
 Procedia Computer Science 16 (2013) 11 – 19

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology
doi: 10.1016/j.procs.2013.01.002

Conference on Syst
Eds.: C.J.J. Paredis, C. Bishop, D. Bodner, Georgia Institute of Technology, Atlanta, GA, March 19-22, 2013.

Model Based Systems Engineering for System of Systems Using
Agent-Based Modeling

Paulette Achesona, Cihan Daglia*, Nil Kilicay-Erginb
aMissouri University of Science & Technology, Rolla, MO,65409,USA

bPenn State University, Malvern, PA, 19355, USA

Abstract

Model Based Systems Engineering (MBSE) follows a model centric approach in contrast to the traditional document centric
approach. The complexity of SoS development lends itself nicely to a model centric approach, especially a model that can
represent the independence of the systems that comprise the SoS. An agent-based model provides a framework where the SoS
and each system are independent entities with individual dynamics and interactions. The System of Systems (SoS) development
depends on contributions from the individual systems each having their own agenda and priorities. System-to-system interactions
are often necessary to accomplish the overall objectives and capabilities of the SoS. This research investigates the SoS
development of an Acknowledged SoS with its associated individual systems and represents this development in an Agent-Based
Model (ABM). The ABM includes decision models for the individual system agents that capture system dynamics and system-to-
system negotiations as well as system to SoS negotiations. The ABM incorporates the key factors that influence SoS and
individual sys

© 2013 Published by Elsevier Ltd. Selection

Keywords: system of systems; model based systems engineering; agent-based model

1. Introduction

Model Based Systems Engineering (MBSE) is becoming a more popular approach to system development as it
provides a communication and verification that transcends the levels of development. MBSE uses a model or set of
models to document and communicate from the system requirements level down to the software implementation
level. When a set of models is used, the models are connected and dependent on each other so that changes in one
model automatically require the update of the set of models. This interdependence among the models provides the
extra level of verification that is not present in document-centered system development.

SoS development does not follow the normal system development process. SoS capability is based on the
contributions of the individual systems that comprise the SoS. This interdependence between the SoS and the
individual systems makes a document-centric development impractical as an exorbitant effort is required to maintain

* Corresponding author. Tel.: +0-310-336-3789; fax: +0-310-336-4070.
E-mail address: pbatk5@mail.mst.edu.

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology

12 Paulette Acheson et al. / Procedia Computer Science 16 (2013) 11 – 19

the SoS development documentation. On the other hand, SoS development being characterized by the individual

This research provides an Agent-Based Model (ABM) of SoS development. The ABM is based on the Wave
Model [1] and can be executed using different initial SoS architectures and different input parameters. This being an
agent-based model the result is not a simple output as is found with discrete event models. But rather the ABM can
be used to determine how different behaviors in different systems along with external parameters such as funding,
priorities, performance, etc. can affect the actual final SoS capabilities, parameters, funding, etc..

2. Background

System of Systems development for the DoD does not follow the normal DoD acquisition process as defined in
DoDI 5000.02. Instead SoS development has been shown to follow a Wave Model process [1] as shown in Figure 1.
The Wave Model of SoS development is like a bus-stop where the bus picks up passengers at a specific time
interval. A passenger arriving at the bus-stop after the bus has left, must wait for the next time the bus arrives.
Similarly, individual systems provide capabilities to the SoS but those capabilities must arrive at the height of the
wave in order for the system capability to integrate into the overall SoS. A system that can provide a capability that
arrives after the SoS integration point (or height of the wave), must wait until the next wave for incorporation into
the SoS.

There are multiple types of SoS, such as Directed or Acknowledged [1], and the type of SoS determines the role
and authority of the SoS in the SoS development. An Acknowledged SoS is by definition dependent on the
individual systems to provide the capabilities that the SoS requires [1]. The SoS has objectives, management, and
funding but does not have the strong influence over the individual systems that a Directed SoS would have [1]. So
the actual capabilities and performance of the SoS is determined by the cooperation of the individual systems with
the SoS and with each other. In this research, an Acknowledged SoS is chosen as the overarching focus of the model
based systems engineering product.

