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Structure of the Digital Controller

Discrete-Time Control System, Ogata Ch 3

i Why are we doing this?

= We will obtain the block diagram
structure of the pulse-transfer function
in different forms.

= We will also look at the Impulse
Response form of the block diagram
realization.
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* Realization of Digital Controller

= Realization means to implement with
software (algorithm) or with hardware
circuit.

= We will look at the computation

components (adders, multipliers, shift
registers) of the pulse transfer function.

* Realization of Digital Controller

= In digital signal processing (DSP) field,
a digital filter is a computational
algorithm that converts sequence of
numbers into another sequence of
numbers.

Digital
4 — —

‘_m Filter M

i Realization of Digital Controller

= The signal processing applications can
be done off-line, while the control
application must be done in real-time.

= We will now look at the block-diagram
realization of digital filters.

$ Realization of Digital Controller

= Once the block-diagram realization is
completed, the physical realization in
hardware or software is straight
forward.
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i Realization of Digital Controller

= The general form of the pulse transfer
function between the output ¥rz) and
input X7z is given by

Y(z) b +hz'+bz?+x +b,z"

G(Z) = -1 —2 -n
X(z) l+4az +a,z 4K +a,z

nzm

i Realization of Digital Controller

= The a’s and b’s are real coefficients of
the pulse transfer function.

= Some of the coefficients may be zero.

i Block-diagram realization

= The block-diagram structure that has
the coefficients a and b appear directly
as multiplier is called direct structure.

= The direct structure
= Direct Programming
= Standard Programming

i Direct Programming

= Rewrite the pulse transfer function as

Y(2)=-az"'Y(2)-a,z Y (2)-k —a,z"Y(2)
+h, X(2)+bhz ' X(2)+x +b,72" X (2)
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i Direct Programming

= The structure is

* Direct Programming

= The direct programming uses separate
set of delay elements for the forward
and the feedback path.

= The total number of the delay elements
is n+m.

i Direct Programming

= In real implementation, a delay
elements is the memory buffer that can
hold a value. It was very expensive.

= The Standard Programming method
minimize the numbers of delay
elements to /Vdelay elements.
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i Standard Programming

= Rewriting the pulse transfer function as

_ Y@@ Y(z) H(2)
S X(2) H@ X

G(2)

1
A —2 —m
=b+bz" +bz 4Kk +b,z

(l taz ez K. g )

T 1 )
Y(2) H(z)
H(z) X(z)

i Standard Programming

= Write the block diagram for the first
portion as

o by +bz ' +bz7 +x +h 2"
H(z) B

Y(z)= (bo +hz ' +bz7 +x +b 27" )H(z)

m

i Standard Programming

Y(2)=h,H(z)+bz 'H(z)+b,z "H(2)+x +b,z"H(2)

i Standard Programming

= The second part is
H(z) I
X(z) l+az'+az?+x +az"

H(z)(l taz'ta,z 4k + anz’”) =X(2)
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i Standard Programming

H(2)=X(z)-az 'H(z)-a,z"H(z)—x —a,z""H(z)

i Standard Programming

= Combine the two parts together

i Standard Programming

= Again, the coefficients «’s and 4’s are
the multipliers in the block diagram.

= The Standard Programming uses only »
delay elements.

= But required 2 summing elements.

i Accuracy

= There are three sources of errors affect
the accuracy
= The error due to quantization of the input
signal (quantization noise)
= The error due to accumulation of round-off
error in the arithmetic operation

= The error due to quantization of the
coefficients g and 4
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i Accuracy

= These three errors are due to the finite
bits (8-hit) that represent signal
samples and coefficients.

= The last source of error is larger as the
order of the pulse transfer function
increases.

i Accuracy

= For higher order impulse transfer
function Direct Programming Structure,
the small errors in coefficients & and &
causes large errors in the pole locations
and zero locations.

Accuracy

= We reduce the order of the impulse
response function to reduce the
sensitivity to coefficient inaccuracies.

= The approaches are
= Series Programming
= Parallel Programming
= Ladder Programming

i Accuracy

= The first approach is the Series
Programming structure.
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i Series Programming

= Break down the pulse transfer function
into series connection.

