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Abstract- Given the growth rate in the volume of text data and 
information, text classification has become more practical and 
handy. Sentiment analysis is one of the text classification 
applications which can be used in some cases to evaluate products, 
make market decisions or measure consumer confidence. Most of 
the methods proposed for this task have concentrated on the 
English language whereas there have been a few attempts for other 
languages such as Persian. There are some challenges in Persian 
Language. For example, it has a wide variety of suffixes. Recently, 
deep learning approaches have been successfully applied in a 
variety ofNLP applications. Our goal is to evaluate deep learning 
methods in the Persian language. It can be shown that some of the 
challenging issues will be addressed when using deep learning 
methods. We also introduce a dataset of reviews about electronic 
products in Persian language and evaluate the models on it. 

Keywords-Sentiment analysis,· document classification,· deep 
learning; skip-gram model,· convolutional neural network; 
bidirectional LSTM 

I. INTRODUCTION 

Sentiment analysis deals with constructing instructions to 
approximate concept which concerns with text classification 
applications which is a fundamental task in Natural Language 
Processing. The goal is to classify sentences or documents 
according to sentiments, attitudes, emotions, opinions and 
evaluations expressed in them [1]. Due to the growth of 
information and reviews in the form of comments on the 
internet, it is necessary to classify them automatically, which 
could be used in some cases such as product evaluations, 
marketing decision making or consumer confidence 
m easurem ent [1] [2]. 

There are three main levels to investigate sentiment analysis. 
In document-level, the task is to determine that document has a 
positive or negative sentiment [2]. In sentence-level, the task is 
similar to document-level, except that instead of documents, for 
each sentence determines whether it expresses a positive, 
negative or neutral opinion. Neutral means sentence expresses 
no opinion [2]. In entity-level, it assumes that for each opinion 
there is a sentiment and a target. For example, in the sentence 
"although the actors of the movie are first grade, J didn't like it" 
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there is a posltlve sentiment about actors and a negative 
sentiment about movie [1 ][2]. 

Most approaches, proposed for sentiment analysis, use 
traditional machine learning techniques which rely on feature 
engineering. Therefore features extracted from documents can 
play an important role in classification performance [3]. For this 
reason, most methods focus on extracting proper features to 
obtain accurate classification performance [3]. Some of the 
usual machine learning algorithms used for this goal, are logistic 
regression, NaiVe Bayes, and SVM. Since these algorithms use 
fixed-length feature vectors, documents should be represented 
as fixed-length feature vectors [4]. One way is to represent each 
document as a bag-of-words which is simple and efficient but 
ignores word orders in documents [4]. This issue can cause some 
errors in sentiment classification since it's possible for two 
sentences made of the same set of words, but express different 
sentiments [9]. Bag-of-words representation also doesn't 
consider the semantic similarity between words [4]. 

Most of these methods rely on English language whereas 
there are a few methods working on other languages such as 
Persian. Furthermore, Persian is considered a demanding 
language as a result of its attributes. For example, it uses a wide 
variety of suffixes, as in sentences ".i'J..As" (yo" and ".t.SJ.Jr.s'" j3" 
two different suffixes are used. It also has different kinds of 
writing styles such as different writing forms for a specific word 
[5]. Another problem in sentiment analysis on Persian language 
is that the available datasets are small, which contains about 
1500 labeled documents. 

In this paper, to deal with some of the problems proposed for 
Persian language, we tried to employ two types of deep neural 
network models to classify text documents according to their 
sentiment polarity. Recently these deep learning models have 
achieved noticeable results in different applications such as 
computer vision, speech recognition, and natural language 
processing [6][7]. Instead of representing each word using its 
index in the vocabulary, we used a vector space model (VSM) 
which was trained on a corpus of reviews in an unsupervised 
way. It learns a representation for each word in a way that similar 
words have similar representations. For training the models we 
also introduced a dataset of about 200761 reviews which 
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contains about 50000 labeled data. We compare our results with 
the NBSVM-bi model proposed in [10]. 

In the reminder of this paper, section 2 describes some of the 
previous works on sentiment analysis. Section 3 describes the 
models we used in the process of sentiment classification of 
Persian reviews. In section 4 we described our dataset, training 
phases, and our experimental results in detail. Section 5 also 
includes a conclusion. 

