
Computer Vision and Image Understanding 117 (2013) 42–55
Contents lists available at SciVerse ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu
Occlusion cues for image scene layering q

Xiaowu Chen, Qing Li ⇑, Dongyue Zhao, Qinping Zhao
State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 January 2011
Accepted 2 October 2012
Available online 23 October 2012

Keywords:
Human perception
Occlusion cues
Occlusion prediction
Layering
1077-3142/$ - see front matter � 2012 Elsevier Inc. A
http://dx.doi.org/10.1016/j.cviu.2012.10.001

q This paper has been recommended for acceptance
⇑ Corresponding author.

E-mail address: liqing@vrlab.buaa.edu.cn (Q. Li).
To bring computer vision closer to human vision, we attempt to enable computer to understand the
occlusion relationship in an image. In this paper, we propose five low dimensional region-based occlusion
cues inspired by the human perception of occlusion. These cues are semantic cue, position cue, compact-
ness cue, shared boundary cue and junction cue. We apply these cues to predict the region-wise occlusion
relationship in an image and infer the layer sequence of the image scene. A preference function, trained
with samples consisting of these cues, is defined to predict the occlusion relationship in an image. Then
we put all the occlusion predictions into the layering algorithm to infer the layer sequence of the image
scene.

The experiments on rural, artificial and outdoor scene datasets show the effectiveness of our method
for occlusion relationship prediction and image scene layering.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

It is well known that an image is not a direct representation, but
a projection of the 3D world. The understanding of an image scene
includes not only the comprehension of the regions presented in
the 2D image plane, but also the 3D spatial layout of the regions
in the real world. We humans can immediately grasp the spatial
relationship of the scene. Our perception includes the immediately
visible portions as well as the estimation of the entire space. It can
be seen from Fig. 1 (the input image is taken from the LHI dataset
[1]) that our perception includes not only the visible textures of the
rhinoceros, grass, ground, tree and sky, but also includes the esti-
mation of the spatial relationship. For example, the rhinoceros
standing on the ground is in front of the tree and grass. The ulti-
mate goal of computer vision is to provide the computer with
the same spatial understanding so that it can see the world as hu-
mans do.

Modern computer vision techniques, such as image segmenta-
tion, object detection and recognition and depth estimation, can
be used to recover a lot of useful information about the image.
Although a great progress has been made, it still remains extre-
mely challenging for current computer vision systems to under-
stand scenes as humans do. When the real world is projected
into the image plane, occlusions will frequently occur between
the objects that are spatially separated. In fact, almost every object
in the image is occluded by, and (or) occludes other objects. Under-
standing occlusion helps us to comprehend the 3D spatial relation-
ll rights reserved.
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ship. Thus, to bring computer vision closer to human vision, we
need to make the computer understand the occlusion relationship.
Recently there are some works paying attention to this topic such
as the 2.1 D sketch [2] and the occlusion boundary detection [3,4].
They mainly focus on the occlusion boundary identification, but
ignore the recognition of the global image. In addition, there is still
a large gap between human perception and occlusion reasoning.
How to bridge this gap is our main concern in this paper.

Previous works on this topic used a wide variety of perception
features to recover the occlusion relationship. Inspired by these
works, we use occlusion features to express the human perception
rules. There are many low-level and high-level features used in the
occlusion reasoning, figure/ground assignment and depth ordering,
such as texture features, color features and gestalt cues. In psycho-
physics and cognition, gestalt cues, including size, convexity, sym-
metry, parallelism, surroundedness and lower-region, are
considered to be useful and important. Inspired by human percep-
tion, we propose five low dimensional region-based occlusion cues
(referred to as ‘five cues’ below), which are semantic cue, position
cue, compactness cue, shared boundary cue and junction cue.

In this paper, we describe our five cues and show their capabil-
ities of occlusion relationship prediction. The experimental results
show that our cues are efficient, and thus demonstrate that our
cues can recover occlusion relationship to some extent. We apply
all the occlusion predictions in an image to infer the layer sequence
of the image scene. Our layer sequence indicates the layer partition
of regions, and each region is assumed to be assigned a unique
layer. Fig. 1 shows the overview of our method. Since our cues
are based on the regions in the image, we first preprocess an input
image to get its semantic label map. Our cues can work well
regardless of how to get the semantic label map. Thus semantic
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Fig. 1. The overview of our method. Inspired by the human occlusion perception, we propose five occlusion cues. We apply these cues to predict the occlusion relationship in
an image and use the predictions to infer the layer sequence of the image scene. In the layer inference process, we first get the semantic label map of a given input image since
our cues are based on the regions. Then we compute values of the occlusion cues to form feature vectors. Next, the trained occlusion classifier is used to predict the occlusion
relationship. Finally, we put all the predictions of the input image into the layer inference algorithm and get the layer sequence which is visualized as a layer map with the
blacker region in the front.
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labeling work is not the main concern in this paper. In the section
of experiments, we perform scene layering based on both the
semantic label maps obtained manually and by semantic labeling
methods, and both give promising results.