In this research, the SoS Architecture is a key to the SoS development. The importance of architecture to MBSE
was shown in [3]. The ABM begins with an initial proposed SoS Architecture and this architecture reflects the
systems providing capabilities as well as the system-to-system interfaces. This SoS Architecture structure is based
on the chromosome structure described in [7].

Figure 1. Wave Model of SoS Development

Initiate
SoS

Plan
SoS

Update

Evolve
SoS

Arch

Evolve
SoS

Arch

Implement
SoS

Update

Plan
SoS

Update

Continue
SoS Analysis

Implement
SoS

Update

Plan
SoS

Update

Continue
SoS Analysis

Conduct
SoS Analysis

Continue
SoS Analysis

Implement
SoS

Update

Develop
SoS

Arch

13 Paulette Acheson et al. / Procedia Computer Science 16 (2013) 11 – 19

Aircraft

System 2

System 3

SoS

Tank

System 4External Forces

System 1

System N

SoS Agent

+Get Capabilities()
+Get Cooperation()
+Get Architecture Quality()

System 1 Agent

+Get Capabilities()
+Get Cooperation()
+Get Architecture Quality()

System 2 Agent ... +Get Capabilities()
+Get Cooperation()
+Get Architecture Quality()

System N Agent

«datatype»
SoS Architecture

-Receives Capabilities1

-Provides Capabilities1

111111

-Provides Capabilities1

11
-Provides Capabilities1

-Updates

1 1

Model Architecture

3. Approach

The essence of the Acknowledged SoS development is the independence of the individual systems. This
independence invokes the idea of an Object-Oriented software development approach where each Object stands on
its own and has a specified interface to the other objects in the system. Because of this similarity between SoS
development and Object-Oriented software development, the Object-Oriented Systems Approach (OOSA) as
specified in [6] was used to design the model structure.

The independence of the individual systems also leads to the choice of an agent-based model over the discrete
event or system dynamics models. The agent-based model implementation is done using an Object-Oriented
programming language [5], such as C++ or Java, in which each agent or object becomes its own independent entity.
Thus the selection of an agent-based model more accurately represents the real world systems which each have their
own agenda, funding, and priorities. In terms of SoS development, the objects become the agents in the ABM.
Figure 3 shows the Agent Based Model architecture for SoS development.

Figure 2. Objects in the Object-Oriented System Approach for SoS Development

Figure 3. Model Architecture for SoS Development

14 Paulette Acheson et al. / Procedia Computer Science 16 (2013) 11 – 19

SoS Agent System Agent

Connectivity Request (SoS.Ri=f(SoS.A0, SoS.fi, SoS.di))

System Cooperation (To Cooperate or Not to Cooperate)

Model Sequence Diagram
(Set of Chromosomes/Capabilities)

(Iterate to Specified Architecture Quality)

Architecture Quality Fuzzy Assessor
 (Uses Fuzzy Associative Memory)

Affordability/Flexibility/Performance/Robustness Values

Chromosome Quality Fuzzy Assessor
(Uses Fuzzy Associative Memory)

Generate Initial Set of Chromosomes
 (Genetic Algorithm)

Architecture Quality

Architecture, Funding, and Deadline passed to System Agent in Connectivity Request

SoS Agent May Negotiate with System Agent by Sending a Second Connectivity Request

Repeat Sequence until SoS Architecture Converges to a Specified Architecture Quality

System Cooperation Fuzzy Assessor
(Uses Fuzzy Associative Memory)

4. Agent-Based Model

In terms of ABM, an agent is an abstract entity having unique characteristics or attributes and behavior. An agent
is instantiated into a tangible object similar to the way an abstract class in C++ is instantiated into a specific class.
Just as an abstract C++ class can be instantiated several times with different initial settings, an agent can be
replicated with or without different initial settings. An agent is implemented in software as an abstract class in order
to maintain the independence among agents. This independence of agents and consequently the independent
processing, results in a model that more accurately represents the real world situation than is possible in a discrete
event simulation or a system dynamic simulation.

