or the local independence assumption (Lord and Novick, 1968). Rarely
in these cases did these authors explicitly describe these models as causal
models. Perhaps this was because they wrote in an era when causality was a
suspect concept. The focus of these discussions was furthermore on error dis-
tributions rather than probabilistic causality. Nevertheless, by the definition
of probabilistic causality just formulated, their models were causal models,
and the local independence assumption (which I will call it here) is both a
necessary and sufficient condition for probabilistic causality (within a closed
system of variables).

LOCAL INDEPENDENCE THEOREM Let X and Y1, . . . , Yq constitute a
closed system of variables, implying that they are independent of variables
outside the system. A necessary and sufficient condition within this system
that X is the sole common cause of the variables Y1, . . . , Yq, respectively, is
that

f ( y1, . . . , yq | x) = f1( y1 | x) · · · fq( yq | x)
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for all values x of X, where fj( yj | x), j = 1, . . . , q, is the conditional probability
distribution for the variable Yj given X = x, and there exists for each variable
Yj at least two values of X, x and x′, such that fj( yj | x) �= fj( yj | x′).

PROOF We will first prove the necessity of the condition. We begin with
the case where q = 2 and prove that it is true. Then we extend the result by
induction and recursion to the case where q > 2.

Given X and Y1, . . . , Yq constitute a closed system of variables and q = 2. If
by hypothesis X is the sole cause of Y1 and Y2, respectively, then

f( y1 | y2, x) = f1( y1 | x) (3.2a)

and

f( y2 | y1, x) = f2( y2 | x) (3.2b)

because there exists for each variable Yj a single functional relation F : X →
F(Yj), j = 1, 2, that maps each value of X, x, into one and only one distribution
fx( yj) = fj( yj | x), and there exists for each variable Yj, j = 1, 2, at least two
values of X, x and x′, such that fj( yj | x) �= fj( yj | x′). It would be a contradiction
of X’s being the sole probabilistic cause of Yj if more than one probability
distribution for Yj were associated with a given value of x.

Note now that by the definition of conditional probability, we may write

f ( y1 | y2, x) = f ( y1, y2, x)

g2( y2, x)
, (3.3a)

f ( y2 | y1, x) = f ( y1, y2, x)

g1( y1, x)
, (3.3b)

where g1( y1, x) is the joint density of Y1 and X at ( y1, x), and g2( y2, x) is
the joint density of Y2 and X at ( y2, x). Again, because of the definition for
conditional probability,

f1( y1 | x) = g1( y1, x)

h(x)
, (3.4a)

f2( y2 | x) = g2( y2, x)

h(x)
, (3.4b)

where g1( y1, x) and g2( y2, x) are joint densities of Y1 and X at ( y1, x) and Y2
and X at ( y2, x), respectively, and h(x) is the marginal density of x.

Substituting the right-hand side of Equations 3.3a and b for the left-hand
side of Equations 16.2a and b, and the right-hand side of Equations 3.4a and
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3.4b for the right-hand side of Equations 16.2a and b, respectively, we obtain

f ( y1, y2, x)

g2( y2, x)
= g1( y1, x)

h(x)
, (3.5a)

f ( y1, y2, x)

g1( y1, x)
= g2( y2, x)

h(x)
. (3.5b)

Dividing both sides of Equation 3.5a by h(x) and multiplying both sides by
g2( y2, x), we obtain

f ( y1, y2, x)

h(x)
= g1( y1, x)g2( y2, x)

h2(x)
,

or after distributing the h(x) on the right to each term on the right,

f ( y1, y2 | x) = f1( y1 | x)f2( y2 | x).

Similarly dividing both sides of Equation 3.5b by h(x) and multiplying both
sides by g1( y1, x), we obtain

f ( y1, y2, x)

h(x)
= g1( y1, x)g2( y2, x)

h2(x)

or

f ( y1, y2 | x) = f1( y1 | x)f2( y2 | x),

which proves the case for q = 2, which we may extend by induction and
recursion to the case where q > 2, thus proving the theorem. Another term
for this result is “conditional independence.”

Next we prove sufficiency: Assuming again a closed system of variables
and given for all x,

f ( y1, . . . , yq | x) = f1( y1 | x) · · · fq( yq | x).

This implies that the variables y1, . . . , yq are mutually conditionally indepen-
dent given values of X, which in turn implies for the subset of variables
y2, . . . , yq, obtained by eliminating y1 from y1, . . . , yq, that

f ( y2, . . . , yq | x) = f2( y2 | x) · · · fq( yq | x).

Thus we may divide both sides of

f ( y1, . . . , yq | x) = f1( y1 | x) · · · fq( yq | x)

by f ( y2, . . . , yq | x) to obtain

f ( y1 | y2, . . . yq, x) = f1( y1 | x).
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In fact, we may cycle each of the Y variables into the first position so that we
may write for the jth variable

f ( yj | y1, . . . , yj−1, yj+1, . . . , yq, x) = fj( yj | x),

which shows that each Y variable is conditioned only by X and is
conditionally independent of the other Y variables. So, there is for each Yj
one and only one distribution fj( yj | x) conditional in any way on x. If further
there exists for each variable Yj at least two values of X, x and x′, such that
fj( yj | x) �= fj( yj | x′), then there exists a functional relation F : X → F(Yj) that
maps at least two values, x and x′, of the variable X, each to a unique dis-
tribution for Yj, implying that X is a probabilistic cause of Yj. Furthermore,
because each variable Yj is conditionally independent of the other Y variables,
it cannot be a probabilistic effect of them. Because the system of variables is
closed, there can be no other variables that are causes of Yj than variable X.
So, X is the sole common cause of the variables Y1, . . . , Yq.

The result just proved extends easily enough to the special case where
Y1, . . . , Yq represent a stochastic sequence of observations of the same
variable. A multivariate extension of this theorem also follows easily:

Theorem on local independence as a necessary and sufficient condition that within
a closed system of variables, one subset of variables contains the sole causes of
another distinct subset of variables. Given a closed system of variables X1, . . . , Xp,
Y1, . . . , Yq, a necessary and sufficient condition that X1, . . . , Xp are the sole
probabilistic causes of Y1, . . . , Yq is that for all x

f ( y1, . . . , yq | x) = f1( y1 | x) · · · fq( yq | x), (3.6)

where x = (x1, . . . , xp) is a specific joint realization of the variables in
X1, . . . , Xp, and there exists for each variable Yj at least two realizations of
the X variables, x and x′, such that fj( yj | x) �= fj( yj | x′).

PROOF The proof follows immediately from the previous theorem by
replacing x by x.

Implications for factor analysis. The implications of local independence for
factor analysis is that in certain special circumstances, the assumptions of the
lack of correlation between the unique factors may represent a local inde-
pendence assumption, primarily in the case where all variables, manifest and
latent, of the model have joint multivariate normal distributions. In the com-
mon factor model, Y = ΛX + ΨE, if X and E, the common and unique factor
variables, respectively, have a joint multivariate normal distribution, say, with
means of zero (for convenience) and variance–covariance matrix

var
[

X
E

]
=
[

ΦXX 0
0 I

]
,
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then by elementary theorems of multivariate statistics, Y has a multivariate
normal distribution with a null mean vector and variance–covariance matrix

ΣYY = ΛΦΛ′ + Ψ2.

The conditional distribution of Y, given X = x, is then a multivariate normal
distribution with variance–covariance matrix

var(Y | x) = ΣYY − ΛΦΛ′ = Ψ2,

which is a diagonal matrix. Variables having multivariate normal distri-
butions whose variance–covariance matrices are diagonal are jointly inde-
pendent. Requiring in factor analysis under multivariate normality that the
unique factor variance–covariance matrix is diagonal amounts to assuming
that the observed variables are independently distributed if conditioned on
their common factors, which is local independence. Because the common fac-
tor model is often applied to variables that do not have multivariate normal
distributions, requiring in these cases the variance–covariance matrix of the
observed variables to be diagonal when one partials out the common fac-
tors amounts to a weaker form of independence known as linear experimental
independence (Lord and Novick, 1968, p. 45). This does not establish causality.
But in such situations the common factor model may be used simply as an
analogue of a causal model. On the other hand, if the residual variables are
uncorrelated after the common factors are partialed out and have a joint mul-
tivariate normal distribution, then this implies independence, and causality
may be invoked. So, even if the manifest variables do not have multivariate
normal distributions, if partialing out the common factors produces uncorre-
lated residual variables that have multivariate normal distributions, this may
allow one to establish causality for the common factors. These conclusions
will be extended to the properties of the disturbances of structural equation
models (SEMs), which are analogues of the unique factors of common factor
analysis.

Is Causation Manipulation?

We have already considered how Locke (1694/1905/1962) regarded causa-
tion as reducible to the experience of willful movement of parts of one’s body
as the basis for the concept of causation. Since in willing actions of our bod-
ies we come to manipulate things in the world, this concept of causation has
been extended to the idea that only those things in the world that can be
in principle manipulated should be regarded as causes. Experimenters espe-
cially favor this view of causation because they tend to believe that only by
experimentation involving manipulation can causality be demonstrated. It is
true that we frequently regard inferences of causality from experiments to be
well founded, but I argue that the validity of such inferences is not a result of
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X X XY Y

Z

Y

(a)

(b)

(c)

FIGURE 3.3 Three forms of causation that produce a correlation between X and Y.

manipulation per se but because manipulation of a causal variable frequently,
but not always, interrupts the effects of an unmeasured extraneous cause on
both the causal variable and the effect variable.

The illusion of causation can occur between two variables X and Y, when
X is correlated with Y. But X may not be a cause of Y but rather X and Y may
have a common cause Z, which accounts for their correlation. Or X may be
an effect of Y. This is illustrated in Figure 3.3, which shows three possibilities
for the causal basis for a correlation between X and Y.

The three possibilities as shown in Figure 3.3 are what we would have to
consider if we simply observe variables X and Y in nature and we are not
ourselves the causes of variation in X. The ambiguity cannot be resolved if
this is all we have to go on.

Suppose, however, as diagrammed in Figure 3.4, we introduce another vari-
able M representing the actions of an experimenter manipulating X. It is
implicit that M is the cause of X; in fact, it may be a perfect cause in that the
correlation between the experimenter’s actions and the variable X is unity.
(We have also introduced an error random variable that operates on Y in the
variable EY). In Figure 3.4a, we illustrate how most experimenters who think
manipulation is causation believe manipulation is the nature of causation.
The manipulation is an intervention in the world that brings the variation in
the causal variable under the total control of the experimenter by the act of
manipulation. No longer, it is thought, is X a function of some other causal
variable Z that may just also be a cause of Y. The act of manipulation breaks
any causal connection that may otherwise in nature exist between some other
variable Z and X. Hence, it is concluded, if X and Y are correlated, then X is a
probabilistic cause of Y. But consider the situation illustrated in Figure 3.4b.
The experimenter’s manipulations, represented by the variable M, is a perfect
cause of an intervening variable Z, which is also a probabilistic cause of Y as

M

M Z

X

1

1

1

(b)

(a)

YX Y

EY EY

FIGURE 3.4 Two situations in which an experimenter manipulates a causal variable perfectly.
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well as a perfect cause of X. X thus is perfectly correlated with Z and M. X
will then be correlated with Y, but X is not a cause of Y. How could this be?

Consider the following possible scenario. Suppose a pediatrician believes
that administering premature neonate infants drops of a weak saline solution
to their eyes at periodic intervals reduces the number of problems in the
development of their eyes usually experienced in the nursery. The neonates
happen to be kept in incubators and breathe pure oxygen that is fed into their
incubators. The doctor thus decides to perform an experiment. He divides
a large group of premature neonate infants into two groups, completely at
random. To one group he administers the weak saline solution to their eyes
several times a day; the other group gets nothing. He finds that administering
the weak saline solution produces a significant effect in reducing the number
of developmental problems with the infants’ eyes. He concludes that the saline
solution is the cause of reduction in eye problems.

But another doctor notes that there is an unmeasured common cause of
both the administering of the saline and the reduction in eye problems: When
the first physician administered the saline solution, he opened a door to the
incubator to get at the infant. That let outside air into the incubator that mixed
with the oxygen already in the incubator. This did not occur with the control
group that received no eye drops. So, the second physician performs another
experiment with a placebo. The placebo variable is now Z′, opening the door
to the incubator periodically without administering eye drops. In this exper-
iment there is a correlation between X and Y, but the interpretation is that Z′
is the true cause of Y: Opening the door periodically introduces normal air
with nitrogen and less oxygen into the incubator. Figure 3.5a illustrates this
case. But even this experiment does not prove that administering the saline
eye drops has no effect, only that opening the incubator to outside air has
an effect.

In Figure 3.5b we show how both Z and X may be causes of reducing
eye problems. Another experiment with incubators having rubber gloves in
the sides to allow personnel to manipulate the infants without opening the
incubators is then performed. One group of infants chosen at random receives
the eye drops, the other does not. If there is an effect of the saline eye drops,
this condition will support the eye drops as a cause of reducing eye problems.

M

X

1

Y

Z
1

M

X Y

1

(a) (b)

Z¢

EY EY

FIGURE 3.5 In condition (a) Z′ opens the incubator door with no eye drops X given. Condition
(b) illustrates how opening the door and administering eye drops may both have effects on
reducing eye problems.
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But this experiment should be paired with another condition in which some
other placebo solution is administered to more convincingly show/test that
the saline solution per se is a cause of reducing eye problems.

The point to make is that manipulation per se does not guarantee causality.
What manipulation can often do is bring the variation in the causal variable
under experimenter control and break the influence of the effects of other
causes on the experimental causal variable. But as we have seen in the above
example, there may be perfect correlation between manipulation and the
putative cause, and yet the manipulation is itself introducing an extraneous
cause that is not controlled. Medical researchers are trained to look out for
such effects of manipulations and to control for them with placebo groups or
other forms of experimental control. But causation is in the nature of things
in the world and not in just human manipulations, which also happen to be
causes in the world. Correct inference of causality requires control or reason-
able grounds for assuming that extraneous common causes are not present,
which, for example, astronomers and geophysicists often assume but do not
manipulate.

Woodward (2001) lists conditions for a manipulation M on a causal variable
X with respect to Y to be what it is for X to cause Y. (I have changed his
“intervention I” to “M”):

(M1) M must be the only cause of X, that is, as with Pearl (2000)
the intervention must completely disrupt the causal relationship
between X and its previous causes so that the value of X is set
entirely by M.

(M2) M must not directly cause Y via a route that does not go through
X as in the placebo example (Figure 3.5a).

(M3) M should not itself be caused by any cause that affects Y via a
route that does not go through X.

(M4) M leaves the values taken by any cause of Y, except those that
are on the directed path from M to X to Y (should this exist),
unchanged (Woodward, 2001, p. 8).

Several authors (Pearl, 2000; Spirtes et al., 2000; Woodward, 2007) consider
an ambiguous situation that can arise. Suppose there are two directed causal
paths from X to Y, and the effect of one causal path cancels the effect of the
other path. In such a case one would not detect that X has an effect on Y. We
illustrate this in Figure 3.6.

The canceling of parallel effects is a possibility. For example, in an exper-
iment one may administer a poison in some food which unknowingly also
contains the antidote. Spirtes et al. (2000) point out that in general, where
one has not systematically caused the administration of one treatment to be
accompanied by another treatment that specifically cancels the first treat-
ment’s effect, the likelihood of encountering such cases has a Lebegue measure
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MX

EY

+1

+1

+a

–a

X Y

Z

FIGURE 3.6 A case with two directed paths from X to Y in which the effect of one path is the
negative of the other, causing them to cancel the total effect of X on Y.

of zero, that is, effectively zero likelihood. The implication is, “Don’t worry
about it.” Treat the variable X as having no effect on Y. Still they concede that
this may not seem satisfactory. So, for the general case (Figure 3.7a) where all
variables are probabilistic, to retain a consistency between probabilistic and
graphical representations, which they call the “faithfulness condition,” they
interpret such situations in general as in Figure 3.7b.

Of course, that will not work in the manipulative case where Z is perfectly
correlated with M and X, since Z is perfectly correlated with X and cannot be
correlated nonzero with Y if X is correlated zero with Y. Experimenters will
see readily that the solution is to disentangle X and Z by finding a manipula-
tion of Z that is unconnected with X, and vice versa for X with respect to Z.
These manipulations are shown in Figure 3.8.

An assumption made by manipulationists is that for any cause X of some
effect Y, one can always find a direct manipulation of X that is independent
of any other causes of Y. This is almost a metaphysical assumption about the
nature of reality. But it more likely rests on an induction from considerable
successes in doing so in the past in the progress of science. This, I think, is
why manipulationist concepts of causation are so popular among scientists.
But there is no logically necessary reason that humans will always be able
to find manipulations that are direct causes of causes studied without also
causing other causes of the same dependent variable. But nothing says one
should not try to find such causes.

EX EXEY EY

EZEZ

a

(a) (b)

b b¢c c¢

X XY Y

Z Z

FIGURE 3.7 In (a) where a = −bc the direct and indirect effects of X on Y cancel, leaving no
effect of X on Y. To maintain consistency between statistical/probabilistic formulations of causal
relations with graphical representations, (a) may then be interpreted as (b), where Z has nonzero
correlation with X and conditioning on Z makes X and Y dependent.
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(b)(a)
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EY EY

1 Z
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YX MX
1 X
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FIGURE 3.8 Two experiments that disentangle X and Z. In (a) MZ causes only Z and not X. In
(b) MX causes only X and not Z.

But, in my view, “manipulation” in science is only a metonym for
causation—identifying something salient that accompanies causation in their
experimental studies with causality itself. As Woodward (2001, 2007) points
out, one of the problems philosophers have identified with the reductive
doctrine that causality is manipulation is that it is circular. Manipulations
are causes. So one is trying to explain causation in terms of something that
is already a cause. Another criticism of reductive manipulationism is that
it is, as Woodward (2001) puts it, “unacceptably anthropocentric or at least
linked much too closely to the practical possibility of human manipulation”
(p. 2). Causes certainly occurred between objects in the universe before man
appeared and began manipulating things on earth. And causes are now occur-
ring where no human is now, such as effects of meteors striking the surface
of Jupiter. And humans did not manipulate an asteroid to strike the earth
and create conditions leading to the demise of the dinosaurs. Nor did their
manipulations cause Vesuvius to erupt, or the San Francisco earthquake of
1906 to occur. There is also a sophomoric quality to the reductive concept that
“causality” is “manipulation,” wherein one seeks to make a challenging and
outrageous claim against common sense. This seems true of Locke (1694) and
Hume (1739, 1777).

The argument here is not that manipulation is an ineffective method of
determining causation. Actually, it is generally the best way. But its effective-
ness is in the manipulation’s breaking causal connections with other variables
that are also causes of the effect variable. But it is not infallible. And in
circumstances where one cannot manipulate causes, inferences to causality
are only provisional, and stronger only to the extent that one can reason-
ably show that the causal variables in the model are free of the effects of
unmeasured/unmodeled variables.

Conditions for Causal Inference

Background Conditions

The events of everyday experience are rarely isolated from a universe of causal
influences that produce them. By seeking to comprehend the dependencies
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between different kinds of events by means of the concept of functional
relationship, researchers have learned over the centuries a number of general
conditions that must obtain for one to have prima facie evidence of causal
relations. The most important of these are the following (James, Mulaik, and
Brett, 1982; Mulaik and James, 1995):

(1) Through experience and reasoning, we must isolate variables into
closed self-contained systems that exclude extraneous and irrelevant
influences of other variables that may mask causal connections or
spuriously suggest them. Similar conditions of closure are made for
systems describing laws of conservation in physics.

(2) We must focus our attention on the coupling between what we will
regard as the independent and dependent variables to demonstrate
that unmeasured mediating causal variables between them are free
from interference, so that the independent variables are not shielded
from the dependent variables by interruptions in the mediating path-
ways. This requires explicit attention to the mediating mechanisms by
which causal and effect variables are linked.

(3) We must correctly specify the causal direction between variables.
Sometimes this is established by the temporal order of measured
events. Other times it is established by manipulation of the causes. In
other situations, directionality is recognized by the dependent vari-
ables being a relational property between objects that is altered by
changes in the attributes of the objects. For example, the lift of a wing
is a relational property between moving air and the shape of the wing.
Holding the velocity and direction of the air constant, we can change
the lift of a wing by altering its shape. We cannot change the shape
of the wing by altering lift.

(4) Since causal relations are functional relations between attributes of
objects, this means that the objects studied must be causally homo-
geneous, that is, for each object the causal relation between a given
pair of variables must be the same functional relation. One must also
specify the relevant environmental context in which the attributes are
defined and observed.

(5) Because the effects of causes frequently change gradually rather than
instantly, one must come to identify when to measure the effects.
One must identify the points of stability or equilibrium in which the
causal system settles down after a change in a causal variable is intro-
duced into the system. If one ignores this, but measures the effects
haphazardly, one may not get repeatable results, or biased results.

(6) With probabilistic causal systems, when one does not work with the
immediate probabilities themselves, but with parametric probability
distribution functions, one must specify the forms of the distributions
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and the parameters involved. Frequently researchers with little expe-
rience with experimentation or causal modeling are unaware of these
conditions. James et al. (1982) were specifically concerned with calling
structural equation modelers’ attention to these or similar conditions,
but Mulaik (1986, 1987), Mulaik and James (1995), and others (e.g.,
Bollen, 1989; Heise, 1975) have discussed them as well.

Nonlinear Causation

Although this book concerns linear models of causation, something must
be said about nonlinear causation. We have asserted that causal relations
are expressed by functional relations between causal and effect variables.
Causal models are linear if they represent causal relations between variables
by linear functions. A nonlinear causal model contains functional relations
between variables that are not linear. It is easy to define what a linear
function is. A linear function f (x) is one that has both of the following
properties:

1. Additivity: f(x + y) = f(x) + f( y).
2. Homogeneity: f(bx) = bf (x).

Examples: y = ax + b,

y = b1x1 + b2x2 + · · · + bnxn,

y = a1 + a2x + a3x2 + · · · + akxk−1.

The latter is nonlinear in the functions of x but linear in its parameters
a1, a2, a3, . . . , ak . We may see this by writing this function as

y(x) = a1X1(x) + a2X2(x) + a3X3(x) + · · · + akXk(x).

The functions Xi(x) can be extremely nonlinear functions of x. Linear, in this
case, only refers to the parameters.

The possibilities for nonlinear functions are endless.

y = a exp(−bx) + c,

y = x5 + x − 1,

y = sin x + b exp(cx),

y = a + bxz + x2 + z3,

y = 2
x

+ 3xz + bwz + 1 − x
cos v

.

© 2009 by Taylor and Francis Group, LLC



“K10039_C003.tex” — page 103[#41] 18/4/2009 16:06

Causation 103

Mathematicians and physicists are interested in nonlinear functions because
many phenomena in physics display nonlinear behavior. But modeling
nonlinear phenomena is difficult. To begin with it is not always obvious what
independent variables to consider and how they are to interact. Physicists
have found that a method known as differential equations is useful in
modeling nonlinear phenomena such as a pendulum. Sometimes the effect
variables are monotonic rather than linear functions of causal variables. A
monotonic function is always increasing (or decreasing) with respect to the
increase of the independent variable. In such a case, a linear function rep-
resented by a straight line may be a close approximation to the monotonic
function.

Moderator variables have been used in regression to treat cases where
the relation of the independent variable to the dependent variable varies
with variation in a third moderator variable. A simple example would be
a regression equation such as

y = b0 + b1x + b2zx + e = b0 + (b1 + b2z)x + e,

where y is a dependent variable, x is an independent variable, z is a moder-
ator variable, and the b’s are regression coefficients. We see that the middle
term reduces to the term on the right, and (b1 + b2z) becomes a regression
coefficient on x that varies with different values of z. So, for all cases with
the same value for z, a straight line with slope (b1 + b2z) will describe the
relationship of x to y. This is not a serious problem if x, y, and z are observ-
able and there are numerous cases for each distinct value of z. We can study
the group homogeneous in value in z separately and estimate the regres-
sion coefficient for that group. The problem becomes more difficult if z is not
quantitative but qualitative. In these cases we can still segregate the cases into
groups homogeneous for the quality of the moderator variable and estimate
the regression coefficient. Sometimes this is done using dummy variables to
represent each of the qualitatively different groups. In structural equation
modeling where the moderator is a qualitative variable that we can segre-
gate cases on, we can model relations between the latent independent and
latent dependent variables separately in each group, meaning we estimate the
structural coefficients separately in multiple groups. This is the safest method
to use.

There have been efforts to formulate ways of treating interactions in SEMs.
An excellent work with chapters by leading researchers in this field is the
edited work of Schumacker and Marcoulides (1998). These methods have not
caught on, because they are complex to implement and have difficulties in
implementing estimating algorithms and often yield seriously biased stan-
dard errors for model parameters. To limit the length of this book, I have
not included a chapter on interaction and nonlinear effects. But the Schu-
macker and Marcoulides (1998) book is the best reference now available on
this topic.
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Science as Knowledge of Objects Demands Testing
of Causal Hypotheses

What may be new about linear causal modeling with structural equations for
students is that the emphasis is on forming causal models and testing them.
Whereas most statistics taught to beginners involve exploratory statistics—
discovering a mean, discovering whether a difference is significantly different
from 0, discovering that a correlation differs significantly from zero—the
statistics of structural equation modeling involve testing for specific values or
patterns of correlations among observed variables dictated by a linear causal
model. (We will only concern ourselves in this book with linear models of
causation, although for the physical world we may often need to formulate
nonlinear models.) To provide the student with a rationale for hypothesis
testing, I offer the following explanations.

The common practice of asserting a substantive hypothesis that there
will be a nonzero correlation between two variables but testing whether the
estimated correlation differs from zero is not a very strong way of using
statistics. For example, if one believes there may be a relationship between
two variables, showing that it is significantly different from zero does not
lend much support for any particular substantive theory, since any number
of substantive theories may assert that a nonzero correlation exists between
the variables. Showing that the correlation is not zero only supports all such
theories. But science seeks to develop specific theories for substantive phe-
nomena and to rule out rival theories. And so, at some point we need to begin
testing hypotheses for specific values or specific patterns of values that are at
best limited to only one theory, or at worst to only a few theories.

But a problem in testing specific values or specific patterns of values for
parameters may occur to the reader. Where do these specific values or spe-
cific patterns come from? In many respects they can come from our general
knowledge about things and how they are related or, more frequently, not
related. In other instances, they may come from previous studies and are
then to be applied to a new context as invariants.

Abduction, Deduction, and Induction

The researcher should realize that scientists conduct research by repeatedly
cycling through three phases as the research progresses. The philosopher,
logician, and physical scientist Charles Saunders Peirce (1839–1914) was per-
haps the first to articulate how scientists actually function through three
phases, reflecting his first-hand experience as a scientist and his deep knowl-
edge of the history of science. He named these three phases abduction,
deduction, and induction. In abduction the scientist is confronted with new phe-
nomena which beg for an explanation or a theory to account for them. The
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scientist then proceeds to develop a hypothesis to account for all of the known
pertinent phenomena in question at that point. This may involve developing
a number of hypotheses and eliminating all but one by how well they are
able to reproduce the known phenomena in question. Sometimes abduction
is described as “inference to the best explanation.” As a logician, Peirce held
that the inference in abduction had the following form:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect A is true. (CP, 5.189; Forster, 2001)

Peirce does not claim that A is now indeed the unique or true explanation of C.
That would be to commit the fallacy of affirming the consequent. There may
be many reasons for C instead of A. But the scientist has reasons to believe
that A is the reason for C. Thus A becomes his/her hypothesis to explain C.
There is still a need to test the hypothesis.

The second phase in the scientific cycle according to Peirce is deduction.
Given prior knowledge and hypothesis A, the scientist deduces logically some
new consequence that might be observed. The inference may be of two kinds
(Forster, 2001):

Necessary deduction:

All M’s are P.
All S’s are M.
Hence, all S’s are P.

Probabilistic deduction:

p% of M’s are P.
S1, . . . , Sn is a large sample of M.
Hence, probably and approximately p% of S1, . . . , Sn are P.

It is essential that the consequence deduced from the hypothesis be some-
thing not in the knowledge or data previously known without the hypothesis
to serve as a premiss to deduce it from that knowledge.

The third phase in Peirce’s scientific cycle is induction. This is reasoning
from a sample to a population. Today, behavioral and social scientists
know this as statistical inference based on the results of a statistical test.
The researcher collects or uses data not used in formulating the hypothe-
sis or the deduction to test the hypothesis. The data collected should not
be merely another random sample from the same population from which
came the data used in hypothesis formation, but data collected in a new
context, sometimes with other variables not observed before. But it is not
sufficient that the data conform to the hypothesis, but rather that one be
able to infer that it would conform in the population from which the data
are sampled.
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Science is the Study of Objects

There is another rationale for why scientists form and test hypotheses. This
rationale demands of scientists throughout history less expertise in formal
logic and deduction than required by Peirce’s logical analysis. It also does not
require a formal deduction after formulating a hypothesis. The hypothesis
can simply assert invariants.

Scientists generally accept that scientific knowledge is (1) acquired by the
senses, (2) is unbiased, (3) is intersubjective, (4) is repeatable, (5) is falsifiable
(or disconfirmable), as well as possessing other characteristics that are often
blends of these five (Mulaik, 2004). Now, what I contend is that these char-
acteristics of scientific knowledge all follow from an unconscious application
of a metaphoric schema taken from object perception: Science is knowledge
of objects (Mulaik, 1994, 2004).

That this may be a metaphor may not be immediately obvious. George
Lakoff and Mark Johnson (1980, 1999), Lakoff (1987, 1993), Lakoff and Nuñez
(2000), and Lakoff and Turner (1989) have argued that abstract thought is
metaphoric, with metaphors taken from embodied perception and action.
Metaphors are mappings from components of a source domain to components
of a target domain, so that relationships between the components in the source
domain may be analogously applied to make inferences in the target domain.
By “embodied” it is meant that we as humans move and observe as bodies
within the world with coordinated perceptual and motor schemas adapted
over millions of years of evolution that integrate what is given by the senses
with muscular action that permits us most of the time to successfully move
among and manipulate objects in the world.

These perceptual and motor schemas, I hold, are applied rapidly—often
within milliseconds, in perception—to integrate the data coming in from sen-
sory neurons (Blumenthal, 1977). Or they may be applied to percepts (Jaynes,
1990/1976) received in working memory from perceptual processes within
at most a few seconds of one another. In this respect, humans share much in
common with most mammals and other vertebrates.

But humans, I contend, also have the capability to form concepts. Concepts
are formed and integrated in working memory from percepts retrieved from
long-term memory that have been excerpted (Jaynes, 1990/1976) from per-
ceptual experience, sometimes hours, days, and years apart in time and/or
from widely spaced locations, sometimes hundreds and thousands of miles
apart in space. Or the percepts may be recorded as signs or writing and taken
in through perception and then into working memory. The concept is not
based on a percept that one simultaneously perceives in a single glance of
all its components organized in a whole. The metaphor is what, in working
memory, provides the organization or structure that combines all the percepts
into a synthesized whole of distinct parts, constituting the concept.

When Columbus argued that the earth is round, he had not seen the earth as
a whole to know this. He had a number of observations, such as seeing first the
tops of ships coming toward him over the horizon, then later the hulls. Then
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there was the round shape of the shadow of the earth on the moon during a
lunar eclipse. The sun being overhead at noon at the equator and increasingly
lower in the sky as one goes north is another consequence of the earth’s being
round. The existence of round bodies in the heavens, such as the moon and
sun, also suggested the roundness of the earth. But the concept of a ball, a
sphere, integrates all these observations into a concept of the round earth.

Leeuwenhoek looks through his water-drop-lens microscope and sees tiny
things moving around in some water he is focused on and calls them little
animals, assimilating them thus metaphorically to the domain of ordinary
living animals seen with the naked eye. They are living things. He does not
see the “little animals” with his naked, unaided eyes.

Again, Tycho Brahe’s observations of Mars, used by Kepler to determine
that the orbit of Mars is an ellipse, were gathered over many years from
locations of the earth in space that were often hundreds of thousands of miles
apart. The metaphor of an ellipse, taken from drawings in which the ellipse
was perspicuously perceived as a whole, integrated all these observations
into an orbit.

Brown (2003) cites a metaphor in chemistry in the following sentence: “[Cell]
Membranes contain channels that are permeable to hydrogen ions and other
positive ions.” This is an example of the use of a conduit metaphor (Lakoff,
1987). A conduit guides the movement of something through space. Usually
a conduit has boundaries that confine what is transported through it within
the conduit. A channel is a particular kind of conduit, usually between bodies
of water. Here hydrogen and other positive ions are confined to the channel
conduits as they move from the outside to the interior of a cell.

Most metaphors, according to Lakoff and Johnson, are schemas of
embodied action and perception—such as paths followed in space, conduits,
locations, obstacles in paths, movement of objects—used to synthesize or inte-
grate experience into complex concepts. So, human knowledge is conditioned
on and mediated by prior schemas of embodied perception and action. In
other words, a schema of perception or embodied action becomes a metaphor
when used to blend or join in thought diverse elements of experience not
perceived jointly in a single percept, but conceived in thought. By mapping
the components of the schema to the diverse elements, we can then con-
ceive of them as the whole suggested by the schema. The mapping of course
has to be constrained by what Lakoff (1993) calls the “invariance principle”:
“Metaphoric mappings preserve the cognitive topology (that is, the image-
schema structure of the source domain [e.g. in perception], in a way consistent
with the inherent structure of the target domain” (Lakoff, 1993, p. 215). For the
object schema, invariants of the image schema of an object must be mapped to
invariants of the target domain, different points of view must be mapped to
different sources of observation at different times and locations, independence
of the observer from the object in the perceptual domain must be mapped to
the independence of the observer scientist in the target domain, and so on.
We will now consider this more explicitly.
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Objects as Invariants in the Perceptual Field

Having said that, why is science’s concern with objects built around a
metaphor? Most abstract scientific concepts are not based on direct percepts of
objects corresponding to them. Atoms, molecules, cells, channels in cell mem-
branes, intelligence, and cooperation are regarded as objects or attributes of
objects by the scientists concerned with them, but no one sees these directly
and immediately by unaided perception. The use of instruments to observe
these involves complicated theories of how the instruments work to reveal
the objects through lenses, meters, and imaging screens. All these theories
work at the conceptual level and incorporate numerous metaphors. So, these
are conceptual objects, not perceived objects.

What then is a perceived object, if it is the basis of science’s conceptual
objects? J. J. Gibson (1950) has provided what I take to be an appropriate
answer here. According to Topper (1983), Gibson (1950) drew upon the math-
ematical concept of an invariant. In topology “… a series of transformations
can be endlessly and gradually applied to a pattern without affecting its
invariant properties. The retinal image of a moving observer would be an
example of this principal” (Gibson, 1950, pp. 153–154). Topper (1983) para-
phrases Gibson as asserting that the retinal image is a projection of a solid
object onto the curved surface of the retina of the eye. As the observer or the
object or both move around in space with respect to each other, the image will
change. But within the image there will remain invariant properties that are
analogous to those in the geometry of transformations (Topper, 1983).

But there is another aspect of object perception. While objects may be invari-
ants in the perceptual field, they are still regarded as other to and independent
of the observer. This is possible, Gibson (1950) held, because the observer
also simultaneously gains information in perception about the actions and
position of the observer with respect to the object and its surroundings. He
called this proprioception, in contrast to the perception of objects, which he
named exteroception. As the observer moves with respect to the object, the
visual image changes in regular ways. As the observer approaches the object,
both the object and the immediate background loom out from a point toward
which the observer is moving. As the observer moves away from the object,
the image of the object and objects in its immediate vicinity shrink toward a
point. On the other hand, if the object approaches the subject, only the object
looms, but not the objects in the surrounding vicinity, while retaining invari-
ant relations among its components. Moving the head to the right causes the
image of the object to move to the left. Thus one has information in percep-
tion that the invariant object is distinct from the observer because it remains
invariant despite the regular changes to the image produced by the actions
and motions of the observer.

Objects are also intersubjective, because each observer can ask another
whether he/she observes the same thing and acts consistent with that view.
The other’s report is further evidence bearing on invariance. The observer
can also move around, and observe from different places whether the same

© 2009 by Taylor and Francis Group, LLC



“K10039_C003.tex” — page 109[#47] 18/4/2009 16:06

Causation 109

thing is perceived. The observer may close his/her eyes for a few seconds,
and then look again, to see whether the object remains invariant and endures
through time.

Thus, I believe scientists unconsciously came to demand that one estab-
lish the objectivity of one’s concepts because they unconsciously applied
the metaphor taken from the schemas of object perception to their concepts.
They did this, maybe naively, because objects they held are what are real,
and the object conceived, although not directly observed, was still regarded
as another object in the world. (It is a trap to fall into to believe that what
we know about objects is incorrigible). Just as objects are invariants when
seen from different points of view, scientific objects must be invariants when
observed from different points of view in different laboratories and with dif-
ferent observers and means of observation. But observations are limited in
time and from a few points of view, so they may not take in the whole object.
Future observations from new points of view may be inconsistent with the
concept formed of it.

Scientific concepts must also be free from systematic artifacts due to the
methods, conceptions, and prejudices of a specific observer or group of
observers. In other words, the concept of the scientific object must not be
contaminated with effects due exclusively to the observer.

For example, when cold fusion was announced by researchers at the Uni-
versity of Utah in 1989, physicists all over the world scrambled to replicate
the phenomenon in their laboratories. At Georgia Tech a week later, sci-
entists reported having conducted an experiment that yielded evidence in
support of cold fusion. But a few days later, the scientists retracted their
claim, saying that a neutron detector they had adapted for the experiment
unexpectedly yielded inflated readings of neutrons (a sign hypothesized of
cold fusion) because of the confounding influence of temperature in the exper-
iment on the instrument. Thus an artifact of observation rendered “subjective”
conclusions.

Implications for Structural Equation Modeling

Structural equation modeling involves all three phases of scientific prac-
tice. Abduction occurs during review of prior knowledge and formulation
of hypotheses. Deduction and induction are used when the researcher for-
mulates and tests a hypothesis about how a set of theoretical constructs or
latent variables contains the causes of another set of observed variables or
indicators. The researcher may develop the theory in the abstract involving
anticipated latent variables derived from general knowledge and then derive
and/or construct observed indicators (variables) of the hypothesized com-
mon factors as effects of them. The resulting model with certain parameters
fixed to specified values represents a hypothesis asserting invariant quan-
tities, whereas other parameters are left freely estimated conditional on the
fixed parameters, to fill the unknown blanks in the model. The values of the
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fixed parameters may be derived in some cases deductively from theory, but
frequently they will be values estimated for these parameters in some other
contexts.

Summary and Conclusion

Science is the knowledge of objects. Objects are invariants in experience
independent of observers, bearing attributes and/or properties. Attributes
are categories that come in classes of two or more categories such that no more
than one member of the class may be assigned to an object at any one time. A
variable is a symbol in thought that at any given time takes on the value of only
one of the members of the attribute class that it represents. Causal relations
have the form of functional relations between variables. A functional relation
involves two sets, a first set and a second set, such that each member of the first
set is assigned to one and only one member of the second set (but more than
one member of the first set may be assigned to a given member of the second
set). Probabilistic causal relations involve functional relations between a set
of causal attributes and a set of distinct probability distributions defined on
an effect-attribute variable such that at any given time a value of the causal
variable is mapped to a value of the effect variable with a probability density
given by the corresponding probability distribution. Physical causal interac-
tions involve exchanges of quantities (attributes) between objects or parts of
objects that conserve the total quantity in the system (when no outside forces
act). Animal and human perceptual systems are sensitive to physical quan-
tities in the causal exchanges between things and thus perceive causality in
those exchanges. The schema of a causal relation involving cause and effect is
so minimal that it easily becomes a metaphor at the basis of numerous causal
concepts. Causes metaphorically can be forces, essences, substances, inten-
tions, agents, settings, reasons, ideas, actions, instruments, goals, attractors,
ends, barriers, and thwartings (Lakoff and Johnson, 1999). Causal relations
being properties of objects must be invariants for certain kinds of objects
and different times. Hypotheses about objects assert invariants, and testing
such a hypothesis tests the invariance in representative samples of objects.
Hypotheses about causes assert invariant functional relations between vari-
ables. “Science is knowledge of objects” is frequently a metaphor involving a
metaphoric object.
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Graph Theory for Causal Modeling

Directed Acyclic Graphs

Recent developments, summarized in Spirtes et al. (1993, 2000) and Pearl
(2000), have attempted to sharpen statements of background principles for
studying causation in mathematical terms, using graph theory. Their aim
was to demonstrate correspondences between graphs representing causal
relations among variables and the joint probability distributions of these vari-
ables. They further sought to determine in graph theoretic terms conditions
under which causal relations could be demonstrated.

A graph consists of vertices (or nodes) and connecting links between them
known as edges. Graph theorists have developed correspondences between
graphs and systems of variables, wherein each vertex in a graph corresponds
to a random variable, with the edges or links between them representing their
dependencies. In our present discussion, we will consider graphs represent-
ing causal dependencies between variables. Since causes are presumed to be
asymmetric relations, we will represent them in graphs by arrows drawn from
causal variables to effect variables. Such graphs that have asymmetric links
between nodes are directed graphs. A graph can be as simple as a Markov
chain (Figure 4.1).

Graphs can also have branches and take on a tree-like structure (Figure 4.2).
Directed graphs are also distinguished according to whether they are cyclic

or acyclic. Cyclic graphs have paths or series of variables connected by arrows
that point back to earlier variables in the series. Acyclic graphs do not. Cyclic
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X1 X2 X3 X4 X1

FIGURE 4.1 Asimple directed graph of a Markov chain of variables. Nodes are random variables
and edges or links indicate causal dependencies between variables. In this Markov chain, only
adjacent variables have direct causal dependencies between them. Diagonal arrows represent
disturbance or error variables.

Y1

Y5Y2

Y3 Y4

X1

FIGURE 4.2 A directed graph with branches and disturbances.

Y1

X1 X1

Y1

Y2 Y2

A B

FIGURE 4.3 Directed acyclic and cyclic graphs. A is acyclic and B is cyclic.

graphs are also known as nonrecursive models. Acyclic graphs correspond to
what are known as recursive models (Figure 4.3).

Graph theory can be used to examine independence between variables.
Two variables X and Y are said to be independent if f (x, y) = f (x)f (y) for
all x and y. An equivalent expression of independence is that X and Y are
independent if f (x | y) = f (x). We will use the notation X ⊥ Y to mean that
variables X and Y are independent.

Conditional Independence

Given random variables X, Y, and Z,

X ⊥ Y | Z ⇔ f (x, y | z) = f (x | z)f (y | z) ⇔ f (x | y, z) = f (x | z).
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The symbol ⇔ may be read as “if and only if.” This means that once Z is
known to have a certain value, then no additional information about X may
be obtained from Y. This is a variant of the local independence condition.

In the Markov chain of Figure 4.1, X3 ⊥ X1 | X2 (X3 is independent of X1
given X2) because f (x3 | x2, x1) = f (x3 | x2) for all values of x1, x2, and x3. In
a Markov chain all influence on a variable is mediated through that variable
immediately preceding it in the chain. Once one conditions on the imme-
diately preceding variable, all prior variables to it are independent of the
successor variable. We can further note that for the variables in the Markov
chain of Figure 4.1, X4 ⊥ X1, X2 | X3 and X5 ⊥ X1, X2, X3 | X4. This suggests
that we may test for a Markov chain in variables having a joint multivariate
normal distribution, using partial correlations, because the partial correla-
tions ρ(x3, x1 | x2), ρ(x4, x1 | x3), ρ(x4, x2 | x3), ρ(x5, x1 | x4), ρ(x5, x2 | x4), and
ρ(x5, x3 | x4) should all equal zero, indicating the conditional independence
of the variables in question.

The joint distribution of the variables in a Markov chain can be expressed
as the product of conditional distributions of adjacent variables in the chain.
For the Markov chain in Figure 4.1,

f (x1, x2, x3, x4, x5) = f (x1)f (x2 | x1)f (x3 | x2)f (x4 | x3)f (x5 | x4).

This demonstrates that the joint distribution of a set of variables in a
directed acyclic graph (DAG) can be derived from certain sets of conditional
distributions suggested by the graph. More about this is discussed later.

Markov Condition

We turn now to directed causal graphs in which variables may have more
than one cause.

We will first develop some terminology for describing a DAG. This
terminology draws heavily upon kinship relationships. Variables that are
immediate causes of an effect variable, that is, variables whose arrows leave
them and point directly to the effect variable, are known as the parents of the
variable. For example, in Figure 4.4 variables X1 and X2 are parents of Y1,
variables Y1 and X3 are parents of Y2, and X1 and Y2 are parents of Y4, while
Y2 is also a parent of Y3. A variable that is an immediate effect of a causal
variable is called a child or daughter of the causal variable. In Figure 4.4, Y1 is
a child of X1 and X2; Y4 is a child of X1 and Y2, but Y4 is not a child of Y1 or
X2; and Y3 is a child of Y2. An ancestor of a variable is any variable that is in a
directed path to the variable in question. X1, X2, Y1, and X3 are ancestors of
Y2. Next, X1, X2, X3, Y1, and Y2 are ancestors of Y4. A descendent of a variable
is any variable in a directed path leading from the variable in question. Y2, Y3,
and Y4 are descendents of Y1 and Y1, Y2, Y3, and Y4 are descendents of X1.
All parents are ancestors and all children are descendents.
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X3

X2

X1 Y4

Y1 Y2

Y3

FIGURE 4.4 DAG with variables having more than one cause used to illustrate the Causal
Markov condition.

Pearl and Verma (1991), Pearl (2000), and Spirtes et al. (2000) described
the Markov condition as a fundamentally important condition for establishing
independence relations in a DAG of causal relations between random vari-
ables. Data satisfying this condition are necessary for both exploratory and
confirmatory analyses. In the exploratory case, which is developed by Spirtes
et al. (2000), who have developed an algorithm for the discovery of causal
structure from covariances among variables, variables must have covariance
structures satisfying this condition to be able to establish causal relations. In
the confirmatory context, this condition must be satisfied by the hypothesized
model graph so that one can identify conditional independence conditions in
the model that follow from a causal structure among the variables and that
may be put to the test against the data. Furthermore, the Markov condition may
not be satisfied by any arbitrary set of variables, for it may not be possible
in any case to subdivide the variables into three proper subsets such that a
first subset is independent of a third subset given values of the variables in a
second subset. Thus, all common causes of variables within a set of variables
to be considered must be included within the set for the Markov condition to
apply. Moreover, the population of subjects must be causally homogeneous as
mentioned previously. Pearl (2000) provides the following statement for the
Markov condition.

The Markov Condition

“A necessary and sufficient condition for a probability distribution P to be
Markov relative [to] a DAG G is that every variable be independent of all its
nondescendents (in G) conditional on its parents” (p. 19). To this I add: Every
variable with parents is unconditionally dependent on its parents.

The Markov condition implies that variables will be unconditionally
dependent on their parents but conditionally independent of all other
nondescendent variables, conditional on the parents.

In Figure 4.4, Y2 ⊥ X1, X2 | Y1, X3 (Y2 is independent of X1 and X2 condi-
tional on Y1 and X3). Also, Y4 ⊥ Y1, X2, X3, Y3 | X1, Y2 (Y4 is independent of
Y1, X2, X3, and Y4 conditional on Y2 and X1). When the variables have a joint
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multivariate normal distribution, these independence conditions imply
that the following partial correlations are zero: ρ(Y2, X1 | Y1, X3), ρ(Y2, X2 |
Y1, X3), ρ(Y4, Y1 | X1, Y2), ρ(Y4, X2 | X1, Y2), ρ(Y4, X3 | X1, Y2), and ρ(Y4, Y3 |
X1, Y2). An important consequence of this is that if V represents the vari-
ables corresponding to nodes in a DAG, then for all values v of V, for which
f (v) �= 0, the joint density function f (V) of variables satisfying the Markov
condition is given by (Spirtes et al., 2000, p. 12)

f (V) =
∏
V∈V

f (V | parents(V)). (4.1)

Here parents(V) is the set of variables that are parents of V. f (V | parents(V))

means the density of V conditional on the (possibly empty set of) parents of
V. If the set of parents is empty, we simply take f (V).

d-Separation Criterion

The Markov condition for a DAG gives rise to a criterion by which we can
determine from the graph what mutually dependent random variables (rep-
resented as the nodes of the graph) can be made to be independent by
conditioning on a certain set of other variables in the graph. The criterion
also allows us to identify what initially mutually independent variables will
become mutually dependent if we condition on a certain other set of vari-
ables. This criterion is known as the d-separation criterion. Pearl (2000) states
the criterion as follows:

A path is said to be d-separated (or blocked) by a set of nodes Z if and
only if

• p contains a chain i → m → j or a fork i ← m → j such that the
middle node m is in [set] Z, or

• p contains an inverted fork (or collider) i → m ← j such that the
middle node m is not in Z and such that no descendant ofmis
in Z.

A set Z [of variables corresponding to nodes in the DAG] is said to
d-separate [a set of variables] X from Y if and only if Z blocks every
path from a node in X to a node in Y. (pp. 4–17)

In Figure 4.4, variables X1 and X2 are d-separated from Y2 by Y1, variables
Y3 and Y4 are d-separated by Y2, and variables Y1 and Y4 are d-separated by
the set {X1, Y2}. A path from X1 to X2 is blocked by the collider Y1. Condition-
ing on Y1 will make the initially independent X1 and X2 become mutually
dependent. Paths between X1 and X3 are blocked by Y2, so that if we note
that initially X1 and X3 are mutually independent, conditioning on Y2 will
make them become mutually dependent. The path between X2 and X3 is also
blocked by the collider Y2, so that conditioning on Y2 will make the initially
mutually independent X2 and X3 become mutually dependent.
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The importance of the d-separation criterion is that it allows us to infer
hypotheses as to when variables that appear initially to be mutually depen-
dent will become independent when we condition on certain other variables.
At the same time it also allows us to identify from the graph which initially
independent variables will become dependent if we condition on certain col-
liders dependent on them. These hypotheses can be tested empirically. When
the variables have a joint multivariate normal distribution, we can test these
hypotheses using partial correlation, testing to see if correlations between
variables become zero when we condition on common causes of them or
intermediate causes between them.

Pearl (2000) notes that one of the paradoxes illustrated by the d-separation
criterion is that variables such as music ability and intelligence, which may
be independent in the general population, may become mutually dependent
(negatively) in a student population of graduate students who are selected
for having high grades in undergraduate music courses, which may be due
to both high intelligence and high music ability.

Minimality Condition

A subgraph G′ of a graph G is a graph that contains some or all of the vertices
of G and some or all of the connected paths between pairs of vertices in G, such
that any path missing in G must be missing in G′. Paths that exist in G may
be missing in G′. However, no directed path between corresponding vertices
in G′ may be missing in the original G (effectively G′ is nested within G).

If the graph is a causal graph with vertices and paths representing vari-
ables and causal influences, respectively, then each direct causal connection
represented by a path in the graph will prevent either an independence or a
conditional independence relation between variables that otherwise would
result. So, the issue is what is the minimal set of directed paths that must be
inserted within a graph that will allow it to represent the independence and
conditional independence relations between the variables that empirically
obtain? Spirtes et al. (2000) give the following.

Causal Minimality Condition

Let G be a causal graph with vertex set V and P a probability distribution
on V generated by G. 〈G, P〉 satisfies the minimality condition if and only if
for every proper subgraph H of G with vertex set V, the pair 〈H, P〉 does not
satisfy the Causal Markov condition.

Faithfulness Condition

Faithfulness concerns the fidelity with which a probability distribution P
and a graph G conform to one another in representing dependence and
independence relations. Consider the graph in Figure 4.5.
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Z

Y

X

FIGURE 4.5 The graph may not be faithful if the direct effect of X → Z is canceled by the indirect
effect X → Y → Z.

Ordinarily one would expect X and Z to be unconditionally dependent.
But one may encounter empirical distributions in which the direct effect of
X on Z is canceled by the indirect effect of X on Z through Y. Y in this case
reverses the effect of X, making it a negative effect on Z. In this case, X and
Z are unconditionally independent but conditionally dependent condition-
alon Y. X and Y are unconditionally dependent, as are Y and Z. The Causal
Markov condition when applied to this graph does not imply that X and Z are
unconditionally independent. The Minimality condition is also not satisfied.
No subgraph obtained by deleting a path in the graph will produce a graph
that satisfies the Causal Markov condition with respect to the empirical dis-
tribution. For example, if the path Y → Z is deleted, conditioning on X will
not leave Y and Z independent with respect to the empirical distribution. If
we remove the path X → Z, which would imply that X is independent of Z
conditional on Y, we find instead that X and Z are dependent conditional on
Y. G is not faithful to P.

The Faithfulness Condition

If G is a causal graph and P a probability distribution implied by G, then
together G and P satisfy the Faithfulness condition if and only if every con-
ditional and unconditional independence relation true in P is implied by the
Causal Markov condition applied to G (Spirtes et al., 2000).

The Faithfulness condition requires that if one variable has causal
influences on another variable over several parallel routes, these influences
in different routes must not cancel one another in their combined effect. Oth-
erwise, the Causal Markov condition will not be satisfied and cannot be
used to infer causal relations. Spirtes et al. (2000) assert further that Faith-
fulness and the Markov condition imply Minimality, but Minimality and the
Markov condition do not imply Faithfulness. Fortunately, Faithfulness is rel-
atively common and allows us to use graph theory to infer causal relations
from probability distributions.
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Basics of Structural Equation Models

The student who, at this point, may be familiar only with exploratory uses
of statistics, such as the descriptive statistics of means, regression, and
exploratory factor analysis, will now be introduced to a new way of using
statistical models. The emphasis will be on testing hypothesized models in
which certain “overidentifying” constraints on the model’s parameters have
been imposed. The aim is to test whether models with these constraints fit
data to which they are applied. The closest example to this in the statistics
of means would be a test of the null hypothesis that a mean is equal to a
specific value prespecified by the researcher. Exploring is when you simply
estimate the mean of a variable without any constraints on it other than those
minimally necessary to make the estimate possible. In regression we estimate
regression coefficients without placing constraints on them. In exploratory
factor analysis we estimate factor loadings and factor correlations, with only
minimal constraints necessary to achieve unique values for them. Hypothe-
sis testing involves prespecifying certain parameters and performing tests of
these values. We will not dwell on hypothesis testing now, but it is impor-
tant that the student keep this generally in mind as we begin considering
structural equation models.

In most cases, in addition to hypothesized constrained values for param-
eters, there may also be estimated parameters in structural equation models,
because the researcher has no idea what values to constrain them to. But
the models need to be completed (by having values for all parameters) to

119
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be able to test them. A test of a model consists of comparing a reproduced
variance–covariance matrix for the observed variables derived from the
model’s parameters (both constrained and estimated) to the observed
variance–covariance matrix, and noting any lack of fit. So, we complete the
incompletely specified model by estimating the unknown parameters condi-
tional on the constrained parameters. But the estimated parameters are not the
principal aim of a structural equation model. This is because their values are
conditioned on the constraints imposed on other parameters in the model,
and whatever values are obtained for them by estimation techniques will
be biased if the constraints are not properly specified. Thus the reproduced
variance–covariance matrix

Σ = GB∗−1Γ∗ΦΓ∗′
B∗′−1G′

is compared to the sample covariance matrix S (which is estimated without
overidentifying constraints) and determining whether the difference between
these matrices is more than could be accounted for by chance. But we need to
work to a point where the above matrices and concepts have meaning for us.

Path Diagrams

To begin with, the complexity of structural equation models demands a
perspicuous way of representing them. Sewell Wright (1921), the founder
of structural equation modeling, invented the path diagram as a way of show-
ing a structural equation model. A structural equation model expressed in
path diagram form is shown in Figure 5.1. A path diagram is also known as
a directed graph. Manifest variables in the diagram are shown by squares
(sometimes rectangles) with variable labels written within them. Latent
variables are shown by circles (sometimes ellipses). Direct causal paths are
represented by one-headed arrows pointing from causal variable to effect
variable. Covariances between pairs of variables are shown by a two-
headed curve. Almost always covariance is shown only between exogenous
variables. Exogenous variables in the diagram have one-headed arrows point-
ing away from them, and none pointing to them, and represent causal inputs
into the system of variables. Endogenous variables have arrows pointing to
them and are variables within the system that are the effects of exogenous
variables or causes of other endogenous variables within the system. Manifest
exogenous variables are represented by x’s. (There are no manifest exoge-
nous variables in the model of Figure 5.1.) Latent exogenous variables are
designated by x’s. Manifest endogenous variables are denoted by y’s.

Associated with each direct causal path is a structural coefficient, which rep-
resents the direct causal effect of the cause on the effect variable. The effect
represents how much a unit change in the causal variable has on the effect
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FIGURE 5.1 A structural equation model represented by a path diagram. Squares are
manifest variables. Circles are latent variables. Disturbances, although latent variables, are
represented without circles. One-headed arrows represent causal paths. Two-headed curves
represent covariance. Associated with each causal path is a structural parameter.

variable or proportionally how much of the quantity of the causal variable
is transferred to the effect variable. The structural coefficients of paths from
exogenous to endogenous variables are g’s. The structural coefficients for
paths from endogenous to other endogenous variables are a’s. When no
arrow exists between a pair of variables where such an arrow could pos-
sibly exist, it means that there is no causal connection between the variables,
and the corresponding structural coefficient is zero. Thus what is left out of
a path diagram is very important. Indicating that a variable is not a cause of
another variable is often the way we impose both identifying and testable
constraints upon our models.

Disturbances are designated by e’s. Structural coefficients of paths from
disturbances to their respective endogenous variables are denoted by d’s.
Subscripts on structural coefficients of causal-path arrows begin on the left
with the number label of the variable pointed to, followed by the number
label of the variable from which the causal-path arrow originates.

Figure 5.1 has two latent exogenous variables and two latent endogenous
variables. The two latent exogenous variables are correlated, as indicated by
the curve with arrows at each end, with a covariance of f12. Latent exoge-
nous causal variable ξ1 is a cause of both η1 and η2. Latent exogenous
variable ξ2 is a cause of η2 also. Each of the latent variables, both exoge-
nous and endogenous, has four manifest indicator variables. The distinction
between indicators and the latent variables they are indicators of is analo-
gous to the distinction between the use of readings on several different kinds
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of thermometers, for example, mercury-tube, alcohol-tube, thermocouple,
thermistor thermometers, and the physical concept of temperature, of which
the thermometers are indicators. It is a good practice to have at least four indi-
cators for each latent variable to overidentify the latent variables of the model
and permit tests of closure and/or self-containment. Note also that each
endogenous variable, whether manifest or latent, has a disturbance variable
pointing to it. Disturbance variables represent extraneous influences such as
errors of measurement and random shocks that are combined with the effects
of exogenous and/or endogenous variables on a given endogenous variable.
Disturbances are analogous to unique factors in common factor analysis or
errors of measurement in classical test theory. However, disturbances may
contain both systematic and unsystematic error. They are usually assumed
to be mutually uncorrelated and uncorrelated also with the exogenous vari-
ables. Technically disturbances are also exogenous variables, but whatever is
contained in them is not of focal interest in contrast to the explicitly named
exogenous variables.

Requiring the disturbances to be mutually uncorrelated imposes an ana-
logue of the local independence condition wherein conditioning on the
explicit exogenous variables leaves the conditioned endogenous variables
mutually independent. The only variation left in the endogenous variables
after conditioning on the explicit exogenous variables is due just to the
disturbances. Requiring the disturbances to be uncorrelated with the exoge-
nous variables implies that there are no other hidden relevant causes, not
explicitly represented in the model, and permits unbiased estimation of the
structural coefficients. In other words, the model represents a conception of
external reality, and disturbances and their properties are supposed to hold
in reality. When these assumptions are violated, the model may be compro-
mised and yield misleading inferences when seemingly confirmed against
data. (Note: Disturbances are not residual variables. Residual variables are
formed when one partials from a set of variables what can be predicted in them
from other variables. They are the result of a mathematical operation.) In linear
models, residuals are necessarily uncorrelated with the predictor variables on
which the partialled components are based. Disturbances, on the other hand,
represent other causes of the variables not explicitly represented in the model
otherwise, and subjunctively it is possible in some cases to imagine their being
correlated with the explicit causal variables within the system and with each
other. The constraints imposed on disturbances, that they are mutually uncor-
related and are uncorrelated with exogenous variables of the system, must
be satisfied in the real-world situation represented by the model to achieve a
closed system of variables in which causal relations can be inferred and struc-
tural coefficients estimated without bias. Residual variables become equiva-
lent to disturbances when these constraints are satisfied. But if the constraints
are not satisfied in the situation represented by the model, for example, there
are hidden relevant causes in the disturbances that are correlated with the
exogenous variables, then the residuals are not true disturbances and param-
eter estimates are likely biased (see James, Mulaik, and Brett, 1982, pp. 71–80).
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Note in Figure 5.1 how the variables are numbered. The exogenous and
the endogenous variables are numbered separately. The numbering begins in
each case with latent variables and is followed by manifest variables. There
are only two exogenous variables, ξ1 and ξ2. But there are 18 endogenous
variables, η1, η2, y3, . . . , y18. Disturbance variables are labeled with the same
number as the endogenous variables they point to.

From Path Diagrams to Structural Equations

Most researchers begin formulating a structural equation model by drawing
a path diagram. That allows them to see the various relationships between
the variables of the model in a perspicuous way. But each path diagram can
be converted into a system of linear equations, and because most computer
programs today require that one specify the model to be tested by entering
the system of equations, one line at a time, it is important that you learn how
to convert a path diagram into a system of linear equations. The process is
rather simple. What you have to do is focus on the endogenous variables of
the system, for there will be a linear equation for each endogenous variable.
We do this with the model in the path diagram of Figure 5.1.

Begin with the first endogenous variable in the system of equations, η1.
Identify the arrows coming into η1. In this case there is an arrow from ξ1
and from ε1. There are no other arrows coming to η1. Now, associated with
each arrow is a structural coefficient. The arrow from ξ1 has the structural
coefficient γ11. The arrow from ε1 has the structural coefficient δ11. We now
write down a structural equation for η1 as:

η1 = γ11ξ1 + δ11ε̃1.

Note that there is a term on the right for each arrow coming into η1. The
first term is for the arrow from ξ1 to η1, and represents the product of the
structural parameter γ11 with the variable ξ1, which is the origin of the arrow.
The second term is for the arrow from ε1 to η1, and represents the product of
the structural parameter δ11 with ε1. Again we multiply the structural param-
eter with the variable that is the origin of the arrow and add that product to
the equation.

Next, let us consider the equation for η2. Write η2 on the left of the equation.
This time look for an endogenous variable’s input into η2. There is an arrow
from η1 to η2. Multiply the structural coefficient on this arrow, α21, with the
variable that is the origin of this arrow, η1, and write the product down as
the first term of the equation on the right. Next look for any arrows from
exogenous variables to η2. There are two, from ξ1 and ξ2. Begin with the
lowest numbered exogenous variable. Note the structural coefficient γ21 for
the arrow from ξ1 to η2. Multiply γ21 with ξ1 and add this product as the third
term of the equation. Do the same with the arrow from ξ1 to η2. Finally note
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the arrow from the disturbance ε2 to η2. Multiply the structural coefficient
δ22 with the variable ε2 that is the origin of this arrow. Add the product to the
equation. You should have

η2 = α21η1 + γ21ξ1 + γ22ξ2 + δ22ε2.

The third endogenous variable is y3. It has only two arrows coming into it,
one from x1 and the other from e3. Multiplying structural coefficients with the
variables that are the origins of these arrows and adding the products yields

y3 = γ31ξ1 + δ33ε3.

We would next write down each of the equations for the endogenous vari-
ables on the left, y3 through y10. (We will postpone doing so here.) Variables
y11 through y18 yield slightly different results since they are indicators of
latent endogenous variables η1 and η2. For example,

y11 = α11, 1η1 + δ11, 11ε11.

We are now ready to see the full system of equations for the 18 endogenous
variables:

η1 = γ11ξ1 + δ11ε1

η2 = γ21ξ1 + γ22ξ2 + α21η1 + δ22ε2

y3 = γ31ξ1 + δ33ε3

y4 = γ41ξ1 + δ44ε4

y5 = γ51ξ1 + δ55ε5

y6 = γ61ξ1 + δ66ε6

y7 = γ72ξ2 + δ77ε7

y8 = γ82ξ2 + δ88ε8

y9 = γ92ξ2 + δ99ε9

y10 = γ10, 2ξ2 + δ10, 10ε10

y11 = α11, 1η1 + δ11, 11ε11

y12 = α12, 1η1 + δ12, 12ε12

y13 = α13, 1η1 + δ13, 13ε13

y14 = α14, 1η1 + δ14, 14ε14

y15 = α15, 2η2 + δ15, 15ε15

y16 = α16, 2η2 + δ16, 16ε16
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y17 = α17, 2η2 + δ17, 17ε17

y18 = α18, 2η2 + δ18, 18ε18 + δ18, 18ε18 (5.1)

Formulas for Variances and Covariances in Structural
Equation Models

Algebraic Methods

As in factor analysis, we soon see that in structural equation modeling, the
model is not fit to individual scores but to the variance–covariance matrix for
the observed variables. In order to get the reproduced variance–covariance
matrix from the model, we need expressions that derive the variances and
covariances among the variables of the model from the model equations for
the observed and latent endogenous variables. Although, for some purposes,
this is easily done in matrix algebra, there are still numerous situations where
it is useful to know how to do this in ordinary algebra and, even more easily,
by path tracing rules. We first consider purely algebraic methods. Consider a
simple causal model with four manifest variables. There are two endogenous
variables in this model, Y1 and Y2, and two exogenous variables, X1 and X2.
There are two model equations:

Y1 = γ11X1 + γ12X2 + δ1ε1

Y2 = α21Y1 + δ2ε2.

The disturbances are presumed uncorrelated with the X variables and with
each other. The two X variables may be correlated.

The general formula for the variance of a linear combination

X = a1X1 + a2X2 + · · · + anXn

is given by

σ2(X) =
n∑

i=1

a2
i σ

2(Xi) +
n∑

i=1
i �=j

n∑
j=1

aiajσ(Xi, Xj).

In other words, the variance of the linear combination is equal to the sum
of the squared weight times the variance of each component plus twice the
sum of the covariances between each component pair, each multiplied by the
product of their weights.

Given two linear combinations X and Y,

X = a1X1 + a2X2 + · · · + anXn and Y = b1Y1 + b2Y2 + · · · + bmYm,
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the covariance between these two linear combinations is then given by

σ(X, Y) =
n∑

i=1

m∑
j=1

aibjσ(Xi, Yj)

or the sum of the products of their respective weights times the covariance of
each pair of component variables, one from each linear combination.

So, now we are able to compute the variances of the respective endogenous
variables of our simple structural model. Because Y2 is a function of Y1, we
have several ways of proceeding. Note that the covariance

σ(Y2, Y1) = σ[(α21Y1 + δ2ε2), Y1)] = α21σ(Y1, Y1) + δ2σ(ε2, Y1) = α21σ
2(Y1)

(5.2)

because the covariance of a variable with itself equals its variance and the
covariance between Y1 and ε2 is zero by hypothesis. So, all we would need to
do is find an expression for the variance of Y1 and insert that in Equation 5.1.

The variance of Y1 is given as

σ2(Y1) = γ2
11σ

2(X1) + γ2
12σ

2(X2) + δ2
1σ

2(ε1) + 2γ11γ12σ(X1, X2). (5.3)

Hence

σ(Y1, Y2) = α21[γ2
11σ

2(X1) + γ2
12σ

2(X2) + δ2
1σ

2(ε1) + 2γ11γ12σ(X1, X2)].
(5.4a)

An alternative approach is simply to substitute the full expression for Y1 in the
first right-hand expression of Equation 5.1, expand, and then collect similar
terms. The result will be the same as multiplying α21 times each expression
within the brackets of Equation 5.1:

σ(Y1, Y2) = α21γ
2
11σ

2(X1) + α21γ
2
12σ

2(X2) + α21δ
2
1σ

2(ε1)

+ 2α21γ11γ12σ(X1, X2). (5.4b)

The variance of Y2 is similarly a function of the variance of Y1:

σ2(Y2) = α2
21σ

2(Y1) + δ2
2σ

2(ε2).

If we substitute the right-hand side of Equation 5.2 for the variance of Y1 in
this expression, we obtain

σ2(Y2) = α2
21γ

2
11σ

2(X1) + α2
21γ

2
12σ

2(X2) + α2
21δ

2
1σ

2(ε1)

+ 2α2
21γ11γ12σ(X1, X2) + δ2

2σ
2(ε2) (5.5)
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Path Tracing Rules

A number of authors (Heise, 1975; Duncan, 1975) have described a method
whereby an inspection of the path diagram for a structural model will yield
expressions for the variances and covariances among variables determining
the variables in question. In some respects Heise’s discussion is easy to fol-
low because he takes things step-by-step. But Duncan’s use of the distinction
between direct and indirect effects is useful. These rules will often come in
handy as you seek to formulate equations involving variances and covari-
ances among the variables and their relations to the model parameters when
considering identification of a model and its parameters. They come in handy
when we seek to estimate the overall effects of a causal variable on an effect
variable that may be linked by several paths, or by paths with intermediate
variables along the path.

Suppose that Xi is a causal variable that immediately effects a variable Yj,

which is illustrated by Xi
γji−→ Yj, that is, by an arrow directly connecting Xi

to Yj. The structural coefficient γji associated with the arrow is the direct effect
of X on Y. The structural coefficient represents how much a unit change in Xi
produces a change in Yj. Now, suppose that there are intervening variables
between Xi and Yj:

Xi
γgi−→ Yg

αhg−→ Yh
αjh−→ Yj.

The effect of Xi on Yj is now an indirect effect because the effect has to be
mediated by the intervening variables Yg and Yh. The value of the indirect
effect of Xi on Yj is given by the product of the structural coefficients on the
paths connecting Xi to Yj: γgi · αhg · αjh. This allows the reduced expression
Yj = γjiXi = γgiαhgαjhXi. We may note here that if the absolute magnitudes
of the structural coefficients are each less than 1.00, then the indirect effect
of Xi on Yj is less than any intervening direct effect between intervening
variables on the open path from Xi to Yj. The path is said to be open because
it does not work its way back to the first variable Xi in the path. All paths in
DAGS are open. This is the same as saying that all paths in a recursive model
are open. On the other hand, if the path works its way back and connects
with its starting variable, the path is known as a loop. A graph with at least
one loop is a directed cyclic graph, corresponding to a nonrecursive model. For
the present we only concern ourselves with DAGS and/or recursive models.

A causal variable may have more than one indirect effect on an effect vari-
able. There may be several paths through different intervening variables from
the cause to the effect variable. Each distinct path of intervening variables
has an indirect effect on the effect variable. A distinct path of intervening
variables is any sequence of variables traversed in the direction of the effect
variable that passes through a distinct sequence of intervening variables. Two
sequences are distinct if there is at least one variable in the sequence not found
in the other. The total effect of a causal variable on an effect variable is the sum
of its direct effect and all its distinct indirect effects on the effect variable.

© 2009 by Taylor and Francis Group, LLC



“K10039_C005.tex” — page 128[#10] 15/4/2009 16:56

128 Linear Causal Modeling with Structural Equations

We first consider the covariance between two variables. As an overview,
consider that there are three fundamentally different ways in which two vari-
ables X and Y may covary. But all of these ways involve shared variance.
(1) X → Y : X may be a cause of Y. (2) X ← Y: Y may be a cause of X. (3)
X ← Z → Y: X and Y are not causes of each other but are effects of a common
third variable Z. We may expand these cases by replacing any arrow by a
sequence of intervening variables with arrows between them all pointing in
the same direction. We may also consider that two variables may covary not
only because one variable is the cause of the other, but additionally because
there is some third variable that is a cause of both.

Given any two variables in a path diagram with the aim of finding the
covariance between them, we first must look at the path diagram to iden-
tify the direct paths between them and the indirect paths between them.
For instance, take the following simple path model with two manifest vari-
ables given in Figure 5.2. Note that the variance of the exogenous variable
and the disturbance is indicated by an arch. [I am indebted to Professor
Jack McArdle (cf. McArdle and Boker, 1990) for the use of arches (McArdle
used arrows at the ends of his arches, but arches are easier to set up and
draw) to represent variances in path diagrams. They are not always neces-
sary, but do facilitate the use of path tracing rules.] If we wish to find the
covariance between X1 and Y1, we see that there is only one path between
them, shown by an arrow, and this is a direct path, with X1 at the start and
Y1 at the end of the path. The rule is to start at the variable that is the ori-
gin of the direct path, here it is X1, go back to the variance arch and go
around it, picking up the variance expression as we go, then go back to the
variable (X1) and then go along the path from it to the other variable (Y1),
picking up the path coefficient along the way. Stop at Y1. Multiply all coeffi-
cients passed through along the way. We should then have the covariance as
σ(X1, Y1) = α11σ

2(X1). By tracing the path through the coefficients, we find the
coefficients that must be multiplied together to obtain the covariance. In other
words, the covariance is the variance times the effect of the causal variable
on the effect variable.

X1 Y1
a11s2(X1)

s2(e1)

d2

e1

FIGURE 5.2 A simple path model with two manifest variables.
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Consider now the model of four manifest variables that we used to
illustrate the algebraic method. We now represent it by the path diagram
in Figure 5.3. In this diagram Y1 corresponds to X1 and Y2 corresponds to Y1
in Figure 5.1. What is now a bit more complicated is that we do not know
directly the variance of Y1. This, however, is a function of the two exoge-
nous variables X1 and X2, as well as the disturbance ε1, their variances, and
their covariances. Now, while we might preoccupy ourselves with finding
the variance of Y1, there is really no need to do so. The path tracing we do
will accumulate all the expressions we need to obtain the covariance we seek.
But while we are at it, notice that the covariance between the two exogenous
variables is shown by a double-headed curved line with the covariance given
by σ(X1, X2).

We call a curve with double arrows a “bridge.” Some of our traced paths
will cross that bridge. So, let us begin with the causal variable Y1. Note the
three arrows coming into it. We start tracing paths up each one of these arrows.
Let us begin with the arrow from X1 to Y1. From Y1 go up along this arrow to
X1, picking up the path coefficient γ11 as we go, until we get to the exogenous
variable X1. Go now around the variance loop on X1 and pick up the variance
σ2(X1) also. Now when you get back to X1, go straight back home to Y1. As
we go back down the arrow from X1 to Y1, pick up the coefficient γ11. When
we arrive at Y1, then take the path from it to Y2, picking up the coefficient
α21 also. Now, multiply all accumulated variances and coefficients together
and write the result down somewhere. Algebraically we should now have
γ11σ

2(X1)γ11α21.
Next, let us take another path. This time we go down the path from Y1 to

X2, picking up the path coefficient γ12 as we go; then we pick up the variance
σ2(X2); then come back to Y1 and from there go directly to Y2, picking up
again the path coefficient α21. We write the product of the coefficients col-
lected along the tracing of this path. We should now have the second product
γ12σ

2(X2)γ12α21. We now have two product expressions. We save them for

d2
d1

Y2

X2

Y1

X1

a11

g12

g11

e2e1
s2 (X1)

s2 (X2)

s (X1, X2)

s2 (e2)s2 (e1)

FIGURE 5.3 A simple graph model with four manifest variables.
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later, when we add them, and additional expressions we are about to get,
together.

Now, there are three other paths we must trace. The idea is that you go from
the first variable of the covariance to any exogenous or disturbance variable
connected to it. You then must seek a way to return to the first variable. You
may (1) return by the way you came to the causal variable, after going around
the variance loop for the exogenous variable, and then from there go to the
effect variable of the covariance, or (2) take a bridge from the exogenous vari-
able to another exogenous variable, that also is a cause of the first variable,
and return to it from there, and then on to the second variable of the covari-
ance. No two paths traced should pass through the same arrows, arches, and
bridges in the same order and direction.

The first of these three additional paths to trace is to go from Y1 to X1,
picking up γ11, and instead of going around the variance arch, go across the
bridge, picking up σ(X1, X2), then directly from X2 back to Y1, picking up γ12,
and finally from Y1 to Y2, picking up α21. So, multiplying the accumulated
coefficients together, we obtain γ11σ(X1, X2)γ12.

The second of the remaining three is obtained by going in the opposite
direction from Y1 to X2, across the bridge to X1, back to Y1, and then to
Y2. This produces γ12σ(X1, X2)γ11, which is equal to the value we obtained
when we traced this path in the opposite direction.

The final path to trace is to go from Y1 to ε1, picking up δ1, then around the
variance loop, picking up σ2(ε1), and then, because there is no other way to
get back to Y1, go back the way we came, picking up δ1 a second time and
from there to Y2, picking up α21 once more. The result is δ1σ

2(ε1)δ1α21.
We have now all of the component expressions for the covariance between

Y1 and Y2. After we add them together and rearrange, we obtain

σ(Y1, Y2) = γ2
11σ

2(X1)α21 + γ2
12σ

2(X2)α21 + 2γ11γ12σ(X1, X2)α21

+ δ2
1σ

2(ε1)α21,

which we see is the same as the result shown in Equation 5.2 obtained
algebraically.

Now, let us examine a case, illustrated by two models in Figure 5.4 with
both a direct path and a covariance path between two variables for which we
wish to determine their covariance.

In Figure 5.4a and b, we seek σ(Y1, Y2). The direct path shown in Figure 5.4a
goes from Y1 to Y2 with path coefficient α21. We first obtain expressions for the
direct path. Begin as before with the causal variable Y1 and note that there are
two arrows coming to it, one from ε1 and the other from X1. We are to trace a
path back to either a disturbance or an exogenous variable that is a cause of Y1,
pick up any path coefficients on the way, then the variance term, and finally
retrace our steps to Y1 picking up the path coefficients again, and from there
go to Y2, picking up α21. (There are no bridges to cross in this example.) So, let
us begin with the path from ε1. Go up this path, picking up δ1, then around
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a21

(a)

Y2Y1

g11 d2

e1

e1 e2

X1
X1

X1

g21d1

Y2

g11

Y1

g21

(b)

(c) (d)

Y2Y1

g11

e1

e1

X1

g21
d1

Y2

g11

Y1

g21

s2 (e1) s2 (e1)s2 (X1) s2 (X1)

s2 (X1) s2 (X1)

s2 (e2)

s2 (e2)

s2 (e2)

s2 (e2)

d2

d2d2 a21

a21a21

e2
e2

e2

FIGURE 5.4 Two three-variable path models. At the top we seek σ(Y1, Y2) composed of
(a) direct and (b) covariance paths between variables Y1 and Y2 shown, respectively, in bold
arrows. At the bottom we seek σ(X1, Y1) via (a) a direct effect between X1 and Y2 shown in bold in
(c) and an indirect effect between them in bold in (d).

the variance loop of ε1, picking up σ2(ε1), then back to Y1, picking up δ1 once
again, and then from Y1 to Y2, picking up α21. We should have δ1σ

2(ε1)δ1α21.
Let us now go up the path to X1, picking up γ11, then go around the variance
loop of X1, picking up σ2(X1), then back to Y1 again, picking up γ11 again,
then finally from Y1 to Y2, picking up α21. We should have γ11σ

2(X1)γ11α21.
So, now we have completed the direct terms.

