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Preface to the Second
Edition

In this new edition, which is a substantially revised version of the old one,
I have added five new chapters: Vectors in Relativity (Chapter 8), Tensor
Analysis (Chapter 17), Integral Transforms (Chapter 29), Calculus of Varia-
tions (Chapter 30), and Probability Theory (Chapter 32). The discussion of
vectors in Part II, especially the introduction of the inner product, offered the
opportunity to present the special theory of relativity, which unfortunately,
in most undergraduate physics curricula receives little attention. While the
main motivation for this chapter was vectors, I grabbed the opportunity to
develop the Lorentz transformation and Minkowski distance, the bedrocks of
the special theory of relativity, from first principles.

The short section, Vectors and Indices, at the end of Chapter 8 of the first
edition, was too short to demonstrate the importance of what the indices are
really used for, tensors. So, I expanded that short section into a somewhat
comprehensive discussion of tensors. Chapter 17, Tensor Analysis, takes
a fresh look at vector transformations introduced in the earlier discussion of
vectors, and shows the necessity of classifying them into the covariant and
contravariant categories. It then introduces tensors based on—and as a gen-
eralization of—the transformation properties of covariant and contravariant
vectors. In light of these transformation properties, the Kronecker delta, in-
troduced earlier in the book, takes on a new look, and a natural and extremely
useful generalization of it is introduced leading to the Levi-Civita symbol. A
discussion of connections and metrics motivates a four-dimensional treatment
of Maxwell’s equations and a manifest unification of electric and magnetic
fields. The chapter ends with Riemann curvature tensor and its place in Ein-
stein’s general relativity.

The Fourier series treatment alone does not do justice to the many appli-
cations in which aperiodic functions are to be represented. Fourier transform
is a powerful tool to represent functions in such a way that the solution to
many (partial) differential equations can be obtained elegantly and succinctly.
Chapter 29, Integral Transforms, shows the power of Fourier transform in
many illustrations including the calculation of Green’s functions for Laplace,
heat, and wave differential operators. Laplace transforms, which are useful in
solving initial-value problems, are also included.
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The Dirac delta function, about which there is a comprehensive discussion
in the book, allows a very smooth transition from multivariable calculus to
the Calculus of Variations, the subject of Chapter 30. This chapter takes
an intuitive approach to the subject: replace the sum by an integral and the
Kronecker delta by the Dirac delta function, and you get from multivariable
calculus to the calculus of variations! Well, the transition may not be as
simple as this, but the heart of the intuitive approach is. Once the transition
is made and the master Euler-Lagrange equation is derived, many examples,
including some with constraint (which use the Lagrange multiplier technique),
and some from electromagnetism and mechanics are presented.

Probability Theory is essential for quantum mechanics and thermody-
namics. This is the subject of Chapter 32. Starting with the basic notion of
the probability space, whose prerequisite is an understanding of elementary
set theory, which is also included, the notion of random variables and its con-
nection to probability is introduced, average and variance are defined, and
binomial, Poisson, and normal distributions are discussed in some detail.

Aside from the above major changes, I have also incorporated some other
important changes including the rearrangement of some chapters, adding new
sections and subsections to some existing chapters (for instance, the dynamics
of fluids in Chapter 15), correcting all the mistakes, both typographic and
conceptual, to which I have been directed by many readers of the first edition,
and adding more problems at the end of each chapter. Stylistically, I thought
splitting the sometimes very long chapters into smaller ones and collecting
the related chapters into Parts make the reading of the text smoother. I hope
I was not wrong!

I would like to thank the many instructors, students, and general readers
who communicated to me comments, suggestions, and errors they found in the
book. Among those, I especially thank Dan Holland for the many discussions
we have had about the book, Rafael Benguria and Gebhard Grübl for pointing
out some important historical and conceptual mistakes, and Ali Erdem and
Thomas Ferguson for reading multiple chapters of the book, catching many
mistakes, and suggesting ways to improve the presentation of the material.
Jerome Brozek meticulously and diligently read most of the book and found
numerous errors. Although a lawyer by profession, Mr. Brozek, as a hobby,
has a keen interest in mathematical physics. I thank him for this interest and
for putting it to use on my book. Last but not least, I want to thank my
family, especially my wife Sarah for her unwavering support.

S.H.

Normal, IL
January, 2008



Preface

Innocent light-minded men, who think that astronomy can
be learnt by looking at the stars without knowledge of math-
ematics will, in the next life, be birds.

—Plato, Timaeos

This book is intended to help bridge the wide gap separating the level of math-
ematical sophistication expected of students of introductory physics from that
expected of students of advanced courses of undergraduate physics and engi-
neering. While nothing beyond simple calculus is required for introductory
physics courses taken by physics, engineering, and chemistry majors, the next
level of courses—both in physics and engineering—already demands a readi-
ness for such intricate and sophisticated concepts as divergence, curl, and
Stokes’ theorem. It is the aim of this book to make the transition between
these two levels of exposure as smooth as possible.

Level and Pedagogy

I believe that the best pedagogy to teach mathematics to beginning students
of physics and engineering (even mathematics, although some of my mathe-
matical colleagues may disagree with me) is to introduce and use the concepts
in a multitude of applied settings. This method is not unlike teaching a lan-
guage to a child: it is by repeated usage—by the parents or the teacher—of
the same word in different circumstances that a child learns the meaning of
the word, and by repeated active (and sometimes wrong) usage of words that
the child learns to use them in a sentence.

And what better place to use the language of mathematics than in Nature
itself in the context of physics. I start with the familiar notion of, say, a
derivative or an integral, but interpret it entirely in terms of physical ideas.
Thus, a derivative is a means by which one obtains velocity from position
vectors or acceleration from velocity vectors, and integral is a means by
which one obtains the gravitational or electric field of a large number of
charged or massive particles. If concepts (e.g., infinite series) do not succumb
easily to physical interpretation, then I immediately subjugate the physical
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situation to the mathematical concepts (e.g., multipole expansion of electric
potential).

Because of my belief in this pedagogy, I have kept formalism to a bare
minimum. After all, a child needs no knowledge of the formalism of his or her
language (i.e., grammar) to be able to read and write. Similarly, a novice in
physics or engineering needs to see a lot of examples in which mathematics
is used to be able to “speak the language.” And I have spared no effort to
provide these examples throughout the book. Of course, formalism, at some
stage, becomes important. Just as grammar is taught at a higher stage of a
child’s education (say, in high school), mathematical formalism is to be taught
at a higher stage of education of physics and engineering students (possibly
in advanced undergraduate or graduate classes).

Features

The unique features of this book, which set it apart from the existing text-
books, are

• the inseparable treatments of physical and mathematical concepts,

• the large number of original illustrative examples,

• the accessibility of the book to sophomores and juniors in physics and
engineering programs, and

• the large number of historical notes on people and ideas.

All mathematical concepts in the book are either introduced as a natural tool
for expressing some physical concept or, upon their introduction, immediately
used in a physical setting. Thus, for example, differential equations are not
treated as some mathematical equalities seeking solutions, but rather as a
statement about the laws of Nature (e.g., the second law of motion) whose
solutions describe the behavior of a physical system.

Almost all examples and problems in this book come directly from physi-
cal situations in mechanics, electromagnetism, and, to a lesser extent, quan-
tum mechanics and thermodynamics. Although the examples are drawn from
physics, they are conceptually at such an introductory level that students of
engineering and chemistry will have no difficulty benefiting from the mathe-
matical discussion involved in them.

Most mathematical-methods books are written for readers with a higher
level of sophistication than a sophomore or junior physics or engineering stu-
dent. This book is directly and precisely targeted at sophomores and juniors,
and seven years of teaching it to such an audience have proved both the need
for such a book and the adequacy of its level.

My experience with sophomores and juniors has shown that peppering the
mathematical topics with a bit of history makes the subject more enticing. It
also gives a little boost to the motivation of many students, which at times can



Preface xi

run very low. The history of ideas removes the myth that all mathematical
concepts are clear cut, and come into being as a finished and polished prod-
uct. It reveals to the students that ideas, just like artistic masterpieces, are
molded into perfection in the hands of many generations of mathematicians
and physicists.

Use of Computer Algebra

As soon as one applies the mathematical concepts to real-world situations,
one encounters the impossibility of finding a solution in “closed form.” One
is thus forced to use approximations and numerical methods of calculation.
Computer algebra is especially suited for many of the examples and problems
in this book.

Because of the variety of the computer algebra softwares available on the
market, and the diversity in the preference of one software over another among
instructors, I have left any discussion of computers out of this book. Instead,
all computer and numerical chapters, examples, and problems are collected in
Mathematical Methods Using Mathematica©R, a relatively self-contained com-
panion volume that uses Mathematica©R.

By separating the computer-intensive topics from the text, I have made it
possible for the instructor to use his or her judgment in deciding how much
and in what format the use of computers should enter his or her pedagogy.
The usage of Mathematica©R in the accompanying companion volume is only a
reflection of my limited familiarity with the broader field of symbolic manipu-
lations on the computers. Instructors using other symbolic algebra programs
such as Maple©R and Macsyma©R may generate their own examples or trans-
late the Mathematica©R commands of the companion volume into their favorite
language.
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Note to the Reader

“Why,” said the Dodo, “the best way to ex-
plain it is to do it.”

—Lewis Carroll

Probably the best advice I can give you is, if you want to learn mathematics
and physics, “Just do it!” As a first step, read the material in a chapter
carefully, tracing the logical steps leading to important results. As a (very
important) second step, make sure you can reproduce these logical steps, as
well as all the relevant examples in the chapter, with the book closed. No
amount of following other people’s logic—whether in a book or in a lecture—
can help you learn as much as a single logical step that you have taken yourself.
Finally, do as many problems at the end of each chapter as your devotion and
dedication to this subject allows!

Whether you are a physics or an engineering student, almost all the ma-
terial you learn in this book will become handy in the rest of your academic
training. Eventually, you are going to take courses in mechanics, electro-
magnetic theory, strength of materials, heat and thermodynamics, quantum
mechanics, etc. A solid background of the mathematical methods at the level
of presentation of this book will go a long way toward your deeper under-
standing of these subjects.

As you strive to grasp the (sometimes) difficult concepts, glance at the his-
torical notes to appreciate the efforts of the past mathematicians and physi-
cists as they struggled through a maze of uncharted territories in search of
the correct “path,” a path that demands courage, perseverance, self-sacrifice,
and devotion.

At the end of most chapters, you will find a short list of references that you
may want to consult for further reading. In addition to these specific refer-
ences, as a general companion, I frequently refer to my more advanced book,
Mathematical Physics: A Modern Introduction to Its Foundations, Springer-
Verlag, 1999, which is abbreviated as [Has 99]. There are many other excellent
books on the market; however, my own ignorance of their content and the par-
allelism in the pedagogy of my two books are the only reasons for singling out
[Has 99].
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Part I

Coordinates and Calculus





Chapter 1

Coordinate Systems
and Vectors

Coordinates and vectors—in one form or another—are two of the most
fundamental concepts in any discussion of mathematics as applied to physi-
cal problems. So, it is beneficial to start our study with these two concepts.
Both vectors and coordinates have generalizations that cover a wide vari-
ety of physical situations including not only ordinary three-dimensional space
with its ordinary vectors, but also the four-dimensional spacetime of relativity
with its so-called four vectors, and even the infinite-dimensional spaces used
in quantum physics with their vectors of infinite components. Our aim in this
chapter is to review the ordinary space and how it is used to describe physical
phenomena. To facilitate this discussion, we first give an outline of some of
the properties of vectors.

1.1 Vectors in a Plane and in Space

We start with the most common definition of a vector as a directed line
segment without regard to where the vector is located. In other words, a vector
is a directed line segment whose only important attributes are its direction
and its length. As long as we do not change these two attributes, the vector is general properties

of vectorsnot affected. Thus, we are allowed to move a vector parallel to itself without
changing the vector. Examples of vectors1 are position r, displacement Δr,
velocity v, momentum p, electric field E, and magnetic field B. The vector
that has no length is called the zero vector and is denoted by 0.

Vectors would be useless unless we could perform some kind of operation
on them. The most basic operation is changing the length of a vector. This
is accomplished by multiplying the vector by a real positive number. For
example, 3.2r is a vector in the same direction as r but 3.2 times longer. We

1Vectors will be denoted by Roman letters printed in boldface type.
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a

b
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b

b + a

a + b

Δr
1

Δr2

ΔR = Δr 1
+ Δr 2

(a) (b)

A

C

B

Figure 1.1: Illustration of the commutative law of addition of vectors.

can flip the direction of a vector by multiplying it by −1. That is, (−1)× r =
−r is a vector having the same length as r but pointing in the opposite
direction. We can combine these two operations and think of multiplying a
vector by any real (positive or negative) number. The result is another vectoroperations on

vectors lying along the same line as the original vector. Thus, −0.732r is a vector
that is 0.732 times as long as r and points in the opposite direction. The zero
vector is obtained every time one multiplies any vector by the number zero.

Another operation is the addition of two vectors. This operation, with
which we assume the reader to have some familiarity, is inspired by the obvious
addition law for displacements. In Figure 1.1(a), a displacement, Δr1 from
A to B is added to the displacement Δr2 from B to C to give ΔR their
resultant, or their sum, i.e., the displacement from A to C: Δr1 +Δr2 = ΔR.
Figure 1.1(b) shows that addition of vectors is commutative: a + b = b + a.
It is also associative, a + (b + c) = (a + b) + c, i.e., the order in which you
add vectors is irrelevant. It is clear that a + 0 = 0 + a = a for any vector a.

Example 1.1.1. The parametric equation of a line through two given points
can be obtained in vector form by noting that any point in space defines a vector
whose components are the coordinates of the given point.2 If the components of
the points P and Q in Figure 1.2 are, respectively, (px, py, pz) and (qx, qy , qz), then
we can define vectors p and q with those components. An arbitrary point X with
components (x, y, z) will lie on the line PQ if and only if the vector x = (x, y, z)
has its tip on that line. This will happen if and only if the vector joining P and X,
namely x − p, is proportional to the vector joining P and Q, namely q − p. Thus,
for some real number t, we must havevector form of the

parametric
equation of a line

x− p = t(q− p) or x = t(q− p) + p.

This is the vector form of the equation of a line. We can write it in component
form by noting that the equality of vectors implies the equality of corresponding
components. Thus,

x = (qx − px)t + px,

y = (qy − py)t + py,

z = (qz − pz)t + pz,

which is the usual parametric equation for a line. �
2We shall discuss components and coordinates in greater detail later in this chapter. For

now, the knowledge gained in calculus is sufficient for our discussion.
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Figure 1.2: The parametric equation of a line in space can be obtained easily using

vectors.

There are some special vectors that are extremely useful in describing
physical quantities. These are the unit vectors. If one divides a vector use of unit vectors

by its length, one gets a unit vector in the direction of the original vector.
Unit vectors are generally denoted by the symbol ê with a subscript which
designates its direction. Thus, if we divided the vector a by its length |a| we
get the unit vector êa in the direction of a. Turning this definition around,
we have

Box 1.1.1. If we know the magnitude |a| of a vector quantity as well as
its direction êa, we can construct the vector: a = |a|êa.

This construction will be used often in the sequel.
The most commonly used unit vectors are those in the direction of coor- unit vectors along

the x-, y-, and
z-axes

dinate axes. Thus êx, êy, and êz are the unit vectors pointing in the positive
directions of the x-, y-, and z-axes, respectively.3 We shall introduce unit
vectors in other coordinate systems when we discuss those coordinate systems
later in this chapter.

1.1.1 Dot Product

The reader is no doubt familiar with the concept of dot product whereby
two vectors are “multiplied” and the result is a number. The dot product of
a and b is defined by dot product

defineda · b ≡ |a| |b| cos θ, (1.1)

where |a| is the length of a, |b| is the length of b, and θ is the angle between
the two vectors. This definition is motivated by many physical situations.

3These unit vectors are usually denoted by i, j, and k, a notation that can be confusing
when other non-Cartesian coordinates are used. We shall not use this notation, but adhere
to the more suggestive notation introduced above.
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N

v

F

Figure 1.3: No work is done by a force orthogonal to displacement. If such a work

were not zero, it would have to be positive or negative; but no consistent rule exists to

assign a sign to the work.

The prime example is work which is defined as the scalar product of force and
displacement. The presence of cos θ ensures the requirement that the work
done by a force perpendicular to the displacement is zero. If this requirement
were not met, we would have the precarious situation of Figure 1.3 in which
the two vertical forces add up to zero but the total work done by them is
not zero! This is because it would be impossible to assign a “sign” to the
work done by forces being displaced perpendicular to themselves, and make
the rule of such an assignment in such a way that the work of F in the figure
cancels that of N. (The reader is urged to try to come up with a rule—e.g.,
assigning a positive sign to the work if the velocity points to the right of the
observer and a negative sign if it points to the observer’s left—and see that it
will not work, no matter how elaborate it may be!) The only logical definition
of work is that which includes a cos θ factor.

The dot product is clearly commutative, a · b = b · a. Moreover, it dis-properties of dot
product tributes over vector addition

(a + b) · c = a · c + b · c.

To see this, note that Equation (1.1) can be interpreted as the product of the
length of a with the projection of b along a. Now Figure 1.4 demonstrates4

that the projection of a + b along c is the sum of the projections of a and b
along c (see Problem 1.2 for details). The third property of the inner product
is that a · a is always a positive number unless a is the zero vector in which
case a · a = 0. In mathematics, the collection of these three properties—properties defining

the dot (inner)
product

commutativity, positivity, and distribution over addition—defines a dot (or
inner) product on a vector space.

The definition of the dot product leads directly to a · a = |a|2 or

|a| =
√

a · a, (1.2)

which is useful in calculating the length of sums or differences of vectors.
4Figure 1.4 appears to prove the distributive property only for vectors lying in the same

plane. However, the argument will be valid even if the three vectors are not coplanar.
Instead of dropping perpendicular lines from the tips of a and b, one drops perpendicular
planes.
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Figure 1.4: The distributive property of the dot product is clearly demonstrated if we

interpret the dot product as the length of one vector times the projection of the other

vector on the first.

One can use the distributive property of the dot product to show that
if (ax, ay, az) and (bx, by, bz) represent the components of a and b along the
axes x, y, and z, then dot product in

terms of
componentsa · b = axbx + ayby + azbz. (1.3)

From the definition of the dot product, we can draw an important conclu-
sion. If we divide both sides of a · b = |a| |b| cos θ by |a|, we get

a · b
|a| = |b| cos θ or

(
a
|a|

)

· b = |b| cos θ ⇒ êa · b = |b| cos θ.

Noting that |b| cos θ is simply the projection of b along a, we conclude
a useful relation to
be used frequently
in the sequel

Box 1.1.2. To find the perpendicular projection of a vector b along
another vector a, take the dot product of b with êa, the unit vector along a.

Sometimes “component” is used for perpendicular projection. This is not
entirely correct. For any set of three mutually perpendicular unit vectors in
space, Box 1.1.2 can be used to find the components of a vector along the
three unit vectors. Only if the unit vectors are mutually perpendicular do
components and projections coincide.

1.1.2 Vector or Cross Product

Given two space vectors, a and b, we can find a third space vector c, called
the cross product of a and b, and denoted by c = a × b. The magnitude cross product of

two space vectorsof c is defined by |c| = |a| |b| sin θ where θ is the angle between a and b.
The direction of c is given by the right-hand rule: If a is turned to b (note

right-hand rule
explainedthe order in which a and b appear here) through the angle between a and b,
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a (right-handed) screw that is perpendicular to a and b will advance in the
direction of a × b. This definition implies that

a × b = −b× a.

This property is described by saying that the cross product is antisymmet-cross product is
antisymmetric ric. The definition also implies that

a · (a × b) = b · (a × b) = 0.

That is, a × b is perpendicular to both a and b.5

The vector product has the following properties:

a × (αb) = (αa) × b = α(a × b), a × b = −b× a,

a × (b + c) = a × b + a × c, a × a = 0. (1.4)

Using these properties, we can write the vector product of two vectors in terms
of their components. We are interested in a more general result valid in other
coordinate systems as well. So, rather than using x, y, and z as subscripts for
unit vectors, we use the numbers 1, 2, and 3. In that case, our results cancross product in

terms of
components

also be used for spherical and cylindrical coordinates which we shall discuss
shortly.

a × b = (α1ê1 + α2ê2 + α3ê3) × (β1ê1 + β2ê2 + β3ê3)
= α1β1ê1 × ê1 + α1β2ê1 × ê2 + α1β3ê1 × ê3

+ α2β1ê2 × ê1 + α2β2ê2 × ê2 + α2β3ê2 × ê3

+ α3β1ê3 × ê1 + α3β2ê3 × ê2 + α3β3ê3 × ê3.

But, by the last property of Equation (1.4), we have

ê1 × ê1 = ê2 × ê2 = ê3 × ê3 = 0.

Also, if we assume that ê1, ê2, and ê3 form a so-called right-handed set,
i.e., ifright-handed set

of unit vectors
ê1 × ê2 = −ê2 × ê1 = ê3,

ê1 × ê3 = −ê3 × ê1 = −ê2, (1.5)
ê2 × ê3 = −ê3 × ê2 = ê1,

then we obtain

a × b = (α2β3 − α3β2)ê1 + (α3β1 − α1β3)ê2 + (α1β2 − α2β1)ê3

5This fact makes it clear why a × b is not defined in the plane. Although it is possible
to define a × b for vectors a and b lying in a plane, a × b will not lie in that plane (it
will be perpendicular to that plane). For the vector product, a and b (although lying in a
plane) must be considered as space vectors.
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e1 e2 e3

α1 α2 α3

β1 β2 β3

det

e1 e2 e3

α1 α2 α3

β1 β2 β3

e1 e2 e3

α1 α2 α3

β1 β2 β3

=

Figure 1.5: A 3 × 3 determinant is obtained by writing the entries twice as shown,

multiplying all terms on each slanted line and adding the results. The lines from upper

left to lower right bear a positive sign, and those from upper right to lower left a negative

sign.

which can be nicely written in a determinant form6 cross product in
terms of the
determinant of
componentsa × b = det

⎛

⎝
ê1 ê2 ê3

α1 α2 α3

β1 β2 β3

⎞

⎠ . (1.6)

Figure 1.5 explains the rule for “expanding” a determinant.

Example 1.1.2. From the definition of the vector product and Figure 1.6(a),
we note that area of a

parallelogram in
terms of cross
product of its two
sides

|a × b| = area of the parallelogram defined by a and b.

So we can use Equation (1.6) to find the area of a parallelogram defined by two
vectors directly in terms of their components. For instance, the area defined by
a = (1, 1,−2) and b = (2, 0, 3) can be found by calculating their vector product

a × b = det

⎛

⎝
ê1 ê2 ê3

1 1 −2
2 0 3

⎞

⎠ = 3ê1 − 7ê2 − 2ê3,

and then computing its length

|a × b| =
√

32 + (−7)2 + (−2)2 =
√

62. �

a

b

cθ θ
|a| cos θ

a

b

|a| sin θ

θ

b × c

(a) (b)

Figure 1.6: (a) The area of a parallelogram is the absolute value of the cross product of

the two vectors describing its sides. (b) The volume of a parallelepiped can be obtained

by mixing the dot and the cross products.

6No knowledge of determinants is necessary at this point. The reader may consider (1.6)
to be a mnemonic device useful for remembering the components of a × b.
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Example 1.1.3. The volume of a parallelepiped defined by three non-coplanar
vectors, a, b, and c, is given by |a · (b × c)|. This can be seen from Figure 1.6(b),
where it is clear thatvolume of a

parallelepiped as a
combination of
dot and cross
products

volume = (area of base)(altitude) = |b × c|(|a| cos θ) = |(b × c) · a|.

The absolute value is taken to ensure the positivity of the area. In terms of compo-
nents we have

volume = |(b × c)1α1 + (b × c)2α2 + (b × c)3α3|
= |(β2γ3 − β3γ2)α1 + (β3γ1 − β1γ3)α2 + (β1γ2 − β2γ1)α3|,

which can be written in determinant form asvolume of a
parallelepiped as
the determinant of
the components of
its side vectors

volume = |a · (b × c)| =

∣
∣
∣
∣
∣
∣
det

⎛

⎝
α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

⎞

⎠

∣
∣
∣
∣
∣
∣
.

Note how we have put the absolute value sign around the determinant of the matrix,
so that the area comes out positive. �

Historical Notes
The concept of vectors as directed line segments that could represent velocities,
forces, or accelerations has a very long history. Aristotle knew that the effect of two
forces acting on an object could be described by a single force using what is now
called the parallelogram law. However, the real development of the concept took an
unexpected turn in the nineteenth century.

With the advent of complex numbers and the realization by Gauss, Wessel, and
especially Argand, that they could be represented by points in a plane, mathemati-
cians discovered that complex numbers could be used to study vectors in a plane.
A complex number is represented by a pair7 of real numbers—called the real and
imaginary parts of the complex number—which could be considered as the two
components of a planar vector.

This connection between vectors in a plane and complex numbers was well es-
tablished by 1830. Vectors are, however, useful only if they are treated as objects
in space. After all, velocities, forces, and accelerations are mostly three-dimensional
objects. So, the two-dimensional complex numbers had to be generalized to three
dimensions. This meant inventing ways of adding, subtracting, multiplying, and
dividing objects such as (x, y, z).

The invention of a spatial analogue of the planar complex numbers is due to
William R. Hamilton. Next to Newton, Hamilton is the greatest of all English

William R.
Hamilton
1805–1865

mathematicians, and like Newton he was even greater as a physicist than as a
mathematician. At the age of five Hamilton could read Latin, Greek, and Hebrew.
At eight he added Italian and French; at ten he could read Arabic and Sanskrit,
and at fourteen, Persian. A contact with a lightning calculator inspired him to
study mathematics. In 1822 at the age of seventeen and a year before he entered
Trinity College in Dublin, he prepared a paper on caustics which was read before the
Royal Irish Academy in 1824 but not published. Hamilton was advised to rework
and expand it. In 1827 he submitted to the Academy a revision which initiated the
science of geometrical optics and introduced new techniques in analytical mechanics.

7See Chapter 18.
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In 1827, while still an undergraduate, he was appointed Professor of Astronomy
at Trinity College in which capacity he had to manage the astronomical observations
and teach science. He did not do much of the former, but he was a fine lecturer.

Hamilton had very good intuition, and knew how to use analogy to reason from
the known to the unknown. Although he lacked great flashes of insight, he worked
very hard and very long on special problems to see what generalizations they would
lead to. He was patient and systematic in working on specific problems and was
willing to go through detailed and laborious calculations to check or prove a point.

After mastering and clarifying the concept of complex numbers and their relation
to planar vectors (see Problem 18.11 for the connection between complex multiplica-
tion on the one hand, and dot and cross products on the other), Hamilton was able
to think more clearly about the three-dimensional generalization. His efforts led
unfortunately to frustration because the vectors (a) required four components, and
(b) defied commutativity! Both features were revolutionary and set the standard
for algebra. He called these new numbers quaternions.

In retrospect, one can see that the new three-dimensional complex numbers had
to contain four components. Each “number,” when acting on a vector, rotates the
latter about an axis and stretches (or contracts) it. Two angles are required to
specify the axis of rotation, one angle to specify the amount of rotation, and a
fourth number to specify the amount of stretch (or contraction).

Hamilton announced the invention of quaternions in 1843 at a meeting of the
Royal Irish Academy, and spent the rest of his life developing the subject.

1.2 Coordinate Systems

Coordinates are “functions” that specify points of a space. The smallest
number of these functions necessary to specify a point is called the dimension
of that space. For instance, a point of a plane is specified by two numbers, and
as the point moves in the plane the two numbers change, i.e., the coordinates
are functions of the position of the point. If we designate the point as P , we
may write the coordinate functions of P as (f(P ), g(P )).8 Each pair of such coordinate

systems as
functions.

functions is called a coordinate system.
There are two coordinate systems used for a plane, Cartesian, denoted

by (x(P ), y(P )), and polar, denoted by (r(P ), θ(P )). As shown in Figure 1.7,

P

y(P)

x(P)O

P

O

θ(P)

r(P)

Figure 1.7: Cartesian and polar coordinates of a point P in two dimensions.

8Think of f (or g) as a rule by which a unique number is assigned to each point P .
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the “function” x is defined as giving the distance from P to the vertical axis,
while θ is the function which gives the angle that the line OP makes with a
given fiducial (usually horizontal) line. The origin O and the fiducial line are
completely arbitrary. Similarly, the functions r and y give distances from the
origin and to the horizontal axis, respectively.

Box 1.2.1. In practice, one drops the argument P and writes (x, y) and
(r, θ).

We can generalize the above concepts to three dimensions. There are three
coordinate functions now. So for a point P in space we writethe three common

coordinate
systems:
Cartesian,
cylindrical and
spherical

(f(P ), g(P ), h(P )),

where f , g, and h are functions on the three-dimensional space. There are
three widely used coordinate systems, Cartesian (x(P ), y(P ), z(P )), cylin-
drical (ρ(P ), ϕ(P ), z(P )), and spherical (r(P ), θ(P ), ϕ(P )). ϕ(P ) is called
the azimuth or the azimuthal angle of P , while θ(P ) is called its polar
angle. To find the spherical coordinates of P , one chooses an arbitrary point
as the origin O and an arbitrary line through O called the polar axis. One
measures OP and calls it r(P ); θ(P ) is the angle between OP and the polar
axis. To find the third coordinate, we construct the plane through O and per-
pendicular to the polar axis, drop a projection from P to the plane meeting
the latter at H , draw an arbitrary fiducial line through O in this plane, and
measure the angle between this line and OH . This angle is ϕ(P ). Cartesian
and cylindrical coordinate systems can be described similarly. The three co-
ordinate systems are shown in Figure 1.8. As indicated in the figure, the polar
axis is usually taken to be the z-axis, and the fiducial line from which ϕ(P )
is measured is chosen to be the x-axis. Although there are other coordinate
systems, the three mentioned above are by far the most widely used.

x

y

z

x(P)

y(P)

z(P)

P

(a) (b)
x

y

z

P

z(P)

(P) H

ρ (P)

ϕ

(c)
x

y

z

P

H(P)

r (P)
θ (P)

ϕ

Figure 1.8: (a) Cartesian, (b) cylindrical, and (c) spherical coordinates of a point P in

three dimensions.
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Which one of the three systems of coordinates to use in a given physi-
cal problem is dictated mainly by the geometry of that problem. As a rule,
spherical coordinates are best suited for spheres and spherically symmetric
problems. Spherical symmetry describes situations in which quantities of in-
terest are functions only of the distance from a fixed point and not on the
orientation of that distance. Similarly, cylindrical coordinates ease calcula-
tions when cylinders or cylindrical symmetries are involved. Finally, Cartesian
coordinates are used in rectangular geometries.

Of the three coordinate systems, Cartesian is the most complete in the
following sense: A point in space can have only one triplet as its coordinates.
This property is not shared by the other two systems. For example, a point limitations of

non-Cartesian
coordinates

P located on the z-axis of a cylindrical coordinate system does not have a
well-defined ϕ(P ). In practice, such imperfections are not of dire consequence
and we shall ignore them.

Once we have three coordinate systems to work with, we need to know
how to translate from one to another. First we give the transformation rule
from spherical to cylindrical. It is clear from Figure 1.9 that transformation

from spherical to
cylindrical
coordinates

ρ = r sin θ, ϕcyl = ϕsph, z = r cos θ. (1.7)

Thus, given (r, θ, ϕ) of a point P , we can obtain (ρ, ϕ, z) of the same point by
substituting in the RHS.

Next we give the transformation rule from cylindrical to Cartesian. Again transformation
from cylindrical to
Cartesian
coordinates

Figure 1.9 gives the result:

x = ρ cosϕ, y = ρ sin ϕ, zcar = zcyl. (1.8)

We can combine (1.7) and (1.8) to connect Cartesian and spherical coordi- transformation
from spherical to
Cartesian
coordinates

nates:
x = r sin θ cosϕ, y = r sin θ sin ϕ, z = r cos θ. (1.9)

x

y

z

P

θ
r

ρ

ρ

ϕ

Figure 1.9: The relation between the cylindrical and spherical coordinates of a point

P can be obtained using this diagram.



14 Coordinate Systems and Vectors

Box 1.2.2. Equations (1.7)–(1.9) are extremely important and worth be-
ing committed to memory. The reader is advised to study Figure 1.9
carefully and learn to reproduce (1.7)–(1.9) from the figure!

The transformations given are in their standard form. We can turn them
around and give the inverse transformations. For instance, squaring the first
and third equations of (1.7) and adding gives ρ2 + z2 = r2 or r =

√
ρ2 + z2.

Similarly, dividing the first and third equation yields tan θ = ρ/z, which
implies that θ = tan−1(ρ/z), or equivalently,

z

r
= cos θ ⇒ θ = cos−1

(z

r

)
= cos−1

(
z

√
ρ2 + z2

)

.

Thus, the inverse of (1.7) istransformation
from cylindrical to
spherical
coordinates

r =
√

ρ2 + z2, θ = tan−1
(ρ

z

)
= cos−1

(
z

√
ρ2 + z2

)

, ϕsph = ϕcyl.

(1.10)
Similarly, the inverse of (1.8) is

ρ =
√

x2 + y2,

ϕ = tan−1
(y

x

)
= cos−1

(
x

√
x2 + y2

)

= sin−1

(
y

√
x2 + y2

)

, (1.11)

zcyl = zcar,

and that of (1.9) istransformation
from Cartesian to
spherical
coordinates

r =
√

x2 + y2 + z2,

θ = tan−1

(√
x2 + y2

z

)

= cos−1

(
z

√
x2 + y2 + z2

)

= sin−1

( √
x2 + y2

√
x2 + y2 + z2

)

, (1.12)

ϕ = tan−1
( y

x

)
= cos−1

( x
√

x2 + y2

)
= sin−1

( y
√

x2 + y2

)
.

An important question concerns the range of these quantities. In other
words: In what range should we allow these quantities to vary in order to cover
the whole space? For Cartesian coordinates all three variables vary between
−∞ and +∞. Thus,range of

coordinate
variables −∞ < x < +∞, −∞ < y < +∞, −∞ < z < +∞.

The ranges of cylindrical coordinates are

0 ≤ ρ < ∞, 0 ≤ ϕ ≤ 2π, −∞ < z < ∞.
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Note that ρ, being a distance, cannot have negative values.9 Similarly, the
ranges of spherical coordinates are

0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π.

Again, r is never negative for similar reasons as above. Also note that the
range of θ excludes values larger than π. This is because the range of ϕ takes
care of points where θ “appears” to have been increased by π.

Historical Notes
One of the greatest achievements in the development of mathematics since Euclid
was the introduction of coordinates. Two men take credit for this development: Fer-
mat and Descartes. These two great French mathematicians were interested in the
unification of geometry and algebra, which resulted in the creation of a most fruitful
branch of mathematics now called analytic geometry. Fermat and Descartes who
were heavily involved in physics, were keenly aware of both the need for quantitative
methods and the capacity of algebra to deliver that method.

Fermat’s interest in the unification of geometry and algebra arose because of his
involvement in optics. His interest in the attainment of maxima and minima—thus

Pierre de Fermat
1601–1665

his contribution to calculus—stemmed from the investigation of the passage of light
rays through media of different indices of refraction, which resulted in Fermat’s
principle in optics and the law of refraction. With the introduction of coordinates,
Fermat was able to quantify the study of optics and set a trend to which all physicists
of posterity would adhere. It is safe to say that without analytic geometry the
progress of science, and in particular physics, would have been next to impossible.

Born into a family of tradespeople, Pierre de Fermat was trained as a lawyer
and made his living in this profession becoming a councillor of the parliament of
the city of Toulouse. Although mathematics was but a hobby for him and he could
devote only spare time to it, he made great contributions to number theory, to
calculus, and, together with Pascal, initiated work on probability theory.

The coordinate system introduced by Fermat was not a convenient one. For one
thing, the coordinate axes were not at right angles to one another. Furthermore,
the use of negative coordinates was not considered. Nevertheless, he was able to
translate geometric curves into algebraic equations.

René Descartes was a great philosopher, a founder of modern biology, and a
superb physicist and mathematician. His interest in mathematics stemmed from his
desire to understand nature. He wrote:

. . . I have resolved to quit only abstract geometry, that is to say, the
consideration of questions which serve only to exercise the mind, and
this, in order to study another kind of geometry, which has for its object
the explanation of the phenomena of nature.

His father, a relatively wealthy lawyer, sent him to a Jesuit school at the age
René Descartes

1596–1650
of eight where, due to his delicate health, he was allowed to spend the mornings in
bed, during which time he worked. He followed this habit during his entire life. At
twenty he graduated from the University of Poitier as a lawyer and went to Paris
where he studied mathematics with a Jesuit priest. After one year he decided to

9In some calculus books ρ is allowed to have negative values to account for points on the
opposite side of the origin. However, in physics literature ρ is assumed to be positive.To go
to “the other side” of the origin along ρ, we change ϕ by π, keeping ρ positive at all times.
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join the army of Prince Maurice of Orange in 1617. During the next nine years he
vacillated between various armies while studying mathematics.

He eventually returned to Paris, where he devoted his efforts to the study of
optical instruments motivated by the newly discovered power of the telescope. In
1628 he moved to Holland to a quieter and freer intellectual environment. There he
lived for the next twenty years and wrote his famous works. In 1649 Queen Christina
of Sweden persuaded Descartes to go to Stockholm as her private tutor. However
the Queen had an uncompromising desire to draw curves and tangents at 5 a.m.,
causing Descartes to break the lifelong habit of getting up at 11 o’clock! After only
a few months in the cold northern climate, walking to the palace for the 5 o’clock
appointment with the queen, he died of pneumonia in 1650.

Descartes described his algebraic approach to geometry in his monumental work
La Géométrie. It is in this work that he solves geometrical problems using algebra
by introducing coordinates. These coordinates, as in Fermat’s case, were not lengths
along perpendicular axes. Nevertheless they paved the way for the later generations
of scientists such as Newton to build on Descartes’ and Fermat’s ideas and improve
on them.

Throughout the seventeenth century, mathematicians used one axis with the y
values drawn at an oblique or right angle onto that axis. Newton, however, in a bookNewton uses polar

coordinates for the
first time

called The Method of Fluxions and Infinite Series written in 1671, and translated
much later into English in 1736, describes a coordinate system in which points are
located in reference to a fixed point and a fixed line through that point. This was
the first introduction of essentially the polar coordinates we use today.

1.3 Vectors in Different Coordinate Systems

Many physical situations require the study of vectors in different coordinate
systems. For example, the study of the solar system is best done in spherical
coordinates because of the nature of the gravitational force. Similarly calcu-
lation of electromagnetic fields in a cylindrical cavity will be easier if we use
cylindrical coordinates. This requires not only writing functions in terms of
these coordinate variables, but also expressing vectors in terms of unit vectors
suitable for these coordinate systems. It turns out that, for the three coordi-
nate systems described above, the most natural construction of such vectors
renders them mutually perpendicular.

Any set of three (two) mutually perpendicular unit vectors in space (in the
plane) is called an orthonormal basis.10 Basis vectors have the propertyorthonormal basis

that any vector can be written in terms of them.
Let us start with the plane in which the coordinate system could be Carte-

sian or polar. In general, we construct an orthonormal basis at a point and
note that

10The word “orthonormal” comes from orthogonal meaning “perpendicular,” and normal
meaning “of unit length.”



1.3 Vectors in Different Coordinate Systems 17

P
Q

ex
^

ey
^

ex
^

ey
^

(a)

P

Q

er
^

er
^

eθ
^

(b)

eθ
^

Figure 1.10: The unit vectors in (a) Cartesian coordinates and (b) polar coordinates.

The unit vectors at P and Q are the same for Cartesian coordinates, but different in

polar coordinates.

Box 1.3.1. The orthonormal basis, generally speaking, depends on the
point at which it is constructed.

The vectors of a basis are constructed as follows. To find the unit vector
corresponding to a coordinate at a point P , hold the other coordinate fixed
and increase the coordinate in question. The initial direction of motion of P
is the direction of the unit vector sought. Thus, we obtain the Cartesian unit
vectors at point P of Figure 1.10(a): êx is obtained by holding y fixed and
letting x vary in the increasing direction; and êy is obtained by holding x fixed
at P and letting y increase. In each case, the unit vectors show the initial
direction of the motion of P . It should be clear that one obtains the same set general rule for

constructing a
basis at a point

of unit vectors regardless of the location of P . However, the reader should
take note that this is true only for coordinates that are defined in terms of
axes whose directions are fixed, such as Cartesian coordinates.

If we use polar coordinates for P , then holding θ fixed at P gives the
direction of êr as shown in Figure 1.10(b), because for fixed θ, that is the
direction of increase for r. Similarly, if r is fixed at P , the initial direction
of motion of P when θ is increased is that of êθ shown in the figure. If we
choose another point such as Q shown in the figure, then a new set of unit
vectors will be obtained which are different form those of P . This is because
polar coordinates are not defined in terms of any fixed axes.

Since {êx, êy} and {êr, êθ} form a basis in the plane, any vector a in the
plane can be expressed in terms of either basis as shown in Figure 1.11. Thus,
we can write

a = axP êxP + ayP êyP = arP êrP + aθP êθP = arQ êrQ + aθQ êθQ , (1.13)

where the coordinates are subscripted to emphasize their dependence on the
points at which the unit vectors are erected. In the case of Cartesian coor-
dinates, this, of course, is not necessary because the unit vectors happen to
be independent of the point. In the case of polar coordinates, although this
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Figure 1.11: (a) The vector a has the same components along unit vectors at P and Q

in Cartesian coordinates. (b) The vector a has different components along unit vectors

at different points for a polar coordinate system.

dependence exists, we normally do not write the points as subscripts, being
aware of this dependence every time we use polar coordinates.

So far we have used parentheses to designate the (components of) a vector.angle brackets
denote vector
components

Since, parentheses—as a universal notation—are used for coordinates of points,
we shall write components of a vector in angle brackets. So Equation (1.13)
can also be written as

a = 〈ax, ay〉P = 〈ar, aθ〉P = 〈ar, aθ〉Q,

where again the subscript indicating the point at which the unit vectors are
defined is normally deleted. However, we need to keep in mind that although
〈ax, ay〉 is independent of the point in question, 〈ar, aθ〉 is very much point-
dependent. Caution should be exercised when using this notation as to the
location of the unit vectors.

The unit vectors in the coordinate systems of space are defined the same
way. We follow the rule given before:

Box 1.3.2. (Rule for Finding Coordinate Unit Vectors). To find
the unit vector corresponding to a coordinate at a point P , hold the other
coordinates fixed and increase the coordinate in question. The initial di-
rection of motion of P is the direction of the unit vector sought.

It should be clear that the Cartesian basis {êx, êy, êz} is the same for all
points, and usually they are drawn at the origin along the three axes. An
arbitrary vector a can be written as

a = axêx + ayêy + azêz or a = 〈ax, ay, az〉, (1.14)

where we used angle brackets to denote components of the vector, reserving
the parentheses for coordinates of points in space.



1.3 Vectors in Different Coordinate Systems 19

x

y

z

O

P(ρ, ϕ, z)

ϕ

eϕ^

eρ^

ez
^

z

ρ

Figure 1.12: Unit vectors of cylindrical coordinates.

The unit vectors at a point P in the other coordinate systems are obtained
similarly. In cylindrical coordinates, êρ lies along and points in the direction
of increasing ρ at P ; êϕ is perpendicular to the plane formed by P and the
z-axis and points in the direction of increasing ϕ; êz points in the direction of
positive z (see Figure 1.12). We note that only êz is independent of the point
at which the unit vectors are defined because z is a fixed axis in cylindrical
coordinates. Given any vector a, we can write it as

a = aρêρ + aϕêϕ + azêz or a = 〈aρ, aϕ, az〉. (1.15)

The unit vectors in spherical coordinates are defined similarly: êr is taken
along r and points in the direction of increasing r; this direction is called radial direction

radial; êθ is taken to lie in the plane formed by P and the z-axis, is per-
pendicular to r, and points in the direction of increasing θ; êϕ is as in the
cylindrical case (Figure 1.13). An arbitrary vector in space can be expressed
in terms of the spherical unit vectors at P :

a = arêr + aθêθ + aϕêϕ or a = 〈ar, aθ, aϕ〉. (1.16)

It should be emphasized that

Box 1.3.3. The cylindrical and spherical unit vectors êρ, êr, êθ, and êϕ

are dependent on the position of P .

Once an origin O is designated, every point P in space will define a vector,
called a position vector and denoted by r. This is simply the vector drawn position vector

from O to P . In Cartesian coordinates this vector has components 〈x, y, z〉,
thus one can write

r = xêx + yêy + zêz. (1.17)
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Figure 1.13: Unit vectors of spherical coordinates. Note that the intersection of the

shaded plane with the xy-plane is a line along the cylindrical coordinate ρ.

But (x, y, z) are also the coordinates of the point P . This can be a source ofdifference between
coordinates and
components
explained

confusion when other coordinate systems are used. For example, in spherical
coordinates, the components of the vector r at P are 〈r, 0, 0〉 because r has
only a component along êr and none along êθ or êϕ. One writes11

r = rêr. (1.18)

However, the coordinates of P are still (r, θ, ϕ)! Similarly, the coordinates of
P are (ρ, ϕ, z) in a cylindrical system, while

r = ρ êρ + zêz, (1.19)

because r lies in the ρz-plane and has no component along êϕ. Therefore,

Box 1.3.4. Make a clear distinction between the components of the
vector r and the coordinates of the point P .

A common symptom of confusing components with coordinates is as fol-
lows. Point P1 has position vector r1 with spherical components 〈r1, 0, 0〉
at P1. The position vector of a second point P2 is r2 with spherical compo-
nents 〈r2, 0, 0〉 at P2. It is easy to fall into the trap of thinking that r1 − r2

has spherical components 〈r1 − r2, 0, 0〉! This is, of course, not true, because
the spherical unit vectors at P1 are completely different from those at P2,
and, therefore, contrary to the Cartesian case, we cannot simply subtract
components.

11We should really label everything with P . But, as usual, we assume this labeling to be
implied.
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One of the great advantages of vectors is their ability to express results Physical laws
ought to be
coordinate
independent!

independent of any specific coordinate systems. Physical laws are always
coordinate-independent. For example, when we write F = ma both F and a
could be expressed in terms of Cartesian, spherical, cylindrical, or any other
convenient coordinate system. This independence allows us the freedom to
choose the coordinate systems most convenient for the problem at hand. For
example, it is extremely difficult to solve the planetary motions in Cartesian
coordinates, while the use of spherical coordinates facilitates the solution of
the problem tremendously.

Example 1.3.1. We can express the coordinates of the center of mass (CM) of center of mass
a collection of particles in terms of their position vectors.12 Thus, if r denotes the
position vector of the CM of the collection of N mass points, m1, m2, . . . , mN with
respective position vectors r1, r2, . . . , rN relative to an origin O, then13

r =
m1r1 + m2r2 + · · · + mNrN

m1 + m2 + · · · + mN
=

∑N
k=1 mkrk

M
, (1.20)

where M =
∑N

k=1 mk is the total mass of the system. One can also think of Equation
(1.20) as a vector equation. To find the component equations in a coordinate system,
one needs to pick a fixed point (say the origin), a set of unit vectors at that point
(usually the unit vectors along the axes of some coordinate system), and substitute
the components of rk along those unit vectors to find the components of r along the
unit vectors. �

1.3.1 Fields and Potentials

The distributive property of the dot product and the fact that the unit vectors
of the bases in all coordinate systems are mutually perpendicular can be used
to derive the following: dot product in

terms of
components in the
three coordinate
systems

a · b = axbx + ayby + azbz (Cartesian),
a · b = aρbρ + aϕbϕ + azbz (cylindrical), (1.21)
a · b = arbr + aθbθ + aϕbϕ (spherical).

The first of these equations is the same as (1.3 ).
It is important to keep in mind that the components are to be expressed

in the same set of unit vectors. This typically means setting up mutually per-
pendicular unit vectors (an orthonormal basis) at a single point and resolving
all vectors along those unit vectors.

The dot product, in various forms and guises, has many applications in
physics. As pointed out earlier, it was introduced in the definition of work,
but soon spread to many other concepts of physics. One of the simplest—and
most important—applications is its use in writing the laws of physics in a
coordinate-independent way.

12This implies that the equation is most useful only when Cartesian coordinates are
used, because only for these coordinates do the components of the position vector of a
point coincide with the coordinates of that point.

13We assume that the reader is familiar with the symbol
∑

simply as a summation
symbol. We shall discuss its properties and ways of manipulating it in Chapter 9.
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Figure 1.14: The diagram illustrating the electrical force when one charge is at the

origin.

Example 1.3.2. A point charge q is situated at the origin. A second charge q′ is
located at (x, y, z) as shown in Figure 1.14. We want to express the electric force
on q′ in Cartesian, spherical, and cylindrical coordinate systems.

We know that the electric force, as given by Coulomb’s law, lies along the line
joining the two charges and is either attractive or repulsive according to the signs
of q and q′. All of this information can be summarized in the formulaCoulomb’s law

Fq′ =
keqq

′

r2
êr (1.22)

where ke = 1/(4πε0) ≈ 9× 109 in SI units. Note that if q and q′ are unlike, qq′ < 0
and Fq′ is opposite to êr, i.e., it is attractive. On the other hand, if q and q′ are of
the same sign, qq′ > 0 and Fq′ is in the same direction as êr, i.e., repulsive.

Equation (1.22) expresses Fq′ in spherical coordinates. Thus, its components in
terms of unit vectors at q′ are

〈
keqq

′/r2, 0, 0
〉
. To get the components in the other

coordinate systems, we rewrite (1.22). Noting that êr = r/r, we write

Fq′ =
keqq

′

r2

r

r
=

keqq
′

r3
r. (1.23)

For Cartesian coordinates we use (1.12) to obtain r3 = (x2+y2+z2)3/2. Substituting
this and (1.17) in (1.23) yields

Fq′ =
keqq

′

(x2 + y2 + z2)3/2
(xêx + yêy + zêz).

Therefore, the components of Fq′ in Cartesian coordinates are

〈
keqq

′x

(x2 + y2 + z2)3/2
,

keqq
′y

(x2 + y2 + z2)3/2
,

keqq
′z

(x2 + y2 + z2)3/2

〉

.

Finally, using (1.10) and (1.19) in (1.23), we obtain

Fq′ =
keqq

′

(ρ2 + z2)3/2
(ρ êρ + zêz).
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Figure 1.15: The displacement vector between P1 and P2 is the difference between

their position vectors.

Thus the components of Fq′ along the cylindrical unit vectors constructed at the
location of q′ are 〈

keqq
′ρ

(ρ2 + z2)3/2
, 0,

keqq
′z

(ρ2 + z2)3/2

〉

.
�

Since r gives the position of a point in space, one can use it to write
the distance between two points P1 and P2 with position vectors r1 and r2.
Figure 1.15 shows that r2 − r1 is the displacement vector from P1 to P2. The
importance of this vector stems from the fact that many physical quantities
are functions of distances between point particles, and r2−r1 is a concise way
of expressing this distance. The following example illustrates this.

Historical Notes
During the second half of the eighteenth century many physicists were engaged in a
quantitative study of electricity and magnetism. Charles Augustin de Coulomb,
who developed the so-called torsion balance for measuring weak forces, is credited
with the discovery of the law governing the force between electrical charges.

Coulomb was an army engineer in the West Indies. After spending nine years
there, due to his poor health, he returned to France about the same time that the
French Revolution began, at which time he retired to the country to do scientific

Charles Coulomb
1736–1806

research.
Beside his experiments on electricity, Coulomb worked on applied mechanics,

structural analysis, the fracture of beams and columns, the thrust of arches, and the
thrust of the soil.

At about the same time that Coulomb discovered the law of electricity, there
lived in England a very reclusive character named Henry Cavendish. He was
born into the nobility, had no close friends, was afraid of women, and disinterested
in music or arts of any kind. His life revolved around experiments in physics and
chemistry that he carried out in a private laboratory located in his large mansion.

During his long life he published only a handful of relatively unimportant pa-
pers. But after his death about one million pounds sterling were found in his bank

Henry Cavendish
1731–1810

account and twenty bundles of notes in his laboratory. These notes remained in
the possession of his relatives for a long time, but when they were published one
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hundred years later, it became clear that Henry Cavendish was one of the greatest
experimental physicists ever. He discovered all the laws of electric and magnetic
interactions at the same time as Coulomb, and his work in chemistry matches that
of Lavoisier. Furthermore, he used a torsion balance to measure the universal grav-
itational constant for the first time, and as a result was able to arrive at the exact
mass of the Earth.

Example 1.3.3. Coulomb’s law for two arbitrary charges

Suppose there are point charges q1 at P1 and q2 at P2. Let us write the force exerted
on q2 by q1. The magnitude of the force is

F21 =
keq1q2

d2
,

where d = P1P2 is the distance between the two charges. We use d because the
usual notation r has special meaning for us: it is one of the coordinates in spherical
systems. If we multiply this magnitude by the unit vector describing the direction
of the force, we obtain the full force vector (see Box 1.1.1). But, assuming repulsion
for the moment, this unit vector is

r2 − r1

|r2 − r1|
≡ ê21.

Also, since d = |r2 − r1|, we have

F21 =
keq1q2

d2
ê21 =

keq1q2

|r2 − r1|2
r2 − r1

|r2 − r1|
orCoulomb’s law

when charges are
arbitrarily located

F21 =
keq1q2

|r2 − r1|3
(r2 − r1). (1.24)

Although we assumed repulsion, we see that (1.24) includes attraction as well. In-
deed, if q1q2 < 0, F21 is opposite to r2−r1, i.e., F21 is directed from P2 to P1. Since
F21 is the force on q2 by q1, this is an attraction. We also note that Newton’s third
law is included in (1.24):

F12 =
keq2q1

|r1 − r2|3
(r1 − r2) = −F21

because r2 − r1 = −(r1 − r2) and |r2 − r1| = |r1 − r2|.
We can also write the gravitational force immediatelyvector form of

gravitational force

F21 = − Gm1m2

|r2 − r1|3
(r2 − r1), (1.25)

where m1 and m2 are point masses and the minus sign is introduced to ensure
attraction. �

Now that we have expressions for electric and gravitational forces, we can
obtain the electric field of a point charge and the gravitational field of a point
mass. First recall that the electric field at a point P is defined to be the
force on a test charge q located at P divided by q. Thus if we have a charge
q1, at P1 with position vector r1 and we are interested in its fields at P with
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position vector r, we introduce a charge q at r and calculate the force on q
from Equation (1.24):

Fq =
keq1q

|r− r1|3
(r − r1).

Dividing by q gives electric field of a
point chargeE1 =

keq1

|r − r1|3
(r − r1), (1.26)

where we have given the field the same index as the charge producing it.
The calculation of the gravitational field follows similarly. The result is

g1 = − Gm1

|r − r1|3
(r − r1). (1.27)

In (1.26) and (1.27), P is called the field point and P1 the source point. field point and
source pointNote that in both expressions, the field position vector comes first.

If there are several point charges (or masses) producing an electric (gravita-
tional) field, we simply add the contributions from each source. The principle superposition

principle explainedbehind this procedure is called the superposition principle. It is a princi-
ple that “seems” intuitively obvious, but upon further reflection its validity
becomes surprising. Suppose a charge q1 produces a field E1 around itself.
Now we introduce a second charge q2 which, far away and isolated from any
other charges, produced a field E2 around itself. It is not at all obvious that
once we move these charges together, the individual fields should not change.
After all, this is not what happens to human beings! We act completely dif-
ferently when we are alone than when we are in the company of others. The
presence of others drastically changes our individual behaviors. Nevertheless,
charges and masses, unfettered by any social chains, retain their individuality
and produce fields as if no other charges were present.

It is important to keep in mind that the superposition principle applies
only to point sources. For example, a charged conducting sphere will not
produce the same field when another charge is introduced nearby, because the
presence of the new charge alters the charge distribution of the sphere and
indeed does change the sphere’s field. However each individual point charge
(electron) on the sphere, whatever location on the sphere it happens to end
up in, will retain its individual electric field.14

Going back to the electric field, we can write

E = E1 + E2 + · · · + En

for n point charges q1, q2, . . . , qn (see Figure 1.16). Substituting from (1.26),
with appropriate indices, we obtain

E =
keq1

|r − r1|3
(r − r1) +

keq2

|r − r2|3
(r − r2) + · · · + keqn

|r − rn|3
(r − rn)

or, using the summation symbol, we obtain
14The superposition principle, which in the case of electrostatics and gravity is needed

to calculate the fields of large sources consisting of many point sources, becomes a vital
pillar upon which quantum theory is built and by which many of the strange phenomena
of quantum physics are explained.
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Figure 1.16: The electrostatic field of N point charges is the sum of the electric fields

of the individual charges.

Box 1.3.5. The electric field of n point charges q1, q2, . . . , qn, lo-
cated at position vectors r1, r2, . . . , rn is E =

∑n
i=1

keqi

|r−ri|3 (r − ri), and
the analogous expression for the gravitational field of n point masses
m1, m2, . . . , mn is g = −

∑n
i=1

Gmi

|r−ri|3 (r − ri).

Historical Notes

The concept of force has a fascinating history which started in the works of Galileo
around the beginning of the seventeenth century, mathematically formulated and
precisely defined by Sir Isaac Newton in the second half of the seventeenth century,
revised and redefined in the form of fields by Michael Faraday and James Maxwell
in the mid nineteenth century, and finally brought to its modern quantum field
theoretical form by Dirac, Heisenberg, Feynman, Schwinger, and others by the mid
twentieth century.

Newton, in his theory of gravity, thought of gravitational force as “action-notion of field
elaborated at-a-distance,” an agent which affects something that is “there” because of the

influence of something that is “here.” This kind of interpretation of force had both
philosophical and physical drawbacks. It is hard to accept a ghostlike influence
on a distant object. Is there an agent that “carries” this influence? What is this
agent, if any? Does the influence travel infinitely fast? If we remove the Sun from
the Solar System would the Earth and other planets “feel” the absence of the Sun
immediately?

These questions, plus others, prompted physicists to come up with the idea of a
field. According to this interpretation, the Sun, by its mere presence, creates around
itself an invisible three dimensional “sheet” such that, if any object is placed in this
sheet, it feels the gravitational force. The reason that planets feel the force of gravity
of the Sun is because they happen to be located in the gravitational field of the Sun.
The reason that an apple falls to the Earth is because it is in the gravitational field
of the Earth and not due to some kind of action-at-a-distance ghost.
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Therefore, according to this concept, the force acts on an object here, because
there exists a field right here. And force becomes a local concept. The field con-
cept removes the difficulties associated with action-at-a-distance. The “agent” that
transmits the influence from the source to the object, is the field. If the Sun is stolen
from the solar system, the Earth will not feel the absence of the Sun immediately.
It will receive the information of such cosmic burglary after a certain time-lapse
corresponding to the time required for the disturbance to travel from the Sun to the
Earth. We can liken such a disturbance (disappearance of the Sun) to a disturbance
in the smooth water of a quiet pond (by dropping a stone into it). Clearly, the dis-
turbance travels from the source (where the stone was dropped) to any other point
with a finite speed, the speed of the water waves.

The concept of a field was actually introduced first in the context of electricity
and magnetism by Michael Faraday as a means of “visualizing” electromagnetic
effects to replace certain mathematical ideas for which he had little talent. However,
in the hands of James Maxwell, fields were molded into a physical entity having an
existence of their own in the form of electromagnetic waves to be produced in 1887
by Hertz and used in 1901 by Marconi in the development of radio.

A concept related to that of fields is potential which is closely tied to the potential

work done by the fields on a charge (in the case of electrostatics) or a mass
(in the case of gravity). It can be shown15 that the gravitational potential
Φ(r) at r, of n point masses, is given by

Φ(r) = −
n∑

i=1

Gmi

|r − ri|
(1.28)

and that of n point charges by

Φ(r) =
n∑

i=1

keqi

|r − ri|
. (1.29)

Note that in both cases, the potential goes to zero as r goes to infinity. This
has to do with the choice of the location of the zero of potential, which we
have chosen to be the point at infinity in Equations (1.28) and (1.29).

Example 1.3.4. The electric charges q1, q2, q3, and q4 are located at Cartesian
(a, 0, 0), (0, a, 0), (−a, 0, 0), and (0,−a, 0), respectively. We want to find the electric
field and the electrostatic potential at an arbitrary point on the z-axis. We note
that

r1 = aêx, r2 = aêy, r3 = −aêx, r4 = −aêy, r = zêz,

so that

r − r1 = −aêx + zêz, r − r2 = −aêy + zêz,

r − r3 = aêx + zêz, r − r4 = aêy + zêz,

15See Chapter 14 for details.
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and |r − ri|3 = (a2 + z2)3/2 for all i. The electric field can now be calculated using
Box 1.3.5:

E =
keq1

(a2 + z2)3/2
(−aêx + zêz) +

keq2

(a2 + z2)3/2
(−aêy + zêz)

+
keq3

(a2 + z2)3/2
(aêx + zêz) +

keq4

(a2 + z2)3/2
(aêy + zêz)

=
ke

(a2 + z2)3/2
[(−aq1 + aq3)êx + (−aq2 + aq4)êy + (q1 + q2 + q3 + q4)zêz] .

It is interesting to note that if the sum of all charges is zero, the z-component of
the electric field vanishes at all points on the z-axis. Furthermore, if, in addition,
q1 = q3 and q2 = q4, there will be no electric field at any point on the z-axis.

The potential is obtained similarly:

Φ =
keq1

(a2 + z2)1/2
+

keq2

(a2 + z2)1/2
+

keq3

(a2 + z2)1/2
+

keq4

(a2 + z2)1/2

=
ke(q1 + q2 + q3 + q4)√

a2 + z2
.

So, the potential is zero at all points of the z-axis, as long as the total charge
is zero. �

1.3.2 Cross Product

The unit vectors in the three coordinate systems are not only mutually perpen-
dicular, but in the order in which they are given, they also form a right-handed
set [see Equation (1.5)]. Therefore, we can use Equation (1.6) and write

a × b = det

⎛

⎝
êx êy êz

ax ay az

bx by bz

⎞

⎠

︸ ︷︷ ︸
in Cartesian CS

= det

⎛

⎝
êρ êϕ êz

aρ aϕ az

bρ bϕ bz

⎞

⎠

︸ ︷︷ ︸
in cylindrical CS

= det

⎛

⎝
êr êθ êϕ

ar aθ aϕ

br bθ bϕ

⎞

⎠

︸ ︷︷ ︸
in spherical CS

(1.30)
Two important prototypes of the concept of cross product are angular

momentum and torque. A particle moving with instantaneous linear mo-
mentum p relative to an origin O has instantaneous angular momentum
L = r × p if its instantaneous position vector with respect to O is r. In
Figure 1.17 we have shown r, p, and r × p. Similarly, if the instantaneous
force on the above particle is F, then the instantaneous torque acting on it is
T = r× F.

If there are more than one particle we simply add the contribution of
individual particles. Thus, the total angular momentum L of N particles andangular

momentum and
torque as
examples of cross
products

the total torque T acting on them are

L =
N∑

k=1

rk × pk and T =
N∑

k=1

rk × Fk, (1.31)

where rk is the position of the kth particle, pk its instantaneous momentum,
and Fk the instantaneous force acting on it.
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Figure 1.17: Angular momentum of a moving particle with respect to the origin O.

The circle with a dot in its middle represents a vector pointing out of the page. It is

assumed that r and p lie in the page.

Example 1.3.5. In this example, we show that the torque on a collection of three
particles is caused by external forces only. The torques due to the internal forces
add up to zero. The generalization to an arbitrary number of particles will be done
in Example 9.2.1 when we learn how to manipulate summation symbols.

For N = 3, the second formula in Equation (1.31) reduces to

T = r1 ×F1 + r2 ×F2 + r3 ×F3.

Each force can be divided into an external part and an internal part, the latter being
the force caused by the presence of the other particles. So, we have

F1 = F
(ext)
1 + F12 + F13,

F2 = F
(ext)
2 + F21 + F23,

F3 = F
(ext)
3 + F31 + F32,

where F12 is the force on particle 1 exerted by particle 2, etc. Substituting in the
above expression for the torque, we get

T = r1 × F
(ext)
1 + r2 × F

(ext)
2 + r3 × F

(ext)
3

+ r1 × F12 + r1 × F13 + r2 × F21 + r2 × F23 + r3 × F31 + r3 ×F32

= T(ext) + (r1 − r2) × F12 + (r1 − r3) × F13 + (r2 − r3) × F23,

where we used the third law of motion: F12 = −F21, etc. Now we note that the
internal force between two particles, 1 and 2 say, is along the line joining them, i.e.,
along r1 − r2. It follows that all the cross products in the last line of the equation
above vanish and we get T = T(ext). �

We have already seen that multiplying a vector by a number gives another
vector. A physical example of this is electric force which is obtained by multi-
plying electric field by electric charge. In fact we divided the electric force by
charge to get the electric field. Historically, it was the law of the force which from electric field

to electric forcewas discovered first and then the concept of electric field was defined. We have
also seen that one can get a new vector by cross-multiplying two vectors. The
rule of this kind of multiplication is, however, more complicated. It turns out
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that the magnetic force is related to the magnetic field via such a cross multi-
plication. What is worse is that the magnetic field is also related to its source
(electric charges in motion) via such a product. Little wonder that magnetic
phenomena are mathematically so much more complicated than their electric
counterparts. That is why in the study of magnetism, one first introduces
the concept of magnetic field and how it is related to the motion of charges
producing it, and then the force of this field on moving charges.

Example 1.3.6. A charge q, located instantaneously at the origin, is moving
with velocity v relative to P [see Figure 1.18(a)]. Assuming that |v| is much smaller
than the speed of light, the instantaneous magnetic field at P due to q is given by

B =
kmq v × êr

r2
, or, using êr = r/r, by B =

kmq v× r

r3
. This is a simple version ofmagnetic field of a

moving charge or
Biot–Savart law

a more general formula known as the Biot–Savart law. In the above relations, km

is the analog of ke in the electric case.

If we are interested in the magnetic field when q is located at a point other
than the origin, we replace r with the vector from the instantaneous location of the
moving charge to P . This is shown in Figure 1.18(b), where the vector from q1 to
P is to replace r in the above equation. More specifically, we have

B1 =
kmq1v1 × (r − r1)

|r − r1|3
. (1.32)

If there are N charges, the total magnetic field will be

B =
N∑

k=1

kmqkvk × (r− rk)

|r − rk|3
, (1.33)

where we have used the superposition principle. �

When a charge q moves with velocity v in a magnetic field B, it experiences
a force given bymagnetic force on

a moving charge. F = qv × B. (1.34)

It is instructive to write the magnetic force exerted by a charge q1 moving
with velocity v1 on a second charge q2 moving with velocity v2. We leave this
as an exercise for the reader.

(b)O

r

q1

P
q

P

v

r

(a)

r1

r − r1

v1

Figure 1.18: The (instantaneous) magnetic field at P of a moving point charge (a)

when P is at the origin, and (b) when P is different from the origin. The field points

out of the page for the configuration shown.
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Example 1.3.7. A charge q moves with constant speed v (assumed to be small
compared to the speed of light) on a straight line. We want to calculate the magnetic
field produced by the charge at a point P located at a distance ρ from the line as a
function of time. Cylindrical coordinates are most suitable for this problem because
of the existence of a natural axis. Choose the path of the charge to be the z-axis.
Also assume that P lies in the xy-plane, and that q was at the origin at t = 0. Then
v = vêz, r = ρêρ, r1 = vtêz, r− r1 = ρêρ − vtêz. So

|r− r1| =
√

(ρêρ − vtêz) · (ρêρ − vtêz) =
√

ρ2 + v2t2

and v × (r− r1) = vêz × (ρêρ − vtêz) = ρvêϕ. Therefore, the magnetic field is

B =
kmqv × (r− r1)

|r − r1|3
=

kmqρv

(ρ2 + v2t2)3/2
êϕ.

Readers familiar with the relation between magnetic fields and currents in long wires
will note that the magnetic field above obeys the right-hand rule. �

1.4 Relations Among Unit Vectors

We have seen that, depending on the nature of problems encountered in
physics, one coordinate system may be more useful than others. We have
also seen that the coordinates can be transformed back and forth using func-
tional relations that connect them. Since many physical quantities are vectors,
transformation and expression of components in bases of various coordinate
systems also become important. The key to this transformation is writing one
set of unit vectors in terms of others. In the derivation of these relations, we
shall make heavy use of Box 1.1.2.

First we write the cylindrical unit vectors in terms of Cartesian unit vec-
tors. Since {êx, êy, êz} form a basis, any vector can be written in terms of
them. In particular, êρ can be expressed as

êρ = a1êx + b1êy + c1êz (1.35)

with a1, b1, and c1 to be determined. Next we recall that

Box 1.4.1. The dot product of two unit vectors is the cosine of the angle
between them.

Furthermore, Figure 1.12 shows that the angle between êρ and êx is ϕ, and
that between êρ and êy is π/2 − ϕ. So, by dotting both sides of Equation
(1.35) by êx, êy, and êz in succession, we obtain

êx · êρ
︸ ︷︷ ︸
=cos ϕ

= a1 + 0 + 0 = a1 ⇒ a1 = cosϕ,

êy · êρ
︸ ︷︷ ︸
=sin ϕ

= 0 + b1 + 0 = b1 ⇒ b1 = sinϕ,

êz · êρ
︸ ︷︷ ︸

=0

= 0 + 0 + c1 = c1 ⇒ c1 = 0.
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Therefore,
êρ = êx cosϕ + êy sin ϕ.

With the first and third cylindrical unit vectors êρ and êz at our disposal,16

we can determine the second, using Equation (1.5):

êϕ = êz × êρ = det

⎛

⎝
êx êy êz

0 0 1
cosϕ sin ϕ 0

⎞

⎠ = −êx sin ϕ + êy cosϕ.

Thus,

êρ = êx cosϕ + êy sin ϕ,

êϕ = −êx sin ϕ + êy cosϕ, (1.36)
êz = êz.

cylindrical unit
vectors in terms of
Cartesian unit
vectors

This equation can easily be inverted to find the Cartesian unit vectors in
terms of the cylindrical unit vectors. For example, the coefficients in

êx = a2êρ + b2êϕ + c2êz

can be obtained by dotting both sides of it with êρ, êϕ, and êz, respectively,

êρ · êx = a2 + 0 + 0 ⇒ cosϕ = a2,

êϕ · êx = 0 + b2 + 0 ⇒ − sin ϕ = b2,

êz · êx = 0 + 0 + c2 ⇒ 0 = c2,

where we have used êρ · êx = cosϕ, and êϕ · êx = − sinϕ—obtained by
dotting the first and second equations of (1.36) with êx—as well as êz · êx = 0.
Similarly, one can obtain êy in terms of the cylindrical unit vectors. The entire
result is

êx = êρ cosϕ − êϕ sinϕ

êy = êρ sin ϕ + êϕ cosϕ (1.37)
êz = êz

Cartesian unit
vectors in terms of
cylindrical unit
vectors

Now we express the spherical unit vectors in terms of the cylindrical ones.
This is easily done for êr, because it has only êρ and êz components (why?).
Thus, with

êr = a3êρ + b3êz,

we obtain

êρ · êr = a3 + 0 ⇒ a3 = sin θ,

êz · êr = 0 + b3 ⇒ b3 = cos θ,

16Remember that êz is a unit vector in both coordinate systems. So, one can say that
the cylindrical êz has components 〈0, 0, 1〉 in the Cartesian basis {êx, êy, êz}.
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where in the last step of each line, we used the fact that the angle between êr

and êz is θ and that between êr and êρ is π/2− θ (see Figure 1.13). With a3

and b3 so determined, we can write

êr = êρ sin θ + êz cos θ.

Having two spherical unit vectors êr and êϕ at our disposal,17 we can
determine the third one, using (1.5) and (1.30):

êθ = êϕ × êr = det

⎛

⎝
êρ êϕ êz

0 1 0
sin θ 0 cos θ

⎞

⎠ = êρ cos θ − êz sin θ.

Thus,

êr = êρ sin θ + êz cos θ,

êθ = êρ cos θ − êz sin θ, (1.38)
êϕ = êϕ.

spherical unit
vectors in terms of
cylindrical unit
vectors

The inverse relations can be obtained as before. We leave the details of
the calculation as an exercise for the reader.

Combining Equations (1.36) and (1.38), we can express spherical unit vec-
tors in terms of the Cartesian unit vectors: spherical unit

vectors in terms of
Cartesian unit
vectors

êr = êx sin θ cosϕ + êy sin θ sinϕ + êz cos θ,

êθ = êx cos θ cosϕ + êy cos θ sin ϕ − êz sin θ, (1.39)
êϕ = −êx sin ϕ + êy cosϕ.

Equations (1.39) and (1.36) are very useful when calculating vector quan-
tities in spherical and cylindrical coordinates as we shall see in many examples
to follow. These equations also allow us to express a unit vector in one of the
three coordinate systems in terms of the unit vectors of any other coordinate
system.

Example 1.4.1. P1 and P2 have Cartesian coordinates (1, 1, 1) and (−1, 2,−1),
respectively. A vector a has spherical components 〈0, 2, 0〉 at P1. We want to find
the spherical components of a at P2. These are given by a · êr2 , a · êθ2 , and a · êϕ2 .
In order to calculate these dot products, it is most convenient to express all vectors
in Cartesian form. So, using Equation (1.39), we have

a = 2êθ1 = 2 (êx cos θ1 cos ϕ1 + êy cos θ1 sin ϕ1 − êz sin θ1) ,

where (r1, θ1, ϕ1) are coordinates of P1. We can calculate these from the Cartesian
coordinates of P1:

r1 =
√

12 + 12 + 12 =
√

3, cos θ1 =
z1

r1
=

1√
3
, tanϕ1 =

y1

x1
= 1 ⇒ ϕ1 =

π

4
.

17Recall that êϕ is both a cylindrical and a spherical unit vector.



34 Coordinate Systems and Vectors

Therefore,

a = 2

(

êx
1√
3

1√
2

+ êy
1√
3

1√
2
− êz

√
2

3

)

=
2√
6
êx +

2√
6
êy − 4√

6
êz.

Now we need to express êr2 , êθ2 , and êϕ2 in terms of Cartesian unit vectors.
Once again we use Equation (1.39) for which we need the spherical coordinates of
P2:

r2 =
√

(−1)2 + 22 + (−1)2 =
√

6, cos θ2 =
z2

r2
= − 1√

6
, tan ϕ2 =

y2

x2
= −2.

Similarly, Equations (1.11) and (1.12) yield

sin θ2 = +

√
5

6
, cos ϕ2 = − 1√

5
, sin ϕ2 = +

2√
5
.

Then

êr2 = êx sin θ2 cos ϕ2 + êy sin θ2 sin ϕ2 + êz cos θ2

= êx

√
5

6

(

− 1√
5

)

+ êy

√
5

6

2√
5
− êz

1√
6

= − 1√
6
êx +

2√
6
êy − 1√

6
êz,

êθ2 = êx cos θ2 cos ϕ2 + êy cos θ2 sin ϕ2 − êz sin θ2

= êx

(

− 1√
6

)(

− 1√
5

)

+ êy

(

− 1√
6

)
2√
5
− êz

√
5

6

=
1√
30

êx − 2√
30

êy − 5√
30

êz,

êϕ2 = −êx sin ϕ2 + êy cos ϕ2 = − 2√
5
êx − 1√

5
êy .

We can now take the dot products required for the components:

r comp = a · êr2 =

(
2√
6
êx +

2√
6
êy − 4√

6
êz

)

·
(

− 1√
6
êx +

2√
6
êy − 1√

6
êz

)

= −2

6
+

4

6
+

4

6
= 1,

θ comp = a · êθ2 =

(
2√
6
êx +

2√
6
êy − 4√

6
êz

)

·
(

1√
30

êx − 2√
30

êy − 5√
30

êz

)

=
2

6
√

5
− 4

6
√

5
+

20

6
√

5
=

3√
5
,

ϕ comp = a · êϕ2 =

(
2√
6
êx +

2√
6
êy − 4√

6
êz

)

·
(

− 2√
5
êx − 1√

5
êy

)

= − 4√
30

− 2√
30

= − 6√
30

= −
√

6

5
.

It now follows that

a = êr2 +
3√
5
êθ2 −

√
6

5
êϕ2 .
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As a check, we note that

|a| =

√√
√
√12 +

(
3√
5

)2

+

(

−
√

6

5

)2

=

√
5 + 9 + 6

5
=

√
4 = 2,

which agrees with the length of a. �
Example 1.4.2. Points P1 and P2 have spherical coordinates (r1, θ1, ϕ1) and
(r2, θ2, ϕ2), respectively. We want to find: (a) the angle between their position
vectors r1 and r2 in terms of their coordinates; (b) the spherical components of r2

at P1; and (c) the spherical components of r1 at P2. Once again, we shall express
all vectors in terms of Cartesian unit vectors when evaluating dot products.

(a) The cosine of the angle—call it γ12—between the position vectors is simply
êr1 · êr2 . We can readily find this by using Equation (1.39):

cos γ12 = êr1 · êr2 = (êx sin θ1 cos ϕ1 + êy sin θ1 sin ϕ1 + êz cos θ1)

· (êx sin θ2 cos ϕ2 + êy sin θ2 sin ϕ2 + êz cos θ2)

= sin θ1 cos ϕ1 sin θ2 cos ϕ2 + sin θ1 sin ϕ1 sin θ2 sin ϕ2 + cos θ1 cos θ2

= sin θ1 sin θ2(cos ϕ1 cos ϕ2 + sin ϕ1 sin ϕ2) + cos θ1 cos θ2

= sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2.

(b) To find the spherical components of r2 at P1, we need to take the dot product
of r2 with the spherical unit vectors at P1:

r comp = r2 · êr1 = r2êr2 · êr1

= r2 [sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2] ,

θ comp = r2 · êθ1 = r2êr2 · êθ1

= r2 (êx sin θ2 cos ϕ2 + êy sin θ2 sin ϕ2 + êz cos θ2)

· (êx cos θ1 cos ϕ1 + êy cos θ1 sin ϕ1 − êz sin θ1)

= r2(sin θ2 cos ϕ2 cos θ1 cos ϕ1 + sin θ2 sin ϕ2 cos θ1 sin ϕ1 − cos θ2 sin θ1)

= r2[sin θ2 cos θ1 cos(ϕ1 − ϕ2) − cos θ2 sin θ1],

ϕ comp = r2 · êϕ1 = r2êr2 · êϕ1

= r2 (êx sin θ2 cos ϕ2 + êy sin θ2 sin ϕ2 + êz cos θ2) · (−êx sin ϕ1 + êy cos ϕ1)

= r2 (− sin θ2 cos ϕ2 sin ϕ1 + sin θ2 sin ϕ2 cos ϕ1) = r2 sin θ2 sin(ϕ2 − ϕ1).

(c) The spherical components of r1 at P2 can be found similarly. In fact,
switching the indices “1” and “2” in the expressions of part (b) gives the desired
formulas. �
Example 1.4.3. To illustrate further the conversion of vectors from one coordinate
system to another, consider a charge q that is located at the cylindrical coordinates
(a, π/3,−a). We want to find the spherical components of the electrostatic field E
of this charge at a point P with Cartesian coordinates (a, a, a).

The most straightforward way of doing this is to convert all coordinates to
Cartesian, find the field, and then take the dot products with appropriate unit
vectors. The Cartesian coordinates of the charge are

xq = ρq cos ϕq = a cos
(π

3

)
= 1

2
a,

yq = ρq sin ϕq = a sin
(π

3

)
=

√
3a

2
= 0.866a,

zq = −a.
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Thus,

r − rq = (a − 1
2
a)êx + (a − 0.866a)êy + (a − (−a))êz = 0.5aêx + 0.134aêy + 2aêz

and
|r − rq | =

√
(0.5a)2 + (0.134a)2 + (2a)2 = 2.066a,

and the electric field at P can be written in terms of Cartesian unit vectors at P :

E =
keq

|r − rq |3
(r − rq) = keq

0.5aêx + 0.134aêy + 2aêz

(2.066a)3

= keq
0.5êx + 0.134êy + 2êz

8.818a2
=

keq

a2
(0.0567êx + 0.0152êy + 0.2268êz).

To find the spherical components of the field at P , we first express the spherical
unit vectors at P in terms of Cartesian unit vectors. For this, we need the spherical
coordinates of P :

r =
√

a2 + a2 + a2 =
√

3 a = 1.732a,

cos θ =
z

r
=

a√
3 a

=
1√
3

= 0.577 ⇒ θ = 0.955,

tan ϕ =
y

x
=

a

a
= 1 ⇒ ϕ =

π

4
= 0.785.

It now follows that

êr = êx sin θ cos ϕ + êy sin θ sin ϕ + êz cos θ = 0.577êx + 0.577êy + 0.577êz,

êθ = êx cos θ cos ϕ + êy cos θ sin ϕ − êz sin θ = 0.408êx + 0.408êy − 0.816êz,

êϕ = −êx sin ϕ + êy cos ϕ = −0.707êx + 0.707êy .

Now we take the dot product of E with these unit vectors to find its spherical
components at P . The reader may first easily check that

êr · êx = 0.577, êr · êy = 0.577, êr · êz = 0.577,

êθ · êx = 0.408, êθ · êy = 0.408, êθ · êz = −0.816,

êϕ · êx = −0.707, êϕ · êy = 0.707, êϕ · êz = 0.

We can now finally calculate the field components:

Er = E · êr =
keq

a2
(0.0567êr · êx + 0.0152êr · êy + 0.2268êr · êz)

=
keq

a2
(0.0567 × 0.577 + 0.0152 × 0.577 + 0.2268 × 0.577) = 0.1724

keq

a2
,

Eθ = E · êθ =
keq

a2
(0.0567êθ · êx + 0.0152êθ · êy + 0.2268êθ · êz)

=
keq

a2
(0.0567 × 0.408 + 0.0152 × 0.408 − 0.2268 × 0.816) = −0.1558

keq

a2
,

Eϕ = E · êϕ =
keq

a2
(0.0567êϕ · êx + 0.0152êϕ · êy + 0.2268êϕ · êz)

=
keq

a2
(−0.0567 × 0.707 + 0.0152 × 0.707) = −0.0294

keq

a2
.

The choice of Cartesian coordinates was the most straightforward one, but one
can choose any other coordinate system to calculate the field and find the com-
ponents in any other set of unit vectors. The reader is urged to try the other
choices. �
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1.5 Problems

1.1. Find the equation of a line that passes through the following pairs of
points:

(a) (1, 0, 1) and (−1, 1, 0). (b) (2, 2,−1) and (−2,−1, 1).

(c) (1, 1, 1) and (−1, 1,−1). (d) (1, 1, 1) and (−2, 2, 0).

(e) (0, 2,−1) and (3,−1, 1). (f) (0, 1, 0) and (−1, 0,−1).

1.2. Use Figure 1.4 and the interpretation of the a · b as the product of the
length of a with the projection of b along a to show that

(a + b) · c = a · c + b · c.

1.3. Take the dot product of a = b−c with itself and prove the law of cosines
by interpreting the result geometrically. Note that the three vectors form a
triangle.

1.4. Find the angle between a = 2êx + 3êy + êz and b = êx − 6êy + 2êz.

1.5. Find the angle between a = 9êx + êy − 6êz and b = 4êx − 6êy + 5êz.

1.6. Show that a = êx cosα + êy sin α and b = êx cosβ + êy sin β are unit
vectors in the xy-plane making angles α and β with the x-axis. Then take their
dot product and obtain a formula for cos(α−β). Now use sin x = cos(π/2−x)
to find the formula for sin(α − β).

1.7. Vectors a and b are the sides of a parallelogram, c and d are its diagonals,
and θ is the angle between a and b. Show that

|c|2 + |d|2 = 2(|a|2 + |b|2)

and that
|c|2 − |d|2 = 4|a| |b| cos θ.

1.8. Given a, b, and c—vectors from the origin to the points A, B, and C—
show that the vector (a×b) + (b× c) + (c× a) is perpendicular to the plane
ABC.

1.9. Show that the vectors a = 2êx − êy + êz, b = êx − 3êy − 5êz, and
c = 3êx − 4êy − 4êz form the sides of a right triangle.

1.10. (a) Find the vector form of the equation of the plane defined by the three
points P , Q, and R with coordinates (p1, p2, p3), (q1, q2, q3), and (r1, r2, r3),
respectively. Hint: The position vector of a point X = (x, y, z) in the plane
is perpendicular to the cross product of

−−→
PQ and

−→
PR.

(b) Determine an equation for the plane passing through the points (2,−1, 1),
(3, 2,−1), and (−1, 3, 2).

1.11. Derive the law of sines for a triangle using vectors.
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1.12. Using vectors, show that the diagonals of a rhombus are orthogonal.

1.13. Show that a necessary and sufficient condition for three vectors to be
in the same plane is that the dot product of one with the cross product of the
other two be zero.

1.14. Show that two nonzero vectors have the same direction if and only if
their cross product vanishes.

1.15. Show the following vector identities by writing each vector in terms of
Cartesian unit vectors and showing that each component of the LHS is equal
to the corresponding component of the RHS.

(a) a · (b × c) = c · (a × b) = b · (c × a).

(b) a × (b × c) = b(a · c) − c(a · b), this is called the bac cab rule.

(c) (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c).

(d) (a × b) × (c × d) = b[a · (c × d)] − a[b · (c × d)].

(e) (a × b) × (c × d) = c[a · (b × d)] − d[a · (b × c)].

(f) (a × b) · (a × b) = |a|2|b|2 − (a · b)2.

1.16. Convert the following triplets from the given coordinate system to the
other two. All angles are in radians.
Cartesian: (1, 2, 1), (0, 0, 1), (1,−1, 0), (0, 1, 0), (1, 1, 1), (2, 2, 2), (0, 0, 5),
(1, 1, 0), (1, 0, 0).
Spherical: (2, π/3, π/4), (5, 0, π/3), (3, π/3, 3π/4), (1, 1, 0), (1, 0, 0),
(5, 0,♣), (3, π,♥), (0,♠,♦).
Cylindrical: (0,♣, 4), (2, π, 0), (0, 217,−18), (1, 3π/4,−2), (1, 2, 3), (1, 0, 0).

1.17. Derive the second and third relations in Equation (1.21).

1.18. Points P and P ′ have spherical coordinates (r, θ, ϕ) and (r′, θ′, ϕ′),
cylindrical coordinates (ρ, ϕ, z) and (ρ′, ϕ′, z′), and Cartesian coordinates
(x, y, z) and (x′, y′, z′), respectively. Write |r − r′| in all three coordinate
systems. Hint: Use Equation (1.2) with a = r − r′ and r and r′ written in
terms of appropriate unit vectors.

1.19. Show that Equation (1.24) is independent of where we choose the origin
to be. Hint: Pick a different origin O′ whose position vector relative to O is
R and write the equation in terms of position vectors relative to O′ and show
that the final result is the same as in Equation (1.24).

1.20. Three point charges are located at the corners of an equilateral triangle
of sides a with the origin at the center of the triangle as shown in Figure 1.19.
(a) Find the general expression for the electric field and electric potential at
(0, 0, z).
(b) Find a relation between q and Q such that the z-component of the field
vanishes for all values of z. What are E and Φ for such charges?
(c) Calculate E and Φ for z = a.
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x

y

q

q

Q

Figure 1.19:

1.21. A point charge Q and two point charges q are located in the xy-plane
at the corners of an equilateral triangle of side a as shown in Figure 1.20.
(a) Find the potential and the Cartesian components of the electrostatic field
at (0, 0, z).
(b) Show that it is impossible for E to be along the z-axis.
(c) Calculate E for z = a and find Q in terms of q such that Ez vanishes for
this value of z.
(d) What is the value of Φ at z = a for the charges found in (c)?

1.22. Three point charges each of magnitude Q and one point charge q are
located at the corners of a square of side 2a. Using an appropriate coordinate
system.
(a) Find the electric field and potential at point P located on the diagonal
from Q to q (and beyond) a distance 2

√
2 a from the center.

(b) Find a relation, if it exists, between q and Q such that the field vanishes
at P .

1.23. A charge q is located at the spherical coordinates (a, π/4, π/3). Find
the electrostatic potential and the Cartesian components of the electrostatic
field of this charge at a point P with spherical coordinates (a, π/6, π/4). Write
the field components as numerical multiples of keq/a2, and the potential as a

x

y

q

q

Q

Figure 1.20:
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numerical multiple of keq/a.

1.24. A charge q is located at the cylindrical coordinates (a, π/4, 2a). Find
the Cartesian components of the electrostatic field of this charge at a point P
with cylindrical coordinates (2a, π/6, a). Write your answers as a numerical
multiple of keq/a2. Find the electrostatic potential at P and express it as a
numerical multiple of keq/a.

1.25. A charge q is located at the cylindrical coordinates (a, π/3,−a).
(a) Find the Cartesian components of the electrostatic field E of this charge
at a point P with cylindrical coordinates (a, π/4, 2a). Write your answers as
a numerical multiple of keq/a2.
(b) Write E in terms of the cylindrical unit vectors at P .
(c) Find the electrostatic potential at P as a numerical multiple of keq/a.

1.26. Two charges q and −2q are located at the cylindrical coordinates
(a, π/4, a) and (a, 2π/3,−a), respectively.
(a) Find the Cartesian components of the electrostatic field at a point P with
spherical coordinates (3a, π/6, π/4). Write your answers as a numerical mul-
tiple of keq/a2.
(b) Find the electrostatic potential at P . Write your answer as a numerical
multiple of keq/a.

1.27. Two charges 3q and −q are located at the spherical coordinates
(a, π/3, π/6) and (2a, π/6, π/4), respectively.
(a) Find the cylindrical components of the electrostatic field at a point P
with spherical coordinates (3a, π/4, π/4). Write your answers as a numerical
multiple of keq/a2.
(b) Find the electrostatic potential at P . Write your answer as a numerical
multiple of keq/a.

1.28. A charge q is located at the spherical coordinates (a, π/3, π/6). Find
the Cartesian components of the electrostatic field of this charge at a point P
with cylindrical coordinates (a, 2π/3, 2a). Write your answers as a numerical
multiple of keq/a2. Also find the electrostatic potential at P .

1.29. Four charges are located at Cartesian coordinates as follows: q at

(2a, 0, 0), −2q at (0, 2a, 0),
4
√

2
5
√

5
q at (−a, 0, 0), and −2

√
2

5
√

5
q at (0,−a, 0). Find

the Cartesian components of the electrostatic field at (0, 0, a).

1.30. Charge q is moving at constant speed v along the positive x-axis. Two
other charges −q and 2q are moving at constant speeds v and 2v along positive
y and negative z axes, respectively. Assume that at t = 0, q is at the origin,
−q is at (0, a, 0), and 2q at (0, 0,−a).
(a) Find the Cartesian components of the magnetic field at a point (x, y, z)
for t > 0.
(a) Find the cylindrical components of the magnetic field at a point (ρ, ϕ, z)
for t > 0.
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(a) Find the spherical components of the magnetic field at a point (r, θ, ϕ) for
t > 0.

1.31. A charge q is moving at constant speed v along a curve parametrized
by

x′ = 6as, y′ = 3as2, z′ = −2as3

(a) Find the Cartesian components of the magnetic field at a point (x, y, z)
as a function of s.
(a) Find the cylindrical components of the magnetic field at a point (ρ, ϕ, z)
as a function of s.
(a) Find the spherical components of the magnetic field at a point (r, θ, ϕ) as
a function of s.

1.32. Points P1 and P2 have Cartesian coordinates (1, 1, 1) and (1, 1, 0), re-
spectively.
(a) Find the spherical coordinates of P1 and P2.
(b) Write down the components of r1, the position vector of P1, in terms of
spherical unit vectors at P1.
(c) Write down the components of r2, the position vector of P2, in terms of
spherical unit vectors at P1.

1.33. Points P1 and P2 have Cartesian coordinates (2, 2, 0) and (1, 0, 1), re-
spectively.
(a) Find the spherical coordinates of P1.
(b) Express êr1 , êθ1 , and êϕ1 , the spherical unit vectors at P1, in terms of the
Cartesian unit vectors.
(c) Find the components of the position vector of P2 along the spherical unit
vectors at P1.
(d) From its components in (c) find the length of r2, and show that it agrees
with the length as calculated from its Cartesian components.

1.34. Points P1 and P2 have spherical coordinates

P1 : (a, π/4, π/3) and P2 : (a, π/3, π/4).

(a) Find the angle between their position vectors r1 and r2.
(b) Find the spherical components of r2 − r1 at P1.
(c) Find the spherical components of r2 − r1 at P2.

1.35. Point P1 has Cartesian coordinates (1, 1, 0), point P2 has cylindrical
coordinates (1, 1, 0), and point P3 has spherical coordinates (1, 1, 0) where all
angles are in radians. Express r3 − r1 in terms of the spherical unit vectors
at P2.

1.36. Points P1 and P2 have Cartesian coordinates (1, 1, 1) and (1, 2, 1), and
position vectors r1 and r2, respectively.
(a) Find the spherical coordinates of P1 and P2.
(b) Find the components of r1, in terms of spherical unit vectors at P1.



42 Coordinate Systems and Vectors

(c) Find the components of r2, in terms of spherical unit vectors at P2.
(d) Find the components of r1, in terms of spherical unit vectors at P2.
(e) Find the components of r2, in terms of spherical unit vectors at P1.

1.37. Points P1 and P2 have Cartesian coordinates

(x1, y1, z1) and (x2, y2, z2).

(a) Find the angle between their position vectors r1 and r2 in terms of their
coordinates.
(b) Find the Cartesian components of r2 − r1 at P1.
(c) Find the Cartesian components of r2 − r1 at P2.

1.38. Points P1 and P2 have cylindrical coordinates

(ρ1, ϕ1, z1) and (ρ2, ϕ2, z2)

(a) Find the angle between their position vectors r1 and r2 in terms of their
coordinates.
(b) Find the cylindrical components of r2 − r1 at P1.
(c) Find the cylindrical components of r2 − r1 at P2.

1.39. Write the Cartesian unit vectors in terms of spherical unit vectors with
coefficients written in spherical coordinates.

1.40. Write the spherical unit vectors in terms of Cartesian unit vectors with
coefficients written in Cartesian coordinates.

1.41. In Example 1.4.3, calculate the electric field using cylindrical coordi-
nates, then find the components in terms of (a) Cartesian and (b) spherical
unit vectors.

1.42. In Example 1.4.3, calculate the electric field using spherical coordinates,
then find the components in terms of (a) Cartesian and (b) cylindrical unit
vectors.



Chapter 2

Differentiation

Physics deals with both the large and the small. Its domain of study includes
the interior of the nucleus of an atom as well as the exterior of a galaxy. It is,
therefore, natural for the scope of physical theories to switch between global,
or large-scale, and local, or small-scale regimes. Such an interplay between
the local and the global has existed ever since Newton and others discovered
the mathematical translation of this interplay: Derivatives are defined as local
objects while integrals encompass global properties. This chapter is devoted
to the concept of differentiation, which we shall consider as a natural tool with
which many physical concepts are expressed most concisely and conveniently.

All physical quantities reside in space and change with time. Even a static
quantity—once scrutinized—will reveal noticeable attributes of change, vali-
dating the old adage “The only thing that doesn’t change is the change itself.”
Thus, static, or time-independent, quantities are so only as approximations
to the true physical quantity which is dynamic.

Take the temperature of the surface of the Earth. As we move about on the
globe, we notice the variation of this quantity with location—poles as opposed
to the equator—and with time—winter versus summer. A specification of
temperature requires that of location and time. We thus speak of local and
instantaneous temperature. This is an example of the fact that, generally
speaking, all physical quantities are functions of space and time.

Locality and instantaneity have both a mathematical and a physical (or
operational) interpretation. Mathematically, they correspond to a point in
space and an instant of time with no extension or spread whatsoever. Physi-
cally, or operationally, many quantities require an extension in space and an
interval in time to be defined. Thus, a local weatherman’s morning statement
“Today’s high will be 45” limits the location to the size of a city, and the time
to at most a.m. or p.m. This is admittedly a rough localization, suitable for
a weatherman’s forecast. Nevertheless, even the most precise statements in
physics embody a space extension as well as a time interval whose “sizes” are
determined by the physical system under investigation. If we are studying
heat conduction by a metal bar several inches long, then “local” temperature
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takes a completely different meaning from the weatherman’s “local” temper-
ature. In the latter case, a city is as local as one gets, while in the former,
variations over a centimeter are significant.

2.1 The Derivative

A prime example of an instantaneously defined quantity is velocity. To findvelocity as an
example of an
instantaneously
defined quantity

the velocity of a moving particle at time t0, determine its position r0 at time
t0, determine also its position r at time t with t close to t0, divide r − r0 by
t− t0, and make t − t0 as small as possible. This defines the derivative of r
with respect to t which we call velocity v:derivative

v(t0) = lim
t→t0

r − r0

t − t0
≡ dr

dt

∣
∣
∣
∣
t=t0

≡ ṙ(t0).

Acceleration is defined similarly:

a(t0) = lim
t→t0

v − v0

t − t0
≡ dv

dt

∣
∣
∣
∣
t=t0

≡ d2r
dt2

∣
∣
∣
∣
t=t0

≡ r̈(t0).

Velocity and acceleration are examples of derivatives which are generallyderivative as rate
of change:
independent
variable is time or
a coordinate

called rate of change. In the rate of change, one is interested in the way
a quantity (dependent variable) changes as another quantity (independent
variable) is allowed to vary. In the majority of rates of change, the independent
variable is either time or one of the space coordinates.

The second type of derivative is simply the ratio of two infinitesimal phys-
ical quantities. In general, whenever a physical quantity Q is defined as thederivative as the

ratio of two
infinitesimal
physical quantities

ratio of two other physical quantities R and S, one must define Q in a small
neighborhood (small volume, area, length, or time interval). One, therefore,
writes

Q = lim
ΔS→0

ΔR

ΔS
≡ dR

dS
, (2.1)

where ΔR and ΔS are both local small quantities. Being physical quantities,
both R and S, and therefore ΔR and ΔS are, in general, functions of position
and time. Hence, their ratio, Q, is also a function of position and time. The
last sentence requires further elaboration.

In physics, we deal with two completely different, yet subtly related, ob-
jects: particles and fields. The former is no doubt familiar to the reader.particles and fields

Examples of the latter are the gravitational, electric, and magnetic fields, as
well as the less familiar velocity field of a fluid such as water in a river or air
in the atmosphere. Suppose we want to specify the “state” of the two types
of objects at a particular time t. For a particle, this means determining its
position and momentum or velocity1 at t. Imagine the particle carrying with

1It is a fundamental result of classical mechanics that such a specification completely
determines the subsequent motion of the particle and, therefore, any other property of the
particle will be specified by the initial position and momentum.
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it a vector representing its velocity. Then a snapshot of the particle at time t
depicts its location as well as its velocity, and thus, a complete specification
of the particle. A large collection of such snapshots specifies the motion of the
particle. Since each snapshot represents an instant of time, and since the col-
lection of snapshots specifies the motion, we conclude that, for particles, the
only independent variable is time.2 A problem involving a classical particle is
solved once we find its position as a function of time alone.

How do we specify the “state” of a fluid? A fluid is an extended object,
different parts of which behave differently. Attaching a vector to different
points of the fluid to represent the velocity at that point, and taking snapshots
at different times, we can get an idea of how the fluid behaves. This is
done constantly (without the arrows, of course) by weather satellites whose
snapshots are sometimes shown on our TV screens and reveal, for example,
the turbulence developed by a hurricane. A complete determination of the
fluid, therefore, entails a specification of the velocity vector at different points
of the fluid for different times. A vector which varies from point to point is
called a vector field. A problem involving a classical fluid is, therefore, solved vector field

once we find its velocity field as a function of position and time. The concept
of a field can be abstracted from the physical reality of the fluid.3 It then
becomes a legitimate physical entity whose specification requires a position,
a time, and a direction (if the field happens to be a vector field), just like the
specification of the velocity field of a fluid.

The reason for going into so much detail in the last two paragraphs is to
prevent a possible confusion. In the case of velocity and acceleration, one
divides two quantities and the limit of the ratio turns out to be a function
of the denominator, and one might get the impression that in (2.1), Q is a
function of S. This is not the case, as, in general, all three quantities, R, S,
and Q are functions of other (independent) variables, for instance, the three
coordinates specifying position and time.

Velocity and acceleration are examples of the first interpretation of deriva-
tive, the rate of change. There are many situations in which the second inter-
pretation of derivative is applicable. One important example is the density
of a physical quantity R: density: an

example of the
second
interpretation of
derivative

ρR = lim
ΔV →0

ΔR

ΔV
≡ dR

dV
, (2.2)

where ΔR is the amount of the quantity R in the small volume ΔV . Examples
of densities are mass density ρm, electric charge density ρq, number density

2This is true only in a classical picture of particles. A quantum mechanical picture
disallows a complete determination of the position and momentum of a particle.

3Historically, this abstraction was very hard to achieve in the case of electromagnetism,
where, for a long time a hypothetical “fluid” called æther was assumed to support the
electromagnetic field. It was Einstein who suggested getting rid of the fluid altogether, and
attaching physical reality and significance to the field itself.
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ρn, energy density ρE , and momentum density ρp. Sometimes it is convenient
to define surface and linear densities:

σR = lim
Δa→0

ΔR

Δa
≡ dR

da
,

λR = lim
Δl→0

ΔR

Δl
≡ dR

dl
, (2.3)

where ΔR is the amount of R on the small area Δa or along the small length
Δl. The most frequently encountered surface density is that of electric charge
which is commonly found on the surface of a conductor.

Another example of Equation (2.1) is pressure defined aspressure: another
example of the
second
interpretation of
derivative

P = lim
Δa→0

ΔF⊥
Δa

≡ dF⊥
da

, (2.4)

where ΔF⊥ is the force perpendicular to the surface Δa. This discussion
makes it clear that The most natural setting for the concept of derivative is
the ratio of two physical quantities which are defined locally. Equations (2.2)
and (2.3) are hardly interpreted as the rate of change of density with respect
to volume, area, or length!

Historical Notes
Descartes said that he “neither admits nor hopes for any principles in Physics other
than those which are in Geometry or in abstract mathematics.” And Nature couldn’t
agree more! The start of modern physics coincides with the start of modern mathe-
matics. Calculus was, in large parts, motivated by the need for a quantitative anal-
ysis of physical problems. Calculation of instantaneous velocities and accelerations,
determination of tangents to lens surfaces, evaluation of the angle corresponding to
the maximum range of a projectile, and calculation of the lengths of curves such
as the orbits of planets around the Sun were only a few of the physical motiva-
tions that instigated the intense activities of the seventeenth-century physicists and
mathematicians alike.

The problems mentioned above were tackled by at least a dozen of the greatest
mathematicians of the seventeenth century and many other minor ones. All of these
efforts climaxed in the monumental achievements of Newton and Leibniz. Newton,
in particular, noted the generality of the concept of rate of change—a concept he
used for calculating instantaneous velocities—and bestowed a universal character
upon the notion of derivative.

Of the several methods advanced to find the tangent to a curve, Fermat’s is the
closest to the modern treatment. He approximates the increment of the tangent line
with the increment of the function describing the curve and takes the ratio of the
two increments to find the angle of the tangent line. Fermat, however, ignores the
question of limits as the increments go to zero, a procedure necessary for finding
the slope of tangents. Descartes method, on the other hand, is purely algebraic and
is not plagued by the question of the limits. However, his method worked only for
polynomials.

Another great name associated with the development of calculus is Isaac Barrow
who used elaborate geometrical methods to find tangents. He was the first to point
out the connection between integration and differentiation. Barrow was a professor



2.2 Partial Derivatives 47

of mathematics at Cambridge University. Well versed in both Greek and Arabic (he
was once nominated for a chair of Greek at Cambridge in 1655 but was denied the
chair due to his loyalist views), he was able to translate some of Euclid’s works and
to improve the translations of other works of Euclid as well as Archimedes.

After spending some time in eastern Europe, he returned to England and ac-

Isaac Barrow
1630–1677

cepted the Greek chair denied him before. To supplement his income, he taught
geometry at Gresham College, London. However, he soon gave up his geometry
chair to serve as the first Lucasian professor of mathematics at Cambridge from
1663 to 1669, at which time Barrow resigned his chair of mathematics in favor of
his student Isaac Newton and turned to theological studies.

His chief work Lectiones Geometricae is one of the great contributions to cal-
culus. In it he used geometrical methods, “freed from the loathsome burdens of
calculations,” as he put it.

2.2 Partial Derivatives

All physical quantities are real functions of space and time. This means that
given the three coordinates of a point in space, and an instant of time, we
can associate a real number with them which happens to be the value of the
physical quantity at that point and time.4 Thus, Q(x, y, z, t) is the value of
the physical quantity Q at time t at a point whose Cartesian coordinates are
(x, y, z). Similarly, we write Q(r, θ, ϕ, t) and Q(ρ, ϕ, z, t) for spherical and
cylindrical coordinates, respectively. Thus, ultimately, the physical quantities
are functions of four real variables. However, there are many circumstances in
which the quantity may be a function of less or more variables. An example of
the former is all static phenomena in which the quantity is assumed—really
approximated—to be independent of time. Then the quantity is a function
of only three variables.5 Physical quantities that depend on more than four
variables are numerous in physics: In the mechanics of many particles, all
quantities of interest depend, in general, on the coordinates of all particles,
and in thermodynamics one encounters a multitude of thermodynamical vari-
ables upon which many quantities of interest depend.

2.2.1 Definition, Notation, and Basic Properties

We consider real functions f(x1, x2, . . . , xn) of many variables. General-
izing the notation that denotes the set of real numbers by R, the set of
points in a plane by R

2, and those in space by R
3, we consider the n-tuples

(x1, x2, . . . , xn) as points in a (hyper)space R
n. Similarly, just as the triplet

(x, y, z) can be identified with the position vector r, we abbreviate the n-tuple
(x1, x2, . . . , xn) by r. Constant n-tuples will be denoted by the same letter

4This statement is not strictly true. There are many physical quantities which require
more than one real number for their specification. A vector is a prime example which
requires three real numbers to be specified. Thus, a vector field, which we discussed earlier,
is really a collection of three real functions.

5If the natural setting of the problem is a surface or a line, then the number of variables
is further reduced to two or one.
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used for components but in boldface type. For example (a1, a2, . . . , an) ≡ a
and (b1, b2, . . . , bn) ≡ b. This suggests using x in place of r, and we shall do
so once in a while.

Being independent, we can vary any one of the variables of a function
at will while keeping the others constant. The concept of derivative is now
applied to such a variation. The result is partial derivative. To be more
precise, the partial derivative of f(r) with respect to the independent variable

xk at (a1, a2, . . . , an) is denoted6 by ∂f
∂xk

(a) and is defined as follows:partial derivative
defined

∂f

∂xk
(a) ≡ lim

ε→0

f(a1, . . . , ak + ε, . . . , an) − f(a1, . . . , ak, . . . , an)
ε

. (2.5)

One usually leaves out the a’s and simply writes ∂f
∂xk

, keeping in mind that
the result has to be evaluated at some specific “point” of R

n. As the definition
suggests, the partial derivative with respect to xk is obtained by the usual rules
of differentiation with the proviso that all the other variables are assumed to
be constants.

A useful strategy is to turn Equation (2.5) around and write the incre-
ment in f in terms of the partial derivative. This possibility is the result of
the meaning of the limit: The closer ε gets to zero the better the ratio approx-
imates the partial derivative. Thus we can leave out limε→0 and approximate
the two sides. After multiplying both sides by ε, we obtain

Δkf ≡ f(a1, . . . , ak + ε, . . . , an) − f(a1, . . . , ak, . . . , an) ≈ ε
∂f

∂xk
,

where the subscript k on the LHS indicates the independent variable being var-
ied. Sometimes we use the notation Δkf(a) to emphasize the point at which
the increment of the function—due to an increment in the kth argument—is
being evaluated. Most of the time, however, for notational convenience, we
shall leave out the arguments, it being understood that all quantities are to
be evaluated at some specific “point.” Since ε is an increment in xk, it is
natural to denote it as Δxk, and write the above equation as

Δkf ≡ f(a1, . . . , ak + Δxk, . . . , an) − f(a1, . . . , ak, . . . , an) ≈ ∂f

∂xk
Δxk.

If two independent variables, say xk and xj , are varied we still can find
the increment in f :

Δk,jf ≡ f(a1, . . . , ak + Δxk, . . . , aj + Δxj , . . . , an)
− f(a1, . . . , ak, . . . , aj, . . . , an)

= f(a1, . . . , ak + Δxk, . . . , aj + Δxj , . . . , an)
− f(a1, . . . , ak, . . . , aj + Δxj , . . . , an)
+ f(a1, . . . , ak, . . . , aj + Δxj , . . . , an)
− f(a1, . . . , ak, . . . , aj, . . . , an),

6This notation may be confusing because of the a’s and the x’s. A better notation will
be introduced shortly.
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where we have added and subtracted the same term on the RHS of this equa-
tion. Now we use the definition of the change in a function at a point to
write

Δk,jf = Δkf(a1, . . . , ak, . . . , aj + Δxj , . . . , an)
+ Δjf(a1, . . . , ak, . . . , aj , . . . , an)

≈ Δxk
∂f

∂xk
(a1, . . . , ak, . . . , aj + Δxj , . . . , an)

+ Δxj
∂f

∂xj
(a1, . . . , ak, . . . , aj , . . . , an).

The first term on the RHS expresses the change in the function due to a
change in xk, and the second expresses the change in the function due to a
change in xj . As their arguments show, the derivatives in the last two lines
are not evaluated at the same point. However, the difference between these
arguments is small—of order Δxj—which, when multiplied by the small Δx’s
in front of them, will be even smaller. In the limit that Δxj and Δxk go to
zero, we can ignore this subtle difference and write

Δk,jf ≈ ∂f

∂xk
Δxk +

∂f

∂xj
Δxj . (2.6)

This shows that the total change is simply the sum of the change due to xj

and xk.

Box 2.2.1. In general, the change in f due to a change in all the inde-
pendent variables is Δf ≈

∑n
i=1

∂f
∂xi

Δxi.

Some of the Δx’s may be zero of course. For example, if all of the Δx’s are
zero except Δxj and Δxk, then the equation in the Box above reduces to
(2.6). The following example describes a situation which occurs frequently in
thermodynamics.

Example 2.2.1. Suppose a physical quantity Q is a function of other physical
quantities U, V , and W . We write this as Q = f(U, V, W ) with the intention that
U, V , and W are the independent variables. It is possible, however, to solve for one of an example that is

useful for
thermodynamics

the independent variables in terms of Q and the rest of the independent variables.7 It
is therefore legitimate to seek the partial derivative of any one of the four quantities
with respect to any other one. Because of the multitude of thermodynamic variables,
it may become confusing as to which variables are kept constant. Therefore, it is
common in thermodynamics to use the variables held constant as subscripts of the
partial derivative. Thus,

(
∂Q

∂V

)

U,W

,

(
∂V

∂Q

)

U,W

,

(
∂U

∂V

)

Q,W

, (2.7)

7That this can be done under very mild assumptions regarding the function f is the
content of the celebrated implicit function theorem proved in higher analysis.
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are typical examples of partial derivatives, and in priciple, one can solve for V in
terms of Q, U , and W and differentiate the resulting funtion with respect to Q to
find the second term in Equation (2.7). Similarly, one can solve for U in terms of Q,
V , and W and differentiate the resulting funtion with respect to V to find the last
term. However, Box 2.2.1 allows us to bypass this (sometimes impossible) task and
evaluate derivatives by directly differentiating the given function. Let’s see how.

The first term is obvious:
(

∂Q

∂V

)

U,W

=

(
∂f

∂V

)

U,W

.

The key to the evaluation of the other two is Box 2.2.1 as applied to Q. We thus
write

ΔQ ≈
(

∂f

∂U

)

V,W

ΔU +

(
∂f

∂V

)

U,W

ΔV +

(
∂f

∂W

)

U,V

ΔW. (2.8)

If U and W are kept constant, then ΔU = 0 = ΔW , and we have

ΔQ ≈
(

∂f

∂V

)

U,W

ΔV ⇒ 1 ≈
(

∂f

∂V

)

U,W

ΔV

ΔQ
.

In the limit that ΔQ goes to zero, the ratio of the Δ’s becomes the corresponding
partial derivative and the approximation becomes equality, leading to the relation

1 =

(
∂f

∂V

)

U,W

(
∂V

∂Q

)

U,W

.

Changing f to Q,8 and solving for the partial derivative, we obtain
(

∂V

∂Q

)

U,W

=
1

(
∂Q
∂V

)

U,W

(2.9)

which is a result we should have expected. This equation shows that we don’t have
to solve for V in terms of the other three variables to find its derivative with respect
to Q. Just differentiate f(U, V, W ) with respect to V and take its reciprocal!

The last partial derivative is obtained by setting ΔQ and ΔW equal to zero in
(2.8). The result is

0 ≈
(

∂f

∂U

)

V,W

ΔU +

(
∂f

∂V

)

U,W

ΔV ⇒ ΔU

ΔV
≈ −

(
∂f
∂V

)

U,W(
∂f
∂U

)

V,W

.

Once again, taking the limit as ΔV → 0, noting that the LHS becomes a partial
derivative, subscripting this partial with the variables held constant, and substitut-
ing Q for f ,9 we obtain

(
∂U

∂V

)

Q,W

= −

(
∂Q
∂V

)

U,W(
∂Q
∂U

)

V,W

. (2.10)

8Recall that if y = f(x), then dy/dx and df/dx represent the same quantity.
9This is an abuse of notation because Q is held constant and the derivative of any

constant is always zero, while the derivative of f is well defined. This abuse of notation is
so common in thermodynamics that we shall adopt it here as well.
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Thus, by differentiating f(U, V, W ) with respect to V and U and taking their ratios,
we obtain the derivative of U with respect to V ; no need to solve for U in terms of
the other three variables!

Equation (2.10) is ususlly written in a more symmetric way. The numerator of
the fraction on the RHS can be replaced using Equation (2.9). Then, the result can
be written as an important

relation used often
in
thermodynamics

(
∂U

∂V

)

Q,W

(
∂V

∂Q

)

U,W

(
∂Q

∂U

)

V,W

= −1. (2.11)

A simpler version of this result, in which the fourth variable W is absent, is com-
monly used in thermodynamics. �

A word of caution about notation is in order. We chose the set of vari-
ables (x1, x2, . . . , xn) as arguments of the function f , and then denoted the
derivative by ∂f/∂xk. We could have chosen any other set of symbols such
as (y1, y2, . . . , yn), or (t1, t2, . . . , tn) as the arguments. Then we would have
had to write ∂f/∂yk, or ∂f/∂tk for partial derivatives. This freedom of choice confusion

surrounding the
expression
(∂f /∂x)(y, x)
and a notation
that resolves the
confusion

can become confusing because, little effort is made in the literature to distin-
guish between the “free” general arguments and the specific point at which
the derivative is to be evaluated. For example, the symbol (∂f/∂x)(y, x) can
be interpreted in two ways: It can be the derivative of a function of two vari-
ables with respect to its first argument, subsequently evaluated at the point
with coordinates (y, x), or it could be the derivative with respect to the sec-
ond argument, in a seemingly strange world in which y is used as the first
argument! The longstanding usage of x as the first partner of a doublet by no
means reserves the first slot for x at all times. Therefore, the confusion above
is indeed a legitimate one.

We started the discussion by distinguishing between the free arguments
(x1, x2, . . . , xn) and the specific point (a1, a2, . . . , an). However, making this
distinction every time we write down a partial derivative can become very
clumsy. Nevertheless, the reader should always keep in mind this distinction
and write it down explicitly whenever necessary. To minimize the confusion,
we leave out all symbols but keep only the position of the variable in the array.
Specifically,

Box 2.2.2. We write ∂kf for the derivative of f with respect to its
kth argument. This derivative is a function: We can evaluate it at
(a1, a2, . . . , an), for which we write ∂kf(a1, a2, . . . , an) ≡ ∂kf(a).

This notation avoids any reference to the “free” arguments. One can choose
any symbol for the free arguments; the final answer is independent of this
choice:

∂kf(a1, a2, . . . , an) =
∂f(t1, t2, . . . , tn)

∂tk

∣
∣
∣
∣
t=a

=
∂f(y1, y2, . . . , yn)

∂yk

∣
∣
∣
∣
y=a

=
∂f(♥1,♥2, . . . ,♥n)

∂♥k

∣
∣
∣
∣
(♥1=a1,...,♥n=an)
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because the only thing that matters is the index k which tells us with respect
to what variable we are differentiating.

Example 2.2.2. Consider the function f(x, y, z) = exy/z. We write it first as
f(x1, x2, x3) = ex1x2/x3 . Then

∂1f(x1, x2, x3) = (x2/x3)e
x1x2/x3 ,

∂2f(x1, x2, x3) = (x1/x3)e
x1x2/x3 ,

∂3f(x1, x2, x3) = −(x1x2/x2
3)e

x1x2/x3 .

Now that the functional form of all partial derivatives are derived, we can evaluate
them at any point we want. For example,

∂2f(1, 2, 3) = 1
3
e2/3, ∂3f(1, 1, 1) = −e,

∂1f(t, u, v) = (u/v)etu/v, ∂3f(z, x, y) = −(zx/y2)exz/y. �

Higher-order derivatives are defined just as in the single-variable case,
except that now mixed derivatives are also possible. Thus,

∂1(∂1f) ≡ ∂2
1f ≡ ∂2f

∂x1
2 , ∂1(∂5f) ≡ ∂2f

∂x1∂x5
, ∂j(∂kf) ≡ ∂2f

∂xj∂xk
,

are all legitimate derivatives. An important property of mixed derivatives isorder of
differentiation in a
mixed derivative is
immaterial

that—for well-behaved functions—the order of differentiation is immaterial.

Example 2.2.3. Functions which can be written as the product of single-variable
functions are important in the solution of partial differential equations. Suppose
that F (x, y, z) = f(x)g(y)h(z). Then ∂1F (x, y, z) = f ′(x)g(y)h(z) and the function

∂1F

F
(x, y, z) =

f ′(x)g(y)h(z)

f(x)g(y)h(z)
=

f ′(x)

f(x)

is seen to be independent of y and z. One can show similarly that

∂2F

F
(x, y, z) =

g′(y)

g(y)
,

∂3F

F
(x, y, z) =

h′(z)

h(z)
,

each one depending on only one variable. �

Example 2.2.4. It is sometimes necessary to find the most general function, one of
whose partial derivatives is given. This can be done by antidifferentiating (indefinite
integral) with respect to the variable of the partial derivative, treating the rest of the
variables constant. The usual “constant” of integration is replaced by a function of

the undifferentiating variables. For example, suppose ∂3f(z, x, y) = yex2y2/z. Since
the third variable is y, and the partial derivative is with respect to the third variable,
we need to integrate with respect to y, keeping x and z constant. This gives

f(z, x, y) =
z

2x2
ex2y2/z + g(x, z) ⇒ f(x, y, z) =

x

2y2
ey2z2/x + g(y, x),

where g, the “constant” of integration, is an arbitrary function of the first two
variables. �
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Δ f+f(x0)
+ dff(x0)

f(x0)

x0 x0 + Δ x

Figure 2.1: The tangent line at x0 approximates the curve in a small neighborhood of

x0. If confined in this neighborhood, i.e., if Δx—which is equal to dx—is small, Δf

and df are approximately equal. However, df is defined regardless of the size of Δx.

2.2.2 Differentials

We now introduce the notion of differentials. Recall from calculus that, in differentials

the case of one variable, the differential of a function is related to a linear
approximation of that function (see Figure 2.1). Basically, the tangent line at
a point x0 is considered as the linear approximation to the curve representing
the function f in the neighborhood of x0. The increment in the value of the
function representing the tangent line—denoted by df(x0)—when x0 changes
to x0 + Δx, is given by

df(x0) ≡
(

df

dx

)

x0

Δx ≡
(

df

dx

)

x0

dx,

where, as a matter of notation, Δx has been replaced by dx, because by defi-
nition, the differential of an independent variable is nothing but its increment.
The above equation is not an approximation: dx can be any number, large or
small, and df(x0) will be correspondingly large or small. The approximation
starts when we try to replace Δf with df : The smaller the Δx = dx, the
better the approximation Δf(x0) ≈ df(x0). The generalization of this idea
to two variables involves approximating the surface representing the function
f(x, y) by its tangent plane. For more variables, no visualizable geometric
interpretation is possible, but the basic idea is to replace the Δ’s with d’s and
the approximation with equality in Box 2.2.1. The result is

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · · + ∂f

∂xn
dxn =

n∑

i=1

∂f

∂xi
dxi. (2.12)

We note that dxi’s in Equation (2.12) determine the independent variables
on which f depends, and the coefficient of dxi is ∂f/∂xi. This observation is
the basis of transforming functions in such a way that the resulting functions
depend on variables which are physically more useful. To be specific, suppose a
function f exists which depends on (x, y, z), but from a physical perspective,
a function which depends on the derivative of f with respect to its second
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argument, and not on the second argument itself, is more valuable. This
function can be obtained by a Legendre transformation on f , obtainedLegendre

transformation by subtracting from f the product of the second argument and the derivative
of f with respect to that argument. So, define a new function g by

g ≡ f − y∂2f ≡ f − yh where h = ∂2f.

Then, we get

dg = df − h dy − y dh = ∂1f dx + ∂2f dy + ∂3f dz − h dy − y dh

= ∂1f dx + ∂3f dz − y dh.

The differentials on the RHS of the last line indicate that the “natural” inde-
pendent variables for g are x, z, and h, and that

∂g

∂x
= ∂1f,

∂g

∂z
= ∂3f,

∂g

∂h
= −y.

Legendre transformation is used frequently in thermodynamics and mechanics.

Example 2.2.5. The internal energy U of a thermodynamical system is a function
of entropy S, volume V , and number of moles N . These variables are called the
natural variables of U , and we write U(S, V, N). Temperature T , pressure P , andnatural variables

of thermodynamic
functions

chemical potential μ, are defined as follows:

T =

(
∂U

∂S

)

V,N

, P = −
(

∂U

∂V

)

S,N

, μ =

(
∂U

∂N

)

S,V

,

where, as is common in thermodynamics, we have indicated the variables that are
held constant as subscripts. Entropy is a hard quantity to measure: If we were to
measure ∂U/∂S, we would have to find the ratio of the change of U to that of S;
not an easy task! On the other hand, T is easy to measure, and thus it is desirable
to Legendre transform U to obtain a function which has T as a natural variable.
The Helmholtz free energy F is defined as F = U − ST . We note that sinceHelmholtz free

energy

dU =
∂U

∂S
dS +

∂U

∂V
dV +

∂U

∂N
dN = T dS − P dV + μ dN,

we have

dF = dU − SdT − TdS = TdS − PdV + μdN
︸ ︷︷ ︸

=dU

−SdT − TdS

= −SdT − PdV + μdN

and, therefore
(

∂F

∂T

)

V,N

= −S,

(
∂F

∂V

)

T,N

= −P,

(
∂F

∂N

)

T,V

= μ.

Helmholtz free energy is by far the most frequently used thermodynamic function,
because all its “natural” variables, namely, T , V , and N , are easily measurable
quantities. �
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2.2.3 Chain Rule

In many cases of physical interest, the “independent” variables xi may in
turn depend on one or more variables. Let us denote these new independent
variables by (t1, t2, . . . , tm) and the functional dependence of xi by gi, so that

xi = gi(t1, t2, . . . , tm) ≡ gi(t), i = 1, 2, . . . , n. (2.13)

As the t’s vary, so will the x’s and consequently the function f . Therefore, f
becomes dependent on the t’s and we can talk about partial derivatives of f
with respect to one of the t’s. To find such a partial derivative, we go back to
Box 2.2.1 and substitute for Δxi in terms of Δt’s. From (2.13), we have

Δxi ≈
∂gi

∂t1
Δt1 +

∂gi

∂t2
Δt2 + · · · + ∂gi

∂tm
Δtm =

m∑

j=1

∂gi

∂tj
Δtj , i = 1, 2, . . . , n.

Substituting this in the equation of Box 2.2.1 yields

Δf ≈ ∂f

∂x1

m∑

j=1

∂g1

∂tj
Δtj +

∂f

∂x2

m∑

j=1

∂g2

∂tj
Δtj + · · · + ∂f

∂xn

m∑

j=1

∂gn

∂tj
Δtj

=
n∑

i=1

∂f

∂xi

m∑

j=1

∂gi

∂tj
Δtj . (2.14)

Now suppose that we keep all of the t’s constant except for one, say t7. Then
Δtj = 0 for all j except j = 7 and the sum over j will have only one nonzero
term, i.e., the seventh term. In such a case, Equation (2.14) becomes

Δf ≈ ∂f

∂x1

∂g1

∂t7
Δt7 +

∂f

∂x2

∂g2

∂t7
Δt7 + · · · + ∂f

∂xn

∂gn

∂t7
Δt7 =

n∑

i=1

∂f

∂xi

∂gi

∂t7
Δt7.

Dividing both sides by Δt7, taking limit, and replacing the approximation by
equality, we obtain

∂f

∂t7
=

∂f

∂x1

∂g1

∂t7
+

∂f

∂x2

∂g2

∂t7
+ · · · + ∂f

∂xn

∂gn

∂t7
=

n∑

i=1

∂f

∂xi

∂gi

∂t7
.

Instead of t7, we could have used any other one of the t’s, say t19, or t217. the chain rule

Theorem 2.2.6. (The Chain Rule). Let f(x) be a function of the xi and
xi = gi(t). Let h(t) = f(g1(t), g2(t), . . . , gn(t)) be a function of the tk, called
the composite of f and the gi. If tp is any one of these t’s, then

∂ph(t) =
n∑

i=1

∂if(g(t))∂pgi(t), (2.15)

where g = (g1, g2, . . . , gn), and g(t) ≡ (g1(t), g2(t), . . . , gn(t)).
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In words, the chain rule states that to evaluate the partial derivative of h
with respect to its pth argument (of which there are m) at t, multiply the ith
partial of f evaluated at g(t) by the pth partial of gi evaluated at t and sum
over i.

Sometimes the chain rule is written in the following less precise form:

∂f

∂tp
=

n∑

i=1

∂f

∂xi

∂gi

∂tp
=

n∑

i=1

∂f

∂xi

∂xi

∂tp
, (2.16)

where in the last line we have substituted xi for gi.

Example 2.2.7. Suppose F is a function of three variables given by

F (x, y, z) = f

(
x2y

az2

)

,

where f is some given function, and a is a constant. Let us calculate all partial
derivatives of F at (a, 2a, a) assuming that f ′(2) = a. Denote the single variable of
f by u, so that F is obtained by substituting x2y/(az2) for u in f(u). The chain
rule gives

∂1F (x, y, z) = f ′(u)∂1u = f ′(u)
2xy

az2
,

∂2F (x, y, z) = f ′(u)∂2u = f ′(u)
x2

az2
,

∂3F (x, y, z) = f ′(u)∂3u = −2f ′(u)
x2y

az3
.

If x = a, y = 2a, and z = a, then u = a2(2a)/a3 = 2, and

∂1F (a, 2a, a) = f ′(2)
2a(2a)

a3
= 4.

Similarly, ∂2F (a, 2a, a) = 1 and ∂3F (a, 2a, a) = −4.
In the notation of Theorem 2.2.6, there are three t’s: t1 = x, t2 = y, t3 = z, and

only one g: g(t1, t2, t3) = t21t2/(at23). Then F becomes the composite function of f
and g. �

Example 2.2.8. One of the important occasions of the use of the chain rule is in
the transformation of derivatives from Cartesian to spherical coordinates. A good
example of such a transformation occurs in quantum mechanics where an expression
such as x∂f/∂y − y∂f/∂x turns out to be related to angular momentum, and it is
most conveniently expressed in spherical coordinates. In this example we go through
the detailed exercise of converting that expression into spherical coordinates.

We start with the transformations

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ,

and their inverse

r =
√

x2 + y2 + z2, cos θ =
z

√
x2 + y2 + z2

, tan ϕ =
y

x
. (2.17)
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We shall need the derivatives of spherical coordinates with respect to x and y written how derivatives
are transformed
under a coordinate
transformation

in terms of spherical coordinates. We easily find these by differentiating both sides
of the equations in (2.17):

∂r

∂x
=

∂

∂x

(√
x2 + y2 + z2

)
= 1

2

1
√

x2 + y2 + z2
(2x) =

x

r
= sin θ cos ϕ,

− sin θ
∂θ

∂x
= z

[

− 1
2

1

r3
2x

]

= −xz

r3
= − sin θ cos ϕ cos θ

r
⇒ ∂θ

∂x
=

cos θ cos ϕ

r
,

sec2 ϕ
∂ϕ

∂x
= − y

x2
= − sin ϕ

r sin θ cos2 ϕ
⇒ ∂ϕ

∂x
= − sin ϕ

r sin θ
.

Similarly,
∂r

∂y
= sin θ sin ϕ,

∂θ

∂y
=

cos θ sin ϕ

r
,

∂ϕ

∂y
=

cos ϕ

r sin θ
.

Therefore, using the chain rule as given in Equation (2.16), we get

∂f

∂x
=

∂f

∂r

∂r

∂x
+

∂f

∂θ

∂θ

∂x
+

∂f

∂ϕ

∂ϕ

∂x

= sin θ cos ϕ
∂f

∂r
+

cos θ cos ϕ

r

∂f

∂θ
− sin ϕ

r sin θ

∂f

∂ϕ
,

∂f

∂y
=

∂f

∂r

∂r

∂y
+

∂f

∂θ

∂θ

∂y
+

∂f

∂ϕ

∂ϕ

∂y

= sin θ sin ϕ
∂f

∂r
+

cos θ sin ϕ

r

∂f

∂θ
+

cos ϕ

r sin θ

∂f

∂ϕ
.

If we multiply the first of the last two equations by y = r sin θ sin ϕ and subtract
it from the second equation multiplied by x = r sin θ cos ϕ, the terms involving
derivatives with respect to r and θ cancel while the terms with ϕ derivatives add to
give

x
∂f

∂y
− y

∂f

∂x
=

∂f

∂ϕ
.

Details are left as an exercise for the reader. �

There is a multitude of examples in thermodynamics, for which a mastery
of the techniques of partial differentiation is essential. A property that is used
often in thermodynamics is homogeneity of functions which we derive below.

2.2.4 Homogeneous Functions

A function is called homogeneous of degree q if multiplying all of its arguments
by a parameter λ results in the multiplication of the function itself by λq. More
precisely,

Box 2.2.3. We say that f(x1, x2, . . . , xn) is homogeneous of degree q
if f(λx1, λx2, . . . , λxn) = λqf(x1, x2, . . . , xn).



58 Differentiation

Two cases merit special consideration. When q = 1, the function changes
at exactly the same rate as its arguments: Doubling all its arguments doublesextensive and

intensive functions the function and so on. Such a function is called extensive. When q = 0,
the function is called intensive, and it will not change if all its arguments
are changed by exactly the same factor.

In many cases, we want a relation between f and its partial derivatives.
We shall find this relation by differentiating both sides of Box 2.2.3 with
respect to λ. To avoid any confusion, let us evaluate both sides at the point
(b1, b2, . . . , bn) after differentiation. Differentiation of the RHS is easy:

RHS = qλq−1f(b1, b2, . . . , bn).

For the LHS, we first let yi = λxi for all i = 1, 2, . . . , n—so that we have a
single variable (one symbol) in the ith place—and note that

LHS =
∂f

∂λ
=

n∑

i=1

∂f

∂yi

∂yi

∂λ
=

n∑

i=1

[∂if(y1, y2, . . . , yn)]xi,

where we have used the fact that ∂yi
∂λ

= xi—by the definition of yi. Evaluating
the result at xi = bi, we obtain

LHS =
n∑

i=1

bi∂if(λb1, λb2, . . . , λbn).

Equating the LHS and the RHS, we obtain the important result

qλq−1f(b1, b2, . . . , bn) =
n∑

i=1

bi∂if(λb1, λb2, . . . , λbn)

This relation holds for all values of λ, in particular we can substitute λ = 1 to
obtain qf(b1, b2, . . . , bn) =

∑n
i=1 bi∂if(b1, b2, . . . , bn). Keep in mind that the

b’s, although fixed, are completely arbitrary. In particular, one can substitute
x’s for them and arrive at the functional relationrelation between a

homogeneous
function and the
sum of its partial
derivatives

qf(x1, x2, . . . , xn) =
n∑

i=1

xi∂if(x1, x2, . . . , xn). (2.18)

This is the relation we were looking for.
Another important result, which the reader is asked to derive in Problem

2.17, is

Box 2.2.4. If f is homogeneous of degree q, then ∂if is homogeneous of
degree q − 1.
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Example 2.2.9. We have already seen that the natural variables of the internal extensive and
intensive variables
of
thermodynamics
and their relation
to homogeneous
functions

energy U of a thermodynamical system are entropy S, volume V , and number of
moles N . Based on physical intuition, we expect the total internal energy, entropy,
volume and number of moles of the combined system to be doubled when two iden-
tical systems are brought together. We conclude that the internal energy function
increases by the same factor as its arguments. A thermodynamic quantity that has
this property is called an extensive variable. It follows that U is an extensive
variable and a homogeneous function of degree one.

Now consider temperature T , pressure P , and chemical potential μ, which are
all partial derivatives of U with respect to its natural variables. From Problem
2.17, we conclude that these quantities are homogeneous of degree zero. It follows
that, if we bring two identical systems together, temperature, pressure, and the
chemical potential will not change, a result expected on physical grounds. Such a
thermodynamic quantity is called an intensive variable. �

2.3 Elements of Length, Area, and Volume

We mentioned earlier the significance of the second interpretation of the
derivative in conjunction with density. This interpretation is often used in
reverse order, i.e., in writing the infinitesimal (element) of the physical quan-
tity as a product of density and the element of volume (or area, or length).
These elements appear inside integrals and will be integrated over (see the
next chapter). As a concrete example, let us consider the mass element which
can be expressed as

volume distribution: dm(r′) = ρ(r′) dV (r′)

surface distribution: dm(r′) = σ(r′) da(r′)

linear distribution: dm(r′) = λ(r′) dl(r′)

where r′ denotes the coordinates of the location of the element of mass.
The relations above reduce the problem to that of writing the elements

of volume, area, and length. Most of the time, the evaluation of the integral
simplifies considerably if we choose the correct coordinate system. Therefore,
we need these elements in all three coordinate systems.

Basic to the calculation of all elements are elements of length in the direc-
tion of unit vectors in any of the three coordinate systems. First we define

Box 2.3.1. The primary curve along any given coordinate is the curve
obtained when that coordinate is allowed to vary while the other two coor-
dinates are held fixed.

The primary length elements are infinitesimal lengths along the primary primary length
elementscurves. By construction, they are also infinitesimal lengths along unit vectors.

To find a primary length element at point P ′ with position vector r′ along
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a given unit vector, one keeps the other two coordinates fixed and allows
the given coordinate to change by an infinitesimal amount.10 This procedure
displaces P ′ an infinitesimal distance. The length of this displacement, written
in terms of the coordinates of P ′, is the primary length element along the
given unit vector. Once the three primary length elements are found, we
can calculate area and volume elements by multiplying appropriate length
elements.

A notion related to the primary length is

Box 2.3.2. A primary surface perpendicular to a primary length is
obtained when the coordinate determining the primary length is held fixed
and the other two coordinates are allowed to vary arbitrarily.

The primary element of area at a point on a primary surface is, by defini-primary area
elements tion, the product of the two primary length elements whose coordinates define

that surface.
Integrating over a primary surface of a coordinate system is facilitated if

all boundaries of the surface can be described by qi = ci where qi is either of
the two coordinates that vary on the surface and ci is a constant. For example,
the third primary surface in Cartesian coordinates is a plane parallel to the
xy-plane. A problem involving integration on this plane becomes simplest if
the boundaries of the region of integration are of the form, x = c1 and y = c2,
i.e., if the region of integration is a rectangle.

Finally, by taking the product of all three primary length elements, we
obtain the volume element in the given coordinate system.

2.3.1 Elements in a Cartesian Coordinate System

Consider the point P ′ with coordinates (x′, y′, z′) as shown in Figure 2.2. To
find the primary length along êx′ = êx,11 keep y′ and z′ fixed and let x′

change to x′ + dx′. Then P ′ will be displaced by dx′ along êx. Thus, the
first primary length element—denoted by dl1—is simply dx′. Similarly, we
have dl2 = dy′, and dl3 = dz′. A general infinitesimal displacement, which is
a vector, can be written asgeneral Cartesian

infinitesimal
displacement d�l = êx dl1 + êy dl2 + êz dl3 = êx dx′ + êy dy′ + êz dz′ ≡ dr′. (2.19)

Figure 2.2 shows that d�l represents the displacement vector from P ′, with
position vector r′, to a neighboring point P ′′, with position vector r′′. But
this displacement is simply the increment in the position vector of P ′. That is
why dr′ is also used for d�l. Note that this vectorial infinitesimal displacement

10Usually an infinitesimal amount is expressed by a differential. Thus, an increment in x
is simply dx.

11Recall that this equality holds in Cartesian—and only in Cartesian—coordinates, where
the unit vectors are independent of the coordinates of P ′.
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êx

dl1 = dx

dl3 = dz

dl2 = dy'

'

'

z'

'P

''P

yê
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Figure 2.2: Elements of length, area, and volume in Cartesian coordinates.

includes the primary length elements as special cases: When a coordinate is
held fixed, the corresponding differential will be zero. Thus, setting dy′ = 0 =
dz′, i.e., holding y′ and z′ fixed, we recover the first primary length element.
The length of d�l is also of interest:

dl ≡ |d�l| =
√

dl21 + dl22 + dl23

=
√

(dx′)2 + (dy′)2 + (dz′)2 ≡
√

dx′2 + dy′2 + dz′2. (2.20)

In one-dimensional problems involving curves, one is either given, or has
to find, the parametric equation of a curve γ whereby the coordinates parametric

equation of a
curve

(x′, y′, z′) of a point on γ are expressed as functions of a parameter, usually
denoted by t. This is concisely written as

γ(t) = (x′, y′, z′) ≡
(
f(t), g(t), h(t)

)
,

so that the “curve function” γ takes a real number t and gives three real
numbers f(t), g(t), and h(t) which are the coordinates x′, y′, and z′ of a
point on the curve in space. Usually one considers an interval12 (a, b) for the
real variable t. Then

(
f(a), g(a), h(a)

)
is the initial point of the curve and(

f(b), g(b), h(b)
)

its final point. The parameter t and the functions f , g, and
h are not unique. For example, the three functions

f1(t) = a cos t, g1(t) = a sin t, h1(t) = 0, 0 ≤ t ≤ π,

describe a semicircle in the xy-plane. However,

f2(t) = a cos
(
t3
)
, g2(t) = a sin

(
t3
)
, h2(t) = 0, 0 ≤ t ≤ π1/3,

also describe the same semicircle. This arbitrariness is useful, because it allows
us to choose f , g, and h so that calculations become simple.

12Do not confuse this with the coordinates of a point in the plane. The notation (a, b)
here means all the real numbers between a and b excluding a and b themselves.
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For “flat” curves [lying in the xy-plane and given by an equation y = f(x)],
one obvious parameterization—which may not be the most convenient one—is
x = t, y = f(t).

Let us assume that we have chosen the three functions and they are of the
form

x′ = f(t), y′ = g(t), z′ = h(t).

Then the primary lengths can be written as

dx′ = f ′(t) dt, dy′ = g′(t) dt, dz′ = h′(t) dt,

and the element of displacement along the curve becomesthe infinitesimal
element of
displacement
along a curve

dr′(t) = d�l(t) = êx f ′(t) dt + êy g′(t) dt + êz h′(t) dt,

|dr′(t)| = dl(t) =
√

[f ′(t) dt]2 + [g′(t) dt]2 + [h′(t) dt]2

=
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt, (2.21)

where a prime on a function denotes its derivative with respect to its argu-
ment.13

The first primary surface at P ′ is obtained by holding x′ constant and
letting the other two coordinates vary arbitrarily. It is clear that the resultingprimary surfaces

of Cartesian
coordinates are
planes

surface is a plane passing through P ′ and parallel to the yz-plane. It is also
clear that the first primary length element, dx′ is perpendicular to the first
primary surface. The first primary element of area, denoted by da1, is simply
dy′ dz′. The second and third primary surfaces are the xz-plane and the xy-
plane, respectively. These planes are perpendicular to their corresponding
length elements. The primary elements of area are obtained similarly. We
thus haveprimary elements

of area in
Cartesian
coordinates

da1 = dy′ dz′, da2 = dx′ dz′, da3 = dx′ dy′. (2.22)

Finally, the volume element is
element of volume
in Cartesian
coordinates

dV = dl1 dl2 dl3 = dx′dy′dz′. (2.23)

2.3.2 Elements in a Spherical Coordinate System

The point P ′ in Figure 2.3 now has coordinates (r′, θ′, ϕ′). To find the primary
length along êr′ , keep θ′ and ϕ′ fixed and let r′ change to r′ + dr′. Then P ′

will be displaced by dr′ along êr′ . Thus, the first primary length element, dl1,
is simply dr′. To find the primary length along êθ′ , keep r′ and ϕ′ fixed, i.e.,

13The use of primes to represent both the derivative and the coordinates of the element of
the source (such as dm) is unfortunately confusing. However, this practice is so widespread
that any alteration to it would result in more confusion. The context of any given problem
is usually clear enough to resolve such confusion.
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Figure 2.3: Elements of length, area, and volume in spherical coordinates. We have

used “Δ” instead of “d.”

confine yourself to the plane passing through P ′ and the polar—or z—axis,
and let θ′ change to θ′ + dθ′. Then P ′ will be displaced by14 r′ dθ′ along
êθ′ . The primary length along êϕ′ is obtained by keeping r′ and θ′ fixed,
i.e., confining oneself to a plane passing through P ′ and perpendicular to the
z-axis,15 and letting ϕ′ change to ϕ′ + dϕ′. Then P ′ will be displaced along
a circle of radius r′ sin θ′ by an angle dϕ′. This can be seen by noting that P ′

lies in the xy-plane and that its distance from the z-axis is given by

x′2 + y′2 = (r′ sin θ′ cosϕ′)2 + (r′ sin θ′ sin ϕ′)2 = r′2 sin2 θ′

and that the RHS, which is the square of the radius of the circle, is a con-
stant. The displacement of P ′ is therefore r′ sin θ′ dϕ′ along êϕ′ . A general
infinitesimal (vector) displacement can, therefore, be written as general spherical

infinitesimal
displacementdr′ = d�l = êr′ dl1 + êθ′ dl2 + êϕ′ dl3

= êr′ dr′ + êθ′ r′ dθ′ + êϕ′ r′ sin θ′ dϕ′. (2.24)

Note again that this vectorial infinitesimal displacement includes the primary
length elements as special cases. Thus, setting dθ′ = 0 = dϕ′, i.e., holding θ′

and ϕ′ fixed, we recover the first primary length element. The length of dr′

(or d�l) is do not confuse
|dr′| with dr′, they
are not equal.|dr′| = dl =

√
(dr′)2 + (r′ dθ′)2 + (r′ sin θ′ dϕ′)2

=
√

dr′2 + r′2 dθ′2 + r′2 sin2 θ′ dϕ′2. (2.25)

14Since r′ is held fixed, P ′ is confined to move on a circle of radius r′, describing an
infinitesimal arc subtended by the angle d θ′.

15Fixing r′ and θ′ fixes z′ = r′ cos θ′ which describes a plane parallel to the xy-plane, i.e.,
a plane perpendicular to the z-axis.
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If we know the parametric equation of a curve in spherical coordinates,
i.e., if the coordinates r′, θ′, and ϕ′ of a point on the curve can be expressed as
functions of the parameter t, then we can find the differentials in terms of dt
and substitute in Equation (2.25) to find an expression analogous to Equation
(2.21). We leave this as an exercise for the reader.

The first primary surface at P ′ is obtained by holding r′ constant and
letting the other two coordinates vary arbitrarily. It is clear that the resultingprimary surfaces

of spherical
coordinates
consist of a
sphere, a cone,
and a plane.

surface is a sphere of radius r′ passing through P ′. It is also clear that the
first primary length element dr′ is perpendicular to the first primary surface.
It is not hard to convince oneself that the second and third primary surfaces
are, respectively, a cone of (half) angle θ′, and a plane containing the z-axis
and making an angle of ϕ′ with the x-axis. These surfaces are perpendicular
to their corresponding length elements. The primary elements of area are
obtained easily. We simply quote the results:primary elements

of area in spherical
coordinates da1 = (r′ dθ′)(r′ sin θ′ dϕ′) = r′2 sin θ′ dθ′ dϕ′,

da2 = (dr′)(r′ sin θ′ dϕ′) = r′ sin θ′ dr′ dϕ′, (2.26)
da3 = (dr′)(r′ dθ′) = r′ dr′ dθ′.

Finally, the volume element iselement of volume
in spherical
coordinates dV = (dr′)(r′ dθ′)(r′ sin θ′ dϕ′) = r′2 sin θ′ dr′dθ′dϕ′. (2.27)

Table 2.1 gathers together all the primary curves and surfaces for the
three coordinate systems used frequently in this book. The reader is advised
to remember that

Box 2.3.3. All the differentials of Table 2.1 carry a prime to emphasize
that they are evaluated at P ′, the location of infinitesimal elements.

Coordinate Primary Primary
system curves surfaces

1st: Straight line (x-axis) yz-plane
Cartesian 2nd: Straight line (y-axis) xz-plane

3rd: Straight line (z-axis) xy-plane
1st: Rays perp. to z-axis Cylinder with axis z

Cylindrical 2nd: Circle centered on z-axis Half-plane from z-axis
3rd: Straight line (z-axis) Plane perp. z-axis
1st: Rays from origin Sphere

Spherical 2nd: Half-circle Cone of half angle θ
3rd: Circle centered on polar axis Half-plane from z-axis

Table 2.1: Primary curves and surfaces of the three common coordinate systems.
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2.3.3 Elements in a Cylindrical Coordinate System

The coordinates of P ′ are now (ρ′, ϕ′, z′) as shown in Figure 2.4. To find the
primary length along êρ′ , keep ϕ′ and z′ fixed and let ρ′ change to ρ′ + dρ′.
Then P ′ will be displaced by dρ′ along êρ′ . Thus, the first primary length
element dl1 is simply dρ′. To find the primary length along êϕ′ , keep ρ′ and z′

fixed, i.e., confine yourself to a circle of radius ρ′ in the plane passing through
P ′ and perpendicular to the z-axis, and let ϕ′ change to ϕ′ + dϕ′. Then P ′

will be displaced by ρ′ dϕ′ along êϕ′ . The primary length along êz′ = êz is16

obtained by keeping ρ′ and ϕ′ fixed, and letting z′ change to z′ + dz′. Then general cylindrical
infinitesimal
displacement

P ′ will be displaced by dz′. A general infinitesimal (vector) displacement can,
therefore, be written as

dr′ = d�l = êρ′ dl1 + êϕ′ dl2 + êz′ dl3

= êρ′ dρ′ + êϕ′ ρ′ dϕ′ + êz dz′. (2.28)

Note again that this infinitesimal displacement includes the primary length
elements as special cases. The length of this vector is

|dr′| = dl =
√

(dρ′)2 + (ρ′ dϕ′)2 + (dz′)2

=
√

dρ′2 + ρ′2dϕ′2 + dz′2. (2.29)

If we know the parametric equation of a curve in cylindrical coordinates,
i.e., if the coordinates ρ′, ϕ′, and z′ of a point on the curve can be expressed as

x

y

z

Δ ′ ϕ 

′ P 

′ ′ P 

′ ρ Δ ′ ϕ 
Δ ′ ρ 

′ Δz 

Figure 2.4: Elements of length, area, and volume in cylindrical coordinates. We have

used “Δ” instead of “d.”

16This is the only unit vector in “curvilinear coordinates” which is independent of the
position of P ′.
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functions of the parameter t, then we can find the differentials in terms of dt
and substitute in Equation (2.29) to find an expression analogous to Equation
(2.21). We leave this as an exercise for the reader.

The first primary surface at P ′ is obtained by holding ρ′ constant and
letting the other two coordinates vary arbitrarily. It is clear that the resulting
surface is a cylinder of radius ρ′ passing through P ′. It is also clear that the
first primary length element dρ′ is perpendicular to the first primary surface.
The second and third primary surfaces are, respectively, a plane containing
the z-axis and making an angle of ϕ′ with the x-axis, and a plane perpen-
dicular to the z-axis and cutting it at z′. These surfaces are perpendicular to

primary surfaces
of cylindrical
coordinates
consist of a
cylinder and two
planes.

their corresponding length elements. The primary elements of area are again
obtained easily, and we merely quote the results

primary elements
of area in
cylindrical
coordinates

da1 = (ρ′ dϕ′)(dz′) = ρ′ dϕ′ dz′,

da2 = dρ′dz′, (2.30)
da3 = (dρ′)(ρ′ dϕ′) = ρ′ dρ′ dϕ′.

Finally, the volume element iselement of volume
in cylindrical
coordinates dV = (dρ′)(ρ′ dϕ′)(dz′) = ρ′ dρ′ dϕ′ dz′. (2.31)

Table 2.2 gathers together all the elements of primary length, surface, and
volume for the three commonly used coordinate systems.

Example 2.3.1. Examples of elements in various coordinate systems

(a) The element of length in the ϕ direction at a point with spherical coordinates
(a, γ, ϕ) is a sin γ dϕ. Note that this element is independent of ϕ, and for a fixed a,
it has the largest value when γ = π/2, corresponding to the equatorial plane.
(b) The element of area for a cone of half-angle α is r sin α dr dϕ, because for a cone,
θ is a constant (in this case, α).

Coordinate Primary Primary Volume
system length area element

elements elements
1st: dx dy dz

Cartesian 2nd: dy dx dz dx dy dz
(x, y, z) 3rd: dz dx dy

1st: dρ ρ dϕ dz
Cylindrical 2nd: ρ dϕ dρ dz ρ dρ dϕ dz
(ρ, ϕ, z) 3rd: dz ρ dρ dϕ

1st: dr r2 sin θ dθ dϕ
Spherical 2nd: r dθ r sin θ dr dϕ r2 sin θ dr dθ dϕ
(r, θ, ϕ) 3rd: r sin θ dϕ r dr dθ

Table 2.2: Primary length and area as well as volume elements in the three common

coordinate systems. In almost all applications of the next chapter each of these variables

carries a prime.
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(c) The element of area of a cylinder of radius a is a dϕ dz.

(d) The element of area of a sphere of radius a is a2 sin θ dθ dϕ. Note that the largest
element of area (for given dθ and dϕ) is at the equator and the smallest (zero) at
the two poles.

(e) The element of area of a half-plane containing the z-axis and making an angle
α with the x-axis is dρ dz, independent of the angle α.

�

Example 2.3.2. Suppose Cartesian coordinates of the plane are related to two finding unit
vectors without
use of geometry!

other variables u and v via the formulas

x = f(u, v), y = g(u, v).

We want to consider u and v as coordinates and find the unit vectors corresponding
to them using our knowledge of differentiation gained in this chapter without any
resort to geometric arguments.

In general, the unit vector in the direction of any coordinate variable at a point P
is obtained by increasing the coordinate slightly (keeping other coordinate variables
constant), calculating the displacement vector described by the motion of P , and
dividing this vector by its length. So, consider changing u while v is kept constant.
Call the displacement obtained Δ�l1. Then

Δ�l1 = êxΔx + êyΔy = êx
∂f

∂u
Δu + êy

∂g

∂u
Δu

and

|Δ�l1| =
√

(Δx)2 + (Δy)2 =

√(
∂f

∂u

)2

+

(
∂g

∂u

)2

Δu.

Therefore,

êu = lim
Δu→0

Δ�l1

|Δ�l1|
=

êx
∂f
∂u

+ êy
∂g
∂u√(

∂f
∂u

)2

+
(

∂g
∂u

)2
=

êx
∂x
∂u

+ êy
∂y
∂u√(

∂x
∂u

)2

+
(

∂y
∂u

)2
.

For êv, we keep u fixed and vary v. Calling the resulting displacement Δ�l2, we
easily obtain

êv = lim
Δv→0

Δ�l2

|Δ�l2|
=

êx
∂f
∂v

+ êy
∂g
∂v√(

∂f
∂v

)2

+
(

∂g
∂v

)2
==

êx
∂x
∂v

+ êy
∂y
∂v√(

∂x
∂v

)2

+
(

∂y
∂v

)2
.

Note that for general f and g, êu and êv are not perpendicular.

The result can easily be generalized to three variables. In fact, if

x = f(u, v, w), y = g(u, v, w), z = h(u, v, w),
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then, a similar calculation as above will yield

êu =
êx

∂f
∂u

+ êy
∂g
∂u

+ êz
∂h
∂u√(

∂f
∂u

)2

+
(

∂g
∂u

)2

+
(

∂h
∂u

)2
=

êx
∂x
∂u

+ êy
∂y
∂u

+ êz
∂z
∂u√(

∂x
∂u

)2

+
(

∂y
∂u

)2

+
(

∂z
∂u

)2
,

êv =
êx

∂f
∂v

+ êy
∂g
∂v

+ êz
∂h
∂v√(

∂f
∂v

)2

+
(

∂g
∂v

)2

+
(

∂h
∂v

)2
=

êx
∂x
∂v

+ êy
∂y
∂v

+ êz
∂z
∂v√(

∂x
∂v

)2

+
(

∂y
∂v

)2

+
(

∂z
∂v

)2
,

êw =
êx

∂f
∂w + êy

∂g
∂w + êz

∂h
∂w√(

∂f
∂w

)2

+
(

∂g
∂w

)2

+
(

∂h
∂w

)2
=

êx
∂x
∂w + êy

∂y
∂w + êz

∂z
∂w√(

∂x
∂w

)2

+
(

∂y
∂w

)2

+
(

∂z
∂w

)2
.

�

2.4 Problems

2.1. Find the partial derivatives of the following functions at the given points
with respect to the given variables. In the following r = (x, y, z) and r′ =
(x′, y′, z′):

exyz with respect to x at (1, 0,−1),
cos(xy/z) with respect to z at (π, 1, 1),

x2y + y2z + z2x with respect to y at (1,−1, 2),

ln
(

ax + by + cz

x2 + y2 + z2

)

with respect to x at (a, b, c),

r ≡
√

x2 + y2 + z2 with respect to x at (x, y, z),
|r− r′| with respect to y at (x, y, z, x′, y′, z′),

1
|r− r′| with respect to z′ at (x, y, z, x′, y′, z′).

2.2. The Earth has a radius of 6400 km. The thickness of the atmosphere
is about 50 km. Starting with the volume of a sphere and using differentials,
estimate the volume of the atmosphere. Hint: Find the change in the volume
of a sphere when its radius changes by a “small” amount.

2.3. The gravitational potential (potential energy per unit mass) at a distance
r from the center of the Earth (assumed to be the origin of a Cartesian
coordinate system) is given by

Φ = −GM

r
, r =

√
x2 + y2 + z2,

where G = 6.67 × 10−11 N·m2/kg2 and M = 6 × 1024 kg. Using differentials,
find the energy needed to raise a 10-kg object from the point with coordinates
(4000 km, 4000 km, 3000 km) to a point with coordinates (4020 km, 4050 km,
3010 km).
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2.4. Show that the function f(x ± ct) satisfies the one-dimensional wave
equation: one-dimensional

wave equation∂2f

∂x2 − 1
c2

∂2f

∂t2
= 0.

Hint: Let y = x ± ct and use the chain rule.

2.5. Assume that f ′′+kf = 0 and g′′−kg = 0. Show that F (x, y) ≡ f(x)g(y) two-dimensional
Laplace’s equationsatisfies the two-dimensional Laplace’s equation:

∂2F

∂x2 +
∂2F

∂y2 = 0.

2.6. Suppose that f ′′ − αf = 0, g′′ − βg = 0, and h′′ − γh = 0. Write an
equation relating α, β, and γ such that the function

F (x, y, z) ≡ f(x)g(y)h(z)

satisfies the three-dimensional Laplace’s equation: three-dimensional
Laplace’s equation

∂2F

∂x2 +
∂2F

∂y2 +
∂2F

∂z2 = 0.

2.7. Suppose that f ′′ − αf = 0, g′′ − βg = 0, h′′ − γh = 0, and u′ − ωu = 0.
Write an equation relating α, β, γ, and ω such that the function

F (x, y, z, t) ≡ f(x)g(y)h(z)u(t)

satisfies the heat equation: heat equation

∂2F

∂x2 +
∂2F

∂y2 +
∂2F

∂z2 = a
∂F

∂t
.

where a is a constant.

2.8. Suppose that f ′′+k2
xf = 0, g′′+k2

yg = 0, h′′+k2
zh = 0, and u′′+ω2 u = 0.

(a) Write an equation relating kx, ky, kz, and ω such that the function

F (x, y, z, t) ≡ f(x)g(y)h(z)u(t)

satisfies the three-dimensional wave equation: three-dimensional
wave equation

∂2F

∂x2 +
∂2F

∂y2 +
∂2F

∂z2 − 1
c2

∂2F

∂t2
= 0.

(b) If ω is considered as angular frequency, and c as the speed of the wave,
what is the magnitude of the vector k ≡ 〈kx, ky, kz〉?

2.9. Consider the function F (x, y, z) ≡ f

(
x2y + y2x

a2z

)

in which a is a con-

stant. Assuming that f ′(2) = a, find the unit vector êv in the direction of

v = êx∂1F (a, a, a) + êy∂2F (a, a, a) + êz∂3F (a, a, a).
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2.10. Consider the function F (x, y, z) ≡ f

(
x3y − y3z + 2z3x

a4

)

in which a is

a constant. Assuming that f ′(17) = a, find the unit vector êv in the direction
of

v = êx∂1F (a,−a, 2a) + êy∂2F (a,−a, 2a) + êz∂3F (a,−a, 2a).

2.11. Given that f(x, y, z) = e−k
√

x2+y2+z2
/
√

x2 + y2 + z2, where k is a
constant, find the radial component (component along êr) of the vector

V = êx∂1f(x, y, z) + êy∂2f(x, y, z) + êz∂3f(x, y, z).

2.12. Given that

∂1f(x, y, z) = ∂2f(z, x, y) = ∂3f(y, z, x) =
2kx

y
− kz2

x2
,

where k is a constant, find the function f(x, y, z). Note the order of the
variables in each pair of parentheses.

2.13. Given that f(x, y, z) = x2y sin (yz/x), find

∂2f(1, 1, π/2), ∂1f(2, π, 1), ∂3f(4, π, 1), ∂1f(y, z, x), ∂1f(t, u, v).

2.14. Derive the analogue of Equation (2.11) assuming this time that Q is
held constant in all derivatives instead of W .

2.15. Which of the following functions are homogeneous?

exy/z2
, xyz sin

xy

az
,

x2y2

z
cos

xz

y2
, x2 + y2 − z2, ax + y(z − x),

where a is a constant. For those functions that are homogeneous, find their
degree and verify that they satisfy Equation (2.18).

2.16. Suppose f and g are homogeneous functions of degrees q and p, respec-
tively. What can you say about the homogeneity of f ± g, fg, and f/g. If
they are homogeneous, find their degree, and verify that they satisfy Equation
(2.18).

2.17. If f is homogeneous of degree q, show that ∂if is homogeneous of degree
q − 1. Hint: Use the definition of homogeneity and differentiate with respect
to xi.

2.18. A function f(x, y, z) of Cartesian coordinates can also be thought of as
a function of cylindrical coordinates ρ, ϕ, z, because the latter are functions
of the former via the relations ρ =

√
x2 + y2 and tanϕ = y/x.

(a) Using the chain rule for differentiation, find ∂f/∂x and ∂f/∂y in terms
of ∂f/∂ρ and ∂f/∂ϕ. Express your answers entirely in terms of cylindrical
coordinates.
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(b) Show that the vector êx
∂f

∂x
+êy

∂f

∂y
+êz

∂f

∂z
, when written entirely in terms

of cylindrical coordinates and cylindrical unit vectors, becomes

êρ
∂f

∂ρ
+ êϕ

1
ρ

∂f

∂ϕ
+ êz

∂f

∂z
.

2.19. In each of the following, the partial derivative of a function is given.
Find the most general function with such a derivative.

(a) ∂2f(x, y, z) = xy2z. (b) ∂1f(x, y, z) = xy2z.

(c) ∂1h(z, x, y) = ex sin z
x . (d) ∂1g(z, x, y) = exy2.

(e) ∂2g(z, x, y) = exy2. (f) ∂2h(x, y, z) = ex sin z
xy .

(g) ∂3f(x, y, z) = xy2z. (h) ∂3g(z, x, y) = exy2.

(i) ∂3h(y, x, z) = ex sin z
x

2.20. Finish the calculation of Example 2.2.8.

2.21. Find y∂f/∂z − z∂f/∂y and z∂f/∂x − x∂f/∂z in terms of spherical
coordinates. Warning! These will not be as nice-looking as the expression
calculated in Example 2.2.8.

2.22. Given that f ′(1) = 2, find

∂f

∂x
êx +

∂f

∂y
êy +

∂f

∂z
êz

for f(xyz) at the Cartesian point (−1, 2,−1/2).

2.23. Given that f ′(3) = −1, find the radial component of the vector

∂f

∂x
êx +

∂f

∂y
êy +

∂f

∂z
êz

for f(
√

x2 + y2 + z2) at the Cartesian point (2, 1,−2).

2.24. Show that the function F (k·r−ωt) satisfies the three-dimensional wave
equation:

∂2F

∂x2 +
∂2F

∂y2 +
∂2F

∂z2 − 1
c2

∂2F

∂t2
= 0

if k ≡ 〈kx, ky, kz〉 is a constant vector, ω is a constant, and a certain relation
exists between k = |k| and ω. Find this relation.

2.25. In electromagnetic radiation theory one encounters an equation of the
form

t =
1

√
[x − f(t)]2 + [y − g(t)]2 + [z − h(t)]2
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and one is interested in the partial derivative of t with respect to x, y, and z.
Note the hybrid role that t plays here as both a dependent and an independent
variable. Show that

∂t

∂x
=

x − f(t)
[x − f(t)]f ′(t) + [y − g(t)]g′(t) + [z − h(t)]h′(t) − F 3/2

,

where F (x, y, z, t) ≡ [x−f(t)]2+[y−g(t)]2+[z−h(t)]2. Find similar expressions
for partial derivatives of t with respect to y and z.

2.26. Consider the function f(|r − r′|) with r = xêx + yêy + zêz and r′ =
x′êx + y′êy + z′êz being the position vectors of P and P ′.
(a) Find a general expression for the vector

V =
∂f

∂x
êx +

∂f

∂y
êy +

∂f

∂z
êz

in terms of r and r′.
(b) If f ′(3) = 3 and the coordinates of P and P ′ are (1,−1, 0), and (0, 1, 2),
respectively, find the numerical value of V.

2.27. Find an expression in cylindrical and spherical coordinates analogous
to Equation (2.21).

2.28. A function f(x, y) of Cartesian coordinates can also be thought of as a
function of some other coordinates u and v defined by

x = u sin v, y = u cos v.

(a) Applying the procedure of Example 2.3.2, find the unit vectors êu and êv.
(b) Find u and v as functions of x and y.
(c) Calculate êx and êy in terms of êu and êv.
(d) Write the vector

A = êx
∂f

∂x
+ êy

∂f

∂y

entirely in the (u, v) coordinate system.

2.29. Find the cylindrical unit vectors in terms of Cartesian unit vectors
using the procedure of Example 2.3.2.

2.30. Find the spherical unit vectors in terms of Cartesian unit vectors using
the procedure of Example 2.3.2.

2.31. In the first part of Example 2.3.2, assume that f(u, v) = uf1(v) and
g(u, v) = ug1(v) where f1 and g1 are functions of only one variable.
(a) Find a relation between f1 and g1 to make êu and êv perpendicular.
(b) Can you recover the polar coordinates as a special case of (a)?
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2.32. The elliptic coordinates (u, θ) are given by

x = a coshu cos θ,

y = a sinh u sin θ,

where a is a constant.
(a) What are the curves of constant u?
(b) What are the curves of constant θ?
(c) Find êu and êθ in terms of the Cartesian unit vectors, and examine their
orthogonality.

2.33. The parabolic coordinates (u, v) are given by

x = a(u2 − v2),
y = 2auv,

where a is a constant.
(a) What are the curves of constant u?
(b) What are the curves of constant v?
(c) Find êu and êv in terms of the Cartesian unit vectors, and examine their
orthogonality.

2.34. The two-dimensional bipolar coordinates (u, v) are given by

x =
a sinhu

coshu + cos v
,

y =
a sin v

coshu + cos v
,

where a is a constant.
(a) What are the curves of constant u?
(b) What are the curves of constant v?
(c) Find êu and êv in terms of the Cartesian unit vectors, and examine their
orthogonality.

2.35. The elliptic cylindrical coordinates (u, θ, z)are given by

x = a coshu cos θ,

y = a sinh u sin θ,

z = z,

where a is a constant.
(a) What are the surfaces of constant u?
(b) What are the surfaces of constant θ?
(c) Find êu, êθ, and êz in terms of the Cartesian unit vectors and examine
their orthogonality.
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2.36. The prolate spheroidal coordinates (u, θ, ϕ) are given by

x = a sinh u sin θ cosϕ,

y = a sinh u sin θ sin ϕ,

z = a coshu cos θ,

where a is a constant.
(a) What are the surfaces of constant u?
(b) What are the surfaces of constant θ?
(c) Find êu, êθ, and êϕ in terms of the Cartesian unit vectors, and examine
their mutual orthogonality.

2.37. The toroidal coordinates (u, θ, ϕ) are given by

x =
a sinhu cosϕ

coshu − cos θ
,

y =
a sinh u sinϕ

cosh θ − cos θ
,

z =
a sin u

coshu − cos θ
,

where a is a constant.
(a) What are the surfaces of constant u?
(b) What are the surfaces of constant θ?
(c) Find êu, êθ, and êϕ in terms of the Cartesian unit vectors, and examine
their mutual orthogonality.

2.38. The paraboloidal coordinates (u, v, ϕ) are given by

x = 2auv cosϕ,

y = 2auv sin ϕ,

z = a(u2 − v2),

where a is a constant.
(a) What are the surfaces of constant u?
(b) What are the surfaces of constant v?
(c) Find êu, êv, and êϕ in terms of the Cartesian unit vectors, and examine
their mutual orthogonality.

2.39. The three-dimensional bipolar coordinates (u, θ, ϕ) are given by

x =
a sin θ cosϕ

coshu − cos θ
,

y =
a sin θ sin ϕ

coshu − cos θ
,

z =
a sinh u

coshu − cos θ
,
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where a is a constant.
(a) What are the surfaces of constant u?
(b) What are the surfaces of constant θ?
(c) Find êu, êθ, and êϕ in terms of the Cartesian unit vectors, and examine
their mutual orthogonality.

2.40. A coordinate system (R, Θ, φ) in space is defined by

x = R cosΘ cosφ + b cosφ,

y = R cosΘ sin φ + b sinφ,

z = R sin Θ,

where b is a constant, and 0 < R < b.

1. Express the unit vectors êR, êΘ, and êφ in terms of Cartesian unit
vectors with coefficients being functions of (R, Θ, φ).

2. Are unit vectors mutually perpendicular?





Chapter 3

Integration: Formalism

It is not an exaggeration to say that the most important concept, whose mas-
tery ensures a much greater understanding of all undergraduate physics, is the
concept of integral. Generally speaking, physical laws are given in local form Physical laws are

given for
mathematical
points but applied
to extended
objects.

while their application to the real world requires a departure from locality.
For instance, Coulomb’s law in electrostatics and the universal law of gravity
are both given in terms of point particles. These are mathematical points and
the laws assume that. In real physical situations, however, we never deal with
a mathematical point. Usually, we approximate the objects under considera-
tion as points, as in the case of the gravitational force between the Earth and
the Sun. Whether such an approximation is good depends on the properties
of the objects and the parameters of the law. In the example of gravity, on
the sizes of the Earth and the Sun as compared to the distance between them.
On the other hand, the precise motion of a satellite circling the earth requires
more than approximating the Earth as a point; all the bumps and grooves of
the Earth’s surface will affect the satellite’s motion.

This chapter is devoted to a thorough discussion of integrals from a phys-
ical standpoint, i.e., the meaning and the use of the concept of integration
rather than the technique and the art of evaluating integrals.

3.1 “
∫
” Means “

∫
um”

One of the first difficulties we have to overcome is the preconception instilled
in all of us from calculus that integral is “area under a curve.” This pre-
conception is so strong that in some introductory physics books the authors
translate physical concepts, in which integral plays a natural role, into the
unphysical and unnatural notion of area under a curve. It is true that calcula- Integral is not just

area under a
curve!

tion of the area under a curve employs the concept of integration, but it does
so only because the calculation happens to be the limit of a sum, and such
limits find their natural habitat in many physical situations.
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Take the gravitational force, for example. As a fundamental physical law,
it is given for point masses, but when we want to calculate the force between
the Earth and the Moon, we cannot apply the law directly because the Earth
and the Moon cannot be considered as points with the Moon being only 60
Earth radii away. This problem was recognized by Newton who found its solu-
tion in integration. Inherent in the concept of integration is the superposition
principle whereby, as mentioned in Chapter 1, different parts of a system are
assumed to act independently. Thus a natural procedure is to divide the
big Earth and the big Moon into small pieces, write down the gravitational
force between these small pieces, invoke the superposition principle, and add
the contribution of these pieces to get the total force. Now, nothing is more
natural than this process, and no example is a more illustrative example of
integration than such a calculation.

In order to define and elucidate the concept of integration,1 let us recon-calculation of
fields of
continuous
distribution of
sources as the
natural setting for
the concept of
integral

sider the gravitational field of Box 1.3.5. Instead of a known collection of point
masses, let us calculate the gravitational field at a point P of a continuous
distribution of mass such as that distributed in the volume of the Earth.
The point P is called the field point.2 We divide the large mass into N
pieces, denoting the mass of the ith piece, located around the point Pi, by
Δmi as shown in Figure 3.1. To be able to even write the field equation for
the ith piece of mass, we have to make sure that the size of Δmi is small
enough. We thus write

gi ≈ − GΔmi

|r − ri|3
(r − ri).

z
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Pri
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Figure 3.1: The mass distribution giving rise to a gravitational field. (a) The mass is

divided into discrete pieces labeled 1 through N with the ith piece singled out. (b) The

mass is divided into infinitesimal pieces with the piece located at r′ singled out.

1The discussion that follows may seem specific to one example, but in reality, it is much
more general. Instead of the gravitational law one can substitute any other local law, and
instead of mass, the appropriate physical quantity must be used. The examples that follow
throughout this chapter will clarify any vague points.

2The same terminology applies to electrostatic fields as well.
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The smaller the size, the better this expression approximates the field due to
Δmi. Invoking the superposition principle, we write

g(r) ≈
N∑

i=1

gi = −
N∑

i=1

GΔmi

|r − ri|3
(r − ri) = −

N∑

i=1

GΔm(ri)
|r− ri|3

(r − ri), (3.1)

where in the last equality we have replaced Δmi with Δm(ri). Aside from a
change in notation, this replacement emphasizes the dependence of the small
piece of mass on its “location.” The quotation marks around the last word
need some elaboration. In any practical slicing of the gravitating object, such
as the Earth, each piece still has some nonzero size. This makes it impossible
to define the distance between Δmi and the point P . We can define this
distance to be that of the “center” of Δmi from P , but then the difficulty
shifts to defining the center of the piece. Fortunately, it turns out that, as long
as we ultimately make the size of all Δmi’s indefinitely small, any point—such
as Pi shown in the figure—in Δmi can be chosen to define its distance from
P . We are thus led to taking the limit of Equation (3.1) as the size of all
pieces tends to zero, and, necessarily, the number of pieces tends to infinity.
If such a limit exists, we call it the integral of the gravitational field and integral as the

limit of a sumdenote it as follows:3

g(r) = − lim
Δm→0
N→∞

N∑

i=1

GΔm(ri)
|r − ri|3

(r − ri) ≡ −
∫∫

Ω

Gdm(r′)
|r− r′|3 (r − r′). (3.2)

An identical procedure leads to a similar formula for the electrostatic field
and potential:

E =
∫∫

Ω

kedq(r′)
|r − r′|3 (r − r′), Φ =

∫∫

Ω

kedq(r′)
|r− r′| . (3.3)

Equations (3.2) and (3.3) will be used frequently in the sequel as we try
to illustrate their use in various physical situations. Note that Equations
(3.2) and (3.3) are independent of any coordinate systems as all physical laws
should be.

In the symbolic representation of integral on the RHS, Ω, called the region region of
integrationof integration,4 is the region—for example, the volume of the Earth—in

which the mass distribution resides, and dm(r′) is called an element of mass
located5 at point P ′ whose position vector is r′. P ′ is called the source
point because it is the location of the source of the gravitational field, i.e.,
the mass element at that point. We also call it the integration point. The integration point,

integration
variables, and
integrand defined

3We shall use the symbol
∫∫

Ω (or simply
∫
Ω) to indicate general integration without

regard to the dimensionality (single, double, or triple) of the integral.
4When the region of integration is one dimensional, such as an interval (a, b) on the real

line, one uses
∫ b
a

instead of
∫
(a,b)

.
5Whenever r′ is used as an argument of a quantity, it will refer to the coordinates of a

point not the components of its position vector.
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coordinates of r′ upon which the mass element depends—and in terms of
which it will eventually be expressed—are called the integration variables,
and whatever multiplies the products of the differentials of these variables is
called the integrand.

It is not hard to abstract the concept of integration from the specific
example of gravity. Instead of the specific form of the integral in Equations
(3.2) and (3.3), we use f(r, r′), and instead of the element of mass, we use the
element of some other quantity which we generically designate as dQ(r′). We
thus write

h(r) = lim
ΔQ→0
N→∞

N∑

i=1

f(r, ri)ΔQ(ri) ≡
∫∫

Ω

f(r, r′) dQ(r′), (3.4)

where h(r), the result of integration, will be a function of r, the position
vector of P whose coordinates are called the parameters of integration.integration

parameters Although we have used r and r′, the concept of integration does not require
the parameters and integration variables to be position vectors. They could be
any collection of parameters and variables. Nevertheless, we continue to use
the terminology of position vectors and call such collections the coordinates
of points.

An immediate—and important—consequence of the definition of integral
is that if the region of integration Ω is small, then, for practical calculations,
we do not need to subdivide it into many pieces. In fact, if Ω is small enough,
only one piece may be a good approximation to the integral. We thus write

∫∫

ΔΩ

f(r, r′) dQ(r′) ≈ f(r, rM )ΔQ, (3.5)

where it is understood that ΔΩ is a small region around point M whose
“position vector” is rM .

Another immediate and important consequence of the definition of integral
is that if Ω is divided into two regions Ω1 and Ω2, then

∫∫

Ω

f(r, r′) dQ(r′) =
∫∫

Ω1

f(r, r′) dQ(r′) +
∫∫

Ω2

f(r, r′) dQ(r′) (3.6)

In order to be able to evaluate integrals, one has to express both dQ(r′)
and f(r, r′) in terms of a suitable set of coordinates. f(r, r′) poses no problem,
and in most cases it involves a mere substitution. The element of Q, on the
other hand, is often related, via density, to the element of volume (or area,
or length) whose expression is more involved. Section 2.3 dealt with the
construction of elements of length, area, and volume in the three coordinate
systems.

