
L
r

G
a

b

a

A
R
R
A
A

K
S
O
S

1

o
c
v
s
a
m
n
t
v
t
a
c
c
t
p
t

O
a

c

(
(

0
h

The Journal of Systems and Software 86 (2013) 349– 366

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

ayer assessment of object-oriented software: A metric facilitating white-box
euse�

eorge Kakarontzasa,b,∗, Eleni Constantinoua, Apostolos Ampatzogloua, Ioannis Stamelosa

Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Department of Computer Science and Telecommunications, T.E.I. of Larissa, 41110 Larissa, Greece

 r t i c l e i n f o

rticle history:
eceived 16 December 2011
eceived in revised form 10 August 2012
ccepted 21 August 2012

a b s t r a c t

Software reuse has the potential to shorten delivery times, improve quality and reduce development costs.
However software reuse has been proven challenging for most organizations. The challenges involve both
organizational and technical issues. In this work we concentrate on the technical issues and we propose
vailable online 29 August 2012

eywords:
oftware reuse
bject-oriented metrics
oftware metrics

a new metric facilitating the reuse of object-oriented software based on the popular Chidamber and
Kemerer suite for object-oriented design. We derive this new metric using linear regression on a number
of OSS java projects. We compare and contrast this new metric with three other metrics proposed in the
literature. The purpose of the proposed metric is to assist a software developer during the development
of a software system in achieving reusability of classes considered important for future reuse and also in
providing assistance during re-architecting and componentization activities of existing systems.
. Introduction

In object-oriented (OO) systems objects collaborate closely in
rder to provide a system feature. In order to effectively reuse any
lass of an OO system a developer has to (a) understand the pro-
ided service of this class, (b) isolate this class from the rest of the
ystem by extracting the class and its dependencies, (c) possibly
dapt the extracted cluster of classes to the new system require-
ents and (d) test the class cluster to verify its correctness in the

ew required context. In the ideal case it would also be beneficial to
ransform the cluster of classes to a reusable component with pro-
ided and required interfaces, thus enabling the black-box reuse of
his component in future applications. There are many difficulties
ssociated with these activities mainly due to classes’ dependen-
ies, dependencies’ dependencies and so on. These class collections
an be very large and activities to understand, adapt and verify

hem are labor intensive. In the context of the OPEN-SME Euro-
ean FP71 project we created a unified database of metrics relating
o the quality of OO software. An automated analysis tool collects

� This work is partially funded by the European Commission in the context of the
PEN-SME ‘Open-Source Software Reuse Service for SMEs’ project, under the grant
greement no. FP7-SME-2008-2/243768.
∗ Corresponding author at: Department of Computer Science and Telecommuni-

ations, T.E.I. of Larissa, 41110 Larissa, Greece.
E-mail addresses: gkakaron@teilar.gr (G. Kakarontzas), econst@csd.auth.gr

E. Constantinou), apamp@csd.auth.gr (A. Ampatzoglou), stamelos@csd.auth.gr
I. Stamelos).

1 http://opensme.eu.

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.08.041
© 2012 Elsevier Inc. All rights reserved.

the metrics and imports them in a relational database which relates
metrics originating from different sources. These related metrics
then, allow co-analyses using simultaneously different views of the
classes. A number of projects of various sizes and domains were
analyzed. The results were imported in the unified database, and
a number of recommenders were developed (with more currently
under development) that access the metrics database and recom-
mend clusters of classes that could be easily extracted from the
project and transformed into reusable components. The extracted
clusters are then tested, documented and placed in a code repos-
itory for future reuse by Small and Medium Enterprises (SMEs).
During our work with the tools of the project we developed heuris-
tics that could assist the component extraction activity. In most
cases, classes that have a small number of dependencies and are rel-
atively low in the system dependencies graph are easier to extract,
comprehend, test, etc., and consequently easier to reuse. Depend-
encies set cardinality and layer, unfortunately are only available
after a project is completed. They cannot be used independently
as estimators of the reusability of a class as it is constructed. We
hypothesized however that there is a relationship between the
Chidamber and Kemerer metrics for OO design (Chidamber and
Kemerer, 1994) and the layer and number of dependencies. If
such a relationship could be established then it would be possible
to examine the reusability of a class independently during pro-
gram construction. The benefit would be that a developer could

be assisted in estimating the reusability of classes and if these
classes were potentially useful in future applications, to be warned
against problems associated to low reusability. Since architectural
layers (Buschmann et al., 1996) are not expected to share the same

dx.doi.org/10.1016/j.jss.2012.08.041
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:gkakaron@teilar.gr
mailto:econst@csd.auth.gr
mailto:apamp@csd.auth.gr
mailto:stamelos@csd.auth.gr
http://opensme.eu
dx.doi.org/10.1016/j.jss.2012.08.041

3 Systems and Software 86 (2013) 349– 366

r
e

t
t
b
t
w
o
i
t
e
5
r
w
c

2
c

d
o
w
t
s

•

•

•
•

I
i
f
l
e
(
w
s
a
d
a
t

2

2

1
m
t
T
b
p
w
(
t
o
i
a

Table 1
OSS projects, sizes and domains used.

No. Project No. of classes Application domain

1 Aglets 447 Framework and environment for
developing and running mobile
agents

2 Ant 493 Java library and command line
build tool

3 Argo UML 1578 UML modeling tool
4 Atunes 656 Audio player and organizer
5 Borg

Calendar
147 Calendar and task tracking system

6 Cocoon 85 Spring-based development
framework

7 Columba 1100 Email client and mail management
tool

8 Compiere 2221 ERP software
9 Contelligent 836 Content Management System

10 DrJava 2207 Development environment for
writing Java programs

11 EuroBudget 155 Checkbook management software
12 FreeCS 141 Chatserver (WebChat)
13 FreeMind 406 Mind-mapping software
14 GFP 312 Personal finance manager
15 JabRef 1987 Bibliography reference manager
16 JRdesktop 58 Remote desktop control, remote

assistance and desktop sharing
17 jBPM 520 Business Process Management

(BPM) suite
18 JEdit 508 Programmer’s text editor
19 jeeObserver 172 J2EE application server

performance monitoring tool
20 JMoney 54 Personal finance (accounting)

manager
21 Magnolia 955 Content Management System
22 OpenEJB 1759 Enterprise Java Beans (EJB)

Container System and Server
23 Projectivity 452 Enterprise Management platform
24 RapidMiner 2745 Data mining system and engine
25 Rhino 335 Implementation of Javascript

written in Java
26 SportsTracker 56 Application for recording sporting

activities
27 StoryTestIQ 377 Test framework to create

Automated Acceptance Tests
28 SweetHome3D 167 Interior design application
29 OpenProj 846 Desktop project management

application
50 G. Kakarontzas et al. / The Journal of

eusability levels, it is also beneficial to have an indication of the
xpected range of reusability per layer.

In the rest of this work in Section 2 we provide the details of
he OSS projects that we used for this study as well as details of
he method for deriving the proposed facilitative metric for white-
ox reuse. Next in Section 3 we compare our proposed metric with
hree other proposed reuse metrics from the literature. In Section 4
e examine the validity of the proposed metric separately for each

f the examined projects to verify its effectiveness regardless the
ndividual project characteristics. We also perform a calibration of
he proposed metric to different project sizes and quantify the ben-
fit that can be achieved by such a process. In the following Section

 we discuss threats to validity. Then, in Section 6 we discuss the
esults and findings of this study and in Section 7 we discuss related
ork. Finally in Section 8 we provide future research directions and

onclude.

. Facilitating reusability assessment based on design
omplexity metrics

The proposed facilitative metric for white-box reuse was
erived using analysis results from 29 Open Source Java projects
f various sizes and application domains. The projects used, along
ith their sizes (number of classes excluding inner classes) and

heir application domains, are listed in Table 1. These projects were
elected based on the following factors:

The projects belong to different application domains since we
wanted our reusability assessment to be independent as much as
possible from the specifics of an application domain.
They have different number of classes ranging from relatively
small projects with tens of classes to large projects with thou-
sands of classes.
Most of them are mature and well-known projects, and finally
Many of these projects were also used in other literature studies.

n total 21,775 classes were analyzed and for each class the follow-
ng data were collected: (a) the Chidamber and Kemerer metrics
or object-oriented design (Chidamber and Kemerer, 1994), (b) the
ayer of each class as reported after condensing the cyclic depend-
ncies of the class dependency graph using the Tarjan algorithm
Tarjan, 1972), and (c) the Class Dependencies Size (CDS) metric,
hich is the cardinality of the dependencies set of a class, recur-

ively following the dependencies of a class, which are necessary for
 brute-force reuse of the class in a new system. Next, we briefly
iscuss these metrics as well as the design of the COPE tool that
ssisted us in collecting them. Then, we explain the rationale and
he method used for deriving our proposed metric.

.1. Metrics used

.1.1. Chidamber and Kemerer metrics
The Chidamber and Kemerer metrics (Chidamber and Kemerer,

994) were collected using the CKJM tool (Spinellis, 2005). These
etrics in general are indications of a class quality and can be used

o assess reusability as well as other qualities of an OO system.
he Chidamber and Kemerer suite contains six metrics which can
e collected for a class during development. They are widely sup-
orted by Integrated Development Environments (IDEs) and are
ell accepted in the software industry. In Chidamber and Kemerer

1994) the authors characterize the effect of their metrics’ suite on

he reusability of classes, but without determining the importance
f each metric in the class reusability estimation. More specif-
cally, each metric along with a short description of the metric
nd its effect on class reusability as discussed in Chidamber and
Total No. of
classes

21,775

Kemerer (1994) is provided in Table 2. Along with these metrics a
presumed direction of the association of each metric to reuse is pro-
vided. Later a more precise relationship will be established, which
will form in fact the proposed facilitative metric for white-box
reuse.

2.1.2. The D-layer metric
The Classycle analyzer tool (Elmer, 2011) is used to discover

class dependencies and Directed Acyclic Graph (DAG) layers. To
avoid confusion between the architecture layers of the application
and the DAG layers, we call the latter D-layers. The Classycle tool
discovers strong dependencies between classes and packages, and
creates a Strongly Connected Components (SCC) graph applying
Tarjan’s algorithm (Tarjan, 1972). Next, according to SCCs calls, the
graph is condensated to an acyclic digraph of SCCs, from which the
layers are extracted (Fig. 1). Although D-layers do not correspond
to architectural layers since they are computed automatically from
static dependencies in the source code and they do not represent

actual decomposition decisions of systems’ architects, they are by
definition an over-approximation of the true architectural layering
since they maintain one important characteristic of the architec-
tural layering: each D-layer strictly depends upon lower D-layers

G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366 351

Table 2
Metrics suite for object-oriented design, (Chidamber and Kemerer, 1994).