The covariance path is due to the common cause X1 of both Y1 and Y2.
In this case we go from Y1 to X1, picking up γ11, then around its variance
loop, picking up σ2(X1), and then, instead of returning to Y1, we go from X1
to Y2, picking up γ21. We should now have γ11σ

2(X1)γ21. We do not go over
this same path a second time in the reverse direction, because we are seeking
a covariance, and only go in one direction in that case. (We only go a second
time in the reverse direction when we find variances of the causal variable.)
So, now the covariance between Y1 and Y2 is given by

σ(Y1, Y2) = δ2
1σ

2(ε1)α21 + γ2
11σ

2(X1)α21 + γ11σ
2(X1)γ21

or

σ(Y1, Y2) =
[
δ2

1σ
2(ε1) + γ2

11σ
2(X1)

]
α21 + γ11σ

2(X1)γ21.

Note that σ2(Y1) = [γ2
11σ

2(X1) + δ2
1σ

2(ε1)
]

.
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In Figure 5.4c and d, we see another model with a direct and an indirect
effect. We seek σ(X1, Y2). The direct effect is shown in Figure 5.4c in bold
arrows. As before, we first obtain the variance on X1, then we go from X1 to
Y2, picking up α21. The covariance due to the direct effect is then σ2(X1) · α21.
Now, in Figure 5.4d, we see the path of the indirect effect in bold arrows.
Again we begin with the variance σ2(X1), then go from X1 to Y1, then from
Y1 to Y2, picking up γ11 and α21. The indirect contribution to the covariance
is σ2(X1) · γ11 · α21. Now, add both the covariance due to the direct effect and
the covariance due to the indirect effect and we obtain (after simplifying)

σ(X1, Y2) = σ2(X1)(γ21 + γ11 · α21).

Next, let us consider Figure 5.5, which is the model with 16 manifest vari-
ables that we considered earlier. Suppose we wish to find the variance of
variable Y18. This is a more complex problem because the exogenous variables
are at least once removed from variable Y18. But as before, to find the variance,
we must work our way backward from Y18 to various exogenous variable to
find their variances, picking up path coefficients to multiply together as we
go along our way. We presume that all exogenous latent variables and distur-
bance variables have unit variances. The key is to remember that the variance
of a weighted linear combination is equal to the sum of the respective squared
weights times the variance of each component variable plus the sum of twice
the products of the respective weights times the covariances between each
pair of component variables. This explain why we trace the paths that we do.

d11, 11

a11, 1
a12, 1

e2
d22

g22

g21

x2

x1

g92

g71

g61

g51

g41

g31

g82

g10, 2d10, 10
e10

f12

g11

d33
e3

e7

d66

d77

d88

d99

d55

d44

e6

e5

e4

e1
d11

a18, 2

a21

a14, 1

a13, 1

d12, 12

d13, 13

e11

e12

e13

d14, 14e14

d15, 15 e15

d18, 18
e18

d16, 16
e16

d17, 17 e17

h2

h1

e8

e9

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17

y18

y3

y4

a17, 2

a16, 2

a15, 2

FIGURE 5.5 Model in which we find the variance of variable Y18 using path tracing rules. In
the figure, bolder path lines in the diagram contribute to the variance of Y18.
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Let us first begin at Y18 and go to η2, which is the immediate cause of Y18.
We see that we could write the variance of Y18 as σ2(Y18) = α2

18, 2σ
2(η2). But we

do not know directly σ2(η2), and so, we have to build it indirectly as we trace
back to the ultimate exogenous variables and disturbances from which η2 is
derived as a weighted linear combination. So, from η2 we go to ξ1 and then
back the way we came. The variance of ξ1 is 1.00. Along the way we pick up
α18, 2 and γ21, and then these again as we return. We end up with the product
α2

18, 2γ
2
21. Next let us again go through η2 to ξ1, but this time we return to Y18

via η1 and η2. So the coefficients picked up along the way yield the product
α2

18, 2γ21γ11α21. Similarly, we can go the same path, this time in reverse, to yield
another α2

18, 2γ21γ11α21. We can also go to ε1 by way of η1 and return the same
way, picking up the matrix product α2

18, 2α
2
21δ

2
11. Next, we go to η2, then to ξ1,

but this time we take the bridge to ξ2, then go to η2, and finally back to Y18.
Multiplying the coefficients we passed on the way, we obtain α2

18, 2γ21φ12γ22.
We can go back over the same path in the reverse direction and again obtain
α2

18, 2γ21φ12γ22. Next we go to η2, then to ξ2, and then back in the reverse
direction. The coefficients we pick up on this run are α2

18, 2γ
2
22. Next, go to η2,

then η1, then ξ1, then across the bridge to ξ2, then back to η2, and finally to
Y18. The coefficients we gather yield the product α2

18, 2α21γ11φ12γ22. And we
must go back over this same path in reverse to again yield α2

18, 2α21γ11φ12γ22.
Finally, we go to η2, then to ε2, and return the way we came, yielding α2

18, 2δ
2
22.

The variance of Y18 is the sum of all these products:

σ2(Y18) = α2
18, 2γ

2
21 + α2

18, 2γ
2
22 + α2

18, 2α
2
21δ

2
11 + α2

18, 2δ
2
22 + 2α2

18, 2γ21γ11α21

+ 2α2
18, 2γ21γ11α21 + 2α2

18, 2γ21φ12γ22 + 2α2
18, 2α21γ11φ12γ22. (5.6)

Now, if we wish to find the proportion of the variance of Y18 that is due to the
variance of ξ1, we collect all terms that involve a path through ξ1 and divide
these by the total variance given in Equation 5.6:

variance due to ξ1 =
α2

18, 2γ2
21 + α2

18, 2γ2
11 + 2α2

18, 2γ21γ11α21 + 2α2
18, 2γ21φ12γ22 + 2α2

18, 2α21γ11φ12γ22

σ2(Y18)
.

Next, the covariance between, say, Y3 and Y18 involves finding all paths
from Y3 to Y18. These are shown in Figure 5.6.

Begin with Y3, go to ξ1, then to η2, and finally to Y18. Multiply together
all coefficients passed along the way: γ31γ21α18, 2. Next from Y3, again go to
ξ1, then to η1, then to η2, and finally to Y18. Multiply together all coefficients
passed along the way: γ31γ11α21α18, 2. Finally, from Y3, go to ξ1, then cross the
bridge to ξ2, then to η2, and finally to Y18. Multiply coefficients passed on the
way: γ31φ12γ22α18, 2. Now, add all three products to yield

σ(Y3, Y18) = γ31γ21α18, 2 + γ31γ11α21α18, 2 + γ31φ12γ22α18, 2.
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FIGURE 5.6 Paths to follow to yield the covariance between Y3 and Y18 are in heavy lines.
Latent variables in this case are assumed to have unit variance.

From these results we can see how the covariance between variables may
be due not just to direct causal effects between variables, but to indirect
paths and covariances between ancestor variables. Path tracing can make
these associations much more perspicuous.

Matrix Equations

While ordinary algebraic equations are convenient for entering models into
computer programs, they are less convenient for theoretical purposes. We
now need to consider matrix equations for representing structural equation
models and to derive from these equations the analogue of the fundamental
theorem of factor analysis, that is, an equation that states how the variance-
covariance matrix of the observed variables is a matrix function of model
parameter matrices.

There are two ways by which we might express the model equation of the
structural equation model with latent variables in matrix form. The first treats
disturbances distinctly from exogenous variables:

[
η

y

]
= A

[
η

y

]
+ Γ

[
ξ

x

]
+
[
Δ 0
0 Ψ

] [
ζ

ε

]
. (5.7a)

or

η∗ = Aη∗ + Γ∗ξ∗ + Δ∗ε∗,
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where η∗ =
[
η

y

]
is the partitioned (m + p) × 1 random vector of endogenous

variables, with η the m × 1 vector of latent endogenous variables and y the
p × 1 vector of manifest endogenous variables. A is the (m + p) × (m + p)

matrix of structural coefficients relating endogenous variables to other
endogenous variables. Note: the principal diagonal of A ordinarily contains
zeros, because no endogenous variable can be a cause of itself. (When all ele-
ments above the principal diagonal of A are zeros, so that the only nonzero
elements in A are below the principal diagonal, we have a recursive model,
whose endogenous variables are only effects of variables “upstream” from
them and never of variables “downstream” from them. Otherwise, when there
are nonzero elements both below and above the principal diagonal of A, the
model is a nonrecursive model. Nonrecursive models contain feedback loops
and things like reciprocal causation and must be understood in ways different
from the way we understand recursive models.)

Γ∗ is the (m + p) × (n + q) matrix of structural coefficients relating endoge-

nous variables to exogenous variables. ξ∗ =
[

ξ

x

]
is the partitioned (n + q) × 1

random vector of exogenous variables, with ξ the n × 1 vector of latent
exogenous variables and x the q × 1 vector of q manifest exogenous
variables.

Ψ is a p × p diagonal matrix of structural coefficients relating manifest
endogenous variables to exogenous disturbance variables. ε is the p × 1
vector of disturbance random variables on the manifest variables. In some
treatments Ψ is regarded as an identity matrix and variances of the distur-
bances can differ from unity. In programs based on this latter treatment, when
estimating variances of the disturbances, the program may wander into the
negative region for these variances, which yields an inadmissible solution. In
the development here, on the other hand, the variances of the disturbances
can be fixed to unity, and variance relative to the endogenous variables will
then be determined by the square of the ψ structural parameter for the corre-
sponding disturbance. The ψ’s can be positive or negative without implying
inadmissible solutions.

Δ is an m × m diagonal matrix of structural coefficients relating m latent
endogenous variables η to m disturbances ζ. A particular diagonal element of

Δ is δii. ε∗ is the (m + p) × 1 partitioned vector
[
ζ

ε

]
of disturbances on latent

and manifest endogenous variables collectively,

Δ∗ =
[
Δ 0
0 Ψ

]
.

An alternative way of expressing the fundamental model equation of struc-
tural equation modeling, which we use, is to treat both explicit exogenous
variables and disturbances as exogenous variables. This leads to the following
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form for the equation:

[
η

y

]
= A

[
η

y

]
+ [Γξ ΓX Γε

]
⎡
⎣ξ

x
ε

⎤
⎦

or

η∗ = Aη∗ + Γ∗ξ∗. (5.7b)

ξ∗ is an (n + q) × 1 vector of exogenous and disturbance variables. ε is
(m + p) × 1. No distinction in notation is made between disturbances on latent
endogenous or manifest endogenous variables, so there is no ζ. The subma-
trix Γε equals Δ∗. I use this form because it allows us to treat γ’s and δ’s
similarly when obtaining derivatives of the fit functions with respect to their
elements. This form was used previously by James, Mulaik, and Brett (1982)
and was inspired by Bentler and Weeks’ (1982) simplification of the struc-
tural equation model, which in turn has affinities to McArdle’s RAM model
(McArdle, 1979, 1980; McArdle and McDonald, 1984). The LISREL© notation
developed by Jöreskog (1973), although widely popularized, is now regarded
as unnecessarily complex.

At this point we need to deal with a question that the reader may have: how
is it that η∗ appears on both the left and right sides of the model equation?
Actually, if one returns to the algebraic equations developed for the path
model previously, one will see that no variable occurs simultaneously on both
sides of an equation. It only looks that way in the matrix notation. But recall
that the diagonal elements of the A matrix are zeros, which means that no
endogenous variable can occur on both sides of the equation. Nevertheless,
to tidy things up a bit, structural equation modelers have resorted to the
following device: subtract Aη∗ from both sides of Equation 5.7b to obtain

η∗ − Aη∗ = Γ∗ξ∗,

which can be simplified by factoring η∗ out of each expression on the left to
yield

(I − A)η∗ = Γ∗ξ∗. (5.8)

Let B = (I − A); then rewrite Equation 5.8 as

Bη∗ = Γ∗ξ∗. (5.9)

Finally, multiply both sides by B−1:

η∗ = B−1Γ∗ξ∗. (5.10)

This is known as the reduced form model equation. In this equation
endogenous variables are matrix functions of the exogenous variables only.
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Our next task is to derive variances and covariances for the manifest vari-
ables of the system. But first we need expressions for covariances among the
exogenous variables. Let Φ = var(ξ∗) or

Φ =
⎡
⎣Φξξ ΦξX 0

ΦXξ ΦXX 0
0 0 Φεε

⎤
⎦

where Φξξ is the n × n variance–covariance matrix for the latent exogenous
variables. ΦXX is the q × q variance–covariance matrix for the manifest exo-
genous variables. ΦξX is the n × q matrix of covariances between the n latent
exogenous and q manifest exogenous variables. Φεε is the (m + p) × (m + p)

variance–covariance matrix for the m + p disturbance variables. Finally, we
indicate by null matrices that the covariances between exogenous variables
and disturbances are zero (by hypothesis).

We now need to introduce a device for selecting the manifest variables
from the vectors η∗ and ξ∗, respectively. What we use is known as a selection
matrix (Bentler and Weeks, 1982). Let Gy be a p × (m + p) matrix, such that
Gy = [0, I], where the null matrix (used to ignore the latent endogenous vari-
ables) is a p × m null matrix and I is a p × p identity matrix for selecting the
manifest endogenous variables. Then

y = Gyη∗ = [0 I
][η

y

]
.

Similarly, let Gx be an q × (n + q + (m + p)) matrix, such that Gx = [0, I, 0],
where the first null matrix is an q × n null matrix that leads one to ignore
the latent exogenous variables, I is a q × q identity matrix used to select the
manifest exogenous variables, and the second null matrix is a q × (m + p) null
matrix used to ignore the disturbance variables. Thus

x = Gxξ
∗ = [0 I 0]

⎡
⎣ξ

x
ε

⎤
⎦.

Bentler and Weeks (1982) suggested defining supervectors

Z =
[

y
x

]
(5.11)

and

ν =
[
η∗
ξ∗
]

=
[

B−1Γ∗ξ∗
ξ∗

]
=
[

B−1 0
0 I

] [
Γ

I

]
ξ∗. (5.12)

We may rewrite this result as ν = B∗−1Γ∗ξ∗.
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Next, define the supermatrix

G =
[

Gy 0
0 Gx

]
. (5.13)

Then Z = Gν = GB∗−1
Γ∗ξ∗ or

Z =
[

y
x

]
=
[

Gy 0
0 Gx

]
ν =

[
Gy 0
0 Gx

] [
η∗
ξ∗
]

=
[

Gy 0
0 Gx

] [
B−1Γξ∗

ξ∗
]

=
[

Gy 0
0 Gx

] [
B−1 0

0 I

] [
Γ

I

]
ξ∗ (5.14)

is the vector of observed random variables derived via the “grand” selection
matrix G from the supervector ν of endogenous and exogenous variables
(including disturbances). The variance–covariance matrix of the observed
variables (the fundamental theorem) is then

Σ = GB∗−1Γ∗ΦΓ∗′B∗′−1G′. (5.15)

It is worth noting that this form for the equation for the observed variables’
variance–covariance matrix is a special case of McDonald’s (1979, 1980) cor-
responding equation in the Covariance Structure Analysis (COSAN) model
for analysis of covariance structures. From Equations 5.11 through 5.13 and
Equation 5.15 we obtain

Σyy = GyB−1ΓΦΓ′B′−1G′
y. (5.16a)

Σxy = GxΦΓ′B′−1Gy. (5.16b)

Σxx = GxΦG′
x = Φxx. (5.16c)

Equations 5.14 and 5.16a, b, and c constitute, respectively, the model equa-
tion for the observed variables and the equation for the variance–covariance
matrix of the observed variables as a matrix function of the parameters of the
structural equation model. These equations correspond to the fundamental
equation and the fundamental theorem of factor analysis, and represent the
fundamental equation and theorem of the structural equation model.
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Identification

Incompletely Specified Models

Before considering the problems of estimating the parameters in structural
equation models, we must consider an early development of these models
due to the Swedish mathematical statistician, Karl Jöreskog (1969), which
was focused on developing confirmatory factor analysis, and which turns
out to be a special case of structural equation modeling. Because the common
factor analysis model is likely already familiar to the reader and because
it is simpler to work with than the full structural equation model, we will
discuss identification in the case of a common factor model. But the principles
generalize immediately to structural equation models, of which the common
factor model is a special case.

By way of review, the confirmatory factor analysis model has the model
equation

Y = Λξ + Ψε, (6.1)

where Y is a p × 1 random vector of observed variables, Λ is a p × n factor
pattern matrix relating the p observed variables to the n common factors, ξ is
an n × 1 random vector of n common factor variables, Ψ is a p × p diagonal
matrix of unique factor pattern coefficients, and ε is a p × 1 vector of latent
unique factor variables. Furthermore, assuming variables have zero means,
the model usually assumes that E(ξε) = 0 and E(εε′) = I, implying that the
unique factors have unit variances and are mutually uncorrelated. From the
fundamental equation and the assumptions, we can derive the variances and

139
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covariances among the observed variables as

Σ = ΛΦεεΛ
′ + Ψ2 (6.2)

Jöreskog’s major contribution in his (1969) paper arises from the fact that he
appears to have realized that most researchers who use factor analysis cannot
specify exactly all the loadings of the pattern matrix (the matrix Λ of coeffi-
cients indicating how much a unit change in a factor produces a change in a
manifest variable) nor even the correlations Φεε among the factors (the latent
variables of the model) when they generate hypotheses about the expected
factors. However, frequently they can specify the zero elements of the pat-
tern matrix, and sometimes, on the basis of past analyses, they can specify
the exact values of a few of the nonzero loadings of the pattern matrix. Con-
sequently, Jöreskog (1969) sought to formulate the factor analysis model in
such a way that the researcher would have complete freedom in specifying or
leaving unspecified various parameters (i.e., elements of the matrices Λ, Φεε,
and Ψ2) of the model. Specified parameters would be fixed by hypothesis.
Unspecified (free) parameters would be estimated by maximum-likelihood
estimation, conditional on any fixed parameters. He also realized in later work
(Jöreskog, 1974) that one could easily impose equality constraints between cer-
tain parameters, which would be useful in testing models where parameters
are constrained to be equal against models where the parameters in question
are free to take on distinct values during estimation. In summary, Jöreskog
conceived that a researcher could treat each of the parameters of a model as
one of the following:

1. As a fixed parameter, that is, a parameter that has a prespecified
value by hypothesis that remains unchanged during the parameter
estimation process.

2. As a free parameter, that is, a parameter that is free to vary during
the iterations of the parameter estimation process until it attains a
value that optimizes the fit function conditional on values of fixed
parameters.

3. As a yoked (my term) parameter, that is, a parameter that is free to vary
during parameter estimation but under the constraint that its value
must equal the value of some other parameter (or parameters) at every
iteration of the parameter estimation process. Because only one value
must be determined for each group of yoked parameters, only one
parameter from this group is counted when counting the number of
distinct estimated parameters.

4. Later programs for structural equation modeling allowed one to place
linear or nonlinear constraints on individual or groups of parameters.

In recent years, methods have been developed by others wherein
the researcher can constrain a parameter to be positive or negative, or
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greater or less than a specific value. So, we might add a fifth category,
which treats a parameter as the following:

5. As satisfying an inequality constraint, that is, that it is greater or less
than some constant value. Methods for achieving inequality con-
straints on single parameters, however, do not represent a distinct
technique for dealing with parameters apart from the first three ways
of treating parameters. Imposing inequality constraints on a parame-
ter usually involves clever uses of extra paths, “phantom variables,”
and/or duplicated parameters yoked under equality constraints com-
bined with the fixing of certain other parameters (cf. Rindskopf, 1983,
1984). Like freeing a parameter, imposing an inequality constraint on a
parameter also yields a net gain of an additional parameter to estimate
and, unlike imposing equality constraints on several parameters, does
not increase one’s degrees of freedom.

The discussion that follows will illustrate these concepts with the simpler
confirmatory common factor model, which at this point the student should
be more familiar with, but they apply to the more general structural equation
model that has more kinds of parameters.

Freeing Parameters Implies No Added Constraints on Their Value

In an incompletely specified model a free parameter, being an unspecified
parameter, is a parameter about which the researcher asserts nothing con-
straining the value of the parameter beyond the constraints on it arising
indirectly from explicitly specified constraints on other parameters on which
the parameter is conditioned. Freeing a parameter is equivalent to expressing
ignorance about its value.

A common misunderstanding has developed that freeing a parameter is
equivalent to implicitly specifying or asserting a nonzero value and even a
sign for the parameter. Jöreskog (1974) perhaps fostered this misunderstand-
ing by recommending that if a researcher believes a test is dependent on a
certain factor, but has no value for it, then in specifying his model he should
treat the loading of that test on the factor as a free parameter. What he should
have said was that if the researcher cannot assert that a test is independent
of a certain latent variable by fixing the respective loading to zero, but has an
unknown value, he should free the respective parameter: this does not imply
that the test has a nonzero loading on the factor. Certain programs such as
Bentler’s EQS© program or the SIMPLIS language of LISREL© 8 also foster this
misunderstanding by requiring the researcher to specify, for each dependent
variable, an equation that asserts that the dependent variable is a linear func-
tion of certain independent variables. Leaving out an independent variable in
an equation implies that the structural parameter relating that independent
variable to the dependent variable is fixed to zero. The parameters associated
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with independent variables explicitly included in this equation, on the other
hand, may be free parameters, fixed, yoked-equal, or inequality-constrained.
There is nothing intrinsically wrong with freeing these parameters. But the
researcher must recognize them for what they are—ways of simplifying the
model specification process for researchers. But asserting that a parameter in
these equations is a free parameter does not impose any additional constraint
on the parameter during the parameter estimation process beyond those con-
straints on other parameters on which the parameter estimate is conditioned.
The estimated value of the parameter may turn out to be negative, positive,
or zero!

Where this misunderstanding leads to confusions is when researchers
speak about “misspecifying a model” by freeing up a zero parameter that
actually is zero in the population. This is not a misspecification, for nothing is
specified by freeing the parameter. (To specify is to assert something specific,
and freeing a parameter does not assert anything specific about it.) Further-
more, if the parameter is really zero, then the expected estimate will be zero
if constraints on other parameters permit. Actually less is specified. Further-
more, in very large samples the estimate of the parameter will converge in
probability to its population value of zero. The overall hypothesis involving
all fixed and constrained parameters also suffers because by freeing a param-
eter it loses an independent condition by which it could confirm or disconfirm
the model’s validity.

If you feel strongly enough about it, you should impose inequality con-
straints, even though that will not increase your degrees of freedom. On
the other hand, instead of simply freeing a parameter that one expects to
be nonzero and imposing an inequality constraint on it, specify a fixed value
within the range of values expected as a way of committing oneself to a
stronger statement of one’s hypothesis. Such an approach gains degrees of
freedom at the possible risk of greater lack of fit, meaning you test something.
If you obtain a good approximate fit, it may mean that your specification was
close to the mark. Hence something is gained, although the specific value
specified is still in doubt. We will take up inequality constraints in greater
detail in the next chapter.

The specified portion of the incompletely specified hypothesis, on the other
hand, concerns explicitly specified fixed and constrained parameters of the
model.

Identification

Even though no values are asserted for the free parameters, values must
nevertheless be obtained for them to allow one to reproduce the variance–
covariance matrix Σ̂0 for the hypothesized model so that it may be compared

© 2009 by Taylor and Francis Group, LLC



“K10039_C006.tex” — page 143[#5] 18/4/2009 16:19

Identification 143

with (usually) an unrestricted sample covariance matrix S taken from the
population. The identification problem concerns whether or not one can
determine unique values for the unknown parameters using the observed
data and constraints placed on other parameters. Here let us consider the
simpler and possibly more familiar special case of the common factor model.
The observed data in this case are the p(p + 1)/2 independent elements of
the variance–covariance matrix S, given by adding the elements along the
principal diagonal and, because of symmetry, off one side of the matrix. The
potential number of parameters of the common factor model can exceed
the number of independent observed elements of the covariance matrix.
Consider that the fundamental theorem of the common factor model can
be written in the following way:

ΣYY = Λ∗Φ∗Λ∗′ = [Λ | Ψ
] [Φεε 0

0 I

]⎡
⎣Λ′

−
Ψ′

⎤
⎦

Here Λ∗ is a partitioned p × (n + p) factor pattern matrix and Φ∗ is an
(n + p) × (n + p) factor covariance matrix. Potentially there could be p × (n +
p) + (n + p + 1) × (n + p)/2 free, unknown parameters to determine in Λ∗
and Φ∗ from the n(n + 1)/2 independent elements of Φεε. In this case we
would have far more unknowns than knowns with which to determine them.
Some of the indeterminacy is reduced by requiring thatΨ be a diagonal matrix,
then requiring Σξε = 0 and Σεε = I, so that we have only p × (n + p) + n(n −
1)/2 unknown parameters to determine, which, depending on n, could be
less than p(p + 1)/2. To minimally identify the solution, we have to impose an
additional n2 constraints on Λ and Φεε, usually by imposing that [diagΦεε] = I
and n(n − 1) on elements of Λ; however, this will have to be done in a proper
way.Anecessary but not sufficient condition for identification of parameters is
that the number of unknown, free parameters be less than or equal to the num-
ber of independent elements of the observed variables’ covariance matrix, that
is k ≤ p(p + 1)/2.

Let us now arrange all of the parameters of Λ∗ and Φ∗ above into a single
vector θ of p × (n + p) + (n + p + 1) × (n + p)/2 parameters. We further parti-
tion θ as θ = (θ̂, θ∗), with θ̂ being the independent free and yoked parameters
and θ∗ the fixed parameters of the matrices Λ∗ and Φ∗ discussed previously.
Suppose the vector θ of model parameters is allowed to take on arbitrary
values. Each θ generates a specific reproduced covariance matrix Σ(θ). This
implies that the covariance matrix Σ is a matrix function Σ = Σ(θ) of the
parameters in θ. Because of the symmetry of Σ, this matrix function is equiv-
alent to a system of p(p + 1)/2 distinct simultaneous nonlinear equations
σij = σij(θ), i = 1, . . . , p; j = 1, . . . , i.

The question now before us is, given some select subset of the parameters of
θ placed in the subvector θ̂, what constraints must we place on the remaining
parameters of this system of equations so that we might in turn solve for
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the subset of free parameters in the subvector θ̂ using the elements of Σ? We
say that a parameter θ̂k in θ̂ is identified if there exists a subset of equations
σij = σij(θ) that is uniquely solvable for θ̂k given Σ, fixed parameters θ∗ and
constraints. We say that θ̂ is identified if every element in θ̂ is identified. If
every element in θ̂ is identified, then we say that the model is identified. On
the other hand, we say that a parameter is underidentified if it is not identified.
A model is underidentified if at least one of its parameters is underidentified.
We say that a parameter θ̂k is overidentified if more than one distinct subset of
equations σij = σij(θ) may be found that is solvable for θ̂k . If at least one free
parameter of a model is overidentified, we say the model is overidentified. If
each free parameter is identified, but none is overidentified, we say the model
is just-identified.

Just-identified models cannot themselves be tested, because they will
always perfectly reproduce the data. (A test must have a logical possibil-
ity of failing what is tested.) They can only be used in the testing of more
constrained models as a basis for comparison. Based on a system of as many
equations as there are unknowns that is uniquely solvable for the unknowns,
there is one and only one way to solve for the unknowns of a just-identified
model. When solved for in terms of the empirical covariance matrix and
the constraints, the estimated parameters in turn will perfectly reproduce
the empirical covariance matrix. But this is a mathematical necessity, not an
empirical finding.

We cannot call a situation a test if there is no logical possibility in the situa-
tion of failing the test. Thus evaluating a just-identified model by how well it
reproduces the empirical covariance matrix is not a test of the model because
it is logically impossible to fail to fit the covariance matrix other than per-
fectly. This might not disturb us if there was only one just-identified model
that could be formulated for a given covariance matrix. But actually there are
infinitely many such models. A principal component analysis model ΣYY =
ΛΛ′ with as many principal component factors as there are observed vari-
ables, and the constraints A′A = I and A′ΣYYA = D, with Λ = AD1/2, where
A is the eigenvector matrix and D is the eigenvalue matrix of ΣYY , is a just-
identified model. A’A = I specifies p(p + 1)/2 constraints (the p diagonal and
p(p − 1)/2 off-diagonal elements of I). A′ΣYYA = D specifies the p(p − 1)/2
distinct off-diagonal elements of D. Hence, there are p(p + 1)/2 + p(p − 1)/2
= p2 constraints. All models are just-identified when based on nonsingu-
lar linear transforms of the components ΣYY = (ΛT)(T−1T’−1)(T′Λ′), where
T is any nonsingular p × p matrix. The constraints imposed to achieve a
just-identified condition may reflect simply a subjective view of the researcher.

This is especially evident when Λc = ΛT is a Cholesky factor of ΣYY . In
this case ΣYY = ΛcIΛ′

c. The matrix Λc is lower triangular with p(p + 1)/2
nonzero elements on and below the diagonal. These are the elements that
are estimated, while the zero elements above the diagonal of Λc and the off-
diagonal 0’s and the diagonal 1’s of the identity matrix I are fixed. Hence, there

© 2009 by Taylor and Francis Group, LLC



“K10039_C006.tex” — page 145[#7] 18/4/2009 16:19

Identification 145

are as many distinct elements to estimate in Λ as there are distinct elements
in ΣYY . This implies as many knowns as there are unknowns (estimated
parameters) to solve for.

Because of the relation Σ = Σ(θ), all solutions for an overidentified param-
eter θ̂k will be consistent across these different subsets of equations that yield
solutions for θ̂k . But that might not be the case if we use an empirical covari-
ance matrix such as S (a sample covariance matrix)—or Σ (the corresponding
population covariance matrix)—in place of Ĉ0 (the reproduced covariance
matrix) and seek variant solutions for an overidentified parameter with the
corresponding subsets of the elements of the empirical covariance matrix. If
we obtain inconsistent (i.e., different) values for the overidentified parameter
from different subsets of equations, this alerts us to the fact that the empirical
covariance matrix is not consistent with the model. Thus the goal is to over-
identify as many of the free parameters as possible in order to test the model,
where testing a model implies possibly disconfirming it by showing that it
is inconsistent with the model. Now, we do not in actual practice evaluate
models this way. The inconsistency in solutions for values of overidentified
parameters translates itself into lack of fit between the reproduced model
covariance matrix Σ̂0 that minimizes a discrepancy function in the parameter
estimation process and the sample covariance matrix S (that we work with in
lieu of the population covariance matrix Σ). We use this lack of fit as evidence
for the misspecification of a model.

Because the estimated values of the free and yoked parameters θ̂ are those
values that minimize the discrepancy function conditional on the fixed param-
eters θ∗ and the equality and inequality constraints, we require the free
parameters to all be at least identified. Otherwise, we will be unable to
distinguish between distinct models having the same fixed parameters and
parameter constraints, but different values for the free and yoked parameters
that nevertheless reproduce the same Σ̂0 and consequently have the same fit
to S. By having identified models, we put the onus of any lack of fit squarely
onto the fixed parameters and constraints specified by hypothesis.

So far, we have only defined the meaning of identified parameters. We
have not discussed how to determine whether a given model is identified. In
theory one can establish that a parameter is identified by taking a hypothetical
covariance matrix Σ = Σ(θ), the constraints on the model parameters, the
individual model equations for determining each element of Σ, and then
finding some subset of these equations by which one can solve uniquely for
a parameter in question. Except for very simple cases, such as establishing
that the parameters of a single common factor model for three variables are
identified, this approach to identification can become horrendously complex
and burdensome.

Nevertheless, because it is an important concept, we will illustrate this
brute force approach to identification: suppose we have two variables, Y1
and Y2, and hypothesize that they have a single common factor. Going to the
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level of individual model equations for each variable, we obtain

Y1 = λ1ξ + ψ1ε1

Y2 = λ2ξ + ψ2ε2
(6.3)

where ξ is the common factor, ε1 and ε2 are unique factors, λ1 and λ2 are
common factor pattern coefficients, and ψ1 and ψ2 are unique factor pat-
tern coefficients. We presume (without loss of generality) that all variables
have zero means, which implies, for example, that σ2(Y) = E(Y2). We also
presume that σ2(ξ) = 1 and σ2(ε1) = σ2(ε2) = 1. Before going further, we need
to consider simplifying our notation: by σ2

i we mean σ2(Yi); by σij we mean
σ(Yi, Yj). From equations in Equation 6.3 and the usual assumptions of no
correlation between common and unique factors or between distinct unique
factors, we derive the variances and covariances for these two variables:

σ2
1 = E(Y2

1) = E(λ1ξ + ψε1)
2 = λ2

1 + ψ2
1.

By a similar reasoning we obtain

σ2
2 = λ2

1 + ψ2
2

σ12 = λ1λ2.

This represents a system of three equations in four unknowns, λ1, λ2, ψ1,
and ψ2. There is no way we can solve uniquely for λ1, λ2, ψ1, and ψ2. These
parameters are underidentified and the model is consequently underidentified.
On the other hand, if we fix λ2 = 1 in addition to other constraints, then
a solution for λ1 is possible, namely λ1 = σ12. But in some cases the solu-
tion for ψ2

2, namely ψ2
2 = σ2

2 − 1, may be inadmissible when σ2
2 < 1, implying

a negative variance for the unique-variance component of Y2. Fixing both
σ2(ξ) = 1 and λ2 = 1 also represents a fairly strong hypothesis, in effect,
that when the variance of the common factor is unity, a unit change in ξ

leads to a unit change in Y2. This may not be a hypothesis one wishes to
test. One can also achieve identification by constraining λ1 = λ2. In that case
λ1 = λ2 = √

σ12. This again is a strong hypothesis that may not represent a
hypothesis one wishes to test. Furthermore, if σ12 < 0, then λ1 and λ2 will
take on inadmissible, imaginary values.

Let us next consider the case where we have not two but three variables,
Y1, Y2, and Y3. We try to fit a single common factor model to these three
variables. We similarly assume zero means for variables, that variances of
the common factor and the unique variances are unity. Thus we have the
following model equations:

Y1 = λ1ξ + ψ1ε1

Y2 = λ2ξ + ψ2ε2

Y3 = λ3ξ + ψ3ε3

(6.4)
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from which we can derive, using the assumption of unit variances for the
common and unique factors and the usual assumptions of the common factor
model concerning correlations between common and unique factors, expres-
sions for the variances and covariances among these observed variables as
functions of the model parameters:

σ2
1 = λ2

1 + ψ2
1

σ2
2 = λ2

2 + ψ2
2

σ2
3 = λ2

3 + ψ2
3

σ12 = λ1λ2

σ13 = λ1λ3

σ23 = λ2λ3.

Here we have six equations in six unknowns. We can solve for each of the
unknowns in terms of the observed variances and covariances: from the equa-
tionσ12 = λ1λ2 we can obtainλ2 = σ12/λ1, and fromσ13 = λ1λ3, we can obtain
λ3 = σ13/λ1. Substituting these two expressions into the equation σ23 = λ2λ3,
we obtain

σ23 = σ13σ12

λ2
1

or

λ2
1 = σ13σ12

σ23
,

hence

λ1 =
√

σ13σ12

σ23
.

By similar arguments we obtain

λ2 =
√

σ23σ12

σ13

and

λ3 =
√

σ23σ13

σ12
.

Once we have solutions for the common factor pattern coefficients, the
unique variances are readily obtained from the equations for the variances.
For example, from

σ2
1 = λ2

1 + ψ2
1
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and the equation

λ2
1 = σ13σ12

σ23
,

we obtain

σ2
1 = σ13σ12

σ23
+ ψ2

1

or

ψ2
1 = σ2

1 − σ13σ12

σ23
.

Similarly,

ψ2
2 = σ2

2 − σ23σ12

σ13

ψ2
3 = σ2

3 − σ23σ13

σ12
.

We now illustrate an overidentified model. Given four observed variables,
Y1, . . . , Y4, and a model in which each shares a single common factor, along
with the usual assumptions of unit variances for common and unique factors
and zero correlations between common and unique factors and among unique
factors,

Y1 = λ1ξ + ψ1E1,

Y2 = λ2ξ + ψ2E2,

Y3 = λ3ξ + ψ3E3,

Y4 = λ4ξ + ψ4E4,

we can obtain expressions for the variances and covariances among these
variables in terms of the model’s parameters:

σ2
1 = λ2

1 + ψ2
1 (6.5a)

σ2
2 = λ2

2 + ψ2
2 (6.5b)

σ2
3 = λ2

3 + ψ2
3 (6.5c)

σ2
4 = λ2

4 + ψ2
4 (6.5d)
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σ12 = λ1λ2 (6.5e)

σ13 = λ1λ3 (6.5f)

σ14 = λ1λ4 (6.5g)

σ23 = λ2λ3 (6.5h)

σ24 = λ2λ4 (6.5i)

σ34 = λ3λ4. (6.5j)

Here we have 10 = 4(4 + 1)/2 equations (the number of distinct elements in
the observed variables’ covariance matrix) in eight unknowns. We have more
equations than unknowns, which is a necessary but not sufficient condition
that some parameters will be overidentified.

We know from our work with the previous three-variable case that there is
a solution for λ1: using Equations 6.5e through 6.5h, we obtain

λ1 =
√

σ13σ12

σ23
.

But we can also obtain an alternative solution using a different subset of the
equations—Equations 6.5f through 6.5j:

λ1 =
√

σ13σ14

σ34
.

A third solution for λ1 is obtained using Equations 6.5e through 6.5i:

λ1 =
√

σ12σ14

σ24
.

Thus λ1 is overidentified.
In similar ways, we can find three distinct solutions for each of the other

three common factor pattern coefficients, implying that each of them is also
overidentified. Consequently, the one-factor model for four indicator vari-
ables is overidentified. It can be disconfirmed when applied to four-indicator
covariance matrices that are not generated by this model.

Having only three indicators of a common factor will lead to a just-identified
single-factor model, having as many unknowns to solve for as there are inde-
pendent data points to determine them with. In such circumstances, as long
as the covariances are all nonzero, one can always solve for the parameters,
which in turn will perfectly reproduce the covariances. In these cases there is
no logical possibility of disconfirming the single-factor hypothesis, so no test
of it is possible. Four indicators, on the other hand, will yield an overidenti-
fied single-factor model, with more than one subset of equations available to
solve for a parameter, the solutions to which may be inconsistent when the
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single common factor model is not appropriate for the empirical covariances.
Consequently, researchers are encouraged, in formulating confirmatory fac-
tor analysis models, to include at least four indicators of each factor in the
model. This allows one to test the hypothesis that a single common factor
underlies each of the indicators of it. This is also indirectly a provisional test
of the assumption that the model is closed and self-contained against the
influences of any extraneous, unspecified variables. With only three indica-
tors, one would always be able to fit a single-factor model to them (as long
as they have nonzero correlations). If one can have more than four indica-
tors, that is even better, because that creates more overidentified conditions
by which one’s hypothesis of a single common factor may be tested.

Working out identification for these simple two-, three-, and four-variable
cases with single common factors allows us to generalize to other situations.
The following model is underidentified if c12 = 0:

Λ =

⎡
⎢⎢⎣

λ11 0
λ21 0
0 λ32
0 λ42

⎤
⎥⎥⎦ , ΦXX =

[
1 φ12
φ21 1

]
,

Ψ2 =

⎡
⎢⎢⎣

ψ2
1 0 0 0

0 ψ2
2 0 0

0 0 ψ2
3 0

0 0 0 ψ2
4

⎤
⎥⎥⎦ .

If φ12 = 0, σ13 = σ14 = σ23 = σ24 = 0 and the estimation of λ11 and λ21
breaks down because we have only the block of variances and covariances
among Y1 and Y2 to work with, which we know from analysis of the two
indicator model is an underidentified case. A parallel breakdown in the esti-
mation of λ32 and λ42 occurs as well. On the other hand, when φ12 �= 0, all of
the free parameters are overidentified, with estimates of pattern coefficients
λ11 and λ21 and λ32 and λ42, respectively, made possible by covariation of
variables Y1 and Y2 with Y3 and Y4. For example,

λ11 = +
√

σ41σ21

σ42
= +
√

σ31σ21

σ32
, ψ2

1 = σ2
1 − σ41σ21

σ42

λ21 = +
√

σ42σ21

σ41
= +
√

σ32σ21

σ31
, ψ2

2 = σ2
2 − σ42σ21

σ41

λ32 = +
√

σ31σ43

σ41
= +
√

σ32σ43

σ42
, ψ2

3 = σ2
3 − σ31σ43

σ41

λ42 = +
√

σ41σ43

σ31
= +
√

σ42σ43

σ32
, ψ2

4 = σ2
4 − σ41σ43

σ31
.
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φ12 = σ31√
σ41σ21/σ42

√
σ31σ43/σ41

= σ41√
σ31σ21/σ32

√
σ42σ43/σ32

φ12 = σ32√
σ42σ21/σ41

√
σ31σ43/σ41

= σ42√
σ32σ21/σ31

√
σ41σ43/σ31

.

The following model is identified whether φ12 is zero or not:

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ11 0
λ21 0
λ31 0
0 λ42
0 λ52
0 λ62

⎤
⎥⎥⎥⎥⎥⎥⎦

, ΦXX =
[

1 φ12
φ21 1

]
,

Ψ2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ2
1 0 0 0 0 0

0 ψ2
2 0 0 0 0

0 0 ψ2
3 0 0 0

0 0 0 ψ2
4 0 0

0 0 0 0 ψ2
5 0

0 0 0 0 0 ψ2
6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

With three indicators per factor there is sufficient information within the block
of variances and covariances among the indicators of a factor to find solutions
for the factor pattern coefficients. The solution does not depend on using
information about relations with the second set of indicators.

Restricted versus Unrestricted Factor Analysis Models

In Jöreskog (1969), Jöreskog was concerned to make a distinction between
specifying a restricted solution and specifying an unrestricted solution when
one fixes or frees certain parameters of the confirmatory factor analysis model.
Unrestricted models often are found nested or embedded within the more
constrained “measurement models” and/or structural equation models. On
the one hand, for a fixed value of the number of common factors, n, an unre-
stricted solution imposes no restrictions on the solution for ΛΦεεΛ

′ other
than those equivalent to what is needed to obtain a principal axes solution
for n common factors. In that case we require Φεε = I, which fixes n diago-
nal elements to unity and n(n − 1)/2 distinct off-diagonal elements to zero,
and requires further that Λ′Ψ−2

Λ is diagonal, placing n(n − 1)/2 additional
constraints on the columns of Ψ−1Λ, to make them mutually orthogonal. The
diagonal elements of Ψ2 are free parameters. In all, n2 constraints are placed
on the parameters of the model to yield a principal axes solution for n com-
mon factors. But there can be more than one unrestricted model. Suppose the
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principal axis solution is ΣYY = Λ0Λ
′
0 + Ψ2. Then an equivalent model is

ΣYY = (Λ0T)(T−1T′−1)(T′Λ′
0) + Ψ2 = Λ0Λ

′
0 + Ψ2

where T is any nonsingular n × n transformation matrix. Because T contains
n2 elements, this suggested to Jöreskog that a necessary but not sufficient
condition that one has an unrestricted solution is that exactly n2 constraints
are distributed across the Λ and Φεε matrices (Jöreskog, 1979). The significance
of unrestricted solutions is that they correspond to exploratory factor analysis
solutions where only minimal constraints are placed on the model to achieve
a solution for n common factors. An unrestricted model for n common factors
will yield the best fit of any model with n common factors. Jöreskog (1979;
personal communication) suggested the following as one way of specifying
an unrestricted solution: (1) Fix the n diagonal elements of Φεε to unity. This
fixes the metric for the solution. The remaining off-diagonal elements of Φεε

are left free. (2) In each column of Λ free up one coefficient corresponding to
an expected high loading; make sure that each freed parameter is in a different
row. (3) In each row with a freed high loading, fix the remaining n − 1 other
coefficients to zero. (4) Free all other parameters in Λ. There should now
be n − 1 zeros in each column. In contrast, a restricted solution restricts the
solution for ΛΦεεΛ

′ and in turn for Ψ2. This will occur whenever more than
r2 independent parameters of Λ and Φεε are specified or when some of the
diagonal elements of Ψ2 are specified. The fit of an unrestricted solution to
a given sample variance–covariance matrix S will usually be better than a
restricted solution.

Identification of Metric

So far we have considered identification in the context of assuming that the
common factors have unit variances. The effect of fixing the variances of latent
variables to unity is to fix their “metric,” that is, their units of measurement.
Because a factor pattern coefficient indicates how many units of change will
occur in an indicator variable given a unit change in the value of the com-
mon factor, the value of a factor pattern coefficient depends on the units of
measurement of both the indicator variable and the common factor. In most
single-sample studies, fixing the variance of the common factor arbitrarily to
unity is sufficient to establish a metric for it, and this aids the identification of
other parameters involving the factor as well. But it is quite possible to fix the
metric of the common factor in another way: by fixing the pattern loading of
one of its indicators while freeing the variance of the common factor. (When
fixing a metric for the common factor, one should fix only one parameter—a
pattern loading on that factor or the variance of the factor, but not both. Oth-
erwise one specifies a rather restricted model that may not be of interest at
all. For example, if we set both the pattern loading and the factor variance to
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unity, this says that when, in the metric that gives it unit variance, the common
factor changes one unit, the respective indicator variable changes by one unit.
That is a very strong hypothesis, particularly in connection with the variance
of the observed indicator.)

There are occasions when one especially wishes to fix the pattern coefficient
and not the factor variance. Suppose in a previous study one has obtained
an exploratory factor analytic solution and wishes to see if the same solu-
tion will be found in a new setting. One will fix the pattern loadings on
the factors to the values found in the previous study, while freeing the fac-
tor variances. According to Meredith (1964a,b), factor pattern coefficients are
invariant under selection effects on the factors while the variances and covari-
ances among the factors are not. So, we might expect to find changes in the
factor variances and covariances in the new setting. Leaving these parameters
free while fixing the pattern coefficients to values obtained from the previous
study allows us to see if there are any effects on the factor variances and covari-
ances. We may also wish to test the hypothesis of whether there has been any
change from the previous to the new setting. To do this, we can free up all the
pattern loadings except r of them on each factor, with the fixed values of the
pattern coefficients set to their values obtained in the previous study. Choos-
ing the largest loading and n − 1 lowest loadings on indicators of other factors
to fix in each column while freeing the rest would be my recommendation
(see also Jöreskog, 1979), although further study of this problem is required.
Note that this fixes n2 parameters. This fixes both the factor metric and the
solution for the pattern loadings to what it would be in an unrestricted model
rotated provisionally to the position of the previous study as defined by the
fixed parameters. We leave the factor variances and covariances free. We then
compare this unrestricted solution against the more restricted solution to see
where any changes may have come into play. Changes may come in the form
of different pattern loadings and different factor variances and covariances.

Many models studied by researchers are themselves formed by joining
together several simpler models. Frequently when it is known that the simpler
models are all identified by themselves, it is likely then that the parameters
of the more complex model formed from them are identified. But one would
like more assurances than that. Most contemporary programs for confirma-
tory factor analysis and linear structural equations modeling (a generalization
of factor analysis) check for identification by examining the information matrix
to see if it is positive definite.

According to Jöreskog and Sörbom (1989), “the information matrix is the
probability limit of the matrix of second order derivatives of the fit function
used to estimate the model” (p. 17). Another way of putting it is that the infor-
mation matrix contains estimates of the variances and covariances among the
parameter estimates, and is derived from the matrix of second derivatives of
the fit function with respect to the free parameters evaluated at the values for
the parameters that minimize the fit function. (More about this matrix will be
given in a later section.) This matrix is of the order of the number of free and
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distinct yoked parameters. Jöreskog and Sörbom (1989) then say, “If the model
is identified, the information matrix is almost certainly positive definite. If the
information matrix is singular, the model is not identified, and the rank of the
information matrix indicates how many parameters are identified” (p. 17).

Another way of evaluating whether a model is identified, according to
Jöreskog and Sörbom (1989), is to arbitrarily assign reasonable values to the
free parameters and then, using both fixed and assigned free parameters, gen-
erate a reproduced covariance matrix for the raw variables presumed to be
dependent on these parameters. Next, take this reproduced covariance matrix
and subject it to one’s structural model, with free parameters now unknowns
to be determined. If the solution does not yield the same parameters that
generated the covariance matrix in the first place, then the model is likely not
identified.
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Estimation of Parameters

Discrepancy Functions

When measuring a model’s fit to the matrix S, we want to regard lack
of fit as due exclusively to misspecifying certain constraints on certain
parameters asserted in the hypothesis. Thus the values for the free param-
eters, which are not given by hypothesis but are needed to complete the
model, are required to be those values for these parameters that uniquely
minimize the discrepancy between the model’s reproduced covariance
matrix Σ̂0 and the sample covariance matrix S conditional on the explicitly
constrained parameters of the model. The reason for conditioning on the
constraints is that we want the estimates to be dependent on the con-
straints. Then any discrepancy will be due to the constraints. In other words,
if there were no constraints other than those to minimally just-identify
the model, then the model would fit the data perfectly. But, of course,
without an over-identifying set of constraints, there would be no test of
a hypothesis. The discrepancy is measured with a discrepancy function,
F[Σ̂0(θ), S], where θ is a vector θ = (θ̂, θ∗), with θ̂ the independent free and
yoked parameters and θ∗ the fixed parameters of the structural equation
model.

The most frequently used discrepancy functions are the following:
Ordinary least squares

L = 1
2

tr[(S − Σ̂0(θ))
′(S − Σ̂0(θ))]

155

© 2009 by Taylor and Francis Group, LLC



“K10039_C007.tex” — page 156[#2] 18/4/2009 16:20

156 Linear Causal Modeling with Structural Equations

Maximum likelihood

F = ln
∣∣∣Σ̂0(θ)

∣∣∣+ tr(SΣ̂0(θ)
−1) − ln |S| − p

Generalized least squares

G = 1
2

tr[S−1/2(S − Σ̂0(θ))
′S−1/2S−1/2(S − Σ̂0(θ))S−1/2]

= 1
2

tr[(Σ̂0(θ) − S)S−1]2 = 1
2

tr[(Σ̂0(θ)S−1 − I)]2,

where S is the sample estimate of the unrestricted variance–covariance matrix
and Σ̂0(θ) is the reproduced variance–covariance matrix under a hypoth-
esis, generated as a multidimensional function of the free parameters of
the structural model arranged for convenience in a single vector θ, with
fixed parameters and constraints on parameters implicitly in the function.
ΣYY = Σ0(θ) means that each element of the variance–covariance matrix, for
example, σij , is a certain function σij = σij(θ) of the model parameters. When
the values of the free parameters are chosen to minimize a discrepancy func-
tion conditional on the explicit constraints on the parameters of the model,
we say that the free parameters are estimated according to that discrepancy
function.

Ordinary least squares seeks to minimize the sum of squared residuals
remaining in the observed covariance matrix S after subtracting from it the
reproduced model covariance matrix Σ̂0. This method of estimation has the
advantage of requiring no distributional assumptions and it is usually easier
to work out the estimating equations and their implementation. Its main dis-
advantages are that when multivariate normality cannot be presumed and
the matrix analyzed is not a covariance matrix, it lacks a distributional theory
within which one can make probabilistic inferences about fit. In those cases
there is no significance test for fit. The assessment of fit is also affected by
arbitrary choices for the units of measurement of the variables.

Maximum-likelihood estimation seeks simultaneously to minimize the dif-

ference between ln|S| and ln|Σ̂0| and between tr(SΣ̂
−1
0 ) and tr(I) = n. These

differences will be zero if S = Σ̂0. Maximum-likelihood estimation requires
the making of distributional assumptions and is usually more difficult to
work with in terms of developing estimating equations and algorithms. But
if one can make distributional assumptions, then one gains in the ability to
perform probabilistic inferences about the degree of fit, although this may
require fairly large samples. Measures of fit based on the likelihood ratio are
also metric invariant.

Generalized least squares is a variant of ordinary least squares. As in ordi-
nary least squares, one seeks to minimize the sum of squared residuals. But in
generalized least squares the residuals are transformed by pre- and postmul-
tiplying the residual matrix by the inverse of the square root of the sample
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covariance matrix before evaluating their sum of squares. Generalized least
squares has the advantage of not requiring distributional assumptions but
still allowing for probabilistic inference about model fit. The complexity of
its estimating equations is usually intermediate between those of ordinary
least squares and maximum-likelihood estimation. Probabilistic inference,
however, may require larger samples than needed for maximum likelihood.

The principles of identification that we discussed in connection with
factor analysis transfer themselves readily to structural equation model-
ing. Although special situations arise in structural equations modeling that
require specific analysis to establish the identification of a model, the general
principles are the same as those in confirmatory factor analysis. The principles
of parameter estimation are also essentially the same in structural equation
modeling as in confirmatory factor analysis (which has to be seen as a spe-
cial case of the structural equation model). The very same general algorithms
used to estimate parameters of the structural equation model are also used
to estimate parameters of the confirmatory factor analysis model. However,
because the structural equation model has in general more sets of parame-
ters than the common factor model, the derivation of the specifics of these
algorithms involving the finding of derivatives of a discrepancy function to
minimize will be unique to the structural equation model. We will thus now
look at this problem in connection with maximum-likelihood, least-squares,
and generalized least-squares estimation.

Maximum-likelihood estimation proceeds by seeking to minimize the
following discrepancy function:

FML(Σ̂ZZ) = ln
∣∣∣Σ̂ZZ

∣∣∣+ tr
(
Σ̂

−1
ZZS

)
− ln |S| − (k + h), (7.1)

where Σ̂ZZ is the estimated model variance–covariance matrix among the
observed variables, S is the sample unrestricted estimate of the population
covariance matrix for the observed variables, p is the number of manifest
endogenous variables, and q the number of manifest exogenous variables.
The derivative of the maximum-likelihood discrepancy function F with
respect to an arbitrary parameter q of the model is given by

∂F
∂θi

= tr
[(

Σ−1
zz − Σ−1

zz SΣ−1
zz

) ∂Σzz

∂θi

]
= tr

[
Q

∂Σzz

∂θi

]
. (7.2)

Derivatives of Elements of Matrices

In obtaining algorithms for the minimization of discrepancy functions over
variations in the values of estimated parameters, we need to know how to
obtain the derivatives of the discrepancy function with respect to the free
parameters of the model. To find the first derivatives of a discrepancy function
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F, we need to develop rules and notation for the taking of partial derivatives
of matrices with respect to scalar values. In this regard, we will follow fairly
closely the notation used by Bock and Bargmann (1966, pp. 514–515). Their
rules and notation are as follows:

In the following development, let the elements of the matrices involved be
differentiable functions of a scalar x. Now consider the n × r matrix A.

∂A
∂x

=
[
∂aij

∂x

]
(n×r)

, i = 1, . . . , n, j = 1, . . . , r.

In other words, we take the partial derivative of each element in turn and
place it in its respective place in a similarly sized matrix.

Let A be an n × r matrix and B a p × q matrix. Then

∂(A + B)

∂x
= ∂A

∂x
+ ∂B

∂x
n = p, r = q, (7.3a)

∂AB
∂x

= A
∂B
∂x

+ ∂A
∂x

B r = p, (7.3b)

∂A−1

∂x
= −A−1 ∂A

∂x
A−1 n = r, |A| �= 0. (7.3c)

Let C be a constant matrix; then

∂tr(AC)

∂x
= tr

∂A
∂x

C. (7.3d)

Given two n × n square matrices A and C with A nonsingular and C a
constant matrix, the following is a useful consequence of the relationships
cited above:

∂tr(A−1C)

∂x
= −tr

(
A−1 ∂A

∂x
A−1C

)
= −tr

(
∂A
∂x

A−1CA−1
)

(7.4a)

with the latter expression on the right resulting from the invariance of the
trace under cyclic permutation of the matrices. Finally [with proof given by
Bock and Bargmann (1966, pp. 514–515)]

∂ ln |A|
∂x

= −trA−1 ∂A′

∂x
. (7.4b)

Next consider the derivative of an n × r matrix A with respect to one of its
elements aij. If each of the elements of A is independent of the other elements,

∂Aij

aij
= 1ij and

∂A′
ij

aij
= 1ji, (7.5)
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where 1ij denotes an n × r matrix with zeros in every position except the i, j
position, which contains a 1. However, if A is square n × n symmetric,

∂A
∂aij

= 1ij + 1ji − 1ij1ij, (7.6)

where 1ij1ij = 1ij when i = j and 1ij1ij = 0 when i �= j, i, j = 1, . . . , n.
We will also need the following result: let A be an n × r matrix and B a p × q

matrix, 1ji an r × p matrix, and 1ts a q × n matrix. Then

tr(A1ji) = [A]ij. (7.7a)

For example,

tr(A124) = [A]42,

that is,

tr

⎡
⎢⎢⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

⎤
⎥⎥⎦
⎡
⎣0 0 0 0

0 0 0 1
0 0 0 0

⎤
⎦

24

= tr

⎡
⎢⎢⎣

0 0 0 a12
0 0 0 a22
0 0 0 a32
0 0 0 a42

⎤
⎥⎥⎦ = [A]42.

Postmultiplying the matrix A by the matrix 1ji has the effect of extracting the
jth column of A and inserting it into the ith column of an n × n null matrix.
This leaves only the ith element of the jth column of A as a diagonal element
in the resulting square matrix; hence the trace of this matrix is simply this one
element, the ith element of the jth column of A, that is, [A]ij.

Next,

tr(A1jiB1ts) = tr[A]sj[B]it = asjbit. (7.7b)

This result follows from the fact that A1ji is an n × p matrix containing zeros
everywhere except in its ith column, which contains the jth column [A]j of
A, and B1ts is a p × n matrix that contains zeros everywhere except in its sth
column, which contains the tth column [B]t of B. The product of these two
resulting matrices is an n × n matrix containing zeros everywhere except in
its sth column, which contains the equivalent of [A]j[B]it. The only nonzero
diagonal element of the resulting n × n matrix is in the sth row and sth column
and is equal to [A]sj[B]it. For example,

⎡
⎢⎢⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

⎤
⎥⎥⎦
⎡
⎣0 0 0 0 0

0 0 0 1 0
0 0 0 0 0

⎤
⎦

24

=

⎡
⎢⎢⎣

0 0 0 a12 0
0 0 0 a22 0
0 0 0 a32 0
0 0 0 a42 0

⎤
⎥⎥⎦
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and ⎡
⎢⎢⎢⎢⎣

b11 b12 b13
b21 b22 b23
b31 b32 b33
b41 b42 b43
b51 b52 b53

⎤
⎥⎥⎥⎥⎦
⎡
⎣0 1 0 0

0 0 0 0
0 0 0 0

⎤
⎦

12

=

⎡
⎢⎢⎢⎢⎣

0 b11 0 0
0 b21 0 0
0 b31 0 0
0 b41 0 0
0 b51 0 0

⎤
⎥⎥⎥⎥⎦ ;

hence

tr(A124B112) = tr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

0 0 0 a12 0
0 0 0 a22 0
0 0 0 a32 0
0 0 0 a42 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 b11 0 0
0 b21 0 0
0 b31 0 0
0 b41 0 0
0 b51 0 0

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

or

tr(A124B112) = tr

⎡
⎢⎢⎣

0 a12b41 0 0
0 a22b41 0 0
0 a32b41 0 0
0 a42b41 0 0

⎤
⎥⎥⎦ = [A]22[B]41.

Equation 7.7 generalizes (Mulaik, 1971) to

tr(A1jiB1tsCpq · · · 1mnZ1uv) = [A]vj[B]it[C]sp · · · [Z]nu. (7.8)

Note that the rightmost subscript on the rightmost 1 matrix “cycles” around
to the left and the subscripts are then assigned pairwise from the left to the
matrices A, B, C, and so on.

The traces of the matrix expressions for the derivatives may be obtained by
rearranging these expressions (taking advantage of the invariance of the trace
under cyclic permutations) into the form of Equations 7.7 or Equation 7.8 and
simplifying the result.

There has been considerable work on the topic of working out first and
second derivatives of fit functions in connection with the development of
algorithms for nonlinear optimization in the realm of multivariate statistics.
McDonald and Swaminathan (1973) produced one of the major advances
in this area, directly in the service of developing algorithms for analysis of
covariance structures. These developments have since been expanded and
systematized by mathematicians, and readers may consult Rogers (1980) and
Magnus and Neudecker (1988) for integrated treatments of this topic.

Derivatives of Discrepancy Functions in Structural Equation Modeling

Thus it remains to work out the partial derivatives of the observed vari-
ables’ variance–covariance matrix with respect to the respective parameters
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of the structural equation model. To do this, we need first to express the
variance–covariance matrix among the observed variables as a matrix func-
tion of the parameters of the structural equation model in a form suitable for
this derivation. This is given in the following equation:

[
ΣYY ΣYX
ΣXY ΣXX

]
=
[

Gy 0
0 Gx

] [
B−1 0
0 I

] [
Γ

I

]

× Φ
[
Γ′ I
] [B′−1 0

0 I

] [
G′

y 0
0 G′

x

]
. (7.9)

The elements of the G matrix, the null matrix, and the identity matrices may
be regarded as fixed parameters in the parameter matrices of Equation 6.10.
The B and Γ matrices, respectively, contain both free and fixed parameters.
But individual free parameters in these matrices may be regarded as simply
free parameters of the whole supermatrix in which they are embedded. So, we
can drop the asterisks on the matrices in Equation 5.15 and write Equation 7.9
(recalling that Z = [ Y

X

]
) as simply

ΣZZ = GB−1ΓΦΓ′B′−1G. (7.10)

[This equation is essentially the same as Bentler and Weeks’ (1982)
Equation (2.6).]

Drawing upon the formulas for obtaining derivatives of matrices with
respect to individual parameters given in Equations 7.3 through 7.6, we obtain
the following partial derivatives:

∂ΣZZ

∂φgh
= GB−1G(1gh + 1hg − 1gh1gh)Γ

′B′−1G′, (7.11)

∂ΣZZ

γij
= GB−1ΓΦ1jiB′−1G′ + GB−11ijΦΓ′B′−1G’, (7.12)

∂ΣZZ

∂bst
= GB−1ΓΦΓ′ ∂B′−1

∂bst
G′ + G

∂B′−1

∂bst
ΓΦΓ′B′−1G′

= GB−1ΓΦΓ′
(

−B′−1 ∂B′

∂bst
B′−1

)
G′ + G

(
−B−1 ∂B

∂bst
B−1

)
ΓΦΓ′B′−1G’

= GB−1ΓΦΓ′(−B′−11tsB′−1
)G′ + G(−B−11stB−1)ΓΦΓ′B′−1G′. (7.13)

Letting Q = (Σ−1
ZZ − Σ−1

ZZSΣ−1
ZZ) and substituting, respectively, Equations 7.12

and 7.13 into the formula for the partial derivatives of the maximum-
likelihood discrepancy function in Equation 7.8, and simplifying by means
of Equation 7.7 and 7.8 and the invariant properties of traces (cf. Chapter 2),
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we then obtain

∂F
∂φgh

= (2 − [I]gh)[Γ′B′−1G′QGB−1Γ]gh (7.14)

∂F
∂γij

= 2[B′−1G′QGB−1ΓΦ]ij (7.15)

∂F
∂bst

= −2[B′−1GQGB−1ΓΦΓ′B′−1]st (7.16)

The partial derivatives for least-squares estimation are given by

∂L
∂θi

= tr
[
(ΣZZ − S)

∂ΣZZ

∂θi

]
= tr

[
Q

∂ΣZZ

∂θi

]
. (7.17)

If we define Q = (ΣZZ − S) then we should get comparable forms for the
partial derivatives of the least-squares criterion as found for maximum
likelihood:

∂G
∂φgh

= (2 − [I]gh)[G′B′−1G′QGB−1Γ]gh (7.18)

∂G
∂γij

= 2[B′−1GQGB−1ΓΦ]ij (7.19)

∂G
∂bst

= −2[B′−1G′QGB−1ΓΦΓ′B′−1]st (7.20)

As for generalized least-squares estimation, the partial derivatives with respect
to the parameters of the structural equation model are of the same form as
those for maximum-likelihood estimation, with Q = (S−1ΣZZS−1 − S−1).

From this point on we may implement one of the quasi-Newton algorithms
to be discussed in a subsequent section.

Estimation with Nonnormally Distributed Variables

The techniques described so far presume that the joint distribution of the
observed variables is multivariate normal, or nearly so. But many problems
in the social sciences involve cases where this assumption is questionable.
For instance, the variables may be categorical, as in scores from Likert scale
ratings, where raters rate persons or preferences for things on scales that range
from 1 to 5 or 1 to 7. In other situations the distributions of the variables are
highly skewed or platykurtotic. To deal with these cases, several researches
have proposed alternative methods of estimation.
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Asymptotic Distribution Free Estimation

Michael Browne (1974, 1977, 1984) investigated extensions of generalized
least-squares estimation to the analysis of the covariance structures case,
which readily generalizes to structural equation modeling. He suggested
thinking of the parameter estimation problem as a kind of regression prob-
lem. Let Σ(θ) be the population variance–covariance matrix for p observed
is variates in the random vector Y under a linear model with latent variates
involving the m × 1 parameter vector θ. When the model is true, because the
sample variance–covariance matrix S is an unbiased estimator, E = [S − Σ(θ)]
is a p × p symmetric matrix of errors of sampling having expectation equal to
the null matrix. We may express the sample variance–covariance matrix as a
matrix function of the parameters and errors of sampling:

S = Σ(θ) + E.

We may transform this equation into a form resembling a typical regression
problem by obtaining

vecs(S) = vecs[Σ(θ)] + vecs(E), (7.21)

where the notation vecs(M) applied to a symmetric matrix M means the
extraction and reordering of the p(p + 1)/2 nonredundant elements of the
symmetric matrix M into a p(p + 1)/2 × 1 column vector. Elements are
extracted by rows, up to the diagonal element, and inserted in a column
vector; thus

vecs

⎛
⎝
⎡
⎣1 2 4

2 3 5
4 5 6

⎤
⎦
⎞
⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus mij, i ≥ j, is stored in the g = i(i − 1)/2 + j position of vecs(M). (While
we are at it, if M is nonsymmetric, then the analogue operator vecs(M)
rearranges the elements of M by stacking its columns into a single column
supervector.) Equation 7.12 may be expressed then as

s∗ = σ∗(θ) + e∗

because E(E) = 0, E(e∗) = 0, where s∗ = vecs(S), σ∗(θ) = vecs[Σ(θ)], and
e∗ = vecs(E). We let p∗ = p(p + 1)/2. Note that e∗ = s∗ − σ∗(θ).

Because E(E) = 0, E(e∗) = 0. But

E(e∗e∗′
) = Ψ∗
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is the variance–covariance matrix of the errors. Unlike ordinary regression,
as the sample size increases, and the model is a true model, the size p∗ of
the vectors s∗, σ∗(θ), and e∗ remains constant, while the population variance–
covariance matrix Ψf ∗ for samples of size N = n + 1 vanishes in the limit,
that is,

lim
N→∞(Ψ∗) = 0

rather than being some positive definite matrix. This reflects the vanishing of
sampling error variance as sample size increases indefinitely.

Browne (1982, 1984) cites Kendall and Stuart (1969, Section 13.16) for the
following:

[nΨ∗]ij, kl = σilσjl + σilσjk + (n/N)κij, kl, (7.22)

where [nΨ∗]ij, kl = n cov(sij, skl), σil, σjl, σil, and σjk are population covariances
between the variables whose subscripts are shown, and κij, kl is a fourth-order
cumulant given by

κij, kl = σij, kl − σijσkl − σikσjl − σilσjk ,

where
σij, kl = E[(Yi − μi)(Yj − μj)(Yk − μk)(Yl − μl)].

In the limit, as n increases without bound, the covariance for nΨ∗ thus equals
in general

lim
n→∞[nΨ∗]ij, kl = σijσjl + σilσjk + κij, kl = σij, kl − σijσkl. (7.23)

The asymptotic distribution for n1/2(s∗ − σ∗) is furthermore known to be
normal (Muirhead, 1982, Theorems 1.2.16 through 1.2.18) with mean vector
0 and variance–covariance matrix V under fairly general conditions.

Browne (1984) notes that when we do not know the actual sampling dis-
tribution for n1/2e∗ in some finite (but large) sample case, we may use the
asymptotic distribution as an approximation and proceed to estimate model
parameters under the presumption of that distribution.

By θ̂ we mean an estimate of the parameter vector θ, while Σ(θ̂) is the
reproduced variance–covariance matrix of the observed variables based on
the parameter estimates. Browne notes that the aim of estimation is to mini-
mize a “discrepancy function” F(S, Σ(θ̂)) of the observed variance–covariance
matrix S and the reproduced variance–covariance matrix Σ(θ̂). Discrepancy
functions have the property

(i) F(S, Σ(θ̂)) ≥ 0,
(ii) F(S, Σ(θ̂)) = 0 iff Σ(θ̂) = S,

(iii) F(S, Σ(θ̂)) is twice continuously differentiable.
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Furthermore, all estimators estimated by minimizing a discrepancy function
as defined here are consistent estimators (Browne, 1984). We have already
discussed the three major discrepancy functions for ordinary least squares,
generalized least squares, and maximum likelihood. We will focus in partic-
ular on discrepancy functions in the class of generalized least squares. These,
Browne (1982) indicates, are of the form

F(S, Σ(θ̂)|U) = 1
2
(s∗ − σ∗(θ))′U−1(s∗ − σ∗(θ)), (7.24)

where σ∗(θ) = vecs(Σ(θ)) and U is a p∗ × p∗ positive definite matrix. In some
situations U might be simply the identity matrix I. The estimator that min-
imizes Equation 7.24 will be the “best” generalized least-squares (BGLS)
estimator if it produces parameter estimates with the smallest asymptotic
variances in this class. This will happen, Browne (1982) indicates, if (but not
only if) the matrix U, selected usually on the basis of sample information,
converges in probability to any constant multiple of limn→∞ nΨ∗. For conve-
nience, we let U be chosen so that it converges in probability to limn→∞ nΨ∗,
that is,

p lim
n→∞

U = lim
n→∞ nΨ∗.

According to Browne (1982) the elements of nΨ∗ depend on the kurto-
sis of the distribution of the observed variables Z. He argues that when
the multivariate distribution is neither leptokurtotic with positive excess
kurtosis nor platykurtotic with negative excess kurtosis—as is the case if
the variables have a multivariate normal distribution—then the situation
can be simplified. We do not need then to work with the p∗2 × p∗2

matrix
U, but can do our estimation with the maximum-likelihood and/or gener-
alized least-squares estimators described previously that work with p × p
matrices. Both the generalized least-squares and the maximum-likelihood
estimators will converge to the same solution in the asymptotic case. More
serious difficulties arise when there is an excess kurtosis. In the case of excess
kurtosis the use of these usual estimators involving p × p matrices can pro-
duce incorrect test statistics and incorrect standard errors for the estimated
parameters.

Browne (1984) then proposed that we obtain estimators by choosing
U to be a matrix that is a consistent estimator of limn→∞ nΨ∗. We may
obtain such a matrix if we substitute sample moments for population
moments in Equation 7.24. Thus Browne (1984) defines the following sample
quantities,

żi = N−1
N∑

r=1

zir,
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wij = N−1
N∑

r=1

(zir − żi)(zjr − żj) = n
N

[S]ij, i ≥ j,

wijkl = N−1
N∑

r=1

(zir − żi)(zjr − żj)(zkr − żk)(zlr − żl), i ≥ j, k ≥ l,

and lets
[U]ij, kl = wijkl − wijwkl, i ≥ k, i ≥ j, k ≥ l.

U is a p∗ × p∗ symmetric matrix. To be in conformity with the elements in s∗ =
vecs(S) and σ∗(θ) = vecs(Σ(θ)), an element ugh = [U]ij, kl must be positioned
in row g = i(i − 1)/2 + j and column h = k(k − 1)/2 + l.

The BGLS estimate θ̂ of θ is then obtained by minimizing

F[S, Σ(θ)|U] = 1
2
(s∗ − σ∗(θ))′U−1(s∗ − σ∗(θ)). (7.25)

We will not go further into the details of how to perform this minimization.
It would be along the lines of those already described.

Browne (1984) notes, however, that the asymptotic distribution free (ADF)
method of estimating parameters is not likely to have a practical usefulness
for models in which there are many variables. For example, if the number
of variables p is 40, s∗ contains p∗ = 820 elements and the number of non-
redundant elements of the p∗ × p∗ matrix U equals 336,610. Several matrices
of each size would be needed in computer memory. But the number of calcula-
tions would also become enormous and time-consuming to complete. Clever
programming might be able to push upward the upper limit for the size of
problems that could be managed with this method of estimation.

But there are other limitations for the ADF method of estimation. Bentler
(1994), reported Monte Carlo studies that reveal that the ADF method of
estimation does not attain its promised superiority in typical research size
samples (250–500). It does indeed display correct results asymptotically, but
this usually means in samples of 5000 or larger. This has been a big disap-
pointment to theorists who had hoped ADF estimation would give practical
solutions to the problem of nonnormal data generally.

Maximum-Likelihood Estimation with Elliptical Distribution

Browne (1982, 1984) argued that in these strongly nonnormal cases there are
ways of proceeding that involve working theoretically with distributions
similar to but more general than the normal distribution, specifically, the
family of elliptical distributions. Members of this family have distributions of
the form

cm = |Σ|−1/2 h
[
(y − μ)′Σ−1(y − μ)

]
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where cm is a normalizing constant designed to make the volume under the
function equal to unity, and h( ) is a function. The multivariate normal dis-
tribution, the multivariate t-distribution, and certain other “contaminated”
normal distributions are members of this family, but there are many others
that have excess kurtosis.

Using elliptical theory, Browne (1982, 1984) found that when the covariance
structure Σ(θ) is invariant under a constant scaling factor, that is, there exists
another value for the parameter vector, θ∗, such that Σ(θ∗) = a2Σ(θ), then we
can use Ū in Equation 7.24 where a typical element of this matrix is

ūij, kl = wijkl − wijwkl (7.26)

with

wijkl = N−1
N∑

r=1

(zir − żi)(zjr − żj)(zkr − żk)(zlr − żl), i ≥ j, k ≥ l

wij = N−1
N∑

r=1

(zir − żi)(zjr − żj) = n
N

[S]ij, i ≥ j.

The drawbacks of estimation using Equations 7.23 and 7.24, according to
Browne (1982), are that (1) the matrix Ū may be very large and thus demand
considerable computer memory. West, Finch, and Curran (1995) review
further the topic of estimation with nonnormal variables.

Parameter Estimation Algorithms

General Principles

We have already seen that to find estimates of unspecified, free parameters,
we must find those values for the free parameters that, together with the
fixed and constrained parameters, minimize a discrepancy function, such as
the ordinary least-squares, maximum-likelihood, or generalized least-squares
function. Jöreskog made a significant breakthrough using this function-
minimizing methodology in obtaining maximum-likelihood solutions for
these parameters in exploratory common factor analysis. He made a similar
breakthrough using the same methodology to implement the development of
confirmatory factor analysis and analysis of covariance structures. Following
this he developed his LISREL© program for analyzing structural equation
models based on the same algorithm. With function-minimizing techniques
at the heart of structural equation modeling, we need to understand their gen-
eral principles. Because the discrepancy functions for the confirmatory factor
analysis model involve many parameters, it is not convenient to illustrate the

© 2009 by Taylor and Francis Group, LLC



“K10039_C007.tex” — page 168[#14] 18/4/2009 16:20

168 Linear Causal Modeling with Structural Equations

function-minimizing methods with these discrepancy functions. Rather we
will consider how we might go about minimizing a simple function with two
free variables.

The minimization problem is analogous to finding oneself on a mountain
side in some mountains surrounding a deep valley. It is foggy, so visibility is
poor. One’s task is to find a house one knows is at the lowest place in the valley
below. One cannot see directly to where the house is located, but can see a few
yards ahead and knows that the pull of gravity will give some guidance as to
which direction to go. So, one starts off, taking steps in a downhill direction,
changing direction toward a new downhill heading, if to step further in the
current direction would lead one back uphill. Eventually, after many steps one
eventually finds one’s way to the house at the bottom of the valley. With that
scenario in mind, we will now consider how mathematicians solve analogous
problems in parameter space.

The principle underlying algorithms for the minimization of nonlinear func-
tions is that beginning at some initial point in parameter space, where the
value of each free parameter is a coordinate of the point, one will move in
successive steps from that point to other points, choosing at each step points
to move to that are ever lower and so closer to the minimum point. Along the
way, at each intermediate point one will determine a direction and a distance
to move to get to the next point.

Consider the problem of minimizing the function [suggested by Bazaraa
and Shetty (1979)]:

z = (x1 − 2)4 + (x1 − 2x2)
2.

The calculus states that a necessary (but not sufficient) condition for a function
to be at a (local) minimum at a point (x1, x2) is that the partial derivatives of
the function with respect to x1 and x2, respectively, evaluated at the point
(x1, x2), be each equal to zero, that is,

∂

∂x1

[
(x1 − 2)4 + (x1 − 2x2)

2
]

= 4(x1 − 2)3 + 2(x1 − 2x2) = 0,

∂

∂x2

[
(x1 − 2)4 + (x2 − 2x2)

2
]

= −4(x1 − 2x2) = 0.

The partial derivative of a function with respect to one of the independent
variables evaluated at a given point represents the slope of a line drawn
tangent to the curve at that point in the direction parallel to the axis of the
independent variable in question. We show in Figure 7.1 on the graph of
our function the tangent lines in the direction of the variables x1 and x2,
respectively, at the point (2, 1), which happens to be the minimum point for
this curve. The slope of each of these lines should be zero, if (2, 1) is the
minimum.

In Figure 7.2, we show a contour plot of the same function. The lines repre-
sent loci of equal altitude of the function. The same principle is used in map
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FIGURE 7.1 Graph of function z = (x1 − 2)4 + (x1 − 2x2)2 showing tangent lines correspond-
ing to directional partial derivatives of the function at the function’s minimum. The graph has
been cut to show only values within a rectangular interval around the minimum.

400

480280

200120

80

20

4

40

2

–2

x2

x10
0

2

4

6260

140

100

–4

340

–6

FIGURE 7.2 Contour plot of function z = (x1 − 2)4 + (x1 − 2x2)2 showing loci of points (con-
tours) with equal value for z. Outer contours represent higher values of the function. (The scale
of the x1 axis has been stretched so that it is consistent with Figure 7.1.)

© 2009 by Taylor and Francis Group, LLC



“K10039_C007.tex” — page 170[#16] 18/4/2009 16:20

170 Linear Causal Modeling with Structural Equations

making to represent altitudes of mountains and valleys. Contour plots are
better most of the time for discussing our next topic, gradient vectors.

The gradient vector at a point x′ = (x1, x2) is the vector ∇z(x) whose coordi-
nates are the values of the partial derivatives of the function z = z(x) evaluated
at that point with respect to the independent variables:

∇z(x) =

⎡
⎢⎢⎣

∂z
∂x1
∂z
∂x2

⎤
⎥⎥⎦

For example, suppose we evaluate the gradient vector at the point (1.17, 1.5).
At this point

∇z(x) =
[

4(x1 − 2)3 + 2(x1 − 2x1)

−4(x1 − 2x2)

]
=
[−5.9471

7.32

]
.