G(2) =G, (2)G,(2)L Gu(2)

Xz) GI(Z) N G2 (Z) GP(Z> Y/-:/

* Series Programming

= We try to group the poles and zeros of
G(2) into first-order and second-order
sub-transfer function.

| 1st-order terms | | 2rd-order terms

i Series Programming

= The first-order term block-diagram is
Y(z) l+bz"
X)) l+az!

* Series Programming

= The second-order term block-diagram is

Y(z) 1+ ez + [z
X(z) l+cz'+dz’
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i Accuracy

= The second approach is the Parallel
Programming structure.

* Parallel Programming

= The parallel programming method
applies the partial fraction expansion
method to G(z).

G(2)=A+G(2)+Gy(2)+L +G,(2)

constant (DC gain) |

i Parallel Programming

» A4

X \«—\ ¥
+

G,(2)

G,(2)

Parallel Programming
= This structure allows the 1t order terms

and 2nd order terms to be a little simpler.

G(2)=4+G(2)+G,(2)+1 +G (2)

=4 +iG,(z) + i G,(2)

=j+1

g b q etz

=A+Y ——+

= l+az

il c,z*1 + a’,zf2
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* Parallel Programming

= The first-order term block-diagram is

Y(z) _ b,

i

X(z) l+az’

i Parallel Programming

= The second-order term block-diagram is

Y(z) e+ fz

i i

X(2) l+cz'+dz?

* Accuracy

= The third approach is the Ladder
Programming structure.

$ Ladder Programming

= The Ladder Programming method
expands the pulse transfer function in
continued-fraction form.
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* Ladder Programming

G(z)=4,+

A-terms

Bz-terms B z+

Ladder Programming

G(z)=

= The last Bz
term is

_{.

n-1

- N Bz-&-1
UL dp— L
4

I

$ Ladder Programming

1
Bz+ . i
« The otherA A+
terms are /‘ B,z +

G(z)=4,+

M

n—1

I +— 4.,+G?(@
GP(2)= »
4+GP @)

i Ladder Programming

G(z)=4,+

1

Bz+
s The other Bz

terms are

A+

G®(2)=

Bz+G(2)

1

1

/ Bzt ——

pivi

4,,+GP(2)
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o Lodder Programming

= Starts from

Ladder Programming

= Starts from
6(2)=4+G?(2)

G(2)=4+G"(2)

5/5/2014

G =4+
Bz+
G(z) = 4,+G(2) R —
1
A+
BH:JrL
4,
Ladder Programming
= Continuing
G(z)=A + 1 >
Bz + 1
G(2) =4, + G (2) pr—
1 2 M
G(z2)=4,+——
O =t 1690 ‘4"“3-1@
i

Ladder Programming

= Continuing
G(z)=4, + 1

Bz+GY(2)

G(2)=4,+G"(2)

1
G(z)= YOy
(Z) A0+BIZ+G1(A)(Z)
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i Ladder Programming

i Ladder Programming

= Continuing
()= dy+ —
G(z) :Ao +G1(B)(Z) Bz+ P +G(B) (Z)
b 2
G(z)=4,+———
@=4 Bz+G¥(z)
1
G@)=dy+ ——————

Bz+—
Y 4+GP(2)

= Continuing
G(z) =4, + 1 ;
G(z)=4,+G" (2) 31”4 /1T
1 B -+%
G(z)=4,+—— B M
G=F Bz+ Gl(’“(z) 1
: 4.+
10 [ R B Bt
1 4,
Blz +A7(B)
L+ G (2)
* Ladder Programming
= In summary
1
G(BJ s _
@ Bz+GY(2)
s 1
T T
4+GH(2)

* Ladder Programming

G:(B) (2)= sl = 1(44)
X.(2) Bz+G7(2)

Y(z)

X, (2) i()‘_’ L el

l:l
G,.(A) (2)
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i Ladder Programming

G,(AJ (2)= L) - 1(1;)
X.(2) 4A+G,(2)

i+l

@) 4~ 5(2)
.

