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Preface

On one level, this text can be viewed as suitable for a traditional course on ordinary differen-
tial equations (ODEs). Since differential equations are the basis for models of any physical
systems that exhibit smooth change, students in all areas of the mathematical sciences and
engineering require the tools to understand the methods for solving these equations. It is
traditional for this exposure to start during the second year of training in calculus, where the
basic methods of solving one- and two-dimensional (primarily linear) ODEs are studied.
The typical reader of this text will have had such a course, as well as an introduction to
analysis where the theoretical foundations (the ε’s and δ’s) of calculus are elucidated. The
material for this text has been developed over a decade in a course given to upper-division
undergraduates and beginning graduate students in applied mathematics, engineering, and
physics at the University of Colorado. In a one-semester course, I typically cover most of
the material in Chapters 1–6 and add a selection of sections from later chapters.

There are a number of classic texts for a traditional differential equations course, for
example (Coddington and Levinson 1955; Hirsch and Smale 1974; Hartman 2002). Such
courses usually begin with a study of linear systems; we begin there as well in Chapter 2.
Matrix algebra is fundamental to this treatment, so we give a brief discussion of eigenvector
methods and an extensive treatment of the matrix exponential. The next stage in the tradi-
tional course is to provide a foundation for the study of nonlinear differential equations by
showing that, under certain conditions, these equations have solutions (existence) and that
there is only one solution that satisfies a given initial condition (uniqueness). The theoreti-
cal underpinning of this result, as well as many other results in applied mathematics, is the
majestic contraction mapping theorem. Chapter 3 provides a self-contained introduction to
the analytic foundations needed to understand this theorem. Once this tool is concretely
understood, students see that many proofs quickly yield to its power. It is possible to omit
§§3.3–3.5, as most of the material is not heavily used in later chapters, although at least
passing acquaintance with Theorem 3.10 and Lemma 3.13 (Grönwall) is to be encouraged.

However, this text does not aim to cover only the material in such a traditional ODE
course; rather, it aspires to serve as an introduction to the more modern theory of dynamical
systems. The emphasis is on obtaining a qualitative understanding of the properties of
differential dynamical systems, namely, those evolution rules that describe smooth evolution
in time.1 The primary concept of this study, the flow, is introduced in Chapter 4. The

1This is not to say that the dynamical systems that we study are always differentiable—vector fields need not
be smooth.
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qualitative theory is often concerned with questions of shape and asymptotic behavior that
lead us to use topological notions such as conjugacy in the classification of dynamics.

The classification of dynamical behavior begins with the simplest orbits, equilibria and
periodic orbits. As Henri Poincaré noted in his classic New Methods in Celestial Mechanics,
(1892, Vol. 1, §36),

what renders these periodic solutions so precious to us is that they are, so to
speak, the only breach through which we may attempt to penetrate an area
hitherto deemed inaccessible.

Only in the demonstration that dynamics in the neighborhood of some of these orbits is
conjugate to their linearization is it seen that the predisposition of applied scientists to
concentrate on linear systems has any value whatsoever.

The local classification of equilibria leads to the theory of invariant manifolds in
Chapter 5. The stable and unstable manifolds, proved to exist for a hyperbolic saddle, give
rise to one prominent mechanism for chaos—heteroclinic intersection. The center manifold
theorem is also important preparation for the treatment of bifurcations in Chapter 8.

As mathematicians, allow yourselves to become entranced by the exceptions to the
validity of linearization, namely, with those orbits that are nonhyperbolic. It is in the study
of these exceptions that we find the most beautiful dynamics—even in the case of the phase
plane, to which we return in Chapter 6. The first three sections of this chapter are fun-
damental; §§6.4–6.8 can be omitted in favor of later chapters. As we see in Chapter 8,
the exceptional cases form the organizing centers for the behavior of systems undergoing
changing parameters. A qualitative change in behavior under a small change of parame-
ters is called a bifurcation. A complete exegesis of theory of bifurcations requires a full
text on its own, and there are many excellent texts appropriate for a more advanced class
(Guckenheimer and Holmes 1983; Golubitsky and Schaeffer 1985; Kuznetsov 1995). We
introduce the reader to the basic ideas of normal forms and treat codimension-one and -two
bifurcations.

Perhaps the most exciting recent developments in dynamical systems are those that
show that even simple systems can behave in complicated ways, namely, the phenomena of
chaos. In Chapter 7, we introduce the reader to the concepts necessary for understanding
chaos: Lyapunov exponents, transitivity, fractals, etc. We also give an extensive discussion
of Melnikov’s method for the onset of chaos in Chapter 8. A more advanced treatment of
chaotic dynamics requires a discussion of discrete dynamics (mappings) and can be found
in texts such as (Katok and Hasselblatt 1999; Robinson 1999; Wiggins 2003).

The final chapter treats the subject closest to this author’s heart: Hamiltonian dynam-
ics. Since the basic models of physics all have a Hamiltonian (or Lagrangian) formulation,
it is worthwhile to become familiar with them. While a traditional physics text treats these
on a concrete level, this book provides an introduction to some of the geometrical aspects
of Hamiltonian dynamics, including a discussion of their variational foundation, spectral
properties, the KAM theorem, and transition to chaos. Again, there are several advanced
texts that go much further, for example (Arnold 1978; Lichtenberg and Lieberman 1992;
Meyer and Hall 1992).

While the proofs of many of the classical theorems are included, this text is not
just an abstract treatment of ODEs but an attempt to place the theory in the context of
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its many applications to physics, biology, chemistry, and engineering. Examples in such
areas as population modeling, fluid convection, electronics, and mechanics are discussed
throughout the text, and especially in Chapter 1. The exercises introduce the reader to many
more. Furthermore, to develop a geometrical understanding of dynamics, each student must
experiment; we provide some examples of simple codes written in Maple, Mathematica,
and MATLAB in the appendix, and we use the exercises to encourage the student to explore
further. There are several texts that focus completely on using one or more of tools like
these to explore dynamics (Lynch 2001; Baumann 2004).

I hope that this book conveys a bit of my amazement with the beauty and utility of this
field. Dynamical systems is the perfect combination of analysis, geometry, and physical
intuition. Central questions in dynamics have been formulated for centuries, and although
some have been solved in the past few years, many await solution by the next generation.

It is far better to foresee even without certainty than not to foresee at all. (Henri
Poincaré, The Foundations of Science)

James Meiss
Boulder, Colorado

March 2007
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Chapter 1

Introduction

It is not nature that imposes [time and space] upon us, it is we who impose
them upon nature because we find them convenient. (Henri Poincaré 1914)

This book is about dynamical systems governed by ordinary differential equations (ODEs).
Although a typical reader will have seen differential equations in previous courses, we use
this chapter to discuss their origins, give some examples of where they occur, and introduce
a few of the classical techniques for finding their solutions.

1.1 Modeling
To construct a mathematical model of a physical system, one must decide on the realm in
which the model lives. Since it would be impossible to describe everything in the universe, a
model must include only a limited number of variables. The set of values that these variables
can take makes up the phase space of the model. In this book we will study systems for
which the phase space is finite dimensional—that is, the state of the model can be described
by the values of finitely many variables. Typically, the state of the system will be denoted
by x and the phase space byM; sometimesM will be the Euclidean space R

n, and x a vector
in that space; however, it is also common for the phase space to be a manifold. The main
point is that for a given model with a phase spaceM , the modeler asserts that the system can
be completely described by the variables x ∈ M together with a set of constants that define
the parameters of the model. For example a simple, planar pendulum has a fixed length
and mass and is acted on by a constant gravitational field. The values of these constants
describe the parameters of the system. The phase space M consists of possible values of
the pendulum’s position, represented by an angle, and of its angular velocity. ThusM is the
two-dimensional cylinder, and the dynamics corresponds to smooth motion on M .

Models of systems that undergo evolution are called dynamical systems: in a dynam-
ical system the state depends upon a special scalar quantity that is called time, denoted t .
As we will discuss further in Chapter 4, there are many possible formulations of dynamical
systems. When t can take all values on the real line, R, and the state x changes continuously
with t , the appropriate dynamical model is often a differential equation.

1



2 Chapter 1. Introduction

1.2 What Are Differential Equations?
Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire;
et vice versa. (Isaac Newton, as an anagram in a letter to Leibniz, 1677)2

As Newton realized, many aspects of the natural world can be accurately described by dif-
ferential equations (fluent quantities). Indeed, the theory of gravitation consists essentially
of the statement that gravitationally interacting bodies move according to a system of dif-
ferential equations. In his letter to Leibniz, quoted above, Newton stated the fundamental
problem: how does one “solve” a differential equation, or in Newton’s terminology, “find
the fluxions”? Although Newton and his contemporaries found some solutions to some of
his equations, this is a problem that has occupied mathematicians and scientists ever since
its conception.

Differential equations are relations between a function and its derivatives. When the
function depends upon a single variable, the resulting differential equation is ordinary as
opposed to partial (i.e., ordinary versus partial derivatives). Only the former case will be
treated in this book. In our applications the independent variable usually represents time,
so we call it t . For the moment, let us call the set of dependent variables y; this “vector” is
assumed to be a point in some spaceN . OftenN = R

d , Euclidean space with d dimensions,
butN could also be a manifold such as a torus or cylinder (in which case the vector notation
is not really appropriate). Mathematically, the fact that the function y maps its domain R

to its range N is denoted
y : R → N.

The set of values C = {y(t) : t ∈ R} is a curve in N . The derivative of y with respect to
t will be denoted dy

/
dt or ẏ. An ODE is a relation among t , y, and a finite number of

derivatives of y:

F
(
t, y,

dy
dt
, . . . ,

dky
dtk

)
= 0. (1.1)

If the spaceN has d dimensions, then the relation (1.1) defines a system of d ODEs. The ODE
is of kth order if F depends on the kth derivative of y but no higher derivative. Newton’s
problem can be restated in modern terms as follows: How can one find a function, y = u(t),
or, if possible the set of all possible functions, that makes F = 0 an identity?

When (1.1) can be solved explicitly for the highest derivative term, the ODE becomes

dky
dtk

= G
(
t, y, ẏ, ÿ, . . . ,

dk−1y
dtk−1

)
.

When this is not possible, the differential equation is implicit. In this case the coefficient of
the highest derivative typically vanishes on some subset of the phase space and the ODE is
said to have “singularities.” In his classic book (Ince 1956), Edward Ince discusses some
of the interesting things that can happen for the implicit case.

Any explicit ODE can be easily rewritten as a system of first-order equations by
defining new variables,

x1 ≡ y, x2 ≡ dy
dt
, xi ≡ di−1y

dti−1
, xk ≡ dk−1y

dtk−1
.

2Given an equation involving any number of fluent quantities to find the fluxions, and conversely.



1.2. What Are Differential Equations? 3

The resulting system consists of k first-order equations in the xi , written as

dxi
dt

= xi+1, i = 1, 2, . . . , k − 1,

dxk
dt

= G(t, x1, x2, . . . , xk).
(1.2)

Note that there are other ways of converting a system to first order, and these may be more
convenient in applications (see, e.g., Exercise 5).

Since each xi in (1.2) represents d variables, there are really n = kd variables. Thus,
each kth order system of ODEs on the d-dimensional space N is really a system of n = kd

first-order ODEs on the n-dimensional phase space M = Nk . Equation (1.2) is a special
case of the general system of first order ODEs,

dxi

dt
= fi(t, x1, x2, . . . , xn−1, xn), i = 1, 2, . . . , n,

or, more compactly,
ẋ = f (t, x). (1.3)

Here we adopt the notation that x represents a set of variables, that is, a point in the phase
spaceM of dimension n: the bold vector notation, x, will no longer be used; it is replaced by
carefully indicating the domain and range of our functions, e.g., x : R → M . The quantity
f (t, x) represents the velocity at time t at point x; consequently, f : R×M → R

n. Since
any (explicit) differential equation can be written as a first-order system, (1.3) is the object
that we will study.

The special case that f does not depend explicitly on time is called

� autonomous: A differential equation that does not depend explicitly on time.

In this case (1.3) becomes
ẋ = f (x). (1.4)

For the system (1.4) the function f : M → R
n specifies the velocity at each point in the

phase space M; it is called a vector field . A vector field assigns to each point in space a
velocity—the direction and speed of motion through that point. It is often visualized by
plotting the values of f on a grid of points in the phase space as small vectors. The fact that
f (x) is a vector is reflected by the fact that if we change the units of time, replacing t by
τ = t /c, then the differential equation for the new function x(τ) becomes dx

/
dτ = cf (x).

Consequently scalar multiplication is sensible for f ; however, it is not appropriate for x if
the components of x represent, say, angles.

Example: It is quite easy to use a computer algebra system such as Mathematica, Maple,
or MATLAB to create a plot that represents a vector field. For example, consider the vector
field

f (x) =
(

sin(xy)− y

y + x

)
. (1.5)

In Figure 1.1 we show a plot generated using Mathematica on a 20×20 grid of arrows
whose maximum length is scaled to one—see the appendix for the simple commands in
Mathematica, Maple, and MATLAB for making such plots.
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Figure 1.1. The vector field (1.5) plotted by Mathematica.

Asolution to the differential equation corresponds to a curve that moves in the direction
of the arrow at each point in the phase space. Much more will be said about vector fields
and their properties in Chapter 4.

To reiterate, we say that a differential equation consists of a phase space M together
with a vector field, f : M → R

n.
In principle, there is no reason to study nonautonomous systems since they can be

rewritten as autonomous systems at the expense of introducing an additional variable, say,
xn+1 = t . In this case xn+1 obeys the trivial equation ẋn+1 = 1, so that upon replacing x
by (x, xn+1) and f by (f, 1), (1.3) reduces to (1.4) with the dimension increased by one.
However, there are some situations where it can be worthwhile to treat nonautonomous
systems separately; for example, we will see in Chapter 3 that fewer assumptions on the
smoothness of the dependence of f on t than on x are needed to show that the solutions of
(1.3) are well behaved.

Physical problems for ODEs often require that we find a solution of an ODE that starts
at a specific initial state. This is called the

� initial value problem: Find a solution x(t) of (1.4) that satisfies a specific
initial value x(to) = xo at a given time to.

In some cases one might be interested in finding a solution of an ODE that satisfies
conditions at both an initial time and a final time; this is a “boundary value problem.”
These more commonly arise in the context of partial differential equations (PDEs), or of
minimization problems, and will not be studied in this book.
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A nascent modeler confronted with a set of ODEs might hope to find the “complete”
set of solutions, or find the

� general solution: A solution x(t; c) of (1.4) that depends on a set of param-
eters c is the general solution if for any initial value xo there is some choice of
c such that x(0; c) = xo.

Hence, one goal of the theory of ODEs would be to find analytically the general
solution of an ODE system. It is perhaps surprising that this goal is essentially unattainable—
the solutions of ODE systems can have incredible complexity. There is one case, however,
where the general solution can always be found: the autonomous, linear case; this will be
the subject of Chapter 2.

1.3 One-Dimensional Dynamics
Nothing puzzles me more than time and space; and yet nothing troubles me less,
as I never think about them. (Charles Lamb in a letter to Thomas Manning,
1810)

Dynamics in one dimension is much easier than that in higher dimensions primarily because
motion on the line must be ordered (as we will discuss further in Chapter 4). Solving
autonomous differential equations on R is no more difficult than antidifferentiation.

Any one-dimensional, autonomous initial value problem ẋ = f (x), x(0) = xo, can
be integrated by the method of “separation of variables.” This method is implemented by
dividing both sides of the ODE by the function f and integrating the result:∫ t

0

ẋ(s)ds

f (x(s))
=
∫ t

0
ds ⇒

∫ x

xo

du

f (u)
= t. (1.6)

Here we use a dummy integration variable s to avoid confusing it with the limit t . The
second form is obtained by using the substitution u = x(s), noting that du = ẋ(s)ds. In a
formal sense, (1.6) constitutes the general solution of the ODE.

Example: One of the simplest nonlinear ODEs is the “logistic equation”

ẋ = rx(1− x), (1.7)

which is a simple model for the growth of a population. Here x = N
/
K , where N(t)

is the number of individuals in a population at time t and K is the “carrying capacity” of
the environment; see §1.4. The coefficient r = b − d is the difference between the birth
and death rates of the population when it is small compared to the carrying capacity. As
N approaches K the population growth rate decreases, approaching zero at N = K , or
equivalently at x = 1. This represents the fact that all the individuals are competing for a
finite set of resources, and so the net growth rate must decrease as the population grows.
For this application x ≥ 0, so the phase space is the set M = R

+ ∪ {0}, the set of positive
real values together with zero.
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Figure 1.2. Solutions of the logistic differential equation (1.7) as a function of
time for r = 1. The green and blue lines at x = 1 and x = 0 are equilibria. All other
solutions with x(0) > 0 asymptotically approach x = 1 as t →∞.

If x and xo are not 0 or 1, then 1
/
f (x) exists and the integration represented by (1.6)

can be easily done for (1.7) by the method of partial fractions. This results in

ln

∣∣∣∣ x

1− x

∣∣∣∣− ln

∣∣∣∣ xo

1− xo

∣∣∣∣ = rt.

In this case, combining and then inverting the logarithms gives the explicit solution

x(t) = xo

xo + (1− xo)e−rt
. (1.8)

Since 1
/
f (x) does not exist for the cases x = 0 or 1, these cases must be studied separately.

In both cases ẋ = 0, and so x does not change; therefore, there are two additional equilibrium
solutions, x(t) ≡ 0 and x(t) ≡ 1. Their validity can be seen from the ODE by direct
substitution; for example, d

dt
(1) = f (1) = 0. Note that the solution (1.8) actually works

for xo = 0 or 1. We have therefore proved that (1.8) is the general solution of (1.7). The
solutions are sketched in Figure 1.2.

While (1.6) is the formal solution to a one-dimensional ODE, this integral cannot
always be computed analytically; in this case one says that the ODE has been solved up to a
quadrature.3 Even if the integral can be done, the result is a formula for t (x), not for x(t),
so that the solution is implicit. This implicit solution often cannot be analytically inverted.

3The Greeks used the word quadrature for the process of constructing a square with the same area as another
figure, for example, a circle. More generally, it has the meaning of finding the area under any curve. The idea
is that the value of an integral is known in principle as the limit of the Riemann sums, even though an explicit
formula in terms of elementary functions may not exist.
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f

xxo

x*

Figure 1.3. Qualitative motion for a one-dimensional vector field with three equi-
libria. The size and direction of the arrows indicate the velocity.

Example: Consider the initial value problem

ẋ = f (x) = − x

1+ x2
, x(0) = xo.

As before, one solution can immediately be found: since f (0) = 0, if x vanishes it does
not change; in consequence, one solution is x(t) ≡ 0. Solutions that do not move are called
equilibria. Under the assumption that x �= 0, (1.6) can be easily integrated and the constant
of integration eliminated in favor of xo, giving

ln |x| + 1

2
x2 = −t + ln |xo| + 1

2
x2
o . (1.9)

This solution is valid for any xo �= 0, but it cannot be explicitly inverted to obtain x(t; xo)
since the functions are transcendental. Nevertheless, the implicit solution (1.9) together
with the solution x(t; 0) = 0 make up the general solution. The usefulness of this general
solution is debatable.

Even when the integration (1.6) cannot be done or t (x) cannot be inverted explicitly,
graphical analysis can be used to extract most of the information that is important about a
system.

In general, f (x) represents the velocity at the point x in phase space. For the one-
dimensional case there are only three qualitatively distinct cases: positive velocity, f (x) >
0, negative velocity, f (x) < 0, or equilibrium, f (x) = 0. The graph {(x, y) : y = f (x)}
directly displays the intervals of initial conditions for which these conditions apply; see
Figure 1.3. If f (xo) = ẋ > 0, the motion is to the right and x(t) grows. Indeed, x(t)
continues to increase monotonically so long as f (x(t)) > 0. If x∗ is the first zero of f
above xo andf (x) > 0 on [xo, x∗), then x(t) →

t→∞ x
∗. To see this, recall that every monotone,

bounded sequence has a limit;4 suppose that the limit is not x∗ but rather x(t)→ ξ < x∗.
Then, by continuity f (x(t)) → 0 as x → ξ , but this contradicts the fact that x∗ was

4More generally, see Theorem 3.1, the Bolzano–Weierstrass Theorem.
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assumed to be the first zero above xo. Similarly, if there are no zeros of f above xo, then
x(t)→∞ as t →∞. A similar analysis applies on intervals wheref (x) < 0.

Our conclusion is that the dynamics of a one-dimensional, autonomous ODE are
extremely simple: trajectories move monotonically toward equilibrium or to infinity.

Example: Consider again the logistic equation (1.7), but now allow both positive and
negative values of x. From the graph off , it is easy to immediately extract certain qualitative
properties. Since f (x) < 0 for all x < 0, the solution x(t) for xo < 0 must decrease
monotonically with time and is unbounded: x(t)→−∞. When 0 < x < 1, f (x) > 0, so
the solution grows monotonically. As x approaches one, f (x)→ 0, so the motion slows,
and the solution must limit to the value x = 1 as t → ∞. Finally if x > 1, the solution
decreases monotonically to 1. In conclusion, the equilibrium x = 1 is an attractor: all
points x ∈ R

+ asymptotically approach one as t →∞. We will formally define attractors
in Chapter 4.

It is noteworthy that these conclusions can be obtained in a few lines of reasoning—a
process that is much shorter than that leading to the analytical solution. Moreover, even
when we are given the solution (1.8), additional work must be done to extract these results
since its form is complicated.

The use of geometrical methods to obtain qualitative information about a dynamical
system without finding explicit solutions is a theme that will recur throughout this text.

1.4 Examples

Population Dynamics

When a biological population consists of many individuals, it is convenient to represent
its number by a continuous function N(t), although predictions that depend upon there
being a nonintegral number of say, “rabbits,” are suspect (unless you are cooking a portion
for a meal). In a similar vein, when N � 1, discretely occurring birth and death events
can be approximated by a population growth rate, so that Ṅ = b(N) − d(N), where b is
the birth rate and d is the death rate. When the population is isolated (immigration does
not occur) and mutation and speciation are neglected (the population maintains its identity
and can reproduce only by births arising from existing members), then b(0) = d(0) = 0.
Consequently, the ODE can be written in the form

Ṅ = Nr(N)

so that r(N) is the net growth rate per individual. Such equations have the felicitous feature
that if N is initially positive, it can never become negative—which would in any case be a
gross violation of biology.

The logistic model, (1.7), corresponds to a simple version of the function r in which the
net growth rate decreases linearly as the population grows, reflecting increased competition
among the individuals for resources. For the logistic model the zero point K , r(K) = 0, is
called the carrying capacity of the environment; if N > K , the population is too large to
be sustained, and the death rate exceeds the birth rate.
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Competition between species can be easily included in our model upon supposing that
there are a number of species with populations Ni, i = 1, . . . , n. The net growth rates of
each species may depend upon the populations in the other species if they compete for the
same resource or if one species serves as a food source (is prey) for another (a predator).
The general model will have the form

Ṅi = Niri(N1, N2, . . . , Nn), i = 1, . . . , n.

In the spirit of the logistic model, it is interesting to consider the case that the per-individual
growth rates ri depend linearly on the populations; such models are called Lotka–Volterra
systems. For example, when there are two species competing for resources, the model
becomes

Ṅ1 = N1(a − bN1 − cN2),

Ṅ2 = N2(d − eN1 − fN2).
(1.10)

The coefficients (a, b, c, d, e, f ) are typically positive; (a, d) represent net growth rates
when the populations are small, (b, f ) represent intraspecies competition, and (c, e) repre-
sent interspecies competition. This model will be studied in §1.5 when we examine dynamics
in two dimensions more generally. In certain parameter regimes the two species will be
seen to stably coexist, while in others one species always drives the other to extinction.

In contrast, when one species is a food source for the other, it is reasonable to suppose
that if the prey are scarce, then the predators will die off; that is the net birth rate d < 0;
however, the prey, who may be feeding on plentiful vegetation, will have a net positive birth
rate a > 0. Neglecting intraspecies competition, the model becomes

Ṅ1 = N1(α − βN2),

Ṅ2 = N2(−γ + δN1),

where again the parameters are positive. Solutions of this model have been compared to
data collected by fur trappers for snowshoe hares (N1) and Canadian lynx (N2) over about
a century, beginning in 1845. These populations are observed to oscillate in time (as the
model predicts) with a period of approximately a decade. However, this model does not
take into account the important effect of the trappers themselves.

Each additional species adds a dimension to the phase space. For example, the three-
species food-chain model proposed by Rosenweig (1973),

Ṙ = R

(
1− R

K

)
− xcyc

CR

R + Ro

,

Ċ = −xcC
(

1− yc
R

R + Ro

)
− xpyp

PC

C + Co

,

Ṗ = −xpP
(

1− yp
C

C + Co

)
,

(1.11)

has been much studied. Here R, C, and P represent populations of the resource, consumer
(of the resource), and predator (of the consumer), respectively. The resource has a simple
logistic intraspecies competition; the remaining terms all correspond to interspecies com-
petition. These nonlinear terms do not reverse sign like the logistic term but instead saturate
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when the populations become large compared to the “saturation densities” Ro and Co. The
saturation models the fact, for example, that an animal has only a finite need for food. The
coefficients xi and yi represent “mass specific metabolic rates” for the consumer or predator.

Much more about biological modeling is contained in the excellent text (Murray
1993).

Mechanical Systems

A mechanical system consisting of a set of rigid pieces interacting through forces can be
modeled by a system of Newtonian equations using F = ma. For example, suppose there
are d components that can be idealized as points at locations qi ∈ R

3 with masses mi, i =
1, 2, . . . , d. If the force is assumed to be due to some potential energy V (q1, . . . , qd) =
V (q), then in Cartesian coordinates the equations have the form

miq̈i = − ∂

∂qi
V (q).

These equations can be converted into a first-order system by defining the momenta pi =
miq̇i so that

q̇i = pi

mi

,

ṗi = − ∂

∂qi
V (q).

(1.12)

Example: Consider a pair of coupled springs in the plane as shown in Figure 1.4: a mass,
m1 at position q1 = (x1, y1) hangs below a fixed support at the origin, (0, 0), on a linear
spring with spring constant k1. It is connected to a second mass, m2, at position q2 =
(x2, y2) by a second spring with spring constant k2. We let positive y be downward. If
a spring is assumed (somewhat artificially!) to have zero natural length, then its potential
energy is proportional to the square of its length, and the total spring potential energy is
Vs(q1, q2) = k1

2 |q1|2 + k2
2 |q1 − q2|2. If the force due to gravity is assumed constant (the

distances moved are small compared to the earth’s radius), the gravitational potential energy
is Vg = −m1gy1 − m2gy2. Newton’s equations of motion for this system then have the
form

m1ẍ1= −k1x1 − k2(x1 − x2),

m2ẍ2= −k2(x2 − x1),

m1ÿ1= −k1y1 − k2(y1 − y2)+m1g,

m2ÿ2= −k2(y2 − y1)+m2g.

These can be converted into a system of eight first-order equations of the form (1.12). These
equations are linear and can be solved by the eigenvalue methods in Chapter 2. Note that if
the springs have nonzero natural length, then the equations of motion are not linear but are
affine; see Exercise 9.9.

Equations (1.12) are an example of a “Hamiltonian system.” More generally, let
{(xi, yi) : i = 1, 2, . . . , n}denotenpairs of variables corresponding to a scalar configuration
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Figure 1.4. Coupled harmonic springs.

component, xi , and its corresponding momentum, yi ; each pair represents a degree of
freedom of the system. The Hamiltonian function is the total energy of the system

H(x, y) = T (y)+ V (x),

where T is the kinetic energy and V is the potential energy. It is easy to verify that the

single function H generates (1.12) if we set T =∑
i

|yi |2
2mi

and use the relations

ẋi = ∂H

∂yi
, ẏi = −∂H

∂xi
. (1.13)

Hamiltonian systems will be used as examples in many sections of this book; the geometry
of Hamiltonian dynamics will be studied extensively in Chapter 9.

Oscillating Circuits

Electrical circuits typically combine inductive elements that store magnetic energy, ca-
pacitive elements that store electrical energy, resistive elements that dissipate energy, and
voltage or current sources. Each circuit element is characterized by a relationship between
the current I that flows through it and the voltage V that drops across it. Nonlinearity arises
in circuits through elements such as vacuum tubes and solid-state devices such as transis-
tors or operational amplifiers. A circuit with a triode tube, studied by the Dutch electrical
engineer Balthazar van der Pol in 1922, gives rise to a famous system that bears his name
(Nayfeh and Mook 1979, §3.1.7; van der Pol 1922).
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L

C
V=f(I)

I

Figure 1.5. Van der Pol circuit.

A simplified circuit for van der Pol’s model is shown in Figure 1.5. It consists of
a single loop containing an inductor, a capacitor, and a vacuum tube. (Here the circuitry
driving the tube is omitted.) The voltage drop across an inductor is proportional to the rate
of change of the current through it: VL = Lİ . Capacitors are characterized by I = CV̇C ,
so that the current is proportional to the rate of change of the voltage drop. A vacuum tube
has a current-voltage characteristic that can be represented by a function, VT = f (I), here
assumed to be

VT = −RI +NI 3,

which means that it acts as a negative resistor (−RI)when the current is small but dissipates
energy when it is large.

Kirchoff’s law gives the equation for the circuit: the sum of the voltage drops around
any loop is zero (this is nothing more than energy conservation):

Lİ + VT + VC = 0.

Combining this with the equation for the capacitor gives the system

V̇C = 1

C
I,

İ = − 1

L
VC + R

L
I − N

L
I 3.

It is more traditionally written as a second-order equation for the current, obtained by
differentiating the current equation and substituting for V̇C :

Ï + 1

L

(
3NI 2 − R

)
İ + 1

LC
I = 0. (1.14)

We will see in Chapter 6 that this equation indeed has oscillatory solutions. Indeed, there is
a unique periodically oscillating solution that is an attractor; it is called a limit cycle. This
equation also exhibits a prototypical bifurcation, that is, a qualitative change in solutions
with a change in parameters; these will be studied in Chapter 8. The van der Pol oscillator
undergoes an Andronov–Hopf bifurcation when the negative resistance R crosses zero.
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Fluid Mixing

The motion of a fluid can properly be considered a dynamical system; however, its phase
space is a function space and has infinitely many dimensions. For example, to specify
the state of a fluid, its velocity, v, must be given at every point in the fluid domain—
this corresponds to the Eulerian velocity field . The simplest fluids obey a set of partial
differential equations (PDEs): the Navier–Stokes equations. As we noted in §1.1, the
dynamical systems in this book all will be finite dimensional.

There is an interesting case in which a finite dimensional dynamical system is relevant
to fluid mechanics: the motion of a small particle in the fluid. In the simplest approximation,
the particle will move along with the fluid so that its velocity ẋ at a point x, and time t in the
fluid must equal the fluid velocity field v(x, t). Supposing that the Navier–Stokes equations
have been solved (a large supposition!) so that v is known, we then see that the particle
obeys the system

ẋ = v(x, t). (1.15)

For a three-dimensional fluid, v ∈ R
3, and the phase space of our system is the domain

of the fluid motion. The dynamics represented by (1.15) is called the motion of a passive
scalar or the Lagrangian dynamics of the fluid.

If the particle is not neutrally buoyant, then its dynamics is influenced by gravity and
it cannot be treated as a passive scalar. Similarly, when the particle has significant mass,
there will be drag terms in the dynamical equations because the inertia requires a force to
cause the particle’s velocity to change. Moreover, a finite-size particle with inertia will
itself change the fluid flow as the fluid is forced to move around the particle—the dynamics
of the particle is no longer “passive.”

The passive scalar dynamics (1.15) does apply to the motion of a blob of dye placed in
the fluid, providing that it has the same density as the surrounding fluid and that molecular
diffusivity is small enough that it is unimportant over the time scale of interest.

An interesting example velocity field, called the “ABC flow,” was introduced by
Arnold in 1965:

v = (A sin z+ C cos y, B sin x + A cos z, C sin y + B cos x)T . (1.16)

This velocity field is periodic in space and is incompressible—it satisfies ∇ · v = 0 and
has the so-called Beltrami property: v = ∇ × v. Moreover, it is an exact solution of the
Navier–Stokes equations for any values of the amplitudes (A,B,C) when an appropriate
forcing term is added to counter viscous dissipation; see Exercise 6. When the viscosity
is large enough (or more precisely when the ratio of inertial forces to viscous forces—the
“Reynolds number”—is small enough) this solution is even a stable solution of the Navier–
Stokes equations. The ABC flow has also been used in studies of the dynamo effect: the
enhancement of magnetic fields by stretching of the fluid motion. The parameters ABC can
also be thought of as representing Arnold—the inventor, Beltrami—for the flow condition,
and Childress—who made fundamental contributions to dynamo theory.

Since theABC velocity field is steady (the Eulerian velocity depends only upon space)
the ODE system (1.15) is autonomous. However, the solutions to this set of equations are
very complicated, unless two of the parameters are set to zero. Indeed, this system is
a prototype chaotic system (Dombre et al. 1986). A signature of chaos is that nearby
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trajectories will often diverge exponentially quickly in time:

|x1(t)− x2(t)| ∼ eλt |x1(0)− x2(0)| . (1.17)

Here the exponent, λ, is called the Lyapunov exponent; see Chapter 7. For the ABC flow
with A = B = C = 1, it is found from numerical studies that λ ≈ 0.055. For example,
if the nearby trajectories correspond to points in a blob of dye of linear size 10−6, then
by t ≈ 280, the dye will have spread over a distance of order 2π , becoming well mixed
even in the absence of diffusion. On the other hand, the ABC flow also has many regular
trajectories; these often cover two-dimensional tori. The complex mixture of regular and
chaotic solutions makes the study of systems like this both challenging and fun!

1.5 Two-Dimensional Dynamics
Just as for the one-dimensional case that we discussed in §1.3, a graphical analysis of motion
in the plane is also often possible. Letting z = (x, y) represent a point in the plane, a general
two-dimensional ODE is

ż = f (z) =
(
ẋ

ẏ

)
=
(

P(x, y)

Q(x, y)

)
. (1.18)

As for the one-dimensional case, the equilibria, S = {(x, y) : P(x, y) = Q(x, y) = 0}, are
important organizing centers for the motion, and a first step in analyzing any ODE system
is to find these. In Chapter 4 and Chapter 6 we will study how the global dynamics is
influenced by the local dynamics in the neighborhood of equilibria.

Nullclines

To gain additional information about the equilibria it is also useful to consider the nullclines,
curves on which a single component of the velocity vanishes,

Nx = {(x, y) : P(x, y) = 0},
Ny = {(x, y) : Q(x, y) = 0}. (1.19)

Since these sets are defined by a single equation, they generically define curves or collections
of curves in the plane. On the set Nx the velocity is strictly vertical, and on the set Ny it
is horizontal. Equilibria correspond to the intersections of the nullclines: S = Nx ∩ Ny .
Inside each region bounded by nullcline curves or extending to infinity, the velocity vector
lies in a particular quadrant; see Figure 1.6. It is easiest to see why this is useful by an
example.

Example: The Lotka–Volterra system for the competitive interaction of two species is given
by (1.10); rewriting it for variables (x, y) gives

ẋ = x(a − bx − cy),

ẏ = y(d − ex − fy).
(1.20)
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P = 0

Q = 0

x

y

Figure 1.6. Sketch of nullclines (blue and red curves) and the corresponding vector
field. The vector field typically reverses on a nullcline upon passing through an equilibrium
(green dot).

Since x and y represent populations, they must be nonnegative. Consequently only the
first quadrant of the plane is relevant, so the phase space is M = {(x, y) : x ≥ 0, y ≥ 0}.
Recall that the coefficients (a, b, c, d, e, f ) are positive for the biological application. Each
nullcline is a union of two lines:

Nx = {x = 0} ∪
{
y = 1

c
(a − bx)

}
, Ny = {y = 0} ∪

{
y = 1

f
(d − ex)

}
.

SinceNx includes the y-axis where the velocity is vertical andNy includes the x-axis where
the velocity is horizontal, no orbits can cross the axes. Therefore, orbits that start in M

remain in M for all t ∈ R: it is an invariant set; see §4.1.
The set S = Nx ∩Ny typically consists of points, though there are special cases where

S contains a line (see Exercise 7). It is important to note that an equilibrium corresponds
to the intersection of one of the curves in Nx with one of the curves in Ny . This means, for
example, that the intersection of the line {(x, y) : x = 0} with

{
(x, y) : y = (a − bx)

/
c
}

is not an equilibrium since both curves are in Nx . Since we have assumed that all of the
parameters are positive, there are always three equilibria in M: the points (0, 0), (0, d

/
f ),

(a
/
b, 0). The fourth equilibrium at

(x∗, y∗) =
(
af − cd

bf − ce
,
bd − ae

bf − ce

)

is in the interior of M when the terms af − cd, bd − ae, and bf − ce are nonzero and have
the same sign. For the choice

s = sgn(af − cd) = sgn(bd − ae) = 1, (1.21)
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xd/e

d/f

a/c

a/b

R

y

Figure 1.7. Phase portrait of the Lotka–Volterra system for the case s = 1 where
there are four equilibria. The closed rectangle R is forward invariant. For this case, the
equilibrium at (x∗, y∗) is a global attractor for all orbits in the interior of E.

it is not hard to see that bf − ce > 0 as well, so that (x∗, y∗) ∈ int(M), the interior of the
phase space. In this case the vector field has the form shown in Figure 1.7. The nullclines
divideM into regions that correspond to fixed quadrants of the velocity vector; for this case
there are four such regions. Note that both ẋ and ẏ are negative for large enough values of
(x, y). In particular,

x > a
/
b ⇒ ẋ < 0,

so x is monotone decreasing. This implies that all initial conditions to the right of the vertical
line

{
(x, y) : x = a

/
b
}

move leftward, and if y > 0 they will eventually cross this line.
Similarly, whenever y > d

/
f , y decreases monotonically. Consequently, the rectangle

R = {(x, y) : 0 ≤ x ≤ a
/
b, 0 ≤ y ≤ d

/
f
}

is a forward invariant set: all orbits that start
in R stay in R thereafter. Moreover, every initial condition in M\R, the part of the phase
space that is not in R, eventually must enter R.

So far we have seen that the velocity vector lies in the third quadrant above and to
the right of the nullclines, as shown in Figure 1.7. The quadrant of the velocity typically
changes upon each crossing of a nullcline. For example, the velocity vector must lie in
the first quadrant near the origin since a and d > 0; therefore, (0, 0) is a source. For the
case shown, the two equilibria on the axes are saddles—the solutions that begin on the
axes are attracted to and eventually limit to the equilibria; however, all points near these
equilibria but off the axes eventually move away. The equilibrium at (x∗, y∗) is a sink;
indeed when s = 1, (x∗, y∗) is a global attractor for all initial conditions in the interior
of the first quadrant (see also Exercises 7 and 8). Confirmation of this qualitative analysis
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by linearization, and formal definitions for these terms, will be given in Chapter 2 and
Chapter 4.

The limiting behavior as t →∞ for each initial condition in the previous example is
very simple—each one is attracted to an equilibrium. One of the goals of our global analysis
in Chapter 6 will be to classify which asymptotic behaviors are possible and which actually
do occur.

Phase Curves

It is sometimes possible to find the solutions of (1.18) as curves in the phase plane by
ignoring their time dependence. The idea is that if an orbit is locally the graph of a function,
y = Y (x), then since ẏ = dY

dx
ẋ along a trajectory, the function Y obeys the differential

equation
dY

dx
= ẏ

ẋ
= Q(x, Y )

P (x, Y )
= F(x, Y ). (1.22)

Note that this equation is a single, first-order ODE for the function Y (x); usually it is nonau-
tonomous since the new vector field F(x, Y ) depends on the new independent variable, x.

Example: The system
ẋ = ex+y(x + y),

ẏ = ex+y(x − y)
(1.23)

is not obviously explicitly solvable for (x(t), y(t)). However, the equation for the phase
curves, (1.22), is relatively simple:

dy

dx
= x − y

x + y
.

Since this ODE is nonautonomous, it cannot be solved using (1.6); however, it does fall into
a classical case first treated by Leibniz in 1691, that of homogeneous ODEs. Such equations
can be solved explicitly using a variable transformation trick (see, e.g., (Ince 1956)): define
a new variable z = y

/
x so that

dz

dx
= 1

x

dy

dx
− y

x2
= 1

x

(
1− z

1+ z
− z

)
= − (z+ 1)2 − 2

x(1+ z)
.

Since the vector field for this equation is a product of a function of z and a function of x, it is
separable and can be solved explicitly. Generally a system of the form dz

/
dx = F(z)G(x)

has a quadrature solution of the form∫ z

zo

dz

F (z)
=
∫ x

xo

G(x)dx. (1.24)

For our system we obtain, after some algebra,

y = −x ±
√

2x2 + c. (1.25)
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There are two branches to this solution, indicating that the assumption that y = Y (x) is
a graph fails—indeed it does whenever y = −x. However, the orbits can be obtained by
squaring (1.25):

(y + x)2 − 2x2 = c.

Consequently, the orbits correspond to a family of hyperbolas. Our solution, however, has
given us no information about the time dependence of the trajectories.

The ODE (1.22) does not make sense when P vanishes; it can, however, be viewed
as a differential form:5

α = −Q(x, y)dx + P(x, y)dy. (1.26)

Along an orbit, dx = Pdt and dy = Qdt so thatα(x(t), y(t)) = (−PQ+QP) dt =
0 for any trajectory. The more general form (1.26) frees us from using the particular
parameterization (x(t), y(t)) of the trajectory; any curve C = {(x(s), y(s)) : s ∈ R} for
which α|C ≡ 0 is a trajectory. A differential form is exact if it is a perfect derivative,
α = dH ; in other words, since dH = (∂H

/
∂x)dx + (∂H

/
∂y)dy, then

∂H

∂x
= −Q, ∂H

∂y
= P.

In this case the system (1.18) is Hamiltonian, (1.13). Moreover, since

α(x(t), y(t)) =
(
∂H

∂x

dx

dt
+ ∂H

∂y

dy

dt

)
dt = dH

dt
dt = 0,

the Hamiltonian is constant along the orbits, and they lie on the energy contours,
H(x, y) = E.

More generally, the one-form α may be a multiple of a perfect differential:

α = F(x, y)dH. (1.27)

In this case the system (1.18) has the form

ẋ = F
∂H

∂y
, ẏ = −F ∂H

∂x
.

This reduces to the Hamiltonian system (1.13) if we formally define the new time variable,

τ =
∫ t

0
F(x(s), y(s))ds, (1.28)

because dx
dτ
= dx

dt
1
F
= ∂H

∂y
, etc.

Example: The system (1.23) is easily seen to fall into the case (1.27) with

H = 1

2

(
y2 − x2

)+ xy (1.29)

and F = ex+y . Consequently, the phase curves lie on contours of H . The Hamiltonian
dynamics in the new time τ is linear and can easily be solved using the methods of Chapter 2;
see Exercise 2.2. The contours of H are shown in Figure 1.8.

5Adifferential one-form is a linear combination of the differentialsdxi . These are used extensively in differential
geometry.
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Figure 1.8. Phase portrait of the flow for (1.23), or equivalently, the contours of
the Hamiltonian (1.29). The red line is the unstable manifold of the origin, and the blue is
the stable manifold. See Chapters 2 and 4.

Although the phase curve equation (1.22) is sometimes useful (see §6.2), it is not of
much help in general: for most ODEs, (1.22) will not have solutions in terms of “elementary”
or even “special” functions, such as Bessel or elliptic functions. Nevertheless, classical texts
on ODEs contain many such “tricks” that work on special classes of systems (Ince 1956).
However, even if analytical solutions can be obtained, their behavior is often difficult to
extract from the often complex formulas.

1.6 The Lorenz Model
Even though many physical systems are modeled by PDEs—infinite dimensional dynamical
systems—there are cases in which the dynamics is sufficiently dissipative that it contracts
onto a finite dimensional subspace. Indeed, there may even exist a finite dimensional set to
which all solutions are attracted. This set is often a fractal (see §7.3), but in some cases it
can be shown to be a subset of a smooth manifold, a so-called inertial manifold (Eden et al.
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z=0

z=H

Tc(z)

x=0 x=L

V

Figure 1.9. Lorenz fluid model.

1994). In this case the long time dynamics could, at least in principle, be studied using an
ODE model.

There are other cases in which a finite dimensional approximation of a PDE is ap-
propriate. For example, near the onset of an instability, there are often only finitely many
unstable modes (solutions of a spatial eigenvalue problem). The weakly nonlinear dynamics
for parameters just beyond the threshold of instability is often very well approximated by a
finite dimensional system.

In 1963, Edward Lorenz studied such a model in a famous paper entitled “Deter-
ministic Nonperiodic Flow” (Lorenz 1963). Lorenz was studying a simple model for the
weather—a fluid that moves only in two dimensions and is contained in a rectangular box.
It is heated from below; the lower boundary, z = 0, has temperature To; and it is cooled at
the top z = H with temperature To−8T ; see Figure 1.9. When the temperature difference
is small, the fluid is motionless and the temperature decreases linearly from the bottom to
the top of the box—this is the conducting state, Tc = To − 8T z

H
. The PDEs that model

perturbations from this state are called the Boussinesq equations:

∂

∂t
∇2ψ + (v · ∇)∇2ψ = ν∇4ψ + gα

∂θ

∂x
,

∂

∂t
θ + (v · ∇) θ = 8T

H

∂ψ

∂x
+ κ∇2θ.

(1.30)

Here the fluid velocity is given by v = ŷ × ∇ψ , where ψ(x, z, t) is called the stream
function—consequently, the velocity is assumed to lie in the verticalxz-plane. The nonlinear
terms are represented by the advective operator v · ∇. The perturbation in temperature from
the conducting state is represented by θ(x, z, t) = T − Tc. The parameters in the equations
are the kinematic viscosity ν, gravitational acceleration g, thermal expansivity α (i.e., the
coefficient of thermal expansion), and thermal diffusivity κ .

At a critical value of the temperature difference 8T , the conducting state becomes
unstable and the fluid will begin to move. The motion is in the form of a convection roll,
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with hot fluid rising, being cooled, and then falling. Lorenz represented the roll by the
spatial forms

ψ = A sin
(
πx
/
L
)

sin
(
πz
/
H
)
,

θ = B cos(πx
/
L) sin(πz

/
H)− C sin(2πz

/
H)

(1.31)

that depend upon three amplitudes; A(t) represents the fluid velocity, and B(t) and C(t)
represent the perturbation of the temperature. The time dependence of these amplitudes
can be obtained by substituting the ansatz (1.31) into the Boussinesq equations. This form
will not give an exact solution of (1.30) because the advective nonlinear terms will generate
spatial structure that is not represented by the assumed three modes. Lorenz applied the
idea of Galerkin truncation to this system by neglecting all of these additional terms. The
result is a system of three ODEs for (A,B,C):

Ȧ = πgα

Lk2
B − νk2A,

Ḃ = π8T

LH
A− 4π2

LH
AC − κk2B,

Ċ = π2

LH
AB − 4π3κ

H 2
C,

(1.32)

where k2 = π2(L−2 + H−2) is a squared wavenumber. These ODEs can be scaled to
eliminate many of the parameters (see Exercise 9), defining new variables, x(τ), y(τ ), z(τ ),
that are rescaled amplitudes—do not confuse these with the spatial variables of the original
PDEs—that depend upon the rescaled time τ to give a simplified set of equations:

ẋ = σ(y − x),

ẏ = rx − xz− y,

ż = xy − bz.

(1.33)

The new parameters are the Prandtl number σ = ν/κ , representing the competition between
viscous and thermal diffusions; the Rayleigh number r = gα8T

κν
π2

L2Hk6 , representing the

applied heat; and a geometric factor b = ( 2π
Hk

)2
.

We will return to the Lorenz equations several times in later chapters. In particular
the structure of their equilibria and attractors will be investigated in Chapter 4 and their
chaotic dynamics in Chapter 7.

1.7 Quadratic ODEs: The Simplest Chaotic Systems
As we will discuss in Chapter 2, the simplest dynamical systems are linear in their variables;
although their dynamics is not all that interesting, linear models do help us understand
behavior of more general systems in the neighborhood of equilibria. By contrast, nonlinear
ODEs like the Lorenz model and the ABC flow can have amazingly complex solutions.
This complexity was discovered by Lorenz in his numerical study of (1.33) and was given
the name chaos (albeit in a different context) by T.Y. Li and J.A. Yorke in 1975 (Li and
Yorke 1975).
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Table 1.1. Quadratic, chaotic differential equations.

Sprott’s # ODE
Reduced Parameters

(others set to +1)
Chaotic Parameter

Values

B
ẋ = ayz, ẏ = bx − cy

ż = d − exy (ae > 0)
d d = 1

C
ẋ = ayz, ẏ = bx − cy

ż = d − ex2, (abce > 0)
d d = 1

F
ẋ = ay + bz, ẏ = cx + dy

ż = ex2 − f z
c, d c = −1, d = 0.5

G
ẋ = ax + bz, ẏ = cxz+ dy

ż = −ex + fy, (be > 0)
a, d a = 0.4, d = −1

H
ẋ = ay + bz2, ẏ = cx + dy

ż = ex − f z
a, d a = −1, d = 0.5

K
ẋ = axy − bz, ẏ = cx − dy

ż = ex + f z, (be > 0)
d, f d = 1, f = 0.3

M
ẋ = −az, ẏ = −bx2 − cy

ż = d + ex + fy
d, e d = e = 1.7

O
ẋ = ay, ẏ = bx − cz

ż = dx + exz+ fy
b, f b = 1, f = 2.7

P
ẋ = ay + bz, ẏ = −cx + dy2

ż = ex + fy, (be > 0)
a, c a = 2.7, c = 1

Q
ẋ = −az, ẏ = bx − cy

ż = dx + ey2 + f z
d, f d = 3.1, f = 0.5

S
ẋ = −ax − by, ẏ = cx + dz2

ż = e + f x
b, e b = 4, e = 1

1 a
...
x + bẍ − cẋ2 + dx = 0 b b = 2.017

2
a

...
x + bẋ − cx2 + d = 0,

(ab > 0)
d d = 0.025

Informally, chaos corresponds to aperiodic motion that exhibits “sensitive dependence
on initial conditions.” That is, the solutions of two nearby initial states rapidly diverge from
one another. Typically the divergence is exponential as in (1.17). A formal definition of
chaos will be given in Chapter 7.

As we will see in Chapter 6, chaos cannot occur for one- or two-dimensional ODE
systems. Accordingly, three-dimensional systems, like the Lorenz model, are the lowest-
dimension, autonomous ODEs that can exhibit chaos. The Lorenz model (1.33) is also
remarkable in that the nonlinearity is of particularly simple form—it is contained in just two
quadratic terms, xy and xz.

The general quadratic system in three dimensions has 30 terms: each equation can
have a constant term, three different linear terms, and six distinct quadratic terms. Clint
Sprott set himself the task of finding the simplest such systems as measured by those with
the minimal number of terms (Sprott 1994). He looked for chaotic behavior numerically in
systems that have a single quadratic term and came up with a list of equations that exhibited
chaos for some range of parameter values. A subset of these are listed in Table 1.1 with
Sprott’s original labeling.

These equations have up to six parameters, a, b, . . . , f . However, upon rescaling the
variables—like we did for the Lorenz system—the number of relevant parameters can be
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reduced to one or two; these are called the reduced parameters in the table (see Exercise 10).
The values of these reduced parameters for which Sprott observed chaotic behavior are listed
in the last column.

You, the reader, are encouraged to adopt one of Sprott’s systems as your very own.
Throughout this text a number of exercises will refer to this system. You can also apply many
of the techniques that will be covered in later chapters to the study of your system. Many of
these systems have not been completely analyzed and you may discover new phenomena
in your study!

1.8 Exercises
1. In population dynamics, depensation or the Allee effect (Allee et al. 1949) corresponds

to the reduction in birth rate when a population is small due to the difficulty of finding
mates and the harmful effects of inbreeding. A simple model to account for this that
generalizes the logistic model (1.7) is

Ṅ = −rN
(

1− N

E

)(
1− N

K

)
,

where 0 < E < K .

(a) Discuss the biological meaning of the variable N(t) and the parameters r, E,
and K .

(b) Analyze this system using the methods of §1.3, assuming r, E,K > 0.

2. “Habitat conversion from forests to agriculture and then to degraded land is the single
biggest factor in the present biological diversity crisis” (Dobson, Bradshaw, and
Baker 1997). Let F be the area covered by forest, A the area devoted to agriculture,
U the unused land area, and P the human population. A simple model for habitat
conversion is

Ḟ = sU − dPF,

Ȧ = dPF + bU − aA,

U̇ = aA− (b + s)U,

Ṗ = rP

(
1− h

A
P

)
.

(1.34)

(a) Interpret the constants s, d, b, a, and h in the model. In particular, what is the
assumed carrying capacity of this environment? What is the interpretation of
the nonlinear term dPF ? Why is it reasonable to include the area U in the
model?

(b) So that this model makes sense, the total land area, T , must be constant. Demon-
strate that this is the case for (1.34). Reduce the model to three equations using
the fact that T is constant.

(c) Find the equilibrium solution(s) for this model for a given total area T .
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3. The Michaelis–Menton mechanism describes the catalysis of a reaction by an enzyme
(Michaelis and Menten 1913). The chemical notation for this reaction is

E + S

k1−→←−
k−1

ES
k2−→ E + P.

Here the enzyme E combines with the substrate S to make an intermediate complex,
ES, that is converted into the product P , releasing the enzyme for another reaction.

The notation A
k−→ B refers to the elementary system ḃ = ka, ȧ = −ka, where

b and a are the concentrations of species A and B, and k is the rate constant. A

binary reaction, such as A + B
k−→ C, corresponds to the nonlinear system ċ =

−ȧ = −ḃ = kab. Note that these elementary reactions have conservation laws that
reflect the conversion of one species into another. For example, in the latter case
c(t)+ a(t) = constant and c(t)+ b(t) = constant.

(a) Convert the Michaelis–Menton reaction into a system of four ODEs for the
concentrations e, s, c, and p of the enzyme, substrate, complex, and product,
respectively. Each arrow in the reaction diagram above refers to an elementary
reaction that adds to the rates.

(b) There are two conservation laws for your system. Assuming that the initial
product, p(0), and complex, c(0), concentrations are zero, these two laws can
be thought of as conservation of enzyme, e(0) = eo, and substrate, s(0) = so.
Use these two laws to eliminate p(t) and e(t) from your four equations, leaving
a system of two ODEs.

(c) Define new variables τ = k1eot , S = s
/
Ks,C = c

/
eo, whereKs = (k−1+k2)

/
k1, and rescale the two equations. Show that they can be written

dS

dτ
= −S + (1− η + S)C,

ε
dC

dτ
= S − (1+ S)C

with the dimensionless parameters ε = eo
/
Ks and η = k2

/
(k−1 + k2).

(d) Often the parameter ε & 1, which indicates that the complex evolves much
more rapidly than the substrate. Consider the limit ε = 0, and reduce your
system to a single equation for S. The saturating nonlinearity in this ODE is
typical of catalytic reactions.

4. A system of point masses that are coupled by harmonic springs is defined by the
equations

miẍi = −ki(xi − xi+1)− ki−1(xi − xi−1), i = 0, . . . , n− 1,

where x ∈ R, xn ≡ xo, x−1 ≡ xn−1, and k−1 ≡ kn−1.

(a) Describe the physical system that these equations model.
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θ

r

mg

Figure 1.10. Spring-pendulum of Exercise 5.

(b) Rewrite the system of n second-order equations as a system of 2n first-order
equations.

(c) Write the system in (b) as a matrix differential equation (see §2.1).

5. The planar spring-pendulum is modeled by the set of equations

mr̈ = mrθ̇2 +mg cos θ − k(r − L),

r2θ̈ =−2rṙ θ̇ − gr sin θ.
(1.35)

(a) Describe the physical system (e.g., Figure 1.10) that these equations model and
explain each term in the equations.

(b) Define the “angular momentum” by pθ = mr2θ̇ and the radial momentum by
pr = mṙ . Rewrite the spring-pendulum system as a set of four first-order ODEs
for x = (r, θ, pr, pθ ).

(c) Find the equilibrium solution(s), xeq , of the equations, i.e., those solutions for
which x is constant.

6. Consider the ABC vector field (1.16).

(a) Show that (1.16) is incompressible: ∇ · v = 0.

(b) Show that (1.16) satisfies the Beltrami property: v = ∇ × v.

(c) Show that (1.16) is a solution of the Euler equation

∂

∂t
v + v · ∇v = −∇P

for some suitable pressure P . The simplest way to do this is to use the vector
identity v · ∇v = 1/2∇(v · v)− v ×∇ × v.

(d) Show that (1.16) is a solution of the Navier–Stokes equations

∂

∂t
v + v · ∇v = ν∇2v + F

for some suitable choice of forcing field F .
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7. The Lotka–Volterra system (1.20) has a number of possible phase portraits depending
upon parameters. To investigative these it is first convenient to eliminate as many
parameters as possible.

(a) Rescale time and the variables x and y using the scaling transformations

x = αξ, y = βη, and t = δτ

to obtain the differential equations for the new variables (ξ(τ ), η(τ )). Show
that the parameters (α, β, δ) can be selected to obtain the simplified model

ξ̇ = ξ(1− ξ − Cη),

η̇ = Dη(1− Eξ − η),

where C,D,E > 0.

(b) Show there are five distinct possibilities for the nullclines depending upon the
values of C and E. Sketch the phase portraits for each case.

(c) Find the set of initial conditions in each case that are asymptotic to each of the
equilibria.

8. The principle of competitive exclusion states that if two species occupy the same
ecological niche, then one of them will become extinct. For the Lotka–Volterra
model (1.20), being in the same “niche” means that c

/
b = f

/
e, for this implies that

the competitive effect of y on x is relatively the same as that of y on itself. (This is
the same as CE = 1 for the scaling in Exercise 7.) Prove the exclusion principle for
the Lotka–Volterra model in this case (with one exceptional value).

9. Derive the Lorenz model (1.33) from the Boussinesq equations (1.30).

(a) Substitute (1.31) into (1.30) and collect terms with common spatial dependence.
Truncate by neglecting all terms that do not depend upon space in the same way
as the terms in (1.31) to obtain the three ODEs (1.32).

(b) Define x = c1A, y = c2B, z = c3C, and τ = c4t to obtain the differential
equations for x(τ), y(τ), and z(τ ). Choose the constant scaling factors ci so
that the equations simplify to obtain the Lorenz model (1.33).

10. Adopt one of Sprott’s quadratic systems from Table 1.1 as your very own ODE model.6

This model will be referred to in the exercises in each chapter.

(a) From your variables (x, y, z) and t define a new set of variables (ξ, η, ζ ) and τ
using a general scaling transformation

x = αξ, y = βη, z = γ ζ, and t = δτ

to find a set of differential equations for (ξ(τ ), η(τ ), ζ(τ )) that have the min-
imum number of parameters. Note that the chain rule gives dx

dt
= α

δ

dξ

dτ
, etc.

You will need to solve four nonlinear equations to obtain (α, β, γ, δ) in terms of
6If your system is a single third-order equation, first rewrite it as a system of three first-order equations.
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(a, b, c, . . .) so that all the parameters in your ODEs for (ξ, η, ζ ) are 1 except
for those listed as “reduced parameters” in the table (keep the same signs in the
equations). The nonreduced parameters should be assumed to be nonzero, and
in some cases (noted in the table) they may have to be assumed to have a certain
sign. Note that the “reduced parameters” will be different from the original
ones, e.g., d → d̂ .

(b) For your reduced system of ODEs (which you can write as x, y, z again, and
drop the “hats” on the reduced parameters) find all the equilibria, i.e., real-valued
points (x, y, z) such that ẋ = ẏ = ż = 0. Is the number of equilibria constant
as the (reduced) parameters vary? Do the equilibria ever collide? Discuss.





Chapter 2

Linear Systems

. . . instead of the great number of precepts of which logic is composed, I believed
that the four following would prove perfectly sufficient for me . . . never to accept
anything for true which I did not clearly know to be such . . . divide each of
the difficulties under examination into as many parts as possible . . . conduct
my thoughts in such order that, by commencing with objects the simplest and
easiest to know, I might ascend by little and little, and, as it were, step by step,
to the knowledge of the more complex . . . and the last, . . . make enumerations
so complete, and reviews so general, that I might be assured that nothing was
omitted. (René Descartes, Discourse on the Method of Rightly Conducting the
Reason, and Seeking Truth in the Sciences, 1637)

In this chapter we will review and extend the standard techniques for solving linear systems
of ordinary differential equations (ODEs). Linear differential equations are primarily im-
portant because their behavior determines the stability of orbits of more general, nonlinear
systems.

Much of the material on linear systems is included in elementary courses on differential
equations, so our presentation will be brief. We will, however, introduce some crucial
stability concepts that will be useful in more general contexts, and we will pause to consider
a couple of more advanced topics, such as the splitting of a matrix into its diagonalizable
(semisimple) and nilpotent parts, as well as the treatment of linear, time-periodic systems
(Floquet theory). The former will be essential to our study of bifurcations, and the latter to
our study of the stability of periodic orbits.

2.1 Matrix ODEs
The simplest differential equations are linear; they arise as models for systems in which
the response is proportional to the input. Such systems include harmonic springs, simple
electric circuits, population models, and many others. Formally, a function f is linear when
it satisfies the conditions of

� linear superposition: f (x + y) = f (x)+ f (y) for each x, y in its domain, and

� linear scaling: f (cx) = cf (x) for each scalar constant c.

29



30 Chapter 2. Linear Systems

Keep in mind that these conditions are typically only satisfied approximately in physical situ-
ations: a spring will become nonlinear if it is stretched sufficiently, and the population growth
rate will change if competition for resources is important—recall the logistic model (1.7).

The fundamental significance of linearity is that the phase space is naturally a vector
space—a set closed under the operations of addition and scalar multiplication. Since the
phase space variables are typically physical quantities, they are real variables; thus, it is
natural to assume that the phase space is R

n. When f is a vector field on R
n, we say it is a

function with domain and range R
n, i.e., f : Rn → R

n. For f to be linear, the superposition
and scaling conditions imply that its ith component must have the form fi(x) =∑n

j=1 aij xj
for a set of n× n constants aij . In other words, A = (aij ) is an n× n matrix and the vector
field is given in matrix notation as7

f (x) = Ax, x ∈ R
n.

The resulting differential equation is

dx

dt
= Ax. (2.1)

Since x is real-valued, A is assumed to be real as well.

Example (Harmonic Oscillators): A spring can be modeled by a linear force law: F =
−k(x − L), where L is the equilibrium length of the spring and k is the spring constant.
Newton’s law for the motion of the spring ismẍ = F = −k(x−L). This is a second-order
ODE, but it is not linear: it is affine because of the equilibrium term kL. However, it
can be transformed into a linear one by subtracting the equilibrium solution x∗ = L. Let
ξ = x−x∗ represent the deviation from equilibrium. Then ξ obeys the equation ξ̈ = − k

m
ξ .

This can be written in the standard form (1.4) as a system of first-order ODEs by letting
ξ̇ = η, so that η̇ = ξ̈ = −kξ/m. In matrix form, this system of two equations becomes

d

dt

(
ξ

η

)
=
(

0 1
− k

m
0

)(
ξ

η

)
.

Eigenvalues and Eigenvectors

The standard solution technique for linear ODEs utilizes the eigenvalues and eigenvectors
of the matrix A. Recall that an eigenvector, v, is a nonzero solution to the equation

Av = λv (2.2)

for an eigenvalue λ. This equation has a solution only when the matrix A− λI is singular
or equivalently when the characteristic polynomial

p(λ) ≡ det(λI − A) = 0. (2.3)

7We will not distinguish vectors or matrices with boldface type, preferring to define variables, such as x, to
be elements of a particular space, e.g., x ∈ R

n. This becomes particularly apropos when the phase space is not a
vector space, for then vector notation would not be appropriate.
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Since (2.2) is a homogeneous equation, if v is an eigenvector, then so is any nonzero multiple,
cv, for c ∈ R\0. As a consequence, one is free to choose the length of the eigenvector to
be any convenient, nonzero value.

The characteristic polynomial (2.3) is an nth-order polynomial and so it has n zeros,
λi . Some of the zeros may be identical, but these should be counted with their

� algebraic multiplicity: If a polynomial can be written p(r) = (r − λ)k q(r),
with q(λ) �= 0, then λ is a root with algebraic multiplicity k.

An eigenvalue whose algebraic multiplicity is larger than one is called a multiple
eigenvalue. The fundamental theorem of algebra states that an nth degree polynomial has
exactly n zeros when they are counted with their algebraic multiplicity.

Each eigenvector corresponds to a simple solution of the ODE: assume that x(t) =
c(t)v for c : R → R and substitute this into (2.1) to obtain

ċv = cAv = cλv,

which when vi �= 0 implies that ċ = λc since the eigenvector is constant. The general
solution of this scalar ODE is c(t) = eλt co for an arbitrary constant co. Therefore, the
vector

x(t) = coe
λtv (2.4)

is a solution to (2.1). Geometrically, (2.4) corresponds to a straight-line solution (when λ
is real): x(t) is a vector along v whose length changes exponentially with time.

Example: Consider the 2× 2 system

ẋ =
( −8 −5

10 7

)
x. (2.5)

The characteristic polynomial is p(λ) = λ2 + λ − 6 = (λ− 2) (λ+ 3), so there are two
eigenvalues, each with algebraic multiplicity one, λ1 = 2 and λ2 = −3. The eigenvector
equations (2.2) are

(A− 2I )v1 =
( −10 −5

10 5

)
v1 = 0 ⇒ v1 =

(
1
−2

)
,

(A+ 3I )v2 =
( −5 −5

10 10

)
v2 = 0 ⇒ v2 =

(
1
−1

)
.

This gives the two solutions

x1 = c1e
2t

(
1
−2

)
, x2 = c2e

−3t

(
1
−1

)
.

Because the vector field in the ODE (2.1) is linear, it obeys the linear superposition
principle; hence any linear combination of solutions is a solution: indeed, if x1 and x2 solve
(2.1), then so does y = c1x1 + c2x2 for any constants c1 and c2 since

ẏ = c1ẋ1 + c2ẋ2 = c1Ax1 + c2Ax2 = A(c1x1 + c2x2) = Ay.
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This implies that the set of solutions of (2.1) is a vector space: it is closed under the
operations of linear superposition and linear scaling. As a consequence, if there are k

different eigenvector solutions of the form (2.4), then there is a more general solution of the
form

x(t) =
k∑
i=1

cie
λi t vi (2.6)

for any values of the constants ci .
The case that there are n “different” eigenvectors is the optimal one, for then the sum

(2.6) has k = n terms with n arbitrary constants ci . Each eigenvector provides a distinct
piece of information if together theyspan the phase space R

n. The span of a set of vectors
is the set of points that can be reached by linear combinations of the vectors:

span {v1, v2, . . . , vn} ≡
{
w =

n∑
i=1

civi : c ∈ R
n

}
. (2.7)

If the span of the eigenvectors is R
n, then A is said to have a complete set of eigenvectors.

An equivalent statement is that the eigenvectors are linearly independent,8 which means
that the n× n matrix whose columns are given by the eigenvectors

P = [v1, v2, . . . , vn] (2.8)

is nonsingular (i.e., det P �= 0 so P−1 exists).

Example: For the system (2.5) each eigenvalue has an algebraic multiplicity of one. More-
over, the two eigenvectors are independent since

det [v1, v2] = det

(
1 1
−2 −1

)
= 1.

Superposition of the two solutions yields the more general solution

x(t) =
(

e2t c1 + e−3t c2

−2e2t c1 − e−3t c2

)
=
(

e2t e−3t

−2e2t −e−3t

)(
c1

c2

)
.

Matrices that have multiple eigenvalues (algebraic multiplicity larger than one) are
unusual in the set of all matrices, but they will arise especially in Chapter 8 for the study
of bifurcation theory. Such an eigenvalue may have more than one eigenvector, though it
need not. This number is called the

� geometric multiplicity: An eigenvalue λ has geometric multiplicity k if it has
k linearly independent eigenvectors vi , i.e., (A− λI)vi = 0 and dim(span{v1,

v2, . . . , vk}) = k.

Recall that the column space or range of a matrix is defined to be the span of its
column vectors: if B = [b1, b2, . . . , bn] is a matrix with column vectors bi , then

rng(B) = span {b1, b2, . . . , bn} . (2.9)
8Here we are speaking of eigenvectors—not generalized eigenvectors; see §2.6.
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The rank of B is the dimension of its range:

rank(B) ≡ dim (rng(B)) . (2.10)

Accordingly, the geometric multiplicity of λ is rank ([v1, v2, . . . , vk]).
Alternatively, since the eigenvector is a solution of a homogeneous equation

(A− λI) v = Bv = 0, it is appropriate to consider the null space or kernel,

ker(B) ≡ {v ∈ R
n : Bv = 0

}
. (2.11)

Consequently, each eigenvector is an element of ker(A− λI). The dimension of the kernel
is called the nullity of a matrix

nullity(B) ≡ dim(ker(B)). (2.12)

Consequently, the geometric multiplicity of λ is nullity(A−λI). The fundamental theorem
of linear algebra implies that

nullity(B)+ rank(B) = n (2.13)

when B has n columns.

Example: The matrix

A =

 1 1 0

0 1 0
0 0 2




is upper triangular, so the eigenvalues can be read directly from the diagonal, λ ∈ {1, 1, 2}.
The algebraic multiplicity of λ = 1 is two, and the rank of

A− I =

 0 1 0

0 0 0
0 0 1




is two since there are two independent vectors in the columns, so its nullity is one. In fact,
the complete family of solutions to (A− I ) v = 0 corresponds to the vectors v = (c, 0, 0)T

for any c ∈ R. These vectors all lie along the x-axis and define a one-dimensional space,
ker(A− I ); consequently, the geometric multiplicity of λ = 1 is one.

A basic theorem of linear algebra states that the geometric multiplicity of λ is at most
its algebraic multiplicity. As we will see in §2.6, there are n independent eigenvectors
when the geometric multiplicity of each eigenvalue λ is equal to its algebraic multiplicity;
otherwise there is a deficiency of eigenvectors.

Diagonalization

When the matrix of eigenvectors, P = [v1, v2, . . . , vn], is nonsingular (i.e., when there is
no deficiency), the eigenvectors can be used to diagonalize A. To see how this happens,
suppose first that we let A act on the n× 2 matrix [v1, v2]:

A[v1, v2] = [Av1, Av2] = [λ1v1, λ2v2] = [v1, v2]
[
λ1 0
0 λ2

]
.
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Note that the last form must be written with the matrix of eigenvalues on the right side of
the matrix of eigenvectors. Generalizing this to n eigenvectors gives

AP = PN, (2.14)

where N = diag(λ1, λ2, . . . , λn). Multiplying by P−1 on the left then gives

P−1AP = N. (2.15)

In this case, we say thatA is diagonalizable or semisimple. A transformationA→ P−1AP

is called a similarity. In other words, a semisimple matrix is one that can be diagonalized
by a similarity transformation.

When A is diagonalizable, the general solution to the ODE can be obtained by trans-
forming to eigenvector coordinates: let y = P−1x; then

dy

dt
= P−1 dx

dt
= P−1Ax = P−1APy = Ny.

This implies that in the new coordinates, the equations decouple, ẏi = λiyi , and have the
general solutions yi(t) = cie

λi t . In vector notation we can write y = etNc, where c is the
column vector of coefficients ci , and we define the symbol etN as the diagonal matrix9

etN ≡ diag
(
eλ1t , eλ2t , . . . , eλnt

)
. (2.16)

For the moment, this exponential symbol is defined only for this diagonal case (2.16); below,
we will generalize the concept to arbitrary matrices.

Using this notation, a solution to (2.1) is

x(t; c) = Py = PetNc.

Here, as in §1.2, we emphasize that x depends on the parameters c by adding them to
the arguments of the function x. To solve the initial value problem, x(0) = xo, note that
when t = 0 our solution reduces to xo = Pc. This equation is solvable for c since P is
nonsingular, so the solution becomes

x(t; xo) = PetNP−1xo. (2.17)

Since this solution is valid for each and every choice of initial condition, xo, we are justified,
according to the definition in §1.2, in calling (2.17) the general solution to (2.1).

Example (Symbolic Methods): All computer algebra programs have commands for diag-
onalizing and exponentiating matrices. Although the reader is encouraged to acquire the
skills to manipulate matrices by hand, it quickly becomes tedious to do so when the dimen-
sion exceeds three. Even the computation of a 3 × 3 determinant involves so many signs
that your author has to do the calculation several times to even hope to get the right answer!
Some simple commands to manipulate matrices and compute their exponentials are given
in the appendix.

9Note that we put the t on the left of N as it is a scalar that multiplies every element of N.
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A consequence of the eigenvector-eigenvalue analysis is that linear ODEs are essen-
tially trivial10—that is, the solution procedure reduces to linear algebra. However, it is
worth spending a little more time worrying about two things:

• What if some of the eigenvalues are complex (see §2.5)?

• What if the set of eigenvectors is not complete (see §2.6)?

We first pause, however, to consider the geometry of the phase portraits for two-
dimensional systems.

2.2 Two-Dimensional Linear Systems

The properties of the eigenvalues of the arbitrary 2 × 2 matrix, A = (a b

c d

)
, can be easily

obtained in general. Its eigenvalues are roots of the characteristic polynomial

p(λ) = λ2 − τλ+ δ = 0,
τ ≡ tr(A) = a + d,

δ ≡ det(A) = ad − bc.

(2.18)

Thus, the eigenvalues depend only on the values of τ , the trace ofA, and δ, the determinant
of A. The roots of p are

λ± = τ ±√8
2

, 8 ≡ τ 2 − 4δ = (a − d)2 + 4bc. (2.19)

Here, 8 is the discriminant of p. There are five different eigenvalue regions in the (τ, δ)-
plane, as shown in Figure 2.1. The insets in the figure show complex λ-planes and the dots
correspond to the two eigenvalues. The eigenvalues are real when 8 > 0 or equivalently
below the parabola δ = τ 2

/
4. In the upper half-plane 8 < τ 2, so that the real part of

the eigenvalues has the sign of τ . When 8 > 0 in the first quadrant, both eigenvalues are
real and positive, and when 8 > 0 in the second quadrant, both eigenvalues are negative.
These cases are called nodes. In the lower half-plane δ < 0 so that 8 > τ 2 and the two
eigenvalues have opposite signs; this case is called a saddle. Finally, above the parabola
8 < 0 so that the eigenvalues are complex and are conjugates of one another; these cases
are called foci. The real part of the eigenvalues is positive or negative depending upon the
sign of τ ; when there is an eigenvalue with positive real part the system is unstable (stability
is formally defined in §2.7).

Whenever 8 �= 0, there are two eigenvectors, v±, corresponding to the two eigenval-
ues, λ±. Provided that λ �= a, Gaussian elimination (elementary row operations) reduces
the eigenvector equation to

(A− λI) v =
(
a − λ b

c d − λ

)
v ∼

(
a − λ b

0 0

)
v = 0,

which has rank one. On the other hand, if λ = a, but λ �= d, then the first row could
be eliminated by a similar row operation. Note that the case λ = a = d is impossible

10“Trivial” is a technical term often used simply to indicate one’s superiority to one’s fellow beings. Use it with
care!
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Figure 2.1. Classification of the eigenvalues for a 2 × 2 linear system in the
parameter space of the trace, τ , and determinant, δ.

when 8 �= 0 since then λ = a ± 1/2
√
8. Consequently, when 8 �= 0 each eigenvalue has

exactly one eigenvector. Moreover, it is easy to verify that the two eigenvectors are linearly
independent.

When 8 �= 0 the matrix P = [v+, v−] is nonsingular, and according to (2.6) and
(2.17), the general solution is of the form

x(t) = c+eλ+t v+ + c−eλ−t v−. (2.20)

The five regions in the (τ, δ) parameter space correspond to geometrically distinct types of
motion—to distinct “phase portraits.” These can be easily understood using (2.20).

(A) Unstable node: λ+ > λ− > 0. In this case there are special “straight-line”
solutions corresponding to c+ = 0 or to c− = 0. For these cases x(t) grows exponentially
with t along the ray through the origin defined by the respective eigenvector. The sign of
the nonzero c determines whether the solution moves in the direction of v or −v. Since
there are unbounded solutions, this case is called unstable, as we will discuss further in
§2.7. When both c± �= 0 the solution is a curve, as shown in Figure 2.2. As t increases the
λ+ solution dominates, so the curves are asymptotically parallel to v+. By contrast, when
t → −∞, both terms approach zero, but eλ+t → 0 much more quickly than eλ−t , so the
solution curve approaches a ray defined by the vector v−.
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Figure 2.2. Phase portrait of an unstable node with v+ = (1,−1)T , and v− =
(1, 2)T and λ+ = 2λ−. The arrows denote the direction of motion.

(B) Stable node: λ− < λ+ < 0. The geometry is essentially the same to the previous
case, but the arrows will be reversed since the solutions asymptotically approach the origin
as t →∞. Since every solution is bounded as t →∞, this case is called stable. When t is
large, the exponential eλ−t is much smaller than eλ+t , so the solution curves are asymptotic
to v+ near the origin, opposite to the previous case. Furthermore, as t → −∞ the “−”
exponent dominates, and the curves are asymptotic to v−. Thus, the phase portrait is just
like that in Figure 2.2 with both the arrows and the vector labels v± reversed.

(C) Saddle: λ− < 0 < λ+. The straight-line solution c+v+eλ+t moves away from the
origin with increasing t , and the solution c−v−eλ−t asymptotically approaches the origin.
Because there are unbounded solutions, this case is called unstable—even though the special
“−” solution corresponds to solutions that approach the origin. More general solutions are
asymptotic to the v+ solution as t increases and to v− as t decreases, as shown in Figure 2.3.
If λ− = −λ+, the solution curves are hyperbolas with v± as asymptotes, so this case
is sometimes called “hyperbolic;”11 more generally, the solution curves are qualitatively
similar to hyperbolas.

(D) Unstable focus: λ± = α ± iβ, α > 0, β > 0. Since we assume that the matrix
A is real, whenever the eigenvalues are complex they are complex conjugates. This also
follows explicitly from the formula (2.19) since α = 1/2τ and β = 1/2

√|8|. It also follows
from (2.2) in this case that the eigenvectors are conjugates, v± = u ± iw. Finally, so that

11We reserve the term hyperbolic for the more general situation that Re(λi) �= 0; see §2.7.



38 Chapter 2. Linear Systems

x
1

x
2

v
+

v
-

Figure 2.3. Phase portrait of a saddle with v+ = (1,−1)T , and v− = (1, 2)T and
λ− = −2λ+. The arrows denote the direction of motion.

the solution is real, we must also assume that c± = 1/2(g ± ih) as well. In this case, simple
algebra using Euler’s formula,

e(α+iβ)t = eαt (cosβt + i sin βt) , (2.21)

can be used to rewrite (2.20) in the explicitly real form

x(t)= 1

2
(g + ih)eαt (cosβt + i sin βt)(u+ iw)+ 1

2
(g − ih)eαt (cosβt − i sin βt)(u− iw),

= eαt (g cosβt − h sin βt) u− eαt (g sin βt + h cosβt)w.

To unpack this solution, note that it can be written as the product of several terms. Letting
P = [u,w] be a matrix with columns u and w, we have

x(t) = eαtP

(
cosβt sin βt
− sin βt cosβt

)(
g

−h
)
. (2.22)

The motion consists of a clockwise rotation by angle βt applied to the vector (g,−h)T ,
generating a circle. This is followed by the application of the matrix P , transforming the
circle to an ellipse. Finally, the first coefficient corresponds to an exponentially growing
amplitude. Consequently, the motion is an expanding elliptical spiral, as shown in Figure 2.4.
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x
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Figure 2.4. Phase portrait of an unstable focus with u = (1, 1)T , and w =
(1,−2)T and α = 0.3β. Here the motion is counterclockwise since det[u,w] < 0.

Since multiplication by the matrix P preserves orientation when det(P ) > 0, the motion is
clockwise in this case; otherwise, it is counterclockwise.

(E) Stable focus: λ± = α ± iβ, α < 0, β > 0. Here the motion is still governed by
(2.22); however, in this case the motion spirals inward, approaching the origin as t →∞.

The boundaries between the five regions in Figure 2.1 correspond to special cate-
gories. If δ = 0, then one of the eigenvalues is zero. In this case we say that the equilibrium
is degenerate or nonisolated. Indeed, the straight-line solution corresponding to the zero
eigenvalue is an equilibrium for any value of the constant c. A third boundary case corre-
sponds to complex eigenvalues, but τ = 0.

(a) Unstable degenerate equilibrium: λ− = 0, λ+ > 0. This corresponds to the
positive τ -axis in Figure 2.1, i.e., the boundary between the unstable node and saddle
regions. The set of solutions x(t) = c−v− is a line of equilibria. Solutions that begin off
this line (with c+ �= 0) move to infinity along straight-line trajectories parallel to v+; see
Figure 2.5.

(b) Stable degenerate equilibria: λ+ = 0, λ− < 0. This corresponds to the negative
τ -axis in Figure 2.1, i.e., the boundary between the stable node and saddle regions. The
line of equilibria x(t) = c+v+ exponentially attracts all other solutions along lines parallel
to v−.

(c) Center: λ± = ±iβ. This case corresponds to the positive δ-axis in Figure 2.1.
Here (2.22) still applies, but since α = 0, the motion is confined to ellipses.
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Figure 2.5. Unstable line of equilibria for λ− = 0, λ+ > 0.

The eigenvalues have algebraic multiplicity two when 8 = 0, corresponding to the
parabola in Figure 2.1. There are two eigenvectors when the nullity of A− λI is two; this
can happen only when A − λI = 0, so that A is diagonal and a multiple of the identity.
More generally, nullity(A − λI) = 1. Thus, when the eigenvalues are equal, it is typical
that the geometric multiplicity is smaller than the algebraic multiplicity. In this case there
is only one eigenvector and it provides a solution of the form x(t) = ceλtv that involves
only a single arbitrary constant. Therefore, this solution cannot be the general solution; this
case will be treated in the coming sections.

2.3 Exponentials of Operators
An operator T on a vector spaceE maps a vector v ∈ E into another vectorw = T (v) ∈ E.
An operator is linear if it satisfies the superposition and scaling properties of §2.1. If E has
dimension n,and the vectors {e1, e2, . . . , en} are a basis for E, then a linear operator on E
can be represented by matrix A, by setting T (ej ) =∑n

i=1 aij ei so that the theory of linear
operators reduces to matrix algebra.12 However, the more general notation is useful since the
results in this section apply more generally to operators on infinite dimensional vector spaces.

12Note that the action of T on the j th basis vector has aij as its ith component. Using aij instead of aji is
natural since then the action of T on a general vector v =∑n

j=1 cj ej is T (v) =∑n
i=1 ei

∑n
j=1 aij cj . Thus T is

represented by the matrix A = (aij ) acting on the vector c of components of v.
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Suppose x ∈ E is a vector and that there is some notion of length or norm of x,
denoted by |x|. In this book, E will usually be Euclidean space and the norm will be the
ordinary Euclidean length. Given such a notion of length, a norm for any operator T on E
can also be defined as:

‖T ‖ = sup
|x|>0

|T (x)|
|x| = sup

|x|=1
|T (x)| , (2.23)

where sup denotes the supremum, which is the least upper bound. The ‖·‖ notation is used
to distinguish this operator norm from the vector space norm |·|. An operator for which
‖T ‖ <∞ is bounded .

Example: Suppose T (x) = Ax = (2 1
0 1

)
x. Let x = (a

b

)
and use the Euclidean norm so that

|x| = √a2 + b2. According to (2.23), ‖T ‖ can be computed by maximizing the function
f (a, b) = |T (x)|2 = (2a + b)2 + b2, subject to the constraint |x| = 1. One way to do this
is to use Lagrange multipliers: find the extrema of the function F = f − λ

(|x|2 − 1
)
. To

do this, differentiate with respect to a and b to obtain

∂F

∂a
= 4(2a + b)− 2λa = 0,

∂F

∂b
= 2(2a + b)+ 2b − 2λb = 0.

This can be written as a homogeneous linear system(
8− 2λ 4

4 4− 2λ

)(
a

b

)
=
(

0
0

)
(2.24)

which has a nonzero solution only when its determinant vanishes. This implies that λ =
3±√5. Solving the system above and normalizing the solution gives

(a, b) = 1√
10∓ 2

√
5

(
−2, 1∓√5

)
⇒ |T (x)|2 = 3±√5.

The larger value corresponds to the plus sign, which yields ‖T ‖ =
√

3+√5.
The value of the operator norm does depend upon the norm used for the vector space.

In the current example, the sup-norm for x, |x|∞ ≡ maxi |xi | would give ‖T ‖∞ = 3. In
the next chapter the sup-norm will be used often, as it simplifies some of the analysis.

A more instructive way to compute the operator norm for the finite dimensional case
is to use the equivalence between linear operators and matrices; then

|T (x)|2 = xT AT Ax = xT Sx

is a quadratic form in the symmetric matrix S = ATA formed from the product of the
transpose of A with A. As is well known, any symmetric matrix can be diagonalized by an
orthogonal transformation, i.e., there is a matrix O such that O−1 = OT and S = OTNO

with N diagonal. The eigenvalues of S are the elements of N = diag(r2
1 , r

2
2 , . . . , r

2
n); the

r2
i are all nonnegative since S is positive semidefinite (xT Sx ≥ 0). The nonnegative square
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roots of these elements, ri ≥ 0, are called the singular values of the original matrix T . The
transformation x = OT y can be used to simplify the expression for |T (x)|2:

|T (x)|2 = (OT y)T S(OT y) = y TO(OTNO)OT y = yTNy =
n∑
i=1

r2
i y

2
i .

Under the constraint that |x|2 = |y|2 = 1, the largest value this can take is the maximum of
the squared singular values. Consequently,

‖T ‖ = max
i=1,...,n

ri ,

so that every n× n matrix corresponds to a bounded linear operator.

Example continued: Note that for the example above, ATA = S = (4 2
2 2

)
, which is not

accidentally 1/2 of the matrix involved in the linear system (2.30). Consequently the squared

singular values are r2± = 3±√5, so that ‖T ‖ =
√

3+√5, as before.

The exponential of an operator T is formally defined by the power series

eT ≡
∞∑
k=0

T k

k! . (2.25)

If this series converges, it defines a linear operator as well. Convergence is not difficult to
see when T is bounded, as follows.

Lemma 2.1. If T is a bounded linear operator, then eT is as well.

Proof. Choose an arbitrary x ∈ E and consider the value of eT (x). By definition this is a
series whose terms are elements of E. The norm of this series is bounded by the sum of the
norms of each term. By the definition of the operator norm, for any x,

|T (x)| ≤ ‖T ‖ |x| ,∣∣T k(x)
∣∣ = ∣∣T (T k−1(x)

)∣∣ ≤ ‖T ‖ ∣∣T k−1(x)
∣∣ ≤ · · · ≤ ‖T ‖k |x| .

Consequently, each of the terms in the series eT (x) can be bounded by∣∣∣∣T (x)kk!
∣∣∣∣ ≤ ‖T ‖kk! |x| = Mk.

The series of real numbers

∞∑
k=0

Mk =
∞∑
k=0

‖T ‖k
k! |x| = e‖T ‖ |x|

converges for any finite value of ‖T ‖. By the Weierstrass M-test
∣∣eT (x)∣∣ ≤ e‖T ‖|x| and the

series for eT (x) converges uniformly in x. Moreover
∥∥eT ∥∥ ≤ e‖T ‖, so the exponential is a

bounded operator.
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Since, as we have seen, the norm of an n× n matrix is its maximum singular value,
then every matrix corresponds to a bounded linear operator. Thus Lemma 2.1 implies the
following.

Corollary 2.2. The exponential of every linear operator on R
n is a bounded linear operator.

The following properties of the exponential operator eT : E → E are easily verified
from the definition (2.25):

(i) e0 = I.

(ii)
(
eT
)−1 = e−T (term-by-term multiplication of the series for eT e−T ).

(iii) If A and B are commuting linear operators, i.e., AB − BA = 0, then eA+B = eAeB

(see Exercise 6).

(iv) If B is nonsingular, then eBAB
−1 = BeAB−1 (factors of B−1B cancel in each term of

the sum (2.25)).

(v) If N = diag(λ1, λ2, . . . , λn), then eN = diag(eλ1 , eλ2 , . . . , eλn) (since Nk =
diag(λk1, λ

k
2, . . . , λ

k
n)).

(vi) If v is an eigenvector of T , with eigenvalue λ, then eT v = eλv.

As noted above, for every linear operator on R
n, there is an associated matrix. Since

any matrix A commutes with itself, as well with any multiple of itself, rule (iii) implies that
if x(τ) = eτAx0, then

etAx(τ ) = etAeτAxo = e(t+τ)Axo = x(t + τ),

so that flowing forward for a time τ and then a time t is equivalent to flowing forward for
a time t + τ . This property will be shown to hold more generally for autonomous ODEs in
Chapter 4. Rule (iii) is not true more generally.

Example (Baker–Campbell–Hausdorff Theorem): Suppose we attempt to define a matrix
C by

eC = eAeB.

If the commutator
[A,B] = AB − BA (2.26)

is zero, then C = A + B by property (iii). The remarkable Baker–Campbell–Hausdorff
theorem implies more generally that if the norms ofA andB are small enough, thenC exists
and can be computed in terms of commutators of A and B. To compute the first few terms
in this expression, expand the exponentials in a power series:

eAeB =
(
I + A+ 1

2
A2 + 1

6
A3 + · · ·

)(
I + B + 1

2
B2 + 1

6
B3 + · · ·

)

= I + A+ B + 1

2

(
A2 + 2AB + B2

)+ 1

6

(
A3 + 3AB2 + 3A2B + B3

)+ · · · .
(2.27)

The matrix C can be computed term by term by its exponential expansion eC = I + C +
1/2C

2+ · · · . Both series have lowest-order term I and linear terms A+B. To construct the
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next few terms of C, set C = A+B +D+E + · · · , where D is quadratic in the matrices
A and B and E is cubic; then

eC = I + A+ B +
[
D + 1

2
(A+ B)2

]

+
[
E + 1

2
((A+ B)D +D(A+ B))+ 1

6
(A+ B)3

]
+ · · · .

(2.28)

Comparing the quadratic terms in (2.27) and (2.28) gives

D = 1

2

(
A2 + 2AB + B2)− 1

2
(A+ B)2 = 1

2
[A,B].

The cubic terms become

E= 1

6

(
A3 + 3AB2 + 3A2B + B3

)− 1

2
(A+ B)D − 1

2
D(A+ B)− 1

6
(A+ B)3

= 1

12

(
AB2 − 2BAB + B2A+ A2B − 2ABA+ BA2

)
= 1

12
[A, [A,B]]− 1

12
[B, [A,B]] .

Thus we see that (at least through the first few terms) apart from the linear terms, the matrix
C can be expressed solely in terms of commutators of the matrices A and B:

C = A+ B + 1

2
[A,B] + 1

12
[A, [A,B]] − 1

12
[B, [A,B]] + · · · .

An explicit although rather complicated formula for the coefficients of C was first obtained
by the Russian mathematician Eugene Dynkin in 1947 (Hall 2003).

Example (Nilpotent Matrices): If N is a nilpotent matrix, i.e., there is a k ≥ 0 such that
Nk = 0, then the exponential series terminates after a finite number of terms. This property
allows a simple computation of the exponential for some operators. For example, consider

A =
(
a b

0 a

)
=
(
a 0
0 a

)
+
(

0 b

0 0

)
= S +N.

Now [S,N ] = (0 ab

0 0

) − (0 ba

0 0

) = 0, so that by property (iii) eA = eSeN ; moreover, since
N2 = 0, and S is diagonal,

eA =
(
ea 0
0 ea

)
(I +N) = ea

(
1 b

0 1

)
.

Example (Roots of the Identity): If the matrix A is a root of the identity, then the series
separates into a set of simple subseries. For example, the matrix

σ =
(

0 1
−1 0

)
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has powers σ 2 = −I , σ 3 = −σ , and σ 4 = I , so its exponential is given by

etσ = I

∞∑
m=0

(−1)m

(2m)! t
2m + σ

∞∑
m=0

(−1)m

(2m+ 1)! t
2m+1 =

(
cos t sin t
− sin t cos t

)
(2.29)

since the two power series in t define the cosine and sine functions, respectively.

Example: If a matrix can be written as a sum of two commuting matrices whose exponentials
can be computed, then exponentiation is easy. For example,

B =
(

a b

−b a

)
= aI + bσ. (2.30)

Note by (2.26) that [aI, bσ ] = 0; indeed, any matrix commutes with a multiple of the
identity. Consequently (2.29) gives

etB = etaI etbσ = eat
(

cos(bt) sin(bt)
− sin(bt) cos(bt)

)
. (2.31)

2.4 Fundamental Solution Theorem
Theorem 2.3. Let A be an n× n matrix. Then the initial value problem

ẋ = Ax, x(0) = xo, (2.32)

has the unique solution x(t) = etAxo.

Proof. We first demonstrate that the proposed solution works. To compute the derivative,
use its basic definition as a limit with the series (2.25) and the fact that a matrix commutes
with a multiple of itself to obtain

d

dt
etA = lim

h→0

e(t+h)A − etA

h
= lim

h→0

ehA − I

h
etA = lim

h→0

(
1

h

∞∑
n=1

(hA)n

n!

)
etA

= lim
h→0

(
hA
h
+

∞∑
n=2

hn−1 An

n!

)
etA = lim

h→0

(
A+ h

∞∑
j=0

hj Aj+2

(j+2)!

)
etA = AetA.

Here, the last equality holds because the series in the last expression converges to a linear
operator, TA,h, and hTA,h → 0 as h→ 0. Since d

dt

(
etAxo

) = AetAxo = Ax, it is certainly
a solution.

To show that the solution is unique, suppose that y(t) is another solution. Then
differentiation and the chain rule imply

d

dt

(
e−tAy(t)

) = −Ae−tAy(t)+ e−tAAy(t) = [−Ae−tA + e−tAA
]
y(t) = 0.

The term in brackets is zero because the matrices A and e−tA commute. Therefore,
e−tAy(t) = yo a constant, so y(t) = etAyo by property (ii). Moreover, yo = xo, since
this solution must satisfy the initial value problem.
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c1 c2

c3

co
r

r

Figure 2.6. Flow compartment model.

We have reduced the problem of solving linear systems to that of finding the expo-
nential of the matrix A. If A has a complete set of eigenvectors, the exponential is easily
obtained by diagonalization.

Example (Compartmental Mixing): A chemical mixer consists of three tanks sequentially
connected by pipes; see Figure 2.6. A solution of salt with concentration co kg/liter flows
into the first tank at a flow rate of r liters/sec. The fluid is well mixed in this tank—by an
impeller—to have uniform concentration c1(t); it flows out to the second tank at the same
flow rate, r . This continues in the second tank with concentration c2 flowing to the third
with concentration c3. Finally, the fluid leaves the third tank at the same flow rate r . Since
the flow rates are equal, the total volume of fluid in each tank is constant in time; call these
values Vi . Each tank begins at t = 0 with zero salt concentration.

The ODE model that governs the concentrations is constructed by computing the rate
of mass flow into and out of each tank. For example, a mass of rco kg/sec flows into the
first tank and rc1 flows out. The complete model is the system

d

dt
V1c1 = r(co − c1),

d

dt
V2c2 = r(c1 − c2),

d

dt
V3c3 = r(c2 − c3).

This system is affine because of the constant term rco in the first equation. As usual, we
can eliminate this by subtracting the equilibrium solution c∗1 = c∗2 = c∗3 = co, i.e., defining
new dynamical variables xi = ci − co; then we obtain a linear initial value problem of the
form (2.32) with initial condition x(0) = (−co,−co − co)

T and matrix

A =

 −α 0 0

β −β 0
0 γ −γ


 ,

where α = r
/
V1, β = r

/
V2, and γ = r

/
V3. This matrix has eigenvalues −α, −β, and

−γ ; note that this implies that the equilibrium is a stable node—all solutions limit to this
constant solution as t →∞. For numerical simplicity, let us assume that the fluid volumes
are V1 = 1, V2 = 1

/
3, and V3 = 1

/
2 liters, so that the eigenvalues are λ = −r , −3r , and
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−2r . To compute the exponential of A we use properties (iv) and (v) of the exponential. A
short calculation gives the matrix of eigenvectors

P =

 2 0 0

3 1 0
6 −2 1


 .

The matrix exponential etA = PetNP−1 is then

etA =




e−rt 0 0
3

2

(
e−rt − e−3rt) e−3rt 0

3
(
e−rt − 2e−2rt + e−3rt

)
2
(
e−2rt − e−3rt

)
e−2rt


 .

As a check, note that when t = 0 this reduces to the identity. Finally, multiplying by the
initial vector x(0) and adding back the equilibrium gives the solution c(t) = x(t)+ co,

c(t) = co




1− e−rt

1− 1

2

(
3e−rt − e−3rt

)
1− 3e−rt + 3e−2rt − e−3rt


 .

Consequently, the solution approaches the equilibrium; for large t the deviation from
the equilibrium state is along the slowest decaying eigenvector and is approximately
−1/2v1e

−rt .

We have shown that the vector etAxo is the unique solution to (2.32). Now consider
a set of initial conditions xjo = vj , j = 1, 2, . . . , n, with arbitrary initial vectors vj .
Since the corresponding solutions are the vectors xj (t) = etAvj , we can put the initial
conditions into a matrix Po = [v1, v2, . . . , vn] and the solutions into a matrix P(t) =
[x1(t), x2(t), . . . , xn(t)] to demonstrate that P(t) is the solution of a matrix differential
equation:

Theorem 2.4. The matrix initial value problem

d

dt
P = AP, P(0) = Po, (2.33)

has the unique solution P(t) = etAPo.

In particular, when Po = I , the solution to (2.33) is Q(t) = etA; this is called the
fundamental matrix solution. We will return to it in §2.8.

We now return to the problem of how to compute the exponential of a matrix for
the general case. As we will see in §2.6, when a matrix is deficient, it can be written as
the sum of a semisimple matrix and a nilpotent matrix that commute. This will make the
computation of the exponential possible in general. First, however, we pause to consider
the complex case.
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2.5 Complex Eigenvalues
We saw in §2.2 that when the eigenvalues are complex it is possible to use complex eigen-
vectors and Euler’s formula (2.21) for the complex exponential to compute the solutions.
However, if the dynamical system is real, then values of etA must be real as well, and it
seems strange to have complex values for the intermediate results. As we will see, this can
be avoided.

First, note that if the matrix A is real, then so are the coefficients of the characteristic
polynomial p(λ) = det(λI −A). Therefore, if p(λ) has a complex root λ = a+ ib, then its
conjugate λ̄ = a− ib is also a root. Moreover, ifAv = λv, thenAv̄ = λv = λ̄v̄. Therefore,
the corresponding eigenvectors are also complex conjugates.

Example: For the matrix A = ( 0 1
−1 0

)
, the eigenvalues are λ = ±i and the eigenvectors are

v = ( 1
±i
)
. Choosing P = (1 1

i −i
)

and using (2.15) and property (iv) of Corollary 2.2 gives

etA = PetNP−1 = 1

2

(
1 1
i −i

)(
eit 0
0 e−it

)(
1 −i
1 i

)
=
(

cos t sin t
− sin t cos t

)
,

which is the same as the real matrix, (2.29), obtained using the infinite series.

Suppose that the n× n real matrix A has a complex eigenvector v and eigenvalue λ.
These can be written in terms of their real and imaginary parts as

λ = a + ib, v = u+ iw.

Since Av = λv = (au− bw)+ i(aw + bu) and A is real, then

Au = au− bw, Aw = bu+ aw.

If we letP = [u,w] be the n×2 matrix with real columns u andw, then these two equations
can be combined to obtain

AP = P

(
a b

−b a

)
, (2.34)

giving a real “normal form” that is not diagonal but relatively simple. We computed the
exponential of this 2× 2 block in (2.31).

Example: Consider the 2× 2 system

A =
(

0 −2
1 2

)
, p(λ) = λ2 − 2λ+ 2.

The eigenvalues are λ = 1± i, and corresponding eigenvectors are v = (−1± i, 1)T . Using
the real and imaginary parts of v we use

P = [u,w] =
( −1 1

1 0

)
, P−1 =

(
0 1
1 1

)
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to obtain

P−1AP =
(

1 1
−1 1

)
,

etA = Pet
(

cos t sin t
− sin t cos t

)
P−1 = et

(
cos t − sin t −2 sin t

sin t cos t + sin t

)
.

In general, suppose that there are k real eigenvalues andn−k complex ones. Assuming
that the set of vectors {v1, v2, . . . , vk, uk+1, wk+1, . . . , unwn} is complete, then the matrix

P = [v1, v2, . . . , vk, uk+1, wk+1, . . . , un, wn]

is nonsingular, and our result implies that

P−1AP =




λ1 0 · · · 0 · · · 0

0 λ2 · · · ... 0
...

. . . 0
...

0 · · · 0 Bk 0
... · · · 0

. . .
...

0 0 · · · 0 Bn




is block diagonal with 1× 1 blocks λj and 2× 2 blocks Bk of the form (2.30). The matrix
P−1AP can be written as the sum of commuting matrices

P−1AP = N1 +N2 + · · · +Nk + Ck+1 + · · · + Cn,

where

Ni =



0 · · · 0
... λi

...

0 · · · 0


 , Cj =




0 · · · 0
...

aj bj
−bj aj

...

0 · · · 0




for i = 1, . . . , k and j = k + 1, . . . , n. This means that the solution of the differential
equation with complex eigenvalues can be written in terms of the 1 × 1 matrices eλi t and
the 2× 2 blocks (2.31). Finally the exponential of A is of the form

etA = P




eλ1t 0 · · ·
0

. . . 0 · · ·
... 0 etBk

... 0
. . .


P

−1.

With this construction we can now straightforwardly compute the exponential of any matrix
that is diagonalizable. In the next section we will consider the more general case.
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2.6 Multiple Eigenvalues
Recall that for an operator T : E → E on a complex vector space E, an eigenvector with
eigenvalue λ is defined as a nonzero solution to (2.2), i.e., the eigenvector v is an element of
the null space or kernel, (2.11), of the operatorT−λI . For the case of multiple eigenvalues—
when the algebraic multiplicity is larger than one—it is not sufficient to consider this null
space; instead, one must consider the

� generalized eigenspace: Suppose λk is an eigenvector of a linear operator T
with algebraic multiplicity nk . The generalized eigenspace of λk is

Ek ≡ ker [(T − λkI )
nk ] . (2.35)

One reason that the generalized eigenspace is important dynamically is because it is an

� invariant subspace: A space E is invariant under an operator T if for every
v ∈ E, it follows that T (v) ∈ E.

Lemma 2.5 (Invariance). Each of the generalized eigenspaces of a linear operator T is
invariant under T . That is, if Ej is a generalized eigenspace, then T : Ej → Ej .

Proof. Suppose that v ∈ Ej so that
(
T − λj I

)nj
v = 0. To show that T v ∈ E, compute

(T − λj I )
nj T v= (T − λj I )

nj T v − λj (T − λj I )
nj v,

= (T − λj I )
nj (T v − λjv) = (T − λj I )

nj (T − λj I )v,

= (T − λj I )(T − λj I )
nj
j v = 0,

since the matrix (T − λj I ) commutes with itself. Therefore, whenever v ∈ Ej , T v ∈ Ej ,
and the operator T leaves Ej invariant.