The main contributions of this paper include: (1) We propose
five region-based cues to describe the occlusion relationship in
an image, which are to some extent efficient to indicate the occlu-
sion relationship in image scenes. (2) Then we analyze the interac-
tions of these five cues as their importance varies in different
datasets. (3) Finally, we give a selection scheme of these cues when
they are applied to occlusion perception problem.

The remainder of this paper is organized as follows. We review
the relevant literatures in Section 2. Our occlusion cues are de-
scribed in Section 3. Section 4 introduces a previous semantic
labeling work done by us and describes our layering inference pro-
cedure. To test the effectiveness of our cues and validate our re-
sults, three types of experiments are performed in Section 5.
Experimental verification of our cues is demonstrated in Sec-
tion 5.2, and followed by the analysis of the interactions between
cues in Section 5.3. Scene layering results on multiple datasets
are shown in Section 5.4. Section 6 is a brief conclusion.
2. Related works

The last decade has seen an increase of interest in occlusion rea-
soning. In computer vision, the study of occlusion reasoning has
been largely confined to the context of stereo, motion and other
multi-view problems [5–7]. For single-view tasks, the study of
occlusion has been focused on how to recover the 3D information
hidden in the 2D image plane, such as the 2.1D sketch [2], occlu-
sion recovery and contour completion [8,9,3,10,11], image seg-
mentation and depth recovery [4,12–16], and 3D layout recovery
and modeling [17,18]. Nitzberg and Mumford [2] formulated the
2.1D sketch problem as an energy minimization problem. The goal
of the 2.1D sketch is to recover the partial occluding order relation
and to complete the occluded contour simultaneously. Moreover, it
keeps multiple reasonable solutions accounting for the intrinsic
ambiguity caused by occlusion. Wang et al. [5] proposed the con-
cept of layered representation for image coding and motion analy-
sis. Since then, there have been a certain number of research works
on the 2.1D sketch problem.

Ren et al. [4] presented an approach for figure/ground assign-
ment. Yang et al. [12] used the layer order to label the pixels in
the image. Yu et al. [13] integrated occlusion cues with figure/
ground segregation by using hierarchical Markov random field.
Following the energy function defined by Nitzberg and Mumford
[2], Esedoglu and March [15] proposed to segment an image with
depth information but without detecting junctions. Hoiem et al.
[3] proposed a method to recover occlusion boundaries by learning
a CRF model. Liu et al. [16] performed a semantic segmentation of
the scene and used semantic labels to guide the 3D reconstruction.
Hedau et al. [17] used a parametric 3D ‘box’ to model the global
room space, and introduced a structured learning algorithm to
choose the set of parameters. Saxena et al. [18] created 3D models
by using a MRF to infer a set of ‘plane parameters’ that can capture
both the 3-D location and 3-D orientation of small homogeneous
patches in an image.

In all these cases above, they either focus on the perceptual
completion caused by occlusion, or on the application of occlusion
reasoning such as segmentation and 3D modeling, but ignore the
potential perceptual rules. We attempt to find some rules that
can make computer reason occlusion relationship as humans do.
Some of the above literatures have used the cues such as color
and texture [3,16], surface layout [3], boundary [7,10], contour
[8] and junction [19] to reason the occlusion or estimate the pixel
depth in an image. Other literatures have focused on how to bridge
the gap between computer vision and human perception [20–22].
They concentrate on multiple features or cues, such as shape, cur-
vature and orientation, to obtain the region perception. According
to these works, the occlusion cues may be a starting point to the
addressing of our occlusion perception problem.
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Fig. 2. The semantic label map. Each pixel is assigned its unique semantic label (visualized in color).
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3. Region-based occlusion cues

Based on the rules of human perception, we propose five low
dimensional cues for region-level occlusion reasoning and experi-
mentally analyze the performance of our five cues comparing with
other features. More experimental details are presented in Sec-
tion 5.2. In this section, we describe the formulation of the five
cues.

3.1. Semantic cue

In the semantic label map, each pixel of the image is assigned a
semantic label from a predefined label set. As shown in Fig. 2, each
semantic region is visualized in specific color.1 Occlusions usually
occur between regions of different categories, thus the semantic
information can be useful for recovering occlusion relationship. For
example, in rural scene, cow usually occludes the grass. Thus, the
occlusion presence frequency can reveal the occlusion relationship
between semantic regions in the scene. We evaluate the relative
occlusion relationship between different semantic classes, and use
the semantic information of regions as a cue for occlusion perception
problem. Here, we add up the occlusion relationship to form the cor-
responding histogram in the training set. In Eq. (1), given region Ri

and Rj with their semantic labels, the histogram value P is used to de-
fine the model of the semantic cue ShRi ;Rji.