Historical Notes
Integral calculus, in its geometric form, was known to the ancient Greeks. For
example, Euclid, by adding pieces to the area of a square inscribed in a circle,
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constructing newer polygons of larger numbers of sides, and continuing the process
until the circle is “exhausted” by regular polygons, proved the theorem: Circles
are to one another as the squares on the diameters. In essence, Euclid thinks of a
circle as the limiting case of a regular polygon and proves the above theorem for
polygons. Then he uses the argument of “exhaustion” to get to the result. Although
mathematicians of antiquity made frequent use of the method of exhaustion, no one
did it with the mastery of Archimedes.

Archimedes is arguably believed to be the greatest mathematician of antiquity.
The son of an astronomer, he was born in Syracuse, a Greek settlement in Sicily.
As a young man he went to Alexandria to study mathematics, and although he
went back to Syracuse to spend the rest of his life there, he never lost contact with
Alexandria.

Archimedes possessed a lofty intellect, great breadth of interest—both theoret-
Archimedes

287–212 B.C.
ical and practical—and excellent mechanical skills. He is credited with finding the
areas and volumes of many geometric figures using the method of exhaustion, the
calculation of π, a new scheme of presenting large numbers in verbal language, find-
ing the centers of gravity of many solids and plane figures, and founding the science
of hydrostatics.

His great achievements in mathematics—he is ranked with Newton and Gauss
as one of the three greatest mathematicians of all time—did not overshadow his
practical inventions. He invented the first planetarium and a pump (Archimedean
screw). He showed how to use levers to move great weights, and used compound
pulleys to launch a galley of the king of Syracuse. Taking advantage of the focusing
power of a parabolic mirror, so the story goes, he concentrated the Sun’s rays on
the Roman ships besieging Syracuse and burned them!

Perhaps the most famous story about Archimedes is his discovery of the method
of testing the debasement of a crown of gold. The king of Syracuse had ordered
the crown. Upon delivery, he suspected that it was filled with baser metal and
sent it to Archimedes to test it for purity. Archimedes pondered about the problem
for some time, until one day, as he was taking a bath, he observed that his body
was partly buoyed up by the water and suddenly grasped the principle—now called
Archimedes’ principle—by which he could solve the problem. He was so ex-
cited about the discovery that he forgetfully ran out into the street naked shouting
“Eureka!” (“I have found it!”).

3.2 Properties of Integral

Now that we have developed the formalism of integration, we should look
at some applications in which integrals are evaluated. As we shall see, all
integral evaluations eventually reduce to integrals involving only one variable.
Thus, it is important to have a thorough understanding of the properties
of such integrals. Some of these properties are familiar, others may be less
familiar or completely new. We gather all these properties here for the sake
of completeness.
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3.2.1 Change of Dummy Variable

The symbol used as the variable of integration in the integral is completely
irrelevant. Thus, we haveFeel free to use

any symbol you
like for the
integration
variable!

∫ t2

t1

g(t) dt =
∫ t2

t1

g(x) dx =
∫ t2

t1

g(s) ds

=
∫ t2

t1

g(t′) dt′ =
∫ t2

t1

g(�) d�.

Note how the limits of integration remain the same in all integrals. The fact
that these limits use the same symbol as the first dummy variable should not
confuse the reader. What is important is that they are fixed real numbers.

3.2.2 Linearity

For arbitrary constant real numbers a and b, we have
∫ c2

c1

[af(t) + bg(t)] dt = a

∫ c2

c1

f(t) dt + b

∫ c2

c1

g(t) dt.

3.2.3 Interchange of Limits

Interchanging the limits of integration introduces a minus sign:
∫ d

c

f(t) dt = −
∫ c

d

f(t) dt. (3.7)

This relation implies that
∫ s

s
f(t) dt = 0. (Show this implication!)

3.2.4 Partition of Range of Integration

If q is a real number between the two limits, i.e., if p < q < r, then
∫ r

p

f(t) dt =
∫ q

p

f(t) dt +
∫ r

q

f(t) dt. (3.8)

which is a special case of Equation (3.6). This property is used to evaluatepiecewise
continuous
functions

piecewise continuous functions, i.e., functions that have a finite number
of discontinuities in the interval of integration. For instance, suppose f(t) is
defined to be

f(t) =

⎧
⎪⎨

⎪⎩

f1(t) if p < t < q1,

f2(t) if q1 < t < q2,

f3(t) if q2 < t < r,

where f1(t), f2(t), and f3(t) are, in general, totally unrelated (continuous)
functions. Then one divides the interval of integration into three natural
parts and writes

∫ r

p

f(t) dt =
∫ q1

p

f1(t) dt +
∫ q2

q1

f2(t) dt +
∫ r

q2

f3(t) dt.
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p r
t

f1 f2

q2

f3

q1

Figure 3.2: The integral is defined as long as there is only a finite number of disconti-

nuities (jumps) in the function.

This is illustrated in Figure 3.2.

3.2.5 Transformation of Integration Variable

When evaluating an integral it is sometimes convenient to use a new variable
of integration of which the old one is a function. Call the new integration
variable y and assume that t = h(y). Then we have

∫ b

a

f(t) dt =
∫ q

p

f(h(y))h′(y) dy, (3.9)

where p and q are the solutions to the two equations Transformation of
integration
variable
accompanies a
change in the
limits of
integration.

a = h(p), b = h(q).

Each of these two equations must have a unique solution, otherwise, the trans-
formation of the integration variable will not be a valid procedure. This con-
dition puts restrictions on the type of function h can be. Note that we have
essentially substituted h(y) for t in the original integral including the dif-
ferential h′(y) dy for dt. It is vital to remember to change the limits of
integration when transforming variables.

3.2.6 Small Region of Integration

When the region of integration is small, in the sense that the integrand does When is the
region of
integration small?

not change much over the range of integration, then the integral can be ap-
proximated by the product of integrand and the size of the range.6 We thus
can write ∫ b

a

f(t) dt ≈ (b − a)f(t0), (3.10)

where t0 is a number between a and b, mostly taken to be the midpoint of
the interval (a, b).

6This is simply a restatement of Equation (3.5) for the case of one variable.
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3.2.7 Integral and Absolute Value

A useful property of integrals that we shall be using sometimes is
∣
∣
∣
∣
∣

∫ b

a

f(t) dt

∣
∣
∣
∣
∣
≤

∫ b

a

|f(t)| dt. (3.11)

This should be clear once we realize that an integral is the limit of a sum and
the absolute value of a sum is always less than or equal to the sum of the
absolute values.

3.2.8 Symmetric Range of Integration

By a symmetric range of integration, we mean a range that has 0—the origin—
as its midpoint. For certain functions, partitioning such a range into two equal
pieces can simplify the evaluation of the integral considerably. So, let us write

∫ +T

−T

f(t) dt =
∫ 0

−T

f(t) dt +
∫ +T

0

f(t) dt.

For the first integral, make a change of variable t = −y to obtain

h(y) = −y ⇒ h′(y) dy = (−1) dy = −dy.

The limits of integration in y are determined by

h(−T ) = ylower, h(0) = yupper ⇒ ylower = +T, yupper = 0.

We therefore have
∫ 0

−T

f(t) dt =
∫ 0

+T

f(−y)(−dy) =
∫ +T

0

f(−y) dy =
∫ +T

0

f(−t) dt,

where we have used the properties in Subsections 3.2.3 and 3.2.1. Combining
our results and using the second property, we get

∫ +T

−T

f(t) dt =
∫ +T

0

f(−t) dt +
∫ +T

0

f(t) dt

=
∫ +T

0

[f(t) + f(−t)] dt. (3.12)

A real-valued function f is called even if f(−x) = f(x), and odd ifeven and odd
functions defined f(−x) = −f(x). Thus, from Equation (3.12), we obtain

∫ +T

−T

f(t) dt =
∫ +T

0

[f(t) + f(−t)] dt = 2
∫ +T

0

f(t) dt (3.13)

when f is even, and
∫ +T

−T

f(t) dt =
∫ +T

0

[f(t) + f(−t)] dt = 0 (3.14)

when it is odd.
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3.2.9 Differentiating an Integral

We have seen that an integral can have an integrand which depends on a set of
parameters, and that the result of integration will depend on these parameters.
Thus, we can think of the integral as a function of those parameters, and in
particular, we may want to know its derivative with respect to one of the
parameters. Using the definition of integral as the limit of a sum, and the
fact that the derivative of a sum is the sum of derivatives, it is easy to show
that

∂

∂xi

∫ b

a

f(x1, x2, . . . , xn, t) dt =
∫ b

a

∂

∂xi
f(x1, x2, . . . , xn, t) dt, (3.15)

where we have represented the list of parameters as (x1, x2, . . . , xn). We can
write exactly the same relation for the integral of Equation (3.4). Assuming
that r = (x1, x2, . . . , xn), we have

∂

∂xi
h( r) =

∂

∂xi

∫∫

Ω

f(r, r′) dQ( r′) =
∫∫

Ω

∂

∂xi
f(r, r′) dQ( r′). (3.16)

In both cases the region of integration is assumed to be independent of xi.
Restricting ourselves to single integrals,7 we now consider the case where

the limits of integration depend on some parameters. First, consider an inte-
gral of the form ∫ v

u

f(t) dt

and treat the result as a function of the limits. So, let us write

F (u, v) ≡
∫ v

u

f(t) dt ⇒ F (v, u) = −F (u, v)

and evaluate the partial derivative of F with respect to its arguments:

∂F

∂u
≡ ∂1F (u, v) = lim

ε→0

F (u + ε, v) − F (u, v)
ε

= lim
ε→0

∫ v

u+ε f(t) dt −
∫ v

u f(t) dt

ε
= − lim

ε→0

∫ v

u f(t) dt +
∫ u+ε

v f(t) dt

ε

= − lim
ε→0

∫ u+ε

u f(t) dt

ε
= − lim

ε→0

εf(u0)
ε

= − lim
ε→0

f(u0) = −f(u).

The last equality follows from the fact that as ε → 0, u0, lying between u and
u + ε, will be squeezed to u. Note that the derivative above is independent of
the second variable. To find the other derivative, we use the result obtained
above and simply note that

∂F (u, v)
∂v

= −∂F (v, u)
∂v

= −∂1F (v, u) = −
(
−f(v)

)
= f(v).

7Since all multiple integrals are reducible to single integrals, this restriction is not severe.
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Putting these two results together, we can write

∂

∂v

∫ v

u

f(t) dt = f(v),
∂

∂u

∫ v

u

f(t) dt = −f(u). (3.17)

In words,

Box 3.2.1. The derivative of an integral with respect to its upper (lower)
limit equals the integrand (minus the integrand) evaluated at the upper
(lower) limit.

By evaluation, we mean replacing the variable of integration. If the integrand
has parameters, they are to be left alone.

By combining Equations (3.15) and (3.17) we can derive the most general
equation. So, assume that both u and v are functions of (x1, x2, . . . , xn), and
write

G(x1, x2, . . . , xn, u, v) ≡
∫ v(x1,x2,...,xn)

u(x1,x2,...,xn)

f(x1, x2, . . . , xn, t) dt.

Then, using the chain rule. we get

DiG ≡ ∂G

∂u

∂u

∂xi
+

∂G

∂v

∂v

∂xi
+ ∂iG,

where DiG stands for the “total” derivative with respect to xi. This meanstotal derivative

that the dependence of u and v on xi is taken into account. In contrast, ∂iG
is evaluated assuming that u and v are constants. We note that

∂G

∂u
=

∂

∂u

∫ v

u

f(x1, x2, . . . , xn, t) dt = −f(x1, x2, . . . , xn, u),

∂G

∂v
=

∂

∂v

∫ v

u

f(x1, x2, . . . , xn, t) dt = f(x1, x2, . . . , xn, v),

∂G

∂xi
=

∂

∂xi

∫ v

u

f(x1, x2, . . . , xn, t) dt =
∫ v

u

∂

∂xi
f(x1, x2, . . . , xn, t) dt,

where the partial derivative in the last equation treats u and v as constants.
It follows that

Box 3.2.2. The most general formula for the derivative of an integral is

∂

∂xi

∫ v(r)

u(r)

f(r, t) dt =
∂v

∂xi
f(r, v) − ∂u

∂xi
f(r, u) +

∫ v(r)

u(r)

∂

∂xi
f(r, t) dt,

where r = (x1, x2, . . . , xn).

As indicated in Equation (2.16), it is common to ignore the difference between
Di and ∂i; and the formula in Box 3.2.2 reflects this.
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3.2.10 Fundamental Theorem of Calculus

A special case of Box 3.2.2 is extremely useful. Consider a function g of
a single variable x. We want to find a function called the primitive, or primitive

(antiderivative) of
a function

antiderivative, or indefinite integral8 whose derivative is g. This can be
easily done using integrals. In fact using Box 3.2.2, we have

G(x) ≡
∫ x

a

g(s) ds ⇒ dG

dx
=

d

dx

∫ x

a

g(s) ds = g(x), (3.18)

where a is an arbitrary constant. We can add an arbitrary constant to the
RHS of the above equation and still get a primitive. Adding such a constant,
evaluating both sides at x = a, and noting that the integral vanishes, we find
that the constant must be G(a). We, therefore, obtain

G(x) − G(a) =
∫ x

a

g(s) ds. (3.19)

Now suppose that F (x) is any function whose derivative is g(x). Then,
from Equation (3.18), we see that

d

dx
[G(x) − F (x)] =

dG

dx
− dF

dx
= g(x) − g(x) = 0.

Therefore, G(x)−F (x) must be a constant C. It now follows from (3.19) that

F (x) − F (a) = G(x) − C − [G(a) − C] = G(x) − G(a) =
∫ x

a

g(s) ds,

and we have fundamental
theorem of
calculus

Box 3.2.3. (Fundamental Theorem of Calculus). Let F (x) be any
primitive of g(x) defined in the interval (a, b), i.e., any function whose
derivative is g(x) in that interval. Then,

F (b) − F (a) =
∫ b

a

g(s) ds. (3.20)

The founders of calculus such as Barrow, Newton, and Leibniz thought of
an integral as a sum. At the beginning no connection between integration and Connection

between integrals
and antiderivatives
was not apparent
at the time
integration was
introduced. It was
discovered later.

differentiation was established, and to obtain the result of an integral one
had to go through the painstaking process of adding the terms of a (infinite)
sum. It was later, that the founders of calculus realized (but did not prove)
that the process of summation and taking limits was intimately connected

8We would like to emphasize the concept of integral as the limit of a sum. Therefore,
we think it is better to reserve the word “integral” for such sums and will avoid using the
phrase “indefinite integral.”
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to the process of (anti) differentiation. In this respect, Equation (3.20) is
indeed a fundamental result, because it eliminates the cumbersome labor of
summation.

Another useful result is

G(x) − G(a) =
∫ x

a

g(s) ds =
∫ x

a

dG

ds
(s) ds =

∫ x

a

dG. (3.21)

In words, the integral of the differential of a physical quantity is equal to the
quantity evaluated at the upper limit minus the quantity evaluated at the lower
limit.

Example 3.2.1. The properties mentioned above can be very useful in evaluating

some integrals. Consider the integral
∫ ∞
−∞ e−t2dt whose value is known to be

√
π (see

Example 3.3.1). We want to use this information to obtain the integral
∫ ∞
−∞ t2e−t2dt.

First, we note that ∫ ∞

−∞
e−xt2dt =

√
π

x
.

This can be shown readily by changing the variable of integration to u =
√

x t and
using the result of Example 3.3.1. Next, we differentiate both sides with respect to
x and use Box 3.2.2 with u = −∞ and v = ∞. We then get

LHS =
∂

∂x

∫ ∞

−∞
e−xt2dt =

∫ ∞

−∞

∂

∂x
e−xt2dt =

∫ ∞

−∞
(−t2)e−xt2dt

for the LHS, and
∂

∂x

√
π

x
= −1

2

√
π

x3/2
for the RHS. Sousing derivative of

integral to obtain
new integral
formulas from
known integral
formulas

∫ ∞

−∞
t2e−xt2dt =

√
π 1

2
x−3/2 (3.22)

or, setting x = 1,
∫ ∞
−∞ t2e−t2dt =

√
π

2
.

We can obtain more general results. Differentiating both sides of Equation
(3.22), we obtain

∫ ∞

−∞
t4e−xt2dt =

√
π 1

2
3
2
x−5/2 =

√
π

1 · 3
22

x−5/2.

Continuing the process n times, we obtain
∫ ∞

−∞
t2ne−xt2dt =

√
π

1 · 3 · 5 · · · (2n − 1)

2n
x−(2n+1)/2. (3.23)

In particular, if x = 1, we have
∫ ∞

−∞
t2ne−t2dt =

√
π

1 · 3 · 5 · · · (2n − 1)

2n
. �

Example 3.2.2. Integrals involving only trigonometric functions are easy to
evaluate:

∫ b

a

sin t dt = − cos t
∣
∣
∣
b

a
= cos a − cos b,

∫ b

a

cos t dt = sin t
∣
∣
∣
b

a
= sin b − sin a.
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However, integrals of the form I ≡
∫ b

a
tn sin t dt, in which n is a positive integer,

are not as easy to evaluate although they occur frequently in applications. One can
of course evaluate these integrals using integration by parts. But that is a tedious
process. A more direct method of evaluation is to use the ideas developed above.

A pair of slightly more complicated trigonometric integrals which will be useful
for our purposes is

∫ b

a

sin st dt = − 1

s
cos st

∣
∣
∣
∣

b

a

=
cos sa − cos sb

s
,

∫ b

a

cos st dt =
1

s
sin st

∣
∣
∣
∣

b

a

=
sin sb − sin sa

s
. (3.24)

If we differentiate both sides with respect to s, we can obtain the integrals we are
after.9 This is because each differentiation introduces one power of t in the integrand.
For example if we are interested in I with n = 1, then we can differentiate the second
equation in (3.24):

LHS =
d

ds

∫ b

a

cos st dt =

∫ b

a

∂

∂s
(cos st) dt = −

∫ b

a

t sin st dt.

On the other hand,

RHS =
∂

∂s

(
sin sb − sin sa

s

)

= − sin sb − sin sa

s2
+

b cos sb − a cos sa

s
.

Setting s = 1 in these equations yields

∫ b

a

t sin t dt = sin b − sin a − b cos b + a cos a. (3.25)

We can also find the primitive of functions of the form xn sin x. All we need to
do is change b to x as suggested by Equation (3.18). For example, the primitive
(indefinite integral) of x sin x is obtained by substituting x for b in Equation (3.25):

∫
x sin x dx = sin x − sin a − x cos x + a cos a = sin x − x cos x + C

because − sin a + a cos a is simply a constant. �

Historical Notes
After a lull of almost two millennia, the subject of “exhaustion,” like any other form
of human intellectual activity, was picked up after the Renaissance. Johannes Kepler
is reportedly the first one to begin work on finding areas, volumes, and centers of
gravity. He is said to have been attracted to such problems because he noted the
inaccuracy of methods used by wine dealers to find the volumes of their kegs.

Some of the results he obtained were the relations between areas and perimeters.
For example, by considering the area of a circle to be covered by an infinite number
of triangles, each with a vertex at the center, he shows that the area of a circle is 1

2

9We can set s = 1 at the end if need be.
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its radius times its circumference. Similarly, he regarded the volume of a sphere as
the sum of a large number of small cones with vertices at the center. Since he knew
the volume of each cone to be 1

3
its height times the area of its base, he concluded

that the volume of a sphere should be 1
3

its radius times the surface area.
Galileo used the same technique as Kepler to treat the uniformly accelerated

motion and essentially arrived at the formula x = 1
2
at2. They both regarded an

area as the sum of infinitely many lines, and a volume as the sum of infinitely many
planes, without questioning the validity of manipulating infinities. Galileo regarded
a line as an indivisible element of area, and a plane as an indivisible element of
volume.

Influenced by the idea of “indivisibles,” Bonaventura Cavalieri, a pupil of
Galileo and professor in a lyceum in Bologna, took up the study of calculus upon
Galileo’s recommendation. He developed the ideas of Galileo and others on indivis-
ibles into a geometrical method and in 1635 published a book on the subject called
Geometry Advanced by a thus far Unknown Method, Indivisible of Continua.

Cavalieri joined the religious order Jesuati in Milan in 1615 while he was still
a boy. In 1616 he transferred to the Jesuati monastery in Pisa. His interest in
mathematics was stimulated by Euclid’s works and after meeting Galileo, considered
himself a disciple of the astronomer. The meeting with Galileo was set up by Car-
dinal Federico Borromeo who saw clearly the genius in Cavalieri while he was at the
monastery in Milan.

Bonaventura
Cavalieri

1598–1647

Cavalieri was largely responsible for introducing logarithms as a computational
tool in Italy. The tables of logarithms which he published included logarithms of
trigonometric functions for use by astronomers. Cavalieri also wrote on conic sec-
tions, trigonometry, optics, and astronomy. He showed by his methods of indivisibles
that, in the modern notation,

∫ a

0

xn dx =
an+1

n + 1

for positive integral values of n up to 9.
The next important step in the development of integral calculus began when

the seventeenth-century mathematicians generalized the Greek method of exhaus-
tion. Whereas this method requires different rectilinear approximation for different
geometrical figures, the new generation of mathematicians approximated the area
under any curve by a large number of rectangles of equal width (much like it is
done today), summed up the areas, and neglected the “small corrections” in the
sum. Using essentially this kind of summation technique, Fermat showed the above
integral formula for all rational n except −1 before 1636.

Before Newton and Leibniz, the man who did most to replace the geometrical
techniques with analytical ones in calculus was John Wallis. Although he did
not begin to learn mathematics until he was about twenty, he became professor
of geometry at Oxford and the ablest British mathematician of the century, next
to Newton. One of Wallis’s notable results, obtained while he was trying to find
the area of a circle analytically, was a new formula for π. He calculated the area
bounded by the axes and the curves y = (1 − x2)n for n = 0, 1, 2, . . .. Then by
interpolation and further complicated reasoning he related the area of a unit circle

John Wallis
1616–1703

y = (1 − x2)1/2 to the previous areas and showed that

π

2
=

2.2.4.4.6.6.8.8 . . .

1.3.3.5.5.7.7.9 . . .
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3.3 Guidelines for Calculating Integrals

The number of situations in which integrals are used is unlimited, and we shall
see many examples of such usage in this chapter and throughout the book. Be-
fore embarking on specific examples, let us summarize some guidelines which
will be helpful in applying integrals in physical problems:

• Make sure you understand what physical quantity you are trying to Let the problem
determine
formulas!

calculate. Instead of searching randomly for formulas, think about the
problem and let it determine the formulas.

• Determine which coordinate system is most suited for the problem.
Then place the origin and orient the axes in such a way that the prob-
lem takes the simplest form. Usually spherical coordinates are suited Choose

coordinates,
origin, and
orientation of axes
wisely!

for regions of integration which are symmetric about a single point. If
there is a natural “axis” associated with the problem, then cylindrical
coordinates are useful, and if the region of integration is in the shape of
a rectangular box, Cartesian coordinates may be most suitable. If there
is no obvious symmetry, then any one of the systems is just as good (or
just as bad).

• Write down the local formula first, i.e., confine the problem to a small Write the local
formula, then put
it inside the
integral.

region and write the formula, for instance, in terms of dQ(r′), dm(r′),
etc., then put the formula inside the integral. Do this in a coordinate-
independent way first. All physical laws are written with no reference
to a particular coordinate system, anyway.

• Now express the formula in terms of the coordinates you have chosen.
When dealing with vector quantities, pay particular attention to unit
vectors whose directions depend on the integration point. They cannot
in general be taken out of the integral sign (see Section 3.3.2 for details).

• Determine the limits of integration. In a typical situation, if you have
chosen a good coordinate system, placed the origin properly, and ori-
ented the axes nicely, then the limits of integration should be easy to
write.

• Never take anything out of the integral unless you are absolutely sure Never take
anything out of
the integral
unless. . . .

that it is independent of the integration variables. This is easily said,
but most often also easily forgotten.

• Once you have evaluated the integrals and found the physical quantity
you are after, try to express your result in a coordinate-free language.
This is not, in general, easy, but in special circumstances you can im-
mediately guess the coordinate-free form of the result.

• As a general rule—valid in all physical calculations—check your final Always check the
dimension of your
final result!

answer for correct dimensions. The dimension of the LHS must match
that of the RHS.
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3.3.1 Reduction to Single Integrals

Most integrals encountered in physics are multidimensional. Thus, it is impor-
tant to know how to evaluate multiple integrals. Let us concentrate on triple
integration, and for definiteness, let us assume that the integration variables
are actual coordinates in a Cartesian coordinate system.10 The most general
integral, namely Equation (3.4), will then be rewritten as

∫∫

Ω

f(r, r′) dQ(r′) ≡
∫∫

Ω

f(r, x′, y′, z′) dQ(x′, y′, z′)

=
∫ ∫

V

∫
f(r, x′, y′, z′)ρQ(x′, y′, z′) dx′ dy′ dz′,

where we have reexpressed dQ in terms of some density. The region of integra-
tion V may have to be divided into a number of other more easily integrable
regions. However, in most applications, by a good choice of the order of inte-
gration, one can avoid such division. Let us assume that by integrating the
z′ variable first, we will not need to divide the region. The z′ integration is a
single integral and is done by keeping x′ and y′ constant. To find the upper
limit of this integral, we pick an arbitrary point11 in the region, fix its first
two coordinates, move “up” until we hit the boundary of V at a point. The
third coordinate of this boundary point, when expressed in terms of x′ and
y′, will be the upper limit of the z′ integration. The lower limit is obtained
similarly. In most cases, V is bounded by a given upper surface of the form
z = g(x, y), and a lower surface of the form z = h(x, y) as shown in Figure 3.3.

Figure 3.3: The limits of the first integration of a triple integral are defined by two

surfaces.

10Recall that the integration variables, although considered as “coordinates of a point,”
need not be an actual geometric point in space. They could, for instance, be a set of
thermodynamical variables describing a thermodynamical system.

11A common mistake at this stage is to pick a special point. To make sure that you have
picked an arbitrary point, go through the following process using the point chosen, then
pick a different point, go through the process and see if you obtain the same result for the
upper and lower limits of the integral.
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Thus, since the first two coordinates of the boundary points are x′ and y′,
the upper limit will be g(x′, y′) and the lower limit will be h(x′, y′). We thus
write the integral as

∫∫

Ω

f(r, r′) dQ(r′) =
∫ ∫

S

dx′ dy′
∫ g(x′,y′)

h(x′,y′)

f(r, x′, y′, z′)ρQ(x′, y′, z′) dz′,

where S is the projection of V on the xy-plane. For S to be useful, it must
have the following property: Every point of the upper and lower boundaries of
V has one and only one image in S, and no two points of the upper (or lower)
boundary project onto the same point in S. If this property is not fulfilled,
then we must choose another coordinate as our first integration variable, or,
if this does not work, divide the region of integration into pieces for each one
of which this property holds.

Let us assume that the property holds for S, and that we can do the
integral in z′. The result of this integration is a complete elimination of the
z′-coordinate and the reduction of the triple integral down to a double integral.
To be more specific, assume that the primitive of the integrand, as a function
of z′, is F (r, x′, y′, z′), i.e., that

∂F

∂z′
= f(r, x′, y′, z′)ρQ(x′, y′, z′).

Then, the z′ integration yields

∫ g(x′,y′)

h(x′,y′)

f(r, x′, y′, z′)ρQ(x′, y′, z′) dz′

= F (r, x′, y′, g(x′, y′)) − F (r, x′, y′, h(x′, y′)) ≡ G(r, x′, y′),

where the last line defines G. The triple integration has now been reduced to
a double integral, and we have

∫∫

Ω

f(r, r′) dQ(r′) =
∫ ∫

S

dx′ dy′ G(r, x′, y′).

We follow the same procedure as above to do the double integral. Once
again, the region of integration S may have to be divided into a number of
other more easily integrable regions. However, let us assume that by inte-
grating the x′ variable first, we will not need to divide the region. The x′

integration is again a single integral and is done by keeping y′ constant. To
find the upper limit of this integral, we pick an arbitrary point in S, fix its
second coordinate, and move “to the right” until we hit the boundary of S at
a point. The first coordinate of this boundary point, when expressed in terms
of y′, will be the upper limit of the x′ integration. The lower limit is obtained
by “moving to the left.” Once again, in most cases, S is bounded by a given
upper curve of the form x = v(y), and a lower curve of the form x = u(y) (see
Figure 3.4). Thus, since the second coordinate of both boundary points is y′,
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' '

(x , y  )''

Figure 3.4: The limits of the second integration of a triple integral are defined by two

curves.

the upper limit will be v(y′) and the lower limit will be u(y′). We thus write
the integral as

∫∫

Ω

f(r, r′) dQ(r′) =
∫

I

dy′
∫ v(y′)

u(y′)

dx′ G(r, x′, y′),

where I is the projection of S on the y-axis. For I to be useful, it must have
the same property as S, namely: Every point of the right and left boundaries
of S has one and only one image in I, and no two points of the right (or left)
boundary project onto the same point in I. If this property is not fulfilled,
then we must choose y′ as our first integration variable, or, if this does not
work, divide the region of integration into pieces for each one of which this
property holds. Assuming that I satisfies this property, and that the primitive
of the integrand, as a function of x′, is W (r, x′, y′), i.e, that

∂W

∂x′ = G(r, x′, y′),

we get
∫ v(y′)

u(y′)

G(r, x′, y′) dx′ = W (r, v(y′), y′) − W (r, u(y′), y′) ≡ H(r, y′),

where the last line defines H . The triple integration has now been reduced to
a single integral, and we have

∫∫

Ω

f(r, r′) dQ(r′) =
∫

I

H(r, y′) dy′ =
∫ b

a

H(r, y′) dy′,

where a and b are the end points of the interval I.
Sometimes the inverse of the foregoing operation is useful whereby a single

integral is turned into a multiple integral. This happens when the integrand
is given in terms of an integral. To be specific, suppose in the integral
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I ≡
∫ b

a

g(x) dx,

g(x) is given by

g(x) =
∫ v

u

h(x, t) dt,

where u and v could be functions of x. Then, the original integral can be
written as

I =
∫ b

a

{∫ v

u

h(x, t) dt

}

dx =
∫ b

a

∫ v

u

h(x, t) dt dx.

Example 3.3.1. A historical example of this inverse operation is the evaluation
of the integral integral of e−x2

over the positive
real line

I ≡
∫ ∞

0

e−x2
dx.

As the reader attempting to solve this integral will soon find out, it is impossible to
find a primitive of the integrand. However, with

I2 =

∫ ∞

0

e−x2
dx

︸ ︷︷ ︸
=I

∫ ∞

0

e−y2
dy

︸ ︷︷ ︸
=I

=

∫ ∞

0

∫ ∞

0

e−x2
e−y2

︸ ︷︷ ︸
=e−(x2+y2)

dx dy

we end up with an integration over the first quadrant of the xy-plane which opens up
the possibility of using other coordinate systems. In polar coordinates, the integrand

becomes e−r2
and the Cartesian element of area dx dy becomes the element of area

in polar coordinates, namely r dr dθ. The limits of integration correspond to the
first quadrant, with the range of θ being from 0 to π/2 and that of r being from 0
to infinity. This leads to

I2 =

∫ π/2

0

∫ ∞

0

e−r2
r dr dθ =

∫ π/2

0

dθ

︸ ︷︷ ︸
=π/2

∫ ∞

0

e−r2
r dr.

︸ ︷︷ ︸
=−1

2
e−r2

∣
∣∞
0

This shows that I2 = π/4 and, therefore, I =
√

π/2. The reader may verify that
∫ ∞

−∞
e−x2

dx =
√

π (3.26)

by either invoking the evenness of the integrand or starting from scratch as done
above. �

3.3.2 Components of Integrals of Vector Functions

Many calculations involve an integrand which is a vector and whose integra-
tion also leads to a vector. Let us write this as finding the

components of the
vector resulting
from integration
of another vector

F(r) =
∫∫

Ω

A(r, r′) dQ(r′)

=
∫∫

Ω

[A1(r, r′)ê1(r′) + A2(r, r′)ê2(r′) + A3(r, r′)ê3(r′)] dQ(r′),
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where A1, A2, and A3 are the components of the vector A along the mutually
perpendicular unit vectors ê1, ê2, and ê3, respectively.12 Note that these unit
vectors are, in general, functions of the variables of integration, and that

Box 3.3.1. The geometry of the distribution of the source determines the
most convenient variables of integration (coordinate variables).

To find the component of F(r) along any unit vector êa, one simply takes
the dot product of F(r) with êa. Thus,

Fa(r) ≡ êa · F(r) = êa ·
∫∫

Ω

A(r, r′) dQ(r′) =
∫∫

Ω

[êa ·A(r, r′)] dQ(r′)

≡
∫∫

Ω

[A1(r, r′)f1(r′) + A2(r, r′)f2(r′) + A3(r, r′)f3(r′)] dQ(r′), (3.27)

where f1(r′) ≡ êa · ê1, f2(r′) ≡ êa · ê2, and f3(r′) ≡ êa · ê3. Once these dot
products are expressed in terms of the variables of integration, the integral
becomes an ordinary integral which, in principle, can be performed using the
guidelines above.

Box 3.3.2. In practice, êa is one of the unit vectors of some convenient
coordinate system which need not be the same as the coordinate system
used for integration.

For example, one may be interested in the Cartesian components of the grav-
itational field of a spherical distribution of mass. In that case, one uses spher-
ical coordinates for integration and the unit vectors inside the integral, and
êx, êy, or êz for êa. We shall illustrate this point extensively with numerous
examples scattered throughout this chapter.

Historical Notes
By the time Newton entered the scene, an immense amount of knowledge of calculus
had accumulated. In his book Lectiones Geometricae, Barrow, for example, shows
a method of finding tangents, theorems on the differentiation of products and quo-
tients of functions, change of variables in a definite integral, and even differentiation
of implicit functions. So, why, one may wonder, is the word “calculus” so much
attached to Newton and Leibniz? The answer is in these two men’s recognition of
the generality of the methods of calculus, and, more importantly, their emphasis on
the newly discovered analytic geometry.

Isaac Newton was born in the hamlet of Woolsthorpe, England, two months
after his father’s death. His mother, in need of help for the management of the fam-
ily farm, wanted Isaac to pursue a farming career. However, Isaac’s uncle persuaded
him to enter Trinity College, Cambridge University. Newton took the entrance exam

12These unit vectors are usually those of a convenient coordinate system.
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and was accepted to the College in 1661 with a deficiency in Euclidean geometry.
Apparently receiving very little stimulation from his teachers, except possibly Bar-
row, he studied Descartes’s Géométrie, as well as the works of Copernicus, Kepler,
Galileo, Wallis, and Barrow, by himself.

Isaac Newton
1642–1727

Upon his graduation, Newton had to leave Cambridge due to the widespread
plague in the London area to spend the next eighteen months, during 1665 and
1666, in the quiet of his family farm at Woolsthorpe. These eighteen months were
the most productive of his (as well as any other scientist’s) life. In his own words:

In the beginning of 1665 I found the . . . rule for reducing any dignity

[power] of binomial to a series.13 The same year, in May, I found the method

of tangents . . . and in November the direct method of Fluxions [the elements

of what is now called differential calculus], and the next year in January had

the theory of Colours, and in May following I had entrance into the inverse

method of Fluxions [integral calculus], and in the same year I began to think

of gravity extending to the orb of the Moon . . . and . . . compared the force

requisite to keep the Moon in her orb with the force of gravity at the surface

of the Earth.

Newton spent the rest of his scientific life developing and refining the ideas
conceived at his family farm. At the age of 26 he became the second Lucasian
professor of mathematics at Cambridge replacing Isaac Barrow who stepped aside
in favor of Newton. At 30 he was elected a Fellow of the Royal Society, the highest
scientific honor in England.

Newton often worked until early morning, kept forgetting to eat his meals, and
when he appeared, once in a while, in the dining hall of the college, his shoes
were down at the heels, stockings untied, and his hair scarcely combed. Being
always absorbed in his thoughts, he was very naive and impractical concerning
daily routines. It is said that once he made a hole in the door of his house for his
cat to come in and out. When the cat had kittens, he added some smaller holes in
the door!

Newton did not have a pleasant personality, and was often involved in contro-
versy with his colleagues. He quarreled bitterly with Robert Hooke (founder of the
theory of elasticity and the discoverer of Hooke’s law) concerning his theory of color
as well as priority in the discovery of the universal law of gravitation. He was also
involved in another priority squabble with the German mathematician Gottfried Leib-
niz over the development of calculus. With Christian Huygens, the Dutch physicist,
he got into an argument over the theory of light. Astronomer John Flamsteed, who
was hardly on speaking terms with Newton, described him as “insidious, ambitious,
excessively covetous of praise, and impatient of contradictions . . . a good man at the
bottom but, through his nature, suspicious.”

De Morgan says that “a morbid fear of opposition from others ruled his whole
life.” Because of this fear of criticism, Newton hesitated to publish his works.
When in 1672 he did publish his theory of light and his philosophy of science, he
was criticized by his contemporaries. Newton decided not to publish in the future,
a decision that had to be abandoned frequently.

His theory of gravity, although germinated in 1665 under the influence of works
by Hooke and Huygens, was not published until much later, partly because of his
fear of criticism. Another reason for this hesitance in publishing this result was his

13Newton is talking about the binomial theorem here.
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lack of proof that the gravitational attraction of a solid sphere acts as if the sphere’s
map were concentrated at the center. So, when his friend Edmund Halley urged
him in 1684 to publish his results, he refused. However, in 1685 he showed that
a sphere whose density varies only with distance to the center does in fact attract
particles as though its mass were concentrated at the center, and agreed to write up
his work. Halley then assisted Newton editorially and paid for the publication. The
first edition of Philosophiae Naturalis Principia Mathematica appeared in 1687, and
the Newtonian age began.

3.4 Problems

3.1. Use Equation (3.7) to show that
∫ a

a f(t) dt = 0.

3.2. In Equation (3.8), it was assumed that p < q < r. Show that the
equation holds even if q is not between p and r.

3.3. For each of the following integrals make the given change of variables:

(a)
∫ 8

0
t dt, t = y3. (b)

∫ 1

0
dt

1+t2 , t = tan y, 0 ≤ y ≤ π/2.

(c)
∫ 1

0
dt

1+t , t = ln y. (d)
∫ ∞
1

t dt
1+t3 , t = 1

y .

3.4. By a suitable change of variables, show the following integral identities:

(a)
∫∞
−∞

dt
(a2+t2)3/2 = 2

a2

∫ π/2

0 cos t dt. (b)
∫∞
0

dt
(1+t)2 =

∫ 1

0 dt.

3.5. If

g(x) =
∫ sin(πx)

x2−1

{cos[π(t + x)]} e−t4 sin2[(π/2) ln(tx2+1)] dt,

find g′(1).

3.6. Suppose that F (x) =
∫ cos x

0
ext2dt, G(x) =

∫ cos x

0
t2ext2dt, and H(x) =

G(x) − F ′(x). Find H(x) in terms of elementary functions. Show that
H(π/4) = eπ/8/

√
2.

3.7. Suppose that F (x) =
∫ sin x

0 ln(cos2 x + t2 + 1) dt, G(x) =
∫ sin x

0 (cos2 x +
t2 + 1)−1dt, and H(x) = F ′(x) + 2 sinx cosxG(x). Find H(x) in terms of
elementary functions. Show that H(π/3) = ln 2/2.

3.8. Evaluate the derivative of the following integrals with respect to x at
the given values of x:

(a)
∫ x

0
e−t2dt at x = 1. (b)

∫ x

−3
cos t dt at x = π.

(c)
∫√cos(x/3)

−∞ e−t2dt at x = π. (d)
∫ x2

0
cos (

√
s) ds at x = π.
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3.9. Find the numerical value of the derivative of the following two integrals
at x = 1:

(a)
∫ ln x

0 e−x(t2−2)dt. (b)
∫ x2+a−1

a sin
[

πxe−t2

2e−(x2+a−1)2

]
dt.

3.10. Write the derivatives with respect to x of the following integrals in
terms of other integrals. Do not try to evaluate the integrals.

(a)
∫ b

a
ln(1 + sx) ds. (b)

∫ b

a
dt

t2+x2 . (c)
∫ 1

0

√
x2 + a2 − 2ax cos t dt.

3.11. Differentiate
∫ ∞
−∞ dt/(z + t2) = π/

√
z with respect to z to show that

(a)
∫ ∞
−∞

dt
(1+t2)2

= π
2 . (b)

∫∞
−∞

dt
(1+t2)3

= 3π
8 .

3.12. Using the method of Example 3.2.2, find the following integrals:

(a)
∫ b

a t2 sin t dt. (b)
∫ b

a t3 sin t dt. (c)
∫ b

a t4 sin t dt.

(d)
∫ b

a t2 cos t dt. (e)
∫ b

a t3 cos t dt. (f)
∫ b

a t4 cos t dt.

In each case calculate the primitive of the integrand and verify your answer
by differentiating the primitive.

3.13. Find the integral

Γ(n + 1) =
∫ ∞

0

tne−tdt

by first evaluating the integral
∫ ∞

0

e−xtdt

and then differentiating the result n times, and setting x = 1 at the end. Can
you see why Γ(n + 1) is called the factorial function?

3.14. Sketch each of the following integrands to decide whether the approxi-
mation to the integral is good or not.

(a)
∫ 0.1

−0.1
dt

10+t2 ≈ 0.02. (b)
∫ 0.1

−0.1
dt

0.001+t2 ≈ 200.

(c)
∫ 0.1

−0.1
cos(5πx) dx ≈ 0.2. (d)

∫ 0.1

−0.1
cos πx

10 dx ≈ 0.2.

(e)
∫ 0.1

−0.1
e−100t2dt ≈ 0.2. (f)

∫ 0.1

−0.1
e−t2/100dt ≈ 0.2.

3.15. Show that if a function is even (odd), then its derivative is odd (even).

3.16. Use the result of Example 3.3.1 to show that
∫ ∞

−∞
e−xt2dt =

√
π

x
.
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3.17. By differentiating the electrostatic potential

Φ(r) =
∫∫

Ω

ke dq(r′)
|r − r′|

with respect to x, y, and z, and assuming that Ω is independent of x, y, and
z, show that the electric field

E(r) =
∫∫

Ω

ke dq(r′)
|r − r′|3 (r − r′)

can be written as
E = −∂Φ

∂x
êx − ∂Φ

∂y
êy − ∂Φ

∂z
êz.



Chapter 4

Integration: Applications

The preceding chapter introduced integration and dealt with its formal as-
pects. It also gave some general guidelines concerning the calculation and
manipulation of integrals, in particular how to reduce the process of multiple
integration to a number of single integrations. In this chapter, we apply the
formalism of the previous chapter to concrete examples.

4.1 Single Integrals

This section is devoted to the simple but important case of single integrals
with examples from mechanics, electrostatics and gravity, and magnetostatics.
Generally, we encounter problems which are defined and set up in a single
dimension leading to integrals that have a single variable to be integrated.

4.1.1 An Example from Mechanics

In our discussion of primitive, Equation (3.18) clearly shows that integration
can be interpreted as the inverse of differentiation. Thus, if we know the
functional form of the derivative of a quantity, we should be able to express
the quantity in terms of an integral.

Velocity is the derivative of displacement. So, we seek to write displace-
ment in terms of an integral of velocity. This is easily done as follows:1

dr
dt

= v(t) ⇒ dr
ds

= v(s) ⇒ dr = v(s) ds.

Integrating both sides from 0 to t, we get
∫ t

0

dr =
∫ t

0

v(s) ds ⇒ r(t) − r0 =
∫ t

0

v(s) ds, (4.1)

where r0 = r(0), and we used Equation (3.21).
1As cautioned below, we change t to s because we anticipate using t as the upper limit

of the integral.
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There is an alternative derivation of the last formula which relies directly
on the definition of integral. Since the velocity of the particle is changing,
we cannot find the displacement by simple multiplication with time. How-
ever, if we divide the time interval (from 0 to t) into N small subintervals,
and concentrate on the motion of the particle in each subinterval, then each
displacement can be approximated by the product of velocity and the small
time-interval, and the total displacement r(t) − r0 will be simply the sum of
all such displacements. This is summarized as

r(t) − r0 ≈
N∑

i=1

v(si)Δsi

which, in the limit of larger and larger N , gives

r(t) − r0 =
∫ t

0

v(s) ds.

Notice how careful we have been to avoid using the same variable for
integration as well as the limit of integration. This is a practice the reader
should constantly keep in mind. As a ruleimportant caution!

Box 4.1.1. (Caution!). Never use the same symbol for the variable of
an integral and its limits, or of an integral and of another integral of which
the first integral is the integrand.

The following example is a good illustration of the significance of the concept
of an integral and the rule in the Box above.

Example 4.1.1. In mechanics, Newton’s second law places special importance
on acceleration,2 and a knowledge of acceleration is normally sufficient to solve a
mechanical problem, i.e., find displacement as a function of time. A particular
example of this situation is when acceleration is known as a function of time, in
which case we can immediately find the velocity in exact analogy with Equation
(4.1). We thus have

v(t) − v0 =

∫ t

0

a(s) ds ⇒ v(t) = v0 +

∫ t

0

a(s) ds.

Notice how the argument of v is the same as the upper limit of integration. Now that
we have velocity, we can substitute it in Equation (4.1) to find the displacement.
This gives

r(t) − r0 =

∫ t

0

{

v0 +

∫ s

0

a(u) du

}

ds

or

r(t) = r0 + v0t +

∫ t

0

ds

∫ s

0

a(u) du.

2Because the second law of motion connects acceleration and the cause of motion, force.
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u

s
uline s = 

s = t

u = t

Figure 4.1: The region of integration for calculating position as a double integral.

In the double integral, it is understood that the u-integration is to be done first,
followed by the s-integration. As the last double integral suggests, the region of
integration, in the us-plane, is a right triangle bounded by the vertical axis (the s-
axis, or u = 0), the line u = s, and the horizontal line s = t as shown in Figure 4.1.
It is convenient, in this case, to change the order of integration. The lower limit of given a definite

double integral,
one can
reconstruct the
region of
integration in a
plane.

the s-integral—the first integration—is u and the upper limit is t. Once this integral
is done, the u-integral goes from 0 to t, as can easily be verified. We, therefore, have

r(t) = r0 + v0t +

∫ t

0

du

∫ t

u

a(u) ds = r0 + v0t +

∫ t

0

a(u) du

∫ t

u

ds (4.2)

= r0 + v0t +

∫ t

0

a(u)(t − u) du = r0 + v0t + t

∫ t

0

a(u) du −
∫ t

0

ua(u) du.

It is instructive for the reader to show that the first derivative of this expression
gives the velocity and the second derivative the acceleration. �

Historical Notes
Two men are credited with the invention of calculus, Newton and Leibniz. Of course,
as we have seen, the “invention” of calculus was a long process involving many gen-
erations of mathematicians. Nevertheless, Newton and Leibniz made great contri-
butions to the subject and gave it a prominent role in the subsequent evolution of
mathematical thought.

Gottfried Wilhelm Leibniz studied law and, after defending a thesis in logic,
received a Bachelor of Philosophy degree. He wrote a second thesis on a universal
method of reasoning in 1666 which completed his work for a doctorate in philoso-
phy at the University of Altdorf and qualified him for a professorship. During the
years 1670 and 1671, Leibniz wrote his first papers on mechanics and produced his
calculating machine.

Leibniz was also involved in the politics of his time. In March, 1672, he went to
Paris on a political mission as an ambassador of the Elector of Mainz. While in Paris,
he made contact with notable mathematicians and scientists including Huygens. This
stirred up his interest in mathematics, a subject that he knew nothing about prior
to 1672. In 1673 he went to London and met other scientists and mathematicians
including the secretary of the Royal Society of London.

Gottfried Wilhelm
Leibniz 1646–1716

While making his living as a diplomat, he delved further into mathematics and
read Descartes and Pascal. In 1676 Leibniz was appointed librarian and councilor to
the Elector of Hanover. Twenty-four years later the Elector of Brandenburg invited
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Leibniz to work for him in Berlin. While involved in many political maneuvers,
including the succession of George Ludwig of Hanover to the English throne, Leibniz
worked in many fields and his side activities encompassed an enormous range. He
died in 1716, undeservedly neglected.

In addition to being a diplomat, Leibniz was a philosopher, lawyer, historian,
and pioneer geologist. He did important work in logic, mathematics, optics, me-
chanics, hydrostatics, nautical science, and calculating machines. Although law was
his profession, his contributions to mathematics and philosophy are among the best.
He tried endlessly to reconcile the Catholic and Protestant faiths. He founded the
Berlin Academy in 1700. He criticized the universities for being “monkish” and
charged that they possessed learning but no judgment and were absorbed in trifles.
Instead he urged that true knowledge—mathematics, physics, chemistry, anatomy,
botany, zoology, history, and geography be pursued. He favored the German lan-
guage over Latin because Latin was tied to the older, useless thought. Men mask
their ignorance, he said, by using the Latin language to impress people.

His numerous mathematical notes on differentiation and integration is full of
novel ideas. His notations were quite ingenious: He introduced the notation dy/dx
for the derivative and

∫
for the integral. He recognized the operations of integration

and differentiation as the inverse of one another.

4.1.2 Examples from Electrostatics and Gravity

In electrostatics or magnetostatics, one is sometimes interested in calculating
the electric or magnetic field of a linear charge or current distribution. In
electrostatics, one can imagine sprinkling electric charges on a thin piece of
string and asking for the electric field of the charge distribution. In magne-
tostatics, one flows an electric current through a thin wire and asks for the
resulting magnetic field. In general, the string or the wire, being a curve in
space, has a parametric equation given, in Cartesian coordinates say, by(
f(t), g(t), h(t)

)
, where f , g, and h are known functions of the parameter t.

The problems of gravity are entirely analogous to those of electrostatics. The
master equation of electrostatocs is Equation (3.3) which we reproduce here
for convenience:

E =
∫∫

Ω

kedq(r′)
|r − r′|3 (r − r′), Φ =

∫∫

Ω

kedq(r′)
|r − r′| . (4.3)

Cartesian Coordinates

Let us assume that Cartesian coordinates are suitable for the problem, and we
want to calculate the electrostatic field at a point P with coordinates (x, y, z)
as shown in Figure 4.2. We reduce the integrals in Equation (4.3) to single
integrals by calculating their various parts entirely in terms of t. First we
note that the source point P ′ lies on the curve, and therefore, its coordinates
(x′, y′, z′) are functions of t. Since we are using Cartesian coordinates, the
components of the position vector of P ′ are the same as the source point’s
coordinates. Therefore, r′ = x′êx + y′êy + z′êz = 〈x′, y′, z′〉.
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P
dl

rr'

x

y

z

Figure 4.2: Electrostatic field of a general linear charge distribution.

The element of charge

dq(r′) = λ(r′) dl(r′) = λ(r′)
√

(dx′)2 + (dy′)2 + (dz′)2 (4.4)

turns into a function of t (times dt) after the substitutions:

x′ = f(t), y′ = g(t), z′ = h(t),
dx′ = f ′(t)dt, dy′ = g′(t)dt, dz′ = h′(t)dt.

Similarly,

r − r′ = xêx + yêy + zêz − x′êx − y′êy − z′êz

= (x − x′) êx + (y − y′) êy + (z − z′) êz (4.5)

and

|r − r′| =
√

(x − x′)2 + (y − y′)2 + (z − z′)2,

|r − r′|3 =
[
(x − x′)2 + (y − y′)2 + (y − y′)2

]3/2

. (4.6)

Substituting all the above in Equation (4.3) yields an integral in t for E and
another integral in t for Φ. The limits of these integrals are determined from
the parametric equation of the curve describing the linear charge distribution.

As a general rule, in order to find the components of the field along a unit
vector, we use Box 1.1.2, i.e., we take the dot product of the field with that
unit vector. This involves taking the dot product of the integrand with the
unit vector. In the case of Cartesian unit vectors, this procedure simply picks
out the integral multiplying one of the unit vectors. For other coordinate
systems, this is not the case, as we shall see shortly.

Box 4.1.2. Although the geometry of the source (charge distribution) may
dictate a particular coordinate system, the components of the field can be
calculated in any coordinate system desired.
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Thus, by multiplying the integrand by êρ, êϕ, and êz and expressing the dot
products êρ · êx, êϕ · êx, etc., in terms of Cartesian coordinates, we can obtain
Eρ, Eϕ, and Ez as integrals over t. A similar derivation gives the electric
potential Φ as an integral over t. Although a formula can be obtained for the
components of the electric field for a general curve (see Problem 4.3), it is
best to learn the formalism by an example.

Example 4.1.2. The simplest example of the general discussion above is a thin
rod of length L that is uniformly charged with constant linear density λ. We want
to find the electric field and the electrostatic potential at an arbitrary point P in
space, as shown in Figure 4.3(a).

As discussed at the beginning of this section, it pays to choose one’s coordinates
wisely. Clearly, the rod defines an axis naturally. So, let us choose our z-axis to lie
along the rod. Once this is done, we are free to move the origin up and down, and
orient the x- and y-axes. Let us use this freedom to put the field (or observation)
point P on the x-axis. We then have a situation depicted in Figure 4.3(b).

To continue, we need the parametric equation of the rod. Clearly, the x′ and
y′ parts have the (unique) “parameterization” x′ = 0 and y′ = 0. There are many
ways to parameterize the z′ part of the curve. However, in situations involving only
one coordinate, it is most natural to set that coordinate equal to the parameter t.
So, we choose the following simple parameterization:

x′ = 0, y′ = 0, z′ = t, a ≤ t ≤ a + L ≡ b.

Substituting this and r = xêx in Equations (4.5) and (4.6) yields

r − r′ = xêx − têz,

as well as |r − r′| =
√

x2 + t2 and |r − r′|3 = (x2 + t2)3/2.
Putting all this in Equation (4.3) yields

E(x, y, z) =

∫ b

a

keλdt

(x2 + t2)3/2
(xêx − têz) dt (4.7)

P

P

Ez

Ex
E

x

y

za

L

(a) (b)

Figure 4.3: Electrostatic field of a uniformly charged rod of length L. (a) The point

P and the rod, and (b) a convenient Cartesian coordinate system for the calculation of

the field. The figure assumes a negative λ.
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To find the components of the field in any coordinate system, dot-multiply Equation
(4.7) by the unit vectors of that coordinate system. For Cartesian components,
Ex = E · êx, which picks the term multiplying êx in (4.7); Ey = E · êy , which is
zero; Ez = E · êz, which picks the term multiplying êz in (4.7). Thus,

Ex = keλx

∫ b

a

dt

(x2 + t2)3/2
=

keλ

x

(
b√

x2 + b2
− a√

x2 + a2

)

,

Ey = 0, (4.8)

Ez = −keλ

∫ b

a

t dt

(x2 + t2)3/2
= −keλ

(
1√

x2 + a2
− 1√

x2 + b2

)

.

It is instructive to consider special cases of these formulas, such as when a = −L/2
and b = +L/2 (especially when L is large compared to x), which may be more
familiar to the reader. We leave such considerations as exercises.

The electrostatic potential can be obtained similarly. From Equation (4.3), we
get

Φ(x, y, z) =

∫ b

a

keλ

(x2 + t2)1/2
dt = ke λ ln(t +

√
x2 + t2)

∣
∣
∣
b

a

= keλ ln

(
b +

√
x2 + b2

a +
√

x2 + a2

)

. �

Cylindrical Coordinates

For cylindrical coordinates the components of the position vector of P ′ are caution!
coordinates and
components are
not the same.

not the same as the coordinates of P ′. In fact, r′ = ρ′êρ′ + z′êz .
Various parts of the “master” equation (4.3) [or (3.3)] can be calculated

as before—this time, of course, in cylindrical coordinates—and the results
substituted in it to arrive at the expression for E entirely in terms of t. Thus

dq(r′) = λ(r′) dl(r′) = λ(r′)
√

(dρ′)2 + ρ′2(dϕ′)2 + (dz′)2, (4.9)

where use has been made of Equation (2.29). Similarly, we have

r − r′ = ρêρ + zêz − ρ′êρ′ − z′êz = ρêρ − ρ′êρ′ + (z − z′)êz (4.10)

which leads to the absolute value

|r − r′| =
√

(r − r′) · (r − r′)

=
√

[ρêρ − ρ′êρ′ + (z − z′)êz] · [ρêρ − ρ′êρ′ + (z − z′)êz].

Carrying out the dot product and keeping in mind that êρ and êρ′ are neither
the same nor perpendicular to each other, but make the two different angles
ϕ and ϕ′ with the x-axis, we obtain

|r − r′| =
√

ρ2 + ρ′2 − 2ρρ′ cos
(
ϕ − ϕ′

)
+ (z − z′)2,

|r − r′|3 =
{
ρ2 + ρ′2 − 2ρρ′ cos

(
ϕ − ϕ′) + (z − z′)2

}3/2
.
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Putting everything together, we obtain

E =
∫∫

Ω

keλ(r′)
√

(dρ′)2 + ρ′2(dϕ′)2 + (dz′)2
{
ρ2 + ρ′2 − 2ρρ′ cos

(
ϕ − ϕ′

)
+ (z − z′)2

}3/2

×
(
ρêρ − ρ′êρ′ + (z − z′)êz

)
. (4.11)

To find components in any coordinate system, use Box 1.1.2 and take the dot
product of Equation (4.11) with the appropriate unit vectors. The electro-
static potential is derived in a similar way.

Example 4.1.3. Let us reconsider the example of a rod. Obviously we should
choose our z-axis along the rod. We further move the origin so that P ends up in the
xy-plane (see Figure 4.4). This will reduce r to ρ êρ. The simplest parameterization
of the rod is

ρ′ = 0, z′ = t, a ≤ t ≤ a + L ≡ b.

We note that ϕ′ is undefined. This poses no problem because, as will be seen below,
it will drop out of the equations. Putting these in Equation (4.11) we obtain

E = keλ

∫∫

Ω

√
(0)2 + (0)(dϕ′)2 + (dz′)2

{
ρ2 + (0)2 − 2ρ(0) cos

(
ϕ − ϕ′

)
+ (0 − z′)2

}3/2

×
[
ρêρ + (0)êρ + (0 − z′)êz

]
(4.12)

= keλ

∫ b

a

dt

(ρ2 + t2)3/2

(
ρêρ − têz

)

To find the components of the electric field, take the dot product of one of the
unit vectors of a coordinate system and Equation (4.12). For the ρ component, we
have

Eρ = E · êρ = keλ

∫ b

a

dt

(ρ2 + t2)3/2

(
ρêρ − têz

)
· êρ

= keλ

∫ b

a

dt

(ρ2 + t2)3/2

(
ρ êρ · êρ
︸ ︷︷ ︸

=1

−t êz · êρ
︸ ︷︷ ︸

=0

)
(4.13)

= keλρ

∫ b

a

dt

(ρ2 + t2)3/2
=

keλ

ρ

{
b

√
ρ2 + b2

− a
√

ρ2 + a2

}

;

x

y

z

Pρ

Ez

Eρ

Ea

L

Figure 4.4: Electrostatic field of a uniformly charged rod of length L in cylindrical

coordinates. The figure assumes a negative λ.
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for the ϕ component, we obtin

Eϕ = E · êϕ = keλ

∫ b

a

dt

(ρ2 + t2)3/2

(
ρêρ − têz

)
· êϕ

= keλ

∫ b

a

dt

(ρ2 + t2)3/2

(
ρ êρ · êϕ
︸ ︷︷ ︸

=0

−t êz · êϕ
︸ ︷︷ ︸

=0

)
= 0. (4.14)

Note how the dependence on ϕ has completely disappeared because of the azimuthal
symmetry of the rod. Finally the z component is

Ez = E · êz = keλ

∫ b

a

dt

(ρ2 + t2)3/2

(
ρêρ − têz

)
· êz

= keλ

∫ b

a

dt

(ρ2 + t2)3/2

(
ρ êρ · êz
︸ ︷︷ ︸

=0

−t êz · êz︸ ︷︷ ︸
=1

)
(4.15)

= −keλ

∫ b

a

t dt

(ρ2 + t2)3/2
= keλ

{
1

√
ρ2 + b2

− 1
√

ρ2 + a2

}

The electrostatic potential Φ can be calculated similarly.
We can also find the components in Cartesian coordinates by dot-multiplying

Equation (4.12) with Cartesian unit vectors. For example,

Ex = E · êx = keλ

∫ b

a

dt

(ρ2 + t2)3/2

(
ρêρ − têz

)
· êx

= keλ

∫ b

a

dt

(ρ2 + t2)3/2

(
ρ êρ · êx
︸ ︷︷ ︸
=cos ϕ

−t êz · êx︸ ︷︷ ︸
=0

)
,

= keλρ cos ϕ

∫ b

a

dt

(ρ2 + t2)3/2
=

keλ cos ϕ

ρ

{
b

√
ρ2 + b2

− a
√

ρ2 + a2

}

Ey will be the same except that instead of cos ϕ it will have sin ϕ, and Ez will
be identical to the Ez of Equation (4.15). When ϕ = 0, we recover the result of
Example 4.1.2, because ρ = x when ϕ = 0. �

All the foregoing derivations in electrostatics can be applied almost ver-
batim to the theory of gravitation. The only difference is the appearance of
G instead of ke and the interpretation of λ as linear mass density.

4.1.3 Examples from Magnetostatics

Probably the most realistic physical application of single integrals appears in
the calculation of magnetic fields of currents in (thin) wires. Before looking
at examples, let us briefly review magnetism.

We already mentioned in Chapter 1 that the magnetic field of N (slowly)
moving point charges is given by3

B =
N∑

k=1

kmqkvk × (r − rk)
| r− rk|3

. (4.16)

3“Slow” compared to the speed of light which is 3 × 108 m/s.
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vj

Δ qj

(a) (b)

Figure 4.5: Magnetic field of a moving charge distribution. (a) All charges in motion

with a “sample” singled out. The vectors show the velocities of some of the charges in

the sample. (b) The sample is described by a charge Δqj and an average velocity vj .

In a typical situation, N is of the order of 1025 or more. So, instead of
adding all the terms individually, we lump together those that are close to
one another, i.e., in a small region, and subsequently describe the situation
by a current density (see Figure 4.5). This boils down to writing Equation
(4.16) as

B ≈
M∑

j=1

kmΔqjvj × (r − rj)
|r − rj |3

,

where Δqj is the amount of charge in the jth region, vj is the average velocity
of all charges in the jth region, and rj is the position vector of the “center”
of the jth region. We can rewrite the equation above as

B ≈
M∑

j=1

km [Δq(rj)v(rj)] × (r − rj)
|r − rj |3

.

In the limit that M → ∞ and Δq → 0, we obtainBiot–Savart law

Box 4.1.3. The magnetic field of a moving charge distribution is given
by

B(r) = km

∫∫

Ω

dq(r′)v(r′) × (r − r′)
|r − r′|3 . (4.17)

This is the most general form of the Biot–Savart law.

The product of the element of charge and velocity appearing in the equa-
tion is related to the various forms of current we may encounter. These are
described below:

volume current density: dq(r′)v(r′) = ρ(r′)v(r′)
︸ ︷︷ ︸

≡J(r′)

dV (r′) ≡ J(r′) dV (r′),
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surface current density: dq(r′)v(r′) = σ(r′)v(r′)
︸ ︷︷ ︸

≡j(r′)

da(r′) ≡ j(r′) da(r′),

linear current density: dq(r′)v(r′) = λ(r′)v(r′)
︸ ︷︷ ︸

≡I(r′)

dl(r′) ≡ I(r′) dl(r′).

The volume current density J(r′) describes a situation in which charges are
free to move in all directions. The surface current density j(r′) is used when
charges are confined to a surface. The most familiar current density is the
linear current density which is usually rewritten as

I(r′) dl(r′) = Id�l(r′) = Idr′.

This follows from the fact that I(r′) is in the same direction as the velocity
(at r′) which, since charges are confined to a curve (the wire), has the same
direction as the (infinitesimal) tangent displacement along the wire, namely
dr′.

We are particularly interested in the linear case as shown in Figure 4.6.
Thus, assuming that the current I is constant—it has to be due to charge Biot–Savart law

for circuitsconservation—we obtain

Box 4.1.4. The general expression for the magnetic field of a circuit is
given by

B(r) = kmI

∮
dr′ × (r − r′)
| r− r′|3 , (4.18)

where the circle on the integral sign implies a closed loop.

This equation is independent of any coordinate systems. We now specialize
to Cartesian and cylindrical systems.

P

d l

r

x

y

z

dB

′r

Figure 4.6: A general current filament described parametrically and used to calculate

the magnetic field in Cartesian coordinates.
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Cartesian Coordinates

To obtain the magnetic field we substitute

r = xêx + yêy + zêz,

r′ = x′êx + y′êy + z′êz,

dr′ = êxdx′ + êydy′ + êzdz′,

r− r′ =
(
x − x′)êx +

(
y − y′)êy +

(
z − z′

)
êz,

|r − r′|3 =
[(

x − x′)2 +
(
y − y′)2 +

(
z − z′

)2
]3/2

in Equation (4.18). For the cross product, we need to expand the determinant

dr′ × (r − r′) = det

⎛

⎝
êx êy êz

dx′ dy′ dz′

x − x′ y − y′ z − z′

⎞

⎠ ,

using Figure 1.5.

Cylindrical Coordinates

The cylindrical coordinates can be handled in exact analogy with the Carte-
sian case. Using Equations (1.19) and (2.28), we have

r = ρ êρ + zêz , r′ = ρ′êρ′ + z′êz,

r− r′ = ρ êρ − ρ′êρ′ + (z − z′)êz , (4.19)
dr′ = êρ′dρ′ + êϕ′ρ′dϕ′ + êzdz′,

|r − r′|3 =
{
ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′) + (z − z′)2

}3/2
.

The cross product cannot be done using determinants because not everything
is written in terms of the three mutually perpendicular unit vectors: êρ is
different from êρ′ but not perpendicular to it. In fact, this difference is the
cause for the appearance of the cosine term in the last equation of (4.19). To
find the cross product, we simply multiply the two terms and use the following
relations, most of which should be familiar, and the unfamiliar ones can be
obtained using Figure 4.7:

êρ′ × êρ = êz sin(ϕ − ϕ′), êρ′ × êz = −êϕ′ ,

êϕ′ × êρ = −êz cos(ϕ − ϕ′), êϕ′ × êρ′ = −êz,

êϕ′ × êz = êρ′ , êz × êρ = êϕ, (4.20)
êz × êρ′ = êϕ′ .

The cross product can be written as

dr′ × (r − r′) = êz

[
ρ′2dϕ′ + ρ sin(ϕ − ϕ′) dρ′ − ρρ′ cos(ϕ − ϕ′) dϕ′]

− êϕ′
[
(z − z′) dρ′ + ρ′dz′

]
(4.21)

+ êϕρ dz′ + êρ′ρ′(z − z′) dϕ′.
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z

x

y

ê
ρê

êϕê

ê
ρ'

ϕ'

ϕ'

ϕ − ϕ'

Figure 4.7: The orientation of some of the cylindrical unit vectors drawn for the

calculation of cross products.

To find the components of the magnetic field, we substitute this in
Equation (4.18), take the dot product of cylindrical unit vectors with the
integrand, and use

êρ · êρ′ = cos(ϕ′ − ϕ), êρ′ · êϕ = sin(ϕ′ − ϕ),
êρ · êϕ′ = − sin(ϕ′ − ϕ), êϕ · êϕ′ = cos(ϕ′ − ϕ), (4.22)

as well as the other more obvious dot products of unit vectors.
We can derive a general expression for the components of the electric field

in terms of the parametric functions of a general curve (see Problem 4.6).
However, a simple example will also illustrate the general procedure without
entangling the formulas with complicated expressions.

Example 4.1.4. A simple application of the foregoing general formalism is to
calculate the magnetic field of a circular loop of radius a. The choice of the axes
and origin of Figure 4.8 yields the following parameterization of the loop:

ρ′ = a, dρ′ = 0; ϕ′ = t, dϕ′ = dt; z′ = 0, dz′ = 0, 0 ≤ t ≤ 2π.

Furthermore, because of the azimuthal symmetry of the current distribution, the
final answer will be independent of ϕ. Thus, we can set that equal to zero. Inserting
this information in Equations (4.19) and (4.21) gives

x

y

z

I

r

ρ
P

a

z

+−

Figure 4.8: The geometry of the circular loop of current.
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|r − r′|3 =
[
ρ2 + a2 − 2ρa cos(t) + z2

]3/2

dr′ × (r− r′) = êz

[
a2dt − ρa cos(t) dt

]
+ êρ′az dt.

The magnetic field of Equation (4.18) can now be written as

B = kmI

∫ 2π

0

êz

[
a2 − ρa cos(t)

]
+ êρ′az

[
ρ2 + a2 − 2ρa cos(t) + z2

]3/2
dt (4.23)

Finally, to find the cylindrical components, dot-multiply (4.23) with the cylin-
drical unit vectors and use Equation (4.22) with ϕ = 0 (and ϕ′ = t):

Bρ = B · êρ = kmIa

∫ 2π

0

[
êz

(
a − ρ cos t

)
+ êρ′z

]
· êρ

(
ρ2 + a2 − 2ρa cos t + z2

)3/2
dt

= kmIa

∫ 2π

0

=0
︷ ︸︸ ︷
êz · êρ

(
a − ρ cos t

)
+

=cos t
︷ ︸︸ ︷
êρ′ · êρ z

(
ρ2 + a2 − 2ρa cos t + z2

)3/2
dt (4.24)

= kmIaz

∫ 2π

0

cos t dt

(ρ2 + a2 − 2ρa cos t + z2)3/2
,

Similarly,

Bϕ = B · êϕ = kmIa

∫ 2π

0

=0
︷ ︸︸ ︷
êz · êϕ

(
a − ρ cos t

)
+

=sin t
︷ ︸︸ ︷
êρ′ · êϕ z

(
ρ2 + a2 − 2ρa cos t + z2

)3/2
dt

= kmIaz

∫ 2π

0

sin t dt

(ρ2 + a2 − 2ρa cos t + z2)3/2
(4.25)

= −kmIz

ρ
(ρ2 + a2 − 2aρ cos t + z2)−1/2

∣
∣
∣
2π

0
= 0,

and

Bz = B · êz = kmIa

∫ 2π

0

=1
︷ ︸︸ ︷
êz · êz

(
a − ρ cos t

)
+

=0
︷ ︸︸ ︷
êρ′ · êz z

(
ρ2 + a2 − 2ρa cos t + z2

)3/2
dt

= kmIa

∫ 2π

0

(a − ρ cos t) dt

(ρ2 + a2 − 2ρa cos t + z2)3/2
. (4.26)

Once again the azimuthal symmetry prohibits a ϕ-component for the field. These
integrals cannot be evaluated analytically, but if we specialize to the case where P
is on the z-axis (i.e., when ρ = 0), the integrals become trivial. In fact, we have

Bρ = kmIaz

∫ 2π

0

cos t dt

(a2 + z2)3/2
= 0,

Bϕ = 0,

Bz = −kmIa

∫ 2π

0

−a dt

(a2 + z2)3/2
=

2πkmIa2

(a2 + z2)3/2
.

�
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Historical Notes

After graduating from the college of Louis-le-Grand in Paris and subsequently spend-
ing some time in the army, Jean-Baptiste Biot entered the Ecole Polytechnique
in Paris where Monge (a noted mathematician of the time and an expert in dif-
ferential geometry) realized his potential. Because of his political views and his
participation in an attempted insurrection by the royalists against the Convention,
Biot was captured by government forces and taken prisoner. Had it not been for

Jean-Baptiste Biot
1774–1862

Monge’s intervention and plead for his release, Biot’s promising career might have
ended.

Biot became Professor of Mathematics at the Ecole Centrale at Beauvais in
1797, and three years later joined the faculty of the Collège de France as Professor
of Mathematical Physics an appointment which was due to the influence of Laplace.

Biot studied a wide range of mathematical topics, mostly on the applied math-
ematics side. He made advances in astronomy, elasticity, heat, and optics while, in
pure mathematics, he also did important work in geometry. He collaborated with
Arago on the refractive properties of gases.

Biot’s most notable contribution was done in collaboration with Felix Savart
(1791–1841), who was an acoustics expert and developed the Savart disk, a device
which produced a sound wave of known frequency, using a rotating cog wheel as a
measuring device.

Biot and Savart jointly discovered that the intensity of the magnetic field set up
by a current flowing through a wire varies inversely with the distance from the wire.
This is a special case of what is now known as Biot–Savart’s Law and is fundamental
to modern electromagnetic theory.

For his work on the polarization of light passing through chemical solutions Biot
was awarded the Rumford Medal of the Royal Society. He tried twice for the post
of Secretary to the Académie des Sciences but lost out in 1822 to Fourier for this
post. When Fourier died he applied again only to lose to Arago.

4.2 Applications: Double Integrals

Whenever areas are sources of physical quantities such as fields, or interactions
take place on areas, such as pressure applied on a surface, double integrals
are used. We can be as general as in the previous section and consider a gen-
eral surface given by a parametric equation in two variables (instead of one
used for curves). However, since the geometry of surfaces is much more com-
plicated, and much less illuminating, we shall confine our discussion to very
simple geometries which require trivial and obvious parameterization. More
specifically, we restrict ourselves to primary surfaces of the three coordinate
systems.

4.2.1 Cartesian Coordinates

Since we are restricting ourselves to primary surfaces, our choice for Cartesian
coordinates is narrowed down to planes, and if we want the boundaries of the
plane to be simple in Cartesian coordinates, we are limited to just a rectangle.
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Example 4.2.1. We start with an example from electrostatics. A rectangular flat
surface of sides a and b is charged uniformly with surface charge density σ, and we
are interested in the electric field at a general point P in space. This is given by

E =

∫∫

Ω

kedq(r′)

|r − r′|3 (r− r′)

with r = xêx +yêy +zêz = 〈x, y, z〉 and r′ = x′êx +y′êy = 〈x′, y′, 0〉, where we have
chosen the plane of the rectangle to be the xy-plane. If we choose the center of the
rectangle to be our origin, our z-axis perpendicular to the plane of the rectangle,
and our x-and y-axes parallel to the sides as shown in Figure 4.9, then the element
of area coincides with the third primary element, and we can write

dq(r′) = σ(r′) da(r′) = σ dx′ dy′.

We also have

r − r′ = (x − x′)êx + (y − y′)êy + zêz = 〈x − x′, y − y′, z〉,

|r − r′| =
√

(x − x′)2 + (y − y′)2 + z2,

|r − r′|3 =
{
(x − x′)2 + (y − y′)2 + z2

}3/2
.

Inserting all these relations in the expression for E, we obtain

E =

∫∫

Ω

keσ dx′ dy′

{(x − x′)2 + (y − y′)2 + z2}3/2

[
(x − x′)êx + (y − y′)êy + zêz

]

with componentselectric field of a
uniformly charged
rectangle Ex = keσ

∫∫

Ω

(x − x′) dx′ dy′

{(x − x′)2 + (y − y′)2 + z2}3/2
,

Ey = keσ

∫∫

Ω

(y − y′) dx′ dy′

{(x − x′)2 + (y − y′)2 + z2}3/2
,

Ez = keσz

∫∫

Ω

dx′ dy′

{(x − x′)2 + (y − y′)2 + z2}3/2
,

where everything independent of the variables of integration, x′ and y′, is taken out
of the integrals.

We have already discussed a general procedure for evaluating multiple integrals
by reducing them to lower-dimensional integrals. We follow the same procedure
here: The y′ integration has the lower limit −b/2 and the upper limit +b/2, both
independent of x′.4 Similarly, the x′ integration has −a/2 and a/2 as its limits.
This means that the components can be written as

Ex = keσ

∫ a/2

−a/2

(x − x′) dx′
∫ b/2

−b/2

dy′

{(x − x′)2 + (y − y′)2 + z2}3/2
,

Ey = keσ

∫ a/2

−a/2

dx′
∫ b/2

−b/2

(y − y′) dy′

{(x − x′)2 + (y − y′)2 + z2}3/2
,

4The independence of the limits is one reason that Cartesian coordinates are useful for
rectangular regions of integration. If we had chosen cylindrical coordinates, then the limits
of integration, the lines y′ = −b/2 and y′ = b/2, would have had to be written in cylindrical
coordinates, giving, for the upper limit, for example, ρ′ sin ϕ′ = b/2 or ρ′ = b/(2 sin ϕ′).
Thus a ρ′ integration with limits dependent on ϕ′ would have been involved.
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Figure 4.9: Electrostatic field of a flat rectangular charge distribution.

Ez = keσz

∫ a/2

−a/2

dx′
∫ b/2

−b/2

dy′

{(x − x′)2 + (y − y′)2 + z2}3/2
.

Note that the x′ integration cannot be done until after the y′ integration, because
the latter has an x′-dependent integrand. �

Having exhausted the (simple) possibilities for electrostatics (and gravity,
since the two are almost identical), we now turn to magnetostatics.

Example 4.2.2. Approximate the belt of a Van de Graff machine with an isolated
moving rectangle having sides a and b, and velocity v along the side b as shown in
Figure 4.10. Furthermore, assume that the charges are uniformly distributed on the
belt with surface charge density σ. We want to find the magnetic field of the belt
at a general point P in space. Let us choose the positive y-direction to be that of
the velocity. Then, Equation (4.17) becomes

B(r) = km

∫∫

Ω

σdav× (r − r′)

|r − r′|3 .

The geometry of this example is identical to that of Example 4.2.1. Therefore, we
can immediately write the integral for B: magnetic field of a

charged
rectangular
moving beltB(r) = km

∫∫

Ω

σdx′dy′vêy × [(x − x′)êx + (y − y′)êy + zêz]

{(x − x′)2 + (y − y′)2 + z2}3/2
,

from which the components of the magnetic field are easily calculated:

Bx = kmσvz

∫ a/2

−a/2

dx′
∫ b/2

−b/2

dy′

{(x − x′)2 + (y − y′)2 + z2}3/2
,

By = 0, (4.27)

Bz = −kmσv

∫ a/2

−a/2

(x − x′) dx′
∫ b/2

−b/2

dy′

{(x − x′)2 + (y − y′)2 + z2}3/2
. �

P

y

z

x

r '

Figure 4.10: A rectangular distribution of moving charges whose magnetic field can

be calculated using Cartesian coordinates.
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4.2.2 Cylindrical Coordinates

The cylindrical system has two types of primary surface: planes and cylinders.
Although we considered planes in the previous subsection, we shall reconsider
them here because the third primary surface, that perpendicular to the z-axis,
gives us the possibility of solving planar problems with nonrectangular regions
of integration. Let us start with such a problem.

Example 4.2.3. In this example we want to calculate the gravitational field of
a uniform surface mass distribution of density σm which is a segment of a planar
annular region with inner radius a and outer radius b, and whose sides make an
angle of α as shown in Figure 4.11(a). Let us choose our origin to coincide with
the center of the annular region, our x-axis to be along one of the sides, and the
xy-plane to be the plane of the mass distribution [see Figure 4.11(b)].

Recall that in cylindrical coordinates, the components of the position vector of
P ′ are not the same as the source point’s coordinates. In fact, we have

r′ = ρ′êρ′ , r = ρêρ + zêz,

r − r′ = ρêρ + zêz − ρ′êρ′ ,

|r − r′|3 = (ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + z2)3/2,

where in the last line we have made the simplification that the field point is in the
xz-plane, so that ϕ = 0; otherwise, we would have cos(ϕ−ϕ′) instead of cos ϕ′. The
element of mass is given by

dm(r′) = σm da(r′) = σm(dρ′)(ρ′dϕ′) = σmρ′dρ′dϕ′.

Thus, the gravitational field is

g = −
∫∫

Ω

Gdm(r′)

|r − r′|3 (r− r′),

= −Gσm

∫ b

a

ρ′ dρ′
∫ α

0

dϕ′(ρêρ + zêz − ρ′êρ′)

(ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + z2)3/2
. (4.28)

To find the components, we take the dot product of this integral with the cylindrical

x

y

z

(a) (b)

α

′ρ ′ϕd

d ′ρ′ϕ
a

b ′r

Figure 4.11: The annular region whose gravitational field is being calculated. The

position vector of the source point and the lengths of the sides of the element of area

are also shown.
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unit vectors. The result will then be

gρ = −Gσm

∫ b

a

ρ′ dρ′
∫ α

0

(ρ − ρ′ cos ϕ′) dϕ′

(ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + z2)3/2
,

gϕ = Gσm

∫ b

a

ρ′ dρ′
∫ α

0

ρ′ sin ϕ′ dϕ′

(ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + z2)3/2
, (4.29)

gz = −Gσmz

∫ b

a

ρ′ dρ′
∫ α

0

dϕ′

(ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + z2)3/2
.

Let us look at some special cases of this. For a complete annular region, we
simply replace α with 2π:

gρ = −Gσm

∫ b

a

ρ′ dρ′
∫ 2π

0

(ρ − ρ′ cos ϕ′) dϕ′

(ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + z2)3/2
,

gϕ = Gσm

∫ b

a

ρ′ dρ′
∫ 2π

0

ρ′ sin ϕ′ dϕ′

(ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + z2)3/2
= 0, (4.30)

gz = −Gσmz

∫ b

a

ρ′ dρ′
∫ 2π

0

dϕ′

(ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + z2)3/2
.

As expected, the ϕ-component has disappeared.
We can further simplify the geometry by locating the field point on the z-axis.

Then, ρ = 0 and we have

gρ = Gσm

∫ b

a

ρ′2 dρ′

(ρ′2 + z2)3/2

∫ 2π

0

cos ϕ′ dϕ′ = 0,

gϕ = 0,

gz = −Gσmz

∫ b

a

ρ′ dρ′

(ρ′2 + z2)3/2

∫ 2π

0

dϕ′ = −2πGσmz

∫ b

a

ρ′ dρ′

(ρ′2 + z2)3/2

= −2πGσmz

{
1√

a2 + z2
− 1√

b2 + z2

}

.

If we take the limit a → 0 and b → ∞, we obtain

g = −2πGσm
z√
z2

êz = −2πGσm
z

|z| êz,

where we have used Box 4.2.1 (see below). Now note that z/|z| = ±1 depending
on the sign of z. When z > 0, we get z/|z|êz = êz which is the unit normal to the
surface. When z < 0, we get z/|z|êz = −êz which is again the unit normal to (the
other side of) the surface. Denoting the unit normal by ên, we can write

g = −2πGσmên.

The electrostatic analogue of this is obtained by substituting −ke = −1/4πε0
for G. This yields

E =
σq

2ε0
ên

which is the field of an infinite sheet of charge with which the reader is familiar.
Note that while g always points toward the sheet (opposite to ên, because σm is
always positive), the direction of E is determined by the sign of σq. �
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4.2.3 Spherical Coordinates

One of the primary surfaces of a spherical coordinate system is a sphere, and
since there are a lot of spherical objects around, it is useful to gain experience
in calculations involving spheres.

In the following, we shall be taking square roots of functions. Care needs
to be taken when doing so:

Box 4.2.1. For any real-valued quantity A,
√

A2 ≡ |A|, i.e., the square
root of the square of a quantity is the absolute value of that quantity.

Failure to keep this in mind will result in incorrect conclusions, as we shall
see below.

Example 4.2.4. In this example we are interested in the gravitational field at a
general point P of a spherical cap, i.e., a segment of a spherical shell of radius a and
uniform surface density σ such that the cone defined by the segment and the center
of the sphere has a half-angle α (see Figure 4.12). It is clear that the choice of axes
and origin resulting in the greatest simplification is as shown in Figure 4.12. Notice
that P is taken to lie in the xz-plane, so that ϕ = 0. We can immediately write

g = −G

∫∫

Ω

dm(r′)

|r − r′|3 (r − r′) (4.31)

with

r′ = aêr′ , r = rêr, r − r′ = rêr − aêr′ ,

|r − r′|3 =
{

r2 + a2 − 2ra

êr·êr′
︷ ︸︸ ︷
(sin θ sin θ′ cos ϕ′ + cos θ cos θ′)

}3/2

, (4.32)

dm(r′) = σda1 = σa2 sin θ′ dθ′ dϕ′.

By inserting these relations in (4.31) and dotting the result with unit vectors, we
obtain the three components of g in various coordinate systems. In spherical coor-
dinates these are

P
2 α

x
y

z

r

Figure 4.12: A spherical cap whose gravitational field can be calculated using spherical

coordinates.
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gr = −Gσa2

∫∫

Ω

sin θ′ {r − a(sin θ sin θ′ cos ϕ′ + cos θ cos θ′)} dθ′ dϕ′

{r2 + a2 − 2ra(sin θ sin θ′ cos ϕ′ + cos θ cos θ′)}3/2
,

gθ = Gσa3

∫∫

Ω

sin θ′(cos θ sin θ′ cos ϕ′ − sin θ cos θ′) dθ′ dϕ′

{r2 + a2 − 2ra(sin θ sin θ′ cos ϕ′ + cos θ cos θ′)}3/2
, (4.33)

gϕ = Gσa3

∫∫

Ω

sin2 θ′ sin ϕ′ dθ′ dϕ′

{r2 + a2 − 2ra(sin θ sin θ′ cos ϕ′ + cos θ cos θ′)}3/2
= 0.

The region of integration Ω is one in which θ′ varies from 0 to α, and ϕ′ from 0 to
2π. The last integral vanishes because of the ϕ′ integration. The vanishing of the
ϕ-component is simply the result of the azimuthal symmetry.

The result above is not interesting, but if we move P to the polar axis, so that
θ = 0, then the equations simplify considerably, and we get

gr = −Gσa2

∫ α

0

sin θ′(r − a cos θ′) dθ′

(r2 + a2 − 2ra cos θ′)3/2

∫ 2π

0

dϕ′

= −2πGσa2

∫ α

0

sin θ′(r − a cos θ′) dθ′

(r2 + a2 − 2ra cos θ′)3/2
,

gθ = Gσa3

∫ α

0

sin2 θ′dθ′

(r2 + a2 − 2ra cos θ′)3/2

∫ 2π

0

cos ϕ′ dϕ′ = 0,

gϕ = 0.

The most interesting result is obtained when α = π, i.e., when we have a com-
plete spherical shell. Then using

∫ π

0

sin θ′(r − a cos θ′) dθ′

(r2 + a2 − 2ra cos θ′)3/2
=

1

r2

(

1 −
√

(a − r)2

a − r

)

≡ 1

r2

(

1 − |a − r|
a − r

)

,

which can be looked up in a good integral table, we obtain

gr = −2πGσa2

r2

(

1 − |a − r|
a − r

)

, gθ = 0, gϕ = 0.

For points inside the shell, r < a; therefore
|a − r|
a − r

=
a − r

a − r
= 1, and the field

vanishes. Thus, the gravitational field inside a spherical shell is zero. On the other gravitational field
inside a spherical
shell is zero.

hand, for points outside, r > a, and
|a − r|
a − r

=
r − a

a − r
= −1, leading to

gr = −4πGσa2

r2
= −G M

r2
,

where M = 4πa2σ is the total mass of the shell. This is identical to the gravitational
field of a point charge of mass M located at the center of the shell. Now, if we have concept of

spherical mass
distribution
elaborated

a number of concentric shells, then, at a point outside the outermost one, the field
must be that of a point charge at the common center having a mass equal to the total
mass of all the shells. Note that each shell can have a different uniform density than
others. In particular, if we have a solid sphere, with a density which is a function of
r alone, the same result holds. A density which is a function of r alone is called a
spherical mass distribution. We thus have the famous result:
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Box 4.2.2. When gravitationally attracting objects outside it, a spherical mass
distribution acts as if all its mass were concentrated into a point at its center.

Newton spent approximately twenty years convincing himself of this result.

Because of the similarity between gravity and electrostatics, the conclusion above
can be applied to the electrostatic field as well. Thus, in particular, the electrostatic
field inside any uniformly charged shell is zero. �

We take the final example of this section from mechanics and calculate the
moment of inertia of the foregoing shell about the polar axis. Recall thatmoment of inertia

the moment of inertia of a mass distribution about an axis is defined as

I =
∫∫

Ω

R2 dm, (4.34)

where R is the distance from the integration point—location of dm—to the
reference axis.

Example 4.2.5. The moment of inertia of the spherical shell segment is obtained
easily. All we need to note is that R = a sin θ′. Then Equation (4.34) gives

I =

∫∫

Ω

(a sin θ′)2σa2 sin θ′ dθ′ dϕ′ = a4σ

∫ α

0

sin3 θ′ dθ′
∫ 2π

0

dϕ′

= 2πa4σ
(

1
3

cos3 θ′ − cos θ′)∣∣α
0

=
2πa4σ

3
(cos3 α − 3 cos α + 2).

We can express this in terms of total mass if we note that the area is given by

A =

∫∫

Ω

a2 sin θ′ dθ′ dϕ′ = 2πa2

∫ α

0

sin θ′ dθ′ = 2πa2(1 − cos α)

so that

σ =
M

A
=

M

2πa2(1 − cos α)
.

Therefore,

I = 1
3
Ma2 cos3 α − 3 cos α + 2

1 − cos α
,

which reduces to I = 2
3
Ma2 for a complete spherical shell (with α = π). �

4.3 Applications: Triple Integrals

To illustrate the difficulty of calculations when appropriate coordinate systems
are not chosen, in the following example we calculate the gravitational field
of a uniform hemisphere at a point P on its axis in Cartesian coordinates.
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z

x

y

dV(r ) = dx  dy  dz

P

' ' ' '
= (x , y , z  )'''r '

r

Figure 4.13: Calculating the gravitational field of a hemisphere in the “unnatural”

Cartesian coordinates.

Example 4.3.1. The geometry of the problem is shown in Figure 4.13. The
location of P and the choice of axes indicate that

r = zêz, r′ = x′êx + y′êy + z′êz,

|r − r′|3 =
{
x′2 + y′2 + (z − z′)2

}3/2
,

dm(r′) = ρmdV (r′) = ρmdx′dy′dz′,

where ρm is the uniform mass density. Thus,

g = −
∫∫

Ω

G dm(r′)

|r − r′|3 (r − r′) = Gρm

∫∫

Ω

dx′ dy′ dz′ {x′êx + y′êy + (z′ − z)êz}
{x′2 + y′2 + (z − z′)2}3/2

with components

gx = Gρm

∫∫

Ω

x′ dx′ dy′ dz′

{x′2 + y′2 + (z − z′)2}3/2
,

gy = Gρm

∫∫

Ω

y′ dx′ dy′ dz′

{x′2 + y′2 + (z − z′)2}3/2
,

gz = Gρm

∫∫

Ω

(z′ − z) dx′ dy′ dz′

{x′2 + y′2 + (z − z′)2}3/2
.

The limits of integrals associated with Ω can be done as discussed in Section 3.3.
In Figure 4.13, we have chosen the first integral to be along the z-axis. Then the
lower limit will be the xy-plane, or z′ = 0, and the upper limit, the surface of
the hemisphere. A general point P ′ in Ω with coordinates (x′, y′, z′) will hit the
hemisphere at z′ =

√
a2 − x′2 − y′2. So, this will be the upper limit of the z′

integration. Concentrating on the x-component for a moment, we thus write

gx = Gρm

∫ ∫

S

x′ dx′ dy′
∫ √

a2−x′2−y′2

0

dz′

{x′2 + y′2 + (z − z′)2}3/2
,

where S is the projection of the hemispherical surface on the xy-plane. To do
the remaining integrations, we refer to Figure 4.14, where the projections of the
hemisphere and the point P ′ are shown. It is clear that the y′ integration has
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Figure 4.14: The projection of Ω, a hemisphere, in the xy-plane.

the lower semicircle as the lower limit and the upper semicircle as the upper limit.
Finally the x′ integration has lower and upper limits of −a and +a, respectively.
We, therefore, have

gx = Gρm

∫ +a

−a

x′ dx′
∫ +

√
a2−x′2

−
√

a2−x′2
dy′

∫ √
a2−x′2−y′2

0

dz′

{x′2 + y′2 + (z − z′)2}3/2
.

Instead of looking up the integrals in an integral table, we note that the integrand
of the x′ integration is an odd function. This is because it is the product of x′, which
is odd, and another function, in the form of a double integral whose integrand and
limits are even functions of x′. Since the interval of integration is symmetric, the
x′ integration vanishes. A similar argument shows that the y′ integration vanishes
as well. This is as expected intuitively: We expect the field to be along the z-axis.
Therefore, gx = 0, gy = 0, and

gz = Gρm

∫ +a

−a

dx′
∫ +

√
a2−x′2

−
√

a2−x′2
dy′

∫ √
a2−x′2−y′2

0

(z′ − z) dz′

{x′2 + y′2 + (z − z′)2}3/2

= Gρm

∫ +a

−a

dx′
∫ +

√
a2−x′2

−
√

a2−x′2

dy′
√

x′2 + y′2 + z2

− Gρm

∫ +a

−a

dx′
∫ +

√
a2−x′2

−
√

a2−x′2

dy′
√

a2 + z2 + x′2 + y′2 − 2z
√

a2 − x′2 − y′2
.

The y′ integration in the first integral can be done, but the remaining x′ integration
will be complicated. The second y′ integral cannot even be performed in closed form.
This difficulty is a result of our poor choice of coordinates whereby the boundary of
the region of integration does not turn out to be a “natural” surface. �

The example of the hemisphere in Cartesian coordinates indicates the
difficulty encountered when the boundaries of the integration region do not
match the primary surfaces of the coordinate system. In the next example,
we calculate the gravitational field of the hemisphere in spherical coordinates.

Example 4.3.2. The spherical coordinate system makes the problem so man-
ageable that we can consider a more general mass distribution. We will calculate
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P

g

2α

Figure 4.15: The gravitational field of a solid cone with a spherically curved top.

the gravitational field of a cone-shaped segment of a solid sphere of half-angle α as
shown in Figure 4.15. We are interested in the field at a point P on the axis of the
cone as shown. Since êθ and êϕ cannot be defined at P (why?), we expect, from
physical intuition, that the only surviving component of the gravitational field is
radial. This component is obtained by dotting the vector field with êr:

gr = êr · g = êr ·
{

−
∫∫

Ω

G dm(r′)

|r − r′|3 (r− r′)

}

= −G

∫∫

Ω

dm(r′)

|r − r′|3/2
(r − r′ cos θ′)

= −Gρm

∫∫

Ω

r′2 sin θ′ dr′ dθ′ dϕ′

(r2 + r′2 − 2rr′ cos θ′)3/2
(r − r′ cos θ′)

= −Gρm

∫ 2π

0

dϕ′
∫ a

0

r′2 dr′
∫ α

0

sin θ′ dθ′

(r2 + r′2 − 2rr′ cos θ′)3/2
(r − r′ cos θ′).

To do the integrations, we use the technique of differentiating inside the integral
and note that

r − r′ cos θ′

(r2 + r′2 − 2rr′ cos θ′)3/2
= − ∂

∂r

1√
r2 + r′2 − 2rr′ cos θ′

.

Therefore, the integral becomes

gr = 2πGρm

∫ a

0

r′2 dr′
∫ α

0

sin θ′ dθ′ ∂

∂r

1√
r2 + r′2 − 2rr′ cos θ′

= 2πGρm
∂

∂r

∫ a

0

r′2 dr′
∫ α

0

sin θ′ dθ′
√

r2 + r′2 − 2rr′ cos θ′

= 2πGρm
∂

∂r

∫ a

0

r′2 dr′
(

1

rr′

√
r2 + r′2 − 2rr′ cos θ′

∣
∣
∣
α

0

)

= 2πGρm
∂

∂r

{
1

r

∫ a

0

r′ dr′
(√

r2 + r′2 − 2rr′ cos α −
√

(r − r′)2
)}

= 2πGρm
∂

∂r

{
1

r

∫ a

0

r′ dr′
(√

r2 + r′2 − 2rr′ cos α − |r − r′|
)}

. (4.35)

The integral involving the absolute value can be done easily. However, we have
to be careful about the relative size of r, a, and r′. We therefore consider two cases:
r ≥ a and r ≤ a. Keeping in mind that r′ ≤ a, the first case yields
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∫ a

0

r′|r − r′| dr′ =

∫ a

0

r′(r − r′) dr′ =
ra2

2
− a3

3
, r ≥ a.

For the second case, we have to split the interval of integration in two, and write
the absolute value accordingly:

∫ a

0

r′|r − r′| dr′ =

∫ r

0

r′(r − r′) dr′ +

∫ a

r

r′(r′ − r) dr′

=
r3

3
+

a3

3
− ra2

2
, r ≤ a.

Substituting these in Equation (4.35), we get

gr = 2πGρm
∂

∂r

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a3

3r
− a2

2
+

1

r

∫ a

0

r′
√

r2 + r′2 − 2rr′ cos α dr′ if r ≥ a,

a2

2
− r2

3
− a3

3r
+

1

r

∫ a

0

r′
√

r2 + r′2 − 2rr′ cos α dr′ if r ≤ a.

The remaining integral can also be performed with the result

1

r

∫ a

0

r′
√

r2 + r′2 − 2rr′ cos α dr′ = − r2

12
(1 − 3 cos 2α)

+
√

r2 + a2 − 2ra cos α

(
a2

3r
+

r

12
− a cos α

6
− r cos 2α

4

)

+
r2 cos α sin2 α

2
ln

(
a − r cos α +

√
r2 + a2 − 2ra cos α

r − r cos α

)

.

The special case of α = π, i.e., a full sphere, is very important, because his-
torically it motivated the rapid development of integral calculus. For this case, we
have

1

r

∫ a

0

r′
√

r2 + r′2 − 2rr′ cos α dr′
α=π−→ r2

6
+ (a + r)

(
a2

3r
− r

6
+

a

6

)

,

whereby the radial component of the field becomes

gr = 2πGρm
∂

∂r

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a3

3r
− a2

2
+

r2

6
+ (a + r)

(
a2

3r
− r

6
+

a

6

)

if r ≥ a,

a2

2
− r2

6
− a3

3r
+ (a + r)

(
a2

3r
− r

6
+

a

6

)

if r ≤ a,

= 2πGρm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−2a3

3r2
if r ≥ a

−2r

3
if r ≤ a

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−GM

r2
if r ≥ a,

−4πGρmr

3
if r ≤ a.
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The first result is the well-known fact that the field outside a uniform sphere is the
same as the field of a point charge with the same mass concentrated at the center
of the original sphere. The second result, usually obtained in electrostatics by using
Gauss’s law, would not have been obtained if we had not used absolute values when
extracting a square root. �

Example 4.3.3. A uniformly charged hollow cylinder of length L and volume
charge density ρq has an inner radius a and an outer radius b (see Figure 4.16).
The cylinder is rotating with constant angular speed ω about its axis. We want
to find the magnetic field produced by this motion of charges. We note that the
problem has an azimuthal symmetry, so we do not lose generality if we choose our
coordinates so that our field point P lies in the xz-plane. This is equivalent to setting
ϕ = 0.

We use cylindrical coordinates in Equation (4.17) to find the magnetic field. For
a general field point, we have

r = ρ êρ + zêz, r′ = ρ′êρ′ + z′êz,

r − r′ = ρ êρ − ρ′êρ′ + (z − z′)êz,

|r − r′|3 =
{
ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + (z − z′)2

}3/2
,

dq(r′) = ρq dV (r′) = ρqρ
′dρ′dϕ′dz′, v(r′) = ρ′ωêϕ′ ,

so that

v(r′) × (r − r′) = ωρρ′ êϕ′ × êρ
︸ ︷︷ ︸
−êz cos ϕ′

−ωρ′2 êϕ′ × êρ′
︸ ︷︷ ︸

−êz

+ωρ′(z − z′) êϕ′ × êz
︸ ︷︷ ︸

êρ′

= ωρ′(z − z′)êρ′ + ω(ρ′2 − ρρ′ cos ϕ′)êz.

Substituting all these results in Equation (4.17), we obtain

B =

∫∫

Ω

ωkm(ρqρ
′dρ′dϕ′dz′)

[
ρ′(z − z′)êρ′ + (ρ′2 − ρρ′ cos ϕ′)êz

]

{
ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + (z − z′)2

}3/2
.

x
y

z

Figure 4.16: The charged rotating hollow cylinder produces a magnetic field due to

the motion of charges.
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The cylindrical components are obtained by dotting this equation with the cylindri-
cal unit vectors at P :

Bρ = B · êρ = ωkmρq

∫ 2π

0

∫ b

a

∫ L/2

−L/2

ρ′2(z − z′) cos ϕ′dρ′dϕ′dz′

{
ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + (z − z′)2

}3/2
,

Bϕ = B · êϕ = ωkmρq

∫ 2π

0

∫ b

a

∫ L/2

−L/2

ρ′2(z − z′) sin ϕ′dρ′dϕ′dz′

{
ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + (z − z′)2

}3/2
= 0,

Bz = B · êz = ωkmρq

∫ 2π

0

∫ b

a

∫ L/2

−L/2

(
ρ′3 − ρρ′2 cos ϕ′) dρ′dϕ′dz′

{
ρ2 + ρ′2 − 2ρρ′ cos ϕ′ + (z − z′)2

}3/2
.

The middle equation gives zero as a result of the ϕ′ integration. It turns out
that the z′ and ρ′ integrations of the remaining integrals can be performed in
closed form. However, the results are very complicated and will not be repro-
duced here. Furthermore, the ϕ′ integration has no closed form and must be done
numerically.

We can also obtain the components of B in other coordinate systems by dotting
B into the corresponding unit vectors. The reader may check, for example, that in
Cartesian coordinates, Bx = B · êx is the same as Bρ above and By is the same
as Bϕ, i.e., By = 0. This is due to the particular choice of our coordinate system
(ϕ = 0). �

4.4 Problems

4.1. Differentiate Equation (4.2) to find the velocity and acceleration and
compare with the expected results.

4.2. By choosing a coordinate system properly, write down the simplest para-
metric equation for the following curves. In each case specify the range of the
parameter you use:
(a) a rectangle of sides a and b, lying in the xy-plane with center at the origin
and sides parallel to the axes;
(b) an ellipse with semi-major and semi-minor axes a and b;
(c) a helix wrapped around a cylinder with an elliptical cross section of the
type described in (b); and
(d) a helix wrapped around a cone.

4.3. Assume that the parametric equations of a linear charge density are
x′ = f(t), y′ = g(t), z′ = h(t). By writing everything in Equation (4.3) in
Cartesian coordinates, show that

E =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2
{

[x − f(t)]2 + [y − g(t)]2 + [z − h(t)]2
}3/2

×
(
[x − f(t)] êx + [y − g(t)] êy + [z − h(t)] êz

)
dt. (4.36)
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and that

Ex =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2
{

[x − f(t)]2 + [y − g(t)]2 + [z − h(t)]2
}3/2

[x − f(t)] dt

Ey =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2
{

[x − f(t)]2 + [y − g(t)]2 + [z − h(t)]2
}3/2

[y − g(t)] dt (4.37)

Ez =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2
{

[x − f(t)]2 + [y − g(t)]2 + [z − h(t)]2
}3/2

[z − h(t)] dt

and

Φ(x, y, z) =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2
{
[x − f(t)]2 + [y − g(t)]2 + [z − h(t)]2

}1/2
dt

How is Λ(t) related to λ(r′)?

4.4. (a) Show that

êρ · êx =
x

√
x2 + y2

, êρ · êy =
y

√
x2 + y2

.

(b) Similarly, express êϕ · êx and êϕ · êy in Cartesian coordinates.
(c) Use (a), (b), and Equation (4.36) to find the general expressions for Eρ and
Eϕ as integrals in Cartesian coordinates similar to the integrals of Equation
(4.37).

4.5. (a) Find the nine dot products of all Cartesian and spherical unit vectors
and express the results in terms of Cartesian coordinates.
(b) Use (a) and Equation (4.36) to find general expressions for Er, Eθ, and
Eϕ as integrals in Cartesian coordinates similar to the integrals of Equation
(4.37).

4.6. Assume that the parametric equations of a linear charge density are
ρ′ = f(t), ϕ′ = g(t), z′ = h(t). By writing everything in Equation (4.3) in
cylindrical coordinates, show that Equation (4.11) holds and that

Eρ =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [f(t)]2[g′(t)]2 + [h′(t)]2
{
ρ2 + [f(t)]2 − 2ρf(t) cos

(
ϕ − g(t)

)
+ [z − h(t)]2

}3/2

×
[
ρ − f(t) cos

(
g(t) − ϕ

)]
dt (4.38)

Eϕ = −
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [f(t)]2[g′(t)]2 + [h′(t)]2
{

ρ2 + [f(t)]2 − 2ρf(t) cos
(
ϕ − g(t)

)
+ [z − h(t)]2

}3/2
(4.39)

× f(t) sin
(
g(t) − ϕ

)
dt
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Ez =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [f(t)]2[g′(t)]2 + [h′(t)]2
{
ρ2 + [f(t)]2 − 2ρf(t) cos

(
ϕ − g(t)

)
+ [z − h(t)]2

}3/2
(4.40)

×
[
z − h(t)

]
dt

and

Φ =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + f2(t)[g′(t)]2 + [h′(t)]2
{
ρ2 + f2(t) − 2ρf(t) cos

(
ϕ − g(t)

)
+ [z − h(t)]2

}1/2
dt

How is Λ(t) related to λ(r′)?

4.7. Use (4.11) to calculate Cartesian and spherical components of the electric
field in terms of integrals in cylindrical variables similar to (4.38).

4.8. Use the cylindrical coordinates for the integration variables of Example
4.1.3, but calculate the Cartesian components of E.

4.9. A uniformly charged infinitely thin circular ring of radius a has total
charge Q. Place the ring in the xy-plane with its center at the origin. Use
cylindrical coordinates.
(a) Find the electrostatic potential at P with cylindrical coordinates (ρ, ϕ, z)
in terms of a single integral.
(b) Find the analytic form of the potential if P is on the z-axis (evaluate the
integral).
(c) Find the potential at a point in the xy-plane a distance 2a from the origin.
Give your answer as a number times keQ/a.

4.10. Write a general formula for Φ(r) of a charged curve in spherical coor-
dinates.

4.11. A straight-line segment of length 2L is placed on the z-axis with its
midpoint at the origin. The segment has a linear charge density given by

λ(x, y, z) =
Q

|z| + a
,

where Q and a are constants with a > 0. Find the electrostatic potential of
this charge distribution at a point on the x-axis in Cartesian coordinates.

4.12. Same as the previous problem, except that

λ(x, y, z) =
aQ

z2 + a2
.

Look up the integral in an integral table.
(a) Does anything peculiar happen at x = ±a? Based on the integration
result? Based on physical intuition? Look at the result carefully and reconcile
any conflict.
(b) What is the potential when L → ∞?
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4.13. A segment of the parabola y = x2/a—with a a constant—extending
from x = 0 to x = L has a linear charge density given by

λ(x, y, z) =
λ0√

1 + (2x/a)2
,

where λ0 is a constant. Find the potential and the electric field at the point
(0, 0, z). What are Φ and E at (0, 0, a/2)? Simplify your results as much as
possible.

4.14. A circular ring of radius a is uniformly charged with linear density λ.
(a) Find an expression for each of the three components of the electric field
at an arbitrary point in space in terms of an integral in an appropriate coor-
dinate system. Evaluate the integrals whenever possible.
(b) Find the components of the field at the point P shown in Figure 4.17.
Express your answers as a numerical multiple of keλ/a.
(c) Find the electrostatic potential at the point P shown in Figure 4.17. Ex-
press your answer as a numerical multiple of keλ.
For (b) and (c) you will need to evaluate certain integrals numerically.

4.15. Consider a uniform linear charge distribution in the form of an ellipse
with linear charge density λ. The semi-major and semi-minor axes of the el-
lipse are a and b, respectively. Use Cartesian coordinates and the parametric
equation of the ellipse.
(a) Write down the integrals that give the electric field and the electric po-
tential at an arbitrary point P in space.
(b) Specialize to the case where P lies on the axis that is perpendicular to the
plane of the ellipse and passes through its center.
(c) Specialize (a) to the case where P lies on the line containing the minor
axis.

4.16. Consider a uniform linear charge distribution in the form of an ellipse
with linear charge density λ located in the xy-plane. The semi-major and
semi-minor axes of the ellipse are 2a and a, respectively.
(a) Write the Cartesian parameterization of the ellipse in terms of trigono-
metric functions.

2a

a

P

Figure 4.17: The figure for Problems 4.14 and 4.21.
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(b) Write the integral that gives the Cartesian components of the electric field
at an arbitrary point (x, y, z) in space.
(c) Specialize to the point (a, 2a, 2a), and write your answer as a numerical
multiple of keλ/a.

4.17. Consider a uniform linear charge distribution, with linear charge density
λ, in the form of an elliptical helix whose parametric equation is given by

x′ = a cos t, y′ = b sin t, z′ = ct

Use Cartesian coordinates.
(a) Write down the integrals that give the electric field and the electric po-
tential at an arbitrary point P in space.
(b) Verify that when c = 0, you get the field and potential of an ellipse (see
Problem 4.15).
(c) Verify that when c = 0 = b, you get the field and potential of a straight
line segment.
(d) Verify that when c = 0 = b and a → ∞, you get the field of an infinite
straight line.

4.18. Find the three components of the electric field and the potential of Ex-
ample 4.1.2 when a = −L/2 and b = L/2. Approximate the three components
of the electric field for the case where L >> x.

4.19. Derive all relations in Equations (4.20) and (4.21).

4.20. Figure 4.18 shows a hyperbola y =
√

x2 + a2. Only the segment be-
tween x = 0 and x = a is charged uniformly with linear density λ.
(a) Write the expression for E as an integral in Cartesian coordinates.
(b) Find the three components of E as integrals over x′.
(c) Making the substitution x′ = au, write each component as a numerical
multiple of keλ/a.

4.21. A circular ring of radius a is uniformly charged with linear density λ.
The ring rotates with angular speed ω about the axis perpendicular to the
plane of the ring, passing through its center.

a

a x

Figure 4.18: The segment of the hypebola that is charged.
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(a) Find an expression for each of the three components of the magnetic
field at an arbitrary point in space in terms of an integral in an appropriate
coordinate system. Evaluate the integrals whenever possible.
(b) Find the components of the field at the point P shown in Figure 4.17.
Express your answers as a numerical multiple of kmλω. (You will need to
evaluate some integrals numerically!)

4.22. An elliptical conducting ring of semi-major axis a and semi-minor axis
b carries a current I.
(a) Find an expression for each of the three Cartesian components of the
magnetic field at an arbitrary point in space in terms of an integral in the
Cartesian coordinate system.
(b) Find an integral expression for the components of the field at a point on
the line perpendicular to the ellipse that passes through its center.

4.23. Perform the integrals for Ex, Ey, and Ez of Example 4.2.1 when the
field point is on the z-axis. Hint: You can get Ex and Ey without doing the
integrals.

4.24. Assume that the parametric equations of a current loop are x′ =
f(t), y′ = g(t), z′ = h(t). By writing everything in Equation (4.18) in Carte-
sian coordinates, show that

Bx(r) = kmI

∫ b

a

g′(t)
[
z − h(t)

]
− h′(t)

[
y − g(t)

]

{[
x − f(t)

]2 +
[
y − g(t)

]2 +
[
z − h(t)

]2}3/2
dt,

By(r) = kmI

∫ b

a

h′(t)
[
x − f(t)

]
− f ′(t)

[
z − h(t)

]

{[
x − f(t)

]2 +
[
y − g(t)

]2 +
[
z − h(t)

]2}3/2
dt,

Bz(r) = kmI

∫ b

a

f ′(t)
[
y − g(t)

]
− g′(t)

[
x − f(t)

]

{[
x − f(t)

]2 +
[
y − g(t)

]2 +
[
z − h(t)

]2}3/2
dt,

where a and b are the initial and final values of the parameter t.

4.25. By writing everything in Equation (4.18) in cylindrical coordinates,
show that

Bρ = kmI

∮
N1 dρ′ + ρ′N2 dϕ′ + ρ′ sin(ϕ′ − ϕ) dz′

{
ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′) + (z − z′)2

}3/2

Bϕ = kmI

∮
ρ′N1 dϕ′ − N2 dρ′ +

[
ρ − ρ′ cos(ϕ′ − ϕ)

]
dz′

{
ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′) + (z − z′)2

}3/2

Bz = −kmI

∮
ρ sin(ϕ′ − ϕ) dρ′ +

[
ρρ′ cos(ϕ′ − ϕ) − ρ′2

]
dϕ′

{
ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′) + (z − z′)2

}3/2

where
N1 ≡ (z − z′) sin(ϕ′ − ϕ), N2 ≡ (z − z′) cos(ϕ′ − ϕ)
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2a

2a

P

a

Figure 4.19: The figure for Problem 4.28.

4.26. Derive Equation (4.27).

4.27. Derive Equation (4.29) from Equation (4.28).

4.28. A square of side 2a is uniformly charged with surface density σ.
(a) Find the electrostatic potential at an arbitrary point in space. Do one
of the integrals and express your answer in terms of a single integral in an
appropriate coordinate system.
(b) Find the potential at a point a distance a directly above the midpoint of
one of the sides as shown in Figure 4.19. Express your answer as a numerical
multiple of keσa.

4.29. The area in the xy-plane shown in Figure 4.21 is uniformly charged
with surface charge density σ. The equation of the parabolic boundary is
y = x2/a. Assume that the observation point (field point) P is on the z-axis
at z = a.
(a) Derive the Cartesian components of the electric field at P as double inte-
grals.
(b) Do the y′ integration first and then the x′ integration to find the compo-
nents of the electric field. Write your answers as a numerical multiples of keσ.
You will need to evaluate certain integral(s) numerically.

4.30. Using cylindrical coordinates, find the electrostatic field of a uniformly
charged circular disk of charge density σ and radius a:
(a) at an arbitrary point in space;
(b) at an arbitrary point on the perpendicular axis of the disk; and

x

y

Figure 4.20: The region of the xy-plane that is charged.
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− a a
x

y

Figure 4.21: The shaded region is uniformly charged.

(c) at an arbitrary point in the plane of the disk.
(d) For (b), consider the case of infinite radius and compare your result with
the infinite rectangle discussed in introductory physics books and Example
4.2.3.

4.31. Figure 4.20 shows a region of the xy-plane that is uniformly charged
with surface charge density σ. The boundary of the region is given in a
polar/cylindrical coordinate system by ρ = a cos(2ϕ) with −π/4 ≤ ϕ ≤ π/4.
We are interested in the electrostatic potential at a point P on the z-axis with
z = a.
(a) Write the position vector of P and P ′ (a typical source point) in cylindrical
coordinates. Now evaluate |r − r′|.
(b) Write the expression for dq(r′) in cylindrical coordinates.
(c) Write the expression for the potential Φ as a double integral in cylindrical
coordinates.
(d) Perform one of the integrations, and wrtie your final answer as a single
integral.
(e) Find the value of the potential as a numerical multiple of keσa.

4.32. A cylindrical shell of radius a and length L is uniformly charged with
surface charge density σ. Using an appropriate coordinate system and axis
orientation:
(a) Find the electric field at an arbitrary point in space.
(b) Now let the length go to infinity and find a closed-form expression for the
field in (a). You will have to look up the integral in an integral table.
(c) Find the expression of the field for a point outside and a point inside the
cylinder.

4.33. A uniformly charged disk of radius a and surface charge density σ is
inthe xy-plane with its center at the origin and is rotating about its perpen-
dicular axis with angular frequency ω.
(a) Find the cylindrical components of the magnetic field produced at a point
P = (ρ, 0, z) as double integrals in cylindrical coordinates.
(b) Now assume that P is on the z-axis and find the components of B by
performing all the integrals involved.
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4.34. An electrically charged disk of radius a is rotating about its perpen-
dicular axis with angular frequency ω. Its surface charge density is given in
cylindrical coordinates by σ = (σ0/a2)ρ2, where σ0 is a constant.
(a) Find the Cartesian components of the magnetic field produced at an ar-
bitrary point P = (ρ, 0, z) as double integrals in cylindrical coordinates.
(b) Now assume that P is on the z-axis and find the components of B by
performing all the integrals involved.

4.35. Express the components of g of Example 4.2.4 in Cartesian and cylin-
drical coordinates in terms of integrals similar to Equation (4.33).

4.36. A conic surface of (maximum) radius a and half-angle α is uniformly
charged with surface density σ.
(a) Find the three components of the electric field at a point on the cone’s axis
a distance r from its vertex. Express your answers in terms of single integrals
in an appropriate coordinate system.
(b) Find the components of the field at r = a/

√
3 when α = π/6. By eval-

uating integrals numerically if necessary, express your answer as a numerical
multiple of keσ.

4.37. A cone with half-angle α, the distance of whose vertex from its circular
rim is L, is rotating with angular speed ω about its axis. Electric charge
is distributed uniformly on the cone with surface charge density σ. Use the
coordinate system appropriate for this geometry.
(a) Express the components of the magnetic field produced at an arbitrary
point in space in terms of double integrals. Evaluate those components whose
integrals are easily done.
(b) Move the field point to the axis of the cone, and write the components
of the field in terms of single integrals. Evaluate the remaining components
whose integrals are easily done.
(c) Now assume that α = π/3, and express the magnitude of the field on the
axis at a distance L from the vertex of the cone as a number times kmωσL.

4.38. A uniformly charged solid cylinder of length L, radius a, and total
charge q is rotated about its axis with angular speed ω. Find the magnetic
field at a point on this axis.

4.39. Use cylindrical coordinates to calculate the gravitational field of the
hemisphere of Example 4.3.1 at a point on the z-axis.
(a) Show that

gz = 2πGρm

{√
z2 + a2 − |z| − (a2 + z2)3/2 − |a − z|(a2 + z2 + az)

3z2

}

with the other components being zero.
(b) Simplify this expression for points outside (z < 0 and z > a), and inside
(0 < z < a).
(c) Using the result of (b), find the gravitational field of a hemisphere whose
flat side points up.
(d) Add the results of (b) and (c) to find the field of a full sphere.
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a

b

L

α

x
y

z

Figure 4.22: The segment of a cylinder with uniform charge density used in Problem

4.41.

4.40. Find the moment of inertia of a uniform solid cone of mass M and
half-angle α cut out of a solid sphere of radius a. What is the moment of
inertia of a whole solid sphere?

4.41. A solid cylinder of length L has a cross section which is in the shape
of a segment of an annular ring with outer radius b and inner radius a. It
is subtended by an angle α and is uniformly charged with total charge q
(Figure 4.22). Find the electric field at:
(a) an arbitrary point in space; and
(b) a point on the axis of the ring.
(c) What is the answer to (b) if we have a complete ring?
(d) What is the answer to (a) if we have a complete ring that is infinitely
long? Consider the three regions: ρ ≤ a, a ≤ ρ ≤ b, and ρ ≥ b.

4.42. Find the moment of inertia of the (incomplete) cylinder of the previous
problem about the perpendicular axis passing through the common center of
the inner and outer radii. Assume that the total mass is M . From this result
obtain the moment of inertia of a hollow as well as a solid cylinder.





Chapter 5

Dirac Delta Function

Paul Adrian Maurice Dirac, one of the most inventive mathematical physicists
of all time, co-founder of quantum theory, inventor of relativistic quantum
mechanics in the form of an equation which bears his name, predictor of the
existence of anti-matter, clarifier of the concept of spin, and contributor to the
unraveling of the mathematical difficulties associated with the quantization
of the general theory of relativity, came across the subject matter of this
chapter in his study of quantum mechanical scattering. In order to appreciate
the usefulness of this function, we shall start with an intuitive approach drawn
from electrostatics.

5.1 One-Variable Case

Consider a straight linear charge distribution of length L with uniform charge
density as shown in Figure 5.1(a). If the total charge of the line segment is q,
then the linear charge density will be λ = q/L. We are interested in the graph
of the function describing the linear density in the interval (−∞, +∞). As-
suming that the midpoint of the segment is x0 and its length L, we can easily
draw the graph of the function. This is shown in Figure 5.1(b). The graph

L

q/L

0

(a)

(b)

xL

x0

Figure 5.1: (a) The charged line segment and (b) its linear density function.
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is that of a function that is zero for values less than x0 − L/2, q/L for val-
ues between x0 − L/2 and x0 + L/2, and zero again for values greater than
x0 + L/2. Let us call this function λ(x). Then, we can write

λ(x) =

⎧
⎪⎨

⎪⎩

0 if x < x0 − L/2,

q/L if x0 − L/2 < x < x0 + L/2,

0 if x > x0 + L/2.

Now suppose that we squeeze the segment on both sides so that the length
shrinks to L/2 without changing the position of the midpoint and the amount
of charge. The new function describing the linear charge density will now be

λ(x, x0) = q

⎧
⎪⎨

⎪⎩

0 if x < x0 − L/4,

2/L if x0 − L/4 < x < x0 + L/4,

0 if x > x0 + L/4.

We have “factored out” q for later convenience. We have also introduced a
second argument to emphasize the dependence of the function on the mid-
point. Instead of one-half, we can shrink the segment to any fraction, still
keeping both the amount of charge and the midpoint unchanged. Shrinking
the size to L/n and renaming the function λn(x, x0) to reflect its dependence
on n, gives

λn(x, x0) = q

⎧
⎪⎨

⎪⎩

0 if x < x0 − L/2n,

n/L if x0 − L/2n < x < x0 + L/2n,

0 if x > x0 + L/2n,

which is depicted in Figure 5.2 for n = 10 as well as some smaller values of n.
The important property of λn(x, x0) is that its height increases at the same
time that its width decreases.

Instead of a charge distribution that abruptly changes from zero to some
finite value and just as abruptly drops to zero, let us consider a distribution

x0 x0 x0 x0x0

Figure 5.2: The linear density function as the length shrinks.
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that smoothly rises to a maximum value and just as smoothly falls to zero.
There are many functions describing such a distribution. For example,

λn(x, x0) = q

√
n

π
e−n(x−x0)

2

has a peak of q
√

n/π at x = x0 and drops to smaller and smaller values as
we get farther and farther away from x0 in either direction. This function is
plotted for various values of n in Figure 5.3. It is clear from the figure that
the “width” of the graph of λn(x, x0) gets smaller as n → ∞.

In both cases λn(x, x0) is a true linear (charge) density in the sense that
its integral gives the total charge. This is evident in the first case because
of the way the function was defined. In the second case, once we integrate
λn(x, x0) from −∞ to +∞, we also obtain the total charge q. The region of
integration extends over all real numbers in the second case because at every
point of the real line we have some nonzero charge. Furthermore, we can
extend the interval of integration over all the real numbers even for the first
case, because the function vanishes outside the interval (x0−L/2n, x0+L/2n)
and no extra contribution to the integral arises. We thus write

∫ +∞

−∞
λn(x, x0) dx = q

for all such functions. It is convenient to divide by q and define new functions
δn(x, x0) by

δn(x, x0) ≡
λn(x, x0)

q

–1 1 2 3

Figure 5.3: The Gaussian bell-shaped curve approaches the Dirac delta function as the

width of the curve approaches zero. The value of n is 1 for the dashed curve, 4 for the

heavy curve, and 20 for the light curve.
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so that

δn(x, x0) =

⎧
⎪⎨

⎪⎩

0 if x < x0 − L/2n,

n/L if x0 − L/2n < x < x0 + L/2n,

0 if x > x0 + L/2n,

in the first case, and

δn(x, x0) =
√

n

π
e−n(x−x0)

2
(5.1)

in the second case. Both these functions have the property that
∫ +∞

−∞
δn(x, x0) dx = 1, (5.2)

i.e., their integral over all the real numbers is one, and, in particular, inde-
pendent of n.Dirac delta

function defined

Box 5.1.1. The Dirac delta function δ(x, x0) is defined as

δ(x, x0) ≡ lim
n→∞

δn(x, x0) (5.3)

and has the following property:
∫ +∞

−∞
δ(x, x0) dx = 1. (5.4)

Equation (5.4) follows from the fact that the integral in (5.2) is independent
of n. The Dirac delta function has infinite height and zero width at x0, but
these two undefined quantities compensate for one another to give a finite area
under the “graph” of the function. The Dirac delta function is not a well-
behaved mathematical function as defined in elementary textbooks because at
the only point that it is nonzero, it is infinite! Nevertheless, this function has
been investigated rigorously in higher mathematics. For us, the Dirac delta
function is a convenient way of describing densities.

Although we have separated the arguments of the Dirac delta function
by a comma, the function depends only on the difference between the two
arguments. This becomes clear if we think of the Dirac delta function as the
limit of the exponential because the latter is a function of x−x0. We therefore
have the important relation

δ(x, x0) = δ(x − x0). (5.5)

In particular, since the delta function becomes infinite at x = x0, we have

δ(x, x0)
∣
∣
∣
x=x0

= δ(x − x0)
∣
∣
∣
x=x0

= δ(0) = ∞. (5.6)
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One can think of the last equality as an identity satisfied by the Dirac delta
function:

Box 5.1.2. The Dirac delta function is zero everywhere except at the point
which makes its argument zero, in which case the Dirac delta function is
infinite.

Since the Dirac delta function is zero almost everywhere, we can shrink
the region of integration to a smaller interval. In fact,

∫ b

a

δ(x − x0) dx = 1

as long as x0 lies in the interval (a, b). If x0 is outside the interval, then the
integral will be zero because the delta function would always be zero in the
region of integration. We summarize these results:

Box 5.1.3. The Dirac delta function satisfies the following relation

∫ b

a

δ(x − x0) dx =

{
1 if a < x0 < b,

0 otherwise.
(5.7)

Equation (5.4) is a special case of this, because −∞ < x0 < +∞ for any
value of x0.

5.1.1 Linear Densities of Points

Any function λ(x) whose integral over all real numbers is one is called a linear
density function. The δn’s defined above are such functions. If we multiply linear density

functiona linear density function by a physical quantity Q, the result will be a linear
density for Q. In fact, this was how we arrived at δn. Thus, Q0λ(x) is a
Q-linear density with total magnitude Q0. Similarly, if M represents a mass,
then Mλ(x) is a linear mass density with total mass M . Conversely, if f(x)
describes the linear density of a physical quantity with total magnitude Q,
then λ(x) ≡ f(x)/Q is a linear density function.

Because of Equation (5.4) the Dirac delta function is a linear density func-
tion. What kind of a distribution does it describe? To be specific, consider δ function and

densities of point
charges and point
masses

mδ(x, x0) with m designating mass. This function is zero everywhere except
at x0. Thus, if it is to be a mass distribution, it has to be a point mass located
at x0. Keep in mind that mδ(x, x0) is a linear mass density, so that its integral
is the total mass m. The linear “density” of a point mass is infinite because
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its length is zero, and this is precisely what mδ(x, x0) describes. In fact, the
linear density of a point physical quantity of magnitude Q located at x0 can
be written as Qδ(x, x0) = Qδ(x − x0), or generalizing,

Box 5.1.4. The linear density λ(x) of N point physical quantities
Q1, Q2, . . . , QN located at x1, x2, . . . , xN , respectively, can be written as

λ(x) =
N∑

k=1

Qkδ(x − xk). (5.8)

We see that with the help of the Dirac delta function we can express discrete
charge distributions (collection of point charges) in terms of functions. This
is the most useful property of the Dirac delta function.

Example 5.1.1. Three charges −q, 2q, and −q are located along the x-axis at
−a, the origin, and +a, respectively. How do we write the linear charge density for
such a charge distribution? We use Equation (5.8) with Q replaced by q:

λ(x) =

3∑

k=1

qkδ(x − xk) = −qδ(x − (−a)) + 2qδ(x − 0) − qδ(x − a)

= −qδ(x + a) + 2qδ(x) − qδ(x − a).

Note that the Dirac delta functions ensure that no electric charge is present any
where except at x = a, x = −a, and x = 0. �

Example 5.1.2. A more interesting example of a linear charge distribution using
the Dirac delta function is that of an infinite array of point charges equally spaced
on a straight line having equal magnitudes and alternating in sign. This is a one-
dimensional model of ionic crystals.

Let us assume that the magnitude of each charge is ±q, the spacing between it
and the neighboring charge is a, and that the charges start at −∞ and extend to
+∞ with one positive charge at the origin as shown in Figure 5.4. Then it is easy
to write the density of this distribution. It isdensity of

one-dimensional
ionic crystal

λ(x) =

+∞∑

k=−∞
(−1)kqδ(x − ka).

aO

Figure 5.4: A one-dimensional ionic crystal. The black circles represent positive charges

and the white circles the negative charges.
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Note that for odd k the charge is negative and for even k it is positive. This is
because we placed a positive charge at the origin. Had we chosen the origin to
be the site of a negative charge, the above arrangement would have shifted by one
spacing.

�

5.1.2 Properties of the Delta Function

From a mathematical point of view, the most important property, which is
sometimes used to define the Dirac delta function, occurs when it multiplies a
“smooth”1 function in an integrand. First look at an integral with a δn(x−x0)
inside. If the function f(x) multiplying δn(x − x0) is smooth and n is large
enough, the product f(x)δn(x − x0) practically vanishes outside a narrow
interval in which δn(x − x0) is appreciably different from zero. For example,
if n = 107, x = x0 + 0.001, and we use the exponential function of Equation
(5.1), then δn(x − x0) = 0.08, so that f(x)δn(x − x0) drops to about 8% of
the value it has at x0, assuming that f does not change appreciably in the
small interval of width 0.002 around x0. For larger values of n this drop is
even sharper. In fact, no matter what function we choose, there is always a
large enough n such that the product f(x)δn(x − x0) will drop to as small
a value as we please in as short an interval as we please. Therefore, we can
approximate the integral over all real numbers to an integral over that small
interval. Let the interval be (x0 − ε, x0 + ε). Then, we have

∫ +∞

−∞
f(x)δn(x − x0) dx ≈

∫ x0+ε

x0−ε

f(x)δn(x − x0) dx

≈ f(x0)
∫ x0+ε

x0−ε

δn(x − x0) dx

≈ f(x0)
∫ +∞

−∞
δn(x − x0) = f(x0).

The approximation in the second line follows from the fact that f(x) is almost
constant in the small interval (x0 − ε, x0 + ε). The third approximation is a
result of the smallness of δn outside the interval, and the equality follows
because δn is a linear density function. The approximation above reaches
equality once the limit of n → ∞ is taken in which case δn becomes the Dirac
delta function. Thus, we have the important relation

∫ +∞

−∞
f(x)δ(x − x0) dx = f(x0). (5.9)

1In the present context, a smooth function is one that does not change abruptly when
its argument changes by a small amount.
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This is equivalent to the following statement:integral of product
of δ(x − x0) and
f(x) is simply
f(x0) Box 5.1.5. The Dirac delta function satisfies

∫ b

a

f(x)δ(x − x0) dx =

{
f(x0) if a < x0 < b,

0 otherwise.
(5.10)

In words, the result of integration is the value of f at the root of the
argument of the delta function, provided this root is inside the range
of integration.

Example 5.1.3. In this example we illustrate some of the properties of the
Dirac delta function. For instance

∫ ∞
1

f(t)δ(t) dt = 0 because the root of the
argument of the Dirac delta function (the point that makes the argument of the
Dirac delta function zero)—namely t = 0—is outside the range of integration. The
integral

∫ +∞
−∞ xδ(x) dx is zero because the function x vanishes at the point x = 0 (the

root of the argument of the delta function). Also,

∫ +3

−∞
cos yδ(y − π) dy = 0

because π—which makes the argument of the delta function vanish—lies outside the
range of integration. However,

∫ +3.2

−∞
cos yδ(y − π) dy = cos π = −1

because now π lies inside the range of integration.
The reader is urged to check the following results:

∫ +∞

−∞
cos yδ(y − π) dy = −1,

∫ +∞

−∞
sin zδ(z) dz = 0,

∫ +∞

0

cos yδ(y + π) dy = 0,

∫ +∞

−∞
cos

y

2
δ(y − π) dy = 0,

∫ 1

−1

etδ(t) dt = 1,

∫ +∞

−∞
xf(x)δ(x)dx = 0,

∫ 2.7

−∞
ln t δ(t − e) dt = 0,

∫ 2.8

−∞
ln t δ(t − e) dt = 1.

�

As noted earlier, the Dirac delta function is not an ordinary over-the-
counter function. Nevertheless, it is possible to study it, along with many
other “weird” functions called distributions, in a mathematically rigorousdistributions

and systematic way. It turns out that, in all physical applications, distribu-
tions occur inside an integral, and once they do, Equation (5.10) tells us how
to manipulate such integrals. The result of integration is always well defined
because it is simply the value of a “good” function at a point, say x0. In fact,
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the result of integration is so nice that one can even define the derivative of
the Dirac delta function by differentiating (5.10) with respect to x0. We leave
the details as an exercise and simply quote the result:

∫ +∞

−∞
f(x)δ′(x − x0) dx = −f ′(x0) (5.11)

Higher order derivatives of the Dirac delta function can be obtained similarly. derivatives of
Dirac delta
function

In fact, we have

Box 5.1.6. The nth derivative of the Dirac delta function satisfies

∫ b

a

f(x)δ(n)(x−x0)(x−x0) dx =

{
(−1)nf (n)(x0) if a < x0 < b,

0 otherwise,
(5.12)

where the superscript (n) indicates the nth derivatives.

In many applications the argument of the Dirac delta function is not of
the simple form (x − x0), but may itself be a function g(x) whose deriva-
tive is assumed to be continuous in (a, b). Since by Equation (5.6) the delta what happens

when the
argument of δ is
itself a function?

function vanishes except when its argument is zero, in such a case, one has
to concentrate on the roots of g(x), i.e., values c for which g(c) = 0. For
simplicity, first assume that there is only one root c of g in the interval (a, b)
and that g′(c) > 0. Then, since the Dirac delta function is zero everywhere
in the interval (a, b), except at x = c, we can shrink the region of integration
to (c − ε, c + ε), and write

∫ b

a

δ (g(x)) dx =
∫ c+ε

c−ε

δ (g(x)) dx.

Now make the change of variable y = g(x), dy = g′(x) dx with the appropriate
transformation of limits of integration to get

∫ b

a

δ (g(x)) dx =
∫ g(c+ε)

g(c−ε)

δ(y)
dy

g′(x)
.

With g(c) = 0 and g′(c) > 0, we conclude that g is increasing in the interval
(c− ε, c + ε), that g(c− ε) < 0, and that g(c + ε) > 0. We can therefore write

∫ b

a

δ (g(x)) dx =
∫ g(c+ε)

g(c−ε)

δ(y)
dy

g′(x)
=

1
g′(x)

∣
∣
∣
∣
y=0

=
1

g′(c)
> 0,

because zero is in the region of integration and y = 0 is equivalent to x = c
there.
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When g′(c) < 0, g will be decreasing in the interval (c − ε, c + ε), and
g(c − ε) > 0 and g(c + ε) < 0. Thus, flipping the limits of integration so that
the smaller number corresponds to the lower limit, we obtain

∫ b

a

δ (g(x)) dx = −
∫ g(c−ε)

g(c+ε)

δ(y)
dy

g′(x)
= − 1

g′(x)

∣
∣
∣
∣
y=0

= − 1
g′(c)

> 0.

We summarize the two results as
∫ b

a

δ (g(x)) dx =
1

|g′(c)| .

If there are two roots of g in the interval, say c1 and c2 with c2 > c1, we
break up (a, b):

∫ b

a

δ (g(x)) dx =

0
︷ ︸︸ ︷∫ c1−ε

a

δ (g(x)) dx+
∫ c1+ε

c1−ε

δ (g(x)) dx

+

0
︷ ︸︸ ︷∫ c2−ε

c1+ε

δ (g(x)) dx +
∫ c2+ε

c2−ε

δ (g(x)) dx

+

0
︷ ︸︸ ︷∫ b

c2+ε

δ (g(x)) dx =
1

|g′(c1)|
+

1
|g′(c2)|

,

where in the last line we used the result obtained in the previous paragraph.
It should be clear that if g has n roots c1, c2, . . . , cn in (a, b), there will be a
summation of n terms in the last line of the above equation. In fact, we can
summarize the result of the foregoing discussion as

Box 5.1.7. If g(x) has the roots c1, c2, . . . , cn, and g′(ck) �= 0 for all k
between 1 and n, then

∫ b

a

δ(g(x)) dx =

{∑n
k=1 1/|g′(ck)| if a < ck < b,

0 otherwise.
(5.13)

When the delta function is multiplied by a smooth function f(x), a similar
argument as above—which is left to the reader—can be used to show that

∫ b

a

f(x)δ(g(x)) dx =

{∑n
k=1 f(ck)/|g′(ck)| if a < ck < b,

0 otherwise,
(5.14)
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provided g′(ck) �= 0. These results are sometimes written as an identity among
the delta functions. a very important

relation

Box 5.1.8. The Dirac delta function satisfies the following relation:

δ(g(x)) =
n∑

k=1

δ(x − ck)
|g′(ck)| , g′(ck) �= 0, (5.15)

where {ck}n
k=1 are all the roots of the equation g(x) = 0.

The formula analogous to Equation (5.14) involving the derivative of the Dirac
delta function is

∫ b

a

f(x)δ′(g(x)) dx =

{
−

∑n
k=1 f ′(ck)/|g′(ck)| if a < ck < b,

0 otherwise.
(5.16)

Example 5.1.4. As a concrete example, let us evaluate the integral

I ≡
∫ +∞

−∞
f(t)δ(t2 − a2) dt,

where f is a smooth function and a is a real constant. We can identify g(t) as t2−a2

with roots c1 = −a, c2 = a and derivative g′(t) = 2t. Therefore, Equation (5.15)
reduces to

δ(t2 − a2) =
δ(t − c1)

|g′(c1)|
+

δ(t − c2)

|g′(c2)|
=

δ(t − (−a))

| − 2a| +
δ(t − a)

|2a|

=
1

|2a| {δ(t + a) + δ(t − a)} .

Substituting in the integral, we obtain

I =
1

2|a|

∫ +∞

−∞
f(t) {δ(t + a) + δ(t − a)}

=
1

2|a|

{∫ +∞

−∞
f(t)δ(t + a) +

∫ +∞

−∞
f(t)δ(t − a)

}

=
1

2|a| {f(−a) + f(a)} .

Note that the integral vanishes—as expected—if f is odd. �

Example 5.1.5. We illustrate further the foregoing general discussions with some
more concrete examples. To evaluate the integral

∫ ∞

1

sin t δ(t2 − π2/4) dt,
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we note that g(t) = t2 − π2/4 which has two roots c1 = π/2 and c2 = −π/2 with
only the positive root lying in the range of integration. Moreover, g′(t) = 2t. Thus,

∫ ∞

1

sin t δ(t2 − π2/4) dt =
f(c1)

|g′(c1)|
=

sin(c1)

|2c1|
=

sin(π/2)

π
=

1

π
.

On the other hand, ∫ ∞

−∞
sin t δ(t2 − π2/4) dt = 0

because the second root c2 is also included in the range of integration and its con-
tribution cancels that of c1.

To evaluate the integral
∫ ∞

0

ln z δ(z2 − 4) dz

we note that g(z) = z2 − 4 which has two roots c1 = 2 and c2 = −2 with only the
positive root lying in the range of integration. Thus, with g′(z) = 2z, we have

∫ ∞

0

ln z δ(z2 − 4) dz =
f(c1)

|g′(c1)|
=

ln(c1)

|2c1|
=

ln 2

4
= 0.1733.

The integral ∫ +∞

−∞
f(y) δ(y2 + a2) dy

is zero because there is no point in the range of integration at which the argument
of the Dirac delta function vanishes. In other words, g(y) = y2 + a2 has no real
roots at all.

To evaluate the integral

∫ +π/2

−π/2

(t + 1)2 δ(sin πt) dt

we note that g(t) = sin πt which has three roots c1 = −1, c2 = 0, and c3 = +1 in
the range of integration. Thus, with g′(t) = π cos πt, we have

∫ +π/2

−π/2

(t + 1)2 δ(sin πt) dt =
3∑

k=1

f(ck)

|g′(ck)| =
3∑

k=1

(ck + 1)2

|π cos(ckπ)|

=
(−1 + 1)2

|π cos(−π)| +
(0 + 1)2

|π cos(0)| +
(1 + 1)2

|π cos(π)| =
5

π
.

Some other concrete examples are:
∫ +∞

−∞
sin |t| δ(t2 − π2/4) dt = 2/π,

∫ +∞

−∞
cos x δ(x2 − π2) dx = −1/π,

∫ ∞

0

ln z δ(z2 − 1) dz = 0,

∫ +3

−∞
cos y δ(y2 + π2) dy = 0,

∫ +π

−π

(t + 1)2 δ(sin πt) dt = 35/π,

∫ +∞

−∞
f(t) δ(et − 1) dt = f(0),

∫ ∞

0

ln x δ(10x2 + 3x − 1) dx = −0.23,

∫ +∞

−∞
f(t) δ(et) dt = 0.

The reader is urged to derive all the above relations. �
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Historical Notes

“Physical laws should have mathematical beauty.” This statement was Dirac’s re-
sponse to the question of his philosophy of physics, posed to him in Moscow in 1955.
He wrote it on a blackboard that is still preserved today.

Paul Adrien Maurice Dirac (1902–1984), was born in 1902 in Bristol, Eng-
land, of a Swiss, French-speaking father and an English mother. His father, a
taciturn man who refused to receive friends at home, enforced young Paul’s silence
by requiring that only French be spoken at the dinner table. Perhaps this explains
Dirac’s later disinclination toward collaboration and his general tendency to be a
loner in most aspects of his life. The fundamental nature of his work made the
involvement of students difficult, so perhaps Dirac’s personality was well-suited to
his extraordinary accomplishments.

Dirac went to Merchant Venturer’s School, the public school where his father
taught French, and while there displayed great mathematical abilities. Upon grad-
uation, he followed in his older brother’s footsteps and went to Bristol University to
study electrical engineering. He was 19 when he graduated from Bristol University
in 1921. Unable to find a suitable engineering position due to the economic reces- “The amount of

theoretical ground
one has to cover
before being able
to solve problems
of real practical
value is rather
large, but this
circumstance is an
inevitable
consequence of
the fundamental
part played by
transformation
theory and is likely
to become more
pronounced in the
theoretical physics
of the future.”
P.A.M. Dirac
(1930)

sion that gripped post-World War I England, Dirac accepted a fellowship to study
mathematics at Bristol University. This fellowship, together with a grant from the
Department of Scientific and Industrial Research, made it possible for Dirac to go
to Cambridge as a research student in 1923. At Cambridge Dirac was exposed to
the experimental activities of the Cavendish Laboratory, and he became a member
of the intellectual circle over which Rutherford and Fowler presided. He took his
PhD in 1926 and was elected in 1927 as a fellow. His appointment as university
lecturer came in 1929. He assumed the Lucasian professorship following Joseph
Larmor in 1932 and retired from it in 1969. Two years later he accepted a position
at Florida State University where he lived out his remaining years. The FSU library
now carries his name.

In the late 1920s the relentless march of ideas and discoveries had carried physics
to a generally accepted relativistic theory of the electron. Dirac, however, was dis-
satisfied with the prevailing ideas and, somewhat in isolation, sought for a better
formulation. By 1928 he succeeded in finding an equation, the Dirac equation, that
accorded with his own ideas and also fitted most of the established principles of the
time. Ultimately, this equation, and the physical theory behind it, proved to be
one of the great intellectual achievements of the period. It was particularly remark-
able for the internal beauty of its mathematical structure, which not only clarified
previously mysterious phenomena such as spin and the Fermi–Dirac statistics
associated with it, but also predicted the existence of an electron-like particle of
negative energy, the antielectron, or positron, and, more recently, it has come to
play a role of great importance in modern mathematics, particularly in the inter-
relations between topology, geometry, and analysis. Heisenberg characterized the
discovery of antimatter by Dirac as “the most decisive discovery in connection with
the properties or the nature of elementary particles . . . . This discovery of particles
and antiparticles by Dirac . . . changed our whole outlook on atomic physics com-
pletely.” One of the interesting implications of his work that predicted the positron

Paul Adrien
Maurice Dirac

1902–1984

was the prediction of a magnetic monopole. Dirac won the Nobel Prize in 1933 for
this work.

Dirac is not only one of the chief authors of quantum mechanics, but he is
also the creator of quantum electrodynamics and one of the principal architects of
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quantum field theory. While studying the scattering theory of quantum particles, he
invented the (Dirac) delta function; in his attempt at quantizing the general theory
of relativity, he founded constrained Hamiltonian dynamics, which is one of the most
active areas of theoretical physics research today. One of his greatest contributions
is the invention of the bra 〈 | and ket | 〉 notation used in quantum theory.

While at Cambridge, Dirac did not accept many research students. Those who
worked with him generally thought that he was a good supervisor, but one who
did not spend much time with his students. A student needed to be extremely
independent to work under Dirac. One such student was Dennis Sciama, who later
became the supervisor of Stephen Hawking, the current holder of the Lucasian chair.

Salam and Wigner in their Preface to the Festschrift that honors Dirac on his
seventieth birthday and commemorates his contributions to quantum mechanics
succinctly assessed the man:

Dirac is one of the chief creators of quantum mechanics.... Posterity
will rate Dirac as one of the greatest physicists of all time. The present
generation values him as one of its greatest teachers.... On those privi-
leged to know him, Dirac has left his mark . . . by his human greatness.
He is modest, affectionate, and sets the highest possible standards of
personal and scientific integrity. He is a legend in his own lifetime and
rightly so.

(Taken from Schweber, S. S. “Some chapters for a history of quantum field theory:
1938–1952,” in Relativity, Groups, and Topology II, vol. 2, B. S. DeWitt and R.
Stora, eds., North-Holland, Amsterdam, 1984.)

5.1.3 The Step Function

The step function θ is defined as

θ(x) =

{
1 if x > 0
0 if x < 0

(5.17)

The θ function (as it is often called) is useful in writing functions that have
discontinuities or cusps. For instance, absolute values can be written in terms
of the step function:

|x| = xθ(x) − xθ(−x) or |x − y| = (x − y)[θ(x − y) − θ(y − x)]

A piecewise continuous function such as

g(x) =

{
g1(x) if 0 < x < 1
g2(x) if x > 1

(5.18)

can be written as

g(x) = g1(x)θ(x)θ(1 − x) + g2(x)θ(x − 1)
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Because θ is constant everywhere except at 0, its derivative is zero ev-
erywhere except at 0. The discontinuity at 0 makes the derivative infinite
there: step function and

its relation to
delta functionθ′(0) = lim

ε→0

θ(ε) − θ(−ε)
2ε

= lim
ε→0

1 − 0
2ε

→ ∞

This strongly suggests the identification of the derivative of the step function
as the Dirac delta function. In fact, noting that

θ(x − x0) =

{
1 if x > x0

0 if x < x0,
(5.19)

and the fact that θ′(x − x0) is zero everywhere except at x0, for any well-
behaved function f(x) we obtain

∫ ∞

−∞
f(x)θ′(x − x0) dx =

∫ x0+ε

x0−ε
f(x)θ′(x − x0) dx ≈ f(x0)

∫ x0+ε

x0−ε
θ′(x − x0) dx

= f(x0) θ(x − x0)|x0+ε
x0−ε = f(x0)[θ(ε)︸︷︷︸

=1

− θ(−ε)
︸ ︷︷ ︸

=0

] = f(x0)

We thus have another important representation of the Dirac delta function:

δ(x − x0) = θ′(x − x0) (5.20)

Example 5.1.6. For positive a, tanh(ax) goes to 1 as x → ∞ and to −1 as
x → −∞ and it makes a smooth transition from one of these asymptotic values to
the other. This transition gets steeper and steeper for larger and larger values of a.
This suggests the following relation:

θ(x − x0) = 1
2

lim
a→∞

{1 + tanh[a(x − x0)]}

Let θa(x − x0) stand for the function on the right-hand side for any finite positive
a. Then

θ′
a(x − x0) =

1

2

d

dx
{1 + tanh[a(x − x0)]} =

a sech2[a(x − x0)]

2

and

∫ ∞

−∞
θ′

a(x − x0) dx = θa(x − x0)|∞−∞ = 1
2
{1 + tanh[a(x − x0)]}|∞−∞ = 1

for any value of a > 0, in particular for a → ∞. Thus, we get yet another represen-
tation of the Dirac delta function:

δ(x − x0) = lim
a→∞

θ′
a(x − x0) = lim

a→∞

a sech2[a(x − x0)]

2 �
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5.2 Two-Variable Case

We can generalize the discussion of the previous section to the case of many
variables. For example, in two dimensions using Cartesian coordinates, we
can define the functions δn as

δn(x− x0, y − y0) = Ce−n
[
(x−x0)

2+(y−y0)
2
]

= Ce−n(x−x0)
2
e−n(y−y0)

2
, (5.21)

where C is a constant to be determined in such a way as to make the integral
of δn over the entire xy-plane equal to one. A simple calculation will show
that C = n/π. This constant is simply the product of two “one-dimensional
constants”: one for the exponential in x and the other for the exponential in y.
This is as expected, because δn(x− x0, y − y0) is defined to be the product of
two one-dimensional δn’s. Such a simplicity is the result of the coordinate sys-
tems we have used and does not prevail in other—non-Cartesian—coordinate
systems, for which the constant C must be evaluated separately.

It should be clear from (5.21) that as n increases, the height of δn at
(x0, y0) increases while its width decreases (see Figure 5.5). What may not be
clear is that this reciprocal behavior takes place in such a way as to keep the
volume under the surface equal to one. We can define—as we did in the one
dimensional case—a surface density function as a function whose integralsurface density

function over the entire plane is one. For any n, then, δn will be a surface density
function.

The passage to the two-dimensional Dirac delta function is now clear:two-dimensional
Dirac delta
function δ(x − x0, y − y0) ≡ lim

n→∞
δn(x − x0, y − y0). (5.22)

The two-dimensional Dirac delta function above is zero everywhere except at
(x0, y0) where it is infinite. Thus for the Dirac delta function not to be zero
both of its arguments must be zero. It is convenient to define points P and P0

Figure 5.5: As n gets larger and larger, the two-dimensional Gaussian exponential

approaches the two-dimensional Dirac delta function. For the left bump, n = 400; for

the middle, n = 1000; and for the right spike n = 4000.
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with respective Cartesian coordinates (x, y) and (x0, y0), and position vectors
r = 〈x, y〉, r0 = 〈x0, y0〉, and write

δ(x − x0, y − y0) ≡ δ(r − r0) =

{
δ(�0) ≡ δ(0, 0) = ∞ if r = r0,

0 otherwise.
(5.23)

This means

Box 5.2.1. The two-dimensional Dirac delta function is zero everywhere
except at the point which makes both of its arguments zero, in which case
the two-dimensional Dirac delta function is infinite.

We noted above that in Cartesian coordinates—and only in Cartesian
coordinates—the product of two one-dimensional δn’s gave rise to a two-
dimensional δn which subsequently yielded the two-dimensional Dirac delta
function. Thus only in Cartesian coordinates can we conclude that

δ(r − r0) = δ(x − x0, y − y0) = δ(x − x0) δ(y − y0). (5.24)

We shall see that in polar coordinates, the two-dimensional delta function
is not merely the product of two one-dimensional delta functions, but some
other factor is also present.

The density property of the two-dimensional Dirac delta function survives
the n → ∞ process because the integral of δn is independent of n. On the
other hand, the delta function is zero everywhere except at the point which
makes both of its arguments zero. Therefore, for any two-dimensional region
Ω, we have

∫∫

Ω

δ(r − r0) da(r) =

{
1 if P0 is in Ω,

0 otherwise.
(5.25)

Equation (5.25) is written independently of coordinates, and as such, the
vector arguments are to be interpreted as coordinates not components. We
can use this equation in polar coordinates to write the two-dimensional Dirac
delta function as a product of two one-dimensional delta functions. First
write2

δ(r − r0) = Cδ(ρ − ρ0)δ(ϕ − ϕ0).

2We use ρ and ϕ instead of the more common r and θ because we have reserved the
latter for the three-dimensional spherical coordinates. There is no danger of confusing the
pair (ρ, ϕ) with the corresponding pair in cylindrical coordinates because the two pairs are
identical.



156 Dirac Delta Function

Now substitute this in Equation (5.25) with Ω being the entire plane, and
note that da = ρ dρ dϕ:

1 =
∫∫

Ω

Cδ(ρ − ρ0)δ(ϕ − ϕ0) ρ dρ dϕ

= C

∫ ∞

0

δ(ρ − ρ0)ρ dρ

∫ 2π

0

δ(ϕ − ϕ0) dϕ

︸ ︷︷ ︸
=1

= Cρ0 ⇒ C =
1
ρ0

.

In the above derivation, we have used properties of the one-dimensional delta
function as applied to δ(ρ − ρ0) and δ(ϕ − ϕ0).

Box 5.2.2. The two-dimensional Dirac delta function can be written in
polar coordinates as

δ(r − r0) =
1
ρ0

δ(ρ − ρ0)δ(ϕ − ϕ0) =
1
ρ
δ(ρ − ρ0)δ(ϕ − ϕ0). (5.26)

The last equality follows because the Dirac delta function in ρ forces ρ and
ρ0 to be equal.

A collection of point physical quantities Q1, Q2, . . . , Qn located on a sur-
face can be described by a surface density σQ(r) using the two-dimensional
Dirac delta function:surface density

and
two-dimensional
delta function

σQ(r) =
n∑

k=1

Qk δ(r − rk), (5.27)

where rk is the position vector of Qk. This equation can be rewritten as

σQ(x, y) =
n∑

k=1

Qk δ(x − xk)δ(y − yk)

in Cartesian coordinates, and as

σQ(ρ, ϕ) =
n∑

k=1

Qk

ρk
δ(ρ − ρk)δ(ϕ − ϕk) =

1
ρ

n∑

k=1

Qk δ(ρ − ρk)δ(ϕ − ϕk)

in polar coordinates.

Example 5.2.1. With an appropriate choice of the origin and the axes of a Carte-
sian coordinate system, the surface charge density for four charges q1, q2, q3, q4 lo-
cated at the four corners of a square of sides 2a can be written as

σq(x, y) =

4∑

k=1

qkδ(x − xk)δ(y − yk)

= q1δ(x − a)δ(y − a) + q2δ(x + a)δ(y − a)

+ q3δ(x + a)δ(y + a) + q4δ(x − a)δ(y + a).



5.2 Two-Variable Case 157

If polar coordinates are used, the surface charge density becomes

σq(ρ, ϕ) =

4∑

k=1

qk

ρk
δ(ρ − ρk)δ(ϕ − ϕk)

=
δ(ρ −

√
2 a)√

2 a

{
q1δ(ϕ − π/4) + q2δ(ϕ − 3π/4)

+ q3δ(ϕ − 5π/4) + q4δ(ϕ − 7π/4)
}

.

The reader is urged to study these two equations carefully and make sure to under-
stand the details of their derivation. �

A more interesting example is the two-dimensional ionic crystal.

Example 5.2.2. Suppose positive and negative charges ±q are arranged on an
infinite square grid in such a way that the nearest neighbors of each charge have
charges of opposite sign, i.e., charges alternate both horizontally and vertically (see
Figure 5.6). Assume that the distance between each charge and its nearest neighbor
is a, and that we place our Cartesian origin at the location of a positive charge.
Then the surface charge density can be written as two-dimensional

ionic crystal

σq(x, y) = q

∞∑

i=−∞

∞∑

j=−∞
(−1)i+jδ(x − ia)δ(y − ja).

For a finite 2M × 2N grid one substitutes the first infinity with M and the second
one with N . Similarly, one can consider rectangular units of sides a and b for the
grid. Then one should change the second argument of the delta function (or the
argument of the delta function corresponding to y) to y − jb. �

With an extra dimension at our disposal, we can invent many new vari-
eties of distribution of point physical quantities that were not possible in one
dimension. For example, we can put the points on a curve in the xy-plane.
It is instructive to find the surface density of such a collection of points. The
following example examines this problem.

Figure 5.6: A two-dimensional ionic crystal.
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x

y

Figure 5.7: Point charges located on a curve in the xy-plane.

Example 5.2.3. For concreteness, we consider n point charges located at n points
{Pk}n

k=1 with Pk having Cartesian coordinates (xk, yk). These points are assumed
to be on a curve with the Cartesian equation y = f(x) as shown in Figure 5.7. The
surface charge density in Cartesian coordinates becomes

σq(x, y) =

n∑

k=1

qkδ(x − xk)δ(y − yk) =

n∑

k=1

qkδ(x − xk)δ
(
y − f(xk)

)
.

If the curve is given as ρ = g(ϕ), then polar coordinates are more appropriate,
and the surface charge density will be3

σq(ρ,ϕ) =

n∑

k=1

qk

ρk
δ(ρ − ρk)δ(ϕ − ϕk) =

n∑

k=1

qk

g(ϕk)
δ(ρ − g(ϕk)) δ(ϕ − ϕk).

For instance, if the charges are located on a circle of radius a each separated from
its nearest neighbor by an angle α, with the first charge on the x-axis, then

σq(ρ, ϕ) =
δ(ρ − a)

a

n∑

k=1

qkδ(ϕ − (k − 1)α),

where we have used the fact that g(ϕ) = a for a circle of radius a. �

All the properties of the delta function can be generalized to two dimen-
sions. One important property is given in Equation (5.10).

Box 5.2.3. Let Ω be a region in the xy-plane and P0 a point there; then

∫∫

Ω

f(r)δ(r − r0) da =

{
f(r0) ≡ f(x0, y0) if P0 is in Ω,

0 otherwise,
(5.28)

where (x0, y0) are the Cartesian coordinates of P0.

3Because of the two delta functions, one can substitute ρ for ρk and ϕ for ϕk in the
denominators.
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Differentiating both sides with respect to the first argument x0, we easily
obtain the analog of Equation (5.12):

∫∫

Ω

f(r)∂1δ(r − r0) da =

{
−∂1f(r0) ≡ −∂1f(x0, y0) if P0 is in Ω,

0 otherwise,

with a similar relation for differentiation with respect to the second argument.
We can combine the two relations into a single relation:

Box 5.2.4. The derivative of the Dirac delta function in two dimensions
satisfies

∫∫

Ω

f(r)∂iδ(r − r0) da =

{
−∂if(r0) ≡ −∂if(x0, y0) if P0 is in Ω,

0 otherwise,

where i can be 1 or 2, ∂1 = ∂x and ∂2 = ∂y.

5.3 Three-Variable Case

Once the generalization to two variables is realized, the three—and more—
variable cases become trivial. In fact, we had such generalizations in mind
when we wrote most of the formulas in the last section: All that is needed
is to change da to dV and keep in mind that the vectors r and r0 have
three components, and points in space have three coordinates. Nevertheless,
we shall summarize the most important properties of the three-dimensional
Dirac delta function.

First we note that

δ(r − r0) =

{
δ(�0) ≡ δ(0, 0, 0) = ∞ if r = r0,

0 otherwise.
(5.29)

This means

Box 5.3.1. The three-dimensional Dirac delta function is zero everywhere
except at the point which makes all three of its arguments zero in which
case it is infinite.

In Cartesian coordinates, we have 3D Dirac delta
function in
Cartesian
coordinates

δ(r − r0) = δ(x − x0, y − y0, z − z0)
= δ(x − x0) δ(y − y0) δ(z − z0). (5.30)
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An argument similar to the two-dimensional case can be used to show that3D Dirac delta
function in
cylindrical and
spherical
coordinates

Box 5.3.2. In cylindrical coordinates

δ(r − r0) =
1
ρ0

δ(ρ − ρ0)δ(ϕ − ϕ0)δ(z − z0), (5.31)

where r and r0 on the LHS are to be understood as cylindrical coordi-
nates, not cylindrical position vectors. The corresponding formula for the
spherical coordinate system is

δ(r − r0) =
1

r2
0 sin θ0

δ(r − r0)δ(θ − θ0)δ(ϕ − ϕ0), (5.32)

with r and r0 representing the coordinates (r, θ, ϕ) and (r0, θ0, ϕ0), re-
spectively.

The density property of the three-dimensional Dirac delta function is given
by

∫∫

Ω

δ(r − r0) dV (r) =

{
1 if P0 is in Ω,

0 otherwise,
(5.33)

where Ω is a region of space and P0 is the point with Cartesian coordi-
nates (x0, y0, z0), spherical coordinates (r0, θ0, ϕ0), and cylindrical coordinates
(ρ0, ϕ0, z0). Similarly,

Box 5.3.3. If Ω is a region of space, then for a “good” function f(r),

∫∫

Ω

f(r)δ(r − r0) dV (r) =

{
f(r0) if P0 is in Ω,

0 otherwise.

Thus integration reduces to the evaluation of the function f at the coordi-
nates of P0.

The density property allows us to write the distribution of discrete physical
quantities in terms of the three-dimensional Dirac delta function. In general,volume density

and 3D delta
function

ρQ(r) =
n∑

k=1

Qkδ(r − rk) (5.34)

which can be rewritten as

ρQ(x, y, z) =
n∑

k=1

Qkδ(x − xk)δ(y − yk)δ(z − zk)
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in Cartesian coordinates, as

ρQ(ρ, ϕ, z) =
n∑

k=1

Qk

ρk
δ(ρ − ρk)δ(ϕ − ϕk)δ(z − zk)

in cylindrical coordinates, and as

ρQ(r, θ, ϕ) =
n∑

k=1

Qk

r2
k sin θk

δ(r − rk)δ(θ − θk)δ(ϕ − ϕk)

in the spherical coordinate system. In fact, the linear and surface distributions
of a physical quantity involving the Dirac delta function are special cases of
the volume distribution. For instance, a collection of point quantities in the
xy-plane can be described by the volume density

ρQ(x, y, z) =
n∑

k=1

Qkδ(x − xk)δ(y − yk)δ(z)

= δ(z)
n∑

k=1

Qkδ(x − xk)δ(y − yk).

The delta function outside the sum restricts the z-coordinates of point quan-
tities to zero, and thus their location, to the xy-plane. Similarly,

ρQ(r, θ, ϕ) =
δ(r − a)

a2

n∑

k=1

Qk

sin θk
δ(θ − θk)δ(ϕ − ϕk)

describes a distribution of n point quantities on a sphere of radius a.

Example 5.3.1. Let us calculate the electrostatic field of the one-dimensional
infinite ionic crystal in Cartesian coordinates. Assume that the charges are located
on the z-axis (Figure 5.8). We treat this as a three-dimensional charge distribution
with density

ρq(x, y, z) = q
∞∑

k=−∞
(−1)k δ(x)δ(y)δ(z − ka). (5.35)

x

y

z

P

Figure 5.8: The geometry for the calculation of the electrostatic field of the one-

dimensional ionic crystal.
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The first two delta functions restrict the charges to the z-axis and the third locates
them. This density is to be substituted in the equation for the electric field in
Cartesian coordinates. Let us concentrate on the x-component

Ex(x, y, z) = ke

∫∫

Ω

ρq(x
′, y′, z′)(x − x′) dx′ dy′ dz′

{(x − x′)2 + (y − y′)2 + (z − z′)2}3/2
.

We can always take Ω to be the entire space because the delta function will restrict
the integration to the region of charges automatically. We can also choose our
coordinate system so that the field point lies in the xz-plane, i.e., y = 0. Note that
we have to prime all the arguments of ρq before we substitute it in the integral.
Having done this, we obtain

Ex(x, y, z) = keq
∞∑

k=−∞
(−1)k

∫∫

Ω

(x − x′)δ(x′)δ(y′)δ(z′ − ka) dx′ dy′ dz′

{(x − x′)2 + y′2 + (z − z′)2}3/2
.

Using Box 5.3.3, noting that

f(x′, y′, z′) =
(x − x′)

{(x − x′)2 + y′2 + (z − z′)2}3/2
,

and that the result of integration is the evaluation of f at x′ = 0 = y′, z′ = ka, we
obtain

Ex(x, y, z) = keq
∞∑

k=−∞
(−1)k x

{x2 + (z − ka)2}3/2

= keq

−1∑

k=−∞
(−1)k x

{x2 + (z − ka)2}3/2

+ keq
x

(x2 + z2)3/2
+ keq

∞∑

k=+1

(−1)k x

{x2 + (z − ka)2}3/2
,

where we have broken up the summation into three pieces, a permissible act as long
as the series converges. We can combine the first and third terms by changing k to
−k in the first and noting that

(−1)−k =
1

(−1)k
= (−1)k.

Doing so, we get

Ex(x, 0, z) = keq
x

(x2 + z2)3/2

+ keq

∞∑

k=1

(−1)k

(
x

{x2 + (z + ka)2}3/2
+

x

{x2 + (z − ka)2}3/2

)

.

The other components of the field can be found similarly:

Ey(x, 0, z) = 0,

Ez(x, 0, z) = keq
z

(x2 + z2)3/2
(5.36)

+ keq
∞∑

k=1

(−1)k

(
z + ka

{x2 + (z + ka)2}3/2
+

z − ka

{x2 + (z − ka)2}3/2

)

.
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Let us further simplify the problem by positioning the field point on the x-axis,
i.e., setting z = 0. This reduces the above expressions to

Ex(x, 0, 0) = keq
x

|x|3 + 2keq
∞∑

k=1

(−1)k x

(x2 + k2a2)3/2
,

Ey(x, 0, 0) = 0,

Ez(x, 0, 0) = keq
∞∑

k=1

(−1)k

(
ka

{x2 + (ka)2}3/2
+

−ka

{x2 + (−ka)2}3/2

)

= 0.

At a distance a from the origin on the x-axis, the field strength is

Ex(x, 0, 0) =
keq

a2

{

1 + 2
∞∑

k=1

(−1)k

(1 + k2)3/2

︸ ︷︷ ︸
=−0.286269

}

= 0.42746
keq

a2
,

Ey(x, 0, 0) = 0,

Ez(x, 0, 0) = 0,

where the numerical value for the sum—accurate to six decimal places—is obtained
by adding its first 150 terms.

Another useful quantity is the electrostatic potential which for an arbitrary
charge distribution is given by

Φ(r) = ke

∫∫

Ω

dq(r′)

|r − r′| . (5.37)

For the one-dimensional crystal, with the volume charge density of Equation (5.35),
the electrostatic potential at an arbitrary point (x, y, z) in space becomes

Φ(x, y, z) = ke

∫∫

Ω

ρq(x
′, y′, z′) dx′ dy′ dz′

√
(x − x′)2 + (y − y′)2 + (z − z′)2

= keq
∞∑

k=−∞
(−1)k

∫∫

Ω

δ(x′)δ(y′)δ(z′ − ka) dx′ dy′ dz′
√

(x − x′)2 + (y − y′)2 + (z − z′)2

= keq

∞∑

k=−∞

(−1)k

√
x2 + y2 + (z − ka)2

.

If we are interested in the potential at a specific point such as (x, 0, 0), the
expression simplifies to

Φ(x, 0, 0) = keq

∞∑

k=−∞

(−1)k

√
x2 + k2a2

= keq
1√
x2

+ 2keq

∞∑

k=1

(−1)k

√
x2 + k2a2

=
keq

|x| + 2keq
∞∑

k=1

(−1)k

√
x2 + k2a2

.
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For x = a, this further simplifies to

Φ(a, 0, 0) =
keq

a

{

1 + 2
∞∑

k=1

(−1)k

√
1 + k2

︸ ︷︷ ︸
=−0.4409

}

= 0.1182
keq

a
.

We note that the potential is positive, because the field point is closest to the positive
charge at the origin. To obtain the numerical value of the sum accurate to only four
decimal places, we have to add at least 40,000 terms! This sum is, therefore, much
less convergent than the sum encountered in the evaluation of Ex above. �

An important physical quantity for real crystals is the potential energy U
of the crystal. Physically, this is the amount of energy required to assemble
the charges in their final configuration. A positive potential energy corre-
sponds to positive energy stored in the system, i.e., a tendency for the system
to provide energy to the outside, once disrupted slightly from its equilibrium
position. A negative potential energy is a sign of the stability of the system,
i.e., the tendency for the system to restore its original configuration if dis-
rupted slightly from its equilibrium position.4 It is shown in electrostatics
that the potential energy of a system located within the region Ω is

U =
1
2

∫∫

Ω

dq(r)Φ(r). (5.38)

Example 5.3.2. Let us calculate the electrostatic potential energy of the one-electrostatic
potential energy of
a one-dimensional
crystal

dimensional crystal. Let us assume that there are a total of 2N+1 charges stretching
from z = −Na to z = +Na with a positive charge at the origin. Eventually we
shall let N go to infinity, but, in order not to deal explicitly with infinities, we
assume that N is finite but large. Substituting in (5.38) the element of charge in
terms of volume density, and electrostatic potential found in the previous example,
we find

U =
1

2

∫∫

Ω

ρq(x, y, z)Φ(x, y, z) dx dy dz

=
1

2

∫∫

Ω

{

q
N∑

j=−N

(−1)j δ(x)δ(y)δ(z − ja)

}

×
{

keq

N∑

k=−N

(−1)k

√
x2 + y2 + (z − ka)2

}

dx dy dz

=
keq

2

2

N∑

j=−N

N∑

k=−N
k �=j

(−1)j+k

√
(ja − ka)2

.

4A system that has negative potential energy requires some positive energy (such as
kinetic energy of a projectile) to reach a state of zero potential energy corresponding to
dissociation of its parts and their removal to infinity (where potential energy is zero).
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The restriction k �= j is necessary, because the k = j terms correspond to the
interaction energy of each charge with itself, and should be excluded. Continuing
with the calculation, we write

U =
keq

2

2a

N∑

j=−N

N∑

k=−N
k �=j

(−1)j+k

|j − k|

=
keq

2

2a

N∑

j=−N

⎧
⎨

⎩

j−1∑

k=−N

(−1)j+k

j − k
+

N∑

k=j+1

(−1)j+k

k − j

⎫
⎬

⎭
.

In the first inner sum, let j − k = m, and in the second let k − j = m. These
substitutions change the limits of the sums, and we get

U =
keq

2

2a

N∑

j=−N

{
1∑

m=N+j

(−1)2j−m

m
+

N−j∑

m=1

(−1)2j+m

m

}

=
keq

2

2a

N∑

j=−N

{
N+j∑

m=1

(−1)m

m
+

N−j∑

m=1

(−1)m

m

}

.

To evaluate the inner sums, denoted by S, we now assume that N is very large—
compared to j—so that N − j ≈ N ≈ N + j. Then the inner sum yields5

S =

N+j∑

m=1

(−1)m

m
+

N−j∑

m=1

(−1)m

m
≈

N∑

m=1

(−1)m

m
+

N∑

m=1

(−1)m

m

= 2
N∑

m=1

(−1)m

m
≈ −2

∞∑

m=1

(−1)m+1

m
= −2 ln 2.

Substituting S in the expression for U , we get

U ≈ keq
2

2a

N∑

j=−N

(−2 ln 2) = −keq
2

a
ln 2

N∑

j=−N

1 = −(2N + 1)
keq

2

a
ln 2.

The negative sign indicates that the one-dimensional salt crystal is stable. A useful
quantity used in solid-state physics is ionization energy per molecule which is defined
to be the potential energy divided by the number of molecules. Noting that the
number of molecules is half the number of particles, we obtain

u ≡ U/N = −2N + 1

N

keq
2

a
ln 2 ≈ −keq

2

a
2 ln 2 ≡ −α

keq
2

a
.

A real three-dimensional salt crystal has exactly the same expression. However, Madelung
constantthe constant α, called the Madelung constant has the value of 1.747565 instead

of 2 ln 2 = 1.386294. (See Problem 5.17 for an alternative way of calculating the
potential energy of the one-dimensional ionic crystal.) �

5We are really cheating here! The sum over j indicates that j can assume values close to
N , and therefore, the approximation is not valid for such j’s. However, a careful analysis,
in which one breaks up the sum over j and separates large and small values of j, shows that
the original approximation is valid as long as N is large enough.
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5.4 Problems

5.1. Plot the distribution on the real line of each of the following electric
linear charge densities:

(a) λ(x) = δ(x − 2). (b) λ(x) = −δ(x + 1).
(c) λ(x) = 5δ(x) − 3δ(x + 3). (d) λ(x) = δ(x + 1) + 3δ(x − 1).

5.2. Evaluate the following integrals:

(a)
∫ ∞

0

ex sin
πx

2
δ(x2 − 1) dx. (b)

∫ 2

−2

ex sin
πx

2
δ(x2 − 1) dx.

(c)
∫ ∞

0

ex sin
πx

2
δ(x3 + 1) dx. (d)

∫ ∞

−∞
sin

(
πex

2

)

δ(x4 + 1) dx.

(e)
∫ ∞

0

sin−1(1/x)δ(x4 − 1) dx. (f)
∫ ∞

−∞
cos(πx)δ(6x2 − x − 1) dx.

(g)
∫ ∞

−0.1

sin
(

πex

2

)

δ(x2 + x) dx. (h)
∫ ∞

−∞
ex sin

πx

2
δ(ex sin

πx

2
) dx.

(i)
∫ 5

0

esin xδ(cosx) dx. (j)
∫ ∞

0

sin−1

(
1
x

)

δ(x4 − 4) dx.

(k)
∫ ∞

−∞
ex sin

πx

3
δ(4x2 − 1) dx. (l)

∫ ∞

−∞
ln(1 + x) sin

πx

2
δ(x3 − 1) dx.

(m)
∫ ∞

−∞
sin

πex

2
δ(x3 + 1) dx.

5.3. Show that
∫ +∞

−∞
f(x)δ′(x − x0) dx = −f ′(x0)

and
∫ +∞

−∞
f(x)δ′(g(x)) dx = −

∫ +∞

−∞
f ′(x)δ(g(x)) dx.

5.4. Evaluate the following integrals:

(a)
∫ ∞

0

ex sin
πx

2
δ′(x2 − 1) dx. (b)

∫ 2

−2

ex sin
πx

2
δ′(x2 − 1) dx.

(c)
∫ ∞

0

ex sin
πx

2
δ′(x3 + 1) dx. (d)

∫ ∞

−∞
sin

(
πex

2

)

δ′(x4 + 1) dx.

(e)
∫ ∞

0

sin−1(1/x)δ′(x4 − 1) dx. (f)
∫ ∞

−∞
cos(πx)δ′(6x2 − x − 1) dx.
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(g)
∫ ∞

−0.1

sin
(

πex

2

)

δ′(x2 + x) dx. (h)
∫ ∞

−∞
ex sin

πx

2
δ′(ex sin

πx

2
) dx.

(i)
∫ 5

0

esin xδ′(cosx) dx. (j)
∫ ∞

0

sin−1

(
1
x

)

δ′(x4 − 4) dx.

(k)
∫ ∞

−∞
ex sin

πx

3
δ′(4x2 − 1) dx. (l)

∫ ∞

−∞
ln(1 + x) sin

πx

2
δ′(x3 − 1) dx.

(m)
∫ ∞

−∞
sin

πex

2
δ′(x3 + 1) dx.

5.5. Use integration by parts (or differentiation with respect to x0) to show
that ∫ +∞

−∞
f(x)δ′′(x − x0) dx = f ′′(x0)

and ∫ +∞

−∞
f(x)δ′′′(x − x0) dx = −f ′′′(x0)

and, in general,
∫ +∞

−∞
f(x)δ(n)(x − x0) dx = (−1)nf (n)(x0)

where δ(n) and f (n) represent the nth derivatives.

5.6. Derive Equation (5.16). Hint: Use the result of Problem 5.3.

5.7. Six point charges of equal strength q are equally spaced on a circle of
radius a. What is the volume charge density describing such a distribution in
cylindrical coordinates?

5.8. Convince yourself that

σq(x, y) = q

∞∑

i=−∞

∞∑

j=−∞
(−1)i+jδ(x − ia)δ(y − ja)

indeed describes a two-dimensional ionic crystal. Pay particular attention to
the power of (−1).