Just as an eigenvector is a nonzero solution to (T − λI)v = 0, we define a

� generalized eigenvector: A nonzero solution to (T −λj I )nj v = 0, where nj
is the algebraic multiplicity of λj , is a generalized eigenvector of T .

It turns out that each generalized eigenspace Ej has dimension equal to nj , and the
space spanned by the collection of all of the generalized eigenspaces is the full space.

Theorem 2.6 (Primary Decomposition). Let T be a linear operator on a complex vector
space E, with distinct eigenvalues λ1, . . . , λr , and let Ej be the generalized eigenspace of
T with eigenvalue λj . Then dim(Ej ) is the algebraic multiplicity of λj and the generalized
eigenvectors span E, i.e., E = E1 ⊕ E2 ⊕ · · · ⊕ Er .

Consequently the generalized eigenvectors
{
v1, v2, . . . , vnj

}
form a basis for the gen-

eralized eigenspace Ej . This theorem is proved in most texts on linear algebra (Hirsch and
Smale 1974, Appendix III; Olver and Shakiban 2006, §8.6; Strang 1988, Appendix B).

Generalized eigenvectors are not uniquely defined by their definition: there are in-
finitely many possible basis choices for the generalized eigenspace (2.35).
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Example: Consider the matrix

A =

 6 2 1

−7 −3 −1
−11 −7 0


 , p(λ) = λ3 − 3λ2 + 4 = (λ− 2)2 (λ+ 1) .

From the characteristic polynomial, we see that A has a double eigenvalue λ1 = 2. The
geometric multiplicity of λ1 is one since

(A− 2I ) v = 0 ⇒ v = c (−1, 1, 2)T , c ∈ R,

is a one-dimensional set, so there is only one eigenvector. To find the generalized eigenspace,
first compute

(A− 2I )2 =

 −9 −9 0

18 18 0
27 27 0


 .

Since the first two columns of this matrix are the same and the last is zero, its rank is one,
so its nullity is two, and there is a two-dimensional space, E1, of generalized eigenvectors.
Indeed, the general solution to (A− 2I )2v = 0 is v = (a,−a, b)T , which has two arbitrary
constants. As generalized eigenvectors we could choose, for example, (a, b) = (1, 0) to
obtain v1 = (1,−1, 0)T and (a, b) = (0, 1) to obtain v2 = (0, 0, 1)T ; moreover, any two
linearly independent sets of values of a and b can be used to construct the basis. Note that
the eigenvector is also an element of E1; it is given by the choice (a, b) = (−c, 2c).

The eigenvalue λ2 = −1 has multiplicity one, and its eigenspace is spanned by the
eigenvector v3 = (−1, 2, 3)T .

Semisimple-Nilpotent Decomposition

The decomposition theorem, Theorem 2.6, leads directly to a strategy for finding the expo-
nential of an operator using a basis of generalized eigenvectors of a matrix A. If we denote
these vectors by v1, . . . , vn, where, say, v1, . . . , vn1 give a basis forE1,and so forth, then the
primary decomposition theorem implies that the matrix P = [v1, . . . , vn] is nonsingular.
As usual, let

N = diag(λ1, . . . , λn),

and then define a matrix
S = PNP−1. (2.36)

This means that SP = PN, or, equivalently, Svi = λivi . Accordingly, S is diagonalizable
by a similarity transformation or is

� semisimple: A matrix S is semisimple if there is a (possibly complex)
nonsingular matrix P such that P−1SP = N is diagonal.

The matrix S captures, in some sense, the eigenvalues of A. What is left over? We
claim that decomposing A = S +N gives a remainder, N , which is

� nilpotent: AmatrixN is nilpotent with nilpotency k ifNk = 0 butNk−1 �= 0.
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It is not too hard to show that the maximum nilpotency of an n × n matrix is n (see
Exercise 9).

We have previously seen by example in §2.3 that it is not hard to compute the expo-
nential of a nilpotent matrix. So that the semisimple-nilpotent decomposition is useful for
finding the exponential of A, it is important that N commutes with S.

Lemma 2.7. LetN ≡ A−S, where S = PNP−1. ThenN commutes with S and is nilpotent
with order at most the maximum of the algebraic multiplicities of the eigenvalues of A.

Proof. Using the definition (2.26), note first that [S,N ] = [S,A − S] = [S,A]. For any
v ∈ Ej , since Sv = λjv,

[S,A]v = SAv − Aλjv = (S − λj I )Av = 0,

where Av ∈ Ej because Ej is invariant. Now by Theorem 2.6, E is a direct sum of the Ej

and any vectorw can be written as a linear combination of vj ∈ Ej ; therefore, [S,A]w = 0.
Since this is true for an arbitrary vector, then [S,A] = 0, and so [S,N ] = 0.

To see that N is nilpotent, suppose the maximum algebraic multiplicity of the eigen-
values is m; then for any v ∈ Ej , since [S,A] = 0,

Nmv= (A− S)m v = (A− S)m−1 (Av − λjv)

= (A− λj I
)
(A− S)m−1 v = · · ·

= (A− λj I )
mv = 0.

(2.37)

By Theorem 2.6, this relation holds for any v ∈ E; thus, Nm = 0.

Note that the order of N could be less than m; for example, if A is semisimple itself,
then N = 0, independent of the multiplicities of the eigenvalues.

The semisimple-nilpotent decomposition of a matrix is unique.

Theorem 2.8. A matrix A on a complex vector space E, has a unique decomposition,
A = S +N , where S is semisimple, N is nilpotent, and [S,N ] = 0.

Proof. We have already constructed one such decomposition. Suppose that it is not unique:
let A = Ŝ + N̂ be another such decomposition. Recall that S leaves the generalized
eigenspaces of A invariant. Suppose that v ∈ Ej . Since [A, Ŝ] = 0,

(
A− λj I

)nj
Ŝv =

Ŝ
(
A− λj I

)nj
v = 0; therefore, Ŝ also leaves Ej invariant. Furthermore, since v is an

eigenvector of S, [S, Ŝ]v = (S − λj I )Ŝv = 0; by Theorem 2.6, this is true for all w ∈ E,
and consequently [S, Ŝ] = 0. This immediately also implies [N, N̂ ] = 0. Now consider
the difference

Ŝ − S = (A− N̂)− (A−N) = N − N̂ .

Since Ŝ and S commute and are each semisimple, so is their difference (see Exercise 12).
Similarly, since N and N̂ commute and are each nilpotent, so is their difference; indeed, let
m be the maximum of the nilpotencies of N and N̂ ; then

(
N − N̂

)2m =
2m∑
k=0

(−1)k
(

2m
k

)
NkN̂2m−k = 0,
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where
(2m
k

)
is the binomial coefficient. Each term in the sum vanishes since at least one

of the matrices is raised to a power greater than or equal to m. Consequently we have
shown that Ŝ − S is diagonalizable and nilpotent. The only such matrix is identically zero,
since the only diagonal, nilpotent matrix is 0 itself, and P0P−1 = 0 for any nonsingular P .
Therefore, Ŝ = S and N̂ = N .

The Exponential

The semisimple-nilpotent decomposition leads to a compact and relatively computable for-
mula for the exponential. Letting A = S +N , where S = PNP−1, since N is nilpotent,

etA = etSetN = PetNP−1


n−1∑

j=0

(tN)j

j !


 . (2.38)

Here the finite sum for N terminates at the nth term, since necessarily Nn = 0 (see Exer-
cise 9).

Unfortunately, computing this general expression still can be labor intensive, as we
will see from some examples.

Example: To complete the classification of the qualitatively distinct cases for the 2 × 2
matrices that we began in §2.2, consider a matrix on the parabola τ 2 = 4δ of Figure 2.1.
Writing this equation as (a− d)2 = −4bc and assuming that b = α2 ≥ 0 and c = −β2 ≤ 0
gives a matrix of the form

A =
(
λ+ αβ α2

−β2 λ− αβ

)
. (2.39)

It has a single eigenvalue λ with multiplicity two, and since (A−λI)2 = 0, the generalized
eigenspace for λ is E1 = R

2. Therefore, a suitable choice for P is I , and S = diag(λ, λ).
In this case N = A− λI , and N2 = 0, so that

etA = eλt (I + tN) .

Consequently, the general solution of the ODE is

x(t) = eλt
(

(1+ tαβ) x1(0)+ tα2x2(0)

−tβ2x1(0)+ (1− tαβ) x2(0)

)
.

When α = β = 0, A has two eigenvectors, and N = 0. The general solution is simply
x(t) = eλtx(0), so that every solution moves along a ray through the origin. This case is
called a proper node.

If α and β are not both zero, A has only one eigenvector, v = (α,−β)T . Note that
Nv = 0, so that if x(0) = cv, then the solution is x(t) = eλtx(0), a straight-line solution.
Every other solution is asymptotic to the form

x(t)→ teλt (βx1(0)+ αx2(0)) v, t →±∞.
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x
1

x
2

v

Figure 2.7. Phase portrait of the stable improper node (2.39) with λ < 0 and α = β > 0.

Therefore, all solutions are asymptotic to the eigenvector v. This case, shown in Figure 2.7,
is called an improper node because infinitely many solutions approach the origin along a
single direction.

Example (Multiplicity n): The previous example is a special case of a single eigenvalue
of multiplicity n. When this is true, E = E1, so that every vector is in E1. Consequently,
we are free to choose the vi so that P = I , which gives S = λI . The associated nilpotent
matrix is

N = A− λI.

Since ker(A − λI)n = E, then Nn = 0 and [S,N ] = 0. Amazingly, we have written
A = S + N,where S is semisimple (in fact diagonal) and N is nilpotent, and we did not
even need to find the eigenvectors! The exponential then follows easily:

etA = eλt
(
I + tN + t2

2
N2 + · · · + tn−1

(n− 1)!N
n−1

)
.

A simple case for this would be an upper triangular matrix with a single eigenvalue λ, such
as

A =

 λ 1 1

0 λ 2
0 0 λ


 , S = λI, N =


 0 1 1

0 0 2
0 0 0


.
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In this case

N2 =

 0 0 2

0 0 0
0 0 0


 , N3 = 0,

and the exponential becomes

etA = eλt


 1 t t + t2

0 1 2t
0 0 1


 .

Example: Consider the multiplicity-two case

A =

 −1 1 −2

0 −1 4
0 0 1


 , p(λ) = (λ+ 1)2(λ− 1) = 0. (2.40)

The eigenspace for λ3 = 1 is obtained by solving

(A− I )v3 =

 −2 1 −2

0 −2 4
0 0 0


 v3 = 0, thus v3 =


 0

2
1


 .

To obtain the generalized eigenspace, for λ1 = λ2 = −1, solve

(A+ I )2 v =

 0 0 0

0 0 8
0 0 4


 v = 0, thus v =


 a

b

0


 ,

for arbitrary constants a and b. The space E1 is spanned by v1 = (1, 0, 0)T and v2 =
(0, 1, 0)T . Setting P = [v1, v2, v3] gives

P =

 1 0 0

0 1 2
0 0 1


 , P−1 =


 1 0 0

0 1 −2
0 0 1


 ,

S = PNP−1 =

 −1 0 0

0 −1 4
0 0 1


 , N = A− S =


 0 1 −2

0 0 0
0 0 0


 .

Since N2 = 0, the final answer is

etA = PetNP−1etN = P


 e−t 0 0

0 e−t 0
0 0 et


P−1(I + tN),

=

 e−t 0 0

0 e−t −2e−t + 2et

0 0 et




 1 t −2t

0 1 0
0 0 1


 =


e−t te−t −2te−t

0 e−t −2e−t + 2et

0 0 et


 .
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Alternative Methods

As was noted by (Moler and Loan 1978), there are at least 19 different algorithms for
computing the matrix exponential, some less useful than others, at least for numerical
computations. Here is a 20th way that appears to be quite useful (Harris, Fillmore, and
Smith 2001). Denoting the characteristic polynomial of A by p(λ), recall that the Cayley–
Hamilton theorem (Olver et al 2006; Strang 1988) states that

p(A) = 0. (2.41)

Moreover, using dn

dtn
etA = AnetA to replace the powers of A in each term of the polynomial

p by derivatives implies that

p

(
d

dt

)
etA = 0,

so that every component of etA solves the nth order scalar ODE p
(
d
dt

)
u(t) = 0. This

ODE has a fundamental set of n solutions, call them ϕj (t), j = 0, 1, . . . , n − 1, i.e., the
solutions such that

p

(
d

dt

)
ϕj (t) = 0,

di

dt i
ϕj (0) = δij

for i = 0, 1, . . . , n− 1. Here δij is the Kronnecker delta

δii = 1 and δij = 0 if i �= j. (2.42)

Consequently, ϕ0(0) = 1, and ϕ̇1(0) = 1, etc. Accordingly, any solution can be written as
a linear combination of the fundamental solutions:

etA = ϕ0(t)F0 + ϕ1(t)F1 + · · · + ϕn−1(t)Fn−1,

where theFi are constant matrices. It is easily seen by differentiating this expression i times
and setting t = 0 that

di

dt i
etA
∣∣
t=0 = Ai =

n−1∑
j=0

di

dt i
ϕj (0)Fj = Fi.

This gives the expression

etA = ϕ0(t)I + ϕ1(t)A+ ϕ2(t)A
2 + · · · + ϕn−1(t)A

n−1. (2.43)

This form could have been anticipated from the series expression for etA. Indeed, the
Cayley–Hamilton theorem implies that every power Ak for k ≥ n can be expressed as
a linear combination of the matrices I, A, . . . , An−1. The form (2.43) follows directly,
although a little more work is needed to identify the coefficients ϕi as the fundamental
solutions.

Example: LetA = (1 2
4 −1

)
so thatp(λ) = λ2−9. The solutions top

(
d
dt

)
u(t) = ü−9u = 0

are linear combinations ofu±(t) = e±3t , and a bit of algebra gives the fundamental solutions:

ϕ0 = 1

2

(
e3t + e−3t) , ϕ1 = 1

6

(
e3t − e−3t) .
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Therefore,

etA = ϕ0

(
1 0
0 1

)
+ ϕ1

(
1 2
4 −1

)
= 1

3

(
2e3t + e−3t e3t − e−3t

2e3t − 2e−3t e3t + 2e−3t

)
.

2.7 Linear Stability
There are several definitions of stability of dynamical systems. We will discuss the most
useful one—Lyapunov stability—in Chapter 4. For now, think of stability as being related
to the idea that solutions are bounded as t → ∞. For example, the sign of λ governs the
long-time behavior of the solution of the single differential equation ẋ = λx. If λ > 0, the
solution is unbounded, while if λ ≤ 0, it is bounded (for positive time).

More generally, the solution of ẋ = Ax is x(t) = etAxo, and each element of the
exponential matrix is a sum of terms that are multiplied by exponentials of the eigenval-
ues, eλt . This means the spectrum determines whether there are exponentially growing or
decaying terms. This leads to the definition of

� spectral stability: A linear system is spectrally stable if none of its eigenval-
ues has a positive real part.

The sign of the real part of the eigenvalue distinguishes the subspaces on which the so-
lutions have growing or decaying behavior. Denote the (complex) generalized eigenvectors
by vj = uj + iwj . Then

� Eu = span {ui, wi : Re(λi) > 0} is the unstable subspace,

� Ec = span {ui, wi : Re(λi) = 0} is the center subspace, and

� Es = span {ui, wi : Re(λi) < 0} is the stable subspace.

Note that by Theorem 2.6,E = Eu⊕Ec⊕Es . Moreover, since each of the generalized
eigenspaces is invariant, so are the stable, center, and unstable subspaces.

Consequently, we can describe the evolution in each subspace by constructing a
“restriction,” say, A|Eu of A. For example, if P = [v1, v2, . . . , vk] is the n × k matrix
formed from a basis for Eu, then every vector x in Eu has a unique expansion in this basis,
i.e.,

x =
k∑
i=1

civi = Pc ∈ Eu.

Since Eu is an invariant subspace, then each column of the matrix AP is in Eu and has
such an expansion: the j th column can be written (AP )j = ∑k

i=1 viuij . Collecting these
columns uniquely defines U = (uij ) = A|Eu as the k × k matrix that solves

AP = PU.

The dynamical evolution of x can be determined by allowing the coefficients ci to depend
on time. Then

ẋ = P ċ = APc = PUc.



58 Chapter 2. Linear Systems

Uniqueness of the basis representation then implies that ċ = Uc. Thus, U represents the
dynamics in the subspace Eu. A similar representation could be obtained in any invariant
subspace.

Example: Consider again the example (2.40). The eigenvalue λ3 = 1 has eigenvector
v3 = (0, 2, 1)T . Consequently the matrix U = A|Eu is the 1 × 1 matrix defined by the
equation

Av3 = 3v3 = v3U,

and U = (3). The dynamics restricted to this subspace is simply ċ3 = 3c3. The stable
subspace with eigenvalue λ1 = −1 has basis v1 = (1, 0, 0)T and v2 = (0, 1, 0)T , so that
the stable matrix S = A|Es is the 2× 2 matrix defined by

A


 1 0

0 1
0 0


 =


 −1 1

0 −1
0 0


 =


 1 0

0 1
0 0


U,

which gives U = (−1 1
0 −1

)
. The dynamics in this subspace is therefore(

ċ1

ċ2

)
=
( −c1 + c2

−c2

)
,

and c1, c2 are simply the x1 and x2 components.

A system with no center subspace is

� hyperbolic: A linear system is hyperbolic if all its eigenvalues have nonzero
real parts.

The importance of hyperbolic systems stems from their simple behavior under per-
turbation. Imagine choosing a matrix at random. Only rarely would a matrix that has
any pure imaginary eigenvalues occur; in some sense, the set of such matrices occurs with
probability zero. One says that hyperbolic systems are generic. By contrast, the dynamical
consequences of perturbing a system with a center subspace are much more complicated,
as we will see in Chapter 8.

Showing that a system is spectrally stable or not is relatively easy, since the eigenvalues
can be computed by solving the characteristic polynomial. (The Routh–Hurwitz theorem
gives a stability criterion; see Exercise 11.) However, this does not tell the whole story: when
the nilpotent part of A is nonzero, then etA contains terms that are powers of t multiplied
by exponentials, that is, terms of the form tkeλt . Note that if the real part of λ is negative,
then this function is still bounded for any k ≥ 0 and that it asymptotically approaches zero
as t → ∞. Indeed, it is not hard to see that every initial condition in the stable subspace
asymptotically approaches the origin.

Lemma 2.9. If A is an n × n matrix and xo ∈ Es , the stable space of A, then there are
constants K ≥ 1 and α > 0 such that∣∣etAxo∣∣ ≤ Ke−αt |xo| , t ≥ 0. (2.44)

Consequently, etAxo → 0 as t →∞.
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Proof. According to (2.38), the solution is of the form

etAx0 = PetNP−1


n−1∑

j=0

(tN)j

j !


 x0.

Since xo ∈ Es , and this is an invariant subspace of dimension ns , we need only consider
the matrix etA

∣∣
Es . Each element of this matrix will be a linear combination of terms from

the stable eigenvectors, i.e., of the form tkeaj t eibj t , where λj = aj + ibj , j = 1, 2, . . . , ns ,
aj < 0, and k < ns . Indeed, according to (2.37) the restriction of N to a generalized
eigenspace has nilpotency at most nk , the algebraic multiplicity of λk . Consequently the
maximum power of t in any term will be nk − 1. More explicitly, a general element of the
exponential restricted to the stable subspace must have the form

(
etA
∣∣
Es

)
lm
=

ns∑
j=1

nj−1∑
k=0

tkeaj t
(
cjklm cos(bj t)+ djklm sin(bj t)

)

for some set of coefficients cjklm, and djklm. Choose an α > 0 such that aj < −α < 0. Then

there is aK such that tns e(α+aj )t
√
c2
j lm + d2

j lm < K/ns for all j ∈ [1, ns], l, m ∈ [1, n], and

t ≥ 0. Consequently, each term in the sum has the bound K
ns
e−αt . This directly implies the

result.

In this lemma, we did not work very hard to find an optimal value for K . It can be
shown (with much more work), that with the selection of a new norm that is adapted to A,
the constant K can be chosen to be equal to one (see, e.g., (Chicone 1999, Theorem 2.34;
Robinson 1999, Theorem 5.1)).

If there is an eigenvalue λ with zero real part (i.e., the center subspace is not empty),
terms of the form tkeλt grow with t when k > 0; therefore, when there are eigenvalues with
zero real part, stability is affected by the nilpotent part of A.

A stronger concept than spectral stability is one that would guarantee that all solutions
are bounded. If all solutions are bounded, then a system is linearly stable:

� linear stability: A linear system is linearly stable if all its solutions are
bounded as t →∞.

As we argued above, any initial condition in the stable subspace, xo ∈ Es , has a
bounded solution for t > 0. Similarly, any initial condition in the unstable subspace,
xo ∈ Eu, has an unbounded solution as t → ∞. Solutions in the center space can be
bounded, but in general, when the multiplicity of an eigenvalue in this subspace is larger
than one, they are not.

The strongest concept for stability of linear systems is

� asymptotic linear stability: A linear system is asymptotically linearly stable
if all of its solutions approach 0 as t →∞.

This occurs whenever E = Es .
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Theorem 2.10 (Asymptotic Linear Stability). limt→∞ etAxo = 0 for all xo if and only if
all eigenvalues of A have negative real part.

Proof. If all the eigenvalues have negative real part, then Lemma 2.9 implies that
limt→∞ etAxo = 0. Conversely, if there is an eigenvalue with positive real part, then
there is an initial condition in the eigenspace corresponding to this eigenvalue, so that the
solution grows exponentially without bound. Finally, if there is an eigenvalue with zero
real part, then solutions in this subspace have terms of the form t j eiIm(λk)t and do not go to
zero.

Similarly, when all the eigenvalues have positive real part, the solution goes asymp-
totically to zero as t →−∞.

Example: Consider the system with matrix

A =

 −2 −1 −2
−2 −2 −2

2 1 2


 ,

which has characteristic polynomial p(λ) = λ3 + 2λ2. Hence the eigenvalues are λ = −2
with multiplicity 1 and λ = 0 with multiplicity 2. Since there are no eigenvalues with
positive real part, the system is spectrally stable. It is not hyperbolic, since there are two
zero eigenvalues. To find the stable subspace we must solve for the eigenvector

(A+ 2I )v =

 0 −1 −2
−2 0 −2

2 1 4




 a

b

c


 = 0.

This implies that v1 = (1, 2− 1)T , or any nonzero multiple of this. Consequently,

Es = span(v1) =



 c

2c
−c


 : c ∈ R


 .

Theorem 2.6 implies that Ec is the complement of Es , since the generalized eigenvectors
span R

3. To demonstrate this, find generalized eigenvectors by solving

(A− 0I )2 v =

 2 2 2

4 4 4
−2 −2 −2




 a

b

c


 = 0.

This is equivalent to the single equation a + b + c = 0, so that there are two arbitrary
constants in v (we knew this already since dim(Ec) = 2). One representation of the
solution is v = av2 + bv3, where v2 = (1, 0,−1)T and v3 = (0, 1,−1)T . Consequently,

Ec = span(v2, v3) =



 a

b

−a − b


 : a, b ∈ R


 .
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Finally we ask, is the system linearly stable? For this to be the case, the nilpotent part of A
must vanish, or alternatively there must be two independent eigenvectors corresponding to
λ = 0. The eigenvalue problem (A−0I )v = 0 has only a single solution, v = (1, 0,−1)T .
Since the nilpotent part is nonzero our system is not linearly stable. This is confirmed by
finding

S = PNP−1 =

 1 1 0

2 0 1
−1 −1 −1




 −2 0 0

0 0 0
0 0 0


 1

2


 1 1 1

1 −1 −1
−2 0 −2




=

 −1 −1 −1
−2 −2 −2

1 1 1


 ,

giving a nilpotent part

N = A− S =

 −1 0 −1

0 0 0
1 0 1


 ,

which is easily seen to satisfy N2 = 0. Finally, the exponential is

etA = PetNP−1(I + tN) = 1

2


 e−2t + 1− 2t e−2t − 1 e−2t − 1− 2t

2e−2t − 2 2e−2t 2e−2t − 2
−e−2t + 1+ 2t −e−2t + 1 −e−2t + 3+ 2t


 ,

confirming that this system is unstable since there are terms that grow linearly in time. In
particular, if xo = (1, 0, 0)T , then x(t)→ 2t (−1, 0, 1)T →∞. Note that not all solutions
are unbounded. For example, if xo = (0, 1, 0)T , then x(t)→ (−1, 0, 1)T . Nevertheless, a
single unbounded solution is enough to declare the system unstable.

2.8 Nonautonomous Linear Systems and Floquet Theory
A linear physical system that is externally forced can often be modeled by the affine set of
ODEs,

ẋ = Ax + f (t).

Such differential equations can be easily solved using the “integrating factor” method; see
Exercise 17. It is considerably more difficult to solve a linear system when the matrix A
depends upon time,

ẋ = A(t)x, x(to) = xo. (2.45)

Nonautonomous equations like these can arise in mechanical systems if the forcing changes
the effective spring constants; for example, a person pumping his legs on a swing will
change the effective length of the pendulum and thereby modulate the coefficient g

/
l that

governs the linear oscillation frequency. Equations of the form (2.45) also occur as the
linearization of the dynamics about a periodic orbit of period T . In this case the matrix A
is a periodic function of time, A(t + T ) = A(t). Gaston Floquet developed the theory of
the solutions of such systems in the 1880s (Chicone 1999, §2.4; Floquet 1883; Yakubovitch
and Starzhinskii 1975, Chapter 5).
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To solve (2.45), it is convenient to consider a matrix differential equation of the form
(2.33), replacing the vector x(t) by a matrix. The general solution is most conveniently
represented in terms of the fundamental matrix solution, which is the solution Q(t, to) of
the matrix initial value problem

d

dt
Q = A(t)Q, Q(to, to) = I. (2.46)

Here we have added a second argument to Q to denote that the initial condition is applied
at time to. As for the autonomous case, the solution of the original system with initial value
x(to) = xo is simply given by x(t) = Q(t, to)xo. Thus, if we can findQ(t, to), we also have
the general solution to (2.45). We will ignore for the moment the more delicate question
of the existence and uniqueness of Q; this will follow more generally from Theorem 3.11,
requiring only that A(t) be a continuous function of time. Uniqueness implies that the
fundamental matrix solution obeys the relation

Q(t, r) = Q(t, s)Q(s, r) (2.47)

for all t, s, r ∈ R.
When A is constant Q(t, to) = e(t−to)A, and we proved in §2.4 that this is the unique

solution. However, this formula no longer works for the time-dependent case, and more
important, the “obvious” generalization

Q(t, to) = exp

(∫ t

to

A(s)ds

)
(incorrect!) (2.48)

is usually wrong since the matrix A(s1) does not generally commute with A(s2) when
s1 �= s2 (see Exercises 18–19). Moreover, as the following example shows, the eigenvalues
of the matrix A(t) at a fixed value of time may have nothing to do with the properties of the
solution of (2.45).

Example: Here is an example that points out the pitfalls of looking at the eigenvalues of
A(t) (Markus and Yamabe 1960). Consider the time-dependent matrix

A(t) =
( −1+ α cos2 t 1− α cos t sin t
−1− α cos t sin t −1+ α sin2 t

)
.

It is easy to see that the eigenvalues of this matrix are independent of time because tr(A) =
α − 2, and det(A) = 2− α, so

λ = 1

2

(
α − 2±

√
α2 − 4

)
.

When α < 2, the eigenvalues indicate that this system may be stable. However, the
differential equation ẋ = A(t)x has two explicit solutions, as can be easily verified by
substitution,

x1(t) =
(

cos t
− sin t

)
e(α−1)t , x2(t) =

(
sin t
cos t

)
e−t . (2.49)
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Therefore, when α > 1 the first solution is unbounded and the origin is unstable. Con-
sequently, for the range 1 < α < 2 the origin is unstable, even though the eigenvalues
of A(t) would suggest that it should be stable. This example shows that the eigenvalues
of a nonautonomous matrix do not generally determine the stability of the corresponding
ODE.

For the case that A is a periodic matrix, an important quantity is the value of the
fundamental matrix at one period; it is called the

� monodromy matrix, M ≡ Q(T , 0).

Given the initial condition x(0) = xo, then x(T ) = Mxo. To continue this solution
past T requires finding the solution of the initial value problem

ẋ = A(t)x, x(T ) = Mxo.

Define a new time variable τ = t−T , and useA(τ +T ) = A(τ) to see that this is the same
as the initial value problem (2.45), with xo replaced by Mxo, so its solution is Q(τ, 0)Mxo.
This implies

x(2T ) = M2xo.

In consequence, to get the long-time behavior of any solution, we merely need to compute
Mn.

The eigenvalues ofM are called the Floquet multipliers. Suppose xo is an eigenvector
of M with eigenvalue µ; then

x(nT ) = µnxo = en lnµxo.

The exponent lnµ is called a Floquet exponent; it is a special case of the Lyapunov exponent
that we will meet in Chapter 7.

Example: Continuing the previous example, note that the two solutions (2.48) are linearly
independent, and since x1(0) = (1, 0)T and x2(0) = (0, 1)T , the fundamental solution is
Q(t, 0) = [x1(t), x2(t)]. Evaluating this at t = 2π gives the monodromy matrix

M = Q(2π, 0) =
(
e2π(α−1) 0

0 e−2π

)
,

showing that the Floquet multipliers areµ1 = e2π(α−1) andµ2 = e−2π . Note that when α > 1,
there is one Floquet multiplier larger and one smaller than 1.

In general, the monodromy matrixM is nonsingular. In fact, there is a simple equation
for the evolution of the determinant of Q that holds even when A(t) is not periodic. This
theorem generalizes the standard result byAbel for the “Wronskian” of a second-order ODE.

Theorem 2.11 (Abel). The determinant of the fundamental matrix is

det (Q(t, to)) = exp
∫ t

to

tr(A(s))ds. (2.50)

Note that tr(A(s)) is a scalar, so the exponential is the ordinary, scalar exponential.
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Proof. Our goal is to obtain a simple ODE for det(Q). The derivative of the determinant
of Q can be computed using the cofactor formula. Recall that the cofactor, cij , is (−1)i+j
times the determinant of the (n− 1)× (n− 1) matrix obtained by omitting the ith row and
the j th column from Q. Multiplying cij by Qij and summing over j , i.e., summing along
the ith row, gives

det (Q) =
n∑

j=1

cijQij .

This formula is true for any choice of row i. If instead we multiply cij by Qkj , and then
sum over j , then this is equivalent to computing the determinant of the matrix with the ith
row replaced by the kth row. Since the resulting matrix has two equal rows, its determinant
is zero. This generalization of the cofactor formula can be written as

det (Q) δik =
n∑

j=1

cijQkj , (2.51)

where δij is the Kronnecker delta (2.42). Equivalently, (2.51) can be written in matrix
notation as det(Q)I = CQT . Finally, note that the only term in det(Q) that contains a
specific element Qij is the term cijQij , so that

∂

∂Qij

det(Q) = cij . (2.52)

Using (2.46), (2.51), (2.52), and the chain rule, the time derivative of the fundamental matrix
is

d

dt
det (Q(t))=

n∑
i,j=1

cij (t)
d

dt
Qij (t) =

n∑
i,j,k=1

cij (t)aik(t)Qkj (t)

=
n∑

i,k=1

aik(t)


 n∑

j=1

cij (t)Qkj (t)


 = n∑

i,k=1

aik(t)δik det (Q(t)) .

Simplifying yields

d

dt
det (Q(t)) =

(
n∑

i,k=1

δikaik(t)

)
det (Q(t)) = tr (A(t)) det (Q(t)) .

This scalar differential equation for the determinant of Q can be easily integrated to time t
to obtain the promised (2.50).

Since det(Q(T , 0)) = det(M), M is nonsingular. Consequently, all the Floquet
multipliers are nonzero and the Floquet exponents are well defined.

In addition to the Floquet exponents, lnµj , it is also convenient to define the logarithm
of the Floquet matrix, lnM , itself. However, it is not obvious that the logarithm of a general
matrix is always well defined, as is the case for the exponential. Since the MacLaurin series
defined exp(M), it would be reasonable to use a similar series for the logarithm,

ln(1− x) = −
∞∑
j=1

xj

j
; (2.53)
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however, this converges only for |x| < 1. Since lnM = ln (I − (I −M)), we assume the
series definition can be used only for ‖I −M‖ < 1. How can we define lnM in general?

Lemma 2.12. Any nonsingular matrix A has a (possibly complex) logarithm

lnA = P ln(N)P−1 −
n−1∑
j=1

(−S−1N)j

j
,

where A = S +N , S = PNP−1 is semisimple, N is nilpotent, N is the diagonal matrix of
eigenvalues, and P is the matrix of generalized eigenvectors of A.

Proof. The semisimple-nilpotent decomposition, Theorem 2.8, gives A = S +N , where S
is semisimple, N is nilpotent, and [S,N ] = 0. Since A is assumed nonsingular, S is also
nonsingular since its eigenvalues are the same as those of A.

Consider first the case of a semisimple, nonsingular matrixS. By definition there exists
a diagonalizing transformation P such that P−1SP = N, where N is diagonal and has all
entries nonzero but is possibly complex. Defining lnN ≡ diag(lnNii), then elnN = N, and

S = PelnNP−1 = exp
(
P lnNP−1

)
, (2.54)

so that ln S ≡ P lnNP−1. Hence ln S exists for any nonsingular, semisimple S.
Now suppose that N is any nilpotent matrix. We claim that ln(I +N) exists. Indeed,

using the series (2.53) formally (ignoring convergence), define a matrix B by

B = −
∞∑
j=1

(−N)j
j

= −
n−1∑
j=1

(−N)j
j

. (2.55)

This is more than a formal definition, however, because, when N is nilpotent, only finitely
many terms in this series are nonzero; consequently, (2.55) converges for anyN . Moreover
we claim that eB = I +N . Formal manipulation of the power series gives

eB =
∞∑
k=0

1

k!


− ∞∑

j=1

(−N)j
j



k

= I +N

because this is true for scalar values, and
[
Nj,Nk

] = 0 for any integers j and k. Moreover
these series converge because the exponential series converges for any linear operator, and
the inner series has only finitely many nonzero terms. In conclusion, B = ln(I + N) is
given by (2.55) for any nilpotent N .

Finally, consider the general case:

A = S +N = S(I + S−1N).

Note that since N is nilpotent and [S,N ] = 0, then S−1N is also nilpotent: if Nk = 0, then(
S−1N

)k = S−kNk = 0. Therefore, both terms, S and (I + S−1N), have logarithms. By
analogy with the property ln(ab) = ln a + ln b, we claim that lnA is given by

B = ln S + ln(I + S−1N),
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where the first term is given by (2.54) and the second by (2.55) withN → S−1N . Note that[
S, I + S−1N

] = 0, and so by their definitions,
[
ln S, ln(I + S−1N)

] = 0 as well. This
implies that

eB = eln S+ln(I+S−1N) = eln Seln(I+S−1N) = S(I + S−1N) = A,

as claimed.

Although lnA exists, it is not unique. Indeed, just as for a scalar, where the exponential
of ln(a) + 2nπi is independent of n ∈ Z, the eigenvalues of lnA are unique only up to
addition of 2nπi (see Exercise 13d).

The definition of lnM can be used to obtain a nice form for the solutions to a periodic
linear system.

Theorem 2.13 (Floquet 1883). Let M be the monodromy matrix for a T -periodic linear
system ẋ = A(t)x and T B = lnM its logarithm. Then there exists a T -periodic matrix P
such that the fundamental matrix solution is

Q(t, 0) = P(t)etB. (2.56)

Proof. Let P(t) = Q(t + T , 0). Since A(t) is periodic, then d
dt
P = A(t + T )P = A(t)P,

with P(0) = M . Now since Q is the fundamental matrix solution, every solution x(t) is of
the form Q(t, 0)x(0); accordingly P(t) = Q(t, 0)M , and

Q(t + T , 0) = Q(t, 0)M = Q(t, 0)eT B.

Since etB is nonsingular, define P(t) ≡ Q(t, 0)e−tB so that

P(t + T ) = Q(t + T , 0)e−(t+T )B = Q(t, 0)eT Be−(t+T )B = P(t).
Therefore, P is T -periodic.

As usual, it is not always satisfactory to write the solution of a real linear system in
terms of complex functions. However, at the expense of doubling the period, a real form
can be found, as follows.

Theorem 2.14. Let Q be the fundamental matrix solution for the time T -periodic linear
system (2.45). Then there exist a real 2T -periodic matrix Q and real matrix R such that

Q(t, 0) = Q(t)etR.
Proof. In Exercise 21, you will show that for any nonsingular matrix M , there exists a real
matrix R such that M2 = eTR . Define Q(t) = Q(t, 0)e−tR , and then

Q(t + 2T ) = Q(t + 2T , 0)e−2T Re−tR = Q(t, 0)M2M−2e−tR = Q(t).

Therefore, Q is 2T -periodic.

In fact, one need only extend the period to 2T when M has negative real multipliers
(see Exercise 21). These, as we will see later in Chapter 8, typically arise near a “period-
doubling bifurcation.”
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2.9 Exercises
You should do these problems by hand; however, feel free to use a computer to check your
answers if that is possible.

1. Near an equilibrium an ODE can be simplified by expanding the equations to first
order in the deviations of the variables from their equilibrium values. The resulting
system is linear. Formally for ẋ = f (x), set x = xeq + δx, and use f (xeq) = 0 to
find

δẋ = f (xeq + δx) ≈ f (xeq)+ ∂f

∂x
(xeq)δx + · · · ≈ Aδx.

Here you must remember that x is a vector, and so the matrix A has elements aij =
∂fi
/
∂xj . Carry out this expansion for the equilibria you found in Exercise 1.2 and

compute the 4× 4 matrix A for each case.

2. Find the general solution to the two-dimensional linear system for the Hamiltonian
(1.29) and show that the phase portrait given in Figure 1.8 is correct.

3. Show that if T is a bounded linear operator and is invertible, then

∥∥T −1
∥∥ ≥ 1

‖T ‖ .

4. Suppose T is a bounded linear operator on X that leaves a vector subspace E ⊂ X

invariant (i.e., whenever v ∈ E thenT (v) ∈ E). Show that eT also leavesE invariant.

5. In this problem we will prove the following lemma.

Lemma 2.15. A linear operator T is bounded if and only if it is continuous.

(a) Recall that continuity means that if xn → x, then T (xn) → T (x). First show
that linearity implies that if T is continuous at x = 0, then it is continuous
everywhere. (Hint: Consider a sequence xn → 0 and then use superposition to
find the limit of T (xn + y).)

(b) Suppose T is bounded; then show that xn → 0 implies that |T (xn)| → 0. Argue
that this implies T is continuous.

(c) Suppose T is not bounded; then show that it is not continuous at x = 0. (Hint:
Argue that there is sequence xn such that |T (xn)| > n |xn|. Now let yn =
xn
/
n |xn|). Argue that you have proved that if T is continuous, it is bounded.

6. Here we will prove the next lemma.

Lemma 2.16. etAetB = et(A+B) for all t ∈ R if and only if [A,B] = 0.

(a) Using the series definition of the exponential, expand the product on the left and
group like powers of t . Use the binomial theorem (x + y)n =∑n

j=0

(
n

j

)
xjyn−j

to identify the result with the series for the exponential on the right. This proves
the “if” part.
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(b) An alternative, more elegant, method is based on the fundamental solution the-
orem, Theorem 2.3. First, show that if [A,B] = 0, then the matrix func-
tion F(t) = BetA satisfies the same initial value problem as the function
G(t) = etAB. Use uniqueness to conclude that F = G.

(c) Now let Q(t) = etAetB and find the differential equation for Q. Using the
commutation relation in (b), show that it solves the same initial value problem
as et(A+B). Again use uniqueness to obtain the final result.

(d) Finally, argue that if F(t) = G(t), then necessarily they have equal derivatives,
and so [A,B] = 0.

7. Find all possible values of a, b, c, and d for which the 2× 2 matrix
(
a b

c d

)
is

(a) semisimple,

(b) nilpotent.

8. Prove that ifA andB are similar matrices (i.e.,B = P−1AP for some nonsingular ma-
trix P), then they have the same eigenvalues, and these have the same multiplicities.

9. Here we will prove, without relying on Theorem 2.6, that the maximum nilpotency
for an n× n matrix is n.

(a) First show that if N is nilpotent, then all of its eigenvalues are zero. (Hint:
Consider Njv where v is an eigenvector.)

(b) Use the Cayley–Hamilton theorem (2.41) to show that if all the eigenvalues of
a matrix are zero, then it is nilpotent with nilpotency at most n.

(c) Construct examples of 3× 3 nilpotent matrices with nilpotencies 0, 1, 2, and 3.

10. Classify the dynamics of the following ODEs ẋ = Ax using the categories of §2.2
and §2.6. Sketch the phase portraits.

(a)A =
(

1 3
2 −1

)
, (b)A =

(
4 2
−3 1

)
, (c)A =

(
0 2
−1 2

)
, (d)A =

(
2 1
−1 0

)
,

(e) A =
(

4 −2
2 −1

)
, (f ) A =

(
1 −2
1 4

)
, (g) A =

(
2 1
1 1

)
.

11. The Routh–Hurwitz criterion determines whether the roots of a polynomial have all
negative real parts and hence is a test for asymptotic stability. Here we consider just
the three-dimensional case, the cubic generalization of (2.18):

p(λ) = λ3 − τλ2 + σλ− δ.

Show that all the roots of p have negative real parts, Re(λi) < 0, if and only if τ < 0
and τσ < δ < 0. (Hints: Use the symmetric polynomials τ = λ1 + λ2 + λ3, σ =
λ1λ2 + λ1λ3 + λ2λ3, and δ = λ1λ2λ3; the value p(0); and of the critical points, λc
where p′(λc) = 0. Consider separately the cases of all real eigenvalues and of a
complex pair.)
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12. The following lemma is useful for the proof of the uniqueness of the decomposition
into semisimple and nilpotent matrices in Theorem 2.8.

Lemma 2.17. If A and B are semisimple matrices, then there is a matrix P that
simultaneously diagonalizes both A and B if and only if [A,B] = 0.

(a) Prove the “only if” part of the lemma. (Hint: Assume that there is such a P and
consider the quantity P−1ABP .)

(b) Prove the “if” part of the lemma. (Hint: Assume that [A,B] = 0, and
that vi, i = 1, . . . , nk , are a basis for the eigenspace Ek of A with eigen-
value λk . Show that Bvi = ∑nk

j=1 cij vj . Find a suitable linear combination
wi =∑nk

i=1 dij vj so that wi is simultaneously an eigenvector of both A and B.)

(c) Prove that if A and B are commuting semisimple matrices, then A+B and AB
are semisimple.

13. Compute eA for each of the following matrices:

(a)

(
2 0
0 −1

)
, (b)

(
2 3
0 1

)
,

(c)


 2 −1 −1
−1 0 −1

1 3 4


, (d)

(
ln
(

16
27

)+ 8πi 6 ln
(

2
3

)+ 12πi

2 ln
(

3
2

)− 4πi ln
(

81
8

)− 6πi

)
.

(Hint: The eigenvalues of (d) are ln 2+ 2πi and ln 3.)

(e) Explain why the result of (d) is related to the fact that e2πi = 1.

14. Solve the initial value problem dx
dt
= Ax, x(0) = xo with

A =

 −1 0 0

0 2 −4
1 4 2




and xo = (1, 1, 0)T .

15. Compute etA for the matrices

(a)

(−1 −2
4 3

)
, (b)

(
5 −2
2 1

)
, (c)

(
1 −1

−1 1

)
, (d)


 1 0 0

2 1 0
−1 3 1




(e)


1 0 0

0 2 1
0 0 2


, (f )


 −2 −1 1

0 −2 2
0 0 −2


, (g)


 2 0 1

1 2 −2
−1 0 2


.

16. Find the stable, unstable, and center subspaces of the linear systems defined by ma-
trices

(a)

(
0 1
−1 0

)
, (b)

(
2 1
0 −4

)
, (c)


 −2 3 0

0 1 2
0 0 1


.
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17. A forced, linear system can often be modeled by an equation of the form

ẋ = Ax + f (t), x(0) = xo. (2.57)

(a) One way to solve this system is to move the Ax term to the left of the equa-
tion and multiply both sides by the “integrating factor” e−tA, and realize that
the left-hand side is a total derivative. Using this, find the general solution to
(2.57). What assumptions on f (t) are required?

(b) If f (t) = b is a constant and A is nonsingular, then the integral in your solution
can be done explicitly. Compare this solution with that obtained by the method
of subtracting the equilibrium x∗ = A−1b from x.

(c) Suppose that f (t) = b is a constant, and b ∈ rng(A), but A is singular. Can
you simplify the solution you found in (a) to that of the form in (b)?

(d) Discuss the case that b /∈ rng(A).

18. Consider the general nonautonomous linear matrix ODE

d

dt
Q = A(t)Q, Q(0, 0) = I. (2.58)

(a) An obvious guess for the solution is the exponential (2.48). Expand this expo-
nential in a series, keeping terms to second order (quadratic terms inA). Substi-
tute the result into the ODE and show that it is generally not correct to this order.

(b) Show that the problem terms you computed in (a)will vanish if [A(s), A(t)] = 0
for all t, s ∈ R.

(c) Indeed, supposing that [A(s), A(t)] = 0, show that (2.48) is a solution to all
orders in the exponential series.

19. Consider a special case of the ODE (2.58) with

A(t) =
(

1 t

0 −1

)
.

(a) Show that the commutator [A(s), A(t)] �= 0 when t �= s. Thus the solution should
not be given by the exponential (2.48).

(b) Compute the exponential of the matrix B(t) = ∫ t0 A(s)ds explicitly, and show
that it does not solve the ODE (2.58). (Hint: It is easy to find eigenvectors and
eigenvalues of B for each t .)

(c) Find the true solution Q to (2.58) for this case by first finding the general solution
to ẋ = A(t)x. (Hint: It is easy to solve for the second component, x2(t).)

20. Compute a logarithm of the matrices

(a)

(
1/2 5/4

5 1/2

)
, (b)

(
2 1
0 2

)
, (c)

( −2 3
0 −2

)
, (d)

( −5 −8
2 3

)
.

If these matrices were monodromy matrices for a periodically time-dependent linear
system, classify the stability of the system.
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21. Although any nonsingular matrix, A, has a logarithm, it is possible that all values of
lnA are complex. In this problem you will prove that A2 has a real logarithm.

(a) Show that if A has all real eigenvalues, then A2 has positive eigenvalues. Use
this to prove that ln(A2) can be taken to be real.

(b) Show that if A has a complex eigenvalue λ = re−iθ , with multiplicity one, then
it is similar to a block diagonal matrix with a 2× 2 block B = r

( cos θ sin θ
− sin θ cos θ

)
on

the diagonal. Show that this matrix has a real logarithm, lnB = ln r I +( 0 θ

−θ 0

)
.

(c) Finally, suppose thatA has complex eigenvalues of multiplicity larger than one.
Show that the semisimple part of A can still be put in a real form with 2 × 2
block as in (b).

(d) Putting together (a), (b), and (c), prove that for any nonsingular matrix A, A2

has a real logarithm.

22. Prove that if A is nonsingular, then det(A) = etr(lnA).

23. Consider your adopted quadratic ODEs (recall Exercise 1.10) in their reduced form
(i.e., set all “nonessential parameters” to +1—keep the signs as given in the original
equation). Call the reduced variables ξ = (x, y, z)T for simplicity.

(a) Choose one of the equilibria, ξ ∗, of your system. Define a new dynamical vector
δξ = ξ − ξ ∗, and find the differential equations for δξ .

(b) Linearize the equations for δξ by dropping all the nonlinear terms. You will
obtain a linear system δξ̇ = Aδξ .

(c) For the “chaotic value” of the parameters, classify the stability of your system by
finding the eigenvalues of the matrix A and the spaces Es , Eu, and Ec(perhaps
numerically if the cubic, characteristic polynomial is not easily factored).





Chapter 3

Existence and Uniqueness

An intellect which at a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is composed, if this intellect
were also vast enough to submit these data to analysis, it would embrace in a
single formula the movements of the greatest bodies of the universe and those of
the tiniest atom; for such an intellect nothing would be uncertain and the future
just like the past would be present before its eyes. (Pierre-Simon Laplace, Essai
philosophique sur les probabilities, 1814)

The goal of this chapter is to prove the fundamental theorems of existence and uniqueness for
solutions of ordinary differential equations (ODEs). As Laplace most eloquently stated, if
one knows precisely the initial condition for the system of ODEs that describe the dynamics
of a closed universe, it is possible—in principle—to construct the solution. The analysis in
this chapter will also lead to a review of some fundamental mathematical machinery, such
as the contraction-mapping theorem. We will find this theorem of use in many more exotic
locales in later chapters.

The hypotheses of the existence theorem reveal some surprising requirements on the
vector field for the solution of an ODE to exist and be unique. The theorem also makes
clear that solutions of differential equations need not exist for all time, but only over limited
intervals, even when the vector field is perfectly well behaved.

3.1 Set and Topological Preliminaries
Some of the basic notions from topology are essential in the study of dynamical systems, so
we pause for a moment to collect some notation and recall a few of the ideas from set theory
and topology that will be needed. Some common mathematical notation will be often used:

� R is the real line, and R
+ = {x ∈ R : x > 0}.13

� R
n is n-dimensional Euclidean space.

13The notation {a : b} means the set of all a such that b holds. So, for example, {x ∈ R : |x| < 1} is the set of
all real numbers between minus one and plus one.
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� Z is the set of all integers.

� N is the set of natural numbers (the nonnegative integers including zero).

The Euclidean norm is denoted by |x|. A solid ball of radius r around a point xo is
the closed set

Br(xo) =
{
x ∈ R

n : |x − xo| ≤ r
}
. (3.1)

We will be dealing primarily with differential equations on R
n. The slightly more general

case of “manifolds” is based on this analysis, since a manifold is a space that, locally, looks
like Euclidean space.14 Some common manifolds are

� S
d = {(x1, x2, . . . , xd+1) : x2

1 + x2
2 + · · · + x2

d+1 = 1
}

is the d-dimensional
sphere; it is the boundary of a unit ball in d + 1 dimensions;

� T
d is the d-dimensional torus; and

� S
1 = T

1 is the circle.

Note that the “common sphere” embedded in three-dimensional space is denoted S
2,

the two-sphere, since it is a two-dimensional set. Additional notations include

� ∈, an element of a set;

� ⊂, a subset;

� ∩, intersection; and

� ∪, union.

For example, 3 ∈ {5, 3, 2}, {0, 1, 2} ∩ {2, 1} = {1, 2}, ⋃10
j=3 {n ∈ N : n < j} =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and
⋂

j>0 {n ∈ N : n < j} = {0}. The qualifier symbols are
denoted

� ∃, meaning there exists, and

� ∀, meaning for all.

A topological space is characterized by a collection of open sets. For Euclidean
space the basic open sets are the open balls, {x : |x − xo| < r}. By definition, a union of
any number of open sets is declared open, as is the intersection of any finite number of
open sets. Similarly, the basic closed sets are the closed balls Br(xo). By definition, the
intersection of any number of closed sets is closed, as well as the union of finitely many
closed sets. The word neighborhood is used to denote some arbitrary set that encloses a
designated point:

� neighborhood : N is a neighborhood of a point x if N contains an open set
containing x.

Note that a neighborhood can be open or closed, but it must contain some open set.
This excludes calling the set {x} a neighborhood of x; however, for any r > 0, the closed
ball Br(x) is a neighborhood of x. Often, we think of neighborhoods as being “small” sets
in some sense, but this is not a requirement.

14Manifolds will be discussed more completely in Chapter 5.
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Convergence

Sequences are ordered lists; for example, S = {sj ∈ R
n : j ∈ N

}
. A sequence is convergent

if it approaches a fixed value, s∗, i.e., if
∣∣sj − s∗

∣∣ → 0 as j → ∞. Formally, we say that
the sequence S converges if for every ε > 0 there is anN(ε) such that whenever n > N(ε),
then |sn − s∗| < ε.

More generally a point xo is called a limit point of the sequence xj if there is a
subsequence

{
ski : ki ∈ N, kj →∞ as j →∞} that converges to x∗. For example,

the sequence
{
(−1)j : j ∈ N

}
has both 1 and −1 as limit points. With this notion we can

formally define a

� closed set: A set S is closed if it includes all of its limit points; that is, if s∗
is a limit point of some sequence in S, then s∗ ∈ S.

The closure of a set S, denoted S̄, is the union of the set and the limit points of every
sequence in S.

The boundary of a set S is denoted ∂S. Consequently ∂B1(0) = S
n−1 is the unit

sphere. A set is bounded if it is contained in some ball Br(0); otherwise, it is unbounded.
A set that is both closed and bounded is called a

� compact set: A closed and bounded set in a finite-dimensional space is com-
pact.

One of the basic theorems of topology states that every compact set, C ⊂ R
n, can be

covered by a finite number of balls: C ⊂ ⋃N
i=1 Bri (xi).

15 Another important result is the
next theorem.

Theorem 3.1 (Bolzano–Weierstrass). Suppose every element of a sequence is contained
in a compact set. Then the sequence has at least one limit point.

Uniform Convergence

If a sequence depends upon a parameter—the elements of the sequence are functions, say,
fn(x)—then there is another notion of convergence that is important, that of

� uniform convergence: A sequence {fn(x) : n ∈ N, x ∈ E} converges uni-
formly if for every ε > 0 there is an N(ε) that can be chosen independently of
x, such that whenever n > N(ε), then |fn(x)− f ∗(x)| < ε for all x ∈ E.

Uniformity of convergence will be especially important to help prove that limits of
continuous functions are continuous. Recall that a continuous function f ∈ C0(E) is one
for which for every x ∈ E and every ε > 0, there is a δ(ε, x) such that |f (y)− f (x)| < ε

for all y ∈ Bδ(x). Here we allowed the distance δ to depend on both the accuracy ε and the
choice of point x. An important consequence of uniform convergence is the next lemma.

Lemma 3.2. The limit of a uniformly convergent sequence of continuous functions is
continuous.

15Indeed, this is usually taken as the more general definition of compact: a set for which every open cover has
a finite subcover.
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Proof. Let u(x) denote the limit of un(x); we must show that there is a δ(ε, x) such that
|u(y)− u(x)| < ε whenever y ∈ Bδ(x). Insert four new terms that sum to zero into this
norm:

|u(y)− u(x)| = |u(y)− un(y)+ un(y)− un(x)+ un(x)− u(x)|
≤ |u(y)− un(y)| + |un(y)− un(x)| + |un(x)− u(x)| .

Since by assumptionun converges uniformly, then for any x ∈ E and any ε
/

3 there is a given
N such that |un(x)− u(x)| < ε

/
3 whenever n > N . Moreover, since un is continuous for

any fixed n, there is a δ(ε, x) such that |un(x)− un(y)| < ε
/

3 for each y ∈ Bδ(x). As a
consequence,

|u(y)− u(x)| < ε

3
+ ε

3
+ ε

3
= ε,

so u is continuous.

There is also a uniform version of continuity:

� uniform continuity: A function f is uniformly continuous on E if for ev-
ery x ∈ E and every ε > 0, there is a δ(ε), independent of x, such that
|f (y)− f (x)| < ε for all y ∈ Bδ(x).
It is not too hard to show that whenE is a compact set, then every continuous function

on E is also uniformly continuous (see Exercise 2).
A generalization of Lemma 3.2 is easily obtained: if each of the elements of a con-

vergent sequence is uniformly continuous, then the limit is also uniformly continuous.

3.2 Function Space Preliminaries
A function f : D → R is a map from its domain D to its range R; that is, given any
point x ∈ D, there is a unique point y ∈ R, denoted y = f (x). In our applications
the domain is often a subset of Euclidean space, E ⊂ R

n, and the range is R
n; in this

case, f : E → R
n is given by n components fi(x1, x2, . . . , xn), i = 1, 2, . . . , n. The set

of functions denoted C(E) or C0(E) consists of those functions on the domain E whose
components are continuous. Colloquially we say “f is C0” if it is a member of this set. If
it is necessary to distinguish different ranges, the set of continuous functions from D to R
is denoted C0(D,R); the second argument is often omitted if it is obvious. For a function
f : E → R

n, the derivative at point x is written Df (x) : R
n → R

n; it is defined to be a
linear operator given by the Jacobian matrix

Df (x) ≡




∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
...

...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn



. (3.2)
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Afunction isC1(E)—continuously differentiable—if the elements ofDf (x) are continuous
on the open set E. Colloquially we will say that f is smooth when it is a C1 function of its
arguments.

Spaces of functions, like C(E) and C1(E), are examples of infinite dimensional
linear spaces, or vector spaces. Just as for ordinary vectors (recall §2.1), linearity means
that whenever f and g ∈ C(E), then so is c1f +c2g for any (real) scalars c1 and c2. Much of
our theoretical analysis will depend upon convergence properties of sequences of functions
in some such space. To talk about convergence it is necessary to define a norm on the
space; such norms will be denoted by ‖f ‖ to distinguish them from the finite dimensional
Euclidean norm |x|. We already met one such norm, the operator norm, in (2.23). For
continuous functions, the supremum or sup-norm, defined by

‖f ‖ ≡ sup
x∈E
|f (x)| (3.3)

will often be used. For example, if E = R, and f = tanh(x), then ‖f ‖ = 1. Other norms
include the Lp norms,

‖f ‖p =
(∫

E

|f (x)|p dx
)1/p

,

but these will not have much application in this book. This formula becomes the sup-norm
in the limit p → ∞, which is why the sup-norm is also called the L∞ norm and is often
denoted ‖f ‖∞.

Metric Spaces

A normed space is an example of a metric space. A metric is a distance function ρ(f, g)
that takes as arguments two elements of the space and returns a real number, the “distance”
between f and g. A metric must satisfy the three properties

1. ρ(f, g) ≥ 0, and ρ(f, g) = 0 only when f ≡ g (positivity),

2. ρ(f, g) = ρ(g, f ) (symmetry), and

3. ρ(f, h) ≤ ρ(f, g)+ ρ(g, h) (triangle inequality).

Associated with any norm ‖f ‖ is a metric defined by ρ(f, g) = ‖f − g‖. Therefore, a
normed vector space is also a metric space; however, metric spaces need not be vector
spaces, since in a metric space there is not necessarily a linear structure.

A sequence of functions fn that are elements of a metric space X is said to converge
to f ∗ if ρ(fn, f ∗)→ 0 as n→ ∞. Since the distance ρ(fn, f ∗) is simply a number, the
usual definition of limit can be used for this convergence. Note that the norm (3.3) bounds
the Euclidean distance: if we use

ρ(f, g) = ‖f − g‖∞ , then |f (x)− g(x)| ≤ ρ(f, g).

Thus, convergence of a sequence of functions fn in norm implies that the sequence of points
fn(x) converges uniformly.
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Another notion often used to discuss convergence is that of

� Cauchy sequence: Given a metric spaceX with metric ρ, a sequence fn ∈ X
is Cauchy if, for every ε > 0 there is anN(ε) such that wheneverm, n ≥ N(ε),
then ρ(fn, fm) < ε.

Informally, a Cauchy sequence satisfies

ρ(fn, fm)→ 0 as m, n→∞,

wherem and n approach infinity independently. One advantage of this idea is that the value
of the limit of a sequence need not be known in order to check if it is Cauchy.

It is easy to see that every convergent sequence is a Cauchy sequence. However, it is
not necessarily true that every Cauchy sequence converges.

Example: Consider the sequence of functions fn(x) = sin(nx)
/
n ∈ C[0, π ], the contin-

uous functions on the interval [0, π ]. This sequence converges to f ∗ = 0 in the sup norm
because

‖fn − 0‖ = 1

n
→ 0.

The sequence is also Cauchy because

‖fm − fn‖ ≤ 1

n
+ 1

m
≤ 2

N
<

3

N
∀m, n ≥ N.

Thus for any ε, we may choose N(ε) = 3
/
ε so that the difference is smaller than ε.

Example: Consider the sequence fn =∑n
j=1

xj

j
of functions in C(−1, 1). Assuming that

m > n, then

‖fm − fn‖ =
∥∥∥∥∥∥

m∑
j=n+1

xj

j

∥∥∥∥∥∥ =
m∑

j=n+1

1

j
≥
∫ m

n

dy

y
= ln

(m
n

)
,

since the supremum of
∣∣xj ∣∣ on (−1, 1) is 1. This does not go to zero for m and n arbitrarily

large but otherwise independent. For example, selecting m = 2N and n = N gives a
difference larger than ln 2. Consequently, the sequence is not Cauchy.

Note that for any fixedx ∈ (−1, 1) this sequence converges to the function− ln(1−x);
however, it does not converge uniformly since the number of terms needed to obtain an
accuracy ε depends upon x. Thus in the sense of our function space norm, the sequence
does not converge on C(−1, 1).

A space X that is nicely behaved with respect to Cauchy sequences is called a

� complete space: A normed space X is complete if every Cauchy sequence
in X converges to an element of X.
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For the case of linear spaces a complete space is called a

� Banach space: A complete normed linear space is a Banach space.

Some spaces, like a closed interval with the Euclidean norm, are complete, and some,
like an open interval, are not. The space C(E) with the L∞ norm is complete.16 However,
the continuous functions are not complete in the L2-norm.

Example: Let fn ∈ C[−1, 1] be the sequence

fn =



1, x ≤ 0,
1

1+ nx
, x > 0.

(3.4)

With the L2-norm, this sequence limits to the function f =
{

1, x ≤ 0
0, x > 0 because

‖fn − f ‖2 =
(∫ 1

0

dx

(1+ nx)2

)1/2

= 1√
1+ n

→
n→∞ 0.

Note that the limit, however, is not in C[−1, 1]. In the L2-norm, the sequence is also a
Cauchy sequence:

‖fn − fm‖2
2 =

∫ 1

0

(
1

1+ nx
− 1

1+mx

)2

dx ≤
∫ 1

0

[(
1

1+ nx

)2

+
(

1

1+mx

)2
]
dx

= 1

1+ n
+ 1

1+m
≤ 2

N
,

for any n,m ≥ N—of course every convergent sequence is Cauchy. As a consequence, the
L2-norm is not complete on the space C[−1, 1].
Example: Now consider the sequence (3.4) with the sup-norm. In this case the sequence
does not converge to f , since

‖fn − f ‖ = max

(
|1− 1| , sup

x∈(0,1]

∣∣∣∣ 1

1+ nx

∣∣∣∣
)
= max{0, 1} = 1.

Accordingly, the very definition of convergence can depend upon the choice of norm. More-
over, this sequence is not Cauchy in the sup-norm:

‖fn − fm‖ = sup
x∈[0,1]

∣∣∣∣ 1

1+ nx
− 1

1+mx

∣∣∣∣ = sup
x∈[0,1]

∣∣∣∣ m− n

(1+ nx) (1+mx)
x

∣∣∣∣ .
Differentiation of this expression shows that its maximum occurs at x = (mn)−1/2 and has

the value ‖fn − fm‖ =
∣∣∣√m−√n√

m+√n
∣∣∣ that does not approach zero for all m, n ≥ N →∞. For

example, ‖f4N − fN‖ = 1
3 . This proves that the sequence is not Cauchy.

16The nontrivial proof is given in (Friedman, 1982) and (Guenther and Lee, 1996).
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Since complete spaces are so important, it is worthwhile to note that given one such
space we can construct more of them by taking subsets, as in the next lemma.

Lemma 3.3. A closed subset of a complete metric space is complete.

Proof. To see this, first note that if fj ∈ Y ∈ X is a Cauchy sequence on a complete space
X, then fj → f ∗ ∈ X. Moreover, since f is a limit point of the sequence fj , and a closed
set Y includes all of its limit points, then f ∈ Y .

The issues that we have discussed are rather subtle and worthy of a second look—see
Exercise 1.

Contraction Maps

We have already used the concept of an operator, or map, T : X→ X, from a metric space
to itself in Chapter 2: an n × n matrix is a map from R

n to itself. We will have many
more occasions to use maps in our study of dynamical systems, including the proof of the
existence and uniqueness theorem in §3.3. This proof will rely heavily on what is perhaps
the most important theorem in all of analysis, the fixed-point theorem of Stefan Banach
(1922).

Theorem 3.4 (Contraction Mapping). Let T : X → X be a map on a complete metric
space X. If T is a contraction, i.e., if for all f, g ∈ X, there exists a constant c < 1 such
that

ρ (T (f ), T (g)) ≤ cρ(f, g), (3.5)

then T has a unique fixed point, f ∗ = T (f ∗) ∈ X.

Proof. The result will be obtained iteratively. Choose an arbitrary fo ∈ X. Define the
sequence fn+1 = T (fn). We wish to show that fn is a Cauchy sequence. Applying (3.5)
repeatedly yields

ρ(fn+1, fn) = ρ (T (fn), T (fn−1)) ≤ cρ(fn, fn−1) ≤ c2ρ(fn−1, fn−2) ≤ · · · ≤ cnρ(f1, fo).

Therefore, for any integers m > n, the triangle inequality implies that

ρ(fm, fn) ≤
m−1∑
i=n

ρ(fi+1, fi) ≤
m−1∑
i=n

ciρ(f1, f0) = 1− cm−n

1− c
cnρ(f1, f0) ≤ Kcn,

where K = ρ(f1, fo)
/
(1− c). Since c < 1, then for any ε there is an N such that for all

m, n ≥ N , ρ(fm, fn) ≤ KcN < ε. This implies that the sequence fn is Cauchy and, since
X is complete, that the sequence converges.

The limit, f ∗, is a fixed point of T . Indeed, suppose that N is large enough so that
ρ(fn, f

∗) < ε for all n > N , then

ρ(T (f ∗), f ∗) ≤ ρ(T (f ∗), fn+1)+ ρ(fn+1, f
∗)

= ρ(T (f ∗), T (fn))+ ρ(fn+1, f
∗) < (c + 1)ε.

Because this is true for any ε, the distance is zero and T (f ∗) = f ∗.
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Finally, we show that the fixed point is unique. Suppose to the contrary that there are
two fixed points f �= g. Then, ρ(f, g) = ρ (T (f ), T (g)) ≤ cρ(f, g). Since c < 1, this is
impossible unless ρ(f, g) = 0, but this contradicts the assumption f �= g; thus, the fixed
point is unique.

Example: Consider the space C0(S) of continuous functions on the circle with circumfer-
ence one, i.e., continuous functions that are periodic with period one: f (x + 1) = f (x).
For any f ∈ C0(S) define the operator

T (f )(x) = 1

2
f (2x).

Note that T (f ) ∈ C0(S), and, using the sup-norm, that ‖T (f )− T (g)‖ = 1/2 ‖f − g‖;
therefore, T is a contraction map on C0(S). What is its fixed point? According to the
theorem, any initial function will converge to the fixed point under iteration. For example,
let fo(x) = sin(2πx). Then f1(x) = 1/2 sin(4πx), and after n steps, fn = 1

2n sin(2n+1πx).
A previous example showed that this sequence converges to f ∗ = 0 in the sup-norm. In
conclusion, f ∗ = 0 is the unique fixed point.

Example: As a slightly more interesting example, consider the same function space but let

T (f )(x) = cos(2πx)+ 1

2
f (2x). (3.6)

Note that T decreases the sup-norm by a factor of 1/2 as before, so it is still contracting. For
example, the sequence starting with the function fo(x) = sin(2πx) is

f1(x) = cos(2πx)+ 1

2
sin(4πx),

f2(x) = cos(2πx)+ 1

2
cos(4πx)+ 1

4
sin(8πx),

fj (x) =
j−1∑
n=0

cos(2n+1πx)

2n
+ 1

2j
sin(2j+1πx).

The last term goes to zero in the sup-norm, and by the contraction-mapping theorem, the
result is guaranteed to be unique and continuous. The fixed point is not an elementary
function but is easy to graph; see Figure 3.1; it is an example of a Weierstrass function
(Falconer 1990).

Lipschitz Functions

Another ingredient that we will need in the existence and uniqueness theorem is a notion
that is stronger than continuity but slightly less stringent than differentiability:

� Lipschitz: Let E be an open subset of R
n. A function f : E → R

n is
Lipschitz if for all x, y ∈ E, there is a K such that

|f (x)− f (y)| ≤ K |x − y| . (3.7)
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x 1.00.80.60.40.2

−1.0

1.0

2.0

0.0

Figure 3.1. The fixed point of the operator (3.6).

The smallest such constant K is called the Lipschitz constant for f on E; it has the ge-
ometrical interpretation that the slope of the chord between the two points (x, f (x)) and
(y, f (y)) is at most K in absolute value.

The Lipschitz property implies more than continuity, but less than differentiability.

Lemma 3.5. A Lipschitz function is uniformly continuous.

Proof. Choose any x. Then for every ε, there is a δ = ε
/
K such that whenever |x − y| ≤ δ,

|f (x)− f (y)| ≤ ε. This is the definition of continuity. The continuity is uniform because
δ is chosen independently of x.

If the open set E is unbounded, then the assumption that f is Lipschitz is often too
strong. For example, f = x2 is not Lipschitz on R, even though it is Lipschitz on every
bounded interval (a, b). A weaker notion is

� locally Lipschitz: f is locally Lipschitz on an open set E if for every point
x ∈ E, there is a neighborhoodN such that f is Lipschitz onN . The Lipschitz
constant can vary with the point and indeed become arbitrarily large.

Every differentiable function is locally Lipschitz.

Lemma 3.6. Let f be aC1 function on a compact, convex setA. Then f satisfies a Lipschitz
condition on A with Lipschitz constant K = maxx∈A ‖Df ‖.
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C1(E)
Locally Lipschitz(E)

Lipschitz(E) C 0 (E)
Uniformly C0(E)

⊂
⊂

⊂⊂ ⊂

Figure 3.2. Inclusion relations for Lipschitz functions.

Proof. Since A is convex, the points on a line between two points x, y ∈ A, are also in A.
Accordingly, when 0 ≤ s ≤ 1, ξ(s) = x + s(y − x) ∈ A. Therefore

f (y)− f (x) =
∫ 1

0

d

ds
(f (ξ(s))) ds =

∫ 1

0
Df (ξ(s)) (y − x)ds,

which amounts to the mean value theorem. SinceA is compact and the norm of the Jacobian
‖Df ‖ is continuous, it has a maximum value K , as defined in the lemma. Thus

|f (y)− f (x)| ≤
∫ 1

0
‖Df (ξ(s))‖ |y − x| ds ≤ K |y − x| . (3.8)

This is exactly the promised condition.

Corollary 3.7. If f is C1 on an open set E, then it is locally Lipschitz.

Proof. For any x ∈ E, there is an ε such that Bε(x) ⊂ E. Since Bε(x) is compact and
convex, the previous lemma applies.

Finally, the lemma can be generalized to arbitrary compact sets.

Corollary 3.8. Let E ⊂ R
n be an open set and A ⊂ E be compact. Then if f is locally

Lipschitz on E, it is Lipschitz on A.

Proof. Every compact set can be covered by finitely many balls Bj = Bsj (xj ), j =
1, . . . , N . The previous lemma implies that f satisfies a Lipschitz condition on each ball
with constantKj . Since there are finitely many elements in the cover, f satisfies a Lipschitz
condition on A with Lipschitz constant K = maxj∈[1,N ](Kj ).

Some of the relationships between continuous, Lipschitz, and smooth functions are
summarized in Figure 3.2.

Example: The function f (x) = |x| is continuous and Lipschitz on R. It is obviously C1

on R
+ and R

−, and if x and y have the same sign, then |f (x)− f (y)| = |x − y|. So
the only thing to be checked is the Lipschitz condition when the points have the opposite
sign. Although this is obvious geometrically, let us be formal: let x > 0 > y; then
|f (x)− f (y)| = ||x| − |y|| ≤ x + |y| = |x − y|. So f is Lipschitz with K = 1.
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However, the function f (x) = |x|1/2 is not Lipschitz on any interval containing 0.
For example, choosing x = 4ε, y = −ε, we then have

|f (x)− f (y)| = √|x| −√|y| = √ε = ε√
ε
= 1√

ε

4ε − (−ε)
5

= 1

5
√
ε
|x − y| ,

so that as ε becomes small, the needed value of K →∞.

All these formal definitions have been given to provide us with the tools to prove that
solutions to certain ODEs exist and, if the initial values are given, are unique. We are finally
ready to begin this analysis.

3.3 Existence and Uniqueness Theorem
Before we can begin to study properties of the solutions of differential equations, we must
discover if there are solutions in the first place: do solutions exist? The foundation of the
theory of differential equations is the theorem proved by the French analyst Charles Emile
Picard in 1890 and the Finnish topologist Ernst Leonard Lindelöf in 1894 that guarantees
the existence of solutions for the initial value problem

ẋ = f (x), x(to) = xo (3.9)

for a solution x : R → R
n and vector field f : R

n → R
n. We were able to avoid this

discussion in Chapter 2 because linear differential equations can be solved explicitly. Since
this is not the case for more general ODEs, we must now be more careful.

The main tool that we will use in developing the theory is the reformation of the
differential equation as an integral equation. Formally integrating the ODE in (3.9) with
respect to t yields

x(t) = xo +
∫ t

t0

f (x(τ))dτ . (3.10)

This equation, while correct, is actually not a “solution” for x(t) since in order to find x,
the integral on the right-hand side must be computed—but this requires knowing x.

Begin by imagining that (3.10) can be solved to find a function

x : J → R
n

on some time interval J = [to − a, to + a]. Since the integral in (3.10) does not require
differentiability of x(τ), we will only assume that it is continuous. However, given that
such a solution x(t) to (3.10) exists, then it is actually a solution to the ODE (3.9).

Lemma 3.9. Suppose f ∈ Ck(E,Rn) for k ≥ 0 and x ∈ C0(J, E) is a solution of (3.10).
Then x ∈ Ck+1(J, E) and is a solution to (3.9).

Proof. First note that if x solves (3.10), then x(to) = xo. Since x ∈ C0(J ), the integrand
f (x(τ)) is also continuous and so the right-hand side of (3.10), being the integral of a
continuous function, is C1; consequently, the left-hand side of (3.10), x(t), is also differ-
entiable. By the fundamental theorem of calculus, the derivative of the right-hand side is



3.3. Existence and Uniqueness Theorem 85

precisely f (x(t)); thus, ẋ = f (x). Now we use induction to show that x ∈ Ck+1. Suppose
that x ∈ Cj(J ) for some 0 ≤ j ≤ k. If follows that f (x(τ)) ∈ Cj and the right-hand side
of (3.10) is Cj+1, so x ∈ Cj+1(J ).

Equation (3.10) can be viewed as an operator acting on functions u(t)

T (u) = xo +
∫ t

to

f (u(τ ))dτ . (3.11)

So that (3.11) is well defined, u must be chosen from some suitable function space, for
example, continuous functions. Since every solution to (3.9) obeys (3.10), Lemma 3.9
implies that a continuous function x(t) solves our initial value problem if and only if it is a
fixed point of T :

x∗ = T (x∗).

This leads to a strategy called Picard iteration. Starting with a test function, uo(t), apply T
to obtain what we hope is a “better” approximation, u1 = T (uo). Repeatedly applying this
operator generates a sequence

uj (t) = T (uj−1)(t), j = 1, 2, . . . , (3.12)

that, with any luck, will converge to a fixed point, uj → x∗. Moreover if the limit is
continuous, then Lemma 3.9 implies it is C1 and consequently a solution of the ODE.

Example (Picard Iteration): Consider the one-dimensional, linear, initial value problem
ẋ = rx, x(0) = xo for x ∈ R. The operator (3.11) becomes

T (u) = x0 + r

∫ t

0
u(s)ds.

Choose some more or less arbitrary starting function, say, the constant function uo(t) = xo.
The first approximation is then u1(t) = T (uo)(t) = xo + rxot , and then

u2(t) = x0 + r

∫ t

0
xo (1+ rs) ds = xo

(
1+ rt + r2

2
t2
)
,

u3(t) = x0 + r

∫ t

0
x0

(
1+ rs + r2

2
s2

)
ds = x0

(
1+ rt + r2

2
t2 + r3

6
t3
)
.

It is clear that this sequence generates the power series for the well-known solution xoert .
More interestingly, even if another initial guess is used we still find the same solution. For
example, choosing uo(t) = t , then

u1(t) = x0 + r

∫ t

0
sds =

(
x0 + r

2
t2
)
,

u3(t) = x0 + r

∫ t

0

(
x0 + r

2
s2
)
ds = x0 (1+ rt)+ r2

6
t3.

After each iteration, the “bad” term—the last term in these expressions—moves to a higher
power, leaving behind the series for the exponential.
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Of course, we have not shown that Picard iteration converges in general—and indeed
it is possible to choose sufficiently badly behaved initial functions uo so that this iteration
does not converge. To prove an existence theorem, it is necessary to restrict the class of
allowed functions to a set on which the vector field in (3.9) is bounded; that is, functions for
which the speed |f (u(t)| is bounded. To use the contraction-mapping theorem it is essential
that this subset be a complete set. Luckily, as Lemma 3.3 implies, any closed subset of a
complete space is still complete. Thus we need only to choose a closed subset of C0 to be
assured of completeness.

Once we do this, we find that the contraction-mapping theorem is perfectly suited for
proving the existence of a fixed point of the operator (3.11) and hence of solutions to the
initial value problem (3.9).

Theorem 3.10 (Picard–Lindelöf Existence and Uniqueness). Suppose that for xo ∈ R
n,

there is a b such that f : Bb(xo)→ R
n is Lipschitz with constant K . Then the initial value

problem (3.9) has a unique solution, x(t) for t ∈ J = [to − a, to + a], provided that

a = b
/
M where M = max

x∈Bb(xo)
|f (x)| . (3.13)

Note that a and M both depend upon the values of b and xo. Since this is such an
important theorem, we will give three separate proofs!

Proof1. For the first proof will use the contraction-mapping theorem. This proof does not
quite give the “optimal” bound on a, but it has the advantage of being elegant.

To begin, define a complete metric space on which the contraction map is to operate.
This will consist of all continuous functions x(t) that do not leave the ball Bb(xo) during
the time interval J :

V = C0(J, Bb(xo)). (3.14)

This is a closed set since the range Bb(xo) is closed. If we use the sup-norm metric (3.3),
then V is a closed subset of the complete space C0(R,Rn) and hence it is complete.

Since f is Lipschitz on Bb(xo), it is continuous; therefore, the integral of f (x(t)), for
any x(t) ∈ V, is a continuous function of t . We will show the operator T defined by (3.11)
maps V into itself and is a contraction. This would imply, using the contraction-mapping
theorem, that T has a unique fixed point. By Lemma 3.9 any such fixed point is a solution
to (3.9) and conversely every solution to (3.9) is a fixed point of T .

When x ∈ V , then T (x) is automatically continuous since f is continuous, but we
must show that T (x) ∈ V . Now, since f ∈ C0(Bb(xo)), and Bb(xo) is a closed subset, then
f is bounded on Bb(xo), so that M can be defined as in (3.13). If to ≤ t ≤ to + a,17

|T (x)(t)− x0| ≤
∫ t

t0

|f (x(τ))| dτ ≤ M |t − t0| ≤ Ma;

the final inequality holds also when to − a ≤ t ≤ to. The right-hand side can be no larger
than b, so we must have a ≤ b

/
M . In this case T (x)(t) ∈ Bb(xo), so that T (x) ∈ V. To

17Note that | ∫ t
to
f (t)dt | ≤ ∫ t

to
|f (t)| dt when t ≥ to but that the second integral should be reversed when t ≤ to.

In many of the inequalities below, we will usually assume the former, but the end results will be valid in either
case.
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show that T is a contraction mapping, consider two functions x and y ∈ V . Then, because
f is Lipschitz,

|T (x)(t)− T (y)(t)| ≤
∫ t

t0

|f (x(τ))− f (y(τ))| dτ

≤ K

∫ t

t0

|x(τ)− y(τ)| dτ ≤ Ka ‖x − y‖

when t ∈ J . As a consequence, ‖T (x)− T (y)‖ ≤ c ‖x − y‖, where c = Ka < 1 providing
a < 1

/
K . Consequently T is a contraction and has a unique fixed point that is a solution

to the differential equation provided that

a ≤ b
/
M and a < 1

/
K. (3.15)

In conclusion, the solution exists and is unique over the time interval J .

The only deficiency of this first proof is the extra restriction on a in (3.15). For the
second proof the contraction-mapping theorem will not be used, but iteration of T will
still be the strategy. However, in this case, a special initial function is chosen. There
are two advantages: the time interval J does not have the “artificial” restriction (3.15),
and everything can be done explicitly, without appealing to the completeness of V . A

disadvantage is that the proof is much longer.

Proof2. Define the operator T (3.11), the boundM (3.13), and the space V (3.14) as before.
Let

uo ≡ xo and uj ≡ T (uj−1). (3.16)

We will show that uj ∈ V by induction. To begin, the function uo is obviously in V . Now
suppose that uj−1 ∈ V , then uj ∈ C0(J ), since it is defined by the integral. Moreover,
the curve uj (t) is contained in the cone with vertex at (to, xo) and slope M, as sketched in
Figure 3.3, because

∣∣uj − x0

∣∣ ≤ ∫ t

t0

∣∣f (uj−1(τ ))
∣∣ dτ ≤ M |t − t0| . (3.17)

Thus uj (t) ∈ Bb(xo), providing a ≤ b
/
M as before. In consequence, each of the functions

uj ∈ V .
We want to show that the sequence uj is convergent. Define

8j(t) =
∣∣uj (t)− uj−1(t)

∣∣ .
The result (3.17) implies that 81 ≤ M |t − to|. Using this and the Lipschitz property of f
gives a recursive bound on the 8j :

8j+1 ≤
∫ t

to

∣∣f (uj (τ ))− f (uj−1(τ ))
∣∣ dτ ≤ K

∫ t

to

8j (τ )dτ .
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to
to-a to+a

xo

xo+b

xo-b

M(t-to)

-M(t-to)

uj(t)

Figure 3.3. Cone containing the solution to the Picard iteration (3.16).

Explicitly, the iteration of this recursion gives 82 ≤ 1/2MK |t − to|2, and hence

8j ≤ M

K

(K |t − to|)j
j ! ≤ M

K

(Ka)j

j ! .

To show that the sequence un → u as n→∞, write

un = x0 +
n∑

j=1

(
uj − uj−1

)
. (3.18)

If this series converges as n→∞, then the sequence un does as well. Convergence of the
series follows from the Weierstrass M-test. Since

∣∣uj − uj−1

∣∣ = 8j , and

∞∑
j=1

8j ≤
∞∑
j=1

M

K

(Ka)j

j ! ≤ M

K

(
eKa − 1

)
,

then the Weierstrass M-test implies that the series (3.18) converges uniformly. Thus the
sequence un is uniformly convergent, and Lemma 3.2 implies that the limit, u(t), is contin-
uous.

Finally, the limiting function u(t) is a fixed point of T , as can be seen from

|u(t)− T (u)(t)| ≤ |u(t)− un(t)+ T (un−1)(t)− T (u)(t)|
≤ |u(t)− un(t)| +K

∫ t

t0

|un−1(s)− u(s)| ds.

Since the sequence un−1 converges, for any ε there is an N such that |u(t)− un−1(t)| < ε

for all n > N . Using this in the equation above gives

|u(t)− T (u)(t)| ≤ ε(1+Ka).

Since this is true for any ε, then u = T (u) and is therefore a solution of (3.9).



3.3. Existence and Uniqueness Theorem 89

It remains to show that u(t) is unique.18 Suppose x(t) ∈ V is any solution, T (x) = x;
then

|x(t)− xo| ≤
∣∣∣∣
∫ t

to

f (x(s))ds

∣∣∣∣ ≤ M |t − to| . (3.19)

The implication is that x ∈ V providing t ∈ J and a ≤ b
/
M , as before. Now we show

that x must be the same as u(t) by showing that
∣∣x − uj

∣∣→ 0. Using the same inductive
procedure as before, and the inequality (3.19) with xo = uo, implies

∣∣x(t)− uj (t)
∣∣ ≤ ∫ t

t0

∣∣f (x(s))− f (uj−1(s))
∣∣ ds

≤ K

∫ t

t0

∣∣x(s)− uj−1(s)
∣∣ ds ≤ M

K

[K |t − t0|]j+1

(j + 1)! .

Since this bound approaches zero as j → ∞, then uj → x. However, uj → u as well;
therefore, u = x.

Since the contraction mapping theorem yields a much more compact proof, it would be
nice if it could be modified to yield the same result, that a = b

/
M . One way to accomplish

this is to use a slightly different norm on V .

Proof3. We still define the space V (3.14) so that x(t) must remain in Bb(xo), but now
define a new norm, the Bielecki norm (Bielecki 1956), given by

‖f ‖L = sup
t∈J

e−L|t−to| |f (t)| ,

for some positive constant L. The continuous functions, C0(J, Bb(xo)), with this norm
are also a complete space. Repeating the contraction mapping proof with this norm gives
a = b

/
M provided that L ≥ K . We leave the completion of this proof as an exercise (see

Exercise 6).

Example: Existence can be proved when f ∈ C0 without the additional Lipschitz as-
sumption (Coddington and Levinson 1955, Theorem 1.1.2); however, for uniqueness the
Lipschitz condition is needed. For example, consider the one-dimensional equation

ẋ = f (x) = |x|α (3.20)

for 0 < α < 1. Although f is continuous, it is not Lipschitz around x = 0, because there is
no finiteK for which |x|α < K |x| for all |x| < 1, since that would requireK > |x|α−1, but
the right-hand side is unbounded. Moreover, there are at least two solutions to the initial
value problem with x(0) = xo = 0. First x = 0 is a solution, as can be seen by simply
substituting it into the ODE. A second solution can be obtained by separation of variables
as in (1.6) and carefully considering the signs (still assuming 1− α > 0):

x(t) = sgn(t)
(
(1− α)|t |) 1

1−α .

The solution for α = 1
/

3 is shown in Figure 3.4. Note that this solution satisfies the

18This also follows easily from Grönwall’s lemma—see §3.4 and Exercise 8.
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Figure 3.4. Solutions of ẋ = |x|1/3, x(0) = 0.

necessary condition that ẋ ≥ 0 for all t . There are infinitely many other solutions of (3.20)
that obey xo = 0 as well—we leave it as a challenge to the reader to find them!

Example: An equation such as (3.20) might seem artificial, but it is an approximate model
for a physical system. Consider a mass slowly sliding on a ramp whose height is given by
y = H(x).19 The motion is given by Newton’s equations with gravity, drag, and normal
forces. Denote the magnitude of the drag by Fd and of the force normal to the ramp by Fn.
Let θ be the angle of the surface below the horizontal, v the speed, and v (cos θ,− sin θ)
the velocity; see Figure 3.5. Then the drag force is−Fd(cos θ,− sin θ), and the Newtonian
equations are

mẍ = −Fd cos θ + Fn sin θ,
mÿ = Fd sin θ + Fn cos θ −mg.

For the heavily damped case, the inertial terms (those on the left-hand sides) can be neglected.
Solving for the normal force in the y equation and substituting it into the x equation yields

0 ≈ −Fd cos θ + (−Fd sin θ +mg) tan θ ⇒ Fd = mg sin θ.

We will assume that Fd = γ v; this is valid if the Coulomb friction between the mass and
the ramp can be neglected and either the mass is embedded in a low Reynolds number fluid
flow or the ramp is lubricated. Using v = √ẋ2 + ẏ2 = ẋ

√
1+H ′2, where H ′ = − tan θ ,

gives the ODE

ẋ = − kH ′

1+ (H ′(x))2

for a constant k = mg
/
γ . This has the form of (3.20) if we set

H ′ = 1

2 |x|α
(√

1− 4x2α − 1
)
, (3.21)

which limits to − |x|α for small x; consequently, H ≈ −sgn(x)
1+α |x|1+α .

19The equations of motion for the system without drag are most easily obtained by using a Lagrangian (see, for
example, (9.29):

• L(x, y, ẋ, ẏ) = 1/2m(ẋ
2 + ẏ2)−mgH(x) = 1/2m(1+H ′(x)2)ẋ2 −mgH(x).

• The Euler–Lagrange equations are
(
1+H ′(x)2

)
ẍ +H ′H ′ ′ẋ2 = −gH ′.
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Figure 3.5. Force diagram and function H(x) from (3.21) for α = 0.8.

Example: Differentiability of f is not required for the existence and uniqueness theorem
to work. For example, if f = 1 − |x|, then f is Lipschitz on R with K = 1 (i.e., f is
contained in a cone with slope 1), and the unique solution for xo = 0 is

x(t) =
{

1− e−t , t > 0,
et − 1, t < 0.

Note that this is C1 at t = 0, as Theorem 3.10 guarantees.

The Picard–Lindelöf theorem only guarantees that the solution exists over the interval,
|t − to| ≤ a = b

/
M . Sinceb appears in the numerator ofa(b, xo), it appears that the interval

of existence grows with b, and so if f is well behaved, then one should choose b very large.
However, M is a function of b as well, so the choice of the optimal value for b is a little
more complicated.

Example: Here we explore the maximal domain of existence implied by the Picard–Lindelöf
theorem for the problem

ẋ = x2, x(0) = xo. (3.22)

For simplicity let us assume that xo > 0. In the ball Bb(xo), |f (x)| ≤ (xo + b)2 = M .
According to Theorem 3.10, the solution can be proved to exist for

|t | ≤ a = b

(xo + b)2 .

To get the largest interval, compute the maximum of this function over possible choices of
b; it is easy to see that this occurs when b = xo, giving the maximal interval

|t | ≤ 1

4xo
. (3.23)
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Using separation of variables (recall (1.6)), the general solution to (3.22) is easily found:

x(t) = xo

1− txo
, (3.24)

which has an interval of existence t ∈ (−∞, 1
/
xo). Note that this interval is asymmetric

and is also larger than (3.23). Nevertheless, the fact that the actual interval of existence does
not extend to +∞ shows that a bound on this interval in Theorem 3.10 is not an artificial
result of the methodology used in the proof.

As shown by this example, it is important to keep in mind that a solution of a perfectly
well-behaved nonlinear ODE need not exist for all time. This behavior is to be contrasted
with that of the linear equations studied in Chapter 2 whose solutions, etAxo, do exist for
all time.

Recall from §1.2 that a nonautonomous equation ẋ = f (t, x) can be converted into
an autonomous one by adding t to the list of variables. Hence the Picard–Lindelöf theorem
applies—providing f is Lipschitz in t as well as x. It is sometimes useful to have a special
existence theorem for nonautonomous equations for which that assumption can be relaxed.

Theorem 3.11 (Nonautonomous Existence and Uniqueness). Suppose f : J ×Bb(xo)→
R
n is a uniformly Lipschitz function of x with constant K , and a continuous function of t

on J = [to − a, to + a]. Then the initial value problem

ẋ = f (t, x), x(to) = xo (3.25)

has a unique solution for t ∈ J , and a = b
/
M , where

M = max
x∈Bb(xo)
t∈J

|f (t, x)| .

The assumption of “uniformly” Lipschitz means thatK can be taken to be independent
of t . The proof is left as an exercise (see Exercise 7). It can also be shown that continuity
in t is not necessary for existence and uniqueness; see Exercise 8.

Example: The nonautonomous linear equation ẋ = A(t)x has a unique solution, according
to Theorem 3.11, providing that A is a uniformly continuous function of time on an interval
J . Note that the linear vector fieldA(t)x is Lipschitz in x with constantK = supt∈J ‖A(t)‖.
This result was used in §2.8 in the development of Floquet theory.

3.4 Dependence on Initial Conditions and Parameters
In this section we will discuss how a solution of an ODE depends on the choice of initial
condition as well as on parameters in the vector field f . To do this, we need to add some
notation to the solution to indicate its dependence on the initial value:

ẋ = f (x), x(0) = y ⇒ x(t) = u(t; y). (3.26)



3.4. Dependence on Initial Conditions and Parameters 93

We use the semicolon to separate the primary argument of u from its implicit, secondary
dependence on y. Using this notation, the initial condition becomes u(0; y) = y. Below,
we will show that when f ∈ C1, then u ∈ C1 as a function of y. This permits the definition
of the linearization of the flow about the solution using the Jacobian matrix:

Q(t; y) ≡ Dyu ≡ ∂u

∂y
. (3.27)

Note that since u(0; y) = y, then Q(0; y) = I . If in addition u ∈ C2, then the chain rule
yields

d

dt

∂

∂y
u(t; y)= ∂

∂y
u̇(t; y) = ∂

∂y
f (u(t; y)) = Df (u(t; y)) ∂

∂y
u(t; y),

d

dt
Q= Df (u(t; y))Q.

(3.28)

This nonautonomous linear differential equation is the linearization or variational equation.
We discussed a similar linear, matrix equation in (2.46), when we studied Floquet theory.

First we will show that it makes sense to think of u as a function of initial condition.
To do that we must first show that solutions with nearby initial conditions can be defined
on a common interval of time.

Lemma 3.12 (Neighborhood Existence). Suppose that for a given xo ∈ R
n, there is a

b such that f : Bb(xo) → R
n satisfies a Lipschitz condition with constant K , and that

M = maxx∈Bb(xo) |f (x)|. Then the family of solutions u(t; y) of (3.26) exists for each
y ∈ Bb/2(xo) and is unique for t ∈ [−a, a] providing a < min

{
1
/
K, b

/
2M
}
.

Proof. As in the contraction mapping proof of Theorem 3.10, define the closed set V of
continuous functions (3.14), where J = [−a, a], since we have set to = 0. We now label
the operator T by the specific initial condition y:

Ty(u) = y +
∫ t

0
f (u(τ))dτ . (3.29)

If y ∈ Bb/2(xo), and u ∈ V , then Ty(u) ∈ V providing a ≤ b
/

2M , because

∣∣Ty(u)− xo
∣∣ ≤ |y − xo| +

∫ t

0
|f (u(s))| dτ ≤ b

2
+Ma ≤ b.

Moreover Ty is a contraction on V , as before, providing a < 1
/
K . In conclusion, for each

y ∈ Bb/2(xo), Ty has a unique, continuous fixed point u(t; y) that is a solution of the ODE
for t ∈ J .

Note that the initial conditions can be varied only over a ball with half the radius of the
ball where f is assumed to be nice and that the solution can be shown to exist only for half
of the time. This is because all the solutions must stay in Bb for all |t | < a; see Figure 3.6.
We could adjust these factors of 1/2, increasing one at the expense of decreasing the other.
Finally, as before, the requirement that a < 1

/
K could be eliminated with a little more work.
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Figure 3.6. Existence of solutions for initial conditions in a neighborhood of radius
b about xo requires using a smaller ball.

Example: Consider the initial value problem (3.22) taking as the central point xo = 0 so
that f : Bb(0)→ R. The Lipschitz constant on this domain is K = 2b and |f | is bounded
by M = b2. The theorem then guarantees that a unique solution exists for |y| < b

/
2,

providing a < min
{
(2b)−1, b

/
(2b2)

} = (2b)−1. Note that the actual solution (3.24) for
an initial condition y ∈ Bb/2(0) blows up a time t = 1

/
y, so the shortest time occurs

when y = b
/

2. Thus the true solution exists at least four times longer than the theorem
gives us.

So far we have seen that the solution u(t; y) exists for a range of initial conditions
and is C1 in t whenever the vector field f is Lipschitz. Our goal now is to discuss the
smoothness of the dependence of u(t; y) on y. For example, we will see that when the
vector field is Lipschitz, u is a Lipschitz function of y.

The main tool used to prove this is a lemma about differential inequalities. Some care
must be exercised here. For example, suppose that f < g; does it follow that ḟ < ġ? A
simple counterexample shows this is not true: f (t) = cos 3t and g(t) = 2. The converse
statement is also not true: for example, if f (t) = sin t and g(t) = 2t , then indeed ḟ (t) =
cos t < ġ(t) = 2, but note that f > g when t < 0. In contrast, note that if ḟ ≤ ġ, it follows
that f increases less rapidly than b, so that f (t)− f (to) ≤ g(t)− g(to) provided t ≥ to. It
is important, of course, that we assume that both f, g ∈ C1 for this to work. This simple
idea leads to the lemma proved by Thomas Grönwall in 1919.
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Lemma 3.13 (Grönwall). Suppose g, k : [0, a] → R are continuous, a > 0, k(t) ≥ 0, and
g obeys the inequality

g(t) ≤ G(t) ≡ c +
∫ t

0
k(s)g(s)ds (3.30)

for all 0 ≤ t ≤ a. Then for all t ∈ [0, a],

g(t) ≤ ce
∫ t

0 k(s)ds . (3.31)

Proof. Since g and k are continuous, thenG isC1 andG(0) = c. Differentiation ofG from
(3.30) gives

Ġ(t) = k(t)g(t) ≤ k(t)G(t);
consequently, Ġ−kG ≤ 0. Multiplying by the positive “integrating factor” e−

∫ t
0 k(s)ds gives

e−
∫ t

0 k(s)ds(Ġ(t)− kG) = d

dt

(
G(t)e−

∫ t
0 k(s)ds

)
≤ 0.

Integrating this inequality finally implies

G(t)e−
∫ t

0 k(s)ds ≤ G(0) ⇒ G(t) ≤ ce
∫ t

0 k(s)ds .

Since g ≤ G, we obtain (3.31).

A similar lemma holds when c is allowed to be a function of time—see Exercise 9.
Grönwall’s inequality makes the proof of our desired theorem very easy.

Theorem 3.14 (Lipschitz Dependence on Initial Conditions). Let xo ∈ R
n, and suppose

there is a b such that f : Bb(xo)→ R
n is Lipschitz with constant K and that J = [−a, a]

is the common interval of existence for solutions u : J ×Bb/2(xo)→ Bb(xo). Then u(t; y)
is uniformly Lipschitz in y with Lipschitz constant eKa .

Proof. Suppose u(t; y) and u(t; z) are two solutions starting in Bb/2(xo). They have a
common interval of existence J . When t ∈ [0, a], the integral form (3.10) implies that

|u(t; y)− u(t; z)| ≤ |y − z| +
∫ t

0
|f (u(τ ; y))− f (u(τ ; z))| dτ

≤ |y − z| +K

∫ t

0
|u(τ ; y)− u(τ ; z)| dτ .

This is precisely Grönwall’s form (3.30) with c = |y − z|, and k(t) = K , so (3.31) becomes

|u(t; y)− u(t; z)| ≤ |y − z| eKt . (3.32)

A similar inequality holds for t ∈ [−a, 0], giving our result.

A slightly different proof is sketched in Exercise 8.
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We can use this Lipschitz dependence of u(t; y) on y to prove that when f isC1, then
u is also C1 in y. The proof of this result requires a bit more work than the previous one.

Theorem 3.15 (Smooth Dependence on Initial Conditions). Suppose f : E→ R
n is C1

on an open set E. Then there is an a > 0 such that the solution u(t; y) of (3.26) is a C1

function of y for t ∈ J = [−a, a].

Proof. Since f is C1 on an open set, it is locally Lipschitz by Corollary 3.7. Hence, for
any initial condition xo ∈ E and any subset Bb(xo) ⊂ E, f is Lipschitz on Bb(xo) with
constant K(xo, b). By Lemma 3.12, there is a unique solution u(t; y) for all y ∈ Bb/2(xo)

on a common interval J . As in (3.28), define the fundamental matrix Q to be the solution
of the initial value problem

d

dt
Q = Df (u(t; y))Q, Q(0; y) = I.

Just as we argued in §3.3, Q exists by Theorem 3.11. Indeed, since u ∈ C1 as a function of
t and Df (x) is a continuous function of x, the matrix A(t) = Df (u(t; y)) is a continuous
function of t . Thus, there exist unique solutions to ẋ = A(t)x, x(0) = êi for each of the
unit vectors êi on the interval J . These solutions define the columns of Q.

Now suppose |h| ≤ b
/

2 and consider

g(t) ≡ |u(t; y + h)− u(t; y)−Q(t; y)h| .
We can insert the integral form (3.10) into each term in g to obtain

g(t) =
∣∣∣∣
∫ t

0
f (u(τ ; y + h))− f (u(τ ; y))−Df (u(τ ; y))Q(τ ; y)hdτ

∣∣∣∣ , (3.33)

where we have simplified using h = Q(0; y)h. The goal is to show that g → 0 as h→ 0
faster than |h|,20 as this would imply that Q is the derivative of u(t; y).

Since f is C1, Taylor’s theorem implies

f (w) = f (u)+Df (u) (w − u)+ R(u,w)

such that the remainder, R, is small, i.e., for any ε, there is a δ(ε, u) such that

|R(u,w)| ≤ ε |w − u| when |w − u| < δ. (3.34)

Consequently, using the operator norm (2.23) we have

|f (w)− f (u)| ≤ ‖Df (u)‖ |w − u| + |R| .
Using this in (3.33) gives for any t ∈ [0, a],

g(t)≤
∫ t

0
|f (u(τ ; y + h))− f (u(τ ; y))−Df (u(τ ; y))Q(τ ; y)h| dτ

≤
∫ t

0
‖Df ‖ |u(τ ; y + h)− u(τ ; y)−Q(τ ; y)h| dτ +

∫ t

0
|R(u(τ ; y + h), u(τ ; y))| dτ .

20That is, we want to show that g = o(h). See §4.4 for a definition of the “little oh” notation.
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Now we use the Lipschitz bound (3.32) in the form |u(s; y + h)− u(s; y)| ≤ heKa and the
bound (3.34) to obtain

g(t) ≤
∫ t

0
‖Df ‖ g(t)dτ + ε |h| eKaa, (3.35)

providing |h| ≤ r = δ(ε, b)e−Ka . This restriction implies that for each ε we have a ball
Br(y) of acceptable initial conditions for (3.35) but that |h| can be arbitrarily small for any
ε. Equation (3.35) is again of the form of Grönwall’s inequality (3.30). Since the Lipschitz
constant K bounds ‖Df ‖ according to (3.8), we have

g(t) ≤ ε |h| aeKaeKt .
As this is true for any ε, then g(t)

/|h| → 0 as h→ 0, implying that u ∈ C1 as promised,
and that its derivative is indeed Q.

As a final result, suppose that the vector field depends continuously upon some param-
eters µ—for example, the n-body gravitational equations depend upon the masses of each
body and the universal gravitational constant. We will show that the solution also depends
continuously on µ. This result is related to the concept of structural stability: properties
of the solutions should not change dramatically if the parameters of a system are varied.
Such considerations are important in modeling since typically the values of parameters in
the vector field will be uncertain.

Theorem 3.16 (Continuous Dependence on Parameters). Supposef : Bb(xo)×Br(µo)→
R
n has uniformly Lipschitz dependence on x ∈ Bb(xo) and is a uniformly continuous func-

tion of parametersµ ∈ Br(µo). Then the ODE ẋ = f (x;µ) has a unique solutionu(t; y, µ)
for y ∈ Bb/2(xo) that is a uniformly continuous function of µ on some interval t ∈ J .

Proof. Use the same idea as the Lipschitz dependence on initial conditions result, but
now choose two solutions u(t; y, µ) and u(t; y, ν) with µ, ν ∈ Br(µo). The usual argu-
ments imply that these have a common interval of existence J . Moreover (suppressing the
dependence upon the initial condition),

|u(t;µ)− u(t; ν)| ≤
∫ t

0
|f (u(τ ;µ);µ)− f (u(τ ; ν); ν)| dτ .

Write

f (u(τ ;µ);µ)− f (u(τ ; ν); ν) = f (u(τ ;µ);µ)− f (u(τ ;µ); ν)
+ f (u(τ ;µ); ν)− f (u(τ ; ν); ν).