Metric Description Effect to reusability according to
Chidamber and Kemerer (1994)

Presumed direction of effect to the
reusability of a class

Weighted Methods per
Class (WMC)

The sum of the class’s methods
complexities. This results in the number of
classes methods if complexity of all
methods is considered to be equal to 1.

According to Chidamber and Kemerer
(1994) “Classes with large numbers of
methods are likely to be more application
specific, limiting the possibility of reuse.”

Negative

Depth of Inheritance
Tree (DIT)

The depth of inheritance of the class in the
inheritance hierarchy. Notice that in the
case of the Java programming language
this is at least equal to 1 since every class
implicitly inherits from java.lang.Object.
This is also true for other OO languages
such as C#.

The authors do not explicitly state the
effect of DIT to reuse. They only mention
reuse in relation to inherited methods:
“The deeper a particular class is in the
hierarchy, the greater the potential reuse
of inherited methods” Chidamber and
Kemerer (1994)

Inconclusive: indeed DIT can be viewed
from different perspectives. Consider a
framework which is specifically designed
for reuse. In a framework a class may have
large DIT values yet it is heavily reused.
There are cases however where large DIT
values signify application specific classes.

Number of Children
(NOC)

The number of the immediate subclasses of
the class.

“Greater the number of children, greater
the reuse, since inheritance is a form of
reuse.” Chidamber and Kemerer (1994)

Positive

Coupling Between
Objects (CBO)

The count of the number of other classes a
class is coupled to.

“Excessive coupling between object classes
is detrimental to modular design and
prevents reuse. The more independent a
class is, the easier it is to reuse it in another
application.” Chidamber and Kemerer
(1994)

Negative

Response set For a
Class (RFC)

The number of methods that can
potentially be executed in response to a
message received by the class. Notice that
this involves only the methods of a class
and the methods that these methods
potentially call due to practical difficulties
in computing the metric. Also notice that
the CKJM tool that we used to collect this
metric also follows this approach.

The authors mention that higher RFC
values imply increased effort for testing
and debugging. Although this suggests a
possible relation to white-box reuse, the
authors do not explicitly mention reuse.

Negative: although the authors do not
explicitly mention reuse, the effort related
to RFC for increased testing and debugging
can be important in the context of
white-box reuse in which the reuser needs
to adapt the reused classes to a new
slightly different context. Therefore we
assume that RFC is negatively related to
reuse.

Lack of Cohesion of
Methods (LCOM)

The count of the number of method pairs
in a class whose similarity is 0 minus the
count of method pairs whose similarity is
not 0. Similarity of methods is established

The authors do not mention reuse
explicitly.

Inconclusive: the Lack of Cohesion of
Methods can be considered a negative
characteristic to reuse (e.g. as in controllers
where a controller delegates messages to a

a
t
d
o

2

S
T
a
w
i

by means of common instance variables
accesses.

nd never on D-layers above it. Thus the project’s layered architec-
ure (if there is one) will be a partition of D-layers which will, by
efinition of the layered architectural style, maintain the relative
rdering of the D-layers.

.1.3. The Class Dependencies Size (CDS) metric
The last metric used in our analysis is the Class Dependencies

ize (CDS). CDS is the cardinality of the dependencies set of a class.

his set of classes is extracted by following the dependencies of

 class recursively until we reach classes at layer 0 (i.e. classes
ith no remaining internal dependencies). Increased CDS is a very

mportant indication of reuse problems. The reason is that class

Fig. 1. Classycle acyclic digraph
number of unrelated domain classes). But
reuse is not mentioned explicitly in
Chidamber and Kemerer (1994).

reuse involves comprehending, testing, adapting, etc., the whole
dependencies set, unless the class in question is already a black
box component or an extension point for a framework already
designed for reuse. In these cases CDS is irrelevant for external
reusers that simply follow the documentation to reuse the compo-
nent or framework. However it is still relevant for the developers of
the component or the framework, who need to maintain and evolve
the component or framework code internally.
It is important at this point to make the following distinction:
our work is not relevant for already formed black-box compo-
nents and frameworks and therefore cannot be used to assess
the reusability of these artifacts from the standpoint of external

 creation (Elmer, 2011).

352 G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366

OPE d

r
t
s
p
o
c
t
c
f
o

2

d

Fig. 2. C

eusers. However, it can still be relevant for the purposes of main-
aining or reusing parts of these artifacts. Current work is mostly
uitable for facilitating the assessment of the reusability of classes
ossibly appropriate for becoming extension points of frameworks
r facades of black-box components. Thus it provides a tool in the
ontext of system improvement by re-architecting and componen-
ization activities. It is also beneficial for developers, as they develop
lasses iteratively during a project lifecycle when the system is not
ully formed. Developers are assisted in estimating the reusability
f classes that may be important from a reusability perspective.
.2. The COPE tool

The aforementioned metrics are combined in a relational
atabase and are analyzed by a tool called the Component
atabase.

Adaptation Environment (COPE). COPE also integrates various tools,
such as the CKJM tool Spinellis (2005) and Classycle Elmer (2011),
to provide a more user friendly and productive environment. The
relational database of COPE is depicted in Fig. 2. As can be seen there
are projects which are related to packages and classes. Packages
have internal dependencies to other project packages and classes
to other project classes. A class is also related to its package. We also
maintain the project history in the version control system (the logs,
logentries and paths tables), and relate each path to the class file
that was affected by the respective log entry. However, in this work
recommenders related to the project’s history are not discussed.

Classes table not only retains the dependencies of each class and the
D-layer, but also stores all the class CK metrics. COPE tool therefore,
consolidates in its database information from different sources (e.g.
Classycle, CKJM, Version Control System, etc.) and allows different

G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366 353

he CO

t
f

r
d
u
2
p

2

n
s
w
f
n
m
e
c
a
t
l
h
P
w

Table 3 shows that the correlation is very strong and significant
(0.01) in all projects. Therefore the negative relationship between
the class D-layer and the reusability of the class is established by

Table 3
D-layer and CDS correlation (Spearman � – p < 0.01).

Project no. D-layer-CDS
correlation
(Spearman �)

Project no. D-layer-CDS
correlation
(Spearman �)

1 0.99 16 0.978
2 0.97 17 0.974
3 0.992 18 0.994
4 1.0 19 0.995
5 0.995 20 0.970
6 0.980 21 0.950
7 0.983 22 0.979
8 0.988 23 0.963
9 0.942 24 0.982

10 0.889 25 0.803
11 0.944 26 0.981
Fig. 3. T

ypes of recommenders to be constructed that recommend clusters
or component extraction based on the consolidated metrics.

COPE provides a graphical user interface (Fig. 3) from which the
euse engineer can import a project and analyze it, get recommen-
ations and extract components. Components can also be tested
sing advance Model-Based Testing techniques (Campbell et al.,
005). The extracted components and their documentation are then
ackaged and imported in a repository for future reuse.

.3. The proposed facilitative metric for white-box reuse

In this work we make the assumption that a lower D-layer is a
ecessary (but not sufficient) factor to improve reusability. This is
omething that is peripherally discussed or implied in a number of
orks. For example Selby (2005) reports that “The module design

actors that characterize module reuse without revision were (after
ormalization by size in source lines): few calls to other system
odules, many calls to utility functions, few input–output param-

ters, few reads and writes, and many comments”. Some of these
haracteristics, especially the few calls to other system modules
nd the many calls to utility functions, indicate modules closer to
he bottom of a layered architecture. It is also well known that

ower layers in systems following the layered architectural style
ave fewer dependencies and thus are more reusable (Microsoft
atterns and Practices Team, 2009; Larman, 2004). Although it is
ell known and expected that classes with smaller D-layer will
PE tool.

generally have fewer dependencies we investigated the extent of
the statistical correlation of the D-layer with the CDS value of each
class. We used non-parametric Spearman � and the details per
project are depticted in Table 3.
12 1.0 27 0.998
13 0.999 28 0.994
14 0.980 29 1.0
15 0.806

354 G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366

OC be

t
t
a
t
l

e
K
a
(
i
t
r
o
b
t
t
h
a
t
e
fi
m

b

1
t
‘
e
o
t
m

Fig. 4. Boxplots of WMC, DIT and N

he fact that higher D-layers imply larger dependencies sets and
herefore increased effort for comprehension, testing, debugging
nd adaptation of the reused class to a new system. In other words
hese results verify what is known from practice: classes at lower
ayers are usually easier to reuse due to their fewer dependencies.

To derive the proposed facilitative metric for reuse a lin-
ar regression analysis was performed using the Chidamber and
emerer (CK) metrics collected from the above mentioned projects
s predictors of the D-layer variable. According to Wohlin et al.
2000), one of the first steps during statistical analysis of the dataset
s the elimination of outliers. This procedure is part of data reduc-
ion phase (Wohlin et al., 2000), that is crucial in order for the
esults of the empirical study not to be affected by characteristics
f individual cases. Therefore, to avoid possible problems caused
y outliers of the CK values we first used an analysis that removed
he outliers (i.e. classes that had unusually large or small values for
he CK metrics). In order to identify the outliers for each metric we
ave created the corresponding boxplots and identified the bound-
ry metrics scores that are not characterized as outliers. The filter
hat has been used as inclusion criterion is presented in the logical
xpression in Eq. (1). The observed extreme values where identi-
ed as maximum values, that is classes exhibiting unusually large
etric scores.

(WMC < 16) ∧ (NOC < 4) ∧ (DIT < 7) ∧ (CBO < 14) ∧ (RFC < 60)

∧(LCOM < 37) (1)

In Figs. 4 and 5 we present the boxplots for the six CK metrics
efore and after the elimination of the outliers.

The filtering of the outliers excluded 7636 classes. The remaining
4,139 classes were used for the regression analysis. It is important
o note here that the removed classes do not represent ‘wrong’ or
misunderstood’ observations. In such cases the authors of Wohlin

t al. (2000) suggest that they should be excluded. Although the
utliers were legitimate cases they were nevertheless extreme and
heir presence would have affected the metric. Since we wanted our

etric to be valid for the ‘typical’ case we have decided to remove
fore and after outlier elimination.

the outliers from our study. After the exclusion of the 7636 cases,
the number of the remaining outliers did not significantly affect our
study. Since the removed outliers represent in some sense unusual
yet legitimate cases, it would be interesting in a follow up study to
examine only the removed classes in relation to their specific char-
acteristics and the reasons that they have these unusual complexity
metrics. Forward regression was applied on the logarithmic trans-
formations of the CK metrics as predictors of the D-layer dependent
variable. We have used a logarithmic transformation of the pre-
dictor variables in order to correct problems with the normality
of data and lessen the effect of any remaining outliers in the data
(Field, 2009). The forward linear regression analysis was performed
through the origin (no intercept). This analysis resulted in enter-
ing all six predictors (i.e. log(CBO + 1), log(DIT + 1), log(WMC + 1),
log(RFC + 1), log(LCOM + 1), and log(NOC + 1)), with a final R2 = 0.714.
The coefficients of the predictors along with the t-statistic, the
standard error and the significance are reported in Table 4. The pro-
posed Facilitative metric for white-box reuse (FWBR) is therefore
formulated as shown in Eq. (2).