We illustrate how the gradient vector, when added to the point (1.17, 1.5), has
the coordinates (−4.7771, 8.42), which is shown in the following contour plot
(Figure 7.3).

10

0

–5

–10

0–5 5 10

5

x2

x1

FIGURE 7.3 Contour plot showing gradient vector pointing uphill. Because of the length of the
gradient vector, we have expanded the view of the graph.
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The gradient vector points “uphill” from the point (1.17, 1.5). In fact the
gradient vector is orthogonal to the line drawn tangent to the contour of
equal functional values passing through the point (1.17, 1.5). So, if we take
the negative of the gradient vector,

−∇z(x) =

⎡
⎢⎢⎣

− ∂z
∂x1

− ∂z
∂x2

⎤
⎥⎥⎦ ,

and add this to the point x′ = (x1, x2), that is, x − ∇z(x), we have an arrow
pointing in the most direct downhill direction from that point, a direction that
is also orthogonal to the line drawn tangent to the contour passing through
the point. This direction is called the direction of steepest descent. We can use the
direction of the negative gradient vector to suggest a direction to move from
the initial point x = (x1, x2) toward a region much closer to the true minimum
point. Frequently we will use a normalized negative gradient vector with unit
length. We will call it d (Figure 7.4).

Actually, what we want to do at this point is to search along a line x − β∇z(x)

to find the value bmin of β (0 ≤ β) where the function z is a minimum along
the line. Then the point x − βmin∇z(x) is an excellent place to evaluate the
gradient vector for a new provisional direction heading downhill toward
either the global minimum or (in some situations) a local minimum of the
function.

2

1.5

d
1

0.5

0
1 1.5 2 2.5 3

FIGURE 7.4 Magnified contour graph of function with normalized negative gradient d pointing
in the direction of steepest descent.
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Method of Steepest Descent

A method suggested by this analysis of the problem is known as the method
of steepest descent. Given initial values for the independent variables x1 and
x2 in a two-dimensional vector x0, the algorithm constructs iteratively suc-
cessively better and better choices for the vector of minimizing values of the
independent variables by iterating with the equation

xk+1 = xk − αk+1∇z(xk)

where xk is the value of the vector of independent variables after k iterations,
∇z(xk) is the value of the gradient vector computed using values of the param-
eters in xk , and αk+1 is a step-size value determined at each iteration of the
algorithm that establishes how far to move in the direction of the negative
gradient evaluated at the kth iteration to find the next, improved solution xk+1
for the point x at which the function is minimized. At each iteration, the value
of αk+1 is determined either by a line search in the direction of the negative
gradient (also known as the direction of steepest descent) to find the minimum of
the function along that line or by some heuristic single variable minimization
method that yields in most cases a close approximation to the minimum of
the function along the line.

Jöreskog (1967) described and used, in his programs for factor analysis
and structural equation modeling, a heuristic method that was originally
suggested by Fletcher and Powell (1963). This method quickly finds a near
minimum for the function along the line of steepest descent. We will repeat it
here in a little more detail: let d = −∇z(xk)/||∇z(xk)|| be a unit length vector in
the direction of the negative gradient vector. ||∇z(xk)|| = (∇z(xk)

′∇z(xk)
)1/2,

the length of the gradient vector (evaluated at xk). Then any point on the line
drawn through xk in the direction of d is given by xk + βd. Suppose we select
two points. Let the first point be simply xk = xk + β0d, where β0 = 0, which
is just the point xk . Let the second point be, according to Fletcher and Powell
(1963), x∗

k = xk + β1d, where

β1 = minimum of
[

1,
−2z(xk)

∇z(xk)
′d

]
.

The denominator of the expression on the right, inside the brackets, is the
directional derivative of the function z(x) in the direction of the vector d from
the point xi. So, if the slope of the function z(x) at the point xk is small and
negative relative to the magnitude of the function z(x), this may make the term
on the right larger than unity, and so, when that happens, β1 can be set to unity.
Now let us evaluate the function z(x) at the points xk = xk + β0d and x∗

k = xk +
β1d, and designate these values as z(xk + β0d) and z(xk + β1d), respectively.
Let us further evaluate the slope of the function z(x) in the direction of the
vector d at these same two points. The slope of a multidimensional function
z(x) in the direction of a unit length vector d at the point x is given by ∇z(x)′d.
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Let us designate these two slopes as

z′(xk + β0d) = ∇z(xk)
′d

and
z′(xk + β1d) = ∇z(x∗

k )
′d,

respectively. Note that ∇z(x∗)′d is evaluated at the second temporary point
x∗

k = xk + β1d.
Now, what we are trying to do is best understood in terms of the two graphs

in Figure 7.5.
The top graph shows the value of the function z(xk + βd) along the line xk +

βd. We seek the point xk + βmind at which this function is a minimum along
the line. The bottom graph is the corresponding derivative of the function
z(xk + βd) taken with respect to β. By the properties of similar triangles, if
z′(xk + β1d) is also negative we can extend a line connecting the two points
[z′(xk + β0d), β0] and [z′(xk + β0d), β1] in the bottom graph to extrapolate to
the point βh where this line intersects with the horizontal axis by noting that
(recalling that β0 = 0)

βh

z′(β0)
= β1

z′(β1) − z′(β0)
,

z(x + bd)

z′(x + bd)

z′(b1)

z′(b0)

15
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FIGURE 7.5 Graphs of function and derivative of function in the direction of steepest descent.
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which we easily solve for βh by

βh = z′(β0)β1

z′(β1) − z′(β0)
.

The value of βh should be a good approximation to βmin. When the derivative
z′(xk + β1d) is positive, this same formula may be used to interpolate to a point
near the minimum along the line. However if |z′(xk + β1d)| is more than twice
|z′(xk + β0d)|, then choosing a new β̃1 = 0.6081β1 might lead to a better point
for interpolating to a βh close to βmin. But in this situation, Fletcher and Powell
(1963) suggest another approach: construct a cubic polynomial function of β

with the same altitude and slope as the empirical function at β0 = 0 and β1
along the line. Find the value of β where this cubic function has its minimum.
The value of β that minimizes the cubic function should be close to the point
along the line where z has its minimum along the line.

Cubic Approximation to Find Approximate Minimum

Let p(β) = c0 + c1β + c2β
2 + c3β

3 be a cubic polynomial function of β, and let
p′(β) = c1 + 2c2β + 3c3β

2 be the derivative of the cubic function. Let p(0) =
z(xk + β0d) = z(xk)be the value of the function z at the point along the line xk +
βd where β0 = 0, and let p(β1) be the value of the function z at the point along
the same line where β = β1. Correspondingly, let p′(0) = z′(xk) = ∇z(x)′d be
the derivative of the function z at the point along the line where β0 = 0, and
let p′(β1) = z′(xk + β1d) = ∇z(xk + β1d)′d be the derivative of the function z
at the point along the line where β = β1.

In theory the coefficients c0, c1, c2, and c3 of the polynomial p(β) may be
obtained by solving a system of four simultaneous equations representing
constraints on the coefficients of the polynomial, that is, in matrix terms

⎡
⎢⎢⎢⎣

1 β0 β2
0 β3

0
1 β1 β2

1 β3
1

0 1 2β 3β

0 1 2β 3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p(β0)

p(β1)

p′(β0)

p′(β1)

⎤
⎥⎥⎥⎦ or Ac = P,

which may be further simplified because β0 = 0 to
⎡
⎢⎢⎢⎣

1 0 0 0
1 β1 β2

1 β3
1

0 1 2β 3β

0 1 2β 3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p(β0)

p(β1)

p′(β0)

p′(β1)

⎤
⎥⎥⎥⎦ .

Then the solution for c is given by c = A−1P.
Once the solution for the coefficients of the cubic polynomial is obtained,

then one can solve for the required (local) minimum point of the cubic
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polynomial by setting the derivative of this function equal to zero, that is,
c1 + 2c2β + 3c3β

2 = 0. Since this is a quadratic equation, we may solve for its
roots by the equation

βh = −2c2 ±√(2c2)2 − 4(3c3)c1

2(3c3)
=

−2c2 ±
√

4c2
2 − 12c3c1

6c3
.

Since two roots are provided, one must choose the one between zero and β1.
We then set αk+1 = βh.

To illustrate, suppose we are searching down a line collinear with the x1 axis
z = (x1 − 2)4 + (x1 − 2)2 where x2 = 1. Our function then is simply z = (x1 −
2)4 + (x1 − 2)2. For convenience, let us refer to this as the line x′ = x + βd,
where d = 1, implying x′ = x + β. Suppose further that x = 1.5 is our initial
point where β = β0 = 0 and β1 = 0.9 leads us to the point x′ = x + β1 = 1.5 +
0.9 = 2.4, which we believe is beyond the minimum point along the line. The
z function along this line is given in Figure 7.6.

The column vector P is then given as

P =

⎡
⎢⎢⎣

p(β0)

p(β1)

p′(β0)

p′(β1)

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝

0.3125
0.1856
−1.5
1.056

⎞
⎟⎟⎠ ,

and

A =

⎛
⎜⎜⎝

1 0 0 0
1 β β2 β3

0 1 0 0
0 1 2β β2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
1 0.9 0.81 0.729
0 1 0 0
0 1 1.8 0.81

⎞
⎟⎟⎠ ,

1.5

z

b0 b1

b

2 2.5

–0.2

0

1

FIGURE 7.6 Graph of z function along a line.
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and we have as a result

c = A−1P =

⎛
⎜⎜⎝

0.3125
−1.5
1.33
0.2

⎞
⎟⎟⎠ .

The cubic polynomial function sought is then

y = 0.3125 − 1.5x + 1.33x2 + 0.2x3

and has the graph shown in Figure 7.7, which appears shifted to the left by
1.5 units from where it ought to be. But it is the correct function, since it will
have the same height and slope at zero and 0.9 as the function z has at 1.5 and
2.4, respectively. We can see how this function aligns itself with the z function
when we change the variable from x to x′ = (x − 1.5) and merge the graph of
the resulting cubic function

t = 0.3125 − 1.5(x − 1.5) + 1.33(x − 15)2 + 0.2(x − 1.5)3

with the previous graph of the z function, as shown in Figure 7.8.

50–5
–10

0

10

FIGURE 7.7 Cubic polynomial function (dark line) that has comparable values and derivatives
as an empirical function.

5
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–10

0

10

FIGURE 7.8 Approximation of cubic function to empirical function.
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FIGURE 7.9 Magnified view showing that the cubic function (dark line) has a local minimum
at nearly the same value as does the empirical function (fine line).

When magnified at the minimum, as in Figure 7.9, we see the match in
heights at 1.5 and 2.4, respectively. The (local) minimum of the cubic curve
also occurs at about the same point as does the original quartic function.

Returning now to the untransformed cubic function, the solution for the
value of β that minimizes the cubic polynomial along the line is given by

βh = −2(1.33) +√(2(1.33))2 − 12(0.2)(−1.5)

6(0.2)
= 0.50613.

We see that if this value is added to the original value of x at 1.5, it yields
2.00613, which is very close to the minimum of the quartic function at 2.00.
Thus we would set α to 0.50613 in this step of an iterative algorithm.

Figure 7.10 illustrates how the method of steepest descent typically makes
bold steps at the outset, but then slows down to a crawl and sometimes gets
stuck as it nears the minimum point. After 11 iterations it was at the point
(1.93114, 0.965492) and moving slower and slower to the minimum (2, 1).
Frequently near the minimum, when the minimum is located in a shallow
valley that is longer than it is wide, the method of steepest descent tends to
show a zig-zag, back-and-forth movement across the long axis of the valley
and slows down and fails to converge to the true minimum. This tendency
is shown in Figure 7.11 in the magnification of the central region of the pre-
ceding graph, which shows the steps taken near the minimum of the quartic
function in greater detail. So the method of steepest descent is usually not the
most efficient method for minimizing a function in the region of the sought
minimum.

It must be understood that generally these algorithms never reach the
minimum in a finite number of steps. Most computer programs stop the
iterations when the difference between the parameter estimates on two
successive iterations becomes less in absolute magnitude than some very
small quantity, for example, 0.0001, in the case of each parameter. Or one
may stop the iterations when the last discrepancy function value Fk and
the previous Fk−1 differ by some very small amount in absolute value,
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FIGURE 7.10 A graphical illustration of the method of steepest descent with the line search
methods just described to find the minimum of the equation is shown where the starting point
is (−1, 2).
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FIGURE 7.11 Zig-zag tendency of the method of steepest descent when approaching a
minimum along a valley that is longer than wide.
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say,
∣∣(Fk − Fk−1)/(1 + |Fk|)

∣∣ < 0.001 (Steiger, 1994). With inefficient algorithms
such as the method of steepest descent, many iterations may be required to
satisfy this convergence criterion.

The Newton–Raphson Algorithm

According to Bazarraa and Shetty (1979), a very efficient algorithm for finding
the minimum of a function is the Newton–Raphson method. The idea under-
lying this algorithm is that one can form a quadratic approximation q(x) to
the function f (x) to be minimized at a given point xk by using the first and
second derivative terms of a Taylor’s series expansion of the function at that
point:

q(x) = f (x) + ∇f (x)′(x − xk) + 1
2
(x − xk)

′H(x − xk),

where ∇f (xk) is the vector of partial derivatives of f (x) evaluated at the point
xk ,

∇f (xk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f (x)

∂x1
∂f (x)

∂x2
...

∂f (x)

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xk

,

and

H(xk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f (x)

∂x2
1

∂f (x)

∂x1∂x2
· · · ∂f (x)

∂x1∂xn

∂f (x)

∂x2∂x1

∂f (x)

∂x2
2

· · · ∂f (x)

∂x2∂xn
...

...
. . .

...
∂f (x)

∂xn∂x1

∂f (x)

∂xn∂x2
· · · ∂f (x)

∂x2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xk

is the Hessian matrix of second partial derivatives of the function with respect
to its parameters evaluated at the point xk .

The reason for obtaining the quadratic function q(x) to approximate the
function f (x) to minimize, is because it is very easy to minimize a quadratic
function in a single step, once we know its partial derivatives with respect
to the independent variables. If the equation to minimize f (x) is a quadratic
function, then we will be able to proceed directly to its minimum; and if f (x) is
not quadratic, the quadratic approximation to f (x) may still have a minimum
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in the vicinity of the minimum of f (x). In fact, in the region immediately
around a minimum of f (x), the minimum of a quadratic approximation to
f (x) at a point in that region will be very close to a minimum of f (x).

In Figure 7.12, we show in three dimensions the function to be minimized
(the net of the function to fit cut away in the front) and the surface of a
quadratic function approximating the function to minimize, looking like a
tornado.

Thus, think of the quadratic function as a tornado that forms itself at a
point in such a way as to conform to the function to be minimized very well
at that point. Then it skips to its current minimum point, reforming itself
again to conform to the function to be minimized at this point, and then skips
to its new minimum point, reforming again, and so on. As it approaches the

100
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2

4

100

8080
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FIGURE 7.12 Quadratic function q(x) (“dark tornado”) is an approximation to function z(x)

(open mesh) and the minimum of q(x) is an approximation to the minimum of z(x). The near side
of z(x) is cut away to show q(x).
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minimum, the quadratic function makes a better and better approximation to
the function to be minimized in the region of that function’s minimum, and
the quadratic function’s minimum thus rapidly approaches ever more closely
to the minimum of the function to be minimized.

In Figure 7.13 a contour plot of the approximating quadratic function q(x)

is superimposed on the contour plot of the function to minimize f (x) so that
the two functions coincide at the point (−1, 2).

Thus to find the minimum of the function q(x), we need to find its par-
tial derivatives, set them equal to zero, and solve for the value of x at its
minimum:

q(x) = f (x) + ∇f (x)′(x − xk) + 1
2
(x − xk)

′H(x − xk)

∂q(x)

∂x
= ∂f (xk)

∂x
+ ∂[∇f (xk)

′(x − xk)

∂x
+ ∂

∂x
1
2
[(x − xk)

′H(xk)(x − xk).

The expressions xk , f (xk), f (xk), and H(xk) represent constant expressions at
the point xk . We may now take advantage of certain rules for taking the partial
derivatives of scalars and traces of matrices with respect to a vector: let c, a,
and A be a constant scalar, vector and matrix, respectively. Then

∂c
∂x

= 0

700
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0

5
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2200

20001400

16001000

500

600

400

FIGURE 7.13 Contour plot of q(x) fit to the point (−1, 2) superimposed on the contour plot
of f (x).
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∂a′x
∂x

= a

∂tr(x′Ax)

∂x
= 2Ax for symmetric A.

Thus,

∂q(x)

∂x
= ∇f (xk) + H(xk)(x − xk)

= ∇f (xk) + H(xk)x − H(xk)xk .

Since this represents the partial derivatives of the quadratic approximation
with respect to x, setting the expression equal to a null vector and solving for
x, we obtain the value of x at the minimum:

∇f (xk) + H(xk)x − H(xk)xk = 0.

Moving the constant expressions to the right, we obtain

H(xk)x = H(xk)xk − ∇f (xk)

or, by multiplying both sides by the inverse H(xk)
−1,

x = xk − H(xk)
−1∇f (xk).

This yields the basic equation of the Newton–Raphson algorithm:

xk+1 = xk − H(xk)
−1∇f (xk).

We illustrate in Figure 7.14 its implementation with the search for the
minimum of z = (x1 − 2)4 + (x1 − 2x2)

2 starting at the point (−1, 2).
First we obtain the gradient vector of first partial derivatives of z with

respect to x:

∇z(xk) =

⎡
⎢⎢⎣

∂z
∂x1
∂z
∂x2

⎤
⎥⎥⎦ =

[
4(x1 − 2)3 + 2(x1 − 2x2)

−4(x − 2x2)

]
.

Next

H(x) =

⎡
⎢⎢⎢⎣

∂2z

∂x2
1

∂2z
∂x1∂x2

∂2z
∂x2∂x1

∂2z

∂x2
2

⎤
⎥⎥⎥⎦ =

[
12(x1 − 2)2 + 2 −4

−4 8

]
.
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FIGURE 7.14 The first and subsequent steps toward the minimum made by the Newton–
Raphson method.

Evaluating these expressions at the starting point of x0 = (−1, 2), we obtain

∇z(x0) =
[−118

20

]
,

H(x0) =
[

110 −4
−4 8

]
.

So, the first step leads us from (−1, 2) to

[
x1
x2

]
1

=
[−1

2

]
0
−
[

110 −4
−4 8

]−1 [−118
20

]
,

[
x1
x2

]
1

=
[−1

2

]
0
−
[

0.0092593 0.0046296
0.0046296 0.12731

] [−118
20

]

=
[

0
0

]
.

The major drawback of the Newton–Raphson method is the need to have
expressions for not only the first but also the second derivatives of the func-
tion to be minimized. In many applications, especially in factor analysis
and structural equation modeling, the derivation of such expressions is very
difficult. Furthermore, when the Hessian matrix is very large, because there
are many free parameters to estimate, there is a heavy storage requirement,
as well as a heavy price to pay in computing, since one has to compute the
Hessian and then its inverse at each iteration. These difficulties and costs have
spurred mathematicians to find alternative algorithms that keep many of the
advantages of the Newton–Raphson method without its costs.
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Quasi-Newton Methods

The quasi-Newton algorithms take the general form

xk+1 = xk − αk+1H(xk)∇f (xk).

These methods require only measurements of the gradient at each iteration
and thus forego the need to derive expressions for second derivatives. The
H matrix is not the Hessian of second derivatives, but as these procedures
progress, the H matrix becomes an increasingly better approximation to the
inverse of the Hessian at the minimum of the function f (x). As in the method
of steepest descent, line searches for a minimum are taken in the direction
of a vector, but this time the direction is given by the gradient vector ∇f (xk),
deflected by the matrix Hk = H(xk). Initially the matrix H0 = I, so the first
iteration is a step to a minimum along the line in the direction of the gradient.
At each iteration αk+1 = βh computed by the method of cubic approximation
described earlier. At the end of each iteration, a new Hk+1 is constructed from
the previous Hk and gradient ∇f (xk).

Why use some other matrix than the Hessian? Press et al. (1992) indicate
that if the function to be minimized is not quadratic, starting at a point distant
from the minimum sought will produce a Hessian that is not positive definite.
The effect in that case will be that the point moved to for the next iteration
may actually correspond to a z(xk+1) that is larger than z(xk). In other words,
we are not moving in a descending direction. So, in the early iterations it is
actually better to use a Hk that is positive definite, and the identity matrix
I at the start is positive definite. Subsequent constructions of the H matrix
are made in a way that guarantees that they are positive definite so that the
iterations are moving in a descending direction.

Citing his source as Fletcher (1981), Pike (1986) gives the following update
equation for the Broyden, Fletcher, Goldfarb, and Shanno (BGFS) method,
which is currently regarded as the most robust and efficient of the quasi-
Newton methods: let

δk+1 = xk+1 − xk

be the difference between the new and the old step point, and let

γk+1 = ∇(xk+1) − ∇(xk)

be the difference between the gradients at the new and old step points.
Then let

Hk+1 =
[

Hkγkδ
′
k + δkγ

′
kHk

δ′
kγk

]
+
[
γ′

kHkγk

δ′
kγk

] [
δkδ

′
k

δ′
kγk

]
.

Note that in this equation two matrices are constructed, and then added
together. The matrix in the numerator of the left-hand expression on the right
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is constructed by adding the products of two square matrices. The matrix on
the right [δkδ

′
k] is a rank-one square matrix.

Sometimes the cubic approximation methods of line search used in con-
nection with quasi-Newton algorithms still run into problems. Jöreskog and
Sörbom (1989) describe alternative procedures that may be used in these cases
to assure accuracy. Each program on the commercial market for performing
confirmatory factor analysis uses methods that its programmer found effi-
cient and accurate. But the methods we have described give one a description
of generally how these programs go about finding parameter values that
minimize the respective discrepancy functions.
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Preliminary Considerations

Any study with a structural equation model (SEM) begins with a focus on
the causal and effect constructs that one wishes to study. Each of these con-
structs must be a variable. In the framework of this book, a variable is a set
of attribute states or qualities such that, to any object that may be described
in terms of these states or qualities, one and only one member of the set may
be assigned at any one time. In other words, there is an implicit schema that
objects (e.g., persons) become bearing attributes, that attributes (e.g., blonde,
brunette, redhead, brownette) are segregated into sets, each having some char-
acteristic in common such as hair color, and no object may have more than one
value of the same attribute at the same time (e.g., Joe is blonde). Frequently,
these states or qualities are represented as a given quantity of some attribute
and thus have numerical values. For example, Joe weighs 174 pounds.

Now, it is important as one proceeds to think about possible causal relations
to be thinking of the specific variables that enter into these relations. Causal
relations are functional relations between variables, that is, sets of attribute
states of objects, not just between the objects themselves as objects. To illus-
trate how this is often misunderstood, in Mulaik (2004) I reported attending
a graduate student’s orals in which the student said, echoing the literature of
the field, that one of the variables in the student’s model was “leader–follower
exchange.” This does not tell us what specific attribute of the “leader–follower
exchange” is the variable in question. It was supposed to be a quantity. But
what quantity? I cited these possibilities: “. . . There are numerous variables

187
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one could focus on in exchanges between leaders and followers: How many
orders does the leader give to the follower? To what degree does the subor-
dinate feel he/she has freedom to decide what to do? To what extent does
the subordinate say negative things about his/her supervisor? To what extent
does the subordinate say negative things about the boss’s orders directly to
the boss? To what extent does the follower like the leader?” (pp. 428–430). By
using phrases such as how many . . . , to what extent . . . , to what degree . . . , number
of . . . , rate of . . . , and how often . . . , we are forced to complete the phrase by
indicating what specific attribute the variable refers to. So, I teach students to
always preface their descriptions of their variables by such phrases, so that
they will be forced to focus on the specific attribute in question. If the variable
in question is an effect variable, then this will clarify one’s thinking about
what the possible causes of it are. It is difficult to think of what the causes
of “leader–follower exchange” are. It is easier to imagine what the causes are
of “the degree to which the follower feels free to disagree with the leader.”
Variables in SEMs must be unidimensional quantities.

Because causal relations concern functional relations between variables,
these variables involve the attributes of objects, and this constrains us to select
only those objects (e.g., subjects to study) that are homogeneous in represent-
ing the same functional relations between the variables. We call this the causal
homogeneity condition (Mulaik and James, 1995). This means that there must
not be a subset of the population of subjects studied in which the functional
relations between specified variables differ from those in other subsets of sub-
jects of the same population. Now, this may not be initially easy to bring about
in a study, because we may not yet have studied the functional relations in
various subsets of the population, and are only beginning to select subjects
for our study. So, it may take a series of studies before we begin to be certain
of how to select subjects that are causally homogeneous. (It is unrealistic to
suppose that one will always be able to perform a study with an SEM and
get everything right the first time. Science progresses in graduated steps with
series of studies.)

But one way to enhance the possibility of selecting subjects that are causally
homogeneous is to pay attention to those characteristics of the subjects
selected. They should be alike on any other variables not studied that may
have some causal influence that will affect the causal relations hypothesized
in the model. For example, subjects should be essentially equivalent in age,
race, sex, and education, if it is believed these variables will have an effect on
the causal relations studied.

Multiple Indicators

My philosophy in designing SEM studies is to include in the study as many
indicators of each latent variable as is practically feasible, with a minimum
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of four indicators for each latent variable. The aim is to establish objective
validation for the latent constructs by demonstrating that they are measured
simultaneously from at least four distinct points of view by being common
factors of these measures. Furthermore, this helps raise the squared multi-
ple correlation for predicting the latent variable from the indicators, reducing
indeterminacy for the latent. Multiple indicators demonstrate the researcher’s
capability to select or construct repeatedly variables he or she claims are inde-
pendent measures of a given construct that is represented by a latent variable
in the model. The researcher identifies the attributes that vary and constitute
the cause and shows that the indicators all reflect the same causal variable by
having a common factor. This lends objectivity to the construct by there being
procedures or rules by which the researcher—or any other researcher—can at
will repeatedly construct or select, or put in place measures of the same con-
struct. Others can study the procedures used in the selection or construction
process and repeat the study in other contexts. However, objective validity
does not imply “absolute truth.” Objective validity is provisional, meaning
that a test of something that is independent of the observer and invariant
from several points of view has been passed. The requirement for at least
four indicators per latent variable is to make it possible to test the hypothesis
that the indicators believed to have a factor in common, indeed, have a single
common factor. The common factor represents an invariant form of variation
among the indicators. Also, by testing whether a common factor model with
a single common factor conforms to the indicators, we test assumptions of
closure and self-containment, since by conditioning on the common factor,
the residual variables should be uncorrelated by local independence, since
they correspond to the unique factors of the model.

Multiple Indicators versus Single Indicators

There are others, such as Hayduk (1996), who advocate using models with
single indicators. Hayduk recommends selecting a “single best indicator” of
a latent variable, fixing its structural coefficient on the latent to unity, and,
additionally, fixing the “error” variance of the variable to that value to indi-
cate what proportion of the total variance of the indicator is not due to the
hypothesized latent. Then by including the latent and its indicator with other
latents and their single indicators in a model that is relatively sparse in the
number of free structural coefficients between the latents, one is able to have
a model with an ample number of degrees of freedom. In this case, Hayduk
believes the latent is defined not just by being a cause of its indicator, but by
its being a cause (sometimes indirectly) of certain other latents and their indi-
cators while not being a cause, directly or indirectly, of certain other latents
and their indicators. If your model with a complex but sparse causal net-
work involving many variables fits, this supports your concepts of the latent
variables in the model.
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The contrast between the multiple indicator approach and the single
indicator approach in the conceptualization of the latent variable is remi-
niscent of the contrast logicians and philosophers of language make between
intensional and extensional meanings of words. According to Copi (1978),
words applicable to more than one thing have both kinds of meanings.
The intensional meaning of a word is a set of attributes common to all
and only those objects to which the word refers. The extensional meaning
is the set of objects to which the word may correctly refer. The attributes
of the intensional meaning provide criteria for what objects the word can
be extended to. But the set of objects of an extension does not deter-
mine the intension. Different sets of attributes may have the same exten-
sion. But words with different extensions cannot have the same intension
(Copi, 1978).

The causal analogue with these two kinds of meaning resides in the fact
that causes are variable attributes of things that determine certain other vari-
able attributes of things. So, the intensional meaning of a cause is those and
only those attributes of objects whose variation produces effects (covaria-
tion) in certain other attributes of things. The extensional meaning of a cause
is the set of all those attributes that are effects by varying as a result of the
variation of the causal attributes. The intensional meaning of a cause deter-
mines the extension of its effects to other attributes (variables). However, the
set of attributes (variables) that are the effects of a given cause, and define
its extension, does not determine uniquely its intension. A cause cannot be
uniquely determined by its effects. More than one causal variable, say, can have
the same set of attributes affected. Consider any variable that is a node in a
causal network that has more than one causal input. Each causal input to the
node will have the same downstream set of effect variables determined by
the nodal variable. On the other hand, two different extensions cannot have
the same cause.

What we have said so far applies only to absolute extensions and intensions,
that is to say, extensions and intensions of variables from a God’s-eye view
in which all possible variables that belong to the extension and all possible
attributes that define the intension of a given cause are known. With any finite
model involving a finite number of variables, extensions and intensions may
be relative to the variables involved and what is currently known about the
individual variables.

Consider Figure 8.1a that shows two models with single indicators for each
latent. The models are simplex models, which will be discussed further in
Chapter 13 on longitudinal models. Models (1) and (2) are identical, with the
exception that the model in Figure 8.1a(1) has a latent ξ1 with single indicator
Y1 at the front end on the left, whereas the model in Figure 8.1a(2) has a
latent ξ0 with single indicator Y0 in the same place at the front end on the
left. Suppose researcher (1) has chosen Y1 to be the indicator of a latent he
believes is a direct cause of η2, whereas researcher (2) has chosen Y0 to be the
indicator of a latent she believes is a direct cause of η2.
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FIGURE 8.1a Models (1) and (2) are simplex models with different indicators Y0 and Y1 of
corresponding latents ξ0 and ξ1, each, respectively, a cause of η2.

If we try to determine the nature of the cause ξ1 or ξ0, respectively, of η2 from
the downstream extension of η1, which includes all downstream variables
that are direct or indirect effects of η2, we might be inclined (wrongly) to infer
that ξ1 is the same cause as ξ0. But they need not be. If we include both Y1
and Y0, along with their latents ξ1 and ξ0, each regarded as a cause of η2,
in the same model with Y2, . . . , Y5 and η2, . . . , η5 and their disturbances, we
may discover a situation as in Figure 8.1b(1) in which ξ1 and ξ0 are completely
distinct, uncorrelated variables. Orξ1 andξ0 may be actually the same variable
ξ1 as in Figure 8.1b(2).

Returning now to our discussion of the causal intension and extension of a
variable, if we limit ourselves to a particular set of variables, a causal variable
in that set may have the same extension as another and not be distinguished
by its extension. One could substitute one for the other and have the same
extension. And it would be a fallacy to think that by showing that a causal
variable has a given extension, this determines the identity of the cause. This
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FIGURE 8.1b Models (1) and (2) are simplex models. In (1) latents ξ1 and ξ0 are distinct,
uncorrelated variables. In (2) Y0 and Y1 are indicators of a single latent ξ1.

suggests that the way to distinguish causes is to enlarge the set of variables
in such a way as to show that one cause causes some different variables than
does another cause with which it may be otherwise confounded in some of
the variables. Distinct extensions have different intensions.

Indicators of causal variables should have some set of attributes that suggest
the attributes that are varied of the cause indicated. Other attributes of the
indicator are the effects of the cause.

Guttman (1965), for example, argued that analytic ability, which some
equate with general intelligence, is the ability to correctly discern relations.
He argued that measures of this ability show subjects one or several pairs in
a relation, for example, “Dog is to puppy,” and then present just one member
of a new pair from the same relation, for example, Cat is to ___?, that is, either
in the domain or the range of the relation. The subject must then demonstrate
the “best” or the “correct” perception of the relation by either providing the
corresponding other member of the pair (e.g., fill in the blank) or correctly
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picking the other member from a set of alternatives, for example, (a) cub, (b)
kitten, (c) flea, (d) mouse. (b) is “correct” or the “best” according to the tester,
whose criteria are what would be most salient to most members of the com-
munity. (With no further constraints, such as a limited set of alternatives and
the implication that there is a “correct” or “best” answer, there is no unique
response that one could make.) The relation sought by the tester is names of
offspring of specified animals. Displaying one or several pairs in an unnamed
relation and a limited number of choice responses to make is the same stimu-
lus given to all subjects. The judgment in determining the relation is made in
each subject’s brain. The latent causal variable is the variation among subjects
in the way whatever centers of their brains process the problem to yield the
judgment of the relation and then the alternative chosen. The latent causal
variable thus represents a capacity of individuals to properly detect relations.
Next, the judgment has to be communicated to the tester. There are numerous
media by which the judgment could be communicated; a few possibilities are
by pointing to a given alternative, by saying in words what the alternative
chosen is, and by making a mark on an answer sheet. This confounds the out-
put from the center of the brain that made the judgment with the medium of
communication conveying the judgment. Communicating may involve other
centers of the brain involved in processing the overt response.And there could
be individual variation in communicating in a given medium.

Other extraneous factors can also enter in, such as the input medium in
which the problem is represented to the subject, for example, as a verbal
problem, a figural problem, or a numerical problem. Guttman (1965) held
that many of the intellectual factors obtained by others represented not pure
analytic ability, but human variation in ability to detect relations in a given
input medium. This would suggest that analytic ability is a second-order fac-
tor to be distinguished from first-order factors that confound analytic ability
with the ability to process a problem in a given input medium and the ability
to communicate the judgment in a given output medium. In other words,
an indicator of the ability to grasp relations involves variation in processing
certain types of inputs, central processing, and in processing certain types of
outputs. But to isolate these factors we need multiple indicators of analytic
ability varying in different input and output media.

Multiple indicators allow for testing whether those indicators believed from
their content to represent a latent causal variable varying in certain specified
attributes across subjects do indeed have a factor in common. It also allows
for the detection of extraneous common factors as well as doublets not rep-
resented in the model. So, the focus is on the intensional nature of a factor as
opposed to its extensions to other variables.

The use of models with single indicators of latent variables is possible.
But in the author’s opinion they are fraught with possible indeterminacies
and ambiguities, especially at the outset of a research program where clear
concepts of latent variables have not been formulated and an understanding
of how their single indicators are effects of just the latent in question and
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not of other variables has not been worked out and tested. These models
rely chiefly on the extension of causes to determine that the causes are what
they are supposed to be. But we have shown that extensions cannot uniquely
determine the causes. Merely saying “Choose the best indicator of the latent”
does not direct the researcher to focus on the intensional meaning of the cause,
to specify attributes that are varied as the cause. So the cause is not clearly
specified. With multiple indicators one is compelled to select indicators that
pertain to the same set of attributes that when varied constitute the cause. The
causal extensions of causes to other variables, on the other hand, are more
problematic than are the intensional attributes of the causes. One first seeks
to establish clearly and distinctly the intensional attributes that constitute the
causes, and only then does one focus on the extensional properties of the
causes. Usually it is the causal extensions that are problematic and the reason
for a study. But we first wish to establish that our choice of indicators has the
proper intensional meaning. And this is difficult to demonstrate with a single
indicator.

Tetrad Difference Tests with Multiple Indicators

As pointed out in Chapter 6, three indicators of a single common factor yield,
for three positively correlated variables, a just-identified system, and no test
of a single common factor may be performed in such a case, since mathe-
matically it would be impossible to fail such a test. With four indicators per
factor, a system with a single common factor is overidentified and a test may
be performed. But more specifically Hart and Spearman (1913) showed that
with four manifest variables Y1, Y2, Y3, and Y4, with a common factor, each
of the following three “tetrad difference equations” should hold: ρ12ρ34 −
ρ13ρ24 = 0, ρ14ρ23 − ρ13ρ24 = 0, and ρ13ρ24 − ρ12ρ34 = 0, where ρij denotes the
correlation between variables iand j. To see why this is so, consider now a path
diagram for these four variables having a single common factor (Figure 8.2).

Assume that all variables have unit variances (for convenience). Apply-
ing path-tracing rules, the correlations between any pair of distinct observed
variables are

ρ12 = γ11γ21,
ρ13 = γ11γ31,
ρ14 = γ11γ41,
ρ23 = γ21γ31,
ρ24 = γ21γ41,
ρ34 = γ31γ41.

(8.1)

Note in Equation 8.1 that if we multiply ρ12 with ρ34, we obtain

ρ12ρ34 = γ11γ21γ31γ41.
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FIGURE 8.2 Four variables with a single common factor.

Similarly,

ρ13ρ24 = γ11γ31γ21γ41.

But now, we can see that these two products yield the same value, so we may
write

ρ12ρ34 = ρ13ρ24

or

ρ12ρ34 − ρ13ρ24 = 0,

which is known as a tetrad difference equation.
Now, there are three distinct tetrad difference equations we can form from

these six expressions in Equation 8.1. We have found the first equation, and
the remaining two are

ρ13ρ24 − ρ14ρ23 = 0,

ρ14ρ23 − ρ13ρ24 = 0.

However, once two are given the third follows necessarily and is not an
independent equation.

The question naturally arises at this point of a statistical test for each of the
two independent tetrad difference equations. Spirtes et al. (2000) say that they
use a test given by Wishart (1928), and we will show it here. The problem is to
estimate the variance of the sampling distribution of a tetrad difference, and
Wishart gave the following expression for this variance in terms of determi-
nants of the covariance matrix among the four observed variables. The tetrad
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differences are computed from covariances instead of correlations. So, let
T̂ = s12s34 − s13s24 be a tetrad difference computed using the sample covari-
ances sij between the respective pairs of variables. Given now the sample
covariance matrix,

S =

⎡
⎢⎢⎣

s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44

⎤
⎥⎥⎦ ,

the estimated variance of the sampling distribution of a tetrad difference is
given by Wishart (1928) as

V̂(T̂) = D12D34(N + 1)

(N − 1)(N − 2)
− D,

where D12 =
∣∣∣∣ s11 s12

s21 s22

∣∣∣∣ and D34 =
∣∣∣∣ s33 s34

s43 s44

∣∣∣∣ are determinants of sub-

matrices of S in the upper-left quadrant and lower-right quadrants, respec-
tively, of S, whereas D is the determinant of the matrix S itself. The
second-order determinants are not difficult to compute, but the fourth-order
determinant can present a problem if computed by hand. It would be better to
estimate D by finding eigenvalues of S and computing their product, which
can be done with matrix manipulation routines in programs such as SPSS.

Now, a statistic to use would be a z statistic

z = T̂√
V̂(T)

.

This presents a two-tail test of the null hypothesis that the tetrad difference
equals zero. The null hypothesis is rejected if z falls in the regions of rejection
at some level of significance.

This test is only asymptotically accurate in samples of 300 or more and
greater observations and is more powerful when the correlations among the
variables are large as opposed to small (e.g., 0.30) (Glymour et al., 1987).

This establishes a basis for requiring four indicators of each latent variable.
But with more than four indicators, the calculation of tetrad differences is
to be reserved for exploratory programs such as Tetrad II, which seeks to
discover causal structures in correlation matrices and uses the brute force of
the computer to compute all possible tetrad differences and various criteria to
ascertain these structures. The usual researcher may find it more convenient
simply to fit a single common factor confirmatory factor analysis model to
the indicators of a latent variable and ascertain whether the fit is satisfactory.

There are, however, situations in which using single indicators is reason-
able. Some researchers may regard “sex,” “age,” “weight,” “height,” “years
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of schooling,” and so on to be sufficiently measured by single variables. It
will be important in such cases to consider how these variables function in
one’s model. Is a variable of this class a cause of other variables, or is it an
effect of some other causal variables? In what way? Perhaps the single indi-
cator serves as an indicator of some other variable, which is really what the
researcher is (or should be) interested in. For example, if sex is determined by
the possession of certain kinds of genital organs, which vary in a population,
is that what one wants to measure? Or is one measuring a variation of a certain
social category commonly, but neither exclusively nor universally possessed
by everyone with such organs? In such a case, one may need to treat this as
a latent variable of interest and seek multiple indicators of it to pin down
what it is and also to have some indicators that are not effects or causes of it.
“Sex” would then be merely one of several indicators of the latent variable in
question. Is “age” a cause or an effect of other variables? What is the mecha-
nism by which these causal relations are effected? Age, technically, is merely
the amount of time since birth. Variation in age is often correlated with other
variables. It might be causally connected as a criterion for selection of indi-
viduals which are then exposed to other causal (e.g., educational) variables.
Educational variables become more immediate causes of other variables. So,
one should include measures of these educational variables to identify the
causal pathway by which age is related to some educational outcome vari-
ables. In this case age may be used as an exogenous, manifest variable, but
other aspects of the model may require latent variables with multiple indica-
tors to determine the particular causal pathway by which age influences an
educational outcome. Age may also be an exogenous moderator variable that
interacts with other variables to influence the strength of the causal effects
of these other variables, expressed in sizes of structural coefficients. In these
cases multiple group studies or multilevel studies may involve the use of
age, sex, group membership, and so on as exogenous classification variables
defining groups or levels.

But some problems remain. Hayduk (1996) points out that merely finding
that the four or more indicators have a single common factor does not establish
in any absolute sense that the factor is indeed the latent variable hypothesized
by the researcher. He illustrates this with the following two models.

Suppose in Figure 8.3 that four indicators Y2, . . . , Y5 are generated accord-
ing to model A, but a researcher hypothesizes according to model B. In the real
world ξ1 is a common cause but not a parent of Y2, . . . , Y5. But the researcher
thinks it is a common parent of Y2, . . . , Y5. So, the researcher conducts a con-
firmatory factor analysis and determines that indeed Y2, . . . , Y5 have a single
common factor, and she assumes this supports her hypothesis that this is
ξ1. But in reality the common factor of Y2, . . . , Y5 is η1 = γ∗

11ξ1 + δ11ε1. ξ1 is
a disturbance and may, in addition to unsystematic errors of measurement,
contribute other causes of η1, such as method factors. We see then that the
estimate of the effect of the hypothesized variable ξ1 on, say, Y2 according to
the common factor model would be equal to γ21 = α21, when in fact the true
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FIGURE 8.3 The world generates variables according to model A, but the researcher hypothe-
sizes according to model B.

effect is γ∗
11α21. So, the estimate of its effect from the common factor model

would be biased, and would likely overestimate the true effect if γ∗
11

is less
than unity.

Hayduk (1996) argues that “These observations carry the strong conclusion
that even though a specific variable is named and justifiably identified as a
common cause of a set of indicators, this is insufficient to conclude that ‘this’ is
the variable that will be located as the common factor in a factor analysis.” He
is correct, and perhaps factor analysts have been slow to recognize this. How-
ever, factor analysts have distinguished between first-order and higher-order
factors. The common cause of his example could be a second-order factor dis-
tinguished from any given first-order factor that confounds the second-order
factor with some other cause by being a common cause of other first-order
factors as well, which are indicated by different sets of manifest variables. So,
the issue here is what sort of evidence would contradict the assumption that ξ1
is the parent common cause (the common factor) of the variables Y2, . . . , Y5?

Suppose we find what we believe is another indicator of ξ1, say, Y6, mea-
sured by some other method than methods used to measure Y2, . . . , Y5 and
include it with the variables Y2, . . . , Y5 in a new confirmatory factor anal-
ysis of the hypothesis that Y2, . . . , Y6 have a single common factor. If we
do not reject the hypothesis, this is stronger evidence than the evidence we
had with just the variables Y2, . . . , Y5, especially if the loadings of the vari-
ables Y2, . . . , Y5 on the current common factor of Y2, . . . , Y6 are the same as
they were on the common factor of the previous confirmatory factor analysis
of just Y2, . . . , Y5. But then again, there may still be the extraneous variable
ε1 confounded with ξ1 in this case as in the previous case. If we reject the
hypothesis of a single common factor for Y2, . . . , Y6, we may be in a position
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to discover whether ξ1 is distinct from the common factor of Y2, . . . , Y5 while
being a common cause of them and Y6. What we can do is test a model as
shown in Figure 8.4. The aim is to show that Y6 is an effect of ξ1 that is not
confounded with ε1 and thus may make it possible to distinguish ξ1 from a
common factor of Y2, . . . , Y5.

If the model in Figure 8.4 fits to within sampling error, this strongly supports
the hypothesis that ξ1 is a common cause of Y2, . . . , Y6 but not a common factor
(parent common cause) of Y2, . . . , Y5.

It is important to realize what rejecting the hypothesis that ξ1 is a parent
cause of Y1 implies, when one embeds the latent variable and its indicators
in a structural model. Consider the following pair of structural models.

In Model A of Figure 8.5 we see a model correctly representing reality. On
the other hand, in Model B we see how a researcher represents that reality.
He thinks that ξ1, a common cause of variables Y1, . . . , Y4, is also a cause of
another latent variable η2 that is a common cause of variables Y5, . . . , Y8. He
treats γ21 as a free parameter. His model will fit acceptably the data generated
by Model A. But he will be wrong in asserting that ξ1 is a common cause
of η2. There exists in the real world another method variable ξ2 that is a
common cause of both η1 and η2. This common method cause allows us to
replace the fork between η1 and η2 in Model A with a directed arrow to obtain
equivalent Model B. It is true that ξ1 is also a cause of η1. But it is not a common
parent of Y1, . . . , Y4. While performing the more stringent test of fixing the
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FIGURE 8.4 A model in which ξ1 has an indicator that is not influenced by ε1.
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FIGURE 8.5 A hypothesized model may incorrectly support a latent as a cause of another latent.

variance of the latent exogenous variable ξ1 to unity and the loading on the
best indicator Y1 to some prespecified value will test whether a common factor
of Y1, . . . , Y4 has that loading, rejecting this model may indicate that a latent
variable defined by this effect may not be the true parent common factor, and
further that there may be another factor present.

Still another way a researcher can tease out the distinction between ξ1 and
η1 is to find another indicator of ξ1 that is not an effect of the method factor
ξ2 and to include this with the other variables. Consider, for example, Model
C in Figure 8.6.

Leaving a path between ξ1 and η2 with a free coefficient could allow the
model to fit when there is no relation between ξ1 and η2.

In Model C of Figure 8.6, with reality still as in Figure 8.5 (Model A), variable
Y9 in the real world is a child of ξ1 but has no influence from the method
variable ξ2. ξ1 is a common cause of Y9 and Y1, . . . , Y4. But Y1, . . . , Y4 also
have η1 as a common factor. Furthermore, Y9 should be uncorrelated with

e1x1

Y9 Y1 Y2 Y3

Model C. Rejectable model

Y4 Y5 Y6 Y7 Y8

Y12

e2

h2h1

FIGURE 8.6 Indicator Y9 permits distinguishing ξ1 from η1, allows for a possible common
influence on η1 and η2, while testing that ξ1 is not a cause of η2.
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variables Y5, . . . , Y8, which would not be the case if it were an effect of η1 and
a descendent of ξ2. This also establishes why contrary to Model B, ξ1 is not a
cause of η2, since, if it were, this would make Y9 correlated with Y5, . . . , Y8,
which it is not. On the other hand, variables Y1, . . . , Y4 are correlated with
variables Y5, . . . , Y8. Thus the advantage of finding an indicator of ξ1 that is
independent of any other factors common at the first- or second-order level to
the variables in Y1, . . . , Y4, is that the hypothesis that it is not a cause of η2 may
be tested without a knowledge of the loading of ξ1 on Y1. The belief that ξ1 is
the latent variable one claims it is, is supported by Y9 and Y1, . . . , Y4, which
the researcher has chosen because an examination of them or the manner
by which they were constructed suggests that they all have ξ1 as a common
cause. But unless the value of the factor loading γ91 has been determined in
a previous study by estimate, any fixed value given for it by the researcher
in this situation is just an “educated” guess of the researcher. Furthermore,
asserting that there is no path between ξ1 and η2 allows for a test. If we
simply leave a path with a free coefficient between ξ1 and η2 in the model,
and the estimated path coefficient turns out to be not significantly different
from zero, the model would still be accepted. If we do not look closely at the
estimated value and perform a further test of the path coefficient to see if it
differs significantly from zero, we might be misled to think it is truly nonzero.
Considerations like these lead to the ideas of the four-step procedure.

The Four-Step Procedure

If SEMs are formulated with multiple indicators for each latent variable, then
a four-step procedure can be used in testing these models. A more detailed
description of this procedure is given in Mulaik and Millsap (2000). Before
we discuss specifically the four steps, we need to develop some background.

A nested sequence of models is a series of models for the same set of
variables that have the same parameter structure or equivalent parameter
structures in which successive models in the series introduce additional
parameter constraints on top of those in the preceding model of the series.
There are two kinds of model nesting: (1) parameter nesting and (2) equiva-
lence nesting. In a parameter-nested series of models, the models all have the
same parameter structure. Beginning with a least constrained model, the con-
straints on the parameters of this model are carried over to the corresponding
parameters of the next model in the series, and additional constraints are
assigned to some of the previously free parameters. Next, the constraints on
the parameters of the second model are carried over to the corresponding
parameters of the third model, and additional constraints are introduced
to other free parameters from the previous model. This process can con-
tinue until all parameters are constrained, but it is not always necessary
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to go that far. In a series of equivalence-nested models, each model in the
equivalence-nested series corresponds to a model in a corresponding nested
sequence in having the same fit to the data as the parameter-nested model.
The reason equivalence-nested models are considered is because they are
often easier to obtain or more meaningful.

The nested sequence of models considered by the four-step procedure is (1)
the unrestricted model, (2) the measurement model, (3) the structural model, and
(4) models in which previously freed parameters are individually fixed either
to zero or to nonzero values and tested. The assumption is that each latent
variable of the structural model has at least four indicators, by design. Hence
an unrestricted and a confirmatory factor analysis model, respectively, may be
regarded as nested within the structural model. Furthermore, the restrictions
introduced into the first three models of the series only involve fixing certain
parameters to zero. In step (4) restrictions may be introduced that involve
fixing parameters to zero or nonzero values.

The procedure begins with a breakdown of the full SEM into a series of
four nested models. All nested models may be regarded as having the same
or equivalent structure, but the models are nested by applying additional con-
straints to parameters in each successive model in the nested series. Beginning
with the least constrained model, the next model in the series retains all of the
constraints (fixed parameters, equality constraints among parameters) of the
previous model and in addition adds additional constraints to other param-
eters. A property of nested sequences of models is that no more constrained
model will fit better, and likely will fit worse, than any less constrained model
in the nested sequence. Only if the constraints are “correct” will successive
models continue to fit to within criteria of acceptable fit.

The unrestricted model of the first step was introduced in the previous chapter.
To create such a model, all of the latent variables must be specified and their
multiple indicators indicated. The following matrices in Figures 8.7a and b
show how an unrestricted model is specified for the model in Figure 5.1. ?s
are free parameters. 0s are zero fixed parameters. 1s are fixed 1.00 parameters.

The model in Figure 8.7a has only four latents (aside from the unique fac-
tors). The best indicator of each latent “factor” is given a free parameter on
that factor while the indicator’s loadings on the other factors are set to zero.
The loadings of all other indicators on the factors are made free parameters.
Each latent’s variance is set to unity. Correlations between factors are free
parameters. The unique variances are free parameters.

An alternative way of specifying the unrestricted model is the lower-
triangular-matrix method. This is illustrated in Figure 8.7b.

The lower-triangular-matrix method begins by choosing h rows of the “fac-
tor pattern” matrix that one believes are a linearly independent set of row
vectors. Then beginning with the first row, one frees the element in the first
column and fixes all the remaining elements to zero. Then one takes the sec-
ond chosen row and frees the elements in its first two columns and fixes the
elements in the remaining columns to zero. In general, in the ith row, one frees
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FIGURE 8.7a Parameter matrices of an unrestricted model.

the first i elements and fixes any remaining to zero. Then one frees elements
in all the other rows of the pattern matrix. For the h × h matrix of covariances
among the exogenous latents, one fixes the diagonal elements to unities and
the off-diagonal elements to zeros. In all, h2 parameters are fixed and dis-
tributed across the pattern matrix and the matrix of covariances among the
exogenous latents in a proper way. Jöreskog’s method produces a solution
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FIGURE 8.7b Specifying an unrestricted model by the lower-triangular method.
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FIGURE 8.7c Measurement model. 0s and 1s are fixed parameters, while ? denotes an
estimated parameter.

that is a linear transformation of the lower-triangular method. Both produce
the same reproduced covariance matrix and have identical fit.

Equivalently, one can perform a maximum-likelihood “exploratory” factor
analysis of the manifest variables with the number of factors fixed at the num-
ber of latents in the structural model. This would be a linear transformation
of the latents of the unrestricted model which does not change the fit. What
is desired is the chi-square value, which should be the same (except for slight
differences due to the different minimization criteria used by the programs)
for each method of specifying an unrestricted model.

It is essential that the unrestricted model fits the data very closely, prefer-
ably to within sampling error (or if one uses indices of approximation, to a
very close approximation—see Chapter 15). The chi-square test of fit tests the
hypothesis that a common factor model with k common factors and uncorre-
lated unique factors fits the data. k is the number of latents in the previously
specified structural model. [k is not determined by an exploratory factor ana-
lytic search for the “proper number of common factors” but by the number
of latents specified by a substantive hypothesis in the structural model. This
was a misunderstanding of the four-step procedure created by Hayduk and
Glaser (2000) and further committed by Herting and Costner (2000) upon
reading Hayduk and Glaser’s critique of the four-step procedure and not
having Mulaik and Millsap (2000) to see how they actually conceived of the
four-step procedure. It is just that the “exploratory” common factor model
with a fixed number of factors by hypothesis is a way of obtaining an esti-
mate of the chi-square for an unrestricted model. No exploring for the “proper
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number of factors” is done.] The hypothesis does not specify any particular
relations between the latents and the observed variables, which is why dif-
ferent rotations of the common factors would still yield the same degree of
fit, as long as the latents have unit variances. The unrestricted model contains
more constraints than the saturated model and fewer constraints than the
measurement model that follows in the series.

If the unrestricted model does not fit the data acceptably, then none of
the subsequent models in the nested sequence will fit either, since the con-
straints of this model are carried over into the more constrained models of
the series. Lack of fit usually means that the hypothesized number of latents
and/or the zero correlations among the unique factors are incorrect. So, a
simultaneous test of the number of latents and the assumption of closure and
self-containment is performed by this test. With a failing unrestricted model,
the researcher should carefully reexamine his or her assumptions about the
latent causes in the model. Does some other causal structure than a common
factor structure that has more latents apply? Are there doublet factors (with
loadings on only two variables) present but unrepresented in the model (say,
by correlations among pairs of unique factors for the corresponding vari-
ables)? Unless one can resolve these considerations in an objective manner,
one must not go forward to test the other models of the sequence.

If one does not resolve the lack of fit for the given number of factors hypo-
thesized by introducing additional theory or knowledge about the variables
and adjusting the model accordingly to a successful outcome, then one effec-
tively enters an exploratory mode and no longer is following the four-step
procedure of testing a hypothesis. It has been rejected. One can perform an
exploratory factor analysis, reevaluate the number of factors, and rotate to
oblique simple structure to see whether a better conception of what might be
an appropriate model emerges.

Still, exploratory factor analysis is not the only technique one could
or should use. Herting and Costner (2000) suggested one could use the
TETRAD program of Glymour et al. (1987) to explore with some substan-
tive constraints—if necessary—for a more likely causal structure underlying
the data. This program has more flexibility than exploratory factor analysis in
searching for causal structure. It will suggest not only possible causal connec-
tions, but also variables that might be dropped that confuse the causal picture.

One might suggest that the TETRAD program be used to develop the ini-
tial model against some other data set (so as not to confound an exploratory
approach with a confirmatory one by using the same data to develop a
hypothesis and then to test it).

On the other hand, if the unrestricted model fits acceptably, then one is able
to go forward to the second step to test the next more constrained model in the
nested series, the measurement model.

The measurement model gets its name from the idea that in this model one
presumably is concerned with testing the relations between the latents and the
indicators in one’s structural hypothesis. The indicators measure the latents.
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But contrary to common belief, it is not the relations between a particular
latent and its indicators that are tested, but rather hypotheses about which
latents are not related to certain indicators. These hypotheses are specified
by introducing additional zero parameters into the factor loading matrix to
indicate that certain indicators are not related to certain latent factors. Thus a
measurement model specification looks like the following.

Note again that the measurement model leaves the correlations between
the factors free. It is these correlations among the factors that will bear the
relations between the latent causes in the structural model. The variances of
the latent factors, however, are set to unity, simply to set the metric for each
of them. However, an alternative method of setting the metric at this point
is to leave the variances of the latent factors free and fix one loading on each
respective factor to some fixed value, for example, unity. Although variances,
covariances, and loadings will be different in this case, they will still reproduce
the same covariance matrix for the observed variables and produce equivalent
chi-squares. Also, it should be noted that there is some leeway here to free
up more loadings in the factor loading matrix of the measurement model, if
the researcher has good reason to believe that an indicator may not have a
zero loading on some other factor. Perhaps a reason why many measurement
models fail when based on prior factor analyses is that researchers fix to zero
what corresponds to low, nonzero loadings in the prior analysis. So, if one
does not believe that the loading should be zero, it should be free.

Failure of the measurement model usually means that at least one zero
relation between an indicator and a latent variable is causing lack of fit.
(Correlations between unique factors should not occur, if they did not occur
in testing the unrestricted model.) One can apply Lagrange multiplier tests or
modification index tests of the constrained zeros in the factor loading matrix
to determine which contributes the most to the lack of fit by having the highest
significant chi-square or modification index. That zero loading may then be
freed and a new analysis performed. Zero loadings should be freed one at a
time for each successive analysis. The researcher should also seek to provide
a rationale for why an indicator does not have a zero relation to a given latent.
The researcher hopefully will not free so many loadings as to end up with
the unrestricted model. Each freed parameter represents a loss in a degree of
freedom, and degrees of freedom indicate dimensions in which the data are
free to differ from the model, providing dimensions in which the model can
be tested. A model that is tested in only a few ways, relative to the potential
number by which it could be tested, is an inferior model overall.

Furthermore, failure of the measurement model may force one into the
exploratory mode, where again the TETRAD program or an exploratory fac-
tor analysis with rotation to oblique simple structure may be used to find a
better measurement model. A conceptual reanalysis is also in order, because
the researcher should not rely exclusively on the computer to do his or her
thinking. As long as the measurement model obtained fits well (nonsignifi-
cant chi-square, very high index of approximation), even though it is derived
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in an exploratory manner, one may still believe the underlying latents are as
before and continue to the next step to test the hypothesized causal structure
between the latents. If one does not believe the modified model represents
the same latent causes, then the new latent variables should be given an
explicit meaning and one should respecify one’s causal hypothesis for the
next step—without looking at the correlations among the factors to suggest
what the causal connections should be like.

If one arrives at an acceptable measurement model, then one moves on to the
third step to test the structural model, which involves testing zero constraints on
the parameters of causal paths between latent variables. Up to now relations
between latents have been specified as estimated covariance bridges between
the latents. In the measurement model, the matrix of covariances among the
latent variables was saturated, meaning every covariance was free. They are
now replaced with directed causal paths between the latents. Some of the
paths are eliminated; the rest have free parameters.

One goes forward to the fourth test to test individual parameters left free in
the previous model only if one obtains acceptable fit with the structural model
(nonsignificant chi-square or a very high degree of approximation). There are
several ways to proceed: (a) Test whether the coefficients of free parameters
differ significantly from zero using zstatistics with the standard errors of the
parameter estimates. These tests are not independent, so some procedure,
like using more stringent significance levels as determined by the Bonferonni
method, may be applied. (b) One can simultaneously test whether all param-
eters are equal to zero, which amounts to testing whether all of the variables
are unrelated. This corresponds to a test of the null model, that the variance–
covariance matrix of the observed variables is a diagonal matrix. But rejecting
this test, which ordinarily one hopes to do, may not tell the researcher what
specific path coefficients are nonzero, since this is a test about the covari-
ances among the observed variables set equal to zero. Instead z statistics
using the standard errors of the previously estimated values for the struc-
tural parameters could be used to test that each of these previously estimated
path coefficients are zero. (c) Instead of testing whether the remaining path
coefficients are zero, one may have hypotheses about specific, nonzero val-
ues for such coefficients. Such values may be suggested by previous studies
with other data sets that provide estimates for these parameters. The esti-
mates are then used as fixed parameters in formulating a model in this step.
While the prior estimates may contain errors of estimate, they may yet pro-
vide the only nonzero values available to consider. If the resulting model fails
to fit, the researcher can then use Lagrange multiplier tests or modification
indices to determine which fixed nonzero parameters seem to be contribut-
ing to the lack of fit. In those cases the currently estimated values may be
optimal. Or the researcher can conduct z statistic tests of the individual fixed
values using the standard errors of the corresponding parameter estimates to
see whether the estimated values differ significantly from the hypothesized
values.
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Some Problems That May Be Encountered with the Four-Step Procedure

As one moves from a less constrained to a more constrained model, as between
a measurement model and a structural model, the full-information maximum-
likelihood (FIML) estimation procedure may alter previously obtained values
for free parameters obtained for the less constrained model. This is because,
when using the FIML estimation procedure, parameter estimates are not inde-
pendent of one another. Free parameter estimates are altered jointly in each
iteration, and the direction of change in multidimensional space is in a direc-
tion that jointly improves to some degree the fit of the whole model and not
just individual parameters.

Suppose you began with a measurement model that only freed those load-
ings of indicators on the factors of which they were supposed to be the prin-
cipal indicators. Then suppose further that the loadings of these indicators
on their designated factors are high, as expected, but still the measurement
model does not fit acceptably. So, next you try freeing up cross-loadings of the
indicators on other factors leaving covariances between factors free, guided
perhaps by careful inspection of the indicator contents and the Lagrange mul-
tiplier tests or modification indices of individual fixed parameters. You obtain
an acceptable measurement model as a result, and you next hope to explain
the covariances between the latent factors by causal paths between them. But
you do not want a causal model of the covariances between the latents to
be saturated, because then nothing of the structural model is tested. So you
place constraints, often zero path coefficients, between certain latents. This
represents your original full SEM.

When constraints are placed on the path coefficients between latents in the
structural model, in FIML estimation these constraints not only affect the free
parameters relating latents to other latents of the structural model, but they
can also affect the estimates of the factor loadings relating the latents to the
manifest indicators, changing them from what they were in the measurement
model. So, one might obtain an acceptable fit of the structural model that
nevertheless involves a change in the measurement model that is inconsis-
tent with one’s measurement hypothesis. This can occur when the variables
are highly correlated, and the factors underlying them are also strongly cor-
related, with numerous low-to-moderate free cross-loadings of indicators on
factors other than just those they load highest on. Fixing certain parameters
between the latents to zero (or some other values) can then affect the free
loadings of the manifest variables on the latent variables by altering them
considerably. It may even become impossible to achieve convergence of the
estimation process.

We see in this case that beginning with just a structural model to test, we
would not become aware of the inconsistency between our conception of the
relationship of the indicators to the latent factors and our conception of the
relations between the latent variables, because we would not have model
results to compare. To be sure, it is possible still for the structural model
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to fit acceptably, and yet not in a way consistent with values of the fixed
and free parameters of the less constrained measurement model. If one were
to compute the reproduced covariances among the latents of the structural
model, they might be different from the covariances obtained between the
same number of latents in the measurement model. The additional constraints
on the latents of the structural model affect (in FIML estimation) not only
the covariances, but also the free loadings of the indicators of the latents. A
possibility also is that the covariances among the latents cannot be accounted
for simply by paths between the latents themselves, even after some of these
path’s coefficients are constrained to zero. Additional higher-order latents,
not yet hypothesized, affecting the first-order latents, may be necessary to
account for the correlations between the latents. So, ambiguity remains, and
it is best to get it out in the open so as to deal with it.

One way of proceeding, if we have stronger faith in our measurement
model than our structural model, is to fix the free loadings of indica-
tors on the latents of the successfully fitting measurement model to the
values obtained when estimating them for the measurement model. This
effectively constrains not only the relations between indicators and latents,
but also the covariances between the latents to the values obtained for
the measurement model. So, any additional constraints on the path coef-
ficients between the latents will only influence the fit of these to the
covariances between the latents and not the relations of the latents to
the manifest indicators. A nonsignificant chi-square difference test between
the “fixed measurement model,” which we will call the more constrained
measurement model, and a corresponding “measurement-fixed” structural
model obtained by introducing additional constraints on coefficients of
directed paths between the latents will tell us whether the additional
constraints on paths between the latents are inconsistent with our mea-
surement model. The chi-square of the measurement model will have the
same value it had in the original measurement model with free factor load-
ings of indicators on latents, but its degrees of freedom will be greater,
reflecting the additional fixed parameters. The chi-square of the corre-
sponding more constrained structural model will have to be computed
anew.

But one might argue that the original structural model represents a stronger
test than the measurement model, because it tests both the relations between
the indicators and the latents and the relations of these indicators to other
indicators as mediated by the latents. On the contrary, what is tested by
chi-square tests are not the relations of paths with free coefficients between
indicators and latents, and between indicators as mediated by free paths
between latents, but the constraints on these paths, usually in the form of
zero coefficients. So, hypothesizing that the path between two latents has a
zero coefficient implies that the indicators of these latents should be unre-
lated, other things being equal. Such a hypothesis might not be incompatible
with the original measurement model, involving hypotheses as to whether
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indicators have certain factors in common, since these are more fundamental.
The relation between indicators and their common factors can stand whether
or not the common factors themselves are causally connected or correlated in
some way.

Testing Invariance across Groups of Subjects

Jöreskog (1971) developed ways of testing in factor analytic models whether
parameters within a sample or across samples are equal (or invariant). Byrne
(1994) has given a summary of this method. She notes that although orig-
inally Jöreskog recommended first testing the hypothesis that all group
population covariance matrices are equal, Muthén (personal communica-
tion to Byrne, October 1988) indicates that this step is usually not necessary.
It is always possible for there to be certain invariant parameters across
groups, even though the population covariance matrices are not equal. For
example, we have already determined that under restriction of range, fac-
tor pattern coefficients can be invariant across groups (Meredith, 1964),
while variances and covariances among factors can vary across groups,
with the groups subject to different forms of selection that influence the
factor variables. So, one can begin with testing less general forms of
invariance.

Central to Jöreskog’s method was his discovery that he could estimate
unconstrained free parameters individually within groups to minimize a
maximum-likelihood fit function within each respective group. Or he could
constrain a parameter to be equal across groups and need only estimate one
value for that parameter that, when applied to the corresponding parameter
in the respective group models, minimizes the weighted sum of all group
fit functions across the groups. A total overall fit function value, weighting
the individual group fit functions by sample sizes, is then obtained by sum-
ming across groups and used to obtain an overall chi-squared across all the
groups. This procedure was first introduced in a simultaneous confirmatory
factor analysis program, but it has subsequently been introduced in Jöreskog’s
LISREL© programs, and other commercial programs for structural equation
modeling have followed suit.

The procedure to follow is analogous to the four-step procedure in using
nested models. One will begin with the least restricted versions of a model
and then introduce in a logical way additional constraints in subsequent mod-
els, until lack of fit is obtained. We will presume that the data come in several
groups that differ in such things as sex, nationality, education level, occu-
pation, prior experience, and cultural background. What we want to study
is whether a causal structure is the same or different across the groups, and
we would like to identify which parameters are invariant and which are not
across the groups.
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However, it is necessary to have a preliminary model to work with. Byrne
(1994) suggests a procedure I use of first establishing a “baseline” or “cali-
bration” model in a sample from one of the groups. I will presume that the
researcher again has at least four indicators of each exogenous or endogenous
latent. Then the four-step approach may be applied to the data in each one of
the groups individually. The aim is to find a best-fitting model in at least one
of the groups. This model will be used as the basis for comparisons across
groups.

For the tests of equivalence, we will presume that such a baseline model has
been found. We will now apply a four-step procedure to the multiple-group
case. First, as suggested by Jöreskog (1971), we can test the unrestricted model,
fixing the number of factors equal to the number of latents (excluding distur-
bances) in the baseline structural model. The test of the unrestricted model
also simultaneously tests for uncorrelated uniquenesses, in other words,
whether a common factor model of any kind is embedded in the structural
model in connection with its specified number of latent variables and indi-
cators of them. This model should be specified in the same manner in each
group. No equality constraints are introduced, since these only concern esti-
mated parameters, and the factor loadings of the unrestricted model have
no special meaning. So, we are simply testing the same unrestricted model
with the same fixed number of factors in each group. We are also testing the
uncorrelated uniquenesses in each group and by implication the assump-
tion of a self-contained model. If we obtain acceptable fit in each case to
within sampling error or to a very high degree of approximation (in large
samples), we can go forward. Failure to fit the unrestricted model in at least
one group will require a pause to rethink whether using the same model for
the manifest variables is still appropriate. It is possible to have different num-
bers of latents in different groups, even different causal structures, if some
of the causal effects, measured by structural coefficients, are expected to be
the same between certain variables across groups. There is considerable flex-
ibility in modeling across groups. But we will set aside developing distinct
models for the variables in each group and then testing invariance of certain
parameters across groups, to consider a simpler case in which we assume
we have the same or similar models across groups with the same number of
latent variables.

Assuming one has acceptable unrestricted models in all the groups, one can
then go to the measurement model tests. In the simultaneous test of measure-
ment models across groups, variances of latent variables should remain free
across groups. Suppose now that the measurement model in the calibration or
baseline sample fixed the variances of latent factors to unity. How should we
set the metric for each factor across the groups if we leave the variances of the
latent factors free across the groups? We can do this for each factor by picking
the largest estimated loading on each factor in the calibration sample and fix-
ing all corresponding loadings on the respective factor across all groups to that
value. This will insure that within the calibration group model the variances
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will be estimated to equal unity, whereas the variances of corresponding fac-
tors in other groups can vary while in the same metrics. Differences in factor
variances across groups can have substantive import. Covariances between
factors should be left free across all groups.

Assuming that all measurement models with free factor loadings fit the
data acceptably, we may now consider constraining each corresponding fac-
tor loading across all groups to be equal. If these constraints do not yield
invariant loadings across the groups, then one should fall back to the pre-
vious unconstrained models. Technically with varying loadings in the same
metric across groups, the causes are not precisely the same, since a cause is
defined by its effect, and its effect is the degree to which a unit change in the
causal variable produces a change in the effect variable. In this case, one can
go on also to establish structural models within each group.

If one is only testing confirmatory factor analysis models, given equal
corresponding loadings across groups, a next step would be to constrain
corresponding unique variances to be equal across groups. Under restriction
of range with selection on variables that are causes of both the manifest and
the latent common factors, not only should the factor loadings be invari-
ant across selected groups, but so should the unique variances because
of the invariance of errors of estimate under selection (Meredith, 1964,
1993). Covariances among factors need not be invariant under restriction
of range.

If the researcher has invariant measurement models across groups, he or
she can go on to test for the invariance of parameters corresponding to causal
paths between latents, by constraining these parameters to be equal, respec-
tively, across groups. The social scientists rarely establish natural constants
and carry them over from one study to the next. To some extent this is because
their subject matter is much more complex and less well understood than the
subject matter of the physical sciences—although, at the cutting edge, in the
physical sciences there is just as much uncertainty and ambiguity as in the
behavioral and social sciences. The physical scientists have just been success-
ful in gaining knowledge in some areas in their endeavors for a longer time
than in the social and behavioral sciences. But it may also be because the
behavioral and social sciences have not in fact searched for natural constants.
For example, is the factor loading of a judgment on a specific scale of friend-
liness invariant? It represents how much a unit change in the judgment of
friendliness will produce a change in the rating on the scale. Should that not
be invariant in any context in which the friendliness judgment is made on that
scale? If the numbers we obtain in our structural equation and factor analytic
studies are so ephemeral, what can we hope to generalize from the studies?
But we may hope for better.

In one study, Carlson and Mulaik (1993) estimated the loadings of cer-
tain scales on certain factors in a calibration condition, and then used these
loadings in later experimental conditions where other information was pro-
vided to influence judgments. For example, we estimated the loading on the
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friendliness scale to be 0.902 (with the loading of the same judgment factor
on the sympathy scale fixed to unity) in a calibration condition. This value
was the value for this parameter in the best fitting model in this condition.
Then we used the value of 0.902 as a fixed parameter value for the friendliness
scale in two later experimental conditions using the same subjects. Similarly,
other loadings on other scales were also estimated in a calibration condition
and then carried over as fixed parameters in later experimental conditions
applied to the same subjects.

We assumed that the semantics underlying verbal rating scales was sta-
ble and relatively invariant, so that the relationship between judgment and
ratings on scales of that judgment would be invariant. With four indicators
of each latent judgment, we were able to establish the objective validity of
the latent judgment variable by confirmatory factor analysis, and we were
able to use these fixed loadings successfully in different experimental condi-
tions, as judged by the good fit for models using them as fixed values in these
conditions.

So, suppose we used these same four scales of friendliness, with their fixed
loadings on a friendliness judgment factor in another study that combined the
judgments of friendliness with those of intelligence in a study of leadership. If
we have natural constants for the loadings of the friendliness and intelligence
scales on these dimensions, can we not use them as fixed values every time we
use those scales? One major benefit is that we vastly increase our numbers of
degrees of freedom, if we do. But another may be that we rule out equivalent
models in those parts of our models involving these fixed parameters. The
values will not fit just any data, but a specific kind of data for which they are
applicable.

What we stipulate is that one cannot free those fixed parameters to get
an equivalent model with different values for the constants using the cur-
rent data. The fixed values are determined elsewhere in other studies with
other data sets and experimental conditions. In those studies we have estab-
lished these fixed values as conventions, as the way we are going to theorize
and think about data of a certain kind from that point on, or until evidence
arises that using them leads to major predictive failure. But as scientists,
we also presume that they are invariants of nature and not just mere social
conventions. So, if you want to offer an alternative model to the one I use
with the specified fixed parameters obtained elsewhere, you have to carry
out studies elsewhere also to find different fixed values and show that they
also lead to successful predictions. But I will also insist, in addition to fit to
within measurement error, that your model must have much better fit with
nearly as many or more degrees of freedom than mine before I will concede
to it.

So, my recommendation to researchers is that they seek to establish natural
constants for structural coefficients, particularly in connection with the indi-
cators of the measurement models. Use these as fixed values in other studies
and see how far you can get with them.
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Modeling Mean Structures

Up to now we have considered only covariance structures on variables where
the means of variables are assumed to be zero. We will now consider the case
where the means of the observed and common factor variables are not zero.
Consider the model equation for a common factor analysis with nonzero
means:

Y = a(1) + ΛX∗ + ΨE. (8.2)

The n × 1 vector a is a vector of constant intercepts for each of the n observed
variables. (1) is the constant 1 which we will treat as if it is a variable whose
only values are 1. For the present we will still assume that the means of the
unique variables are zero, that is, E(E) = 0. Furthermore, let us further assume
that the random vector X∗ is further decomposed into the following:

X∗ = [μX(1) + X]. (8.3)

We show a common factor model with nonzero means in Figure 8.8. The
“variable” (1) is a constant, a degenerate variable, and may be regarded as
the same “variable” as (1) in Equation 8.2. μX may be interpreted as the factor
pattern loadings of the variables on the variable (1). X is a random vector
of deviations from the mean, that is, E(X) = 0. In Equation 8.3 X may be
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FIGURE 8.8 Common factor model with nonzero means.
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treated as a vector of correlated disturbances on the common factors in X∗.
Equations 8.2 and 8.3 together define an SEM in which X∗ is an endogenous,
dependent variable whereas (1) is an exogenous “variable.” To illustrate, in
Figure 8.8 we show a common factor model for Equations 8.2 and 8.3.

Let us now take the expected value of both sides of Equation 8.2. This yields
the equation

μZ = a + FμX . (8.4)

The parameters of a and μX both contain unobserved values. They are n + r
in number. There are however only n observed values in μY by which to
determine the values of a and μX , and so, without additional constraints
placed on the values of a and μX , these parameters are underidentified. Being
the means of latent variables the values of μX are arbitrary. They could all be
fixed to zero, in which case a = μY . In any case the number of estimated
parameters among the variable intercepts and latent factor means must be
fewer than the number of observed variables (or observed sample means).
On the other hand, all the elements of a could be given specified values, and
then we would have the equation

ΛμX = μY − a. (8.5)

The solution for μX is then given as

μX = (Λ′Λ)−1Λ′(μY − a).

Sample mean vectors may be substituted for the population mean vectors
in obtaining estimates of the latent means. But if one distributes constraints
across elements of a and μX , the estimates will have to be obtained by a struc-
tural equation modeling program. Generally, modeling intercepts and means
of latent variables in single populations will not yield anything particularly
meaningful unless there is well-developed theory to provide values for the
means and intercepts.

Multigroup Comparisons of Mean Structures

Modeling mean structures is more meaningful in multigroup comparisons
where relative differences between means can be considered. Ordinarily, with
latent variables, absolute values for latent variable means are arbitrary and not
very meaningful. One can, of course, test equivalence of intercepts and latent
variable means along with tests of equivalence of other model parameters
across groups.

Byrne (1994) described a multigroup model in which the model structure
in each group is similar to the one described above. She recommended fix-
ing the latent factor mean parameters [the loadings of the latent factors on
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the pseudovariable (1)] for one group to zero and leaving the corresponding
mean parameters free in the other groups. The intercepts of each of the
observed variables were constrained to be equal across groups. We show
this in Figure 8.9, using a multigroup version of the model in Figure 8.8. The
path diagram shown is applicable to each group. In the diagram, following a
notation used by Byrne (1994), an * indicates a free parameter to be estimated
separately within each group, *= indicates a parameter that is constrained to
be equal across groups although its common value is free, and *0 indicates a
parameter that is fixed to zero in one group and free in the others. 1.0 indicates
a parameter fixed to 1.0 in each of the groups to set the metric of the latent
factor. These constraints allow not only for the parameters to be identified
and estimable, but also to overidentify them, allowing for tests. The latent
mean values are fixed to 0’s in one group and are free across the other groups.

