
25th Iranian Conference on Electrical Engineering (lCEE20 17)

Sentiment Analysis using Deep Learning on Persian

Texts

Behnam Roshanfekr Shahram Khadivi* Mohammad Rahmati
Associate Professor

Computer Engineering and IT
Amirkabir University of Technology

Tehran, Iran
rahmati@aut.ac.ir

Master of Science Student
Computer Engineering and IT

Amirkabir University of Technology
Tehran, Iran

b.roshanfekr@aut.ac.ir

Adjunct Professor
Computer Engineering and IT

Amirkabir University of Technology
Tehran, Iran

khadivi@aut.ac.ir

Abstract- Given the growth rate in the volume of text data and
information, text classification has become more practical and
handy. Sentiment analysis is one of the text classification
applications which can be used in some cases to evaluate products,
make market decisions or measure consumer confidence. Most of
the methods proposed for this task have concentrated on the
English language whereas there have been a few attempts for other
languages such as Persian. There are some challenges in Persian
Language. For example, it has a wide variety of suffixes. Recently,
deep learning approaches have been successfully applied in a
variety ofNLP applications. Our goal is to evaluate deep learning
methods in the Persian language. It can be shown that some of the
challenging issues will be addressed when using deep learning
methods. We also introduce a dataset of reviews about electronic
products in Persian language and evaluate the models on it.

Keywords-Sentiment analysis,· document classification,· deep
learning; skip-gram model,· convolutional neural network;
bidirectional LSTM

I. INTRODUCTION

Sentiment analysis deals with constructing instructions to
approximate concept which concerns with text classification
applications which is a fundamental task in Natural Language
Processing. The goal is to classify sentences or documents
according to sentiments, attitudes, emotions, opinions and
evaluations expressed in them [1]. Due to the growth of
information and reviews in the form of comments on the
internet, it is necessary to classify them automatically, which
could be used in some cases such as product evaluations,
marketing decision making or consumer confidence
m easurem ent [1] [2].

There are three main levels to investigate sentiment analysis.
In document-level, the task is to determine that document has a
positive or negative sentiment [2]. In sentence-level, the task is
similar to document-level, except that instead of documents, for
each sentence determines whether it expresses a positive,
negative or neutral opinion. Neutral means sentence expresses
no opinion [2]. In entity-level, it assumes that for each opinion
there is a sentiment and a target. For example, in the sentence
"although the actors of the movie are first grade, J didn't like it"

*This work has been done when Shahram Khadivi was with Amirkabir
University of Technology.

978-1-5090-5963-8/17/$31.00 ©20 17 IEEE

there is a posltlve sentiment about actors and a negative
sentiment about movie [1][2].

Most approaches, proposed for sentiment analysis, use
traditional machine learning techniques which rely on feature
engineering. Therefore features extracted from documents can
play an important role in classification performance [3]. For this
reason, most methods focus on extracting proper features to
obtain accurate classification performance [3]. Some of the
usual machine learning algorithms used for this goal, are logistic
regression, NaiVe Bayes, and SVM. Since these algorithms use
fixed-length feature vectors, documents should be represented
as fixed-length feature vectors [4]. One way is to represent each
document as a bag-of-words which is simple and efficient but
ignores word orders in documents [4]. This issue can cause some
errors in sentiment classification since it's possible for two
sentences made of the same set of words, but express different
sentiments [9]. Bag-of-words representation also doesn't
consider the semantic similarity between words [4].

Most of these methods rely on English language whereas
there are a few methods working on other languages such as
Persian. Furthermore, Persian is considered a demanding
language as a result of its attributes. For example, it uses a wide
variety of suffixes, as in sentences ".i'J..As" (yo" and ".t.SJ.Jr.s'" j3"
two different suffixes are used. It also has different kinds of
writing styles such as different writing forms for a specific word
[5]. Another problem in sentiment analysis on Persian language
is that the available datasets are small, which contains about
1500 labeled documents.

In this paper, to deal with some of the problems proposed for
Persian language, we tried to employ two types of deep neural
network models to classify text documents according to their
sentiment polarity. Recently these deep learning models have
achieved noticeable results in different applications such as
computer vision, speech recognition, and natural language
processing [6][7]. Instead of representing each word using its
index in the vocabulary, we used a vector space model (VSM)
which was trained on a corpus of reviews in an unsupervised
way. It learns a representation for each word in a way that similar
words have similar representations. For training the models we
also introduced a dataset of about 200761 reviews which

1503

25th Iranian Conference on Electrical Engineering (lCEE20 17)

contains about 50000 labeled data. We compare our results with
the NBSVM-bi model proposed in [10].