FWBR = − 1 × (8.753 × log(CBO + 1) + 2.505 × log(DIT + 1)

− 1.922 × log(WMC + 1) + 0.892 × log(RFC + 1)

− 0.399 × log(LCOM + 1) − 1.080 × log(NOC + 1)) (2)

In Eq. (2), the D-layer or each class is predicted, using the CK
metrics as estimators. Notice that the regression analysis was car-
ried out using the D-layer as the predicted variable and D-layer
is strongly correlated to the Cluster Dependencies Size (CDS) as
can be seen from Table 3. Since CDS in negatively related to reuse,
the direction of the formula is reversed by multiplying by −1 to
obtain the metric. The idea is simply that we consider classes more
reusable, if reusing them requires fewer dependencies to under-

stand, adapt, test, etc. Therefore the proposed metric favors classes,
with fewer total dependencies. However the proposed metric does
not require obtaining CDS, which is labor intensive and requires the
whole project to be available.

G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366 355

Fig. 5. Boxplots of CBO, RFC and LCOM before and after outlier elimination.

Table 4
Regression analysis results.

Predictor Unstandardized coefficients Standardized coefficients t Sig.

B Std. error Beta

log(CBO + 1) 8.753 0.122 0.764 71.735 0.000
log(DIT + 1) 2.505 0.158 0.177 15.830 0.000
log(WMC + 1) −1.922 0.230 −0.198 −8.338 0.000

a
r
T
w

•

•

•

log(RFC + 1) 0.892 0.167

log(LCOM + 1) −0.399 0.081

log(NOC + 1) −1.080 0.312

The regression analysis in our sample provides evidence for
 quantitative assessment of the effect of each CK metric to the
eusability of OO software. Returning in our hypotheses from
able 2 and based on the sample of the 21,775 classes analyzed,
e can say the following:

Coupling Between Objects (CBO) is the most negatively influen-
tial factor for the reuse of classes in our sample. A high CBO
value indicates classes that reusing them requires understand-
ing, testing, adapting, etc., large numbers of additional classes.
This conclusion is also similar to conclusions suggested by other
related works such as Selby (2005) and Gui and Scott (2007).
Depth of Inheritance Tree (DIT) is the second most significant fac-
tor that prevents reuse in our sample. Although as we mentioned
in Table 2 DIT can be viewed from different perspectives, it seems
that when it comes to white box reuse it is a very important nega-
tive factor. Gray box reuse (e.g. frameworks) and black box reuse
(e.g. components) on the other hand are not affected by DIT since
the internal details of the reused source code are irrelevant.
Weighted Methods per Class (WMC) is the third most influential
factor in reuse in our sample, but this time in a positive direction.
This conclusion is rather surprising since it seems that the larger
the number of methods of a class the more reusable it is. However

it is consistent with the view adopted in other works that a large
number of public methods signifies a more reusable class. For
example (Bansiya and Davis, 2002) links reusability in a positive
way with Class Interface Size which is the count of the number
0.140 5.332 0.000
−0.042 −4.912 0.000
−0.016 −3.463 0.001

of public methods in a class. Similarly (Araban and Sajeev, 2006)
discusses how WMC can be viewed from different perspectives.
On the one hand it can be viewed as a complexity factor, but on
the other hand it can be said that classes with higher WMC are
more rewarding for reuse since they provide more services to the
reusers. Our findings verify that WMC is in fact positively related
to white-box reuse. A slightly different interpretation is that the
lower a class is in the DAG of the project the more the pressure to
provide additional services to classes above it will be, since there
are more opportunities to refer to it.

• Number of Children (NOC) signifies that a class is internally reused.
It is the fourth more influential factor to reuse according to our
sample analysis in a positive way. Indeed this is consistent with
(Chidamber and Kemerer, 1994).

• Response set for a Class (RFC) has the expected direction in our
sample: it is slightly negatively related to reuse. As we men-
tioned in Table 2 we expected that RFC would have a negative
relation to reuse, since we are concerned with white-box reuse
and (Chidamber and Kemerer, 1994) mentions that higher RFC
values imply increased effort for testing and debugging.

• Lack of Cohesion of Methods (LCOM) coefficient is very small, only
−0.399 and is in our result the least influential factor. Although
its direction is (according to the findings) positive, it accounts

only for 2% of the influence and therefore it is rather insignificant.
However it certainly seems that LCOM at least as suggested by
Chidamber and Kemerer (1994) is not negatively related to white
box reuse which seems to support (Chidamber and Kemerer,

356 G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366

Table 5
Descriptive statistics for the CK and the new reuse metrics (N = 21,775 classes).

Range Min Max Mean Std. deviation Variance

WMC 632 0 632 10.395867 18.5326263 343.458
DIT 11 1 12 2.467279 1.7783182 3.162
NOC 668 0 668 0.511871 5.8086298 33.740
CBO 410 0 410 6.540758 10.1383096 102.785
RFC 1581 0 1581

LCOM 199,396 0 199,396

FWBR 23.13 −20.59 2.54

a
p

a
a
e
y
w
t
p
c
i
C
e
l
h
p
h
f
t
n
d
o

l
o

In Eq. (3):
Fig. 6. CDS median per D-layer.

1994) that did not mention reuse explicitly in relation to LCOM
and contradicts other works such as (Bansiya and Davis, 2002)
who, perhaps reasonably, assumed that cohesion is positively
related to reuse.

Table 5 provides the descriptive statistics of the projects used:
ll the CK metrics along with the descriptive statistics for the new
roposed metric FWBR.

In our analyses we first thought that we should use CDS directly
s the predicted variable in regression analysis. However in almost
ll the projects analyzed we observed a phenomenon that would
liminate most of the higher layer classes from our regression anal-
sis. The problem is that in most projects above a certain layer, CDS
as more or less the same for all classes, making these classes indis-

inguishable for analysis purposes. A possible explanation for this
henomenon is that certain classes are hubs through which all the
alls to lower layers are delegated. Therefore including such a class
n a cluster attracts the rest of the system with it, and therefore
DS remains more or less the same after a certain layer. To give an
xample of this, in the Argo UML project 761 classes starting from
ayer 10 and above have 803 ≤ CDS ≤ 810. Classes below D-layer 10
ave a CDS value under 60. These 761 classes represent 47% of the
roject classes in our analysis. This similarity therefore would have
ad a significant impact in the regression analysis results. We pre-

erred therefore obtaining the regression analysis results based on
he D-layer which, as shown in Table 3, has a very strong and sig-
ificant correlation with CDS. The CDS relationship with D-layer is
epicted in Fig. 6, in which D-layer is in the x-axis and the median
f CDS in the y-axis.
From Fig. 6, we can see that a large number of classes in higher
ayers are difficult to reuse since reusing them requires a large part
f the system to be present. These classes are therefore application
30.909759 44.2458528 1957.695
174.376211 2819.6823013 7,950,608.280
−6.0640 3.81117 14.525

specific, which is also another indication that a white-box reuse
metric should be strongly negatively correlated to CDS.

In the next section the proposed metric is compared to three
other metrics proposed in the literature.

3. Comparative assessment of the proposed metric

In order to assess the effectiveness of the proposed FWBR metric
it was compared to three other metrics proposed in the literature.
The comparison involved the following:

• Test 1:How well each of the proposed metrics correlates to the
CDS for each class? A good reuse metric should have a significant
negative correlation to CDS because it should favor classes that
generally have fewer requirements.

• Test 2: How well each of the proposed reuse metrics correlates
to the D-layer and arbitrary partitions of the D-layer? A good
reuse metric should have a significant negative correlation to the
architectural layers of the application. Since D-layer represents an
over-approximation of the layered architecture it follows that it
should also have negative correlation to the D-layer and arbitrary
partitions of the D-layer. For the comparisons, the original D-layer
of each project as well as partitions of equal size of the D-layer
structure in 5, 6, 7 and 8 equal chunks were used.

• Test 3: Given the D-layer how well each of the proposed reuse
metrics correlates to CDS? Naturally it is expected that the most
reusable classes at each layer should have fewer requirements in
relation to the less reusable classes. In other words it is expected
that at each individual layer the reuse metric should be negatively
correlated to CDS.

The metrics used for the comparison are the following:

• Bansiya (Bansiya and Davis, 2002): In this work the authors pro-
pose a hierarchical quality model for object-oriented software. In
such a model, every high level quality attribute, such as reusabil-
ity, is calculated as a function of low level quality attributes.
The authors suggest that reusability represents the existence or
absence of object-oriented characteristics that allow a design
to be reapplied to a new project without a significant effort.
The reusability as defined and calculated in QMOOD, takes into
account structural quality characteristics such as coupling and
cohesion that are very important when applying white-box reuse.
According to QMOOD software reusability is calculated as shown
in Eq. (3).

Reusability = 0.25 × CAMC + 0.5 × CIS + 0.5 × DSC

−0.25 × DCC (3)
– CAMC (Cohesion among Methods of the class). Is calculated as a
fraction. The numerator is the sum of distinct parameter types
in all methods of a class. The denominator is calculated by

 Systems and Software 86 (2013) 349– 366 357

•

•

Table 6
Spearman’s � for the reuse metrics correlation to CDS.

Spearman’s � Nair Inoue Bansiya FWBR

CDS
Correlation coefficient 0.359** −0.180** −0.226** −0.657**

Sig. (1-tailed) 0.000 0.000 0.000 0.000

)

G. Kakarontzas et al. / The Journal of

multiplying the number of methods by the number of distinct
type of parameters in the class.

– CIS (Class Interface Size). Is the count of public methods of a
class.

– DSC (Design Size in Classes). Is the count of classes in the design.
– DCC (Design Class Coupling). Is the count of other classes that

one class is directly related to.
Inoue (Inoue et al., 2005) In this work the authors are concerned
with ranking the significance of software components that are the
results of a search query. Their idea was that the most reusable
components returned should be ranked higher and in order to
achieve that they devised an algorithm for computing reusability
based on use relations. The authors model a software system as a
component graph G = (V, E) that is weakly connected, where each
class is considered a component. Components form the graph
nodes and edges are defined according to their use relations. If
between two nodes a use relation does not exist, the authors
consider pseudo use relations.