Since f is uniformly continuous in µ, for any ε there is a δ such that whenever |µ− ν| ≤
δ(ε), then |f (x; ν)− f (x;µ)| ≤ ε. Using this gives

|u(t;µ)− u(t; ν)| ≤ ε

∫ t

0
dτ +

∫ t

0
|f (u(τ ;µ); ν)− f (u(τ ; ν); ν)| dτ

≤ εa +K

∫ t

0
|u(τ ;µ)− u(τ ; ν)| dτ ,
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t

x

Figure 3.7. Shaded region is the domain of existence for (3.22).

which gives, by Grönwall’s lemma (3.30), |u(t;µ)− u(t; ν)| ≤ εaeKa for any ε and
t ∈ J .

3.5 Maximal Interval of Existence
The existence theorem implies that when f is locally Lipschitz at a point xo, the solution
can be found on a closed interval J = [to − a, to + a]. Since the estimates used to obtain J
are certainly not optimal, the true solution typically exists over a much larger interval. The
largest such interval will be called the

� maximal interval of existence: The maximal interval of existence, J (to, xo),
is the largest interval of time that includes to for which the solution, x(t), to the
initial value problem (3.9) exists.

If the solution can be found explicitly, then we can compute the maximal interval and find
the maximal domain of existence in space–time.

Example: For the initial value problem (3.22), f is locally Lipschitz on R and the existence
and uniqueness theorem applies for any xo. The solution was given in (3.24) and exists
for the maximal interval (−∞, x−1

o ) if xo > 0, for (−∞,∞) if xo = 0, and (x−1
o ,∞) if

xo < 0. Note for each xo that the interval is open but that it depends upon initial conditions:
the domain of existence is an open subset of R

2, as sketched in Figure 3.7. Moreover, as t
approaches the boundary of the domain, t → x−1

o , we have x(t)→∞.

As indicated by the example, we now show that the maximal interval is indeed always
open. Then we will show that if this interval is bounded, the solution must leave the domain
of definition of the vector field f as it approaches the bounded endpoint of J .
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Figure 3.8. Maximal interval of existence is constructed by repeatedly applying
the existence theorem.

Theorem 3.17 (Maximal Interval of Existence). Let E be an open set and f : E → R
n

be locally Lipschitz. Then there is a maximal, open interval J = (α, β) containing to such
that the initial value problem ẋ = f (x), x(to) = xo, has a unique solution x : J → R

n.

Proof. For the purposes of this proof, denote the local solution to the initial value problem
(3.9) by x(t) = u(t; to, xo). Theorem 3.10 guarantees that in each closed ball Bb0(xo) ⊂ E

there is a solution on an interval Jo = [to − ao, to + ao]. Indeed, the theorem implies that
u(t; to, xo) ∈ Bb(xo) ⊂ E and is C1; therefore, limt→ao u(t; to, xo) = x1 ∈ Bb(xo) and
x1 ∈ E since E is open. Apply Theorem 3.10 again for the initial value problem with
x(t1) = x1 on another ball Bb1(x1) ⊂ E to find a new solution u(t; t1, x1) on an interval
J1 = [t1 − a1, t1 + a1] around t1 = to + ao. Note that Jo ∩ J1 is not empty, and uniqueness
implies that u(t; to, xo) = u(t; t1, x1) on their common interval of definition, Jo ∩ J1.

In this way, as sketched in Figure 3.8, the solution can be extended to obtain a unique
solution on a larger interval. Let J be the union of all such intervals and x(t) be the unique
solution just constructed on J .

The interval J must be open. Suppose to the contrary that J has a closed endpoint, for
example, that J = (α, β]. Then as before x(β) ∈ E, and so the solution can be extended to
a larger interval; therefore, J is open.

Example: Consider one final time our favorite example, ẋ = x2, x(0) = xo > 0 with
solution (3.24). Recall that our computation for the existence and uniqueness theorem gave
an interval of existence (3.23) with ao = 1

4xo
using the choice b = xo, so that Jo = [−ao, ao].
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To apply Theorem 3.17 it would be necessary to calculate x1 = x(ao); in general, this is
impossible. In our case, however, the solution is known, and x1 = 4xo

/
3. Starting over

with this value as the initial condition, x(t1) = x1, existence is guaranteed for at least an
interval J2 = [t1 − a1, t1 + a1] with a1 = 1

4x1
= 3

16xo
. Then t2 = t1 + a1 = 1

4xo

(
1+ 3

4

) =
1
xo

(
1− ( 3

4 )
2
)
, so that x2 = x(t2) =

(
4
3

)2
xo. Continuing in this way for n steps gives

existence up to a time

tn = 1

4xo

(
1+ 3

4
+ · · ·

(
3

4

)n−1
)
= 1

xo

(
1−

(
3

4

)n)
.

This sequence converges to t∞ = 1
/
xo. Note, however, that existence is guaranteed only

up to times equal to tn for finite n, and in the limit the solution exists in the open interval
with upper limit t∞. If the same game is played for decreasing t , then the solution x(t)

becomes smaller in size, so that the successive intervals of existence do not decrease, but
rather get larger. This is why the solution exists for all negative time.

Theorem 3.18 (Unboundedness). Suppose E is an open set and f : E → R
n is locally

Lipschitz. Let J = (α, β) be the maximal interval of existence for (3.9). If β is finite, then
for any compact set K ⊂ E there is a t ∈ [to, β) such that x /∈ K . Similarly, if α is finite,
then for any compact set K ⊂ E there is a t ∈ (α, to] such that x /∈ K.

Proof. Consider the case that β is finite. Suppose the theorem were false. Then there would
be a compact set K such that x(t) ∈ K for all t ∈ [to, β). Since f is continuous and K
is compact, f is bounded on K: denote the bound as usual by M = maxx∈K |f (x)|. The
integral equation (3.10) implies that for any t1 ≤ t2 < β, |x(t1)− x(t2)| ≤ M |t1 − t2|. This
means that if tj is a sequence of times such that tj → β, then the sequence x(tj ) is a Cauchy
sequence. Since K is a closed subset of R

n, every Cauchy sequence converges. Moreover,
since this is true for every such sequence tj → β, and x(t) is continuous on [to, β), then

lim
t→β

x(t) = x1

exists. Consequently, if we define x(β) = x1, then the function x(t) is continuous on [to, β].
We can now apply Theorem 3.10 again using the initial condition x(β) = x1 to show that
there is a solution of (3.9) in some interval around β. By uniqueness, this is the same
solution near β as x(t). Consequently, β is not the upper limit of the interval of existence,
and we have reached a contradiction. The proof for α finite is similar.

Corollary 3.19. If β is finite, then either limt→β x(t) does not exist or limt→β x(t) ∈ ∂E.

Proof. Since β is finite, Theorem 3.18 implies that x leaves every compact set contained in
E. If the limit exists, then it cannot be in E, since then the solution could be extended as
before. However, since every point on x(t) is inE for t < β, this means that limt→β x(t) ∈
∂E.

Example: Consider the initial value problem on R:

ẋ = f (x) = 1

x
, x(0) = xo > 0.
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Now the function f is well defined only for x �= 0, so the entire real line cannot be used as
the space E. Instead we have to choose the positive or negative half-line. Since xo > 0,
set E = R

+. The solution to this problem is x(t) = √x2
o + 2t and is contained in E for

the maximal interval J = (−x2
o

/
2,∞). In this case x does approach a limit at the lower

endpoint of J :
lim

t→−x2
o

/
2
x(t) = 0 ∈ ∂E.

Example: Consider the system on R
2 defined by

ẋ = 1

1− y
, ẏ = y,

with initial conditions x(0) = xo and y(0) = yo. The differential equation is locally
Lipschitz on any subset of the plane that does not include the line y = 1. A solution is found
by first solving the equation for y to obtain y(t) = yoe

t and then substituting this into the
x equation to give a separable equation in x and t . Solving this gives

x(t) = xo + ln

∣∣∣∣ 1− yo

e−t − yo

∣∣∣∣
so that the solution to the system is

u(t; xo, yo) =
(
xo + ln

∣∣∣∣ 1− yo

e−t − yo

∣∣∣∣ , yoet
)
.

When yo > 1, the solution is defined on the interval t ∈ (− ln yo,∞), and when 0 < yo < 1,
it is defined on the interval t ∈ (−∞,− ln yo). Note that

u(t; xo, yo)→ (∞, 1) as t →− ln yo,

so the solution does not approach a limit at this endpoint of J . However, when yo ≤ 0, then
the solution is defined on (−∞,∞).

3.6 Exercises
1. Determine whether the following sequences are Cauchy in the space C0(R,R) with

the sup-norm

(a) fn(x) = sin(2πnx),

(b) fn = tan(2πx/n),

(c) fn(x) = 1
x2+n2 ,

(d) fn(x) = nx
1+(nx)2 .

If the sequence is Cauchy, find its limit.
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2. Show that if f ∈ C0(E) and E is compact, then f is uniformly continuous. (Hint:
Use the fact that every compact set can be covered by a finite number of balls,Bδi (xi).
Argue that you can choose the balls so that for each y ∈ B2δi (xi), |f (y)− f (xi)| <
ε
/

2. Set δ to the minimum radius of these balls. Now prove that for any y and z, if
|z− y| < δ, then |f (z)− f (y)| < ε.)

3. Consider the operator

T (f ) = sin(2πx)+ λ

∫ 1

−1

f (y)

1+ (x − y)2
dy

on the space of functions C0[−1, 1] equipped with the sup-norm (3.3).

(a) Show that if f ∈ C0[−1, 1], then so is T (f ).

(b) Find a λo > 0 such that if |λ| < λo, then T (f ) is a contraction mapping, and if
|λ| > λo, then it is not. (Hint: To show the second part it is sufficient to find a
pair of functions, f, g, for which ρ(T (f ), T (g)) > ρ(f, g).)

(c) Investigate the fixed point numerically. Start with f (x) = 0, and then try
several other initial states. Try values of λ both smaller and larger than λo.
(Hint: Numerical integration may be necessary.)

4. Show that the initial value problem

ẋ = cos(t) |x|1/2 , x(0) = 0,

has at least two different solutions. Sketch them in the (x, t)-plane. Why is the
solution not unique?

5. Consider the initial value problem

ẋ = x3, x(0) = a.

(a) Using Picard iteration (3.12) with uo(t) = 0, find the first three successive
approximations u1(t), u2(t), u3(t) to the solution.

(b) Find the exact solution of this problem and expand it in a Taylor series about
t = 0. Show that the first few terms of this series agree with the Picard iterates.

(c) How does the number of correct terms grow with iteration?

6. Complete the third proof of Theorem 3.10 using the Bielecki norm and the contrac-
tion-mapping theorem.

7. Here we will prove Theorem 3.11. Suppose f : J × Bb(xo) → R
n, where J =

[to − a, to + a] is uniformly Lipschitz in Bb(xo) and C0 in J . Thus there exists a
constantK such that |f (t, x)− f (t, y)| ≤ K |x − y| for all t ∈ J and x, y ∈ Bb(xo).
Prove that there is an a > 0 such that solutions of the nonautonomous initial value
problem (3.25) exist and are unique for t ∈ J .



3.6. Exercises 103

8. Here is an alternative proof that solutions are unique and have Lipschitz dependence
upon initial conditions when f is Lipschitz. Suppose that u, v : J → Bb(xo) are two
solutions of the ODE

ẋ = f (t, x),

where f : J × Bb(xo) → R
n has a uniformly Lipschitz dependence on x with

constant K . We make no assumptions about the dependence of f on t . Define
ϕ(t) = |u(t)− v(t)|2.

(a) Use the inner product 〈u, v〉 =∑n
i=1 uivi and the Schwarz inequality, |〈u, v〉| ≤

|u| |v| for vectors in R
n, to find an ordinary differential inequality for ϕ, i.e., an

equation of the form ϕ̇(t) ≤ F(t, ϕ).

(b) Using this inequality show d
dt

(
e−2Ktϕ(t)

) ≤ 0. Therefore, if t > to, show that

|u(t)− v(t)| ≤ e2K(t−to) |u(to)− v(to)| .
Conclude that the solution is unique and that two nearby solutions deviate at
most exponentially in time.

9. Suppose that g(t) obeys the inequality

g(t) ≤ c(t)+
∫ t

0
k(s)g(s)ds,

where g and k obey the hypotheses of Lemma 3.13, and suppose that c ∈ C1(J ) and
is nondecreasing, ċ ≥ 0. Prove that g(t) ≤ c(t)e

∫ t
0 k(s)ds .

10. Consider the linear initial value problem ẋ = A(t)x, x(0) = xo, where the matrix
A is a continuous function of time on an interval (α, β) with α < 0 < β. Your goal
is to prove that the maximal interval of existence for this system contains the interval
(α, β).

(a) Start by assuming that the maximal interval has a right-hand endpoint b < β.
Argue that ‖A‖ < M on [0, b].

(b) Use the integral form (3.10) to show that

|x(t)| ≤ |xo| +M

∫ t

0
|x(s)|ds

for any t ∈ [0, b].
(c) Conclude from Grönwall’s inequality (3.30) that |x(t)| is bounded on [0, b).

Finally, use Theorem 3.18 to contradict the assumption b < β.

(d) What can you conclude if A is continuous on R?

11. Find the explicit solution and the maximal interval of existence for the initial value
problems

(a) ẋ = tx3, x(0) = xo,
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(b) ẋ = −x2 cos(t), x(π/2) = xo,

(c) ẋ = x2√
t
, x(1) = xo.

Note that the maximal interval depends upon xo, is open and must contain to. Plot
the intervals in the (t, xo) plane.

12. Consider the initial value problem

ẋ = y/z,

ẏ = −x/z (x, y, z) = (1, 0, 1) at t = 1.
ż = 1,

(a) Convert this system to cylindrical coordinates (r, θ, ζ ), where r2 = x2 + y2,
ζ = z, and θ = arctan(y

/
x). Find the initial conditions in the new coordinate

system.

(b) Solve the new system and show that its solution exists in the maximal interval
J = (0,∞).

(c) Apply Theorem 3.10 to the new system and determine the maximal interval
guaranteed by the theorem.

13. Consider your adopted quadratic equations (recall Exercise 1.10) in their reduced
form (i.e., set all the “nonessential parameters” to+1—keep the signs as given in the
original equation). Call the reduced variables (x, y, z) for simplicity. Consider the
set of solutions that start at the origin at t = 0 and stay in the ball Bb(0) ⊂ R

3. Find
a value a such that the existence and uniqueness theorem guarantees your system has
a unique solution for a time interval [−a, a]. What is the maximal interval that you
can obtain by varying b?



Chapter 4

Dynamical Systems

Science, as well as history, has its past to show—a past indeed, much larger;
but its immensity is dynamic, not divine. (James Martineau)

So far, our approach to the study of dynamics has been completely traditional: we con-
centrated on some simple, solvable systems—especially linear systems—and we proved
that more general, nonlinear systems actually have solutions. By contrast, the theory of
“dynamical systems” is more concerned with qualitative properties. In this chapter we will
seek to develop a classification of the qualitative properties of dynamics and to understand
asymptotic behavior—what happens as t → ∞. The first part of this study concerns the
trajectories of a dynamical system in a local neighborhood. The goals are to classify equi-
libria by their stability, invariant manifolds, and topological type. This information will be
used in later chapters to understand bifurcations and global dynamics.

4.1 Definitions
Behold the rule we follow, and the only one we can follow: when a phenomenon
appears to us as the cause of another, we regard it as anterior. It is therefore
by cause that we define time. (Henri Poincaré, 1914)

According to the Encyclopedia Britannica, dynamics is the “branch of physical science that
is concerned with the motion of material objects in relation to the physical factors that affect
them: force, mass, momentum, energy.” Since Newton showed that mechanical systems
are governed by differential equations, these do indeed provide good examples of dynamics.
However, a more general definition is

� dynamical system: An evolution rule that defines a trajectory as a function
of a single parameter (time) on a set of states (the phase space) is a dynamical
system.

Dynamical systems are therefore categorized according to properties of their phase space, of
their evolution rule, and of time itself. In this book, we consider systems with a continuous

105
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phase space, M , that is typically R
n or a more general space called a “manifold” such as the

cylinder or torus.21 Systems with a discrete phase space include the heads–tails model of
a coin toss and “cellular automata” (Wolfram 1983). We will also primarily study systems
with a continuous time variable, t ∈ R. Systems with a discrete time variable are called
“mappings” (Alligood, Sauer, and Yorke 1997; Devaney 1986).

The evolution rule can be deterministic or stochastic. A system is deterministic if for
each state in the phase space there is a unique consequent, i.e., the evolution rule is a function
taking a given state to a unique, subsequent state. Systems that are nondeterministic are
called stochastic: a standard example is the idealized coin toss. For this case, the phase
space is finite, consisting of the two states, heads and tails, and time is discrete taking the
values at which the coin is examined. The evolution rule states that a head or a tail is equally
likely at the next toss, independent of the current state of the coin.

When the evolution rule is deterministic, then for each time, t , it is a mapping from
the phase space to the phase space,

ϕt : M → M, (4.1)

so that x(t) = ϕt(xo) denotes the position of the system at time t that started at xo. Here we
assume that t takes values in some allowed range and that the initial value of time is zero,
so that ϕo(xo) = xo.

Every dynamical system has orbits or trajectories; namely, the sequence of states that
follow from or lead to a given initial state. The forward orbit is the set of subsequent states

U+x ≡ {ϕt(x) : t ≥ 0} . (4.2)

Similarly, the preorbit is the set of sequences of states that lead, according to the evolution
rule, to the initial state. When the function ϕt is one to one, then the preorbit is simply the
set {ϕt(x) : t ≤ 0}; otherwise, it is possible that several prior points could lead to the same
x. Finally, the full orbit of a point x, Ux , is simply the union of the forward and preorbits
of x.

The simplest orbit is an equilibrium, where the orbit is a single point: Ux = {x}. A
periodic orbit, γ , is a closed loop; it can be viewed as an embedding of the circle S

1 into
the phase space, γ : S

1 → R
n. Note that for each x on a periodic orbit, there is a time T

such that the point returns to itself:

ϕT (x) = x. (4.3)

More generally orbits can be quasiperiodic, aperiodic, or chaotic; we will discuss these in
later sections.

An orbit is a special case of an

� invariant set: A set N is invariant under a rule ϕt if ϕt (N) = N for all t ; that
is, for each x ∈ N, ϕt (x) ∈ N for any t .

Thus for each point x in an invariant set N, the entire orbit of x must be in N as well. Just
as we define a forward orbit, we can also define a

� forward invariant set: A set N is forward invariant if ϕt(N) ⊂ N for all
t > 0.

21For our purposes, it is sufficient to think of a manifold simply as a smooth, multidimensional surface embedded
in R

n; see §5.5. More formal definitions are given in courses on differential geometry.
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Figure 4.1. Illustration of the group property of a flow, ϕs(y) = ϕs (ϕt (x)) = ϕt+s(x).

4.2 Flows
In §3.4 the solution of the initial value problem (3.26) with initial condition y was denoted
by u(t; y), and it was shown that u is a C1 function of both t and y when the vector field is
C1. In this section, we will let

u(t; y)→ ϕt(y),

as in (4.1), so that the evolution rule is now thought of as a map from the phase space to
itself that is parameterized by time. To emphasize this change of point-of-view, we define
a class of evolution rules without reference to ordinary differential equations (ODEs):

� flow: Suppose the phase space for a dynamical system is a manifold M . A
complete flow ϕt (x) is a one-parameter, differentiable mapping ϕ : R×M →
M , such that

(a) ϕ0(x) = x, and

(b) for all t and s ∈ R,
ϕt ◦ ϕs = ϕt+s , (4.4)

where the composition symbol, ◦, means ϕt ◦ ϕs(x) ≡ ϕt(ϕs(x)).

For each fixed x, ϕt (x) defines a curve in M as t varies over R—the orbit (4.2). Property
(b) is known as the group property, since it implies that under the operation of composition,
the family of maps {ϕt : t ∈ R} is an additive group (see Figure 4.1). For example, the
group property for s = −t implies ϕt ◦ ϕ−t = ϕ0 = id (here id is the “identity” function,
id(x) = x), hence ϕt is an invertible function of x for each t , and moreover

(ϕt )
−1 = ϕ−t .

Consequently, for each t the flow ϕt is one-to-one and onto map onM: it is a bijection. The
group property also implies that two distinct trajectories cannot cross: if two trajectories
ever touch, say, at a point y = ϕt (x) = ϕs(z), then the group property implies thatϕt+r (x) =
ϕs+r (z) for all r ∈ R, and the trajectories coincide.
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Example: If ϕ is a flow and γ is a periodic orbit, then the group property and (4.3) imply
that

ϕT+s(x) = ϕs(x),

and so ϕ2T (x) = x and indeed ϕkT (x) = x for any integer k. If T is the minimum positive
value for which ϕT (x) = x, it is called the period of γ . It is also easy to see from the group
property that if y is any other point on γ , then it has the same period as x: ϕT (y) = y.

A flow is complete when it is defined for all t , so that the group property applies for all
time. Usually, when we use the term “flow” without any qualification we mean a complete
flow. Note that the group property implies that x(t) = ϕt−s (ϕs(xo)) = ϕt−s (x(s)) for any
time s along the trajectory. Therefore, x(s) can also be viewed as the “initial condition” for
the trajectory x(t), but one that is defined at the time s.

Since a flow is differentiable, it has an associated ODE, or more precisely a

� vector field : A vector field is a function f : M → R
n that defines a vector

v = f (x) at each point x in the phase space M .

The vector field associated with a flow is defined by

f (x) = d

dt
ϕt (x)

∣∣∣∣
t=0

. (4.5)

This vector field is interesting because the flow is a solution of the differential equation
ẋ = f (x), as we show next.

Lemma 4.1. If ϕt(x) is a flow, then it is a solution of the initial value problem

d

dt
ϕt (xo) = f (ϕt (xo)), ϕo(xo) = xo,

for the vector field defined in (4.5).

Proof. Let x(t) = ϕt(xo). Differentiating and using the group property yields

dx

dt
= lim

ε→0

1

ε
[ϕt+ε(xo)− ϕt (xo)] = lim

ε→0

1

ε
[ϕε(x(t))− ϕo(x(t))] = f (x(t)).

Therefore, the flow is the solution of the differential equation ẋ = f (x).

When the flow is complete, the solutions to this differential equation exist for all time:
their maximal interval of existence is (−∞,∞).

Example: The function ϕt (x) = xeλt is a smooth map ϕ : R×R → R, and can be seen to
satisfy the flow properties (a) and (b). Differentiation gives d

dt
ϕt (x) = λϕt (x), so that the

vector field associated with ϕt is simply f (x) = λx. Of course, ϕt is the general solution
of the ODE ẋ = λx.
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Example: Consider the function ϕt : R2 → R
2 defined by

ϕt(x) =
(
ϕ1t (x)

ϕ2t (x)

)
=
(

x1e
−t

x2e
x1(e−t−1)

)
.

This function is clearly defined for all (x1, x2) ∈ R
2 and t ∈ R, and it is C1 on this domain.

To see that it satisfies the flow properties note first that ϕ0(x) = x and that

ϕt (ϕs(x)) =
(

ϕ1s(x)e
−t

ϕ2s(x)e
ϕ1s (x)(e−t−1)

)
=
(

x1e
−(s+t)

x2e
x1(e−s−1)ex1e

−s(e−t−1)

)
= ϕs+t (x).

Thus ϕt (x) is a flow. The vector field (4.5) associated with this flow is given by differenti-
ation:

d

dt
ϕt (x)

∣∣∣∣
t=0

=
( −x1e

−t

−x2x1e
−t ex1(e−t−1)

)
t=0

=
( −x1

−x1x2

)
= f (x).

Note that f (x) is itself C1 on R
2.

Not every differential equation defines a complete flow, because, as we saw in §3.5, the
solutions do not necessarily exist for all time. However, if they do, then the flow is complete.

Lemma 4.2. Let E be an open subset of R
n, and f : E → R

n a C1 vector field such that
the initial value problem ẋ = f (x), x(0) = xo, has a solution u(t; xo) ∈ E that exists for
all t ∈ R and all xo ∈ E. Then ϕt (xo) ≡ u(t; xo) is a complete flow.

Proof. Theorem 3.15 implies that u(t; xo) is a differentiable function of both t and xo.
Moreover, the solution is unique in any interval in which it exists. To identify the solution as
a flow, the group property must be demonstrated. Choose an s ∈ R and define x1 = u(s, xo).
The initial value problem starting at x1 has a solution that, by uniqueness, is given by the
same functionu(t; x1). However, uniqueness also implies that this new solution must follow
the original solution; therefore,

u(s + t; xo) = u(t; x1) = u(t; u(s; xo)).
This is the group property (4.4).

4.3 Global Existence of Solutions
Theorem 3.10 (existence and uniqueness) implies that if a vector field f : E → R

n is
Lipschitz, then the initial value problem

ẋ = f (x), x(0) = xo, (4.6)

has a unique solution for t within a maximal, open interval J = (α, β) (recall Theorem 3.16).
As we have noted, such a solution defines a flow, although the flow is not complete when
either α or β is not infinite. Recall that a complete flow must obey the group property
(4.4) for all t and s ∈ R, and so the interval of existence must be all of R. This makes the
discussion of the global properties of the solutions of ODEs somewhat problematic.
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There are several ways in which this problem can be obviated. For example, whenever
the vector field f is bounded, the solutions do give a flow, as in the following theorem.

Theorem 4.3 (Bounded Global Existence). If f : R
n → R

n is locally Lipschitz and
bounded, then the solution of (4.6) defines a complete flow.

Proof. Since f is locally Lipschitz, a solution x(t) = u(t; xo) exists on some maximal,
open interval (α, β). By assumption, there is an M such that |f (x)| ≤ M . The integral
equation (3.10) then gives the inequality (for t > 0)

|x(t)− xo| ≤
∫ t

0
|f (x(s))| ds ≤ Mt.

If β were finite, then this inequality implies that x(t) is contained in the compact set
{x : |x − xo| ≤ Mβ}; however, this contradicts Theorem 3.17 (unboundedness). Conse-
quently, β is not the maximal value, and indeed there is no finite upper limit for the interval
of existence. Similarly, it can be argued that α cannot be finite and therefore that the solution
exists for all t . The solution defines a flow by Lemma 4.2.

For example, the flow of the vector field f (x) = sech(x) on R is complete. Unfor-
tunately, as shown in §3.5, the flow of an unbounded vector field such as f (x) = x2 is not
typically complete. Nevertheless, it is possible to show that any such flow is equivalent to
a complete flow.

Theorem 4.4. If f (x) is locally Lipschitz on R
n, then (4.6) is equivalent to

dy

dτ
= F(y) = f (y)

1+ |f (y)|
upon reparameterizing time. The vector field F defines a flow on R

n since it is Lipschitz
and bounded.

The use of the term “equivalence” for changing the definition of the time variable will
be discussed more in §4.7.

Proof. The original equation has a solution x(t) in some maximal interval (α, β). Define
y (τ(t)) = x(t) using the new time variable

τ =
∫ t

0
(1+ |f (x(s))|) ds. (4.7)

Since dτ
/
dt = 1+|f (x(t))| > 0, the transformation (4.7) is strictly monotone increasing,

so it defines a one-to-one mapping τ . Moreover, the differential equation for y(τ) is

dy

dτ
= dx

dt

dt

dτ
= f (x)

1+ |f (x)| = F (y(τ)) . (4.8)
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Using the identity (ab − cd) = 1/2 [(a − c)(b + d)+ (b − d)(a + c)], it is not too hard to
show that the new vector field F is locally Lipschitz:

|F(y)− F(x)| = |f (x)(1+ |f (y)|)− f (y)(1+ |f (x)|)|
(1+ |f (x)|)(1+ |f (y)|)

= 1

2

|(f (x)−f (y))(2+|f (x)|+|f (y)|)+ (|f (y)|−|f (x)|)(f (x)+f (y))|
(1+ |f (x)|)(1+ |f (y)|)

≤ |f (x)− f (y)| 1+ |f (x)| + |f (y)|)
(1+ |f (x)|)(1+ |f (y)|) .

Since the ratio above is bounded by one, F has the same Lipschitz constant as f . Moreover,
as the new vector field F is bounded, Theorem 4.3 implies that the solutions of (4.7) exist
for all time. The solution x(t) must be unbounded as t → α or β; consequently, the
transformation τ maps J onto the infinite interval (−∞,∞).

Global existence also can be proved for vector fields that are globally Lipschitz.

Theorem 4.5 (Lipschitz Global Existence). Suppose that f (x) is globally Lipschitz on
R
n. Then the solutions exist for all time, and therefore define a flow.

Proof. Beginning just as in the proof of Theorem 4.3, we obtain from the integral equation
(3.10) the inequality

|x(t)− xo| ≤
∫ t

0
|f (x(s))|ds ≤

∫ t

0
(|f (x(s))− f (xo)| + |f (xo)|) ds

for any 0 ≤ t ≤ β. The first term in the integral can be bounded using the global Lipschitz
constant, K , for f . Suppose that β is finite; then for all 0 ≤ t ≤ β,

|x(t)− xo| ≤ β |f (xo)| +K

∫ t

0
|x(s)− xo| ds,

which by the Grönwall inequality (3.30) implies that |x(t)− xo| ≤ β |f (xo)| eKt . Hence,
when 0 ≤ t ≤ β, x(t) is contained in the compact set

{
x : |x − xo| ≤ β |f (xo)| eKβ

}
.

However, by Theorem 3.17 (unboundedness) this is impossible, so β cannot be finite. A
similar argument shows that α is not finite.

In some cases, a system of ODEs has a singularity that gives rise to a finite interval of
existence. However, we can also often use the idea of rescaling time in this case to obtain
a set of equations with global solutions.

Example: Consider two point masses interacting through mutual gravitational forces, and
suppose that the velocity of the particles is tangent to the line connecting their masses.
Choose a reference frame fixed on one mass, and let the origin correspond to the position
of this mass. Denoting the position of the second particle by x ∈ R, Newton’s equations
for this system are then

ẋ = v, v̇ = −K
x2

sgn(x), (4.9)
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where K = G(m1 + m2). This is a Hamiltonian system—recall (1.12)—on the two-
dimensional phase space of position, x, and velocity, v, with energy H = 1/2v

2 − K
/|x|.

However, we must restrict our attention to the set where x �= 0 to avoid a singularity in the
equation; consequently, the interval of existence is finite when a collision occurs (for exam-
ple, whenH < 0). In 1920 Levi–Civita developed a transformation that regularizes this col-
lision singularity (Siegel and Moser 1971). By analogy with (4.7), he defines a new time by

τ =
∫ t

0

ds

x(s)
.

To simplify the equations, Levi–Civita also defines new dynamical variables (u,w) using
the transformation

x = u2

v = 2
w

u

⇔
u = √x

w = 1

2
v
√
x,

which is well defined for x > 0. Substituting these transformations into the system (4.9)
gives

du

dτ
= 1

2
v
√
x = w,

dw

dτ
= w2

u
− K

2u
= 1

2
Hu,

(4.10)

where H = (2w2 −K)
/
u2 is the energy in the new coordinates. Since H is a constant,

this system is effectively linear and its solutions are very simple; recall (2.20). Note that
this linear system is defined for all (u,w) and has a global interval of existence. When
H < 0, the solutions to (4.10) are oscillatory, and u changes sign; the negative values of u
correspond to fictitious imaginary positions of the masses.

It is much more complicated to regularize the collision of more than two point masses.
The three-body collision was studied by (McGehee 1974), but the behavior near a simulta-
neous collision of more than three bodies is still an unresolved question.

With these results, the concept of “flow” can be used to represent dynamics in most
situations of interest—though with a possible reparameterization of time.

4.4 Linearization
The simplest orbit of a dynamical system is one that does not move, an

� equilibrium: A point x∗ is an equilibrium of (4.6) if f (x∗) = 0.

Some authors use the term “critical point” or “singular point” in place of equilibrium. Neither
of these is, in my opinion, good terminology, as they seem to imply that something critical
or singular happens at equilibria, when in fact an equilibrium is not critical or singular at
all! It is simply a place where there is no motion. Moreover, it is standard to use the term
“critical point” for a point where the derivative of a function vanishes.
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Example: If the ODE is a gradient system ẋ = ∇V (x), then equilibria occur at critical points
of the “potential” V . Therefore, in this case the terminology “critical point” is appropriate
for the equilibria. The dynamics of a gradient system can be visualized by drawing the
contours of the potential, since the velocity is perpendicular to surfaces of constant V .

When f (x) is C1, it is reasonable to hope that the motion in the neighborhood of an
equilibrium can be studied by a Taylor series expansion of the ODE about x∗. To do this,
substitute x(t) = x∗ + δx(t) into the ODE (4.6) using f (x∗) = 0 to obtain

d

dt

(
x∗ + δx

)= d

dt
δx = f (x∗ + δx) = f (x∗)+Df (x∗)δx + o(δx),

d

dt
δx= Df (x∗)δx + o(δx),

(4.11)

by Taylor’s theorem. Here the notation (pronounced “little oh of δx”) means

� g(x) = o (f (x)) as x → a if for all ε > 0 there is a neighborhood N(ε) of
a such that |g(x)| < ε |f (x)| for all x ∈ N(ε).

Recall from §3.1 that a neighborhood of a point a is any set that contains an open set
containing a. A similar notation is the “big oh” symbol, which means

� g(x) = O (f (x)) as x → a if there is a neighborhood N of a and a C ≥ 0
such that |g(x)| < C |f (x)| for all x ∈ N .

When f ∈ C2, then Taylor’s theorem implies that the remainder term in (4.11) is actually
O(δx2).

If we simply discard the o(δx) terms in (4.11), we obtain an ODE called the

� linearization: If f ∈ C1(E), then the linearization of ẋ = f (x) at the
equilibrium x∗ ∈ E is the differential equation

ẏ = Df (x∗)y. (4.12)

No justification, other than the desire for simplicity, has been given for neglecting the higher-
order terms in (4.11); nevertheless, (4.12) does give a faithful local representation for the
motion in some cases. Note that Df (x∗) = A is a constant matrix and so all our techniques
from Chapter 2 for solving linear systems apply. In particular, the general solution is
Q(t, 0)yo where Q(t, 0) is the fundamental matrix (2.46).

In §2.7 the solutions of linear ODEs were classified by their generalized eigenspaces
according to the sign of the real part of the eigenvalues, resulting in the decomposition
E = Eu ⊕ Es ⊕ Ec into the direct sum of unstable, stable, and center eigenspaces. We
can now use this decomposition to classify the behavior “near” an equilibrium. We first
generalize the notion of hyperbolic linear systems in §2.7 to general equilibria:

� hyperbolic: an equilibrium x∗ of a C1 vector field f is hyperbolic if none
of the eigenvalues of Df (x∗) have zero real part, or equivalently when Ec is
empty.
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Hyperbolic equilibria fall into three classes:

� sink: an equilibrium is a sink if all of the eigenvalues of Df (x∗) have
negative real parts (are in the left half of the complex plane), or equivalently
when E = Es ;

� source: an equilibrium is a source if all of the eigenvalues of Df (x∗) have
positive real parts, or equivalently when E = Eu; and

� saddle: an equilibrium is a saddle if it is hyperbolic, but not a sink or a
source, equivalently when E = Es ⊕ Eu.

Recall that in §2.2 an equilibrium was called a stable node when its eigenvalues are real
and negative and an unstable node when they are real and positive. The classification into
sink and source above includes these cases but also allows the eigenvalues to be complex.
When some or all of the eigenvalues ofDf (x∗) are complex, we can indicate this by adding
some additional modifiers to the classification:

� focus: there is a subspace with complex eigenvalues with nonzero real part, or

� center: there is a subspace with purely imaginary eigenvalues.

For example, a four-dimensional saddle with two pairs of eigenvalues λ1,2 = 1 ± 2i and
λ3,4 = −2± 4i is called a saddle-focus. There are many varieties of foci, depending upon
the number of complex eigenvalues. If we wish to be more precise in the classification, we
can specify the dimension of each of the invariant subspaces.

Example: Consider the set of ODEs on R
3:

 ẋ

ẏ

ż


 = f (x, y, z) =


 x − y

z+ y2

x + yz


 . (4.13)

Solving the three equations f (x, y, z) = 0 gives three equilibria, (0, 0, 0), (1, 1,−1), and
(−1,−1,−1). The Jacobian of the vector field at a general point is

Df =

 1 −1 0

0 2y 1
1 z y


 .

The characteristic polynomial of this matrix is

p(λ) = det(λI −Df ) = λ3 − (3y + 1)λ2 − (z− 3y − 2y2)λ+ 1+ z− 2y2.

Perhaps the hardest part of linear stability analysis is to find the roots of p(λ). The critical
points and critical values of p can be used to determine the relevant information even
without explicitly finding the eigenvalues. For example, a cubic polynomial always has
one real root; however, it has three real roots only if it has two real critical points, two
values ci such that p′(ci) = 0, and if the signs of p at the two critical points are opposite,
so p(c1)p(c2) < 0.

The first equilibrium (0, 0, 0) of (4.13) has the characteristic polynomial

p(λ) = λ3 − λ2 + 1.
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x

z

y

(1,1,–1)

(–1,–1,–1)

Figure 4.2. Several orbits of the system (4.13) near its three equilibria.

Since p′(c) = 3c2 − 2c, there are critical points at c1 = 0 and c2 = 2
/

3, where p(ci) > 0.
Thus, there is only one real root. Since p(0) = 1, the real root, λ1, is negative; and since
p(−1) = −1, then −1 < λ1 < 0. A numerical solution shows that λ1 ≈ −0.7548.
The remaining roots must be complex, λ2,3 = α ± iβ. The sum of the eigenvalues is
tr(Df ) = 1 = λ1 + 2α, so that α = 1/2(1 − λ1) > 1/2. Numerically, α ≈ 0.8774. As a
consequence, the origin is a hyperbolic saddle. Since one pair of eigenvalues is complex, it
can be called a saddle-focus. Here, Eu is two-dimensional, and Es is one-dimensional.

The second equilibrium, (1, 1,−1), has the characteristic polynomial

p(λ) = λ3 − 4λ2 + 6λ− 2.

The critical points ofp are complex, sop has only one real root. Sincep(0) < 0 andp(1) >
0, then 0 < λ1 < 1. Moreover, since Re(λ2,3) = α = 1/2 (tr(Df )− λ1) = 1/2(4− λ1) > 0,
this point is a source-focus and has a three-dimensional unstable space.

Finally, the equilibrium (−1,−1,−1), has characteristic polynomial

p(λ) = λ3 + 2λ2 − 2,

which has critical points at c1 = 0 and c2 = −4
/

3, where p(ci) < 0, so again there is a
single real root, 0 < λ1 < 1. So α = 1/2 (tr(Df )− λ1) = 1/2(−2 − λ1) < 0. Thus, this
point is a saddle-focus with a two-dimensional stable space and a one-dimensional unstable
space. Some orbits of this system are shown in Figure 4.2.

One of the major questions that we will soon address is, “To what extent does the solution of
the full system look like the solution of the linear system?” Moreover, what is meant by look
like? A partial answer to this will be provided by the Hartman–Grobman theorem in §4.8.
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Figure 4.3. Lyapunov stability.

4.5 Stability
In §2.7 we said a system is linearly stable if it has bounded forward orbits; in other words,
each orbit stays a bounded distance from the equilibrium at the origin. In that section we
also defined the concepts of spectral stability and asymptotic linear stability. For nonlinear
systems, these definitions are deficient: simply being bounded does not characterize the long
time dynamics. A better definition of stability refers to orbits that are close: an equilibrium
is stable if orbits that start “nearby” stay “nearby.” Aleksandr Lyapunov (pronounced
lēah·pū′·nof) (1857–1918) formalized this idea in 1892:

� Lyapunov stability: An equilibrium x∗ of a flow ϕt is (Lyapunov) stable if
for every neighborhood N of x∗ there is a neighborhood M ⊂ N such that if
x ∈ M , then ϕt(x) ∈ N for all t ≥ 0.

This construction is sketched in Figure 4.3. An equilibrium that is not stable is called
unstable.

For a metric space, Lyapunov stability is equivalent to the assertion that for every
ε > 0 there is a δ > 0 such that whenever x ∈ Bδ(x

∗), we have ϕt(x) ∈ Bε(x
∗) for all

t ≥ 0; recall (3.1). Whenever the word “stability” is used without qualification, it should
be taken to mean “Lyapunov stability.”

For a one-dimensional ODE, the stability of an equilibrium, x∗, is easily investigated
by examining the graph of the function f near x∗, as we discussed in §1.3. For example, if
there is a δ > 0 such that f (x) < 0 for x ∈ (x∗, x∗ + δ) and f (x) > 0 for x ∈ (x∗ − δ, x∗),
then x∗ is Lyapunov stable, since all points in the interval (x∗ − δ, x∗ + δ) move toward x∗
monotonically. This is illustrated by the middle equilibrium in Figure 4.4. Generalizing the
terminology from the linear case, such a point is a sink. By contrast, if the signs of f are
reversed, then the flow moves locally away from the equilibrium and x∗ is unstable, and it
is called a source (e.g., the leftmost equilibrium in Figure 4.4). If x∗ is a zero and f has the
same sign on both sides, then the point is often somewhat misleadingly called semistable—
even though by Lyapunov’s definition it is really unstable! This case corresponds to the
rightmost equilibrium in Figure 4.4. If f (x) = 0 on an interval about x∗, then there is an
interval of equilibria, and each equilibrium in the interior of this interval is stable.

These notions of sink, source, and semistable equilibria are topological: they follow
without any assumptions on the smoothness off . Whenf ∈ C1(R), however, these stability
properties are related to hyperbolicity. For example, when Df (x∗) �= 0, the equilibrium is
hyperbolic; it is stable when Df (x∗) < 0 and unstable when Df (x∗) > 0.
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f

x

Figure 4.4. Illustration of the three types of equilibria for a one-dimensional ODE.
The left equilibrium is a source, the middle a sink, and the right is semistable.

Example: The logistic ODE (1.7), ẋ = rx(1−x), has an unstable equilibrium x∗ = 0 when
r > 0, because Df (0) = r , and a stable one at x∗ = 1 where Df (1) = −r . Moreover,
every initial condition in the interval (0,∞) moves monotonically toward 1. Indeed, for
any ε, choose any δ ∈ (0,min(ε, 1)) and x ∈ [1− δ, 1+ δ]; then |ϕt(x)− 1| < δ < ε.
Hence x∗ = 1 is Lyapunov stable.

Example: f (x) = x2 − x cos x. This function, shown in Figure 4.5, has precisely two
zeros, x0 = 0, and x1 = cos(x1) ≈ 0.739085. The solution x(t) is monotone increasing if
x < x0 or x > x1, and monotone decreasing in the interval (x0, x1). Accordingly, x∗ = 0
is a stable equilibrium, while x∗ = x1 is unstable.

A nonhyperbolic equilibrium, one for which Df (x∗) = 0, can be either stable or unstable.
For example, the point x = 0 for ẋ = x2 is semistable but not Lyapunov stable, even though
all points starting with negative initial conditions asymptotically approach the origin. The
problem is that there is no neighborhood containing the origin for which points stay close.

Example: Supposef ∈ C1(R) and Df (0) = 0. There are four typical cases:

(a) f (x) = −x3, here graphical analysis implies x = 0 is stable, a sink;

(b) f (x) = +x3, unstable, a source;

(c) f (x) = ±x2, semistable; and

(d) f (x) ≡ 0, infinitely many equilibria.

This monotonic motion toward or away from an equilibrium is specific to one-
dimensional systems; higher-dimensional systems can exhibit oscillation. Moreover, even
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Figure 4.5. Graph of f (x) = x2 − x cos x.

in the linear case, the distinction between the two neighborhoodsM andN is needed because
the eigenvectors of a matrix are not typically orthogonal.

Example: A matrix is normal if it commutes with its adjoint: [A∗, A] = 0, whereA∗ = ĀT

is the conjugate transpose of A. It is not hard to see that the eigenspaces of a normal matrix
are orthogonal. The dynamics of a stable linear system with a nonnormal matrix can exhibit
a surprising temporary growth. Consider, for example,

ẋ =
( −1 10

0 −2

)
x ⇒ x(t) = c1e

−t
(

1
0

)
+ c2e

−2t

( −10
1

)
. (4.14)

The general solution shows that every initial condition is attracted to the origin, so the origin
should be stable. However, points that start in the disk of radius δ about the origin can leave,
at least for a while. For example, setting c1 = 9, c2 = 1, then x(0) = (−1, 1). However,
the second eigenvector quickly decays, leaving a large horizontal component. Consequently,
the orbit can move away from the origin for some time, as shown in Figure 4.6.

However, we can easily obtain a crude bound on |x(t)|, given that |x(0)|2 =
(c1 − 10c2)

2 + c2
2 ≤ δ2. This implies that both |c2| ≤ δ and |c1| ≤ 11δ so that

|x(t)| ≤ ∣∣c1e
−t − 10c2e

−2t
∣∣+ ∣∣c2e

−2t
∣∣ ≤ |c1| e−t + 11 |c2| e−2t

≤ 22δ = ε.
(4.15)

So, if we choose δ = ε
/

22 we are guaranteed that every point that starts in the δ ball remains
in the ε ball.

A more stringent version of stability is the property of

� asymptotic stability: An equilibrium x∗ is asymptotically stable if it is stable
and there is a neighborhood N of x∗ such that every point in N approaches x∗
as t →∞.
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Figure 4.6. Orbits of the system (4.14) that start in a neighborhood M never leave N .

An asymptotically stable equilibrium is also called an attracting equilibrium. This is the
simplest case of the concept called an attractor; see §4.10. Note that by this definition, an
attractor must attract a neighborhood.

Example: We showed that the origin is a stable equilibrium of (4.14). Moreover, the
inequality (4.15) implies that every point is asymptotic to the origin, so it is asymptotically
stable as well.

There are ODEs that have equilibria with a neighborhood that eventually attracts all
nearby points but which is nevertheless not Lyapunov stable. In this case, nearby points may
move a large distance from the equilibrium. A physical model ODE system is often derived
to be valid only in some neighborhood of an equilibrium; consequently, when orbits move
far from the equilibrium the model may no longer be valid and it would not be appropriate
rely on the eventual return to define asymptotic stability.

Example: Consider the system

ṙ = r(1− r),

θ̇ = sin2 (θ/2) ,
(4.16)

where (r, θ) are polar coordinates in the plane. As shown in Figure 4.7, there are two equi-
libria, the origin and (1, 0). The origin is unstable; indeed the r dynamics is decoupled from
the θ dynamics, and graphical analysis immediately shows that every r > 0 is asymptotic
to r = 1. Similarly the θ equation is uncoupled and since sin2(θ

/
2) ≥ 0, the point θ = 0

is “semistable.” However, since θ is a periodic coordinate, even the points with θ = δ > 0,
which move away from the equilibrium point, will eventually return to θ = 0. Therefore,
every initial condition in R

2 except the origin is attracted to the point (1, 0). However, this
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Figure 4.7. Phase space of the example (4.16).

point is not Lyapunov stable since for any ε < 2, there are nearby points—for example
(1, δ)—that leave the ball of radius ε about the equilibrium.

Example (Vinograd):Amore complicated example of this behavior was given in (Vinograd
1957):

ẋ = x2 (y − x)+ y5

r2(1+ r4)
, ẏ = y2 (y − 2x)

r2(1+ r4)
, (4.17)

where r is the polar radius, r2 = x2 + y2. To analyze this system, first note that the origin
is the only equilibrium, since ẏ = 0 implies either y = 0 or y = 2x. In the latter case if
ẋ = 0 as well, then

x3 + 32x5 = 0 ⇒ x = 0 or x2 = −1
/

32.

So the only real solution is x = y = 0. Note that ẏ|y=0 = 0, so the line y = 0 is invariant.
On this line x is governed by ẋ|y=0 = −x/(1+x4); therefore, since sgn(ẋ) = −sgn(x) and
ẋ �= 0 unless x = 0, x(t) monotonically moves toward the origin, so that the origin attracts
all points on this line. It is much harder to show that every point in the plane approaches
the origin as t → ∞, but a numerical solution (shown in Figure 4.8) indicates that this is
so. More interestingly, the picture indicates that many orbits in any δ-ball leave the ball
B1/2

(0) no matter how small δ is chosen. In fact, it seems that there is a family of homoclinic
loops from the origin, i.e., orbits that leave the origin and go a finite distance away before
returning as t → ∞ (see §5.2). These loops are what prevent the origin from being an
attractor. The behavior of this system near the origin is studied in §6.2.

When f is C1, the local behavior near an equilibrium is often governed by the lin-
earization, (4.12). For example, asymptotic linear stability is sufficient to imply asymptotic
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Figure 4.8. Phase plane of the Vinograd example (4.17).

stability of the equilibrium for the nonlinear system, if it is differentiable. The main point
is that in this case we can extract the nonlinear part of f near x∗ by writing

f (x) = Df (x∗)(x − x∗)+ g(x − x∗).

The assumption that f is C1 is sufficient to guarantee that the remainder term is small, i.e.,
that g(δx) = o(δx). This follows from the definition of the derivative

0 =
[

lim
δxj→0

fi(x
∗ + δxj )− fi(x

∗)
δxj

− (Df )ij (x
∗)
]
= lim

δxj→0

gi(δxj )

δxj
.

Note that if f (x) is C2, then g(δx) = o(δx2), by the Taylor remainder theorem. However,
we will not need this additional assumption to prove the desired result.22

Theorem 4.6 (Asymptotic Linear Stability implies Asymptotic Stability). Let f : E →
R
n be C1 and have an equilibrium x∗ such that all the eigenvalues of Df (x∗) have real

parts less than zero. Then x∗ is asymptotically stable.

Proof. Rewrite the differential equations using y = x − x∗, defining A = Df (x∗), and
g ≡ f (x)− A(x − x∗), to obtain

ẏ = Ay + g(y). (4.18)

22This theorem also follows from either the Hartman–Grobman or the stable manifold theorem; see below.
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Variation of parameters can be used to obtain an integral equation for the solution. Let
y = etAη(t), and substitute this into the ODE (4.18) to obtain η̇ = e−tAg(y(t)). Formally
integrating this equation and substituting again for y gives the integral equation:

y(t) = etAyo +
∫ t

0
e(t−s)Ag(y(s))ds. (4.19)

By assumption, there is an α such that if λ is any eigenvalue of A, then Re(λ) < −α < 0.
The estimate (2.44) in §2.7 implies that for any vector v there is a K ≥ 1 such that∣∣etAv∣∣ ≤ Ke−αt |v| , t ≥ 0. (4.20)

Since f isC1, then g(y) = o(y), so, for any ε there is a δ such that if y ≤ δ, |g(y)| ≤ ε |y|,
and thus from (4.19) using (4.20) we obtain

|y(t)| ≤ Ke−αt |yo| +Kε

∫ t

0
e−α(t−s) |y(s)| ds.

Let ξ(t) = eαt |y(t)|, and use Grönwall’s Lemma 3.13 to obtain

ξ(t) ≤ Kδ +Kε

∫ t

0
ξ(s)ds ⇒ ξ(t) ≤ KδeKεt ⇒ |y(t)| ≤ Kδe−(α−Kε)t .

Hence, providing ε < α
/
K , then |y| → 0 and stays bounded below Kδ for all t ≥ 0. In

conclusion, if M is the ball of radius δ, then N is the ball of radius Kδ.

Example: The origin is an equilibrium of the system

ẋ = −x − y − r2,

ẏ = x − y + r2,

where r is the polar radius. The origin is a stable focus since

Df (0, 0) =
( −1 −1

1 −1

)

has eigenvalues λ = −1 ± i. To show that adding nonlinear terms does not change the
topological character, we want to construct an attracting neighborhood of the origin. To study
this system, it is easier to use the differential equation for r .23 Noting that 2rṙ = 2xẋ+2yẏ

ṙ = 1

r

(
x
(−x − y − r2

)+ y(x − y + r2)
) = r(−1+ y − x).

Since −r ≤ x, y ≤ r , then y − x ≤ 2r . If r < 0.5, then −1 + y − x < 0, and so ṙ < 0
at any point in the open disk of radius 1/2. This implies that the origin is asymptotically
stable, because r is monotonically decreasing. Note that there is another equilibrium point
at (−1, 0). This equilibrium has eigenvalues λ = ±√2 and is therefore a saddle. Orbits
near the saddle can go to infinity.

23We will find this technique extremely useful in our study of the global structure of flows in the plane in
Chapter 6.
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4.6 Lyapunov Functions
Lyapunov devised another technique that can potentially show that an equilibrium is stable—
the construction of what is now called a “Lyapunov function.” An advantage of this method
is that it can sometimes prove stability of a nonhyperbolic equilibrium; a disadvantage is
that there is no straightforward construction of Lyapunov functions.

Lyapunov functions are nonnegative functions that decrease in time along the orbits
of a dynamical system:

� Lyapunov function: A continuous function L : R
n → R is a (strong) Lya-

punov function for an equilibrium x∗ of a flow ϕt on R
n if there is an open

neighborhood U of x∗ such that L(x∗) = 0, L > 0 for x �= x∗, and

L(ϕt (x)) < L(x) ∀ x ∈ U\ {x∗} and t > 0. (4.21)

The function L is a weak Lyapunov function if (4.21) is replaced by L (ϕt (x)) ≤ L(x).
Typically,L is aC1 function and (4.21) can be guaranteed by requiring thatdL

/
dt < 0.

This can be computed using the chain rule:

dL

dt
= ∇L(x) · f (x). (4.22)

Consequently, in the smooth case, the condition that L is a Lyapunov function is that its
gradient vector points in a direction opposed to that of the vector field f .

If such a nonincreasing function can be found, the equilibrium is stable.

Theorem 4.7 (Lyapunov Functions). Let x∗ be an equilibrium point of a flow ϕt(x). If
L is a weak Lyapunov function in some neighborhood U of x∗, then x∗ is stable. If L is a
strong Lyapunov function, then x∗ is asymptotically stable.

Proof. First we prove stability. We can assume that x∗ = 0 without loss of generality.
Choose any ε small enough so that Bε(0) ⊂ U and define m = min{L(x) : |x| = ε}, as
in Figure 4.9. The constant m exists because Bε(0) is compact and, since L is positive
definite, m > 0. Since L decreases as x → 0,there exists a δ < ε such that L(x) < m for
all x ∈ Bδ(0). Since L is nonincreasing along orbits then L(ϕt (x)) < m for all x ∈ Bδ(0).
Therefore, sinceL remains less than the minimum on |x| = ε, ϕt (x) ∈ Bε(0). Consequently,
the origin is stable.

Now we prove asymptotic stability. If x ∈ Bδ(0), then ϕt (x) ∈ Bε(0) for all positive
time. Since Bε(0) is compact, the Bolzano–Weierstrass theorem, Theorem 3.1, implies that
for any sequence ti → ∞, the sequence ϕti (x) must have limit points. Suppose one of
these limit points is not the origin, i.e., there is a sequence of times tn → ∞ such that
ϕtn(x)→ z �= 0. By continuity L(ϕtn(x))→ L(z), and since L is strictly decreasing, the
sequence of values must decrease monotonically with n:

L(ϕtn(x)) > L(ϕtn+1(x)) > · · · > L(z). (4.23)

Now consider the orbit, ϕs(z) of the limit point z. Again, since z is not the equilibrium,
L(ϕt (z)) < L(z) for any positive s, and hence by continuity L(ϕtn+s(x)) → L(ϕs(z)) <

L(z). This implies for large enough n that, since x(tn) is arbitrarily close to z,L(ϕtn+s(x)) <
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Proof. By assumption every orbit in M is bounded; this implies the function λ defined by

λ(x) = sup
t≥0

∣∣ϕt(x)− x∗
∣∣

for x ∈ M is continuous. Indeed, asymptotic stability implies that for any ρ there is a time
T (ρ) such that |ϕt (x)− x∗| < ρ whenever t > T (ρ). As a consequence, the supremum
in the definition need only be taken over a finite interval of time. Moreover, since ϕt(x) is
continuous for any fixed time, the norm |ϕt(x)− x∗| is also continuous. To show that λ is
also continuous, take any x, y ∈ M \ Bρ(x∗); then

|λ(x)− λ(y)| =
∣∣∣∣∣ sup
0≤t≤T (ρ)

|ϕt(x)− x∗| − sup
0≤t≤T (ρ)

|ϕt(y)− x∗|
∣∣∣∣∣

≤
∣∣∣∣∣ sup
0≤t≤T (ρ)

(|ϕt (x)− x∗| − |ϕt (y)− x∗|)
∣∣∣∣∣

≤
∣∣∣∣∣ sup
0≤t≤T (ρ)

(|ϕt (x)− ϕt(y)|)
∣∣∣∣∣ .

Since ϕt(x) is continuous as a function of x, for any ε > 0 there is a δ(t) > 0 such that
if |x − y| < δ(t), then |ϕt(x)− ϕt (y)| < ε. Therefore, |λ(x)− λ(y)| < ε for the choice
δ = inf 0≤t≤T (ρ) δ(t), and |x − y| < δ, which implies continuity.

Notice also that λ(x∗) = 0, and otherwise that λ(x) > 0, so it satisfies two of the
properties that are needed to be a strong Lyapunov function. Moreover, λ(ϕt (x)) ≤ λ(x)

when t ≥ 0, because

λ(ϕt (x))= sup
s>0
|ϕs(ϕt (x))− x∗| = sup

s>0
|ϕs+t (x)− x∗|

= sup
s>t

|ϕs(x)− x∗| ,

and the last expression is definitely not larger thanλ(x). Consequently, λ is a weak Lyapunov
function. We now show that (4.25) is a strong Lyapunov function. Note that for any t > 0,

L(ϕt (x)) =
∫ ∞

0
e−sλ(ϕs+t (x))ds ≤

∫ ∞

0
e−sλ(ϕs(x))ds =L(x).

If the two sides of this inequality were equal, then λ(ϕt+s(x)) = λ(ϕs(x)) for all s > 0.
However, this is impossible since if we set t = (n− 1)s, then we would have λ(ϕns(x)) =
λ(ϕs(x)) for all n. This cannot happen since if x �= x∗, λ(ϕs(x)) �= 0, but ϕns(x)→ x∗, so
that λ(ϕns(x))→ 0.

Although this theorem guarantees that a strong Lyapunov function exists for an asymp-
totically stable equilibrium, it is not possible to construct it in general unless the flow can be
obtained analytically—in which case there is no reason to find L! However, there are cases
in which it is not hard to find a Lyapunov function and for which stability is not obvious
(see Exercise 8).
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Example: The Lorenz system, (1.33), is

ẋ = σ(y − x),

ẏ = rx − y − xz,

ż = xy − bz,

(4.26)

where we assume, as in the physical model, that the parameters r, σ , and b are positive. The
equilibrium at the origin has linear stability determined by the Jacobian

Df (0) =

 −σ σ 0

r −1 0
0 0 −b


 .

The z direction corresponds to an eigenvector with eigenvalue λ = −b and is therefore
always attracting for b > 0. The other two eigenvalues are determined by

λ2 + (σ + 1)λ+ σ(1− r) = 0.

This implies that the x − y plane is attracting when r < 1 but becomes a saddle for r > 1.
Consequently, when r < 1 the origin is asymptotically stable and when r > 1 it is unstable.
Linear analysis cannot tell us what happens when r = 1.

We now attempt to construct a Lyapunov function. Beginning with a general quadratic
in (x, y, z), one can fairly quickly see that the function

L = 1

2

(
x2

σ
+ y2 + z2

)
will work. Differentiation yields

dL

dt
= (yx − x2

)+ ryx − y2 − xyz+ zxy − bz2

= (r + 1)xy − (x2 + y2 + b2z2
)

= −
(
x − r + 1

2
y

)2

−
(

1− (r + 1)2

4

)
y2 − bz2,

where we completed the square on the first two terms to get the third line. Therefore, when
r < 1 and b > 0, this is negative definite, confirming again that the origin is asymptotically
stable. Interestingly, this analysis applies for any values of (x, y, z), so that the origin is
globally asymptotically stable.

When r = 1, dL
/
dt = 0 on the line Z = {(x, y, z) : x = y, z = 0}. This means

that L is not a strong Lyapunov function. However, the following argument will imply that
since this set is not invariant (because dz

/
dt
∣∣
Z
�= 0), the origin is asymptotically stable in

this case as well!

As in the previous example, it is sometimes possible to conclude that the equilibrium
is asymptotically stable for the case that L is a weak Lyapunov function, provided that we
know something about the dynamics on the set where dL

/
dt = 0.

Theorem 4.9 (LaSalle’s Invariance Principle). Suppose x∗ is an equilibrium for ẋ =
f (x) and suppose that L is a weak Lyapunov function on some compact, forward-invariant
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neighborhoodU of x∗. LetZ = {x ∈ U : dL/dt = 0} be the set whereL is not decreasing.
Then if x∗ is the largest forward invariant subset ofZ, it is asymptotically stable and attracts
every point in U .

Proof. For any x ∈ U , suppose z is a limit point of the trajectory x(t) ∈ U . Then
L(ϕs(z)) = L(z) for all s > 0, since if L(ϕs(z)) < L(z) we would have a contradiction
with the inequalities in (4.23). Consequently, ϕs(z) ∈ Z for all s > 0, so that z must be
forward invariant, and therefore, by assumption, z = x∗.

Example: A slightly more realistic model than the logistic equation (1.7) adds “delay,”
modeling the fact that the gestation period is nonzero, and so the competition that affects
current births is in the past. One type of delay is to introduce a second variable y that
represents the population at an earlier era. The model then becomes

ẋ = rx (1− y) ,

ẏ = b(x − y).

Note that at equilibrium y = x and so x = 0 or x = 1 as for (1.7). Our goal is to show that
the point (1, 1) is the limit of all initial conditions in the positive quadrant. First note that
the positive quadrant is forward invariant. To leave it, the orbit would have to pass through
the x- or y-axis. When x = 0, ẋ = 0, so this is an invariant line. When y = 0, then ẏ ≥ 0,
so the orbit cannot cross to negative y.

We next transform to coordinates centered at the equilibrium of interest. Let (ξ, η) =
(x − 1, y − 1) so that

ξ̇ = −rη (1+ ξ) ,

η̇ = b(ξ − η).

Note that (0, 0) is a linearly stable equilibrium for this equation when b and r are positive
since then tr(Df (0, 0)) = −b < 0 and det(Df (0, 0)) = rb > 0 (recall §2.2). A simple
quadratic function will not work as a Lyapunov function for this system, nor will any
polynomial of finite order. However, after some guesswork—see (MacDonald 1978)—a
Lyapunov function can be found:

L(ξ, η) = ξ − ln (1+ ξ)+ r

2b
η2.

Note that L(0, 0) = 0, and that since ξ − ln(1+ ξ) ≥ 0 when ξ > −1, then L is positive.
Furthermore, differentiation gives

dL

dt
= −rη(ξ + 1)

(
1− 1

ξ + 1

)
+ rη(ξ − η) = −rη2.

Accordingly, L is strictly decreasing except on the set Z = {(ξ, η), η = 0, ξ > −1} . How-
ever, the equations of motion imply that the only invariant point in Z is the origin since
η̇|Z = bξ �= 0 otherwise. Therefore, according to LaSalle’s invariance principle, (0, 0)
attracts the orbits of all initial conditions with ξ > −1. Equivalently, in the original coor-
dinates, the point (1, 1) is the forward limit of all points in the right half-plane.
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Hamiltonian systems—recall §1.4—often have Lyapunov functions. Suppose that
H : R2 → R, and consider the Hamiltonian system

ẋ = ∂H

∂y
, ẏ = −∂H

∂x
. (4.27)

The value of H(x, y) typically represents the “energy” of the system. It is constant along
trajectories, because

dH

dt
= ∂H

∂x
ẋ + ∂H

∂y
ẏ = ∂H

∂x

∂H

∂y
− ∂H

∂y

∂H

∂x
≡ 0. (4.28)

Therefore, ifH(xo, yo) = E, then so doesH(x(t), y(t)). If (x∗, y∗) is an equilibrium, then
the function

L(x, y) = H(x, y)−H(x∗, y∗)

is zero at the equilibrium and constant along trajectories; consequently, if it can be shown that
L is positive in some neighborhood of the equilibrium, then it is a weak Lyapunov function.

Example: Consider the system
ẋ = y,

ẏ = x − 3ax2.
(4.29)

These equations have the form (4.27), since if y = ∂H
/
∂y, thenH(x, y) = 1/2y

2+V (x), for
an arbitrary function V . Similarly, demanding that x− 3ax2 = −∂H/∂x gives H(x, y) =
T (y)−1/2x

2+ax3, for an arbitrary function T . These two equations are consistent, implying
that (4.29) is Hamiltonian and we obtain H(x, y) = 1/2(y

2 − x2)+ ax3.
The system (4.29) has two equilibria, (0, 0) and (1

/
3a, 0). The first is a saddle, and the

second is a center. The Hamiltonian provides a Lyapunov function in a neighborhood of the
center. We can see this most easily by shifting coordinates, defining ξ = x−1

/
3a to obtain

H = 1/2
(
y2 + ξ 2)+ aξ 3 +H

(
1
/

3a, 0
)
.

Therefore, for ξ small enough, H has contours about y = ξ = 0 that are approximately
circular. In conclusion, L = 1/2

(
y2 + ξ 2

) + aξ 3 is a weak Lyapunov function, and the
equilibrium

(
1
/

3a, 0
)

is a “topological center”—see §6.2.

We will discuss more examples of this type in §5.1 (see also Exercise 8).
Although Hamiltonian systems correspond to “conservative” dynamics, engineering

systems often have damping.

Example: Suppose x ∈ R
n are coordinates and y ∈ R

n are the conjugate momenta, with
the Hamiltonian H(x, y) = 1/2|y|2 + V (x). Here, V (x), the potential energy, gives rise to
the force F = −∇V . This system is conservative; the simplest model for damping is an
additional force proportional to the momentum, which gives the set of equations

ẋ = y,

ẏ = −∇V (x)− γy,
(4.30)

where γ is the damping coefficient. The “energy” of this system is given by the function
H(x, y). If we assume that ∇V (0) = 0, so that the origin is an equilibrium, then the origin
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Figure 4.10. Phase space of the damped pendulum (4.30) with V (x) = − cos x,
and γ = 0.1. V has critical points on the x-axis at nπ . The points (2kπ, 0) are asymptot-
ically stable, while ((2k + 1)π, 0) are saddles. On the right is shown a forward invariant
region U enclosing the origin. U is bounded by pieces of the unstable manifolds (see §5.1)
of the saddles at x = ±π and by part of the x-axis. To prove that U exists, we would have
to show that the unstable manifolds (see Chapter 5) of the saddles first cross the x-axis in
the interval (−π, π).

is a critical point of H , since
∇H = (∇V (x), y)T .

Moreover, when D2V (0) is a positive definite matrix, the Hessian matrix,

D2H(0) =
(
D2V (0) 0

0 I

)
,

is also positive definite so that the origin is a minimum of H . In this case, the contours of
H are closed near the origin. Moreover,

dH

dt
= y · (−∇V − γy)+ y · ∇V = −γ |y|2 ≤ 0;

therefore, the origin is stable.
If 0 is the only critical point of V , then LaSalle’s invariance principle implies that the

origin is asymptotically stable. The set for which dH
/
dt = 0 isZ = {(x, y) : y = 0}. Now

since ẏ|Z = −∇V (x), whenever x is not a critical point of V , then ẏ �= 0 on Z. We can
conclude that if 0 is the only critical point of V , the only invariant subset of Z is the origin.

The analysis above could be generalized to the case where there are more critical
points of V if it could be proved that there exists a neighborhood, U , of the origin—like
that depicted in Figure 4.10—that does not include other critical points and that is forward
invariant.
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4.7 Topological Conjugacy and Equivalence
An important task in dynamical systems is to determine whether two dynamical systems that
seemingly look “different” are actually the same but are just written in different forms. A
system that looks complicated may actually be quite simple in a different coordinate system.
A classification of equivalent systems will considerably reduce the work to be done, for
example, in bifurcation theory (see Chapter 8). Moreover, the study of these equivalence
classes leads to notions of sensitivity of dynamics to modification of the system—what is
called structural stability.

There are several different notions of equivalence, depending upon the degree of
smoothness required for the transformation. The definitions require some notions from
basic set theory and topology. Suppose that A and B are two topological spaces (recall
§3.1). A map h: A→ B is

� surjective or onto if for every b ∈ B, there is at least one a ∈ A such that
h(a) = b,

� injective or one-to-one if whenever h(a) = h(a′), then a = a′, and

� bijective if it is both surjective and injective.

Note that a bijective map has an inverse: since for each b there is exactly one a such
that b = h(a), the map h−1 : B → A is defined by setting a = h−1(b). Note that h−1 is
both a left and a right inverse for h: h(h−1(b)) = b and h−1(h(a)) = a. These notions are
used to define one of the most fundamental concepts in topology:

� homeomorphism: A map h : A→ B is a homeomorphism if it is continuous,
is bijective, and has a continuous inverse.

For example, the map h : (0,∞) → (0, 1) defined by h(x) = 1
/
(1+ x2) is a

homeomorphism. Similarly, the map f : S → S defined by

f (θ) = θ + a cos θ (4.31)

is a homeomorphism only when |a| < 1, since it is otherwise not one-to-one; see Fig-
ure 4.11.24

Topology declares that two spaces are equivalent if there is a homeomorphism from
one to the other. It is this notion that implies that a mug of coffee and a doughnut are the
“same” (though one gives you a buzz from caffeine and the other from sugar). Conversely,
if it can be shown that there is no homeomorphism from one space to another, then they are
topologically distinct spaces.

It is natural to also define a notion of “smooth” equivalence:

� diffeomorphism: Amap f : A→ B is a diffeomorphism if it is aC1 bijective
map with a C1 inverse.

24Challenge for the topologically inclined: find an example of a continuous, bijective map that is not a homeo-
morphism. At least one of the spaces must have an exotic topology, because every continuous, bijective map from
a compact space to a Hausdorff space is a homeomorphism (Hocking and Young 1961).
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Figure 4.11. The function (4.31) for a = 0.5, 1.0, and 1.5. The last case is not a
homeomorphism since the graph is not monotone.

For example, f : R → R, given by f (x) = x+1/2 sin x is a diffeomorphism, but f (x) = x3

is not because its inverse, f −1(x) = x
1
3 , is not C1. Note that every diffeomorphism is also

a homeomorphism. Recall from §4.2 that a flow is a C1 bijection from the phase space to
itself, and thus the map ϕt for each time t is a diffeomorphism.

With these definitions in our toolbox, we are now prepared to understand the key
notion of equivalence of two flows,

� topological conjugacy: Two flows ϕt : A → A and ψt : B → B are
conjugate if there exists a homeomorphism h : A → B such that for each
x ∈ A and t ∈ R

h(ϕt (x)) = ψt(h(x)). (4.32)

It is clear that for such a homeomorphism to exist,A andB must be topologically equivalent
spaces. Often, two systems are simply said to be conjugate as a shorthand for topologically
conjugate. A diagram that represents (4.32) is

x
ϕt−→ ϕt (x)

h ↓ ↓ h
y

ψt−→ ψt(y)

.

The two paths in this diagram, x
h→ y

ψt→ψt(y) and x
ϕt→ϕt(x)

h→ψt(y), which represent
the right- and left-hand sides of (4.32), respectively, must give the same result, namely,
ψt(h(x)). We say, in this case, that the “diagram commutes.”

Example: The flow on R generated by ẋ = −x isϕt(x) = xe−t . Under the homeomorphism
y = h(x) = x3, this is equivalent to the new flow

ψt(y) = (xe−t )3 = ye−3t .

This is the solution of the linear equation ẏ = −3y. Consequently, these two ODEs are
topologically conjugate.
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Figure 4.12. Orbits of conjugate systems must be in a one-to-one correspondence.

Conjugacy implies that each trajectory of ψ corresponds to a trajectory of ϕ, and
vice versa. For example, if x∗ is an equilibrium of ϕ, then since ϕt (x

∗) = x∗ for all
t, ψt (h(x

∗)) = h(x∗) = y∗ and so y∗ is an equilibrium of ψ . Thus, h provides a one-to-
one correspondence between the equilibria of two conjugate flows. Similarly, if ϕt(xo) is
a periodic orbit of ϕ with period T , i.e., ϕt+T (xo) = ϕt(xo), then ψt(yo) = h(ϕt (xo)) =
h(ϕt+T (xo)) = ψt+T (yo), so ψt(yo) is also a periodic orbit of ψ with the same period; see
Figure 4.12.

Topological conjugacy can be too restrictive a condition because, in addition to the
fact that trajectories “look” the same in phase space, (4.32) implies that the curves have
identical temporal parameterizations. A slightly more general notion that still captures the
shape and direction of the flows as curves in phase space is

� topological equivalence: Two flows ϕt : A → A and ψt : B → B are
equivalent if there exists a homeomorphism h : A → B that maps the orbits
of ϕ onto the orbits of ψ and preserves the direction of time. That is, there is a
map τ : A× R → R that is monotone increasing with t and

h(ϕτ(x,t)(x)) = ψt(h(x)). (4.33)

Example: If we temporarily relax the requirement that a flow exist for all time, then

ψt(y) = y

1+ ty

is the flow corresponding to the ODE ẏ = −y2. For y ∈ R
+, it exists only on the interval

t ∈ (y−1,∞). This flow is equivalent to ϕt(x) = xe−t under the transformations h(x) = x,
and τ(x, t) = ln (1+ xt), since

h(ϕτ(x,t)(x)) = xe− ln(1+xt) = x

1+ xt
= ψt(h(x)).

Note that the orbits of ψ are qualitatively the same as those of ϕ; for example, the point
y = h(0) = 0 is an equilibrium, and if y > 0, then ψt(y) → 0 as t → ∞, just as
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Figure 4.13. Construction of a homeomorphism for a one-dimensional flow.

ϕt(x) → 0. We used this notion of equivalence in our proof of the theorem in §4.3 that
each ODE is equivalent to one with a complete flow.

Two topologically equivalent flows must, in some precise sense, exhibit the same
“orbit structure.” In particular, for the one-dimensional case, it is quite easy to make a
precise statement since the behavior is quite limited.

Theorem 4.10 (One-Dimensional Equivalence). Two flows ϕ andψ in R are topologically
equivalent if and only if their equilibria, ordered on the line, can be put in a one-to-one
correspondence, and if and only if the corresponding equilibria have the same topological
type (sink, source, or semistable).

Proof. If a homeomorphism h exists, then to each equilibrium of ϕ there must be a corre-
sponding equilibrium of ψ and vice versa; thus we can put the equilibria in a one-to-one
correspondence. The correspondence is ordered since h is monotone. Conversely, suppose
that ϕ and ψ have corresponding equilibria. We will next explicitly construct h, and show
that the flows not only are equivalent but are actually conjugate.25

Suppose first, for simplicity, that there are finitely many equilibria. Denote the equi-
libria of ϕ by x∗1 < x∗2 < · · · < x∗n and ofψ by y∗1 < y∗2 < · · · < y∗n . It is clear that we must
define h(x∗i ) = y∗i . Choose points αi such that αo < x∗1 < α1 < x∗2 < · · · < x∗n < αn, and
points βi that are similarly intertwined with y∗i , as shown in Figure 4.13. We can arbitrarily
define h(αi) = βi .To complete the construction of the homeomorphism in an interval be-
tween two equilibria h : (x∗i , x∗i+1)→ (y∗i , y

∗
i+1), note that for each xo ∈ (x∗i , x∗i+1), since

25The necessity also follows from the Hartman–Grobman theorem.



134 Chapter 4. Dynamical Systems

ϕt (xo) is either monotonically increasing or decreasing with t , there is a unique time to ∈ R

such that ϕto (xo) = αi . As sketched in Figure 4.13, define

h(xo) = yo = ψ−to (βi).

This function is a homeomorphism (it is one-to-one since the flow is monotone, and it is
continuous and has a continuous inverse sinceψ does). Note also that since ϕto−t (ϕt (xo)) =
αi we have

h(ϕt (xo)) = ψ−(to−t)(βi) = ψt

(
ψ−to (βi)

) = ψt (h(xo)) ,

as required. This construction applies in each such interval bounded by two equilibria. We
can similarly deal with the two intervals (−∞, x∗1 ) and (x∗n,∞). This yields the required
homeomorphism on R.

If the number of equilibria is countably infinite, or even uncountably infinite, the
analysis is similar.

Generally, when the dimension of the phase space is larger than one, we must know
more than just the number and topological type of the equilibria to determine whether two
flows are equivalent; see Exercise 13. We will see such systems in §8.11 when we discuss
homoclinic bifurcations.

Sometimes we will not be satisfied by mere topological equivalence—we will want
differential properties to be the same. In a previous example we saw that the eigenvalues are
not preserved by a topological equivalence (they changed from−1 to−3 at the equilibrium).
A notion that does preserve this information is

� diffeomorphic: Two flows ϕt : A→ A and ψt : B → B are diffeomorphic
if there is a diffeomorphism h such that h(ϕt (x)) = ψt(h(x)).

We also call two flows smoothly equivalent when, in addition to the diffeomorphism h, there
is an increasing diffeomorphism τ(x, t) such that (4.33) is satisfied.

Example: The map h : R → (−1, 1) defined by h(x) = tanh(x) is a diffeomorphism.
Applying this to the flow ϕt (x) = xe−t gives the new flow ψt = h ◦ ϕt ◦ h−1, or explicitly

ψt(y) = tanh
(
e−t tanh−1(y)

)
.

This flow has the vector field

ẏ = g(y) = d

dt
ψt (y)|t=0 =

(
y2 − 1

)
tanh−1(y).

This ODE has only one equilibrium, y = 0, in the interval (−1, 1); since Dg(0) = −1,
it is stable just like x = 0 is for the flow ϕ. The new flow has equilibria at y = ±1 as
well, but these are not within the space (−1, 1); they correspond to the points x = ±∞ in
the original space. The limiting behaviorψt(y) →

t→−∞∓1, for y < 0 and y > 0, respectively,
reflects the behavior of the original flow, since ϕt(x) →

t→−∞∓∞ for x < 0 and x > 0,
respectively.
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f(xo)

xi xi+1

Dh(xo)f(xo)

yi yi+1yoxo

h

ẋ = f (x) ẏ = g(y)

Figure 4.14. Equivalence between two one-dimensional vector fields, (4.34).

Although our example on page 131 showed that the flows xe−t and ye−3t are topologi-
cally conjugate, we did not show them to be diffeomorphic, since x3 is not a diffeomorphism.
In fact, these two flows cannot be diffeomorphic, as we will see next.

If two flows are diffeomorphic, then the vector fields are related by the derivative of
the conjugacy. Suppose that ẋ = f (x) generates the flow ϕ and ẏ = g(y) generates ψ .
Then

d

dt
ψt (y) = g (ψt(y)) = d

dt
h (ϕt (x)) = Dh (ϕt (x))

d

dt
ϕt (x) = Dh (ϕt (x)) f (ϕt (x)) .

Setting t = 0 in these relations gives a relation between the vector fields:

g(y) = g(h(x)) = Dh(x)f (x). (4.34)

Equation (4.34), sketched in Figure 4.14, is precisely the result that we would obtain if we
simply transform coordinates using the differential equations:

y = h(x) ⇒ dy

dt
= Dh(x)

dx

dt
= Dh(x)f (x) = g(y).

It is easy to see that the eigenvalues of equilibria are preserved by a diffeomorphism.
Suppose that x∗ is an equilibrium of ϕ, and Dxf (x

∗) = A is the Jacobian matrix. Then
upon differentiation of the relation (4.34) by x, we have

Dyg(y)Dxh(x) = Dxh(x)Dxf (x)+D2
xh(x)f (x).

Since h is a diffeomorphism the matrix H = Dh(x∗) is nonsingular, and since f (x∗) = 0
at the equilibrium,

B ≡ Dyg(y
∗) = HAH−1.

So the matrices are related by a similarity transformation and therefore have the same
eigenvalues (recall Exercise 2.8).

Note in particular that two linear flows can be diffeomorphic only if the fundamental
subspacesEu,Es , andEc have the same dimensions; we will see below that this holds more
generally. Conversely, two linear ODEs with distinct eigenvalues cannot be diffeomorphic;
see Exercise 6. Indeed, two linear flows are diffeomorphic only if their matrices are similar,
as shown below.
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Theorem 4.11 (Linear Conjugacy). The flows ϕt and ψt of the linear systems ẋ = Ax and
ẏ = By are diffeomorphic if and only if the matrix A is similar to the matrix B.

Proof. Assume first that A is similar to B, i.e., there is a nonsingular matrix H such that
HA = BH. The map h(x) = Hx is clearly a diffeomorphism and

h(ϕt (x)) = HetAx = etHAH
−1
Hx = etBh(x) = ψt(h(x)),

which implies that the flows ϕ and ψ are diffeomorphic. Conversely, suppose there is a
diffeomorphism g such that g(ϕt (x)) = ψt(g(x)). Setting g(0) = c, then g(ϕt (0)) = c =
ψt(c), so c is an equilibrium of ψ . Let h(x) = g(x)− c. Then

h(ϕt (x)) = ψt(g(x))− c = ψt(h(x)+ c)− c = ψt(h(x)). (4.35)

Thus h(x) conjugates the flows and fixes the origin. Define the matrix H = Dh(0),
and differentiate (4.35) with respect to x, to obtain, at x = 0, HetA = etBH . Taking the
time derivative of this relation at t = 0 yields HA = BH , so the matrices are linearly
conjugate.

Example: The matrices

A =
( −2 0

0 −2

)
, B =

( −2 1
0 −2

)

are not similar. Indeed, suppose there were an invertible matrix such thatHA = BH . Then
if (u, v)T is a column ofH , we would have−2u+v = −2u and−2v = −2v; consequently,
v = 0 and u = c. Since this is true for each column, H would be singular. However, there
does exist a topological conjugacy between the flows ϕt(x) = etAx and ψt(y) = etBy. To
find y = h(x) = (h1(x1, x2), h2(x1, x2)), we first find the flows

ϕt (x1, x2) =
(
e−2t x1, e

−2t x2
)
,

ψt (y1, y2) =
(
e−2t (y1 + ty2) , e

−2t y2
)
.

The second component of the conjugacy h2(ϕt (x)) = ψ2t (y) implies

h2
(
e−2t x1, e

−2t x2
) = e−2t y2 = e−2t h2(x1, x2),

which has a particular solution h2(x1, x2) = x2. The first component of the conjugacy
requires that h1

(
e−2t x1, e

−2t x2
) = e−2t (h2(x1, x2)+ tx2). To solve this set, h1(x1, x2) =

x1 + f (x2), to find
f (e−2t x2) = e−2t (f (x2)+ tx2) .

A solution to this is f (x) = −1/2x ln |x|, and if we define f (0) = 0, then f is continuous at
x = 0. Putting this result together with h1 gives homeomorphism

(y1, y2) = h(x) =
(
x1 − 1

2
x2 ln |x2| , x2

)
;
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however, h is not a diffeomorphism since its derivative does not exist at the origin. At every
other point the vector fields can be transformed using (4.34):

ẏ1 = ẋ1 − 1

2
ẋ2 ln |x2| − 1

2
ẋ2 = −2y1 + y2,

ẏ2 = ẋ2 = −2y2,

showing conjugacy as we expect.

This example can be generalized to show that topological conjugacy of hyperbolic
systems depends only on the dimensions of their stable and unstable subspaces: for example
a system with complex eigenvalues can be conjugate to one with real eigenvalues; see
Exercise 7.

Theorem 4.12. SupposeA andB are two real, hyperbolic n×nmatrices and ϕt(x) = etAx

andψt(y) = etBy the corresponding flows. Thenϕ andψ are topologically conjugate if and
only if the dimensions of the stable and unstable spaces ofA are equal to the corresponding
dimensions for B.

Sketch of Proof. The necessity of this condition is easy to see. Any homeomorphism
h : R

n → R
n must map bounded sets to bounded sets. Moreover, for any x ∈ Es

A, we
have limt→∞ ϕt (x) = 0; consequently, since h is continuous limt→∞ h (ϕt (x)) = h(0) =
limt→∞ ψt(h(x)). Since h(0) is bounded, then y = h(x) must be in Es

B , and indeed
h(0) = 0 because every orbit in Es

B approaches the origin. Consequently, h : Es
A → Es

B

is a homeomorphism, which implies that these spaces must have the same dimension. The
same can be said for the unstable spaces.

The proof of the converse requires a bit more work: given that the dimensions of
the stable and unstable spaces are the same we must construct the conjugacy. Since the
stable spaces Es

A and Es
B are invariant under the flows, we start by constructing a map

hs : Es
A → Es

B . A similar map hu can be constructed for the unstable spaces. In the
end, we write any vector x = πu(x) + πs(x), where πi are projection operators onto
the unstable and stable spaces of A, respectively, and the full conjugacy is then h(x) =
hs(πs(x))+ hu(πu(x)).

The proof is simple for the case whenA andB are semisimple and all their eigenvalues
are real. Then both A and B are linearly conjugate to real diagonal matrices and so to the
systems ẋi = λixi and ẏi = µiyi . Order the eigenvalues so that λ1 ≥ λ2 ≥ · · · λk ≥ 0 >
λk+1 ≥ · · · ≥ λn and similarly for µi . By our previous argument the number, k, of positive
eigenvalues must be the same. Now we construct conjugacies for each one-dimensional
system, mapping λi to µi , by choosing

hi(xi) = sgn(xi) |x|ai , where ai = µi
/
λi .

Then hi(eλi t xi) = eµi tsgn(xi) |xi |ai = eµi thi(xi). Whenever λi �= µi , hi is not a diffeo-
morphism. Note also that we cannot get out of this difficulty by relaxing the conjugacy
requirement to one of equivalency, since the ratio of the eigenvalues may be different for
different i, and thus we would need a different time scaling for each dimension.

In the general case we construct hs by first finding norms that are adapted to the
matrices A and B. These norms are constructed so that ‖etAπs(x)‖A ≤ e−αt‖πs(x)‖A for
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t ≥ 0, i.e., eliminating the constant K in (4.20). The point of these norms is that each
trajectory crosses its respective unit sphere ‖x‖ = 1 exactly once. The unit spheres in
the new norms are then used to define hs as the “identity” map from the A-sphere to the
B-sphere. The homeomorphism is extended from the spheres by flowing, just like we did
for the one-dimensional case. The full proof is given, for example, in (Robinson 1999, see
§4.7).

4.8 Hartman–Grobman Theorem
We showed in §4.7 that linear, hyperbolic systems come in a few equivalence classes,
categorized solely by the dimension of their stable and unstable spaces. Now we show that
nonlinear systems sometimes “look like” their linearizations near hyperbolic equilibria. The
formal statement of this result was proved independently by Hartman in 1960 and Grobman
in 1959.

Theorem 4.13 (Hartman–Grobman). Let x∗ be a hyperbolic equilibrium point of a C1

vector field f (x) with flow ϕt (x). Then there is a neighborhood N of x∗ such that ϕ is
topologically conjugate to its linearization on N .

It is interesting to note that while the theorem requires a smooth ODE, it does not
say that the flow is diffeomorphic to its linearization. A theorem due to Sternberg does
provide a diffeomorphism; however, it requires an additional hypothesis: the eigenvalues
must satisfy a “nonresonance” condition (Sternberg 1958).

Note that the Hartman–Grobman theorem requires that the equilibrium be hyperbolic.
As we shall see in Chapter 6, the topological classification of nonhyperbolic equilibria will
depend upon more than just the linearization of the system.

Discussion of Proof. The construction of the homeomorphism is rather clever and poten-
tially useful, so we sketch it here. As is now usual, we begin with an ODE of the form

ẋ = Ax + g(x),

where A is a hyperbolic matrix, and the term g ∈ C1 represents the nonlinear term, so that
g = o(x). Define also the flow of the linear equation ψt(x) = etAx. Since the theorem is
to be proved only locally, we can modify the ODE by defining a new nonlinearity g̃ such
that g̃(x) = g(x) for some neighborhood N of 0, and g̃(x) = 0 for x outside some larger
neighborhood M . This can be done so that g̃ is still a smooth function. Moreover, g̃ is
bounded, since it vanishes outside a compact set. Let ϕt be the flow for the modified ODE.
This flow agrees with the linear flow while the orbit stays outside M . (See the following
examples to understand why this modification is needed.)

Our goal is to find a homeomorphism h satisfying

ψt (h(x)) = h (ϕt (x)) , that is, h(x) = e−tA ◦ h ◦ ϕt (x). (4.36)

Suppose first that H is a homeomorphism that satisfies (4.36) for one value of time, say,
t = 1, e.g.,

H1(x) = e−AH1(ϕ1(x)). (4.37)
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Figure 4.15. The homeomorphism (4.36).

In addition, suppose we can show that H1 is the unique such homeomorphism (among the
class of continuous functions such that H1 − id is bounded). Now let

Ht(x) = e−tA ◦H1 ◦ ϕt(x);
a sketch of this relation is shown in Figure 4.15. We then claim that Ht is also a homeo-
morphism that satisfies (4.37). This follows from the group property of the flow ϕ:

e−A ◦Ht ◦ ϕ1(x)= e−A ◦ e−tA ◦H1 ◦ ϕt ◦ ϕ1(x)

= e−tA ◦ e−A ◦H1 ◦ ϕ1 ◦ ϕt (x)
= e−tA ◦H1 ◦ ϕt (x) = Ht(x).

Consequently, Ht satisfies (4.37); however, since we asserted that H1 is the unique such
homeomorphism, we must have Ht = H1. Therefore,

H1 = e−tA ·H1 · ϕt(x).
So H1 is also the homeomorphism for any time t! This can be seen as well by considering
the following diagram:

x
ϕt→ x(t)

ϕ1−t→ x(1)
H1 ↓ H1 ↓ H1 ↓
y

etA→ y(t)
e(1−t)A→ y(1)

.

We have just shown that this diagram commutes; that is, if we go from x to y(1) by any
path we obtain the same result.
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So we reduce the problem to solving for H1, the conjugacy at t = 1. Basically, we
can do this iteratively by starting with the assumption that H(0)

1 (x) = x, and defining

H
(i+1)
1 (x) = e−A ◦H(i)

1 ◦ ϕ1(x), i = 0, 1, . . . . (4.38)

The theorem actually proves that there is a neighborhood of the origin for which (a version
of) this iteration converges and that H1 is unique among all homeomorphisms that are near
the identity.

The full proof of the theorem is in (Robinson 1999, §5.7).

Example: The simple two-dimensional system

ẋ = x,

ẏ = −y + x2

has a saddle equilibrium at the origin. The linear matrix for the saddle isA = (1 0
0 −1

)
, which

is conveniently diagonal, so that etA (x, y)T = (etx, e−t y)T . The nonlinear system can be
easily solved analytically to obtain the flow

ϕt(x, y) =
(

etx

e−t y + 1
3

(
e2t − e−t

)
x2

)
.

As a consequence, the homeomorphism H = H1 in (4.37) must satisfy the equation

H(x, y) = e−AH(ϕ1(x, y)) =
(
e−1 0
0 e

)
H(ex, e−1y + kx2), (4.39)

where k = e3−1
3e . It is convenient to solve for the two components of H separately;

let H = (K,L)T . Then the iterative equation (4.38) for K is

K(i+1)(x, y) = 1

e
K(i)

(
ex,

1

e
y + kx2

)
.

The superscripts on this equation indicate that we will attempt to solve it iteratively. Starting
withK(0)(x, y) = x, the identity, thenK(1) = 1

e
(ex) = x; thus,K(x, y) = x is the solution.

The formal iterative equation for L from (4.39) is

L(i+1)(x, y) = eL(i)

(
ex,

1

e
y + kx2

)
,

which looks like it should be amenable to iteration in the same way. However, because
there is a factor of e in front of the right-hand side, we cannot iterate this equation in the
form as written—the result will diverge (try it and see!). Instead we must invert it. To do
this, set ξ = ex and η = y

/
e + kx2, so that x = ξ

/
e, and y = e

(
η − kξ 2

/
e2
)
. Using this

to invert the equation above and write it as an iteration yields

L(i+1)(x, y) = 1

e
L(i)

(
1

e
x, ey − k

e
x2

)
.



4.8. Hartman–Grobman Theorem 141

-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

y

-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

y

Figure 4.16. Phase planes for the nonlinear flow (left) and linear flow (right) in
(4.40). The constructed homeomorphism maps the two families of curves onto each other.

As before we start the iteration with the identity, L(0)(x, y) = y, and now obtain

L(1)(x, y) = 1

e
L(0)

(
1

e
x, ey − k

e
x2

)
= 1

e

(
ey − k

e
x2

)
= y − ke−2x2,

L(2)(x, y) = 1

e

(
ey − k

e
x2 − ke−2

(x
e

)2
)
= y − ke−2(1+ e−3)x2,

L(3)(x, y) = 1

e

(
ey − k

e
x2 − ke−2(1+ e−3)

(x
e

)2
)
= y − ke−2(1+ e−3 + e−6)x2.

This series limits to

L(x, y) = y − ke−2(1+ e−3 + e−6 + e−9 + · · · )x2 = y − ke−2

1− e−3
x2 = y − 1

3
x2.

So the actual homeomorphism is H(x, y) = (x, y − x2
/

3
)
. The reader is encouraged to

verify that this actually works by doing the calculation (4.36).

Example: The homeomorphism for the Hartman–Grobman theorem is guaranteed to exist
only in a neighborhood of the origin. We can see that this is the case if we consider the
ODEs

ẋ = 2x,
ẏ = 4y + x2,

which have a source at the origin. The flow for this system and its linearization are

ϕt(x, y) =
(

e2t x

e4t (y + tx2)

)
, etA

(
x

y

)
=
(
e2t x

e4t y

)
. (4.40)

These flows are shown in Figure 4.16. If we attempt the calculation as we did in the previous
example, we will find that H(x, y) = (x, y + g(x, y)) but that the iteration for g does not
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converge. Instead of doing this, we modify the vector field:

ẋ = 2x,
ẏ = 4y + b(x2),

where the function b is a “bump” function. That is, we want b(ξ) = ξ for small ξ and for
it to vanish for large ξ . So we set

b(ξ) =
{
ξ, |ξ | < ε,

0, |ξ | > δ,

for some arbitrarily chosen 0 < ε < δ. We assume that b connects these two values
smoothly.26 The new vector field has a flow identical to the original nonlinear one when
x2 < ε but is identical to the linear flow when x2 > δ. The fact that the Hartman–Grobman
theorem is only locally valid is made manifest by this modification.

When we integrate the modified equations, we obtain x(t) = e2t xo and

y(t) = e4t

(
yo +

∫ t

0
e−4sb(e4sx2

o )ds

)
≡ e4t

(
yo + B(x2

o , t)
)
.

The new function B(x2, t) cannot be obtained explicitly—especially since we have not
explicitly specified b! However, we do know that if x2(s) < ε for all 0 < s < t , i.e.,
if |xo| < √

εe−2t , then b(x2(s)) = x2(s) along the entire integration path and we obtain
B(x2

o , t) = tx2
o . Similarly, if x2(s) > δ for all 0 < s < t, i.e., if |xo| >

√
δ, then

b(x2(s)) = 0, so that B(x2
o , t) = 0. Setting t = 1, and letting B(x2) = B(x2, 1), we have

B(x2) =
{
x2, |x| < √εe−2,

0, |x| > √δ.
Putting the new flow into (4.37), we obtain the equation for H :

H(x, y) = e−AH(ϕ1(x, y)) =
(
e−2 0
0 e−4

)
H
(
e2x, e4(y + B(x2)

)
.

As before we writeH = (K,L)T . The equation forK has the simple solutionK(x, y) = x.
For L we obtain

L(x, y) = e−4L
(
e2x, e4(y + B(x2)

)
.

Iterating this starting with L(0)(x, y) = y, we get

L(1)(x, y) = y + B(x2),

L(2)(x, y) = y + B(x2)+ e−4B(e4x2),

L(3)(x, y) = y + B(x2)+ e−4B(e4x2)+ e−8B(e8x2).

After N steps this gives the obvious result

L(N)(x, y) = y +
N−1∑
n=0

e−4nB(e4nx2).

26It is a standard trick in analysis that such “bump” functions can be made arbitrarily smooth, and even C∞;
see, for example, (Friedman 1982, Problem 3.3.1).
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Note that if we set B(x2) = x2, then this series sums to Nx2, which does not converge as
N → ∞. However, since B vanishes when its argument is large, then the series actually
terminates after finitely many terms. Explicitly, choose an N such that e4Nx2 ≥ δ, or
N(x) ≥ 1

4 ln(δ
/
x2), thenB(e4Nx2) = 0, so that this term and all the following ones vanish.

Using this we can “take the limit” to obtain

L(x, y) = y +
N(x)∑
n=0

e−4nB(e4nx2).

Since the sum is finite, it is convergent. This is the local homeomorphism guaranteed by
the theorem. Note that it is not unique because we have considerable freedom in choosing
b; however, once we have chosen the function b(x), we get a unique homeomorphism.

The Hartman–Grobman theorem implies Theorem 4.6: if x∗ is a hyperbolic equilib-
rium point with Re(λ) < 0, then since the linear system is asymptotically stable, so is the
nonlinear system.

The Hartman–Grobman theorem says nothing about the structure of the motion in the
neighborhood of a nonhyperbolic equilibrium. This case is considerably more intricate—we
will discuss it in Chapter 6 and Chapter 8.

4.9 Omega-Limit Sets
We now develop some terminology that will help in the classification of orbits. Since—as
we saw in §4.3—up to reparameterization of time, ODEs give rise to complete flows, we
now consider a general flow, ϕt (x). Our goal is to study properties of the orbits,

Ux = {ϕt(x) : t ∈ R} . (4.41)

In some cases, as in (4.2), we will consider just the forward orbit of x, the set

U+x =
{
ϕt (x) : t ∈ R

+} , (4.42)

or the similarly defined backward orbit, U−x . One of the main goals of theory of dynamical
systems is to give a geometrical classification of the types of orbits that occur in a given
flow.

One important characterization of orbits is their “ultimate” or asymptotic behavior
as t → ∞, if this exists in some sense. Asymptotic behavior is defined in terms of limit
points; recall §3.1: a point y is a limit point of the forward orbit of x if there is a sequence
t1 < t2 < · · · < tk . . . such that tk → ∞ and ϕtk (x) → y as k → ∞. The asymptotic
behavior of an orbit is its

� omega-limit set: The collection of all limit points of U+x is the omega-limit
set of x, denoted ω(x).

It is easy to see from the definition that if z ∈ Ux , ω(z) = ω(x). Thus instead of ω(x),
we can just as well write ω(Ux), the ω-limit set of the entire trajectory. Similarly, we can
define a limit set for t →−∞:
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Figure 4.17. The omega-limit set can be a limit cycle.

� alpha-limit set: α(x) is the collection of all limit points of U−x .

A simple example of anω-limit set is an asymptotically stable equilibrium, another example
is a periodic orbit that attracts a trajectory; see Figure 4.17. Such an orbit is called a

� limit cycle: A periodic orbit γ that is the omega or alpha-limit set of a point
x /∈ γ is a limit cycle.

Thus, a limit cycle is an invariant loop with the property that there is a nearby orbit that spirals
either toward it or away from it.27 As we will see in Chapter 6, limit cycles are common for
planar flows and more generally can arise through a “bifurcation” of an equilibrium when
it becomes unstable; see §8.8.

Example: The planar system

ẋ = x(1− r2)− y,

ẏ = y(1− r2)+ x
(4.43)

is most easily analyzed in polar coordinates. The radial equation is

ṙ = 1

r
(xẋ + yẏ) = r(1− r2). (4.44)

This one-dimensional system has a source at r = 0 and a sink at r = 1 (negative values of
r are not allowed). The dynamics of θ = tan−1(y

/
x) are given by

θ̇ = 1

r2
(xẏ − yẋ) = 1

r2
(x2 + y2) = 1.

27Sometimes limit cycles are defined as isolated periodic orbits. This definition is not equivalent to ours, as a
periodic orbit in a planar system could bound a disk of other periodic orbits and still be the limit of a spiraling
trajectory from the outside.
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Thus the dynamics on the circle γ = {(r, θ) : r = 1} are simply θ(t) = θo+t : it is a periodic
orbit. The orbit γ is an asymptotically stable limit cycle because the radial equation shows
that r(t)→ 1 for any r(0) �= 0.

Note that a limit cycle is closed (the loop γ includes all of its limit points) and
invariant, ϕt(γ ) = γ . These properties are generally true for ω-limit sets, as we will see in
the following three fundamental lemmas that define the basic structure of ω-limit sets.

Lemma 4.14 (Closure). ω(x) =⋂T≥0 Ū
+
ϕT (x)

, where Ū+x is the closure of the forward orbit
of x. Hence, ω(x) is closed.

Proof. If z ∈ ω(x), then z ∈ Ū+ϕT (x) = cl {y : y = ϕt(x), t ≥ T } for any T , since this
includes all limit points. Therefore, z is in the intersection of these sets. This proves that
ω(x) ⊂ ⋂

T≥0 Ū
+
ϕT (x)

. Now suppose that z ∈ ⋂T≥0 Ū
+
ϕT (x)

, or equivalently for any T ,

z ∈ Ū+ϕT (x). If there is a time t such that z = ϕt (x), then there must be a larger time for
which this is true as well; this implies that z must appear infinitely often in the orbit U+x ,
and so z ∈ ω(x). Otherwise z is in the closure of U+x but is not in the orbit itself, and by
definition of “closure,” it is a limit point of the orbit. Finally, recall that the intersection of
a family of closed sets is closed.

Lemma 4.15 (Invariance). The ω-limit set is invariant.

Proof. If y ∈ ω(x), then there is a sequence tk such that ϕtk (x) → y. Continuity then
implies that for any fixed s ∈ R, ϕtk+s(x)→ ϕs(y). Therefore, ϕs(y) ∈ ω(s).

Now suppose that there is a metric ρ(x, y) defined on the phase space; recall §3.2.
We define the distance between a point, x, and a set, S, by

ρ(x, S) = inf
y∈S ρ(x, y).

We will show next that when an orbit of a flow is bounded, it must approach its ω-limit set,
in the sense that ρ(ϕt (x), ω(x))→ 0; in this case we say that ϕt(x)→ ω(x). We will also
show that in this case that ω(x) is

� connected : Aset S is connected if it cannot be partitioned into two nonempty
sets such that each subset has no points in common with the closure of the other.

Thus, R
+ is connected; for example, it can be partitioned into A = (0, 1), and B = [1,∞),

but Ā ∩ B = {1} is not empty.

Lemma 4.16 (Compact and Connected). If the forward orbit of x is contained in a
compact set, then ω(x) is nonempty, compact, and connected. Furthermore, ϕt(x)→ ω(x)

as t →∞.

Proof. The sets Ū+ϕT (x) = cl {ϕt(x) : t ≥ T } are nested, since Ū+ϕT+s (x) ⊂ Ū+ϕT (x) for any
s > 0. Since, by assumption, the forward orbit of x is contained in a compact set, each
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Figure 4.18. Attracting figure-eight orbit of (4.45) for µ = 0.5.

Ū+ϕT (x) is also compact. According to Lemma 4.14, ω(x) is the intersection of these sets, and
the intersection of a collection of nested closed sets is nonempty; then ω(x) is nonempty.
Moreover, since ω(x) is closed and contained in a compact set, it is compact.

Now suppose that ω(x) is not connected, i.e., that there are two disjoint, closed
components A and B such that ω(x) = A ∪ B. By definition, for any zA ∈ A there is a
sequence of times tkA for whichϕtkA (x)→ zA. Similarly for zB ∈ B.Since for each sequence
tk → ∞, there are infinitely many neighboring times for which tkA < tkB < tkA+1 and so
the orbit segment {ϕt (x) : tkA ≤ t ≤ tkB } connects points arbitrarily close to zA to points
arbitrarily close to zB . Since ω(x) is closed, it contains the limits of these segments and
therefore cannot be disconnected. (More generally, any intersection of a nested collection
of compact, connected sets is connected.)