5.9. Derive Equations (5.31) and (5.32).

5.10. Plot (or describe) the distribution in space of each of the following
volume charge densities:

ρq(x, y, z) = δ(x)δ(y) {2δ(z) − 3δ(z + 3)} ,

ρq(x, y, z) = 5δ(x + 1)δ(y − 1) {δ(z − 1) − δ(z + 1)} ,
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ρq(ρ, ϕ, z) = −2δ(ρ− 3)δ(ϕ − π)δ(z),

ρq(ρ, ϕ, z) = 2δ(ϕ − π/4)δ(z)

{
10∑

k=1

(−1)k+1δ(ρ − 0.5k)

}

,

ρq(r, θ, ϕ) = 2δ(ϕ − π/4)δ(r − 2)

{
10∑

k=1

(−1)k+1δ
(
θ − π

20
k
)
}

,

ρq(r, θ, ϕ) = 2δ(θ − π/4)δ(r − 2)

{
20∑

k=1

(−1)k+1δ
(
ϕ − π

10
k
)
}

.

5.11. Derive Equation (5.36).

5.12. Plot θ(t)θ(1 − t), θ(t) − θ(−t), and θ(t2 + 1) for −∞ < t < +∞.

5.13. Write θ(t2 − 1) as a product of two step functions.

5.14. For the two-dimensional ionic crystal shown in Figure 5.6:
(a) write the volume charge density describing the distribution (charges are
in the xy-plane);
(b) calculate the electrostatic field at (0, 0, a); and
(c) calculate the electrostatic potential at an arbitrary point in space with
coordinates (x, y, z).
(d) Show that the ionization energy is of the form −αkeq

2/a with α given in
terms of a sum.
(e) Numerically evaluate α.

5.15. For the three-dimensional ionic crystal:
(a) write the volume charge density describing the distribution; and
(b) calculate the electrostatic potential at an arbitrary point in space with
coordinates (x, y, z).
(c) Show that the ionization energy is of the form −αkeq

2/a with α given in
terms of a sum.
(d) Numerically evaluate α.

5.16. Two electric charges +q and −q are located at P1 and P2 with position
vectors r1 and r2.
(a) Write the volume charge density describing these charges.
(b) Use (a) to find their dipole moment defined by

∫∫∫
r′dq(r′).

5.17. The electric charge density of the one-dimensional ionic crystal can be
written as ρ(r) =

∑N
i=−N qiδ(r − ri).

(a) Substitute this in Equation (5.38) and get

U =
1
2

N∑

i=−N

qiΦ(ri)
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(b) Assuming that N is very large (infinite), convince yourself that all products
qiΦ(ri) in the sum are equal (in particular the sign of the charge does not
matter). Therefore, U = 1

2 (2N + 1)q0Φ(r0), where the subscript denotes the
zeroth charge.
(c) Show that Φ(r0) =

∑N
j=−N keqj/|rj − r0|.

(d) Place the origin at the location of the zeroth charge, and assume that the
this charge is positive. Then, r0 = 0, rj = jaêz, and qj = −(−1)jq. Now
show that

U = −(N + 1
2 )q2ke

N∑

j=−N

(−1)j

|aj|

(e) By breaking up the sum into two parts show that

U = −(2N + 1)
q2ke

a

N∑

j=1

(−1)j

j

5.18. 2N charges of equal sign and magnitude q are arranged equally spaced
on a circle of radius a located in the xy-plane. Assume that the charge num-
bered 2N is at (a, 0, 0).
(a) Write the volume charge density of such a distribution in cylindrical co-
ordinates.
(b) Starting with an integral expression for the electric field, find the cylin-
drical components of the field at an arbitrary point P in space in terms of
a sum. The coordinates of P are (ρ, ϕ, z). Simplify your answer as much as
possible.
(c) Now let P have coordinates (2a, 0, 0). Show that all components of the
field are of the form (keq/a2)α. Express the α for each component in terms
of a sum. What do you expect the value of α to be? Can you find that value?
(d) For N = 3, i.e., six charges, calculate the numerical value of α in part (c)
for all components.

5.19. 2N + 1 charges of equal sign and magnitude q are arranged on the x-
axis of a Cartesian coordinate system as shown in Figure 5.9, with the zeroth
charge at the origin. The numbers below the axis are labels of the charges.
(a) From the pattern of the figure, determine the location of the kth charge
for −N ≤ k ≤ N .

x0123 −1 −2 −3

4a
a

9a

a
4a

9a

Figure 5.9: The charges and their distances on the x-axis.
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(b) Write a volume charge density in terms of the Dirac delta function de-
scribing such a charge distribution.
(c) Calculate the components of the electric field at a general point P with
coordinates (x, y, z).
(d) Now let P have coordinates (a, a, 0). Show that all components of the
field are of the form (keq/a2)α where α is a numerical factor. Find this factor
for each component.

5.20. 2N positive and negative charges of equal magnitude are arranged
equally spaced and alternating in sign on a circle of radius a.
(a) Write the expression of the volume charge density describing this charge
distribution.
(b) Find the ionization energy in the form −αkeq

2/a with α given in terms
of a sum. Simplify this sum as much as possible.



Part II

Algebra of Vectors





Chapter 6

Planar and Spatial Vectors

The preceding chapters made heavy use of vectors in the plane and in space.
The enormous utility of the concept of vectors has prompted mathematicians
and physicists to generalize this concept to include other objects that at first
glance have no resemblance whatsoever with the planar and spatial vectors.
In this chapter, we shall study this generalization in its limited form, i.e.,
only in an algebraic context. Although the analysis of vectors is discussed
in Chapters 12 through 17, it is confined to vectors in space. The analysis
of generalized vectors is the subject of differential geometry and functional
analysis that are beyond the scope of this book.1

There are many mathematical objects used in physics that allow for the
two operations of addition and multiplication by a number. The collection
of such objects is called a vector space. Thus, a vector space is a bunch vector spaces

definedof “things” having the property that when you add two “things” you get a
third one, and if you multiply a “thing” by a number you get another one of
those “things.” Furthermore, the operation of multiplication by a number and
addition of “things” is distributive, and a vector space always has a “thing”
that we call the zero vector.

Using the two operations of multiplication by a number and addition, we
can form a sum,

α1a1 + α2a2 + · · · + αnan, (6.1)

where α1, α2, . . . , αn, are real numbers and a1,a2, . . . ,an are vectors. The
sum in Equation (6.1) is called a linear combination of the n vectors and linear combination

α1, α2, . . . , αn are called the coefficients of the linear combinations. coefficients

1Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, discusses differential geometry and functional analysis in some detail.
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Box 6.0.1. If we can find some set of real numbers, α1, α2, . . . , αn (not
all of which are zero), such that the sum in (6.1) is zero, we say that the
vectors are linearly dependent. If no such set of real numbers can be
found, then the vectors are called linearly independent.

6.1 Vectors in a Plane Revisited

Before elaborating further on the generalization of vectors and their spaces,
it is instructive to revisit the familiar vectors in a plane from a point of view
suitable for generalization. We first discuss the notion of linear independence
as applied to vectors in the plane.

The two vectors êx and êy (sometimes denoted as i and j) are linearly
independent because αêx + βêy = 0 can be satisfied only if both α and β are
zero. If one of them, say α, were different from zero, one could divide the
equation by α and get

êx = −β

α
êy

which is impossible because êx and êy cannot lie along the same line.

Example 6.1.1. The arrows in the plane are not the only kinds of vectors dealt
with in physics. For instance, consider the set of all linear functions, or polynomials
of degree one (or less), i.e., functions of the form α0 + α1t where α0 and α1 are real
numbers and t is an arbitrary variable. Let us call this set P1[t], where P stands forpolynomials as

vectors? “polynomial,” 1 signifies the degree of these polynomials, and t is just the variable
used. We can add two such polynomials and get a third one of the same form. We
can multiply any such polynomial by a real number and get another polynomial. In
fact, P1[t] has all the properties of the vectors in a plane. We say that P1[t] and
the vectors in a plane are isomorphic which literally means they have the “same
shape.”

It is important to emphasize that two polynomials are equal if and only if all
their coefficients are equal. In particular, a polynomial is equal to zero only if it is so
for all values of t, i.e., only if its coefficients vanish. This immediately leads to the
fact that the two polynomials 1 and t are linearly independent because if α+βt = 0
(for all values of t), then α = β = 0 (try t = 0 and t = 1). �

It is easy to show that any three vectors in the plane are linearly dependent.proof of the fact
that any three
vectors in the
plane are linearly
dependent

Figure 6.1 shows three arbitrary vectors drawn in a plane. From the tip of one
of the vectors (a3 in the figure), a line is drawn parallel to one of the other two
vectors such that it meets the third vector (or its extension) at point D. The
vectors

−−→
OD and

−−→
DC are proportional to a1 and a2, respectively, and their

sum is equal to a3. So we can write

a3 =
−−→
OD +

−−→
DC = αa1 + βa2 ⇒ αa1 + βa2 − a3 = 0

and a1, a2, and a3 are linearly dependent. Clearly we cannot do the same
with two arbitrary vectors. Thus
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A

B

C

D

O

a1

a2

β a2

a3

α a1

Figure 6.1: Any three vectors a1, a2, and a3 in the plane are linearly dependent.

Box 6.1.1. The maximum number of linearly independent vectors in a
plane is two. Any vector in a plane can be written as a linear combination
of only two non-collinear (not lying along the same line) vectors.

We also say that any two non-collinear vectors span the plane.
Suppose that we can write a vector a as a linear combination of n vectors

a = α1a1 + α2a2 + · · · + αnan.

We want to see under what conditions the coefficients are unique. Suppose
that we can also write

a = β1a1 + β2a2 + · · · + βnan,

where the β’s are different from the α’s. Then, subtracting these two linear
combinations, we get

0 = (α1 − β1)a1 + (α2 − β2)a2 + · · · + (αn − βn)an.

This is possible only if the vectors are linearly dependent. Therefore, if we
want the coefficients to be unique, the vectors have to be linearly independent.
In particular, we can have at most two such vectors in the plane. Thus,
choosing any two linearly independent vectors a1 and a2 in the plane, we can
expand any other vector uniquely as a linear combination of a1 and a2. This
brings us to the notion of a basis. basis defined

Box 6.1.2. Vectors that span the plane and are linearly independent are
called a basis for the plane.

The foregoing argument showed that any two non-collinear vectors form a
basis for the plane.

With the notion of a basis comes the concept of components of a vector.
Given a basis, there is a unique way in which a particular vector can be written
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in terms of the vectors in the basis. The unique coefficients of the basis vectors
are called the components of the particular vector in that basis. Anothercomponents and

dimension concept associated with the basis is dimension which is defined to be the
number of vectors in a basis. It follows that the plane has two dimensions.

Example 6.1.2. The components of a3 in the basis {a1,a2} of Figure 6.1 are
(α, β).2 Given any basis {a1,a2} of the plane, it is readily seen that the components
of a1 are (1, 0) and those of a2 are (0, 1). �

Example 6.1.3. The polynomials {1, t} form a basis for P1[t], because they are
linearly independent and they span P1[t]. Therefore P1[t] is a two-dimensional
vector space. The components of f = α0 + α1t are (α0, α1) in this basis. How do
we determine the components of f in another basis {a1,a2} with a1 = 1 + t and
a2 = 1 − t? Since {a1, a2} is a basis, we can write

f = x1a1 + x2a2 = x1(1 + t) + x2(1 − t) = (x1 + x2) + (x1 − x2)t

or

α0 + α1t = (x1 + x2) + (x1 − x2)t ⇒ (α0 − x1 − x2) · 1 + (α1 − x1 + x2)t = 0.

The linear independence of 1 and t now tells us that the coefficients of 1 and t should
vanish. This leads to two equations in two unknowns:

x1 + x2 = α0,

x1 − x2 = α1.

The solution of these equations are easily found to be

x1 = 1
2
(α0 + α1), x2 = 1

2
(α0 − α1).

Thus, the components of f are ( 1
2
(α0 + α1),

1
2
(α0 − α1)) in the new basis. �

6.1.1 Transformation of Components

There are infinitely many bases in a plane, because there are infinitely many
pairs of vectors that are linearly independent. Therefore, there are infinitely
many sets of components for any given vector, and it is desirable to be able
to find a relation between any two such sets. Such a relation employs the
machinery of matrices.

Consider a vector a with components (α1, α2) in the basis {a1, a2} and
components (α′

1, α
′
2) in the basis {a′

1, a
′
2}. We can write

a = α1a1 + α2a2 and a = α′
1a

′
1 + α′

2a
′
2. (6.2)

Since {a′
1,a

′
2} form a basis, any vector, in particular, a1 or a2, can be written

in terms of them:

a1 = a11a′
1 + a21a′

2,

a2 = a12a′
1 + a22a′

2, (6.3)

2Since in this chapter we are dealing primarily with components (and not coordinates),
we shall use parentheses—instead of angle brackets—to list the components.
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where (a11, a21) and (a12, a22) are, respectively, components of a1 and a2 in
the basis {a′

1,a
′
2}. Combining Equations (6.2) and (6.3), we obtain

α1(a11a′
1 + a21a′

2) + α2(a12a′
1 + a22a′

2) = α′
1a

′
1 + α′

2a
′
2

or
(α′

1 − a11α1 − a12α2)a′
1 + (α′

2 − a21α1 − a22α2)a′
2 = 0.

The linear independence of a′
1 and a′

2 gives

α′
1 = a11α1 + a12α2,

α′
2 = a21α1 + a22α2. (6.4)

These equations can be written concisely as3
(

α′
1

α′
2

)

=
(

a11 a12

a21 a22

)(
α1

α2

)

or a′ = Aa, (6.5)

where we have introduced the matrices matrix and
column vector

a ≡
(

α1

α2

)

, a′ ≡
(

α′
1

α′
2

)

, A ≡
(

a11 a12

a21 a22

)

. (6.6)

The matrices a and a′ are called column vectors or 2 × 1 matrices because
they each have two rows and one column. Similarly, A is called a 2×2 matrix.

Let us now choose a third basis, {a′′
1 ,a′′

2}, and write a = α′′
1a

′′
1 + α′′

2a
′′
2 . If

(a′
11, a

′
21) and (a′

12, a
′
22) are, respectively, the components of a′

1 and a′
2 in this

third basis, then

a′
1 = a′

11a
′′
1 + a′

21a
′′
2 ,

a′
2 = a′

12a
′′
1 + a′

22a
′′
2 .

Substituting these in the second equation of (6.2) and equating the result to
a = α′′

1a
′′
1 + α′′

2a
′′
2 yields

α′′
1 = a′

11α
′
1 + a′

12α
′
2,

α′′
2 = a′

21α
′
1 + a′

22α
′
2. (6.7)

We can write Equation (6.7) in matrix form:
(

α′′
1

α′′
2

)

=
(

a′
11 a′

12

a′
21 a′

22

)(
α′

1

α′
2

)

or a′′ = A′a′, (6.8)

where

a′′ ≡
(

α′′
1

α′′
2

)

, A′ ≡
(

a′
11 a′

12

a′
21 a′

22

)

, (6.9)

and a′ is as defined before.
3At this point, think of Equation (6.5) as a short-hand way of writing Equation (6.4).

Further significance of this notation will become clear after Box 6.1.3.
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We can also discover how a′′ and a are related by substituting (6.4) in
(6.7). This leads to the equationtwo

transformations in
a row suggest the
rule of matrix
multiplication.

α′′
1 = (a′

11a11 + a′
12a21)α1 + (a′

11a12 + a′
12a22)α2,

α′′
2 = (a′

21a11 + a′
22a21)α1 + (a′

21a12 + a′
22a22)α2,

which, in matrix form, becomes

a′′ = A′′a where A′′ ≡
(

a′
11a11 + a′

12a21 a′
11a12 + a′

12a22

a′
21a11 + a′

22a21 a′
21a12 + a′

22a22

)

. (6.10)

On the other hand, the matrix equations (6.8) and (6.5) yield a′′ = A′(Aa),
which is consistent with Equation (6.10) only if matrix multiplication is
defined so that A′′ = A′A, i.e.,

(
a′
11 a′

12

a′
21 a′

22

)(
a11 a12

a21 a22

)

=
(

a′
11a11 + a′

12a21 a′
11a12 + a′

12a22

a′
21a11 + a′

22a21 a′
21a12 + a′

22a22

)

. (6.11)

All discussions and all the equations obtained so far are based on fixing
a vector and looking at its components in different bases. However, there is
another, more physical, way of interpreting these equations. Consider (6.5).active and passive

transformations
distinguished

Here the column vector on the RHS represents the components of a vec-
tor a in the basis {a1,a2}. Applying the matrix A to this column vector
yields a new column vector given on the LHS, which can be interpreted as
the components of a new vector a′ in the same basis. So, in essence we have
changed the vector a into a new vector a′ via the transformation A. The first
interpretation mentioned above is called a passive transformation (a is
“passively” unchanged as basis vectors are altered); the second interpretation
is called active transformation (a is actively changed into a′). We shall
have occasion to employ both interpretations. However, the active transfor-
mation is more direct and we shall use that more often. The reader may
convince himself or herself that passive transformation in one “direction” is
completely equivalent to active transformation in the “opposite” direction.
A good example to keep in mind is the rotation of axes (passive rotation)
versus the rotation of a vector (active rotation) in the plane as shown in
Figure 6.2.

Equation (6.11) defines the “product” of two matrices in a prescribed man-
ner. To find the entry in the first row and first column of the product, multiply
the entries of the first row of the first matrix by the corresponding entries of
the first column of the second matrix and add the terms thus obtained. To
find the entry in the first row and second column of the product, multiply
the entries of the first row of the first matrix by the corresponding entries of
the second column of the second matrix and add the terms. Other entries
are found similarly. This leads us to the following rule which applies to all
matrices, not just those that are 2 × 2:
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Figure 6.2: (a) A vector a in a coordinate system Oxy can be (b) actively transformed

to a new vector a′ in the same coordinate system, or (c) passively transformed to a

new coordinate system O′x′y′. Note that the relation of a′ to Oxy is identical to the

relation of a to O′x′y′.

Box 6.1.3. (Matrix Multiplication Rule). To obtain the entry in the
ith row and jth column of the product of two matrices, multiply the entries
of the ith row of the matrix on the left by the corresponding entries of the
jth column of the matrix on the right and add the products thus obtained.

For this rule to make sense, the number of entries in a row of the matrix on for the product
rule to make
sense, number of
columns of the left
matrix must equal
number of rows of
the right matrix.

the left must equal the number of entries in a column of the matrix on the
right.

We identified a column vector as a 2× 1 matrix. With this identification,
the RHS of Equation (6.5) can be interpreted as the product of two matrices,
a 2 × 2 matrix and a 2 × 1 matrix, resulting in a 2 × 1 matrix, the column
vector on the LHS.

Matrices were obtained in a natural way in the discussion of basis changes, matrices forming a
mathematical
structure with
operations other
than
multiplication

and the natural operation ensued was that of multiplication. Once a mathe-
matical entity is created in this manner, a full mathematical structure becomes
irresistibly enticing. For example, such operations as addition, subtraction,
division, inversion, etc., also demand our attention. We now consider such
operations.

First, we need to define the equality of matrices: Two matrices are equal
if they have the same number of rows and columns, and their corresponding
elements are equal. Addition of two matrices is defined if they have the same
number of rows and columns in which case the sum is defined to be the sum
of corresponding elements. A 2 × 2 matrix can be added to another 2 × 2
matrix, but a column vector cannot. Thus if

A =
(

a11 a12

a21 a22

)

and B =
(

b11 b12

b21 b22

)

,
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then

A + B =
(

a11 + b11 a12 + b12

a21 + b21 a22 + b22

)

.

From the definition of the sum and the product of matrices, it is clear that
addition is always commutative but product need not be:

A + B = B + A but AB �= BA. (6.12)

We can turn the set of 2 × 2 matrices into a vector space by defining the2 × 2 matrices
form a vector
space

product of a number and a matrix as a new matrix whose elements are the old
elements times the number. The zero “vector” is simply the zero matrix—
the 2 × 2 matrix all of whose elements are zero. The reader may verify thatzero matrix
all the usual operations of vectors apply to this set.4 If you multiply a matrix
by the number 0, you get the zero matrix.

Example 6.1.4. Suppose

A =

(
1 −1
2 3

)

and B =

(
−1 0
1 2

)

.

Then

A + B =

(
1 − 1 −1 + 0
2 + 1 3 + 2

)

=

(
0 −1
3 5

)

= B + A

and

AB =

(
1 −1
2 3

)(
−1 0
1 2

)

=

(
1 · (−1) + (−1) · 1 1 · 0 + (−1) · 2

2 · (−1) + 3 · 1 2 · 0 + 3 · 2

)

=

(
−2 −2
1 6

)

,

while

BA =

(
−1 0
1 2

)(
1 −1
2 3

)

=

(
(−1) · 1 + 0 · 2 (−1) · (−1) + 0 · 3

1 · 1 + 2 · 2 1 · (−1) + 2 · 3

)

=

(
−1 1
5 5

)

.

Clearly, AB �= BA. �

The 2 × 2 matrix

1 ≡
(

1 0
0 1

)

is called the 2 × 2 identity matrix or unit matrix, and has the propertyidentity matrix or
unit matrix that when it multiplies any other matrix (on the right or on the left), the

latter does not get affected. The unit matrix is used to define the inverse of
a matrix A as a matrix B that multiplies A on either side and gives the unitinverse of a matrix

matrix. The inversion of a matrix is a much more complicated process than
that of ordinary numbers, and we shall discuss it in greater length later. At
this point, suffice it to say that, contrary to numbers, not all nonzero matrices
have an inverse. For example, the reader can easily verify that the nonzero
matrix

(
1 0
0 0

)
cannot have an inverse.

4Note that the extra operation of multiplication of a matrix by another matrix is not
part of the requirement for the set to be a vector space.
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We have introduced 2 × 2 and column (or 2 × 1) matrices. To complete
the picture, we also introduce a row vector, or a 1 × 2 matrix. The rule of row vector

matrix multiplication allows the multiplication of a 2×2 matrix and a column
vector, as long as the latter is to the right of the former: You cannot multiply
a 2 × 1 matrix situated to the left of a 2 × 2 matrix. Similarly, you cannot
multiply two 2 × 1 matrices. However, the product of a row vector (a 1 × 2
matrix) and a column vector (a 2× 1 matrix) is defined—as long as the latter
is to the right of the former—and the result is a 1× 1 matrix, i.e., a number.
This is because we have only one row to the left of a single column. What
about the product of a row vector and a 2× 2 matrix? As long as the matrix
is to the right of the row vector, the product is defined and the result is a row
vector.

Example 6.1.5. With A and B as defined in Example 6.1.4 and

x =

(
1
−1

)

, y =
(
−1 2

)
,

we have

Ax =

(
1 −1
2 3

)(
1
−1

)

=

(
2
−1

)

,

yB =
(
−1 2

)
(
−1 0
1 2

)

=
(
3 4

)
,

yx =
(
−1 2

)
(

1
−1

)

= (−3) = −3,

yAx =
(
−1 2

)
(

1 −1
2 3

)(
1
−1

)

=
(
−1 2

)
(

2
−1

)

= −4,

yBAx =
(
3 4

)
(

2
−1

)

︸ ︷︷ ︸
=2

=
(
−1 2

)
(
−1 1
5 5

)

︸ ︷︷ ︸
=BA

(
1
−1

)

=
(
−1 2

)
(
−2
0

)

= 2,

yABx =
(
−1 2

)
(
−2 −2
1 6

)(
1
−1

)

=
(
4 14

)
(

1
−1

)

= −10.

In the manipulations above, we have used the associativity of matrix multiplication
and multiplied matrices in different orders without, of course, commuting them.
Products such as Ay, By, yy, and xx are not defined; therefore, we have not considered
them here. �

There is a new operation on matrices which does not exist for ordinary
numbers. This is called transposition and is defined as follows: transpose of a

matrix

Box 6.1.4. The transpose of a matrix is a new matrix whose rows are
the columns of the old matrix and whose columns are the rows of the old
matrix. The transpose of A is denoted by At or Ã.
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Therefore

A =
(

a11 a12

a21 a22

)

⇒ At = Ã =
(

a11 a21

a12 a22

)

.

If At = A, we say that A is symmetric.symmetric matrix

Example 6.1.6. With A, B, x, and y as defined in Example 6.1.5, we have

At =

(
1 2
−1 3

)

, B̃ =

(
−1 1
0 2

)

, xt =
(
1 −1

)
, ỹ =

(
−1
2

)

.

Note that although xx and yy are not defined, all the combinations x̃x, yỹ, ỹy, and
xx̃ are defined: In the first two cases one gets a number, and in the last two cases a
2 × 2 matrix. �

It should be clear from the definition of the transpose thatproperties of
transposition

(A + B)t = At + Bt, (AB)t = BtAt, (At)t = A. (6.13)

Of the three relations, the middle one is the least obvious, but the reader
can verify it directly by choosing appropriate general matrices and carrying
through the multiplications on both sides of the relation.

6.1.2 Inner Product

From our discussion of Chapter 1, we know that if a and b are vectors in the
plane having components (ax, ay) and (bx, by) along the x- and y-axes, then
their dot product is

a · b = axbx + ayby. (6.14)

We want to generalize this dot product so that it applies to arbitrary bases.
This generalization is called the inner product.

Recall that any two non-collinear vectors {a1, a2} in the plane form a
basis and any vector can be written as a linear combination of them with
the unique coefficients being the components of the vector in the basis. In
particular, the components of a1 are (1, 0) and those of a2 are (0, 1). If we were
to define the dot product in terms of components, we would have to modify
Equation (6.14) because that equation would give zero for a1 ·a2 which wouldequation (6.14)

will not work for
arbitrary bases!

be inconsistent with (1.1). How should we modify (6.14)? Since we want to
deal with components, a natural setting would be the language of matrices.
If a and b are the column vectors

( ax
ay

)
and

( bx

by

)
, respectively, then we can

rewrite Equation (6.14) asinner (dot)
product in terms
of row and column
vectors

a · b = atb =
(
ax ay

)
(

bx

by

)

= axbx + ayby. (6.15)

It is this matrix relation that we want to generalize so that the result is the
true dot product of vectors no matter what basis we choose in which to express
our vectors.
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Besides the failure of Equation (6.15) for general bases, the demand for
generalization stems from another source: There are other kinds of “vectors”
that are not just arrows in the plane. For instance, the polynomials P1[t] of
degree one that we introduced in Example 6.1.1 are such vectors. How do we
define inner products for these vectors? We cannot use Equation (1.1) because
neither the length of a polynomial nor the angle between two polynomials is
defined. In fact, both the length and the angle are defined only after an
inner product has been introduced. Furthermore, there is no guarantee that
Equation (6.15) will make sense.

Let’s see how far we can go using the general properties of the inner prod-
uct discussed at the beginning of Section 1.1.1. Write a and b as a linear
combination of the basis vectors {a1,a2}:

a = α1a1 + α2a2, b = β1a1 + β2a2

Take the dot-product of these vectors and write it in terms of the dot-products
of the basis vectors:

a · b =
(
α1a1 + α2a2

)
·
(
β1a1 + β2a2

)

= α1β1a1 · a1 + α1β2a1 · a2

+ α2β1a2 · a1 + α2β2a2 · a2

Define a matrix with elements

g11 = a1 · a1, g12 = a1 · a2 = a2 · a1 = g21, g22 = a2 · a2

Then, representing a and b as column vectors a =
(

α1
α2

)
and b=

( β1
β2

)
, the

dot product can be generalized to a symmetric
matrix G is needed
to generalize the
inner product.

a · b = atGb =
(
α1 α2

)
(

g11 g12

g21 g22

)(
β1

β2

)

, (6.16)

where G is a symmetric matrix.

Example 6.1.7. In this example, we shall define an inner product for the vectors inner (dot)
product of two
polynomials

in P1[t] that happens to be useful in physical applications. The idea is to find a rule
that takes two “vectors” in P1[t] and gives a real number. Since the vectors in P1[t]
are functions (albeit a very special kind), one natural way of getting numbers out
of functions is by integrating them. It turns out that this is indeed the most useful
way of defining the inner product for such polynomials. So, let (a, b) be an interval
on the real line and let f = α0 + α1t and g = β0 + β1t be two “vectors” in P1[t] .
We define

f · g ≡
∫ b

a

f(t)g(t) dt. (6.17)

One can show that Equation (6.17) exhibits all the properties expected of an inner
product (as outlined in Section 1.1.1). For instance, f · f is always positive because
the integrand [f(t)]2 is always positive. Furthermore, f · g = g · f, and, as the reader
may check,

f · (g + h) = f · g + f · h.
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These all indicate that we are on the right track.

We also note that the inner product depends on the interval chosen on the real
line. For different (a, b), we get a different inner product. The choice is usually
dictated by the physical application. We shall choose a = 0, b = 1, although this
may not be a physically suitable choice. With such a choice and with {f1 = 1, f2 = t}
as a basis, we obtain

g11 = f1 · f1 =

∫ 1

0

f1(t)f1(t) dt =

∫ 1

0

dt = 1,

g12 = f1 · f2 =

∫ 1

0

f1(t)f2(t) dt =

∫ 1

0

t dt = 1
2

= g21,

g22 = f2 · f2 =

∫ 1

0

f2(t)f2(t) dt =

∫ 1

0

t2dt = 1
3
.

So the inner product matrix is

G =

(
1 1

2
1
2

1
3

)

.

�

We started with Equation (1.1) as the definition of the inner product. This
definition assumed a knowledge of lengths and angles. These are notions with
which we become intuitively familiar very early in our mental development.the notion of

length comes after
that of the inner
product!

However, such notions are not intuitively obvious for two polynomials. That
is why the concepts of lengths and angles for objects such as polynomials
come after introducing the notion of inner product. Of course, we want these
notions to agree with the intuitive notions of lengths and angles, i.e., we want
them to be related to the inner product in precisely the same manner as given
in Equation (1.1). If we let b = a in that equation, we get a · a = |a|2. This
becomes our definition for length:

Box 6.1.5. Given any inner product on a set of objects that we can call
“vectors,” we define the length of a vector a as |a| ≡ +

√
a · a.

Once the notion of length is established for a general set of vectors, we
can define the angle between two vectors a and b as

cos θ ≡ a · b
|a| |b| =

a · b
√

a · a
√

b · b
. (6.18)

This equation and the one in Box 6.1.5 clearly show that lengths and angles
are given entirely in terms of inner products. For these concepts to be valid,
we must ensure that however we define the inner product, it will have the
property that a · a > 0 for a nonzero vector. It turns out that most inner
products encountered in applications have this property. Nevertheless, there
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are cases (very important ones) for which a ·a ≤ 0. In such cases, the concepts in some important
physical situations
the “length” of a
nonzero vector
can be zero—even
negative!

of length and angles, as we know them, break down, and we have to be content
with “dot products” that may produce nonpositive numbers when a nonzero
vector is “dotted” with itself.

Even if a ·a > 0, there is no a priori guarantee that the cosine obtained in
Equation (6.18) will lie between −1 and +1, as it should. However, there is
a famous inequality in mathematics called the Schwarz inequality, which
establishes this fact for those inner products which satisfy a · a > 0. We shall
come back to this later in this chapter.

Example 6.1.8. The lengths of the basis vectors {f1 = 1, f2 = t} of P1[t] can be
found easily using the results of Example 6.1.7:

|f1| =
√

f1 · f1 = +
√

1 = 1

|f2| =
√

f2 · f2 = +
√

1
3
.

We can also find the “angle” between the two polynomials

cos θ =
f1 · f2
|f1| |f2|

=
1
2

1 · (1/
√

3)
=

√
3

2
⇒ θ =

π

6
.

�

The matrix G, called the inner product matrix or metric matrix, G is the inner
product matrix or
the metric matrix.

completely determines the inner product of vectors when they are written
as linear combinations of a1 and a2. For example, consider a vector a with
components (α1, α2) in the basis {a1,a2}. Figure 6.3 shows a as the sum of
−→
OA (which is the same as α1a1) and

−−→
OA′ (which is the same as α2a2). Using

the law of cosines for the triangle OAP , we get

|a|2 = OP
2

= OA
2
+ AP

2 − 2OAAP cosϕ

= α2
1|a1|2 + α2

2|a2|2 + 2α1α2|a1||a2| cos θ12.

θ12

θ12
θ

a

b

a1

a2

a 1

a 2

O
A

B

P

ϕ
'A

Figure 6.3: The length of a is the same whether we use the law of cosine or the inner

product matrix G.
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On the other hand, using Equation (6.16), we obtain

|a|2 = a · a =
(
α1 α2

)
(

g11 g12

g21 g22

)(
α1

α2

)

=
(
α1 α2

)
(

g11α1 + g12α2

g21α1 + g22α2

)

= g11α
2
1 + 2g12α1α2 + g22α

2
2

= a1 · a1α
2
1 + 2α1α2a1 · a2 + a2 · a2α

2
2

= |a1|2α2
1 + 2α1α2|a1| |a2| cos θ12 + |a2|2α2

2

and the two expressions agree. In fact, we can show this agreement very
generally:

a · b = (α1a1 + α2a2) · (β1a1 + β2a2)
= α1β1a1 · a1 + α1β2a1 · a2 + α2β1a2 · a1 + α2β2a2 · a2

= α1β1g11 + α1β2g12 + α2β1g21 + α2β2g22

=
(
α1 α2

)
(

g11 g12

g21 g22

)(
β1

β2

)

= ãGb,

where we used the distributive property of the inner product.
It should now be clear to the reader that the matrix G contains all the

information needed to evaluate the inner product of any pair of vectors. Sup-
pose now that instead of {a1,a2} we choose {ê1, ê2} where ê1 and ê2 are
unit vectors and perpendicular to one another. Then, the matrix G will have
elements

g11 = ê1 · ê1 = 1, g12 = g21 = ê1 · ê2 = 0, g22 = ê2 · ê2 = 1,

i.e., G is the unit matrix. In that case, we obtain

ãGb =
(
α1 α2

)
(

1 0
0 1

)(
β1

β2

)

= α1β1 + α2β2

which is the usual expression of the dot product of two vectors in terms of
their components. A basis whose vectors have unit length and are mutually
perpendicular to one another is called an orthonormal basis. Thus,orthonormal basis

Box 6.1.6. Only in an orthonormal basis is the dot (inner) product of two
vectors equal to the sum of the products of their corresponding components.
In such a basis the inner product matrix G is the unit matrix.

The matrix G was introduced to ensure the validity of the inner product
in an arbitrary basis. This poses some restriction on G; for example, we
saw that it had to be symmetric, i.e., g12 = g21 because of the symmetry of
the dot product. Another restriction—if we want thedot product of a basis
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vector with itself to be positive—is that g11 > 0 and g22 > 0, in which case
the inner product is called positive definite (or Riemannian). It turns positive definite,

or Riemannian
inner product

out, however, that such a restriction constrains G too much to be useful in
physical applications. Although, in most of this book, we shall adhere to
the usual positive definite or Euclidean inner product, the reader should be
aware that non-Euclidean inner products also have important applications in
physics.

Box 6.1.7. Regardless of the nature of G, we call two vectors a and b
G-orthogonal if a · b ≡ ãGb = 0.

Every point in the plane can be thought of as the tip of a vector whose
tail is the origin. With this interpretation, we can express the (G-dependent)
distance between two points in terms of vectors. Let r1 be the vector to point
P1 and r2 the vector to point P2. Then the “length” of the displacement
vector Δr ≡ r1 − r2 is the “distance” between P1 and P2:

P1P2
2

= Δr · Δr = (r1 − r2) · (r1 − r2) = (Δ̃r)G(Δr). (6.19)

Keep in mind that only in the positive definite (Euclidean) case is P1P2
2

nonnegative. There are physical situations in which the square of the length
of the displacement vectors can be zero or even negative. We shall encounter
one such example when we discuss the special theory of relativity.

The simplicity of G in orthonormal bases makes them very much in de-
mand. So, it is important to know whether it is always possible to construct
orthonormal vectors out of general basis vectors. The construction should
involve linear combinations only. In other words, given a basis {a1,a2}, we
want to know if there are linear combinations of a1 and a2 which are orthonor-
mal. We assume that the inner product is positive definite, so that the inner
product of every nonzero vector with itself is positive. First we divide a1 by
its length to get

ê1 ≡ a1

|a1|
=

a1√
a1 · a1

.

To obtain the second orthonormal vector, we refer to Figure 6.4 which shows
that if we take away from a2 its projection on a1, the remaining vector will
be orthogonal to a1. So consider

a′
2 = a2 − (a2 · ê1)ê1︸ ︷︷ ︸

projection of
a2 on a1

and note that Gram–Schmidt
process for the
plane

ê1 · a′
2 = ê1 · a2 − (a2 · ê1) ê1 · ê1︸ ︷︷ ︸

=1

= 0.
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(b)(a)

a 1

a 2

e 1
^

a 2

a 2
'

(c)

e 1
^

a 2
'

(d)

e 2
^

e 1
^

Figure 6.4: The illustration of the Gram–Schmidt process for two linearly independent

vectors in the plane.

This suggests defining ê2 as

ê2 ≡ a′
2

|a′
2|

=
a′

2√
a′

2 · a′
2

.

The reader should note that in the construction of {ê1, ê2}, we have added
vectors and multiplied them by numbers, i.e., we have taken a linear combi-
nation of a1 and a2. This process, and its generalization to arbitrary number
of vectors, is called the Gram–Schmidt process, and shows that by appro-
priately taking linear combinations, it is always possible to find orthonormal
vectors out of any linearly independent set of vectors.

Example 6.1.9. The basis {1, t} introduced for P1[t] is not orthonormal when
the inner product is integration over the interval (0, 1) as in Example 6.1.7. Let us
use the Gram–Schmidt process to find an orthonormal basis. We note that the first
basis vector already has a unit length; so we let ê1 = f1 = 1. To find the second
vector, we first construct

f ′2 = f2 − (f2 · ê1)ê1 = t − ( 1
2
)1 = t − 1

2

with

|f ′2|2 = f ′2 · f ′2 =

∫ 1

0

(t − 1
2
)2dt = 1

12
.

Then the second vector will be

ê2 =
f ′2
|f ′2|

=
t − 1

2√
1
12

=
√

12(t − 1
2
) =

√
3(2t − 1).

The reader may verify directly that {ê1, ê2} is an orthonormal basis. �

Example 6.1.10. Consider the vectors

a1 = êx + êy and a2 = 2êx + êy .



6.1 Vectors in a Plane Revisited 189

The inner product matrix elements in the basis {a1,a2} are

g11 = a1 · a1 = (êx + êy) · (êx + êy) = 2, g12 = (êx + êy) · (2êx + êy) = 3,

g21 = a2 · a1 = g12 = 3, g22 = (2êx + êy) · (2êx + êy) = 5.

or, in matrix form, G =
(

2 3
3 5

)
.

Now consider vectors b and c, whose components in {a1,a2} are, respectively,
(1, 1) and (−3, 2). We can compute the scalar product of b and c in terms of these
components using Equation (6.16):

b · c = b̃Gc =
(
1 1

)
(

2 3
3 5

)(
−3
2

)

=
(
1 1

)
(

0
1

)

= 1.

We can also write b and c in terms of êx and êy and use the usual definition of
the inner product (in terms of components) to find b ·c. Since b has the components
(1, 1) in {a1,a2}, it can be written as

b = a1 + a2 = (êx + êy) + (2êx + êy) = 3êx + 2êy.

Similarly,

c = −3a1 + 2a2 = −3(êx + êy) + 2(2êx + êy) = êx − êy.

Thus, in {êx, êy}, b has components (3, 2), and c has components (1,−1). Then

b · c = bxcx + bycy = 3 · 1 + 2 · (−1) = 1

which agrees with the previous result obtained above. �

Example 6.1.11. Consider two vectors f and g in P1[t] with

f ≡ f(t) = α0 + α1t, g ≡ g(t) = β0 + β1t.

We want to find the inner product of these two vectors. First, we use the basis {1, t}
and its corresponding G matrix found in Example 6.1.7:

f · g = ftGg =
(
α0 α1

)
(

1 1
2

1
2

1
3

)(
β0

β1

)

= α0β0 + 1
2
(α0β1 + α1β0) + 1

3
α1β1.

Next, we use the orthonormal basis found in Example 6.1.9. In this basis G is the
identity matrix and the inner product is the usual one in terms of components.
However, the components of f and g need to be found in {ê1, ê2}. The reader may
check that

f = α0 + α1t = α0ê1 + α1

(
1

2
√

3
ê2 +

1

2
ê1

)

= (α0 + 1
2
α1)ê1 +

α1

2
√

3
ê2,

g = β0 + β1t = (β0 + 1
2
β1)ê1 +

β1

2
√

3
ê2.

It then follows that

f · g = (α0 + 1
2
α1)(β0 + 1

2
β1) +

(
α1

2
√

3

)(
β1

2
√

3

)

= α0β0 + 1
2
(α0β1 + α1β0) + 1

3
α1β1.



190 Planar and Spatial Vectors

Finally, we take the dot product of the two vectors using the definition of this dot
product:

f · g =

∫ 1

0

(α0 + α1t)(β0 + β1t) dt

= α0β0

∫ 1

0

dt + (α0β1 + α1β0)

∫ 1

0

t dt + α1β1

∫ 1

0

t2 dt

= α0β0 + 1
2
(α0β1 + α1β0) + 1

3
α1β1.

All three ways of calculating the inner product agree, as they should. �

6.1.3 Orthogonal Transformation

Now that we have defined inner products, we may combine it with the concept
of transformation. More specifically, we seek transformations that leave the
inner product—which we shall assume to be positive definite (Euclidean)—
unchanged. Under such transformations, the length of a vector and the angle
between two vectors will not change. That is why such transformations arerigid

transformations called rigid transformations. We choose an orthonormal basis, so that
G = 1, and denote the transformed vectors by a prime: a′ = Aa, b′ = Ab.
Then the invariance of the inner product yields

ã′b′ = ãb ⇒ (̃Aa)Ab = ãÃAb = ãb.

This will hold for arbitrary a and b only if

ÃA = 1. (6.20)

Matrices that satisfy this relation are called orthogonal. We now investigateorthogonal
matrices conditions under which Equation (6.20) holds by writing out the matrices:

(
a11 a21

a12 a22

)(
a11 a12

a21 a22

)

=
(

a2
11 + a2

21 a11a12 + a21a22

a12a11 + a22a21 a2
12 + a2

22

)

=
(

1 0
0 1

)

which is equivalent to the following three equations:

a2
11 + a2

21 = 1, a11a12 + a21a22 = 0, a2
12 + a2

22 = 1. (6.21)

Squaring the second equation and substituting from the first and third, we
get

a2
11a

2
12 = a2

21a
2
22 ⇒ (1 − a2

21)a
2
12 = a2

21(1 − a2
12) ⇒ a2

21 = a2
12.

The first and third equations of (6.21) now yield

a2
22 = a2

11 and a2
12 = a2

21 = 1 − a2
11.
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Therefore, all parameters are given in terms of a11. Now the first equation 2 × 2 orthogonal
matrices are
described in terms
of a single
parameter.

of (6.21) indicates that −1 ≤ a11 ≤ 1. It follows that a11 can be thought
of as a sine or a cosine of some angle, say θ. Let us choose cosine. Then
a22 = ± cos θ. If we choose the plus sign for cosine, then the middle equation
of (6.21) shows that a12 = −a21 = ± sin θ, and if we choose the minus sign,
a12 = a21 = ± sin θ. Let us choose the plus sign for cosine. Then, we obtain
two possibilities for A:

A =
(

cos θ − sin θ
sin θ cos θ

)

or A =
(

cos θ sin θ
− sin θ cos θ

)

.

The difference is in the sign of the angle θ.
Writing (x, y) for the components of a vector in the plane [instead of

(α1, α2)], and (x′, y′) for the transformed vector, and using the first choice for
A, we have (

x′

y′

)

=
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)

or

x′ = x cos θ − y sin θ, (6.22)
y′ = x sin θ + y cos θ. (6.23)

This is how the coordinates of a point in the plane transform under a counter-
clockwise rotation of angle θ. Had we chosen the second form of A, we would
have obtained a clockwise rotation of the coordinates. Notice how we chose
the signs of sines and cosines to ensure that when θ = 0, the rotation is the
unit matrix, i.e., no rotation at all. Although rotations are part of orthogonal
transformations, the converse is not true: There are orthogonal transforma-
tions that do not correspond to a rotation. For example, the matrix

A =
(

cos θ sin θ
sin θ − cos θ

)

(6.24)

is orthogonal (as the reader can verify), but it does not correspond to a rota-
tion because at θ = 0 it does not give the identity matrix.

In general, the inner product of the transformed (primed) vectors will be

ã′Gb′ = (̃Aa)GAb = ãÃGAb.

For A to preserve the inner product, i.e., for ã′Gb′ to be equal to ãGb, we need
to have G-orthogonal

matricesÃGA = G. (6.25)

A matrix that satisfies Equation (6.25) is called G-orthogonal.

Historical Notes
Matrices entered mathematics slowly and somewhat reluctantly. The related notion
of determinant, which is a number associated with an array of numbers, was intro-
duced as early as the middle of the eighteenth century in the study of a system of
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linear equations. However, the recognition that the array itself could be treated as
a mathematical object, obeying certain rules of manipulation, came much later.

Logically, the idea of a matrix precedes that of a determinant as Arthur Cayley
has pointed out; however, the order was reversed historically. In fact, many of the
properties of matrices were known as a result of their connection to determinants.
Because the uses of matrices were well established, it occurred to Cayley to introduce
them as distinct entities. He says, “I certainly did not get the notion of a matrix in
any way through quaternions; it was either directly from that of a determinant or
as a convenient way of expression of” a system of two equations in two unknowns.
Because Cayley was the first to single out the matrix itself and was the first to
publish a series of articles on them, he is generally credited with being the creator
of the theory of matrices.

Arthur Cayley
1821–1895

Arthur Cayley’s father, Henry Cayley, although from a family who had lived
for many generations in Yorkshire, England, lived in St. Petersburg, Russia. It was
in St. Petersburg that Arthur spent the first eight years of his childhood before his
parents returned to England and settled near London. Arthur showed great skill
in numerical calculations at school and, after he moved to King’s College in 1835,
his aptitude for advanced mathematics became apparent. His mathematics teacher
advised that Arthur be encouraged to pursue his studies in this area rather than
follow his father’s wishes to enter the family business as a merchant.

In 1838 Arthur began his studies at Trinity College, Cambridge, from where he
graduated in 1842. While still an undergraduate he had three papers published in
the newly founded Cambridge Mathematical Journal. For four years he taught at
Cambridge having won a Fellowship and, during this period, he published 28 papers.

A Cambridge Fellowship had a limited tenure so Cayley had to find a profession.
He chose law and was admitted to the bar in 1849. He spent 14 years as a lawyer but
Cayley, although very skilled in conveyancing (his legal speciality), always considered
it as a means to make money so that he could pursue mathematics. During this
period he met Sylvester who was also in the legal profession. Both worked at the
courts of Lincoln’s Inn in London and discussed deep mathematical questions during
their working day. During these 14 years as a lawyer Cayley published about 250
mathematical papers!

In 1863 Cayley was appointed to the newly created Sadleirian professorship of
mathematics at Cambridge. Except for the year 1882, spent at the Johns Hopkins
University at the invitation of Sylvester, he remained at Cambridge until his death
in 1895.

6.2 Vectors in Space

The ideas developed so far can be easily generalized to vectors in space. For
example, a linear combination of vectors in space is again a vector in space.
We can also find a basis for space. In fact, any three non-coplanar (not lying
in the same plane) vectors constitute a basis. To see this, let {a1,a2,a3} be
three such vectors drawn from a common point5 and assume that b is any
fourth vector in space. If b is along any of the a’s, we are done, because then
b is a multiple of that vector, i.e., a linear combination of the three vectors

5If the vectors are not originally drawn from the same point, we can transport them
parallel to themselves to a common point.
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b

a1

a2

O

B

P

a3

Figure 6.5: Any vector in space can be written as a linear combination of three non-

coplanar vectors.

(with two coefficients being zero). So assume that b is not along any of the
a’s. The plane formed by b and a3 intersects the plane of a1 and a2 along
a certain line common to both (see Figure 6.5). Draw a line from the tip of
b parallel to a3. This line will resolve b into a vector

−−→
OB in the plane of

a1 and a2 and a vector
−−→
BP parallel to a3. So, we write b =

−−→
OB + α3a3.

Furthermore, since
−−→
OB is in the plane of a1 and a2, it can be written as a

linear combination of these two vectors:
−−→
OB = α1a1 + α2a2. Putting all of

this together, we get

b = α1a1 + α2a2 + α3a3.

This shows that

Box 6.2.1. The maximum number of linearly independent vectors in space
is three. Any three non-coplanar vectors form a basis for the space.

It follows that the space is a three-dimensional vector space.
In the previous section we introduced P1[t], the set of polynomials of first polynomials of

degree 2 or less
form a
3-dimensional
vector space.

degree, and showed that they could be treated as vectors. We even defined
an inner product for these vectors, and from that, we calculated the length of
a vector and the angle between two vectors. This process can be generalized
to three dimensions. Let P2[t] be the set of polynomials of degree 2 (or less)
in the variable t. One can easily show that such a set, a typical element of
which looks like α0 +α1t+α2t

2, has all the properties of arrows in space. We
shall use P2[t] as a prototype of vectors that are not directed line segments.
Clearly, {1, t, t2} form a basis for P2[t]; therefore, P2[t] is a three-dimensional
vector space.
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6.2.1 Transformation of Vectors

In the case of the plane, the machinery of matrices connected the components
of a vector in different bases. In the same context, we contrasted active
versus passive transformation. From now on, we want to concentrate on active
transformations, i.e., we consider transformations that alter the vectors rathertransformation of

vectors in space
lead to 3 × 3
matrices.

that the axes.
Consider a vector a with components(α1, α2, α3) in the basis B ≡ {a1, a2,

a3}. If we transform this vector, it will acquire new components, (α′
1, α

′
2, α

′
3),

in the same basis B. We can therefore write

a = α1a1 + α2a2 + α3a3 and a′ = α′
1a1 + α′

2a2 + α′
3a3, (6.26)

where a′ is the transform of a. Now suppose that we transform both a and
the basis vectors in exactly the same manner. Then the components of the
transformed a will be the same in the new basis as the original a was in the
old basis:

a′ = α1a′
1 + α2a′

2 + α3a′
3. (6.27)

Since B is a basis, any vector, in particular, the transformed basis vectors
can be written in terms of them:

a′
1 = a11a1 + a21a2 + a31a3,

a′
2 = a12a1 + a22a2 + a32a3, (6.28)

a′
3 = a13a1 + a23a2 + a33a3.

Now substitute Equation (6.28) in the RHS of (6.27), and the second equation
of (6.26) in the LHS of (6.27) and rearrange terms to obtain

(α′
1 − a11α1 − a12α2 − a13α3)a1 + (α′

2 − a21α1 − a22α2 − a23α3)a2

+ (α′
3 − a31α1 − a32α2 − a33α3)a3 = 0.

The linear independence of a1, a2, and a3 gives

α′
1 = a11α1 + a12α2 + a13α3,

α′
2 = a21α1 + a22α2 + a23α3, (6.29)

α′
3 = a31α1 + a32α2 + a33α3,

which, with the introduction of 3 × 1 (column), and 3 × 3 matrices, can be
written concisely as

⎛

⎝
α′

1

α′
2

α′
3

⎞

⎠ =

⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠

⎛

⎝
α1

α2

α3

⎞

⎠ or a′ = Aa. (6.30)

To know how a general vector transforms, we only need the transformation
matrix, namely the 3 × 3 matrix in Equation (6.30). This, in turn, is ob-
tained completely from the transformation of basis vectors as given in Equa-
tion (6.28). The reader should note, however, that the coefficients in each line
of (6.28) appear as a column in the transformation matrix. Thus,
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Box 6.2.2. To find the transformation matrix, apply the transforma-
tion to the basis vectors, and write the transformed basis vectors in terms
of the old basis vectors. The “horizontal” coefficients become the columns
of the transformation matrix.

Let us apply a transformation to a′ and to {a′
1,a

′
2, a

′
3}. We could denote

the new vectors by a second prime; but, then it would give the impression
that it is the same transformation as the earlier one. This is not the case.
Therefore, we use a new symbol “˘” to emphasize that the second transfor-
mations is of a completely different nature, and denote the new transformed
vectors by ă′ and {ă′

1, ă
′
2, ă

′
3}. In the basis {a1, a2,a3}, ă′ can be written as

ă′ = α′′
1a1 + α′′

2a2 + α′′
3a3, (6.31)

while the application of the new transformation to the second equation of
(6.26) gives

ă′ = α′
1ă1 + α′

2ă2 + α′
3ă3.

The vectors on the RHS can be written as a linear combination of {a1, a2, a3}:

ă1 = a′
11a1 + a′

21a2 + a′
31a3,

ă2 = a′
12a1 + a′

22a2 + a′
32a3, (6.32)

ă3 = a′
13a1 + a′

23a2 + a′
33a3.

Using the by-now-familiar procedure, we can relate the coefficients as follows:
⎛

⎝
α′′

1

α′′
2

α′′
3

⎞

⎠ =

⎛

⎝
a′
11 a′

12 a′
13

a′
21 a′

22 a′
23

a′
31 a′

32 a′
33

⎞

⎠

⎛

⎝
α′

1

α′
2

α′
3

⎞

⎠ or a′′ = A′a′. (6.33)

We can also find how a′′ and a are related in two ways. The first way
applies “˘” to both sides of Equations (6.27) and (6.28), substitutes (6.32)
in the transformed (6.28), and the result of this substitution in (6.27). This
will give ă′ as a linear combination of a1, a2, and a3. Equating this with
Equation (6.31) will give us a matrix relation between the a′′ and a. Second,
we can substitute the matrix relation of Equation (6.30) in that of (6.33)
and obtain a relation between the a′′ and a via the product of two matrices.
Comparison of these two relations will give us the rules of multiplication for
3× 3 matrices which, except for the number of elements involved, is identical
to the multiplication rule for the 2× 2 matrices. Similarly, the multiplication
by a row or a column vector, etc., is exactly as before.

There is a new kind of matrix associated with the space that we could not
consider in our discussion of the plane. Let B = {a1, a2, a3} be a basis for
the space, and take any two of the vectors in B, say a1 and a2. These two
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vectors form a plane any vector of which has only two components: If a is in
this plane, it can be written as

a = α1a1 + α2a2.

Now suppose we apply the same transformation to both a and {a1, a2}. Then,
on the one hand, a′ = α1a′

1+α2a′
2, and on the other hand, a′ = α′

1a1+α′
2a2+

α′
3a3, because the transformed a, in general, comes out of the plane of a1 and

a2. Therefore,
α1a′

1 + α2a′
2 = α′

1a1 + α′
2a2 + α′

3a3. (6.34)

But we also have

a′
1 = a11a1 + a21a2 + a31a3,

a′
2 = a12a1 + a22a2 + a32a3.

Substituting these in Equation (6.34) yields

(α′
1−a11α1−a12α2)a1 +(α′

2−a21α1−a22α2)a2 +(α′
3−a31α1−a32α2)a3 = 0.

Linear independence of the vectors in B now gives

α′
1 = a11α1 + a12α2,

α′
2 = a21α1 + a22α2, (6.35)

α′
3 = a31α1 + a32α2,

which can be written in matrix form as
⎛

⎝
α′

1

α′
2

α′
3

⎞

⎠ =

⎛

⎝
a11 a12

a21 a22

a31 a32

⎞

⎠
(

α1

α2

)

or a′ = Aa. (6.36)

The matrix A is now a 3×2 matrix. It relates two-component column vectors
to three-component column vectors.

Example 6.2.1. Another way to illustrate the preceding discussion is to use first
degree polynomials. Let us multiply all polynomials of P1[t] by a fixed first degree
polynomial, say 1 + t. This will transform vectors of P1[t] into vectors of P2[t].
In particular, it will transform the basis {1, t} into vectors in P2[t] which can be
expressed as a linear combination of the basis vectors {1, t, t2} of P2[t]. Let f1 = 1,
f2 = t, and f3 = t2, and note that

f ′1 = 1 · (1 + t) = 1 + t = 1 · f1 + 1 · f2 + 0 · f3,
f ′2 = t(1 + t) = t + t2 = 0 · f1 + 1 · f2 + 1 · f3.

According to Box 6.2.2, the transformation matrix is

⎛

⎝
1 0
1 1
0 1

⎞

⎠
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from which we can find the transform of a general vector f = α0 + α1t in P1[t]. If
the transformed vector is written as f ′ = α′

0 + α′
1t + α′

2t
2, then

⎛

⎝
α′

0

α′
1

α′
2

⎞

⎠ =

⎛

⎝
1 0
1 1
0 1

⎞

⎠
(

α0

α1

)

.

This can be verified directly by multiplying f = α0 + α1t by 1 + t. �

In the discussion above, we started with the plane (with two dimensions)
and transformed to space (with three dimensions). Example 6.2.1 illustrated
this transformation for P1[t] and P2[t]. We can also start with three dimen-
sions and end up in two dimensions. The result will be a matrix relation of
the form

(
α1

α2

)

=
(

b11 b12 b13

b21 b22 b23

)
⎛

⎝
α′

1

α′
2

α′
3

⎞

⎠ or a = Ba′ (6.37)

with B a 2 × 3 matrix. The following example illustrates this point.

Example 6.2.2. Let us start with P2[t] and as transformation, consider differen-
tiation which acts on the basis {1, t, t2}. It is clear that the resulting vectors will differentiation is a

(linear)
transformation.

belong to P1[t], because they will be linear combinations of 1 and t. With f1 = 1,
f2 = t, and f3 = t2, and using a prime to denote the transformed vector, we can
write

f ′1 =
d

dt
(1) = 0 = 0 · f1 + 0 · f2,

f ′2 =
d

dt
(t) = 1 = 1 · f1 + 0 · f2,

f ′3 =
d

dt
(t2) = 2t = 0 · f1 + 2 · f2,

giving rise to the transformation matrix
(

0 1 0
0 0 2

)

.

The reader may verify that the coefficients (α′
0, α

′
1) in P1[t] of the derivative of an

arbitrary polynomial f(t) = α0 + α1t + α2t
2 are given by

(
α′

0

α′
1

)

=

(
0 1 0
0 0 2

)
⎛

⎝
α0

α1

α2

⎞

⎠

which can also be obtained directly by differentiating f(t). �

The point of this discussion is that if you have a collection of vectors with
various numbers of components, then it is possible to construct matrices that
relate the two sets of vectors. These matrices have different numbers of rows
and columns. The mathematics of these new matrices, their notion of equality,
their addition, subtraction, multiplication, transposition, etc., is exactly the
same as before
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Example 6.2.3. Suppose

A =

⎛

⎝
1 −1
−1 2
0 1

⎞

⎠ and B =

(
−1 0 1
1 2 −2

)

.

Then A + B is not defined, but

At + B =

(
1 −1 0
−1 2 1

)

+

(
−1 0 1
1 2 −2

)

=

(
0 −1 1
0 4 −1

)

and

A + Bt =

⎛

⎝
1 −1
−1 2
0 1

⎞

⎠ +

⎛

⎝
−1 1
0 2
1 −2

⎞

⎠ =

⎛

⎝
0 0
−1 4
1 −1

⎞

⎠ = (At + B)t.

As for multiplication, we have

AB =

⎛

⎝
1 −1
−1 2
0 1

⎞

⎠
(
−1 0 1
1 2 −2

)

=

⎛

⎝
−2 −2 3
3 4 −5
1 2 −2

⎞

⎠

and

BA =

(
−1 0 1
1 2 −2

)
⎛

⎝
1 −1
−1 2
0 1

⎞

⎠ =

(
−1 2
−1 1

)

,

where the element in the ith row and jth column of the product is obtained by
multiplying the ith row of the left factor by the jth row of the right factor term-by-
term and adding the products (see Box 6.1.3). �

The 3 × 3 matrix

1 ≡

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

is the 3×3 identity matrix (or unit matrix), and has the property that when it
multiplies any other 3×3 matrix on either side, the latter does not get affected.
Similarly, when this identity matrix multiplies a three-column vector on the
left or a three-row vector on the right, it does not affect them. As in the case
of the plane, the unit matrix is used to define the inverse of a matrix A as a
matrix B that multiplies A on either side and gives the unit matrix.

6.2.2 Inner Product

As in the case of two dimensions, the usual rule of the dot product of space
vectors in terms of their components along êx, êy, and êz does not apply in
the general case. For that, we need an inner product matrix G. As in the
plane, this is a matrix whose elements are dot products of the basis vectors.
If B = {a1,a2,a3} is a basis for space, then G is a 3 × 3 symmetric matrix

G =

⎛

⎝
g11 g12 g13

g21 g22 g23

g31 g32 g33

⎞

⎠ , gij = gji = ai · aj , i, j = 1, 2, 3. (6.38)
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Example 6.2.4. Let us find the inner product matrix for the basis {1, t, t2} of
P2[t] when the inner product integration is from 0 to 1. Because of the symmetry of
the matrix and the fact that we have already calculated the 2×2 submatrix of G, we
need to find g13, g23, and g33. Let f1 = f1(t) = 1, f2 = f2(t) = t, and f3 = f3(t) = t2;
then

g13 = f1 · f3 =

∫ 1

0

f1(t)f3(t) dt =

∫ 1

0

t2dt = 1
3
,

g23 = f2 · f3 =

∫ 1

0

f2(t)f3(t) dt =

∫ 1

0

t3dt = 1
4
,

g33 = f3 · f3 =

∫ 1

0

f3(t)f3(t) dt =

∫ 1

0

t4dt = 1
5
.

It follows that

G =

⎛

⎜
⎝

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎞

⎟
⎠ .

This matrix can be used to find the dot product of any two vectors in terms of their
components in the basis {1, t, t2} of P2[t]. �

If a and b have components (α1, α2, α3) and (β1, β2, β3) in B, then their
inner product is given by

ãGb =
(
α1 α2 α3

)
⎛

⎝
g11 g12 g13

g21 g22 g23

g31 g32 g33

⎞

⎠

⎛

⎝
β1

β2

β3

⎞

⎠ . (6.39)

If this expression is zero, we say that a and b are G-orthogonal. For an or- G-orthogonal
vectors in spacethonormal basis, the inner product matrix G becomes the unit matrix6 and

we recover the usual inner product of space vectors in terms of components.
As discussed in the case of the plane, every point in space can be thought

of as the tip of a vector whose tail is the origin. Then, we can express the
(G-dependent) distance between two points in terms of vectors. Let r1 be
the vector to point P1 and r2 the vector to point P2. Then the length of the
displacement vector is the “distance” between P1 and P2:

Δr · Δr = (r1 − r2) · (r1 − r2) = (Δ̃r)G(Δr). (6.40)

Recall that only in the positive definite case is P1P2
2

nonnegative.
As in the case of the plane, it is convenient to construct orthonormal basis

vectors in space. This can be done by the Gram–Schmidt process. Suppose Gram–Schmidt
process for vectors
in space

B = {a1,a2,a3} is a basis for space as shown in Figure 6.6. Again, to avoid
complications, we assume that the inner product is positive definite, so that
the inner product of every nonzero vector with itself is positive. We know
how to construct two orthonormal vectors out of {a1, a2}; we did that in

6Only if the inner product is positive definite.
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(a) (c)(b)

a 3

e 2
^

e 1
^

e 2
^

e 1
^

a 3′

e 3
^

e 2
^

e 1
^

a 3′

Figure 6.6: The Gram–Schmidt process for three linearly independent vectors in space.

our discussion of the plane. Call these new orthonormal vectors {ê1, ê2} and
construct the vector a′

3,

a′
3 = a3 − (a3 · ê1)ê1 − (a3 · ê2)ê2

which is obtained from a3 by taking away its projections along ê1 and ê2.
Now note that

ê1 · a′
3 = ê1 · a3 − (a3 · ê1) ê1 · ê1︸ ︷︷ ︸

=1

−(a3 · ê2) ê2 · ê1︸ ︷︷ ︸
=0

= 0,

ê2 · a′
3 = ê2 · a3 − (a3 · ê1) ê2 · ê1︸ ︷︷ ︸

=0

−(a3 · ê2) ê2 · ê2︸ ︷︷ ︸
=1

= 0,

i.e., a′
3 is orthogonal to both ê1 and ê2. This suggests defining ê3 as

ê3 ≡ a′
3

|a′
3|

=
a′

3√
a′

3 · a′
3

.

The reader should note that in the construction of {ê1, ê2, ê3}, we have simply
taken the linear combination of a1, a2, and a3.

Transformations that leave the inner products unchanged can be obtained
in exactly the same way as for the plane. For A to preserve the inner product,
we need to haveG-orthogonal

matrices ÃGA = G, (6.41)

i.e., it has to be G-orthogonal. If G is the identity matrix, then A can be
thought of as a rigid rotation and is simply called orthogonal ; it satisfies

ÃA = 1. (6.42)

If we write A as ⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ ,
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then Equation (6.42) can be written as
⎛

⎝
a11 a21 a31

a12 a22 a32

a13 a23 a33

⎞

⎠

⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ . (6.43)

It is clear from Equation (6.43) that the columns of the matrix A, considered
as vectors, have unit length and are orthogonal to other columns in the usual
positive definite inner product.7 This is why A is called orthogonal.

The product on the LHS of Equation (6.43) is a 3×3 matrix whose elements
must equal the corresponding elements of the unit matrix on the RHS. For
example,

a2
11 + a2

21 + a2
31 = 1. (6.44)

Similarly, the equality of the elements located in the first row and second
column on both sides gives

a11a12 + a21a22 + a31a32 = 0

and so on. Thus we obtain nine equations. However, simple inspection of these
equations reveals that only six of them are independent. Therefore, we can orthogonal

matrices in space
are determined by
three parameters
such as the Euler
angles.

only solve for the nine unknowns in terms of three of them (see Section 7.6).
It does not matter which three matrix elements we choose. If we choose a11,
a21, and a31, for example, then Equation (6.44) reveals that these parameters
can be sines and cosines. What this means physically is that Three parameters
are required to specify a rigid rotation of the axes.

There are many ways to specify these three parameters. One of the
most useful and convenient ways is by using Euler angles ψ, ϕ, and θ (see Euler angles

Figure 6.7). Example 6.2.5 below shows that in terms of these angles, the
matrix A can be written as

A =

⎛

⎝
cos ψ cos ϕ−sin ψ cos θ sin ϕ − cos ψ sin ϕ−sin ψ cos θ cos ϕ sin ψ sin θ

sin ψ cos ϕ+cosψ cos θ sin ϕ − sin ψ sin ϕ+cos ψ cos θ cos ϕ − cos ψ sin θ

sin θ sin ϕ sin θ cos ϕ cos θ

⎞

⎠ .

It is straightforward to verify that AtA = 1. Euler angles are useful in de-
scribing the rotational motion of a rigid body in mechanics.

Example 6.2.5. From Figure 6.7 it should be clear that the primed basis is ob- a general
orthogonal matrix
in space can be
written as the
product of three
successive
rotations.

tained from the basis {ê1, ê2, ê3} by the following three operations.
(a) Rotate the coordinate system about the ê3-axis through angle ϕ. This corre-
sponds to a rotation in the ê1ê2-plane, leaving the ê3-axis unchanged. We saw in
the previous section how the 2 × 2 part of the matrix looked like. The complete
3 × 3 matrix corresponding to such a rotation is

A1 =

⎛

⎝
cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

⎞

⎠ . (6.45)

7This holds for 2 × 2 orthogonal matrices as well.
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ê 1

ê 2

ê 3

ˆ ′ e 3

ˆ ′ e 2

ˆ ′ e 1

ϕ
ψ

θ

ξ

Figure 6.7: The Euler angles and the rotations about three axes making up a general

rotation in space.

It is clear that this matrix leaves the third (z) component of a column vector un-
changed while rotating the first two (x and y) components by ϕ.
(b) Rotate the new coordinate system around the new ê1-axis (the ξ-axis in the
figure) through an angle θ. The corresponding matrix is

A2 =

⎛

⎝
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞

⎠ . (6.46)

(c) Rotate the system about the new ê3-axis (the ê′
3-axis in the figure) through an

angle ψ. The corresponding matrix is

A3 =

⎛

⎝
cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎞

⎠ . (6.47)

It is easily verified that A = A3A2A1, i.e., the rotation A has the same effect as that
of A1, A2, and A3 performed in succession. �

6.3 Determinant

Matrices have found application in many diverse fields of pure and appliedfrom matrices to
systems of linear
equations to
determinants

mathematics. One such application is in the solution of linear equations. Con-
sider the first set of equations in which we introduced matrices,
Equations (6.4) and (6.5). The first of these equations associates a pair of
numbers (α′

1, α
′
2) to a given pair (α1, α2), i.e., if we know the latter pair,

Equation (6.4) gives the former. What if we treat (α1, α2) as unknown? Un-
der what conditions can we find these unknowns in terms of the known pair
(α′

1, α
′
2)? Let us use a more suggestive notation and write Equation (6.4) as

a11x + a12y = b1,

a21x + a22y = b2. (6.48)
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We want to investigate conditions under which a pair (x, y) exists which sat-
isfies Equation (6.48). Let us assume that none of the aij ’s is zero. The case
in which one of them is zero is included in the final conclusion we are about
to draw. Multiply the first equation of (6.48) by a22 and the second by a12

and subtract the resulting two equations. This yields (a11a22 − a12a21)x =
a22b1 − a12b2, which has a solution for x of the form

x =
a22b1 − a12b2

a11a22 − a12a21
≡ a22b1 − a12b2

detA
(6.49)

if a11a22 − a12a21 �= 0. In the last equality we have defined the determinant determinant of a
2 × 2 matrixof A:

A =
(

a11 a12

a21 a22

)

⇒ detA ≡ a11a22 − a12a21. (6.50)

We can also find y. Multiply the first equation of (6.48) by a21 and the second
by a11 and subtract the resulting two equations. This yields

(a11a22 − a12a21)y = a11b2 − a21b1

which has a solution for y of the form

y =
a11b2 − a21b1

detA
. (6.51)

We can combine Equations (6.49) and (6.51) into a single matrix equation:
(

x
y

)

=
1

det A

(
a22 −a12

−a21 a11

)(
b1

b2

)

. (6.52)

This is the inverse of the matrix form of Equation (6.48). Indeed if we had
written that equation in the form Ax = b, and if A had an inverse, say B,
then we could have multiplied both sides of the equation by B and obtained

BA︸︷︷︸
=1

x = Bb ⇒ x = Bb.

This is precisely what we have in Equation (6.52)! Is the matrix multiplying
the column vector b the inverse of A? Let us find out

1
detA

(
a22 −a12

−a21 a11

)(
a11 a12

a21 a22

)

=
1

detA

(
a22a11 − a12a21 0

0 −a21a12 + a11a22

)

=
(

1 0
0 1

)

.

So, it is indeed the inverse of A. We denote this inverse by A−1.

Theorem 6.3.1. A matrix A =
(

a11 a12

a21 a22

)

has an inverse if and only if

its determinant, defined by detA ≡ a11a22−a12a21, is not zero, in which case

A−1 =
1

detA

(
a22 −a12

−a21 a11

)

.
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The reader may verify that, not only A−1A = 1, but also AA−1 = 1.
Equation (6.48) gives the components b1 and b2 of a new vector obtained

from an old vector with components x and y when the matrix A acts on the
latter. We want to see what conditions A must satisfy for it to transform
vectors in a basis into vectors of a new basis. Let B = {a1, a2} be the old
basis. The components of a1 in B are x = 1 and y = 0; so by (6.48), a′

1,
the vector obtained from a1 by the action of A, has components b1 = a11 and
b2 = a21. The components of a2 in B are x = 0 and y = 1; so a′

2, the vector
obtained from a2 by the action of A, has components c1 = a12 and c2 = a22.
The vectors (b1, b2) and (c1, c2) form a basis if and only if they are linearly
independent, i.e.,

(b1, b2) = k(c1, c2) = (kc1, kc2) ⇒ b1 = kc1, b2 = kc2,

does not hold for any constant k. This is equivalent to saying that

b1

c1
�= b2

c2
or b1c2 − b2c1 �= 0.

Expressing the b’s and c’s in terms of aij ’s, we recognize the last relation as
a condition on the determinant of A. Using Theorem 6.3.1, we thus have

Box 6.3.1. A transformation (or a matrix) transforms a basis into an-
other basis if and only if it is invertible.

Let us now consider three equations in three unknowns:

a11x + a12y + a13z = b1,

a21x + a22y + a23z = b2, (6.53)
a31x + a32y + a33z = b3,

which can also be written in matrix form as
⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
b1

b2

b3

⎞

⎠ ⇒ Ax = b. (6.54)

We eliminate z from the set of equations by multiplying the first equation
of (6.53) by a23 and the second by a13 and subtracting. This will give onefrom three

equations in three
unknowns to two
equations in two
unknowns, and
from the
determinant of a
2 × 2 matrix to
that of a 3 × 3
matrix

equation in x and y. Similarly, multiplying the first equation by a33 and the
third by a13 and subtracting gives another equation in x and y. These two
equations are

(a11a23 − a21a13)︸ ︷︷ ︸
≡a11

x + (a12a23 − a22a13)︸ ︷︷ ︸
≡a12

y = a23b1 − a13b2︸ ︷︷ ︸
≡b1

,

(a11a33 − a31a13)︸ ︷︷ ︸
≡a21

x + (a12a33 − a32a13)︸ ︷︷ ︸
≡a22

y = a33b1 − a13b3︸ ︷︷ ︸
≡b2

. (6.55)
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Thus, we have reduced the three equations in three unknowns to two equa-
tions in two unknowns. We know how to find the solution for this set of
equations. These solutions are given in Equations (6.49) and (6.51). In order
for this equation to have a solution, the determinant of the coefficients must
not vanish. Let us calculate this determinant:

a11a22 − a12a21 = (a11a23 − a21a13)(a12a33 − a32a13)
− (a12a23 − a22a13)(a11a33 − a31a13)

= a11a23a12a33 − a11a23a32a13 − a21a13a12a33 + a21a13a32a13

− a12a23a11a33 + a12a23a31a13 + a22a13a11a33 − a22a13a31a13

= a13[a11(a22a33 − a23a32) − a12(a21a33 − a31a23)
+ a13(a21a32 − a22a31)]

= a13

[

a11 det
(

a22 a23

a32 a33

)

− a12 det
(

a21 a23

a31 a33

)

+ a13 det
(

a21 a22

a31 a32

)]

.

If the original set of equations is to have a solution, the expression in the
square brackets must not vanish. We call this expression the determinant
of the 3 × 3 matrix A. We can give a cookbook recipe for calculating the
determinant; but first we need the following definition:

Box 6.3.2. The cofactor Aij of an element aij of a matrix A is defined
as the product of (−1)i+j (i.e., +1 if i + j is even and −1 if i + j is odd)
and the determinant of the smaller matrix (2 × 2, if A is a 3 × 3 matrix)
obtained from A when its ith row and jth column are deleted.

The following recipe applies to any (square) matrix, not just to 3 × 3
matrices:

Box 6.3.3. The determinant of A is obtained by multiplying each ele-
ment of a row (or a column) by its cofactor and adding the products.

If detA �= 0, then Equation (6.49) gives

x =
a22b1 − a12b2

a13 detA
.

The numerator is

a22b1 − a12b2 = (a12a33 − a32a13)(a23b1 − a13b2)
− (a12a23 − a22a13)(a33b1 − a13b3)

= a13

[
(a22a33 − a32a23)︸ ︷︷ ︸

≡C11

b1 + (a32a13 − a12a33)︸ ︷︷ ︸
≡C12

b2 + (a12a23 − a22a13)︸ ︷︷ ︸
≡C13

b3

]

= a13(C11b1 + C12b2 + C13b3).
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Therefore,

x =
C11b1 + C12b2 + C13b3

detA
. (6.56)

Similarly, using Equation (6.51), we find

y =
a11b2 − a21b1

a13 detA

with

a11b2 − a21b1 = (a11a23 − a21a13)(a33b1 − a13b3)
− (a11a33 − a31a13)(a23b1 − a13b2)

= a13

[
(a31a23 − a21a33)︸ ︷︷ ︸

≡C21

b1 + (a11a33 − a31a13)︸ ︷︷ ︸
≡C22

b2 + (a21a13 − a11a23)︸ ︷︷ ︸
≡C23

b3

]

= a13(C21b1 + C22b2 + C23b3),

so that
y =

C21b1 + C22b2 + C23b3

detA
. (6.57)

With x and y thus determined, we can substitute them in any of the three
original equations and find z. Let us use the first equation; then

z =
b1 − a11x − a12y

a13

=
b1 − a11

C11b1 + C12b2 + C13b3

det A
− a12

C21b1 + C22b2 + C23b3

detA
a13

=
b1(det A − a11C11 − a12C21) − b2(a11C12 + a12C22) − b3(a11C13 + a12C23)

a13 det A
.

The numerator N can be calculated:

N = b1[a11(a22a33 − a23a32) − a12(a21a33 − a31a23) + a13(a21a32 − a22a31)
− a11(a22a33 − a32a23) − a12(a31a23 − a21a33)]

− b2[a11(a32a13 − a12a33) + a12(a11a33 − a31a13)]
− b3[a11(a12a23 − a22a13) + a12(a21a13 − a11a23)]

= a13

[
(a21a32 − a22a31)︸ ︷︷ ︸

≡C31

b1 + (a12a31 − a11a32)︸ ︷︷ ︸
≡C32

b2 + (a11a22 − a12a21)︸ ︷︷ ︸
≡C33

b3

]

= a13(C31b1 + C32b2 + C33b3).

It now follows that
z =

C31b1 + C32b2 + C33b3

detA
. (6.58)

We can put Equations (6.56), (6.57), and (6.58) in matrix form:
⎛

⎝
x
y
z

⎞

⎠ =
1

detA

⎛

⎝
C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞

⎠

⎛

⎝
b1

b2

b3

⎞

⎠ ⇒ x =
1

detA
Cb. (6.59)
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This is the inverse of Equation (6.54). The reader may verify that multiplying
A on either side of C/ detA yields the identity matrix, so that C/ detA is indeed
the inverse of A. The rule for calculating this inverse is as follows. Construct
a matrix out of the cofactors and denote it by A:

A ≡

⎛

⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎠ (6.60)

and note that ⎛

⎝
C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞

⎠ = Ã

so, we obtain the important result inverse of a 3 × 3
matrix

A−1 =
1

detA
Ã =

1
detA

⎛

⎝
A11 A21 A31

A12 A22 A32

A13 A23 A33

⎞

⎠ . (6.61)

Equation (6.61), although derived for a 3 × 3 matrix, applies to all matrices,
including a 2× 2 one whose inverse was given in Theorem 6.3.1, as the reader
is asked to verify.

As in the case of 2 × 2 matrices, a transformation in space that takes a
basis onto another basis is invertible.

6.4 The Jacobian

With the machinery of determinants at our disposal, we can formalize the
geometric construction of area and volume elements in Chapter 2 to a pro-
cedure which can be used for all coordinate transformations. We start with
two dimensions and consider the coordinate transformation

x = f(u, v), y = g(u, v). (6.62)

Our goal is to write the element of area in the (u, v) coordinate system. This
is the area formed by infinitesimal elements in the direction of u and v, i.e.,
elements in the direction of the primary curves of the (u, v) coordinate system.
For an arbitrary change du and dv in u and v, the Cartesian coordinates
change as follows:

dx =
∂f

∂u
du +

∂f

∂v
dv,

dy =
∂g

∂u
du +

∂g

∂v
dv.
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The element in the direction of the first primary curve is obtained by holding
v constant and letting u vary. This corresponds to setting dv = 0 in the above
equations. It follows that the first primary (vector) length element is

d�l1 = êx dx1 + êy dy1 = êx
∂f

∂u
du + êy

∂g

∂u
du. (6.63)

Similarly, the second primary (vector) length element, obtained by fixing u
and letting v vary, is

d�l2 = êx dx2 + êy dy2 = êx
∂f

∂v
dv + êy

∂g

∂v
dv. (6.64)

When we derived the elements of area and volume in the three coordinate
systems in Chapter 2, we used the fact that the set of unit vectors in each
system were mutually perpendicular. Therefore, the area and volume elements
were obtained by mere multiplication of length elements. We are not assuming
that êu and êv are perpendicular. Thus, we cannot simply multiply the lengths
to get the area. However, we can use the result of Example 1.1.2 which gives
the area of a parallelogram formed by two non-collinear vectors. Writing the
cross product in terms of the determinant, we have

d�l1 × d�l2 = det

⎛

⎜
⎜
⎜
⎜
⎝

êx êy êz

∂f
∂u

du
∂g
∂u

du 0

∂f
∂v

dv ∂g
∂v

dv 0

⎞

⎟
⎟
⎟
⎟
⎠

= êz det

⎛

⎝
∂f
∂u

∂g
∂u

∂f
∂v

∂g
∂v

⎞

⎠ du dv

and the area is simply the absolute value of this cross product:Jacobian matrix
and Jacobian

da =

∣
∣
∣
∣
∣
∣
det

⎛

⎝
∂f
∂u

∂g
∂u

∂f
∂v

∂g
∂v

⎞

⎠

∣
∣
∣
∣
∣
∣

du dv ≡

∣
∣
∣
∣
∣
∣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣
∣
∣
∣
∣
∣

du dv, (6.65)

where we substituted x and y for f and g and introduced a new notation
for the (absolute value of the) determinant. The matrix whose determinant
multiplies du dv is called the Jacobian matrix, and the absolute value of its
determinant, the Jacobian.

Example 6.4.1. Let us apply Equation (6.65) to polar coordinates. The trans-
formation is

x = f(r, θ) = r cos θ, y = g(r, θ) = r sin θ.

This gives

∂x

∂r
=

∂f

∂r
= cos θ,

∂x

∂θ
=

∂f

∂θ
= −r sin θ,

∂y

∂r
=

∂g

∂r
= sin θ,

∂y

∂θ
=

∂g

∂θ
= r cos θ,
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and

da =

∣
∣
∣
∣
∣
∣
∣

∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

∣
∣
∣
∣
∣
∣
∣

dr dθ =

∣
∣
∣
∣

cos θ sin θ
−r sin θ r cos θ

∣
∣
∣
∣ dr dθ

= (r cos2 θ + r sin2 θ) dr dθ = r dr dθ,

which is the familiar element of area in polar coordinates. �

The procedure discussed above for two dimensions can be generalized to
three dimensions using the result of Example 1.1.3 which gives the volume of a
parallelepiped formed by three non-coplanar vectors. Suppose the coordinate
transformations are of the form

x = f(u, v, w), y = g(u, v, w), z = h(u, v, w).

Then

dx =
∂f

∂u
du +

∂f

∂v
dv +

∂f

∂w
dw,

dy =
∂g

∂u
du +

∂g

∂v
dv +

∂g

∂w
dw,

dz =
∂h

∂u
du +

∂h

∂v
dv +

∂h

∂w
dw.

The first primary element of length is obtained by fixing v and w and
allowing u to vary; similarly for the second and third primary elements of
length. We therefore have

d�l1 = êx dx1 + êy dy1 + êz dz1 = êx
∂f

∂u
du + êy

∂g

∂u
du + êz

∂h

∂u
du,

d�l2 = êx dx2 + êy dy2 + êz dz2 = êx
∂f

∂v
dv + êy

∂g

∂v
dv + êz

∂h

∂v
dv,

d�l3 = êx dx3 + êy dy3 + êz dz3 = êx
∂f

∂w
dw + êy

∂g

∂w
dw + êz

∂h

∂w
dw.

Example 1.1.3 now yields

dV =
∣
∣
∣d�l1 · (d�l2 × d�l3)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂f
∂u

du
∂g
∂u

du ∂h
∂u

du

∂f
∂v

dv
∂g
∂v

dv ∂h
∂v

dv

∂f
∂w

dw
∂g
∂w

dw ∂h
∂w

dw

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

We summarize the foregoing argument in

Theorem 6.4.2. For the coordinates u, v, and w, related to the Cartesian
coordinates by x = f(u, v, w), y = g(u, v, w), and z = h(u, v, w), the volume
element is given by
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dV =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

du dv dw. (6.66)

The (absolute value of the) determinant multiplying du dv dw is called theJacobian defined

Jacobian of the coordinate transformation.

Historical Notes
Determinants were mathematical objects created in the process of solving a system
of linear equations. As early as 1693 Leibniz used a systematic set of indices for the
coefficients of a system of three equations in two unknowns. By eliminating the two
unknowns from the set of three equations, he obtained an expression involving the
coefficients that “determined” whether a solution existed for the set of equations.

The solution of simultaneous linear equations in two, three, and four unknowns
by the method of determinants was created by Maclaurin around 1729. Though
not as good in notation, his rule is the one we use today and which Cramer used
in connection with his study of the conic sections. In 1764, Bezout systematized
the process of determining the signs of the terms of a determinant for n equations
in n unknowns and showed that the vanishing of the determinant is a necessary
condition for nonzero solutions to exist.

Vandermonde was the first to give a connected and logical exposition of the
theory of determinants detached from any system of linear equations, although he
used his theory mostly as applied to such systems. He also gave a rule for expanding
a determinant by using second-order minors and their complementary minors. In
the sense that he concentrated on determinants, he is aptly considered the founder
of the theory.

One of the consistent workers in determinant theory over a period of over fifty
years was James Joseph Sylvester.

In 1833 he became a student at St. John’s College, Cambridge, and took the
difficult tripos examination in the same year along with two other famous math-
ematicians, Gregory and Green (the creator of the important Green’s functions).
Sylvester came second, Green who was 20 years older than the other two came fourth
with Duncan Gregory fifth. (The first-place winner did little work of importance
after graduating.)

James Joseph
Sylvester
1814–1897

At this time it was necessary for a student to sign a religious oath to the Church
of England before graduating and Sylvester, being Jewish, refused to take the oath,
so could not graduate. For the same reason he was not eligible for a Smith’s prize
nor for a Fellowship.

From 1838 Sylvester started to teach physics at the University of London, one
of the few places which did not bar him because of his religion. Three years later
he was appointed to a chair in the University of Virginia but he resigned after a few
months. A student who had been reading a newspaper in one of Sylvester’s lectures
insulted him and Sylvester struck him with a sword stick. The student collapsed in
shock and Sylvester believed (wrongly) that he had killed him. He fled to New York
boarding the first available ship back to England.

On his return, Sylvester worked as an actuary and lawyer but gave private
mathematics lessons. His pupils included Florence Nightingale. By good fortune
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Cayley was also a lawyer, and both worked at the courts of Lincoln’s Inn in London.
Cayley and Sylvester discussed mathematics as they walked around the courts and,
although very different in temperament, they became life-long friends.

Sylvester tried hard to return to mathematics as a profession, and he applied
unsuccessfully for a lectureship in geometry at Gresham College, London, in 1854.
Another failed application was for the chair in mathematics at the Royal Military
Academy at Woolwich, but, after the successful applicant died within a few months
of being appointed, Sylvester became professor of mathematics at Woolwich. Being
at a military academy, Sylvester had to retire at age 55. At first it looked as though
he might give up mathematics since he had published his only book at this time,
and it was on poetry. Apparently Sylvester was proud of this work, entitled The
Laws of Verse, since after this he sometimes signed himself “J. J. Sylvester, author
of The Laws of Verse.”

In 1877 Sylvester accepted a chair at the Johns Hopkins University and founded
in 1878 the American Journal of Mathematics, the first mathematical journal in the
USA.

In 1883 Sylvester, although 68 years old at this time, was appointed to the
Savilian chair of geometry at Oxford. However he only liked to lecture on his own
research and this was not well liked at Oxford where students wanted only to do well
in examinations. In 1892, at the age of 78, Oxford appointed a deputy professor
in his place and Sylvester, by this time partially blind and suffering from loss of
memory, returned to London where he spent his last years at the Athenaeum Club.

Sylvester did important work on matrix and determinant theory, a topic in which
he became interested during the walks with Cayley while they were at the courts
of Lincoln’s Inn. In particular he used matrix theory to study higher-dimensional
geometry. He also devised an improved method of determining conditions under
which a system of polynomial equations has a solution.

The formula for the derivative of a determinant when the elements are functions
of a variable was first given in 1841 by Jacobi who had earlier used them in the
change of variables in a multiple integral. In this context the determinant is called
the Jacobian of the transformation (as discussed in the current section of this book).

6.5 Problems

6.1. What vector is obtained when the vector a2 of a basis {a1, a2} is actively
transformed with the matrix

(
0 1
0 0

)
.

6.2. Show that the nonzero matrix A =
(

1 0
0 0

)
cannot have an inverse. Hint:

Suppose that B =
(

a b
c d

)
is the inverse of A. Calculate AB and BA, set them

equal to the unit matrix and show that no solution exists for a, b, c, and d.

6.3. Let A =
(

a1 b1
c1 d1

)
and B =

(
a2 b2
c2 d2

)
be arbitrary matrices. Find AB, At,

and Bt and show that (AB)t = BtAt.

6.4. Find the angle between 1 + t and 1 − t when the inner product is inte-
gration over the interval (0, 1).

6.5. Instead of (0, 1), choose (−1, 1) as the interval of integration for P1[t].
From the basis {1, t}, construct an orthonormal basis using the Gram–Schmidt
process.
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6.6. Take the interval of the integration to be (−1, +1), and find the inner
product matrix for the basis {1, t} of P1[t].

6.7. Find the angle between two vectors a and b, whose components in an
orthonormal basis are, respectively, (1, 2) and (2,−3). Use the Gram–Schmidt
process to find the orthonormal vectors obtained from a and b.

6.8. Use the Gram–Schmidt process to find an orthonormal basis in three
dimensions from each of the following:

(a) (−1, 1, 1), (1,−1, 1), (1, 1,−1) (b) (1, 2, 2), (0, 0, 1), (0, 1, 0)

6.9. (a) Find the inner product matrix associated with the basis vectors
a1 = êx + êy, a2 = êx + êz, and a3 = êy + êz.
(b) Calculate the inner product of two vectors a and b, whose components in
the basis above are, respectively, (1,−1, 2) and (0, 2, 3).
(c) Use the Gram–Schmidt process to find three orthonormal vectors out of
the basis of (a).

6.10. Use Gram–Schmidt process to find orthonormal vectors out of the three
vectors (2,−1, 3), (−1, 1,−2), and (3, 1, 2). What do you get as the last
vector? What can you say about the linear independence of the original
vectors?

6.11. What is the angle between the second and fourth vectors in the standard
basis of P3[t] when the interval of integration of the inner product is (0, 1)?
Between the first and fourth vectors?

6.12. Calculate the inner product matrix for the standard basis of P3[t] when
the interval of integration of the inner product is (−1, +1). Now find the angle
between all vectors in that basis.

6.13. The inner product matrix in a basis {a1, a2} is given by

G =
(

2 −1
−1 3

)

.

(a) Calculate the cosine of the angle between a1 and a2.
(b) Suppose that a = −a1 + a2 and b = 2a1 − a2. Calculate |a|, |b|, a · b,
and the cosine of the angle between a and b.

6.14. Let a1 = 1 + t and a2 = 1 − t be a basis of P1[t]. Define the inner
product as the integral of products of polynomials over the interval (0, a) with
a > 0.
(a) Determine a such that a1 and a2 are orthogonal.
(b) Given this value of a, calculate |a1| and |a2|.
(c) Find two orthogonal polynomials {ê1, ê2} of unit length that form a basis
for P1[t].
(d) Write the polynomial b = 3 − 2t as a linear combination of ê1 and ê2.
(e) Calculate b · b using the definition of the inner product.
(f) Calculate b ·b by squaring (and then adding) the components in {ê1, ê2}.
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6.15. Show that the matrix C defined in Equations (6.56)–(6.59) is indeed
the transpose of the matrix A of cofactors of A.

6.16. Show directly that the matrix given in Equation (6.61) is indeed the
inverse of the matrix A.

6.17. From the transformation rules (1.8) and (1.9) giving the Cartesian
coordinates as functions of cylindrical and spherical coordinates, and using
the Jacobian (6.66), find the volume elements in cylindrical and spherical
coordinates

6.18. The elliptic coordinates are given by

x = a coshu cos θ

y = a sinh u sin θ.

Using the Jacobian for two variables (6.65), find the element of area for the
elliptic coordinate system.

6.19. The elliptic cylindrical coordinates are given by

x = a coshu cos θ

y = a sinhu sin θ

z = z

Using the Jacobian for three variables (6.66), find the element of volume for
the elliptic cylindrical coordinate system.

6.20. The prolate spheroidal coordinates are given by

x = a sinh u sin θ cosϕ

y = a sinh u sin θ sin ϕ

z = a coshu cos θ

Using the Jacobian for three variables (6.66), find the element of volume for
the prolate spheroidal coordinate system.

6.21. The toroidal coordinates are given by

x =
a sinh θ cosϕ

cosh θ − cosu

y =
a sinh θ sin ϕ

cosh θ − cosu

z =
a sin u

cosh θ − cosu

Using the Jacobian for three variables (6.66), find the element of volume for
the toroidal coordinate system.
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6.22. A coordinate system (R, Θ, φ) in space is defined by

x = R cosΘ cosφ + b cosφ

y = R cosΘ sinφ + b sinφ

z = R sinΘ

where b is a constant, and 0 < R < b. Using the Jacobian for three variables
(6.66), find the element of volume for this coordinate system.



Chapter 7

Finite-Dimensional Vector
Spaces

Human visual perception of dimension is limited to two and three, the plane
and space. However, his mental perception, and his ability to abstract, rec-
ognizes no bounds. If this abstraction were a mere useless mental exercise,
we would not bother to add this chapter to the book. It is an intriguing
coincidence that Nature plays along with the tune of human mental abstrac-
tion in the most harmonious way. This harmony was revealed to Hermann
Minkowski in 1908 when he convinced physicists and mathematicians alike,
that the most natural setting for the newly discovered special theory of rel-
ativity was a four-dimensional space. Eight years later, Einstein used this
concept to formulate his general theory of relativity which is the only viable
theory of gravity for the large-scale structure of space and time. In 1921,
Kaluza, in a most beautiful idea, unified the electromagnetic interaction with
gravity using a five-dimensional spacetime. Today string theory, one of the
most promising candidates for the unification of all forces of nature, uses
11-dimensional spacetime; and the language of quantum mechanics—a the-
ory that describes atomic, molecular, and solid-state physics, as well as all
of chemistry—is best spoken in an infinite-dimensional space, called Hilbert
space.

The key to this multidimensional abstraction is Descartes’ ingenious idea
of translating Euclid’s geometry into the language of coordinates whereby the
abstract Euclidean point in a plane is given the two coordinates (x, y), and
that in space, the three coordinates (x, y, z), where x, y, and z are real num-
bers. Once this crucial step is taken, the generalization to multidimensional
spaces becomes a matter of adding more and more coordinates to the list:
(x, y, z, w) is a point in a four-dimensional space, and (x, y, z, w, u) describes
a point in a five-dimensional space. In the spirit of this chapter, we want to
identify points with vectors as in the plane and space, in which we drew a
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directed line segment from the origin to the point in question. In general, an
n-dimensional Cartesian vector x isn-dimensional

Cartesian vector

x = (x1, x2, . . . , xn) (7.1)

in which xj is called the jth component of the vector. These have all the
properties expected of vectors: You can add them

x + y = (x1, x2, . . . , xn) + (y1, y2, . . . , yn) ≡ (x1 + y1, x2 + y2, . . . , xn + yn),

you can multiply a vector by a number

αx = α(x1, x2, . . . , xn) ≡ (αx1, αx2, . . . , αxn),

and the zero vector is 0 = (0, 0, . . . , 0). Two vectors are equal if and only if
their corresponding components are equal. Sometimes, it will be convenient
to denote these vectors as columns rather than rows.

The set of real numbers, or the set of points on a line, is denoted by R.
It is common to denote the set of points in a plane—or, in the language of
Cartesian coordinates, the set of pairs of real numbers (x, y)—by R

2, and
the set of points in space by R

3. Generalizing this notation, we denote the
set of points in the n-dimensional Cartesian space by R

n. We now have an
infinite collection of “spaces” of various dimensions, starting with the one-
dimensional real line R

1 = R, moving on to the two-dimensional plane R
2,

and the three-dimensional space R
3, and continuing to all the abstract spaces

R
n with n ≥ 4. The concepts of linear combination, linear independence,andstandard basis of

R
n basis are exactly the same as before. The vectors

ê1 ≡ (1, 0, . . . , 0), ê2 ≡ (0, 1, . . . , 0), . . . ên ≡ (0, 0, . . . , 1) (7.2)

form a basis for R
n, called the standard basis.

7.1 Linear Transformations

A linear transformation or a linear operator is a correspondence thatformal definition
of a linear
transformation or
a linear operator

takes a vector in one space and produces a vector in another space in such a
way that the operation of summation of vectors and multiplication of vectors
by numbers is preserved. If we denote the linear transformation by T, then
in mathematical symbolism, the above statement becomes

T(αx + βy) = αT(x) + βT(y). (7.3)

Matrices are prototypes of linear transformations. In fact, we saw earlier
that it was possible to transform vectors in the plane to vectors in space
and vice versa via 3 × 2 or 2 × 3 matrices. We did not attempt to verify
Equation (7.3) for those transformations, but the reader can easily do so.
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In fact, denoting vectors of R
n and R

m by column vectors, we can immediately
generalize Equations (6.36) and (6.37) to

⎛

⎜
⎜
⎜
⎝

α′
1

α′
2
...

α′
m

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

α1

α2

...
αn

⎞

⎟
⎟
⎟
⎠

or a′ = Aa, (7.4)

where A is an m × n matrix—i.e., it has m rows and n columns—whose
elements aij are real numbers. The reader may verify that Equation (7.4) is
a linear transformation that maps vectors of R

n to those of R
m.

Other linear operators of importance are various differential operators, derivative is a
linear operatori.e., derivatives of various order. For example, it is easily verified that d/dx

is a linear operator acting on the space of differentiable functions.1 This is
because

d

dx
(αf + βg) = α

df

dx
+ β

dg

dx

for α and β real constants. Similarly d2/dx2 and derivative of higher orders, as
well as partial derivatives of various kinds and orders, are all linear operators.
In fact, even when these derivatives are multiplied by functions (on the left),
they are still linear. In particular, the second-order linear differential operator second-order linear

differential
operator

L ≡ p2(x)
d2

dx2 + p1(x)
d

dx
+ p0(x)

is indeed a linear operator.
If a linear transformation T maps vectors of R

n to vectors of R
m, and S

maps vectors of R
m to vectors of R

k, then we can “compose” or “multiply”
the two transformations to obtain a linear transformation ST which maps
vectors of R

n to vectors of R
k. In terms of matrices, T is represented by an

m×n matrix T, S is represented by a k ×m matrix S, and ST is represented
by an k × n matrix which is the product of S and T with S to the left of T.
The product of matrices is as outlined in Box 6.1.3.

Box 7.1.1. If A is a k × m matrix, and B is an m × n matrix, then AB
is a k × n matrix whose entries are given by Box 6.1.3.

The product BA is not defined unless k = n, in which case BA will be an
m × m matrix.

Using polynomials, we can generate multidimensional vector spaces by polynomials can
generate
multidimensional
vector spaces!

adding increasing powers of t. Then, the collection Pn[t] of polynomials of
degree n and less becomes an (n + 1)-dimensional vector space. A convenient
basis for this vector space is {1, t, t2, . . . , tn} which we call the standard

1The reader may want to check that the collection of differentiable functions is indeed a
vector space with the “zero function” being the zero vector.
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basis of Pn[t]. The reader may verify that the operation of differentiation (of
any order) is a linear transformation on Pn[t] which can be represented by
matrices as done in Example 6.2.2.

Example 7.1.1. Let us find the matrix that represents the operation of second
differentiation on P3[t] using the standard basis of P3[t]. Recall that we only need to
apply the second derivative to the basis vectors f1 = 1, f2 = t, f3 = t2, and f4 = t3.
We use a prime to denote the transformed vector:

f ′1 =
d2

dt2
(1) = 0 = 0 · f1 + 0 · f2,

f ′2 =
d2

dt2
(t) = 0 = 0 · f1 + 0 · f2,

f ′3 =
d2

dt2
(t2) = 2 = 2 · f1 + 0 · f2,

f ′4 =
d2

dt2
(t3) = 6t = 0 · f1 + 6 · f2,

where we have anticipated the fact that double differentiation of P3[t] results in
P1[t]. Following the rule of Box 6.2.2, we can write the transformation matrix as

(
0 0 2 0
0 0 0 6

)

.

We may verify that the coefficients in P1[t] of the second derivative of an arbi-
trary polynomial f(t) = α0 + α1t + α2t

2 + α3t
3 can be obtained by the product of

the matrix of second derivative and the 4 × 1 column vector representing f(t). In
fact,

(
0 0 2 0
0 0 0 6

)
⎛

⎜
⎜
⎝

α0

α1

α2

α3

⎞

⎟
⎟
⎠ =

(
2α2

6α3

)

.

These are the two coefficients of the resulting polynomial in P1[t]. The polynomial
itself is 2α2 + 6α3t which is indeed the derivative of the third degree polynomial
f(t). �

7.2 Inner Product

Since the concepts of length and angle are not familiar for R
n, we need to

define the inner product first and then deduce those concepts. We can gener-
alize the usual inner product of R

2 and R
3 in terms of components of vectors.

Let
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn).

Theninner product in
R

n defined in
terms of
components in the
standard basis

a · b = a1b1 + a2b2 + · · · + anbn (7.5)

is the immediate generalization of the dot product to R
n.
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This, of course, is not the most general inner product. For that, we need
an inner product matrix G. As in the case of the plane and space, this is
simply a symmetric n× n matrix whose elements determine the dot products
of the vectors of the basis in which we are working.

G =

⎛

⎜
⎜
⎜
⎝

g11 g12 . . . g1n

g21 g22 . . . g2n

...
...

...
gn1 gn2 . . . gnn

⎞

⎟
⎟
⎟
⎠

, gij = gji, i, j = 1, 2, . . . , n. (7.6)

Example 7.2.1. Let us find the inner product matrix for the basis {1, t, t2, t3} of
P3[t]. As usual, we assume that the interval of integration for the inner product is
(0, 1). Because of the symmetry of the matrix and the fact that we have already
calculated the 3 × 3 submatrix of G, we need to find g14, g24, g34, and g44. Once
again, let f1 = f1(t) = 1, f2 = f2(t) = t, f3 = f3(t) = t2, and f4 = f4(t) = t3;
then

g14 = f1 · f4 =

∫ 1

0

f1(t)f4(t) dt =

∫ 1

0

t3dt = 1
4
,

g24 = f2 · f4 =

∫ 1

0

f2(t)f4(t) dt =

∫ 1

0

t4dt = 1
5
.

Similarly, g34 = 1
6

and g44 = 1
7
. It follows that

G =

⎛

⎜
⎜
⎜
⎝

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

⎞

⎟
⎟
⎟
⎠

.

This matrix can be used to find the dot product of any two vectors in terms of their
components in the basis {1, t, t2, t3} of P3[t]. �

If a and b have components (a1, a2, . . . , an) and (b1, b2, . . . , bn), then their
inner product is given by inner product in

R
n defined in

terms of the
metric matrix and
components in a
general basis

ãGb =
(
a1 a2 . . . an

)

⎛

⎜
⎜
⎜
⎝

g11 g12 . . . g1n

g21 g22 . . . g2n

...
...

...
gn1 gn2 . . . gnn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

b1

b2

...
bn

⎞

⎟
⎟
⎟
⎠

. (7.7)

As usual, if this expression is zero, we say that a and b are G-orthogonal. For
an orthonormal basis, the inner product matrix G becomes the unit matrix2

and we recover the usual inner product of vectors in terms of components.
With a positive definite inner product at hand, we can define the length of length of a vector

defined in terms of
inner product

a vector as the (positive) square root of the inner product of the vector with
itself. Can we define the angle as well? We can always define

2Only if the inner product is positive definite.
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angle defined in
terms of inner
product

cos θ ≡ a · b
|a| |b| =

a · b
√

a · a
√

b · b
.

But how do we know that the ratio on the RHS is less than one? After all,
a true cosine must have this property! It is an amazing fact of nature that
any positive definite inner product has precisely this property. To show this,
let a and b be two vectors in any vector space on which an inner product is
defined. Denote the unit vector in the a direction by êa, and construct the
vector

b′ = b− (b · êa)
︸ ︷︷ ︸
a number

êa (7.8)

which is easily seen to be perpendicular to êa (and therefore to a). If the
inner product is positive definite, thenderivation of the

Schwarz inequality
b′ · b′ ≥ 0 ⇒ [b− (b · êa)êa] · [b− (b · êa)êa] ≥ 0

or
b · b︸︷︷︸
=|b|2

−2b · [(b · êa)êa]
︸ ︷︷ ︸

=(b·êa)2

+(b · êa)2 êa · êa︸ ︷︷ ︸
=1

≥ 0.

It follows that

|b|2 − (b · êa)2 ≥ 0 ⇒ |b|2 ≥
[

b ·
(

a
|a|

)]2

and

|b|2 ≥
(

b · a
|a|

)2

⇒ |b|2|a|2 ≥ (b · a)2.

This is the desired inequality.

Box 7.2.1. (Schwarz Inequality). If a and b are two nonzero vectors
of a vector space for which a positive definite inner product is defined,
then

|a| |b| ≥ |a · b|.

The equality holds only if b is a multiple of a.

The last statement follows from the fact that b′ · b′ = 0 only if b′ = 0 when
the inner product is positive definite [see Equation (7.8)].

The Schwarz inequality holds not only for finite-dimensional vector spacesSchwarz inequality
holds in all inner
product spaces
regardless of their
dimensionality.

such as R
n or Pn[t], but also for infinite-dimensional vector spaces. It is

one of the most important inequalities in mathematical physics. One of its
consequences is that we can actually define the angle between two nonzero
vectors in R

n or Pn[t] (or any other vector space, finite or infinite, for which
a positive definite inner product exists).
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Example 7.2.2. What is the angle between the third and fourth vectors in the
standard basis of P3[t] when the interval of integration of the inner product is (0, 1)?
All the inner products are calculated in Example 7.2.1. Therefore,

cos θ =
f3 · f4√

f3 · f3
√

f4 · f4
=

g34√
g33

√
g44

=
1/6

√
1/5

√
1/7

=

√
35

6

or θ = 9.594◦. �

As in the case of the plane and space, it is convenient to construct or-
thonormal basis vectors in R

n. This is done by the Gram–Schmidt process Gram–Schmidt
processwhich can easily be generalized. Suppose B = {a1, a2, . . . ,an} is a basis for

R
n. Again, to avoid complications, we assume that the inner product is Eu-

clidean so that the inner product of every nonzero vector with itself is positive.
We know how to construct three orthonormal vectors out of {a1, a2, a3}, we
did that in our discussion of the space vectors. Call these new orthonormal
vectors {ê1, ê2, ê3}. Now construct the vector a′

4,

a′
4 = a4 − (a4 · ê1)ê1 − (a4 · ê2)ê2 − (a4 · ê3)ê3

which is obtained from a4 by taking away its projections along ê1, ê2, and ê3.
Now note that

ê1 · a′
4 = ê1 · a4 − (a4 · ê1) ê1 · ê1︸ ︷︷ ︸

=1

−(a4 · ê2) ê2 · ê1︸ ︷︷ ︸
=0

−(a4 · ê3) ê3 · ê1︸ ︷︷ ︸
=0

= 0.

Similarly, ê2 · a′
4 = 0 and ê3 · a′

4 = 0; i.e., a′
4 is orthogonal to ê1, ê2, and ê3.

This suggests defining ê4 as

ê4 ≡ a′
4

|a′
4|

=
a′

4√
a′

4 · a′
4

.

This process can continue until we come up with n orthonormal vectors. This
will happen only if the n vectors with which we started are linearly indepen-
dent.

Box 7.2.2. If {a1,a2, . . . ,an} are linearly independent vectors of R
n,

then we can construct a set of n orthonormal vectors out of them by the
Gram–Schmidt process.

An orthonormal basis will be denoted by {ê1, ê2, . . . , ên}, where, as usual,
the symbol ê stands for unit vectors. We can abbreviate the orthonormal
property of these vectors by writing

êi · êj =

{
1 if i = j,
0 if i �= j.
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There is a symbol that shortens the above statement even further. It is called
the Kronecker delta and denoted by δij . It is defined byKronecker delta

and its use in
discussing
orthonormal
vectors

δij =

{
1 if i = j,
0 if i �= j.

(7.9)

Therefore, the orthonormality condition can be expressed as

êi · êj = δij . (7.10)

We shall see many examples of the use of the Kronecker delta in the sequel.
Transformations that leave the inner products unchanged can be obtained

in exactly the same way as for the plane and the space. For A to preserve the
inner product, we need to haveG-orthogonal

matrix
ÃGA = G, (7.11)

i.e., it has to be G-orthogonal. If G is the identity matrix, then A can be
thought of as an n-dimensional rigid rotation and is simply called orthogonal ;
it satisfies

ÃA = 1 (7.12)

or
⎛

⎜
⎜
⎜
⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

a11 a21 . . . an1

a12 a22 . . . an2

...
...

...
a1n a2n . . . ann

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1

⎞

⎟
⎟
⎟
⎠

.

It should be clear from this that the columns of the matrix A, considered as
vectors, have unit length and are orthogonal to other columns in the usual
Euclidean inner product.

7.3 The Determinant

The determinant of an n×n matrix is obtained in terms of cofactors in exactly
the same way as in the case of 3 × 3 matrices. The cofactors are themselves
determinants of (n − 1) × (n − 1) matrices which can be expanded in terms
of cofactors of their elements which are determinants of (n − 2) × (n − 2)
matrices, etc. Continuing this process, we finally end up with determinants
of 2 × 2 matrices. The determinant is also related to the inverse of a matrix
[see Equations (6.60) and (6.61)]:

Theorem 7.3.1. The matrix A has an inverse if and only if det A �= 0 in
which case

A−1 =
1

detA
Ã =

1
detA

⎛

⎜
⎜
⎜
⎝

A11 A21 . . . An1

A12 A22 . . . An2

...
...

...
A1n A2n . . . Ann

⎞

⎟
⎟
⎟
⎠

, (7.13)

where Aij is the cofactor of aij as defined in Box 6.3.2.
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Calculation of the determinant becomes extremely cumbersome when the
dimension of the matrix increases beyond 4 or 5. However, there are certain
properties of the determinant which may sometimes facilitate its calculation.
The determinant has the following properties: some properties of

the determinant
1. To obtain the determinant of an n×n matrix, multiply each element of

one row (or one column) by its cofactor and then add the results.

2. The determinant of the unit matrix is 1.

3. The determinant of a matrix is equal to the determinant of its transpose:
detA = detAt.

4. If two rows (or two columns) of a matrix are proportional (in particular,
equal), the determinant of the matrix is zero.

5. If a row or column—treated as a vector in R
n—of a matrix is multiplied

by a constant, the determinant of the matrix will be multiplied by the
same constant.

6. If two rows (or two columns) of a matrix are interchanged, the determi-
nant changes sign.

7. The determinant will not change if we add to one row (or one column)
a multiple of another row (or another column). The addition of rows or
columns and their multiplication by numbers are to be understood as
operations in R

n.

An important relation, which we state without proof,3 is the determinant of
a product is the
product of
determinants.

det(AB) = det AdetB. (7.14)

This, in combination with det 1 = 1 and AA−1 = 1, gives

det(AA−1) = det 1 ⇒ det Adet(A−1) = 1 ⇒ det(A−1) =
1

detA
. (7.15)

In words, the determinant of the inverse of a matrix is the inverse of its determinant of
inverse is inverse
determinant

determinant.
Recall that an orthogonal matrix A satisfies AAt = 1. The third property

of the determinant given above and (7.14) can be used to obtain

det(AAt) = det 1 ⇒ (detA)2 = 1 ⇒ detA = ±1. (7.16)

So

Box 7.3.1. The determinant of an orthogonal matrix is either +1 or −1.

3See Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, Chapters 3 and 25.
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7.4 Eigenvectors and Eigenvalues

One of the most important applications of the determinant is in finding cer-
tain vectors that are not affected by transformations. As an example, consider
rotation which is a linear transformation of space onto itself (or a transfor-
mation from R

3 to R
3). A general rotation in space is very complicated (see

Example 6.2.5 and the discussion immediately preceding it), but if we can
find an axis which is unaffected by the operation, then the process becomes a
simple rotation about this axis.

When we say that a vector is unaffected, we mean that its direction (and
not necessarily its magnitude) is unchanged. We use n× n matrices to repre-
sent transformations of R

n. If x is a (column) vector in R
n whose direction is

not affected by the transformation T, then we can write

T x = λx or (T − λ1)x = 0, (7.17)

where λ is a real number and we introduced the unit matrix to give meaning to
the subtraction of λ from T. In Equation (7.17), x is called the eigenvectoreigenvector,

eigenvalue, and
eigenvalue
equation

and λ the eigenvalue of the linear transformation. Since the zero vector triv-
ially satisfies (7.17), we demand that eigenvectors always be nonzero. Equation
(7.17) itself is called an eigenvalue equation; its solution involves calculat-
ing both the eigenvalues and the eigenvectors. It is clear from (7.17) that a
multiple of an eigenvector is also an eigenvector (see Problem 7.6). There-
fore, an eigenvalue equation (7.17) has no unique solution. By convention, we
normalize eigenvectors so that their length is unity.

To find the solution to (7.17), we note that the matrix (T−λ1) must have
no inverse, because if it did, then we could multiply both sides of the equation
by (T − λ1)−1 and obtain

(T − λ1)−1(T − λ1)
︸ ︷︷ ︸

=1

x = (T − λ1)−10
︸ ︷︷ ︸

=0

⇒ x = 0

which is not an acceptable solution. So, we must demand that the matrixa necessary
condition for an
eigenvalue
equation to have
nontrivial
solutions is that
the determinant of
T − λ1 be zero.

(T − λ1) have no inverse. This will happen only if the determinant of this
matrix vanishes. So, the problem is reduced to finding those λ’s which make
the determinant of the matrix vanish. In other words, the eigenvalues are the
solutions of the equation

det(T − λ1) = 0. (7.18)

Once the eigenvalues are determined, we substitute them one by one in the
matrix equation (7.17) and find the corresponding eigenvectors by solving the
resulting n linear equations in n unknowns. The best way to explain this is
through an example.

Example 7.4.1. Let T be a linear transformation of space (or R
3) represented by

the matrix

T =

⎛

⎝
1 0 0
0 1 2
0 2 1

⎞

⎠ .
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The eigenvalue equation is

(T − λ1)x = 0 or

⎡

⎣

⎛

⎝
1 0 0
0 1 2
0 2 1

⎞

⎠ − λ

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎤

⎦

⎛

⎝
x1

x2

x3

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ .

This can also be written as

⎛

⎝
1 − λ 0 0

0 1 − λ 2
0 2 1 − λ

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ (7.19)

whose nontrivial solution is obtained by setting the determinant of the matrix equal
to zero:

det

⎛

⎝
1 − λ 0 0

0 1 − λ 2
0 2 1 − λ

⎞

⎠ = 0

or

(1 − λ) det

(
1 − λ 2

2 1 − λ

)

= (1 − λ)
[
(1 − λ)2 − 4

]
= 0.

This equation has the solutions

1 − λ = 0 or (1 − λ)2 = 4 ⇒ 1 − λ = ±2.

It follows that there are three eigenvalues: λ1 = 1, λ2 = −1, and λ3 = 3. We now
find the eigenvectors corresponding to each eigenvalue.

Substituting λ1 = 1 for λ in Equation (7.19) yields

⎛

⎝
0 0 0
0 0 2
0 2 0

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ or

⎛

⎝
0

2x3

2x2

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ .

It follows that x2 = 0 = x3. Therefore, the first eigenvector is

a1 =

⎛

⎝
x1

0
0

⎞

⎠ = x1

⎛

⎝
1
0
0

⎞

⎠

with x1 an arbitrary real number. This arbitrariness comes from the fact that a
multiple of an eigenvector is also an eigenvector. We choose x1 = 1 to normalize the
eigenvector to unit length. Denoting this eigenvector by e1, we have

e1 =

⎛

⎝
1
0
0

⎞

⎠ .

To find the second eigenvector, we substitute λ2 = −1 for λ in Equation (7.19).
This gives

⎛

⎝
2 0 0
0 2 2
0 2 2

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ or

⎛

⎝
2x1

2x2 + 2x3

2x2 + 2x3

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ .
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It follows that x1 = 0, and 2x2 + 2x3 = 0 or x3 = −x2. Therefore, the second
eigenvector is

a2 =

⎛

⎝
0
x2

−x2

⎞

⎠ = x2

⎛

⎝
0
1
−1

⎞

⎠

with x2 arbitrary. To normalize the eigenvector, we divide it by its length.4 This
amounts to choosing x2 = 1/

√
2 (see Problem 7.7). We thus have

e2 =
1√
2

⎛

⎝
0
1
−1

⎞

⎠ .

For the third eigenvector, we substitute λ3 = 3 in Equation (7.19) to obtain

⎛

⎝
−2 0 0
0 −2 2
0 2 −2

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ or

⎛

⎝
−2x1

−2x2 + 2x3

2x2 − 2x3

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠

or x1 = 0, and x3 = x2. Therefore, the third eigenvector is

a3 =

⎛

⎝
0
x2

x2

⎞

⎠ = x2

⎛

⎝
0
1
1

⎞

⎠

with x2 arbitrary. To normalize the eigenvector, we divide it by its length and get

e3 =
1√
2

⎛

⎝
0
1
1

⎞

⎠ .

�

The unit eigenvectors ê1, ê2, and ê3 of the preceding example are mutually
perpendicular as the reader may easily verify. This is no accident! The matrix
of that example happens to be symmetric, and for such matrices, we have the
following general property:

Box 7.4.1. Eigenvectors of a symmetric matrix corresponding to different
eigenvalues are orthogonal.

To show this, let x and y be eigenvectors of a symmetric matrix T correspond-
ing to eigenvalues λ and λ′, respectively:

Tx = λx, Ty = λ′y.

Multiply both sides of the first equation by ỹ and the second by x̃ to get

ỹ Tx = λỹ x, x̃ Ty = λ′ x̃y. (7.20)

4Here we are assuming that the inner product for the calculation of length is the usual
Euclidean one.
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Now take the transpose of both sides of the first equation in (7.20). This
gives5

(ỹ Tx)t = λ(ỹ x)t ⇒ x̃ T̃ ˜̃y = λx̃ ˜̃y.

But double transposing y gives back y. Furthermore, T̃ = T, because T is
symmetric. So,

x̃ Ty = λx̃y.

Subtracting both sides of this equation from those of the second equation in
(7.20), we obtain

0 = (λ − λ′)x̃y.

By assumption, λ �= λ′; so, we must have x̃y = 0, i.e., that x and y are
orthogonal.

7.5 Orthogonal Polynomials

The last section generalized the two- and three-dimensional “arrows” and
polynomials to higher dimensions in which many of the original properties of
vectors—such as the inner product—were retained. In this section, we want to
make two more generalizations which are necessary for many physical applica-
tions. The first is the introduction of a weight function in the definition of weight function

inner product. A weight function is a function that is positive definite6 in the
interval (a, b) of integration of the inner product. More specifically, let p =
p(t) and q = q(t) be polynomials in Pn[t]. We define their inner product as

p · q =
∫ b

a

p(t)q(t)w(t) dt, (7.21)

where w(t) is a function that is never zero or negative for a < t < b, and its
form is usually dictated by the physical application. The reader may verify
that Equation (7.21) defines a positive definite inner product.

The second generalization is to consider the collection of all polynomials
of arbitrary degree. In other words, instead of confining ourselves to Pn[t] for
some fixed n, we shall allow all polynomials without any restriction on their
degree. Clearly, such a collection is indeed a vector space; however it does
not have a finite basis. We denote this infinite-dimensional space by Pw

(a,b)[t],
in which notation both the weight function and the interval of integration are
included.

Given any basis for Pw
(a,b)[t], we can apply the Gram–Schmidt process on it

to turn it into an orthonormal basis. Due to historical reasons, the normality
is not a desirable property for the basis vectors. So, one seeks polynomials
that are orthogonal, but not necessarily of unit length. Instead of normalizing tradition and

history
“standardize”
polynomials
instead of “nor-
malizing” them.

the vectors, one standardizes them. Standardization is a rule—dictated by
tradition—that fixes some of the coefficients of the polynomials. The proce-
dure for finding these orthogonal polynomials is to start from the constant

5Recall that˜and t mean the same thing.
6This just means that the function is positive and never zero.
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polynomial (of degree zero) and standardize it to get the first polynomial.
Next apply the standardization to the polynomial of degree one (with two
unknown coefficients), and make sure that it is perpendicular to the first
polynomial, where the inner product is defined by (7.21). These two require-
ments (standardization and perpendicularity) provide two equations and two
unknowns which can be solved to find the coefficients of the second polyno-
mial. The next polynomial has degree two with three unknown coefficients.
Standardization and orthogonality to the first two polynomials provide three
equations in three unknowns, the solution of which equations determines the
third polynomial. This process can be continued indefinitely determining the
coefficients of orthogonal polynomials up to any desired degree.

Example 7.5.1. The procedure above is best illustrated by a concrete example.
The Legendre polynomial of degree n, denoted by Pn(t), is characterized byLegendre

polynomial the standardization Pn(1) = 1. We denote the collection of these polynomials by
P1

(−1,1)[t], indicating that the interval of integration for them is from −1 to +1
and that the weight function is unity. Because of standardization, we must choose
P0(t) = 1. The first degree polynomial is generally written as P1(t) = α0 + α1t.
Standardization gives α0 + α1 = 1. Orthogonality to P0(t) gives

0 =

∫ 1

−1

P0(t)P1(t)w(t) dt =

∫ 1

−1

1 · (α0 + α1t) · 1 dt = 2α0.

So, α0 = 0 and α1 = 1. Therefore, P1(t) = t.
For P2(t) = α0 + α1t + α2t

2 we have (reader please verify!)

α0 + α1 + α2 = 1 (by standardization),

2α0 + 0 · α1 + 2
3
α2 = 0 (by orthogonality to P0),

0 · α0 + 2
3
· α1 + 0 · α2 = 0 (by orthogonality to P1).

The solution to these equations is α0 = − 1
2
, α1 = 0, and α2 = − 3

2
, so that P2(t) =

1
2
(3t2 − 1). Other Legendre polynomials can be found analogously. �

By their very construction, orthogonal polynomials, which are denoted by
Fn(t), satisfy the following orthogonality condition:orthogonal

polynomials
defined

∫ b

a

Fn(t)Fm(t)w(t) dt =

{
0 if m �= n,

hn if m = n,
(7.22)

where hn is just a positive number (depending on n, of course) which is
different for different types of Fn.7 As before, let us treat these polynomials
as vectors and write Fn for Fn(t). Then using the Kronecker delta of (7.9),
Equation (7.22) can be written as

Fn ·Fm =

{
0 if m �= n

hn if m = n
= hnδmn.

7There are many different types of orthogonal polynomials, distinguished from each other
by different intervals, and different w(t). Different symbols—such as Pn(t), Hn(t), Tn(t),
etc., are used for different types. We have used Fn(t) to represent any one of these types
in our general discussion.
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In particular, Fn ·Fn = hn or |Fn|2 = hn. So, the “length” of Fn is
√

hn.
Now consider the set of all functions defined in the interval (a, b) any two the set of all

functions (not just
polynomials) is
also a vector
space.

of which give a finite result when integrated as in Equation (7.22). The reader
may easily verify that this set is indeed a vector space. If f = f(t) and g = g(t)
are two vectors in this space, then we define their inner product as

f · g =
∫ b

a

f(t)g(t)w(t) dt. (7.23)

It is clear that the Fn belong to this space. Furthermore, it can be shown
that they form a convenient basis for the vector space. In fact, any function of
the space can be written as a (infinite) linear combination of the orthogonal
polynomials

f =
∞∑

n=0

anFn,

whose coefficients can be determined by taking the inner product of both sides
with Fm:

f · Fm =

( ∞∑

n=0

anFn

)

·Fm =
∞∑

n=0

anFn ·Fm = amFm ·Fm = hmam

because in the last infinite sum all the terms are zero except one. We can
solve this equation for am to obtain am = f ·Fm/hm. Thus,

f =
∞∑

n=0

anFn where an =
f ·Fn

hn
. (7.24)

In terms of functions and polynomials, we have the important result: expansion of
functions in terms
of orthogonal
polynomials

Theorem 7.5.2. A function f(t), defined in the interval (a, b), can be repre-
sented as an infinite sum in orthogonal polynomials given by

f(t) =
∞∑

n=0

anFn(t), where an =
1
hn

∫ b

a

f(t)Fn(t)w(t) dt. (7.25)

There are a number of so-called classical orthogonal polynomials used classical
orthogonal
polynomials

in mathematical physics a number of whose properties we simply cite here.
We have already mentioned Legendre polynomials for which the interval is
(−1, +1) and w(x) = 1.8 For Legendre polynomials, hn = 2/(2n + 2), i.e.,

∫ 1

−1

Pn(t)Pm(t) dt =

⎧
⎪⎪⎨

⎪⎪⎩

0 if m �= n

2
2n + 1

if m = n

=
2

2n + 1
δmn. (7.26)

If the interval is (−∞,∞) and w(t) = e−t2 , then the resulting polynomials,
denoted by Hn(t), are called Hermite polynomials. For Hermite polynomi- Hermite

polynomialsals, we have
8A detailed discussion of Legendre polynomials and their origin can be found in Chapter

26.
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∫ ∞

−∞
Hn(t)Hm(t)e−t2 dt =

⎧
⎪⎨

⎪⎩

0 if m �= n

√
π 2nn! if m = n

=
√

π 2nn! δmn. (7.27)

If the interval is (0,∞) and w(t) = tme−t with m a positive integer,9

then the resulting polynomials, denoted by Lm
n (t), are called Laguerre poly-

nomials. For Laguerre polynomials, we haveLaguerre
polynomials

∫ ∞

0

Lm
n (t)Lm

k (t)tme−t dt =

{
0 if k �= n√

π (n + m)!/n! if k = n

=
√

π
(n + m)!

n!
δkn. (7.28)

There are other (classical) orthogonal polynomials which we shall not inves-
tigate here.10

7.6 Systems of Linear Equations

Our discussion of determinants in Section 6.3 started with a system of two
linear equations in two unknowns and led to the result that if the determinant
of the matrix of coefficients is nonzero, then the inverse of this matrix exists,
and the unknowns can be found conveniently using this inverse [see Equation
(6.52) and Theorem 6.3.1]. This was further generalized to the case of three
linear equations in three unknowns and stated in Equation (6.59). A system
of n linear equations in n unknowns can be handled in the same way. We
write such a system as

⎛

⎜
⎜
⎜
⎝

x1

x2

...
xn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

b1

b2

...
bn

⎞

⎟
⎟
⎟
⎠

⇒ x = Ab (7.29)

and note that, if detA �= 0, we can calculate A−1 according to Box 7.3.1,
and multiply both sides of (7.29) by this inverse and obtain x = A−1b. The
case of the vanishing determinant is best treated in the context of a system
of equations for which the number of unknowns is not equal to the number of
equations.

The process that led to Equations (6.49) and (6.51) is called elimination,
and can be extended to m linear equations in n unknowns of the formm linear equations

in n unknowns
9Actually m need not be an integer. However, the space and scope of this book does

not permit us to consider the general case.
10The interested reader may find Hassani, S. Mathematical Physics: A Modern Intro-

duction to Its Foundations, Springer-Verlag, 1999, Chapter 7, a useful reference for all
orthogonal polynomials including many derivations and proofs that we have skipped here.
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a11x1 + a12x2+ · · · + a1nxn = b1,

a21x1 + a22x2+ · · · + a2nxn = b2,

... (7.30)
am1x1 + am2x2+ · · · + amnxn = bm.

We will now describe a general process known as Gauss elimination, Gauss elimination

for finding all solutions of the given system of linear equations. The idea
is to replace the given system by a simpler system, which is equivalent to
the original system in the sense that it has precisely the same solutions. For
example, the degenerate equation

0 · x1 + 0 · x2 + · · · + 0 · xn = bj

is equivalent to 0 = bj , which cannot be satisfied unless bj is zero.
In a more compact notation, we write only the ith equation, indicating

its form by a sample term aijxj and the statement that the equation is to be
summed over j from 1 to n by writing11

n∑

j=1

aijxj = bi for i = 1, 2, . . . , m. (7.31)

We distinguish two cases:

1. Every ai1 = 0, i.e., all coefficients of the unknown x1 vanish. Then, triv-
ially, the system (7.31) is equivalent to a smaller system of m equations
in the n − 1 unknowns x2, . . . , xn with x1 arbitrary for any solution of
the smaller system.

2. Some ai1 �= 0. By interchanging the first equation with another if nec-
essary, we get an equivalent system with a11 �= 0. Dividing the first
equation by a11, we then get an equivalent system in which a11 = 1.
Then subtracting ai1 times the new first equation from each ith equa-
tion for i = 2, . . . , m, we get an equivalent system of the form

x1 + a′
12x2 + a′

13x3+ · · · + a′
1nxn = b′1,

a′
22x2 + a′

23x3+ · · · + a′
2nxn = b′2,

... (7.32)
a′

m2x2 + a′
m3x3+ · · · + a′

mnxn = b′m.

Now we apply the same procedure to the system of equations in (7.32) in-
volving only x2 through xn so that x2 will appear only in the first of these
equations. If case 2 always arises, the given system is said to be compatible. compatible and

incompatible
systems of linear
equations

If case 1 arises once in a while, then we may get degenerate equations of the
form 0 = dk. If all dk turn out to be zero, these can be ignored; if one dk �= 0,
the original system (7.30) is incompatible (has no solutions). We summarize
these findings as

11The reader may find an adequate discussion of summations and “dummy” indices in
Section 9.2.
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Theorem 7.6.1. Any system (7.30) of m linear equations in n unknowns can
be reduced to an equivalent system of r linear equations whose ith equation has
the form

xi + ci,i+1xi+1 + ci,i+2xi+2 + · · · + cinxn = di (7.33)

plus m − r equations of the form 0 = dk.

Written out in full, Equation (7.33) looks like

x1 + c12x2 + c13x3 + c14x4+ · · · + c1nxn = d1,

x2 + c23x3 + c24x4 · · · + c2nxn = d2,

x3 + c34x4 · · · + c3nxn = d3, (7.34)
...

xr+ · · · + crnxn = dr (r ≤ m),

which is said to be in echelon form.echelon form of a
system of linear
equations

Solutions of any system of the echelon form (7.34) are easily described.
Consider the succession of the unknowns starting with xn and going down to
x1. If a given xi appears as the first variable in an equation of (7.34), then it
can be written in terms of all preceding unknowns:12

xi = di − ci,i+1xi+1 − ci,i+2xi+2 − · · · − cinxn. (7.35)

If xi does not appear as the first variable in an equation of (7.34), then it can
be chosen arbitrarily. We thus have

Box 7.6.1. In the compatible case of Theorem 7.6.1, the set of all solu-
tions of Equation (7.30) are determined as follows. The m− r unknowns
xk not occurring in (7.34) can be chosen arbitrarily (they are free param-
eters). For any choice of these xk’s, the remaining xi can be computed by
substituting in (7.35).

Example 7.6.2. Consider the following four linear equations in three unknowns
(so m = 4 and n = 3):

−x2 + 2x3 = 1,

x1 + x2 − 3x3 = 0,

−x1 + x2 + x3 = −2, (7.36)

x1 + 2x2 − x3 = −1.

The coefficient of x1 in the first equation is zero. So, we switch this equation with
one of the other equations, say the second. Then we multiply the new first equation
by the negative of the coefficient of x1 in each remaining equation and add the result

12If r = n, then the last equation of (7.34) will be xn = dn, and (if the set of equations
is compatible) all unknowns will be determined.
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to that equation to eliminate x1. Thus, we add the new first equation to the third
equation of (7.36), and subtract the new first equation from the last equation of
(7.36). The result is

x1 + x2 − 3x3 = 0,

−x2 + 2x3 = 1,

2x2 − 2x3 = −2, (7.37)

x2 + 2x3 = −1.

To eliminate x2 from the last two equations, multiply the second equation of (7.37)
by 2 (or 1 for the last) and add it to the third (or last) equation. This will yield

x1 + x2 − 3x3 = 0,

−x2 + 2x3 = 1,

4x3 = 0, (7.38)

4x3 = 0.

Multiply the second equation by −1, divide the third equation in (7.38) by 4, and
finally subtract the result from the last equation. The final result is the following
echelon form:

x1 + x2 − 3x3 = 0,

x2 − 2x3 = −1,

x3 = 0, (7.39)

0 = 0,

which corresponds to Equation (7.34) with r = n = 3. Thus, we have one equation
of the form 0 = dk for which dk is zero. So, the system has a solution. To find
this solution, start with the third equation of (7.39) which gives x3 = 0. Substitute
in the equation above it to get x2 = −1, and these values in the first equation to
obtain x1 = 1. �

Example 7.6.3. As another example, consider the following:

x1 + x2 + x3 = 0,

2x1 − x2 + x3 = −2,

−x1 + 2x2 + x3 = −1, (7.40)

x1 − 2x2 + x3 = 2.

Multiply the first equation successively by −2, 1, and −1 and add it to the second,
third and fourth equations. The result will be

x1 + x2 + x3 = 0,

−3x2 − x3 = −2,

3x2 + 2x3 = −1,

−3x2 + 0 · x3 = 2.



234 Finite-Dimensional Vector Spaces

Now divide the second equation by −3,

x1 + x2 + x3 = 0,

x2 + 1
3
x3 = 2

3
,

3x2 + 2x3 = −1, (7.41)

−3x2 + 0 · x3 = 2.

Multiply the second equation of (7.41) successively by −3 and +3 and add it to the
third and last equations. This will yield

x1 + x2 + x3 = 0,

x2 + 1
3
x3 = 2

3
,

x3 = −3, (7.42)

x3 = 4.

Subtract the third equation from the last to get

x1 + x2 + x3 = 0,

x2 + 1
3
x3 = 2

3
,

x3 = −3, (7.43)

0 = 7.

In this case, we have an equation of the form 0 = dk for which dk = 7. So, the
system is incompatible, i.e., it has no solution. �

A system of linear equations (7.30) is homogeneous if the constants bihomogeneous
system of linear
equations

on the RHS are all zero. Such a system always has a trivial solution with
all the unknowns equal to zero. There may be no further solutions, but if
the number of variables exceeds the number of equations, the last equation
of (7.32) will always contain more than one variable at least one of which can
be chosen at will. Furthermore, the inconsistent equations 0 = dk can never
arise for such homogeneous equations. Hence,

Box 7.6.2. A system of m homogeneous linear equations in n unknowns,
with n > m, always has a solution in which not all the unknowns are zero.

7.7 Problems

7.1. Show that Equation (7.4) is a linear transformation.

7.2. Verify that the operation of differentiation of any order is a linear trans-
formation on Pn[t].

7.3. Show that

L ≡ p2(x)
d2

dx2 + p1(x)
d

dx
+ p0(x)

is a linear operator on the space of differentiable functions.
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7.4. Show that the coefficients in P1[t] of the second derivative of an arbitrary
polynomial f(t) = α0 + α1t + α2t

2 + α3t
3 can be obtained by the product of

the matrix of the second derivative obtained in Example 7.1.1, and the 4× 1
column vector representing f(t).

7.5. Express the element in the ith row and jth column of a unit matrix in
terms of the Kronecker delta.

7.6. Suppose x is an eigenvector of T with eigenvalue λ. Show that, for any
constant α, αx is also an eigenvector of T with the same eigenvalue.

7.7. Find the length of a2 of Example 7.4.1 in terms of x2. Now show that
a2/|a2| = ê2.

7.8. Show that the rotation of the plane affects all vectors in the plane. Hint:
Try to find an eigenvector of the 2 × 2 rotation matrix (6.24).

7.9. Find the eigenvalues and normalized (unit length) eigenvectors of the
following matrices. In cases where the matrix is symmetric, verify directly
that its eigenvectors corresponding to different eigenvalues are orthogonal.

(a)
(

1 2
2 −2

)

. (b)
(

2 4
5 3

)

. (c)
(

3 2
2 3

)

.

(d)

⎛

⎝
1 1 0
1 0 1
0 1 1

⎞

⎠ . (e)

⎛

⎝
2 0 0
0 1 1
0 1 1

⎞

⎠ . (f)

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ .

7.10. Show that Box 7.4.1 is not necessarily true for a general inner product
with matrix G. However, if G and T commute (i.e., if GT = TG), then Box
7.4.1 holds. Hint: Follow the argument after Box 7.4.1 and see how far you
can proceed.

7.11. Show that the inner product defined in Equation (7.21) is indeed a
positive definite inner product.

7.12. Find the fourth Legendre polynomial using the results of Example 7.5.1.

7.13. Find the first three Hermite polynomials using the standardization (or
normalization) Equation (7.27).

7.14. The volume element of a four-dimensional Euclidean space with Carte-
sian coordinates x, y, z, and w is dxdydzdw. In any other coordinate system,
it is given by a 4-dimensional generalization of the Jacobian (6.66)
(a) Write this Jacobian for a general transformation to coordinates s, t, u,
and v where x, y, z, and w are functions of these new coordinates.
(b) Now consider the 4-dimensional spherical coordinates:

x = r sin μ sin θ cosϕ

y = r sin μ sin θ sin ϕ

z = r sin μ cos θ

w = r cosμ
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and calculate the 4-dimensional Jacobian to find the volume element of a 4-
dimensional sphere.
(c) With 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ μ ≤ π, find the volume of a 4-sphere of
radius a.

7.15. Determine the r of Equation (7.34) for each of the following systems of
linear equations and whether or not the system is compatible. If the system
is compatible, find a solution for it.

(a)
2x − y − 4z = 1,

x + 2y + 2z = 0,

−x − y + 6z = 3.

(b)
x + y + z = −1,

2x − y + 2z = −5,

3x + 3y + z = 1.

(c)
x + y + z = 2,

2x − y + 2z = −2,

3x + y − z = 4.

(d)
2x + y − 2z = 2,

3x − y − 4z = −1,

3x + 4y − 2z = 7.

(e)

3x + 2y = 7,

x + y + z = 6,

5x + 4y + 2z = 19,

x − 2y = −5.

(f)

x + 5y − z = 2,

2x + y + 3z = −1,

−x + 3y + 2z = −3,

3x + 2y − z = 4.



Chapter 8

Vectors in Relativity

One of the most rewarding applications of vectors is to relativity. The special
theory of relativity (STR) was a direct consequence of Maxwell’s equations,
which summarize the entire theory of electromagnetism (see Section 15.4).
These equations predict mathematically that there must exist electromagnetic
(EM) waves which travel at the speed of light in empty space. This speed c is
found in terms of purely electric and magnetic measurements:

c =
1

√
μ0ε0

=
1

√
(4π × 10−7) (8.854× 10−12)

= 2.998× 108 m/s,

where ε0 = 1/4πke and μ0 = 4πkm, with ke and km the electric and magnetic
constants introduced in Chapter 1.

Imagine two laboratories on two spaceships, S1 and S2, with S1 behind
(and moving towards) S2 at 0.9c relative to S2. The physicists on S1 perform
electric and magnetic experiments, measure ε0 and μ0, and conclude that
EM waves travel at 300,000 km/s in empty space. The physicists on S2

also perform electric and magnetic experiments, measure ε0 and μ0, and also
conclude that EM waves travel at 300,000 km/s in empty space. Now a
physicist on S1 takes a flashlight and sends a beam of light in the forward
direction in empty space. The consequence of Maxwell’s equations is that the
physicists on S2, although seeing S1 moving towards them at 0.9c and the
light beam moving away from S1 at c, conclude that the speed of the light
beam is c and not 1.9c, as expected from the Newtonian law of addition of
velocities.

To appreciate the strange consequence of Maxwell’s equations, consider
the following example: A train moving at 30 m/s and a passenger throwing law of addition

of velocitiesa ball in the forward direction with a speed of 20 m/s. A ground observer
measures the speed of the ball to be 30+20 = 50 m/s: velocities add. Here is
another familiar example: A car moves at 75 mph on a highway on which your
car is moving at 50 mph. The speed of the fast car relative to you is 25 mph.
You speed up to 70 mph. Then the other car appears to have “slowed down,”
because, now you measure its speed relative to you to be only 5 mph. Go to
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outer space, let someone in your spaceship fire a bullet moving at 500 mph.
Increase your speed to 450 mph, the bullet appears to be moving at 50 mph
away from you. Increase your speed by another 100 mph. You catch up with
the bullet, and if you decrease your speed by 50 mph, the bullet appears
stationary relative to you.

Now shoot a beam of light forward, and once the beam leaves your flash-
light, accelerate your spaceship to a speed of 299,000 km/s. Measure the
speed of the light beam. It is still 300,000 km/s, and not 1000 km/s, as in-
tuitively expected! Maxwell’s equations defy intuition, and the (STR), which
is entirely based on these equations is extremely counter-intuitive. Let us
summarize these observations:

Box 8.0.1. (Principle of Relativity) Every time you detect an electro-
magnetic wave, it moves at the rate of 300,000 km per second in vacuum,
regardless of the motion of its source or its detector. Speed of light in
vacuum is a universal constant.

An immediate consequence of the principle of relativity is the fact that time
is observer-dependent. As Einstein said “Time is something that is measured
by clocks.” So, let us look at the effect of motion on clocks. The clock best
suited for this investigation is the “arm” of the Michelson–Morley apparatus
shown in Figure 8.1. It consists of a source S of light, or electromagnetic
waves, and a mirror M. The distance between S and M is L. Therefore, it
takes light Δτtick ≡ 2L/c to go from S to M and back. If we place a lightthe

Michelson–Morley
clock

sensitive “ticker” at S, the clock will tick every Δτtick second. We call such
a clock a Michelson–Morley clock, or an MM clock, and Δτtick the proper
tick of the MM clock. Δτtick is the tick measured by an observer for whom
the clock is at rest, or for whom the beginning and the end of a tick occur at
the same location.

S M

L

Figure 8.1: A Michelson–Morley clock. A “tick” of this clock occurs when the light

signal makes a round trip along the length L.
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8.1 Proper and Coordinate Time

An MM clock is placed on a train and observed by two observers, O (on the
ground) and O′ (on the train) moving to the right of O. Consider three events:
The emission of a light beam at S, its reflection at M, and its reception at
S. These three events constitute one tick. Let us denote them by E1, E2,
and E3, respectively. How does O′ see the ticking of the clock? The clock
is sitting right beside her, and she observes the whole process of ticking as
the light going straight up and coming straight down. She concludes that her
clock’s ticks are Δτtick long.

Now, let us see how O perceives the succession of these three events. Since
the clock is moving to the right, the light signal that leaves S will reach M
only after M has moved to the right. Thus, to O, the events E1 and E2 are
separated not only by a vertical distance, but also by a horizontal distance (see
Figure 8.2). Since the speed of light is the same for all observers, O concludes
that it takes light more than 2L/c to travel E1E2 and E2E3. Therefore, he
concludes that the clock on the train must tick slower! moving clocks

slow down.We can quantify the above statement by referring to the triangle E1AE2

of Figure 8.2. Pythagoras’ theorem implies

(
E1E2

)2
=

(
E1A

)2
+

(
AE2

)2
.

Let the speed of the train be v and the light beam’s travel time from S to M
be δt according to O. Then E1A = vδt and E1E2 = cδt with c the (universal)
speed of light. Putting all of this in the above equation gives

(cδt)2 = (vδt)2 + L2 ⇒ c2(δt)2 = v2(δt)2 + L2, (8.1)

or

(δt)2 − v2

c2
(δt)2 =

L2

c2
, ⇒ (δt)2

(

1 − v2

c2

)

=
L2

c2
.

E1

E2

E3

M

A

Figure 8.2: A moving Michelson–Morley clock. The path of light (represented by a

black dot) is not a vertical line but a slanted one due to the motion of M.
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This yields

(δt)2 =
L2/c2

1 − v2/c2
⇒ δt =

L/c
√

1 − (v/c)2
.

Let us denote by Δttick the duration of the light’s round trip as seen by O.
Then

Δttick =
2L/c

√
1 − (v/c)2

=
Δτtick√

1 − (v/c)2
. (8.2)

In deriving this equation, we have tacitly assumed that motion does not affect
transverse lengths. Thus the length of the MM clock does not change because itmotion does not

affect transverse
lengths.

is perpendicular to the direction of motion. To see this, consider the distance
between two wheels of a train, and suppose that this distance shrinks1 due to
its motion as seen by a ground observer. This means that the wheels will fall
between the rails. On the other hand, the engineer of the train sees the rail
moving and concludes that the distance between the rails shrink; i.e., that the
wheels fall outside the rails. This contradicts the previous conclusion. Thus,
the length perpendicular to the direction of motion must not change.

Although Equation (8.2) is derived for a single tick, it really applies to all
time intervals, because any such interval is a multiple of a single tick. We now
rewrite Equation (8.2) without the subscript “tick,” realizing that Δτ is the
proper time between any two events, i.e., the time interval between the two
events measured by a clock that is present at both events:relation between

proper time and
coordinate time Δt =

Δτ
√

1 − (v/c)2
. (8.3)

Δτ can also be defined as the time measured by an observer for whom the two
events occur at the same spatial point. Δt, called the coordinate time, is
the time measured by another observer, moving relative to the first one with
speed v, for whom the two events occur at two different spatial points.

8.2 Spacetime Distance

The most elegant way of relating an event’s space and time properties as
described by two observers is to use geometry. We start with the description
of the event itself. An event has a position and an instant of time. Therefore,
it can be represented by a set of four coordinates: three for position and
one for time. It is common to multiply the time t by c (to make a distance
out of it) and put it as the first coordinate. Thus in Cartesian coordinate
system, an event is described by (ct, x, y, z). Geometrically, we have addedspacetime

introduced the extra “dimension” of time to the three-dimensional space to create the
four-dimensional spacetime.

At the heart of any geometry is the distance between two nearby points,
and how it is written in terms of the coordinates of the points. Euclidean

1The same argument applies to the case where the distance expands.
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geometry started without coordinates, with the notion of the distance be-
tween two points being “evident.” In fact, we use the properties of Euclidean
distance (such as the Pythagoras’ theorem involving three distances corre-
sponding to the three sides of a right triangle) to show that the distance geometry and

distance formulabetween two points whose Cartesian coordinates differ by (Δx, Δy, Δz) is√
(Δx)2 + (Δy)2 + (Δz)2.
In the case of the spacetime geometry, we have started with coordinates.

Now we have to find a distance formula in terms of the difference between
coordinates of two events. We get some clues from Euclidean distance as
expressed in terms of coordinates. The first clue is that distance is observer-
independent: If observer O uses his Cartesian coordinate system to label point
P1 by (x1, y1, z1) and P2 by (x2, y2, z2), and finds

(P1P2)O ≡ Δr =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

and if observer O′ uses her Cartesian coordinate system to label point P1 by
(x′

1, y
′
1, z

′
1) and P2 by (x′

2, y
′
2, z

′
2), and finds

(P1P2)O′ ≡ Δr′ =
√

(x′
2 − x′

1)2 + (y′
2 − y′

1)2 + (z′2 − z′1)2,

then Δr′ = Δr. The second clue is that if P1 and P2 lie along a single axis of
an observer, then the distance is the (absolute value of the) difference between
the coordinates of P1 and P2.

Now consider two events E1 and E2, which occur at the same spatial
location according to O′, with E2 happening after E1. This means that O′

(his clock) is present at both events, i.e., that E1 and E2 lie along the time
axis of O′, and that O′ is measuring the proper time interval between the
two events: Δτ = t′2 − t′1. By the second clue above, cΔτ = c(t′2 − t′1) is
the distance we are looking for (again we multiply by c to make a distance
out of it). We introduce the notation Δs ≡ cΔτ and call Δs the spacetime
distance or the invariant interval between the two events.

Another observer O assigns spacetime coordinates (ct1, x1, y1, z1) to E1

and (ct2, x2, y2, z2) to E2. Now the spatial separation between E1 and E2

according to O is
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

and since O′ is at E1 when it happens and at E2 when it happens, this
equation is precisely the distance that O′ travels in time t2 − t1 with respect
to O. Therefore, the speed of O′ relative to O is

v =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

t2 − t1
,

or

v2 =
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

(t2 − t1)2
.
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Up to this point, we have not used any physics (except for the definition
of speed). Now comes the crucial final step. Equation (8.3) (which is a direct
result of Box 8.0.1) can now be used to find the expression of Δs in terms of
coordinate differences. Equation (8.3) implies that

cΔt =
cΔτ

√
1 − (v/c)2

=
Δs

√
1 − (v/c)2

,

or

Δs = cΔt
√

1 − (v/c)2 = c(t2 − t1)
√

1 − v2/c2

=
√

c2(t2 − t1)2 − v2(t2 − t1)2.

Substituting the expression for v2 above, we getspacetime distance

Δs =
√

c2(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2.

We rewrite this important formula as

(Δs)2 = (cΔτ)2 = c2(Δt)2 − (Δx)2 − (Δy)2 − (Δz)2. (8.4)

Let’s emphasize the significance of this equation: If observer O uses his
Cartesian coordinate system to label event E1 by (ct1, x1, y1, z1) and E2 by
(ct2, x2, y2, z2), and finds

(Δs)2 = c2(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2,

and if observer O′ uses her Cartesian coordinate system to label event E1 by
(ct′1, x

′
1, y

′
1, z

′
1) and E2 by (ct′2, x

′
2, y

′
2,

′ z2), and finds

(Δs′)2 = c2(t′2 − t′1)
2 − (x′

2 − x′
1)

2 − (y′
2 − y′

1)
2 − (z′2 − z′1)

2,

then (Δs′)2 = (Δs)2. Thus, although events are coordinatized differently by
different observers, the spacetime distance between two events is universal.
In contrast to Newtonian physics, neither the time interval nor the spatial
distance between two events is universal in relativity.

Example 8.2.1. Observer O spots a light beam (event E1) at (x1, y1, z1) at time
t1. A little later he finds the beam (event E2) at (x2, y2, z2) at time t2. What is thezero spacetime

distance for two
different events

spacetime interval for this light beam (i.e., for the two events E1 and E2)?
Since light travels from (x1, y1, z1) to (x2, y2, z2) with speed c, we have

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = c(t2 − t1).

Therefore,

(Δs)2 = c2(t2 − t1)
2 − (x2 − x1)

2 − (y2 − y1)
2 − (z2 − z1)

2 = 0,

which holds for any light signal, as the two events above are quite general. Thus the
spacetime distance between two different events which can be connected by a light
signal is zero. This is in contrast to the Euclidean case where two different points
always have a nonzero distance between them. �
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8.3 Lorentz Transformation

Because of the intuitiveness of the concept of distance in Euclidean geometry,
it is not essential to know how the coordinates of a point in one coordinate
system (CS) are related to the coordinates of that same point in another
CS. This transformation was found long after the maturity of the Euclidean
geometry [see Section 6.1.3 and especially Equation (6.22) for a discussion of
the two-dimensional version of coordinate transformation], and it was based
entirely on the expression for the distance between two points in terms of the
coordinates of those points.

In spacetime geometry such a transformation is indispensable due to the
counter-intuitive properties of the invariant interval (see Example 8.2.1 above).
And while in Euclidean geometry, one can picture different coordinate systems
and how they relate to one another (see Figure 6.7, for example), spacetime
geometry does not readily allow such a direct pictorial representation without
some preliminary algebraic discussion.

Let r1 = (ct1, x1, y1, z1) and r2 = (ct2, x2, y2, z2) be the spacetime “po-
sition vectors” of two events E1 and E2 relative to a coordinate system O.
Construct the difference

Δr = r2 − r1 = (ct2 − ct1, x2 − x1, y2 − y1, z2 − z1),

and define the square of the “length” of this vector to be (Δs)2. In fact,
this is generalized for any four-dimensional vector. But first, let’s introduce a
notation.

A spacetime vector has the form a = (a0, a1, a2, a3), which is usually four-vectors
introducedcalled a four-vector or a 4-vector.2 It is also denoted by (a0,�a) where

�a ≡ (a1, a2, a3) is the space part (or the 3-vector part) of the 4-vector. A pri-
mary example of a four-vector is r = (ct, x, y, z) ≡ (ct, �r). The generalization
mentioned above defines the square of the length of a (or the inner product
of a with itself) as

a · a ≡ a2
0 − a2

1 − a2
2 − a2

3 ≡ a2
0 − �a · �a = a2

0 − |�a|2. (8.5)

Then it is easy (see Problem 8.1) to show that the inner product of any two
vectors must be given by

a · b ≡ a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − �a ·�b. (8.6)

In matrix form this can be written as

a · b =
(
a0 a1 a2 a3

)

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

b0

b1

b2

b3

⎞

⎟
⎟
⎠ , (8.7)

2Note that the first component of a has zero as an index, and is called the time compo-
nent. This is common in relativity.
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or

a · b = ãηb where η =

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠ , (8.8)

and ã and b are the row and column vectors in Equation (8.7).
A linear transformation that leaves the inner product of Equation (8.8)—general Lorentz

transformation and therefore the spacetime length Δs—invariant is called a Lorentz trans-
formation. By Equation (7.11), such a transformation Λ—which is a 4 × 4
matrix—satisfies

Λ̃ηΛ = η. (8.9)

The study of the general structure of Lorentz transformations is beyond
the scope of this book. Here we shall confine ourselves to the Lorentz trans-
formations in two dimensions, in which the third and fourth components of
vectors are ignored. This means that vectors are of the form a = (a0, a1),
b = (b0, b1), the inner product is of the form a · b ≡ a0b0 − a1b1, and the
matrix η reduces to

η =
(

1 0
0 −1

)

.

In addition, the Lorentz transformations become 2 × 2 matrices.

Let Λ =
(

a11 a12

a21 a22

)

be a two-dimensional Lorentz transformation that

acts on 2-vectors in O to give the corresponding 2-vectors in O′. Then Λ must
satisfy Equation (8.9) or

(
a11 a21

a12 a22

)(
1 0
0 −1

)(
a11 a12

a21 a22

)

=
(

1 0
0 −1

)

, (8.10)

which is equivalent to the following three equations [see (6.21) for a guide]:

a2
11 − a2

21 = 1, a11a12 − a21a22 = 0, a2
12 − a2

22 = −1. (8.11)

As in the case of rotations (see Section 6.1.3), we can conclude that

a2
22 = a2

11, a2
12 = a2

21, a2
12 = a2

11 − 1. (8.12)

So, all parameters are once again given in terms of a11.
To determine a11, consider the 2-vector (cΔt, Δx), the difference between

the time and position of two events in O. This 2-vector is represented by
(cΔt′, Δx′) in O′, and, by the definition of the Lorentz transformations,

(
cΔt′

Δx′

)

=
(

a11 a12

a21 a22

)(
cΔt
Δx

)

. (8.13)

Now suppose that Δx = 0, i.e., that the two events occur at the same location.
Then O is measuring the proper time, so that Δt = Δτ . From Equation (8.13),
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we also have cΔt′ = a11cΔt or Δt′ = a11Δτ . Comparison with Equation (8.3)
yields

a11 =
1

√
1 − (v/c)2

.

Introducing the two symbols β ≡ v/c and γ = 1/
√

1 − (v/c)2, we obtain

a11 =
1

√
1 − β2

≡ γ. (8.14)

The rest of the matrix elements can now be found. The first equation in
(8.12) gives a22 = ±γ. To choose the correct sign for a22, note that if O and
O′ are not moving relative to one another, the coordinates do not change.
Therefore Λ must be the unit matrix. So, a22 = 1 when v = 0. This can
happen only if a22 = +γ. The second equation in (8.12) now gives a12 = a21;
and the third equation yields

a2
12 = γ2 − 1 =

1
1 − β2

− 1 =
β2

1 − β2
= β2γ2 ⇒ a12 = ±βγ.

The ambiguity in the sign comes from the choice we have for the direction of
motion. We absorb this choice of sign in β, and write

Λ =
(

γ γβ
γβ γ

)

. (8.15)

For the important case of spacetime “position” vector (ct, x), this yields Lorentz
transformation in
two spacetime
dimensions

ct′ = γ (ct + βx) ,

x′ = γ(x + βct). (8.16)

β is positive (negative) when observer O—who uses (ct, x) for events—travels
in the positive (negative) direction of O′—who uses primed coordinates. Equa-
tion (8.16) displays the celebrated Lorentz transformations in two spacetime
dimensions.

Example 8.3.1. Emmy (observer O) is riding a train and she is standing in the
middle of one of the cars of length L at the two ends of which are two firecrackers that
explode simultaneously. Karl (observer O′) is standing on the platform watching
Emmy go by with speed β. Time zero for both coincides with the moment that Emmy
passes by Karl. Suppose that the simultaneous explosion of the two forecrackers
(according to Emmy) also takes place at t = 0. We want to see how all this appears
to Karl.

Assume that Emmy and Karl are located at their respective origins. Let the front
firecracker be labeled as 1 and the back as 2. Then the front and back firecrackers
have coordinates (0, L/2) and (0,−L/2), respectively, in Emmy’s RF. Karl, on the
other hand, measures the coordinates of the firecrackers as

ct′1 = γβL/2, x′
1 = γL/2 ct′2 = γ(−βL/2), x′

2 = γ(−L/2)
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from Equation (8.16). This shows that, for Karl, the back firecracker occurs first.
In fact, it occurs before Emmy reaches him (at time t′ = 0). The time difference
between the two events is

Δt′ = t′1 − t′2 = γβL/c.

Take L to be 30 m. Then, for the time difference to be a mere one second, we must
have

30γβ = 3 × 108 or
β

√
1 − β2

= 107,

giving β = 0.999999999999995, awfully close to the speed of light!

On the other hand, if L is a typical interstellar distance of say 10 light years,
then

γβ =
Δt′

10

with Δt′ measured in years. For a time difference of one hour, we have γβ =
1.14 × 10−5, yielding β = 1.14 × 10−5, or v = 3425 m/s, an easily attainable
speed. �

Example 8.3.2. Observer O moves in the positive space direction of observer O′

at speed v (or β = v/c). A particle moves at speed βp in the positive space direction
of O. What is β′

p, the speed of the particle relative to O′?

The definition of speed is distance between two events divided by time interval
between those events: spotting of the particle at a point in space and an instant in
time (first event), and spotting the particle at a nearby point a little later (second
event). For example, observer O assigns the coordinates (ct, x) to the first event
and (ct + cΔt, x + Δx) to the second event, and concludes that the (dimensionless)
speed of the particle is βp = Δx/(cΔt).

Similarly, observer O′ assigns the coordinates (ct′, x′) to the first event and
(ct′ + cΔt′, x′ + Δx′) to the second event, and concludes that the speed of the
particle is β′

p = Δx′/(cΔt′), where Δx′ and cΔt′ are related to Δx and cΔt via the
Lorentz transformation. Using Equation (8.16), we find

β′
p =

Δx′

cΔt′
=

γ(Δx + βcΔt)

γ (cΔt + βΔx)
,

dividing the numerator and denominator by cΔt, we getrelativistic law of
addition of
velocities β′

p =
βp + β

1 + ββp
, (8.17)

which is called the relativistic law of addition of velocities.

One can show that if 0 < βp < 1 and 0 < β < 1, then 0 < β′
p < 1. So, it is

impossible to add two velocities close to light speed and get a velocity larger than
light speed. Furthermore, if the particle happens to be a photon (or a light beam),
then βp = 1 and

β′
p =

1 + β

1 + β
= 1,

verifying the universality of the speed of light, the starting point of relativity
theory! �
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In many situations, an observer in three dimensions moves along the x-
axis. Then, the y and z coordinates of events—being perpendicular to the
direction of motion—do not change. This suggests a slightly more general
Lorentz transformation than (8.16):

ct′ = γ (ct + βx) ,

x′ = γ(x + βct),
y′ = y, (8.18)
z′ = z.

If an object moves in the xy-plane of an observer O with a velocity whose
components are (vx, vy), then the same object moves in the x′y′-plane of
another observer O′ with a velocity whose components are

vx′ =
dx′

dt′
=

γ(dx + βcdt)
γ (dt + βdx/c)

=
vx + βc

1 + βvx/c
,

vy′ =
dy′

dt′
=

dy

γ (dt + βdx/c)
=

vy

γ(1 + βvx/c)
, (8.19)

where β is the velocity of O relative to O′. In particular, if the object is light
and the angle it makes with the x-axis is α, then vx = c cosα, vy = c sin α,
vx′ = c cosα′ and vy′ = c sin α′, and the equations above yield

cosα′ =
cosα + β

1 + β cosα
,

sin α′ =
sin α

γ(1 + β cosα)
. (8.20)

Now suppose that an observer O carries an EM radiation source which an ultrarelativistic
source radiates
only in the
forward direction.

radiates uniformly in all directions. If β is very close to 1, then (8.20) im-
plies that cosα′ → 1 (and of course, sinα′ → 0), regardless of α. Thus,
an ultrarelativistic source of EM wave radiates (almost) only in the forward
direction.

8.4 Four-Velocity and Four-Momentum

In Newtonian mechanics velocity is defined as the derivative of the position
vector with respect to time. In terms of (Cartesian) coordinates, an observer
O locates the object in motion by assigning it the coordinates (x, y, z), and
differentiates these coordinates with respect to (the universal) time t to get
the velocity of the object: �v = (ẋ, ẏ, ż).

In relativity, the “position vector” is r = (ct, x, y, z) ≡ (ct, �r), and there is
no universal time. However, each moving object has a proper time (measured
by a clock carried by the object), which is universal in the sense that all
observers measure it to be the same [see Equation (8.4) and the comments
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after it]. Therefore, it is natural to define the dimensionless four-velocity as

u ≡ dr
ds

=
1
c

dr
dτ

=
(

dt

dτ
,
1
c

dx

dτ
,
1
c

dy

dτ
,
1
c

dz

dτ

)

= γ

(

1,
ẋ

c
,
ẏ

c
,
ż

c

)

= γ (1, �v/c) ,

(8.21)
where a dot represents differentiation with respect to the coordinate time t,
and we used dt = γdτ [see Equation (8.3)].

An interesting property of the four-velocity is that its spacetime length is
one:4-velocity has

constant length
u ·u = u2

0−u2
1−u2

2−u2
3 = γ2 [1 − (�v/c) · (�v/c)] = γ2

(
1 − v2/c2

)
= 1, (8.22)

from the definition of γ in (8.14). The four-velocity of an object in the object’s
rest frame is (1, 0, 0, 0), i.e., it is a unit vector in the time direction. If we define
the four-acceleration as the rate of change of the four-velocity with respect
to proper time, then the inner product of the 4-velocity and the 4-acceleration
of any object is zero, i.e., because of (8.22), the 4-acceleration is η-orthogonal
to the 4-velocity. Summarizing these two properties of the 4-velocity, we get4-velocity is

perpendicular to
4-acceleration u · u = 1, u · a = 0. (8.23)

Example 8.4.1. A particle is moving in the two-dimentional spacetime of an
inertial frame on a path given parametrically as

t(σ) = b sinh(σ), x(σ) = cb cosh(σ),

where σ is a dimensionless parameter. The differential of the particle’s proper time
is

(cdτ )2 = (cdt)2 − (dx)2 = (cb)2 cosh2(σ) (dσ)2 − (cb)2 sinh2(σ) (dσ)2

= (cb)2 (dσ)2 ⇒ dσ =
1

b
dτ,

and σ = τ/b. Thus, as a function of the proper time, the path becomes

t(τ ) = b sinh(τ/b), x(τ ) = cb cosh(τ/b).

The components of the (dimensionless) 4-velocity are

u0 =
dt

dτ
= cosh(τ/b), u1 =

dx

cdτ
= sinh(τ/b),

which satisfy u2
0 − u2

1 = 1 as they should.
The acceleration of the particle has components

a0 =
du0

dτ
=

1

b
sinh(τ/b), a1 =

du1

dτ
=

1

b
cosh(τ/b).

It is easily verified that a · u = 0 and that

a · a = a2
0 − a2

1 = −
(

1

b

)2

.

So, the particle has a uniform acceleration of 1/b. The negative sign in the last
equation is due to the fact that the magnitude of the acceleration has to be defined
as −a · a = �a2 − a2

0, with the space part appearing as positive (so that when a0 is
absent, we get back the Newtonian acceleration). �
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The (kinematic) 4-velocity leads to the (dynamic) 4-momentum: just mul- 4-momentum
definedtiply u by mc—the c is to give dimension to the 4-velocity. In a reference

frame in which an object of mass m moves with velocity �v, the 4-momentum
p is given by

p ≡ (p0, p1, p2, p3) ≡ (p0, �p) = mcu = γmc (1, �v/c) = (γmc, γm�v) . (8.24)

The space part of the 4-momentum is relativistic
momentum

�p = γm�v =
m�v

√
1 − (v/c)2

, (8.25)

and gives ordinary Newtonian momentum when |�v| << c, because in that
limit, γ ≈ 1. Therefore, we call �p the relativistic momentum.

What about p0? How are we to interpret that? If we set γ ≈ 1, we get
p0 ≈ mc which does not correspond to any Newtonian quantity.3 However, if
we make the next best approximation to γ (see Example 10.2.1 and Problem
10.8), i.e.,

γ =
1

√
1 − (v/c)2

≈ 1 + 1
2 (v/c)2,

then
p0 = mcγ ≈ mc

(
1 + 1

2v2/c2
)

⇒ p0c ≈ mc2 + 1
2mv2.

The second term gives us the clue that p0c must be the relativistic energy
E. So we write relativistic energy

p ≡ (p0, �p) = (E/c, �p) = (γmc, γm�v), E = γmc2 =
mc2

√
1 − (v/c)2

. (8.26)

An important special case of this is the 4-momentum p of a particle in its rest
frame:

p = (mc,�0) = (mc, 0, 0, 0). (8.27)

The definition of the relativistic energy allows objects to have rest energy:
when v = 0, we get the most famous

equation in
physics!

E = mc2, (8.28)

which states the equivalence of mass and energy and allows their conversion
into one another.

The invariance of the length of a 4-vector tells us that p · p is a quantity
that is independent of observers. From Equation (8.26), we get

p · p = (E/c)2 − |�p|2 = γ2m2c2 − γ2m2v2 = γ2m2c2(1 − v2/c2) = m2c2,

which we rewrite for future reference

p · p = m2c2 or E2 − |�p|2c2 = m2c4. (8.29)
3One may interpret mc as the momentum of an object moving at the speed of light.

However, while objects moving at light speed are possible in Newtonian physics, relativity
does not allow a massive object to go at the speed of light [see (8.25)].
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Thus, although different observers measure different values for the energy
and 3-momentum of an object, when they subtract the square of their value
of momentum (times c) from their corresponding value of energy squared, all
get the same numerical value, namely the square of the mass of the object
(time c4).

Equation (8.29) allows particles with zero mass to have energy and mo-
mentum. For such particles,

E2 − |�p|2c2 = 0 or E = |�p|c. (8.30)

Since �p/E = �v/c2 [see Equation (8.26)], we conclude from (8.29) and (8.30)
that

Box 8.4.1. A particle is massless if and only if it moves at light speed.

The particle (quantum) of electromagnetic waves is photon. It travels at thephoton is
massless! speed of light (obviously!). Therefore, it must be massless.

Example 8.4.2. A particle has 4-momentum p relative to an observer O′ whose 4-
velocity is u′. In the rest frame of this observer u′ = (1, 0, 0, 0), and if p = (E′/c, �p ′)
in this frame, then

p · u′ = E′/c.

Now consider another observer O with respect to whom the 4-momentum of the
particle is p = (E/c, �p ) and the 4-velocity of O′ is u′ = (γ, γ�v/c). In the frame of O,

p · u′ = γE/c − γ�p · �v/c.

The invariance of the inner product now gives

E′ = γ(E − �p · �v). (8.31)

In the special case in which the particle is at rest with respect to O, �p = 0 and
E = mc2. This leads to

E′ = γmc2 =
mc2

√
1 − (v/c)2

,

which is the expected expression for the relativistic energy of a particle moving with
velocity �v relative to O′. �

8.4.1 Relativistic Collisions

Conservation of energy and momentum in relativistic collisions is stated suc-
cinctly in terms of the total four-momenta before and after: pbef

tot = paft
tot,

where in each case, ptot is the sum of the 4-momenta of all particles involved.
As a first example, consider two particles that collide and form a single

third particle. Let the masses of the first two particles be m1 and m2. We can
immediately find the mass M of the third particle. Before doing so, we set
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c = 1 to avoid the cluttering of calculations. This is common in high energy
physics, in which energy, momentum, and mass are all measured in the same
unit (usually electron volt, eV). If desired, we can easily restore the factors of
c at the end by a simple dimensional analysis. With this convention, Equation
(8.29) becomes p · p = m2.

The conservation of 4-momentum in the present situation is p1 +p2 = P,
where P is the four-momentum of the final particle. Since this is a vector
equation, all components must equal. In particulare, separating the time and
the space parts, we get

p01 + p02 = P0, or E1 + E2 = E,

�p1 + �p2 = �P , (8.32)

which are the conservation of energy and momentum.
Squaring both sides of p1 + p2 = P gives

(p1 + p2) · (p1 + p2) = P ·P,

or
p1 · p1 + p2 · p2 + 2p1 · p2 = P · P,

or
m2

1 + m2
2 + 2p1 · p2 = M2. (8.33)

Because of the invariance of the dot product, this equation holds in any in-
ertial frame.

Let us evaluate (8.33) in the rest frame of the second particle, where
p2 = (m2,�0) by (8.27), and the energy of the first particle is assumed to be
E1. Then

p1 · p2 = (E1, �p1) · (m2,�0) = E1m2,

and Equation (8.33) immediately gives the mass of the final particle:

M2 = m2
1 + m2

2 + 2m2E1, or M2 = m2
1 + m2

2 + 2m2E1/c2, (8.34)

where the second equation restores the necessary powers of c. Note how the
initial energy E1 on the right-hand side has turned into (part of) the final mass
M on the left-hand side. This is how large accelerators create new particles
out of the energy of collision.

We can also find the momentum of the final particle from the second
equation in (8.32). This easily gives �P = �p1, indicating that, in the rest frame
of particle 2, the final particle moves in the initial direction of particle 1. The
magnitude of �P can be calculated in terms of energies and masses:

|�P | = |�p1| =
√

E2
1 − m2

1. (8.35)

The first equation in (8.32) gives the energy of the final particle

E = E1 + m2. (8.36)
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Combining Equations (8.35) and (8.36), we can obtain the speed of the final
particle:

V =
|�P |
E

=

√
E2

1 − m2
1

E1 + m2
. (8.37)

A more common collision has two particles initially and two finally. So
the conservation of 4-momentum becomes p1 +p2 = p3 + p4. Separating the
time and the space parts yields the conservation of energy and momentum:

E1 + E2 = E3 + E4,

�p1 + �p2 = �p3 + �p4. (8.38)

Squaring both sides of p1 + p2 = p3 + p4 gives

m2
1 + m2

2 + 2p1 · p2 = m2
3 + m2

4 + 2p3 · p4, (8.39)

which holds in any inertial frame. Evaluating this equation in the rest frame
of the second particle, yields

m2
1 + m2

2 + 2m2E1 = m2
3 + m2

4 + 2(E3E4 − �p3 · �p4). (8.40)

In this frame, Equation (8.38) becomes E1 +m2 = E3 + E4 and �p1 = �p3 + �p4.
Solving for E4 and �p4 from these equations and substituting the results in
(8.40) yields (after some algebra and using E2

3 − |�p3|2 = m2
3)

m2
1 + m2

2 + 2m2E1 = m2
4 − m2

3 + 2E3(E1 + m2) − 2�p1 · �p3,

or

m2
1 + m2

2 + 2m2E1 = m2
4 − m2

3 + 2E3(E1 + m2) − 2|�p1||�p3| cos θ13, (8.41)

where θ13 is the scattering angle of the third particle. Once the energy E1

of the initial incident particle is known, Equation (8.41) gives the scattering
angle as a function of the energy of the third particle (|�p1| and |�p3| are related
to E1 and E3, respectively).

Example 8.4.3. The particle nature of light, which had been proposed by EinsteinCompton
scattering in his explanation of the photoelectric effect, was demonstrated by Compton in what

is now called the Compton scattering. In this scattering, a photon of energy E
is scattered off a stationary electron of mass me. The scattered photon is detected
at an angle θ from the direction of the incident photon. What is the change in the
wavelength of the photon as a function of θ?

In (8.41), let 1 denote the incident photon, 2 the stationary electron, 3 the
scattered photon, and 4 the scattered electron. Let E′ denote the energy of the
scatterd photon, then, with m1 = m3 = 0, Equation (8.41) becomes

m2
e + 2meE = m2

e + 2E′(E + me) − 2EE′ cos θ,

or
meE = E′(E + me) − EE′ cos θ ⇒ me(E − E′) = EE′(1 − cos θ).
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Restoring the factors of c and noting that E = hc/λ, we obtain

mec
2

(
hc

λ
− hc

λ′

)

=

(
hc

λ

)(
hc

λ′

)

(1 − cos θ),

which can be simplified to

Δλ ≡ λ′ − λ =
h

mec
(1 − cos θ) ≡ λc(1 − cos θ), (8.42)

where λc = h/mec is called the Compton wavelength of the electron. By mea-
suring the difference between the wavelengths of scattered and incident photons,
Compton could verify Equation (8.42) and demonstrate that light had particle
property. �

8.4.2 Second Law of Motion

The Newtonian mechanics defines force as the rate of change of momentum.
We generalize this to relativity and define

f =
dp
dτ

= m
du
dτ

= ma, (8.43)

where τ is the proper time of the moving object with mass m, four-velocity u,
and four-momentum p. Let us explore the meaning of the components of f.

In a particular inertial frame, we assume that Newton’s second law holds:

d�p

dt
= �F , (8.44)

where �p is the space part of the 4-momentum. The space part of f can now
be written as

�f =
d�p

dτ
=

d�p

dt

dt

dτ
= γ �F . (8.45)

The time part of f is a little trickier. First note that

f0 =
dp0

dτ
=

1
c

dE

dτ
.

Next differentiate (8.29) with respect to τ to obtain E(dE/dτ) = c2�p·(d�p/dτ).
Finally use �p/E = �v/c2 to arrive at

f0 =
1
c

dE

dτ
=

1
c

c2�p

E
· d�p

dτ
=

1
c
γ�v · �F = γ�β · �F ,

where �β ≡ �v/c. Thus,

f ≡ (f0, �f) = (γ�β · �F , γ �F ). (8.46)

The fact that f0 = γ�β · �F could also be obtained by using f · u = 0, which
is a result of Equation (8.43) and the orthogonality of the 4-velocity and
4-acceleration (see Problem 8.13).
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Example 8.4.4. Let a constant force act on a particle of mass m in some inertial
frame. What is the speed of the particle at time t if it starts from rest?

Equation (8.44) can be trivially integrated to give �p = �Ft. Since the force is
constant, the motion takes place in one dimension. So, we can ignore the vector
sign and (remembering that β = v/c) write

mγv = Ft, or mγβ =
Ft

c
, or

β
√

1 − β2
=

Ft

mc
.