ShRi ;Rji ¼ PðlabelRi
; labelRj

Þ ð1Þ
3.2. Position cue

The position of the region in the image scene indicates the
depth of the region in the original 3D world scene. The shorter
the distance between an object and the camera is, the lower posi-
tion the object located at in the image. For example, the infinite sky
is usually located at the top of the image, and the ground is gener-
ally at the bottom of the image. In [3], position is also considered.
Inspired by this, we take position feature as an important cue for
occlusion prediction. As shown in Fig. 3, the plant is located at
the front, the building is at the second level, and the sky is at the
final level on the top of the image. However, in the case of a over-
hanging tree branch, the position cue will fail. Given two regions Ri,
Rj, we utilize the gravity height to define the position cue model
PoshRi ;Rji so as to characterize the figure-ground relation and the
positions of regions as given by Eq. (2), where yi; yj is the average
height of Ri, Rj, and H is the height of the image.

PoshRi ;Rji ¼ 1=ð1þ expðyj � yi=HÞÞ ð2Þ
1 For interpretation of color in Figs. 2 and 8–10, the reader is referred to the web
version of this article.
3.3. Compactness cue

Compactness, along with other measures such as area, rectan-
gularity and direction, is one of the region-based descriptors. The
bigger the compactness of one region is, the more regular the re-
gion is. We can formulate the compactness occlusion cue by the
contour compactness property. As shown in Fig. 4, regions in these
images which are not occluded by others, such as sheep, car and
cat, are located at the first layer, thus the contours of them are
smooth and regular; the contours of other occluded regions appear
to be irregular. If one region is located at the anterior layer, its con-
tour could be regular and its area could be compact. Thus the com-
pactness of region can be one of the cues for occlusion perception
problem. According to the mathematical definition of compactness
[23], our model of the compactness cue is given by:

ComR ¼ exp �a � L
2

A

( )
ð3Þ

where L is the contour length of region R and A is the area of R. The
weighting parameter a is set to be 0.05.
3.4. Shared boundary cue

Boundary is accepted as a useful cue for occlusion reasoning in
previous works [3,4]. We take boundary as an important percep-
tual cue in our occlusion relationship prediction. When region Ri

occludes region Rj, the shared boundary between them appears
to be integrally convex towards Ri. As shown in Fig. 5, if the shared
boundary turns to be more convex apparently, it is more likely that
one region occludes the other. Notice that in some situations, such
as the underneath of animals or bridges, the boundary cue may fail.
We use the convexity of the shared boundary as one of important
occlusion cues to measure the occlusion relationship between
adjacent regions. The convexity of boundary can be described by
the curvature mathematically. To describe the relation between
the occlusion and the shared boundaries [24,25], we define the
function utilizing curvature, as shown in the following equation:

gð L
!Þ ¼ 1 1þ exp �

Z
l
jds=l

� �� ��
ð4Þ

where j is the curvature, and l is the length of the shared curve L
!

.
According to the model above, we then define the model of the
shared boundary cue in the following equation:

BryhRi ;Rji ¼
XN

i¼1

gð L
!

iÞ
.

N ð5Þ

where N is the sum of the shared curves between Ri and Rj.
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Fig. 3. Illustration of the position cue. The plant located in the lower part of the image is in front of buildings.
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Fig. 4. Illustration of the compactness cue. Regions which have more regular contours may occlude other regions.
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Fig. 5. Illustration of the shared boundary cue. When two regions are adjacent, the convexity of the boundary can show the occlusion to some extent.
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3.5. Junction cue

The importance of junction has been emphasized by Gestalt
psychologists [26] and investigated in human vision [19]. Junctions
are the atoms of many complex processes or tasks, such as depth
and motion estimation, segmentation and recognition. This feature
can provide useful local information about geometric properties
and occlusions. As shown in Fig. 6, when three regions are adjacent
and occluded, one region generally occlude the other two, which
results in junction. As junction is demonstrated in a variety of pat-
terns, we need to extract the appropriate variables to describe it
accurately.

To describe the junction cue [27,28], we simplify the curves of
junction into line vectors, and use the angles between lines as
the variables. As shown in Fig. 6, the short curves and center of
the junction is detected, and then the short curves are transformed
into vectors according to the average position of the curves. Finally
we compute the angles between the vectors and use the three an-
gle values to describe the junction Jt = (h1, h2, h3). For regions Ri, Rj,
Rk with junctions, the model of junction cue is given by Eq. (6),
where arccosðhRi

Þ is the corresponding angle of region Ri and the
denominator is the sum of the three angles.

JunhRi ;Rji ¼
arccosðhRi

ÞP
arccos Jt hRi

; hRj
; hRk

� �� � ð6Þ
4. Layer inference

Based on the simple intuition that the layer sequence of the im-
age scene is the representation of occlusion phenomenon, we at-
tempt to obtain the sequence to verify the effectiveness of our
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Fig. 6. Illustration of the junction cue. When three regions are adjacent, their junction can characterize the occlusion phenomenon.
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Fig. 7. Illustration of the 2D representation and the layered representation. The
input image scene is on the upper left; the semantic label map is on the lower left,
which includes the 2D regions, the semantic labels and junctions; images on the
right show the layered representation of the given image scene.