Initially, each node weight w′(vi) is defined as w′(vi) = 1/n,
where n is the number of system classes.

The edge weights are calculated according to the use relation
between the nodes. If there is no use relation between nodes vi

and vj then w′(eij) is defined as in Eq. (4).

w′(eij) = 1
n

(4)

If a use relation exists from node vi to node vj , the edge weight
w′(eij) is defined as shown in Eq. (5).

w′(eij) = d′
ij

× w′(vi),

d′
ij

= p × dij + 1 − p

n
,

dij = w(vi)
OUT(vi)

(5)

In Eq. (5) p, (0 < p < 1) is the ratio of real use relations and pseu-
douse relations, and the authors employ a fairly large value
p = 0.85. The authors examined the fact that the resulting weight
nodes are affected by p, but the final component ranks are insen-
sitive to p. They have chosen p = 0.85, since the ranks are fairly
stable for p values from 0.75 to 0.95. OUT(vi) in Eq. (5), is the
number of elements in the set of the outgoing edges from node
vi.

The following iterative procedure is performed until next-step
node weights are the same as the previous ones: Each node
weight is redefined as the sum of weights of incoming edges
according to Eq. (6) and the edges weights are recomputed
according to Eqs. (4) and (5).

w′(vi) =
∑

eki∈IN(vi)

w′(eki) (6)

In Eq. (6), IN(vi) is the set of incoming edges to node vi.
The resulting metric is based on statical use relations and the

weights calculated depend on the fan-in of a class and the weights
of these classes.
Nair (Nair and Selvarani, 2010): This work proposes a reusabil-
ity index based on the empirical investigation of two industrial
projects. The first project consists of 265 classes of which 96
classes are reusable. The second consists of 423 classes of which

198 are reusable. The analysis included expert opinions on the
reusability of each class, however details of the projects were
not provided due to a Non-Disclosure Agreement. The analysis
resulted in Eq. (7) in which the reusability index of a class (CRul)
N 21,775 21,775 21,775 21,775

** Correlation is significant at the 0.01 level (1-tailed).

is computed from three metrics of the Chidamber–Kemerer suite,
namely DIT, RFC and WMC.

RuDIT = 7.8 × DIT1.4,

RuRFC = 0.006 × RFC2 + 1.23 × RFC + 11.1,

RuWMC = 0.001 × WMC3 − 0.16 × WMC2 + 7 × WMC − 2.7,

CRul = 0.33 × RuDIT + 0.27 × RuRFC + 0.4 × RuWMC

(7

Two notable differences from the proposed metric in this work
are that CBO is not included when in our proposed metric is the
most influential factor, and that in Nair metric, DIT is associated
positively to the reusability of a class.

Although the aforementioned metrics are comparable to the
proposed metric since they use comparable code or design char-
acteristics and assess reusability, we should mention that the work
by Inoue et al. (2005) starts with a different goal in mind: in Inoue
et al. (2005) the authors aim at supporting a search engine and
propose a component rank as an indication for the positioning
of the search result (high or low) in the results list. They are not
directly concerned with the reusability assessment of the source
code for extensions or modifications. However their assessment is
also based in class relations and they mention that the proposed
“component rank can be considered as a true measure of software
reuse”. We therefore considered it comparable to our proposed
metric.

In the following subsections we present the correlations for the
tests mentioned earlier using the Spearman non-parametric test
(1-tailed).

3.1. Test 1

The first comparison examines if the proposed metric out-
performs other proposed metrics, in relation to the Cluster
Dependencies Size (CDS) of a class. As can be seen in Table 6 the
proposed metric outperforms the three other proposed metrics in
relation to CDS. In this analysis all 21,775 classes were considered
and FWBR is significantly negatively correlated (� = −0.657, p < 0.01,
1-tailed) to CDS. Bansiya’s metric Bansiya and Davis (2002) is also
negatively correlated but with a weaker correlation (� = −0.226,
p < 0.01, 1-tailed) and the same holds for Inoue (Inoue et al., 2005)
(� = −0.180, p < 0.01, 1-tailed). On the other hand the reuse metric
proposed in Nair and Selvarani (2010) is positively correlated to
CDS according to our analysis (� = 0.359, p < 0.01, 1-tailed).

This analysis verifies that using the proposed metric will indi-
cate classes that are more probable to attract fewer classes in total
when reused in another context.

3.2. Test 2

As a second comparison of the metrics, a correlation analysis was

performed with the D-layer of each class and different partitions of
the D-layer that maintain the relative order of the dependencies.
These partitions are an attempt to simulate the architectural layers
of an application which are significantly fewer than the D-layers.

358 G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366

Table 7
Spearman’s � for the reuse metrics correlation to different layer partitions.

Spearman’s �

Nair Inoue Bansiya FWBR

D-layer Correlation coefficient .349** −0.278** −0.235** −0.654**

Sig. (1-tailed) 0.000 0.000 0.000 0.000
N 21,775 21,775 21,775 21,775

DLayer5 Correlation coefficient 0.306** −0.250** −0.311** −0.644**

Sig. (1-tailed) 0.000 0.000 0.000 0.000
N 21,717 21,717 21,717 21,717

DLayer6 Correlation coefficient 0.310** −0.239** −0.286** −0.641**

Sig. (1-tailed) 0.000 0.000 0.000 0.000
N 21,491 21,491 21,491 21,491

DLayer7 Correlation coefficient 0.322** −0.244** −0.300** −0.660**

Sig. (1-tailed) 0.000 0.000 0.000 0.000
N 21,491 21,491 21,491 21,491

DLayer8 Correlation coefficient 0.332** −0.274** −0.281** −0.668**

Sig. (1-tailed) 0.000 0.000 0.000 0.000

T
a
I
r
r
t
t
a
l

m
t
a
c
t
t
T

f
a
e
P

3

v
p
c
a
m
c
t
i
t
c
l
b

1

2

N 20,835

** Correlation is significant at the 0.01 level (1-tailed).

he D-layer structure was partitioned to different sizes (i.e. 5, 6, 7
nd 8 parts) to simulate different candidate layered architectures.
t is important to note that none of these partitions actually cor-
esponds exactly to a true layered architecture since they do not
epresent the actual architectural partitions of the systems’ archi-
ects, but they partition the classes to larger groups of classes than
he D-layers which maintain the essential property of the layered
rchitecture (i.e. classes at each layer refer or use classes only at
ower layers and never on layers above them).

The results are again very favorable for the proposed FWBR
etric which shows a strong negative correlation to all layered par-

itions and the original D-layer. Again the Bansiya and Inoue metrics
re outperformed by FWBR but they are also significantly negatively
orrelated to the different partitions albeit with a weaker correla-
ion compared to FWBR. Nair metric exhibits a positive correlation
o the layered partitions. The details of this analysis can be seen in
able 7.

The negative correlation with the different layered partitions are
avorable to reuse since it is well known that classes at lower layers
re more reusable than classes at higher layers of the system lay-
red architecture (Buschmann et al., 1996; Selby, 2005; Microsoft
atterns and Practices Team, 2009; Larman, 2004).

.3. Test 3

In the third test the data was split to D-layers and for each indi-
idual D-layer a correlation analysis was performed to CDS per
roject. This comparison attempts to capture the more reusable
lasses per layer. Since classes at the same D-layer of a project
re classes that have the same role in the same system they are
ore similar (e.g. GUI classes, controllers, entities, etc.) and a suc-

essful reuse metric should highlight the more reusable among
hem favoring those with fewer dependencies. Since current work
s interested in white-box reuse as a starting point for componen-
ization, re-architecting and framework extraction, we want each
lass to require fewer dependencies to be reused. Notice that for at
east two reasons the correlation of a reuse metric to CDS may not
e easy to establish separately for each D-layer:

. First the classes of a D-layer may be very few (e.g. 8 classes) in

which case a significant correlation cannot be established.

. Second, as discussed earlier, in higher D-layers the dependen-
cies of each class belonging to this D-layer may be the same or
very close to the dependencies of any other class belonging to
20,835 20,835 20,835

the same D-layer. This may be the result of a design that over-
looked dependencies control and is something that we noticed
in the majority of the analyzed projects. Again the correlation
cannot be established since CDS does not differ significantly for
the classes of the analyzed D-layer.

For these reasons the failure to establish a significant nega-
tive correlation between a reuse metric and CDS is not necessarily
indicative of problems with the metric. However if a metric corre-
lates positively to CDS then this may be an indication of problems in
using the metric for white-box reuse. The reason is that the metric
will highlight classes as reusable when these classes require more
dependencies to be reused.

First, to avoid the second problem, a correlation analysis was
performed in two projects that included only the lower 7 D-layers.
The first project was a medium sized project (Aglets) with 447
classes. The second project was a larger project (JabRef) with 1978
classes. The results are depicted in Tables 8 and 9.

In the case of the Aglets project (Table 8) the proposed metric
was correlated significantly with a negative correlation to CDS in
3 of the 7 D-layers at 0.01 level and in 1 D-layer with a significant
negative correlation at 0.05 level. None of the compared metrics
established a significant negative correlation. On the contrary Nair
was correlated significantly at the 0.01 level with a positive cor-
relation to CDS in 4 D-layers, Inoue in 2 D-layers and Bansiya in 1
D-layer. The proposed metric had no significant positive correla-
tions to CDS.

In the case of the JabRef project (Table 9) the proposed metric
was correlated negatively to CDS with significance at the 0.01 level
6 out of the 7 D-layers and in one case (D-layer 6) negatively with
significance at the 0.05 level. Bansiya was correlated negatively to
CDS with significance at the 0.01 level 3 times and with significance
at the 0.05 level one time. Inoue was correlated negatively to CDS
with significance at the 0.01 level 2 times and Nair 1 time. Again
however, Inoue and Nair exhibited positive correlations to CDS in
2 cases each at the 0.01 level. The proposed metric again was never
correlated positively to CDS.

Next a correlation analysis was performed to the first 10 projects
of Table 1, and the following were measured:
1. The percentage of negative correlations significant at the 0.05
level.

2. The percentage of negative correlations significant at the 0.01
level.

G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366 359

Table 8
Aglets project: CDS Spearman’s �.