II. RELATED WORKS 

There are a variety of methods, proposed for sentiment 
analysis. Some ofthem are based on computational linguistic but 
most of them are based on machine learning and follow Pang et 
al. [8], which considered sentiment classification as a kind of 
text classification and used three supervised machine learning 
methods including NaIve Bayes, Maximum Entropy and SVM 
[9]. It's common to use bags-of-words representation for text 
documents in machine learning based methods. Since this kind 
of representation doesn't consider the order of the words, it 
cannot capture complex meanings from documents. 

Wang and Manning [10] employed word bigram features in 
sentiment analysis task. They also proposed a variant of SVM 
which used log count ratios as feature values called NBSVM 
[ 10]. 

The deep learning approach, as a new field in machine 
learning, has attracted many researchers to employ it in different 
applications. Nowadays it appears in a lot of Natural language 
processing tasks such as sentiment analysis, machine translation 
and etc [11]. In these methods, it is common to represent words 
with one-hot vectors which fail to capture the relational structure 
of lexicon [12]. An advanced representation, encodes word 
similarities as a kind of distance, in a continuous high­
dimensional space. For example Mass et al. [12] introduced a 
model which captures semantic and sentiment similarities 
among words. The semantic part of the model learns word 
vectors using a probabilistic model of documents in an 
unsupervised way. To capture sentiment similarities it uses a 
supervised learning. Actually, in this part, the model predicts the 
sentiment expressed in the context in which the words appear. 
This causes similar sentiment words to have similar vector 
representations [12]. 

Socher et al. [9] introduced a model based on semi­
supervised, recursive autoencoders called Recursive Neural 
network (RNN). He used continuous word vectors as input and 
Instead of using bag-of-words representation, he employed a 
hierarchical structure in which can fmd vector representations 
for variable-sized phrases. For this goal, the model uses a binary 
tree in which the leaf nodes correspond to a word vector. Then 
it computes parent vectors in a bottom-up fashion using a linear 
compositional function. At the end, it applies a softmax function 
on the vector representation of phrases to compute a probability 
distribution over labels. Another model which is called Matrix­
Vector RNN (MV-RNN) is introduced in [13]. This model is 
similar to RNN except that, to represent words and phrases in 
the binary parse tree, it uses both a vector and a matrix. But one 
main problem with this model is that it has a large number of 
parameters which depend on the size of the vocabulary [14]. To 
solve this problem Socher et al. [14] proposed a model called 

Recursive Neural Tensor Network (RNTN). This model is also 
similar to VM-RNN model except that instead of a matrix 
representation for each word and phrase, it uses a same, tensor­
based composition function for all nodes in the binary parse tree. 

Le and Mikolov [4] proposed a model called Paragraph-
Vector which learns continuous 
representations for variable-length 
unsupervised way. These vectors can 
applications of text classification. 

distributed vector 
documents in an 
employ in different 

In this paper, we employed two deep neural network 
architectures to classify Persian reviews which are about 
electronic products, depend on the sentiment they express. We 
collect our data using a crawler from the website 
www.digikala.com which containing a total of200761 customer 
reviews. About 50000 of them have positive or negative labels. 
We have two learning phase in our models. The first phase is 
learning vector representations of words using a skip-gram 
model, proposed in [15], in an unsupervised way. The second 
phase is learning document sentiments using deep neural 
networks in a supervised way. 

Ill. MODEL DESCRIPTION 

In this section, we describe the structure of models that we 
used for sentiment classification. 

A. Skip-gram model 

The architecture of a Skip-gram model is depicted in Fig. 1. 
This model is used for learning vector representations of words 
from a large amounts oftext data, in an unsupervised way [15]. 

It tries to learn a representation vector for a word by 
predicting its surrounding words in training documents. More 
formally if we assume that there is a sequence of training words 
Wv W 2 , ... , W T , the Skip-gram model tries to maximize the 
average log probability in (1) [15]. 

~ I.I=l I.-c,;j,;c.r;<o log p(wt + j Iwt ), (1) 

where c is the context window size around the center word in 
which, the model tries to predict surrounding words. In a basic 
formulation, the conditional probability proposed in (1) is 
computed using the softmax function as showed in (2) [15]. 

Input Projection Output 

Wet - 2) 

Wet - 1) 

Wet) 

Wet + 1) 

W(t+ 2) 

Figure l. The architecture of the Skip-gram model [15]. 

