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Theorem12.5:  for any set of n non-intersecting triangles 

in       a BSP tree of size             exists. Moreover, there are 

congurations for which the size of any BSP is Ω(    ).

The might give you the idea that BSP trees are

useless in practice. Fortunately this is not the case: in

many practical situations, BSP trees perform just fine.

The problem is that certain inputs. We would like our

analysis to reflect this: it should give different bounds for

different types of input.(easy and diffcult input)



We must introduce another parameter, which

distinguishes easy inputs from difficult ones. what are

easy inputs?

Intuitively, easy inputs are inputs where the objects are

relatively well separated, whereas difficult inputs have

many objects packed closely together.

We can recognize type of input by parameter density of

a scene.



Density of a scene:

density distribution parameter for sets of objects: density

diam(o):= diameter of object o 

density of set S of objects:
minimum     such that for any ball b :
#{       :o intersects b, diam(o)    diam(b)}



Examples:

b

A set of eight segments with density 3



Set of n disjoint triangles can

have density n

Any set of n disjoint

squares in the plane

has density at most 9.



Result:

if the density is low then the objects are reasonably well

separated, and if the density is high then there are

regions with many objects close together.

Problem: we want to show that if the density is low then 

we can find a small BSP.

randomized algorithm of the previous section is not good, 

because even for inputs of low density, it may produce a

BSP whose expected size is quadratic.



New Algorithm

The idea behind the algorithm:

Let S be a set of objects in ,S can contain

segments, discs,triangles, etc. and let be the density

of S.

each object , a small set of points, we call them

guards.



Let bb(o) denote the bounding box of o,that is the

smallest axis aligned rectangle that contains o. The 

guards that we define for o are simply the four vertices 

of bb(o). Let G(S) be the multiset of 4n guards.



for any square   , the number of objects intersecting    is

not much more than the number of guards inside    .

The next lemma gives only an upper bound on the

number of objects intersecting a square, not a lower

bound: it is very well possible that a square contains

Many guards without intersecting a single object. 



Lemma 12.6

Any axis-parallel square that contains k guards from

G(S) in its interior intersects at most k+4   objects from

S.

Proof:

Obviously there are at most k objects that have a guard

Inside    .

The density of    is at most                 . We have to show

that at most 4   objects from    can intersect    .



Three states for an object             intersects 

1) The projection of bb(o) onto the x-axis contains the 

projection of s onto the x-axis

2) The projection of bb(o) onto the y-axis contains

the projection of s onto the y-axis

3) Both of 1 and 2







Proof (continue)

For three states we have 

Now cover s with four discs                    of diameter   

The object o intersects at least one of these discs,       . We 

charge o to       . 



Since    has density at most    , each     is charged at most

times.Hence,    intersects at most 4   objects from    .

Adding the at most k objects not in   .

We find that    intersects at most k+4    objects from S.

We have:



Lemma 12.6 suggests the following two-phase algorithm

to construct a BSP.

In the frst phase, we recursively subdivide U into squares

until each square contains at most one guard in its

interior.

By Lemma 12.6, each leaf region in the resulting

subdivision intersects only a few objects at most 1+4

Second phase of the algorithm then partitions each leaf

region further, until all objects are separated.



one problem in new algorithm

The number of leaf regions can be very large.This

happens for example when two guards lie very close 

together near a corner of the initial square U.Therefore

we modify the frst phase of the algorithm to guarantee it 

producesa linear number of leaf regions.



Two modications for improve algorithm

The frst modication is that we stop when the region 

contains k or fewer guards, for some suitable parameter

K   1.

The second modication is: Consider the four quadrants of         

. If at least two of them contain more than k guards in 

their interior, then we proceed as before by applying a



quadtree split.

If there is exactly one quadrant, say   , with more than k 

guards in it, we perform a shrinking step.

Step 1: replace objects by vertices of bounding boxes 

(=guards)



Step 2: construct BSP for resulting set of points

- if at least two quadrants contain points: split into 

quadrants

- if exactly one quadrant contains points: shrink



We shrink    by moving its bottom right corner 

diagonally to the north-west until at least k guards are 

outside the interior of    .

quadtree split shrinking step





Lemma 12.7

PHASE1(U,G(S),k) produces a BSP tree with O(n/k)

leaves, where each leaf region intersects at most k+4

objects.

Proof: first part

(PHASE1(U,G(S),k) produces a BSP tree with O(n/k)

leaves)

- number of leaves = number of internal nodes + 1

- N(m): maximum number of internal nodes in a BSP tree

created



- by PHASE1(  ,G,k) when card(G) = m.

- If m    k, no splits are performed, and so N(m) = 0 in this

case.

- Otherwise, a quadtree split or a shrinking step is

applied to . This results in three internal nodes, and four

regions in which we recurse.

- : the numbers of guards in the four regions,

I :={i : 1     i 4 and mi > k}

N(m)     3 +

We will prove by induction that N(m)    max(0, (6m/k)-3).



This is obviously true for m    k, and so we now assume

that m > k.

A guard can be in the interior of at most one region, 

which means that

If at least two quadrants

of σ contain more than k guards, then card(I)  2 and we

have



If none of the quadrants contains more than k guards, 

then the four regions are all leaf regions and N(m)= 3.

Together with the assumption m > k, this implies N(m)

(6m/k)−3. The remaining case is where exactly

one quadrant contains more than k guards. In this case

we do a shrinking step. Because of the way a shrinking

step is performed, a shrunk quadrant contains

fewer than m−k guards and the other resulting regions

contain at most k guards. Hence, in this case we have



Proof: second part

(each leaf region intersects at most k + 4   objects)

If a leaf region is a square: Lemma 12.6 implies that it 

intersects k + 4   objects.

leaf regions are not square: a non-square leaf region must 

have been produced in a shrinking step.We use this step 

and prove it.



How can we use Lemma 12.7 to construct BSP tree?

the larger k is, the fewer leaf regions we will have. On the

Other hand, a larger k will also mean more objects per

leaf region.

Setting k :=     will do this. the number of leaf regions will

decrease by a factor λ while the maximum number of

objects per leaf region only goes from 1+4λ to 5λ.

One problem: we do not know , the density of the input

scene, and so we cannot use it as a parameter in the

algorithm.



Solution:

We guess a small value for λ, say λ = 2. Then we run 

PHASE1 with our guess as the value of k, and we check

whether each leaf region in the resulting BSP tree

intersects at most 5k objects. If so, we proceed with the 

second phase of the algorithm; otherwise, we double

our guess and try again. This leads to the following

algorithm.





Theorem 12.8

for any set S of n disjoint line segments in the plane, 

there is a BSP of size O(nlog ), where     is the density of

S.

Proof:

When the while-loop ends in line 7, we have at most k 

objects at each leaf region. 

denote the value of k when we get to line 8. according 

to Lemma 12.1, each tree        has (expected) size O(     

log       ) when 2DRANDOMBSP is used in line 9.



there are O(n/   ) leaf regions, the total size of the BSP 

tree is

O(nlog ). Since         2     , this proves the theorem



Effciency of The algorithm for a set of segments

The algorithm that we have just described works very

well for segments in the plane: it produces a BSP whose

size is O(nlogn) in the worst case and O(n) when the

density of the input is a constant.

What happens when we apply this approach to a set of

triangles in       ?

Theorem 12.9:

For any set S of n disjoint triangles in       , there is a BSP

of size O(n   ), where      is the density of S.



End 