Project name Aglets

Size 447 classes

Nair Inoue Bansiya FWBR

Layer 6 CDS Correlation coefficient 0.599** 0.427* 0.272 −0.295
Sig. (1-tailed) 0.001 0.015 0.09 0.072
Number of classes 26 26 26 26

Layer 5 CDS Correlation coefficient 0.641** 0.426** −0.11 −0.593**

Sig. (1-tailed) 0 0.001 0.212 0
Number of classes 55 55 55 55

Layer 4 CDS Correlation coefficient −0.002 0.452** −0.031 −0.14
Sig. (1-tailed) 0.494 0 0.405 0.135
Number of classes 64 64 64 64

Layer 3 CDS Correlation coefficient 0.555** 0.166 0.564** −0.611**

Sig. (1-tailed) 0.005 0.237 0.004 0.002
Number of classes 21 21 21 21

Layer 2 CDS Correlation coefficient 0.196 0.313* 0.335* −0.516**

Sig. (1-tailed) 0.137 0.038 0.028 0.001
Number of classes 33 33 33 33

Layer 1 CDS Correlation coefficient 0.318** 0.143 0.338** −0.069
Sig. (1-tailed) 0.005 0.13 0.003 0.293
Number of classes 64 64 64 64

Layer 0 CDS Correlation coefficient 0.008 0.234* 0.037 −0.214*

Sig. (1-tailed) 0.47 0.017 0.371 0.027
Number of classes 82 82 82 82

3

a

T
J

* Correlation is significant at the 0.05 level (1-tailed).
** Correlation is significant at the 0.01 level (1-tailed).

. The percentage of negative correlations significant at the 0.01

level that were at the same time stronger than 0.4.

The aforementioned negative correlations are considered favor-
ble for a metric facilitating white-box reuse since the metric value

able 9
abRef project: CDS Spearman’s �.

Project name JabRef

Size 1978

Layer 6 CDS Correlation coefficient

Sig. (1-tailed)

Number of classes

Layer 5 CDS Correlation coefficient

Sig. (1-tailed)

Number of classes

Layer 4 CDS Correlation coefficient

Sig. (1-tailed)

Number of classes

Layer 3 CDS Correlation coefficient

Sig. (1-tailed)

Number of classes

Layer 2 CDS Correlation coefficient

Sig. (1-tailed)

Number of classes

Layer 1 CDS Correlation coefficient

Sig. (1-tailed)

Number of classes

Layer 0 CDS Correlation coefficient

Sig. (1-tailed)
Number of classes

* Correlation is significant at the 0.05 level (1-tailed).
** Correlation is significant at the 0.01 level (1-tailed).
should be smaller for classes with larger required dependencies

(i.e. increased CDS). As we mentioned already it was not expected to
find strong and significant correlations for all the D-layers analyzed
for the two aforementioned reasons. However, it was important to
analyze if the reuse metrics were highlighting incorrectly classes

Nair Inoue Bansiya FWBR

0.048 0.5** −0.007 −0.198*

0.345 0 0.476 0.046
73 73 73 73

0.334** −0.16 −0.325** −0.38**

0.002 0.089 0.003 0.001
72 72 72 72

−0.046 −0.31** −0.454** −0.531**

0.298 0 0 0
136 136 136 136

−0.183** −0.54** −0.441** −0.553**

0.002 0 0 0
248 248 248 248

0.111* −0.06 0.128* −0.581**

0.027 0.161 0.013 0
301 301 301 301

0.196** 0.109 0.145* −0.296**

0.005 0.077 0.028 0
174 174 174 174

0.085 0.36** 0.115** −0.387**

0.076 0 0.025 0
289 289 289 289

360 G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366

Table 10
Percentages of negative correlations per layer and per project to the reuse metrics.

Negative
correlations
significant at 0.05
level

Negative
correlations
significant at 0.05
level (%)

Negative
correlations
significant at 0.01
level

Negative
correlations
significant at 0.01
level (%)

Negative
correlations
significant at 0.01
level stronger than
0.4

Negative
correlations
significant at 0.01
level stronger than
0.4 (%)

Nair 4 2.44% 1 0.61% 0 0.00%
Inoue 4 2.44% 4 2.44% 1 0.61%
Bansiya 5 3.05% 9 5.49% 6 3.66%
FWBR 19 11.59% 42 25.61% 28 17.07%

Total Layers examined 164

F
m

w
C

1

2

n
l
s
F
n
t
f
t
0
w

f
r
l

T
P

ig. 7. Percentages of negative correlations per layer and per project to the reuse
etrics.

ith larger dependencies (i.e. the correlation of the reuse metric to
DS was positive). Therefore the following were also measured:

. The percentage of positive correlations significant at the 0.05
level.

. The percentage of positive correlations significant at the 0.01
level.

Table 10 and Fig. 7, show the count and percentages of the
egative correlation per metric for the 164 D-layers that were ana-

yzed. It can be seen that the proposed metric exhibits significantly
tronger negative correlations to CDS per layer and per project.
rom the 164 D-layers examined, the FWBR metric was significantly
egatively correlated at the 0.01 level 42 times (25.61%), whereas
he compared metrics were significantly negatively correlated in
ewer than 6% of the cases. The proposed metric also outperforms
he compared metrics in significant negative correlations at the
.05 level and, significant negative correlations at the 0.01 level
ith strength more than 0.4.
Table 11 and Fig. 8, on the other hand show the positive (i.e.
alse) correlations that were observed. As can be seen the proposed
euse metric was correlated positively with significance at the 0.05
evel only at 4 D-layers from the total 164 D-layers examined, and

able 11
ercentages of positive correlations per layer and per project to the reuse metrics.

Positive correlations
significant at 0.05 level

Positive correlations
significant at 0.05 level (%)

Nair 14 8.54%

Inoue 16 9.76%

Bansiya 13 7.93%

FWBR 4 2.44%

Total Layers examined
Fig. 8. Percentages of positive correlations per layer and per project to the reuse
metrics.

never with a significance at the 0.01 level. The performance of the
compared metrics was less than optimal in this test as can be seen
from Table 11.

4. Analysis per project and around major project types

In our comparative assessment of the proposed metric in Section
3, Tests 1 & 2 (Sections 3.1 and 3.2) were carried out using all the
projects’ classes. To avoid the danger of ignoring the differences
that individual projects may have in our assessment we repeat in
this section Tests 1 & 2 for all the individual projects separately. Test
3 (Section 3.3) was already performed for each project separately.

Table 12 shows the results of the correlation of the proposed
metric compared to the other three metrics with respect to the CDS.
As can be seen the proposed metric outperforms the other metrics
in all cases with the exception of one project (Project 12 – FreeCS)
in which the Inoue metric is slightly stronger.

Table 13 shows the results of the correlation of the proposed
metric compared to the other three metrics with respect to the D-
layer and different partitions of the D-layer. We remind the reader

that classes higher at the layer structure of a project are usually less
reusable and more application specific. A characteristic example of
this are the user interface classes. On the contrary classes lower at
the layer structure of the system are more reusable as for example

Positive correlations
significant at 0.01 level

Positive correlations
significant at 0.01 level (%)

32 19.51%
31 18.90%
16 9.76%

0 0.00%

164

G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366 361

Table 12
Spearman’s � for the reuse metrics correlation to CDS per project.

Project Nair Inoue Bansiya FWBR No. of Classes

1 0.437** −0.366** −0.320** −0.781** 447
2 0.237** −0.488** −0.147** −0.654** 493
3 0.454** −0.321** −0.451** −0.604** 1578
4 0.271** −0.350** −0.258** −0.506** 656
5 0.658** −0.534** −0.475** −0.864** 147
6 0.145 −0.107 −0.468** −0.521** 85
7 0.262** −0.386** −0.539** −0.820** 1100
8 0.320** −0.149** −0.262** −0.823** 2221
9 0.306** −0.409** −0.432** −0.774** 836

10 0.344** −0.103** −0.035 −0.629** 2207
11 0.359** 0.210** −0.456** −0.891** 155
12 0.191* −0.701** −0.368** −0.612** 141
13 0.243** −0.441** −0.298** −0.478** 406
14 0.324** −0.255** 0.097* −0.779** 312
15 0.174** −0.149** −0.155** −0.643** 1987
16 0.283* −0.119 −0.204 −0.631** 58
17 0.289** −0.289** −0.386** −0.670** 520
18 0.319** −0.382** −0.269** −0.566** 508
19 0.292** −0.264** −0.219** −0.889** 172
20 0.363** −0.223 −0.489** −0.718** 54
21 0.231** −0.383** −0.412** −0.639** 955
22 0.433** −0.178** −0.074** −0.738** 1759
23 0.065 −0.337** −0.244** −0.520** 452
24 0.291** −0.436** −0.386** −0.591** 2745
25 0.421** −0.146** −0.188** −0.714** 335
26 0.670** −0.662** −0.282* −0.697** 56
27 0.086* −0.410** −0.218** −0.502** 377
28 0.403** −0.619** −0.421** −0.870** 167
29 0.488** −0.266** −0.161** −0.766** 846

B

g
m
e
i
D
o
w
w
e

T
S

1

1

2

1

B

old typeface signifies stronger correlations.
* Correlation is significant at the 0.05 level (1-tailed).

** Correlation is significant at the 0.01 level (1-tailed).

eneric business classes (e.g. a currency converter). The proposed
etric outperformed the other proposed metrics in all 134 differ-

nt partitions, with the one exception of the FreeCS project again
n which the Inoue metric is slightly stronger. FreeCS has only four
-layers and therefore we could not decompose further in 5 layers

r more. The correlation of the Inoue metric to D-layer in FreeCS
as −0.704 whereas the correlation of the proposed reuse metric
as −0.614. In Table 13 we report the actual values for four differ-

nt projects using the original D-layer and four different partitions

able 13
pearman’s � for the reuse metrics correlation to different layer partitions per project.

Project Partition Inoue Bans

9 D-layer −0.268** −0.2
DLayer5 −0.144* −0.2
DLayer6 −0.148* −0.2
DLayer7 −0.279** −0.1
DLayer8 −0.289** −0.1

7 D-layer −0.319** −0.3
DLayer5 −0.278** −0.3
DLayer6 −0.303** −0.3
DLayer7 −0.285** −0.3
DLayer8 −0.286** −0.3

1 D-layer −0.419** −0.3
DLayer5 −0.321** −0.3
DLayer6 −0.401** −0.3
DLayer7 −0.401** −0.3
DLayer8 −0.421** −0.3

0 D-layer −0.191** −0.0
DLayer5 −0.229** −0.0
DLayer6 −0.177** −0.0
DLayer7 −0.193** −0.0
DLayer8 −0.191** −0.0

old typeface signifies stronger correlations.
* Correlation is significant at the 0.05 level (1-tailed).