In the reminder of this paper, section 2 describes some of the
previous works on sentiment analysis. Section 3 describes the
models we used in the process of sentiment classification of
Persian reviews. In section 4 we described our dataset, training
phases, and our experimental results in detail. Section 5 also
includes a conclusion.

II. RELATED WORKS

There are a variety of methods, proposed for sentiment
analysis. Some ofthem are based on computational linguistic but
most of them are based on machine learning and follow Pang et
al. [8], which considered sentiment classification as a kind of
text classification and used three supervised machine learning
methods including NaIve Bayes, Maximum Entropy and SVM
[9]. It's common to use bags-of-words representation for text
documents in machine learning based methods. Since this kind
of representation doesn't consider the order of the words, it
cannot capture complex meanings from documents.

Wang and Manning [10] employed word bigram features in
sentiment analysis task. They also proposed a variant of SVM
which used log count ratios as feature values called NBSVM
[10].

The deep learning approach, as a new field in machine
learning, has attracted many researchers to employ it in different
applications. Nowadays it appears in a lot of Natural language
processing tasks such as sentiment analysis, machine translation
and etc [11]. In these methods, it is common to represent words
with one-hot vectors which fail to capture the relational structure
of lexicon [12]. An advanced representation, encodes word
similarities as a kind of distance, in a continuous high­
dimensional space. For example Mass et al. [12] introduced a
model which captures semantic and sentiment similarities
among words. The semantic part of the model learns word
vectors using a probabilistic model of documents in an
unsupervised way. To capture sentiment similarities it uses a
supervised learning. Actually, in this part, the model predicts the
sentiment expressed in the context in which the words appear.
This causes similar sentiment words to have similar vector
representations [12].

Socher et al. [9] introduced a model based on semi­
supervised, recursive autoencoders called Recursive Neural
network (RNN). He used continuous word vectors as input and
Instead of using bag-of-words representation, he employed a
hierarchical structure in which can fmd vector representations
for variable-sized phrases. For this goal, the model uses a binary
tree in which the leaf nodes correspond to a word vector. Then
it computes parent vectors in a bottom-up fashion using a linear
compositional function. At the end, it applies a softmax function
on the vector representation of phrases to compute a probability
distribution over labels. Another model which is called Matrix­
Vector RNN (MV-RNN) is introduced in [13]. This model is
similar to RNN except that, to represent words and phrases in
the binary parse tree, it uses both a vector and a matrix. But one
main problem with this model is that it has a large number of
parameters which depend on the size of the vocabulary [14]. To
solve this problem Socher et al. [14] proposed a model called

Recursive Neural Tensor Network (RNTN). This model is also
similar to VM-RNN model except that instead of a matrix
representation for each word and phrase, it uses a same, tensor­
based composition function for all nodes in the binary parse tree.

Le and Mikolov [4] proposed a model called Paragraph-
Vector which learns continuous
representations for variable-length
unsupervised way. These vectors can
applications of text classification.

distributed vector
documents in an
employ in different

In this paper, we employed two deep neural network
architectures to classify Persian reviews which are about
electronic products, depend on the sentiment they express. We
collect our data using a crawler from the website
www.digikala.com which containing a total of200761 customer
reviews. About 50000 of them have positive or negative labels.
We have two learning phase in our models. The first phase is
learning vector representations of words using a skip-gram
model, proposed in [15], in an unsupervised way. The second
phase is learning document sentiments using deep neural
networks in a supervised way.

Ill. MODEL DESCRIPTION

In this section, we describe the structure of models that we
used for sentiment classification.

A. Skip-gram model

The architecture of a Skip-gram model is depicted in Fig. 1.
This model is used for learning vector representations of words
from a large amounts oftext data, in an unsupervised way [15].

It tries to learn a representation vector for a word by
predicting its surrounding words in training documents. More
formally if we assume that there is a sequence of training words
Wv W 2 , ... , W T , the Skip-gram model tries to maximize the
average log probability in (1) [15].

~ I.I=l I.-c,;j,;c.r;<o log p(wt + j Iwt), (1)

where c is the context window size around the center word in
which, the model tries to predict surrounding words. In a basic
formulation, the conditional probability proposed in (1) is
computed using the softmax function as showed in (2) [15].