Table 1
Cues for comparison.

Cues Dim Cues Dim

F1: Semantic 1 F5: Junction 1
F2: Position 1 F6: Appearance 51
F3: Compactness 2 F7: Boundary Contrast 4
F4: Boundary 1 F8: Shape 17
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occlusion cues. In this section we describe the occlusion prediction
and layer inference.

4.1. Semantic labeling

Since our cues are region-based, we need to do semantic label-
ing work at first. We find that the occlusion cues can work well on
the semantic label map given either by users or by semantic label-
ing methods. We briefly describe the semantic labeling work as it
is not the main concern in this paper. Here we use our previous
work [29] to get the semantic label map while some other works
can also be taken into consideration [16,30]. Our previous work
propose a fast geodesic propagation algorithm that integrates rec-
ognition proposal and image compatibility into a graphical repre-
sentation. The geodesic distance is defined on a hybrid manifold,
combining the color and boundary features with the recognition
proposal map. Based on the geodesic distance, the semantic label-
ing is simultaneously propagated from the initial seeds of all clas-
ses to the rest of image pixels.

We take scene layering experiments with the semantic label
map given in two ways, by manual labeling and by semantic label-
ing methods. The details of the experiments are introduced in
Section 5.4.

4.2. 2D representation

The proposed work makes the assumption that the semantic
segmentation result of an image scene has been obtained, though
the semantic labeling work itself is a very hard problem in com-
puter vision today. We define the 2D representation of the image
to organize features in the preparation phase. As shown in Fig. 7,
the 2D representation W2D of the image consists of a set of 2D re-
gions VR, a set of semantic labels SR and a set of junctions JT.

W2D ¼ ðVR; SR; JTÞ ð7Þ

The region set VR = (R1,R2, . . . ,RN) contains all the information of
regions such as area, contour, position and shared boundary
curves. The semantic label set SR ¼ ðSR1 ; SR2 ; . . . ; SRN Þ consists of
the region semantic labels. The junction set JT = (J1, J2, . . . , Jt) consists
of junctions detected from the semantic label map. The region set,
semantic label set and junction set are firstly extracted from the
image to make preparation for the inference process.

4.3. Layered representation

Since our desired representation is the reasonable layer se-
quence, we define the solution structure of the layered representa-
tion WL as a layer sequence, which indicates the layer partition of
regions.

WL ¼ ðRL1 ;RL2 ; . . . ;RLN Þ ð8Þ
where RLi
indicates the region which is assigned layer Li. Our objec-

tive is to infer the optimal layer sequence according to the 2D infor-
mation of the image. Here, we suppose each region is assigned a
unique layer. In Fig. 7, the layered representation of the input image
is on the right column, indicating in which layer an region is
located.

4.4. Occlusion prediction using Adaboost

After the preparation of cues, the next stage of our method is to
get the occlusion relationship predictions and the confidences of
these predictions. We define a preference function PREF which is
a combination of a set of binary indicator functions. PREF inter-
prets the primitive features as a score that shows the possibility
of corresponding occlusion with its features. The preference func-
tion is formulated in Eq. (9), where Ri � Rj means that region Ri oc-
cludes region Rj and Ri � Rj means that region Rj occludes region Ri.
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Fig. 8. The accuracy of occlusion prediction with different number of combination cues. The x-axis indicates the number of combination cues and the y-axis indicates the
accuracy. There are many combinations with the same number of cues. Each bar demonstrates the accuracy of the best combination among these combinations and the
corresponding components. The color legend of the eight type of cues is listed on the right. For example, there are 28 combinations which are formed by two types of cues out
of the eight types of cues. The best accuracy percentage of these 28 combinations is listed above the 2nd bar. Meanwhile, the 2nd bar shows that the best among the 28
combinations consists of our semantic and position cues. The importance of these two components are visualized in the form of length. Our semantic cue takes a more
important role than our position cue in this combination. Comparing these eight bars, we can see that our five cues perform well.

Fig. 9. Accuracy differences of 31 combinations. This figure shows the accuracy
differences between adjacent and non-adjacent regions in all the combinations of
our five cues (31 combinations). Each point illustrates the accuracy difference
between adjacent and non-adjacent regions in the case of the same combination.
We get the difference by subtracting the accuracy of adjacent regions with the
accuracy of non-adjacent regions. Two combinations which improve the accuracy
significantly are denoted in color circles. The blue one has only the junction cue and
the red one has the combination of the boundary and junction cues. Difference of
accuracy is listed above the point.
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Fig. 10. Occlusion prediction comparison of five PR curves of only one cue with the
PR curves of all five cues on the dataset of 200 rural images.
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PREFðRi;RjÞ ¼
def score > 0; Ri � Rj

score < 0; Ri � Rj

�
ð9Þ
Larger magnitude of the score indicates higher possibility of this
occlusion relationship. There are many algorithms to learn the
preference function [31]. We choose Adaboost [32], an algorithm
to learn strong classifier by using a set of weak binary classifier lin-
early, to learn our PREF function. The form of Adaboost classifier is
as:

PREFðRi;RjÞ ¼ hðxÞ ¼
XT

t¼1

athtðxÞ; htðxÞ ¼ 1½ftðxÞ > ht � ð10Þ

where h(x) is the confidence score of the prediction, ht(x) is an indi-
cator weak classifier and is chosen to be decision stump, and ht is
the threshold for weak classifier t. Algorithm 1 shows our revised
version of Adaboost algorithm, which obtains the output of the final
classification as well as the score of prediction confidence. For
example, if PREF(Ri, Rj) and PREF(Rj, Ri) are both positive and the
magnitude of PREF(Ri, Rj) is larger than that of PREF(Rj, Ri), we can
conclude that it is more possible that region Ri occludes region Rj.

Algorithm 1. Revised version of Adaboost algorithm

Require: (fv1, y1) � � � (fvm, ym) where fvi 2 FV, yi 2 Y = {�1,+1}
Ensure: the final hypothesis H(fvi) and PREF scores PREF(fvi).

1: Initialize D1(i) = 1/m.
2: Update the Weighting.
for each t, t 2 {T} do
(1) Train weak learner using distribution Dt.
(2) Get weak hypothesis ht: FV ? {+1,�1} with error
et ¼ Pri;Dt ðhtðf v iÞ – yiÞ:
(3) Choose at ¼ 1
2 ln 1�et

et

� �
.

(4) Dtþ1ðiÞ ¼ DtðiÞ
Zt
� e�at if htðfv iÞ ¼ yi

eat if htðfv iÞ – yi

�
¼ DtðiÞ expð�at yihtðfv iÞÞ

Zt

where Zt is a normalization factor.
end for

3: Then output the final hypothesis and PREF scores:
(1) Hðf v iÞ ¼ sign

PT
t¼1athtðf v iÞ

� �
; i ¼ 1 � � �m:

(2) PREFðf v iÞ ¼
PT

t¼1athtðf v iÞ; i ¼ 1 � � �m.

According to the equations in Section 3, we can compute the re-
sponse values which indicate the occlusion relationship of two re-
gions. We then form a 6-dimension feature vector consisting of
these response values of five cues. For region Ri and Rj, the feature
vector FV is symbolized as below:

FVhRi;Rji ¼ ShRi ;Rji; PoshRi ;Rji;ComRi
;ComRj

;BryhRi ;Rji; JunhRi ;Rji

� �
ð11Þ



(b) position+”X”(a) semantic+”X”

semantic+position
semantic+compactness
semantic+boundary

(d) boundary+”X”(c) compactness+”X”

semantic+junction
position+compactness
position+boundary
position+junction
compactness+boundary
compactness+junction
boundary+junction
all cues

(e) junction+”X”

Fig. 11. Occlusion prediction comparison of the PR curves of two cues with the PR curves of all five cues on the dataset of 200 rural images.
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where ShRi ;Rji, PoshRi ;Rji, BryhRi ;Rji and JunhRi ;Rji are the response values of
the semantic cue, position cue, shared boundary cue and junction
cue; ComRi

and ComRj
are the compactness response values of region

Ri and Rj respectively. FVhRi, Rji is different from FVhRj, Rii, and their
response values are also different. FVhRi, Rji is considered to be a po-
sitive occlusion relationship sample if Ri occludes Rj in an image,
otherwise it is a negative sample.

4.5. Inference of layer sequence from occlusions

Many methods generally make use of some mechanism to
search the solution in the whole solution space, giving rise to
low searching speed. Therefore, we use a permutation algorithm
to search for the layer sequence to improve the efficiency. Our de-
sired optimal solution WL is the order that can achieve the best
agreement with the agreement function [31], and the function is
defined as:
WL ¼ q� ¼MAXq2PfAGREEðq;PREFÞg ð12Þ
AGREEðq;PREFÞ ¼

X
ðRi ;Rj :qðRiÞ�qðRjÞÞ

PREFðRi;RjÞ ð13Þ
where q is an order of region instances in an image. If and only
if region Ri is in front of region Rj in this order, then q(Ri) � q(Rj).
The agreement of a fixed order is the total sum of all PREF val-
ues of this order under the condition that q(Ri) � q(Rj). Then
how to find an optimal scene layer sequence is equal to how
to find an order that can achieve the best agreement with this
function.
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Algorithm 2. Permutation algorithm

Require: An region instance set V of an image; preference
function PREF

Ensure: An approximate optimal layer sequence WL

1: Let P be the set of all permutations of instances in V.
2: For each p 2 P do pðpÞ ¼

P
ðRi ;Rj2VÞ\ðRi–RjÞPREFðRi;RjÞ.

3: Let p(p⁄) = arg maxp2Pp(p).
4: Let WL = p⁄.