It is important to note that constraining corresponding “factor loadings”
and intercepts to be equal across groups is an essential assumption that must
be met to be able to draw meaningful comparisons of the mean structures
across the groups. The factors are essentially defined by their loadings on the
observed variables (which are the same correspondingly across groups). If
the factor loadings are not the same across groups, then the factor variables
are not the same variables; hence the factor means are not comparable across
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FIGURE 8.9 A multigroup model (showing the model in one group because all group model
structures are the same). * indicates estimated parameter, *= indicates a parameter constrained
to be equal, correspondingly, across groups, and *0 indicates a parameter correspondingly fixed
to zero in one group and free in the other groups.
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groups, because they correspond to different variables across the groups.
Similarly, if the intercepts are not the same across groups, then the values of
the factor means, which are determined, in part, by the intercept values and
the observed means, will be arbitrary and, again, not comparable. The latent
mean estimates, furthermore, are not in absolute terms, but relative to the
group in which the latent means are fixed to zero.
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9
Confirmatory Factor Analysis

Introduction

Confirmatory factor analysis is a special case of structural equation modeling.
Although its conception has the same mathematical model as exploratory fac-
tor analysis, it differs considerably from exploratory factor analysis in how the
model is used and the mathematics of its estimation. There is no searching
of data for common factors via computing the eigenvalues and eigenvec-
tors to get the estimates of factor loadings, factor correlations, and unique
variances. Instead the researcher begins with a conception of a set of latent
exogenous causal variables having specified effects on a set of endogenous
manifest “indicator variables” and seeks to test his/her concept of the relation
of the latent causes to the manifest indicators as a hypothesis. The hypothe-
sis is formulated before seeing data on the manifest indicators. Usually the
hypothesis is based in part on prior knowledge about variables such as the
manifest indicators and their possible causes, but also possibly involves a new
concept of how the causal variables combine together to be common causes
of the indicators.

Relation of Common Factor Model to Structural Equation Model

The model equation for common factor analysis is usually given as

Y = Λξ + Ψε

219
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where Y is a p × 1 vector of observed random variables, Λ is a p × n matrix
of factor pattern loadings, ξ is an n × 1 vector of common factor random
variables, Ψ is a p × p diagonal matrix of unique factor pattern loadings, and
ε is a p × 1 column vector of unique factor variables. The matrix of variances
and covariances for Y is given by

ΣYY = ΛΦΛ′ + Ψ2

where Φ is an n × n matrix of variances and covariances among the common
factor variables while Ψ2 is a p × p diagonal matrix of unique factor variances.
Because confirmatory factor analysis is a special case of a structural equation
model, we rewrite the model equation in the notation of structural equation
modeling as

Y = Γξ + Ψε (9.1)

Compare this to the full structural equation model equation in Equation 5.7a:

[
η

y

]
= A

[
η

y

]
+ Γ

[
ξ

x

]
+
[

Δ 0
0 Ψ

] [
ζ

ε

]

In the common factor model the dependent variables are observed only,
hence no η; no dependent variable is a function of other dependent vari-

ables, hence no A
[

η

y

]
; there are no manifest exogenous variables, hence

no x; and since there are no endogenous variables that are functions of other
endogenous variables, there are no ζ and thus no Δ. So, all that remains is
what we see in Equation 9.1.

Early Attempts at Confirmatory Factor Analysis

L. L. Thurstone, one of the early developers and popularizers of factor
analysis, did not believe in performing purely exploratory studies. He usually
began a factor analytic study by formulating a hypothesis as to what com-
mon factors were likely to be found in the domain under study (Thurstone,
1951). He then either selected or constructed measures that he believed would
reflect these common factors, making sure he had at least four measures of
each factor anticipated so as to overdetermine the factor. He subjected the
correlations among the measures to common factor analysis followed by rota-
tion to oblique simple structure. Then he evaluated by eye the degree to which
the resulting solution fulfilled his expectations.

Thurstone’s use of exploratory methods to perform quasi-confirmatory
studies had its limitations. The hypothesis was not explicitly specified in
terms of model parameters. So it might not be clear to others reading
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Thurstone’s papers that a hypothesis was being tested as opposed to a simple
exploratory study being done. There was also no explicit measure of the
degree to which the hypothesis had been supported or disconfirmed by the
data. That determination was totally subjective.

Multiple-Group Factor Analysis

A primitive form of confirmatory factor analysis is multiple-group factor
analysis (Tryon, 1939; Holzinger, 1944; Thurstone, 1949), formulated initially
as a multiple-factor extraction method to speed up the factor extraction
process that ordinarily extracted one factor at a time. “Group” here refers
to “group factor” and not to “group of subjects.” Guttman (1952) explic-
itly described the multiple-group method as a confirmatory factor analysis
method and worked out its algorithm in detail. It is surprising that despite
its simplicity of implementation, the method was not used more than occa-
sionally in the 1950s and 1960s. The idea was that the researcher could
hypothesize what variables would be dependent on what factors and then
proceed to find centroids among the groups of variables representing var-
ious factors, respectively. The centroids would represent the hypothesized
factors. There has been, however, a revival of interest in this method as either
a substitute for or a preliminary step of a confirmatory factor analysis pro-
cedure. Hunter and Gerbing (1982) advocated the method as an inexpensive
computational alternative to full information maximum-likelihood estima-
tion in both confirmatory factor analysis and linear structural equations
modeling. Their method employed two stages: (1) a multiple-group factor
analysis to obtain estimates of the factor pattern matrix and the factor corre-
lation matrix for a hypothesized measurement model of a structural equation
model and (2) two-stage least-squares estimation of the structural relations
between the latent variables based on the correlations among the latent vari-
ables found in the first stage. Mulaik (1988) described an iterative variant
of the multiple-group method. McDonald and Hartmann (1992) described a
one-pass, noniterative variant of the multiple-group factor analysis method as
a method for obtaining starting values for unknown parameters in structural
equation modeling. The principles underlying the multiple-group method
are also closely related to those of partial least squares (PLS) estimation as
developed by Herman Wold (1975). An excellent comprehensive discussion
of the PLS method with full references is given by Lohmöller (1989).

An Example of Confirmatory Factor Analysis

In Chapter 1, we were introduced to a structural equation modeling study
by Carlson and Mulaik (1993). We are going to use data from that study to
illustrate confirmatory factor analysis, although the original study involved
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a structural equation model. For details of the study refer back to Chapter 1.
The correlations among the 15 five-point trait-rating scales of that study are
shown in Table 9.1.

Now, what differs from an exploratory factor analysis at this point is that
we specify a hypothesis, based on the information given above, involving
how the factor pattern matrix will have certain loadings. Carlson and Mulaik
(1993) were able to specify or fix zero loadings in certain positions of the
factor pattern matrix. They, of course, implicitly constrained correlations
between the common factors and unique factors to be zero and correla-
tions among the unique factors to be zero. However, they did not have any
knowledge of the magnitudes of certain other loadings, and so they left these
loadings free. This meant the free parameters were to be estimated conditional
on the fixed parameters. The values of the correlations among the common
factors were also treated as free parameters, as were also the unique factor
variances.

Table 9.2 shows the hypothesis specified for the factor pattern loadings,
which in this case were only zero loadings. Free parameters are indicated
by “?.” Note that all unique factor variances are free, as are also correla-
tions among the common factors. In this case the hypothesis only indicated
what indicators were not related to what latent common factors by spec-
ifying zero loadings. Free parameters, on the other hand, are “filler” for
the model and are not part of the hypothesis, since nothing is specified for
them by freeing them. Free parameters are estimated by an iterative algo-
rithm that seeks to find estimates for the free parameters that minimize an
overall discrepancy or lack-of-fit function conditional on the fixed parame-
ters of the model. The discrepancy function measures the degree of lack of
fit between the observed correlation matrix for the observed variables and
the model’s reproduced correlation matrix for these variables. In short, one

TABLE 9.1

Correlations Among 15 Trait Scales (Carlson and Mulaik, 1993)
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TABLE 9.2

Hypothesized Factor Pattern Loadings and Free Parameters for
a Confirmatory Factor Analysis of the Correlations Among 15
Trait-rating Scales from the Carlson and Mulaik (1993) Study

Variable Factor 1 Factor 2 Factor 3 Unique Variances

1 Friendly ? 0 0 ?
2 Sympathetic ? 0 0 ?
3 Kind ? 0 0 ?
4 Affectionate ? 0 0 ?
5 Intelligent 0 ? 0 ?
6 Capable 0 ? 0 ?
7 Competent 0 ? 0 ?
8 Smart 0 ? 0 ?
9 Talkative 0 0 ? ?
10 Outgoing 0 0 ? ?
11 Gregarious 0 0 ? ?
12 Extraverted 0 0 ? ?
13 Helpful ? ? 0 ?
14 Cooperative ? ? 0 ?
15 Sociable ? 0 ? ?

Correlations among factors

Factor 1 2 3

1 1.000

2 ? 1.000

3 ? ? 1.000

Note: Hypothesized (fixed) parameters are shown in bold and free
parameters as question marks.

seeks estimates of free parameters that minimize the lack of fit between the
reproduced correlation matrix and the observed correlation matrix, consistent
with the constraints on the fixed parameters. Within the constraints given
by the fixed and constrained parameters the iterative algorithm is free to
seek any values for the free parameters, which in some cases could be zero
or of whatever sign. In this way, any lack of fit can then be attributed to
the fixed or constrained parameters, because otherwise, without these con-
straints, and assuming that the model is still identified (a concept to be
touched on shortly), the reproduced correlation matrix would then fit the
sample correlation matrix perfectly, by mathematical necessity, but not
empirical necessity.

Note also that Table 9.2 does not show fixed zero correlations between
the common and unique factors or among the unique factors. These are fun-
damental assumptions of most applications of the common factor model.
These fixed zero correlations among the unique factors and between the

© 2009 by Taylor and Francis Group, LLC



“K10039_C009.tex” — page 224[#6] 15/4/2009 17:10

224 Linear Causal Modeling with Structural Equations

common and unique factors contribute to making the model identified as
well as overidentified.

The model specified in Table 9.2 was then applied to the sample correlation
matrix and analyzed using Bentler’s EQS© program for structural equation
modeling. Confirmatory factor analysis is but a special case of a structural
equation model, which is a very general kind of model that allows consid-
erable freedom in representing linear causal relationships. The result of the
analysis is shown in Table 9.3.

The chi-square test for goodness of fit of the reproduced correlation
matrix based on the above parameter values with the observed correlation
matrix yielded a chi-square of 225.115 with 84 degrees of freedom, with a p
value <0.001, which was significant. The model did not fit to within sampling
error. (A nonsignificant chi-square is what is desired.) However, Bentler’s CFI
index of goodness of fit was 0.968, which is usually considered quite good
as an approximation. However, the parsimony ratio of degrees of freedom

TABLE 9.3

Results of a Confirmatory Factor Analysis of the Model in
Table 9.2 Applied to the Correlations Among the 15 Personality
Rating Variables in Table 9.1

Factor 1 Factor 2 Factor 3 Unique Variances

1 Friendly 0.849* 0 0 0.529*
2 Sympathetic 0.922* 0 0 0.386*
3 Kind 0.925* 0 0 0.381*
4 Affectionate 0.901* 0 0 0.434*
5 Intelligent 0 0.877* 0 0.480*
6 Capable 0 0.925* 0 0.381*
7 Competent 0 0.925* 0 0.381*
8 Smart 0 0.903* 0 0.430*
9 Talkative 0 0 0.803* 0.596*
10 Outgoing 0 0 0.948* 0.317*
11 Gregarious 0 0 0.891* 0.454*
12 Extraverted 0 0 0.898* 0.439*
13 Helpful 0.725* 0.222* 0 0.594*
14 Cooperative 0.715* 0.229* 0 0.603*
15 Sociable 0.172* 0 0.833* 0.342*

Correlations among factors

Factor 1 2 3

1 1.000

2 0.223* 1.000

3 0.556* 0.302* 1.000

Note: Estimates of free parameters are shown with asterisks following
them. Coefficients are given for a solution where all variables,
both observed and latent, are rescaled to have unit variances.
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divided by p(p + 1)/2 was 84/120 = 0.700, which is not indicative of a highly
tested model. (A parsimony ratio of 0.95 or greater would be better, and com-
bined with a high degree of fit, say, CFI > 0.95, this would then be a highly
tested model with very good fit.) So, even if the goodness of fit is strong, as
an approximation, the model awaits further development and specification
of parameters to fully test it.

It is possible to evaluate the fixed parameters to determine if some are
contributing significantly to the lack of fit. In Bentler’s EQS program this is
accomplished by the use of Lagrange multiplier tests. In LISREL©, Jöreskog’s
structural equation program, an analogous test uses what are called modifi-
cation indices. Since the above data were analyzed using EQS, the Lagrange
multiplier tests were performed on each fixed parameter, and these in turn
were sorted in descending order of magnitude. The way to use the results of
the Lagrange multiplier test is to free the fixed parameter with the largest
single-degree-of-freedom chi-square among the Lagrange multiplier tests,
and reanalyze the resulting model. This was done several times, each time
freeing the fixed parameter remaining with the largest chi-square value. We
should stop if the model achieves a nonsignificant chi-square. We should
also use this procedure judiciously, in that we do not want to free too many
fixed parameters, because freeing a fixed parameter results in the loss of one
degree of freedom. Lagrange multiplier tests and modification indices are
further discussed in Chapter 15.

A degree of freedom corresponds to a condition in which the model is free
to differ from the observed correlation matrix. The degrees of freedom df for
the model are computed as

df = p(p + 1)/2 − k

where p is the number of observed variables and k is the number of free
parameters in the model. p(p + 1)/2 is the number of nonredundant elements
on the diagonal and off one side of the diagonal of the correlation matrix
that the model is fitted to. If no parameters are estimated, corresponding
to a model with all fixed parameters, the degrees of freedom would be a
maximum of p(p + 1)/2. This would correspond to a maximally testable
model for the number of variables in the correlation matrix.

If as many parameters are estimated as there are distinct elements of the
correlation matrix to be fitted, the degrees of freedom will be zero and the free
model parameters will always be able to be adjusted to allow the model to fit
perfectly to the observed correlation matrix. Such a model would be useless
for a test, since no hypothesis has been asserted that could be disconfirmed
by a possible lack of fit.

So, a degree of freedom corresponds to a condition by which the model is
tested for goodness of fit. What we hope to attain is a model with numerous
degrees of freedom, relative to the potential number of degrees of freedom
(i.e., a high parsimony ratio) that we could have, and excellent fit. Freeing

© 2009 by Taylor and Francis Group, LLC



“K10039_C009.tex” — page 226[#8] 15/4/2009 17:10

226 Linear Causal Modeling with Structural Equations

up fixed parameters results in a weaker model, since fewer hypothesized
constraints remain by which the model potentially could be tested, which is
indicated by fewer degrees of freedom.

Nevertheless, we were able, after freeing a number of fixed parameters as
indicated by the use of Lagrange multiplier tests, to find parameters to free
to obtain a model that fit with a nonsignificant chi-square. The results are
shown in Table 9.4.

How would we interpret the final model? The fact that few zero coefficients
in the factor pattern matrix contributed to lack of fit, as indicated by the

TABLE 9.4

Final Standardized Estimated Model Obtained by Freeing Eight Fixed
Parameters According to Lagrange Multiplier Tests

Variables Factor 1 Factor 2 Factor 3 Unique Variances

1 Friendly 0.834* 0 0 0.552*
2 Sympathetic 10.052* 0 −0.210∗ 0.360*
3 Kind 1.069* 0 −0.249∗ 0.364*
4 Affectionate 0.907* 0 0 0.421*
5 Intelligent 0 0.868* 0 0.497*
6 Capable 0 0.908* 0 0.418*
7 Competent 0 0.949* 0 0.316*
8 Smart 0 0.932* 0 0.363*
9 Talkative 0 0 0.807* 0.591*
10 Outgoing 0 0 0.948* 0.318*
11 Gregarious 0 0 0.889* 0.458*
12 Extraverted 0 0 0.898* 0.440*
13 Helpful 0.727* 0.205* 0 0.596*
14 Cooperative 0.717* 0.207* 0 0.607*
15 Sociable 0.193* 0 0.808* 0.336*

Correlations among factors

Factor 1 2 3

1 1.000

2 0.251* 1.000

3 0.633* 0.296* 1.000

Freed correlations among unique factors

ρ(E3, E1) 0.215*
ρ(E9, E1) 0.181*
ρ(E10, E2) 0.375*
ρ(E8, E7) −0.619∗
ρ(E9, E8) 0.236*
ρ(E14, E13) 0.281*

Note: Degrees of freedom have been reduced from 84 to 76. Parsimony ratio is
now only 0.63. Chi-square is 91.73 for 76 df with p = 0.113. CFI = 0.997.
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Lagrange multiplier tests, suggests that there is some support for the theory
behind the three factors hypothesized. It seems that the low negative loadings
of the variables sympathetic, and kind on outgoingness, suggest that a person
with a higher degree of outgoingness will be modestly less likely to be seen
as sympathetic and kind. Perhaps people who are sympathetic and kind are
not seen to be as outgoing and sociable. However, we also note that there is
a moderate correlation between friendliness and outgoingness. This leaves
some freedom for an outgoing person to be a critic of others or garrulous but
not as sympathetic and kind as it would seem. Carlson and Mulaik (1993)
hypothesized in other parts of their study that helpful and cooperative would
fall on a separate factor to some degree, since they believed ratings on these
scales could be driven in part by information as to the actual helpfulness or
cooperativeness of the person alone apart from information as to the per-
son’s friendliness and ability. So the correlation between E13 and E14 is not
surprising.

Faceted Classification Designs

In psychology, factor analysis has made some of its most substantial
contributions to the study of mental abilities as measured by tests of intel-
lectual performance. Using exploratory factor analysis, psychologists have
discovered that intellectual performance is highly complex and dependent
on many factors. Guilford (1967), for example, claimed to have established 82
factors of the intellect but postulated the existence of at least 120 factors.
Guttman (1965) went farther than Guilford in conjecturing that the potential
number of factors of the intellect is almost unlimited. Paradoxically, then, the
technique of factor analysis, which originally was developed by psycholo-
gists such as Thurstone to help simplify the conceptualization of intellectual
processes, had by the late 1960s achieved quite the opposite effect of inducing
psychologists to consider intellectual processes as even more complex than
they originally believed.As a result, faced with the growing plethora of factors
coming from psychological laboratories using factor analysis, many psychol-
ogists began to doubt the value of factor analysis as a technique, with the
question: What kind of coherent theory of mental processes can we construct
with so many factors?

In response to such criticism, both Guilford (1967), with his structure-
of-the-intellect model, and Guttman (1965), with his faceted definition of
intelligence, attempted to bring order out of chaos by organizing mental
tests (and their associated factors) into classification schemes that have some
explanatory, theoretical significance. In doing so, Guilford (implicitly) and
Guttman (explicitly) took the position that a coherent theory of mental pro-
cesses will not come automatically from the methods of exploratory factor
analysis but will have to be constructed on the basis of other, theoretical
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grounds. For example, Guttman (1965) recommended that researchers seek
to identify common external features of intellectual-performance tests, which
may be used to classify these tests in the expectation that tests having the
most classes in common will be intercorrelated the most, and those hav-
ing the least in common will be intercorrelated the least [this is Guttman’s
(1959) contiguity metahypothesis]. Guilford (1967) appeared to use a kind of
information-processing model of intellectual processes to guide him in spec-
ifying which tests elicit certain hypothetical intellectual processes. Guilford
categorized tests according to their content (figural, symbolic, semantic, or
behavioral), the mental operation involved (evaluation, convergent produc-
tion, divergent production, memory, or cognition), and the kind of product
elicited (units, classes, relations, systems, transformations, or implications).

In effect, drawing upon computer terminology, we might regard Guilford’s
system as classifying tests according to the kind of input involved, the kind
of operations carried out, and the kind of output produced. In more elaborate
forms, such an input–operation–output model may have some value in
suggesting further research. In analogy with Guilford, who identified a factor
of the intellect with each three-way combination of content, operation, and
product, the input–operation–output model may identify a factor with each
independent pathway through the system.

Interactions thus represent levels of functioning on pathways linking pro-
cess centers, while main effects represent the levels of function of the centers
themselves. The general level effect is a measure of the level of functioning of
the whole system.

At this point the reader may see an analogy between a classification design
and an analysis of variance design. In the present case variables are classified,
while in analysis of variance, observations are classified. Nevertheless, the
analogy suggests that we may anticipate common factors to correspond to the
effects of the comparable analysis of variance design: there will be a general
factor corresponding to the grand mean common to all observations; there
will be main effect factors corresponding to main effects, and “interaction”
factors corresponding to interaction effects in analysis of variance.

However, as in analysis of variance, not every effect anticipated by the
design of the experiment may be present, and so not every common factor
corresponding to an “effect” of the design may be present either. Thus the
researcher will need to justify including a common factor suggested by the
classification design, using substantive theory.

For further discussion of classification designs, see Mulaik (1975) and
Mellenbergh et al. (1979).

Multirater–Multioccasion Studies

Researchers may be concerned in establishing objective evidence for the
stability of personality characteristics over time. To add further to establishing
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objectivity, they will often use more than one rater on a given occasion to
describe the subjects. And beyond this, each rater may make several ratings
on scales designed to measure the same trait, which also contributes to the
objectivity of the final result by having the rater make several ratings based
on the same judgment.

The author collaborated with a psychologist working with a group of nurs-
ing educators in the western United States (Ingmire et al., 1967) who were
seeking to evaluate a continuing education program they were conducting
in several states. They had conceived a situational exercise in which their
workshop participants were to interview a patient, played by a nurse serv-
ing as a patient-actor. After performing in the exercise, the patient-actor and
an external observer made ratings of the participant on several five-point
rating scales designed to rate the nurse’s supportiveness of the patient. The
situational exercise was given to the participants both at the beginning of
the series of workshops (which were conducted several times during a year)
and at the end of the year. The researchers then decided they also needed a
control group, and obtained 352 otherwise eligible nurses who had not partici-
pated in the workshop to undergo evaluation in the same situational exercise
with the same patient-actors and external observers. A possible source of
uncontrolled variation was that in each state a different patient-actor and a
different external observer were used. Like the workshop participants, the
control group subjects were given the same exercise twice, a year apart. The
research question we may ask is whether there is an enduring trait of “sup-
portiveness” by which nurses may vary, yet be somewhat stable over a year’s
time within a given nurse. The control group would establish the stability.
The table of correlations among the 22 variables used in this study is given in
Table 9.5.

Several years later (Mulaik, 1988) I used data from the control group
subjects to illustrate a confirmatory factor analysis involving a multirater–
multioccasion model. I will now perform a new analysis of those data with
an even more constrained model, with more degrees of freedom, that upholds
essentially the same results as in Mulaik (1988).

A path diagram of the multirater–multioccasion model applied to the cor-
relation matrix in Table 9.5 is shown in Figure 9.1. The diagram shows that on
each of two occasions, year 1 and year 2, the rated subject’s behavior causes
the patient-actor and the external observer to form judgments of the subject’s
supportiveness, which in turn caused each of the raters to make their ratings
on the respective rating scales. Three invariants were hypothesized: (1) Stim-
ulus to judgment invariance: the subject’s supportive behavior in year 1 would
cause the same proportional degree of supportiveness judgment in the rater
in year 2. Other aspects of the rater’s judgment were idiosyncratic with the
rater. Consequently the path coefficient from X5 (subject’s behavior in year
1) to X1 (patient-actor’s judgment in year 1) was constrained to equal the
path coefficient from X6 (subject’s behavior in year 2) to X2 (patient-actor’s
judgment in year 2). Likewise, the path coefficient from X5 (subject’s behav-
ior in year 1) to X3 (external observer judgment in year 1) was constrained to
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TABLE 9.5

Correlations Among 22 Rating Variables of 352 Nurses’ Supportive Behavior
in a Situational Exercise Conducted on Two Occasions a Year Apart∗

Patient-actor ratings year 1

1 100 Communicating understanding
2 64 100 Friendliness
3 73 65 100 Supportive
4 64 57 72 100 Personal involvement
5 71 61 71 62 100 Security as patient

Patient-actor ratings year 2

6 32 27 34 27 29 100 Communicating understanding
7 24 24 31 24 23 67 100 Friendliness
8 24 24 31 22 25 72 70 100 Supportive
9 19 24 26 23 21 64 62 71 100 Personal involvement
10 31 28 34 29 31 73 72 79 66 100 Security as patient

External observer ratings year 1

11 44 36 46 39 39 32 31 31 25 34 100 Respect for individual
12 48 40 47 39 44 36 30 31 23 31 68 100 Encourages patient to talk
13 45 39 51 40 42 31 25 26 20 28 71 70 100 Recognizes need for security
14 42 39 47 36 40 36 24 28 31 30 61 67 65 100 Information seeking
15 47 48 51 43 47 37 28 32 26 33 72 73 72 69 100 Supportive
16 49 43 51 43 49 33 27 29 23 33 73 76 75 69 88 100 Understanding

External observer ratings year 2

17 20 24 21 10 20 45 50 47 40 49 34 33 25 25 32 29 100 Respect for individual
18 21 19 24 17 21 50 47 50 42 52 31 39 32 31 34 34 68 100 Encourages patient to talk
19 24 27 26 16 25 45 41 46 38 52 29 33 33 27 31 31 66 71 100 Recognizes need for security
20 19 22 26 12 18 49 38 52 44 47 31 32 31 31 32 33 65 70 64 100 Information seeking
21 24 25 26 17 27 52 52 59 49 61 32 44 36 32 37 36 69 73 73 68 100 Supportive
22 20 25 27 17 27 54 51 57 49 61 32 39 33 32 36 34 71 75 74 72 87 100 Understanding

* Decimal points have been omitted.

equal the path coefficient from X6 (subject’s behavior in year 2) to X4 (external
observer’s judgment in year 2). (2) Semantic invariance principle: the relation
between judgment and rating for a given rating scale would be the same on
each occasion a year apart. Hence, for example, the factor loading for vari-
able Y2 (friendliness) on factor X1 was constrained to equal the factor loading
for variable Y7 (friendliness) on factor X2. Comparable constraints of equality
were made for all factor loadings for comparable pairs of corresponding rating
variables. (3) Invariance of variances of disturbances of corresponding variables
a year apart. Hence, for example, the error variance of ε2 on variable Y2 was
constrained to equal the error variance of ε7 on variable Y7. Similarly, the
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FIGURE 9.1 Path diagram for a model of nurses’ ratings by a patient-actor and an external
observer in a nurse-patient situational excise conducted twice, a year apart. Numerical values
for coefficients indicate fixed parameter values; = denotes parameter constrained equal to its
counterpart a year apart; * denotes a free parameter.

variance of the second-order disturbance δ1 on X1 was constrained to equal
the comparable variance of the second-order disturbance δ2 on X2, and so on.
The correlation between a subject’s supportiveness behavior in year 1 with
that in year 2 was a free parameter.
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TABLE 9.6

First- and Second-order Factor Pattern Matrices, First- and Second-order Unique
Variances, and Correlation between Second-order Common Factors

First-order factors Second-order Correlation

η1 η2 η3 η4 ψ2 ξ1 ξ2 δ2 ξ1 ξ2

1 820 000 000 000 306= 1 791= 000 1 407= 1 100

2 762= 000 000 000 401= 2 000 791= 2 407= 2 58* 100

3 870= 000 000 000 219= 3 841= 000 3 246=
4 763= 000 000 000 400= 4 000 841= 4 246=
5 839= 000 000 000 274=
6 000 820 000 000 306=
7 000 762= 000 000 401=
8 000 870= 000 000 219= χ2

228 = 409.636 p < 0.001
9 000 763= 000 000 400=
10 000 839= 000 000 274= CFI = 0.972
11 000 000 810 000 374=
12 000 000 847= 000 316= RMSEA = 0.047
13 000 000 834= 000 336=
14 000 000 792= 000 402= PR = 0.901
15 000 000 935= 000 167=
16 000 000 952= 000 135=
17 000 000 000 810 374=
18 000 000 000 847= 316=
19 000 000 000 834= 336=
20 000 000 000 792= 402=
21 000 000 000 935= 167=
22 000 000 000 952= 135=

Note: Decimal points have been omitted.
Chi-square, CFI index, and Parsimony Ratio (PR) are given.
Fixed parameters in bold. = denotes constrained equal; ∗ denotes free parameter.

The metric of the factor loadings was set by fixing the loading of Y1 on X1
and the loading of Y6 on X2 to 0.820. Similarly, the loadings of Y10 on X3 and
of Y17 on X4 were both fixed to 0.810. These values were determined by an
exploratory factor analysis as being values consistent with an approximate
variance of unity for the common factor in question. But the values were also
set to be equal according to the semantic invariance principle. (Otherwise
setting the metric is arbitrary.)

A confirmatory factor analysis of the model with these constraints was
performed using the EQS program, Version 5.1, on an iMac computer. The
results are shown in Table 9.6.

Although the chi-square goodness-of-fit statistic is significant with p <

0.001, indicating significant lack of fit, the model is still a very good
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approximation to the data, as indicated by the fit indices, CFI = 0.972 and
Root mean square error of approximation (RMSEA) = 0.047. The model has
plausibility in that it conforms well to a stimulus–response paradigm where
the nurse-subject provides a common stimulus for two raters to rate, and
their judgments as responses are then further expressed in ratings on several
scales, which conform well to a single common factor among them. Lack of
fit may be explained by small departures from causal homogeneity among
the nurse-subjects and also by a few replacements of the patient-actor and
external rater from one year to the next in a few state regions. Nevertheless,
the model is highly tested with a parsimony ratio of 0.901. Thus the gem
revealed by the study is an estimated correlation of 0.58 between the nurse-
subject’s objective supportiveness behavior measured twice over a year apart.
This was also the finding in Mulaik (1988). The multirater–multioccasion
paradigm seems to be an excellent research paradigm for studying trait stabil-
ity. One may wonder why a multilevel analysis has not been done to deal with
different regions and different actors and observers in the situational exercise.
Unfortunately, the original data that would make that possible are no longer
in existence.

Multitrait–Multimethod Covariance Matrices

In seeking to formulate methods for establishing the objective validity of
certain trait-rating constructs, Campbell and Fiske (1959) recommended that
researchers obtain ratings on the same set of trait scales by more than one
method. They called the correlation matrix among the trait-rating scales,
measured under the several methods, a multitrait–multimethod (MTMM)
correlation matrix. They argued that the objective validity of the ratings would
consist in the coherence of ratings on corresponding trait scales across the
different methods. They described four conditions supporting the objectivity
or convergent validity of the ratings: (1) Correlations between corresponding
scales under different methods should be nonzero and statistically signifi-
cant. (2) Correlations between corresponding scales under different methods
should be higher than those between dissimilar scales compared across the
different methods. (3) Correlations between corresponding scales measured
under different methods should be higher than correlations measured within
the same method between different scales. (4) The pattern of correlations
between scales in different methods should be similar to the pattern of
correlations between scales within the same method.

The limitations of the Campbell and Fiske (1959) approach lay principally
in the subjective way of determining convergent validity by merely inspect-
ing the correlation matrix. Also, correlations were used, which would often
force corresponding scale ratings into different metrics, by dividing covari-
ances between the respective scales by different standard deviations within
and between different methods. Corresponding variables might also have
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different reliabilities under different methods, varying then the pattern of rel-
ative magnitudes of correlations across different methods, even when there
is convergent validity. Nevertheless, various researchers sought to develop
ways of analyzing MTMM matrices to provide more objective ways of assess-
ing convergent validity. A good early review of this topic is given by Schmitt,
Coyle, and Saari (1977).

Jöreskog (1974) demonstrated how an MTMM correlation matrix used by
Campbell and Fiske (1959) to illustrate their method could be modeled by
a confirmatory factor analysis model. Campbell and Fiske (1959) took data
from a study conducted by Kelly and Fiske (1951) of the ratings of 124 clinical
psychology students in a clinical setting on five different trait scales using
three methods: staff ratings, peer ratings, and self-ratings. The correlation
matrix among these scales is shown in Table 9.7.

Jöreskog (1974) hypothesized five trait factors, T1, . . . , T5, one for each of
the five traits rated. Corresponding scales were hypothesized to load on the
same factor, so there were three indicators of each trait factor across the three
methods of rating. Presumed nonzero loadings were treated as free param-
eters, no effort being made to prespecify a value to test for each of these
loadings. Scales not corresponding to a factor in question were hypothesized
to have zero loadings on the factor. Jöreskog also initially hypothesized three
method factors, M1, M2, and M3, with scales rated by the same method pre-
sumed to load on the same method factor. Factor variances were fixed to
unity to determine the metric of the solution. Correlations among trait factors
were treated as free parameters, and correlations among method factors were
also treated as free parameters. Correlations between trait factors and method
factors were fixed to zero.

In his initial estimation of the free parameters of this model, Jöreskog
obtained a solution in which method factors M1 and M3 were correlated 1.00
with each other. So, he reparameterized his model to postulate two method
factors, with scales under method 1 (staff ratings) and method 3 (self-ratings)
loading on the same method factor M1 (in the new model) and scales rated
by teammates loading on method factor M2.

I have reestimated the parameters of Jöreskog’s model for the correlation
matrix given in Table 9.7 using Bentler and Wu’s EQS 5 program, and I have
obtained essentially the identically same solutions as Jöreskog (1974). Initially
when I postulated three method factors, they yielded estimated correlations of
unity between methods 1 and 3. So, I reparameterized, as did Jöreskog (1974),
to have only two method factors and the results are shown in Table 9.8.

The chi-square test of goodness of fit with 64 degrees of freedom was
61.512, which was not significant. Several goodness of fit indices indicated
excellent fit as well: Jöreskog’s GFI index was 0.941, whereas Bentler’s CFI
was 1.00. Some of our enthusiasm for the good fit of this model should be tem-
pered by the knowledge that the sample size was only 124, which, being less
than 200, is currently regarded as inadequate for statistical inference purposes
with chi-square statistics in confirmatory factor analysis. But parameter
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TABLE 9.7

MTMM Correlation Matrix Based on Ratings of Clinical Psychology Students on Five Traits by Three Kinds of Raters (after Campbell and
Fiske, 1959)

1P 2P 3P 4P 5P 1T 2T 3T 4T 5T 1S 2S 3S 4S 5S

Staff ratings

Assertive 1P 1.00
Cheerful 2P 0.37 1.00
Serious 3P −0.24 −0.14 1.00
Unshakeable poise 4P 0.25 0.46 0.08 1.00
Broad interests 5P 0.35 0.19 0.09 0.31 1.00

Teammate ratings

Assertive 1T 0.71 0.35 −0.18 0.26 0.41 1.00
Cheerful 2T 0.39 0.53 −0.15 0.38 0.29 0.37 1.00
Serious 3T −0.27 −0.31 0.43 −0.06 0.03 −0.15 −0.19 1.00
Unshakeable poise 4T 0.03 −0.05 0.03 0.20 0.07 0.11 0.23 0.19 1.00
Broad interests 5T 0.19 0.05 0.04 0.29 0.47 0.33 0.22 0.19 0.29 1.00

Self ratings

Assertive 1S 0.48 0.31 −0.22 0.19 0.12 0.46 0.36 −0.15 0.12 0.23 1.00
Cheerful 2S 0.17 0.42 −0.10 0.10 −0.03 0.09 0.24 −0.25 −0.11 −0.03 0.23 1.00
Serious 3S −0.04 −0.13 0.22 −0.13 −0.05 −0.04 −0.11 0.31 0.06 0.06 −0.05 −0.12 1.00
Unshakeable poise 4S 0.13 0.27 −0.03 0.22 −0.04 0.10 0.15 0.00 0.14 −0.03 0.16 0.26 0.11 1.00
Broad interests 5S 0.37 0.15 −0.22 0.09 0.26 0.27 0.12 −0.07 0.05 0.35 0.21 0.15 0.17 0.31 1.00
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TABLE 9.8

Factor Loadings and CorrelationsAmong Factors in the MTMM Model (Jöreskog, 1974)
for Correlations in Table 9.7

Factor Pattern Loadings

T1 T2 T3 T4 T5 M1 M2 u2
ii

Staff ratings

Assertive 0.871 0.000 0.000 0.000 0.000 0.107 0.000 0.239
Cheerful 0.000 0.836 0.000 0.000 0.000 0.017 0.000 0.302
Serious 0.000 0.000 0.573 0.000 0.000 −0.296 0.000 0.583
Unshakeable poise 0.000 0.000 0.000 0.781 0.000 −0.253 0.000 0.318
Broad interests 0.000 0.000 0.000 0.000 0.689 −0.335 0.000 0.392

Teammate ratings

Assertive 0.829 0.000 0.000 0.000 0.000 0.000 0.162 0.291
Cheerful 0.000 0.697 0.000 0.000 0.000 0.000 0.294 0.468
Serious 0.000 0.000 0.722 0.000 0.000 0.000 0.322 0.349
Unshakeable poise 0.000 0.000 0.000 0.213 0.000 0.000 0.533 0.674
Broad interests 0.000 0.000 0.000 0.000 0.599 0.000 0.439 0.429

Self-ratings

Assertive 0.552 0.000 0.000 0.000 0.000 0.111 0.000 0.689
Cheerful 0.000 0.454 0.000 0.000 0.000 0.221 0.000 0.751
Serious 0.000 0.000 0.428 0.000 0.000 0.227 0.000 0.767
Unshakeable poise 0.000 0.000 0.000 0.429 0.000 0.380 0.000 0.678
Broad interests 0.000 0.000 0.000 0.000 0.697 0.622 0.000 0.168

Correlations among factors

T1 1.000

T2 0.559 1.000

T3 −0.371 −0.438 1.000

T4 0.381 0.662 −0.082 1.000

T5 0.548 0.292 0.125 0.430 1.000

M1 0.000 0.000 0.000 0.000 0.000 1.000

M2 0.000 0.000 0.000 0.000 0.000 −0.208 1.000

Note: Zeros and unities in bold are fixed parameters.

estimates should be relatively stable. Each of the trait factors had strong
loadings on their respective factors. The method factors did not have strong
influences on all ratings in all conditions presumed to be affected by them as
evidenced by low loadings in many cases, and one near zero loading.

Jöreskog’s demonstration of a confirmatory factor analysis model for the
MTMM correlation matrix has engendered numerous attempts to fit the
model to other MTMM matrices. These efforts have not always been suc-
cessful. Frequently, Jöreskog’s (1974) model was empirically underidentified
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when applied to certain correlation matrices. Sometimes the algorithms for
estimating parameters of this model did not converge. On other occasions
it was discovered that freeing up correlations between the trait factors and
method factors led to the model’s being underidentified (Wothke, 1984;
Widaman, 1985). [This happens if one frees up the correlations between trait
factors and method factors in Jöreskog’s model (1974) applied to the Campbell
and Fiske (1959) correlation matrix in Table 9.8.] The realization eventually
emerged that Jöreskog’s (1974) model was only one of several models that
might be fit to this kind of data. For example, in some cases it was found
that there were no trait factors, only method factors, and in other cases there
were no method factors, only trait factors. On other occasions the number of
trait factors was fewer than the number of trait scales. Wothke (1984) worked
out mathematically necessary conditions for identification of the models and
showed that in some cases the models could be empirically underidentified.

Widaman (1985) described sequences of “hierarchically nested” models that
contain the MTMM model of Jöreskog (1974) as a special case, which might
be applied to a given MTMM correlation matrix to find the best fitting model
for that data. In developing these sequences he developed a way of classifying
MTMM models according to the properties of their trait factors and their
method factors. For the trait factors there were four cases:

1. no trait factors
2. t trait factors, fixed unit intercorrelations (or one trait factor)
2′. t trait factors, fixed zero intercorrelations among trait factors
3. t trait factors, free intercorrelations among trait factors.

Cases 2 and 2’ estimate the same number of parameters and are not strictly
nested within one another. Widaman noted that it is not possible to perform
a statistical test of the difference in fit between the two models, although
one might prefer one to the other if its chi-square value were smaller. He also
pointed out that cases designated by larger integers are more inclusive (or less
restricted) than cases with smaller integers, so cases with smaller numbers are
nested (special cases of) cases with larger case numbers.

Widaman (1985) also noted that a parallel set of cases could be formulated
for the method factors of the MTMM models:

A. no method factors
B. m method factors, fixed unit intercorrelations (one method factor)
B′. m method factors, fixed zero intercorrelations among method factors
C. m method factors, free intercorrelations among method factors.

Again, cases B and B′ are not nested within one another as are cases 2
and 2′ above. Cases designated by letters that come earlier in the alphabet
are nested within cases designated by letters that come later in the alphabet.
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Widaman (1985) suggested that a taxonomy for MTMM models could be
generated by cross-classifying the four trait cases with the four method cases.
A model could then be designed by its method and trait factor structures,
respectively, for example, 3B′ designates a model that has t freely correlated
trait factors and m orthogonal method factors. Furthermore, one could deter-
mine that one model is nested within another if both the trait and method
cases respectively were nested within the trait and method cases respectively
of the other model. For example, model 2A is a more restricted model nested
within 3A, 2C, and 3C. However, model 2A is not nested within 1C, since
model 2A has a higher number than 1C. The implication of one model being
nested within the other is that one can construct and test a nested sequence
of models, beginning with the least restricted model. If the least restricted
model does not fit the data, then one knows that the more restricted models
will not either. On the other hand, if the least restricted model fits, then one
can proceed to test more restricted models in the sequence until one reaches
a model that does not fit.

In formulating his classification of models, Widaman (1985) excluded
models in which correlations between method factors and trait factors were
free parameters. Those cases led to underidentified models. He required trait
factors to be uncorrelated with method factors. He also noted that some pair-
ings of trait cases with method cases were problematic. A model 2B is a model
with a single common factor in which method and trait factors are indistin-
guishable. A model 2′B′ would have a single trait factor and a single method
factor, each orthogonal to the other, but loading on all variables. Such a model
is not identified.

In many cases, researchers have had difficulties in finding and fitting
method factors to their data. Marsh (1989) proposed not including common
method factors in the model but instead freeing up the correlations between
unique factors of trait scales in the same method while retaining fixed zero
correlations between unique factors of variables under different methods.
This is a less restricted way of introducing “method” effects that usually has
better fit than models with a single common method factor for all scales in
a given method. On the other hand, it abandons formulating and testing a
hypothesis about the structure of the method effect within a given method.
Still models with correlated uniquenesses within methods may be seen as less
restricted models to compare with models that do impose method factor struc-
ture, using chi-square difference tests, to test the nature of the structure. But
Byrne and Goffin (1993) note several possible limitations to Marsh’s correlated
unique factor model: the trait-factor loadings and correlations among traits in
Marsh’s correlated uniquenesses models are higher than they typically are in
Jöreskog’s common factor model when applied to the same data set. (This may
not really be a limitation but a difference in representation.) But Byrne and
Goffin believe that, as a result, Marsh’s correlated unique factor model for han-
dling method effects is biased toward providing stronger evidence for conver-
gent validity and weaker evidence for discriminant validity. Perhaps a clearer
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limitation of the correlated unique factors models is Byrne and Goffin’s (1993)
observation that because unique factors of variables under different methods
cannot be freed to correlate (otherwise the model may become underidenti-
fied), this introduces an untestable and unrealistic assumption that method
effects are uncorrelated—which Jöreskog’s (1974) MTMM factor analysis
model can test, but only with well-defined common method factors. Testing
the orthogonality assumption would require comparing the model in which
these correlations are zero against an identified model in which they are free
to be any permissible value. Jöreskog’s (1974) model, on the other hand, has its
own untestable and unrealistic assumption, that trait factors and method fac-
tors are uncorrelated, for, again, to test this orthogonality assumption would
require estimating a model in which these correlations are free parameters,
to yield a chi-square difference test when the chi-square of the less restricted
model is subtracted from the chi-square of the more restricted model, and
the difference chi-square has degrees of freedom equal to the difference in
degrees of freedom of the original chi-squares.

Numerous excellent reviews have been written about MTMM models
within the confirmatory factor analysis framework. Readers may wish to
consult Wothke (1984, 1996), Browne (1984), Marsh (1988, 1989), Graham
and Collins (1991), Marsh, Byrne, and Craven (1992), and Byrne and Goffin
(1993). There have also been explorations of other kinds of models besides the
additive model of factor analysis. Browne (1989) formulated a multiplicative
model whereby traits and methods multiply rather than add together:

Σ = D(PM ⊗ PT + E2)D

where Σ is a t × m covariance matrix of t trait variables measured under m
methods, D is a t × m diagonal matrix of true-score variances for the t × m
variables, PM is an m × m matrix of correlations among m method variables,

M1T1 M1T2 M1T3 M2T1 M2T2 M2T3 M3T1 M3T2 M3T3

M3T3T2M2T1M1

FIGURE 9.2 A facet design for a 3 × 3 MMMT model with four indicators per latent first-order
factor representing a method/treatment combination. Method factors are mutually uncorrelated
with trait factors.
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and PT is a t × t matrix of correlations among t trait variables, with E2 a tm × tm
diagonal matrix of unique variances. We will not pursue this model further,
but refer the reader to Browne’s paper and to papers by Cudeck (1988) and
Byrne and Goffin (1993).

To close this discussion of MTMM models, I would like to point out that the
MTMM factor analysis models described so far can be seen as special cases of
the faceted design model. If the faceted design models we described earlier
are seen to be built on an analogy with factorial analysis of variance designs
with repeated observations per cell, the MTMM model described by Jöreskog
(1974) has a certain analogy with the randomized blocks design with one
observation per cell. The weaknesses of the randomized blocks model rest,
among other things, on there being only one observation per cell of the design.
Many of the identification problems with the corresponding MTMM model
arise because too few indicators are trying to do too much work. Having mul-
tiple indicators (at least four) per trait–method combination would eliminate
many of the identification problems. An illustration of just such a model is
shown in Figure 9.2.
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10
Equivalent Models

Introduction

When a researcher formulates a model with estimated parameters, he or she
must consider the possibility that there are equivalent but distinct models
that could be formulated that would reproduce the same covariance matrix
when estimated against a given sample covariance matrix. The existence of
equivalent models when supported by empirical evidence other than simple
fit to the same covariance matrix creates a problem for the researcher, who
must then seek to eliminate these alternatives in some way in favor of his or
her model. In this section we will discuss the meaning of equivalent models
mathematically and will also consider techniques for generating them for
consideration.

Stelzl (1986) was the first to consider ways of systematically generating
equivalent models in structural equation modeling. Lee and Hershsberger
(1990) simplified Stelzl’s rules with a simple replacement rule. MacCallum
et al. (1993) further refined these rules and illustrated their implications with
models taken from the literature. We will draw heavily on these authors’
papers for our discussion here.

In this discussion we presume that the models are recursive and represented
by DAGS. We further presume that if a path linking two variables in the graph
is shown, it corresponds to either a free parameter for that path or a parameter
fixed to set the metric. The path may be either a directed arrow indicating
a directed causal connection or a two-headed arrow indicating covariation.
Latent variables will be presumed to have fixed variances of 1.00.

241
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Definition of Equivalent Models

Given any arbitrary covariance matrix S for a given set of variables, two
models, A and B, with constrained and free parameters are fit to S by esti-
mating free parameters in such a way that the reproduced covariance matrix
minimizes some specified discrepancy function. Let Σ̂A be the reproduced
covariance matrix obtained for model A and Σ̂B the reproduced covariance for
model B. We say that models A and B are equivalent if and only if Σ̂A = Σ̂B =
for all covariance matrices S to which models A and B may be fit. Naturally
Σ̂A and Σ̂B will have the same degree of fit to S. However, equal degree of
fit does not imply that the models have equivalent reproduced covariance
matrices for any covariance matrix to which they are fit. In some cases, for
some S it may be possible to find two models that have an equal degree of
fit, but Σ̂A �= Σ̂B. Such models are not equivalent. It may even be possible
to find some S for which by chance Σ̂A = Σ̂B, while this is not the case for
all S. These are not cases of equivalent models. We confine the concept of
equivalent models to cases that are necessarily equivalent regardless of the S
to which the models are applied.

Replacement Rule

Lee and Hershsberger (1990) proposed their “replacement rule” for generat-
ing equivalent models from recursive, acyclic models. Given a model with a
graph G, one must first focus on breaking the model up into blocks of vari-
ables. The focal block will be the block of variables whose paths between them
will be modified with the replacement rule. Variables within the focal block
must be connected to others in the focal block either by directed arrows or
by a covariance bridge between them, but not both. A preceding block will be
a block of variables containing the parents of variables in the focal block. All
variables in the focal block must have the same parents in the preceding block.
The paths from the parents in the preceding block to their offspring variables
in the focal block may not be changed in application of the replacement rule
to the variables in the focal block. Finally, there may be a succeeding block of
descendents of variables in the preceding and focal block (Figure 10.1).

Now, the replacement rule is this: In a given focal block of variables, a direct
path X → Y may be replaced by (a) a correlation between the disturbances
of X and Y or (b) a path arrow pointing in the opposite direction, that is,
X ← Y, as long as the parents of Y are the same as or include the parents of X
(MacCallum et al., 1993). By the same token, within a focal block a covariance
between a pair of disturbances can be replaced by a directed path in either
direction between the corresponding variables, as long as the effect variable
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X5

X1

X2

X3

X4

ε3

ε4

ε5

Preceding block Focal block

Succeeding block

FIGURE 10.1 Illustration of the preceding block, focal block, and succeeding block in a model.

has the same or more parents in the preceding block than the source variable
after the change (Figure 10.2).

In Figure 10.3, we show three equivalent models made with the replacement
rule. Model B is made from model A by reversing the arrow between X3 and
X4. Model C is made from either of the other two models by replacing the
arrows between X3 and X4 with a correlated disturbance between X3 and X4.

If a preceding block and a focal block are saturated, meaning every variable
in a block is linked to every other variable in the block, either with a directed
arrow, or with a covariance bridge, or with correlated disturbances, then we
can merge the preceding and focal blocks into a single, saturated block as in
Figure 10.4. This is made possible because every variable in the focal block has
a link to every variable in the preceding block. Consequently, every variable
in the resulting saturated block is related to every other variable by some form
of a link.

A saturated block provides more possibilities for forming equivalent
models. We may replace the paths within the saturated block by any other
saturated set of paths, replacing correlations with directed paths, paths

Y Y Y

or

XX eX

eY

or=

Y

XX

FIGURE 10.2 The replacement rule. Anyone of these may be replaced by anyone of the others.
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X3

X3

X4

Model B

Model A

Model C

X2

X1

X5

X3

X4
X2

X1

X5

X1

X2

X4

X5

ε3

ε3

ε4

ε4

ε5

ε3

ε4

ε5

ε5

FIGURE 10.3 Three equivalent models. Models B and C are made from model A by applying
the replacement rule.

X5 ε5

X1

X2

X3

X4

Saturated block

Succeeding block

Saturated
preceding

block

Focal
block

FIGURE 10.4 A model with a saturated block made by merging a saturated preceding block
with a saturated focal block, and a succeeding block.
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with opposite directed paths, directed paths with correlations, and any
endogenous variables of these with correlated disturbances. The resulting
models will be equivalent. Examples of four equivalent models formed from
the saturated block in Figure 10.4 are shown in Figure 10.5.

The case of saturated models with three variables should be committed to
memory (Figure 10.6). With three links between three variables and four kinds
of links (arrow in one direction, arrow in opposite direction, covariance bridge
between disturbances, and covariance bridge between a pair of variables),
one might think that there are 4 × 4 × 4 = 64 permutations of the links. How-
ever, not all would apply if, of necessity, one or two variables are exogenous
and the remaining endogenous. If only one is exogenous, then of necessity it
is a cause of each of the other two (assuming recursive models in which exo-
genous variables are mutually correlated). There thus are three ways in which
the remaining two endogenous variables can be related: The first of the two
is a cause of the second, the second is a cause of the first, or neither of the two
is a cause of the other, but their disturbances can be correlated. There would
not be a covariance bridge between the two endogenous variables, since they
are endogenous. Only exogenous variables have covariance bridges between
them. Thus with three ways to pick the one exogenous variable and three
ways in which the remaining two endogenous variables are related, there are
3 × 3 = 9 models of this kind. On the other hand, with two variables exoge-
nous, then of necessity there will be a covariance bridge between them, and
each will be a cause of the third and only endogenous variable. There are only

X5

X5 X5

X5

X4

X4 X4

X4

X1

X1

X1

X1

X2

X2 X2

X2

X3

X3 X3

X3

ε2ε2

ε2

ε1

ε1ε3 ε3

ε5 ε5

ε5ε5

ε4

Model F

Model H

Model E

Model G

FIGURE 10.5 Four equivalent models formed from the model in Figure 10.4.

© 2009 by Taylor and Francis Group, LLC



“K10039_C010.tex” — page 246[#6] 18/4/2009 16:22

246 Linear Causal Modeling with Structural Equations

FIGURE 10.6 Equivalent saturated models for three variables. There are six more than shown.

three ways to pick the endogenous variable. So, there are only three equiv-
alent saturated models of this kind. In all then, there are 9 + 3 = 12 distinct
recursive equivalent saturated models for three variables in which there are
also exogenous and endogenous variables.

For four variables, when one is exogenous and three are endogenous,
there are four ways to pick the exogenous variable, and ((3 × 2)/2) = 3
paths among the remaining three endogenous variables, with three kinds

of paths for each of these paths. That yields 4 × 3(3
2) = 4 × 33 = 108 distinct

saturated equivalent recursive models. But we also have to consider cases
with two exogenous and three exogenous variables. For two exogenous vari-
ables there are

(4
2

)
combinations of two variables chosen from four to serve

as exogenous variables. That leaves two variables as endogenous, and they
would have only a (2 × 1)/2 = 1 path between them. This one path can
have three kinds of relations between them. Hence the number of saturated
equivalent models among four variables with two exogenous variables is(4

2

)× 3(2
2) = 18 models. For three exogenous variables, with only one endo-

genous variable having no paths to any other endogenous variable, there are
just

(4
3

) = (4 × 3 × 2 × 1)/(1 × 3 × 2 × 1) = 4 ways to pick three variables as
exogenous. Hence there are four saturated equivalent recursive models with
but one exogenous variable. So in all there are 108 + 18 + 4 = 130 saturated
equivalent recursive models obtainable from four variables.
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In general, for p variables and k, 1 ≤ k ≤ p − 2, exogenous variables, there

are
(p

k

)× 3(
p−k

2 ) saturated equivalent recursive models.Additionally there are p
distinct models with one endogenous variable that has no other endogenous
variables to have relations with, so all of the exogenous variables are the
causes of the one endogenous variable and are connected between each pair
by a covariance bridge. So, the total number of saturated equivalent recursive
models for p variables is

p−2∑
k=1

(
p
k

)
× 3(

p−k
2 ) + p.

As p increases, this number increases rapidly.
There are cases where the replacement rule of Lee and Hershsberger does

not apply. Consider the following model with six variables. I have not been
able to find an equivalent model for this model, because there are no focal
blocks whose variables are linked and have the same set of parent causes in
a preceding block.

In Figure 10.7 you cannot reverse the arrows X1 → X3 and X2 → X3 either
singly or simultaneously, because X1 and X2 are uncorrelated, and would
become correlated if either or both of these paths were reversed in direction.
We cannot reverse the arrow X3 → X4 because that would make X3 a collider
and make X1 and X2 uncorrelated with X4, X5, and X6, whereas now they
are correlated. Reversing X4 → X5 would make X4 a collider and make X5

X1 X2

X3

X4

X6X5

ε5

ε3

ε4

ε6

FIGURE 10.7 A model for which there may be no equivalent model obtained by reversing
arrows or substituting correlated disturbances.
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uncorrelated with X1, X2, and X3, whereas now they are correlated. Similarly,
reversing X4 → X6 would also make X4 a collider and make X6 uncorrelated
with X1, X2, and X3, whereas now they are correlated. Reversing both X4 →
X5 and X4 → X6 simultaneously makes X5 and X6 uncorrelated, whereas
now they are correlated. In short, there are no pairs of variables with the
same set of parent causes, and no focal blocks. If it is a question of direction
of causality, and causal directions were hypothesized, the directions shown
in the model are the only directions possible consistent with a pattern of
correlations consistent with this model. This implies that any data fitting this
model have no equivalent rival model postulating different causal directions
consistent with it.

We also need to point out that reducing the number of equivalent models
with respect to a given model results from fixing more path coefficients to
zero. Equivalent models proliferate from freeing parameters.

MacCallum et al. (1993) searched the literature for covariance structure
modeling and found 99 studies in three journals. Of these studies, they found
few that considered the possibility of equivalent models. Perhaps more now
do since the publication of their paper. They also took a model from educa-
tional psychology and a model from industrial–organizational psychology
reported in the literature and worked out equivalent models for each of
these models. For the educational psychology model with five variables,
they found three other models that were equivalent to the original model
reported in the literature. These equivalent models even reversed the direc-
tion of causal paths, drastically changing the theoretical implications from
those of the authors.

The industrial–organizational models were sparser, with fewer parameters,
but even then, for five variables MacCallum et al. (1993) were able to find
three other models equivalent to the original model reported in the lit-
erature. In these equivalent models causal directions were reversed and
estimated path coefficients changed sometimes dramatically, for example,
from 0.53 in the original model to 0.30 in an equivalent model that had
reversed another causal path. So, the implication is that the existence of
equivalent models seemingly has serious implications for the theory, draw-
ing support from the good fit of a particular model to an observed covariance
matrix.

How then can we exclude equivalent models in favor of a given model?
One thing we can do is consider temporal ordering among the variables.
We might assume that the causes precede effects. A causal arrow from a vari-
able measured later in time to a variable preceding it in time may not be
plausible (although there may have been a delay in making the measurement
of a quantity that has not changed since the supposed cause was applied,
making this not an iron-clad rule). We can also consider embedding our mod-
els within a context where there are already known causal directions between
other variables outside the variables of our models. How these causal direc-
tions affect relationships between variables in our model and outside the
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model can be an important clue as to whether or not a given causal direction
within our models is plausible.

Equivalent Models That Do Not Fit Every
Covariance Matrix

So far we have considered equivalent models that have the same number
of degrees of freedom. Mulaik and Quartetti (1997) considered a different
kind of equivalence, one that would not apply to every sample variance–
covariance matrix. The issue concerns whether or not certain latent variables
are first- or second-order factors. In 1993 Gustafsson and Balke (1993) pub-
lished a paper in Multivariate Behavioral Research titled “General and specific
abilities as predictors of school achievement.” In this paper they described two
models as alternative ways of representing the relationship of general intel-
ligence to specific test scores. Both models contained a general factor, but in
one model it was represented as a second-order general factor, with a causal
influence on three first-order factors, and in the second it was represented as
a first-order general factor uncorrelated with three other first-order factors.
The model in which all factors are first-order factors is a variant of Holzinger
and Swineford’s (1937) bifactor model having a general factor and several
uncorrelated group factors. Gustafsson and Balke (1993) called this a “nested
factors model.” They called the second model the “hierarchical model.”

Gustafsson and Balke (1993) were motivated to display these two models
because they were interested in showing that even when general intelligence
appears as a second-order factor in a hierarchical model, it nevertheless has
an impact on the observed variables, which the graph of the hierarchical
model seems not to demonstrate. They reported that the nested model has
some similarities to the Schmid–Leiman (1957) decomposition of a hierarchi-
cal model from an exploratory factor analysis with a second-order factor. But
the difference here, Gustafsson and Balke (1993) asserted, is that the nested
factors model and the hierarchical models are not mathematically equivalent
(Figure 10.8). The hierarchical model places constraints on the relations
between the general factor and the observed variables, but the nested fac-
tors model does not (Gustafsson and Balke, 1993, p. 416). Nevertheless the
Schmid–Leiman procedure (1957) produces a table of correlations between
the general factor and the second-order unique factors that looks superfi-
cially like a Holzinger and Swineford bifactor model of a general factor and
group factors.

Mulaik and Quartetti (1997) created a hierarchical model with specified
loadings and then, using path-tracing rules, produced the table of the Schmid–
Leiman decomposition of the hierarchical model. The specific hierarchical
model that they used is shown in Figure 10.9. The Schmid–Leiman decom-
position of “loadings” of the observed variables on the second-order general
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1 2 3 54

1 2 3

6 7 8

Nested factors model

Hierarchical model

9 10 11 12 13 14 15 16

1 2 3 54 6 7 8 9 10 11 12 13 14 15 16

321

g

g

FIGURE 10.8 A nested factors model and a hierarchical model that in some circumstances
generate the same covariance matrix.

and specific factors is given in Table 10.1. They then generated a random
sample covariance matrix from the population correlation matrix produced
by the model in Figure 10.9 and showed that one could fit, essentially per-
fectly, incompletely specified hierarchical models and nested factors models
to this sample correlation matrix based on 1000 observations. For the incom-
pletely specified hierarchical model chi-square was zero with 101 degrees of
freedom. For the incompletely specified model chi-square was 0.03 with 92
degrees of freedom. In the incompletely specified models the nonzero struc-
tural path coefficients were represented by free parameters in both models.
Fixed zero path coefficients corresponded to zero coefficients in the models.
In the nested factors model the factors were specified as uncorrelated. What
this showed was that both models would essentially reproduce the covariance
matrix generated by a hierarchical model.
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FIGURE 10.9 Hierarchical model with specified coefficients as population parameters.

We can see from comparing Figure 10.9 with Table 10.1 that the correlations
between the factors and the observed variables are given by path-tracing rules.
For example, the correlation between g and variable 2 is 0.8, between second-
order unique factor 1 and variable 5 is 0.6 × 0.9 = 0.54, between second-order
unique factor 2 and variable 9 is 0.8 × 0.9 = 0.72, and so on. Each correlation
has to equal the product of the loading of the second-order factor with the
loading of the observed variable on the corresponding first-order factor. This
places a constraint on these correlations. Compare this to the case where each
nonzero correlation between an observed variable and a first-order factor
could be any nonzero value. That the incompletely specified nested factors
model fit the hierarchical data perfectly is because it has no constraints on
the parameters, which are free to have their values dictated by the sample
covariance matrix from the hierarchical population.

Next, Mulaik and Quartetti (1997) created another population correlation
matrix, this time using an unconstrained nested factors model in which the
parameters were slightly altered in an unsystematic way from their corre-
sponding values in Table 10.1. This time the same incompletely specified
hierarchical and nested factors models were fit to the sample covariance
matrix generated from this population. When the fit of the two models was
compared, the hierarchical model’s chi-square was nonzero (3.59 with 101
degrees of freedom) but nonsignificant. The nested factors model chi-square
was zero with 92 degrees of freedom. Here we see that a hierarchical model
may be an extremely close approximation to the nested model. In fact, in this
case the power to reject the null hypothesis for the hierarchical model against
the nested factors model generated data was only 0.18, which is not high at
all. But if the nested factors model had been much different than a hierar-
chical model Schmid–Leiman decomposition, the chi-square could well have
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TABLE 10.1

Schmid–Leiman Population Decomposition for The HO1 Model
Showing Expected Loadings of Observed Variables on the Second-
order Factors

g 1 2 3

1 0.600 0.000 0.000 0.000
2 0.800 0.000 0.000 0.000
3 0.600 0.000 0.000 0.000
4 0.800 0.000 0.000 0.000
5 0.540 0.720 0.000 0.000
6 0.540 0.720 0.000 0.000
7 0.480 0.640 0.000 0.000
8 0.480 0.640 0.000 0.000
9 0.540 0.000 0.720 0.000
10 0.480 0.000 0.640 0.000
11 0.480 0.000 0.640 0.000
12 0.540 0.000 0.720 0.000
13 0.540 0.000 0.000 0.720
14 0.540 0.000 0.000 0.720
15 0.480 0.000 0.000 0.640
16 0.480 0.000 0.000 0.640

been significant. What this shows is that a hierarchical model may not fit data
generated by a nested factors model, but it may still be a good approximation
to these data and difficult to discriminate from the nested factors model in
some cases.

We should note an important feature of these two models. The hierarchi-
cal model has more degrees of freedom—it estimates fewer parameters than
does the incompletely specified nested factors model. So, when the two mod-
els are completely indistinguishable on fit, the recommendation is to prefer
the model with more degrees of freedom, the hierarchical model, because it
is more disconfirmable. The added degrees of freedom for the hierarchical
model also give it the possibility of distinguishing itself from the nested fac-
tors model because the constraints on the loadings will lead the hierarchical
model to differ considerably from data generated by a nested factors model,
if the nested factors model deviates considerably from a hierarchical model.

A Conjecture about Avoiding Equivalent Models
by Specifying Nonzero Parameters

In the physical sciences considerable effort is spent in determining values of
natural constants such as the specific gravity of lead, the melting point of
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pure silver, and the atomic weight of sodium. The experiments designed to
estimate these values are not testing a physical theory but assume its truth
while leaving the parameter free to be estimated. To achieve high accuracy, a
known theory of extraneous variables that affect measurements is used to con-
trol these extraneous variables. Testing comes in at a later stage, where these
natural constants are used in various formulas combining several natural con-
stants to predict certain outcomes in other experiments. If the predictions are
not upheld, then something is wrong with the theory.

Behavioral and social scientists rarely establish natural constants and carry
them over from one study to the next. To some extent this is because their sub-
ject matter is much more complex and less well understood than the subject
matter of the physical sciences—although, at the cutting edge, in the physical
sciences there is just as much uncertainty and ambiguity as in the behavioral
and social sciences. The physical scientists have just been successful in gain-
ing knowledge in some areas in their endeavors for a longer time than in the
social and behavioral sciences. But it may also be because the behavioral and
social sciences have not in fact searched for natural constants. For example, is
the factor loading of a judgment on a specific scale of friendliness invariant?
It represents how much a unit change in the judgment of friendliness will
produce a change in the rating on the scale. Should that not be invariant in
any context in which the friendliness judgment is made on that scale? If these
numbers that we obtain in our structural equation and factor analytic studies
are so ephemeral, what can we hope to generalize from the studies? But we
may hope for better.

In one study, Carlson and Mulaik (1993) estimated the loadings of cer-
tain scales on certain factors in a calibration condition, and then used
these loadings in later experimental conditions where other information was
provided to influence judgments. For example, they estimated the load-
ing of the friendliness judgment on the friendly scale to be 0.902 (with
the loading of the same judgment factor on the sympathy scale fixed to
unity) in a calibration condition. This value was the value for this param-
eter in the best fitting model in this condition. Then they used the value
of 0.902 as a fixed parameter value for the friendliness scale in two later
experimental conditions using the same subjects. Similarly, other loadings
on other scales were also estimated in a calibration condition and then car-
ried over as fixed parameters in later experimental conditions applied to the
same subjects.

They assumed that the semantics underlying verbal rating scales was stable
and relatively invariant, so that the relationship between judgment and rat-
ings on scales of that judgment would be invariant. With four indicators of
each latent judgment, they were able by confirmatory factor analysis to estab-
lish the objective validity of the latent judgment variable. And they were able
to use these fixed loadings successfully in different experimental conditions,
as judged by the good fit for models using them as fixed values in these
conditions.
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So, suppose we used these same four scales of friendliness, with their fixed
loadings on a friendliness judgment factor in another study that combined the
judgments of friendliness with those of intelligence in a study of leadership. If
we have natural constants for the loadings of the friendliness and intelligence
scales on these dimensions, can we not use them as fixed values every time
they use those scales? One major benefit is that we vastly increase our numbers
of degrees of freedom, if we do. But another may be that we rule out equivalent
models in those parts of our models involving these fixed parameters. The
values will not fit just any data, but a specific kind of data for which they are
applicable.

What we stipulate is that we cannot free those fixed parameters to obtain
an equivalent model with different values for the constants using the current
data. The fixed values are determined elsewhere in other studies with other
data sets and experimental conditions. In those studies we have established
these fixed values as conventions, as the way we are going to theorize and
think about data of a certain kind from that point on, or until evidence arises
that using them leads to major predictive failure. But as scientists, we presume
also that they are invariants of nature and not just mere social conventions.
So, if you want to offer an alternative model to the one I use with the specified
fixed parameters obtained elsewhere, you have to carry out studies elsewhere
also to find different fixed values and show that they also lead to successful
predictions. But I will also insist, in addition to fit to within measurement
error, that your model must have much better fit with nearly as many or more
degrees of freedom than mine before I will concede to it.

So, my recommendation to researchers is that they ultimately seek to estab-
lish natural constants for structural coefficients, particularly in connection
with the indicators of the measurement models. Use these as fixed values in
other studies to see how far you can get with them.
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Instrumental Variables

Introduction

Subjects may be allowed to vary on extraneous variables if it is believed
that their variation does not have any relationship to the causal variables
of the study. Any influence on the dependent variables of such variation by
extraneous variables will then enter as components of the disturbances, but
the causal relations will be unaffected. In such cases the causal relations will
be estimable without bias. But even in the cases where some of the variation in
individuals is correlated with causes of these variables, it may be possible to
still estimate the causal relations as long as they are endogenous and there are
exogenous variables, this time known as instrumental variables, that are causes
of the endogenous causes, but not directly of their effects. These instrumental
variables must be independent of the disturbances on these endogenous effect
variables.

For example, consider Figure 11.1, which shows three manifest variables,
X1, Y1, and Y2, where X1 is a cause of Y1, and Y1 in turn is a cause of Y2.
However, the disturbances of Y2 are correlated with endogenous cause Y1 via
the covariance between the disturbances, but not with exogenous X1. We will
assume that the disturbances have unit variances.

According to Heise (1975), X1 in Figure 11.1 is an instrumental variable for
the Y1 → Y2 relationship if X1 has no direct effect on Y2 while at the same time
affecting Y1 either directly or indirectly through other intervening variables
that themselves have no direct effect on Y2. Furthermore, it must be the case

255
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d1
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g11
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FIGURE 11.1 A system of variables with an instrumental variable X1 and correlated errors.

that neither Y1 nor Y2 has a direct or indirect effect on X1. And there can be
no other variable that affects both X1 and Y2 both directly or indirectly. It is
possible for X1 to be correlated with the error ε1 of Y1, but not with the error
ε2 of Y2. Finally, any other variable W that is only correlated with Y1 but not
with Y2 is an instrumental variable for the Y1 → Y2 relationship if it has the
other properties of an instrumental variable.

To show that the coefficient of interest α21 is estimable without bias, consider
that this system is given by the equations

Y1 = γ11X1 + δ1ε1, E(X1) = E(ε1) = 0, σ(X1, ε1) �= 0, σ(X1, ε2) = 0

Y2 = α21Y1 + δ2ε2, E(ε2) = 0, σ2(ε1) = σ2(ε2) = 1

from which we may derive the following expressions for the covariances of
these variables:

σ(X1, Y1) = E[X1(γ11X1 + δ1ε1)] = γ11σ
2(X1) + δ1σ(X1, ε1)

σ(X1, Y2) = E[X1(α21Y1 + δ2ε2)] = α21σ(X1, Y1) + δ2σ(X1, ε2) = α21σ(X1, Y1)

with the consequence that we are able to get

α21 = σ(X1, Y2)

σ(X1, Y1)
.

Unless σ(X1, ε1) = 0, γ11 is unidentified, or biased if estimated as γ11 =
σ(X1, Y1)/σ

2(X1). But that does not matter, because our goal was to get α21. In
contrast, if only the variables Y1 and Y2 are given and the erroneous assump-
tion made that the disturbance on Y2 is uncorrelated with Y1, then estimating
α21 as α21 = cov(Y1, Y2) would yield a biased estimate, because cov(Y1, Y2) is
a function of both the causal effect of Y1 on Y2 and the correlation between the
disturbances σ(ε1, ε2). On the other hand, formulating a model in which Y1 is
correlated with the disturbance of Y2 would require estimating the covariance
between Y1 and the disturbance of Y2. But this would require estimating two
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parameters from only one observed covariance, and so the parameters of this
model would be underidentified.

In summary, the instrumental variable X1 has the advantage of introducing
an additional variable, with additional observed covariances to work with,
which allows us to obtain an unbiased estimate of the causal effect of Y1
on Y2. It also yields a test of whether there is a causal effect of Y1 on Y2. If
the correlation between X1 and Y2 is significantly different from zero, while
the partial correlation between X1 and Y2 given Y1 is zero, this supports the
existence of a causal relation between Y1 and Y2 by the d-separation criterion.

The problem, of course, with the instrumental variable technique is how to
find instrumental variables. This involves a careful analysis of the variable
Y1 to establish possible causes of it to include in the model. But measuring
and guaranteeing that these potential causes would be uncorrelated with any
other causes of Y2 may be problematic. On the other hand, the instrumental
variable X1 may be introduced as an experimentally manipulated variable
that affects the values of Y1. For example, Y1 may be a judgment variable that
a subject makes of a stimulus or situation, which in turn influences a variable
measuring a response or action taken by the person as a consequence of that
judgment. By initially performing an analysis of the stimuli to be presented,
one may be able to assign quantitative values to the attributes of each stim-
ulus. In fact, one may then be able to construct various stimuli with known
values for the stimulus attributes, and generate stimuli by varying the val-
ues of the stimulus attributes at random. In effect, one is creating values of
instrumental variables that are possible causes of the judgments made by the
experimental subjects. This randomization procedure will then lend support
to the idea that the stimuli presented to the subjects to judge and respond to
vary in ways independently of any external causes of the response variable(s)
Y2. Although they did not recognize at the time that they were using an instru-
mental variable technique, Carlson and Mulaik (1993) effectively conducted
such a study of personality ratings by randomly generating descriptions of
persons to rate, with known values for their personality, and showing that
the person-stimulus variables describing the persons rated drove the latent
judgments raters made on several dimensions, and these in turn drove their
ratings on four indicators, respectively, of each of these judgment variables.

Instrumental Variables and Mediated Causation

Since the mid-1980s, an issue debated back and forth in the literature concerns
how to test (a) whether a variable X is a direct, unmediated cause of another
variable Y, (b) whether the effect of X on Y is only mediated through an
intermediate variable M, known as complete mediation, or (c) whether X has
both a direct effect and a mediated indirect effect on Y, known as partial medi-
ation. The three cases are illustrated in Figure 11.2. Controversy has centered
on how one should test each of these cases.
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Baron and Kenny (1986) advocated a four-step procedure based on the path
model shown in Figure 11.2c: (1) test to see if the correlation r(X, Y) is equal to
zero; (2) test to see if r(X, M) equals zero. If one rejects both null hypotheses
in (1) and (2), this sets the stage for the next test by showing that X is related
to both Y and M. (3) Regress Yon both X and M. Test the resulting regression
coefficient d′ of Y on M (with X held constant) to see if it differs significantly
from zero. (Equivalently test whether the partial correlation between M and
Y with X held constant is zero.) If one deems there is a relation between M
and Y with X held constant, then (4) use the estimate of b′ in the regression
of Y on X and M to test the hypothesis that it is equal to zero. If so, one has
complete mediation. If not zero, one has partial mediation.

The Baron and Kenny (1986) approach is equivalent in structural equa-
tion modeling to estimating the parameters of the just-identified model in
Figure 11.2c and then testing them to see if they each differ from zero. Such
tests, of course, are not statistically independent and they mix both confir-
matory and exploratory procedures. James and Brett (1984) recommended
instead that one begin with a complete mediation model as a structural
equation model to test as shown in Figure 11.2b. In this case the com-
plete mediation model is overidentified. Accepting the complete mediation
model against the alternative that it is false is equivalent to showing that
cov(X, Y) = cd = cov(X, M) cov(M, Y) after showing that cov(X, Y) is not
equal to zero. It is also equivalent to showing that the partial correlation
ρ(X, Y | M) between X and Y with M held constant is zero. If one rejects
the complete mediation model, contrary to the view of the partial mediation
advocates, this does not logically require you to accept the partial mediation
model nested within the original complete mediation model.

There are other equivalent models implying different causal directions or
unmeasured common causes that would also be consistent with the data fit

εM

X
b

(a) (b)

(c)

b

c

c

d

d '

X

M

M

X

Y

Y

Y

εY εM εY

εY

FIGURE 11.2 Three cases of unmediated and mediated causation: (a) unmediated causation,
(b) complete mediation, and (c) partial mediation.
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FIGURE 11.3 Three models equivalent to the partial mediation model of Figure 11.2c.

by the partial mediation model in question (Stone-Romero and Rosopa, 2004).
Examples of some of these models are shown in Figure 11.3.

One way to reduce the indeterminacy of the three-variable partial mediation
models is to introduce a fourth, instrumental variable.

In Figure 11.4a, we have a partial mediation model like that in Figure 11.3c to
which has been added the instrumental variable Z. Z is selected as a cause of X
that is independent of the disturbances on X, M, or Y. We must have reason to
assume that ρ(Z, X) �= 0. Better still, if Z is a manipulated, randomized cause
of X, this usually (but not always) breaks any correlation that Z might have
with other inputs to X. To establish that the causal connections in the model
are correctly specified, there are a number of tests that we can perform: (1) X is
a cause of Y, either direct or indirect or both, if ρ(Z, Y) �= 0 and ρ(Z, Y | X) = 0.
Conditioning on X blocks access of Z’s variation to that of Y. (2) X is a cause of
M if ρ(Z, M) = bXZbMX �= 0. (3) If ρ(M, Y) �= 0 and ρ(Z, Y) = ρ(Z, X) · ρ(X, M) ·
ρ(M, Y), then X is not a direct cause of Y but an indirect cause mediated by M,

bXZ
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bYX.M
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(b)

bXY.M

bXM.Y

εX
εY

εYεX bMY

Z X

εM

bMX bYM.X

M

M

X Y

Y

Z

FIGURE 11.4 A partial mediation model (a) with an instrumental variable Z, and an equivalent
three-variable model for X, M, and Y, but with addition of Z as a cause of X.
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which is also a cause of Y. (4) If ρ(Z, Y) �= 0 and ρ(Z, Y | M) = bXZbYX·M �= 0,
then X is a direct cause of Y.

The instrumental variable Z allows us to determine the direction of cau-
sation with respect to variable X. Consider the model in Figure 11.4b. Z is
uncorrelated with M and the disturbances on X and Y. Z cannot be correlated
with M or Y because there are no causal paths from Z to these variables. X
is a collider on any causal path between Z and Y, and Z and M. Thus, if Z is
correlated with these variables, then X is also a cause of them, either directly
or indirectly, because X mediates the causal effect of Z to these variables
(Scheines et al., 2001).

Conclusion

The topic of instrumental variables now has an extensive literature, mostly in
the econometric literature. But instrumental variables are gaining recognition
in the behavioural, medical and social sciences as well. Instrumental variables
are used in natural settings when controlled experiments are not possible to
estimate causal effects. They are used to establish causal direction, consistent
estimates of causal effects, causal effects in the presence of omitted relevant
causes and random error. The major problem in their use is finding instru-
mental variables for a given application. Sometimes the endogenous cause
Y1 of effect variable Y2 is also an effect of some natural shock, X1 such as vari-
ation in the weather, which may be reasonably regarded as having no relation
to the disturbances on the endogenous effect variable. These natural, random
shocks can be treated as an exogenous instrumental variable. For example,
one may be interested in the effect of the number of hours spent shopping
at the mall in a week on the amount in dollars of goods purchased in that
week at the mall. As an instrument one may use a variable that measures the
severity of local daytime weather during that week. Variation in weather may
cause some variation in the number of hours spent shopping and in turn the
amount of purchases.
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12
Multilevel Models

Introduction

A common form of data found in the behavioral and social sciences has
subjects nested within one or more hierarchical levels of categories. In an
educational setting, subjects may be nested within classes, each with a dif-
ferent teacher, and the classes in turn may be nested within schools, and
these in turn within school districts. In an organizational behavior study, sub-
jects may be employees studied within stores, stores in turn being classified
within cities, cities in turn within regions. A hospital researcher may study
patients within wards, the wards in turn are in hospitals, and hospitals may
be within hospital systems, and these in turn in regions of the country. If at
each level of categorization there is variation in the units within that category,
this may represent potential sources of causal variation that has an influence
on the observed variables of the study. For example, variations in store man-
agers may bring different leadership styles to bear on the employees working
under them and influence their performance on various variables. In turn, dif-
ferent cities within which the stores are located may introduce variations in
the culture, transportation systems, health systems, and housing availability
that may influence differently the people working in each city and influ-
ence rates of tardiness, turn-over, absenteeism, wage, and health insurance
demands. The cities in turn may be placed under the supervision of different
higher level managers, who establish different policies in the regions within
which the cities are located. These variations in policy may also influence the
variation in behavior of the employees within the regions.