Input Projection Output

Wet - 2)

Wet - 1)

Wet)

Wet + 1)

W(t+ 2)

Figure l. The architecture of the Skip-gram model [15].

1504

25th Iranian Conference on Electrical Engineering (lCEE20 17)

exp(VI(;,OVW[)
p(wo IwI) l::t'=1 exp(vl(;,VWI) , (2)

where W is the vocabulary size. Vw and Vi ware also two kind
of vector representations for word w . Vw is the input
representation and Vi w is the output representation [15].
Maximizing the conditional probability in (2), means
minimizing the cosine distance between the two word vectors.
As a result after training, similar words will have similar
representation vectors. Another interesting thing that will
happened is that, the learned word vectors encode some
linguistic patterns which can be shown in the form of linear
transformations [15]. In Fig. 2 we visualized some of the
learned word vectors. We did this by projecting word vectors
down to 2 dimensions using PCA (Principal Component
Analysis) dimensionality reduction technique. By inspecting
these visualizations, it is somehow apparent that the vectors
capture some useful semantic information about words and
their relationship to each other. As depicted in Fig. 2, similar
words such as "~Y-"", ''lJ;I'' and "($J lJA" (all of them are cell
phone brands) have similar vectors. There are also other
relationships between word vectors. As an example, Mikolov et
a1. in [15] explained a relationship between countries and their
capitals. This explains why these vectors should be useful as
representations of words for NLP tasks such as sentiment
analysis.

B. Bidirectional Long Short Term Memory (LSTM)

The structure ofthe LSTM networks is similar to Recurrent
Neural Networks [7], except that instead of each self-connected
hidden unit there is a kind of memory unit. Despite that the
Recurrent Neural Networks are designed to deal with variable
lengths sequences, there are some limitations. Actually, the
influence of an input sequence would decay or blow up
exponentially while circulating around the hidden states. This
causes Recurrent Neural Networks not to learn long-term
dependencies which is known as vanishing or exploding
gradient problem [16].

The LSTM network solves this problem using memory
units. Equations (3) to (8) show the process of computing the
output of a LSTM hidden unit ht given input x t [17].

",> -0

i> ~l<-1

-" -'0 ~ ~,) -2
i>

J ..,;,.., -3
~"

.,
..),1 -4

s,I .. -5

-=-...,.lA, - 6

- H J. s,,-,= -7

.".1,10 -8

~[~

•

",U; - 9

-' J .>..o- l O -61

""-'-11
-8

- 12 -10 -8 -6 - 4 -2

Figure 2. Representation of some learned vectors of Persian words in 20
space after applying PCA

it = O"(WiXt + Uiht- 1 + bi) (3)

it = O"(Wtxt + Utht- 1 + bt) (4)

at = O"(WoXt + Uoht- 1 + bo) (5)

gt = tanh(Wgxt + Ught- 1 + bg) (6)

Ct = it * gt + it * Ct - 1 (7)

ht = 0t * tanh(Ct) (8)

Where i,o and i are respectively input, output and forget
gates. X t is the memory unit input at time t. g is an intermediate
hidden state, C represents the hidden unit internal memory. 0" is
the logistic sigmoid function. W, U, b are also weight matrices
and bias vectors. Notice that in Recurrent Neural Networks the
hidden unit computed as ht = tanh(Wxt + Uht- 1). Therefore
comparing LSTM to Recurrent Neural Networks, in LSTM the
hidden unit is computed in a complicated way. Actually this
mechanism allows LSTM to store information over long
periods oftime, which makes it possible to deal with long-term
dependencies [17] [16].

The LS TM network explained above only considers the past
sequence in calculating the output of a hidden unit. In our
classification task where the whole sentence is given, it will be
helpful to exploit future sequences. For this reason, we used a
bidirectional structure of LSTM. As illustrated in Fig. 3 it
involves of two separate hidden units, one computes the output

for each sequence in a forward manner (h) and one computes

the output for each sequence in a backward manner (h). The
corresponding output sequences are concatenated to each other
and a mean pooling applies to get the document representation
from output sequences. The document representation v, is a
high level representation which involves a summary
information of document and it can be used as features for
classifying the documents according to their sentiment
[16][17].