** Correlation is significant at the 0.01 level (1-tailed).
of the D-layers in 5, 6, 7 and 8 layers. The projects depicted are
selected based on different number of classes. A small, medium,
large and very large project are depicted, but as we mentioned
already the results are similar for the rest of the analyzed projects
with the exception of FreeCS. As can be seen from Table 13, the

proposed metric demonstrates significant and strong correlations
as expected whereas the Inoue metric outperforms in most cases
the Bansiya proposed metric. Both these metrics also demonstrate
negative correlations to the different layer partitions.

iya Nair FWBR No. of classes

29** 0.284** −0.879** 172
85** 0.265** −0.781**

84** 0.263** −0.781**

73* 0.307** −0.854**

80** 0.301** −0.847**

84** 0.241** −0.644** 520
67** 0.202** −0.598**

79** 0.223** −0.624**

77** 0.244** −0.631**

78** 0.244** −0.631**

94** 0.255** −0.637** 955
30** 0.284** −0.602**

74** 0.258** −0.628**

74** 0.259** −0.628**

90** 0.249** −0.629**

78** 0.247** −0.543** 2207
59** 0.224** −0.475**

88** 0.222** −0.497**

93** 0.214** −0.499**

92** 0.215** −0.498**

3 System

p
m
r
b
i
S
i
i
w
c
1
y
p
W
a
d
a

fi
i
s
d
A
l
t
N
f
i
b
p
p
l
h
f
f
t
n
G
b
h
p
o
d
v

f
p
(
E

F

F

F

62 G. Kakarontzas et al. / The Journal of

Another important distinction has to do with the size of the
rojects. Size is related to many different facets. Larger projects are
ore complicated and involve many developers. Also usually size

elates to the maturity of a project or more specifically to the num-
er of years devoted to its development. We considered therefore

mportant to repeat the regression analysis that was performed in
ection 2 to three different size categories and detect differences
n the influence that the CK metrics may have in the reusabil-
ty assessment. In order to carry out this size-specific assessment

e separated the projects to small projects with fewer than 500
lasses, medium projects with classes between 500 (inclusive) and
500 and large with 1500 classes or more. The regression anal-
sis again was carried out in a similar way as we did for all the
rojects together in Section 2 so that the results are comparable.
e are interested in determining the way that the size of the project

ffects the coefficients of the CK metrics (i.e. their contribution and
irection) and to what extent the calibrated metrics improve the
ssessment of the originally proposed metric.

According to the methodology followed also in Section 2, we
rst excluded the outliers from individual categories as suggested

n Wohlin et al. (2000) and then we performed a forward regres-
ion analysis of the logarithms of the CK metrics to the D-layer. The
ifferent coefficients per project category are listed in Table 14.
s can be seen CBO is the most negative factor to reuse regard-

ess of project category and LCOM is the least influential factor. In
he normal-scale project category is also worth mentioning that
OC is excluded from the coefficients. The second most influential

actor to reuse for small and normal-scale projects is DIT as it is
n the proposed metric. However in large projects DIT is replaced
y RFC as the second most influential factor preventing reuse. A
ossible explanation for this is that in large scale projects develo-
ers start to notice opportunities for code reuse in domain specific

ayers and create interesting domain specific class hierarchies. Per-
aps this is towards the creation of a domain-specific framework

or example, that will enable the project to extend including new
eatures with ease. Therefore classes with higher DIT values start
o appear in lower project layers as well and DIT consequently is
ot specific to higher layers anymore. On the contrary the usage of
UI frameworks, such as the Swing framework for Java, is proba-
ly responsible for large DIT values in even the smallest projects in
igher UI layers, since developers extend deep GUI hierarchies to
rovide their own application GUI. This is indeed consistent with
ur initial view, mentioned in Table 2, that DIT can be viewed from
ifferent perspectives. However DIT remains one of the most pre-
enting factors to white box reuse even for large scale projects.

Using the coefficients for the three different categories we can
ormulate three different equations similar to Eq. (2) for the pro-
osed metric FWBR. The three different calibrated metrics for small
FWBRS), normal (FWBRN) and large (FWBRL) projects are given in
qs. (8), (9) and (10) respectively.

WBRS = − 1 × (5.810 × log(CBO + 1) + 3.112 × log(DIT + 1)

+ 0.067 × log(WMC + 1) − 1.012 × log(RFC + 1)

− 0.041 × log(LCOM + 1) − 0.132 × log(NOC + 1)) (8)

WBRN = − 1 × (9.023 × log(CBO + 1) + 3.945 × log(DIT + 1)

− 0.678 × log(WMC + 1) − 0.826 × log(RFC + 1)
− 0.378 × log(LCOM + 1)) (9)

WBRL = − 1 × (8.151 × log(CBO + 1) + 1.431 × log(DIT + 1)
s and Software 86 (2013) 349– 366

− 2.788 × log(WMC + 1) + 2.501 × log(RFC + 1)

− 0.191 × log(LCOM + 1) − 1.242 × log(NOC + 1)) (10)

To quantify further the benefit that we can expect by calibrating
the proposed metric to different size categories we examined also
how many classes change reusability ‘categories’. Since the actual
coefficients are different it is not interesting to examine in how
many classes the metric value changed since the actual absolute
value of the metric will almost certainly be different. Metrics how-
ever are indications of the reusability of classes and as suggested in
Lanza and Marinescu (2010) we can separate the metric value range
in four different categories set by three different thresholds using
the average (AVG) and standard deviation (STDEV) of the metric.
The three thresholds are:

1. Lower Margin: AVG(Metric) − STDEV(Metric)
2. Higher Margin: AVG(Metric) + STDEV(Metric)
3. Very High Margin: (AVG(Metric) + STDEV(Metric)) × 1.5

Classes which fall below the lower margin are considered hav-
ing low reusability, classes between the lower and higher margins
have normal reusability, classes between the higher and very high
margins have high reusability and classes above the very high mar-
gin have very high reusability. We calculated the reusability of
each class with the four different metrics: (a) the original metric
(FWBR), (b) the calibrated metric for the small size project category
(FWBRS), (c) the calibrated metric for the normal size project cate-
gory (FWBRN), and (d) the calibrated metric for the large size project
category (FWBRL). Then we calculated the categories according to
the aforementioned margins and classified each class to one of the
aforementioned categories using each metric separately. Finally we
examined for each different project category separately in how
many cases (i.e. classes) there was an alteration to the classifica-
tion of the class using the respective calibrated metric. The results
of this examination are the following:

1. For the small project category (i.e. projects with fewer than 500
classes) the classification of classes using the original proposed
metric FWBR and the calibrated reuse metric FWBRS results in
the same classification to the four reuse categories in 91% of the
cases whereas 9% of the cases change reuse category. Therefore
assuming that classes that change category are classified more
accurately with the calibrated metric the maximum improve-
ment that we can anticipate in our sample using the calibrated
metric is 9%.

2. Similarly for the normal project category (i.e. projects between
500 class (inclusive) and 1500 classes) the classes that changed
classification using the calibrated metric FWBRN compared to
the classification using FWBR are 6% whereas 94% remained
in the same category giving a maximum possible classification
improvement of 6% in our sample.

3. Finally for the large project category (i.e. projects with 1500
classes or more) the calibrated metric FWBRL classified classes
differently than FWBR in 5% of the cases with 95% of the classes
remaining in the same category.

These results indicate that the proposed metric is probably suffi-
cient as an indication for most cases and that the calibration process
brings marginal improvements. However, the method that we used
to calibrate and compare the metrics to different project sizes can

also be used with different categorizations. For example if a com-
pany concentrates in a specific application domain that is expected
to have significantly different reuse categories than the projects
used in our analysis then perhaps a similar process can be followed

G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366 363

Table 14
Regression analysis results per project category.

Category Predictor Unstandardized coefficients Standardized coefficients t Sig.

B Std. error Beta

Small log(WMC + 1) 0.067 0.334 0.012 0.201 0.841
log(DIT + 1) 3.112 0.230 0.320 13.521 0.000
log(NOC + 1) −0.132 0.430 −0.003 −0.307 0.759
log(CBO + 1) 5.810 0.177 0.779 32.744 0.000
log(RFC + 1) −1.012 0.237 −0.260 −4.277 0.000
log(LCOM + 1) −0.041 0.105 −0.009 −0.391 0.696

Normal log(CBO + 1) 9.023 0.225 0.846 40.180 0.000
log(DIT + 1) 3.945 0.292 0.259 13.514 0.000
log(WMC + 1) −0.678 0.413 −0.067 −1.641 0.101
log(RFC + 1) −0.826 0.315 −0.127 −2.621 0.009
log(LCOM + 1) −0.378 0.148 −0.040 −2.563 0.010

Large log(CBO + 1) 8.151 0.157 0.696 51.845 0.000
log(DIT + 1) 1.431 0.205 0.092 6.971 0.000
log(LCOM + 1) −0.191 0.094 −0.022 −2.018 0.044

t
t

5

t
r
p
a
d
n
o

b
w
m
m
p
w
s
w
w
l
p

i
t
p
f
s
n
w
m
e
e
r
a
t
p
d
w
r

s

log(RFC + 1) 2.501 0.222
log(WMC + 1) −2.788 0.296
log(NOC + 1) −1.242 0.465

o derive a domain-specific reuse metric by analyzing only projects
hat belong to this specific application domain.

. Threats to validity

Conclusion validity in our study refers to the existence of a rela-
ionship between the design complexity metrics and white-box
euse. We have established a relationship between the design com-
lexity metrics and D-layers as well as CDS. These metrics are
ssociated to white-box reuse. Furthermore the relationship of
esign complexity metrics and reusability is also discussed in a
umber of works that we examined extensively in Section 3 and
thers that we discuss in Section 7.

Internal validity in our study refers to establishing causality
etween the design complexity metrics and white-box reuse. As
e have said our FWBR metrics is facilitative to white-box reuse. It
ust be combined with other factors such as the subjective judg-
ent of the reuser regarding the usefulness of a class for reuse

urposes. In this work as we have already mentioned, the emphasis
as on the technical characteristics that can be considered neces-

ary factors for the white-box reuse of a class. The current study
ill be complemented in the future as we mention in Section 8
ith other factors that will extend this work beyond the technical

evel, to also include users’ experience using the COPE tool and the
roposed metric specifically for the component extraction activity.