261
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To study data hierarchically organized like this has led to the development
of models of hierarchical multivariate analysis of variance and regression.
More recently, hierarchical models with latent variables have been developed
within the context of structural equation modeling. The topic is now well
developed and several new textbooks on the subject have been published
(Hox, 2002; Little, Schnabel, and Baumert, 2000; Reise and Duan, 2003; Bock,
1989; Heck and Thomas, 2000). We will only be able to provide a brief survey
of this topic here.

Multilevel Factor Analysis on Two Levels

For this discussion, I am indebted to Hox (2002), who in turn was indebted
to Muthén (1989). Suppose we have data on individual students in 150 class-
rooms of a given grade in a state school system. Each class, say, consists of
approximately 35 students. In all, just for illustrative purposes, suppose there
are 5350 students. By g we will denote a particular classroom containing Ng
students. There are G = 150 classrooms in all. The total number of students is
N = 5350. By Zjg we will designate the jth student’s scores on the n variables

in classroom g. Now, let Z̄g = (1/Ng
)∑Ng

j=1 Zjg be the sample mean vector

of the scores in classroom g. Let us denote by Z̄ = (1/N)
∑G

g=1
∑Ng

j=1 Zjg the
grand mean vector of all score vectors across all subjects in all classrooms. In
a manner analogous to the analysis of variance, let us now designate a score
for an observation vector as consisting of two components:

ZT = ZB + ZW .

Here ZT represents the combining of two deviation scores, ZB = Z̄g − Z̄
and ZW = Zjg − Z̄g. These two components can be shown to be mutually
orthogonal (but we will not do so here). Keep in mind, however, that the
orthogonality property here is not empirical but mathematical.

Hox (2002), following Muthén (1989), suggests that there exist “orthogonal”
population covariance matrices that combine as

ΣT = ΣB + ΣW .

These in turn may be estimated by sample variance–covariance matrices

ST = SB + SW .

Now, for ΣB and ΣW we may seek to fit to each, respectively, a distinct
structural model, for example, a common factor model. The first model fit
to ΣB represents a modeling of the covariation due to factors at the classroom
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level across classes. Variation in teacher effectiveness in different subjects
and classroom resources may be the basis for some of the variation in the stu-
dents’ scores across classes. The second, fit to ΣW , represents modeling of the
covariation due to factors at the individual student level, perhaps “individual
difference” factors such as verbal, spatial, and quantitative abilities.

Now, if Ng were the same in every class, it would seem natural to estimate
ΣW by

S∗
PW =

∑G
g=1

∑Ng
j=1 (Zjg − Z̄g)(Zjg − Z̄g)

′

N − G
, (12.1)

the pooled within-classes variance–covariance matrix, and

S∗
B =

∑G
g=1 Ng(Z̄g − Z̄)(Z̄g − Z̄)′

G − 1
, (12.2)

the between-groups sample variance–covariance matrix.
Muthén (1989, 1990), however, showed that although Equation 12.1 is an

unbiased estimate of ΣW , Equation 12.2, on the other hand, is an unbiased
estimate of ΣW + cΣB, where cis equal to the common size of all groups. In
other words,

S∗
W = Σ̂W (12.3)

and

S∗
B = Σ̂W + cΣ̂B, (12.4)

where the hat over the Σ’s indicates maximum-likelihood estimator of the
matrix under the hat.

These results are correct as long as the sample size within groups is the same
for each group. Of course, this is often unrealistic to assume. Classes in schools
do not all have exactly the same sizes. They may differ by having slightly
fewer or slightly more students than some mean size. But if the differences
in sample size are relatively small across groups (relative to class size), then
Muthén (1989, 1990) suggested using the following approximate value for c:

c∗ = N2 −∑G
g=1 N2

g

N(G − 1)
. (12.5)

The approximation only works well when both the number of students and
the number of classes is large (Hox, 2002). Hox suggests only attempting the
between-groups modeling when G > 150, otherwise parameter estimates and
significance tests may not be stable or accurate for the between-groups model.

Hox (2002) suggests a multistep series of tests. First, one constructs a model
for the within-groups variance–covariance matrix ΣW estimated using the full
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set of students, with N − G degrees of freedom. Because S∗
W in Equation 12.3 is

estimated independently from Σ̂W in Equation 12.4, Hox suggests performing
an exploratory factor analysis to find the best factor model for ΣW from S∗

W ,
and then using this model in the next step in combination with a model for
ΣB, fitting the combined model to S∗

B. Of course, one could always begin
with an a priori model for ΣW and test it against S∗

W , but if this model is

Within-groups model

Between-groups model

Within-groups model

(b)

(a)

c c c c c c c c c c c c c c c c

= = = =

= = =

===

= =
=

=
=

=

1 1 1

11

= = = = = = = = = = = =

= = = = = = = = = = = = = = = =

FIGURE 12.1 Simultaneous analysis of the multilevel factor model. (a) Within-groups model
fit to S∗

W . (b) Combined within-groups and between-groups models fit to S∗
B. Corresponding

parameters constrained equal across S∗
W and S∗

B indicated by =. Variances of latents fixed to
unity indicated by 1’s next to them.
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rejected, there is no point in going on with this rejected model to combine it
with a hypothesized ΣB, fitted to S∗

B, because the combined model would be
naturally rejected also. In any case, one can test this model with a structural
equation modeling program, using the options for simultaneous analyses in
two groups. See Figure 12.1.

The first “group” here has the covariance matrix S∗
W and the second

“group” the covariance matrix S∗
B. The model for ΣW fitted to S∗

W is also a part
of the model fitted to S∗

B. The free parameters in the within-groups model for
both models can be constrained to be equal, correspondingly, across groups.
In the between-groups model part of the model fit to S∗

B, the scaling factors on
select indicators should not be fixed to unity but to the scaling factor computed
in Equation 12.5. All of this is best seen in Figure 12.1.

It should be pointed out that usually the within-groups covariance matrix
S∗

W will be estimated based on numerous individual cases, whereas the
between-groups model is based on the much smaller number of groups. The
large number of individual observations will make the power of the chi-
square test for the test of the within-groups model exceedingly large, leading
frequently to rejection of the model due to small discrepancies not antici-
pated. Researchers thus often rely on indices of approximation to determine
whether to accept (provisionally) a model or not. (More about this is given in
Chapter 15.)

In many respects, the multilevel factor analysis model has similarities to the
MTMM model, and should occasionally display similar problems of empir-
ical underidentification and failures to converge. On the level of theory, the
multilevel factor analysis model is often heavily exploratory in its formula-
tion. The meaning of group factors may be largely artifactual since they do
not have distinct indicators to give them independent grounding separately
from the within-group factors, and theory may not be sufficient to give them
clear meaning.

Multilevel Path Analysis

An alternative to multilevel factor analysis is to conduct multilevel path analy-
sis, using distinct indicators for group-level latent causes. Every subject within
a given group will receive the same score on a between-groups variable. For
example, teachers may be measured for their college GPA, for their knowledge
of the subjects taught as given by scores on examinations, and be rated by
principals (based on observations) for their ability to stimulate interest in
their classroom, for their course preparation and organization. One may fur-
thermore have a causal model as to how prior education, as indicated by a
teacher’s grades in certain courses, causes the levels of knowledge, as indi-
cated by subject matter examinations, to influence teacher class preparation,
as judged by several expert observers of classroom behavior. Every individual
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within the class of such a teacher will be assigned the same teacher’s scores
on these teacher variables, in addition to scores on individual achievement,
aptitude, and/or interest tests. The bottom-line issue will be to determine the
extent to which variation in average student performance across classrooms
on specified student variables is caused by variation in the teacher variables,
as manifested in the data across classrooms.Additionally, there will be interest
in the extent to which individual aptitude and interest test scores determine
individual achievement on course outcome variables. The way to model data
of this kind is with a bilevel SEM as shown in Figure 12.2.

1

Student
achievement

Student
aptitude

Class aptitude Teacher’s classroom
effect

Supervisor
ratings

Teacher academic
achievement

Between-groups model

(a)

1

C C C C C C C C

Student
achievement

Student
aptitude

(b)

Within-groups model

Within-groups model

C C C C C C C C

1 1 1 1 111

1

FIGURE 12.2 An illustrative bilevel SEM.
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The reasoning behind how to formulate and test a bilevel SEM is essentially
the same as that given for the bilevel factor analysis model. However, an
important difference is that variables that vary only at the second level, for
example, teacher variables, do not have within-group variance. To see this,
we will follow the development of the total, between-group and within-

group score vectors, given for the multilevel factor model. By Zjg =
[

Zjg1
Zjg2

]

we will designate the jth student’s scores on nvariables in classroom g. These
n variables consist of individual student scores on aptitude tests and achieve-
ment tests Zjg1 as well as group scores Zjg2 corresponding to scores on the
teacher’s and other group-level variables. (“1” indicates level 1 or within-
group scores on which individuals vary within the group and “2” indicates
level 2 or between-group scores, which are the same for every individual
within the group.) Every student in a given class obtains the same scores

for the teacher/group-level variables Zjg2. Now, let Z̄g = (1/Ng
)∑Ng

j=1 Zjg be
the sample mean vector of the scores in classroom g. On the other hand, by

Z̄ = (1/N)
∑G

g=1
∑Ng

j=1 Zjg let us denote the grand mean vector of all score
vectors across all subjects in all classrooms. In a manner analogous to the
analysis of variance, let us now designate a score for an observation vector as
consisting of two components:

ZT = ZB + ZW .

Here ZT represents the combining of two deviation score vectors, ZB = Z̄g −
Z̄ and ZW = Zjg − Z̄g =

[
Zjg1
Zjg2

]
−
[ ¯Zjg1¯Zjg2

]
=
[

ZW1
0

]
. ZB will be essentially the

same as in the multilevel factor analysis model. But ZW differs in that the
within-group deviation scores on the group-level variables are all zero, since
their raw scores are all the same within a given group and hence equal to their
mean.

As before, this leads to a composition of the total variance and covariance
matrix in the population as

ΣT = ΣB + ΣW .

But in this case, with the 0’s of within-group deviation scores on the group-
level variables, this turns out to be

ΣT =
[
Σ11 Σ12
Σ21 Σ22

]
=
[
ΣB11 ΣB12
ΣB21 ΣB22

]
+
[
ΣW11 0

0 0

]
.

These in turn may be estimated by sample variance–covariance matrices

ST = SB + SW
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with

S∗
PW =

∑G
g=1

∑Ng
j=1 (Zjg − Z̄g)(Zjg − Z̄g)

′

N − G
(12.1)

and

S∗
B =

∑G
g=1 Ng(Z̄g − Z̄)(Z̄g − Z̄)′

G − 1
. (12.2)

As indicated earlier, when group sizes Ng are all the same, Muthén (1989,
1990) showed that Equation 12.1 is an unbiased estimate of ΣW , whereas
Equation 12.2 is an unbiased estimate of ΣW + cΣB, where cis equal to the
common size of all groups. In other words,

S∗
W = Σ̂W (12.3)

and

S∗
B = Σ̂W + cΣ̂B. (12.4)

Again, if the groups do not vary much in size, we may still obtain a good
approximate solution by using the following value for c:

c∗ = N2 −∑G
g=1 N2

g

N(G − 1)
. (12.5)

We may then begin by proceeding to fit a within-groups structural model
to S∗

W .
However, if the software does not make the proper adjustments, the vari-

ables on which there is only between-groups variation should be modeled
in the within-groups analysis as variables with uncorrelated disturbances
having unit variances (Hox, 2002). This is necessary to keep the covariance
matrix the same dimension as the between-groups covariance matrix and to
keep it also from being singular. This will augment the degrees of freedom
for the within-groups chi-square, and its degrees of freedom will have to be
adjusted by hand. Next, we fit the resulting within-groups model along with
a between-groups structural model to S∗

B as we did with the multilevel factor
analysis model.
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13
Longitudinal Models

Introduction

Models considered up to now assume that measurements are obtained
simultaneously at a given point in space/time. They take no account of order-
ing among the variables, such as ordering in time or ordering across space. For
example, a common factor model ordinarily has the assumption that subjects
are measured on all variables simultaneously, so there is no ordering to be
given among them representative of anything in the world. (They may be
given numbers but these are not representative of anything other than that
one variable is different from another.) But when measurement variables are
ordered in time or space, this changes how we model their relationships,
because then we must take into account this ordering. We will call models
that take into account ordering of variables in space or time “longitudinal
models.” The field of longitudinal modeling is now quite well developed and
encompasses many approaches to modeling. SEMs are only one approach to
longitudinal modeling. We can thus only refer briefly to some representative
longitudinal models.

Simplex Models

Although others preceded him in the mathematical development of simplex
models, Marshal B. Jones (1959, 1960) was one of the first in the behavioral

269

© 2009 by Taylor and Francis Group, LLC



“K10039_C013.tex” — page 270[#2] 21/4/2009 16:28

270 Linear Causal Modeling with Structural Equations

sciences to call attention to them. In fact, he can be considered a precursor
to the development of structural equation modeling in the behavioral sci-
ences. Jones was an aviation psychologist studying the effects of training
on naval pilots at the U.S. Naval School of Aviation Medicine at Pensacola,
Florida. In the 1950s, factor analysis was the principal tool used in study-
ing correlations among variables. But Jones came to question whether factor
analysis was the proper tool for dealing with training data. Nevertheless
there were those who were using factor analysis at that time to study rela-
tions between training and performance. In the learning laboratories there
were also those who were using factor analysis to study the relationships
between performance at different stages in sets of learning trials—which is
still training. What bothered Jones was that the technique of factor analysis
was principally exploratory, concerned with discovery, while he believed one
had to go beyond that to test specific hypotheses about how variables were
related. Implicit in his thinking is causality. Training men to become naval
aviators is a complex undertaking. There are numerous skills that must be
learned, and some must be learned before one can undertake to learn others.
And if you do poorly in learning basic skills, this will show up in poorer
performance in the learning of more complex skills dependent on having
mastered the basic skills. You will not succeed and likely will kill yourself
and destroy a million dollar airplane if you try to learn how to land on an
aircraft carrier in a heavy sea before learning the more basic skills of flying
the plane. So the learning of basic piloting skills is causally related to the
complex skills involved in landing a plane on an aircraft carrier in the ocean.
In fact we can break down the skills needed to pilot a plane itself into more
fundamental skills, and show that there is a hierarchy of skills that must be
learned in a certain order in the process of learning a complex skill. And
this is true not just in the case of naval aviators, but in the case of learn-
ing any complex set of skills, such as in becoming a concert pianist, a great
golfer or baseball player, or a professional mathematician. Measures of per-
formance along the way are ordered in time and this ordering must be taken
into account in formulating and testing any theory of how the complex skill
is learned.

In the process of trying to formulate models for this kind of data, Jones
was exposed to some of the work of Louis Guttman (1954) on simplex and
circumplex models. A simplex model accounts for correlations among trials
in learning experiments to a high degree. Performance at any trial in a study
of acquiring a complex skill depends only on abilities acquired up to the
previous trial as well as new abilities acquired in the current trial. At each
successive trial, old abilities are retained and new abilities acquired. Jones
thus sought to find examples of learning data in the literature that would
exhibit the kinds of dependencies he expected from a simplex. He found it in a
study of correlations among stages of practice of subjects in the Discrimination
Reaction Time Test (Fleishman and Hempel, 1955), which we reproduce in
Table 13.1.
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TABLE 13.1

Correlations among Eight Stages of Practice in the Discrimination
Reaction Time Test (Fleishman and Hempel, 1955)

1 2 3 4 5 6 7 8

1 1.00
2 0.74 1.00
3 0.71 0.82 1.00
4 0.69 0.78 0.83 1.00
5 0.62 0.74 0.79 0.80 1.00
6 0.59 0.68 0.72 0.74 0.77 1.00
7 0.57 0.66 0.72 0.72 0.73 0.74 1.00
8 0.56 0.64 0.71 0.74 0.77 0.80 0.79 1.00

Before we go on to provide a simplex model for these correlations, using
structural equation modeling, note one important feature of this correlation
matrix: It has “superdiagonal form.” With exceptions that may be due to
sampling error, in any row the highest correlation is between the variable in
question and the variable immediately preceding it, found in the diagonal
adjacent to the principal diagonal. Furthermore, the correlations drop off in
magnitude as you go away from the principal diagonal toward the left or
down. The lowest correlation is found in the lower left corner. Also, the farther
apart in the order of the variables any two variables are, the lower will be the
correlation between them. When you encounter a correlation matrix with
these properties, you need to think that a simplex model applies.

Now the path diagram for a simplex model for these data is shown in
Figure 13.1. In this model the V’s represent scores in successive trials of
the experiment. The V’s thus have an order in time. The F’s are latent vari-
ables, as are also the D’s and E’s. The E’s are error variances of the observed

*E2 *E3 *E4 *E5 *E6 *E7

*D8*D7*D6*D5*D4*D3*D2

F7F6F5F4F3F2F1

V1 V2 V3 V4 V5 V6 V7 V8

111111

11 1 1 1 1 1 1

1111111

1 * * * * * * * F8

FIGURE 13.1 A simplex model for the correlation matrix in Table 13.1 for EQS.
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variables, the V’s. An asterisk by an arrow indicates a free structural param-
eter. An asterisk by the label for a latent variable indicates that its variance is
a free parameter. The 1’s are fixed parameters. F1 has a variance of 1 because
it is equivalent to V1, which has a variance of 1 in the correlation matrix. F8 also
has a variance of 1 determined by the variance of V8. Both V1 and V8 have no
error variances, which we must assume to achieve identification of the model.

In this model F1 is presumed to be what is used or acquired in the first trial.
F1 then has an effect on the latent variable F2, as does also D2. So, F2 represents
the accumulated effect of F1 and D2 on V2. F2 in turn has an effect on F3 as
does also D3. From here on the D’s represent additional components learned.
An immediately preceding F represents the accumulated learning of earlier
components to be combined with the D learned in the current trial. Prior
learning only enters in via an immediate preceding F and this only influences
directly the next F in the series. This constraint on what variables the F’s have
an effect on is what gives this model a fair number of degrees of freedom.

Jones did not have a structural equation modeling program to fit a simplex
model to these data. He was, nevertheless, able to construct a close approxi-
mation to what the correlations would be among the variables if a simplex
model applied. However, I have the program EQS of Bentler and Chu (1995),
and I fitted the above simplex model to the correlation matrix in Table 13.1.
The results are shown in Table 13.2.

If we use these parameter estimates and path-tracing rules, we can see why
variables that are farther apart have lower correlations in a simplex model.
For example, variable V1 and variable V8 have correlations due to the product
of all the coefficients on the arrows between the F’s, all of which are less than
unity. In fact, the correlation between any pair of variables is just the product
of the coefficients on the arrows between the corresponding F’s. Any pair of
variables farther apart will have more arrows between the F’s to pass through,
and since the associated coefficients are less than unity, their correlation, equal
to the product of these coefficients, will be less than the correlation of a pair
of variables between them.

The fit of the simplex model in Figure 13.1 to the correlation matrix in
Table 13.1 is indicated by the EQS program in Table 13.3.

The chi-square of 9.407 with 16 degrees of freedom is not significant, indi-
cating fit to within sampling error. The goodness-of-fit indices (GFIs) such as
the CFI are 1.00 or greater. The RMSEAis estimated to be 0, and the confidence
interval on the RMSEA contains 0. So, this fit is about as good as it gets.

The next example of simplicial data does not concern ordering in time but
rather in space. The correlation matrix also does not have the superdiagonal
form, but rather what Jones called a “doubly concave” form. The model will be
said to have a “bisimplex” form involving a simplex on two sets of variables.
The data were collected by a dentist, Dr. John H. Manhold, on a sample of 600
naval cadets. Manhold determined the Bodecker index, a measure of cavity
formation, for each tooth, excluding the four wisdom teeth. The index for each
tooth was correlated with the index for every other tooth. A high correlation
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TABLE 13.2

Model Equations with Parameter Estimates for
the Simplex Model in Figure 13.1 Applied to
the Correlation Matrix in Table 13.1

Standardized Solution

V1 = 1.000F1 + 0.000E1
V2 = 0.923F2 + 0.384E2
V3 = 0.936F3 + 0.353E3
V4 = 0.923F4 + 0.385E4
V5 = 0.913F5 + 0.407E5
V6 = 0.889F6 + 0.457E6
V7 = 0.866F7 + 0.500E7
V8 = 1.000F8 + 0.000E8
F2 = 0.801F1 + 0.598D2
F3 = 0.949F2 + 0.317D3
F4 = 0.964F3 + 0.265D4
F5 = 0.953F4 + 0.304D5
F6 = 0.947F5 + 0.322D6
F7 = 0.977F6 + 0.215D7
F8 = 0.912F7 + 0.410D8

Note: Obtained using the EQS Program of Bentler and
Chu (1995).

between two teeth indices meant that if you had cavities in one tooth, you
were likely to have them in the opposite one also. Jones then recognized that
the correlations had a simplicial basis, and he sought to fit a model to the
variables. These data appear in Jones (1960). Teeth and their labels are shown
in Figure 13.2.

UL2M

UL1M

ULB2

ULB1

ULET

ULLI
ULCIURCI

URET

URLI

URB1

URB2

UR1M

UR2M

FIGURE 13.2 Diagram of the upper arch of teeth with standard dental labels for each tooth.
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TABLE 13.3

Goodness-of-Fit for the Simplex Model Fit to the Correlation Matrix in
Table 13.1

Goodness-of-fit summary
Independence model chi-square = 1579.169 on 28 degrees of freedom
Chi-square = 9.407 based on 16 degrees of freedom
Probability value for the chi-square statistic is 0.89570
The normal theory recursive least squares (RLS) chi-square for this ml solution is 9.280
Bentler–Bonett normed fit index = 0.994
Bentler–Bonett non-normed fit index = 1.007
CFI = 1.000
Bollen (IFI) fit index = 1.004
McDonald (MFI) fit index = 0.017
Lisrel GFI fit index = 0.988
Lisrel AGFI fit index = 0.974
Root mean square residual (RMR) = 0.012
Standardized RMR = 0.012
Root mean square error of approximation (RMSEA) = 0.000
90% confidence interval of RMSEA (0.000, 0.029)

Given the correlation matrix in Table 13.4, I formulated a SEM for it, which
I show in Figure 13.3.

The variables in Figure 13.3 are ordered from the rear to the front of the
mouth, from second molar to first molar, to second bicuspid to first bicuspid,
to eye tooth to lateral incisor and then central incisor. UR means “upper right”

TABLE 13.4

Correlations between Upper Teeth in Terms of Degree of Dental Caries

1.00 UR2M
0.54 1.00 UR1M
0.43 0.42 1.00 UR2B
0.32 0.34 0.62 1.00 UR1B
0.22 0.23 0.31 0.38 1.00 URET
0.25 0.22 0.24 0.29 0.42 1.00 URLI
0.18 0.24 0.23 0.24 0.36 0.46 1.00 URCI
0.14 0.19 0.20 0.20 0.34 0.41 0.70 1.00 ULCI
0.21 0.25 0.20 0.27 0.37 0.59 0.40 0.43 1.00 ULLI
0.21 0.26 0.20 0.31 0.46 0.37 0.33 0.31 0.43 1.00 ULET
0.37 0.40 0.47 0.52 0.31 0.31 0.27 0.22 0.27 0.35 1.00 UL1B
0.40 0.43 0.59 0.48 0.28 0.23 0.23 0.15 0.23 0.28 0.62 1.00 UL2B
0.50 0.58 0.42 0.33 0.20 0.21 0.24 0.17 0.24 0.25 0.47 0.47 1.00 UL1M
0.58 0.51 0.42 0.42 0.26 0.31 0.21 0.20 0.27 0.28 0.48 0.44 0.55 1.00 UL2M

Source: Jones, M. B. (1960). Molar Correlational Analysis. Monograph series no. 4. Pensacola,
FL: U.S. Naval School of Aviation Medicine.

Note: N = 600.
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E8

UL2M

F1 F2 F3 F4 F5 F6 F7

D7D6D5D4D3D2

γ14,7γ13,6γ12,5γ11,4γ10,3γ92γ81

γ21

1

V1 V2 V3 V4 V5 V6 V7

1 1 1 1 1 1

α32 α43 α54 α65 α76

UL1M UL2B UL1B ULET ULLI ULCI

URCI

E7E6E5E4E3E2E1
1 1 1 1 1 1 1

URLIURETUR1BUR2BUR1MUR2M

V14V13V12V11V10V9V8

E9 E10 E11 E12 E13 E14
111111 1

FIGURE 13.3 A bisimplex model with two manifest variables for each latent F variable for the
dental caries data.

and ULmeans “upper left.” The corresponding teeth on each side of the mouth
are paired to serve as indicators of the same latent F variable. This suggests
that physical contiguity between teeth is not the only basis for similarity in
the degree of dental caries, but corresponding teeth that perform similar func-
tions also are most similar in their degree of dental caries. In fitting the model
of a true bisimplex, I initially specified that all error variables on the mani-
fest variables were to be uncorrelated. But the model did not fit exactly, and
Lagrange multiplier tests revealed that the errors on the two bicuspids on
a given side were correlated. Hence we show in the model the bidirectional
links between E3 and E4 and between E10 and E11 to indicate the correlation
between these variables. Jones (1960), using his own methods, also found that
the bicuspids on any one side were more correlated than suggested by a sim-
plex model. The initial bisimplex model did not fit sufficiently well, but with
the freeing of the error correlations between the bicuspid teeth, the model
became acceptable as an approximation, although there was still significant
residual covariance that remains unexplained. The large sample of 600 sub-
jects allowed for the detection of small deviations from the bisimplex model.
In any case, the chi-square statistic for goodness-of-fit with 69 degrees of free-
dom was 135.252, which was significant beyond the 0.001 level. The average
absolute standardized residual was 0.023. The CFI index was 0.981, which
indicates an excellent approximation. The GFI of LISREL was 0.969, while
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TABLE 13.5

Correlations among Five Objective Tests given
1064 Sophomores at Bucknell College in 1931

1. Spelling 1.00
2. Punctuation 0.62 1.00
3. Grammar 0.56 0.74 1.00
4. Vocabulary 0.48 0.50 0.58 1.00
5. Literature 0.39 0.46 0.47 0.69 1.00

the RMSEA index was 0.04, which is an acceptable degree of approximation,
with the 90% confidence interval on the RMSEA index given as (0.03, 0.05).
So, while a bisimplex model based on order of teeth is an excellent approx-
imation, it does not account for all of the correlation between teeth, which
may be due additionally to the special shape and function performed by the
respective teeth.

Jones (1960) also showed correlation matrices displaying simplicial form
between variables that were not ordered in time or space, but in terms of nest-
ing of abilities and knowledge. Consider the correlation matrix in Table 13.5
between five test scores obtained from 1046 sophomores at Bucknell College
in 1931 (Bigham, 1932).

According to Jones (1960), the first three tests were based on one long pas-
sage that the students were to correct for spelling, punctuation, and grammar.
The vocabulary test involved items that required the subject to show which
of four words was synonymous with a given word. On the literature test the
subject gave the names of English authors and books most connected with
a certain theme or topic. Jones (1960) notes that “. . . for the most part, that
is, 80% of the variance, the abilities required in spelling are included among
those which are used in punctuation and grammar tests, that the same things
which make for success in punctuation also make for success in grammar, and
so on” (p. 25). He also notes that there seems to be more than just contiguity
involved in this ordering of variables, but complexification of functions as
well. The ordering could also be accounted for by the recency in which the
skills were acquired. Spelling was learned before punctuation, and in turn
grammar in grammar school and high school. Vocabulary at the college level
involves learning many new technical terms. Vocabulary acquisition would
take place in the first and second year. Literature may be explored in the sec-
ond year, and its understanding and the learning of names associated with
themes and topics would depend on the vocabulary one had acquired up to
that point.

I now show another correlation matrix from Jones’ (1960) monograph to
illustrate that a simplex need not apply just to data ordered in time and space.
The variables in this example involve the various stages of Ravens Progressive
Matrices Test, which is a nonverbal test of general intelligence or analytic,
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TABLE 13.6

Correlations among the Six Stages of the Ravens Progressive
Matrices Test

1 2 3 4 5

1. Continuous patterns 1.00
2. Analogies of figures 0.57 1.00
3. Development of figures 0.53 0.64 1.00
4. Combination of figures 0.47 0.54 0.66 1.00
5. Resolving figures into parts 0.32 0.35 0.39 0.52 1.00

rule-inferring ability based on geometrical figures and patterns. There are
five stages, and the test at each stage is designed to be more complex than
the test in a preceding stage and measures whatever abilities were required
in preceding stages, as well as requiring additional abilities. I leave it to the
reader to provide the fitting of a simplex model to this and the preceding
correlation matrix (Table 13.6).

A central theme in Jones’ (1959, 1960) monographs concerns how
exploratory common factor analysis often yields a good fit to simplicial cor-
relation matrices with a smaller number of factors, but with factors that are
difficult to interpret. Jöreskog in Jöreskog and Sörbom (1979) shows that for
three and four variables, one can always fit a common factor model exactly
to data generated by a simplex. Bast and Reitsma (1997) show that the com-
mon factor model will still be a close approximation for cases with more
than four variables—as long as there is freedom to take enough factors.
Mulaik and Millsap (2000) make a similar observation. For example, they
show that an exploratory common factor model with three common factors
will fit 10 variables generated by a simplex very well. The factors represent
early, intermediate, and late effects, respectively, in the ordering of the vari-
ables, but seem to be artifacts. Jöreskog and Sörbom (1979) also show other
forms of bisimplex models and should be consulted for further details about
these models.

Latent Curve Models

Factor analysis was applied early on (Tucker, 1958; Rao, 1958; Scher, Young,
and Meredith, 1960) to learning and growth curves. Meredith and Tisak
(1990) in a seminal paper synthesized preceding developments in this area
and suggested ways of generalizing these approaches to structural equation
modeling. We will now survey some of these developments here.

We are going to consider cases where individuals i are measured succes-
sively in time or serially in space on certain variables. We will keep things
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simple by considering that the same single variable is measured on each of
several repeated occasions, but the method can be generalized to several vari-
ables measured serially or longitudinally. We will initially draw heavily on
Meredith and Tisak (1990).

Let zi(t) be a realization of a random variable Z in individual i’s measured
behavior on some characteristic, at t, where t is a nonrandom variable that
may be discrete or continuous. Usually, in applications, t is discrete and Z
is always continuous. The variable t can represent “time, age, grade, trial
number, degree of arousal, experimental condition, test form or stimulus
intensity, and might even be unordered and multivariate, as in the dummy
coding of unordered experimental conditions” (Meredith and Tisak, 1990,
p. 107).

Next, we will assume that for each zi(t) there is a function that relates Z
to t. The function relating zi(t) to t itself will be thought of as a composite of
a set of several common “basis functions” gk(t) which are themselves func-
tions of t. These basis functions may be presumed to be observed or latent
and even unknown. In other words, the relation between zi(t) and t is to be
given by

zi(t) =
r∑

k=1

wikgk(t) + ei(t). (13.1)

The expression ei(t) denotes a realization of an error random variable E(t)
which may encompass error of measurement and even errors of approxima-
tion. wik is also a realization of a random variable Wk on which individuals
i vary, representing the degree to which or the salience to which individual
i “uses” the value of the kth basis function, g(t)

k , at t in determining his/her
response. The parameter wik is thus an individual difference parameter.

We will further consider that by varying t, implying that we observe the
variable Z in each individual i at each of several discrete points t, we relate
each zi(t) (t now also varying) to the same basis function gk(t), but the weights
wik for individual i remain the same for each t, while the value of the kth basis
function, gk(t), varies with t.

Meredith and Tisak (1990) then consider that the random variable Z is
measured in each individual i at each of the points t1, t2, . . . , tp of t. They then
introduce a change in notation that brings out the similarities of the model to
the common factor model. Let zij = xi(tj) be individual i’s score on occasion
tj, γjk = gk(tj) be the value of function gk(t) at tj, and eij = ei(tj) be the error in
Z at tj. Over all the p occasions of t, let us gather these expressions into vectors
representing the realizations of the random variables of a given individual.
Let z′

i = [zi1, zi2, . . . , zip], w′
i = [wi1, wi2, . . . , wir], and e′

i = [ei1, ei2, . . . , eip]. We
now write in matrix form an equation for a particular realization of individual
i′s responses as

zi = Γwi + ei.
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In terms of random variables varying over i, this becomes

Z = ΓW + E. (13.2)

We now consider the means and variance–covariance matrices for the ran-
dom variables in question and then will introduce some assumptions that
provide constraints on the model generally.

The expected value of W is given by E(W) = ν. In general, we assume this
is not equal to zero. Similarly, E(WW′) = Y and E(EE′) = Y. We will assume
that E(E) = 0 and E(EW′) = 0. From these assumptions we may deduce that

E(Z) ≡ μ = Γν. (13.3)

We introduce the additional assumptions that W and E are independent and
do not merely have zero covariances, and further assume that the errors on
different occasions are independent, implying that Ψ is a diagonal matrix of
uncorrelated errors.

We may also further deduce the fundamental theorem of this model:

E(ZZ′) ≡ Ω = ΓYΓ′ + Ψ. (13.4)

This obviously has the form of a common factor model. However, E(Z) �= 0
and E(W) �= 0.

If Z is a p × N matrix of p observations of Z on N subjects, then

μ̂ = 1
N

Z1

is an estimate of the mean vector for Z, where 1 is an N × 1 column sum
vector.

This represents the average growth curve over the p occasions. On the
other hand,

Σ̂ = 1
N

ZZ′

is an estimate of the second moment matrix. Meredith and Tisak (1990) indi-
cated that Tucker (1958) would perform an exploratory factor analysis of Σ̂

and rotate the factor solution to obtain a solution (not unique) for Γ̂ and Ŷ.
However, the rotated solution was not a simple structure solution. Meredith
and Tisak (1990) however suggested modeling the partitioned matrix in a
confirmatory context as

M̂
[
Ω̂ μ̂

μ̂
′ 1

]
=
[
Γ̂ 0
0′ 1

] [
Ŷ ν̂

ν̂
′ 1

] [
Γ̂

′
0

0′ 1

]
+
[
Ψ̂ 0
0′ 1

]

=
[
Γ̂ŶΓ̂

′ + Ψ̂ Γ̂ν̂

ν̂
′
Γ̂

′
1

]
. (13.5)
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They suggest that one could specify the matrix Γ by requiring its first column
to be all 1’s, the second to be t1, t2, . . . , tp, the third to be t2

1, t2
2, . . . , t2

p, and so on.
Thus the basis functions would be simple polynomials. These, however, are
not mutually orthogonal. We could, instead, use sets of orthogonal polyno-
mials. Other functional forms, such as the negative exponential, are possible.
To be identified, at least r2 parameters across Γ, Y, and ν must be properly
specified.

The matrix Ψ could be simplified to Ψ = ψI, testing whether all of the error
variances are equal. One could allow some of the error variables to be corre-
lated, for example, between adjacent variables only, so that Ψ is modeled as
a tridiagonal matrix with free parameters on the principal diagonal and the
adjacent diagonals.

1 1 1 1 1 1 1
e7e6e5e4

Z4 Z5 Z6 Z7

3625169
32

1

1

11

1
1

1n1

u22 u33

u23

u13

u12

u11

n2
n3

1 1 1 1 1

S QL

W1 W2 W31

4 5

4

6

Z3Z2Z1

e3e2e1

FIGURE 13.4 A latent curve model with L, S, and Q latent basis functions for seven variables
representing a variable measured at seven points in time. Each of the υij is a free parameter as
are ν1, ν2, and ν3.
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In Figure 13.4 we show a latent curve model of seven variables, each rep-
resenting an observation on some variable at some successive point t in time.
The values of t are 0, 1, 2, 3, 4, 5, and 6. This is a model of a curve using variable
level, slope, and quadratic effect. W1, W2, and W3 are individual weight ran-
dom variables, each having a zero mean to which is added a constant mean
given respectively by ν1, ν2, and ν3. L represents the constructed level function
latent variable, S the constructed slope or linear function latent variable, and
Q the quadratic function latent variable. Note that L, S, and Q have no distur-
bances and are completely dependent on W1, W2, and W3 and the coefficients
ν1, ν2, and ν3.

The first column of Γ is a column of 1’s, indicating that the value of the
function at each point t in time is the same for a given individual. The second
column of Γ has the coefficients 0, 1, 2, 3, 4, 5, 6. These establish a linear trend
among the observed variables. The third column has coefficients 0, 1, 4, 9,
16, 25, 36, which establish a quadratic trend among the observed variables.
These are indicated as fixed values on the paths connecting the respective
latent function factors to the observed variables. Another thing to notice is
that the model has the form of a common factor model. We will now show a
model that is more in keeping with a SEM.

The previous example showed a model with latent exogenous individual
weight variables that conformed to a common factor model. Suppose that the
weight variables were themselves determined in part by manifest variables.
We show this case in Figure 13.5, where the variables X1 and X2 have been
introduced into the previous model to be additional sources for the variation
in the individual level and slope parameters, respectively. X1 affects only W1
whereas X2 affects both W1 and W2.

Reality or Just Saving Appearances?

To my mind, there is something problematic about many applications of lon-
gitudinal models (and other models as well). It is not that they attempt to
model longitudinal data, but rather than that they tend to do so in ways
where the mathematics seems to outrun the science of what is represented by
the models. To what extent do these models correspond to reality?

There is a tradition in the history of science that goes back to the conflict
between Galileo and the Roman Catholic Church and beyond (Losee, 1980). It
concerns the role of mathematics in science. Does mathematics simply provide
models that allow one to “save the appearances,” that is, reproduce the rela-
tions in the observed data, without any pretense of representing reality? Or do
mathematical models seek to represent reality? The Church in Galileo’s time
was committed to interpreting as true certain passages in the Bible that stated
that the earth did not move. The Church was also committed to tolerating
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FIGURE 13.5 Introduction to the previous model of exogenous variables X1 and X2 that serve
to moderate the level and slope parameters of the respective observed Z variables.

scientists’ development of hypotheses that “saved the appearances,” as long
as they did not assert them as reality when they contradicted sacred text.
The second-century Greek astronomer Ptolemy had developed a complex
geocentric system of off-centered “deferent” orbits around the earth and plan-
etary circular orbits called “epicycles” that were centered on the deferent
orbits while following the path of the deferents around the earth. The system
allowed for predictions of planetary positions, and accounted for retrograde
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motion observed in the planets. But because the system contradicted Aristo-
tle’s theory that the stars and planets were on concentric crystalline spheres
centered on the earth, Ptolemy only claimed that his model merely “saved the
appearances,” providing a useful tool for calculating and predicting positions
of planets, and was not a representation of reality. Even when Copernicus’
much simpler heliocentric planetary system was put forth, with the earth
one of the planets moving around the sun, it was tolerated by the Church as
merely a “hypothesis” that saved the appearances. But Galileo argued that
Copernicus’ system was more than a hypothesis, it was reality. The earth
really moved. That was the source of trouble Galileo had with the Church.
But science has tended to side with Galileo in regarding scientific models as
about reality and not merely “saving of the appearances.”

Modern scientists, such as Galileo before them, regard as more objective
(real) models that are simpler in requiring estimation of fewer parameters rela-
tive to the number of observations to be accounted for.Additionally, the model
is invariantly supported across different laboratories by different researchers.
External independent evidence for the entities of a model is also obtained.
Objective models also make successful predictions of new phenomena.

Although the simplex models and the latent curve models that we have
considered have positive degrees of freedom, their number relative to the
number of observed parameters that they span is still relatively low. The ratio
of the 16 degrees of freedom of the simplex model in Figure 13.1 to the 36
observed variances and covariances it is designed to account for is only 0.444.
The ratio for the bisimplex model with two indicators per latent is higher, 0.66.
The latent curve models have ratios in the 0.60’s. But common factor models
with many indicators per latent common factor and equality constraints on
parameters often have ratios up in the high 0.80’s and even 0.90’s. These ratios
decrease with each estimated parameter. We have argued in this chapter that
equivalent models are possible because of estimated parameters in a model.
And the existence of equivalent models raises the question of whether a given
model is not just “saving the appearances” as opposed to asserting something
objectively “real” about the world. More than “goodness-of-fit” is required.

It may be that quantitative psychologists tend to be more focused on the
mathematics than the science of their models’ applications. But ultimately for
science’s sake, they need to attend to the real-world meaning of entities and
relations in their models, so that they are not just “saving the appearances.”
For example, what is the psychological meaning of each latent variable at
each stage of the learning simplex? In the latent curve models, what is the
psychological status of the L, S, and Q latents? Are these not merely math-
ematical devices for approximating a function with the first three terms of
a power series? Granted, the curve is an interesting generalization of how
general individuals’ scores change across time. But do we know anything
more about the physical or psychological mechanisms generating the func-
tion through time if we are able to fit a latent curve model to it? Is the latent
curve just an artifact of the particular selection of variables and times at which
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they are measured? Or would it be invariant in impacting other similar vari-
ables measured at the same times? That will mean trying to find corroborating
and external validation and support for the curve and for the latent variables
of the models. Having four or more indicators per latent variable may also
improve the situation. Corroboration of the existence of a latent among four
or more variables gives it an independent existence. Showing that some esti-
mated parameter values are natural constants for certain applications, will
also lead to some currently estimated parameters becoming fixed parameters
in these models, which will also increase degrees of freedom.

To a considerable extent, at this writing, longitudinal modeling is new in
the behavioral sciences. This perhaps explains the emphasis on developing
all-purpose models for describing change, which often do not consider
multiple indicators of their latent variables or natural constants for certain
applications. Time will tell whether these models will have more than mathe-
matical interest in scientific applications in leading to real insights into the
nature of change.
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14
Nonrecursive Models

Introduction

So far, we have considered only recursive models, models with flow graphs
that have no loops, no feedback, and no reciprocal effects between pairs of
variables. We will now consider nonrecursive models with loops. I base much
of this section on material in Heise’s (1975) Causal Analysis. But an excellent
source is also given in Chen (1983) and in the introduction to Wyatt (2004).
A connected series of causal arrows that begins and ultimately ends at the
same variable is a loop. In Figure 14.1, we show some basic kinds of loops in
nonrecursive models.

Observe that in the case of each of the loops in Figure 14.1 there is an external
variable impinging on one of the variables of the loop. This is essential to
provide a value for the loop to begin with.

Nonrecursive models can have any number of loops and any number of
variables in them. It will be important to identify each of the loops in such a
model. I will use the convention in describing a loop by listing in order each
variable in the loop in parentheses. I will deviate from Heise’s convention by
listing the start variable twice, at the beginning and the end. This is to avoid
confusion with open paths that do not form loops. So in Figure 14.1a the one-
variable loop is (Y1Y1). The reciprocal effects loop in Figure 14.1b is (Y1Y2Y1).
The three-variable loop in Figure 14.1c is (Y1Y2Y3Y1). It is possible to begin a
loop with any one of the variables in the loop, as long as that variable has an
external variable impinging on it.

285
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FIGURE 14.1 Three basic kinds of loops: (a) self loop; (b) reciprocal effects loop; and (c) three
variable loop. (Adapted from Heise, D. R. (1975). Causal Analysis. New York: Wiley, p. 56.)

Flow Graph Analysis

The following discussion is based on principles of signal-flow graph analysis
developed by the engineer Samuel Mason (1953, 1956). The theory of nonre-
cursive models is well understood by electrical engineers, who must analyze
current flow in complex electrical circuits and estimate feedback effects (of
loops). But the principles of flow graph analysis have been extended beyond
electrical engineering to other fields of engineering where it is sometimes
called “analysis of feedback control systems.” It even has counterparts in
hydrology. After World War II, mathematicians recognized that the vary-
ing graph theories developing in diverse fields had common properties and
worked out and extended the theory of graphs as an abstract subject. Heise
(1975) is a sociologist who adapted the theory of flow graph analysis to
sociology.

We have already covered some principles of flow graph analysis in our
earlier discussion of path-tracing rules for finding variances and covari-
ances among variables in linear structural models. What is new is the use of
the rules of flow graph analysis to condense or reduce path diagrams. In
Figure 14.2, there are some common ways of reducing or condensing graph
models either by absorbing variables or consolidating parallel paths. In Figure
14.2a, X has an indirect effect on the variable Z through an intervening vari-
able Y. The intervening variable Y can be absorbed into X. The path coefficient
then for X’s effect on Z is the product of coefficients along the path from X to Z.
In Figure 14.2b, if there are two parallel paths from X to Y through intervening
variables U and V, we can consolidate these two paths into one direct path
from X to Y. The path coefficient for the direct effect of X on Y is the sum of
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FIGURE 14.2 Reduction or condensing rules of flow graph analysis for recursive models.
(a)Absorbing a variable; (b) consolidating paths in parallel; (c) absorbing a variable; (d) absorbing
a variable. (Figure (a)–(c): From Wyatt, G. (2004). Macroeconomic Models in a Causal Framework.
Edinburgh: Harmony House. With permission.)

the products of the path coefficients in the two parallel paths. In Figure 14.2c,
X and Y are two immediate causes of a variable U, which in turn is an imme-
diate cause of a variable V. We can absorb U into X and Y, respectively, by
making X and Y immediate causes of V, where each has a structural coeffi-
cient equal to the product of the coefficients along the path from X through U
to V. Finally, in Figure 14.2d, a variable X may have an immediate effect on Y,
which has two paths branching from it to the variables U and V, respectively.
But we may eliminate Y by taking X as a direct common cause of both U and
V. In that case, the path coefficients on the direct paths from X to U and V
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are the products of the path coefficients on the paths from X to Y to U and
V, respectively. There will be other absorbing and consolidating rules that
involve path diagrams with loops, and we will display them shortly.

Open and Closed Paths

We now need to make a distinction between open and closed paths. We are
already familiar with open paths, because they are the kind found in graphs
of recursive models. An open path is a connected sequence of arrows with no
reversal of arrows along the path that passes through no variable more than
once and begins and ends with different variables (Heise, 1975). A closed path
is a loop, that is a connected series of arrows that have no reversals along the
path of the loop that begins and ends with the same variable. The beginning
and ending variable can be chosen arbitrarily.

In Figure 14.3, I show a model with three loops: (Y1Y2Y1), (Y1Y2Y3Y1), and
(Y1Y2Y3Y4Y1).

Open paths are designated in a manner similar to loops, by indicating
the ordered series of variables in the path, including both the starting vari-
able and the ending variable. For example, in the nonrecursive model of
Figure 14.3, there is an open path: Y1Y2Y3Y4. Another is Y4Y1. Another is
X1Y1. Y2Y3Y4 is even another. The effect of an open path, which, following
Heise (1975) will be designated as E, is simply the product of the structural
coefficients along the open path. EY1Y2Y3Y4 = α21α32α43, EY2Y3Y4 = α32α43, and
EY1Y4 = α14.

X1 Y1

Y2 Y3 Y4

γ11

α21

α12

α32 α43

α13
α14

ε1

ε2 ε3 ε4

FIGURE 14.3 A nonrecursive model with three loops. (Adapted from Heise, D. R. (1975). Causal
Analysis. New York: Wiley, p. 57.)
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On the other hand, according to Heise (1975) the “return effect” or loop gain
of a loop is represented as L and is equal to the product of the coefficients along
the route of the loop. So, the return effect of the loop (Y1Y2Y1) is LY1Y2Y1 =
α21 · α12. The return effect of the loop (Y1Y2Y3Y1) is LY1Y2Y3Y1 = α21 · α32 · α13.
For the loop (Y1Y2Y3Y4Y1) the return loop is LY1Y2Y3Y4Y1 = α21 · α32 · α43 · α14.
Heise (1975) indicates that the return effect of a loop “. . . indicates how much
a variable in a loop will change after just one cycle around the loop” (p. 59).

Touching paths

In analyzing a nonrecursive flow graph, one must identify the loops and
also whether they “touch” one another or an open path. According to Heise
(1975) two loops are said to “touch” if the loop identifiers contain one or
more variables in common. A loop is said to touch an open path if any vari-
able in the open path except the first also appears in the identifier of the
loop. In Figure 14.3, the open path Y2Y3Y4 touches the loops Y1Y2Y3Y1 and
Y1Y2Y3Y4Y1. Y2Y3Y4 does not touch the loop Y1Y2Y1 because Y2 is at the
beginning of the open path. Also the loops Y1Y2Y3Y1 and Y1Y2Y3Y4Y1 touch
each other by sharing Y1Y2Y3 in common.

The concept of touching is useful because we can use it to define relevant
feedback, which will be important in Mason’s (1953, 1956) formula for comput-
ing the total effect of an input variable on any dependent variable (which we
will consider shortly). Consider that in Figure 14.4 X1 is a (indirect) cause of

γ11

Y1

Y2

Y3

α21

α31

ε1

ε3

ε2

ε4

α34

α43

α13

Y4

X1

FIGURE 14.4 At Y1 the open path X1Y1Y2 touches the loop Y1Y3Y1, which in turn touches
the loop Y3Y4Y3 at Y3. The open path Y1Y2 does not touch the loop Y1Y3Y1. (Adapted from
Heise, D. R. (1975). Causal Analysis. New York: Wiley, p. 61.)
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Y2 via the open path X1Y1Y2. But the loop Y1Y3Y1 touches the path X1Y1Y2
at Y1 and by feedback can amplify the effect of X1 on Y2 by amplifying Y1.
So, the loop Y1Y3Y1 is relevant feedback to the open path. But the loop Y3Y4Y3
touches the loop Y1Y3Y1 at Y3, so it indirectly provides relevant feedback to
the open path X1Y1Y2 also. So relevant feedback is provided by any loops
that directly or indirectly touch on the open path in question, often by touch-
ing other loops. The effect of loops is to amplify or dampen the effects in
open paths.

Condensing Loops

Any multivariable loop may be condensed to a self-loop, with the return effect
of the self-loop equal to the return effect of the multivariable loop. This is just
a generalization of the condensing rule for open paths to closed paths. The
importance of this is that we can analyze how loops function in terms of their
operation as self-loops.

Consider the graph in Figure 14.5 of a three loop. (A loop with three varia-
bles is a “three loop.”) The loop YUVY with return effect bcd may be replaced
by a self-loop on Y with return effect bcd (Wyatt, 2004). Furthermore, the self-
loop can be absorbed into the XYopen path when considering the total effect
of X on Y. We will provide more details about that shortly.

What we now need to develop is a better understanding of what happens
when a loop is in a model. We are going to assume that the flows within
loops cycle around their loops, producing changes in variables within the
loop very rapidly. At the same time, changes in variables having causal inputs
to variables within the loops do not change (stationarity) while the loop seeks
an equilibrium. This implies that the variable Y in Figure 14.4 should not be
measured until the cycling of effects around the loop has reached a point of
equilibrium; otherwise, an incorrect value for Y will be obtained. Fortunately

YX X Y
a

b d

c

bcd

VU

FIGURE 14.5 Any multiple variable loop may be condensed to a self-loop. (From Wyatt, G.
(2004). Macroeconomic Models in a Causal Framework. Edinburgh: Harmony House, p. 6. With
permission.)
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in almost all applications this occurs after a very short period of time. And we
will have to assume that a potentially infinite number of cycles are possible
within the loop to reach equilibrium, even though practical equilibrium is
obtained quickly.

Suppose now that the variable X in Figure 14.5 has gone from a value of 0
to a value of 1 and that the structural coefficient a equals 1. Suppose Y prior to
this change in X was also 0 in value. Then the value of Y after X becomes 1 also
becomes 1 (because Y = 1X) and the effect directly impacting on Y from X
will remain at 1 as long as X does not change. However the change of 1 unit in
Y goes from Y into the self-loop and begins a cycle of changes in the loop. Let
LY = bcd be the return effect of the self-loop. Then when the original change
of 1 unit in Y returns to Y after its first cycle around the loop, it is multiplied
by the return effect LY of the loop and becomes an increment added to the
original value of Y, so that Y = 1 + LY . It will be maintained at that value
because, as Heise puts it, the increment LY is also indirectly dependent on X.
The input into the loop of 1 from the effect of X has already entered the loop.
The input to Y of LY , being new, then becomes a new input to the loop. So,
the increment of LY passes again around the loop, and comes out again at
Y, having been multiplied at that point by the return effect LY of the loop to
yield an increment LY · LY , which is then added to 1 + LY . So now, the value
of Y is 1 + LY + L2

Y . It is important to understand that the cycling process
takes place through time and that the input to Y from the self-loop is coming
effectively from a different variable distinguished by its time of input. That
is why it is being added to the other effects on Y. Again because the gain of
L2

Y is dependent also on X, it will be maintained at that value as long as X
does not change. We indeed assume X will not change while these cycles are
taking place.

Now, the cycles through the loop do not stop at this point. At this point
the gain of L2

Y now enters the loop as a new input and cycles around and
comes out multiplied again by LY , meaning it produces a new increment of
L3

Y to be added to Y. So, this process continues without end. But as long as
−1 < LY < +1, the value of Y will converge to some finite value. (If LY is
outside these limits, the process will diverge and the value of Y will blow up
to infinity.) This value is the sum of the terms in the infinite series

1 + LY + L2
Y + L3

Y + L4
Y + L5

Y + · · · .

Fortunately, mathematicians have worked out the value of this sum when
LY satisfies the constraint that it is <1 in absolute magnitude. It is the finite
sum of a well-known infinite power series and it equals 1/(1 − LY). Because
this is a value >1, Y ends up with a gain >1. We are also fortunate that
because LY is raised to increasingly higher powers, the terms of the series
rapidly become very small. Consider the case where LY = 0.30. Then we get
the power series

1 + 0.30 + 0.09 + 0.027 + 0.0081 + 0.00243 + 0.000729 + · · · .
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X 1 1Y
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Z X Z

1
1 – L

FIGURE 14.6 Y and its loop may be absorbed so that the effect of X on Z is 1/(1 − L). (Adapted
from Heise, D. R. (1975). Causal Analysis. New York: Wiley, p. 62.)

X a bY Z

c

X Z
ab

1 – bc

FIGURE 14.7 A general feedback loop and its collapse to yield the total effect of X on Z.

So, we see that after only a small number of cycles, the additional terms
become negligible. Then the value of Y in the present case becomes
1/(1 − 0.30) = 1.428571 . . . .

In Figure 14.6 we show how a mediating variable Y with a self-loop may
be absorbed to yield the resulting effect of X on Z. Figure 14.7 shows how a
general feedback loop may also be absorbed to yield the effect of X on Z.

Using the previous equivalences, we may find the total effect of any causal
variable on any effect variable downstream from it by successively absorbing
interior variables until only the cause and the effect variable remain.

In Figure 14.8a, we show a graph with two loops. We seek the total effect
of X on Y. At V we can treat V as a branching node and apply the absorption
rule of Figure 14.8d. One branch loops back to U and the other continues to
Y. So, U can be absorbed by creating a self-loop on V with the return effect bd
and the effect of U on Y becomes bc. We show the result of these changes in
Figure 14.8b. Next we can eliminate the branch from X to U and then the self-
loop on U by generalizing the rule in Figure 14.6. That leaves the effect of X on
U equal to a/(1 − bd). The result is shown in Figure 14.8c, which now has the
form of the case shown in Figure 14.7, which can absorb U and the feedback
loop from Y to U. In Figure 14.7, a corresponds to a/(1 − bd) in Figure 14.8c.
b in Figure 14.7 corresponds to bc in Figure 14.8c. c in Figure 14.7 corresponds
to e in Figure 14.8c. The final result is shown in Figure 14.8d.

We illustrate another case with a self-loop in Figure 14.9. To find the total
effect of X on Z, we first absorb the self-loop on Y in Figure 14.9a while
replacing the effect of X on Y as a/(1 − e). That leaves a fully recursive graph
in Figure 14.9b. On the open path XYZ we multiply coefficients and add the
product to the coefficient on the parallel path XZ. The result is ac/(1 − e) + b.

Mason’s Direct Rule

Samuel Mason (1953, 1956) provided a general rule for finding in a causal
network of variables the total effect of any causal variable on any other effect
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FIGURE 14.8 Showing how to obtain the total effect of X on Y by successive absorption of
interior variables until only X and Y remain. (From Wyatt, G. (2004). Macroeconomic Models in a
Causal Framework. Edinburgh: Harmony House, p. 13. With permission.)

variable directly or indirectly dependent on it. Heise (1975) presented this
rule in his work, and I will present it here in a slightly modified form:

Mason’s Rule: In a causal network of variables the total effect T of a causal
variable X on an effect variable Y in the network dependent on X is deter-
mined as follows: Let E, E′, E′′, E′′′, . . . be the distinct open parallel paths from
X to Y in the network. Let L, L′, L′′, L′′′, . . . be the return effects for all distinct
loops providing relevant feedback to the total effect. Then

T =
[
(E + E′ + E′′ + E′′′ + · · · ) · (1 − L) · (1 − L′) · (1 − L′′) · (1 − L′′′) · · · · )

(1 − L) · (1 − L′) · (1 − L′′) · (1 − L′′′) · · · · )
]∗

,

where ∗ denotes a special operation in which the multiplications in the numer-
ator and in the denominator are carried out before division; terms are deleted
if they multiply the effects of touching paths, and division is performed only
after such terms have been deleted.

To illustrate, let us take the causal network in Figure 14.10 and apply
Mason’s rule to it. We seek the total effect of X on Z. First, there is only
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FIGURE 14.9 Finding the total effect TXZ of X on Z when an intervening variable Y has a
self-loop. (Adapted from Heise, D. R. (1975). Causal Analysis. New York: Wiley, p. 65.)

one open path from X to Z : XUVZ. The effect of X over this open path is
EXUVZ = abe. There is only one loop touching this open path, the loop UVU
with return effect bc. Hence Mason’s rule dictates that we write

TZX =
[

abe · (1 − bc)
(1 − bc)

]∗
=
[

abe − abe · bc
(1 − bc)

]∗
.

Because the open path from X to Z and the loop at V are touching, the
operation ∗ dictates that we delete the term (abe · bc) from the expression,
leaving the result

TZX = abe
(1 − bc)

.

We can obtain the same result from Figure 14.10a using simple graph reduc-
tion rules. We will first obtain the total effect TZX . Consider the Figure 14.10b
at the lower left. We can use the collapsing rule in Figure 14.7 because the two
loop UVU with X as an input to it is a case of the general feedback loop, which
we can replace with a simple open path with effect ab

/
(1 − bc). This makes the

figure in (b) a straightforward recursive graph in which the total effect TXZ is
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FIGURE 14.10 A graph with a two loop and the aim is to find the total effects TZX and TZY .
(Adapted from Heise, D. R. (1975). Causal Analysis. New York: Wiley, p. 65.)

simply the product of ab
/
(1 − bc) times e. Hence TZX = abe

/
(1 − bc). On the

other hand to find TYZ the open path is YVZ, but a two loop touches this path
at V. The two loop has an amplifying effect on the open path YVZ, but X is
irrelevant to this amplifying effect. We can replace the two loop with a self
loop as in Figure 14.10c. The graph now corresponds to part of another graph
we have already seen for which we have the solution. Consider Figure 14.9a.
The open path XYZ has a self loop on Y, which we said could be absorbed by
eliminating the loop and replacing the effect of X on Y with a/(1 − e). We can
do the analogous thing here. We eliminate the loop on Vand replace the effect
d of Y on V as d

/
(1 − bc), then we carry out the multiplication of d

/
(1 − bc)

times e to obtain TZY = de
/
(1 − bc).

Let us now consider a more complex example shown in Figure 14.11. The
aim is to find the total effect of X on Y. There are two open paths from X to Y:
XUVY with effect abd and XWZY with effect efh. The path XUVY touches the
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FIGURE 14.11 The aim is to find the total effect of X on Y by Mason’s rule. Note that there are
two parallel open paths to Y from X. There are also two loops, one touching each of these paths.

two loop between U and V, while the open path XWZY touches the self-loop
at Z. Mason’s rule says that we should write

TYX =
[
(abd + efh) · (1 − bc) · (1 − g)

(1 − bc) · (1 − g)

]∗
.

The first thing we must do is expand the expressions in the numerator by
removing parentheses through multiplication. So, we get

TYX =
[
(abd + efh) · (1 − bc − g − bcg)

(1 − bc)(1 − g)

]∗
,

which is further expanded by further multiplying:

TYX =
[

abd + efh − abdbc − efhbc − abdg − efhg + abdbcg + efhbcg
(1 − bc)(1 − g)

]∗
.

Now in the numerator let us eliminate any products of effects of a path with
any return effect of a loop touching that path. Note that abdbc multiplies the
open path effect abd of XUVY with the return effect bc of the loop UVU. So,
we eliminate abdbc. The product abdg is not a product of a path effect with
a touching loop return effect. So, we retain that term. But efhg should be
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eliminated because the self-loop on Z with return effect g touches the open
path XWZY with effect efh. The remaining terms abdbcg and efhbcg should
also be eliminated because they contain products of open path effects with
return effects of touching loops: (abdbc)g and (efhg)bc. This now leaves in the
numerator

TYX =
[

abd − abdg + efh − efhbc
(1 − bc)(1 − g)

]
=
[

abd · (1 − g) + efh · (1 − bc)
(1 − bc)(1 − g)

]
.

This result can now be simplified further to yield

TYX = abd
(1 − bc)

+ efh
(1 − g)

.

Note that we would find the same result if we used our previous reducing
rules for flow graphs. Take each of the parallel paths separately. Over the open
path XUVY, X would be shown to have the effect on Y of abd/(1 − bc). Over
the open path of XWZY, X would have the effect on Y of efh/(1 − g). Since we
sum all of the effects of X on Y, we obtain TYX = abd/(1 − bc) + efh/(1 − g),
which is the same as the result obtained using Mason’s rule. In some ways,
the simple flow graph reduction rules are easier to apply and less prone to
algebraic errors than Mason’s rule.

Covariances and Correlations with Nonrecursive Related
Variables

As a general rule if X
a−→ Y then cov(X, Y) = var(X) · a. When one or both of

the variables are in a nonrecursive loop, then we need to reduce the model
to eliminate the loops and replace the structural coefficients with total effect
coefficients.

Consider the model in Figure 14.12. We wish to find the covariance between
Y and Z. The model at the top has a two loop between Y and Z. To prop-
erly treat the reciprocal relation between these two variables, the model is
reduced to recursive paths with total effect coefficients based on the recip-
rocal loop’s return effect. Y and Z are now functions of the exogenous
variables X and W and the disturbances εY and εZ. In obtaining the cor-
relation, we need to obtain both expressions for the covariance between Y
and Z and the variances of Y and Z. These are readily obtained with path
tracing rules.

Because all of the coefficients in both the numerator and the denomina-
tor of the correlation coefficient have a common divisor of (1 − cd), this
factor may be factored out and (in this case) only the numerator terms are
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FIGURE 14.12 A model with a reciprocal causation loop is reduced with total effect coefficients
so that the correlation between Y and Z may be obtained by path-tracing rules. (Adapted from
Heise, D. R. (1975). Causal Analysis. New York: Wiley, p. 140.)

dealt with:

ρ(Y, Z) = σ(Y, Z)

σ(Y)σ(Z)
,

σ(Y, Z) = 1
(1 − cd)2

(
a2cσ2

X + b2dσ2
W + amb + bdmac + cσ2

εY
+ dσ2

εZ

)
,

σ2
Y = 1

(1 − cd)2

(
a2σ2

X + b2d2σ2
W + σ2

εY
+ d2σ2

εZ
+ 2ambd

)
,

σ2
Z = 1

(1 − cd)2

(
b2σ2

W + a2c2σ2
X + σ2

εZ
+ c2σ2

εY
+ 2bmac

)
.
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Hence

ρ(Y, Z) = a2cσ2
X + b2dσ2

W + amb + bdmac + cσ2
εY

+ dσ2
εZ√

a2σ2
X + b2d2σ2

W + σ2
εY

+ d2σ2
εZ

+ 2ambd

×
√

b2σ2
W + a2c2σ2

X + σ2
εZ

+ c2σ2
εY

+ 2bmac

.

Heise (1975) shows that the correlation between variables in a loop is
strongly affected by the variances of the instruments, for the correlation can
range from positive to negative simply by varying the variances of the instru-
ments. So, the correlation between variables in a loop, he says, “. . . implies
nothing about the nature of their causal relations” (p. 141).

Heise (1975) goes on to argue that much confusion results in science when
scientists attempt to interpret correlations between variables in loops. From
the above formula we can see that if the loop effects c and d are nearly equal
and opposite in sign, and further a and b and the variances of X and W
are nearly the same, then the numerator of the correlation above will be
diminished greatly relative to the standard deviations in the denominator.
The reciprocal effects tend to cancel one another, reducing the correlation. On
the other hand, if both are positive, they will tend to reinforce one another
and increase the correlation. The positive effects will be even further increased
with higher variances on the instrumental variables.

Identification

We have already considered how instrumental variables can assist in
determining causal direction in recursive models. They are essential in many
situations with nonrecursive models in providing identification of parame-
ters in the models. Since most work with SEMs use commercial programs
like EQS© and LISREL©, which are full-information estimation programs,
we need here only state minimal conditions for achieving identification with
models having nonrecursive relations in them. So, we need to show some
graphs in which the models are identified.

With only two variables Y and Z, the parameters c and d on their recip-
rocal paths are underidentified. There is only one covariance between them
and two parameters to be identified. If, as in Figure 14.13a, we introduce a
single instrumental variable X as input to Y, we are now able to identify c,
but with the free covariance h between the disturbances, d remains unidenti-
fied, so the model is underidentified. In Figure 14.13b, fixing the covariance
between the disturbances to zero, we now have all parameters of the model
identified. However, the assumption that the disturbances are uncorrelated
is untestable, because we would have to be able to free that parameter to test
the hypothesis that it is zero, and in doing so, the covariance and the model
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FIGURE 14.13 Use of instrumental variables to identify models with reciprocal causation.
((a) and (b) adapted from Heise, D. R. (1975). Causal Analysis. New York: Wiley, pp. 178 and 181.)

become underidentified. So, unless there is some external, independent jus-
tification for assuming that the covariance is zero, fixing it to zero is simply a
way of making the model identified and useable.

In Figure 14.13c, we introduce a second instrumental variable W, this time
as an input to the variable Z. If we leave the covariances between X and W
and between the disturbances free, we have a just-identified model. But the
second instrument makes possible estimation of d, even though the model
itself is not testable. But if we fix the covariances between X and W and
between the disturbances to zero, as in Figure 14.13d, we now have an
overidentified model with two degrees of freedom. We now can test the
assumptions about the covariances being zero.

Heise (1975, p. 175) states several rules for the identifiability of parameters
in nonrecursive models. These are as follows.

A sufficient condition for indentifiability with nonrecursive causes is that if
in a nonrecursive system of variables each nonrecursive causal variable is an
entry point for an instrumental variable that has no other entry points in the
nonrecursive system, then all of the structural coefficients in the system are
identified.

Suppose a variable is in a loop and its disturbances are correlated with the
values of its causes. All the structural coefficients in its structural equation
will be identified only if the following two conditions hold:

(a) There is an instrumental variable for each nonrecursive relation in
the equation.
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(b) Suppose now that the equation contains several nonrecursive causes
of the variable in the loop. Suppose their number is K. Then there
must be at least Kdifferent instruments for the relations between
the variable in question and its causes. (It is possible for each of the
instrumental variables to be instruments for more than one of the K
relations.)

If each nonrecursive cause in the equation is associated with an instrument
for relations that pertain to that source only, then the structural coefficients
are always theoretically identified.

We have only touched on the basics of identification with nonrecursive
models. For treatment in more depth consult Heise (1975).

Estimation

Because of the presence of loops in nonrecursive models, ordinary least
squares estimation was not able to obtain unbiased estimates of parame-
ters. In the 1970s econometricians and sociologists used instead two-stage
least squares estimation with nonrecursive models. With the introduction of
latent variables into SEMs, the estimation methods became full information
estimation, where all free coefficients in the system were estimated simultane-
ously. In contrast, ordinary least squares and two-stage least squares are what
Heise (1975) calls “single-equation methods” because they estimated coeffi-
cients in one equation at a time. But with variables in complex causal networks
constrained by theory, full information estimation is more efficient and accu-
rate (when the theory is correct) in obtaining estimates. However, when the
theory is wrong, errors in specification in one part of a model can be dis-
seminated to erroneous estimation of other parameters of a model. So, there
are drawbacks to full information estimation. Nevertheless, the commercial
computer programs principally use full information estimation. The point is
that we can use full information estimation programs like EQS, LISREL, and
AMOS© to perform analyses of nonrecursive models. But we must remain
mindful that if our models are seriously misspecified, the parameter estimates
will also be seriously misspecified.

Heise (1975) notes a number of problems specifically concerning estimates
of parameters of nonrecursive models. High collinearity between variables
can produce erroneous estimates, especially in small samples. So, large sam-
ples are recommended. (Generally N > 200 is recommended for SEM studies,
and the number should be higher when numerous variables are involved.)

If an instrumental variable has weak effects on its effect variable in a non-
recursive net, this will produce inaccurate estimates of its effect and that
of others. Though difficult to find, researchers should seek instrumental
variables that have strong effects. Or multiple instruments of a given effect
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variable in a nonrecursive loop may increase accuracy. Multiple indicators
of a latent effect in a nonrecursive loop will also increase the accuracy of
estimates. Again large samples aid in reducing sampling error.

Applications

The philosopher Immanuel Kant (1787/1996) held that our conceptions of
objects concerned three levels of relations, each relation is a concept built by a
synthesis of the previous levels’ relational concepts: (1) Inherence: the relation
of an object to its attribute. (2) Causation: the relation by which attributes of an
object determine other attributes of an (often different) object. (3) Community:
the mutual and reciprocal determination of the attributes of objects in a col-
lection or community of objects. In the behavioral sciences, we begin by being
preoccupied with identifying behavioral attributes of persons (traits, desires
attitudes, and abilities) and then seek measurements of these. Here we func-
tion at the level of Kant’s inherence. Next we become concerned with what
determines these behavioral attributes, and the issue of causality becomes
central. Behaviorism sought to find the causes in attributes of things in the
external environment. Trait psychology sought to show how certain person
traits determined other person traits, such as intelligence as a determiner of
school achievement. Here psychologists functioned at the second conceptual
level of causation. With multivariate structural equation modeling, psychol-
ogists, sociologists, and educational researchers had a method that allowed
them to move to the third level, community, to the study of complex systems
of individuals and variables measuring traits, behaviors, attitudes, abilities,
achievements, motives, and their mutual causal interrelationships. Nonre-
cursive models represent the completion of the development of the third
conceptual level of community in the behavioral sciences in providing one
of the first of many techniques for studying the reciprocal mutual effects
upon attributes of entities in these systems. A classic example is Bandura’s
(1989) triadic reciprocal relations between the person’s behavior, perceptions,
and the environment the person functions in. But mutual causal relations
between individuals’ perceptions and their attitudes and behavioral tenden-
cies is another example of an application of community. Relations between
parents and children, between employers and employees, between variables
describing different sectors of a community, and between regions and nations
are other potential applications. Causation no longer needs to be one way but
reciprocal.

Most psychological variables used in rating scales involve judgments. We
do not have direct measurement of a judgment formulated in the brain, but
we do have indicators of these judgments. We presume they represent single
latent variables, even though they may have a number of causes that accu-
mulate in forming the judgment. If we can have multiple indicators of them,
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in that they have a common factor among them, we have a better reason to
believe in their objective existence. Judgments in turn can be influences on
one another in reciprocal relationships. After all, they are formed in the same
brain. Behavioral scientists tend to assume all individuals are alike—perhaps
unrealistically—but all will still go well if most individuals are quite similar,
so that the causal mechanisms involved in their judgments are for all practi-
cal purposes the same. Because judgments take place in the same brain but
in different centers, they can reciprocally influence one another very rapidly,
implying that the neural pathways allow these to move around in loops very
rapidly relative to the essentially static inputs of their causes. All of these con-
siderations are compatible with studying relations among judgments with
nonrecursive models with causal loops.

To illustrate, in Figure 14.14 I have laid out a hypothetical model of a
model of the reciprocal causal relations between degree of job satisfaction
and degree of intent to quit (the job). This model is inspired by James and
Jones (1980) with further developments by Lance (1991). These variables are
treated as latent variables, but we suppose that we can find at least four man-
ifest indicators of each of them. We illustrate that with four indicators each
on the right of the path diagram.

Most everyone would agree that as one’s satisfaction with one’s job goes up,
the intent to quit the job goes down. So, we run a causal arrow from degree
of job satisfaction to degree of intent to quit the job and assign a negative
sign to its coefficient. We also presume that if one intends to quit one’s job,
that will produce a decrease in one’s satisfaction with the job. So, we draw
an arrow from degree of intent to quit to degree of job satisfaction and put a
negative sign for its coefficient. We now presume that if a person has made
various judgments about the job, these, being mostly anchored in the external
environment, will not change, and so will present constant input to the degree
of satisfaction judgment. Similarly, we presume that the degree to quit one’s
job is influenced by a number of external perceptions, which will also not
change as degree of job satisfaction and degree of intent to quit mutually
reach some equilibrium between them.

The task we have in setting a model with reciprocal causation is to discover
variables that serve as instrumental variables for the variables in the non-
recursive loops. We should have at least one for each causal relation in the
loop. And finding good instrumental variables is perhaps the most important
issue for any researcher planning to study reciprocal causation. They are not
always easy to find. And without good ones, your conclusions are subject
to severe criticism. So, let us review what constitutes a good instrumental
variable (Heise, 1975, pp. 160, 161): (1) It has no direct effect on the effect of
the causal variable it influences. If the instrumental variable has an arrow
to a causal variable in a loop, it must not have any arrow to any other vari-
able that is an effect of this causal variable. (2) An instrument may affect its
target variable in the loop indirectly and if it does, the mediating interven-
ing variable must have no direct effect on the effect variable of the target
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FIGURE 14.14 A model of reciprocal causal relation between degree of job satisfaction and
degree of intent to quit. (Adapted from Lance, C. E. (1991). Multivariate Behavioral Research, 26,
137–162.)

variable in the loop. (3) In the loop, neither the target cause nor the effect
of the target in the loop may have an effect, directly or indirectly, on the
instrumental variable for the target variable. (4) No unspecified, unmea-
sured variable may jointly affect the instrumental variable and the effect of
the target variable in the loop. The instrumental variable may not be corre-
lated with the disturbance on the effect of the target variable in the loop.
Finally, any other variable that is merely correlated with the target vari-
able in the loop may also be an instrument if it satisfies the other conditions
prescribed above.

Now, this is not a question of just drawing out one’s path diagram with
instruments satisfying the above conditions graphically. The graph must be
your best judgment as to what is the case in the real world. So, you must
be concerned with finding good instruments, for only with them will you be
able to establish causal direction, and strength of the causal effect of a target
variable on another variable in the loop.
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To accomplish this you must already have achieved a good understanding
of the situation you are modeling. You must have attained some understand-
ing of the possible causes interacting in the situation. To some extent that is
why you believe two judgment variables may be reciprocally related causally.
But it should also be why you believe that there are certain causes of these
variables, among which are variables that will function as instruments.

Now, most people have some experience with being in a job, of those things
that made the job satisfying and those things that led them or others they
observed to consider quitting the job. They know that a job was satisfying
if they liked the co-workers, and they found the job challenging, interesting,
and fulfilling. They also found it satisfying if their boss was a good person
to work for, provided good, sound leadership, and gave them support both
materially in good equipment to get the job done and emotionally in giving
encouragement and praise for good work. But they may not have found the
job satisfying, despite these other things, if the amount of work to be done
was too much to handle, too difficult, and too stressful.

They know that if the job is not satisfying in some way, they will consider
quitting. But they also know that the decision to quit will be influenced in part
by the perceived alternative jobs available, their quality, and their quantity. If
you quit, you want there to be a high probability of finding another job soon
and it should be a better job than what you now have. Now, you may also be
influenced to quit if you feel that the pay you are getting for your job is not
fair compared with similar jobs in other places. And you may be influenced
by your spouse to quit your job, independently of the nice things you say at
home about your job, if the spouse has a job offer for an even better job in
another city, or the spouse wants to move to a better school district for the
kids. Or the spouse wants you to earn more money than you are getting in
your present job.

Now, if we have this kind of knowledge, we should be able to formulate a
model of the causal relations between degree of job satisfaction and degree
of intent to quit. From among the causes of these two variables, we should be
able to find some causes that would serve as instrumental variables for them.
If a variable is an instrumental cause of degree of job satisfaction, it must
not also be a direct cause of degree of intent to quit. It must not be correlated
with the disturbances on degree of intent to quit, although it can be correlated
with the disturbances on the degree of job satisfaction. And your perception
of these things should not be directly or indirectly influenced by your current
degree of job satisfaction or of your degree of intent to quit the job. (This may
be harder to establish.) Similarly, causes of degree of intent to quit cannot
also be direct causes of degree of job satisfaction, if they are to serve as
instruments of degree of intent to quit.

In Figure 14.14, I have entered as latent variables four instrumental
variables each for each of the two variables in the reciprocal loop. These are
in the path diagram at the left. I have also indicated the expected signs of
the coefficients on the causal paths from these instruments to their target
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variables. Each latent instrumental variable also has four manifest indicators.
We need multiple indicators to establish the objective validity of the instru-
mental variables, to show that there is a proportional influence of a common
variable across all of the indicators.

In the diagram of Figure 14.14, I have not indicated correlations among
the exogenous latent variables, the instrumental variables, simply to keep
the diagram from being uselessly busy. They can all be intercorrelated. And
one should free these correlations. I have also left the disturbances on the
reciprocally caused variables uncorrelated. If the model does not fit with this
specification, then the correlation between these disturbances should be tested
with a Lagrange multiplier test, and freed if significant.
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15
Model Evaluation

Introduction

After the free parameters of the confirmatory factor analysis model have
been estimated, it is then possible to obtain a “reproduced” variance–

covariance matrix Σ̂0 = Λ̂Φ̂Λ̂
′ + Ψ̂

2
among the observed variables based on

the confirmatory factor analysis model’s fixed, constrained, and estimated
parameters. Or one may have estimated parameters of a SEM and used these
to reproduce a model variance–covariance matrix given by

Σ̂0 = GB̂∗−1Γ̂∗Φ̂Γ̂∗′B̂∗′−1G′.