Finally, suppose that ρ(ϕt (x), ω(x)) does not go to zero. Then there must be
a subsequenceϕtk (x) of points that stay a distance δ away fromω(x). However, since this se-
quence is contained in a compact set, it has a convergent subsequence, which
would be a limit point not in ω(x), but this is a contradiction. In conclusion, ρ(ϕt (x),
ω(x))→ 0.

Example: Consider the system

ẋ = y,

ẏ = x − x3 − µy

(
y2 − x2 + 1

2
x4

)
.

(4.45)

When µ = 0, (4.45) is a Hamiltonian system with H = 1/2(y
2 − x2 + 1/2x

4). The level set
H = 0 is a figure eight, withH < 0 inside its lobes andH > 0 outside; see Figure 4.18. The
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Figure 4.19. Phase portrait of the system (4.46), showing the nullclines (blue and
brown).

term proportional to µ in the y-equation is specially chosen so that it vanishes on H = 0.
Thus, any orbit that starts on this curve will stay on it even when µ �= 0. Note that the rate
of change of energy is given by

dH

dt
= ∂H

∂x
y + ∂H

∂y

(
x − x3 − 2µyH

) = −2µy2H.

Consequently, when y �= 0 andH < 0 (inside the lobes of the figure eight), H is increasing
and when H > 0 (outside the figure eight), H is decreasing. Therefore, trajectories move
toward the figure eight contour except possibly when y = 0. Only the points (0, 0) and
(±1, 0) on this set are invariant, so we can conclude, using LaSalle’s invariance principle,
Theorem 4.9, that |H(x(t), y(t))| monotonically decreases to zero as t → ∞ for every
point except the equilibria (±1, 0).

We can, therefore, completely characterize the ω-limit sets for each point in the plane.
A point x inside the right lobe of the figure eight (but not at the equilibrium (−1, 0)) has
an ω-limit set given by the entire right lobe—each point on the lobe is a limit point of its
trajectory. A similar discussion applies to points inside the left lobe. Any point outside
the two lobes (i.e., with H > 0) has the entire figure eight as its ω-limit set. The ω-limit
set of any point on the figure eight is the origin. Finally, each equilibrium is its own
ω-limit set.

If ω(x) is not compact, then it need not be connected.

Example: Consider the system

ẋ = y + x(1− y2),

ẏ = (1− y2)(y − x).
(4.46)

There is a spiral source at the origin, and the lines y = ±1 are invariant. Let R =
{(x, y) �= (0, 0) : |y| < 1} be the open region that is bounded by these lines. A numerical
phase portrait, see Figure 4.19, shows that trajectories starting in R spiral outward and
approach either y = +1 or y = −1. However, they appear to continually spiral and
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never settle down on either line. In particular, when the trajectory crosses the nullcline
Ny = {y = x}, then ẏ changes sign: in particular if y > 0 and is approaching 1, then it
will cross this line and begin to diverge from 1. Thus for any point z ∈ R, it appears that
ω(z) = {y = 1}∪ {y = −1}, which is not connected. The conclusion can be made rigorous
by consideration of the global phase portrait; see Exercise 6.14.

There are two other characterizations of long-time behavior that are of interest:

� nonwandering: A point x is nonwandering if for every neighborhood W of
x and every time T > 0 there is time t > T such that ϕt(W) ∩W �= ∅.

In other words, a nonwandering point has nearby points that continually return. Conse-
quently, any periodic orbit is nonwandering. Moreover, it can be shown that every point in
an ω-limit set is nonwandering; see Exercise 14.

� minimal set: A set S is minimal if it is closed, nonempty, and invariant and
does not contain any such set as a proper subset.

For example, a periodic orbit is minimal, but the union of two periodic orbits is not.

Theorem 4.17. Suppose S is compact; then S is minimal if and only if for each x ∈ S we
have S = ω(x).

Proof. First assume that S = ω(x) but is not minimal. Then there is a closed set B ⊂ S

that is invariant. However, if x ∈ B, then ω(x) ∈ B. This is a contradiction, so S must
be minimal. Now assume that S is minimal, but there is an x ∈ S for which ω(x) �= S.
Since S is compact, so is ω(x), and Lemma 4.14 implies that ω(x) is invariant, so S has an
invariant subset. Again, this is a contradiction.

4.10 Attractors and Basins
Informally, an attractor is an invariant set toward which all nearby trajectories move. We saw
in §4.5 that any equilibrium that is linearly asymptotically stable satisfies this condition. Our
goal is to define the notion of attractor without reference to the kind of orbit or orbits that it
contains; indeed, some attractors consist of infinitely many orbits. We start by generalizing
the definition stability that we used for equilibria in §4.5 to arbitrary invariant sets (recall
the definition of invariant set in §4.1):

� stability: An invariant set N is stable if for any neighborhood N of N there
is a subset M of N such that all points that start in M stay in N for all t > 0.

� asymptotic stability: An invariant setN is asymptotically stable if it is stable
and there is a neighborhood N such that for each x ∈ N , ρ(ϕt (x),N)→ 0 as
t →∞.

Since these definitions always refer to a neighborhood of the invariant set, we will
define an attractor by constructing a special neighborhood that will envelope it:
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� trapping region. A set N is a trapping region if it is compact and ϕt(N) ⊂
int(N) for t > 0.

Here, “int(N)” denotes the “interior” of the set N . Thus, a trapping region is strictly
“forward invariant.” Note also that ϕt+s(N) = ϕs(ϕt (N)) ⊂ int(ϕt (N)) ⊂ int(N) for any
s, t > 0; thus the sequence of sets ϕti (N) is nested for any increasing sequence ti .

Trapping regions are computationally and analytically quite easy to find: it is sufficient
that the vector field point inward everywhere on the boundary. The maximal invariant set
inside a trapping set is called an

� attracting set: AsetN is an attracting set if there is a compact trapping region
N ⊃ N so that

N =
⋂
t>0

ϕt (N). (4.47)

Note that since the collection {ϕt (N) : t ≥ 0} is a set of closed and nested sets, the inter-
section, N, is closed and nonempty. For compact sets there is no difference between the
concepts of asymptotic stability and attracting set.

Lemma 4.18. An attracting set is asymptotically stable. Conversely, if a compact set is
asymptotically stable, then it is an attracting set.

Proof. First, suppose N is an attracting set; then by definition every point in any trapping
region N stays in N , so N is stable, and approaches N—so it is asymptotically stable.

Conversely, assume that A is compact and asymptotically stable. To show it is an
attracting set we must construct a trapping set. Since A is asymptotically stable, there is a
neighborhoodU ofA for which all points approachA and stay in some larger neighborhood
D. Since A is compact, a compact subset of U can be chosen if needed. Now we have to
find a subset of U that is forward invariant. Since all points x ∈ U eventually approach A,
there exists a time T (x) for each x ∈ U such that ϕt(x) ∈ U for all t > T (x). Moreover,
since U is compact, the function T (x) has a maximum:

Tmax = max
x∈U (T (x)) .

Therefore, N = ϕTmax(U) ⊂ U . By construction ϕt(N) ⊂ int(N), so N is a trapping region
for A.

Any attracting set has a maximal trapping region that is called the stable set of N or
the

� basin of attraction, Ws(N): The basin (or stable set) of an invariant set N is
the set of all points x for which ρ(ϕt (x),N)→ 0 as t →∞.

Thus if N is an attracting set with trapping region N , then

Ws(N) =
⋃
t≤0

ϕt(N).
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Note that the definition of asymptotic stability is equivalent to the fact that N is stable and
N ⊂ int(Ws(N)). This concept also provides another way of stating Lemma 4.16: if the
forward orbit of x is contained in a compact set, then x ∈ Ws(ω(x)).

Example: Consider a diagonalizable linear system with a matrix A whose eigenvalues are
all negative. The system can be put in diagonal form by a linear coordinate transformation
to obtain ẋj = λjxj . The unit square N = {x : ∣∣xj ∣∣ ≤ 1} is mapped to the set ϕt (N) ={
x : ∣∣xj ∣∣ ≤ eλj t

} ⊂ int(N) when t > 0, so N is a trapping region. Moreover, the origin is
an attractor and the entire phase space is the basin of the origin: Ws({0}) = R

n.

Following Charles Conley, an attractor is an attracting set with an additional assump-
tion of “irreducibility” (Ruelle 1981). Basically, we would like to decompose attracting
sets into their fundamental components. There are several possible requirements that one
could add to our definition; for example, an attractor could be minimal (Perko 2000), “chain
transitive” (Robinson 1999), or contain a dense orbit (Guckenheimer and Holmes 1983).
We follow (Field 1996) to define an

� attractor: A set N is an attractor if it is an attracting set and there is some
point x such that N = ω(x).

Example: Consider the system

ẋ = x(1− x2),

ẏ = −y.
There are three equilibria (0, 0) (a saddle), and (±1, 0) (sinks). The set N = {−1 ≤ x ≤ 1,
y = 0} is, by our definition, an attracting set. Its basin is the entire plane. For the trapping
set we could take any rectangular disk enclosing N. Note that there is no orbit, however,
that approaches all the points in N; indeed, almost every trajectory approaches one of the
two sinks. Thus the only attractors for this example are the equilibria (±1, 0).

The definition of attractor that we give follows the school of Conley (Conley 1978;
Easton 1998). A related concept, a measure attractor, is due to John Milnor: it is a set that
attracts a set of positive measure but does not necessarily have an attracting neighborhood
(Milnor 1985a, b). There are interesting examples of sets that attract many but not all points
in a neighborhood, and even sets whose basin is nowhere dense (Alexander et al. 1996). We
will always assume that an attractor has an attracting neighborhood.

Example: In §4.6 it was shown that the Lorenz system (4.26) has a Lyapunov function about
the origin when σ > 0, b > 0, and r < 1. Lorenz studied the system at much different
values: σ = 10, b = 8

/
3, and r = 28. Here, it has an attracting set that appears to be a

“strange” set: a fractal.28 We can demonstrate that this system does have an attractor, when
σ, b > 0, by constructing a trapping region. Consider the ball

BR =
{
(x, y, z) : x2 + y2 + (z− r − σ)2 ≤ R2} . (4.48)

28We will discuss strange sets in §7.3.
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Figure 4.20. Two views of a numerical approximation of the Lorenz Attractor for
(σ, b, r) = (10, 8

/
3, 28). The axes shown are centered at (0, 0, 20) and are of length 50.

The vector field on the surface of the ball can be shown to point inward if R is chosen large
enough. To see this, compute the derivative of the functionC(x, y, z) = x2+y2+(z−r−σ)2

to obtain

1

2

d

dt
C= σxy − σx2 + rxy − y2 − xyz+ (z− r − σ)(xy − bz)

= −σx2 − y2 − bz2 + (r + σ)bz

= −σx2 − y2 − b

(
z− r + σ

2

)2

+ b
(r + σ)2

4
.

Since b and σ are positive, the set on which dC
/
dt = 0 defines an ellipsoid,

E =
{
(x, y, z) : σx2 + y2 + b

(
z− r + σ

2

)2

= b
(r + σ)2

4

}
,

such that outside E, dC
/
dt < 0. To guarantee that this is true on the surface of the ball

BR for some R requires finding an R such that BR ⊂ E. The maximum distance from the
origin for points on E occurs on one of the axes; this gives the inequality

R >
|r + σ |

2
max

(
2,
√
b,

√
b

σ

)
. (4.49)

For the classic Lorenz parameters this requirement is R > 38; so for example, B39 is a
trapping region. The resulting attractor is amazingly complex, as shown in Figure 4.20.

The Lorenz attractor, N, is commonly visualized by numerically computing a single
trajectory. Thus it appears to be the ω-limit set of an arbitrary point and qualifies as an at-
tractor. It is not obvious, however, from the numerical simulations exactly how complicated
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the dynamics are on N: it is possible that N is simply a very long periodic orbit. Indeed
showing that there is no attracting periodic orbit for the classic Lorenz system was listed
by Stephen Smale as his 14th mathematical problem for the 21st century (Smale 1998).
Recently this has been proved using rigorous numerical computation (Tucker 2002). An
attractor that is geometrically complicated, such as the Lorenz attractor, is called a strange
attractor; see §7.3.

Note that not every ω-limit set is an attractor. As an example, the origin in (4.45) is
the ω-limit set for any initial condition that starts on the figure eight but it is not an attractor
because points in its neighborhood have limit points on the figure eight. The figure eight
itself, however, is an attractor according to our definition. Note that this attractor is not a
minimal set and thus does not satisfy Perko’s definition of attractor.

4.11 Stability of Periodic Orbits
A periodic orbit is an invariant set and can be stable (recall example (4.43)) or unstable. It
is natural to first study their stability using the same method of linearization that we used
for equilibria in §4.4. Indeed, we will show that linearization provides valid results in the
same situation as in that case: when the orbit is linearly asymptotically stable.

Suppose that x(t) = γ (t) = γ (t+T ) is a periodic orbit of period T for the differential
equation ẋ = f (x). If the vector field f ∈ C1 we can linearize the ODE about γ by setting
x(t) = γ (t)+ y(t) and expanding f in a Taylor series to obtain

d

dt
(x + y) = f (γ (t))+ d

dt
y = f (γ (t)+ y) = f (γ (t))+Df (γ (t))y + o(y).

If we neglect the o(y) term we obtain the linearization

d

dt
y = Df (γ (t))y = A(t)y, (4.50)

where the matrix, A(t), is a periodic function of time. Such systems can be analyzed using
Floquet theory, as we did in §2.8.

Recall from (2.46) that the fundamental matrix solution of (4.50) can be written
Q(t, to), and that the matrix M = Q(T , 0), is called the monodromy matrix. The eigen-
values of M are the Floquet multipliers, and Floquet’s theorem (Theorem 2.13) shows that
all of the solutions of (4.50) are bounded whenever the Floquet multipliers have magnitude
smaller than one.

For the case (4.50), one of the Floquet multipliers is trivially unity.

Theorem 4.19. The monodromy matrixM for the linearization of a system ẋ = f (x) about
a periodic orbit γ (t) always has at least one unit eigenvalue.

Proof. Since x(t) = γ (t) is a solution of the original nonlinear equations, so is x(t) =
γ (t + τ) for any phase shift τ . Differentiate this solution with respect to τ and set τ = 0 to
give

d

dτ
[γ̇ (t + τ) = f (γ (t + τ))]

∣∣∣∣
τ=0

⇒ d

dt
γ̇ = Df (γ (t))γ̇ (t).
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Therefore, γ̇ is a solution of the linearized equations: γ̇ (t) = Q(t, 0)γ̇ (0). However, since
γ is periodic, γ̇ (T ) = γ̇ (0) and is therefore an eigenvector of the monodromy matrix with
eigenvalue (Floquet multiplier) one.

Note that the vector γ̇ (t) is tangent to γ at the point γ (t). A simple interpretation
of Theorem 4.19 is that two nearby points on the same orbit stay close for all time. Since
there is always a unit multiplier, a periodic orbit cannot be asymptotically stable in the same
sense as an equilibrium. However, the unit multiplier is associated with the “trivial” tangent
direction and does not affect the stability of the invariant set γ . Thus we will say a periodic
orbit is linearly stable if all of its Floquet multipliers have magnitude at most 1, |µi | ≤ 1.
Moreover, the orbit is linearly asymptotically stable if all of its multipliers apart from the
trivial unit multiplier have magnitude strictly less than one, |µi | < 1 for i = 2, . . . , n.

Abel’s theorem, Theorem 2.11, gave one nontrivial relation between the Floquet mul-
tipliers,

det(M) = exp
∫ T

0
tr (Df (γ (s))) ds. (4.51)

Since det(M) = ∏i µi , this relation determines the product of the multipliers. For the
planar case, this is all the information we need: in R

2, the 2× 2 monodromy has one unit
multiplier, µ1 = 1. The second nontrivial multiplier thus determines the stability of the
periodic orbit, and µ2 = det(M).

Example: Consider again the planar system (4.43). Consider the limit cycle γ = {(r, θ) =
(1, θo + t) : t ∈ R}. Choosing θo = 0 and returning to rectangular coordinates so that
γ = {(x, y) = (cos t, sin t) : t ∈ R} gives the linearized matrix

Df (γ (t)) =
( −2x2 −1− 2yx

1− 2yx −2y2

)
=
( −2 cos2 t −1− 2 sin t cos t

1− 2 sin t cos t −2 sin2 t

)
.

As promised, the derivative of the solution, γ̇ = (− sin t, cos t)T , is a solution of the
linearized ODE:

d

dt

( − sin t
cos t

)
=
( −2 cos2 t −1− 2 sin t cos t

1− 2 sin t cos t −2 sin2 t

)( − sin t
cos t

)
=
( − cos t
− sin t

)
.

A second solution can be easily obtained by linearizing the r equation (4.44) about its
equilibrium r = 1, to obtain δṙ = −2δr , showing that a linearized solution should take
the form (δx, δy) = δroe

−2t (cos t, sin t). Indeed, substituting this into the linearized ODE
yields an identity. We can conclude that the fundamental matrix solution to the linear
equation is

Q(t, 0) =
(
e−2t cos t − sin t
e−2t sin t cos t

)
,

which gives a monodromy matrix

M = Q(2π, 0) =
(
e−4π 0

0 1

)
.

The Floquet multipliers are simply the elements on the diagonal, µ1 = 1 and
µ2 = e−4π .
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If tr(Df ) vanishes identically, then (4.51) implies that det(M) = 1; this means that a
planar, “incompressible” flow has both multipliers equal to one (see §9.2).

Example: Any C2 Hamiltonian system in the plane, (4.27), has both Floquet multipliers
equal to one, since f = (∂H

/
∂y, ∂H

/
∂x), so that tr(Df ) = ∂2H

/
∂x∂y − ∂2H

/
∂y∂x =

0. If one is careful with indices, one can show that tr(Df ) = 0 for Hamiltonian systems in
any dimension (recall (1.13)), which means that the product of the Floquet multipliers for
these systems is always one.

If the Hamiltonian depends explicitly on time, H(x, y, t), the system (4.27) is still
called a Hamiltonian system; however, the energy is no longer conserved. Indeed, (4.28)
becomes

dH

dt
= ∂H

∂x
ẋ + ∂H

∂y
ẏ + ∂H

∂t
= ∂H

∂t
�= 0.

As we discussed in §1.2, a two-dimensional nonautonomous system is equivalent to an
autonomous one on a three-dimensional space. If we suppose that H is a periodic function
of time, H(x, y, t) = H(x, y, t + T ), then the third variable can be taken to be an angle,
say, θ = t

/
T , so the phase space is M = R

2 × S
1, and the ODEs are

ẋ = ∂

∂y
H(x, y, T θ), ẏ = − ∂

∂x
H(x, y, T θ), θ̇ = 1

T
.

A periodic orbit of this system is a curve γ (t) = (x(t), y(t), θ(t)) whose period must be
some multiple of T , since the angle returns to itself “mod 1.” Since the third component
of the new three-dimensional vector field is constant, the result tr(Df ) = 0 still holds. In
this case there are three Floquet multipliers. One multiplier will be one, µ1 = 1, and so
µ2µ3 = 1 as well.

Consequently, periodic orbits of Hamiltonian systems are never asymptotically stable.
The only case in which they are linearly stable is if all Floquet multipliers are on the unit
circle. This will be discussed in Chapter 9.

The relationship between linear asymptotic stability and true asymptotic stability in
the sense of §4.10 is most easily discussed by introducing the concept of Poincaré maps.

4.12 Poincaré Maps
Maps are dynamical systems in the sense of §4.1 when the set of allowed time values
is discrete. While much of the theory of dynamical systems can be developed for maps
themselves (Arrowsmith and Place 1992; Devaney 1986; Guckenheimer et al. 1983; Katok
and Hasselblatt 1999; Robinson 1999; Strogatz 1994; Wiggins 2003), our primary interest
in maps will be to discuss the behavior of a flow in the neighborhood of a periodic orbit.
The Poincaré map naturally arises in this context.

A map is defined by a function P : M → M through the relation x ′ = P(x), where
x ′ ∈ M denotes the new point that arises from the initial point x ∈ M .29 For a map, an

29We always use the symbol “D” to represent derivative and reserve the prime symbol ′ for the iterate of a map.
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S

f(x)

x
′x

Figure 4.21. Construction of a Poincaré map from a flow on a section S.

orbit is no longer a function x(t) of t ∈ R but is instead a sequence {xt : t ∈ Z}. Using this
subscript notation, the dynamics is given by the iteration

xt = P(xt−1).

Maps arise naturally from flows by taking sections of the flow. For a flow in R
n, a section, S,

is a surface of dimension d = n− 1 (i.e., a codimension-one surface) such that the velocity
vector is not tangent to S at any point. That is, if n̂x is the unit normal to S at x, then S is a
section if f (x) · n̂x �= 0 for all x ∈ S.

A Poincaré map for a section S is obtained by choosing an x ∈ S, and following the
flow ϕt(x) to find the first return to S: let τ(x) be the first positive time for which ϕt(x) ∈ S.
The map is defined by

P(x) = ϕτ(x)(x), (4.52)

as illustrated in Figure 4.21. Note that τ(x) might not exist for all x ∈ S, in which case the
Poincaré map is not well defined. The best scenario occurs when S is a

� global section: If the orbit of every point x ∈ R
n eventually crosses an n−1

dimensional surface S and then returns to S at a later time, then S is a global
section.

In this case the Poincaré map is defined for all x ∈ S.

Example: A system with a natural angle variable that is always increasing has a global
section. For example, the skew-product30 system

ẋ = f (x, θ),

θ̇ = 1,
30A system ẋ = f (x) is a skew product if the variables can be separated as x = (y, z) such that the equations

become ẏ = f1(y, z) and ż = f2(z).
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S
x

γ(t)
′x

Figure 4.22. Poincaré section in the neighborhood of a periodic orbit.

where x ∈ R
n, and θ ∈ S

1, has a global section S = {(x, θ) : θ = θo} ∼= R
n−1, since all

trajectories cross this section with unit speed in the θ direction. This can also be generalized
to the case that θ̇ = g(x, θ), provided that g > 0 everywhere.

IfS and S̃ are two global sections, then the corresponding Poincaré maps are conjugate.
This follows since the flow takes every point x ∈ S to a point on S̃ after some time τ(x). The
homeomorphism h : S → S̃ is defined by h(x) = ϕτ(x)(x). Each global section contains
the same information about the flow.

A locally defined Poincaré map always exists in a neighborhood of a periodic orbit
γ , as shown in Figure 4.22. The section S is assumed to be a (small) disk containing a
point xo ∈ γ that is oriented perpendicular to the vector field f (xo). By continuity, there is
always some neighborhood of this point for which the vector field will be transverse to the
disk. Moreover, continuity with respect to initial conditions, recall §3.4, implies that points
“near” γ will stay “near” for any finite time t , and so they must intersect the disk at a time
that is near the period, T = τ(xo).

For example, suppose that a flow in the plane has a periodic orbit. Then the section
is a line segment that is perpendicular to the periodic orbit at a point on the orbit.

Example: Let (r, θ) be polar coordinates and consider the system

ṙ = r + αr3,

θ̇ = ν.

When α < 0 there is a unique periodic orbit at r∗ = (−α)−1/2. It is not hard to solve
explicitly for r(t) by separation of variables:

t + c =
∫

dr

r(1+ αr2)
= 1

2
ln

∣∣∣∣ r2

1+ αr2

∣∣∣∣ ⇒ r(t; ro) = ro√
(1+ αr2

o )e
−2t − αr2

o

.

The solution for θ is trivial: θ(t) = θo+ νt . Let the positive x-axis represent S. The radius
r is a good coordinate on S and the Poincaré map P : S → S is simply the value that r
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r

1

2
0

10 ro

′r

Figure 4.23. Poincaré map (4.53) for α = −1 and ν = rπ . The periodic orbit
corresponds to the intersection of the graph r ′ = P(r). It is stable because DP(1) < 1.
The stair-stepped curve is the graphical iteration of ro = 0.3.

takes after one period of the angle, or at t = 2π
/
ν:

r ′ = P(r) = r√
(1+ αr2)e−4π/ν − αr2

. (4.53)

For this one-dimensional case, the Poincaré map and its iteration can be visualized graph-
ically; see Figure 4.23. Consider an initial condition ro. Move vertically up to P(ro) to
obtain r1. Put this value onto the r-axis by moving horizontally to the diagonal. To get r2

move again vertically to the function value P(r2). The resulting series of lines, as shown
in the figure, resembles a staircase. (For more complicated maps the picture looks like a
cobweb and so is typically called the cobweb diagram.) The staircase picture implies that if
the slope at a fixed point is less than one in magnitude, then the equilibrium is stable, since
iterates move monotonically in the direction of the fixed point.

Generally, the computation of the stability of a periodic orbit requires that we consider
the linearization of the flow in the neighborhood of the periodic orbit. One must typically
resort to numerical methods to solve for the Floquet multipliers, even if the periodic orbit is
known analytically. It is often convenient numerically to compute the Poincaré map (4.52)
and study stability of an orbit by this method. One advantage is that the Poincaré map acts
on the section S that has dimension n − 1, one less than the flow. Moreover, the removed
dimension corresponds to the motion along the periodic orbit and thus to the neutral Floquet
multiplier µ1 = 1. Consequently, stability computed using the Poincaré map is the same as
that from the Floquet spectrum:
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Theorem 4.20. Let γ be a periodic orbit of a C2 flow ϕ, S be a local section through a
point xo ∈ γ, and P : S → S be the Poincaré return map. If the monodromy matrix of γ
is M , then

spec(M) = spec(DP (xo)) ∪ {1}.

Proof. Suppose x ∈ S, and τ(x) is the time of first return to S. The Poincaré map is
given by (4.52), where we restrict x to S. For the moment, ignore this restriction, and let
Q(x) = ϕτ(x)(x) for any x near γ . Differentiating Q with respect to x gives

DQ(x) = Dxϕτ(x)(x)+ d

dt
ϕτ(x)(x) (Dxτ(x))

T .

Here the last term is the “outer product” of the flow vector f (x(τ(x)) and the gradient vector
Dτ(x). This latter vector represents the change in period with respect to x; it can be called
the “twist.” When x = xo ∈ γ , τ(xo) = T , DϕT (xo) = M , and ϕT (xo) = xo so that

DQ(xo) = M + f (xo)(Dτ(xo))
T .

We can take the section S to consist of points orthogonal to the flow vector at xo, i.e.,
x = xo + ξ , where f (xo)T ξ = 0. If wi, i = 1, 2, . . . , n − 1, are a set of orthonormal
basis vectors perpendicular to f (xo), then the transpose of the n × (n − 1) matrix W =
(w1, w2, . . . , wn−1) is a projection onto vectors in the section. The matrix DP(xo) in the
wi basis has the representation WTDQ(xo)W . Since WT f (xo) = 0, we obtain

DP(xo) = WTMW.

Consequently, if v is an eigenvector of DP(xo) with eigenvalue µ, then since WWT = I ,
the (n− 1)× (n− 1) identity matrix, Wv is an eigenvector of M with the same eigenvalue.
The only vector not in the projected space is f (xo), which is an eigenvector of M with
eigenvalue one.

This theorem shows that, up to the trivial Floquet multiplier, µ1 = 1, linear stability
of a periodic orbit can be computed from the Poincaré map.

Finally we are ready to state the result about linear stability.

Theorem 4.21. If γ is a periodic orbit of a C2 flow that is linearly asymptotically stable
(the spectrum of its Poincaré map is inside the unit circle), then it is asymptotically stable.

Proof. The proof of this theorem is similar to the proof of Theorem 4.6. Following that
analysis, let xo ∈ γ, and xo+y ∈ N ∩S, whereN is a neighborhood of γ and S is a section.
Write the Poincaré map at xo + y as P(xo + y) = xo +DP(xo)y + g(y). Thus

y ′ = DP(xo)y + g(y).

Since the orbit γ is linearly asymptotically stable, the spectrum of DP(xo) is contained in
the interior of the unit circle. Analogously to (4.20), for any n ≥ 0 we can bound the orbit
of this linear mapping by ∣∣DPn(xo)y

∣∣ < Kµn |y|
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for some 0 < µ < 1 and K ≥ 1. Since the flow is smooth, g(y) = o(y), that is, for any
ε there is a neighborhood Nε ⊂ S of xo such that |g(y)| < ε |y| for all y ∈ Nε. Using
the discrete analogue of the integrating factor and the Grönwall lemma, it is possible to
see that there is an ε such that if yo ∈ Nε, then the sequence yn limits to xo as n → ∞
and is bounded in distance from xo. We leave the details to the reader. Since the Poincaré
maps through any two local sections to γ are topologically conjugate, this implies that γ is
asymptotically stable.

4.13 Exercises
1. Show that the following functions are flows on the spaces indicated. Find the vector

field for each flow.

(a) ϕt (x) = x + tanh t

1+ x tanh t
, x ∈ [−1, 1],

(b) ϕt (x, y) =
(

x cos(r2t)+ y sin(r2t)

−x sin(r2t)+ y cos(r2t)

)
, r2 = x2 + y2, (x, y) ∈ R

2.

2. Find and analyze the linear behavior near each equilibrium of the following systems
on R

2. Classify the equilibria. Are they linearly stable or unstable? Sketch the local
behavior you obtained in the phase plane and compare with a numerical phase plane
plotter that shows the global solutions.

(a)
ẋ = y

ẏ = x − x3 − ay
,

(b)
ẋ = x2 − y2 − 1
ẏ = 2y

,

(c)
ẋ = y − x2 + 2
ẏ = 2y2 − 2xy

,

(d)
ẋ = −4x − 2y + 4
ẏ = xy

.

3. The centrifugal governor (see Figure 4.24) was patented by James Watt in 1789 to
control the steam engine. It is described by the set of ODEs (Pontryagin 1962)

ϕ̇= ψ,

ψ̇ = n2ω2 sin ϕ cosϕ −X2 sin ϕ − b
m
ψ,

ω̇= 1
I
(µ cosϕ − F) ,

similar to those first derived by Vishnegradskii in 1876. Here the dynamical variables
are ϕ ∈ [0, π ], the angle between the spindle S and the “flyball arms” of length L, ω,
the rotational velocity of the flywheel, and ψ , the angular acceleration. Constants in
the equation are n the transmission ratio of the gears—the ratio between the angular
velocity of the spindle and flywheel, X = √

g/L the arm pendulum frequency, b
friction of the flywheel, m the flyball mass, I the moment of inertia of the flywheel,
F the torque load on the engine, and µ, representing the steam-driven torque caused
by closing the valve as the collar rises on the spindle.
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Figure 4.24. Sketch of Watt’s centrifugal governor.

(a) Show that by rescaling time, setting τ = Xt , and defining new variables,
(x, y, z) = (ϕ,ψ/X, nω/X), the equations can be reduced to the system

ẋ = y,

ẏ = sin x
(
z2 cos x − 1

)− εy,

ż = α (cos x − β)

for new parameters (α, β, ε), all positive.

(b) Show that if β is small enough, there is a unique the equilibrium (x∗, y∗, z∗).
(c) Linearize about the equilibrium and find the characteristic polynomial.

(d) Show that there is a critical value, εo(α, β), such that if ε > εo, then the
equilibrium is asymptotically stable, and if 0 < ε < εo, then the equilibrium is
a saddle.

(e) It can be shown that the system undergoes a Hopf bifurcation (see Chapter 8) at
εo. Solve the equations numerically and demonstrate that as ε decreases through
εo the equilibrium becomes unstable and there is an attracting limit cycle.

4. Are the following functions homeomorphisms? Are they diffeomorphisms? If the
functions depend upon parameters, then so might your answers. Explain.

(a) f : [0, 1] → [0, 1], f (x) = ax(1− x),

(b) f : R → R, f (x) = ax + b sin(2πx),

(c) f : [0, 1] → S
1, f (x) = [x + b sin(2πx) ] mod 1,
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(d) f : S1×R → S
1×R, f (x, y)= ([x+y+b sin(2πx)] mod 1, y + b sin(2πx)),

(e) f : R2 → R
2, f (x, y) = (y + ax(1− x),−bx).

5. Use the iterative construction of the Hartman–Grobman homeomorphismH to obtain
an approximation for the conjugacy for the flow of the system on R

3 given by

ẋ= −x,
ẏ= −y + x2z,

ż= 2z

to its linearization at (0, 0, 0). Show that the iteration is not globally convergent.
Discuss how to modify the iteration to make it locally convergent, using a “bump
function.”

6. Which of the ODEs ẋ = Ax with the following matrices are topologically conjugate?
Which are diffeomorphic? Which are linearly conjugate?

(a)

( −2 −1
3 2

)
, (b)

(
2 0
0 2

)
, (c)

( −5 −2
5 1

)
, (d)

(
2 1
1 2

)
,

(e)

(
7 −10
5 −8

)
, (f )

(
3 1
−1 1

)
, (g)

( −5 1
−6 0

)
, (h)

(
1 0
−2 −1

)
.

7. Construct a topological conjugacy between the linear systems with the matrices

A =
(

1 −1
1 1

)
, B =

(
2 0
0 2

)
.

(Hint: Transform to polar coordinates and assume the homeomorphism has the form
h(r, θ) = (hr(r), hθ (r, θ)). The r-dependence of hθ will involve ln r .)

8. Construct Lyapunov functions to determine the stability of the equilibrium (0, 0) for
the following systems on R

2.

(a)
ẋ = −x + y − y2 − x3

ẏ = x − y + xy
,

(b)
ẋ = y − x2 + 3y2 − 2xy
ẏ = −x − 3x2 + y2 + 2xy

.

(Hints: Try a power series for L, starting with quadratic terms. Add higher-order
terms if necessary. Sometimes it is easier to check for a Hamiltonian than it is to
construct L ab initio.)

9. An asymptotically stable linear system always has a Lyapunov function of the form
L = xT Sx.

(a) Show that when all the eigenvalues ofA have negative real parts, then the “Lya-
punov equation” (4.24) has the unique, positive definite, symmetric solution

S =
∫ ∞

0
eτA

T

eτAdτ. (4.54)
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(Hint: Premultiply (4.24) by etA
T

and postmultiply by etA. Note that the left-
hand side of (4.24) then becomes a total derivative. Remember that eA

T+A �=
eA

T

eA in general.)

(b) Compute S for the matrix A = (−2 1
0 −2

)
, and demonstrate explicitly that

dL
/
dt < 0.

10. The Lyapunov function defined in Exercise 9 also works when nonlinear terms are
added to the ODE. Consider the system ẋ = Ax + g(x), where g(x) = o(x) and
A is a matrix whose eigenvalues have negative real parts. Show that there is a
neighborhood U of the origin for which the function L = xT Sx, where S is given
by (4.54), is a strong Lyapunov function. (Hint: You may need to use the Cauchy–
Schwarz inequality |〈u, v〉| ≤ ‖u‖ ‖v‖.)

11. In 1965 Goodwin proposed the model

ẋ = 1

1+ zm
− ax, ẏ = x − by, ż = y − cz,

for the regulation of enzyme synthesis of a product in a cell. Here a, b, c are positive
constants, and m is a positive integer (m = 1 for Goodwin’s original model) (Murray
1993, §6.2). Here x represents the concentration of messenger RNA, y the enzyme,
and z the product. The nonlinear term in these equations represents the negative
feedback of the product on the RNA, since as z grows, the growth rate of x decreases.

(a) Show that there is a trapping set of the form N = {(x, y, z) : 0 ≤ x ≤ X, 0 ≤
y ≤ Y, 0 ≤ z < Z} for suitably chosen values X, Y, and Z. Take care to think
about the dynamics on the coordinate axes.

(b) Find the unique equilibrium inN , and show that it is asymptotically stable when
m = 1. It also can be shown with more work that this is true for any m < 8.
(Hint: The characteristic polynomial has only stable roots only if it satisfies the
Routh-Hurwitz criterion; see Exercise 2.11.) Consequently the attracting set in
N contains this equilibrium. While this system was initially proposed to model
oscillatory behavior, a recent general result implies that no such cycle exists for
m ≤ 4 and indeed that the attracting set N in N is the equilibrium (Enciso and
Sontag 2006).

12. Assume that the flowϕt : A→ A is conjugate to the flowψt : B → B with conjugacy
h : A→ B.

(a) Show that if ω(x) is the omega limit set for x ∈ A under ϕ, then h(ω(h−1(y))

is the omega limit set for y = h(x) ∈ B under ψ .

(b) Show that if N is an invariant set for ϕ, then h(N) is an invariant set for ψ .

(c) Show that if Ws(N) is the basin of N, then h(Ws(N)) is the basin of h(N).

(d) Show that if N is an attractor, then so is h(N).
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13. Suppose that ϕ and ψ are flows on R
2 that each have exactly two equilibria that are

both saddles. Suppose for the flow ϕ that the unstable set of one saddle corresponds
to the stable set of the other but that this is not true for ψ . Show that ϕ and ψ are not
topologically equivalent.

14. Show that if y ∈ ω(x), then y is nonwandering.

15. An alternative trapping set to (4.48) for the Lorenz system (4.26) is the ellipsoid

EC =
{
rx2 + σy2 + σ(z− 2r)2 ≤ C

}
.

Find the minimal value of C such that every trajectory eventually enters EC . Does
this give a better bound than that represented by (4.49)?

16. Let (r, θ) be a point in the phase space R
+ × S that obeys the system

ṙ = r(1+ a cos θ − r2),

θ̇ = 1,

where |a| < 1.

(a) Show that the circle r = 0 is periodic orbit with period 2π .

(b) Compute the monodromy matrix M = Q(2π, 0) for the circle r = 0 and show
that its Floquet multipliers are µ = 1 and e2π . (Hint: The linear system has
solutions (0, δθ(t)) and (δr(t), 0.)

(c) Show that there are two circles r = r− and r = r+ such that if 0 < r < r−, then
ṙ > 0, and if r > r+, then ṙ < 0. Thus the region N = {(r, θ), r− < r < r+}
is a trapping region. Our next goal is to show that the attracting set in N is a
periodic orbit.

(d) Let S be the ray {(r, 0)}. Argue that S is a global section. Let P : R
+ → R

+
be the Poincaré map on S.

(e) Suppose that the orbit of the point (rL, 0) has the property 0 < P(rL) < r−.
Argue that P(rL) > rL. Alternatively, suppose that the orbit of(rH , 0) has the
property that P(rH ) > r+. Then argue that P(rH ) < rH .

(f) Apply the intermediate value theorem to P(r) to show that there is a point
(r∗, 0), where rL < r∗ < rH , whose orbit is periodic.

(g) Show that the Floquet multipliers of the new orbit are µ = 1 and e−4π . Con-
sequently, the new periodic orbit is asymptotically stable. (Hint: To do the
integral

∫ 2π
0 r2(t)dt use the differential equation to set r2 = 1+a cos θ − ṙ/r .)

17. The Shimizu–Morioka model is a simplified model of the Lorenz system when r is
large (Shilnikov 1993). It is given by

ẋ = y,

ẏ = x − αy − xz,

ż = −βz+ x2,

where (x, y, z) ∈ R
3, and α, β ∈ R.
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(a) Find all of the equilibria for this system depending the values of α and β (there
can be three).

(b) Find the eigenvalues of the equilibrium that exists (is a point in R
3) for all

parameter values, and classify its stability type as a function of α and β.

18. Consider your adopted system of quadratic differential equations (recall §1.6 and
Exercise 1.10). If possible, find a set of values of the reduced parameters for which
one of your systems equilibria (x∗, y∗, z∗) is spectrally stable. If there are no such
equilibria, then prove so. Otherwise, attempt to construct a Lyapunov function for
a neighborhood of your stable equilibrium. It would probably be good to attempt to
use a quadratic function

L(x, y, z) = α(x − x∗)2 + β(y − y∗)2 + γ (z− z∗)2,

though you might have to experiment with adding cross terms to the equation, or
going to a higher degree. This is a case where you may or may not succeed; indeed,
your system may not have a simple Lyapunov function. You will get full credit for
making a convincing attempt—for example, by showing that the function above is
not a Lyapunov function for any values of α, β, γ .



Chapter 5

Invariant Manifolds

Nunquam praescriptos transibunt sidera fines. (Never will heavenly bodies
transgress their prescribed bounds.) (Henri Poincaré 1890)

Hyperbolic fixed points of a linear ordinary differential equation (ODE) have stable, Es ,
and unstable spaces, Eu, determined by the eigenvectors of the associated matrix at the
fixed point. We showed in §2.6 that these spaces are invariant under the dynamics of the
linear system. In this chapter we will show that there are also invariant subspaces Wuand
Ws that are generalizations of Eu and Es for a nonlinear ODE with a hyperbolic fixed
point. Some local information about these subspaces can be inferred from Theorem 4.12
(Hartman–Grobman), which implies that when an equilibrium is hyperbolic, the flow in
its neighborhood is topologically conjugate to the linearized flow. Here, however, we will
obtain much more precise control over the structure of these subspaces, showing that they
are “manifolds” that are smoothly tangent to the linear subspaces. We begin by looking at
a few simple examples where the manifolds can be found analytically.

5.1 Stable and Unstable Sets
Stable and unstable sets are collections of orbits that are forward or backward asymptotic
to a given orbit. Recall that in §4.10 we defined the stable set, or basin of attraction, of an
invariant set N as the set of points forward asymptotic to N:

Ws(N) = {x /∈ N : ϕt(x)→ N as t →∞} . (5.1)

We can also define the backward basin or unstable set of N as the set of points that are
backward asymptotic to it:

Wu(N) = {x /∈ N : ϕt (x)→ N as t →∞} . (5.2)

Generally the stable and unstable sets are invariant.

165
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Figure 5.1. Phase portrait of (5.3) with a = 1.

Lemma 5.1. The stable and unstable sets of an invariant set N are themselves invariant
sets.

Proof. We must show that whenever z ∈ Ws(N) we have ϕs(z) ∈ Ws(N) for any s ∈ R.
This follows from the group property of the flow: by definition (5.1), ϕs(z) is a point such
that ϕt(ϕs(z)) = ϕs+t (z) → N as t → ∞. Since this holds for any s, the stable set is
invariant. A similar argument applies to the unstable set.

In some special cases we can find the stable and unstable sets analytically. For
example, consider a Hamiltonian H(x, y) in the plane with a saddle equilibrium at a point
(x∗, y∗). The energy contours H(x, y) = H(x∗, y∗) = E that emanate from the saddle
correspond to the stable and unstable sets of the saddle—since these are curves they are
called the stable and unstable manifolds.

Example: The Hamiltonian for the system (4.29) is

H(x, y) = 1

2
(y2 − x2)+ ax3, (5.3)

where we takea > 0. Since the linearization for the equilibrium at the origin has the Jacobian
Df (0) = (0 1

1 0

)
, it is a saddle. The energy at the saddle point is H(0, 0) = E = 0; this

contour corresponds to the curves y± = ±x
√

1− 2ax, shown in Figure 5.1, that intersect
at x = (2a)−1. Since orbits lie on contours of constant H , the union of these two curves,
like every contour of H , is an invariant set. Noting the direction of the flow (from ẋ = y),
we see that

Wu(0, 0) = {(x, y) : H(x, y) = 0, x > 0 or x, y < 0} ,
Ws(0, 0) = {(x, y) : H(x, y) = 0, x > 0 or x < 0 and y > 0} .

Here we specifically do not include the equilibrium as part of the stable and unstable sets.
Note that the positive-x branches of the two manifolds coincide; moreover, these branches
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bound the set of orbits that are oscillating about the center equilibrium at ((3a)−1, 0). Orbits
outside this closed loop are unbounded. Since this loop separates two topologically distinct
types of motion, we call it a “separatrix”; see §5.2.

When the ODE is linear and hyperbolic, R
n = Es ⊕ Eu and the stable and unstable

sets of the origin correspond to Es and Eu. Our task in this chapter is to generalize these
subspaces to the nonlinear case. We will see that when the equilibrium is hyperbolic, its
linear stable and unstable sets give a “linear approximation” to the stable and unstable
manifolds of the equilibrium.

Example: For the Hamiltonian (5.3), the stable and unstable manifolds of the origin corre-
spond to the curves y± = ±x

√
1− 2ax; recall Figure 5.1. As we will see in §5.4, the stable

manifold theorem implies that the local unstable manifold is the unique invariant curve
emanating from the origin that is tangent to the unstable eigenvector of Df (0), in this case
the vector v+ = (1, 1)T . Since dy+

/
dx = 1 at x = 0, this shows that the local unstable

manifold of the origin is indeed the set Wu(0) = {(x, y+(x)) : x ∈ (−∞, 1
/

2a)
}
. Simi-

larly, the local stable manifold is Ws(0) = {(x, y−(x)) : x ∈ (−∞, 1
/

2a)
}

and is tangent
to the stable eigenvector v− = (1,−1)T .

5.2 Heteroclinic Orbits
In special situations it is possible that Wu(N) and Ws(N) may coincide or perhaps have
points of intersection. The realization that there could be such intersections (in particular
transverse intersections) is what led Poincaré to understand that the dynamics of the n-body
problem (n point masses interacting under their mutual gravitational attraction) could be
very complicated. The discovery of this complexity—and indeed the beginnings of what
we now call chaos—arose from a mistake in a manuscript that Poincaré had submitted in
1888 to King Oscar of Sweden for a mathematics prize to be awarded to the first person to
“find a solution” to the n-body problem! Although Poincaré was awarded the prize in 1889,
his initial essay had mistakenly asserted that ifWuintersectsWs , then they must coincide.31

The story of this mistake and its subsequent correction (leading to Poincaré having to pay
for the entire print run of the issue of Acta Mathematica containing the original essay) is
elegantly told in (Diacu and Holmes 1996).

The corrected version of Poincaré’s paper (Poincaré 1889) began his extensive study
of the complexity induced by two types of orbits; the first type he calls a

� heteroclinic orbit: An orbit U is heteroclinic if each x ∈ U is backward
asymptotic to an invariant set A and forward asymptotic to an invariant set B,
i.e., U ⊂ Wu(A) ∩Ws(B).

The second class is a special case of the first; Poincaré called the second type a doubly
asymptotic or

� homoclinic orbit: U is homoclinic if each x ∈ U is both forward and back-
ward asymptotic to the same invariant set A, i.e., U ⊂ Wu(A) ∩Ws(A).

31Some of the consequences of noncoincident intersections are discussed in §8.13 et seq.
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Figure 5.2. Contours of the Hamiltonian (5.4).

This definition could be generalized to say that an orbit Uh is homoclinic to another orbit U
if every point on Uh is both forward and backward asymptotic to U.

In a two-dimensional phase space, a saddle equilibrium has both a stable and an
unstable set and each is one-dimensional. The uniqueness theorem implies that if a branch
of Wuintersects a branch of Ws , then they must coincide; therefore, in a two-dimensional
phase space homoclinic orbits form impenetrable boundaries—we saw such a boundary in
Figure 5.1. Orbits such as these are called separatrices, as they separate phase space into
regions that cannot communicate. Poincaré’s mistake in 1888 was the conclusion that this
must happen in higher-dimensional systems; we will see how this fails in §8.13.

For the case of Hamiltonian systems in the plane, separatrices are common. Since
H is constant along trajectories, recall (4.28), any closed contour of a Hamiltonian H that
intersects one or more critical points (note that ∇H = 0 implies also that the point is an
equilibrium) gives a separatrix. When a heteroclinic orbit connects two saddle equilibria,
it is also called a saddle connection.

Example: Heteroclinic orbits can be constructed by choosing an H that has several saddle
points with the same energy. For example, the function f = 1/2r

2−r3 sin(3θ) in polar coor-
dinates has a triangular contour f = 1

/
54. Translating this back to rectangular coordinates

yields the Hamiltonian

H = 1

2

(
x2 + y2

)+ y3 − 3x2y. (5.4)

As can be seen in Figure 5.2, H has three saddle equilibria (x, y) = (±√3
/

6, 1
/

6), and
(0,−1

/
3) on the contour H = 1

/
54. There are three heteroclinic orbits connecting these

saddles. When such a collection of heteroclinic orbits divides the plane into two regions we
call it a separatrix cycle.
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Figure 5.3. Non-Hamiltonian system (5.6) with a homoclinic orbit. Here a = 1.

The existence of a saddle connection is unusual for general ODEs in the plane; how-
ever, with some care we can construct examples that do have a connection.

Example: Given a Hamiltonian system with a homoclinic orbit, it is easy to construct a
non-Hamiltonian system that has one as well; such an example was given in (4.45). More
generally, the contour H(x, y) = E is preserved by the differential equations

dx

dt
= ∂H

∂y
+ (H(x, y)− E)g1(x, y),

dy

dt
= −∂H

∂x
+ (H(x, y)− E)g2(x, y)

(5.5)

for any functions g1 and g2. If this contour contains a homoclinic orbit, then (5.5) will have
a homoclinic orbit too. In the example (5.3), the homoclinic orbit was at E = 0; therefore,
the system

ẋ = y +H(x, y)x,

ẏ = x − 3ax2 +H(x, y)y,
(5.6)

shown in Figure 5.3, still has the same homoclinic loop as the original Hamiltonian
flow shown in Figure 5.1. Note that the origin is still a saddle. There are two more equilibria
at y∗ = 1/2ax

∗4
where x∗ is a real root of the sixth-order polynomial −4 + 12ax + a2x6.

For a > 0, the positive root of this polynomial is near the original center; however, this
point is now a stable focus and attracts every point inside the homoclinic loop; see
Exercise 2.
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5.3 Stable Manifolds
We can sometimes find Wu and Ws analytically even for the non-Hamiltonian case if the
system of equations is a skew product; for example, if one of the equations of an ODE
system in R

2 is independent of the other. This kind of example seems special at first, but
will prove to be of great use to us in the next section in the general proof of the stable
manifold theorem.

Example: For example, suppose that (x, y) ∈ R
2 and

ẋ = −x,
ẏ = y + g(x).

(5.7)

Here, we will assume that g is C1 and that g(0) = 0. The latter condition ensures that the
origin is an equilibrium. The Jacobian of the origin is

Df (0) =
( −1 0
Dg(0) 1

)
.

This matrix has eigenvalues λ = ±1 and so is hyperbolic. The unstable eigenvector is
vu = (0, 1)T so that the unstable subspace is the y-axis:

Eu = {(x, y) : x = 0} .
The second eigenvector is vs = (2,−Dg(0))T , so that the stable subspace is the line

Es = {(x, y) : Dg(0)x + 2y = 0} .
Our goal is to find the stable and unstable sets of the origin. The ODEs are simple enough
that the flow is easily obtained. Solving the x equation gives x(t) = xoe

−t . Substituting
this into the y equation yields a nonautonomous linear equation. We can use the integrating
factor method (recall Exercise 2.17) to find

d

dt
(e−t y) = e−t g(xoe−t ) ⇒ e−t y(t) = yo +

∫ t

0
e−sg(xoe−s)ds.

Upon changing integration variables, settingu = e−s , and putting the two solutions together,
we obtain the expression for the flow:

ϕt

(
x

y

)
=

 xe−t

yet + et
∫ 1

e−t
g(xu)du


 .

Since this is the general solution, we can find the set of points (x, y) that lie, for example,
on the unstable manifold by asking which points have ϕt (x, y)→ (0, 0) as t →−∞. This
immediately implies that x = 0, since otherwise the first component is unbounded. In this
case, since g(0) = 0, the second component becomes yet , which does approach 0. So we
have shown that Wu(0, 0) is simply the y-axis.
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Es
=Eu

Ws

Wu

Figure 5.4. Sketch of stable and unstable manifolds for (5.7).

The stable set,Ws(0, 0), is the set such that ϕt (x, y)→ (0, 0) as t →∞. This means
that x can be arbitrary, but y must be chosen specifically since we require

0 = lim
t→∞ y(t) = lim

t→∞ e
t

(
y +

∫ 1

e−t
g(xu)du

)
.

We claim that for each x there is a solution of the form y(x) = − ∫ 1
0 g(xu)du. To see this,

substitute it into the limit to obtain

lim
t→∞ y(t) = lim

t→∞ e
t

(∫ 1

e−t
g(xu)du−

∫ 1

0
g(xu)du

)
= − lim

t→∞ e
t

(∫ e−t

0
g(xu)du

)
.

Since g(0) = 0 and g ∈ C0, then for any ε, there is a δ such that |g(xu)| < ε for all
|xu| < δ. If we choose t large enough so that |x| e−t < δ, then the magnitude of the integral
is bounded by εe−t . Since this is true for any ε, the limit is zero as required. Thus, we have
shown that

Ws =
{
(x, y(x)) : y(x) = −

∫ 1

0
g(xu)du

}
, (5.8)

as sketched in Figure 5.4. For example, if

g(x) = − sin x, (5.9)

we can easily do the integral in (5.8) to obtain the function

y(x) = −1

x

∫ x

0
sin(ξ)dξ = 1− cos x

x
.

The phase portrait of this case is shown in Figure 5.5.
Note that Ws is tangent to Es at the origin because its slope is

dy

dx

∣∣∣∣
x=0

= −
∫ 1

0
Dg(xu)udu

∣∣∣∣
x=0

= −1

2
Dg(0),

which is precisely the slope of Es . This tangency property will be generalized to the fully
nonlinear case below. Since y is expressed as a function of x in (5.8) and each x determines
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Figure 5.5. Phase portrait for (5.7) with g(x) given by (5.9). Here the unstable
manifold is the y-axis (red line) and the stable manifold is the blue curve. Several other
trajectories are also shown.

a unique point on Es , the stable manifold is a graph over Es . Finally, both Wu and Ws are
smooth curves, that is, they are manifolds.

In the construction of the manifolds in the example above, we noticed that Ws is
a graph over Es . To use this property for a general hyperbolic equilibrium, we define
projection operators onto Es and Eu. A projection is a linear operator π : R

n → R
n such

that π ◦ π = π . We will define two projections πu and πs such that πu + πs = id; see
Figure 5.6. These projections formalize the idea of finding components of a vector “along
the eigenvectors.” Recall from §2.6 that any vector can be written as a linear combination
of generalized eigenvectors,

x =
n∑

j=1

cjvj .

In other words, there is a nonsingular matrix P = [v1, v2, . . . , vn] such that x = Pc and
c = P−1x. If the first k of these vectors span Eu, then the projections are given by

πu(x) =
k∑

j=1

cjvj , πs(x) =
n∑

j=k+1

cjvj .
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Figure 5.6. Projections onto Eu and Es .

Example: For the system (5.7) P = (vu, vs) =
(0 2

1 −Dg(0)
)
, so that

(
cu
cs

)
= P−1

(
x

y

)
= 1

2

(
Dg(0) 2

1 0

)(
x

y

)
=
(

1
2Dg(0)x + y

1
2x

)
.

Thus, the projection operators onto Eu and Es are

πu

(
x

y

)
= cuvu =

(
0

y + 1
2xDg(0)

)
, πs

(
x

y

)
= csvs =

(
x

− 1
2xDg(0)

)
.

With these examples under our belt, we proceed to develop a general understanding of the
stable and unstable manifolds of a saddle equilibrium. We begin by restricting our study to
a neighborhood of the equilibrium to construct the “local” manifolds.

5.4 Local Stable Manifold Theorem
In this section we will show that the stable and unstable sets of a hyperbolic equilibrium
are actually smooth manifolds when the vector field is C1. Suppose that x∗ is a hyperbolic
equilibrium with linearization Df (xo) = A. We can always shift coordinates so that the
equilibrium is at the origin by replacing x → x + x∗, so that the equations take the form

ẋ = Ax + g(x), (5.10)

where g(x) = f (x + x∗) − Ax represents the nonlinear terms in the equation so that
g(0) = 0 and Dg(0) = 0. Since A is hyperbolic, there is an α > 0 such that |Reλi | > α for
all eigenvalues λi of A. The projection operators are πs : R

n → Es and πu : R
n → Eu.

Note that since A leaves Es and Eu invariant, it commutes with the projections

πuA = Aπu and πsA = Aπs.

The same is true for the fundamental matrix etA. Moreover, the estimate (2.44) in §2.7
implies that there is a K ≥ 1 such that∣∣etAπsx∣∣ ≤ Ke−αt |πsx| ,∣∣e−tAπux∣∣ ≤ Ke−αt |πux| ,

t ≥ 0. (5.11)



174 Chapter 5. Invariant Manifolds

Our goal is to prove that the stable setWs for (5.10) is a smooth manifold, and our main tool
is the contraction-mapping theorem (what else!). The first step is to find the appropriate
operator, T , and function space. To motivate the construction of T—which generalizes
the operator (3.11) used to prove existence and uniqueness—we first study a simpler set of
affine ODEs.

Lemma 5.2. Consider the affine, nonautonomous initial value problem

ẋ = Ax + γ (t), πsx(0) = σ ∈ Es. (5.12)

Suppose A is hyperbolic and γ (t) is bounded and continuous for t ≥ 0. Then the unique
solution, x(t; σ), of (5.12) that is bounded for positive time is

x(t) = etAσ +
∫ t

0
e(t−s)Aπsγ (s)ds −

∫ ∞

t

e(t−s)Aπuγ (s)ds. (5.13)

The uniqueness of the solution (5.13) is surprising because only “half” of the initial condi-
tions have been specified, the stable components σ . We will see that the assumption that x
is bounded for t > 0 is enough to determine its unstable components.

Proof. The general solution of the forced linear equation can be obtained by the integrating
factor method or the method of variation of parameters. To implement the latter, guess a
solution of the form x(t) = etAξ(t). Substitute this into the ODE to obtain ξ̇ = e−tAγ (t),
which can be solved trivially by integrating. If we specify the initial condition x(τ) at some
arbitrary time t = τ , the general solution to (5.12) has the form

x(t) = e(t−τ)Ax(τ )+
∫ t

τ

e(t−s)Aγ (s)ds. (5.14)

Our goal is to find a particular case of (5.14) that is bounded in forward time. We write
x(t) = πux(t)+ πsx(t) and consider these two projections separately.

First set τ = 0 and take the stable projection of (5.14). Noting that πsx(0) = σ , we
obtain

πsx(t) = etAσ +
∫ t

0
e(t−s)Aπsγ (s)ds.

To show that this expression is bounded as t →∞, we use the assumption that γ is bounded,
i.e., that there is a δ such that |γ (s)| ≤ δ for all s ≥ 0. Imposing the bound (5.11) then gives∣∣∣∣

∫ t

0
e(t−s)Aπsγ (s)ds

∣∣∣∣ ≤ K

∫ t

0
e−(t−s)α |πsγ (s)| ds ≤ K

α
δ.

Consequently, the stable projection of our solution is indeed bounded.
Projecting (5.14) onto the unstable space yields

πux(t) = etA
(
e−τAπux(τ)+

∫ t

τ

e−sAπuγ (s)ds
)
. (5.15)
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We must choose πux(t) so that (5.15) remains bounded. Since the exponential etAπu
generally grows without bound, a necessary condition is that the term in parenthesis in
(5.15) limits to zero as t →∞, that is, if

e−τAπux(τ) = −
∫ ∞

τ

e−sAπuγ (s)ds.

Since this is true for any τ , we can replace τ by t in this equation to obtain

πux(t) = −
∫ ∞

t

e(t−s)Aπuγ (s)ds. (5.16)

Substitution of (5.16) back into (5.15) gives an identity; therefore, (5.16) is a solution for
the unstable projection. We now show that (5.16) is indeed bounded. The integral in (5.16)
can be bounded using the bound (5.11) on eτAπu for τ = t − s < 0:

|πux(t)| =
∣∣∣∣
∫ ∞

t

e(t−s)Aπuγ (s)ds
∣∣∣∣ ≤ K

∫ ∞

t

e(t−s)α |πuγ (s)| ds ≤ K

α
δ.

Thus, (5.16) is both necessary and sufficient for the unstable projection being bounded.
Adding the stable and unstable projections gives the promised result (5.13).

We now return to (5.10), where γ (t) is replaced by the nonlinear function g(x). If we
similarly replace γ (s) in integrand of (5.13) with g(x(s)), the resulting integral equation
is satisfied by a solution of (5.10). Just as for the integral operator (3.11), which we used
to prove existence and uniqueness, the new integral equation can be viewed as an operator
on a suitable function space. Indeed we will show that this operator is a contraction map
whose fixed point is the stable manifold of (5.10). Since g is nonlinear, we must restrict the
analysis to a neighborhood of the equilibrium where g is sufficiently small; thus, we will
only prove the existence of a “local” stable manifold, Ws

loc: the set of points on Ws that
remain in some neighborhood of the equilibrium for all t ≥ 0. The global stable manifold
will be constructed from the local one in §5.5.

Theorem 5.3 (Local Stable Manifold). LetA be hyperbolic, g ∈ Ck(U), k ≥ 1, for some
neighborhood U of 0, and g(x) = o(x) as x → 0. Denote the linear stable and unstable
subspaces of A by Es and Eu. Then there is a Ũ ⊂ U such that local stable manifold of
(5.10),

Ws
loc(0) ≡

{
x ∈ Ws(0) : ϕt(x) ∈ Ũ , t ≥ 0

}
,

is a Lipschitz graph over Es that is tangent to Es at 0. Moreover, Ws(0) is a Ck manifold.

Since this is a rather long proof, we divide it into three parts. In the first part we prove
that there is a unique, forward bounded solution for each point σ ∈ Es close enough to
the origin. We then show in the second part that these solutions actually are on the stable
manifold, since they are asymptotic to 0. In the final part of the proof, we show that these
solutions lie on a smooth, Lipschitz graph.
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Proof (Part 1). By analogy with (5.13), define an operator T : C0(R+,Rn)→ C0(R+,Rn)

for a given point σ ∈ Es of A by

T (x)(t) = etAσ +
∫ t

0
e(t−s)Aπsg(x(s))ds −

∫ ∞

t

e(t−s)Aπug(x(s))ds. (5.17)

It is clear that if x ∈ C0(R+,Rn), then so is T (x). It is not hard to show that a sufficiently
small, continuous fixed point of T , x : R+ → U is a C1 solution of the ODE (5.10), call it
x(t; σ) (see Exercise 5).

We first show that T is a contraction map and therefore that the fixed point of T exists
and is unique. To do this, define a closed subset of the function space C0(R+) by

Vδ =
{
x ∈ C0(R+,Rn) : ‖x‖ ≤ δ

}
, (5.18)

where ‖x‖ is the sup-norm (3.3). As discussed in §3.2, this space with the sup-norm is
complete. Since g(x) = o(x) as x → 0 (recall §4.4), then for any ε > 0—no matter how
small—there is a δ, such that when x ∈ Vδ , then |g(x(t)| ≤ ε |x(t)|. Using the bounds
(5.11) in (5.17) we obtain

|T (x)(t)| ≤ Ke−tα|σ |+Kε
∫ t

0
e−(t−s)α|x(s)|ds+Kε

∫ ∞

t

e(t−s)α|x(s)|ds ≤ K|σ |+ 2
Kε

α
δ

for any for t ≥ 0. The necessary bound ‖T (x)‖ ≤ δ can be satisfied by requiring, e.g.,

|σ | < δ
/

2K and ε ≤ α
/

4K. (5.19)

These requirements define the neighborhood

Ũ =
{
x : |g(x)| ≤ α

4K
|x|
}
∩ U (5.20)

that effectively defines δ, since ε can be made arbitrarily small for a sufficiently small δ
We now show that T is a contraction. Since g ∈ C1, and ‖Dg(x)‖ ≤ ε for |x| ≤ δ,

then (3.8) implies that |g(x)− g(y)| ≤ ε |x − y| for x, y ∈ Bδ(0). Using this and (5.11)
gives

|T (x)− T (y)| ≤ Kε ‖x − y‖
(∫ t

0
e−(t−s)αds +

∫ ∞

t

e(t−s)αds
)
≤ 2

Kε

α
‖x − y‖ .

Therefore, T is a contraction when ε ≤ α
/

4K , which we already assumed, and the
contraction-mapping theorem implies that T has a unique fixed point in Vδ . Since there is
a unique fixed point x(t; σ) for each σ ∈ Es providing |σ | < δ

/
2K , the set x(0; σ) is a

graph over Es .

Proof (Part 2). To show that x(t; σ) is a point on the stable manifold, we must show it
approaches zero as t →∞. Since is x(t; σ) is a fixed point of T , we use (5.11) to bound it
by

|x(t; σ)| ≤ Ke−αt |σ |+Kε
∫ t

0
e−α(t−s) |x(s; σ)| ds+Kε

∫ ∞

t

eα(t−s) |x(t; σ)| ds. (5.21)
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Figure 5.7. Construction of the function ν(t) in (5.23).

We assert that this implies that x → 0 exponentially fast. To show this, we need a general-
ization of Grönwall’s inequality (3.30).

Lemma 5.4 (Generalized Grönwall). Suppose α,M , and L are nonnegative, L < α
/

2,
and there is a nonnegative, bounded, continuous function u : R+ → R

+ satisfying

u(t) ≤ e−αtM + L

∫ t

0
e−α(t−s)u(s)ds + L

∫ ∞

t

eα(t−s)u(s)ds; (5.22)

then u(t) ≤ M
β
e−(α−L/β)t , where β = 1− 2L

α
.

Putting aside the proof of the lemma for the moment, note that it applies to the inequality
(5.21) since we know that the fixed point x(t; σ) is continuous. We set u = |x(t; σ)|,
L = Kε, and M = K |σ |. Then 4Kε

/
α ≤ 1 implies that β = 1 − 2Kε

/
α ≥ 1/2, and

letting c ≡ 2Kε
/
α ≤ 1/2, we have L

β
= α

2
c

1−c ≤ α
2 . So the hypotheses of Lemma 5.4 apply

and give
|x(t; σ)| ≤ 2Ke−αt/2 |σ | ,

implying that x(t; σ)→ 0 exponentially fast.

Proof of Lemma. By assumption u is bounded; therefore, we can define its supremum.
Moreover, the function

v(t) = sup
s>t

u(s) (5.23)

exists and is nonincreasing: v(t) ≤ v(s) if s ≥ t ; see Figure 5.7. Since u is continuous, for
any t there is a T ≥ t such that v(t) = v(T ) and thus from (5.22)

v(t) = u(T ) ≤ e−T αM + L

∫ T

0
e−α(T−s)u(s)ds + L

∫ ∞

0
e−αsu(T + s)ds

≤ e−T αM + L

∫ t

0
e−α(T−s)u(s)ds + L

∫ T

t

e−α(T−s)u(s)ds

+L
∫ ∞

0
e−αsu(T + s)ds

≤ e−T αM + L

∫ t

0
e−α(T−s)u(s)ds + 2

L

α
v(t),
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where we have used the facts that u(s) ≤ v(t) and u(T + s) ≤ v(T ) = v(t) to approximate
the last two integrals. Rearranging this gives(

1− 2
L

α

)
eαtv(t) ≤ e−α(T−t)M + L

∫ t

0
e−α(T−t)eαsu(s)ds.

Defining z(t) = βeαtv(t), and noting that e−α(T−t) ≤ 1, we have

z(t) ≤ M + L

β

∫ t

0
z(s)ds.

This is of the form of Grönwall’s lemma (3.30), so that z(t) ≤ MetL/β . Rewriting this in
terms of u(t) ≤ v(t) gives the promised result.

Proof (Part 3). It is relatively easily to see that the solutions x(t; σ) lie on a Lipschitz graph,
i.e., that the unstable components are Lipschitz functions of σ . To show this, considerπux at
two different σ values, subtract the fixed-point equations x = T (x), and take the projections
onto Eu. Using the fact that πu annihilates σ , we obtain

|πu (x(t; σ1)− x(t; σ2))| ≤ Kε

∫ ∞

t

e(t−s)α |x(s; σ1)− x(s; σ2)| ds. (5.24)

To evaluate this, we must also bound the difference in the integral, which we can do with
the same integral equation:

|x(t; σ1)− x(t; σ2)| ≤ Ke−αt |σ1 − σ2| +Kε
∫ t

0
e−(t−s)α |x(s; σ1)− x(s; σ2)| ds

+Kε
∫ ∞

t

e(t−s)α |x(s; σ1)− x(s; σ2)| ds.

This is of the form (5.22), so the generalized Grönwall inequality yields

|x(t; σ1)− x(t; σ2)| ≤ 2Ke−αt/2|σ1 − σ2|.
Consequently, x(t; σ) is a Lipschitz function of σ . We can now use this bound in (5.24) to
obtain

|πux(t; σ1)− πux(t; σ2)| ≤ 4K2ε

3α
e−αt/2 |σ1 − σ2| ,

giving the promised Lipschitz condition.

Differentiability of the stable set is more difficult to prove. The basic principle we
will use is the following generalization of Theorem 3.4, the contraction-mapping theorem:
if a contraction map depends smoothly on parameters, its fixed points must as well.

Theorem 5.5 (Uniform Contraction Principle). Let X and Y be closed subsets of two
Banach spaces and let T ∈ Ck(X × Y,X), k ≥ 0, be a uniform contraction map.32 Then
there is a unique fixed point, x(y) = T (x(y), y), where x(y) ∈ X is aCk function of y ∈ Y .

32This means that the contraction constant c < 1 is independent of y and that T (x; y) is a uniformlyCk function
of y.
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Delaying the proof of this theorem for the moment, note that it gives the promised
result. It applies to our map T because when g is Ck , the fixed point, x(t; σ) is also Ck in
both t and σ . It also implies the tangency of Ws to Es , since the Jacobian matrix obtained
from differentiating x with respect to σ at σ = 0 is

Dσx(t; 0) = etAπs+
(∫ t

0
dse(t−s)Aπs −

∫ ∞

t

dse(t−s)Aπu
)
Dg (x(s; 0))Dσx(s; 0) = etAπs,

where we have used the facts that x(s; 0) = 0 is the unique fixed point when σ = 0 and
that Dg(0) = 0. Thus, for any v, Dσx(t; 0)v ∈ Es , so that Ws is tangent to Es .

Proof of Theorem 5.5. Let ‖ ‖ denote the norms on both X, and Y . Since T is a uniform
contraction, there is a constant c such that 0 < c < 1 and ‖T (x; y)− T (ξ, y)‖ ≤ c ‖x − ξ‖
for all x, ξ ∈ X, and y ∈ Y . Moreover, the contraction mapping theorem, Theorem 3.4,
implies that for each y there is a unique fixed-point x(y) = T (x(y); y).

Suppose first that T is uniformly C0. We will show that the fixed point, x(y), is
uniformly continuous. The fixed-point equation and triangle inequality imply that for any
h ∈ Y

‖x(y + h)− x(y)‖ =‖T (x(y + h); y + h)− T (x(y); y)‖
≤‖T (x(y + h); y + h)− T (x(y); y + h)‖
+ ‖T (x(y); y + h)− T (x(y); y)‖

≤ c ‖x(y + h)− x(y)‖ + ‖T (x(y); y + h)− T (x(y); y)‖ .
Since T is uniformly continuous in y,for every ε there is an h such that ‖T (x; y + h) −
T (x, y)‖ ≤ ε; using this value of h, the previous inequality gives

‖x(y + h)− x(y)‖ ≤ ε

1− c

for any ε. This shows that x is uniformly continuous, since c and ε are independent of y.
It is much more difficult to prove smoothness; we will consider only the case k = 1.

Suppose that T is uniformly C1. If the fixed point x(y) = T (x(y); y) were differentiable,
then its derivative would obey the relation

Dyx(y) = DxT (x(y); y)Dyx(y)+DyT (x(y); y). (5.25)

Replace Dyx by a linear operator M : X→ X and think of this equation as a linear system
for an unknown M:

(I −DxT (x(y); y))M = DyT (x(y); y). (5.26)

This system has a unique solution if the left-hand side is nonsingular.33 This follows since
‖DxT ‖ ≤ c < 1; see Exercise 6. Now we must show that this M(y) is really Dyx. Define

ξ(h) ≡ x(y + h)− x(y) = T (x(y)+ ξ, y + h)− T (x(y); y).
33Equation (5.25) can also be thought of as a contraction map on Dyx and so has a unique solution.
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Combining this with (5.26) gives

(I −DxT (x(y); y)) (ξ(h)−M(y)h) = 8(ξ, h),

8(ξ, h) ≡ T (x(y)+ ξ ; y + h)− T (x(y); y)−DxT (x(y); y)ξ −DyT (x(y); y)h.
If we can show that ‖8‖ → 0 as ‖h‖ → 0, then because I −DxT is nonsingular, we would
have ξ(h)−Mh→ 0, which would imply that x(y) is differentiable with derivative M .

Since T is C1, for any ε there is a δ such that when |h| < δ and |ξ(h)| < δ, we have

‖8(ξ, h)‖ < ε (‖ξ(h)‖ + ‖h‖) . (5.27)

This is not quite good enough since we do not have ξ = O(h) yet. However, this can be
obtained using the definition of 8, which implies

ξ(y) = DxT (x(y); y)ξ +DyT (x(y); y)h+8.

Using the bounds on DxT and 8 we obtain

‖ξ(h)‖ ≤ c ‖ξ(h)‖ + ∥∥DyT (x(y); y)h
∥∥+ ε (‖ξ(h)‖ + ‖h‖) ⇒

‖ξ(h)‖ ≤
∥∥DyT (x(y); y)h

∥∥+ ε ‖h‖
1− c − ε

≤ C ‖h‖ ,

providing ε < 1− c. Putting this back into (5.27) gives

‖8(ξ, h)‖ ≤ ε (C + 1) ‖h‖ .
Therefore ‖8‖ → 0 as ‖h‖ → 0.

Showing that x is Ck for k > 1 requires an additional inductive step.

This completes, as well, our rather lengthy proof of Theorem 5.3.

Example: The two-dimensional system

ẋ = 2x + y2,

ẏ = −2y + x2 + y2 (5.28)

has a saddle at the origin with a diagonal Jacobian Df (0, 0) = diag(2,−2). Consequently,
the linear spaces are Eu = span(1, 0)T and Es = span(0, 1)T with the corresponding
projection matrices

πu =
(

1 0
0 0

)
, πs =

(
0 0
0 1

)
.

These exemplify the general property πu + πs = I . Given a point σ = (0, σy) ∈ Es , the
operator (5.17) becomes

T (x) =
(

0
e−2t σy

)
+
( −e2t

∫∞
t
e−2sy2(s)ds

e−2t
∫ t

0 e
2s
(
x2(s)+ y2(s)

)
ds

)
.

According to Theorem 5.3, we can begin with any function inVδ providing δ is small enough.
The crucial estimate is that |g(x)| < ε |x|, for |x| < δ. For the example, |g(x)| ≤ √2δ2,
so we may set δ = ε/

√
2. Since Df (0, 0) is diagonal with |λ| = 2, we may set K = 1 and
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α = 2 so the requirements (5.19) become

ε <
1

2
and δ <

1

2
√

2
.

Beginning with the initial guess (x0(t), y0(t)) = (0, 0), clearly in Vδ , the first two iterates
of T are (

x1

y1

)
= T (x0, y0) =

(
0
e−2t σy

)
,

(
x2

y2

)
= T (x1, y1) =


 − 1

6e
−4t σ 2

y

e−2t σy + 1
2e
−2t
(
1− e−2t

)
σ 2
y


 .

Note that the approximate solutions do indeed limit to the origin as t → ∞. To obtain a
picture of the stable manifold, it is sufficient to plot the curve as a function of the initial point
at any value of t , say, for example, at t = 0. In this case we have a parametric representation
of the approximate stable manifold:

Ws
loc(0, 0) ≈

{
(x2(y), y) ; x2(y) = −1

6
y2, |y| < 1

2
δ

}
.

The next iterate gives an improved curve x(y)

x3(y) = −1

6
y2

(
1+ 1

4
y + 1

240
y2

)
. (5.29)

A plot of this curve, along with some representative trajectories, is shown in Figure 5.8.
Note that the approximate manifold fails to capture the behavior near the spiral focus at
(−0.931, 1.364).

5.5 Global Stable Manifolds
The stable manifold theorem implies that there is a neighborhood of a hyperbolic equilibrium
for which the local stable manifold, Ws

loc, is a smooth submanifold of R
n with the same

dimension as the stable subspace,Es . On the other hand, the global stable set consists of all
points that eventually limit on the equilibrium in forward time. As Lemma 5.1 implies, Ws

is an invariant set: if z ∈ Ws(x∗), then so are all the points on its orbit, ϕt(z). Moreover,
since every point on Ws(x∗) must eventually stay in an arbitrarily small neighborhood x∗,
the forward orbit of every point in Ws must eventually land in Ws

loc. Consequently, if we
extend the local stable manifold by allowing each point to flow backward, we obtain the
global stable set:

Ws = {ϕt (x) : x ∈ Ws
loc, t ∈ R

}
.

Since Ws
loc is smooth, and the orbits are smooth functions of time, the extension of Ws

loc

for any finite value of t is as smooth as the vector field. However, it is not obvious that the
set Ws defined for all t is quite so nice. The question that we seek to answer here is, how
“nice” is Ws?
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Figure 5.8. Phase portrait of (5.28) and its approximate stable manifold (5.29).

To discuss the structure of Ws , we briefly pause to consider several properties of
maps from one space to another. Our goal is to define the concept of “embedding,” which
is, loosely speaking, what we think of when we imagine a smooth surface.

Mathematically, a relation of the form g : M → N that maps one space into another
defines a surface—we say g is a map. So that it is possible for g to be one-to-one, we will
require that m = dim(M) ≤ n = dim(N).

Example: Consider the mapg : S1 → R
2 defined byg(θ) = (x(θ), y(θ)) = (2 cos θ, sin θ).

This is a mapping of a circle represented by the points θ ∈ [0, 2π) into R
2 represented

by points (x, y). Geometrically, the map describes an ellipse. Alternatively, the map
g(θ) = (sin(2θ), sin θ) describes a figure eight; see Figure 5.9. Both are maps of the circle
into the plane, but the latter map is not one-to-one.

Both maps in the example are locally smooth in the sense that each component of
g is a C1 function. The Jacobian derivative of the map g, at a point x ∈ M , Dg(x), is
a matrix of dimension n × m; it takes a vector v of dimension m and gives a new vector
w = Dg(x)v attached to the point g(x) ∈ N .34 Indeed, this vector is tangent to the surface
g(M), and the range of Dg(x) corresponds to the tangent plane to the surface. If the rank
of Dg(x) is m for all x, then the tangent planes are everywhere m-dimensional. Both maps
in the first example have this property: since the derivative is a nonzero vector for all θ ,
rank(Dg(θ)) = 1.

34Actually, Dg(x), is a map from the tangent space of M to the tangent space of N . Thus, Dg(x)v is a tangent
vector, a point in the tangent space TNg(x). If N = R

n, then we can identify the tangent space with R
n.
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Figure 5.9. Two maps of the circle into the plane.

Figure 5.10. Immersion (5.30) into R
3.

Example: The map g : R2 → R
3 defined by

g(s, t) = (cos t − s, sin s − t, 2 sin t) (5.30)

gives the surface shown in Figure 5.10. Its two tangent vectors are the columns of
Dg, v1 = (− sin t,−1, 2 cos t)T and v2 = (−1, cos s, 0)T . Since v1 × v2 �= 0, these
vectors are never parallel and they define a two-dimensional plane tangent to the surface
for each (s, t).

A map with this property is an

� immersion: AC1 map g : M → N is an immersion if rank(Dg) = dim(M).

An immersion is locally a smooth surface.
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Figure 5.11. Singular map (5.31).

Example: Consider the map g : R1 → R
2 given by

g(t) = (1+ cos(2t), cos t) . (5.31)

The rank of Dg(t) = −(2 sin(2t), sin t) is 1 except where it vanishes, i.e., when t = nπ .
The curve (5.31) has a cusp at these points, as shown in Figure 5.11. Consequently, it fails
to be an immersion.

The global stable manifold is easily seen to be an immersion:

Lemma 5.6. Let f be a C1 vector field on R
n with hyperbolic equilibrium at the origin

having a k-dimensional stable space Es . Then Ws(0) is a k-dimensional immersion.

Proof. Let the local stable manifold be defined by the map g: g : Es → R
n where

g(σ ) = x(0; σ). The stable manifold theorem implies that Ws is an immersion since it
defines a smooth Lipschitz graph over Es . Hence, the rank of Dg is k. Each neighborhood
of the global stable manifold can be obtained by flowing a region on Ws

loc backward in time
for some fixed time. Thus for any neighborhood of Ws , we can consider the set of points
defined by the map h(σ) = ϕt (g(σ )). This is smooth since ϕ is a smooth function of its
arguments according to Theorem 3.15. Moreover, the derivative of this map is

Dh = Dϕt(g(σ ))Dg(σ),

which has rank k since the matrixQ = Dϕt solves the linearized differential equation (4.50)
with initial condition Q(0) = I and therefore is a nonsingular matrix.

Even though an immersion is smooth, it may cross itself. For example, the figure-
eight curve in Figure 5.9, though an immersion, is not one-to-one since both θ = 0 and π
are mapped to the origin. Even if we eliminate this problem by requiring that an immersion
be one-to-one, there can be problems, as follows.
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Figure 5.12. The topologist’s sine curve.

Example: Consider the immersion g : R → T
2 given by g(t) = (t mod 1, νt mod 1),

where ν is irrational. This is smooth and one-to-one but gives a dense line on the torus (see
§7.1)—not what one would think of as a submanifold.

Example: The topologist’s sine curve is the map g : R
+ → R

2 defined by g(t) =(
1
/
t, sin t

)
. This curve is an immersion since Dg �= 0 and is one-to-one. However, as

t → 0, the curve has infinitely many oscillations and accumulates upon the interval [−1, 1]
on the y-axis, as can be seen in Figure 5.12.

We will see later that the global stable manifold can have this accumulation problem: indeed,
this is one of the indications of chaos. A map that does not have this pathology is called a

� proper map: A map g : M → N is proper if the preimage of every compact
set in N is compact in M .

Example: The topologist’s sine curve of Figure 5.12 is not proper because any neighborhood
of the origin in R

2 has a preimage consisting of infinitely many intervals of t in (0,∞).

We finally arrive at the ultimate definition of a “nice” map:

� embedding: A map g : M → N is an embedding if it is a one-to-one, proper
immersion.

Of our examples above, only the ellipse and the map (5.30) are embeddings. However, any
finite piece of Ws is an embedding, as follows from the next theorem.

Theorem 5.7. If g : M → N is a C1, one-to-one immersion, and both M and N are
compact then it is automatically proper.

Proof. Consider a compact subset U ⊂ N . Since U is closed, its complement is open.
Since g is continuous, the preimage of any open set is open, and thus the preimage of U is
the complement of an open set. Therefore, g−1(U) is closed and must be compact since it
is a subset of the compact set M . So g is proper.
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5.6 Center Manifolds
Linear systems are classified according to their generalized eigenspaces, Es , Eu, and Ec.
The most important distinction was made between hyperbolic systems, where Ec is empty,
and nonhyperbolic systems. We now begin our study of the behavior of a system with a non-
hyperbolic fixed point—that is, for cases whereEc is not empty. This study will continue in
Chapter 6 for the planar case and also will be a major focus of bifurcation theory in Chapter 8.

In the nonhyperbolic case it is still possible to construct stable and unstable manifolds
at the fixed point for the hyperbolic directions. Moreover, the nonhyperbolic part of the
dynamics can be reduced to a system of ODEs with the same dimension as the center
subspace of the linear system. This is based on the following generalization of the stable
manifold theorem.

Theorem 5.8 (Center Manifold). Suppose that f is a Ck vector field, k ≥ 1, with a fixed
point at the origin. Let the eigenspaces ofDf (0) = A be writtenEu⊕Ec⊕Es . Then there
is a neighborhood of the origin in which there existCk invariant manifolds: the local stable
manifold, Ws

loc, tangent to Es , on which |x(t)| → 0 as t →∞, the local unstable manifold
Wu

loc, tangent to Eu, on which |x(t)| → 0 as t → −∞, and a local center manifold Wc,
tangent to Ec.

The proof of this theorem is more complicated than the stable manifold theorem; see
(Carr 1981; Chicone 1999; Chow and Hale 1982; Hirsch, Pugh, and Shub 1977).

Note that this theorem does not state that the manifolds are unique, nor does it say
that the manifolds are the only sets that have the proper asymptotic behavior. This is to be
contrasted with the stable-manifold theorem for hyperbolic equilibria, which asserts that the
local stable and unstable manifolds are unique and that they generate the global manifolds.

Example: Consider the skew-product system

ẋ = x2,

ẏ = −y. (5.32)

Here, the linearization of the equilibrium at the origin has eigenvalues λ = 0 and −1, so
the stable space Es is the y-axis and the center space Ec is the x-axis. It is clear that the
local stable manifold is the y-axis, since this is tangent to Es and every point on the y-axis
limits to the origin. We are tempted to say that Wc

loc is the x-axis, and this is certainly an
acceptable center manifold: it is clearly an invariant set and is tangent to Ec. However, if
we solve the equation for the phase curves, by dividing the y equation by the x equation,
we obtain

dy

dx
= − y

x2
⇒ y(x) = cex

−1
.

When x < 0, each of these curves is asymptotic to the origin and is tangent to the x-axis
(in fact, the function y(x) has all derivatives zero at x = 0−). So we could define a center
manifold by

Wc
loc(0, 0) =

{
(x, y) : y =

[
cex

−1
x < 0

0 x ≥ 0

}
(5.33)



5.6. Center Manifolds 187

-1 -0.5 0 0.5 1

-1

-0.5

0.5

1
y

x

Figure 5.13. Phase portrait of (5.32).

for any value of c. There is a one-parameter family of possible center manifolds; see Figure
5.13! This example shows that the center manifold is not unique.

The example also has another pathology: though the local stable manifold is the
y-axis, the global stable set—namely, the set of points that are asymptotic to the origin—is
the left half-plane Ws(0, 0) = {(x, y) : x ≤ 0}. Similarly, the global unstable set is the
positive x-axis Wu(0, 0) = {(x, 0) : x > 0} since this set is asymptotic to the origin as
t →−∞.

In the example, the center manifold was not unique; nevertheless, every choice of c
in (5.33) gives a curve with the same power series expression, namely, y(x) = 0 + 0x +
0x2 + · · · . Consequently, as far as the power series is concerned, there is a unique center
manifold, the x-axis. Indeed, whenever f is C∞, there is a unique power series expression
for a center manifold.

This series can be easily determined by looking for functions corresponding to a
graph that is tangent to Ec and demanding that the resulting surfaces are invariant. It is
most convenient to do this by preparing the system so that the linear matrix breaks into
blocks corresponding to the stable, unstable, and center subspaces. To do this, write the
system as ξ̇ = Aξ + g(ξ), where g = o(ξ) represents the nonlinear terms. As we saw
in §2.6, the matrix P of generalized eigenvectors transforms A to block diagonal form:
P−1AP = J , where

J =

 C 0 0

0 S 0
0 0 U


 .

Here,C, S, andU are square matrices representing the center, stable, and unstable dynamics;
they are diagonal only if A is semisimple. Then we define new coordinates η = P−1ξ , so
that

η̇= P−1Aξ + P−1g(ξ) = P−1APη + P−1g(Pη)

= Jη + P−1g(Pη).
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Figure 5.14. Stable, unstable, and center manifolds.

Now set η = (x, y, z), where dim(x) = dim(Ec), dim(y) = dim(Es), and dim(z) =
dim(Eu). In terms of the three subsets of variables, the ODEs now take the form

ẋ = Cx + F(x, y, z),

ẏ = Sy +G(x, y, z),

ż = Uz+H(x, y, z).

(5.34)

Since the local center manifold Wc is a graph over Ec, we can define it using two maps
g : Ec → Eu,and h : Ec → Eu, so that on Wc we have y = g(x) and z = h(x) (see
Figure 5.14), that is,

Wc = {(x, g(x), h(x))} .
The manifold begins at the origin, thus both h(0) = g(0) = 0; moreover, the manifold
must be tangent to Ec, so Dh(0) = Dg(0) = 0. Finally, Wc must be invariant, so that if
(x, y, z) ∈ Wc, then so is ϕt(x, y, z). This means that the vector field (ẋ, ẏ, ż) must be
in the tangent space of Wc. To compute this we insist that the flow lies on Wc, so that
y(t) = g(x(t)) and z(t) = h(x(t)). Consequently, the derivatives of these functions must
also match:

ẏ = Dg(x)ẋ, ż = Dh(x)ẋ.

Putting this into (5.34) gives a system of PDEs that can be used to determine g and h:

Sg(x)+G(x, g(x), h(x)) = Dg(x) (Cx + F(x, g(x), h(x))) ,

Uh(x)+H(x, g(x), h(x)) = Dh(x) (Cx + F(x, g(x), h(x))) .
(5.35)

These PDEs can be solved order by order for the power series of h and g—see the examples
below.

The dynamics on the center manifold are given by the equation for x upon restricting
y and z to the manifold:

ẋ = Cx + F(x, h(x), g(x)). (5.36)
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That this equation describes the local dynamics on Wc follows from a generalization of the
Hartman–Grobman theorem of §4.8.

Theorem 5.9 (Nonhyperbolic Hartman–Grobman). Suppose (5.34) is a C1 vector field
with fixed point at the origin, that all the eigenvalues of C have zero real part, that S is a
contracting andU is an expanding hyperbolic matrix, and that F,G,H = o(x, y, z). Then
there is a neighborhood N of the origin such that Wc

loc = {(x, h(x), g(x)) : x ∈ Ec} ∩ N
and the dynamics in N is topologically conjugate to the system

ẋ = Cx + F(x, h(x), g(x)),

ẏ = Sy,

ż = Uz.

(5.37)

Thus, the topological type of a nonhyperbolic fixed point is determined by the flow on the
center manifold.

We now give several examples of the formal solution of the PDEs (5.35) order by
order in the power series for the functions g and h.

Example: A two-dimensional system with a single zero eigenvalue has the block diagonal
form

J =
(

0 0
0 λ

)
.

Here the center matrix is the 1× 1 matrix C = (0), and (taking λ > 0) the unstable matrix
is U = (λ). Therefore, the linear spaces are Ec = span(1, 0)T and Eu = span(0, 1)T . For
example, consider the C∞ system

ẋ = x2 − z2,

ż = λz+ x2.
(5.38)

Following the general theory, we suppose that the local center manifold is Wc
loc(0, 0) =

{(x, h(x)) : x ∈ R}, where h(0) = Dh(0) = 0. Thus, the power series for h has the form
h(x) = αx2 + βx3 + · · · . Putting this into (5.35) gives

λ
(
αx2 + βx3 + · · ·)+ x2 = (2αx + 3βx2 + · · ·) (x2 − (αx2 + βx3 + · · ·)2) .

The lowest degree terms in this equation are quadratic and require that λα + 1 = 0. This
determines α. The cubic terms give the equation λβ = 2α, which determines β. After some
algebra we find that

h(x) = −x
2

λ
− 2

x3

λ2
− 6

x4

λ3
− 22

x5

λ4
− 96

x6

λ5
+ · · · .

The resulting curve z = h(x) is shown in Figure 5.15. This result can be inserted into the
differential equation for x, (5.38), to give the center manifold dynamics

ẋ = x2 − x4

λ2
− 4

x5

λ3
− 16

x6

λ4
· · · . (5.39)
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Figure 5.15. Center and unstable manifolds for (5.38) through sixth order for λ = 2.

This implies that ẋ > 0 when x is nonzero and small, which shows that on the center
manifold the point x = 0 is “semistable”; see Figure 5.16.

The unstable manifold can be similarly found. If we let x = g(z) = αz2+ βz3+ · · ·
and substitute this into the equation ẋ = Dg(z)ż, we obtain (after some algebra)

g(z) = − z2

2λ
+ z4

16λ2
+ z5

20λ4
− z6

96λ5
+ · · · .

The curve x = g(z) is shown in Figure 5.15.
According to Theorem 5.9, we have shown that (5.38) is conjugate to the system

ẋ = x2 − x4

λ2
+ · · · ,

ż = z.

If we compare the dynamics that we have found with a numerical solution of (5.38), see
Figure 5.17, we see that the center and unstable manifolds prominently appear—note that
the motion near the origin for decreasing t appears to rapidly compress along the unstable
manifold (as e−t ) and then move more slowly along the center manifold toward the origin.

The system (5.38) has two additional fixed points, a saddle at (λ,−λ) and a spiral
sink at (−λ, λ). The phase plane shows that the right branch of the center manifold appears
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Figure 5.16. The vector field (5.39) as a function of x on the local center manifold
for λ = 2.

to coincide with the stable manifold of the saddle. The spiral sink traps the bottom branch
of Wu(0).

Example: Consider the three-dimensional system

ẋ1 = −x2 + x1y,

ẋ2 = x1 + x2y,

ẏ = −y − x2
1 − x2

2 + y2,

Df (0) =

 0 −1 0

1 0 0
0 0 −1


 . (5.40)

Here,Df is already in the normal form, and we can immediately see thatEc = {(x1, x2, 0)}
and Es = {(0, 0, y)}. Again, look for solutions that are tangent to the center space, so that
Wc = {(x1, x2, h(x1, x2))}. As before, assume a power series for h(x) = αx2

1 + βx1x2 +
γ x2

2 + · · · . Requiring that y = h(x) is an invariant manifold, (5.35), gives

ẏ =Dh(x)ẋ = ∂h

∂x1
ẋ1 + ∂h

∂x2
ẋ2,

−αx2
1 − βx1x2 − γ x2

2 − x2
1 − x2

2 + · · · = (2αx1 + βx2 + · · ·) (−x2 + · · ·)
+ (βx1 + 2γ x2 + · · ·) (x1 + · · ·)
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Figure 5.17. Phase plane of (5.38) for λ = 2.

to quadratic order. Collecting the terms in x2
1 , x

2
2 , and x1x2 gives three equations for the

three unknowns α, β, and γ . These can be written as a single linear system:
 −1 −1 0

0 1 −1
2 −1 −2




 α

β

γ


 =


 1

1
0


 .

This matrix is guaranteed to be nonsingular by the center manifold theorem, and indeed we
find that is the case. The solution is α = γ = −1 and β = 0, so y = −x2

2 − x2
2 + · · · .

Substituting this back into the original equations for (x1, x2) gives the dynamics on the
center manifold:

ẋ1 = −x2 − x3
1 − x1x

2
2 ,

ẋ2 = x1 − x2x
2
1 − x3

2 ,
(5.41)

up to terms of cubic order. The dynamics of (5.41) is nontrivial, and to study it we must use
some additional tricks—we will develop these in the next chapter (see §6.3). We will find
that (5.41) has the dynamics of a spiral focus. This implies, according to Theorem 5.9, that
the origin of (5.40) is asymptotically stable.

5.7 Exercises
1. Find all the homoclinic and heteroclinic orbits for the Hamiltonian

H(x, y) = 1

2
(y2 + x2)− x4.

What are the stable Ws and unstable Wu sets for each of the three equilibria?
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2. Consider the system (5.6) with Hamiltonian (5.3).

(a) Find the equilibria. You should verify that p = (x∗, 1/2ax
∗4) is an equilibrium

when x∗ = 0 or is a root of the polynomial q(x) = −4+ 12ax + a2x6. Show
that when a �= 0, q has exactly two real roots and hence that there are three
equilibria.

(b) Show that the origin is saddle. Find its eigenvalues and eigenvectors.

(c) Set a = 1, and find the new equilibria numerically. Show that that one is a
stable focus and the other an unstable focus.

(d) Investigate, using phase plane software, the dynamics of this system. What are
the stable and unstable sets of each equilibrium?

3. Like the Lorenz model (1.33), the Busse–Heikes model describes three spatial modes
in a convecting fluid, but in this case the fluid is rotating (Toral, San Miguel, and
Gallego 2000). In one limit the model becomes

ẋ = x (1− x − (1+ δ)y − (1− δ)z) ,

ẏ = y (1− y − (1+ δ)z− (1− δ)x) ,

ż = z (1− z− (1+ δ)x − (1− δ)y) ,

(5.42)

where δ > 0, and (x, y, z) represent nonnegative mode amplitudes.

(a) Find all the equilibria and characterize their stability types as a function of δ.
(Hint: There are eight equilibria: the origin, three solutions with one nonzero
amplitude, three solutions with two nonzero amplitudes, and one with all three
nonzero.)

(b) Show that the quantity R = x + y + z obeys a simple self-contained equation
and that if R(0) �= 0, then R(t)→ 1 as t →∞.

(c) Assume that R = 1 and reduce (5.42) to a set of two equations for (x, y). Show
that these equations are Hamiltonian with H = δxy(1− x − y).

(d) Give a complete discussion of the dynamics of this model in the positive octant.

4. Using the integral (5.13), find the unique bounded solution to the forced system

ẋ = −x,
ẏ = y + sin(t)

for an initial condition σ = (xo, 0)T ∈ Es .

5. Show that any bounded fixed point x ∈ C0(R+, U) of the operator T defined by (5.17)
is a C1 solution of the differential equation (5.10). (Hint: Differentiate x = T (x)

with respect to t , remembering to differentiate with respect to all the places that t
enters on the right-hand side.)

6. Show that if L : X → X is a linear operator on a Banach space, and ‖L‖ ≤ c < 1,
then the operator I − L is invertible. (Hint: Consider the formal series expansion
(I − L)−1 =∑∞

k=0 L
k .)
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7. Here, you will show that the stable manifold theorem implies an equivalent unstable
manifold theorem.

(a) First, let x̂(τ ) = x(−τ) in (5.10) and obtain the ODE for x̂. This will give an
equation similar to (5.10) but with A→ −A. Now, show that stable manifold
theorem for the new equation implies the existence of a Lipschitz graph Wu

over Eu.

(b) Transform back to t = −τ , and obtain the explicit operator T equivalent to
(5.17) for the unstable manifold. Take care to keep track of all the minus signs!

8. Consider the system on R
2 given by

ẋ = −x + y2,

ẏ = 2y + xy.

(a) Find Es and Eu for the fixed point (0, 0).

(b) Construct successive approximations (xi(t), yi(t)), i = 1, 2, to the stable
manifold Ws(0, 0) by applying the operator T , (5.17), to the initial guess
(xo(t), yo(t)) = (0, 0).

(c) Compare the approximations in (b) with a power series expansions for the stable
and unstable manifolds using the techniques of §5.6.

(d) Using your favorite software, plot the functions you constructed and some nu-
merical solutions of the differential equations. Compare the manifolds that you
compute with the solutions.

9. Consider the system
ẋ = x3 − 2xy,

ẏ = −y + x2.

(a) Find the first few terms in the power series expansion for the stable and center
manifolds of the origin.

(b) Study the reduced dynamics on the center manifold. Classify the equilibrium.

(c) Compare your analytical expression with numerical orbits generated by your
favorite software package.

10. The three-dimensional system

ẋ = y + 2z+ (x + z)2 + xy − y2,

ẏ = (x + z)2,

ż = −2z− (x + z)2 + y2

(5.43)

has a nonhyperbolic equilibrium at the origin.
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(a) Find a linear transformation to write (5.43) in the form (5.34).

(b) Find the quadratic approximation for Wc(0, 0, 0).

(c) Obtain the reduced dynamics (5.36) onWc and use your favorite software pack-
age to study it. Is the origin stable or unstable?

11. Consider your adopted system of quadratic differential equations (recall §1.7 and
Exercise 1.10) for the chaotic values of the reduced parameters. Use the techniques of
this chapter to study the stable, unstable, and center manifolds of one of the equilibria.





Chapter 6

The Phase Plane

There is plenty in the subject to interest a pure mathematician, although per-
haps interesting problems of moderate difficulty are getting scarce. . .non-linear
phenomena are genuinely complicated and no easily applicable general theory
can be expected. (Mary Lucy Cartwright 1952)

The analysis of Chapter 4 allows us to obtain a picture of the dynamical behavior of a
flow on a patchwork quilt of local phase portraits near equilibria or periodic orbits. This
local, linearized analysis is relevant only for hyperbolic orbits: what can one do for the
nonhyperbolic case? In this chapter we will study nonhyperbolic equilibria as well as
methods to obtain global phase portraits. The methods will be specific to two dimensions,
as many of the tools that we will use require that orbits, being one-dimensional curves, can
separate regions in a two-dimensional space.

6.1 Nonhyperbolic Equilibria in the Plane
A purely topological classification of the nonhyperbolic equilibria for flows in R was easily
obtained in §4.5. Here we attempt to accomplish the same task for nonhyperbolic equilibria
in the plane. As introduced in §1.5, a planar system for z = (x, y) has the form

ẋ = P(x, y),

ẏ = Q(x, y).
(6.1)

If we choose a particular equilibrium, z∗, to study, the coordinates can always be shifted
so that z∗ is at the origin. Therefore, whenever there is an equilibrium it can be assumed
without loss of generality that

P(0, 0) = Q(0, 0) = 0. (6.2)

The first step in the classification of an equilibrium is the study of the linearization of the
ordinary differential equation (ODE). As we learned in Chapter 2, the linear case, ż = Az,
is classified by the eigenvalues, λi , of A. When P and Q are C1, there are three

197
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� hyperbolic cases (recall §2.2):

• node: λ1 and λ2 are real, nonzero, and have the same sign;

• saddle: λ1 and λ2 are real, nonzero, and have opposite signs;

• focus: λ1 = λ̄2, and Re(λ1) �= 0.

The node and focus cases can be either stable or unstable depending upon the sign of Re(λ).
A node with equal eigenvalues is called a proper node if it has two eigenvectors (geometric
multiplicity is two) and an improper node if it has only one eigenvector (geometric mul-
tiplicity is one). The Hartman–Grobman theorem, Theorem 4.12, implies that the linear
results are sufficient to classify the dynamics of (6.1) in a neighborhood of the origin when
A is hyperbolic.

In §2.2 we noted there are four additional

� nonhyperbolic cases:

• singly degenerate equilibrium: λ1 = 0, but λ2 �= 0. The linear system
has a line of equilibria.

• doubly degenerate equilibrium: λ1 = λ2 = 0, geometric multiplicity
one. In this case, A is equivalent to the Jordan form

A =
(

0 1
0 0

)
.

The linear system has a line of equilibria (y = 0).

• doubly degenerate equilibrium: λ1 = λ2 = 0, geometric multiplicity
two. In this case, A = 0 and the entire plane consists of equilibria.

• center: λ1 = λ̄2 = iβ are pure imaginary. The linear orbits are ellipses.

A nonlinear system with a singly degenerate equilibrium is amenable to the center manifold
analysis of §5.6. In this case the center manifold is one-dimensional, and the restriction of
the dynamics to Wc is easily understood by using graphical analysis for a one-dimensional
ODE; recall §1.1. When the dimension of Ec is two, as in the last three cases, additional
methods must be used to analyze the dynamics.

6.2 Two Zero Eigenvalues and Nonhyperbolic Nodes
There are two Jordan forms for the linearization about an equilibrium z∗ for the doubly
degenerate case, when λ1 = λ2 = 0; here we will assume A = Df (z∗) = 0. Since the
linearization is identically zero, this system is particularly hard to treat by our previous
methods. The case of a nontrivial Jordan form will be treated in §8.10.

Example: The system
ẋ = y2 − x2,

ẏ = −2xy
(6.3)

has only one equilibrium, at the origin. SinceDf (0) = 0, both eigenvalues are 0, and every
point in the plane is an equilibrium of the linearized system; linear stability says nothing
about stability of the full system. It is not possible to find a Lyapunov function near the
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Figure 6.1. Phase portrait of the example (6.3).

origin; for example, if we assume thatL is quadratic, then dL
/
dt would be a homogeneous

cubic polynomial, and thus cannot have one sign. Numerical integration of the flow, shown
in Figure 6.1, implies that the origin is unstable.

The main tool for studying the behavior near such an equilibrium is a simple trans-
formation to polar coordinates:

x = r cos θ,
y = r sin θ,

r2 = x2 + y2,

θ = arctan (y/x) .
(6.4)

The time derivatives of (r, θ) are found using the chain rule:

d

dt
r2 = 2(xẋ + yẏ)⇒ d

dt
r = 1

r
(xẋ + yẏ) ,

d

dt
θ = d

dt
arctan

(y
x

)
= 1

1+ y2/x2

(
ẏ

x
− yẋ

x2

)
= 1

r2
(xẏ − yẋ) .