Squaring both sides and solving for β gives

β =
Ft/mc

√
1 + (Ft/mc)2

, or v =
Ft/m

√
1 + (Ft/mc)2

. (8.47)

Note that for large t (i.e., when Ft >> mc), β ≈ 1 or v ≈ c. However, the particle
can never attain the speed of light no matter how long we wait. On the other hand,
if Ft << mc, then v = (F/m)t, which is the Newtonian speed of a particle moving
with constant acceleration.

It is interesting to consider a particle having a constant acceleration of 10 m/s2

(approximately Earth’s gravitational acceleration). How long does it take to attain a
speed of 0.999c? Over 21 years! (See Problem 8.14). On the other hand, Newtonian
mechanics requires under one year to achieve the same speed! �

8.5 Problems

8.1. Show that Equation (8.6) follows from Equation (8.5). Hint: Consider
the three vectors a, b, and c = a + c.

8.2. Multiply the matrices in Equation (8.10) to obtain the three equations
of (8.11). Solve these equations to find all matrix elements in terms of a11.

8.3. In Example 8.3.1, Emmy receives the two signals from the explosions at
the same time.
(a) Show that this time is L/(2c) according to Emmy, and γL/(2c) according
to Karl.
(b) Let T ′

1 and T ′
2 denote the times that Karl receives the signal from the

front and back firecrackers, respectively. Show that

T ′
1 =

L

2c

√
1 + β

1 − β
, T ′

2 =
L

2c

√
1 − β

1 + β
.

(c) How is ΔT ′ ≡ T ′
1−T ′

2 related to Δt′ calculated in Example 8.3.1? Discuss
your answer.

8.4. Show that the relativistic law of addition of velocities (8.17) prohibits
the sum of two large velocities to be larger than the speed of light. Hint:
Multiply both sides of βp < 1 by 1 − β.

8.5. Show that the 4-acceleration is η-orthogonal to the 4-velocity.
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8.6. Provide the details of the proof of the statement: a particle is massless
if and only if it moves at light speed.

8.7. Apply (8.31) to a photon moving in the x-direction and use |�p| = E/c
to show that

E′ =

√
1 − β

1 + β
E.

Now use E = hc/λ to find a formula for the relativistic Doppler shift.

8.8. Two identical particles of mass m approach each other along a straight
line with speed v = βc as measured in the lab frame. Show that the energy
of one particle as measured in the rest frame of the other is

1 + β2

1 − β2
mc2.

8.9. A particle of mass m and relativistic energy 4mc2 collides with another
stationary particle of mass 2m and sticks to it. What is the mass of the
resulting composite particle.

8.10. An electron of kinetic energy 1 GeV (109 eV) strikes a positron (anti-
electron) at rest and the two particles annihilate each other and produce two
photons, one moving in the forward direction (the direction that electron had
before collision) and the other in the backward direction. What are the ener-
gies of the two photons. The mass (times c2) of electron and positron are the
same and equal to 0.511 MeV (106 eV).

8.11. A particle of mass m and energy E collides with an identical particle
at rest. The collision results in the formation of a single particle. Show that
the mass and the speed of the formed particle are, respectively,

√
2m(E + m)

and
√

(E − m)/(E + m), assuming that c = 1.

8.12. A photon of energy E is absorbed by a stationary nucleus of mass m.
The collision results in an excitation of the nucleus. Show that the mass and
the speed of the excited nucleus are, respectively,

√
m(2E + m) and E/(E +

m), assuming that c = 1.

8.13. Use Equations (8.21), (8.43), (8.45), and the orthogonality of the 4-
velocity and 4-acceleration to show that f0 = γ�β · �F .

8.14. How long does it take a particle to attain a speed of 0.999c, if its
acceleration is 10 m/s2? What is the answer based on Newtonian mechanics?
How do the answers change if the ultimate speed of the particle is 0.99999c?





Part III

Infinite Series





Chapter 9

Infinite Series

Physics is an exact science of approximation. Although this statement sounds
like an oximoron, it does summarize the nature of physics. All the laws we deal
with in physics are mathematical laws, and as such, they are exact. However,
once we try to apply them to Nature, they become only approximations.
Therefore, methods of approximation play a central role in physics. One such
method is infinite series which we study in this chapter.

9.1 Infinite Sequences

An infinite sequence is an association between the set of natural numbers infinite sequence

(often zero is also included) and the real numbers, so that for every natural
number k there is a real number sk. Instead of the association, one calls the
collection of real numbers the infinite sequence. Two common notations for
a sequence are an indicated list, and enclosure in a pair of braces, as given
below:

{s1, s2, . . . , sk, . . .} ≡ {sk}∞k=1 .

Instead of k, one can use any other symbol usually used for natural numbers
such as i, j, n, m, etc. We call sn the nth term of the sequence.

In practice, elements of a sequence are given by a rule or formula. The
following are examples of sequences:
{

1
2
,
1
4
,
1
8
, . . .

}

=
{

1
2n

}∞

n=1

,

{

2,

(
3
2

)2

,

(
4
3

)3

, . . .

}

=

{(
k + 1

k

)k
}∞

k=1

,

{

1,
1
23

,
1
33

, . . .

}

=
{

1
j3

}∞

j=1

,

{
1
2
,−2

3
,
3
4
, . . .

}

=
{

(−1)m+1 m

m + 1

}∞

m=1

.

(9.1)

An important sequence is the sequence of partial sums in which each
term is a sum. Examples of such sequences are the following: sequence of partial

sums
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{

1, 1 +
1
2
, 1 +

1
2

+
1
4
, . . .

}

,

{

1, 1 +
1
2
, 1 +

1
2

+
1
3
, . . .

}

,

{

1, 1 +
1
23

, 1 +
1
23

+
1
33

, . . .

}

,

{

1, 1 + 1, 1 + 1 +
1
2!

, . . .

}

.

The nth term of the sequences above are, respectively,

sn = 1 +
1
2

+
1
4

+ · · · + 1
2n

=
n∑

k=0

1
2k

,

sn = 1 +
1
2

+
1
3

+ · · · + 1
n

=
n∑

i=1

1
i
,

sn = 1 +
1
23

+
1
33

+ · · · + 1
n3

=
n∑

j=1

1
j3

,

sn = 1 + 1 +
1
2!

+ · · · + 1
n!

=
n∑

k=0

1
k!

,

so that the sequences can be written, respectively, asconvention:
0! = 1.

{
n∑

k=0

1
2k

}∞

n=0

,

{
n∑

i=1

1
i

}∞

n=1

,

⎧
⎨

⎩

n∑

j=1

1
j3

⎫
⎬

⎭

∞

n=1

,

{
n∑

k=0

1
k!

}∞

n=0

. (9.2)

In the last sequence, we have used the usual definition, 0! ≡ 1. A sequence isconvergence and
limit of a sequence said to converge to the number s or to have limit s if for every positive (usu-

ally very small) real number ε there exists a (usually large) natural number
N such that |sn − s| < ε whenever n > N . We then write

lim
n→∞

sn = lim
ν→∞

sν = lim
♣→∞

s♣ = lim
♥→∞

s♥ = s. (9.3)

Note the freedom of choice in using the symbol of the limit. A sequence that
does not converge is said to diverge. The first three sequences in Equation
(9.1) are convergent and their limits are

lim
n→∞

(
1
2n

)

= 0, lim
n→∞

(
n + 1

n

)n

= e, lim
n→∞

(
1
n3

)

= 0.

The last sequence diverges because there is no single number to which the
terms get closer and closer.

There are many ways that a sequence can converge to its limit. For in-
stance, the terms sn may steadily increase toward s after some large integer
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(a)

(b)

(c)

(d)

(e)

(f)

s5

s

s

s

A

A

A

A

B

B

B

B

s4s3 s2s1

s5s4s3s2s1

s5 s4 s3 s2 s1

s5s4s3s2s1

s5 s4s3 s2s1

s5 s3 s8s1 s4s7s2 s6

Figure 9.1: Types of sequences and modes of their convergence: (a) convergent, (b)

convergent monotone increasing, (c) convergent monotone decreasing, (d) divergent

monotone increasing, (e) divergent bounded, (f) divergent unbounded.

N , so that for all n ≥ N , sn ≤ sn+1 ≤ sn+2 ≤ sn+3 ≤ · · · . 1 In this case
we say that the sequence is monotone increasing. If the terms sn steadily monotone

increasing,
monotone
decreasing, and
bounded
sequences

decrease toward s after some large integer N , the sequence is called mono-
tone decreasing. A sequence may bounce back and forth on either side of
its limit, getting closer and closer to it. A sequence is called bounded if there
exist two numbers A and B such that

A ≤ sn ≤ B for all n.

A sequence may be bounded but divergent. Various forms of convergence and
divergence are depicted in Figure 9.1.

A sequence may have an upper and/or a lower limit. The upper limit is
a number s such that there are infinitely many n’s with the property that sn

is very close to s if n is large enough, and there is no other number larger
than s with the same property. Similarly, the lower limit is a number s such
that there are infinitely many n’s with the property that sn is very close to
s if n is large enough, and there is no other number smaller than s with the
same property. The last sequence of Equation (9.1) has an upper limit of 1
and a lower limit of −1. It is intuitively obvious that a sequence converges if
and only if its upper and lower limits are finite and equal. For instance, the
sequence {(−1)n/n}∞n=1 converges to the single limit 0 after bouncing left and
right of it infinitely many times.

One can decide whether a sequence converges or not without knowing its
limit: Cauchy criterion

1We often use the loose phrase: “For large enough n, . . . .” The precise statement would
be: There exists an N such that for all n ≥ N , . . . .
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Box 9.1.1. (Cauchy Criterion). The sequence {sn}∞n=1 converges if
the difference sn−sm approaches zero as both m and n approach infinity.

We can add, subtract, multiply, and divide two convergent sequences term
by term and obtain a new sequence. The limit of the new sequence is obtained
by the corresponding operation of the limits. Thus, if

lim
n→∞

xn = x, lim
n→∞

yn = y,

then

lim
n→∞

(xn ± yn) = x ± y, lim
n→∞

(xn · yn) = x · y, lim
n→∞

xn

yn
=

x

y
,

provided, of course, that y �= 0 when it is in the denominator.

9.2 Summations

We have been using summation signs on a number of occasions, and we shall
be making heavy use of them in this chapter as well. It is appropriate at
this point to study some of the properties associated with such sums. Every
summation has a dummy index which has a lower limit, usually writtendummy

summation index
can be any symbol
you want it to be!

under the summation symbol
∑

, and an upper limit, usually written
above it. The limits are always fixed, but the dummy index can be any
symbol one wishes to use except the symbols used in the expression being
summed. Therefore, all the following sums are identical:

N∑

i=1

aix
i,

N∑

k=1

akxk,
N∑

α=1

aαxα,
N∑

♣=1

a♣x♣,
N∑

ℵ=1

aℵxℵ. (9.4)

It is not a good idea, however, to use a or x as the dummy index for the
summation above!

When adding or subtracting sums of equal length, it is better to use the
same symbol for the dummy index of the sum:

N∑

i=1

ai +
N∑

♥=1

b♥ =
N∑

i=1

(ai + bi) =
N∑

♥=1

(a♥ + b♥) =
N∑

k=1

(ak + bk).

However,

Box 9.2.1. When multiplying two sums (not necessarily of equal length),
it is essential to choose two different dummy indices for the two sums.
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Thus, to multiply
∑N

i=1 ai by
∑M

i=1 bi, one writes

N∑

i=1

ai

M∑

j=1

bj =
N∑

i=1

M∑

j=1

aibj.

Failure to obey this simple rule can lead to catastrophe. For example, one
may end up with

∑N
i=1 ai

∑M
i=1 bi =

∑N
i=1

∑M
i=1 aibi, which is a sum of terms

of the form a1b1 + a2b2 + · · · , excluding terms such as a1b2 or a3b5, etc.
The freedom of choice for the symbol of dummy index can be used to ma-

nipulate sums and get results very quickly. As an example, suppose that {aij}
is a set of (doubly indexed) numbers which are symmetric under interchange
of their indices, i.e., aij = aji. Similarly, suppose that bij are antisymmet-
ric under interchange of their indices, i.e., bij = −bji. Furthermore, assume
that i and j have the lower limit of 1 and the upper limit of n. What is∑n

i=1

∑n
j=1 aijbij? Call this sum S. Since the choice of the dummy symbol

is irrelevant, we have

S =
n∑

i=1

n∑

j=1

aijbij =
n∑

α=1

n∑

β=1

aαβbαβ = −
n∑

α=1

n∑

β=1

aβαbβα, (9.5)

where we used the symmetry of aij and the antisymmetry of bij . Since the
order of summation is irrelevant, we can write S as S = −

∑n
β=1

∑n
α=1 aβαbβα.

Once again, change the dummy symbols: Choose i for β and j for α. Then
Equation (9.5) becomes

S = −
n∑

i=1

n∑

j=1

aijbij = −S ⇒ 2S = 0 ⇒ S = 0.

As another illustration, suppose we want to multiply
∑M

i=0 ait
i and

∑N
i=0 bit

i,
and express the coefficient of a typical power of t in the product in terms of
ai and bi. Call the product P . Then

P =
M∑

i=0

ait
i

N∑

j=0

bjt
j =

M∑

i=0

N∑

j=0

aibjt
i+j .

We need to use a single symbol for the power of t in the double sum. So, let
α = i + j. Our goal is to write P =

∑
cαtα, find cα in terms of ai and bi,

and determine the lower and upper limits of the summation on α. The latter
is easy: α has a lower limit of 0 (when both i and j are zero), and an upper
limit of M + N .

For the second dummy index we choose one of the original indices, say i.
The limits of i cannot be the original limits, because i is now mixed up with
α and j through j = α− i. Because of the original bounds of i and j, we have
0 ≤ i ≤ M as well as

0 ≤ α − i ≤ N or − α ≤ −i ≤ N − α or α ≥ i ≥ α − N.
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Since i is greater than both 0 and α−N , it must be greater than the maximum
of the two: i ≥ max(0, α − N). This means that the lower limit of the i-
summation is max(0, α − N). Similarly, since i is smaller than both M and
α, it must be smaller than the minimum of the two: i ≤ min(M, α), making
the upper limit of the i-summation min(M, α). We therefore have

P =
M+N∑

α=0

min(M,α)∑

i=max(0,α−N)

aibα−it
α =

M+N∑

α=0

⎛

⎝
min(M,α)∑

i=max(0,α−N)

aibα−i

⎞

⎠

︸ ︷︷ ︸
≡cα

tα. (9.6)

Example 9.2.1. As further practice in working with the summation symbol, we
show that the torque on a collection of particles is caused by external forces only.
The torques due to the internal forces add up to zero. We have already illustrated
this for three particles in Example 1.3.5. Here, we generalize the result to any
number of particles.

We use the second formula in Equation (1.31) and separate the forces

T =

N∑

k=1

rk × Fk =

N∑

k=1

rk ×

⎛

⎝F
(ext)
k +

∑

i�=k

Fki

⎞

⎠

=

T(ext)

︷ ︸︸ ︷
N∑

k=1

rk × F
(ext)
k +

T(int)

︷ ︸︸ ︷
N∑

k=1

∑

i�=k

rk × Fki .

We need to show that the double sum is zero. To do so, we break the inner sum
into two parts, i > k and i < k. This yields

T(int) ≡
N∑

i,k=1
i�=k

rk × Fki =
N∑

i,k=1
i>k

rk × Fki +
N∑

i,k=1
i<k

rk × Fki

=

N∑

i,k=1
i>k

rk × Fki −
N∑

i,k=1
i<k

rk × Fik,

because, by the third law of motion, Fik = −Fki. Now, in the second sum, change
the dummy indices twice:

T(int) =
N∑

i,k=1
i>k

rk × Fki −
N∑

α,β=1
α>β

rα ×Fβα

=
N∑

i,k=1
i>k

rk × Fki −
N∑

i,k=1
i>k

ri × Fki =
N∑

i,k=1
i>k

(rk − ri) ×Fki.

As in Example 1.3.5, we assume that Fki and rk−ri lie along the same line in which
case the cross products in the sum are all zero. �
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In the sequel, we shall have many occasions to use summations and ma-
nipulate them in ways similar to above. The reader is urged to go through
such manipulations with great care and diligence. The skill of summation
techniques is acquired only through such diligent pursuit.

9.2.1 Mathematical Induction

Many a time it is desirable to make a mathematical statement that is true
for all natural numbers. For example, we may want to establish a formula
involving an integer parameter that will hold for all positive integers. One
encounters this situation when, after experimenting with the first few positive
integers, one recognizes a pattern and discovers a formula, and wants to make
sure that the formula holds for all natural numbers. For this purpose, one
uses mathematical induction. The essence of mathematical induction is
stated in induction principle

Box 9.2.2. (Mathematical Induction). Suppose that there is asso-
ciated with a natural number (positive integer) n a statement Sn. Then
Sn is true for every positive integer provided the following two conditions
hold:

1. S1 is true.

2. If Sm is true for some given positive integer m, then Sm+1 is also
true.

We illustrate the use of mathematical induction by proving the binomial
theorem: binomial theorem

(a + b)m =
m∑

k=0

(
m

k

)

am−kbk =
m∑

k=0

m!
k!(m − k)!

am−kbk

= am + mam−1b +
m(m − 1)

2!
am−2b2 + · · · + mabm−1 + bm, (9.7)

where we have used the shorthand notation
(

m

k

)

≡ m!
k!(m − k)!

. (9.8)

The mathematical statement Sm is Equation (9.7). We note that S1 is trivially
true: (a + b)1 = a + b. Now we assume that Sm is true and show that Sm+1

is also true. This means starting with Equation (9.7) and showing that

(a + b)m+1 =
m+1∑

k=0

(
m + 1

k

)

am+1−kbk.
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Then the induction principle ensures that the statement (equation) holds for
all positive integers.

Multiply both sides of Equation (9.7) by a + b to obtain

(a + b)m+1 =
m∑

k=0

(
m

k

)

am−k+1bk +
m∑

k=0

(
m

k

)

am−kbk+1.

Now separate the k = 0 term from the first sum and the k = m term from
the second sum:

(a + b)m+1 = am+1 +
m∑

k=1

(
m

k

)

am−k+1bk +
m−1∑

k=0

(
m

k

)

am−kbk+1

︸ ︷︷ ︸
let k = j − 1 in this sum

+bm+1

= am+1 +
m∑

k=1

(
m

k

)

am−k+1bk +
m∑

j=1

(
m

j − 1

)

am−j+1bj + bm+1.

The second sum in the last line involves j. Since this is a dummy index, we
can substitute any symbol we please. The choice k is especially useful because
then we can unite the two summations. This gives

(a + b)m+1 = am+1 +
m∑

k=1

{(
m

k

)

+
(

m

k − 1

)}

am−k+1bk + bm+1.

If we now use (
m + 1

k

)

=
(

m

k

)

+
(

m

k − 1

)

which the reader can easily verify, we finally obtain

(a + b)m+1 = am+1 +
m∑

k=1

(
m + 1

k

)

am−k+1bk + bm+1

=
m+1∑

k=0

(
m + 1

k

)

am−k+1bk.

Mathematical induction is also used in defining quantities involving inte-
gers. Such definitions are called inductive definitions. For example, induc-inductive

definitions tive definition is used in defining powers: a1 = a and am = am−1a.

9.3 Infinite Series

An infinite series is an indicated sum of the members of a sequence {ak}∞k=1.
This sum is written as

a1 + a2 + a3 + · · · ≡
∞∑

k=1

ak ≡
∞∑

j=1

aj ≡
∞∑

n=1

an ≡
∞∑

♣=1

a♣,
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where we have exploited the freedom of choice in using the dummy index as
emphasized in the previous section.

Box 9.3.1. Associated with an infinite series is the sequence of partial
sums {Sn}∞n=1 with Sn = a1 + a2 + · · ·+ an =

∑n
k=1 ak. A series is con-

vergent (divergent) if its associated sequence of partial sums converges
(diverges).

For a convergent series the nth member of the sequence of partial sums will
be a good approximation to the series if n is large enough. This is a simple
but important property of the series that is very useful in practice. It should
be clear that the convergence property of a series is not affected by changing
a finite number of terms in the series. Convergent series can be added or
multiplied by a constant to obtain new convergent series. In other words, if∑∞

n=1 an = A and
∑∞

n=1 bn = B, then

∞∑

n=1

(an ± bn) = A ± B, r

∞∑

n=1

an = rA,

for any real number r.

9.3.1 Tests for Convergence

When adding, subtracting, or multiplying finite sums, no problem occurs
because these operations are all well defined for a finite number of terms.
However, when adding an infinite number of terms, no operation on the infinite
sum will be defined unless the series converges. It is therefore important to
have criteria to test whether a series converges or not. We list various tests
which are helpful in determining whether an infinite series is convergent or
not.

The nth Term Test

If limn→∞ an �= 0, then
∑∞

n=1 an diverges. This is easily shown by looking at if the infinite
series is to
converge, its nth
term must
approach zero.
But that by itself
is not enough for
convergence!

the difference Sn −Sn−1 and noting that it is simply an, and that if the series
converges, then this difference must approach zero by the Cauchy criterion.
Thus none of the following series converges:

∞∑

n=1

n

n + 1
,

∞∑

k=1

(−1)k k − 1
5k − 1

,

∞∑

j=1

(−1)j,

∞∑

m=1

m2 − 10
8m2 + 1

.

On the other hand, the series

∞∑

n=1

n

n2 + 1
,

∞∑

k=1

(−1)k 1
k

,

∞∑

j=1

1
j
,

∞∑

m=1

1
m2

,
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may or may not converge: The approach of an to zero does not guarantee
the convergence of the series. In fact, the first and third of the series above
diverge while the second and last converge.

Box 9.3.2. Do not confuse the convergence of an infinite series with the
convergence of its nth term. If the nth term converges to anything but
zero, the series will not converge!

Absolute Convergence

If
∑∞

n=1 |an| converges, so does
∑∞

n=1 an. The series is then said to be abso-absolute
convergence lutely convergent. For example, the series

∑∞
k=1(−1)k/2k converges because∑∞

k=1 1/2k converges. However, although the series
∑∞

k=1 1/k can be shown
to diverge,

∑∞
k=1(−1)k/k is known to converge.

Comparison Test

If |an| ≤ bn for large enough values of n and
∑∞

n=1 bn converges, then
∑∞

n=1 an

is absolutely convergent and
∑∞

n=1 an ≤
∑∞

n=1 bn. On the other hand, if
an ≥ bn ≥ 0 for large values of n and

∑∞
n=1 bn diverges, then so does

∑∞
n=1 an.

Integral Test

This is probably the most powerful test of convergence for infinite series.
Assume that limn→∞ an = 0, so that the series is at least a candidate for
convergence. Now find a function f which expresses an, i.e., such that f(n) =
an, and assume that f(n) decreases monotonically for large values of n. Then

Theorem 9.3.1. The series
∑∞

n=1 an converges if and only if the integral∫∞
c f(t) dt exists and is finite for some real number c > 1.

To see this, refer to Figure 9.2 and suppose that c lies between two con-
secutive positive integers m and m + 1. Since the convergence or divergence
of a series is not affected by the removal of a finite number of terms of the
series, we are allowed to consider either the series

∑∞
k=m ak or

∑∞
k=m+1 ak.

Figure 9.2(a) compares the area under the curve f(t) with the shaded area
which is the sum of the areas of an infinite number of rectangles each of height
f(k) = ak for some positive integer k larger than (or equal to) m + 1. The
width of all rectangles is unity. The shaded area A is therefore

A =
∞∑

k=m+1

f(k)
︸︷︷︸
=ak

Δt =
∞∑

k=m+1

ak · 1 =
∞∑

k=m+1

ak.

It is clear from Figure 9.2(a) that

A <

∫ ∞

c

f(t) dt ⇒
∞∑

k=m+1

ak <

∫ ∞

c

f(t) dt.



9.3 Infinite Series 269

t = m t = c
t = m + 1 t = m t = c

t = m + 1

)b()a(

f (t)
f (t)

t t

Figure 9.2: The area under the curve (a) bounds, and (b) is bounded by, the infinite

sum obtained from the series by removing a finite number of terms. This finite number

of terms is the first m terms for (a) and the first m − 1 terms for (b).

Similarly, Figure 9.2(b) shows that
∑∞

k=m ak is larger than the area under the
curve. We thus can write

∞∑

k=m+1

ak <

∫ ∞

c

f(t) dt <

∞∑

k=m

ak.

Hence, if the integral is finite
∑∞

k=m+1 ak (being smaller than the integral)
is also finite and the series converges. If, on the other hand, the integral is
infinite then

∑∞
k=m ak (being larger than the integral) diverges.

The integral test leads directly to the observation that the Riemann zeta
function, also called the harmonic series of order p defined by Riemann zeta

function or
harmonic series of
order pζ(p) ≡

∞∑

k=1

1
kp

= 1 +
1
2p

+
1
3p

+ · · · (9.9)

converges for p > 1 and diverges for p ≤ 1. In particular,

ζ(1) =
∞∑

k=1

1
k

= 1 +
1
2

+
1
3

+ · · · ,

called simply the harmonic series, diverges. harmonic series

Ratio Test

Consider the series
∑∞

n=1 an. If an �= 0 for large enough n and

lim
n→∞

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ = R,

then the series is absolutely convergent if R < 1 and is divergent if R > 1.
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The terms that we choose for the ratio test need not be consecutive. To
see this, note that

lim
n→∞

∣
∣
∣
∣
an+2

an

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣
an+2

an+1

∣
∣
∣
∣ · lim

n→∞

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ =

(

lim
n→∞

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣

)2

.

In going to the last equality, we have used the following:

lim
n→∞

∣
∣
∣
∣
an+2

an+1

∣
∣
∣
∣ = lim

(m−1)→∞

∣
∣
∣
∣
am+1

am

∣
∣
∣
∣ = lim

m→∞

∣
∣
∣
∣
am+1

am

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ ,

where we have substituted m = n + 1 and used Equation (9.3) and the fact
that m → ∞ if and only if (m − 1) → ∞. It now follows that

lim
n→∞

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ =

√

lim
n→∞

∣
∣
∣
∣
an+2

an

∣
∣
∣
∣

and the LHS will be less than or greater than one if the term inside the square
root sign is. In fact, one can generalize the above argument and state that
the series is convergent (divergent) if

lim
n→∞

∣
∣
∣
∣
an+j

an

∣
∣
∣
∣ =

(

lim
n→∞

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣

)j

(9.10)

is less than (greater than) one for any finite j.
The Riemann zeta function can sharpen the ratio test of convergence to

allow for certain cases in which the ratio is one. Instead of taking the complete
limit, we approximate the ratio of consecutive terms for the Riemann zeta
function to first order in 1/n. This yields

an+1

an
=

(
n

n + 1

)p

=
(

n + 1
n

)−p

=
(

1 +
1
n

)−p

≈ 1 − p

n
,

where we used the binomial expansion formula, to which we shall come back
[see Equation (10.15)]. We know that such a ratio leads to a convergent series
if p > 1 and to a divergent series if p ≤ 1. Therefore, we obtain

Theorem 9.3.2. (Generalized Ratio Test). If the ratio of consecutive

terms of a series satisfies
∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ → 1 − p

n
, then the series converges if p > 1

and diverges if p ≤ 1.

Alternating Series Test

An alternating series

a1 − a2 + a3 − a4 + · · · =
∞∑

j=1

(−1)j+1aj , aj > 0,

converges if limj→∞ aj = 0, and if there exists a positive integer N such that
ak > ak+1 for all k > N .
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Example 9.3.3. A useful series is the geometric series: geometric series

b + bu + bu2 + bu3 + · · · =

∞∑

k=0

buk.

We claim that this series converges to b/(1 − u) if |u| < 1, and diverges if |u| ≥ 1.
To show this, let Sn represent the sum of the first n terms, so that {Sn}∞n=0 is the
sequence of partial sums. We calculate Sn as follows. First note that

Sn =

n∑

k=0

buk ⇒ uSn =

n∑

k=0

buk+1.

Next separate the zeroth term from the rest of Sn and rewrite it as

Sn = b +
n∑

k=1

buk = b +
n−1∑

m=0

bum+1 = b +
n−1∑

k=0

buk+1,

where in the second equality, we changed k to m = k − 1 and in the last equality
we changed the dummy index back to k. Subtracting uSn from Sn, we obtain

Sn − uSn = (1 − u)Sn = b +

n−1∑

k=0

buk+1 −
n∑

k=0

buk+1

= b +

n−1∑

k=0

buk+1 −
(

n−1∑

k=0

buk+1 + bun+1

)

= b − bun+1

or

Sn =
b − bun+1

1 − u
.

It is now clear that un+1 → 0 for n → ∞ only if |u| < 1. For |u| > 1, the series
clearly diverges. For |u| = 1 the partial sum is either Sn = nb (when u = 1), which
diverges for any nonzero b, or Sn = b

∑∞
n=0(−1)n, which bounces back and forth

between +b and −b, and never converges. So the series diverges for |u| ≥ 1
For example, if b = 0.3 and u = 0.1, then the series gives

0.3 + 0.3 × 0.1 + 0.3 × 0.01 + · · · = 0.33333 · · · =
0.3

1 − 0.1
=

1

3
.

For b = 1 the series gives

1 + u + u2 + · · · =
1

1 − u
= (1 − u)−1, (9.11)

which can be thought of as the binomial expansion when the power is −1. As we
shall see in Section 10.1, there is a generalization of binomial expansion for any real
power. �

The result of Example 9.3.3 is important enough to be summarized:

Box 9.3.3. The series b + bu + bu2 + bu3 + · · · =
∑∞

k=0 buk is called the
geometric series. It converges to b/(1 − u) if |u| < 1, and diverges if
|u| ≥ 1.
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Example 9.3.4. Another example of a series used often is

1 + 1 +
1

2!
+

1

3!
+ · · · =

∞∑

k=0

1

k!
.

The ratio test shows only that the series converges, but the comparison test gives
us more information. In fact, since 1/n! ≤ 1/2n−1 for n ≥ 1, we conclude that

1 +
1

2!
+

1

3!
+ · · · ≤ 1 +

1

2
+

1

22
+

1

23
+ · · · .

But the RHS is the geometric series with u = 1/2 which is known to converge to 2.
We thus obtain the upper bound to our series:

2 ≤
∞∑

k=0

1

k!
≤ 3.

It is well known that the series converges to e = 2.718281828 · · · . �

Example 9.3.5. If one alternates the sign of the terms in the harmonic series,
one obtains the series

1 − 1

2
+

1

3
− 1

4
+ · · ·

which is convergent by the alternating series test. In fact, we shall show in Exampleconditional
convergence 9.4.4 that the series converges to ln 2. Note that the series is not absolutely conver-

gent. A convergent series that does not converge absolutely is called conditionally
convergent. �

Historical Notes
The invention of calculus motivated several other areas of investigation in math-
ematics. One of these areas was infinite series. For example, it was not always
possible to find a closed formula for the integral of a function. So, it was common to
expand the integrand in powers of the variable and integrate the resulting infinite
series. No question was asked as to the legitimacy of the operations performed.
In fact, Newton, Leibniz, and Euler regarded infinite series as an extension of the
algebra of polynomials, and they did not realize that new problems would arise if
a finite sum were extended to an infinite series. However the apparent difficulties
that did arise caused them occasionally to bring up the question of convergence and
divergence.

Some mathematicians of the seventeenth century had observed the difference
between convergence and divergence. In 1668 Lord Brouncker, while studying the
relation between ln x and the area under y = 1/x, demonstrated the convergence
of the series for ln 2 and ln( 5

4
) by comparison with a geometric series. Newton and

James Gregory, who made much use of the numerical values of series to calculate
logarithmic and other function tables and to evaluate integrals, were aware that the
sum of a series can be finite or infinite. The terms “convergent” and “divergent”
were actually used by Gregory in 1668, but he did not develop the ideas.

Leibniz, too, felt some concern about convergence and noted in a letter of Oc-
tober 25, 1713 to John Bernoulli what is now a theorem that we call the alternating
series test. Maclaurin used series as a regular method for integration. He recognized
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that the terms of a convergent series must continually decrease and become less than
any given quantity no matter how small.

D’Alembert also distinguished convergent from divergent series. In his article
“Série” in the Encyclopédie he describes a convergent series as that which approaches
a finite value and consequently has terms that keep diminishing. In this same
volume, d’Alembert gave a test for the absolute convergence of the series

∑∞
k=1 ak,

namely, if for all k > N , the ratio |ak+1/ak| < r where r is a positive number
independent of k and less than 1, the series converges absolutely.

Edward Waring (1734–1798), Lucasian professor of mathematics at Cambridge
University, held advanced views on convergence. He showed that the harmonic series
of order p converges if p > 1 and diverges if p < 1. He also gave the well-known test
for convergence and divergence, now known as the ratio test.

9.3.2 Operations on Series

It has already been mentioned that convergent series can be added, subtracted,
and multiplied by a constant. There are other important operations one can
perform on convergent series. These operations may be “obvious” for finite
sums, but they have to be justified for infinite series. In fact, performing such
obvious operations on divergent series leads to contradictory results.

One such operation is grouping: grouping of
convergent series

Box 9.3.4. One can group the terms of a finite sum or a convergent
infinite series in any way one desires, and the sum will not change.

The operation of grouping is essentially putting parentheses around a collec-
tion of terms of the series (or the sum), adding the terms inside each parenthe-
ses first, and then adding the results. This is simply the associative property
of addition. It turns out that this associative property of addition does not
apply to divergent infinite series.2 For example,

∑∞
m=0(−1)m gives an infinite

number of zeros if every +1 is grouped with one −1. On the other hand, the
same series can be grouped such that the first +1 is set aside and the rest of
the terms are paired. The result would then be a +1 with an infinite number
of zeros.If a series is divergent and not bounded, so that the sum is infinite, warning!

rearranging terms
is not, in general,
allowed!

then any grouping of terms gives infinity.
Another operation is the rearrangement of terms of a series. This is the

commutative property of addition:

Box 9.3.5. If a series is absolutely convergent then the rearrangement
of terms does not change either the nature of convergence or the limit of
the series. A conditionally convergent series does not share this property.

2Caution is to be exercised not to move the terms around, as this will, in general, affect
the sum as explained in the property of rearrangement described below.
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To see the importance of absolute convergence, consider the alternating series∑∞
k=1(−1)k+1/k—which converges conditionally to ln 2—and rearrange terms

as follows:
∞∑

k=1

(−1)k+1

k
= 1 + 1

3 + 1
5 + · · · − 1

2

(
1 + 1

2 + 1
3 + · · ·

)

= 1 + 1
2 + 1

3 + 1
4 + 1

5 + · · · − 1
2 − 1

4 − 1
6 − · · ·

− 1
2

(
1 + 1

2 + 1
3 + · · ·

)

= 1 + 1
2 + 1

3 + 1
4 + 1

5 + · · · −
(
1 + 1

2 + 1
3 + · · ·

)
= 0,

where in the second line, terms with even denominators have been added
and subtracted with the positive ones interspersed among terms with oddmultiplication of

two series denominators.
The third operation is multiplication of two series. As for rearrange-

ment,

Box 9.3.6. Multiplication is defined only for absolutely convergent series:
If the two series

∑∞
k=1 ak and

∑∞
j=1 bj are absolutely convergent, then

their product (
∑∞

k=1 ak) · (
∑∞

j=1 bj) ≡
∑∞

k=1

∑∞
j=1 akbj ≡

∑∞
i=1 ci is also

absolutely convergent.

The last series is a rearrangement of the terms akbj into a single term ci.
This rearrangement makes it necessary for the original series to be absolutely
convergent.

9.4 Sequences and Series of Functions

The infinite series of the last section are useful when we want to approximate
a number, such as e or ln 2 by a (large) sum of other (rational, decimal) num-
bers. Physics, however, deals with functions as well as numbers. It is therefore
useful to know how to approximate functions in terms of “elementary” func-
tions. In this section we shall investigate the possibility of expressing a given
function in terms of a series of functions. Since functions give numbers once
their arguments are assigned a value, many of the ideas developed in the
preceding two sections will be employed.

Suppose for each natural number n there is a function fn(x). Then, the
set {fn(x)}∞n=1 is called a sequence of functions. Just as in the case ofsequence of

functions sequences of numbers, we need to address the question of the convergence
of the sequence of functions. This reduces to the question of convergence of
ordinary numbers once we substitute values for x. Variation of fn(x) with x
opens up the possibility of convergence for some values of x and divergence
for others. For instance, the sequence {xn}∞n=1 converges for −1 < x < 1 and
diverges for all other values of x.
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More interesting than sequences of functions are series of functions: series of functions

f1(x) + f2(x) + f3(x) + · · · =
∞∑

k=1

fk(x).

The nth partial sum of such a series is

Sn(x) = f1(x) + f2(x) + · · · + fn(x) =
n∑

j=1

fj(x).

The convergence of a series of functions
∑∞

k=1 fk(x) depends on x. For ex-
ample, the series may converge for x = 0.35. This means that the series of
numbers

∑∞
k=1 fk(0.35) converges, i.e., there exists a real number s such that

for every ε there exists an N with the property that |
∑n

k=1 fk(0.35) − s| < ε
whenever n > N . It should be clear that an N that works for one value of
x—here 0.35—and ε, may not work for other values of x and ε. Thus, N
depends on x and ε, and this dependence is denoted by N(x, ε).

We can imagine making a table with one column consisting of the values
of x and a second column consisting of the corresponding limits of the series
of numbers whose terms are fn evaluated at the value of x. The table then
defines a real-valued function, say S(x), which is called the limit of the series
of functions, and one writes

S(x) = lim
n→∞

Sn(x) ≡
∞∑

k=1

fk(x). (9.12)

We have already seen examples of series of functions: the geometric series∑∞
n=0 un —convergent for |u| < 1—in which the terms are functions of u

with fn(u) = un, and the Riemann zeta function (or harmonic series of degree
p)—convergent for |p| > 1—in which the terms were functions of p with
fn(p) = 1/np.

In general, the sum in Equation (9.12) may converge only for a limited
range of values of x. To find this range, we impose the ratio test on the terms
of the series. This yields

r(x) ≡ lim
k→∞

∣
∣
∣
∣
fk+1(x)
fk(x)

∣
∣
∣
∣ < 1, (9.13)

which is an inequality in x that can be solved to find the values of x for which
the series converges.

Example 9.4.1. As an example of the application of Equation (9.13), let us find
the values of x for which the series

∞∑

k=1

[ln(x + 1)]k

k
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converges. The ratio in (9.13) is

r(x) = lim
k→∞

∣
∣
∣
∣
[ln(x + 1)]k+1/(k + 1)

[ln(x + 1)]k/k

∣
∣
∣
∣ = lim

k→∞

∣
∣
∣
∣
[ln(x + 1)]k+1

[ln(x + 1)]k
· k

k + 1

∣
∣
∣
∣

= |ln(x + 1)| lim
k→∞

∣
∣
∣
∣

k

k + 1

∣
∣
∣
∣ = |ln(x + 1)| .

So, the condition for convergence is

|ln(x + 1)| < 1 ⇒ −1 < ln(x + 1) < 1

or

e−1 < x + 1 < e ⇒ e−1 − 1 < x < e − 1

and the series converges for −0.632 < x < 1.718.

Let us now check the convergence of the series for the two end points. The left
end point corresponds to ln(x+1) = −1 for which the series becomes

∑∞
n=1(−1)n/n

which is convergent (see Example 9.3.5). On the other hand, for the right end point,
ln(x + 1) = 1, and the series becomes

∑∞
n=1 1/n which is the divergent harmonic

series. Thus, the interval of convergence is −0.632 ≤ x < 1.718. �

An important notion is uniform convergence:uniform
convergence

Box 9.4.1. If, for a given ε, it is possible to find an N such that |Sn(x)−
S(x)| < ε whenever n > N for all values of x in some interval (a, b)—so
that N is independent of x—then the series is said to converge uniformly
on (a, b).

Clearly, for uniform convergence to have any meaning, there must exist a range
of values of x for which the series converges uniformly because a series may
converge for all values of x on the real line without converging uniformly for
any interval of the real line. A pictorial representation of uniform convergence
is shown in Figure 9.3. Basically, we say that a series is uniformly convergent
if the graphs of partial sums Sn(x), after a certain large N , all lie within a
(narrow) strip of width ε containing the graph of the limit function f(x).

There is a useful test for the uniform convergence which works for a largetest for uniform
convergence number of familiar series and goes by the name of the Weierstrass M-test:

Let
∑∞

k=1 fk(x) be a series of functions all defined in an interval3 (a, b). If
there is a convergent series of positive numbers

∑∞
k=1 Mk, such that |fk(x)| ≤

Mk for all x in (a, b), then
∑∞

k=1 fk(x) converges absolutely for each such x,
and is uniformly convergent in (a, b).

Example 9.4.2. Consider the series
∑∞

n=1 xn/np, which is a generalization of the
geometric series (for which p = 0). We want to see for what values of p and in what

3Instead of an interval, one may use the union of many intervals. In fact, the statement
is true even when the interval (a, b) is replaced with a general subset of the real line.
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f(x) + ε

f(x) − ε

f(x)

Sn(x)
Sn+1(x)

Figure 9.3: Uniform convergence.

interval of x is the series convergent. One way to get the answer is to apply the
ratio test:

lim
n→∞

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣

xn+1

(n + 1)p
· np

xn

∣
∣
∣
∣ = |x| lim

n→∞

(
n

n + 1

)p

= |x|.

It follows that, regardless of the value of p, the series converges for |x| < 1, and
diverges for |x| > 1. For x = 1, the series becomes

∑∞
n=1 1/np which converges for

p > 1 and diverges for p ≤ 1 as pointed out in the integral test of convergence.
Finally if x = −1, the alternating series test of convergence tells us that the series
converges for all p > 0. What about the uniformity of convergence? We note that
for Mn = 1/np, and for |x| ≤ 1, we have

∣
∣
∣
∣
xn

np

∣
∣
∣
∣ ≤

1

np
≡ Mn

and the series of Mn converges as long as p > 1. Thus, for p > 1, the series∑∞
n=1 xn/np is uniformly convergent. �

9.4.1 Properties of Uniformly Convergent Series

The importance of uniformly convergent series lies in the nice properties such
series possess. For instance, if ui(x) is continuous in the interval a ≤ x ≤ b,
and if the series

∑∞
i=1 ui(x) is uniformly convergent in that interval, then the

function defined by f(x) =
∑∞

i=1 ui(x) is also continuous in the interval. This
statement is equivalent to saying that for x and x0 in the interval (a, b), one
has

lim
x→x0

[
lim

n→∞
Sn(x)

]
= lim

n→∞

[

lim
x→x0

Sn(x)
]

.

Accordingly, uniform convergence permits the interchange of the two limit
processes.
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Another property, which is extremely useful in physical applications, is the
fact thatyou can integrate

a uniformly
convergent series
term by term.

Theorem 9.4.3. If f(x) =
∑∞

i=1 ui(x) is uniformly convergent, and each
ui(x) is continuous for a ≤ x ≤ b, then the series can be integrated term by
term, i.e.,

∫ b

a

f(x) dx =
∫ b

a

( ∞∑

i=1

ui(x)

)

dx =
∞∑

i=1

∫ b

a

ui(x) dx,

i.e., integration and summation can be interchanged.

Example 9.4.4. Consider the geometric series 1
1−t

=
∑∞

i=0 ti, which, by Example
9.4.2, converges uniformly for −1 < t < 1. Changing t to −t does not change either
the interval or the nature of convergence of the series. We thus have

1

1 + t
=

∞∑

i=0

(−t)i =
∞∑

i=0

(−1)iti. (9.14)

Because of the uniform convergence of the series, we can integrate both sides from
0 to x with −1 < x < 1 to obtain

∫ x

0

dt

1 + t
= ln(1 + x) =

∞∑

i=0

(−1)i

∫ x

0

ti dt =
∞∑

i=0

(−1)i xi+1

i + 1
.

With x = 1, we obtain the result alluded to in Example 9.3.5.

Note that the integral of a series may be convergent for a bigger range of values
of its argument than the original series. Here, the original series was divergent (for
t = 1) while its integral converges (for x = 1). �

The property stated in Theorem 9.4.3 is a useful tool for the expansion
of physical quantities in terms of some more “elementary” quantities. For
example, one can expand the electric potential—usually given in terms of an
integral—as a sum of the potentials of a single charge, a dipole, a quadrupole,
etc. (see Section 10.5). In many physical situations only the first few terms
of the series expansion will be of importance. Thus, for instance, in atomic
transitions, it is only the dipole term that participates significantly.

One can also differentiate a uniformly convergent series. To be specific,you can
differentiate a
uniformly
convergent series
term by term.

Theorem 9.4.5. Suppose that u′
n(x) = dun/dx is continuous for a ≤ x ≤ b,

that the series
∑∞

n=1 un(x) converges to f(x) for a ≤ x ≤ b, and that the
series

∑∞
n=1 u′

n(x) converges uniformly for a ≤ x ≤ b. Then

f ′(x) =
d

dx

∞∑

n=1

un(x) =
∞∑

n=1

u′
n(x), a ≤ x ≤ b,

i.e., one can change the order of differentiation and summation.
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Other operations defined on uniformly convergent series are addition, sub-
traction, and multiplication by a continuous function: If

∑∞
i=1 ui(x) and∑∞

i=1 vi(x) are uniformly convergent for a ≤ x ≤ b and h(x) is continuous
in the same interval, then the series

∞∑

i=1

[ui(x) ± vi(x)] ,
∞∑

i=1

h(x)ui(x),

are also uniformly convergent for a ≤ x ≤ b.

Historical Notes
The mathematicians of the seventeenth and eighteenth centuries used series indis-
criminately. By the beginning of the nineteenth century some absurd results from
manipulating infinite series stirred up some interest in questioning the validity of
operations performed on them. Around 1810 a number of mathematicians began
the exact handling of infinite series.

In his 1811 paper and his Analytical Theory of Heat, Fourier gave a satisfactory
definition of convergence, though in general he worked freely with divergent series.
His definition of convergence was essentially in terms of the sequence of partial sums.
Moreover, he recognized that the convergence of a series of functions of the variable
x may be achieved only in an interval of x values. Although Fourier stressed that
a necessary condition for convergence is that the terms of the series approach zero,
he was fooled by the series

∑∞
k=0(−1)k, and thought that its sum was 1

2
[substitute

t = 1 on both sides of (9.14)].
The first important and strictly rigorous investigation of convergence was made

by Gauss in his 1812 paper Disquisitiones Generales Circa Seriem Infinitam wherein
he studied the hypergeometric series (see Section 11.2.1). Though Gauss is often
mentioned as one of the first to recognize the need for restricting the series to their
interval of convergence, he avoided any decisive position. He was so much concerned
to solve concrete problems by numerical calculations that he used a divergent ex-
pansion of the gamma function. When he did investigate the convergence of the
hypergeometric series, he remarked that he did so to please those who favored the
rigor of the ancient geometers.

Cauchy’s work on the convergence of series is the first extensive treatment of
the subject. In his Cours d´Analyse Cauchy clearly defines the sequence of partial
sums and gives a rigorous definition of the convergence and divergence of the series
in terms of this sequence. It is also in this work that he gives what is now called
the Cauchy criterion for convergence of a sequence (see Box 9.1.1). He proves this
to be a necessary condition, but merely remarks that if the condition holds, the
convergence of the series is assured. He lacked the knowledge of the properties of
real numbers to provide a proof. Cauchy then goes on to state and prove many of
the results that we have outlined in our discussion of the tests for convergence.

9.5 Problems

9.1. Show that

(a)
∑n

k=1 kzk−1 =
∑n−1

k=0 (k + 1)zk. (b) x2
∑n

k=0 akxk =
∑n+2

k=2 ak−2x
k.
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9.2. Use some small values of M and N (say M = 2, N = 3) and verify the
validity of Equation (9.6).

9.3. Use Equation (9.8) to show that
(

m + 1
k

)

=
(

m

k

)

+
(

m

k − 1

)

.

9.4. Use mathematical induction to prove the following relations:

(a) d
dx(xn) = nxn−1. (b)

∑n
k=0 xk = xn+1−1

x−1 .

9.5. Use the integral test to show that the harmonic series of order p is
convergent for p > 1 and divergent for p ≤ 1.

9.6. Test the following series for convergence or divergence:

(a)
∑∞

n=1
(−1)nn
n2+1 . (b)

∑∞
n=1

(−1)n sin2 nα
n+1 . (c)

∑∞
n=1

ln n
np .

(d)
∑∞

n=1
n+1

3n2+3n . (e)
∑∞

n=1
n+1

3n2+5n−10 . (f)
∑∞

n=2
1

n ln n .

where α is some real number. For (c), consider the three cases p > 1, p < 1,
and p = 1.

9.7. Prove convergence or divergence by the comparison test:
∞∑

n=1

sin n

n2
,

∞∑

n=2

1
n3 − 1

,

∞∑

n=1

n + 5
n2 − 3n − 5

,

∞∑

n=2

1√
n ln n

.

9.8. Prove convergence or divergence by the integral test:
∞∑

n=1

1
n2 + 1

,
∞∑

n=1

n

n2 + 1
,

∞∑

n=2

1
n ln2 n

,
∞∑

n=2

1
n ln n ln lnn

.

9.9. Prove convergence or divergence by the ratio test:
∞∑

n=1

2n + 1
3n + n

,

∞∑

n=1

(−1)n

n!
,

∞∑

n=1

5n

n!
.

9.10. Use the ratio test to find the range of values of x for which the following
series converge. Make sure to investigate the end points.

(a)
∑∞

n=1
(ln x)n

n+1 . (b)
∑∞

n=1
4n sinn x
(n+1)5n. (c)

∑∞
n=1

xn
√

n
.

(d)
∑∞

n=1
(lnx)n

n! . (e)
∑∞

n=1
xn

3nn! . (f)
∑∞

n=3
n2

(x−2)n .

(g)
∑∞

n=1 nxn. (h)
∑∞

n=1 n!xn. (i)
∑∞

n=1
n3

(lnx)n .

(j)
∑∞

n=0
nxn

n2+1 . (k)
∑∞

n=1
(x2+1)n

n3 . (l)
∑∞

n=1
n2

(x+1)n .

(m)
∑∞

n=0

(
x2+1

3

)n

. (n)
∑∞

n=1

(
x2
√

n

)n

. (o)
∑∞

n=0
(x−2)n

n2+1 .

(p)
∑∞

n=0

(
x
2

)n
. (q)

∑∞
n=1

(
x
n

)n
. (r)

∑∞
n=0

xn

n2+1 .[6bp]
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9.11. Write the first four terms of the following series:

∞∑

n=1

n!
2 · 4 · · · 2n

,

∞∑

n=1

(−1)n

ln(n + 1)
,

∞∑

n=1

1
10
√

n9
,

∞∑

n=1

1
9
√

n10
.

Test for convergence or divergence of these series.





Chapter 10

Application of Common
Series

The preceding chapter concerned itself with the formal properties of infinite
sequences and series, especially the sequences and series of functions. One
of the useful properties of the infinite series of functions is that they can be
approximated by finite sums. In this approximation, two important features
of the series play crucial roles: the simplicity of the functions used in the series
and the convergence of the series. This chapter deals with some of the series
of functions most commonly used in mathematical physics.

10.1 Power Series

One of the most common series of functions is the power series where the
nth term of the series is cn(x − a)n with cn a real number. To be specific, a
power series in powers of (x − a) is of the form

∞∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · · . (10.1)

An important special case is when a = 0, so that we have

∞∑

n=0

cnxn = c0 + c1x + c2x
2 + · · · . (10.2)

Sometimes negative powers are also included, but by power series we usually
mean Equation (10.1).

We note that Equation (10.1) converges for x = a. The question is whether radius of
convergence of a
power series

it converges for any other values of x, and if so, what these values are. It turns
out that:
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Theorem 10.1.1. Every power series
∑∞

n=0 cn(x − a)n has a radius of
convergence r∗ such that the series converges absolutely and uniformly when
|x − a| < r∗ and diverges for |x − a| > r∗. If r∗ �= 0 and r1 is a number such
that 0 < r1 < r∗, then the series converges absolutely and uniformly for
|x − a| ≤ r1.

The number r∗ can be 0 (in which case the series converges only for x = a),
a finite positive number, or ∞ (in which case the series converges for all x).

The radius of convergence can be evaluated by using the ratio test. Con-
sider the ratio

r(x) = lim
n→∞

∣
∣
∣
∣
cn+1(x − a)n+1

cn(x − a)n

∣
∣
∣
∣ = |x − a| lim

n→∞

∣
∣
∣
∣
cn+1

cn

∣
∣
∣
∣

and note that the series converges if r(x) < 1, or

|x − a| < lim
n→∞

∣
∣
∣
∣

cn

cn+1

∣
∣
∣
∣ .

The RHS is naturally defined to be the radius of convergence

r∗ = lim
n→∞

∣
∣
∣
∣

cn

cn+1

∣
∣
∣
∣ if the limit exists. (10.3)

It can be shown that the radius of convergence can also be found from the
following formula:

r∗ = lim
n→∞

1
n
√
|cn|

if the limit exists. (10.4)

Example 10.1.2. Consider the exponential function ex which, as we shall see,
has a power series expansion

ex ≡
∞∑

n=0

cnxn =
∞∑

n=0

xn

n!
.

By the ratio test, we have

r(x) = lim
n→∞

∣
∣
∣
∣
xn+1/(n + 1)!

xn/n!

∣
∣
∣
∣ = lim

n→∞
|x|

∣
∣
∣
∣

n!

(n + 1)!

∣
∣
∣
∣ = |x| lim

n→∞

∣
∣
∣
∣

1

n + 1

∣
∣
∣
∣ = 0

for all values of x. So, regardless of x, the series representation of ex converges, i.e.,
the radius of convergence is infinite. We can also use Equation (10.3) to calculate
the radius of convergence

r∗ = lim
n→∞

∣
∣
∣
∣

cn

cn+1

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣

1/n!

1/(n + 1)!

∣
∣
∣
∣ = lim

n→∞
|n + 1| = ∞.

�

Example 10.1.3. Let us find the interval of convergence of

∞∑

k=0

(−1)kxk

4k(k + 1)
.
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The ratio test gives

r(x) = lim
k→∞

∣
∣
∣
∣
fk+1(x)

fk(x)

∣
∣
∣
∣ = lim

k→∞

∣
∣
∣
∣
(−1)k+1xk+1/[4k+1(k + 2)]

(−1)kxk/[4k(k + 1)]

∣
∣
∣
∣

= lim
k→∞

∣
∣
∣
∣
x(k + 1)

4(k + 2)

∣
∣
∣
∣ =

∣
∣
∣
x

4

∣
∣
∣ lim

k→∞

∣
∣
∣
∣
k + 1

k + 2

∣
∣
∣
∣

︸ ︷︷ ︸
=1

=
|x|
4

.

So, the series converges if r(x) < 1, i.e., if |x| < 4, or −4 < x < 4.
What about the end points? For x = 4, the series becomes

∞∑

k=0

(−1)k

k + 1

which is the alternating series and it converges. On the other hand, if x = −4, the
series becomes

∞∑

k=0

(−1)k(−4)k

4k(k + 1)
=

∞∑

k=0

(−1)k(−1)k

k + 1
=

∞∑

k=0

1

k + 1
,

which is the divergent harmonic series. So, the interval of convergence of the series
is −4 < x ≤ 4, and its radius of convergence is r∗ = 4. �

Because of the uniform convergence of power series, we can perform all
the common operations used for ordinary functions on the power series. We
list all these properties in the following:

� Continuity. A power series represents a continuous function within its a convergent
power series
represents a
continuous
function

radius of convergence; i.e., if r∗ is the radius of convergence, then the
series

f(x) =
∞∑

n=0

cn(x − a)n for a − r∗ < x < a + r∗ (10.5)

is continuous.

� Integration. The power series (10.5) can be integrated term by term a convergent
power series can
be integrated term
by term

within its radius of convergence; i.e., for a − r∗ < p < q < a + r∗,
∫ q

p

f(t) dt =
∞∑

n=0

cn

∫ q

p

(t − a)ndt =
∞∑

n=0

cn
(q − a)n+1 − (p − a)n+1

n + 1
.

(10.6)

� Differentiation. The power series (10.5) can be differentiated term by a convergent
power series can
be differentiated
term by term

term within its radius of convergence; that is,

f ′(x) =
∞∑

n=1

ncn(x − a)n−1, a − r∗ < x < a + r∗. (10.7)

� Zero Power Series. If a power series has nonzero radius of convergence if two power series
are equal, so are
their correspond-
ing coefficients

and has a sum which is identically zero, then every coefficient of the
series must be zero. This leads to the following
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Theorem 10.1.4. If two power series
∑∞

n=0 cn(x − a)n and
∑∞

n=0 bn

(x − a)n have nonzero convergence radii and have equal sums whenever
both series converge, then the two series are identical, i.e.,

cn = bn, n = 0, 1, 2, . . . .

This property is very effectively used to find solutions of differential
equations in terms of infinite power series.

10.1.1 Taylor Series

A power series whose coefficients are derivatives of the function representing
the sum is called Taylor series. More precisely, let

f(x) =
∞∑

n=0

cn(x − a)n, a − r∗ < x < a + r∗. (10.8)

This series is called the Taylor series of f(x) at x = a if the coefficients cn are
given by the rule:

c0 = f(a), c1 =
f ′(a)

1!
, c2 =

f ′′(a)
2!

, . . . , ck =
f (k)(a)

k!
,

so thatTaylor series

f(x) = f(a) +
f ′(a)

1!
(x − a) + · · · + f (k)(a)

k!
(x − a)k + · · ·

=
∞∑

k=0

f (k)(a)
k!

(x − a)k where f (0)(a) ≡ f(a), 0! ≡ 1. (10.9)

From Theorem 10.1.4 and the equality of (10.8) and (10.9), we conclude that
every power series with nonzero convergence radius is the Taylor series of the
function denoting its sum, and conversely every infinitely differentiable func-
tion can be represented by a Taylor series within the interval of convergence
of the series.

An alternative way of writing the Taylor series which suggests approxima-
tion is to let Δx = x − a. Then Equation (10.9) becomesTaylor series and

approximating
functions

f(a + Δx) = f(a) +
f ′(a)

1!
Δx + · · · =

∞∑

k=0

f (k)(a)
k!

(Δx)k.

Since a is an arbitrary real number, we can replace it with x which is more
suggestive of the generality of this formula:

f(x + Δx) = f(x) +
f ′(x)

1!
Δx + · · · =

∞∑

k=0

f (k)(x)
k!

(Δx)k. (10.10)

With Δx interpreted as the increment in x, Equation (10.10) states that the
function at the incremented value of x is f(x) plus a “correction” involving
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all powers of Δx. The smaller the increment, the smaller the number of terms
of the correction we need to keep to achieve a given accuracy.

A convenient value for a is 0, in which case the series is called Maclaurin
series:

f(x) = f(0) +
f ′(0)

1!
x + · · · =

∞∑

k=0

f (k)(0)
k!

xk. (10.11)

10.2 Series for Some Familiar Functions

In this subsection, we give the Maclaurin series representation of a few familiar
functions. These representations are so useful that the reader is urged to
commit them to memory.

The Exponential Function

For ex, the derivatives of all orders are ex implying that f (n)(0) = 1 for all n.
Therefore, Maclaurin series of

exponential
functionex = 1 +

x

1!
+

x2

2!
+ · · · =

∞∑

n=0

xn

n!
. (10.12)

This series converges uniformly for all x as we saw in Example 10.1.2.

The Trigonometric Functions

The sine function has the following derivatives: Maclaurin series of
trigonometric
functionf ′(x) = cos x, f ′′(x) = − sin x, f ′′′(x) = − cos x, f (iv)(x) = sin x, . . . .

This can be summarized as

f (n)(x) =

{
(−1)n/2 sin x if n is even,
(−1)(n−1)/2 cosx if n is odd.

Evaluating at x = 0 for the Maclaurin series yields

f (n)(0) =

{
0 if n is even,
(−1)(n−1)/2 if n is odd,

so that

sinx = 0 + x − 0 − x3

3!
+ 0 +

x5

5!
− · · · =

∞∑

k=0

(−1)k x2k+1

(2k + 1)!
. (10.13)

The combination 2k+1 ensures that only odd terms are included even though
there is no restriction on the sum over k. The radius of convergence is

r∗ = lim
k→∞

∣
∣
∣
∣

(−1)k/(2k + 1)!
(−1)k+1/(2k + 3)!

∣
∣
∣
∣ = lim

k→∞

(2k + 3)!
(2k + 1)!

= ∞.
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Thus the Taylor series representation of the sine function is convergent for
all x.

The Maclaurin series representation of the cosine function can be obtained
similarly. We leave the details to the reader, and simply quote the result:

cosx =
∞∑

k=0

(−1)k x2k

(2k)!
, −∞ < x < ∞. (10.14)

The Binomial Function

Another useful function which is used extensively in physics is the binomial
function with arbitrary exponent, i.e., (1 + x)α with α an arbitrary real num-
ber. It is easy to find the nth derivative of this function:

f (n)(x) = α(α − 1)(α − 2) · · · (α − n + 1)(1 + x)α−n, n ≥ 1.

Evaluating this at x = 0 gives

cn =
f (n)(0)

n!
=

α(α − 1) · · · (α − n + 1)
n!

, n ≥ 1.

From this, we can immediately find the radius of convergence:

r∗ = lim
n→∞

∣
∣
∣
∣

cn

cn+1

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣
α(α − 1) · · · (α − n + 1)

n!
· (n + 1)!
α(α − 1) · · · (α − n)

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
n + 1
α − n

∣
∣
∣
∣ = 1.

Thus, the series is convergent for −1 < x < 1, and we can writeMaclaurin series of
binomial function

(1 + x)α = 1 +
∞∑

n=1

α(α − 1) · · · (α − n + 1)
n!

xn, −1 < x < 1. (10.15)

Example 10.2.1. Because of the frequent occurrence of the square root, we work
through the calculation of (10.15) for α = ± 1

2
. For α = + 1

2
, we have

√
1 + x = (1 + x)1/2 = 1 +

∞∑

n=1

1
2
( 1
2
− 1) · · · ( 1

2
− n + 1)

n!
xn

= 1 + 1
2
x +

∞∑

n=2

(−1)n−1 1 · 3 · 5 · · · (2n − 3)

2nn!
xn.

Now let n = m + 1 and rewrite the sum as

√
1 + x = 1 + 1

2
x +

∞∑

m=1

(−1)m 1 · 3 · 5 · · · (2m − 1)

2m+1(m + 1)!
xm+1

= 1 + 1
2
x − 1

8
x2 + 3

48
x3 − · · · . (10.16)
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The case of α = − 1
2

can be handled in exactly the same way. We simply quote
the result

1√
1 + x

= 1 +

∞∑

m=1

(−1)m 1 · 3 · 5 · · · (2m − 1)

2m m!
xm

= 1 − 1
2
x + 3

8
x2 − 15

48
x3 · · · , (10.17)

and urge the reader to fill in the details. �

It is important to note the limitations of the power series representation
of a function: Although (1 + x)α is defined for all positive1 values of x, the
power series representation of it is good only for a limited region of the real
line.

In many applications, the binomial function appears in the form (u + v)α

where |v| < |u| and one is interested in the power series expansion in v/u.
This is easily done:

(u + v)α =
{
u
(
1 +

v

u

)}α

= uα
(
1 +

v

u

)α

= uα + uα
∞∑

n=1

α(α − 1) · · · (α − n + 1)
n!

( v

u

)n

(10.18)

= uα +
∞∑

n=1

α(α − 1) · · · (α − n + 1)
n!

uα−nvn, −|u| < v < |u|.

In practice, v is usually much smaller than u, and the requirement of conver-
gence is overwhelmingly met.

The Hyperbolic Functions

The exponential function and the trigonometric functions have very similar
power series: Except for (the crucial) coefficient (−1)k, sin x appears to be
the odd part of the expansion of ex and cosx its even part. The (−1)k factor
makes the trigonometric functions periodic. What if we take this factor away,
and simply collect the even powers of ex together and do the same to the
odd powers? The resulting series will of course be (absolutely and uniformly)
convergent because the exponential is so. So, let us introduce the following
functions: Maclaurin series of

hyperbolic
functionssinh x ≡

∞∑

k=0

x2k+1

(2k + 1)!
= x +

x3

3!
+

x5

5!
+ · · · ,

coshx ≡
∞∑

k=0

x2k

(2k)!
= 1 +

x2

2!
+

x4

4!
+ · · · , (10.19)

1It is really defined for more than just positive values. For instance, if α is an integer,
the function is defined for all values of x. For fractional powers such as α = 1/2, 1 + x
cannot be negative, so that we must restrict the values of x to x > −1.
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sinhx (pronounced “sinch”) is called the hyperbolic sine function. Similarly,
coshx (pronounced “kahsh”) is called the hyperbolic cosine function. By
their very definition, we have

ex = coshx + sinh x.

If we change x to −x, and note that sinhx is odd and coshx is even, we can
also write

e−x = cosh(−x) + sinh(−x) = coshx − sinh x.

Adding and subtracting the last two equations yields

coshx =
ex + e−x

2
, sinh x =

ex − e−x

2
. (10.20)

This is how the hyperbolic functions are usually defined. From these defini-
tions, one can obtain a host of relations for the sinh and cosh that look similar
to the relations satisfied by sine and cosine. For example, it is easy to show
that

cosh2 x − sinh2 x = 1,
d

dx
coshx = sinhx,

d

dx
sinh x = coshx,

cosh(x ± y) = cosh x cosh y ± sinh x sinh y, (10.21)
sinh(x ± y) = sinhx cosh y ± coshx sinh y,

cosh(2x) = cosh2 x + sinh2 x, sinh(2x) = 2 sinh x coshx.

We give the derivation for the hyperbolic cosine of the sum, leaving the rest
of them as problems for the reader. We start with the RHS:

coshx cosh y + sinh x sinh y

=
(

ex + e−x

2

)(
ey + e−y

2

)

+
(

ex − e−x

2

)(
ey − e−y

2

)

=
(ex + e−x)(ey + e−y) + (ex − e−x)(ey − e−y)

4

=
ex+y + ex−y + e−x+y + e−x−y + ex+y − ex−y − e−x+y + e−x−y

4

=
2ex+y + 2e−x−y

4
=

ex+y + e−x−y

2
= cosh(x + y).

We can also define the analogs of other trigonometric functions:

tanhx ≡ sinh x

coshx
=

ex − e−x

ex + e−x
, coth x ≡ coshx

sinhx
=

ex + e−x

ex − e−x
, (10.22)

sechx ≡ 1
coshx

=
2

ex + e−x
, cosechx ≡ 1

sinh x
=

2
ex − e−x

.

These functions have such properties as

sech2 x = 1 − tanh2 x, cosech2 x = coth2 x − 1,

and
d

dx
tanhx = sech2 x,

d

dx
coth x = − cosech2 x.
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The Logarithmic Function

Finally, we state the Maclaurin series for ln(1 + x), which occurs frequently
in physics, and which the reader can verify: Maclaurin series of

logarithmic
function

ln(1 + x) =
∞∑

n=1

(−1)n+1 xn

n
, −1 < x < 1. (10.23)

10.3 Helmholtz Coil

Power series are very useful tools for approximating functions, and the closer
one gets to the point of expansion, the better the approximation. The essence
of this approximation is replacing the infinite series with a finite sum, i.e.,
approximating the function with a polynomial.

In general, to get a very good approximation, one has to retain very large
powers of the power series. So, the approximating polynomial will have to
be of a high degree. However, suppose that a function f(x) has the following
expansion

f(x) = c0 + c1(x − a) + · · · + cm(x − a)m + cm(x − a)m+k + · · · ,

where k is a fairly large number. Then the polynomial

p(x) = c0 + c1(x − a) + · · · + cm(x − a)m

approximates the function very accurately because, as long as we are “close”
enough to the point of expansion a, the next term in the series will not affect
the polynomial much. In particular, if the series looks like

f(x) = c0 + ck(x − a)k + · · · , (10.24)

then the constant “polynomial” c0 is an extremely good approximation to the
function for values of x close to a.

The argument above can be used to design devices to produce physical
quantities that are constant for a fairly large values of the variable on which the
outcome of the device depends. A case in point is the Helmholtz coil, which
is used frequently in laboratory situations in which homogeneous magnetic
fields are desirable.

Figure 10.1 shows two loops of current-carrying wires of radii a and b
separated by a distance L. We are interested in the z-component of the
magnetic field midway between the two loops, which, to simplify expressions,
we have chosen to be the origin. Example 4.1.4 gives the expression for the
magnetic field of a loop at a point on its axis at a distance z from its center.
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x

y

z
I1

I2

a
b

L

Figure 10.1: Two circular loops with different radii producing a magnetic field.

Let us denote the magnetic field of the loop of radius a by B1 and that of the
loop of radius b by B2. Then Example 4.1.4 gives

B(z) ≡ B1(z) + B2(z) =
2πkmI1a

2

[a2 + (z + L/2)2]3/2
+

2πkmI2b
2

[b2 + (z − L/2)2]3/2

=
16πkmI1a

2

[4a2 + (2z + L)2]3/2
+

16πkmI2b
2

[4b2 + (2z − L)2]3/2
. (10.25)

We want to adjust the parameters of the two loops in such a way that the
magnetic field at the origin is maximally homogeneous. This can be accom-
plished by setting as many derivatives of B(z) equal to zero at the origin as
possible, so that the Maclaurin expansion of B(z) will have a maximum num-
ber of consecutive terms equal to zero, i.e., we will have an expression of the
form (10.24).

The first derivative of B(z) is

dB

dz
= − 96πkmI1a

2(2z + L)
[4a2 + (2z + L)2]5/2

− 96πkmI2b
2(2z − L)

[4b2 + (2z − L)2]5/2
.

Setting this equal to zero at z = 0 gives

I1a
2

(4a2 + L2)5/2
=

I2b
2

(4b2 + L2)5/2
. (10.26)

The second derivative of B(z) is

d2B

dz2
= −768πkmI1a

2[a2 − (2z + L)2]
[4a2 + (2z + L)2]7/2

− 768πkmI2b
2[b2 − (2z − L)2]

[4b2 + (2z − L)2]7/2
.

Setting this equal to zero at z = 0 gives

I1a
2(a2 − L2)

(4a2 + L2)7/2
+

I2b
2(b2 − L2)

(4b2 + L2)7/2
= 0. (10.27)

Since both terms are positive, the only way that we can get zero in (10.27)
is if each term on the LHS vanishes. It follows that a = L = b. Substituting
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this in Equation (10.26) gives I1 = I2 which we denote by I. Therefore, we
can now write the magnetic field as

B(z) = 16πkmIa2

{
1

[4a2 + (2z + a)2]3/2
+

1
[4a2 + (2z − a)2]3/2

}

. (10.28)

The reader may verify that not only are the first and the second derivatives
of B(z) of Equation (10.28) zero, but also its third derivative. In fact, we have

B(z) =
32πkmI

5
√

5a
− 4608πkmI

625
√

5a5
z4 + · · · . (10.29)

That only even powers appear in the expansion (10.29) could have been antic-
ipated, because (10.28) is even in z as the reader may easily verify. It follows
from Equation (10.29) that B(z) should be fairly insensitive to the variation
of z at points close to the origin. Physically, this means that the magnetic
field is fairly homogeneous at the midpoint between the two loops as long as
the loops are equal and separated by a distance equal to their common radius,
and as long as they carry the same current. Figure 10.2 shows the plot of the
magnetic field as a function of z. Note how flat the function is for even fairly
large values of z.

–1 –0.5 0.5 1

Figure 10.2: Magnetic field of a Helmholtz coil as a function of z. The horizontal axis

is z in units of a.

Historical Notes
One of the problems faced by mathematicians of the late seventeenth and early eigh-
teenth centuries was interpolation (the word was coined by Wallis) of tables of values.
Greater accuracy of the interpolated values of the trigonometric, logarithmic, and
nautical tables was necessary to keep pace with progress in navigation, astronomy,
and geography. The common method of interpolation, whereby one takes the aver-
age of the two consecutive entries of a table, is called linear interpolation because
it gives the exact result for a linear function. This gives a crude approximation for
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functions that are not linear, and mathematicians realized that a better method of
interpolation was needed.

The general method which can give interpolations that are more and more accu-
rate was given by Gregory and independently by Newton. Suppose f(x) is a function
whose values are given at a, a + h, a + 2h, . . . , and we are interested in the value
of the function at an x that lies between two table entries. The Gregory–Newton
formula states that

f(a + r) = f(a) +
r

h
Δf(a) +

r
h

(
r
h
− 1

)

2!
Δ2f(a) +

r
h

(
r
h
− 1

) (
r
h
− 2

)

3!
Δ3f(a) + · · · ,

where

Δf(a) = f(a + h) − f(a), Δ2f(a) = Δf(a + h) − Δf(a),

Δ3f(a) = Δ2f(a + h) − Δ2f(a), Δ4f(a) = Δ3f(a + h) − Δ3f(a), . . .

To calculate f at any value y between the known values, one simply substitutes y−a
for r.

Brook Taylor’s Methodus incrementorum directa et inversa, published in 1715,
added to mathematics a new branch now called the calculus of finite differences, and
he invented integration by parts. It also contained the celebrated formula known
as Taylor’s expansion, the importance of which remained unrecognized until 1772
when Lagrange proclaimed it the basic principle of the differential calculus.

Brook Taylor
1685–1731

To arrive at the series that bears his name, Taylor let h in the Gregory–Newton
formula be Δx and took the limit of smaller and smaller Δx. Thus, the third term,
for example, gave

r(r − Δx)

2!

Δ2f(a)

Δx2
→ r2

2!
f ′′(a)

which is the familiar third term in the Taylor series.
In 1708 Taylor produced a solution to the problem of the center of oscillation

which, since it went unpublished until 1714, resulted in a priority dispute with
Johann Bernoulli.

Taylor also devised the basic principles of perspective in Linear Perspective
(1715). Together with New Principles of Linear Perspective the first general treat-
ment of the vanishing points are given.

Taylor gives an account of an experiment to discover the law of magnetic attrac-
tion (1715) and an improved method for approximating the roots of an equation by
giving a new method for computing logarithms (1717).

Taylor was elected a Fellow of the Royal Society in 1712 and was appointed in
that year to the committee for adjudicating the claims of Newton and of Leibniz to
have invented the calculus.

10.4 Indeterminate Forms and L’Hôpital’s Rule

It is good practice to approximate functions with their power series repre-
sentations, keeping as many terms as is necessary for a given accuracy. This
practice is especially useful when encountering indeterminate expressions of
the form 0

0 . Although L’Hôpital’s rule (discussed below) can be used to find
the ratio, on many occasions the substitution of the series leads directly to
the answer, saving us the labor of multiple differentiation.
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Example 10.4.1. Let us look at some examples of the ratios mentioned above.
In all cases treated in this example, the substitution x = 0 gives 0

0
, which is inde-

terminate. Using the Maclaurin series (10.12) and (10.13), we get

lim
x→0

2ex − 2 − 2x − x2

sin x − x

= lim
x→0

2(1 + x + x2/2 + x3/6 + x4/24 + · · · ) − 2 − 2x − x2

x − x3/6 + x5/120 + · · · − x

= lim
x→0

x3/3 + x4/12 + · · ·
−x3/6 + x5/120 − · · · = lim

x→0

1/3 + x/12 + · · ·
−1/6 + x2/120 − · · · = −2.

The series (10.14) and (10.23) can be used to evaluate the following limit:

lim
x→0

ln(1 + x) − x

cos x − 1

= lim
x→0

x − x2/2 + x3/3 − · · · − x

1 − x2/2 + x4/24 − · · · − 1

= lim
x→0

−x2/2 + x3/3 − · · ·
−x2/2 + x4/24 − · · · = lim

x→0

−1/2 + x/3 − · · ·
−1/2 + x2/24 − · · · = 1.

With (10.12) and (10.15), we have

lim
x→0

√
1 + 2x − x − 1

ex2 − 1

= lim
x→0

1 + 1
2
(2x) +

1
2 ( 1

2−1)

2!
(2x)2 +

1
2 ( 1

2−1)( 1
2−2)

3!
(2x)3 + · · · − x − 1

1 + x2 + (x2)2/2! + · · · − 1

= lim
x→0

−x2/2 + x3/2 + · · ·
x2 + x4/2 + · · · = lim

x→0

−1/2 + x/2 + · · ·
1 + x2/2 + · · · = −1

2
. �

The method of expanding the numerator and denominator of a ratio as
a Taylor series is extremely useful in applications in which mere substitution
results in the indeterminate expression2 of the form 0

0 . However, there are
many other indeterminate forms that occur in applications. For example, a
mere substitution of x = 0 in (1+x)1/x yields 1∞ which is also indeterminate.
Other examples of indeterminate expressions are 0×∞, ∞

∞ , 00, and ∞0. Most
of these expressions can be reduced to indeterminate ratios for which one can
use l’Hôpital’s rule: l’Hôpital’s rule

Box 10.4.1. (L’Hôpital’s Rule). If f(a)/g(a) is indeterminate, then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

, (10.30)

where f ′ and g′ are derivatives of f and g, respectively.

2An expression is indeterminate if it involves two parts each of which gives a result that
is contradictory to the other. Thus the numerator of the ratio 0

0
says that the ratio should

be zero, while the denominator says that the ratio should be infinite.
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In practice, one converts the indeterminate form into a ratio and differen-
tiates the numerator and denominator as many times as necessary until one
obtains a definite result or infinity. The following general rules can be of help:

• If f(a) = 0 and g(a) = ∞, then to find limx→a f(x)g(x), rewrite the
limit as

lim
x→a

f(x)g(x) = lim
x→a

f(x)
[

1
g(x)

] or lim
x→a

f(x)g(x) = lim
x→a

g(x)
[

1
f(x)

] ,

the first of which gives 0
0 and the second ∞

∞ . In either case, one can
apply L’Hôpital’s rule.

• If f(a) = 1 and g(a) = ∞, first define h(x) ≡ [f(x)]g(x). Then to find

lim
x→a

h(x) = lim
x→a

[f(x)]g(x),

take the natural logarithm of h(x) and convert the result into the ratio

lim
x→a

ln[h(x)] = lim
x→a

g(x) ln[f(x)] = lim
x→a

ln[f(x)]
[

1
g(x)

] .

Then use Equation (10.30).

• If f(a) = ∞ (or f(a) = 0) and g(a) = 0, then to find

lim
x→a

h(x) ≡ lim
x→a

[f(x)]g(x),

take the natural logarithm of h(x) and convert the result into the ratio

lim
x→a

ln[h(x)] = lim
x→a

g(x) ln[f(x)] = lim
x→a

ln[f(x)]
[

1
g(x)

] .

Then use Equation (10.30).

Example 10.4.2. To find the limx→0(1+2x)1/x, we write h(x) ≡ (1+2x)1/x and
note that

lim
x→0

ln[h(x)] = lim
x→0

(1/x) ln(1 + 2x) = lim
x→0

ln(1 + 2x)

x

is indeterminate. Using Equation (10.30) yields

lim
x→0

ln[h(x)] = lim
x→0

ln(1 + 2x)

x
= lim

x→0

2

1 + 2x
1

= lim
x→0

2

1 + 2x
= 2.

Therefore, limx→0 h(x) = e2.
To find the limx→0 xx, we write h(x) ≡ xx and note that

lim
x→0

ln[h(x)] = lim
x→0

x ln x = lim
x→0

ln x

1/x
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is indeterminate. Using Equation (10.30) yields

lim
x→0

ln[h(x)] = lim
x→0

1/x

−1/x2
= lim

x→0
(−x) = 0.

Therefore, limx→0 h(x) = e0 = 1. So, we have the interesting result limx→0 xx = 1.

The limit of x2/(1 − cos x) as x goes to zero is obtained as follows:

lim
x→0

x2

1 − cos x
= lim

x→0

2x

sin x
= lim

x→0

2

cos x
= 2.

Here we had to differentiate twice because the ratio of the first derivatives was also
indeterminate. �

It is instructive for the reader to verify all limits in Example 10.4.1 using
L’Hôpital’s rule to appreciate the ease of the Taylor expansion method.

10.5 Multipole Expansion

One extremely useful application of the power series representation of func-
tions is in potential theory. The electrostatic or gravitational potential can
be written as

Φ(r) = K

∫∫

Ω

dQ(r′)
|r − r′| , (10.31)

where K is ke for electrostatics and −G for gravity. Similarly, Q represents
either electric charge or mass. In some applications, especially for electrostatic
potential, the distance of the field point P from the origin is much larger than
the distance of the source point P ′ from the origin. This means that r >> r′

and we can expand in the powers of the ratio r′/r which we denote by ε. The
key to this expansion is a power series expansion of 1/|r− r′|. First write

1
|r − r′| =

1√
r2 + r′2 − 2r · r′

=
1

r
√

1 + ε2 − 2εêr · êr′

=
1
r

(
1 + ε2 − 2εêr · êr′

)−1/2
.

Next use the binomial expansion (10.15) with x = ε2 − 2εêr · êr′ and α = − 1
2 .

Up to second order in ε, this yields

1
|r− r′| =

1
r

{
1 − 1

2

(
ε2 − 2εêr · êr′

)
+ 3

8

(
ε2 − 2εêr · êr′

)2
+ · · ·

}

=
1
r

{
1 + εêr · êr′ + ε2

[
− 1

2 + 3
2 (êr · êr′)2

]
+ · · ·

}

=
1
r

+
êr · r′

r2
+

r′2

r3

[
− 1

2 + 3
2 (êr · êr′)2

]
+ · · · . (10.32)
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Substituting this in Equation (10.31), we obtain

Φ(r) =
K

r

∫∫

Ω

dQ(r′) +
K

r2
êr ·

∫∫

Ω

r′ dQ(r′)

+
K

r3

∫∫

Ω

r′2
[
− 1

2 + 3
2 (êr · êr′)2

]
dQ(r′) + · · · (10.33)

=
KQ

r
+

K

r2
êr · pQ +

K

r3

∫∫

Ω

r′2
[
− 1

2 + 3
2 (êr · êr′)2

]
dQ(r′) + · · · ,

where

Q ≡
∫∫

Ω

dQ(r′)

is the total Q (charge, or mass)—also called the zeroth Q moment—andelectric dipole
moment defined

pQ ≡
∫∫

Ω

r′ dQ(r′) (10.34)

is the first Q moment, which in the case of charge is also called the electric
dipole moment. One can also define higher moments.

If the source of the potential is discrete, the integral in Equation (10.31)
becomes a sum. The steps leading to (10.33) will not change except for switch-
ing all the integrals to summations. In particular, the dipole moment of N
point sources {Qk}N

k=1, located at {rk}N
k=1, turns out to be

pQ =
N∑

k=1

Qkrk. (10.35)

For the special case of two electric charges q1 = +q and q2 = −q, we obtain3

p = qr1 − qr2 = q(r1 − r2). (10.36)

Thus, the dipole moment of a pair of equal charges of opposite sign is the
magnitude of the charge times the displacement vector from the negative to
the positive charge.

Example 10.5.1. Electric dipoles are fairly abundant in Nature. For example,
an antenna is approximated as a dipole at distances far away from it; and in atomic
transitions one uses the so-called dipole approximation to calculate the rate ofdipole

approximation transition and the lifetime of a state.

Let us write the explicit form of the potential of a dipole, i.e., the second term on
the RHS of Equation (10.33). In Cartesian coordinates, in which the dipole moment
is in the z-direction (so that p = pêz), the potential can be written as

3It is customary to denote the electric dipole moment by p with no subscript.
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Φdip(x, y, z) =
ke

r2
êr · p =

ke

r3
r · p =

kepz

(x2 + y2 + z2)3/2
.

More important is the expression for potential in spherical coordinates: electric potential
of a dipole

Φdip(r, θ, ϕ) =
kep

r2

cos θ
︷ ︸︸ ︷
êr · êz =

kep

r2
cos θ. (10.37)

The azimuthal symmetry (independence of ϕ) comes about because we chose p to
lie along the z-axis. �

10.6 Fourier Series

Power series are special cases of the series of functions in which the nth func-
tion is (x − a)n—or simply xn—multiplied by a constant. These functions,
simple and powerful as they are, cannot be used in all physical applica-
tions. More general functions are needed for many problems in theoretical
physics.

The most widely used series of functions in applications are Fourier series
in which the functions are sines and cosines. These are especially suitable for
periodic functions which repeat themselves with a certain period. Suppose periodic functions

that a function f(x) is defined in the interval (a, b). Can we write it as a
series in sines and cosines, as we did in terms of orthogonal polynomials [see
Theorem 7.5.2]? Let L = b− a denote the length of the interval, and consider
the functions

sin
2nπx

L
, cos

2nπx

L
.

Let us try the series expansion Fourier series
expansion

f(x) = a0 +
∞∑

n=1

(

an cos
2nπx

L
+ bn sin

2nπx

L

)

, (10.38)

where we have separated the n = 0 term. Now the sine and cosine terms have
the following easily obtainable useful properties:

∫ b

a

sin
2nπx

L
dx =

∫ b

a

cos
2nπx

L
dx =

∫ b

a

sin
2nπx

L
cos

2mπx

L
dx = 0,

∫ b

a

sin
2nπx

L
sin

2mπx

L
dx =

{
0 if m �= n,

L/2 if m = n �= 0,
(10.39)

∫ b

a

cos
2nπx

L
cos

2mπx

L
dx =

{
0 if m �= n,

L/2 if m = n �= 0.
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These properties suggest a way of determining the coefficients of the seriesexpansion of
periodic functions
in terms of Fourier
series

for a given function as in the case of orthogonal polynomials. If we integrate
both sides of Equation (10.38) from a to b, we get4

∫ b

a

f(x) dx = a0

∫ b

a

dx +
∫ b

a

∞∑

n=1

(

an cos
2nπx

L
+ bn sin

2nπx

L

)

dx

= (b − a)a0 +
∞∑

n=1

an

∫ b

a

cos
2nπx

L
dx

︸ ︷︷ ︸
=0

+
∞∑

n=1

bn

∫ b

a

sin
2nπx

L
dx

︸ ︷︷ ︸
=0

or
∫ b

a f(x) dx = a0L. This yields

a0 =
1
L

∫ b

a

f(x) dx. (10.40)

Multiplying Equation (10.38) by cos(2mπx/L) and integrating both sides from
a to b, we obtain

∫ b

a

f(x) cos
2mπx

L
dx

= a0

∫ b

a

cos
2mπx

L
dx +

∫ b

a

∞∑

n=1

(

an cos
2nπx

L
+ bn sin

2nπx

L

)

cos
2mπx

L
dx

= 0 +
∞∑

n=1

an

∫ b

a

cos
2nπx

L
cos

2mπx

L
dx +

∞∑

n=1

bn

∫ b

a

sin
2nπx

L
cos

2mπx

L
dx

= amL/2,

where we used Equation (10.39). This yields

an =
2
L

∫ b

a

f(x) cos
2nπx

L
dx. (10.41)

Similarly, multiplying both sides of Equation (10.38) by sin(2mπx/L) and
integrating from a to b, yields

bn =
2
L

∫ b

a

f(x) sin
2nπx

L
dx. (10.42)

Equations (10.38), (10.40), (10.41), and (10.42) provide a procedure for
representing a function f(x) as a Fourier series. However, the RHS of Equation
(10.38) is periodic. This means that for values of x outside the interval (a, b),
f(x) is also periodic. In fact, from Equation (10.38), we haveFourier series

always represents
a periodic
function.

4Here we are assuming that the series converges uniformly so that we can switch the
order of integration and summation. This assumption turns out to be correct, but we shall
forego its (difficult) proof.
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f(x + L) = a0 +
∞∑

n=1

{

an cos
2nπ(x + L)

L
+ bn sin

2nπ(x + L)
L

}

= a0 +
∞∑

n=1

{

an cos
(

2nπx

L
+ 2nπ

)

+ bn sin
(

2nπx

L
+ 2nπ

)}

= a0 +
∞∑

n=1

(

an cos
2nπx

L
+ bn sin

2nπx

L

)

= f(x).

Thus, f(x) repeats itself at the end of each interval of length L, i.e., it is pe-
riodic with period L. Fourier series is especially suited for representing such
functions. In fact, any periodic function has a Fourier series expansion, and
the simplicity of sine and cosine functions makes this expansion particularly
useful in applications such as electrical engineering and acoustics where peri-
odic functions in the form of waves and voltages are daily occurrences. Let
us look at some examples.5

Example 10.6.1. In the study of electrical circuitry, periodic voltage signals of
different shapes are encountered. An example is the so-called square wave of height
V0, and duration and “rest duration” T [see Figure 10.3(top)]. The potential as a
function of time, V (t), can be expanded as a Fourier series. The interval is (0, 2T ), square wave

potentialbecause that is one whole cycle of potential variation. We thus write

V (t) = a0 +

∞∑

n=1

(

an cos
2nπt

2T
+ bn sin

2nπt

2T

)

(10.43)
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Figure 10.3: Top: The periodic square-wave potential with V0 = 1 and T = 2.

Bottom: Various approximations to the Fourier series of the square-wave potential. The

dashed plot is that of the first term of the series, the thick gray plot keeps 3 terms, and

the solid plot 15 terms.

5While Taylor series expansion demands that the function be (infinitely) differentiable,
the orthogonal polynomial and Fourier series expansion require only piecewise continuity.
This means that the function can have any (finite) number of discontinuities in the interval
(a, b). Thus, the expanded function can not only be nondifferentiable, it can even be
discontinuous.
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with

a0 =
1

2T

∫ 2T

0

V (t) dt,

an =
2

2T

∫ 2T

0

V (t) cos
2nπt

2T
dt =

1

T

∫ 2T

0

V (t) cos
nπt

T
dt, (10.44)

bn =
1

T

∫ 2T

0

V (t) sin
nπt

T
dt.

Substituting

V (t) =

{
V0 if 0 ≤ t ≤ T,

0 if T < t ≤ 2T,

in Equation (10.44), we obtain

a0 =
1

2T

∫ T

0

V0 dt = 1
2
V0,

an =
1

T

∫ T

0

V0 cos
nπt

T
dt = 0,

and

bn =
1

T

∫ T

0

V0 sin
nπt

T
dt = −V0

T

T

nπ
cos

nπt

T

∣
∣
∣
∣

T

0

=
V0

nπ
(1 − cos nπ) =

V0

nπ
[1 − (−1)n] .

Thus, there is no contribution from the cosine sum, and in the sine sum only the
odd terms contribute (bn = 0 if n is even). Therefore, let n = 2k + 1, where k now
takes all values even and odd, and substitute all the above information in Equation
(10.43), to obtain

V (t) = 1
2
V0 +

∞∑

k=0

V0

(2k + 1)π

[
1 − (−1)2k+1

]
sin

(2k + 1)πt

T

=
V0

2

{

1 +
4

π

∞∑

k=0

sin[(2k + 1)πt/T ]

2k + 1

}

.

The plots of the sum truncated at the first, third, and fifteenth terms are shown
in Figure 10.3(bottom). Note how the Fourier approximation overshoots the value
of the function at discontinuities. This is a general feature of all discontinuous
functions and is called the Gibb’s phenomenon.6Gibb’s

phenomenon
�

Example 10.6.2. Another frequently used potential is the sawtooth potential.
sawtooth potential The interval is (0, T ) and the equation for the potential is

V (t) = V0
t

T
for 0 ≤ t < T.

6A discussion of Gibb’s phenomenon can be found in Hassani, S. Mathematical Physics:
A Modern Introduction to Its Foundations, Springer-Verlag, 1999, Chapter 8.
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The coefficients of expansion can be obtained as usual:

a0 =
1

T

∫ T

0

V0
t

T
dt = 1

2
V0,

an =
2

T

∫ T

0

V0
t

T
cos

2nπt

T
dt =

2V0

T 2

∫ T

0

t cos
2nπt

T
dt

=
2V0

T 2

{
T

2nπ
t sin

2nπt

T

∣
∣
∣
∣

T

0

− T

2nπ

∫ T

0

sin
2nπt

T
dt

}

= 0,

and

bn =
2

T

∫ T

0

V0
t

T
sin

2nπt

T
dt =

2V0

T 2

∫ T

0

t sin
2nπt

T
dt

=
2V0

T 2

{

− T

2nπ
t cos

2nπt

T

∣
∣
∣
∣

T

0

+
T

2nπ

∫ T

0

cos
2nπt

T
dt

}

= − V0

nπ
.

Substituting the coefficients in the sum, we get

V (t) = 1
2
V0 −

∞∑

n=1

V0

nπ
sin

2nπt

T
=

V0

2

{

1 − 2

π

∞∑

n=1

sin(2nπt/T )

n

}

.

The plot of the sawtooth wave as well as those of the sum truncated at the first,
third, and fifteenth term are shown in Figure 10.4. �
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Figure 10.4: Top: The periodic sawtooth potential with V0 = 1 and T = 2. Bottom:

Various approximations to the Fourier series of the sawtooth potential. The dashed plot

is that of the first term of the series, the thick gray plot keeps 3 terms, and the solid

plot 15 terms.

Historical Notes
Although Euler made use of the trigonometric series as early as 1729, and d’Alembert
considered the problem of the expansion of the reciprocal of the distance between
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two planets in a series of cosines of the multiples of the angle between the rays from
the origin to the two planets, it was Fourier who gave a systematic account of the
trigonometric series.

Joseph Fourier did very well as a young student of mathematics but had set
his heart on becoming an army officer. Denied a commission because he was the son“The profound

study of nature is
the most fruitful
source of
mathematical
discoveries.”
Joseph Fourier

of a tailor, he went to a Benedictine school with the hope that he could continue
studying mathematics at its seminary in Paris. The French Revolution changed
those plans and set the stage for many of the personal circumstances of Fourier’s
later years, due in part to his courageous defense of some of its victims, an action
that led to his arrest in 1794. He was released later that year, and he enrolled
as a student in the Ecole Normale, which opened and closed within a year. His
performance there, however, was enough to earn him a position as assistant lec-
turer (under Lagrange and Monge) in the Ecole Polytechnique. He was an excellent
mathematical physicist, was a friend of Napoleon, and accompanied him in 1798 to
Egypt, where Fourier held various diplomatic and administrative posts while also
conducting research. Napoleon took note of his accomplishments and, on Fourier’s
return to France in 1801, appointed him prefect of the district of Isère, in south-
eastern France, and in this capacity built the first real road from Grenoble to Turin.
He also befriended the boy Champollion, who later deciphered the Rosetta stone
as the first long step toward understanding the hieroglyphic writing of the ancient
Egyptians.

Joseph Fourier
1768–1830

Like other scientists of his time, Fourier took up the flow of heat. The flow was
of interest as a practical problem in the handling of metals in industry and as a
scientific problem in attempts to determine the temperature at the interior of the
Earth, the variation of that temperature with time, and other such questions. He
submitted a basic paper on heat conduction to the Academy of Sciences of Paris
in 1807. The paper was judged by Lagrange, Laplace, and Legendre, and was not
published, mainly due to the objections of Lagrange, who had earlier rejected the
use of trigonometric series. But the Academy did wish to encourage Fourier to
develop his ideas, and so made the problem of the propagation of heat the subject
of a grand prize to be awarded in 1812. Fourier submitted a revised paper in 1811,
which was judged by the men already mentioned, and others. It won the prize but
was criticized for its lack of rigor and so was not published at that time in the
Mémoires of the Academy.

He developed a mastery of clear notation, some of which is still in use today. (The
placement of the limits of integration near the top and bottom of the integral sign was
introduced by Fourier.) It was also his habit to maintain close association between
mathematical relations and physically measurable quantities, especially in limiting
or asymptotic cases, even performing some of the experiments himself. He was
one of the first to begin full incorporation of physical constants into his equations,
and made considerable strides toward the modern ideas of units and dimensional
analysis.

Fourier continued to work on the subject of heat and, in 1822, published one of
the classics of mathematics, Théorie Analytique de la Chaleur, in which he made
extensive use of the series that now bears his name and incorporated the first part
of his 1811 paper practically without change. Two years later he became secretary
of the Academy and was able to have his 1811 paper published in its original form
in the Mémoires.
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10.7 Multivariable Taylor Series

The approximation to which we alluded at the beginning of this chapter is
just as important when we are dealing with functions depending on several
variables as those depending on a single variable. After all, most functions
encountered in physics depend on space coordinates and time. We begin with
two variables because the generalization to several variables will be trivial
once we understand the two-variable case.

A direct—and obvious—generalization of the power series to the case of a
function f(u, v) of two variables about the point (u0, v0) gives

f(u, v) = a00 + a10(u − u0) + a01(v − v0) + a20(u − u0)2

+ a02(v − v0)2 + a11(u − u0)(v − v0) + a30(u − u0)3

+ a21(u − u0)2(v − v0) + a12(u − u0)(v − v0)2

+ a03(v − v0)3 + · · · . (10.45)

The notation used above needs some explanation. All the a’s are constants
with two indices such that the first index indicates the power of (u− u0) and
the second that of (v − v0). To obtain a Taylor series, we need to relate a’s
to derivatives of f . This is straightforward: To find akj , differentiate both
sides of Equation (10.45) k times with respect to u and j times with respect
to v and evaluate the result at (u0, v0). Thus, to evaluate a00, we differentiate
zero times with respect to u and zero times with respect to v and substitute
u0 for u and v0 for v on both sides. We then obtain

f(u0, v0) = a00 + 0 + 0 + · · · + 0 + · · · = a00.

By differentiating with respect to u and evaluating both sides at (u0, v0), we
obtain

∂1f(u0, v0) = 0 + a10 + 0 + · · · + 0 + · · · = a10.

Similarly,

∂2f(u0, v0) = 0 + 0 + a01 + 0 + · · · + 0 + · · · = a01,

∂1∂1f(u0, v0) = ∂2
1f(u0, v0) = 2a20,

∂2∂2f(u0, v0) = ∂2
2f(u0, v0) = 2a02,

∂2∂1f(u0, v0) = a11.

We want to write Equation (10.45) in a succinct form to be able to extract
a general formula for the coefficients. An inspection of that equation suggests
that

f(u, v) =
∞∑

j=0

∞∑

k=0

ajk(u − u0)j(v − v0)k.
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It is more useful to collect terms of equal total power together. Thus, writing
m = k + j, and noting that j cannot be larger than m, we rewrite the above
equation as

f(u, v) =
∞∑

m=0

m∑

j=0

aj,m−j(u − u0)j(v − v0)m−j .

Let us introduce the notation ∂k,n−k for k differentiations with respect to the
first variable, and n − k differentiations with respect to the second:7

∂k,n−kf ≡ ∂nf

∂uk∂vn−k

and apply it to both sides of the sum above. Evaluating the result at (u0, v0),
we obtain

∂k,n−kf(u0, v0) =
∞∑

m=0

m∑

j=0

aj,m−j∂k,n−k

{
(u − u0)j(v − v0)m−j

} ∣
∣
∣
(u0,v0)

.

If j < k or m − j < n − k then the corresponding terms differentiate to zero.
On the other hand, if j > k or m − j > n − k then some powers of u − u0 or
v − v0 will survive and evaluation at (u0, v0) will also give zero. So, the only
term in the sum that survives the differentiation is the term with j = k and
m − j = n − k which gives k!(n − k)!. We thus haveTaylor series of a

function of two
variables ∂k,n−kf(u0, v0) = k!(n − k)!ak,n−k ⇒ ak,n−k =

∂k,n−kf(u0, v0)
k!(n − k)!

,

and the Taylor series can finally be written as

f(u, v) =
∞∑

n=0

n∑

k=0

∂k,n−kf(u0, v0)
k!(n − k)!

(u − u0)k(v − v0)n−k. (10.46)

Sometimes this is written in terms of increments to suggest approximation as
in the single-variable case:

f(u + Δu, v + Δv) =
∞∑

n=0

n∑

k=0

∂k,n−kf(u, v)
k!(n − k)!

(Δu)k(Δv)n−k, (10.47)

where we used (u, v) instead of (u0, v0). Once again, the first term in the
expansion is f(u, v) and the rest is a correction.

The three-dimensional formula should now be easy to construct. We writeTaylor series of a
function of three
variables

this as8

f(u, v, w) =
∞∑

n=0

∑

i+j+k=n

∂n
ijkf(u0, v0, w0)

i!j!k!
(u−u0)i(v−v0)j(w−w0)k. (10.48)

7This notation is not universal. Sometimes ∂n
kj is used with the understanding that

k + j = n.
8The symbol ∂n

ijk represents the nth derivative with i differentiations with respect to the

first variable, j differentiations with respect to the second variable, and k differentiations
with respect to the third variable, such that i + j + k = n.
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For a given value of n, suggested by the outer sum, the inner sum describes a
procedure whereby all terms whose i, j, and k indices add up to n are grouped
together. As a comparison, we also write Equation (10.46) in this notation:

f(u, v) =
∞∑

n=0

∑

j+k=n

∂n
jkf(u0, v0)

j!k!
(u − u0)j(v − v0)k. (10.49)

The three-dimensional Taylor series in terms of increments becomes

f(u + Δu, v + Δv, w + Δw)

=
∞∑

n=0

∑

i+j+k=n

∂n
ijkf(u, v, w)

i!j!k!
(Δu)i(Δv)j(Δw)k, (10.50)

where again (u0, v0, w0) has been replaced by (u, v, w).

Example 10.7.1. As an example we expand ex sin y about the origin.9 Using the
notation in Equation (10.49), the coefficients, within a factor of j!k!, can be written
as

∂n
jk (ex sin y)

∣
∣
∣
(0,0)

=
∂n

∂xj∂yk
(ex sin y)

∣
∣
∣
(0,0)

=
∂j

∂xj
(ex)

∣
∣
∣
x=0︸ ︷︷ ︸

=1

∂k

∂yk
(sin y)

∣
∣
∣
y=0

=
∂k

∂yk
(sin y)

∣
∣
∣
y=0

.

The first few terms of the Taylor expansion of this function can now be written
down:

ex sin y = y + xy +
x2y

2
− y3

6
− xy3

6
+

x3y

6
+ · · · .

One could also obtain this result by multiplying the Taylor expansions of ex and
sin y term by term. �

10.8 Application to Differential Equations

One of the most powerful methods of solving an ordinary differential equation
(ODE) is the power series method, and we shall use this method to solve some
of the most recurring differential equations of mathematical physics in Chap-
ters 25 through 27. Power series are uniformly and absolutely convergent, and
can be differentiated term by term. This makes them a good candidate for
representing the (unknown) solutions of differential equations. The relation
among the derivatives, expressed in a differential equation, becomes a relation
among coefficients of the power series, the so-called recursion relation, which
is enough to determine all the relevant coefficients of the series, leaving only
those coefficients which require initial conditions for their determination. The
best way to understand the method is to look at an example.

9The use of x and y in place of u and v should not cause any confusion.
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Example 10.8.1. The differential equation

dx

dt
= bx

can be assumed to have a power series solution of the form

x(t) =
∞∑

n=0

cntn.

This power series will be uniformly and absolutely convergent for some interval
on the real line, and as such, can be differentiated. Differentiating the foregoing
equation and substituting the result in the differential equation, we get

∞∑

n=1

ncntn−1 = b
∞∑

n=0

cntn.

The essential property of power series is the equality of the corresponding coefficients
when two such series are equal (see Theorem 10.1.4). Before using this property in
the above equation, however, we need to reexpress the LHS so that the power of t
is the same on both sides. We thus change the dummy index from n to m = n − 1,
so that all n’s are replaced by m + 1. We then get

LHS =
∞∑

m+1=1

(m + 1)cm+1t
m =

∞∑

m=0

(m + 1)cm+1t
m.

Since we are free to use any dummy index we please, let us change m to n so that
we can compare the two sides of the equation. This gives

∞∑

n=0

(n + 1)cn+1t
n =

∞∑

n=0

bcntn ⇒ (n + 1)cn+1 = bcn. (10.51)

We can immediately test for the convergence of the series using the ratio test:

lim
n→∞

∣
∣
∣
∣
cn+1t

n+1

cntn

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣
tbcn/(n + 1)

cn

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣

bt

n + 1

∣
∣
∣
∣ = 0

for all b and t. Thus, regardless of the value of b and t, the series converges.
We have established the convergence of the series representation of the solution

of our differential equation. We now have to find the coefficients. This is done by
rewriting Equation (10.51) as

cn+1 =
b

n + 1
cn (10.52)

which is called the recursion relation of the series. By iterating this relation werecursion relation
can obtain all the coefficients in terms of the first one as follows:

cn+1 =
b

n + 1
cn =

b

n + 1

(
b

n
cn−1

)

=
b2

(n + 1)n
cn−1

=
b2

(n + 1)n

(
b

n − 1
cn−2

)

=
b3

(n + 1)n(n − 1)
cn−2.
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Since we are interested in finding cn, we can rewrite this equation as

cn =
b3

n(n − 1)(n − 2)
cn−3,

where we have lowered all n’s on both sides by one unit. This relation can easily be
generalized to an arbitrary positive integer j:

cn =
bj

n(n − 1) · · · (n − j + 1)
cn−j .

In particular, if we set j = n, we obtain

cn =
bn

n(n − 1) · · · 2 · 1c0 =
bn

n!
c0 (10.53)

which upon substitution in the original series, yields

x(t) =
∞∑

n=0

c0
bn

n!
tn = c0

∞∑

n=0

(bt)n

n!
= c0e

bt,

where we have used Equation (10.12). The unknown c0 is determined by the value
of x(t) at a given t, usually t = 0. �

There are of course much easier ways of solving the simple differential
equation above, and the method used may appear to “kill a fly with a sledge-
hammer.” Nevertheless, it illustrates the almost mechanical way of obtaining
the solution without resorting to any “tricks” used so often in arriving at the
closed-form solutions of differential equations.

Example 10.8.2. Let us look at another familiar example. The motion of a mass
m driven by a spring with spring constant k is governed by the differential equation

m
d2x

dt2
= −kx ⇒ d2x

dt2
+

k

m
x = 0.

Once again we assume a solution of the form

x(t) =

∞∑

n=0

antn = a0 + a1t + a2t
2 + · · · + antn + · · ·

and differentiate it twice to get

dx

dt
=

∞∑

n=1

nantn−1 = a1 + 2a2t + · · · + nantn−1 + · · · ,

d2x

dt2
=

∞∑

n=2

n(n − 1)antn−2 = 2a2 + 3 · 2a3t + · · · + n(n − 1)antn−2 + · · · .

Substitute j = n− 2 to bring the power of t into a form that can be compared with
the RHS. This amounts to substituting j + 2 for all n’s:

d2x

dt2
=

∞∑

j=0

(j + 2)(j + 1)aj+2t
j =

∞∑

n=0

(n + 2)(n + 1)an+2t
n.
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In the last step we simply changed the dummy index. Substituting this and the
series for x(t) in the differential equation, we obtain

∞∑

n=0

(n + 2)(n + 1)an+2t
n +

k

m

∞∑

n=0

antn = 0

which gives the recursion relation

(n + 2)(n + 1)an+2 +
k

m
an = 0 ⇒ an+2 = − k/m

(n + 2)(n + 1)
an. (10.54)

Application of the ratio test [as given by Equation (9.10) with j = 2] immediately
yields that the series is convergent for all values of k/m and all values of t. If we
lower the value of n by two units on both sides, we get

an = − k/m

n(n − 1)
an−2 = − k/m

n(n − 1)

{

− k/m

(n − 2)(n − 3)
an−4

}

=
(−k/m)2

n(n − 1)(n − 2)(n − 3)
an−4

=
(−k/m)2

n(n − 1)(n − 2)(n − 3)

{

− k/m

(n − 4)(n − 5)
an−6

}

=
(−k/m)3

n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)
an−6

...

=
(−k/m)i

n(n − 1) · · · (n − 2i + 1)
an−2i,

where i is some positive integer. Because of the form of this equation, we should
consider two cases: For even n, we let i = n/2 or n = 2i to obtain

a2i =
(−k/m)i

2i(2i − 1) · · · 2 · 1a0 =
(−k/m)i

(2i)!
a0

and for odd n we let i = (n − 1)/2 or n = 2i + 1 to get

a2i+1 =
(−k/m)i

(2i + 1)2i · · · 2 · 1a1 =
(−k/m)i

(2i + 1)!
a1.

Thus all even coefficients are given in terms of a0, and all odd ones in terms of a1.
Absolute convergence of the series now allows us to rearrange terms and separate
even and odd terms to write

x(t) =

∞∑

n=even

antn +

∞∑

n=odd

antn =

∞∑

j=0

a2jt
2j +

∞∑

j=0

a2j+1t
2j+1

=

∞∑

j=0

(−k/m)j

(2j)!
a0t

2j +

∞∑

j=0

(−k/m)j

(2j + 1)!
a1t

2j+1

= a0

∞∑

j=0

(−1)j

(2j)!

(√
k/m t

)2j

+
a1√
k/m

∞∑

j=0

(−1)j

(2j + 1)!

(√
k/m t

)2j+1

= A cos
(√

k/m t
)

+ B sin
(√

k/m t
)

,
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where A = a0 and B = a1/
√

k/m are arbitrary constants to be determined by the
initial conditions of the problem. The Maclaurin series for sine and cosine used
above are given in Equations (10.13) and (10.14). �

The examples above, although illustrating the utility of the power series
method of solving differential equations, should not give the impression that
one needs no other methods. The closed-form solutions are sometimes essen-
tial for interpreting the physical properties of the system under consideration.
For example, if the mass of the preceding example is in a fluid, so that a
damping force retards the motion, the closed-form solution will turn out to
be

x(t) = Ae−γt cos(ωt + α), ω ≡
√

k

m
,

where γ is the damping factor and α is an arbitrary phase. Deciphering this damping factor

closed form from its power series expansion, obtained by solving the differ-
ential equation by the series method, is next to impossible. The closed-form
solution shows clearly, for instance, how the amplitude of the oscillation de-
creases with time, an information that may not be evident from the series
solution of the problem. Nevertheless, on many occasions, a closed-form so-
lution may not be available, in which case the power series solution will be
the only alternative. In fact, many of the functions of mathematical physics
were invented in the last century as the power series solutions of differential
equations.

10.9 Problems

10.1. Write the first five terms of the expansion of the binomial function
(10.15) for (a) α = 3

2 , (b) α = 1
3 , and (c) α = 3

4 .

10.2. Find the rational number of which each of the following decimal num-
bers is a representation:

(a) 0.5555 . . . . (b) 0.676767 . . . . (c) 0.123123 . . . .

(d) 1.1111 . . . . (e) 2.727272 . . . . (f) 1.108108 . . . .

10.3. Find the interval of convergence of the Maclaurin series for each of the
familiar functions discussed in Section 10.2.

10.4. Using the series representation of the familiar functions evaluate the
following series:

(a)
∑∞

k=1
(−1)kx2k+1

2k . (b)
∑∞

k=0
x2k+1

(2k)! . (c)
∑∞

k=0
xk+1

(k+1)! .

(d)
∑∞

n=1
(−1)n−1x3n−2

n3n . (e)
∑∞

n=0
(−1)n+2x3n+1

33n+1(2n)! . (f)
∑∞

m=0
xm+1

(2m+1)! .

10.5. Derive Equation (10.17).
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10.6. Use the Maclaurin series to find the limits of the following ratios as
x → 0:

2
√

1 − x2 + x2 − 2
2 cosx − 2 + x2

,
sinx − ln(1 + x)
ex − x − cosx

.

10.7. (a) Use the Maclaurin series expansion up to x3 to find the following
limit:

lim
x→0

2 3
√

1 − 6x − 2 cosx + 4 sinx + 7x2

ln(1 − x) + ex − 1
.

(b) Use the Maclaurin series expansion up to x4 to find the following limit:

lim
x→0

ex − ln(1 + x2) − cosx + sin x − 2x

2
√

4 + x2 + cosx − 5
.

10.8. In the special theory of relativity the energy E of a particle of mass m
and speed v is given by

E =
mc2

√
1 − (v/c)2

,

where c is the speed of light. Show that for ordinary speeds (v << c), one
obtains the classical expression for the kinetic energy, defined to be E minus
the rest energy.

10.9. The gravitational potential energy for a particle of mass m at a distance
r from the center of a planet of radius R and mass M is given by

Φ(r) = −GMm

r
+ C, r > R.

(a) Find C so that the potential at the surface of the planet is zero.
(b) Show that at a height h << R above the surface of the planet, the potential
energy can be written as mgh. Find g in terms of M and R and calculate
the numerical value of g for the Earth, the Moon, and Jupiter. Look up the
data you need in a table usually found in introductory physics or astronomy
books.

10.10. Prove the hyperbolic identities of Equation (10.21).

10.11. Show that

sech2 x = 1 − tanh2 x, cosech2 x = coth2 x − 1,

and
d

dx
tanhx = sech2 x,

d

dx
coth x = − cosech2 x.

10.12. Derive Equation (10.23).
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10.13. Use L’Hôpital’s rule to obtain the following limits:

(a) limx→0
(2+x) ln(1−x)
(1−ex) cos x . (b) limx→∞ x ln

(
x+1
x−1

)
.

(c) limx→a
3√x− 3√a

x−a . (d) limx→0
xex

1−ex .

(e) lim
x→1

2π
(tan x)cos x. (f) limx→0(ln x) tan x.

10.14. Use L’Hôpital’s rule to obtain the limits of Example 10.4.1.

10.15. Show that the following sequences converge and find their limits:

ln n

np
,

n2

2n
, n ln

(

1 +
1
n

)

, P (n) e−n,

where p is a positive number and P (n) is a polynomial in n.

10.16. The Yukawa potential of a charge distribution is given by

Φ(r) =
∫∫

Ω

kee
−κ|r−r′| dq(r′)
|r − r′| ,

where κ is a constant. By expanding |r−r′| up to the first order in r′/r, show
that

Φ(r) ≈ keQe−κr

r
+

ke(κr + 1)e−κr

r2
êr · p,

where p is the dipole moment of the charge distribution.

10.17. A conic surface has an opening angle of 2α and a lateral length a as
shown in Figure 10.5. It carries a uniform charge density σ.
(a) Show that the electrostatic potential Φ at a distance r from the vertex on
the axis of the cone is

Φ(r) = 2πkeσ sin α
(√

r2 + a2 − 2ar cosα − r
)

+ (2πkeσ sin α cosα)r ln

∣
∣
∣
∣
∣
a − r cosα +

√
r2 + a2 − 2ar cosα

r − r cosα

∣
∣
∣
∣
∣
.

α a

Figure 10.5: The cone of Problem 10.17.
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(b) Now suppose that r � a, expand the square roots and the log up to the
second power of the ratio a/r, and show that

√
r2 + a2 − 2ar cosα ≈ r − a cosα +

a2

2r
sin2 α

and

ln
∣
∣
∣a − r cosα +

√
r2 + a2 − 2ar cosα

∣
∣
∣ ≈ ln |r − r cosα|+ a

r
+

a2

2r2
(1 + cosα).

(c) Put (a) and (b) together to show that the potential can be approximated
by

Φ(r) ≈ πkeσa2 sin α

r
.

Write this expression in terms of the total charge in the cone. Do you get
what you expect?

10.18. Recall from your introductory physics courses that the electric field at
a distance ρ from a long uniformly charged rod has only a radial component
which is given by E = λ/2πε0ρ, where λ is the linear charge density. Show
this result by setting a = −L/2 (why?) and taking the limit of infinite L in
Equation (4.13).

10.19. After calculating the potentials of Problems 4.11 and 4.12 for finite
L, find their limits when L → ∞.

10.20. The potential of a certain charge distribution with total charge Q is
given by

Φ =
ke

a0

∫
[ln |r − r′| − ln b] dq(r′),

where ke, a0, and b are constants.
(a) Show that for r′ � r, one can use the approximation

ln |r − r′| ≈ ln r − r′

r
êr · êr′ .

(b) Use (a) to show that the multipole expansion of Φ only up to the dipole
moment is

Φ ≈ keQ

a0
ln

r

b
− ke

a0

p · r
r2

.

10.21. Find the dipole moment of a uniformly charged sphere about its center.

10.22. A voltage is given by the graph shown in Figure 10.6.
(a) Write the function V (t) describing the voltage for 0 ≤ t ≤ 2T .
(b) If this voltage repeats itself periodically, find the Fourier series expansion
of V (t).
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T 2T

V0

t

V(t)

Figure 10.6: The voltage of Problem 10.22.

10.23. A periodic voltage with period 2T is given by

V (t) =

{
V0 cos(πt/T ) if − T/2 ≤ t ≤ T/2,

0 if T/2 ≤ |t| ≤ T.

(a) Sketch this function for the interval −3T ≤ t ≤ 3T .
(b) Find a0 and a1, the first two cosine coefficients of the Fourier series ex-
pansion of V (t).
(c) Find an and all bn, the sine coefficients.
(d) Write down the Fourier series of V (t). Evaluate both sides at t = 0 to
show that

π

2
= 1 − 2

∞∑

n=1

(−1)n

4n2 − 1
.

This is one of the many series representations of π.

10.24. An electric voltage V (t) is given by

V (t) = V0 sin
(

πt

2T

)

, 0 ≤ t ≤ T

and repeats itself with period T .
(a) Sketch V (t) for values of t from t = 0 to t = 3T .
(b) Find the Fourier series expansion of V (t).

10.25. A periodic voltage is given by the formula

V (t) =

{
V0 sin(πt/2T ) if 0 ≤ t ≤ T,

0 if T ≤ t ≤ 2T.

(a) Sketch the voltage for the interval (−4T, 4T ).
(b) Find the Fourier series representation of this voltage.

10.26. A periodic voltage with period 4T is given by

V (t) =

⎧
⎨

⎩
V0

(

1 − t2

T 2

)

if − T ≤ t ≤ T

0 if T ≤ |t| ≤ 2T.
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(a) Sketch this function for the interval −6T ≤ t ≤ 6T .
(b) Find a0, an, and bn, the coefficients of the Fourier series expansion of
V (t).
(c) Write down the Fourier series of V (t).
(d) Evaluate both sides at t = T . Do you obtain an identity? If not, what
sort of relationship is obtained if we demand the equality of both sides?

10.27. Write out Equation (10.50) up to the second power in the Δ’s.

10.28. Find the Taylor series expansion of ex ln(1 + y) about (0, 0).

10.29. (a) Find the multivariable Taylor series expansion of exy about (0, 0).
(b) Now let z = xy, expand the function ez, and substitute xy for z in the
expansion. Show that the results of (a) and (b) agree.

10.30. Determine all the solutions of the differential equation

dx

dt
+ 2tx = 0

using infinite power series. From the power series solution guess the closed-
form solution. Now suppose that x(0) = 1. What is the specific solution with
this property?

10.31. Consider the differential equation

dx

dt
+ 3t2x = 0.

(a) Use a solution of the form
∑∞

n=0 antn and find a1 and a2.
(b) Find a recursion relation relating coefficients.
(c) From the recursion relation determine the radius of convergence of the
infinite series.
(d) Find all coefficients in terms of only one.
(e) Guess the closed-form solution from the series. Now suppose that x(0) = 2.
What is the specific solution with this property? What is the numerical value
of x(−2)?



Chapter 11

Integrals and Series as
Functions

The notion of a function as a mathematical entity has a long history as rich as
the history of mathematics itself. With the invention of the coordinate plane in
the seventeenth century, functions started to acquire graphical representations
which, in turn, facilitated the connection between algebra and geometry. It
was really calculus that triggered an explosion in function theory, and indeed,
in all mathematics. With calculus came not only the concept of differentiation
and integration, but also—in the hands of Newton and his contemporaries,
as they were studying no smaller an object than the universe itself—that
of differential equations. All these concepts, in particular integration and
differential equation, had a dramatic influence on the notion of functions. The
aim of this chapter is to give the reader a flavor of the variety of functions
made possible by integration and differential equations.1

11.1 Integrals as Functions

Integrals are one of the most convenient media in which new functions can be
defined. As we saw in Chapter 3, if the integrand or the limits of integration
include parameters, those parameters can be treated as variables and the
integral itself as a function of those parameters. In this section, we list some
of the most important functions that are normally defined in terms of integrals.

1We shall not solve any differential equations in this chapter, but simply quote solutions
to some of them in the form of power series. We shall come back to differential equations
later in the book.
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11.1.1 Gamma Function

Consider the integral

Γ(x) ≡
∫ ∞

0

tx−1e−t dt, (11.1)

where x is a real number.2 Integrate Equation (11.1) by parts with u = tx−1equation (11.1)
defines the
gamma function
evaluated at x.

and dv = e−t dt to obtain

Γ(x) =

≡uv
︷ ︸︸ ︷
tx−1[−e−t]

∣
∣
∣
∞

0︸ ︷︷ ︸
=0

+ (x − 1)
∫ ∞

0

≡−vdu
︷ ︸︸ ︷
tx−2e−t dt

︸ ︷︷ ︸
=Γ(x−1)

or
Γ(x) = (x − 1)Γ(x − 1). (11.2)

In particular, if x is a positive integer n, then repeated use of Equation (11.2)
gives

Γ(n) = (n − 1)Γ(n − 1) = (n − 1)(n − 2)Γ(n − 2)
= (n − 1)(n − 2) · · · 1 · Γ(1) = (n − 1)!,

where we used the fact that Γ(1) = 1 as the reader may easily verify using
Equation (11.1). This equation is written asfor integers, the

gamma function
becomes a
factorial.

Γ(n + 1) = n! for positive integer n. (11.3)

Let us rewrite (11.2) as Γ(x − 1) = Γ(x)/(x − 1). Then,

lim
x→1

Γ(x − 1) = lim
x→1

Γ(x)
x − 1

→ ∞

because Γ(1) = 1. Thus, Γ(0) = ∞. Similarly,

lim
x→0

Γ(x − 1) = lim
x→0

Γ(x)
x − 1

→ Γ(0)
−1

→ ∞,

i.e., Γ(−1) = ∞. It is clear that Γ(n) = ∞ for any negative integer n or zero.
It turns out that these are the only points at which Γ(x) is not defined.

Definition 11.1.1. The function defined by Equation (11.1) is called the
gamma function, which, because it satisfies Equation (11.3), is the gener-
alization of the factorials to noninteger values. We sometimes write

Γ(x + 1) = x! for any real x (11.4)

and call Γ the factorial function. The gamma function is defined for all
values of its argument except zero and negative integers, for which the gamma
function becomes infinite.

2The most complete analytic discussion of Γ(z) allows z to be complex and uses the
full machinery of complex calculus. Here, we shall avoid such completeness and refer the
reader to Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, where a full discussion of Γ(z) can be found in Section 11.4.



11.1 Integrals as Functions 319

It follows from Equation (11.2) that by repeatedly subtracting 1 from the the values of Γ(x)
for 0 < x ≤ 1
determine Γ(x)
for all x.

argument of the gamma function, we can reduce the evaluation of Γ(x) to the
case where x lies between 0 and 1. Such an evaluation can be done numerically
and the results tabulated.

Example 11.1.1. In this example, we evaluate Γ( 1
2
). Equation (11.1) gives

Γ( 1
2
) =

∫ ∞

0

t−1/2e−t dt.

Change the variable of integration to u =
√

t with du = (1/2
√

t) dt. Then

Γ( 1
2
) = 2

∫ ∞

0

e−u2
du = 2

(
1
2

√
π
)

=
√

π,

where we used the result of Example 3.3.1.
With Γ( 1

2
) at our disposal, we can evaluate the gamma function at any half-

integer value by the remarks above. For example,

Γ( 7
2
) = 5

2
Γ( 5

2
) = ( 5

2
)( 3

2
)Γ( 3

2
) = ( 5

2
)( 3

2
)( 1

2
)Γ( 1

2
) =

15
√

π

8
.

Similarly, with Γ( 1
2
) = − 1

2
Γ(− 1

2
), we obtain

Γ(− 1
2
) = −2Γ( 1

2
) = −2

√
π. �

It is instructive to generalize the result of the example above and find a
general formula for the gamma function of any half-integer. Such a formula
is related to the notion of the double factorial: double factorial

Definition 11.1.2. The double factorial (2n)!! [or (2n− 1)!!] is defined as
the product of all even (or odd) integers up to 2n (or 2n − 1).

Problem 11.1 gives the detail of the derivation of the following formulas:

(2n)!! = 2nn! = 2nΓ(n + 1), (2n − 1)!! = Γ(n + 1
2 )2nπ−1/2. (11.5)

An extremely useful approximation to the gamma function is the so-called
Stirling approximation which is valid for large arguments of the gamma Stirling

approximationfunction and which we present without derivation3

x! ≡ Γ(x + 1) ≈
√

2πe−xxx+1/2. (11.6)

The Stirling formula works best when x is large. However, even for x = 10,
it gives

√
2πe−101010.5 = 3598696, which is surprisingly close to the exact

value of 10! = 3628800. For x = 20, the Stirling formula yields 2.42 × 1018

to three significant figures as opposed to the calculator result, which to the
same number of significant figures is 2.43× 1018. For larger and larger values
of x, the two results get closer and closer.

3For a derivation, see Hassani, S. Mathematical Physics: A Modern Introduction to Its
Foundations, Springer-Verlag, 1999, Chapter 11.
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11.1.2 The Beta Function

A function that sometimes shows up in applications is the beta function.
Consider

Γ(x)Γ(y) =
∫ ∞

0

tx−1e−t dt

∫ ∞

0

sy−1e−s ds =
∫ ∞

0

∫ ∞

0

tx−1sy−1e−(t+s) dt ds.

Introduce the new variable u = t+s and use it to rewrite the s integral. Since
the lower limits of both s and t are 0, the lower limit of the u integral will
also be 0. Similarly, the upper limit of u will be infinity. However, since s
and t are positive and their sum is u, the upper limit of t cannot exceed u.
Therefore,

Γ(x)Γ(y) =
∫ ∞

0

du

∫ u

0

dt tx−1(u − t)y−1e−u.

Now introduce another variable w by t = uw. Since in the t integration, u is
held constant, we have dt = u dw, and the limits of integration for w are 0
and 1. This will allow us to write

Γ(x)Γ(y) =
∫ ∞

0

du e−uux+y−1

︸ ︷︷ ︸
≡Γ(x+y)

∫ 1

0

dw wx−1(1 − w)y−1.

The last integral defines the beta function. So,beta function
defined

B(x, y) ≡ Γ(x)Γ(y)
Γ(x + y)

=
∫ 1

0

dt tx−1(1 − t)y−1, (11.7)

where we changed the (dummy) variable of integration from w to t.
We can find another representation of the beta function by substituting

t = sin2 θ. Then

dt = 2 sin θ cos θ, 1 − t = 1 − sin2 θ = cos2 θ,

and the limits of integration become 0 and π/2. So,

B(x, y) = 2
∫ π/2

0

(sin θ)2x−1(cos θ)2y−1dθ. (11.8)

Historical Notes
Integration and differentiation and the whole machinery of calculus opened up en-
tirely new ways of defining functions. Of these, one of the most important is the
gamma function, which arose from work on two problems, interpolation theory and
antidifferentiation. The problem of interpolation had been considered by James Stir-
ling (1692–1770), Daniel Bernoulli (1700–1782), and Christian Goldbach. It was posed
to Euler and he announced his solution in a letter of October 13, 1729, to Goldbach.
A second letter, of January 8, 1730, brought in the integration problem.
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The interpolation problem had to do with giving meaning to n! for nonintegral
values of n, and the integration problem was the evaluation of an integral already
considered by Wallis, namely

∫ 1

0

tx(1 − t)y dt.

Euler showed that this integral led to our integral (11.1).

Leonhard Euler was Switzerland’s foremost scientist and one of the three
greatest mathematicians of modern times (Gauss and Riemann being the other two).
He was perhaps the most prolific author of all time in any field. From 1727 to 1783
his writings poured out in a seemingly endless flood, constantly adding knowledge
to every known branch of pure and applied mathematics, and also to many that
were not known until he created them. He averaged about 800 printed pages a
year throughout his long life, and yet he almost always had something worthwhile
to say. The publication of his complete works was started in 1911, and the end
is not in sight. This edition was planned to include 887 titles in 72 volumes, but
since that time extensive new deposits of previously unknown manuscripts have been
unearthed, and it is now estimated that more than 100 large volumes will be required
for completion of the project. Euler evidently wrote mathematics with the ease and
fluency of a skilled speaker discoursing on subjects with which he is intimately
familiar. His writings are models of relaxed clarity. He never condensed, and he
reveled in the rich abundance of his ideas and the vast scope of his interests. The
French physicist Arago, in speaking of Euler’s incomparable mathematical facility,
remarked that “He calculated without apparent effort, as men breathe, or as eagles
sustain themselves in the wind.” He suffered total blindness during the last 17 years
of his life, but with the aid of his powerful memory and fertile imagination, and
with assistants to write his books and scientific papers from dictation, he actually
increased his already prodigious output of work.

Leonhard Euler
1707–1783

Euler was a native of Basel and a student of Johann Bernoulli at the University,
but he soon outstripped his teacher. He was also a man of broad culture, well
versed in the classical languages and literatures (he knew the Aeneid by heart),
many modern languages, physiology, medicine, botany, geography, and the entire
body of physical science as it was known in his time. His personal life was as placid
and uneventful as is possible for a man with 13 children.

Though he was not himself a teacher, Euler has had a deeper influence on the
teaching of mathematics than any other person. This came about chiefly through
his three great treatises: Introductio in Analysin Infinitorum (1748); Institutiones
Calculi Differentialis (1755); and lnstitutiones Calculi Integralis (1768–1794). There
is considerable truth in the old saying that all elementary and advanced calculus
textbooks since 1748 are essentially copies of Euler or copies of copies of Euler.
These works summed up and codified the discoveries of his predecessors, and are
full of Euler’s own ideas. He extended and perfected plane and solid analytic geom-
etry, introduced the analytic approach to trigonometry, and was responsible for the
modern treatment of the functions ln x and ex. He created a consistent theory of
logarithms of negative and imaginary numbers, and discovered that ln x has an infi-
nite number of values. It was through his work that the symbols e, π, and i =

√
−1

became common currency for all mathematicians, and it was he who linked them
together in the astonishing relation eiπ = −1. Among his other contributions to
standard mathematical notation were sin x, cos x, the use of f(x) for an unspecified
function, and the use of

∑
for summation.
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His work in all departments of analysis strongly influenced the further develop-
ment of this subject through the next two centuries. He contributed many important
ideas to differential equations, including substantial parts of the theory of second-
order linear equations and the method of solution by power series. He gave the first
systematic discussion of the calculus of variations, which he founded on his basic
differential equation for a minimizing curve. He discovered the integral defining the
gamma function and developed many of its applications and special properties. He
also worked with Fourier series, encountered the Bessel functions in his study of the
vibrations of a stretched circular membrane, and applied Laplace transforms to solve
differential equations—all before Fourier, Bessel, and Laplace were born.

E. T. Bell, the well-known historian of mathematics, observed that “One of the
most remarkable features of Euler’s universal genius was its equal strength in both
of the main currents of mathematics, the continuous and the discrete.” In the realm
of the discrete, he was one of the originators of number theory and made many far-
reaching contributions to this subject throughout his life. In addition, the origins
of topology—one of the dominant forces in modern mathematics—lie in his solution
of the Königsberg bridge problem and his formula V − E + F = 2 connecting the
numbers of vertices, edges, and faces of a simple polyhedron.

The distinction between pure and applied mathematics did not exist in Euler’s
day, and for him the entire physical universe was a convenient object whose diverse
phenomena offered scope for his methods of analysis. The foundations of classical
mechanics had been laid down by Newton, but Euler was the principal architect. In
his treatise of 1736 he was the first to explicitly introduce the concept of a mass-
point, or particle, and he was also the first to study the acceleration of a particle
moving along any curve and to use the notion of a vector in connection with velocity
and acceleration. His continued successes in mathematical physics were so numerous,
and his influence was so pervasive, that most of his discoveries are not credited to
him at all and are taken for granted in the physics community as part of the natural
order of things. However, we do have Euler’s angles for the rotation of a rigid body,
and the all-important Euler–Lagrange equation of variational dynamics.

11.1.3 The Error Function

The error function, used extensively in statistics, is defined as

erf(x) =
1√
π

∫ x

−x

e−t2dt =
2√
π

∫ x

0

e−t2dt (11.9)

and has the property that erf(∞) = 1. The error function erf(x) gives the
area under the bell-shaped (normal) probability distribution located between
−x and +x.

11.1.4 Elliptic Functions

Recall from calculus4 that the element of length of a curve parameterized by

x = f(t), y = g(t), z = h(t), t1 ≤ t ≤ t2,

4Or from our discussion of the parametric equation of curves in Chapter 4.
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in Cartesian coordinates is

dl =
√

dx2 + dy2 + dz2 =
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt,

where prime indicates the derivative. So, the length L of the curve connecting
the initial point (f(t1), g(t1), h(t1)) to the final point (f(t2), g(t2), h(t2)) is

L =
∫ t2

t1

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt. (11.10)

The length of many curves, some very complicated-looking, can be found there is no formula
in closed form for
the circumference
of an ellipse!

analytically using Equation (11.10). However, that of a simple curve such
as an ellipse turns out to be impossible! Let us see what we get when we
try to calculate the circumference of an ellipse. The parametric equation of
an ellipse of respective semi-major and semi-minor axes a and b lying in the
xy-plane is conveniently written as

x = a sin t, y = b cos t, z = 0, 0 ≤ t ≤ 2π. (11.11)

Substitution of these equations in (11.10) yields

L =
∫ 2π

0

√
[a cos t]2 + [−b sin t]2 + [0]2 dt =

∫ 2π

0

√
a2 cos2 t + b2 sin2 t dt

=
∫ 2π

0

√
a2(1 − sin2 t) + b2 sin2 t dt = a

∫ 2π

0

√
1 − k2 sin2 t dt, (11.12)

where k2 = (a2 − b2)/a2. This innocent-looking integral does not succumb
to any technique of integration. It was this resistance to analytical solution
that prompted the nineteenth century mathematicians to study this and other
related integrals as functions in their own right.

The elliptic integral of the first kind is defined as elliptic integral of
the first kind

F (ϕ, k) ≡
∫ ϕ

0

dt
√

1 − k2 sin2 t
(11.13)

with F a function of two variables because the integral involves two parame-
ters, one appearing in the integrand and the other appearing as a limit.

The elliptic integral of the second kind is defined as elliptic integral of
the second kind

E(ϕ, k) ≡
∫ ϕ

0

√
1 − k2 sin2 t dt. (11.14)

The elliptic integral of the second kind can be interpreted as the length of
partial arcs of an ellipse. The circumference L of an ellipse with respective
semi-major and semi-minor axes a and b is simply

L = aE(2π, k) where k =
√

a2 − b2

a
.
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It is common to define the complete elliptic integral of the first and
second kinds:complete elliptic

integrals

K(k) ≡ F
(π

2
, k

)
=

∫ π/2

0

dt
√

1 − k2 sin2 t
,

E(k) ≡ E
(π

2
, k

)
=

∫ π/2

0

√
1 − k2 sin2 t dt. (11.15)

The reader may easily verify (Problem 11.10) that the total circumference of
an ellipse can be given in terms of complete elliptic integrals.

The parameterization given in Equation (11.11) is that of a horizontal
ellipse (a > b). However, one may wish to start with a vertical ellipse (a < b).
Then, as the reader may verify, one ends up with an integral similar to (11.14),
except that the coefficient of sin2 t is +k2. Would this be a new elliptic
integral? Problem 11.9 shows that the new integral can be written as a sum
of the existing elliptic integrals.

Example 11.1.2. Elliptic integrals show up in areas of physics totally unrelated
to the circumference of an ellipse. Consider a pendulum of mass m and length llarge-angle

pendulum and
elliptic integrals

displaced by an angle θ from its equilibrium position as shown in Figure 11.1. When
the angle is θ, the velocity of the pendulum is lθ̇ and its height is h. Conservation
of energy leads to

E = KE + PE = 1
2
m(lθ̇)2 + mgh = 1

2
ml2θ̇2 + mg(l − l cos θ),

where E is the total mechanical energy of the pendulum. If θm is the maximum
angular displacement, then the total energy at this angle will be just the potential
energy.5 It then follows that

1
2
m(lθ̇)2 + mgh = 1

2
ml2θ̇2 + mg(l − l cos θ) = mg(l − l cos θm),

or, after dividing both sides by ml,

1
2
lθ̇2 − g cos θ = −g cos θm. (11.16)

l

h

θ

Figure 11.1: The pendulum displaced by an arbitrary angle θ.

5The KE is zero at θm because the pendulum comes to a momentary stop there.
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The elementary treatment of the pendulum problem differentiates Equation
(11.16) with respect to time, assumes that the maximum angle—and therefore any
angle—is small, and approximates sin θ with θ in radians. This leads to

l2θ̇θ̈ + glθ̇ sin θ = 0 or θ̈ +
g

l
sin θ = 0

θ→0−→ θ̈ +
g

l
θ = 0,

which is the equation of a simple harmonic oscillator6 with ω2 = g/l or T = 2π
√

l/g.
This is the famous result—known even to Galileo—that, for small angles, the period
of oscillation is independent of the angle.

A more advanced treatment makes no approximation for the angle and simply
integrates (11.16). Assuming that θ̇ > 0, Equation (11.16) gives

dθ

dt
=

√
2g

l

√
cos θ − cos θm = 2

√
g

l

√

sin2

(
θm

2

)

− sin2

(
θ

2

)

, (11.17)

where we used the trigonometric identity cos θ = 1− 2 sin2(θ/2). Introducing a new
variable s given by

sin

(
θ

2

)

≡ sin

(
θm

2

)

sin s,

differentiating this equation with respect to t, and using Equation (11.17) yields

ds

dt
=

√
g

l

√

1 − sin2

(
θm

2

)

sin2 s. (11.18)

This leads to √
g

l
dt =

ds
√

1 − sin2(θm/2) sin2 s

which can be integrated to yield

t =

√
l

g

∫ s

0

du
√

1 − sin2(θm/2) sin2 u
≡

√
l

g
F

(

s(θ), sin
θm

2

)

, (11.19)

where s = sin−1[sin(θ/2)/ sin(θm/2)], and we have assumed that at t = 0, the angle
θ is zero and therefore s = 0 as well.

Of particular interest is the period of the oscillation which is four times the time period of a
pendulum depends
on the amplitude
of oscillation.

it takes the pendulum to go from θ = 0 to θ = θm. These values correspond to s = 0
and s = π/2. It follows that

T = 4

√
l

g

∫ π/2

0

du
√

1 − sin2(θm/2) sin2 u

≡ 4

√
l

g
F

(
π

2
, sin

θm

2

)

= 4

√
l

g
K

(

sin
θm

2

)

. (11.20)

6Recall that the equation of a simple harmonic oscillator (SHO)—such as a spring–mass
system with mass m and spring constant k—is mẍ+kx = 0 or ẍ+(k/m)x = 0. It is shown

in elementary physics that the angular frequency of this SHO is ω =
√

k/m. Thus, in
any SHO equation in which the second derivative appears with no coefficient, the coefficient
of the undifferentiated quantity is the square of the angular frequency.



326 Integrals and Series as Functions

This shows clearly that for large maximum angles, the period does depend on the
amplitude. By expanding the integrand in a power series as developed in Chapter
10, one can obtain the deviation from constant period as powers of sin2(θm/2). We
quote the result of such an expansion

T = 2π

√
l

g

(

1 +
1

4
sin2 θm

2
+

9

64
sin4 θm

2
+ · · ·

)

. (11.21)

The reader is urged to verify this result (see Problems 11.11 and 11.12). �

Historical Notes
The study of elliptical integrals can be said to have started in 1655 when Wallis
began to study the arc length of an ellipse. In fact he considered the arc lengths of
various cycloids and related these arc lengths to that of the ellipse. Both Wallis and
Newton published an infinite series expansion for the arc length of the ellipse.

In 1679 Jacob Bernoulli attempted to find the arc length of a spiral and encoun-
tered an example of an elliptic integral. He made an important step in the theory
of elliptic integrals in 1694. He examined the shape that an elastic rod will take if
compressed at the ends. He showed that the curve could be expressed in terms of
an integral, which was very similar to the one obtained by Wallis.

There is no doubt that Gauss obtained a number of key results in the theory
of elliptic functions, because many of these were found after his death in papers he
had never published. However, the acknowledged founders of the theory of elliptic
functions were Abel and Jacobi.

Niels Henrik Abel was the son of a poor pastor. As a student in Christiania
(Oslo), Norway, he had the luck to have Berndt Holmböe (1795–1850) as a teacher.
Holmböe recognized Abel’s genius and predicted when Abel was seventeen that he
would become the greatest mathematician in the world. After studying at Christia-
nia and at Copenhagen, Abel received a scholarship that permitted him to travel.
In Paris, he was presented to Legendre, Laplace, and Cauchy, but they ignored him.
Having exhausted his funds, he departed for Berlin and spent the years 1825–1827
with Crelle.

He returned to Christiania so exhausted that he found it necessary, he wrote, to
hold on to the gates of a church. To earn money he gave lessons to young students.

Niels Henrik Abel
1802–1829

He began to receive attention through his published works, and Crelle thought he
might be able to secure him a professorship at the University of Berlin. But Abel
became ill with tuberculosis and died in 1829 when he was only twenty-seven years
old.

Abel knew of the work of Euler, Lagrange, and Legendre on elliptic integrals, and
may have gotten ideas for his own work from the work of Gauss. Abel started to
write papers in 1825. He presented his major paper to the Academy of Sciences in
Paris in 1826. The paper was given to Cauchy to review it. But partly because of the
length and the difficulty of the paper and partly to favor his own work, Cauchy laid
it aside. After Abel’s death, when his fame was established, the academy searched
for the paper, found it, and published it in 1841.

The other discoverer of elliptic functions was Carl Gustav Jacob Jacobi.
Unlike Abel, he lived a quiet life. Born in Potsdam to a Jewish family, he studied at
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the University of Berlin and in 1827 became a professor at Königsberg. In 1842 he
had to give up his post because of ill health. He was given a pension by the Prussian
government and retired to Berlin, where he died in 1851. His fame was great even
during his lifetime, and his students spread his ideas to many centers.

Jacobi taught the subject of elliptic functions for many years. His approach be-
came the model according to which the theory of functions itself was developed. He
also worked in functional determinants (Jacobians), ordinary and partial differential
equations, dynamics, celestial mechanics, and fluid dynamics.

Carl Gustav Jacobi
1804–1851

Jacobi’s work on elliptic functions started in 1827 when he submitted a paper for
publication without proof. Almost simultaneously, Abel wrote his research paper on
elliptic functions. Both had arrived at the key idea of working with inverse functions
of the elliptic integrals, an idea that Abel had had since 1823. Thereafter, they both
published on the subject. But whereas Abel died in 1829, Jacobi lived to publish
much more. In particular, his Fundamenta Nova Theoriae Functionum Ellipticarum
of 1829 became a leading work on the subject.

11.2 Power Series as Functions

Differential equations have found their way into all areas of physics from the
motion of planets around the Sun to standing waves on a rope or a drum,
to electrical properties of conductors, and the behavior of electromagnetic
fields and beyond. As is always the case, no mathematics can draw more
attention than that which deals directly with Nature. The urgency of finding
solutions to these differential equations prompted many mathematicians of the
latter part of the eighteenth and the beginning of the nineteenth centuries to
concentrate heavily on certain specific differential equations. It appeared that
every differential equation dictated by Nature gave rise to a new function. The
most common scheme for solving these differential equations was to assume
a power series solution, substitute the assumed solution in the differential
equation, and determine the (unknown) coefficients from the resulting equality
of power series. We shall come back to this powerful method in Chapters 24
and 25 through 27. At this point, we want to simply give examples of solutions
(functions) of certain differential equations that were discovered in the form
of a power series.

Chapter 10 showed how known functions (such as trigonometric and log-
arithmic functions) can be represented as power series. These functions had
been known prior to the popularity of infinite series, and the origin of their
discovery lay in areas of mathematics outside calculus. One does not need a
power series to calculate sin(35◦); an appropriate right triangle and careful
measurement of its sides and hypotenuse will do the job. The functions we are
discussing here are defined in terms of power series and do not have indepen-
dent existence. With some mathematical manipulation they may be written
as a definite integral—which cannot be evaluated analytically. But that is
just as abstract as an infinite series because in the latter case, the integrals
become their definition.
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11.2.1 Hypergeometric Functions

In their studies of second-order differential equations (DE), mathematicians,
always in search of generalities, came up with the most general form of a
second-order linear DE which appeared to encompass all known DEs of phys-
ical interest. This DE, called the hypergeometric differential equation,hypergeometric

differential
equation

turned out to be7

x(1 − x)y′′ + [γ − (α + β + 1)x]y′ − αβy = 0, (11.22)

where α, β, and γ are constants.8 The series solution of this DE, called
the hypergeometric function can be written in terms of the gamma func-hypergeometric

function tion as9

F (α, β; γ; x) ≡ Γ(γ)
Γ(α)Γ(β)

∞∑

n=0

Γ(α + n)Γ(β + n)
Γ(γ + n)Γ(n + 1)

xn. (11.23)

From this series representation, we immediately note that the hyperge-
ometric function is symmetric under interchange of α and β. Furthermore,
if either α or β is a negative integer, say −m, then the denominator of the
constant outside becomes infinite by Definition 11.1.1. However, the gamma
function in the numerator of the first m terms of the sum will also be infinite.
The cancellation of these infinities [see Problem 11.4(c)] gives a nonzero sum
up to m, but the rest of the series will be zero. Therefore,

Box 11.2.1. The hypergeometric function is symmetric under interchange
of α and β: F (α, β; γ; x) = F (β, α; γ; x). Furthermore, F (−m, β; γ; x)
[and therefore F (α,−m; γ; x)] is a polynomial if m is a positive integer.

As mentioned before, many a time, the infinite series can be “integrated”
and the resulting function written in terms of an integral. In this case, we
start by multiplying and dividing the series of Equation (11.23) by Γ(γ − β)
to obtain

F (α, β; γ; x) =
Γ(γ)

Γ(α)Γ(β)Γ(γ − β)

∞∑

n=0

Γ(α + n)
Γ(n + 1)

Γ(γ − β)Γ(β + n)
Γ(γ + n)

︸ ︷︷ ︸
≡B(γ−β,β+n) by (11.7)

xn.

7For a comprehensive treatment of this differential equation, see Hassani, S. Mathemati-
cal Physics: A Modern Introduction to Its Foundations, Springer-Verlag, 1999, Chapter 14.

8Some authors use a, b, and c instead of α, β, and γ.
9Some authors use 2F1 instead of F . Our use of F to represent both the elliptic integral

of the first kind and the hypergeometric function should not cause any confusion because
the two functions have different numbers of arguments (independent variables).
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Now use Γ(n + 1) = n! and the integral representation of the beta function to
get

F (α, β; γ; x) =
Γ(γ)

Γ(α)Γ(β)Γ(γ−β)

∞∑

n=0

∫ 1

0

dt(1−t)γ−β−1tβ+n−1Γ(α+n)
xn

n!

=
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

dt(1 − t)γ−β−1tβ−1
∞∑

n=0

Γ(α + n)
Γ(α)

(tx)n

n!
.

Using the result of Problem 11.4, we can now write integral
representation of
the
hypergeometric
function

F (α, β; γ; x) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

dt(1 − t)γ−β−1tβ−1(1 − tx)−α. (11.24)

This is the integral representation of the hypergeometric function.
The generality of the hypergeometric DE results in the ability to express

many functions—both elementary and the so-called special functions of math-
ematical physics—in terms of the hypergeometric function. For example, con-
sider the complete elliptic integral of the second kind E(k). The two factors of
double factorials in both the numerator and denominator of its series expan-
sion (see Problem 11.13), together with Equation (11.5) and the hypergeomet-
ric series (11.23), hint at the possibility of writing E(k) as a hypergeometric
function. This is indeed the case. Substituting (11.5) in the expansion of
E(k) as given in Problem 11.13 yields

E(k) =
π

2

{

1 −
∞∑

n=1

Γ(n + 1
2 )Γ(n + 1

2 )π−1

Γ(n + 1)Γ(n + 1)
k2n

2(n − 1
2 )

}

=
π

2
− 1

4

∞∑

n=1

Γ(n + 1
2 )Γ(n − 1

2 )
Γ(n + 1)Γ(n + 1)

(k2)n,

where we used Γ(n + 1
2 ) = (n − 1

2 )Γ(n − 1
2 ). The sum starts with n = 1. To

make it look like a hypergeometric series, we need to include the zero term as
well. Adding and subtracting this term gives

E(k) =
π

2
− 1

4

∞∑

n=0

Γ(n + 1
2 )Γ(n − 1

2 )
Γ(n + 1)Γ(n + 1)

(k2)n +
1
4

[
Γ(1

2 )Γ(− 1
2 )

Γ(1)Γ(1)
(k2)0

]

= −1
4

∞∑

n=0

Γ(n + 1
2 )Γ(n − 1

2 )
Γ(n + 1)Γ(n + 1)

(k2)n

because Γ(− 1
2 ) = −2Γ(1

2 ) = −2
√

π by Example 11.1.1. We now note that
except for a multiplicative constant, the sum is that of the hypergeometric
function with α = 1

2 = −β and γ = 1. Inserting the multiplicative constant

Γ(1)
Γ(1

2 )Γ(− 1
2 )

=
1

(−2π)



330 Integrals and Series as Functions

we obtain
E(k) =

π

4
F

(
1
2 ,− 1

2 ; 1; k2
)
. (11.25)

The reader may verify that

K(k) =
π

4
F

(
1
2 , 1

2 ; 1; k2
)
. (11.26)

Historical Notes
Johann Carl Friedrich Gauss was the greatest of all mathematicians and perhaps
the most richly gifted genius of whom there is any record. He was born in the city of
Brunswick in northern Germany. His exceptional skill with numbers was clear at a
very early age, and in later life he joked that he knew how to count before he could
talk. It is said that Goethe wrote and directed little plays for a puppet theater when
he was six and that Mozart composed his first childish minuets when he was five,
but Gauss corrected an error in his father’s payroll accounts at the age of three. At
the age of seven, when he started elementary school, his teacher was amazed when
Gauss summed the integers from 1 to 100 instantly by spotting that the sum was
50 pairs of numbers each pair summing to 101.

His long professional life is so filled with accomplishments that it is impossible
to give a full account of them in the short space available here. All we can do is
simply give a chronology of his almost uncountable discoveries.
1792–1794: Gauss reads the works of Newton, Euler, and Lagrange; discovers the
prime number theorem (at the age of 14 or 15); invents the method of least squares;
conceives the Gaussian law of distribution in the theory of probability.
1795: (only 18 years old!) Proves that a regular polygon with n sides is constructible
(by ruler and compass) if and only if n is the product of a power of 2 and distinct

prime numbers of the form pk = 22k

+ 1, and completely solves the 2000-year old
problem of ruler-and-compass construction of regular polygons. He also discovers
the law of quadratic reciprocity.

Carl Friedrich
Gauss 1777–1855

1799: Proves the fundamental theorem of algebra in his doctoral dissertation
using the then-mysterious complex numbers with complete confidence.
1801: Gauss publishes his Disquisitiones Arithmeticae in which he creates the mod-
ern rigorous approach to mathematics; predicts the exact location of the asteroid
Ceres.
1807: Becomes professor of astronomy and the director of the new observatory at
Göttingen.
1809: Publishes his second book, Theoria motus corporum coelestium, a major
two-volume treatise on the motion of celestial bodies and the bible of planetary as-
tronomers for the next 100 years.
1812: Publishes Disquisitiones generales circa seriem infinitam, a rigorous treat-
ment of infinite series, and introduces the hypergeometric function for the first
time, for which he uses the notation F (α, β; γ; z); an essay on approximate integra-
tion.
1820–1830: Publishes over 70 papers, including Disquisitiones generales circa su-
perficies curvas, in which he creates the intrinsic differential geometry of general
curved surfaces, the forerunner of Riemannian geometry and the general theory of
relativity.
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From the 1830s on, Gauss was increasingly occupied with physics, and he en-
riched every branch of the subject he touched. In the theory of surface tension,
he developed the fundamental idea of conservation of energy and solved the earli-
est problem in the calculus of variations. In optics, he introduced the concept
of the focal length of a system of lenses. He virtually created the science of geo-
magnetism, and in collaboration with his friend and colleague Wilhelm Weber he
invented the electromagnetic telegraph. In 1839 Gauss published his fundamental
paper on the general theory of inverse square forces, which established potential
theory as a coherent branch of mathematics and in which he established the di-
vergence theorem.

Gauss had many opportunities to leave Göttingen, but he refused all offers and
remained there for the rest of his life, living quietly and simply, traveling rarely, and
working with immense energy on a wide variety of problems in mathematics and
its applications. Apart from science and his family—he married twice and had six
children, two of whom emigrated to America—his main interests were history and
world literature, international politics, and public finance. He owned a large library
of about 6000 volumes in many languages, including Greek, Latin, English, French,
Russian, Danish, and of course German. His acuteness in handling his own financial
affairs is shown by the fact that although he started with virtually nothing, he left
an estate over a hundred times as great as his average annual income during the last
half of his life.

The foregoing list is the published portion of Gauss’s total achievement; the un-
published and private part is almost equally impressive. His scientific diary, a little
booklet of 19 pages, discovered in 1898, extends from 1796 to 1814 and consists of 146
very concise statements of the results of his investigations, which often occupied him
for weeks or months. These ideas were so abundant and so frequent that he physi-
cally did not have time to publish them. Some of the ideas recorded in this diary:
Cauchy Integral Formula: Gauss discovers it in 1811, 16 years before Cauchy.
Non-Euclidean Geometry: After failing to prove Euclid’s fifth postulate at the
age of 15, Gauss came to the conclusion that the Euclidean form of geometry cannot
be the only one possible.
Elliptic Functions: Gauss had found many of the results of Abel and Jacobi (the
two main contributors to the subject) before these men were born. The facts became
known partly through Jacobi himself. His attention was caught by a cryptic passage
in the Disquisitiones, whose meaning can only be understood if one knows some-
thing about elliptic functions. He visited Gauss on several occasions to verify his
suspicions and tell him about his own most recent discoveries, and each time Gauss
pulled 30-year-old manuscripts out of his desk and showed Jacobi what Jacobi had
just shown him. After a week’s visit with Gauss in 1840, Jacobi wrote to his brother,
“Mathematics would be in a very different position if practical astronomy had not
diverted this colossal genius from his glorious career.”

A possible explanation for not publishing such important ideas is suggested by
his comments in a letter to Bolyai: “It is not knowledge but the act of learning, not
possession but the act of getting there, which grants the greatest enjoyment. When
I have clarified and exhausted a subject, then I turn away from it in order to go into
darkness again.” His was the temperament of an explorer who is reluctant to take the
time to write an account of his last expedition when he could be starting another. As
it was, Gauss wrote a great deal, but to have published every fundamental discovery
he made in a form satisfactory to himself would have required several long lifetimes.
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11.2.2 Confluent Hypergeometric Functions

The parameters α, β, and γ determine the behavior of the hypergeometric
function completely. A great number of differential equations in mathematical
physics correspond to the case where only two parameters are involved. The
most effective way of accommodating this arises from the confluence β → ∞.
Let us see how this works.

Substitute x = u/β in the hypergeometric DE using the—very simple—
chain rule to transform the x-derivatives to the u-derivatives. This leads to
the DE

u

β

(

1 − u

β

)

β2 d2y

du2 +
[

γ − (α + β + 1)
u

β

]

β
dy

du
− αβy = 0.

Dividing the entire equation by β, taking the limit β → ∞—thus neglecting
u/β and 1/β—yields the so-called confluent hypergeometric differential
equation:confluent

hypergeometric
differential
equation

xy′′ + (γ − x)y′ − αy = 0, (11.27)

where we restored x as the independent variable.
The infinite series solution of this DE is called the confluent hypergeo-

metric function. This solution, as well as its integral representation, can beconfluent
hypergeometric
function

obtained by taking the appropriate limit of the corresponding expression for
the hypergeometric function. The limit of Equation (11.23) yields

Φ(α; γ; x) ≡ lim
β→∞

F (α, β; γ; x/β) =
Γ(γ)
Γ(α)

∞∑

n=0

Γ(α + n)
Γ(γ + n)Γ(n + 1)

xn, (11.28)

where we used

Γ(β + n)
βnΓ(β)

=
(β + n − 1)(β + n − 2) · · ·βΓ(β)

βnΓ(β)

=
(

β + n − 1
β

)(
β + n − 2

β

)

· · ·
(

β

β

)
β→∞−−−−→ 1.

Similarly, we have

Φ(α; γ; x) = lim
β→∞

F (β, α; γ; x/β)

= lim
β→∞

Γ(γ)
Γ(α)Γ(γ − α)

∫ 1

0

dt(1 − t)γ−α−1tα−1

(

1 − tx

β

)−β

︸ ︷︷ ︸
→etx (Prob. 11.3)

,

where we have used the symmetry of the hypergeometric function under inter-
change of its first two parameters. It follows that the integral representationintegral

representation of
the confluent
hypergeometric
function

of the confluent hypergeometric function is

Φ(α; γ; x) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

dt(1 − t)γ−α−1tα−1etx. (11.29)
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We note that

Φ(α; α; x) =
∞∑

n=0

1
Γ(n + 1)

xn =
∞∑

n=0

xn

n!
= ex

and Problem 11.20 shows that

erf(x) =
2x√
π

Φ(1
2 ; 3

2 ;−x2).

Many other functions encountered in mathematical physics can also be ex-
pressed in terms of confluent hypergeometric functions, and we shall point
this out as we come across these functions in the sequel. We note in passing
that, as in the case of hypergeometric function,

Box 11.2.2. If α happens to be a negative integer, then Φ(α; γ; x) becomes
a polynomial, i.e., the infinite series truncates.

11.2.3 Bessel Functions

Bessel functions are arguably among the most utilized functions of mathe-
matical physics. We shall come back to them when we consider solutions of
Laplace’s equation in cylindrical coordinates and discover their connection
with other functions treated in this chapter. At this point, we simply intro-
duce them as power series. The Bessel function Jν(x) of order ν is a solution
of the Bessel differential equation: Bessel differential

equation

x
d2y

dx2 +
dy

dx
+

(

x − ν2

x

)

y = 0. (11.30)

Chapter 27 shows how to obtain the power series expansion of Jν(x):

Jν(x) =
(x

2

)ν ∞∑

k=0

(−1)k

k!Γ(ν + k + 1)

(x

2

)2k

. (11.31)

The point to emphasize is that

Box 11.2.3. Bessel functions are always given in terms of their expan-
sion in power series (or as an integral involving parameters). It is gener-
ally impossible to reduce Bessel functions to any functional combination
of more elementary functions such as polynomials, or trigonometric and
exponential functions.
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Properties and applications of Bessel functions are treated in some detail in
Chapter 27.10 However, some relations are elementary enough to be included
here, as they also illustrate the use of summation symbols. First note that if
ν is an integer −m, then

J−m(x) =
(x

2

)−m ∞∑

k=0

(−1)k

k!Γ(−m + k + 1)

(x

2

)2k

=
(x

2

)−m ∞∑

k=m

(−1)k

k!Γ(−m + k + 1)

(x

2

)2k

because the first m terms of the first series have gamma functions in the
denominator with negative integer (or zero) arguments. Now in the second
series, replace k by n = k − m. This yields

J−m(x) =
(x

2

)−m ∞∑

n=0

(−1)m+n

(m + n)!Γ(n + 1)

(x

2

)2m+2n

(11.32)

= (−1)m
(x

2

)m ∞∑

n=0

(−1)n

Γ(m + n + 1)n!

(x

2

)2n

= (−1)mJm(x),

where we used Γ(j + 1) = j! for positive integer j.

Example 11.2.1. Bessel functions of half-integer order are related to trigonomet-
ric functions. To see this, note that

J1/2 =
(x

2

)1/2
∞∑

k=0

(−1)k

k!Γ(k + 3
2
)

(x

2

)2k

=
(x

2

)−1/2
∞∑

k=0

(−1)k

k!Γ(k + 3
2
)22k+1

x2k+1.

Now substitute for Γ(k+ 3
2
) in terms of factorials as given in Problem 11.1 to obtain

J1/2 =
(x

2

)−1/2 1√
π

∞∑

k=0

(−1)k

(2k + 1)!
x2k+1

︸ ︷︷ ︸
=sin x

=

(
2

πx

)1/2

sin x.

Similarly,

J−1/2 =

(
2

πx

)1/2

cos x

as the reader may verify.
�

10See also Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, Section 14.5.
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Another formula of interest is a recursion relation connecting Bessel func-
tions of different integer orders. Write Jm−1(x) as

Jm−1(x) =
(x

2

)m−1 ∞∑

k=0

(−1)k

k!Γ(m + k)

(x

2

)2k

(11.33)

=
(x

2

)m−1
[

1
Γ(m)

+
∞∑

k=1

(−1)k

k!Γ(m + k)

(x

2

)2k
]

,

where we separated the k = 0 term from the rest of the sum. Similarly, write
Jm+1(x) as

Jm+1(x) =
(x

2

)m+1 ∞∑

k=0

(−1)k

k!Γ(m + k + 2)

(x

2

)2k

=
(x

2

)m+1 ∞∑

j=1

(−1)j−1

(j − 1)!Γ(m + j + 1)

(x

2

)2j−2

(11.34)

= −
(x

2

)m−1 ∞∑

k=1

(−1)k

(k − 1)!Γ(m + k + 1)

(x

2

)2k

,

where in the second line, we substituted j = k + 1 for k, and in the last line,
we used (−1)−1 = −1, factored (x/2)−2 out of the summation, and changed
the dummy index back to k. Now add Equations (11.33) and (11.34) and use

1
k!Γ(m + k)

− 1
(k − 1)!Γ(m + k + 1)

=
m

k!Γ(m + k + 1)
,

and 1/Γ(m) = m/Γ(m + 1) to obtain

Jm−1(x) + Jm+1(x) =
(x

2

)m−1
[

m

Γ(m + 1)
+

∞∑

k=1

(−1)km

k!Γ(m + k + 1)

(x

2

)2k
]

= m
(x

2

)−1
[
(x

2

)m ∞∑

k=0

(−1)k

k!Γ(m + k + 1)

(x

2

)2k
]

︸ ︷︷ ︸
=Jm(x)

or, finally,

Jm−1(x) + Jm+1(x) =
2m

x
Jm(x). (11.35)

The straightforward details are left as Problem 11.22. One can also show that

Jm−1(x) − Jm+1(x) = 2J ′
m(x), (11.36)

where prime indicates differentiation. Equations (11.35) and (11.36) lead to

Jm−1(x) =
m

x
Jm(x) + J ′

m(x),

Jm+1(x) =
m

x
Jm(x) − J ′

m(x). (11.37)

These plus the results of Example 11.2.1 give all Bessel functions of half-
integer order.
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11.3 Problems

11.1. (a) Show that (see Definition 11.1.2 for the definition of the following
notation):

(2n)!! = 2nn! and (2n − 1)!! =
(2n)!
2nn!

.

Hint: For the second relation, supply the missing even factors in the “numer-
ator” and the “denominator” of (2n − 1)!!
(b) Using (a) and Example 11.1.1, show that

Γ(n + 1
2 ) =

(2n − 1)!!
2n

√
π =

(2n)!
22nn!

√
π.

(c) Now use (b) to obtain the following result:

Γ(n + 3
2 ) =

(2n + 1)!
22n+1n!

√
π.

11.2. Using the result of Problem 11.1, show that

(2n + m)! =
1√
π

22n+mΓ
(
n +

m

2
+ 1

)
Γ
(

n +
m + 1

2

)

.

Hint: Consider the two cases of even m (with m = 2k) and odd m (with
m = 2k + 1) separately, and show at the end that both can be written as a
single formula.

11.3. Using the result

lim
n→∞

(

1 +
1
n

)n

= e

show that

lim
n→∞

(

1 − t

n

)n

= e−t.

Hint: Let n = −tm.

11.4. (a) By using Equation (11.2) repeatedly, show that

Γ(a + n) = (a + n − 1)(a + n − 2) · · · (a + n − k)Γ(a + n − k).

(b) Let k = n in the above equation to show that

a(a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
.

(c) Using (b) show that

α(α − 1) · · · (α − n + 1) = (−1)n Γ(n − α)
Γ(−α)

.
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11.5. Show that
Γ(x) = 2

∫ ∞

0

e−t2t2x−1 dt

and

Γ(x) =
∫ 1

0

{

ln
(

1
t

)}x−1

dt.

11.6. Find the following integrals in terms of the gamma function:

(a)
∫ ∞
0

t2x+1e−at2 dt. (b)
∫ ∞
0

t2xe−at2 dt.

11.7. Using only its integral representation, show that beta function is sym-
metric under interchange of its arguments.

11.8. Using the definition of the gamma function, show the justification for
the frequently used equality 0! = 1.

11.9. Show that
∫ ϕ

0

√
1 + k2 sin2 t dt =

√
1 + k2

[
E(k′) − E

(π

2
− ϕ, k′

)]
,

where k′ = k/
√

1 + k2. Hint: Change t to s = π/2 − t and break up the
interval of integration of the resulting integral into two.

11.10. Show that the circumference of an ellipse of respective semi-major and
semi-minor axes a and b is 4aE(k) where k =

√
a2 − b2/a. Verify that you

get the expected result when a = b.

11.11. (a) Expand the square roots in the definition of the elliptic integrals
of the first and second kinds in powers of k2 sin2 t, and keep the first three
terms.
(b) Now integrate those terms to find an approximation to elliptic integrals
for small k.
(c) Substitute π/2 for ϕ to obtain approximation for the complete elliptic
integrals.

11.12. Use the result of Problem 11.11 to obtain Equation (11.21).

11.13. Use the integral
∫ π/2

0

sin2n t dt =
(2n − 1)!!

(2n)!!
π

2

to show that

E(k) =
π

2

{

1 −
∞∑

n=1

[
(2n − 1)!!

(2n)!!

]2
k2n

2n − 1

}

,

K(k) =
π

2

{

1 +
∞∑

n=1

[
(2n − 1)!!

(2n)!!

]2

k2n

}

.
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11.14. Show that E(0) = K(0) = π/2, and that E(1) = 1, K(1) = ∞.

11.15. Use the ratio test on the hypergeometric series to determine its radius
of convergence.

11.16. Verify that the complete elliptic integral of the first kind is related to
the hypergeometric function as follows:

K(k) =
π

4
F

(
1
2 , 1

2 ; 1; k2
)
.

11.17. Show that ln(1 + x) = xF (1, 1; 2;−x).

11.18. Use the result of Problem 11.4 to express Equation (10.15) of Chapter
10 in terms of the gamma function; then show that

(1 + x)α =
∞∑

n=0

Γ(n − α)
Γ(−α)Γ(n + 1)

(−x)n = F (−α, β; β;−x)

for arbitrary β.

11.19. By using integral representations:
(a) Show that

B(a, b) =
Γ(a)Γ(b + r)
Γ(a + b + r)

F (a, r; a + b + r; 1),

where B is the beta function and r is any real number. Choose r appropriately
and show that

B(a, b) =
1
a
F (a, 1 − b; a + 1; 1).

(b) Also prove that

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α − β)
Γ(γ − α)Γ(γ − β)

.

11.20. Expand the integrand of erf(x) in its Maclaurin series and use

2n + 1 = 2(n + 1
2 ) =

Γ(3
2 )

Γ(1
2 )

to show that
erf(x) =

2x√
π

Φ(1
2 ; 3

2 ;−x2).

11.21. Using the same procedure as in Example 11.2.1, show that

J−1/2 =
(

2
πx

)1/2

cosx.
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11.22. Show that

1
k!Γ(m + k)

− 1
(k − 1)!Γ(m + k + 1)

=
m

k!Γ(m + k + 1)

and use it to derive Equation (11.35).

11.23. Derive Equation (11.36).

11.24. Find J3/2(x) and J−3/2(x). Hint: Use Equation (11.37).
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Analysis of Vectors





Chapter 12

Vectors and Derivatives

One of the basic tools of physics is the calculus of vectors. A great variety
of physical quantities are vectors which are functions of several variables such
as space coordinates and time, and, as such, are good candidates for mathe-
matical analysis. We have already encountered examples of such analyses in
our treatment of the integration of vectors as in calculating electric, magnetic,
and gravitational fields. However, vector analysis goes beyond simple vector
integration. Vectors have a far richer structure than ordinary numbers, and,
therefore, allow a much broader range of concepts.

Fundamental to the study of vector analysis is the notion of field, with
which we have some familiarity based on our study of Chapters 1 and 4.
Fields play a key role in many areas of physics: In the motion of fluids, in the
conduction of heat, in electromagnetic theory, in gravitation, and so forth. All
these situations involve a physical quantity that varies from point to point as
well as from time to time,1 i.e., it is a function of space coordinates and time.
This physical quantity can be either a scalar, in which case we speak of a
scalar field, or a vector, in which case we speak of a vector field. There are scalar and vector

fieldsalso tensor fields, which we shall discuss briefly in Chapter 17, and spinor
fields, which are beyond the scope of this book.

The temperature of the atmosphere is a scalar field because it is a function
of space coordinates—equator versus the poles—and time (summer versus
winter), and because temperature has no direction associated with it. On the
other hand, wind velocity is a vector field because (a) it is a vector and (b) its
magnitude and direction depend on space coordinates and time. In general,
when we talk of a vector field, we are dealing with three functions of space
and time, corresponding to the three components of the vector.

1In many instances fields are independent of time in which case we call them static
fields.
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12.1 Solid Angle

Before discussing the calculus of vectors, we want to introduce the concept of
a solid angle which is an important and recurrent concept in mathematical
physics, especially in the discussion of vector calculus.

12.1.1 Ordinary Angle Revisited

We start with the concept of angle from a new perspective which easily gener-
alizes to solid angle. Consider a curve and a point P in a plane. The point Pconcept of angle

reexamined is taken to lie off the curve [Figure 12.1(a)]. An arbitrary segment of the curve
defines an angle which is obtained by joining the two ends of the segment to
P . In particular, an element of length along the curve defines an infinitesimal
angle. We want to relate the length of this element to the size of its angle
measured in radians.

Connect P to the midpoint of the infinitesimal line element of length Δl,
and call the resulting vector R with the corresponding unit vector êR as shown
in Figure 12.1(a).2 Let the angle between êR and the unit normal3 to the
length element ên be α. As shown in the magnified diagram of Figure 12.1(b),
α is also the angle between the line element QQ′ and the line segment obtained
by dropping a perpendicular QH onto the ray PQ′. It is clear from the
diagram that

QH = QQ′ cosα ⇒ QH = Δl cosα = Δl êR · ên.

Now recall that the measure of an angle in radians is given by the ratio of
the length of the arc of a circle subtended by the angle to the radius of the
circle, and this measure is independent of the size of the circle chosen. To
find the measure of Δθ in radians, let us choose a circle of radius R = |R|,

(a) (b)

P

eR
^

R

Δθ

Q 

Q

en
^

' en
^

α

Q

C

C 

H α

to
  Pto

  P

Q 
eR
^

'

'

'

dl cos α

dl

O

r

r

Figure 12.1: Defining angles as ratios of lengths.

2In actual calculations, it is convenient to denote the position vector of P by r, say, and
that of the midpoint by r′. Then R = r′ − r.

3There are two possible directions for this unit normal: one as shown in Figure 12.1,
and the other in the opposite direction. As long as we deal with open curves (no loops)
this arbitrariness persists.
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the distance from P to the midpoint of the line element. The arc of this circle
subtended by Δθ is CC′, and the figure shows that the length of this arc is
very nearly equal to QH. One can think of CC′ as the projection of the line
element onto the circle. Thus,

Δθ ≈ QH

R
=

Δl êR · ên

R
.

If we denote the location of P by r and that of Δl by r′, then

R = r′ − r, êR =
r′ − r
|r′ − r| ,

and we obtain

Δθ =
Δl(r′) ên · (r′ − r)

|r′ − r|2 , (12.1)

where we have emphasized the dependence of Δl on r′.
For a finite segment of the curve, we integrate to obtain the angle. This

yields angle as integral

θ =
∫ b

a

dl êR · ên

R
=

∫ b

a

dl(r′) ên · (r′ − r)
|r′ − r|2 , (12.2)

where a and b are the beginning and the end of the finite segment. There is a
way of calculating this finite angle which, although extremely simple-minded,
is useful when we generalize to solid angle. Since the size of the circle used to
measure the angle is irrelevant, let us choose a single fiducial circle of radius a
centered at P (see Figure 12.2). Then, as we project elements of length from
the curve, we obtain infinitesimal arcs of this circle with the property that

dθ =
dl êR · ên

R
=

dlc
a

,

where dlc is the element of arc of the fiducial circle. From this equation, we
obtain

θ =
∫ b′

a′

dlc
a

=
1
a

∫ b′

a′
dlc =

s

a
, (12.3)

where a′ and b′ are projections of a and b on the circle, and s is the length of
the arc from a′ to b′. This last relation is, of course, our starting point where
we defined the measure of an angle in radians!

Of special interest is the case where the curve loops back on itself. For
such a case, the direction of ên is predetermined by

Box 12.1.1. (Convention). We agree that for angle calculations, the
unit normal shall always point out of a closed loop.
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P
a

b

a 

b ′

′
P

(a) (b)
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^

eR
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en
^

Figure 12.2: Total angle subtended by a closed curve about a point (a) inside and (b)

outside.

If P happens to be inside the loop [Figure 12.2(a)], the total angle, corre-
sponding to a complete traversal of the loop, is

θ =
s

a
=

2πa

a
= 2π.

When P is outside, we get θ = 0. This can be seen in Figure 12.2(b) where the
projection of the closed curve covers only a portion of the fiducial circle and it
does so twice, once with a positive sign—when êR and ên are separated by an
acute angle—and once with a negative sign—when êR and ên are separated
by an obtuse angle. Let us denote by θC

P the total angle subtended by the
closed curve C about a point P and by U the region enclosed by C. Then,
we havetotal angle at a

point subtended
by a closed curve θC

P =

{
2π if P is in U,

0 if P is not in U.
(12.4)

Example 12.1.1. Point P is located outside a rectangle of sides 2a and 2b as
shown in Figure 12.3. We want to verify Equation (12.4). The integration is nat-
urally divided into four regions: right, top, left, and bottom. We shall do the

2a

2b

y0

P

y

xO

′r
r

α
β

A

B
C

D

θr

Figure 12.3: Total angle subtended by a rectangle about a point outside.
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right-hand-side integration in detail, leaving the rest for the reader to verify. For
the right side we have r = y0êy , r′ = aêx + y′êy , and

dl = +dy′, R = r′ − r = 〈a, y′ − y0〉, ên = êx.

Therefore,

dθr =
dl êR · ên

R
=

dy′ R · êx

R2
=

a dy′

a2 + (y′ − y0)2
,

and the total integrated angle for the right side is

θr = a

∫ b

−b

dy′

a2 + (y′ − y0)2
=

=∠ CBP
︷ ︸︸ ︷

tan−1

(
y0 + b

a

)

−

=∠ DAP
︷ ︸︸ ︷

tan−1

(
y0 − b

a

)

=
π

2
− α −

(π

2
− β

)
= β − α.

Similarly, one can easily show that θt = −2β, θl = β − α, and θb = 2α, where t
stands for “top,” l for “left,” and b for “bottom.” The total subtended angle is,
therefore zero, as expected. Note that only for the top side is the angle between ên

and êR obtuse, and this fact results in the negative value for θt. �

The purpose of the whole discussion of the ordinary angle in such a high-
brow fashion and detail has been to lay the ground work for the introduction
of the solid angle. As we shall see shortly, a good understanding of the new
properties of the ordinary angle discussed above makes the transition to the
solid angle almost trivial.