At this point, the researcher’s natural inclination is to determine how well
his or her model covariance matrix Σ̂0 compares with the observed variance–
covariance matrix S, that is, how well the model covariance matrix “fits”
the observed covariance matrix. But it is important to understand what the
comparison means. Most discussions of model fit focus on how the fit of
the model is a function of the estimated parameters of the model. In fact, the
problem of parameter estimation so dominates these discussions that what
is often lost sight of is what has been hypothesized and is to be tested in
one’s model. The hypothesis is about the fixed and constrained parameters
in the framework of one’s model. The “framework” is an a priori schema
that one imposes upon the data. In our case it could be the common factor
model equation or the SEM equation and the derived variance–covariance
matrix—in the abstract, without values specified for its parameters, without

307

© 2009 by Taylor and Francis Group, LLC



“K10039_C015.tex” — page 308[#2] 5/5/2009 10:34

308 Linear Causal Modeling with Structural Equations

a specified number of common factors. One seeks to interpret the observed
covariance matrix in terms of this framework. And to formulate a hypothesis
within this framework, one must specify the number of common factors or
latent variables and values for some or all of the parameters of this model.
If one specifies or constrains only some of the parameters, then the model is
incomplete. If one specifies all of the parameters, then the model is complete. In
incomplete models the estimated parameters are the unspecified portions of
one’s model.

Contrary to a popular misconception, estimated parameters do not repre-
sent hypothesized nonzero coefficients. Estimated parameters can take on
any value between minus and plus infinity, including zero. They are the
unknowns, what one is not able or willing to specify in one’s hypothesized
model. But the model cannot be evaluated without values for these unknown
parameters to complete the model. So, there needs to be some filler in these
unspecified places in the model. Parameter estimation provides this filler.
But just not any values will do. The estimated parameters should not be
ultimately responsible for lack of fit, for then an ambiguity will exist in inter-
preting the meaning of the fit. Is it due to the specified values and constraints
in the framework of one’s model, or is it due to the estimated parameter
values, that were not in one’s hypothesis? No, the parameters should be esti-
mated in such a way that the model would fit as well as possible, except for
values of the fixed and constrained parameters and their constraints on the
estimated parameters. Only in that way can any lack of fit be attributed to
the fixed and constrained values imposed on model parameters. That is why
free (unspecified) parameters are estimated to optimize fit of the reproduced
model variance–covariance matrix to the observed covariance matrix condi-
tional on the fixed and constrained parameter values. So, the fit (or lack of
fit) is ultimately about the fixed and constrained parameters in the model
framework, for these are the only things specified in one’s hypothesis before
seeing the data.

Now, if the model fails to fit what can we infer about the model? Can
we infer that it is due to just an improper specification for the specified
parameters and/or constraints? Because so many things are included in
one’s hypothesis—for example, SEM framework, number of latent variables,
fixed parameter values, constraints on parameters—one cannot logically
draw any clear inference as to which of these is the source of lack of fit. It
could be any and all of them. All lack of fit tells us is that something is wrong
with the model. It may be that the framework of the common factor model
itself imposed upon the data is inappropriate for the data, that no constraints
on values in this framework would lead to a model that fits the data. Or
one may just have the number of latent variables wrong, that there may be
more additional latents one did not take into account in formulating one’s
model. Or the structural equation framework with the specified number of
latents may be fine, but some or all of the specified values for the param-
eters are wrong. Or maybe something is wrong in our data collection and
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measurement technique. The presumed sampling distribution, for example,
multivariate normality, may be wrong.

How the researcher will proceed after obtaining a lack of fit of his or her
model to the data depends on how strongly he or she is committed to the
model for the data in question. There are other structural models that might be
considered besides the model in question. At this point, the researcher should
reexamine the content of (not the covariances among) his or her variables
and entertain the possibilities that they may be interrelated causally in other
ways not considered. If one does so and concludes the model may not be
appropriate, one exits the context of the model and takes up possibly another
modeling framework. There may be even other mathematical models than a
linear model that are more appropriate for the data.

But if one is still persuaded that the model holds, then one may wish to
consider whether there are additional latent variables. Again, by examining
the content of one’s variables, one may be able to see the possibility for another
latent variable and go back to the beginning with a respecified model that
contains the additional latent variable and fit that model to the data.

There is also a way of obtaining clues as to possible additional latent
variables by computing Lagrange multiplier (LM) tests for each of the zero
covariances among the unique factors or disturbances. (More about these
later.) These are single-degree-of-freedom chi-square tests that test whether
a fixed parameter could be freed to produce significant improvement in fit.
One can free the zero covariance with the largest LM test value and see how
that improves one’s fit by allowing it to take on nonzero values. One should
also consider whether to do so would be theoretically justified in terms of
substantive theory. One can go on freeing one unique factor covariance at a
time and refitting until one feels one has found the basis for an additional
common factor among the variables with correlated unique factors. Or one
may be content with simply leaving the covariances among unique factors
freed to this point as simply freed without trying to account for them in terms
of a well-specified common factor. But regardless, one will pay a price for
doing this, for one will lose degrees of freedom for each parameter freed to
arrive at a better fitting model. (More about degrees of freedom later.) Or one
may think the common factor model with the specified number of common
factors is just fine. One can then also use LM tests to search among any spec-
ified factor pattern loadings to see if they can be freed to improve model fit.
Again the current wisdom is that one does this cautiously, justifying freeing
each zero parameter value in terms of some substantive theoretical rationale
and refusing to do so if one cannot.

On the other hand, what does good fit for a model imply? It does not nec-
essarily imply that the model is correct for the data. In fact, there may not be
any such thing as an “ultimately correct” model. There are just models that fit
given sets of data within sampling and measurement error. But the theories
that support them may be disconfirmed by extending them to other data and
contexts thought to be covered by the theories in question and finding that
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the additional data and the original data do not cohere with the theoretical
model in question. Or the theory on which the model is based may be discon-
firmed in contexts external to the source of data in question. So any acceptable
fit of a model to data may be regarded as only provisional support for any the-
ory on which the hypothesis is based. That support may be undermined with
additional data, larger samples with larger power to detect smaller discrep-
ancies between model and data, or by disconfirmation of the theory in other
contexts. For further discussion of these philosophical issues, see Mulaik and
James (1995).

There are also numerous cases in which one mathematical model may be
mathematically equivalent to another mathematical model in producing the
same fit to the data, but have different interpretations with respect to the
data. Some sets of data may not allow one to distinguish which of these
models is the appropriate one for the data. This is a problem for all mathe-
matical models. Other cases involve different mathematical models that fit
exactly the same data, but one model requires estimating more parameters
and has fewer degrees of freedom. One rule of thumb is to prefer (provision-
ally) the model with fewer estimated parameters (or conversely with more
degrees of freedom). Mulaik and Quartetti (1997) showed that models with
a first-order general factor and several group factors could also fit data gen-
erated by models with a second-order general factor and first-order group
factors, although the latter would have more degrees of freedom if fit to the
same data. Common factor models with a suitable number of factors are also
known to be able to fit to high degrees of approximation data generated by
simplex models with many more latent variables. So obtaining good fit is no
guarantee of the truth of a model. Good fit only gives provisional support to
a model.

There are some (Browne and Cudeck, 1993) who argue that “a null hypoth-
esis that fits exactly in some population is known a priori to be false” (p. 137).
I will not take such a strong position. To begin with we cannot know this a
priori. To say that we do would be logically inconsistent with then conducting
tests of a priori specified hypotheses. If anything, the assertion is not known
a priori but is an inductive generalization based on finding that many models
fail to fit data at some sample size. One can always overturn an inductive gen-
eralization with further experience. But there is no necessary reason that we
will. Physicists certainly do not hold such a maxim because they have mod-
els in quantum physics based on precise ratio values for certain parameters
that fit within measurement error and keep on testing them with larger and
larger samples and in more and more situations. If they knew they would
not fit a priori, they would not bother to go to all this trouble. There has
to be an a priori possibility that a model will fit data to justify conducting
tests of a model. Still we may never be able to determine precisely whether
a model does fit exactly, and even if it does, that is no guarantee that it is
“ultimately true.” But it should be possible to “disconfirm” a model with lack
of fit.
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On the other hand, many models may not fit exactly but still be very
good approximations. As good approximations they may allow for useful
predictions and support provisionally certain lines of research that seek to
improve the fit by adjusting parameters or making minor modifications of
the framework of the model by including other variables. We will consider
now the cases of testing for exact fit and the ways of measuring the degree of
approximation of a model.

There are two complementary steps to take: (1) One begins first to test a
hypothesis that the population variance–covariance matrix Σ is generated by
a model with the specified parameters and parameter constraints and is as a
consequence equal to Σ0. For this, assuming the data have a multivariate nor-
mal distribution, a chi-square test based on a generalized likelihood ratio (LR)
test is available. There are also confidence interval tests for testing hypotheses
about individual parameters left freed in the model. (2) If the model fits to
within sampling error in step (1), the researcher can provisionally accept the
model as it is and draw substantive conclusions from this result. But if the
model fails to fit to within sampling error by the chi-square test, the researcher
should then examine the diagnostics of the computer output to gather clues as
to the sources of lack of fit. The researcher may then find, especially if the lack
of fit was large, that his or her approach to the data with the model was wrong,
and then consider other possible models that would have to be tested with a
new study and new data. But the researcher may wish to know how well Σ̂0,
the estimated constrained model variance–covariance matrix estimated to fit
the sample variance–covariance matrix S, reproduces S, that is, the degree
to which it approximates S. There have been numerous indices proposed to
represent measures of approximate fit. We will consider the most important
ones. But the researcher may then, on the basis that the fit was already a fairly
high degree of approximation, consider freeing up certain parameters located
by LM tests to see if the remaining constraints on the model then fit the data,
either to within sampling error, and if not, to at least a very high degree of
approximation.

Finally, the model must also be assessed from the point of view of its dis-
confirmability. Models that are not disconfirmable or have low degrees of
disconfirmability are of no to little value compared with models that are
highly disconfirmable from the point of view of establishing objective sci-
entific knowledge. They may be useful from an exploratory point of view of
providing values for parameters within the framework, say, of a factor analy-
sis model with a specified number of factors that might be used as fixed values
in future studies where these values are tested against independent data sets
under other conditions. They might even be used in prediction studies where
understanding the underlying causal mechanisms for the associations is not
essential.

Next, when there is a lack of fit, the question will arise as to whether the
model could be modified and reanalyzed with the same data set to obtain
better fit or whether it is best to abandon the model altogether and rethink
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one’s model. If one decides to retain the model, how should one make the
modifications of the model? What penalties should one pay for these
modifications after the fact?

Finally, the question will arise of whether there is a sequence in which one
might proceed to test the assumptions and constraints of a model. We will
consider each of the questions in the following sections.

Errors of Fit

Given two p × p covariance matrices U and V, Browne (1982) proposed a
scalar valued function F(U; V), known as a “discrepancy function,” that has
the following properties:

F(U; V) ≥ 0.
F(U; V) = 0 if and only if U and V are equal.
F(U; V) is continuous in both U and V.

The symbol U in the first position of the argument of the discrepancy func-
tion is usually a less restricted variance–covariance matrix to which a more
restricted, constrained model variance–covariance matrix V in the second
position is to be compared. There are a number of standard discrepancy
functions, such as unweighted least squares, weighted least squares, and
maximum likelihood’s fit function. For example, the least-squares discrep-
ancy function is

FLS = tr[(U − V)(U − V)]
and the maximum likelihood’s fit function is

FML = ln |V| − ln |U| − tr(UV−1) − p,

which is a discrepancy function. Even chi-square defined as χ2
df = (N − 1)FML

is a discrepancy function. Cudeck and Browne (1983) and Browne and
Cudeck (1989, 1993) further developed the use of the discrepancy function
and we will draw on their work here.

Using the concept of a discrepancy function, Cudeck and Henly (1991) intro-
duced the concepts of different kinds of errors in comparison of the n × n
matrices Σ, Σ̃0, and Σ̂0. Σ is the population variance–covariance matrix from
which the sample variance–covariance matrix S has been drawn. It may or
may not in fact conform to the model tested. Σ̃0 is the maximum-likelihood
estimate of the model and its constraints fit to Σ instead of S. Σ̂0 is the sample-
estimated constrained model variance–covariance matrix fit to S. By error of
approximation, we mean the value of the discrepancy function F(Σ; Σ̃0) that
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compares the population covariance matrix Σ to the reproduced covariance
matrix Σ̃0 based on fitting the hypothesized model to the population covari-
ance matrix. Occasionally we will also call this the population discrepancy. This
is a population parameter and cannot be directly observed, although it can be
estimated. This source of discrepancy is due to the limitations of the model and
contains no sampling error since both variance and covariance matrices are
population matrices. It gives us the theoretical discrepancy between the model
variance–covariance matrix estimated in the population and the population
variance–covariance matrix. It can never take on a value less than zero, and
will equal zero only when Σ = Σ̃0. The error of approximation is the funda-
mental parameter that indices of fit should seek to estimate or be based upon.

On the other hand, F(Σ̃0; Σ̂0) represents the error of estimation, the discre-
pancy between sample estimate and population estimate for the model. It is
not observable in the sample and can only be inferred and estimated. Because
Σ̂0 varies as a function of S to which it has been fit, F(Σ̃0; Σ̂0) is a random vari-
able and contains sampling error. It represents the sampling error due to the
estimation of free parameters based on S. It usually does not contain all of the
sampling error in S because the hypothesis does not estimate as many param-
eters as there are distinct parameters in S. Sampling error only concerns the
estimated parameters and the portions of S that determine them. However,
Σ̂0 converges in probability to Σ̃0 as the sample size N increases indefinitely.

Another important discrepancy function value of interest is F(Σ; Σ̂0), which
represents the discrepancy between the population variance–covariance
matrix that generates the data and the sample estimate of the model covari-
ance matrix fit to the sample covariance matrix. This is a measure of the
overall discrepancy. It is not directly observed in the sample and can only be
estimated. Browne and Cudeck (1993) showed that

E[F(Σ; Σ̂0)] ≈ F(Σ; Σ̃0) + E[F(Σ̃0; Σ̂0)], (15.1)

which means that the overall error of fit of the sample-estimated variance–
covariance matrix of the tested model to the population variance–covariance
matrix equals approximately the sum of the error of approximation and the
expected error of estimation. On the other hand,

E[F(Σ̃0; Σ̂0)] ≈ N−1q, (15.2)

where N is the sample size and q is the number of free parameters estimated
in the model. In other words, the expected error of estimation (sampling
error) is directly proportional to the number of estimated parameters and
inversely proportional to the sample size. With more estimated parameters,
the expected error of estimation goes up. But there is always an upper limit to
this number at q = n(n + 1)/2 because beyond that point the model will not
be identified. On the other hand, as sample size increases, the expected error
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of estimation (sampling error) decreases, and eventually error of sampling is
negligible. So, in summary,

E[F(Σ; Σ̂0)] ≈ F(Σ; Σ̃0) + N−1q. (15.3)

What this also means is that in larger and larger samples, fit becomes
more and more dependent on the error of approximation. Nevertheless, a
saturated model would ultimately have an error of approximation of zero
and an expected error of sampling also of zero in an infinitely large sample.
Thus on cross-validation to another same-sized sample from the population,
where the reproduced Σ̂01 from the first sample is then fit as a fixed matrix
to the sample covariance matrix S2 from a second sample, an infinitely large
sample would reproduce a saturated Σ̃0 perfectly. In small samples, however,
where the sampling error of estimation can be larger with saturated models,
the corresponding saturated model Σ̂0 may always have zero discrepancy
with S, but may not be stable with respect to Σ and not cross-validate well.

At this point I must caution you that saturated models are not desirable
in the context of hypothesis testing because they do not represent a testable
hypothesis. They necessarily fit perfectly the variance–covariance matrix to
which they are fit. There is no possibility of a test because there is no logical
possibility of failing a test of fit. Furthermore, saturated models are not unique
and many distinct saturated models are easily constructed for a given set of
data. Whether indices of fit will lead one to reject saturated models despite
their perfect fit to data is a question we will consider in the context of a
discussion of parsimony and degrees of freedom.

Finally, F(S; Σ̂0) represents the discrepancy between the sample variance–
covariance matrix S and the sample-estimated constrained model variance–
covariance matrix Σ̂0. F(S; Σ̂0) contains both error of approximation and
sampling error. This value is directly observed.

Chi-Square Test of Fit

Karl Jöreskog (1969) described a chi-square test-of-fit statistic to be used in
connection with testing a confirmatory factor analysis model. The chi-square
test is based on a generalized LR statistic that is very powerful for testing
composite hypotheses with many parameters. The generalized LR is given as

Λ = L(ω̂)

L(Ω̂)
,

where

L(ω̂) =
N∏

i=1

f (xi; g, q̂)

© 2009 by Taylor and Francis Group, LLC



“K10039_C015.tex” — page 315[#9] 5/5/2009 10:34

Model Evaluation 315

is the joint likelihood of the sample obtained as the product of the individual
observation likelihoods f (xi; g, q̂), with xi an n × 1 vector of observations on
n observed random variables, γ an n(n + 1)/2 − q vector of fixed and con-
strained parameters that overidentify the model, and θ̂ a vector of q free
parameters estimated by maximum likelihood (to maximize the joint like-
lihood). On the other hand, L(Ω̂) is given as

∏N
i=1 f (xi; ĝ, q̂), where everything

is as before except that γ̂ and θ̂ are now both vectors of free parameters, mak-
ing the model a saturated model with as many estimated parameters as the
n(n + 1)/2 distinct observed parameters in the sample variance–covariance
matrix S. The lowercase Greek letter ω denotes a constrained parameter space,
with each dimension of ω corresponding to one of the m free parameters
in θ̂. Maximum-likelihood estimation of the free parameters searches this
restricted space to find that point in the space whose coordinates correspond
to the values of each of the parameters that maximize the joint likelihood
of the observations under the restricted model. The hat or ∧ over ω means
that the likelihood is a function of those values in the parameter space ω

that maximize the joint-likelihood function, in other words, the values in θ̂.
Similarly, Ω is the less restricted parameter space of dimension n(n + 1)/2
corresponding to the n(n + 1)/2 free parameters in γ̂ and θ̂. Again, the hat or
∧ over Ω means that L(Ω̂) is a function of those values for the parameters in
the less restricted parameter space Ω that maximize the joint likelihood of the
observation vectors.

Because maximum-likelihood estimation searches the spaces ω and Ω for
the points whose coordinates are values for the parameters that maximize the
likelihood function within their spaces, the likelihood L(ω̂) is never greater
than the likelihood L(Ω̂). This is because ω is a subspace of Ω, and any point
in Ω that represents a maximum likelihood over that space will correspond to
a likelihood as large or larger than that found for the more restricted subspace
ω. Thus L is a number <1, and one accepts the null hypothesis if L > c, some
constant such that P(Λ < c | H0 is true) ≤ α, where α is the accepted hypo-
thetical probability of rejecting the null hypothesis when it is false. However,
L can be converted to a chi-square statistic by the following transformation:

χ2
df = −2ln Λ. (15.4)

Although Jöreskog (1969) gave the formula for chi-square, Bollen (1989)
showed how the generalized LR could be derived for any SEM, which
includes confirmatory factor analysis as a special case:

ln L(ω̂) = − (N − 1)

2

[
ln |Σ̂0| + tr(Σ̂

−1
0 S)

]
(15.5)

and

ln L(Ω̂) = − (N − 1)

2

[
ln|S| + tr(S−1S)

]
= − (N − 1)

2
[ln|S| + n] . (15.6)
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Hence

U = −2 ln
L(ω̂)

L(Ω̂)
= −2 ln L(ω̂) + 2 ln L(Ω̂)

= (N − 1)
[
ln |Σ̂0| + tr(Σ̂

−1
0 S)

]
− (N − 1)(ln |S| + n)

= (N − 1)
[
ln |Σ̂0| − ln |S| + tr(Σ̂

−1
0 S) − n

]
(15.7)

is a statistic that is distributed in increasingly larger samples as chi-square
with df degrees of freedom when the model is correct and as the noncentral
chi-square when the model is incorrect. The degrees of freedom of chi-square
are df = n(n + 1)/2 − q, where q is the number of free parameters in the model.
The expression in brackets on the right-hand side of Equation 15.5 is the
minimum value of the maximum-likelihood fit function,

FML = lnΣ̂0 − ln |S| + tr(Σ̂
−1
0 S) − n, (15.8)

that is minimized to obtain optimal estimates for the free parameters condi-
tional on the constrained parameters of the model. This value is equivalent
to F(S; Σ̂0). We can see that when S and Σ̂0 are equal, ln|Σ̂0| − ln|S| = 0 and

tr(Σ̂
−1
0 S) − n = 0. When these two matrices are not equal, FML > 0 and can

serve as a lack of fit measure in its own right.
The value U = (N − 1)FML is an expression for the chi-square statistic. This

statistic is used to test the hypothesis that the constrained model covariance
matrix is the population covariance matrix that generated the sample having
sample covariance matrix S. One rejects the null hypothesis that the model
under the constraints generated the data represented by S, when χ2

df > c,
where c is some constant such that P(χ2

df > c | H0 is true) ≤ α.
However, the power of the chi-square statistic also increases with the

increase in sample size. At the sample sizes where the statistic begins to have
a good approximation to the chi-square statistic, it is also able to detect small
discrepancies between the model and the data, leading to a rejection of the
null hypothesis that the model and its constraints are correct. This does not
mean that the null hypothesis is necessarily totally wrong. Quite possibly
the discrepancy between data and model detected by the chi-square statis-
tic may mean that the researcher has failed to account for some additional
influence of a minor nature. For example, the assumption that a certain pair
of unique factors is uncorrelated may be incorrect. Or some subjects in the
sample may not conform to the model, violating the assumption of causal
homogeneity for subjects in the study. That is, some subjects’ responses may
depend on different causes, or depend on the same causes with somewhat
different magnitudes for the causal effects (e.g., have different factor load-
ings). Or there may be another minor common factor not accounted for in
the model. But it could also mean that the common factor model is just not
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appropriate for the data. Some other data structure may underlie the data.
The chi-square statistic cannot tell us which. The researcher must use his or
her judgment to decide what to do next when the chi-square statistic indicates
significant lack of fit. In many circumstances, the next thing one may consider
is whether the model tested is nevertheless a good approximation to the data.
Before we go on to discuss indices of approximation, we need to consider fur-
ther properties of the chi-square distribution and another distribution related
to it, the noncentral chi-square distribution.

We can also assert that the chi-square statistic is frequently undefined as
the sample size becomes infinite because limN→∞(N − 1)FML is undefined
for all values of FML greater than zero.

Satorra–Bentler Corrected Chi-Square Statistic

When the population data are not distributed according to the multivariate
normal distribution, then the usual chi-square statistic based on this distri-
bution may be biased. Hu and Bentler (1995) report that Satorra and Bentler
(1988a,b, 1994) developed a correction for the maximum-likelihood chi-square
statistic using a scaling factor based on the model, the estimation method,
and sample fourth-order moments. This statistic holds, then, regardless of
the distribution of the variables. Hu and Bentler reported that it performed
as well as the normal-theory methods under the condition of independence
among latent variables. Although it performed well overall, it had a ten-
dency, they say, to overreject true models at smaller sample sizes. However,
they also report a recent follow-up study, Hu and Bentler (1995), that studied
the Satorra–Bentler scaling correction applied to the generalized least-squares
(GLS) chi-square statistic, and this scaled test statistic performed adequately
even at smaller sample sizes. They regarded it as the most adequate statis-
tic for testing model fit when sample size is small. With large samples
both the maximum likelihood and GLS scaled statistics performed about
as well.

Properties of Chi-Square and Noncentral Chi-Square

Statisticians define chi-square as a sum of squared, independent unit normal
deviates. For example, suppose we have k independently distributed normal
variables, X1, X2, . . . , Xk , each with mean μi and variance σ2

i . For each Xi con-
struct a standardized variable, Zi = (Xi − μi)/σi, having a mean of 0 and a
variance of 1. The Zi also are normally distributed and are mutually indepen-
dent. Mathematical statisticians define a chi-square distributed variable with
k degrees of freedom as

χ2
k = Z2

1 + Z2
2 + · · · + Z2

k . (15.9)
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Chi-square with k degrees of freedom is a sum of k independent squared unit
normal deviates. Because E(Z2

i ) = 1,

E(χ2
k) = E(Z2

1) + E(Z2
2) + · · · + E(Z2

k) = k. (15.10)

The mean of the chi-square distribution is equal to its degrees of freedom.
The variance of the chi-square distribution in this case is 2k.

The chi-square statistic can be used to test whether a model differs from the
data in several dimensions. Each dimension may correspond to an observed
parameter of the data, and the model generates a corresponding hypothetical
set of values for the observed parameters. Differences between model and
data are taken between observed values and hypothetical values, across each
of the observed parameters. Standardizing the scores in each dimension puts
them into a common metric. But there may be some loss of dimensions on
which the comparison is to be made due to the process of parameter estimation
in the model. The remaining number of dimensions will equal the degrees of
freedom of the model. (More will be presented on this topic later.)

Suppose each Zi represents a measure in one dimension of the difference
between a model and the data. The variance of Zi represents error of measure-
ment of that difference in that dimension. The mean of each Zi represents the
actual difference between the model and the data in the ith dimension. Under
the null hypothesis of no difference between the model variance–covariance
matrix and the population variance–covariance from which the data have
been sampled, one hypothesizes that each difference is equal to zero. The chi-
square statistic represents a measure of the overall sum of squared differences,
or the squared distance between model and data.

When the null hypothesis is false, think of each Zi as having added to it a
true difference di so that we may write each measure as Z∗

i = Zi + di. Then
the measure of discrepancy between model and data is given by

U∗ =
k∑

i=1

Z∗2
i .

The expected value of U∗ is then

E(U∗) =
k∑

i=1

E(Z∗2
i ) =

k∑
i=1

E(Z2
i + 2Zidi + d2

i )

or

E(U∗) =
k∑

i=1

E(Z2
i ) + 2di

k∑
i=1

E(Zi) +
k∑

i=1

d2
i .

Because (a) the expected value of a squared unit normal deviate is 1 (its
variance), (b) the expected value of a unit normal deviate is 0, and (c) the
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third term is a sum of constants, we may write this as

E(U∗) = k +
k∑

i=1

d2
i = k + λ, (15.11)

where k is known as the degrees of freedom of U∗ and λ is the squared
distance between model and data known as the noncentrality parameter. In
structural equation modeling and confirmatory factor analysis, λ is equal to
(N − 1)F(Σ; Σ̃0). When the null hypothesis that λ = 0 is true, U∗ is distributed
as chi-square with k degrees of freedom. When λ > 0, then U∗ is distributed
according to the noncentral chi-square distribution. An unbiased estimate of
λ is then

λ̂ = U∗ − k. (15.12)

The noncentrality parameter is going to assume an important role in the fol-
lowing discussion of measures of approximate fit and lack of fit. Steiger and
Lind (1980) first suggested, in a paper given to the Psychometric Society, the
use of the noncentrality parameter in evaluating SEMs. Steiger (1989) later
described the use of the noncentrality parameter as well as a normalized
noncentrality parameter that we are about to discuss. Bentler (1990), McDon-
ald (1989), and McDonald and Marsh (1990) also described the use of the
noncentrality parameter in measuring model lack of fit.

Closely related to the noncentrality parameter in Equation 15.9 is another
parameter recommended by McDonald (1989), which is a normalized version
of the noncentrality parameter, independent of sample size. In confirmatory
factor analysis and structural equation modeling:

U∗ = (N − 1)FML. (15.13)

Let us substitute the expression on the right-hand side of Equation 15.12 in
place of U∗ and take the expectation:

E(δ̂∗2) = E[(N − 1)FML] − df,

λ = (N − 1)E(FML) − df. (15.14)

Here df represents the degrees of freedom of the model and FML represents
the sample minimum fit function value for maximum-likelihood estimation
under the constraints of the tested model. N is the sample size. We see now
that as long as E(FML) is greater than zero, as the sample size N continues
to increase, λ will tend to increase without bound. This contributes to the
power of the chi-square test because a positive noncentrality parameter will,
on average, increase with increases in sample size and make the difference
to detect larger. But in infinitely large samples, λ, unless zero, is undefined

© 2009 by Taylor and Francis Group, LLC



“K10039_C015.tex” — page 320[#14] 5/5/2009 10:34

320 Linear Causal Modeling with Structural Equations

because it is “infinite.” If we divide U∗ − df by (N − 1), we then obtain a new
index that converges in the limit to a finite value:

δ̂ =
(

1
N − 1

)
(U∗ − df) =

(
1

N − 1

)
[(N − 1)FML − df] = FML − df

(N − 1)
.

(15.15)
Browne and Cudeck (1992) argue that δ̂ is a less biased estimator of the popu-
lation discrepancy F(Σ; Σ̃0) than is the raw F(S; Σ̂0) = U∗/(N − 1), which has
for its expectation

E(FML) = E[U∗/(N − 1)] = (N − 1)−1E(U∗) = (N − 1)−1(λ + df)

= λ

(N − 1)
+ df

(N − 1)
= (N − 1)F(Σ; Σ̃0)

(N − 1)
+ df

(N − 1)

= F(Σ; Σ̃0) + df
(N − 1)

.

(15.16)

According to Bollen (1990), Browne (1982, 1984) stated that the average value
of FML tended to be larger in smaller samples and smaller in larger samples.
This is certainly borne out here because the second term on the right would
be larger in smaller samples and smaller in larger ones. On the other hand,
we also notice that on average FML tends to overestimate its population value
by df/(N–1). If the model is correct, F(Σ; Σ̃0) is zero and the average value of
FML is df/(N − 1).

Combining Equations 15.15 and 15.16, the expected value of δ̂ is

E(δ̂) = E(FML) − df
(N − 1)

= F(Σ; Σ̃0) + df
(N − 1)

− df
(N − 1)

= F(Σ; Σ̃0).

(15.17)

So δ̂ is an (approximate) unbiased estimate of the population discrepancy, the
approximation being due to the fact that U∗ is only approximately distributed
as noncentral chi-square in large samples when the null hypothesis is false.
Finally, in the limit, as sample size increases without bound,

lim
N→∞ E(δ̂) = lim

N→∞ E(FML) = δ = F(Σ; Σ̃0). (15.18)

Because δ̂ can take on negative values the index is often modified to

δ̂′ = Max (FML − (N − 1)−1δ̂, 0) (15.19)
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(Browne and Cudeck, 1993), but in doing so loses its unbiasedness. In
Equation 15.18, E(δ̂), E(FML), and FML converge in the limit in probability
as the sample size increases without bound to the population discrep-
ancy function value of F(Σ; Σ̃0), where Σ̃0 is the model-based reproduced
variance–covariance matrix fitted to the population covariance matrix Σ.

Goodness-of-Fit Indices, CFI, and Others

Mulaik et al. (1989) introduced the term “goodness-of-fit index (GFI)” to refer
to an index for assessing the degree of (approximate) fit of a model to data that
range between zero and unity, with zero meaning “complete lack of fit” and
unity indicating perfect fit. In contrast, indices such as the chi-square index
range from zero to infinity and may be regarded as “lack-of-fit indices” or
“badness-of-fit indices,” with zero representing perfect fit and infinity, worst
lack of fit. In this section we will examine a number of “GFIs.”

GFIs of LISREL

Jöreskog and Sörbom (1981) proposed a family of GFIs to be used with
the LISREL© program, an early program for confirmatory factor analysis
and structural equation modeling. These indices were all variants of a sin-
gle index, varying in terms of a scaling transformation matrix for evaluating
the difference between the observed and the model variance–covariance
matrix according to the method of estimation used to estimate parameters.
The inspiration for these indices was likely the coefficient of determination
(Wright, 1921),

R2 = 1 − Error variance
Total variance

,

which estimates the proportion of total variance that is free of error variance.
This index has its origins in Fisher’s (1925) intraclass correlation. The GFI
computes “error” as the sum of (weighted and possibly transformed) squared
differences between the elements of the observed variance–covariance matrix
S and those of the estimated model variance–covariance matrix Σ̂0 and com-
pares this sum with the total sum of squares of the elements in S. The matrix
(S − Σ̂0) is symmetric and produces the element-by-element differences
between S and Σ̂0. W is a transformation matrix that weights and combines
the elements of these matrices, depending on the method of estimation. Thus
we have

GFI = 1 − tr[W−1/2(S − Σ̂0)W−1/2][W−1/2(S − Σ̂0)W−1/2]
tr[W−1/2(S)W−1/2][W−1/2(S)W−1/2] ,
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where Σ̂0 is the model variance–covariance matrix, S is the unrestricted,
sample variance–covariance matrix, and

W =

⎧⎪⎨
⎪⎩

I − Unweighted least squares
S − Weighted least squares
Σ̂0 − Maximum likelihood

How these error sum of squares and total sum of squares are obtained is most
easily seen in the case of the unweighted least-squares version of GFI:

GFILS = 1 − tr[(S − Σ̂0)(S − Σ̂0)]
tr(SS)

. (15.20)

The trace of a square matrix is the sum of the elements on the principal diag-
onal of the matrix. In this case, the principal diagonal of (S − Σ̂0)(S − Σ̂0)

contains the sum of squares of the elements in each row, respectively, of
(S − Σ̂0). Hence the sum of the principal diagonal of (S − Σ̂0) yields the total
sum of squares of the elements of this matrix.

In GLS W = S = (S1/2S1/2). As a consequence, the numerator of Equa-
tion 15.19 is

tr[S−1/2(S − Σ̂0)S−1/2S−1/2(S − Σ̂0)S−1/2],

which, because of the invariance of traces under cyclic permutations of the
matrices, becomes

tr[S−1/2S−1/2(S − Σ̂0)S−1/2S−1/2(S − Σ̂0)] == tr[(I − S
−1

Σ̂0)(I − S−1Σ̂0)].
(15.21)

On the other hand, the denominator of Equation 15.19 in the case of GLS
becomes tr[(S−1/2SS−1/2)(S−1/2SS−1/2)] = tr(I) = n. Hence,

GFIGLS = 1 − tr[(I − S−1Σ̂0)(I − S−1Σ̂0)]
n

. (15.22)

By similar reasoning,

GFIML = 1 − tr[(SΣ̂
−1
0 − I)(SΣ̂

−1
0 − I)]

tr(SΣ̂
−1
0 SΣ̂

−1
0 )

, (15.23)

Equations 15.21 through 15.23 were originally worked out by Tanaka and
Huba (1985). We might note that although the numerator of the formula
for GFIML in Equation 15.23 does not look like the discrepancy function
FML of maximum-likelihood estimation, it nevertheless is essentially equiv-
alent. Bentler (1989) discussed a variant of GLS estimation that is effectively
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equivalent to maximum-likelihood estimation, which he called “iteratively
reweighted” GLS, which (following Steiger, 1995) is given by the discrepancy
function

FIRGLS = (S, Σ̂0 | Σ̂
−1
0 ) = 1

2
tr
[
(SΣ̂

−1
0 − I)(SΣ̂

−1
0 − I)

]
. (15.24)

This discrepancy function was earlier described by Browne (1974) and

designated as F(S, Σ̂0 | Σ̂
−1
0 ). Browne also provided a proof that it and

maximum-likelihood estimation converge in the limit. Using Equation 15.24
as the function to minimize to yield estimates for free parameters will effec-
tively produce the same estimates as maximum-likelihood estimation. What
makes it iteratively reweighted is the fact that at each iteration, the weight
matrix is revised based on the then current estimate of the model variance–
covariance matrix based on the parameters estimated up to that point. So, it
naturally appears in the numerator of the GFI for maximum likelihood. Since
we know previously that in the limit F(S; Σ̂0) converges to F(Σ; Σ̃0), we now

know that F(S, Σ̂0 | Σ̂
−1
0 ) converges to F(Σ; Σ̃0) as well.

Some of the criticisms of the GFIs are that they tend to vary with sample
size. Although Bollen (1989) notes that this is not due to the fact that N is
involved explicitly in the formula for GFI, nevertheless Monte Carlo studies
(Marsh, Balla, and McDonald, 1988) revealed that the average values of the
GFI tend to increase with N.

Under certain fairly general circumstances an expression for a population
value for the GFI may be obtained, for which we can then construct a confi-
dence interval estimate. The idea of using a confidence interval estimate with
a GFI was first proposed by Steiger and Lind (1980). Steiger described such
a confidence interval estimate for the GFI population value in Steiger (1995).
According to Browne (1974, proposition 8), there is a common case where we
can derive an exact expression for the population value of the GFI. If Σ0(θ) is
a model variance–covariance matrix that is a function of free parameters in
θ, and if given an admissible estimate θ̂ and any positive scalar α, there is an
admissible θ∗ such that Σ0(θ

∗) = αΣ0(θ̂) (the condition of invariance under a
constant scaling function or ICSF), then, if θ̂ is a maximum-likelihood estimate

of the estimated parameters, tr(SΣ̂
−1
0 ) = n. In this case

GFIML = tr(SΣ̂
−1
0 SΣ̂

−1
0 ) − tr[(SΣ̂

−1
0 − I)(SΣ̂

−1
0 − I)]

tr(SΣ̂
−1
0 SΣ̂

−1
0 )

= tr(SΣ̂
−1
0 SΣ̂

−1
0 ) − tr[(SΣ̂

−1
0 SΣ̂

−1
0 ) − SΣ̂

−1
0 − SΣ̂

−1
0 + I)]

tr(SΣ̂
−1
0 SΣ̂

−1
0 )

.

© 2009 by Taylor and Francis Group, LLC



“K10039_C015.tex” — page 324[#18] 5/5/2009 10:34

324 Linear Causal Modeling with Structural Equations

If we next remove the brackets and substitute tr(SΣ̂
−1
0 ) = n, we have

GFIML = tr(SΣ̂
−1
0 SΣ̂

−1
0 ) − tr(SΣ̂

−1
0 SΣ̂

−1
0 ) + n + n − n

tr(SΣ̂
−1
0 SΣ̂

−1
0 )

or

GFIML = n

tr(SΣ̂
−1
0 SΣ̂

−1
0 )

. (15.25)

So, now, again given the special assumptions of ICSF, if we next substitute Σ

for S and population Σ̃0 for sample Σ̂0, we arrive at a population parameter

Γ1 = n

tr(ΣΣ̃
−1
0 ΣΣ̃

−1
0 )

, (15.26)

which is a weighted population coefficient of determination for the multivari-
ate (ICSF) model (Steiger, 1995, p. 3671).

Now, let us show how under the ICSF model we may express Γ1 in terms
of a population expression for the discrepancy

FIRGLS(Σ; Σ̃0) = FML(Σ; Σ̃0) = 1
2

tr[(ΣΣ̃
-1
0 − I)(ΣΣ̃

−1
0 − I)].

Note that just as we obtained Equation 15.26, we can expand the expression

within brackets, take the trace, and substitute tr(SΣ̂
−1
0 ) = n because the model

is ICSF. If we do, we obtain

FIRGLS(Σ; Σ̃0) = FML(Σ; Σ̃0) = 1
2
[tr(ΣΣ̃

−1
0 ΣΣ̃

−1
0 ) − n].

The denominator of Equation 15.26 is thus equal to 2FML(Σ; Σ̃0) + n. Hence
we can rewrite Equation 15.26 as

Γ1 = n

2FML(Σ; Σ̃0) + n
. (15.27)

This will mean that if we have a consistent estimator of FML(Σ; Σ̃0), we can use
this in Equation 15.27 to obtain a consistent estimator of the (ICSF) model Γ1.
We have already shown that the sample FML(S; Σ̂0) is a consistent estimator of
FML(Σ; Σ̃0). Steiger (1989, 1995) points out that in this special case a consistent
estimate of Γ1 can be obtained from the sample FML(S; Σ̂0) and the number of
estimated parameters by substituting FML(S; Σ̂0) in Equation 15.27 to obtain

Γ̂1 = n

2FML(S; Σ̂0) + n
. (15.28)
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We know from Equation 15.16 that FML(S; Σ̂0) is a biased estimate of
FML(Σ; Σ̃0). So, if we take the expectation of the estimator in Equation 15.28,
we obtain

E(Γ̂1) ≈ n

2FML(Σ; Σ̃0) + 2df/(N − 1) + n
.

This result is consistent with the Monte Carlo results that suggested that as
N increased, GFI tended to increase. We see that this would be so in the
ICSF case, because on average the middle term in the denominator of E(Γ̂1)

becomes smaller as N increases. It also varies with the size of the number of
degrees of freedom of the model, leading to greater underestimation of Γ1 in
smaller samples with many degrees of freedom.

We will now consider how a confidence interval test of Γ1 may be obtained
using the statistic Γ̂1 in Equation 15.28. Let the hypothesis to be tested
be H0 : Γ1 = Γ0 against H1 : Γ1 �= Γ0. We will construct a 95% confidence
interval around the hypothesized value Γ0. To find the upper and lower
bounds of the confidence interval, we will use the noncentral chi-square
distribution with a noncentrality of λ = (N − 1)FML,0, where FML,0 = df(1 −
Γ0)/(2Γ0). Let λ.025 denote the value of the cumulative noncentrality distribu-
tion with df degrees of freedom and noncentrality λ, below which only 2.5%
of the values of this distribution will be found. Similarly, let λ.975 be the value
below which 97.5% of the distribution is found. We may calculate these values
using a procedure described by Browne and Cudeck (1993). Once these are
found, we can calculate the values of Γ1 that correspond to these values by
first dividing them by (N−1) and then substituting the resulting values for
FML(Σ; Σ̃0) in Equation 15.27. If the estimated Γ̂1 is not found within these
bounds, we reject the null hypothesis. It is also possible to construct confi-
dence intervals around the estimate Γ̂1 by using that value in place of Γ1 in
the just-described procedure.

Again, we must stress that these results are known to apply if the model is
ICSF.

CFI and Its Relatives

Normed Fit Index

Bentler and Bonett (1980) proposed a “normed fit index,” the “NFI,” as an
index for assessing the fit of confirmatory factor analysis and SEMs. Like the
GFI this index ranges from 0 to 1 and is a “GFI.” This index is constructed
from the values of chi-square for two models: Mk , the theoretical model to
be tested, and Mnull, a “null model.” The null model hypothesizes that the
variables of the study are all mutually unrelated, that is, have zero off-diagonal
covariances between them. The population variance–covariance matrix for
the null model is thus a diagonal matrix, Σnull. The diagonal elements of
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Σnull are free parameters. The estimates of the diagonal elements of Σnull are
equal to the diagonal elements of Σ. Hence if there is any difference between Σ

and Σnull, this would be due to the off-diagonal elements of (Σ − Σnull) being
nonzero. So any lack of fit between the population null model and the true
population model would be because there are nonzero covariances between
the variables to be explained.

Now, Bentler and Bonett (1980) wanted to use the chi-square index value
for the null model Mnull as a kind of “norm” representing the worse possible
fit you could obtain if there were any relationships between the variables. In
other words, the norm represents the lack of fit due to covariation between
variables when you hypothesize there is none. That represents information
you are trying to account for with your model. You could compare this norm
to the difference between the chi-square of the null model Mnull and the
chi-square of the tested model Mk to see how much of this information is
accounted for by the reduction in lack of fit. This would produce an NFI:

NFI = (χ2
null − χ2

k)

χ2
null

. (15.29)

However, there is one other implicit assumption that must be recognized.
The null model Mnull must be “nested” within the model Mk . Now, a second
model is nested within a first model if the value of each fixed parameter in the
first model also remains with the same value as a fixed parameter within the
second model, while the second model fixes or constrains some additional
parameter values that correspond to free parameters in the first model. The
null model will be nested within any confirmatory factor analysis model if
the fixed values of the first model’s factor pattern loadings are zeroes, other
factor loadings are free parameters, factor variances are fixed to unity, and
factor covariances are either free or fixed to zero. (We presume also that the
covariances among the unique factors are fixed to zero, while the unique
factor variances are free parameters.) The null model will be expressed as a
factor analysis model in which all factor loadings are fixed to zero, it does not
matter how the factor variances and covariances are specified, and the unique
factor variance matrix is a diagonal matrix with free diagonal elements. So
the null model’s covariance matrix expressed as a factor analysis equation is
given by

Σ̂null = 0Φ0′ + Ψ2 = Ψ2.

In this case the estimated model’s covariance matrix will be a diagonal
matrix, Σ̂null with its diagonal elements equal respectively to the free variances
of the unique factors, implying that the observed variances are entirely unique
variances. The estimates of the unique variances turn out to be essentially the
same respective values as in the principal diagonal of the unrestricted covari-
ance matrix S for the observed variables. In other words, Σ̂null = [diagS]. Then
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the chi-square for the null model is expressible as χ2
null = (N − 1)F(S; Σ̂null)

and may be computed from Equation 15.8 by substituting Σ̂null for Σ̂0 and
multiplying the result by (N−1). Because n unique factor variances must be
estimated, the degrees of freedom of the null model are n(n − 1)/2.

The importance of being able to assume that the null model is nested within
the hypothesized model is to insure that the chi-square of the null model is
greater than or equal to the chi-square of the tested model. Otherwise, the
NFI can take on a negative value in some rare instances. The reason this will
be so when the null model is nested within the tested model is because of a
general rule given by Bentler and Bonett (1980). The rule states that in a nested
sequence of models, any model more constrained than models preceding it
in the nested sequence will have a chi-square value greater than or equal to
the chi-squares of the models preceding it. In general, if M1, M2, . . . , Mm are a
nested sequence of models, each successive model more constrained than the
model preceding (e.g., has additional fixed parameters), then χ2

1 ≤ χ2
2 ≤ · · · ≤

χ2
m. Hence the tested model would never have a chi-square greater than the

null model’s chi-square. So, the difference between the null model chi-square
and the model chi-square will always be greater than or equal to zero, and
so, the NFI will always be zero or positive.

This requirement can be violated in some cases if the tested model Mk
fixes factor pattern loadings to values other than zero. If the fixed load-
ings are generally considerably much greater than their true values, and the
off-diagonal covariances of Σ are small, then they may possibly produce chi-
squares that are greater than the null model chi-square. But this should be
rare. So, this should not discourage the fixing of loadings to specific nonzero
values if theory and past results suggest doing so. Fixing parameters to
nonzero values on the basis of theory and past experience is an advance and
yields more degrees of freedom, which, we will eventually see, correspond
to distinct conditions by which a model could be disconfirmed by lack of fit,
which is a desirable feature of scientific models. What this means then for the
use of the NFI is that in some rare instances it can be less than zero, although
negative NFIs would be readily interpretable as bad fits.

CFI

Marsh et al. (1988) conducted a series of Monte Carlo studies to assess the
effect of sample size on a number of indices of fit. They reported that the NFI
tended increasingly to underestimate its population value in smaller samples
and did so nonnegligibly in samples smaller than 800. This form of bias would
lead one to think that a model does not fit as well as it does in the population.
Two years later, in the same issue of Psychological Bulletin MacDonald and
Marsh (1990) and Bentler (1990) each presented, initially without awareness
of the other’s paper, a new index of fit that corrected for the bias in the NFI.
Instead of using chi-squares for the null model Mnull and the model to be
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tested Mk in the formula for the NFI, they recommended using unbiased esti-
mates of the unnormalized noncentrality parameters of the null model and the
model to be tested, respectively. Bentler (1990) gave this index the name “FI”:

FI = (δ̂∗
null − δ̂∗

k)

δ̂∗
null

= [(χ2
null − dfnull) − (χ2

k − dfk)]
(χ2

null − dfnull)
. (15.30)

Bentler (1990) further corrected the FI to be 0 when it became negative, and
to be 1 when it exceeded 1, just to keep it between the bounds of 0 and 1
in value. Out-of-bounds values could occur because in a sample a chi-square
value could be less than its population mean—its degrees of freedom—so sub-
tracting its degrees of freedom from the respective sample chi-square could
produce a negative value as an estimate of the noncentrality parameter. He
called the corrected FI the “CFI” for “comparative fit index”, so,

CFI =

⎧⎪⎨
⎪⎩

0, FI < 0
FI, 0 ≤ FI ≤ 1,
1, 1 < FI

We cannot establish by simple algebraic means that the uncorrected FI is an
unbiased estimate of its asymptotic value (achieved when sample sizes grow
to be infinitely large). The expected value of a ratio of random variables is not
necessarily equal to the ratio of the expected values of the random variables.
But Bentler (1990) argued that the FI is a consistent estimator of the asymp-
totic value. The CFI is also. Bentler (1990) also performed some sampling
studies of the NFI, FI, and CFI. The NFI again showed the strongest tendency
to underestimate its asymptotic value in small samples. The FI showed prac-
tically no bias at all sample sizes, and the mean value of the CFI was within a
few thousandths of the mean value, from below, of the FI at almost all sample
sizes. So, while the CFI shows a small bias in the direction of underestimating
in small samples (N = 50), this bias is much smaller than that of the NFI and
is generally negligible at moderate-to-large sample sizes.

As for a standard for the CFI that indicates a “good approximation,” Bentler
and Bonnet (1980) initially suggested using 0.90 for the NFI, and this stan-
dard was carried to the CFI by many. However, others (Carlson and Mulaik,
1993) frequently found that they could easily adjust their models by freeing
just a few parameters based on LM tests to obtain fits of 0.95 or better, and
so they recommended 0.95 as a standard. Hu and Bentler (1995) reviewed
the goodness-of-fit literature and their own Monte Carlo studies and con-
cluded that the 0.90 criterion was inadequate for “acceptable fit.” Hu and
Bentler (1999) suggested using a combination rule of rejecting models where
CFI < 0.96 and standardized root mean residual (SRMR) > 0.09. Fan and
Sivo (2005), however, questioned the conclusion that a combination index
approach was needed, claiming that the finding by Hu and Bentler (1999)
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that the SRMR index was most sensitive to misspecified factor covariances,
whereas the CFI and similar indices were most sensitive to misspecified factor
loadings was not borne out in their Monte Carlo studies, but seemed to be the
result of an artifact of the models studied by Hu and Bentler (1999). However,
Fan and Sivo (2005) were reluctant to recommend the use of any particular
cutoff for any particular fit index, considering the problem of fit complex and
requiring further research.

My own opinion on this is that attempting to determine a cutoff value
with Monte Carlo studies is beside the point. 0.95 is intuitively “close” as
an approximation, regardless. The CFI and similar indices concern fit of
the model-based reproduced covariance matrix to the empirical covariance
matrix. Considering the wide variety of models that might be fitted, and
the wide variety of conditions by which the data, on which the empiri-
cal covariances are based, may be generated, the aim is not to establish
how the tested model is an approximation to the “real” model. There may
not be a metric for such comparisons. The support for the hypothesized
model is in how well the model-based reproduced covariance matrix fits the
empirical covariance matrix. And this is only prima facie support, which
may be overturned by producing a different model that fits as well or
better—hopefully to within sampling error—with as many or more degrees
of freedom.

McDonald’s μk Index

In addition to what amounted to the FI, McDonald and Marsh (1990) proposed
another GFI based on the normalized noncentrality parameter of a model
δ = δ∗/N. The index is merely a monotonic transformation of the noncentrality
parameter designed to guarantee that it ranges between 0 and 1. The formula
for the population value of the index, denoted as μk , is

μk = exp
[
−
(

1
2

)
δk

]
. (15.31)

When the normalized noncentrality δk for model Mk is zero, μk is 1. As δk
approaches infinity, μk approaches zero. A sample estimate of a model’s μk is
given as

μ̂k = exp[− (1/2) (χ2
k − dfk)/N], (15.32)

where χ2
k is the sample value of the chi-square statistic for the model, dfk is

the degrees of freedom for the model, and N is the sample size.
McDonald’s μk seems to drop off very rapidly from unity with small

increases in lack of fit. A model with a chi-square of 1296.32 and 927 df
for a sample of 280 had an estimated, normalized noncentrality parame-
ter value of 1.319, which computed an estimated μ̂k of 0.517. But the CFI
for this model was 0.969, while the GFI for the model was 0.835. Thus
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McDonald’s index may not produce values that are comparable to those of
other fit indices. This index has not received much use in the literature. But
there may be a place for variants of it and we will consider these later on in
this chapter.

Tucker–Lewis (1973) Index

Bentler and Bonett (1980) popularized this index developed by Tucker and
Lewis (1973) for factor analysis. The formula for Tucker–Lewis Index (TLI) is
as follows:

TLI =
(
χ2

null/dfnull
)− (χ2

k/dfk
)

(
χ2

null/dfnull
)− 1

, (15.33a)

where χ2
null is the chi-square value for the null model, dfnull is the degrees of

freedom for the null model, χ2
k is the chi-square for the model being tested,

and dfk is the degrees of freedom for the model being tested.
Tucker and Lewis (1973) patterned this index after a reliability index based

on mean squares in components of variance analysis of analysis of variance
(ANOVA). The minimum value of Jöreskog’s maximum-likelihood fit func-
tion value Fm (see Equation 16.18) for a model m was treated like a sum of
squares, and it was divided by the degrees of freedom for this model (because
of the analogy with ANOVA) to yield a mean square Mm for error. In other
words,

Mm = Fm

dfm
. (15.34)

What follows is a slightly simplified version of their derivation of this index.
What we seek is a ratio ρm = αm/(αm + δm), where ρm represents the “relia-

bility” of model m, αm represents a variance component due to a factor model
with m factors, and δm represents a variance component involving a discrep-
ancy between model m and the true model. In the analogy with ANOVA the
mean square error

Mnull = Fnull

dfnull
(15.35)

for a null model hypothesizing no relations (no common factors) among the
observed variables (presumed nested within model Mk) has an expectation:

E(Mnull) = αm + δm + εm, (15.36)

where εm is an additional error variance associated with random error of
sampling. In other words, for the null model the total error consists of a
component for variance due to the common factors not modeled, a component
for error of fit of this model to the data at the population level, and an error
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due to sampling. The mean square error for model m is given by Mm = Fm/dfm
and has an expectation:

E(Mm) = δm + εm. (15.37)

The expected error for model m is due to error of approximation and
sampling error.

From Equation 15.13 (N − 1)Fm = χ2
m is a chi-square variate with dfm

degrees of freedom, with an expected value of dfm. Thus, we have from
Equation 15.34

Mm = χ2
m

(N − 1)dfm
. (15.38)

Hence, because the expected value of chi-square equals its degrees of freedom,

E(Mm) = dfm

(N − 1)dfm
= 1

(N − 1)
.

In the case where model m is correctly specified, δm = 0, and Equation 15.37
yields

E(Mm) = εm = 1
(N − 1)

.

Tucker and Lewis (1973) thus use this value as a value for the error vari-
ance component, which they now substitute into Equations 15.36 and 15.37
to obtain

E(Mnull) = αm + δm + 1
(N − 1)

(15.39)

and

E(Mm) = δm + 1
(N − 1)

. (15.40)

We are now ready to formulate our “reliability coefficient”:

ρm = αm

αm + δm
. (15.41)

This they say will be analogous to an intraclass correlation. To obtain an
approximate estimate of ρm, they recommend using as estimates for E(Mnull)

and E(Mm), respectively, Mnull and Mm. Hence α̂m = Mnull − Mm and δ̂m =
Mm − (1/(N − 1)), from which we can construct an approximate estimate as

ρm ≈ Mnull − Mm

Mnull − 1/(N − 1)
. (15.42)
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If we multiply the numerator and denominator of Equation 15.41 by (N − 1),
we obtain

ρm ≈ (N − 1)Mnull − (N − 1)Mm

(N − 1)Mnull − 1
. (15.43)

If we now substitute corresponding expressions for Mnull and Mm from
Equation 15.38 into Equation 15.43, we obtain

ρm ≈ TLI =
(
χ2

null/dfnull
)− (χ2

m/dfm
)

(
χ2

null/dfnull
)− 1

. (15.33b)

To some extent the success of this index as an analogy depends on the
degree to which one can show that modeling covariance matrices is the
same as modeling sums of squares, mean squares, and degrees of freedom
in ANOVA. However, Tucker and Lewis (1973) do not make explicit why
degrees of freedom of ANOVA are equivalent to degrees of freedom of factor
analysis. So, if we presume that Mm = Fm/dfm because we make Fm play
the role of a sum of squares and dfm the role of degrees of freedom in
forming a mean square as in ANOVA, we need to ask, why is this reason-
able or useful to do? One could just as easily have arrived at a “reliability
index” based on the raw FLM values without dividing them by degrees of
freedom. In fact, the NFI would be the result. Is there any deeper mathe-
matical reason why this correspondence should be made? Tucker and Lewis
(1973) do not say. But the effect of dividing the chi-square by its degrees
of freedom is to change the units of measurement of lack of fit from one
model to the next. Differences are then computed between measures in
these different units of measurement. To obtain an approximate form for
the “reliability index,” the derivation of the index is also based on the pre-
sumption that the error of approximation is zero in the case of the model
chi-square, from which is derived an estimate for the sampling error as sim-
ply 1/(N − 1). This will be presumed to be the same for any tested model.
But the index is then going to be used where this assumption does not
hold, with models that likely are not correct and that have nonzero errors
of approximation. Thus it again must be emphasized that the index is an
approximation of its intended coefficient and only works best when the model
is correct.

Bentler (1990, p. 239) notes that “The degrees of freedom adjustment in the
[TLI] index was designed to improve its performance near 1.0, not necessar-
ily to permit the index to reflect other model features such as parsimony.”
He also notes that when χ2

m = E(χ2
m) = dfm, the TLI will equal 1.0. On the

other hand, when dfnull/(χ
2
m/dfm) > χ2

null, as χ2
null ≥ dfnull (in most cases), the

index can become negative. If χ2
m < dfm, then the TLI can be larger than unity.

Frequently in small samples, the index will be “anomalously small” and imply
horrible fit, “when other indexes suggest an acceptable model fit” (Anderson
and Gerbing, 1988). In sampling studies the TLI has a much larger variance
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than the NFI and other fit indices. Hu and Bentler (1995) also note that this
index was not developed with a population parameter already defined, and
then optimal sample estimates of this parameter were developed, as was the
CFI and other indices yet to be considered in this chapter.

The Meaning of Degrees of Freedom

Degrees of freedom represent the number of dimensions in which data are
free to differ from a model or curve with free parameters fit to the data as a
result of constraints on some of the parameters of the model or curve.

To demonstrate this we will draw upon Mulaik (1990, 2001). He considered
the general problem of fitting a function or model of several parameters to
a series of observed parameters using least-squares estimation: Suppose we
have p observed parameters s1, s2, . . . , sp, each modeled as a twice differen-
tiable function si = σi(θ) + ei, i = 1, . . . , p of m model parameters in the vector
θ = [θ1, θ2, θ3, . . . , θm], and ei an error parameter. This allows us to write

s1 = σ1(θ) + e1,

s2 = σ2(θ) + e2,

...

sp = σp(θ) + ep.

We may express these equations in vector form as
⎡
⎢⎢⎢⎣

s1
s2
...

sp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

σ1(θ)

σ2(θ)
...

σp(θ)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

e1
e2
...

ep

⎤
⎥⎥⎥⎦

and write simply s = σ(θ) + e. We say then that the observed parameters are a
vector function of parameters in θ plus error. Each of the si in s is the coordinate
of a point in p-dimensional space. Each of the σi(θ) is also a coordinate of the
vector point σ(θ) given a specific value for θ.

At the outset we will assume that the parameters in θ are unknown and
furthermore can be more in number than the number of observed parameters
in s; in other words, m > p. This means that we have more unknowns than
knowns, and constraints on some of the model parameters must be intro-
duced to achieve identification so that we can solve for the rest of the model
parameters.

Once just-identifying constraints are introduced, we can then introduce
from theory additional constraints on the model parameters to overiden-
tify the model, which will allow for testing these constraints. In all, we will
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have k constraints on the model parameters. The reason we begin assum-
ing the model parameters on the right can exceed in number the observed
parameters is because this is typical for an SEM. Consider that a model

equation for factor analysis is ΣYY = [Λ Ψ
] [ΦXX ΦXV

ΦVX I

] [
Λ′
Ψ′
]

, where ΦYY

is an n × n symmetric variance–covariance matrix with p = n(n+1)/2 distinct
parameters (because of symmetry) that are to be determined from parameters
in the matrices on the right, which correspond to the parameters in θ. Λ is
an n × r common factor pattern matrix and Ψ is an n × n matrix of unique
factor pattern loadings. ΦXX is an r × r symmetric common factor variance–
covariance matrix. ΦXE and its transpose ΦEX are r × n and n × r covariance
matrices, respectively, representing covariation between common and unique
factors.

As it stands, the model is underidentified with more parameters to estimate
than there are observed parameters by which to determine their values: the
total number of distinct model parameters is m = 2nr + n(n + 1)/2 + r(r +
1)/2 > n(n + 1)/2 = p. By fixing and constraining some of the model param-
eters, we may then be able to solve for the remaining free parameters. For
example, by fixing the off-diagonal elements of Ψ to zero, we implement
n(n − 1)/2 distinct constraints (because of symmetry of Ψ). By requiring the
nr covariances between common factors and unique factors to be zero, we
gain another nr constraints. By fixing various loadings to zero or other values
in Λ, we implement further constraints. And if we fix the diagonal elements
and some of the off-diagonal elements of ΦXX , we will impose other con-
straints. Let k be the total number of constraints on the model parameters.
Then this implies that q = m − k is the number of free parameters. We will
presume that p − q > 0 and that the model equation is overidentified, and
write it as

ΣYY = [Λ Ψ
] [ΦXX 0

0 I

] [
Λ′
Ψ′
]

.

The p = n(n + 1)/2 distinct elements of ΣYY can be rearranged systematically
in the vector s, while for each element in s we can write an algebraic equa-
tion σi(θ) representing a function of the model parameters in Λ, Ψ, and ΦXX
(which will correspond to elements of θ) by which to derive the correspond-
ing variance or covariance in ΣYY , as the case may be, and place these in the
vector σ(θ).

The problem of fitting the model or curve to the observed parameters by
least squares is to find values for the free parameters in θ that yield an esti-
mated vector σ(θ̂) that is minimally distant from s in the p-dimensional space
spanned by s under k constraints placed on the parameters in θ by theory and
requirements for identification of the estimated parameters. In other words,
some of the parameters in θ are free to vary, and a particular combination
of values for its free parameter values that produce a vector σ(θ̂) minimally
distant from s is sought. To gauge “minimal distance” we will consider that
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the length of e represents that distance. However, this is also equivalent to
minimizing e′e =∑p

i=1 e2
i , that is, minimizing the sum of squared errors.

Mathematicians represent constraints on parameters in optimization
studies by equations set equal to zero: Let gj(θ) = 0, j = 1, . . . , k be the k con-
straints placed on the parameters in θ. The formulation of these equations
of constraints can be based on substantive theory, but they should be suffi-
cient in number so that p + k > m. But it is important that they be internally
consistent because the surfaces defined by the equations should be able to
intersect so that a consistent system is possible. Scientists, however, do not
have many difficulties in formulating these constraints in simple ways, such
as θ5 = 0, θ10 − 1 = 0, θ22 − θ33 = 0, or θ2

11 + θ2
12 + · · · + θ2

19 − 1 = 0.
Because the vector function σ(θ) describes a point in p-dimensional space

and furthermore varies as the values of θ vary, this function is a mapping
from a hypersurface G in m-dimensional model-parameter space, given by the
equations of constraint, into a hypersurface S in the p-dimensional observed-
parameter space. The hypersurface G of possible values for θ is given by the
equations of constraint

g1(θ) = 0,
g2(θ) = 0,
g3(θ) = 0,

...
gk(θ) = 0

or
g(θ) = 0.

The problem of least-squares parameter estimation becomes the problem
of finding the value of a vector θ̂ of model parameters on the hypersurface G
of constrained parameters that maps via σ(θ) to a point on the hypersurface
S in p observed-parameter space that is minimally distant from the observed-
parameter vector s in that same space.

The function to minimize is

L = e′e + λ′g(θ)

=
p∑

i=1

[si − σi(θ)]2 + λ1g1(θ) + · · · + λkgk(θ), (15.44)

where λ = [λ1, λ2, . . . , λk] is a k × 1 vector of LMs whose values are to be
solved in the process of minimizing this equation. (Do not confuse λ here with
the noncentrality parameter discussed earlier. It is just that mathematicians
like to designate LMs with the symbol λ.)

Mulaik (1990, 2001) argues that in an ε neighborhood of the point σ(θ̂),
which is minimally distant from the observed parameter point s, the func-
tion σ(θ) may be said to vary in q dimensions. The proof of this is based
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FIGURE 15.1 Graphical representation of the model fitting problem. Points in the constrained
parameter space G are mapped by the model function σ(θ) into the hypersurface S in the observed
parameter space. The point θ̂ produces a point σ(θ̂) on the hypersurface S that is minimally
distant from the observed parameter vector s. The error vector e is orthogonal to the hyperplane
formed by the directional derivatives of σ(θ) with respect to the free parameters tangent to the
hypersurface S at σ(θ̂). The vector e lies in the complementary space orthogonal to the tangent
hyperplane and has for its length the distance between s and σ(θ̂).

on showing that in the neighborhood of the point θ̂ in model-parameter
space G, σ(θ) is effectively a function of q parameters θq. By the implicit
function theorem, the equation of constraint implicitly makes k parameters
θk in the vector θ = [θq, θk

]
a function f(θq) of the remaining parameters so

that g(θ) = g[θq, f(θq)] = 0. Next, by the affine approximation theorem of
advanced calculus, we can construct an affine approximation A(θ) to the
image curve of σ(θ) at the point σ(θ̂) (Figure 15.1):

A(θ) = σ(θ̂) + σ′(θ̂)(θ − θ̂).

Here σ′(θ̂) is the derivative matrix of σ(θ) with respect to θq (which are the
only varying parameters), evaluated at the value of θ̂ generating the point
σ(θ̂) minimally distant from s (Williamson and Trotter, 1979, p. 226). The rank
of the derivative matrix is q, which is also the number of dimensions of the
vector space spanned by the linearly independent columns of the derivative
matrix σ′(θ̂). The columns of σ′(θ̂) are vector partial derivatives and tangent
vectors to the surface (generated by varying σ(θ) as a function of θq) at the
point σ(θ̂). The line between s and σ(θ̂) is perpendicular to the tangent vectors
at the point σ(θ̂), since that is the shortest distance between s and any point
A(θ) in the tangent space in the neighborhood of σ(θ̂) (because L, which is
the squared length of the line from s to σ(θ̂), is minimized at σ(θ̂)). The vector
e = s − σ(θ̂), which may be made to originate at σ(θ̂), is collinear with the
line between s and σ(θ̂) and is in the complement affine vector space of p − q
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dimensions orthogonal to the q-dimensional space spanned by the tangent
vectors originating at the point σ(θ̂).

In other words, the error vector e originating at the point on the surface
generated by σ(θ) is orthogonal to each of the dimensions in which σ(θ) is
varying at the point σ(θ̂). Because the dimensions in which σ(θ) varies is q
in number, the error vector e must be in a space of at most p − q dimensions
orthogonal to the space in which σ(θ) varies in the vicinity of σ(θ̂). This space
gives the maximum number of possible dimensions that e may span, or the
number of dimensions in which the observed parameter vector s is free to
differ from the reproduced model vector σ(θ̂). These correspond to the degrees
of freedom of the model. Each degree of freedom corresponds to a condition by
which the observed data vector s is free to differ from the reproduced model
vector σ(θ̂). Thus the degrees of freedom of a model represent the number of
distinct conditions by which the model can be disconfirmed by a lack of fit.
Degrees of freedom are thus a quantitative measure of the disconfirmability
of a model.

Generalization to Weighted Least-Squares Estimation

A more general form of least-squares estimation is weighted least-squares
estimation. The above results also apply to this form of estimation. The GLS
estimation criterion to minimize can be written as

L = [σ(θ) − s]′W[σ(θ) − s] + Λ′g(θ). (15.45)

Here W is a p × p nonsingular, Gramian, symmetric weight matrix. We can
furthermore factor W as W = HH′. This allows us to rewrite Equation 15.45 as

L = [σ(θ) − s]′HH’[σ(θ) − s] + Λ′g(θ).

Furthermore, we can now define s∗ = H′s and σ∗(θ) = H′σ(θ) and rewrite
Equation 15.45 as

L = [σ∗(θ) − s∗]′[σ∗(θ) − s∗] + Λ′g(θ). (15.46)

This is simply a form of the least-squares criterion applied now to the
transformed observations vector s∗ and the model vector σ∗(θ).

Mulaik (1990) further considered the special problem where s = vecs(S) is
a vector of the p = n(n + 1)/2 nonduplicated elements of a sample variance–
covariance matrix S and σ(θ) = vec (Σ(θ)) of a corresponding hypothetical
variance–covariance matrix Σ(θ). He noted that Tanaka and Huba (1985)
had shown that for structural equations modeling the different methods of
estimation, (a) ordinary least squares, (b) GLS, and (c) maximum likeli-
hood, may be treated as special cases of the general equation for weighted
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least squares. Let the elements of s and σ(θ) be indexed by the indices
of the respective elements of S and Σ(θ), so that, for example, s =
[s11, s21, s22, s31, s32, s33, . . . , sn,n−1, snn]. Carrying this indexing to the elements
of W, wij,kl is in the row corresponding to the ijth element of s and in the
column corresponding to the klth element of s′. Now, following Browne
(1982, Equation 1.5.16, p. 83), let W be defined with elements = wij,kl =
[(2 − δij)(2 − δkl)/4](vikvjl + vilvjk), where δij and δkl are Kronecker deltas that
equal unity when their left and right subscripts are the same and equal zero
otherwise, and vik is the ikth element of the n × n symmetric matrix V−1,
and so on. According to Tanaka and Huba (1985), for the case of ordinary
least squares, V = In. For the case of GLS, V = S, the n × n sample covari-
ance matrix. For the case of maximum-likelihood estimation, V = Σ = Σ(θ̂).
[Note that the equivalence with maximum likelihood is only approximate,
with the approximation improving asymptotically (Browne, 1982, p. 84) as
the sample size grows indefinitely.] But the fact that maximum-likelihood
estimation at the population produces what is equivalent to a least-squares
solution allows us to use the same interpretation here for degrees of freedom
in the maximum-likelihood case.

Implications for Model Testing

Mulaik (1990, 2001) observed that we can now see how estimating more and
more parameters until we have a saturated model will lead to ever-decreasing
lack of fit, until we have a saturated model that fits perfectly. As we estimate
more and more parameters, the number of dimensions in which the model
vector σ(θ) is free to move around in the p-dimensional data space in search
of a minimally distant point also increases. Usually a solution σ(θ̂) can be
found that is closer and closer to s. When we can search as many dimensions
as there are observed parameters, we can find a model that passes through
the observed parameter vector perfectly. This suggests that good fit that is
obtained by freeing more and more parameters is suspect. We can also think
of this as the estimating algorithm’s “peeking at the data” to find estimates
for parameters that best fit the observed parameters. This means that a model
with good fit obtained by freeing more and more parameters is a model that
has been formulated by adjusting it progressively to fit the very data that are
to be a test of the model. This violates the often cited rule that one should not
test a model against the same data used to formulate the model. Atest requires
a logical possibility of failing to pass the test. That logical possibility decreases
with each estimated parameter until we get a saturated model that is impos-
sible to reject for lack of fit. No test at all can be made with a saturated model.

On the other hand, we can interpret the lack of fit as concerning just
the overidentifying constraints (in the context of some duly chosen just-
identifying constraints) rather than testing all aspects of a model. As men-
tioned earlier, freeing parameters is not hypothesizing anything about them.
The freed parameters are unknowns, and the estimating algorithms, unless
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constrained, will seek out any best-fitting value, which may be in the range
from −∞ to +∞. Hence the test should not be about what is not asserted as a
hypothesis a priori. Atest is about the constraints hypothesized for parameters
of the model.

“Badness-of-Fit” Indices, RMSEA, and ER

Up to now we have looked at “GFIs” that range generally between 0 and 1
to indicate degree of fit. We will now look at an index that is a “badness-
of-fit index,” where 0 indicates perfect fit and larger values indicate lack of
fit. We have already indicated that the population error of approximation
F(Σ; Σ̃0) is the desired measure of how well a model will fit the population
variance–covariance matrix. An (approximately) unbiased sample estimate
of this parameter is easily obtained by subtracting the degrees of freedom
from the chi-square statistic and dividing by (N − 1) (cf. Equation 16.15).
But the normalized noncentrality parameter concerns cumulative lack of fit
over all the constraints placed on the model. When it comes to comparing
models with different numbers of constraints placed on them, the noncen-
trality parameter for the model with more constraints can be larger than the
model with fewer constraints. To place them on a common basis for compar-
ison, it is recommended that we divide the noncentrality parameter by the
number of degrees of freedom. The result is an index that yields the mean
noncentrality per degree of freedom. Since the noncentrality parameter is a
measure of squared distance, Steiger and Lind (1980) recommended taking
the square root of this quantity, which they called the “root mean squared
error of approximation” or the RMSEA index:

RMSEA =
√

χ2
dfk

− dfk

(N − 1)dfk
(15.47)

Here χ2
dfk

is the chi-square index of fit with dfk degrees of freedom for model
k, with N the sample size. As we have seen, the degrees of freedom are an
index of the number of dimensions in which data are free to differ from a
model with estimated parameters. Thus getting the average discrepancy per
degree of freedom obtains an average measure of lack of fit per dimension
of potential lack of fit. Browne and Cudeck (1993) reported some experience
with typical values of this index for models they believed fit well and those
that did not. On the basis of that they suggested using a value less than or
equal to 0.05 for the RMSEA as a criterion for a model that has “good fit.”
Because the quantity under the radical sign can take on negative values in
some instances, they further recommended setting any negative value under
the radical to zero, otherwise retain any positive quantity as is. So, this index
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is currently defined for an arbitrary model k as

RMSEA =
√√√√Max

{(
χ2

dfk
− dfk

(N − 1)dfk

)
, 0

}
. (15.48)

Browne and Cudeck (1993) indicate that a confidence interval estimate for
the RMSEA is available to indicate the precision of the RMSEA estimate. To
obtain this they begin by defining G(χ2

dfk
| δ∗, df) as the cumulative distri-

bution function of the noncentral chi-square distribution with noncentrality
parameter value δ∗ and df degrees of freedom. Given a specific value for
χ2

dfk
derived from fitting by maximum-likelihood estimation a model to the

sample covariance matrix S and values for δ∗ and dfk for a model, one can cal-
culate the cumulative probability of obtaining such a value for the chi-square
statistic.

P = G(χ2
dfk

| δ∗, dfk).

Furthermore, if δ∗ is not given and instead the probability is given, one can
solve for the value of δ∗ that would define a distribution in which χ2

dfk
occurs

with a specified cumulative probability of P. For a 90% confidence interval on
χ2

dfk
, we need to find values for δ∗ = δ∗

U such that P = G(χ2
dfk

| δ∗
U, dfk) = 0.05,

which will be the upper limit, and δ∗ = δ∗
L such that P = G(χ2

dfk
| δ∗

L, dfk) =
0.95, which will be the lower limit. Then a confidence interval on the RMSEA
is given as

(√
δ∗

L/[(N − 1)dfk],
√

δ∗
U/[(N − 1)dfk]

)
. Browne and Cudeck (1993)

refer to several algorithms available for calculating these values of the non-
centrality parameter, but we will not go into them here. However, they note
that if the lower limit is zero, the test of the null hypothesis based on χ2

dfk
would not reject the null hypothesis that δ∗ = 0 at the 5% level. Thus the
interval provides the corresponding information given in the chi-square test.
Of course, in this case, if the upper limit is nonzero, one cannot be certain
that the model is correct, since nonzero values would also be consistent within
this interval. In any case, the confidence interval gives a measure of precision
for the estimated RMSEA.

There may now be some evidence (Olsson, Foss, and Breivik, 2004) that
the noncentral chi-distribution may not be appropriate for establishing these
confidence intervals. What Olsson et al. (2004) have shown with Monte Carlo
studies is that the noncentral chi-square distribution is a good approxima-
tion to the empirical distribution in models with a relatively small number of
variables and relatively small noncentrality parameters. But they also found
that the empirical distribution, while still centered very close to the mean of
the noncentral chi-square distribution, was more spread out in the tails than
in the noncentral chi-square distribution, and, in fact, seemed more closely
approximated by a normal distribution. Yuan (2008) argues mathematically
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that chi-square of the likelihood ratio statistic follows asymptotically a
normal distribution. So, caution is signaled in using these confidence inter-
vals. [See later in the discussion of the Akaiki information criterion (AIC)
index.]

Some have suggested that the RMSEA index takes “parsimony” of the
model into account by dividing by the degrees of freedom. But this is not
so, as we will see shortly in a discussion of parsimony in model evaluation.
One could have a model with a modest number of degrees of freedom and a
certain RMSEA value and begin to add further constraints. The normalized
noncentrality will likely increase. But each additional constraint may in some
cases add only the same degree of lack of fit, and the average discrepancy per
degree of freedom will not change. So, the RMSEA does not necessarily favor
models with more degrees of freedom. Like the chi-square index, it should be
interpreted primarily in terms of the fit of the constraints in the model rather
than of the “whole model.”

Exponentialized Negative RMSEA Index

In Equation 16.32, we saw how McDonald formulated a GFI by obtaining the
exponential of minus one half of the normalized noncentrality obtained by
dividing the noncentrality parameter by (N − 1). Over nonnegative values
for the noncentrality parameter from 0 to infinity, the index ranges from 1 to
0. However, we noted that the index falls off rather rapidly from 1 with small
increases in the normalized noncentrality and yields values that are much
lower than those of the GFIs or CFIs for models considered to be very good
approximations. This seemed to be an undesirable feature of this index. But
a variant of this index may be made to behave if we obtain the exponential of
the negative RMSEA (ER) index:

ER = exp(−RMSEA) = exp

⎛
⎝−
√√√√Max

{(
χ2

dfk
− dfk

(N − 1)dfk

)
, 0

}⎞
⎠ . (15.49)

(Thanks to Paul Dudgeon for suggesting “ER” for the name of this index.)
When the RMSEA index is 0.05, the value of ER is 0.951. When the RMSEA is
0.10, ER is 0.904. When the RMSEA is 0.20, ER is 0.818. So, this behaves very
much like other GFIs in the region of acceptable approximate fit. We can regard
a model with an ER of 0.95 or better as an acceptable approximation, much
as we would with other indices that range between 0 and 1. And because we
can construct confidence intervals for the RMSEA, we can do the same with
the ER, using the lower and upper bounds of the interval for the RMSEA to
construct a corresponding interval for the ER. There will be other advantages
of this index when we consider parsimony.
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Parsimony

Parsimony is an important concept in the evaluation of models. We should
note here that the dictionary definition of parsimony is that it is synonymous
with “extreme economy or frugality.” Because parsimony has played an
important role in the history of science, we will begin our discussion of it
by reviewing its history. (We will draw upon the account of this history given
by Mulaik et al. (1989).) In the fourteenth century, the nominalist philosopher
and theologian William of Occam proposed a principle that is taken by many
to be fundamental in science, known as “Occam’s razor”: Entities are not to
be multiplied unnecessarily. This came to be understood as requiring that theo-
ries should be as simple as possible. Immanuel Kant (1787/1996) recognized
this as a regulative principle of reason impelling us to unify experience as
much as possible by means of the smallest number of concepts. But Kant also
warned that the principle should not be applied uncritically. Against it there
is another principle, that the varieties of things should not be rashly dimin-
ished, if we are to capture their individuality and distinctness. Toward the
end of the nineteenth century, the Austrian physicist and Kantian philoso-
pher of science Heinrich Hertz (1894) advanced the view that our theories
are not merely summary descriptions of that which is given to us in experi-
ence, but constructs or models actively imposed by us onto experience. So,
for any given phenomenon there are many models that we might construct
with respect to it. But given a number of models to consider, we need crite-
ria by which to choose the best from among them. He therefore suggested
these criteria: the model should be (1) logically and/or formally consistent,
(2) empirically adequate (meaning, be related to real-world data), (3) be able
to represent more of the essential relations of the objects of the phenomenon
(good fit), and (4) the simplest (Janik and Toulmin, 1973). Hertz’s stress on
simplicity had a considerable impact on physicists who followed him. Thus
parsimony in explanation involved frugality or fewness of concepts in an
explanation of something.