We adopt a brute-force algorithm that enumerates all permuta-
tions of the region instances in an image to find the approximate
optimal layer sequence. This algorithm, as shown in Algorithm 2,
is based on the idea that the optimal solution must be the one that
can maximize the sum of the confidence of all occlusions in an im-
age. We can deterministically find the solution for image scene lay-
ering with less searching time.
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Fig. 12. Occlusion prediction comparison of the five PR curves of only one cue with
the PR curve of all five cues on the dataset of 250 artificial images. The most
important one is position cue.
5. Experiments

The experiments consist of three parts. The first part is the ver-
ification of our five cues. The second part demonstrates the inter-
actions of these five cues. The third part shows our scene
layering results on multiple datasets.

5.1. Datasets

We use three datasets: the datasets of rural image scene, artifi-
cial scene and outdoor scene. The rural scene dataset, taken from
Ref. [1], is composed of 200 images with 17 categories, such as
sky, water, horse, grass, and dog. The dataset of artificial scene
[1] consists of 250 images and the dataset of outdoor scene con-
sists of 645 images (from the Internet). Both of these two datasets
include 59 categories.

All the images are assigned the ground truth of semantic label
and occlusion layer manually. For an image, we manually assign
each semantic region a unique occlusion layer according to human
occlusion perception. See the layered representation in Fig. 7 for
example. We assign the sheep the first layer, though part of the
grass is more closer than the sheep in depth. Then the second layer
is the grass and the third layer is the sky. The occlusion ground
truth can be obtained according to the layer number. For example,
region in layer 1 occludes regions in layer 2 and layer 3. We assume
that any two regions have an occlusion relationship and our perfor-
mance metric of occlusion prediction is segment-wise over regions.

5.2. Capabilities of cues

We randomly select a subset from each dataset used in this pa-
per and form these subsets into a large dataset, on which the ver-
ification of our five cues is performed. We find that our cues can do
better than others to some extent. There are totally eight types of
cues for comparison as shown in Table 1. The appearance cue,
shape cue and boundary contrast cue are from previous works.
Note that some of our five cues are inspired by previous works
such as the position cue and junction cue while their formulations
are different.

The appearance features include the mean and standard devia-
tion of 17 raw filter responses used in [33], the mean and standard
deviation of boosted classifier scores for each pixel, and the log-
determinant of all the deviations. The boundary contrast features
measure the contrast along the boundary of the region relative to
its interior as did in [34]. The shape features consist of region area,
region size, perimeter length, residual to boundary lines and first-
and second-order shape moments. Features F6–F8 are high dimen-
sional and sensitive to the low level features of images.

We apply random forests [35] to predict the importance of each
type of cue on identifying occlusions and the influence of the num-
ber of cues. Fig. 8 demonstrates the best occlusion prediction accu-
racy of different number of combinations cues. We can see that the
combinations of three, four and five cues perform better than oth-
ers. There are many combinations with the same number of cues.
In the combinations of three type of cues, our semantic, position
and boundary cues perform the best. In the combinations of four
type of cues, our semantic, position, compactness and boundary
cues perform the best. In the combinations of five type of cues,
our five cues perform the best. Since our cues perform better, we
take them as occlusion cues. In addition, our low-dimensional cues
can be extracted conveniently. Note that our compactness cue is
more important than boundary cue in the 4th and 5th bars, though
the 3rd, 4th and 5th bars have the same accuracy. Considering the
dataset bias, we take compactness and junction cues into consider-
ation as their contributions may be different in other datasets. Be-
sides, we find that the junction cue works efficiently in the case of
predicting occlusion relationship between adjacent regions as
shown in Fig. 9. That is another reason that why we still take the
junction cue as one of our five occlusion cues. Since our five cues
can make totally 31 combinations, there are totally 31 points in
Fig. 9. Each point illustrates the accuracy difference between adja-
cent and non-adjacent regions in the case of same combination.
Two combinations which improve the accuracy significantly are
denoted in color circles, both containing the junction cue. The blue
one has only the junction cue and the red one has the combination
of boundary cue and junction cue.
5.3. Interactions of the five cues

To outline the interactions of the five cues and the influence of
the nature of cues in the process of occlusion prediction, we per-
form experiments to find the interactions of the cues by using dif-
ferent combinations. As the interactions of the cues may vary in
different datasets, we perform experiments on two datasets: the
rural scene dataset (Figs. 10 and 11) and the artificial scene dataset
(Figs. 12 and 13).

We firstly test the importance of each cue on the rural scene
dataset. Fig. 10 shows the occlusion prediction comparison of five
PR curves of only one cue with PR curve of all five cues. We can see
that the semantic cue is more important than the other four. The



(a) semantic+X (b) position+X

semantic+position
semantic+compactness
semantic+boundary

(d) boundary+”X”(c) compactness+”X”

semantic+junction
position+compactness
position+boundary
position+junction
compactness+boundary
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boundary+junction
all cues

(e) junction+”X”

Fig. 13. Occlusion prediction comparison of the PR curves of two cues with the PR curve of all five cues on the dataset of 250 artificial images.