(6.5)

Inserting (6.4) and (6.5) into the system (6.1) and eliminating x and y in favor of r and θ
gives

d

dt
r = P(r cos θ, r sin θ) cos θ +Q(r cos θ, r sin θ) sin θ,

d

dt
θ = 1

r
[Q(r cos θ, r sin θ) cos θ − P(r cos θ, r sin θ) sin θ] .

(6.6)

Dividing the ṙ equation by the θ̇ equation gives an equation for the phase curves (recall
(1.22):

dr

dθ
= r

P (r cos θ, r sin θ) cos θ +Q(r cos θ, r sin θ) sin θ

Q(r cos θ, r sin θ) cos θ − P(r cos θ, r sin θ) sin θ
. (6.7)
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As a simple case, suppose that both P and Q are homogeneous nth degree polynomials
in their arguments, so that P(ax, ay) = anP (x, y) and similarly for Q. In this case
P(r cos θ, r sin θ) = rnP (cos θ, sin θ), and separation of variables in (6.7) yields

dr

r
= P(cos θ, sin θ) cos θ +Q(cos θ, sin θ) sin θ

Q(cos θ, sin θ) cos θ − P(cos θ, sin θ) sin θ
dθ = g(θ)dθ,

which gives

ln r = ln ro +
∫ θ

θo

g(ϕ)dϕ. (6.8)

If the equilibrium were asymptotically stable, then for any ro, r(t; ro) → 0 as t → ∞.
For this to happen, the integral of the function g must go to minus infinity. Note that
g(θ + 2π) = g(θ), so an important quantity to consider is

G =
∫ 2π

0
g(θ)dθ. (6.9)

Since this integral may or may not exist, there are three possibilities:

� topological center: IfG = 0, then r �→0 because the integral (6.8) for any θ
is finite. Moreover, in this case (6.8) implies r(θo + 2π) = r(θo), so the curve
r(θ) is a closed loop.

� nonhyperbolic focus: If G exists and is nonzero, then the only way the
integral (6.8) can diverge is for θ →±∞. In this case, (6.8) implies

r(2π) = r(0)eG.

Therefore, r is multiplied by a factor of eG each time the angle increases by 2π .
If G > 0, the curve spirals outward; otherwise it spirals inward. Moreover,
the curve must be an infinite spiral as r → 0, since each time θ changes by
−2πsgn(G) the radius decreases by the fixed factor.

� nonhyperbolic node: If G does not exist, then g must have a nonintegrable
singularity at some point θc where its denominator vanishes:

D(θc) = Q(cos θc, sin θc) cos θc − P(cos θc, sin θc) sin θc = 0.

In this case the integral in (6.8) is unbounded as θ → θc. This angle defines an
asymptotic direction of approach to the origin as t →±∞.

Example: A homogeneous cubic example is provided by P(x, y) = −x2y − y3 and
Q(x, y) = x3 + xy2. In polar coordinates, (6.6), the system becomes

ṙ = 0,
θ̇ = r2

so that g(θ) ≡ 0. Consequently, the origin is a topological center; indeed, every orbit apart
from the origin lies on a periodic orbit with period T = 2πr2.
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Example: When P(x, y) = − (x2 + y2
)
(x + y), and Q(x, y) = (x2 + y2

)
(x − y), we

obtain
ṙ = −r3,

θ̇ = r2.

This shows that g(θ) = −1, and the origin is a nonhyperbolic focus. In this case, every
trajectory spirals around the origin infinitely many times as t →∞ and r → 0.

For the nonhyperbolic node, note that if θc is one root of the denominator D, then
θc+π is also a root, since cos(θc+π) = − cos θc and sin(θc+π) = − sin θc, and since we
assumed that P and Q are homogeneous, Q(− cos θc − sin θc) = (−1)nQ(cos θc, sin θc).
So, if there is one asymptotic direction of approach to the origin, then there are two such
directions on a line through the origin with slope tan θc. As r → 0, the rate of change of r
limits to

dr

dt
→ rn (P (cos θc, sin θc) cos θc +Q(cos θc, sin θc) sin θc) = rn

Pc

cos θc
, (6.10)

where D(θc) = 0 has been used to eliminate Q. Consequently, r asymptotically grows
or decreases depending upon the sign in (6.10), implying that the ray θ = θc is either an
asymptotically unstable or a stable direction, respectively. Note that sgn

(
dr
/
dt
)

for θc+π
is (−1)n+1 times that for θc. Hence, when P and Q have even degree in r , one sign gives
approach and the other divergence, but they have the same behavior when the degree is odd.

Example: Applying the polar transformation to (6.3) gives

ṙ = −r2 cos θ,
θ̇ = −r sin θ.

This implies that g(θ) = cot θ , which is singular at θ = 0 andπ . Therefore, every trajectory
that approaches the origin must do so along the x-axis and the origin is a nonhyperbolic
node. Note that ṙ < 0 at θ = 0 and ṙ > 0 at θ = π ; thus the positive x-axis is a stable
direction while the negative x-axis is an unstable direction. Of course, this can also easily
be seen by restricting the system to the invariant line y = 0, where (6.3) becomes ẋ = −x2,
showing that the origin is semistable.

When an equilibrium is a node, there are one or more directions corresponding to
approaching or diverging orbits. These orbits divide a small disk enclosing z∗ into sectors,
bounded by the asymptotic curves. The sectors can be one of three types: elliptic, hyperbolic,
or parabolic, as sketched in Figure 6.2.35

A parabolic sector is bounded by two curves of the same asymptotic type—both are
approaching or both are diverging. Hyperbolic and elliptic sectors are bounded by one
diverging and one approaching curve. The hyperbolic and elliptic cases are distinguished
by the sign of θ̇ ; for example, in Figure 6.2, θ̇ > 0 as r → 0, so that if the converging
direction is counterclockwise from the diverging one, the sector is elliptic; otherwise it is
the hyperbolic. The local dynamics in the hyperbolic case is unbounded: every orbit in

35This use of the word hyperbolic is geometrical, as opposed to our characterization of equilibria as hyperbolic
by their eigenvalues.
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Figure 6.2. Hyperbolic, parabolic, and elliptic sectors when θ̇ > 0. A second
parabolic case, not shown, occurs if both directions are diverging.

the sector that is not on the approaching direction eventually leaves any disk enclosing the
equilibrium. For the elliptic case each orbit eventually returns.

A hyperbolic saddle provides the standard example of an equilibrium with hyperbolic
sectors—each sector bounded by the eigenvectors is hyperbolic. Nonhyperbolic equilibria
can have a combination of sectors depending on the character of (6.6).

Example: The system
ẋ = y2x − x2y,

ẏ = x3 + y3 (6.11)

is equivalent to the polar equations

ṙ = r3 sin2 θ,

θ̇ = r2 cos2 θ.

Therefore, g(θ) = tan2 θ , which has singularities at θ = π
/

2 and 3π
/

2. In both cases, ṙ >
0 as r → 0. As a consequence the sectors defined by θ ∈ [−π/2, π

/
2] and [π/2, 3π

/
2]

are both parabolic. For this case, (6.8) can be solved explicitly for r(θ) to obtain

r(θ) = cetan(θ)−θ

so that r(θ) → 0 as θ → π
/

2
∣∣+ and as θ → 3π

/
2
∣∣+; here the limits are only one-

sided. This shows what is typical in a parabolic sector: all the orbits in the interior of the
sector limit on only one of the sector boundaries as r → 0. The phase space is shown in
Figure 6.3.

Example: As r → 0, the Vinograd example (4.17) is equivalent (see Exercise 2) to the
system

ẋ = x2(y − x),

ẏ = y2(y − 2x).
(6.12)

Upon conversion to polar coordinates, (6.12) becomes

ṙ = r3

4
[(3 sin(2θ)− 4) cos(2θ)− sin(2θ)] ,

θ̇ = r2

4
sin(2θ) [2− 3 sin (2θ)] .
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Figure 6.3. Phase portrait of (6.11).

Accordingly, θ̇ = 0 for θ = nπ
/

2, θ∗ = 1/2 sin−1 (2/3
) ≈ 20.9◦ and θ = π

/
2 − θ∗ ≈

69.1◦. Along the x-axis and at θ∗, ṙ < 0, while along the y-axis and at π
/

2 − θ∗, ṙ > 0.
The sector [0, θ∗] is parabolic, since both of its asymptotes are converging. The sector
[θ∗, π/2−θ∗] is elliptic since θ̇ < 0 in the sector. The sector [π/2−θ∗, π/2] is parabolic,
and finally, [π/2, π ] is hyperbolic since in this sector θ̇ < 0. The analysis of the remaining
sectors is similar. This gives the configuration shown in Figure 6.4.

The analysis above also applies to a more general case: suppose P and Q are not
homogeneous but that they are given by power series that have the lowest degree terms of
the same order, say, the nth order:

P(r cos θ, r sin θ) = rnPn(cos θ, sin θ)+O(rn+1),

Q(r cos θ, r sin θ) = rnQn(cos θ, sin θ)+O(rn+1).

In this case, as r → 0, these terms dominate the higher-order terms, and the vector field
can be approximated by its lowest-order terms. We are most familiar with this when the
lowest-order terms are linear. The analysis can also be applied to the case in which the
lowest-order terms in P and Q have different degrees (see Exercise 1).

6.3 Imaginary Eigenvalues: Topological Centers
We now consider a system (6.1) with an equilibrium that has a linearization with imaginary
eigenvalues. Without loss of generality, we can change coordinates so that the Jacobian at
the equilibrium can be written in the normal form Df (0) = ( 0 −ω

ω 0

)
, and the ODEs become

ẋ = −ωy + p(x, y),

ẏ = ωx + q(x, y),
p, q = o(x, y). (6.13)
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Figure 6.4. Phase space of (6.12) showing two hyperbolic sectors, four parabolic
sectors, and two elliptic sectors.

We will also assume that there is a neighborhood of the origin for which p and q are
Lipschitz, so that Theorem 3.10 (existence and uniqueness) applies to (6.13).

Example: Linear centers often occur for Hamiltonian systems. For example, suppose
V (x, y) is a smooth function, and consider the equations

ẋ = y + Vy,

ẏ = −x − Vx.

This system is of the form (4.27) with Hamiltonian

H(x, y) = 1

2

(
x2 + y2

)+ V (x, y). (6.14)

Moreover, as shown by (4.28), the energy is invariant: dH
/
dt = 0. If V is cubic or higher

order in x and y, then the origin has eigenvalues λ = ±i: it is a center for the linear
system. The Hartman–Grobman theorem says nothing about the behavior of the orbits near
the origin when the nonlinear terms are included, since this equilibrium is not hyperbolic.
Nevertheless, when V is cubic, the curves of constant H , the energy surfaces, are closed in
the neighborhood of the origin and, since H is a weak Lyapunov function (recall §4.6), the
origin is a topological center.
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Figure 6.5. Contours of the Hamiltonian function (6.14) for V (x, y) = −x2y.
Orbits follow the contours since H is constant.

An example with a homogeneous cubic potential is shown in Figure 6.5. For this
case, in addition to the center at the origin, there are two saddle equilibria at the points
(±1/

√
2, 1/2).

Although, as this example shows, a linear center can sometimes be a topological
center, it is easy to find examples in which this is not the case.

Example: Suppose that g : R2 → R is a continuous function, and consider the system

ẋ = −ωy + xg(x, y), ẏ = ωx + yg(x, y). (6.15)

Using the transformation (6.5) to polar coordinates gives

ṙ = rg(r cos θ, r sin θ), θ̇ = ω. (6.16)

So that the origin is a linear center, we must assume that g = O(r). However, this does not
ensure that the orbits near the origin are topological circles. There are two simple cases: if
g > 0 for r sufficiently small, then ṙ > 0 and the origin is unstable. If, however, g < 0 near
the origin, then it is asymptotically stable. For example, when g = −x2 the radial equation
reduces to

ṙ = −r3 cos2 θ.

For this case, the origin is stable, since ṙ ≤ 0, and ṙ = 0 only momentarily when θ passes
through π

/
2 or 3π

/
2. Since θ(t) is known, the radial part is separable and can even be

solved explicitly. Choosing θo = 0, we obtain∫
dr

r3
= −

∫
cos2 ωtdt ⇒ 1

r2
= 1

r2
o

+ t + 1

2ω
sin (2ωt) .

Thus r → 0 as t →∞ for any trajectory. This case is shown in Figure 6.6.
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Figure 6.6. A stable nonhyperbolic focus; (6.15) with g = −x2.

As we will show below, (6.13) has precisely three possible scenarios near the origin:

� Topological center: there is a δ > 0 such that every trajectory in Bδ(0)\{0}
is a closed loop enclosing the origin.

� Nonhyperbolic focus: there is a δ > 0 such that every trajectory in the ball
Bδ(0) approaches 0 and |θ(t)| → ∞ as either t →+∞ or −∞.

� Center-focus: there is an infinite sequence of nested limit cycles, γn, such
that γn → 0 as n→∞ and every trajectory between two limit cycles spirals
toward one limit cycle or the other as t →±∞.

Just as for the double-zero eigenvalue, the tool for studying the possible behaviors of (6.13)
is the transformation to polar coordinates:

d

dt
r = p(r cos θ, r sin θ) cos θ + q(r cos θ, r sin θ) sin θ,

d

dt
θ = ω + 1

r
[q(r cos θ, r sin θ) cos θ − p(r cos θ, r sin θ) sin θ] .

(6.17)

By assumption, p, q = o(r); consequently, for any ε there is a δ such that if r < δ, then
|p| , |q| < εr (recall §4.4) so that∣∣θ̇ − ω

∣∣ < ε, r ∈ Bδ(0). (6.18)

For example, choosing ε = ω
/

2, we then have θ̇ > ω/2. Therefore, if the trajectory
remains in Bδ(0) it must encircle the origin infinitely many times. So if a trajectory ap-
proaches r = 0 as t →±∞, it must do so on an infinite spiral. In this case the equilibrium
is a nonhyperbolic focus.
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Lemma 6.1. If the system (6.13) has one trajectory that approaches the origin as t →∞
or as t →−∞, then the origin is a nonhyperbolic focus.

Proof. We need to show that there is a neighborhood for which all trajectories approach the
origin. Assume first that ϕt(r, θ) approaches the origin as t → ∞. Thus there is a δ and
a time T such that ϕt (r, θ) ∈ Bδ(0) for all t > T and (6.18) holds for some ε < ω. This
implies that θ(t) is unbounded. Let tk > T be the sequence of times such that θ(tk) = 2πk,
and let rk = r(tk); see Figure 6.7. By assumption, rk → 0 as k→∞. Uniqueness implies
that this sequence is monotone decreasing: the segment of the trajectory between tk+1 and
tk+2 cannot cross the segment between tk and tk+1. The same argument implies that the
orbit of any initial point (s, 0) with r1 < s < ro cannot cross the original orbit and has a
monotone and unbounded angle. Therefore all these forward orbits must also be infinite
spirals that approach the origin. Consequently, the forward orbits of all points in the ball
with radius min(r(t) : to ≤ t ≤ t1) also approach the origin. The argument for t →−∞ is
similar.

Example: The system (5.41),

ẋ = −y − x3 − xy2,

ẏ = x − yx2 − y3,

describes the dynamics on the center manifold of a three-dimensional ODE. This system is
of the form (6.15) and the transformation to polar coordinates, (6.17), yields

ṙ = −r3, θ̇ = 1.

Hence, the origin is a stable, nonhyperbolic focus. Putting this together with the stable
dynamics in the third dimension of (5.40) implies that the origin is stable.

Example: Consider the system

ẋ = −ωy + xy2 + x2y + y3

ẏ = ωx + y3 − x3 − xy2 ⇒ ṙ = r3 sin2 θ

θ̇ = ω − r2.
(6.19)

When r < δ = √|ω|, the angle is monotonically growing with time. In this case, ṙ ≥ 0,
and it is zero instantaneously only when θ = 0 or π . Since θ is monotonically changing,
this implies that r(t) grows without bound in positive time and decreases, limiting to zero as
t →−∞. Thus the origin is an unstable, nonhyperbolic focus. The phase portrait is shown
in Figure 6.8. When ω > 0, this system has two other equilibria at (x, y) = (±√ω, 0); see
Exercise 7.

We now argue that the origin of (6.13) is a topological center, a nonhyperbolic focus,
or a center-focus. The examples above have shown that the center and focus cases do occur,
and Lemma 6.1 shows that if there is any trajectory that limits on the origin, then it is a
focus. Now suppose that there are trajectories that remain bounded but do not approach
the origin in either direction of t . We will argue that a bounded trajectory must have limit
points, and the orbit of the limit points must be periodic.
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Figure 6.8. Unstable, nonhyperbolic focus for (6.19) when ω = 1.

Lemma 6.2. Consider the system (6.17) and assume that p and q are continuous. Suppose
there is a trajectory whose forward orbit remains in a neighborhood of the origin where
sgn(θ̇) = sgn(ω) but does not limit on the origin. Then either the trajectory is periodic or
its omega-limit set is a periodic orbit.

Proof. As before let tk be the sequence of times such that θ(tk) = 2πk, and let rk = r(tk);
see Figure 6.7. If rk+1 = rk , then uniqueness implies that the trajectory is periodic, i.e., that
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rk = r∗ for all k. Alternatively, either rk+1 > rk or rk+1 < rk . In the first case, uniqueness
implies that the segment of the trajectory between tk+1 and tk+2 cannot cross the segment
between tk and tk+1. Therefore, rk+2 > rk+1 as well, and the sequence is monotonically
growing. Similarly, in the second case rk is monotonically decreasing. Any monotone
bounded sequence has a limit, rk → r∗. We claim that γ = U(r∗,0) is a periodic orbit. Note
that limk→∞(tk+1 − tk) = T exists because the trajectories of (6.17) depend continuously
on initial conditions; recall Theorem 3.14. Moreover, T is the period of the limit cycle since

ϕT (r
∗, 0) = ϕT

(
lim
k→∞ rk, 0

)
= lim

k→∞
(
ϕtk+1−tk (rk, 0)

) = lim
k→∞ ((rk+1, 0)) = (r∗, 0).

The style of argument represented by this lemma is similar to that which we will use to
prove the Poincaré–Bendixson theorem in §6.6.

The final possibility is the center-focus.

Lemma 6.3. Suppose the origin for (6.17) is neither a topological center nor a nonhyper-
bolic focus. Then it is a center-focus.

Proof. One can show that there is a δ and an ε < ω such that (6.18) holds and such that
there is an initial condition (r0, 0) ∈ Bδ(0) that evolves to a point (r(T ), 2π) ∈ Bδ(0);
see Exercise 8. If r(T ) < r0, then this implies that the trajectory remains in Bδ(0) for all
t > 0 and that θ(t)→∞ as t →∞. A similar conclusion can be made for the backward
trajectory if r(T ) > r0. If by chance r(T ) = r0, the trajectory is a limit cycle (since we have
assumed the origin is not a center) and we can choose a smaller initial point r0 for which
r(T ) �= r0. As in Figure 6.7, let rj be the infinite sequence of radii at which the trajectory
crosses θ = 0, choosing a direction of time for which this sequence is strictly decreasing.
This monotone sequence has a limit, but, since the origin is assumed to not be a focus, this
limit is not 0; thus rj → r∗ �= 0. The orbit of the point (r∗, 0) must be periodic and thus
is a limit cycle, γ . Every trajectory inside γ is bounded and so remains inside the ball of
radius δ̃ that corresponds to the maximum distance of γ from the origin. Since the origin is
not a center or focus for the new δ̃, the same argument yields a new curve γ̃ inside γ that
is also a limit cycle. This argument can be repeated arbitrarily many times.

Example: A special case of (6.15) is the system

ẋ = −y + xh(r),

ẏ = x + yh(r),

where h(r) is a function that is continuous and has the limit h(0) = 0. In polar coordinates
this becomes

ṙ = rh(r), θ̇ = 1. (6.20)

There is a circular trajectory for each zero of h. These trajectories are limit cycles if the
zeros of h are isolated. When h > 0 the trajectories spiral outward and when h < 0 they
spiral inward. If h has an infinite sequence of zeros h(rj ) = 0 such that rj → 0, then the
origin is a center-focus. One example of this is

h(r) = r sin(πr−1), (6.21)
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Figure 6.9. Center-focus phase portrait for (6.20) with (6.21). The red (blue)
circles are unstable (stable) limit cycles.

which has zeros at rj = j−1 so that the limit cycles are

γj =
{
(x, y) : r = j−1} , j = 1, 2, . . . .

These are alternately stable (even j) and unstable (odd j), as shown in Figure 6.9.

Example: In some cases, the planar system (6.13) has a conserved quantity, i.e., a function
H(x, y) that is constant along the trajectories. So that this is the case,

0 = d

dt
H(x, y) = ∂H

∂x
[−ωy + p(x, y)]+ ∂H

∂y
[ωx + q(x, y)]

must have a solution for some functionH . This equation is a quasi-linear partial differential
equation (PDE). The function H could be found by solving its characteristic equations;
however, this is just as hard as solving the original problem! There is a special case when
this is not true, and that is when the system can be written in Hamiltonian form,

ẋ = ∂H

∂y
, ẏ = −∂H

∂x
;

recall (1.13). For (6.13), the Hamiltonian must take the form H(x, y) = −ω
2 (x

2 + y2) +
h(x, y) with p = ∂h

/
∂y and q = −∂h/∂x. These two are compatible if and only if

∂p

∂x
= −∂q

∂y
. (6.22)

By assumption, h = o(r2); therefore, contours of H are closed loops in the neighborhood
of the origin. This gives a quick test for a center; however, it is inconclusive if it fails.
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Figure 6.10. Contours of the Hamiltonian (6.23).

Example: It is easy to see that the system

ẋ = −y + 3xy2,

ẏ = x − y3 (6.23)

satisfies (6.22) and is therefore Hamiltonian with

H = −1

2

(
x2 + y2)+ xy3.

The contours ofH are shown in Figure 6.10. Note that the origin is a topological center and
that the stable and unstable manifolds of the two saddle points bound the family of closed
loops surrounding the origin.

6.4 Symmetries and Reversors
Although our analysis has shown that topological centers are not common, every linear
center of a planar Hamiltonian system is a topological center. Topological centers are also
common in systems that have a “reversing symmetry.”

A flow is said to have a symmetry if there is a diffeomorphism, S : M → M , that
conjugates the flow to itself:

ϕt(S(z)) = S(ϕt (z)), t ∈ R. (6.24)

Since we assume that S is smooth, we can take the time derivative of this relation to obtain
an equivalent requirement on the vector field associated with ϕ:

f (S(z)) = DS(z)f (z). (6.25)
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Some symmetries, like a rotation symmetry, depend continuously upon a parameter and are
thus called continuous symmetries. For example, the system (6.20) is obviously symmetric
under the rotation

Sψ(r, θ) = (r, θ + ψ) (6.26)

for any angle ψ . For this case DS is the identity matrix, so (6.25) becomes f (r, θ + ψ) =
f (r, θ), which is satisfied for all ψ when f is a function of r only.

The collection of symmetries of a flow forms a group. This follows because the
identity map is always a symmetry, and if S1 and S2 are symmetries of ϕ, then so is their
composition S3 = S1 ◦ S2. Similarly, the inverse of a symmetry also satisfies (6.24) and
therefore is also a symmetry. For example, the rotation symmetry (6.26) is a representation
of the abstract rotation group, O(2).

Discrete symmetries can also occur. For example, the system (6.11) is symmetric
under the transformation S(x, y) = (−x,−y), a rotation by π . To see this, note that for this
caseDS = −I , so (6.25) becomes f (−x,−y) = −f (x, y), which is obviously satisfied by
(6.11). The symmetry group in this case has two elements, the identity and S, and is called
Z

2. Much more about the implications of the existence of a nontrivial symmetry group can
be found in (Field and Golubitsky 1995; Golubitsky and Stewart 2002).

Another type of symmetry that commonly occurs is a time reversal or reversing
symmetry—when the motion backward in time is equivalent to that forward in time. Thus,
a system is said to have reversing symmetry if there is a diffeomorphism, S (the reversor),
that conjugates the flow to its inverse so that ϕ−t (S(z)) = S(ϕt (z)). Again, this is equivalent
to a requirement on the vector field

−f (S(z)) = DS(z)f (z). (6.27)

This implies that in the new coordinate system, ζ = S(z), the differential equation ż = f (z)

becomes
ζ̇ = DS(z)ż = DS(z)f (z) = −f (S(z)) = −f (ζ ),

which is the same differential equation going backward in time.
In many cases the reversor S is an involution, i.e., S2 = S ◦ S = id. For example, for

mechanical Hamiltonian systems (recall §1.4) of the form

H(x, y) = 1

2
y2 + V (x),

the involution S(x, y) = (x,−y) reverses the momentum, y, and is equivalent to reversing
time. Note also that in this case S is orientation reversing, det(DS) = −1 < 0.

The fixed set of a reversor S is

Fix(S) = {z : z = S(z)} .
An orbit that intersects Fix(S) is a symmetric orbit. In particular, a symmetric equilibrium
is a point z∗ ∈ Fix(S) ∩ {f (z) = 0}. Not every orbit is symmetric; however, every orbit
has a symmetric pair (see Exercise 5).

It can be shown that the fixed set of any orientation-reversing involution in R
2 is a

curve, C = Fix(S) (MacKay 1993). If this is the case, then whenever z∗ is a symmetric,
linear center, it must be a true center of the nonlinear system.
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Figure 6.11. Reversible system (6.28) with α = 1 and β = 2. The origin is a
symmetric equilibrium, but the saddles are not.

Lemma 6.4. Suppose ż = f (z) is reversible with reversor S and Fix(S) is a curve that
contains an equilibrium z∗ that is a linear center. Then z∗ is a topological center.

Proof. According to (6.18), the angle θ about the equilibrium must increase monoton-
ically near z∗. The orbit of a point z(0) ∈ Fix(S) in this neighborhood must therefore
return to Fix(S) after θ has increased by (roughly) π . Let τ be the time at which this
first return happens. Then the reflection ζ(t) = S(z(t)) of this orbit segment also touches
Fix(S) at z(0) and z(τ ). Since ζ(t) is a solution beginning at z(0) but going backward
in time, the curve γ = {ϕt(z(0)) : −τ ≤ t < τ } is a closed loop and by uniqueness
must be periodic with period 2τ . Incidentally, each solution must cross the curve Fix(S)
smoothly, so DS(f (z(0))) = −f (z(0)); this follows from the conjugacy relation (6.27)
when z ∈ Fix(S).

Example: The system
ẋ = −y + αx2y,

ẏ = x + βy2x2 (6.28)

has the reversor S(x, y) = (x,−y) since

DSf (x, y)= (y+αx2y,−x+βy2x2)=−((−y)+αx2(−y), x+β(−y)2x2)=−f (S(x, y)).
Note that the fixed curve for S is the x-axis, and since the origin is a symmetric fixed point,
Lemma 6.4 implies it is a center. A phase portrait is shown in Figure 6.11. When α > 0,
this system also has a pair of saddle equilibria.

Note that (6.28) is not Hamiltonian since

∂p
/
∂x = 2αxy �= −∂q/∂y = −2βyx2.

Thus, the reversible property is independent of being Hamiltonian.
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6.5 Index Theory
Another way to classify equilibria is through a topological property called the Poincaré index.
An advantage of this concept is that it does not require that the vector field be smooth.

We begin by defining the index of a simple closed loop L, a curve defined by a
continuous, one-to-one mapping L : S

1 → R
2 of the circle into the plane (recall §5.5).

Such curves are often called Jordan curves. A simple example of such a mapping is L =
{(cos t, sin t) : 0 ≤ t < 2π}, the unit circle. The loop L is assigned an orientation by the
direction of its traversal; in this example the orientation is counterclockwise.

Taking f = (P,Q) to be a vector field on R
2 as in (6.1), define θ to be the direction

of f so that tan θ = Q
/
P . The direction is well defined even when the slope is infinite,

provided that P and Q do not simultaneously vanish—that is, everywhere except for the
equilibria; see Figure 6.12. Using the direction field, Poincaré defined an index ofL relative
to the vector field.

� Poincaré index: Suppose f ∈ C0(R2,R2), L is an oriented, Jordan curve,
and there are no equilibria of f on L. The index, IL(f ), is the integer number
of rotations of the vector f (x) as x traverses the loop in the positive direction,

IL(f ) ≡ 8θ

2π
, (6.29)

where 8θ is the net change in direction of f upon traversal of the loop.

When the vector field is C1, 8θ can be obtained by integrating along the curve:
IL(f ) = 1

2π

∮
L
dθ . Given that tan θ = Q

/
P , we differentiate to obtain

sec2 θdθ = PdQ−QdP

P 2
.

Since sec2 θ = 1+ (Q/P )2, the index is then defined by the line integral

IL(f ) = 1

2π

∮
L

dθ = 1

2π

∮
L

PdQ−QdP

P 2 +Q2
, (6.30)

which can be evaluated explicitly if the loop L is given in parametric form.
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Figure 6.13. Index of four types of hyperbolic matrices.

Example: If f (x, y) = (x, y) and L is the circle of radius r with counterclockwise orien-
tation, then (x(s), y(s)) = (r cos s, r sin s), and the index is

IL(f ) = 1

2π

∮
C

xdy − ydx

x2 + y2
= 1

2π

∫ 2π

0

r2 cos2 s + r2 sin2 s

r2
ds = 1.

Similarly, if f = (y, x), we obtain IL(f ) = −1. Note that neither of these results depends
upon the radius of the loop.

It is often easier to simply sketch the vector field and visually construct the index by
“watching” the vector field rotate as its base point traverses L, instead of computing the
integral (6.30).

Example: Suppose f (x) = Ax and A is a hyperbolic matrix. Let L be a circle enclosing
the equilibrium, (0, 0), with counterclockwise orientation. The computation of the index
for four different hyperbolic equilibria of a linear equation is sketched in Figure 6.13. The
upper left panel shows the vector field for a sink. Here, the direction is primarily inward
along the loopL,and thus θ increases upon counterclockwise traversal ofL, undergoing one
complete rotation. Thus the index in this case is+1. Similarly, the source and spiral source
also have index +1. The spiral sink, not shown, also has index +1. The last panel shows
the saddle; here θ rotates clockwise so that the saddle has index −1. This visual analysis
suggests that the index is independent of the details of the vector field and distinguishes the
saddle from the other cases. We will prove this fact below.

The Poincaré index can be used to obtain restrictions on the type of equilibria that
are contained in a region bounded by a closed loop. We first show that the index of a curve
typically does not change as it moves.
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Lemma 6.5. If a curve L is deformed and does not cross an equilibrium, then IL(f ) does
not change. Similarly, if the curve is held fixed and the vector field is varied, then the index
does not change, so long as no equilibria fall on L throughout the deformation.

Proof. The index is a continuous function of the curve L, as can be seen from (6.30),
providing that P 2 +Q2

∣∣
L
�= 0. This is just the condition that there be no equilibria on

L. Since IL(f ) is an integer and is continuous, it cannot change. The same considerations
imply that the index is a continuous function of f .

One application of this lemma is to prove the observations of the previous example.

Lemma 6.6. If f (x) = Ax, where A is a nonsingular, 2× 2 matrix and L is any counter-
clockwise loop enclosing the origin, then IL(f ) = sgn(det(A)).

Proof. Let A = (a b

c d

)
. Since det(A) �= 0, either ad �= 0 or bc �= 0. We can thus deform

A without changing IL(f ) into one of two forms,
(

sgn(a) 0
0 sgn(d)

)
or

(
0 sgn(b)

sgn(c) 0

)
. Now,

deform the loopL to the unit circle. The index in either case is easy to compute from (6.30),
verifying the assertion.

Consequently, the index of a loop distinguishes between linear systems with saddle
and nonsaddle equilibria. We can also use it to detect the very existence of equilibria.

Theorem 6.7. If L is a Jordan curve and does not enclose an equilibrium of f , then
IL(f ) = 0.

Proof. According to Lemma 6.5, L can be shrunk to an infinitesimal loop without changing
the index. The vector field limits to a nonzero constant on the loop since the loop does not
enclose an equilibrium. Thus the index of this infinitesimal loop is zero.

Unfortunately, the converse is not true: if IL(f ) = 0, we cannot conclude that there
are no equilibria inside L, since it is equally possible that L contains an even number of
equilibria, half with positive and half with negative index. One way to determine if this is
the case is to refine the loop by dividing it into subloops.

Lemma 6.8. The index of a sum of curves is the sum of the indices of the curves.

Proof. This follows from the definition again: divide the loop L into two loops with a
common connecting piece: write L = L1 + L2, as shown in Figure 6.14. The direction
of traversal of the new loops is inherited from that of L. This implies that the net contri-
bution from the connecting piece vanishes because the two subloops traverse it in opposite
directions.

An equilibrium has an index:

� index of an isolated equilibrium: Ix∗(f ) is the index of any curve that encir-
cles the equilibrium x∗ and no others.
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L1

L2

L

Figure 6.14. Index of a sum of two curves.

According to Lemma 6.5 the index Ix∗(f ) is independent of the encircling loop, since
the loop can be deformed to any other enclosing loop. Any loop that encloses a set of
isolated equilibria can be partitioned into loops that enclose each individual equilibrium.
Then Lemma 6.8 implies that the index of the original loop is the sum of the indices of the
enclosed equilibria.

We have already computed the index of each type of hyperbolic equilibrium. It is also
possible to find the index of an isolated nonhyperbolic node (recall §6.2) using

� Bendixson’s formula: The index of an isolated node of a continuous vector
field is

Ixo (f ) = 1+ 1

2
(e − h) , (6.31)

where e is the number of elliptic sectors and h the number of hyperbolic sectors.
Parabolic sectors do not contribute to the index.

Finally, the index can be used to detect the existence of periodic orbits.

Theorem 6.9. If γ is a periodic orbit of f , then Iγ (f ) = 1.

Proof. First, assume that the flow direction on γ is in the positive direction (e.g., the loop
is traversed counterclockwise). Since f is tangent to γ it clearly makes a positive circuit
as γ is traversed. Similarly, if the flow is in the opposite direction to the positive traversal
of γ , then f still rotates once in a positive direction.

Corollary 6.10. Any periodic orbit of f must enclose at least one equilibrium.

Higher Dimensions: The Degree

The concept of index can be generalized to higher dimensions, where it is more properly
viewed as a special case of the concept of the degree of a mapping. A vector field f can
be thought of as a map from the phase space M to the vector space R

n. As we discussed in
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§5.5, a map is simply a function
f : M → N.

For the case of vector fields, both spaces have the same dimension. Even in this case a map
is not necessarily one-to-one; this is quantified by its

� degree: Suppose M and N are compact, oriented manifolds of the same
dimension and y ∈ N is a regular value of f ∈ C1(M,N). The degree of f ,
deg(f ), is the number of preimages of y counted with orientation:

deg(f ) =
∑

x∈f −1(y)

sgn
(
det(Df (x))

)
. (6.32)

By definition, a point y in the range of f is a regular value if the rank of the JacobianDf (x)
at every point x = f −1(y) is dim(N). When the manifolds M and N are compact, then the
number of preimages of any regular point is finite because f −1 is locally a diffeomorphism
near each preimage, and compactness implies that there can be only finitely many regions
where f is one-to-one. It can be shown that (6.32) is independent of the choice of the
regular value y.

Example: Consider the map f (θ) = 2θ mod 2π from S
1 to itself. Each point on the

circle has two preimages, θ and θ + π . The map is increasing at both points. Therefore,
deg(f ) = 2.

The orientation of a map corresponds to whether it maintains or reverses the orientation
of a local coordinate system. For example, when both the domain and the range of f are
R

3, we can place a local set of unit vectors, e1, e2, e3, at a point x whose orientation is
defined by the right-hand-rule, e3 = e1 × e2. If the images of these vectors still have the
same orientation after mapping by f , then f has positive orientation.

Asimilar concept of orientation applies to manifolds, though we must think of the axes
as being a local coordinate system attached to the tangent space of a point. The orientation
of a set of independent vectors is sgn(det(P )), where P = (e1, e2, . . . , en) is the matrix
formed from the vectors. Since the JacobianDf (x) determines the image of an infinitesimal
set of vectors, the orientation of the image is given by

det(P ′) = det(Df (x)P ) = det(Df (x)) det(P ).

Thus the orientation reverses if det(Df (x)) < 0. Consequently, if f is a smooth vector field
on an n-dimensional manifold andDf (x) is nonsingular, the degree of f at x is defined to be

degx(f ) ≡ sgn
(
det(Df (x))

)
. (6.33)

Thus the right-hand side of (6.32) counts the number of times the point y is covered with a
sign determined by the orientation.

Example: Since det(A) = Yλi , the degree of a nonsingular, linear map f (x) = Ax on R
n

is (−1)m, where m is the number of negative, real eigenvalues. Note that if there are any
complex eigenvalues, they come in conjugate pairs and therefore do not contribute to the
sign.
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The degree of f actually depends only on its direction field , namely, the normalized
vectors g(x) = f (x)

/|f (x)|. Since an isolated equilibrium x∗ has a neighborhood N ,
where f �= 0 except at x∗. When x ∈ ∂Bδ(x∗) ∼= S

n−1 the direction is well defined and can
be thought of as a map g : Sn−1 → S

n−1.

Example: Suppose f (x, y) = (y, x), and the point (x, y) is on the unit circle. The direction
of f is obtained by normalization:

g = f

|f | =
1√

x2 + y2
(y, x) = (sin θ, cos θ) =

(
cos
(π

2
− θ
)
, sin

(π
2
− θ
))

.

Consequently, g maps a point θ ∈ S
1 to the new angle ψ = π

/
2 − θ . The direction of

increasing θ is transformed to decreasing ψ . Since each point has one preimage, but the
orientation is reversed, deg(g) = −1.

Using the direction field we can define the

� index of an isolated equilibrium: Suppose x∗ is an isolated equilibrium of
a C1 vector field f and N is a neighborhood of x∗ for which f (x) �= 0
whenever x ∈ N\{x∗}. For each such x, let ξ = (x − x∗)

/|x − x∗| ∈ S
n−1

and g(ξ) ≡ f (x)
/|f (x)| so that g : Sn−1 → S

n−1 . The index of x∗ is

Ix∗(f ) ≡ deg (g) . (6.34)

Example: For x ∈ R
n, the vector field f = −x has a single equilibrium, x = 0. The

direction field is g(ξ) = −ξ for a unit vector ξ . Each unit vector has a unique preimage
under g and det(Dg) = (−1)n. Thus, I0(−x) = (−1)n.

These concepts lead to a profound result that relates a topological property of mani-
folds to vector fields.

Theorem 6.11 (Poincaré index). If M is a compact manifold, then the sum of the indices
of all equilibria of any smooth vector field that has at most a finite number of equilibria on
M is independent of the choice of the vector field and is determined by M alone. This sum
is the Euler characteristic of M .

This is proved in most topology texts; see, e.g., (Hirsch 1976; Hocking and Young
1961).

6.6 Poincaré–Bendixson Theorem
The classification of the possible behaviors of a dynamical system requires the classifica-
tion of its possible ω-limit sets. In general, this is extremely difficult—in fact, chaotic
dynamical systems are complicated precisely because their ω-limit sets are complicated
(see Chapter 7). However, the remarkable Poincaré–Bendixson theorem for flows in two
dimensions essentially says

There is no chaos in two dimensions.
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Σ

R

x1
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Figure 6.15. A flow leaving R through a section 1.

More specifically, this theorem implies that there are only three possibilities for ω-limit sets
in the plane: equilibria, periodic orbits, and separatrix cycles (recall §5.2). Many of our
previous examples have shown that an equilibrium can be an ω-limit set (for example, any
asymptotically stable equilibrium). By contrast, if the ω-limit set contains no equilibria,
then it turns out that the only other (compact) possibility is a periodic orbit.

Theorem 6.12 (Poincaré–Bendixson). Let D be a simply connected subset of R
2 and ϕ

be a flow on D. Suppose that the forward orbit of some p ∈ D is contained in a compact
set and that ω(p) contains no equilibria. Then ω(p) is a periodic orbit.

Proof. By Lemma 4.16, since the orbit of p is contained in a compact set, its ω-limit set is
nonempty, compact, and connected. Choose a point z ∈ ω(p). Now ω(z) ⊆ ω(p), since
by Lemmas 4.14–4.15, the ω-limit set is closed and invariant, and Uz ⊆ ω(p), as are all its
limit points. Sinceω(p) contains no equilibria, f (z) �= 0, and there exists a cross section of
the flow near z (recall §4.12). Let1 be a finite curve segment through z such that f (x) �= 0
for all x ∈ 1. We will show that Uz can intersect 1 only once and must be periodic. This
is proved using four lemmas.

Lemma 6.13. For any xo ∈ 1, a set of intersections of ϕt(xo) with 1 is monotone and
ordered with t; that is, if t1 < t2 < t3 are three intersection times, then the point ϕt2(xo) is
between ϕt1(xo) and ϕt3(xo) on 1.

Proof. Suppose the orbit of xo intersects 1 more than once. Let x1 = ϕt1(xo) be the first
intersection for t > 0. Note that t1 > 0 because 1 is transverse to the flow. Then consider
the curve C = {ϕt (xo) : 0 ≤ t ≤ t1} ∪ {1 between xo and x1}—this curve is a closed
non-self-intersecting loop and so divides the plane into two regions; see Figure 6.15. This
result is a consequence of the following nontrivial theorem.

Theorem 6.14 (Jordan curve). A simple closed curve (a set that is homeomorphic to S
1)

in R
2 separates R

2 into two connected components: one bounded, called the interior, and
one unbounded, called the exterior.

This theorem, though stated by Camille Jordan, was first correctly proved by Oswald
Veblen in 1905; it is proved in most topology textbooks (Hocking et al. 1961, Theorem 2.28).
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Continuing with the proof of the lemma, let R be the region interior to C. Since there
are no equilibria on 1 and the flow cannot cross Ux , the flow must either leave or enter
R through 1, as shown in Figure 6.15. In the former case, the flow leaves R and cannot
enter again; thus the next intersection of ϕt(xo) with 1, i.e., x2 cannot be in between xo and
x1, because then the trajectory would have to be in R for some t1 < t < t2. Similarly, if
the flow enters R on 1, then it can never leave again, and therefore x2 cannot be between
xo and x1. In conclusion, the set of intersections xk, k ∈ Z, is ordered monotonically
along 1.

The second lemma uses this monotonicity to show that the ω-limit set intersects 1 in
a simple way.

Lemma 6.15. ω(p) intersects a transversal 1 to a point in z ∈ ω(p) exactly once.

Proof. As above let z ∈ ω(p) and 1 be a transversal to f at z. By definition of the ω-limit
set, there is an infinite set of times tn, n = 1, 2, . . . , tn →∞, such that xn = ϕtn(p)→ z.
Since there are no equilibria in ω(p), and f is continuous, then f (x) �= 0 for x near z;
therefore, the orbit of every point x in some neighborhood of z must cross 1. Hence, the
times tn can be chosen so that xn ∈ 1. By Lemma 6.13, these intersection points are ordered
and therefore monotonically approach z. Since any monotone sequence on R has at most
one limit point,36 and since there is one already, 1 ∩ ω(p) = z.

The next lemma implies that because of this single intersection, there must be a periodic
orbit on the ω-limit set. Let z be a point on ω(p). By invariance Uz ⊂ ω(p), and since
ω(p) is closed, ω(z) ⊂ ω(p). If these two subsets intersect, then a periodic orbit ensues.

Lemma 6.16. If Uz and ω(z) have a point in common, then Uz must be a periodic orbit.

Proof. Let x ∈ Uz∩ω(z) be the assumed common point. Then, since x is not an equilibrium
by assumption, there is a transversal 1 at x. Now, x ∈ ω(z) so there is a sequence of times
tn such that ϕtn(z) ∈ 1 that limit on x. Since x ∈ Uz, there is an s such that ϕs(z) = x.
Letting sn = tn − s, then ϕtn(z) = ϕtn(ϕ−s(x)) = ϕsn(x) → x. Suppose that ϕs1(x) �= x;
then Lemma 6.13 implies that the next point, ϕs2(x) must be monotonically ordered on 1
and therefore be further from x. Consequently, the sequence ϕsn(x) must be ordered on
1 and move monotonically away from x, but this contradicts the fact that they limit on x.
Thus, ϕsn(x) = x. If s1 is the first such time, it must be nonzero since f (x) �= 0; moreover,
by uniqueness, the next time is s2 = 2s1. In conclusion, Ux = Uz is a periodic orbit with
period s1.

Lemma 6.17. If ω(p) contains a periodic orbit γ , then ω(p) = γ .

Proof. Let y ∈ γ , and construct a transversal 1 through y. Since ω(p) is closed and
connected, if there is a point in ω(p) that is not in γ , then by connectedness there must be a

36Let xn be a monotone sequence on R so that xn ≤ xn+1 for all n. Suppose that x∗ is a limit point; then xn ≤ x∗
for all n, since otherwise there would have to be a finite n for which xn ≤ x∗ < xn+1, and then it could not be a
limit point. Suppose y∗ �= x∗ is another limit point. Without loss of generality we can assume x∗ < y∗; however,
in this case there are no points limiting on y∗, since all xn ≤ x∗. Thus there is no other limit point.
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sequence of points yn ∈ ω(p)\γ that limit on y. A point yn close enough to y must have an
orbit that intersects 1; however, this contradicts Lemma 6.15, which says ω(p) intersects
1 precisely once.

With these four lemmas in hand, we are finally ready to prove the Poincaré–Bendixson
theorem.

Completion of the Proof of Theorem 6.12. For any point z ∈ ω(p), let x ∈ ω(z) ⊂ ω(p).
Since x is not an equilibrium, there is a transversal 1 and, according to Lemma 6.15, ω(p)
must intersect 1 precisely once. However, x is a limit point of the orbit of z, so there must
be an infinite sequence of times tn for which 1 ∈ ϕtn(z) → x. Since ω(p) is invariant,
Uz ⊂ ω(p), and since it intersects 1 precisely once, ϕtn(z) = x. As a result x = Uz ∩ω(z),
and so by Lemma 6.16 Uz is a periodic orbit. Accordingly, ω(p) contains a periodic orbit,
and finally by Lemma 6.17, ω(p) = Uz.

A simple corollary of Theorem 6.12 allows us to show that limit cycles must exist in
certain situations.

Corollary 6.18. If R is a bounded, positively invariant subset of D that contains no
equilibria, then it contains a limit cycle. The same holds for a negatively invariant subset.

Proof. The orbit of every point p in R satisfies the Poincaré–Bendixson theorem, and in
consequence ω(R) is a periodic orbit.

Example: Let
ẋ = y,

ẏ = −x + y(1− x2 − 2y2).
(6.35)

The only equilibrium is the origin. The rate of change of the polar radius for (6.35) is

ṙ = y2

2r
(1− x2 − 2y2).

When r2 = 1, then ṙ = −y4/2r ≤ 0, and when r2 = 1/2, then ṙ = y2x2/r ≥ 0. This
implies that the annulus R = {(x, y) : 2−1/2 ≤ r ≤ 1} is positively invariant—note that
even though ṙ = 0 at some points on the boundary ofR, orbits cannot leave the annulus. We
conclude there is at least one limit cycle in R. A numerical solution confirms our analysis;
see Figure 6.16.

Example (Hilbert’s sixteenth problem): The sixteenth of Hilbert’s 22 problems for the
twentieth century is to show that a polynomial vector field on R

2 has only finitely many
limit cycles (Hilbert 1900). Perhaps the simplest case corresponds to quadratic differential
equations in R

2; it is known that these can have as many as four limit cycles, but it has never
been proved that this is the maximum number, even though the proof has been announced
numerous times (Ilyashenko and Yakovenko 1995)! An example of four limit cycles was
given in (Shi 1988):

ẋ = λx − y + ax2 + bxy + y2,

ẏ = x + x2 + exy,
(6.36)
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Figure 6.16. Phase portrait of (6.35) showing the limit cycle and the boundaries of R.

where a = −10, b = 5 − 10−13, e = −25 + 9 · 10−13 − 8 · 10−52, and λ = 10−200.
Obviously, it is virtually impossible to study this system numerically! This system has
two equilibria, the origin and (0, 1); both are unstable foci. The first is surrounded by a
single local limit cycle, and the second has three—it is known that this is the maximum
possible number of “local” limit cycles for a quadratic system. However, since not every
limit cycle need enclose a single equilibrium, a more general system might also have more
limit cycles.

We have seen that ω-limit sets in R
2 can be equilibria, periodic orbits, or heteroclinic

orbits. As we show next, these are the only possibilities.

Theorem 6.19. Let D be a simply connected, open subset of R
2, and suppose ϕ is a flow

on D that has only finitely many equilibria. Suppose that the forward orbit of some p ∈ D
is contained in a compact set. Then ω(p) is either (1) an equilibrium, (2) a periodic orbit,
or (3) the union of heteroclinic orbits (a separatrix cycle).

Proof. If ω(p) contains only equilibria, then it must be a single equilibrium, since it is
connected and the equilibria are isolated. If ω(p) contains no equilibria, then by Theorem
6.12 it is a periodic orbit. The only remaining case is when ω(p) contains both equilibria
and “regular points,” that is, points for which f (x) �= 0. In this case ω(p) cannot contain
any periodic orbits, since by Lemma 6.17 it would then be periodic and not contain any
equilibria. Since ω(p) is connected, if it contains an equilibrium, it must contain an orbit
that limits on the equilibrium. Moreover, if z ∈ ω(p) is a regular point, then ω(z) contains
an equilibrium since otherwise ω(z) would be periodic, but this violates our assumption.
Moreover, ω(z) cannot contain any regular points, since if it did, there would be infinitely
many points onUz ⊂ ω(p) that intersect a section at the regular point, violating Lemma 6.15.
Therefore, every regular orbit in ω(p) must limit on an equilibrium. Similarly, since ω(p)
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is connected and invariant, the α-limit set of each regular orbit must be an equilibrium in
ω(p).

The Poincaré–Bendixson theorem can be proved more generally when the set D is
any two-dimensional manifold—with only one change: if the manifold is the torus, then
ω(x) could be the entire torus. This happens, for example, for the flow (take θi mod 2π),

θ̇1 = 1, θ̇2 = ν,

on the two-dimensional torus, when the rotation number, ν, is irrational; see §7.2.

6.7 Liénard Systems
A nonlinear oscillator of the form

ẍ + f (x)ẋ = −g(x)
corresponds to a system with a nonlinear restoring force, −g, and generalized damp-
ing/forcing f . It is a generalization of the van der Pol oscillator that was introduced in §1.4.

Using the nonstandard change of variables y = ẋ+F(x), whereF is the antiderivative
of f , this second-order equation can be written as the Liénard system,

ẋ = y − F(x),

ẏ = −g(x). (6.37)

It is easy to see that if F(x) ≡ 0, the system is Hamiltonian (recall (1.13)), with the energy

H(x, y) = 1

2
y2 +G(x), G(x) ≡

∫
g(x)dx.

When F �= 0, the energy changes at the rate

dH

dt
= −g(x)F (x). (6.38)

Therefore, energy drains from the system when gF > 0; otherwise the energy grows. For
the van der Pol case, gF = x2

(
x2
/

3− 2µ
)
, so that the system is driven for small x and

dissipative for large x.
The French engineer A. Liénard studied the special case g(x) = x in 1928. His result

goes beyond the Poincaré–Bendixson theorem because it gives conditions under which his
system has a unique limit cycle.

Theorem 6.20 (Liénard). Suppose that F and g are C1 and

(i) F and g are odd, so that F(0) = g(0) = 0;

(ii) xg(x) > 0 for x �= 0;

(iii) a is the unique positive zero of F and F(x) < 0 for 0 < x < a;

(iv) F(x) increases monotonically for a < x and F(x)→∞ as x →∞.

Then the system (6.37) has a unique, stable limit cycle.
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Figure 6.17. Nullclines of Liénard’s system (6.37).

Liénard’s hypotheses imply that g(x) = 0 only at x = 0. The sign assumption means
that physically g represents a restoring force, so that when x > 0, then ẏ < 0. This implies
that the only equilibrium is the origin. To prove the theorem, we first show that every
trajectory encircles this equilibrium.

Lemma 6.21. Divide the plane into four regions bounded by the nullclines: R1 = {(x, y) :
x > 0, y > F(x)}, R2 = {(x, y) : x > 0, y < F(x)}, R3 = {(x, y) : x < 0, y < F(x)},
and R4 = {(x, y) : x < 0, y > F(x)}. Then every trajectory beginning in R1 moves to R2,
then to R3, and then to R4.

Proof. The regions are sketched in Figure 6.17. The flow is to the right in R1 and R4

since y > F(x) and is to the left in R2 and R3. It is down in R1 and R2 since x > 0
and up in R3 and R4. Consider a trajectory U that begins in R1. It is moving to the
right and therefore must eventually hit the y = F(x) nullcline and subsequently enter
R2. Note that since x > 0, y is monotonically decreasing; at the nullcline, the flow is
vertically down. In fact, U must leave a neighborhood of this nullcline in a finite time
and cannot return so long as x > 0, because to do so it would have to be coming from
above. Thus, x decreases, and after crossing the nullcline it must decrease at a rate that
is bounded from above by some negative constant, so that ẋ ≤ −c. Therefore U reaches
x = 0 in a finite time. Note that x is monotonically decreasing and so bounded by the value
where it first enters R2. Thus, the trajectory intersects the negative y-axis at a finite value
and enters R3. The equations are symmetric under the symmetry S(x, y) = (−x,−y),
and so the same arguments imply that U must continue through R3 to R4 and finally back
to R1.

Lemma 6.22. A trajectory U beginning at (0, yo) is periodic if and only if it intersects the
negative y-axis at (0,−yo).
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Proof. This follows from symmetry of the equations. Let y ′ = P(yo) be the point at which
U first intersects the negative y-axis. By uniqueness, the trajectories cannot cross and so
y ′ must vary monotonically with yo—in fact, P must be monotone decreasing, since once
there is a trajectory U that goes from yo to y ′, then trajectories for larger yo must be outside
this; hence a larger yo leads to a more negative y ′. By symmetry, a trajectory starting at
(0, y ′) will hit the positive y-axis as though it started at the point−y ′ flowing forward with
the map P and then flipped signs again, i.e., at the point y ′′ = −P(−y ′). So that the orbit
is periodic, y ′′ = yo = −P(−P(yo)). One solution occurs when P(yo) = −yo, which
is the desired value. On the other hand, when −P(yo) < yo, then since −P is monotone
increasing,37 −P(−P(yo)) < −P(−yo) < yo, so the orbit is not periodic. Similarly,
−P(yo) > yo also means the orbit is not periodic. In conclusion, the orbit is periodic only
when y ′ = −yo.

Proof of Theorem 6.20. Consider a trajectory U beginning at (0, yo) that crosses the
nullcline at (x2, F (x2)) and then the negative y-axis at (0, y4). Our goal is to show that
there is a unique choice yo = y∗ for which y4 = −y∗, for then by Lemma 6.22,U is periodic.

Consider the time rate of change of the energy H along the trajectory, (6.38). The
change in energy along the trajectory up to a time t4 when y = y4 is

8H(yo) = H(0, y4)−H(0, yo) =
∫ t4

0

dH

dt
dt = −

∫ t4

0
g(x(t))F (x(t))dt.

So that the trajectory is closed, we must have yo = −y4 = y∗, but thenH(0, y4) = H(0, yo),
and so 8H(y∗) = 0. Since g(x) > 0, the only way this can happen is if F is positive on
some part of the trajectory and negative elsewhere. In particular x2 > a since otherwise F
is always negative on U, which would give a positive value to 8H .

We want to argue that8H is a monotonically decreasing function of yo when x2 > a.
Break the trajectory between y0 and y4 into three pieces,A1 from (0, yo) to (a, y1),A2 from
(a, y1) to (a, y3), and finally A3 from (a, y3) to (0, y4); see Figure 6.18. The integral for
8H then has three terms:

8H = 8H1 +8H2 +8H3.

The pieces A1 and A3 must be graphs over x since x(t) is either monotone increasing or
decreasing. Consequently, the change of integration variables

dt = dx

y − F(x)

is well defined. For 8H1 this gives

8H1 =
∫ a

0

g(x)(−F(x))
y(x)− F(x)

dx.

Note that if yo increases, then y(x) is larger on the entire segment A1, and the remainder of
the integrand is unchanged; thus the (positive) integrand decreases, and8H1 is a monotone

37A function is monotone increasing (resp., decreasing) when x > y implies that f (x) > f (y) (f (x) < f (y)).
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Figure 6.18. Construction of the limit cycle for (6.37).

decreasing function of yo. Similarly, as yo increases, y4 must become more negative. Since
y − F(x) < 0 on A3, the term

8H3 =
∫ 0

a

g(x)(−F(x))
y(x)− F(x)

dx =
∫ a

0

g(x) |F(x)|
|y(x)− F(x)|dx

is again a decreasing function of yo, since the denominator increases in magnitude. Finally,
consider the middle term. Here, y can be used as the integration variable, setting

dt = − dy

g(x)
,

so that

8H2 = −
∫ y1

y3

F(x(y))dy. (6.39)

Uniqueness again implies that for each y, x(y) must monotonically increase with yo, since
otherwise the trajectories would cross. Since F(x) grows monotonically with x for x > a,
the integrand is negative and becomes more negative as yo increases. Since each term in
8H decreases as yo increases, 8H is a monotone decreasing function.

To show that 8H has a zero, we argue that 8H2 →−∞ as yo →∞. The reason is
that y1 must approach infinity with yo. This follows because the time t1 to reach a is finite;
indeed, since ẋ > y, t1 < a

/
y1. Letting gmax = max0≤x≤a g(x), then

y1 = yo −
∫ t1

0
g(x(t))dt > yo − a

y1
gmax →∞
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as yo →∞. A similar argument shows that y3 → −∞. Because F is positive on A2 and
the limits of integration grow without bound, (6.39) is the integral of a negative function
over an arbitrarily large interval as yo → ∞. Indeed, the integrand can be bounded away
from zero apart from a small interval at the endpoints. Consider the trajectory for x ∈ [a, b]
for some a < b < x2. Since F is increasing and this segment is above the nullcline, its
slope has the bound

−dy
dx
= g(x)

y − F(x)
≤ g(x)

y − F(b)
.

Denoting y(b) = y1 − δ, separating variables, and integrating along the trajectory then
gives

−
∫ y1−δ

y1

(y − F(b)) dy ≤
∫ b

a

g(x)dx ⇒ δ

(
y1 − 1

2
δ − F(b)

)
≤ gmax(b − a),

where gmax is the maximum value of g on [a, b]. Since y(b) > 0, then δ < y1 and finally

δ ≤ 2gmax(b − a)

y1 − 2F(b)
.

Consequently as y1 →∞, δ→ 0, and the energy change becomes

|8H2| =
∫ y1

y3

F(x(y))dy >

∫ y1−δ

y3+δ
F (x(y))dy > F(b) |y1 − y3 − 2δ| ,

which is unbounded.
Since the function 8H is positive for small yo and monotonically approaches−∞ as

yo increases, it has a unique zero, y = y∗. This corresponds to the promised limit cycle.
When yo < y∗, 8H > 0 and y4 < −yo. By uniqueness, the trajectory next intersects

the positive y-axis at a point between yo and y∗. This implies that trajectories inside the
limit cycle spiral outward. Similarly, trajectories outside spiral inward. We conclude that
the limit cycle is stable.

Example: Consider the system

ẋ = y − x(x2 − 1),
ẏ = −x. (6.40)

These functions satisfy the conditions of Theorem 6.20 and so there is a unique limit cycle.
The phase portrait is shown in Figure 6.19.

Example: Liénard’s result does not apply to this system:

ẋ = y + x cos x,
ẏ = − sin x.

(6.41)

Here there are equilibria at (nπ, (−1)n+1nπ); these are saddle points for odd n and spiral
sources for even n. A numerical plot of the phase portrait, Figure 6.20, shows that there
is a stable limit cycle encircling the origin. Note that one branch of the unstable manifold
of the saddles at ±(π, π) has the limit cycle as an ω-limit set. The reader is encouraged
to examine the phase space for larger values of (x, y) to see that there is a succession of
nested, ever-larger limit cycles.
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Figure 6.19. Limit cycle for (6.40).
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Figure 6.20. Phase portrait of (6.41).

6.8 Behavior at Infinity: The Poincaré Sphere
In previous sections and chapters a local picture of the dynamics in the plane was obtained
by techniques such as linearization, center manifold reduction, polar coordinate transfor-
mations, and Poincaré maps. In addition, the Poincaré–Bendixson theorem provides a
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Figure 6.21. Coordinates for the Poincaré circle.

complete classification of the asymptotic behavior of the bounded orbits. A remaining task
is the study of unbounded orbits. Although unboundedness often indicates a breakdown in
the model of a physical system, studying the character of “equilibria” at infinity can augment
our understanding of dynamics in the finite plane.

The behavior near ±∞ for an ODE on R is extremely simple. If all the equilibria
of f are contained in a bounded interval, then when x is large enough, the sign of f is
fixed, and orbits move monotonically toward or away from infinity depending upon sgn(f ).
Nevertheless, as a warm-up for the planar case, it is useful to study this behavior analytically.

One simple idea for analyzing the motion near infinity is to transform coordinates so
that infinity is mapped to a finite point. For example, the transformation x → ξ = 1

/
x maps

∞ to the origin and the dynamics to ξ̇ = −ξ 2f (ξ−1). However, this transformation has the
misleading property that both +∞ and −∞ map to the same point, ξ = 0, and there is no
reason why a function should have similar behaviors at both places.38 Poincaré developed a
transformation without this drawback; it maps the extended line, including the two “points”
at infinity, to a compact interval. The construction begins by embedding the phase line
R into the plane with coordinates (X,Z) with the map x → {(X,Z) : x = X,Z = 1},
as shown in Figure 6.21. This line is then projected onto the half-circle S

+ = {(X,Z) :
X2+Z2 = 1, Z ≥ 0}, using a line from the origin as shown in the figure. This has the effect
of mapping x = +∞ to θ = 0 and x = −∞ to θ = π . The projection is a homeomorphism

Y : R ∪ {∞,−∞} → S
+

whose domain includes the two points at infinity. Similar triangles imply that if Y(x) =
(X,Z), then

Z

1
= 1√

1+ x2
= cos θ, (6.42)

where θ ∈ [0, π ] is the polar angle. Equivalently, x = cot θ .
For a one-dimensional ODE, ẋ = f (x), the transformation x = cot θ gives the system

dθ

dt
= − 1

csc2 θ

dx

dt
= − sin2 θ f (cot θ) = g(θ).

38The stereographic projection has the same problem: infinity is mapped to the North Pole.
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Iff has a power law behavior near infinity, f ∼ axm+O(xm−1), theng(θ) ∼ −a sin2 θ cosm θ,
which for θ → 0+ gives

θ̇ = −aθ2−m +O(θ1−m). (6.43)

If m > 2, (6.43) has a singular point at θ = 0, and when a > 0, this implies that θ reaches
zero in a finite time—therefore, the resulting solution is not a complete flow; recall §4.2.
Completeness can be restored, however, by rescaling time to find a topologically equivalent
system for which the vector field is bounded as θ → 0; recall §4.3. Defining the new time
variable τ so that dτ = θ1−mdt > 0 for θ > 0 transforms (6.43) into

dθ

dτ
= dt

dτ

dθ

dt
= −aθ.

The new system is no longer singular at θ = 0; instead, this point is stable when a > 0
and unstable when a < 0, as qualitatively seen from the direction field. Hence, the original
ODE effectively has an equilibrium “at infinity” with this same property. This extension of
the dynamics to infinity by defining a topologically equivalent dynamics is called blowing
up the singularity.

To do the same for systems in R
2, the projection Y must be generalized to one more

dimension; this is accomplished by a projection from R
2 to the northern hemisphere of a

sphere, called the Poincaré sphere,

S
2+ = {(X, Y, Z) : X2 + Y 2 + Z2 = 1, Z ≥ 0}.

Geometrically, this corresponds to embedding the (x, y) plane in R
3 as the plane Z = 1

that is tangent to the North Pole of S
2+. For each (x, y), a unique point in S

2+ is obtained
by projecting through the center of the sphere, as shown in Figure 6.22. In this case the
projection is

x = X

Z
, y = Y

Z
. (6.44)
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Note that “infinity” now corresponds to the equatorial circle, Z = 0. As in (6.42), similar
triangles imply that Z = (1+ x2 + y2

)−1/2
. Combining this with (6.44) yields

X = x√
1+ x2 + y2

, Y = y√
1+ x2 + y2

, Z = 1√
1+ x2 + y2

.

The planar system (6.1) is transformed into a set of equations in (X, Y, Z) that represent
motion along the surface of the Poincaré sphere:

Ẋ = ẋ√
1+ x2 + y2

− x(xẋ + yẏ)

(1+ x2 + y2)3/2
= Z

(
(1−X2)P −XYQ

)
,

Ẏ = Z
(−XYP + (1− Y 2)Q

)
,

Ż = −Z2 (XP + YQ) ,

(6.45)

where P and Q are evaluated at (X
/
Z, Y

/
Z). These equations have an invariant, because

the motion takes place on the sphere:

d

dt

(
X2 + Y 2 + Z2

) = 0.

Consequently, the system (6.45) contains one superfluous equation.
The topological properties of the flow near∞ correspond to those of the system (6.45)

near Z = 0. If, for example, the vector field (P,Q) has power law behavior near ∞, say,
with maximum degree m, then P(X

/
Z, Y

/
Z) ∼ Z−m + O(Z−m+1) near Z = 0. This

implies that (6.45) has a singularity nearZ = 0 of the formZ1−m. As before, a topologically
equivalent system can be obtained by rescaling time; define the regularization

τ =
∫
Z1−mdt, ⇒ d

dt
= Z1−m d

dτ

forZ > 0. Note that τ(t) is monotone increasing, so this transformation is an appropriate one
for topological equivalence. When Z = 0, the transformation is no longer an equivalence;
however, it does give a system that exhibits the limiting behavior of the original one as
Z→ 0 in a natural way. Defining the functions

P ∗(X, Y, Z) = ZmP

(
X

Z
,
Y

Z

)
, Q∗(X, Y, Z) = ZmQ

(
X

Z
,
Y

Z

)
,

(6.45) becomes

dX

dτ
= (1−X2)P ∗ −XYQ∗ = (Y 2 + Z2)P ∗ −XYQ∗,

dY

dτ
= (1− Y 2)Q∗ −XYP ∗ = −XYP ∗ + (X2 + Z2)Q∗,

dZ

dτ
= −Z(XP ∗ + YQ∗).

(6.46)
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The equator is no longer a singularity for (6.46)—it is an invariant circle instead. Moreover,
for Z = 0 all the terms in the equations for P ∗ and Q∗ are zero except the highest order:

P ∗(X, Y, 0) = Pm(X, Y ), Q
∗(X, Y, 0) = Qm(X, Y ),

where Pm and Qm are the degree m terms in the original functions P and Q. The (X, Y )
motion on this circle is given by

dX

dτ
= −Y (XQm − YPm) ,

dY

dτ
= X (XQm − YPm) .

“Infinity” has become an invariant manifold, a circle, with nontrivial dynamics. There are
equilibria at infinity only when

XQm − YPm = 0 (6.47)

(since X2 + Y 2 = 1 on the equator, X and Y cannot both be zero), and the motion is
counterclockwise when XQm − YPm > 0. Note that if (X, Y ) is an equilibrium, then so
is (−X,−Y ), i.e., the diametrically opposite point, since (6.47) is homogeneous of degree
m+ 1. Moreover, the sign of XQm − YPm flips upon reflection through the origin if m is
even but has the same sign when m is odd. For this reason, when m is odd the diametrically
opposed points have the same topological types on the circle at infinity, but they have
opposite types when m is even.

One way to treat the motion near an equilibrium at infinity is to shift coordinates so
that the origin of the new coordinate system is at the equilibrium. It is easier to simply do
another Poincaré projection onto a plane tangent to the Poincaré sphere at either the X-axis
or the Y -axis. For example, if the equilibrium occurs for some Y > 0, the transformation

ξ = X

Y
, ζ = Z

Y

projects (X, Y, Z) onto the plane tangent to the sphere at Y = +1; see Figure 6.23. The
differential equations in the new coordinate system become:

ξ̇ = Ẋ

Y
− X

Y 2
Ẏ = 1

Y

(
(Y 2 + Z2)P ∗ −XYQ∗)− X

Y 2

(−XYP ∗ + (X2 + Z2)Q∗)

= 1

Y

(
P ∗ − X

Y
Q∗
)
= 1

Y

(
P ∗ − ξQ∗) ,

ζ̇ = Ż

Y
− Z

Y 2
Ẏ = 1

Y

(−ZXP ∗ − ZYQ∗)− Z

Y 2

(−XYP ∗ + (X2 + Z2)Q∗)∗
= − Z

Y 2
Q∗ = − 1

Y
ζQ∗.

Recalling that P ∗ = ZmP = YmζmP and similarly for Q∗, each of these ODEs has a
leading factor Ym−1 which can be eliminated by rescaling time once more. Noting that
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X
/
Z = ξ

/
ζ , Y

/
Z = 1

/
ζ , obtain

ξ̇ = ζmP

(
ξ

ζ
,

1

ζ

)
− ξζmQ

(
ξ

ζ
,

1

ζ

)
,

ζ̇ = −ζm+1Q

(
ξ

ζ
,

1

ζ

)
.

An equilibrium with Y < 0 can be treated with the same definitions for ξ and ζ . However,
this means that positive ξ and ζ correspond to negative X and Z—the projection is through
the origin, so that the diametrically opposite points are equivalent. Finally, since time has
been rescaled to eliminate the factor Ym−1, when m is even this factor is negative and the
direction of time is reversed.

If there is an equilibrium at Y = 0, we could similarly define η = Y
/
X and ζ = Z

/
X

to obtain, finally,

η̇ = Q∗ − ηP ∗ = ζmQ

(
1

ζ
,
η

ζ

)
− ηζmP

(
1

ζ
,
η

ζ

)
,

ζ̇ = −ζP ∗ = −ζm+1P

(
1

ζ
,
η

ζ

)
.

The dynamics can be summarized with a sketch obtained by looking down on the Poincaré
sphere from the North Pole to view the (X, Y ) plane—Figure 6.24. This gives a picture of
the entire plane, together with the circle at infinity.
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Figure 6.24. Global phase portrait, looking down from the North Pole. When m
is odd, the direction of time is not reversed for diametrically opposed equilibria.

Example: For a linear system
ẋ = ax + by,

ẏ = cx + dy,
(6.48)

the equilibria at∞ are determined by

0 = YP ∗ −XQ∗ = −cX2 + (a − d)XY + bY 2,

where P ∗ = ZP = aX+bY andQ∗ = cX+dY . The intersections of this quadratic curve
with the circle X2 + Y 2 = 1 are a bit messy in the general case. Consider a concrete case(1 1

2 1

)
. Equilibria occur when −2X2 + Y 2 = 1 − 3X2 = 0, giving (±1/

√
3,±2/

√
3, 0).

Since these equilibria are not at Y = 0, the second transformation gives the dynamics on
the (η, ζ ) plane, ζP = a + bη, ζQ = c + dη, so

η̇ = ζQ− ηζP = 2− η2,

ζ̇ = −ζ 2P = −ζ − ηζ.

Note that the equilibria are at (η, ζ ) = (±2, 0), which is the same obtained by noting that
η = Y

/
X. The linearization about the equilibrium is

Df =
( −2η∗ 0

0 −1− η∗

)
.

Thus the equilibrium (2, 0) is a stable node with λ = −4,−3 and (−2, 0) is an unstable
node with eigenvalues λ = 4, 1. Looking at the Poincaré sphere from the top gives the
global phase portrait in Figure 6.25.
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Figure 6.25. Global phase portrait for the linear system (6.48) with a = b = d

and c = 2.

Example:
ẋ = −4y + 2xy − 8,
ẏ = 4y2 − x2.

(6.49)

The phase portrait for this system in the finite plane is shown in Figure 6.26. There are two
finite equilibria, (4, 2) and (−2,−1), and the Jacobian is

Df =
(

2y∗ −4+ 2x∗
−2x∗ 8y∗

)
,

so that the linear matrices are

Df |(4,2) =
(

4 4
−8 16

)
, λ = 8, v =

(
1
1

)
, λ = 12, v =

(
1
2

)
,

Df |(−2,−1) =
( −2 −8

4 −8

)
, λ = −5± i

√
23,

so that there is an unstable node and a stable focus. The equilibria at infinity are determined
by

0 = YPm −XQm = Y (2XY)−X(4Y 2 −X2) = X
(−2Y 2 +X2

)
.

There are six equilibria at infinity given by

(X, Y ) =
{(

s1

√
2

3
, s2

1√
3

)
, (0, s3) : si ∈ {−1, 1}

}
.
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Figure 6.26. Phase portrait for (6.49). The basin of attraction of the stable focus
appears to be all points below some curve emanating from the unstable node.

Converting to equations on the (ξ, ζ ) plane gives (for the equilibria with Y > 0)

ζ 2P

(
ξ

ζ
,

1

ζ

)
= 2ξ − 4ζ − 8ζ 2,

ζ 2Q

(
ξ

ζ
,

1

ζ

)
= 4− ξ 2.

So the differential equations are

ξ̇ = ζ 2P − ξζ 2Q = 2ξ − 4ζ − 8ζ 2 − 4ξ + ξ 3 = −2ξ − 4ζ − 8ζ 2 + ξ 3,

ζ̇ = −ζ 3Q = −ζ(4− ξ 2).

Note that there are equilibria at (ξ, ζ ) = (0, 0) and (±√2, 0), as expected. Linearizing
gives

Df |(0,0) =
( −2 −4

0 −4

)
(node),

Df |(±√2,0) =
(

4 −4
0 −4

)
(saddle).
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Y

Figure 6.27. Global phase portrait for (6.49). There are six fixed points at infinity;
four are saddles, (0,−∞) is a source, and (0,∞) is a sink. The basin of the sink is shown
in light gray, and the unstable set of the source is shown in dark gray. The boundaries of
these sets are formed from the stable and unstable manifolds of the saddles at infinity. The
spiral sink at (−2,−1) has a basin that includes both the dark gray and white regions.
Therefore, the points (−2,−1) and (0,∞) are the ω-limit sets of every orbit, apart from
those on the separatrices that form the basin boundaries.

Since m is even, the stability for the diametrically opposed points with Y < 0 are the
opposite of the corresponding Y > 0 points, since the direction of the flow is reversed by
our transformations. The global phase portrait can be constructed by noting that the stable
and unstable manifolds of the four saddle points at infinity define separatrices that divide
the plane into sectors; see Figure 6.27.

6.9 Exercises
1. Suppose that P is homogeneous of degree n and Q is homogeneous of degree m in

system (6.6). Use the separation of variables technique as in (6.8)–(6.9) to classify
the structure of the flow as r → 0 depending upon n and m.

2. Show that as r → 0 the leading terms in the Vinograd example (4.17) are topologically
equivalent to (6.12) on the punctured plane R

2\{0}.
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3. Determine the nature of the equilibria of the following systems on R
2. Be as specific

as you can. Compare your analysis with numerical phase plane plots.

(a)
ẋ = 2y − xy − 4
ẏ = −4y2 + x2 , (b)

ẋ = 2x2 + y2 − 1
ẏ = −x ,

(c)
ẋ = x2 + y2

ẏ = y + x2 , (d)
ẋ = y2 + x3

ẏ = y + x2 .

4. As discussed in §1.2, a Lotka–Volterra model for predator–prey interactions is given
by

ẋ = x(α − βy),

ẏ = y(−γ + δx),
(6.50)

where α, β, γ, δ > 0. Here, x represents the prey population with a positive net birth
rate α and y represents the predator population, which dies off if its food source is
absent.

(a) Show that this model has two equilibria, a saddle and center, and find the global
stable and unstable manifolds of the saddle.

(b) Show that the linear center is actually a topological center by using polar coor-
dinates centered on the equilibrium and computing G (6.9).

(c) Show that (6.50) is not a Hamiltonian system.

(d) Show that there exists an invariant for (6.50) using the one-form (1.26) and
setting α = F(x, y)dH for suitable choice of F . Plot the contours of H in the
positive quadrant.

(e) From (d) you can conclude that every orbit is periodic. Find the average predator
population over the period, T , of an orbit by using∫ T

0
dt
ẋ(t)

x(t)
=
∫ T

0
dt (α − βy(t)).

Similarly, find the average prey population.

5. Suppose a flow ϕ has a reversor S and an orbit U = {ϕt(x) : t ∈ R}.
(a) Show that Ũ = {S ◦ ϕ−t (x) : t ∈ R} is also an orbit of ϕ.

(b) Show that the saddle equilibria of (6.28) are a symmetry-related pair.

(c) Suppose the orbitU is symmetric: U∩Fix(S) �= ∅. Show thatU and Ũ coincide.

(d) Suppose γ is a symmetric periodic orbit of ϕ. Show that γ has at least two
points on Fix(S).

(e) Suppose that x∗ is a symmetric equilibrium. Show that S(Ws(x∗)) = Wu(x∗).

6. (a) Show that if x∗ is a symmetric equilibrium of a reversible system, then whenever
λ is an eigenvalue of the linearization at x∗, so is −λ.

(b) Suppose x ∈ R
3. Using the result of (a), find the most general form of the

characteristic polynomial of any symmetric equilibrium.
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(c) Show that the three-dimensional system

ẋ = y + bz+ ax(y − bz),

ẏ = cx + x2 + 2yz,
ż = b−1

(
cx − x2 − 2yz

)
is reversible with the reversor S(x, y, z) = (−x, bz, b−1y).

(d) Find the fixed sets of S. Are there symmetric equilibria? Verify the eigenvalue
property from (a) for each symmetric equilibrium.

7. Study the behavior of the system (6.19) near the equilibria at (x, y) = (±√ω, 0).
Note that the system is symmetric under the reflection S(x, y) = (−x,−y), so, using
the results of Exercise 5, it is necessary to analyze only one of these equilibria.

8. Prove that when p, q = o(r), there is a ball Bδ(0) such that (6.13) has a trajectory
ϕt(r, 0) ∈ Bδ(0) for 0 ≤ t ≤ T where ϕT (r, 0) = (r(T ), 2π). This fact is used in the
proof of Lemma 6.3 to assert that there is a trajectory that remains in Bδ(0) either as
t →∞ or as t →−∞.

9. The tokomak is a toroidally shaped magnetic confinement device for plasma and will
probably be the first device to produce net energy from controlled nuclear fusion
reactions. One of the problems with confining plasma using magnetic fields is the
plethora of instabilities that occur. One of these is called a “sawtooth oscillation.”
This oscillation is caused by helical disturbance in the plasma current and magnetic
fields that results in a redistribution of the plasma temperature. A simple model that
accounts for this physics is (Bora and Sarmah 2008)

3

2
nṪe = σE2

‖T
3/2
e − νnT 1/2

e A− βnT 5/2
e ,

Ȧ = γ

(
Te

Ts
− 1

)
A.

(6.51)

The dynamical variables are Te the electron temperature and A the amplitude of the
instability mode. The remaining parameters are assumed to be constant: n the plasma
density, σE2

‖ the ohmic heating due to a toroidal electric field, ν a rate of temperature
redistribution, β a rate of energy diffusion, γ the growth rate of the instability, and
Ts its temperature threshold.

(a) Show that by defining appropriate scaled variables, τ = at, x = bTe, and
y = cA, the system (6.51) can be reduced to

ẋ = (1− µx)x3/2 − x1/2y,

ẏ = ρ(x − 1)y.

Physically, x and y are nonnegative, so the phase space for this system is the
positive quadrant. We will assume that 0 < µ < 1 and ρ � 1.

(b) Show that this system has three equilibria. Linearize about the equilibrium in
the interior of the phase space and study its stability properties. Show that it is
an unstable focus when ρ is large enough, provided that µ < 1/2.
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(c) Find a positively invariant region that encloses the unstable focus. This can be
essentially done with a triangle formed from lines y = 0, y = c(1− µx), and
y = dx − e for suitable choices of c, d, e, except for a neighborhood of the
origin. Exclude the origin from your region by a curve that connects the first
and second lines.

(d) Argue that the Poincaré–Bendixson theorem implies that this system has a limit
cycle inside your region. This limit cycle is the “sawtooth oscillation.”

(e) Confirm your conclusions with a computer study of the dynamics. A graph of
x(t) will show a sawtooth shape if ρ is large enough.

10. Consider the system

ẋ = λx − y − xr2 + λ
x3

r3
,

ẏ = x + λy − yr2 + λ
x2y

r3
,

where r is the polar radius. Prove that this has a stable limit cycle when λ > 0.
(Hint: Transformation to polar coordinates will be useful; you should be able to find
an annulus that is guaranteed to contain a limit cycle.) Plot some orbits numerically
as λ varies to verify your conclusions.

11. Suppose x∗ is an isolated, nonhyperbolic node. Prove the validity of Bendixson’s
formula (6.31).

12. Consider the system

ẋ = x − y − x2(x + 3y)− y2(x + y),

ẏ = x + y + x2(x − y)− y2(x + y).

(a) Show that the equilibrium at the origin is an unstable focus.

(b) Using polar coordinates, find an annulus that is guaranteed, by Corollary 6.18,
to contain a limit cycle.

(c) Investigate the dynamics numerically to confirm your conclusions.

13. Investigate Shi’s problem (6.36) with (a, b, e) = (−10, 5,−25) as λ increases from
zero. Explore the limit cycles using your favorite phase plane software.

14. Construct the global phase portrait for the system (4.46):

ẋ = y + x(1− y2),

ẏ = (1− y2)(y − x).

You should verify the claim in §4.9 that the ω-limit set for points in the strip R =
{(x, y) : |y| < 1, (x, y) �= (0, 0)} is disconnected.





Chapter 7

Chaotic Dynamics

It may happen that slight differences in the initial conditions produce very great
differences in the final phenomena; a slight error in the former would make an
enormous error in the latter. Prediction becomes impossible and we have the
fortuitous phenomena. (Henri Poincaré 1914)

When our results concerning the instability of nonperiodic flow are applied to
the atmosphere, which is ostensibly nonperiodic, they indicate that prediction
of the sufficiently distant future is impossible by any method, unless the present
conditions are known exactly. In view of the inevitable inaccuracy and incom-
pleteness of weather observations, precise very-long-range forecasting would
seem to be non-existent. (Edward Lorenz 1963)

The Poincaré–Bendixson theorem in §6.6 implies that theω-limit sets of the bounded motion
of a flow in the plane are quite simple: equilibria, periodic orbits, or separatrix cycles. There
is no such simple categorization of the possible limiting behavior of dynamics in R

3. Indeed,
as we discussed in §4.10, the Lorenz system has an attractor that appears in numerical studies
to be aperiodic and have an extremely complicated geometric structure. The Lorenz attractor
is a prototype for a chaotic and strange set.

Informally, the term chaos means effectively unpredictable long-time behavior in a
deterministic dynamical system because of sensitivity to initial conditions. To formulate
this mathematically, we have to give precise meanings to “unpredictable” and “sensitive
dependence.” Each of these terms has several possible mathematical definitions that more
or less capture the concept and are more or less easy to verify and to compute.

7.1 Chaos
A dynamical system is “chaotic” on a given invariant set X for a flow ϕ when it satisfies
certain properties. Thus to apply this concept, we must first identify an invariant set. Of
course, X could be a very small set in the phase space (even one of zero measure), and then
the assertion of chaos on X would not necessarily be of much practical importance.

243
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The least restrictive definition of sensitive dependence is that nearby trajectories even-
tually separate:

� Sensitive dependence on initial conditions: A flow ϕ exhibits sensitive de-
pendence on an invariant set X if there is a fixed r such that for each x ∈ X

and any ε > 0, there is a nearby y ∈ Bε(x) ∩X such that |ϕt (x)− ϕt(y)| > r

for some t ≥ 0.

The dynamics of a system with sensitive dependence is difficult to predict: no matter how
precisely an initial condition is specified, any small error may lead to a large one (at least of
size r) after enough time. Sensitive dependence does not guarantee that the error will grow,
just that there exists a nearby point with this property. Asystem with sensitive dependence is
difficult to simulate on a computer, since a small error, such as that arising from representing
a real number in floating point, may eventually give rise to a “big” error—the practical
questions are, of course, how long does this take and how often does it occur?

However, a system with sensitive dependence alone does not necessarily behave in a
complicated way.

Example: A linear system ẋ = Ax exhibits sensitive dependence on the invariant set X =
R
n if any of the eigenvalues ofA have a positive real part. Indeed, since the system is linear,

the distance between any two points obeys the same equation. If y = x+ εv, where v is an
eigenvector that corresponds to an unstable eigenvalue, then |ϕt(y)− ϕt (x)| = ε |v| eRe(λ)t .
This sensitive dependence is connected to the fact that the motion is unbounded.

Example: Let (θ, y) ∈ S
1 × R

1 be a point on the cylinder and consider the ordinary
differential equation (ODE)

θ̇ = y,

ẏ = 0.
(7.1)

For this system the flow is ϕt(θ, y) = (θ + ty mod 2π, y). Let X be the invariant annu-
lus X = {(θ, y) : a < y < b}. Consider any ball of radius ε about a point in X. Since
various points in the ball have different y values, they will move at different speeds, and
|ϕt (θ, y + ε)− ϕt (θ, y)| = εt providing εt < π . Therefore for any r < π , these two
trajectories will spread apart by a distance r at t = r/ε. Notwithstanding this sensitiv-
ity, the system (7.1) does not have complicated motion and certainly would not merit the
designation “chaotic.”

We can also define more stringent notions of sensitivity. One option is to insist
that sensitive dependence be replaced by “positive Lyapunov exponents” (see §7.2). This
requirement rules out the second example above.

In addition to sensitive dependence, the definition of chaos must include some notion
of aperiodicity, or “wanders everywhere.” The most general version of this, illustrated in
Figure 7.1, is called

� transitive: A flow ϕ is topologically transitive on an invariant set X if for
every pair of nonempty, open sets U,V ⊂ X there is a t > 0 such that
ϕt(U) ∩ V �= ∅.
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Figure 7.1. Transitivity.

It is interesting that this definition implies that there is a point whose orbit is dense in X—
this is called the Birkhoff transitivity theorem. A related concept, ergodicity, applies to
systems that have an invariant measure, such as Hamiltonian or volume preserving systems
(see Chapter 9). An invariant set is ergodic if every invariant subset has either full or zero
measure.

Example: Perhaps the simplest example of a system of ODEs with a transitive flow is

θ̇1 = 1,
θ̇2 = ν,

(7.2)

where (θ1, θ2) ∈ T
2 and ν is irrational. We will show that every orbit of this system is dense

in T
2; that is, the ω-limit set of this arbitrary initial point is ω(θ) = T

2. The flow for this
system,

ϕt(θ1, θ2) = (θ1 + t mod 2π, θ2 + νt mod 2π) , (7.3)

is complicated only because of the mod 2π operations. The orbit of a point θ is dense if for
any point α = (α1, α2) and any ε > 0, there is a time t such that

|ϕt(θ)− α| < ε.

To prove this, note that (7.3) implies there is an infinite sequence of times,

tn = α1 − θ1 + 2πn, n ∈ Z,

at which θ1(tn) = αn. At these times, the vertical component is at

θ2(tn) = θ2 + ν (α1 − θ1)+ 2πνn mod 2π.

To complete the proof, it is sufficient to show that for any ε there is an n such that
|θ2(tn)− α2| < ε, or equivalently that there is an integern such that δn = |νn mod 1− x| <
ε with x = 1

2π (α2 − θ2 − ν(α1 − θ1)) mod 1. Since α2 is arbitrary, then so is x ∈ [0, 1).
We start with a simple fact of elementary number theory (Hardy and Wright 1979,

§11.3), sometimes called the pigeonhole principle after the English phrase that denotes staff
mailboxes in an office.
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Lemma 7.1 (pigeonhole principle). If ν is irrational, then for any ε there is an integer q
such that |νq mod 1| < ε.

Proof. Choose Q ∈ N such that Q > 1
/
ε, and consider the set of Q + 1 numbers{

aj ≡ νj mod 1 : j = 0, 1, . . . ,Q
} ⊂ [0, 1). Note that the values aj are distinct because

ν is irrational. Indeed, if it were the case that aj1 = aj2 , then ν (j1 − j2) = p ∈ Z so that ν
would be rational. The interval [0, 1) is covered by the Q subintervals [k/Q, (k + 1)

/
Q)

for k = 0, 1, . . . ,Q − 1. Since there are Q + 1 distinct aj , there must be at least one
subinterval that contains more than one of them. Hence, there are integers j1, j2 such that
0 < aj1 − aj2 < ε or equivalently that 0 < ν (j1 − j2) mod 1 < ε. Set q = j1 − j2.

To show that there is an n such that δn < ε, select q as in Lemma 7.1 so that
aq = νq mod 1 < ε. The neighboring points of the sequence maq : m ∈ N differ by an
amount smaller than ε; therefore, there is an m such that

∣∣maq − x
∣∣ < ε. Set n = mq.

We conclude that there is a time for which the orbit of (θ1, θ2) is arbitrarily close to
any other point in T

2; therefore, the orbit is dense. As a consequence, the flow of (7.2) is
transitive.

The main ingredients of chaos, therefore, are sensitive dependence and transitivity.
We will insist that the invariant set X be bounded so that the sensitivity is not simply due
to escape to infinity. Finally, it is also necessary to require that X be closed to ensure that
chaos is a topological invariant. Putting these together provides the following definition:

� Chaos: A flow ϕ is chaotic on a compact invariant setX if ϕ is transitive and
exhibits sensitive dependence on X.

Thus, a chaotic flow mixes things up and is hard to predict. Although this definition
is reasonably useful, it is also important to note that the term “chaos” in the literature is
used with many definitions; some researchers simply use the loose sense we first discussed,
and some require stronger conditions than sensitive dependence. While it is clear from
the quotes at the beginning of this chapter that Poincaré and Lorenz had clear notions of
sensitive dependence, Li and Yorke first gave a mathematical definition of chaos in 1975;
the definition that we use is due to Auslander and Yorke (1980). However, all definitions
include elements comparable to transitivity and sensitive dependence; see (Blanchard et al.
2002; Devaney 1986; Robinson 1999; Wiggins 2003).

Our definition of chaos is topological and so it is preserved by conjugacy.

Theorem 7.2. Suppose ϕt : X→ X and ψt : Y → Y are flows, X and Y are compact, and
ϕ is chaotic on X. Then if ψ is conjugate to ϕ, it too is chaotic.

Proof. Recall from §4.7 that two flows are conjugate if there exists a homeomorphism h

such that ψt ◦ h = h ◦ ϕt . We first show that transitivity is preserved by the conjugacy.
Suppose I, J ⊂ X, and defineU = h(I) ⊂ Y and V = h(J ) ⊂ Y . Since ϕ is topologically
transitive, there is a t such that ϕt(I ) ∩ J �= ∅. Consequently, h(ϕt (I ) ∩ h(J ) �= ∅.
Conjugacy then implies that h(ϕt (I )) = ψt ◦ h(I) = ψt(U) so that ψt(U) ∩ V �= ∅.

To show sensitive dependence of the flowψ , the homeomorphismhmust be uniformly
continuous (recall §3.1). This is where the assumption of compactness is used: any continu-
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Figure 7.2. Attractor for the Rössler system (7.4) with a = b = 0.2 and c = 5.7.

ous function on a compact space is uniformly continuous (recall Exercise 3.2). Thus for any
x, x ′ ∈ X and any given ε > 0 there is an ε′ such that

∣∣x − x ′
∣∣ < ε′ ⇒ ∣∣h(x)− h(x ′)

∣∣ < ε,
independently of the choice of points. The inverse h−1 is uniformly continuous as well;
thus given any r ′ there is an r such that

∣∣h(x)− h(x ′)
∣∣ < r ⇒ ∣∣x − x ′

∣∣ < r ′ or conversely∣∣x − x ′
∣∣ ≥ r ′ ⇒ ∣∣h(x)− h(x ′)

∣∣ ≥ r .
Now consider points x, x ′ ∈ X and their images y = h(x), y ′ = h(x ′) ∈ Y . For

any ε, uniform continuity implies there is an ε′ such that
∣∣x − x ′

∣∣ < ε′ ⇒ ∣∣y − y ′
∣∣ < ε.

Sensitive dependence implies that there exists an r ′ and a t such that
∣∣ϕt (x)− ϕt(x

′)
∣∣ ≥ r ′.

Finally, uniform continuity of h−1 implies there is an r such that
∣∣h ◦ ϕt(x)− h ◦ ϕt (x ′)

∣∣ =∣∣ψt(y)− ψt(y
′)
∣∣ ≥ r . Thus for any ε, we have found the r and t for sensitive dependence

of ψ .

It is surprisingly difficult to give a simple example of a flow that can be proved to be
chaotic. However, many systems give the appearance of chaos when solved numerically.
As we mentioned in §4.10, Warwick Tucker used rigorous computations to verify that the
Lorenz system (4.26) with r = 28 has a chaotic attractor (Tucker 2002).

Example:Another simple system that is a prototype for chaotic motion is the Rössler system
(Rössler 1976):

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c).

(7.4)

This system undergoes a complex sequence of “bifurcations” (see Chapter 8) as the param-
eters are changed and often has an apparently fractal, chaotic attractor (Alligood, Sauer, and
Yorke 1997, §9.3). Rössler primarily studied the case a = b = 0.2, varying the parameter c.
The attractor for c = 5.7 is shown in Figure 7.2. This system exhibits sensitive dependence;
nearby initial conditions trace out a qualitatively similar set, but their z components undergo
large-amplitude excursions at different times; see Figure 7.3.
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Figure 7.3. Plot of z(t) for the Rössler system (7.4) for two initial conditions with
y values differing by 0.1. At t = 24, the z values differ by 1, and near t = 60 they differ by
more than 20.

7.2 Lyapunov Exponents
The concept of “sensitive dependence” requires that nearby orbits eventually separate; how-
ever, the rate of separation is not specified. As we saw in the previous section, there are
systems whose trajectories separate exponentially in time (a linear hyperbolic flow) and
those that separate at a polynomial rate (like the flow of (7.1) on the cylinder). Indeed, there
appears to be a dichotomy between systems for which nearby orbits separate linearly and
“truly chaotic” systems whose orbits separate exponentially. We say that two orbits separate
exponentially when

|ϕt (y)− ϕt(x)| ∼ ceλt

for some λ > 0. However, since chaotic dynamics must take place on a compact invariant
set, this exponential growth cannot continue forever. To get around this difficulty, we
will require only that infinitesimally close orbits separate exponentially. This concept is
familiar from our study of the linearization of equilibria: when the Jacobian matrix of
the vector field at an equilibrium has a positive eigenvalue, then the linearized system
has trajectories that grow exponentially. Although the linearization applies only when
trajectories are formally infinitesimally close to the equilibrium, it indicates that nearby
trajectories do indeed separate more or less exponentially while they remain close to the
equilibrium. To apply this criterion more generally we will need a notion of linear stability
for an arbitrary orbit that will allow us to compute the analogue of the eigenvalues of an
equilibrium.

However, there is a problem that we must address before we can simply linearize
an ODE about an arbitrary trajectory. The linearization method in §4.4 requires that we
compute the stability of an orbit by finding the eigenvalue of some matrix. We obtained
such a matrix for an equilibrium by computing the Jacobian, Df , of the vector field at the
equilibrium or the monodromy matrix obtained from Floquet theory for a periodic orbit;
recall §2.8. For an aperiodic orbit, neither of these constructions will work. However, it is
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Figure 7.4. Tangent spaces to a cylinder at two points x and y.

still useful to study the motion of nearby orbits using the linearized vector field, Df , but
now this gives rise to a matrix A(t) = Df (ϕt (x)) that depends on time in an intricate way.

More formally, focus on a particular orbit, ϕt(x∗), of a flow ϕ on an n-dimensional
phase space M . We will call this the fiducial trajectory.39 To study orbits near to ϕt(x∗)
we will linearize the vector field about this orbit. For each point x ∈ M , let TxM denote
the collection of “infinitesimal” vectors attached to x, that is, the tangent vectors at x; see
Figure 7.4. The tangent space at x is an n-dimensional vector space, isomorphic to R

n.
Even though the vectors are formally infinitesimal, as far as the linearization is concerned,
their lengths are arbitrary. The vector space character of TxM holds even if the phase space
has a more complicated topology—that of a cylinder or torus, for example. If v ∈ TxM is
such a vector, then the collection of all such vectors at all points x ∈ M is called the tangent
bundle of M and is denoted

TM = {(x, v) : x ∈ M, v ∈ TxM} .
Note that TM has dimension 2n, twice that of M .

Consider a trajectory ϕt(x∗ + εvo) that starts near the fiducial point x∗. Expanding
the C1 flow in ε gives ϕt(x∗ + εvo) = ϕt (x

∗) + εDxϕt (x
∗)vo + o(ε), which implies that

the initial deviation vector vo evolves to

v(t) = Dxϕt(x
∗)vo. (7.5)

Substituting the expansion into the ODE for ϕ and assuming that the vector field, f , is also
C1 gives

d

dt

(
ϕt (x

∗)+ εv(t)
) = f (ϕt (x

∗))+ εDf (ϕt (x
∗))v(t)+ o(ε).

The first terms on the left- and right-hand sides cancel, so that, to first order in ε,

v̇ = Df (ϕt (x
∗))v ≡ A(t)v. (7.6)

The Jacobian matrix Df (ϕt (x)) can be thought of as a linear operator that acts on a vector
v(t) ∈ Tϕt (x)M to give the velocity at the point y(t) = ϕt (x)+εv(t)when ε is infinitesimally
small. The time dependence of A(t) in (7.6) is fixed by the fiducial trajectory.

39Fiducial is from the Latin word fiducialis, “trust”; in this case it means the “standard for comparison.”
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Since (7.5) and (7.6) hold for any initial vector vo, the fundamental matrix solution
of (7.6) is

Q(t; x) = Dxϕt(x). (7.7)

It obeys the system40

Q̇ = A(t)Q, Q(0; x) = I. (7.8)

Moreover, given an initial vector v, the solution to (7.6) is Q(t; x)v. The fundamental
matrixQ is a linear operator that takes a vector in tangent space at the initial point and gives
a tangent vector at the point ϕt(x):

Q(t; x) : TxM → Tϕt (x)M. (7.9)

If ϕt(x) is periodic with period T , then the ϕT (x) = x, so the (monodromy) matrixQ(T ; x)
is a map from TxM to itself. It now makes sense to compute the eigenvalues of Q(T ; x);
this is what we did in §2.8 to find the Floquet exponents. By contrast, when the fiducial
trajectory is aperiodic, the domain and range of Q are distinct spaces so an equation of the
form λv = Qv does not make sense.

Definition

In the same spirit as the Floquet exponents, Aleksandr Lyapunov defined his exponents as
the asymptotic growth rate of the length of tangent vectors v(t):

|Q(t; x)v| ∼ eµt |v| .
How do we know that this exponential estimate is appropriate? When an orbit is contained
in a compact set and f is continuous, the Jacobian Df is uniformly bounded. Since chaos
is defined only for compact invariant sets, this bound is quite natural. Moreover, if the
Jacobian is uniformly bounded on the orbit, it is easy to see that the growth of any vector is
at most exponential.

Lemma 7.3. Suppose Q(t; x) is the fundamental matrix solution of (7.8) and ‖A(t)‖ ≤ K

for all t ≥ 0. Then for any ν there are positive constants c and c′ such that

c′e−Kt ≤ |Q(t; x)v| ≤ ceKt

for all t ≥ 0.

Proof. Using (7.8) and the fact that wTAw ≤ ‖A‖ |w|2,

d

dt
|Q(t; x)v|2 = d

dt

(
vTQTQv

) = vTQT
(
AT + A

)
Qv ≤ 2 ‖A‖ |Qv|2 .

Thus
d

dt
e−Kt |Q(t; x)v| ≤ e−Kt (‖A(t)‖ −K) |Qv| ≤ 0.

40Although we should allow for the initial condition at an arbitrary time to (recall (2.46)), we always impose the
initial condition at t = 0 in this section.
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Consequently, |Q(t; xv)| ≤ ceKt for some constant c and all t ≥ 0. Similarly, defining
τ = −t , then dQ

/
dτ = −A(−τ)Q, then since ‖−A‖ = ‖A‖, the same inequality,

d

dτ
e−Kτ |Q(−τ ; x)v| ≤ 0,

holds for any τ ≤ 0. Replacing τ by −t then implies that eKt |Qv| is a nondecreasing
function of t , giving the second half of the promised inequality.

According to Lemma 7.3, the function ln |Qv|/t is bounded both above and below for
t ≥ 0. Since any bounded sequence has limit points we may define the Lyapunov spectrum
as the set of limit points of this function:

Sp(x, v) =
{
λ = lim

j→∞
1

tj
ln
∣∣Q(tj ; x)v∣∣ for some sequence tj →

j→∞∞
}
. (7.10)

As indicated in (7.10), this spectrum may depend upon both the choice of fiducial trajectory
and upon the initial deviation. There are two privileged limits for a bounded sequence, the
“liminf” and the “limsup.” The latter is defined to be the least upper bound of the tail of the
sequence,

lim sup
t→∞

s(t) ≡ lim
T→∞

(
sup
t>T

s(t)

)
.

When s(t) is bounded, the quantity supt>T s(t) exists, is nonincreasing, and bounded below,
so the limsup always exists. The liminf is similarly the limit of the infimum and also exists
for bounded sequences. Note that all other limit points of a bounded sequence must be
between these, and since the functions that we consider are continuous, every possible
value between these two limits must occur. Thus the Lyapunov spectrum Sp(x, v) is a
closed interval and degenerates to a point when the two limits are equal.

Example: The simple linear one-dimensional ODE

v̇ = (cos(ln |t |)+ sin(ln |t |)) v
has the general solution v(t) = exp (t sin(ln |t |)) vo (ignoring the fact that the vector field
is not defined at t = 0). For this system the fundamental matrix is simply the scalar
exp (t sin(ln |t |)), and the Lyapunov spectrum is{

lim
j→∞

1

tj
tj sin(ln |tj |)

}
= [−1, 1].

The largest growth rate is most often of interest; consequently it is useful to define
the Lyapunov exponent as the supremum limit:

µ(x, v) ≡ lim sup
t→∞

1

t
ln |Q(t; x)v| . (7.11)

Since this limit will occur often below, it is nice to give it a more compressed notation. For
any function f (t), define the characteristic exponent of f by

χ(f ) ≡ lim sup
t→∞

1

t
ln |f (t)| . (7.12)

Using this notation, µ(x, v) = χ(Q(t; x)v).
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If Sp(x, v) is a point, then the limsup in (7.11) can be replaced by a simple limit. In
this case the Lyapunov spectrum is termed regular.41

Properties of Lyapunov Exponents

Lyapunov showed that the characteristic exponent (7.12) of any function obeys several
simple properties (Adrianova 1995). For any functions f (t) and g(t) and any constant
c �= 0 (see Exercise 7),

χ(cf ) = χ(f ), (7.13)

χ(f + g) ≤ max(χ(f ), χ(g)), (7.14)

χ(fg) ≤ χ(f )+ χ(g). (7.15)

In particular (7.13) implies that, though the Lyapunov exponent may depend on the direction
of the initial vector, it does not depend on its length. More generally, we have the following
lemma.

Lemma 7.4. The Lyapunov exponent (7.11) is independent of the choice of norm on R
n.