By the 1930s and 1940s, simplicity of theories was often cited as a funda-
mental principle by scientists. For example, L. L. Thurstone (1947, p. 52) in his
text on factor analysis stated that, “The criterion by which a new construct in
science is accepted or rejected is the degree to which it facilitates the compre-
hension of a class of phenomena which can be thought of as examples of a
single construct rather than as individualized events.” He then asserted, “But
in order for this reduction may be accepted as science, it must be demon-
strated, either explicitly or by implication, that the number of degrees of
freedom of the construct is smaller than the number of degrees of freedom of
the phenomena that the reduction is expected to subsume” (Thurstone, 1947,
p. 52). Here I believe he used the term “degrees of freedom” differently from
the way we did in the previous section. He meant number of free parame-
ters. He cited an example: Suppose we propose a rational equation as the law
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governing the relation between two variables. We obtain three observations.
If the equation has three independent parameters, then the number of degrees
of freedom of the phenomena is the same as the number of degrees of free-
dom of the equation, and the relation is undemonstrated. Here, I believe, he
was thinking of a just-identified equation. There are as many unknown free
parameters in the equation as there are observations to fit the equation’s curve
to. Since in these situations scientists use the data to estimate free parameters
in such a way as to optimize fit to the data conditional on any identifying
or overidentifying constraints, the fit of the three-parameter curve to the
three observations would be perfect but nothing would be demonstrated.
The perfect fit is a mathematical necessity regardless of the empirical setting.
But then he says, suppose we have 100 observations and an equation with
three parameters. Such an equation is of scientific interest. He concluded by
saying “The convincingness of a hypothesis can be gauged inversely by the
ratio of its number of degrees of freedom to that of the phenomena which it
has demonstrably covered” (p. 52). In other words, the ratio of the number
of free parameters to the number of observations is inversely related to the
convincingness of a hypothesis.

And we have to use parsimony as a way of choosing the best hypothesis.
Thurstone concluded by saying, “It is in the nature of science that no scientific
law can ever be proved to be right. It can only be shown to be plausible.
The laws of science are not immutable. They are only human efforts toward
parsimony in the comprehension of nature” (p. 52). Parsimony then became
a key idea in his use of the method of factor analysis. It played a role in
his ideas of minimum rank, the overdetermination of factors by observed
variables, and simple structure.

In the mid-1930s, the Austrian philosopher of science who later became
a British subject and was knighted, Sir Karl Popper, believed that the sim-
plicity or parsimony of a hypothesis is essential to evaluating the merits
of a hypothesis before and after it is subjected to empirical tests. “The
epistemological questions which arise in connection with the concept of sim-
plicity,” he said, “can all be answered if we equate this concept with degree of
falsifiability” (Popper, 1934/1961, p. 140). He seemed to grasp the meaning
of how, in connection with a given set of observations, a hypothesis with
few freely estimated parameters may be subjected to more tests of possi-
ble disconfirmation than a hypothesis containing numerous freely estimated
parameters. However, he seemed unable to formulate explicitly the principle
of why estimating fewer parameters yields more ways to disconfirm a model.

However, we have just done so in connection with developing the concept
of degrees of freedom. We saw how one begins with a number of observed
parameters and seeks to formulate an equation by which to determine these
points. If the equation has no free parameters, so all parameters have values
by hypothesis, then each observed parameter is a value against which the
predicted values of the theoretical equation can be compared. There are as
many degrees of freedom, dimensions, as there are observed parameters by
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which the observed parameters are free to differ from their predicted values.
But if out of ignorance for them, we free certain model parameters and esti-
mate them to optimize fit to the observations conditional on the constrained
model parameters, then, for each freed parameter, we lose a degree of free-
dom, a dimension, by which the observations may differ from the predicted
values. So, models are disconfirmable to the extent that there are dimensions
by which they may differ from the observations to be modeled. And this is
inversely related to the number of free parameters relative to the number of
observations.

Parsimony is the fewness of free parameters relative to the number of obser-
vations. This is a ratio, as Thurstone (1947) seemed to understand. Parsimony
is not degrees of freedom, which is the difference between the number of
observations and the number of free parameters in the (identified) model.
But parsimony is related to degrees of freedom. Both concepts are derived
from the same information. But degrees of freedom do not convey informa-
tion about the number of observations to account for with the model. Degrees
of freedom can be large in number, but in a model with many thousands of
observed data points to fit, the degrees of freedom may still be small relative
to the number of observations, because proportionately there are still many
free parameters in a complex model. So, the size of the degrees of freedom
does not indicate the degree to which the observations are accounted for by
the hypothesized parameters of the model as opposed to the estimating of
parameters. But a ratio can convey this idea.

James et al. (1982) argued in connection with the NFI of Equation 15.29 that
“The parsimony of a model is indicated by the ratio of the degrees of freedom
of the model to the number of degrees of freedom available in the data as
indicated by the number of degrees of freedom available of the null model
for those data.” They reasoned that the null model, a covariance matrix whose
off-diagonal covariances were all zero, and whose variances in the diagonal
were all freely estimated, provided a norm which only concerned the lack of
fit of the null model to the off-diagonal elements of the observed covariance
matrix. In the formula for the NFI, NFI = (χ2

null − χ2
t )/χ

2
null, the difference in

lack of fit between the null model and the tested model t is compared with the
lack of fit of the null model. Since the lack of fit of the null model only concerns
its fit with the n(n − 1)/2 off-diagonal elements of the covariance matrix S,
the maximum number of degrees of freedom is therefore only n(n − 1)/2. So
they recommended that one multiply the ratio

PR = df(model)
df(maximum)

= df(model)
n(n − 1)/2

(15.50)

with the value of the NFI to obtain a “parsimonious fit index.” Later when
the NFI was replaced by the CFI of Equation (15.30), Mulaik et al. (1989) rec-
ommended multiplying this value for the PR with the CFI for the model. The
resulting quantity represented a combining of information about the discon-
firmability of a model with its fit to the data to provide an index of the overall
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quality of the model. Perhaps the PR ratio could also be called the “discon-
firmability ratio.” An ideal model would be one that had perfect fit to the
observed covariance matrix and a PR of 1, meaning every parameter of the
model was fixed by hypothesis. The resulting index PR*CFI would then equal
unity. The model would be the most disconfirmable and at the same time best
fitting. On the other hand, a perfectly fitting saturated model would obtain a
combined PR*GFI or PR*CFI of 0, since the PR would be zero. Mulaik et al.
(1989) also recommended that a different ratio be used for PR in connection
with the GFI. In this case, since the GFI concerned the fit to all of the elements
of the covariance matrix, the maximum degrees of freedom is n(n + 1)/2, so

PR = df(model)
df(maximum)

= df(model)
n(n + 1)/2

. (15.51)

Then one would obtain the value of PR*GFI and interpret this similarly
as an index of model quality. Carlson and Mulaik (1993) added further
interpretations to the use of parsimony-adjusted GFIs. They said,

One would not need to obtain the parsimony adjusted goodness of fit
value PCFI = (dfk/df0)CFI if one used the CFI index with large samples
simply as an index of the approximate correctness of the overidentified
conditions placed on the tested model, in a manner analogous to the way
the generalized likelihood ratio chi square test is used to test the same
overidentified conditions as an exact hypothesis using the sampling dis-
tribution of chi square with corresponding degrees of freedom as a basis
for evaluating the magnitude of the chi square statistic. In this case the CFI
is used because large samples make sampling distribution theory less rel-
evant to the assessment of the usefulness of the overidentifying constraints
as an approximation. But for various reasons, researchers have tended
to use chisquare and goodness of fit indices to evaluate not simply the
overidentified conditions of the model but the whole model . . . as if the
indices provided a test of the whole model, to be used in the comparison
and selection of models. It is for such applications that the parsimony
adjustment of goodness of fit indices has been introduced. (Carlson and
Mulaik, 1993, p. 130)

It is quite possible to use the PR ratio alone as a measure of model discon-
firmability when considering the fit of a model. This serves to remind one
of how much has been tested with one’s model. Values of the PR*CFI or the
PR*GFI above 0.85 represent models with both good fit and high disconfirma-
bility. (This is not a hard and fast rule!) Models with values below this could
use improvement, either in fit or in specifying more parameters. The PR ratio
can also be used with the ER index, since it also ranges between 0 and 1 and
is interpretable in a manner similar to parsimony adjustments of the other
indices that range between 0 and 1.
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Information Theoretic Measures of Model Discrepancy

AIC Index

The Japanese statistician Hirotugu Akaiki (Akaiki, 1973, 1987; Sakamoto,
Ishiguro, and Kitagawa, 1986; Bozdogan, 1987) has argued that a measure
of the discrepancy in fit of a (fully specified) model to the true model is given
by the difference between the expected log likelihood of the hypothesized
model and the expected log likelihood of the true model, with the expecta-
tions taken in both cases with respect to the true distribution generating the
data. In other words, let X be a random variable with f (x) its true (but possi-
bly unknown) distribution function. Let h(x) be a hypothesized distribution
for X. Then assuming counterfactually that we know f (x), the measure of the
discrepancy between the true distribution and the hypothesized distribution
would be

I( f ; h) = EX[log f (x)] − EX[log h(x)]

=
∫ ∞

−∞
f (x) log f (x) dx −

∫ ∞

−∞
f (x) log h(x) dx,

where I( f ; h) is known as the Kullback–Leibler information quantity. This
quantity measures the amount of information on average with an observation
of the random variable that would allow one to discriminate between the
true distribution and the hypothesized distribution. The integrals are just
the expressions for the expected values of continuously distributed variables.
It is important here to see that the likelihood of a value x, h(x), represents a
transformation of that value, and that log h(x), which is a monotonic transfor-
mation of h(x), does also. So both of these function like scores. So we compute
the average log f (x) and compare that with the average log h(x) and obtain
their difference.

When applied to a sample value xi of the random variable X, the likeli-
hood h(xi) represents a measure of the support of the observed value for the
hypothesis. If the observed value xi has very low likelihood h(xi), this is weak
support for the hypothesis. If its likelihood is high, this is strong support. We
can conceive of sampling a single observation x of the random variable X
and transforming it by applying the likelihood function h(x) to it. This pro-
duces a new random variable log (h(X)). The expected value of the resulting
quantity with respect to the true distribution thus represents a population
measure of fit of the hypothesized distribution to the actual distribution of
the random variable. When the hypothesized distribution h(x) equals the true
distribution f (x), then EX[log h(x)] attains its maximum value, which is equal
to EX[log f (x)], and I( f ; h) = 0, implying no discrepancy between hypothe-
sized distribution and actual distribution. When h(x) does not equal the true
distribution, then EX[log h(x)] will be less than EX[log f (x)] and I( f ; h) > 0,
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indicating a discrepancy between the true distribution and the hypothesized
distribution.

Note, however, that over different hypothesized models, only the right-
most term EX[log h(x)] in the expression for I( f ; h) varies; the left-hand term
EX[log f (x)] is the same for all hypothesized models for the same variable X.
So, the rightmost term is the only important term for comparisons of mod-
els. Over a range of models compared, the model with the largest value for
EX[log h(x)] will be the closest to the true model.

In practice, we ordinarily do not know the true distribution f (x). Some think
we can get around this problem if we estimate the quantity EX[log h(x)] by
obtaining a large sample of observations of X, x1, x2, . . . , xN and computing
the sample mean log likelihood 1/N

∑
log h(xi). Closely related to this is the

quantity
∑

log h(xi) = log Πh(xi), which is the log likelihood for the sample
under the hypothesized model. Its expected value (under the assumption that
the observations are independently and identically distributed) is

EX

[ N∑
i=1

log h(xi)

]
= N · EX[log h(x)].

AIC Index

Akaiki (1973, 1987) considered the case where the distribution is known and
all that differed between models were the parameters. So, given a true model
f (x | θ∗) with true parameters θ∗, other models with different values for the
parameters would be designated as f (x | θ). Furthermore, he generalized the
likelihood concept used as a measure of support for a model with completely
specified parameters to consider models with estimated parameters. In doing
so he showed that

−2(maximum log likelihood of a model) − (number of free parameters)
(15.52)

is an asymptotically unbiased estimator of a population parameter he called
the “mean expected log likelihood” (Sakamoto et al., 1986). This parameter
is analogous to N · EX[log h(x)] in the above discussion. However, if we sim-
ply took θ̂, the parameter vector with sample maximum-likelihood estimates
for the free parameters for some sample, and considered N · EZ[log f (z | θ̂)]
for some other random variable Z that is identically but independently dis-
tributed with respect to X, this would not yield the desired expectation
analogous to N · EX[log h(x)]. This is because the free parameters in the
parameter vector θ̂ are random variables that are functions of some vector
of values in a random sample x = [x1, x2, . . . , xN] of the random variable X.
We need to consider finding the mean of N · EZ[log f (z | θ̂)] over all random
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samples x. This we can do if we find

EX{N · EZ[log f (z | θ(X))]} =
∫

RN
N · EZ[log f (z | θ(ξ))]

N∏
i=1

f (xi | θ∗) dξ.

The expectation on the left is taken with respect to a random vec-
tor of N identically and independently distributed random variables X =
[X1, X2, . . . , XN], which represents a random sample of observations of the
random variable X having the distribution function f (x). A realization of X is
denoted by the vector x. The free parameters in θ(X) are functions of the ran-
dom vector of observations X. The integral on the right is a multiple integral
in N-dimensional real-valued space RN , whereas

∏N
i=1 f (xi | θ∗) is the joint

density of sample values, each having the true distribution f (x | θ∗). Because
this appears to be an expected value of an expected value, this parameter is
called the “mean expected log likelihood” by Akaiki. As an estimate of this
parameter, Akaiki proposed an index known as the Akaiki information criterion
(AIC), which is

AIC = −2(maximum log likelihood of model)

+ 2(number of free parameters of model).

When a number of models are to be compared, the model with the smallest
AIC value is considered the best. However, this is not a test statistic since no
accept–reject criterion is provided. Given a set of models, one may have the
lowest AIC value, but still it may not fit the data very well.

Variants of the AIC

Another index that has frequently been called the AIC is the index

AIC2 = χ2
df − 2df. (15.53)

Here χ2
df is the chi-square statistic with df degrees of freedom for the model.

This index differs from the true AIC in that it represents the difference

AIC(t) − AIC(s) = χ2
df − 2df

between the AIC of the hypothesized model t and the AIC(s) of a saturated
model s. Since the AIC(s) of the saturated model would be subtracted from the
AIC of each of a series of models, it does not change the relative ordering of
the models, so this index can be used for selecting the model with the lowest
value. A derivation of this index for the factor analysis model is as follows.
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From the Wishart distribution we know that the natural logarithm of the
likelihood function for modeling the covariance matrix Σ(θ) as a function of
other parameters, given the estimated sample covariance matrix S is

ln l(θ) = −K − 1
2
(N − 1) ln

∣∣∣Σ(θ̂)

∣∣∣− 1
2
(N − 1)tr[SΣ−1(θ̂)]

(Jöreskog, 1969), where K is a function only of sample size N and number of
variables n, but not of model parameters. Subsequently,

AIC(t) = 2K + (N − 1) ln
∣∣∣Σ(θ̂)

∣∣∣+ (N − 1)tr[SΣ−1(θ̂)] + 2q

is the AIC value for model t, with q the number of free parameters. On the
other hand,

AIC(s) = 2K + (N − 1)ln|S| + (N − 1)tr[SS−1] + 2n(n + 1)/2,

which reduces to

AIC(s) = 2K + (N − 1)ln|S| + (N − 1)n + 2n(n + 1)/2.

Hence

AIC(t) − AIC(s) = 2K + (N − 1) ln
∣∣∣Σ(θ̂)

∣∣∣+ (N − 1)tr[SΣ−1(θ̂)] + 2q

− 2K − (N − 1)ln|S| − (N − 1)n − 2n(n + 1)/2

= (N − 1)
[
ln
∣∣∣Σ(θ̂)

∣∣∣− ln|S| + tr[SΣ−1(θ̂)] − n
]

− 2
[
n(n + 1)/2 − q

]
.

From Equation 15.7 we see that the first expression on the right is χ2
dft

, whereas
the second is simply −2df; hence

AIC(t) − AIC(s) = χ2
dft

− 2df.

Another variant of the AIC is

AIC3 = χ2
dft

+ 2q, (15.54)

where q is the number of free parameters in the model. The justification for
equating this index with the AIC is that it represents the result of adding
another constant, 2n(n + 1)/2, to AIC2, so it too should maintain the same
ordering among models as the AIC. While the AIC and AIC2 may occasionally
take on negative values, the AIC3 takes on positive values only.
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AIC Does Not Correct for Parsimony

Although frequently regarded as an index that “corrects for complexity” or
the estimation of parameters, it does not really do so in the sense that the PR
does. Parsimony is not regarded in the AIC as a ratio of free parameters to
observed parameters. Rather the term 2q is a technical correction for the small
sample bias in estimating the mean expected log likelihood with a model that
has q free parameters. And, as we are about to demonstrate, the effect of this
correction diminishes to vanishing as the sample size gets increasingly large.

The AIC has received much attention from professional statisticians, per-
haps because of the sophisticated rationale behind it and a dubious belief
that the task of scientists is to construct numerous models and select from
among them the best fitting. The problem with this is an excessive reliance on
fit alone in judging the quality of a model. Akaiki originally developed the
index in the context of regression models, where the data points to be fitted
are the individual observations. Rarely do researchers formulate saturated or
near-saturated regression models, especially when the sample size is huge.
But the factor analysis model (and SEMs as well) are concerned with fitting
a model covariance matrix to an observed covariance matrix. The number of
distinct data points to which the model is fit is n(n + 1)/2, and this remains the
same regardless of sample size for the observations. It is well within reach in
both exploratory and confirmatory factor analysis to free up so many param-
eters as to obtain near-saturated and even saturated models. So, among other
things, we need to see the behavior of the AIC in models that approach being
saturated. We also need to look at the effect of sample size on the AIC.

To do this we will focus on AIC2, since the theory associated with the chi-
square term in it is well-developed. Given AIC2 = χ2

dft
− 2df, we know that

the expected value of AIC2 is

E(AIC2) = E(χ2
df) − 2df = (λ + df) − 2df = (N − 1)δ − df, (15.55)

where λ = (N − 1)δ is the unnormalized noncentrality parameter and δ the
normalized noncentrality parameter. Recall from the discussion following
Equation 16.11 that λ = (N − 1)F(Σ; Σ̃0), whereas from Equation 15.18 δ =
F(Σ; Σ̃0), the population error of approximation.

The following is taken from Mulaik (2001): Let us now consider three
models M1, M2, and M3, with expected AIC2 values of

E[AIC2(M1)] = (N − 1)δ1 − df1,

E[AIC2(M2)] = (N − 1)δ2 − df2,

E[AIC2(M3)] = 0 − 0 = 0.

Model M3 is a saturated model with, of mathematical necessity, zero lack of
fit and zero degrees of freedom, regardless of sample size. Now, under what
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conditions will it be the case that

(N − 1)δ1 − df1 < (N − 1)δ2 − df2

so that the first model will have a smaller expected value for AIC2 than the
second model? A little algebra reveals that this will happen when

(δ1 − δ2) <
(df1 − df2)

(N − 1)
. (15.56)

When the difference between the normalized noncentrality values δ1 and δ2
for models M1 and M2, respectively, is less than the difference between their
degrees of freedom divided by (N−1), model M1 will be preferred on average
over model M2.

According to proponents of the AIC, when δ1 = 0 and df1 > df2, then model
M1 will be favored over any model M2, including the saturated model M3. But
for nonzero values of δ there is an important exception. Recall that limN→∞ Nδ

is undefined for any positive δ. As Napproaches infinity, with positive values
for δ1 and δ2, the E(AIC2) becomes undefined and cannot distinguish between
any pair of such models. To control for increasing sample size, McDonald
(1989) suggested for the chi-square index and the AIC2 that one divide them,
respectively, by (N−1). Then

E
(

AIC2

(N − 1)

)
= δ − df

(N − 1)
. (15.57)

Although this shows that the AIC2/(N–1) on average underestimates the
population error of approximation, the bias diminishes with increasing sam-
ple size. But we see that this will not help to distinguish between models
with positive degrees of freedom and a zero δ and saturated models that
necessarily have zero δ and zero degrees of freedom. For as N approaches
infinity, df/(N − 1) approaches zero, and this means that Equation 15.56 will
not hold, since it will become the equality 0 = 0. So, at the population level
the normalized AIC will not distinguish, on average, between a perfect fitting
model with positive degrees of freedom and a perfect fitting saturated model
with zero degrees of freedom.

Kieseppä’s Critique and a Rejoinder

Kieseppä (2003) has taken exception to the argument that the raw AIC must
be replaced by the normalized AIC. Although he does not quarrel with the
results based on expected values, he argues that they do not consider the
question of whether or not in the limit there is still a probability greater than
0.5 for favoring, say, a model with zero δ and df > 0, over a saturated model
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with zero δ and df = 0. Using well-developed theory (Hogg and Craig, 1965,
pp. 318–320), he states that

E(AIC(k)) ≈ (N − 1)δ − df (15.58a)

is the expected value of the AIC for some model k, whereas

D2(AIC(k)) ≈ 4(N − 1)δ + 2df (15.59a)

is the variance of the AIC.
Kieseppä then notes that if model M1 is a correct model with δ1 = 0 and

df1 > 0, while M3 is the saturated model with δ = 0 and df = 0, then model
M1 should be preferred to model M3 if

AIC(M1) < AIC(M3).

He is not concerned with expected values but the probability that we will
observe cases where the AIC for M1 will be less than the AIC for M3. He
next reasons AIC(M3) = 0 with probability 1. This is reasonable since it is a
mathematical necessity that the AIC of a saturated model will equal 0 and
have 0 df. It should have no variance at all, regardless of sample size. So, let
us now turn to the distribution of M1. Suppose we now assume that model
M1 has a normalized noncentrality δ = 0. He assumes in this case that in
large but not necessarily infinite samples that the distribution of AIC(M1) is
approximately normal with mean and variance given by Equations 15.58a
and 15.59a. So, to determine what the probability is under this distribution
that the AIC(M1) is less than zero, he computes the cumulative probability

Pr[AIC(M1) < 0 | sN] ≈ F

(
0 − E(AIC(M1)√

D2(AIC(M1)

)
.

Let us focus on the expression inside the parenthesis of the cumulative nor-
mal probability function on the right. We will now substitute Equations 15.58a
and 15.59a for E(AIC(M1)) and D2(AIC(M1), and then we will immediately
multiply the result by the ratio [1/(N−1)/(1/(N−1))].

−(N − 1)δ + df√
4(N − 1)δ + 2df

=
(

1/(N − 1)

1/(N − 1)

) −(N − 1)δ + df√
4(N − 1)δ + 2df

.

We will further carry out the obvious multiplications involving 1/(N−1)
and will obtain the following, which we can further simplify as

= −δ + (df/(N − 1))√
(4(N − 1)δ + 2df/(N − 1)2)

= −δ + (df/(N − 1))√
(4δ/(N − 1)) + (2df/(N − 1)2)

.
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Now, let us impose our assumption that δ = 0. We get:

df/(N − 1)√
2df/(N − 1)2

= df√
2df

= df
√

2df
2df

=
√

2df
2

=
√

2
√

df√
2
√

2
= √df/2.

The expressions involving (N−1) cancel in the numerator and denom-
inator, producing a resulting ratio that does not depend on sample size.
Consequently he says that we can write

P = lim
N→∞ Pr[AIC(M1) < 0 | sN] ≈ F

(
0 − E(AIC(M1)√

D2(AIC(M1))

)

= F
(

df1√
2df1

)
= F(

√
df1/2).

(15.60)

Here sN denotes a sample of size N, F() is the cumulative normal distribution
function, and everything else is as before. Since

√
df/2 is a positive quantity,

it must be greater than the mean and so P must be greater than 0.5. In fact,
the probability that AIC(M1) is less than the AIC for the saturated model
increases beyond 0.5 with the size of the degrees of freedom, but is 0.5 when
df = 0. So, Kieseppä’s result shows that a “correct model” (δ = 0) with more
degrees of freedom will be preferred over a “correct model” with fewer
degrees of freedom and even over a saturated model with 0 df.

However, paradoxically, the distinguishability between models with δ = 0
and different degrees of freedom or even zero degrees of freedom does not
occur with normalized AIC, AIC/(N − 1), which is designed to avoid the
effect of sample size. On the other hand, we can distinguish between models
with δ > 0, so there is a trade-off in advantages and disadvantages. We have

E
[

AIC
(N − 1)

]
= δ − df

(N − 1)
, (15.58b)

D2
[

AIC
(N − 1)

]
= 1

(N − 1)2 [4(N − 1)δ + 2df] = 4δ

(N − 1)
+ 2df

(N − 1)2 .

(15.59b)

In the limit

lim
N→∞

[
E
(

AIC
(N − 1)

)]
= lim

N→∞

[
δ − df

(N − 1)

]
= δ (15.61)

and

lim
N→∞

[
D2
(

AIC
(N − 1)

)]
= lim

N→∞

[
4δ

(N − 1)
+ 2df

(N − 1)2

]
= 0. (15.62)
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So, AIC/(N−1) converges to δ with zero variance (or with probability 1) and
is defined in the limit. All other values of AIC/(N−1) have zero probability.
However, it does not have an approximately normal distribution because
it has a zero variance. We can derive with the AIC/(N−1) the same ratio
that Kieseppä obtains with the AIC in Equation 15.59b. Nevertheless, when
δ = 0, in the limit, the probability is 1 that AIC/(N − 1) = 0 regardless of the
degrees of freedom, and thus a saturated model would be indistinguishable
from a model with δ = 0 and df > 0 on the basis of AIC/(N − 1). The ratio in
Equation 15.59b of

√
df1/2 is the number of standard deviations away from the

mean. But with the standard deviation equal to zero in the limit, this is
√

df1/2
times zero away from the mean of zero. Kieseppä would argue that this is a
defect of the normalized AIC, even though it would allow us to distinguish
between models with different nonzero normalized noncentralities, which we
cannot do in the limit with the AIC. So, there are trade-offs in the advantages
and disadvantages of these indices.

But as I put it in Mulaik (2001), critics of the AIC also point out that in prac-
tice almost no model fits data perfectly, especially at large sample sizes, so
comparisons are generally to be made between models with positive δ’s. From
Equation 15.56 we know that on average that a model M1 with a larger nor-
malized noncentrality parameter than a second model M2 will be preferred
if (δ1 − δ2) < (df1 − df2)/(N − 1). However, for any positive (df1 − df2) there
will always be a large-enough sample size N at which a model M2 with fewer
degrees of freedom and smaller δ will be favored on average. If in Equa-
tion 15.56 δ1 > δ2 and df1 > df2, then there should be a sample size N where
δ1 − δ2 > (df1 − df2)/(N − 1), meaning the model with smaller normalized
noncentrality and fewer degrees of freedom will be preferred on average to the
model with somewhat larger normalized noncentrality and more degrees of
freedom.

This point was first made by McDonald (1989) and McDonald and Marsh
(1990), which they demonstrated both mathematically and empirically.
McDonald and Marsh (1990) took a table published by Cudeck and Browne
(1983) of the values of various fit indices, including the AIC, computed for
nine common factor models with increasing numbers of factors from 1 to 9
fitted to 18 × 18 sample covariance matrices based on subsamples of the same
data of varying size from 75, through 200, to 1338 observations. McDonald and
Marsh (1990) further provided additional computed fit indices. They noted
that “As already shown by Cudeck and Browne (1983, p. 253), the complexity
[having more free parameters] of the model selected by the AIC increases
with sample size, and by extrapolation one may see that with a sufficiently
large sample size the saturated model would be selected.” In increasingly
larger samples, the AIC selected models on average with larger numbers of
factors having increasing numbers of free factor loadings and preferred a
saturated model to the model with small nonzero normalized noncentrality
and positive degrees of freedom. So, in these cases the AIC tended in larger
samples to give too much weight to better fit achieved by estimating more
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parameters. On the other hand, in small samples the AIC would favor the
model with small δ and more degrees of freedom over models with equally
small δ and fewer degrees of freedom.

Kieseppä (2003) and Haughton, Oud, and Jansen (1997), however, would
still object that given two models t and u, where t is more constrained
(has more degrees of freedom) than u, it is not sufficient to show that
E[AIC(t)] − E[AIC(u)] is negative to demonstrate that the AIC typically
prefers the more constrained model. In practice, with results from a single
sample, we would accept model t over model u if AIC(t) < AIC(u), or, equiv-
alently, if AIC(t) − AIC(u) is negative. What we need to show in general is
that Pr[(AIC(t) − AIC(u)) < 0] > 0.5. In other words, the proper way to show
that the AIC generally prefers the more constrained model over the less con-
strained model is to show that it prefers the more constrained model more
than 50% of the time. The AIC for finite sample sizes is not symmetric but pos-
itively skewed by nonzero noncentrality, and furthermore the distribution is
shifted in the negative direction by increasing degrees of freedom. So, while
the mean value of E[AIC(t)] − E[AIC(u)] may be positive (favoring the less
constrained model), the median of (AIC(t) − AIC(u)) may still be negative,
favoring the more constrained model more than 50% of the time.

The AIC may indeed favor more constrained models over less constrained
models at relatively small sample sizes. But this does not characterize the
large sample or even the “population” behavior of the AIC. I think, however,
that inferences as to the large sample behavior of the random variable AIC(t)-
AIC(u) can be obtained by applying the mean–median–mode inequality that
states that in any positively skewed distribution, μ ≥ m ≥ M, where μ is the
mean, m is the median, and M is the mode of the distribution, and with
this inequality we can place bounds on the median and thereby determine
conditions under which it will be sufficient that the random variable will
prefer one or the other model more than 50% of the time.

I will argue that AIC(t) − AIC(u) is distributed as a translated noncentral
chi-square distribution and from this we can establish these bounds.

If we substitute the definition for the AIC in Equation 15.53 into AIC(t) −
AIC(u), we obtain

AIC(t) − AIC(u) = χ2
dft

− 2dft − χ2
dfu

+ 2dfu. (15.63)

Steiger, Shaprio, and Browne (1985) proved that for nested sequences
of models estimated by the maximum-likelihood fit function, χ2

dft
− χ2

dfu
is

distributed asymptotically as a noncentral chi-square distribution with dft −
dfu degrees of freedom and noncentrality parameter λ = λ∗

t − λ∗
u. Hence

Equation 15.63 is distributed as a noncentral chi-square distribution with
p = dft − dfu degrees of freedom and noncentrality parameter λ = λ∗

t − λ∗
u,

with translation of the distribution by −2(dft − dfu). Thus the mean, median,
and mode of χ2

dft
− χ2

dfu
will be their usual values minus 2p = 2(dft − dfu).
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Sen (1989) notes that Pearson (1895) conjectured on the basis of empirical
experience that for a positively skewed unimodal distribution the following
inequality holds:

M ≤ m ≤ μ,

where M is the mode, m is the median, and μ is the mean. It is known that for
the central chi-square distribution with p degrees of freedom that the mean
is given as

μ(p, 0) = p,

the mode is given by
M(p, 0) = (p − 2),

and the median is a value m(p, 0) such that

(p − 1) < m(p, 0) < p.

This satisfies Pearson’s conjectured inequality.
Sen (1989) gives the mean, median, and mode of a noncentral chi-square

distribution with p degrees of freedom and noncentrality parameter λ as
follows:

μ(p, λ) = p + λ = μ(p, 0) + λ (15.64)

is the mean, where μ(p, 0) is the mean of the central chi-square distribu-
tion with p degrees of freedom and zero noncentrality. The mode of this
distribution has the properties, for all p ≥ 2 and λ ≥ 0,

M(p, λ) ≤ p − 2 + λ, (15.65)

M(p, λ) ≥ p − 2 + p−1(p − 2)λ (15.66)

and
M(p − 2, λ) ≤ M(p, λ). (15.67)

The median of this distribution has the property

M(p, λ) ≤ p − 2 + λ < m(p, λ) ≤ p + λ = μ(p, λ). (15.68)

From these results, we can now infer that

E[AIC(t) − AIC(u)] = μ(p, λ) − 2p = λ + p − 2p = λ − p. (15.69)

The mode of the distribution of AIC(t) − AIC(u) has the properties

M(AIC(t) − AIC(u)) ≤ p − 2 + λ − 2p = λ − p − 2.

M(AIC(t) − AIC(u)) ≥ p−1(p − 2)λ − p − 2.
(15.70)
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The median m(AIC(t) − AIC(u)) of the distribution of AIC(t) − AIC(u)

equals m(p, λ) − 2p and satisfies the inequality

M(AIC(t) − AIC(u)) ≤ λ − p − 2 < m(p, λ) − 2p ≤ λ − p. (15.71)

We are now in a position to determine when AIC(t) − AIC(u) favors the
more constrained or the less constrained model. If p−1(p − 2)λ − p − 2 is pos-
itive, then AIC(t) − AIC(u) favors the less constrained model, for both the
median and the mean of this variable will be greater than this value, because
the mode is always greater than or equal to this value.An even stronger bound
is given when λ and λ − p − 2 are positive, for the median will be greater than
this, and AIC(t) − AIC(u) will be positive greater than 50% of the time, imply-
ing that the less constrained model will be favored more than 50% of the time.
Because λ and p are positive, λ − p − 2 will be positive iff λ − 2 > p.

I will argue that, when λ is positive, there is always a finite sample size,
beyond which λ − 2 > p. To show this, let us recall that λ = λ∗

t − λ∗
u and

p = (dft − dfu). Now, McDonald and Marsh (1990) defined the noncentrality
parameter for a sample of size N in terms of a rescaled or normalized noncen-
trality parameter δ as λ∗ = (N − 1)δ. The rescaled or normalized noncentrality
parameter is invariant with respect to sample size and is a more appropriate
population parameter for characterizing the lack of fit of a model to the data.
An unbiased estimate of δ is given by

δ̂ = χ2
df − df
N − 1

. (15.72)

Now, we may express λ in terms of normalized noncentrality parameters as

λ = (N − 1)(δt − δu) (15.73)

and p in terms of the original degrees of freedom of the two respective models.
The expression (δt − δu) is necessarily greater than or equal to zero, since the
noncentrality parameter of a less constrained model in a nested sequence of
models is always less than or equal to the noncentrality parameter of the more
constrained model (Bentler and Bonnet, 1980). Thus a sufficient condition that
λ − 2 > p is that

(N − 1)(δt − δu) − 2 > (dft − dfu). (15.74)

If we make Equation 15.74 an equality, and consider only cases in which δt > 0,
we may solve for the value of (N − 1) which makes this an equality as

(N − 1) = (dft − dfu) + 2
(δt − δu)

. (15.75)

Any value for (N−1) greater than that given by the right-hand expression
of Equation 15.75 will be sufficient to make AIC(t) − AIC(u) favor the less
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constrained model, which is what I sought to prove. However, if δt = 0, then
the expression on the left of Equation 15.74 will always be negative and less
than the expression on the right, implying that the more constrained model
will be favored, only when the more constrained model fits perfectly, which
almost never occurs in practice.

Is the Noncentral Chi-Square Distribution Appropriate?

Olsson et al. (2004) produced Monte Carlo evidence that the noncentral chi-
square distribution is not always a good approximation to the chi-square
statistic of goodness of fit in structural equation modeling and factor analysis.
However, their demonstration principally showed that the tails of the empiri-
cal distribution for the chi-square statistic for a misspecified model were more
extreme than that of the corresponding theoretical noncentral chi-square dis-
tribution. The mean of the empirical distribution was still close to the mean of
the theoretical distribution. In fact in large samples, while the noncentral chi-
square distribution seemed to fit less well with large noncentrality parameter
values, a normal distribution seemed more appropriate, albeit with a larger
variance than that of the corresponding theoretical noncentral chi-square dis-
tribution. These results may weaken the use of confidence intervals for the
RMSEA index based on the theoretical noncentral chi-square distribution, but
I believe it is reasonable to conjecture that these findings should not affect the
essential conclusions involving the means and the medians argued here.

What Olsson et al. (2004) have shown is that the noncentral chi-square dis-
tribution is a good approximation to the empirical distribution in models
with a relatively small number of variables and relatively small noncentrality
parameters. So, our conclusions, that the AIC and similar indices will tend
to favor less constrained models over more constrained but slightly ill-fitting
models beyond some sample size, still hold. But they point out that for models
with many variables and larger noncentrality parameter values, the empir-
ical distributions tend to become more normal (symmetric) in shape while
at the same time retaining mean values very close to the theoretical noncen-
trality parameter values, but with larger variances. The implication is that
the median of the empirical distribution will tend to be closer to the mean
in the empirical distribution in these cases than they are in the theoretical
noncentral chi-square distribution. The empirical distribution of the statistic
AIC(t) − AIC(u) should also have a closer approximation to the normal distri-
bution, while retaining approximately the same expected value as that of the
corresponding distribution based on the noncentral chi-square distribution.
And its median should be closer to the mean of the empirical distribution than
it is in the distribution based on the noncentral chi-square. Hence the lower
bound on the median of the noncentral chi-square distribution, which is less
than that in the empirical distribution, should apply as well in the empirical
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case. It is not necessary for the argument that we be able to specify exactly
the sample size at which the better fitting less constrained model becomes
preferred to the more constrained poorer fitting model. It is sufficient to show
that it is reasonable to believe that at some sufficiently large but possibly
unknown sample size close to the size given for the noncentral chi-square
distribution, this will occur.

The method of arriving at these results may be extended to other indices of
model fit of the type

GOF = χ2
df,λ + C, (15.76)

where χ2
df,λ is distributed asymptotically as a noncentral chi-square distri-

bution and C is a constant representing a penalty for parameter estimation.
In other words, if k is the number of parameters estimated, then C > k. In
parallel with Equation 15.63 we will then have the difference variable

GOF(t) − GOF(u) = χ2
dft,λt

− χ2
dfu,λu

+ Ct − Cu. (15.77)

The rule then is to accept the more constrained model t if GOF(t) is smaller
than GOF(u), implying that Equation 15.77 is negative. We may again regard
this variable as equivalent to

GOF(t) − GOF(u) = χ2
p,λ + (Ct − Cu), (15.78)

which implies that GOF(t) − GOF(u) is distributed asymptotically as a non-
central chi-square distribution with p = (dft − dfu) degrees of freedom and
noncentrality parameter λ = (λt − λu) that has been translated by the added
constant (Ct − Cu).

The mean of the distribution of GOF(t) − GOF(u) is

μ[GOF(t) − GOF(u)] = p + λ + (Ct − Cu).

The mode of GOF(t) − GOF(u) obeys the inequalities

M[GOF(t) − GOF(u)] ≤ p − 2 + λ + (Ct − Cu)

and

M[GOF(t) − GOF(u)] ≥ p − 2 + p−1(p − 2)λ + (Ct − Cu).

The median of m(p, λ) + (Ct − Cu) of GOF(t) − GOF(u) obeys the inequality

p − 2 + λ + (Ct − Cu) < m(p, λ) + (Ct − Cu) ≤ p + λ + (Ct − Cu).

Thus the median will be greater than zero whenever p − 2 + λ + (Ct − Cu) is
positive, and the model preferred will be the less constrained model.
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Under what conditions will p − 2 + λ + (Ct − Cu) be positive? Note that it
must be that Ct < Cu, for the less constrained model must receive a larger
positive penalty for parameter estimation than the more constrained model.
Hence (Ct − Cu) is negative. Now, if p and λ are positive, implying that λt of
λ = λt − λu is positive, then for p − 2 + λ + (Ct − Cu) to be positive, it must be
that p − 2 + λ > (Cu − Ct) (note that Ct and Cu are reversed in position). But if
p − 2 > (Cu − Ct), then it does not matter what positive value λ has, for then
the less constrained model will always be selected regardless of fit. But this
does not happen if (Cu − Ct) is some multiple of p greater than p, which is the
case if the penalties are multiples of the number of parameters estimated, so
that (Cu − Ct) is a multiple w(ku − kt), w > 1, of the difference in parameters
estimated (ku − kt), and this difference also necessarily equals the difference
in degrees of freedom p. This happens to be the case with the AIC and the
Bayes information criterion (BIC), so we can consider the more likely case
that p − 2 ≤ (Cu − Ct). Consequently, for p − 2 + λ + (Ct − Cu) to be positive
under this additional constraint, it must be the case that λ > (Cu − Ct) − p + 2.
Expressing this inequality in terms of normalized noncentrality parameters
and differences in degrees of freedom, we require that

(N − 1)(δt − δu) > (Cu − Ct) − (dft − dfu) + 2. (15.79)

Assuming then too that δt is positive but smaller than the right-hand expres-
sion of Equation 15.79, there exists a large enough sample size N such that
for all samples of this size or greater

(N − 1) >
(Cu − Ct) − (dft − dfu) + 2

(δt − δu)
, (15.80)

meaning that the less constrained model would be preferred in that case.
So, any GFI that penalizes a model’s noncentrality chi-square with an addi-
tive constant that increases monotonically with the number of parameters
estimated will prefer the less constrained model at some sufficiently large
sample size, as long as the normalized noncentrality of the model is greater
than 0, no matter how small.

BIC

A special case of the just-described kind of index that has been offered as an
improvement over the AIC is the BIC (Schwartz, 1978; Raftery, 1986, 1993).
The formula for the BIC is

BIC = χ2
df,λ + k · ln(N),
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FIGURE 15.2 Superimposed graphs of y = (N − 1)(0.1) (straight line) and y′ = ln (N)8 − 6
(logarithmic curve), illustrating how there is a value (about 425) of N beyond which the
expression on the left-hand side of the inequality in Equation 15.81 exceeds the value of the
expression on the right, implying that a less constrained model would be preferred.

where k is the number of estimated parameters of the model. This index
increases the penalty for the number of parameters estimated as the loga-
rithm of the sample size. Beyond certain values of N, this rate of increase in
the penalty is not as rapid as the increase in the nonzero raw noncentrality
parameter with increase in sample size. In this case, the corresponding form
of Equation 15.79 is

(N − 1)(δt − δu) > ln(N)(ku − kt) − (dft − dfu) + 2 (15.81)

and the less constrained model is accepted if the inequality holds. There is no
closed-form solution for N that satisfies the inequality. However, we can see
in Figure 15.2 of a graph of a typical case where (δt − δu) = 0.1, (ku − kt) = 8,
and −(dft − dfu) + 2 = −6, how the left hand of the inequality rises as a
straight line, y = (N − 1)(0.1), whereas the right hand follows the form of
a logarithmic function, y′ = ln(N)(8) − 8 + 2. Because the logarithmic func-
tion rises much more slowly with larger values of N than does the left-hand
expression, the curves generated by each cross at around N = 425, and the
value of the curve on the left eventually exceeds the value of the curve on the
right after that.

So, the BIC also shows the tendency to prefer less constrained models after
samples reach a certain large magnitude.

Discussion

The motivation for the current investigation has been to demonstrate that
GFIs based on penalty weights added to a noncentral chi-square variable,
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such as the AIC and the BIC, are not good models of the concept of par-
simony and correction for parameter estimation. They have the defect that
when the noncentrality parameter is positive, there will exist a sufficiently
large sample size at which a less constrained and less parsimonious model is
preferred to the more constrained and more parsimonious model, even if the
noncentrality parameter is only slightly above zero. In theory, in these cases,
a saturated model with no degrees of freedom, estimating as many param-
eters as there are distinct elements of the data to fit, and having necessarily
a zero noncentrality, will be preferred, when the sample size is sufficiently
large. However, saturated models are not unique. And in the parts of models
having estimated parameters there are often nonunique alternative equiv-
alent model structures, and the same number of free parameters that have
equivalent fit to the data (MacCallum et al., 1993). This fact undermines, I
believe, an implicit assumption made by those who formulate information
theoretic indices such as the AIC and the BIC, that the model framework or
structure is essentially correct, and that penalties for parameter estimation are
only for the purpose of correcting for small sample bias in the estimates. This
would imply then that in larger samples the estimated parameters are con-
sidered to be less biased, so the penalty corrections can be relatively weaker,
and asymptotically, the parameter estimates should be unbiased and so no
penalty corrections should then be applied. Hence, one could accept a sat-
urated model over any other model with a nonzero noncentrality, since the
saturated model would then have correct estimates of the parameters. But if
the saturated model and near-saturated models are not unique structurally,
but equivalent in fit, there is no reason to believe one has obtained (nearly)
correct values for estimated parameters in very large samples, merely because
one has near-perfect or perfect fit.

In contrast, I believe that instead of a model-selection approach that relies
principally on model comparison among models tested against a given set
of data to select “optimal models,” a hypothesis-testing approach seeks to
establish the objective validity of a given model by demonstrating that its
parameters are invariants independent of the observer’s methods and per-
spective (Mulaik, 2004). By asserting fixed values for parameters, one asserts
values of the parameters that are supposed to be invariant. By testing one’s
hypothesized assertions about the invariant parameters with data not used in
the formulation of the model and its fixed parameters, one makes the degree
of fit independent of the researcher’s prior experience and manner of fram-
ing the model of the hypothesis. Since hypothesized fixed parameters may
be based on prior experience with other forms of data, testing against a new
set of data is a test of their invariance. Estimated parameters are not part of
the hypothesis, but simply filler, estimated to optimize fit conditional on the
fixed or constrained parameters, so that any lack of fit can be attributed to the
fixed and constrained parameters.

Establishing objective results also does not depend on a given set of data,
but is a continuing process, where parameters estimated at one stage with one
set of data may be used as fixed parameters at another stage, with other sets
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of data in new contexts, to establish their invariance and hence “objective”
status. However, objectivity does not imply incorrigibility. What is deemed
objective at one phase of an investigation may be deemed not objective at a
later phase as one formulates tests of hypotheses against new sets of data and
finds that what one thought would be an invariant is not. Objectivity also
implies the modularity of model components: that certain causal structures
between variables in one model may be extracted from one model and incor-
porated in another model with other variables and causal structures, and the
causal parameters in those transplanted structures remain invariant. So, the
manner of establishing objective results via hypothesis testing across a series
of data sets is a quite different process from a model-comparison approach
that focuses on selecting one model from many that fits a given set of data
optimally. Objectivity also seeks a conception of the model that is indepen-
dent of sample size, which is a factor relative to the researcher. Hence model
fit should be a population parameter, and it should be possible to conceive of
what the model would look like if the sample were infinite and the model were
fitted to an unrestricted covariance matrix that is essentially the population
unrestricted covariance matrix. Parsimony of the model, implying fewness of
parameters estimated, relative to the number of data points to fit, should be
a property of the model independent of sample size. In fact, a free parameter
is a dimension in which the model is free to adjust itself to better fit the data.
We saw when we considered equivalent models how parameter estimation is
the reason for the existence of equivalent models that fit the same regardless
of the data, and how this creates ambiguities in interpreting the meaning of
good fit for a model.

Cross-Validation Index

We may get some further insight into why the AIC behaves as it does if we
look at a related index, the cross-validation index (CVI) (Cudeck and Browne,
1983; Browne and Cudeck, 1993). Suppose we have two random samples
from the same population. Let C denote the “calibration” sample, NC its size,
and SC its sample variance–covariance matrix. Let V denote the “validation
sample,” NV its size, and SV its sample variance–covariance matrix. When in
the calibration sample the model is fit to the sample covariance matrix SC,
the resulting model produces the estimated variance–covariance matrix Σ̂C.
Now, if we use Σ̂C as a matrix of fixed parameters to see how well it would
fit the validation sample variance–covariance matrix SV, we would assess the
discrepancy between them by

CVI = F(SV, Σ̂C). (15.82)
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The fit of Σ̂C to SV should in probability be poorer than the fit of Σ̂C to
SC, simply because of sampling error that generally would make SV differ
from SC to which Σ̂C was designed to fit optimally. However, as sample size
increases, the difference between SV and SC should diminish in probability
because plim SV = Σ and plim SC = Σ. Consequently as sample size increases
without bound

plim [F(SV, Σ̂C) − F(SC, Σ̂C)] = 0. (15.83)

The expression “plim” means the probability limit, that is, the point on which
a sampling distribution collapses as the sample size increases without bound
(Goldberger, 1964).

Browne and Cudeck (1993) give the conditional expectation of the CVI
“over validation samples holding the calibration sample fixed” (p. 147) as
approximately

EVCVI = EV[F(SV, Σ̂C) | Σ̂C] ≈ F(Σ0, Σ̂C) + (NV − 1)−1[n(n + 1)/2].
(15.84)

This formula corresponds to the total error plus a factor that is directly
proportional to the degrees of freedom and inversely to the sample size −1 of
the validation sample. In this case n(n + 1)/2 is the degrees of freedom since
the calibration variance–covariance matrix is a completely fixed matrix with
no estimated parameters when applied to the validation sample variance–
covariance matrix. Consequently, the CVI is a biased estimator of the total
error for the estimate of the model in the calibration sample.Although it would
be possible to easily correct for the bias, Browne and Cudeck (1993) advise
against it, because to do so would produce at times inadmissible negative
values and it is hardly worth doing since the bias term (NV − 1)−1[n(n +
1)/2] would be the same for all competing models fitted to the calibration
sample. This would not change the rank ordering of competing models in a
model-comparison context.

Although it is also possible to use the validation sample as a calibration
sample and validate against the original calibration sample (reversing the
roles of the two samples), Browne and Cudeck advise against this also. We
have in the two samples the basis for one full-sized sample, from which we can
obtain more exact estimates. But first they devised an estimate of the expected
CVI (ECVI) taking the expectation over both samples where N = NC = NV.

Consider that if we take the expectation of the CVI over both calibration
and validation sampling, by substituting Equation 15.2 into Equation 15.83,
we obtain

ECVI = ECEVF(SV, Σ̂C) ≈ F(Σ, Σ̃) + (N − 1)−1[n(n + 1)/2 + q] (15.85)

with N the sample size of both calibration and validation samples, n the num-
ber of variables, and q the number of free parameters (Browne and Cudeck,
1993, p. 148).
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Now, let us consider a single combined sample of size N = NC + NV. Let
S for this combined sample correspond to SC and let the estimated model
variance–covariance matrix be Σ̂ = Σ̂C. Then from Equation 15.16, because
E[F(S; Σ̂)] = F(Σ; Σ̃)+ df/(N − 1) and df = n(n + 1)/2 − q, the expression
F(S; Σ̂) + (N − 1)−12q has for its expectation

E[F(S; Σ̂) + (N − 1)−12q] = F(Σ, Σ̃) + (N − 1)−1[n(n + 1)/2 − q + 2q]

or

E[F(S; Σ̂) + (N − 1)−12q] = F(Σ, Σ̃) + (N − 1)−1[n(n + 1)/2 + q] = ECVI.

So, an unbiased estimator of the ECVI estimated from a single sample is

c = F(S; Σ̂) + (N − 1)−12q. (15.86)

But we should note that this is equivalent to AIC3/(N − 1) = (χ2
df + 2q)/

(N − 1). So the single-sample estimate of ECVI produces values that would
maintain the same ordering of models as given by AIC1, AIC2, or AIC2/

(N − 1). We should note that the statistic c is always positive, whereas with
the AIC2 its values can be negative.

Now, the expected value of c is also given as

E(c) = E

(
χ2

df + 2q
(N − 1)

)
= δ + df + 2q

(N − 1)
.

Being equivalent to a variant of the AIC/(N − 1), we should expect the
estimate of the ECVI in the single sample to have the same general properties
as the AIC/(N − 1). For example, we can derive the case where ECVI(1) <

ECVI(2) for two models M1 and M2, respectively, to show that it will occur
analogously to Equation 15.56 when

δ1 − δ2 <
q2 − q1

(N − 1)
, (15.87)

where δ1 and δ2 are the normalized noncentrality parameters and q1 and q2
are the number of estimated parameters, respectively, of models M1 and M2.
So, suppose δ1 > δ2 but q2 > q1, implying that M2 has better fit achieved by
estimating more parameters and thereby having fewer degrees of freedom
than in model M1. There will be a sample size N sufficiently large to make the
model with more estimated parameters be necessarily preferred on average
to the model with fewer estimated parameters but larger normalized noncen-
trality. And if model M2 is a saturated model with δ2 = 0 and q2 = p(p + 1)/2,
there is always a sample size large enough that it will be preferred to any
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model M1 with normalized noncentrality δ1 greater than zero and nonzero
degrees of freedom.

In larger and larger samples, both the estimate c of the ECVI and the vari-
ants of the AIC tend to favor models with smaller normalized noncentrality
parameter values achieved by estimating more and more parameters. In the
context of cross-validation, consider that the model-based estimate of the
population variance–covariance matrix Σ̂C derived in a calibration sample
is used as a matrix with all its elements fixed to be compared with a second
validation sample variance–covariance matrix SV. Estimates of elements in
Σ̂C based on estimated factor loadings and factor covariances no longer are
treated as estimates but as fixed values. Certainly the error in cross-validating
will be the sampling error implicit in the elements of Σ̂C and those of SV.
But that error diminishes as sample sizes increase because plim SV = Σ and
plim SC = Σ. In huge samples it would be expected that Σ̂C would differ
little from a corresponding Σ̂V obtained by fitting the model to SV. So, in
very large samples the c statistic (and the variants of the AIC) does not give
much weight to penalizing estimation of parameters and, in fact, seems to
downplay the fact that some if not all of the small-to-zero lack of fit may
be achieved by estimating parameters; hence only the relative size of the
normalized noncentrality parameter becomes paramount.

The idea of cross-validation to another random sample from the same pop-
ulation also tends to be confused with the idea of a rigorous test against an
independent data set not used in the formulation of the hypothesis, obtained
under other conditions. In large samples, in estimating free parameters, one
has extracted much of the information about the population Σ via the calibra-
tion sample SC, and the resulting Σ̂C will necessarily differ hardly at all from
a corresponding Σ̂V based on SV. So, the cross-validation is not against an
independent data set not used in the formulation of the hypothesis. It should
not be thought of or used as a test of the hypothesis. Its only value is to give
information about the sampling stability of the estimated model. And in huge
samples this becomes a trivial concern.

Confusion of “Likelihoods” in the AIC

Part of the problem with the AIC is that it is based on a conflation of two
senses of likelihood. On the one hand, the conception of likelihood as sup-
port for a hypothesis about a parameter or model is based on the model’s
being fully specified. When there are unspecified parameters and one uses
maximum likelihood to estimate the unspecified parameters, the overall likeli-
hood for the model is euphemistically called a generalized likelihood, but it is
neither purely one nor the other kind of likelihood, since some of the like-
lihood is due to the prespecified, constrained parameters, and some of the
likelihood is due to obtaining estimates of parameters that have a maximum
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likelihood under the constraints. When the model is fully prespecified, the
likelihood of the model is the basis for a test of the model: how likely are
the data given the model? But when the model does not prespecify all its
parameters and estimates unspecified parameters by maximum likelihood,
the “likelihood” of the model in support of the model is contaminated by max-
imizing aspects of that likelihood by estimating parameters in such a way as
to make the model fit the data maximally conditional on the constraints. So,
if one uses the overall “likelihood” for the model as a measure of support for
the model as a whole, one will increasingly prefer models that estimate more
and more parameters. Although this tendency is also built into the chi-square
statistic, it is countered by requiring us to refer the chi-square statistic to a
distribution of the chi-square distribution having for its degrees of freedom
those of the model. And because the chi-square statistic is based on an LR
comparing the likelihood of a more constrained model to the likelihood of a
less constrained model in which the more constrained model is nested, the
chi-square statistic is to be interpreted as concerning just the difference in
constraints. The chi-square statistic obtained for a given constrained model
effectively compares the constrained model to the saturated model.

The AIC seemingly corrects for the number of free parameters, but the for-
mula is misleading. The effect of the correction diminishes with increasing
sample size. The chi-square part of the formula with nonzero noncentrality
increases with increasing sample size, whereas the degrees of freedom part
remains constant. At some large sample size, models with more free param-
eters and resulting smaller noncentrality will be preferred to models with
fewer free parameters and somewhat larger noncentrality.

The AIC is an estimate of a population parameter, the “mean expected log
likelihood,” corrected for bias resulting from estimating parameters. Users of
the AIC presume that the parts of the model involving estimated parameters
are unproblematic and that with ever larger samples we improve our esti-
mates of these parameters’ true values, since the correction for bias due to their
estimation diminishes and their standard errors diminish. There is no con-
cern that the parts of the model involving unspecified estimated parameters
may be structurally unsound or indistinguishable from alternative structures
with similarly free parameters that generate equivalent covariance matrices
for the model (Stelzl, 1986; Lee and Hershberger, 1990; MacCallum et al.,
1993). This is the question of the objective validity of the model. How is
the model a representation of something in the world as opposed to a sta-
tistical artifact obtained by using the observed data to provide values for
the unknown parameters of the problematic and untested structures of the
model? This is a problem often overlooked by statisticians who favor the AIC.

This question is understood most clearly in the case of the saturated model.
Saturated models fit the data perfectly by mathematical necessity. But they
are not unique. Countless saturated models based on widely varying math-
ematical structures can be formulated and fit perfectly to any given set of
data. That different researchers may be advocates for different such structures
(e.g., factor analysis versus simplex models) makes the issue of their
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subjectivity apparent, for they become researcher-dependent. And in the case
of saturated versions of these models, they are indistinguishable in their
ability to fit the data. They all do so perfectly.

Other Information Theoretic Indices, ICOMP

Bozdogan (2000) has reviewed the developments in connection with the AIC
and has offered his own index based on what he calls “information complex-
ity” (ICOMP). He notes that the term “complexity” has different meanings
in different contexts. For example, it is often associated with the number of
free parameters in a model. However, he has a different concept of com-
plexity: “Complexity of a system (of any type) is a measure of the degree
of interdependency between the whole system and a simple enumerative
composition of its subsystems or parts” (p. 72). He then says that by this
definition we should be interested in the amount by which a whole system,
say, S, differs from the composition of its components. He then designates
C(S) as a real-valued measure of the amount of the difference between the
whole system and its parts. In information theoretic terms he defines this
amount as “the discrimination information of the joint distribution of the
probability model at hand against the product of its marginal distributions.
Discrimination information is equal to zero if the distributions are identical
and is positive otherwise” (p. 72).

Complexity

For a vector X of random variables, he declares that its complexity is measured
by the interaction or dependency between its components. So, the informa-
tional measure of dependence among the random variables x1, x2, . . . , xn is
given by

I(X) = I(x1, x2, . . . , xn) = Ef

[
log

f (x1, x2, . . . , xn)

f (x1)f (x2) · · · f (xn)

]

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x1, x2, . . . , xn) log

f (x1, x2, . . . , xn)

f (x1)f (x2) · · · f (xn)
dx1 · · · dxn.

What is compared here is the joint distribution f (x1, x2, . . . , xn) of the ran-
dom variables to the product of their marginal distributions f (x1)f (x2) · · · f (xn)

under the assumption that they are independently distributed. To the extent
that the joint distribution differs from the distribution of the variables under
the assumption that they are independent, this is a measure of the interde-
pendence among the variables. Note that if the two distributions are the same
(the variables jointly are then independent), the ratio of numerator to denom-
inator will equal 1, and the log will be zero and the information measure will
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be equal to zero. In other words, there is zero complexity. Otherwise there is
positive complexity.

Given a multivariate normal distribution for the n variables in X, dis-
tributed Nn(μ, Σ), the interdependency among the variables is given by their
covariance matrix Σ. To measure the complexity implied by this interdepen-
dency, we will compare this distribution with the distribution for the variables
under the assumption that they are independently distributed, but with the
same variances as in Σ. Let Dx = [diag Σ] be a diagonal variance–covariance
matrix whose diagonal elements are the same as the diagonal elements of
Σ. Under the independence assumption then x is distributed Nn(μ, Dx).
Bozdogan (2000) then shows that the informational measure of complexity
for the random variables amounts to

C0(Σ) = 1
2

log |Dx| − 1
2

log |Σ| = 1
2

n∑
j=1

log σ2
j − 1

2
log |Σ| . (15.88)

This is analogous to the lack of fit for the null model when fitted to the S
matrix that is used in the CFI as a norm.

Bozdogan (2000), however, indicates that the measure of complexity in
Equation 15.88 is not independent of the coordinates of the original variables.
He thus seeks the maximum amount of complexity in Σ under orthogonal
transformations Y = T′X of the variables, where T′T = I and T is n × n, as a
reasonable measure of complexity. He thus derives a maximal information
theoretic measure of complexity of a covariance matrix Σ of a multivariate
normal distribution to be

C1(Σ) = max
T

C0(Σ) = n
2

log
[

tr(Σ)

n

]
− 1

2
log |Σ| . (15.89)

How he arrives at this is interesting. We first note that |Σ| is invariant
under similarity transformations with orthonormal transformation matrices
T, that is, |Σ| = ∣∣T′ΣT

∣∣ under the constraint that T′T = I. This is because |T| =∣∣T′∣∣ and
∣∣T′ΣT

∣∣ = ∣∣T′∣∣ |Σ| |T| = ∣∣T′∣∣ |T| |Σ| = ∣∣T′T
∣∣ |Σ| = |I| |Σ| = |Σ|. So, the

right-hand term in Equation 15.88 will be invariant under orthonormal
similarity transformations of Σ, which correspond to orthogonal transfor-
mations T′X.

We also need to note that tr(T′ΣT) = tr(ΣTT′) = tr(ΣI) = tr(Σ) by reason
of the invariance of the trace under cyclic permutations of the matrices and
the fact that for an orthonormal matrix T′ = T−1.

So, if we seek a maximum maxT C0(Σ), it will result from finding the
similarity transformation of Σ, T′ΣT, such that log

∣∣[diagT′ΣT]∣∣ is a maxi-
mum. Actually, we do not need to find the matrix T that accomplishes this
because our task is simply to find an expression for the maximum value for
log
∣∣[diagT′ΣT]∣∣ under the constraint that tr(T′ΣT) = tr(Σ), which incorpo-

rates both the orthogonality property for T and the invariance of the trace
under orthonormal similarity transformations.
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Although at this point finding the expression for the maximum seems
formidable, it is actually very easy to find. Consider that log

∣∣[diagT′ΣT]∣∣ con-
cerns the logarithm of the determinant of a diagonal matrix, which we know
is simply the logarithm of the product of the diagonal elements of the diago-
nal matrix. Let these diagonal elements be designated as σ11, σ22, . . . , σnn. Then
their product

∏n
j=1 σjj is to be a maximum under the constraint that

∑n
j=1 σjj =

tr(Σ). To find the solution, Bozdogan (1990) uses two means, the arithmetic
mean and the geometric mean of the diagonal elements σ11, σ22, . . . , σnn in
[diagT′ΣT]. According to Cauchy’s theorem the geometric mean is always
less than or equal to the arithmetic mean of a series of numbers. Hence

⎛
⎝ n∏

j=1

σjj

⎞
⎠

1/n

≤ σ̄ = 1
n

n∑
j=1

σjj (15.90)

with equality when σ11 = · · · = σnn. The product of the diagonal elements
will be a maximum under the constraints when their geometric mean is
equal to the arithmetic mean of the diagonal elements of [diagT′ΣT] and this
when all the diagonal elements are equal. Bozdogan (1990) notes that “Van
Emden (1971, p. 66) showed that there always exists an orthogonal similarity
transformation that transforms any covariance matrix to have equal diago-
nal elements.” So, the desired transformation matrix T is one that produces
a matrix T′ΣT such that [diagT′ΣT] = σI and tr[diagT′ΣT] = tr(σI) = tr(Σ).
We are now able to solve for σ. We know almost immediately that tr(σI) = nσ,
so our solution for σ is given by solving the equation nσ = tr(Σ), which we
see is

σ = σ̄ = tr(Σ)

n
.

So, our criterion becomes

C1(Σ) = max
T

C0(Σ) = 1
2

log |σ̄I| − 1
2

log |Σ| (15.91)

or

C1(Σ) = 1
2

log(σ̄n) − 1
2

log |Σ| = n
2

log
(

tr(Σ)

n

)
− 1

2
log |Σ| ,

which was to be demonstrated.
Bozdogan (2000) then shows that the complexity of a square symmetric

variance–covariance matrix Σ can be expressed exclusively in terms of its
eigenvalues. Recall that the trace of a square symmetric matrix equals the sum
of its eigenvalues, whereas the determinant of the matrix equals the product
of its eigenvalues. Thus the expression log (tr(Σ)/n) = log

(
(1/n)

∑n
i=1 λi

) =
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log λ̄a is the logarithm of the arithmetic mean of the eigenvalues of Σ. On the
other hand,

log |Σ| = log

( n∏
i=1

λi

)
= n log

( n∏
i=1

λi

)1/n

= n log λ̄g,

where λ̄g is the geometric mean of the eigenvalues. Thus we can rewrite
Equation 15.89 as

C1(Σ) = n
2

log

(
λ̄a

λ̄g

)
. (15.92)

Thus the maximal information theoretic measure of the complexity of a
covariance matrix is given by n/2 times the logarithm of the ratio of the arith-
metic mean λ̄a to the geometric mean λ̄g of the eigenvalues of the matrix. As
Bozdogan notes, “It measures how unequal the eigenvalues of Σ are, and it
incorporates two simplest scalar measures of multivariate scatter, namely the
trace and the determinant into one single function” (Bozdogan, 2000, p. 75).
He then goes on to say, “In general large values of complexity indicate a high
interaction between the variables, and a low degree of complexity represents
less interaction between the variables. The minimum of C1(Σ) corresponds
to the least complex structure. In other words, C1(Σ) → 0 as Σ → I or Σ → sI,
where s is a scalar.

ICOMP

Bozdogan next seeks to combine the complexity measure C1(Σ) with an infor-
mational measure of fit to get an overall measure of model quality in an index
he calls ICOMP, for “information and complexity.” He suggests several ver-
sions of this index. For a multivariate linear (or nonlinear) structural model,
the maximal information-theoretic overall measure-of-complexity ICOMP

using the estimated inverse of Fisher’s information matrix (IFIM) F̂
−1

—
which gives the estimated variances and covariances among the estimated
parameters—is defined by

ICOMP[F̂
−1

(θ̂)] = C1(Σ̂(θ̂)) − 2 log L(θ̂q)

= dim F̂
−1

2
log

[
trF̂

−1

dim F̂
−1

]
− 1

2
log
∣∣∣F̂−1

∣∣∣− 2 log L(θ̂q),

(15.93)

where Σ̂(θ̂) denotes the variance–covariance matrix among the estimated
parameters of the model (not the estimated model covariance matrix among
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the variables), −2 log L(θ̂q) denotes −2 times the (natural) logarithm of the

joint likelihood of the model in the sample, dim F̂
−1 = rank F̂

−1
, and q is the

number of estimated parameters in the model.

The matrix F̂
−1

is given by Bollen (1989) for a confirmatory factor analysis
or structural equation modeling algorithm as

F̂
−1 =

{
−E

[
∂2FML

∂θi∂θj

]
θ̂

}−1

, (15.94)

where the expression in brackets is the q × q matrix of second derivatives
of the maximum-likelihood fit function with respect to the free parameters
evaluated using values of the estimated parameters θ̂ when the fit function
has attained a minimum, and θi and θj are any two free parameters. Jöreskog
(1979) has given expressions for obtaining the elements of the second deriva-
tive matrix in descriptions of his programs for confirmatory factor analysis

and structural equation modeling. The diagonal elements of F̂
−1

contain the
estimated variances or squared standard errors of the estimated parameters,
while the off-diagonals of this matrix contain their covariances.

Bollen (1989, p. 133) gives the expression for the logarithm of the joint like-
lihood of an SEM with n variables distributed according to a multivariate
normal distribution, which appears in the right-hand expression of Equation
15.93, as

log L(θ̂) = −
(

N
2

)(
n log(2π) + log

∣∣∣Σ̂
∣∣∣+ tr(S∗Σ̂−1

)
)

, (15.95)

where Σ̂ is the n × n estimated variance–covariance matrix for the observed
variables according to the model, S∗ is the sample maximum-likelihood
estimate (not the unbiased estimate) of the population variance–covariance
matrix, n is the number of observed variables, and N is the sample size.

Using these results we may rewrite the ICOMP formula as

ICOMP = C1(F̂
−1

) + N
(

n log(2π) + log
∣∣∣Σ̂∣∣∣+ tr(S∗Σ̂−1

)
)

. (15.96)

Bozdogan describes other approaches to constructing ICOMP formulas, but
they will not be discussed here.

We now can see that like the AIC, ICOMP combines a penalty (complexity)
with the log likelihood of the model. Complexity also concerns the estimated
parameters. The idea with both the AIC and the ICOMP is to select the model
with the smallest value for the respective index. There is no absolute criterion
of model quality. I would expect then that some of the same kinds of criticisms
directed to the AIC also apply to ICOMP. For example, because the expression
in the second term of Equation 15.96 is multiplied by the sample size N, this
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expression increases with increases in sample size, while the complexity term

C1(F̂
−1

) converges toward a finite value and is bounded above by the maximal
information complexity of a saturated model. So, ICOMPtends to infinity with
unbounded increases in sample size. In the meantime, the relative impact of
the complexity penalty on the overall value of ICOMP also diminishes with
increasing sample size. Thus we should expect that there will be a sample size
at which a model with more complexity but smaller lack of fit will be preferred
on average to a model with less complexity and small lack of fit. Thus in large
samples estimated parameters tend to be treated as if they are prespecified
fixed parameters because their standard errors are vanishing. But again the
problem with this is that numerous equivalent models may be formulated in
portions of the model containing free parameters while holding constant the
model structure of the fixed parameters (Stelzl, 1986; Lee and Hershberger,
1990; MacCallum et al., 1993). An objective test of these estimated parts of
the model is not yet made, since nothing about them is asserted as a part
of one’s hypothesis. One is in effect peeking at the data and adjusting the
free parameters to optimally fit conditional on the fixed parameters and then
declaring the resulting model fit to be evidence for the correctness of the full
model. To prevent falling into such traps, it is essential to keep in mind the
distinction between conducting an objective test of an asserted invariant (a
hypothesis) in an incompletely specified model and estimating parameters
of a subjectively formulated structural model so as to get optimal fit to a
set of data, which involves the generation of a hypothesis. There may be
alternative structures that have not yet been ruled out, including, possibly,
the researcher’s.

LM, Wald, and LR Tests

Many of the statistical tests in structural equation modeling were developed
by econometricians. They have established that most tests are based on the
Wald, LR, or LM principle (Engle, 1984). Given a null hypothesis and its
alternative, the Wald test begins with the alternative hypothesis and seeks
to determine whether the null would be more appropriate. The LR test com-
pares the null hypothesis with the alternative hypothesis, treating each on
an equal basis. The LM test begins with the null hypothesis and seeks to
determine whether the alternative would be a significant improvement in fit
(Engle, 1984). In structural equation modeling, the Wald test would begin
with estimated free parameters and test whether they could be replaced with
specified fixed parameters without significantly increasing lack of fit. An LR
test would compare two models, such as a constrained model versus the satu-
rated model, as in the usual chi-square goodness-of-fit test. An LM test begins
with one or more fixed parameters and tests whether they could be freed to
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improve fit significantly. The symmetry among these tests suggests that they
are equivalent, and, indeed, they are asymptotically equivalent.

To give a general outline of these tests consider a simple case, and here we
follow Engle (1984). Let yj be a p × 1 observation vector of a random vector
Y , whose density function f (y | θ) depends on the k × 1 parameter vector θ.
Assume we have a sample of N independently and identically distributed
observations yj of Y. The joint likelihood of θ, given the N observations, is

L(θ | y1, . . . , yN) =
N∏

j=1

f (yj | θ),

whereas the log of the joint likelihood is

�(θ | y1, . . . , yN) =
N∑

j=1

ln f (yj | θ).

For the sake of simplicity, we will hereafter write �(θ) for �(θ | y1, . . . , yN).
Suppose further that the likelihood is maximized at the value θ̂, which satisfies

the condition that ∂�(θ̂)
∂θ1

= 0, ∂�(θ̂)
∂θ2

= 0, . . . , ∂�(θ̂)
∂θk

= 0.
In other words, each of the partial derivatives of the log-likelihood func-

tion with respect to each one of its parameters evaluated with the values of
the estimated parameters in θ̂ is zero. This occurs when the derivatives are
evaluated at the values that maximize the function.

Now for some notation: given a differentiable single-valued function f , the
function ∇f is defined as

∇f (x) =
(

∂f
∂x1

(x), . . . ,
∂f
∂xn

(x)

)′
(15.97)

and is known as the n × 1 gradient vector of f (Williamson and Trotter, 1979).
In other words, it is the vector of partial derivatives of the function with
respect to each of the parameters (in x) of the function. It indicates the slope
of the function in the direction of each of the parameters xi in parameter space.

On the other hand, by ∇2f we mean the n × n matrix of second partial
derivatives of the function f defined as

∇2f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f (x)

∂x2
1

∂f (x)

∂x1∂x2
· · · ∂f (x)

∂x1∂xn

∂f (x)

∂x2∂x1

∂2f (x)

∂x2
2

· · · ∂f (x)

∂x2∂xn
...

...
. . .

...
∂f (x)

∂xn∂x1

∂f (x)

∂xn∂x2
· · · ∂2f (x)

∂x2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15.98)
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This is also known as the Hessian matrix, which is often denoted as H (x).
If ∇f = 0 and the Hessian matrix H (x) is continuous and positive (negative)
definite at a point x, then x is a local minimum (maximum) of the function
(Monahan, 2001).

The Newton–Raphson iterative method of solving for the values of the
parameters in x that maximize (or minimize) the function is then given by

x(j+1) = x(j) − H(x(j))∇f (x(j)), (15.99)

where the subscripts in parentheses, ( j) and ( j + 1), denote the values used
or to be used in the jth or j + 1st iteration, respectively; H(x( j)) is the Hes-
sian matrix evaluated using the values of the parameters in the jth iteration,
whereas ∇f (x( j)) is the gradient vector of partial derivatives evaluated with
the values of the parameters in the jth iteration. The iterations are started with
a value x(0) chosen as a reasonable but possibly crude approximation to the
expected solution. And the iterations continue until the difference between
successive estimates is very small in absolute value.

Now, returning to the problem of testing a hypothesis with parameters esti-
mated by maximum likelihood, let us first partition the k × 1 parameter vector
θ into θ = [θ1, θ2], where θ1 and θ2 are m × 1 and [(k − m) × 1] subvectors
of θ. Let H0 : θ1 = θ

(0)
1 be the null hypothesis and H1 : θ1 �= θ

(0)
1 , the alter-

native hypothesis. This compares a simple hypothesis against a composite
alternative.

Under the null hypothesis, with fixed θ
(0)
1 the maximum-likelihood estimate

of θ is denoted as θ̃ = [θ(0)
1 , θ̃2], where θ

(0)
1 is a subvector of fixed parameters,

whereas θ̃2 is a subvector of estimated free parameters. Under the alternative
hypothesis, the maximum-likelihood estimate of θ is θ̂ = [θ̂1, θ̂2], with all free
parameters. Before going on, we need to define several important matrices.

Fisher’s information matrix is defined as

I(θ) = −E
[
∂2�(θ)/∂θ∂θ′]

N
= −E[H (θ)]

N
, (15.100)

which is the expected value of the negative of the matrix of second deriva-
tives of the log-likelihood function with respect to the parameters, divided
by sample size N. (Note: I(θ) is not an identity matrix.) But I(θ) is also often
given as

I(θ) = −E
[
∂2�(θ)/∂θ∂θ′]

N
= −E[∇�(θ)∇�(θ)′]

N
= cov(∇�(θ)). (15.101)

To obtain this version of the information matrix, one must algebraically
carry out the multiplication of the mathematical expression for the gradient
vector times its transpose, and then take the expectation of whatever elements
in the resulting expression are random. One then replaces the expected values
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by the sample estimates of them. Sometimes this is easier than working out
the Hessian matrix mathematically.

We may partition the information matrix to conform to the partitioning of
our vector of parameters:

I(θ) =
[

I11 I12
I21 I22

]
.

Then the asymptotic covariance matrix among the k parameter estimates is
given by the inverse of the partitioned information matrix as (Graybill, 1969)

cov(θ̂)=I(θ̂)−1 =
[ [I11 − I12I−1

22 I21]−1 −I−1
11 I12[I22 − I21I−1

11 I12]−1

−I−1
22 I21[I11 − I12I−1

22 I21]−1 [I22 − I21I−1
11 I12]−1

]
θ = θ̂

,

which is evaluated at the estimated values θ̂ for θ.
However, according to Monahan (2001), because the likelihood function is

approximately quadratic in the region of the maximum, then the quadratic
nature of the observed likelihood and not the expected likelihood deter-
mines the accuracy of the maximum-likelihood estimates. Thus he says that
Efron and Hinkley (1978, p. 206) “. . . convincingly argued the superiority
of the observed information ∇2�n over the expected information Jn(θ)” in
estimating variances and covariances among the estimated parameters. This
suggests using the Hessian in place of the information matrix. Nevertheless,
the expected information matrix often is easier to obtain and still is a close
approximation to the Hessian, so that the convergence of the iterations in
estimating θ using the information matrix is almost as quick as using the
Hessian. On the other hand, it is also possible to numerically and iteratively
produce a very close approximation to the Hessian at the minimum by using
the quasi-Newton secant method of Broydon, Fletcher, Goldfarb, and Shanno
(Monahan, 2001).

Let

d( j+1) = ∇f (x( j+1)) − ∇f (x( j)) = H(x( j))(x( j+1) − x( j)) = H(x( j))s( j+1);

then the approximate Hessian is given for the j + 1st iteration as

H( j+1) = H( j) + d( j+1)d
′
( j+1)

d′
( j+1)s( j+1)

−
H(j)s( j+1)s′

( j+1)
H( j)

s′
( j+1)

H( j)s( j+1)

(Monahan, 2001).
Then H( j+1) is substituted for H( j) for the next iteration of the Newton–

Raphson equation. Monahan (2001) refers to Goldfarb (1976) for details of
the update of this equation. An initial approximation to the Hessian in the
zeroth iteration could be obtained with numerical differentiation, examples
of which are described by Monahan (2001, pp. 184–187).
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Returning to our problem of maximizing the log likelihood, we need to
simplify notation. Let

Ω =
[
Ω11 Ω12
Ω21 Ω22

]
≡ cov(θ̂) = I(θ̂)−1

be the covariance matrix among the estimated parameters or the inverse of
the information matrix. Then if we can assume that θ̂ has an asymptotic
multivariate normal distribution and I(θ) is consistently estimated by I(θ̂),

W = N(θ̂1 − θ
(0)
1 )′Ω−1

11 (θ̂1 − θ
(0)
1 ) = χ2

m (15.102)

is known as the Wald test statistic (Engle, 1984). This is formally equivalent
to the multivariate Z2 test (Rencher, 2002) of the null hypothesis on the mean
vector, H0 : μ = μ0 against H1 : μ �= μ0:

Z2 = N(ȳ − μ0)
′Σ−1(ȳ − μ0).