1
_[ 4,
G

Ladder Programming

=« And for the last G (z)

|
G (2)=—
n ( ) A

n

Ladder Programming
= Begin from
G(2)=4,+GP(2)

Mogramming

G(2)=4,+G"(2)

X,(2) +
4, C
AI/-F
B )
xx %
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i Ladder Programming

= We know that G (2)=

—
|

4@ ¢~ |1 =

1

Bz+G7(2)

Y(2)

b

=]

GI(A)(Z)

i Ladder Programming

= SO,
X, (2)

A

0

Gl(B)(Z)

Ladder Programming

X
Ry
T TR
L

GI(A)(Z)

R G
J—’
+

$ Ladder Programming

X,(2)

A

+-

Y(2)

|~

0

b3|>—

)

<+
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Xiq) +_ Y
AO L
i— ¥
B LN I Y
- | B
T
4, ¥
= G.7(2) N

X.(2) + L@
AO N
S — *
Na W I N
= B,
X [1] Kt
L €
4 -
G”(2)
X,(2) [ ] + . L
4, {
] 1
+/\ 1 -1
X B i
1 \+
-
+ $ 1 ﬁ

$ Impulse Response

= The digital filter may be classified
according to the impulse response
duration of the digital filter.

I

Kronecker delta

Digital
Filter ‘ | l

Finite-time Impulse Response

5/5/2014
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i Infinite Impulse Response (IIR)

= If the digital filter model is

m

= = =
X(z) l+az +a,z7°x +az

Y(z) _ b +bhz 4k +b, 27" e

n

i Infinite Impulse Response (IIR)

= The output sample is
wky=—-ay(k-D—-a,yk-2)-x —a,y(k—n)
+byx(k) +bx(k—=1)+x +b,x(k—m)
= We can see that if all ¢,’s are not zero,
the output will recursively generate;
infinite-impulse response filter.

i Finite Impulse Response (FIR)

s If all the ;s are zero.

Y(z)

=b,+bz ' +k +b z"
X(2)

= The output sample is

v(k)=bx(k)+bx(k-1)+x +b,x(k—m)

m

i Finite Impulse Response (FIR)

= The interval of the impulse response of
the filter is limited to a finite number;
finite impulse response.
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i Why are we doing this?

= We will show the mapping between the
design in s-plane and the z-plane.

i s-Plane design

= The design specifications usually written
in time-domain parameters
= Rise-time
= Peak-time
= Settling-time
= Percentage Overshoot
= Steady-state gain
= Etc.

* s-Plane design

= We can translate the time-domain
specifications into the location of

closed-loop poles and zeros in s-plane.

Closed-loop step response

Laplace’s

o

5/5/2014
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* s-Plane mapping

= If we go one step further by recalling
that from the impulse sampling theory

b (S)L:Lh,z Xz~ i x(kT)z*
qr k=0

s-Plane mapping

4 Closed-loop step response

Laplace’s

XX

z-plane

* s-Plane mapping

= We can see immediately that the
dynamics of the discrete-time control
system depends on the sampling period

X[X

z-plane

i s-Plane mapping

= Let’s begin from a general location in

the s-plane.

§=0+ jo

5/5/2014
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i s-Plane mapping

= Input that s-plane location to the
mapping function.
§=0G + jo

Mapping function

= eT(cs@jw) = eTceij

i s-Plane mapping

= The result of the mapping can be view

as a complex-plane vector 4¢”

JTo

T eTc
phase 4o

::eT(s+jm) :eTD'

€

| o
AN

z-plane

i s-Plane mapping

T

z=e€

)

= eT(c+jm)

To
e
Tw

z-plane

* s-Plane mapping

= Note that the angular term is cycle
every

- = eTcg;’Tm = eTng(T(oﬂxk)

5/5/2014
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* s-Plane mapping

= S0, the poles and zeros from location

§=0 + jo

= Will fall in the same spot in z-plane as
the poles/zeros from

s=G +j((o +21tk/T)

s-Plane mapping

. eT(G+ J(@+2m/T))

i s-Plane mapping

= In designing a system, we must make
the closed-loop system stable, i.e., the
closed-loop poles are in the left-half of
the s-plane.

= The left-half of the s-plane is negative
value of(c for any value of '@

* s-Plane mapping

= eT(c+jw)

= Exponential of negative

value is always less than 1.

|z| = <1

5/5/2014
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* s-Plane mapping

= The joaxis (¢ =0) in s-plane maps into
the unit circle in z-plane.