Proof. Let |v|1 and |v|2 represent two different vector norms42 and µ1, µ2 be the corre-
sponding Lyapunov exponents. As is well known, all norms on R

n are compatible, meaning
that there exist constants m and M > 0 such that for every vector v,

m |v|1 ≤ |v|2 ≤ M |v|1 .
Consequently,

χ (m |Q(t; x)v|1) ≤ χ (|Q(t; x)v|2) ,
which implies, using (7.13), that µ1 ≤ µ2. Using the same result for the upper bound gives
µ2 ≤ µ1 so that µ1 = µ2.

Since the sup-norm is one possible choice, Lemma 7.4 implies that the character-
istic exponent of a vector v(t) is given by χ(v) = max1≤i≤n χ(v(i)), where v(i) are the
components of v.

The Lyapunov exponent is invariant under the flow, sinceµ(x, v) = µ (ϕt (x),Q(t; x)v)
for any t (see Exercise 4), so we can associate the exponent with an orbit, rather than just
an initial condition.

An orbit has at most n distinct Lyapunov exponents.

Lemma 7.5. If ϕt(x) is a bounded trajectory of a flow ϕ on an n-dimensional manifold,
then it has at most n distinct Lyapunov exponents (7.11).

Proof. Since ϕt (x) is bounded and C1, the Jacobian Df (ϕt ) is bounded, and thus the limit
(7.11) exists for each v. Suppose, for example, there are two different exponents µ1 > µ2

41When there is an invariant measure, Oseledec’s multiplicative ergodic theorem implies that the spectrum is
regular for almost all initial points; see (Robinson 1999).

42For example, the Euclidean and sup-norms.
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for linearly independent vectors v1 and v2. Then since (7.6) is linear, the length of any linear
combination v = αv1+βv2 grows asymptotically at the rate µ1, provided only that α �= 0;
see Exercise 7. Since there are n linearly independent vectors in TxM , there are at most n
distinct values, µi .

Just as constant matrices may have degenerate eigenvalues, a time-dependent matrix
may not have n distinct Lyapunov exponents. It is conventional to order the exponents so
that

µ1 ≥ µ2 ≥ · · · ≥ µn. (7.16)

Any set of independent vectors {v1, v2, . . . , vn} so that

n∑
i=1

µi(x, vi)

is as small as possible is called a Lyapunov basis. If a Lyapunov exponent has degeneracy
k, then its corresponding basis vectors span a k-dimensional subspace. Most bases are
not Lyapunov bases, since each vector generally will contain some component along the
most rapidly growing direction (see Exercise 7); however, a Lyapunov basis can always be
constructed.

Lemma 7.6 (Lyapunov basis). If Q = [v1, v2, . . . , vn] is any fundamental matrix solution
of (7.6) obeying (7.16), then there is a special upper triangular matrix U (uii = 1) such
that QU is a Lyapunov basis.

Proof. The columns wi of QU are wi = vi +∑i−1
j=1 ujivj . Consequently χ(w1) = χ(v1),

and using (7.14) χ(w2) = χ(v2 + u12v1) ≤ χ(v1). We choose u12 to minimize χ(w2);
indeed we can always make χ(w2) ≤ χ(v2) (equality is achieved by setting u12 = 0).
For each i, the uji are chosen to minimize χ(wi). We claim that the sum

∑n
i=1 χ(wi)

is minimal. Indeed, the exponent of any linear combination
∑k

i=1 aiwiwith ak �= 0
is the exponent of the combination akvk +∑k−1

j=1 bjvj for some coefficients bj depend-
ing upon a and uji . However, the minimal combination of these first k vectors was already
selected.

An orbit almost always has one “trivial” Lyapunov exponent.

Lemma 7.7. If ϕt (x) is a bounded orbit of the flow ϕ that is not forward asymptotic to an
equilibrium, then it has a zero Lyapunov exponent.

Proof. Consider the vector v(t) = f (ϕt (x)), where f is the vector field for ϕ. Differentia-
tion gives

d

dt
v(t) = d

dt
f (ϕt (x)) = Df (ϕt (x))

d

dt
ϕt (x) = Df (ϕt (x))v(t).

Thus v(t) is a solution of (7.6) with initial condition f (x). Since ϕ is bounded, then v

is also bounded. Finally since ϕt is not asymptotic to an equilibrium, lim sup |v(t)| > 0.
Therefore µ(x, v) = 0.
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Example: Consider the one-degree-of-freedom Hamiltonian system (5.3). Each orbit inside
the separatrix loop is bounded and periodic. Therefore, the tangent vector v(t) = f (ϕt (x))

is also periodic and thus has zero Lyapunov exponent.
By contrast, an orbit that starts on the separatrix y2 = x2 (1− 2ax) is asymptotic

to the origin, and v(t) → f (0) = 0 as t → ∞. Moreover, as the orbit approaches the
origin it aligns with the linear stable set Es = span(1,−1)T and since | Df (0)|Es = −1,
the tangent vector approaches v(t)→ ce−t (1,−1)T for some constant c that depends upon
x∗; consequently its characteristic exponent is χ(v) = −1.

A constraining relation among the Lyapunov exponents can be obtained from Abel’s
theorem (2.50),

det (Q(t; x)) = exp
∫ t

0
tr Df (ϕs(x))ds. (7.17)

Theorem 7.8 (Lyapunov). Suppose ϕt (x) is a bounded orbit of a flow ϕ and [v1, v2, . . . , vn]
is an independent set of vectors with Lyapunov exponents µi = µ(x; vi). If the limit

δ = lim sup
t→∞

1

t

∫ t

0
tr Df (ϕs(x))ds (7.18)

exists, then

δ ≤
n∑
i=1

µi. (7.19)

Proof. Let P(t) = [v1, v2, . . . , vn] = Q(t; x)P (0); then according to (7.17) and (7.18),

δ = χ (detQ(t; x)) = χ (det P(t)) .

The determinant of an n× n matrix is the sum of n! terms, each of which is the product of
n different elements of the matrix, one from each column. Using (7.14) and (7.15) gives
χ(det P) ≤∑n

j=1 max1≤i≤n χ(Pij ) =∑n
i=1 χ(vi).

We showed in §4.7 that if two flows are diffeomorphic, then the spectra at correspond-
ing equilibrium points must be the same. This is also true for the Lyapunov spectrum.

Lemma 7.9. Suppose that the flows ϕ andψ are conjugate under a diffeomorphism h, such
that Dh and Dh−1 are uniformly bounded. Then the Lyapunov spectrum for ψ at h(x) is
the same as that for ϕ at x.

Proof. Let v(t) be given by (7.5) for an initial vector vo. We will show that the Lyapunov
exponent µϕ(x, vo) is the same as the exponent µψ(y,wo) for the vector wo = Dh(x)vo
based at the point y = h(x) under the flow ψ . Differentiating the conjugacy relation
h ◦ϕt = ψt ◦h with respect to x gives Dh(ϕt )Dϕt(x) = Dψt(h(x))Dh(x). Consequently,

Dh(ϕt )v(t) = Dψt(y)Dh(x)vo = Dψt(y)wo = w(t).
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By the uniformly bounded assumptions on the derivatives, there are positive constants m
and M such that

m |v| ≤ |Dh(x)v| ≤ M |v| ⇒ lnm ≤ ln |Dh(x)v| − ln |v| ≤ lnM.

Therefore

µψ(h(x),w) = χ (w) = χ (Dh(ϕt )v(t)) = χ (v) = µϕ(x, v).

It would be nice if the existence of positive Lyapunov exponents for an invariant set
implied that it has sensitive dependence as defined in §7.1. However, this is not the case.

Example: The separatrix loop, L, of the Hamiltonian system (5.3) has one negative Lya-
punov exponent—for the tangent to L—as we noted in the previous example. However,
by the same argument, the Lyapunov exponent for any vector transverse to L will be the
positive eigenvalue of Df (0), namely µ = +1. However, if we consider L as the invariant
set, thenL does not have sensitive dependence. Consider any two points x, y ∈ L for which
|x − y| < ε. Since ϕt(x) and ϕt (y) are both asymptotic to 0, there is a fixed time T such
that both ϕt(x) and ϕt(y) are in Br(0) for all t > T . Thus, if the orbits were to diverge,
they must do so for t ∈ [0, T ). However, recall from Grönwall’s lemma that nearby initial
conditions have bounded divergence, (3.32),

|ϕt(x)− ϕt(y)| ≤ |x − y| eKt ,
where K is the Lipschitz constant for the vector field f . Hence if ε < re−KT , then these
trajectories will never diverge by a distance r .

Thus, as an invariant set L does not have sensitive dependence, even though it has a
(transverse) positive Lyapunov exponent.

This example is exotic (homoclinic orbits are not generic, as we will see in Chapter 8),
and in any practical sense, the existence of positive Lyapunov exponents for an invariant set
is a reliable indicator of sensitive dependence. The main barrier to their use is the difficulty
in devising accurate computational algorithms.

Computing Exponents

To compute the maximal Lyapunov exponent of a system of ODEs we must integrate both
the original system and its linearization (7.6). Essentially any initial vector vo can be used
because almost all vectors will have some component along the direction of the maximal
Lyapunov direction. We cannot compute the limit in (7.11) but instead simply integrate for
some “long” time T and estimate

µmax(T ) ≈ 1

T
ln
|v(T )|
|vo| . (7.20)

With luck, this quantity will rapidly converge to the maximal exponent; to estimate the error
in the computation, it is useful to plot µmax as a function of T .
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Figure 7.5. Maximal Lyapunov exponent for the Lorenz system with σ = 10 and
b = 8/3. Left, r = 23 and µmax ≈ −0.05; right, r = 28, where µmax ≈ 0.9.

Example: Consider the Lorenz system (4.26). The linearized equations for a vector v ∈
TxR

3 are

v̇ =

 −σ σ 0

r − z −1 x

y x −b


 v. (7.21)

To integrate these equations, we must simultaneously integrate the Lorenz system itself; a
simple algorithm to do this and to compute (7.20) is given in the appendix. A plot of the
short time behavior of µmax(T ) is shown in Figure 7.5 for two values of r . For the standard
parameter values, µmax(T ) appears to (slowly) converge to a positive value; integrating to
t = 1000 givesµmax ≈ 0.88, and integrating for the longer time t = 104 givesµmax ≈ 0.90.
It is difficult to compute the value accurately because the convergence is slow, though it
appears that this value is correct to two places.

Even though only the largest Lyapunov exponent for the Lorenz system was computed
in the example, (7.19) can be used to estimate the other two exponents. For the Lorenz case,
the trace of the Jacobian matrix (7.21) is constant, so that δ = tr(Df ) = −1−σ − b. Since
one exponent vanishes, µ2 = 0, for the standard parameters,

µ3 ≥ δ − µ1 = −13.66− µ1. (7.22)

If the Lorenz system were known to be regular, then the supremum limits could be replaced
by ordinary limits and the inequality in (7.19) would become an equality. Under this
assumption µ3 ≈ −14.6.

To compute all of the Lyapunov exponents, it is necessary to find a Lyapunov basis.
Consider the linear system

v̇ = A(t)v, (7.23)

where A(t) is continuous and uniformly bounded. Generalizing the basis change (2.15) to
account for time dependence, v = P(t)w, the system (7.23) becomes

ẇ = (P−1AP − P−1Ṗ
)
w = B(t)w. (7.24)
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If the transformation P is well behaved, the characteristic exponents of the new system are
the same as those of the old.

Lemma 7.10 (Lyapunov transformation). If P ∈ C1 and P,P−1, and Ṗ , are bounded
for all t > 0, then the Lyapunov exponents of the transformed system (7.24) are the same
as those of the original system (7.23).

Proof. If A(t) is bounded and the hypotheses hold, then B(t) is bounded so its Lyapunov
exponents exist. Using ‖P(t)‖ ≤ M and the definition v = Pw gives

χ(v) ≤ χ (‖P(t)‖ |w(t)|) = χ (w) .

Applying the same analysis tow = P−1v and using
∥∥P−1

∥∥ ≤ M implies thatχ(w) ≤ χ(v).
Thus these two characteristic exponents must be equal. Since P is nonsingular, all the
exponents of B must be the same as those of A.

Just as for the case of constant matrices, where we can transform to a generalized
eigenvector basis, it is always possible to find a new basis, w, such that the system (7.24)
has a simple form.

Theorem 7.11 (Perron triangulation). There is an orthogonal transformation of (7.23) to
a basis for which B in (7.24) is upper triangular. Moreover, if A(t) is bounded, then the
characteristic exponents for B are the same as those of A.

Proof. The fundamental matrix solutionQ(t; x) of (7.23) is nonsingular for each t , so there
exists a QR factorization Q = Q(t)R(t) to the product of an orthogonal matrix Q and an
upper triangular matrix R. Let v(t) = Q(t)w define a new basis for (7.23). Then since
v(t) = Q(t)R(t)vo, w(t) = R(t)vo. Moreover, using Q̇ = Q̇R +QṘ = AQR in (7.24)
gives

B = QTAQ−QT Q̇ = QT
(
Q̇+QṘR−1)−QT Q̇ = ṘR−1, (7.25)

thus, Ṙ = BR. Since R is upper triangular by definition, then so is B.
Define the matrix

S(Q) ≡ QT Q̇. (7.26)

It is easy to see that S is skew-symmetric: since QTQ = I ,

0 = d

dt

(
QTQ

) = QT Q̇+ Q̇TQ = S + ST .

Since B is upper triangular, (7.25) implies that

Sij =


(
QTAQ

)
ij
, i > j,

0, i = j,

− (QTAQ
)
ij
, i < j.

(7.27)

To show that the transformation has the same Lyapunov exponents we need only show that
Q, Q−1, and Q̇ are bounded. The first two matrices are automatically bounded since Q
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is orthogonal: ‖Q‖ = 1. By assumption A(t) is bounded so that QTAQ is as well.
Then (7.27) implies that the skew-symmetric matrix S is bounded. Consequently Q̇ is
bounded.

When an upper triangular system is “regular,” its Lyapunov exponents are easily
obtained.

Theorem 7.12. If B(t) is a uniformly bounded, upper triangular matrix, and the limits

µi = lim
t→∞

1

t

∫ t

0
bii(s)ds (7.28)

exist, then ẋ = B(t)x has a regular Lyapunov spectrum with exponents µi .43

Proof. Our goal is to construct a Lyapunov basis and show that its exponents are given by
(7.28). Define

βi(t) ≡ exp

(∫ t

0
bii(s)ds

)
so thatµi = χ(βi). The upper triangular system (7.24) can be solved by “back substitution”
to give an upper triangular fundamental matrix solution. A first solution has the form
v1 = [v11, 0, . . . , 0]T , where v11(t) = β1(t)v11(0). The second, v2 = [v12, v22, . . . , 0]T ,
has v22(t) = β2(t)v22(0), and

v̇12 = b11v12 + b12v22,

which has the solution

v12(t) = β1(t)

(
v12(0)+

∫ t

0
β−1

1 (s)b12(s)v22(s)ds

)
. (7.29)

Continuing in this way, we obtain a fundamental matrix P(t) with elements

vij =




βi(t)

(
vij (0)+

∫ t

0
β−1
i (s)

j∑
k=i+1

bik(s)vkj (s)ds

)
, i < j,

βi(t)vii(0), i = j,

0, i > j.

Note that P(0) is nonsingular whenever the vii(0) �= 0. To construct a Lyapunov basis, we
choose the initial conditions vii(0) = 1 and set vii(0) for i < j to

vij (0) =




0, µi ≤ µj ,

−
∫ ∞

0
β−1
i (s)

j∑
k=i+1

bik(s)vkj (s)ds, µi > µj .
(7.30)

43This theorem also applies to a more general case of “integral separation” of the diagonal elements; see Dieci
and van Vleck (2002). Thus the QR method can be used to compute exponents for some irregular systems whose
exponents are distinct.
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We show this is a Lyapunov basis by induction. First, it is clear that χ(v1) = µ1. The
characteristic exponent χ(v2) = max (µ2, χ(v12)). When µ1 < µ2, we use v12(0) = 0,
and then (7.29), and the results of Exercise 7, give

χ(v12) ≤ max(µ1, χ(β1)+ χ(β−1
1 )+ χ(b12)+ χ(v22)).

Since the limit (7.28) exists, χ(β1) + χ(β−1
1 ) = 0. Since B(t) is bounded, χ(bij ) = 0.

Thus χ(v12) ≤ µ2. When µ1 > µ2, we use the integral in (7.30) for v12(0). Substituting
this into (7.29) gives

v12(t) = −β1(t)

∫ ∞

t

β−1
1 (s)b12(s)v22(s)ds.

The results of Exercise 7 imply that this integral converges, and that χ(v12) ≤ µ2 as before.
Consequently χ(v2) = µ2.

Proceeding inductively, suppose that χ(vij ) ≤ µj for i = k + 1, . . . , j . Then

χ(vkj ) ≤ χ(βk)+ χ(β−1
k )+max

k<i

(
χ(bij )

)+max
k<i

(
χ(vij )

) = µj .

Consequently, χ(vj ) = µj .
Finally, by the inequality (7.19), the characteristic exponent δ = χ(tr(B)) is a lower

bound to the sum of the characteristic exponents of any fundamental set of solutions. When
the limits (7.28) exist and B is upper triangular, δ = ∑n

i=1 χ(bii). Since the fundamental
matrix we have constructed has δ = ∑n

i=1 µi , this is the minimal value. Thus P(t) is a
Lyapunov basis, and the exponents are µi .

The QR procedure can be turned into an effective computational strategy. While it
is possible to compute the QR factorization of Q for each t , it is better to obtain a smooth
factorization by solving for Q using the definition (7.26),

Q̇ = QS(Q), (7.31)

where S(Q) is given by (7.27). Since Q(0; x) = I , it is appropriate to start with the initial
condition Q(0) = I . Knowledge of Q then allows us to easily find bii using (7.25):

bii =
(
QTAQ− S(Q)

)
ii
= (QTAQ

)
ii
.

The subspace QTQ = I is an invariant subspace of (7.31) since

d

dt

(
QTQ

) = QTQS + STQTQ = S + ST = 0

when S is skew-symmetric: thus the solution of (7.31) is guaranteed to be orthogonal ifQ(0)
is orthogonal. However, numerical errors can cause Q to drift away from orthogonality,
and some care must be exercised to prevent this (Dieci et al. 2002).

7.3 Strange Attractors
A chaotic attractor can have the geometry of an “ordinary” Euclidean set, such as a plane,
or of its curved analogue, a smooth submanifold of the phase space; recall §5.5. However,
attractors can also be geometrically “strange,” that is, fractal sets. Attractors can be strange
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...

Figure 7.6. Several levels in the construction of the Koch snowflake beginning with
an equilateral triangle. At each level each straight side is replaced by four lines one-third
the original size. The resulting limiting curve has infinite length, and fractal dimension
ln 4
/

ln 3.

and not chaotic, as well as chaotic but not strange. Thus attractors that have both of these
properties, such as the Lorenz and Rössler attractors, are called “strange, chaotic attractors.”

It is difficult to give a precise definition of a fractal. The simplest fractals are self-
similar objects that have a recursive construction—for example, the Koch snowflake; see
Figure 7.6.

� Self-similar: A set A ⊂ R
n is self-similar if it is similar to a part of itself:

that is, there exists a strict subset B ⊂ A and a similarity transformation
T : R

n → R
n such that T (B) = A. A transformation is a similarity if it

multiplies distance by a fixed factor: |T (x)− T (y)| = r |x − y|.
A similarity is the composition of elementary scaling, rotation, reflection, and translation
transformations. Not every self-similar object is a fractal; for example, a line is self-similar.
However, some fractals, like the Koch snowflake, have a nontrivial scaling property. More
generally, a fractal is a set that, when viewed with a microscope of arbitrarily large power,
never limits to a Euclidean object—it has fine structure on every scale. This rules out
submanifolds, because these sets approach hyperplanes on a small enough scale. The
famous “Mandelbrot set” is a fractal by this definition: it does seem to have approximate
self-similarity, but it is not strictly self-similar.

Hausdorff Dimension

Often fractals have an effective dimension (a “fractal dimension”) larger than their topo-
logical dimension. One simple way to think about the dimension of a set S ⊂ R

n is to ask
what is the growth rate in the number of n-dimensional boxes of size ε that are needed to
cover the set. Suppose that B(ε) is a box with side ε, and for a given size ε at most N(ε)
boxes, B1(ε), B2(ε), . . . , BN(ε)(ε), are needed to cover S:

N(ε)⋃
k=1

Bk(ε) ⊃ S.

If S were a submanifold of (topological) dimension d, then as ε→ 0,

N(ε) ∼ ε−d = e−d ln ε. (7.32)
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Figure 7.7. Similarity transformations and coverings of the Koch snowflake.

Note that N →∞ exponentially with− ln ε; the “box counting” dimension of S is defined
as the rate of divergence,

dbox = − lim
ε→0

lnN(ε)

ln ε
, (7.33)

if this limit exists. When the limit does not exist, one can define (as we did for the Lyapunov
exponent) “upper” and “lower” box counting dimensions using the limsup and liminf,
respectively (Falconer 1990). It turns out that when the box counting dimension exists, the
limit (7.33) is independent of the choice of the centers of the boxes. For example, if one
uses a grid of size ε, then the number of grid cells needed to cover S will be somewhat larger
than the optimal number of boxes; nevertheless, the resulting computed value of dbox will
still be the same as that computed from the optimal N . Moreover, it does not matter if the
boxes are cubes or spheres or if the boxes are rotated arbitrarily—the dimension calculated
is the same.

Example: Consider the Koch snowflake, K , of Figure 7.6, and suppose the sides of the
original triangle have length L. The set K is contained in a ball of radius r = 3L

/
4 since

this is the sum L
2

∑∞
n=0 3−n. Each “side” of the Koch snowflake can be covered by a ball Br

whose center is at the center of the side of the original, level-zero triangle; see Figure 7.7.
The Koch snowflake is self-similar under a transformation with scaling factor 1

/
3, and the

scaled side is congruent to each of its four parts. Thus each side can also be covered by
four balls of radius r

/
3, and K is covered by N(r

/
3) = 3 · 4 balls. Proceeding to the

next level requires four times as many balls of radius r
/

9. After j such transformations,
N(3−j r) = 3 · 4j . Thus the box counting dimension is

dbox = − lim
j→∞

ln(3 · 4j )
ln(3−j r)

= ln 4

ln 3
.

A more formal definition of dimension was introduced by Felix Hausdorff in 1918
and refined by Abram Besicovitch. Given a metric space with metric ρ, the diameter of a
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set U is defined as
diam(U) = sup

x,y∈U
ρ(x, y). (7.34)

We say a setS has an ε-cover if it is covered by a countable collection of open setsUj(ε), j ∈
N, such that diam(U) ≤ ε. The s-dimensional Hausdorff measure of S is the quantity

Hs(S) = lim inf
ε→0

∑
i=1

(diamUi(ε))
s,

where the infimum is taken over all countable ε-covers of S. It is not hard to see, using the
simple fact that if s < t , then εs > εt when ε < t , that Hs is a nonincreasing function of s.

One simple cover consists of the N(ε) boxes used in the construction of dbox . These
boxes all have the same diameter, namely, ε, and so make up an ε-cover. Boxes of the
same size do not generally provide the optimal cover, but they do give the upper bound,∑

i (diam(Ui(ε))
s ≤ N(ε)εs . Estimating N(ε) by (7.32), we obtain Hs ≤ limε→0 ε

s−dbox .
Note that the right-hand side of this expression is ∞ when s < dbox and is 0 if s > dbox .
This property of a transition of Hs from ∞ to 0 at some critical s is a general property of
the Hausdorff measure (Falconer 1990). This results in the definition of the

� Hausdorff dimension: dH (S) = inf {s : Hs(S) = 0}.

Thus dH is the value of s for which the Hausdorff measure changes from∞ to 0.
The previous discussion implies that Hs = 0 if s > dbox , and thus dH ≤ dbox . dH

might be smaller because the number of elements of the cover can be optimized by varying
their size.

Numerical computations of the dimension of the Lorenz attractor at the standard
parameter values give dH ≈ 2.062 (Viswanath 2004). It is difficult to compute a value with
this implied accuracy using (7.33). Instead, this value is obtained by using a hypothesized
relation between the stability multipliers of periodic orbits embedded in the attractor and
fractal dimension (Cvitanovic 1995). It is generally agreed that the numerically computed
dimension is larger than 2; thus the Lorenz attractor appears to be a fractal. Given that the
calculations in §7.2 showed that it has a positive Lyapunov exponent, we can say it is a
strange, chaotic attractor.

Strange, Nonchaotic Attractors

Strange attractors can also be nonchaotic in some sense, for example, have no positive
Lyapunov exponents. Such objects occur commonly when a nonlinear system is forced
quasiperiodically. A function g(t) is quasiperiodic when it has a Fourier series-like expan-
sion

g(t) =
∑
m∈Zd

ame
im·ωt

with a frequency vector, ω ∈ R
d , that is incommensurate:

ω ·m �= 0 ∀m ∈ Z
d\0. (7.35)
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Thus a quasiperiodic function has d independent frequencies (under integer combinations).
A quasiperiodic function of a single variable, t , can always be thought of as a periodic
function of d angle variables, θ ∈ T

d , by defining

g(t) = G(ωt), G(θ) =
∑
m∈Zd

ame
im·θ

so that G is periodic in each angle. Consequently, any quasiperiodically forced system,
ẋ = f (x, t), for x ∈ M can always be rewritten as an autonomous system on M × T

d by
introducing angle variables θ ∈ T

d and setting

ẋ = F(x, θ),

θ̇ = ω,

where f (x, t) = F(x, ωt) and F is a periodic function of θ .

Example: A model of a quasiperiodically forced pendulum is

θ̈ + νθ̇ − a cos θ = g(ψ),

ψ̇ = ω,

where ν is the damping coefficient, g is the forcing function, and ψ ∈ T
2, so that d = 2.

This model applies to a Josephson junction driven by two independent AC current sources.
Converting this system to first order in the usual way gives a four-dimensional phase space
R× T

3 and the ODEs

ṗ = −νp + a cos θ + g(ψ1, ψ2),

θ̇ = p, ψ̇1 = ω1, ψ̇2 = ω2.
(7.36)

By scaling time, one of the frequencies can be set to unity, e.g., ω2 = 1. The frequency
vector is then incommensurate whenever ω1 is irrational, for example,

ω1 = 1

2

(
−1+√5

)
, (7.37)

the inverse of the golden mean.
This system (7.36) always has a global Poincaré section (recall §4.12) since the ψ

dynamics is monotone, the flow returns to the sectionψ2 = c for any c, and every trajectory
must cross each such section. We can choose, for example, to visualize the dynamics by
plotting the trajectories only when ψ2 = 0. This still leaves a three-dimensional picture
that can be difficult to visualize. As an aid in visualization it is also possible to plot only
two coordinates, say, (θ, p), and project out the angle, ψ1.

The linearization of (7.36) maps all vectors into the two-dimensional subspace v =
(v1, v2, 0, 0)T ; thus (7.36) has two zero Lyapunov exponents. The remaining two exponents
in the four-dimensional phase space are related by (7.19). Finally, since the trace of Df is
constant,

µ1 + µ2 ≤ tr(Df ) = −ν.
Thus there is at most one positive Lyapunov exponent.
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Figure 7.8. Section through a strange, nonchaotic attractor of the quasiperiodic
pendulum (7.36) with g given by (7.38). Parameter values are ν = a = 6π , b = 25.07, and
c = 10.37. Plotted are 105 points on the section ψ2 = 0, projected onto the (θ, p) plane.

An example with

g(ψ) = b + c (cos(2πψ1)+ cos(2πψ2)) (7.38)

was studied by Romeiras and Ott (1987). For some parameter values this system exhibits
attractors that appear to be two- or three-dimensional tori on which the motion is quasiperi-
odic. For others, the attractor is geometrically more complex; see Figure 7.8. This attractor
has a complex geometric structure though its Lyapunov exponents are negative (the largest
is µ1 ≈ −1.35). It was conjectured by Romeiras and Ott that the set shown in Figure 7.8
has dbox > 1, a property that can be proved for other simple models that have strange
nonchaotic attractors (Kim et al. 2003).

As the damping coefficient, ν, in (7.36) is decreased, one of its Lyapunov exponents
becomes positive and the attractor becomes chaotic.

In some cases, one can show that even though these strange attractors are “non-
chaotic” in that all their Lyapunov exponents are negative, they still exhibit sensitive depen-
dence (Glendinning, Jäger, and Keller 2006). Consequently, they would actually be called
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“chaotic” in the weak sense of our definition in §7.1. Perhaps it is best to think of these
attractors as on the threshold of chaos.

7.4 Exercises
1. Prove that the orbits of the system

θ̇ = ν

for θ ∈ T
n are transitive if and only if ν is incommensurate, i.e., for every nonzero

integer vectorm ∈ Z
n,m·ν �= 0. (Hint: Generalize the pigeonhole principle, Lemma

7.1, to d = n− 1 dimensions by considering cubes with sides Q−1.)

2. Prove that if a flow ϕ is chaotic on X and is topologically equivalent to the flow ψ

on Y (recall §4.7), then ψ is chaotic on Y .

3. Prove that if γ is a periodic orbit of a flow ϕ and λ is a Floquet exponent of the
linearized flow about γ , then µ = Re(λ) is a Lyapunov exponent of γ . (Hint: Use
Floquet’s theorem, Theorem 2.13.)

4. Prove that the Lyapunov exponents are invariant under the flow, i.e., µ(x; v) =
µ(ϕt (x);Q(t; x)v).

5. Compute the Lyapunov spectrum for the system

ẋ = (sin ln |t | + cos ln |t |) y,
ẏ = (sin ln |t | + cos ln |t |) x.

Show that the inequality δ < µ1 + µ2 for (7.18) is strict for this case.

6. Suppose that ϕ is the flow of an autonomous Hamiltonian system. Show that every
bounded orbit that is not an equilibrium nor is asymptotic to an equilibrium has a
double zero Lyapunov exponent; that is, there are two linearly independent vectors
for which µ(x; v) = 0. (Hint: Consider the vector ∇H .)

7. Using the definition (7.12) of characteristic exponent, prove the following:

(a) Prove the results (7.14) and (7.15).

(b) Show that if χ(f ) > χ(g), then χ(f + g) = χ(f ).

(c) If F(t) = ∫ t0 f (s)ds, show that χ(F ) ≤ χ(f ). (Hint: Show that if χ(f ) = α,
then for every ε > 0, limt→∞ f (t)e−(α+ε)t = 0.)

(d) Suppose v(t) = (v(1), v(2), . . . , v(n))T is a vector function. Show that χ(v) =
max1≤i≤n χ(v(i)).

(e) Consider the three vectors v1 = (et , 0, 0)T , v2 = (0, e2t , 0)T , and v3 =
(0, 0, e3t )T . What isχ(|∑3

i=1 civi |)?
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(f) Suppose that A is a constant matrix with eigenvalues λ = 1, 2, and 3. Show
that if [v1, v2, v3] is any fundamental matrix of solutions, then

∑3
i=1 χ(vi) < 9.

(g) Show that a Lyapunov basis is one that minimizes the sum
∑n

i=1 χ(vi).

8. Is the Lyapunov spectrum of the ω-limit set of a bounded orbit the same as that of the
orbit?

9. Compute the box counting dimension of the following self-similar sets:

(a) The middle-α Cantor set, C, is constructed beginning with the closed unit inter-
val, I . Remove the open set of length α from the middle of I . This leaves two
closed intervals, each of length L = (1− α)

/
2. Remove the middle interval of

length αL from each of these, and continue. . . .

(b) The Sierpinski gasket, S, is constructed from a solid equilateral triangle T with
sides of length one. Remove the equilateral triangle whose vertices are the
midpoints of each of the sides of T . The remaining set is the union of three
equilateral triangles with sides of length 1

/
3. Now remove the middle triangle

from each of these, and continue. . . .

(c) For the Menger sponge, M , begin with the unit cube B in R
3. This can be

thought of as the union of 27 cubes whose sides have 1
/

3. Now remove seven
of these cubes: the six that have a face in the center of each face of B and the
seventh embedded in the center of B. This leaves a set that is the union of 20
smaller cubes with sides of length 1

/
3. Continue removing seven cubes of size

1
/

9 from each of these. . . .

10. Write a program to compute the box counting dimension. As a trial, use it to compute
the dimension of the sets in Exercise 9. Now compute the dimension of the Lorenz
attractor.

11. Explore the dynamics of your adopted quadratic system (recall Exercise 1.10) for the
chaotic values of its reduced parameters.

(a) Compute the maximum Lyapunov exponent.

(b) Plot the chaotic attractor.

(c) Compute its box counting dimension.

(d) Vary the values of the reduced parameter(s) and discuss how the chaotic attractor
is destroyed.



Chapter 8

Bifurcation Theory

In this chapter we will study systems of differential equations ẋ = f (x;µ) that depend on
a set of parameters µ. For example, the vector field for the pendulum nominally depends
upon two parameters: its length and the strength of gravity. Our goal is to investigate
what happens to the flow of the system when parameters vary slightly. Do the properties
of the orbits just change slightly, or can orbits be destroyed, created, or otherwise changed
dramatically? A bifurcation occurs when there is a dramatic change in the dynamics:

� Bifurcation: a qualitative change in dynamics occurring upon a small change
in a parameter.

One of the simplest bifurcations corresponds to the creation or destruction of an equilibrium.
Atypical case is called the saddle-node bifurcation; we will study it first. Another bifurcation
corresponds to the change in stability of an orbit—this is often accompanied by the creation
or destruction of other nearby orbits. Such bifurcations are called “local” because they
can be studied by expanding the vector field in a Taylor series about a reference orbit in
the phase space. There are also “global bifurcations” such as the homoclinic bifurcation,
which corresponds to the creation or destruction of a homoclinic orbit (see §8.11). These
bifurcations are much harder to study because they are intrinsically nonlocal. Our treatment
starts with the local case and with those bifurcations that typically happen when one varies
a single parameter; such bifurcations are called codimension-one. One of the triumphs of
bifurcation theory is the classification of bifurcations with low codimension. We will find
that there are only two local, codimension-one bifurcations for flows: the saddle-node and
the Hopf bifurcations.

Before discussing the theory in general, we consider the one-dimensional case.

8.1 Bifurcations of Equilibria
The logistic model (1.7) is perhaps the simplest, nonlinear population dynamics model.
The nonlinearity models competition for a fixed resource. Suppose that x represents the
population of fish in a fishery and that, in addition to the competition, the fish are harvested

267
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Figure 8.1. Saddle-node bifurcation for (8.1).

at a constant rate h. The logistic model then becomes

ẋ = rx(1− x)− h. (8.1)

The vector field f of this model depends not only on the dynamical variable x ∈ R
+ but also

on two parameters µ = (r, h) ∈ R
+2

; thus we can write it more generally as ẋ = f (x;µ),
where the semicolon separates the dynamical variables from the parameters. The simplest
bifurcations correspond to qualitative changes in equilibria, namely, in their number and
stability type. For (8.1) the equilibria are

x∗± = 1/2

(
1±

√
1− 4h

/
r

)
.

Note that there are two equilibria when 4h < r , one when 4h = r , and none when 4h > r .
Thus there is a bifurcation—a change in the number of equilibria—on the line 4h = r in
the parameter space; this is the bifurcation set. The existence of the equilibria depends
only on one combination of the two parameters, ν = 4h

/
r; consequently this bifurcation is

governed by a single effective parameter. We can conveniently collect the information about
the equilibria in a bifurcation diagram that shows the two functions x∗±(ν) as a function of
the single parameter ν; see Figure 8.1.

The bifurcation diagram represents the qualitative behavior of our system. Tradition-
ally, the abscissa of the graph corresponds to the parameters and the ordinate to the phase
space. Thus, each vertical slice is a picture of the vector field for fixed parameters, and
the vector fields with varying parameters are stacked together to obtain the full diagram. A
dashed curve is traditionally used to represent an unstable orbit, while a solid curve repre-
sents a stable one. When 4h < r in (8.1) x∗+ is stable, and x∗− is unstable since the slope of
f changes sign at x = 1/2.

The dynamics in the bifurcation diagram occurs along vertical lines at fixed values
of the reduced parameter ν; we sketch two representative vector fields in Figure 8.1. Note
that when the harvesting is too strong, i.e., when 4h > r , we have ẋ < 0 for all x and the
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population crashes, reaching extinction in a finite time. The model then ceases to be valid:
the assumption that the harvesting occurs at a constant rate must fail well before this point.

The bifurcation occurs at the point (x, ν) = (1/2, 1) where the two equilibria collide.
We can focus on this point by centering the picture at this value. To do this, define a new
variable y = 1/2 − x, a new parameter µ = h

/
r − 1

/
4, and (to eliminate r) a new time

τ = rt . In the new variables the ordinary differential equation (ODE) is

−dy
dτ
= 1

r

dx

dt
=
(

1

2
− y

)(
1

2
+ y

)
− 1

4
− µ ⇒ ẏ = µ+ y2. (8.2)

We call (8.2) a normal form for the bifurcation. It has the bifurcation point (0, 0) where a
stable and an unstable equilibrium collide and are destroyed. The resulting bifurcation is
called a “saddle-node” bifurcation.44 As we will see, the normal form describes the local
behavior near any saddle-node bifurcation.

Example: Consider the system

ẋ = µ+ x − ln(1+ x). (8.3)

The equation for the equilibria is transcendental and thus cannot be solved analytically for
x(µ).45 However, insight into its solutions can be obtained by graphing the two functions
g(x) = ln(1 + x) and h(x) = µ + x for varying values of µ; intersections of the two
graphs correspond to equilibria. As µ is varied, the graph of h translates vertically and the
intersections move. When µ > 0 there are no equilibria, while for µ < 0 there are two;
call them x∗± as before. Even if the equilibria cannot be obtained explicitly, the bifurcation
point can often be found. To do this, note that at a point where the equilibria are created or
destroyed, the two curves g and h must be tangent, so that Dh(x∗) = Dg(x∗):

d

dx
(µ+ x) = d

dx
(ln(1+ x)) ⇒ 1 = 1

1+ x∗
⇒ x∗ = 0.

Combining this with the equilibrium equationµ∗ +x∗ = ln(1+x∗) provides two equations
for the two unknowns, (x∗, µ∗). Since x∗ = 0, the equilibrium equation implies thatµ∗ = 0,
too. Thus, the bifurcation occurs at (0, 0). To get a qualitative picture of what happens for
other values of µ, note that the graph and the equation f (x;µ) = 0 imply that as µ→∞,
x∗− → −1 and x∗+ → −µ, since ln x & x. Of course it is also easy to plot the solution
numerically (see the appendix), as shown in Figure 8.2.

Upon expanding the ODE about the bifurcation point, (0, 0), we obtain a description
of the dynamics near the bifurcation:

ẋ = µ+ x −
(
x − 1

2
x2

)
+O(x3) = µ+ 1

2
x2 +O(x3).

Note that this can be transformed into the “normal form” (8.2) by a scaling.
44The terminology is not really appropriate for the one-dimensional case, but the reason for using this name

becomes clear when we consider higher dimensions.
45However, it is easy to obtain µ(x), which is just as good. We will ignore this for the example as it is not

always possible.
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Figure 8.2. The set f (x;µ) = 0 for (8.3).

We will show in §8.4 that there is a conjugacy between the normal form (8.2) and
the original vector field in a neighborhood (in both x and µ) of the saddle-node bifurcation
point, provided that some “nondegeneracy” and “transversality” conditions are satisfied.
The nondegeneracy condition is that the quadratic term, x2, has a nonzero coefficient in the
Taylor expansion about the bifurcation point.

Transversality conditions guarantee that the parameters in f occur in a sufficiently
general way so as to be able to cause the bifurcation. Loosely speaking, each parameter
is a knob that gives some control over the dynamics. For the saddle node, if the knobs
are transverse, then equilibria can be created or destroyed at will, for example, see (8.2).
This means that we need to move the minimum of the function f (x; 0) up and down or
equivalently thatDµf (0; 0) �= 0. If this is not satisfied, then the bifurcation can be somewhat
different in character.

Example: For example, consider the ODE

ẋ = µx + x2. (8.4)

Here the two equilibria are x∗1 = 0 and x∗2 = −µ, and the corresponding bifurcation
diagram is shown in Figure 8.3. Note that the equilibria coalesce at µ = 0 but are not
destroyed. However, something does happen at the collision point: since Dxf (x

∗
1 ;µ) = µ

and Dxf (x
∗
2 ;µ) = −µ, the two fixed points have opposite stability types, and they switch

type atµ = 0. This is a “qualitative” change in the dynamics and so qualifies as a bifurcation.
It is called an exchange of stabilities or transcritical bifurcation. The transcritical bifurcation
most commonly occurs in systems with a special symmetry; for example, the symmetry
property that f is odd implies that x = 0 is always an equilibrium.

Our goal is to show that when a vector field satisfies the appropriate nondegeneracy and
transversality conditions, a saddle-node bifurcation is certain to occur. Additionally we will
classify the various “conjugacy classes” of systems near bifurcation points by identifying
these conditions.
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µ

x

Figure 8.3. Transcritical bifurcation of (8.4).

8.2 Preservation of Equilibria
To understand when bifurcations happen, it is important to first understand when they do not
happen. As we will soon see, nothing dramatic can happen to nondegenerate equilibria when
a parameter is slightly changed. Recall from §2.2 that an equilibrium is called degenerate if
at least one of the eigenvalues of its linearization is zero. Thus we will see that an equilibrium
whose eigenvalues are all nonzero is “structurally stable”—it cannot be removed by small
changes in the equations.

Generally, a flow ϕ is structurally stable if every flow in a neighborhood of ϕ is
topologically equivalent. Here the neighborhood corresponds to a set of vector fields in
some function space, for example, Cr for some r , near to the vector field of ϕ. Practically
one also usually must consider a neighborhood in phase space about some particular orbit.
Here we consider the simplest orbit, an equilibrium.

An essential tool to demonstrate this—as well as many other results in bifurcation
theory—is the implicit function theorem. As its title indicates, this theorem deals with
“implicitly” defined functions. For example, we might expect that the equation f (x;µ) = 0
“typically” can be solved for x to define a “function,” x(µ). However, as we saw in §8.1,
there is not necessarily a unique such function (there we obtained two, x±(µ)), and it is also
easy to construct examples where there is no such function, e.g., f (x;µ) = sech x+µ2. The
implicit function theorem gives sufficient conditions on f such that the implicitly defined
function does exist and is unique.

Theorem 8.1 (implicit function). LetU be an open set in R
n×R

k andF ∈ Cr(U,Rn)with
r ≥ 1. Suppose there is a point (xo, µ0) ∈ U such that F(xo;µo) = c and DxF(xo;µo) is
a nonsingular n× n matrix. Then there are open sets V ⊂ R

n and W ⊂ R
k and a unique

Cr function ξ(µ) : W → V for which xo = ξ(µo) and F(ξ(µ);µ) = c.

This theorem, and its generalization to functions on Banach spaces can be derived
from (you guessed it!) the contraction-mapping theorem. It is proved in any respectable
course on advanced calculus or analysis (Markley 2004; Taylor and Mann 1983).
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F(x;µ) = c

∇F

µo

xo

x

µ

ξ(µ)

Figure 8.4. Illustration of the implicit function theorem for the case n = k = 1.

Theorem 8.1 states that if we know a solution for some special parameter value µo,
then there is a unique surface of solutions that goes through the special solution, provided
that the Jacobian is nonsingular. It is easy to obtain a rough understanding as to why the
condition on the Jacobian DxF is necessary. We expand F = c about (xo, µo) and neglect
terms of higher order than the first derivatives:

c = F(xo + δx;µo + δµ) = c +DxF(xo;µo)δx +DµF(xo;µo)δµ+O(2).

If it were okay to ignore the higher-order terms, we could solve for δx to obtain

δx ≈ −(DxF )
−1DµFδµ;

this can be done for arbitrary δµ only if DxF is nonsingular. This calculation gives the
lowest-order approximation to the function ξ(µ) = xo + δx(µ). The theorem asserts that
this approximation can be extended to a smooth function that is an exact solution to F = c

in some neighborhood of (xo, µo).
A geometrical understanding of this result is easily obtained in two dimensions; see

Figure 8.4. If (x, µ) ∈ R
1 × R

1, then the contour F(x;µ) = c is generically a curve. The
gradient vector ∇F = (DxF,DµF) is perpendicular to the contour. At any point where
∇F is not in the µ-direction, the contour is locally a graph over µ and uniquely defines
the function x = ξ(µ). When DxF = 0, no local graph ξ(µ) exists. Note that in this
case the implicit function theorem could be applied for the “variable” µ as a function of the
“parameter” x to obtain µ(x) provided that DµF �= 0.

The implicit function theorem immediately implies that nondegenerate equilibria are
structurally stable.

Corollary 8.2 (preservation of a nondegenerate equilibrium). Suppose the vector field
f (x;µ) isC1 in both x andµ and that xo is a nondegenerate equilibrium point for parameter
µo (i.e., all the eigenvalues of this equilibrium are nonzero). Then there exists a unique C1

curve of equilibria x∗(µ) passing through xo at µo.
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Proof. Recall that the matrixA = Dxf (xo;µo) governs the stability of the equilibrium, and
since A has all its eigenvalues nonzero, then A is nonsingular. Theorem 8.1 then implies
that there is a neighborhood of µo for which there is a curve of equilibria x∗(µ).

This result applies for an arbitrary number of parameters µ—no matter how many
knobs you have to turn, you cannot destroy a nondegenerate equilibrium by small turns!
For example, a linear center will be preserved under perturbation (though its stability may
change). The only time an equilibrium may immediately disappear is when Dxf has a zero
eigenvalue.

8.3 Unfolding Vector Fields
Bifurcation theory begins with a particular vector field, say, fo(x). To study the dependence
of the dynamics on parameters, this vector field is then unfolded :

� Unfolding: A family of vector fields f (x;µ) is an unfolding of fo(x) if
f (x; 0) = fo(x).

In the spirit of the implicit function theorem, Theorem 8.1, we focus on a neighborhood of
a special parameter value that, without loss of generality, is chosen to be µ = 0. Typically,
the vector field fo(x) will be assumed to have a degenerate orbit at this special parameter
value; this is called a singularity condition. For the next few sections, we will restrict our
consideration to bifurcations that are local in phase space, that is, to some neighborhood of
the special orbit.

The issue of what space of functions are allowed in an unfolding is an important one, as
is a careful definition of the particular neighborhood of fo that is of interest. For the moment,
we will ignore these issues; they will be clarified in our treatment of specific bifurcations.

Just as we used the concepts of conjugacy and equivalence in §4.7 to discover whether
two systems were effectively the same, we can extend these concepts to families of vector
fields. In particular, two families f (x;µ) and g(x;µ) are conjugate if there is a family
of conjugacies h(x;µ) between their flows (recall (4.32))—the only difference is that the
homeomorphism is now allowed to depend upon the parameters µ. Similarly, two families
of vector fields are equivalent if, for each value ofµ, their orbits are topologically conjugate,
preserving the direction of time; recall (4.33).

While two equivalent dynamical systems ostensibly depend upon the same parameters,
it is possible that some of the parameters enter one of the systems in a trivial way. For
example, the vector fields f (x;µ1, µ2) = µ1 + x2 and g(y;µ1, µ2) = µ1

/
µ2 + µ2y

2 are
conjugate under the transformation y = h(x;µ1, µ2) = x

/
µ2 whenever µ2 �= 0. Thus,

even though f formally depends upon both parameters, in reality it depends only upon the
first. This is one mechanism that is used below to reduce a system of ODEs to a normal
form containing a minimal number of parameters.

It is also useful to have notions of conjugacy that allow reparameterization of the
vector fields. This notion is called

� induced : A family g(x; ν) is induced by a family f (x;µ) if there is a
continuous map µ = p(ν) such that g(x; ν) = f (x;p(ν)).
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Thus, two families have effectively the same dynamics if one is induced by a vector field
conjugate to the second.

Example: The vector field g(x; ν) = ν1+ν2
2 −x2 with two parameters on R

1 is induced by
f (x;µ1) = µ1 − x2 using the map µ1 = p(ν) = ν1 + ν2

2 . Although g depends upon two
parameters, only one is essential. Alternatively, the vector field k(x; λ) = λ1 + 2λ2x − x2

is not induced by f ; rather we have the converse—f is induced by k through the map
p(µ1) = (µ1, 0). In this sense f is a simpler version of k.

Nevertheless, the vector field k is conjugate to g using the shift y = h(x; λ) = x−λ2

since g(y; λ) = k(y + λ2; λ) = λ1 + λ2
2 − y2. Since g is induced by f , we can assert that

the flow of k is conjugate to a flow induced by f . Consequently f describes the dynamics
of both of the two-parameter families g and k.

An unfolding that describes every possible nearby behavior is called a

� versal unfolding: An unfolding f (x;µ) is versal46 if every other unfolding
in some neighborhood of fo is equivalent to a family induced by f (x;µ).

If we assume that the conjugacy is actually a diffeomorphism, then this statement can be
made on the level of the vector fields. In this case, if f (x;µ) is a versal unfolding of fo,
then for every other unfolding g(x; ν) there must exist a diffeomorphism, h, and a map, p,
such that

g(h(x;p(ν)); ν) = Dhf (x;p(ν))
for a neighborhood of (0, 0). One goal is to obtain a complete description of the neighbor-
hood of a special vector field that uses the smallest possible number of parameters. If we
achieve this we say that we have a

� miniversal unfolding: An unfolding is miniversal if it is a versal unfolding
with the minimum number of parameters.

These ideas are presented geometrically in Figure 8.5; here the infinite-dimensional
spaces of all functions conjugate tof (x;µ) are drawn as “planes” and a miniversal unfolding
of fo(x) as a “curve.”

Example: Suppose x ∈ R
1 and that fo = 0. Consider the behavior of the special degenerate

equilibrium at x = 0 (even though every point is such an equilibrium!). The family
f (x;µ) = −µ1x + µ2x

2 is an unfolding of fo. However, it is not versal because, for
example, the vector field g(x; ν) = ν is an unfolding of fo that has no equilibria when ν
is nonzero and hence cannot be conjugate to f , which always has an equilibrium at x = 0.
Even though it is not versal, the unfolding f in some sense has too many parameters. Indeed,
the conjugacy y = h(x) = µ2x transforms f into the vector field k(y;µ) = −µ1y + y2,
so a single parameter family suffices to describe the dynamics of f when µ2 �= 0.

46The Oxford English Dictionary says that “versal” is an illiterate or colloquial abbreviation of universal. It
means universal or whole. The latter meaning seems appropriate here. Shakespeare used it in Romeo and Juliet,
though not in the mathematical sense.
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Figure 8.5. Unfolding a vector field fo(x).

Unfolding Two-Dimensional Linear Flows

The simplest case of unfolding is in the context of linear systems. Here we consider a linear
vector field on R

2, setting z = (x, y)T ,

ż = Az =
(
a b

c d

)(
x

y

)
.

The set of all 2 × 2 matrices is a manifold isomorphic to R
4 with coordinates (a, b, c, d).

Under a linear change of coordinates z = Pζ = P(ξ, η)T , the matrix A transforms into
the similar matrix B = P−1AP , and the dynamics of the new system ζ̇ = Bζ is linearly
conjugate to the original dynamics. There are only two combinations of the parameters
(a, b, c, d) of A that are invariant under this linear conjugacy: the trace and determinant

τ = tr(A) = a + d, δ = det(A) = ad − bc; (8.5)

recall §2.2. WhenA is semisimple, it can be diagonalized by this coordinate transformation;
consequently, every matrix in the two-dimensional subspaces of R

4 with the same trace and
determinant has the same dynamics. As we will see, under topological conjugacy the number
of essential parameters can be reduced even more.

There are three “singularities” that are of interest in bifurcation theory; they correspond
to the three types of nonhyperbolic equilibrium:

(a) single zero eigenvalue, det(Ao) = 0, tr(Ao) �= 0,

(b) pair of imaginary eigenvalues: tr(Ao) = 0, det(Ao) �= 0, and

(c) double zero eigenvalue, tr(Ao) = det(Ao) = 0.

To study these cases we first change coordinates so that the matrix is in its simplest
form under linear conjugacy. When there is a single zero eigenvalue, the matrix is always
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semisimple and can thus be diagonalized, Ao = PJP−1, where

J =
(

0 0
0 λ

)
. (8.6)

As λ varies, J defines a one-dimensional curve in the four-dimensional space of 2 × 2
matrices. This means that all flows in case (a) are linearly conjugate to the flow of (8.6) for
some value of λ. However, J is not the simplest form for the class (a); further simplification
can be obtained using a topological conjugacy, (4.32). As an extension of Theorem 4.11, the
flow of (8.6) is topologically conjugate to a simpler flow with λ replaced by sgn(λ) = ±1.
To see this, denote the two flows by ϕt (x, y) = (x, yeλt ) and ψt(ξ, η) = (ξ, ηesgn(λ)t ). The
homeomorphism

(ξ, η) = h(x, y) = (x, sgn(y) |y|α) (8.7)

with α = 1
/|λ| provides a conjugacy between ϕ and ψ :

h ◦ ϕt (x, y) = (x, sgn(y)
∣∣yeλt ∣∣α) = (x, sgn(y) |y|α esgn(λ)t ) = ψt ◦ h(x, y).

The new flow has a vector field defined by the matrix

Ĵ± =
(

0 0
0 ±1

)
. (8.8)

Note that ψ is not diffeomorphic to the original flow, so we cannot transform the vector
fields directly.

Thus the flows generated by Ĵ± are conjugate to the flows of any matrix that satisfy
condition (a). The “+” matrix represents those with an unstable direction, and the “−”
matrix represents those with a stable direction. These are distinct conjugacy classes since
the origin has different stability properties. The matrices (8.8) are the normal forms for
the linear flows with a single zero eigenvalue. As we will see below, it is typical that
normal forms depend upon some parameter that takes a discrete set of possible values; these
parameters are called moduli.

The matrices that satisfy condition (a),

F(a; b, c, d) = det(Ao) = ad − bc = 0, (8.9)

make up a three-dimensional surface in R
4. The implicit function theorem Theorem 8.1,

implies that in a neighborhood of Ĵ+ or of Ĵ− the set F = 0 is a smooth three-dimensional
surface in R

4 (a submanifold). Indeed, the condition (8.9) can be thought of as implicitly
determining a as a function of b, c, and d. Since DaF |Ĵ± = d = ±1 �= 0, the implicit
function theorem states that there is a unique, smooth functiona(b, c, d)on which det(Ao) =
0 in the neighborhood ofAo = Ĵ±. This representation of the surface as a graph over (b, c, d)
fails only when d = 0—indeed the surface F = 0 when d = 0 corresponds to the union of
two planes: {(a, b, 0, 0)} ∪ {(a, 0, c, 0)}.

To obtain a versal unfolding of Ĵ± in the space of linear vector fields on R
2, we

need only add one parameter to represent the change in value of the zero eigenvalue. Any
matrix A near the surface F = 0 has eigenvalues (µ, λ) with µ small and λ close to ±1;
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consequently for an appropriately chosen neighborhood, µ �= λ. By the same argument as
before, the flow of A is conjugate to that of the matrix

Aµ =
(
µ 0
0 sgn(λ)

)
. (8.10)

Thus Aµ gives a versal unfolding of Ĵ±. Note that it would not be useful to use a conjugacy
to scale µ to ±1, since we are interested in varying µ through 0. It is clear that at least one
parameter must be added to unfold a three-dimensional surface in R

4; thus the unfolding
(8.10) is miniversal.

Recall from §2.5 that any matrix in case (b) is linearly conjugate to the matrix
(0 −ω
ω 0

)
.

By rescaling time and, if ω < 0, flipping the sign of x, an equivalent system with the matrix

J =
(

0 −1
1 0

)
(8.11)

is obtained. Since these matrices are defined again by a single condition, tr(Ao) = 0, the set
of matrices equivalent to (8.11) again forms a three-dimensional surface in R

4. Any matrix
near (8.11) will have eigenvalues λ = µ ± iν, with µ small and ν near 1. Upon rescaling
time, these matrices have flows that are equivalent to

Aµ =
(
µ −1
1 µ

)
. (8.12)

Note that matrices with negative determinant cannot be obtained in this unfolding; however,
we are really interested only in a neighborhood of the nonhyperbolic point.

Finally consider case (c), the special point of a double zero eigenvalue. The matrix is
typically not semisimple in this case. For this nondiagonalizable case (called the Takens–
Bogdanov point), the normal form is the Jordan form

J =
(

0 1
0 0

)
. (8.13)

This normal form corresponds to a point in R
4, but is conjugate to a two-dimensional

subspace of matrices: those that satisfy the two relations (c) and have a single eigenvector;
see Figure 8.6. Two parameters are required to unfold this matrix—enough to represent the
change in both det(A) and tr(A). It is not hard to see that the unfolding can be given by

Aµ =
(
µ1 1
µ2 0

)
, (8.14)

for example (see Exercise 4). There are many other valid choices for this unfolding, and
some will be more convenient (when we consider the nonlinear terms) than others.

If the degenerate matrix in case (c) has two eigenvectors, then it must be the zero
matrix—every matrix that is similar to 0 is itself 0. This case is a single point in the space of
2×2 matrices and is hence much more unusual than the two-dimensional surface conjugate
to (8.13). Four parameters are required to unfold the zero matrix, and these might as well
be the four entries (a, b, c, d).
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1
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1

0 a

0
b

0
c

−1−1

1

Figure 8.6. The projection of the two-dimensional surface of matrices conjugate
to the normal form (8.13) onto (a, b, c) using the fact that a + d = 0.

8.4 Saddle-Node Bifurcation in One Dimension
The saddle-node bifurcation corresponds to the creation or destruction of a pair of equilibria;
several examples were studied in §8.1. Here we present a theorem that gives conditions
under which this bifurcation necessarily occurs. Bifurcation theorems typically involve
three types of assumptions. The first is a singularity assumption—in this case, that there
is a vector field fo with a nonhyperbolic equilibrium. The second is a nondegeneracy or
genericity assumption, in this case that fo has quadratic terms near the equilibrium. The
final assumption is one of transversality—that the parameters are sufficiently general to
unfold the vector field and cause the bifurcation.

For an ODE ẋ = fo(x) on R
1, the singular case that gives rise to the saddle node is

defined by
fo(0) = 0, Dfo(0) = 0 (singularity)

so that there is a nonhyperbolic equilibrium at the origin. The nondegeneracy assumption
is that the quadratic term in the power series is nonzero:

Dxxfo(0) �= 0. (nondegeneracy)

This assumption limits the complexity of the resulting behavior. The final assumption of
transversality serves to guarantee that the parameterµ in the unfolding f (x;µ) of fo moves
the vector field “transversely” to the singular state. In this case the necessary condition will
turn out to be

Dµf (0; 0) �= 0. (transversality)

We begin first, however, with a theorem that assumes only nondegeneracy.
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Theorem 8.3. Suppose that f (x;µ) ∈ C2(R×R
k,R)with a nonhyperbolic equilibrium at

the origin, f (0; 0) = 0, Dxf (0; 0) = 0, and that f satisfies the nondegeneracy condition

c ≡ Dxxf (0; 0) �= 0. (8.15)

Then, there is a δ > 0 such that when |µ| < δ, there is an open interval, I (µ), containing
0 such that there is a unique extremal value

m(µ) ≡ Ext
x∈I (f (x;µ)) . (8.16)

There are two equilibria in I when m(µ)c < 0, one when m(µ)c = 0 and when
m(µ)c > 0.

Proof. The singularity and nondegeneracy conditions imply that fo(x) = 1/2cx
2 + g(x).

Since fo is C2, the nonlinear term, g, is small: g = o(x2) (recall §4.4). Thus

g(0; 0) = Dxg(0; 0) = Dxxg(0; 0) = 0.

A general unfolding of fo will have the form

f (x;µ) = a(µ)+ b(µ)x + 1

2
c(µ)x2 + g(x;µ), (8.17)

where a(0) = f (0; 0) = 0, b(0) = Dxf (0; 0) = 0, c(0) = c �= 0, and g(x;µ) = o(x2).
To solve for the equilibria we would ordinarily try to solve for x(µ); however, the implicit
function theorem fails because Dxf (0; 0) = 0.47 However, it is possible to solve, for the
critical points of f , the zeros of the function

F(x;µ) ≡ Dxf (x;µ) = b(µ)+ c(µ)x +Dxg.

The conditions of the implicit function theorem are satisfied for F(x;µ) since F(0; 0) =
b(0) = 0 and DxF(0; 0) = c(0) �= 0. Thus there are neighborhoods V and W of the origin
such that when µ ∈ W there is a unique x = ξ(µ) ∈ V such that F(ξ(µ);µ) = 0 and
ξ(0) = 0. Since DxF(0; 0) �= 0, there is a possibly smaller neighborhood of µ = 0 and
an interval I (µ), containing ξ(µ), for which F(x;µ) is a monotone function of x, i.e., for
which

sgn(Dxxf (x;µ)) = sgn(c(µ)) = sgn(c).

Therefore m(µ) = f (ξ(µ);µ) in (8.16) is the unique extremal value of f for x ∈ I , and
m(0) = f (0; 0) = 0. Note that sgn(c) determines whether the critical point ξ is a minimum
or a maximum. Moreover, since sgn(fo(x)) = sgn(c) when x is on the boundary of I (0),
this remains true by continuity, for small enough µ: sgn(f (x;µ)) = sgn(c) for x ∈ ∂I (µ).
If c > 0, for example, then f has a minimum at ξ and is positive on the boundaries so that
when m(µ) > 0 there are no zeros of f , and if m(µ) < 0 there are two zeros. Similar
considerations apply when c < 0. Finally if m(µ) = 0, then since f (ξ(µ);µ) = 0 and is
otherwise nonzero when x ∈ I (µ), there is one equilibrium, x∗ = ξ(µ).

47One way to get around this is to solve for µ(x), which is possible by the implicit function theorem. See
(Robinson 1999) for this approach.
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Dxf(x;µ)

f

x

x

I(µ)

α(µ)

f(x;0)

ξ(µ)

x+x-

f(x;µ)

Figure 8.7. Illustration of a saddle-node bifurcation in R
1.

The saddle-node bifurcation “creates” a pair of equilibria asmc crosses from positive
to negative values; see Figure 8.7. Indeed, near the critical point f takes the form f (x;µ) ≈
m(µ)+ 1/2c(µ) (x − ξ(µ))2 so the positions of the equilibria are approximately

x∗±(µ) ≈ ξ(µ)±
√
−m(µ)/c(µ).

The stability of the two new equilibria can be computed by noting that for c > 0, f has a
minimum at ξ(µ), and so it has negative slope at x∗− and positive slope at x∗+. This implies
that x∗− is a stable equilibrium and x∗+ is an unstable equilibrium. The stabilities are reversed
if c < 0.

The most amazing fact that we have discovered is that this bifurcation depends on
a single function m(µ), for any number of parameters µ. Such a bifurcation is called
codimension-one. This means that the condition m(µ) = 0 defining the bifurcation set
yields a codimension-one surface in the space of parameters.

� Codimension: A bifurcation is codimension-k if the bifurcation set is deter-
mined by k independent conditions on the parameters.

The bifurcation occurs when m(µ) changes sign. Since m has a somewhat obscure
derivation, a more convenient criterion is needed.

Corollary 8.4. If f satisfies the hypotheses of Theorem 8.3, and there is a single param-
eter µ1 such that the transversality condition Dµ1f (0; 0) �= 0 holds, then a saddle-node
bifurcation occurs as µ1 crosses zero.

Proof. According to Theorem 8.3, if ∂m
/
∂µ1 �= 0, then the bifurcation occurs, since we

can then chooseµ1 to change the sign ofm. Using the definition (8.16) ofm, this derivative
is

∂m

∂µ1
= ∂

∂µ1
f (ξ ;µ)+Dxf (ξ ;µ) ∂ξ

∂µ1
= ∂

∂µ1
f (ξ ;µ),

since by definition of ξ , Dxf (ξ ;µ) = 0.
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Example: Let f (x;µ) = µ1+µ2x+ x2. Our goal is to obtain the saddle-node bifurcation
set in (µ1, µ2) space. First compute ξ(µ) by solvingDxf = µ2+2x = 0, which gives ξ =
−µ2

/
2. Thus m(µ) = f (ξ ;µ) = µ1 − µ2

2

/
4. So the saddle-node set is the codimension-

one set (a curve), µ1 = µ2
2

/
4. Since c = Dxxf (0; 0) = 2 > 0, there are two equilibria

when m < 0, and none when m > 0. Of course for this case the equilibria are easily found
explicitly,

x∗± = −
µ2

2
±
√
µ2

2

4
− µ1 = −µ2

2
±√−m(µ),

which necessarily gives the same result.

Finally we can obtain the miniversal unfolding of the saddle-node bifurcation, as
predicted in (8.2).

Theorem 8.5. The saddle-node bifurcation has a miniversal unfolding

k(y; ν) = ν + y2. (8.18)

Proof. Note first that since the saddle node is a codimension-one bifurcation, a miniversal
unfolding necessarily will have one parameter, equivalent tomc. Using the variable x−ξ(µ)
instead of x, and noting that f (ξ ;µ) = m, Dxf (ξ ;µ) = 0, we can write

f (x;µ) = m(µ)+ 1

2
C(µ)(x − ξ(µ))2 + o(x − ξ)2.

This can be simplified using the map ν = p(µ) = m(µ)C(µ), and the conjugacy y =
h(x) = 1/2C(µ)(x − ξ(µ)) + o(x − ξ). Then f is induced by the simpler vector field
Dhf (h−1(y);µ) = ν+y2+o(y2). According to the one-dimensional equivalence theorem,
Theorem 4.10, there is a neighborhood of the origin for which dynamics of this system is
topologically conjugate to those of (8.18) because both systems have two equilibria of the
same type, arranged in the same order on the line, with the same stability types. Note that
ν is precisely the single parameter identified in Theorem 8.3.

Before proceeding to the n-dimensional generalization of the saddle-node bifurcation
theorem, we pause in the next section to consider the choice of the singular vector field
fo. An appropriate normal form was easily obtained from the singularity assumption in the
one-dimensional case; however, the analysis in higher dimensions is not quite as simple.
The n-dimensional normal form will be selected from all possible vector fields that satisfy
a given singularity condition by a careful choice of coordinates. We will return to the
saddle-node bifurcation in §8.6.

8.5 Normal Forms
To proceed systematically to the study of bifurcations in multidimensional systems, it is
important to first simplify a dynamical system as much as possible so that its possible
behaviors can be easily classified. The problem here is to find the “simplest” representative
of a family of flows that are equivalent up to a coordinate transformation—we call such
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a system a normal form. For example, in §4.8 we showed that the Hartman–Grobman
theorem implies that in a neighborhood of a hyperbolic equilibrium, any flow is conjugate
to its linearization. Thus, an appropriate normal form in this case is the normal form of the
linearization. Bifurcation theory, however, is predominantly concerned with nonhyperbolic
orbits since hyperbolic orbits persist under small parameter variation.

Ideally we would like to construct a homeomorphism that linearizes the vector field
just as the Hartman–Grobman theorem does. There are two problems. The first is that
linearization typically fails to give a complete description of the dynamics near a nonhy-
perbolic orbit; consequently nonlinear terms will appear in the normal forms. The second
problem is one of practicality: the group of homeomorphisms is too big to permit a sys-
tematic simplification. To obviate this, we will limit ourselves to diffeomorphisms so that
power series methods can be used. Unfortunately, the construction of a diffeomorphism
fails more often than would be implied by the Hartman–Grobman theorem; nevertheless, it
succeeds often enough to be useful.

For the moment, we will work formally with power series representations and will
not worry about their convergence. In later sections we will show that the formal, normal
forms give valid, local representations of the dynamics for specific bifurcations.

Homological Operator

Suppose x ∈ R
n and, without loss of generality, assume that ẋ = f (x) has an equilibrium

at x = 0. Expanding f in a power series gives

f (x) =
N∑
k=1

fk(x)+O(N + 1). (8.19)

Here fk is a vector of homogeneous polynomials of degree k in x, that is,

fk(αx) = fk(αx1, αx2, . . . , αxn) = αkf (x), (8.20)

for any α ∈ R. The term O(N + 1) represents polynomials of degree N + 1 or larger. The
space of homogeneous polynomials is denoted

Hk =
{
homogeneous polynomials of degree k in x ∈ R

n
}
. (8.21)

It is easy to see that Hk is a vector space, since a linear combination of any two homogeneous
polynomials is still such a polynomial (see Exercise 5). Abasis for Hk is the set of monomials

xm ≡ x
m1
1 x

m2
2 . . . xmn

n . (8.22)

Here m is a vector of natural numbers, m ∈ N
n, and |m| ≡ ∑n

i=1 mi = k is the degree.
Thus for example, H2 = span

{
x2, xy, y2

}
is three-dimensional. We also let H

n
k = Hk ×

Hk × · · · ×Hk be the space of vectors of homogeneous polynomials on R
n. For example,

H
2
2 has dimension 6, and the basis

p1 =
(
x2

0

)
, p2 =

(
xy

0

)
, p3 =

(
y2

0

)
, p4 =

(
0
x2

)
, p5 =

(
0
xy

)
, p6 =

(
0
y2

)
. (8.23)
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Thus H
2
2 = span {p1, p2, . . . , p6}. Of course, we could have written H

2
2 in terms of a

different basis, since the basis for any vector space is not unique. Denoting the standard
unit basis of R

n by ei, i = 1, 2, . . . , n, the vector monomials,

pm,i ≡ xmei, |m| = k, (8.24)

provide a basis for H
n
k . The dimension of this space is the number of such vector monomials;

see Exercise 5. Using this notation, the degree k terms in the power series (8.19) can be
written

fk =
n∑
i=1

∑
|m|=k

fm,ipm,i . (8.25)

For example, when k = |m| = 1, then all the mi = 0 except for one, say, mj = 1, and the
double sum (8.25) reduce to a sum over j and i. Therefore f1 = ∑n

i=1

∑n
j=1 eiAij xj =

Ax ∈ H
n
1 is the linearization,Df (0)x. For k = 2, either two of themj = 1 or one of them is

2, and the remainder are zero. The sum can be written f2 =∑n
i=1

∑n
j=1

∑n
k=1 eiBijkxjxk .

Here the coefficients Bijk are the n3 components of the tensor D2f (0) in the monomial
basis.

Our quest is to construct the “simplest” vector field g that is conjugate to f by a near
identity transformation. Let ξ represent the new variables so that ξ̇ = g(ξ) and

ξ = h(x) = x + h2(x)+O(3). (8.26)

Recalling (4.34), we see that

ξ̇ = Dh(x)ẋ ⇒ g(h(x)) = Dh(x)f (x). (8.27)

It would be simplest to choose g to be the linearization, g(ξ) = Aξ . Indeed, the Hartman–
Grobman theorem implies that this can be achieved whenA is hyperbolic (though not with a
diffeomorphism). Assume for the moment that this can done in (8.27) for power series. The
transformation can be constructed order by order, choosing hk to eliminate all the nonlinear
terms fk . As we will see, certain terms in f cannot be eliminated; these must remain in g
and define the nonlinear normal form.

First consider only the quadratic terms, setting h(x) = x + h2(x). We attempt to
eliminate f2 so that g(x) = Ax +O(3). Putting the expansions into (8.27) gives

Ax + Ah2(x)+O(3) = Dh(x)f (x)

= f (x)+Dh2(x)f (x)

= Ax + f2(x)+Dh2(x)Ax +O(3).

Note that the linear terms are satisfied identically. Collecting the quadratic terms gives

LA(h2) ≡ Ah2(x)−Dh2(x)Ax = f2(x), (8.28)

which is an equation for the unknown functionh2. Arnold callsLA the homological operator
(Arnold 1983, Chapter 5).

The homological operator is a linear operator (recall §2.3) on the space of degree k
vector fields: LA : H

n
k → H

n
k (see Exercise 6). More generally, given a pair of vector
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fields X, and Y , the Lie bracket is defined as LX(Y ) = [Y,X] = DX(Y)−DY(X). When
X = Ax is linear, the Lie bracket reduces to the homological operator. This operator is also
sometimes called the adjoint operator and denoted adX.

In principle, h2 could be obtained by inverting the homological operator to obtain
h2 = L−1

A (f2). However, the kernel of LA is typically not trivial so that it does not have an
inverse. Just as in the case of a matrix, (2.11), the kernel of a linear operator L : H → H is
its null space:

ker(L) ≡ {p ∈ H : L(p) = 0} .
When L has a nontrivial kernel, (8.28) is solvable only when f2 ∈ rng(L). This solvability
condition has another formulation if we are given an inner product, 〈r, p〉, on H. The adjoint,
L†, of L is then defined by 〈p,Lr〉 ≡ 〈L†p, r

〉
for any r, p ∈ H, and its cokernel is the null

space of this adjoint:
coker(L) ≡ {r ∈ H : L†(r) = 0

}
. (8.29)

One possible inner product is discussed in Exercise 7.
A system Lp = f is solvable if and only if f is orthogonal to the cokernel of L, i.e.,

〈r, f 〉 = 0 for all r ∈ coker(L); (8.30)

this is called the Fredholm condition (Olver and Shakiban 2006). Indeed, if there is a
solution, Lp = f, then for any r ∈ coker(L), 〈f, r〉 = 〈Lp, r〉 = 〈

p,L†r
〉 = 0 so f

satisfies (8.30). Moreover, if f ∈ rng(L), then by definition there exists a p such that
Lp = f , so f satisfies (8.30). Consequently,

H = rng(L)⊕G, (8.31)

where G is a complement to rng(L).48 Whenever f does not satisfy (8.30), then the equation
Lp = f is inconsistent. To emphasize this, split f into two parts,

f = f̃ + f R, f̃ ∈ rng(L), f R ∈ G.

The function f R is the resonant part of f .
Using this splitting, we then begin anew with (8.27) but ask only that the normal form

eliminate all nonresonant terms, so that

g(ξ) = Aξ + f R(ξ). (8.32)

Using this form in (8.28) results in the equation

LA(h2) = f̃2, (8.33)

which is guaranteed to have a solution for h2.
The problem of constructing a normal form can be reduced to the following set of

tasks:
48The fundamental theorem of linear algebra (2.13) implies that it is possible to choose G = coker(L) =

rng(L)⊥; however, this may not be most convenient, so at this stage we leave the choice open. Consequently, the
resonant terms are not uniquely defined. This gives rise to the possibility of a number of different normal forms
for a given bifurcation, as we will see when we treat the Takens–Bogdanov case below.
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• For a given linearization, A, find a representation of the homological operator LA on
H
n
k .

• Resolve f into components in rng(LA) and a complementary space G.

• Solve for the transformation h, eliminating all nonresonant terms, leaving the normal
form g(x) = Ax + f R .

Matrix Representation

For the homological operator acting on H
n
k the calculation of the resonant terms can be

reduced to matrix algebra; indeed, any linear operator on a finite-dimensional space has
a matrix representation. Specifically, suppose L : H → H, where dim(H) = d, and let
pj , i = 1, 2, . . . , d, represent a basis of H. Since L is a linear operator, then L(pi) ∈ H

and is necessarily given by a linear combination of the basis vectors:

L(pj ) =
d∑
i=1

piLij . (8.34)

This defines the d × d matrix, L, as the representation of the action of the operator L on H;
recall §2.3. Writing a general vector in this basis as h =∑d

i=1 hipi , the equation L(h) = f

becomes

L(h) = L


 d∑

j=1

hjpj


 = d∑

i,j

piLijhj =
d∑
i=1

fipi ⇒
d∑
i=1


 d∑

j=1

Lijhj − fi


pi = 0.

Since the basis vectors are linearly independent, this is equivalent to the matrix equation
Lh = f for the d-dimensional coefficient vectors h and f—that this looks almost exactly
the same as the original operator equation is intentional.

Accordingly, the kernel of the operator L in the p-basis is simply the kernel of the
matrixL. If the vectors are real, then we can define the inner product as 〈h, f 〉 =∑d

i=1 hifi
so that the transposed matrix represents the adjoint of L and the cokernel of L is simply the
kernel of the transpose, LT .

The simplest example corresponds to the case that A is real and diagonal, i.e., A =
diag(λ1, λ2, . . . , λn). We compute the action of LA on the monomial basis of H

n
k using the

basis vectors (8.24). Note that Apm,i = λipm,i and

Dpm,i(x)Ax =
n∑

j=1

ei
∂

∂xj
(xm)λ

j
xj = ei

n∑
j=1

(mjλj )x
m = m · λpm,i .

Therefore, using (8.28),

LA(pm,i) = (λi −m · λ) pm,i = µm,ipm,i . (8.35)

This shows that the vector monomials are eigenfunctions of LA on H
n
k , with eigenvalues

µm,i = λi −m · λ. (8.36)
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Since the vector monomials pm,i provide a basis for H
n
k , if all the µm,i are nonzero then

ker(LA) = coker(LA) = {0}. In this case we can invert LA to obtain h2 from (8.28):

h2 =
∑
|m|=2,i

f2,m,i

λi −m · λx
mei.

Example: Consider the one-dimensional case with a hyperbolic equilibrium: A = (λ).
Then

ẋ = λx + ax2 + bx3 + · · · ,
we set ξ = h(x) = x + αx2 + βx3 + · · · , and the homological operator is

LA(h) = λh(x)−Dh(x)λx,

so LA(x
m) = µmx

m with µm = (1−m)λ. Since we consider m ≥ 2, there are no resonant
terms when λ �= 0. At quadratic order we must solve

LA(αx
2) = −λαx2 = f2 = ax2,

so α = −a/λ. Thus to second order we choose ξ = x − ax2
/
λ. To show that the ODE

is indeed transformed, it is necessary to invert the ξ = h(x); this can locally be done by
recursion:

x = ξ + a

λ
x2 = ξ + a

λ

(
ξ + a

λ
x2
)2 = ξ + a

λ
ξ 2 + 2

a2

λ2
ξ 3 +O(ξ 4).

The new dynamical equation is

ξ̇= d

dt

(
x − a

λ
x2
)
= λx + ax2 + bx3 + · · · − 2

a

λ
x
(
λx + ax2 + · · ·) ,

= λx − ax2 + (b − 2a2
/
λ
)
x3 + · · · ,

= λ
(
ξ + aξ 2

/
λ+ 2a2ξ 3

/
λ2 + · · ·)− a

(
ξ + aξ 2

/
λ+ · · ·)2 + (b − 2a2

/
λ
)
ξ 3 + · · · ,

= λξ + (b − 2a2
/
λ
)
ξ 3 +O(ξ 4).

Thus, the quadratic term has been successfully eliminated. We could now proceed to
eliminate the cubic terms with an h3.

The only problem with this analysis happens when λ = 0. Now none of the nonlinear
terms can be eliminated sinceLA ≡ 0! Indeed, when λ = 0 every monomial xm is resonant,
and the nonhyperbolic equation ẋ = ax2 + O(3) cannot be simplified by this technique.
Luckily, we have already dealt with this situation in §8.4.

More generally, it can happen that one or more of the µm,i in (8.36) are zero. This
occurs if, for some m, i we have λi = m · λ. For example, the eigenvalues for n = k = 2
are shown in Table 8.1. Whenever λi = 0 or λi = 2λj there are resonances, and ker(LA) is
nontrivial. The first case should be expected to cause a problem since then the fixed point
is not hyperbolic. The second case is not so obvious; it arises from the use of power series
for the conjugacy.
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Table 8.1. Eigenvectors of (8.35).

m, i (2, 0), 1 (1, 1), 1 (0, 2), 1 (2, 0), 2 (1, 1), 2 (0, 2), 2

Basis vector

(
x2

0

) (
xy

0

) (
y2

0

) (
0
x2

) (
0
xy

) (
0
y2

)
µm,i −λ1 −λ2 λ1 − 2λ2 λ2 − 2λ1 −λ1 −λ2

When there are resonances, H
n
k can be decomposed as (8.31) into the range of LA

and a complementary subspace G. The simplest choice for G, the cokernel of LA, is fine
here. Indeed, since LA has a diagonal representation, its kernel and cokernel are identical.
Consequently G is spanned by the zero eigenvectors of LA.

Example: Consider a two-dimensional system whose linearization has a single zero eigen-
value. As we argued in §8.3, the linearization can be put in the form (8.8). Thus the power
series for fo is

ẋ = ax2 + bxy + cy2 + · · · ,
ẏ = λy + dx2 + exy + fy2 + · · · , (8.37)

whereλ = ±1. Denoting the components ofh(x, y) = (hx, hy), we see that the homological
operator (8.28) becomes

LA(h) =
(

0 0
0 λ

)(
hx
hy

)
−
(
∂xhx ∂yhx
∂xhy ∂yhy

)(
0 0
0 λ

)(
x

y

)
= λ

( −y∂yhx
h
y
− y∂yhy

)
.

This is a special case of the diagonal A that was treated earlier, and each of the monomials
pm1,m2,i = xm1ym2ei is an eigenvector of LA with eigenvalues (8.36). For k = 2, Table 8.1
shows that LA has precisely two zero eigenvectors, p1 and p5:

LA

(
x2

0

)
= 0, LA

(
0
xy

)
= 0.

These are a basis for coker(LA), and are the two resonant terms that cannot be eliminated.
This implies that f R is given by a linear combination of these vectors and that the normal
form is

ξ̇ = aξ 2 +O(3),
η̇ = λη + eξη +O(3).

(8.38)

To this order, the normal form is a skew product, and whenever a �= 0, the ξ motion is
“semistable” (recall §4.5), while the η motion is hyperbolic. The system (8.38) is called a
saddle node; we will study its unfolding in §8.6.

Higher-Order Normal Forms

It is not necessary to stop with the elimination of the quadratic terms. To see this we use
induction. First, suppose the normal form is known to some order, i.e., that all terms in the
range of LA have been eliminated below order k. To this order, the normal form is

ẋ = Ax + f R
k−1(x)+ fk(x)+ · · · ,
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where f R
k−1 contains the resonant terms through order k − 1. Now let

ξ = x + hk(x)

and demand that the dynamics for ξ has only resonant terms through order k, so that

ξ̇ = g(ξ) = Aξ + gRk (ξ)+O(k + 1).

Using (8.27) through O(k) we obtain

Ah(x)+ gRk (h(x))+O(k + 1) = Dh(x)
(
Ax + f R

k−1(x)+ fk(x)
)+O(k + 1),

Ax + Ahk(x)+ gRk (x)+O(k + 1) = Ax + f R
k−1(x)+ fk(x)+Dhk(x)Ax +O(k + 1).

To solve this, set gRk = f R
k−1 + f R

k , and determine hk from the equation

LA(hk) = fk − f R
k , (8.39)

where LA is again the homological operator (8.28). Moreover, (8.39) is solvable since its
right-hand side is constructed to be in the range of LA.

Example: We already worked out the normal form of the flow of (8.37) to quadratic order.
Every higher-order monomial xm1ym2ei ∈ H

n
|m| can be eliminated, provided it does not

satisfy one of the resonance conditions µm,i = λi − m · λ = 0 with λ1 = 0 and λ2 = ±1.
For i = 1 the resonant terms correspond to µm,1 = ±m2 = 0, so m = (k, 0), and for i = 2,
they correspond to µm,2 = ±(1 −m2) = 0, so m = (k − 1, 1) for k = 2, 3, . . . . Thus the
normal form to arbitrary order N is

ξ̇ =
N∑
k=2

ckξ
k,

η̇ = λη + η

N∑
k=2

dkξ
k−1.

(8.40)

Just like the quadratic normal form (8.38), this is a skew-product system.

Example: A linear center on R
2 has the real normal form (8.11) so that fo becomes

ẋ = −y + ax2 + bxy + cy2 + · · · ,
ẏ = x + dx2 + exy + fy2 + · · · .

For the matrix (8.11) the homological operator is

LA(h) =
(

0 −1
1 0

)(
hx
hy

)
−
(
∂xhx ∂yhx
∂xhy ∂yhy

)(
0 −1
1 0

)(
x

y

)
=
(−hy + y∂xhx − x∂yhx
hx + y∂xhy

− x∂yhy

)
.

(8.41)
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In this case the monomial basis vectors are not eigenvectors: the matrix representation for
L is not diagonal.49 The elements of this matrix in the standard basis (8.23) for H

2
2 are

obtained from

LA(p1) =
(

2xy
x2

)
= (2p2 + p4), LA(p2) =

(
y2 − x2

xy

)
= (p3 − p1 + p5),

LA(p3) =
(−2xy

y2

)
= (−2p2 + p6), LA(p4) =

(−x2

2xy

)
= (−p1 + 2p5),

LA(p5) =
( −xy
y2 − x2

)
= (−p2 − p4 + p6), LA(p6) =

( −y2

−2xy

)
= (−p3 +−2p5).

The matrix representation (8.34) becomes

L =




0 −1 0 −1 0 0
2 0 −2 0 −1 0
0 1 0 0 0 −1
1 0 0 0 −1 0
0 1 0 2 0 −2
0 0 1 0 1 0



.

This matrix is diagonalizable and has eigenvalues, µ = ±i (double) and ±3i—none of
which are zero. Thus at this order there are no resonances and all the quadratic terms can
be eliminated.

At cubic order, there are eight basis vectors, and so the operator LA has an 8×8 repre-
sentation. Considerable algebra leads to the conclusion that there are only two eigenvectors
with zero eigenvalue; thus two vectors span G (see Exercise 8). The two polynomials

v1 =
(
(3x2 + y2)x

(x2 + 3y2)y

)
, v2 =

(
(x2 + 3y2)y

−(3x2 + y2)x

)
(8.42)

give a basis for coker(LA) since LT
Avi = 0. It turns out that this is not the most convenient

choice for G, however. A better choice corresponds to the two null right eigenvectors:

LA

( (
x2 + y2

)
x(

x2 + y2
)
y

)
=
( − (x2 + y2

)
y + (3x2 + y2

)
y − 2yx2(

x2 + y2
)
x + 2xy2 − (x2 + 3y2

)
x

)
=
(

0
0

)
,

LA

( − (x2 + y2
)
y(

x2 + y2
)
x

)
=
( − (x2 + y2

)
x − 2xy2 + (x2 + 3y2

)
x

− (x2 + y2
)
y + (3x2 + y2

)
y − 2yx2

)
=
(

0
0

)
.

In Exercise 8, you will show that these two vectors, together with the column space of LA,
span H

2
3. Thus to cubic order, we can choose these vectors to span G, and the resulting

normal form is
ẋ = −y + (x2 + y2)(αx − βy)+O(4),
ẏ = x + (x2 + y2)(αy + βx)+O(4).

(8.43)

It is easier to see what this equation means in polar coordinates. Applying the polar trans-
formation, (6.4), to (8.43) yields

ṙ = αr3,

θ̇ = 1+ β + r2.

49We could achieve a diagonal representation for L if we used a complex basis. We will do this in §8.8.
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Thus when α > 0 the origin is a spiral source, and when α < 0 it is a spiral sink. Note that
the coefficient α depends on the coefficients (a, b, c, d, e, f ) of the original vector field—to
actually compute α, the quadratic transformation has to be carried out explicitly since this
cubic term will be modified by this calculation. We will do this in §8.8.

8.6 Saddle-Node Bifurcation in RRRn

Asaddle-node bifurcation typically occurs when a single eigenvalue of a linearization crosses
zero. This higher-dimensional case is essentially the same as that for one dimension dis-
cussed in §8.4, though in this case the name “saddle node” makes more sense. For example,
suppose n = 2, and the linear part is

Dfo(0) =
(

0 0
0 λ

)

with λ < 0, so that the vector field has the power series expansion (8.37). The bifurcation
corresponds to the creation of two equilibria. Both will have a stable direction corresponding
to λ; one will have a second stable direction and thus be a node, while the second will have
an unstable direction and thus be a saddle.

We have already constructed the normal form at the bifurcation point to all orders in
(8.40). Note that this is a skew product since the x component is independent of y; thus
as far as the normal form is concerned, the dynamics reduces to the one-dimensional case.
However, to understand the bifurcation, we now have to unfold fo. But, as we shall see,
nothing untoward happens.

Theorem 8.6 (saddle node). Let f ∈ C2(Rn×R
k,Rn), and suppose that f (z;µ) satisfies

f (0; 0) = 0, spec(Dzf (0; 0)) = {0, λ2, λ3, . . . , λn : λk �= 0, k �= 1} . (singularity)

Choose coordinates so that Dzf (0; 0) is diagonal in the zero eigenvalue and set z =
(x, y) where x ∈ R

1 corresponds to the zero eigenvalue and y ∈ R
n−1 are the remaining

coordinates. Then
ẋ = g1(x, y;µ),
ẏ = My + g2(x, y;µ),

(8.44)

where g(0, 0; 0) = 0 and Dzg(0, 0; 0) = 0. Suppose that

Dxxg1(0, 0; 0) = c �= 0. (nondegeneracy)

Then there exists an interval I (µ) containing 0, functions y = η(x;µ) and m(µ) =
Extx∈I (µ) [g1(x; η(µ);µ)], and a neighborhood of µ = 0 such that if m(µ)c > 0 there are
no equilibria and ifm(µ)c < 0 there are two. Suppose thatM has a u-dimensional unstable
space and an (n− u− 1)-dimensional stable space. Then, when there are two equilibria,
one has a u-dimensional unstable manifold and an (n − u)-dimensional stable manifold
and the other has a (u+1)-dimensional unstable manifold and an (n−u−1)-dimensional
stable manifold.
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Proof. The equilibria are solutions of

F1(x, y;µ) = g1(x, y;µ) = 0,
F2(x, y;µ) = My + g2(x, y;µ) = 0.

By assumption, DyF2(0, 0; 0) = M is nonsingular; thus Theorem 8.1 ensures that there is
a neighborhood of (x, µ) = (0, 0) where there exists a unique function y = η(x;µ) such
that

F2(x; η(x;µ);µ) = 0 (8.45)

and η(0; 0) = 0. Substitute this into F1 = 0 to obtain

F(x;µ) = g1(x, η(x;µ);µ) = 0.

Consequently, the problem has been reduced to the one-dimensional case; we need only
check that F satisfies the same criteria as Theorem 8.3, the one-dimensional case. It is easy
to see that F(0; 0) = 0. Since f is C2, so is η, and differentiation of (8.45) with respect to
x gives

M
dη

dx
+Dxg2 +Dyg2

dη

dx
= 0.

Since Dxg(0, 0; 0) = Dyg(0, 0; 0) = 0, this implies that dη

dx
(0; 0) = 0. This relation helps

compute the required derivatives of F :

DxF(0; 0) = Dxg1 +Dyg1
dη

dx
= 0,

DxxF (0; 0) = Dxxg1 + 2Dxyg1
dη

dx
+Dyyg1

(
dη

dx

)2

+Dyg1
d2η

dx2
,

= Dxxg1(0, 0; 0) = c �= 0.

Thus the needed hypotheses for Theorem 8.3 are satisfied, and there exists an extremal
value m(µ) such that when m crosses zero the number of equilibria changes from zero
to two. The stability of the new equilibria follows easily along the lines of the proof of
Theorem 8.3.

Transversality

As we discussed in §8.4, the saddle-node bifurcation has codimension-one because there is
a single condition on the parameters, m = 0, that determines the bifurcation set. However,
Theorem 8.6 does not guarantee that a saddle-node bifurcation occurs. Indeed, even though
the extremal value m(µ) vanishes when the parameters are zero, m need not change sign as
any of parameters cross zero (see Exercise 10). It is not hard, however, to obtain a simple
criterion that guarantees that the bifurcation takes place.

Corollary 8.7 (transversality). If µ1 is any single parameter such that

Dµ1g1(0, 0; 0) �= 0, (transversality)

then a saddle-node bifurcation takes place when µ1 crosses zero.
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Proof. We must show that ∂m
/
∂µ1 �= 0. Using ξ(µ) to denote the critical point of F(x;µ)

in x, then we have

∂m

∂µ1

∣∣∣∣
µ=0

= ∂

∂µ1
F(ξ(µ), η(ξ ;µ);µ)|µ=0 ,

= Dxg1(0, 0; 0)
∂ξ

∂µ1
+Dyg1(0, 0; 0)

(
Dξη

∂ξ

∂µ1
+ ∂η

∂µ1

)
+ ∂

∂µ1
g1(0, 0; 0).

The first derivatives Dxg1 and Dyg1 both vanish by assumption, and the transversality
assumption gives Dµ1F = Dµ1g1 �= 0.

Example: Consider the system

ẋ = y,

ẏ = −y + x2 − µ.

This is almost too simple for our full analysis, but let us proceed anyway. Whenµ = 0, there
is a nonhyperbolic equilibrium point at the origin with eigenvalues λ1 = 0 and λ2 = −1.
The corresponding eigenvectors are v1 = (1, 0)T and v2 = (−1, 1)T . To proceed, we put
the system into the canonical form (8.44) with the transformation x = P(ξ, η)T , where
P = (v1, v2). This gives x = ξ − η and y = η. The transformed equations are(

ξ̇

η̇

)
=
(

(ξ − η)2 − µ

−η + (ξ − η)2 − µ

)
=
(

0 0
0 −1

)(
ξ

η

)
+
(
(ξ − η)2 − µ

(ξ − η)2 − µ

)
.

This system satisfies the nondegeneracy condition since c = Dξξg1(0; 0) = 2 �= 0. Fur-
thermore Dµg1 = −1, so the transversality condition is also satisfied. Since c > 0 and
Dµg1 < 0, F has a minimum and the minimum decreases through zero as µ increases.
Consequently, there are no equilibria when µ < 0 and two when µ > 0.

Going back to the original system, we can easily solve for the equilibria to get y = 0
and x = ±√µ, confirming our result.

Example: Consider the equations

ẋ = µ− x2 + xy − xy2,

ẏ = λ− y − x2 + yx2.
(8.46)

This system has two parameters, but if there is a saddle-node bifurcation, only one will be
relevant.

There is a nonhyperbolic equilibrium when λ = µ = 0 at the origin that is already
in the canonical form (8.44); see Figure 8.8. We compute c = Dxxg1(0; 0) = −2 and
Dµg1 = 1. Thus there is a saddle-node bifurcation when µ goes from negative to positive
values. Note that variation of µ alone can create the bifurcation, but it is not immediately
clear whether variation of λ can do this. To determine this, compute the bifurcation function
by solving for y from the second equation (of course, Theorem 8.1 guarantees there is a
solution):

y = η(x; λ) = λ− x2

1− x2
= λ+ (λ− 1) x2 +O(x4).
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Figure 8.8. Phase space for (8.46) withµ = λ = 0. The origin is a nonhyperbolic
equilibrium. Two other equilibria (foci) are also shown.

Here we have expanded the expression, since we are interested only in small x. Substitution
into g1 gives

F(x;µ, λ) = g1(x, η(x; λ);µ, λ) = µ+ λ(1− λ)x − x2 +O(x3).

To quadratic order, the critical point and critical value of F are, respectively,

ξ(µ, λ) ≈ λ(1− λ)

2
, m(µ, λ) ≈ µ+ λ2(1− λ)2

4
.

Thus there is a single equilibrium near the origin along the curve m(µ, λ) = 0, or equiv-
alently when µ = −λ2(1− λ)2

/
4. Since c < 0, there are no equilibria when µ <

−λ2(1− λ)2
/

4, and two when µ is greater. Two phase portraits of this system are shown
in Figure 8.9.

Center Manifold Methods

An alternative way to find the saddle-node bifurcation is to introduce additional, trivial,
differential equations for the parameters, so that the system (8.44) becomes

ẋ = g1(x, y, µ),

µ̇ = 0,
ẏ = My + g2(x, y, µ).

(8.47)

If there are k parameters, µ ∈ R
k , then this system has a (k + 1)-dimensional center space

at the equilibrium (x, µ, y) = (0, 0, 0). The center manifold can be computed using the
methods of §5.6. Indeed, the system (8.47) is already in a form similar to (5.34). The
manifold Wc is a graph over the center coordinates, y = h(x, µ), and must be invariant, so

ẏ = Dxh
dx

dt
+Dµh

dµ

dt
⇒ Mh+ g2(x, h, µ) = Dxh g1(x, h, µ). (8.48)
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Figure 8.9. Phase portraits of (8.49) for µ = −0.1 and λ = 0, so that m > 0
(left), and µ = 0.1 and λ = 0.6 so that m < 0 (right). In the right panel the newly created
equilibria are a saddle and a stable node.

The reduced dynamics on the center manifold are ẋ = g1(x, h(x, µ), µ), and of course
µ̇ = 0. Thus the graph h(x, µ) replaces the function η(x;µ) of Theorem 8.6.

Example: For example, consider the model

ẋ = µ− x2 + xy,

µ̇ = 0,
ẏ = −y + µx + x2

(8.49)

with a single parameter µ. Since the center manifold is tangent to x = µ = 0, the series
for h begins with quadratic terms: h(x, µ) = ax2 + bxµ+ cµ2 +O(3). Substitution into
(8.48) gives coefficients,

−(ax2 + bxµ+ cµ2)+ µx + x2 = (2ax + bµ)(µ− x2)+O(3)

through quadratic order. Comparing terms of a given order in both variables gives the three
equations

(1− a)x2 = 0, (−b + 1− 2a)xµ = 0, (c + b)µ2 = 0

with the solutions a = 1, b = 1, and c = 1. Thus the center manifold is defined by
y = x2 − µx + µ2. Note that this is not the equilibrium equation, y = µx + x2, because
the invariance of the center manifold is a dynamical property. After more algebra we find,
through cubic order,

h(x, µ) = x2 − µx + µ2 + 2x3 − 7µx2 + 14µ2x − 14µ3 +O(4).

Substituting this into the ODE for x yields

ẋ|Wc = µ+ µ2x − (1− µ)x2 + x3 +O(4)
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for the dynamics on the center manifold. This equation is equivalent to the standard
one-dimensional unfolding (8.17), and we can compute the extremal value m = µ +
µ4
/

4 + O(µ5) and the curvature c = −2. Therefore, as µ crosses zero from below there
is a saddle-node bifurcation that creates a pair of equilibria on the center manifold near
x = 0.

8.7 Degenerate Saddle-Node Bifurcations
Theorem 8.5 showed that the one-dimensional normal form fo(x) = x2 has the miniversal
unfolding f (x;µ) = µ+ x2. If the unfolding does not satisfy the transversality condition,
Dµf (0; 0) �= 0, then the bifurcation can be somewhat different in character. For example,
for the special unfolding

ẋ = µx + x2, (8.50)

we find m(µ) = −µ2
/

4 ≤ 0. Thus m never changes sign. In fact, there are always
two equilibria, at x = 0 and −µ. As we showed in §8.1, a bifurcation does occur at
µ = 0 because the fixed points exchange stability types. This transcritical bifurcation is
not a versal unfolding of the saddle-node singularity, since we have seen that more general
unfoldings have parameter values for which there are no equilibria. However, one can
observe this bifurcation in systems with a special symmetry—for example, a system that
requires x = 0 always to be an equilibrium. The study of bifurcations in the presence of
symmetries has received much attention in the recent past (Golubitsky and Schaeffer 1985;
Golubitsky, Stewart, and Schaeffer 1988).

Another interesting bifurcation occurs when the nondegeneracy condition of Theo-
rem 8.6 is violated, that is, when the quadratic term of fo vanishes. The one-dimensional
version of this corresponds to the vector field

fo(x) = dx3 + g(x),

where g = o(x3). An unfolding of this system will in general contain all three of the
lower-order terms,

f (x;µ) = a(µ)+ b(µ)x + c(µ)x2 + d(µ)x3 + g(x;µ).
A special case of this system occurs when a(µ) = c(µ) ≡ 0. This gives rise to the pitchfork
bifurcation, which corresponds to an equilibrium losing stability by the creation of two new
equilibria. It is special because the constant term vanishes. (We will see in §8.9 that the
quadratic term is not essential.)

Example: Consider the ODE
ẋ = µx − x3. (8.51)

There is always one equilibrium at x = 0, and there are two others at x = ±√µ, provided
µ > 0. Note that the origin is stable for µ < 0 but becomes unstable for µ > 0. The two
new orbits have eigenvalues Df (±√µ) = −2µ, which implies that they are stable when
µ > 0. The resulting bifurcation diagram is shown in Figure 8.10.
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x

µ

Figure 8.10. Supercritical pitchfork bifurcation of (8.51) creates a pair of stable
equilibria.

The form of the pitchfork bifurcation in (8.51) is called supercritical, because the new
orbits that are created are stable. If, instead, the new orbits are unstable, the bifurcation is
subcritical. A prototype for the subcritical case is simply

ẋ = µx + x3.

Here the new orbits exists forµ < 0 and are unstable, while whenµ > 0 the only equilibrium
is unstable. That this subcritical bifurcation creates orbits as µ is decreased is not the
essential point—we could replace µ → −µ, and then the bifurcation would create orbits
for an increasing parameter. The essential point is that the newly created orbits are unstable.

The pitchfork is a special case of a codimension-two bifurcation, the cusp—see §8.9.

8.8 Andronov–Hopf Bifurcation
In the 1890s Poincaré and Lyapunov studied what we now call the Andronov–Hopf bi-
furcation; however, Andronov proved the first theorem, for the two-dimensional case, in
1929. Hopf obtained the higher-dimensional result in 1942. It typically occurs when an
equilibrium has a pair of eigenvalues that cross the imaginary axis and corresponds to the
creation or destruction of a periodic orbit. We will begin by studying the two-dimensional
case, where the singular vector field fo(x) has a center at the origin and thus can be written
as in (6.13),

ẋ = −ωy + p(x, y),

ẏ = ωx + q(x, y),
(8.52)

where p, q = o(x, y). The normal form for this case to cubic order was given in (8.43)
after some prodigious linear algebraic manipulation. Here we present an alternative and
ultimately easier method for obtaining this form. The idea is to use complex coordinates:

z = x + iy, z̄ = x − iy. (8.53)
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The variables (z, z̄) are to be thought of as independent. Indeed, if we were to allow the
variables (x, y) to become complex, then the transformation (x, y) → (z, z̄) would be a
diffeomorphism from C

2 to C
2. In this case, the transformation (8.53) applied to (8.52)

yields

ż = iωz+ p

(
z+ z̄

2
,
z− z̄

2i

)
+ iq

(
z+ z̄

2
,
z− z̄

2i

)
,

˙̄z = −iωz̄+ p

(
z+ z̄

2
,
z− z̄

2i

)
− iq

(
z+ z̄

2
,
z− z̄

2i

)
,

which could be thought of as a system of ODEs on C
2. However, in our case we will assume

that p and q are real-valued functions of their real arguments. In this case, the ODE for z̄
is exactly the complex conjugate of that for z: (ż) = ˙̄z. If we keep this in mind, the ODE
for z̄ does not need to be considered. It is important to remember that z̄ is an independent
variable, however, and, moreover, since the equations depend on both z and z̄, they are not
analytic functions!

To compute the normal form, we expand the function p + iq in a power series in z
and z̄ to obtain

ż = iωz+
∑

m,n=0
m+n>1

am,nz
mz̄n. (8.54)

The monomial basis consists of the functions zmz̄n. The matrix for the linear system is
diagonalA = diag(iω,−iω), and so the normal form results obtained for the diagonal case
hold. In particular the monomials zmz̄nej are eigenfunctions of the homological operator
LA and the resonant terms in the z equation (j = 1) are those for which the eigenvalue
(8.36) vanishes: µ(m,n),1 = λ1 − (m, n) · λ = 0, or explicitly, iω −m(iω)− n(−iω) = 0.
Thus the resonant terms are those for which n = m − 1, i.e., those that have the form
z(zz̄)m = z |z|2m, where |z|2 ≡ zz̄ is the squared complex modulus. Since every other term
can be eliminated, the general normal form can be written

ż = iωz+ z
(
c |z|2 + d |z|4 + e |z|6 + · · ·) . (8.55)

This is much easier than the process leading to (8.43)! We must, however, keep in mind
that the coefficients c, d, etc., are complex. Indeed, upon comparison with the real normal
form (8.43), c = α + iβ. The normal form (8.55) could be further simplified by scaling
time to set ω = 1 and scaling z so that c has magnitude one, if we desire.