1505

Softmax

Mean

Backward Layer

Fonvard Layer

Inputs

IT]

f
I I I I I II I I~

/' I ... ~ -
GJI- II=X] ­
i i .,,-,-, ...,..,-, I I I I I I I

Xl

I I I I I I I
X 2

··· ~td
i

I I I I I I I
XL

Figure 3. Bidirectional LSTM Network for document classification

25th Iranian Conference on Electrical Engineering (lCEE20 17)

After computing the document representation vector v, a
softmax layer as in (9) can be used to get a probability
distribution over the labels.

p = softmaxCVfcv + be) (9)

One solution to deal with overfitting is to apply a 'dropout'
to the model. This is another mean of regularization which
prevents co-adaptation of hidden units [6].

The dropout operator randomly sets hidden unit values to
zero with probability ofp. In this way there is a kind of force
for intermediate computations to be robust. For LSTMs, [17]
suggests to apply the dropout operator only to the non-recurrent
connections. In our experiments, we apply the dropout operator
to the outputs of each LSTM unit.

C. Convolutional Neural Network (CNN)

The CNN architecture which is used to classify documents
upon their sentiment is depicted in Fig. 4. Tn this setting input
documents are represented as a matrix, each row of it
corresponds to one token. Typically a token can be considered
as a word. Therefore in each row there is a vector, representing
a token. Considering a document, has maximum N tokens (We
use padding strategy for documents shorter than N tokens.) and
each token represents with a d dimension vector, the document
will be represented with a matrix A E \Rl.NXd . In this way each
document can be treated as an image. Therefore a convolution
operation can be performed on a window of h tokens via linear
filters. Since each row of the document matrix represent a
token, it makes sense to use filters in which their widths are
equal to the dimensionality of the word vectors [6][18].

d=5

like
this

~

~I

Figure 4. CNN architecture for document classification [18]

Therefore, to perform a convolution operation on h words a
filter wE \Rl.hXd should be involved. Let A[i:j] be a window of
tokens from token i to token j of the document matrix A
[6][18]. A feature Ci is calculated based on a token window of
size h by

Ci = fCw' A[i: i + h - 1] + b), (10)

where i = 1 ... N - h + 1, w E \Rl.hXd is the filter weight matrix,
b E \Rl. is the bias term, f is an activation function and . is the dot
product [6][18]. After applying filter w to each possible word
window and putting calculated features together in a vector,
there would be a feature map such as

C = [Cl' CZ, ... , CN-h+d, (11)

where C E \Rl.N-h+l. The size of the feature map depends on the
size of the document and the size of the filter, which has been
applied to it. Therefore a pooling function is needed to get a fix­
length vector. This architecture uses a max pool function which
extracts the maximum value from each feature map as the
feature correspond to the particular filter that has been applied.
One may apply different numbers of filters in different sizes. So
in this way for each filter, one feature value will be computed.
This solves the problem of variable length documents, since for
each document, there are a fix number of feature values equal to
the number of filters applied in convolution step. Then these
feature values will be passed to a fully connected softmax layer.
The output of a softmax layer is a probability distribution over
labels [6][18].

For regularization one may apply dropout on the penultimate
layer which sets a proportion p of the hidden units to zero in
training step. More formally if z = [L\, ... ,em] assumed as
penultimate layer, the output layer y, in forward propagation
step, will be computed using

y = W· CZ 0 r) + b, (12)

where r E \Rl.m is a vector containing Bernoulli random
variables with parameter of p, and 0 is an element wise
multiplication operator. wand b are also the weight matrix and
bias vector of the output layer (note that dropout is only used in
training step) [6] [18].

IV. DATASET AND EXPERIMENTAL RESULT

A. Data

We collect a dataset containing a total of 200761 customer
reviews about electronic products in Persian language using a
web crawler. These reviews are gathered from the website
www.digikala.com. We also include customer rates of each
review, to label them as positive or negative. Since a few number
of reviews had customer rate, a huge number of them remained
without label. Detail statistics about dataset gathered, is reported
in Table l.In This table (N+, N_, Nu) are respectively the number
of positive, negative and unlabeled examples. I is the average
number of tokens per examples and V, is the number of different
token types in the corpus.

1506

25th Iranian Conference on Electrical Engineering (lCEE20 17)

TABLE I. DATASET STATISTICS.