Regarding construct validity the use of non-parametric tests min-
mized the assumptions about the data. We have used in this work
he original definitions of the Chidamber and Kemerer metrics as
resented in Table 2. Some tools support however slightly dif-
erent definitions of these metrics. Users of our proposed metric
hould be careful in using tools that support the original defi-
itions. Regarding the exclusion of outliers we believe that they
ere excluded correctly because they are not representative of the
ajority of the classes in a system and they would heavily influ-

nce the regression results. The problem is that classes which are
xtremely complex exist in every system for reasons that are not
elevant for the current work. Usually designers and programmers
re aware of these problematic cases. The reusability of these par-
icular cases is rather low but this is something acceptable by the
rogrammers because they do not consider these classes as candi-
ates for reuse (i.e. they are very application-specific classes). In our

ork we have tried to limit our study in classes that are potentially

eusable since these are the subject under consideration.
In relation to external validity we have used only Java open

ource projects. So the results are valid for this category of projects.
0.375 11.246 0.000
−0.279 −9.427 0.000
−0.015 −2.673 0.008

The results are probably generalizable to other object-oriented pro-
gramming languages similar to Java (e.g. C#) however they can be
inapplicable for languages with different characteristics (e.g. script-
ing languages) due to different programming idioms. Furthermore,
some application domains are not represented in our sample. For
example real-time systems are not present in this study. However
as already discussed in Section 4, if a company concentrates in a
specific application domain that is expected to have significantly
different reuse categories than the projects used in our analysis
then perhaps a similar process as the one presented in Section 4,
can be followed to derive a domain-specific reuse metric by ana-
lyzing only projects that belong to this specific application domain.
Section 4 discusses extensively the project types for which our work
applies and provides calibration approaches where necessary.

6. Discussion

Components are easier to reuse than frameworks, although
frameworks provide more flexibility. Reusing source code is even
harder. So the desirable form of reuse, in the sense that it is the
easier for the programmers, is component black box reuse. Domain
specific coarse grained software components are usually created
from frameworks and frameworks from source code. The authors
in Johnson and Foote (1988) for example provide a number of pat-
terns to be used in the process of creating a framework from source
code. It is important therefore, to be able to assess the reusabil-
ity of source code as a first step in the direction of a process that
will eventually lead to a library of reusable components and this
is where the current work is mostly relevant. Current work does
not attempt to contradict the widely accepted view that black-box
reuse is preferable (Barnard, 1998), but rather it tries to provide a
tool for getting there, that can be used in conjunction with other
proposed techniques such as refactoring (Mens and Tourwe, 2004;
Fowler, 1999), and patterns (Johnson and Foote, 1988). It also tries
to discriminate the different types of reuse and warn against pro-
viding metrics without specifying the relevance of the metric to
its respective reuse type (i.e. black-box, gray-box and white-box
reuse). This vagueness in specifying precisely the context of a reuse
metric can be confusing and harmful.

Our work aligns with other works’ conclusion (Selby, 2005; Gui
and Scott, 2007) that coupling is a very significant limiting factor

for the white-box reuse of classes. It seems extremely important
therefore to have dependency control in a project. Packages are a
form of dependency control and a number of patterns and metrics
have been developed for the creation of package structures that are

3 System

e
t
s
T
v
1
c
p
m
t
s
(
e
n
b
S
f
a
t
T
c
d

m
f
u
u
t
a
d
a
T
w
t
s
(
o
i
o
a
b
H
i
s
c
u
w
a
n
t
o
m
p
c
t
e
i
o

7

2
t
m

64 G. Kakarontzas et al. / The Journal of

asier to maintain (Martin and Martin, 2006). However, the extrac-
ion of components from an existing system requires extracting
ubsets of packages’ classes, possibly from many different packages.
he package dependency control therefore, seems more rele-
ant to corrective, adaptive and perfective maintenance (Swanson,
976) than it is for a componentization activity, since component
lasses in the general case crosscut the package structure. Although
ackage-based dependency control can help, it would be even
ore helpful to have a mechanism to restrict dependencies ver-

ically, i.e. to have some form of feature isolation. Existing module
ystems for example, such as the NetBeans Rich Client Platform
Boudreau et al., 2007) and Eclipse Rich Client Platform (McAffer
t al., 2010), promote applications that are composed of compo-
ents. In these platforms features embodied in components can
e pluggable in a top level container at the user interface level.
ince components communicate through carefully designed inter-
aces, the classes inside each component are not left free to use
ll the classes below them in the layered architecture of the sys-
em, but only classes that are included in the same component.
his is expected to have a significant effect in the CDS metric dis-
ussed in this work, since classes at higher layers will have fewer
ependencies.

Our approach in the current work was to validate the proposed
etric using other metrics that can be computed automatically

rom source code static analysis and are logically related to ease of
nderstanding, adapting, testing, etc., source code. The two metrics
sed were the number of required classes for reusing a class and
he layer of a class. Indeed reusing a class requires other classes
nd therefore the larger the number of these classes the more
ifficult will be to reuse the class. As we saw these two metrics
re strongly and significantly correlated (Table 3) as expected.
his approach was selected because it leads in repeatable results
hich are a major problem with current reuse metrics as men-

ioned in a recent software components reusability assessment
urvey (Goulão and Abreu, 2011). In this survey the Inoue et al.
2005) and Washizaki et al. (2003) approaches are identified as the
nly proposals “validated with industry-level observational stud-
es”, while the authors of this survey also observe that the majority
f the proposals discussed in their survey “were not validated at
ll”. The results of current work besides being repeatable, are also
ased in an extensive analysis of 21,775 classes of 29 OSS projects.
owever a possible criticism in our validation approach is that it

gnores external reusers and important aspects for external reusers
uch as the documentation and the business value of the reusable
omponents. As we already mentioned interface metrics and doc-
mentation are related more with black box and gray box reuse
hereas the proposed metric is mostly targeting white box reuse as

 starting point for evolving source code to frameworks and compo-
ents. Consequently we concentrated to important characteristics
o white-box reuse. Although we do not discuss the business value
f the produced components using the FWBR metric, the proposed
etric did quite well in the Third test described in Section 3.3 com-

ared to other metrics. This signifies that it is a valid metric for
lasses with similar roles in a system’s architecture. To the extent
hat classes play similar roles it can be argued that share to some
xtent the same business value. In a follow-up study we plan to
nvestigate the question of ‘business value’ using empirical meth-
ds including reusers’ opinions.

. Related work
Besides the works we already examined (Bansiya and Davis,
002; Inoue et al., 2005; Nair and Selvarani, 2010) we review in
his Section a number of related works that used some subsets or

odified versions of metrics in Chidamber and Kemerer (1994)
s and Software 86 (2013) 349– 366

to determine the reusability of classes or more coarse-grained
software units (e.g. components, libraries, etc.). Also we review
some works that used their own metrics developed from scratch.
For each work we attempt to establish a relation to the proposed
approach in this work.

In Barnard (1998) the author concentrates on object-oriented
metrics commonly associated with reusability. This work describes
two experiments: one quick experiment in which two developers
were asked to develop a highly reusable and a very application-
specific component respectively and their results were compared
with the metrics list. The second experiment involved applying the
metrics list to well-known OO libraries from several OO languages
(assumed to be highly reusable). The experiments demonstrated
that some of the commonly cited as important factors for reusabil-
ity, in reality do not affect a component’s reusability: “For instance,
it was revealed that method size (lines of code), the number of
methods and the number of attributes do not appear to have any
bearing on how reusable the class is”. On the contrary interfacial
metrics such as the coupling of a class with other classes, documen-
tation, correctness and naming choices are very important metrics
strongly affecting reusability. This suggests that a black-box view
for component reusability is the most important, ignoring internal
factors. The author then presents the most influential metrics for
the reusability of classes and combines these metrics in a single
formula (a new metric called “Reusabity for a class Rc”) that can
be used as a reusability oracle when developers consider including
a class in a reuse repository. An unreusable class has a reusabil-
ity for a class metric value of less than 5, whereas a reusable
class has a value more than 10. Compared to current work, this
work concentrates more in the black-box reuse since it includes
aspects such as the documentation. However since the components
examined were classes it also considers coupling a very important
factor.

In Selby (2005) the author uses an empirical study of NASA soft-
ware reuse to determine the factors that characterize successful
reuse in large-scale systems. The study follows the goal-question-
metric approach to characterize software reuse at the project level,
module design level, module implementation level and reuse and
module faults and changes. The modules examined were subrou-
tines, utility functions, main programs, macros and block data.
The interpretation of the statistical analyses demonstrated that
modules that were reused without revisions were mainly small,
well-documented with simple interfaces and little input–output
processing. Furthermore they were lower in the invocation hierar-
chy (“terminal nodes”) which resulted in fewer interactions with
other modules and high interactions with utility modules (low level
general purpose modules). Also the faults in modules reused with-
out revisions were few and consequently the fault-correction effort
was small. Our results to large extent coincide with the empirical
findings in Selby (2005), albeit for OO software.

In Araban and Sajeev (2006) the authors examine ease of reuse
for OO class libraries of Java and Eiffel. To determine the ease of
reuse they examine the number of public methods of a class (a mod-
ified version of WMC with method complexity 1 that accounts only
for public methods). The reason for including public methods is that
during (black box) reuse only the interface matters. A large number
of methods indicates according to the authors a more application-
specific and therefore less reusable class. However larger WMC can
also be beneficial to reusers because it signifies components pro-
viding more services. Depth of Inheritance (DIT) is also used. Larger
values indicate that the re-user needs to examine a larger number of
ancestor classes to successfully reuse a class. Also larger DIT values

indicate more specificity and less generalization. This work differs
from ours since it examines reusable libraries which are already
formed components or frameworks. Therefore this work is more
relevant to black-box reuse.

 System

O
b
r
I
o
(
i
a
a
c

s
r
u
a
u
m
c
c
b
n

t
i
p
t
a
t
i
s
t
c

i
i
(
d
i
a
i
o
f

8

b
b
r
b
d
a
p
l
w

t
f
t
t
e
c
m

G. Kakarontzas et al. / The Journal of

In Capiluppi and Boldyreff (2007) the authors also consider
SS reusability based on metrics. They use the metrics proposed
y Martin and Martin (2006). This work is concerned with folder
euse of OSS repositories. It calculates the instability of a folder as

 = Ce/(Ce + Ca) where Ce is the efferent coupling (folders depending
n (i.e. directly calling) this folder) and Ca is the afferent coupling
folders this folder depends upon). Stability is the complement of
nstability (S = 1 − I). They provide a case study (XMMS) of their
pproach. This work differs than ours in that it considers pack-
ges and therefore examines more ready-to-reuse solutions than
lasses.

In Washizaki et al. (2003) the authors describe a metrics suite
uitable for black box components that can be used to access the
eusability of a component without its source code. The source code
navailability makes the use of other popular metric suites, such
s the metrics used in our work (Chidamber and Kemerer, 1994),
nsuitable since they are mostly based in source code analysis. The
etrics suite proposed is explored in the context of the Java Beans

omponent technology; its use however is also applicable to other
ontexts. Washizaki et al. approach is more concerned with black-
ox reuse of a specific technology (i.e. Java Beans) and therefore is
ot directly related to our work.