12.1.2 Solid Angle

We are now ready to generalize the notion of the angle to one dimension
higher. Instead of a curve we have a surface, instead of a line element we have
an area element, and instead of dividing by R we need to divide by R2. This
last requirement is necessary to render the “angle” dimensionless. Referring
to Figure 12.4, solid angle defined

R

eR
^

P

en
^

O
r

r'

Figure 12.4: Solid angle as the ratio of area to distance squared.
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Box 12.1.2. We define the solid angle subtended by the element of area
Δa as

ΔΩ ≈ Δa ên · êR

R2
=

êR · Δa
R2

=
(r′ − r) · Δa

|r′ − r|3 ,

where ên is the unit normal to the surface and Δa ≡ ênΔa(r′).

The numerator is simply the projection of Δa onto a sphere of radius R
as Figure 12.5 shows. This projection is obtained by the intersection of the
fiducial sphere and the rays drawn from P to the boundary of Δa. As in the
case of the angle, the choice of fiducial sphere is arbitrary. The integral form
of the above equation is

Ω =
∫ ∫

S

êR · da
R2

=
∫ ∫

S

R · da
R3

=
∫ ∫

S

(r′ − r) · da(r′)
|r′ − r|3 , (12.5)

where S is the surface subtended by the solid angle Ω.

Box 12.1.3. (Convention). For any closed surface S, we take ên to be
pointing outward.

If we use a single fiducial sphere of radius b for all points of S, we obtain

Ω =
∫ ∫

Sb

da

b2
=

1
b2

∫ ∫

Sb

da =
A

b2
, (12.6)

where Sb is the projection of S onto the fiducial sphere and A its area. This
equation is the analog of Equation (12.3) and can be used to define the measure

R

eR
^

P

en
^

Figure 12.5: The relation between the êR ·Δa and its projection on a fiducial sphere.
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of solid angles. In particular, if the surface S is closed and P is inside, then
A will be the total area of the fiducial sphere and we get Ω = 4πb2/b2 = 4π.
When P is outside, we get equal amounts of positive and negative contribu-
tions with the net result of zero. total solid angle at

a point subtended
by a closed surfaceTheorem 12.1.2. Denote by ΩS

P the total solid angle subtended by the closed
surface S about a point P and by V the region enclosed by S. Then,

ΩS
P =

{
4π if P is in V,

0 if P is not in V.
(12.7)

Example 12.1.3. As an example of the calculation of the solid angle, consider a
square of side 2a with the point P located a distance z0 from its center as shown in
Figure 12.6. With r = 〈0, 0, z0〉 and r′ = 〈x′, y′, 0〉, we have R = r′−r = 〈x′, y′,−z0〉,
and assuming that ên points in the negative z-direction,4 we have

dΩ =
da ên · êR

R2
=

dx′ dy′ (−êz) · R
R3

=
z0 dx′ dy′

(x′2 + y′2 + z2
0)

3/2
.

The solid angle is obtained by integrating this:

Ω = z0

∫ a

−a

dx′
∫ a

−a

dy′

(x′2 + y′2 + z2
0)

3/2

= 2az0

∫ a

−a

dx′
√

x′2 + a2 + z2
0 (x′2 + z2

0)
= 4 tan−1

(
a2

z0

√
2a2 + z2

0

)

.

An interesting special case is when z0 = a. Then

Ω = 4 tan−1

(
a2

a
√

3a2

)

= 4 tan−1

(
1√
3

)

= 4(π/6) = 2π/3.

The last result can also be derived in a simpler way. When z0 = a, the point P will
be at the center of a cube of side 2a. Since the total solid angle subtended about P
is 4π, and all six sides contribute equally, the solid angle subtended by one side is
4π/6. �

r

P

2a

r'

Figure 12.6: The solid angle subtended by a square of side 2a.

4This assumption is not forced by any convention. It is chosen to make the final result
positive.
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Example 12.1.4. Let us replace the square of the last example with a circle of
radius a. We can proceed along the same lines as before. However, in this particular
case, we note that the solid angle is in the shape of a cone which is one of the
primary surfaces of the spherical coordinate system. Placing the origin at P and
projecting the area on a fiducial sphere, of radius b say, we may write

Ω =
Ab

b2
=

2πb2(1 − cos α)

b2
= 2π(1 − cos α),

where Ab ≡ 2πb2(1− cos α) is the area of the projection of the circle on the fiducial
sphere. The half-angle of the cone is denoted by α with

tan α =
a

z0
⇒ cos α =

z0√
a2 + z2

0

.

The final result is

Ω = 2π

(

1 − z0√
a2 + z2

0

)

. (12.8)

It is instructive to obtain this result directly as in the previous example. �

12.2 Time Derivative of Vectors

Scalar and vector fields can be subjected to such analytic operations as differ-
entiation and integration to obtain new scalar and vector fields. The deriva-
tive of a vector with respect to a variable (say time) in Cartesian coordinates
amounts to differentiating each component:

∂A
∂t

=
∂Ax

∂t
êx +

∂Ay

∂t
êy +

∂Az

∂t
êz. (12.9)

In other coordinate systems, one needs to differentiate the unit vectors as well.
In general, the derivative of a vector is defined in exactly the same manner

as for ordinary functions. We have to keep in mind that a vector physical
quantity, such as an electric field, is a function of space and time, i.e., its
components are real-valued functions of space and time. So, consider a vector
A which is a function of a number of independent variables (t1, t2, . . . , tm).
Then, we define the partial derivative as before:

∂A
∂tk

(a1, a2, . . . , an)

≡ lim
ε→0

A(a1, . . . , ak + ε, . . . , an) − A(a1, . . . , ak, . . . , an)
ε

.

(12.10)

As immediate consequences of this definition, we list the following useful
relations:

∂

∂tk
(fA) =

∂f

∂tk
A + f

∂A
∂tk

,

∂

∂tk
(A · B) =

∂A
∂tk

·B + A · ∂B
∂tk

, (12.11)

∂

∂tk
(A × B) =

∂A
∂tk

× B + A × ∂B
∂tk

.



12.2 Time Derivative of Vectors 351

These relations can be used to calculate the derivatives of vectors when written
in terms of unit vectors, keeping in mind that the derivative of a unit vector
is not necessarily zero! Only Cartesian unit vectors are constant vectors, and only Cartesian

unit vectors are
constant.

for purposes of differentiation, it is convenient to write vectors in terms of
these unit vectors, perform the derivative operation, and then substitute for
êx, êy, and êz in terms of other—spherical or cylindrical—unit vectors.

Example 12.2.1. A vector whose magnitude is constant is always perpendicular
to its derivative. This can be easily proved as follows:

A · A = const. ⇒ ∂

∂tk
(A · A) =

∂

∂tk
(const.) = 0.

On the other hand, the LHS can be evaluated using the second relation in Equation
(12.11). This gives

∂

∂tk
(A · A) =

∂A

∂tk
· A + A · ∂A

∂tk
= 2A · ∂A

∂tk
.

These two equations together imply that A and (∂/∂tk)(A) are perpendicular to
one another. �

An important consequence of the example above is that

Box 12.2.1. A unit vector is always perpendicular to its derivative.

Example 12.2.2. Newton’s second law for a collection of particles leads directly
to the corresponding law for rotational motion. Differentiating the total angular
momentum

L =

N∑

k=1

rk × pk,

with respect to time and using the second law, Fk = dpk/dt, for the kth particle,
we get

dL

dt
=

N∑

k=1

d

dt
(rk × pk) =

N∑

k=1

(ṙk × pk + rk × ṗk) =
N∑

k=1

(0 + rk ×Fk) ≡ T,

where an overdot indicates the derivative with respect to time and in the last line
we used the definition of torque and the fact that velocity ṙk and momentum pk

have the same direction. �

As a special case of the example above, we obtain the law of angular
momentum conservation: angular

momentum
conservation

Box 12.2.2. When the total torque on a system of particles vanishes, the
total angular momentum will be a constant of motion. This means that
its components in a Cartesian coordinate system are constant.

Since the unit vectors in other coordinate systems are not, in general, constant,
a constant vector has variable components in these systems.
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12.2.1 Equations of Motion in a Central Force Field

When one discusses the central-force problems in mechanics, for instance in
the study of planetary motion, one uses spherical coordinates to locate the
moving object. Thus, the position vector of the object, say a planet, is given
in terms of spherical unit vectors. Newton’s second law, on the other hand,
requires a knowledge of the second time-derivative of the position vector.

In this subsection we find the second derivative of the position vector of
a moving point particle P with respect to time in spherical coordinates. The
coordinates (r, θ, ϕ) of P are clearly functions of time. First we calculate
velocity and write it in terms of the spherical unit vectors

v =
dr
dt

=
d

dt
(r) =

d

dt
(rêr) = êr

dr

dt
+ r

dêr

dt
.

We thus have to find the time-derivative of the unit vector êr. The most
straightforward way of taking such a derivative is to use the chain rule:

dêr

dt
=

∂êr

∂r

dr

dt
+

∂êr

∂θ

dθ

dt
+

∂êr

∂ϕ

dϕ

dt
= θ̇

∂êr

∂θ
+ ϕ̇

∂êr

∂ϕ
,

where we have used the fact that the spherical unit vectors are independent
of r [see Equation (1.39)]. We now evaluate the partial derivatives using (1.39)
and noting that the Cartesian unit vectors are constant:

∂êr

∂θ
= êx

∂

∂θ
(sin θ cosϕ) + êy

∂

∂θ
(sin θ sin ϕ) + êz

∂

∂θ
(cos θ)

= êx cos θ cosϕ + êy cos θ sin ϕ − êz sin θ. (12.12)

We are interested in writing all vectors in terms of spherical coordinates. A
straightforward way is to substitute for the above Cartesian unit vectors, their
expressions in terms of spherical unit vectors. We can easily calculate such
expressions using the method introduced at the end of Chapter 1. We leave
the details for the reader and merely state the results:

êx = êr sin θ cosϕ + êθ cos θ cosϕ − êϕ sinϕ,

êy = êr sin θ sin ϕ + êθ cos θ sin ϕ + êϕ cosϕ, (12.13)
êz = êr cos θ − êθ sin θ.

Substituting these expressions in the previous equation, we get

∂êr

∂θ
= (êr sin θ cosϕ + êθ cos θ cosϕ − êϕ sinϕ) cos θ cosϕ

+ (êr sin θ sin ϕ + êθ cos θ sin ϕ + êϕ cosϕ) cos θ sinϕ

− (êr cos θ − êθ sin θ) sin θ,

which simplifies to
∂êr

∂θ
= êθ. (12.14)
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We could have immediately obtained this result by comparing Equation (12.12)
with the expression for êθ in Equation (1.39). The other partial derivative is
obtained the same way:

∂êr

∂ϕ
= êx

∂

∂ϕ
(sin θ cosϕ) + êy

∂

∂ϕ
(sin θ sin ϕ) + êz

∂

∂ϕ
(cos θ)

= −êx sin θ sinϕ + êy sin θ cosϕ

= − (êr sin θ cosϕ + êθ cos θ cosϕ − êϕ sin ϕ) sin θ sin ϕ

+ (êr sin θ sin ϕ + êθ cos θ sin ϕ + êϕ cosϕ) sin θ cosϕ

= êϕ sin θ. (12.15)

Substituting this and Equation (12.14) in the expression for velocity, we obtain components of
velocity in
spherical
coordinates

v = êr ṙ + r

(

θ̇
∂êr

∂θ
+ ϕ̇

∂êr

∂ϕ

)

= êr ṙ + êθrθ̇ + êϕrϕ̇ sin θ. (12.16)

To write the equations of motion, we need to calculate the acceleration
which involves the differentiation of other unit vectors. The procedure out-
lined for êr can be used to obtain the partial derivatives of the other unit vec-
tors. We collect the result of such calculations, including Equations (12.14)
and (12.15) in the following:

∂êr

∂r
= 0,

∂êr

∂θ
= êθ,

∂êr

∂ϕ
= êϕ sin θ,

∂êθ

∂r
= 0,

∂êθ

∂θ
= −êr,

∂êθ

∂ϕ
= êϕ cos θ, (12.17)

∂êϕ

∂r
= 0,

∂êϕ

∂θ
= 0,

∂êϕ

∂ϕ
= −êr sin θ − êθ cos θ.

Similarly the time-derivatives of the unit vectors are given as follows:

dêr

dt
= θ̇êθ + ϕ̇ sin θêϕ,

dêθ

dt
= −θ̇êr + ϕ̇ cos θêϕ, (12.18)

dêϕ

dt
= −ϕ̇ sin θêr − ϕ̇ cos θêθ.

Differentiating Equation (12.16) with respect to t, inserting (12.18) in the
result, and collecting the components, we get components of

acceleration in
spherical
coordinates

d2r
dt2

=
dv
dt

= êr

(
r̈ − rθ̇2 − rϕ̇2 sin2 θ

)

+ êθ

(

ṙθ̇ +
d

dt
(rθ̇) − rϕ̇2 sin θ cos θ

)

(12.19)

+ êϕ

(

ṙϕ̇ sin θ + rθ̇ϕ̇ cos θ +
d

dt
(rϕ̇ sin θ)

)

.
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One can use these expressions to write Newton’s second law in spherical
coordinates.

Now suppose that a particle (a planet) is under the influence of a central
force, i.e., a force that always points toward, or away from, an origin (the
Sun), and has a magnitude that is a function of the distance between the
particle and the origin. This means that, in spherical coordinates, the force
is of the form F = êrF (r). The second law of motion now yields

m
d2r
dt2

= êrF (r) ⇒ d2r
dt2

= êr
F (r)
m

≡ êrf(r)

which, together with Equation (12.19), givescentral-force
problem in
spherical
coordinates

r̈ − rθ̇2 − rϕ̇2 sin2 θ = f(r),

ṙθ̇ +
d

dt
(rθ̇) − rϕ̇2 sin θ cos θ = 0, (12.20)

ṙϕ̇ sin θ + rθ̇ϕ̇ cos θ +
d

dt
(rϕ̇ sin θ) = 0.

These equations are the starting point of the study of planetary motion.
We shall not pursue their solution at this point, but consider some of their
general properties, using angular momentum conservation. Since the force
has only an êr component, its torque vanishes:angular

momentum is
conserved in
motions caused by
central forces.

T = r × F = r êr × (F (r)êr) = rF (r)êr × êr = 0.

Therefore, by Box 12.2.2, the angular momentum of the particle relative to
the origin is a constant vector. Equation (12.16) now yields

L = r × (mv) = mr êr ×
(
êr ṙ + êθrθ̇ + êϕrϕ̇ sin θ

)

= mr2 êr × (êθ θ̇ + êϕϕ̇ sin θ) = mr2(êϕθ̇ − êθϕ̇ sin θ)

= mr2θ̇(−êx sinϕ + êy cosϕ)

− mr2ϕ̇ sin θ(êx cos θ cosϕ + êy cos θ sin ϕ − êz sin θ)
= Lxêx + Lyêy + Lzêz,

where Lx, Ly, and Lz are the constant Cartesian components of angular
momentum and m is the mass of the particle. Equating the components of
this vectorial relation gives

Lx = −mr2(θ̇ sin ϕ + ϕ̇ sin θ cos θ cosϕ),

Ly = mr2(θ̇ cosϕ − ϕ̇ sin θ cos θ sin ϕ), (12.21)

Lz = mr2ϕ̇ sin2 θ.

The last equation gives

ϕ̇ =
Lz

mr2 sin2 θ
. (12.22)
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From all of these relations, we obtain

L2 = L2
x + L2

y + L2
z = m2r4θ̇2 +

L2
z

sin2 θ
. (12.23)

Now suppose that we choose our coordinate axes so that initially, i.e., at
t = 0, both the position and the velocity vectors of the particle lie in the xy-
plane. Since L is perpendicular to both r and v, it must be initially entirely
in the z-direction. Conservation of angular momentum implies that L will
always be in the z-direction. In particular, L2 = L2

z. Substituting this in
Equation (12.23) yields

L2 = m2r4θ̇2 +
L2

sin2 θ
⇒ 0 = m2r4θ̇2 +

L2

sin2 θ
− L2

or 0 = m2r4θ̇2 + L2 cot2 θ. Neither of the two terms on the RHS of this
equation is negative. Thus, for their sum to be zero, each term must be zero.
It follows that

m2r4θ̇2 = 0 ⇒ θ̇ = 0 ⇒ θ = const.,

L2 cot2 θ = 0 ⇒ cot2 θ = 0 ⇒ θ = π/2,

assuming that r �= 0 and L �= 0. These relations hold for all times. Thus, proof that planets
move in a planethe particle is confined to a plane, our xy-plane, for eternity! This is why the

planets do not wobble “up and down” out of their orbital planes.5

If we substitute π/2 for θ and use (12.22) for ϕ̇ in Equation (12.20), then
the second and third relations are satisfied identically, and the first relation
becomes

r̈ − L2

m2r3
= f(r) (12.24)

which is a single differential equation in one variable. The general problem
of a particle’s motion in three dimensions has reduced to a one-dimensional
problem.

12.3 The Gradient

Analysis of vectors deals with the derivatives and integrals of vector fields.
Because of its simplicity, we shall work in a Cartesian coordinate system at
the beginning, and later generalize to other coordinates.

In many situations arising in physics, rates of change of certain scalar
functions with distance are of importance. For instance, the way potential
energy changes as we move in space is directly related to the force producing
the potential energy. Similarly, the rate of change—derivative—of the elec-
trostatic potential with respect to distance gives the electrostatic field. The
concept of gradient makes precise the vague notion of a derivative with respect
to distance.

5Actually, the planets, due to the influence of other planets, do wobble out of their
orbits. But this is a very small effect.
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y

x

f (x) Δx
Δ f

x0 x0 + Δx

Figure 12.7: “Gradient” or differentiation with respect to distance in one dimension.

Let us analyze the notion of differentiation with respect to distance, start-
ing with one variable. In Figure 12.7, a function f(x) has an increment, Δf ,notion of ordinary

derivative
reexamined

corresponding to a change Δx in x. If Δx is small enough, we can write

Δf ≈
(

df

dx

)

x=x0

Δx.

This shows that (df/dx)x=x0 is a measure of how fast the function f is chang-
ing at the point x0.

With one variable, there is no ambiguity in defining the derivative, because
there is only one line along which we can change x, the only coordinate. With
two or more variables, the situation is completely different, as illustrated
in Figure 12.8. A point P0 = (x0, y0) in the xy-plane is shown with the
corresponding value of the function, f(x0, y0) = z0. Out of the infinitude ofnotion of gradient

analyzed points that are close to P0 and cause a change in the function, only three are
shown. These indicate how the change in f(x, y) depends on the direction
in which the neighboring point is located in relation to P0. For example, if
we move in the direction P0P1, there is very little change in f(x, y), but if
we move in the direction P0P2, we notice more change in the function, and
if we move in the direction of P0P3, the change seems to be maximum. This
maximum change, and the direction associated with it, is called the gradient.

O

x

y

z

P0

P1

P2

P3

z0

z1

z2
z3

Figure 12.8: Gradient or differentiation with respect to distance is shown in two di-

mensions. The gradient is a vector in the xy-plane. Do not think of the surface as a

variation in height! It could represent, for instance, the temperature at various points

of the xy-plane.
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Let us use dr to denote the infinitesimal displacement vector6 connecting
P0 to a neighboring point in the xy-plane. If f(x, y) is differentiable, Equation
(2.12) gives

df =
(

∂f

∂x

)

P0

dx +
(

∂f

∂y

)

P0

dy,

where dx and dy are the components of the displacement from P0 and df is
(approximately) the change in f corresponding to the increments dx and dy.
We can rewrite this equation as

df = (∇f)P0 · dr = |∇f ||dr| cos θ, (12.25)

where, by definition, gradient in two
dimensions

(∇f)P0 ≡
〈

∂f

∂x
,
∂f

∂y

〉

P0

(12.26)

is a vector in the xy-plane and θ is the angle between this vector and dr. It
is clear that df will be maximum when cos θ = 1, that is, when dr is in the
direction of ∇f . We conclude, therefore, that ∇f gives the direction along
which f changes most rapidly. The vector in Equation (12.26) is the gradient
of f at P0.

The notion of gradient can be generalized to three variables although it is
harder to visualize than the two-variable case. In three dimensions we deal
with a function f(x, y, z)—which cannot be plotted as in Figure 12.8—and
ask which dr = 〈dx, dy, dz〉 maximizes the change in f . Once again, the
three-dimensional version of Equation (12.25) shows that dr and gradient in three

dimensions

∇f ≡
〈

∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉

(12.27)

should be in the same direction for df to have a maximum.

Definition 12.3.1. The gradient of a function f(x, y, z) is defined as

∇f ≡ êx
∂f

∂x
+ êy

∂f

∂y
+ êz

∂f

∂z
.

For the same small displacement |Δr|, the change in f is maximum when Δr
is in the direction of ∇f .

Example 12.3.1. As an example, let us find the gradient of the function

V (x, y, z) = f(r) = f
(√

x2 + y2 + z2
)

(which depends on r alone) at a point P with Cartesian coordinates (x, y, z). Using
the chain rule, we have

6A better notation is Δr. However, since there is no difference between differential
and increment of an independent variable, and since eventually we will be interested in
differentials, we use the latter notation.
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∇V = êx
∂V

∂x
+ êy

∂V

∂y
+ êz

∂V

∂z
=

〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉

=

〈

f ′(r)
∂r

∂x
, f ′(r)

∂r

∂y
, f ′(r)

∂r

∂z

〉

= f ′(r)
〈x

r
,
y

r
,
z

r

〉
=

f ′(r)

r
〈x, y, z〉 = f ′(r)

r

r
.

The last equality shows that, for functions that depend on r alone, the gradient is
proportional to the position vector of the point P , i.e., it is radial. �

Given a scalar function f(x, y, z), we can consider surfaces on which this
function maintains a constant value. If that constant value is C, the surface
will be described by f(x, y, z) = C. One can, in principle, solve for z as a
function of x and y to find the explicit dependence of the function. However,
we are interested in the implicit dependence given above. Now consider two
points P1 and P2 on the surface with coordinates (x, y, z) and (x + Δx, y +
Δy, z + Δz), respectively. We have

f(x, y, z) = f(x + Δx, y + Δy, z + Δz) ⇒ f(x, y, z) = f(x, y, z) + Δf

or 0 = Δf ≈ ∂f
∂xΔx + ∂f

∂y Δy + ∂f
∂z Δz, if the increments of coordinates are

small. This relation shows that ∇f is perpendicular to the displacement
from P1 to P2. The same argument applies to a curve g(x, y) = C; i.e., the
two-dimensional gradient is perpendicular to the displacement from P1 to P2,
both being points on the curve. Since P1 and P2 are completely arbitrary, we
conclude that

Theorem 12.3.2. The gradient ∇f is perpendicular to all surfaces f(x, y, z) =
C for different C’s. Similarly, ∇g is perpendicular to all curves g(x, y) = C.

For example, as we shall see later, the electrostatic field is the gradient ofelectrostatic field
is perpendicular to
surfaces of
conductors

the electrostatic potential. Therefore, the electrostatic field is perpendicular
to surfaces of constant potential such as conductors.

Example 12.3.3. The perpendicularity property of the gradient can be used to
find the equation of the tangent plane to a surface z = g(x, y) at a point P with
coordinates (x0, y0, z0). This surface can be written as

f(x, y, z) ≡ z − g(x, y) = 0.

Then, the normal to the surface at P—which is the same as the normal to the
tangent plane at P—is the gradient of f at P :

(
∇f

)
P

=

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉

P

=

〈

− ∂g

∂x
,−∂g

∂y
, 1

〉

P

.

A point of the tangent plane at P is completely determined by the property thatderivation of the
equation of a
plane tangent to a
surface

its displacement vector Δr from P should be perpendicular to the gradient at P (see
Figure 12.9). If we denote the position vector of P by r0 and that of the point on
the plane by r = 〈x, y, z〉, then the equation of the tangent plane is given by

(r − r0) · (∇f)P = 0 ⇒ −(x − x0)

(
∂g

∂x

)

P

− (y − y0)

(
∂g

∂y

)

P

+ (z − z0) = 0
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P
(x, y, z)

rr0

O

Figure 12.9: The plane tangent to the surface z = g(x, y) at P .

or

z − z0 = (x − x0)

(
∂g

∂x

)

P

+ (y − y0)

(
∂g

∂y

)

P �

It is convenient to introduce a differentiation operator which we shall use
later. the del operator

Definition 12.3.2. The symbol ∇ can be thought of as a vector operator,
called del or nabla, whose components are ∂/∂x, ∂/∂y, and ∂/∂z. Thus, we
can write

∇ = êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
. (12.28)

This vector operator ∇ operates on differentiable functions and produces vec-
tor fields.

12.3.1 Gradient and Extremum Problems

The gradient is very nicely used to find the maxima and minima of functions
of several variables. A function f(x) of n variables x = (x1, x2, . . . , xn) has a
local extremum (maximum or minimum) at a point a if its differential vanishes
at that point for arbitrary dx:

df =
∂f

∂x1

∣
∣
∣
∣
a

dx1 +
∂f

∂x2

∣
∣
∣
∣
a

dx2 + · · · + ∂f

∂xn

∣
∣
∣
∣
a

dxn ≡
(
∇f(a)

)
· dx = 0

where

∇f ≡
〈

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

〉

and dx ≡ 〈dx1, dx2, . . . , dxn〉.

If the dot product of ∇f(a) and dx is to vanish for arbitrary dx, then ∇f(a)
must be zero. Thus for f to have an extremum at a, we must have

∇f(a) = 0 or
∂f

∂xi

∣
∣
∣
∣
a

= 0, i = 1, 2, . . . , n. (12.29)
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This is the generalization to n variables the familiar condition known from
calculus.

In many situations, there are auxiliary conditions or constraints imposed
on the independent variables. For example, let P1, Q, and P2 be three points
in space, with P1 and P2 fixed but Q being allowed to move. Consider the
path P1QP2 consisting of straight line segments P1Q and QP2. What choice
of Q gives the shortest path? If we denote the coordinates of Q by (x, y, z)
and those of P1 and P2 with obvious subscripts, then we have to find the
extremum of

f(x, y, z) =
√

(x − x1)2 + (y − y1)2 + (z − z1)2

+
√

(x − x2)2 + (y − y2)2 + (z − z2)2.

So we set partial derivatives equal to zero and solve for (x, y, z). The answer,
as expected, turns out to be the path for which Q lies on the line segment
P1P2 between P1 and P2.

Now suppose we demand that Q lie on a sphere of radius a centered at the
origin. Then the problem becomes extremizing f(x, y, z) with the constraint
condition that

g(x, y, z) ≡ x2 + y2 + z2 − a2 = 0.

To solve this problem, we could solve for one of the variables of the constraint
equation in terms of the other two, substitute in f(x, y, z), and solve the re-
sulting two-variable problem. But there is a much more elegant way involving
gradients, which we discuss now.

Suppose that we want to find the extremum of a function f(x) of n vari-
ables x = (x1, x2, . . . , xn) subject to the condition that x must lie on the
hypersurface g(x) = 0. We cannot set ∇f equal to zero because dx is no
longer arbitrary.

With constraint, dx is confined to the surface g(x) = 0. Now, the only
n-dimensional vector which has a vanishing dot product with any dx on the
constrained surface is (a multiple of) the normal to the surface. Therefore, if
(∇f) ·dx is to be zero for dx lying on the surface, then ∇f must be a multiple
of the normal to the surface g(x) = 0. But this normal is nothing but ∇g.
Therefore, if f is to have an extremum subject to the constraint g(x) = 0,
then it must obey the following equation

∇f = −λ∇g or ∇f + λ∇g = 0,

where λ is an arbitrary constant called the Lagrange multiplier. This
equation shows that to find the extremum of the function f with constraint
g(x) = 0, one can define the function F of n + 1 variablesLagrange

multipliers

F (x1, x2, . . . , xn; λ) ≡ f(x1, x2, . . . , xn) + λg(x1, x2, . . . , xn),



12.3 The Gradient 361

and extremize it without constraint. Then we have

∂F

∂xi
=

∂f

∂xi
+ λ

∂g

∂xi
= 0, i = 1, 2, . . . , n,

∂F

∂λ
= g(x1, x2, . . . , xn) = 0. (12.30)

The last equation is just the constraint condition, but it comes out conve-
niently as one of the extremal equations of F .

Example 12.3.4. A rectangular box is to be made out of a given amount A of
material to have the largest volume. What dimensions should the box have? Here
f(x, y, z) = xyz, the volume, and g(x, y, z) = 2xy + 2xz + 2yz − A. Setting the
components of the gradient of

F (x, y, z; λ) = xyz + 2λ(xy + xz + yz − A/2)

equal to zero yields four equations

yz + 2λ(y + z) = 0,

xz + 2λ(x + z) = 0,

xy + 2λ(x + y) = 0,

2(xy + xz + yz) − A = 0.

Multiplying the first equation by x and the second equation by y and subtracting
yields

2λx(y + z) − 2λy(x + z) = 0, or x = y.

Similarly, from the second and third equations we get y = z. So, the box should be
a cube. The last equation then gives

6x2 − A = 0, or x = y = z =

√
A

6
.

Substituting this in any of the above equations involving λ yields λ = − 1
4

√
A/6. �

The extremal problems may have several constraint equations such as

gj(x1, x2, . . . , xn) ≡ gj(x) = 0, j = 1, 2, . . . , m. (12.31)

We can “eliminate” the first constraint by replacing f(x1, x2, . . . , xn) with

F1(x; λ1) ≡ f(x) + λ1g1(x),

where F1 has only m − 1 constraint equations. Now eliminate the second
constraint by defining

F2(x; λ1, λ2) ≡ F1(x; λ1) + λ2g2(x) = f(x) + λ1g1(x) + λ2g2(x).

Continuing, we can eliminate all constraints by defining

F (x; λ1, λ2, . . . , λm) ≡ f(x) +
m∑

j=1

λjgj(x), (12.32)

whose unconstrained extremization yields the extremal equations.
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12.4 Problems

12.1. Find directly the solid angle subtended by a disk of radius a at a point
P on its perpendicular axis located a distance b from the center.

12.2. A closed curve ρ = 3a + a cosϕ in cylindrical coordinates bounds a
region in the xy-plane. Find the solid angle subtended by this region at a
point P on the z-axis a distance 2a above the xy-plane.

12.3. Derive Equation (12.11).

12.4. Show that when a moving particle is confined to a circle, its velocity is
always perpendicular to its radius. If, furthermore, the speed of the particle
is constant, then its acceleration is radial.

12.5. Derive Equations (12.17) and (12.18).

12.6. The vectors a and b are given by

a = uêx + vêy, b = vêx − uêy.

(a) Write êa and êb in terms of Cartesian unit vectors.
(b) Find the four vectors ∂êa/∂u, ∂êa/∂v, ∂êb/∂u, and ∂êb/∂v in terms of
Cartesian unit vectors.
(c) Express êx and êy in terms of êa and êb.
(d) Express the four vectors ∂êa/∂u, ∂êa/∂v, ∂êb/∂u, and ∂êb/∂v in terms
of êa and êb.
(e) If u and v are functions of time, find dêa/dt and dêb/dt in terms of êa

and êb.

12.7. Derive Equation (12.19).

12.8. Derive Equation (12.23).

12.9. Show that (12.22) and the assumption θ = π/2 solve the last two
equations of (12.20) and reduce the first one to (12.24).

12.10. (a) Obtain the time derivatives of the cylindrical unit vectors:

dêρ

dt
= ϕ̇êϕ,

dêϕ

dt
= −ϕ̇êρ,

dêz

dt
= 0.

(b) Use the result of (a) to show that if A is a vector written in terms of
cylindrical unit vectors, then

dA
dt

=
(

dAρ

dt
− Aϕϕ̇

)

êρ +
(

Aρϕ̇ +
dAϕ

dt

)

êϕ +
dAz

dt
êz.

12.11. A surface is given by
x2

a2
+

y2

4a2
+

z2

2a2
= 1. Find the unit normal to

the surface and the equation of the tangent plane at (a/2, a, a).
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12.12. The potential of a certain charge distribution is given by

Φ(x, y, z) = z2 +
y2

4
+

x2

9
.

(a) Find the electric field E = −∇Φ at (3/
√

2, 1, 1/2) and show that it is
normal to the surface

z2 +
y2

4
+

x2

9
= 1.

(b) Show that the electric field is normal at every point of this surface.
(c) Show that the electric field is normal at every point of the surface obtained
by replacing 1 on the RHS of the last equation by any arbitrary constant.

12.13. Show that ∇(fg) = (∇f)g + f(∇g) for any two (differentiable) func-
tions f and g of (x, y, z).

12.14. Consider the plane ax + by + cz = d and a point P = (x0, y0, z0)
not lying in the plane. Use Lagrange multipliers to show that the parametric
equation of the line passing through P that gives the minimum distance to
the plane is

r = r0 + tn, where r = 〈x, y, z〉, r0 = 〈x0, y0, z0〉, n = 〈a, b, c〉.
(12.33)

From this deduce that the distance from P to the plane is

|d − ax0 − by0 − cz0|√
a2 + b2 + c2

.

Hint: Take the dot product of (12.33) with n and use the fact that n · r = d
when the tip of r is in the plane.

12.15. Consider the sphere (x − a)2 + (y − b)2 + (z − c)2 = d2 and a point
P = (x0, y0, z0) not lying on the sphere. Use Lagrange multipliers to show that
the shortest line segment connecting P to the sphere is that which extends
through the center of the sphere.

12.16. For a vector A(r, t) that is a function of position and time, show that

dA = (dr · ∇)A +
∂A
∂t

dt.

12.17. Find the gradient of

u(x, y, z, x′, y′, z′) ≡ u(r− r′) = |r − r′|m,

first with respect to the components of r and then with respect to the com-
ponents of r′, and write the answer completely in terms of r and r′. What is
the answer when m = −1?





Chapter 13

Flux and Divergence

A vector field is a function with direction, and because of this directional
property, many new kinds of differentiation and integration can be performed
on it. For instance, a vector field can be made to pierce a surface or an element
thereof, and as it pierces that surface its variation from point to point can be
monitored. This leads to one kind of differentiation and integration which we
discuss next. The integration leads to the concept of the flux of a vector field,
and the associated differentiation to the notion of divergence.

13.1 Flux of a Vector Field

The paradigm of the concept of flux is that of the velocity field of a fluid (see
Figure 13.1). A small ring of area Δa is situated in the flow. How much fluid
is passing through the ring per unit time? It is clear that the answer depends
on the density of the fluid,1 the speed of the fluid, the size of the area Δa, and
also on the relative orientation of the direction of the flow and the unit normal
to the area, denoted by ên. A little contemplation reveals that the amount of
fluid of constant unit density passing through Δa is proportional to2 flux of flow

velocity through a
small area

Δφ = v · ênΔa ≡ v · Δa, (13.1)

where Δφ is called the flux of v through Δa, and Δa is defined to be ênΔa.
If the ring is replaced by a large surface S then we have to divide the surface
into small areas—not necessarily in the shape of a ring—and sum up the con-
tribution of each area to the flux. In the limit of smaller and smaller areas
and larger and larger numbers of such areas, we obtain an integral: total flux of flow

velocity through a
large areaφ = lim

Δa→0
N→∞

N∑

i=1

vi · êniΔai ≡ lim
Δa→0
N→∞

N∑

i=1

vi · Δai =
∫ ∫

S

v · da, (13.2)

where φ is the total flux through S.
1For simplicity we assume that density is constant and we take it to be 1.
2We shall come back to a rigorous derivation of the flow of a substance through a small

loop later (see the discussion after Theorem 13.2.2).
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ˆ e n

v
da

Figure 13.1: Flux of velocity vector through a small area Δa.

There is an arbitrariness in the direction of the unit vector normal to an
element of area, because for any unit normal, there is another which points in
the opposite direction. The flux for these two unit normals will have opposite
signs. This may appear as if one could arbitrarily choose every one of the
unit normals êni in the sum (13.2) to have either one of the two opposite
orientations, leading to an arbitrary result for the integral. This is not the case,the total flux can

be determined
only up to a sign.

because the direction of the unit normal to an element of area is determined
by the neighboring unit normals and the requirement of continuity. So, once
the choice is made between the two possibilities of the unit normal for one
element of area of the surface S, say the first one ên1 , the second one can
differ only slightly from ên1—in particular, it cannot be of opposite sign. The
third one should point in almost the same direction as the second one, and
so on. This requirement of continuity will uniquely determine the remaining
unit normals. However, the initial choice remains arbitrary, and since the
two orientations of the initial choice differ by a sign, the two total fluxes
corresponding to these two orientations will also differ by a sign. We shall see
shortly, however, that for closed surfaces, such an arbitrariness in sign can be
overcome by convention.

The discussion above works for orientable surfaces. This means that onorientable surface

any closed loop entirely on the surface, the direction of a normal vector will
not change when one displaces it on the loop continuously one complete orbit.
It is clear that the lateral surface of a cylinder is orientable.

A cylinder is obtained by glueing the two edges of a rectangle. Now take
the same rectangle and twist one of the (smaller) edges before glueing it to the
opposite edge. The result—which the reader may want to construct—is a very
famous mathematical surface called the Möbius band. A Möbius band is notMöbius band

orientable, because if one starts at the midpoint of the glued edges and moves
perpendicular to it along the large circle (length of the original rectangle),
then a unit normal displaced continuously and completely along the circle
will be flipped.3 In this book we shall never encounter nonorientable surfaces.

3The reader is urged to perform this surprising experiment using a (portion of a) tooth-
pick as a unit normal.
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Example 13.1.1. Consider the flow of a river and assume that the velocity of the
water is given by

v = v0

(

1 − 4x2

w2

)

êz,

where x is the distance from the midpoint of the river and w is the width of the
river. Let us find the flux of the velocity, assuming that the cross section of the river
is a rectangle with depth equal to h, as shown in Figure 13.2.

The normal to the area da is perpendicular to the xy-plane and is in the same
direction as the velocity. Thus, we have v · da = v da = v dx dy, and

φ =

∫ ∫

S

v dx dy =

∫ h/2

−h/2

dy

∫ w/2

−w/2

v0

(

1 − 4x2

w2

)

dx

= hv0

∫ w/2

−w/2

(

1 − 4x2

w2

)

dx = hv0 (w − 1
3 w) = 2

3Av0,

where S is the cross section of the river and A is its area. �

The concept of flux, although indicative of a flow, is not limited to the
velocity vector field. We can define the flux of any vector field A in exactly

flux can be defined
not only for
velocity, but for
any vector field.the same way:

φ =
∫ ∫

S

A · da. (13.3)

Whether such a definition is useful or not should be determined by experi-
ment. It turns out that the flux of every physically relevant vector field is
not only useful, but essential for the theoretical—as well as experimental—
investigation of that field. For example, the flux of a gravitational field
through a closed surface is related to the amount of mass in the volume
enclosed in the surface. Similarly, the rate of change of the flux of a magnetic
field through a surface gives the electric field produced at the boundary of the
surface.

ˆ e nO

x

y

da = dx dy 

Figure 13.2: The river with its cross section.



368 Flux and Divergence

θ

θ

E
ê n

dϕ
ϕ

a

x

y

dr

q

ρ

Figure 13.3: The flux of the electric field through a circle. The normal unit vector ên

could be chosen to be either up or down. We choose (quite arbitrarily) the up direction

to make the flux positive for positive q.

Example 13.1.2. Consider the flux of the electric field of a point charge located
at a distance d from the center of a circle of radius a as shown in Figure 13.3. The
element of flux is given by

E · da = |E| cos θda = |E| cos θρdρdϕ =
kq

r2

d

r
ρdρdϕ =

kqd

(d2 + ρ2)3/2
ρdρdϕ,

where ên is chosen to point up. The polar coordinates (ρ, ϕ) are used to specify a
point in the plane of the circle at which point the element of area is ρ dρ dϕ. To find
the total flux, we integrate the last expression above:

φ =

∫ ∫

S

kqd

(d2 + ρ2)3/2
ρ dρ dϕ = kqd

∫ 2π

0

dϕ

∫ a

0

ρ dρ

(d2 + ρ2)3/2

= 2πkqd
{
−(d2 + ρ2)−1/2

∣
∣
∣
a

0

}
= 2πkq

(

1 − d√
d2 + a2

)

.

Note that since d represents a distance, as opposed to a coordinate, it is always
positive and d =

√
d2 = |d|. �

It is often necessary to calculate the flux of a vector field through a closed
surface bounding a volume. Intuitively, such a flux gives a measure of thefor a closed

surface, one can
uniquely
determine the
direction of
normal at each
point of the
surface.

strength of the source of the vector field in the volume. For instance, the flux
of the velocity field of water through a closed surface bounding a fountain
measures the rate of the water output of the fountain. If the surface does
not enclose the fountain, the net flux will be zero because the flux through
one “side” of the closed surface will be positive and that of the other “side”
will be negative with the total flux vanishing. In the case of an electrostatic
field, the flux through a closed surface measures the amount of charge in the
volume bounded by that surface. The sign of the flux requires an orientation
of the bounding surface which is equivalent to the assignment of a positive
direction to the unit normal to the surface at each of its points. We agree toout is positive!

adhere to the convention of Box 12.1.3.4

4Only orientable surfaces can have a well defined orientation. Since we are excluding
nonorientable surfaces from this book, all our surfaces respect Box 12.1.3.
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Example 13.1.3. Let us consider the flux through a sphere of radius a centered
at the origin of a vector field A given by A = kQrmêr with k a proportionality
constant and Q the strength of the source. Assuming that the outward normal is
considered positive (see Box 12.1.3) the total flux through the sphere is calculated
as

φQ =

∫ ∫

S

A · da =

∫ ∫

S

kQamêr · (êra
2 sin θ dθ dϕ)

= kQ

∫ 2π

0

dϕ

∫ π

0

ama2 sin θ dθ = 2πkQam+2

∫ π

0

sin θ dθ = 4πkQam+2.

It is important to keep in mind that when calculating the flux of a vector field, one remember to
evaluate the
vector field at the
surface when
calculating its
flux!

has to evaluate the field at the surface. That is why a appears in the integral rather
than r. Notice how the flux depends on the radius of the sphere. If m+ 2 > 0, then
the farther away one moves from the origin, the more total flux passes through the
sphere. On the other hand, if m + 2 < 0, although the size of the sphere increases,
and therefore, more area is available for the field to cross, the field decreases too
rapidly to give enough flux to the large sphere, so the flux decreases. The important
case of m = −2 eliminates the dependence on a: The total flux through spheres of
different sizes is constant. This last statement is a special case of the content of the
celebrated Gauss’s law. �

Historical Notes
Space vectors were conceived as three-dimensional generalizations of complex num-
bers. The primary candidates for such a generalization however turned out to be
quaternions—discovered by Hamilton—which had four components. One could nat-
urally divide a quaternion into its “scalar” component and its vector component,
the latter itself consisting of three components. The product of two quaternions,
being itself a quaternion, can also be divided into scalar and vector parts. It turns
out that the scalar part of the product contains the dot product of the vector parts,
and the vector part of the product contains the cross product of the vector parts.
However, the full product contains some extra terms.

Physicists, on the other hand, were seeking a concept that was more closely
associated with Cartesian coordinates than quaternions were. The first step in this
direction was taken by James Clerk Maxwell. Maxwell singled out the scalar and the
vector parts of Hamilton’s quaternion and put the emphasis on these separate parts.
In his celebrated A Treatise on Electricity and Magnetism (1873) he does speak of
quaternions but treats the scalar and the vector parts separately.

Hamilton also developed a calculus of quaternions. In fact, the gradient operator
introduced in Definition 12.3.2 and its name “nabla” were both Hamilton’s inven-
tion.5 Hamilton showed that if ∇ acts on the vector part v of a quaternion, the
result will be a quaternion. Maxwell recognized the scalar part of this quaternion
to be the divergence (to be discussed in the next section) of the vector v, and the
vector part to be the curl (to be discussed in the Section 14.2) of v.

Maxwell often used quaternions as the basic mathematical entity or he at least
made frequent reference to quaternions, perhaps to help his readers. Nevertheless,
his work made it clear that vectors were the real tool for physical thinking and not
just an abbreviated scheme of writing, as some mathematicians maintained. Thus

5He used the word “nabla” because ∇ looks like an ancient Hebrew instrument of that
name.
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by Maxwell’s time a great deal of vector analysis was created by treating the scalar
and vector parts of quaternions separately.

The formal break with quaternions and the inauguration of a new independent
subject, vector analysis, was made independently by Josiah Willard Gibbs and Oliver
Heaviside in the early 1880s.

13.1.1 Flux Through an Arbitrary Surface

It may be useful to have a general formula for calculating the flux through
an arbitrary surface whose equation is given in parametric form in Cartesian
coordinates. Let

x = f(u, v), y = g(u, v), z = h(u, v), (13.4)

be the parametric equation of a surface. When v is held fixed and u is allowed
to vary, a curve is traced on the surface whose infinitesimal displacement can
be written as [see Equation (6.63)]

d�l1 = êx
∂f

∂u
du + êy

∂g

∂u
du + êz

∂h

∂u
du.

Similarly infinitesimal displacement along curves of constant u is

d�l2 = êx
∂f

∂v
dv + êy

∂g

∂v
dv + êz

∂h

∂v
dv.

The cross product of these two displacements is the element of area of the
surface:

da = d�l1 × d�l2 = det

⎛

⎜
⎜
⎜
⎜
⎝

êx êy êz

∂f
∂u

∂g
∂u

∂h
∂u

∂f
∂v

∂g
∂v

∂h
∂v

⎞

⎟
⎟
⎟
⎟
⎠

dudv ≡ det

⎛

⎜
⎜
⎜
⎜
⎝

êx êy êz

∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

⎞

⎟
⎟
⎟
⎟
⎠

dudv.

Using this in (13.3) we get

φ =
∫ ∫

R

det

⎛

⎜
⎜
⎜
⎜
⎝

Ax Ay Az

∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

⎞

⎟
⎟
⎟
⎟
⎠

du dv, (13.5)

where Ax, Ay, and Az are considered functions of u and v obtained by substi-
tuting (13.4) for their arguments. Equation (13.5) is an integral over a region
R in the uv-plane determined by the range of the variables u and v sufficient
to describe the surface S.

The special, but important case, of a surface given by z = f(x, y) deserves
special attention. In this case the parametrization is

x = u, , y = v, z = f(u, v)
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and (13.5) yields

φ =
∫ ∫

R

det

⎛

⎜
⎜
⎜
⎜
⎝

Ax Ay Az

1 0 ∂z
∂u

0 1 ∂z
∂v

,

⎞

⎟
⎟
⎟
⎟
⎠

du dv

or, writing (x, y) for (u, v)

φ =
∫ ∫

R

(

−Ax
∂z

∂x
− Ay

∂z

∂y
+ Az

)

dx dy, (13.6)

where R is the projection of the surface S onto the xy-plane.

13.2 Flux Density = Divergence

The connection between flux and the strength of the source of a vector field
was mentioned above. We now analyze this connection further. The variation
in the strength of the source of a vector field is measured by the density of
the source. For example, the variation in the strength—concentration—of
the source of electrostatic (gravitational) field is measured by charge (mass)
density. We expect this variation to influence the intensity of flux at various
points in space.

13.2.1 Flux Density

Densities are physical quantities treated locally. A local consideration of flux,
therefore, requires the introduction of the notion of flux density:

notion of flux
density and
divergence of a
vector field
introduced

Box 13.2.1. Take a small volume around a point P , evaluate the total flux
of a vector field through the bounding surface of the volume, and divide
the result by the volume to get the flux density or divergence of the
vector field at P .

We denote the flux density by ρφ for the moment. Later we shall introduce
another notation which is more commonly used.

Let us quantify the discussion above for a vector field A. Consider a small
rectangular 6 volume ΔV centered at P with coordinates (x, y, z). Let the
sides of the box be Δx, Δy, and Δz as in Figure 13.4. We are interested in

6The rectangular shape of the volume is not a restriction because it will be made smaller
and smaller at the end. In such a limit, any volume can be built from—a large number of—
these small rectangular boxes. Compare this with the rectangular strips used in calculating
the area under a curve.
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ê zAz

ê yAy

ê xAx

(x, y, z)

Δ x
Δy

Δ z

A

Figure 13.4: The flux of the vector field A through a closed infinitesimal rectangular

surface.

the net outward7 flux of the vector field, A(x, y, z). The six faces of the box
are assumed to be so small that the angle between the normal to each face
and the vector field A is constant over the area of the face. Since we are
calculating the outward flux, we must assume that ên is always pointing out
of the volume.

The total flux Δφ through the surface can be written as

Δφ = (Δφ1 + Δφ2) + (Δφ3 + Δφ4) + (Δφ5 + Δφ6),

where each pair of parentheses indicates one coordinate axis. For instance,
Δφ1 is the flux through the face having a normal component along the positive
x-axis, Δφ2 is the flux through the face having a normal component along the
negative x-axis, and so on. Let us first look at Δφ1, which can be written as

Δφ1 = A1 · ên1Δa1

or, since ên1 is the same as êx,

Δφ1 = A1 · êxΔa1 = A1xΔa1.

This requires some explanation. The subscript 1 in A1x indicates the evalu-
ation of the vector field at the midpoint8 of the first face. The subscript x
in A1x, of course, means the x-component. So, A1x means the x-component
of A evaluated at the midpoint of the first face; Δa1 is the area of face 1
which is simply ΔyΔz (see Figure 13.4). The center of the box—point P—
has coordinates (x, y, z) by assumption. Thus, the midpoint of face 1 will
have coordinates (x + Δx/2, y, z). Therefore,

Δφ1 = Ax

(

x +
Δx

2
, y, z

)

ΔyΔz. (13.7)

7The choice of outward direction is dictated by Box 12.1.3.
8The restriction to midpoint is only for convenience. Since the area is small, any other

point of the face can be used.
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The flux density that we are evaluating will be the density at P . Thus,
as a function of the three coordinates, the result will have to be given at the
coordinates of P , namely at (x, y, z). This means that in Equation (13.7),
all quantities must have (x, y, z) as their arguments. This suggests expanding
the function on the RHS of Equation (13.7) as a Taylor series about the point
(x, y, z). Recall from Chapter 10 that

f(x + Δx, y + Δy, z + Δz) =
∞∑

n=0

∑

i+j+k=n

∂n
ijkf(x, y, z)

i!j!k!
(Δx)i(Δy)j(Δz)k.

We are interested only in the first power because the size of the box will
eventually tend to zero. Therefore, we write this in the following abbreviated
form:

f(x + Δx, y + Δy, z + Δz)

= f(x, y, z) + Δx
∂f

∂x
+ Δy

∂f

∂y
+ Δz

∂f

∂z
+ · · · , (13.8)

where it is understood that all derivatives are evaluated at (x, y, z). Applying
this result to the function on the RHS of Equation (13.7), for which Δy and
Δz are zero, yields

Ax

(

x +
Δx

2
, y, z

)

= Ax(x, y, z) +
Δx

2
∂Ax

∂x
+ 0 + 0 + · · ·

and

Δφ1 =
{

Ax(x, y, z) +
Δx

2
∂Ax

∂x

}

ΔyΔz + · · · .

Similarly, for the second face we obtain

Δφ2 = A2 · ên2Δa2 = A2 · (−êx)Δa2 = −A2xΔyΔz

= −Ax

(

x − Δx

2
, y, z

)

ΔyΔz

= −
{

Ax(x, y, z) − Δx

2
∂Ax

∂x
+ · · ·

}

ΔyΔz.

Adding the expressions for Δφ1 and Δφ2, we obtain

Δφ1 + Δφ2

=
{

Ax(x, y, z) +
Δx

2
∂Ax

∂x
− Ax(x, y, z) +

Δx

2
∂Ax

∂x
+ · · ·

}

ΔyΔz

or

Δφ1 + Δφ2 =
∂Ax

∂x
ΔxΔyΔz + · · · =

∂Ax

∂x
ΔV + · · · .
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The reader may check that

Δφ3 + Δφ4 =
∂Ay

∂y
ΔV + · · · ,

Δφ5 + Δφ6 =
∂Az

∂z
ΔV + · · · , (13.9)

so that the total flux through the small box is

Δφ =
(

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

)

ΔV + · · · .

The flux density, or divergence as it is more often called, can now be obtained
by dividing both sides by ΔV and taking the limit as ΔV → 0. Since all the
terms represented by dots are of at least the fourth order, they vanish in the
limit and we obtain

Theorem 13.2.1. The relation between the flux density of a vector field and
the derivatives of its components is

ρφ ≡ divA ≡ ∇ ·A = lim
ΔV →0

Δφ

ΔV
=

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
.

The term “divergence,” whose abbreviation is used as a symbol of fluxorigin of the term
“divergence” density, is reminiscent of water flowing away from its source, a fountain. In

this context, the flux density measures how quickly or intensely water “di-
verges” away from the fountain. The third notation ∇ · A combines the
dot product in terms of components with the definition of ∇ as given in
Equation (12.28).9

13.2.2 Divergence Theorem

The use of the word (volume) density for divergence suggests that the total
flux through a (large) surface should be the (volume) integral of divergence.
However, any calculation of flux—even locally—requires a surface, as we saw
in the derivation of flux density. What are the “small” surfaces used in the
calculation of flux density, and how is the large surface related to them? The
answer to this question will come out of a treatment of an important theorem
in vector calculus which we investigate now.

First consider two boxes with one face in common (Figure 13.5) and index
quantities related to the volume on the left by a and those related to the one
on the right by b. The total flux is, of course, the sum of the fluxes through
all six faces of the composite box :

Δφ = (Δφ1 + Δφ2) + (Δφ3 + Δφ4) + (Δφ5 + Δφ6),
9This notation is misleading because, as we shall see later, in non-Cartesian coordinate

systems, the expression of divergence in terms of derivatives will not be equal to simply
the dot product of ∇ with the vector field. One should really think of ∇ · A as a symbol,
equivalent to ρφ or div A and not as an operation involving two vectors.
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(xa , ya , za)

y

x

z (xb , yb , zb)

Figure 13.5: The common boundaries contribute no net flux.

where, as before, Δφ1 is the total flux through the face having a normal in
the positive x-direction, and Δφ2 that through the face having a normal in
the negative x-direction, and so on. It is evident from Figure 13.5 that

Δφ1 = Δφa1 + Δφb1 ,

where Δφa1 is the flux through the positive x face of box a and Δφb1 is the
flux through the positive x face of box b. Using a similar notation, we can
write

Δφ2 = Δφa2 + Δφb2 ,

Δφ5 + Δφ6 = Δφa5 + Δφb5 + Δφa6 + Δφb6 .

However, for the y faces we have Δφ3 = Δφb3 and Δφ4 = Δφa4 , because the
face of the composite box in the positive y-direction belongs to box b and that
in the negative y-direction to box a. Now note that the outward flux through
the left face of box b is the negative of the outward flux through the right face
of box a; that is,

Δφb4 = −Δφa3 ⇒ Δφb4 + Δφa3 = 0.

Thus, we obtain

Δφ3 + Δφ4 = Δφb3 + Δφa4 = Δφa3 + Δφb3 + Δφa4 + Δφb4 .

Using all the above relations yields

Δφ = (Δφa1 + Δφa2) + (Δφa3 + Δφa4) + (Δφa5 + Δφa6)
+ (Δφb1 + Δφb2) + (Δφb3 + Δφb4) + (Δφb5 + Δφb6 )

or Δφ = Δφa + Δφb, or Δφ = (∇ ·A)aΔVa + (∇ ·A)bΔVb. These equations
say that

Box 13.2.2. The total flux through the outer surface of a composite box
consisting of two adjacent boxes is equal to the sum of the total fluxes
through the bounding surfaces of the two boxes, including the common
boundary. Stated differently, in summing the total outward flux of adjacent
boxes, the contributions of the common boundary cancel.



376 Flux and Divergence

It is now clear how to generalize to a large surface bounding a volume: Di-
vide up the volume into N rectangular boxes and write φ ≈

∑N
i=1(∇ ·A)iΔVi.

The LHS of this equation is the outward flux through the bounding surface
only. Contributions from the sides of all inner boxes cancel out because
each face of a typical inner box is shared by another box whose outward
flux through that face is the negative of the outward flux of the original box.
However, boxes at the boundary cannot find enough boxes to cancel all their
flux contributions, leaving precisely the flux through the original surface. The
use of the approximation sign here reflects the fact that N , although large, is
not infinite, and that the boxes are not small enough. To attain equality we
must make the boxes smaller and smaller and their number larger and larger,
in which case we approach the integral:

φ =
∫ ∫

V

∫
∇ ·A dV. (13.10)

Then, using Equation (13.2), we can state the importantthe very
important
divergence
theorem

Theorem 13.2.2. (Divergence Theorem). The surface integral (flux) of
any vector field A through a closed surface S bounding a volume V is equal
to the volume integral of the divergence (or flux density) of A:

∫ ∫

S

A · da =
∫ ∫

V

∫
∇ ·A dV. (13.11)

Let A = cf where c is an arbitrary constant vector and f a function.
Applying the divergence theorem to this A and using the readily verifiable
identity ∇ · (cf) = c · ∇f , we get

∫ ∫

S

fc·da =
∫ ∫

V

∫
c·(∇f)dV or c·

⎛

⎝
∫ ∫

S

fda

⎞

⎠ = c·

⎛

⎝
∫ ∫

V

∫
(∇f)dV

⎞

⎠

Since this holds for any c, we must have

∫ ∫

S

fda =
∫ ∫

V

∫
∇fdV (13.12)

Example 13.2.3. In this example we derive Gauss’s law for fields which vary
as the inverse of distance squared, specifically, gravitational and electrostatic fields.
Let Q be a source point (a point charge or a point mass) located at P0 with position
vector r0 and S a closed surface bounding a volume V . Let A(r) denote the field
produced by Q at the field point P with position vector r as shown in Figure 13.6(a).
We know that

A(r) =
KQ

|r − r0|3
(r− r0). (13.13)
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S

O
P0

r
r0

(a) (b)

Figure 13.6: Derivation of Gauss’s law for (a) a single point source, and (b) a number

of point sources.

The flux of A through S can be written immediately:

∫ ∫

S

A · da =

∫ ∫

S

KQ(r − r0) · da
|r − r0|3

.

But the RHS is—apart from a constant—the solid angle subtended by S about P0.
Using Equation (12.7), we have

∫ ∫

S

A · da =

{
4πKQ if P0 is in V,

0 if P0 is not in V.
(13.14)

If there are N point sources Q1, Q2, . . . , QN , then A will be the sum of individual
contributions, and we have

∫ ∫

S

A · da =

∫ ∫

S

N∑

k=1

Ak · da =
N∑

k=1

∫ ∫

S

KQk(rk − r0) · da
|rk − r0|3

= K
N∑

k=1

Qk

∫ ∫

S

(rk − r0) · da
|rk − r0|3

= K
N∑

k=1

QkΩk,

where Ωk is zero if Qk is outside V , and 4π if it is inside [see Figure 13.6(b)]. Thus,
only the sources enclosed in the volume will contribute to the sum and we have

∫ ∫

S

A · da = 4πKQenc, (13.15)

where Qenc is the amount of source enclosed in S.

global (integral)
form of Gauss’s
law

For electrostatics, K = ke = 1/4πε0, Q = q, and A = E, so that

∫ ∫

S

E · da = qenc/ε0. (13.16)

For gravitation, K = −G, Q = M , and A = g, so that

∫ ∫

S

g · da = −4πGMenc. (13.17)
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The minus sign appears in the gravitational case because of the permanent attraction
of gravity. Gauss’s law is very useful in calculating the fields of very symmetric source
distributions, and it is put to good use in introductory electromagnetic discussions.
The derivation above shows that it is just as useful in gravitational calculations. �

Equation (13.15) is the integral or global form of Gauss’s law. We can also
derive the differential or local form of Gauss’s law by invoking the divergence
theorem and assigning a volume density ρQ to Qenc:

LHS =
∫ ∫

V

∫
∇ · A dV, RHS = 4πK

∫ ∫

V

∫
ρQ dV.

Since these relations are true for arbitrary V , we obtainlocal (differential)
form of Gauss’s
law Theorem 13.2.4. (Differential Form of Gauss’s Law). If a point source

produces a vector field A that obeys Equation (13.13), then for any volume
distribution ρQ of the source we have ∇ · A = 4πKρQ.

This can easily be specialized to the two cases of interest, electrostatics
and gravity.

13.2.3 Continuity Equation

To improve our physical intuition of divergence, let us consider the flow of a
fluid of density ρ(x, y, z, t) and velocity v(x, y, z, t). The arguments to follow
are more general. They can be applied to the flow (bulk motion) of many
physical quantities such as charge, mass, energy, momentum, etc. All that
needs to be done is to replace ρ—which is the mass density for the fluid
flow—with the density of the physical quantity.

We are interested in the amount of matter crossing a surface area Δa
per unit time. We denote this quantity momentarily by ΔM , and because
of its importance and wide use in various areas of physics, we shall derive
it in some detail. Take a small volume ΔV of the fluid in the shape of a
slanted cylinder. The lateral side of this volume is chosen to be instantaneously
in the same direction as the velocity v of the particles in the volume. For
large volumes this may not be possible, because the macroscopic motion of
particles is, in general, not smooth, with different parts having completely
different velocities. However, if the volume ΔV (as well as the time interval
of observation) is taken small enough, the variation in the velocity of the
enclosed particles will be negligible. This situation is shown in Figure 13.7.
The lateral length of the cylinder is vΔt where Δt is the time it takes the
particles inside to go from the base to the top, so that all particles inside will
have crossed the top of the cylinder in this time interval. Thus, we have

amount crossing top = amount in ΔV = ρΔV.

But ΔV = (vΔt) · Δa = v · ΔaΔt, where the dot product has been used
because the base and the top are not perpendicular to the lateral surface.
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vΔ
t

nê Δa

Figure 13.7: The flux through a small area is related to the current density.

Therefore,

ΔM =
amount crossing top

Δt
=

ρv · ΔaΔt

Δt
= (ρv) · Δa.

The RHS of this equation is the flux of the vector field ρv which is called the current density

mass current density, and usually denoted as J.
As indicated earlier, this result is general and applies to any physical

quantity in motion. We can therefore rewrite the equation in its most general
form as

ΔφQ = (ρQv) · Δa ≡ JQ · Δa. (13.18)

This is so important that we state it in words:

Box 13.2.3. The amount of a flowing physical quantity Q crossing an
area Δa per unit time is the flux JQ ·Δa. The current density JQ at each
point is simply the product of volume density and velocity vector at that
point.

relation between
flux and current
density

For a (large) surface S we need to integrate the above relation:

φQ =
∫ ∫

S

(ρQv) · da ≡
∫ ∫

S

JQ · da (13.19)

and if S is closed, the divergence theorem gives

φQ =
∫ ∫

S

JQ · da =
∫ ∫

V

∫
∇ · JQ dV. (13.20)

Let Q, which may change with time, denote the total amount of physical
quantity in the volume V . Then, clearly

Q(t) =
∫ ∫

V

∫
ρQ dV =

∫ ∫

V

∫
ρQ(r, t) dV (r),
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where in the last integral we have emphasized the dependence of various quan-
tities on location and time. Now, if Q is a conserved quantity such as energy,
momentum, charge, or mass,10 the amount of Q that crosses S outward (i.e.,
the flux through S) must precisely equal the rate of depletion of Q in the
volume V .global or integral

form of continuity
equation

Theorem 13.2.5. In mathematical symbols, the conservation of a conserved
physical quantity Q is written as

dQ

dt
= −

∫ ∫

S

JQ · da, (13.21)

which is the global or integral form of the continuity equation.

The minus sign ensures that positive flux gives rise to a depletion, and
vice versa. The local or differential form of the continuity equation can be
obtained as follows: The LHS of Equation (13.21) can be written as

dQ

dt
=

d

dt

∫ ∫

V

∫
ρQ(r, t) dV (r) =

∫ ∫

V

∫
∂ρQ

∂t
(r, t) dV (r),

while the RHS, with the help of the divergence theorem, becomes

−
∫ ∫

S

JQ · da = −
∫ ∫

V

∫
∇ · JQ dV.

Together they give
∫ ∫

V

∫
∂ρQ

∂t
dV = −

∫ ∫

V

∫
∇ · JQ dV

or
∫ ∫

V

∫ {
∂ρQ

∂t
+ ∇ · JQ

}

dV = 0.

This relation is true for all volumes V . In particular, we can make the volume
as small as we please. Then, the integral will be approximately the integrand
times the volume. Since the volume is nonzero (but small), the only way that
the product can be zero is for the integrand to vanish.

Box 13.2.4. The differential form of the continuity equation is

∂ρQ

∂t
+ ∇ · JQ = 0. (13.22)

local (differential)
form of continuity
equation

10In the theory of relativity mass by itself is not a conserved quantity, but mass in
combination with energy is.
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Both integral and differential forms of the continuity equation have a wide
range of applications in many areas of physics.

Equation (13.22) is sometimes written in terms of ρQ and the velocity.
This is achieved by substituting ρQv for JQ:

∂ρQ

∂t
+ ∇ · (ρQv) = 0

or
∂ρQ

∂t
+ (∇ρQ) · v + ρQ∇ · v = 0.

However, using Cartesian coordinates, we write the sum of the first two terms
as a total derivative:

∂ρQ

∂t
+ (∇ρQ) · v =

∂ρQ

∂t
+

〈
∂ρQ

∂x
,
∂ρQ

∂y
,
∂ρQ

∂z

〉

·
〈

dx

dt
,
dy

dt
,
dz

dt

〉

=
∂ρQ

∂t
+

∂ρQ

∂x

dx

dt
+

∂ρQ

∂y

dy

dt
+

∂ρQ

∂z

dz

dt
︸ ︷︷ ︸

=total derivative=dρQ/dt

=
dρQ

dt
.

Thus the continuity equation can also be written as

dρQ

dt
+ ρQ∇ · v = 0. (13.23)

Historical Notes
Aside from Maxwell, two names are associated with vector analysis (completely
detached from their quaternionic ancestors): Willard Gibbs and Oliver Heaviside.

Josiah Willard Gibbs’s father, also called Josiah Willard Gibbs, was profes-
sor of sacred literature at Yale University. In fact the Gibbs family originated in
Warwickshire, England, and moved from there to Boston in 1658.

Gibbs was educated at the local Hopkins Grammar School where he was de-
scribed as friendly but withdrawn. His total commitment to academic work together
with rather delicate health meant that he was little involved with the social life of
the school. In 1854 he entered Yale College where he won prizes for excellence in
Latin and mathematics.

Josiah Willard
Gibbs 1839–1903

Remaining at Yale, Gibbs began to undertake research in engineering, writing a
thesis in which he used geometrical methods to study the design of gears. When he
was awarded a doctorate from Yale in 1863 it was the first doctorate of engineering
to be conferred in the United States. After this he served as a tutor at Yale for
three years, teaching Latin for the first two years and then Natural Philosophy in
the third year. He was not short of money however since his father had died in
1861 and, since his mother had also died, Gibbs and his two sisters inherited a fair
amount of money.

From 1866 to 1869 Gibbs studied in Europe. He went with his sisters and spent
the winter of 1866–67 in Paris, followed by a year in Berlin and, finally spending
1868–69 in Heidelberg. In Heidelberg he was influenced by Kirchhoff and Helmholtz.

Gibbs returned to Yale in June 1869, where two years later he was appointed
professor of mathematical physics. Rather surprisingly his appointment to the pro-
fessorship at Yale came before he had published any work. Gibbs was actually
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a physical chemist and his major publications were in chemical equilibrium and
thermodynamics. From 1873 to 1878, he wrote several important papers on ther-
modynamics including the notion of what is now called the Gibbs potential.

Gibbs’s work on vector analysis was in the form of printed notes for the use of
his own students written in 1881 and 1884. It was not until 1901 that a properly
published version appeared, prepared for publication by one of his students. Using
ideas of Grassmann, a high school teacher who also worked on the generalization of
complex numbers to three dimensions and invented what is now called Grassmann
algebra, Gibbs produced a system much more easily applied to physics than that of
Hamilton.

His work on statistical mechanics was also important, providing a mathematical
framework for the earlier work of Maxwell on the same subject. In fact his last
publication was Elementary Principles in Statistical Mechanics, which is a beautiful
account putting statistical mechanics on a firm mathematical foundation.

Except for his early years and the three years in Europe, Gibbs spent his whole
life living in the same house which his father had built only a short distance from the
school Gibbs had attended, the college at which he had studied, and the university
where he worked all his life.

Oliver Heaviside caught scarlet fever when he was a young child and this
affected his hearing. This was to have a major effect on his life making his childhood
unhappy, and his relations with other children difficult. However his school results
were rather good and in 1865 he was placed fifth from 500 pupils.

Academic subjects seemed to hold little attraction for Heaviside, however, and
at age 16 he left school. Perhaps he was more disillusioned with school than with
learning since he continued to study after leaving school, in particular he learnt the
Morse code, and studied electricity and foreign languages, in particular Danish and
German. He was aiming at a career as a telegrapher and in this he was advised
and helped by his uncle Charles Wheatstone (the piece of electrical apparatus the
Wheatstone bridge is named after him).

Oliver Heaviside
1850–1925

In 1868 Heaviside went to Denmark and became a telegrapher. He progressed
quickly in his profession and returned to England in 1871 to take up a post in
Newcastle upon Tyne in the office of the Great Northern Telegraph Company which
dealt with overseas traffic.

Heaviside became increasingly deaf but he worked on his own researches into
electricity. While still working as chief operator in Newcastle he began to publish
papers on electricity. One of these was of sufficient interest to Maxwell that he men-
tioned the results in the second edition of his Treatise on Electricity and Magnetism.
Maxwell’s treatise fascinated Heaviside and he gave up his job as a telegrapher and
devoted his time to the study of the work. Although his interest and understanding
of this work was deep, Heaviside was not interested in rigor. Nevertheless, he was
able to develop important methods in vector analysis in his investigations.

His operational calculus, developed between 1880 and 1887, caused much con-
troversy. Burnside rejected one of Heaviside’s papers on the operational calculus,
which he had submitted to the Proceedings of the Royal Society, on the grounds that
it “contained errors of substance and had irredeemable inadequacies in proof.” Tait
championed quaternions against the vector methods of Heaviside and Gibbs and
sent frequent letters to Nature attacking Heaviside’s methods. Eventually, however,
his work was recognized, and in 1891 he was elected a Fellow of the Royal Society.
Whittaker rated Heaviside’s operational calculus as one of the three most important
discoveries of the late nineteenth Century.
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Heaviside seemed to become more and more bitter as the years went by. In 1908
he moved to Torquay where he showed increasing evidence of a persecution complex.
His neighbors related stories of Heaviside as a strange and embittered hermit who
replaced his furniture with granite blocks which stood about in the bare rooms like
the furnishings of some Neolithic giant. Through those fantastic rooms he wandered,
growing dirtier and dirtier, with one exception: His nails were always exquisitely
manicured, and painted a glistening cherry pink.

13.3 Problems

13.1. Using (13.6) find the flux of the vector field A = kx2êz through the
portion of the sphere of radius a centered at the origin lying in the first octant
of a Cartesian coordinate system.

13.2. Using (13.6) find the flux of the vector field A = yêx + 3zêy − 2xêz

through the portion of the plane x + 2y − 3z = 5 lying in the first octant of a
Cartesian coordinate system.

13.3. A vector field is given by A = r. Using (13.6) find the flux of this
vector field through the upper hemisphere centered at the origin. Verify your
answer by calculating the flux using (the much easier) spherical coordinates.

13.4. Find the flux of the vector field A = x2êx + y2êy + z2êz through the
portion of the plane x + y + z = 1 lying in the first octant of a Cartesian
coordinate system.

13.5. Using (13.6), find the flux of the vector field A = kr/r3 through the
upper hemisphere centered at the origin. Verify your answer by calculating
the flux using spherical coordinates.

13.6. Find the flux of the vector field A = yêy + aêz through the portion of
the paraboloid z = b2 − x2 − y2 above the xy-plane.

13.7. Derive Equation (13.9).

13.8. Find the flux of the vector

A =
6ka2y

√
x2 + y2 + a2

êx +
3ka2z

√
y2 + z2 + 4a2

êy +
2ka2x√

x2 + z2 + 9a2
êz

through the surface of the box shown in Figure 13.8:
(a) by integrating over the surface of the box; and
(b) by using the divergence theorem and integrating over the volume of the
box.

13.9. The gravitational field of a certain mass distribution is given by

g(x, y, z) = −kG
{
(x3y2z2)êx + (x2y3z2)êy + (x2y2z3)êz

}
,

where k is a constant and G is the universal gravitational constant:
(a) Find the mass density of the source of this field.
(b) What is the total mass in a cube of side 2a centered about the origin?
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x

y

z

2a

3a

a

Figure 13.8: The box of Problem 13.8.

13.10. The gravitational field of a certain mass distribution in the first octant
of a Cartesian coordinate system is given by

g(x, y, z) = −GM

a3
re−(x+y+z)/a,

where r is the position vector, M and a are constants, and G is the universal
gravitational constant.
(a) Find the mass density of the source of this field.
(b) What is the total mass in a cube of side a with one corner at the origin
and sides parallel to the axes?

13.11. The electrostatic potential of a certain charge distribution in Cartesian
coordinates is given by

Φ(x, y, z) =
V0

a3
xyze−(x+y+z)/a,

where V0 and a are constants.
(a) Find the electric field E = −∇Φ of this potential.
(b) Calculate the charge density of the source of this field.
(c) What is the total charge in a cube of side a with one corner at the origin
and sides parallel to the axes? Write your answer as a numerical multiple of
ε0V0a.

13.12. The electric field of a charge distribution is given by

E =
E0

a4
xyze−(x+y+z)/ar.

(a) Write the Cartesian components of this electric field completely in Carte-
sian coordinates.
(b) Calculate the volume charge density giving rise to this field.
(c) Find the total charge in a cube of side a whose sides are parallel to the axes
and one of whose corners is at the origin. Write your answer as a numerical
multiple of ε0E0a

2.
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13.13. The velocity of a physical quantity Q is radial and given by v = kr
where k is a constant. Show that if the density ρQ is independent of position,
then it is given by

ρQ(t) = ρ0Qe−3kt

where ρ0Q is the initial density of Q.





Chapter 14

Line Integral and Curl

Last chapter introduced the concept of flux and the surface integral associated
with it. Flux uses the directional property of a vector field to have it pierce an
element of area. The directional property can also naturally assign a varying
direction along a line. One can consider how a vector field changes direction
as it moves along a curve in space. This change can also lead to a new kind of
integration and differentiation of vector fields. The integration leads to the no-
tion of a line integral and the associated differentiation to the concept of curl.

14.1 The Line Integral

The prime example of a line integral is the work done by a force. Consider
the force field F(r) acting on an object and imagine the object being moved
by a small displacement Δr. Then the work done by the force in effecting this
displacement is defined as

ΔW = F(r) · Δr,

where it is assumed that F(r) is (approximately) constant during the displace-
ment.

To calculate the work for a finite displacement, such as the one shown
in Figure 14.1, we break up the displacement into N small segments, cal-
culate the work for each segment, and add all contributions to obtain W ≈∑N

i=1 F(ri) · Δri. The approximation sign can be removed by taking Δri as
small as possible and N as large as possible. Then we have line integral

defined

W =
∫ P2

P1

F(r) · dr ≡
∫

C

F · dr, (14.1)

where C stands for the particular curve on which the force is displaced. This
equation is, by definition, the line integral of the force field F. In this partic-
ular case it is the work done by F in moving from P1 to P2. Of course, we can
apply the line integral to any vector field, not just force. In electromagnetic
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P1 Δ r1

Δ r3
Δ r2

Δ rN

Δ ri

P2
F(xi, yi, zi)

Figure 14.1: The line integral of a vector field F from P1 to P2.

theory, for example, the line integrals of the electric and magnetic fields play
a central role.

The most general way to calculate a line integral is through parametric
equation of the curve. Thus, if the Cartesian set of parametric equations of
the curve is

x = f(t), y = g(t), z = h(t),

then the components of the vector field A will be functions of a single variable
t obtained by substitution:

Ax(x, y, z) = Ax

(
f(t), g(t), h(t)

)
≡ F(t),

Ay(x, y, z) = Ay

(
f(t), g(t), h(t)

)
≡ G(t),

Az(x, y, z) = Az

(
f(t), g(t), h(t)

)
≡ H(t),

and the components of dr are

dx = f ′(t) dt, dy = g′(t) dt, dz = h′(t) dt.

Then the line integral of A can be written asline integral in
terms of the
parametric
equations of the
curve

∫

C

A · dr =
∫

C

(Ax dx + Ay dy + Az dz)

=
∫ b

a

{
F(t)f ′(t) + G(t)g′(t) + H(t)h′(t)

}
dt, (14.2)

where t = a and t = b designate the initial and final points of the curve,
respectively. Other coordinate systems can be handled similarly. Instead of
giving a general formula for these coordinate systems, we present an example
using cylindrical coordinates.

Example 14.1.1. Consider the vector field given by

A = c1zϕêρ + c2ρzêϕ + c3ρϕêz,

where c1, c2, and c3 are constants. We want to calculate the line integral of this
field, starting at z = 0, along one turn of a uniformly wound helix of radius a whose



14.1 The Line Integral 389

x
y

z

b

Figure 14.2: The helical path for calculating the line integral.

windings are separated by a constant value b (see Figure 14.2 ). The parametric
equation of this helix in cylindrical coordinates is

ρ ≡ f(t) = a, ϕ ≡ g(t) = t, z ≡ h(t) =
b

2π
t.

Notice that as ϕ = t changes by 2π, the height (i.e., z) changes by b as required.
Substituting for the three coordinates in terms of t in the expression for A, we obtain

A ≡ 〈F(t), G(t),H(t)〉 =

〈

c1
b

2π
t2, c2a

b

2π
t, c3at

〉

.

Similarly,

dr = 〈dρ, ρ dϕ, dz〉 = 〈f ′(t), f(t)g′(t), h′(t)〉dt =

〈

0, a,
b

2π

〉

dt,

so that
∫

C

A · dr =

∫ b

a

{
F(t)f ′(t) + G(t)g′(t) + H(t)h′(t)

}
dt

=

∫ 2π

0

{

0 + c2a
2 b

2π
t + c3

b

2π
at

}

dt = πab(c2a + c3). �

Example 14.1.2. Consider the vector field A = K(xy2êx + x2yêy). We want
to evaluate the line integral of this field from the origin to the point (a, a) in the
xy-plane along three different paths (i), (ii), and (iii), as shown in Figure 14.3. Since
the vector field is independent of z and the paths are all in the xy-plane, we ignore
z completely.

The first path is the straight line y = x. A convenient parameterization is x = at,
y = at with 0 ≤ t ≤ 1. Along this path the components of A become

Ax = Kxy2 = K(at)(at)2 = Ka3t3, Ay = Kx2y = K(at)2(at) = Ka3t3.

Furthermore, taking the differentials of x and y, we obtain dx = a dt and dy = a dt.
Thus,

∫

C

A · dr =

∫ (a,a)

(0,0)

(Axdx + Aydy) = K

∫ 1

0

[(
a3t3

)
a dt +

(
a3t3

)
a dt

]

= 2Ka4

∫ 1

0

t3 dt =
Ka4

2
.
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x

y

(i)
(ii)

(iii)

(a, a)
(iv)

Figure 14.3: The three paths joining the origin to the point (a, a). Path (iv) is to

illustrate the importance of parameterization.

Although parameterization is very useful, systematic, and highly recommended,
it is not always necessary. We calculate the line integral along path (ii)—given by
y = x2/a—without using parameterization. All we have to notice is that all the y’s
are to be replaced by x2/a [and therefore, dy by (2x/a) dx]. Thus,

Ax = Kxy2 = Kx

(
x2

a

)2

= K
x5

a2
, Ay = Kx2y = Kx2

(
x2

a

)

= K
x4

a
.

The line integral can now be evaluated easily:

∫ (a,a)

(0,0)

(Axdx + Aydy) = K

∫ a

0

[(
x5

a2

)

dx +

(
x4

a

)(
2x

a
dx

)]

= 3K

∫ a

0

x5

a2
dx =

Ka4

2
.

Finally, we calculate the line integral along the quarter of a circle. For this calcu-
lation, we return to the parameterization technique, because it eases the integration.
A simple parameterization is

x = a − a cos t, y = a sin t, 0 ≤ t ≤ π

2
,

with dx = a sin t dt and dy = a cos t dt. This yields

Axdx + Aydy = K[(a − a cos t)a2 sin2 t]a sin t dt + K[(a − a cos t)2a sin t]a cos t dt

= Ka4[(1 − cos t)(1 − cos2 t) + (1 − cos t)2 cos t] sin t dt

= Ka4(1 − 3 cos2 t + 2 cos3 t) sin t dt.

This is now integrated to give the line integral:

∫ (a,a)

(0,0)

(Axdx + Aydy) = Ka4

∫ π/2

0

(1 − 3 cos2 t + 2 cos3 t) sin t dt

= Ka4

[

− cos t
∣
∣
∣
π/2

0
+ cos3 t

∣
∣
∣
π/2

0
− 1

2
cos4 t

∣
∣
∣
π/2

0

]

=
Ka4

2
.

The fact that the three line integrals yield the same result may seem surprising.
However, as we shall see shortly, it is a property shared by a special group of vector
fields of which A is a member. �
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Many a time parameterization makes life a lot easier! Suppose we want parameterization
is essential for
obtaining the
correct sign for
some line
integrals!

to calculate the line integral of a vector field along path (iv) of Figure 14.3.
First let us attempt to calculate the line integral using the coordinates. Along
path (iv) dr = −êx dx; so A · dr = −Ax dx. Then

∫ (0,a)

(a,a)

A · dr = −
∫ 0

a

Ax dx =
∫ a

0

Ax dx.

Thus, if Ax > 0 (try Ax = x2), the integral will be positive. But this is wrong:
A positive Ax should yield a negative A · dr because the two vectors are in
opposite directions!

With parameterization, this problem is alleviated. A parameterization
that represents path (iv) is

x = a(1 − t), y = a, 0 ≤ t ≤ 1.

Clearly, t = 0 corresponds to the beginning of path (iv) and t = 1 to its
endpoint. The parameterization automatically gives dx = −a dt and dy = 0.
For instance, the vector field of Example 14.1.2 yields

∫ (0,a)

(a,a)

A · dr =
∫ 1

0

a(1 − t)a2(−a dt) = −a4

∫ 1

0

(1 − t) dt = − 1
2a4.

This has the correct sign because Ax is positive and the direction of integration
negative. The other method would have given a positive result!

14.2 Curl of a Vector Field and Stokes’

Theorem

Line integrals around a closed path are of special interest. For example, if
the velocity vector of a fluid has a nonzero integral around a closed path, the
fluid must be turning around that path and a whirlpool must reside inside
the closed path. It is remarkable that such a mundanely concrete idea can be
applied verbatim to much more abstract and sophisticated concepts such as
electromagnetic fields with proven success and relevance. Thus, for a vector
field, A, and a closed path, C, we denote the line integral as

∮

C

A · dr

where the circle on the integral sign indicates that the path is closed and C
denotes the particular path taken.

In our discussion of divergence and flux, we encountered Equation (13.11)
where an integral (over volume V ) was related to an integral over its boundary
(surface S). This remarkable property has an analog in one lower dimension:
Any closed curve bounds a surface inside it. Is it possible to connect the
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S1

C

S2

Figure 14.4: There is no “the” surface having C as its boundary. Both S1 and S2—as

well as a multitude of others—are such surfaces.

line integral over the closed curve to a surface integral over the surface? The
answer is yes, but we have to be careful here. What do we mean by “the” sur-
face? A given closed curve may bound many different surfaces, as Figure 14.4
shows. It turns out that this freedom, which was absent in the divergence
case,1 is irrelevant and the relation holds for any surface whose boundary is
the given curve.

Let us now develop the analog of the divergence theorem for closed line
integrals. To begin, we consider a small closed rectangular path with a unit
normal ên, which is related to the direction of traversing the path by the
right-hand rule (RHR):Right-hand rule

(RHR) rules here!

Box 14.2.1. (The Right-Hand Rule). Curl the fingers of your right
hand in the direction of integration along the curve, your thumb should
then point in the direction of ên.

Without loss of generality we assume that the rectangle is parallel to the xy-
plane with sides parallel to the x-axis and the y-axis and that ên is parallel
to the z-axis (see Figure 14.5). The line integral can be written as

∮

C

A · dr =
∫ b

a

A · dr +
∫ c

b

A · dr +
∫ d

c

A · dr +
∫ a

d

A · dr.

We do the first integral in detail; the rest are similar. Along ab the element
of displacement dr is always in the positive x-direction and has magnitude dx,

1It should be clear that we cannot change the shape of the volume enclosed in S without
changing S itself. This rigidity is due to the maximality of the dimension of the enclosed
region: A volume is a three-dimensional object, and three is the maximum dimension we
have. Theories with higher dimension than three will allow a deformability similar to the
one discussed above.
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a

b c

d
Δx

Δ y

x
y

z

O

A

x y

z ên

Figure 14.5: A closed rectangular path parallel to the xy-plane with center at (x, y, z).

so it can be written as dr = êx dx. Thus, the first integral on the RHS above
becomes

∫ b

a

A · dr ≡
∫ b

a

A1 · dr1 =
∫ b

a

A1 · (êx dx) =
∫ b

a

A1x dx,

where, as before, the subscript 1 indicates that we have to evaluate A at the
midpoint of ab and the subscript x denotes the x-component. Now, since ab
is small and the angle between A and dr does not change appreciably on ab,2

we can approximate the integral with A1xab and write
∫ b

a

A · dr ≈ A1xab = A1x Δx = Ax

(

x, y − Δy

2
, z

)

︸ ︷︷ ︸
coordinates of
midpoint of ab

Δx

≈
{

Ax(x, y, z) − Δy

2
∂Ax

∂y

}

Δx,

where in the last line we used the Taylor expansion of Ax. Similarly, we can
write

∫ d

c

A · dr =
∫ d

c

A2 · dr2 =
∫ d

c

A2 · (−êx dx) = −
∫ d

c

A2x dx

≈ −A2xcd = −A2x Δx = −Ax

(

x, y +
Δy

2
, z

)

︸ ︷︷ ︸
coordinates of
midpoint of cd

Δx

≈ −
{

Ax(x, y, z) +
Δy

2
∂Ax

∂y

}

Δx.

Adding the contributions from sides ab and cd yields
∫ b

a

A · d r +
∫ d

c

A · dr ≈ −∂Ax

∂y
ΔxΔy.

2This condition is essential, because a rapidly changing angle implies a rapidly changing
component A1x which is not suitable for the approximation to follow.
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The contributions from the other two sides of the rectangle can also be
calculated:

∫ c

b

A · dr +
∫ a

d

A · dr ≈ A3y Δy − A4y Δy

= Ay

(

x +
Δx

2
, y, z

)

Δy − Ay

(

x − Δx

2
, y, z

)

Δy

≈
{

Ay(x, y, z) +
Δx

2
∂Ay

∂x

}

Δy −
{

Ay(x, y, z) − Δx

2
∂Ay

∂x

}

Δy

=
∂Ay

∂x
ΔxΔy.

The sum of these two equations gives the total contribution:
∮

C

A · d r ≈
(

∂Ay

∂x
− ∂Ax

∂y

)

ΔxΔy. (14.3)

Let us look at Equation (14.3) more closely. The expression in parentheses
can be interpreted as the z-component of the cross product of the gradient
operator ∇ with A. In fact, using the mnemonic determinant form of the
vector product, we can write

∇ × A = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

êx êy êz

∂

∂x

∂

∂y

∂

∂z

Ax Ay Az

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
(

∂Az

∂y
− ∂Ay

∂z

)

êx +
(

∂Ax

∂z
− ∂Az

∂x

)

êy +
(

∂Ay

∂x
− ∂Ax

∂y

)

êz.

This cross product is called the curl of A and is an important quantity incurl of a vector
field defined vector analysis. We will look more closely at it later. At this point, however,

we are interested only in its definition as applied in Equation (14.3). The
RHS of that equation can be written as

(
∂Ay

∂x
− ∂Ax

∂y

)

ΔxΔy = (∇ × A)z ΔxΔy = (∇ × A) · êzΔa,

where Δa = ΔxΔy is the area of the rectangle. Noting that êz is in the
direction normal to the area, we can replace it with ên. Therefore, we can
write Equation (14.3) as

∮

C

A · dr ≈ (∇ × A) · ênΔa = (∇ × A) · Δa. (14.4)

Equation (14.4) states that for a small rectangular path C the closed line
integral is equal to the normal component of the curl of A evaluated at the
center of the rectangle times the area of the rectangle. This statement does
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not depend on the choice of coordinate system. In fact, any rectangle (or any
closed planar loop) defines a plane and we are at liberty to designate that
plane the xy-plane. Thus, we can define the curl of a vector field this way: coordinate

independent
definition of curlDefinition 14.2.1. Given a small closed curve C, calculate the line integral

of A around it and divide the result by the area enclosed by C. The component
of the curl of A along the unit normal to the area is given by

CurlA · ên ≡ ∇ × A · ên = lim
Δa→0

∮
C A · dr

Δa
. (14.5)

The direction of ên is related to the sense of integration via the right-hand
rule.

In Equation (14.5) we are assuming that the area is flat. This is always
possible by taking the curve small enough. Definition 14.2.1 is completely
independent of the coordinate system and we shall use it to derive expressions
for the curl of vector fields in spherical and cylindrical coordinates as well.
The reader should be aware that the notation ∇×A is just that, a notation,
and—except in Cartesian coordinates—should not be considered as a cross
product.

What happens with a large closed path? Figure 14.6 shows a closed path C from small
rectangles to large
loops

with an arbitrary surface S, whose boundary is the given curve. We divide S
into small rectangular areas and assign a direction to their contours dictated
by the direction of integration around C.3 If we sum all the contributions
from the small rectangular paths, we will be left with the integration around
C because the contributions from the common sides of adjacent rectangles
cancel.4 This is because the sense of integration along their common side is

ê n Δa

C

S

Figure 14.6: An arbitrary surface with the curve C as its boundary. The sum of the

line integrals around the rectangular paths shown is equal to the line integral around C.

3The direction of the contour with one side on the curve C is determined by the direction
of the integration of C. The direction of a distant contour is determined by working one’s
way to it one (small) rectangle at a time.

4This situation is completely analogous to the calculation of the total flux in the deriva-
tion of the divergence theorem.
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opposite for two adjacent rectangles (see Figure 14.6). Thus, the macroscopic
version of Equation (14.4) is

∮

C

A · dr ≈
N∑

i=1

(∇ × A)i · êniΔai =
N∑

i=1

(∇ × A)i · Δai,

where (∇ × A)i is the curl of A evaluated at the center of the ith rectangle,
which has area Δai and normal êni , and N is the number of rectangles on
the surface S. If the areas become smaller and smaller as N gets larger and
larger, we can replace the summation by an integral and obtainthe most

important Stokes’
theorem Theorem 14.2.1. (Stokes’ Theorem). The line integral of a vector field

A around a closed path C is equal to the surface integral of the curl of A on
any surface whose only edge is C. In mathematical symbols, we have

∮

C

A · dr =
∫ ∫

S

∇ × A · da. (14.6)

The direction of the normal to the infinitesimal area da of the surface S is
related to the direction of integration around C by the right-hand rule.

Example 14.2.2. In this example we apply the concepts of closed line integral
and the Stokes’ theorem to a concrete vector field. Consider the vector field

A = K(x2yêx + xy2êy)

obtained from the vector field of Example 14.1.2 by switching the x- and y-components.
We want to calculate the line integral around the two closed loops (the circle and
the rectangle) of Figure 14.7 and verify the Stokes’ theorem.

A convenient parameterization for the circle is

x = a cos t, y = a sin t, 0 ≤ t ≤ 2π,

with dx = −a sin t dt and dy = a cos t dt. Thus,

A · dr = K(a cos t)2(a sin t)(−a sin t dt) + K(a cos t)(a sin t)2(a cos t dt) = 0,

x

y

b

2b

a

Figure 14.7: Two loops around which the vector field of Example 14.2.2 is calculated.
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and the LHS of the Stokes’ theorem is zero. For the RHS, we need the curl of the
vector.

∇ × A = K

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êx êy êz

∂
∂x

∂
∂y

∂
∂z

x2y xy2 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= K(y2 − x2)êz.

It is convenient to use cylindrical coordinates for integration over the area of the
circle. Moreover, the right-hand rule determines the unit normal to the area of the
circle to be êz. Thus,

∫ ∫

S

∇ × A · da = K

∫ a

0

∫ 2π

0

(ρ2 sin2 ϕ − ρ2 cos2 ϕ)ρ dρ dϕ = 0

by the ϕ integration. Thus the two sides of the Stokes’ theorem agree.
The two sides of the rectangular loop sitting on the axes will give zero because

A = 0 there. The contribution of the side parallel to the y-axis can be obtained by
noting that x = 2b and dx = 0, so that

A · dr = Ax dx + Ay dy = 0 + 2bKy2 dy

and ∫ (2b,b)

(2b,0)

A · dr = 2bK

∫ b

0

y2 dy = 2
3
Kb4.

To avoid ambiguity,5 we employ parameterization for the last line integral. A con-
venient parametric equation would be

x = 2b(1 − t), y = b, 0 ≤ t ≤ 1,

which gives dx = −2b dt, dy = 0, and for which the line integral yields

∫ (2b,0)

(2b,b)

A · dr = K

∫ 1

0

[2b(1 − t)]2(b)(−2b dt) = −8b4K

∫ 1

0

(1 − t)2 dt = − 8
3
Kb4.

So, the line integral for the entire loop (the LHS of the Stokes’ theorem) is

∮

C

A · dr = 2
3
Kb4 − 8

3
Kb4 = −2Kb4.

We have already calculated the curl of A. Thus, the RHS of the Stokes’ theorem
becomes

∫ ∫

S

∇ × A · da = K

∫ ∫

S

(y2 − x2) dx dy

= K

∫ 2b

0

dx

∫ b

0

y2dy

︸ ︷︷ ︸
=2b(b3/3)

−K

∫ 2b

0

x2dx

∫ b

0

dy

︸ ︷︷ ︸
(8b3/3)b

= −2Kb4

and the two sides agree. �
5See the discussion following Example 14.1.2.
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Historical Notes
George Gabriel Stokes published papers on the motion of incompressible fluids in
1842–43 and on the friction of fluids in motion, and on the equilibrium and motion
of elastic solids in 1845.

In 1849 Stokes was appointed Lucasian Professor of Mathematics at Cambridge,
and in 1851 he was elected to the Royal Society and was secretary of the society
from 1854 to 1884 when he was elected president.

He investigated the wave theory of light, named and explained the phenomenon
of fluorescence in 1852, and in 1854 theorized an explanation of the Fraunhofer lines
in the solar spectrum. He suggested these were caused by atoms in the outer layers
of the Sun absorbing certain wavelengths. However, when Kirchhoff later published
this explanation, Stokes disclaimed any prior discovery.

George Gabriel
Stokes 1819–1903

Stokes developed mathematical techniques for application to physical problems
including the most important theorem which bears his name. He founded the science
of geodesy, and greatly advanced the study of mathematical physics in England. His
mathematical and physical papers were published in five volumes, the first three of
which Stokes edited himself in 1880, 1883, and 1891. The last two were edited by
Sir Joseph Larmor in 1887 and 1891.

14.3 Conservative Vector Fields

Of great importance are conservative vector fields, which are those vec-
tor fields that have vanishing line integrals around every closed path. An
immediate result of this property is thatconservative

vector fields
defined

Box 14.3.1. The line integral of a conservative vector field between two
arbitrary points in space is independent of the path taken.

To see this, take any two points P1 and P2 connected by two different directed
paths C1 and C2 as shown in Figure 14.8(a). The combination of C1 and the
negative of C2 forms a closed loop [Figure 14.8(b)] for which we can write

∫

C1

A · dr +
∫

−C2

A · dr = 0

because A is conservative by assumption. The second integral is the negative
of the integral along C2. Thus, the above equation is equivalent to

∫

C1

A · dr −
∫

C2

A · dr = 0 ⇒
∫

C1

A · dr =
∫

C2

A · dr

which proves the above claim.
Now take an arbitrary reference point P0 and connect it via arbitrary paths

to all points in space. At each point P with Cartesian coordinates (x, y, z),
define the function Φ(x, y, z) by

Φ(x, y, z) = −
∫ P

P0

A · dr ≡ −
∫

C

A · dr, (14.7)
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− C2

 P2

 P1
 C1

 P2

 P1  C1

 C2

)b()a(

Figure 14.8: (a) Two paths from P1 to P2, and (b) the loop formed by them.

where C is any path from P0 to P and the minus sign is introduced for the function Φ, so
defined, has the
mathematical
property expected
of a function,
namely, that for
every point P , the
function has only
one value that we
may denote as
Φ(P ).

historical reasons only. Φ is a well-defined function because its value does not
depend on C and is called the potential associated with the vector field A.
We note that the potential at P0 is zero. That is why P0 is called the potential
reference point.

Now consider two arbitrary points P1 and P2, with Cartesian coordinates
(x1, y1, z1) and (x2, y2, z2), connected by some path C. We can also connect
these two points by a path that goes from P1 to P0 and then to P2 (see
Figure 14.9). Since A is conservative, we have

∫ P2

P1

A · dr =
∫ P0

P1

A · dr +
∫ P2

P0

A · dr = Φ(x1, y1, z1) − Φ(x2, y2, z2)

or potential of a
conservative
vector fieldΦ(x2, y2, z2) − Φ(x1, y1, z1) = −

∫ P2

P1

A · dr, (14.8)

which expresses the potential difference between the two points.
If P1 and P2 are displaced infinitesimally by dr, then their infinitesimal

potential difference will be
dΦ = −A · dr.

On the other hand, Φ, being a scalar differentiable function of x, y, and z, has
infinitesimal increment

dΦ =
∂Φ
∂x

dx +
∂Φ
∂y

dy +
∂Φ
∂z

dz = (∇Φ) · dr,

C P2

P0

P1

Figure 14.9: Any path C from P1 to P2 is equivalent to the path P1 → P0 → P2.
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so we have
−A · dr = (∇Φ) · dr.

But this is true for an arbitrary dr. Taking dr to be êx dx, êy dy, and êz dz
in turn, we obtain the equality of the three components of ∇Φ and −A.
Therefore, we have

A = −∇Φ, (14.9)

which states that

Theorem 14.3.1. A conservative vector field can be written as the negative
gradient of a potential function defined as

Φ(x, y, z) = −
∫ P

P0

A · dr,

where (x, y, z) are the coordinates of P , and the integral is taken along any
path connecting P0 and P .

Another property of a conservative vector field can be obtained by rewrit-
ing Equation (14.4), which is true for an arbitrary infinitesimal closed path:

∮

C

A · dr ≈ (∇ × A) · ênΔa.

However, the LHS is zero because A is conservative. Thus we havethe curl of a
conservative
vector field is zero. (∇ × A) · ênΔa = 0.

This is true for arbitrary Δa and ên. Therefore, we have the important
conclusion that ∇ × A = 0 for a conservative vector field. It is important to
note that although

∮
C

A · dr is zero and C is small, we cannot deduce that
A · dr = 0 and, therefore, A = 0. (Why?)

A conservative vector field demands the vanishing of the curl. But is∇ × A = 0 does
not necessarily
imply that A is
conservative!

∇ × A = 0 sufficient for A to be conservative? The answer, in general, is
no! (See Example 14.3.3 below.) If the vector field is well defined and well
behaved (smoothly varying, differentiable, etc.) in a region of space U , then
∇×A = 0 in U implies that

∮
C

A ·dr = 0 for all closed curves C lying entirely
in U . In modern mathematical jargon such a region is said to be contractible
to zero, which means that any closed curve in U can be contracted to a point
(or “zero” closed curve) without encountering any singular point of the vector
field (where it is not defined or well behaved). We state this result as follows:

Box 14.3.2. Let the region U in space be contractible to zero for the vector
field A. Then for any closed curve C in U , the two relations ∇ × A = 0
and

∮
C A · dr = 0 are equivalent.
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Example 14.3.2. The line integral of the vector field of Example 14.1.2 was
independent of the three paths examined there. Could it be that the vector field is
conservative? The vector field is clearly well behaved everywhere. Therefore, the
vanishing of its curl proves that it is conservative. But

∇ × A = K

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êx êy êz

∂
∂x

∂
∂y

∂
∂z

xy2 x2y 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (0)êx + (0)êy + (2xy − 2xy)êz = 0.

So, A is indeed conservative.
Next we find the potential of A at a point (x0, y0) in the xy-plane.6 Let the

reference point be the origin. Since it does not matter what path we take, we choose
a straight line joining the origin and (x0, y0). A convenient parametric equation is

x = x0t, y = y0t, 0 ≤ t ≤ 1,

which gives dx = x0 dt and dy = y0 dt. We now have

Φ(x0, y0) = −
∫ (x0,y0)

(0,0)

A · dr

= −K

∫ 1

0

[(x0t)(y0t)
2(x0 dt) + (x0t)

2(y0t)(y0 dt)]

= −2Kx2
0y

2
0

∫ 1

0

t3dt = − 1
2
Kx2

0y
2
0 .

We can now substitute (x, y) for (x0, y0) to obtain

Φ(x, y) = − 1
2
Kx2y2.

The reader may verify that A = −∇Φ. �

It should be clear that ∇×A �= 0 always implies that A is not conservative.
However, ∇ × A = 0 implies that A is conservative only if the region in
question is contractible to zero.

Example 14.3.3. Consider the vector field

A =
ky

x2 + y2
êx − kx

x2 + y2
êy,

where k is a constant. Since the components of this vector are independent of z, the
curl of the vector can have only a z-component:

∇ × A =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êx êy êz

∂
∂x

∂
∂y

∂
∂z

Ax Ay 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

(
∂Ay

∂x
− ∂Ax

∂y

)

êz.

6We completely ignore the z-coordinate because A has no component in that direction.
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The reader may easily verify that

∂Ay

∂x
= − k

x2 + y2
+ k

2x2

(x2 + y2)2
,

∂Ax

∂y
=

k

x2 + y2
+ k

2y2

(x2 + y2)2
,

so that
∂Ay

∂x
− ∂Ax

∂y
= − 2k

x2 + y2
+ k

2(x2 + y2)

(x2 + y2)2
= 0

and ∇ ×A = 0.
Now take a circle of radius a about the origin and calculate the line integral of

A on this circle. For integration, use the parameterization

x = a cos t, y = a sin t, 0 ≤ t ≤ 2π,

with dx = −a sin t dt and dy = a cos t dt. Then

A · dr = Axdx + Aydy =
k(a sin t)(−a sin t dt)

(a cos t)2 + (a sin t)2
− k(a cos t)(a cos t dt)

(a cos t)2 + (a sin t)2
= −k dt

and, therefore ∮

circ

A · dr = −k

∫ 2π

0

dt = −2πk.

This is an example of a vector field whose curl vanishes but yields a nonzero
result for a closed line integral. The reason is, of course, that the region inside the
circle is not contractable to zero: At the origin the vector is infinite. �

If the vector field is conservative, in principle we can determine its potential
either by direct antidifferentiation or by integration. The following example
illustrates the former procedure.

Example 14.3.4. Consider the vector field

A = (2xy + 3z2)êx + (x2 + 4yz)êy + (2y2 + 6xz)êz.

The reader may check that ∇ × A = 0. Thus, since A is well defined everywhere,
it is conservative. To find its potential Φ, we note that

∂Φ

∂x
= −Ax = −2xy − 3z2 ⇒ Φ = −x2y − 3z2x + g(y, z),

where we have simply antidifferentiated Ax with respect to x—assuming that y
and z are merely constants—and added a “constant” of integration: As far as x
differentiation is concerned, any function of y and z is a constant. Now differentiate
Φ obtained this way with respect to y and set it equal to −Ay:

−Ay = −(x2 + 4zy) =
∂Φ

∂y
=

∂

∂y

(
−x2y − 3z2x + g(y, z)

)
= −x2 +

∂g

∂y
.

This gives
∂g

∂y
= −4yz ⇒ g(y, z) = −2y2z + h(z)

Note that our second “constant” of integration has no x-dependence because g(y, z)
does not depend on x. Substituting this back in the expression for Φ, we obtain

Φ = −x2y − 3z2x + g(y, z) = −x2y − 3z2x − 2y2z + h(z).
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Finally, differentiating this with respect to z and setting it equal to −Az, we obtain

−Az = −(2y2 + 6xz) =
∂Φ

∂z
=

∂

∂z

(
−x2y − 3z2x− 2y2z + h(z)

)
= −6xz − 2y2 +

dh

dz
.

This gives
dh

dz
= 0 ⇒ h(z) = const. ≡ C.

The final answer is therefore

Φ(x, y, z) = −x2y − 3z2x − 2y2z + C.

The arbitrary constant depends on the potential reference point, and is zero if we
choose the origin as that point. It is easy to verify that −∇Φ is indeed the vector
field we started with. �

There are various vector identities which connect gradient, divergence,
and curl. Most of these identities can be obtained by direct substitution. For
example, by substituting the Cartesian components of A×B in the Cartesian
expression for divergence, one can show that

∇ · (A × B) = B · ∇ × A − A · ∇ × B. (14.10)

Similarly, one can show that

∇ · (fA) = A · ∇f + f∇ · A,

∇ × (fA) = f∇ × A + (∇f) × A (14.11)

A× (∇ × A) = 1
2∇|A|2 − (A · ∇)A

We can use Equation (14.10) to derive an important vector integral relation
akin to the divergence theorem. Let B be a constant vector. Then the second
term on the RHS vanishes. Now apply the divergence theorem to the vector
field A× B:

∫ ∫

S

A× B · da =
∫ ∫

V

∫
∇ · (A × B) dV.

Using Equation (14.10), the RHS can be written as

RHS =
∫ ∫

V

∫
B · ∇ × A dV = B ·

∫ ∫

V

∫
∇ × A dV.

Moreover, the use of the cyclic property of the mixed triple product (see
Problem 1.15) will enable us to write the LHS as

LHS =
∫ ∫

S

(da × A) · B =
∫ ∫

S

B · (da × A) = B ·
∫ ∫

S

da × A.
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Equating the new versions of the two sides, we obtain

B ·
∫ ∫

V

∫
∇ × A dV = B ·

∫ ∫

S

da × A

or

B ·

⎛

⎝
∫ ∫

V

∫
∇ × A dV −

∫ ∫

S

da × A

⎞

⎠ = 0.

Since the last relation is true of arbitrary B, the vector inside the parentheses
must be zero. This gives the result we are after:

∫ ∫

V

∫
∇ × A dV =

∫ ∫

S

da × A. (14.12)

14.4 Problems

14.1. Evaluate the line integral of

A(x, y, z) = x2êx + y2êy − z2êz

along the path given parametrically by

x = at2, y = bt, z = c sin (πt/2)

from the origin to (a, b, c).

14.2. Evaluate the line integral of

A(x, y, z) = xêx +
y2

b
êy − z2

c
êz

along the path given parametrically by

x = a cos(πt/2), y = b sin(πt/2), z = ct

from (a, 0, 0) to (0, b, c).

14.3. Evaluate the line integral of

A(x, y) = xêx +
y2

b
êy

along the closed ellipse given parametrically by

x = a cos t, y = b sin t.

14.4. Show that ∇ × (A × r) = 2A.
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14.5. Let

A(x, y) = Ax(x, y)êx + Ay(x, y)êy

B(x, y) = Bx(x, y)êx + By(x, y)êy

be vectors in two-dimensions.
(a) Apply the divergence theorem to A using a volume V enclosed by a cylin-
der whose bottom base is an arbitrary closed curve C in the xy-plane and
whose top base is the same curve in a plane parallel to the xy-plane, and
whose lateral side is parallel to the z-axis. Now conclude that

∮

C

(Axdy − Aydx) =
∫∫

R

(
∂Ax

∂x
+

∂Ay

∂y

)

dx dy

where R is the region enclosed by C in the xy-plane. This is the divergence
theorem in two dimensions.
(b) Apply Stokes’ theorem to B with C as above and S the region R defined
above. Show that

∮

C

(Bxdx + Bydy) =
∫∫

R

(
∂By

∂x
− ∂Bx

∂y

)

dx dy

This is the Stokes’ theorem in two dimensions.
(c) Show that in two dimensions the Stokes’ theorem and divergence theorem
are the same.

14.6. Evaluate the line integral of

A(x, y) =
(
x2 + 3y

)
êx +

(
y2 + 2x

)
êy

from the origin to the point (1, 2):
(a) along the straight line joining the two points; and
(b) along the parabola passing through the two points as well as the point
(−1, 2).
(c) Is A conservative?

14.7. Is the vector field A(x, y) = xex2
cos y êx − 1

2ex2
sin y êy conservative?

If so, find its potential.

14.8. A vector field is given by

A =
Φ0

b2

[
y
(
1 +

x

b

)
êx + xêy +

xy

b
êz

]
e(x+z)/b,

where Φ0 and b are constants.
(a) Determine whether or not A is conservative.
(b) Find the potential of A if it is conservative.

14.9. The components of a vector field are given by

Ax = V0k
3yzek2xy, Ay = V0k

3xzek2xy + V0k sinky, Az = V0kek2xy.

(a) Determine whether A is conservative or not.
(b) If it is conservative, find its potential.
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14.10. The Cartesian components of a vector are given by

Ax = 2axekz , Ay = 2ayekz, Az = ka(x2 + y2)ekz ,

where a and k are constants.
(a) Test whether A is conservative or not.
(b) If A is conservative, find its potential.

14.11. Prove Equations (14.10) and (14.11).

14.12. Show that

∇(A ·B) = (B · ∇)A + (A · ∇)B + B× (∇ × A) + A × (∇ × B)

and that
A× (∇ × B) = ∇(A ·B) − (A · ∇)B

14.13. Verify the vector identity

∇ × (A × B) = (B · ∇)A − (A · ∇)B − B(∇ · A) + A(∇ · B)

14.14. Verify that for constant A and B

∇[A · (B × r)] = A × B



Chapter 15

Applied Vector Analysis

In the last three chapters, we introduced the operator ∇ and used it to make
vectors out of scalars (gradient), scalars out of vectors (divergence), and new
vector out of old vectors (curl). It is obvious that all these processes can
be combined to form new scalars and vectors. For instance one can create
a vector out of a scalar by the operation of gradient and use the resulting
vector as an input for the operation of divergence. Since almost all equations
of physics involve derivatives of at most second order, we shall confine our
treatment to “double del operations” in this chapter.

15.1 Double Del Operations

We can make different combinations of the vector operator ∇ with itself. By
direct differentiation we can easily verify that

∇ × (∇f) = 0. (15.1)

Equation (14.9) states that a conservative vector field is the gradient of its
potential. Equation (15.1) says, on the other hand, that if a field is the
gradient of a function then it is conservative.1 We can combine these two
statements into one by saying that

Box 15.1.1. A vector field is conservative (i.e., its curl vanishes) if and
only if it can be written as the gradient of a scalar function, in which case
the scalar function is the field’s potential.

Example 15.1.1. The electrostatic and gravitational fields, which we denote
generically by A, are given by an equation of the form

A(r) = K

∫∫

Ω

dQ(r′)

|r − r′|3 (r− r′).

1Assuming that the region in which the gradient of the function is defined is contractable
to zero, i.e., the region has no point at which the gradient is infinite.
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Furthermore, the reader may show that (see Problem 12.17)

r − r′

|r − r′|3 = −∇
(

1

|r − r′|

)

. (15.2)

Substitution in the above integral then yields

A(r) = −K

∫∫

Ω

dQ(r′)∇
(

1

|r − r′|

)

= −∇
(

K

∫∫

Ω

dQ(r′)

|r − r′|

)

= −∇Φ(r), (15.3)

where Φ, the potential of A, is given by

Φ(r) ≡ K

∫∫

Ω

dQ(r′)

|r − r′| . (15.4)

Equation (15.3), in conjunction with Equation (15.1), automatically implies that
both the electrostatic and gravitational fields are conservative. �

In a similar fashion, we can directly verify the following identity:

∇ · (∇ × A) = 0. (15.5)

Example 15.1.2. Magnetic fields can also be written in terms of the so-called
vector potentials. To find the expression for the vector potential, we substitute
Equation (15.2) in the magnetic field integral:

B =

∫∫

Ω

kmdq(r′)v(r′) × ( r− r′)

|r − r′|3 = km

∫∫

Ω

dq(r′)v( r′) ×
{

−∇
(

1

|r − r′|

)}

.

We want to take the ∇ out of the integral. However, the cross product prevents a
direct “pull out.” So, we need to get around this by manipulating the integrand.
Using the second relation in Equation (14.11), we can write

∇ ×
(

v(r′)

|r − r′|

)

=
1

|r − r′|

=0
︷ ︸︸ ︷
∇ × v−v× ∇

(
1

|r − r′|

)

= −v(r′) × ∇
(

1

|r − r′|

)

.

We note that ∇ × v = 0 because ∇ differentiates with respect to (x, y, z) of which
v(r′) is independent. Substituting this last relation in the expression for B, we
obtain

B = km

∫∫

Ω

dq(r′)∇ ×
(

v( r′)

|r − r′|

)

= ∇ ×
(

km

∫∫

Ω

dq(r′)v( r′)

|r − r′|

)

≡ ∇ × A, (15.6)

where we have taken ∇× out of the integral since it differentiates with respect to
the parameters of integration and Ω is assumed independent of (x, y, z). The vector
potential A is defined by the last line, which we rewrite asvector potential

defined

A = km

∫∫

Ω

dq(r′)v(r′)

|r − r′| . (15.7)
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If the charges are confined to one dimension, so that we have a current loop, then
dq(r′)v(r′) = I dr′ and Equation (15.7) reduces to

A = kmI

∮
dr′

|r − r′| . (15.8)

An important consequence of Equations (15.6) and (15.5) is Vanishing of
divergence of
magnetic field
implies absence of
magnetic charges.

∇ · B = 0. (15.9)

Since the divergence of a vector field is related to the density of its source, we
conclude that there are no magnetic charges.

This statement is within the context of classical electromagnetic theory. Re-
cently, with the advent of the unification of electromagnetic and weak nuclear inter-
actions, there have been theoretical arguments for the existence of magnetic charges
(or monopoles). However, although the theory predicts—very rare—occurrences
of such monopoles, no experimental confirmation of their existence has been
made. �

15.2 Magnetic Multipoles

The similarity between the vector potential [Equation (15.8)] and the electro-
static potential motivates the expansion of the former in terms of multipoles
as was done in (10.33). We carry this expansion only up to the dipole term.
Substituting Equation (10.32) in Equation (15.8), we obtain

A = kmI

∮ (
1
r

+
êr · r′

r2
+ · · ·

)

dr′ =
kmI

r

∮
dr′

︸ ︷︷ ︸
=0

+
kmI

r2

∮
êr · r′dr′.

The reader can easily show that the first integral vanishes (Problem 15.5).
To facilitate calculating the second integral, choose Cartesian coordinates

and orient your axes so that êr is in the x-direction. Denote the integral by
V. Then

V =
∮

êr · r′dr′ =
∮

êx · r′dr′ =
∮

x′dr′ =
∮

x′(êx dx′ + êy dy′ + êz dz′).

We evaluate each component of V separately.

Vx =
∮

x′dx′ = 1
2

∮
d
(
x′2) = 1

2x′2
∣
∣
∣
end

beginning
= 0

because the beginning and end points of a loop coincide.
Now consider the identity

∮
(x′dy′ + y′dx′) =

∮
d(x′y′) = (x′y′)

∣
∣
∣
end

beginning
= 0 (15.10)



410 Applied Vector Analysis

with an analogous identity involving x′ and z′. For the y-component of V,
we have

Vy =
∮

x′dy′ = 1
2

∮
x′dy′ + 1

2

∮
x′dy′ + 1

2

∮
y′dx′ − 1

2

∮
y′dx′

︸ ︷︷ ︸
These add up to nothing!

= 1
2

(∮
x′dy′ +

∮
y′dx′

)

︸ ︷︷ ︸
=0 by Equation (15.10)

+ 1
2

(∮
x′dy′ −

∮
y′dx′

)

= 1
2

∮
(x′dy′ − y′dx′) = 1

2

∮
(r′ × dr′)z = 1

2

(∮
r′ × dr′

)

· êz.

It follows that

Ay =
kmI

r2
Vy =

kmI

2r2

(∮
r′ × dr′

)

· êz ≡ km

r2
μ · êz,

where we have defined the magnetic dipole moment μ asmagnetic dipole
moment

μ ≡ I

2

∮
r′ × dr′. (15.11)

A similar calculation will yield

Az =
kmI

r2
Vz = −kmI

2r2

(∮
r′ × dr′

)

· êy ≡ −km

r2
μ · êy.

Therefore,

A = Axêx + Ayêy + Azêz =
km

r2
( êy μ · êz − êz μ · êy )
︸ ︷︷ ︸
=μ×(êy×êz) by bac cab rule

.

Recalling that êy × êz = êx, and that by our choice of orientation of the axes
êr = êx, we finally obtain

A =
kmμ × êr

r2
=

kmμ × r
r3

. (15.12)

There is a striking resemblance between the vector potential of a magnetic
dipole [Equation (15.12)] and the scalar potential of an electric dipole [the
second term in the last line of Equation (10.33)]: The scalar potential is
given in terms of the scalar (dot) product of the electric dipole moment and
the position vector, the vector potential is given in terms of the vector product
of the magnetic dipole moment and the position vector.
Example 15.2.1. Let us calculate the magnetic dipole moment of a circularmagnetic dipole

moment of a
circular current
loop

current of radius a. Placing the circle in the xy-plane with its center at the origin,
we have

μ =
I

2

∮
r′ × dr′ =

I

2

∮
(aêρ′) × (a dϕ′êϕ′) =

Ia2

2

∫ 2π

0

dϕ′êz = Iπa2êz.

So, the magnitude of the magnetic dipole moment of a circular loop of current is
the product of the current and the area of the loop. Its direction is related to the
direction of the current by the right-hand rule. �
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15.3 Laplacian

The divergence of the gradient is an important and frequently occurring op-
erator called the Laplacian: Laplacian of a

function

∇ · (∇f) ≡ ∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
. (15.13)

Laplacian occurs throughout physics, in situations ranging from the waves on Laplacian is found
everywhere!a drum to the diffusion of matter in space, the propagation of electromagnetic

waves, and even the most basic behavior of matter on a subatomic scale, as
governed by the Schrödinger equation of quantum mechanics.

We discuss one situation in which the Laplacian occurs naturally. The
result of the example above and Theorem 13.2.4 can be combined to obtain
an important equation in electrostatics and gravity called the Poisson equa-
tion: ∇ · (−∇Φ) = 4πKρQ, or Poisson equation

∇2Φ(r) = −4πKρQ(r). (15.14)

This is a partial differential equation whose solution determines the potential
at various points in space.2 In many situations the density in the region of
interest is zero. Then the RHS vanishes and we obtain an important special
case of the above equation called Laplace’s equation: Laplace’s equation

∇2Φ(r) = 0. (15.15)

Consider a fixed point P in space with Cartesian coordinates (x0, y0, z0)
and position vector r0. Take another (variable) point with Cartesian coordi-
nates (x, y, z) and position vector r. By direct differentiation, one can verify
that

∇ ·
(

r− r0

|r − r0|3

)

= 0

at all points of space except at r = r0 for which the vector is not defined.
Moreover, if S is any closed surface bounding a volume V , we have

∫ ∫

S

(
r − r0

|r − r0|3

)

· da ≡ ΩS
P =

{
4π if P is in V,

0 if P is not in V,

by Theorem 12.1.2. On the other hand, the divergence theorem relates the
LHS of this equation with the volume integral of divergence. Thus,

∫ ∫

V

∫
∇ ·

(
r − r0

|r− r0|3

)

dV =

{
4π if P is in V,

0 if P is not in V.
(15.16)

2The reader should consider this, and any other differential equation, as a local equation,
meaning that the derivatives on the LHS and the quantities on the RHS are to be evaluated
at the same point.
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This shows that ∇ · [(r− r0)/|r− r0|3] has the property that it is zero every-
where except at P , but whose volume integral is not zero. This is reminiscent
of the three-dimensional Dirac delta function. In fact, it follows from Equation
(15.16) that

∇ ·
(

r− r0

|r − r0|3

)

= 4πδ(r − r0). (15.17)

Using Equation (15.2) and the definition of Laplacian, we also getrelation between
Laplacian and
Dirac delta
function

∇2

(
1

|r − r0|

)

= −4πδ(r− r0). (15.18)

The last double-del operation we consider is

∇ × (∇ × A) = ∇(∇ · A) −∇2A (15.19)

which holds only in Cartesian coordinates and can be verified component by
component.

Example 15.3.1. Angular Momentum Operator In quantum mechanics,
the angular momentum L = r×p becomes the differential operator L = −i�r×∇,
where � is the reduced Planck constant, which we set equal to 1 in the following
discussion. The quantity L2 ≡ |L|2 appears frequently in applications of quantum
mechanics. It is therefore instructive to compute this quantity.

Since L2 is a differential operator, we let it act on some function f and carry
out the differentiation until we get a simple result. Since

L2 = L2
x + L2

y + L2
z,

we let each component act on f separately. First note that

Lxf = −i (r × ∇f)x = −i

(

y
∂f

∂z
− z

∂f

∂y

)

Lyf = −i (r × ∇f)y = −i

(

z
∂f

∂x
− x

∂f

∂z

)

(15.20)

Lzf = −i (r × ∇f)z = −i

(

x
∂f

∂y
− y

∂f

∂x

)

Therefore,

−L2
xf =

(

y
∂

∂z
− z

∂

∂y

)(

y
∂f

∂z
− z

∂f

∂y

)

= y2 ∂2f

∂z2
+ z2 ∂2f

∂y2
− y

∂f

∂y
− z

∂f

∂z
− 2yz

∂2f

∂y∂z

. Similarly,

−L2
yf = x2 ∂2f

∂z2 + z2 ∂2f

∂x2 − x
∂f

∂x
− z

∂f

∂z
− 2xz

∂2f

∂x∂z
,

and

−L2
zf = x2 ∂2f

∂y2
+ y2 ∂2f

∂x2
− x

∂f

∂x
− y

∂f

∂y
− 2xy

∂2f

∂x∂y
.
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Adding the three components and using a little algebra, we get

−L2f = r2∇2f −
(

x2 ∂2f

∂x2
+ y2 ∂2f

∂y2
+ z2 ∂2f

∂z2

)

− 2r · (∇f) − 2

(

yz
∂2f

∂y∂z
+ xz

∂2f

∂x∂z
+ xy

∂2f

∂x∂y

)

. (15.21)

Let A denote the sum of the two expressions in the large parentheses. We can write
A in a compact form by expanding (r · ∇)(r · ∇f):

(r · ∇)2f ≡ (r · ∇)(r · ∇f) =

(

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)(

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z

)

= x
∂f

∂x
+ x2 ∂2f

∂x2
+ xy

∂2f

∂x∂y
+ xz

∂2f

∂x∂z
︸ ︷︷ ︸

comes from x differentiation

+terms from y and z differentiation.

Adding the terms from x, y, and z differentiations we obtain

(r · ∇)2f = r · (∇f) + A or A = (r · ∇)2f − r · (∇f).

Substituting this in (15.21) yields

L2f = −r2∇2f + r · (∇f) + (r · ∇)2f. (15.22)

As a differential operator, L2 is written as

L2 = −r2∇2 + r · ∇ + (r · ∇)2. (15.23)

We shall come back to this discussion in Chapter 17 to show how index manipulation
eases the calculation (see Example 17.3.3). �

15.3.1 A Primer of Fluid Dynamics

We have already talked about the flow of a fluid in Section 13.2.3, where
we derived the continuity equation, which states the conservation of mass in
mathematical terms. We now want to take up the dynamics of a fluid, i.e.,
the motion of various parts of the fluid due to the forces acting on them.

Consider a volume V of the fluid bounded by a surface S. The pressure p
exerted from outside at any point of S in the element of area da is normal to
S at that point and pointing into the volume V . Thus, the element of force
due to pressure is −pda. If pressure is the only source of force on the volume
V of the fluid, then the total force on V is

F = −
∫ ∫

S

p da.

Using Equation (13.12), we rewrite this as

F = −
∫ ∫

S

p da = −
∫ ∫

V

∫
∇p dV.
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This shows that ∇p is a force density, whose volume integral gives the force.
If the density of the fluid is ρ and the mass element dm in V has velocity v,
then the “mass time acceleration” is dm dv/dt = ρ dV (dv/dt), and the total
“mass time acceleration” is the volume integral of this quantity. If there are
other forces acting on the fluid described by a force density f, we can add it
to the right-hand side. Thus, Newton’s second law of motion gives

∫ ∫

V

∫
ρ(dv/dt) dV = −

∫ ∫

V

∫
∇p dV +

∫ ∫

V

∫
f dV,

and this holds for any volume V , in particular for an infinitesimal volume for
which the integrals become the integrand. Hence, the second law of motion
for the fluid is

ρ(dv/dt) = −∇p + f. (15.24)

The total time derivative of velocity is

dv
dt

=
∂v
∂t

+
∂v
∂x

dx

dt
+

∂v
∂y

dy

dt
+

∂v
∂z

dz

dt
=

∂v
∂t

+ (v · ∇)v.

Substituting this in (15.24) and dividing by ρ yieldsEuler’s equation of
fluid dynamics

∂v
∂t

+ (v · ∇)v =
−∇p + f

ρ
. (15.25)

This is Euler’s equation and is one of the fundamental equations of fluid
dynamics.

The force density f in Euler’s equation is usually that of the gravitational
force. Since the gravitational force on an element ρ dV is gρ dV , where g is
the gravitational acceleration (or field), the gravitational force density is ρg
and (15.25) becomes

∂v
∂t

+ (v · ∇)v =
−∇p

ρ
+ g. (15.26)

Example 15.3.2. In hydrostatic situations with a uniform gravitational field the
fluid is not moving and Equation (15.26) becomes

∇p = ρg,

and if g is in the negative z-direction, then

∂p

∂x
=

∂p

∂y
= 0,

∂p

∂z
= −ρg.

Thus the pressure is independent of x and y, and depends only on height z. We
assume that the fluid (really the liquid) is incompressible, meaning that its density
does not depend on the pressure. Then, integrating the z equation gives

p = −ρgz + C.

If the liquid has a free surface at z = h where the pressure is p0, then C = p0 + ρgh,
and

p = p0 + ρg(h − z). �
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Example 15.3.3. Stellar equilibrium A star is a large mass of fluid held
together by gravitational attraction. If the star is in equilibrium, its fluid has no
motion and (15.26) becomes

∇p = ρg or ∇p = −ρ∇Φ

where Φ is the gravitational potential. Dividing this equation by ρ, and taking the
divergence of both sides, we obtain

∇ ·
(

∇p

ρ

)

= −∇2Φ or ∇ ·
(

∇p

ρ

)

= 4πGρ

where we used the Poisson equation (15.14). For a spherically symmetric star, only equation for stellar
equilibriumthe radial coordinate enters in the equation above, and borrowing from the next

chapter the expressions (16.7) for gradient and (16.12) for divergence in spherical
coordinates, the equation above takes the form

1

r2

d

dr

(
r2

ρ

dp

dr

)

= 4πGρ

This is one of the fundamental equations of astrophysics. �

15.4 Maxwell’s Equations

No treatment of vector analysis is complete without a discussion of Maxwell’s
equations. Electromagnetism was both the producer and the consumer of
vector analysis. It started with the accidental discovery by Örsted in 1820
that an electric current produced a magnetic field. Subsequently, an intense
search was undertaken by many physicists such as Ampère and Faraday to
find a connection between electric and magnetic phenomena. By the mid-
1800s, a fairly good theory of electromagnetism was attained which, in the
contemporary language of vectors is translated in the following four equations: the four equations

that Maxwell
inherited in
integral form(1)

∫ ∫

S

E · da =
Q

ε0
; (2)

∫ ∫

S

B · da = 0;

(3)
∮

C

E · dr = −dφm

dt
; (4)

∮

C

B · dr = μ0I. (15.27)

The first integral, Gauss’s law (or Coulomb’s law in disguise), states that the
electric flux through the closed surface S is essentially the total charge Q in
the volume surrounded by S. The second integral says that the correspond-
ing flux for a magnetic field is zero. The fact that this holds for an arbitrary
surface implies that there are no magnetic charges. The third equation, Fara-
day’s law, connects the electric field to the rate of change of magnetic flux
φm. Finally, the last equation, Ampère’s law, states that the source of the
magnetic field is the electric current I. The constant ε0 and μ0 arise from a
particular set of units used for charges and currents.
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15.4.1 Maxwell’s Contribution

Equations (15.27) can be cast in differential form as well. The differential
form of the equations is important because it places particular emphasis on
the fields which are the primary objects. The differential form of the equations
above are:the four equations

that Maxwell
inherited in
differential form

(1) ∇ · E =
ρ

ε0
; (2) ∇ ·B = 0;

(3) ∇ × E = −∂B
∂t

; (4) ∇ × B = μ0J. (15.28)

We have already derived the first two equations in Theorem 13.2.4 and Equa-
tion (15.9). Here we derive the third equation and leave the derivation of
the last equation—which is very similar to that of the third—to the reader.
Stokes’ theorem turns the LHS of the third equation of (15.27) into

LHS =
∫ ∫

S

∇ × E · da.

The RHS is

−dφm

dt
= − d

dt

∫ ∫

S

B · da =
∫ ∫

S

(

−∂B
∂t

)

· da,

where we have assumed that the change in the flux comes about solely due
to a change in the magnetic field. This makes it possible to push the time
differentiation inside the integral, upon which it becomes a partial derivative
because B is a function of position as well. Since the last two equations hold
for arbitrary S, the integrands must be equal. This proves the third equation
in (15.28).

Maxwell inherited the four equations in (15.28), and started pondering
about them in the 1860s. He noticed that while the second and third areMaxwell discovers

the inconsistency
of Equation
(15.28) with the
conservation of
electric charge,
and modifies the
last equation to
resolve the
inconsistency.

consistent with other aspects of electromagnetism, the other two equations
lead to a contradiction. Let us retrace his argument. By Equation (15.5),
the divergence of the LHS of the last equation of (15.28) vanishes. Therefore,
taking the divergence of both sides, we get ∇ · J = 0. This contradicts the
differential form of the continuity equation (13.22) for charges which expresses
the conservation of electric charge. Because of the firm establishment of the
charge conservation, Maxwell decided to try altering the four equations to
make them compatible with charge conservation. The clue is in the first
equation. If we differentiate that equation with respect to time, we obtain

∂

∂t
∇ · E =

1
ε0

∂ρ

∂t
⇒ ∇ ·

(
∂E
∂t

)

=
1
ε0

∂ρ

∂t
⇒ ∇ ·

(

ε0
∂E
∂t

)

=
∂ρ

∂t

This suggested to Maxwell that, if the four equations are to be consistent
with charge conservation, the fourth equation had to be modified to include
ε0∂E/∂t. With this modification, the four equations in (15.28) becomethe four Maxwell

equations
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(1) ∇ · E =
ρ

ε0
; (2) ∇ ·B = 0;

(3) ∇ × E = −∂B
∂t

; (4) ∇ × B = μ0J + μ0ε0
∂E
∂t

. (15.29)

It was a great moment in the history of physics and mathematics when
Maxwell, prompted solely by the forces of logic and pure deduction, intro-
duced the second term in the last equation. Such moments were rare prior mathematics and

the force of logic
and human
reasoning unravel
one of the greatest
secrets of Nature!

to Maxwell, and with the exception of Copernicus’s introduction of the he-
liocentric theory of the solar system and Descartes’s introduction of analytic
geometry, deductive reasoning was the exception rather than the rule. The-
ories and laws were empirical (or inductive); they were introduced to fit the
data and summarize, more or less directly, the numerous observations made.
Maxwell broke this tradition and set the stage for deductive reasoning which,
after a great deal of struggle to abandon the inductive tradition, became the
norm for modern physics.

Today, we aptly call all four equations in (15.29) Maxwell’s equations,
although his contribution to those equations was a “mere” introduction of
the second term on the RHS of the last equation. However, no other “small”
contribution has ever affected humankind so enormously. This very “small”
contribution was responsible for Maxwell’s prediction of the electromagnetic
waves which were subsequently produced in the laboratory in 1887—only eight
years after Maxwell’s premature death—and put to technological use in 1901
in the form of the first radio. Today, Maxwell’s equations are at the heart of
every electronic device. Without them, our entire civilization, as we know it,
would be nonexistent.

15.4.2 Electromagnetic Waves in Empty Space

Let us look at some of the implications of Maxwell equations. Taking the curl from Maxwell’s
equations to wave
equation

of the third Maxwell’s equation and using (15.19) and the first and fourth
equations of (15.29), we obtain for the LHS

LHS = ∇ × (∇ × E) = ∇(∇ ·E) −∇2E =
1
ε0

∇ρ −∇2E,

and for the RHS

RHS = −∇ ×
(

∂B
∂t

)

= − ∂

∂t
(∇ × B) = − ∂

∂t

(

μ0J + μ0ε0
∂E
∂t

)

.

In particular, in free space, where ρ = 0 = J, these equations give

∇2E− μ0ε0
∂2E
∂t2

= 0. (15.30)
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This is a three-dimensional wave equation.3 Recall that the inverse of the co-
efficient of the second time derivative is the square of the speed of propagation
of the wave. It follows that

v =
1

√
μ0ε0

=
1

√
(4π × 10−7) (8.854 × 10−12)

= 2.998× 108 m/s,

i.e., that the electric field propagates in empty space with the speed of light,
c. The reader may check that the magnetic field also satisfies the same wave
equation, and that it too propagates with the same speed. In fact, it can be
shown that the so-called plane wave solutions of Maxwell’s equations consist
of an electric and a magnetic component which are coupled to one anotherelectromagnetic

waves propagate
at the speed of
light.

and, therefore do not propagate independently (see Problem 15.9).
Sometimes it is more convenient to work with potentials than the fields

themselves. The vanishing of the divergence of magnetic fields suggests that
B = ∇ × A where A is the vector potential [see also Equation (15.6)]. The
vector potential, as its scalar counterpart, has some degree of arbitrariness,
because adding the gradient of an arbitrary function does not change its curl.
This is an example of gauge transformation whereby a measurable physicalgauge

transformation quantity—the magnetic field, here—does not change when another (nonmea-
surable) physical quantity is changed. Using this expression for B in the third
Maxwell equation, we obtain

∇ × E = − ∂

∂t
(∇ × A) ⇒ ∇ ×

(

E +
∂A
∂t

)

= 0 ⇒ E +
∂A
∂t

= −∇Φ,

where we switched the order of differentiation with respect to position and
time, and used the fact that if the curl of a vector vanishes, that vector is the
gradient of a function (Box 15.1.1). We therefore write

E = −∂A
∂t

− ∇Φ and B = ∇ × A. (15.31)

Substituting these two expressions in the fourth Maxwell equation, we obtain

∇ × (∇ × A) = μ0J +
1
c2

∂

∂t

(

−∂A
∂t

− ∇Φ
)

.

Expanding the LHS using the double curl identity of Equation (15.19), and
switching time and space partial derivatives yields

∇
(

∇ · A +
1
c2

∂Φ
∂t

)

−∇2A +
1
c2

∂2A
∂t2

= μ0J.

Because of the gauge freedom, we can choose A and Φ to satisfy

∇ · A +
1
c2

∂Φ
∂t

= 0. (15.32)

3The reader may be familiar with the one-dimensional wave equation in which only one
second partial derivative with respect to a single space coordinate appears.
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This choice is called the Lorentz gauge, from which it follows that Lorentz gauge

∇2A − 1
c2

∂2A
∂t2

= −μ0J. (15.33)

Similarly, by taking the divergence of the first equation in (15.31) and using
the first Maxwell equation and the Lorentz gauge, we obtain

∇2Φ − 1
c2

∂2Φ
∂t2

= − ρ

ε0
. (15.34)

Equations (15.32), (15.33), and (15.34) are the fundamental equations of elec-
tromagnetic theory. They not only give the solutions in empty space, where
ρ = J = 0, but also when the sources are not zero, i.e., when the mechanism
of wave production becomes of interest, as in radiation and antenna theory.

Historical Notes
James Clerk Maxwell attended Edinburgh Academy where he had the nickname
“Dafty.” While still at school he had two papers published by the Royal Society of
Edinburgh. Maxwell then went to Peterhouse, Cambridge, but moved to Trinity,
where it was easier to obtain a fellowship. Maxwell graduated with a degree in
mathematics from Trinity College in 1854.

He held chairs at Marischal College in Aberdeen (1856) and married the daughter
of the Principal. However in 1860 Marischal College and King’s College combined
and Maxwell, as the junior of the department, had to seek another post. After failing
to gain an appointment to a vacant chair at Edinburgh he was appointed to King’s
College in London (1860) and became the first Cavendish Professor of Physics at
Cambridge in 1871.

James Clerk
Maxwell 1831–1879

Maxwell’s first major contribution to science was a study of the planet Sat-
urn’s rings, and won him the Adams Prize at Cambridge. He showed that stability
could be achieved only if the rings consisted of numerous small solid particles, an
explanation now confirmed by the Voyager spacecraft.

Maxwell next considered the kinetic theory of gases. By treating gases statis-
tically in 1866 he formulated, independently of Ludwig Boltzmann, the Maxwell–
Boltzmann kinetic theory of gases. This theory showed that temperatures and heat
involved only molecular movement.

This theory meant a change from a concept of certainty, heat viewed as flowing
from hot to cold, to one of statistics, molecules at high temperature have only a
high probability of moving toward those at low temperature. Maxwell’s approach
did not reject the earlier studies of thermodynamics but used a better theory of the
basis to explain the observations and experiments.

Maxwell’s most important achievement was his extension and mathematical for-
mulation of Michael Faraday’s theories of electricity and magnetic lines of force. His
paper On Faraday’s lines of force was read to the Cambridge Philosophical Society
in two parts, 1855 and 1856. Maxwell showed that a few relatively simple math-
ematical equations could express the behavior of electric and magnetic fields and
their interrelation.

The four partial differential equations, now known as Maxwell’s equations,
first appeared in fully developed form in Treatise on Electricity and Magnetism
(1873). They are one of the great achievements of nineteenth-century mathematical
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physics. Solving these equations Maxwell predicted the existence of electromagnetic
waves and the fact that these waves propagate at the speed of light (1862). He
proposed that the phenomenon of light is therefore an electromagnetic phenomenon.

Maxwell left King’s College, London, in the spring of 1865 and returned to
his Scottish estate. He made periodic trips to Cambridge and, rather reluctantly,
accepted an offer from Cambridge to be the first Cavendish Professor of Physics in
1871. He designed the Cavendish laboratory and helped set it up.

15.5 Problems

15.1. Show that the curl of the gradient of a function is always zero.

15.2. Show that the divergence of the curl of a vector is always zero.

15.3. Verify Equation (15.19) component by component.

15.4. Provide the details of Example 15.3.1:
(a) Compute the three components of L and verify Equation (15.20).
(b) Calculate L2

xf , L2
yf , L2

zf and show that you obtain the expressions given
in the example.
(c) Verify that L2f is as given in Equation (15.21).
(d) Show that A = (r ·∇)2f − r · (∇f) and obtain (15.22). Here A is defined
by the sum of the expressions in the two pairs of parentheses in Equation
(15.21)

15.5. By taking each component of dr′ separately in a convenient coordinate
system show that its integral round any closed loop vanishes.

15.6. Recall that the total magnetic force on a current loop is given bytotal magnetic
force on a current
loop in a constant
magnetic field is
zero.

F = I

∮
dr × B.

Show that the total force on a current loop located in a homogeneous magnetic
field is zero.

15.7. Derive the differential form of Maxwell’s last equation from the corre-
sponding integral form.

15.8. Starting with Maxwell’s equations, show that the magnetic field satis-
fies the same wave equation as the electric field. In particular, that it, too,
propagates with the same speed.

15.9. Consider E = E0e
i(ωt−k·r) and B = B0e

i(ωt−k·r), where i =
√
−1, E0,

B0, k, and ω are constants. The E and the B so defined represent plane waves
moving in the direction of the vector k.
(a) Show that they satisfy Maxwell’s equations in free space if:

(1) k ·E0 = 0; (2) k ·B0 = 0;

(3) k × E0 = ωB0; (4) k × B0 = − ω

c2
E0.
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(b) In particular, show that k, the propagation direction, and E and B form
a mutually perpendicular set of vectors.
(c) By taking the cross product of k with an appropriate equation, show that
|k| = ω/c.

15.10. Derive Equation (15.34).





Chapter 16

Curvilinear Vector
Analysis

All the vector analytical quantities discussed in the previous chapters can
also be calculated in other coordinate systems. The general procedure is to
start with definitions of quantities in a coordinate-free way and substitute the
known quantities in terms of the particular coordinates we are interested in
and “read off” the vector analytic quantity. Instead of treating cylindrical and
spherical coordinate systems separately, we lump them together and derive re-
lations that hold not only in the three familiar coordinate systems, but also in
all coordinate systems whose unit vectors form a set of right-handed mutually
perpendicular vectors. Since the geometric definitions of all vector-analytic
quantities involve elements of length, we start with the length elements.

16.1 Elements of Length

Consider curvilinear coordinates1 (q1, q2, q3) in which the primary line curvilinear
coordinateselements are given by

dl1 = h1(q1, q2, q3) dq1, dl2 = h2(q1, q2, q3) dq2, dl3 = h3(q1, q2, q3) dq3,

where h1, h2, and h3 are some functions of coordinates. By examining the
primary line elements in Cartesian, spherical, and cylindrical coordinates, we
can come up with Table 16.1.

Denoting the unit vectors in curvilinear coordinate systems by ê1, ê2, and
ê3, we can combine all the equations for the elements of length and write
them as a single vector equation:

dr = d�l = ê1dl1 + ê2dl2 + ê3dl3 = ê1h1dq1 + ê2h2dq2 + ê3h3dq3. (16.1)
1As will be seen shortly, Cartesian coordinates are also included in such curvilinear

coordinates. The former have lines (and planes) as their primary lengths and surfaces, thus
the word “linear” in the name of the latter.
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Curvilinear Cartesian Spherical Cylindrical
q1 x r ρ
q2 y θ ϕ
q3 z ϕ z
h1 1 1 1
h2 1 r ρ
h3 1 r sin θ 1

Table 16.1: The specifications of the three coordinate systems in terms of curvilinear

coordinates.

This equation is useful in its own right. For example, we can obtain the curvi-
linear unit vectors as follows. Rewrite Equation (16.1) in terms of increments:

Δr ≈ ê1h1Δq1 + ê2h2Δq2 + ê3h3Δq3.

Keeping q2 and q3 constant (so that Δq2 = 0 = Δq3), divide both sides by
Δq1 to obtain

Δr
Δq1

≈ ê1h1.

In the limit, the LHS becomes a partial derivative and we get

ê1 =
1
h1

∂r
∂q1

. (16.2)

The other two unit vectors can be obtained similarly. We thus have

Box 16.1.1. The ith unit vector of a curvilinear coordinate system is
given by

êi =
1
hi

∂r
∂qi

, i = 1, 2, 3. (16.3)

This is a useful formula for obtaining the Cartesian components of curvilinear
unit vectors, when the Cartesian components of the position vector are given
in terms of curvilinear coordinates.

Example 16.1.1. As an illustration of the above procedure, we calculate the unit
vectors in spherical coordinates. First we write

r = xêx + yêy + zêz = êxr sin θ cos ϕ + êyr sin θ sin ϕ + êzr cos θ.

Now we differentiate with respect to r to get

ê1 ≡ êr =
∂r

∂r
= êx sin θ cos ϕ + êy sin θ sin ϕ + êz cos θ.
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Similarly,

ê2 ≡ êθ =
1

r

∂r

∂θ
= êx cos θ cos ϕ + êy cos θ sin ϕ − êz sin θ,

ê3 ≡ êϕ =
1

r sin θ

∂r

∂ϕ
= −êx sin ϕ + êy cos ϕ,

where we have used Table 16.1. These are the results we obtained in Chapter 1 from
purely geometric arguments. �

We are now in a position to find the gradient, divergence, and curl of
a vector field in general curvilinear coordinates. Once these are obtained,
finding their specific forms in cylindrical and spherical coordinates entails
simply substituting the appropriate expressions for q1, q2, and q3 and h1, h2,
and h3.

16.2 The Gradient

The gradient is found by equating

df =
∂f

∂q1
dq1 +

∂f

∂q2
dq2 +

∂f

∂q3
dq3

to the differential of f in terms of the gradient:

df = ∇f · dr = (∇f)1h1 dq1 + (∇f)2h2 dq2 + (∇f)3h3 dq3.

The last two equations yield

(∇f)1h1 =
∂f

∂q1
, (∇f)2h2 =

∂f

∂q2
, (∇f)3h3 =

∂f

∂q3
,

which gives gradient in
curvilinear
coordinates

Box 16.2.1. The gradient of a function f in a curvilinear coordinate
system is given by

∇f = ê1
1
h1

∂f

∂q1
+ ê2

1
h2

∂f

∂q2
+ ê3

1
h3

∂f

∂q3
. (16.4)

This result, in conjunction with Table 16.1, agrees with the expression ob-
tained for the gradient in the Cartesian coordinate system. In cylindrical
coordinates, we obtain

∇f = êρ
∂f

∂ρ
+ êϕ

1
ρ

∂f

∂ϕ
+ êz

∂f

∂z
, (16.5)
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so that the operator ∇ in cylindrical coordinates is given by

∇ = êρ
∂

∂ρ
+ êϕ

1
ρ

∂

∂ϕ
+ êz

∂

∂z
. (16.6)

Similarly, in spherical coordinates, we getgradient of a
function in
spherical
coordinates

∇f = êr
∂f

∂r
+ êθ

1
r

∂f

∂θ
+ êϕ

1
r sin θ

∂f

∂ϕ
(16.7)

with the operator ∇ given by

∇ = êr
∂

∂r
+ êθ

1
r

∂

∂θ
+ êϕ

1
r sin θ

∂

∂ϕ
. (16.8)

Example 16.2.1. The electrostatic potential of an electric dipole was given in
Example 10.5.1 in spherical coordinates. With the expression for the gradient given
above, we can find the electric field E = −∇Φ of a dipole in spherical coordinates:

Er = −∂Φdip

∂r
= − ∂

∂r

(
kep cos θ

r2

)

=
2kep cos θ

r3
,

Eθ = −1

r

∂Φdip

∂θ
= −1

r

∂

∂θ

(
kep cos θ

r2

)

=
kep sin θ

r3
,

Eϕ = − 1

r sin θ

∂Φdip

∂ϕ
= − 1

r sin θ

∂

∂ϕ

(
kep cos θ

r2

)

= 0.

Summarizing, we haveelectric field of an
electric dipole

Edip =
kep

r3
(2êr cos θ + êθ sin θ). (16.9)

This is the characteristic field of a dipole. �

Example 16.2.2. Just as electric charges can produce electric dipoles, electric
currents can produce magnetic dipoles. We saw this in Subsection 15.2. In this
example, we will calculate the magnetic field of a dipole directly. Consider the
magnetic field of a circular loop of current as given in Equations (4.24) and (4.26).
We change the coordinates of the field point P to spherical and assume that P is far
away from the loop, i.e., that a is very small compared to r. Writing r2 for ρ2 + z2

and r sin θ for ρ, we expand the integrands of (4.24) and (4.26) in powers of a/r
keeping only the first nonzero power. Thus,

1

(r2+a2−2ra sin θ cos t)3/2
=

1

r3

[

1 +
(a

r

)2

− 2
(a

r

)
sin θ cos t

]−3/2

=
1

r3

[
1 + 3

(a

r

)
sin θ cos t

]
+ · · · ,

r sin θ cos t−a

(r2+a2−2ra sin θ cos t)3/2
=

1

r2

(
sin θ cos t − a

r

) [

1 +
(a

r

)2

− 2
(a

r

)
sin θ cos t

]−3/2

=
1

r2

(
sin θ cos t − a

r

) [
1 + 3

(a

r

)
sin θ cos t

]
+ · · ·

=
1

r2

(

sin θ cos t − a

r
+

3a

r
sin2 θ cos2 t

)

.
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Substituting these in the integrals of (4.24) and (4.26) yields

Bρ =
kmIaz

r3

∫ 2π

0

cos t

(

1 +
3a

r
sin θ cos t

)

dt =
3kmIπa2 cos θ sin θ

r3
,

where we substituted r cos θ for z. In an analogous way, we also obtain

Bz = −kmIa

r2

∫ 2π

0

(

sin θ cos t − a

r
+

3a

r
sin2 θ cos2 t

)

dt

= −kmIa

r2

(

−2πa

r
+

3aπ

r
sin2 θ

)

.

We are interested in the spherical components of the magnetic field. To find
these components, we first write

B = Bρêρ + Bz êz

and take the dot product with appropriate unit vectors:

Br = B · êr = Bρêρ · êr + Bz êz · êr = Bρ sin θ + Bz cos θ

=
3kmIπa2 cos θ sin θ

r3
sin θ +

kmIa

r2

(
2πa

r
− 3aπ

r
sin2 θ

)

cos θ

=
2kmIπa2

r3
cos θ.

Similarly,

Bθ = B · êθ = Bρêρ · êθ + Bz êz · êθ = Bρ cos θ − Bz sin θ

=
3kmIπa2 cos θ sin θ

r3
cos θ − kmIa

r2

(
2πa

r
− 3aπ

r
sin2 θ

)

sin θ

=
kmIπa2

r3
sin θ.

Summarizing, we write magnetic field of a
magnetic dipole

B =
kmIπa2

r3
(2êr cos θ + êθ sin θ). (16.10)

This has a striking resemblance to Equation (16.9). In fact once we identify Iπa2

as the magnetic dipole of the loop, and change all magnetic labels to electric ones,
we recover Equation (16.9). �

16.3 The Divergence

To find the divergence of a vector A, we consider the volume element of
Figure 16.1 and find the outward flux through the sides of the volume. For
the front face we have

Δφf = Af · ê1Δaf ,
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A

A1 ˆ e 1

A2 ê 2

A3 ê 3

P(q1, q2, q3)

Δ

Δ

Δ

l1

l3

l2

Figure 16.1: Point P and the surrounding volume element in curvilinear coordinates.

Note that the midpoints of the front and back faces are Δq1/2 away from P in the

positive and negative ê1 directions, respectively. Similarly for the other four faces.

where Af means the value of A at the center of the front face and Δaf is the
area of the front face. Following the arguments presented for the Cartesian
case, we write

Δφf ≈ Af · ê1Δaf = A1fΔl2fΔl3f

= A1f (h2Δq2)f (h3Δq3)f = A1fh2fh3fΔq2Δq3

The subscript 1 in A1f , for example, means component of A in the direction
of the first coordinate. The subscript f implies evaluation—at the midpoint—
on the front side whose second and third coordinates are the same as P , and
whose first coordinate is q1 + Δq1/2. Thus, we have

Δφf ≈ A1

(

q1 +
Δq1

2
, q2, q3

)

h2

(

q1 +
Δq1

2
, q2, q3

)

× h3

(

q1 +
Δq1

2
, q2, q3

)

Δq2Δq3

because, unlike the Cartesian case, h1, h2, and h3 are functions of the co-
ordinates. Using Taylor series expansion for the functions A1, h2, and h3

yields

Δφf ≈
{

A1(q1, q2, q3) +
Δq1

2
∂A1

∂q1

}{

h2(q1, q2, q3) +
Δq1

2
∂h2

∂q1

}

×
{

h3(q1, q2, q3) +
Δq1

2
∂h3

∂q1

}

Δq2Δq3.



16.3 The Divergence 429

Multiplying out and keeping terms up to the third order (corresponding to
the order of a volume element by which we shall divide shortly), we obtain

Δφf ≈
{

A1h2h3 + A1h2
∂h3

∂q1
+ A1h3

∂h2

∂q1
+ h2h3

∂A1

∂q1

}
Δq1

2
Δq2Δq3

=

{

A1h2h3 +
∂

∂q1
(h2h3A1)

}
Δq1

2
Δq2Δq3,

where we left out the explicit dependence of the functions on their independent
coordinate variables. For the back face we have

Δφb ≈ Ab · (−ê1Δab) = −A1bΔl2bΔl3b = −A1b(h2Δq2)b(h3Δq3)b

= −A1

(

q1 −
Δq1

2
, q2, q3

)

h2

(

q1 −
Δq1

2
, q2, q3

)

× h3

(

q1 −
Δq1

2
, q2, q3

)

Δq2Δq3.

Taylor expanding the three functions A1, h2, and h3 as above, and multiplying
out yields

Δφb ≈ −
{

A1h2h3 −
∂

∂q1
(h2h3A1)

}
Δq1

2
Δq2Δq3.

Adding the front and back contributions, we obtain

Δφ1 ≡ Δφf + Δφb ≈ ∂

∂q1
(h2h3A1) Δq1Δq2Δq3.

Similarly, the fluxes through the faces perpendicular to ê2 and ê3 are

Δφ2 ≈ ∂

∂q2
(h1h3A2)Δq1Δq2Δq3,

Δφ3 ≈ ∂

∂q3
(h1h2A3)Δq1Δq2Δq3. (16.11)

Adding the three contributions and dividing by the volume

ΔV = Δl1Δl2Δl3 = h1h2h3Δq1Δq2Δq3

and finally taking the limit of smaller and smaller volumes—which turns all
approximations into equalities—we get divergence in

curvilinear
coordinatesTheorem 16.3.1. The divergence of a vector field A in a curvilinear coordi-

nate system is given by

∇ ·A =
1

h1h2h3

{
∂

∂q1
(h2h3A1) +

∂

∂q2
(h1h3A2) +

∂

∂q3
(h1h2A3)

}

.
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Now that we have a general formula for the divergence, we can use Table
16.1 to write the divergence in a specific coordinate system. For instance,
substituting the entries of the second column gives the formula in Theorem
13.2.1, and the third column yieldsdivergence of a

vector field in
spherical
coordinates

∇ · A =
1

r2 sin θ

{
∂

∂r

(
r2 sin θAr

)
+

∂

∂θ
(r sin θAθ) +

∂

∂ϕ
(rAϕ)

}

=
1
r2

∂

∂r

(
r2Ar

)
+

1
r sin θ

{
∂

∂θ
(sin θAθ) +

∂Aϕ

∂ϕ

}

. (16.12)

To obtain the divergence in cylindrical coordinates, we use the last column
and obtain

∇ · A =
1
ρ

{
∂

∂ρ
(ρAρ) +

∂

∂ϕ
(Aϕ) +

∂

∂z
(ρAz)

}

=
1
ρ

∂

∂ρ
(ρAρ) +

1
ρ

∂Aϕ

∂ϕ
+

∂Az

∂z
. (16.13)

Example 16.3.2. Consider the vector field defined by

A = krαêr,

where k and α are constants. Let us verify the divergence theorem for a spherical
surface of radius R (see Figure 16.2). The total flux is obtained by integrating over
the surface of the sphere:

φ =

∫ ∫

S

A · da =

∫ ∫

S

kRαêr · ênR2 sin θ dθ dϕ

= kRα+2

∫ ∫

S

sin θ dθ dϕ = 4πkRα+2.

dθ dϕ

ê n = ê r

R

x

y

z

Figure 16.2: The element of area and its unit normal for a sphere.
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On the other hand, using the expression for divergence in the spherical coordinate
system and noting that Aθ = 0 = Aϕ, we obtain

∇ · A =
1

r2

∂

∂r
(r2Ar) =

1

r2

d

dr

(
krα+2

)
= (α + 2)krα−1,

where we have assumed that α �= −2. Therefore,
∫ ∫

V

∫
∇ · A dV =

∫ R

0

(α + 2)krα−1r2 dr

∫ π

0

sin θ dθ

∫ 2π

0

dϕ = 4πkRα+2

which agrees with the surface integration.
For α = −2 the divergence appears to vanish everywhere. However, a closer

examination reveals that the statement is true only if r �= 0. In fact, as we discussed
before, the divergence of A is proportional to the Dirac delta function, δ(r) in this
case [see Equation (15.2)]. �

16.4 The Curl

To calculate the curl, we choose a closed path perpendicular to one of the unit
vectors, say ê1 and calculate the line integral of A around it. The situation is
depicted in Figure 16.3. We calculate the contribution to the line integral from
path (1) in detail and leave calculation of contributions from the remaining
three paths to the reader. In all calculations, terms of higher order than the
second will be omitted

∫

(1)

A · dr ≈ Al · Δrl = Al · (−ê3Δll) = −A3lΔll = −A3lh3lΔq3

= −A3

(

q1, q2 −
Δq2

2
, q3

)

h3

(

q1, q2 −
Δq2

2
, q3

)

Δq3

= −
{

A3 −
Δq2

2
∂A3

∂q2

}{

h3 −
Δq2

2
∂h3

∂q2

}

Δq3

≈ −A3h3Δq3 +
∂

∂q2
(h3A3)

Δq2

2
Δq3.

P(q1, q2, q3)

(1) (2)

(3)

(4)

h2 b dq2

h2 t dq2

h3l dq3 h3r dq3

ê2

ê3

ê1

Figure 16.3: Path of integration for the first component of the curl of A in curvilinear

coordinates.
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Following similar steps, the reader may check that
∫

(2)

A · dr ≈ A3h3Δq3 +
∂

∂q2
(h3A3)

Δq2

2
Δq3,

∫

(3)

A · dr ≈ A2h2Δq2 −
∂

∂q3
(h2A2)

Δq3

2
Δq2, (16.14)

∫

(4)

A · dr ≈ −A2h2Δq2 −
∂

∂q3
(h2A2)

Δq3

2
Δq2.

Summing up all these contributions, we obtain
∮

A · dr ≈
{

∂

∂q2
(h3A3) −

∂

∂q3
(h2A2)

}

Δq2Δq3.

Dividing this by the area enclosed by the path

Δa = Δl2Δl3 = h2h3Δq2Δq3

we obtain the first component, the component along the unit normal to the
area:

(∇ × A)1 =
1

h2h3

{
∂

∂q2
(h3A3) −

∂

∂q3
(h2A2)

}

.

Corresponding expressions for the other two components of the curl can
be found by proceeding as above. We can put all of the components together
in a mnemonic determinant form:curl in curvilinear

coordinates
Theorem 16.4.1. The curl of a vector field A in a curvilinear coordinate
system is given by

∇ × A =
1

h1h2h3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ê1h1 ê2h2 ê3h3

∂
∂q1

∂
∂q2

∂
∂q3

h1A1 h2A2 h3A3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (16.15)

Note that ∇×A is not a cross product (except in Cartesian coordinates),warning! ∇ × A is
not a cross
product in general
curvilinear
coordinates!

but a vector defined by the determinant on the RHS of (16.15).
If we substitute the appropriate values for h’s and q’s in spherical coordi-

nates, we obtain

∇ × A =
1

r2 sin θ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êr êθr êϕr sin θ

∂
∂r

∂
∂θ

∂
∂ϕ

Ar rAθ r sin θAϕ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (16.16)
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In cylindrical coordinates we get

∇ × A =
1
ρ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êρ êϕρ êz

∂
∂ρ

∂
∂ϕ

∂
∂z

Aρ ρAϕ Az

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (16.17)

Example 16.4.2. We have already calculated the magnetic field of a dipole in
Example 16.2.2. Here we want to obtain the same result using the vector potential
of a dipole given in Equation (15.12). We take μ to be along the z-axis. Then

μ = μêz = μ(êr cos θ − êθ sin θ)

and
μ × êr = μ(− sin θêθ × êr) = μ sin θêϕ.

Therefore,

B = ∇ × A = ∇ ×
(

kmμ × êr

r2

)

= ∇ ×
(

kmμ sin θêϕ

r2

)

=
kmμ

r2 sin θ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êr êθr êϕr sin θ

∂
∂r

∂
∂θ

∂
∂ϕ

0 0 r sin θ
sin θ

r2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
kmμ

r2 sin θ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êr êθr êϕr sin θ

∂
∂r

∂
∂θ

∂
∂ϕ

0 0
sin2 θ

r

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
kmμ

r2 sin θ

[

êr

(
2 sin θ cos θ

r

)

− rêθ

(

− sin2 θ

r2

)]

=
kmμ

r3
(2 cos θêr + sin θêθ),

which is the expression obtained in Example 16.2.2. �

Example 16.4.3. Consider the vector field B described in cylindrical coordinates
as

B =
k

ρ
êϕ,

where k is a constant. The curl of B is easily found to be zero:

∇ × B =
1

ρ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êρ êϕρ êz

∂
∂ρ

∂
∂ϕ

∂
∂z

0 ρ(k/ρ) 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

However, for any circle (of radius a, for example) centered at the origin and located
in the xy-plane, we get2

∮

C

B · dr =

∫ 2π

0

k

a
êϕ · (êϕa dϕ) = 2πk �= 0.

2See also Example 14.3.3 which discusses this same vector field in Cartesian coordinates.
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The reason for this result is that the circle is not contractible to zero: At the
origin—which is inside the circle and at which ρ = 0—B is not defined.

This vector field should look familiar. It is the magnetic field due to a long
straight wire carrying a current along the z-axis. According to Ampère’s circuital
law, the line integral of B along any closed curve encircling the wire, such as the
above circle, gives, up to a multiplicative constant, the current in the wire, and this
current is not zero. �

Example 16.4.4. A vector field that can be written ascentral force fields
are conservative

F = f(r)r,

where r is the displacement vector from the origin, is conservative. It is instructive
to show this using both Cartesian and spherical coordinate systems.

First, in Cartesian coordinates

F = xf(r)êx + yf(r)êy + zf(r)êz

and the curl is

∇ × F =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êx êy êz

∂
∂x

∂
∂y

∂
∂z

xf yf zf

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= êx

{
∂

∂y
(zf) − ∂

∂z
(yf)

}

+ êy

{
∂

∂z
(xf) − ∂

∂x
(zf)

}

+ êz

{
∂

∂x
(yf) − ∂

∂y
(xf)

}

.

Concentrating on the x-component first and using the chain rule, we have

∂

∂y
(zf) = z

∂f

∂y
= z

df

dr

∂r

∂y
= zf ′ ∂r

∂y
.

But
∂r

∂y
=

∂

∂y

√
x2 + y2 + z2 =

y

r
.

Thus,
∂

∂y
(zf) = yzf ′.

Similarly,
∂

∂z
(yf) = yzf ′.

Therefore, the x-component of ∇×F is zero. The y- and z-components can also be
shown to be zero, and we get ∇ × F = 0.

On the other hand, using spherical coordinates, we easily obtain

∇ × F =
1

r2 sin θ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êr êθr êϕr sin θ

∂
∂r

∂
∂θ

∂
∂ϕ

rf(r) 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Obviously, the use of spherical coordinates simplifies the calculation consi-
derably. �
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The preceding example shows that

Box 16.4.1. Any well-behaved vector field whose magnitude is only a
function of radial distance, r, and whose direction is along r is conserva-
tive. Such vector fields are generally known as central vector fields.

16.4.1 The Laplacian

Combining divergence and the gradient gives the Laplacian. Using Equation
(16.4) in Theorem 16.3.1, we get Laplacian in

curvilinear
coordinatesTheorem 16.4.5. The Laplacian of a function f is the divergence of gradient

of f and—in a curvilinear coordinate system—is given by

∇2f =
1

h1h2h3

{
∂

∂q1

(
h2h3

h1

∂f

∂q1

)

+
∂

∂q2

(
h1h3

h2

∂f

∂q2

)

+
∂

∂q3

(
h1h2

h3

∂f

∂q3

)}

.

For cylindrical coordinates the Laplacian is

∇2f =
1
ρ

∂

∂ρ

(

ρ
∂f

∂ρ

)

+
1
ρ2

∂2f

∂ϕ2
+

∂2f

∂z2
(16.18)

and for spherical coordinates it is

∇2f =
1
r2

∂

∂r

(

r2 ∂f

∂r

)

+
1

r2 sin θ

{
∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

sin θ

∂2f

∂ϕ2

}

. (16.19)

Equations (16.7) and (16.19) allow us to write the angular momentum
differential operator derived in Example 15.3.1 in spherical coordinates, which
is the most common way of writing it. We note that

∂

∂r

(

r2 ∂f

∂r

)

= 2r
∂f

∂r
+ r2 ∂2f

∂r2 ,

and
r · (∇f) = r

∂f

∂r
,

and

(r · ∇)2f = r
∂

∂r

(
∂f

∂r

)

= r
∂f

∂r
+ r2 ∂2f

∂r2 .

Substituting these plus (16.19) in (15.22) yields

L2f = − 1
sin θ

{
∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

sin θ

∂2f

∂ϕ2

}

. (16.20)

Therefore, the angular momentum operator depends only on angles in spher-
ical coordinates.



436 Curvilinear Vector Analysis

16.5 Problems

16.1. The divergence of a vector can be obtained in any coordinate system
by brute force calculation. In this problem you are asked to find ∇ · A in
cylindrical coordinates.
(a) Express Ax in terms of cylindrical coordinates and components. Hint:
Write A in cylindrical ccordinates and take the dot product with êx expressing
everything in terms of cylindrical ccordinates.
(b) Use the chain rule

∂Ax

∂x
=

∂Ax

∂ρ

∂ρ

∂x
+

∂Ax

∂ϕ

∂ϕ

∂x
+

∂Ax

∂z

∂z

∂x

where Ax is what you found in (a).
(c) Do the same with Ay and Az , and add the three terms to obtain the
divergence in cylindrical coordinates.

16.2. Find the divergence of a vector in spherical coordinates following the
procedure outlined in Problem 16.1.

16.3. Find the gradient of a function in cylindrical and spherical coordinates
following a procedure similar to the one outlined in Problem 16.1.

16.4. Find the curl of a vector in cylindrical and spherical coordinates fol-
lowing a procedure similar to the one outlined in Problem 16.1.

16.5. Start with the Laplacian in Cartesian coordinates.
(a) By using the chain rule and expressing the second derivatives in cylindrical
coordinates, find the Laplacian in cylindrical coordinates.
(b) Do the same for spherical coordinates.

16.6. The elliptic cylindrical coordinates (u, θ, z)are given by

x = a coshu cos θ

y = a sinh u sin θ

z = z

where a is a constant.
(a) What is the expression for the gradient of a function f in elliptic cylindri-
cal coordinates?
(b) What is the expression for the divergence of a vector A in elliptic cylin-
drical coordinates?
(c) What is the expression for the curl of a vector A in elliptic cylindrical
coordinates?
(d) What is the expression for the Laplacian of a function f in elliptic cylin-
drical coordinates?
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16.7. The prolate spheroidal coordinates (u, θ, ϕ) are given by

x = a sinh u sin θ cosϕ

y = a sinh u sin θ sin ϕ

z = a coshu cos θ

where a is a constant.
(a) What is the expression for the gradient of a function f in prolate spheroidal
coordinates?
(b) What is the expression for the divergence of a vector A in prolate spheroidal
coordinates?
(c) What is the expression for the curl of a vector A in prolate spheroidal
coordinates?
(d) What is the expression for the Laplacian of a function f in prolate
spheroidal coordinates?

16.8. The toroidal coordinates (u, θ, ϕ) are given by

x =
a sinhu cosϕ

coshu − cos θ

y =
a sinh u sinϕ

cosh θ − cos θ

z =
a sin u

coshu − cos θ

(a) What is the expression for the gradient of a function f in toroidal coordi-
nates?
(b) What is the expression for the divergence of a vector A in toroidal coor-
dinates?
(c) What is the expression for the curl of a vector A in toroidal coordinates?
(d) What is the expression for the Laplacian of a function f in toroidal coor-
dinates?

16.9. The paraboloidal coordinates (u, v, ϕ) are given by

x = 2auv cosϕ

y = 2auv sin ϕ

z = a(u2 − v2)

where a is a constant.
(a) What is the expression for the gradient of a function f in paraboloidal
coordinates?
(b) What is the expression for the divergence of a vector A in paraboloidal
coordinates?
(c) What is the expression for the curl of a vector A in paraboloidal coordi-
nates?
(d) What is the expression for the Laplacian of a function f in paraboloidal
coordinates?
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16.10. The three-dimensional bipolar coordinates (u, θ, ϕ) are given by

x =
a sin θ cosϕ

coshu − cos θ

y =
a sin θ sinϕ

coshu − cos θ

z =
a sinhu

coshu − cos θ

(a) What is the expression for the gradient of a function f in three-dimensional
bipolar coordinates?
(b) What is the expression for the divergence of a vector A in three-dimensional
bipolar coordinates?
(c) What is the expression for the curl of a vector A in three-dimensional
bipolar coordinates?
(d) What is the expression for the Laplacian of a function f in three-dimensional
bipolar coordinates?



Chapter 17

Tensor Analysis

Our study of vectors in this part of the book has been limited to their anal-
ysis in specific coordinate systems, and although we touched on the general
curvilinear coordinate system, our treatment aimed at orthogonal coordinates,
and specifically at only three-dimensional spherical and cylindrical coordinate
systems. Many situations in physics demand a three-fold generalization: non-
orthogonal coordinate systems, higher-dimensional spaces, and objects, called
tensors, whose components have more subscripts than one. This chapter is
devoted to an analysis of tensors.

17.1 Vectors and Indices

Vector manipulations will be greatly simplified if equations are written in
terms of a general component. How do we accomplish this? Start with a
generic vector equation, which can be written as

U = V,

where U and V are, in general, vector expressions. Examples of such an
equation are

B = ∇ × A, E = −∇Φ, A =
∫ b

a

f(r)êr dr.

You can also write each of these vector equations as three equations involving
components. Thus, the foregoing generic equation becomes

Ux = Vx, Uy = Vy , Uz = Vz .

It is very helpful to convert letter indices into number indices. Let x → 1,
y → 2, and z → 3, and write1

U1 = V1, U2 = V2, U3 = V3.

1Note that the replacements here refer to indices not the Cartesian coordinates. The
latter will have somewhat different symbols in the sequel.
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These equations are abbreviated as

Ui = Vi, i = 1, 2, 3. (17.1)

This is what we mean by an equation in terms of a general component: The
index i refers to any one of the components of the vectors on either side of
the equation. It is called a free index because it is free to take any one of thefree index defined

values between 1 and 3. An important property of a free index is that

Box 17.1.1. A free index appears once and only once on both sides of
a vector equation.

One can use any symbol to represent a free index, although the most common
symbols used are i, j, k, l, m, and n. Thus, Equation (17.1) can be written in
any one of the following alternative ways:

Uj = Vj , j = 1, 2, 3,

Up = Vp, p = 1, 2, 3,

U♥ = V♥, ♥ = 1, 2, 3.

Of special interest are the components of the position vector r. These are
denoted by xi rather than ri. Thus, the vector relation R = r− r′ is writtenindexed Cartesian

coordinates as
Xj = xj − x′

j , j = 1, 2, 3.

An abbreviation used for derivatives with respect to Cartesian coordinates
(which coincide with the components of the position vector) is given as follows.
First ∂/∂x is replaced by ∂/∂x1, and the latter by the much shorter notation,
∂1. Similarly, ∂/∂y becomes ∂2, and ∂/∂z becomes ∂3. In particular, the
general component of the gradient of a function f will be written as ∂kf, k =
1, 2, 3.components of

gradient All operations on vectors can be translated into the language of indexed
relations. For example, A+B = C is equivalent to Ak +Bk = Ck, k = 1, 2, 3,
and A = αB becomes Ak = αBk, k = 1, 2, 3, etc. The two operations of
vector multiplication are a little more involved and we treat them separately
in the following.

First let us consider the dot product. In terms of components, the dot
product of A and B can be written as

A ·B = AxBx + AyBy + AzBz .

Converting to number indices, we get

A ·B = A1B1 + A2B2 + A3B3 =
3∑

i=1

AiBi.
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We now introduce a further simplification in notation due to Einstein, which
gets rid of the clumsy summation sign: Einstein

summation
convention

Box 17.1.2. (Einstein Summation Convention). Whenever an in-
dex is repeated, it is a dummy index and is summed from 1 to 3.

Using this convention we write the dot product as dot product

A · B = AiBi. (17.2)

No summation sign is needed as long as we remember that the repeated index
i is summed over. Since the repeated index is a dummy index, we can change
it to any other symbol. Thus,

A · B = AkBk = AjBj = AnBn = A♥B♥ = · · · .

Example 17.1.1. In this example, we write some of the familiar vector relations
in both vector form and component form:

E = −∇Φ ⇐⇒ Ek = −∂kΦ,

∇ · A ⇐⇒ ∂jAj ,
∫ ∫

S

A · da =

∫ ∫

V

∫
∇ · A dV ⇐⇒

∫ ∫

S

Ak dak =

∫ ∫

V

∫
∂jAj dV,

∇2Φ ⇐⇒ ∂m∂mΦ,

∇ · (fA) = A · ∇f + f∇ · A ⇐⇒ ∂i(fAi) = Ai∂if + f∂iAi.

The reader is urged to verify all these relations, remembering the Einstein summa-
tion convention. �

17.1.1 Transformation Properties of Vectors

Section 6.2.1 discussed the transformation of vectors, i.e., the way the compo-
nents of a vector change when they are expressed in term of a new basis. To coordinates with

superscriptsinitiate the transformations relevant to the present chapter, let us begin with
the position vector r, which in one Cartesian coordinate system (with basis
{ê1, ê2, ê3}) is represented by (x1, x2, x3), and in another by (x̄1, x̄2, x̄3). Here
we are beginning to introduce new notation and terminology : instead of “vec-
tor space,” we use “Cartesian coordinate system,” and instead of subscripts,
we use superscripts to label the coodinates.

Since both (x1, x2, x3), and (x̄1, x̄2, x̄3) are components of the same posi-
tion vector, they are related via Equation (6.29):

x̄1 = a11x
1 + a12x

2 + a13x
3,

x̄2 = a21x
1 + a22x

2 + a23x
3, (17.3)

x̄3 = a31x
1 + a32x

2 + a33x
3.
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In terms of a free index, we can rewrite this as

x̄i = ai1x
1 + ai2x

2 + ai3x
3, i = 1, 2, 3,

and using the summation notation

x̄i =
3∑

j=1

aijx
j , i = 1, 2, 3.

Finally, using the Einstein summation convention and always keeping in mind
that the free index i takes the values 1, 2, or 3, we come up with the following
very succinct replacement for 17.3

x̄i = aijx
j . (17.4)

Equations (17.3) and (17.4) are identical despite the enormous brevity of the
latter.

As an application of the use of indices and summation convention, we
conveniently express the rule of matrix multiplication, which we shall use
frequently. Box 6.1.3 gives this rule. Let C = AB be the product of A and B.
Then the rule in Box 6.1.3 can be written as

cij = aikbkj . (17.5)

Notice that here we have two free indices i and j. The index k is being
summed over on the right.

Of particular importance are transformations that leave the dot product
intact. We called these transformations orthogonal (see Section 6.1.3). These
orthogonal transformations satisfy Equation (6.20), which could be written in
terms of indices. Noting that the ij-th element of the unit matrix is δij , the
familiar Kronecker delta, which as the reader may recall, is defined as

δij ≡
{

1 if i = j,

0 if i �= j,
(17.6)

we rewrite (6.20) as
(
Ã
)

ik
(A)kj = (1)ij or akiakj = δij . (17.7)

Now multiply both sides of (17.4) by aik and sum over i to getKronecker delta in
a sum

aikx̄i = aikaij
︸ ︷︷ ︸
=δkj

xj = xk,

where in the last step we used the most important property of the Kronecker
delta:
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Box 17.1.3. When an indexed quantity shares a common repeated index
with the Kronecker delta (thus a sum over that index understood), the
result is an expression in which both the sum and the Kronecker delta are
removed and the repeated index of the indexed quantity is replaced by the
other index of the Kronecker delta.