Detailed Statistics
Dataset Cl I I (N+,N,Nu) I V

Digikala reviews 21 (45839,4196,150726) 1 59.73 1 187113

B. Training

Since there was no large corpus of supervised training data in
Persian, we initialized word vectors with those obtained in an
unsupervised way to improve the performance. Therefore we
trained a skip-gram model with all of the documents in our
corpus. After training word vectors we used them as input to the
CNN and Bidirectional-LSTM models. Then these models were
trained using labeled data.

We randomly select 90% of all labeled data as train set. The
remaining of them used as test set. For both models we tried to
minimize cross entropy loss function between the outputs ofthe
softmax layer and their corresponding labels. This loss function
is shown in (13),

loss(y,y, w) = ~cross_entropy(y,y) + Allwllz (13)

where y is the set of outputs of the softmax layer for training
samples and y is the set of corresponding labels. N is the
number of training samples. w also denotes the weight matrix
at the penultimate layer in the models and A is a coefficient
which controls the importance of the regularization term.

In our setting we consider the dimensionality of 150 for word
vectors. For training these vectors we used a window of size 5
in skip-gram model.

Tn supervised training the regularization coefficient was set
to 0.1. We used Adam optimization algorithm with learning rate
of 0.001 to minimize the loss function. Dropout rate (p) of 0.5
and batch size of 100 were also used. Note that the dropout was
only used in train step.

For CNN model we used filters with height (h) 3, 4, 5. As
mentioned before the width of these filters are equal to the
dimension of word vectors which in our setting is 150. For each
filter size there were 150 feature maps.

For Bidirectional-LSTM model the number of hidden units
was set to 200.

e. Evaluation metrics

The dataset collected is unbalanced i.e. the number of
positive and negative samples are unequal. Therefore we used
precision, recall and F -score to evaluate the models. Because the
positive samples were about 10 times more than negative
samples, we calculate precision, recall and F-score base on
negative samples. We also reported a Confusion Matrix for each
model we test on our dataset. The overall form of the reported
confusion matrix is shown in Table 11.

Equations (14) to (16) show how we compute precision,
recall and F-score based on the negative samples using the
confusion matrix.

TABLE II.

Negative

Positive

D. Baseline

OVERALL FORM OF THE CONFUSION MATRIX.

Selected as Negative Selected as Positive

TN

FN

TN
Precision = TN+FN

TN
Recall = TN+FP

FP

TP

F z xPrecisionxRecall
- score

Precision+Recall

(14)

(15)

(16)

We compare our results with one of the best traditional
approaches called NBSVM-bi which was 91.22% correct on
sentiment classification of Large Movie Review Dataset
(TMDB) [10]. TMDB dataset of movie reviews is one of the
largest datasets for sentiment analysis which is in English and
is publicly available.

£. Results

Table TIT reports the experimental results of each individual
model. The confusion matrixes of the models are also reported
in Tables TV, V and VI. Results show that NBSVM-bi gives the
best precision but CNN gives the best F-score across the other
models. As mentioned before F -score considers precision and
recall in its calculation. Therefore it can be concluded that
methods based on deep learning performed better and in our
experiments CNN had the best performance among the other
models that we used.

One reason of the low performance in classification of
negative samples is unbalanced training data, but despite this
issue methods based on deep learning did better which means
better generalization on negative samples. Actually the
unsupervised learning step, which was used to learn vector
representations of words, is one of the main reasons in better
generalization as it uses the semantic information from a large
corpus of text data.

TABLE III. PRECISION, RECALL AND F-SCORE MEASURES OF THE
MODELS ON PERSIAN DATA REVIEWS.

Approach Precision [%1 Recall[%1 F-score[%1

NBSVM-bi 70.7 31.9 44.0

Bidirectional-LSTM 54.2 52.2 53.2

CNN 59.1 52.2 55.4

TABLE IV. CONFUSION MATRlXFORNBSVM-BlMODEL.

NBSVlVI-bi Selected as Negative Selected as Positive

Negative 123 (31.9%) 262 (68.1%)

Positive 51 (\.1%) 4568 (98.9%)

1507

25th Iranian Conference on Electrical Engineering (lCEE20 17)

TABLE V. CONFUSION MATRIX FOR BIDIRECTIONAL LSTM MODEL.

Bidirectional
Selected as Negative Selected as Positive

LSTM

Negative 201 (52.2%) 184 (47.8%)

Positive 170 (3.7%) 4449 (96.3%)

TABLE VI. CONFUSION MATRIX FOR BIDIRECTIONAL CNN MODEL.