1504 



25th Iranian Conference on Electrical Engineering (lCEE20 17) 

exp(VI(;,OVW[) 
p(wo IwI ) l::t'=1 exp(vl(;,VWI) , (2) 

where W is the vocabulary size. Vw and Vi ware also two kind 
of vector representations for word w . Vw is the input 
representation and Vi w is the output representation [15]. 
Maximizing the conditional probability in (2), means 
minimizing the cosine distance between the two word vectors. 
As a result after training, similar words will have similar 
representation vectors. Another interesting thing that will 
happened is that, the learned word vectors encode some 
linguistic patterns which can be shown in the form of linear 
transformations [15]. In Fig. 2 we visualized some of the 
learned word vectors. We did this by projecting word vectors 
down to 2 dimensions using PCA (Principal Component 
Analysis) dimensionality reduction technique. By inspecting 
these visualizations, it is somehow apparent that the vectors 
capture some useful semantic information about words and 
their relationship to each other. As depicted in Fig. 2, similar 
words such as "~Y-"", ''lJ;I'' and "($J lJA" (all of them are cell 
phone brands) have similar vectors. There are also other 
relationships between word vectors. As an example, Mikolov et 
a1. in [15] explained a relationship between countries and their 
capitals. This explains why these vectors should be useful as 
representations of words for NLP tasks such as sentiment 
analysis. 

B. Bidirectional Long Short Term Memory (LSTM) 

The structure ofthe LSTM networks is similar to Recurrent 
Neural Networks [7], except that instead of each self-connected 
hidden unit there is a kind of memory unit. Despite that the 
Recurrent Neural Networks are designed to deal with variable 
lengths sequences, there are some limitations. Actually, the 
influence of an input sequence would decay or blow up 
exponentially while circulating around the hidden states. This 
causes Recurrent Neural Networks not to learn long-term 
dependencies which is known as vanishing or exploding 
gradient problem [16]. 

The LSTM network solves this problem using memory 
units. Equations (3) to (8) show the process of computing the 
output of a LSTM hidden unit ht given input x t [17]. 
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Figure 2. Representation of some learned vectors of Persian words in 20 
space after applying PCA 

it = O"(WiXt + Uiht- 1 + bi) (3) 

it = O"(Wtxt + Utht- 1 + bt ) (4) 

at = O"(WoXt + Uoht- 1 + bo) (5) 

gt = tanh(Wgxt + Ught- 1 + bg) (6) 

Ct = it * gt + it * Ct - 1 (7) 

ht = 0t * tanh( Ct) (8) 

Where i,o and i are respectively input, output and forget 
gates. X t is the memory unit input at time t. g is an intermediate 
hidden state, C represents the hidden unit internal memory. 0" is 
the logistic sigmoid function. W, U, b are also weight matrices 
and bias vectors. Notice that in Recurrent Neural Networks the 
hidden unit computed as ht = tanh(Wxt + Uht- 1 ). Therefore 
comparing LSTM to Recurrent Neural Networks, in LSTM the 
hidden unit is computed in a complicated way. Actually this 
mechanism allows LSTM to store information over long 
periods oftime, which makes it possible to deal with long-term 
dependencies [17] [16]. 

The LS TM network explained above only considers the past 
sequence in calculating the output of a hidden unit. In our 
classification task where the whole sentence is given, it will be 
helpful to exploit future sequences. For this reason, we used a 
bidirectional structure of LSTM. As illustrated in Fig. 3 it 
involves of two separate hidden units, one computes the output 

for each sequence in a forward manner (h) and one computes 

the output for each sequence in a backward manner (h). The 
corresponding output sequences are concatenated to each other 
and a mean pooling applies to get the document representation 
from output sequences. The document representation v, is a 
high level representation which involves a summary 
information of document and it can be used as features for 
classifying the documents according to their sentiment 
[16][17]. 
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After computing the document representation vector v, a 
softmax layer as in (9) can be used to get a probability 
distribution over the labels. 

p = softmaxCVfcv + be) (9) 

One solution to deal with overfitting is to apply a 'dropout' 
to the model. This is another mean of regularization which 
prevents co-adaptation of hidden units [6]. 

The dropout operator randomly sets hidden unit values to 
zero with probability ofp. In this way there is a kind of force 
for intermediate computations to be robust. For LSTMs, [17] 
suggests to apply the dropout operator only to the non-recurrent 
connections. In our experiments, we apply the dropout operator 
to the outputs of each LSTM unit. 