T(jo)

7=

JTo

Cm—p — ]

e
circle

nit amplitude

i s-Plane mapping

Ts

zZ=€

Stable area

_

.

unit circle

i s-Plane mapping

Ts

1 z=e
J=o,
2
. - s
—Tt
1
S e o

* s-Plane mapping

= This defines the primary strip in the

s-plane which maps into the z-plane.

3

ml— /5%
Complementary strip %
1

3o
Primary strip 4—-:—>

g

Complementary strip

Plw W

]
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i s-Plane mapping

= Here is a MATLAB sample gode.

ane

1 T
> T=0.20; ke vmen] onse e

> wsz2*pi*(1/T); ] Lo
>> w=-1/2*ws:0.01:0; z

> 5= j*w;
» zzexp(T*s);
» plot(2); R oot -

>> axis('equal’);

i s-Plane mapping

= More complex
s-plane mappings Constant [l

are _ N\ i

= Constant G Constant (0

(constant settling

time) . s-plane ?

= Constant @

= Constant damping | SN C
ratio.

i s-Plane mapping : Constantc

= The further to the left in s-plane, the
smaller the circle in z-plane.

e =] vomin| zoomow| reset| cesr|foe 3] |[wene ] coomin| soomou] ress

< s-plane

i s-Plane mapping : Constant'®

= The different in"m (imaginary-part
location) will only effect the angle of

the mapped vector.
eT(G+jc))

= oT° o/T® «——— Change angle

5/5/2014
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* s-Plane mapping : Constantll

= The changes in damping ratio.will : .
effect both |z| and angle of z. * s-Plane mapping : ConStant.

= The less damped system in s-plane, the
wider the spiral curve in z-plane.

Conclusion on s-plane
mapping

Conclusion on s-plane
mapping

= For the mapping via z=¢"

Unstable area

Stable area

_

Stable area

z—p/ane

///

|

unit circle unit circle

.

z-plane

24
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Conclusion on s-plane Conclusion on s-plane
mapping mapping

Low frequency

High frequency

 hmee
.

unit circle unit circle

/?/

.

z-plane z-plane

Conclusion on s-plane
Liziiizlg e * s-Plane mapping

= Go back to our Integral Approximation
we did for the digital PID design.

e
_

» Let’s take, for example, a differential
equation or transfer function

Hsj= Ul(s) __a
unit circle E(s)y s+a

.
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i s-Plane mapping

= This transfer function can be written in
the differential equation form as
U(s) a
E(s) B s+a
(s+a)U(s)=aE(s)
(1) +au(r) = ae(r)

i s-Plane mapping

= The output signal «() is

(1) +au(t) = ae(r)

u(t)= ja[e(‘c) —u(t )]d‘r

0

= We have different methods in
approximating this integral.

* s-Plane mapping
u(t) = ,a[e(‘r)—u(‘c)]d‘r

afe(t)-u(t)]

—_— Z = estimated area
t

i s-Plane mapping

= Forward Rectangular rule
u(kT) =u((k=1)T)+aT]e((k=1)T)-u((k=1)T)]
=(1-aT )u((k-1)T )+ aTe((k-1)T)
U(z)=(1-aT)z'U(2) +alzE(2)
Uiz)  alz" a

E(z) 1-(1-al)z? _(z—l}m
T

5/5/2014

26



$ s-Plane mapping

= Backward Rectangular rule
u(kT)=u((k—1)T)+aT [e(kT) —u(kT)]
=u((k—=1)T)+aTe(kT)—aTu(kT)

(I+al)U(z)=z"U(z)+aTE(z)

i s-Plane mapping

= Trapezoid rule
U(z) _ a

SRS
T)\z+1

s HW : Prove this !

U(z) _ alz _ a
E(z) z(l+al)-1 (Z—1J+a
Tz
H(s) H(2)
a a
FW rule -1
s+a (- )+a
T
a a
BW rule AN
s+a [5_1)_’_0
T id rul a ——
rapezoid rule .
v | FE)
TN\ z+1

i s-Plane mapping

FW rule [:—_IJ
T

&

z—-1
z+1

§ &
BW rule § &

o

2
Trapezoid rule S < L?}[

)

5/5/2014
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* s-Plane mapping

= We can use the same method of
mapping the s-plane into the z-plane as
previous.