To unfold (8.55), we should add back in all the terms in (8.54) that have been eliminated
and allow that coefficients in (8.55) to depend upon parameters µ ∈ R

k , thus obtaining a
general power series of the form (8.54) again. In particular, the linear coefficient will
become λ(µ), where λ(0) = iω. However, all the monomials zmz̄n with n �= m−1 can still
be eliminated by a further coordinate change, using the same argument that led to (8.55).
Even the terms with n = m − 1 could be eliminated by the coordinate transformation
when λ �= iω, since they are no longer resonant. However, this would lead to a change of
variables that does not exist at µ = 0. Therefore, to obtain a normal form that is valid in a
neighborhood of µ = 0, we must not try to eliminate these resonant terms. Consequently,
a versal unfolding of (8.55) is

ż = λ(µ)z+ z
(
c(µ) |z|2 + d(µ) |z|4 + · · ·) . (8.56)
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Equation (8.56) still has an equilibrium at the origin. We could have anticipated this using
the persistence result, Corollary 8.2, since the normal form (8.55) has no zero eigenvalues.

Just as in the analysis in §6.3, it is easiest to understand the behavior of this system
in polar coordinates. Defining z = reiθ , so that r2 = zz̄ and θ = 1

2i ln (z/z̄), gives

ṙ = 1

2r

(
żz̄+ z ˙̄z)

= 1

2r

(
λzz̄+ zz̄

(
c |z|2 + d |z|4)+ zλ̄z̄+ zz̄

(
c̄ |z|2 + d̄ |z|4))

= Re(λ)r + r
(
αr2 + γ r4 +O(r6)

)
,

(8.57)

θ̇ = 1

2ir2

(
z̄ż− z ˙̄z)

= 1

2ir2

(
z̄λz+ z̄z

(
c |z|2 + d |z|4)− zλ̄z̄− zz̄

(
c̄ |z|2 + d̄ |z|4))

= Im(λ)+ βr2 + δr4 +O(r6),

where c(µ) = α(µ)+ iβ(µ) and d(µ) = γ (µ)+ iδ(µ). Note that the r dynamics decouple
from the θ dynamics. As promised, (8.57) shows that there is indeed an equilibrium at r = 0
that persists through the bifurcation. The remaining equilibria are given by

0 = F(r2;µ) = Re(λ)+ α(µ)r2 + γ (µ)r4 +O(r 6);
this equation can be thought of as a function of r2 and µ. If we make the assumption
that α(0) �= 0, F satisfies the hypotheses of the implicit function theorem: F(0; 0) = 0,
and DxF(0; 0) = α(0) �= 0. Since r ≥ 0, there is a unique new equilibrium r(µ) ≈√−Re(λ)/α, provided α Re(λ) < 0. Since Im(λ(0)) �= 0, there is a neighborhood of
µ = 0 such that θ(t) is monotone increasing for small r . Therefore, the equilibrium in r
corresponds to a periodic orbit of the full system. Since the bifurcation set is determined
by the single condition Re(λ) = 0, the Andronov–Hopf bifurcation has codimension one.

The stability of the periodic orbit is easy to determine. At the equilibrium point, r(µ),
the eigenvalue for the r dynamics is

Drf (r;µ) = Re(λ)+ 3αr2(µ)+ 5γ r4(µ)+ · · · = −2Re(λ)+O(µ2).

Therefore when α < 0, the new orbit exists when Re(λ) > 0 and is asymptotically stable.
When α > 0, the new orbit exists when Re(λ) < 0 and is unstable. These two cases,
sketched in Figure 8.11, correspond to the supercritical and subcritical Andronov–Hopf
bifurcations, respectively. A simple mnemonic for this bifurcation is that when both the
periodic orbit and the equilibrium r = 0 exist, they have opposite stabilities.

Recall from §4.9 that a periodic orbit that is isolated is called a limit cycle. Thus the
Andronov–Hopf bifurcation corresponds to the creation (or destruction) of a limit cycle.

This analysis also applies in higher dimensions—though the demonstration is con-
siderably more complicated. In this case we assume that the singular system has a two-
dimensional eigenspace with pure imaginary eigenvalues. The center manifold theorem of
§5.6 can be used to obtain a reduction to the center space of the form (5.35), though some



8.8. Andronov–Hopf Bifurcation 299

Re(λ)

α < 0

Re(λ)

α > 0

x

y

x

y
subcritical supercritical

Re(λ)

Figure 8.11. Subcritical and supercritical Andronov–Hopf bifurcations.

effort must be exerted to show that the reduction is smooth enough (Chow and Hale 1982;
Chow, Li, and Wang 1994). The reduced system on Wc then takes the form (8.52).

Theorem 8.8 (Andronov–Hopf bifurcation). Let f (x;µ) be a C3 vector field in R
n such

that
f (0; 0) = 0,

spec(Dxf (0; 0)) = {(iω,−iω, λ3, . . . , λn) : Re(λk) �= 0, k ≥ 3}. (singularity)

Theorem 8.1 then implies there is a smooth curve of equilibria x(µ)with eigenvalues λ±(µ)
where λ±(0) = ±iω. The normal form on the center manifold of fo has an unfolding of the
form (8.56). Assume that the normal form coefficient α satisfies

α(0) = Re(c(0)) �= 0 (nondegeneracy)

and that a parameter µ causes the eigenvalue to cross the imaginary axis

d

dµ
Re(λ(0)) �= 0 (transversality). (8.58)

Then there is an Andronov–Hopf bifurcation corresponding to the birth of a limit cycle that
has a quadratic tangency with the eigenspace of±iω at µ = 0. The limit cycle exists when
αRe(λ) < 0 and is stable if Re(λ) > 0 and unstable if Re(λ) < 0.

The main difficulty in the application of this theorem is verifying that α(0) �= 0.
In general this is a tedious calculation, since we have to compute the normal form (8.55)
through third order. For more than two dimensions this is especially hard because the center
manifold must be computed to third order before the dynamics on the center subspace can
be obtained. In two dimensions the calculation of α is manageable. Indeed, we can do the
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Figure 8.12. Phase portrait of the van der Pol system (8.60) with µ = 0 (left) and
µ = 0.2 (right). The origin is a topological sink in the left panel and an unstable focus in
the right panel.

calculations to obtain a general formula for α in terms of the coefficients of p and q in (8.52)
up to third order (Guckenheimer and Holmes 1983) to obtain

α = 1

16

(
pxxx + pxyy + qxxy + qyyy

)
− 1

16ω

(
qxy(qxx + qyy)− pxy

(
pxx + pyy

)+ pxxqxx − pyyqyy
)
.

(8.59)

Here each subscript indicates a derivative, and all are evaluated at the origin.

Example (van der Pol oscillator): The van der Pol oscillator

ẍ − (2µ− x2
)
ẋ + x = 0

was derived in §1.4. It is a special case of Liénard’s system, and according to Theorem
6.20, it is guaranteed to have a unique limit cycle when µ > 0.

Turning this into a first-order system by defining y = ẋ gives

ẋ = y,

ẏ = −x + 2µy − x2y.
(8.60)

The origin is an equilibrium with eigenvalues λ = µ± i
√

1− µ2, so it is a stable focus for
−1 < µ < 0, a linear center at µ = 0, and an unstable focus for 0 < µ < 1. At µ = 0, the
matrix already has the normal form (8.11), though with ω = −1. Thus α can be computed
using (8.59); noting that qxxy = −2 is the only nonzero coefficient yields α = −1

/
8.

Thus there is a stable periodic orbit created for µ > 0 in a supercritical Andronov–Hopf
bifurcation. Two phase portraits are shown in Figure 8.12.
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8.9 The Cusp Bifurcation
There are five distinct codimension-two bifurcations for vector fields. These correspond to
the various ways a vector field can be made singular by varying two parameters. As we have
seen, one singularity that arises upon varying a single parameter corresponds to a single
eigenvalue with a zero real part. Since the eigenvalues of a matrix depend continuously on its
elements, if we vary two parameters it should be possible to make two real eigenvalues zero.
This corresponds to the Takens–Bogdanov bifurcation—we will study it in the next section.
When there are complex eigenvalues they come in conjugate pairs—thus a single parameter
can be used to change the real part of the pair, and by varying two parameters one could
move two pairs of complex eigenvalues to the imaginary axis. This is called the Hopf–Hopf
bifurcation. Since there must be at least two pairs of eigenvalues for this to occur, it requires
a phase space with four or more dimensions. The final codimension-two arrangement of
eigenvalues is a single real eigenvalue at zero and a single pair on the imaginary axis; this
bifurcation is called the fold-Hopf or Gavrilov–Guckenheimer bifurcation; for this to occur
the system must have at least a three-dimensional phase space.

The remaining two codimension-two bifurcations pertain to cases when the nonde-
generacy assumptions in the codimension-one cases are not satisfied. For example, if the
normal form coefficient, α, in the Hopf bifurcation case passes through zero, then a sub-
critical Hopf bifurcation is converted into a supercritical one. This situation is called a
degenerate Hopf or Bautin bifurcation. Finally, for the saddle-node bifurcation, we as-
sumed that the quadratic term in the center component of the vector field was nonzero.
By varying a second parameter, it may be possible to make this coefficient vanish. This
degenerate saddle-node gives rise to the cusp bifurcation. It is this final case that we study
in this section.

Since codimension-two bifurcation theorems are considerably more complex than the
codimension-one cases, we will study only the simplest cases in which these occur. For
the cusp bifurcation, this corresponds to the one-dimensional degenerate saddle node. We
already looked at a special case of this in §8.7, the pitchfork bifurcation. As we remarked
there, the pitchfork is not a versal unfolding of the singularity. Our goal here is to find a
miniversal unfolding of this case.

Example: Consider the pitchfork normal form (8.51), but add a second parameter to repre-
sent the constant term

ẋ = µ1 + µ2x − x3. (8.61)

Although an explicit form for the equilibrium solutions x∗(µ1, µ2) to this system can be
obtained since the vector field is a cubic polynomial, this form is not especially useful.
It is more illuminating to graphically find the equilibria by plotting the two functions y =
µ2x−x3 and y = −µ1 and looking for intersections. Since the cubic crosses each horizontal
line either once or thrice, there will be either one or three equilibria.

The bifurcation set can be found by looking for places where there are degenerate
equilibria:

f (x;µ) = µ1 + µ2x − x3 = 0,
Dxf (x;µ) = µ2 − 3x2 = 0.

The resultant, R(µ), is the equation obtained by eliminating x from this pair; its roots
correspond to double roots of f . Since the second equation gives x2 = µ2

/
3, we square
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f

Figure 8.13. Bifurcation parameter plane for (8.61), showing the bifurcation set
(8.62). Also shown are two representative one-parameter sweeps through the bifurcation
(vertical and diagonal dashed curves) and the resulting one-parameter bifurcation dia-
grams.

the first equation to obtain an equation that contains only x2: µ2
1 = (µ2x−x3)2 = x2(µ2

2−
2µ2x

2 + x4). Substituting for x2 yields the resultant

R = 27µ2
1 − 4µ3

2 = 0. (8.62)

This curve is called Neile’s semicubical parabola. It has the form of a cusp in the µ

plane—see Figure 8.13. For parameter values on the cusp there is a double root at x =
−sgn(µ1)

√
µ2/3.

Inside the cusp region there are three equilibria, on the boundary there are two, and
outside and at the cusp point there is one. Crossing the cusp at a fixed nonzero value of µ1

results in a saddle-node bifurcation at a nonzero value for x. Setting µ1 = 0 and moving
along the µ2-axis gives the pitchfork case we considered before. These examples make it
clear that the behavior in the neighborhood of the cusp point depends on the way that the
parameters traverse Neile’s parabola. This bifurcation requires varying two parameters, so
it is codimension two.

We an also think of the cusp as an elementary form of catastrophe: there are paths
through parameter space where the positions of the equilibria vary smoothly and paths that
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result in a saddle node, far from an existing equilibrium (catastrophe) (Arnold et al. 1999;
Golubitsky et al. 1985).

More generally, the cusp corresponds to an unfolding of a singular vector field with
fo(0) = Dfo(0) = D2fo(0) = 0, butD3fo(0) = d �= 0. A versal unfolding of fo will have
all of the low-order terms

f (x;µ) = a(µ)+ b(µ)x + c(µ)x2 + d(µ)x3 + g(x;µ) (8.63)

with a(0) = b(0) = c(0) = 0 and d(0) �= 0.
It is always possible to eliminate the quadratic term from this function by translation

of x. To see this, consider the equation

C(x;µ) = 1

2
D2
xf (x;µ) = c(µ)+ 3d(µ)x + 1

2
D2
xg(x;µ) = 0. (8.64)

The implicit function theorem implies that (8.64) always has a solution xo(µ) near µ = 0,
since DxC(0; 0) = 3d(0) �= 0. Now define a new variable y = x − xo and rewrite (8.63)
for y:

ẏ = f (xo + y;µ) = A(µ)+ B(µ)y +D(µ)y3 + h(y;µ). (8.65)

Note that the quadratic coefficient would become C(µ) = 1/2Dxxf (xo(µ);µ), but this is
identically zero. The other coefficients are defined by

A(µ) = f (xo;µ), B(µ) = Dxf (xo;µ), and D(µ) = 1

6
Dxxxf (xo;µ). (8.66)

By assumption D is nonzero when µ is small.
Next we rescale the variable y to eliminate the coefficient D by setting z = √|D|y.

Finally we choose a new set of parameters m1 = A(µ)
√|D| and m2 = B(µ) to obtain a

vector field in the form

ż = F(z;m) = m1 +m2z+ sz3 + h(z;m), (8.67)

where s = sgn(D(0)). This gives essentially the form (8.61) that we studied in the example,
with the addition of a sign. We conclude by formalizing the following result.

Theorem 8.9 (cusp bifurcation). Let f : C3(R× R
k,R) and

f (0; 0) = Dxf (0; 0) = 0, (nonhyperbolic)

D2
xf (0; 0), (singularity)

D3
xf (0; 0) �= 0. (nondegeneracy)

Let N be the neighborhood of µ = 0 for which xo(µ) is the unique solution of D2
xf (xo(µ);

µ) = 0 such that xo(0) = 0. Then f has a cusp bifurcation in N with bifurcation set

27A2(µ)D(µ) = −4B3(µ), (8.68)

where A,B, and D are defined by (8.66).

Proof. We leave the proof to the reader. See Exercise 17.



304 Chapter 8. Bifurcation Theory

To show that this bifurcation actually occurs—i.e., that the parameter plane in Fig-
ure 8.13 actually applies, it is necessary to have a condition of transversality. Since the
bifurcation is unfolded by the parameters (A,B), the requirement is that the mapping
µ → (A,B) is onto a neighborhood of the origin; i.e., for each (small enough) (A,B),
there is a µ that realizes this value. This occurs when we can solve the implicit system
F(µ;m) = (A(µ)−m1, B(µ)−m2) = (0, 0) for µ. There need to be at least two param-
eters, but there could be many more; of all the parameters, pick two—(µ1, µ2), say. Now
since F(0; 0) = 0, the implicit function implies that if the Jacobian DµF is nonsingular at
the origin, i.e., if the matrix 


∂A

∂µ1

∂A

∂µ2

∂B

∂µ1

∂B

∂µ2




is nonsingular, then there exists unique (µ1, µ2) for each (m1,m2). If this criterion is
not satisfied for the two parameters we chose, then we can look for another pair. Thus
the ultimate criterion is that the matrix Dµ(A,B)

∣∣
µ=0 has rank two. This becomes the

assumption of transversality; when it is satisfied, the unfolding f (x;µ) is versal.

Corollary 8.10. Given f (x;µ) as in Theorem 8.9, if

RankDµ(f (0;µ),Dxf (0;µ))
∣∣
µ=0 = 2, (transversality)

then there is cusp bifurcation at µ = 0.

Proof. Since A(µ) = f (xo(µ);µ), then

DµA(µ)|µ=0 = Dµf (0; 0)+Dxf (0; 0)
dxo

dµ
,

but by assumption Dxf (0; 0) = 0. Similarly with B(µ) = Dxf (x(µ);µ), then

DµB(µ)|µ=0 = Dµ(Dxf (0; 0))+D2
xf (0; 0)

dxo

dµ
,

but by assumption D2
xf (0; 0) = 0. Consequently, the Jacobian becomes Dµ(A,B)

∣∣
µ=0 =

Dµ((f (0;µ),Dxf (0;µ))
∣∣
µ=0.

8.10 Takens–Bogdanov Bifurcation
As a second codimension-two bifurcation, we will study the case of a double zero eigenvalue.
The simplest system for which this can occur is an ODE in R

2. As remarked in §8.3, the
linearization Df (0) can be semisimple or not. In the former case, it is identically zero and
this corresponds to the nonhyperbolic node studied in §6.2. We consider the latter case in
this section. In §8.3, we argued that the normal form for this matrix is the Takens–Bogdanov
form (8.13)

J =
(

0 1
0 0

)
.
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Following the normal form analysis in §8.5, we will obtain the nonlinear normal form by
considering the homological operator for J ,

LJ (h) = Jh−DhJx =
(
hy − y∂xhx
−y∂xhy

)
.

For functions in H
2
2, using the basis (8.23), the matrix representation for LJ is

LJ =




0 0 0 1 0 0
−2 0 0 0 1 0

0 −1 0 0 0 1
0 0 0 0 0 0
0 0 0 −2 0 0
0 0 0 0 −1 0



.

The column space of L defines its range, rng(LJ ) = span{p2, p3, p1 − 2p5, p6}, which
is four-dimensional. The resonant space G

2
2, is any complementary subspace to rng(LJ ).

Since p4 /∈ rng(LJ ), it certainly must be an element G
2
2. The second vector can be any

linear combination of p1 and p5 that is independent of p1 − 2p5. To be economical, it is
nice to choose a resonant space with a minimal number of monomials. Using this criterion
there are two choices for G

2
2: span{p1, p4} or span{p4, p5}. In either case, all the quadratic

terms in the ODE can be eliminated except for the basis elements of G
2
2, resulting in the

quadratic normal forms

ẋ = y + ax2

ẏ = dx2 or
ẋ = y

ẏ = dx2 + exy.

The second form has some advantages, so we will use it.50 To unfold this bifurcation there
must be at least two parameters that represent the two eigenvalues. It can be argued that
one miniversal unfolding is given by the system (Guckenheimer et al. 1983)51

ẋ = y,

ẏ = µ1 + µ2y + dx2 + exy.

We assume that the parameters d and e are nonzero; it is not hard to see that by a suitable
scaling of the x and y variables and time (possibly reversing its direction), these parameters
can be scaled to d = e = 1, giving the normal form

ẋ = y,

ẏ = µ1 + µ2y + x2 + xy.
(8.69)

Equation (8.69) has exactly two equilibria at (x±, 0) = (±√−µ1, 0) when µ1 < 0 and one
at (0, 0) when µ1 = 0. The Jacobian of (8.69) at an equilibrium is

Df =
(

0 1
2x± µ2 + x±

)
. (8.70)

50For example, note that the second normal form is equivalent to the nonlinear “oscillator” ẍ− dx2− exẋ = 0.
51The original Bogdanov unfolding, replacing the term µ2y by µ2x, is used by (Kuznetsov 1995).
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Thus the characteristic polynomial is λ2− (µ2+x±)λ−2x±, so the point (x+, 0) is a saddle
when it exists, and the point (x−, 0) is a source if µ2 >

√−µ1 and is a sink otherwise. On
the boundary curve µ2 = √−µ1 this latter equilibrium is a center. Thus we expect that an
Andronov–Hopf bifurcation should occur there; indeed, after transforming to put the center
at the origin, the computation of α from (8.59) gives α > 0 so that the bifurcation is seen to
be subcritical, creating an unstable periodic orbit around the sink whenµ2 <

√−µ1. A few
distinguishing phase portraits are shown in Figure 8.14. In particular, the left column shows
three portraits for µ1 ≤ 0. The central portrait in this column, at (µ1, µ2) = (−0.25, 0.48),
exhibits the unstable limit cycle surrounding the stable focus at (x, y) = (−0.5, 0).

We summarize our informal results with a theorem (Bogdanov 1975; Takens 2001).

Theorem 8.11 (Takens–Bogdanov). Suppose that f ∈ C2(R2×R
k,R2) and satisfies the

conditions

f (0, 0; 0) = 0, Df (0, 0; 0) =
(

0 1
0 0

)
, (singularity)

(Dxxfx +Dxyfy)|(0,0;0) �= 0, Dxxfy |(0,0;0) �= 0, (nondegeneracy)

Rank
(
D(x,µ) (f, tr(Df ), det(Df ))

) |(0,0;0) = 4. (transversality)

Then there exists a neighborhood of the origin in which the dynamics of f is induced (up
to a reversal of time) by the normal form (8.69).

As can be inferred from Figure 8.14, the leftward branches of the stable and unstable
manifolds of the saddle of (8.69) appear to cross between the two portraits at (−0.25, 0.48)
and (−0.5, 0.5). Indeed, as we will see in the next section, the Takens–Bogdanov normal
form has a curve, emanating from the origin, of such “homoclinic bifurcations.”

8.11 Homoclinic Bifurcations
So far we have considered only bifurcations of equilibria. These are local bifurcations in
the sense that they can be studied in a neighborhood by using local power series expansions.
Other local bifurcations occur when a periodic orbit loses or gains stability. If one has some
analytical information about the orbit (enough to compute the “Poincaré map” for the orbit;
recall §4.12), then power series techniques suffice to understand these as well.

There are global bifurcations, however, for which no local information is sufficient.
The simplest of these corresponds to the creation or destruction of a “homoclinic” or “hete-
roclinic” orbit. More complicated global bifurcations are responsible, in some cases, for the
onset of “chaos.” We defined homoclinic and heteroclinic orbits in §5.2 and gave several
examples of Hamiltonian systems that had such orbits.

Fragility of Heteroclinic Orbits

It is much more difficult to explicitly construct heteroclinic orbits in general systems. Gener-
ically, the unstable manifold of one equilibrium does not coincide with the stable manifold
of another, unless there is some special symmetry (like the conservation of energy (4.28)
for planar systems).
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(-0.25,0.55)

(0.25,0.25)

(-0.25, 0.48)
(0.0,0.0)

(-0.5,-0.5)

(0.25,-0.25)

Figure 8.14. Phase portraits for the Takens–Bogdanov unfolding (8.69) at six
different sets of values of (µ1, µ2).

Example: An illustrative example is

ẋ = µ+ x2 − xy,

ẏ = y2 − x2 − 1.
(8.71)

When µ = 0 this system has two equilibria, (0,±1). Both are saddle points since the
Jacobian matrix is

Df =
(

2x − y −x
−2x 2y

)
→

(x,y)=(0,±1)

( ∓1 0
0 ±2

)
.

The y-axis of (8.71) with µ = 0 is invariant, and on this axis the y dynamics is simply
ẏ = y2 − 1, which has a stable equilibrium at −1 and an unstable equilibrium at +1. Thus
the segment {(0, y) : −1 < y < 1} is a heteroclinic orbit when µ = 0.
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Figure 8.15. Heteroclinic connection of (8.71) when µ = 0 (left) is destroyed
when µ = 0.1 (right).

The implicit function theorem guarantees that the saddle points persist when µ is
small. They are easy to find by series expansion in µ: set x = aµ + bµ2 + · · · , y =
±1+ cµ+ dµ2 + · · · , to obtain

µ+ (aµ+ bµ2)
(
aµ+ bµ2 ∓ 1− cµ− dµ2

) = 0

(±1+ cµ+ dµ2)2 − (aµ+ bµ2)2 − 1 = 0

⇒ (1∓ a)µ+ (∓b + a2 − ca)µ2 + · · · = 0

±2cµ+ (−a2 + c2 ± 2d)µ2 + · · · = 0.

This shows that a = b = ±1, c = 0, and d = ±1/2, so that x = ±(µ + µ2 + · · · ) and
y = ±(1+ 1/2µ

2+ · · · ) are the new equilibria. Of course, the equations are simple enough
here to find equilibria explicitly,

x = ± µ√
1− 2µ

, y = ± 1− µ√
1− 2µ

,

which shows us that the equilibria persist until µ = 1/2.
To study the change in the unstable manifolds with µ, note that when x ≈ 0, we have

ẋ ≈ µ, while if |y| < 1, then ẏ < 0. Thus if µ > 0, the upper saddle is to the right of the
y-axis, and its unstable manifold begins moving downward but necessarily moves to the
right. The lower saddle, by contrast, is to the left of the y-axis, and its downward moving
stable manifold comes from larger negative x. Thus the two manifolds no longer join, and
there is no longer a saddle connection; see Figure 8.15.

It is easy to see that the heteroclinic connection is destroyed for µ < 0 too, since the
equilibria move to the opposite sides of the y-axis, but in this case ẋ < 0.

The implication of this example is that if an ODE in the plane has a heteroclinic con-
nection, then changing a single parameter can destroy it. In other words, homoclinic connec-
tions are singularities for planar ODEs and their unfolding gives rise to a codimension-one
bifurcation.
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Figure 8.16. Construction of the map for a homoclinic bifurcation.

Generic Homoclinic Bifurcations in RRR
2

We will now develop the general theory for bifurcations of a homoclinic orbit in the plane.
Our results will show that when the system is non-Hamiltonian, the destruction of a homo-
clinic orbit is a codimension-one bifurcation and is associated with the creation of a periodic
orbit.

Suppose that f (x;µ) is an unfolding of a planar vector field fo(x) that has a saddle
equilibrium po = (0, 0) with a homoclinic connection γo. The implicit function theorem
implies there is an interval I of 0 such that for µ ∈ I the saddle equilibrium p(µ) persists
and remains a saddle. Thus the stable manifold theorem in §5.4 implies that p(µ) has
stable and unstable manifolds Ws(p(µ)) and Wu(p(µ)). To study the way in which these
manifolds move with µ, we choose any point q ∈ γo and let S be a local, one-dimensional
section at q (recall §4.12). That is, S is a line segment through q that is perpendicular to
the vector field fo(q); see Figure 8.16.

The points of intersection of Wu(p) and Ws(p)with S are denoted u(µ) and s(µ),
respectively. These functions exist for some interval I in µ because the stable and unstable
manifolds move continuously with µ. Moreover, s(0) = u(0) = q. Note that there is no
local way to compute s and u; to find them we must construct the manifolds of p(µ) over
a macroscopic distance.

However, if the reader is willing to agree that s and u are, in principle, computable,
then we can use them to state a bifurcation theorem.

Theorem 8.12 (homoclinic bifurcations). Let f ∈ C2(R2×R,R2) and suppose fo(x) =
f (x; 0) has a saddle equilibrium po such that

po has a homoclinic orbit γo,

τ ≡ tr (Dfo(po)) = ∇ · fo(po) �= 0. (nondegeneracy)

Let p(µ) be the saddle equilibrium of f that continues from po and denote its manifolds by
Wu(p) andWs(p). Define a section S to fo at a point q ∈ γo and let s(µ) = S∩Ws(p) and
u(µ) = S ∩Wu(p) be the continuous functions of µ such that s(0) = u(0) = q. Suppose
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that

8 ≡ d

dµ
(s(µ)− u(µ))µ=0 �= 0. (transversality)

Then if τ < 0 (> 0), there is a family γ (µ) of stable (unstable) periodic orbits that bifurcate
from γo. The periods of these orbits are unbounded as µ → 0. Moreover, there is an ε
(which may be negative) such that there is exactly one periodic orbit in a neighborhood of
γo when µ ∈ (0, ε).

Sketch of Proof. We consider the stable case τ < 0. Since S is transverse to f (x; 0),
by continuity, it will be transverse to f (x;µ) for µ small enough and x close to q. Let
Pµ : S → S be the first return map for f (x;µ) to the section S (recall §4.12). As
Figure 8.16 indicates, the return map is defined only for points on S that are closer to the
equilibrium than s(µ); other points typically escape and do not return. As x → s(µ)− we
have Pµ(x)→ u(µ)−. Note that Po is defined for all points in the interior of the homoclinic
loop γo.

The transversality assumption 8 �= 0 implies s and u change at different rates with
µ; suppose, for example, 8 > 0. Then if µ < 0, u = Pµ(s) > s, and if µ > 0, u < s.
This means that the value of Pµ(s(µ)) is above the diagonal for the first case and below
the diagonal for the second case; see Figure 8.17. Therefore, since Pµ is defined for some
interval to the left of s, the graph of P must intersect the diagonal at some point x∗ < u(µ)

when µ > 0. At this point, where Pµ(x∗) = x∗, the Poincaré map has a fixed point—this
corresponds to a periodic orbit, γ (µ) of the flow, as sketched in Figure 8.18.

To study the stability of the periodic orbit, we must evaluate the slope of Pµ at x∗.
The fact that ∇ · fo(po) < 0 implies that the stable eigenvalue of Dfo(po) is stronger than
the unstable eigenvalue, and this means that orbits inside the homoclinic loop at µ = 0 are
strongly attracted to the loop; indeed, we claim that DPo(q) = 0. To see this, we look at
the behavior of orbits near po. Choose local coordinates in the neighborhood of po such
that the stable direction is the x-axis and the unstable direction is the y-axis. Denote the
eigenvalues of Dfo(po) by −α < 0 < β; by assumption tr(Dfo(po)) = −α + β < 0, so
α > β.

To the extent that the linear approximation is valid, we have x(t) = xoe
−αt and

y(t) = yoe
βt . Thus the trajectory that starts at (ε,8y) and ends at (8x, ε) takes a time

t = β−1 ln(ε/8y), so that 8x = ε
(
ε
8y

)−α/β
. This implies that

8x

8y
=
(
8y

ε

)α/β−1

→ 0 as 8y → 0,

since by assumption α
/
β > 1. Thus trajectories that start close to the x-axis approach

much closer to the y-axis. This argument can be corrected by using Grönwall’s inequality
(Lemma 3.13) to take into account the nonlinear terms, at the expense of decreasing the
exponent slightly. Moreover, the argument does not change much if we extend the trajectory
backward and forward to crossing points on S.52 The calculation implies that the point
x ′ = Po(x) on S is much closer to q than x was, so that DPo(x) > 0, and the graph of Po is
monotone increasing. Moreover, since (x ′ − q)

/
(x − q)→ 0, as x → q, DPo(q) = 0. A

52This is where our “proof” is only a sketch.
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Figure 8.17. Poincaré return map near the homoclinic loop assuming that τ < 0
and 8 > 0.
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Figure 8.18. Sketch of the phase space near a homoclinic bifurcation when τ < 0
and 8 > 0.

fixed point with zero multiplier is called “superstable.” More generally, we can argue that
DPµ(s(µ)) = 0 for the same reasons.

The Floquet multiplier of the periodic orbit is the slope of the Poincaré map at x∗
and must continuously move away from zero. Whenever the multiplier is less than one, the
periodic orbit is stable. Similar techniques show that when 8 < 0, the periodic orbit exists
for µ < 0 and is unstable.

8.12 Melnikov’s Method
As we have seen in §5.2, planar Hamiltonian systems often have homoclinic or heteroclinic
solutions when there are saddle equilibria. We have also shown in the previous section that
it is relatively easy to determine when a perturbation of the homoclinic orbit destroys it and
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gives birth to a nearby periodic orbit. Unfortunately, this theorem requires the computation
of s(µ) and u(µ), which are difficult to obtain. In this section we develop a method, usually
attributed to Melnikov—even though it was originally due to Poincaré—for finding their
lowest-order behavior.

We start with a general question: When can a system in the plane have an orbit that is
a closed loop? Suppose that a system with a C1 vector field f = (p, q)T has an invariant
loop γ : S1 → R

2; it could be periodic, homoclinic, or a family of heteroclinic trajectories
that form a loop (a separatrix cycle). Using the fact that ẋ−p(x, y) ≡ 0 and ẏ−q(x, y) ≡ 0
along any trajectory, consider the integral

0 =
∮
γ

(−(ẏ − q)dx + (ẋ − p)dy)

=
∮
γ

(ẋdy − ẏdx)+
∮
γ

(qdx − pdy).

The first integrand can be written ẋdy − ẏdx = (ẋẏ − ẏẋ)dt ≡ 0, so that only the second
term is possibly nonzero, giving

0 =
∮
γ

(qdx − pdy) =
∫

Int(γ )
∇ · f . (8.72)

Here we have used Green’s theorem to convert this to the integral over the interior of γ .
Thus we have obtained the next lemma.

Lemma 8.13. If ẋ = f (x) has an invariant loop γ , then
∫

Int(γ ) ∇ · f = 0.

Consider, for example, the perturbed Hamiltonian system

ẋ = f1(x, y)+ εg1(x, y),

ẏ = f2(x, y)+ εg2(x, y),
f =

(
∂H

∂y
,−∂H

∂x

)T
. (8.73)

Suppose that this system has an invariant closed loop γo for some value of ε. Since∇·f ≡ 0
for a Hamiltonian system (see §9.2), the integral (8.72) becomes

0 = ε

∮
γε

(g2dx − g1dy) = ε

∫
Int(γε)

∇ · g.

Now suppose that we do have a closed trajectory, γo, at ε = 0. Then, since the integral
above vanishes identically as a function of ε, it must have a zero ε derivative. This implies
in particular that

0 = M ≡ d

dε

∣∣∣∣
ε=0

ε

∮
γε

(g2dx − g1dy) =
∮
γ0

(g2dx − g1dy) =
∫

Int(γ0)

∇ · g, (8.74)

where the integrals are now taken along the “unperturbed” orbit γo.
When γo is a periodic orbit, γo(t) = γo(t + T ), we can use dx = ẋdt and dy = ẏdt

to convert the integral (8.74) into a time integral over one period of the orbit. On the ε = 0
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orbit (ẋ, ẏ) = f , so (8.74) becomes

0 =
∫ T

0
(g2(x(t), y(t))ẋ−g1(x(t), y(t))ẏ)dt =

∫ T

0
(g2f1−g1f2)γo(t)dt ≡

∫ T

0
f ∧ g|γo(t) dt,

where we have defined the wedge product: f ∧ g ≡ f1g2 − f2g1.
When γo is a homoclinic orbit, the period must be taken to infinity, and (x, y) are

functions that limit to the saddle point in both directions in time. Since f (x(t), y(t))→ 0
as the orbit approaches equilibrium, and does so exponentially fast with time, the integral
converges as t →±∞. Thus (8.74) becomes

M =
∫ ∞

−∞
dt f ∧ g|γo(t) . (8.75)

This integral is known as a Melnikov integral. Its vanishing is a necessary condition for the
existence of a closed orbit γ near the original homoclinic orbit.

Lemma 8.14. Suppose that (8.73) has a homoclinic loop γo when ε = 0. Then a necessary
condition for the existence of an invariant loop when ε is small is that (8.75) vanish.

Example: Consider the non-Hamiltonian perturbation of the Hamiltonian (4.29):

ẋ = y + εx,

ẏ = x − 3ax2 + εbxy,
(8.76)

so that g = (x, bxy). To apply the Melnikov criterion, we only need an expression for
the unperturbed solution, which is y± = ±x

√
1− 2ax. Then the Melnikov integral (8.74)

becomes

M =
∮
γo

g2dx − g1dy =
∫
y+
g2dx − g1dy +

∫
y−
g2dx − g1dy,

=
∫ 1

2a

0
(bxy+(x)dx − xdy+(x))−

∫ 1
2a

0
(bxy−(x)dx − xdy−(x)) ,

=
∫ 1

2a

0

(
bxy+ − x

dy+
dx

)
dx −

∫ 1
2a

0

(
bxy− − x

dy−
dx

)
dx.

The two integrals can be combined since y− = −y+ to give53

M = 2
∫ 1

2a

0
x

(
by+ − dy+

dx

)
dx = 2

2b + 7a

105a2
,

which is nonzero unless b = −7a
/

2. Therefore, except on this curve there are no nearby
closed loop orbits. This result applies when ε & 1. As we see in Figure 8.19, there are
indeed no nearby periodic orbits when (a, b) = (1, 0), but a nearby periodic orbit is created
when b ≈ −7a

/
2 even when ε is as large as 0.1.

53The substitution u = √1− 2ax simplifies the integrals.
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Figure 8.19. Flows for the system (8.76) with ε = 0.1 and a = 1.0. The three
figures show b = 0.0, −4.0, and−3.4, respectively. Between the first two panels the stable
and unstable manifolds must cross. They are nearly coincident in the third, where b is just
above −7a

/
2.

8.13 Melnikov’s Method for Nonautonomous
Perturbations

Nonautonomous perturbations to a planar system can also be treated by similar methods. In
his Ph.D. thesis in 1963, Viktor Melnikov devised a perturbative technique to compute the
motion of the stable and unstable manifolds. Begin, as before, with a Hamiltonian vector
field in the plane that has a homoclinic loop. Upon adding a perturbation that could be non-
Hamiltonian and periodically time dependent, the loop will typically be destroyed. We will
compute the distance between the stable and unstable manifolds of the perturbed fixed point.
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Letting z = (x, y), consider the system

ż = f (z)+ εg(z, t), ∇ · f = 0, g(z, t + T ) = g(z, t), (8.77)

where f and g are C2. Upon introducing a phase θ = ωt with ω = 2π
/
T , this system

becomes autonomous on the extended phase space R
2 × S

1:

ż = f (z)+ εg(z, θ),

θ̇ = ω,
(8.78)

with g(z, θ+2π) = g(z, θ). Since the θ equation is independent of z, this is a skew-product
system. The solution for ε = 0 is particularly simple: if ϕt (z) is the flow for f , then

(z(t), θ(t)) = (ϕt (z), θ + ωt)

is the flow for (8.78). Therefore, any equilibrium, po, of f becomes a periodic orbit of the
extended system given by the closed loop γo(t) = (po, ωt mod 2π).

Moreover, if po is a hyperbolic equilibrium of f , then the implicit function theorem
implies that in the extended phase space, the periodic orbit persists for ε > 0.

Theorem 8.15 (persistence of hyperbolic periodic orbits). If γo(t) = (po, ωt) is a
hyperbolic periodic orbit of (8.78) at ε = 0, then there is an ε0 > 0 such that for any for
|ε| < ε0 there is unique periodic orbit γε(t) of period T that continues from γo(t).

Proof. Let ϕt(z) denote the flow of f (z) in R
2. The surface S̄ = {(z, θ) : θ = θo} is a global

section of (8.78) for any ε; let Pε(z) be the Poincaré map on S̄: when ε = 0, Po(z) = ϕT (z).
Thus Po(z) has a fixed-point po = Po(po). Moreover, since the flow linearized about
z = po is Dϕt(po) = etDf (po), we have DPo(po) = DϕT (po) = eTDf (po). The multipliers
of DPo(po) are µ± = eλ±T , where λ± are the eigenvalues of Df (po). Thus since po is
hyperbolic, Re(λ±) �= 0 and therefore µ± �= 1.54 Thus the equation

F(z; ε) = Pε(z)− z = 0

satisfies the following hypotheses of the implicit function theorem, Theorem 8.1: (a)DPo−I
is nonsingular, and (b) Po(po) − po = 0. Thus there exists a unique fixed point pε that
continues from po for |ε| < ε0. The orbit of pε is a periodic orbit of (8.78).

Now suppose that when ε = 0, the equilibrium po of (8.77) has a homoclinic loop,
Uo ⊂ Ws(po) ∪ Wu(po). Then the corresponding periodic orbit γo of (8.78) has a two-
dimensional homoclinic manifold

H(γo) =
{
(z, θ) : z ∈ Uo, θ ∈ S

1} , (8.79)

as sketched in Figure 8.20. Every orbit on this manifold is both forward and backward
asymptotic to γo.

54By restricting the map to the section S̄, we eliminate the tangent eigenvector γ̇ , which does have multiplier 1.
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Figure 8.20. The unperturbed flow of (8.78) and the homoclinic manifold H(γo).

We now wish to study the effect of the perturbations onH(γo). To do this we develop
an expression for the rate of change of the manifolds with ε. This expression gives rise to
a vector field called the Melnikov vector field.

For any q ∈ H(γo), the mapping (t, θ) → (ϕt (q), θ) uniquely represents any point
on H(γo). To measure the distance between the perturbed manifolds Ws(γε) and Wu(γε)

we use the perpendicular vector to the unperturbed manifolds: since f⊥ = (−f2, f1) is
the two-dimensional vector perpendicular to the unperturbed flow, then at (t, θ), the three-
dimensional vector perpendicular to the manifold is (f⊥(ϕt (q)), 0). Note that the dot product
of a vector with f⊥ is equal to the wedge product with f :

f⊥ · v = −f2v1 + f1v2 = f ∧ v. (8.80)

Define a local section at a point q on the homoclinic manifold by

S = {(z, θ) : z = q + σf⊥(q), σ ∈ (−δ, δ), θ ∈ [0, 2π)}
for some δ > 0; see Figure 8.20. Since S is transverse to the flow at ε = 0, it is still
transverse to the perturbed flow for small enough ε.

We denote the perturbed flow of (8.78) (ε �= 0) by

(z(t), θ(t)) = (ψt (z, θ), θ + ωt). (8.81)

The intersections of the manifolds with S are denoted

(sε(θ), θ) = Ws(γε) ∩ S (uε(θ), θ) = Wu(γε) ∩ S; (8.82)
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Figure 8.21. Flow of (8.78) for ε �= 0 and the perturbed stable and unstable
manifolds of γε.

see Figure 8.21. We assume that these continue from the original intersections, so that
so(θ) = uo(θ) = q.55

Theorem 3.15, which guarantees smoothness of the flow with respect to parameters
and with respect to initial conditions, implies that we can find the solution ψt as a power
series expansion away from ϕt . For example, the solution on the stable manifold that starts
at (sε(θ), θ) can be expanded as

ψt (sε(θ), θ) = ϕt (q, θ)+ εξ st (q, θ)+O(ε2). (8.83)

Straightforward application of Grönwall’s inequality, Lemma 3.13—varying both the initial
condition and the parameter ε—shows that the difference, ξ st , is bounded for any finite time.

Now since ψt(sε(θ), θ)→ γε as t →∞, there is some finite time Tδ such that ψt is
within δ of γε for any δ > 0. Moreover, the implicit function theorem implies γε is O(ε)
close to γo. Since the Grönwall inequality implies that, up to Tδ , the deviation is O(ε),
ψt = ϕt +O(ε) for all t > 0. A similar argument leads to the conclusion that for points on
the unstable manifold, the deviation is bounded for all t < 0.

A measure of the distance between the manifolds is the dot product of the difference
between these points with the perpendicular vector field f⊥, or equivalently the wedge
product with f itself:56

8ε(t, θ) ≡ f (ϕt (q)) ∧ (ψt (uε(θ), θ)− ψt(sε(θ), θ)) = εM(t, θ)+O(ε2).

55Note that there will probably be many intersections of Ws and Wu with S; indeed, as we will see, if the
manifolds intersect transversely, Smale’s horseshoe theorem implies there must be infinitely many. Right now we
are interested in only the “first” intersections.

56To get the actual distance we could divide by the norm of f , but we are interested in only a measure of the
distance and, in particular, whether the distance is zero.
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We have noted here that 8o(t, 0) ≡ 0, since the manifolds coincide at ε = 0, and we have
defined the Melnikov function as the rate of change of this distance with ε:

M(t, θ) ≡ d

dε

∣∣∣∣
ε=0

8ε(t, θ) = f (ϕt (q)) ∧
(
ξut (q, θ)− ξ st (q, θ)

) = Mu(t, θ)−Ms(t, θ).

(8.84)
On the section S itself, the deviation is given by

8ε(θ) ≡ 8ε(0, θ) = εM(0, θ)+O(ε2). (8.85)

To compute the terms in (8.84), we derive a differential equation for M . We consider the
stable and unstable terms in (8.84) separately. For example, the stable part has derivative

d

dt
Ms = Df (ϕt (q))

d

dt
ϕt (q) ∧ ξ st (q, θ)+ f (ϕt (q)) ∧ d

dt
ξ st (q, θ). (8.86)

To evaluate this we need the differential equation for ξ st = d/dε|ε=0 ψt(sε(θ), θ); this is
obtained by differentiation of (8.78) with respect to ε:

d

dt
ξ st =

d

dε

(
d

dt
ψt

)
ε=0

= d

dε

(
f (ψt(sε(θ), θ))+ εg(ψt(sε(θ), θ), θ + ωt)

)
ε=0

= Df (ϕt (q))ξ
s
t + g(ϕt (q), θ + ωt).

(8.87)
This linear equation is to be solved with the initial condition

ξ s0 =
d

dε

∣∣∣∣
ε=0

sε(θ).

Substituting ϕ̇t = f (ϕt ) and (8.87) into (8.86) gives

d

dt
Ms = Df (ϕt )f (ϕt ) ∧ ξ st + f (ϕt ) ∧

(
Df (ϕt )ξ

s
t + g

)
.

The first two terms can be combined; it seems easiest to expand all the vector and matrix
products to see this:

(Df (ϕt )f (ϕt )) ∧ ξ + f (ϕt ) ∧ (Df (ϕt )ξ) =
(
Df1j fj

)
ξ2 −

(
Df2j fj

)
ξ1

+ f1
(
Df2j ξj

)− f2
(
Df1j ξj

)
= (−Df21f1 −Df22f2 + f1Df21 − f2Df11) ξ1

+ (Df11f1 +Df12f2 + f1Df22 − f2Df12) ξ2

= − (Df22 +Df11) f2ξ1 + (Df11 +Df22) f1ξ2

= −tr(Df )f ∧ ξ.
Now since f ∧ ξ = Ms we obtain

d

dt
Ms(t, θ) = −tr(Df (ϕt (q)))M

s(t, θ)+ f (ϕt (q)) ∧ g(ϕt (q), θ + ωt).
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Since f is by assumption a Hamiltonian vector field, tr(Df ) ≡ 0; this implies that the ODE
is now trivial,57

d

dt
Ms(t, θ) = f (ϕt (q)) ∧ g(ϕt (q), θ + ωt), (8.88)

since everything on the right-hand side is now known. Thus we can simply integrate the
equation to obtain Ms . Note that Ms(t, θ) vanishes exponentially fast as t →∞ because
ϕt(q)→ po and f (po) = 0. Therefore if we integrate (8.88) from (t,∞), we have

Ms(t, θ) = −
∫ ∞

t

f (ϕτ (q)) ∧ g(ϕτ (q), θ + ωτ)dτ .

A similar calculation gives Mu(t, θ) = ∫ t
−∞ f (ϕτ (q)) ∧ g(ϕτ (q), θ + ωτ)dτ . Putting

these together in (8.84) gives the Melnikov function

M(θ) =
∫ ∞

−∞
f (ϕτ (q)) ∧ g(ϕτ (q), θ + ωτ)dτ . (8.89)

Here we have noted that this is independent of t (see Exercise 23). This expression is almost
identical to (8.75) for the autonomous case! Note that

M(θ + 2π) = M(θ) (8.90)

since g is a periodic function.
By construction, when M(θ) = 0, the deviation in the manifolds is zero to first order

in ε. Our expectation is that this means that there is a true crossing of the manifolds nearby.
Indeed, this is true, provided that a nondegeneracy condition is satisfied, as we state in the
next theorem.

Theorem 8.16 (Melnikov). Suppose there is a point θo on the saddle connection such
that M(θo) = 0 and DθM(θo) �= 0. Then when ε is sufficiently small, Ws(γε) and Wu(γε)

intersect transversely at a point within O(ε) of (q, θo).

Proof. This follows almost immediately from Theorem 8.1. The separation between the
manifolds on the section S is measured by the formal expression (8.85). By definition
8o(θ) = 0, and d

/
dε8ε(θ)

∣∣
ε=0 = M(θ). The implicit function theorem cannot be applied

to 8ε(θ); however, the new function

F(θ; ε) = 8ε(θ)
/
ε = M(θ)+O(ε)

does satisfy the required conditions at the point θo: F(θo; 0) = 0 and DθF(θo; 0) �= 0.
Thus there is a unique curve θ(ε) such that F(θ(ε); ε) = 0, or equivalently 8ε(θ(ε)) = 0.
Since M changes sign as θ traverses θo, the separation must change sign upon crossing
θ(ε).

When the manifolds cross at a point sε(θ) = uε(θ), they cross on the orbit of this point
as well. Since this orbit (ψt (sε(θ)), θ + ωt) moves periodically in θ , as it approaches the

57The nonhomogeneous linear equation for M when tr(Df ) �= 0 is also not hard to solve. See Exercise 21.
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Wu

Ws

p

s(0) = u(0)

S

ψT(s(0),0)
ψ2T(s(0),0)

Figure 8.22. Sketch of a cross section S̄ for θo = 0 of the stable and unstable
manifolds. Here we suppose that s(0) = u(0) = 0, so that the crossing takes place on the
section S̄. The next crossing on the orbit of s(0) occurs at time T , the period of g.

equilibrium, the crossing point will intersect each section S̄ = {(x, θ) : θ = θo} infinitely
many times. The resulting picture is extremely intricate, and only a brief indication of the
complexity is sketched in Figure 8.22. Indeed, when Poincaré discovered the possibility
of the transverse crossing of stable and unstable manifolds, he said the following (in our
translation from the French):

When one tries to depict the figure formed by these two curves and their infinity
of intersections, each of which corresponds to a doubly asymptotic solution,
these intersections form a kind of net, web or infinitely tight mesh; neither of the
two curves can ever cross itself, but must fold back on itself in a very complex
way in order to cross the links of the web infinitely many times. One is struck
by the complexity of this figure that I am not even attempting to draw. (Henri
Poincaré, New Methods in Celestial Mechanics, 1892, Vol. 3, §397)

Since Poincaré, there have been many attempts to sketch this figure—many are in-
correct!

Example: To compute the Melnikov function for the example Hamiltonian (5.3), we first
need to find the solution on the unperturbed homoclinic orbit, defined by

ẋ = y = ±x√1− 2ax. (8.91)

Choosing a point on the unperturbed manifold, q = (1/2a, 0), we must find ϕt(q). Since
(8.91) is separable, it can be integrated to obtain

±t + c =
∫

dx

x
√

1− 2ax
= −2

∫
du

1− u2
= −2 tanh−1

(√
1− 2ax

)
,
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where we used the substitution u = √1− 2ax. Choosing c = 0 to give the proper initial
condition and solving for x yields

x(t) = 1

2a
sech2

(
t

2

)
.

This solution is valid for all t ∈ R, even though the± signs have disappeared. The solution
for y is obtained using y = ẋ:

y(t) = − 1

2a
sech2

(
t

2

)
tanh

(
t

2

)
.

Evaluation of the Melnikov expression (8.89) requires finding f along the orbit, but since
ż = f (z), this is equivalent to taking time derivatives

M(θ) =
∫ ∞

−∞
(ẋ(t)g2(x(t), y(t), ωt + θ)− ẏ(t)g1(x(t), y(t), ωt + θ))dt,

= − 1

4a

∫ ∞

−∞
sech2

(
t

2

)(
2 tanh

(
t

2

)
g2 +

(
2− 3sech2

(
t

2

))
g1

)
dt.

This integral is well behaved near±∞ since sech2(τ ) is exponentially small there, provided
only that g is bounded at the position of the unperturbed hyperbolic equilibrium, (0, 0).

Suppose, for example, that g(x, y, θ) = (0, cos(θ)). The integral becomes

M(θ) = − 1

2a

∫ ∞

−∞
sech2

(
t

2

)
tanh

(
t

2

)
cos(ωt + θ)dt,

which can be simplified by partial integration and expansion of the trig function:

M(θ) = ω

2a

∫ ∞

−∞
sech2

(
t

2

)
sin(ωt + θ)dt = ω

a
sin θ

∫ ∞

−∞
sech2(τ )e2iωτ dτ .

Here we used the fact that sech2 is even to convert the last integral into an exponential, and
we changed variables to τ = t

/
2. Note that sech2τ = (cos(iτ ))−2 has double poles at

the zeros of the cosine, or at τn = iπ(2n+ 1)
/

2. The integral is most easily done by the
Cauchy residue method: close the integral in the upper half-plane and sum over the residues
Rn at the poles τn:

M(θ) = 2πi
∞∑
n=0

Rn.

Near a pole,

cos(iτ ) = 0− i sin(iτn) (τ − τn)+O(τ − τn)
3 = i (−1)n (τ − τn)+O(τ − τn)

3,

and the residue at τn is given by the O(τ − τn)
−1 term in the expansion:

sech2(τ )e2iωτ = −1

(τ − τn)2
e2iωτne2iω(τ−τn) +O(τ − τn)

0

= −e2iωτn

(τ − τn)2
(1+ 2iω(τ − τn))+O(τ − τn)

0.
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Figure 8.23. Melnikov function (8.92) when θ = π
/

2 and a = 1, as a function of ω.

Thus Rn = −2i ω
2

a
sin θe2iωτn , and the Melnikov function becomes

M(θ) = 4πω2

a
sin θ

∞∑
n=0

e2iωτn =4πω2

a
sin θe−ωπ

∞∑
n=0

e−2πωn

= 4πω2

a
sin θe−ωπ

e−πω

1− e−2πω
= 2πω2

a
sin θ csch(πω).

(8.92)

Note that M(θ) is periodic in θ and vanishes at θ = 0 and π but is otherwise nonzero, as
is shown in Figure 8.23. We therefore may conclude that the stable and unstable manifolds
intersect transversely.

The calculation in the example points out one potential pitfall in the Melnikov for-
mulation: Theorem 8.16 is valid only if the parameters in the system, other than the small
parameter ε, are assumed to be O(1). By contrast if ω � 1, i.e., ω = O(1

/
ε), then the

size of the Melnikov function is exponentially small in ε. This invalidates the ordering
assumptions and the implicit function argument that we used. Proving that the manifolds
intersect transversely in this case is much, much harder. This very interesting case of a
rapidly oscillating perturbation requires a theory of “asymptotics beyond all orders” for its
resolution (Delshams and Seara 1997; Holmes, Marsden, and Scheurle 1988; Segur 1993).

8.14 Shilnikov Bifurcation
Homoclinic orbits can also occur in higher-dimensional systems. For example, the inter-
sections of the stable and unstable manifolds of a hyperbolic periodic orbit in three or more
dimensions can exhibit complexity similar to that of the nonautonomous systems studied
in §8.13. Another novel situation arises when a hyperbolic equilibrium in three or more
dimensions has a homoclinic orbit. A bifurcation of such an orbit can give rise to infinitely
many periodic orbits—Leonid Shilnikov extensively studied this case in the 1960s.
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Consider a vector field fo(x) in R
3 that has a hyperbolic equilibrium po with one

unstable eigenvalue λ1 > 0 and two stable eigenvalues λ2 and λ3 ordered so that Re(λ3) ≤
Re(λ2) < 0. The equilibrium po is a saddle when the stable eigenvalues are real and is a
saddle-focus when λ2,3 = α ± iβ and β �= 0. Just as in the planar case, Theorem 8.12,
the sum of stable and unstable eigenvalues, τ , is important in determining the character of
the bifurcation; it turns out that for the three-dimensional case only the “leading” stable
eigenvalue is generically important. Consequently, the “leading trace” (or what Shilnikov
calls the saddle value) is defined as

τ ≡ λ1 + Re(λ2). (8.93)

Suppose that there exists an orbit γo that is homoclinic to po:

γo ⊂ Wu(po) ∩Ws(po).

Just as in Theorem 8.12, Shilnikov studied bifurcations in a neighborhood of γo. For this
case the neighborhood, U , is a tube enclosing γo ∪ po.

If f (x;µ) is an unfolding of fo, then, just as for the two dimensions, varying any
parameter µ will generically destroy the homoclinic orbit. The main question we address
is, are there other orbits that are necessarily created in U when γo is destroyed? There are
four cases depending on whether po is a saddle or saddle-focus and on the sign of τ .

Theorem 8.17 (Shilnikov homoclinic saddle). Let f (x;µ) be a generic, one-parameter
unfolding of a three-dimensional vector field f (x; 0) that has a saddle equilibrium po with
real eigenvalues

λ3 < λ2 < 0 < λ1 (8.94)

and τ = λ1 + λ2 �= 0. Suppose that po has a homoclinic orbit γo and that as t → ∞, γo
approaches po along its leading stable eigenvector (with eigenvalue λ2). Then there exists
a neighborhood U of γo ∪ po such that a unique limit cycle is created in U as µ crosses
zero. Moreover,

(a) if τ > 0, then the limit cycle is unstable (it has one unstable multiplier), and

(b) if τ < 0, the limit cycle is a sink.

The hypothesis of a generic unfolding means that the parameter µ causes the stable
and unstable manifolds of p(µ) to split, in other words, that there is a nonzero quantity
analogous to 8 in Theorem 8.12. When τ < 0, it can be seen that the limit cycle is created
when the branch of the unstable manifold of the equilibrium p(µ) crosses from “below” to
“above” Ws (p(µ)) as sketched in Figure 8.24.

Note that when µ = 0, the orbit γo ⊂ Ws(po), so that the stable manifold must
accumulate on itself as t → −∞, forming a ribbon as sketched in Figure 8.24. In the
neighborhood of each point of γo for finite time, the stable manifold is a smooth two-
dimensional surface. As t →−∞ one tangent vector to this surface limits on the unstable
eigenvector v1 of po. Generically the second tangent vector will limit on the direction
of most rapid contraction, that is, the eigenvector v3 corresponding to λ3. There are two
topologically distinct configurations for this ribbon: in one the ribbon is orientable, as shown
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Ws
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Ws

Wu
Wu

γo

Figure 8.24. Homoclinic bifurcation for a three-dimensional saddle with τ < 0.
The blue surfaces represent the stable manifold and the red curves the unstable manifold.

in Figure 8.24, and in the other it acquires a half-twist so that the Ws(p) ∩ U is a Möbius
band. This topology has an influence on the homoclinic bifurcation when τ > 0: in the
untwisted case, the limit cycle is created when Wu(p) crosses from above Ws(p), while in
the twisted case it is created upon a crossing from below.

Finally, note that Theorem 8.17 can also be applied to a saddle equilibrium with a
two-dimensional unstable eigenspace and a one-dimensional stable eigenspace simply by
reversing the direction of time.

In either case, the creation of a limit cycle in this bifurcation could be expected from
our study of the two-dimensional case. The same cannot be said for a homoclinic bifurcation
when the equilibrium is a saddle-focus.

Theorem 8.18 (saddle-focus homoclinic). Let f (x;µ) be a generic, one-parameter un-
folding of a three-dimensional vector field f (x; 0) that has a saddle-focus equilibrium po
with eigenvalues λ1 > 0 and λ2,3 = α ± iβ with α < 0, β �= 0, and τ = λ1 + α �= 0.
Suppose that po has a homoclinic orbit γo.

(a) If τ > 0, there is a µo > 0 such that there are infinitely many saddle limit cycles in
U for all |µ| < µo.

(b) If τ < 0, a unique, stable limit cycle is created when µ passes through zero.

The first case is remarkable in that an incredibly intricate structure, with infinitely many
periodic orbits, occurs in a parameter region around the homoclinic orbit. The basic point
is that since γo lies on Ws(po), it must spiral infinitely many times as it approaches po.
Similarly, a ball of orbits that passes near the equilibrium is twisted into a thin spiral that
is spread along the unstable manifold; see Figure 8.25. This behavior persists for small µ
and is reflected in the behavior of nearby orbits. When the leading trace is negative, this
spiral is contracted rapidly toward the unstable manifold, and the resulting Poincaré map is
a contraction on a cross section near γo when the homoclinic connection is broken to the
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Wuγo

WsWs

Figure 8.25. Dynamics near a homoclinic orbit to a saddle-focus equilibrium with
blue stable manifold and red unstable manifold. The left panel shows the spiral structure
on a Poincaré section (gray) near the homoclinic trajectory γo, and the right the creation
of a periodic orbit.

“same side” ofWs as the homoclinic branch ofWu. This contraction mapping has a unique
fixed point that corresponds to the newly created periodic orbit. When the leading trace
is positive, contraction near the stable manifold is overwhelmed by expansion along the
unstable manifold, and the image of the spiral crosses itself giving rise to an infinite number
of fixed points of the Poincaré mapping. The theorem is proved by constructing a two-
dimensional section transverse toWu(po) and showing that the Poincaré map is guaranteed
to have infinitely many fixed points.

The proofs of the Shilnikov theorems can be found in (Kuznetsov 1995; Shilnikov et
al. 1998).

8.15 Exercises
In each of these problems, where appropriate, use your favorite computer software to create
phase portraits of these systems and compare with the theoretical results.

1. Find the equilibria and bifurcation points of the following one-dimensional ODEs.
Draw the bifurcation diagram. Sketch the phase portraits for parameter values that
represent the distinct classes of motion.

(a) ẋ = µ+ x3,

(b) ẋ = 1+ µx + x3,
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(c) ẋ = µx + 2x2 − x3,

(d) ẋ = µx + sin(x),

(e) ẋ = µ+ 2x2 − x4,

(f) ẋ = −4µ2 + 5µx2 − x4.

2. Show that the flow of the vector field ẏ = νy − y2 is diffeomorphic to the flow
induced by the vector field ẋ = µ − x2. Thus the “transcritical bifurcation” of the
first equation is nothing more than a disguised saddle-node bifurcation.

3. Show that if A(c) is a matrix that depends continuously upon a parameter c, then the
eigenvalues of A depend continuously on c as well. Now suppose that A depends
smoothly on c. Show by example that the eigenvalues of A(c) need not be smoothly
dependent upon c. (Hint: Consider the solutions λ(c) defined implicitly by the
characteristic polynomial p(λ(c), c) = det(λI − A(c)).)

4. Here we will show that there is a neighborhood of the Takens–Bogdanov form (8.13)
in which every 2× 2 matrix is linearly conjugate to Aµ (8.14).

(a) First suppose thatM has eigenvalues λ1 �= λ2. Note thatM is linearly conjugate
to the matrix N = diag(λ1, λ2). Find an explicit linear conjugacy between N
and Aµ. Consider the cases when the eigenvalues are real and when they are
complex.

(b) Suppose that M has eigenvalues λ1 = λ2 = λ ∈ R and has geometric multi-
plicity one. Show that it is conjugate to the Jordan normal form K = (λ 1

0 λ

)
.

Find an explicit linear conjugacy between K and Aµ. (Hint: The generalized
eigenvectors of M can be used to construct the first conjugacy.)

(c) The conjugacy in (a) fails when λ1 = λ2. Why? To see that semisimple matrices
with a double eigenvalue are not near the Takens–Bogdanov form, we will use
the Euclidean norm on R

4 in the matrix components (a, b, c, d). Show that if
M is semisimple and has a double eigenvalue, then there is an ε such that M is
not in the ball of radius ε about J .

5. Consider the space Hk of homogeneous polynomials on R
n.

(a) Show that Hk is a vector space with the monomial basis (8.22). (Hint: Re-
call that a vector space is closed under the operations of addition and scalar
multiplication.)

(b) Show that the dimension of Hk is

dim(Hk) =
(
k + n− 1
n− 1

)
= (k + n− 1)!

(n− 1)!k! .

(Hint: Recall that the binomial coefficient
(
m

n

)
is “m choose n”—the number of

ways of putting n identical balls into m boxes.)

(c) What is the dimension of H
n
k?
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6. Show that the homological operator LA (8.28) is a linear operator on H
n
k .

7. One possible inner product on H
n
k is a generalization of the Frobenius inner product

on matrices. Ifp(x) ∈ H
n
k , letp(∂) be the differential operator with each xi replaced

by ∂
/
∂xi . We define

〈p, q〉 = p(∂) · q(x)|x=0 . (8.95)

(a) Compute the inner product
〈
pm,i, pm̂,j

〉
of two vector monomials (8.24). In

particular show that the inner product vanishes unless m = m̂ and i = j .

(b) Compute the inner product of two, degree-one vector fields p = Ax, q =
Bx, and show that the result is the Frobenius inner product of the matrices,
〈A,B〉F = tr(ABT ).

(c) Show that (8.95) is indeed an inner product, that is, that 〈p, q〉 = 〈q, p〉 and
〈p, p〉 > 0 unless p = 0.

(d) Show that the adjoint of the homological operator (8.28) with this inner product
is L†

A = LA† , where since A is real, A† = AT . Thus one choice for the
complement G of rng(LA) is ker(LA†).

8. Verify the calculations leading to the normal form (8.43) of the center in R
2. In

particular derive the homological operator LA, find its action on the standard bases
of H

2
2 and H

2
3, and obtain the matrices L. Find the eigenvectors and eigenvalues.

Show that the null, left eigenvectors in H
2
3 are given by (8.42) but that the null, right

eigenvectors, together with range of LA(H
2
3), do indeed span H

2
3.

9. Find a versal unfolding for the following system:

ẋ = xy,

ẏ = −y − x2.

Sketch the various types of phase portraits that are possible for nearby vector fields.
(Hint: It may be helpful to find the center manifold for the degenerate system.)

10. Consider the following system:

ẋ = λx − x2 + 2xy,
ẏ = (λ− 1)y + x2.

(a) Verify that this system has the normal form (8.40) and satisfies the singularity
and nondegeneracy conditions for a saddle-node bifurcation at (x, y) = (0, 0)
when λ = 0.

(b) Using Theorem 8.6, compute the bifurcation function F(x, y(x; λ); λ) and find
the first two terms in the series expansion for its extremal valuem(λ) near λ = 0.
What does this tell you about bifurcations of this point?

(c) Is the bifurcation in (b) a saddle-node bifurcation? If not, how could you change
the parameter dependence to fix it?

(d) Analyze all of the fixed points and their stability as a function of λ.
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11. Consider the system
ẋ = x + 2y,
ẏ = −x − y + xy.

(a) Find the linear transformation (x, y)T = P(ξ, η)T that transforms the linear part
of this system into the real normal form J = (µ ω

−ω µ

)
. (Hint: Recall §2.5—use

the real and imaginary parts of the eigenvectors v± = u± iw.)

(b) Transform the full system to the new coordinates (ξ, η).

(c) Use complex coordinates (8.53), and rewrite this as a system for (z, z̄).

12. Consider the system

ẋ = µx − y + (x2 + y2)2(αx − βy),

ẏ = x + µy + (x2 + y2)2(αy + βy).

Transform it into complex coordinates using (8.53) and show that this system is in
the normal form (8.56). Show that when α �= 0, it has a degenerate Andronov–Hopf
bifurcation at µ = 0. Determine whether it is subcritical or supercritical.

13. Consider the system
ẋ = µx − y + ay2 + x3,

ẏ = x + µy + xy2 + y2.

(a) Determine α(a) using (8.59).

(b) Find the set on which this system has an Andronov–Hopf bifurcation. Is the
bifurcation subcritical or supercritical?

(c) Investigate numerically the behavior for values of a such that α > 0, α < 0,
and α = 0.

14. Show that the three-species food-chain model (1.11) has an invariant plane when the
top predator, P , is extinct and that the carrying capacity K can be eliminated by
scaling the resource population so that the model reduces to

Ṙ = R (1− R)− xcyc
CR

R + Ro

,

Ċ = −xcC
(

1− yc
R

R + Ro

)
,

where all of the new parameters are assumed positive.

(a) Show that this system has an equilibrium in the physically relevant positive
quadrant for certain ranges of the parameters yc and Ro.

(b) Show that this equilibrium is a center when Ro = yc−1
yc+1 and that it satisfies the

transversality requirement for an Andronov–Hopf bifurcation.

(c) Numerically investigate theAndronov–Hopf bifurcation for the parameters xc =
0.4, yc = 2, as Ro varies. Is it subcritical or supercritical?
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15. Show that the following systems have an equilibrium that undergoes an Andronov–
Hopf bifurcation for some parameter valueµ. Find the bifurcation point and determine
whether the bifurcation is subcritical or supercritical.

(a)
ẋ = 1− (µ+ 1)x + x2y,

ẏ = µx − x2y,
(the Brusselator)

(b) ẍ + ẋ3 − 2µẋ + x = 0 (Rayleigh’s oscillator)

(c)
ẋ = y,

ẏ = −x + µy + x2 + xy + y2 (Bautin’s model).

16. Two predators, with populations p1 and p2, hunt the same prey species, with popula-
tion s. Using a saturating (recall (1.11) and Exercise 13) nonlinearity for the predators
hunting efficiency, Farkas (1984) modeled this system by

ṡ = s

[
r
(

1− s

K

)
−m1

p1

a1 + s
−m2

p2

a2 + s

]
,

ṗ1 = p1

(
m1

s

a1 + s
− d1

)
,

ṗ2 = p2

(
m2

s

a2 + s
− d2

)
.

As usual, all parameters are positive, and the biologically relevant phase space is the
positive octant.

(a) By rescaling the dynamical variables and time, show that we can effectively set
K = r = 1. Thus the effective parameter space is six-dimensional and labeled
by µ = (a1, a2,m1,m2, d1, d2).

(b) Show that (in the newly scaled model), the ith predator necessarily goes extinct
if mi < di . We will assume that both predators can grow. Moreover, we will
assume that predator 1 is relatively more a “K-strategist”; i.e., its efficiency
saturates earlier, a1 < a2, while predator 2 is relatively more of an “r-strategist,”
that is, it has a higher relative maximal birthrate: b1 = m1

/
d1 < b2 = m2

/
d2.

(c) Assume that the critical prey populations, s∗, for the growth of each predator
are equal (i.e., ṗi > 0 if s > s∗). Show that this implies that a1(b2 − 1) =
a2(b1 − 1) and does not contradict the assumptions in (b) on the predators’
different strategies.

(d) There are two isolated equilibria and one line segment of equilibria for the
model. Find them.

(e) Show that as s∗ ranges over the interval [ 1
b1+1 ,

1
b2+1 ] the equilibria on the line

segment successively undergo Andronov–Hopf bifurcations. Farkas calls this
sequence of bifurcations a zip bifurcation.

(f) Investigate the dynamics near the zip bifurcation numerically.
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17. Complete the proof of Theorem 8.9.

(a) Suppose that f (x;µ) is given by (8.63). Carry out the transformations leading
to (8.65).

(b) Prove there is a unique solution m2(z;m1) to DzF(z;m1,m2) = 0 in a neigh-
borhood N of the origin in R× R.

(c) Show that there is a unique solutionm1(z) toG(z;m1) = F(z;m1,m2(z;m1)) =
0 in a neighborhood of the origin in R.

(d) Show that the curve (m1(z),m2(z;m1(z))) is, to lowest order, Neile’s parabola,
27m2

1 = −4sm3
2. Transforming back to (A,B,D), show that this becomes

(8.68).

18. Continue the normal form transformation in §8.10 for the Takens–Bogdanov case to
cubic order by finding the range and cokernel of the homological operator LJ on the
eight cubic monomials in H

2
3. Show that the normal form can be written

ẋ = y,

ẏ = dx2 + exy + f x3 + gx2y.

19. Taken’s choice for the normal form for the Takens–Bogdanov bifurcation is

ẋ = ν1x + y + x2,

ẏ = ν2 + x2.

Study the phase portraits for this system as the parameters (ν1, ν2) vary, and show
that the bifurcation diagram is equivalent to that of the normal form (8.69) under a
transformation ν(µ).

20. Consider the Hamiltonian system defined by

H(x, y) = 1

2
y2 + µx + 1

3
x3.

Write down the ODEs, find the equilibria, and demonstrate how the phase portraits
change as µ varies. Identify the bifurcations, considering especially the behavior of
the orbit homoclinic to the saddle equilibrium.

21. Consider the system
ẋ = y + εx,

ẏ = x − xy − x3.

(a) Find the fixed points and characterize their stability.

(b) Show that when ε = 0, this system is time reversible but not Hamiltonian (recall
§6.5).

(c) Prove that when ε = 0, the origin has a homoclinic orbit. (Hint: The nullclines
ẏ = 0 and ẋ = 0 divide the plane into sectors with distinct directions. Use time
reversal symmetry.)

(d) Study the system numerically for small ε. Is there a homoclinic bifurcation?
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22. Find a formula that generalizes (8.89) for the Melnikov functionM(θ)when tr(Df ) �=
0.

23. Why is the Melnikov function (8.89) independent of t?

24. Study the bifurcations of your three-dimensional quadratic system of equations from
Table 1.1 as you vary the reduced parameters.





Chapter 9

Hamiltonian Dynamics

The laws which we have explained abundantly serve to account for all the
motions of the celestial bodies, and of our sea. (Isaac Newton, Principia Math-
ematica, 1687)

In the earlier chapters we primarily studied dynamical systems without assuming any special
structure. However, many physical systems do have a “geometric” structure, and this should
be acknowledged by the model builder and safeguarded by the dynamicist. For example,
a flow that conserves energy must lie on the surfaces defined by constant energy and is
therefore geometrically restricted. In this chapter we will consider several of these special
classes of dynamical systems. Perhaps the most useful are Hamiltonian systems, as virtually
all the fundamental models in physics are described by such dynamics. We do not have the
time to develop a complete course on the physics of these systems but will predominantly
concentrate on their mathematical structure.58

9.1 Conservative Dynamics
A system ẋ = f (x) is said to be conservative when there is a quantity that is invariant along
the flow, i.e., if there is a function I (x) such that59

0 = d

dt
I (x) = DI

dx

dt
= ∇I · f. (9.1)

Thus I is an invariant if it has a gradient everywhere normal to the vector field f . Invariants
are also called integrals of motion, or conserved quantities. If the equations model a physical
system, then the conserved quantity often has physical significance; for example, it could
be the total momentum in a system of interacting particles (see Exercise 1). However, in
some cases, the physical meaning of the invariant is obscure.

58References include (Abraham and Marsden 1978; Arnold 1978; MacKay and Meiss 1987; Meyer and Hall
1992).

59As always, DI stands for the collection of first derivatives of the function I. We distinguish this from ∇I ,
which is the column vector formed from the first derivatives. Typically DI = ∇IT is a row vector.
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Example (Lotka–Volterra dynamics): Sometimes the Lotka–Volterra systems of §1.4 have
invariants. For example, the system (recall Exercise 6.4)

ẋ = −dx(1− y),

ẏ = by(1− x)

represents the interaction between predators, whose population is x and isolated death rate
is d > 0, with prey, whose population is y and isolated birthrate is b > 0. The populations
have been normalized so that the carrying capacities are 1 for both x and y. This system
has equilibria at (0, 0) and (1, 1). The origin is a saddle; the x-axis is its stable manifold
and the y-axis is its unstable manifold. Thus the positive quadrant is an invariant set. It
is easy to see that (1, 1) is a linear center with eigenvalues λ = ±i√bd . To show that it
is nonlinearly stable it would be desirable to construct a Lyapunov function; in fact, this
system has an invariant. To see this we study the phase curve equation (1.22)

dy

dx
= −b

d

y(1− x)

x(1− y)
⇒ b

∫
1− x

x
dx = −d

∫
1− y

y
dy.

Integration of the separated equation gives a constant of integration that can be interpreted
as an invariant function:

I (x, y) = b (x − log x)+ d (y − log y) .

It is easy to verify explicitly that I is constant along the trajectories; of course, it is also a
weak Lyapunov function; recall §4.6. Expanding the function I near the point (1, 1) yields

I (x, y) = b + d + b

2
(x − 1)2 + d

2
(y − 1)2 +O(3)

so that the contours of I are ellipses near (1, 1). This implies that (1, 1) is a topological
center; recall §6.3.

Example (wave–wave interactions): Propagating waves are typically represented by func-
tions of the form a(t)eik·x . Here a(t) is the complex Fourier amplitude of the wave with
wave vector k. In the linear approximation the amplitudes undergo a pure oscillation with
a frequency ω: a(t) = a(0)eiωt ; often the frequency is a function of the wave vector—this
function is called the dispersion relation, ω = X(k). If the medium in which the waves
are propagating is nonlinear, then waves with distinct wavenumbers interact; the lowest-
order nonlinear terms couple waves in triplets that satisfy k3 = k1 + k2 giving rise to triad
interactions. For example, a single triad with amplitudes a1, a2, and a3 obeys the equations

ȧ1 = −iω1a1 + icā2a3,

ȧ2 = −iω2a2 + icā1a3,

ȧ3 = −iω3a3 + ica1a2,

(9.2)

where c is a real coupling constant. These equations describe, for example, water waves in
a fluid with density gradients such as an ocean, the interaction of phonons in solids, as well
as the nonlinear interaction of various plasma waves (Davidson 1972).
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The system (9.2) has several invariant quantities. Defining the wave actions to be
Ji = āiai = |ai |2, it is easy to see that this system has two invariants:

I1 = J1 + J3, I2 = J2 + J3. (9.3)

For example,

d

dt
I2 = ā2(−iω2a2 + icā1a3)+ a2(iω2ā2 − ica1ā3)

+ ā3(−iω3a3 + ica1a2)+ a3(iω3ā3 − icā1ā2)

= ic(ā2ā1a3 − a2a1ā3 + ā3a1a2 − a3ā1ā2) = 0.

These invariants imply that for the amplitude of the first two waves to grow, the amplitude
of the third one must decay. This interaction gives rise to the so-called “decay instability”
of wave three into waves one and two. It is investigated further in Exercise 6.

In general, the construction of an invariant requires the solution of the first-order
partial differential equation (PDE) (9.1). In principle this could be done by the method of
characteristics (Guenther and Lee 1996); however, the characteristic equations are ẋ = f ,
precisely the original ordinary differential equation (ODE)! Thus if one has no physical
insight into a particular system (for example, knowledge of a symmetry—see §9.7), then
it is difficult to find invariants. There are methods, based on Lie groups, that allow one to
discover nonobvious symmetries and their associated invariants (Hydon 2000; Olver 1993).

9.2 Volume-Preserving Flows
Suppose ϕt(x) is a flow with vector field f (x) and letUo represent a set of initial conditions.
Each xo ∈ Uo moves to a point x(t) = ϕt (xo) under the flow, so that Uo is transformed into
a domainUt = ϕt (Uo) at time t ; see Figure 9.1. The theorem of calculus for transformation
of volume integrals implies that the volume of Ut is

vol(Ut ) =
∫
Ut

dx =
∫
Uo

det(Dϕt(x))dx. (9.4)

The rate of change of this volume is easily computed from Abel’s theorem, (2.50), upon
recalling that Dxϕt(x) = Q(t; x) is the fundamental matrix of the linearization (7.7). Thus

vol(Ut ) =
∫
Uo

exp

(∫ t

0
trDf (x (s)) ds

)
dx,

so that

d

dt
vol(Ut ) =

∫
Uo

tr (Df (x(t))) det (Dϕt(x)) dx =
∫
Ut

tr (Df (x(t)))dx. (9.5)

One immediate conclusion of (9.5) is that the rate of change of the volume vanishes
for any region Uo if and only if tr(Df ) ≡ 0. Such flows are called volume preserving.
Volume-preserving flows commonly occur in applications.
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Uo

Ut

δx

ϕ
t
(x)

Dϕtδx

Figure 9.1. Volume-preserving flow.

Example (passive tracers): One common example of a volume-preserving flow arises in
fluid mechanics; recall §1.4. Suppose that v(x, t) is the Eulerian velocity field of a fluid;
i.e., v(x, t) is the velocity of the fluid seen by an observer at a fixed point x in space at time
t . A drop of dye put in the fluid at x will then be swept along with the fluid—to the extent
that the inertia of the dye is the same as that of the fluid—and thus obey the Lagrangian
ODE (1.15),

ẋ = v(x, t). (9.6)

The solution x(t) = ϕt (xo) of this system gives the position of an observer moving with the
flow.

When ∇ · v = 0 the fluid is said to be incompressible. This is a good approximation
when the fluid velocity is far below the speed of sound (subsonic). Note that for (9.6),

tr(Df ) =
3∑
i=1

∂

∂xi
vi = ∇ · v = 0,

so that the flow of a passive tracer in an incompressible fluid is volume preserving. One
example of this is the ABC flow of §1.4. Two-dimensional fluid flows, like the flow within
a soap film, give another class of simple examples. An incompressible vector field in two
dimensions can be written as the curl of a stream function ψ(x, y, t),

v = ẑ×∇ψ =
(
−∂ψ
∂y

,
∂ψ

∂x

)
,

so that∇ ·v = − ∂2ψ

∂x∂y
+ ∂2ψ

∂y∂x
= 0. Consequently, this system is also Hamiltonian (see §9.3)

with H(x, y, t) = −ψ(x, y, t).
Hamiltonian flows are examples of volume-preserving flows—but not every volume-

preserving flow is Hamiltonian. Indeed, as we will soon see, Hamiltonian systems have
additional geometrical structure.

9.3 Hamiltonian Systems
William Rowan Hamilton conceived in 1834 what is now called Hamiltonian dynamics as
a reformulation of Newton’s equation F = ma for a set of point particles in a force field
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(Hamilton 1834). When the force, F , is conservative, it can be written as the gradient
of a potential energy function, V ; by convention F = −∇V , so that the force is in the
direction of decreasing potential energy. Using the standard technique to convert second-
order differential equations into a system of first-order equations (recall §1.2) gives

dxi

dt
= vi, mi

dvi

dt
= −∇iV . (9.7)

Equations of the form (9.7) also hold for collections of interacting particles or mechanical
components as in (1.12). Denote the collection of position variables of all the components by
the single vector q; these are the configuration variables. Similarly p denotes the collection
of the kinetic momenta, pi = mivi . Hamilton noticed that these equations could be obtained
through differentiation of a scalar quantity that he called the characteristic function,

H(q, p) =
n∑
i=1

p2
i

2mi

+ V (q). (9.8)

Today H is called the Hamiltonian. By direct comparison of (9.7) with (9.8), we see that
the equations of motion are

dqi

dt
= ∂H

∂pi
,

dpi

dt
= −∂H

∂qi
. (9.9)

Physically, H is the total energy of the system; it is the sum of kinetic, T = ∑p2
i

/
2mi ,

and potential, V (q), energies. The total energy is an invariant of the system, by (9.1),

dH

dt
=

n∑
i=1

∂H

∂qi

dqi

dt
+ ∂H

∂pi

dpi

dt
=

n∑
i=1

∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi
= 0. (9.10)

This generalizes the calculation of (4.28) for one configuration and momentum variable.

Example (the planar pendulum): Newton’s equations for a planar pendulum of length l
in a gravitational field of strength g, as shown in Figure 9.2, are

mlθ̈ = −mg sin(θ) = − ∂

∂θ
(−mg cos(θ)) ,

where θ is the angle measured from the bottom. The angular momentum is p = ml2θ̇ = I θ̇ ,
where I is the moment of inertia. The Hamiltonian is H(θ, p) = p2

2I − mgl cos θ , and
Hamilton’s equations are

θ̇ = p

I
,

ṗ = −mgl sin θ.
(9.11)

Since the energy of the pendulum is conserved, the motion is along contours of H = E in
the phase space (θ, p).
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θ

l

mg

Figure 9.2. Planar pendulum.

The Hamiltonian formulation is not limited to functions having the form “kinetic plus
potential” energies. More generally a Hamiltonian is any smooth (C1) function H : M →
R, where M is a 2n-dimensional manifold with coordinates z = (q, p). We call M the
phase space, q the configuration, and p the canonical momenta; each is n-dimensional.
Such a Hamiltonian is said to have n degrees of freedom, even though it defines motion on
a 2n-dimensional manifold. Thus the planar pendulum has one degree of freedom.

A Hamiltonian can also depend explicitly on time, H : M×R → R. It then defines a
system of differential equations for (q, p, t) ∈ M ×R in the extended phase space. In this
case the flow is nonautonomous, but the equations are still given by (9.9). It is conventional
to say that H(q, p, t) has n + 1/2 degrees of freedom, since the time variable effectively
increases the dimension of the phase space by one.

Example: One physical situation in which a more general Hamiltonian function arises cor-
responds to the motion of a charged particle in an electromagnetic field. In the nonrelativistic
limit v & c (where c is the speed of light), a point particle with charge e obeys the Lorentz
force law:

ẋ = v, mv̇ = e
(
E + v

c
× B

)
. (9.12)

This equation is not of the form (9.7) unless the magnetic field B vanishes. However, the
Lorentz law does arise from a Hamiltonian system. Since the magnetic field is source free,
∇ ·B = 0, it can be written as the curl of a vector potential A: B(x, t) = ∇ ×A(x, t). The
canonical momentum conjugate to the particle position x is defined to be

p = mv + e

c
A,

and the corresponding Hamiltonian is still the total energy of the system, H = 1/2mv
2+ eφ,

where φ is the scalar potential, andE = −∇φ− 1
c
∂A
∂t

. So that (9.9) applies, the Hamiltonian
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must be written in its canonical coordinates:

H(q, p, t) = 1

2m

∣∣∣p − e

c
A(q, t)

∣∣∣2 + eφ(q, t). (9.13)

It is an exercise in vector identities to show that the Hamiltonian equations for (9.13)
reproduce the Lorentz force; see Exercise 3.

If the product in (9.13) is expanded, thenH has a term that looks like the conventional
kinetic energyp2

/
2m (though it does not have that interpretation physically). The remaining

terms include the factorp·A that depends linearly upon the momentum and yields the Lorenz
force.

It is often convenient to write Hamilton’s equations (9.9) in a more compact, matrix
form

dz

dt
= J∇H, J =

(
0 I

−I 0

)
. (9.14)

Here z = (q, p)T represents a point in phase space; J , the Poisson matrix, is the 2n ×
2n antisymmetric matrix shown, and I is the n × n identity matrix.60 Note that J is
nondegenerate; indeed, det(J ) = 1. Moreover, J 2 = −I (here I is the 2n × 2n identity),
so that J−1 = −J .

The time rate of change of any scalar function F ∈ C1(M × R,R) on the extended
phase space can be computed from (9.14) by using the chain rule dF

dt
= ∂F

∂t
+ ∂F

∂z
ż. This can

be compactly written
dF

dt
= ∂F

∂t
+ {F,H } .

Here the expression {F,H } is called the (canonical) Poisson bracket, defined as

{F,H } ≡ ∇FT J∇H =
n∑
i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
. (9.15)

For example, the equations of motion (9.14) can be rewritten in Poisson bracket form

ż = {z,H }. (9.16)

The result (9.10) can now be generalized to show that any time-independent Hamiltonian
is conservative.

Lemma 9.1 (conservation of energy). If H is time independent, then energy is preserved
along trajectories: H(q(t), p(t)) = E.

Proof. dH
/
dt = {H,H } = ∇HT J∇H = 0 because J is antisymmetric.

For example, if the system has one degree of freedom, then the motion is along the
curves defined by the contours of H . Since these contours determine the phase portrait,

60The Poisson matrix J should be distinguished from another matrix, ω , the symplectic form, though these two
are sometimes identified. Take care to note that various authors use different sign conventions!
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motion in a one-degree-of-freedom Hamiltonian is not very interesting.61 As we will see
below, the motion of 1.5- and two-degree-of-freedom Hamiltonian systems can be much
more complicated.

Joseph Liouville showed that Hamiltonian flows preserve volume.

Lemma 9.2 (Liouville). If H is C2, then its flow is volume preserving.

Proof. According to (9.5) we need to show that tr(Df ) = 0. Heref = (∂H
/
∂p,−∂H/∂q).

Thus

tr(Df ) =
n∑
i=1

∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi
= 0,

since the partial derivatives commute. Note that this is valid for the nonautonomous case
as well.

Another simple consequence of the Hamiltonian form of the equations is that fixed
points are equivalent to critical points of H .

Lemma 9.3 (equilibria). A point z∗ is an equilibrium point of an autonomous Hamiltonian
flow if and only if it is a critical point of H .

Proof. So that ż = 0 in (9.14), we must have ∇H = 0 because the matrix J is nonde-
generate.

Example: The equilibria of the planar pendulum (9.11) are points where ∂H
/
∂θ =

mg sin θ = 0 and ∂H
/
∂p = p

/
I = 0. Thus the equilibria are (nπ, 0) for any integer

n.

Since equilibria are critical points ofH , their stability can be determined by examina-
tion of the Hessian matrix of H . We will do this in §9.10. Meanwhile, a simple implication
of Lemma 9.3 is the following.

Lemma 9.4. A nondegenerate minimum or maximum point of an autonomous Hamiltonian
H is a Lyapunov stable equilibrium (recall §4.5).

This follows because, near such a point, the contours H = E are topological spheres
enclosing the equilibrium.

9.4 Poisson Dynamics
While Hamiltonian dynamics provides a useful description of particles interacting through
mechanical, electromagnetic, and gravitational forces, there are some systems that do not
fit this form. Poisson systems are one such generalization. These are defined on a smooth

61However, it does give a good algorithm for plotting the contours of a function!
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manifold M with any dimension d—in particular d need not be even. Given a generalized
Hamiltonian function H : M → R, Poisson dynamics is defined by (9.16) as

ż = {z,H };
however, in this case { , } is not necessarily given by the canonical form (9.15) but is a
generalized

� Poisson bracket: A Poisson bracket { , } is a bilinear operator on a pair of
functions in C2(M,R) that is antisymmetric, is a derivation, and satisfies the
Jacobi identity.

These terms are defined as follows. Let F,G,H ∈ C2(M,R).

•Antisymmetry: {F,G} = − {G,F };
• Bilinearity: {F +G,H } = {F,H } + {G,H } and {aF, bG} = ab {F,G} for

any constants a and b;

• Derivation: {FH,G} = F {H,G} +H {F,G};
• Jacobi identity:

{F, {G,H }} + {G, {H,F }} + {H, {F,G}} = 0. (9.17)

The derivation property is equivalent to the product rule for derivatives. Indeed, we have
the following.

Lemma 9.5. SupposeL is a linear operator onC1(R,R) that obeys the derivation property,
L(fg) = fL(g)+ gL(f ), and that L(x) = 1. Then L = d

/
dx.

Thus, the derivation property gives an alternative way of defining the derivative. The
proof of Lemma 9.5 is left to the reader; see Exercise 4.

It is relatively easy to verify that the standard Poisson bracket (9.15) satisfies each
of these properties; see Exercise 5. Moreover, every Poisson bracket has a form similar to
(9.15).

Lemma 9.6. Suppose { , } is a Poisson bracket on C2(Rd ,R). Then there exists an
antisymmetric matrix J (z) such that

{F,G} = ∇FT J (z)∇G. (9.18)

Sketch of Proof. Bilinearity implies that the bracket must be linear in each slot. The
main assertion is that the derivation property implies that the Poisson bracket acts as a first
derivative on each of its arguments; this follows from Lemma 9.5 and antisymmetry. More-
over, antisymmetry implies that the coefficients of the derivatives must be an antisymmetric
matrix.

Note that, in general, J (z) is a function of z and, unlike the standard Poisson matrix,
it need not be nonsingular. The converse of Lemma 9.6 is not true: a bracket defined by
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(9.18) for a general, antisymmetric matrix J (z) does satisfy the antisymmetry, bilinearity,
and derivation properties; however, it does not necessarily satisfy the Jacobi identity.

Lemma 9.6 implies that the equations of motion for a Poisson system have the same
form as (9.14), ż = J∇H . Moreover, the time derivative of any function of z can be
obtained using

dF

dt
= DFż = ∇FT J∇H = {F,H }. (9.19)

The Jacobi identity implies that the time derivative of the Poisson bracket obeys the expected
relationship:

d

dt
{F,G} = {{F,G}, H } = {F, {G,H }} + {G, {H,F }} = {F, Ġ} + {Ḟ ,G}.

Autonomous Poisson systems are always conservative. In particular, the energy, H, is a
conserved quantity, since Ḣ = {H,H } = 0 by antisymmetry.

Example (rigid body dynamics): The Euler equations for a free rigid body are most easily
expressed as a Poisson system. Let ω ∈ R

3 represent the angular velocities of the body in
body-fixed coordinates such that the moment of inertia tensor, I , is diagonal. The coordinate
axes are the principal axes of the body, and the diagonal components of the moment of
inertia are Ii . If the angular momenta are denoted Li = Iiωi then the kinetic energy is
H =∑3

i=1 L
2
i

/
2Ii . The Euler equations describe the evolution of the angular momenta:

d

dt
L1 =

(
1

I3
− 1

I2

)
L2L3

d

dt
L2 =

(
1

I1
− 1

I3

)
L3L1 ⇒ d

dt
L = L×∇H.

d

dt
L3 =

(
1

I2
− 1

I1

)
L1L2

(9.20)

It is obvious that these three equations cannot be written in the canonical Hamiltonian form
since the phase space is odd-dimensional. However, this system is a Poisson system, as we
can see by defining the generalized Poisson matrix,

J =

 0 −L3 L2

L3 0 −L1

−L2 L1 0


 . (9.21)

It is easy to see that the Euler equations (9.20) become L̇ = J∇H . To show that this
is a Poisson bracket requires the verification of the Jacobi identity; see Exercise 5. The
dynamics of (9.20) is explored further in Exercise 7.

Poisson dynamics has many applications in fluid and plasma physics (Morrison 1998).
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9.5 The Action Principle
The basic equations of physics are all derivable from variational principles. For example,
Fermat’s principle asserts that light going from point a to point b takes the path of shortest
time. A path in space is a smooth, parameterized curve γ : [a, b] → R

3 so that γ (s)
represents a point in space and such that γ (a) and γ (b) are given endpoints. The travel
time from a to b along γ is then

T [γ ] =
∫ b

a

1

c

∣∣∣∣dγds
∣∣∣∣ ds,

where c is the speed of light. In empty space c is a constant, and in Euclidean space the
paths of shortest time are straight lines; the corresponding paths on other manifolds are
“geodesics.” That light travels along geodesics at a constant speed is one of the principles
of general relativity.

The stationary action principle62 is an extension of this idea to general Hamiltonian
systems. Let γ be a path in phase space parameterized with the distinguished parameter
time: γ : [a, b] → M , i.e., γ = {(q(t), p(t)), a ≤ t ≤ b}. The action of γ is the line
integral

S[γ ] ≡
∫
γ

pdq −Hdt =
∫ b

a

(
p(t)

dq

dt
−H(q(t), p(t), t)

)
dt. (9.22)

The action is a functional: for each curve γ , it gives a real number analogous to the travel
time in Fermat’s principle.

The stationary action principle asserts that the realized paths are those whose action
is stationary with respect to variation of the path: nearby paths have the same action. The
stationary paths can be obtained from (9.22) using the calculus of variations. The basic idea
is that when γ is a stationary point of S[γ ], the action of a nearby path γ̂ should be, to first
order, the same as that of γ .

Recall that the critical points x of a function f are obtained by setting x̂ = x + δx

and expanding to obtain f (x+ δx) = f (x)+Df (x)δx+ o(δx). Thus the first variation is
δf = Df (x)δx. The critical points of f are points where δf is zero, i.e., where the Jacobian
vanishes. For (9.22), we will set γ̂ = γ +δγ and find that S[γ +δγ ] = S[γ ]+δS+o(δγ ).
Upon demanding that the first variation δS = 0, we will find that

δS =
∫ b

a

δS

δγ
(γ (t)) δγ (t)dt,

where δS
/
δγ is called the Fréchet or functional derivative of S.63 Since the variation δγ

is arbitrary, under appropriate assumptions of continuity, δS will vanish only if the Fréchet

62Sometimes this is called the minimum action or extremal action principle; however, any critical point corre-
sponds to an orbit, and while this could possibly be an extremum, it could also be a saddle.

63The Fréchet derivative is a special case of the Gâteaux derivative defined on more general spaces.
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derivative vanishes for each t ∈ (a, b). This will convert the global variational statement
into a set of local differential equations.

� Action principle: The curves of stationary action (9.22) are the Hamiltonian
trajectories.

More formally, we have the next lemma.

Lemma 9.7. Suppose that H ∈ C1(M,R) and γ ∈ C1([a, b],M) such that the configu-
rations q(a) = qa and q(b) = qb are fixed. Then, if γ is a stationary point of the action
(9.22), it satisfies Hamilton’s equations (9.9).

Proof. Let γ = {(q(t), p(t)), a ≤ t ≤ b} be the original path and γ̂ = {(q(t) + δq(t),
p(t) + δp(t)), a ≤ t ≤ b}, where δq and δp are smooth and formally “small.” Since the
configurations of γ are fixed at the endpoints, δq(a) = δq(b) = 0. Substitute the perturbed
path into (9.22) and expand to find

S[γ̂ ] =
∫ b

a

[
(p + δp)

d

dt
(q + δq)−

(
H(q, p, t)+ ∂H

∂q
δq + ∂H

∂p
δp + · · ·

)]
dt.

Rearranging these terms and keeping only those that are of the first order in the small
quantities (δq, δp) gives the first variation in S:

δS =
∫ b

a

[
δp

(
dq

dt
− ∂H

∂p

)
+ p

d

dt
δq − ∂H

∂q
δq

]
dt.

To isolate δq, integrate the term pδq̇ by parts using pδq̇ = d
dt
(pδq)− δqṗ. The integral of

the total derivative term vanishes since δq is zero at the endpoints:∫ b

a

d

dt
(pδq)dt = p(b)δq(b)− p(a)δq(a) = 0.

Consequently,

δS[γ ] =
∫ b

a

[
δp

(
dq

dt
− ∂H

∂p

)
− δq

(
dp

dt
+ ∂H

∂q

)]
dt.

Since S[γ ] is stationary, δS must vanish. Since (δq, δp) are arbitrary and independent
functions, and the integrand is continuous, each of the parenthesized terms above must
vanish at each time t ∈ (a, b). Thus the path γ satisfies Hamilton’s equations (9.9).

It is no doubt profound that we did not need to assume that the variations of p at a
and b vanish, but only those of q. On a prosaic level this happened because the only parts
integration was with respect to q; there is, however, a more philosophical level, as discussed
by (Lanczos 1962).

The fact that δS vanishes for solutions of Hamilton’s equations means that these
solutions are points of stationary action. The action need not be minimal and often is not
even a local minimum.
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Example (billiards): An ideal billiard is a point particle with unit mass on a billiard table,
defined to be a closed region D ⊂ R

2. For simplicity, the boundary of the table, ∂D, is
assumed to be C1 and a perfect reflector: the cushions do not absorb any energy. Since
the billiard is a point particle, there are no effects from its spin (no english or follow). The
Hamiltonian of such a system is

H = 1

2
p2 + V (q), where V (q) =

{
0, q ∈ D,
∞, q ∈ ∂D.

When the particle is in the interior of the domain, the equations are trivial: ṗ = 0. Thus the
trajectory will consist of a sequence of straight-line segments connected on the boundary.
We will show that action is stationary when the angle of incidence equals the angle of
reflection at a collision with the boundary. Consider a path γ that consists of straight-line
segments connecting a sequence qi, i = 0, 1, . . . , n, of points on ∂D; see Figure 9.3.
Since the speed |p| = |q̇| is constant on the path, the integrand of the action reduces to
(p · q̇ −H)dt = 1/2p

2dt = 1/2p · dl, where dl is the length increment along the path. The
action of γ is then

S[γ ] = S[qo, . . . , qn] = 1

2
p

n−1∑
j=0

L(qj , qj+1),

whereL(qj , qj+1) =
∣∣qj − qj+1

∣∣ is the length of the straight segment from qj to qj+1. Thus
the action is simply a constant multiple of the total path length along the broken curve γ . To
find a stationary path, fix q0 and qn and vary the intermediate points qj , j = 1, . . . , n− 1.
The first variation in the action is then

δS[q0, q1, . . . , qn] = 1

2
p

n−1∑
i=1

∂

∂qi

(
L(qi−1, qi)+ L(qi, qi+1)

)
δqi .

Since the points qi must lie on the boundary, their first variations must be tangent to the
boundary: δqi ∝ t̂ where t̂ is the tangent to ∂D at qi . Thus δS vanishes for arbitrary
variations when

t̂ · ∂S
∂qi

= 0 ⇒ t̂ · ∂

∂qi
L(qi−1, qi)+ t̂ · ∂

∂qi
L(qi, qi+1) = 0. (9.23)

Geometrically, the derivative

∂

∂q ′
L(q, q ′) = 1

L

(
(x ′ − x)x̂ + (y ′ − y)ŷ

)
is the unit vector pointing along the segment from q = (x, y) to q ′ = (x ′, y ′). Thus the
dot product with t̂ is the cosine of the angle with the boundary. Therefore, stationary action
implies the incoming angle is equal to the outgoing angle as shown in Figure 9.3.

The transformation (qi−1, qi)→ (qi, qi+1) implicitly defined by (9.23) is an example
of a discrete dynamical system, or map, like the Poincaré map defined in §4.12. The
Hamiltonian nature of billiard dynamics implies that this map is symplectic (Meiss 1992).

Note that any broken trajectory is certainly not a global minimum of the action; for
example, the three-point trajectory γ = [a, q1, b] is certainly longer than the two-point
trajectory [a, b].
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qi

qi+1

q
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t̂
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θ′

θ

− ∂L

∂qi

(qi ,qi+1 )

∂L

∂qi

(qi−1,qi )

Figure 9.3. Orbits of the billiard defined by (9.23).

9.6 Poincaré Invariant
One geometrical consequence of the action principle for Hamilton’s equations is the exis-
tence of what is called the Poincaré invariant. This invariant is not an invariant function in
the sense of §9.1, but is rather an action, the

� loop action: Let L : S1 → M ×R be any closed loop in the extended phase
space; then the loop action is defined as

S(L) =
∮

L
pdq −Hdt. (9.24)

If the loop is parameterized as L = {(q(s), p(s), t (s)) : s ∈ [0, 1]} with q(1) = q(0), etc.,
then the integral (9.24) explicitly becomes

S(L) =
∫ 1

0

(
p(s)

dq

ds
−H(q(s), p(s), t (s))

dt

ds

)
ds.

Poincaré discovered that for any L, S[L] remains constant as L evolves with the Hamilto-
nian flow: we say that S[L] is an integral invariant for the flow. One implication is that
Hamiltonian flows are volume preserving, though the preservation of the Poincaré invariant
is much stronger than this.

Theorem 9.8 (Poincaré invariant). The loop action is invariant under a Hamiltonian flow.

Proof. We give a proof that relies upon the n-dimensional version of Stokes’s theorem64—
if you do not know this theorem, then the proof will seem clear only for the one-degree-

64Generally, Stokes’s theorem states that the integral of an (n−1) form α over the boundary of an n-dimensional
surface is the integral of dα over the surface.
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p

L

L

q

t

T

′

Figure 9.4. Preservation of the loop action.

of-freedom case. Denote the line element dl = (dq, dp, dt), and define a vector A =
(p, 0,−H) in (q, p, t) coordinates. The action of a loop, L, is the integral of the one
form A · dl around the loop. Allow the loop to deform by letting each point on the loop
move under the flow to form a two-dimensional tube T in the extended phase space; see
Figure 9.4. Now consider any other loop L′ on the tube T that is contractible to L. Since
these two loops bound a piece of the tube T , Stokes’s theorem implies that the difference
between the loop actions can be written as a surface integral over this piece of T ,

S(L)− S(L′) =
∮

L
A · dl −

∮
L′
A · dl =

∮
T
dA ∧ dl,

where ∧ is the wedge product, which we will discuss in more detail below. In three
dimensions, dA∧ dl = ∇ ×A · ds2, where ds2 is the surface element on T and the curl of
A is

∇ × A =
(
−∂H
∂p

,
∂H

∂q
,−1

)
= −v,

the negative of the velocity vector of the Hamiltonian flow. Since v lies along the tube T
and the surface element ds2 is normal to the tube, ∇ ×A · ds2 = 0. Consequently the loop
action is invariant along the flow.

In more dimensions, the calculation of the surface integrand relies upon exterior
calculus to calculate the wedge product. Formally, we have

d (A · dl) = dA ∧ dl = d

(
n∑
i=1

pidqi −Hdt

)
= dp ∧ dq − dH ∧ dt.