The work in Aggarwal et al. (2005) proposes two metrics in rela-
ion to templates used in an object-oriented system. The first metric
s the Function Template Factor (FTF) and the second the Class Tem-
late Factor (CTF). These metrics can be used with O–O languages
hat provide template (generic) functions and classes such as C++
nd more recently Java and C#. FTF is the ratio of template func-
ions to the total number of functions in the system. Similarly CTF
s the ratio of template classes to the total number of classes in the
ystem. In relation to our work, this work considers template func-
ions and classes but does not incorporate other characteristics of
lasses.

A number of European projects similar to OPEN-SME, which
s the context of this work, explored the question of OSS qual-
ty in general and reusability in particular including SQO–OSS
Samoladas et al., 2008) and QualiPSo (del Bianco et al., 2010). The
ifference of OPEN-SME is that it is narrower since the reuse service

s provided in the context of specific domains, and deeper since it
ttempts to provide more advanced reuse services in these domains
ncluding component extraction and certification. The facilitation
f the reusability assessment described in this work is one of the
undamental requirements of such an approach to reuse services.

. Conclusions and future research directions

In this work we proposed a new facilitative metric for white-
ox reuse of object-oriented source code. This type of reuse can
e useful in many settings including component extraction and
e-architecting of existing systems. The proposed metric can also
e used during the iterative development of a new project where
evelopers can detect reuse problems of software components that
re candidates for reuse in other applications. We evaluated the
roposed metric by comparing it to three other metrics from the

iterature, and demonstrated significant advantages in relation to
hite-box reuse.

Concerning future extensions of current work, in the con-
ext of the OPEN-SME FP7 project we will test the COPE tool
or the extraction or reusable components in two planned user
rials. During these trials we plan to extend this work beyond

he technical level described here, to include also users’ experi-
nce using the tool and the proposed metric specifically for the
omponent extraction activity. Also we will contrast the FWBR
etric based component extraction with other forms of extraction
s and Software 86 (2013) 349– 366 365

(e.g. pattern-based component extraction) that are also developed
in the context of the project.

The proposed metric can be useful in highlighting the archi-
tectural layers of applications. Current work in our team attempts
to identify architecture layers using metrics (Constantinou et al.,
2011a,b). Specifically for the widely used layered architecture style,
the proposed metric can be used to distinguish between the layers
of the architecture of an existing system. This is another research
direction we plan to explore in the context of Software Architecture
Reconstruction (SAR) (Ducasse and Pollet, 2009).

This work concentrated mainly on the measurable characteris-
tics of the source code to derive an assessment that could be used in
the context of white-box reuse. However other factors relating to
the comprehensibility of the source code, such as the coding stan-
dards followed, can also be important for white-box reuse. It will
be an interesting extension of this work, to examine such quality
factors and compare the findings with the findings of this work.

References

Aggarwal, K., Singh, Y., Kaur, A., Malhotra, R.,2005. Software reuse metrics for
object-oriented systems. In: Software Engineering Research, Management
and Applications, ACIS International Conference on. IEEE Computer Society,
pp. 48–55.

Araban, S., Sajeev, A.,2006. Reusability analysis of four standard object-oriented
class libraries. In: Software Engineering Research and Applications, vol. LNCS
3647/2006. Springer, pp. 171–186.

Bansiya, J., Davis, C., 2002. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering 28 (January (1)), 4–17.

Barnard, J., 1998. A new reusability metric for object-oriented software. Software
Quality Journal 7 (March (1)), 35–50.

Boudreau, T., Tulach, J., Wielenga, G., 2007 May. Rich Client Programming: Plugging
into the NetBeans Platform. Prentice Hall.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-
oriented Software Architecture: A System of Patterns. Wiley.

Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.,
2005 May. Model-based Testing of Object-oriented Reactive Systems with Spec
Explorer. Technical Report MSR-TR-2005-59, Microsoft Research.

Capiluppi, A., Boldyreff, C., 2007. Coupling patterns in the effective reuse of open
source software. In: First International Workshop on Emerging Trends in FLOSS
Research and Development (FLOSS’07), May 2007. IEEE.

Chidamber, S., Kemerer, C., 1994. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20 (June (6)), 476–493.

Constantinou, E., Kakarontzas, G., Stamelos, I., 2011. Open Source Software: How
can Design Metrics Facilitate Architecture Recovery? CoRR abs/1110.1992.

Constantinou, E., Kakarontzas, G., Stamelos, I.,2011b. Towards open source software
system architecture recovery using design metrics. In: Panhellenic Conference
on Informatics. IEEE, pp. 166–170.

del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D., 2010. The qualipso approach
to oss product quality evaluation. In: Proceedings of the 3rd International Work-
shop on Emerging Trends in Free/Libre/Open Source Software Research and
Development, FLOSS’10. ACM, pp. 23–28.

Ducasse, S., Pollet, D., 2009. Software architecture reconstruction: a process-
oriented taxonomy. IEEE Transactions on Software Engineering 35 (July),
573–591.

Elmer, F.-J., 2011. Classycle: Analysing Tools for Java Class and Package Dependen-
cies. http://classycle.sourceforge.net (accessed 27.11.11).

Field, A., 2009 June. Discovering Statistics Using SPSS, 3rd ed. Sage Publications, Inc.
Fowler, M., 1999. Refactoring: Improving the Design of Existing Code. Addison-

Wesley.
Goulão, M., Abreu, F.B., 2011. An Overview of Metrics-based Approaches to Support

Software Components Reusability Assessment. CoRR abs/1109.6802.
Gui, G., Scott, P.D., 2007. Ranking reusability of software components using coupling

metrics. Journal of Systems and Software 80 (September), 1450–1459.
Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., Kusumoto, S., 2005. Ranking

significance of software components based on use relations. IEEE Transactions
on Software Engineering 31 (March (3)), 213–225.

Johnson, R.E., Foote, B., 1988. Designing reusable classes. Journal of object-oriented
Programming 1 (June/July (2)), 22–35.

Lanza, M., Marinescu, R., 2010. Object-oriented Metrics in Practice. Springer.
Larman, C., 2004. Applying UML and Patterns: An Introduction to Object-oriented

Analysis and Design and Iterative Development, 3rd ed. Prentice Hall.
Martin, R.C., Martin, M., 2006 July. Agile Principles, Patterns, and Practices in C#, 1st

ed. Prentice Hall.
McAffer, J., Lemieux, J., Aniszczyk, C., 2010 May. Eclipse Rich Client Platform, 2nd ed.
Addison-Wesley Professional.
Mens, T., Tourwe, T., 2004. A survey of software refactoring. IEEE Transactions on

Software Engineering 30 (February (2)), 126–139.
Microsoft Patterns and Practices Team, 2009. Microsoft Application Architecture

Guide, 2nd ed. Microsoft Press.

http://classycle.sourceforge.net

3 System

N

S

S

S

S

T

W

W

G
U
I

66 G. Kakarontzas et al. / The Journal of

air, T.G., Selvarani, R., 2010 January. Estimation of software reusability: an engi-
neering approach. SIGSOFT Software Engineering Notes 35, 1–6.

amoladas, I., Gousios, G., Spinellis, D., Stamelos, I., 2008. The sqo–oss quality model:
measurement based open source software evaluation. In: Russo, B., Damiani, E.,
Hissam, S., Lundell, B., Succi, G. (Eds.), Open Source Development, Communities
and Quality, vol. 275 of IFIP International Federation for Information Processing.
Springer, Boston, pp. 237–248.

elby, R., 2005. Enabling reuse-based software development of large-scale systems.
IEEE Transactions on Software Engineering 31 (June (6)), 495–510.

pinellis, D., 2005. Tool writing: A forgotten art? IEEE Software 22 (July/August (24)),
9–11.

wanson, E.B., 1976. The dimensions of maintenance. In: Proceedings of the 2nd
International Conference on Software Engineering, ICSE’76. IEEE Computer Soci-
ety Press, pp. 492–497.

arjan, R., 1972. Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1 (2), 146–160.

ashizaki, H., Yamamoto, H., Fukazawa, Y., 2003. A metrics suite for measuring
reusability of software components. In: Proceedings of the 9th International
Symposium on Software Metrics, IEEE Computer Society, pp. 211–223.

ohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000.
Experimentation in Software Engineering: An Introduction. Kluwer Academic

Publishers, Norwell, MA, USA.

eorge Kakarontzas is a PhD candidate in the Department of Informatics, Aristotle
niversity of Thessaloniki, Greece and a lecturer at the Technological Education

nstitute of Larissa, Greece. He holds a BS in Informatics from the Athens University
s and Software 86 (2013) 349– 366

of Economics and Business and an MSc in Object-Oriented Software Technology
from the University of Brighton. His research interests include software quality,
component-based software engineering, cloud and grid computing.

Eleni Constantinou is a PhD candidate in the Department of Informatics, Aristotle
University of Thessaloniki, Greece. She holds a BS in Informatics from Aristotle Uni-
versity of Thessaloniki and an MSc in Information Systems from Aristotle University
of Thessaloniki. Her research interests include software reuse, program comprehen-
sion and architecture recovery.

Dr. Apostolos Ampatzoglou received a PhD in Software Engineering from the
Department of Informatics, Aristotle University of Thessaloniki, Greece and is a lab-
oratory associate at the Technological Education Institute of Thessaloniki, Greece.
He holds a BS in Informatics from Technological Education Institute of Thessaloniki
and an MSc in Computer Science from the University of Macedonia. His research
interests include design patterns, software metrics and computer games.

Dr. Ioannis Stamelos is an Associate Professor at the Department of Informatics of
the Aristotle University of Thessaloniki, where he carries out research and teaching
in the area of software engineering. He holds a diploma of Electrical Engineering
(1983) and a PhD in Computer Science by the Aristotle University of Thessaloniki
(1988). His current research interests are focused on open source software engineer-

ing, software project management and software education. He has published more
than 100 articles in international journals and conferences. He is/was the scien-
tific coordinator or principal investigator for his University in over 20 research and
development projects in Information & Communication Technologies with funding
from national and international organizations.

	Layer assessment of object-oriented software: A metric facilitating white-box reuse
	1 Introduction
	2 Facilitating reusability assessment based on design complexity metrics
	2.1 Metrics used
	2.1.1 Chidamber and Kemerer metrics
	2.1.2 The D-layer metric
	2.1.3 The Class Dependencies Size (CDS) metric

	2.2 The COPE tool
	2.3 The proposed facilitative metric for white-box reuse

	3 Comparative assessment of the proposed metric
	3.1 Test 1
	3.2 Test 2
	3.3 Test 3

	4 Analysis per project and around major project types
	5 Threats to validity
	6 Discussion
	7 Related work
	8 Conclusions and future research directions
	References