= For example, the forward rectangular
rule mapping

i s-Plane mapping
= If we let T=1 (normalized sampling
period)

.
-

unit circle

i s-Plane mapping

= Let’s look closer

# "
unstable /
’/

Area
/ In z-plane

_

unit circle
/

4

Z-plane

* s-Plane mapping

= With this mapping, the stable area in
s-plane may falls into the unstable area
in the z-plane!

5/5/2014
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Stability Analysis of Closed-loop
Systems in the z-plane

Discrate-Time Control System, Oata Ch.

i Why are we doing this?

= We will look at the stability analysis in
z-plane using the Jury method.

i Pole of closed-loop system

» The general closed-loop block diagram

Rfs) +

] [ e 7< e
His) e G( )R( )
O(z) =12

1+GH(z)

i Pole of closed-loop system

= The closed-loop transfer function is

()= G(:}R(:)

1+GH(z)
o) _ 6)
R(z) 1+GH(2)

Riz)

)

*» CL-TF

5/5/2014
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i Pole of closed-loop system

= The stability of the closed-loop system
depends on the location of the poles

/Nit circle
C(z) _ G(z) X .
R(z 1+GH (=

() 1+GHG) &

i Pole of closed-loop system

= The time-response (impulse response)
of the system can be found by inverse
z-transform.

= If the system response ? 0 as
time ? ?, the system is stable.

l x(1)
t

i Pole of closed-loop system

= If the system response ? ? as
time ? ?, the system is unstable,

= If the system response ? constant (not
0,not?) astime? ?, the system is
critically stable.

Z 05> 40 diww — ddil> b piwonw (55l b s

C(z) _ G(2)
R(z) 1+GH(2)

P(z)=1+GH(z)=0

5/5/2014
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P(z)=1+GH(z)=0

Wy adl> loadad Sl e
aslg o pld 9,0

Sl z2=-14/4z2=1 ;5 colw dad a
0018 (59 ¢ T9d e halite dad i SO S
Skl aslg

bl aslg opls 59y 2 dtms — ail> ) ,So i3 U

O sl
P A — adls S odad SO L;./gaxf)bé a>lg opls

w>lgopls g9,

i Pole of closed-loop system

= Example : If the closed-loop response
of the system is

C(z) - G(2) Unit circle
R(z) 1+GH(2)
__z e
_ L
chy=e™

* Pole of closed-loop system

= Example : find z that

1+GH(z)=0

1+(z7+2-3)=0

24z-2=0

(z+2)(z-1)=0
z=-2,+41

5/5/2014
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i Pole of closed-loop system

= When we plot the closed-loop poles in
the z-plane
1+GH(z)=0

7= 3.4 /

N v

Unit circle

Qutside unit circle
Z-plane

i Pole of closed-loop system

= The poles of closed-loop system
Cz) _  G()

= Stable system: ALL poles must have
magnitude less than 1, inside the unit

RVETIRUUP S PIRUT) i R PIRCIWOUND P K¥) g [E 2

Rls) 1-e 1 Cin
K —_— —— —
Rl2) by § sls+1) 11}

1-e® 1

c)= s s(S+1)

circle.
-
G(Z)zz[l—e‘s 1 ,_036792+0.2642
s(S+1)° (z-0.3679)(z-1)
C@__ 6@

g = adle ol Jiod @b
R(z) 1+GH(z)

1+G(Z)=0 | ] (i duastine Aol
(z-0.3679)(z —1) + 0.36792 + 0.2642 = 0
2°-2+0.6321=0
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72 -7+0.6321=0
| duasiiio dolro sbd Al

z,=05+j0.6181  z,=05-j0.6181

I b e

s S, 0 5 digns yguiz 50 Lol Conel Jlgly Awsgny s+ 35 AT
JUo 50 .59 5labl ey Sy polie sy Wilgi (ool Wile pgo a5
e

K>23925 S ke

o
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