CNN Selected as Negative Selected as Positive

Negative 201 (52.2%) 184 (47.8%)

Positive 139 (3%) 4480 (97%)

V. CONCLUSION

In this paper, we studied two deep neural network architectures
and their results in classifying documents based on their
sentiment polarity. From the results we concluded that, methods
based on deep learning had better F-score than NBSVM. One
reason could be the use of word vector representations which is
done in an unsupervised way. This learning step addresses most
of the difficulties arise from different writing styles in Persian,
and since the learning is unsupervised it doesn't suffer from
lack of the dataset. We also introduced a new Persian dataset
for sentiment classification purpose.

[I]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

B. Pang and 1. Lee, "Opinion Mining and Sentiment Analysis,"

Foundations and trends in information retrieval. vol. 2(1-2), pp. 1-

135, January 2008.

B. Liu, "Sentiment Analysis and Opinion Mining," Synthesis lectures

on human language technologies, vol. 5(1), pp. 1-167, May 2012.

D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, "Learning

Sentiment-Specific Word Embedding for Twitter Sentiment

Classification," Acl, pp. 1555-1565, June 2014.

Q. Le and T. Mikolov, "Distributed Representations of Sentences and

Documents," ICML, vol. 14, pp. 1188-1196, June 2014.

A. Bagheri, M. Saraee, and F. De Jong, "Sentiment Classification in

Persian: Introducing a Mutual Information-based Method for Feature

Selection." 21st Iranian Conference on Electrical Engineering

(ICEE), pp. 1-6, May 2013

Y. Kim, "Convolutional Neural Networks for Sentence

Classification," arXiv preprint arXiv: 1408.5882,2014.

O. Irsoy and C. Cardie, "Opinion Mining with Deep Recurrent Neural

Networks," EMNLP, pp. 720-728,2014.

[8] B. Pang, 1. Lee, and S. Vaithyanathan, "Thumbs up?: sentiment

classification using machine learning techniques," Proceedings of the

ACL-02 conference on Empirical methods in natural language

processing, vol. 10, pp. 79-86, July 2002.

[9] R. Socher, 1. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning,

"Semi-Supervised Recursive Autoencoders for Predicting Sentiment

Distributions," Proceedings of the Conference on Empirical Methods

in Natural Language Processing, pp. 151-161, July 2011,

Association for Computational Linguistics.

[10] S. Wang and C. D. Manning, "Baselines and Bigrams : Simple, Good

Sentiment and Topic Classification," Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics: Short

Papers, vol. 2, pp. 90-94, July 2012, Association for Computational

Linguistics ..

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

1508

Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol.

521, no. 7553, pp. 436-444, May 2015.

A. 1. Maas, R. E. Daly, P. T. Ph am, D. Huang, A. Y. Ng, and C. Potts,

"Learning Word Vectors for Sentiment Analysis," Proceedings of the

49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, vol. I, pp. 142-150,

June 2011, Association for Computational Linguistics.

R. Socher, B. Huval, C. D. Manning, and A. Y. Ng, "Semantic

Compositionality through Recursive Matrix-Vector Spaces,"

Proceedings of the 2012 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language

Learning, pp. 1201-1211, July 2012, Association for Computational

Linguistics.

R. Socher, A. Perelygin, and 1. Wu, "Recursive deep models for

semantic compositionality over a sentiment treebank," Proceedings

of the conference on empirical methods in natural language

processing (EMNLP), vol. 1631, pp. 1631-1642, October 2013.

T. Mikolov, K. Chen, G. Corrado, and 1. Dean, "Distributed

Representations of Words and Phrases and their Compositionality,"

Advances in neural information processing systems, pp. 3111-3119,

2013.

P. Wang, Y. Qian, F. K. Soong, 1. He, and H. Zhao, "A Unified

Tagging Solution: Bidirectional LSTM Recurrent Neural Network

with Word Embedding," arXiv preprint arXiv:1511.00215, 2015.

W. Zaremba, I. Sutskever, and O. Vinyals, "Recurrent neural network

regularization," arXiv preprint arXiv: 1409.2329,2014.

Y. Zhang and B. C. Wallace, "A Sensitivity Analysis of (and

Practitioners' Guide to) Convolutional Neural Networks for Sentence

Classification," arXiv preprint arXiv: 1510. 03820, 2015.