C. Convolutional Neural Network (CNN) 

The CNN architecture which is used to classify documents 
upon their sentiment is depicted in Fig. 4. Tn this setting input 
documents are represented as a matrix, each row of it 
corresponds to one token. Typically a token can be considered 
as a word. Therefore in each row there is a vector, representing 
a token. Considering a document, has maximum N tokens (We 
use padding strategy for documents shorter than N tokens.) and 
each token represents with a d dimension vector, the document 
will be represented with a matrix A E \Rl.NXd . In this way each 
document can be treated as an image. Therefore a convolution 
operation can be performed on a window of h tokens via linear 
filters. Since each row of the document matrix represent a 
token, it makes sense to use filters in which their widths are 
equal to the dimensionality of the word vectors [6][18]. 

d=5 

like 
this 

~ 

~I 

Figure 4. CNN architecture for document classification [18] 

Therefore, to perform a convolution operation on h words a 
filter wE \Rl.hXd should be involved. Let A[i:j] be a window of 
tokens from token i to token j of the document matrix A 
[6][18]. A feature Ci is calculated based on a token window of 
size h by 

Ci = fCw' A[i: i + h - 1] + b), (10) 

where i = 1 ... N - h + 1, w E \Rl.hXd is the filter weight matrix, 
b E \Rl. is the bias term, f is an activation function and . is the dot 
product [6][18]. After applying filter w to each possible word 
window and putting calculated features together in a vector, 
there would be a feature map such as 

C = [Cl' CZ, ... , CN-h+d, (11) 

where C E \Rl.N-h+l. The size of the feature map depends on the 
size of the document and the size of the filter, which has been 
applied to it. Therefore a pooling function is needed to get a fix­
length vector. This architecture uses a max pool function which 
extracts the maximum value from each feature map as the 
feature correspond to the particular filter that has been applied. 
One may apply different numbers of filters in different sizes. So 
in this way for each filter, one feature value will be computed. 
This solves the problem of variable length documents, since for 
each document, there are a fix number of feature values equal to 
the number of filters applied in convolution step. Then these 
feature values will be passed to a fully connected softmax layer. 
The output of a softmax layer is a probability distribution over 
labels [6][ 18]. 

For regularization one may apply dropout on the penultimate 
layer which sets a proportion p of the hidden units to zero in 
training step. More formally if z = [L\, ... ,em] assumed as 
penultimate layer, the output layer y, in forward propagation 
step, will be computed using 

y = W· CZ 0 r) + b, (12) 

where r E \Rl.m is a vector containing Bernoulli random 
variables with parameter of p, and 0 is an element wise 
multiplication operator. wand b are also the weight matrix and 
bias vector of the output layer (note that dropout is only used in 
training step) [6] [18]. 

IV. DATASET AND EXPERIMENTAL RESULT 

A. Data 

We collect a dataset containing a total of 200761 customer 
reviews about electronic products in Persian language using a 
web crawler. These reviews are gathered from the website 
www.digikala.com. We also include customer rates of each 
review, to label them as positive or negative. Since a few number 
of reviews had customer rate, a huge number of them remained 
without label. Detail statistics about dataset gathered, is reported 
in Table l.In This table (N+, N_, Nu) are respectively the number 
of positive, negative and unlabeled examples. I is the average 
number of tokens per examples and V, is the number of different 
token types in the corpus. 
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TABLE I. DATASET STATISTICS. 

Detailed Statistics 
Dataset Cl I I (N+,N,Nu) I V 

Digikala reviews 21 (45839,4196,150726) 1 59.73 1 187113 

B. Training 

Since there was no large corpus of supervised training data in 
Persian, we initialized word vectors with those obtained in an 
unsupervised way to improve the performance. Therefore we 
trained a skip-gram model with all of the documents in our 
corpus. After training word vectors we used them as input to the 
CNN and Bidirectional-LSTM models. Then these models were 
trained using labeled data. 

We randomly select 90% of all labeled data as train set. The 
remaining of them used as test set. For both models we tried to 
minimize cross entropy loss function between the outputs ofthe 
softmax layer and their corresponding labels. This loss function 
is shown in (13), 

loss(y,y, w) = ~cross_entropy(y,y) + Allwllz (13) 

where y is the set of outputs of the softmax layer for training 
samples and y is the set of corresponding labels. N is the 
number of training samples. w also denotes the weight matrix 
at the penultimate layer in the models and A is a coefficient 
which controls the importance of the regularization term. 