The ABM has one SoS agent that reflects the characteristics and behavior of an acknowledged SoS and a System
agent that embodies the funding, priorities, capabilities, and behavior of the individual systems. This ABM currently
has ten individual System Agents, but future work can have a different number of System Agents. The capabilities
in the SoS are derived from the capabilities provided by the individual systems. The SoS Architecture is a data item
implemented as the chromosome described in [7]. The SoS capabilities, funding, performance, and priorities are
implemented as variables within the SoS agent. The individual system capabilities, funding, performance, priorities
are implemented within the System agent.

Figure 4 shows the sequence diagram for the ABM. The SoS sends a request to the Systems for specific
capabilities. The individual Systems provide a response that indicates level of cooperation and when it will provide
the capabilities. The SoS creates the Updated SoS Architecture and evaluates the architecture for architecture
attributes of Affordability, Flexibility, Robustness, and Performance. Based on the responses from the individual
systems and the SoS Architecture quality, the SoS makes a decision to proceed with what the systems provided or to
negotiate with the systems for different capabilities. The sequence can iterate until a specific architecture quality is
achieved or can cycle as the user collects data on the sensitivity of the architecture to SoS and/or System parameters
such as funding, capabilities, or performance.

Figure 4. Sequence Diagram for the Agent-Based Model

15 Paulette Acheson et al. / Procedia Computer Science 16 (2013) 11 – 19

SoS Changes State by Rate

4.1. SoS Agent Structure

The SoS agent follows the SoS development as described in the Wave Model [1] in Figure 1 [1]. The SoS Agent
starts in the Initialize SoS state and then transitions to the Develop/Evolve SoS Architecture state. From the
Develop/Evolve SoS state, the SoS Agent moves to the Plan SoS Update state and then to the Implement SoS
Architecture state. Figure 5 depicts the states within the SoS agent.

The SoS agent starts with a proposed SoS Architecture and set of desired capabilities that can be specified by the
user. There are multiple methods of determining the initial architecture such as using a genetic algorithm to provide
an optimal initial architecture [8] but that is beyond the scope of this research. Having the initial SoS Architecture,
the SoS agent requests capabilities from the individual system agents. Based on the responses from the individual
systems, the SoS agent creates the Updated SoS Architecture that reflects which systems can cooperate with the SoS

capabilities at subsequent waves when the system cannot provide the capability at the requested wave. The Actual
SoS Architecture is input into the Architecture Roll Up which uses priorities and participation weights specified by
the user and determines the Actual SoS Architecture values for Affordability, Flexibility, Robustness, and
Performance. The Architecture Roll Up considers the architecture values from the individual systems and is a Fuzzy
Inference System. The structure of the SoS agent is shown in Figure 6. Figure 7 has the structure of the Architecture
Roll Up.

Figure 5. SoS Agent State Diagram

16 Paulette Acheson et al. / Procedia Computer Science 16 (2013) 11 – 19

SoS Agent Architecture

«datatype»
Initial SoS Architecture

«subsystem»
Fuzzy Inference Engine

FAM

«datatype»
Affordability

«datatype»
Flexibility

«datatype»
Performance

«datatype»
Robustness

Input

Input

Input

Input

«datatype»
Architecture QualityOutput

Fuzzy Assessor

Architecture Value for Affordability

Architecture Value for Performance

Architecture Value for Robustness

Architecture Value for Flexibility

User Input

Output Architecture
Attribute ValuesArchitecture Roll Up

Update SoS Architecture for which Systems
Cooperate

Input

Input

«datatype»
Actual SoS Architecture Output

«datatype»
Capabilities

«datatype»
Priorities

Input

Input

«datatype»
Actual Capabilities

Determines

User Input

«datatype»
Participation Weights

Input

Figure 6. SoS Agent Architecture

Figure 7. Architecture Roll Up Structure

System Attributes

Architecture Roll Up

Participation Weights

SoS Attribute Value

Affordability
Flexibility
Robustness
Performance

Degree of Participation of
System to Attribute

Fu
zz

ifi
ca

tio
n

Fuzzy
Systems

Affordability
Flexibility
Robustness
Performance

Defuzzification

Affordability Value
Flexibility Value
Robustness Value
Performance Value

17 Paulette Acheson et al. / Procedia Computer Science 16 (2013) 11 – 19

Changes State Based on Cooperation

4.2. System Agent Structure

The System agent embodies all the behavior and attributes of the individual systems. Systems either cooperate
with the SoS request, do not cooperate with the SoS request, or are trying to decide whether to cooperate with the
SoS request. The System agent reflects these states and also includes an initialization state. The System state
diagram is in Figure 8. The Prep state exists so that the SoS agent can initialize before any systems begin processing.
During the Maybe state the System agent is making the decision whether to cooperate with the SoS request. This
decision is based on a inputs set by the user.