Thus the inverse of Equation (17.4) is

xj = aij x̄
i. (17.8)

Note the difference in the position of the dummy index between this equation
and (17.4).

Equations (17.4) and (17.8) give the transformation rules for the compo-
nents of the position vector when one goes from one Cartesian coordinate
system to another. It should be clear that the same transformation rules
apply to the components of any vector, as long as one adheres to Cartesian
coordinate systems. Thus if Vi and V̄i represent the components of a vector
V in two Cartesian coordinate systems, then

V̄i = aijVj and Vj = aij V̄i. (17.9)

In fact, it is customary to define vectors in terms of their transformation
properties: vectors defined in

terms of their
transformation
propertyBox 17.1.4. A set of quantities Vi is said to be the components of a

Cartesian vector V if, under the orthogonal transformation (17.4), the
transformed quantities V̄i and the original quantities are related by (17.9).

Section 1.3 introduced the idea of expressing vectors in different coordinate
systems, mainly Cartesian, cylindrical, and spherical. In all cases, care was
taken to use orthogonal unit vectors. In fact, this has been the sole practice
throughout the book so far, and for good reason: the dot product of two
vectors—and hence length of a vector, defined as the square root of the dot
product of the vector with itself—does not change when their components in
one set of orthogonal unit vectors are written in terms of their components in
another set of orthogonal unit vectors. This actually defines the orthogonal
transformation of Section 6.1.3, and Equation (6.20) or (17.7) guarantees the
invariance of the length of a vector.

Orthogonal transformations are not always the most suitable. As an exam-
ple, consider a curve in space parametrized in a Cartesian coordinate system
by xi = fi(t), where f1(t), f2(t), and f3(t) are some smooth functions. The
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tangent to this curve—a vector—has components ẋi ≡ dxi/dt = f ′
i(t). Now

consider a new coordinate system, not necessarily Cartesian, given by

x̄i = gi(x1, x2, x3). (17.10)

The curve can be written in terms of the new coordinates by substituting fi(t)
for each xi:

x̄i = gi(f1(t), f2(t), f2(t)) ≡ hi(t),

where the last identity defines the function hi(t). The components of the
tangent to the curve in the new coordinate system are given by the chain
rule:

˙̄xi = h′
i(t) = ∂1gi

df1

dt
+∂2gi

df2

dt
+∂3gi

df3

dt
= ∂1giẋ

1 +∂2giẋ
2 +∂3giẋ

3 = ∂jgiẋ
j .

Recalling that ∂jgi = ∂gi/∂xj and that gi = x̄i, this is usually written as

˙̄xi =
∂x̄i

∂xj
ẋj . (17.11)

It is instructive to see what happens if x̄i is given by (17.4). In that case,
we have

∂x̄i

∂xj
=

∂

∂xj

(
aikxk

)
= aik

∂xk

∂xj
︸︷︷︸
=δkj

= aij , (17.12)

where we have used an obvious property of partial derivative which is so useful
that it is worth boxing it:

Box 17.1.5. If {y1, y2, . . . , ym} are independent variables, then ∂yi/∂yj =
δij.

Equation (17.12) shows that, when applied to Cartesian coordinate transfor-
mations, (17.11) is consistent with the definition of a vector as given in Box
17.1.4.

What about the inverse of (17.11)? Equation (17.10) can be treated as
three equations in the three unknowns {x1, x2, x3}. One can then solve these
unknowns as functions of the independent variables

{
x̄1, x̄2, x̄3

}
. Whether

or not one can actually solve (17.10) for
{
x̄i
}

depends on the form of the
functions {g1, g2, g3}. If these functions satisfy certain (mild) mathematical
properties, then Equation (17.10) is said to be invertible and each xj can
be written as a function of the independent variables

{
x̄i
}
. We assume that

(17.10) is indeed invertible.
Treating xj as dependent and

{
x̄i
}

as independent variables, using the
chain rule, and employing obvious notation, we can write

ẋj =
dxj

dt
=

∂xj

∂x̄1

dx̄1

dt
+

∂xj

∂x̄2

dx̄2

dt
+

∂xj

∂x̄3

dx̄3

dt
=

∂xj

∂x̄k

dx̄k

dt
=

∂xj

∂x̄k
˙̄xk. (17.13)
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Is this consistent with Equation (17.11)? In other words, if we substitute ẋj

from this equation into the right-hand side of (17.11), do we get ˙̄xi? Let’s
try it!

RHS of (17.11) =
∂x̄i

∂xj
ẋj =

∂x̄i

∂xj

∂xj

∂x̄k
˙̄xk =

∂x̄i

∂x̄k
˙̄xk = δik ˙̄xk = ˙̄xi,

where in the third equality we used the chain rule (2.16), in the fourth equality
we used Box 17.1.5 as applied to the independent variables x̄i, and in the last
equality we used Box 17.1.3. Thus, Equation (17.13) is indeed consistent with
(17.11). It is tempting to call objects which transform according to (17.11)
components of a vector. But before jumping to conclusions, let’s look at
another vector with which we are familiar.

17.1.2 Covariant and Contravariant Vectors

The gradient of a function was first defined in Section 12.3. It is a vector
whose components are essentially derivatives of the function with respect to
the coordinates. Because we are interested in the transformation properties of
objects, we first have to clarify the notion of a function. A scalar function is
a physical quantity, such as temperature, which takes on a single value at each
point of space. Now, a point has an existence independent of any coordinate scalar function

systems. Nevertheless, coordinates are useful for calculations. And if the point
is described by (x1, x2, x3) in a coordinate system, and φ denotes the scalar
function, then we write φ(x1, x2, x3) for the value of the scalar function at
that point. The same point is described by (x̄1, x̄2, x̄3) in another coordinate
system, and the value of the scalar function in terms of the new coordinates is
φ̄(x̄1, x̄2, x̄3). It should be obvious that the form of the scalar function changes
when one changes the coordinates. Thus the notation φ̄ instead of φ. Clearly,

φ̄(x̄1, x̄2, x̄3) = φ(x1, x2, x3). (17.14)

Now differentiate both sides with respect to x̄i. The left side gives the ith
component of the gradient of φ̄; and using the chain rule on the right side, we
get

∂φ

∂x̄i
=

∂φ

∂x1

∂x1

∂x̄i
+

∂φ

∂x2

∂x2

∂x̄i
+

∂φ

∂x3

∂x3

∂x̄i
=

∂φ

∂xj

∂xj

∂x̄i
.

We thus obtain
∂φ̄

∂x̄i
=

∂xj

∂x̄i

∂φ

∂xj
, (17.15)

which is a different transformation than (17.11).
It appears that we have two kinds of vectors: those whose components

transform according to (17.11) and those transforming according to (17.15).
To further elucidate the discussion, let’s look at the dot product. Let A and
B be vectors which transform according to (17.11):

Āi =
∂x̄i

∂xj
Aj , B̄i =

∂x̄i

∂xk
Bk.
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The dot product in the x̄ coordinate system is ĀiB̄i (sum over repeated indices
understood!). Write this in terms of the x coordinates:

ĀiB̄i =
∂x̄i

∂xj
Aj

∂x̄i

∂xk
Bk =

∂x̄i

∂xj

∂x̄i

∂xk
AjBk.

The right-hand side does not reduce to a dot product.
Now consider one vector U that transforms according to (17.11) and an-

other V that transforms according to (17.15)

Ūi =
∂x̄i

∂xj
Uj, V̄i =

∂xk

∂x̄i
Vk,

and take the dot product of these two vectors:

ŪiV̄i =
∂x̄i

∂xj
Uj

∂xk

∂x̄i
Vk =

∂xk

∂x̄i

∂x̄i

∂xj
UjVk =

∂xk

∂xj
UjVk

︸ ︷︷ ︸
by the chain rule

= δkjUjVk = UjVj
︸ ︷︷ ︸

by Box 17.1.3

.

(17.16)

This is the magic of a general coordinate transformation! Although the func-
tions {g1, g2, g3} of (17.10) are completely arbitrary (except for invertibility),
they respect the dot product, as long as one vector transforms according to
(17.11) and the other according to (17.15).

So far we have been considering coordinates in a three-dimensional space.
However, as this section’s discussion easily points out, nothing prevents us
from generalizing to n-dimensions: the only change we have to make is that
the sums (and the repeated indices that imply them) should go from 1 to n.
For example, (17.10) becomes

x̄i = gi(x1, x2, . . . , xn), i = 1, 2, . . . , n. (17.17)

And this generalization is not purely academic, because, as we saw in Chaptercovariant and
contravariant
vectors

8, relativity demands a four -dimensional spacetime. Having this generaliza-
tion in mind, we make the following definition of the two kinds of vector
discussed above:

Box 17.1.6. The quantities {A1, A2, . . . An} and {B1, B2, . . . Bn} are said
to constitute the components of a contravariant and a covariant vector,
respectively, if, under a coordinate transformation (17.17) they transform
according to

Āi =
∂x̄i

∂xj
Aj and B̄i =

∂xj

∂x̄i
Bj . (17.18)

Note the placement of the indices on the two types of vector. Only when
an “upper” index appears with a “lower” index in a sum is the result (the dot
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product) independent of the coordinate system used. Now the question arises:
If one needs an upper and a lower index in the sum to get a quantity that is
invariant, how does one define the length of a contravariant vector (which has
only an upper index) or a covariant vector (which has only a lower index)?
For this, we need to wait until we have introduced tensors and, in particular,
the metric tensor.

17.2 From Vectors to Tensors

We have already discussed one kind of multiplication of vectors, the dot prod-
uct [see Equation (17.2)]. Now we consider the cross product as a prototype
of objects that have more than one index. The cross product of two vec-
tors involves different components of those vectors (as opposed to the same
components involved in the inner product). In terms of the index labels intro-
duced above, this means that the cross product carries two indices. In fact,
consider two (covariant) vectors Ai and Bj . The components of their cross
product are of the form AiBj − AjBi. In another coordinate system related
to the first by (17.10), the components are ĀiB̄j − ĀjB̄i. Using (17.18) in
Box 17.1.6 for A and B, we get

ĀiB̄j =
∂xk

∂x̄i
Ak

∂xh

∂x̄j
Bh =

∂xk

∂x̄i

∂xh

∂x̄j
AkBh,

and

ĀjB̄i =
∂xk

∂x̄j
Ak

∂xh

∂x̄i
Bh =

∂xk

∂x̄j

∂xh

∂x̄i
AkBh =

∂xh

∂x̄j

∂xk

∂x̄i
AhBk,

where in the last step we just changed the dummy indices [see Equation (9.4)].
Subtracting the last two equations, we get

ĀiB̄j − ĀjB̄i =
∂xk

∂x̄i

∂xh

∂x̄j
(AkBh − AhBk).

Thus, if we define Ckh ≡ AkBh −AhBk as the components of A×B, the last cross product as a
two-indexed
quantity

equation gives their transformation property:

C̄ij =
∂xk

∂x̄i

∂xh

∂x̄j
Ckh. (17.19)

Cross products are special cases of a more general category of mathemat-
ical objects called tensors which carry multiple indices. Some of the indices
may be upper, some lower. The most general tensor carries multiple upper
and multiple lower indices.
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Box 17.2.1. A set of nr+s quantities T i1...ir

j1...js
is said to constitute the com-

ponents of a tensor T of type (r, s) if, under a coordinate transformation
(17.17) they transform according to

T
i1...ir

j1...js
=

∂x̄i1

∂xh1
· · · ∂x̄ir

∂xhr

∂xk1

∂x̄j1
· · · ∂xks

∂x̄js
T h1...hr

k1...ks
(17.20)

{i1 . . . ir} and {j1 . . . js} are called the contravariant and covariant
indices, respectively. The rank of the tensor is defined as r + s.

Note that for every index on the left there is an identical index on the right,
and that only an upper index and its lower partner are repeated on the right.
Here we are using the obvious convention that in the partial derivatives of the
form ∂xk/∂x̄j or ∂x̄k/∂xj , k is considered an upper index and j a lower one.

Example 17.2.1. When we introduced multipoles in Chapter 10, we were able to
write the potential of a source distribution as an infinite sum of moments of source of
higher and higher order. Although Cartesian coordinates are extremely clumsy for
higher moments, the third moment can be handled neatly in Cartesian coordinates
once we use the machinery of indices developed in this section.

Recall that the integrand of the third term in the expansion of potential is [see
Equation (10.33)]

Integrand ≡ r′2
[

−1

2
+

3

2
(êr · êr′)2

]

= −r′2

2
+

3

2
r′2

(
r · r′
rr′

)2

.

Writing the position vectors in terms of their Cartesian components and rearranging
terms yields

Integrand =
3

2

(xx′ + yy′ + zz′)2

r2
− r′2

2

=
1

2r2

{
x2(3x′2 − r′2) + y2(3y′2 − r′2) + z2(3z′2 − r′2)

+6xyx′y′ + 6xzx′z′ + 6yzy′z′} . (17.21)

We want to express (17.21) in terms of indices. First let us concentrate on the terms
involving x2, y2, and z2. Since these diagonal terms involve x2 = x1x1, etc., it is
natural to define a two-indexed quantity, say V ′

ij , such that

x2(3x′2 − r′2) ≡ x1x1V
′
11,

y2(3y′2 − r′2) ≡ x2x2V
′
22,

z2(3z′2 − r′2) ≡ x3x3V
′
33,

with
V ′

11 = 3x′
1x

′
1 − r′2, V ′

22 = 3x′
2x

′
2 − r′2, V ′

33 = 3x′
3x

′
3 − r′2.

Next, we note that the off-diagonal terms such as 6xyx′y′ can be written as 6xixjx
′
ix

′
j

(no summation!). It appears as if we can write all terms in the last line of Equation
(17.21) as

∑3
i,j=1 xixjV

′
ij if we can define V ′

ij properly. The off-diagonal sum sug-

gests defining V ′
ij as V ′

ij ≡ 3x′
ix

′
j . The reader may wonder why we did not include
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the factor of 6 in the definition. The reason is that when summed over indices, the
symmetry of V ′

ij under interchange of its indices automatically introduces a factor
of 2. The problem with this definition is that when i = j, i.e., when evaluating the
diagonal terms, the r′2 term is absent. To remedy this, we change the definition to

V ′
ij ≡ 3x′

ix
′
j − r′2δij . (17.22)

Then, the Kronecker delta contributes only to the diagonal terms as it should. The
reader is urged to show that

Integrand =
1

2r2

3∑

i,j=1

xixjV
′

ij =
1

2r2
xixjV

′
ij , (17.23)

where in the last equality the summation convention is implied.
Now we substitute this in Equation (10.33) and denote the third term as Φ3(r).

This yields

Φ3(r) =
K

r5
xixj

[
1

2

∫

Ω

V ′
ij dQ(r′)

]

≡ K

r5
xixjQij . (17.24)

The last equation defines the components of the quadrupole moment: quadrupole
moment defined

Qij =
1

2

∫

Ω

V ′
ij dQ(r′) =

1

2

∫

Ω

(3x′
ix

′
j − r′2δij) dQ(r′). (17.25)

One can use (17.25) to calculate the quadrupole moment of any source distribution.
The quadrupole moment of electric charge distributions plays a significant role in
nuclear physics. �

A scalar (function) is a tensor of type (0, 0); a contravariant vector is a
tensor of type (1, 0); a covariant vector is a tensor of type (0, 1). Similarly, the
cross product, the transformation of whose components is given in (17.19), is
a tensor of type (0, 2). Of special interest is the zero tensor, which can be of
any type. Box 17.2.1 shows clearly that

Box 17.2.2. If a tensor has zero components in one coordinate system,
it has zero components in all coordinate systems.

We have also encountered another two-indexed quantity, the Kronecker
delta. Is it a tensor? If so, what type? We may think—since we have chosen Kronecker delta

reindexed!both of its indices to be covariant—that it is of type (0, 2). However, that
is not the case, for the following reason. Equation (17.6), which defines the
Kronecker delta, must hold in all coordinate systems. If Kronecker delta were
of type (0, 2), then it would transform according to

δ̄ij =
∂xk

∂x̄i

∂xh

∂x̄j
δkh =

∂xk

∂x̄i

∂xk

∂x̄j
,

and the right-hand side does not satisfy Equation (17.6). For the same reason
the Kronecker delta cannot be a tensor of type (2, 0). What if we define it to
be a tensor of type (1, 1)? Then

δ̄i
j =

∂x̄i

∂xk

∂xh

∂x̄j
δk
h =

∂x̄i

∂xk

∂xk

∂x̄j
=

∂x̄i

∂x̄j
= δi

j .
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This shows that the proper way of indexing the Kronecker delta is to give it
one covariant and one contravariant index, i.e., to treat it as a tensor of type
(1, 1).

Example 17.2.2. Chapter 8 introduced the idea of a four-vector, which is a
vector with four components labeled 0, 1, 2, 3, with 0 being the time component and
the rest the space components. It is common to label 4-vectors by Greek indices.the dot product in

relativity For example, xα represents the coordinates, uα = dxα/dτ represents the 4-velocity,
pα = muα represents the 4-momentum, etc. The matrix η can be naturally assumed
to be a tensor ηαβ , and the inner product of two 4-vectors aα and bβ can be written
as ηαβaαbβ, with the summation over 0, 1, 2, 3 of a repeated index (one up, one
down) understood. Because we have used i, j, k, etc., for the space part, we shall
stick to this and write, for example uα = (u0, ui), and

aαbα ≡
3∑

i=0

aαbα = a0b0 + aibi ≡ a0b0 +
3∑

i=1

aibi.
�

The notation of the example above is very commonly used in relativity
theory:

Box 17.2.3. Greek indices, representing the four-dimensional spacetime,
run from 0 to 4, while Roman indices, representing the space part, run
from 1 to 3.

17.2.1 Algebraic Properties of Tensors

In our treatment of vectors, we saw that there were some formal operations
which they obeyed. For instance, we could multiply a vector by a number,
we could add two vectors, and we could multiply two vectors to get a third
vector. Tensors also have some important properties which we summarize in
the following.

Addition

If T and S are tensors of type (r, s), then their sum U = T + S, defined
componentwise as

U i1...ir

j1...js
= T i1...ir

j1...js
+ S i1...ir

j1...js
,

is also a tensor of type (r, s). To show this, one simply has to demonstrate
that U i1...ir

j1...js
transform according to (17.20) in Box 17.2.1.

Moreover, if we define V = αT componentwise as

V i1...ir

j1...js
= αT i1...ir

j1...js
,

where α is a real number, then V is also a tensor of type (r, s). The combi-
nation of these two operations makes the collection of tensors of type (r, s) a
vector space.
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Multiplication

If T is a tensor of type (r1, s1) and S is a tensor of type (r2, s2), then their
tensor product U = T ⊗ S, defined componentwise as

U
i1...ir1+r2

j1...js1+s2
= T

i1...ir1
j1...js1

S
ir1+1...ir1+r2
js1+1...js1+s2

(17.26)

is a tensor of type (r1 + r2, s1 + s2). For example, if T is a tensor of type
(2, 1) with components T ij

k and S is a tensor of type (0, 2) with components
Slm, then the components of their tensor product U are U ij

klm ≡ T ij
k Slm, and

they transform according to the following rule:

U
ij

klm = T
ij

k Slm =
∂x̄i

∂xh

∂x̄j

∂xp

∂xq

∂x̄k
T hp

q

∂xr

∂x̄l

∂xs

∂x̄m
Srs

=
∂x̄i

∂xh

∂x̄j

∂xp

∂xq

∂x̄k

∂xr

∂x̄l

∂xs

∂x̄m
T hp

q Srs =
∂x̄i

∂xh

∂x̄j

∂xp

∂xq

∂x̄k

∂xr

∂x̄l

∂xs

∂x̄m
Uhp

qrs,

which shows that U is a tensor of rank (2, 3).

Example 17.2.3. One can obtain a tensor of any type by multiplying contravari-
ant and covariant vectors: take r contavariant vectors and s covariant vectors and
multiply them to get a tensor of type (r, s). For example, if A is a contravariant
vector with components Ai and B a covariant vector with components Bj , then
T ij ≡ AiAj is a tensor of type (2, 0), Sijk ≡ BiBjBk is a tensor of type (0, 3), and
U ij

k ≡ AiAjBk is a tensor of type (2, 1). �

Contraction

Given a tensor of type (r, s), take a covariant index and set it equal to a
contravariant index, i.e., sum over those two indices. The process is called
contraction and the end result is a tensor of type (r−1, s−1). For example,
take the tensor of type (2, 1) whose components are T ij

k and set k = j. How
do the components T ij

j transform?

T
ij

j =
∂x̄i

∂xh

∂x̄j

∂xp

∂xq

∂x̄j
T hp

q =
∂x̄i

∂xh

∂xq

∂x̄j

∂x̄j

∂xp
︸ ︷︷ ︸

=δq
p

T hp
q =

∂x̄i

∂xh
T hq

q .

This shows that T ij
j transform as components of a contravariant vector [see

Equation (17.18)], i.e., a tensor of type (1, 0).
Of special interest is a tensor of type (1, 1). When you contract this

tensor, you get a tensor of type (0, 0), i.e., a scalar. For example, let A be
a contravariant vector with components Ai and B a covariant vector with
components Bj . Then T i

j ≡ AiBj is a tensor of type (1, 1). When you
contract it, you get T i

i ≡ AiBi, which is the dot product of the two vectors,
i.e., a scalar [see Equation (17.16)].
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Symmetrization

Some important tensors in physics have the property that when two of itssymmetric and
antisymmetric
tensors

indices are interchanged the tensor does not change or it changes sign. In the
first case, we say that the tensor is symmetric, in the second case, antisym-
metric. For example, if T is a tensor of type (2, 0) and U of type (0, 2), and if

T ij = T ji and Uij = −Uji,

then T is symmetric and U is antisymmetric.
Given any tensor, one can always construct from it a tensor which is

symmetric or antisymmetric in the interchange of any pair of its indices. In
particular, if T is any tensor of type (2, 0), then the tensors S and A with
components

Sij = 1
2 (T ij + T ji) and Aij = 1

2 (T ij − T ji)

are called the symmetric and antisymmetric parts of T, and

T ij = 1
2 (T ij + T ji) + 1

2 (T ij − T ji) ≡ Sij + Aij . (17.27)

The symmetric part Sij is sometimes denoted by T (ij) and the antisymmetric
part Aij by T [ij].

17.2.2 Numerical Tensors

There are certain “constant” tensors which play important roles in tensor
analysis. We have seen one such tensor already: the (1, 1)-type Kronecker
delta. In fact, all the so-called numerical tensors are built form this funda-
mental tensor. The generalized Kronecker delta δi1···ir

j1···jr
is defined asgeneralized

Kronecker delta

δi1···ir

j1···jr
= det

⎛

⎜
⎜
⎜
⎝

δi1
j1

δi1
j2

· · · δi1
jr

δi2
j1

δi2
j2

· · · δi2
jr

...
...

...
...

δir

j1
δir

j2
· · · δir

jr

⎞

⎟
⎟
⎟
⎠

. (17.28)

The determinant of an r × r matrix is a sum of terms each consisting
of the product of r matrix elements. In (17.28), each term is a product of
r Kronecker deltas. Since the Kronecker delta is a (1, 1)-type tensor, each
term, thus the determinant, and thus the generalized Kronecker delta, is an
(r, r)-type tensor.

It is clear from (17.28) that the upper indices label the rows and the lower
indices the columns of the matrix. Thus interchanging any two of the upper
indices is equivalent to interchanging two rows of the matrix. This changes
the sign of the determinant. Similarly for the interchange of two columns.
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Box 17.2.4. The generalized Kronecker delta is a completely antisym-
metric tensor in its upper and lower indices: interchanging any two of its
upper indices or any two of its lower indices changes its sign.

Example 17.2.4. In this example, we demonstrate a useful property of the gen-
eralized Kronecker delta. We illustrate the property for r = 3 and n = 3,2 but the
result can easily be generalized. Expand the determinant of δijk

lmp about the last row
starting from the right:

δijk
lmp = det

⎛

⎝
δi

l δi
m δi

p

δj
l δj

m δj
p

δk
l δk

m δk
p

⎞

⎠ = δk
p det

(
δi

l δi
m

δj
l δj

m

)

− δk
m det

(
δi

l δi
p

δj
l δj

p

)

+ δk
l det

(
δi

m δi
p

δj
m δj

p

)

= δk
pδij

lm − δk
mδij

lp + δk
l δij

mp.

Now contract over the indices k and p to obtain

δijk
lmk = δk

kδij
lm−δk

mδij
lk +δk

l δij
mk = 3δij

lm−δij
lm +δij

ml = 2δij
lm +δij

ml = δij
lm = δi

lδ
j
m −δi

mδj
l ,

where in the next to the last step we used the antisymmetry of the generalized Kro-
necker delta. Note that because of the antisymmetry of the generalized Kronecker
delta in both upper and lower indices, we can move both the upper and the lower
last indices to the beginning:

δi1···ir
j1···jr

= δ
iri1···ir−1
jrj1···jr−1

.

In particular,
δkij

klm = δijk
lmk = δi

lδ
j
m − δi

mδj
l . �

The procedure of the example above can be generalized to arbitrary r and
n. Furthermore, one can contract over more than one pair of indices. The
result is the following useful identity:

δ
i1···isis+1···ir

j1···jsis+1···ir
=

(n − s)!
(n − r)!

δi1···is

j1···js
. (17.29)

From the generalized Kronecker delta two other important numerical ten-
sors are built. These are called the Levi-Civita symbols. They are defined Levi-Civita

symbolsas follows:
εj1···jn = δ12···n

j1···jn
and εi1···in = δi1···in

12···n . (17.30)

Note that both Levi-Civita symbols are antisymmetric in all their indices and
will thus vanish if any two of their indices are equal. Moreover,

ε12···n = δ12···n
12···n = 1 and ε12···n = δ12···n

12···n = 1, (17.31)

so that we have

εi1···in = εi1···in =

⎧
⎪⎨

⎪⎩

+1 if i1 · · · in is an even permutation of 1,2,. . . n,

−1 if i1 · · · in is an odd permutation of 1,2,. . . n,

0 otherwise.
(17.32)

2Recall that n is the dimension of the space.
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Now consider the quantity

Ai1···in

j1···jn
= εi1···inεj1···jn − δi1···in

j1···jn
,

which is clearly antisymmetric in all its upper as well as lower indices. This
means that the only nonzero elements of Ai1···in

j1···jn
are those obtained from

A12···n
12···n. But this is zero by (17.31) and the definition of Ai1···in

j1···jn
. We have just

shown the following important result

εi1···inεj1···jn = δi1···in

j1···jn
. (17.33)

17.3 Metric Tensor

Let {x′i} denote a set of Cartesian coordinates, and {xj} some other coordi-
nates of which {x′i} are functions. We then have

dx′i =
∂x′i

∂xj
dxj (sum over j implied as usual).

The element of length (squared)—which is customarily denoted by ds2—in
the Cartesian coordinate system is

ds2 = (dx′1)2 + (dx′2)2 + · · · + (dx′n)2 =
n∑

i=1

(dx′i)2.

In terms of the other coordinates, this can be written as

ds2 =
n∑

i=1

(dx′i)2 =
n∑

i=1

dx′idx′i

=
n∑

i=1

(
∂x′i

∂xj
dxj

)(
∂x′i

∂xk
dxk

)

=

(
n∑

i=1

∂x′i

∂xj

∂x′i

∂xk

)

dxjdxk.

The expression in parentheses on the last line, denoted by gjk(x), is a sym-
metric tensor of type (0, 2), which as indicated, is a function of the {xj}:

gjk(x) =
n∑

i=1

∂x′i

∂xj

∂x′i

∂xk
. (17.34)

That gjk(x) is symmetric should be obvious. To show that it is a tensor
of type (0, 2), let {x̄k} be some new set of coordinates of which {x′i} are
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functions. We assume that all functional dependences are invertible. This
means that {x̄k} can be thought of as functions of {x′i}, and through {x′i},
as functions of {xj}. In terms of the x̄ variables,

ḡjk(x̄) ≡
n∑

i=1

∂x′i

∂x̄j

∂x′i

∂x̄k
.

Using the chain rule, this can be written as

ḡjk(x̄) =
n∑

i=1

∂x′i

∂xp

∂xp

∂x̄j

∂x′i

∂xq

∂xq

∂x̄k
=

(
n∑

i=1

∂x′i

∂xp

∂x′i

∂xq

)

︸ ︷︷ ︸
=gpq(x)

∂xp

∂x̄j

∂xq

∂x̄k
=

∂xp

∂x̄j

∂xq

∂x̄k
gpq(x),

which shows that gpq transforms as a (0, 2)-type tensor. In terms of this
tensor, ds2 is written as

ds2 =
n∑

i=1

(dx′i)2 = gjk(x)dxjdxk. (17.35)

The matrix whose elements are gpq is invertible. In fact, consider

hkm(x) ≡
n∑

p=1

∂xk

∂x′p
∂xm

∂x′p ,

which the reader can show to be a tensor of type (2, 0). Then

gjk(x)hkm(x) =

(
n∑

i=1

∂x′i

∂xj

∂x′i

∂xk

)(
n∑

p=1

∂xk

∂x′p
∂xm

∂x′p

)

=
n∑

i,p=1

∂x′i

∂xj

∂x′i

∂xk

∂xk

∂x′p
︸ ︷︷ ︸
= ∂x′i

∂x′p =δi
p

∂xm

∂x′p =
n∑

i=1

∂xm

∂x′i
∂x′i

∂xj

︸ ︷︷ ︸
= ∂xm

∂xj

= δm
j ,

where on the second line use was made of the chain rule and Box 17.1.5.
This equation shows that the matrix whose elements are hkm(x) is inverse
to the matrix whose elements are gjk(x). It is common to use the same
symbol for the inverse as for the original tensor. Thus, instead of hkm(x), we
use gkm(x).

The (0, 2)-tensor gjk(x) was defined in terms of the transformation rule
between a Cartesian and a second coordinate system. It turns out that one
can abstract the properties of gjk(x) and define the metric tensor:
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Box 17.3.1. A metric tensor g with components gij is a symmetric
type-(0, 2) tensor whose matrix has an inverse g−1 with components gkm.
Every metric tensor defines a geometry in which the (square of the)
element of length ds2 is given by

ds2 = gij(x)dxidxj ,

where {xi} are some appropriate coordinates in that geometry.

The word “geometry” in this Box is used rather loosely. A precise defini-geometry,
manifold, and
metric tensor

tion of “geometry” is beyond the scope of this book. Nevertheless, we mention
that the notion of geometry starts with the concept of a manifold, which is a
“space” that locally looks like a Euclidean space. For example, the surface of
a sphere is a two-dimensional manifold, because a very small area of a sphere
looks like a two-dimensional Euclidean space, i.e., a flat plane. Mathemati-
cians study manifolds that have no metric tensors defined on them. However,
in physics, almost all manifolds have a metric, and this metric defines the
geometry of that manifold.

In our discussion of the inner product in Section 6.1.2, we also encountered
the metric tensor, although we called it the metric matrix. There, we defined
the notion of positive definiteness. In the context of the discussion here, thisRiemannian

manifold property becomes the cornerstone of a special kind of geometry: if ds2 of
Box 17.3.1 is always strictly greater than zero for nonzero dxi and dxj , then
the manifold on which gij is defined is a called a Riemannian manifold.
Relativity requires manifolds that are not Riemannian, i.e., for which ds2 can
be zero or negative.

Geometry is an intrinsic property of a space, while gij(x) depends on the
coordinates used. This is evident in Equation (17.35) where ds2 is given in
terms of Cartesian coordinates as well as the other general coordinates. De-
spite this coordinate dependence, the metric tensor does define the geometry
of a manifold. In fact, there are some quantities obtained from the metric
which characterize the intrinsic geometry of the manifold. We shall return to
this discussion later.

Example 17.3.1. Let us find the metric tensor in spherical coordinates. Use
spherical coordinate symbols as indices with r, θ, and ϕ as first, second, and third
coordinates, respectively. Recalling that x′1 = x, x′2 = y, and x′3 = z, with

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ,

and using Equation (17.34), we get

grr(r, θ, ϕ) =

(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2

=(sin θ cos ϕ)2 + (sin θ sin ϕ)2 + (cos θ)2 = 1

grθ(r, θ, ϕ) =
∂x

∂r

∂x

∂θ
+

∂y

∂r

∂y

∂θ
+

∂z

∂r

∂z

∂θ

= (sin θ cos ϕ)(r cos θ cos ϕ) + (sin θ sin ϕ)(r cos θ sin ϕ) + (cos θ)(−r sin θ)

= r sin θ cos θ cos2 ϕ + r sin θ cos θ sin2 ϕ − r cos θ sin θ = 0.
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Similarly, the reader can show that grϕ = 0, and in fact all the off-diagonal elements
vanish. On the other hand,

gθθ(r, θ, ϕ) =

(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

+

(
∂z

∂θ

)2

= (r cos θ cos ϕ)2 + (r cos θ sin ϕ)2 + (−r sin θ)2 = r2

gϕϕ(r, θ, ϕ) =

(
∂x

∂ϕ

)2

+

(
∂y

∂ϕ

)2

+

(
∂z

∂ϕ

)2

= (−r sin θ sin ϕ)2 + (r sin θ cos ϕ)2 = r2 sin2 θ.

Therefore,

ds2 = (dr)2 + r2(dθ)2 + r2 sin2 θ(dϕ)2 = dr2 + r2dθ2 + r2 sin2 θdϕ2,

which agrees with Equation (2.25). Note how the parentheses have been removed
from around the differentials. This is a very common (albeit inaccurate)
practice. �

17.3.1 Index Raising and Lowering

After Box 17.1.6, we mentioned that the length of a covariant or contravari-
ant vector cannot be defined without a metric tensor. Now that we have a
metric tensor, we define them. In fact, we can do better! We can define the
dot product of any two vectors. If one vector is covariant and the other con-
travariant, their dot product is the usual one: the sum of the product of their
components as shown in (17.16). If both vectors A and B are contravariant,
define the dot product as

A · B = gijA
iBj , (17.36)

and if both vectors are covariant, define the dot product as

A · B = gijAiBj . (17.37)

The reader can routinely show that Ā · B̄ = A · B in both cases.
Equations (17.36) and (17.37) have an interesting interpretation. Take the

first equation and recall from Equation (17.26) that the product gijA
k is a

tensor of type (1, 2). Contracting the indices i and k turns that into a tensor
of type (0, 1), i.e., a covariant vector, say C with components Cj . But now
note that

C · A = CjA
j = gijA

iAj = A ·A.

It is therefore natural to denote gijA
i—which is equal to gjiA

i because of the
symmetry of the metric tensor—by Aj . Thus, the metric tensor gij provides
us with a way of changing contravariant vectors to covariant vectors, i.e.,
lowering their indices. Similar arguments show that the inverse of the metric
tensor gij can be used to raise indices; and these two processes are consistent,
in the sense that if we lower the index of a contravariant vector with gij and
then raise the index of the resulting covariant vector with gij , we get the
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original contravariant vector. Here is a proof! Let Ck = gkjAj , where Aj is
the covariant vector obtained from Ai. Then,

Ck = gkjAj = gkjgijA
i = gkjgjiA

i = δk
i Ai = Ak,

and the original contravariant vector is restored. The process of raising and
lowering of indices works for arbitrary tensors:

Box 17.3.2. Any contravariant index i of a general tensor can be made
into a covariant index j by multiplying the component that includes i by
gij. Any covariant index i of a general tensor can be made into a con-
travariant index j by multiplying the component that includes i by gij.

In Cartesian coordinates the (Euclidean) metric tensor is just the Kronecker
delta. Therefore

Aj = gijAi = δi
jAi = Aj , in Cartesian coordinates with Euclidean metric,

(17.38)
and the distinction between covariant and contravariant vectors (and indices)
disappears.

In special relativity and in Cartesian coordinates, the metric tensor is ηαβ ,
whose matrix is given in Equation (8.8). This tensor has components

η00 = 1, η11 = η22 = η33 = −1, ηαβ = 0 if α �= β in special relativity.

The inverse of ηαβ is itself: ηαβ = ηαβ . In raising and lowering of an index,
the time component does not change, while the space components change sign
(see Box 17.2.3 for the meaning of Greek and Roman indices in relativity):

Aα = ηαβAβ ⇒ A0 = A0, A
i = −Ai (17.39)

Example 17.3.2. The Levi-Civita symbols are conveniently used to express the
components of the cross product of two vectors in Cartesian coordinate systems.components of

cross product Since there is no difference between covariant and contravariant indices in Cartesian
coordinate system, we use only covariant indices.

(A× B)i = εijkAjBk, i = 1, 2, 3, (17.40)

where a sum over j and k is understood. As a practice in index manipulation, the
reader is urged to verify the above relation. The order of the two vectors on both
sides of the equation is important!

Using Equation (17.40) and some properties of the Levi-Civita symbol, we can
derive the bac cab rule:

A× (B × C) = B(A · C) − C(A · B).
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Start with a general component of the LHS and work through index manipulations
until you reach the corresponding component of the RHS:

{A × (B× C)}i = εijkAj(B ×C)k = εijkAjεkmnBmCn

= εkijεkmnAjBmCn = (δimδjn − δinδjm)AjBmCn

= δimδjnAjBmCn − δinδjmAjBmCn = AjBiCj − AjBjCi

= Bi(AjCj) − Ci(AjBj) = Bi(A · C) − Ci(A · B).

On the second line we used (17.33) and the result obtained in Example 17.2.4. The
last expression above is the ith component of the RHS of the bac cab rule. �

Example 17.3.3. Example 15.3.1 calculated the angular momentum differential
operator using Cartesian coordinates. To illustrate the power of indices and the
ease with which they allow some complex manipulations, we redo the calculation of
Example 15.3.1 using indices.

We have −L2f = (r×∇) · (r×∇)f . Letting ∂j stand for the partial derivative
with respect to xj , using Einstein summation convention, and recalling that no
raising or lowering of indices is necessary for Euclidean space, we write

−L2f = (r× ∇)i(r× ∇)if = (εijkxj∂k) (εilmxl∂m) f = εijkεilmxj∂k (xl∂mf) ,

where we used (17.40). Continuing, refer to (17.33) and write the above equation as

−L2f = (δjlδkm − δjmδkl) xj∂k (xl∂mf) = xj∂k (xj∂kf) − xj∂k (xk∂jf)

= xjδkj∂kf + xjxj∂k∂kf − xjδkk∂jf − xjxk∂k∂jf (17.41)

= xj∂jf + r2∇2f − 3xj∂jf − xjxk∂k∂jf = r2∇2f − 2(r · ∇)f − xjxk∂k∂jf,

because ∂kxj = δkj , xjxj = r2, δkk = 3, xj∂j = r · ∇, and ∂k∂k = ∇2. The last
term in (17.41) above can be found from the following relation:

xk∂k(xj∂jf) = xkδkj∂jf + xkxj∂k∂jf = xi∂jf + xkxj∂k∂jf,

or
xkxj∂k∂jf = (r · ∇)2f − (r · ∇)f.

Substituting in (17.41) yields Equation (15.22). Compare this derivation with the
laborious calculation of Example 15.3.1! �

17.3.2 Tensors and Electrodynamics

Relativity was a logical outcome of the electromagnetic theory. It should
therefore come as no surprise if the equations of electromagnetism found their
most natural form in the language of relativity and tensors associated with
it. In the discussion that follows, it is convenient and common practice to set
the speed of light equal to 1; then since c = 1/

√
ε0μ0, we have

c = 1,
1
ε0

= μ0.

Consider the Lorentz force law

f = q(E + v × B) or fi = q (Ei + εijkvjBk) , (17.42)
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where as in Example 17.3.2, we used covariant indices for all tensors in the
second equation. Since this is the fundamental force of electromagnetism, we
expect it to have a natural expression in relativity.

As a starting point, we note that the magnetic part is of the form vjFij ,
where Fij = εijkBk is an antisymmetric tensor of rank two. The obvious
generalization that might lead to a connection with relativity is to consider
an expression of the form uβFαβ , where uβ is the velocity 4-vector and Fαβ is
an antisymmetric tensor of rank two which reduces to Fij when both α and
β are nonzero. Let us look at uβFαβ when α is i:

uβFiβ = u0Fi0 + ujFij ,

where we used the convention of Example 17.2.2. Equation (8.21) now gives
u0 = γ, and ui = γvi. Then the equation above giveselectromagnetic

field tensor
uβFiβ = γFi0 + γvjFij = γ

(
Fi0 + vjFij

)
= γ (Fi0 + vjεijkBk) ,

where in the last step, we disregarded the difference between covariant and
contravariant indices. Comparison with Equation (17.42) shows that it is
natural to set Fi0 = Ei. The second rank antisymmetric tensor Fαβ is called
the electromagnetic field tensor.

Maxwell’s equations (15.29) take a specially simple form when written in
terms of the electromagnetic field tensor. The first equation can be written
as

∂iFi0 =
∂Fi0

∂xi
=

ρ

ε0
= μ0ρ. (17.43)

The obvious generalization of the left-hand side to relativity is ∂Fαβ/∂xα. But
there is something wrong with this! Both α’s are lower indices—recall that the
superscript of a coordinate in the denominator leads to a subscript—and you
cannot sum over them. In the Euclidean case, this causes no problem because
by (17.38), there is no difference between lower and upper indices and we can
simply raise one of the i’s. In relativity, however, there is a difference. So, we
have to introduce the (inverse) η tensor. The left-hand side now becomes

ηαν ∂Fαβ

∂xν
.

Since β is a free index, we expect the right-hand side to have a free index as
well. So, we write the generalization of Maxwell’s first equation as

ηαν ∂Fαβ

∂xν
= μ0Vβ , (17.44)

with Vβ to be determined. For β = 0, we get

ηαν ∂Fα0

∂xν
= μ0V0, or ηiν ∂Fi0

∂xν
= μ0V0, or − ∂Fi0

∂xi
= μ0V0,

where we used the fact that Fαβ is antisymmetric, so all its “diagonal” com-
ponents are zero. We also used the fact that η is diagonal with the space
elements being −1. Comparing with (17.43), we see that V0 = −ρ.
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Now let β = i in (17.44). Then

ηαν ∂Fαi

∂xν
= μ0Vi, or η0ν ∂F0i

∂xν
+ ηjν ∂Fji

∂xν
= μ0Vi,

or
∂F0i

∂x0
− ∂Fji

∂xj
= μ0Vi, or − ∂Ei

∂t
+ εijk∂jBk = μ0Vi.

This is the ith component of the vector equation

−∂E
∂t

+ ∇× B = μ0V.

Comparing this with the fourth Maxwell’s equation, we identify V as J. Thus, Maxwell’s 1st and
4th equations and
four-current

the first and fourth equations, the inhomogeneous Maxwell’s equations
are combined into

ηαν ∂Fαβ

∂xν
= μ0Jβ , (17.45)

where Jβ = (−ρ,J) is the 4-current. We leave it to the reader to verify that Maxwell’s 2nd and
3rd equations

∂Fαβ

∂xν
+

∂Fνα

∂xβ
+

∂Fβν

∂xα
= 0 (17.46)

combines the second and third equations, the homogeneous Maxwell’s
equations.

Equation (17.46) is satisfied if Fαβ = ∂αAβ − ∂βAα for any 4-vector Aα,
as the reader can easily verify. For α = i and β = 0, this gives

Fi0 = ∂iA0 − ∂0Ai, or Ei = ∂iA0 − ∂0Ai, or E = ∇A0 −
∂A
.

∂t

Comparing this with (15.31) identifies A0 with the negative of the scalar
potential Φ and A with the vector potential. We can thus write

Fαβ = ∂αAβ − ∂βAα, Aα = (−Φ,A). (17.47)

Now that we have solved the homogeneous Maxwell’s equations by in-
troducing the 4-potential, we can insert the result in (17.45) to write the
inhomogeneous Maxwell’s equations in terms of the 4-potential as well. We
then have

ηαν∂ν (∂αAβ − ∂βAα) = μ0Jβ ,

or
ηαν∂ν∂αAβ − ∂β (ηαν∂νAα) = μ0Jβ . (17.48)

The expression in parentheses—when set equal to zero—gives the Lorentz
gauge condition [see Equation (15.32)]. The remaining part of the equation
gives the wave equation for A and Φ.
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17.4 Differentiation of Tensors

Tensors represent many quantities, whose variation with coordinates (points
in space) has physical significance. Therefore, the notion of a derivative of a
tensor becomes important. Although we can always differentiate components
of a tensor (they are just functions), the resulting derivative is not necessarily
a tensor. To obtain a tensor, one needs to generalize the concept of the
derivative, as we do in this section.

17.4.1 Covariant Differential and Affine Connection

Let us begin by noting that the differentials of coordinates form the com-
ponents of a contravariant vector. In fact, when the new coordinates x̄i are
written as functions of the old coordinates xj and one takes the differential
of the new coordinates, one obtains

dx̄i =
∂x̄i

∂xj
dxj , (17.49)

which is precisely the way a contravariant vector transforms. In fact, this
is the archetypal example of a contravariant vector, and can be a guide in
helping the reader remember the rule of transformation of the contravariant
components of a tensor.

The differential of a scalar—a tensor of type (0, 0)—is again a scalar,
because

dφ =
∂φ

∂xi
dxi,

and the first term is the components of a covariant vector [see Equation
(17.15)], and the second term the components of a covariant vector (as shown
above).

Next take the differential of a contravariant vector Ai. How does it trans-
form? By taking the differential of the transformation rule

Āi =
∂x̄i

∂xj
Aj , (17.50)

one obtains

dĀi =
∂x̄i

∂xj
dAj + d

(
∂x̄i

∂xj

)

Aj =
∂x̄i

∂xj
dAj +

∂2x̄i

∂xk∂xj
dxkAj . (17.51)

If the second term on the right were absent, dAj would transform as a con-
travariant vector. It turns out that one can add something to dAj whose effect
is to cancel the unwanted term.

Consider quantities Γj
mp, which transform according tocomponents of

affine connection

Γ
j

mp =
∂x̄j

∂xl

∂xh

∂x̄m

∂xk

∂x̄p
Γl

hk − ∂2x̄j

∂xh∂xk

∂xh

∂x̄m

∂xk

∂x̄p
. (17.52)
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Any set of three-indexed symbols Γj
mp which transform according to this equa-

tion is said to constitute the components of an affine connection. An affine
connection is not a tensor because of the second term on the right-hand side
of (17.52). Since this term is the same for all affine connections, the difference
between two affine connections is a tensor of type (1, 2). If Γj

mp and Λj
mp are

any two affine connections then

Γ
j

mp − Λ
j

mp =
∂x̄j

∂xl

∂xh

∂x̄m

∂xk

∂x̄p

(
Γl

hk − Λl
hk

)
, (17.53)

showing that Γl
hk − Λl

hk transform as components of a tensor of type (1, 2).
In particular, if Λl

hk = Γl
kh, then the difference Γl

hk − Γl
kh is essentially the

antisymmetric part of the affine connection Γ:

Γl
hk = 1

2

(
Γl

hk + Γl
kh

)

︸ ︷︷ ︸
symmetric part

+ 1
2

(
Γl

hk − Γl
kh

)

︸ ︷︷ ︸
antisymmetric part

.

The antisymmetric part of an affine connection is called its torsion ten- torsion tensor

sor. Clearly if it vanishes in one coordinate system then it vanishes in all
coordinates (the zero tensor is zero in all coordinate systems). Thus, the
torsion tensor of an affine connection is zero, if an only if the connection is
symmetric.

Lack of tensorial character of the affine connection is precisely what is
needed to make dAj , as well as dAj a tensor:

Box 17.4.1. For any affine connection Γj
kl, the quantities DAj and DAj

defined by

DAj = dAj + Γj
klA

kdxl and DAj = dAj − Γk
jlAkdxl

are, respectively, the components of a contravariant and a covariant vec-
tor. They are called the covariant or absolute differential of the vectors.

We show that DAj is a contravariant vector, leaving the proof of the second
claim to the reader. In the bar coordinates, we have

DĀj = dĀj + Γ
j

klĀ
kdx̄l.
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Using Equations (17.49), (17.50), (17.51), and (17.52), we obtain

DĀj =
∂x̄j

∂xk
dAk +

∂2x̄j

∂xk∂xl
dxkAl

+
(

∂x̄j

∂xp

∂xq

∂x̄k

∂xr

∂x̄l
Γp

qr −
∂2x̄j

∂xq∂xr

∂xq

∂x̄k

∂xr

∂x̄l

)(
∂x̄k

∂xm
Am ∂x̄l

∂xs
dxs

)

=
∂x̄j

∂xk
dAk +

∂2x̄j

∂xk∂xl
dxkAl

+
∂x̄j

∂xp

∂xq

∂x̄k

∂x̄k

∂xm
︸ ︷︷ ︸

=δq
m

∂xr

∂x̄l

∂x̄l

∂xs
︸ ︷︷ ︸

=δr
s

Γp
qrA

mdxs − ∂2x̄j

∂xq∂xr

∂xq

∂x̄k

∂x̄k

∂xm
︸ ︷︷ ︸

=δq
m

∂xr

∂x̄l

∂x̄l

∂xs
︸ ︷︷ ︸

=δr
s

Amdxs

=
∂x̄j

∂xk
dAk +

∂2x̄j

∂xk∂xl
dxkAl +

∂x̄j

∂xp
Γp

qrA
qdxr − ∂2x̄j

∂xq∂xr
Aqdxr.

The second term cancels the last term (remember that you can use any symbol
for the dummy indices that are summed over). Therefore,

DĀj =
∂x̄j

∂xk
dAk +

∂x̄j

∂xp
Γp

qrA
qdxr =

∂x̄j

∂xk
dAk +

∂x̄j

∂xk
Γk

qrA
qdxr

=
∂x̄j

∂xk

(
dAk + Γk

qrA
qdxr

)
=

∂x̄j

∂xk
DAk,

which is the transformation rule of a contravariant vector.
Absolute differential can be defined for any tensor. For a scalar φ, Dφ =

dφ. In the case of other tensors, for each contravariant index an affine con-
nection term with a positive sign, and for each covariant index an affine con-
nection term with a negative sign is introduced. For example, the covariant
differential of T ij

k is a tensor of type (2, 1) given by

DT ij
k = dT ij

k +
(
Γi

pqT
pj
k + Γj

pqT
ip
k − Γp

kqT
ij
p

)
dxq.

Covariant differential has all the properties of ordinary differential when ap-
plied to tensors. For example, the covariant differential of the sum of two
tensors of type (r, s) is a tensor of type (r, s), and D(αT) = αDT for any
constant α and any tensor T. Covariant differential also obeys the Leibniz
rule:

D(T ⊗ S) = DT ⊗ S + T ⊗ DS. (17.54)

17.4.2 Covariant Derivative

In the first equation of Box 17.4.1, write dAj in terms of partial derivatives.
Then, the equation becomes

DAj =
∂Aj

∂xl
dxl + Γj

klA
kdxl =

(
∂Aj

∂xl
+ Γj

klA
k.

)

dxl
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Since the left-hand side and dxl are contravariant vectors, we suspect that the
expression in parentheses is a tensor of type (1, 1). This can in fact be shown
directly. It is called the covariant derivative of Aj with respect to xl and
denoted by Aj

;l. Thus, covariant
derivative

Aj
;l ≡

∂Aj

∂xl
+ Γj

klA
k. (17.55)

This is the generalization of ordinary derivative to situations in which the
affine connection is nonzero. Covariant derivative can similarly be defined
for covariant vectors as well as arbitrary tensors. For example, the covariant
derivative of T ij

k is a tensor of type (2, 2) given by

T ij
k;q =

∂T ij
k

∂xq
+ Γi

pqT
pj
k + Γj

pqT
ip
k − Γp

kqT
ij
p .

Consider a curve in Euclidean space parametrized by t. Let Ai(t) be the parallel translation
along a curvevalue of a vector field at a point on the curve. If dAi/dt = 0, then the vector is

constant along the curve, and we say that the vector is parallel translated
along the curve. When the affine connection is nonzero, we divide both
sides of the first equation in Box 17.4.1 by dt (which on the left we denote by
Dt for aesthetic reasons), and say that a contravariant vector field is parallel
translated along a curve if

DAj

Dt
= 0 or

dAj

dt
+ Γj

klA
k dxl

dt
= 0, (17.56)

with a similar definition for a covariant vector field. Since Aj depends on t only
through the coordinates, we use the chain rule dAj/dt = (∂Aj/∂xl)dxl/dt to
rewrite the equation above as

DAj

Dt
=

(
∂Aj

∂xl
+ Γi

kjA
k

)
dxl

dt
≡ Aj

;l

dxl

dt
≡ Aj

;lẋ
l = 0. (17.57)

A curve whose tangent vector is parallel translated along that curve is geodesic and
geodesic equationcalled a geodesic. The components of the vector tangent to a curve is

dxi/dt ≡ ẋi. If we substitute this in (17.56) we obtain the following sec-
ond order differential equation called the geodesic equation:

Dẋj

Dt
= 0, or

d2xj

dt2
+ Γj

kl

dxk

dt

dxl

dt
= 0, or ẍj + Γj

klẋ
kẋl = 0, (17.58)

where each super dot represents a differentiation with respect to t. Solving
this differential equation yields the parametric equation of a geodesic.

17.4.3 Metric Connection

The affine connection, which is defined by its transformation property of
(17.52) is completely arbitrary. One can define covariant differentials and
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covariant derivatives in terms of any set of quantities that transform accord-
ing to Equation (17.52). With a metric tensor, however, one can define a
unique symmetric (therefore, torsion-free) affine connection called metric
connection given by

Γj
kl = Γj

lk =
1
2
gjm

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)

≡ gjmΓmkl, (17.59)

where

Γmkl =
1
2

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)

, (17.60)

with all lower indices, is easier to remember. Note that it is the first index
of Γmkl that is raised to give the components of the metric connection, and
for this reason the metric connection is sometimes denoted by Γj

kl. The
verification that (17.59) is indeed an affine connection—i.e., that it transforms
according to (17.52)—is straightforward but tedious.

Example 17.4.1. If all components of a metric tensor are constant in some coor-
dinate system, then all the components of the metric connection vanish. Note that
this is true only in that particular coordinate system. Changing coordinates changes
the affine connection, and in general, the components of a metric connection will
not be zero even if they are zero in some coordinate system. If we use Cartesian
coordinates, then the Euclidean metric is just the Kronecker delta. Therefore, all
components of the metric connection are zero. Similarly, the metric of special rel-
ativity in Cartesian coordinates in ηαβ , whose components are either 0 or 1 or −1.
Hence, all components of the metric connection of special relativity in Cartesian
coordinates vanish. �

The metric connection has some special properties which are of physical
importance. The first property which could be easily verified is that

gij;k = 0 or
∂gij

∂xk
− Γp

jkgip − Γp
ikgpj = 0. (17.61)

The second property is that between any two points passes a single geodesic
of the metric connection, and this geodesic extremizes the distance between
the two points. If the geometry is Riemannian (i.e., if the metric is positive
definite) then the geodesic gives the shortest distance. In relativity, where the
metric is not Riemannian, the geodesics give the longest distance.

Example 17.4.2. In this example, we find the geodesics of a sphere. The spherical
angular coordinates θ and ϕ can be used on the surface of a sphere of radius a. From
the element of length ds2 = a2dθ2 + a2 sin2 θdϕ2 on this sphere, and using θ and ϕ
to label components, we deduce that

g11 ≡ gθθ = a2, g22 ≡ gϕϕ = a2 sin2 θ, g12 ≡ gθϕ = g21 ≡ gϕθ = 0,

and similarly,

g11 ≡ gθθ =
1

a2
, g22 ≡ gϕϕ =

1

a2 sin2 θ
, g12 ≡ gθϕ = g21 ≡ gϕθ = 0.
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Substituting these in (17.59), we can calculate the components of the affine connec-
tion. The nonzero components turn out to be

Γθ
ϕϕ = − sin θ cos θ, Γϕ

θϕ = Γϕ
ϕθ = cot θ.

Using these in the geodesic equation (17.58), we obtain the following two differential
equations:

d2θ

dt2
− sin θ cos θ

(
dϕ

dt

)2

= 0,

d2ϕ

dt2
+ 2 cot θ

dϕ

dt

dθ

dt
= 0. (17.62)

The second equation can be solved to give

dϕ

dt
=

C

sin2 θ
⇒ dϕ =

C

sin2 θ
dt, (17.63)

where C is a constant of integration. Substituting this in the first equation of (17.62)
gives

d2θ

dt2
− C2 cos θ

sin3 θ
= 0. (17.64)

To find the geodesic, it is more convenient to express θ as a function of ϕ. This
means changing the independent variable in Equation (17.64) from t to ϕ. This is
done formally by using the second equation of (17.63) to substitute for dt in (17.62).
Thus, the first tem of (17.62) can be written as

d

dt

(
dθ

dt

)

=
Cd

sin2 θdϕ

(
Cdθ

sin2 θdϕ

)

=
C2

sin2 θ

d

dϕ

(
1

sin2 θ

dθ

dϕ

)

.

Substituting this in (17.64) yields

d

dϕ

(
1

sin2 θ

dθ

dϕ

)

− cot θ = 0.

Differentiating the first term, we get

−2
cos θ

sin3 θ

(
dθ

dϕ

)2

+
1

sin2 θ

d2θ

dϕ2
− cot θ = 0,

which can be simplified to the following differential equation:

sin θ
d2θ

dϕ2
− 2 cos θ

(
dθ

dϕ

)2

− sin2 θ cos θ = 0. (17.65)

If we could solve this equation, we would find θ as a function of ϕ, and this
should be the equation of a geodesic on a sphere. Instead, let us use our knowledge
of the geodesics (curves giving the shortest distance) on a sphere, write it with θ as
a function of ϕ and see if it satisfies (17.65). Our sphere is parametrized as

x = a sin θ cos ϕ, y = a sin θ sin ϕ, z = a cos θ.

The great circles—curves of shortest distance—are the intersection of a plane passing
through the origin and the sphere. Such a plane has an equation of the form Ax +
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By + Cz = 0. The intersection with the sphere is obtained by substituting for x, y,
and z from the above equations:

Aa sin θ cos ϕ + Ba sin θ sin ϕ + Ca cos θ = 0.

Dividing by Ca sin θ and redefining A to be −A/C and B to be −B/C, we get

cot θ = A cos ϕ + B sin ϕ,

as the equation of geodesic on a sphere. It is straightforward to show that this
equation indeed satisfies (17.65). �

17.5 Riemann Curvature Tensor

Consider a closed loop, such as a rectangle, on a flat surface. Start a vector
at one point of the rectangle (the lower left corner) and carry it parallel to
itself to the point diagonally opposite the initial point [Figure 17.1(a)]. In one
case carry the vector to the right and then up. In the second case carry the
vector up and then to the right. Compare the vector at the end of the two
cases. They are equal. Do the same on a curved space such as the surface of a
sphere. The two vectors at the end do not coincide [see Figure 17.1(b)]! The
degree to which they are different is a measure of the curvature of the space.

Let us quantify the notion of the curvature. Suppose that the lower and
upper curves of the “rectangle” are parametrized by t and the right and the
left curves by s. Moving along a curve parametrized by t does not change s,
and vice versa. Using a Taylor expansion, in which derivatives are replaced
by covariant derivatives, parallel translate a contravariant vector Aj first to
the right and then upward [see Figure 17.1(b) for clarification]. Assume that
the lower left corner has (t, s) as the parameter values. As you move along
the lower curve, the parameters change from (t, s) to (t + Δt, s). So, to first
order in Δt, we have

Aj(t + Δt, s) = Aj(t, s) +
DAj

Dt
Δt = Aj(t, s) + Aj

;l(t, s)
dxl

dt
Δt.

(a) (b)

Figure 17.1: (a) In a flat space, the direction of the vector does not change when

carried along two different paths. (b) In a curved space, the two vectors are different.



17.5 Riemann Curvature Tensor 469

Now parallel translate this vector upward, the direction in which t is constant
but s changes:

Aj(t + Δt, s + Δs) = Aj(t + Δt, s) +
D

Ds
(Aj(t + Δt, s))Δs

= Aj(t, s) +
DAj

Dt
Δt +

D

Ds

(

Aj(t, s) + Aj
;l(t, s)

dxl

dt
Δt

)

Δs

= Aj(t, s) +
DAj

Dt
Δt +

DAj

Ds
Δs +

D

Ds

(

Aj
;l(t, s)

dxl

dt
Δt

)

Δs

= Aj(t, s) +
DAj

Dt
Δt +

DAj

Ds
Δs + Aj

;l;m(t, s)
dxm

ds

dxl

dt
ΔtΔs.

Since Aj is assumed to be parallel translated on both curves, DAj/Dt = 0 =
DAj/Ds, and

Aj(t + Δt, s + Δs)1 = Aj(t, s) + Aj
;l;m(t, s)ΔxlΔxm,

where we used Δxl ≈ (dxl/dt)Δt and Δxm ≈ (dxm/ds)Δs. The subscript 1
on the left hand side stands for the “first route.” The “second route” is going
up first and then to the right. It should be clear that the only difference in
the final result is the interchange of l and m. We therefore have

Aj(t + Δt, s + Δs)2 = Aj(t, s) + Aj
;m;l(t, s)ΔxlΔxm.

Thus, using Aj
;lm for the second covariant derivative, we have

Aj(t+Δt, s+Δs)1−Aj(t+Δt, s+Δs)2 =
(
Aj

;lm − Aj
;ml

)
ΔxlΔxm. (17.66)

The difference in parentheses should be related to the curvature of the space
(manifold) under consideration.

Finding this difference is straightforward. Using the rule of covariant dif-
ferentiation for general tensors, we get

Aj
;lm =

∂Aj
;l

∂xm
+ Γj

kmAk
;l − Γp

lmAj
;p

=
∂

∂xm

(
∂Aj

∂xl
+ Γj

klA
k

)

+ Γj
km

(
∂Ak

∂xl
+ Γk

rlA
r

)

− Γp
lmAj

;p

=
∂2Aj

∂xm∂xl
+

∂Γj
kl

∂xm
Ak + Γj

kl

∂Ak

∂xm
+ Γj

km

∂Ak

∂xl
+ Γj

kmΓk
rlA

r − Γp
lmAj

;p.

In the last line switch l and m to get Aj
;ml:

Aj
;ml =

∂2Aj

∂xl∂xm
+

∂Γj
km

∂xl
Ak + Γj

km

∂Ak

∂xl
+ Γj

kl

∂Ak

∂xm
+ Γj

klΓ
k
rmAr − Γp

mlA
j
;p.

Subtracting, and changing the dummy indices when necessary, we obtain

Aj
;lm − Aj

;ml =

(
∂Γj

kl

∂xm
− ∂Γj

km

∂xl
+ Γj

rmΓr
kl − Γj

rlΓ
r
km

)

Ak − (Γp
lm − Γp

ml)Aj
;p.

(17.67)
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It is straightforward but tedious to show that the expression in the first
pair of parentheses transforms as a component of a tensor of type (1, 3). This
tensor is denoted by Rj

klm and is called Riemann curvature tensor:Riemann
curvature tensor

Rj
klm =

∂Γj
kl

∂xm
− ∂Γj

km

∂xl
+ Γj

rmΓr
kl − Γj

rlΓ
r
km. (17.68)

The expression in the second pair of parentheses in (17.67) is the torsion tensor
introduced earlier [see Equation (17.53) and the discussion after it].

Example 17.5.1. Example 17.4.1 showed that the metric connection of Euclidean
space and special relativistic spacetime in Cartesian coordinates are both zero.
Equation (17.68) shows that for these spaces, the Riemannian curvature tensor
expressed in Cartesian coordinates is zero. Since Riemannian curvature tensor is aflat spaces (or

manifolds) tensor, it must be zero in all coordinates, as expressed in Box 17.2.2. Spaces that
have zero Riemannian curvature tensor are called flat. We thus see that flatness
is an intrinsic property of a space, independent of any coordinates used in that
space. �

The curvature tensor has some important properties which we state with-
out proof. One property that is evident from (17.68) is

.Rj
klm = −Rj

kml (17.69)

The second property, which is true only if the torsion tensor vanishes, i.e.,
when the affine connection is symmetric, is

Rj
klm + Rj

lmk + Rj
mkl = 0. (17.70)

The third property, which involves the covariant derivative of the curvatureBianchi identity

tensor and is true only for torsion-free connections, is

Rj
klm;i + Rj

kmi;l + Rj
kil;m = 0. (17.71)

This is also called the Bianchi identity. The last property, which holds for
Riemannian tensor of the metric connection, is that Rj

klm has n2(n2 − 1)/12
components.

Various other tensors can be obtained from the Riemann curvature tensor
by contraction. For example, by contracting the contravariant index with the
last covariant index one obtains the so-called Ricci tensor:Ricci tensor and

scalar curvature

Rkl = Rj
klj = Rj

klj =
∂Γj

kl

∂xj
−

∂Γj
kj

∂xl
+ Γj

rjΓ
r
kl − Γj

rlΓ
r
kj , (17.72)

and by raising one of the Ricci tensor’s indices and contracting, we obtain the
scalar curvature:

R = Rl
l = gklRkl. (17.73)

Einstein’s general theory of relativity explains gravity as a manifestation
of the curvature of spacetime. Since gravity is caused by mass, and since
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mass and energy are equivalent, the source of curvature is energy. Pursuing Einstein curvature
tensor and
Einstein equation

this idea, Einstein came up with an equation, the Einstein equation, that
describes all (large scale) gravitational interactions. Defining the Einstein
curvature tensor as

Gij ≡ Rij − 1
2gijR, (17.74)

the Einstein equation is written as

Gij = 8πGTij , (17.75)

where G is the universal gravitational constant and Tij is the energy momen-
tum tensor.

Example 17.5.2. For the sphere of Example 17.4.2, the Ricci curvature tensor
can be written as

Rkl =
∂Γθ

kl

∂θ
−

∂Γϕ
kϕ

∂xl
+ Γϕ

θϕΓθ
kl − Γθ

ϕlΓ
ϕ
kθ − Γϕ

θlΓ
θ
kϕ − Γϕ

ϕlΓ
ϕ
kϕ

Using this, it is easy to show that Rθϕ = 0 = Rϕθ , while

Rθθ = 1, Rϕϕ = sin2 θ

Furthermore, since gθθ = 1/a2 and gϕϕ = 1/(a2 sin2 θ), the scalar curvature becomes

R = gijRij = gθθRθθ + gϕϕRϕϕ =
2

a2

showing that a sphere is a space of constant (and positive) curvature, as we
expect. �

17.6 Problems

17.1. Write ∂ixj in a form that includes the Kronecker delta. Now show that
∇ · r = 3.

17.2. Recall that a homogeneous function f of n variable of degree q satisfies

qf(x1, x2, . . . , xn) =
n∑

i=1

xi∂if.

(a) Differentiate both sides with respect to xj and show that

(q − 1)∂jf(x1, x2, . . . , xn) =
n∑

i=1

xi∂i∂jf.

(b) Multiply this equation by xj and sum over j to obtain

q(q − 1)f(x1, x2, . . . , xn) =
n∑

i,j=1

xixj∂i∂jf.
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17.3. Verify Equation (17.23).

17.4. Let the scalar function φ be given by φ(x, y, z) = x2 + y3 + z and

x = sin x̄ + cos ȳ + z̄, y = x̄ȳ + z̄, z = x̄2.

What is the functional form of φ̄?

17.5. Show that the sum of two tensors of type (r, s) is a tensor of the same
type.

17.6. Derive Equation (17.29). Show that δ12···n
12···n = 1.

17.7. Show that the inverse of a metric tensor given by

gkm(x) ≡
n∑

p=1

∂xk

∂x′p
∂xm

∂x′p

is a tensor of type (2, 0). Here {x′i} are as defined in the beginning of Section
17.3.

17.8. Following Example 17.3.1, find the metric tensor for cylindrical coordi-
nates.

17.9. Show that the dot products of Equations (17.36) and (17.37) do not
change in a general coordinate transformation.

17.10. Verify Equation (17.40) component by component.

17.11. Using indices, show that the divergence of a curl and the curl of a
gradient are both zero.

17.12. Using indices, prove the following “derivative” identities:

∇ · (fA) = (∇f) · A + f∇ ·A,

∇ × (fA) = (∇f) × A + f∇ × A,

∇(fg) = g∇f + f∇g.

17.13. Using indices, prove the Green’s identity:

∇ · (g∇f − f∇g) = g∇2f − f∇2g.

17.14. Prove the following vector identities using index notation for vectors:

∇ · (A × B) = B · ∇ × A− A · ∇ × B,

∇ × (∇ × A) = ∇(∇ ·A) −∇2A.

17.15. Show that the difference between any two affine connections is a tensor
of type (1, 2).
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17.16. Verify that Equation (17.46) combines the second and third Maxwell’s
equations.

17.17. Verify that Fαβ = ∂βAα − ∂αAβ satisfies Equation (17.46).

17.18. Differentiate both sides of Equation (17.45) with respect to xβ and
raise the index β to be able to sum over it; use the symmetry of second
derivative and the antisymmetry of Fαβ to show that the left-hand side is
zero. On the right-hand side, you should have something like μ0η

βσ∂σJβ.
Show that ηβσ∂σJβ = 0 expresses charge conservation or continuity equation
of Box 13.2.4.

17.19. With c = 1 and μ0 = 1/ε0, show that ηαν∂νAα = 0 is the Lorentz
gauge condition [Equation (15.32)]

∂Φ
∂t

+ ∇ · A = 0,

and that ηαν∂ν∂αAβ = μ0Jβ combines the two wave equations [Equations
(15.33) and (15.34)]

∂2A
∂t2

−∇2A = μ0J,

∂2Φ
∂t2

−∇2Φ = μ0ρ.

17.20. Show that DAj of Box 17.4.1 is a covariant vector.

17.21. Show that
∂Aj

∂xl
+ Γj

klA
k

is a tensor of type (1, 1).

17.22. Show that Γj
lk given in Equation (17.59) is an affine connection, i.e.,

that it transforms according to Equation (17.52).

17.23. Show that the metric connection satisfies Equation (17.61).

17.24. (a) Find all the components of the affine metric connection on the
surface of the sphere of Example 17.4.2.
(b) Derive Equation (17.62) from Equation (17.58).
(c) Show that (17.63) satisfies the second equation of (17.62).
(d) Show that cot θ = A cosϕ + B sinϕ is a solution of (17.65).

17.25. Show that the Riemann curvature tensor of Equation (17.68) is a
tensor of type (1, 3).

17.26. Example 17.5.1 showed that the Riemannian curvature tensor of the
Euclidean space, when expressed in Cartesian coordinates is zero. Since Rie-
mannian curvature tensor is a tensor it should be zero when expressed in
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any coordinate system. Starting with the spherical components of the Eu-
clidean metric obtained in Example 17.3.1, find the components of the metric
connection in spherical coordinates. From these calculate the components of
Riemannian curvature tensor and show that they all vanish.

17.27. Derive the expression for the Ricci curvature tensor of Example 17.5.2
and show that

Rθϕ = 0 = Rϕθ, Rθθ = 1, Rϕϕ = sin2 θ.
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Complex Analysis





Chapter 18

Complex Arithmetic

Complex numbers were developed because there was a need to expand the
notion of numbers to include solutions of algebraic equations whose proto-
type is x2 + 1 = 0. Such developments are not atypical in the history of
mathematics. The invention of irrational numbers occurred because of a need
for a number that could solve an equation of the form x2 − 2 = 0. Similarly,
rational numbers were the offspring of the operations of multiplication and
division and the quest for a number that gives, for example, 4 when multiplied
by 3, or, equivalently, a number that solves the equation 3x − 4 = 0.

There is a crucial difference between complex numbers and all the num-
bers mentioned above: All rational, irrational, and, in general, real numbers
correspond to measurable physical quantities. However, there is no single
measurable physical quantity that can be described by a complex number.

A natural question then is this: What need is there for complex numbers
if no physical quantity can be measured in terms of them? The answer is that
although no single physical quantity can be expressed in terms of complex
numbers, a pair of physical quantities can be neatly described by a single
complex number. For example, a wave with a given amplitude and phase can
be concisely described by a complex number. Another, more fundamental,
reason is that equations that describe the behavior of subatomic particles are
inherently complex.

18.1 Cartesian Form of Complex Numbers

We demand a number system broad enough to include solutions to the
equation

x2 + 1 = 0 or x2 = −1.

Clearly the solution(s) cannot be real because a real number raised to the
second power gives a positive real number, and we want x2 to be negative.
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So we broaden the concept of numbers by considering complex numbers.
Such numbers are of the formCartesian form of

a complex number
z = x + iy with i ≡

√
−1 and i2 = −1. (18.1)

It turns out that we don’t need to introduce any other numbers to solve all
algebraic equations—equations of the form p(x) = 0 with p(x) a polynomial.
In fact, the fundamental theorem of algebra, to which we shall return,
states that all roots of any algebraic equation

anxn + an1−xn−1 + · · · + a1x + a0 = 0

with arbitrary real or complex coefficients a0, a1, . . . , an, are in the complex
number system. In this sense, then, the complex number system is the most
complete system.

A complex number can be conveniently represented as a point (or equiv-
alently, as a vector) in the xy-plane, called the complex plane, as showncomplex plane,

real and imaginary
parts

in Figure 18.1. In Equation (18.1), x is called the real part of z, written
Re(z), and y is called the imaginary part of z, written Im(z). Similarly, the
horizontal axis in Figure 18.1 is named the real axis, and the vertical axis is
named the imaginary axis. The set of all complex numbers—or the set of
points in the complex plane—is denoted by C.

We can define various operations on C that are extensions of similar oper-
ations on the real number system, R. The only proviso is that i2 = −1, and
that the final form of an equation must be written as Equation (18.1)—with
real and imaginary parts. For instance, the sum of two complex numbers,
z1 = x1 + iy1 and z2 = x2 + iy2, is

z1 + z2 = (x1 + x2) + i(y1 + y2).

This sum can be represented in the complex plane as the vector sum of z1 and
z2, as shown in Figure 18.2. The product of z1 and z2 can also be obtained:

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 + x1(iy2) + iy1x2 + iy1(iy2)
= x1x2 + i(x1y2 + y1x2) − y1y2 = x1x2 − y1y2 + i(x1y2 + y1x2).

Thus,

Re(z1z2) = x1x2 − y1y2,

Im(z1z2) = x1y2 + x2y1. (18.2)

Im

Re
x

y

z

Figure 18.1: Complex numbers as points or vectors in a plane.
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Re

Im

z1

z2

z1 + z2

Figure 18.2: Addition of complex numbers as addition of vectors.

To obtain this equation, we have implicitly used the fact that two complex
numbers are equal if and only if their real parts are equal and their imaginary
parts are equal.

The factor i in z allows new operations for complex numbers that do not
exist for real numbers. One such operation is complex conjugation. The complex

conjugationcomplex conjugate, z∗ or z̄, of z is defined as

z∗ ≡ z̄ = (x + iy)∗ = x − iy (18.3)

which is obtained from z by replacing i with −i. We note immediately that

zz∗ = (x + iy)(x − iy) = x2 + y2 = z∗z

which is a positive real number. The positive square root of zz∗ is called the
absolute value of z and denoted by |z|. It is simply the length of the vector absolute value

representing z in the xy-plane. Thus, we have

|z| =
√

zz∗ =
√

z∗z =
√

x2 + y2 =
√

(Re(z))2 + (Im(z))2. (18.4)

We can also define the division of two complex numbers using complex
conjugation.

Box 18.1.1. To find the real and imaginary parts of a quotient, multiply
the numerator and denominator by the complex conjugate of the denomi-
nator.

So, for the ratio of z1/z2, we get

z1

z2
=

z1z
∗
2

z2z∗2
=

(x1 + iy1)(x2 − iy2)
|z2|2

=
x1x2 + y1y2 + i(y1x2 − x1y2)

|z2|2

=
x1x2 + y1y2

|z2|2
+ i

y1x2 − x1y2

|z2|2
.

Thus,

Re
(

z1

z2

)

=
x1x2 + y1y2

x2
2 + y2

2

and Im
(

z1

z2

)

=
y1x2 − x1y2

x2
2 + y2

2

. (18.5)
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In particular,
1
z

=
z∗

|z|2 =
x − iy

x2 + y2
and

1
i

= −i.

Some useful properties of absolute values are as follows:properties of
absolute value of
complex numbers |z1z2| = |z1| |z2|,

∣
∣
∣
∣
z1

z2

∣
∣
∣
∣ =

|z1|
|z2|

,

∣
∣
∣ |z1| − |z2|

∣
∣
∣ ≤ |z1 + z2| ≤ |z1| + |z2|. (18.6)

This last inequality is called the triangle inequality and it comes directly
from the vector property of complex numbers. The right half of it can be
generalized to more than two complex numbers:

∣
∣
∣
∣
∣

n∑

k=1

zk

∣
∣
∣
∣
∣
≤

n∑

k=1

|zk| . (18.7)

Example 18.1.1. Here we present some sample manipulations with complex num-
bers:

(1 + i)2 = (1)2 + (i)2 + 2i = 1 − 1 + 2i = 2i,

1

1 − i
− 1

1 + i
=

1 + i − (1 − i)

(1 − i)(1 + i)
=

2i

|1 + i|2 =
2i

2
= i,

(1 + i)−4 =
1

(1 + i)2(1 + i)2
=

1

(2i)(2i)
=

1

−4
= −1

4
,

2 + i

3 − i
=

(2 + i)(3 + i)

|3 − i|2 =
5 + i5

32 + (−1)2
=

1

2
+ i

1

2
,

∣
∣
∣
∣
2i − 1

i − 2

∣
∣
∣
∣ =

| − 1 + i2|
| − 2 + i| =

√
(−1)2 + 22

√
(−2)2 + 12

= 1.

The equation |z − a| = b, where a is a fixed complex number and b is real and
positive, describes a circle of radius b with center at a ≡ ax + iay. This is easily
seen because

b2 = |z − a|2 = |(x + iy) − (ax + iay)|2

= |(x − ax) + i(y − ay)|2 = (x − ax)2 + (y − ay)2.

We note that |z − a| is the distance between the two complex numbers z and a.
Therefore, |z − a| = b—with a a constant and z a variable—is the collection of all
points z that are at a distance b from a. �

Complex conjugation satisfies some nice properties that we list below:properties of
complex
conjugation of
complex numbers

(z1 + z2)∗ = z∗1 + z∗2 , (z1z2)∗ = z∗1z∗2 ,

(
z1

z2

)∗
=

z∗1
z∗2

,

Re(z) = 1
2 (z + z∗), Im(z) =

1
2i

(z − z∗), (18.8)

(z∗)∗ = z, (zn)∗ = (z∗)n.
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The complex conjugate of a function of z is easily obtained by substituting to find the
complex conjugate
of a function,
change all its i’s
to −i.

z∗ for z in that function.1 This can be summarized as

(f(z))∗ = f(z∗) (18.9)

which is equivalent to replacing every i with −i in the expression for f(z).

Historical Notes
In the first half of the sixteenth century there was hardly any change from the

attitude or spirit of Arabs, whose work had put practical arithmetical calculations
in the forefront of mathematics, but merely an increase in the kind of activity
Europeans had learned from Arabs. Moreover, the technological advances spurred by
the Renaissance demanded further refinement in magnitudes such as trigonometric
tables and astronomical observations.

By 1500 or so, zero was accepted as a number and irrational numbers were used
more freely in calculations. However, the problem of whether irrationals were really
numbers still troubled people. Michael Stifel (1486?–1567), the German mathemati-
cian, argued that

Since, in proving geometrical figures, when rational numbers fail us irrational

numbers . . . prove exactly those things which rational numbers could not prove

. . . we are compelled to assert that they truly are numbers . . . . On the other

hand, . . . that cannot be called a true number which is of such a nature that

it lacks precision [decimal representation].

He then argues that only whole numbers or fractions can be called true numbers, and
since irrationals are neither, they are not real numbers. Even a century later, Pascal,
Barrow, and Newton thought of irrational numbers as being understood in terms of
geometric magnitude; they were mere symbols that had no existence independent
of continuous geometrical magnitude.

Negative numbers were treated with equal suspicion by the sixteenth- and
seventeenth-century mathematicians. They were considered “absurd.” Jerome
Cardan (1501–1576), the great Italian mathematician of the Renaissance, was will-
ing to accept the negative numbers as roots of equations, but considered them as
“fictitious,” while he called the positive roots real. François Vieta (1540–1603), a
lawyer by profession but recognized far more as the foremost mathematician of the
sixteenth century, discarded negative numbers entirely. Descartes accepted them in
part, but called negative roots of equations false, on the grounds that they repre-
sented numbers less than nothing.

An interesting argument against negative numbers was given by Antoine Arnauld
(1612–1694), a theologian and mathematician who was a close friend of Pascal.
Arnauld questioned the equality −1 : 1 = 1 : (−1) because, he said, −1 is less than
+1; hence, How could a smaller number be to a greater as a greater is to a smaller?

Without having fully overcome their difficulties with irrational and negative
numbers, the Europeans were hit by another problem: the complex numbers! They
obtained these new numbers by extending the arithmetic operation of square root

1This statement is not strictly true for all functions. However, only a mild restriction
is to be imposed on them for the statement to be true. We shall not go into details of
such restrictions because they require certain complex analytic tools which go beyond the
scope of this book. See Hassani, S. Mathematical Physics: A Modern Introduction to Its
Foundations, Springer-Verlag, 1999, Chapter 11 for details.
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to whatever numbers appeared in solving quadratic equations. Thus Cardan sets
up and solves the problem of dividing 10 into two parts whose product is 40. The
equation is x(10−x) = 40, for which he obtains the roots 5±

√
−15 and then he says

“Putting aside the mental torture involved,” multiply these two roots and note that
the product is 25 − (−15) or 40. He then states, “So progresses arithmetic subtlety
the end of which, as is said, is as refined as it is useless.”

Descartes also rejected complex roots and coined them “imaginary.” Even New-
ton did not regard complex roots as significant, most likely because in his day they
lacked physical meaning. The confusion surrounding complex numbers is illustrated
by the oft-quoted statement by Leibniz, “The Divine Spirit found a sublime outlet
in that wonder of analysis, that portent of the ideal world, that amphibian between
being and not being, which we call the imaginary root of negative unity.”

18.2 Polar Form of Complex Numbers

The introduction of polar coordinates in the complex plane makes available
a powerful tool with which to facilitate complex manipulations. Figure 18.3
shows a complex number and its polar coordinates. In terms of these polar
coordinates, z can be written aspolar

representation of a
complex number z = x + iy = r cos θ + ir sin θ = r(cos θ + i sin θ). (18.10)

Assuming that series of complex numbers can be manipulated as those of real
numbers,2 we obtain the useful relation between imaginary exponentials and
trigonometric functions.

In Chapter 10 we presented the Maclaurin series for the exponential and
trigonometric functions. Let us assume that those functions are valid for
complex numbers as well. Then, we havea very important

relation

eiθ =
∞∑

n=0

(iθ)n

n!
=

∞∑

n=even

(iθ)n

n!
+

∞∑

n=odd

(iθ)n

n!
=

∞∑

k=0

(iθ)2k

(2k)!
+

∞∑

k=0

(iθ)2k+1

(2k + 1)!

=
∞∑

k=0

(−1)k θ2k

(2k)!
+ i

∞∑

k=0

(−1)k θ2k+1

(2k + 1)!
= cos θ + i sin θ (18.11)

Im

Re

z

r 
si

n 
θ

r cos θ
θ

r = |z |

Figure 18.3: Complex numbers in polar coordinates.

2This assumption turns out to be correct. In particular, the power series expansion used
in the following example plays a central role in complex analysis.
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because i2k = (i2)k = (−1)k. This is probably the most important relation in
complex number theory.

Box 18.2.1. The trigonometric and imaginary exponential functions are
related by the Euler equation: eiθ = cos θ + i sin θ.

The use of Equation (18.11) in (18.10) leads to another way of representing
complex numbers:

z = reiθ , r =
√

x2 + y2, θ = tan−1
(y

x

)
. (18.12)

Note that

Box 18.2.2. The angle θ is not uniquely determined: Any multiple of 2π
can be added to it without affecting z.

We can use Equation (18.12) together with x = r cos θ, y = r sin θ to con-
vert from Cartesian coordinates to polar coordinates, and vice versa. The
coordinate θ is called the argument of z and written θ = arg(z). argument of a

complex number
Example 18.2.1. Let us look at some numerical examples of polar-Cartesian
conversion. In many cases, a diagram can be very helpful. For instance, take i
whose real part is obviously zero and whose imaginary part is 1. If we were to use
the formula, we would have tan θ = 1/0 which is not defined. However, Figure 18.4
shows that z = i lies on the positive imaginary axis, and, thus, θ = π/2. Since we
can always add a multiple of 2π to the angle, we have

i = eiπ/2+i2nπ , n = 0, ±1, ±2, . . . .

Similarly, the same figure makes it clear that

−i = e−iπ/2+i2nπ = ei3π/2+i2nπ , n = 0, ±1, ±2, . . . .

θ  =  π/2r
1

=

i

Re

Im

θ  =  − π/2

Re

Im

−i

r
1

=

Figure 18.4: Cartesian and polar coordinates for i and −i.
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Re
θ  =  π

r = 1

Im

−1 θ  = π/4 Re

Im 1+ i

1− i

θ  = − π/4

θ Re

Im 2 + i3

θ
Re

Im−1 + i2

Figure 18.5: Cartesian and polar coordinates for some other complex numbers.

Referring to Figure 18.5, the reader may verify the following polar representa-
tions of complex numbers:

−1 = eiπ+i2nπ ,

1 + i =
√

2 eiπ/4+i2nπ ,

1 − i =
√

2 e−iπ/4+i2nπ =
√

2 ei7π/4+i2nπ ,

2 + i3 =
√

13 ei tan−1(3/2)+i2nπ =
√

13 ei0.983+i2nπ ,

−1 + i2 =
√

5 ei tan−1(−2)+i2nπ =
√

5 ei2.03+i2nπ .

In all cases, n is an integer and angles are in radians. �

The complex conjugate of z in polar coordinates is

z∗ = x − iy = r cos θ − ir sin θ = r cos(−θ) + ir sin(−θ) = re−iθ .

This equation confirms the earlier statement that complex conjugation is
equivalent to replacing i with −i.

Generally speaking, polar coordinates are useful for operations of multipli-
cation, division, and exponentiation, and Cartesian coordinates for addition
and subtraction.

Example 18.2.2. We can use the polar representation of complex numbers to
find some trigonometric identities. In all of the following, we set r = 1:

1 = eiθe−iθ = (cos θ + i sin θ)(cos θ − i sin θ) = cos2 θ + sin2 θ.

Now consider the identity

ei(θ1+θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2)

which can also be written as

ei(θ1+θ2) = eiθ1eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + sin θ2 cos θ1).

Equating the real and imaginary parts of the last two equations, we obtain

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1.
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Similarly, equating the real and imaginary parts of

ei3θ = cos 3θ + i sin 3θ

and

ei3θ =
(
eiθ

)3

= (cos θ + i sin θ)3 = cos3 θ + 3i cos2 θ sin θ − 3 sin2 θ cos θ − i sin3 θ

gives the following trigonometric identity:

cos 3θ = 4 cos3 θ − 3 cos θ,

sin 3θ = 3 sin θ − 4 sin3 θ. �

From

einθ = cosnθ + i sin nθ and einθ = (eiθ)n = (cos θ + i sin θ)n

we obtain the so-called de Moivre theorem: de Moivre theorem

(cos θ + i sin θ)n = cosnθ + i sinnθ. (18.13)

Equation (18.11) and its complex conjugate lead to the following useful
results: two important

relations
cos θ = 1

2

(
eiθ + e−iθ

)
,

sin θ =
1
2i

(
eiθ − e−iθ

)
. (18.14)

As mentioned earlier, the exponential nature of polar coordinates makes
them especially useful in multiplication, division, and exponentiation. For
instance,

z1

z2
=

r1e
iθ1

r2eiθ2
=

r1

r2
ei(θ1−θ2),

z1z2 =
(
r1e

iθ1
) (

r2e
iθ2

)
= r1r2e

i(θ1+θ2), (18.15)
√

z =
√

reiθ =
(
reiθ

)1/2
= r1/2

(
eiθ

)1/2
=

√
reiθ/2,

and so forth.
All of these relations have interesting geometric interpretations. For ex-

ample, the second equation says that when you multiply a complex number z1

by another complex number z2, you dilate the magnitude of z1 by a factor r2

and increase its angle by θ2. That is, multiplication involves both a dilation
and a rotation. In particular, if we multiply a complex number by eiωt where
t is time, we get a vector of constant length in the xy-plane that is rotating
with angular velocity ω.

Example 18.2.3. A plane wave is represented by a periodic function such as

A cos(kx − ωt) or B sin(kx − ωt).
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On the other hand, sine and cosine are related by

sin(kx − ωt) = − cos
(
kx − ωt +

π

2

)
.

Therefore, one can concentrate solely on the cosine function with a phase an-
gle added to its argument. Thus a typical periodic plane wave is represented as
A cos (kx − ωt + α). To make connection with the material of this section, we note
that

A cos (kx − ωt + α) = A Re
(
ei(kx−ωt+α)

)
= Re

(
Aei(kx−ωt+α)

)

= Re
(
Aeiαei(kx−ωt)

)
= Re

(
Zei(kx−ωt)

)
,

where Z is a complex number—called complex amplitude—of magnitude A andcomplex amplitude
argument α. It is therefore convenient to represent plane waves by the complex
function Zei(kx−ωt) which includes the phase of the wave as the argument of Z. �

Another interesting application of these ideas is finding roots of complex
numbers. Suppose we are interested in all the nth roots of Z; i.e., all z’sroots of complex

numbers satisfying zn = Z. To find the roots of a complex number Z, write it in polar
form in the most general way:

Z = ReiΘ+i2πk, k = 0, ±1, ±2, . . . ,

Thus,
zn = ReiΘ+i2πk with k = 0, ±1, ±2, . . . .

Taking the nth root of both sides, we obtain

z = Z1/n = R1/neiΘ/n+i2πk/n, k = 0, ±1, ±2, . . . ,

and

Box 18.2.3. The distinct nth roots {zk} of Z = ReiΘ are

zk = R1/neiΘ/n+i2πk/n, k = 0, 1, 2, . . . , n − 1. (18.16)

We see that the number of nth roots of a complex number is exactly n.

It is clear that zk of Equation (18.16) repeats itself for k ≥ n.

Example 18.2.4. Let us find the three cube roots of unity. With n = 3 and
Z = ei2πk, we have

zk = ei2πk/3, k = 0, 1, 2,

or

z0 = e0 = 1,

z1 = ei2π/3 = cos
2π

3
+ i sin

2π

3
= −1

2
+ i

√
3

2
,

z2 = ei4π/3 = cos
4π

3
+ i sin

4π

3
= −1

2
− i

√
3

2
.



18.2 Polar Form of Complex Numbers 487

It is instructive to show directly that

(

−1

2
+ i

√
3

2

)3

= 1 and

(

−1

2
− i

√
3

2

)3

= 1.

Here are some more examples of finding roots:

√
1 + i =

(√
2 eiπ/4+i2nπ

)1/2

= 21/4eiπ/8+inπ n = 0, 1,

z0 = 21/4eiπ/8 = 21/4
{

cos
(π

8

)
+ i sin

(π

8

)}
= 1.1 + i0.456,

z1 = 21/4eiπ/8+iπ = −21/4eiπ/8 = −1.1 − i0.456.

The equation z3 = i has the roots

3
√

i =
(
eiπ/2+i2nπ

)1/3

= eiπ/6+i2nπ/3, n = 0, 1, 2,

or

z0 = eiπ/6 = cos
(π

6

)
+ i sin

(π

6

)
=

√
3

2
+ i

1

2
,

z1 = eiπ/6+i2π/3 = cos

(
5π

6

)

+ i sin

(
5π

6

)

= −
√

3

2
+ i

1

2
,

z2 = eiπ/6+i4π/3 = cos

(
3π

2

)

+ i sin

(
3π

2

)

= −i.

The reader is urged to show that z3
k = i for k = 0, 1, 2.

Note how careful we were to include the factor of ei2nπ when taking roots of
complex numbers. �

All nth roots of Z = ReiΘ are equally spaced on a circle of radius R1/n in
the complex plane. Figure 18.6 shows two circles on which the sixth and the
eighth roots of unity are located.

π/4 Reπ/3
Re

Im Im

(a) (b)

Figure 18.6: The (a) sixth and (b) eighth roots of unity.

Example 18.2.5. In certain applications of electromagnetic wave propagation (as Cartesian form of
the square root of
a complex number

in conductors) it becomes necessary to find an analytic expression for the Cartesian
representation of the square root of a complex number. In this example, we derive
such an expression.
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We are trying to calculate the Cartesian representation of the square root of
z = x + iy. First we express z in polar form; next we take its square root, and
finally reexpress the result in Cartesian form. Thus,

z = rei(θ+2nπ) where r =
√

x2 + y2, tan θ =
y

x
, n = 0,±1,±2, . . . .

Taking the square root of both sides yields
√

z = z1/2 = r1/2ei(θ+2nπ)/2 = (x2 + y2)1/4eiθ/2+inπ

= ±(x2 + y2)1/4eiθ/2 = ±(x2 + y2)1/4

(

cos
θ

2
+ i sin

θ

2

)

because einπ = 1 if n is even and einπ = −1 if n is odd. All that is left now is to
express the trigonometric functions in terms of x and y:

cos
θ

2
=

[
1
2
(1 + cos θ)

]1/2
=

1√
2

(

1 +
1√

1 + tan2 θ

)1/2

=
1√
2

(

1 +
1

√
1 + (y/x)2

)1/2

=
1√
2

(

1 +
|x|

√
x2 + y2

)1/2

.

Similarly,

sin
θ

2
=

1√
2

(

1 − |x|
√

x2 + y2

)1/2

.

Collecting all these formulas together and simplifying, we obtain

√
x + iy = ± 1√

2

[(√
x2 + y2 + |x|

)1/2

+ i
(√

x2 + y2 − |x|
)1/2

]

. (18.17)

The complexity of the expression for the square root rests on our insistence on
an analytic form. The process of converting the Cartesian form of a complex number
to polar, taking the square root, and converting the result back to Cartesian form
is a far easier process than the one leading to Equation (18.17). �

18.3 Fourier Series Revisited

The connection between the trigonometric and exponential functions can be
utilized to write the Fourier series expansion of periodic functions more suc-
cinctly. If we substitute

cos
2nπx

L
=

e2inπx/L + e−2inπx/L

2
,

sin
2nπx

L
=

e2inπx/L − e−2inπx/L

2i
,

in Equation (10.38) and collect the similar exponential terms, we obtain

f(x) = a0 + 1
2

∞∑

n=1

[
(an − ibn) e2inπx/L + (an + ibn) e−2inπx/L

]

= a0 + 1
2

∞∑

n=1

(an − ibn) e2inπx/L + 1
2

∞∑

n=1

(an + ibn) e−2inπx/L. (18.18)
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In the second sum, let n = −m to obtain

2nd sum = 1
2

−∞∑

m=−1

(a−m + ib−m) e2imπx/L = 1
2

−∞∑

n=−1

(a−n + ib−n) e2inπx/L,

(18.19)
where in the last step, we switched the dummy index back to n. If we now
introduce new coefficients An defined as

An =

⎧
⎪⎨

⎪⎩

1
2 (an − ibn) if 1 ≤ n ≤ ∞,
1
2 (a−n + ib−n) if −∞ ≤ n ≤ −1,

a0 if n = 0,

and use Equation (18.19) in (18.18), we obtain Fourier series in
terms of complex
exponentials

f(x) =
+∞∑

n=−∞
Ane2inπx/L where L = b − a, (18.20)

which is the equation we are after. To find An directly from this equation,
multiply both sides by e−2ikπx/L, integrate from a to b, and use the readily
obtainable relation

∫ b

a

e2i(n−k)πx/L =

{
0 if n �= k

L if n = k
= Lδnk, (18.21)

where δnk is the Kronecker delta. It follows that

Ak =
1
L

∫ b

a

f(x)e−2ikπx/Ldx or An =
1
L

∫ b

a

f(x)e−2inπx/Ldx. (18.22)

It is customary to redefine the coefficients in the summation of Equation
(18.20) in such a way that the summation giving f(x) and the integral giving
An are more symmetric, i.e., have the same constant in front of them. To this
end, define fn ≡

√
LAn. Then (18.20) and (18.22) become

f(x) =
1√
L

+∞∑

n=−∞
fne2inπx/L, fn =

1√
L

∫ b

a

f(x)e−2inπx/Ldx (18.23)

Note that the coefficients fn are complex; however, when f(x) is a real
function, the exponentials and their complex coefficients add up in such a
way that the final result can be expressed as an infinite sum of trigonometric
functions with real coefficients. In fact, we can show this generally using
Equations (18.23). First, we note that, for real f(x),

f∗
n =

1√
L

∫ b

a

f(x)e+2inπx/Ldx =
1√
L

∫ b

a

f(x)e−2i(−n)πx/Ldx = f−n.

(18.24)
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Next, we split the sum in (18.23) into positive integers, negative integers, and
zero:

f(x) =
1√
L

−1∑

n=−∞
fne2inπx/L +

f0√
L

+
1√
L

∞∑

n=1

fne2inπx/L. (18.25)

Changing the dummy index n to −m, the first sum can be rewritten as

1st sum =
1√
L

−1∑

−m=−∞
f−me−2imπx/L =

1√
L

∞∑

m=1

f−me−2imπx/L

=
1√
L

∞∑

m=1

f∗
me−2imπx/L =

1√
L

∞∑

n=1

f∗
ne−2inπx/L,

where we used Equation (18.24) and changed m back to n at the end. Sub-
stituting the last equation in (18.25) yields

f(x) =
f0√
L

+
1√
L

∞∑

n=1

(
f∗

ne−2inπx/L + fne2inπx/L
)

=
f0√
L

+
2√
L

∞∑

n=1

Re
(
fne2inπx/L

)

showing that f(x) is indeed real. Equation (18.23) implies that f0 is also real
when f(x) is. It is not hard to show that the expression in the parentheses of
the first line is the sum of a sine and a cosine with real coefficients.

Example 18.3.1. Let us redo the square potential—whose Fourier series was
calculated in Example 10.6.1—using exponentials. From Equation (18.23), for n �= 0,
we obtain

fn =
1√
2T

∫ 2T

0

V (t)e−2inπt/(2T )dt =
1√
2T

∫ T

0

V0e
−inπt/T dt

=
V0√
2T

T

−inπ
e−inπt/T

∣
∣
∣
∣

T

0

=

√
T

2

V0

inπ
[1 − (−1)n]

because einπ = (eiπ)n = (−1)n. Similarly, f0 = V0

√
T/2. We now substitute these

in the Fourier series expansion

V (t) =
1√
2T

+∞∑

n=−∞
fne2inπt/2T

to get

V (t) =
V0

2
+

−1∑

n=−∞

V0

2inπ
[1 − (−1)n]e2inπt/2T +

∞∑

n=1

V0

2inπ
[1 − (−1)n]e2inπt/2T .
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If we change the dummy index of the first sum from n to −m, and back to n again,
and put the two sums together, we obtain

V (t) =
V0

2
+

∞∑

n=1

V0

2inπ
[1 − (−1)n]

(
einπt/T − e−inπt/T

)

=
V0

2
+

2V0

π

∞∑

n=odd

1

2in

(
einπt/T − e−inπt/T

)

︸ ︷︷ ︸
=2i sin(nπt/T )

=
V0

2
+

2V0

π

∞∑

k=0

sin[(2k + 1)πt/T ]

2k + 1
,

which is the expansion we obtained in Example 10.6.1 using trigonometric
functions. �

18.4 A Representation of Delta Function

Consider the function DT (x − x0) defined as

DT (x − x0) ≡
1
2π

∫ T

−T

ei(x−x0)tdt. (18.26)

The integral is easily evaluated, with the result

DT (x − x0) =
1
2π

ei(x−x0)t

i(x − x0)

∣
∣
∣
∣

T

−T

=
1
π

sinT (x − x0)
x − x0

.

The graph of DT (x) as a function of x for various values of T is shown in
Figure 18.7. Note that the width of the curve decreases as T increases. The
area under the curve can be calculated:

∫ ∞

−∞
DT (x − x0) dx =

1
π

∫ ∞

−∞

sin T (x − x0)
x − x0

dx =
1
π

∫ ∞

−∞

sin y

y
dy

︸ ︷︷ ︸
=π

= 1.

Figure 18.7 shows that DT (x−x0) becomes more and more like the Dirac
delta function as T gets larger and larger. In fact, we have

δ(x − x0) = lim
T→∞

DT (x − x0) = lim
T→∞

1
π

sin T (x − x0)
x − x0

. (18.27)

To see this, we note that for any finite T we can write

DT (x − x0) =
T

π

sin T (x − x0)
T (x − x0)

.

Furthermore, for values of x that are very close to x0,

T (x − x0) → 0 and
sin T (x − x0)

T (x − x0)
→ 1.
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–5 50

Figure 18.7: The function sinTx/x also approaches the Dirac delta function
as the width of the curve approaches zero. The value of T is 0.5 for the dashed
curve, 2 for the heavy curve, and 15 for the light curve.

Thus, for such values of x and x0, we have DT (x − x0) ≈ (T/π), which is
large when T is large. This is as expected of a delta function: δ(0) = ∞. On
the other hand, the width of DT (x − x0) around x0 is given, roughly, by the
distance between the points at which DT (x − x0) drops to zero: T (x− x0) =
±π, or x − x0 = ±π/T . This width is roughly Δx = 2π/T , which goes to
zero as T grows. Again, this is as expected of the delta function. Therefore,
from (18.26) and (18.27), we have the following important representation of
the Dirac delta function:delta function as

integral of
imaginary
exponential δ(x − x0) =

1
2π

∫ ∞

−∞
ei(x−x0)tdt. (18.28)

Equation (18.28) can be generalized to higher dimensions, because (at least
in Cartesian coordinates) the multi-dimensional Dirac delta function is just
the product of the one-dimenstional delta functions. Using the more common
k instead of t as the variable of integration, the two-dimensional Dirac delta
function can be represented as

δ(r − r0) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
eik·(r−r0)dkxdky ≡ 1

(2π)2

∫∫

Ω∞

eik·(r−r0)d2k,

(18.29)
where Ω∞ means over all kxky-plane and in the last integral we substituted
d2k for dkxdky.

Similarly, the three dimensional Dirac delta function has the following
representation:

δ(r − r0) =
1

(2π)3

∫∫

Ω∞

eik·(r−r0)d3k, (18.30)

where d3k means a triple integral over k and Ω∞ means over all k-space.
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18.5 Problems

18.1. Find the real and imaginary parts of the following complex numbers:

(a) (2 − i)(3 + 2i). (b) (2 − 3i)(1 + i). (c) (a − ib)(2a + 2ib).

(d)
i

1 + i
. (e)

1 + i

2 − i
. (f)

1 + 3i

1 − 2i
.

(g)
1 + 2i

2 − 3i
. (h)

2
1 − 3i

. (i)
1 − i

1 + i
.

(j)
5

(1 − i)(2 − i)(3 − i)
. (k)

1 + 2i

3 − 4i
+

2 − i

5i
.

18.2. Convert the following complex numbers to polar form and find all cube
roots of each:

(a) 2 − i. (b) 2 − 3i. (c) 3 − 2i. (d) i.

(e) − i. (f)
i

1 + i
. (g)

1 + i

2 − i
. (h)

1 + 3i

1 − 2i
.

(i) 1 + i
√

3. (j)
2 + 3i

3 − 4i
. (k) 27i. (l) − 64.

(m) 2 − 5i. (n) 1 + i. (o) 1 − i. (p) 5 + 2i.

18.3. Using polar coordinates, show that:

(a) (−1 + i)7 = −8(1 + i). (b) (1 + i
√

3)−10 = 2−11(−1 + i
√

3).

18.4. Find the real and imaginary parts of the following:

(a) (1 + i
√

3)3. (b) (2 + i)53. (c) 4
√

i. (d)
3
√

1 + i
√

3.

(e) (1 + i
√

3)63. (f)
(

1 − i

1 + i

)81

. (g) 6
√
−i. (h) 4

√
−1.

(i)

(
1 + i

√
3√

3 + i

)217

. (j) (1 + i)22. (k) 6
√

1 − i. (l) (1 − i)4.

18.5. Find the Cartesian form of all complex numbers z which satisfy (a)
z3 + 1 = 0, and (b) z4 − 16i = 0.

18.6. Find the absolute value of
3 + 4i

3 − 4i
and

a + ib

a − ib
.

18.7. Derive the following trigonometric identities:

cos 3θ = 4 cos3 θ − 3 cos θ,

sin 3θ = 3 sin θ − 4 sin3 θ.

18.8. Show that Equation (18.11) leads to Equation (18.14).
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18.9. Show that z is real if and only if z = z∗.

18.10. Show that |Re(z)| + | Im(z)| ≥ |z| ≥ (|Re(z)| + | Im(z)|)/
√

2.

18.11. Let z1 = x1 + iy1 and z2 = x2 + iy2 represent two planar vectors z1

and z2. Show that
z1z

∗
2 = z1 · z2 − iêz · z1 × z2.

18.12. Sketch the set of points determined by each of the following conditions:

(a) |z − 2 + i| = 2. (b) |z + 2i| ≤ 4. (c) |z + i| = |z − i|.
(d) Im(z∗ + i) = 2. (e) 2z + 3z∗ = 1. (f) z2 + (z∗)2 = 2.

Hint: Find a relation between x and y.

18.13. Show that the equation of a circle of radius r centered at z0 can be
written as |z|2 − 2 Re(zz∗0) = r2 − |z0|2.
18.14. Given that z1z2 �= 0, show that
(a) Re(z1z

∗
2) = |z1||z2|, and |z1 + z2| = |z1| + |z2|, if and only if arg(z1) −

arg(z2) = 2nπ, for n = 0,±1,±2, . . . .
(b) What does the second equality mean geometrically?

18.15. Assume that z �= 1 and zn = 1. Show that 1+ z+ z2 + · · ·+ zn−1 = 0.

18.16. Substitute x + iy for z in z2 + z + 1 = 0 and solve the resulting
equations for x and y. Compare these with the roots obtained by solving the
equation in z directly.

18.17. Find the roots of z4 + 4 = 0 and use them to factor z4 + 4 into a
product of quadratic polynomials with real coefficients. Hint: First factor
z4 + 4 into linear terms.

18.18. Evaluate the following roots and plot them on the complex plane:

(a) 5
√

1 + i. (b) 4
√
−1. (c) 8

√
1. (d) 5

√
−32.

(e)
√

3 + 4i. (f) 3
√
−1. (g) 4

√
−16i. (h) 6

√
−1.

18.19. Use binomial expansion to show directly that
(

−1
2

+ i

√
3

2

)3

= 1 and

(

−1
2
− i

√
3

2

)3

= 1.

18.20. Use
∫

eax = eax/a to find the indefinite integral of sin2 x. Verify that
the derivative of your answer is indeed sin2 x.

18.21. Use
∫

eax = eax/a and eibx = cos(bx)+i sin(bx) to verify the following
relations by integrating a certain complex exponential:

∫
eax cos(bx) dx =

eax

a2 + b2
[a cos(bx) + b sin(bx)],

∫
eax sin(bx) dx =

eax

a2 + b2
[a sin(bx) − b cos(bx)],

where a and b are assumed to be real constants.
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18.22. (a) Using
∑N

k=1 rk = (rN+1−r)/(r−1), evaluate the sum
∑N

k=1 e−iβk.
In particular, show that

N∑

k=1

ei(α−βk) = ei(α−β) e
−iβN − 1
e−iβ − 1

.

(b) Now show that if β = 2π/N , then

N∑

k=1

cos(α − βk) = 0 =
N∑

k=1

sin(α − βk).

18.23. Express cos 4θ and sin 4θ in terms of powers of cos θ and sin θ.

18.24. Use mathematical induction to show the de Moivre theorem.

18.25. Using binomial expansion and the de Moivre theorem, show that

cosnθ =
[n/2]∑

m=0

(−1)m

(
n

2m

)

sin2m θ cosn−2m θ,

sin nθ =
[n/2]∑

m=0

(−1)m

(
n

2m + 1

)

sin2m+1 θ cosn−2m−1 θ,

where [x] stands for the greatest integer less than or equal to x.

18.26. Derive Equation (18.17) from the equations preceding it.

18.27. Find the following sums, where α and β are real:

(a) cosα + cos(α + β) + cos(α + 2β) + · · · + cos(α + nβ).
(b) sin α + sin(α + β) + sin(α + 2β) + · · · + sin(α + nβ).

Hint: Use the result of Problem 18.22.

18.28. Show that
∫ b

a

e2i(n−k)πx/L =

{
0 if n �= k,

L if n = k,

where b = a + L.

18.29. Use Equations (18.20) and (18.21) to obtain Equation (18.22)

18.30. Find the Fourier series expansion of Problem 10.22 using complex
exponentials.

18.31. An electric voltage V (t) is given by

V (t) = V0 sin
(

πt

2T

)

, 0 ≤ t ≤ T

and repeats itself with period T . Find the Fourier series expansion of V (t)
using complex exponential functions.
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18.32. A periodic voltage is given by the formula

V (t) =

{
V0 sin(πt/2T ) if 0 ≤ t ≤ T,

0 if T ≤ t ≤ 2T,

in the interval (0, 2T ). Find the Fourier series representation of this voltage
using complex exponential functions.

18.33. A periodic voltage with period 4T is given by

V (t) =

⎧
⎨

⎩
V0

(

1 − t2

T 2

)

if − T ≤ t ≤ T,

0 if T ≤ |t| ≤ 2T.

Write the Fourier series of V (t) using complex exponential functions.

18.34. The function f(x) is given by the integral

f(x) =
∫ ∞

−∞
g(y)eixydy.

Find g(y) as an integral over f(x). Hint: Multiply both sides of the equation
by e−ixz and integrate over x, changing the order of integration on the right-
hand side and using (18.28).



Chapter 19

Complex Derivative
and Integral

So far we have concerned ourselves with the algebra of the complex numbers.
The subject of complex analysis is extremely rich and important. The scope
and the level of this book does not allow a comprehensive treatment of complex
analysis. Therefore, we shall briefly review some of the more elementary
topics and encourage the reader to refer to more advanced books for a more
comprehensive treatment. We start here, as is done in real analysis, with the
notion of a function.

19.1 Complex Functions

A complex function f(z) is a rule that associates one complex number to
another. We write f(z) = w where both z and w are complex numbers. The graph of a

complex function
is impossible to
visualize because
it lives in a four
dimensional space.

function f can be geometrically thought of as a correspondence between two
complex planes, the z-plane and the w-plane. In the real case, this correspon-
dence can be represented by a graph. It could also be represented by arrows
from one real line (the x-axis) to another real line (the y-axis) joining a point
of the first real line to the image point of the second real line. When the
possibility of graph is available, the second representation of real functions
appears prohibitively clumsy! For complex functions, no graph is available,
because one cannot draw pictures in four dimensions!1 Therefore, the second
alternative is our only choice. The w-plane has a real axis and an imaginary
axis, which we can call u and v, respectively. Both u and v are real functions
of the coordinates of z, i.e., x and y. Therefore, we may write

f(z) = u(x, y) + iv(x, y). (19.1)
1The “graph” of a complex function would be a collection of pairs (z, f(z)) just as the

graph of a real function is a collection of pairs (x, f(x)). While in the latter case the graph
can be drawn in the (x, y) plane, the former needs four dimensions because both z and f(z)
have two components each.
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z
w

f

(x, y) (u, v)

Figure 19.1: A map from the z-plane to the w-plane.

This equation gives a unique point (u, v) in the w-plane for each point
(x, y) in the z-plane (see Figure 19.1). Under f , regions of the z-plane are
mapped onto regions of the w-plane. For instance, a curve in the z-plane may
be mapped into a curve in the w-plane.

Example 19.1.1. Let us investigate the behavior of some elementary complex
functions. In particular, we shall look at the way a line y = mx in the z-plane is
mapped to lines and curves in the w-plane by the action of these functions.
(a) Let us start with the simple function w = f(z) = z2. We have

w = (x + iy)2 = x2 − y2 + 2ixy

with u(x, y) = x2 − y2 and v(x, y) = 2xy. For y = mx, these equations yield
u = (1 − m2)x2 and v = 2mx2. Eliminating x in these equations, we find v =
[2m/(1 − m2)]u. This is a line passing through the origin of the w-plane [see Fig-
ure 19.2(a)]. Note that the angle the line in the w-plane makes with its real axis is
twice the angle the line in the z-plane makes with the x-axis.
(b) Now let us consider w = f(z) = ez = ex+iy, which gives u(x, y) = ex cos y
and v(x, y) = ex sin y. Substituting y = mx, we obtain u = ex cos mx and v =
ex sin mx. Unlike part (a), we cannot eliminate x to find v as an explicit func-
tion of u. Nevertheless, the last pair of equations are the parametric equations of
a curve (with x as the parameter) which we can plot in a uv-plane as shown in
Figure 19.2(b). �

(a)

α

y

x
2α

u

v

(b)

α

y

x u

v

Figure 19.2: (a) The map z2 takes a line with slope angle α and maps it onto a line

with twice the angle in the w-plane. (b) The map ez takes the same line and maps it

onto a spiral in the w-plane.
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19.1.1 Derivatives of Complex Functions

Limits of complex functions are defined in terms of absolute values. Thus,
limz→a f(z) = w0 means that, given any real number ε > 0, we can find a
corresponding real number δ > 0 such that |f(z)−w0| < ε whenever |z−a| < δ.
Similarly, we say that a function f is continuous at z = a if limz→a f(z) =
f(a), or if there exist ε > 0 and δ > 0 such that |f(z) − f(a)| < ε whenever
|z − a| < δ.

The derivative of a complex function is defined as usual:

Definition 19.1.1. Let f(z) be a complex function. The derivative of f at
z0 is

df

dz

∣
∣
∣
∣
z0

= lim
Δz→0

f(z0 + Δz) − f(z0)
Δz

provided the limit exists and is independent of Δz.

In this definition “independent of Δz” means independent of Δx and Δy
(the components of Δz) and, therefore, independent of the direction of ap-
proach to z0. The restrictions of this definition apply to the real case as well.
For instance, the derivative of f(x) = |x| at x = 0 does not exist because it
approaches +1 from the right and −1 from the left.

It can easily be shown that all the formal rules of differentiation that
apply to the real case also apply to the complex case. For example, if f
and g are differentiable, then f ± g, fg, and—as long as g is not zero—f/g
are also differentiable, and their derivatives are given by the usual rules of
differentiation.

Box 19.1.1. A function f(z) is called analytic at z0 if it is differentiable
at z0 and at all other points in some neighborhood of z0. A point at which
f is analytic is called a regular point of f . A point at which f is not
analytic is called a singular point or a singularity of f . A function for
which all points in C are regular is called an entire function.

Example 19.1.2. Let us examine the derivative of f(z) = x + 2iy at z = 0: example
illustrating
path-dependence
of derivative

df

dz

∣
∣
∣
∣
z=0

= lim
Δz→0

f(Δz) − f(0)

Δz
= lim

Δx→0
Δy→0

Δx + 2iΔy

Δx + iΔy
.

In general, along a line that goes through the origin, y = mx, the limit yields

df

dz

∣
∣
∣
∣
z=0

= lim
Δx→0

Δx + 2imΔx

Δx + imΔx
=

1 + 2im

1 + im
.

This indicates that we get infinitely many values for the derivative depending on
the value we assign to m—corresponding to different directions of approach to the
origin. Thus, the derivative does not exist at z = 0. �
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A question arises naturally at this point: Under what conditions does
the limit in the definition of derivative exist? We will find the necessary
and sufficient conditions for the existence of that limit. It is clear from the
definition that differentiability puts a severe restriction on f(z) because it
requires the limit to be the same for all paths going through z0, the point
at which the derivative is being calculated. Another important point to keep
in mind is that differentiability is a local property. To test whether or not a
function f(z) is differentiable at z0, we move away from z0 by a small amount
Δz and check the existence of the limit in Definition 19.1.1.

For f(z) = u(x, y) + iv(x, y), Definition 19.1.1 yields

df

dz

∣
∣
∣
∣
z0

= lim
Δx→0
Δy→0

{
u(x0 + Δx, y0 + Δy) − u(x0, y0)

Δx + iΔy

+ i
v(x0 + Δx, y0 + Δy) − v(x0, y0)

Δx + iΔy

}

.

If this limit is to exist for all paths, it must exist for the two particular paths
on which Δy = 0 (parallel to the x-axis) and Δx = 0 (parallel to the y-axis).
For the first path we get

df

dz

∣
∣
∣
∣
z0

= lim
Δx→0

u(x0 + Δx, y0) − u(x0, y0)
Δx

+ i lim
Δx→0

v(x0 + Δx, y0) − v(x0, y0)
Δx

=
∂u

∂x

∣
∣
∣
∣
(x0,y0)

+ i
∂v

∂x

∣
∣
∣
∣
(x0,y0)

.

For the second path (Δx = 0), we obtain

df

dz

∣
∣
∣
∣
z0

= lim
Δy→0

u(x0, y0 + Δy) − u(x0, y0)
iΔy

+ i lim
Δy→0

v(x0, y0 + Δy) − v(x0, y0)
iΔy

= −i
∂u

∂y

∣
∣
∣
∣
(x0,y0)

+
∂v

∂y

∣
∣
∣
∣
(x0,y0)

.

If f is to be differentiable at z0, the derivatives along the two paths must be
equal. Equating the real and imaginary parts of both sides of this equation
and ignoring the subscript z0 (x0, y0, or z0 is arbitrary), we obtain

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (19.2)

These two conditions, which are necessary for the differentiability of f , are
called the Cauchy–Riemann (C–R) conditions.Cauchy–Riemann

conditions The arguments leading to Equation (19.2) imply that the derivative, if it
exists, can be expressed as

df

dz
=

∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
. (19.3)

The C–R conditions assure us that these two equations are equivalent.
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Example 19.1.3. Let us examine the differentiability of some complex functions.
(a) We have already established that f(z) = x + 2iy is not differentiable at z = 0.
We can now show that it is has no derivative at any point in the complex plane. This
is easily seen by noting that u = x and v = 2y, and that ∂u/∂x = 1 �= ∂v/∂y = 2,
and the first C–R condition is not satisfied. The second C–R condition is satisfied,
but that is not enough.
(b) Now consider f(z) = x2−y2+2ixy for which u = x2−y2 and v = 2xy. The C–R
conditions become ∂u/∂x = 2x = ∂v/∂y and ∂u/∂y = −2y = −∂v/∂x. Thus, f(z)
may be differentiable. Recall that C–R conditions are only necessary conditions; we
do not know as yet if they are also sufficient.
(c) Let u(x, y) = ex cos y and v(x, y) = ex sin y. Then ∂u/∂x = ex cos y = ∂v/∂y
and ∂u/∂y = −ex sin y = −∂v/∂x and the C–R conditions are satisfied. �

The requirement of differentiability is very restrictive: the derivative must
exist along infinitely many paths. On the other hand, the C–R conditions
seem deceptively mild: they are derived for only two paths. Nevertheless,
the two paths are, in fact, true representatives of all paths; that is , the C–R
conditions are not only necessary, but also sufficient. This is the content of
the Cauchy–Riemann theorem which we state without proof:2

Theorem 19.1.4. (Cauchy–Riemann Theorem). The function f(z) =
u(x, y) + iv(x, y) is differentiable in a region of the complex plane if and only
if the Cauchy–Riemann conditions

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x

are satisfied and all first partial derivatives of u and v are continuous in that
region. In that case

df

dz
=

∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
.

The C–R conditions readily lead to

∂2u

∂x2 +
∂2u

∂y2 = 0,
∂2v

∂x2 +
∂2v

∂y2 = 0, (19.4)

i.e., both real and imaginary parts of an analytic function satisfy the two- harmonic
functions defineddimensional Laplace equation [Equations (15.13) and (15.15)]. Such functions

are called harmonic functions.

Example 19.1.5. Let us consider some examples of derivatives of complex func-
tions.
(a) f(z) = z.

Here u = x and v = y; the C–R conditions are easily shown to hold, and for

2For a simple proof, see Hassani, S. Mathematical Physics: A Modern Introduction to
Its Foundations, Springer-Verlag, 1999, Chapter 9.
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any z, we have df/dz = ∂u/∂x + i∂v/∂x = 1. Therefore, the derivative exists at all
points of the complex plane, i.e., f(z) = z is entire.
(b) f(z) = z2.
Here u = x2 − y2 and v = 2xy; the C–R conditions hold, and for all points z of the
complex plane, we have df/dz = ∂u/∂x + i∂v/∂x = 2x + i2y = 2z. Therefore, f(z)
is differentiable at all points. So, f(z) = z2 is also entire.
(c) f(z) = zn for n ≥ 1.
We can use mathematical induction and the fact that the product of two entire

functions is an entire function to show that
d

dz
(zn) = nzn−1.

(d) f(z) = a0 + a1z + · · · + an−1z
n−1 + anzn,

where ai are arbitrary constants. That f(z) is entire follows directly from (c) and
the fact that the sum of two entire functions is entire.

(e) f(z) = ez.
Here u(x, y) = ex cos y and v(x, y) = ex sin y. Thus, ∂u/∂x = ex cos y = ∂v/∂y and
∂u/∂y = −ex sin y = −∂v/∂x and the C–R conditions are satisfied at every point
(x, y) of the xy-plane. Furthermore,

df

dz
=

∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ex(cos y + i sin y) = exeiy = ex+iy = ez

and ez is entire as well.
(f) f(z) = 1/z.
The derivative can be found to be f ′(z) = −1/z2 which does not exist for z = 0.
Thus, z = 0 is a singularity of f(z). However, any other point is a regular point of f .

(g) f(z) = 1/ sin z.
This gives df/dz = − cos z/ sin2 z. Thus, f has (infinitely many) singular points at
z = ±nπ for n = 0, 1, 2, . . . . �

Example 19.1.5 shows that any polynomial in z, as well as the exponential
function ez is entire. Therefore, any product and/or sum of polynomials and
ez will also be entire. We can build other entire functions. For instance,
eiz and e−iz are entire functions; therefore, the complex trigonometric
functions, defined bycomplex

trigonometric
functions sin z =

eiz − e−iz

2i
and cos z =

eiz + e−iz

2
(19.5)

are also entire functions. Problem 19.7 shows that sin z and cos z have only
real zeros.

The complex hyperbolic functions can be defined similarly:complex
hyperbolic
functions sinh z =

ez − e−z

2
and cosh z =

ez + e−z

2
. (19.6)

Although the sum and product of entire functions are entire, the ratio
is not. For instance, if f(z) and g(z) are polynomials of degrees m and n,
respectively, then for n > 0, the ratio f(z)/g(z) is not entire, because at the
zeros of g(z)—which always exist—the derivative is not defined.
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The functions u(x, y) and v(x, y) of an analytic function have an interesting
property which the following example investigates.

Example 19.1.6. The family of curves u(x, y) = constant is perpendicular to curves of constant
u and v are
perpendicular.

the family of curves v(x, y) = constant at each point of the complex plane where
f(z) = u + iv is analytic.

This can easily be seen by looking at the normal to the curves. The normal to
the curve u(x, y) = constant is simply ∇u = 〈∂u/∂x, ∂u/∂y〉 (see Theorem 12.3.2).
Similarly, the normal to the curve v(x, y) = constant is ∇v = 〈∂v/∂x, ∂v/∂y〉.
Taking the dot product of these two normals, we obtain

(∇u) · (∇v) =
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
=

∂u

∂x

(

−∂u

∂y

)

+
∂u

∂y

(
∂u

∂x

)

= 0

by the C–R conditions. �

Historical Notes
One can safely say that rigorous complex analysis was founded by a single man:
Cauchy. Augustin-Louis Cauchy was one of the most influential French mathe-
maticians of the nineteenth century. He began his career as a military engineer, but
when his health broke down in 1813 he followed his natural inclination and devoted
himself wholly to mathematics.

In mathematical productivity Cauchy was surpassed only by Euler, and his col-
lected works fill 27 fat volumes. He made substantial contributions to number theory
and determinants; is considered to be the originator of the theory of finite groups;
and did extensive work in astronomy, mechanics, optics, and the theory of elasticity.

Augustin-Louis
Cauchy 1789–1857

His greatest achievements, however, lay in the field of analysis. Together with his
contemporaries Gauss and Abel, he was a pioneer in the rigorous treatment of limits,
continuous functions, derivatives, integrals, and infinite series. Several of the basic
tests for the convergence of series are associated with his name. He also provided the
first existence proof for solutions of differential equations, gave the first proof of the
convergence of a Taylor series, and was the first to feel the need for a careful study
of the convergence behavior of Fourier series. However, his most important work
was in the theory of functions of a complex variable, which in essence he created and
which has continued to be one of the dominant branches of both pure and applied
mathematics. In this field, Cauchy’s integral theorem and Cauchy’s integral formula
are fundamental tools without which modern analysis could hardly exist.

Unfortunately, his personality did not harmonize with the fruitful power of his
mind. He was an arrogant royalist in politics and a self-righteous, preaching, pious
believer in religion—all this in an age of republican skepticism—and most of his
fellow scientists disliked him and considered him a smug hypocrite. It might be fairer
to put first things first and describe him as a great mathematician who happened
also to be a sincere but narrow-minded bigot.

19.1.2 Integration of Complex Functions

We have thus far discussed the derivative of a complex function. The concept
of integration is even more important because, as we shall see later, derivatives
can be written in terms of integrals.
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The definite integral of a complex function is naively defined in analogy
to that of a real function. However, a crucial difference exists: While in thecomplex integrals

are
path-dependent.

real case, the limits of integration are real numbers and there is only one way
to connect these two limits (along the real line), the limits of integration of
a complex function are points in the complex plane and there are infinitely
many ways to connect these two points. Thus, we speak of a definite integral
of a complex function along a path. It follows that complex integrals are, in
general, path-dependent.

∫ α2

α1

f(z) dz = lim
N→∞
Δzi→0

N∑

i=1

f(zi)Δzi, (19.7)

where Δzi is a small segment—situated at zi—of the curve that connects the
complex number α1 to the complex number α2 in the z-plane (see Figure 19.3).
An immediate consequence of this equation is

∣
∣
∣
∣

∫ α2

α1

f(z) dz

∣
∣
∣
∣ = lim

N→∞
Δzi→0

∣
∣
∣
∣
∣

N∑

i=1

f(zi)Δzi

∣
∣
∣
∣
∣
≤ lim

N→∞
Δzi→0

N∑

i=1

|f(zi)Δzi|

= lim
N→∞
Δzi→0

N∑

i=1

|f(zi)| |Δzi| =
∫ α2

α1

|f(z)| |dz|, (19.8)

where we have used the triangle inequality as expressed in Equation (18.7).
Since there are infinitely many ways of connecting α1 to α2, there is no

guarantee that Equation (19.7) has a unique value: It is possible to obtain
different values for the integral of some functions for different paths. It may
seem that we should avoid such functions and that they will have no use in
physical applications. Quite to the contrary, most functions encountered, will
not, in general, give the same result if we choose two completely arbitrary
paths in the complex plane. In fact, it turns out that the only complex
function that gives the same integral for any two arbitrary points connected
by any two arbitrary paths is the constant function. Because of the importance
of paths in complex integration, we need the following definition:

α1

α2
Δ zi

z i

Figure 19.3: One of the infinitely many paths connecting two complex points α1 and

α2.
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Box 19.1.2. A contour is a collection of connected smooth arcs. When
the beginning point of the first arc coincides with the end point of the last
one, the contour is said to be a simple closed contour (or just closed
contour).

We encountered path-dependent integrals when we tried to evaluate the
line integral of a vector field in Chapter 14. The same argument for path-
independence can be used to prove (see Problem 19.21)

Theorem 19.1.7. (Cauchy–Goursat Theorem). Let f(z) be analytic on
a simple closed contour C and at all points inside C. Then

∮

C

f(z) dz = 0

Equivalently,
∫ α2

α1
f(z) dz is independent of the smooth path connecting α1 and

α2 as long as the path lies entirely in the region of analyticity of f(z).

Example 19.1.8. We consider a few examples of definite integrals.
(a) Let us evaluate the integral I1 =

∫
γ1

z dz where γ1 is the straight line drawn

from the origin to the point (1, 2) (see Figure 19.4). Along such a line y = 2x and
thus γ1(t) = t + 2it where 0 ≤ t ≤ 1, and3

I1 =

∫

γ1

z dz =

∫ 1

0

(t + 2it)(dt + 2idt) =

∫ 1

0

(−3tdt + 4itdt) = − 3
2

+ 2i.

For a different path γ2, along which y = 2x2, we get γ2(t) = t+2it2 where 0 ≤ t ≤ 1,
and

I ′
1 =

∫

γ2

z dz =

∫ 1

0

(t + 2it2)(dt + 4itdt) = − 3
2

+ 2i.

Therefore, I1 = I ′
1. This is what is expected from the Cauchy–Goursat theorem

because the function f(z) = z is analytic on the two paths and in the region bounded
by them.

γ
1

γ 2

γ 3

x

y (1, 2)

Figure 19.4: The three different paths of integration corresponding to the integrals I1,

I ′
1, I2, and I ′

2.

3We are using the parameterization x = t, y = 2x = 2t for the curve.
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(b) Now let us consider I2 =
∫

γ1
z2dz with γ1 as in part (a). Substituting for z in

terms of t, we obtain

I2 =

∫

γ1

(t + 2it)2(dt + 2idt) = (1 + 2i)3
∫ 1

0

t2dt = − 11
3
− 2

3
i.

Next we compare I2 with I ′
2 =

∫
γ3

z2dz where γ3 is as shown in Figure 19.4. This
path can be described by

γ3(t) =

{
t for 0 ≤ t ≤ 1,

1 + i(t − 1) for 1 ≤ t ≤ 3.

Therefore,

I ′
2 =

∫ 1

0

t2dt +

∫ 3

1

[1 + i(t − 1)]2(idt) = 1
3
− 4 − 2

3
i = − 11

3
− 2

3
i,

which is identical to I2, once again because the function is analytic on γ1 and γ3 as
well as in the region bounded by them.
(c) An example of the case where equality for different paths is not attained is
I3 =

∫
γ4

dz/z where γ4 is the upper semicircle of unit radius, as shown in Figure 19.5.
A parametric equation for γ4 can be given in terms of θ:

γ4(θ) = cos θ + i sin θ = eiθ ⇒ dz = ieiθdθ, 0 ≤ θ ≤ π.

Thus, we obtain

I3 =

∫ π

0

1

eiθ
ieiθdθ = iπ.

On the other hand,

I ′
3 =

∫

γ′
4

1

z
dz =

∫ π

2π

.
1

eiθ
ieiθdθ = −iπ.

Here the two integrals are not equal. From γ4 and γ′
4 we can construct a counter-

clockwise simple closed contour C, along which the integral of f(z) = 1/z becomes∮
C

dz/z = I3 − I ′
3 = 2iπ. That the integral is not zero is a consequence of the

fact that 1/z is not analytic at all points of the region bounded by the closed
contour C. �

γ
4

′ γ 4

r =
 1

θ

Figure 19.5: The two semicircular paths for calculating I3 and I ′
3.
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C C

Γ
L

(a) (b)

Figure 19.6: A contour of integration can be deformed into another contour. The

second contour is usually taken to be a circle because of the ease of its corresponding

integration. (a) shows the original contour, and (b) shows the two contours as well as

the (shaded) region between them in which the function is analytic.

The Cauchy–Goursat theorem applies to more complicated regions. When
a region contains points at which f(z) is not analytic, those points can be
avoided by redefining the region and the contour (Figure 19.6). Such a pro-
cedure requires a convention regarding the direction of “motion” along the
contour. This convention is important enough to be stated separately.

convention for
positive sense of
integration around
a closed contour

Box 19.1.3. (Convention). When integrating along a closed contour,
we agree to traverse the contour in such a way that the region enclosed
by the contour lies to our left. An integration that follows this convention
is called integration in the positive sense. Integration performed in the
opposite direction acquires a minus sign.

Suppose that we want to evaluate the integral
∮

C
f(z) dz where C is some

contour in the complex plane [see Figure 19.6(a)]. Let Γ be another—usually
simpler, say a circle—contour which is either entirely inside or entirely out-
side C. Figure 19.6 illustrates the case where Γ is entirely inside C. We
assume that Γ is such that f(z) does not have any singularity in the region
between C and Γ. By connecting the two contours with a line as shown in
Figure 19.6(b), we construct a composite closed contour consisting of C, Γ,
and twice the line segment L, once in the positive directions and once in
the negative. Within this composite contour, the function f(z) is analytic.
Therefore, by the Cauchy–Goursat theorem, we have

−
∮

C

f(z) dz +
∮

Γ

f(z) dz +
∫

L

f(z) dz −
∫

L

f(z) dz = 0.

The negative sign for C is due to the convention above. It follows from this
equation that the integral along C is the same as that along the circle Γ. This
result can be interpreted by saying that
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Box 19.1.4. We can always deform the contour of an integral in the com-
plex plane into a simpler contour, as long as in the process of deformation
we encounter no singularity of the function.

19.1.3 Cauchy Integral Formula

One extremely important consequence of the Cauchy–Goursat theorem, the
centerpiece of complex analysis, is the Cauchy integral formula which we state
without proof.4

Theorem 19.1.9. Let f(z) be analytic on and within a simple closed contour
C integrated in the positive sense. Let z0 be any interior point of C. Then

f(z0) =
1

2πi

∮

C

f(z)
z − z0

dz.

This is called the Cauchy integral formula (CIF).

Example 19.1.10. We can use the CIF to evaluate the following integrals:

I1 =

∮

C1

z2 dz

(z2 + 3)2(z − i)
, I2 =

∮

C2

(z2 − 1) dz

(z − 1
2
)(z2 − 4)3

,

I3 =

∮

C3

ez/2 dz

(z − iπ)(z2 − 20)4
,

where C1, C2, and C3 are circles centered at the origin with radii r1 = 3
2
, r2 = 1,

and r3 = 4, respectively.
For I1 we note that f(z) = z2/(z2 +3)2 is analytic within and on C1, and z0 = i

lies in the interior of C1. Thus,

I1 =

∮

C1

f(z)dz

z − i
= 2πif(i) = 2πi

i2

(i2 + 3)2
= −i

π

2
.

Similarly, f(z) = (z2 − 1)/(z2 − 4)3 for I2 is analytic on and within C2, and z0 = 1
2

is an interior point of C2. Thus, the CIF gives

I2 =

∮

C2

f(z)dz

z − 1
2

= 2πif( 1
2
) = 2πi

1
4
− 1

( 1
4
− 4)3

=
32π

1125
i.

For the last integral, f(z) = ez/2/(z2 − 20)4, and the interior point is z0 = iπ:

I3 =

∮

C3

f(z)dz

z − iπ
= 2πif(iπ) = 2πi

eiπ/2

(−π2 − 20)4
= − 2π

(π2 + 20)4
. �

The CIF gives the value of an analytic function at every point inside a
simple closed contour when it is given the value of the function only at points
on the contour. It seems as though analytic functions have no freedom withinwhy analytic

functions “remote
sense” their values
at distant points

a contour: They are not free to change inside a region once their value is
fixed on the contour enclosing that region. There is an analogous situation in

4For a proof, see Hassani, S. Mathematical Physics: A Modern Introduction to Its Foun-
dations, Springer-Verlag, 1999, Chapter 9.
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certain areas of physics, for example, electrostatics: The specification of the
potential at the boundaries, such as conductors, automatically determines it
at any other point in the region of space bounded by the conductors. This is
the content of the uniqueness theorem (to be discussed later in this book) used
in electrostatic boundary-value problems. However, the electrostatic potential
Φ is bound by another condition, Laplace’s equation; and the combination of
Laplace’s equation and the boundary conditions furnishes the uniqueness of Φ.

It seems, on the other hand, as though the mere specification of an analytic
function on a contour, without any other condition, is sufficient to determine
the function’s value at all points enclosed within that contour. This is not
the case. An analytic function, by its very definition, satisfies another re-
strictive condition: Its real and imaginary parts separately satisfy Laplace’s
equation in two dimensions! [see Equation (19.4)]. Thus, it should come as
no surprise that the value of an analytic function at a boundary (contour)
determines the function at all points inside the boundary.

19.1.4 Derivatives as Integrals

The CIF is a very powerful tool for working with analytic functions. One
of the applications of this formula is in evaluating the derivatives of such
functions. It is convenient to change the dummy integration variable to ξ and
write the CIF as

f(z) =
1

2πi

∮

C

f(ξ) dξ

ξ − z
, (19.9)

where C is a simple closed contour in the ξ-plane and z is a point within C.
By carrying the derivative inside the integral, we get

df

dz
=

1
2πi

d

dz

∮

C

f(ξ) dξ

ξ − z
=

1
2πi

∮

C

d

dz

[
f(ξ) dξ

ξ − z

]

=
1

2πi

∮

C

f(ξ) dξ

(ξ − z)2
.

By repeated differentiation, we can generalize this formula to the nth deriva-
tive, and obtain

Theorem 19.1.11. The derivatives of all orders of an analytic function f(z)
exist in the domain of analyticity of the function and are themselves analytic
in that domain. The nth derivative of f(z) is given by

f (n)(z) =
dnf

dzn =
n!
2πi

∮

C

f(ξ) dξ

(ξ − z)n+1
. (19.10)

Example 19.1.12. Let us apply Equation (19.10) directly to some simple func-
tions. In all cases, we will assume that the contour is a circle of radius r centered
at z.
(a) Let f(z) = K, a constant. Then, for n = 1 we have

df

dz
=

1

2πi

∮

C

K dξ

(ξ − z)2
.
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Since ξ is always on the circle C centered at z, ξ − z = reiθ and dξ = rieiθdθ. So
we have

df

dz
=

1

2πi

∫ 2π

0

Kireiθdθ

(reiθ)2
=

K

2πr

∫ 2π

0

e−iθdθ = 0.

That is, the derivative of a constant is zero.
(b) Given f(z) = z, its first derivative will be

df

dz
=

1

2πi

∮

C

ξ dξ

(ξ − z)2
=

1

2πi

∫ 2π

0

(z + reiθ)ireiθdθ

(reiθ)2

=
1

2π

(
z

r

∫ 2π

0

e−iθdθ +

∫ 2π

0

dθ

)

=
1

2π
(0 + 2π) = 1.

(c) Given f(z) = z2, for the first derivative Equation (19.10) yields

df

dz
=

1

2πi

∮

C

ξ2 dξ

(ξ − z)2
=

1

2πi

∫ 2π

0

(z + reiθ)2ireiθdθ

(reiθ)2

=
1

2π

∫ 2π

0

[
z2 + (reiθ)2 + 2zreiθ

]
(reiθ)−1dθ

=
1

2π

(
z2

r

∫ 2π

0

e−iθdθ + r

∫ 2π

0

eiθdθ + 2z

∫ 2π

0

dθ

)

= 2z.

It can be shown that, in general, (d/dz)zm = mzm−1. The proof is left as Problem
19.24. �

The CIF is a central formula in complex analysis. However, due to space
limitations, we cannot explore its full capability here. Nevertheless, one of its
applications is worth discussing at this point. Suppose that f is a bounded
entire function and consider

df

dz
=

1
2πi

∮

C

f(ξ) dξ

(ξ − z)2
.

Since f is analytic everywhere in the complex plane, the closed contour C can
be chosen to be a very large circle of radius R with center at z. Taking the
absolute value of both sides yields

∣
∣
∣
∣
df

dz

∣
∣
∣
∣ =

1
2π

∣
∣
∣
∣

∫ 2π

0

f(z + Reiθ)
(Reiθ)2

iReiθdθ

∣
∣
∣
∣

≤ 1
2π

∫ 2π

0

|f(z + Reiθ)|
R

dθ ≤ 1
2π

∫ 2π

0

M

R
dθ =

M

R
,

where we used Equation (19.8) and |eiθ| = 1. M is the maximum of the
function in the complex plane.5 Now as R → ∞, the derivative goes to zero.
The only function whose derivative is zero is the constant function. Thus

Box 19.1.5. A bounded entire function is necessarily a constant.

5M exists because f is assumed to be bounded.
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There are many interesting and nontrivial real functions that are bounded and
have derivatives (of all orders) on the entire real line. For instance, e−x2

is such any nontrivial
function is either
unbounded or not
entire.

a function. No such freedom exists for complex analytic functions according
to Box 19.1.5! Any nontrivial analytic function is either not bounded (goes
to infinity somewhere on the complex plane) or not entire [it is not analytic
at some point(s) of the complex plane].

A consequence of Proposition 19.1.5 is the fundamental theorem of
algebra which states that any polynomial of degree n ≥ 1 has n roots (some fundamental

theorem of algebra
proved

of which may be repeated). In other words, the polynomial

p(x) = a0 + a1x + · · · + anxn for n ≥ 1

can be factored completely as p(x) = c(x − z1)(x − z2) . . . (x − zn) where c is
a constant and the zi are, in general, complex numbers.

To see how Proposition 19.1.5 implies the fundamental theorem of algebra,
we let f(z) = 1/p(z) and assume the contrary, i.e., that p(z) is never zero for
any (finite) z. Then f(z) is bounded and analytic for all z, and Proposition
19.1.5 says that f(z) is a constant. This is obviously wrong. Thus, there must
be at least one z, say z = z1, for which p(z) is zero. So, we can factor out
(z − z1) from p(z) and write p(z) = (z − z1)q(z) where q(z) is of degree n− 1.
Applying the above argument to q(z), we have p(z) = (z − z1)(z − z2)r(z)
where r(z) is of degree n− 2. Continuing in this way, we can factor p(z) into
linear factors. The last polynomial will be a constant (a polynomial of degree
zero) which we have denoted as c.

19.2 Problems

19.1. Show that f(z) = z2 maps a line that makes an angle α with the
real axis of the z-plane onto a line in the w-plane which makes an angle
2α with the real axis of the w-plane. Hint: Use the trigonometric identity
tan 2α = 2 tanα/(1 − tan2 α).

19.2. Show that the function w = 1/z maps the straight line y = 1
2 in the

z-plane onto a circle in the w-plane.

19.3. (a) Using the chain rule, find ∂f/∂z∗ and ∂f/∂z in terms of partial
derivatives with respect to x and y.
(b) Evaluate ∂f/∂z∗ and ∂f/∂z assuming that the C–R conditions hold.

19.4. (a) Show that, when z is represented by polar coordinates, the C–R
conditions on a function f(z) are

∂U

∂r
=

1
r

∂V

∂θ
,

∂U

∂θ
= −r

∂V

∂r
,

where U and V are the real and imaginary parts of f(z) written in polar
coordinates.
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(b) Show that the derivative of f can be written as

df

dz
= e−iθ

(
∂U

∂r
+ i

∂V

∂r

)

.

Hint: Start with the C–R conditions in Cartesian coordinates and apply the
chain rule to them using x = r cos θ and y = r sin θ.

19.5. Prove the following identities for differentiation by finding the real
and imaginary parts of the function—u(x, y) and v(x, y)—and differentiat-
ing them:

(a)
d

dz
(f + g) =

df

dz
+

dg

dz
. (b)

d

dz
(fg) =

df

dz
g + f

dg

dz
.

(c)
d

dz

(
f

g

)

=
f ′(z)g(z)− g′(z)f(z)

[g(z)]2
, where g(z) �= 0.

19.6. Show that d/dz(ln z) = 1/z. Hint: Find u(x, y) and v(x, y) for ln z
using the exponential representation of z, then differentiate them.

19.7. Show that sin z and cos z have only real roots. Hint: Use definition of
sine and cosine in terms of exponentials.

19.8. Use mathematical induction and the product rule for differentiation to

show that
d

dz
(zn) = nzn−1.

19.9. Use Equations (19.5) and (19.6), to establish the following identities:

(a) Re(sin z) = sin x cosh y, Im(sin z) = cosx sinh y.

(b) Re(cos z) = cosx cosh y, Im(cos z) = − sin x sinh y.

(c) Re(sinh z) = sinhx cos y, Im(sinh z) = cosh x sin y.

(d) Re(cosh z) = coshx cos y, Im(cosh z) = sinhx sin y.

(e) | sin z|2 = sin2 x + sinh2 y, | cos z|2 = cos2 x + sinh2 y.

(f) | sinh z|2 = sinh2 x + sin2 y, | cosh z|2 = sinh2 x + cos2 y.

19.10. Find all the zeros of sinh z and cosh z.

19.11. Verify the following trigonometric identities:

(a) cos2 z + sin2 z = 1.

(b) cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2.

(c) sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2.

(d) sin
(π

2
− z

)
= cos z, cos

(π

2
− z

)
= sin z.

(e) cos 2z = cos2 z − sin2 z, sin 2z = 2 sin z cos z.

(f) tan(z1 + z2) =
tan z1 + tan z2

1 − tan z1 tan z2
.
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19.12. Verify the following hyperbolic identities:

(a) cosh2 z − sinh2 z = 1.

(b) cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2.

(c) sinh(z1 + z2) = sin z1 cosh z2 + cosh z1 sinh z2.

(d) cosh 2z = cosh2 z + sinh2 z, sinh 2z = 2 sinh z cosh z.

(e) tanh(z1 + z2) =
tanh z1 + tanh z2

1 + tanh z1 tanh z2
.

19.13. Show that

(a) tanh
(z

2

)
=

sinh x + i sin y

cosh x + cos y
. (b) coth

(z

2

)
=

sinh x − i sin y

coshx − cos y
.

19.14. Prove the following identities:

(a) cos−1 z = −i ln(z ±
√

z2 − 1). (b) sin−1 z = −i ln[iz ±
√

1 − z2)].

(c) tan−1 z =
1
2i

ln
(

i − z

i + z

)

. (d) cosh−1 z = ln(z ±
√

z2 − 1).

(e) sinh−1 z = ln(z ±
√

z2 + 1). (f) tanh−1 z = 1
2 ln

(
1 + z

1 − z

)

.

19.15. Prove that exp(z∗) is not analytic anywhere.

19.16. Show that eiz = cos z + i sin z for any z.

19.17. Show that both the real and imaginary parts of an analytic function
are harmonic.

19.18. Show that each of the following functions—call each one u(x, y)—
is harmonic, and find the function’s harmonic partner, v(x, y), such that
u(x, y) + iv(x, y) is analytic. Hint: Use C–R conditions.

(a)x3 − 3xy2. (b) ex cos y. (c)
x

x2 + y2
where x2 + y2 �= 0.

(d) e−2y cos 2x. (e) ey2−x2
cos 2xy.

(f) ex(x cos y − y sin y) + 2 sinh y sin x + x3 − 3xy2 + y.

19.19. Describe the curve defined by each of the following equations:

(a) z = 1 − it, 0 ≤ t ≤ 2. (b) z = t + it2, −∞ < t < ∞.

(c) z = a(cos t + i sin t)
π

2
≤ t ≤ 3π

2
. (d) z = t +

i

t
−∞ < t < 0.

19.20. Let f(z) = w = u+ iv. Suppose that
∂2Φ
∂x2

+
∂2Φ
∂y2

= 0. Show that if f

is analytic, then
∂2Φ
∂u2

+
∂2Φ
∂v2

= 0. That is, analytic functions map harmonic
functions in the z-plane to harmonic functions in the w-plane.
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19.21. (a) Show that
∫

f(z) dz can be written as
∫

A · dr + i

∫
B · dr,

where A = 〈u,−v, 0〉, B = 〈v, u, 0〉, and dr = 〈dx, dy, 0〉.
(b) Show that both A and B have vanishing curls when f is analytic.
(c) Now use the Stokes’ theorem to prove the Cauchy–Goursat theorem.

19.22. Find the value of the integral
∫

C
[(z + 2)/z] dz, where C is: (a) the

semicircle z = 2eiθ, for 0 ≤ θ ≤ π; (b) the semicircle z = 2eiθ, for π ≤ θ ≤ 2π;
and (c) the circle z = 2eiθ, for −π ≤ θ ≤ π.

19.23. Evaluate the integral
∫

γ
dz/(z − 1− i) where γ is: (a) the line joining

z1 = 2i and z2 = 3; and (b) the path from z1 to the origin and from there to
z2.

19.24. Use Equation (19.10) to show that
d

dz
(zm) = mzm−1. Hint: Use the

binomial theorem.

19.25. Let C be the boundary of a square whose sides lie along the lines
x = ±3 and y = ±3. For the positive sense of integration, evaluate each of
the following integrals by using CIF or the derivative formula (19.10):

(a)
∮

C

e−z

z − iπ/2
dz. (b)

∮

C

ez

z(z2 + 10)
dz. (c)

∮

C

cos z

(z − π
4 )(z2 − 10)

dz.

(d)
∮

C

sinh z

z4
dz. (e)

∮

C

cosh z

z4
dz. (f)

∮

C

cos z

z3
dz.

(g)
∮

C

cos z

(z − iπ/2)2
dz. (h)

∮

C

ez

(z − iπ)2
dz. (i)

∮

C

cos z

z + iπ
dz.

(j)
∮

C

ez

z2 − 5z + 4
dz. (k)

∮

C

sinh z

(z − iπ/2)2
dz. (l)

∮

C

cosh z

(z − π/2)2
dz.

(m)
∮

C

z2

(z − 2)(z2 − 10)
dz.



Chapter 20

Complex Series

As in the real case, representation of functions by infinite series of “simpler”
functions is an endeavor worthy of our serious consideration. We start with
an examination of the properties of sequences and series of complex numbers
and derive series representations of some complex functions. Most of the
discussion is a direct generalization of the results of the real series.

A sequence {zk}∞k=1 of complex numbers is said to converge to a limit z if sequence,
convergence to a
limit, partial sums,
and series

limk→∞ |z − zk| = 0. In other words, for each positive number ε there must
exist an integer N such that |z − zk| < ε whenever k > N . The reader may
show that the real (imaginary) part of the limit of a sequence of complex
numbers is the limit of the real (imaginary) part of the sequence. Series can
be converted into sequences by partial summation. For instance, to study
the infinite series

∑∞
k=1 zk, we form the partial sums Zn ≡

∑n
k=1 zk and

investigate the sequence {Zn}∞n=1. We thus say that the infinite series
∑∞

k=1 zk

converges to Z if limn→∞ Zn = Z.

Example 20.0.1. A series that is used often in analysis is the geometric series
Z =

∑∞
k=0 zk. Let us show that this series converges to 1/(1 − z) for |z| < 1. For a

partial sum of n terms, we have

Zn ≡
n∑

k=0

zk = 1 + z + z2 + · · · + zn.

Multiply this by z and subtract the result from the Zn sum to get (see also Example
9.3.3)

Zn − zZn = 1 − zn+1 ⇒ Zn =
1 − zn+1

1 − z
.

We now show that Zn converges to Z = 1/(1 − z). We have

|Z − Zn| =

∣
∣
∣
∣

1

1 − z
− 1 − zn+1

1 − z

∣
∣
∣
∣ =

∣
∣
∣
∣
zn+1

1 − z

∣
∣
∣
∣ =

|z|n+1

|1 − z|
and

lim
n→∞

|Z − Zn| = lim
n→∞

|z|n+1

|1 − z| =
1

|1 − z| lim
n→∞

|z|n+1 = 0

for |z| < 1. Thus,
∑∞

k=0 zk = 1/(1 − z) for |z| < 1. �



516 Complex Series

If the series
∑∞

k=0 zk converges, both the real part,
∑∞

k=0 xk, and the
imaginary part,

∑∞
k=0 yk, of the series also converge. From Chapter 9, we

know that a necessary condition for the convergence of the real series
∑∞

k=0 xk

and
∑∞

k=0 yk is that xk → 0 and yk → 0. Thus, a necessary condition for
the convergence of the complex series is limk→∞ zk = 0. The terms of such a
series are, therefore, bounded. Thus, there exists a positive number M such
that |zk| < M for all k.

A complex series is said to converge absolutely, if the real seriesabsolute
convergence ∞∑

k=0

|zk| =
∞∑

k=0

√
x2

k + y2
k

converges. Clearly, absolute convergence implies convergence.

20.1 Power Series

We now concentrate on the power series which, as in the real case, are infinite
sums of powers of (z − z0). It turns out—as we shall see shortly—that for
complex functions, the inclusion of negative powers is crucial.power series

Theorem 20.1.1. If the power series
∑∞

k=0 ak(z − z0)k converges for z1

(assumed to be different from z0), then it converges absolutely for every value
of z such that |z − z0| < |z1 − z0|. Similarly if the power series

∑∞
k=0 bk/(z −

z0)k converges for z2 �= z0, then it converges absolutely for every value of z
such that |z − z0| > |z2 − z0|.
Proof. We prove the first part of the proposition; the second part is done
similarly. Since the series converges for z = z1, all the terms |ak(z1 − z0)k|
are smaller than a positive number M . We, therefore have

∞∑

k=0

|ak(z − z0)k| =
∞∑

k=0

∣
∣
∣
∣ak(z1 − z0)k (z − z0)k

(z1 − z0)k

∣
∣
∣
∣

=
∞∑

k=0

|ak(z1 − z0)k|
∣
∣
∣
∣
z − z0

z1 − z0

∣
∣
∣
∣

k

≤
∞∑

k=0

MBk

= M

∞∑

k=0

Bk =
M

1 − B
,

where B ≡ |(z − z0)/(z1 − z0)| is a positive real number less than 1. Since
the RHS is a finite (positive) number, the series of absolute values converges,
and the proof is complete.

The essence of Theorem 20.1.1 is that if a power series—with positive
powers—converges for a point at a distance r1 from z0, then it converges for
all interior points of a circle of radius r1 centered at z0. Similarly, if a power
series—with negative powers—converges for a point at a distance r2 from z0,
then it converges for all exterior points of a circle of radius r2 centered at z0

(see Figure 20.1).
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z0 r1

(a) (b)

z0
r2

Figure 20.1: (a) Power series with positive exponents converge for the interior points

of a circle. (b) Power series with negative exponents converge for the exterior points of

a circle.

Box 20.1.1. When constructing power series, positive powers are used
for points inside a circle and negative powers for points outside it.

The largest circle about z0 such that the first power series of Theorem
20.1.1 converges is called the circle of convergence of the power series. It circle of

convergencefollows from Theorem 20.1.1 that the series cannot converge at any point
outside the circle of convergence. (Why?)

Let us consider the power series

S(z) ≡
∞∑

k=0

ak(z − z0)k (20.1)

which we assume to be convergent at all points interior to a circle for which
|z − z0| = r. This implies that the sequence of partial sums {Sn(z)}∞n=0

converges. Therefore, for any ε > 0, there exists an integer Nε such that

|S(z) − Sn(z)| < ε whenever n > Nε.

In general, the integer Nε may be dependent on z; that is, for different values uniform
convergence
explained

of z, we may be forced to pick different Nε’s. When Nε is independent of z, we
say that the convergence is uniform. We state the following result without
proof: a power series is

uniformly
convergent and
analytic; it can be
differentiated and
integrated term by
term.

Theorem 20.1.2. The power series S(z) =
∑∞

n=0 an(z − z0)n is uniformly
convergent for all points within its circle of convergence, and S(z) is an ana-
lytic function of z there. Furthermore, such a series can be differentiated and
integrated term by term:

dS(z)
dz

=
∞∑

n=1

nan(z − z0)n−1,

∫

γ

S(z) dz =
∞∑

n=0

an

∫

γ

(z − z0)ndz,
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at each point z and each path γ located inside the circle of convergence of the
power series.

By substituting the reciprocal of (z − z0) in the power series, we can show
that if

∑∞
k=0 bk/(z− z0)k is convergent in the annulus r2 < |z− z0| < r1, then

it is uniformly convergent for all z in that annulus, and the series represents
a continuous function of z there.

20.2 Taylor and Laurent Series

Complex series, just as their real counterparts, find their most frequent utility
in representing well-behaved functions. The following theorem, which we state
without proof,1 is essential in the application of complex analysis.

Theorem 20.2.1. Let C1 and C2 be circles of radii r1 and r2, both centered
at z0 in the z-plane with r1 > r2. Let f(z) be analytic on C1 and C2 and
throughout S, the annular region between the two circles. Then, at each point
z of S, f(z) is given uniquely by the Laurent series

f(z) =
∞∑

n=−∞
an(z − z0)n, where an =

1
2πi

∮

C

f(ξ)
(ξ − z0)n+1

dξ,

and C is any contour within S that encircles z0. When r2 = 0, the series is
called Taylor series. In that case an = 0 for negative n and an = f (n)(z0)/n!
for n ≥ 0.

We can see the reduction of the Laurent series to Taylor series as follows.
The Laurent expansion is convergent as long as r2 < |z − z0| < r1. In partic-
ular, if r2 = 0, and if the function is analytic throughout the interior of the
larger circle, then f(ξ)/(ξ−z0)n+1 will be analytic for negative integer n, and
the integral will be zero by the Cauchy–Goursat theorem. Therefore, an will
be zero for n = −1,−2, . . . . Thus, only positive powers of (z − z0) will be
present in the series, and we obtain the Taylor series.

For z0 = 0, the Taylor series reduces to the Maclaurin series:Maclaurin series

f(z) = f(0) + f ′(0)z + · · · =
∞∑

n=0

f (n)(0)
n!

zn.

Box 19.1.4 tells us that we can enlarge C1 and shrink C2 until we encounter
a point at which f is no longer analytic. Thus, we can include all the possible
analytic points by enlarging C1 and shrinking C2.

Example 20.2.2. Let us expand some functions in terms of series. For entire
functions there is no point in the entire complex plane at which they are not analytic.

1For a proof, see Hassani, S. Mathematical Physics: A Modern Introduction to Its Foun-
dations, Springer-Verlag, 1999, Section 9.6.
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Thus, only positive powers of (z − z0) will be present, and we will have a Taylor
expansion that is valid for all values of z.
(a) We expand ez around z0 = 0. The nth derivative of ez is ez. Thus, f (n)(0) = 1,
and the Taylor (Maclaurin) expansion gives

ez =

∞∑

n=0

f (n)(0)

n!
zn =

∞∑

n=0

zn

n!
.

(b) The Maclaurin series for sin z is obtained by noting that

dn

dzn
sin z

∣
∣
∣
∣
z=0

=

{
0 if n is even,

(−1)(n−1)/2 if n is odd,

and substituting this in the Maclaurin expansion:

sin z =
∑

n odd

(−1)(n−1)/2 zn

n!
=

∞∑

k=0

(−1)k z2k+1

(2k + 1)!
.

Similarly, we can obtain

cos z =
∞∑

k=0

(−1)k z2k

(2k)!
, sinh z =

∞∑

k=0

z2k+1

(2k + 1)!
, cosh z =

∞∑

k=0

z2k

(2k)!
.

It is seen that the series representation of all these functions is obtained by replacing
the real variable x in their real series representation with a complex variable z.
(c) The function 1/(1+z) is not entire, so the region of its convergence is limited. Let
us find the Maclaurin expansion of this function. Starting from the origin (z0 = 0),
the function is analytic within all circles of radii r < 1. At r = 1 we encounter a
singularity, the point z = −1. Thus, the series converges for all points z for which
|z| < 1.2 For such points we have

f (n)(0) =
dn

dzn
[(1 + z)−1]

∣
∣
∣
∣
z=0

= (−1)nn!.

Thus,

1

1 + z
=

∞∑

n=0

f (n)(0)

n!
zn =

∞∑

n=0

(−1)nzn.
�

The Taylor and Laurent series allow us to express an analytic function as
a power series. For a Taylor series of f(z) the expansion is routine because
the coefficient of its nth term is simply f (n)(z0)/n!, where z0 is the center of
the circle of convergence. However, when a Laurent series is applicable in a there is only one

Laurent series for
a given function
defined in a given
region.

given region of the complex plane, the nth coefficient is not, in general, easy to
evaluate. Usually it can be found by inspection and certain manipulations of
other known series. Then the uniqueness of Laurent series expansion assures
us that the series so obtained is the unique Laurent series for the function in
that region.3

2As remarked before, the series diverges for all points outside the circle |z| = 1. This
does not mean that the function cannot be represented by a series for points outside the
circle. On the contrary, we shall see shortly that the Laurent series, with negative powers
is designed precisely for such a purpose.

3See Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, p. 258.
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As in the case of real series,we can add,
subtract, and
multiply
convergent power
series.

Box 20.2.1. We can add, subtract, and multiply convergent power series.
Furthermore, if the denominator does not vanish in a neighborhood of a
point z0, then we can obtain the Laurent series of the ratio of two power
series about z0 by long division.

Thus converging power series can be manipulated as though they were
finite sums (polynomials). Such manipulations are extremely useful when
dealing with Taylor and Laurent expansions in which the straightforward cal-
culation of coefficients may be tedious. The following examples illustrate the
power of infinite-series arithmetic. In these examples, the following equations
are very useful:

1
1 − z

=
∞∑

n=0

zn,
1

1 + z
=

∞∑

n=0

(−1)nzn, |z| < 1. (20.2)

Example 20.2.3. To expand the function f(z) =
2 + 3z

z2 + z3
in a Laurent series

about z = 0, rewrite it as

f(z) =
1

z2

(
2 + 3z

1 + z

)

=
1

z2

(

3 − 1

1 + z

)

=
1

z2

(

3 −
∞∑

n=0

(−1)nzn

)

=
1

z2
(3 − 1 + z − z2 + z3 − · · · ) =

2

z2
+

1

z
− 1 + z − z2 + · · · .

This series converges for 0 < |z| < 1. We note that negative powers of z are also
present. This is a reflection of the fact that the function is not analytic inside the
entire circle |z| = 1; it diverges at z = 0. �

Example 20.2.4. The function f(z) = z/[(z − 1)(z − 2)] has a Taylor expansion
around the origin for |z| < 1. To find this expansion, we write4

f(z) = − 1

z − 1
+

2

z − 2
=

1

1 − z
− 1

1 − z/2
.

Expanding both fractions in geometric series (both |z| and |z/2| are less than 1), we
obtain f(z) =

∑∞
n=0 zn −

∑∞
n=0(z/2)n. Adding the two series yields

f(z) =
∞∑

n=0

(1 − 2−n)zn for |z| < 1.

This is the unique Taylor expansion of f(z) within the circle |z| = 1.

4We could, of course, evaluate the derivatives of all orders of the function at z = 0 and
use the Maclaurin formula. However, the present method gives the same result much more
quickly.
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For the annular region 1 < |z| < 2 we have a Laurent series. This can be seen
by noting that

f(z) =
1/z

1/z − 1
− 1

1 − z/2
= −1

z

(
1

1 − 1/z

)

− 1

1 − z/2
.

Since both fractions on the RHS are analytic in the annular region (|1/z| < 1,
|z/2| < 1), we get

f(z) = −1

z

∞∑

n=0

(
1

z

)n

−
∞∑

n=0

( z

2

)n

= −
∞∑

n=0

z−n−1 −
∞∑

n=0

2−nzn

= −
−∞∑

n=−1

zn −
∞∑

n=0

2−nzn = −
∞∑

n=−∞
anzn,

where an = −1 for n < 0 and an = −2−n for n ≥ 0. This is the unique Laurent
expansion of f(z) in the given region.

Finally, for |z| > 2 we have only negative powers of z. We obtain the expansion
in this region by rewriting f(z) as follows:

f(z) = − 1/z

1 − 1/z
+

2/z

1 − 2/z
.

Expanding the fractions yields

f(z) = −
∞∑

n=0

z−n−1 +
∞∑

n=0

2n+1z−n−1 =
∞∑

n=0

(2n+1 − 1)z−n−1.

This is again the unique expansion of f(z) in the region |z| > 2. �

The example above shows that a single function may have different series
representations in different regions of the complex plane, each series having
its own region of convergence.

Example 20.2.5. Define f(z) as

f(z) =

{
(1 − cos z)/z2 for z �= 0,
1
2

for z = 0.

We can show that f(z) is an entire function.
Since 1 − cos z and z2 are entire functions, their ratio is analytic everywhere

except at the zeros of its denominator. The only such zero is z = 0. Thus, f(z) is
analytic everywhere except possibly at z = 0. To see the behavior of f(z) at z = 0,
we look at its Maclaurin series:

1 − cos z = 1 −
∞∑

n=0

(−1)n z2n

(2n)!

which implies that

1 − cos z

z2
=

∞∑

n=1

(−1)n+1 z2n−2

(2n)!
=

1

2
− z2

4!
+

z4

6!
− · · · .

The expansion on the RHS shows that the value of the series is 1
2
, which, by defini-

tion, is f(0). Thus, the series converges for all z, and Box 20.1.2 says that f(z) is
entire. �
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A Laurent series can give information about the integral of a function
around a closed contour in whose interior the function may not be analytic.
In fact, the coefficient of the first negative power in a Laurent series is given by

a−1 =
1

2πi

∮

C

f(ξ) dξ. (20.3)

Thus,

Box 20.2.2. To find the integral of a (nonanalytic) function around a
closed contour surrounding z0, write the Laurent series for the function
and read off a−1, the coefficient of the 1/(z − z0) term. The integral is
2πia−1.

Example 20.2.6. As an illustration of this idea, let us evaluate the integral I =∮
C

dz/[z2(z−2)], where C is a circle of radius 1 centered at the origin. The function
is analytic in the annular region 0 < |z| < 2. We can, therefore, expand it as a
Laurent series about z = 0 in that region:

1

z2(z − 2)
= − 1

2z2

(
1

1 − z/2

)

= − 1

2z2

∞∑

n=0

( z

2

)n

= −1

2

(
1

z2

)

− 1

4

(
1

z

)

− 1

8
− · · · .

Thus, a−1 = − 1
4
, and

∮
C

dz/[z2(z − 2)] = 2πia−1 = −iπ/2. Any other way of
evaluating the integral is nontrivial. �

20.3 Problems

20.1. Expand sinh z in a Taylor series about the point z = iπ.

20.2. Let C be the circle |z − i| = 3 integrated in the positive sense. Find
the value of each of the following integrals using the CIF or the derivative
formula (19.10):

(a)
∮

C

ez

z2 + π2
dz. (b)

∮

C

sinh z

(z2 + π2)2
dz. (c)

∮

C

dz

z2 + 9
.

(d)
∮

C

dz

(z2 + 9)2
. (e)

∮

C

cosh z

(z2 + π2)3
dz. (f)

∮

C

z2 − 3z + 4
z2 − 4z + 3

dz.

20.3. For 0 < r < 1, show that

∞∑

k=0

rk cos kθ =
1 − r cos θ

1 + r2 − 2r cos θ
and

∞∑

k=0

rk sin kθ =
r sin θ

1 + r2 − 2r cos θ
.
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20.4. Find the Taylor expansion of 1/z2 for points inside the circle |z−2| < 2.

20.5. Use mathematical induction to show that

dn

dzn
(1 + z)−1

∣
∣
∣
∣
z=0

= (−1)nn!.

20.6. Find the (unique) Laurent expansion of each of the following functions
in each of its regions of analyticity:

(a)
1

(z − 2)(z − 3)
. (b) z cos(z2). (c)

1
z2(1 − z)

. (d)
sinh z − z

z4
.

(e)
1

(1 − z)3
. (f)

1
z2 − 1

. (g)
z2 − 4
z2 − 9

. (h)
1

(z2 − 1)2
.

(i)
z

z − 1
.

20.7. Show that the following functions are entire:

(a) f(z) =

⎧
⎨

⎩

e2z − 1
z2 − 2

z for z �= 0,

2 for z = 0.
(b) f(z) =

{
sin z

z for z �= 0,

1 for z = 0.

(c) f(z) =

⎧
⎨

⎩

cos z
z2 − π2/4

for z �= ±π/2,

−1/π for z = ±π/2.

20.8. Obtain the first few nonzero terms of the Laurent-series expansion of
each of the following functions about the origin by approximating the denomi-
nator by a polynomial and using the technique of long division of polynomials.
Also find the integral of the function along a small simple closed contour en-
circling the origin.

(a)
1

sin z
. (b)

1
1 − cos z

. (c)
z

1 − cosh z
. (d)

z2

z − sin z
.

(e)
1

ez − 1
. (f)

1
z2 sin z

. (g)
z4

6z + z3 − 6 sinh z
.

20.9. Obtain the Laurent-series expansion of f(z) = sinh z/z3 about the
origin.





Chapter 21

Calculus of Residues

One of the most powerful tools made available by complex analysis is the
theory of residues, which makes possible the routine evaluation of certain real
definite integrals that are impossible to calculate otherwise. Example 20.2.6
showed a situation in which an integral was related to expansion coefficients
of Laurent series. Here we will develop a systematic way of evaluating both
real and complex integrals using the same idea.

Recall that a singular point z0 of f(z) is a point at which f fails to be
analytic. If, in addition, there is some neighborhood of z0 in which f is
analytic at every point (except, of course, at z0 itself), then z0 is called an
isolated singularity of f . All singularities we have encountered so far have isolated singularity

been isolated singularities. Although singularities that are not isolated also
exist, we shall not discuss them in this book.

21.1 The Residue

Let z0 be an isolated singularity of f . Then there exists an r > 0 such that,
within the “annular” region 0 < |z − z0| < r, the function f has the Laurent
expansion1

f(z) =
∞∑

n=−∞
an(z − z0)n ≡

∞∑

n=0

an(z − z0)n +
b1

z − z0
+

b2

(z − z0)2
+ · · · ,

where

an =
1

2πi

∮

C

f(ξ) dξ

(ξ − z0)n+1
and bn =

1
2πi

∮

C

f(ξ)(ξ − z0)n−1 dξ.

In particular,

b1 =
1

2πi

∮

C

f(ξ) dξ, (21.1)

1We are using bn for a−n.
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where C is any simple closed contour around z0, traversed in the positive
sense, on and interior to which f is analytic except at the point z0 itself.residue defined

Box 21.1.1. The complex number b1, which is 1
2πi times the integral of

f(z) along the contour, is called the residue of f at the isolated singular
point z0.

It is important to note that the residue is independent of the contour C as
long as z0 is the only isolated singular point within C.

Example 21.1.1. We want to evaluate the integral
∮

C
sin z dz/(z − π/2)3 where

C is any simple closed contour having z = π/2 as an interior point.
To evaluate the integral we expand around z = π/2 and use Equation (21.1).

We note that

sin z = cos
(
z − π

2

)
=

∞∑

n=0

(−1)n (z − π/2)2n

(2n)!
= 1 − (z − π/2)2

2
+ · · ·

so
sin z

(z − π/2)3
=

1

(z − π/2)3
− 1

2

(
1

z − π/2

)

+ · · · .

It follows that b1 = − 1
2
; therefore,

∮
C

sin z dz/(z − π/2)3 = 2πib1 = −iπ. �

Example 21.1.2. The integral
∮

C
cos z dz/z2, where C is the circle |z| = 1, is

zero because
cos z

z2
=

1

z2

∞∑

n=0

(−1)n z2n

(2n)!
=

1

z2
− 1

2
+

z2

4!
+ · · ·

yields b1 = 0 (no 1/z term in the Laurent expansion). Therefore, by Equation (21.1)
the integral must vanish.

When C is the circle |z| = 2,
∮

C
ez dz/(z − 1)3 = iπe because

ez = eez−1 = e
∞∑

n=0

(z − 1)n

n!
= e

[

1 + (z − 1) +
(z − 1)2

2!
+ · · ·

]

and
ez

(z − 1)3
= e

[
1

(z − 1)3
+

1

(z − 1)2
+

1

2

(
1

z − 1

)

+ · · ·
]

.

Thus, b1 = e/2, and the integral is 2πib1 = iπe. �

We use the notation Res[f(z0)] to denote the residue of f at the isolated
singular point z0. Equation (21.1) can then be written as

∮

C

f(z) dz = 2πi Res[f(z0)].

What if there are several isolated singular points within the simple closed
contour C? Let Ck be the positively traversed circle around zk shown in
Figure 21.1. Then the Cauchy–Goursat theorem yields

0 =
∮

C′
f(z) dz =

∮

circles

f(z) dz +
∮

parallel
lines

f(z) dz +
∮

C

f(z) dz,
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z1

z2

zm

C1

C2

Cm

Figure 21.1: Singularities are avoided by going around them.

where C′ is the union of all contours inside which union there are no singu-
larities. The contributions of the parallel lines cancel out, and we obtain

∮

C

f(z) dz = −
m∑

k=1

∮

Ck

f(z) dz =
m∑

k=1

2πi Res[f(zk)],

where in the last step the definition of residue at zk has been used. The minus
sign disappears in the final result because the sense of Ck, while positive for
the shaded region of Figure 21.1, is negative for the interior of Ck because
this interior is to our right as we traverse Ck in the direction indicated. We
thus have

Theorem 21.1.3. (The Residue Theorem). Let C be a positively inte-
grated simple closed contour within and on which a function f is analytic
except at a finite number of isolated singular points z1, z2, . . . , zm interior to
C. Then ∮

C

f(z) dz = 2πi
m∑

k=1

Res[f(zk)]. (21.2)

Example 21.1.4. Let us evaluate the integral
∮

C
(2z − 3) dz/[z(z − 1)] where C

is the circle |z| = 2. There are two isolated singularities in C, z1 = 0 and z2 = 1.
To find Res[f(z1)], we expand around the origin using Equation (20.2):

2z − 3

z(z − 1)
=

3

z
− 1

z − 1
=

3

z
+

1

1 − z
=

3

z
+ 1 + z + · · · for |z| < 1.

This gives Res[f(z1)] = 3. Similarly, expanding around z = 1 gives

2z − 3

z(z − 1)
=

3

(z − 1) + 1
− 1

z − 1
= − 1

z − 1
+ 3

∞∑

n=0

(−1)n(z − 1)n

which yields Res[f(z2)] = −1. Thus,
∮

C

2z − 3

z(z − 1)
dz = 2πi{Res[f(z1)] + Res[f(z2)]} = 2πi(3 − 1) = 4πi. �
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Let f(z) have an isolated singularity at z0. Then there exist a real number
r > 0 and an annular region 0 < |z − z0| < r such that f can be represented
by the Laurent series

f(z) =
∞∑

n=0

an(z − z0)n +
∞∑

n=1

bn

(z − z0)n
. (21.3)

The second sum in Equation (21.3), involving negative powers of (z − z0), is
called the principal part of f at z0. The principal part is used to classifyprincipal part of a

function isolated singularities. We consider two cases:
(a) If bn = 0 for all n ≥ 1, z0 is called a removable singular point of f .removable singular

point In this case, the Laurent series contains only nonnegative powers of (z − z0),
and setting f(z0) = a0 makes the function analytic at z0. For example, the
function f(z) = (ez − 1 − z)/z2, which is indeterminate at z = 0, becomes
entire if we set f(0) = 1/2, because its Laurent series

f(z) =
1
2

+
z

3!
+

z2

4!
+ · · ·

has no negative power.
(b) If bn = 0 for all n > m and bm �= 0, z0 is called a pole of order m. Inpoles defined

this case, the expansion takes the form

f(z) =
∞∑

n=0

an(z − z0)n +
b1

z − z0
+ · · · + bm

(z − z0)m

for 0 < |z − z0| < r. In particular, if m = 1, z0 is called a simple pole.simple pole

Example 21.1.5. Let us consider some examples of poles of various orders.
(a) The function (z2−3z +5)/(z−1) has a Laurent series around z = 1 containing
only three terms: (z2 − 3z + 5)/(z − 1) = −1 + (z − 1) + 3/(z − 1). Thus, it has a
simple pole at z = 1, with a residue of 3.
(b) The function sin z/z6 has a Laurent series

sin z

z6
=

1

z6

∞∑

n=0

(−1)n z2n+1

(2n + 1)!
=

1

z5
− 1

6z3
+

1

(5!)z
− z

7!
+ · · ·

about z = 0. The principal part has three terms. The pole, at z = 0, is of order 5,
and the function has a residue of 1/120 at z = 0.
(c) The function (z2−5z+6)/(z−2) has a removable singularity at z = 2, because

z2 − 5z + 6

z − 2
=

(z − 2)(z − 3)

z − 2
= z − 3 = −1 + (z − 2)

and bn = 0 for all n. �

The type of isolated singularity that is most important in applications is
of the second type—poles. For a function that has a pole of order m at z0,
the calculation of residues is routine. Such a calculation, in turn, enables us
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to evaluate many integrals effortlessly. How do we calculate the residue of a
function f having a pole of order m at z0?