The Wald test is based on the difference between θ̂1 and θ
(0)
1 .

The LR test

LR= − 2(�(θ
(0)
1 , θ̃2 | y) − �(θ̂1, θ̂2 | y))

compares the difference between the log likelihoods and has an asymptotic
chi-square distribution under the null hypothesis (Engle, 1984).

The LM test is based on the principle of constrained maximization using
LMs. If we seek to maximize the log likelihood under the constraint that
θ1 = θ

(0)
1 , then setting up the problem with LMs multiplied by each equation

of constraint, we have the function

H = �(θ | y) − λ′(θ1 − θ
(0)
1 ),

where λ is an m × 1 vector of LMs. Taking partial derivatives we obtain

∂H
∂θ

=
[
∂�(θ)

∂θi

]
k×1

−
[

∂(θ1 − θ
(0)
1 )

∂θi

]
k×m

λ =
[
∂�(θ)

∂θi

]
k×1

−
[

Im
0

]
k×m

λ

= D + Lλ

∂H
∂l

=
[
∂�(q)

∂λh

]
m×1

−
[

∂l′(q1 − q(0)
1 )

∂λh

]
m×1

= −(q1 − q(0)

1
).

First, to simplify our notation further, let us write � for �(θ). Then setting each
of these partial derivatives equal to null vectors and solving for λ and θ1,
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we obtain ⎡
⎢⎢⎣

∂�

∂θ1
∂�

∂θ2

⎤
⎥⎥⎦ =

[
λ

0

]
.

Hence
∂�

∂θ1
= λ;

∂�

∂θ2
= 0(k−m)×1, θ1 = θ

(0)
1 .

Hence at the maximum (minimum)

[
∂�̃

∂θi

]
k×1

=
[
λ̃

0

]
=
⎡
⎢⎣

∂�̃

∂θ1

0

⎤
⎥⎦ = D̃.

These results will hold at the maximum (minimum) and to a close approxi-
mation at convergence of the iterations to be performed.

The LM statistic is given in two forms (Breusch and Pagan, 1980), with tildes
over symbols indicating values evaluated at the maximum (minimum):

LM = D̃I(θ̃)−1D̃ = λ̃
′
L̃

′
I(θ̃)−1L̃λ̃.

According to Breusch and Pagan (1980), the term D̃I(θ̃)−1D̃ is known as the
“score” statistic (Rao, 1973), whereas λ̃

′
L̃

′
I(θ̃)−1L̃λ̃ is traditionally known as

the LM statistic. The two statistics are identical and so the choice of which
form to use reduces to the one that is most convenient, and this is the score
test (Breusch and Pagan, 1980); however, the name “Lagrange multiplier test”
or “LM test” remains.

We will now define a quantity known as “the score,” which is none other
than the gradient of the log-likelihood function evaluated at θ̃ = [θ(0)

1 , θ̃2]:

s(θ̃ | y) = D̃ =
⎡
⎣ ∂�̃

∂θ1
0

⎤
⎦ = ∇�(θ̃).

Then the LM test statistic is given by

LM = s(θ̃ | y)′I(θ̃)−1s(θ̃ | y)

N
= s(θ̃ | y)′Ω(θ̃)s(θ̃ | y)

N
.

To show the equivalence to the Wald statistic, let us write the information
matrix in partitioned form:

I(θ) =
[

I11 I12
I21 I22

]
.
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Then

LM =
(

∂�

∂θ1

′
, 0′
)[

I11 I12
I21 I22

]−1
⎡
⎣ ∂�

∂θ1
0

⎤
⎦ =

(
∂�

∂θ1

)′
(I11 − I12I−1

22 I21)
−1
(

∂�

∂θ1

)
,

but this is the same as

LM =
(

∂�

∂θ1

)′
I11
(

∂�

∂θ1

)
=
(

∂�

∂θ1

)′
Ω11

(
∂�

∂θ1

)
= χ2

m,

where I11 denotes the (1, 1) m × m partition block of I(θ)−1 that corresponds
to Ω11, the covariances among estimated parameters in θ1. As noted, LM is
distributed as chi-squared with m degrees of freedom.

Now suppose that after our iterative algorithm converges, we run another
iteration, by “the method of scoring.” We have

θ̂ = θ̃ + I(θ̃)−1

(
∂�̃

∂θ

)
.

Next, subtract θ̃ from both sides; then premultiply both sides by I(θ) to yield

(
∂�̃

∂θ

)
= I(θ̃)(θ̂ − θ̃),

which we may substitute for
(
∂�̃/∂θ

)
to obtain

(θ̂ − θ̃)′I(θ̃)I(θ̃)−1I(θ̃)(θ̂ − θ̃) = (θ̂ − θ̃)′I(θ̃)(θ̂ − θ̃) = (θ̂ − θ̃)′Ω̃−1
(θ̂ − θ̃),

which is equivalent to the Wald test statistic for the test of the hypothesis that
θ = θ̃.

When the log-likelihood function is a smooth curve approximated by a
quadratic function at the minimum, this allows us to use a quadratic function,
such as weighted least squares, to estimate the parameters. Then asymp-
totically the minimum solution will correspond to the maximum-likelihood
solution. And Engle (1984) notes that under this condition the Wald test, the
LR test, and the LM test are all equivalent.

Bentler (1993) has incorporated the Wald test and the LM test in his program
EQS©, which is based on minimizing a weighted least-squares criterion Q =
(s − σ(θ))′W(s − σ(θ)). Karl Jöreskog has used a related index known as the
“modification index” (MI) developed by his associate Dag Sörbom (1989) in
his program LISREL. This index only shows an “approximate estimate of how
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much the [likelihood] function will decrease if one adds a parameter θ1 to the
set of free parameters” (Sörbom, 1989, p. 373). The MI is given as

MI =
1/2

(
∂ f̂ /∂θ1

)2

((
∂2 f̂ /∂θ2

1

)
− d̂′Î(θ2)−1d̂

) ,

where d̂ = E
[
∂2 f̂ /∂θ2∂θ1

]
. The MI can be computed for each fixed parame-

ter. Since the estimated information matrix Î(θ2) for the free parameters will
already have been obtained at convergence of the iterations during estima-
tion of the free parameters, all that remains is to evaluate it at the minimum
and compute its inverse. Then one computes the second derivative of the ML
fit function f with respect to the parameter θ1 and the vector d of second
derivatives of the fit function f with respect to the parameters in θ2 and θ1
and evaluates these at the minimum. These are then entered in the formula
for MI. Sörbom (1989) notes that the MI is then approximately distributed as
chi-squared with 1 degree of freedom, which can be a basis for approximate
tests of significance of the change in f .

The LM test statistic can also be used to test the effect of freeing a single
constrained parameter, for it too will have a distribution as chi-squared with
1 degree of freedom.

Expected Parameter Change

Closely related to the MI is the index of “expected parameter change (EPC)”
of Saris, Satorra, and Sörbom (1987). The object of this index is to provide an
indication of how much a fixed parameter will change if freed. Let θi(0) be
the value of the ith parameter under the null hypothesis of the model. Let θ̂i
be the value of the ith parameter after it has been freed and estimated (along
with the other freed parameters in the model). Then the EPC is given by

EPC = θ̂i − θi(0) = MI(
∂ f̂ /∂θi

) .

Saris et al. (1987) suggested using the EPC along with the MI or LM test
statistic. If both LM and EPC were large, then that would be a parameter to
free. If LM is large but EPC is small, one might not want to free the parameter
because it may be an effect of “excess power” to detect small differences that
are likely due to artifacts such as minor causal heterogeneity of subjects, the
presence of an outlier, minor departure from multivariate normality, and the
like. This decision calls for judgment on the part of the researcher. If the LM
is small but the EPC is large, this is an ambiguous situation. But it may be
just the opposite of the previous situation: low power. In that case one may
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be inclined not to change the parameter. If both LM and EPC are small, then
freeing the parameter is not called for.

Kaplan (2000) notes that Monte Carlo studies of the EPC have shown that
it does better than the LM test in finding specification errors. Kaplan also
notes that a problem with the EPC is that it is sensitive to the metrics of the
observed variables. He notes that he recommended rescaling the EPC in terms
of standardized manifest variables. However, for models with latent vari-
ables, standardizing both manifest and latent variables to have unit variances
will imply a corresponding standardizing of the EPC.

Modifying Models Post Hoc

When a researcher gets an indication that a model fails to fit acceptably, what
should he or she do? First, he or she should review again the theory on which
his or her model is based in the light of diagnostic information provided by
the computer program about where the lack of fit occurs. Large residuals
will indicate where the model failed to fit the variables as predicted. What
aspects of the model concerned those variables, and how might one revise
one’s theory and the model in turn to improve the fit? There are also indices
and tests that may be performed to discover what constrained parameters
are associated with the lack of fit. These are known (in LISREL and some
other programs) as “MIs,” and in EQS as LM tests. But one must be cautious
in their use. Basically, they provide measures of the degree to which lack
of fit would be reduced if one freed up a given parameter in question. And
so one is inclined to free up the parameter in question and reanalyze the
model. But if the lack of fit is not due merely to a misspecified parameter in
a correctly specified model structure, this can be misleading. The problem
could lie in a misspecified model structure, omission of important latents,
and no amount of freeing up parameters in the current model would lead
to a correct model, even though the resulting model might fit acceptably.
So, in using these indices, one will have to use judgment and control one’s
temptation to merely free a constrained parameter by considering whether to
do so would be consistent with what is plausibly known of the world. And
one should not free too many parameters either, if the aim is to salvage most
aspects of the current model. Nevertheless, with these warnings, an LM test
can be informative.

Kaplan (2000) and Kaplan and Wenger (1993) show that when model param-
eters covary, as given by the IFIM, simultaneous LM tests of more than
one parameter at a time will be influenced by the covariation between the
parameter estimates. The magnitude and ordering of multiparameter LM test
statistics will vary with the degree of covariation among parameters included
in the subset chosen for possible modification. So, choosing which subset of
fixed parameters to free could be influenced by the covariances between the
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parameter estimates. Furthermore, they show that “. . . the covariance matrix
of the estimates is determined by the initial specification of the model. After
that, each addition (or deletion) of parameters results in a change of the form
of the covariance matrix of the estimates, and hence in the ways that spec-
ification errors will manifest themselves through the model” (Kaplan, 2000,
p. 99). So, the initial ordering of both single parameter LM statistic values for
the fixed parameters and individual parameter Wald tests or z statistics for
free parameters can and usually will change in later respecified models.

Although these effects on order of these statistics are considered, one must
also consider the power of such statistics, since, according to Saris et al.
(1987), as summarized by Kaplan and Wenger (1993, p. 468), “. . . the power
for detecting such misspecifications of the same magnitude depended on
where in the model the misspecification was located.” The complexity of
interdependencies among parameter estimates thus led Kaplan and Wenger
(1993) and Kaplan (2000) to advocate “. . . the more prudent univariate sequen-
tial approach to model modification whereby restrictions (or inclusions) are
made one parameter at a time and careful attention is paid to changes in
substantively important parameters . . .” (Kaplan and Wenger, 1993, p. 480).
This involves more analyses. The aim should be to free the fixed parameter
with the largest LM or MI at each step.After freeing one parameter, one should
re-estimate the free parameters of the resulting model, and then compute a
new set of LM tests for the remaining fixed parameters. From these the fixed
parameter with the now largest LM test statistic is chosen and freed, and so
on. However, you should also constrain yourself from freeing parameters for
which you can provide no substantive theoretical reason for doing so. And
remember, if the model framework is wrongly specified, no freeing and fixing
parameters is going to yield a correct model.

Recent Developments

Much of the theory up to now assumes that our variables have multivariate
normal distributions. From these assumptions we were able to conclude that
the sample “chi-squared statistic” indeed has a chi-square distribution when
the hypothesized model is correct, and if not, has a noncentral chi-square dis-
tribution, from which we can extract the noncentrality parameter and use a
simple sample estimate of it to describe model misfit. At least these assump-
tions may hold, we believe, asymptotically. But statisticians such as Ke-Hai
Yuan (2005) observe that generally our variables do not have a multivariate
normal distribution, and this now raises doubts about all those consequences
we have deduced from assuming multivariate normality to be the case.

Much of the data in the social sciences consist of Likert scale ratings, which
are categorical and not continuous; hence, consequently they cannot pos-
sibly have multivariate normal distributions. Furthermore, our samples for

© 2009 by Taylor and Francis Group, LLC



“K10039_C015.tex” — page 383[#77] 5/5/2009 10:34

Model Evaluation 383

study may not be simple random samples, but selected samples to satisfy
some criterion, such as a criterion for admission to college or graduate school,
the police force, the army, the nursing profession, or medical school, which
have minimum requirements on various abilities and education. So, the sam-
ples may be truncated at the top or bottom or both. In these cases, not only will
we question our chi-square statistic and its nominal cutoff for significance,
but even the noncentrality parameter and the GFIs based on it.

Satorra and Bentler (1990) argued that as long as what they called “asymp-
totic robustness” holds, given the sample “chi-squared” value of U∗ =
(N − 1)FML, they could find a quantity κ such that

TR = κ−1U∗ (15.103)

has an asymptotic chi-square distribution. κ depends on the fourth-order
moments of the distribution of the manifest variables as well as the structure
of the model. But the resulting TR has come to be known as the Satorra–
Bentler rescaled chi-square statistic. Several Monte Carlo studies have shown
that this statistic behaves well under a number of different conditions.

Yuan (2005) considers cases where the sample U* is a linear function of the
noncentral chi-square statistic:

U∗ = bχ2(df, λ) + a, (15.104)

which would allow us to transform U∗ to a chi-square distributed variate
when the noncentrality λ = 0, that is, the null hypothesis is true:

χ2(df, λ) = b−1(U∗ − a). (15.105)

Under the null hypothesis that λ = 0, b adjusts the variance of the chi-square
distribution, whereas a adjusts its mean to yield the U∗ distribution in ques-
tion. Since a chi-square variable is the sum of a series of squared unit normal
deviates, chi-square represents normalized, squared sampling error. Because
the variance of a unit normal deviate is 1, as is the expected value of a squared
unit normal deviate, the expected value of the chi-square distribution equals
the degrees of freedom, the number of expected squared unit normal deviates.

A statistic Twhich is distributed as the noncentral chi-square distribution
χ2(df, λ) has for its expected value E(T) = df + λ. The degrees of freedom, df,
represents total average squared sampling error, whereas λ represents total
systematic squared error. Thus λ̂ = T − df is an estimate of systematic error.
So, returning to Equation 15.104, given that we have rejected the null hypoth-
esis, all we need to get the noncentrality parameter estimate is to subtract
df from the quantity on the left, or λ̂ = b−1(U∗ − a) − df. Of course, to get to
this point, we would need estimates of b and a.This may be easier said than
done. But Yuan (2005) notes that we might develop the values empirically,
maybe using bootstrap sampling and regression based on the QQ plots of the

© 2009 by Taylor and Francis Group, LLC



“K10039_C015.tex” — page 384[#78] 5/5/2009 10:34

384 Linear Causal Modeling with Structural Equations

quantiles of empirical U∗ against quantiles of simulated values derived for
the model in question under the assumption that it is true. This makes the
probability distribution unique to the application. But in some cases when
the elliptical distribution applies, a may not apply and b is estimable.

Yuan (2005) notes that cutoff values such as 0.05 (for RMSEA) or 0.95 (CFI,
TLI, and GFI) have “little to do with the mean value of the fit indices or the
NCP [noncentrality parameter]” (p. 124). That is true, but these cutoffs are not
set probabilistically, but in terms of a putative distance metric of what corre-
sponds to one’s view of “close fit.” One must not be confused as to what the
underlying metaphoric paradigm is for judging fit: Is it closeness in probabil-
ity or closeness in distance? Both paradigms are used, sometimes combined
as in the significance test. But each can be applied ignoring the other, as is
the case here for cutoff values that are distance inspired. But Yuan (2005) and
Yuan and Chan (2005) note that under different methods of estimation, the
resulting so-called chi-squared statistics may differ, as will also any GFI com-
puted from chi-squares under different methods of estimation. Hence a 0.05
cutoff under one method of estimation may not correspond to a 0.05 cutoff
under another. Yuan (2005) also suggests that if there is no noncentral chi-
square distribution, the noncentrality parameter may be “irrelevant” (p. 124).
But this is a bit too strongly stated: All we need for GFIs based on a “noncen-
trality parameter” is a statistic whose expected value equals the sum of its
degrees of freedom and a parameter representing systematic error. This still
constrains our possible choices.

Yuan (2005) also reports Monte Carlo studies of a number of approximate
chi-square statistics. He concludes that generally chi-square distributions are
not obtainable, even when the data are normally distributed. The distribution
shapes, he says, will vary substantially when such conditions as sample size,
the distribution of the manifest variables, model size, and model misspecifi-
cation vary. Using unmodified noncentral chi-square distributions to describe
properties of fit (especially in the tails) may be inappropriate. In some cases
even trying to use a noncentrality parameter estimate will be inappropriate.
Whatever robust procedures are then invoked to deal with this situation will
be “tailor-made” to the case.

After examining several popular fit indices under the condition that the
sample U∗ does not follow a chi-square distribution, Yuan (2005) considers
possible replacements for the usual chi-square statistic in the formulas for the
GFIs. He concludes that two “robust” chi-square measures would function
better than the maximum-likelihood-based chi-square, while retaining the
property that their expected value equals degrees of freedom:

TAR = (N − 1)−1[N − 5/3 − (2p + 5)/6 − (m − 1)/3]TR. (15.106)

This is the “adjusted rescaled chi-square statistic” derived from the maximum-
likelihood chi-square statistic.
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The second “robust chi-square measure” is based on ADF estimation.
Let xi = (x1, . . . , xp)

′ be an observation vector for prandom variables from
some nonnormal multivariate distribution for the random vector x. We now
introduce a new operation known as the vectorization of a symmetric matrix
S, which we will denote as s = vech(S). This is no more than taking the
p(p + 1)/2 nonduplicated elements in order from S and arranging them in
a column vector s. The conventional way to do this is to select the nondupli-
cated elements by columns. The nonduplicated elements in the first column of
S are the element in the principal diagonal and all the elements below it.
The nonduplicated elements in the second column of S are the principal diag-
onal element and all the elements below it. The nonduplicated elements in
the third column are the principal diagonal element of that column and all
the elements below it. So, in general, we proceed selecting the element in the
principal diagonal of S in the column in question and all the elements below it
in that column and packing them in order into the column vector s. Let σ(θ) =
vech(Σ(θ)) be a vectorization of a model population variance–covariance
matrix derived from its parameters in the vector q. Let s = vech(S) be a
corresponding vectorization of the sample variance–covariance matrix for
the p random variables in x.

From a random sample of N such observation vectors xi, we may compute
the mean vector x̄ = (1/N)

∑N
i=1 xi. For each xi we may compute a p × p sym-

metric matrix (xi − x̄)(xi − x̄)′. Now, let us define the p(p + 1)/2 vector yi =
vech[(xi − x̄)(xi − x̄)′]. Next, let Sy = (N − 1)−1[∑N

i−1 ȳiȳ
′
i − N

∑N
i−1 ȳiȳ

′
i
]

be
the sample variance–covariance matrix for the yi’s. Note that Sy is a
(p(p + 1)/2) × (p(p + 1)/2) matrix, whose elements estimate the fourth-order
moment matrix Γ with typical elements γij,kl = σijkl − σijσkl, where

σijkl = E[(xi − μi)(xj − μj)(xk − μk)(xl − μl)]

and

σij = E[(xi − μi)(xj − μj)]

are the usual expressions for a covariance. When estimated parameters θ̂ are
obtained by GLS estimation, one minimizes

FGLS = (s − s(q))′S−1
y (s − s(q)). (15.107)

This is known as the ADF estimator (Browne, 1984). The corresponding chi-
square statistic for this estimator is given by Yuan and Bentler (1998) as

TADF = (N − 1)FGLS(θ̂). (15.108)

Originally Browne (1984) and others hoped that ADF estimation would
solve the problem of nonnormality for variables, since it could be applied to
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most nonnormal distributions of interest. However, Yuan and Bentler (1998)
reported that subsequent Monte Carlo studies in the literature revealed that
this method of estimation and its test statistic would reject correct models
with 68% rejection rates in moderate-to-small samples for large models with
many parameters. Furthermore, huge samples in the thousands were needed
for the method and its test statistic to behave properly.

Yuan and Bentler (1998) noted that an alternative consistent estimator of Γ

would be given by

Γ̂ = (N − 1)−1
N∑

i=1

(yi − σ(θ̂))(yi − σ(θ̂))′

= Sy + N
(N − 1)

(ȳi − σ(θ̂))(ȳi − σ(θ̂))′.

By replacing Sy by Γ̂ in Equation 15.107, we are then in a position to create a
new statistic

TCRADF(θ̂) = TADF(θ̂)/

(
1 + N

(N − 1)2 TADF(θ̂)

)
. (15.109)

Because the denominator of Equation 15.109 is necessarily larger than the
numerator, the value of TCRADF is relatively smaller than TADF in samples
of smaller N. But as N becomes increasingly larger N/(N − 1)2 begins to
approach zero, implying then that TCRADF is asymptotically consistent with
TADF. Since in smaller samples TADF rejected correct models excessively by
being biased in being too large, the correction in Equation 15.109 compensates
for this bias in smaller samples while performing increasingly the same as
TADF in much larger samples.

For GFIs based on noncentrality parameters, both TAR and TCRADF satisfy
the property E(T) = df when the hypothesized model is correct, implying
that when the hypothesized model is incorrect, T − df provides a relatively
unbiased estimate of the noncentrality or systematic lack of fit in nonnormal
situations.

Yuan and Chan (2005) studied the behavior of TML, TGLS, and TADF under
differences in model misspecification, small sample size, and distribution of
the sample. They found that the “. . . difference between TML and TGLS is
due to model misspecification, not the distribution of the sample. The dif-
ference between TGLS and TADF is due to the distribution of the sample and
small sample size, not model misspecification. The difference between TML
and TADF can be due to model misspecification, distribution of the sample,
as well as a small sample size” (p. 797). They further noted that systematic
differences in the discrepancy functions reflect differences in the manner in
which distances are scaled between matrices as well as differences in the
matrices compared. Systematic differences both within and between meth-
ods of estimation will produce differences for model fit indices, so that cutoff
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values will not correspond across fit indices, between methods, or even across
model size, model discrepancy, and sample size within estimation method.
So, one should not use cutoff values uncritically.

Criticisms of Indices of Approximation

Some researchers are opposed to the use of indices of approximation, such
as the CFIs, GFIs, TLIs, or RMSEA indices. They argue that it is sufficient to
use the chi-square test, and when a model fails to fit by that statistic, one
should then pay attention to that fact and proceed to examine diagnostic
information given by the computer programs and to produce a more thor-
ough conceptual analysis of the phenomena being modeled to arrive at an
understanding of the failure of the model to fit. Other researchers take an
almost opposite view: there are no exact truths in science, only relative degrees
of approximation. The world is complex, while our concepts of it are gross
simplifications and, at best, good approximations. Statistical tests, such as the
chi-square test, will increasingly reject almost any model as the sample size
increases, because the power to detect miniscule deviations of the model from
the data it purports to fit, increases with sample size. But these miniscule devi-
ations most likely concern minor, extraneous influences not anticipated by the
researcher at a level of resolution beyond current concepts to handle. It is suf-
ficient to focus on the degree of approximation to learn how well the present
model reproduces the data. Good approximations have long been used in
engineering, while physical scientists use degree of approximation to gauge
the potential of a theory with suitable future modifications to successfully
explain the phenomena (Giere, 1988).

The critics of indices of approximation counter that the degree to which a
model approximates data has no necessary relation to the degree to which
the model is causally misspecified. The “true” model may use quite different
latent variables, in a different causal framework, and the approximate fitting
model may only be a near-equivalent model to the true model. So, a small
misfit may still be a signal of serious causal misspecification.

Advocates of approximate fit indices respond to this argument by noting
that it would equally apply to models that fit with nonsignificant chi-squares.
Just because the model fits the data does not mean that it is correct. The true
model may use quite different latent variables in a different causal framework,
and the model that fits with nonsignificant chi-square is only an equivalent
model. So, blithely accepting the model with a nonsignificant chi-square may
be even more serious, because the researcher has no warning of serious causal
misspecification.

Because information about the world is gathered serially in time, it usually
is incomplete in representing all facets of a phenomenon at the earlier stages
of research. Models in the early stages may be oversimplifications and at best

© 2009 by Taylor and Francis Group, LLC



“K10039_C015.tex” — page 388[#82] 5/5/2009 10:34

388 Linear Causal Modeling with Structural Equations

crude approximations. Although exact fit tests reveal the failures of these
models, the degrees to which they still approximate the data can be useful
information to the researcher in determining provisionally whether he or she
is on the right track, but has still to consider refining the model with more
features representing the world to obtain better fit.

Approximate fitters note that frequently failure to fit is the result of failure
to achieve causal homogeneity in the research subjects studied. Individuals
may vary in the degree to which a causal variable has an effect on another
variable. The model obtained with a specific causal effect, though with signifi-
cant chi-square, may yet represent a useful approximation to each individual’s
effect of the causal variable.

A historic analogue in chemistry (Brady and Humiston, 1982) is the
development of the gas laws beginning with Boyle’s law relating pressure
to volume at a constant temperature, Charles’ law relating volume to temper-
ature at a constant pressure, andAvogadro’s principle relating volume of a gas
under constant temperature and pressure to the number of molecules (moles)
of the gas. This gave rise to the ideal gas law V = nRT/P, where V is volume,
T is temperature, P is pressure, n is the number of moles of the gas, and R is
the universal gas constant. But the ideal gas law is only a good approximation
for most gases. The Dutch physicist J. D. van der Waals received a Nobel Prize
in 1910 for the real gas law,

(
P + (n2a/V2)

)
(V − nb) = nRT, introducing two

parameters a and b which were specific to the gas in question: a represents
intermolecular attraction and b an effect due to the size of the gas molecules.
The parameters a and b were natural constants that had to be estimated for
each real gas, such as helium, oxygen, methane, and so on.

Similarly, one may expect that individuals differ somewhat in the extent
to which a unit change in a latent judgment variable will produce a change
in a rating on a rating scale, which effect is represented by a factor loading.
There may be additional natural constants that reflect individual biases in
their ratings, such as leniency and stringency.

My own position is that both chi-square tests of exact fit and indices of
approximation provide useful information and should be attended to. How-
ever, a failed chi-square test does not necessarily imply that a model is
seriously misspecified, nor does a good approximation necessarily imply
a partly correct model. It is a matter of scientific judgment which is the
case. Because sciences are self-correcting in time as researchers approach the
phenomena with different conceptions and perspectives, new experimen-
tal designs will yield new data, and errors of judgment will eventually be
corrected, either by the researchers themselves or by other researchers.

In structural equation modeling (SEM), the hypothesized models are com-
plex. They have many, sometimes, hundreds of parameters. Ideally a high
proportion of these parameters are prespecified by theory. Additionally, the
models are studied in certain settings, of which all relevant influences on
the outcomes of the observed variables are not always fully known. Some
influences may be so small in effect as to have not been previously detected.
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We may not be fully aware of causal heterogeneity among experimental sub-
jects, where stimuli have different kinds of effects on different subjects, or
words in test items have different idiosyncratic meanings for different sub-
jects. Our models express only linear relations, whereas the causal relations
may be nonlinear but monotonic in their effects, so that the linear relations
are only approximations. In any experimental or observational setting there
are also numerous background conditions that may influence our outcomes,
and these may not be modeled (James et al., 1982; Mulaik and James, 1995).

When we try to formulate hypotheses, we try tentatively to identify the
principal, obvious causes of their chosen effect variables, along with any other
causes. We also try to have indicators of these causal variables. We fix and
constrain certain parameters in our models to specify hypotheses about the
relations of the causes to the various effect variables. Often we express these as
zero coefficients, indicating which variables are not causes of other variables.
But we can even specify nonzero values, if prior experience or theory is suffi-
cient to provide values. So, the logic of the chi-square test of the hypothesized
model goes like this:

If H1 & · · · & Hp & B1 & · · · & Bm & D1 & · · · & Dk are true then T < χ2
df(0.05).

H1, . . . , Hp are hypotheses represented by fixing or constraining certain
parameters in the model. Free parameters are not part of the hypothesis, but
filler in the model. They are free because the researcher has no knowledge by
which to specify their values. They are to be estimated in such a way as to
minimize lack of fit of the model conditional on the hypothesized constraints.
Thus, if there is any lack of fit, it will be attributed to the fixed and constrained
parameters. B1, . . . , Bm are background conditions assumed to be the case for
the experiment. D1, . . . , Dk are probabilistic distributional assumptions made
for performing statistical analysis with the data. T is the chi-square test statis-
tic referred to a critical value of the chi-square distribution with df degrees
of freedom at the 0.05 level of significance. If all the hypotheses, background
assumptions, and distributional assumptions are true, then chi-square should
be less than the critical value of chi-square.

Now suppose we observe that it is false that T < χ2
df(0.05)

. This then falsifies
the joint condition on the left-hand side of the expression. But it does not
mean that every one of the assertions on the left-hand side are false. There
may be only one condition, say it is a hypothesis about a parameter value,
or an assumption about a background condition or a statistical assumption
that is false. Then the whole joint expression on the left is negated. Or it
could be any number of hypotheses, background assumptions, and statistical
assumptions that are false. The chi-square test does not indicate what is false,
only that something, somewhere is probably false (Mulaik and James, 1995).
So, one must not exaggerate what failure of the chi-square test implies.

The failed chi-square should stimulate an effort to discover the reason for
the lack of fit. Most structural equation computer programs have diagnostic
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information that may be examined for clues to the source of lack of fit. If
one believes that there was strong reason to believe the causal framework
was correct, then one may consider using LM tests, which are single-degree-
of-freedom chi-square tests applied to individual constrained parameters to
test whether the constraint contributes to significant lack of fit compared
with leaving the parameter free. An LM test should be performed on each
constraint, their chi-squares ordered in magnitude. Then the parameter or
constraint with the largest significant chi-square value should be freed, and
the model reanalyzed. Because the LM tests are not independent, a new set of
LM tests is then performed on the remaining constraints, and again the param-
eter with the largest significant chi-square is freed, and the model reanalyzed
again. One should attempt to justify freeing each parameter with theoretical
reasons. And one should be judicious in freeing parameters, and not free too
many, for the resulting model will have fewer degrees of freedom and repre-
sent a less testable model. I do this, hoping to increase the CFI above a value
of 0.95 with as few freed parameters as possible. If I can get a nonsignificant
chi-square, then all the better.

But residuals sometimes have patterns in them that suggest the presence
of other latent variables not included in the model. This can lead to model
revisions, but these should have as few freed parameters as possible, because
at this point, by consulting the data and freeing parameters, we are not testing
hypotheses but exploring. Any parameter that is changed as a result of seeing
the data should be treated as a freed parameter unless there is an independent
reason not tied to the data for making the change.

Failure of distributional assumptions can be detected by various measures
supplied with the computer programs. To test for departures from multi-
variate normality, one can use Mardia’s measure of multivariate kurtosis.
Normality is disallowed if the distribution is too light or too heavy in the
tails. The raw data itself may be examined for outliers. Of course, if the vari-
ables are categorical and not continuous, then departures from multivariate
normality are already assured.

But what about the argument that the chi-square test may signal that there
is a causal misspecification in the model and accepting an approximation
would only seriously obscure this fact? We have already indicated that this
same argument would undermine accepting a model with a nonsignificant
chi-square, since accepting the model might obscure the misspecification. But
there is another reason not to be overly concerned by such arguments. Mod-
els should be constructed on the basis of all that is previously known about
the phenomenon to be modeled as well as with mechanisms and processes
known to exist in other cases in the world. Every effort should be made to
rule out alternative models on real-world grounds at this point. We are not
simply fitting mathematical models to the numbers in covariance matrices.
Thus the mere fact that we can imagine alternative mathematical models
that might fit the same data is not sufficient for these to defeat a model
that fits exactly or even to a high degree of approximation—if this model
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has sound, real-world bases for its structure and parameter constraints. The
alternative model should have independent real-world foundations for its
advocacy before it is taken seriously. The alternative model should also have
as many or more degrees of freedom to be a legitimate defeater. Otherwise,
alternative imaginary mathematical models with weaker constraints can be
used to defeat and undermine any model that fits “exactly” or even approxi-
mately. These I call “boogieman models” because they are often invoked by
skeptics with an axe to grind against structural equation modeling or the use
of approximate fit indices. But like “boogiemen” they have no basis in reality,
only in imagination.

Conclusion

Modeling in science is an iterated three-phase process of (1) abduction
or hypothesis formulation, (2) deduction, then (3) induction or hypothesis
testing (Peirce, 1931–1958).At the outset, in abduction one encounters a surpris-
ing or little-understood phenomenon in experience, and then after gathering
preliminary data about the phenomenon, seeks to consider various possible
hypotheses to account for them, evaluating these by how well they conform
to the already known or given data. The hypothesis that accounts for the
known data in the most parsimonious way is then regarded as one’s best
“guess” as to the explanation for the phenomenon and the other hypotheses
are set aside. But this does not mean that the hypothesis finally chosen is
confirmed. It is still only a guess that fits the data that stimulated formulating
the hypothesis. One must now take the hypothesis, analyze it, and attempt to
deduce possible consequences of it in future experience. This represents the
second or deductive phase. One then seeks to deduce possible experiments or
observations not used in the formulation of the hypothesis that would put
the hypothesis to a test. At this point one constructs a model for the antic-
ipated data. Having done that, one then enters the third phase of induction
or hypothesis testing, where the hypothesized model is compared to data
collected by design for the purposes of testing the hypothesis. If the model
fits acceptably, this lends provisional support to the hypothesis, but this does
not mean it is finally and absolutely confirmed. Further deductions may lead
to other models that further test the hypothesis, and other experiments and
observations may be performed to test these new deduced consequences. On
the other hand, if the initial hypothesis fails to fit acceptably, this leads to a
new cycle of abduction, deduction, and induction, where one seeks to refine
and revise the model in the light of the initial and subsequent knowledge
of the phenomenon. Often the model only achieves an approximation and
not a fit to within sampling error. This should still be a sign that something
is wrong somewhere in the model. At the same time, one may feel that the
principal causes in the model may be appropriate or part of the causes of the
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data, but one will also need to deduce new consequences formulated into
a new, revised model to account for the previous discrepancies as well. The
deduction of a revised model will be followed by testing the revised model
against new data. This three-phase process goes on and on. But there are other
considerations behind this approach.

The philosophy on which my approach to model evaluation is based is the
idea that science concerns objective knowledge, that is, knowledge of objects.
Objects are invariants in the world that are independent of particular points of
view, means of observation, indicators, laboratories, researchers, instruments,
personal prejudice, and so on. Objects are perceived by us as having attributes
that we order in variables. Causes are functional relations between attributes
either within the same object or between objects. Scientists establish causes
as invariant functional relations between variables that hold for particular
sets of objects under certain conditions. Scientists establish invariants by
asserting them as hypotheses or models and testing them against data not
used in their formulation. This is essential to establishing the results as inde-
pendent of the researcher and invariant across whatever prior knowledge of
the world he or she possesses in formulating the hypothesis and the data
used to test the hypothesis. Invariants also should be found in numerous
contexts, and modules of invariants should be translatable from one setting
to another and combinable with other modules and retain their invariant
properties.

Hypotheses are tested by comparing the model of the data to the data itself.
Comparisons may be made in terms of distances between model and data,
and/or probabilistically, as to whether the data differ to such a degree in dis-
tance and so improbably if the model were true as to strain credibility or not.
This requires criteria of when to accept the model provisionally or not. Merely
because one model is closer to the data than another is not sufficient to accept
it provisionally. A model to be accepted must be within a reasonably close
distance of the data and reasonably probable under the hypothesis. So, this
approach is not based on generating numerous models and then testing each
one and picking the one among them that is merely closest to the data. Close-
ness must be quite close. And none of the models compared may even fall
within the bounds of closeness set by the researcher for provisional acceptance
of the model. In large samples closeness may become more important than
probability, since sampling error diminishes in magnitude with increases in
sample size. Furthermore, probability distributions and models are idealiza-
tions and may not capture the fine-grained features of the data visible in high
resolution from huge samples. One may not have causally homogeneous sub-
jects so that for some subjects causal variables other than those hypothesized
may function, or their structural parameters may vary in value from those
predominating in the population. Thus approximations may still be useful
and bases for further studies that seek to refine these models further so as to
account for the information revealed in high resolution not accounted for by
the model.
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Now, GFIs are ways of evaluating the distance from the data (say, as mea-
sured by a noncentrality parameter) and the probability of the data under
the hypothesis. But no model should be accepted merely because it comes
within the bounds of provisional acceptance. As Browne and Cudeck (1993)
have said, final decisions to accept or reject a model depend on a judgment of
many factors and should not be made mechanically on the basis of fit indices.

Specifically, are there causal mechanisms in the world that correspond to the
abstract form of the model? Furthermore, fit or closeness alone is not sufficient.
The model must be testable and potentially disconfirmable, for this is the mark
of a test of an invariant. And the researcher should remain ever clear about
what is tested and what is generated as hypothesis for future studies.

To help gauge the disconfirmability of a model, Mulaik (2001) has shown
that degrees of freedom are the number of dimensions in which data are free
to differ from an incompletely specified model that estimates unspecified
and unknown parameters from the data, conditional on the constraints of
the hypothesis. So, degrees of freedom can be the basis of an assessment of
disconfirmability. But degrees of freedom of a model need to be considered
against the maximum possible degrees of freedom, which is given by the
number of distinct data points that the model is designed to fit. Each data point
presents a potential dimension in which the model may differ from the data,
but estimating parameters consumes some of these dimensions and arrogates
them to the parameter estimation process. Each parameter estimated takes
away a degree of freedom. A PR may then be calculated to determine what
portion of the data’s dimensions has actually been used to test the model.
This involves the ratio of the degrees of freedom of the model to the “degrees
of freedom of the data,” given by the number of data points to fit.

The PR may be multiplied by a “GFI” that ranges between 0 and 1 to result
in an index of model quality. Examples of this are to multiply the PR with
the CFI. The result combines a pure measure of fit with a measure of discon-
firmability. Lack-of-fit indices such as the estimated noncentrality parameter,
or the RMSEA, may be transformed to a GFI ranging from 0 to 1 by the neg-
ative exponential function. These too then may be multiplied by the PR to
obtain an index of model quality. Model quality criteria should be set high,
say, 0.85 or higher. This will mean that a highly disconfirmable model has
been shown to have a very high degree of fit to the data. Models with lower
PR-adjusted good fit, but high goodness of fit should be evaluated in terms
of what was tested and not in terms of the “whole model.” Beyond this the
PR may be considered separately, for example when evaluating a chi-square
statistic, to determine what proportion of the model’s parameters was tested
by the model constraints.

At the present, the information theoretic indices seem not to be based on
the philosophy of establishing objective invariants but on model compari-
son and selection of the best-fitting model from a group of models, merely
on its having the smallest value. These methods have an abductive aspect to
them. But close may not be close enough. Hypothesis testing and hypothesis
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formulation also become confounded in this framework. Although pro-
ponents of information theoretic indices claim to penalize for parameters
estimated, these penalties diminish in their impact as sample sizes get larger.
They tend in larger samples then to treat estimated parameters as if they are
correct parameters because their standard errors become so small that the
penalty against them can vanish with increasing sample sizes. Information
theoretic approaches do not take into account the possibility of numerous
equivalent models in the parts of models with estimated parameters, which
undermines the uniqueness of the estimated parameters as objective values.
Estimated parameters must be interpreted as hypotheses for future studies,
not tested with samples from the same population, but as possible invariants
in modules of variables translated to new contexts to establish their invari-
ance. Cross-validation to samples from the same population does not test for
objective invariance. What cross-validation measures is sampling stability,
and this can usually be best assessed with a single large sample than with
two half samples. Cross-validation to random samples will not detect the
presence of mixed distributions, of nonhomogeneous populations, especially
in larger and larger samples.

Objectivity requires “causal homogeneity” of objects studied in order to
establish invariant functional relations across objects and their attributes.
This means in factor analysis that subjects should all perform according to the
same latent variables and to the same degree of change in observed variables
for a unit change of a latent variable. Factor loadings should be invariant
across subjects. Otherwise, the factor loadings obtained will be an averaging,
so to speak, of the factor loadings of each individual. Such averages may not
hold up in modules of variables or sets of individuals taken from one context to
another. Establishing “causal homogeneity” is difficult and methodology has
not yet been well developed for this task, because it is not a well-recognized
problem.

Finally, objectivity should be understood as not a condition in which abso-
lute truth has been established, but as a relative condition that changes
with advancing knowledge and more widely applicable models, newer more
encompassing theories and wider ranges of data to which they are simulta-
neously applied. Objectivity also changes with increasing awareness of our
roles as subjects in influencing the forms of our data and our conceptions of
them, provoking us to modify our models to account for these extraneous
influences on our part, for we too are objects in the world interacting with the
objects under study. We know too from our personal knowledge of objects
that there is always something new, some aspect not before perceived, that
may be revealed, changing our view and concept of an object. Much of this
philosophy is treated in expanded form in Mulaik (2004).
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16
Polychoric Correlation and Polyserial
Correlation

Introduction

The theory of factor analysis and structural equation modeling has developed
under the assumption that the observed variables have continuous, multivari-
ate normal distributions. But much of the data obtained in the behavioral and
social sciences does not involve continuous variables and hence cannot have
multivariate normal distributions. For example, responses may be binary and
bipolar as

Agree, Disagree

or trinary and bipolar as

Agree, No opinion, Disagree

or ordinal and unipolar as

Never, Rarely, Occasionally, Often, Always

or ordinal and bipolar as

Extremely, Strongly, Somewhat, Neutral, Somewhat, Strongly, Extremely

395
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or

Strongly Somewhat Slightly Indifferent Slightly Somewhat Strongly
agree agree agree disagree disagree disagree

Ordinal numbers are then assigned to these ordered categories to make
quantitative variables.

Conducting analyses with covariances computed from the raw scores on
the categorical variables can lead to biased estimates of factor loadings, and
in certain cases to improper determinations of the number of factors, espe-
cially if the variables are skewed in opposite directions (Olsson, 1979). This
will occur if in fact the observed variables are themselves categorizations of
underlying latent variables that pairwise have joint bivariate normal distribu-
tions. In other words, we should be analyzing the covariances or correlations
between these latent variables and not the raw, observed variables. Human
judgments in the nervous system may be more nearly continuous in value
than the raw categories of binary Agree–Disagree variables or polytomous
Likert scale rating variables suggest. And these underlying continuous vari-
ables may have joint bivariate normal distributions (which may be a fairly
strong substantive assumption). But if these assumptions about underlying
latent variables corresponding to our observed variables are reasonable, then
we may proceed to first estimate the correlations among these latent variables,
and then perform analyses of our models on the resulting correlations.

Polychoric Correlation

Karl Pearson (1901) first proposed polychoric correlation in connection with
dichotomous raw variables. In Biometrika in 1922 Karl Pearson and his son
Egon Pearson generalized the method originally developed by Pearson in
1901 to “polychoric correlation coefficients.” But in the days of mechanical
calculators the problem was a difficult one to solve with accuracy, and so
frequently various approximations were proposed. Olsson (1979) put forth
a classic paper on the estimation of the polychoric correlation coefficient by
maximum-likelihood estimation. This paper has been a jumping-off point
for further developments in the literature. To familiarize ourselves with this
method, we will discuss Olsson’s paper.

To begin, assume that we observe two ordinal, categorized variables x and
y. Variable x has s categories and y has r categories. Their sample joint fre-
quency distribution is given in Table 16.1. Next, assume that corresponding
to x and y are two latent variables x and h that have a joint bivariate unit nor-
mal distribution. The correspondence between these two sets of variables is
given by the manner in which threshold values on the latent variables define
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TABLE 16.1
The Form of the Observed Data for the
Polychoric Correlation Problem

h

x

b1 b1

n13n12n11

a1

a2

n21

n31

n22 n2r

n3r

ns,rns3ns2ns1as–1

n1r

br–1

r321

1

2

3

y
x

s

º

º

ºº

ºº

º

ºººººº º

º

º

the category boundaries of the observed variables:

x = 1 if ξ < a1 y = 1 if η < b1
x = 2 if ξ < a1 ≤ ξ < a2 y = 2 if b1 ≤ η < b2
x = 3 if a2 ≤ ξ < a3 y = 3 if b2 ≤ η < b3
...

...
x = s if as−1 ≤ ξ y = r if br−1 ≤ η

.

There is one less threshold value for a latent variable than the number of
categories on its corresponding observed variable. The random variable x has
category thresholds of a1, a2, a3, . . . , as−1. The random variable h has category
thresholds of b1, b2, b3, . . . , br−1.

In Table 16.1 we show the format of the raw data for the polychoric correla-
tion problem. The first row and column of the table show the latent variables x
and h and their respective threshold values ai and bj. The second row and col-
umn, excluding the first element in each, indicate the observed polytomous
variables x and y and their respective values. Note how the threshold values
on the latent variables are positioned. See how, for example, the first thresh-
old value a1 for the variable x is in the row corresponding to the value x = 2.
The threshold values correspond to the boundary lines between the values
of the observed variables. The value of an observed variable corresponds to
the values of its corresponding latent variable that are greater than or equal
to the threshold value shown for it, while always less than the value of the
threshold shown with the next larger value of the observed variable. The table
also shows cross-tabulations of the n’s or frequencies in the sample for each
joint occurrence of different values of the observed variables. All the n’s add
up to N, the sample size.
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FIGURE 16.1 Contour plot of a bivariate normal distribution for variables x and h with means of
zero, variances of 1, ρ = 0.4, and threshold lines for determining values of polytomous variables
x and y and their values shown.

In Figure 16.1 we show a contour plot of a bivariate normal distribution
for two latent standardized continuous variables ξ and η with corresponding
polytomous variables x and y. The horizontal and vertical lines in Figure 16.1
represent the thresholds on the continuous variables, which we have labeled
with a’s and b’s. We will assume that a0 = ∞, b0 = ∞, as = ∞, and br = ∞.
All values of x such that ai−1 ≤ ξ < ai equal i, and all values of η such that
bj−1 ≤ η < bj equal j. The values of the observed variables are shown in the
left and bottom margins. The threshold lines for latent variable x intersect
with threshold lines of latent variable η to form cells (i, j), i = 1, 2, . . . , s; j =
1, 2, . . . , r. The probability that an observation on the observed variables (x, y)
will fall within the cell (i, j) is given by πij.

Overview

The observed relative frequencies Pij = nij/N of the cases in each cell (i,j) rep-
resenting the joint values of the observed variables x and y are the raw data.
We seek to find a standardized bivariate unit normal distribution for which
the relative frequencies Pij jointly have the greatest likelihood across all cells.
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Roughly speaking, this corresponds to seeking to fit a bivariate normal dis-
tribution to the cells such that the probabilities under the bivariate normal
distribution of falling within the respective cells are as much as possible sim-
ilar to the observed relative frequencies. Since the means and variances of
the bivariate unit normal distribution will be fixed to 0 and 1, respectively,
to achieve identification, the only parameter governing the variation in the
distribution’s shape is the correlation ρ between the latent variables. Thus by
varying ρ in a systematic manner, we will come to find the value at which
the probabilities under the distribution best fit the cells’ relative frequencies.
In the first method of estimation, we will also have the freedom to adjust
the thresholds to vary the cell boundaries. In the second method of estima-
tion, the thresholds will be determined first and will remain fixed throughout
variations in ρ.

Derivation

We will assume for the present problem that the means of the latent variables
are zero, and the variance of each variable is unity. This establishes an identi-
fied solution for ρ. The bivariate normal density function for variables whose
means are zero and variances are unity is given by (Biswas, 1991, p. 398):

φ(ξ, η; ρ) = 1

2π
√

1 − ρ2
exp

[
− 1

2(1 − ρ2)
(ξ2 − 2ρξη + η2)

]
. (16.1)

The cumulative bivariate normal distribution in this case is given by

Φ(ξ, η; ρ) = 1

2π
√

1 − ρ2

∫ ξ

−∞

∫ η

−∞
exp

[
− 1

2(1 − ρ2)
(ξ2 − 2ρξη + η2)

]
dξ dη.

(16.2)

The derivation of the likelihood equations for estimating ρ is then given as
follows: let πij be the probability that a random observation falls into the cell
(i, j). Then the joint likelihood of the sample is given by

L = C ·
s∏

i=1

r∏
j=1

π
nij
ij . (16.3)

Note that the reason πij is raised to the power nij is because there are nij
cases falling in the cell (i, j), each with likelihood πij, so, when these are all
multiplied together, that results in π

nij
ij . Then these products from each of the

cells are in turn multiplied together. C is a constant.
For subsequent differentiation, it is easier to work with the logarithm of L,

which is a monotonic transformation that is maximized at the same parameter
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value(s) as for L:

l = ln L = ln C +
s∑

i=1

r∑
j=1

nij ln πij. (16.4)

From the thresholds and the cumulative bivariate normal distribution in
Equation 16.2

πij = Φ(ai, bj) − Φ(ai−1, bj) − Φ(ai, bj−1) + Φ(ai−1, bj−1). (16.5)

If one has not worked with cumulative distributions, Equation 16.5 is
understood as follows. Suppose we wish to find π52. This is given by

π52 = Φ(a5, b2) − Φ(a4, b2) − Φ(a5, b1) + Φ(a4, b1)

π52 is the probability of an occurrence of (x, y) in the cell (5, 2). But to obtain
this value from the cumulative probability distribution in Equation 16.2, we
need to add and subtract the probabilities in certain areas defined by the limits
of integration in the formula. The expression Φ(5, 2) denotes the probability
in the rectangular area defined by (−∞, −∞) in its lower left corner and (5, 2)
in its upper right corner. Of course, that takes in too much area, because we
want just the probability in the cell (5, 2). So, next, we subtract the probability
Φ(4, 2). This is the probability of falling within the rectangular area defined by
(−∞, −∞) in its lower left corner and (4, 2) in its upper right corner. But that
still leaves the total probability in cells (5, 2) and (5, 1). So, we next subtract
Φ(5, 1). But this subtracts out not only the probability in the cell (5, 1), but
in cells (1, 1), (2, 1), (3, 1), and (4, 1). We need to cancel this extra probability
subtracted by adding it back in. The portion to add back in is given by Φ(4, 1).
The result is the probability π52 in the cell (5, 2).

There are two methods at this point for how to proceed to obtain maximum-
likelihood estimates of the value of ρ. There are several parameters that need
to be estimated to make the log likelihood a maximum. These are the various
threshold values ai, i = 1, . . . , s − 1 and bj, j = 1, . . . , r − 1 and ρ. One method,
which we will describe here, is theoretically optimal. It estimates all parame-
ters simultaneously. But this method is also computationally more intensive
while being more accurate. The second method first estimates the marginal
probabilities of each value of the observed variables and then computes
the thresholds from these marginals. This method is less computationally
intensive and almost as accurate, except when ρ is large.

The reason why the derivatives are obtained is that we will use them as
indications of the slope of the likelihood function in a given parameter’s
direction of increasing values at a given point in parameter space. The like-
lihood function is well-behaved in having derivatives that are everywhere
continuous. This allows us to seek the extrema or maximum or minimum
points of the function where the slope(s) or derivative(s) change sign and
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pass through zero. In seeking to maximize the likelihood function, we seek
the “top of the mountain,” so to speak, where in all directions in parameter
space the slope is zero or horizontal. When the slope(s) of the (partial) deriva-
tive(s) in the parameter direction(s) is (are) zero, we are at a maximum or a
minimum. That is why we will obtain the expression(s) for the derivative(s)
and set it (them) equal to zero and solve for the parameter values at which
the derivative(s) is (are) zero. Because the derivatives themselves may be
nonlinear, we may not be able to solve these equations algebraically, but will
have to use numerical methods that solve them computationally by iteration.
We will also obtain the formulas for the second derivatives of the likelihood
function. These formulas tell us how much and in what direction (up or
down) the slope is changing at a given point in parameter space. If the second
derivative of the function with respect to a parameter is negative at an extreme
point, it suggests that the extreme point is at a maximum. At a minimum
point, the second derivative is positive. The second derivative(s) are also
used in the iterations of the Newton–Raphson method to calculate an opti-
mal correction to the current parameter estimate to produce a new parameter
estimate.

Estimating All Parameters Simultaneously

This is a maximization problem in several dimensions. In general, the strategy
of the simultaneous method is to iteratively adjust values of ρ, and the ai’s and
bj’s until they and the underlying standard bivariate unit normal distribution
are positioned in such a way as to maximize the log likelihood in Equation
16.4. Therefore, we need to find initially expressions for the partial derivatives
of the log-likelihood function with respect to each of the unknown parameters.
Toward this end, we first obtain

∂l
∂ak

=
s∑

i=1

r∑
j=1

nij

πij

∂πij

∂ak
, k = 1, s − 1 (16.6)

∂l
∂bm

=
s∑

i=1

r∑
j=1

nij

πij

∂πij

∂bm
, m = 1, r − 1 (16.7)

∂l
∂ρ

=
s∑

i=1

r∑
j=1

nij

πij

∂πij

∂ρ
. (16.8)

Taking derivatives of Equation 16.5 with respect to ak , we note that in some
cases none of the expressions contain ak , while in the others, only two do.
Any expression that does not contain the parameter with respect to which we
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take the derivative is zero.

∂πij

∂ak
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if πij does not contain ak

∂Φ(ak , bj)

∂ak
− ∂Φ(ak , bj−1)

∂ak
if k = i

∂Φ(ak , bj)

∂ak
+ ∂Φ(ak , bj−1)

∂ak
if k = i − 1

(16.9)

Substituting Equation 16.9 into Equation 16.6, and noting that the only
cases to consider are those where i goes from k to k + 1, we may then rewrite
Equation 16.6 as

∂l
∂ak

=
r∑

j=1

(
nkj

πkj
− nk+1,j

πk+1,j

)(
∂Φ(ak , bj)

∂ak
− ∂Φ(ak , bj−1)

∂ak

)
. (16.10)

We now take advantage of the rule that d(
∫ x

a f (t) dt)/dx = f (x). Olsson
(1979) cites Tallis (1962, p. 346) for showing that

∂Φ(u, v)

∂u
= φ(u) · Φ

{
(v − ρu)√
(1 − ρ2)

}
. (16.11)

Here φ(u) (with one argument) denotes the unit normal density function,
while Φ(u) (again with one argument) denotes the cumulative unit normal
density function.

Olsson (1979) then derives

∂l
∂ak

=
r∑

j=1

(
nkj

πkj
− nk+1,j

πk+1,k

)
· φ(ak) ·

[
Φ

{
(bj − ρak)√

1 − ρ2

}
− Φ

{
(bj−1 − ρak)√

1 − ρ2

}]

(16.12)

∂l
∂bm

=
r∑

j=1

(
nim

πkim
− ni,m+1

πi,m+1

)
· φ(bm) ·

[
Φ

{
(ai − ρbm)√

1 − ρ2

}
− Φ

{
(ai−1 − ρbm)√

1 − ρ2

}]
.

(16.13)

Note that

φ(ak) = 1√
2π

exp(−a2
k/2) (16.14)

Φ(u) = 1√
2π

∫ u

−∞
exp(−t2/2) dt. (16.15)
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Computing the univariate normal cumulative probability, given u, is usu-
ally done today with subroutines in libraries of mathematical computer
subroutines.

On the other hand, again following Tallis (1962, p. 344), who showed that

∂Φ(u, v)

∂ρ
= φ(u, v) (16.16)

where φ(u, v) (with two arguments) is the bivariate unit normal density func-
tion with correlation ρ, Olsson (1979) applied this result to Equation 16.5 to
obtain

∂πij

∂ρ
= φ(ai, bj) − φ(ai−1, bj) − φ(ai, bj−1) + φ(ai−1, bj−1). (16.17)

We can now substitute Equation 16.17 into Equation 16.8 to obtain

∂l
∂ρ

=
s∑

i=1

r∑
j=1

nij

πij

[
φ(ai, bj) − φ(ai−1, bj) − φ(ai, bj−1) + φ(ai−1, bj−1)

]
. (16.18)

Equations 16.12, 16.13, and 16.18 thus constitute the first-order partial
derivatives of the log-likelihood equation in Equation 16.4. The values of the
expressions on the right in Equations 16.17 and 16.18 correspond generally
(subscripts omitted) to

φ(a, b) = 1
2π

√
1 − ρ2

exp
[
− 1

2(1 − ρ2)
(a2 − 2ρab + b2)

]
(16.19)

computed at the current values of ρ, a, and b, respectively, in the current
iteration.

We will postpone for the time being discussing an algorithm for solving
for ρ.

Two-Stage, Conditional Maximum-Likelihood Method

Attempting to solve simultaneously for both ρ and the thresholds ai, i =
1, . . . , s − 1 and bj, j = 1, . . . , r − 1 was deemed too computationally inten-
sive by early researchers. Pearson and Pearson (1922), Lancaster and Hamdan
(1964), and Martinson and Hamdan (1971) presumed that the thresholds were
given by the cumulative marginal proportions in the cross-tabulation table.
This produces good approximations for ρ and the threshold values. Jöreskog
(1994) asserted that this method also has the advantage of consistently using
the same thresholds for a variable as it is paired with other variables.Allowing
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the thresholds of a variable to vary across different other variables with which
it is paired assumes interactions between the variables that should other-
wise be in the SEM. Furthermore, Jöreskong points out that the thresholds
produced by this method are maximum-likelihood estimates.

According to Olsson (1979), the equation system analogous to that in
Equations 16.12, 16.13, and 16.15 to be solved after setting the derivative to
zero is given by

dl
dρ

=
s∑

i=1

r∑
j=1

nij

πij

[
φ(ai, bj) − φ(ai−1, bj) − φ(ai, bj−1) + φ(ai−1, bj−1)

] = 0

(16.18a)

where the threshold values are given as the values of a unit normal random
variable that would correspond to the cumulative marginal proportions:

ai = Φ−1(Pi·), (16.20)

bj = Φ−1(P·j), (16.21)

where Pij = nij/N is the proportion in the cell (i, j), and

Pi· =
i∑

k=1

r∑
j=1

Pkj (16.22)

and

P·j =
s∑

i=1

j∑
k=1

Pik . (16.23)

Computing Estimates

In the simultaneous estimation procedure, there are several numerical algorithms
that might be applied to find the estimate of the polychoric correlation ρ

and the threshold parameters ai, i = 1, . . . , s − 1 and bj, j = 1, . . . , r − 1. These
include the Newton–Raphson method, the conjugate gradient method, and
the Fletcher–Powell–Davidon method. We have already discussed these
methods in Chapter 15. Here we will consider only the Newton–Raphson
method. Let q′ = (ρ, a1, a2, . . . , as−1, b1, b2, . . . , br−1) be a p × 1 vector of p
parameters. Some suitable initial solution for the parameter vector is denoted
as q̂(0).
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The Newton–Raphson iterative solution is given by the formula

⎡
⎢⎢⎢⎣

θ1
θ2
...
θp

⎤
⎥⎥⎥⎦

( j+1)

=

⎡
⎢⎢⎢⎣

θ1
θ2
...
θp

⎤
⎥⎥⎥⎦

( j)

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2l
∂θ1∂θ1

∂2l
∂θ1∂θ2

· · · ∂2l
∂θ1∂θp

∂2l
∂θ2∂θ1

∂2l
∂θ2∂θ2

· · · ∂2l
∂θ2∂θp

...
...

. . .
...

∂2l
∂θp∂θ1

∂2l
∂θp∂θ2

· · · ∂2l
∂θp∂θp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

( j)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂l
∂θ1

∂l
∂θ2

...

∂l
∂θp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

( j)

.

(16.24)

θ( j+1) = θ( j) − H−1
( j)g( j)

or

θ( j+1) = θ( j) − H−1
( j)g( j).

The vector θ( j+1) is the new estimated parameter vector produced in itera-
tion ( j). The vector θ( j) is the old estimated parameter vector in iteration ( j).
The matrix H−1

( j) is the inverse of the matrix of second derivatives of the log-
likelihood function with respect to the parameters in q evaluated at θ( j). g( j)
is the “gradient vector” of first-order partial derivatives of the log-likelihood
function with respect to each of the parameters in θ evaluated with values
of θ( j).

Instead of deriving the mathematical expressions for the second derivatives
of the log-likelihood function with respect to the parameters, Olsson (1979)
used an approximation to H, recommended by Tallis (1962, p. 348), known as
the “expected second-order derivatives of l with respect to θ̂”:

[I]m,n = N
s∑

i=1

r∑
j=1

1
πij

(
∂πij

∂θm

) (
∂πij

∂θn

)
. (16.25)

The elements [I]m,n are computed in each iteration from current values as
given by Equations 16.9, 16.11, and 16.17.

In contrast to the simultaneous estimation method, the two-stage conditional
maximum-likelihood method is much simpler to compute and is the method
preferred by Jöreskog (1994). First the maximum-likelihood estimates of the
threshold parameters are estimated by Equations 16.20 and 16.21. Programs
for estimating the inverse cumulative normal probability values ai and bj in
Equations 16.20 and 16.21 are usually available in libraries of mathematical
computer subroutines. Obtaining these estimates is a one-time procedure,
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and they remain as constants throughout the rest of the iterations in solving
for ρ.

To apply the Newton–Raphson method to this problem to the single
unknown ρ, we will need expressions for the first derivative of l with respect
of ρ as well as an expression for the second derivative with respect to ρ. The
formula corresponding to Equation 16.24 for the Newton–Raphson method
using estimated thresholds based on marginals is as follows:

ρ̂( j+1) = ρ̂( j) −
(

dl2

d2ρ

)−1

( j)

(
dl
dρ

)
( j)

. (16.26)

The first derivative of the log-likelihood function with respect to ρ is given in
Equation 16.18. The derivation of the second derivative of the log likelihood
with respect to ρ, however, is complex. It is the derivative of the first derivative
given in Equation 16.18:

d2l
dρ2 = d

∂ dρ

⎧⎨
⎩

s∑
i=1

r∑
j=1

nij

πij

[
φ(ai, bj) − φ(ai−1, bj) − φ(ai, bj−1) + φ(ai−1, bj−1)

]
⎫⎬
⎭

(16.27)

Breaking this into parts and substituting simple expressions for more complex
ones, we may work out the second derivative.

Let

tij = nij

πij
(16.28)

and

uij = [φ(ai, bj) − φ(ai−1, bj) − φ(ai, bj−1) + φ(ai−1, bj−1)]. (16.29)

Then

d2l
dρ2 = d

dρ

⎧⎨
⎩

s∑
i=1

r∑
j=1

tijuij

⎫⎬
⎭ =

⎧⎨
⎩

s∑
i=1

r∑
j=1

(
tij

duij

dρ
+ uij

dtij

dρ

)⎫⎬
⎭. (16.30)

Then

duij

dρ
= dφ(ai, bj)

dρ
− dφ(ai−1, bj)

dρ
− dφ(ai, bj−1)

dρ
+ dφ(ai−1, bj−1)

dρ
(16.31)

dtij

dρ
= nij(−dπij/dρ)

π2
ij

= −nij[φ(ai, bj) − φ(ai−1, bj) − φ(ai, bj−1) + φ(ai−1, bj−1)]
π2

ij

(16.32)
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Since dφ(ai, bj)/dρ is representative of each of the terms on the right-
hand side in Equation 16.31, we will substitute Equation 16.19 to obtain this
derivative:

dφ(ai, bj)

dρ
= d

dρ

[(
1

2π(1 − ρ2)1/2

)
· exp

[
− 1

2(1 − ρ2)

(
a2

i − 2ρaibj + b2
j

)]]
.

(16.33)

Let us now make the substitutions w = 1/2π(1 − ρ2)1/2 and v = exp(−gh),
where g = 1/2(1 − ρ2) and h = (a2

i − 2ρaibj + b2
j ).

Then
dφ(ai, bj)

dρ
= d

dρ
[(w · v)] = w

dv
dρ

+ v
dw
dρ

. (16.34)

Now,
dv
dρ

= d(e−gh)

dρ
= −e−gh d(g · h)

dρ
(16.35)

and
dw
dρ

= ρ

2π(1 − ρ2)3/2 . (16.36)

Next,
d(gh)

dρ
=
(

g
dh
dρ

+ h
d(g)

dρ

)
(16.37)

and then
dh
dρ

= −2aibj (16.38)

and

d(g)

dρ
= −d

[
2
(
1 − ρ2)]/dρ

4(1 − ρ2)2 = −2 · (−2ρ)

4(1 − ρ2)2 = ρ

(1 − ρ2)2 . (16.39)

Consequently

d(gh)

dρ
=
( −2aibj

2(1 − ρ2)

)
+
(

a2
i − 2ρaibj + b2

j

) ρ

(1 − ρ2)2

= −aibj(1 − ρ2)

(1 − ρ2)2 +
a2

i ρ − 2aibjρ
2 + b2

j ρ

(1 − ρ2)2

=
−aibj + aibjρ

2 − 2aibjρ
2 + a2

i ρ + b2
j ρ

(1 − ρ2)2 (16.40)

=
−aibj(1 + ρ2) + (a2

i + b2
j )ρ

(1 − ρ2)2 .
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Back substituting Equation 16.40 into Equation 16.35, we obtain

dv
dρ

= −e−gh

(−aibj(1 + ρ2) + (ai + bj)ρ

(1 − ρ2)2

)
. (16.35a)

Then substituting the new Equation 16.35a and Equation 16.36 into
Equation 16.34 and using the definitions for w and v in Equation 16.34 as
well, we obtain

dφ(ai, bj)

dρ
= − 1

2π(1 − ρ2)1/2 e−gh

(−aibj(1 + ρ2) + (ai + bj)ρ

(1 − ρ2)2

)

+ exp
(

− 1
2(1 − ρ2)

[
a2

i − 2ρaibj + b2
j

])

×
(

ρ

2π(1 − ρ2)3/2

)
. (16.34a)

Since each of the derivative terms in Equation 16.31 are of the same form
as in Equation 16.34a except for the coefficients in a and b, we need only
to substitute the appropriate coefficient for ai and bj in Equation 16.34a to
obtain each of these terms in duij/dρ in Equation 16.31. Now all we need
to obtain is the second derivative of the log-likelihood function with respect
to ρ in Equation 16.30. Substituting Equation 16.28 for tij, Equation 16.29 for
uij, Equation 16.31 for duij/dρ, and Equation 16.32 for dtij/dρ in Equa-
tion 16.30, we now have the second derivative needed in Equation 16.26 to
carry out the iterations to solve for ρ̂.

Polyserial Correlation

When the researcher has both ordinal polytomous and continuous variables,
then he or she must consider the case of obtaining the correlations when ordi-
nal polytomous variables are paired with continuous variables, which they
will be in obtaining estimates of the correlation matrix among all the variables.
Pearson (1909) generalized the concept of an underlying latent continuous
variable from the case of tetrachoric correlation to biserial correlation between
a dichotomous variable and a continuous measured variable. He went on
(Pearson, 1913) to generalize the polyserial case in a more restricted context
wherein he used the mean of the latent variable between the category thresh-
olds as the score of the latent variable, which was also considered by Jaspen
(1946). Cox (1974) finally derived the maximum-likelihood estimate for poly-
serial correlation. Olsson, Drasgow, and Dorans (1982) reviewed these earlier
developments and described the derivation of the polyserial correlation.

© 2009 by Taylor and Francis Group, LLC



“K10039_C016.tex” — page 409[#15] 17/4/2009 12:46

Polychoric Correlation and Polyserial Correlation 409

Derivation

Our derivation closely follows Olsson et al. (1982). Let Y be an observed
polytomous variable and X a continuous measured random variable. As in
polychoric correlation, we will assume that the polytomous variable Y has
associated with it a continuous latent variable η. Variables Y and η are related
in the following way: We assume that there exist r − 1 threshold values bj,
j = 1, . . . , r − 1, b0 = −∞, and br = ∞, defined on η, such that

Y = yj if bj−1 ≤ η < bj. (16.41)

We further assume that yj−1 < yj and bj−1 < bj, which indicates the ordi-
nality of the values of the manifest polytomous variable and the associated
thresholds.

Figure 16.2 shows a contour plot of a bivariate normal distribution between
η and X. We assume that η has a mean of zero and a variance of unity. Variable
X has a mean of m and a variance of σ2. A regression line of η onto X is shown
passing from the lower left to the upper right. The regression line determines
for a given value xi the conditional mean of η given X, μη | xi. The conditional

b4

b3

b2

0y

b1

–1 1μXXi

1

2

3

4

5

X

η

FIGURE 16.2 Contour plot of a bivariate normal distribution between η and X, showing
threshold lines and values for discrete Y. Diagonal line is the regression line of η onto X. The
conditional distribution of η given xi is shown. Shaded area equals conditional probability that
Y = 3 given xi .
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distribution of η given xi is shown superimposed on the contour plot. The
shaded area corresponds to a conditional probability of falling within the
thresholds for y = 3, given xi.

We now follow fairly closely the derivation given by Olsson et al. (1982).
The joint likelihood of a sample of Nobservations (xi, yi) of X and Y, i = 1, N,
is given as

L =
N∏

i=1

p(xi, yi) =
N∏

i=1

p(yi | xi)p(xi) (16.42)

where p(xi, yi) is the likelihood of observing (xi, yi) on the ith observation,
p(yi | xi) is the conditional probability of yi given xi, and p(xi) is the uncondi-
tional or marginal probability density of xi (since it is continuous), which is
given by

p(xi) = (2πσ)−1/2 exp

[
−1

2

(
xi − μ

σ

)2
]

. (16.43)

If we now convert X to a unit normal random variable Z by Z = (X − μ)/σ,
we can then obtain the conditional probability p(yi | xi) by considering that
the conditional distribution of the latent variable η given xi has a mean of
ρZ and a variance of (1 − ρ2). Referring now to the cumulative unit normal
distribution

Φ(z) = P(Z ≤ z) = 1
(2πσ2)1/2

∫ z

−∞
exp

[
− 1

2σ2 (t − μ)2
]

dt. (16.44)

Thus, for any yi = j,

p(yi | xi) = Pr(Y = j | x) = Φ(b∗
j ) − Φ(b∗

j−1) (16.45)

where b∗
j and b∗

j−1 are the thresholds of the conditional distribution of η given
x corresponding to the thresholds defining the categories of Y by the equation
of transformation

b∗
j = bj − ρZ

(1 − ρ2)1/2 . (16.46)

In other words, Equation 16.46 transforms the value of the threshold in
standard score units on raw η into standard score units of the conditional
probability distribution, which has a mean of ρZ and a standard deviation of
(1 − ρ2)1/2.

At this point, it is much more convenient to seek to maximize the log joint
likelihood

l = log L =
N∑

i=1

[log p(yi | xi) + log p(xi)] (16.47)

where “log” refers to the natural logarithms.
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We will skip over the case of simultaneously estimating ρ and the threshold
parameters, to consider only the two-stage method of conditional maximum
likelihood. This method in the first stage, finds estimates of the thresholds
directly, computes the estimated mean and variance of the continuous vari-
able X in the usual way, and only estimates ρ iteratively in the second stage
while treating the thresholds and mean and variance of X as fixed values.

Let nk be the number of cases in the sample for which yi = k. Then Pj =
(1/N)

∑j
k=1 nk is the proportion of cases in the sample where Y ≤ j. We can

now determine values for each bj:

bj = Φ−1(Pj), j = 1, . . . , r − 1, (16.48)

where z = Φ−1(P) is the inverse cumulative unit normal distribution function,
which should be obtainable by preprogrammed computer subroutines for this
function.

To maximize the log joint likelihood function in Equation 16.47, we need to
obtain the derivative of this function with respect to ρ, set the derivative to
zero, and solve for the value of ρ. The solution is again best obtained using
a Newton–Raphson algorithm, which requires both expressions for the first
and second derivatives of the log-likelihood function with respect to ρ.

There are two terms in the formula for the log-likelihood function in
Equation 16.47, p(yi | xi) and p(xi). But only the terms involving p(yi | xi) are
a function of ρ and have nonzero derivatives with respect to ρ. Hence

dl
dρ

=
N∑

i=1

1
p(yi | xi)

· dp(yi | xi)

dρ
. (16.49)

If we let zi = (xi − μ̂)/σ̂, we can now refer to both the cumulative unit nor-
mal distribution function and the normal distribution function. Assume that
yi = j. Then from Equation 16.45

dp(yi | xi)

dρ
=

dΦ(b∗
j )

dρ
−

dΦ(b∗
j−1)

dρ
. (16.50)

Then again taking advantage of the fact that d
(∫ x

a f (t) dt
)
/dx = f (x), Olsson

et al. (1982) show that

dp(yi | xi)

dρ
= φ(b∗

j )
db∗

j

dρ
− φ(b∗

j−1)
db∗

j−1

dρ
(16.51)

= 1
(1 − ρ2)3/2

[
φ(b∗

j ) · (bjρ − zi) − ρ(b∗
j−1) · (bj−1ρ − zi)

]
, (16.52)
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where φ(b) = (1/(2π)1/2) exp(−b2/2), the univariate unit normal distribution
density for b. Back substituting now into Equation 16.49, Olsson et al. (1982)
obtain

dl
dρ

=
N∑

i=1

{
1

p(yi | xi)

1
(1 − ρ2)3/2

[
φ(b∗

j ) · (bjρ − zi) − φ(b∗
j−1) · (bj−1ρ − zi)

]}
.

(16.53)

We are now at a point where we can consider obtaining the second deriva-
tive of Equation 16.53 with respect to ρ. Note that we may break down the
long expression within the brackets of Equation 16.53 into three terms, each
of which is a function of ρ. Then the second derivative takes the form of

d2l
dρ2 = d

dρ

N∑
i=1

(
1

t(ρ)

1
u(ρ)

v(ρ)

)
(16.54)

which becomes

d2l
dρ2 =

N∑
i=1

[
1

t(ρ)

1
u(ρ)

dv(ρ)

dρ
+ 1

t(ρ)
v(ρ)

d
dρ

(
1

u(ρ)

)

+
(

1
u(ρ)

)
v(ρ)

d
dρ

(
1

t(ρ)

)]
. (16.55)

We thus have three derivative expressions that we need to work out:

dv(ρ)

dρ
= d

dρ

[
φ(b∗

j ) · (bjρ − zi) − φ(b∗
j−1) · (bj−1ρ − zi)

]

= φ(b∗
j )bj − φ(b∗

j−1)bj−1, (16.56)

d
dρ

(
1

u(ρ)

)
= d

dρ

(
1

(1 − ρ2)3/2

)
=
(

−3/2(1 − ρ2)1/2(−2ρ)

(1 − ρ2)3

)

= 3ρ

(1 − ρ2)5/2 , (16.57)

and

d
dρ

(
1

t(ρ)

)
= d

dρ

(
1

p(yi | xi)

)
= −dp(yi | xi)/dρ

(p(yi | xi))2 , (16.58)
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where p(yi | xi) is given in Equation 16.45, dp(yi | xi)/dρ in Equation 16.52,
and

t(ρ) = p(yi | xi), (16.45a)

u(ρ) = (1 − ρ2)3/2, (16.59)

v(ρ) =
[
φ(b∗

j ) · (bjρ − zi) − φ(b∗
j−1) · (bj−1ρ − zi)

]
. (16.60)

So, all that remains is to substitute Equation 16.52, Equations 16.56 through
Equation 16.60, and Equation 16.45a into Equation 16.55 to obtain the second
derivative.

Computation

We will consider only the Newton–Raphson method, since we have expres-
sions for both the first and the second derivative of the likelihood function
for the polyserial correlation, and this method is optimal when feasible.

A close approximation to the final solution is always desired as a starting
value for ρ(0). One might use the sample product moment correlation:

rxy =
∑N

i=1 xiyi − (1/N)
∑N

i=1 xi
∑N

i=1 yi√[∑N
i=1 x2

i − (1/N)
(∑N

i=1 x2
i

)2
][∑N

i=1 y2
i − (1/N)

(∑N
i=1 y2

i

)2
] .

(16.61)

But a better approximation based on the sample product moment correlation
is known as the ad hoc estimator:

ρ̂ = rxy · sy∑r−1
j=1 φ(b̂j)

(16.62)

where

sy =

√√√√∑N
i=1 y2

i − (1/N)
(∑N

i=1 yi

)2

N
. (16.63)

As a matter of fact, Olsson et al. (1982) report that the ad hoc estimator is
itself, surprisingly, a rather accurate estimator. Its RMSE exceeded the RMSE
of the maximum-likelihood estimator by less than 0.0058 when N = 100 and
by less than 0.0040 when N = 500 in a Monte Carlo study. The two-stage
procedure had a RMSE that never differed from the RMSE of the maximum-
likelihood estimator by more than 0.0003 in samples of 500. They note that
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for all estimators “. . . a number of general trends are evident . . . increasing
the sample size decreases the RMSE, increasing the number of categories
usually decreases the RMSE, increasing the skew tends to increase RMSE,
and increasing ρ decreases the RMSE” (p. 346).

So, let us set ρ(0) equal to the value computed in Equation 16.62. Then the
Newton–Raphson algorithm iterates with the following formula:

ρ̂( j+1) = ρ̂( j) −
(

dl2

d2ρ

)−1

( j)

(
dl
dρ

)
( j)

. (16.64)

In each iteration the derivatives are evaluated by substituting in the current
value for ρ̂. The iterations are halted when

∣∣ρ( j+1) − ρ( j)
∣∣ < ε, where ε is some

very small quantity such as 0.00001.

Evaluation

Computer programs like LISREL compute the thresholds of each of the
variables from univariate marginals in a first stage, then compute the matrix
of product moment, polychoric and polyserial correlations by maximum-
likelihood estimation as a second stage, and then fit the SEM to this matrix
in a third stage, using weighted least squares. In programs like EQS the
correlation matrix is usually computed automatically when the program
detects continuous and categorical variables in the variable mix. The question
arises of fit at each of these stages. To what extent is the lack of fit due to the
estimation procedure of the correlations, or is it due to the structural model?
Maydeu-Olivares (2006) proposes and discusses tests to arrive at answers to
these questions. He finds that “. . . relatively small samples are needed for
parameter estimates, standard errors, and structural tests. Larger samples
are needed for the distributional and overall tests. Furthermore, parame-
ter estimates, standard errors and structural tests are surprisingly robust to
distributional misspecification” (p. 57).

Another problem encountered with biserial, point biserial, polychoric, and
polyserial correlations is that the matrices of such coefficients are often not
Gramian, meaning they are indefinite, with a few negative eigenvalues.
Wothke (1993) discusses the general problems with indefinite covariance
matrices and solutions for making them positive definite. He specifically
includes a discussion of the correlation matrices involving various correlation
coefficients that typically create these problems.
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