The System agent uses a Fuzzy Inference Engine (FIE) to determine cooperation with SoS. The FIE is based on
user inputs as well as Fuzzy Systems that represent the following aspects of a system:

Willingness to Evolve
Acceptance of Future Vision
Ability (resources) to Change
Ability to Influence Change

In addition, the System agent can negotiate with other systems to provide the capabilities requested by the SoS.
Figure 9 shows the architecture of the System agent.

Figure 8. System Agent State Diagram

18 Paulette Acheson et al. / Procedia Computer Science 16 (2013) 11 – 19

Figure 9. System Agent Architecture

5. Conclusion

An Agent-Based Model representing SoS development was presented. The ABM is flexible enough to represent
any type of SoS development, however the details of the Fuzzy Inference Engine and Fuzzy Assessor along with the
Fuzzy Membership functions, are dependent on the characteristics of the SoS domain. The ABM was executed using
initial architectures generated by a genetic algorithm and an Intelligence Surveillance Reconnaissance (ISR) SoS as
the domain. The results showed that multiple waves were necessary to produce a meaningful SoS Architecture.
Running only one epic or one wave did not produce any architecture as the individual systems needed more time
before they cooperated with the SoS.

Acknowledgement

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the
Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. SERC is a federally funded
University Affiliated Research Center managed by Stevens Institute of Technology.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Department of Defense.

«datatype»
Capabilities

«datatype»
Priorities

«subsystem»
Fuzzy Inference Engine

«datatype»
Willingness to Evolve

«datatype»
Acceptance of Future Vision

«datatype»
Ability to Influence Change

«datatype»
Ability (resources) to Change

Input

Input

Input

Input

System Agent Environment

«datatype»
To Cooperate or Not to CooperateOutput

User Inputs

Negotiation With
Other Systems

Input

Input Input

«datatype»
Funding

Input
Determines

19 Paulette Acheson et al. / Procedia Computer Science 16 (2013) 11 – 19

References

1. Dahmann, J., Rebovich, G., Lane, J. A., Lowry, R., & . Baldw
Systems. Proceedings of IEEE International Systems Conference. Montreal.

2. Kilicay-Ergin, N., Acheson, P., Colombi, J., & Dagli, C. H. (2012). Modeling System of Systems Acquisition. 2012 IEEE International
Conference on System of Systems Engineering. Genoa, Italy.

3. Butterfield, M.L.; Pearlman, J.S.; Vickroy, S.C.; , "A System-of-Systems Engineering GEOSS: Architectural Approach," Systems Journal,
IEEE , vol.2, no.3, pp.321-332, Sept. 2008.

4. Gaudiano, P.; Bonabeau, E.; Shargel, B.; , "Evolving behaviors for a swarm of unmanned air vehicles," Swarm Intelligence Symposium,
2005. SIS 2005. Proceedings 2005 IEEE , vol., no., pp. 317- 324, 8-10 June 2005.

5. Macal, C.M. & North, M.J. (2006). Tutorial on Agent-Based Modeling and Simulation Part 2: How to Model with Agents. Proceedings of
the IEEE 2006 Winter Simulation Conference.

6. Acheson, P. (2010). Methodology for Object Oriented System Architecture Development. IEEE Systems Conference.
7. Acheson, P., Pape, L., Dagli, C., Kilicay-Ergin, N., Columbi, J., & Haris, K. (2012). Understanding System of Systems Development Using

an Agent-Based Wave Model. Procedia Computer Science 2012.
8. Khaled Haris, Cihan H Dagli, Adaptive Reconfiguration of Complex System Architecture, Procedia Computer Science, Volume 6, 2011,

Pages 147-152, ISSN 1877-0509, 10.1016/j.procs.2011.08.029.