In our setting we consider the dimensionality of 150 for word 
vectors. For training these vectors we used a window of size 5 
in skip-gram model. 

Tn supervised training the regularization coefficient was set 
to 0.1. We used Adam optimization algorithm with learning rate 
of 0.001 to minimize the loss function. Dropout rate (p) of 0.5 
and batch size of 100 were also used. Note that the dropout was 
only used in train step. 

For CNN model we used filters with height (h) 3, 4, 5. As 
mentioned before the width of these filters are equal to the 
dimension of word vectors which in our setting is 150. For each 
filter size there were 150 feature maps. 

For Bidirectional-LSTM model the number of hidden units 
was set to 200. 

e. Evaluation metrics 

The dataset collected is unbalanced i.e. the number of 
positive and negative samples are unequal. Therefore we used 
precision, recall and F -score to evaluate the models. Because the 
positive samples were about 10 times more than negative 
samples, we calculate precision, recall and F-score base on 
negative samples. We also reported a Confusion Matrix for each 
model we test on our dataset. The overall form of the reported 
confusion matrix is shown in Table 11. 

Equations (14) to (16) show how we compute precision, 
recall and F-score based on the negative samples using the 
confusion matrix. 

TABLE II. 

Negative 

Positive 

D. Baseline 

OVERALL FORM OF THE CONFUSION MATRIX. 

Selected as Negative Selected as Positive 

TN 

FN 

TN 
Precision = TN+FN 

TN 
Recall = TN+FP 

FP 

TP 

F z xPrecisionxRecall 
- score 

Precision+Recall 

(14) 

(15) 

(16) 

We compare our results with one of the best traditional 
approaches called NBSVM-bi which was 91.22% correct on 
sentiment classification of Large Movie Review Dataset 
(TMDB) [10]. TMDB dataset of movie reviews is one of the 
largest datasets for sentiment analysis which is in English and 
is publicly available. 

£. Results 

Table TIT reports the experimental results of each individual 
model. The confusion matrixes of the models are also reported 
in Tables TV, V and VI. Results show that NBSVM-bi gives the 
best precision but CNN gives the best F-score across the other 
models. As mentioned before F -score considers precision and 
recall in its calculation. Therefore it can be concluded that 
methods based on deep learning performed better and in our 
experiments CNN had the best performance among the other 
models that we used. 

One reason of the low performance in classification of 
negative samples is unbalanced training data, but despite this 
issue methods based on deep learning did better which means 
better generalization on negative samples. Actually the 
unsupervised learning step, which was used to learn vector 
representations of words, is one of the main reasons in better 
generalization as it uses the semantic information from a large 
corpus of text data. 

TABLE III. PRECISION, RECALL AND F-SCORE MEASURES OF THE 
MODELS ON PERSIAN DATA REVIEWS. 

Approach Precision [%1 Recall[%1 F-score[%1 

NBSVM-bi 70.7 31.9 44.0 

Bidirectional-LSTM 54.2 52.2 53.2 

CNN 59.1 52.2 55.4 

TABLE IV. CONFUSION MATRlXFORNBSVM-BlMODEL. 

NBSVlVI-bi Selected as Negative Selected as Positive 

Negative 123 (31.9%) 262 (68.1%) 

Positive 51 (\.1%) 4568 (98.9%) 
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TABLE V. CONFUSION MATRIX FOR BIDIRECTIONAL LSTM MODEL. 

Bidirectional 
Selected as Negative Selected as Positive 

LSTM 

Negative 201 (52.2%) 184 (47.8%) 

Positive 170 (3.7%) 4449 (96.3%) 

TABLE VI. CONFUSION MATRIX FOR BIDIRECTIONAL CNN MODEL. 

CNN Selected as Negative Selected as Positive 

Negative 201 (52.2%) 184 (47.8%) 

Positive 139 (3%) 4480 (97%) 

V. CONCLUSION 

In this paper, we studied two deep neural network architectures 
and their results in classifying documents based on their 
sentiment polarity. From the results we concluded that, methods 
based on deep learning had better F-score than NBSVM. One 
reason could be the use of word vector representations which is 
done in an unsupervised way. This learning step addresses most 
of the difficulties arise from different writing styles in Persian, 
and since the learning is unsupervised it doesn't suffer from 
lack of the dataset. We also introduced a new Persian dataset 
for sentiment classification purpose. 
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