Table 2
Interaction of five cues tested on rural dataset.

Semantic Position Compactness Boundary Junction

Semantic � " " " "
Position " � " " "
Compactness ? " � " ?
Boundary " ? " � ?
Junction " " " " �

Table 3
Interaction of five cues tested on artificial dataset.

Semantic Position Compactness Boundary Junction

Semantic � " " " "
Position " � " " "
Compactness ; ? � ; ;
Boundary ? ? " � ?
Junction " " " " �
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second important cue is the position and the third important cue is
the junction. It is hard to tell the difference between compactness
and boundary. We perform the following experiments to make
clear the interrelations of these five cues.

In Fig. 11, we compare the performance of different combina-
tions of two cues. (a) demonstrates the comparison of ‘seman-
tic + X’ curves, where X indicates the other four cues. The
‘semantic + position’ curve is better than the others and ‘seman-
tic + compactness’ curve is worse. (b) Comparison of the ‘posi-
tion + X’ curves, where X indicates the other four cues. The
‘semantic + position’ curve performs better than the other three
curves except ‘all cues’ curve. Thus we conclude that the interac-



Fig. 14. Some scene layering results of rural scene dataset. The grayscale of regions stands for the layer of them. The blacker the region is, the more forward its corresponding
layer is. The left column is the initial image, and the corresponding layered map is on the right column.

Fig. 15. Some scene layering results of the artificial scene dataset. The corresponding layer of the blacker region is more forward.
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tions of the compactness, boundary and junction cues on the posi-
tion cue are almost the same. (c) Comparison of the ‘compact-
ness + X’ curves. We can obtain the order of the interactions of
four cues on the compactness cue. From the most influential to



Fig. 16. Some scene layering results of the outdoor scene dataset. The corresponding layer of the blacker region is more forward.

Fig. 17. The PR curve of the occlusion classification on three datasets. The average
classification accuracies are 92.9%, 82.7% and 87.4% in the datasets of rural, artificial
and outdoor image scene.
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the least, the order of the interactions is the semantic, position,
junction and boundary cues. (d) Comparison of the ‘boundary
+ X’ curves. The influence order of the interactions is the semantic,
position, junction and compactness cues. (e) Comparison of the
‘junction + X’ curves. The ‘semantic + junction’ curve performs bet-
ter than the ‘position + junction’ curve, while the interactions of
the compactness and boundary cue on the junction cue are hard
to differentiate. Then in the case of the combination of two cues
in the rural scene dataset, we can select semantic and position cues
for occlusion prediction. Thus we can get the similar performance
with the case of all cues and reduce the cost of computation.

Comparing Fig. 10 with Fig. 11, we get the interactions of these
five cues on the rural scene dataset concluded in Table 2. Here, we
use ‘"’ to indicate the enhancing effect, ‘;’ to indicate the weaken-
ing effect, ‘?’ to indicate no apparent variation, and ‘�’ to indicate
no such experiments. For instance, ‘compactness ? semantic’
means that the combination of the semantic cue with the compact-
ness cue will result in no apparent variation from the case when
only the semantic cue is used. The position cue companied with
the compactness cue can lead to better performance than the case
of only the position cue, as displayed by ‘compactness " position’.
We give this scheme of the interactions of cues, not only to view
their importance intuitively, but also to help researchers select
the cues they need. Comparisons of three cues and four cues are
shown in Supplementary materials.

Fig. 12 shows the comparison of five PR curves of one cue with
the PR curve of all cues on artificial dataset. The most important
one is the position cue. That is different from the rural scene. The
second important cue is the semantic cue. The importance se-
quence of remaining cues is the junction, boundary, and compact-
ness cues.

In Fig. 13, we compare the performance of different combina-
tions of two cues on the artificial dataset. (a) Comparison of
‘semantic + X’ curves. The ‘semantic + position’ curve is most simi-
lar to the ‘all cues’ curve, and the ‘semantic + compactness’ curve is
the worst one. (b) Comparison of the ‘position + X’ curves.
Although they are almost similar to the ‘all cues’ curve, we can still
see that the ‘semantic + position’ curve is slightly better than the
others, while the ‘position + boundary’ curve is slightly worse.
Then the most influential cue to the position cue is the semantic
cue, while the least is the boundary cue. (c) Displays the ‘compact-
ness + X’ curves. We can conclude the order of interactions of four
cues on the compactness cue. The order is the position, semantic,
junction and boundary cues. (d) Displays the ‘boundary + X’
curves. Although the influence of the semantic and position cues
on the boundary cue is hard to differentiate, they all perform better
than the junction and compactness cues. (e) Displays the ‘junc-
tion + X’ curves. It is apparent that the ‘position + junction’ curve
gets similar performance to ‘all cues’. The influential order is the
position, semantic, boundary and compactness cues. Then in the



Fig. 18. Our scene layering results given predicted semantic labels. Semantic label maps from row one to row three are given by our previous work [29] and the last two rows
are given by Liu et al. [16]. From left to right: the input image, semantic label map and our layering result.
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case of the combination of two cues in the artificial dataset, we can
select the semantic and position cues. Thus we can get the similar
performance with the case of all cues and reduce the cost of
computation.

