r//] \\
W/

Bsp Trees for Low-Density Scenes

Neda Ezzati

University of Yazd
Spring 1391

Theorem12.5: for any set of n non-intersecting triangles
in R®a BSP tree of sizeO(?’IZ) exists. Moreover, there are

congurations for which the size of any BSP is Q(?’lz).

The Q(n*) might give you the idea that BSP trees are
useless in practice. Fortunately this is not the case: in
many practical situations, BSP trees perform just fine.
The problem is that certain inputs. We would like our
analysis to reflect this: it should give different bounds for

different types of input.(easy and diffcult input)

We must introduce another parameter, which
distinguishes easy inputs from difficult ones. what are
easy inputs?

Intuitively, easy inputs are inputs where the objects are
relatively well separated, whereas difficult inputs have
many objects packed closely together.

We can recognize type of input by parameter density of

d SCene.

Density of a scene:

density distribution parameter for sets of objects: density

diam(o0):= diameter of object o

§:> density of set S of objects:
O minimum A such that for any ball b :

#{0€S:0 intersects b, diam(0)> diam(b)} <A

Examples:

A set of eight segments with density 3

]
| 1]

Set of n disjoint triangles can Any set of n disjoint
have density n squares in the plane

has density at most 9.

Result:

if the density is low then the objects are reasonably well
separated, and if the density is high then there are
regions with many objects close together.

Problem: we want to show that if the density is low then
we can find a small BSP.

randomized algorithm of the previous section is not good,
because even for inputs of low density, it may produce a

BSP whose expected size is quadratic.

New Algorithm

The idea behind the algorithm:

Let S be a set of objects inR*,S can contain

segments, discs,triangles, etc. and let4 be the density
of S.

each objectoe§, a small set of points, we call them

guards.

Let bb(o) denote the bounding box of o,that is the
smallest axis aligned rectangle that contains o. The
guards that we define for o are simply the four vertices

of bb(o). Let G(S) be the multiset of 4n guards.

for any square §, the number of objects intersecting § is
not much more than the number of guards insideo .
The next lemma gives only an upper bound on the
number of objects intersecting a square, not a lower
bound: it is very well possible that a square contains

Many guards without intersecting a single object.

Lemma 12.6

Any axis-parallel square that contains k guards from
G(S) in its interior intersects at most k+4 Aobjects from
S.

Proof:

Obviously there are at most k objects that have a guard
Inside 9.

The density of § is at most4,s C s. We have to show

that at most 44 objects from S can intersect §.

Three states for an objectO € S intersects §

1) The projection of bb(o0) onto the x-axis contains the
projection of s onto the x-axis

2) The projection of bb(o) onto the y-axis contains

the projection of s onto the y-axis

3) Bothof 1 and 2

e

A J

Py

cl

Y

Pu

a

Pr

AV

Proof (continue)
For three states we have diam(o) = diam(8) / V2

Now cover s with four discs Dy, ..., D4 of diameter

diam(8) / V2

The object o intersects at least one of these discs,D; . We

charge o to D, .

We have:

diam(o) = diam(8) / V2 > diam(8) / 2 = diam(D;)

Since S has density at most 4, eachD; is charged at most 4
times.Hence, § intersects at most 41 objects froms .

Adding the at most k objects not in §.

We find that d intersects at most k+44 objects from S.

Lemma 12.6 suggests the following two-phase algorithm
to construct a BSP.

In the frst phase, we recursively subdivide U into squares
until each square contains at most one guard in its
interior.

By Lemma 12.6, each leaf region in the resulting
subdivision intersects only a few objects at most 1+4 1
Second phase of the algorithm then partitions each leaf

region further, until all objects are separated.

. . /'k._l,ft
P ™
& le | fg | fo ”/J H‘”’{ <
™ ™ j paA
,
L {4 L |!r'|.| { B? ~\ /\ R

4)
{ Ef_x ,?\/\/\7 ™,

q.-l Iflﬁ

I .ﬁ
dhdn 4

one problem in new algorithm

The number of leaf regions can be very large.This
happens for example when two guards lie very close
together near a corner of the initial square U.Therefore
we modify the frst phase of the algorithm to guarantee it

producesa linear number of leaf regions.

%

Two modications for improve algorithm

The frst modication is that we stop when the region
contains k or fewer guards, for some suitable parameter
K=1.

The second modication is: Consider the four quadrants of
4 If at least two of them contain more than k guards in

their interior, then we proceed as before by applying a

quadtree split.

If there is exactly one quadrant, say§ , with more than k

guards in it, we perform a shrinking step.

Step 1: replace objects by vertices of bounding boxes

(=guards)

Step 2: construct BSP for resulting set of points
- if at least two quadrants contain points: split into
quadrants

- if exactly one quadrant contains points: shrink

{1 ':_ =
™ E:’I R R S jS__
{
4 EH

continue recursively until
interior of all cells empty

We shrink é by moving its bottom right corner
diagonally to the north-west until at least k guards are

outside the interior of §.