It is clear that if f has a pole of order m, then g(z) defined by g(z) ≡
(z − z0)mf(z) is analytic at z0. Thus, for any simple closed contour C that
contains z0 but no other singular point of f , we have

Res[f(z0)] =
1

2πi

∮

C

f(z) dz =
1

2πi

∮

C

g(z) dz

(z − z0)m
=

g(m−1)(z0)
(m − 1)!

,

where we used Equation (19.10). In terms of f this yields2

Res[f(z0)] =
1

(m − 1)!
lim

z→z0

dm−1

dzm−1
[(z − z0)mf(z)]. (21.4)

For the special, but important, case of a simple pole, we obtain

Res[f(z0)] = lim
z→z0

[(z − z0)f(z)]. (21.5)

The most widespread application of residues occurs in the evaluation of application of the
residue theorem in
evaluating definite
integrals

real definite integrals. It is possible to “complexify” certain real definite in-
tegrals and relate them to contour integrations in the complex plane. What
is typically involved is the addition of a number of semicircles to the real
integral such that it becomes a closed contour integral whose value can be
determined by the residue theorem. One then takes the limit of the contour
integral when the radii of the semicircles go to infinity or zero. In this limit
the contributions from the semicircles should vanish for the method to work.
In that case, one recovers the real integral. There are three types of integrals
most commonly encountered. We discuss these separately below. In all cases
we assume that the contribution of the semicircles will vanish in the limit.

21.2 Integrals of Rational Functions

The first type of integral we can evaluate using the residue theorem is of the
form

I1 =
∫ ∞

−∞

p(x)
q(x)

dx,

where p(x) and q(x) are real polynomials, and q(x) �= 0 for any real x. We
can then write

I1 = lim
R→∞

∫ R

−R

p(x)
q(x)

dx = lim
R→∞

∫

Cx

p(z)
q(z)

dz,

where Cx is the (open) contour lying on the real axis from −R to +R. We
now close that contour by adding to it the semicircle of radius R [see Fig-
ure 21.2(a)]. This will not affect the value of the integral because, by our

2The limit is taken because in many cases the mere substitution of z0 may result in an
indeterminate form.
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3i

i

−R R

(a)

−i

−3i

−R R

(b)

Figure 21.2: (a) The large semicircle is chosen in the UHP. (b) Note how the direction

of contour integration is forced to be clockwise when the semicircle is chosen in the

LHP.

assumption, the contribution of the integral of the semicircle tends to zero in
the limit R → ∞. We close the contour in the upper half-plane (UHP) if q(z)
has a zero there. We then get

I1 = lim
R→∞

∮

C

p(z)
q(z)

dz = 2πi

k∑

j=1

Res
[
p(zj)
q(zj)

]

,

where C is the closed contour composed of the interval (−R, R) and the
semicircle CR, and {zj}k

j=1 are the zeros of q(z) in the UHP. We may instead
close the contour in the lower half-plane (LHP), in which case

I1 = −2πi

m∑

j=1

Res
[
p(zj)
q(zj)

]

,

where {zj}m
j=1 are the zeros of q(z) in the LHP. The minus sign indicates that

in the LHP we (are forced to) integrate in the negative sense.

Example 21.2.1. Let us evaluate the integral I =
∫ ∞
0

x2 dx/[(x2 + 1)(x2 + 9)].
Since the integrand is even, we can extend the interval of integration to all real
numbers (and divide the result by 2). It is shown below that in the limit that the
radius of the semicircle goes to infinity, the integral of that semicircle goes to zero.
Therefore, we write the contour integral corresponding to I :

I =
1

2

∮

C

z2 dz

(z2 + 1)(z2 + 9)
,

where C is as shown in Figure 21.2(a). Note that the contour is integrated in the
positive sense. This is always true for the UHP. The singularities of the function
in the UHP are the simple poles i and 3i corresponding to the simple zeros of the
denominator. By (21.5), the residues at these poles are
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Res[f(i)] = lim
z→i

[

(z − i)
z2

(z − i)(z + i)(z2 + 9)

]

= − 1

16i
,

Res[f(3i)] = lim
z→3i

[

(z − 3i)
z2

(z2 + 1)(z − 3i)(z + 3i)

]

=
3

16i
.

Thus, we obtain

I =

∫ ∞

0

x2 dx

(x2 + 1)(x2 + 9)
=

1

2

∮

C

z2 dz

(z2 + 1)(z2 + 9)
= πi

(

− 1

16i
+

3

16i

)

=
π

8
.

It is instructive to obtain the same results using the LHP. In this case the contour
is as shown in Figure 21.2(b). It is clear that the interior is to our right as we traverse
the contour. So we have to introduce a minus sign for its integration. The singular
points are at z = −i and z = −3i. These are simple poles at which the residues of
the function are

Res[f(−i)] = lim
z→−i

[

(z + i)
z2

(z − i)(z + i)(z2 + 9)

]

=
1

16i
,

Res[f(−3i)] = lim
z→−3i

[

(z + 3i)
z2

(z2 + 1)(z − 3i)(z + 3i)

]

= − 3

16i
.

Therefore,

I =

∫ ∞

0

x2 dx

(x2 + 1)(x2 + 9)
=

1

2

∮

C

z2 dz

(z2 + 1)(z2 + 9)
= −πi

(
1

16i
− 3

16i

)

=
π

8
.

We now show that the integral of the large circle Γ tends to zero. On such a
circle, z = Reiθ; therefore

∫

Γ

z2 dz

(z2 + 1)(z2 + 9)
=

∫

Γ

R2e2iθReiθdθ

(R2e2iθ + 1)(R2e2iθ + 9)
.

In the limit that R → ∞, we can ignore the small numbers 1 and 9 in the denom-
inator. Then the overall integral becomes 1/R times a finite integral over θ. It
follows that as R tends to infinity, the contribution of the large circle indeed goes to
zero. �
Example 21.2.2. Let us now consider a more complicated integral:

∫ ∞

−∞

x2 dx

(x2 + 1)(x2 + 4)2

which turns into
∮

C
z2 dz/[(z2 +1)(z2 +4)2]. The poles in the UHP are at z = i and

z = 2i. The former is a simple pole, and the latter is a pole of order 2. Thus,

Res[f(i)] = lim
z→i

[

(z − i)
z2

(z − i)(z + i)(z2 + 4)2

]

= − 1

18i
,

Res[f(2i)] =
1

(2 − 1)!
lim

z→2i

d

dz

[

(z − 2i)2
z2

(z2 + 1)(z + 2i)2(z − 2i)2

]

= lim
z→2i

d

dz

[
z2

(z2 + 1)(z + 2i)2

]

=
5

72i
,

and ∫ ∞

−∞

x2 dx

(x2 + 1)(x2 + 4)2
= 2πi

(

− 1

18i
+

5

72i

)

=
π

36
.

Closing the contour in the LHP would yield the same result as the reader is urged
to verify. �
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21.3 Products of Rational and Trigonometric
Functions

The second type of integral we can evaluate using the residue theorem is of
the form ∫ ∞

−∞

p(x)
q(x)

cos ax dx or
∫ ∞

−∞

p(x)
q(x)

sin ax dx,

where a is a real number, p(x) and q(x) are real polynomials in x, and q(x)
has no real zeros. These integrals are the real and imaginary parts of

I2 =
∫ ∞

−∞

p(x)
q(x)

eiax dx.

The presence of eiax dictates the choice of the half-plane: If a ≥ 0, we choose
the UHP because

eiaz = eia(x+iy) = eiaxe−ay where y > 0,

and the negative exponent ensures convergence for large R and y. For the same
reason, we choose the LHP when a ≤ 0. The following examples illustrate the
procedure.

Example 21.3.1. Let us evaluate
∫ ∞
−∞ cos ax dx/(x2 + 1)2 where a �= 0. This

integral is the real part of the integral I2 =
∫ ∞
−∞ eiax dx/(x2 + 1)2. When a > 0, we

close in the UHP. Then we proceed as for integrals of rational functions. Thus, we
have

I2 =

∮

C

eiaz

(z2 + 1)2
dz = 2πi Res[f(i)] for a > 0,

because there is only one singularity in the UHP at z = i which is a pole of order 2.
We next calculate the residue:

Res[f(i)] = lim
z→i

d

dz

[

(z − i)2
eiaz

(z − i)2(z + i)2

]

= lim
z→i

d

dz

[
eiaz

(z + i)2

]

= lim
z→i

[
(z + i)iaeiaz − 2eiaz

(z + i)3

]

=
e−a

4i
(1 + a).

Substituting this in the expression for I2, we obtain I2 = (π/2)e−a(1+ a) for a > 0.
When a < 0, we have to close the contour in the LHP, where the pole of order

2 is at z = −i and the contour is taken clockwise. Thus, we get

I2 =

∮

C

eiaz

(z2 + 1)2
dz = −2πi Res[f(−i)] for a < 0.

For the residue we obtain

Res[f(−i)] = lim
z→−i

d

dz

[

(z + i)2
eiaz

(z − i)2(z + i)2

]

= −ea

4i
(1 − a)

and the expression for I2 becomes I2 = (π/2)ea(1 − a) for a < 0. We can combine
the two results and write

∫ ∞

−∞

cos ax

(x2 + 1)2
dx = Re(I2) = I2 =

π

2
(1 + |a|)e−|a|. �



21.3 Products of Rational and Trigonometric Functions 533

Example 21.3.2. As another example, let us evaluate
∫ ∞

−∞

x sin ax

x4 + 4
dx where a �= 0.

This is the imaginary part of the integral I2 =
∫ ∞
−∞ xeiax dx/(x4+4) which, in terms

of z and for the closed contour in the UHP (when a > 0), becomes

I2 =

∮

C

zeiaz

z4 + 4
dz = 2πi

m∑

j=1

Res[f(zj)] for a > 0, (21.6)

where C is the large semicircle in the UHP. The singularities are determined by the
zeros of the denominator: z4 +4 = 0 or z = 1± i,−1± i. Of these four simple poles
only two, 1 + i and −1 + i, are in the UHP. We now calculate the residues:

Res[f(1 + i)] = lim
z→1+i

(z − 1 − i)
zeiaz

(z − 1 − i)(z − 1 + i)(z + 1 − i)(z + 1 + i)

=
(1 + i)eia(1+i)

(2i)(2)(2 + 2i)
=

eiae−a

8i
,

Res[f(−1 + i)] = lim
z→−1+i

(z + 1 − i)
zeiaz

(z + 1 − i)(z + 1 + i)(z − 1 − i)(z − 1 + i)

=
(−1 + i)eia(−1+i)

(2i)(−2)(−2 + 2i)
= −e−iae−a

8i
.

Substituting in Equation (21.6), we obtain

I2 = 2πi
e−a

8i
(eia − e−ia) = i

π

2
e−a sin a.

Thus, ∫ ∞

−∞

x sin ax

x4 + 4
dx = Im(I2) =

π

2
e−a sin a for a > 0. (21.7)

For a < 0, we could close the contour in the LHP. But there is an easier way of
getting to the answer. We note that −a > 0, and Equation (21.7) yields

∫ ∞

−∞

x sin ax

x4 + 4
dx = −

∫ ∞

−∞

x sin[(−a)x]

x4 + 4
dx = −π

2
e−(−a) sin(−a) =

π

2
ea sin a.

We can collect the two cases in
∫ ∞

−∞

x sin ax

x4 + 4
dx =

π

2
e−|a| sin a.

�

Example 21.3.3. The integral
∫ ∞
0

sin ax
x

dx occurs frequently in physics. To eval-
uate it, first we assume that a > 0 and note that since the integrand is even, we can
extend the lower limit of integration to −∞ and write

∫ ∞

0

sin ax

x
dx =

1

2

∫ ∞

−∞

sin ax

x
dx.

As in the previous examples, we are inclined to choose the contour C in the UHP.
However, since C passes through the origin, this will not work because the origin is
the pole of the integrand. So, let’s avoid the origin by going around it on a small
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Figure 21.3: To avoid the origin move on an infinitesimal semicircle γε of radius ε.

circle of radius ε as shown in Figure 21.3. This contour does not surround a pole.
Therefore, we can write

0 =

∮

C

eiaz

z
dz =

∫ −ε

−∞

eiax

x
dx +

∫

γε

eiaz

z
dz +

∫ ∞

ε

eiax

x
dx

As ε → 0, the two integrals in x become a single integral over all real numbers.
Thus, we get ∫ ∞

−∞

eiax

x
dx = − lim

ε→0

∫

γε

eiaz

z
dz

But on γε, z = εeiθ. Thus

lim
ε→0

∫

γε

eiaz

z
dz = lim

ε→0

∫ 0

π

eiaεeiθ

εeiθ
iεeiθdθ = i lim

ε→0

∫ 0

π

eiaεeiθ

dθ = −iπ

and ∫ ∞

−∞

eiax

x
dx = iπ.

Putting everything together, we obtain
∫ ∞

0

sin ax

x
dx =

1

2

∫ ∞

−∞

sin ax

x
dx =

1

2
Im

∫ ∞

−∞

eiax

x
dx =

1

2
Im(iπ) =

π

2

If a < 0, then sin ax = − sin |a|x and we get the negative of the answer above. �

21.4 Functions of Trigonometric Functions

The third type of integral we can evaluate using the residue theorem involves
only trigonometric functions and is typically of the form

∫ 2π

0

F (sin θ, cos θ) dθ,

where F is some (typically rational) function3 of its arguments. Since θ varies
from 0 to 2π, we can consider it as the angle of a point z on the unit circle

3Recall that a rational function is, by definition, the ratio of two polynomials.
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centered at the origin. Then z = eiθ and e−iθ = 1/z, and we can substitute
cos θ = (z + 1/z)/2, sin θ = (z − 1/z)/(2i), and dθ = dz/(iz) in the original
integral to obtain ∮

C

F

(
z − 1/z

2i
,
z + 1/z

2

)
dz

iz
.

This integral can often be evaluated using the method of residues.

Example 21.4.1. Let us evaluate the integral
∫ 2π

0
dθ/(1 + a cos θ) where |a| < 1.

Substituting for cos θ and dθ in terms of z, we obtain
∮

C

dz/iz

1 + a[(z2 + 1)/2z]
=

2

i

∮

C

dz

2z + az2 + a
,

where C is the unit circle centered at the origin. The singularities of the integrand
are the zeros of its denominator 2z + az2 + a ≡ a(z − z1)(z − z2) with

z1 =
−1 +

√
1 − a2

a
and z2 =

−1 −
√

1 − a2

a
.

For |a| < 1 it is clear that z2 will lie outside the unit circle C; therefore, it does not
contribute to the integral. But z1 lies inside, and we obtain

∮

C

dz

2z + az2 + a
= 2πi Res[f(z1)].

The residue of the simple pole at z1 can be calculated:

Res[f(z1)] = lim
z→z1

(z − z1)
1

a(z − z1)(z − z2)
=

1

a

(
1

z1 − z2

)

=
1

a

(
a

2
√

1 − a2

)

=
1

2
√

1 − a2
.

It follows that
∫ 2π

0

dθ

1 + a cos θ
=

2

i

∮

C

dz

2z + az2 + a
=

2

i
2πi

(
1

2
√

1 − a2

)

=
2π√

1 − a2
. �

Example 21.4.2. As another example, let us consider the integral

I =

∫ π

0

dθ

(a + cos θ)2
where a > 1.

Since cos θ is an even function of θ, we may write

I =
1

2

∫ π

−π

dθ

(a + cos θ)2
where a > 1.

This integration is over a complete cycle around the origin, and we can make the
usual substitution:

I =
1

2

∮

C

dz/iz

[a + (z2 + 1)/2z]2
=

2

i

∮

C

z dz

(z2 + 2az + 1)2
.

The denominator has the roots z1 = −a +
√

a2 − 1 and z2 = −a −
√

a2 − 1 which
are both of order 2. The second root is outside the unit circle because a > 1. The
reader may verify that for all a > 1, z1 is inside the unit circle. Since z1 is a pole of
order 2, we have
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Res[f(z1)] = lim
z→z1

d

dz

[

(z − z1)
2 z

(z − z1)2(z − z2)2

]

= lim
z→z1

d

dz

[
z

(z − z2)2

]

=
1

(z1 − z2)2
− 2z1

(z1 − z2)3
=

a

4(a2 − 1)3/2
.

We thus obtain

I =
2

i
2πi Res[f(z1)] =

πa

(a2 − 1)3/2
. �

21.5 Problems

21.1. Evaluate each of the following integrals, for all of which C is the circle
|z| = 3:

(a)
∮

C

4z − 3
z(z − 2)

dz. (b)
∮

C

ez

z(z − iπ)
dz. (c)

∮

C

cos z

z(z − π)
dz.

(d)
∮

C

z2 + 1
z(z − 1)

dz. (e)
∮

C

cosh z

z2 + π2
dz. (f)

∮

C

1 − cos z

z2
dz.

(g)
∮

C

sinh z

z4
dz. (h)

∮

C

z cos
(

1
z

)

dz. (i)
∮

C

dz

z3(z + 5)
dz.

(j)
∮

C

tan z dz. (k)
∮

C

dz

sinh 2z
dz. (l)

∮

C

ez

z2
dz.

(m)
∮

C

dz

z2 sin z
dz. (n)

∮

C

ez dz

(z − 1)(z − 2)
.

21.2. Find the residue of f(z) = 1/ cos z at all its poles.

21.3. Evaluate the integral
∫∞
0 dx/[(x2 + 1)(x2 + 4)] by closing the contour

(a) in the UHP and (b) in the LHP.

21.4. Evaluate the following integrals in which a and b are nonzero real con-
stants:

(a)
∫ ∞

0

2x2 + 1
x4 + 5x2 + 6

dx. (b)
∫ ∞

0

dx

6x4 + 5x2 + 1
. (c)

∫ ∞

0

dx

x4 + 1
.

(d)
∫ ∞

0

cosxdx

(x2 + a2)2(x2 + b2)
. (e)

∫ ∞

0

cos ax

(x2 + b2)2
dx. (f)

∫ ∞

0

dx

(x2 + 1)2
.

(g)
∫ ∞

0

dx

(x2 + 1)2(x2 + 2)
. (h)

∫ ∞

0

2x2 − 1
x6 + 1

dx. (i)
∫ ∞

0

x2dx

(x2 + a2)2
.

(j)
∫ ∞

−∞

xdx

(x2 + 4x + 13)2
. (k)

∫ ∞

0

x3 sin ax

x6 + 1
dx. (l)

∫ ∞

0

x2 + 1
x2 + 4

dx.

(m)
∫ ∞

−∞

x cosxdx

x2 − 2x + 10
. (n)

∫ ∞

−∞

x sin xdx

x2 − 2x + 10
. (o)

∫ ∞

0

dx

x2 + 1
.

(p)
∫ ∞

0

x2dx

(x2 + 4)2(x2 + 25)
. (q)

∫ ∞

0

cos ax

x2 + b2
dx. (r)

∫ ∞

0

dx

(x2 + 4)2
.

21.5. Evaluate each of the following integrals by turning them into contour
integrals around the unit circle.
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(a)
∫ 2π

0

dθ

5 + 4 sin θ
. (b)

∫ 2π

0

dθ

a + cos θ
where a > 1.

(c)
∫ 2π

0

dθ

1 + sin2 θ
. (d)

∫ 2π

0

dθ

(a + b cos2 θ)2
where a, b > 0.

(e)
∫ 2π

0

cos2 3θ

5 − 4 cos 2θ
dθ. (f)

∫ π

0

dφ

1 − 2a cosφ + a2
where a �= ±1.

(g)
∫ π

0

cos2 3φdφ

1 − 2a cosφ + a2
where a �= ±1.

(h)
∫ π

0

cos 2φdφ

1 − 2a cosφ + a2
where a �= ±1.

21.6. Use the method of residues to show that
∫ π

0

cos2n θ dθ = π
(2n)!

22n(n!)2

21.7. Use the contour in Figure 21.4(a) to show that
∫ ∞

−∞

sin x

x
dx = π

by letting X → ∞, Y → ∞, and ε → 0.

21.8. Use the contour in Figure 21.4(b) to show that
∫ ∞

0

1
1 + xn

dx =
π/n

sin(π/n)

by letting R → ∞.

21.9. Use the contour in Figure 21.4(c) to show that
∫ ∞

0

sin(x2) dx =
∫ ∞

0

cos(x2) dx =
√

π

8

by letting R → ∞.

X−X −ε ε

X + iY−X + iY

R

R

π /42π /n

R

R

(a) (c)(b)

Figure 21.4: (a) The contour used for sin x/x. (b) The contour used for 1/(1 + xn).

(c) The contour used for sin(x2).
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Differential Equations





Chapter 22

From PDEs to ODEs

Physics, as the most exact science, is characterized by its ability to make
mathematical predictions. Predictions are based on two factors: the initial
information (data), and the law governing the physical process. Knowing
what the situation is here and now (initial data, initial conditions, boundary
conditions) enables physics to predict what the situation will be there and
then. This ability to predict is based on the intuitive belief that physical
quantities, dependent on continuous parameters such as position and time,
must be continuous functions of those parameters. Thus, knowledge of the initial conditions

are needed to
predict the
evolution of a
physical system.

values of those functions at one (initial) point and of how the functions change
from one point to a neighboring point (given by the laws of physics) allows
the values of the functions at the neighboring point to be predicted. Once
the values of the functions are determined at the new point, their values can
be predicted for its neighboring points, and the process can continue until a
distant point is reached.

In mechanics, for example, knowledge of the force acting on a particle of
mass m, located at r0 and moving with momentum p0 at time t0, allows its
momentum and position at a later time t0 + Δt to be predicted as follows.
Because dp/dt = F by Newton’s second law of motion, we have

Δp ≈ F(r0,p0, t0)Δt

and
p(t0 + Δt) = p0 + Δp ≈ p0 + F(r0,p0, t0)Δt.

Similarly,
r(t0 + Δt) ≈ r0 + v0t ≈ r0 +

p0

m
Δt.

The smaller Δt is, the better the prediction will be.
Newton’s second law of motion,

d

dt

(

m
dr
dt

)

= F(r, dr/dt, t)
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is an example of an ordinary differential equation (ODE). A dependentordinary
differential
equation (ODE)

variable r is determined from an equation involving a single independent vari-
able t, the dependent variable r, and its various derivatives.

In (point) particle mechanics there is only one independent variable, lead-
ing to ODEs. In other areas of physics, however, in which extended objects
such as fields are studied, variations with respect to position are also present.
Partial derivatives with respect to coordinate variables show up in the differ-
ential equations, which are therefore called partial differential equationspartial differential

equations (PDEs) (PDEs). For instance, in electrostatics, where time-independent scalar fields
such as potentials, and vector fields such as electrostatic fields, are studied,
the law is described by Poisson’s equation, ∇2Φ(r) = −4πρ(r), where Φ is
the electrostatic potential and ρ is the volume charge density. Other PDEs
occurring in mathematical physics include the heat equation, describing the
transfer of heat, the wave equation, describing the propagation of various
kinds of wave, and the Schrödinger equation, describing nonrelativistic quan-
tum mechanical phenomena.

In fact, except for the laws of particle mechanics and electrical circuits,
in which the only independent variable is time, almost all laws of physics are
described by PDEs. We shall not study PDEs in their full generalities, but
concentrate on the simplest ones encountered most frequently in ideal physical
applications. The method of solution that works for all these equations is the
separation of variables, whereby a PDE is turned into a number of ODEs.

Before embarking on the separation of variables, we need to formalize the
discussion above. An ordinary or a partial DE will provide a unique solution
to a physical problem only if the initial or the starting value of the solution
is known. We refer to this as the boundary conditions, or BCs for short.the meaning of

boundary
conditions (or
BCs) elaborated

For ODEs, boundary conditions amount to the specification of one or more
properties of the solution at an initial time; that is why for ODEs, one speaks
of initial conditions. BCs for PDEs involve specification of the solution on
a surface (or a curve, if the PDE has only two variables).

22.1 Separation of Variables

We list here the PDEs encountered in undergraduate courses and initiate
their transformation into ODEs. Let us start with the simplest PDE arising
in electrostatic problems, the Poisson equation, derived in Chapter 15,Poisson equation

Laplace’s equation

∇2Φ(r) = −4πρ(r). (22.1)

In vacuum, where ρ(r) = 0, Equation (22.1) reduces to Laplace’s equation,

∇2Φ(r) = 0. (22.2)

Many electrostatic problems involve conductors held at constant potentials
and situated in a vacuum. In the space between such conducting surfaces, the
electrostatic potential obeys Equation (22.2).
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Next in complexity is the heat equation, whose most simplified version— heat equation

the one studied here—is
∂T

∂t
= k2∇2T (r, t), (22.3)

where T is the temperature and k is a real constant characterizing the medium
in which heat is flowing.

Probably one of the most recurring PDEs encountered in mathematical
physics is the wave equation, wave equation

∇2Ψ − 1
c2

∂2Ψ
∂t2

= 0. (22.4)

This equation (or its simplification to lower dimensions) is applied to the
vibration of strings and drums, the propagation of sound in gases, solids, and
liquids, the propagation of disturbances in plasmas, and the propagation of
electromagnetic waves.

The Schrödinger equation, describing the nonrelativistic quantum phe- Schrödinger
equationnomena, is

− �
2

2m
∇2Ψ + V (r)Ψ = −i�

∂Ψ
∂t

, (22.5)

where m is the mass of a subatomic particle, � is Planck’s constant (divided by
2π), V is the potential energy of the particle, and |Ψ(r, t)|2 is the probability
density of finding the particle at r at time t.

Equations (22.3)–(22.5) have partial derivatives with respect to time. As
a first step toward solving these PDEs, let us separate the time variable. We
will denote the functions in all four equations by the generic symbol Ψ(r, t).

The separation of variables starts with separating the r and t dependence
into factors:1

Ψ(r, t) ≡ R(r)T (t).

This factorization permits us to separate the two operations of space differ- time is separated
from spaceentiation and time differentiation. As an illustration, we separate the time

and space dependence for the Schrödinger equation. The other equations are
done similarly. Substituting for Ψ, we get

− �
2

2m
∇2(RT ) + V (r)(RT ) = −i�

∂

∂t
(RT ),

or

−T
�

2

2m
∇2R + V (r)(RT ) = −iR�

dT

dt
,

where we have used ordinary derivatives for T because, by assumption, it is
a function of a single variable. Dividing both sides by RT yields

1Note that there is no a priori reason why the basic assumption underlying the separation
of variables is legitimate. After all, we cannot write sin(xt) as a product, f(x)g(t). However,
in all cases of physical interest the separation of variables works.



544 From PDEs to ODEs

− 1
R

�
2

2m
∇2R + V (r) = −i

1
T

�
dT

dt
. (22.6)

Now comes the crucial step in the process of the separation of variables.central argument
in separation of
variables

The LHS of Equation (22.6) is a function of position alone, and the RHS is a
function of time alone. Since r and t are independent variables, the only way
that (22.6) can hold is for both sides to be constant, say α:

− 1
R

�
2

2m
∇2R + V (r) = α ⇒ − �

2

2m
∇2R + V (r)R = αR

and
−i�

1
T

dT

dt
= α ⇒ dT

dt
=

iα

�
T. (22.7)

We have reduced the original time-dependent Schrödinger equation, a
PDE, to an ODE involving only time, and a PDE involving only the posi-
tion variables. Most problems of elementary mathematical physics have the
same property, i.e., they are completely equivalent to Equation (22.7) plus
the equation before it, which we write generically as

∇2R + f(r)R = 0, (22.8)

where we have simplified the notation by including α in the function f .
The foregoing discussion is summarized in this statement:

Box 22.1.1. The time-dependent PDEs of mathematical physics can be
reduced to an ODE in the time variable and the PDE given in Equation
(22.8). For those PDEs involving second time derivatives, such as the
wave equation, (22.7) will be a second-order ODE.

With the exception of Poisson’s equation, in all the foregoing equations
the term on the RHS is zero. We will restrict ourselves to this so-called
homogeneous case2 and rewrite (22.8) as

∇2Ψ(r) + f(r)Ψ(r) = 0. (22.9)

The rest of this section is devoted to the study of this equation in various
coordinate systems.

22.2 Separation in Cartesian Coordinates

In Cartesian coordinates, Equation (22.9) becomes

∂2Ψ
∂x2 +

∂2Ψ
∂y2 +

∂2Ψ
∂z2 + f(x, y, z)Ψ = 0.

2The most elegant way of solving inhomogeneous PDEs is the method of Green’s func-
tions, of which we shall have a brief discussion in Chapter 29. For a thorough discussion
of Green’s functions, see Hassani, S. Mathematical Physics: A Modern Introduction to Its
Foundations, Springer-Verlag, 1999, Part VI.
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As in the case of the separation of the time variable, we assume that we can
separate the dependence on various coordinates and write

Ψ(x, y, z) = X(x)Y (y)Z(z).

Then the above PDE yields

Y Z
d2X

dx2 + XZ
d2Y

dy2 + XY
d2Z

dz2 + f(x, y, z)XY Z = 0.

Dividing by XY Z gives

1
X

d2X

dx2 +
1
Y

d2Y

dy2 +
1
Z

d2Z

dz2 + f(x, y, z) = 0. (22.10)

This equation is almost separated. The first term is a function of x alone, the
second of y alone, and the third of z alone. However, the last term, in general,
mixes the coordinates. The only way the separation can become complete is
for the last term to be separated as well, that is, expressed as a sum of three
functions, each depending on a single coordinate.3 In such a special case we
obtain

1
X

d2X

dx2 +
1
Y

d2Y

dy2 +
1
Z

d2Z

dz2 + f1(x) + f2(y) + f3(z) = 0

or [
1
X

d2X

dx2 + f1(x)
]

+
[

1
Y

d2Y

dy2 + f2(y)
]

+
[

1
Z

d2Z

dz2 + f3(z)
]

= 0.

The first term on the LHS depends on x alone, the second on y alone, and
the third on z alone. Since the sum of these three terms is a constant (zero),
independent of all variables, each term must be a constant. Denoting the
constant corresponding to the ith term by −αi, we obtain

1
X

d2X

dx2 + f1(x) = −α1,
1
Y

d2Y

dy2 + f2(y) = −α2,
1
Z

d2Z

dz2 + f3(z) = −α3,

which can be reexpressed as

d2X

dx2 + [f1(x) + α1] X = 0,
d2Y

dy2 + [f2(y) + α2] Y = 0,

d2Z

dz2 + [f3(z) + α3] Z = 0, α1 + α2 + α3 = 0. (22.11)

If f(x, y, z) happens to be a constant C, then the first three terms of Equation
(22.10) can be taken to be respectively −α1, −α2, and −α3, leading to

d2X

dx2 + α1X = 0,
d2Y

dy2 + α2Y = 0,

d2Z

dz2 + α3Z = 0, α1 + α2 + α3 = C. (22.12)

3This is where the limitation of the method of the separation of variables becomes
evident. However, surprisingly, all physical applications, at our level of treatment, involve
functions that are indeed separated.
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These equations constitute the most general set of ODEs resulting from the
separation of the PDE of Equation (22.9) in Cartesian coordinates.

Example 22.2.1. Let us consider a few cases for which (22.11) or (22.12) is
applicable.
(a) In electrostatics, separation of Laplace’s equation, for which f(r) = 0, leads toLaplace’s equation
these ODEs:

d2X

dx2 + α1X = 0,
d2Y

dy2 + α2Y = 0,
d2Z

dz2 − (α1 + α2)Z = 0.

The solutions to these equations are trigonometric or hyperbolic (exponential) func-
tions, determined from the boundary conditions (conducting surfaces). The unsym-
metrical treatment of the three coordinates—the plus sign in front of the first two
constants and a minus sign in front of the third—is not dictated by the above equa-
tions. There is a freedom in the choice of sign in these equations. However, the
boundary conditions will force the constants to adapt to values appropriate to the
physical situation at hand.
(b) In quantum mechanics the time-independent Schrödinger equation for a free
particle in three dimensions is

∇2Ψ +
2mE

�2
Ψ = 0.

Separation of variables yields the ODEs of Equation (22.12) with

α1 + α2 + α3 =
2mE

�2
.

After time is separated, the heat and wave equations also yield equations similar to
(22.12).
(c) In quantum mechanics the time-independent Schrödinger equation for a three
dimensional isotropic harmonic oscillator is

∇2Ψ −
(

m2ω2

�2
r2 − 2mE

�2

)

Ψ = 0.

Thus,

f(r) = −m2ω2

�2
r2 +

2mE

�2
= −m2ω2

�2
(x2 + y2 + z2) +

2mE

�2
.

Equation (22.11) then yields

d2X

dx2 − m2ω2

�2
x2X + α1X = 0,

d2Y

dy2 − m2ω2

�2
y2Y + α2Y = 0,

d2Z

dz2
− m2ω2

�2
z2Z + α3Z = 0,

with α1 + α2 + α3 = 2mE/�
2. �
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22.3 Separation in Cylindrical Coordinates

Equation (22.9) takes the following form in cylindrical coordinates:4

1
ρ

∂

∂ρ

(

ρ
∂Ψ
∂ρ

)

+
1
ρ2

∂2Ψ
∂ϕ2 +

∂2Ψ
∂z2 + f(ρ, ϕ, z)Ψ = 0.

To separate the variables, we write Ψ(ρ, ϕ, z) = R(ρ)S(ϕ)Z(z), substitute in
the general equation, and divide both sides by RSZ to obtain

1
R

1
ρ

d

dρ

(

ρ
dR

dρ

)

+
1
S

1
ρ2

d2S

dϕ2 +
1
Z

d2Z

dz2 + f(ρ, ϕ, z) = 0.

We shall consider only the special (but important) case in which f(ρ, ϕ, z)
is a constant λ. In that case, the equation becomes

[
1
R

1
ρ

d

dρ

(

ρ
dR

dρ

)]

+
1
ρ2

[
1
S

d2S

dϕ2

]

︸ ︷︷ ︸
function of ρ and ϕ only

+
[

1
Z

d2Z

dz2

]

︸ ︷︷ ︸
fn. of z

+λ = 0.

The sum of the first two terms is independent of z, so the third term must be
as well. We thus get

1
Z

d2Z

dz2 = λ1

and [
1
R

1
ρ

d

dρ

(

ρ
dR

dρ

)]

+
1
ρ2

(
1
S

d2S

dϕ2

)

+ λ1 + λ = 0.

Multiplying this equation by ρ2 yields
[

ρ

R

d

dρ

(

ρ
dR

dρ

)

+ (λ1 + λ)ρ2

]

︸ ︷︷ ︸
function of ρ only

+
(

1
S

d2S

dϕ2

)

︸ ︷︷ ︸
fn. of ϕ

= 0.

Since the first term is a function of ρ only and the second a function of ϕ only,
both terms must be constants whose sum vanishes. Thus,

1
S

d2S

dϕ2 = μ,
ρ

R

d

dρ

(

ρ
dR

dρ

)

+ (λ1 + λ)ρ2 + μ = 0. (22.13)

Putting together all of the above, we conclude that when Equation (22.9)
is separable in cylindrical coordinates and f(r) = λ, it will separate into the
following three ODEs:

d2Z

dz2 − λ1Z = 0,
d2S

dϕ2 − μS = 0,

d

dρ

(

ρ
dR

dρ

)

+
{

(λ1 + λ)ρ +
(

μ

ρ

)}

R = 0, (22.14)

4See Chapter 16 for the expression of ∇2 in spherical and cylindrical coordinate systems.
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where in rewriting the second equation in (22.13), we multiplied both sides of
the equation by R and divided it by ρ. The last equation of (22.14) is called the
Bessel differential equation. This equation shows up in electrostatic andBessel differential

equation heat-transfer problems with cylindrical geometry and in problems involving
two-dimensional wave propagation, as in drumheads.

Historical Notes

Jean Le Rond d’Alembert was the illegitimate son of a famous salon host-
ess of eighteenth-century Paris and a cavalry officer. Abandoned by his mother,
d’Alembert was raised by a foster family and later educated by the arrangement of
his father at a nearby church-sponsored school, in which he received instruction in
the classics and above-average instruction in mathematics. After studying law and
medicine, he finally chose to pursue a career in mathematics. In the 1740s he joined
the ranks of the philosophes, a growing group of deistic and materialistic thinkers
and writers who actively questioned the social and intellectual standards of the day.
He traveled little (he left France only once, to visit the court of Frederick the Great),
preferring instead the company of his friends in the salons, among whom he was well
known for his wit and laughter.

Jean Le Rond
d’Alembert
1717–1783

d’Alembert turned his mathematical and philosophical talents to many of the
outstanding scientific problems of the day, with mixed success. Perhaps his most
famous scientific work, entitled Traite de dynamique, shows his appreciation that
a revolution was taking place in the science of mechanics—the formalization of
the principles stated by Newton into a rigorous mathematical framework. Later,
d’Alembert produced a treatise on fluid mechanics, a paper dealing with vibrating
strings, and a skillful treatment of celestial mechanics. d’Alembert is also credited
with the use of the first partial differential equation as well as the first solution to
such an equation using separation of variables.

Much of the work for which d’Alembert is remembered occurred outside math-
ematical physics. He was chosen as the science editor of the Encyclopedie, and his
lengthy Discours Preliminaire in that volume is considered one of the defining doc-
uments of the Enlightenment. Other works included writings on law, religion, and
music.

22.4 Separation in Spherical Coordinates

By far the most commonly used coordinate system in mathematical physics
is the spherical coordinate system. This is because forces, potential energies,
and most geometries encountered in Nature have a spherical symmetry. One
of the consequences of this spherical symmetry is that the function f(r) is
a function of r and not of angles. We shall assume this to be true in this
subsection.

In spherical coordinates, Equation (22.9) becomes [see Equation (16.19)]

1
r2

∂

∂r

(

r2 ∂Ψ
∂r

)

+
1

r2 sin θ

{
∂

∂θ

(

sin θ
∂Ψ
∂θ

)

+
1

sin θ

∂2Ψ
∂ϕ2

}

+f(r)Ψ=0. (22.15)
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To separate this equation means to write Ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ). If we
substitute this in Equation (22.15) and note that each differentiation acts on
only one of the three functions, we get

ΘΦ
1
r2

d

dr

(

r2 dR

dr

)

+
R

r2

[
Φ

sin θ

d

dθ

(

sin θ
dΘ
dθ

)

+
Θ

sin2 θ

d2Φ
dϕ2

]

+ f(r)RΘΦ = 0.

Now divide both sides by RΘΦ and multiply by r2 to obtain

1
R

d

dr

(

r2 dR

dr

)

+ r2f(r)
︸ ︷︷ ︸

function of r alone

+
[

1
Θ sin θ

d

dθ

(

sin θ
dΘ
dθ

)

+
1

Φ sin2 θ

d2Φ
dϕ2

]

︸ ︷︷ ︸
function of θ and ϕ only

= 0.

Since each one of the two terms is a function of different variables, each must
be a constant; and the two constants must add up to zero. Therefore, we have

1
R

d

dr

(

r2 dR

dr

)

+ r2f(r) = α,

1
Θ sin θ

d

dθ

(

sin θ
dΘ
dθ

)

+
1

Φ sin2 θ

d2Φ
dϕ2

= −α.

The second equation can be further separated. We add α to both sides and
multiply the resulting equation by sin2 θ to obtain

sin θ

Θ
d

dθ

(

sin θ
dΘ
dθ

)

+ α sin2 θ

︸ ︷︷ ︸
function of θ alone; set = β

+
1
Φ

d2Φ
dϕ2

︸ ︷︷ ︸
=−β

= 0.

We have thus obtained three ODEs in three variables. We rewrite these ODEs
in the following equations:

1
r2

d

dr

(

r2 dR

dr

)

+
[
f(r) − α

r2

]
R = 0,

1
sin θ

d

dθ

(

sin θ
dΘ
dθ

)

+
(

α − β

sin2 θ

)

Θ = 0, (22.16)

d2Φ
dϕ2

+ βΦ = 0.

radial, polar, and
azimuthal
equations

The first equation is called the radial equation, the second the polar
equation, and the third the azimuthal equation. The radial equation can
be further simplified by making the substitution R = u/r. This gives

d2u

dr2
+

[
f(r) − α

r2

]
u = 0. (22.17)

Our task in this chapter was to separate the PDEs most frequently encoun-
tered in undergraduate mathematical physics into ODEs; and we have done
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this in the three coordinate systems regularly used in applications. We shall
return to a thorough treatment of the ODEs so obtained later in the book,
and in the process we shall be introduced to the so-called special functions
that came into being in the nineteenth century as a result of the then newly
discovered technique of the separation of variables.

22.5 Problems

22.1. Assume that two functions Φ1 and Φ2 satisfy the Poisson equation.
Show that
(a) Φ defined by Φ = Φ1 − Φ2 satisfies the Laplace’s equation;
(b) ∇ · (Φ∇Φ) = |∇Φ|2

22.2. Separate the solution of the heat equation (22.3): T (r, t) ≡ R(r)τ(t),
and show that
(a) the solution to the time equation is

τ(t) = Ae−αk2t,

(b) in which case, the space part must satisfy the following PDE:

∇2R + αR = 0

22.3. Show that any function of the form f(k · r ± ωt) satisfies the wave
equation (22.4) if ω = c|k|.

22.4. Separate the solution of the wave equation (22.4): Ψ(r, t) ≡ R(r)T (t),
and show that
(a) the solution to the time equation is

T (t) = A cosωt + B sin ωt,

(b) and the space part must satisfy the following PDE:

∇2R + k2R = 0

where k = ω/c.

22.5. Provide the details of the derivation of Equation (22.16).

22.6. By substituting R = u/r in the radial DE of spherical coordinates,
show that it reduces to Equation (22.17).



Chapter 23

First-Order Differential
Equations

The last chapter showed that all PDEs discussed there resulted in ODEs of
second order, i.e., differential equations involving second derivatives. Thus,
treating the first-order DEs (FODEs) may seem irrelevant. However, some-
times a second-order DE (SODE) may be expressed in terms of first deriva-
tives. For example, take Newton’s second law of motion along a straight
line (free fall, say): m d2x/dt2 = F . If we write this in terms of velocity,
we obtain m dv/dt = F , and if F is a function of v alone—as in a fall with
air resistance—then we have a FODE. FODEs arise in other areas of physics
beside mechanics. Therefore, it is worthwhile to study them here.

23.1 Normal Form of a FODE

The most general FODE is of the form G(x, y, y′) = 0, where G is some
function of three variables. We can find y′ (the derivative of y) as a function
of x and y if the function G(x1, x2, x3) is sufficiently well behaved. In that
case, we have the most general

FODE in normal
form

y′ ≡ dy

dx
= F (x, y) (23.1)

which is said to be a normal FODE.

Example 23.1.1. There are three special cases of Equation (23.1) that lead im-
mediately to a solution.
(a) If F (x, y) is independent of y, then y′ = g(x), and the most general solution can
be written as y = f(x) = C +

∫ x

a
g(t)dt where C = f(a).

(b) If F (x, y) is independent of x, then dy/dx = h(y), and

dy

h(y)
= dx ⇒

∫ y

C

dt

h(t)
︸ ︷︷ ︸
≡H(y)

−x + a = 0 ⇒ H(y) − x + a = 0
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embodies a solution. That is, H(y) = x − a can be solved for y in terms of x, say
y = f(x), and this y will be a solution of the DE. Note that y|x=a ≡ f(a) = C.
(c) The third special case is really a generalization of the first two. If F (x, y) =
g(x)h(y), then y′ = g(x)h(y) or dy/h(y) = g(x)dx and

∫ y

C

dt

h(t)
=

∫ x

a

g(t)dt (23.2)

is an implicit solution. �

The example above contains an information which is important enough to
be “boxed.”

Box 23.1.1. A differential equation is considered to be solved if its solu-
tion can be obtained by solving an algebraic equation involving integrals of
known functions. Whether these integrals can be done in closed form or
not is irrelevant.

So, although we may not be able to actually perform the integration of (23.2),
we consider the DE solved because, in principle, Equation (23.2) gives y as a
(implicit) function of x.

As Example 23.1.1 shows, the solutions to a FODE are usually obtained
in an implicit form, as a function u of two variables such that the solution y
can be found by solving u(x, y) = 0 for y. Included in u(x, y) is an arbitrary
constant related to the initial conditions. The equation u(x, y) = 0 defines
a curve in the xy-plane, which depends on the (hidden) constant in u(x, y).
Since different constants give rise to different curves, it is convenient to sep-
arate the constant and write u(x, y) = C. This leads to the concept of an
integral of a differential equation.integral of a

normal FODE
Definition 23.1.1. An integral of a normal FODE [Equation (23.1)] is
a function of two variables u(x, y) such that u(x, f(x)) is a constant for all
possible values of x whenever y = f(x) is a solution of the differential equation.

The integrals of differential equations are encountered often in physics. Ifan integral of a
FODE is also
called a constant
of motion.

x is replaced by t (time), then the differential equation describes the motion
of a physical system, and a solution, y = f(t), can be written implicitly as
u(t, y) = C, where u is an integral of the differential equation. The equation
u(t, y) = C describes a curve in the ty-plane on which the value of the function
u(t, y) remains unchanged for all t. Thus, u(t, y), the integral of the FODE,
is also called a constant of motion.

Example 23.1.2. Consider a point particle moving under the influence of a force
depending on position only. Denoting the position1 by x and the velocity by v,
we have, by Newton’s second law, mdv/dt = F (x). Using the chain rule, dv/dt =
(dv/dx)(dx/dt) = v dv/dx, we obtain

mv
dv

dx
= F (x) ⇒ mv dv = F (x) dx, (23.3)

1Here we are restricting the motion to one dimension.
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which is easily integrated to

1
2
mv2 =

∫
F (x) dx + C ≡ −V (x) + C. (23.4)

The potential energy V (x) = −
∫

F (x) dx has been introduced as an indefinite potential energy
integral. We can write Equation (23.4) as

1
2
mv2 + V (x) = C. (23.5)

Thus, the integral of Equation (23.3) is u(x, v) = 1
2
mv2 + V (x) which is the ex-

pression for the energy of the one-dimensional motion of a particle experiencing the
potential V (x). If v is a solution of Equation (23.3), then u(x, v) = constant. Since
a solution of Equation (23.3) describes a possible motion of the particle, Equation
(23.5) implies that the energy of a particle does not change in the course of its
motion. This statement is the conservation of (mechanical) energy. �

23.2 Integrating Factors

Let D be a region in the xy-plane, and let M(x, y) and N(x, y) be continuous
functions of x and y defined on D. The differential Mdx + Ndy is exact if,
for arbitrary points P1 and P2 of D, the line integral exact differential

∫ P2

P1

[M(x, y) dx + N(x, y) dy]

is independent of the path joining the two points. This condition is equivalent
to saying that the line integral of the integrand around any closed loop in
D vanishes. A necessary and sufficient condition for exactness is, therefore,
that the curl of the vector A = 〈M, N, 0〉 be zero.2 The vector A is then
conservative, and we can define a (potential) function v such that A = ∇v =
〈∂v/∂x, ∂v/∂y, 0〉, or

dv =
∂v

∂x
dx +

∂v

∂y
dy = M dx + N dy. (23.6)

Thus, M dx + N dy is exact if and only if there exists a function v(x, y)
satisfying (23.6), in which case, M = ∂v/∂x and N = ∂v/∂y.

Now consider all y’s that satisfy v(x, y) = C for some constant C. Then
since dC = 0, we have

0 = dv = M dx + N dy.

It follows that v(x, y) = C is an implicit solution of the differential equation.
We therefore have

2The statement is true only if the region D does not contain any singularities of M or
N . The region is then called contractable to a point (see Section 14.3).
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Theorem 23.2.1. If M(x, y) dx + N(x, y) dy is an exact differential dv in a
domain D of the xy-plane, then v(x, y) is an integral of the DE

M(x, y) dx + N(x, y) dy = 0

whose solutions are of the form v(x, y) = C.

We saw above that, for an exact differential, M = ∂v/∂x and N = ∂v/∂y.
A necessary consequence of this result is ∂M/∂y = ∂N/∂x. Could this relation
be a sufficient condition as well? Consider the function v(x, y) defined by

v(x, y) ≡
∫ x

a

M(t, y) dt +
∫ y

b

N(a, t) dt,

and note that

dv =
∂v

∂x
dx +

∂v

∂y
dy

=
∂

∂x

[∫ x

a

M(t, y) dt

]

dx +
[∫ x

a

∂M

∂y
(t, y)

︸ ︷︷ ︸
∂N/∂t

dt +
∂

∂y

∫ y

b

N(a, t) dt

]

dy

= M(x, y) dx +
[

N(t, y)
∣
∣
∣
t=x

t=a
+ N(a, y)

]

︸ ︷︷ ︸
=N(x,y)

dy,

and v(x, y) indeed satisfies dv = M dx + N dy. It follows that (see Problem
23.1)

Theorem 23.2.2. A necessary and sufficient condition for M dx + N dy to
be exact is ∂M/∂y = ∂N/∂x, in which case

v(x, y) ≡
∫ x

a

M(t, y) dt +
∫ y

b

N(a, t) dt

is the function such that dv = M dx + N dy.

Not very many FODEs are exact. However, there are many that can be
turned into exact FODEs by multiplication by a suitable function. Such a
function, if it exists, is called an integrating factor. Thus, if the differentialintegrating factor

M(x, y) dx + N(x, y) dy is not exact, but

μ(x, y)M(x, y) dx + μ(x, y)N(x, y) dy = dv,

then μ(x, y) is an integrating factor for the differential equation

M(x, y) dx + N(x, y) dy = 0

whose solution is then v(x, y) = C. Integrating factors are not unique, as the
following example illustrates.
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Example 23.2.3. The differential x dy − y dx is not exact. Let us see if we can illustration of
nonuniqueness of
integrating factor

find a function μ(x, y) such that dv = μx dy − μy dx, for some v(x, y). We assume
that the domain D of the xy-plane in which v is defined is contractable to a point.
Then a necessary and sufficient condition for the equation above to hold is

∂

∂x
(μx) =

∂

∂y
(−μy) ⇒ x

∂μ

∂x
+ y

∂μ

∂y
+ 2μ = 0. (23.7)

(a) Let us assume that μ is a function of x only. Then Equation (23.7) reduces to
x dμ/dx = 2μ or μ = C/x2 where x �= 0. In this case we get

dv = C

(
1

x
dy − y

x2
dx

)

= C d
( y

x

)
where x �= 0.

Thus, as long as x �= 0, any function C/x2, with arbitrary C, is an integrating factor
for x dy − y dx = 0. This integrating factor leads to the solution

v =
Cy

x
= constant. (23.8)

In order to determine the constant, suppose that y = m when x = 1. Then (23.8)
determines the constant in terms of m:

Cm

1
= constant ⇒ constant = Cm.

So, (23.8) becomes
Cy

x
= Cm ⇒ y = mx.

(b) Now let us assume that μ is a function of y only. This leads to the integrating
factor μ = C/y2 where y �= 0. In this case v = Cx/y is the integral of the DE, and a
general solution is of the form Cx/y = constant. If we further impose the condition
y(1) = m, we get C/m = constant. Equation (23.8) then yields

Cx

y
=

C

m
⇒ y = mx

as in (a).
(c) The reader may verify that

μ =
C

x2 + y2
where (x, y) �= (0, 0)

is also an integrating factor leading to the integral

v = tan−1
( y

x

)
= constant ⇒ y

x
= tan(constant) ≡ C′.

Imposing y(1) = m gives C′ = m, so that y = mx as before. �
The example above is a special case of the general fact that if a differential

has one integrating factor, then it has an infinite number of them. Suppose proof of
nonuniqueness of
integrating factor

that ν(x, y) is an integrating factor of M dx + N dy, i.e., νM dx + νN dy is
an exact differential, say du. Take any differentiable function F (u). Then
μ(x, y) ≡ ν(x, y)F ′(u) is also an integrating factor. In fact,

μ(M dx + N dy) = νF ′(M dx + N dy) =
dF

du
(νM dx + νN dy)
︸ ︷︷ ︸

=du

= dF.
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23.3 First-Order Linear Differential Equations

A linear DE is a sum of terms each of which is the product of a derivative
of the dependent variable (say y) and a function of the independent variable
(say x). The highest order of the derivative is called the order of the linearorder of a linear

DE DE. The most general first-order linear differential equation (FOLDE) is

p1(x)y′ + p0(x)y = q(x) ⇔ p1dy + (p0y − q) dx = 0. (23.9)

If this equation is to have a solution, then by the argument at the end of the
last subsection, it must have at least one integrating factor. Let μ(x, y) be an
integrating factor. Then there exists v(x, y) such that

dv = μ(p0y − q) dx + μp1dy = 0

The necessary and sufficient condition for this to hold is

∂

∂y
[μ(p0y − q)] =

∂

∂x
(μp1).

To simplify the problem, let us assume that μ is a function of x only (we are
looking for any integrating factor, not the most general one). Then the above
condition leads to the differential equation

μp0 =
d

dx
(μp1) = p1

dμ

dx
+ μ

dp1

dx
(23.10)

or

p1
dμ

dx
= μ

(

p0 −
dp1

dx

)

⇒ dμ

μ
=

p0

p1
dx − dp1

p1
.

Integrating both sides gives

ln μ =
∫

p0

p1
dx − ln p1 + lnC ⇒ ln

(μp1

C

)
=

∫
p0

p1
dx

or
μp1

C
= e

∫
p0dx/p1 ⇒ μ =

Ce
∫

p0dx/p1

p1
.

Neglecting the unimportant constant of integration, we have found the in-
tegrating factor μ = exp[(

∫
p0 dx/p1)]/p1. Now multiply both sides of the

original equation by μ to obtain

μp1y
′ + μp0y = μq. (23.11)

With the identity μp1y
′ ≡ (μp1y)′ − (μp1)′y and the fact that (μp1)′ = μp0

[the first equality of Equation (23.10)], Equation (23.11) becomes

d

dx
(μp1y) = μq ⇒ μp1y =

∫
μ(x)q(x) dx + C.
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Therefore, explicit solution of
a general
first-order linear
differential
equation

Theorem 23.3.1. Any FOLDE of the form p1(x)y′+p0(x)y = q(x), in which
p0, p1, and q are continuous functions in some interval (a, b), has a general
solution

y = f(x) =
1

μ(x)p1(x)

[

C +
∫

μ(x)q(x) dx

]

, (23.12)

where C is an arbitrary constant, and

μ(x) =
1

p1(x)
exp

[∫
p0(x)
p1(x)

dx

]

. (23.13)

Example 23.3.2. In an electric circuit with a resistance R and a capacitance C, detailed treatment
of an RC circuitKirchhoff’s law gives rise to the equation R dQ/dt + Q/C = V (t), where V (t) is the

time-dependent voltage and Q is the (instantaneous) charge on the capacitor. This
is a simple FOLDE with p1 = R, p0 = 1/C, and q = V . The integrating factor is

μ(t) =
1

R
exp

[∫
1

RC
dt

]

=
1

R
et/RC ,

which yields

Q(t) =
1

μ(t)p1(t)

[

B +
1

R

∫
et/RCV (t) dt

]

= Be−t/RC +
e−t/RC

R

∫
et/RCV (t) dt.

Recall that an indefinite integral can be written as a definite integral whose upper
limit is the independent variable—in which case we need to use a different symbol
for the integration variable. For the arbitrary lower limit, choose zero. We then
have

Q(t) = Be−t/RC +
e−t/RC

R

∫ t

0

es/RCV (s) ds. (23.14)

Let Q(0) ≡ Q0 be the initial charge. Then, substituting t = 0 in (23.14), we get
Q0 = B and the charge at time t will be given by

Q(t) = Q0e
−t/RC +

e−t/RC

R

∫ t

0

es/RCV (s) ds. (23.15)

As a specific example, assume that the voltage is a constant V0, as in the case
of a battery. Then the charge on the capacitor as a function of time will be

Q(t) = Q0e
−t/RC + V0C(1 − e−t/RC).

It is interesting to note that the final charge Q(∞) is V0C, independent of the initial
charge. Intuitively, this is what we expect, of course, as the “capacity” of a capacitor
to hold electric charge should not depend on its initial charge. �
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Example 23.3.3. As a concrete illustration of the general formula derived in the
previous example, we find the charge on a capacitor in an RC circuit when a voltage,
V (t) = V0 cos ωt, is applied to it for a period T and then removed. V (t) can thus
be written as

V (t) =

{
V0 cos ωt if t < T,

0 if t > T.

The general solution is given as Equation (23.15). We have to distinguish between
two regions in time, t < T and t > T .
(a) For t < T , we have (using a table of integrals)

Q(t) = Q0e
−t/RC +

e−t/RC

R

∫ t

0

es/RCV0 cos ωsds

= Q0e
−t/RC +

V0

R

1

(1/RC)2 + ω2

(

− 1

RC
e−t/RC +

cos ωt

RC
+ ω sin ωt

)

If T � RC, and we wait long enough,3 i.e., t � RC, then only the oscillatory part
survives due to the large negative exponents of the exponentials. Thus,

Q(t) ≈ V0

R

1

(1/RC)2 + ω2

(
cos ωt

RC
+ ω sin ωt

)

.

The charge Q(t) oscillates with the same frequency as the driving voltage.
(b) For t > T , the integral goes up to T beyond which V (t) is zero. Hence, we have

Q(t) = Q0e
−t/RC +

e−t/RC

R

∫ T

0

es/RCV0 cos ωsds

= Q0e
−t/RC +

V0/R

(1/RC)2 + ω2

[

−e−t/RC

RC
+ e(T−t)/RC

(
cos ωT

RC
+ ω sin ωT

)]

.

We note that the oscillation has stopped (sine and cosine terms are merely constants
now), and for t−T � RC, the charge on the capacitor becomes negligibly small: If
there is no applied voltage, the capacitor will discharge. �

Although first-order linear DEs can always be solved—yielding solutions as
given in Equation (23.12)—no general rule can be applied to solve a general
FODE. Nevertheless, it can be shown that a solution of such a DE always
exist, and, under some mild conditions, this solution is unique. Some special
nonlinear FODEs can be solved using certain techniques some of which are
described in the following examples as well as the problems at the end of the
chapter.

Example 23.3.4. In Problem 23.11 you are asked to find the velocity of a fallingfalling object with
air resistance object when the air drag is proportional to velocity. This is a good approximation

at low velocities for small objects; at higher speeds, and for larger objects, the drag
force becomes proportional to higher powers of speed. Let us consider the case when
the drag force is proportional to v2. Then the second law of motion becomes

m
dv

dt
= mg − bv2 ⇒ dv

dt
= g − γv2, γ ≡ b

m
.

3Of course, we still assume that t < T .
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This equation can be written as

dv

g − γv2
= dt ⇒ dv

A2 − v2
= γ dt, A2 =

g

γ
. (23.16)

Now we rewrite
1

A2 − v2
=

1

2A

[
1

v + A
− 1

v − A

]

,

multiply both sides of Equation (23.16) by 2A and integrate to obtain

ln |v + A| − ln |v − A| = 2Aγt + ln C,

where we have written the constant of integration as ln C for convenience. This
equation can be rewritten as

∣
∣
∣
∣
v + A

v − A

∣
∣
∣
∣ = Ce2Aγt.

Suppose that at t = 0, the velocity of the falling object is v0, then

∣
∣
∣
∣
v0 + A

v0 − A

∣
∣
∣
∣ = C

and ∣
∣
∣
∣
v + A

v − A

∣
∣
∣
∣ =

∣
∣
∣
∣
v0 + A

v0 − A

∣
∣
∣
∣ e

2Aγt.

Now note that A > 0, and v > 0 (if we take “down” to be the positive direction).
Therefore, the last equation becomes

v + A

|v − A| =
v0 + A

|v0 − A|e
2Aγt.

Suppose that v0 > A; then we can remove the absolute value sign from the RHS,
and since the two sides must agree at t = 0, we can remove the absolute value sign
on the LHS as well. Similarly, if v0 < A, then v < A as well. It follows that

v + A

v − A
=

v0 + A

v0 − A
e2Aγt ⇒ (v + A)(v0 − A) = (v − A)(v0 + A)e2Aγt.

Solving for v gives

v = A
(v0 + A)e2Aγt + v0 − A

(v0 + A)e2Aγt − (v0 − A)

= A
v0(e

2Aγt + 1) + A(e2Aγt − 1)

v0(e2Aγt − 1) + A(e2Aγt + 1)
(23.17)

= A
v0 cosh(Aγt) + A sinh(Aγt)

v0 sinh(Aγt) + A cosh(Aγt)
.

It follows from Equation (23.17) that at t = 0, the velocity is v0, as we expect. It
also shows that, when t → ∞, the velocity approaches A =

√
g/γ, the so-called

terminal velocity. This is the velocity at which the gravitational force and the terminal velocity
drag force become equal, causing the acceleration of the object to be zero. The
terminal velocity can thus be obtained directly from the second law without solving
the differential equation.
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Figure 23.1: The achievement of terminal velocity for a drag force that is proportional

to the square of speed (the heavy curve) is considerably faster than for a drag force that

is linear in speed (the light curve) if γ has the same numerical value for both cases.

Figure 23.1 shows the plot of speed as a function of time for the two cases of the
drag force being proportional to v and v2 with the same proportionality constant.
Because of the higher power of speed, the terminal velocity is achieved considerably
more quickly for v2 force than for v force. Furthermore, as the figure shows clearly,
the terminal speed itself is much smaller in the former case. Since larger surfaces
provide a v2 drag force, parachutes that have very large surface are desirable. �

Example 23.3.5. We consider here some other examples of (nonlinear) FODEs
whose solutions are available:

(a) Bernoulli’s FODE: This equation is of the form y′ +p(x)y+ q(x)yn = 0 whereBernoulli’s FODE
n �= 1. This DE can be simplified if we substitute y = ur and choose r appropriately.
In terms of u, the DE becomes

u′ +
p(x)

r
u +

q(x)

r
unr−r+1 = 0.

The simplest DE—whose solution could be found by a simple integration—would
be obtained if the exponent of the last term could be set equal to 1. But this would
require r to be zero, which is not acceptable. The next simplest DE results if we set
the exponent equal to zero, i.e., if r = 1/(1 − n). Then the DE becomes

u′ + (1 − n)p(x)u + (1 − n)q(x) = 0

which is a first-order linear DE whose solution we have already found.

(b) Homogeneous FODE: This DE is of the formhomogeneous
FODE dy

dx
= w

( y

x

)
.

To find the solution, make the obvious substitution u = y/x, to obtain y′ = u + xu′

and

u + xu′ = w(u) ⇒ u′ =
w(u) − u

x
⇒ du

w(u) − u
=

dx

x
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with the solution

lnx =

∫ u

c

dt

w(t) − t
or x = exp

[∫ y/x

c

dt

w(t) − t

]

,

where c is an arbitrary constant to be determined by the initial conditions. �

23.4 Problems

23.1. Suppose that region D is contractible to zero. Using the equivalence of
the vanishing of curl and vanishing of closed line integrals, show that ∂M/∂y =
∂N/∂x is both necessary and sufficient condition for M dx+N dy to be exact.

23.2. Verify that μ = C/(x2 +y2) is an integrating factor of xdy−y dx which
gives rise to

v = tan−1
( y

x

)
= constant ⇒ y

x
= C′

for a solution of xdy − y dx.

23.3. Find the general solution of Bernoulli’s FODE

y′ + p(x)y + q(x)yn = 0 where n �= 1.

Hint: See Example 23.3.5.

23.4. Find a solution to the linear fractional DE

dy

dx
=

a1x + a2y

b1x + b2y
where a1b2 �= a2b1.

Hint: Divide the numerator and denominator by x to obtain a homogeneous
FODE.

23.5. Lagrange’s FODE is y − xp(y′) − q(y′) = 0. Lagrange’s FODE

(a) Let y′ = t and consider x as a function of t. Using the chain rule, find
dx/dt in terms of dy/dt.
(b) Differentiate Lagrange’s DE with respect to t. Use the result of this
differentiation and that of (a) to arrive at [t− p(t)]ẋ − ṗx = q̇, where the dot
indicates differentiation with respect to t.
(c) Find the (parametric) solution of the DE, considering two separate cases:
t = p(t) and t �= p(t).

23.6. Let u(x, y) = C be a solution of the DE M dx + N dy = 0. Show that:
(a) (∂u/∂x)/M = (∂u/∂y)/N ; and
(b) μ(x, y) ≡ (∂u/∂x)/M is an integrating factor for the DE.

23.7. Use direct differentiation to show that the function given in Equation
(23.12) solves the FOLDE of Equation (23.9).
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23.8. Analyze the capacitor’s charge in an RC circuit in which a constant
potential V0 is applied for a time T > 0 and then disconnected. Consider the
cases where t < T and t > T .

23.9. Find all functions f(x) whose definite integral from 0 to x equals the
square of their reciprocal.

23.10. (a) Let p1u
′+p0u = 0 be a homogeneous FOLDE in u. Solve it. (Note

that it can easily be integrated.)
(b) Consider p1y

′ + p0y = q. Let y = uv, where u is as in (a), and obtain
an equation for v. Solve this equation, and obtain a general solution for
p1y

′+p0y = q. This is the method of variation of parameters, which can
also be used for second-order differential equations.

23.11. A falling body in air has a motion approximately described by the DE
m dv/dt = mg − bv, where v = dx/dt is the velocity of the body. Find this
velocity as a function of time assuming that the object starts from rest.

23.12. Suppose that both the linear (av) and the quadratic (bv2) terms are
present in the fall of an object with air drag.
(a) Solve the DE and find the most general solution for the velocity as a
function of time. Hint: Make the substitution u = v + a/2b.
(b) From this general solution, extract the solutions to the cases where only
the linear and only the quadratic terms are present by taking the limits b → 0
and a → 0.

23.13. Take the limit of Equation (23.17) as t → ∞ and show that it is equal
to

√
g/γ.



Chapter 24

Second-Order Linear
Differential Equations

The majority of problems encountered in physics lead to second order linear
differential equations (SOLDEs) when the so-called nonlinear terms are ap-
proximated out. Thus, a general treatment of the properties and methods
of obtaining solutions to SOLDEs is essential. In this section, we investigate
their general properties, and leave methods of obtaining their solutions for
the next section and later chapters.

The most general SOLDE is

p2(x)
d2y

dx2 + p1(x)
dy

dx
+ p0(x)y = p3(x). (24.1)

Dividing by p2(x), and writing p for p1/p2, q for p0/p2, and r for p3/p2,
reduces Equation (24.1) to the normal form, normal form of a

SOLDE

d2y

dx2 + p(x)
dy

dx
+ q(x)y = r(x). (24.2)

Equation (24.2) is equivalent to (24.1) if p2(x) �= 0. The points at which p2(x)
vanishes are called the singular points of the DE. difference between

singular points of
linear and
nonlinear
differential
equations

There is a crucial difference between the singular points of linear DEs and
those of nonlinear DEs. For a nonlinear DE such as (x2 − y)y′ = x2 + y2,
the curve y = x2 is the collection of singular points. This makes it impossible
to construct solutions y = f(x) that are defined on an interval I = [a, b] of
the x-axis because for any a < x < b, there is a y = x2 for which the DE is
undefined. On the other hand, linear DEs do not have this problem because
the coefficients of the derivatives are functions of x only. Therefore, all the
singular “curves” are vertical, and we can find intervals on the x-axis in which
the DE is well behaved.
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24.1 Linearity, Superposition, and Uniqueness

The FOLDE has only one solution; and we found this solution in closed form
in Equation (23.12). The SOLDE may have (in fact, it does) more than one
solution. Therefore, it is important to know how many solutions to expect for
a SOLDE and what relation (if any) exists between these solutions.

We write Equation (24.1) as

L[y] = p3 where L ≡ p2
d2

dx2
+ p1

d

dx
+ p0. (24.3)

It is clear that L is a linear operator1 by which we mean that for constants
α and β, L[αy1 + βy2] = αL[y1] + βL[y2]. In particular, if y1 and y2 are two
solutions of Equation (24.3), then

L[y1 − y2] = L[y1] − L[y2] = p3 − p3 = 0.

That is, the difference between any two solutions of a SOLDE is a solution2

of the homogeneous equation obtained by setting p3 = 0. An immediatehomogeneous
SOLDE consequence of the linearity of L is that any linear combination of solutions

of the homogeneous SOLDE (HSOLDE) is also a solution. This is called the
superposition principle.superposition

principle We saw in the introduction to Chapter 22 that, based on physical intu-
ition, we expect to be able to predict the behavior of a physical system if we
know the DE obeyed by that system and equally importantly, the initial data.
Physical intuition also tells us that if the initial conditions are changed by an
infinitesimal amount, then the solutions will be changed infinitesimally. Thus,
the solutions of linear DEs are said to be continuous functions of the initial
conditions. Nonlinear DEs can have completely different solutions for two
initial conditions that are infinitesimally close. Since initial conditions cannot
be specified with mathematical precision in practice, nonlinear DEs lead to
unpredictable solutions, or chaos. This subject has received much attention
in recent years, and we shall present a brief discussion of chaos in Chapter 31.

By its very nature, a prediction is expected to be unique. This expectation
for linear equations becomes—in the language of mathematics—an existence
and a uniqueness theorem. First, we need the following3

Theorem 24.1.1. The only solution g(x) of the homogeneous equation y′′ +
py′ + qy = 0, defined on the interval [a, b], which satisfies g(a) = 0 = g′(a), is
the trivial solution, g = 0.

Let f1 and f2 be two solutions of (24.2) satisfying the same initial condi-
tions on the interval [a, b]. This means that f1(a) = f2(a) = c and f ′

1(a) =
1Recall from Chapter 7 that an operator is a correspondence on a vector space that

takes one vector and gives another. A linear operator is an operator that satisfies Equation
(7.3). The vector space on which L acts is the vector space of differentiable functions.

2This conclusion is not limited to the SOLDE; it holds for all linear DEs.
3For a proof, see Hassani, S. Mathematical Physics: A Modern Introduction to Its Foun-

dations, Springer-Verlag, 1999, p. 354.
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f ′
2(a) = c′ for some given constants c and c′. Then it is readily seen that their

difference, g ≡ f1 − f2, satisfies the homogeneous equation [with r(x) = 0].
The initial condition that g(x) satisfies is clearly g(a) = 0 = g′(a). By Theo-
rem 24.1.1, g = 0 or f1 = f2. We have just shown uniqueness of

solutions to
SOLDETheorem 24.1.2. (Uniqueness Theorem). If p and q are continuous on

[a, b], then at most one solution of Equation (24.2) can satisfy a given set of
initial conditions.

The uniqueness theorem can be applied to any homogeneous SOLDE to
find the latter’s most general solution. In particular, let f1(x) and f2(x) be
any two solutions of

y′′ + p(x)y′ + q(x)y = 0 (24.4)

defined on the interval [a, b]. Assume that the two vectors v1 = (f1(a), f ′
1(a))

and v2 = (f2(a), f ′
2(a)) are linearly independent.4 Let g(x) be another so-

lution. The vector (g(a), g′(a)) can be written as a linear combination of v1

and v2, giving the two equations

g(a) = c1f1(a) + c2f2(a),
g′(a) = c1f

′
1(a) + c2f

′
2(a).

The function u(x) ≡ g(x) − c1f1(x) − c2f2(x) satisfies the DE (24.4) and
the initial conditions u(a) = u′(a) = 0. It follows from Theorem 24.1.1 that
u(x) = 0 or g(x) = c1f1(x) + c2f2(x). We have proved basis of solutions

Theorem 24.1.3. Let f1 and f2 be two solutions of the HSOLDE

y′′ + py′ + qy = 0,

where p and q are continuous functions defined on the interval [a, b]. If
(f1(a), f ′

1(a)) and (f2(a), f ′
2(a)) are linearly independent vectors, then every

solution g(x) of this HSOLDE is equal to some linear combination

g(x) = c1f1(x) + c2f2(x),

with constant coefficients c1 and c2. The functions f1 and f2 are called a
basis of solutions of the HSOLDE.

The uniqueness theorem states that only one solution can exist for a there is also an
existence theorem!SOLDE which satisfies a given set of initial conditions. Whether such a

solution does exist is beyond the scope of the theorem. Under some mild
assumptions, however, it can be shown that a solution does indeed exist. We
shall not prove this existence theorem for a general SOLDE, but shall examine
various techniques of obtaining solutions for specific SOLDEs in this and the
next two chapters.

4If they are not, then one must choose a different initial point for the interval.
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24.2 The Wronskian

To form a basis of solutions, f1 and f2 must be linearly independent. It is
important to note that the linear dependence or independence of a number of
functions, defined on the interval [a, b], is a concept that must hold for all x
in [a, b]. Thus, if

α1f1(x0) + α2f2(x0) + · · · + αnfn(x0) = 0

for some x0 ∈ [a, b], it does not mean that the f ’s are linearly dependent.
Linear dependence requires that the equality holds for all x in [a, b].

The nature of the linear relation between f1 and f2 can be determined by
their Wronskian.Wronskian defined

Definition 24.2.1. The Wronskian of any two differentiable functions f1(x)
and f2(x) is defined to be

W (f1, f2; x) = f1(x)f ′
2(x) − f2(x)f ′

1(x) = det

⎛

⎝
f1(x) f ′

1(x)

f2(x) f ′
2(x)

⎞

⎠ .

If we differentiate both sides of the definition of Wronskian and substitute
from Equation (24.4), we obtain

d

dx
W (f1, f2; x) = f ′

1f
′
2 + f1f

′′
2 − f ′

2f
′
1 − f2f

′′
1

= f1(−pf ′
2 − qf2) − f2(−pf ′

1 − qf1)
= pf ′

1f2 − pf1f
′
2 = −p(x)W (f1, f2; x).

We can easily find a solution to this DE:

dW

dx
= −pW ⇒ dW

W
= −p dx ⇒ ln W = −

∫ x

c

p(t) dt + lnC,

where c is an arbitrary point in the interval [a, b] and C is the constant of
integration. In fact, it is readily seen that C = W (c). We therefore have

W (f1, f2; x) = W (f1, f2; c)e−
∫

x
c

p(t) dt. (24.5)

Note that W (f1, f2; x) = 0 if and only if W (f1, f2; c) = 0, and that [because
the exponential in (24.5) is positive] W (f1, f2; x) and W (f1, f2; c) have the
same sign if they are not zero. This observation leads to

Box 24.2.1. The Wronskian of any two solutions of Equation (24.4)
does not change sign in the interval [a, b]. In particular, if the Wronskian
vanishes at one point in [a, b], it vanishes at all points in [a, b].
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Let f1 and f2 be any two differentiable functions that are not necessarily
solutions of any DE. If f1 and f2 are linearly dependent, then one is a multiple
of the other, and the Wronskian is readily seen to vanish. Conversely, assume
that the Wronskian is zero. Then f1(x)f ′

2(x) − f2(x)f ′
1(x) = 0. This gives

f1df2 = f2df1 ⇒ df2

f2
=

df1

f1
⇒ ln f2 = ln f1 + lnC ⇒ f2 = Cf1

and the two functions are linearly dependent. We have just shown that differentiability is
important in the
statement of Box
24.2.2.Box 24.2.2. Two differentiable functions, which are nonzero in the inter-

val [a, b], are linearly dependent if and only if their Wronskian vanishes.

Example 24.2.1. Let f1(x) = x and f2(x) = |x| for −1 ≤ x ≤ 1. These two
functions are linearly independent in the given interval, because α1x+α2|x| = 0 for
all x if and only if α1 = α2 = 0. The Wronskian, on the other hand, vanishes for
all −1 ≤ x ≤ 1:

W (f1, f2; x) = x
d|x|
dx

− |x|dx

dx
= x

d|x|
dx

− |x|

= x
d

dx

{
x if x ≥ 0

−x if x ≤ 0
−

{
x if x ≥ 0

−x if x ≤ 0

=

{
x − x = 0 if x > 0,

−x − (−x) = 0 if x < 0.

This seems to be in contradiction to Box 24.2.2. It is not! Box 24.2.2 assumes that
both functions are differentiable in their common interval of definition. However,
|x| is not differentiable at x = 0. �

24.3 A Second Solution to the HSOLDE

If we know one solution to Equation (24.4), we can use the Wronskian to
obtain a second linearly independent solution. Let W (x) ≡ W (f1, f2; x) be the
Wronskian of the two solutions f1 and f2. Then, by definition and Equation
(24.5), we have

f1(x)f ′
2(x) − f2(x)f ′

1(x) = W (x) = W (c)e−
∫

x
c

p(t) dt,

where c is an arbitrary point in the interval of interest. Given f1(x), this is a
FOLDE in f2(x), which can be solved by the method of Subsection 23.3. In
fact, 1/f2

1 (x) is an integrating factor, and dividing both sides by f2
1 (x) gives

d

dx

[
f2(x)
f1(x)

]

=
W (x)
f2
1 (x)
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ora second linearly
independent
solution can be
found from a
given solution

f2(x)
f1(x)

= C +
∫ x

α

W (s)
f2
1 (s)

ds = C +
∫ x

α

1
f2
1 (s)

W (c) exp
[

−
∫ s

c

p(t) dt

]

ds,

where C is an arbitrary constant of integration and α is a convenient point in
the interval [a, b]. Thus,second solution of

the HSOLDE
obtained from the
first

f2(x) = f1(x)
{

C + K

∫ x

α

1
f2
1 (s)

exp
[

−
∫ s

c

p(t) dt

]

ds

}

, (24.6)

where we substituted K for W (c). We do not have to know W (x) (this
would require knowledge of f2, which we are trying to calculate!) to obtain
K = W (c). In fact, it is a good exercise for the reader to show that f2, as given
by (24.6), indeed satisfies Equation (24.4) no matter what K is. Note also
that f2(α) = Cf1(α). Whenever possible—and convenient—it is customary
to set C = 0 because its presence simply gives a term that is proportional to
the known solution f1(x).

Example 24.3.1. (a) A solution to the SOLDE y′′ − k2y = 0 is ekx. To find a
second solution, we let C = 0 and K = 1 in Equation (24.6). Since p(x) = 0, we
have

f2(x) = ekx

(

0 +

∫ x

α

ds

e2ks

)

= − 1

2k
e−kx +

e−2kα

2k
ekx

which, ignoring the second term which is proportional to the first solution, leads
directly to the choice of e−kx as a second solution.
(b) The differential equation y′′ + k2y = 0, which arises in mechanics in the study
of the motion of a mass attached to the end of a spring, has sin kx as a solution.
With C = 0, c = α = π/2k, and K = 1, we get

f2(x) = sin kx

(

0 +

∫ x

π/2k

ds

sin2 ks

)

= − sin kx cot ks|xπ/2k = − cos kx.

Thus, sin kx and cos kx form a basis of solution, and a general solution is of the
form

y(x) = A cos kx + B sin kx,

a result that should be familiar to the reader from introductory physics.
(c) For the solutions in part (a),

W (x) = det

(
ekx kekx

e−kx −ke−kx

)

= −2k

and for those in part (b),

W (x) = det

(
sin kx k cos kx
cos kx −k sin kx

)

= −k.

Both Wronskians are constant. This is a special case of a result that holds for all
DEs of the form y′′ + q(x)y = 0. �
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Most special functions used in mathematical physics are solutions of SOL-
DEs. The behavior of these functions at certain special points is determined by
the physics of the particular problem. In most situations physical expectation
leads to a preference for one particular solution over the other. For example,
although there are two linearly independent solutions to the Legendre DE, Legendre

differential
equationd

dx

[

(1 − x2)
dy

dx

]

+ n(n + 1)y = 0,

the solution that is most frequently encountered is a Legendre polynomial
Pn(x) discussed in Chapter 26. The other solution can be obtained by using
Equation (24.6).

24.4 The General Solution to an ISOLDE

We now determine the most general solution of an inhomogeneous SOLDE
(ISOLDE). Let g(x) be a particular solution of

L[y] = y′′ + py′ + qy = r(x) (24.7)

and let h(x) be any other solution of this equation. Then h(x)− g(x) satisfies
Equation (24.4) and, by Theorem 24.1.3, can be written as a linear combina-
tion of a basis of solutions f1(x) and f2(x). It follows that

h(x) = c1f1(x) + c2f2(x) + g(x). (24.8)

Box 24.4.1. If we have a particular solution of the ISOLDE of Equation
(24.7) and two basis solutions of the HSOLDE, then the most general
solution of (24.7) can be expressed as the sum of a linear combination of
the two basis solutions and the particular solution.

We know how to find a second solution to the HSOLDE once we know one
solution. We now show that knowing one such solution will also allow us to
find a particular solution to the ISOLDE. The method we use is called the
method of variation of constants. method of

variation of
constants

Let f1 and f2 be the two (known) solutions of the HSOLDE and g(x) the
sought-after solution to Equation (24.7). Write g as g(x) = f1(x)v(x) with
v a function to be determined. Substitute this in (24.7) to get a SOLDE for
v(x): with a solution of

HSOLDE at our
disposal, we can
find a particular
solution of an
ISOLDE.

v′′ +
(

p +
2f ′

1

f1

)

v′ =
r

f1
.

This is a first -order linear DE in v′ which has a solution of the form (see
Problem 24.6)

v′ =
W (x)
f2
1 (x)

[

C +
∫ x

a

f1(t)r(t)
W (t)

dt

]

,
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where W (x) is the (known) Wronskian of Equation (24.7). Substituting

W (x)
f2
1 (x)

=
f1(x)f ′

2(x) − f2(x)f ′
1(x)

f2
1 (x)

=
d

dx

(
f2

f1

)

in the above expression for v′ and setting C = 0 (we are interested in a
particular solution), we get

dv

dx
=

d

dx

(
f2

f1

)∫ x

a

f1(t)r(t)
W (t)

dt

=
d

dx

[
f2(x)
f1(x)

∫ x

a

f1(t)r(t)
W (t)

dt

]

− f2(x)
f1(x)

d

dx

∫ x

a

f1(t)r(t)
W (t)

dt

︸ ︷︷ ︸
=f1(x)r(x)/W (x)

and, by integration,

v(x) =
f2(x)
f1(x)

∫ x

a

f1(t)r(t)
W (t)

dt −
∫ x

a

f2(t)r(t)
W (t)

dt,

where in the last integral, we used t as the variable of integration. This leads
to the particular solution

g(x) = f1(x)v(x) = f2(x)
∫ x

a

f1(t)r(t)
W (t)

dt − f1(x)
∫ x

a

f2(t)r(t)
W (t)

dt. (24.9)

Note how symmetric f1 and f2 appear in the final result.
It thus follows that

Box 24.4.2. Given a single solution f1(x) of the homogeneous equation
corresponding to an ISOLDE, one can use Equation (24.6) to find a second
solution f2(x) of the homogeneous equation and Equation (24.9) to find a
particular solution g(x). The most general solution h, will then be

h(x) = c1f1(x) + c2f2(x) + g(x).

24.5 Sturm–Liouville Theory

We saw in Chapter 22 that the separation of PDEs normally results in ex-
pressions of the form

L[u] + λu = 0, or p2(x)
d2u

dx2
+ p1(x)

du

dx
+ p0(x)u + λu = 0, (24.10)

where u is a function of a single variable and λ is, a priori, an arbitrary
constant. This is an eigenvalue equation for the operator L just as Equation
(7.17) was an eigenvalue equation for the matrix T. In this section, we try
to learn some properties of this eigenvalue problem, but first we need to
understand the concept of the adjoint of a differential operator.
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24.5.1 Adjoint Differential Operators

In our discussion of the eigenvalues and eigenvectors of matrices in Section 7.4,
symmetric matrices seemed to be special (see Theorem 7.4.1). The analog of a
symmetric matrix in the case of differential operators (DO) is a self-adjoint
differential operator.

The HSOLDE

L[y] ≡ p2(x)y′′ + p1(x)y′ + p0(x)y = 0 (24.11)

is said to be exact if it can be written as exact SOLDE

L[y] =
d

dx
[A(x)y′ + B(x)y]. (24.12)

An integrating factor for L[y] is a function μ(x) such that μ(x)L[y] is exact. integrating factor
for SOLDEIf an integrating factor exists, then Equation (24.11) reduces to

d

dx
[A(x)y′ + B(x)y] = 0 ⇒ A(x)y′ + B(x)y = C,

a FOLDE with a constant inhomogeneous term whose solution is given in
Theorem 23.3.1. Even the ISOLDE corresponding to Equation (24.11) can be
solved, because

μ(x)L[y] = μ(x)r(x) ⇒ d

dx
[A(x)y′ + B(x)y] = μ(x)r(x)

⇒ A(x)y′ + B(x)y =
∫ x

α

μ(t)r(t) dt,

which is a general FOLDE. Thus, the existence of an integrating factor com-
pletely solves a SOLDE. It is therefore important to know whether or not a
SOLDE admits an integrating factor.

If the SOLDE is exact, then (24.12) must equal (24.11), implying that
p2 = A, p1 = A′ + B, and p0 = B′. It follows that p′′2 = A′′, p′1 = A′′ + B′,
and p0 = B′, which in turn give p′′2−p′1+p0 = 0. Conversely if p′′2−p′1+p0 = 0,
then, substituting p0 = −p′′2 + p′1 in the LHS of Equation (24.11), we obtain

p2y
′′ + p1y

′ + p0y = p2y
′′ + p1y

′ + (−p′′2 + p′1)y
= p2y

′′ − p′′2y + (p1y)′ = (p2y
′ − p′2y)′ + (p1y)′

=
d

dx
(p2y

′ − p′2y + p1y),

and the DE is exact. Therefore,

Box 24.5.1. The SOLDE of Equation (24.11) is exact if and only if
p′′2 − p′1 + p0 = 0.
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A general SOLDE is clearly not exact. Can we make it exact by multi-
plying it by an integrating factor as we did with a FOLDE? An immediate
consequence of Box 24.5.1 is

Box 24.5.2. A function μ is an integrating factor of the SOLDE of Equa-
tion (24.11) if and only if it is a solution of the HSOLDE

M[μ] ≡ (p2μ)′′ − (p1μ)′ + p0μ = 0. (24.13)

We can expand Equation (24.13) to obtain the equivalent equation

p2μ
′′ + (2p′2 − p1)μ′ + (p′′2 − p′1 + p0)μ = 0. (24.14)

The operator M given byadjoint of a
second-order linear
differential
operator

M ≡ p2
d2

dx2
+ (2p′2 − p1)

d

dx
+ (p′′2 − p′1 + p0) (24.15)

is called the adjoint of the operator L and denoted by M ≡ L†. This is the
equivalent of the transpose of a matrix Tt.

Box 24.5.2 confirms the existence of an integrating factor. However, the
latter can be obtained only by solving Equation (24.14), which is at least as
difficult as solving the original differential equation! In contrast, the integrat-
ing factor for a FOLDE can be obtained by a mere integration [see Equation
(23.13)].

Although integrating factors for SOLDEs are not as useful as their coun-
terparts for FOLDEs, they can facilitate the study of SOLDEs. Let us
first note that the adjoint of the adjoint of a differential operator is the
original operator: (L†)† = L (see Problem 24.10). This suggests that if
v is an integrating factor of L[u], then u will be an integrating factor of
M[v] ≡ L†[v]. In particular, multiplying the first one by v and the second
one by u and subtracting the results, we obtain [see Equations (24.11) and
(24.13)] vL[u]−uM[v] = (vp2)u′′−u(p2v)′′ +(vp1)u′ +u(p1v)′, which can be
simplified to

vL[u] − uM[v] =
d

dx
[p2vu′ − (p2v)′u + p1uv]. (24.16)

Integrating this from a to b yieldsLagrange
identities ∫ b

a

(
vL[u] − uM[v]

)
dx =

[
p2vu′ − (p2v)′u + p1uv

]∣∣b
a
. (24.17)

Equations (24.16) and (24.17) are called the Lagrange identities.
As in the case of matrices, a self-adjoint differential operator (correspond-

ing to a symmetric matrix for which T = Tt) merits special consideration.
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For M[v] ≡ L†[v] to be equal to L[v], we must have [see Equations (24.11) and
(24.14)] 2p′2−p1 = p1 and p′′2 −p′1 +p0 = p0. The first equation gives p′2 = p1,
which also solves the second equation. If this condition holds, then we can
write Equation (24.11) as L[y] = p2y

′′ + p′2y
′ + p0y, or

L[y] =
d

dx

[

p2(x)
dy

dx

]

+ p0(x)y = 0.

Can we make all SOLDEs self-adjoint? Let us multiply both sides of
Equation (24.11) by a function w(x), to be determined later. We get the new
DE

w(x)p2(x)y′′ + w(x)p1(x)y′ + w(x)p0(x)y = 0,

which we desire to be self-adjoint. This will be accomplished if we choose
w(x) such that wp1 = (wp2)′, or p2w

′ + w(p′2 − p1) = 0, which can be readily
integrated to give

w(x) =
1
p2

exp
[∫ x p1(t)

p2(t)
dt

]

.

We have just proved the following:

Theorem 24.5.1. The SOLDE of Equation (24.11) is self-adjoint if and only all SOLDEs can
be made
self-adjoint

if p′2 = p1, in which case the DE has the form

d

dx

[

p2(x)
dy

dx

]

+ p0(x)y = 0.

If it is not self-adjoint, it can be made so by multiplying it through by

w(x) =
1
p2

exp
[∫ x p1(t)

p2(t)
dt

]

.

Example 24.5.2. (a) The Legendre equation in normal form,

y′′ − 2x

1 − x2
y′ +

λ

1 − x2
y = 0,

is not self-adjoint. However, we get a self-adjoint version if we multiply through by
w(x) = 1 − x2:

(1 − x2)y′′ − 2xy′ + λy = 0, or [(1 − x2)y′]′ + λy = 0

(b) Similarly, the normal form of the Bessel equation

y′′ +
1

x
y′ +

(

1 − n2

x2

)

y = 0

is not self-adjoint, but multiplying through by h(x) = x yields

d

dx

(

x
dy

dx

)

+

(

x − n2

x

)

y = 0,

which is clearly self-adjoint. �
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24.5.2 Sturm–Liouville System

Now that we know that every SOLDE can be made self-adjoint, let’s apply
the procedure to our starting DE (24.10). If we multiply that equation by the
w(x) of Theorem 24.5.1 it becomes self-adjoint, and can be written as

d

dx

[

p(x)
du

dx

]

+ [λw(x) − q(x)]u = 0 or

L[u] =
d

dx

[

p(x)
du

dx

]

− q(x)u = −λw(x)u (24.18)

with p(x) = w(x)p2(x) and q(x) = −p0(x)w(x). Equation (24.18) is the
standard form of the Sturm-Liouville (S-L) equation.

The appearance of w is the result of our desire to render the differential
operator self-adjoint. It also appears in another context. Write the Lagrange
identity (24.16) for a self-adjoint differential operator L:

uL[v] − vL[u] =
d

dx
{p(x)[u(x)v′(x) − v(x)u′(x)]}. (24.19)

If we specialize this identity to the S-L equation of (24.18) with u = u1

corresponding to the eigenvalue λ1 and v = u2 corresponding to the eigenvalue
λ2, we obtain for the LHS

u1L[u2] − u2L[u1] = u1(−λ2wu2) + u2(λ1wu1) = (λ1 − λ2)wu1u2.

Integrating both sides of (24.19) then yields

(λ1 − λ2)
∫ b

a

wu1u2dx = {p(x)[u1(x)u′
2(x) − u2(x)u′

1(x)]}b
a. (24.20)

A desired property of the solutions of a self-adjoint DE is their orthogonality
when they belong to different eigenvalues. This property will be satisfied if
we assume an inner product integral with weight function w(x), and if the
RHS of Equation (24.20) vanishes. There are various boundary conditions
(BC) that fulfill the latter requirement. One such boundary conditions are
separated boundary conditions:

α1u(a) + β1u
′(a) = 0,

α2u(b) + β2u
′(b) = 0, (24.21)

where α1, α2, β1, and β2 are real constants. Another set of appropriate bound-Sturm–Liouville
systems ary conditions is the periodic BC given by

u(a) = u(b) and u′(a) = u′(b). (24.22)

The collection of the DO and the boundary conditions is called a Sturm–
Liouville (S-L) system.
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Example 24.5.3. For fixed ν the DE

d2u

dr2
+

1

r

du

dr
+

(

k2 − ν2

r2

)

u = 0, 0 ≤ r ≤ b (24.23)

transforms into the Bessel equation u′′ + u′/x + (1 − ν2/x2)u = 0 if we make
the substitution kr = x. Thus, the solution of the S-L equation (24.23) that is
analytic at r = 0 and corresponds to the eigenvalue k2 is uk(r) = Jν(kr)—because
Bessel functions Jν(x) are entire functions. For two different eigenvalues, k2

1 and k2
2 ,

the eigenfunctions are orthogonal if the boundary term of (24.20) corresponding to
Equation (24.23) vanishes, that is, if

{r[Jν(k1r)J
′
ν(k2r) − Jν(k2r)J

′
ν(k1r)]}b

0

vanishes, which will occur if and only if Jν(k1b)J
′
ν(k2b)−Jν(k2b)J

′
ν(k1b) = 0. A com-

mon choice is to take Jν(k1b) = 0 = Jν(k2b), that is, to take both k1b and k2b as (dif-

ferent) roots of the Bessel function of order ν. We thus have
∫ b

0
rJν(kir)Jν(kjr) dr =

0 if ki and kj are different roots of Jν(kb) = 0.
The Legendre equation

d

dx

[

(1 − x2)
du

dx

]

+ λu = 0, where − 1 < x < 1,

is already self-adjoint. Thus, w(x) = 1, and p(x) = 1 − x2. Solutions of this DE
corresponding to λ = n(n + 1) are the Legendre polynomials Pn(x). The bound-
ary term of (24.20) clearly vanishes at a = −1 and b = +1, and we obtain the
orthogonality relation:

∫ +1

−1
Pn(x)Pm(x) dx = 0 if m �= n.

The Hermite equation is

u′′ − 2xu′ + λu = 0. (24.24)

It is transformed into an S-L system if we multiply it by w(x) = e−x2
. The resulting

S-L equation is
d

dx

[

e−x2 du

dx

]

+ λe−x2
u = 0. (24.25)

The function u is an eigenfunction of (24.25) corresponding to the eigenvalue λ if
and only if it is a solution of (24.24). Solutions of this DE corresponding to λ = 2n
are the Hermite polynomials Hn(x). The boundary term corresponding to the two
eigenfunctions u1(x) and u2(x) having the respective eigenvalues λ1 and λ2 �= λ1 is

{e−x2
[u1(x)u′

2(x) − u2(x)u′
1(x)]}b

a.

This vanishes for arbitrary u1 and u2 if a = −∞ and b = +∞. We can therefore

write
∫ +∞
−∞ e−x2

Hn(x)Hm(x) dx = 0 if m �= n. �

24.6 SOLDEs with Constant Coefficients

The SOLDEs with constant coefficients occur frequently and their solutions
are easily accessible. In fact, we need not confine ourselves to the second order
equations. The most general nth-order linear differential equation (NOLDE)
with constant coefficients can be written as

L[y] ≡ y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = r(x). (24.26)

The corresponding homogeneous NOLDE (HNOLDE) is obtained by setting
r(x) = 0.
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24.6.1 The Homogeneous Case

The solution to the HNOLDE

L[y] ≡ y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0 (24.27)

can be found by making the exponential substitution y = eλx, which results in

characteristic
polynomial of a
HNOLDE

the equation L[eλx] = (λn + an−1λ
n−1 + · · ·+ a1λ + a0)eλx = 0.This equation

will hold only if λ is a root of the characteristic polynomial

p(λ) ≡ λn + an−1λ
n−1 + · · · + a1λ + a0

which, by the fundamental theorem of algebra, can be written as

p(λ) = (λ − λ1)k1(λ − λ2)k2 . . . (λ − λm)km . (24.28)

The λi are the distinct roots of p(λ) with λj having multiplicity kj .
It is convenient to introduce D ≡ d/dx and define the differential

operator
L = p(D) = Dn + an−1D

n−1 + · · · + a1D + a0.

Since D − μ and D − λ commute for arbitrary constants μ and λ, we can
unambiguously factor out the above and obtain

L = p(D) = (D − λ1)k1(D − λ2)k2 . . . (D − λm)km . (24.29)

In preparation for finding the most general solution for Equation (24.27),
we first note that

(D − λ)eλx =
d

dx
eλx − λeλx = 0 (24.30)

and
(D − λ)(xreλx) =

d

dx
(xreλx) − λxreλx = rxr−1eλx.

If we apply D − λ twice, we get

(D − λ)2(xreλx) = (D − λ)(rxr−1eλx) = r(r − 1)xr−2eλx

and in general,

(D − λ)k(xreλx) = r(r − 1) . . . (r − k + 1)xr−keλx

which, for k = r, gives

(D − λ)r(xreλx) = r!eλx.

If we apply D − λ one more time, we get zero by (24.30). Therefore,

(D − λ)k(xreλx) = 0 if k > r. (24.31)

The set of functions

{xr1eλ1x}k1−1
r1=0 , {xr2eλ2x}k2−1

r2=0 , . . . , {xrmeλmx}km−1
rm=0 ,
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are all solutions of Equation (24.27). For example, an element of the first set
yields

L[xr1eλ1x] = (D − λ1)k1(D − λ2)k2 . . . (D − λm)km(xr1eλ1x)

= (D − λ2)k2 . . . (D − λm)km (D − λ1)k1(xr1eλ1x)
︸ ︷︷ ︸

=0 because k1 > r1

= 0.

If the root λ is complex and the coefficients of the DE are real, then
the complex conjugate λ∗ is also a root (see Problem 24.14). It follows that
whenever xrj eλjx is a solution of the DE for complex λj , so is xrj eλ∗

j x. Thus,
writing λj = αj + iβj and using the linearity of L, we conclude that

xrj eαjx cosβjx and xrj eαjx sin βjx, where rj = 0, 1, . . . , kj − 1,

are all solutions of (24.27).
It is easily proved that the functions xrj eλjx are linearly independent (see

Problem 24.13). Furthermore,
∑m

j=1 kj = n by Equation (24.28). Therefore,
the set

{
xrj eλjx

}
, where rj = 0, 1 . . . , kj − 1 and j = 1, 2, . . . , m,

contains exactly n elements. We have thus shown that there are at least n
linearly independent solutions for the HNOLDE of Equation (24.27). In fact,
it can be shown that there are exactly n linearly independent solutions.

Box 24.6.1. Let λ1, λ2, . . . , λm be the roots of the characteristic poly-
nomial of the real HNOLDE of Equation (24.27), and let the respective
roots have multiplicities k1, k2, . . . , km. Then the functions xrj eλjx, where
rj = 0, 1 . . . , kj − 1, are a basis of solutions of Equation (24.27).

Example 24.6.1. An equation that is used in both mechanics and circuit theory is

d2y

dt2
+ a

dy

dt
+ by = 0 with a, b > 0. (24.32)

Its characteristic polynomial is p(λ) = λ2 + aλ + b which has the roots

λ1 = 1
2
(−a +

√
a2 − 4b) and λ2 = 1

2
(−a −

√
a2 − 4b).

We can distinguish three different possible motions depending on the relative sizes
of a and b.
(a) a2 > 4b (overdamped): Here we have two distinct simple roots. The multi- overdamped
plicities are both one: k1 = k2 = 1 (see Box 24.6.1). Therefore, the power of t for
both solutions is zero (r1 = r2 = 0). Let γ ≡ 1

2

√
a2 − 4b. Then the most general

solution is

y(t) = e−at/2(c1e
γt + c2e

−γt).
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Since a > 2γ, this solution starts at y = c1 + c2 at t = 0 and continuously
decreases; so, as t → ∞, y(t) → 0.
(b) a2 = 4b (critically damped): In this case we have one multiple root of ordercritically damped
2 (k1 = 2); therefore, the power of x can be zero or 1 (r1 = 0, 1). Thus, the general
solution is

y(t) = c1te
−at/2 + c0e

−at/2.

This solution starts at y(0) = c0 at t = 0, reaches a maximum (or minimum) at
t = 2/a − c0/c1, and subsequently approaches zero asymptotically (see Problem
24.23).
(c) a2 < 4b (underdamped): Once more, we have two distinct simple roots. Theunderdamped
multiplicities are both one (k1 = k2 = 1); therefore, the power of x for both solutions
is zero (r1 = r2 = 0). Let ω ≡ 1

2

√
4b − a2. Then λ1 = −a/2 + iω and λ2 = λ∗

1. The
roots are complex, and the most general solution is thus of the form

y(t) = e−at/2(c1 cos ωt + c2 sin ωt) = Ae−at/2 cos(ωt + α).

The solution is a harmonic variation with a decaying amplitude A exp(−at/2). Note
that if a = 0, the amplitude does not decay. That is why a is called the damping
factor (or the damping constant). All three cases are shown in Figure 24.1.damping factor

These equations describe either a mechanical system oscillating (with no external
driving force) in a viscous (dissipative) fluid, or an electrical circuit consisting of a
resistance R, an inductance L, and a capacitance C. For mechanical oscillators,
a = β/m and b = k/m, where β is the dissipative constant related to the drag force
fdrag and the velocity v by fdrag = βv, and k is the spring constant (a measure of
the stiffness of the spring).

For RLC circuits, a = R/L and b = 1/LC. Thus, the damping factor depends
on the relative magnitudes of R and L. On the other hand, the frequency

ω ≡
√

b −
(a

2

)2

=

√
1

LC
− R2

4L2

depends on all three elements. In particular, for R ≥ 2
√

L/C, the circuit does not
oscillate. �

Figure 24.1: The solid thin curve shows the behavior of an overdamped oscillator. The

critically damped case is the dashed curve, and the underdamped oscillator is the thick

curve.
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24.6.2 Central Force Problem

One of the nicest applications of the theory of DEs, and the one that initiated central force
problemthe modern mathematical analysis, is the study of motion of a particle under

the influence of a central gravitational force. Surprisingly, such a motion can
be reduced to a one-dimensional problem, and eventually to a SOLDE with
constant coefficients as follows.

Subsection 12.2.1 treated the equations of motion of a particle under the
influence of a central force. Conservation of angular momentum and the right
choice of the initial position and velocity (what amounted to setting L =
Lzêz = Lêz) eliminated the polar angle θ by assigning it the value π/2. Thus
the particle is confined to the plane perpendicular to the angular momentum
vector, i.e., essentially the vector r × v. The set of three complicated DEs
(12.20) reduces to a much simpler set consisting of (12.22) and (12.24) which
we rewrite here as

mr̈ − L2

mr3
= F (r), ϕ̇ =

L

mr2
. (24.33)

In principle, we can solve the first equation and find r as a function of t,
then substitute it in the second equation and integrate the result to find ϕ as
a function of time. However, it is more desirable to find r as a function of ϕ,
i.e., find the shape of the orbit of the moving particle.

In that spirit, we define a new dependent variable u = 1/r, and making
multiple use of the chain rule, we write the DEs with u as the dependent
variable and ϕ as the independent variable. We thus have

r =
1
u

⇒ ṙ = − u̇

u2
= − 1

u2
ϕ̇

du

dϕ
= −r2ϕ̇

du

dϕ
= − L

m

du

dϕ
,

r̈ = − L

m

d

dt

(
du

dϕ

)

= − L

m

d2u

dϕ2 ϕ̇ = − L

m

d2u

dϕ2

L

mr2
= − L2

m2
u2 d2u

dϕ2 .

Substituting for r̈ and r in terms of u and its derivative, Equation (24.33)
yields

d2u

dϕ2 + u = − m

L2u2
F

(
1
u

)

. (24.34)

Historical Notes

Johannes Kepler (1571–1630) was a premature baby and a very delicate child
who was brought up by his grandparents. After elementary and secondary schooling,
Kepler entered Tübingen University to become a Protestant minister. At Tübingen
Kepler was taught astronomy by one of the leading astronomers of the day, Michael
Maestlin (1550–1631). The astronomy of the curriculum was, of course, geocen-
tric astronomy. At the end of his first year Kepler got ’A’s for everything except
mathematics. Probably Maestlin was trying to tell him he could do better, because

Johannes Kepler
1571–1629

Kepler was in fact one of the select pupils to whom he chose to teach more ad-
vanced astronomy by introducing them to the new, heliocentric cosmological system



580 Second-Order Linear Differential Equations

of Copernicus. It was from Maestlin that Kepler learned that the preface to Coper-
nicus’s book, explaining that this was ’only mathematics’, was not by Copernicus.
Kepler seems to have accepted almost instantly that the Copernican system was
physically true, and from then on, astronomy and mathematics became his passion.
Kepler also worked and wrote a book in optics, in which he used the idea of a ‘ray
of light’ for the first time.

For the Kepler problem this equation is easy to solve because5Kepler problem

F (r) = −K

r2
⇒ F

(
1
u

)

= −Ku2

and we have
d2u

dϕ2 + u =
Km

L2
. (24.35)

Let v = u − Km/L2. Then Equation (24.35) becomes

d2v

dϕ2 + v = 0.

The characteristic polynomial of this equation is λ2 + 1, whose roots are
λ = ±i. These simple roots give rise to the linearly independent solutions
v = sinϕ and v = cosϕ. The general solution can therefore be expressed
as v = C1 cosϕ + C2 sin ϕ which, using Problem 24.22, can be rewritten as
v = A cos(ϕ − ϕ0). Therefore,

v = u − Km/L2 = A cos(ϕ − ϕ0) ⇒ u = Km/L2 + A cos(ϕ − ϕ0)

orequation of the
orbits in the
Kepler problem

r =
1

(Km/L2) + A cos(ϕ − ϕ0)
. (24.36)

This is the equation of a conic section in plane polar coordinates (see Problem
24.15).

We now investigate the details of Equation (24.36). First we note that
when ϕ = ϕ0, r is either a maximum or a minimum depending on the sign
of A. With an ellipse in mind, this corresponds to the (major) axis of the
ellipse making an angle ϕ0 with the x-axis. Thus setting ϕ0 = 0 corresponds
to choosing the axis of the conic section to be our x-axis. We adhere to this
choice and write

r =
1

(Km/L2) + A cosϕ
. (24.37)

Next we want to determine the constant A in terms of the energy of the
particle. The potential energy (PE) is clearly −K/r. So, let us concentrate

5Although the Kepler problem usually refers to the gravitational central force, we want
to keep the discussion general enough so that electrostatic force is also included. Thus, K
introduced below can be either GMm or −keq1q2.
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on the kinetic energy (KE). The velocity of the particle is given in Equation
(12.16) with θ = π/2 and θ̇ = 0. Thus

KE = 1
2mv2 = 1

2m(ṙ2 + r2ϕ̇2) = 1
2mṙ2 +

L2

2mr2
, (24.38)

where we used the second equation in (24.33). The second term in (24.38) is
sometimes called the centrifugal potential because (like a potential energy) centrifugal

potentialit is a position-dependent energy that (like a centrifugal force) has resulted
from a velocity-dependent term. Differentiating Equation (24.37) with respect
to time gives

ṙ =
Aϕ̇ sin ϕ

[(Km/L2) + A cosϕ]2
= Ar2ϕ̇ sin ϕ.

Squaring and using the second equation in (24.33), we obtain

ṙ2 = A2r4ϕ̇2 sin2 ϕ =
L2

m2
A2 sin2 ϕ.

We can eliminate the sine term in favor of terms involving r by solving for
A cosϕ in (24.37):

A cosϕ =
1
r
− Km

L2
⇒ A2 sin2 ϕ = A2 −

(
1
r
− Km

L2

)2

.

It follows that

KE = 1
2m

[
L2A2

m2
− L2

m2

(
1
r
− Km

L2

)2
]

+
L2

2mr2

=
L2A2

2m
− K2m

2L2
+

K

r

and

E = KE + PE =
L2A2

2m
− K2m

2L2
+

K

r
− K

r
=

L2A2

2m
− K2m

2L2
,

so that

A = ±
√

2mE

L2
+

K2m2

L4
.

To avoid negative signs at later stages, we choose the negative sign now and
finally write

r =
L2/(Km)

1 −
√

2EL2/(K2m) + 1 cosϕ
=

L2/(Km)
1 − e cosϕ

, (24.39)

where

e ≡
√

2EL2

K2m
+ 1 (24.40)

is called the eccentricity of the conic section. eccentricity of
orbits
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The eccentricity, which by its very definition is always positive, determines
the shape of the orbit. Let us concentrate on the interesting case of elliptic
orbits corresponding to 0 < e < 1 indicating that the total energy of the
particle is negative. Inspection of Problem 24.15 reveals that the semi-major
and semi-minor axes of the ellipse are, respectively,

a2 =
L4

(1 − e2)2K2m2
and b2 =

L4

(1 − e2)K2m2
.

Substituting for e from Equation (24.40) and noting that E < 0, we obtain

a = − K

2E
⇒ E = −K

2a
and b =

L√
−2mE

⇒ L =

√
mK

a
b.

(24.41)
The negativity of energy in an elliptic orbit is an indication of the stability

of the orbit. The potential energy is negative and larger in absolute value than
the kinetic energy. If the total energy is negative (and, of course, constant),
the particle cannot move too far away from the center of attraction, because
the magnitude of the PE may become too small to offset the positive KE. The
absolute value of this total negative energy is called the binding energy. Forbinding energy

an ellipse this binding energy is K/2a.

Kepler’s Laws

In 1609 Johannes Kepler, the German astronomer, after painstakingly an-
alyzing the motion of Mars for many years announced what is now called
Kepler’s first law of planetary motion: The orbit of Mars is not a circleKepler’s first law

but an ellipse. In the context of a very resilient tradition—dating back to
Pythagoras himself—in which circular orbits were given almost a divine sta-
tus, this announcement was truly monumental. Kepler had a hunch that all
planets obey this same law, but could not prove it. Equation (24.37) is the
mathematical statement of Kepler’s first law.

Kepler’s second law of planetary motion states that equal areas areKepler’s second
law swept out in equal times by the line joining the planet to the center of attraction

(the Sun). In other words the rate of change of the area is a constant. This
can be seen by referring to Figure 24.2 and noting that

ΔA ≈ 1
2rAB ≈ 1

2r(rΔϕ) ⇒ ΔA

Δt
≈ 1

2r2 Δϕ

Δt
→ dA

dt
= 1

2r2ϕ̇.

So, by the second equation in (24.33), dA/dt = L/2m which is a constant.
After the first two laws, Kepler spent another 12 years searching for a

“harmony” in the motion of planets. The imperfection he injected in the
planetary motions by the assumption of elliptical orbits prompted him to
seek for some sort of compensation. His third law was precisely that. He felt
that this law, with its precise mathematical structure, gave sufficient harmony
to the waltz of planets around the Sun to offset the imperfection of elliptical
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S

A

B
r

Figure 24.2: The shaded area is almost equal to the area of the triangle SAB.

orbits. Kepler’s third law of planetary motion relates the period of each
planet to the length of its major axis. To derive it, we use Kepler’s second Kepler’s third law

law:

T =
πab

dA/dt
=

πab

(L/2m)
=

2πabm
√

mK/ab
=

2πa3/2m1/2

√
K

,

where we used Equation (24.41). For gravity, K = GMm, and squaring both
sides of the above equation gives

T 2 =
4π2a3

GM
.

This is the mathematical statement of Kepler’s third law.

24.6.3 The Inhomogeneous Case

When a driving force acts on a physical system, it will appear as the inho-
mogeneous term of the NOLDE. For the particular, but important, case in
which the inhomogeneous term is a product of polynomials and exponentials,
the solution can be found in closed form. This subsection shows how this is
done.

We assume that the inhomogeneous term in Equation (24.26) is of the
form r(x) =

∑
k pk(x)eλkx where pk(x) are polynomials and λk are (complex)

constants. The most general solution of Equation (24.26) is a linear combi-
nation of a basis of solutions (as given in Box 24.6.1) of the homogeneous
NOLDE and a particular solution of the NOLDE. We need to find the latter.
Because L is a linear operator, it is clear that if y1 is a particular solution
of L[y] = r1(x) and y2 that of L[y] = r2(x), then y1 + y2 is a solution of
L[y] = r1(x)+ r2(x). This suggests breaking up the inhomogeneous term into
smaller pieces. Thus, no generality is lost if we restrict r(x) to be p(x)eλx

where p(x) is a polynomial.
The reader may verify that, for any differentiable function f , we have

(D − λ)[eλxf(x)] = eλxf ′(x), (D − λ)2[eλxf(x)] = eλxf ′′(x),
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and, in general,

(D − λ)k[eλxf(x)] = eλx dkf

dxk
.

In particular, if p(x) is a polynomial of degree n, then

(D − λ)ku = eλxp(x)

has a solution of the form u = eλxq(x), where q(x) is a polynomial of degree
n + k that is the primitive (indefinite integral) of p(x) of order k [so that the
kth derivative of q(x) is p(x)].

If ν �= λ, then the reader may check that

(D − ν)[eλxf(x)] = eλx[(λ − ν)f(x) + f ′(x)]

and, therefore, (D − ν)u = eλxp(x) has a solution of the form u = eλxq(x),
where q(x) is a polynomial of degree k. Applying the last two equations
repeatedly leads toparticular solution

of nth order linear
DE

Box 24.6.2. The NOLDE L[y] = eλxS(x), where S(x) is a polynomial,
has the particular solution eλxq(x), where q(x) is also a polynomial. The
degree of q(x) equals that of S(x) unless λ = λj, a root of the characteristic
polynomial of L, in which case the degree of q(x) exceeds that of S(x) by
kj, the multiplicity of λj.

Once we know the form of the particular solution of the NOLDE, we can
find the coefficients in the polynomial of the solution by substituting in the
NOLDE and matching the powers on both sides.

Example 24.6.2. We find the most general solutions of two differential equations
subject to the boundary conditions y(0) = 0 and y′(0) = 1.
(a) The first DE we want to consider is

y′′ + y = xex. (24.42)

The characteristic polynomial is λ2 + 1 whose roots are λ1 = i and λ2 = −i. Thus,
a basis of solutions is {cos x, sin x}. To find the particular solution we note that λ
(the coefficient of x in the exponential part of the inhomogeneous term) is 1, which
is neither of the roots λ1 and λ2. Thus, the particular solution is of the form q(x)ex,
where q(x) = Ax + B is of degree 1 [same degree as that of S(x) = x]. We now
substitute u = (Ax + B)ex in Equation (24.42) to obtain the relation

Axex + (2A + B)ex + (Ax + B)ex = xex.

Matching the coefficients, we have

2A = 1 and 2A + 2B = 0 ⇒ A = 1
2

= −B.

Thus, the most general solution is

y = c1 cos x + c2 sin x + 1
2
(x − 1)ex.
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Imposing the given boundary conditions yields 0 = y(0) = c1− 1
2

and 1 = y′(0) = c2.
Thus,

y = 1
2

cos x + sin x + 1
2
(x − 1)ex

is the unique solution.
(b) The next DE we want to consider is

y′′ − y = xex. (24.43)

Here p(λ) = λ2 − 1, and the roots are λ1 = 1 and λ2 = −1. A basis of solutions
is {ex, e−x}. To find a particular solution, we note that S(x) = x and λ = 1 = λ1.
Box 24.6.2 then implies that q(x) must be of degree 2 because λ1 is a simple root,
i.e., k1 = 1. We, therefore, try

q(x) = Ax2 + Bx + C ⇒ u = (Ax2 + Bx + C)ex.

Taking the derivatives and substituting in Equation (24.43) yields two equations,

4A = 1 and A + B = 0,

whose solution is A = −B = 1/4. Note that C is not determined, because Cex is
a solution of the homogeneous DE corresponding to Equation (24.43), so when L is
applied to u, it eliminates the term Cex. Another way of looking at the situation is
to note that the most general solution to (24.43) is of the form

y = c1e
x + c2e

−x + ( 1
4
x2 − 1

4
x + C)ex.

The term Cex could be absorbed in c1e
x. We, therefore, set C = 0, apply the

boundary conditions, and find the unique solution

y = 5
4

sinh x + 1
4
(x2 − x)ex. �

The inhomogeneous DE (IDE) L[y] = r(x) can be thought of as a machine
(or a black box) that produces a function y(x) when a function r(x) is fed
into it. Such an interpretation is common in the study of electrical or acoustic
filters. A signal, the function r(x), is sent into the filter, and a second function,
y(x), is received as an output. In such a context, by far the most important
input signal is a sinusoidal function of the general form r(t) = A cos(ωt + α),
which, with B = Aeiα, can be written in complex notation as (see Example
18.2.3)

r(t) = Re(R(t)) where R(t) ≡ Beiωt = Aei(ωt+α),

where A, B, α, and ω, the angular frequency, are all constants, and t represents
time (the independent variable). Assuming that iω is not a root of p(λ),
the characteristic polynomial of L, Box 24.6.2 suggests a particular (complex)
solution, U = C(ω)eiωt where C(ω) is a (ω-dependent) constant. To determine
it, we substitute U in L[U ] = Beiωt:

L[U ] = L[C(ω)eiωt] = C(ω)L[eiωt] = C(ω)p(iω)eiωt,

so that

L[U ] = Beiωt ⇒ C(ω)p(iω)eiωt = Beiωt ⇒ C(ω) =
B

p(iω)
.
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Writing the complex numbers in polar form

C(ω) ≡ ρ(ω)eiγ(ω), B = Aeiα, p(iω) ≡ P (ω)eiθ(ω),

we obtain
ρ(ω) =

A

P (ω)
and γ(ω) = α − θ(ω).

The real solution, u(t) = Re[U(t)], will then be

u(t) = Re[C(ω)eiωt] = ρ(ω) cos[ωt + γ(ω)]

=
A

P (ω)
cos[ωt + α − θ(ω)]. (24.44)

The function C(ω) is called the transfer function associated with the lin-transfer function

ear operator L. Equation (24.44) shows that the output u(t) has the same fre-
quency as the input. It also indicates that the amplitude of u(t) is frequency-
dependent, making it possible to obtain large output amplitudes by varying
the frequency until P (ω) is minimum. This is the phenomenon of resonance
in AC circuits.

Example 24.6.3. Let us apply the analysis above to Example 24.6.1 and, for
definiteness, take the underdamped case. In this case, 4b > a2; and ω0 ≡

√
b

is called the natural frequency of the system. The characteristic polynomial isnatural frequency
p(λ) = λ2 + aλ + b. Thus,

p(iω) = −ω2 + iωa + b = (ω2
0 − ω2) + iωa

and

P (ω) =
√

(ω2
0 − ω2)2 + ω2a2, θ(ω) = tan−1

(
ωa

ω2
0 − ω2

)

.

The amplitude of the output signal, sometimes called the gain function, isgain function

ρ(ω) =
A

P (ω)
=

A
√

(ω2
0 − ω2)2 + ω2a2

.

The minimum of the denominator occurs at ω = ω0, that is, when the driving
frequency equals the natural frequency. In such a situation we have ρ(ω) = A/(ω0a),
showing that the output signal will have a large amplitude when a, the damping
coefficient, is small.

We have considered only the particular solution, u(t), because the most general
solution

y(t) = Ke−at/2 cos(ω1t + β) + u(t)

in which K and β are constants, eventually reduces to u(t). The first term on the
RHS, the transient term, decays to zero. The rate of this decay is determinedtransient term
by the time constant 2/a, the time interval during which the amplitude of the

time constant
transient term drops to 1/e of its initial value. �

The importance of the sinusoidal signal becomes clear when we recall that
any periodic signal can be expanded in a Fourier series, R(t) =

∑∞
n=−∞ bneinωt
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where ω is the fundamental frequency. The linearity of L suggests the solution
u(t) = Re[U(t)], where

U(t) =
∞∑

n=−∞
Cn(ω)einωt.

Substituting in L[U ] = R(t) gives

∞∑

n=−∞
Cn(ω)p(inω)einωt =

∞∑

n=−∞
bneinωt.

Since the einωt are orthonormal, we get Cn(ω) = bn/[p(inω)], and

u(t) = Re

[ ∞∑

n=−∞

bneinωt

p(inω)

]

.

Thus, u(t) is also periodic and has the same fundamental frequency as r(t).

24.7 Problems

24.1. Let f and g be two differentiable functions that are linearly dependent.
Show that their Wronskian vanishes. (Note that f and g need not be solutions
of a homogeneous SOLDE.)

24.2. Show that if (f1, f
′
1) and (f2, f

′
2) are linearly dependent at one point,

then f1 and f2 are linearly dependent at all a ≤ x ≤ b. Here f1 and f2 are
solutions of the DE of (24.4). Hint: Derive the identity

W (f1, f2; x2) = W (f1, f2; x1) exp
{

−
∫ x2

x1

p(t) dt

}

.

24.3. Show by direct substitution that f2 of Equation (24.6) indeed satisfies
(24.4) no matter what K is.

24.4. Show that the solutions to the SOLDE y′′ + q(x)y = 0 have a constant
Wronskian.

24.5. Find a general integral formula for Gn(x), the linearly independent
“partner” of the Hermite polynomial Hn(x) which satisfies the Hermite DE

y′′ − 2xy′ + 2ny = 0.

Specialize this to n = 0, 1. Is it possible to find G0(x) and G1(x) in terms of
elementary functions?
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24.6. Use Theorem 23.3.1 to construct

y =
W (x)
f2
1 (x)

[

C +
∫ x

a

f1(t)r(t)
W (t)

dt

]

,

a solution of

y′ +
(

p +
2f ′

1

f1

)

y =
r

f1
.

24.7. Show that each pair of the following functions satisfy the DE next to it.
Calculate the Wronskian, and give a solution satisfying the initial conditions
y(0) = 2 and y′(0) = 1.

(a) cosx and sinx; y′′ + y = 0. (b) ex and e3x; y′′ + 4y′ + 3y = 0.

(c)x and ex; y′′ +
x

1 − x
y′ − 1

1 − x
y = 0.

24.8. For the HSOLDE y′′ + py′ + qy = 0, show that

p = −f1f
′′
2 − f2f

′′
1

W (f1, f2)
and q =

f ′
1f

′′
2 − f ′

2f
′′
1

W (f1, f2)
.

Thus, knowing two solutions of an HSOLDE allows us to reconstruct the DE.

24.9. Show that the HSOLDE y′′ + py′ + qy = 0 can be cast in the form
u′′ + S(x)u = 0. Hint: Define w(x) by y = wu, substitute in the DE, and
demand that the coefficient of u′ be zero to obtain

w(x) = C exp
[

− 1
2

∫ x

α

p(t) dt

]

.

Now show that the original DE can be written as u′′ + S(x)u = 0 with

S(x) = q + p
w′

w
+

w′′

w
= q − 1

4p2 − 1
2p′.

24.10. Show that the adjoint of M given in Equation (24.14) is the original L.

24.11. Show that S-L equation (24.18) can be transformed into

d2v

dt2
+ [λ − Q(t)]v = 0,

by the so-called Liouville substitution, which changes both independent
and dependent variables:

u(x) = v(t)[p(x)w(x)]−1/4 , t =
∫ x

a

√
w(s)
p(s)

ds.

Then

Q(t) =
q(x(t))
w(x(t))

+ [p(x(t))w(x(t))]−1/4 d2

dt2
[(pw)1/4].
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24.12. Show that
(a) the Liouville substitution (see Problem 24.11) transforms the Bessel DE
(xu′)′ + (k2x − ν2/x)u = 0 into

d2v

dt2
+

[

k2 − ν2 − 1/4
t2

]

v = 0.

(b) Specialize to ν = 1
2 and show that

J1/2(kt) = A
sin kt√

t
+ B

cos kt√
t

.

(c) Use the fact that Jν(x) is an analytic function of x to show that

J1/2(kt) = A
sin kt√

t
.

24.13. Show that the functions xreλx, where r = 0, 1, 2, . . . , k, are linearly
independent. Hint: Starting with (D−λ)k, apply powers of D−λ to a linear
combination of xreλx for all possible r’s.

24.14. Suppose λ is a root of the polynomial

p(x) ≡ xn + an−1x
n−1 + · · · + a1x + a0,

where all coefficients are real. Show that λ∗ is also a root of p(x). Hint:
Complex conjugate p(λ) = 0. Does the same result hold if the coefficients
were complex?

24.15. Write Equation (24.39) in the more familiar Cartesian coordinates
and show that e = 0 gives a circle, 0 < e < 1 gives an ellipse, e = 1 gives a
parabola, and e > 1 gives a hyperbola. Show that except for the case of a
parabola, the Cartesian equation of the conic section is

(1 − e2)2K2m2

L4

(

x − L2e

Km(1 − e2)

)2

+
(1 − e2)K2m2

L4
y2 = 1.

24.16. Derive all the formulas in Equation (24.41).

24.17. Find a basis of real solutions for each DE:

(a) y′′ + 5y′ + 6 = 0. (b) y′′′ + 6y′′ + 12y′ + 8y = 0.

(c) y(4) = y. (d) y(4) = −y.

24.18. Solve the following DEs subject to the given initial conditions.
(a) y(4) = y, y(0) = y′(0) = y′′′(0) = 0, y′′(0) = 1.
(b) y(4) + y′′ = 0, y(0) = y′′(0) = y′′′(0) = 0, y′(0) = 1.
(c) y(4) = 0, y(0) = y′(0) = y′′(0) = 0, y′′′(0) = 2.
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24.19. Solve y′′ − 2y′ + y = xex subject to the initial conditions y(0) =
0, y′(0) = 1.

24.20. Find the general solution of each equation:

(a) y′′ = xex. (b) y′′ − 4y′ + 4y = x2.

(c) y′′ + y = sin x sin 2x. (d) y′′ − y = (1 + e−x)2.

(e) y′′ − y = ex sin 2x. (f) y(6) − y(4) = x2.

(g) y′′ − 4y′ + 4 = ex + xe2x. (h) y′′ + y = e2x.

24.21. Consider the Euler equation

xny(n) + an−1x
n−1y(n−1) + · · · + a1xy′ + a0y = r(x).

Substitute x = et and show that such a substitution reduces this to a DE
with constant coefficients. In particular, solve x2y′′ − 4xy′ + 6y = x.

24.22. Show that v = C1 cos θ + C2 sin θ can be written as v = A cos(θ− θ0).
Find A and θ0 in terms of C1 and C2.

24.23. (a) Show that the extremum (maximum or minimum) of the function

y(t) = c1te
−at/2 + c0e

−at/2

occurs at t = 2/a − c0/c1.
(b) Prove that if c1 > 0, the extremum is maximum and if c1 < 0, it is
minimum.

24.24. Verify that, for any differentiable function f , we have

(D − λ)[eλxf(x)] = eλxf ′(x)

and if ν �= λ, then

(D − ν)[eλxf(x)] = eλx[(λ − ν)f(x) + f ′(x)].

24.25. Derive Equation (24.44).



Chapter 25

Laplace’s Equation:
Cartesian Coordinates

In Chapter 22 we discussed the technique of the separation of variables for the
most important PDEs encountered in introductory physics and engineering
courses. One such PDE deserving special attention is the Laplace equation

∇2Φ = 0 (25.1)

which shows up extensively in problems in electrostatics and steady-state heat
conduction. The latter arises in situations in which the temperature does not
change with time, so that the LHS of Equation (22.3) vanishes.

Aside from its significance in applications, Laplace’s equation is important
because its solution leads naturally to some of the most famous functions
of mathematical physics. In fact, when separating this equation in various
coordinate systems, one obtains not only such elementary functions as sines
and cosines, but also the more advanced “special functions” such as Legendre
polynomials and the Bessel functions. At the heart of such functions is the
linearity of Laplace’s equation which allows summing a (infinite) number of
solutions to get a new solution. This leads naturally to solutions of Laplace’s
equation in terms of infinite series.

In a typical situation, Φ is given on some surfaces bounding a volume in
space and its value is sought for all points in the volume. When the bounding
surfaces are arbitrarily shaped, the solution can be found only by numerical
techniques; but when they are primary surfaces of a coordinate system, then
we can generally solve the problem by separating Laplace’s equation in the
appropriate coordinate system.
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25.1 Uniqueness of Solutions

We shall see many examples of solutions to Laplace’s equation in various
coordinate systems in this and the following chapters. All of these solutions
will be obtained in the form of infinite series. So, we know that solutions to
Laplace’s equation indeed exist. What we want to do in this section is to
show that the solution which satisfies all the boundary conditions is unique.
In other words, no matter how we find the solution, as long as it satisfies the
boundary condition, it is the solution of Laplace’s equation. In fact, we can
be more general and prove the uniqueness for the Poisson equation ∇2Φ = ρ.

Consider the volume V with some surfaces bounding it. Figure 25.1 shows
two such volumes. Assume that two functions Φ1 and Φ2 satisfy the Poisson
equation at every point of the volume, and that they both satisfy some other
conditions related to the surfaces which we shall look into shortly. Let Φ =
Φ1 − Φ2 and note that Φ satisfies Laplace’s equation because

∇2Φ = ∇2(Φ1 − Φ2) = ∇2Φ1 −∇2Φ2 = ρ − ρ = 0.

For any function f , we have [see Equation (14.11)]

∇ · (f∇f) = ∇f · ∇f + f∇2f = |∇f |2 + f∇2f.

For Φ—since it satisfies Laplace’s equation—we get

∇ · (Φ∇Φ) = ∇Φ · ∇Φ + Φ∇2Φ︸︷︷︸
=0

= |∇Φ|2.

Integrating both sides of the last equation over the volume V and using the
divergence theorem on the LHS yields

∫ ∫

S

(Φ∇Φ) · ên da =
∫ ∫

S

(Φ1 − Φ2)(ên · ∇Φ1 − ên · ∇Φ2) da

=
∫ ∫

V

∫
|∇Φ|2dV. (25.2)

(a) (b)

V

V

Figure 25.1: A volume (shaded region) with its bounding surface. (a) The volume is

“inside” the bounding surface. (b) The volume is “outside” the bounding surface(s).
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Now suppose:

• Dirichlet boundary condition: Φ1 and Φ2 take on the same value at Dirichlet boundary
conditionevery point of the bounding surface(s), i.e., Φ1 − Φ2 = 0 on S; or

• Neumann boundary condition: the so-called normal derivatives Neumann
boundary
condition; normal
derivatives

ên · ∇Φ1 and ên · ∇Φ2 take on the same value at every point of the
bounding surface(s), i.e., ên · ∇Φ1 − ên · ∇Φ2 = 0 on S.

Then, in either case, the first line of Equation (25.2) yields zero. Since the
integrand of the RHS is never negative, the integrand must vanish.1 It follows
that

|∇Φ|2 = 0 ⇒ ∇Φ = 0 ⇒ Φ = constant ⇒ Φ1 − Φ2 = constant

for all points in the volume V . Since Φ = 0 on the bounding surface, the
constant must be zero, i.e., Φ1 = Φ2 for all points in the volume V . We thus
have

Box 25.1.1. Let V be a volume bounded by a (possibly disconnected) sur-
face S. Then there exists a unique function which satisfies both Laplace’s
equation (or the Poisson equation) at every point of V and either Dirichlet
or Neumann boundary conditions on S.

Historical Notes
Pierre Simon de Laplace was a French mathematician and theoretical astronomer
who was so famous in his own time that he was known as the Newton of France. His
main interests throughout his life were celestial mechanics, the theory of probability,
and personal advancement.

At the age of 24 he was already deeply engaged in the detailed application of
Newton’s law of gravitation to the solar system as a whole, in which the planets and
their satellites are not governed by the Sun alone, but interact with one another
in a bewildering variety of ways. Even Newton had been of the opinion that di-
vine intervention would occasionally be needed to prevent this complex mechanism
from degenerating into chaos. Laplace decided to seek reassurance elsewhere, and
succeeded in proving that the ideal solar system of mathematics is a stable dynam-
ical system that will endure unchanged for all time. This achievement was only
one of the long series of triumphs recorded in his monumental treatise Mécanique
Céleste (published in five volumes from 1799 to 1825), which summed up the work
on gravitation of several generations of illustrious mathematicians. Unfortunately
for his later reputation, he omitted all reference to the discoveries of his predecessors
and contemporaries, and left it to be inferred that the ideas were entirely his own.
Many anecdotes are associated with this work. One of the best known describes
the occasion on which Napoleon tried to get a rise out of Laplace by protesting that

1The integral is the limit of a sum. If no term of this sum is negative, and the sum
equals zero, then each term of the sum must be zero.
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he had written a huge book on the system of the world without once mentioning
God as the author of the universe. Laplace is supposed to have replied, “Sire, I
had no need of that hypothesis.” The principal legacy of the Mécanique Céleste to
later generations lay in Laplace’s wholesale development of potential theory, with its
far-reaching implications for a dozen different branches of physical science ranging
from gravitation and fluid mechanics to electromagnetism and atomic physics. Even
though he lifted the idea of the potential from Lagrange without acknowledgment,
he exploited it so extensively that ever since his time the fundamental equation of
potential theory has been known as Laplace’s equation.

Pierre Simon de
Laplace 1749–1827

After the French Revolution, Laplace’s political talents and greed for position
came to full flower. His compatriots speak ironically of his “suppleness” and “versa-
tility” as a politician. What this really means is that each time there was a change
of regime (and there were many), Laplace smoothly adapted himself by changing his
principles—back and forth between fervent republicanism and fawning royalism—
and each time he emerged with a better job and grander titles. He has been aptly
compared with the apocryphal Vicar of Bray in English literature, who was twice a
Catholic and twice a Protestant. The Vicar is said to have replied as follows to the
charge of being a turncoat: “Not so, neither, for if I changed my religion, I am sure
I kept true to my principle, which is to live and die the Vicar of Bray.”

To balance his faults, Laplace was always generous in giving assistance and
encouragement to younger scientists. From time to time he helped forward in their
careers such men as the chemist Gay–Lussac, the traveler and naturalist Humboldt,
the physicist Poisson, and—appropriately—the young Cauchy, who was destined to
become one of the chief architects of nineteenth-century mathematics.

25.2 Cartesian Coordinates

The separation of Laplace’s equation in Cartesian coordinates is obtained
from Equation (22.12) by setting the constant C equal to zero.2 This leads
to the following three equations3

d2X

dx2 − α1X = 0,
d2Y

dy2 − α2Y = 0,
d2Z

dz2 + (α1 + α2)Z = 0, (25.3)

where the α’s could be any number (including zero and complex). The specific
value that each α takes on depends on the boundary conditions (BCs). We
consider bounding surfaces parallel to the planes of the Cartesian coordinates.

The most effective way of learning how to solve Laplace’s equation is to
go into the details of the solution of a number of specific examples. We do
so in the following, hoping that the reader will examine these examples very
carefully, taking note of steps taken with an eye on how each step would
change in a different situation (different BCs, etc).

Example 25.2.1. Two semi-infinite conducting plates starting on the y-axis andsemi-infinite
electrically
conducting plates

parallel to the x-axis are grounded (the potential Φ is zero on them) and separated by

2Recall from Subsection 22.2 that Φ(x, y, z) = X(x)Y (y)Z(z).
3We have changed the sign of the α’s to illustrate how the boundary conditions force on

us the correct functional form of X, Y , and Z.
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y

x

Φ = 0

Φ = 0
b

Φ = V

(b)(a)

y

x

z

Figure 25.2: (a) The semi-infinite plates, and (b) the cross section of the two

(grounded) plates and the strip maintained at potential V .

a distance b [Figure 25.2(a)]. Both plates extend from −∞ to ∞ in the z-direction. A
conducting strip of width b—also infinite in both directions of the z-axis—is located
between the two plates and separated from them by an infinitesimal gap, so that
the strip can be maintained at a different potential of Φ = V . Figure 25.2(b) shows
the cross section of the geometry of the problem. We want to find the potential in
the region enclosed by the conductors.

The potential is independent of z because, as a small observer moves along the Symmetry tells us
that the potential
is independent
of z.

z-axis keeping the other two coordinates fixed, his detectors and instruments will not
detect any change in the physics of the problem, because the physical environment
of the detectors remains unchanged. So, Z(z) is a constant which we absorb in X(x)
or Y (y). Furthermore, substituting Z = const. in the third equation of (25.3) yields
α1 + α2 = 0.

Thus the problem is reduced to finding X(x) and Y (y) which satisfy the differ-
ential equations of (25.3). First let us consider the Y equation. If α2 = 0, then the
solution will be of the form

Y (y) = Ay + B.

The case of α2 �= 0 is a SOLDE with constant coefficients whose most general
solution can be written as

Y (y) = Ae
√

α2 y + Be−
√

α2 y . (25.4)

The vanishing of Φ at y = 0 and y = b means that

Φ(x, 0) = X(x)Y (0) = 0 for all x ⇒ Y (0) = 0,

Φ(x, b) = X(x)Y (b) = 0 for all x ⇒ Y (b) = 0.

Therefore, for the case of α2 = 0, this implies

Y (0) = A × 0 + B = 0 ⇒ B = 0,

Y (b) = Ab + B = Ab + 0 = 0 ⇒ A = 0.

Thus, if α2 = 0, we get Y (y) = 0 and Φ(x, y) = X(x)Y (y) = 0 which is the trivial
solution.

It follows that if we are interested in nontrivial solutions, we had better assume
that α2 �= 0. Then, Equation (25.4) gives

Y (0) = A + B = 0 and Y (b) = Ae
√

α2 b + Be−
√

α2 b = 0.
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Multiplying the second equation by e
√

α2 b and using B = −A, we obtain

A
[
e2

√
α2 b − 1

]
= 0 ⇒ A = 0 or e2

√
α2 b = 1.

The first choice (A = 0) and A = −B yields a trivial solution again. Therefore, weBoundary
conditions force
α2 to be
imaginary.

have to assume that the second choice holds. However, even with the second choice,
if we restrict ourselves to the real numbers, the only solution of e2

√
α2 b = 1 would

be α2 = 0 which is a contradiction because we are dealing precisely with the case
of α2 �= 0. It follows that

√
α2 must be a complex number. In fact, recalling that

e2inπ = 1 for any integer n, we immediately get

2
√

α2 b = 2inπ ⇒
√

α2 b = inπ ⇒ α2 = −
(nπ

b

)2

, n = ±1,±2, . . . .

Note that n = 0 is excluded because this choice would make α2 = 0.
We now turn to the X equation. Since α1 + α2 = 0, we obtain

α1 = −α2 =
(nπ

b

)2

, n = ±1,±2, . . . ,

and
d2X

dx2 −
(nπ

b

)2

X = 0 ⇒ X(x) = Cenπx/b + De−nπx/b.

To be physically meaningful, the potential must remain finite as x → +∞. It
follows from the last equation that either n is negative and D = 0, or n is positive
and C = 0. Either choice will lead to the same final result as the reader may verify.
Choosing positive values of n with C = 0, the potential can be written as

Φn(x, y) = ADe−nπx/b
[
einπy/b − e−inπy/b

]
= Ane−nπx/b sin

(nπy

b

)
,

where we used A = −B and introduced a new constant An. We also subscripted the
potential because for every n, we get a different function for Φ. All such functions
are solutions of Laplace’s equation and therefore, so is their sum. In fact, it is only
the sum that is general enough to result in the final solution. We thus write

Φ(x, y) =
∞∑

n=1

Φn(x, y) =
∞∑

n=1

Ane−nπx/b sin
(nπy

b

)
. (25.5)

This is a Fourier series in y with x dependent coefficients. The potential will be
completely determined if the constants An can be determined. This is where the
last unused information comes in: The potential at x = 0 is V . Substituting this
information in Equation (25.5) yields

V = Φ(0, y) =

∞∑

n=1

An sin
(nπy

b

)

from which An can be determined using the Fourier series techniques. We leave it
for the reader to show that An = 2V [1 − (−1)n]/(nπ) (see Problem 25.1), or

An =

⎧
⎪⎪⎨

⎪⎪⎩

4V

nπ
if n is odd,

0 if n is even.
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By writing n = 2k + 1 with k = 0, 1, 2, . . ., the potential in the region of interest
becomes

Φ(x, y) =
4V

π

∞∑

k=0

e−(2k+1)πx/b

2k + 1
sin

[
(2k + 1)πy

b

]

(25.6)

=
4V

π

[

e−πx/b sin
πy

b
+

e−3πx/b

3
sin

3πy

b
+

e−5πx/b

5
sin

5πy

b
+ · · ·

]

.

Because of the exponential factor, the series converges very rapidly, and for large
values of x the potential very quickly drops to zero. Figure 25.3 shows the potential
function (in arbitrary units) as a function of x and y. �

Example 25.2.1 illustrates the general feature of solving Laplace’s equation
by the separation of variables in Cartesian coordinates. This feature works in
other coordinate systems as well. The separation of variables results in some
ODEs which involve parameters (in the case above, the α’s) to be determined
by some of the BCs. All values of these parameters—which in all cases of
interest to us will turn out to be integers—consistent with the used boundary
conditions are allowed and must be taken into account, i.e., an infinite sum
(with as yet undetermined coefficients) over such parameters is to be formed
as the most general solution of Laplace’s equation. By applying the remaining
BCs, the undetermined coefficients can be evaluated, resulting in the unique
solution appropriate for the geometry of the problem. If the geometry extends
to infinity in a certain direction, then such an infinity is to be considered as a
BC. It is extremely useful to take into account any symmetry of the problem
as such symmetries will simplify the solution considerably. The symmetry in
the z-direction of Example 25.2.1 saved us the trouble of solving one (out of
three) complete ODE.

Figure 25.3: The potential function inside the semi-infinite box of Figure 25.2 when

only 20 terms of the infinite series are kept. Note how quickly the potential drops to

zero along the x-axis due to the exponential factor.
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Example 25.2.2. Steady-state heat conduction problems also obey Laplace’s
equation. So, let us consider a rectangular medium infinite in the z direction en-infinitely long

rectangular heat
conductor

closed by two pairs of parallel slabs of width a and b as shown in Figure 25.4. The
temperatures of the slabs of width a—assumed parallel to the x-axis—are zero. The
temperatures of the other two slabs are T1 and T2. We want to find the temperature
at all points in the region enclosed after the equilibrium is reached.

As in Example 25.2.1, we can ignore the z-dependence and write T (x, y) =
X(x)Y (y) where X and Y satisfy Equation (25.3) with α1 = −α2. For exactly the
same reason as in Example 25.2.1, α2 cannot be zero and Y can only be of the form

Y (y) = An sin
nπy

b
, n = 1, 2, . . . ,

where the subscript on An reminds us that different constants can be chosen to
multiply different sine functions. The solution for X will, however, be different. We
still have

X(x) = Cnenπx/b + Dne−nπx/b, n = 1, 2, . . . ,

but neither Cn nor Dn is zero this time. Multiplying the two functions and redefining
the constants, we can write

Tn(x, y) =
(
Anenπx/b + Bne−nπx/b

)
sin

nπy

b
and the most general infinite series solution becomes

T (x, y) =

∞∑

n=1

(
Anenπx/b + Bne−nπx/b

)
sin

nπy

b
. (25.7)

So far, we have used only two of the four BCs. The remaining two will deter-
mine the unknowns An and Bn. Substituting these BCs yields the following two
equations:

T1 = T (0, y) =

∞∑

n=1

(An + Bn)
︸ ︷︷ ︸

≡En

sin
nπy

b
=

∞∑

n=1

En sin
nπy

b
,

T2 = T (a, y) =
∞∑

n=1

(
Anenπa/b + Bne−nπa/b

)

︸ ︷︷ ︸
≡Fn

sin
nπy

b
=

∞∑

n=1

Fn sin
nπy

b
,

y

x

Τ = 0

Τ = 0

b
Τ = T1

Τ = T2a

Figure 25.4: The cross section of the two pairs of parallel slabs maintained at different

temperatures.
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where we have redefined the constants multiplying the sine functions. As in Example
25.2.1 and Problem 25.1, we have

En =
2T1

nπ
[1 − (−1)n], Fn =

2T2

nπ
[1 − (−1)n].

These relations show that only odd terms of the infinite series are of relevance, and
they are given by

E2k+1 ≡ A2k+1 + B2k+1 =
4T1

π(2k + 1)
, (25.8)

F2k+1 ≡ A2k+1e
(2k+1)πa/b + B2k+1e

−(2k+1)πa/b =
4T2

π(2k + 1)
.

These are two equations in two unknowns which can be solved to get

A2k+1 =
2(T2 − T1e

−(2k+1)πa/b)

π(2k + 1) sinh[(2k + 1)πa/b]
,

B2k+1 =
2(T1e

(2k+1)πa/b − T2)

π(2k + 1) sinh[(2k + 1)πa/b]
.

Substituting in Equation (25.7)—with n replaced by 2k +1—and rearranging terms
yields

T (x, y) =
4

π

∞∑

k=0

T1 sinh
[

(2k+1)π(a−x)
b

]
+ T2 sinh

[
(2k+1)πx

b

]

(2k + 1) sinh
[

(2k+1)πa
b

] sin
(2k + 1)πy

b
. (25.9)

The reader is urged to verify that when T2 = 0 and a → ∞, we recover the result
of Example 25.2.1—with V replaced by T1—as we should. Figure 25.5 shows the
potential function (in arbitrary units) as a function of x and y. �

The examples treated so far may give the impression that α1 or α2 is
never zero. This has to do with the specific BCs imposed on Φ (or T ). In

Figure 25.5: The potential function inside the box of Figure 25.4 for the special case

of a = b and T1 = T2 when only 20 terms of the infinite series are kept.



600 Laplace’s Equation: Cartesian Coordinates

both examples, Y vanishes at both y = 0 and y = b. Such a BC excludes
α2 = 0 because the corresponding Y , namely Y = Ay + B, cannot satisfy
those conditions unless Y = 0 identically.

Example 25.2.3. To see how the α1 = −α2 = 0 terms can enter in the game, let
us modify the temperatures of the plates and strips of Example 25.2.2 so that the
bottom plate and the left strip are held at T = 0 while the top plate is held at T1

and the right strip at T2.
Let us write the most general solution of Laplace’s equation obtained from sep-

arating variables including the α1 = 0 = −α2 term. Since the nonzero α1 and
α2 are of opposite signs, one of them will be positive and will have real square
roots and the other pure imaginary roots. Let us assume that α1 is positive.
Then X will be of exponential type and Y of imaginary exponential or trigono-
metric type. It follows that the most general solution of Laplace’s equation can be
written as

T (x, y) = (A0x + B0) (C0y + D0) (25.10)

+

∞∑

α

(
Aαe

√
α x + Bαe−

√
α x

) [
Cα sin(

√
α y) + Dα cos(

√
α y)

]
,

where we have used α for α1 = −α2. It is convenient to impose the y BCs first. So,
since T (x, 0) = 0, we have

0 = (A0x + B0)D0 +

∞∑

α

(
Aαe

√
α x + Bαe−

√
α x

)
Dα

which should hold for arbitrary values of x. This can happen only if D0 = Dα = 0.
So, absorbing the multiplicative constant C0 and Cα into the A’s and B’s, we get a
new expression for the temperature:

T (x, y) = (A0x + B0) y +

∞∑

α

(
Aαe

√
α x + Bαe−

√
α x

)
sin(

√
α y).

The other y BC gives

T1 = (A0x + B0) b +
∞∑

α

(
Aαe

√
α x + Bαe−

√
α x

)
sin(

√
α b).

For this to hold for arbitrary x, we need to haveThe importance of
α1 = 0 term is
displayed here by
the relation
between B0 and
T1.

A0 = 0, B0b = T1 ⇒ B0 =
T1

b
, sin(

√
α b) = 0 ⇒ α =

(nπ

b

)2

.

The temperature function reduces to

T (x, y) =
T1

b
y +

∞∑

n=1

(
Anenπx/b + Bne−nπx/b

)
sin

nπy

b
.

We now impose the other two BCs. These will give us the following two equations:

0 = T (0, y) =
T1

b
y +

∞∑

n=1

(An + Bn) sin
nπy

b
,

T2 = T (a, y) =
T1

b
y +

∞∑

n=1

(
Anenπa/b + Bne−nπa/b

)
sin

nπy

b
.
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Multiplying both sides of these equations by sin(mπy/b) and integrating from 0 to
b yields the following two equations for Am and Bm:

Am + Bm = −2T1

b2

∫ b

0

y sin
mπy

b
dy =

2T1

mπ
(−1)m,

Amemπa/b + Bme−mπa/b =
2

b

∫ b

0

(

T2 − 2T1

b
y

)

sin
mπy

b
dy (25.11)

=
2

mπ
[T2 + (−1)m(T1 − T2)] .

These two equations can be solved to obtain the remaining unknown coefficients Am

and Bm. �

A couple of remarks are in order. The preceding example illustrated clearly
the importance of the α1 = 0 term: Had we not included it in the expansion
of T , we would not have obtained the answer. This is overlooked in most
elementary treatments of Laplace’s equation. It is worthwhile to emphasize
this point.

Box 25.2.1. Always start with the most general solution of Laplace’s
equation, including the term corresponding to the case in which the con-
stants of the separation of variables are zero, as given in Equation (25.10).
Then apply the BCs, keeping in mind that there may be a preferred order
for such an application.

In Example 25.2.3, the order in which the y BCs were applied first was the
preferred choice.

The second remark has to do with the choice of the functional form of
X and Y . In Example 25.2.3, we chose X to be exponential and Y to be
trigonometric. We could just as well have chosen Y to be exponential and X
to be trigonometric. The appearance of the series would have changed, but
the value of T at any point in the region of interest would have been the same
for both series. This is due to the uniqueness of the solution of Laplace’s
equation.4

Example 25.2.4. The examples treated so far have been exclusively in two di-
mensions. We now consider a three-dimensional problem. Although this particular a three-

dimensional
example of the
application of
Laplace’s equation

problem can be solved more quickly by relying on our intuition (as we did in Exam-
ple 25.2.1, for example), we shall start from the most general solution, as prescribed
by Box 25.2.1.

Suppose that the four lateral sides of widths a and b of a semi-infinite rectangular
conducting tube are grounded and the closed base is held at potential V . The cross
section of this tube is shown in Figure 25.4 where it is assumed that the tube starts
at z = 0 and extends to infinity in the positive z-direction. We are interested in
finding the potential inside this tube.

4The representation of the same function by different series should be familiar to the
reader from calculus where f(x) can be written as a Taylor expansion about any point in
its domain of definition. Although such expansions look different, they all represent the
same function.
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We start with Equation (25.3) which holds for all solutions of Laplace’s equationthe four
alternatives for
constants α1 and
α2

in Cartesian coordinates. There are four different cases to consider:

1. α1 = 0 = α2: In this case, X(x) is of the generic form Ax + B, and with y or
z replacing x, this is also the generic form of Y and Z. Let us denote these
solutions as X0, Y0, and Z0.

2. α1 = 0, α2 �= 0: In this case, X(x) is of the generic form Ax + B. But Y and
Z are either exponential or trigonometric. Let us denote these solutions as
X0, Yα2 , and Zα2 .

3. α1 �= 0, α2 = 0: In this case, Y (y) is of the generic form Ay + B. But X and
Z are either exponential or trigonometric. Let us denote these solutions as
Y0, Xα1 , and Zα1 .

4. α1 �= 0, α2 �= 0: In this case X, Y , and Z are either exponential or trigono-
metric. Let us denote these solutions as Xα1 , Yα2 , and Zα1+α2 .

The most general solution for the potential, encompassing all values of α1 and α2, is

Φ(x, y, z) = X0(x)Y0(y)Z0(z) + X0(x)
∑

α2

Yα2(y)Zα2(z) (25.12)

+ Y0(y)
∑

α1

Xα1(x)Zα1(z) +
∑

α1 �=0

∑

α2 �=0

Xα1(x)Yα2(y)Zα1+α2(z).

We now apply the BCs. Since Φ(0, y, z) = Φ(a, y, z) = 0 for arbitrary y and z,Boundary
conditions severely
restrict the terms
of the infinite
sums in (25.12).

and since each term in Equation (25.12) is independent of all others, we conclude
that X0(0) = 0 = X0(a) and X0(0) = 0 = X0(a). It follows that A and B are both
zero for X0 and X0. So, X0(x) = 0 = X0(x). Similarly, Y0(y) = 0, and Φ is reduced
to the last term (the double sum) of (25.12). Furthermore, since both Xα1 and Yα2

vanish at the two ends of their respective ranges, we expect them to be periodic,
i.e., of trigonometric type. So, the most general solution is now

Φ(x, y, z) =
∑

α1,α2

[Aα1 cos(
√

α1 x) + Bα1 sin(
√

α1 x)]

· [Cα2 cos(
√

α2 y) + Dα2 sin(
√

α2 y)] Zα1+α2(z).

If this is to vanish at x = 0 for arbitrary y and z, then Aα1 must be zero; and if
Φ(a, y, z) = 0 for all y and z, then all coefficients of the product of the y and z
functions in the sum must be zero. These coefficients—after setting Aα1 equal to
zero—are of the form sin(

√
α1 a). It follows that

√
α1 a = mπ ⇒ α1 =

(mπ

a

)2

, m = 1, 2, . . . ,

where we have excluded the negative values of m as in the previous examples. An
entirely analogous reasoning leads to Cα2 = 0 and

√
α2 b = nπ ⇒ α2 =

(nπ

b

)2

, n = 1, 2, . . . .

The z-dependence is exponential, and since the potential cannot diverge at large
values of z, the positive exponent will be absent. Absorbing all multiplicative con-
stants into (a single doubly indexed) one, we can now write

Φ(x, y, z) =
∞∑

m,n=1

Amn sin
mπx

a
sin

nπy

b
e−π

√
m2/a2+n2/b2 z. (25.13)
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The unknown constants Amn are determined by using the last BC: a two-dimensional
Fourier series

V = Φ(x, y, 0) =

∞∑

m,n=1

Amn sin
mπx

a
sin

nπy

b
. (25.14)

This is a double Fourier series.

Theorem 25.2.5. The coefficients of the double Fourier series (25.14) can be

calculated by multiplying both sides by sin
jπx

a
sin

kπy

b
and integrating the result

from 0 to a in the x variable and from 0 to b in y:

Ajk =
4

ab

∫ a

0

∫ b

0

Φ(x, y, 0) sin
jπx

a
sin

kπy

b
dx dy

It now follows that

Ajk =
4V

ab

∫ a

0

∫ b

0

sin
jπx

a
sin

kπy

b
dx dy =

4V

ab

∫ a

0

sin
jπx

a
dx

∫ b

0

sin
kπy

b
dy

=
4V

ab

(
a

πj
[1 − (−1)j ]

)(
b

πk
[1 − (−1)k]

)

or

Ajk =
4V

π2

1 − (−1)j

j

1 − (−1)k

k
.

It is clear that only the odd terms of the double sum will contribute. Thus, the final
answer for the potential inside [Equation (25.13)] is

Φ(x, y, z) =
16V

π2

∞∑

m,n=1

sin[(2m + 1)πx/a]

2m + 1

sin[(2n + 1)πy/b]

2n + 1

· e−π
√

(2m+1)2/a2+(2n+1)2/b2 z.

By its very construction, this function satisfies Laplace’s equation as well as all the
BCs. Therefore, by the uniqueness theorem it must represent the unique potential
for the region of interest. �

25.3 Problems

25.1. Given that V =
∑∞

n=1 An sin(nπy/b) where V is a constant in the
interval (0, b), show that An = 2V [1 − (−1)n]/(nπ).

25.2. A long hollow cylinder with square cross section of side a has three sides
grounded and the fourth side maintained at potential V0 (see Figure 25.6).
Find the potential at all points inside.

25.3. Example 25.2.1 treated the case in which the plate at x = 0 was held at
the constant potential V . Now suppose that it is held at a potential that varies
with y. Use Equation (25.5) to find the potential as a function of x and y when
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y

x

Φ = 0 Φ = 0a

Φ = 0

Φ = V0

Figure 25.6: The cross section of the conducting cylinder extended along the z-axis.

(a) Φ(0, y) =
V0

b2
y(y − b)

(b) Φ(0, y) =
V0

b
y

(c) Φ(0, y) = V0 sin
πy

b
.

25.4. In Example 25.2.2, we assumed constant temperatures for the left and
right plates. Now suppose that the top and bottom plates are as before, but
the left plate is held at a varying temperature given by

T (0, y) =
T0

b2
y(y − b).

Use Equation (25.7) to find the temperature as a function of x and y when
(a) T (a, y) = 0;

(b) T (a, y) =
T0

b2
y(y − b);

(c) T (a, y) = T0;

(d) T (a, y) =
T0

b
y;

(e) T (a, y) = T0 sin
πy

b
.

25.5. Suppose that the top and bottom plates of Example 25.2.2 are as before,
but the left plate is held at a varying temperature given by

T (0, y) = T0 sin
2πy

b
.

Use Equation (25.7) to find the temperature as a function of x and y when
(a) T (a, y) = 0;

(b) T (a, y) =
T0

b2
y(y − b);

(c) T (a, y) = T0;
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(d) T (a, y) =
T0

b
y;

(e) T (a, y) = T0 sin
πy

b
.

25.6. Solve Equation (25.8) for A2k+1 and B2k+1 and substitute in (25.7) to
obtain (25.9).

25.7. Verify that when T2 = 0 and a → ∞, Equation (25.9) approaches the
result of Example 25.2.1—with V replaced by T1.

25.8. Derive Equation (25.11). Assume that T1 = T2 = T0 and solve for Am

and Bm.

25.9. Obtain the expression for Ajk in Theorem 25.2.5.

25.10. Find the potential inside a cube with sides of length a when the top
side is held at a constant potential V0 with all other sides grounded (zero
potential).

25.11. Find the electrostatic potential inside a cube with sides of length a if
all faces are grounded except the top, which is held at a potential given by:

(a)
V0

a
x, 0 ≤ x ≤ a. (b)

V0

a
y, 0 ≤ y ≤ a.

(c)
V0

a2
xy, 0 ≤ x, y ≤ a. (d) V0 sin

(π

a
x
)

, 0 ≤ x ≤ a.





Chapter 26

Laplace’s Equation:
Spherical Coordinates

The separation of Laplace’s equation in spherical coordinates is obtained from
Equation (22.16) by substituting f(r) = 0. This will yield1

1
r2

d

dr

(

r2 dR

dr

)

− α

r2
R = 0,

1
sin θ

d

dθ

(

sin θ
dΘ
dθ

)

+
(

α − β

sin2 θ

)

Θ = 0, (26.1)

d2S

dϕ2
+ βS = 0.

We consider the case where S is the constant function.2 This corresponds
to problems with an azimuthal symmetry, i.e., problems for which it is a azimuthal

symmetry means
independence
from ϕ

priori clear that the potential is independent of the azimuthal angle ϕ. For
such situations, the third equation in (26.1) implies that β = 0 because S is a
(nonzero) constant. The independent variables are reduced to two and, with
Φ(r, θ) = R(r)Θ(θ), the remaining ODEs simplify to

1
r2

d

dr

(

r2 dR

dr

)

− α

r2
R = 0,

1
sin θ

d

dθ

(

sin θ
dΘ
dθ

)

+ αΘ = 0. (26.2)

We shall now concentrate on the second equation and come back to the first
after we have found solutions to the second.

1Here we have changed the symbol of the azimuthal function to S so that Φ(r, θ, ϕ) =
R(r)Θ(θ)S(ϕ).

2The case in which S is not constant—so that Φ depends on the azimuthal angle—is
more complicated and will not be pursued here. Instead, the interested reader is referred
to Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations, Springer-
Verlag, 1999, Chapter 12 for details.
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The appearance of sin θ dθ (the differential of cos θ) in the denominator
suggests changing the independent variable from θ to u ≡ cos θ. For any
function f(θ), the chain rule gives3

df

du
=

df

dθ

dθ

du
=

df

dθ

1
du/dθ

= − 1
sin θ

df

dθ
or

df

dθ
= − sin θ

df

du
, (26.3)

which allows us to convert the derivative of a function with respect to u to
the derivative with respect to θ and vice versa.

Introduce a new function P (u) such that P (u) ≡ Θ(θ). Using the chain
rule, substituting in the second equation of (26.2), and writing sin2 θ = 1−u2,
the DE becomes

− 1
sin θ

d

dθ

[

(1 − u2)
dP

du

]

+ αP = 0.

The term in the square brackets is a function of u. So, by Equation (26.3),
we can convert the θ-derivative to a u-derivative and obtain

d

du

[

(1 − u2)
dP

du

]

+ αP = 0, (26.4)

which can also be written as

(1 − u2)
d2P

du2 − 2u
dP

du
+ αP = 0 (26.5)

orLegendre
differential
equation

d2P

du2 − 2u

1 − u2

dP

du
+

α

1 − u2
P = 0. (26.6)

Equation (26.4), or (26.5), or (26.6) is called the Legendre equation. We
shall solve this DE using the so-called Frobenius method or the method of
undetermined coefficients.

26.1 Frobenius Method

The basic assumption of the Frobenius method is that the solution of the DE
can be represented by a power series. This is not a restrictive assumption
because all functions encountered in physical applications can be written as
power series as long as we are interested in their values lying in their interval
of convergence. This interval may be very small or it may cover the entire
real line.

A second order homogeneous linear DE can be written as

p2(x)
d2y

dx2 + p1(x)
dy

dx
+ p0(x)y = 0. (26.7)

3Note that f can be considered a function of u as well as θ.
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For almost all applications encountered in physics (certainly in this book),
p0, p1, and p2 are polynomials.4 The first step in the implementation of the
Frobenius method is to assume an infinite power series for y. It is common
to choose the point of expansion to be x = 0. If p2(0) �= 0, only nonnegative
powers of x need be considered.5 If p2(0) = 0, the DE loses its character of
being “second order” and the solutions we are seeking may not be defined
there. In such a case, we have two choices:

1. choose a different point of expansion x0 �= 0 so that p2(x0) �= 0; or

2. allow nonpositive powers of x in the expansion of y.

The first choice is rarely used. It turns out that the most economic—but
general—way of incorporating the second choice is to write the solution as

y = xr
∞∑

n=0

anxn =
∞∑

n=0

anxn+r = a0x
r + a1x

r+1 + a2x
r+2 + a3x

r+3 + · · · ,

(26.8)
where r is a real number (not necessarily a positive integer) to be determined
by the DE.6 It is customary to choose a0 = 1 because any constant multiple
of a solution is also a solution; so, if a0 �= 1, we simply multiply the series by
1/a0 to make it so.7 Since a power series is uniformly convergent—within its
radius of convergence—it can be differentiated term by term. So, we have

dy

dx
=

∞∑

n=0

an(n + r)xn+r−1 = ra0x
r−1 + (r + 1)a1x

r + · · · ,

d2y

dx2 =
∞∑

n=0

an(n + r)(n + r − 1)xn+r−1 (26.9)

= r(r − 1)a0x
r−2 + (r + 1)ra1x

r−1 + (r + 2)(r + 1)a2x
r + · · · .

We now substitute Equations (26.8) and (26.9) in the DE (26.7), multiply
out the polynomials into the series, collect all distinct powers of x together,
and set the coefficient of each term equal to zero. We thus obtain a set of
equations whose solution determines r and the an’s. The equation arising form
the lowest power of x involves only r and is called the indicial equation. indicial equation

This is usually a quadratic equation in r which can be solved to obtain the
4The DE may not emerge in the form given here out of, say, the separation of variables,

but can be cast in that form. The most complicated form of the coefficients of the derivatives
in a DE are typically rational functions (ratios of two polynomials). Therefore, multiplying
the DE by the product of all three denominators will cast the DE in the form given in
(26.7).

5For a thorough discussion of the Frobenius method, including motivation and proofs for
the claims cited here, consult Hassani, S. Mathematical Physics: A Modern Introduction
to Its Foundations, Springer-Verlag, 1999, Chapter 14.

6As Problem 26.2 indicates, one can start with a solution of the form (26.8) even when
p2(0) �= 0. The differential equation will then force r to be zero.

7The choice a0 = 1 is convenient only when p2(0) = 0. If p2(0) �= 0, we need not
restrict a0.
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(two) possible values of r, each leading generally to a different solution. The
other equations coming from higher powers of x give recursion relations,recursion relations

i.e., equations which give an in terms of an−1 and an−2. By iterating this
relation, one can obtain all an’s in terms of only two which can be determined
by the BCs. Let us summarize the procedure outlined above:

Theorem 26.1.1. (Frobenius method). To solve the DE (26.7), assume
a solution of the form (26.8). If p2(0) �= 0, choose r = 0, substitute y and
its derivatives (26.9) in the DE, multiply out, collect all powers of x, and set
their coefficients equal to zero. If p2(0) = 0, let a0 = 1 and solve the indicial
equation to obtain r. Set the coefficients of all other powers of x equal to zero
to find the recursion relation giving an in terms of an−1 and an−2. Use this
relation and the values of r obtained above to find all an’s in terms of only
two.

26.2 Legendre Polynomials

We now apply the Frobenius method to the Legendre DE for which—using u
as the independent variable—p2(u) = 1 − u2, p1(u) = −2u, and p0(u) = α.
Since p2(0) �= 0, we need not introduce an extra power of r for the series.
Therefore, we may write

P (u) =
∞∑

n=0

anun = a0 + a1u + a2u
2 + a3u

3 + · · · ,

dP

du
=

∞∑

n=1

nanun−1 = a1 + 2a2u + 3a3u
2 + · · · =

∞∑

n=0

(n + 1)an+1u
n,

d2P

du2 =
∞∑

n=2

n(n − 1)anun−2 = 2a2 + 6a3u + 12a4u
2 + · · ·

=
∞∑

n=0

(n + 1)(n + 2)an+2u
n.

Multiplying each of the expressions above by its corresponding polynomial,
we obtain

αP (u) = αa0 + αa1u + αa2u
2 + αa3u

3 + · · · =
∞∑

n=0

αanun,

−2u
dP

du
= −2a1u − 4a2u

2 − 6a3u
3 + · · · = −

∞∑

n=0

2(n + 1)an+1u
n+1,

(1 − u2)
d2P

du2 = 2a2 + 6a3u + 12a4u
2 + 20a5u

3 + · · ·

− 2a2u
2 − 6a3u

3 − 12a4u
4 − 20a5u

5 + · · ·
= 2a2 + 6a3u + (12a4 − 2a2)u2 + (20a5 − 6a3)u3 + · · · .
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We add these three series, noting that their sum must equal zero

0 = αa0 + αa1u + αa2u
2 + αa3u

3 − 2a1u − 4a2u
2 − 6a3u

3 + 2a2 + 6a3u

+ (12a4 − 2a2)u2 + (20a5 − 6a3)u3 + · · · ,

= (αa0 + +2a2) + [(α − 2)a1 + 6a3]u

+ [(α − 6)a2 + 12a4]u2 + [(α − 12)a3 + 20a5]u3 + · · · .

The reader may note the pattern emerging in the expression for the coeffi-
cients. In fact, the coefficient of un can be written as [α− n(n + 1)]an + (n +
1)(n + 2)an+2. Setting this coefficient equal to zero, we obtain the recursion
relation recursion relation

for the Legendre
equation

an+2 =
n(n + 1) − α

(n + 1)(n + 2)
an, n = 0, 1, 2, . . . , (26.10)

which gives all an’s in terms of a0 and a1.
Although writing out the series term by term is a sure way of arriving at

each individual coefficient, and—by the discovery of a pattern—the recursion
relation, manipulation with the summation symbols can also lead to the recur-
sion relations without any expectation of pattern recognition. We go through How to get to the

recursion relation
(26.10) by
manipulating
summations.

the details of such a manipulation as a noteworthy exercise in working with
the summation signs. The general procedure is to write all sums in such a
way that the exponent of u agrees in all of them. To be specific, we write
all sums over n so that the power of u is n. This may require redefining the
summation index. So, the last term of the DE can be expressed as

αP (u) =
∞∑

n=0

αanun. (26.11)

The term involving the first derivative is

−2u
dP

du
= −2u

∞∑

n=1

nanun−1 = −
∞∑

n=1

2nanun (26.12)

and the term involving the second derivative becomes

(1 − u2)
d2P

du2 = (1 − u2)
∞∑

n=2

n(n − 1)anun−2

=
∞∑

n=2

n(n − 1)anun−2 −
∞∑

n=2

n(n − 1)anun (26.13)

=
∞∑

n=0

(n + 2)(n + 1)an+2u
n −

∞∑

n=2

n(n − 1)anun,

where in the first sum we replaced n with n+2 to change the power of u from
n − 2 to n.8 The power of u in all the sums is now n.

8The phrase “in the first sum, we replaced n with n+2” is an abbreviation for a procedure
whereby first a new dummy index m is defined by m = n − 2 (or n = m + 2), and then it
is changed back to n.
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The next step is to separate a sufficient number of terms of the “longer
sums” so that all sums start with the same n corresponding to the shortest
sum. In the case at hand, the shortest sum is the one that starts with n = 2.
So, rewrite the sums in Equations (26.11), (26.12), and (26.13) as

αP (u) = αa0 + αa1u +
∞∑

n=2

αanun,

−2u
dP

du
= −2a1u −

∞∑

n=2

2nanun,

(1 − u2)
d2P

du2 = 2a2 + 6a3u +
∞∑

n=2

(n + 2)(n + 1)an+2u
n −

∞∑

n=2

n(n − 1)anun.

Adding these sums and noting that the LHS is zero gives

0 = αa0 + 2a2 + (αa1 − 2a1 + 6a3)u

+
∞∑

n=2

[αan − 2nan + (n + 2)(n + 1)an+2 − n(n − 1)an]
︸ ︷︷ ︸

=[α−n(n+1)]an+(n+2)(n+1)an+2

un.

By setting the coefficients of all powers of u equal to zero, we obtain

αa0 + 2a2 = 0, (α − 2)a1 + 6a3 = 0,

[α − n(n + 1)]an + (n + 2)(n + 1)an+2 = 0,

with the first two being special cases of the last one, which in turn happens
to be the recursion relation (26.10).

Equation (26.10) is at the heart of the solution to the Legendre DE. It
generates all the an’s with even n from a0, and all the odd an’s from a1. We
derive a general formula for even an’s, and leave the odd case to the reader.
For n = 0, Equation (26.10) gives a2 = −(α/2)a0, and for n = 2 we obtain

a4 =
2 · 3 − α

4 · 3 a2 =
2 · 3 − α

4 · 3

(
−α

2

)
=

α(α − 2 · 3)
4!

a0.

Similarly, for n = 4, we get

a6 =
4 · 5 − α

6 · 5 a4 = −α(α − 2 · 3)(α − 4 · 5)
6!

a0.

The reader may easily check that

a8 =
α(α − 2 · 3)(α − 4 · 5)(α − 6 · 7)

8!
a0.

All these equations show a pattern that can be generalized to

a2n = (−1)n α(α − 2 · 3)(α − 4 · 5) · · · [α − (2n − 2)(2n − 1)]
(2n)!

a0. (26.14)
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Similarly, the odd terms can be calculated with the result

a2n+1 = (−1)n (α − 2)(α − 3 · 4)(α − 5 · 6) · · · [α − (2n − 1)2n]
(2n + 1)!

a1. (26.15)

Inserting these coefficients in the series expansion of P (u), we obtain

P (u) = a0

∞∑

n=0

(−1)n α(α − 2 · 3)(α − 4 · 5) · · · [α − (2n − 2)(2n− 1)]
(2n)!

u2n

+ a1

∞∑

n=0

(−1)n (α − 2)(α − 3 · 4)(α − 5 · 6) · · · [α − (2n − 1)2n]
(2n + 1)!

u2n+1.

(26.16)

If either of the series in Equation (26.16) is to have a physical utility, it
must be convergent. The appearance of (−1)n may lead us to believe that
the series is alternating. This is not true, because the terms involving α could The generalized

ratio test shows
that either of the
series in Equation
(26.16) diverges.

be positive as well as negative. So, we cannot use the alternating series test.
Let us use the ratio test. We apply this ratio test to the even series, the odd
series calculation is identical. Calling the entire nth term of the series cn, we
have

lim
n→∞

∣
∣
∣
∣
cn+1

cn

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣
a2n+2u

2n+2

a2nu2n

∣
∣
∣
∣ = lim

n→∞

∣
∣
∣
∣

2n(2n + 1) − α

(2n + 1)(2n + 2)

∣
∣
∣
∣u

2 = u2.

So, when u2 < 1, the series converges. Recall that u = cos θ, and θ = 0, π
are points of physical interest corresponding to u = ±1. Therefore, the series
ought to converge there. In this case we cannot decide about the convergence
of the series based on the ratio test. Let us apply the generalized ratio test.
Then, for very large n, we have

∣
∣
∣
∣
cn+1

cn

∣
∣
∣
∣
u2=1

=
∣
∣
∣
∣

2n(2n + 1) − α

(2n + 1)(2n + 2)

∣
∣
∣
∣ =

∣
∣
∣
∣

n

n + 1
− α

(2n + 1)(2n + 2)

∣
∣
∣
∣

≈ 1 − 1
n + 1

≈ 1 − 1
n

,

and the generalized ratio test implies divergence for the series! This conclusion
holds for both the even and odd series of (26.16).

There is a way of making the series convergent. Recall that the parameter
α is completely arbitrary. In particular, we can—if it is helpful—put restric- To make the series

convergent,
truncate it into a
finite sum!

tions on it. Can we choose α in such a way that the series converges? We
note that as long as the series is infinite, we have no luck because we get back
to the generalized ratio test and divergence. However, if we choose α so that
all an’s after a certain finite number of terms vanish, then the series turns
into a finite sum, and P (u) becomes a polynomial for which the question of
convergence is irrelevant. So, let us assume that a0, a2, and all the other a’s
up to a2k can have nonzero values, but all the remaining coefficients are to
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be zero. All we need to do is to choose α so that a2k+2 vanishes; then the
recursion relation guarantees the vanishing of a2k+4, a2k+6, etc. Since

a2k+2 =
2k(2k + 1) − α

(2k + 1)(2k + 2)
a2k,

we must choose α = 2k(2k + 1). A similar argument yields α = (2k − 1)2k
for the odd series.

Choosing α to turn one of the infinite sums into a finite polynomial is only
a partial solution to the problem. Is it possible to choose α so that both the
odd and the even series are truncated after a finite number of terms? Suppose
we have chosen α to be 2k(2k+1), so that the even series has no term beyond
the (2k)th term. The recursion relation for the odd series can be written as

a2n+1 =
(2n − 1)2n− 2k(2k + 1)

(2n + 1)2n
a2n−1.

Setting the numerator equal to zero gives a quadratic equation which can be
solved for n to obtain

n = −k or n = k + 1
2 .

Neither of these is a positive integer ! Thus, the value of α chosen to truncate
the even series does not allow the truncation of the odd series. To avoid
this dilemma, we resort to a choice of another arbitrary constant, a1. By
setting a1 equal to zero, we completely avoid the odd series. Conversely, if
α = (2k − 1)2k—chosen to truncate the odd series—then a0 ought to be set
equal to zero. By convention, a0 and a1 are determined so that P (1) = 1. Let
us summarize our findings:

Theorem 26.2.1. A solution to the Legendre DE (26.5) exists only if α =
k(k + 1) where k is a nonnegative integer. The corresponding solution is
denoted by Pk(u) and is a polynomial of degree k, called the kth Legendre
polynomial, which has only even powers of u if k is even and odd powers of
u if k is odd. By convention Pk(1) = 1 for all k.