Comparing Fig. 12 with Fig. 13, we conclude the interactions of
these five cues on the artificial dataset as shown in Table 3. The
symbols are the same with those in Table 2, while the interactions
are slightly different. Obviously, the influence of the compactness
cue on other four cues varies between these two datasets.

5.4. Scene layering of multiple datasets

To evaluate the performance of the scene layering method pro-
posed, we test it on datasets of rural image scene, artificial scene
and outdoor scene. The layering demo is shown in Supplementary
video.
At first, we test our method on the dataset of rural scene. The
region number in each image of this dataset is in the interval
[3,8], thus there are totally 2926 occlusion pairs in this dataset.
In this part of experiments, we randomly select 100 images for
the learning process and the rest 100 images for the testing
process.

Some results of the scene layering are shown in Fig. 14. The ini-
tial image is on the left with its corresponding layered map on the
right. The grayscale of the region stands for the layer of it in the
layered maps, where the blacker region is assigned a more forward
layer. The results demonstrate that our method can handle the
images of rural scene and our cues have the capacity to character-
ize the occlusion relationship and layer information.

Meanwhile, we test our method on the datasets of artificial
scene and outdoor scene. We randomly select 125 images for train-
ing and the rest 125 images for testing in the dataset of artificial



(a) Input (b) Our layering
results

(c) Our occlusion
boundaries

(d) Occlusion
boundaries of [3]

Fig. 19. Comparison of occlusion identification with Hoiem et al. [3]. (a) The input image. (b) Our scene layering result. (c) Our occlusion result. We visualize our occlusion
prediction results in the same form of Hoiem et al. [3]. Red lines denote occlusion boundaries, arrows indicate which region (left) is in front. The region on the left side of an
arrow occludes the region on the right side. (d) Occlusion results of Hoiem et al. [3].
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scene, 345 images for training and 300 images for testing in the
dataset of outdoor scene. There are totally 6420 occlusion pairs
in the artificial dataset and 8490 occlusion pairs in the outdoor
dataset. Results of these two datasets are displayed in Figs. 15
and 16. The input images are on the left column and their corre-
sponding layered maps are on the right. A blacker region is as-
signed a more forward layer. Running 5-fold cross-validation, the
PR curves of the three datasets displayed in Fig. 17 show the aver-
age performance with 50 rounds of Adaboost. The average classifi-
cation accuracies are 92.9%, 82.7% and 87.4% in the datasets of
rural, artificial and outdoor scene.

Besides, we present the layering results of our method based on
our previous semantic labeling work and other semantic labeling
work [16] (Fig. 18). Our scene layering method can work well given
the predicted semantic labels.

Hoiem et al. [3] proposed a method to recover and label the
occlusion boundary using many cues. Our work is similar with
theirs. Note that Hoiem et al. [3] identifies the boundaries and rea-
sons occlusion relationship simultaneously while our occlusion
reasoning is based on the regions in the image. Thus, we compare
our work with theirs and visualize our occlusion prediction in the
same form of Hoiem et al. [3], as shown in Fig. 19. The location of
occlusion boundary using our method is more precise than [3] as
displayed in the top three rows. Moreover, our occlusion classifica-
tion is more accurate than [3]. Take image in the fourth row for
example, our occlusion prediction of the boundary around the tree
and sky is correct while [3] gets wrong prediction.

6. Conclusions

In this paper, we attempt to enable the computer to understand
the 3D world behind the 2D image plane as humans do. Inspired by
human occlusion perception, we propose five cues to indicate the
occlusion relationship, and show their capabilities of occlusion
prediction through experiments. Based on the semantic label
map of the image, we predict the occlusion relationship with our
five cues and infer layer sequence of the image scene. As the exper-
imental results shown in Section 5, the importance and interac-
tions of these five cues vary in different datasets, and we thus
give the selection scheme of cues not only to view their importance
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intuitively, but also for researchers to select the cues they need.
Promising experimental results demonstrate that the proposed
layering method can be used in the datasets of rural, artificial
and outdoor scenes. The main limitation of our approach is that
our layering method work on the basis of semantic labeling image,
while actually the semantic labeling itself is a challenging problem
in computer vision that rich literatures have concentrated on to-
day. This limitation should be overcome by giving the semantic la-
bel map simultaneously with the scene layered map. It should also
be noted that we propose only five cues for the computer to under-
stand the occlusion relationship, but there may be other cues to be
discovered. As [3] has made use of 3D surface cues, which are also
under our consideration for future work, we should also take into
account geometry features. Then we can combine the work of
semantic labeling together with occlusion prediction by using
more promising cues. Furthermore, the motion-based features
can be extended when the perception of occlusion is applied to vi-
deo sequences.
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