Let (t, s) be coordinates on T , where t , time, parameterizes the orbits and s is any transverse
coordinate. Denoting the Hamiltonian flow by ϕ, we see that any point on T has the



348 Chapter 9. Hamiltonian Dynamics

representation (q(t, s), p(t, s)) = ϕt (q(0, s), p(0, s)). Consequently,

dA ∧ dl = dp ∧ dq − dH ∧ dt

=
[

n∑
i=1

(
∂pi

∂t

∂qi

∂s
− ∂pi

∂s

∂qi

∂t

)
+ ∂H

∂s

]
dt ∧ ds

=
(
∂p

∂t

∂q

∂s
− ∂p

∂s

∂q

∂t
+ ∂H

∂p

∂p

∂s
+ ∂H

∂q

∂q

∂s

)
dt ∧ ds.

The term in the last set of parentheses is manifestly zero by Hamilton’s equations (9.9).
Thus, dA ∧ dl = 0 on the tube.

The invariance of the loop action under a Hamiltonian flow will be used in §9.14
to construct a Poincaré section for a two-degree-of-freedom system. The loop action is
also extensively used in the computation of fluxes in the theory of chaotic transport for
Hamiltonian systems (Meiss 1992).

9.7 Lagrangian Systems
Historically, Hamiltonian dynamics arose from an earlier variational formulation due to
Joseph-Louis Lagrange and Leonhard Euler. As we will see, the Lagrangian variational
principle is equivalent to the Hamiltonian action principle when a special condition is
satisfied—the Legendre condition. For complicated mechanical systems and especially
when there are constraints, the Lagrangian is easier to obtain than the Hamiltonian because
of coordinate independence.

The Lagrangian is aC2 real valued function of three arguments: a set of configuration
variables, x, in some configuration space M , the corresponding velocities, v, which are
vectors in the tangent space TxM , and time. The Lagrangian is denoted by

L : TM × R → R

or in coordinates byL(x, v, t). Let γ ∈ C2([a, b],M) be a temporally parameterized curve
in M . For a given Lagrangian, the action of γ is defined by

A[γ ] =
∫ b

a

L(γ (t), γ̇ (t), t)dt. (9.25)

The Lagrangian action A is a functional like the Hamiltonian action (9.22): it maps the
space of curves to R. In distinction to the Hamiltonian case, the curve γ in (9.25) is a curve
in configuration space only, not phase space. This is also seen by the fact that the quantity γ̇
is defined as the time derivative of γ , while in the Hamiltonian formulation, p is a variable
independent of q.

To make matters more confusing, the Lagrangian analogue of the action variational
principle is called Hamilton’s principle!

� Hamilton’s principle: The paths that are realized by the dynamical system
represented by L are those for which the action (9.25) is stationary for fixed
endpoints γ (a) = xo and γ (b) = x1.
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Stationary points of this action are computed using the calculus of variations as in §9.5. The
action A[γ ] is stationary if it does not vary when the curve is slightly changed, γ (t) →
γ (t)+ δγ (t). The change in the action upon doing this can be formally expanded in δγ ,

A[γ + δγ ] − A[γ ] =
∫ b

a

δA

δγ
δγ (t)dt + o(δγ ), (9.26)

where δA
/
δγ is the Fréchet derivative as before. To compute the Fréchet derivative, expand

L in a Taylor series, and integrate by parts to isolate δγ :

A[γ + δγ ] − A[γ ] =
∫ b

a

(L(γ + δγ, γ̇ + δγ̇ , t)− L(γ, γ̇ , t)) dt

=
∫ b

a

(
∂

∂x
L(γ, γ̇ , t)δγ (t)+ ∂

∂v
L(γ, γ̇ , t)δγ̇ (t)+ o(δγ )

)
dt

=
∫ b

a

δγ (t)

(
∂

∂x
L(γ, γ̇ , t)− d

dt

∂

∂v
L(γ, γ̇ , t)

)
dt

+ ∂

∂v
L(γ, γ̇ , t)δγ (t)

∣∣∣∣
t=b

t=a
+ o(δγ ).

The boundary terms vanish because the endpoints are fixed: δγ (a) = δγ (b) = 0. Conse-
quently, the Fréchet derivative of the action is

δA

δγ
= ∂

∂x
L(γ, γ̇ , t)− d

dt

∂

∂v
L(γ, γ̇ , t). (9.27)

A sufficient condition65 for the action to be stationary is that the Fréchet derivative (9.27)
vanish, so that γ = x(t) is a solution of the Euler–Lagrange differential equations:

d

dt

∂

∂v
L = ∂

∂x
L, x(a) = xo, x(b) = x1. (9.28)

Note that this is a boundary value problem and not a traditional initial value problem. Thus,
it is not obvious, nor even necessarily true, that a solution exists for every pair(xo, x1) and
every time interval [a, b]. Moreover, (9.28) is typically a system of second-order ODEs
and not, according to our usual definition, a dynamical system.

Nevertheless, we have so far demonstrated the following.

Lemma 9.9. AC2 curve γ that satisfies the Euler–Lagrange equations (9.28) is a stationary
curve of the action (9.25).

The converse of this result, discussed in §9.8, is not true without additional conditions
on L.

Lagrangian mechanics includes all “frictionless” Newtonian mechanics. For example,
the equations of motion for a system of point particles interacting under conservative forces
can be written as

mi

d2

dt2
xi = − ∂

∂xi
V (x),

65This is not a necessary condition, as we will see in §9.8.
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where the coordinates of the particles are listed sequentially to give a vector (x1, x2, . . . , xn),
mi are the particle masses, and V (x) is the potential energy. For example (x1, x2, x3) may
represent the (x, y, z) coordinates of the first particle, (x4, x5, x6) those of the second, etc.
It is easy to see that the Lagrangian for this system is

L(x, ẋ) = 1

2

n∑
i=1

miẋ
2
i − V (x) = 1

2
ẋT ρẋ − V (x),

where ρ = diag(mi) is the mass matrix. Hence the Lagrangian for a mechanical system is
of the form “kinetic minus potential” energy.

Coordinate Independence of the Action

One of the nicest properties of the Lagrangian formulation is that it is independent of
coordinates. This implies that the modeler is free to choose whatever coordinate system is
most convenient.

Theorem 9.10. Supposeh : N → M is aC2 diffeomorphism andL(x, ẋ, t) is a Lagrangian
for x ∈ M . Then the dynamics of y ∈ N , where x = h(y), is given by the Euler–Lagrange
equations of the Lagrangian

L̃(y, ẏ, t) = L(h(y),Dh(y)ẏ, t). (9.29)

Proof. Consider the Euler–Lagrange equations for L̃:

d

dt

∂

∂ẏ
L̃(y, ẏ, t)− ∂

∂y
L̃(y, ẏ, t) = d

dt

∂

∂ẏ
L(h(y),Dh(y)ẏ, t)− ∂

∂y
L(h(y),Dh(y)ẏ, t)

= d

dt

(
Dh(y)

∂

∂ẋ
L(x, ẋ, t)

)
−Dh(y)

∂

∂x
L(x, ẋ, t)−D2h(y)ẏ

∂

∂ẋ
L(x, ẋ, t)

= Dh(y)

(
d

dt

∂

∂ẋ
L(x, ẋ, t)− ∂

∂x
L(x, ẋ, t)

)
.

SinceDh(y) is nonsingular, the Euler–Lagrange equations for L̃ are satisfied precisely when
those for L are satisfied.

The meaning of Theorem 9.10 is this: to find the proper Lagrangian in a general
coordinate system we can simply substitute for x = h(y) and ẋ = Dh(y)ẏ in L to get the
new Lagrangian. This is often much easier than transforming the ODEs themselves.

Example: The dynamical equations for a system that is constrained are often quite difficult
to write down. An example of this is the motion of a particle sliding on a surface, discussed
in §3.3. There we had to compute the force that constrained the particle to the surface.
Lagrangian mechanics allows us to completely avoid this difficulty. For example, consider
a bead sliding on a wire defined parametrically by a curve c : R → R

3. Suppose the bead
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has mass m and there is no friction, but there is an external force, for example, gravity,
represented by potential energy V (x). The Lagrangian for the system is L = T −V , where
T is the kinetic energy of the bead T = 1/2mẋ

2. One way to model this system is to write
out Newton’s equations for the three components of x and then impose the constraints that
restrict the bead to follow the wire by introducing external forces.66 It is much easier to
use the parametric representation c(s) for the curve and the one-dimensional coordinate s
to describe the motion. The kinetic energy should be expressed as a function of s and ṡ;
this can easily be done using the parametric form of the constraining curve, c(s), for then
ẋ = Dc(s)ṡ and T = 1/2m |Dc|2 ṡ2. According to Theorem 9.10, the new Lagrangian is
L̃ = L(c(s),Dc(s)ṡ, t), or

L̃(s, ṡ, t) = 1

2
m |Dc|2 ṡ2 − V (c(s)). (9.30)

For example, suppose the curve is a vertically aligned ellipse, c = {(x(s), 0, z(s)) =
(a sin s, 0, b cos s) : s ∈ [0, 2π)} and the external force is a constant gravity field, so that
V (x, y, z) = mgz. Then Dc = (a cos s, 0,−b sin s)T and

L̃(s, ṡ, t) = 1

2
m
(
a2 cos2 s + b2 sin2 s

)
ṡ2 −mgb cos s. (9.31)

This gives the Euler–Lagrange equation

0 = d

dt

∂

∂ṡ
L̃(s, ṡ, t)− ∂

∂s
L̃(s, ṡ, t) = m

d

dt

[(
a2 cos2 s + b2 sin2 s

)
ṡ
]

−m cos s sin s
(
b2 − a2

)
ṡ2 −mgb sin s,

or equivalently

0 = (a2 cos2 s + b2 sin2 s
)
s̈ + cos s sin s

(
b2 − a2

)
ṡ2 − gb sin s.

The second term, which was obtained simply as a result of transforming the coordinates,
is physically the result of the forces that constrain the bead to the wire. As usual, this
second-order equation can be converted to a first-order system by defining v = ṡ,

ṡ = v,

v̇ = sin s
gb − (b2 − a2)v2 cos s

a2 + (b2 − a2
)

sin2 s
.

(9.32)

Note that when the ellipse degenerates into a circle, a = b, the equations reduce to those
of the planar pendulum (9.11) with s = θ − π . A more general example is shown in
Figure 9.5. This system can be transformed to a Hamiltonian system by finding the canonical
momentum; see §9.9 and Exercise 11.

The dynamics of the bead can become chaotic if the elliptical wire is allowed to rotate
(Bollt and Klebanoff 2002).

66Another is to impose the constraints by adding a Lagrange multiplier to the variational principle.
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Figure 9.5. Phase portrait for the system (9.32) with a = 1, b = √5, and gb = 1.
There is a center equilibrium at s = π and saddles at s = 0 and 2π .

Example: The ideal spherical pendulum is a mass on the end of a rigid, massless rod of
length l under the force of gravity; see Figure 9.6. Again the Lagrangian is 1/2mẋ

2 −mgz.
It is natural to use spherical coordinates (r, θ, φ) centered at the attachment point of the
pendulum. The transformation x = h(r, θ, φ) is given by

x = r sin θ cosφ, y = r sin θ sin φ, z = −r cos θ.

After some algebra, the kinetic energy can be transformed into the new coordinate system,

1

2
mẋ2 = 1

2
m
(
ṙ2 + r2 sin2 θφ̇2 + r2θ̇2

)
.

The rigid pendulum has the constraint r = l. Thus we set ṙ = 0 and r = l to obtain the
new Lagrangian

L̃(θ, φ, θ̇ , φ̇) = 1

2
ml2

(
sin2 θφ̇2 + θ̇2)+mgl cos θ. (9.33)
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Figure 9.6. Spherical pendulum.

Note that the new Lagrangian is independent of φ, though it does depend upon φ̇. This is
due to the rotational symmetry of our system. The implication is that the equation of motion
for φ is especially simple:

0 = d

dt

∂L

∂φ̇
= d

dt
(ml2 sin2 θφ̇) = d

dt
pφ.

Thus, pφ(θ, φ̇) is an invariant; physically, it is the vertical or axial component of the angular
momentum. More generally, if a Lagrangian does not depend upon one of the coordinates,
say qs , then the momentum corresponding to that coordinate is an invariant, since

d

dt
ps = d

dt

∂L

∂q̇s
= ∂L

∂qs
= 0.

Such a coordinate is called cyclic.
The equation of motion for θ is

d

dt

∂L

∂θ̇
− ∂L

∂θ
= ml2θ̈ − p2

φ

ml2

cos θ

sin3 θ
+mgl sin θ

and solving for the highest derivative gives

ml2θ̈ = p2
φ

ml2

cos θ

sin3 θ
−mgl sin θ. (9.34)

Note that this equation has a new force-like term, the “centrifugal force” caused by the
angular motion; see Figure 9.7. The centrifugal force is singular at θ = 0 because to
maintain a fixed angular momentum as θ → 0, φ̇ would have to go to∞.
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Figure 9.7. Balance of the centrifugal and gravitational forces (9.34) with pφ =
ml2 and g = l.

The phase portrait for (9.34) is shown in Figure 9.8. There is an equilibrium solution
when the gravitational and centrifugal forces balance—corresponding to the zero value
shown in Figure 9.7. For this choice of θ , the pendulum rotates at a constant angular
speed φ̇; otherwise, since θ is oscillatory, the angular speed must also oscillate to keep pφ
constant.

Symmetries and Invariants

The invariance of the axial component of the angular momentum in the spherical pendulum
arises because the potential and kinetic energies are independent of the spherical angle, φ.
Equivalently, the rotational symmetry of the Lagrangian gives rise to an invariant. Recall
from §6.4 that a symmetry corresponds to a diffeomorphism, S, that conjugates a flow to
itself, S◦ϕt = ϕt ◦S, (6.24). Since the new Lagrangian under a coordinate transformation is
simply (9.29), the Euler–Lagrange equations in the new variables, y = S(x), are identical to
those in the old coordinates when L̃(x, v, t) = L(x, v, t). We then say that the Lagrangian
is equivariant:

L(S(x),DS(x)v, t) = L(x, v, t).

Emmy Noether discovered in 1915 that when the symmetry depends smoothly upon a
parameter, S(x) → hs(x) for s ∈ R, then equivariance implies that the Euler–Lagrange
equations have an invariant.67

Theorem 9.11 (Noether). Suppose L(x, v, t) is C2, hs : M → M is a C2 diffeomorphism
depending smoothly on a parameter s, and L is equivariant under hs:

L(hs(x),Dhs(x)v, t) = L(x, v, t). (9.35)

67This result was obtained by Noether just as she arrived in Göttingen at the invitation of David Hilbert and began
a long and ultimately successful battle with the university administration to be allowed to receive the Habilitation
and join the faculty—an honor that at that time was not open to women.
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Figure 9.8. Phase space of the spherical pendulum (9.34) with the parameters of
Figure 9.7.

Then the Euler–Lagrange equations for L have an invariant

I (x, ẋ) = ∂L

∂ẋ
(x, ẋ, t)

∂hs(x)

∂s

∣∣∣∣
s=0

. (9.36)

Proof. Note that Euler–Lagrange equations for y = hs(x) are, by the assumption of
equivariance of L and Theorem 9.10, the same as those for x. Differentiation of (9.35) with
respect to s and use of the Euler–Lagrange equations (9.28) gives

0 = ∂

∂s
L(hs(x),Dhs(x)v, t) = ∂L

∂x

∂hs

∂s
+ ∂L

∂v

∂Dhs

∂s
v

=
(
d

dt

∂L

∂v

)
∂hs

∂s
+ ∂L

∂v

∂Dhs

∂s

dx

dt
= d

dt

(
∂L

∂v

∂hs

∂s

)
.

Consequently I in (9.36) is independent of time along the trajectory.

Theorem 9.11 directly applies to the case of rotational symmetry of the spherical
pendulum upon choosing hs(r, θ, φ) = (r, θ, φ + s) since (9.33) does not depend upon
φ. Many other applications of symmetry can be found in any text on classical mechanics
(Arnold 1978; Barger and Olsson 1973; Goldstein, Poole, and Safko 2002).
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9.8 The Calculus of Variations
I, Johann Bernoulli, address the most brilliant mathematicians in the world.
Nothing is more attractive to intelligent people than an honest, challenging
problem, whose possible solution will bestow fame and remain as a lasting
monument. Following the example set by Pascal, Fermat, etc., I hope to gain
the gratitude of the whole scientific community by placing before the finest
mathematicians of our time a problem which will test their methods and the
strength of their intellect. If someone communicates to me the solution of
the proposed problem, I shall publicly declare him worthy of praise. (Johann
Bernoulli, Acta Eruditorum, 1696)

The calculus of variations is concerned with finding the stationary values of a functional
such as the action. Historically, it arose from the problem of computing the path a particle
would take to minimize the travel time between two given points—the brachistochrone
problem posed by Johann Bernoulli in the quote above. Euler showed in 1744 that this
problem could be solved using the Euler–Lagrange equations (9.28) for a functional of the
form (9.25). This theory has become known as the classical calculus of variations.

Although we have shown that smooth solutions of the Euler–Lagrange equations are
stationary points of the action, it is not necessarily true that every stationary point satisfies
the ODEs.

Example (Weierstrass): Consider the problem of finding the curve γ : [0, 1] → R so that
γ = x(t) minimizes the functional

A[γ ] =
∫ 1

−1
t2ẋ2dt

with the endpoint conditions x(−1) = −1 and x(1) = 1. If γ were C2, it would satisfy the
Euler–Lagrange equations

d

dt
(2t2ẋ) = 0,

implying that x(t) = t−1, which is certainly not C2 at t = 0, violating the assumption.
This action obeys the inequality A[γ ] ≥ 0. Moreover, there is a sequence of smooth

functions whose action limits to zero:

xn(t) = arctan(nt)

arctan(n)
.

Note that xn satisfies the required endpoint conditions. Furthermore,

A[xn] = 1

arctan2(n)

∫ 1

−1

(
nt

1+ (nt)2

)2

dt <
1

arctan2(n)

∫ 1

−1

dt

1+ (nt)2
= 2

n arctan(n)
.

As n→∞ the right-hand side approaches zero, and thus A[xn] → 0. The sequence xn(t)
limits to the discontinuous curve x∞(t) = sgn(x). Thus the minimum of A is achieved, but
not on a smooth function.
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Techniques for studying the existence of stationary points and, in particular, minima
of the action are called direct methods in the calculus of variations. Leonida Tonelli did
important early work on this problem in the 1920s.

Tonelli showed that with two additional conditions on L, there are smooth curves that
actually minimize the action. The first assumption is a growth or coercivity condition in its
dependence upon the velocity, namely, that there is a constant p > 1 and constants α > 0
and β such that

L(x, v, t) ≥ α|v|p + β

for all t ∈ [a, b] and x ∈ M . Under this assumption the action has a lower bound, and there
exists a sequence of absolutely continuous functions xn(t) whose actions converge to this
infimum. Moreover, the sequence xn(t) converges uniformly to a limit x∞(t). However, it
is not guaranteed that this curve is smooth nor that A[x∞] is the minimal value (Akhiezer
1962).

These latter properties follow from a second assumption that is often satisfied by
physical systems whose kinetic energies are proportional to v2. Let ρ = D2

vL be the
Hessian of L with respect to the velocities,

ρij (x, v, t) ≡ ∂2L

∂vi∂vj
. (9.37)

The crucial requirement is the

� Legendre condition: The Hessian ρ is a uniformly, positive-definite matrix.
That is, there is a c > 0 such that for all (x, v, t) and all vectors w ∈ R

n,

wT ρw ≥ c|w|2. (9.38)

This is commonly satisfied when the Lagrangian corresponds to a mechanical system. In
this case,

L(x, v, t) = 1

2
vT ρ(x)v − V (x), (9.39)

where ρ is the mass matrix; it is often uniformly positive definite from physical considera-
tions. We found a form like this both for the elliptical loop (9.31) and the spherical pendulum
(9.33) examples in §9.7, although in the latter case the mass matrix is only semi-definite.

When the Lagrangian satisfies the Legendre condition, Tonelli showed that a mini-
mizing trajectory exists and that it satisfies the Euler–Lagrange equations. One version of
this theorem is as follows (Mather 1991).

Theorem 9.12 (Tonelli). Suppose L(x, v, t) is C2 on M ×R
n×R, where M is a compact

n-dimensional manifold, and satisfies the following conditions:

(i) the Legendre condition;

(ii) depends periodically on time, L(x, v, t + T ) = L(x, v, t);

(iii) grows superlinearly in the velocity,

L(x, v, t)

|v| → ∞ as v→∞;

(iv) and has a complete flow (recall §4.2), ϕt(x, v), t ∈ R.
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Then for any points a, b ∈ M , there is a C2 curve γ (t) that satisfies the Euler–
Lagrange equations and is a minimum of the action.

The completeness condition (that the flow exists for every initial condition for all
time) is satisfied only when the velocity on every trajectory remains bounded. If condition
(iv) is not satisfied, then the minimal curve still exists, but it may only be C1 and thus not
satisfy the Euler–Lagrange equations. Condition (iv), as well as the requirement that L be
C2, can be violated in common systems, for example, for gravitational forces between point
particles, where the potential has a 1

/
r singularity.

9.9 Equivalence of Hamiltonian and Lagrangian
Mechanics

When the Legendre condition (9.38) is satisfied, Lagrangian mechanics is equivalent to
Hamiltonian mechanics. To convert the second-order Euler–Lagrange equations (9.28) to
a first-order system, like the Hamiltonian system (9.9), it is natural to define an auxiliary
variable

p ≡ ∂L

∂v
(q, v, t), (9.40)

since then the Euler–Lagrange equation becomesṗ = ∂L(q, v, t)
/
∂q. This is not a com-

plete dynamical system since v is not specified. However, since v = q̇ on the Euler–
Lagrange trajectory, if v can be given as a function of (q, p, t), the system can be closed
with a second equation of the form q̇ = v(q, p, t). Equation (9.40) implicitly defines the
required function.

Lemma 9.13. When L(q, ·, t) : R
n → R is a C2 function for each (q, t) ∈ M × R

and satisfies the Legendre condition (9.38), then (9.40) defines a unique implicit function
v(q, p, t).

Proof. Define F(v;p, q, t) = p − DvL(q, v, t). Since DvF = −D2
vL is nonsingular

by the Legendre condition, the implicit function theorem implies that near any pair v0, p0,
where F(v0;p0, q, t) = 0, there is a uniqueC1 solution v(q, p, t) to F = 0. We now claim
that the map Pq,t : v → p given by p = Pq,t = DvL(q, v, t) is bijective and so has a
unique inverse. To see this, given any v1, let p1 = P(v1) and define the line segment v(s) =
v0 + s(v1 − v0), s ∈ [0, 1]. On this segment, ∂P

∂s
= D2

vL
∂v
∂s
(s) = ρ(q, v(s), t) · (v1 − v0);

thus the fundamental theorem of calculus implies that

p1 − p0 =
∫ 1

0
ρ(q, v(s), t) · (v1 − v0) ds.

Taking the dot product of this with (v1 − v0) and using (9.38) gives

(v1 − v0) · (p1 − p0) ≥ c |v1 − v0|2 . (9.41)

Thus whenever v1 �= v0, p1 �= p0, so Pq,t is injective. Moreover, Pq,t is surjective since as
v1 →∞, then p1 →∞ as well, and must do so in nearly the same direction according to
(9.41). Thus the inverse of Pq,t is globally unique.
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H

v

y = p.v
y = L

v(q,p,t)

Figure 9.9. Legendre transformation (9.43).

The first-order system ṗ = ∂L
/
∂q, q̇ = v, can be made explicit by defining a

Hamiltonian using the Legendre transformation

H(q, p, t) = p · v(q, p, t)− L(q, v(q, p, t), t). (9.42)

Indeed the equations of motion are Hamiltonian with this function H :

∂H

∂p
(q, p, t) = v +

(
p − ∂L

∂v

)
· ∂v
∂p
= v = q̇,

−∂H
∂q

(q, p, t) = ∂L

∂q
−
(
p − ∂L

∂v

)
· ∂v
∂q
= ∂L

∂q
= ṗ.

Geometrically, for each (q, p, t) the value H is the maximum distance between the plane
y = p · v and the graph y = L(q, v, t). This leads to the geometrical definition

� Legendre transformation: For each q, t the Legendre transformationL→ H

is defined by

H(q, p, t) = max
v

[p · v − L(q, v, t)] . (9.43)

Note that the first derivative condition for an extremum leads precisely to (9.40); moreover,
the extremum is a maximum by the Legendre condition; see Figure 9.9.

The inverse of the Legendre transformation can be used to obtain the Lagrangian
from the Hamiltonian. In fact, when the Lagrangian satisfies the Legendre condition, the
Hamiltonian also satisfies a convexity condition, as can be seen by a direct calculation:

∂2H

∂p2
= ∂

∂p

[
v +

(
p − ∂L

∂v

)
∂v

∂p

]
= ∂v

∂p
= ρ−1,

which is positive definite. If ρ−1 is also uniformly positive definite, then we can define

L(x, v, t) = max
p

(p · v −H(x, p, t)) , (9.44)
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which implies that v = ∂H
/
∂p. Consequently, the Legendre transformation is an involu-

tion.
Finally, the action (9.25) can be written in terms of the Hamiltonian as

A[γ ] =
∫ b

a

Ldt = max
p

∫ b

a

(pq̇ −H(q, p, t)) dt. (9.45)

Apart from the “max,” this is identical to the Hamiltonian action (9.22). Moreover, along
any solution curve, q̇ = ∂H

/
∂p which is the extremal value. Thus A[γ ] = S[γ ] along

solutions.

Example: The mechanical system (9.39) has a momentum

p = ∂L

∂v
= ρ(q)v ⇒ v = ρ−1(q)p

if the symmetric mass matrix, ρ(q), is nonsingular. Thus the Hamiltonian is given by

H(q, p) = pT v − L = pT ρ−1(q)p − 1

2

(
pT ρ−1p − V (q)

)
= 1

2
pT ρ−1(q)p + V (q).

Since the Hamiltonian is autonomous, the energy is constant along the trajectories: H(q, p) =
E. Explicit examples are given in Exercises 10, 11, and 14.

Note that the Hamiltonian is autonomous whenever L is independent of time. This
is another manifestation of Noether’s Theorem 9.11: “time-translation invariance” of L:
L(q, v, t) = L(q, v, t + s) for all s implies the conservation of energy; see Exercise 13.

9.10 Linearized Hamiltonian Systems
As we saw in §9.3, any equilibrium z∗ of a Hamiltonian system (9.14) is a critical point of
H . In a neighborhood of this point, the terms inH that are linear in δz = z−z∗ will vanish,
giving

H(z∗ + δz) = H(z∗)+ 1

2
δzT D2H(z∗)δz+O(δz3).

Here D2H is the Hessian matrix of H ,

(D2H)ij ≡ ∂2H

∂zi∂zj
;

it is necessarily symmetric. Since the constant H(z∗) will not appear in the equations of
motion, the Hamiltonian for the linearized system about z∗ can simply be taken to be the
quadratic form H = 1/2δz

T Sδz, where S = D2H(z∗). For this system, the equations of
motion are

δż = JSδz = Kδz, (9.46)

where J is the Poisson matrix (9.14).
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A matrix of the form K = JS, where S = ST , is called a Hamiltonian matrix. Just
as the symmetric matrices form a group under addition, Sym(2n), so do the Hamiltonian
matrices: if K1 and K2 are Hamiltonian matrices, then so is K1 +K2; this group is called
sp(2n).68 Note that whenever K = JS, then JK = −S since J 2 = −I . Also, since
J T = −J , then S = −JK = J TK = (J T K)T = KT J , so sp(2n) is characterized by

� Hamiltonian matrices: sp(2n) = {K ∈ R
2n×2n : JK +KT J = 0

}
.

Since there is a one-to-one correspondence between matrices in Sym(2n) and those in
sp(2n), they have the same number of independent elements; thus dim(sp(2n)) = (2n−1)n.

We know from Chapter 2 that the formal solution to the linear system (9.46) is δz(t) =
exp(tK)δz(0). The matrix exp(tK) is called a symplectic matrix. The set of symplectic
matrices is also a group—though the group operation is now matrix multiplication—the
symplectic group, Sp(2n).

The product of two Hamiltonian matrices is not necessarily a Hamiltonian matrix.
However, there is a kind of product that can be defined that does map onto the group.
This additional structure is related to the Poisson bracket. Suppose H1 = 1/2z

T S1z and
H2 = 1/2z

T S2z are two quadratic Hamiltonians. Consider a third function defined as

H3 = {H1, H2}, (9.47)

where { , } is the Poisson bracket (9.15). A simple calculation shows that H3 is also a
quadratic Hamiltonian:

H3 = ∇HT
1 J∇H2 = (zT S1)J (S2z) = 1

2

(
zT S1JS2z+ zT S2J

T S1z
)

= 1

2
zT (S1JS2 − S2JS1) z = 1

2
zT S3z,

where S3 = S1JS2−S2JS1. Note that ST3 = S3, since S1 and S2 are symmetric. Therefore,
the matrix K3 = JS3 is a Hamiltonian matrix, and

K3 = JS3 = JS1JS2 − JS2JS1

= [K1,K2],

where [ , ] is the commutator, [A,B] = AB − BA; recall §2.6. This additional structure
means that the group sp(2n) is a Lie algebra.69 In general, a Lie algebra is an additive group
with an additional operation, a Lie bracket denoted [ , ]. Lie brackets must satisfy the Jacobi
identity (9.17). For a matrix algebra the bracket is simply the commutator. The point is this:
if A and B are in the Lie algebra, then so is C = [A,B]. There are many interesting Lie
algebras that arise in applications; for example, su(d) is the Lie algebra of d × d Hermitian

68This is the Lie algebra of the symplectic group. Thus, Hamiltonian matrices are also called infinitesimally
symplectic matrices.

69Named after Sophus Lie, 1842–1899, a Norwegian mathematician. Lie is pronounced Lee.



362 Chapter 9. Hamiltonian Dynamics

matrices with zero trace (Hall 2003; Isham 1999). By contrast, the symmetric matrices do
not form a Lie algebra since the commutator of two symmetric matrices is antisymmetric.

We summarize this discussion as a lemma.

Lemma 9.14. sp(2n) is a (2n− 1)n-dimensional Lie algebra.

Eigenvalues of Hamiltonian Matrices

The stability of a Hamiltonian equilibrium is governed by the eigenvalues of its Hamiltonian
matrix. According to a theorem first proved by Poincaré and Lyapunov, the eigenvalues are
restricted due to the condition that JK is symmetric.

Theorem 9.15. If λ is an eigenvalue of a Hamiltonian matrix, K , then so is−λ. Moreover,
the characteristic polynomial of K is even.

Proof. Recall that for any two square matrices A and B, det(AB) = det(A) det(B) and
det(AT ) = det(A). Moreover, if I is the 2n×2n identity matrix, then det(−I ) = (−1)2n =
1.

Suppose K ∈ sp(2n). Since JK = −KT J , and det(J ) = 1, the characteristic
polynomial p(x) = det(xI −K) obeys

p(x) = det(J ) det(xI −K) = det(xJ − JK) = det(xJ +KT J )

= det(xI +KT ) det(J ) = det(xI +K)T

= p(−x).

In particular, whenever p(λ) = 0, so is p(−λ).

Theorem 9.15 implies that p(x) has only n nonzero coefficients,

p(x) = x2n + a1x
2n−2 + · · · + an−1x

2 + an = 0. (9.48)

Since the coefficient of x2n−1 is−tr(K), a simple consequence of (9.48) is the vanishing of
the trace of a Hamiltonian matrix.

In addition, if a Hamiltonian matrix is real, then its characteristic polynomial is real,
so that whenever it has a complex eigenvalue, λ, then its conjugate λ̄ is also an eigenvalue.

One consequence of Theorem 9.15 is that it is impossible for a Hamiltonian equi-
librium to be asymptotically stable, since this would require that all the eigenvalues have
negative real parts. When H is real, there are four possible groupings of the eigenvalues:

(a) Hyperbolic (saddle): λ is real. Then there is a pair of eigenvalues (λ,−λ).

(b) Elliptic (center): λ = iω is imaginary. Then −λ = λ̄ and (iω,−iω) form a pair.
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Re(λ)

Im(λ)
saddle center quartet

Figure 9.10. Hamiltonian eigenvalue configurations in the complex λ-plane.

(c) Krein quartet: λ is complex, and Re(λ) �= 0. Then there is a quartet of eigenvalues
(λ,−λ, λ̄,−λ̄).

(d) Parabolic: A double eigenvalue λ = 0.

The first three configurations are shown in Figure 9.10.
The assertion that the parabolic case corresponds to a multiplicity-two eigenvalue is

not obvious. However, the previous theorem can be generalized to show this.

Theorem 9.16 (Hamiltonian eigenvalues). If K ∈ sp(2n) has an eigenvalue λ of mul-
tiplicity k, then −λ is an eigenvalue of multiplicity k. Moreover, the multiplicity of the
eigenvalue 0, if it occurs, is even.

Proof. Since JK + KT J = 0, K = J−1(−KT )J . Therefore, K is similar to −KT .
Similar matrices have the same eigenvalues counted with multiplicity (and the same Jordan
normal forms). Since eigenvalues and multiplicities of KT are the same as those of K , the
multiplicity of λ is the same as that of −λ.

Since tr(K) = 0 = ∑2n
i=1 λi , if zero is an eigenvalue then it must have even multi-

plicity, because the remaining λi �= 0 come in opposite pairs.

Example: A set of uncoupled, simple harmonic oscillators is defined by the quadratic
Hamiltonian

H = 1

2

n∑
j=1

ωj
(
p2
j + q2

j

)
. (9.49)

The Hamiltonian matrix, in block form, is

K = JS =
(

0 I

−I 0

)(
diag(ωj ) 0

0 diag(ωj )

)
=
(

0 diag(ωj )
−diag(ωj ) 0

)
.

Note that K has zero trace as required. The characteristic polynomial det(λI −K) can be
expanded by rows, and each row has only two nonzero elements. Expanding along the first
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row gives

p(λ) = det

(
diag(λ) −diag(ωi)

diag (ωi) diag (λ)

)

= λ det




λ 0 −ω2

. . .
...

. . .

λ 0 −ωn
0 · · · 0 λ 0 · · · 0
ω2 0 λ

. . .
...

. . .

ωn 0 λ




+(−1)nω1 det




0 λ 0 −ω2
...

. . .
. . . 0

. . .

0 0 0 λ −ωn
ω1 · · · 0 0 0 · · · 0

0
. . . 0 λ

...
. . . 0

. . .

0 ωn λ



.

Now each of the two subdeterminants has only one nonzero element in its nth row. Ex-
panding along these rows shows that the remaining determinants are the same:

p(λ) = (−1)2n
(
λ2 + ω2

1

)
det




λ −ω2

. . .
. . .

λ −ωn
ω2 λ 0 · · ·

. . .
. . .

ωn λ



.

The new 2(n− 1)× 2(n− 1) matrix has the same form as the initial one; thus this process
can be repeated to finally obtain

p(λ) =
n∏

j=1

(λ2 + ω2
j ),

showing that K has the 2n eigenvalues±iωj . Thus this Hamiltonian has all its eigenvalues
on the imaginary axis, and its motion corresponds to a center.

Recall from Theorem 2.6 that the domain of a square matrix can be decomposed into
a direct sum of the generalized eigenspaces Eλi that correspond to the eigenvalue λi . A
special property of the Hamiltonian case is that the spaces corresponding to eigenvalues
that are not in a ± pair or a Krein quartet are “skew” orthogonal.
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Theorem 9.17. If K is a Hamiltonian matrix with eigenvectors ξi, i = 1, 2, and corre-
sponding eigenvalues λi such that λ1 + λ2 �= 0, then ξ1 and ξ2 are skew orthogonal:

ξT1 Jξ2 = 0. (9.50)

More generally, the generalized eigenspaces E
λi

are skew orthogonal.

Proof. Recall that if K is a Hamiltonian matrix, then S = JK is symmetric. Multiply
the eigenvalue equation Kξ1 = λ1ξ1 on the left by ξT2 J to obtain ξT2 JKξ1 = λ1ξ

T
2 Jξ1.

Subtracting the corresponding equation for ξ2 gives

ξT2 JKξ1 = λ1ξ
T
2 Jξ1,

ξT1 JKξ2 = λ2ξ
T
1 Jξ2,

0 = (λ1 + λ2)ξ
T
2 Jξ1.

Since λ1+λ2 �= 0, this implies (9.50). The result for generalized eigenspaces can be proved
inductively from this; see (Meyer and Hall 1992, p. 51 et seq.).

9.11 Krein Collisions
In 1950 the Russian mathematician Mark Krein obtained another interesting result about
Hamiltonian eigenvalues during a turbulent period in his life when he was twice dismissed
from Odessa University. His result concerns the possible changes of stability of Hamiltonian
equilibria as a parameter is varied. Suppose that the equilibrium is linearly stable, so that
all eigenvalues start on the imaginary axis. As a parameter is varied, these eigenvalues will
change continuously; recall Exercise 8.3. Moreover, they cannot leave the axis unless a
pair of eigenvalues first collides, because that would violate Theorem 9.15. Consequently,
there are two ways that an elliptic point can lose stability. One is for a pair of eigenvalues
to collide at 0, the parabolic case, and continue to real eigenvalues, the hyperbolic case. A
second is for a pair ±iω1 to collide with a pair ±iω2, called a Krein collision, and split off
the imaginary axis—giving rise to a Krein quartet. The question that Krein addressed is,
can every Krein collision lead to instability?

The answer is no. Instability is possible only if certain conditions on the Krein signa-
ture are satisfied. To any Hamiltonian matrix, K , there corresponds a linear Hamiltonian

H(ξ) = −1

2
ξT JKξ. (9.51)

The value of H is independent of time along its flow, and it can be used to define the

� Krein signature. Suppose K ∈ sp(2n) has a nonzero eigenvalue pair ±iω
with corresponding eigenvectors v = u± iw. Let ξ ∈ E±iω = span(u,w) be
any vector in the invariant subspace for ±iω. The Krein signature of E±iω is

σω = sgnH(ξ). (9.52)
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It is not hard to see that σω is independent of the choice of ξ ∈ E±iω. Note thatK(u+ iw) =
iω(u+ iw), so that Ku = −ωw, and Kw = ωu. Thus for ξ = αu+ βw,

H(ξ) = −1

2
(αu+ βw)T JK(αu+ βw) = −1

2
ω(αu+ βw)T (−αJw + βJu)

= 1

2
ω(α2 + β2)uT Jw = −1

2
(α2 + β2)uT JKu = (α2 + β2)H(u),

where we have used uT Ju = 0 since J is antisymmetric. Thus the sign of H(ξ) is
independent of the choice vector ξ ∈ E±iω.

Example: The Krein signature is essentially the direction of rotation in the canonical plane.
For example, let K = ( 0 ω

−ω 0

)
so that H(z) = 1/2ω(x

2 + y2). The eigenvector for iω is
v = (1, i)T , so that u = (1, 0)T , and H(u) = 1/2ω. Thus σω = sgn(ω), which corresponds
to the direction of rotation.

Since the two-by-two block of K corresponding to ±iω can always be written in the
antidiagonal form of the example, we see that H(ξ) is nonzero for any ξ ∈ E±iω, and thus
its sign is well defined.

Krein’s theorem concerns a one-parameter family of Hamiltonian matrices, K(s),
with eigenvalues on the imaginary axis that collide for some value of s. The theorem shows
thatK cannot lose stability if the signatures of its colliding eigenvalues are the same (Arnold
and Avez 1968, Appendix 29; Yakubovitch and Starzhinskii 1975).

Theorem 9.18 (Krein collisions). Let K(s) be a Hamiltonian matrix that depends upon a
parameter s. Suppose that for s < 0, K has 2d ≤ 2n distinct, imaginary eigenvalues that
are nonzero for s ≤ 0. Suppose that these eigenvalues collide at s = 0. If all the colliding
eigenvalues have the same Krein signature, then there exists an ε > 0 such that the 2d
eigenvalues remain on the imaginary axis for 0 < s < ε.

Proof. Let E(s) = E1⊕E2⊕ . . . Ed be the invariant subspace of dimension 2d containing
the eigenvectors of the imaginary eigenvalues that collide at s = 0. Suppose (without loss
of generality) that when s < 0 all the Krein signatures are positive, σωk > 0. Our first goal
is to show that the signature of any vector η ∈ E is positive for all s < 0. Any vector in E
can be written as a linear combination η =∑d

k=1 ckξk of vectors ξk ∈ Ek . By (9.50), when
s < 0, the eigenvectors ξk are skew orthogonal, ξTj J ξk = 0 when j �= k; moreover, since
Ek is invariant, Kξk ∈ Ek , so that ξTj JKξk = 0 as well. Thus the quadratic form

H(η) = −1

2

d∑
i,j=1

cicj ξ
T
i JKξj =

d∑
i=1

c2
i H(ξi)

is positive for any η �= 0. Consequently, the quadratic form H is positive definite when
restricted to E(s) for any s < 0. Thus the set {η ∈ E(s) : H(η) = 1} is an ellipsoid.

By continuity, H is still positive definite at s = 0, and must remain positive definite
up to some positive value ε. Thus H(η) = 1 defines an ellipsoid for s < ε. Since H is
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ω

λ

0.5

-0.5

0.4 0.6 0.8

Figure 9.11. Krein collision for (9.53) with ε = 0.2. The imaginary part of the
four eigenvalues is dashed and the real part is solid. When 0 < ω < 0.8012 the eigenvalues
are imaginary. At ω ≈ 0.8012, they collide and split off to form a Krein quartet.

invariant, the vector η(t) = e−tKη(0) still belongs to the ellipsoid. Thus the flow restricted
to the space E(s) is stable for s < ε.

Example: Consider the Hamiltonian

H = 1

2

(
p2

1 + q2
1

)− ω

2

(
p2

2 + q2
2

)+ εp1p2. (9.53)

When ε = 0 and ω > 0, the signatures of the two independent oscillators inH are opposite.
The characteristic polynomial of K is p(λ) = (λ2 + 1)(λ2 + ω2)+ ωε2. Thus

λ2= 1

2

(
−1− ω2±

√
(ω2 − 1)2 − 4ωε2

)
= 1

2

(
−1− ω2 ± (ω2−1)∓ 2ωε2

(ω2 − 1)

)
+O(ε4).

When ω �= 1 and ε & 1, these eigenvalues are purely imaginary and close to the values
λ = ±i and ±iω. However, when ω = 1, we have λ2 = −1± iε, giving a Krein quartet.
Thus (9.53) becomes unstable when ω → 1. More generally, the Krein collision occurs
when the discriminant 8 = (ω2 − 1)2 − 4ωε2 vanishes. A sketch of the variation of the
eigenvalues with ω is shown in Figure 9.11.

By contrast, when ω is negative the two oscillators have the same signature at ε = 0.
Moreover, the discriminant 8 no longer changes sign and all four eigenvalues remain on
the imaginary axis until a pair collides at 0 for some large enough ε.

Nonlinearly, an equilibrium whose eigenvalues undergo a mixed-signature Krein col-
lision often gives rise to a periodic orbit. By analogy with the corresponding generic
bifurcation, this is called the Hamiltonian–Hopf bifurcation (van der Meer 1985).
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9.12 Integrability
There are many definitions of “integrability,” but all are based on some notion of finding
explicit solutions for the orbits (Zakharov 1991). One way to help find such an explicit
form is to construct an integral or invariant (9.1). For an autonomous Hamiltonian system,
this means finding a function F on phase space that is constant along the orbits (9.15),

d

dt
F = {F,H } = 0,

so that it “Poisson commutes” with H. Of course, the Hamiltonian itself is an integral and
restricts the motion to an energy surface. One would expect that each integral would allow us
to restrict the motion to a surface of one fewer dimension, so that 2n−1 integrals (including
H) would seem to be needed to solve the system. This, however, is not necessary, as was
first noticed by Liouville:

� Liouville integrable: An n degree-of-freedom Hamiltonian system is inte-
grable if there exist n integrals Fi that are almost everywhere independent and
in involution, {Fi, Fj } = 0.

The integrals are independent at a point if the n gradient vectors, ∇Fi , are linearly indepen-
dent vectors. The integrals need not be independent everywhere. For example, the gradient
of the energy vanishes at every equilibrium, but since equilibria are typically isolated, this
should not be an obstruction to integrability.

The fact that the equations can be effectively solved when there are only n integrals
is due to the canonical structure. When the integrals are in involution, they can be used as
new momentum coordinates in the Hamiltonian. In fact, each invariant can be thought of
as a Hamiltonian in its own right, with the set of differential equations

d

dsi
z = {z, Fi} (9.54)

for a “time” si . By virtue of the involution property each of these flows has n integrals:
each of the functions Fj is invariant under the time-si flow generated by Fi . This fact leads
to a dramatic restriction of the motion of an integrable Hamiltonian system.

Theorem 9.19 (Liouville–Arnold). Suppose H is Liouville integrable. For c ∈ R
n, let

Mc = {z : Fi = c, i = 1, 2, . . . , n} be a level set of the integrals on which the gradients are
linearly independent. Then Mc is a smooth, invariant submanifold. If Mc is compact and
connected, it is diffeomorphic to the n-torus. In this case, there are n angle coordinates, θi ,
on Mc such that the Hamiltonian flow is conjugate to

d

dt
θ = X(F) (9.55)

for some frequency vector X.

Ideas of Proof. This theorem is proved in (Arnold 1978, pp. 271–274). We give only some
of the ideas. That Mc is a smooth submanifold (recall §5.5) follows from the fact that the
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functions Fi are independent. Define the flow of (9.54) to be ϕsi (z). Then the involution
property implies that

ϕsi ◦ ϕsj = ϕsj ◦ ϕsi ,
i.e., the flows commute. ThatMc is an n-torus follows from group theory: the only compact,
connected manifold that admits n independent, commuting flows is the n-torus. The angle
coordinates on each level set are found by looking for directions in the space of times, si ,
that give closed loops on the torus. There are n such independent loops on an n-torus, and
each loop corresponds to one direction. The paths traced out by these loops define the angle
variables Mc.

A further consequence of this theorem is that there is a choice of angle variables that
have conjugate momenta defined in a neighborhood of a regular level setMc (Arnold 1978).
These are commonly called action variables and are denoted Ii . An integrable Hamiltonian
is said to be in action-angle form if it depends only upon the momentum variables—in this
case when

H(θ, I ) = H(I).

Note that for action-angle variables, the equations of motion are

İ = −∂H
∂θ

= 0,

θ̇ = ∂H

∂I
= X(I),

(9.56)

showing that the actions are themselves invariant, and thus they must be functions of the n
invariants Fi . Moreover, comparing (9.55) with (9.56) shows that the frequencies X, when
written as a function of the actions, are the gradient of the scalar H(I). In particular this
means that

∂Xi

∂Ik
= ∂Xk

∂Ii
.

One strategy for understanding the dynamics of an integrable system is to construct its
action-angle coordinates (Goldstein et al. 2002). This, however, can be nontrivial even
when the integrals are known. A famous example is the Kovalevskaya top; see Exercise 14
(Kovalevskaya 1889). Although the three integrals of this top have been known since 1888,
construction of the action variables is highly nontrivial (Dubrovin, Krichever, and Novikov
1985; Dullin, Juhnke, and Richter 1994).

9.13 Nearly Integrable Dynamics
Even though an n-degree-of-freedom Hamiltonian system can be integrable, it is typically
not (when n > 1)—many of the orbits are chaotic. However, a Hamiltonian that is near to
an integrable one still exhibits some of the features of integrable systems. In this section
we will consider the dynamics of the system

H(θ, I ) = Ho(I)+ εH1(θ, I ) (9.57)

that is integrable when ε = 0. Our goal is to understand what features of the integrable
dynamics persist for small ε.
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Invariant Tori

In the integrable case, the trajectories lie on the invariant tori defined as levels sets Mc =
{(θ, I ) : Ii = ci} of the action variables. On each torus the dynamics is given by (9.56),
which has the flow

ϕt (θ, I ) = (θ + ωt mod 2π, I), (9.58)

with ω = π(I). The resulting orbits depend in an intricate way on the relationship between
the components of the frequency vector. The simplest case occurs when ω = αm for
m ∈ Z

n, an integer vector, and any α ∈ R. In this case the orbit is periodic with period
T = 2π

/
α (or an equilibrium if α = 0).

The opposite of the periodic case was considered in an example in §7.1 and Exer-
cise 7.1, that is, the case that ω is incommensurate,

ω ·m �= 0 ∀m ∈ Z
n\0. (9.59)

The flow (9.58) is then quasiperiodic and transitive: every orbit is dense on T
n.

Between these two extreme cases are the commensurate frequency vectors: ω values
such that there exists at least one nonzero integer vector m for which ω ·m = 0. The set of
integer solutions of this equation is called the resonance module; see Exercise 17. In this
case the orbits are dense on lower-dimensional tori.

Example: Suppose n = 3 andω = (1, γ, 2γ ), where γ is irrational, for example, the golden
mean γ = (1+√5)/2. The only integer solutions toω ·m = 0 are thenm = (0, 2k,−k) for
some k ∈ Z. Thus there is, up to normalization, precisely one vector of commensurability.
The flow (9.58) with this frequency is not dense on T

3, but it does cover a two-dimensional
surface. Indeed, the flow restricted to two components (θ1, θ2) is dense on the two-torus
because the vector (1, γ ) is incommensurate. This holds as well for the components (θ1, θ3).
However, because of the rational ratio ω2

/
ω3, there is always a simple relation between θ2

and θ3, namely,
θ3(t)− 2θ2(t) mod 2π = θ3(0)− θ2(0) mod 2π,

which is constant. Thus the orbits densely cover two-dimensional tori, and the collection
of these tori covers the three-torus.

The motion on incommensurate tori is also called nonresonant, as opposed to the
resonant motion on tori that are commensurate.

The n-dimensional, nonresonant invariant tori of the n-degree-of-freedom integrable
system are prevalent when the frequencies X(I) vary nontrivially as I changes—that is,
when the oscillators represented by Ho are anharmonic. So that this is true, it is necessary
that X satisfies a nondegeneracy or twist condition. The function X : R

n → R
n can be

thought of as a frequency map: for each action value it gives a frequency vector. This map
is nondegenerate if it is a local diffeomorphism, that is, its Jacobian is nonzero,

det(DX) = det(D2Ho) �= 0. (9.60)

The implication of this condition is that a neighborhood of an action variable Io is mapped
one-to-one onto a neighborhood of the frequency X(Io). In this case, incommensurate
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frequencies will occur for “almost all” actions: a set of full measure in frequency space.
This is true even though commensurate values are still dense. (Recall that the rationals are
dense in the reals, even though almost all reals are irrational.)

The nondegeneracy condition is stronger than that needed for many purposes because
autonomous Hamiltonian systems are conservative, so their orbits lie on a particular (2n−1)-
dimensional energy surface, E = {(q, p) : H(q, p) = E}. In this case the variation of the
frequency in the direction transverse to the energy surface, ∇H , is irrelevant. Thus instead
of the nondegeneracy condition (9.60), it is sufficient to require that the columns of the
matrix DX span the n − 1 vectors tangent to the energy surface, or equivalently that the
n× (n+ 1) matrix (D2Ho,∇Ho) has rank n; this is called isoenergetic nondegeneracy. An
alternative statement of this is

det

(
D2Ho ∇Ho

DHo 0

)
�= 0. (9.61)

In a system that satisfies (9.61) both resonant and nonresonant tori are dense on each energy
surface.

KAMTheory

As we will see in §9.17, the resonant tori of an integrable system can be strongly affected
by a perturbation of the form (9.57)—namely, they are often immediately destroyed upon
perturbation. One of the most profound advances in Hamiltonian dynamics was the discov-
ery by Andrei Kolmogorov in 1953 that “sufficiently” incommensurate tori are preserved
upon perturbation. This result was formalized later by Vladimir Arnold (Arnold 1963) for
analytic systems and by Jürgen Moser for sufficiently smooth systems (Moser 1962). The
results of Kolmogorov, Arnold, and Moser now go by the name of KAM theory. For nice
expositions of this complex theory see (de la Llave 2001; Pöschel 2001).

There are only two important concepts of KAM theory that we will focus upon.
The first is that while the theory asserts that “many” incommensurate tori are preserved, it
actually requires that neighborhoods of all commensurate tori be excluded. However, since
rationals are dense, it is a delicate matter to exclude the neighborhood of every rational from
consideration and not exclude everything! Luckily the neighborhood that KAM excludes
has a width that decreases with the magnitude of the integer vector m: |m · ω| < c |m|−τ .
Vectors that are not in these resonant neighborhoods are called

� Diophantine frequencies. A vector ω is Diophantine if there is a c > 0 and
τ > n− 1 such that ω ∈ Dc,τ =

{
ω ∈ R

n : |m · ω| > c |m|−τ ∀m ∈ Z
n\0} .

The set Dc,τ is a Cantor set when τ > n− 1, and c �= 0. Moreover, as c→ 0, the measure
of this Cantor set approaches one (Cassels 1957).

Example: Consider the case n = 2 and a vector (ω1, ω2) with 0 < ω1 < ω2. Let |m| =
max(|m1| , |m2|) be the sup-norm of m. Since we wish to find vectors nearly perpendicular
to ω, we can assume that m = (q,−p) with 0 < p < q. Then the Diophantine condition
becomes a condition on the frequency ratio:∣∣∣∣ω1

ω2
− p

q

∣∣∣∣ > d

|q|τ+1
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with d = c
/
ω2. Thus we are looking for irrational numbers x ∈ (0, 1) that are bounded

away from rationals p
/
q. The set Dc,τ corresponds to what remains after excluding an

interval of width d
/|q|τ+1 about each rational in [0, 1]. Start by excluding the intervals

[0, d/2] and [1 − d
/

2, 1] and then the interval of width d
/

2τ+1 about 1/2, etc. The total
length of the excluded intervals in D is then

L = d +
∞∑
q=2

φ(q)
d

|q|τ+1
,

where φ(q) is the number of integers in [1, q] that are coprime with q—Euler’s totient
function. This function cannot be computed explicitly, but certainly φ(q) ≤ q − 1 (where
equality occurs only when q is prime). Thus E is bounded by

L < d

∞∑
q=1

1

qτ
.

The sum is convergent whenever τ > 1. Thus as c→ 0, the excluded length goes to zero
and the measure of the Diophantine frequency ratios in [0, 1] approaches 1.

A key concept in Kolmogorov’s theory is the identification of invariant tori by their
frequencies: instead of trying to understand the orbit of a particular point in phase space,
he chooses a Diophantine frequency vector ω and follows the torus with that frequency as ε
grows. The question then becomes, does the flow of (9.57) have an invariant n-dimensional
torus with a given frequency for some ε �= 0? One version of the answer is as follows.

Theorem 9.20 (KAM (Pöschel 1982)). Suppose that Ho(I) is real analytic and nondegen-
erate and suppose that H1(θ, I ) is Cr with r > 2n. Then there is a constant α > 0 such
that if ε < αc2 the system (9.57) has invariant tori for all ω ∈ Dc,n in the range of the
frequency map X. Similarly if an energy surface E is isoenergetically nondegenerate, then
there are tori whose frequencies are proportional to each ω ∈ Dc,n in the range of X.70 In
both cases, the dynamics on each torus is smoothly conjugate to the flow (9.58).

The preservation of n-dimensional tori with Diophantine frequencies (often called
KAM tori) is more than a mathematical curiosity; these tori can be easily observed in many
examples; see Figure 9.12. This came as a surprise to many scientists and mathematicians.
Indeed, one of the earliest of numerical experiments—by Enrico Fermi, John Pasta, and
Stanislaw Ulam (FPU) on the MANIAC-I computer at Los Alamos in 1954—was an at-
tempt to measure the “thermalization” of energy in the modes of a nonlinear string. They
believed that nonlinear coupling of the linear normal modes would lead to the spread of
energy to all the modes on the energy surface, and thus the motion of a perturbed integrable
Hamiltonian should be topologically transitive or ergodic on the energy surface; recall §7.1.
While it is difficult to directly apply the KAM theorem to the FPU system,71 Theorem 9.20
certainly implies that “thermalization” is not a typical property of weakly perturbed, inte-
grable Hamiltonian systems: most of the trajectories are confined to n-dimensional tori and
do not wander densely through the energy surface.

70That is, the frequency ratio is fixed.
71For a fascinating account of the history, see (Weissert 1997).
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Figure 9.12. Three-dimensional projection onto (x, y, py) of an invariant
torus for the two-degree-of-freedom Hénon–Heiles system (9.66) with initial condition
(0,−0.15, 0.376, 0.0) so that E = 1

/
12. Also shown is a section at x = 0. This plot

is obtained using Maple; see the appendix.

However, KAM theory applies only for “small enough” ε, and explicit estimates of
the necessary bound are difficult to obtain and often are very small indeed. As we will
see next, numerical experiments show that some invariant tori are preserved for quite large
values of ε for specific choices of H1.

9.14 Onset of Chaos in Two Degrees of Freedom
The dynamics of a one-degree-of-freedom Hamiltonian system are easy to visualize since
the phase space is two-dimensional. Of course, this case is also rather trivial because of
the conservation of energy. The study of the motion of Hamiltonian systems with more
degrees of freedom is difficult because their phase spaces have four or more dimensions.
The case of two degrees of freedom can be quite effectively visualized using a Poincaré
section; recall §4.12. This works because each orbit lies on a three-dimensional energy
surface, E = {z : H(z) = E}, and so restricting to a set of orbits on E , a cross section to
the Hamiltonian flow ϕt (z) is a two-dimensional surface; see Figure 9.12.

Recall that for a section S the Poincaré return map is defined as

z′ = P(z) = ϕτ(z)(z), (9.62)

where τ(z) is the first time that the orbit of z ∈ S returns to S. When S is a two-dimensional
surface, the dynamics of P is easy to visualize numerically.

However, the construction of a section is complicated by the fact that E is typically
not Euclidean but rather is a manifold.
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Example: For the harmonic oscillator Hamiltonian (9.49), E is the set

n∑
j=1

ωj
(
p2
j + q2

j

) = 2E,

when ωj > 0, which is topologically the sphere S
2n−1. More generally, consider the Hamil-

tonian

H(q, p) = 1

2
p2 + V (q),

where V (q) is a periodic function of q: V (q + 2πm) = V (q) for each m ∈ Z
n. Thus the

phase space for H is T
n ×R

n. Suppose that V has a global minimum Vm at some point qm
and a global maximum VM at qM.WhenE is near its minimum value,E = H(0, qm) = Vm,
q is confined to a neighborhood of qm. For this neighborhood V is approximately quadratic,
V (q) ≈ Vm + qT Sq, where S is a positive-definite matrix. This implies that when
E = Vm + ε, E is (topologically) the sphere S

2n−1, just as for the harmonic oscillator.
The topology of the energy surface will typically change when E reaches the next lowest
critical point of V because a larger range of the configuration variables becomes accessible.
(This is especially true when the periodicity of the configuration comes into play.) When
E > VM , all configurations are accessible, so the energy surface includes all the config-
uration space T

n. However, not all momenta are possible: indeed for each value of q,
conservation of energy implies that

p2 = 2(E − V (q)).

Consequently, for each q, the momentum is confined to the sphere S
n−1. The radius of this

sphere varies with q but is always nonzero when E > VM . Consequently, E ∼= T
n × S

n−1.
The topology of E for values of E below VM depends in detail on the critical points of V ;
see Exercise 18.

To construct a Poincaré section for a two-degrees-of-freedom system,H(q1, q2, p1, p2),
we would like to choose a two-dimensional surface in E that is a global section for the flow.
Recall from §4.12 that a surface S is a section if the vector field is nowhere tangent to S and
is a global section if the orbit of every point crosses S and returns.

It is often difficult to prove that a particular section is global, so in the interest of
expediency, we will appeal to physical intuition. For example, in a system based on nonlinear
oscillators, it is often true that the configuration variables oscillate about zero, and so one
possible choice for a section is the surface for which one of these configurations vanishes, say,

Q = {(q, p) : q2 = 0}. (9.63)

As we focus on an energy surface, E , a candidate for the section is the intersection S = E∩Q.
However, this surface is typically not a section because the vector field is not everywhere
transverse to S.

Example: Let

H = 1

2
(p2 + q2)+ q2

1q
2
2 (9.64)

and let Q be given by (9.63). For any E > 0, S = {(q1, 0, p1, p2) : p2
1 + p2

2 + q2
1 = 2E}
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is a two sphere. Convenient coordinates on S could be (q1, p1), but both hemispheres
p2 > 0 and p2 < 0 project onto the same disk. Indeed since q̇2 = p2 the vector field is not
transverse to the section at p2 = 0.

To ameliorate this problem the section must be a subset of E ∩Q to which the vector
field is transverse. Since q̇2 = −∂H

/
∂p2, the vector field will be transverse to Q whenever

∂H
/
∂p2 �= 0. For example, we can choose as a section

1 = E ∩Q ∩ {∂H/∂p2 > 0
}
. (9.65)

Typically this set is an open disk and is bounded by a loop on which the vector field is
tangent to the section.

Example: For (9.64), the section (9.65) is

S = {(q1, 0, p1, p2) : p2
1 + q2

1 = 2E − p2
2, p2 > 0

}
.

This set is the “northern hemisphere” of a two-sphere, and it projects into the interior of the
disk of radius

√
2E in the (q1, p1) plane. Note that for each (q1, p1) in this disk, there is a

unique p2 > 0 in S, and since q2 = 0 we know the full initial condition of the trajectory.
Thus (q1, p1) is a good set of coordinates on S.

The boundary of the section is the circle
{
p2

1 + q2
1 = 2E,p2 = q2 = 0

}
. This is an

invariant set of (9.64); indeed it corresponds to a periodic orbit.

This example illustrates the best scenario we can expect: the section (9.65) is a disk
whose boundary is an invariant set. Indeed, Birkhoff showed that when there is no globally
transverse section, a necessary condition for the Poincaré map to be smooth is that the
boundary of S be an invariant set (Dullin and Wittek 1995).

Example (Hénon–Heiles Hamiltonian): In 1964 Michael Hénon and Carl Heiles were
studying the motion of individual stars in the collective gravitational potential of the re-
maining stars in a galaxy (Hénon and Heiles 1964). On the scale of a galaxy, a star
can be treated as a point mass and its motion is governed by a Hamiltonian of the form
H = p2

/
2m + V (x, y, z) with p ∈ R

3. Many galaxies have an (approximate) axisym-
metry so that V = V (ρ, z), where ρ = x2 + y2 is the cylindrical radius. This symmetry
implies the conservation of the z-component of angular momentum; recall (9.36). Thus the
three degree-of-freedom model has two invariants, energy, and angular momentum. Hénon
and Heiles wished to address the question of existence of a third invariant. To study this
they noted that the conserved angular momentum can be used to reduce the three degree-
of-freedom model to one with two degrees of freedom. They studied the simplified two
degree-of-freedom model

H = 1

2
(p2

x + p2
y + x2 + y2)+ x2y − 1

3
y3, (9.66)

which does not have direct astronomical origin but could be thought of as a typical model
for motion near an elliptic equilibrium; however, it has the special feature that the linear
oscillators have the same frequency: it is in one-to-one resonance (Rod and Churchill 1985).
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Figure 9.13. The intersections of the trajectory of Figure 9.12 with the plane
{x = 0} appear to trace out two curves. The black dots correspond to the points with
px > 0 and the red dots to px < 0.

The ODEs for (9.66) are

ẋ = px, ẏ = py,

ṗx = −x − 2xy, ṗy = −y − x2 + y2.
(9.67)

There are equilibria at the origin, whereE = 0, and at (0, 1, 0, 0) and (±√3/2,−1/2, 0, 0),
where E = 1

/
6. The origin is elliptic, and the remaining three points are saddles. Note

that this system is reversible (recall §6.4) with the reversor R(q, p) = (q,−p).
Hénon and Heiles used the section

S = E ∩ {x = 0} ∩ {px > 0}. (9.68)

When 0 < E < 1
/

6, the energy surfaces have two components, one bounded and the
other unbounded; the bounded component of (9.68) is a disk whose boundary is the curve
3p2

y + 3y2− 2y3 = 6E. This curve is invariant since if we set x(0) = px(0) = 0 in (9.67),
then they remain zero. WhenE is small the bounding curve is nearly circular and most of the
orbits appear to lie on invariant tori. An example of a three-dimensional projection of one
trajectory was already shown in Figure 9.12. This orbit intersects plane x = 0 in the figure
with bothpx > 0 andpx < 0; only the former intersections correspond to the section (9.68).
However, by reversibility the trajectories with initial conditions (0, y, px, py) with px < 0
are equivalent to trajectories that start at a point (0, y,−px,−py) integrated backward
in time. Thus there is no need to restrict the intersections to those with positive px . The
intersections of the trajectory of Figure 9.12 with the plane {x = 0} are shown in Figure 9.13.
The set of intersections appears to fall on two curves, one for which the crossing is from
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Figure 9.14. Poincaré section of the Hénon–Heiles Hamiltonian (9.66) with E =
1
/

12, plotted using the code in the appendix.

above x = 0 to below (px < 0) and the other from below to above. These two curves
illustrate the intersection of an invariant two-torus with S.

The Poincaré map for the section (9.68) can be easily plotted using computer algebra
tools; see the appendix. When E = 1

/
12, many of the orbits on the Poincaré section in

Figure 9.14 appear to cover circles, indicating that the orbits lie on invariant two-tori. There
also appears to be a “period-three” saddle on the section, and a few points on its stable and
unstable manifolds are shown. These manifolds enclose various invariant tori. When the
energy is increased to E = 1

/
8 in Figure 9.15, the trajectories near this saddle appear to no

longer lie on smooth curves. This is an indication that the KAM tori have been destroyed
and are replaced by chaotic dynamics. Indeed, computations of the Lyapunov exponents
for these trajectories show that they exhibit sensitive dependence; see Exercise 19.

Poincaré sections of the form (9.65) are usually visualized by projecting them onto
the canonical pair of variables (q1, p1). One reason that this is a nice coordinate system for
S is that the resulting return map is area preserving. This follows from the conservation of
the Poincaré loop action (9.24). Let L be a loop on the section so that every point on L has
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Figure 9.15. Poincaré section of the Hénon–Heiles Hamiltonian (9.66) for E = 1
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8.

energy E. Then, since
∮
L Hdt = E

∮
L dt , and the integral of a perfect differential around

a closed loop is zero, this term in the action vanishes. For the section (9.63), q2 ≡ 0 on L,
and pdq reduces to p1dq1 so that the loop action becomes

S[L] =
∮

L
p1dq1,

which is simply the area enclosed by L in the (q1, p1) plane. Since S[L] is preserved along
trajectories, then the transformed loop L′ = P(L) also lies on the section and has the same
action; thus the Poincaré map preserves area. Consequently, the study of the dynamics of
two degree-of-freedom Hamiltonian systems on energy surfaces (without critical points)
essentially reduces to the study of area-preserving mappings—a beautiful subject in its own
right (Meiss 1992).

9.15 Resonances: Single Wave Model
The planar pendulum provides a typical example of a locally integrable Hamiltonian system.
Here we generalize this slightly and consider the nonautonomous system

H(q, p, t) = Ho(p)+ a cos(kq − ωt), (9.69)
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where (q, p) ∈ R
2. This system corresponds to a particle with kinetic energy Ho(p) in a

potential corresponding to a traveling wave with wavenumber k and frequency ω. Equation
(9.69) describes physical systems such as the motion of a charged particle in an electrostatic
wave.

The Hamiltonian ODEs for (9.69) are

q̇ = ∂H

∂p
= DHo(p),

ṗ = −∂H
∂q

= ak sin(kq − ωt).

(9.70)

First consider the case a = 0 where the momentum is constant. In this case the solution
for the position is q(t) = vt + qo, where v = DHo(po) is the constant velocity of the
particle. Note that the Legendre condition D2H(p) �= 0 requires that ∂v

/
∂p �= 0, i.e., that

the velocity changes with the momentum. Such systems are said to have twist or shear.
Now suppose that a is very small. The ODE for p leads to the expectation that p will

change by O(a), and then q ≈ vt + qo + O(a). If this is correct to first order in a, this
approximation for q(t) can be substituted into the p equation to obtain

ṗ ≈ ak sin((kv − ω)t + kqo)+O(a2).

The solution of this is

p(t) ≈ c + ak

ω − kv
cos((ω − kv)t + kqo), (9.71)

providing ω−kv �= 0. In this case the assumption that p varies by a quantityO(a) is valid.
However, when the denominator vanishes, our approximation is not valid. The case that
v = ω

/
k corresponds to the particle moving at the phase speed of the wave. It is known as

resonance. If D2H is nonzero, then the resonance equation

v = DHo(pR) = ω

k
(9.72)

can be solved, according to the implicit function theorem, Theorem 8.1, to obtain the
resonant momentum pR . When the system is nearly resonant, i.e., when ω − kv = O(a),
then the ordering that led to the assumption that p changes by O(a) breaks down, and we
must begin again.

To study the resonant case, we return to the nonautonomous system (9.70). The time
dependence is simple enough that it can easily be transformed away by a Galilean coordinate
transformation, i.e., by going to a frame moving with the phase speed ω

/
k of the wave.

Upon defining x = kq − ωt , (9.70) becomes

ẋ = kDHo(p)− ω,

ṗ = ak sin(x).



380 Chapter 9. Hamiltonian Dynamics

This system is also Hamiltonian72 with a new Hamiltonian function

Ĥ (x, p) = kHo(p)− ωp + ak cos x. (9.73)

Note that the new Hamiltonian is independent of time and so is conserved; physically it
is related to the particle energy in the moving frame. Thus the motion can be completely
characterized by graphing the contours of Ĥ . The details of these depend upon Ho(p);
however, the contours near the resonant case can by understood by expanding for p near
pR . Upon defining a new momentum y = p − pR , the first two terms in (9.73) expand to

kH(pR+y)−ω(pR+y) = kHo(pR)−ωpR+(kDH(pR)−ω)y+ k

2
D2H(pR)y

2+o(y2).

The terms proportional to y vanish because of the resonance condition (9.72). If we drop
the constant terms, since they do not affect the equations of motion, we obtain

H̃ (x, y) = 1

2M
y2 + ak cos x, (9.74)

where we assume that D2Ho(pR) �= 0 so that the effective mass

M = 1

kD2Ho(pR)
(9.75)

is finite. Equation (9.74) is exactly the pendulum Hamiltonian (recall (9.11))! The dynamics
follows contours of the new energy H̃ , as sketched in Figure 9.16.

The pendulum has two equilibria, the two critical points of H̃ (x, y), at (0, 0) and
(π, 0). The Hessian matrix of H̃ and corresponding Hamiltonian matrix are

S = D2H̃ =
( −ak cos x 0

0 M−1

)
, K = JS =

(
0 M−1

ak cos x 0

)
.

Thus at x = 0 the eigenvalues ofK are λ = ±
√

ka
M

and so (0, 0) is a saddle, while at x = π ,

the eigenvalues are λ = ±i
√

ka
M

and so (π, 0) is a center.
The stable and unstable manifolds of the saddle correspond to the contours of the level

set H̃ (x, y) = H̃ (0, 0) = ak. For this energy (9.74) can be solved for y(x) to give

y±(x) = ±
√

2Mak(1− cos x) = ±2
√
Mak sin

(
x
/

2
)
. (9.76)

Thus the maximum and minimum of y on these contours occur at x = π , where y±(π) =
±2
√
Mka. The stable and unstable manifolds form the separatrix, the red curve in Fig-

ure 9.16: it separates the contours that correspond to trapped (or librating) motion near
the center from those that correspond to untrapped (or rotating) motion, where x is mono-
tone increasing or monotone decreasing. The set of trapped trajectories is also known as a
resonance.

Note that the width of the resonance, y+(π) − y−(π), is proportional to
√
a. When

a is small,
√
a � a. This is what was wrong with our assumption that p varies by O(a) in

the derivation of (9.71) near to the resonance.
72The theory of canonical transformations shows how to do this transformation on the Hamiltonian itself; see

(Goldstein et al. 2002).
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Figure 9.16. Orbits of the pendulum Hamiltonian (9.74) for M = ka = 1.

Transforming back to the original coordinates, (q, p), the resonance now corresponds
to a region centered at p = pR with upper and lower bounds p± = pR + y±(π); see
Figure 9.17. The resonance width is

8p = y+(π)− y−(π) = 4
√

a

D2Ho(pR)
. (9.77)

Particles trapped in the resonance stay near x = 0, so they have a mean motion q(t) ≈ ωt
/
k

plus an oscillation about this line. Hence these particles are trapped in the traveling wave.

9.16 Resonances: Multiple Waves
More generally, suppose thatH(q, p, t) isC2 and a periodic function of q with spatial period
L = 2π

/
k and a periodic function of t with temporal period T = 2π

/
ω. The Hamiltonian

can then be expanded in a double Fourier series, allowing for an arbitrary dependence uponp:

H(q, p, t) = Ho(p)+
∑
l,m�=0

alm(p) cos(klq − ωmt + θlm). (9.78)

Here alm(p) is the (l, m)th Fourier amplitude, θlm(p) is its phase, kl = lk, and ωm = mω.
Each of the terms in the sum corresponds to a “wave” and can cause a resonance at the
appropriate momentum value. For example, if only one of the waves, that of mode numbers
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Figure 9.17. Extended phase space for the Hamiltonian (9.78) when there is only
one resonance.

l and m, is nearly resonant, then

Hlm(p, q, t) = Ho(p)+ alm cos(klq − ωmt − θlm)

is the Hamiltonian that dominates the dynamics. As in §9.15, this system can be trans-
formed into a moving frame to eliminate the time dependence, setting x = klq − ωmt .
The biggest excursions in p occur near the resonant momentum, plm, where the function
klHo(p)−ωmp has a critical point. Expanding about the resonant momentum and assuming
that alm is small, it is appropriate to keep only the lowest-order terms alm(plm) and θlm(plm).
In this case, the system reduces to the pendulum in the neighborhood of the resonance,

H̃ (x, y) ≈ 1

2M
y2 + almkl cos(x + θlm), (9.79)

where M = (klD
2Ho(plm))

−1, x = klq − ωmt , and y = p − plm.

9.17 Resonance Overlap and Chaos
The Russian physicist Boris Chirikov realized that the single resonance approximation
that was developed above might be reasonable when resonances are far apart, but that it
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Figure 9.18. The overlap criterion.

must break down when neighboring resonances overlap (Chirikov 1979). In his view, this
phenomenon is responsible for the onset of chaos in Hamiltonian systems—or at least in
typical cases, since exceptions in both directions to this statement can be found.

Consider, for example, Ho(p) = p2
/

2m. The resonant momenta are the solutions of

DHo(pR) = pR

m
= ωm

kl
.

If there are finitely many Fourier modes, then the resonances have a nonzero spacing.
Suppose that p1 and p2 correspond to the locations of two neighboring resonances and that
their corresponding widths are8p1 and8p2; see Figure 9.18. The resonances are relatively
independent of one another when they are far apart compared to the sum of their half-widths.
Chirikov defined the overlap parameter

s12 = 1

2

8p2 +8p1

p2 − p1
. (9.80)

When s12 & 1, the resonances are far apart, and the momentum should vary by O(a) when
away from the resonances and by O(

√
a) when trapped in one resonance.

The single-resonance approximation should break down when s12 ≈ 1. In this case
a particle trapped in the first resonance could make a transition to the second resonance.
In this way the average velocity of the particle could change from the phase speed of the
first wave to that of the second. If a set of neighboring resonances overlap, then p could
drift by an amount that is large compared to the typical resonance amplitude, O(

√
a).

This is indeed observed numerically. Moreover, this drift can even look like a diffusive
process—the motion switches from one resonance to the other in a seemingly random
fashion (Meiss 1992). The overlap criterion, while crude, typically gives an estimate that is
within a factor of three of the onset of “connected” chaos in these systems, i.e., chaos that
allows the momentum to drift from resonance to resonance. The estimate works best when
the resonances have comparable amplitudes; indeed, the overlap criterion fails completely
when one of the resonance amplitudes is zero, since there is no second resonance in the
system at all.

There are many refinements to the resonance overlap criterion. For example, with
perturbation theory one can compute the “secondary” resonances that arise from the nonlin-
ear beating between primary resonances. These secondary resonances reduce the effective
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Figure 9.19. Overlap criterion for the two-wave Hamiltonian (9.81). The two
curves show s = 1 and s = 0.75 from (9.82). The boxes are numerical thresholds for
connected chaos.

distance between resonances (Lichtenberg and Lieberman 1992). Indeed, a rule of thumb is
that connected chaos occurs when s12 ≈ 2

/
3 instead of 1, due to this mechanism. A more

sophisticated version of this is “renormalization theory” that takes into account the creation
of infinitely many secondary resonances (Escande 1985; MacKay 1993).

Example: The two-wave model is given by the Hamiltonian

H(q, p, t) = p2

2
− 1

4π2

(
a cos(2πq)+ b cos(2π(2q − t))

)
. (9.81)

The first resonance is at p1 = 0 and has a resonance width, from (9.77), of 8p1 =
4
√
a/(2π)2 = 2

π

√
a. The resonant momentum of the second resonance is p2 = ω

/
k =

2π
/

4π = 1/2, and its width is 8p2 = 2
π

√
b. Thus the resonance overlap parameter is

s = 1

2

8p1 +8p2

p2 − p1
= 2

π

(√
a +√b

)
. (9.82)

Empirically, it is found that s = 1 gives only a rough estimate of the onset of connected
chaos; see Figure 9.19. The boxes in the figure are computed numerically by looking
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Figure 9.20. Four stroboscopic plots in the two-resonance system (9.81) with
(a, b) = (0.5, 0), (0, 0.75) on the top row and (0.5, 0.75) and (0.5, 0.17) on the bottom
row. The overlap parameter (9.82) is one in the bottom left panel; however, connected chaos
occurs at smaller parameter values due to resonance islands that are caused by nonlinear
beating, as one in the bottom right, where s = 0.71.

for an orbit that begins near the hyperbolic periodic orbit corresponding to one resonance
and moves to a region near the hyperbolic orbit corresponding to the second resonance.
Simulations of this system for several parameter values are shown in Figure 9.20. These
figures are Poincaré sections of the extended phase space of the nonautonomous system with
the section defined by t = 0 mod 1; in other words, a point is plotted on a trajectory at each
integer time. The top two plots show the individual resonances with amplitudes chosen so
that if the two plots were overlaid, the individual resonances would be just touching, thus
giving s = 1. Both resonances are active in the bottom plots; the left plot for s = 1 shows
a large chaotic region encompassing both resonances. In the bottom right plot, s = 0.71
and the chaotic region has just connected: for any smaller value of b there is a barrier to
motion between the two resonances.
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9.18 Exercises
1. Let xi ∈ R

3 represent the positions of a system ofN interacting particles with masses
mi and forces that depend only upon the interparticle distances xi − xj :

miẍi =
N∑
j=1
j �=i

f (xj − xi),

where f : R3 → R
3 is the force.

(a) Show that the total momentum, P = ∑N
i=1 miẋi , is an invariant if the force is

odd: f (−x) = −f (x).
(b) Show that the total angular momentum, L =∑N

i=1 miẋi × xi , is an invariant if
the force is directed along the interparticle separation: f (x) = xg(|x|).

2. Show that the system of equations, defining Arnold’s ABC flow, (1.16),

ẋ = A sin z+ C cos y,
ẏ = B sin x + A cos z,
ż = C sin y + B cos x,

is volume preserving. Show that when A = 0 it has an invariant, ψ(x, y, z) =
B cos x + C sin y. Discuss the phase portrait for this case.

3. Show that the equations of motion for the Hamiltonian (9.13) for a charged particle
in an electromagnetic field are equivalent to the Lorentz force law (9.12). (Hints: Let
the ith component of the curl be denoted Bi = (∇ × A)i = ∑3

j,k=1 εijk∂Aj

/
∂xk ,

where εijk is the completely antisymmetric symbol. Use the identity
∑3

i=1 εijkεilm =
δjlδkm − δjmδkl .)

4. Prove Lemma 9.5. (Hint: Consider the action of L on the monomial basis xn. Use
the fact that every function in C1([a, b],R) can be approximated arbitrarily closely
in the sup-norm by a polynomial.)

5. Verify that the standard Poisson bracket (9.15) and the generalized Poisson bracket
(9.21) for the rigid body satisfy the Jacobi identity.

6. (Wave–wave interactions.) The system (9.2) is a Poisson dynamical system but can be
transformed into a one-degree-of-freedom Hamiltonian system using the invariants
(9.3).

(a) Show that the bracket

{F,G} = i

3∑
i=1

∂F

∂ai

∂G

∂āi
− ∂F

∂āi

∂G

∂ai
(9.83)

is a nondegenerate Poisson bracket for functions of z = (a1, a2, a3, ā1, ā2, ā3),
where these six variables are thought of as independent.
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(b) Show that (9.2), with the complex conjugate equations for the amplitudes āk ,
can be written as a Poisson system, (9.16), using the bracket (9.83), for some
H(z).

(c) Show that the transformation (ak, āk)→ (θk, Jk) defined by

aj =
√
Jje

iθk , āk =
√
Jke

−iθk

converts the bracket (9.83) into the standard, canonical bracket (9.15) for the
canonical coordinates θk and momenta Jk . Thus show that the system (9.2) is
Hamiltonian with a new Hamiltonian H̃ (θ, J ) = H(z(θ, J )).

(d) Show that the transformation (θ, J )→ (ψ, I ), defined by

I = (J1 + J3, J2 + J3, J3), ψ = (θ1, θ2, θ3 − θ1 − θ2),

is canonical in the sense that the bracket in the new coordinates is still the
canonical bracket. Thus show that the system is Hamiltonian with the new
Hamiltonian Ĥ (ψ, I ) = H̃ (θ(ψ), J (I )).

(e) Show that the Hamiltonian Ĥ does not depend upon ψ1 and ψ2 (they are ignor-
able variables), thus verifying the invariance of I1 and I2 shown in (9.3).

(f) The system Ĥ effectively has only one degree of freedom (ψ3, I3), with pa-
rameters I1, I2, c, and X = ω3 − ω2 − ω1. Use your favorite software to
sketch contours of Ĥ to investigate the orbits and discuss the implications for
the dynamics of wave–wave interactions.

7. Poisson systems often have a special type of invariant, called a Casimir: a nonconstant
function C ∈ C1(M,R) such that {C,F } = 0 for any F ∈ C1(M,R). Thus Casimir
invariants are associated with the Poisson bracket instead of the Hamiltonian.

(a) Show that ifC is a Casmir for the bracket (9.18), then the matrix J (z) is singular.

(b) Show that if dim(M) is odd, then, since a Poisson bracket is antisymmetric, it
must have at least one local Casimir.

(c) Show that the canonical bracket (9.15) does not have a Casimir.

(d) The rigid body bracket, (9.21), has one Casimir, C. Find it.

(e) Since both H and C are invariants for the Euler equations (9.20), the flow is
restricted to lie on the curves of an intersection of an energy surface H = E

and a Casimir surface C = c. Assuming that I1 > I2 > I3 > 0, describe the
dynamics of the Euler equations.

8. (Ignorable coordinates.) Consider a Lagrangian for a mechanical system of the form
L(x, ẋ) = 1/2ẋ

T ρ(x)ẋ − V (x), where ρ(x) is a positive-definite symmetric matrix.

(a) Show that the energy E = 1/2ẋ
T ρ(x)ẋ + V (x) is conserved.

(b) Suppose that E is independent of one of the coordinates, say, x1. Show that the
corresponding canonical momentum p1 is conserved.
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(c) Suppose V (x) = V (r), and ρ(x) = ρ(r), where r is the polar radius in R
3.

Convert the Lagrangian to polar coordinates (r, θ, φ). Show that the canonical
momenta pθ and pφ are conserved.

9. (Spring-pendulum.) Consider a harmonic spring, with potential energy V (x) =
1/2k(|x| − L)2, hanging from a frictionless support in a constant gravitational field.
Allow the spring to move in a two-dimensional, vertical plane. Assume that the spring
can extend and compress, but not bend.

(a) Obtain the Lagrangian for this system in a Cartesian coordinate system. Derive
the Lagrangian equations of motion.

(b) Find the Hamiltonian and the Hamiltonian equations of motion.

(c) Transform the Lagrangian into polar coordinates. Show that the resulting Euler–
Lagrange equations are (1.35).

(d) Find the two equilibria of this system, and the eigenvalues of the linearization
about each equilibrium. One of the equilibrium is elliptic (a center). Show that
if the equilibrium length of the spring, L∗, is 4L

/
3, then the two oscillation

frequencies have the ratio 1:2.

(e) Expand the Hamiltonian found in (b) about the linearly stable equilibrium, keep-
ing terms through cubic order. Use this system to study the stability of the peri-
odic, vertically oscillating solution x = (0, L∗+a cosωt). You should find that
the linearized equations can be reduced to the Mathieu equation; see (Rusbridge
1979).

(f) Get a spring and study this system experimentally. The dynamics is particularly
interesting when the frequencies have the 1:2 ratio found in (d), for then the
Mathieu equation has a positive Floquet exponent (recall §2.8).

10. The equations for the double spring system of Figure 1.4 were derived in §1.4 when
the natural length of the springs was assumed to be zero. More generally, the potential
energy of a harmonic spring is V (x) = 1/2k(|x| − L)2.

(a) Obtain the Lagrangian and Hamiltonian for the system depicted in Figure 1.4
when the two springs have differing spring constants and natural lengths.

(b) Find the equilibria of this system and study their eigenvalues as the parameters
vary.

11. Consider the system (9.32) that represents the dynamics of a bead on an elliptical
wire.

(a) Show that the points (s, v) = (nπ, 0) are equilibria and determine the lineariza-
tion of the dynamics about each.

(b) Use the Legendre transformation to transform the Lagrangian (9.31) into Hamil-
ton’s form. Obtain the Hamiltonian equations. Check that these reduce to those
of the planar pendulum when a = b.

(c) Show that the equilibrium at (0, 0) is a topological center and that the saddle
points (±π, 0) have two heteroclinic connections.
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12. Consider a particle of mass m moving without friction that is constrained to lie on a
two-dimensional surface specified by z = Z(x, y).

(a) Obtain the Lagrangian. Suppose that the kinetic energy isT = 1/2m(ẋ
2+ẏ2+ż2)

and the gravitational potential is mgz. Write the Lagrangian in the form of
Exercise 8.

(b) Derive Lagrange’s equations. Solve for (ẍ, ÿ) as functions of (ẋ, ẏ, x, y). Note
how complicated this is!

(c) Suppose that Z(x, y) = f (x − y). Show that the momentum p = px + py
is conserved. Here the momenta are defined by px = ∂L/∂ẋ, etc. (Hint: It
is much easier to use the fact that the Lagrangian has the form L(x − y, ẋ, ẏ)

and the basic Euler–Lagrange equations than to do this calculation with the
equations you found in b.)

(d) Specializing to the egg carton surface, Z(x, y) = cos x cos y, and using the
energy in Exercise 8, argue that when E < 0, the particle is trapped forever in
one cell of the carton.

13. A generalization of Noether’s theorem, Theorem 9.11, implies that a Lagrangian that
is independent of time has a conserved energy. Compute the total time derivative of
L(q(t), q̇(t), t) along an orbit and use the Euler–Lagrange equations to show that if
∂L
/
∂t = 0, then the quantity E(q, q̇) = ∂L

/
∂q̇ · q̇ −L is independent of time. For

the case that E satisfies the Legendre condition, show that E takes the same value as
H .

14. (Kovalevskaya top.) The Kovalevskaya top is a rigid body with moments of inertia
I = I1 = I2 = 2I3, supported at the origin with its center of mass at the point
(−a, 0, 0) in the plane of the equal moments. It can be described, using as coordinates
the Euler angles (θ, ϕ, ψ), by a Lagrangian of the form L = T − V with

T = 1
2I
[
θ̇2 + sin2 θ ϕ̇2 + 1

2

(
ψ̇ + cos θ ϕ̇

)2]
,

V = −mga sin θ cosψ.

(a) Find the Hamiltonian for the Kovalevskaya top.

(b) Show that there are two “obvious” invariants of this system due to the symmetry
with respect to rotation in ϕ and to time translation.

(c) Kovalevskaya found that there is a third invariant, given by

K =
∣∣∣(sin θ ϕ̇ − iθ̇

)2 + mga

I
sin θeiψ

∣∣∣2 .
Use the equations of motion to show explicitly that K is an invariant.

15. (Small oscillations.) Consider the quadratic Hamiltonian

H(q, p) = 1

2

(
pTM−1p + qT V q

)
, (9.84)

where M and V are n× n, symmetric matrices, and M is positive definite. The goal
is to show that the equilibrium at (0, 0) has eigenvalues that come in pairs and are
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(i) ±iωj , pure imaginary for each positive eigenvalue of V , or

(ii) ±µj , real for each negative eigenvalue of V .

(a) Write down the Hamiltonian system of ODEs for (9.84) and the corresponding
Hamiltonian matrix K .

(b) Look for solutions of the form (q(t), p(t)) = eiωt
(
q̂, p̂

)
. Show that the constant

vector q̂ must solve the equations

V q̂ = ω2Mq̂. (9.85)

Let λ = ω2. Show that λ is real. (Hint: Suppose λ were complex. Take the
complex conjugate of (9.85). Multiply the original equation by ¯̂qT and the new
equation by q̂T and subtract. Let q̂ = α+iβ, and show that positive definiteness
of M implies that λ = λ̄. This implies that ω = ±√λ is either real—case (i),
or pure imaginary—case (ii).)

(c) Show that sinceM is symmetric, its eigenvectors vi are orthogonal, i.e., vi ·vj =
0 if i �= j . Argue that since the eigenvaluesmi ofM are positive, you can choose
the norm of vi such that vTi Mvi = 1. Let A = (v1, v2, . . . , vn). Show that by
construction ATMA = I . What is ATA?

(d) Now convert (9.85) to a standard eigenvalue problem. Let q̂ = Av, and show
that (9.85) becomes

AT VAv = λv.

Thus defining W = AT VA gives a standard eigenvalue problem for W . The
spectrum of W determines the stability of the equilibrium.

(e) Since W is symmetric, there exists an orthogonal matrix O that diagonalizes
W,OTWO = N. Show that this implies that the matrix AO diagonalizes V
(and also diagonalizes M).

(f) Thus for any q if q = AOv, then qT V q = vTNv. This is the “principal
axis coordinate system.” Show that this implies that N has the same number
of positive elements as V has positive eigenvalues. Thus for example, if V is
positive definite, then the equilibrium is stable.

16. Investigate the dynamics of the linear Hamiltonian system

H(q, p) = 1

2

(
p2

1 + q2
1 − ωp2

2 − ωq2
2

)+ ε (p1q2 − p2q1)

as ε increases from zero. Consider especially the points ω = ±1 where the eigen-
values collide on the imaginary axis. How does the behavior of this system correlate
with the predictions from Theorem 9.18?

17. (Resonance modules.) Let ω ∈ R
n be a frequency vector.

(a) Prove that the set M = {m ∈ Z
n : ω ·m = 0} ⊂ Z

n is a module, that is, a set
that is closed under addition and multiplication by scalars k ∈ Z. A module is
basically a vector space, except that the scalars are taken from a ring rather than
a field. This set is called the resonance module.
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(b) Show that each module in Z
n has a basis consisting of d ≤ n integer vectors.

Thus each resonance module has a dimension d, called the multiplicity of the
resonance.

(c) Find the modules, a basis, and the multiplicity for the following frequency
vectors:

(1,
√

2, 1), (1,
√

2,
√

5), (
√

2, 2+√2, 5), (
√

2, 2
√

2, 3
√

2).

(d) Discuss the flow (9.58) on invariant tori with the frequency vectors of (c).

18. Discuss the topology of the energy surfaces of the two degree-of-freedom Hamiltonian

H(q, p) = 1

2
p2 + a cos(q1)+ b cos(q2 + q1)

on T
2×R

2 depending upon the values of the amplitudes a and b, as well as the energy,
E. Plotting contours of the potential V (q) may be helpful. Each energy surface on
which there is a critical point of H may give rise to a change in the topology of E.

19. Using the methods of §7.2, compute the Lyapunov exponents for several trajectories
of the Hénon–Heiles Hamiltonian that start on the section x = 0 with E = 1

/
12 and

1
/

8. You should find that two of the Lyapunov exponents are zero, and the other two
are paired, µ3 = −µ4. Why?

20. (Chaotic tumbling of Hyperion.) Saturn’s moon Hyperion is an irregularly shaped
body with diameters of about C = 360, B = 280, and A = 215 km. Moreover,
its orbit has a relatively high eccentricity, e = 0.104, in comparison with most of
the larger bodies of the solar system. The combination of these two effects has been
shown to lead to chaotic tumbling of Hyperion (Wisdom, Peale, and Mignard 1983).
A simple model of the dynamics of the angle of orientation, x, of the semimajor axis
of the satellite in a fixed elliptical orbit is

H(x, y) = 1

2
y2 − 1

2
α cos(2x − 2t)+ 1

4
eα [cos(2x − t)− 7 cos(2x − 3t)] .

Here α = 3(B − A)
/

2C, and t is measured in units of Hyperion’s orbital period,
21.2 days.

(a) Use the resonance overlap criterion to find the chaotic zones for Hyperion.

(b) Study this system numerically, using a stroboscopic plot.

(c) In 2005, NASA’s Cassini mission confirmed that Hyperion is chaotically tum-
bling; see theWeb site http://www.nasa.gov/mission_pages/cassini/main/. Com-
pare the observations to your numerical solutions.





Appendix

Mathematical Software

There are a number of excellent references on the use of mathematical software in dynamical
systems—for example (Abell and Braselton 2004; Baumann 2004; Gander and Hrebícek
2004; Lee and Schiesser 2003; Lynch 2001, 2004). From these it is apparent that it would
take hundreds of pages to comprehensively discuss the algorithms in any one language;
consequently, we make no attempt to do that. However, a few simple commands can
still be very helpful. In this appendix we give some examples in Mathematica, Maple,
and MATLAB that can be used to make phase space portraits, solve linear systems, plot
bifurcation diagrams, compute Lyapunov exponents, and draw Poincaré maps.

A.1 Vector Fields
It is quite easy to use a computer algebra system such as Mathematica, Maple, or MATLAB
to create a plot that represents a vector field. For example, consider the vector field (1.5).
In Mathematica this vector field is defined by

f = {Sin[x y] - y, y + x}

We then load the appropriate package and create the plot using “PlotVectorField”

Needs["Graphics‘PlotField‘"]
PlotVectorField[f, {x, -Pi, Pi}, {y, -Pi, Pi},

PlotPoints -> 20, ScaleFactor -> 1, Axes -> True,
AxesOrigin -> {-Pi, -Pi}]

This generates a plot of the vector field f as a 20×20 grid of arrows whose maximum length
is scaled to one; see Figure 1.1. Mathematica puts the tail of each arrow on the appropriate
grid point.

The corresponding commands in Maple are

>f:=[sin(x*y)-y,y-x];
>with(plots);
>fieldplot(f,x=-Pi..Pi, y=-Pi..Pi);
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In MATLAB the grid of points is generated first, and then the command “quiver” plots the
vector field:

[x,y]=meshgrid(-pi,pi/10,pi);
quiver(x,y,sin(x*y)-y,y+x)

A.2 Matrix Exponentials
All computer algebra programs have commands for diagonalizing and exponentiating ma-
trices. Here, we give an example using Maple. First, load the linear algebra package, then
define a matrix A and compute its characteristic polynomial and eigenvectors:

>with(LinearAlgebra):
>A := <<9,17,10>|<-8,-16,-10>|<4,9,7>>;

A =

 9 −8 4

17 −16 9
10 −10 7


 .

>p := CharacteristicPolynomial(A, lambda);
factor(p);

p = λ3 − 7λ+ 6,
(λ− 1) (λ− 2) (λ+ 3) .

Therefore, the three eigenvalues are (1, 2,−3) and each has multiplicity one.

>(v,P) := Eigenvectors(A);

v, P :=

 2
−3

1


 ,


 0 1 1

1
2 2 1
1 1 0


 .

The output shows that the set of eigenvalues is(2,−3, 1), but this we already knew. The
eigenvectors are given as the columns of the matrix P . To compute the exponential, define
the diagonal matrix etN, and compute PetNP−1. The matrix multiplication operator is “.”,
distinguishing it from scalar multiplication, “*”.

>etL := DiagonalMatrix([exp(2*t), exp(-3*t), exp(t)]):
>exptA := P . eLt . MatrixInverse(P);

exp tA :=

 −2e−3t + 3et 2e−3t − 2e−t −e−3t + et

e2t − 4e−3t + 3et −e2t + 4e−3t − 2et e2t − 2e−3t + et

2e2t − 2e−3t −2e2t + 2e−3t 2e2t − e−3t


 .

Of course, it is much easier to use the built-in command MatrixExponential(A, t)
to compute the exponential of tA. In MATLAB, a matrix is given in the notation
A = [a b; c d] and the matrix exponential is computed numerically using the com-
mand expm(A). Finally, in Mathematica a matrix is specified using braces, e.g.,
A = {{a,b},{c,d}}, and its exponential computed by MatrixExp[tA].
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A.3 Lyapunov Exponents
To compute Lyapunov exponents, we must solve both the differential equation and its
linearization. Consider, for example, the Lorenz system (4.26), and its linearization (7.21).
Using MATLAB’s Runge–Kutta routine, ode45, it is easy to write an integrator to solve
the six-dimensional system for w = (x, y, z, v1, v2, v3) ∈ TR

3. This requires a function
that returns the vector field for w:

function wdot=LorenzOneJet(t,w,r,sigma,b)
wdot=zeros(6,1);
wdot(1) = sigma*(w(2)-w(1));
wdot(2) = r*w(1)-w(2)-w(1)*w(3);
wdot(3) = w(1)*w(2)-b*w(3);
wdot(4) = sigma*(w(5)-w(4));
wdot(5) = r*w(4)-w(5)-w(1)*w(6)-w(4)*w(3);
wdot(6) = w(1)*w(5)+w(4)*w(2)-b*w(6);

A second function solves this system using ode45. Care must be taken, however, that the
components of v do not get too large: indeed, they are expected to grow exponentially. As
v grows the accuracy of the computation decreases and the ode45 routine will attempt to
reduce the time step to compensate, causing it to eventually fail. Since the system (7.21) is
linear, the length of v is irrelevant, and it can be rescaled at any time without affecting the
trajectory. Since only the logarithm of |v(t)| is needed to compute the Lyapunov exponents,
if at some time we rescale, setting v′ = v

/
N , it is only necessary to add lnN to ln

∣∣v′∣∣ to
compute the original norm. The following simple function computes µmax using the vector
field LorenzOneJet.

function mu = Lyapunov(tmax, r)

tstep = 1;
sigma = 10.0; b = 8/3;
x0 = [1,1,1];
v0 = [.1,.1,.1];
w0 = horzcat(x0,v0);
scalefactor = -log(norm(v0));
T=[]; L=[];

for time = 1:tstep:tmax
[t,w] = ode45(@LorenzOneJet,[time,time+tstep],
w0,[],r,sigma,b);
Lyp = (scalefactor + 0.5*log(sum(w(:,4:6).ˆ2,2)))./t;

T=[T; t]; % Store integration output
L=[L; Lyp];

nm = norm(w(end,4:6));
scalefactor = scalefactor + log(nm);
w0 = horzcat(w(end,1:3), w(end,4:6)/nm);
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end
plot(T,L);
mu = Lyp(end);

Here the integration is done for a time tstep and then the vector v is renormalized by
dividing by its norm, nm. At each rescaling the logarithm of nm is accumulated into
scalefactor. Plots of the output of this routine are shown in Figure 7.5.

A.4 Bifurcation Diagrams
One way to plot bifurcation diagrams is to simply solve the equations for the equilibria as
a function of the parameters and plot the results. However, since there typically are several
equilibria for some parameter ranges, we must take care to get all of the solutions.

In some cases, however, the inverse functionµ(x) has a single solution. For example,
the vector field on R

1 × R
1, defined in Maple by

>f := mu+x+mu*xˆ2-xˆ3;

f (x;µ) = µ+ x + µx2 − 3x3, (A.1)

has up to three equilibria x∗i (µ). However, there is a single solution for µ:

>m := solve(f, mu):
>p1 := plot(m, x = -2 .. 2, mu = -1 .. 1);

However, this produces a plot with x vertical. To plot the normal bifurcation diagram we
reflect about the diagonal:

>with(plots); with(plottools);
>display(reflect(p1, [[0, 0], [1, 1]]),
labels = [’mu’, ’x’]);

Alternatively, we can use a numerical solution to make the plot. For example, the equilibria
of (8.3) can be easily plotted in Maple by

>xp := mu->fsolve(mu+x-ln(1+x),
x,0..10);

>xm:= mu->fsolve(mu+x-ln(1+x),
x,-1..0);

>plot({xm,xp},-3..0);

These commands create Figure 8.2.
In some cases, when the number of branches is uncertain, it is easier to use an implicit

plotting routine. The vector field

>f := mu+xˆ2+(x-mu)ˆ3;

f = µ+ x2 + (x − µ)3 (A.2)

can be solved for either x or µ; however, the expressions are not particularly elucidating.
It is easier to visualize the equilibria by plotting the zero contour off (x;µ):
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x

µ

2

2–2 4

–2

Figure A.1. Equilibria of the vector field (A.2).

>implicitplot(f, mu = -5 .. 5, x = -3 .. 3,
grid = [100, 100]);

This generates Figure A.1, showing a pair of saddle-node bifurcations.
In Mathematica, this implicit plot is made by plotting the zero contour:

ContourPlot[f,{mu,-5,5},{x,-3,3},Contours->{0.0},
ContourShading->False]

In MATLAB, the relevant command is Contour.

A.5 Poincaré Maps
One easy way to plot the Poincaré map for the Hénon–Heiles Hamiltonian (9.66) is to use
the Maple function “poincare.” We start by defining the Hamiltonian:
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>with(plots):
>with(DETools):
>H := (p1ˆ2+p2ˆ2+q1ˆ2+q2ˆ2)/2 + q1ˆ2*q2-q2ˆ3/3;

A three-dimensional projection of the dynamics, Figure 9.12, for a single initial condition
is obtained using

>ic := {[0., .3759703843, 0., 0., -.15]};
>poincare(H,t=0..200,ic,stepsize = 0.1,scene=
[q2=-0.5..0.5,p2=-0.5..0.5,q1=-0.5..0.5],3);

Here the initial condition is of the form (t, p, q)with t = 0, (p2 = 0, q1 = 0, q2 = −0.15),
andp1 ≈ 0.376 so the energy is 1/12. The commandpoincare integrates the Hamiltonian
equations over the range of time [0, 200] using, by default, a fourth-order Runge–Kutta
routine with the time step 0.1. Thescene argument sets the projection to the three variables
(q2, p2, q1) and defines the section variable, q1, which is by default at the value zero.

A two-dimensional section for a set of initial conditions obtained from

>ics := generate_ic(H,{t=0,p2=0, q2=-0.2..0.1,q1=0.0,
energy = 1/12},5);
>poincare(H,t=0..800,ics, stepsize=0.01,
iterations = 5,scene=[q2,p2,q1]);

The command “generate_ic” creates a list of five initial conditions on the section by
computing the required value ofp1 for the given energy and (q1 = 0, q2 ∈ −[0.2, 0.1], p2 =
0). The scene argument sets the projection to (q2, p2) and the section to q1 = 0. These
commands generate Figures 9.14 and 9.15, though the choice of initial conditions for the
figures was different.
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