® ;
o ® e .f ® e .
@ o e :
- :
b . o o)
. thlo) S
® :
L
® o ®
ivio) fy(o).

quadtree split shrinking step

Algorithm PHASE(6.,G. k)
Input. A region @, a set G of guards in the interior of ¢, and an integer & = 1.
Output. A BSP tree T such that each leaf region contains at most & guards.

2
3.

L

if card(G) < k
then Create a BSP tree T consisting of a single leaf node.
else if exactly one quadrant of ¢ contains more than & guards in its
interior
then Determine the splitting lines {,(¢) and (@) for a shrink-
Ing step, as explained above.
else Determine the splitting lines {,.(o) and £;,{ &) for a quadtree
split, as explained above.
Create a BSP tree T with three internal nodes; the root of T stores
{.(o) as its splitting line, and both children of the root store {;(@)
as their splitting line.
Replace each leaf (ot T by a BSP tree T, computed recursively
on the region corresponding to i and the guards inside that region.
return J

Lemma 12.7
PHASE1(U,G(S),k) produces a BSP tree with O(n/k)

leaves, where each leaf region intersects at most k+44
objects.

Proof: first part

(PHASE1(U,G(S),k) produces a BSP tree with O(n/k)
leaves)

- number of leaves = number of internal nodes + 1

- N(m): maximum number of internal nodes in a BSP tree

created

- by PHASE10,G,k) when card(G) = m.

- If m= K, no splits are performed, and so N(m) = 0 in this
case.

- Otherwise, a quadtree split or a shrinking step is
applied to . This results in three internal nodes, and four
regions in which we recurse.

- my,...,my: the numbers of guards in the four regions,
[:={i: 1< i<4 and mi > k}

N(m) <3+) Nem)

€1

We will prove by induction that N(m) <max(0, (6m/k)-3).

This is obviously true for m=<k, and so we now assume
that m > k.

A guard can be in the interior of at most one region,

which means that Z m; <m
i€l
If at least two quadrants

of o contain more than k guards, then card(I) 2 and we

have

N(m) 53"‘2‘"'"[?“5]53"'2[(

EEL EEL

EE—I—(Z[E?E) card[f].Ei:ETm—E

tES

6111,
) —3)

If none of the quadrants contains more than k guards,
then the four regions are all leaf regions and N(m)= 3.
Together with the assumption m > K, this implies N(m)=
(6m/Kk)-3. The remaining case is where exactly

one quadrant contains more than k guards. In this case
we do a shrinking step. Because of the way a shrinking
step is performed, a shrunk quadrant contains

fewer than m-k guards and the other resulting regions

contain at most k guards. Hence, in this case we have

6(m —k) ; {6m ;
k ~ k

N(m)£3+N(m—k)£3+(

Proof: second part

(each leaf region intersects at most k + 44 objects)

If a leaf region is a square: Lemma 12.6 implies that it

intersects k + 44 objects.

leaf regions are not square: a non-square leaf region must

have been produced in a shrinking step.We use this step

and proveit. |e .I .

How can we use Lemma 12.7 to construct BSP tree?

the larger k is, the fewer leaf regions we will have. On the
Other hand, a larger k will also mean more objects per
leaf region.

Setting k := 1 will do this. the number of leaf regions will
decrease by a factor A while the maximum number of
objects per leaf region only goes from 1+4A to 5A.

One problem: we do not know , the density of the input
scene, and so we cannot use it as a parameter in the

algorithm.

Solution:

We guess a small value for A, say A = 2. Then we run
PHASE1 with our guess as the value of k, and we check
whether each leaf region in the resulting BSP tree
intersects at most 5k objects. If so, we proceed with the
second phase of the algorithm; otherwise, we double
our guess and try again. This leads to the following

algorithm.

Algorithm LOowDENSITYBSP2D(S)

Input. A set S of n objects in the plane.

Output. A BSP tree 7 for §.

. Let G(S) be the set of 41 bounding-box vertices of the objects in .
2. k<1, done — false; U — a bounding square of §

3. while not done

4. dok=2k T—PHASEL(U.G(S).k): done — true

5 for cach leaf t of T

i} do Compute the set S(gt) of object fraoments in the region of .
7 if card(S(4t)) > 5k then done — false

8. foreach leaf ttof T

9, do Compute a BSP tree T, for §(u) and replace t by T,
[0. return’

Theorem 12.8

for any set S of n disjoint line segments in the plane,
there is a BSP of size O(nlog 4), where 4 is the density of
S.
Proof:
When the while-loop ends in line 7, we have at most k
objects at each leaf region.
k”denote the value of k when we get to line 8. according

to Lemma 12.1, each tree 7, has (expected) size O(k~
log k*) when 2DRANDOMBSP is used in line 9.

there are O(n/,*) leaf regions, the total size of the BSP

treeis

O(nlog k*). Since k*<2A , this proves the theorem

Effciency of The algorithm for a set of segments

The algorithm that we have just described works very
well for segments in the plane: it produces a BSP whose
size is O(nlogn) in the worst case and O(n) when the
density of the input is a constant.

What happens when we apply this approach to a set of
triangles in R ?

Theorem 12.9:

For any set S of n disjoint triangles in R3, there is a BSP

of size O(n 4), where A is the density of S.

End