Thus, for each k we have a different solution, and a different a0 or a1 to
evaluate. That is why it is more appropriate to write Ck for either a0 or a1.
We can use either (26.14) and (26.15), or the recursion relation (26.10) to find
the coefficients of each polynomial.

Example 26.2.2. We calculate the Legendre polynomials up to order 4 using thecalculation of the
first five Legendre
polynomials using
the recursion
relation

recursion relation. P0 is of degree zero, so it is a constant and Pk(1) = 1 forces it
to be 1. So, P0(u) = 1. Since, P1(u) is of degree 1 with no even “powers” of u, it
can be only of the form C1u where C1 is a constant. But P1(1) = 1; so C1 = 1 and
P1(u) = u. For P2, α = 2 · 3 = 6, and the recursion relation gives

a2 = −α

2
a0 = −3C2 ⇒ P2(u) = C2 − 3C2u

2
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because P2(u) has no u term. For P2(1) to be equal to 1, we must have C2 = − 1
2
,

so that P2(u) = 1
2
(3u2 − 1). For P3, α = 3 · 4 = 12, and the recursion relation gives

a3 =
2 − α

6
a1 =

2 − 12

6
C3 = − 5

3
C3 ⇒ P3(u) = C3u − 5

3
C3u

3

because P3(u) has no constant or u2 term. For P3(1) to be equal to 1, we must
have C3 = − 3

2
, so that P3(u) = 1

2
(5u3 − 3u). Finally, we calculate P4 for which

α = 4 · 5 = 20, and the recursion relations give

a2 = − 20
2

a0 = −10C4 and a4 =
6 − 20

12
a2 = 35

3
C4

and P4(u) = C4 − 10C4u
2 − 35

3
C4u

4. The condition P4(1) = 1 gives C4 = 3/8.
Therefore,

P4(u) = 1
8
(35u4 − 30u2 + 3).

Other Legendre polynomials can be obtained similarly. However, as we shall see
shortly, there is a much easier way of calculating Legendre polynomials. �

With α determined to be of the form k(k + 1), we can now calculate all
coefficients of the Legendre polynomials. We start by rewriting the recursion
relation (26.10) as

an =
(n − 2)(n − 1) − k(k + 1)

n(n − 1)
an−2

= − (k − n + 2)(k + n − 1)
n(n − 1)

an−2, n = 2, 3, . . . , k. (26.17)

Iterating this once, we obtain

an = (−1)2
(k − n + 2)(k + n − 1)

n(n − 1)
(k − n + 4)(k + n − 3)

(n − 2)(n − 3)
an−4

= (−1)2
[(k − n + 2)(k − n + 4)][(k + n − 1)(k + n − 3)]

n(n − 1)(n − 2)(n − 3)
an−4.

By iterating a few times, the reader may check that

an = (−1)m[(k − n + 2)(k − n + 4) · · · (k − n + 2m)]

· [(k + n − 1)(k + n − 3) · · · (k + n − 2m + 1)]
n(n − 1) · · · (n − 2m + 1)

an−2m. (26.18)

To proceed, we need to take the two cases of even and odd n separately.
We treat the even case and leave the odd case as an exercise for the reader.
Let us assume that n = 2m, then k must also be even9 and the last equation
above yields

a2m = (−1)m [(2j) · · · (2j − 2m + 2)][(2j + 2m − 1) · · · (2j + 1)]
2m(2m − 1) · · · 1 a0

= (−1)m [(2j)!!/(2j − 2m)!!][(2j + 2m − 1)!!/(2j − 1)!!]
(2m)!

a0,

9Recall from our discussion above that even Legendre polynomials correspond to even
α = 2j(2j + 1).
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where we set k = 2j. Using the relations (see Problem 11.1)

(2l − 1)!! =
(2l)!
2ll!

, (2l)!! = 2ll!,

we finally obtain

a2m =
(−1)mj!

2j

(2j + 2m)!
(j + m)!(j − m)!

1
(2m)!

a0

≡ Aj(−1)m (2j + 2m)!
(j + m)!(j − m)!

1
(2m)!

, (26.19)

where Aj = a0(j!/2j). The reader may check that

a2m+1 = Bj(−1)m (2j + 2m + 2)!
(j + m + 1)!(j − m)!

1
(2m + 1)!

(26.20)

for some constant Bj . Therefore, the even Legendre polynomials will be giveneven Legendre
polynomial by

P2j(x) = Aj

j∑

m=0

(−1)m (2j + 2m)!
(j + m)!(j − m)!

x2m

(2m)!
(26.21)

and the odd polynomials byodd Legendre
polynomial

P2j+1(x) = Bj

j∑

m=0

(−1)m (2j + 2m + 2)!
(j + m + 1)!(j − m)!

x2m+1

(2m + 1)!
. (26.22)

We now introduce a new summation index r = j − m in either sum and let
n = 2j in the even sum and n = 2j + 1 in the odd sum. Then both sums can
be written simply as

Pn(x) = Kn

[n/2]∑

r=0

(−1)r (2n − 2r)!
(n − r)!r!

xn−2r

(n − 2r)!
, (26.23)

where [a]—for any real number a—denotes the largest integer less than or
equal to a, and Kn is an arbitrary constant which, by convention, is taken to
be 1/2n so that Pn(1) = 1. This leads to

Pn(x) =
1
2n

[n/2]∑

r=0

(−1)r (2n − 2r)!
(n − r)!r!

xn−2r

(n − 2r)!
. (26.24)

Referring to the definition of the hypergeometric function (11.23) and
Equation (26.24), the reader may verify that

P2n(x) = (−1)n (2n)!
22n(n!)2

F (−n, n + 1
2 ; 1

2 ; x2) (26.25)
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and

P2n+1(x) = (−1)n (2n + 1)!
22n(n!)2

xF (−n, n + 3
2 ; 3

2 ; x2). (26.26)

Historical Notes
Adrien-Marie Legendre came from a well-to-do Parisian family and received an
excellent education in science and mathematics. His university work was advanced
enough that his mentor used many of Legendre’s essays in a treatise on mechanics.
A man of modest fortune until the revolution, Legendre was able to devote himself
to study and research without recourse to an academic position. In 1782 he won the
prize of the Berlin Academy for calculating the trajectories of cannonballs taking
air resistance into account. This essay brought him to the attention of Lagrange
and helped pave the way to acceptance in French scientific circles, notably the
Academy of Sciences, to which Legendre submitted numerous papers. In July 1784
he submitted a paper on planetary orbits that contained the now-famous Legendre
polynomials, mentioning that Lagrange had been able to “present a more complete
theory” in a recent paper by using Legendre’s results. In the years that followed,
Legendre concentrated his efforts on number theory, celestial mechanics, and the
theory of elliptic functions. In addition, he was a prolific calculator, producing
large tables of the values of special functions, and he also authored an elementary
textbook that remained in use for many decades. In 1824 Legendre refused to vote
for the government’s candidate for the Institut National. Because of this, his pension
was stopped and he died in poverty and in pain at the age of 80 after several years
of failing health.

Adrien-Marie
Legendre
1752–1833

Legendre produced a large number of useful ideas but did not always develop
them in the most rigorous manner, claiming to hold the priority for an idea if
he had presented merely a reasonable argument for it. Gauss, with whom he had
several quarrels over priority, considered rigorous proof the standard of ownership.
To Legendre’s credit, however, he was an enthusiastic supporter of his young rivals
Abel and Jacobi and gave their work considerable attention in his writings.

Legendre also contributed to practical efforts in science and mathematics. He
and two of his contemporaries were assigned in 1787 to a panel conducting geodetic
work in cooperation with the observatories at Paris and Greenwich. Four years
later the same panel members were appointed as the Academy’s commissioners to
undertake the measurements and calculations necessary to determine the length of
the standard meter. Legendre’s seemingly tireless skill at calculating produced large
tables of the values of trigonometric and elliptic functions, logarithms, and solutions
to various special equations.

26.3 Second Solution of the Legendre DE

Recall that any second order linear DE has two bases of solutions. We have
so far found one solution of Legendre DE in the form of the Legendre poly-
nomials. Once we have these solutions, we can obtain a second solution using
Equation (24.6). To conform with Equation (24.6), we need to reexpress the
Legendre DE as

d2y

dx2
− 2x

1 − x2

dy

dx
+

n(n + 1)
1 − x2

y = 0.
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This is an homogeneous second order linear DE with

p(x) = − 2x

1 − x2
and q(x) =

n(n + 1)
1 − x2

.

Using Pn(x) as our input, we can generate another set of solutions. Let Qn(x)
stand for the linearly independent “partner” of Pn(x). Then, setting C = 0
in Equation (24.6) yields10

Qn(x) = KPn(x)
∫ x

α

1
P 2

n(s)
exp

[∫ s

c

2t

1 − t2
dt

]

ds.

But ∫ s

c

2t

1 − t2
dt = − ln |1 − t2|

∣
∣s
c

= − ln
∣
∣
∣
∣
1 − s2

1 − c2

∣
∣
∣
∣ = ln

∣
∣
∣
∣
1 − c2

1 − s2

∣
∣
∣
∣

so that

exp
[∫ s

c

2t

1 − t2
dt

]

ds = exp
[

ln
∣
∣
∣
∣
1 − c2

1 − s2

∣
∣
∣
∣

]

=
∣
∣
∣
∣
1 − c2

1 − s2

∣
∣
∣
∣ =

|1 − c2|
1 − s2

,

because s, being the argument of a Legendre polynomial, is the cosine of an
angle and therefore cannot exceed 1 so that 1 − s2 ≥ 0. It now follows that

Qn(x) = AnPn(x)
∫ x

α

ds

(1 − s2)P 2
n(s)

, (26.27)

where An ≡ K|1− c2| is an arbitrary constant determined by convention, and
α is an arbitrary point in the interval [−1, +1]. The subscript for An indicates
that the constant may be different for different n. These new solutions are
called Legendre functions of the second kind. Note that, contrary toLegendre

functions of the
second kind

Pn(x), Qn(x) is not well behaved at x = ±1 due to the presence of 1 − s2

in the denominator of the integrand of Equation (26.27). For this reason, we
shall not use these second solutions in this book.

Example 26.3.1. Example 26.2.2 gives P0(x) = 1. Therefore,

Q0(x) = A0

∫ x

α

ds

1 − s2
=

A0

2

∫ x

α

(
1

1 + s
+

1

1 − s

)

ds

= A0

[
1

2
ln

∣
∣
∣
∣
1 + x

1 − x

∣
∣
∣
∣−

1

2
ln

∣
∣
∣
∣
1 + α

1 − α

∣
∣
∣
∣

]

.

The standard form of Q0(x) is obtained by setting A0 = 1 and α = 0:

Q0(x) =
1

2
ln

∣
∣
∣
∣
1 + x

1 − x

∣
∣
∣
∣ for |x| < 1.

Similarly, since P1(x) = x, we obtain

Q1(x) = A1x

∫ x

α

ds

(1 − s2)s2
= Ax + Bx ln

∣
∣
∣
∣
1 + x

1 − x

∣
∣
∣
∣ + C for |x| < 1,

10Since we are interested in a different second solution, we can ignore any constant
multiple of the first solution that is added to the sought-after second solution.
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where A, B, and C are constants, and to perform the integration, we used

1

(1 − s2)s2
=

1

s2
+

1

2(1 − s)
+

1

2(1 + s)
,

which renders the integral elementary. In the case of Q1(x), convention demands
that A = 0, B = 1

2
, and C = −1. Thus,

Q1(x) =
1

2
x ln

∣
∣
∣
∣
1 + x

1 − x

∣
∣
∣
∣ − 1.

�

26.4 Complete Solution

Having found the angular solution of Laplace’s equation, we now tackle the
radial part. With α = k(k + 1), we can write the first equation in (26.2) as

r2 d2R

dr2 + 2r
dR

dr
− k(k + 1)R = 0. (26.28)

Since p2(0) = 0, we have to consider a solution of the form R(r) = rs
∑∞

n=0 bnrn.
Differentiating this series and substituting it in Equation (26.28) gives

∞∑

n=0

[(n + s)(n + s + 1) − k(k + 1)]bnrn+s = 0

or
[(n + s)(n + s + 1) − k(k + 1)]bn = 0 for n = 0, 1, 2, . . . .

In particular, for n = 0, and assuming that b0 �= 0, we obtain the indicial
equation an example of the

indicial equations(s + 1) − k(k + 1) = 0 ⇒ s = k or s = −k − 1.

For s = k, the equation for general nonzero n gives

[(n + k)(n + k + 1) − k(k + 1)]bn = 0 ⇒ n(n + 2k + 1)bn = 0.

Since neither n nor n + 2k + 1 is zero, we have to conclude that bn = 0 for all
n ≥ 1. Thus, for s = k, we obtain the solution R(r) = Akrk where Ak is an
arbitrary constant (we called it b0 before).

For s = −k − 1, we have

[(n − k − 1)(n − k) − k(k + 1)]bn = 0 ⇒ n(n − 2k − 1)bn = 0

for which we can have either n = 2k + 1 or bn = 0. If n = 2k + 1, then

R(r) = r−k−1b2k+1r
2k+1 = b2k+1r

k,

which is (a constant times) what we already have. So assume that n �= 2k+1.
Then bn = 0 for all n ≥ 1, and we obtain the solution R(r) = Bkr−k−1 where
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Bk is another arbitrary constant. It follows that the most general solution of
the radial DE isthe most general

solution of the
spherical radial DE Rk(r) ≡ Akrk +

Bk

rk+1
, k = 0, 1, 2, . . . .

We can now put the radial and the angular parts together:

Theorem 26.4.1. To find the most general azimuthally symmetric solution
of Laplace’s equation in spherical coordinates, we multiply the radial solution
and the angular solution (Legendre polynomial) for each k and sum over all
possible values of k:

Φ(r, θ) =
∞∑

k=0

(

Akrk +
Bk

rk+1

)

Pk(cos θ), (26.29)

where we have substituted cos θ for u.

Equation (26.29) gives the general solution of Laplace’s equation, and weFrom a known
solution of
Laplace’s
equation, we find
a formula that
generates all
Legendre
polynomials.

shall consider examples of how to use it to solve some representative problems,
but first we will go backward: From a particular known solution of Laplace’s
equation, we want to find an important property of Legendre polynomials.
Equation (15.18) shows that 1/|r − r0| is a solution of Laplace’s equation at
all points of space except r0. In general, |r−r0| is not azimuthally symmetric.
However, if we place r0 along the z-axis, the ϕ-dependence will disappear. In
fact, with r0 = aêz , we have

|r − r0| = |r− aêz| =
√

r2 + a2 − 2ar cos θ.

According to (26.29) the solution 1/|r− aêz| can be written as a series:

1√
r2 + a2 − 2ar cos θ

=
∞∑

k=0

(

Akrk +
Bk

rk+1

)

Pk(cos θ).

We are interested in the region of space inside the sphere of radius a. Since
the origin is included in this region, no negative powers of r are allowed.
Therefore, all coefficients of such powers must be zero, i.e., Bk = 0. To
determine the other set of coefficients, evaluate both sides at θ = 0 and use
Pk(1) = 1. This gives

1√
r2 + a2 − 2ar

=
1

|r − a| =
1

a − r
=

∞∑

k=0

Akrk.

Using the result of Example 9.3.3 and the fact that r/a < 1, the LHS can be
expanded in powers of r/a:

1
a − r

=
1

a(1 − r/a)
=

1
a

∞∑

k=0

( r

a

)k

=
∞∑

k=0

rk

ak+1
.
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Comparison of the last two equations gives Ak = 1/ak+1. It follows that

1√
r2 + a2 − 2ar cos θ

=
1
a

∞∑

k=0

( r

a

)k

Pk(cos θ), r < a.

Introducing t ≡ r/a and u ≡ cos θ on both sides, we finally obtain the impor-
tant relation

g(t, u) ≡ 1√
1 + t2 − 2tu

=
∞∑

k=0

tkPk(u). (26.30)

The RHS can be considered as a Taylor (or Maclaurin) series in t for the
function on the LHS.

Theorem 26.4.2. The kth coefficient of the Maclaurin series expansion of
g(t, u) ≡ 1/

√
1 + t2 − 2tu about t = 0 is Pk(u). Specifically,

Pk(u) =
1
k!

∂k

∂tk
1√

1 + t2 − 2tu

∣
∣
∣
∣
t=0

. (26.31)

The function g(t, u) is called the generating function of the Legendre poly-
nomials.

Example 26.4.3. As an immediate application of the generating function to
potential theory, consider the electrostatic or gravitational potential which can be
written as

Φ(r) = K

∫∫

Ω

dQ(r′)

|r − r′| , (26.32)

where K is ke for electrostatics and −G for gravity, and Q represents either electric
charge or mass. Assuming that r � r′, we can expand in powers of the ratio r′/r
which we denote by t. The key to this expansion is the following power series of
1/|r − r′|:

Legendre
polynomial and
multipole
expansion

1

|r − r′| =
1√

r2 + r′2 − 2r · r′
=

1

r

1
√

1 + t2 − 2t cos γ
=

1

r

∞∑

k=0

tkPk(cos γ),

where γ is the angle between r and r′ and we used Equation (26.30). Substituting
this expansion for 1/|r − r′| in (26.32), we obtain

Φ(r) = K

∫∫

Ω

∞∑

k=0

r′k

rk+1
Pk(cos γ) dQ(r′) = K

∞∑

k=0

Qk

rk+1
, (26.33)

where we replaced t with r′/r and introduced Qk, the so-called k-th moment of
source (charge or mass), by11

Qk ≡
∫∫

Ω

r′kPk(cos γ) dQ(r′). (26.34)

11Do not confuse this Qk with the second solution of Legendre DE introduced in Equation
(26.27).



622 Laplace’s Equation: Spherical Coordinates

Recall that cos γ depends on θ and ϕ. Thus, once the integral over Ω is done, the
result will depend on θ and ϕ as it should, because Φ(r) is, in general, dependent
on these angles.

The moments Qk are supposed to describe the intrinsic properties of charge (or
mass) distributions and should not depend on the observation point—described, in
part, by θ and ϕ. This is the reason that Cartesian coordinates are more useful—at
this level of presentation—than spherical coordinates. In Cartesian coordinates, we
can separate the primed from the unprimed coordinates (as we did in the definition
of dipole in Chapter 10 and of quadrupole in Chapter 17), and define multipole
moments entirely in terms of the density function of the distribution of the source.
This does not mean, however, that a complete separation is impossible in spherical
coordinates. In fact, there are techniques of performing such a separation—in terms
of the so-called “spherical harmonics”—but they are much more complicated and
beyond the scope of this book.12 �

26.5 Properties of Legendre Polynomials

From the Legendre DE, the generating function, and other formulas derived
earlier, one can obtain a variety of relations connecting Legendre polynomials.

26.5.1 Parity

The easiest property to obtain is parity which is the content of the following
formula:

Pk(−u) = (−1)kPk(u). (26.35)

This is a direct consequence of the fact that Pk(u) has only even powers of u
if k is even, and odd powers if k is odd.

26.5.2 Recurrence Relation

Differentiate both sides of Equation (26.30) with respect to t to obtain

u − t

(1 + t2 − 2tu)3/2
=

∞∑

k=1

ktk−1Pk(u). (26.36)

Rewrite the LHS as

u − t

1 + t2 − 2tu

1√
1 + t2 − 2tu

=
u − t

1 + t2 − 2tu

∞∑

k=0

tkPk(u), (26.37)

where we used (26.30) for the term with the square root. Equating the RHS
of (26.37) with the RHS of (26.36) and multiplying the result by 1 + t2 − 2tu
yields

(t − u)
∞∑

k=0

tkPk(u) + (1 + t2 − 2tu)
∞∑

k=1

ktk−1Pk(u) = 0

12See Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, Chapter 12 for a discussion of spherical harmonics.
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or
∞∑

k=0

tk+1Pk(u) − u

∞∑

k=0

tkPk(u) +
∞∑

k=1

ktk−1Pk(u)

+
∞∑

k=1

ktk+1Pk(u) − 2u

∞∑

k=1

ktkPk(u) = 0.

All the coefficients of powers of t must vanish. To find these coefficients,
change the dummy index in each sum so that all sums will have the same
power of t. So, let k = n− 1 in the first and fourth sums, k = n in the second
and the last sums, and k = n + 1 in the third sum. Then the above equation
can be written as

∞∑

n

[Pn−1(u) − uPn(u) + (n + 1)Pn+1(u)

+(n − 1)Pn−1(u) − 2unPn(u)]tn = 0,

where we have purposefully left out the lower limit of summation because
different sums start at different initial values of n. Since a power series is zero
only if all its coefficients are zero, we set the coefficients of the series above
equal to zero to obtain recurrence relation

for Legendre
polynomial(2n + 1)uPn(u) = (n + 1)Pn+1(u) + nPn−1(u), n = 1, 2, 3, . . . . (26.38)

Using P0(u) = 1 and P1(u) = u, one can generate all Legendre polynomials
from Equation (26.38).

Example 26.5.1. For n = 1, Equation (26.38) gives

3uP1(u) = 2P2(u) + P0(u) ⇒ 3u2 = 2P2(u) + 1 ⇒ P2(u) = 1
2
(3u2 − 1)

For n = 2, Equation (26.38) gives

5uP2(u) = 3P3(u)+2P1(u) ⇒ 5
2
u(3u2 − 1) = 3P3(u)+2u ⇒ P3(u) = 1

2
(5u3 − 3u),

and so on. �

The recurrence relation can be used to obtain Pn(0) which is a useful
quantity. We quote the result and leave the details as an exercise for the
reader. For odd n, we have Pn(0) = 0. The result for the even case is

P2n(0) = (−1)n (2n − 1)!!
(2n)!!

= (−1)n (2n)!
22n(n!)2

. (26.39)

Example 26.5.2. We can also obtain Pn(0) by letting u = 0 in Equation (26.30):

(1 + t2)−1/2 =

∞∑

k=0

tkPk(0).
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The binomial expansion of the LHS gives [see Equation (10.15)]

(1 + t2)−1/2 = 1 +
∞∑

n=1

(− 1
2
)(− 1

2
− 1) · · · (− 1

2
− n + 1)

n!

(
t2
)n

= 1 +

∞∑

n=1

(−1)n
1
2
( 1
2

+ 1) · · · (n − 1
2
)

n!
t2n

= 1 +

∞∑

n=1

(−1)n 1 · 3 · · · (2n − 1)

2nn!
t2n.

Comparing this with the RHS of the first equation, we see that Pn(0) = 0 when n
is odd and that

P2n(0) = (−1)n 1 · 3 · · · (2n − 1)

2nn!
= (−1)n (2n − 1)!!

2nn!

which is the same as (26.39) because 2nn! = (2n)!! by Problem 11.1. �

26.5.3 Orthogonality

The most useful property of the Legendre polynomials is their orthogonality.
We have already seen in Chapters 6 and 7 how dot products can be defined
for polynomials. We now show that Legendre polynomials of different orders
are necessarily orthogonal once the dot product is defined in terms of suitable
integrals (also see Example 24.5.3). Write the Legendre DE for Pn and Pm as

d

du
[(1 − u2)P ′

n(u)] + n(n + 1)Pn(u) = 0,

d

du
[(1 − u2)P ′

m(u)] + m(m + 1)Pm(u) = 0,

where the prime indicates derivative. Multiply both sides of the first equation
by Pm(u) and the second equation by Pn(u) and integrate from −1 to +1:

∫ 1

−1

d

du
[(1−u2)P ′

n(u)]Pm(u) du + n(n+1)
∫ 1

−1

Pn(u)Pm(u) du=0,

∫ 1

−1

d

du
[(1−u2)P ′

m(u)]Pn(u) du + m(m+1)
∫ 1

−1

Pm(u)Pn(u) du=0. (26.40)

Use integration by parts to write the first integral as

∫ 1

−1

d

du
[(1 − u2)P ′

n(u)]Pm(u) du = (1 − u2)P ′
n(u)Pm(u)

∣
∣1
−1︸ ︷︷ ︸

=0 because of (1−u2)

−
∫ 1

−1

[(1 − u2)P ′
n(u)]P ′

m(u) du.
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The first integral of the second line of Equation (26.40) gives exactly the same
result. Therefore, if we subtract the two equations of (26.40), we obtain

[n(n + 1) − m(m + 1)]
∫ 1

−1

Pn(u)Pm(u) du = 0.

It now follows that

Theorem 26.5.3. If m �= n, then
∫ 1

−1
Pn(u)Pm(u) du = 0, i.e., if the inner

product is defined as an integral from −1 to +1, then Legendre polynomials of
different orders are orthogonal.

We put this orthogonality relation to immediate use. Square both sides
of Equation (26.30) keeping in mind to introduce a new dummy index when
multiplying the sums, and integrate the result from −1 to +1:

∫ 1

−1

du

1 + t2 − 2tu
=

∫ 1

−1

( ∞∑

k=0

tkPk(u)

)( ∞∑

m=0

tmPm(u)

)

du. (26.41)

On the RHS, we switch the order of summation and integration:

RHS =
∞∑

k=0

∞∑

m=0

tm+k

∫ 1

−1

Pk(u)Pm(u) du

︸ ︷︷ ︸
=0 unless m=k

.

As we perform the inner sum, by Theorem 26.5.3, all terms will vanish except
one, i.e., only when m = k. So, the double sum reduces to a single sum

RHS =
∞∑

k=0

t2k

∫ 1

−1

P 2
k (u) du.

The integral on the LHS of (26.41) can be done by substituting y = 1+t2−2tu
and dy = −2t du:

LHS = − 1
2t

∫ (1−t)2

(1+t)2

dy

y
=

1
t
[ln(1 + t) − ln(1 − t)].

The two natural log terms can be expanded using Equation (10.23). The
reader may check that

1
t
[ln(1 + t) − ln(1 − t)] = 2

∞∑

k=0

t2k

2k + 1
. (26.42)

The fact that only even powers of t are present could have been anticipated
because the function on the LHS of Equation (26.42) is even in t. Equating
the RHS and the LHS of (26.41), we obtain

2
∞∑

k=0

t2k

2k + 1
=

∞∑

k=0

t2k

∫ 1

−1

P 2
k (u) du.
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For these two power series in t to be equal, their coefficients must equal:
∫ 1

−1

P 2
k (u) du =

2
2k + 1

.

Combining this with the orthogonality relation of Theorem 26.5.3 and using
the Kronecker delta introduced in Equation (7.9), we haveorthogonality

relation of
Legendre
polynomials

∫ 1

−1

Pm(u)Pn(u) du =
2

2n + 1
δmn. (26.43)

26.5.4 Rodrigues Formula

We started our discussion of Legendre polynomials by representing them as
infinite series and then truncating the series due to physical restrictions. We
noted that the recursion relation obtained by the Frobenius method gave all
the coefficients of the polynomials in terms of a0 and a1. Later, we found
a “closed” expression for all Legendre polynomials in terms of derivatives of
the generating functions which is a very useful function as the derivation of
(26.43) demonstrated.

There is another “closed” expression of Legendre polynomials which we
shall discuss now. This expression is called the Rodrigues formula and is
given by13Rodrigues formula

Pn(x) =
1

2nn!
dn

dxn

[
(x2 − 1)n

]
. (26.44)

To see that the RHS indeed gives the nth Legendre polynomial, we show

that it satisfies the corresponding Legendre DE. The most elegant way to
show this is to resort to complex analysis where derivatives are represented
as integrals [see Equation (19.10)]. Thus, for f(z) = (z2 − 1)n, the Cauchy
integral formula gives

(z2 − 1)n =
1

2πi

∮

C

(ξ2 − 1)n

(ξ − z)
dξ,

and Equations (19.10) and (26.44) yield

Pn(z) =
1

2nn!
dn

dzn

[
(z2 − 1)n

]
=

1
2n(2πi)

∮

C

(ξ2 − 1)n

(ξ − z)n+1
dξ.

To find P ′
n(z) and P ′′

n (z), we differentiate the integral, carrying the derivative
inside and letting it differentiate the denominator:

dP

dz
=

1
2n(2πi)

∮

C

d

dz

[
(ξ2 − 1)n

(ξ − z)n+1

]

dξ =
n + 1

2n(2πi)

∮

C

(ξ2 − 1)n

(ξ − z)n+2
dξ,

d2P

dz2 =
d

dz

(
dP

dz

)

=
n + 1

2n(2πi)

∮

C

d

dz

[
(ξ2 − 1)n

(ξ − z)n+2

]

dξ

=
(n + 1)(n + 2)

2n(2πi)

∮

C

(ξ2 − 1)n

(ξ − z)n+3
dξ.

13The fact that we are using x, rather than u, as the argument of the Legendre polynomial
should not cause any confusion.
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Substituting these expressions in the DE, the reader may check that

(1 − z2)
d2P

dz2 − 2z
dP

dz
+ n(n + 1)P

=
n + 1

2n(2πi)

∮

C

(ξ2 − 1)n[nξ2 − 2(n + 1)ξz + n + 2]
(ξ − z)n+3

dξ.

The reader may also verify that

(ξ2 − 1)n[nξ2 − 2(n + 1)ξz + n + 2]
(ξ − z)n+3

=
d

dξ

[
(ξ2 − 1)n+1

(ξ − z)n+2

]

,

so that the integrand is the derivative of a function. Since the contour of
integration is closed, the lower and upper limits of integration coincide and
the integral vanishes. So, the Rodrigues formula indeed yields Legendre poly-
nomials.

Example 26.5.4. As an illustration of the use of the Rodrigues formula, let us
evaluate the integral

I =

∫ 1

−1

xkPn(x) dx for k ≤ n.

The procedure is to replace Pn(x) by the RHS of Equation (26.44) and integrate by
parts repeatedly. After one integration by parts, we get

I =
1

2nn!

∫ 1

−1

xk

︸︷︷︸
u

dn

dxn

[
(x2 − 1)n

]
dx

︸ ︷︷ ︸
dv

=
1

2nn!

{

xk dn−1

dxn−1

[
(x2 − 1)n

]
∣
∣
∣
∣

1

−1

−
∫ 1

−1

kxk−1 dn−1

dxn−1

[
(x2 − 1)n

]
dx

}

.

The first term on the RHS of the second line is zero because each differentiation
reduces the power of (x2 − 1)n by at most one unit. So after n − 1 differentiations,
we get a sum of terms each having (x2 − 1) raised to various powers, with the lowest
power being one. All these terms vanish at x = 1 as well as at x = −1. Continuing
the integration by parts, we get

I =
−kxk−1

2nn!

dn−2

dxn−2

[
(x2 − 1)n]

∣
∣
∣
∣

1

−1
︸ ︷︷ ︸

=0 for same reason as above

+
(−1)2

2nn!

∫ 1

−1

k(k − 1)xk−2 dn−2

dxn−2

[
(x2 − 1)n] dx.

After k integrations by part, we obtain

I =
(−1)k

2nn!
k!

∫ 1

−1

dn−k

dxn−k

[
(x2 − 1)n

]
dx

because after k differentiations xk yields k!. Now, if k < n, the integral vanishes for
the same reason as above. If n = k, no differentiation will be left, and we have

I =
(−1)n

2nn!
n!

∫ 1

−1

(x2 − 1)n dx.
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Problem 26.14 shows how to evaluate the final integral and obtain

∫ 1

−1

(x2 − 1)n dx = (−1)n22n+1 (n!)2

(2n + 1)!
.

Therefore,

I =
(−1)n

2n

∫ 1

−1

(x2 − 1)n dx =
2n+1(n!)2

(2n + 1)!
.

We summarize the above derivation

∫ 1

−1

xkPn(x) dx =

⎧
⎪⎪⎨

⎪⎪⎩

0 if k < n,

2n+1(n!)2

(2n + 1)!
if k = n.

(26.45)

If instead of xk we have a general polynomial of order k in x with n > k, the
integral will still vanish. �

The result of the preceding example is summarized as

Box 26.5.1. Any polynomial of degree less than n is orthogonal to Pn.

26.6 Expansions in Legendre Polynomials

The orthogonality of Legendre polynomials—as the orthogonality of the Fourier
trigonometric functions—makes them very useful for expansion of functions
defined in the interval (−1, +1). Let f(x) be such a function. Then we write

f(x) =
∞∑

n=0

cnPn(x) (26.46)

and seek to find cn. But cn can be obtained by multiplying both sides of
the series by Pm(x) and integrating from −1 to +1. On the LHS, we get∫ 1

−1
f(x)Pm(x) dx, and on the RHS

∫ 1

−1

( ∞∑

n=0

cnPn(x)

)

Pm(x) dx =
∞∑

n=0

cn

∫ 1

−1

Pn(x)Pm(x) dx

︸ ︷︷ ︸
[2/(2n+1)]δmn by (26.43)

= cm
2

2m + 1
.

Equating the RHS and the LHS, we obtain

cm =
2m + 1

2

∫ 1

−1

f(x)Pm(x) dx or cn =
2n + 1

2

∫ 1

−1

f(x)Pn(x). (26.47)

Equations (26.46) and (26.47) give a procedure for expanding an arbitrary
function defined in the interval (−1, +1) in terms of Legendre polynomials.
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If f(x) happens to be a polynomial of degree k, then it can be written
as a finite sum of Legendre polynomials of degree k and less. In fact, for
f(x) = xk, we have

cn =
2n + 1

2

∫ 1

−1

xkPn(x)dx = 0 for n > k

by Box 26.5.1. Thus the coefficients in the sum (26.46) beyond k are all zero.

Example 26.6.1. We want to find the Legendre expansion of a function f(x)
defined as

f(x) =

⎧
⎨

⎩

V0 if 0 < x ≤ 1,

−V0 if − 1 ≤ x < 0.

To find the coefficients of expansion, we use Equation (26.47):

cn =
2n + 1

2

∫ 1

−1

f(x)Pn(x) dx

=
2n + 1

2

∫ 0

−1

f(x)
︸︷︷︸
=−V0

Pn(x) dx +
2n + 1

2

∫ 1

0

f(x)
︸︷︷︸
=+V0

Pn(x) dx (26.48)

=
2n + 1

2
V0

[

−
∫ 0

−1

Pn(x) dx +

∫ 1

0

Pn(x) dx

]

.

In the first integral of the last line, we make the substitution x = −y so that

∫ 0

−1

Pn(x) dx =

∫ 0

+1

Pn(−y) (−dy) =

∫ 1

0

Pn(−y) dy = (−1)n

∫ 1

0

Pn(x) dx,

where we used (26.35) and, in the last equality, we changed the dummy variable of
integration from y to x (Section 3.2). Inserting this in (26.48), we obtain

cn =
2n + 1

2
V0[1 − (−1)n]

∫ 1

0

Pn(x) dx,

=
2n + 1

2
V0

⎧
⎨

⎩

0 if n is even

2
∫ 1

0
P2k+1(x) dx if n = 2k + 1

where we have written the odd n as 2k + 1 for k = 0, 1, . . . .
It remains to evaluate the integral of a Legendre polynomial of odd order in the

interval (0, 1). To this end, we use the Rodrigues formula:

∫ 1

0

P2k+1(x) dx =
1

22k+1(2k + 1)!

∫ 1

0

d2k+1

dx2k+1

[
(x2 − 1)2k+1

]
dx

=
1

22k+1(2k + 1)!

d2k

dx2k

[
(x2 − 1)2k+1

]∣∣
∣
∣

1

0

=
1

22k+1(2k + 1)!

{
d2k

dx2k

[
(x2 − 1)2k+1

]∣∣
∣
∣
x=1

− d2k

dx2k

[
(x2 − 1)2k+1

]∣∣
∣
∣
x=0

}

.
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The first term gives zero because there is no sufficient number of differentiations to
get rid of all factors of (x2 − 1). For the second term, we note that (x2 − 1)2k+1 is
a polynomial in x whose derivatives of various orders consist of powers of x. These
powers will give zero at x = 0 except for the constant term (of zeroth power). So,
let us use binomial expansion for (x2 − 1)2k+1 which is equal to −(1 − x2)2k+1:

d2k

dx2k

[
(x2 − 1)2k+1

]∣∣
∣
∣
x=0

= − d2k

dx2k

[
2k+1∑

j=0

(2k + 1)!

j!(2k + 1 − j)!
(−x2)j

]∣
∣
∣
∣
∣
x=0

= −
2k+1∑

j=0

(2k + 1)!

j!(2k + 1 − j)!
(−1)j d2k

dx2k

(
x2j

)
∣
∣
∣
∣
∣
x=0

,

whose constant term is obtained when k = j, all the other terms of the sum will
vanish either because of too many differentiations (when j < k, we end up differen-
tiating constants) or too few differentiations (when j > k, a power of x will remain
which evaluates to zero at x = 0). Therefore,

d2k

dx2k

[
(x2 − 1)2k+1

]∣∣
∣
∣
x=0

= − (2k + 1)!

k!(k + 1)!
(−1)k d2k

dx2k

(
x2k

)∣∣
∣
∣
x=0

=
(2k + 1)!

k!(k + 1)!
(−1)k+1(2k)!

and
∫ 1

0

P2k+1(x) dx = − 1

22k+1(2k + 1)!

[
(2k + 1)!

k!(k + 1)!
(−1)k+1(2k)!

]

=
(−1)k(2k)!

22k+1k!(k + 1)!
.

(26.49)
Finally, we can write the coefficient c2k+1 as

c2k+1 = 2
2(2k + 1) + 1

2
V0

∫ 1

0

P2k+1(x) dx =
(−1)k(4k + 3)(2k)!

22k+1k!(k + 1)!
V0

with cn = 0 for even n. The final expansion series can now be given:

f(x) =

⎧
⎨

⎩

V0 if 0 < x ≤ 1

−V0 if − 1 ≤ x < 0

= V0

∞∑

k=0

(−1)k(4k + 3)(2k)!

22k+1k!(k + 1)!
P2k+1(x)

= V0

[
3
2
P1(x) − 7

8
P3(x) + 11

16
P5(x) − · · ·

]
. �

Example 26.6.2. We can easily obtain the Legendre expansion of the Dirac delta
function. The expansion coefficients are given by

cn =
2n + 1

2

∫ 1

−1

f(x)Pn(x) dx =
2n + 1

2

∫ 1

−1

δ(x)Pn(x) dx =
2n + 1

2
Pn(0).

From Equation (26.39) and the discussion preceding it we can find all values of
Pn(0). Substituting these values in the above equation, we conclude that cn = 0 if
n is odd, and

c2k =
4k + 1

2

[

(−1)k (2k)!

22k(k!)2

]

.

It now follows thatLegendre
expansion of the
Dirac delta
function

δ(x) =
∞∑

k=0

(−1)k (4k + 1)(2k)!

22k+1(k!)2
P2k(x).

�
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26.7 Physical Examples

The most common physical problems involving Laplace’s equation are those
from electrostatics in empty space, and steady-state heat transfer. In each
case, a surface is held at some (not necessarily uniform) potential or tem-
perature and the potential or temperature is sought in regions away from
the surface. In the present context, these surfaces are typically (portions of)
spheres.

Example 26.7.1. Two solid heat-conducting hemispheres of radius a, separated
by a very small insulating gap, form a sphere. The two halves of the sphere are two solid

heat-conducting
hemispheres held
at temperatures
T0 and −T0

in contact—on the outside—with two (infinite) heat baths at temperatures T0 and
−T0 [Figure 26.1(a)]. We want to find the temperature distribution T (r, θ, ϕ) inside
the sphere. We choose a spherical coordinate system in which the origin coincides
with the center of the sphere and the polar axis is perpendicular to the equatorial
plane. The hemisphere with temperature T0 is assumed to constitute the northern
hemisphere.

Since the problem has azimuthal symmetry, T is independent of ϕ, and we can
immediately write the general solution from Equation (26.29). However, since the
origin is in the region of interest, we need to exclude all negative powers of r. This
is accomplished by setting all the B coefficients equal to zero. Thus, we have

T (r, θ) =

∞∑

n=0

AnrnPn(cos θ). (26.50)

It remains to calculate the constants An. This is done by noting that

T (a, θ) =

⎧
⎪⎨

⎪⎩

T0 if 0 ≤ θ <
π

2
,

−T0 if
π

2
< θ ≤ π.

In terms of u = cos θ, this is written as

T (a, u) =

⎧
⎨

⎩

−T0 if − 1 ≤ u < 0,

T0 if 0 < u ≤ 1.

Substituting this in Equation (26.50), we obtain

T (a, θ) =

⎧
⎨

⎩

−T0 if − 1 ≤ u < 0

T0 if 0 < u ≤ 1

=
∞∑

n=0

Anan

︸ ︷︷ ︸
≡cn

Pn(u), (26.51)

which—except for using u instead of x—is entirely equivalent to the expansion of
Example 26.6.1, where we found that even coefficients are absent and

c2k+1 ≡ A2k+1a
2k+1 =

(−1)k(4k + 3)(2k)!

22k+1k!(k + 1)!
T0.

Finding A2k+1 from this equation and inserting the result in (26.50) yields

T (r, θ) = T0

∞∑

k=0

(−1)k(4k + 3)(2k)!

22k+1k!(k + 1)!

( r

a

)2k+1

P2k+1(cos θ), (26.52)

where we have substituted cos θ for u. �
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(b)(a)

T0

−T0

V0

−V0

Figure 26.1: (a) Two heat-conducting hemispheres held at two different temperatures.

(b) Two electrically conducting hemispheres held at two different potentials. The upper

hemispheres have the polar angle range 0 ≤ θ < π/2 or 0 < cos θ ≤ 1, and the lower

hemispheres have the range π/2 < θ ≤ π or −1 ≤ cos θ < 0.

Example 26.7.2. Consider two electrically conducting hemispheres of radius a
two electrically
conducting
hemispheres held
at potentials V0

and −V0

separated by a small insulating gap at the equator. The upper hemisphere is held
at potential V0 and the lower one at −V0 as shown in Figure 26.1(b). We want to
find the potential at points outside the resulting sphere. Since the potential must
vanish at infinity, we expect the first term in Equation (26.29) to be absent, i.e.,
Ak = 0. To find Bk, substitute a for r in (26.29), and let cos θ ≡ u. Then,

Φ(a, u) =
∞∑

k=0

Bk

ak+1
︸ ︷︷ ︸
≡ck

Pk(u),

where

Φ(a, u) =

{
−V0 if − 1 < u < 0,

+V0 if 0 < u < 1.

The calculation of the coefficients is identical to that of Example 26.6.1. Thus,
ck = 0 for even k and

c2m+1 =
B2m+1

a2m+2
= (−1)m (4m + 3)(2m)!

22m+1(m + 1)!m!
V0

or

B2m+1 =
(−1)m(4m + 3)(2m)!

22m+1m!(m + 1)!
a2m+2V0.

Having found the coefficients, we can write the potential:

Φ(r, θ) = V0

∞∑

m=0

(−1)m (4m + 3)(2m)!

22m+1m!(m + 1)!

(a

r

)2m+2

P2m+1(cos θ), (26.53)

where cos θ has been restored. Equation (26.53) is the multipole expansion of the
potential of the two hemispheres. It is interesting to note that the monopole term
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(the term with a single power of r in the denominator) is absent. It follows from
Equation (10.33) that the total charge on the two spheres must be zero. This is
consistent with the symmetry of the problem from which we expect equal surface
charge densities of opposite signs on the two hemispheres. �

Example 26.7.3. As yet another example of the solution of Laplace’s equation
in spherical coordinates, consider a grounded neutral conducting sphere of radius conducting sphere

in an originally
uniform electric
field

a placed in an originally uniform electric field E0 which is assumed to be infinite
in extent (see Figure 26.2). We want to find the electrostatic potential everywhere
outside the sphere. Choosing the field to be in the positive z-direction and placing
the center of the sphere at the origin, we will have a problem that is azimuthally
symmetric. The general solution is therefore given by Equation (26.29). The bound-
aries outside the sphere consist of the sphere itself as well as infinity. The electric
field at infinity is the original uniform field, because the field due to the charges
induced on the sphere vanishes at infinity. The potential of this field (at infinity)
can be deduced from14

E = E0êz = −∇Φ ⇒ E0 = −∂Φ

∂z
,

∂Φ

∂x
= 0 =

∂Φ

∂y
.

Thus, the potential at infinity is independent of x and y, and can be written as

Φ(r, θ) = −E0z = −E0r cos θ = −E0rP1(cos θ) for r → ∞.

As r → ∞, the B terms in Equation (26.29) will go to zero, and we must have the
“limiting” equality

∞∑

k=0

AkrkPk(u) → −E0rP1(u).

x

y

z

Figure 26.2: The electric field in the vicinity of a sphere placed in an external uniform

field will change, but the field far away from the sphere will remain almost uniform.

14We could express the gradient in terms of spherical coordinates, but, as the reader will
note, the initial manipulation is noticeably easier in the Cartesian coordinates.
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The orthogonality of the Legendre polynomials requires the coefficients on both sides
to be equal. This gives

Ak = 0 for k = 0 and k ≥ 2, A1 = −E0.

The B’s are obtained by applying the boundary condition of the sphere itself,
namely the fact that it is grounded. This means that Φ(a, θ) = 0, or

0 = A1aP1(u) +

∞∑

k=0

Bk

ak+1
Pk(u) =

B0

a
+

(
B1

a2
− E0a

)

P1(u) +

∞∑

k=2

Bk

ak+1
Pk(u).

Again orthogonality of the Legendre polynomials requires the coefficient of each
polynomial to vanish. This yields

B0 = 0, B1 = E0a
3, and Bk = 0 for k ≥ 2.

Inserting all these coefficients in Equation (26.29), we obtain

Φ(r, θ) = −E0

(

r − a3

r2

)

P1(cos θ). (26.54)

Because of the simplicity of the expression for potential, we can evaluate some
other physical quantities of interest. For example, the electric field at all points in
space is

E = −∇Φ = −êr
∂Φ

∂r
− êθ

1

r

∂Φ

∂θ
or

Er = −∂Φ

∂r
= E0

(

1 + 2
a3

r3

)

cos θ,

Eθ = −1

r

∂Φ

∂r
= −E0

(

1 − a3

r3

)

sin θ,

Eϕ = 0.

This is the sum of the original uniform field

E0(cos θêr − sin θêθ) = E0êz

and the field due to the charges induced on the sphere

Esph =
a3E0

r3
(2 cos θêr + sin θêθ),

which (see Example 16.2.1) is the field of an electric dipole with dipole moment

p =
a3E0

ke
= 4πε0a

3E0.

It is interesting to note that at r = a, the only nonvanishing component of
the field is Er. This is consistent with the known fact that electrostatic fields
are perpendicular to conducting surfaces. Furthermore, this perpendicular field is
related to the surface charge density by E = σ/ε0. Therefore,

σ = ε0Er

∣
∣
r=a

= 3ε0E0 cos θ,

indicating an accumulation of positive charge on the “upper” (right in the figure)
hemisphere and an identical distribution of negative charge on the “lower” (left in
the figure) hemisphere. �
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26.8 Problems

26.1. Show that by writing P (u) ≡ Θ(θ)—with u = cos θ—and using the
chain rule, the second equation of (26.2) becomes

− 1
sin θ

d

dθ

[

(1 − u2)
dP

du

]

+ αP = 0.

26.2. Choose a solution of the form ur
∑∞

n=0 anun for the Legendre DE,
assume that a0 and a1 are both nonzero, and show that the only solution for
r is r = 0.

26.3. Derive Equation (26.15).

26.4. Derive Equations (26.18), (26.19), and (26.20).

26.5. Derive Equations (26.21) and (26.22) and show that they can both be
written as (26.23).

26.6. Show by mathematical induction (or otherwise) that Equation (26.24)
satisfies Pn(1) = 1.

26.7. Show that Legendre polynomials and the hypergeometric function are
related via (26.25) and (26.26).

26.8. Suppose that Q represents electric charge. Show that in (26.34) Q0

is the total charge and Q1 is the dot product of êr and the electric dipole
moment.

26.9. (a) Change t to −t and u to −u, and show that the generating function
g(t, u) of Legendre polynomials does not change.
(b) Now substitute −t for t and −u for u in Equation (26.30) and compare the
resulting equation with (26.30) to derive the parity of Legendre polynomials.

26.10. (a) Show that (1/t)[ln(1 + t) − ln(1 − t)] is an even function of t.
(b) Use the Maclaurin expansion of ln(1 ± t) to derive the following series:

1
t
[ln(1 + t) − ln(1 − t)] = 2

∞∑

k=0

t2k

2k + 1
.

26.11. (a) Show that Pn(0) = 0 if n is odd.
(b) Show that for u = 0, Equation (26.38) yields

P2n(0) = −2n− 1
2n

P2n−2(0).

(c) Iterate this relation and obtain

P2n(0) = (−1)n (2n − 1)!!
(2n)!!

P0(0) = (−1)n (2n − 1)!!
(2n)!!

.

Now use the result of Problem 11.1 to obtain the final form of (26.39).
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26.12. Suppose f(x) =
∑∞

k=0 ckPk(x). Show that

∫ 1

−1

[f(x)]2 dx =
∞∑

m=0

2c2
m

2m + 1
.

26.13. Show the following two equalities:

(1 − z2)
d2P

dz2 − 2z
dP

dz
+ n(n + 1)

=
n + 1

2n(2πi)

∮

C

(ξ2 − 1)n[nξ2 − 2(n + 1)ξz + n + 2]
(ξ − z)n+3

dξ

=
n + 1

2n(2πi)

∮

C

d

dξ

[
(ξ2 − 1)n+1

(ξ − z)n+2

]

dξ.

26.14. In the integral
∫ 1

−1
(x2 − 1)n dx, let u = (x2 − 1)n and dv = dx and

integrate by parts to show that
∫ 1

−1

(x2 − 1)n dx = −2n

∫ 1

−1

x2(x2 − 1)n dx.

Integrate by parts a few more times and show that
∫ 1

−1

(x2 − 1)n dx = (−2)m n(n − 1) . . . (n − m + 1)
(2m − 1)!!

∫ 1

−1

x2m(x2 − 1)n−m dx.

Set m = n and, using the result of Problem 11.1, obtain the following final
result: ∫ 1

−1

(x2 − 1)n dx = (−1)n22n+1 (n!)2

(2n + 1)!
.

26.15. Use the procedures of Example 26.5.4 and the previous problem to
show that for m ≥ n:

∫ 1

−1

xmPn(x) dx =

{
0 if m and n have opposite parities,
2(m+n)/2+1m!( m+n

2 )!

(m−n)!(m+n+1)! if m and n have the same parities,

where having the same parity means being both even or both odd.

26.16. Show that
∫ 1

0 P2k(x) dx = 0 if k ≥ 1. Hint: Extend the interval of
integration to (−1, 1) and use the orthogonality of Legendre polynomials.

26.17. Find the Legendre expansion for the function f(x) = |x| in the interval
(−1, +1). Hint: Break up the integrals into two pieces, employ the recurrence
relation to express xPn(x) in terms of Pn−1(x) and Pn+1(x), and use the
result of Example 26.6.1.

26.18. (a) Find the total charge on the upper and lower hemispheres and on
the entire sphere of Example 26.7.3.
(b) Using p =

∫
r′dq(r′), calculate the (induced) dipole moment of the sphere.
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26.19. Suppose that the sphere of Example 26.7.3 is held at potential V0.
(a) Find the potential Φ(r, θ) and the electrostatic field at all points in space.
(b) Calculate the surface charge density on the sphere.
(c) Find the total charge on the upper and lower hemispheres and on the
entire sphere.

26.20. Using the infinite series expansion, find the electrostatic potential
both inside and outside a conducting sphere of radius a held at the constant
potential V0.

26.21. Find the electrostatic potential inside a sphere of radius a with an
insulating small gap at the equator if the bottom hemisphere is grounded and
the top hemisphere is maintained at a constant potential V0.

26.22. A sphere of radius a is maintained at a temperature T0. The sphere is
inside a large heat-conducting mass. Find the expressions for the steady-state
temperature distribution both inside and outside the sphere.

26.23. A ring of total charge q and radius a in the xy-plane with its center
at the origin constitutes an azimuthally symmetric charge distribution whose
potential is also azimuthally symmetric.
(a) Write the most general potential function valid for r > a.
(b) By direct integration show that

Φ(r, θ = 0) =
1

4πε0

∫
dq(r′)
|r − r′|

∣
∣
∣
∣
θ=0

=
q

4πε0

1√
r2 + a2

.

(c) Expand this expression in powers of (a/r) and compare the result with
the series in (a) to find the coefficients of Legendre expansion and show that

Φ(r, θ) =
q

4πε0r

∞∑

k=0

(−1)k(2k)!
22k(k!)2

(a

r

)2k

P2k(cos θ).

(d) Find a similar expression for Φ(r, θ) for r < a.

26.24. A conducting sphere of radius a is inside another conducting sphere
of radius b. The inner sphere is held at potential V1; the outer sphere at
V2. Find the potential inside the inner sphere, between the two spheres, and
outside the outer sphere.

26.25. A conducting sphere of radius a is inside another conducting sphere
of radius b which is composed of two hemispheres with an infinitesimal gap
between them. The inner sphere is held at potential V1. The upper half of the
outer sphere is at potential +V2 and its lower half at −V2. Find the potential
inside the inner sphere, between the two spheres, and outside the outer sphere.

26.26. A heat conducting sphere of radius a is composed of two hemispheres
with an infinitesimal gap between them. The upper and lower halves of the
sphere are in contact with heat baths of temperatures +T1 and −T1, respec-
tively. The sphere is inside a second heat conducting sphere of radius b held
at temperature T2. Find the temperature inside the inner sphere, between
the two spheres, and outside the outer sphere.





Chapter 27

Laplace’s Equation:
Cylindrical Coordinates

Before working specific examples of cylindrical geometry, let us consider a
question that has more general implications. We saw in Chapter 22 that
separation of variables led to ODEs in which certain constants appeared,
and that different choices of signs for these constants can lead to a different
functional form of the general solution. For example, an equation such as
d2x/dt2 − kx = 0 can have exponential solutions if k > 0 and trigonometric
solutions if k < 0. One cannot a priori assign a specific sign to k. Thus, the
general form of the solution is indeterminate. However, once the boundary
conditions are imposed, the unique solutions will emerge regardless of the
initial functional form of the solutions. The following argument illustrates this
point on the angular DE resulting from the separation of Laplace’s equation
in cylindrical coordinates.

27.1 The ODEs

The separation of variables Φ(ρ, ϕ, z) = R(ρ)S(ϕ)Z(z) for Laplace’s equation
∇2Φ = 0 yields the following three ODEs [see Equation (22.14) noting that
λ = 0]. In what follows, we shall use λ for λ1:

d

dρ

(

ρ
dR

dρ

)

+
(

λρ +
μ

ρ

)

R = 0,

d2S

dϕ2 − μS = 0,
d2Z

dz2 − λZ = 0. (27.1)
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Let us concentrate on the second equation whose most general solution we
can write asThe dependence

of the solution on
ϕ is dictated by
physical
conditions.

S(ϕ) =

{
Ae

√
μ ϕ + Be−

√
μ ϕ if μ �= 0,

Cϕ + D if μ = 0.
(27.2)

No matter what type of boundary conditions are imposed on the potential Φ,
it must give the same value at ϕ and at ϕ + 2π while keeping the other two
variables fixed.1 This is because (ρ, ϕ, z) and (ρ, ϕ+2π, z) represent the same
physical point in space. It follows that

R(ρ)S(ϕ)Z(z) = R(ρ)S(ϕ + 2π)Z(z) ⇒ S(ϕ + 2π) = S(ϕ)

because the identity holds for all values of ρ and z. If the last relation is to
be true for the case of μ = 0, we must have C = 0 and S(ϕ) = D. For μ �= 0,
Equation (27.2) yields

Ae
√

μ (ϕ+2π) + Be−
√

μ (ϕ+2π) = Ae
√

μ ϕ + Be−
√

μ ϕ

or
Ae

√
μ ϕ(e

√
μ 2π − 1) + Be−

√
μ ϕ(e−

√
μ 2π − 1) = 0.

This must hold for all ϕ. The only way that can happen (we want to keep A
and B nonzero) is to have

e
√

μ 2π − 1 = 0 and e−
√

μ 2π − 1 = 0

both of which are equivalent to e
√

μ 2π = 1.2 If we confine ourselves to real
μ, we get only trivial solutions. To avoid this, we have to have

√
μ = im for

m = 0,±1,±2, . . . or μ = −m2 for m = 0,±1,±2, . . . . With this choice of μ,
the DE for S(ϕ) becomes S′′ + m2S = 0 whose general solution is a sum of
trigonometric functions. We summarize this finding:

Theorem 27.1.1. For all physical problems for which the azimuthal angle
varies between 0 and 2π, one is forced to restrict the value of μ to the negative
of the square of an integer. The solution for the angular part then becomes

S(ϕ) = Am cosmϕ + Bm sin mϕ, m = 0, 1, 2, . . . , (27.3)

where Am and Bm are constants that may differ for different m’s.

The negative values of m will not give rise to any new solutions, so they
are not included in the range of m. The case of μ = 0 need not be treated
separately, because the acceptable solution for this case is S = D = const.,
which is what is obtained in (27.3) when m = 0.

1This argument is valid only for physical situations defined for the entire range of ϕ.
If the region of interest restricts ϕ to a subset of the interval [0, 2π], the argument breaks
down.

2The second equation can be obtained by multiplying the first equation by e−
√

μ 2π .
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The DE for Z(z) is independent of m and has an exponential solution
if λ > 0 and a trigonometric solution if λ < 0. Assuming the former, and
writing λ ≡ l2, we have

Z(z) = Aelz + Be−lz. (27.4)

Least familiar is the radial DE which, in terms of l =
√

λ, can be rewritten
as

d2R

dρ2 +
1
ρ

dR

dρ
+

(

l2 − m2

ρ2

)

R = 0. (27.5)

Furthermore, if we define the variable v = lρ, we can cast (27.5) in the form Bessel differential
equation

d2R

dv2 +
1
v

dR

dv
+

(

1 − m2

v2

)

R = 0. (27.6)

Equation (27.5), or (27.6), is one of the most famous DEs of mathematical
physics called the Bessel differential equation. Our task for the remainder
of this chapter is to find solutions of this DE and list some of their properties
and examples of their usage.

Historical Notes
Friedrich Wilhelm Bessel showed no signs of unusual academic ability in school,
although he did show a liking for mathematics and physics. He left school intending
to become a merchant’s apprentice, a desire that soon materialized with a seven-year
unpaid apprenticeship with a large mercantile firm in Bremen. The young Bessel
proved so adept at accounting and calculation that he was granted a small salary,
with raises, after only the first year. An interest in foreign trade led Bessel to study
geography and languages at night, astonishingly learning to read and write English
in only three months. He also studied navigation in order to qualify as a cargo officer
aboard ship, but his innate curiosity soon compelled him to investigate astronomy
at a more fundamental level. Still serving his apprenticeship, Bessel learned to
observe the positions of stars with sufficient accuracy to determine the longitude
of Bremen, checking his results against professional astronomical journals. He then
tackled the more formidable problem of determining the orbit of Halley’s comet
from published observations. After seeing the close agreement between Bessel’s
calculations and those of Halley, the German astronomer Olbers encouraged Bessel
to improve his already impressive work with more observations. The improved
calculations, an achievement tantamount to a modern doctoral dissertation, were
published with Olbers’s recommendation. Bessel later received appointments with
increasing authority at observatories near Bremen and in Königsberg, the latter
position being accompanied by a professorship. (The title of doctor, required for the
professorship, was granted by the University of Göttingen on the recommendation
of Gauss.)

Friedrich Wilhelm
Bessel 1784–1846

Bessel proved himself an excellent observational astronomer. His careful mea-
surements coupled with his mathematical aptitude allowed him to produce accurate
positions for a number of previously mapped stars, taking account of instrumental
effects, atmospheric refraction, and the position and motion of the observation site.
In 1820 he determined the position of the vernal equinox accurate to 0.01 second, in
agreement with modern values. His observation of the variation of the proper motion
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of the stars Sirius and Procyon led him to posit the existence of nearby, large, low-
luminosity stars called dark companions. Between 1821 and 1833 he catalogued the
positions of about 75,000 stars, publishing his measurements in detail. One of his
most important contributions to astronomy was the determination of the distance
to a star using parallax. This method uses triangulation, or the determination of
the apparent positions of a distant object viewed from two points a known distance
apart, in this case two diametrically opposed points of the Earth’s orbit. The angle
subtended by the baseline of the Earth’s orbit, viewed from the star’s perspective,
is known as the star’s parallax. Before Bessel’s measurement, stars were assumed
to be so distant that their parallaxes were too small to measure, and it was further
assumed that bright stars (thought to be nearer) would have the largest parallax.
Bessel correctly reasoned that stars with large proper motions were more likely to
be nearby ones and selected such a star, 61 Cygni, for his historic measurement. His
measured parallax for that star differs by less than 8% from the currently accepted
value.

Given such an impressive record in astronomy, it seems only fitting that the
famous functions that bear Bessel’s name grew out of his investigations of pertur-
bations in planetary systems. He showed that such perturbations could be divided
into two effects and treated separately: the obvious direct attraction due to the
perturbing planet and an indirect effect caused by the Sun’s response to the per-
turber’s force. The so-called Bessel functions then appear as coefficients in the series
treatment of the indirect perturbation. Although special cases of Bessel functions
were discovered by Bernoulli, Euler, and Lagrange the systematic treatment by Bessel
clearly established his preeminence, a fitting tribute to the creator of the most fa-
mous functions in mathematical physics.

27.2 Solutions of the Bessel DE

The Frobenius method is an effective way of finding solutions for ODEs. We
rewrite (27.6) by multiplying it by v2 to turn all its coefficients into polyno-
mials as suggested by Equation (26.7). This yields

v2 d2R

dv2 + v
dR

dv
+

(
v2 − m2

)
R = 0. (27.7)

Since v2 vanishes at v = 0, we must assume a solution of the form

R(v) = vs
∞∑

k=0

ckvk =
∞∑

k=0

ckvk+s

from which we obtain

v
dR

dv
=

∞∑

k=0

ck(k + s)vk+s,

v2 d2R

dv2 =
∞∑

k=0

ck(k + s)(k + s − 1)vk+s.
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Substituting these as well as (v2 − m2)
∑∞

k=0 ckvk+s in the DE yields

∞∑

k=0

ck[k + s + (k + s)(k + s − 1)
︸ ︷︷ ︸

=(k+s)2

−m2]vk+s +
∞∑

k=0

ckvk+s+2 = 0.

To find the recursion relation, we need to have the same power of v in the
sum. We do this by rewriting the first sum as

c0(s2 − m2)vs + c1[(s + 1)2 − m2]vs+1 +
∞∑

k=2

ck[(k + s)2 − m2]vk+s

= c0(s2 − m2)vs + c1[(s + 1)2 − m2]vs+1

+
∞∑

n=0

cn+2[(n + 2 + s)2 − m2]vn+2+s,

where in the second line, we introduced n = k−2. Since n is a dummy index,
we can change it back to k. It then follows that

c0(s2 − m2)vs + c1[(s + 1)2 − m2]vs+1

+
∞∑

k=0

{
ck+2[(k + 2 + s)2 − m2] + ck

}
vk+2+s = 0.

Assuming that c0 �= 0 and setting the coefficients of all powers of v equal to
zero, we get

s2 = m2, c1[(s + 1)2 − m2] = 0,

ck+2[(k + 2 + s)2 − m2] + ck = 0.

The first equation gives m = ±s. Inserting this in the second equation gives

c1(2s + 1) = 0 ⇒ c1 = 0 or s = − 1
2 .

The choice s = − 1
2 gives m = ∓ 1

2 which is not acceptable,3 as we decided
that m is to be a positive integer. We therefore conclude that s = ±m and
c1 = 0. It follows from the recursion relation that all odd c’s are zero. The
Frobenius series will therefore look like

R(v) = v±m
∞∑

k=0

c2kv2k,
c2k+2

c2k
= − 1

(2k + 2 + s)2 − m2
. (27.8)

The ratio test for the convergence of series yields

lim
k→∞

∣
∣
∣
∣
c2k+2v

2k+2

c2kv2k

∣
∣
∣
∣ = lim

k→∞

∣
∣
∣
∣

1
(2k + 2 + s)2 − m2

∣
∣
∣
∣ v

2 = 0,

3Actually, problems arising from other areas of physics beyond electrostatics and steady-
state heat transfer allow noninteger values of m. However, we shall not deal with such
problems here.
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which indicates that

Box 27.2.1. The series of Equation (27.8) is convergent for all values
of v.

We now use the recursion relation to obtain the coefficients of expansion.
Rewrite the recursion relation asrecursion relation

for Bessel
equation ck+2 = − 1

(k + 2 + s)2 − s2
ck = − 1

(k + 2)(2s + k + 2)
ck,

where we substituted s2 for m2. This gives

c2 = − 1
2(2s + 2)

c0,

c4 = − 1
4(2s + 4)

c2 = (−1)2
1

4(2s + 4)
1

2(2s + 2)
c0,

c6 = − 1
6(2s + 6)

c4 = (−1)3
1

6(2s + 6)
1

4(2s + 4)
1

2(2s + 2)
c0,

and, in general,

c2k = (−1)k 1
2k · (2k − 2) . . . 2
︸ ︷︷ ︸

=2kk!

(2s + 2k)[2s + (2k − 2)] . . . (2s + 2)
︸ ︷︷ ︸

=2k(s+k)(s+k−1)...(s+1)

c0.

Multiplying the numerator and denominator by s!, we obtain

c2k = (−1)k s!
22kk!(s + k)!

c0. (27.9)

Substituting (27.9) in (27.8) yields

R(v) = c0s!vs
∞∑

k=0

(−1)k

22kk!(s + k)!
v2k = c0s!2s

(v

2

)s ∞∑

k=0

(−1)k

k!(s + k)!

(v

2

)2k

,

where we substituted s for ±m in the exponent of v outside the summation.
We also absorbed the powers of 2 in the denominator of the sum into the
powers of v, and outside the sum, we multiplied and divided by 2s. It is
customary to choose the arbitrary constant c0 to be equal to 1/(s!2s). This
leads to

Box 27.2.2. The Bessel function of order s is denoted by Js and is
given by the series

Js(x) =
(x

2

)s ∞∑

k=0

(−1)k

k!(s + k)!

(x

2

)2k

(27.10)

which is convergent for all values of x.
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Although Equation (27.10) was derived assuming that m—and therefore Equation (27.10)
is valid not only
for integer s, but
also for real and
even complex s.

s—was an integer, lifting this restriction will still yield a series which is con-
vergent everywhere, and one can define Bessel functions whose orders are
real or even complex numbers. The only difficulty is to correctly interpret
(s + n)! for non-integer s. But this is precisely what the gamma function was
invented for (see Definition 11.1.1). Thus, we let Equation (27.10) stand for
Bessel functions of all orders.

27.3 Second Solution of the Bessel DE

As in the case of Legendre polynomials, we can obtain a second solution of
the Bessel DE using Equation (24.6). For the Bessel DE, we have p(x) = 1/x.
Using Jm(x) as our input, we can generate another solution. With C = 0 in
Equation (24.6), we obtain

Zm(x) = KJm(x)
∫ x

α

1
J2

m(u)
exp

[

−
∫ u

c

dt

t

]

du = AmJm(x)
∫ x

α

du

uJ2
m(u)

,

where Am ≡ Kc and α are arbitrary constants determined by convention.
Note that, contrary to Jm(x), Zm(x) is not well behaved at x = 0 due to the
presence of u in the denominator of the integrand.

Although the above procedure manufactures a second solution for the
Bessel DE, it is not the customary procedure. It turns out that for non-
integer s, the Bessel function J−s(x) is independent of Js(x) and can be used
as a second solution.4 However, a more common second solution is the linear
combination

Ys(x) =
Js(x) cos sπ − J−s(x)

sin sπ
(27.11)

called the Bessel function of the second kind, or the Neumann function.
For integer s the function is indeterminate because of Equation (11.32) and
the identity cosnπ = (−1)n. Therefore, we use l’Hôpital’s rule and define Bessel function of

the second kind or
Neumann function

Yn(x) ≡ lim
s→n

Ys(x) = lim
s→n

∂
∂s

[Js(x) cos sπ − J−s(x)]

π cosnπ

=
1
π

lim
s→n

[
∂Js

∂s
− (−1)n ∂J−s

∂s

]

,

From (27.10) we obtain

∂Js

∂s
= Js(x) ln

(x

2

)
−

(x

2

)s ∞∑

k=0

(−1)k Ψ(s + k + 1)
k!Γ(s + k + 1)

(x

2

)2k

,

where
Ψ(x) ≡ d

dx
ln[(x − 1)!] =

d

dx
ln Γ(x) =

dΓ(x)/dx

Γ(x)
.

4See Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, Chapter 14 for details.
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Similarly,

∂J−s

∂s
= −J−s(x) ln

(x

2

)
+

(x

2

)−s ∞∑

k=0

(−1)k Ψ(−s + k + 1)
k!Γ(−s + k + 1)

(x

2

)2k

.

Substituting these expressions in the definition of Yn(x) and using J−n(x) =
(−1)nJn(x) [Equation (11.32)], we obtain

Yn(x) =
2
π

Jn(x) ln
(x

2

)
− 1

π

(x

2

)n ∞∑

k=0

(−1)k Ψ(n + k + 1)
k!Γ(n + k + 1)

(x

2

)2k

− 1
π

(−1)n
(x

2

)−n ∞∑

k=0

(−1)k Ψ(k − n + 1)
k!Γ(k − n + 1)

(x

2

)2k

. (27.12)

It should be clear from (27.12) that the Neumann function Ys(x) is ill defined
at x = 0, as expected of the second solution of the Bessel DE such as Zm(x)
discussed above.

Since Ys(x) is linearly independent of Js(x) for any s, integer or noninteger,
it is convenient to consider {Js(x), Ys(x)} as a basis of solutions for the Bessel
DE. In particular, the solution of the radial equation in cylindrical coordinates,
i.e., the first equation in (27.1), becomes

R(ρ) = AJm(v) + BYm(v) = AJm(lρ) + BYm(lρ). (27.13)

27.4 Properties of the Bessel Functions

We have already considered some properties of the Bessel functions in Chap-
ter 11. In this subsection, we quote those results and obtain other useful
properties of the Bessel functions.

27.4.1 Negative Integer Order

Equation (11.32) gives a relation between a Bessel function of integer order
and the Bessel function whose order is negative of the first one

J−m(x) = (−1)mJm(x). (27.14)

27.4.2 Recurrence Relations

A number of recurrence relations involving Bessel functions of integer orders
and their derivatives were derived in Chapter 11 which we reproduce here.
The first one, involving no derivatives is

Jm−1(x) + Jm+1(x) =
2m

x
Jm(x). (27.15)
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The second one, which includes derivatives of Bessel functions, is

Jm−1(x) − Jm+1(x) = 2J ′
m(x). (27.16)

Combining these two equations, one obtains recurrence
relations involving
derivativesJm−1(x) =

m

x
Jm(x) + J ′

m(x),

Jm+1(x) =
m

x
Jm(x) − J ′

m(x). (27.17)

We can use these equations to obtain new—and more useful—relations.
For example, by differentiating xmJm(x), we get

[xmJm(x)]′ = mxm−1Jm(x) + xmJ ′
m(x)

= xm
[m

x
Jm(x) + J ′

m(x)
]

︸ ︷︷ ︸
=Jm−1(x) by (27.17)

= xmJm−1(x).

Integrating (really, antidifferentiating) this equation yields
∫

xmJm−1(x) dx = xmJm(x). (27.18)

Similarly, the reader may check that
∫

x−mJm+1(x) dx = −x−mJm(x). (27.19)

27.4.3 Orthogonality

Bessel functions satisfy an orthogonality relation similar to that of the Leg-
endre polynomials. However, unlike Legendre polynomials, the quantity that
determines the orthogonality of different Bessel functions is not the order but
a parameter in their argument (also see Example 24.5.3).

Consider two solutions of the Bessel DE corresponding to the same az-
imuthal parameter, but with different radial parameter. More specifically, let
f(ρ) = Jm(kρ) and g(ρ) = Jm(lρ). Then

d2f

dρ2 +
1
ρ

df

dρ
+

(

k2 − m2

ρ2

)

f = 0,

d2g

dρ2 +
1
ρ

dg

dρ
+

(

l2 − m2

ρ2

)

g = 0.

The reader may check that by multiplying the first equation by ρg and the
second equation by ρf and subtracting, one gets

d

dρ
[ρ(fg′ − gf ′)] = (k2 − l2)ρfg,
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where the prime indicates differentiation with respect to ρ. Now integrate
this equation with respect to ρ from some initial value (say a) to some final
value (say b) to obtain

[ρ(fg′ − gf ′)]ba = (k2 − l2)
∫ b

a

ρf(ρ)g(ρ) dρ.

In all physical applications a and b can be chosen to make the LHS vanish.
Then, substituting for f and g in terms of Bessel functions, we get

(k2 − l2)
∫ b

a

ρJm(kρ)Jm(lρ) dρ = 0.

It follows that if k �= l, then the integral vanishes, i.e.,

∫ b

a

ρJm(kρ)Jm(lρ) dρ = 0 if k �= l. (27.20)

This is the orthogonality relation for Bessel functions also derived in Example
24.5.3.

To complete the orthogonality relation, we must also address the case when
k = l. This involves the evaluation of the integral

∫
ρJ2

m(kρ) dρ, which, upon
the change of variable x ≡ kρ, reduces to (

∫
xJ2

m(x) dx)/k2. By integration
by parts, we have

I ≡
∫

J2
m(x)

︸ ︷︷ ︸
u

xdx︸︷︷︸
dv

= 1
2x2J2

m(x) −
∫

Jm(x)J ′
m(x)x2 dx.

In the last integral, substitute for x2Jm(x) from the Bessel DE (27.6)—using
x instead of v:

x2Jm(x) = m2Jm(x) − xJ ′
m(x) − x2J ′′

m(x).

Therefore,

I = 1
2x2J2

m(x) −
∫

J ′
m(x)[m2Jm(x)

=−( 1
2 x2[J′

m(x)]2)′

︷ ︸︸ ︷
−xJ ′

m(x) − x2J ′′
m(x)] dx

= 1
2x2J2

m(x) − m2

∫ = 1
2 [J2

m(x)]′

︷ ︸︸ ︷
Jm(x)J ′

m(x) dx + 1
2

∫
d

dx

(
x2[J ′

m(x)]2
)

dx

= 1
2x2J2

m(x) − 1
2m2J2

m(x) + 1
2x2[J ′

m(x)]2.

Returning back to ρ, we obtain the indefinite integral
∫

ρJ2
m(kρ) dρ =

I

k2
=

1
2

(

ρ2 − m2

k2

)

J2
m(kρ) +

1
2
ρ2[J ′

m(kρ)]2. (27.21)
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In most applications, the lower limit of integration is zero and the upper limit
is a positive number a. The RHS of (27.21) vanishes at the lower limit because
of the following reason. The first term vanishes at ρ = 0 because Jm(0) = 0
for all m > 0 as is evident from the series expansion (27.10). For m = 0 (and
ρ = 0), the parentheses in the first term of (27.21) vanishes. So, the first
term is zero for all m ≥ 0 at the lower limit of integration. The second term
vanishes due to the presence of ρ2. Thus, we obtain

∫ a

0

ρJ2
m(kρ) dρ =

1
2

(

a2 − m2

k2

)

J2
m(ka) +

1
2
a2[J ′

m(ka)]2 (27.22)

for all m ≥ 0 and, by (27.14), also for all negative integers. As mentioned
earlier, we shall confine our discussion to Bessel functions of integer orders.
It is customary to simplify the RHS of (27.22) by choosing k in such a way
that Jm(ka) = 0, i.e., that ka is a root of the Bessel function of order m. In
general, there are infinitely many roots. So, let xmn denote the nth root of
Jm(x). Then,

ka = xmn ⇒ k =
xmn

a
, n = 1, 2, . . . ,

and if we use Equation (27.17), we obtain
∫ a

0

ρJ2
m(xmnρ/a) dρ = 1

2a2[Jm+1(xmn)]2. (27.23)

Equations (27.20) and (27.23) can be combined into a single equation using
the Kronecker delta: orthogonality

relations involving
Bessel functions

Box 27.4.1. The Bessel functions of integer order satisfy the orthogonal-
ity relations

∫ a

0

Jm(xmnρ/a)Jm(xmkρ/a)ρ dρ = 1
2a2J2

m+1(xmn)δkn, (27.24)

where a > 0 and xmn is the nth root of Jm(x).

27.4.4 Generating Function

Just as in the case of Legendre polynomials, Bessel functions of integer order
have a generating function, i.e., there exists a function g(x, t) such that

g(x, t) =
∞∑

n=−∞
tnJn(x). (27.25)

To find g, start with the recurrence relation

Jm−1(x) + Jm+1(x) =
2m

x
Jm(x),
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multiply it by tm, and sum over all m to obtain

∞∑

m=−∞
tmJm−1(x) +

∞∑

m=−∞
tmJm+1(x) =

2
x

∞∑

m=−∞
mtmJm(x). (27.26)

The first sum can be written as
∞∑

m=−∞
tmJm−1(x) = t

∞∑

m=−∞
tm−1Jm−1(x) = t

∞∑

n=−∞
tnJn(x) = tg(x, t),

where we substituted the dummy index n = m − 1 for m. Similarly

∞∑

m=−∞
tmJm+1(x) =

1
t

∞∑

m=−∞
tm+1Jm+1(x) =

1
t
g(x, t)

and
2
x

∞∑

m=−∞
mtmJm(x) =

2t

x

∞∑

m=−∞
mtm−1Jm(x) =

2t

x

∂g

∂t
.

It follows from Equation (27.26) that
(

t +
1
t

)

g(x, t) =
2t

x

∂g

∂t
,

or
x

2

(

1 +
1
t2

)

dt =
dg

g
,

where x is assumed to be a constant because we have been differentiating with
respect to t. Integrating both sides gives

∫
x

2

(

1 +
1
t2

)

dt

︸ ︷︷ ︸
= x

2 (t− 1
t )

= ln g + lnφ(x),

where the last term is the “constant” of integration. Thus,

g(x, t) = φ(x) exp
[
x

2

(

t − 1
t

)]

.

To determine φ(x), we note that

g(x, t) = φ(x)ext/2e−x/2t = φ(x)
∞∑

n=0

(xt/2)n

n!

∞∑

m=0

(−x/2t)m

m!

= φ(x)
∞∑

n,m=0

(−1)m

n!m!

(x

2

)n+m

tn−m.
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In the last double sum, collect all terms whose power of t is zero, and call the
sum S0. This is obtained by setting n = m. Then,

S0 = φ(x)
∞∑

n=0

(−1)n

n!n!

(x

2

)2n

= φ(x)J0(x),

where we used Equation (27.10) with s = 0. But (27.25) shows that the
collection of all terms whose power of t is zero is simply J0(x). Thus, S0 =
J0(x), and φ(x) = 1. This leads to the final form of the Bessel generating
function: generating

function for Bessel
functionsg(x, t) = exp

[
x

2

(

t − 1
t

)]

=
∞∑

n=−∞
tnJn(x). (27.27)

Example 27.4.1. The generating function for Bessel functions can be used to
obtain a useful identity. First we note that

g(x + y, t) = g(x, t)g(y, t)

as the reader may easily verify. Expanding each side gives

∞∑

n=−∞
tnJn(x + y) =

∞∑

k=−∞
tkJk(x)

∞∑

m=−∞
tmJm(y) =

∞∑

k=−∞

∞∑

m=−∞
tk+mJk(x)Jm(y).

In the last double sum, let n = k+m, so that k = n−m. Since there is no limitation
on the value of either of the dummy indices, the limits of the new indices n and m
are still −∞ and ∞. Therefore,

∞∑

n=−∞
tnJn(x + y) =

∞∑

n=−∞

∞∑

m=−∞
tnJn−m(x)Jm(y)

=
∞∑

n=−∞
tn

( ∞∑

m=−∞
Jn−m(x)Jm(y)

)

.

Since each power of t should have the same coefficient on both sides, we obtain the
so-called addition theorem for Bessel functions: addition theorem

for Bessel
functionsJn(x + y) =

∞∑

m=−∞
Jn−m(x)Jm(y) =

∞∑

m=−∞
Jm(x)Jn−m(y), (27.28)

where the last equality follows from the symmetry of Jn(x + y) under the exchange
of x and y. �

The Bessel generating function can also lead to some very important iden-
tities. In Equation (27.27), let t = eiθ and use (18.14) to obtain

eix sin θ =
∞∑

n=−∞
einθJn(x). (27.29)
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This is a Fourier series expansion in θ—as given in (18.20)—whose coefficients
are Bessel functions. To find these coefficients, we multiply both sides by
e−imθ and integrate from −π to π [see also Equation (18.22)]. The LHS
gives

LHS =
∫ π

−π

eix sin θe−imθ dθ =
∫ π

−π

ei(x sin θ−mθ) dθ.

For the RHS, we obtain
∞∑

n=−∞

[∫ π

−π

ei(n−m)θdθ

]

Jn(x) = 2πJm(x),

where we used the easily verifiable result [also see Equation (18.21)]:
∫ π

−π

ei(n−m)θdθ =

{
0 if n �= m

2π if n = m
= 2πδmn.

Equating the RHS and the LHS, we obtainintegral
representation of
the Bessel
function

Jm(x) =
1
2π

∫ π

−π

ei(x sin θ−mθ) dθ. (27.30)

The reader may check that this can be reduced to

Jm(x) =
1
π

∫ π

0

cos(x sin θ − mθ) dθ (27.31)

which is called Bessel’s integral.Bessel’s integral

Bessel functions can be written in terms of the confluent hypergeometric
function. To see this, substitute R(v) = vμe−ηvf(v)—with μ and η to be
determined—in Equation (27.6) to obtain

d2f

dv2 +
(

2μ + 1
v

− 2η

)
df

dv
+

[
μ2 − m2

v2
− η(2μ + 1)

v
+ η2 + 1

]

f = 0

which, if we set μ = m and η = i, reduces to

f ′′ +
(

2m + 1
v

− 2i

)

f ′ − (2m + 1)i
v

f = 0. (27.32)

Making the further substitution 2iv = t, and multiplying out by t, we obtain

t
d2f

dt2
+ (2m + 1 − t)

df

dt
− (m + 1

2 )f = 0

which is in the form of (11.27) with α = m + 1
2 and γ = 2m+ 1. Thus, Bessel

functions Jm(x) can be written as constant multiples of xme−ixΦ(m+ 1
2 , 2m+relation between

Bessel functions
and confluent
hypergeometric
function

1; 2ix). In fact,

Jm(x) =
1

Γ(m + 1)

(x

2

)m

e−ixΦ(m + 1
2 , 2m + 1; 2ix). (27.33)



27.5 Expansions in Bessel Functions 653

27.5 Expansions in Bessel Functions

The orthogonality of Bessel functions can be useful in expanding other func-
tions in terms of them. The basic idea is similar to the expansion in Fourier
series and Legendre polynomials. If a function f(ρ) is defined in the interval
(0, a), then we may write

f(ρ) =
∞∑

n=1

cnJm(xmnρ/a). (27.34)

The coefficients can be found by multiplying both sides by ρJm(xmkρ/a) and
integrating from zero to a. The reader may verify that this yields

cn =
2

a2J2
m+1(xmn)

∫ a

0

f(ρ)Jm(xmnρ/a)ρ dρ. (27.35)

Equations (27.34) and (27.35) are the analogues of Equations (10.38),
(10.40), (10.41), and (10.42) for Fourier series, and Equations (26.46) and
(26.47) for Legendre polynomials. Like those sets of equations, they can be
used to expand functions in terms of Bessel functions of a specific order.

Example 27.5.1. The trigonometric functions can be expanded in Bessel func-
tions with very little effort. In fact, Equation (27.29) leads immediately to

eix =

∞∑

n=−∞
inJn(x)

or expansion of sine
and cosine in
Bessel functions

cos x + i sin x =
∞∑

k=−∞
i2kJ2k(x) +

∞∑

k=−∞
i2k+1J2k+1(x),

where we have separated the even and odd sums. The first sum is real and the
second sum pure imaginary. Therefore,

cos x =
∞∑

k=−∞
(−1)kJ2k(x) =

−1∑

k=−∞
(−1)kJ2k(x) + J0(x) +

∞∑

k=1

(−1)kJ2k(x).

The first sum can be written as

−1∑

k=−∞
(−1)kJ2k(x) =

∞∑

k=1

(−1)−kJ−2k(x) =

∞∑

k=1

(−1)k(−1)2kJ2k(x)

=

∞∑

k=1

(−1)kJ2k(x)

which is identical to the last sum. It follows that

cos x = J0(x) + 2
∞∑

k=1

(−1)kJ2k(x). (27.36)

Similarly,

sin x = 2

∞∑

k=0

(−1)kJ2k+1(x) (27.37)

as the reader is urged to verify. �
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If we square Equation (27.34), multiply by ρ, and integrate from zero to
a, we obtain

∫ a

0

f2(ρ)ρ dρ =
∞∑

n=1

∞∑

k=1

cnck

∫ a

0

Jm(xmnρ/a)Jm(xmkρ/a)ρ dρ

︸ ︷︷ ︸
= 1

2 a2J2
m+1(xmn)δkn by (27.24)

.

This leads to the so-called Parseval relation:Parseval relation

∫ a

0

f2(ρ)ρ dρ = 1
2a2

∞∑

n=1

c2
nJ2

m+1(xmn) (27.38)

for some m. This m can be chosen to make the integrations as simple as
possible.

Example 27.5.2. Let us find the expansion of ρk in terms of Bessel functions.expansion of ρk in
terms of Bessel
functions

Equations (27.35) and (27.18) suggest expanding in terms of Jk(x) because the
integrals can be performed. Therefore, we write

ρk =

∞∑

n=1

cnJk(xknρ/a),

where

cn =
2

a2J2
k+1(xkn)

∫ a

0

ρkJk(xknρ/a)ρdρ =
2

a2J2
k+1(xkn)

∫ a

0

ρk+1Jk(xknρ/a) dρ.

Introducing y = xknρ/a in the integral gives

cn =
2ak

xk+2
kn J2

k+1(xkn)

∫ xkn

0

yk+1Jk(y) dy =
2ak

xknJk+1(xkn)
,

where we used (27.18) with m replaced by k + 1. Thus, we have

ρk = 2ak
∞∑

n=1

Jk(xknρ/a)

xknJk+1(xkn)
.

�

27.6 Physical Examples

Our discussion of Laplace’s equation has led us to believe that trigonometric
functions and Legendre polynomials are, respectively, the “natural” functions
of Cartesian and spherical geometries. It is of no surprise now to learn that
Bessel functions are the natural functions of cylindrical geometry.

As in the case of Cartesian and spherical coordinates, unless the symmetry
of the problem simplifies the situation, the separation of Laplace’s equation
results in two parameters leading to a double sum as in Example 25.2.4. The
reason that we did not obtain double sums in spherical coordinates is that
from the very beginning we assumed azimuthal symmetry. Thus, we expect
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h

x

y

z

a

Φ = V(ρ, φ)

Figure 27.1: A conducting cylindrical can whose top has a potential given by V (ρ, θ)

with the rest of the surface grounded.

a double summation in the most general solution of Laplace’s equation in
cylindrical geometries. One of these sums is over m which, as Equation (27.3)
shows, appears in the argument of the sine and cosine functions. It also
designates the order of the Bessel (or Neumann) function.

To understand the origin of the second summation, consider a cylindrical
conducting can of radius a and height h (see Figure 27.1). Suppose that the
potential at the top face varies as V (ρ, ϕ) while the lateral surface and the
bottom face are grounded. Let us find the electrostatic potential Φ at all
points inside the can.

The general solution is a product of (27.3), (27.4), and (27.13):

Φ(ρ, ϕ, z) = R(ρ)S(ϕ)Z(z).

Since Φ(ρ, ϕ, 0) = 0 for arbitrary ρ and ϕ, we must have Z(0) = 0 yielding—to
within a constant—Z(z) = sinh(lz).

Since Φ(0, ϕ, z) is finite, no Neumann function is allowed in the expan-
sion, and, to within a constant, we have R(ρ) = Jm(lρ). Furthermore, since
Φ(a, ϕ, z) = 0 for arbitrary ϕ and z, we must have

R(a) = Jm(la) = 0 ⇒ la = xmn ⇒ l =
xmn

a
, n = 1, 2, . . . ,

where, as before, xmn is the nth root of Jm.
We can now multiply R, S, and Z and sum over all possible values of m

and n, keeping in mind that negative values of m give terms that are linearly
dependent on the corresponding positive values. The result is the so-called
Fourier–Bessel series: Fourier–Bessel

series

Φ(ρ, ϕ, z) =
∞∑

m=0

∞∑

n=1

Jm

(xmn

a
ρ
)

sinh
(xmn

a
z
)

(Amn cosmϕ + Bmn sin mϕ)

(27.39)
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where Amn and Bmn are constants to be determined by the remaining bound-
ary condition which states that Φ(ρ, ϕ, h) = V (ρ, ϕ) or

V (ρ, ϕ) =
∞∑

m=0

∞∑

n=1

Jm

(xmn

a
ρ
)

sinh
(xmn

a
h
)

(Amn cosmϕ + Bmn sin mϕ).

(27.40)
Multiplying both sides by ρJm(xmka/ρ) cos jϕ and integrating from zero to
2π in ϕ, and from zero to a in ρ gives Ajk. Changing cosine to sine and
following the same steps yields Bjk. Switching back to m and n, the reader
may verify that

Amn =
2
∫ 2π

0

dϕ

∫ a

0

dρ ρV (ρ, ϕ)Jm

(xmn

a
ρ
)

cosmϕ

πa2J2
m+1(xmn) sinh(xmnh/a)

,

Bmn =
2
∫ 2π

0

dϕ

∫ a

0

dρ ρV (ρ, ϕ)Jm

(xmn

a
ρ
)

sin mϕ

πa2J2
m+1(xmn) sinh(xmnh/a)

, (27.41)

where we have used Equation (27.24).
The important case of azimuthal symmetry requires special consideration.

In such a case, the potential of the top surface V (ρ, ϕ) must be independent
of ϕ. Furthermore, since S(ϕ) is constant,5 its derivative must vanish. Hence,
the second equation in (27.1) yields μ = −m2 = 0. This zero value for m
reduces the double summation of (27.39) to a single sum, and we get

Φ(ρ, z) =
∞∑

n=1

AnJ0

(x0n

a
ρ
)

sinh
(x0n

a
z
)

. (27.42)

The coefficients An can be obtained by setting m = 0 in the first equation of
(27.41):

An =
4

a2J2
1 (x0n) sinh(x0nh/a)

∫ a

0

ρV (ρ)J0

(x0n

a
ρ
)

dρ, (27.43)

where V (ρ) is the ϕ-independent potential of the top surface.

Example 27.6.1. Suppose that the top face of a conducting cylindrical can is
held at the constant potential V0 while the lateral surface and the bottom face are
grounded. We want to find the electrostatic potential Φ at all points inside the can.

Since the potential of the top is independent of ϕ, azimuthal symmetry prevails,
and Equation (27.43) gives

An =
4V0

a2J2
1 (x0n) sinh(x0nh/a)

∫ a

0

ρJ0

(x0n

a
ρ
)

dρ =
4V0

x0nJ1(x0n) sinh(x0nh/a)
,

where we used Equation (27.18). The detail of calculating the integral is left as
Problem 27.15 for the reader. Therefore,

Φ(ρ, z) = 4V0

∞∑

n=1

J0(x0nρ/a) sinh(x0nz/a)

x0nJ1(x0n) sinh(x0nh/a)
.

�
5S(ϕ) must be a constant. Otherwise, the potential would depend on ϕ.
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27.7 Problems

27.1. Derive (27.6) from the first equation of (27.1).

27.2. Show that both equations in (27.17) give

J ′
0(x) = −J1(x).

27.3. Show that
[x−mJm(x)]′ = −x−mJm+1(x)

and derive Equation (27.19).

27.4. Obtain the following equation from the Bessel DE:

d

dρ
[ρ(fg′ − gf ′)] = (k2 − l2)ρfg,

where f and g are solutions of two Bessel DEs for which the “constants” of
the DEs are k2 and l2, respectively.

27.5. (a) Show that for the Bessel generating function,

g(x + y, t) = g(x, t)g(y, t) and g(x,−t) =
1

g(x, t)
.

(b) Use the second relation to show that

∞∑

m=−∞
Jm−k(x)Jm(x) = δ0k ≡

{
1 if k = 0,

0 if k �= 0.

Hint: Set the powers of t equal on both sides of 1 = g(x, t)g(x,−t).
(c) In particular,

1 =
∞∑

m=−∞
J2

m(x) = J2
0 (x) + 2

∞∑

m=1

J2
m(x),

showing that |J0(x)| ≤ 1 and |Jm(x)| ≤ 1/
√

2 for m > 0.

27.6. Derive Equation (27.31) from (27.30).

27.7. Use Equation (27.31) to show that J−m = (−1)mJm.

27.8. Show that the substitution R(v) = vme−ivf(v) turns Equation (27.6)
into (27.32).

27.9. Using the orthogonality of Bessel functions derive Equation (27.35)
from (27.34).

27.10. Prove that

eix cos θ =
∞∑

n=−∞
ineinθJn(x).
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27.11. Derive the expansion of the sine function in terms of Bessel functions.
Hint: See Example 27.5.1.

27.12. The integral
∫ ∞
0 e−axJ0(bx) dx may look intimidating, but leads to a

very simple expression. To see this:
(a) Substitute for J0(bx) its series representation, and express the result of
the integration in terms of the gamma function (a factorial, in this case).
(b) Use one of the results of Problem 11.1 to show that

∫ ∞

0

e−axJ0(bx) dx =
1

a
√

π

∞∑

n=0

Γ(n + 1
2 )

n!

(

− b2

a2

)n

.

(c) Show that this result can also be expressed in terms of the hypergeometric
function: ∫ ∞

0

e−axJ0(bx) dx =
1
a
F

(
1
2 , 1; 1;− b2

a2

)

.

(d) Now use the result of Problem 11.4 to express the integral in a very simple
form.

27.13. By writing the series representation of the Bessel function as in the
previous problem, and using the result of Problem 11.2, show that for integer
m

∫ ∞

0

e−axJm(bx) dx =
1

a
√

π

(
b

a

)m Γ(m/2 + 1)Γ((m + 1)/2)
Γ(m + 1)

· F
(

m

2
+ 1,

m + 1
2

; m + 1;− b2

a2

)

.

27.14. Multiply both sides of Equation (27.40) by ρJm(xmka/ρ) cos jϕ and
integrate appropriately to obtain Ajk. Switch cosine to sine and do the same
to find Bjk.

27.15. Use Equation (27.18) to show that
∫ a

0

ρJ0

(x0n

a
ρ
)

dρ =
a2

x0n
J1(x0n).

27.16. Use the Parseval relation (27.38) for f(ρ) = ρk to obtain

∞∑

n=1

1
x2

mn

=
1

4(m + 1)

for any m. Hint: See Example 27.5.2.

27.17. A long heat conducting cylinder of radius a is composed of two halves
(with semicircular cross sections) with an infinitesimal gap between them.
The upper and lower halves of the cylinder are in contact with heat baths of
temperatures +T0 and −T0, respectively. Find the temperature both inside
and outside the cylinder.
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27.18. A long heat conducting cylinder of radius a is composed of two halves
(with semicircular cross sections) with an infinitesimal gap between them.
The upper and lower halves of the cylinder are in contact with heat baths
of temperatures +T1 and −T1, respectively. The cylinder is inside a larger
cylinder (and coaxial with it) held at temperature T2. Find the temperature
inside the inner cylinder, between the two cylinders, and outside the outer
cylinder.

27.19. A long conducting cylinder of radius a is kept at potential V1. The
cylinder is inside a larger cylinder (and coaxial with it) held at potential V2.
Find the potential inside the inner cylinder, between the two cylinders, and
outside the outer cylinder.





Chapter 28

Other PDEs
of Mathematical Physics

Chapters 25, 26, and 27 discussed one of the most important PDEs of mathe-
matical physics, Laplace’s equation. The techniques used in solving Laplace’s
equation apply to all PDEs encountered in introductory physics. Since we
have already spent a considerable amount of time on these techniques, we
shall simply provide some illustrative examples of solving other PDEs.

28.1 The Heat Equation

The heat equation, sometimes also called the diffusion equation, was in- diffusion equation

troduced in Chapter 22 [see Equation (22.3)]. The separation of variables
T (t, r) = g(t)R(r) yields

∂

∂t
[g(t)R(r)] = k2∇2[g(t)R(r)] ⇒ R(r)

dg

dt
= k2g(t)∇2R.

Dividing both sides by g(t)R(r), we obtain

1
g

dg

dt
= k2 1

R
∇2R

︸ ︷︷ ︸
≡−λ

.

The LHS is a function of t, and the RHS a function of r. The independence of
these variables forces each side to be a constant. Calling this constant −k2λ
for later convenience, we obtain an ODE in time and a PDE in the remaining
variables:

dg

dt
+ k2λg = 0 and ∇2R + λR = 0. (28.1)

The general solution of the first equation is

g(t) = Ae−k2λt (28.2)
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and that of the second equation can be obtained precisely by the methods of
the last chapter. We illustrate this by some examples, but first we need to
keep in mind that λ is to be assumed positive, otherwise the exponential inλ of the heat

equation is always
positive

Equation (28.2) will cause a growth of g(t) (and, therefore, the temperature)
beyond bounds.

28.1.1 Heat-Conducting Rod

Let us consider a one-dimensional conducting rod with one end at the origin
x = 0 and the other at x = b. The two ends are held at T = 0. Initially,heat-conducting

rod at t = 0, we assume a temperature distribution on the rod given by some
function f(x). We want to calculate the temperature at time t at any point
x on the rod.

Due to the one-dimensionality of the rod, the y- and z-dependence can be
ignored, and the Laplacian is reduced to a second derivative in x. Thus, the
second equation in (28.1) becomes

d2X

dx2 + λX = 0, (28.3)

where X is a function of x alone. The general solution of this equation is1

X(x) = B cos(
√

λx) + C sin(
√

λx).

Since the two ends of the rod are held at T = 0, we have the boundary
conditions T (t, 0) = 0 = T (t, b), which imply that X(0) = 0 = X(b). These
give B = 0 and2

sin(
√

λ b) = 0 ⇒
√

λ b = nπ for n = 1, 2, . . . .

With a label n attached to λ, the solution, and the constant multiplying it,
we can now write

λn =
(nπ

b

)2

and Xn(x) = Cn sin
(nπ

b
x
)

for n = 1, 2, . . . .

The (subscripted) solution of the time equation is also simply obtained:

gn(t) = Ane−k2(nπ/b)2t.

This leads to a general solution of the form

T (t, x) =
∞∑

n=1

Bne−(nπk/b)2t sin
(nπ

b
x
)

, (28.4)

where Bn ≡ AnCn. The initial condition f(x) = T (0, x) yields

f(x) =
∞∑

n=1

Bn sin(nπx/b)

1The reader may check that the only solution for λ = 0 is the trivial solution.
2Consult Section 25.2.



28.1 The Heat Equation 663

which is a Fourier series from which we can calculate the coefficients

Bn =
2
b

∫ b

0

sin
(nπ

b
x
)

f(x) dx.

Thus if we know the initial temperature distribution on the rod [the function
f(x)], we can determine the temperature of the rod for all time. For instance,
if the initial temperature distribution of the rod is uniform, say T0, then

Bn =
2T0

b

∫ b

0

sin
(nπ

b
x
)

dx =
2T0

b

[

− b

nπ
cos

(nπ

b
x
)]b

0

=
2T0

nπ
[1 − (−1)n].

It follows that the odd n’s survive, and if we set n = 2m + 1, we obtain

B2m+1 =
4T0

π(2m + 1)

and

T (t, x) =
4T0

π

∞∑

m=0

e−[(2m+1)πk/b]2t

2m + 1
sin

[
(2m + 1)π

b
x

]

.

This distribution of temperature for all time can be obtained numerically for
any heat conductor whose k is known. Note that the exponential in the sum
causes the temperature to drop to zero (the fixed temperature of its two end
points) eventually. This conclusion is independent of the initial temperature
distribution of the rod as Equation (28.4) indicates.

28.1.2 Heat Conduction in a Rectangular Plate

As a more complicated example involving a second spatial variable, consider
a rectangular heat-conducting plate with sides of length a and b all held at
T = 0. Assume that at time t = 0 the temperature has a distribution function conduction of heat

in a rectangular
plate

f(x, y). Let us find the variation of temperature for all points (x, y) at all
times t > 0.

The spatial part of the heat equation for this problem is

∂2R

∂x2 +
∂2R

∂y2 + λR = 0.

A separation of variables, R(x, y) = X(x)Y (y), and its usual procedure leads
to the following equation:

1
X

d2X

dx2
︸ ︷︷ ︸

≡−μ

+
1
Y

d2Y

dy2

︸ ︷︷ ︸
≡−ν

+ λ = 0.

This leads to the following two ODEs:

d2X

dx2 + μX = 0,
d2Y

dy2 + νY = 0, λ = μ + ν.
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Due to the periodicity of the BCs, the general solutions of these equations are
trigonometric functions. The four boundary conditions

T (0, y, t) = T (a, y, t) = T (x, 0, t) = T (x, b, t) = 0

determine the specific form of the solutions as well as the indexed constants
of separation:

μn =
(nπ

a

)2

and Xn(x) = An sin
(nπ

a
x
)

for n = 1, 2, . . . ,

νm =
(mπ

b

)2

and Ym(y) = Bm sin
(mπ

b
y
)

for m = 1, 2, . . . .

So, λ becomes a double indexed quantity:

λ ≡ λmn = μn + νm =
(nπ

a

)2

+
(mπ

b

)2

.

The solution to the g equation can be expressed as g(t) = Cmne−k2λmnt.
Putting everything together, we obtain

T (x, y, t) =
∞∑

n=1

∞∑

m=1

Amne−k2λmnt sin
(nπ

a
x
)

sin
(mπ

b
y
)

,

where Amn = AnBmCmn is an arbitrary constant. To determine it, we impose
the initial condition T (x, y, 0) = f(x, y). This yields

f(x, y) =
∞∑

n=1

∞∑

m=1

Amn sin
(nπ

a
x
)

sin
(mπ

b
y
)

from which we find the coefficients Amn (see Theorem 25.2.5):

Amn =
4
ab

∫ a

0

dx

∫ b

0

dyf(x, y) sin
(nπ

a
x
)

sin
(mπ

b
y
)

.

28.1.3 Heat Conduction in a Circular Plate

In this example, we consider a circular plate of radius a whose rim is held
at T = 0 and whose initial surface temperature is characterized by a func-
tion f(ρ, ϕ). We are seeking the temperature distribution on the plate forcircular plate

all time. The spatial part of the heat equation in z-independent cylindrical
coordinates,3 appropriate for a circular plate, is

1
ρ

∂

∂ρ

(

ρ
∂R

∂ρ

)

+
1
ρ2

∂2R

∂ϕ2 + λR = 0

3See the discussion of Subsection 22.3.
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which, after the separation of variables, R(ρ, ϕ) = R(ρ)S(ϕ), reduces to

S(ϕ) = A cosmϕ + B sinmϕ for m = 0, 1, 2, . . . ,

d2R

dρ2 +
1
ρ

dR

dρ
+

(

λ − m2

ρ2

)

R = 0.

The solution of the last (Bessel) equation, which is well defined for ρ = 0 and
vanishes at ρ = a, is

R(ρ) = CJm

(xmn

a
ρ
)

with
√

λ =
xmn

a
and n = 1, 2, . . . ,

where, as usual, xmn is the nth root of Jm. We see that λ is a double-indexed
quantity. The time equation (28.2) has a solution of the form

g(t) = Dmne−k2λmnt = Dmne−k2(x2
mn/a2)t.

Multiplying the three solutions and summing over the two indices yields the
most general solution

T (ρ, ϕ, t) =
∞∑

m=0

∞∑

n=1

Jm

(xmn

a
ρ
)

e−(kxmn/a)2t(Amn cosmϕ + Bmn sin mϕ).

The coefficients are determined from the initial condition

f(ρ, ϕ) = T (ρ, ϕ, 0) =
∞∑

m=0

∞∑

n=1

Jm

(xmn

a
ρ
)

(Amn cosmϕ + Bmn sinmϕ).

Except for the hyperbolic sine term, this equation is identical to (27.40).
Therefore, the coefficients are given by expressions similar to Equation (27.41).
In the case at hand, we get

Amn =
2

πa2J2
m+1(xmn)

∫ 2π

0

dϕ

∫ a

0

dρ ρf(ρ, ϕ)Jm

(xmn

a
ρ
)

cosmϕ,

Bmn =
2

πa2J2
m+1(xmn)

∫ 2π

0

dϕ

∫ a

0

dρ ρf(ρ, ϕ)Jm

(xmn

a
ρ
)

sinmϕ.

In particular, if the initial temperature distribution is independent of ϕ,
then only the term with m = 0 contributes,4 and we get

T (ρ, t) =
∞∑

n=1

AnJ0

(x0n

a
ρ
)

e−(kx0n/a)2t.

With f(ρ) representing the ϕ-independent initial temperature distribution,
the coefficient An is found to be

An =
4

a2J2
1 (x0n)

∫ a

0

dρ ρf(ρ)J0

(x0n

a
ρ
)

.

Note that the temperature distribution does not develop any ϕ dependence
at later times.

4See the discussion after Equation (27.41).
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28.2 The Schrödinger Equation

Chapter 22 separated the time part of the Schrödinger equation from its space
part, and resulted in the following two equations:

∇2ψ +
2m

�2
[E − V (r)]ψ = 0 and

dT

dt
=

iE

�
T, (28.5)

where E, the energy of the quantum particle, is the constant of separation.5

We have also used ψ instead of R, because the latter is usually reserved to
denote a function of the radial variable r (or ρ) when separating the variables
of the Laplacian in spherical (or cylindrical) coordinates.

The solution of the time part is easily obtained: It is simply

T (t) = AeiEt/� = Aeiωt where ω ≡ E

�
. (28.6)

It is the solution of the first equation in (28.5), the time-independenttime-independent
Schrödinger
equation

Schrödinger equation that will take up most of our time in this section.

Historical Notes
Erwin Schrödinger was a student at Vienna from 1906 and taught there for ten
years from 1910 to 1920 with a break for military service in World War I. While
at Vienna he worked on radioactivity, proving the statistical nature of radioactive
decay. He also made important contributions to the kinetic theory of solids, studying
the dynamics of crystal lattices.

After leaving Vienna in 1920 he was appointed to a professorship in Jena, where
he stayed for a short time. He then moved to Stuttgart, and later to Breslau before
accepting the chair of theoretical physics at Zurich in late 1921. During these years
of changing from one place to another, Schrödinger studied physiological optics, in
particular the theory of color vision.

Zurich was to be the place where Schrödinger made his most important contribu-
tions. From 1921 he studied atomic structure. In 1924 he began to study quantum
statistics soon after reading de Broglie’s thesis which was to have a major influence
on his thinking.

Schrödinger published very important work relating to wave mechanics and the
general theory of relativity in a series of papers in 1926. Wave mechanics, proposed
by Schrödinger in these papers, was the second formulation of quantum theory, the
first being matrix mechanics due to Heisenberg. For this work Schrödinger was
awarded the Nobel prize in 1933.

Erwin Schrödinger
1887–1961

Schrödinger went to Berlin in 1927 where he succeeded Planck as the chair of
theoretical physics and he became a colleague of Einstein’s.

Although he was a Catholic, Schrödinger decided in 1933 that he couldn’t live
in a country in which the persecution of Jews had become a national policy. He left,
spending time in Britain where he was at the University of Oxford from 1933 until
1936. In 1936 he went to Austria and spent the years 1936–1938 in Graz. However,
the advancing Nazi threat caught up with him again in Austria and he fled again,
this time settling in Dublin, Ireland, in 1939.

5We used α in place of E in Chapter 22.
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His study of Greek science and philosophy is summarized in Nature and the
Greeks (1954) which he wrote while in Dublin. Another important book written
during this period was What Is Life (1944) which led to progress in biology. He
remained in Dublin until he retired in 1956 when he returned to Vienna.

During his last few years Schrödinger remained interested in mathematical physics
and continued to work on general relativity, unified field theory, and meson
physics.

28.2.1 Quantum Harmonic Oscillator

As an important example of the Schrödinger equation, we consider a particle quantum harmonic
oscillatorin a one-dimensional harmonic oscillator potential.

The one-dimensional time-independent Schrödinger equation for a particle
of mass μ in a potential V (x) is

d2ψ

dx2
+

2μ

�2
[E − V (x)]ψ = 0,

where E is the total energy of the particle.
For a harmonic oscillator (with the “spring” constant k),

V (x) = 1
2kx2 ≡ 1

2μω2x2

and

ψ′′ − μ2ω2

�2
x2ψ +

2μ

�2
Eψ = 0, ω ≡

√
k

μ
.

To simplify the equation, we make the change of variables x = (
√

�/μω)y.
The equation then becomes

ψ′′ − y2ψ +
2E

�ω
ψ = 0, (28.7)

where the primes indicate differentiation with respect to y.
We could solve this DE by the Frobenius power series method. However,

tradition suggests that we first look at the behavior of the solution at y → ∞.
In this limit, we can ignore the last term in (28.7), and the DE becomes

ψ′′ − y2ψ ≈ 0

which can easily be shown to have (an approximate) solution of the form
e±y2/2. Since the positive exponent diverges at infinity, we have to retain
only the solution with negative exponent. Following the traditional steps,
we consider a solution of the form ψ(y) ≡ H(y) exp(−y2/2) in which the
asymptotic function has been separated. Substitution of this separated form
of ψ in (28.7) results in

H ′′ − 2yH ′ + λH = 0 where λ =
2E

�ω
− 1. (28.8)



668 Other PDEs of Mathematical Physics

This is the Hermite differential equation.Hermite
differential
equation

To solve the Hermite DE by the Frobenius method, we assume an expan-
sion of the form H(y) =

∑∞
n=0 cnyn with

H ′(y) =
∞∑

n=1

ncnyn−1 =
∞∑

n=0

(n + 1)cn+1y
n,

H ′′(y) =
∞∑

n=1

n(n + 1)cn+1y
n−1 =

∞∑

n=0

(n + 1)(n + 2)cn+2y
n,

where in the last step of each equation, we changed the dummy index to
m = n − 1, and in the end, replaced m with n. Substituting in Equation
(28.8) gives

∞∑

n=0

[(n + 1)(n + 2)cn+2 + λcn]yn

︸ ︷︷ ︸
≡S1

−2
∞∑

n=0

(n + 1)cn+1y
n+1 = 0. (28.9)

Now separate the zeroth term of the first sum to obtain

S1 = 2c2 + λc0 +
∞∑

n=1

[(n + 1)(n + 2)cn+2 + λcn]yn.

Changing the dummy index to m = n − 1 yields

S1 = 2c2 + λc0 +
∞∑

m=0

[(m + 2)(m + 3)cm+3 + λcm+1]ym+1

whose dummy index can be switched back to n. Substitution of this last result
in (28.9) now yields

2c2 + λc0 +
∞∑

n=0

[(n + 2)(n + 3)cn+3 + λcn+1 − 2(n + 1)cn+1]yn+1 = 0.

Setting the coefficients of powers of y equal to zero, we obtain

c2 = −λ

2
c0,

cn+3 =
2(n + 1) − λ

(n + 2)(n + 3)
cn+1 for n ≥ 0,

or, replacing n with n − 1 and noting that the resulting recursion relation is
true for n = 0 as well, we obtainrecursion relation

for Hermite DE

cn+2 =
2n − λ

(n + 1)(n + 2)
cn, n ≥ 0. (28.10)

The ratio test yields easily that the series is convergent for all values of y.Physics dictates
mathematics! However, on physical grounds, i.e., the demand that limx→∞ ψ(x) = 0, the

series must be truncated. Let us see why.
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Construction of Hermite Polynomials

The fact that we are interested in the behavior of ψ (and therefore, H) as x
(or y) goes to infinity permits us to concentrate on the very large powers of y
in the series for H(y). Hence, separating the even and odd parts of the series,
we may write

H(y) =
∞∑

k=0

c2ky2k +
∞∑

k=0

c2k+1y
2k+1

= P2M+1(y) +
∞∑

k=M+1

c2ky2k +
∞∑

k=M+1

c2k+1y
2k+1 (28.11)

= P2M+1(y) +
∞∑

k=0

c2k+2M+2y
2k+2M+2 +

∞∑

k=0

c2k+2M+3y
2k+2M+3,

where P2M+1(y) is a generic polynomial obtained by adding all the “small”
powers of the series, and M is a very large number.6 Now note that for very
large n, the recursion relation yields

cn+2 ≈ 2n

(n + 1)(n + 2)
cn ≈ 2n

(n)(n)
cn ≈ 2

n
cn ⇒ cn ≈ 2

n − 2
cn−2.

A few iterations give

cn ≈ 2k

(n − 2)(n − 4) · · · (n − 2k)
cn−2k.

In particular,

c2k+N ≈ 2k

(2k + N − 2)(2k + N − 4) · · · (N)
cN . (28.12)

To find the coefficients in Equation (28.11), first let N = 2M + 2 and obtain

c2k+2M+2 ≈ 2k

(2k + 2M)(2k + 2M − 2) · · · (2M + 2)
c2M+2

=
2k

[2(k + M)][2(k + M − 1)] · · · [2(M + 1)]
c2M+2 (28.13)

=
1

(k + M)(k + M − 1) · · · (M + 1)
c2M+2 =

M !
(k + M)!

c2M+2.

Similarly

c2k+2M+3 ≈ 2k(2M + 1)!!
(2k + 2M + 1)!!

c2M+3

=
2k[2(M + 1)]!/[2M+1(M + 1)!]

[2(k + M + 1)]!/[2k+M+1(k + M + 1)!]
c2M+3

= 22k [2(M + 1)]!(k + M + 1)!
(M + 1)![2(k + M + 1)]!

c2M+3, (28.14)

6In particular, M is very large compared to λ of Equation (28.10).
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where we used the result of Problem 11.1. By using the Stirling approximation
(11.6), the reader may verify that

c2k+2M+3 ≈ (M + 1)!
(k + M + 1)!

c2M+3. (28.15)

With the coefficients given in terms of two constants (c2M+2 and c2M+3),
Equation (28.11) becomes

H(y) = P2M+1(y) + c2M+2M !y2
∞∑

k=0

y2k+2M

(k + M)!
+ c2M+3(M + 1)!y

∞∑

k=0

y2k+2M+2

(k + M + 1)!

= P2M+1(y) + c2M+2M !y2
∞∑

j=M

y2j

j!
+ c2M+3(M + 1)!y

∞∑

j=M+1

y2j

j!
. (28.16)

The first sum over j can be reexpressed as follows:
∞∑

j=M

y2j

j!
=

∞∑

j=0

(y2)j

j!
−

M−1∑

j=0

y2j

j!
= ey2 − Q2M−2(y),

where Q2M−2(y) is a polynomial of degree 2M − 2 in y. The second sum in
(28.16) can be expressed similarly. Adding all the polynomials together, we
finally get

H(y) ≈ P2M+1(y) + c2M+2M !
︸ ︷︷ ︸

≡βM

y2ey2
+ c2M+3(M + 1)!

︸ ︷︷ ︸
≡αM

yey2

= P2M+1(y) + (αMy + βMy2)ey2
. (28.17)

Let us now go back to ψ(y) and note that

ψ(y) = H(y)e−y2/2 ≈ P2M+1(y)e−y2/2

︸ ︷︷ ︸
→0 as y → ∞

+ (αMy + βMy2)ey2/2

︸ ︷︷ ︸
→∞ as y → ∞

because any exponential decay outweighs any polynomial growth. It follows
that, if H(y) is an infinite series, ψ(y) will diverge at infinity. From a physical
standpoint this means that the quantum particle inside the harmonic oscillator
potential well has an infinite probability of being found at infinity!7

To avoid this unrealistic conclusion, we have to reexamine H(y). The caseTruncation of the
infinite series gives
the quantization
of harmonic
oscillator energy
levels.

of Legendre polynomials tells us that the infinite series needs to be truncated.
This will take place only if the numerator of the recursion relation vanishes for
some n, i.e., if λ = 2m for some integer m. An immediate consequence of such
a truncation is the famous quantization of the harmonic oscillator energy:

2m = λ =
2E

�ω
− 1 ⇒ E = (m + 1

2 )�ω.

The polynomials obtained by truncating the infinite series are called the
Hermite polynomials. We now construct them. With λ = 2m, the recursionHermite

polynomials relation (28.10) can be written as
7The Copenhagen interpretation, the only valid interpretation of quantum mechan-

ics, states that |ψ(x)|2 is the probability density for finding the particle at x.
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cn =
2(n − m − 2)

n(n − 1)
cn−2 = −2(m + 2 − n)

n(n − 1)
cn−2, m ≥ n ≥ 2.

The upper limit for n is due to the truncation mentioned above. After a few
iteration, the pattern will emerge and the reader may verify that

cn = (−1)k 2k(m + 2 − n)(m + 4 − n) · · · (m + 2k − n)
n(n − 1) · · · (n − 2k + 1)

cn−2k. (28.18)

We need to consider the two cases of even and odd n separately. For n = 2k,
we get

c2k = (−1)k 2km(m − 2) · · · (m + 2 − 2k)
(2k)!

c0. (28.19)

Now, since the numerator of (28.10) must vanish beyond some integer, and
since 2n = 4k, we must have λ = 4j or m = λ/2 = 2j for some integer j.
Then, the reader may check that

c2k = (−1)k 22kj!
(2k)!(j − k)!

c0 (28.20)

and

H2j(y) = c
(j)
0

j∑

k=0

(−1)k22kj!
(2k)!(j − k)!

y2k, (28.21)

where we have given the constant a superscript to distinguish among the c0’s
of different j’s. The odd polynomials can be obtained similarly:

H2j+1(y) = c
(j)
1

j∑

k=0

(−1)k22k+1j!
(2k + 1)!(j − k)!

y2k+1. (28.22)

The constants are determined by convention. To adhere to this convention,
we define

c
(j)
0 =

(−1)j(2j)!
j!

, c
(j)
1 =

(−1)j(2j + 1)!
j!

.

The reader may check that, with these constants, the Hermite polynomials of
all degrees (even or odd) can be concisely written as

Hn(y) =
[n/2]∑

r=0

(−1)rn!
(n − 2r)!r!

(2y)n−2r, (28.23)

where [a], for any real a, stands for the largest integer less than or equal to a.

Orthogonality of Hermite Polynomials

The Hermite polynomials satisfy an orthogonality relation resembling that of
the Legendre polynomials. We can obtain this relation by multiplying the DE
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for Hm(x) by Hn(x)e−x2
, and the DE for Hn(x) by Hm(x)e−x2

and subtract-
ing. The factor e−x2

, the so-called weight function, may appear artificial inweight function
for Hermite
polynomials

this derivation, but an in-depth analysis of the classical orthogonal polyno-
mials, of which Hermite and Legendre polynomials are examples, reveals that
such weight functions are necessary. The reason we did not see such a factor
in Legendre polynomials was that for them, the weight function is unity.8 At
any rate, the result of the above suggested calculation will be

(H ′′
mHn − 2xH ′

mHn − H ′′
nHm + 2xH ′

nHm)e−x2
+ (2m − 2n)HmHne−x2

= 0.

The reader may easily verify that the first term is the derivative of

(H ′
mHn − H ′

nHm)e−x2
,

so that
d

dx

[
(H ′

mHn − H ′
nHm)e−x2

]
+ (2m − 2n)HmHne−x2

= 0

and if we integrate this over the entire real line, we obtain

(H ′
mHn − H ′

nHm)e−x2
∣
∣
∣
∞

−∞
+ (2m − 2n)

∫ ∞

−∞
Hm(x)Hn(x)e−x2

dx = 0.

The first term vanishes because of the exponential factor. It now follows that
if m �= n, thenorthogonality of

Hermite
polynomials

∫ ∞

−∞
Hm(x)Hn(x)e−x2

dx = 0. (28.24)

Generating Function for Hermite Polynomials

We constructed the generating function for Legendre polynomials in Chapter
26. Here we want to do the same thing for Hermite polynomials. By definition,
the generating function must have an expansion of the form

g(t, x) =
∞∑

n=0

antnHn(x),

where an is a constant to be determined. Differentiate both sides with respect
to x assuming that t is a constant:

dg

dx
=

∞∑

n=1

antnH ′
n(x).

The sum starts at 1 because H ′
0(x) = 0. Use the result of Problem 28.7 to

obtain
dg

dx
=

∞∑

n=1

antn(2n)Hn−1(x) = 2t

∞∑

n=1

nantn−1Hn−1(x).

8We have no space to go into the details of the theory of classical orthogonal polynomials,
but the interested reader can find a unified discussion of them in Hassani, S. Mathematical
Physics: A Modern Introduction to Its Foundations, Springer-Verlag, 1999, Chapter 7.
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Now choose the constant an in such a way that it satisfies the recursion relation
nan = an−1. It then follows that

dg

dx
= 2t

∞∑

n=1

an−1t
n−1Hn−1(x) = 2t

∞∑

m=0

amtmHm(x) = 2tg.

Thus

dg

g
= 2t dx ⇒ ln g = 2tx + lnC(t) ⇒ g(t, x) = C(t)e2tx,

where the “constant” of integration has been given the possibility of depending
on the other variable, t. To find this constant of integration, we first determine
an:

an =
an−1

n
=

an−2

n(n − 1)
= · · · =

an−k

n(n − 1) · · · (n − k + 1)
· · · =

a0

n!
.

Using our results obtained so far, we get

C(t)e2tx = a0

∞∑

n=0

tn

n!
Hn(x) →

∞∑

n=0

tn

n!
Hn(x),

where in the last step we absorbed a0 (really 1/a0) in the “constant” C(t).
To determine C(t), evaluate both sides of the equation at x = 0 and use the
result of Problem 28.8. This yields

C(t) =
∞∑

n=0

tn

n!
Hn(0) =

∞∑

k=0

t2k

(2k)!
(−1)k(2k)!

k!
=

∞∑

k=0

(−t2)k

k!
= e−t2 .

It follows that

e2tx−t2 =
∞∑

n=0

tn

n!
Hn(x). (28.25)

We now summarize what we have done: generating
function for
Hermite
polynomialsBox 28.2.1. The nth coefficient of the Maclaurin series expansion of the

generating function g(t, x) ≡ e2tx−t2 about t = 0 is Hn(x). Specifically,

Hn(x) =
∂n

∂tn
e2tx−t2

∣
∣
∣
∣
t=0

. (28.26)

We can put the result above to immediate good use. Let us square both
sides of Equation (28.25), multiply by e−x2

, and integrate the result from −∞



674 Other PDEs of Mathematical Physics

to +∞. For the LHS, we have

LHS =
∫ +∞

−∞
e2(2tx−t2)e−x2

dx = e−2t2
∫ +∞

−∞
e−x2+4txdx

= e−2t2
∫ +∞

−∞
e−(x−2t)2+4t2dx = e2t2

∫ +∞

−∞
e−(x−2t)2dx

= e2t2
∫ +∞

−∞
e−u2

du =
√

πe2t2 =
√

π

∞∑

n=0

(2t2)n

n!
=

√
π

∞∑

n=0

2nt2n

n!
,

where we introduced u = x − 2t for the integration variable, and used the
result of Example 3.3.1.

To square the RHS, we need to write it as the product of two infinite sums
using two different dummy indices! Therefore,

RHS =
∫ +∞

−∞

( ∞∑

n=0

tn

n!
Hn(x)

)( ∞∑

m=0

tm

m!
Hm(x)

)

e−x2
dx

=
∞∑

m,n=0

tm+n

m!n!

∫ +∞

−∞
Hm(x)Hn(x)e−x2

dx

︸ ︷︷ ︸
=0 unless m = n by (28.24)

=
∞∑

n=0

t2n

(n!)2

∫ +∞

−∞
[Hn(x)]2e−x2

dx.

Comparing the LHS and the RHS, we conclude that
∫ +∞

−∞
[Hn(x)]2e−x2

dx =
√

π 2nn!.

We can combine this result and Equation (28.24) and write
∫ +∞

−∞
Hm(x)Hn(x)e−x2

dx =
√

π 2nn!δmn, (28.27)

where δmn is the Kronecker delta which is 1 if m = n and 0 if m �= n.

Historical Notes
Charles Hermite, one of the most eminent French mathematicians of the nine-
teenth century, was particularly distinguished for the clean elegance and high artistic
quality of his work. As a student, he courted disaster by neglecting his routine as-
signed work to study the classic masters of mathematics; and though he nearly
failed his examinations, he became a first-rate creative mathematician while still in
his early twenties. In 1870 he was appointed to a professorship at the Sorbonne,
where he trained a whole generation of well-known French mathematicians, includ-
ing Picard, Borel, and Poincaré.

Charles Hermite
1822–1901

The character of his mind is suggested by a remark of Poincaré: “Talk with
M. Hermite. He never evokes a concrete image, yet you soon perceive that the
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most abstract entities are to him like living creatures.” He disliked geometry, but
was strongly attracted to number theory and analysis, and his favorite subject was
elliptic functions, where these two fields touch in many remarkable ways. Earlier in
the century the Norwegian genius Abel had proved that the general equation of the
fifth degree cannot be solved by functions involving only rational operations and
root extractions. One of Hermite’s most surprising achievements (in 1858) was to
show that this equation can be solved by elliptic functions.

His 1873 proof of the transcendence of e was another high point of his career.9

If he had been willing to dig even deeper into this vein, he could probably have
disposed of π as well, but apparently he had had enough of a good thing. As he
wrote to a friend, “I shall risk nothing on an attempt to prove the transcendence
of the number π. If others undertake this enterprise, no one will be happier than I
at their success, but believe me, my dear friend, it will not fail to cost them some
efforts.” As it turned out, Lindemann’s proof nine years later rested on extending
Hermite’s method.

Several of his purely mathematical discoveries had unexpected applications many
years later to mathematical physics. For example, the Hermitian forms and matrices
that he invented in connection with certain problems of number theory turned out
to be crucial for Heisenberg’s 1925 formulation of quantum mechanics, and Hermite
polynomials are useful in solving Schrödinger ’s wave equation.

28.2.2 Quantum Particle in a Box

The behavior of an atomic particle of mass μ confined in a rectangular box
with sides a, b, and c (an infinite three-dimensional potential well) is gov- quantum particle

in a boxerned by the Schrödinger equation for a free particle, i.e., V = 0. With this
assumption, the first equation of (28.5) becomes

∇2ψ +
2μE

�2
ψ = 0.

A separation of variables, ψ(x, y, z) = X(x)Y (y)Z(z), yields the ODEs:

d2X

dx2 + λX = 0,
d2Y

dy2 + σY = 0,
d2Z

dz2 + νX = 0,

with λ + σ + ν = 2μE/�
2 (see Example 22.2.1).

These equations, together with the boundary conditions

ψ(0, y, z) = ψ(a, y, z) = 0 ⇒ X(0) = 0 = X(a),
ψ(x, 0, z) = ψ(x, b, z) = 0 ⇒ Y (0) = 0 = Y (b), (28.28)
ψ(x, y, 0) = ψ(x, y, c) = 0 ⇒ Z(0) = 0 = Z(c),

9Transcendental numbers are those that are not roots of polynomials with integer
coefficients.
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lead to the following solutions:

Xn(x) = sin
(nπ

a
x
)

, λn =
(nπ

a

)2

for n = 1, 2, . . . ,

Ym(y) = sin
(mπ

b
y
)

, σm =
(mπ

b

)2

for m = 1, 2, . . . ,

Zl(z) = sin
(

lπ

c
z

)

, νl =
(

lπ

c

)2

for l = 1, 2, . . . ,

where the multiplicative constants have been suppressed.
The BCs in Equation (28.28) arise from the demand that the probabilityquantum

tunneling of finding the particle be continuous and that it be zero outside the box. This
is not true for a particle inside a finite potential well, in which case the particle
has a nonzero probability of “tunneling” out of the well.

The time equation has a solution of the form

T (t) = e−iωlmnt where ωlmn =
�

2μ

[
(nπ

a

)2

+
(mπ

b

)2

+
(

lπ

c

)2
]

.

The solution of the Schrödinger equation that is consistent with the bound-
ary conditions is, therefore,

ψ(x, y, z, t) =
∞∑

l,m,n=1

Almne−iωlmnt sin
(nπ

a
x
)

sin
(mπ

b
y
)

sin
(

lπ

c
z

)

.

The constants Almn are determined by the initial shape ψ(x, y, z, 0) of the
wave function. In fact, setting t = 0, multiplying by the product of the three
sine functions in the three variables, and integrating over appropriate intervals
for each coordinate, we obtain

Almn =
8

abc

∫ a

0

dx

∫ b

0

dy

∫ c

0

dzψ(x, y, z, 0) sin
(nπ

a
x
)

sin
(mπ

b
y
)

sin
(

lπ

c
z

)

.

The energy of the particle is

E = �ωlmn =
�

2π2

2μ

(
n2

a2
+

m2

b2
+

l2

c2

)

.

Each set of three positive integers (n, m, l) represents a quantum state of
the particle. For a cube, a = b = c ≡ L, and the energy of the particle is

E =
�

2π2

2μL2
(n2 + m2 + l2) =

�
2π2

2μV 2/3
(n2 + m2 + l2), (28.29)

where V = L3 is the volume of the box. The ground state is (1, 1, 1), has
energy E = 3�

2π2/2μV 2/3, and is nondegenerate (only one state corresponds
to this energy). However, the higher-level states are degenerate. For instance,
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the three distinct states (1, 1, 2), (1, 2, 1), and (2, 1, 1) all correspond to the
same energy, E = 6�

2π2/2μV 2/3. The degeneracy increases rapidly with
larger values of n, m, and l.

Equation (28.29) can be written as

n2 + m2 + l2 = R2 where R2 =
2μEV 2/3

�2π2
.

This looks like the equation of a sphere in the nml-space. If R is large, the
number of states contained within the sphere of radius R (the number of states
with energy less than or equal to E) is simply the volume of the first octant10

of the sphere. If N is the number of such states, we have

N =
1
8

(
4π

3

)

R3 =
π

6

(
2μEV 2/3

�2π2

)3/2

=
π

6

(
2μE

�2π2

)3/2

V.

Thus the density of states (the number of states per unit volume) is then density of states

n =
N

V
=

π

6

(
2μ

�2π2

)3/2

E3/2. (28.30)

This is an important formula in solid-state physics, because the energy E is
(with minor modifications required by spin) the Fermi energy. If the Fermi Fermi energy

energy is denoted by Ef , Equation (28.30) gives Ef = αn2/3 where α is some
constant.

28.2.3 Hydrogen Atom

When an electron moves around a nucleus containing Z protons, the potential
energy of the system is V (r) = −Ze2/r. In units in which � and the mass of
the electron are set equal to unity, the time-independent Schrödinger equation
of (28.5) gives

∇2Ψ +
(

2E +
2Ze2

r

)

Ψ = 0.

The radial part of this equation is given by the first equation in (22.16) with
f(r) = 2E + 2Ze2/r. Defining u = rR(r), we may write

d2u

dr2 +
(
λ +

a

r
− α

r2

)
u = 0, (28.31)

where λ = 2E and a = 2Ze2. This equation can be further simplified by
defining r ≡ kz (k is an arbitrary constant to be determined later):

d2u

dz2 +
(

λk2 +
ak

z
− α

z2

)

u = 0.

10This is because n, m, and l are all positive.
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Choosing λk2 = − 1
4 and introducing β ≡ a/(2

√
−λ) yields

d2u

dz2 +
(

−1
4

+
β

z
− α

z2

)

u = 0. (28.32)

Let us examine the two limiting cases of z → ∞ and z → 0. For the first
case, Equation (28.32) reduces to

d2u

dz2 − 1
4u = 0 ⇒ u = e−z/2.

For the second case the dominant term will be α/z2 and the DE becomes

d2u

dz2 − α

z2
u = 0

for which we try a solution of the form zm with m to be determined by
substitution:

d2u

dz2 = m(m − 1)zm−2 ⇒ m(m − 1)zm−2 − α

z2
zm = 0 ⇒ α = m(m − 1).

Recalling from Theorem 26.2.1 that α = l(l + 1), we determine m to be l + 1.
Factoring out these two limits, we seek a solution for (28.32) of the form

u(z) = zl+1e−z/2f(z).

Substitution of this function in (28.32) gives a new DE:

f ′′ +
[
2(l + 1)

z
− 1

]

f ′ − l + 1 − β

z
f = 0. (28.33)

Multiplying by z gives

zf ′′ + [2(l + 1) − z]f ′ − (l + 1 − β)f = 0

which is a confluent hypergeometric DE [see Equation (11.27)]. Therefore, as
the reader may verify, f is proportional to Φ(l + 1 − β, 2l + 2; z). Thus, the
solution of (28.31) can be written as

u(z) = Czl+1e−z/2Φ(l + 1 − β, 2l + 2; z).

Laguerre Polynomials

An argument similar to that used in the discussion of a quantum harmonic
oscillator will reveal that the product e−z/2Φ(l+1−β, 2l+2; z) will be infinite
unless the power series representing Φ terminates (becomes a polynomial).
This takes place only if (see Box 11.2.2)

l + 1 − β = −N (28.34)
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for some integer N ≥ 0. In that case we obtain the Laguerre polynomials Laguerre
polynomials

Lj
N ≡ Γ(N + j + 1)

Γ(N + 1)Γ(j + 1)
Φ(−N, j + 1; z) where j = 2l + 1, (28.35)

where the factor in front of Φ is a standardization factor.
Condition (28.34) is the quantization rule for the energy levels of a hydrogen- Truncation of

infinite series gives
the quantization
rule for the energy
levels of the
hydrogen atom.

like atom. Writing everything in terms of the original parameters, and re-
defining β as β = N + l + 1 ≡ n to reflect its integer character, yields—after
restoring all the μ’s and the �’s—the energy levels of a hydrogen-like atom:

E = −Z2μe4

2�2n2
= −Z2

(
μc2

2

)

α2 1
n2

,

where α = e2/�c = 1/137 is the fine structure constant. fine structure
constantThe radial wave functions can now be written as

Rn,l(r) =
un,l(r)

r
= Crle−Zr/na0Φ

(

−n + l + 1, 2l + 2;
2Zr

na0

)

,

where a0 = �
2/me2 = 0.529 × 10−8 cm is the Bohr radius.

The explicit form of Laguerre polynomials can be obtained by substitut-
ing the truncated confluent hypergeometric series [see Equation (11.28)] in
(28.35):

Lj
N (x) =

Γ(N + j + 1)
Γ(N + 1)Γ(j + 1)

Γ(j + 1)
Γ(−N)

N∑

k=0

Γ(−N + k)
Γ(j + 1 + k)Γ(k + 1)

xk.

We now use the result of Problem 11.4 and write

Γ(k − N)
Γ(−N)

= (−1)kN(N − 1) · · · (N − k + 1) =
(−1)kN !
(N − k)!

.

It follows that

Lj
N (x) =

Γ(N + j + 1)
Γ(N + 1)

N∑

k=0

(−1)kN !
(N − k)!

1
Γ(j + 1 + k)Γ(k + 1)

xk.

Simplifying and writing all gamma functions in terms of factorials, we obtain
the final form of the Laguerre polynomials:

Lj
N(x) =

N∑

k=0

(N + j)!(−1)k

(N − k)!k!(k + j)!
xk. (28.36)

The generating function of the Laguerre polynomials can be calculated
using a procedure similar to the one used in the case of Hermite polynomials.
We first write

gj(t, x) =
∞∑

n=0

antnLj
n(x),
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differentiate it with respect to x, and use the result of Problem 28.10 to obtain

dgj

dx
= −

∞∑

n=0

antnLj+1
n−1(x) = −t

∞∑

n=0

antn−1Lj+1
n−1(x) = −tgj+1, (28.37)

where we have taken an = an−1 as a natural choice whereby the last sum
could be written in closed form. To find a solution of (28.37), we look at
g(t, 0). The recursion relation an = an−1 implies that all an are equal, and
we set all of them equal to 1. Then

gj(t, 0) =
∞∑

n=0

tnLj
n(0) =

∞∑

n=0

(n + j)!
n!j!

tn = (1 − t)−j−1,

where we used the fact that the only contribution to Lj
n(0) comes from the con-

stant term in the polynomial [corresponding to k = 0 in (28.36)]. Furthermore,
the last sum is the binomial series (10.15) with x → −t and α → (−j − 1).
This suggests defining a new function g(t, x) via

gj(t, x) = (1 − t)−j−1g(t, x).

Substitution of this in (28.37) gives

(1 − t)−j−1 dg

dx
= −t(1 − t)−j−2g ⇒ dg

g
=

−t

1 − t
dx ⇒ g = C(t)e−tx/(1−t)

and

gj(t, x) = (1 − t)−j−1C(t)e−tx/(1−t) =
C(t)e−tx/(1−t)

(1 − t)j+1
.

With the value of gj(t, 0) given, we determine C(t) to be one.

Box 28.2.2. The nth coefficient of the Maclaurin series expansion of the
generating function gj(t, x) ≡ (1 − t)−j−1e−tx/(1−t) about t = 0 is Lj

n(x).
Specifically,

Lj
n(x) =

1
n!

∂n

∂tn
e−tx/(1−t)

(1 − t)j+1

∣
∣
∣
∣
t=0

. (28.38)

28.3 The Wave Equation

In the preceding sections the time variation has been given by a first derivative.
Thus, as far as time is concerned, we have a FODE. It follows that the initial
specification of the physical quantity of interest (temperature T or Schrödinger
wave function ψ) is sufficient to determine the solution uniquely.

The wave equation

∇2ψ =
1
c2

∂2ψ

∂t2
(28.39)
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contains time derivatives of the second order, and, therefore, requires two ar-
bitrary parameters in its general solution. To determine these, we expect two
initial conditions. For example, if the wave is standing, as in a rope clamped at
both ends, the initial shape of the rope is not sufficient to determine the wave
function uniquely. One also needs to specify the initial (transverse) velocity
of each point of the rope, i.e., the velocity profile on the rope.

Example 28.3.1. one-dimensional wave one-dimensional
waveThe simplest kind of wave equation is that in one dimension, for example, a wave

propagating on a rope. Such a wave equation can be written as

∂2ψ

∂x2 =
1

c2

∂2ψ

∂t2
,

where c is the speed of wave propagation. For a rope, this speed is related to the
tension τ and the linear mass density ρ by c =

√
τ/ρ.

Let us assume that the rope has length a and is fastened at both ends (located
at x = 0 and x = a). This means that the “displacement” ψ is zero at x = 0 and at
x = a.

A separation of variables, ψ(x, t) = X(x)T (t), leads to two ODEs:

d2X

dx2 + λX = 0,
d2T

dt2
+ c2λT = 0. (28.40)

The first equation and the spatial boundary conditions give rise to the solutions

Xn(x) = sin
(nπ

a
x
)

, λn =
(nπ

a

)2

for n = 1, 2, . . . .

The second equation in (28.40) has a general solution of the form

T (t) = An cos ωnt + Bn sin ωnt,

where ωn = cnπ/a and An and Bn are arbitrary constants. The general solution is
thus

ψ(x, t) =

∞∑

n=1

(An cos ωnt + Bn sin ωnt) sin
(nπx

a

)
. (28.41)

Specification of the initial shape of the rope as ψ(x, 0) = f(x) gives a Fourier
series,

f(x) =
∞∑

n=1

An sin
(nπx

a

)

from which we can determine An:

An =
2

a

∫ a

0

f(x) sin
(nπx

a

)
dx.

What about Bn? Physically, the shape of the wave is not enough to define the
problem uniquely. It is possible that the rope, while having the required initial
shape, may be in an unspecified motion of some sort. Thus, we must also know the
“velocity profile,” which means specifying the function ∂ψ/∂t at t = 0. If it is given
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that ∂ψ/∂t|t=0 = g(x), then differentiating (28.41) with respect to t and evaluating
both sides at t = 0 yields

g(x) =

∞∑

n=1

ωnBn sin
(nπx

a

)

and Bn is also determined:

Bn =
2

aωn

∫ a

0

g(x) sin
(nπx

a

)
dx.

The frequency ωn is referred to as that of the nth mode of oscillation. Thusmode of
oscillation a general solution is a linear superposition of infinitely many modes. In practice,

it is possible to “excite” one mode or, with appropriate initial conditions, a finite
number of modes. �

28.3.1 Guided Waves

Waveguides are hollow tubes (or tubes filled with some dielectric material) in
which electromagnetic waves can propagate along an axis which we take to
be the z-axis of either Cartesian or cylindrical coordinates. We assume that
the dependence of the electric and magnetic fields on z and t is of the form
ei(ωt−kz) where ω and k are constants to be determined. We therefore write

E = E0(x, y)ei(ωt−kz), B = B0(x, y)ei(ωt−kz), (28.42)

for Cartesian coordinates. If cylindrical geometry is appropriate, then E0 and
B0 will be functions of ρ and ϕ. Note that, in general, E0 and B0 have three
components.

The electric and magnetic fields of (28.42) ought to satisfy the four Maxwell’s
equations. Let us assume that the waveguide is free of any charges or cur-
rents, so that Maxwell’s equations for empty space are appropriate. Because
of the nature of the dependence on z, it is useful to separate the longitudi-
nal geometry—the geometry along z—from the transverse geometry—thelongitudinal and

transverse parts of
guided waves.

geometry perpendicular to z. So, we write

E = Et + êzEz = (E0t + êzE0z)ei(ωt−kz),

B = Bt + êzBz = (B0t + êzB0z)ei(ωt−kz), (28.43)

∇ = êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
≡ ∇t + êz

∂

∂z
,

where the subscript t stands for transverse. With these assumptions, Maxwell’s
first equation becomes

0 = ∇ · E =
(

∇t + êz
∂

∂z

)

·
[
(E0t + êzE0z)ei(ωt−kz)

]

= (∇t ·E0t) ei(ωt−kz) + (−ikE0z) ei(ωt−kz),
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because ∇t · (êzE0z) = 0 and êz ·E0t = 0. It follows that

∇t ·E0t = ikE0z.

An analogous calculation gives a similar result for Maxwell’s second equation.
Putting these two equations together, we get

∇t ·E0t = ikE0z, ∇t · B0t = ikB0z. (28.44)

The LHS of Maxwell’s third equation gives

LHS = ∇ × E =
(

∇t + êz
∂

∂z

)

×
[
E0e

i(ωt−kz)
]

= ∇t ×
[
E0e

i(ωt−kz)
]

+ êz ×
[
−ikE0e

i(ωt−kz)
]

= ei(ωt−kz) (∇t × E0 − ikêz × E0t) .

The RHS of the third equation is

−∂B
∂t

= −iωB0e
i(ωt−kz).

Equating the two sides yields

−iωB0 = ∇t × E0 − ikêz × E0t. (28.45)

The first term on the RHS can be written as

∇t × E0 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

êx êy êz

∂
∂x

∂
∂y

0

E0x E0y E0z

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∂E0z

∂y
êx − ∂E0z

∂x
êy

︸ ︷︷ ︸
This is transverse.

+êz

(
∂E0y

∂x
− ∂E0x

∂y

)

= ∇ × (E0z êz) + êz

(
∂E0y

∂x
− ∂E0x

∂y

)

.

The reader may easily check that the second line follows from the first. Equat-
ing the transverse parts of the two sides of Equation (28.45), we get

−iωB0t = ∇ × (E0z êz) − ikêz × E0t. (28.46)

A similar calculation turns the fourth Maxwell equation into

i
ω

c2
E0t = ∇ × (B0z êz) − ikêz × B0t. (28.47)

We now want to express the transverse components in terms of the lon-
gitudinal components. Multiply both sides of (28.47) by −iω and substitute
for −iωB0t from (28.46):

ω2

c2
E0t = −iω∇× (B0zêz) − ikêz × [∇ × (E0z êz) − ikêz × E0t]

= −iω∇× (B0zêz) − ikêz × [∇ × (E0z êz)] − k2êz × (êz × E0t).
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Using the bac cab rule, the last term gives

êz × (êz × E0t) = êz (êz · E0t)︸ ︷︷ ︸
=0

−E0t(êz · êz) = −E0t.

It now follows that
(

ω2

c2
− k2

)

E0t = −iω∇ × (B0z êz) − ikêz × [∇ × (E0z êz)] . (28.48)

The first term on the RHS can be simplified by using the second equation in
(14.11):

∇ × (B0z êz) = B0z ∇ × êz︸ ︷︷ ︸
=0

+(∇B0z) × êz = −êz × (∇tB0z)

because êz is a constant vector (both magnitude and direction), and B0z is
independent of z. The second term on the RHS of (28.48) can be simplified
as follows:

êz × [∇ × (E0z êz)] = êz ×
(

∂E0z

∂y
êx − ∂E0z

∂x
êy

)

=
∂E0z

∂y
êy +

∂E0z

∂x
êx ≡ ∇tE0z .

Substituting these results in Equation (28.48) yields

γ2E0t = i [−k∇tE0z + ωêz × (∇tB0z)] where γ2 ≡ ω2

c2
− k2.

A similar calculation gives an analogous result for the magnetic field. We
assemble these two equations in

γ2E0t = i [−k∇tE0z + ωêz × (∇tB0z)] , (28.49)

γ2B0t = i [−k∇tB0z − ωêz × (∇tE0z)] , γ2 ≡ ω2

c2
− k2.

Although we derived (28.44) and (28.49) using Cartesian coordinates, the
fact that the final result is written explicitly in terms of transverse and lon-
gitudinal parts—without reference to any coordinate system—implies that
these equations are valid in cylindrical coordinates as well.

Three types of guided waves are usually studied.

1. Transverse magnetic (TM) waves have Bz = 0 everywhere. The bound-transverse
magnetic (TM)
waves

ary condition on E demands that Ez vanish at the conducting walls of
the guide.

2. Transverse electric (TE) waves have Ez = 0 everywhere. The boundarytransverse electric
(TE) waves condition on B requires that the normal directional derivative

∂Bz

∂n
≡ ên · (∇Bz)

vanish at the walls.
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3. Transverse electromagnetic (TEM) waves have Bz = 0 = Ez . For a transverse
electromagnetic
(TEM) waves

nontrivial solution, Equation (28.49) demands that γ2 = 0. This form
resembles a free wave with no boundaries.

In the following, we consider some examples of the TM mode (see any
book on electromagnetic theory for further details). The basic equations in
this mode are

B0z = 0, γ2E0t = −ik∇tE0z, γ2B0t = −iωêz × (∇tE0z).

Taking the dot product of ∇t with the middle equation and using the first
equation in (28.44) yields Basic equation for

TM waves.
∇2

t E0z + γ2E0z = 0. (28.50)

This is the basic equation for TM waves propagating in a waveguide.

Example 28.3.2. rectangular wave guides rectangular wave
guidesFor a wave guide with a rectangular cross section of sides a and b in the x and the

y direction, respectively, (28.50) gives

∂2E0z

∂x2
+

∂2E0z

∂y2
+ γ2E0z = 0.

A separation of variables, E0z(x, y) = X(x)Y (y), leads to

d2X

dx2
+ λX = 0, X(0) = 0 = X(a),

d2Y

dy2
+ μY = 0, Y (0) = 0 = Y (b),

where γ2 = λ + μ. These equations have the solutions

Xn(x) = sin
(nπ

a
x
)

, λn =
(nπ

a

)2

for n = 1, 2, . . . ,

Ym(y) = sin
(mπ

b
y
)

, μm =
(mπ

b

)2

for m = 1, 2, . . . .

The wave number is given by k =
√

(ω/c)2 − γ2, or, introducing indexes for k,

kmn =

√
ω2

c2
−

(nπ

a

)2

−
(mπ

b

)2

,

which has to be real if the wave is to propagate [an imaginary k leads to exponential
decay or growth along the z-axis because of the exponential factor in (28.49)]. Thus,
there is a cut-off frequency,

ωmn = c

√(nπ

a

)2

+
(mπ

b

)2

for m, n ≥ 1,

below which the wave cannot propagate through the wave guide. It follows that,
for a TM wave, the lowest frequency that can propagate along a rectangular wave
guide is ω11 = πc

√
a2 + b2/ab.
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The most general solution for Ez is, therefore,

Ez =

∞∑

m,n=1

Amn sin
(nπ

a
x
)

sin
(mπ

b
y
)

ei(ωt±kmnz).

The constants Amn are arbitrary and can be determined from the initial shape of
the wave, but that is not commonly done. Once Ez is found, the other components
can be calculated using Equation (28.50). �

Example 28.3.3. cylindrical wave guidecylindrical wave
guide For a TM wave propagating along the z-axis in a hollow circular conductor, we have

[see Equation (28.50)]

1

ρ

∂

∂ρ

(

ρ
∂E0z

∂ρ

)

+
1

ρ2

∂2E0z

∂ϕ2

︸ ︷︷ ︸
≡∇2

t E0z

+ γ2E0z = 0.

The separation E0z = R(ρ)S(ϕ) yields S(ϕ) = A cos mϕ + B sin mϕ and the Bessel
DE

d2R

dρ2 +
1

ρ

dR

dρ
+

(

γ2 − m2

ρ2

)

R = 0.

The solution to this equation, which is regular at ρ = 0 and vanishes at ρ = a, is

R(ρ) = CJm

(xmn

a
ρ
)

and γ =
xmn

a
.

Recalling the definition of γ, we obtain

ω2

c2
− k2 = γ2 =

x2
mn

a2
⇒ k =

√
ω2

c2
− x2

mn

a2
.

This gives the cut-off frequency ωmn = cxmn/a.
The solution for the azimuthally symmetric case (m = 0) is

Ez(ρ, ϕ, t) =
∞∑

n=1

AnJ0

(x0n

a
ρ
)

ei(ωt±knz) and Bz = 0,

where kn =
√

ω2/c2 − x2
0n/a2. �

28.3.2 Vibrating Membrane

Waves on a circular drumhead are historically important because their inves-
tigation was one of the first instances in which Bessel functions appeared. The
following example considers such waves.

For a circular membrane over a cylinder, the wave equation (28.39) in
cylindrical coordinates becomes11

1
ρ

∂

∂ρ

(

ρ
∂ψ

∂ρ

)

+
1
ρ2

∂2ψ

∂ϕ2 =
1
c2

∂2ψ

∂t2

11Assuming that the membrane is perpendicular to the z-axis, the wave amplitude will
depend only on ρ and ϕ.
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which, after separation of variables, reduces to

S(ϕ) = A cosmϕ + B sinmϕ for m = 0, 1, 2, . . . ,

T (t) = C cosωt + D sin ωt,

d2R

dρ2 +
1
ρ

dR

dρ
+

(
ω2

c2
− m2

ρ2

)

R = 0.

The solution of the last (Bessel) equation, which is defined for ρ = 0 and
vanishes at ρ = a, is

R(ρ) = EJm

(xmn

a
ρ
)

where
ω

c
=

xmn

a
and n = 1, 2, . . . .

This shows that only the frequencies ωmn = (c/a)xmn are excited.
If we assume an initial shape for the membrane, given by f(ρ, ϕ), and an

initial velocity of zero, then D = 0, and the general solution will be

ψ(ρ, ϕ, t) =
∞∑

m=0

∞∑

n=1

Jm

(xmn

a
ρ
)

cos
(cxmn

a
t
)

(Amn cosmϕ + Bmn sinmϕ),

where

Amn =
2

πa2J2
m+1(xmn)

∫ 2π

0

dϕ

∫ a

0

dρ ρf(ρ, ϕ)Jm

(xmn

a
ρ
)

cosmϕ,

Bmn =
2

πa2J2
m+1(xmn)

∫ 2π

0

dϕ

∫ a

0

dρ ρf(ρ, ϕ)Jm

(xmn

a
ρ
)

sinmϕ,

and the orthogonality of Bessel functions (27.24) has been used. In particular,
if the initial displacement of the membrane is independent of ϕ, then only the
term with m = 0 contributes, and we get

ψ(ρ, t) =
∞∑

n=1

AnJ0

(x0n

a
ρ
)

cos
(cx0n

a
t
)

,

where
An =

4
a2J2

1 (x0n)

∫ a

0

dρ ρf(ρ)J0

(x0n

a
ρ
)

.

Note that the wave does not develop any ϕ-dependence at later times.

28.4 Problems

28.1. Suppose λ = 0 in Equation (28.3). Show that X(x) = 0.

28.2. The two ends of a thin heat-conducting bar are held at T = 0. Initially,
the first half of the bar is held at T = T0, and the second half is held at
T = 0. The lateral surface of the bar is then thermally insulated. Find the
temperature distribution for all time.
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28.3. The two ends of a thin heat-conducting bar of length b are held at
T = 0. The bar is along the x-axis with one end at x = 0 and the other
at x = b. The lateral surface of the bar is thermally insulated. Find the
temperature distribution at all times if initially it is given by:

(a) T (0, x) =

{
T0 for the middle third of the bar,
0 for the other two-thirds.

(b) T (0, x) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ x ≤ b

3
or

2b

3
≤ x ≤ b,

T0 sin
(

3π

b
x − π

)

if
b

3
≤ x ≤ 2b

3
.

(c) T (0, x) = T0

∣
∣
∣
∣
x

b
− 1

2

∣
∣
∣
∣−

T0

2
.

(d) T (0, x) = T0 sin
(π

b
x
)

.

28.4. Derive Equation (28.7) from the equation before it by changing variables.

28.5. Using the Stirling approximation (11.6), write all four factorials of
Equation (28.14) as exponentials. Then simplify to arrive at Equation (28.15).

28.6. Derive Equations (28.20)–(28.23).

28.7. By differentiating both sides of Equation (28.23) with respect to y, and
(slightly) manipulating the resulting sum, show that H ′

n(y) = 2nHn−1(y).

28.8. Evaluate Equation (28.23) at y = 0 and note that only the last term
survives. Now show that

Hn(0) =

⎧
⎨

⎩

0 if n is odd,
(−1)k(2k)!

k!
if n = 2k.

28.9. Use the substitution u(z) = zl+1e−z/2f(z) in (28.32) to derive Equation
(28.33).

28.10. Differentiate both sides of Equation (28.36) with respect to x and
show that

d

dx
Lj

N(x) = −Lj+1
N−1(x).

28.11. The two ends of a rope of length a are fixed. The midpoint of the
rope is raised a distance a/2, measured perpendicular to the tense rope, and
released from rest. What is the subsequent wave function?

28.12. A string of length a fastened at both ends has an initial velocity of
zero and is given an initial displacement as shown in Figure 28.1. Find ψ(x, t)
in each case.



28.4 Problems 689

(c)

a/2 a

a/4

x

ψ (x, 0)

(b)

a/2 a

a/4

x

ψ (x, 0)

(a)

a/2 a

a/4

x

ψ (x, 0)

− a/4

Figure 28.1: The initial shape of the waves.

28.13. Repeat Problem 28.12 assuming that the initial displacement is zero
and the initial velocity distribution is given by each figure.

28.14. Repeat Problem 28.13 assuming that the initial velocity distribution
is given by:

(a) g(x) =

⎧
⎨

⎩

v0 if 0 ≤ x ≤ a

2
,

0 if
a

2
< x ≤ a.

(b) g(x) =

⎧
⎨

⎩

v0 sin
2πx

a
if 0 ≤ x ≤ a

2
,

0 if
a

2
< x ≤ a.

28.15. A wave guide consists of two coaxial cylinders of radii a and b (b > a).
Find the electric field for a TM mode propagating along the two cylinders in
the region between them. Hint: Both linearly independent solutions of the
Bessel DE are needed for the radial function.
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Chapter 29

Integral Transforms

Chapters 26 and 27 illustrated the Frobenius method of solving differential
equations using power series, which gives a solution that converges within an
interval of the real line. This chapter introduces another method of solving
DEs, which uses integral transforms. The integral transform of a function
v is another function u given by

u(x) =
∫ b

a

K(x, t)v(t) dt, (29.1)

where (a, b) is a convenient interval, and K(x, t), called the kernel of the kernel of integral
transformsintegral transform, is an appropriate function of two variables.

The idea behind using integral transform is to write the solution u(x)
of a DE in x in terms of an integral such as Equation (29.1) and choose v,
the kernel, and the interval (a, b) in such a way as to render the DE more Strategy for

solving DEs using
integral transforms

manageable. There are many kernels appropriate for specific DEs. However,
two kernels are most widely used in physics, which lead to two important
integral transforms, the Fourier transform and the Laplace transform.

29.1 The Fourier Transform

Fourier transform has a kernel of the form K(x, t) = eitx and an interval
(−∞, +∞). Let us see how this comes about.

The Fourier series representation of a function F (x) is valid for the entire
real line as long as F (x) is periodic. However, most functions encountered
in physical applications are defined in some interval (a, b) without repetition
beyond that interval. It would be useful if we could also expand such functions
in some form of Fourier “series.”

One way to do this is to start with the periodic series and then let the
period go to infinity while extending the domain of the definition of the func-
tion. As a specific case, suppose we are interested in representing a function
f(x) that is defined only for the interval (a, b) and is assigned the value zero
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f (x)

xL
a b = a+L

x
a a+L +aa–L 2L

(a)

(b)

Figure 29.1: (a) The function we want to represent. (b) The Fourier series represen-

tation of the function.

everywhere else [see Figure 29.1(a)]. To begin with, we might try the Fourier
series representation, but this will produce a repetition of our function. This
situation is depicted in Figure 29.1(b).

Next we may try a function fΛ(x) defined in the interval (a−Λ/2, b+Λ/2),
where Λ is an arbitrary positive number:

fΛ(x) =

⎧
⎪⎨

⎪⎩

0 if a − Λ/2 < x < a,

f(x) if a < x < b,

0 if b < x < b + Λ/2.

This function, which is depicted in Figure 29.2, has the Fourier series repre-
sentation [see Equation (18.23)]

fΛ(x) =
1√

L + Λ

∞∑

n=−∞
fΛ,ne2iπnx/(L+Λ), (29.2)

where

fΛ,n =
1√

L + Λ

∫ b+Λ/2

a−Λ/2

e−2iπnx/(L+Λ)fΛ(x) dx. (29.3)

We have managed to separate various copies of the original periodic func-
tion by Λ. It should be clear that if Λ → ∞, we can completely isolate the
function and stop the repetition. Let us investigate the behavior of Equations
(29.2) and (29.3) as Λ grows without bound. First, we notice that the quan-
tity kn defined by kn ≡ 2nπ/(L + Λ) and appearing in the exponent becomes
almost continuous. In other words, as n changes by one unit, kn changes only
slightly. This suggests that the terms in the sum in Equation (29.2) can be
lumped together in j intervals of width Δnj , giving

fΛ(x) ≈
∞∑

j=−∞

fΛ(kj)√
L + Λ

eikjxΔnj ,
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x
a–Λ/2 b+Λ/2

Figure 29.2: By introducing the parameter Λ, we have managed to separate the copies

of the function.

where kj ≡ 2njπ/(L + Λ), and fΛ(kj) ≡ fΛ,nj . Substituting Δnj = [(L +
Λ)/2π]Δkj in the above sum, we obtain

fΛ(x) ≈
∞∑

j=−∞

fΛ(kj)√
L + Λ

eikjx L + Λ
2π

Δkj =
1√
2π

∞∑

j=−∞
f̃Λ(kj)eikjxΔkj ,

where we introduced f̃Λ(kj) defined by f̃Λ(kj) ≡
√

(L + Λ)/2π fΛ(kj). It is
now clear that the preceding sum approaches an integral in the limit that
Λ → ∞. In the same limit, fΛ(x) → f(x), and we have

f(x) =
1√
2π

∫ ∞

−∞
f̃(k)eikxdk, (29.4)

where Fourier and
inverse Fourier
transformsf̃(k) ≡ lim

Λ→∞
f̃Λ(kj) = lim

Λ→∞

√
L + Λ

2π
fΛ(kj)

= lim
Λ→∞

√
L + Λ

2π

1√
L + Λ

∫ b+Λ/2

a−Λ/2

e−ikjxfΛ(x) dx,

or
f̃(k) =

1√
2π

∫ ∞

−∞
f(x)e−ikxdx. (29.5)

The function f in (29.4) is called the Fourier transform of f̃ and f̃ in (29.5)
is called the inverse Fourier transform of f . Note that the difference
between the two transforms is the sign of the exponential in the integrand.

Another notation that is commonly used for Fourier transform of a func-
tion f is F[f ]. The inverse Fourier transform of a function g is then denoted
by F−1[g]. This means that F[f ] is a function whose value at x is given by

F[f ](x) =
1√
2π

∫ ∞

−∞
f(k)eikxdk, (29.6)

Similarly, F−1[g] is a function whose value at k is given by

F−1[g](k) =
1√
2π

∫ ∞

−∞
g(x)e−ikxdx, (29.7)
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Note that the use of k and x in these two equations is completely arbitrary.
The only requirement is that the function and the variable in its argument
on the left appear, respectively, in the integrand and in the exponent on the
right. For example, (29.6) could be written as

F[f ](k) =
1√
2π

∫ ∞

−∞
f(x)eikxdx, or F[h](t) =

1√
2π

∫ ∞

−∞
h(ω)eiωtdω,

and (29.7) as

F−1[g](x) =
1√
2π

∫ ∞

−∞
g(k)e−ikxdk or F−1[f ](y) =

1√
2π

∫ ∞

−∞
f(x)e−ixydx.

29.1.1 Properties of Fourier Transform

Equations (29.4) and (29.5) are reciprocals of one another. However, it is not
obvious that they are consistent. In other words, if we substitute (29.4) in
the RHS of (29.5), do we get an identity? Let’s try this:

f̃(k) =
1√
2π

∫ ∞

−∞
dx e−ikx

[
1√
2π

∫ ∞

−∞
f̃(k′)eik′xdk′

]

=
1
2π

∫ ∞

−∞
dx

∫ ∞

−∞
f̃(k′)ei(k′−k)xdk′.

We now change the order of the two integrations:

f̃(k) =
∫ ∞

−∞
dk′f̃(k′)

[
1
2π

∫ ∞

−∞
dx ei(k′−k)x

]

.

But the expression in the square brackets is the Dirac delta function given by
Equation (18.28). Thus, we have f̃(k) =

∫ ∞
−∞ dk′f̃(k′)δ(k′ − k), which is an

identity. In the F notation, this result can be written as

F−1F[f ] = FF−1[f ] = f, (29.8)

for any function f . The second identity can be shown similarly. Another
property enjoyed by the Fourier transform and its inverse in linearity. If a
and b are constants and f and g functions, then

F[af + bg] = aF[f ] + bF[g], and F−1[af + bg] = aF−1[f ] + bF−1[g].
(29.9)

It is useful to generalize Fourier transform equations to more than one
dimension. The generalization is straightforward:

F[f̃ ](r) ≡ f(r) =
1

(2π)n/2

∫∫

Ωk
∞

dnkeik·rf̃(k),

F−1[f ](k) ≡ f̃(k) =
1

(2π)n/2

∫∫

Ωx
∞

dnxf(r)e−ik·r. (29.10)

where n is usually 2 or 3, Ωk
∞ is the entire k-space, and Ωx

∞ is the entire
x-space.
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29.1.2 Sine and Cosine Transforms

The complex exponential in the definition of Fourier transform or its inverse
can be broken down into its trigonometric parts. Then for an even function,
the cosine part contributes and for an odd function, the sine part contributes.
In either case, the integration

∫∞
−∞ can be equated to 2

∫∞
0

. This leads to
the sine transform and cosine transform denoted by Fs[f ] and Fc[f ],
respectively, for any function: Sine and cosine

transforms

Fs[f ](x) =

√
2
π

∫ ∞

0

f(k) sinkxdk,

Fc[f ](x) =

√
2
π

∫ ∞

0

f(k) coskxdk. (29.11)

What is the inverse of a cosine transform? To find out, let F (x) denote
the left-hand side of the second equation in (29.11). Multiply both sides of
the equation by cos k′x—with k′ > 0—and integrate over all positive values
of x to get

∫ ∞

0

F (x) cos k′xdx =

√
2
π

∫ ∞

0

f(k)dk

∫ ∞

0

cos kx cos k′xdx. (29.12)

Writing the cosines in terms of exponential, the x integration on the right
gives
∫ ∞

0

cos kx cos k′xdx =
1
4

∫ ∞

0

(
eikx + e−ikx

) (
eik′x + e−ik′x

)
dx

=
1
4

∫ ∞

0

[
eix(k+k′) + e−ix(k+k′) + eix(k−k′) + e−ix(k−k′)

]
dx

=
1
4

∫ ∞

−∞
eix(k+k′)dx +

1
4

∫ ∞

−∞
eix(k−k′)dx

=
π

2
[δ(k + k′) + δ(k − k′)] .

To go from the second to third line, we used
∫∞
0 e−iaxdx =

∫ 0

−∞ eiaxdx, which Inverses of sine
and cosine
transforms

the reader can easily verify; and to go from the third to the last line, we used
Equation (18.28). Substituting the last result in (29.12), we obtain
∫ ∞

0

F (x) cos k′xdx =
√

π

2

∫ ∞

0

f(k)δ(k + k′)dk

︸ ︷︷ ︸
=0 (Reader, why?)

+
√

π

2

∫ ∞

0

f(k)δ(k − k′)dk

=
√

π

2
f(k′),

or

f(k′) =

√
2
π

∫ ∞

0

F (x) cos k′xdx.
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This shows that the inverse of a cosine transform is another cosine trans-
form. Similarly, one can show that the inverse of a sine transform is another
sine transform. We shall not use sine or cosine transforms, as the Fourier
transform, with the exponential in the integrand, is much more convenient.

29.1.3 Examples of Fourier Transform

Example 29.1.1. Let us evaluate the inverse Fourier transform of the function
defined by

f(x) =

{
b if |x| < a,

0 if |x| > a

(see Figure 29.3). From (29.5) and (29.7) we have

F
−1[f ](k) ≡ f̃(k) =

1√
2π

∫ ∞

−∞
f(x)e−ikxdx =

b√
2π

∫ a

−a

e−ikxdx =
2ab√
2π

(
sin ka

ka

)

,

which is the function encountered on page 491 and depicted in Figure 18.7.
This result deserves some detailed discussion. First, note that if a → ∞, the

function f(x) becomes a constant function over the entire real line, and we get

f̃(k) =
2b√
2π

lim
a→∞

sin ka

k
=

2b√
2π

πδ(k)

by Equation (18.27). This is the Fourier transform of an everywhere-constant func-
tion (see Problem 29.1). Next, let b → ∞ and a → 0 in such a way that 2ab, which
is the area under f(x), is 1. Then f(x) will approach the delta function, and f̃(k)
becomes

f̃(k) = lim
b→∞
a→0

2ab√
2π

sin ka

ka
=

1√
2π

lim
a→0

sin ka

ka
=

1√
2π

.

So the Fourier transform of the delta function is the constant 1/
√

2π as implied by
(29.5).

Finally, we note that the width of f(x) is Δx = 2a, and the width of f̃(k) is
roughly the distance, on the k-axis, between its first two roots, k+ and k−, on either
side of k = 0: Δk = k+ − k− = 2π/a. Thus increasing the width of f(x) results
in a decrease in the width of f̃(k). In other words, when the function is wide, its
Fourier transform is narrow. In the limit of infinite width (a constant function), we
get infinite sharpness (the delta function). The last two statements are very general.
In fact, it can be shown that ΔxΔk ≥ 1 for any function f(x). When both sides

xa

b

–a

f (x)

Δx

Figure 29.3: The square “bump” function.
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of this inequality are multiplied by the (reduced) Planck constant � ≡ h/(2π), the
result is the celebrated Heisenberg uncertainty relation:1 Heisenberg

uncertainty
relation

ΔxΔp ≥ �,

where p = �k is the momentum of the particle.
Having obtained the transform of f(x), we can write

f(x) =
1√
2π

∫ ∞

−∞

2b√
2π

sin ka

k
eikxdk =

b

π

∫ ∞

−∞

sin ka

k
eikxdk.

Figure 29.4 shows the integral

b

π

∫ K

−K

sin ka

k
eikxdk

when K = 10, K = 20, and K = 100. It is seen that by making the limits
of integration larger and larger, the graph approximates Figure 29.3 better and
better. �

Example 29.1.2. Let us evaluate the Fourier transform of a Gaussian g(x) =

ae−bx2
with a, b > 0:

g̃(k) =
a√
2π

∫ ∞

−∞
e−b(x2+ikx/b)dx =

ae−k2/4b

√
2π

∫ ∞

−∞
e−b(x+ik/2b)2dx.

To evaluate this integral rigorously, we would have to use the calculus of residues
developed in Chapter 21. However, we can ignore the fact that the exponent is
complex, substitute y = x + ik/(2b), and write

∫ ∞

−∞
e−b[x+ik/(2b)]2dx =

∫ ∞

−∞
e−by2

dy =

√
π

b
.

Figure 29.4: The thinnest plot represents K = 10; the next thinnest plot represents

K = 20; and the thickest plot represents K = 100.

1In the context of the uncertainty relation, the width of the function—the so-called
wave packet—measures the uncertainty in the position x of a quantum mechanical particle.
Similarly, the width of the Fourier transform measures the uncertainty in k, which is related
to momentum p via p = �k.
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Thus, we have g̃(k) =
a√
2b

e−k2/(4b), which is also a Gaussian.

We note again that the width of g(x), which is proportional to 1/
√

b, is in inverse
relation to the width of g̃(k), which is proportional to

√
b. We thus have ΔxΔ

k ∼ 1. �

Example 29.1.3. In this example we evaluate the inverse Fourier transform of the
Coulomb potential V (r) of a point charge q at the origin: V (r) = keq/r. The inverse
Fourier transform is important in scattering experiments with atoms, molecules, and
solids. As we shall see in the following, the inverse Fourier transform of V (r) is not
defined. However, if we work with the Yukawa potential,Yukawa potential

Vα(r) =
keqe

−αr

r
, α > 0,

the inverse Fourier transform will be well-defined, and we can take the limit α → 0
to recover the Coulomb potential. Thus, we seek the inverse Fourier transform of
Vα(r).

We are working in three dimensions and therefore may write

F
−1[Vα](k) ≡ Ṽα(k) =

1

(2π)3/2

∫∫

Ωx
∞

d3xe−ik·r keqe
−αr

r
.

It is clear from the presence of r that spherical coordinates are appropriate. We
are free to pick any direction as the z-axis. A simplifying choice in this case is the
direction of k. So, we let k = |k|êz = kêz, or k · r = kr cos θ, where θ is the polar
angle in spherical coordinates. Now we have

Ṽα(k) =
keq

(2π)3/2

∫ ∞

0

r2 dr

∫ π

0

sin θ dθ

∫ 2π

0

dϕe−ikr cos θ e−αr

r
.

The ϕ integration is trivial and gives 2π. The θ integration simplifies if we make
the substitution u = cos θ:

∫ π

0

sin θe−ikr cos θ dθ =

∫ 1

−1

e−ikrudu =
1

ikr
(eikr − e−ikr).

We thus have

Ṽα(k) =
keq(2π)

(2π)3/2

∫ ∞

0

dr r2 e−αr

r

1

ikr
(eikr − e−ikr)

=
keq

(2π)1/2

1

ik

∫ ∞

0

dr
[
e(−α+ik)r − e−(α+ik)r

]

=
keq

(2π)1/2

1

ik

(
e(−α+ik)r

−α + ik

∣
∣
∣
∣

∞

0

+
e−(α+ik)r

α + ik

∣
∣
∣
∣

∞

0

)

.

Note how the factor e−αr has tamed the divergent behavior of the exponential at
r → ∞. This was the reason for introducing it in the first place. Simplifying the last
expression yields Ṽα(k) = (2keq/

√
2π)(k2 +α2)−1. The parameter α is a measure of

the range of the potential. It is clear that the larger α is, the smaller the range. In
fact, it was in response to the short range of nuclear forces that Yukawa introduced
α. For electromagnetism, where the range is infinite, α becomes zero and Vα(r)
reduces to V (r). Thus, the inverse Fourier transform of the Coulomb potential is

ṼCoul(k) =
2keq√

2π

1

k2
.



29.1 The Fourier Transform 701

If a charge distribution is involved, the inverse Fourier transform will be interestingly
different as the following example shows. �

Example 29.1.4. The example above deals with the electrostatic potential of a
point charge. Let us now consider the case where the charge is distributed over a
finite volume. Then the potential is

V (r) =

∫∫∫
keqρ(r′)

|r′ − r| d3x′ ≡ keq

∫
ρ(r′)

|r′ − r|d
3x′,

where qρ(r′) is the charge density at r′, and we have used a single integral because
d3x′ already indicates the number of integrations to be performed. Note that we
have normalized ρ(r′) so that its integral over the volume is 1. Figure 29.5 shows
the geometry of the situation.

Making a change of variables, R ≡ r′ − r, or r′ = R + r, and d3x′ = d3X, with
R ≡ (X, Y, Z), we get

F
−1[V ](k) ≡ Ṽ (k) =

1

(2π)3/2

∫
d3xe−ik·rkeq

∫
ρ(R + r)

R
d3X. (29.13)

To evaluate Equation (29.13), we substitute for ρ(R + r) in terms of its Fourier
transform,

ρ(R + r) =
1

(2π)3/2

∫
d3k′ρ̃(k′)eik′·(R+r). (29.14)

Combining (29.13) and (29.14), we obtain

Ṽ (k) =
keq

(2π)3

∫
d3x d3X d3k′ e

ik′·R

R
ρ̃(k′)eir·(k′−k)

= keq

∫
d3X d3k′ e

ik′·R

R
ρ̃(k′)

(
1

(2π)3

∫
d3x eir·(k′−k)

)

︸ ︷︷ ︸
δ(k′−k)by Equation (18.30)

= keqρ̃(k)

∫
d3X

eik·R

R
. (29.15)

dq

rr ′

r − r ′
P

Figure 29.5: The inverse Fourier transform of the potential of a continuous charge

distribution at P is calculated using this geometry.
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What is nice about this result is that the contribution of the charge distribution,
ρ̃(k), has been completely factored out. The integral, aside from a constant and a
change in the sign of k, is simply the inverse Fourier transform of the Coulomb
potential of a point charge obtained in the previous example. We can therefore
write Equation (29.15) as

Ṽ (k) = (2π)3/2ρ̃(k)ṼCoul(−k) =
4πkeqρ̃(k)

|k|2 .

This equation is important in analyzing the structure of atomic particles. The
inverse Fourier transform Ṽ (k) is directly measurable in scattering experiments.
In a typical experiment a (charged) target is probed with a charged point particle
(electron). If the analysis of the scattering data shows a deviation from 1/k2 in the
behavior of Ṽ (k), then it can be concluded that the target particle has a charge
distribution. More specifically, a plot of k2Ṽ (k) versus k gives the variation of
ρ̃(k), the form factor, with k. If the resulting graph is a constant, then ρ̃(k) is aform factor
constant, and the target is a point particle [ρ̃(k) is a constant for point particles,
where ρ̃(r′) ∝ δ(r − r′)]. If there is any deviation from a constant function, ρ̃(k)
must have a dependence on k, and correspondingly, the target particle must have a
charge distribution.

The above discussion, when generalized to four-dimensional relativistic space-Fourier transform
and the discovery
of quarks

time, was the basis for a strong argument in favor of the existence of point-like
particles—quarks—inside a proton in 1968, when the results of the scattering of
high-energy electrons off protons at the Stanford Linear Accelerator Center revealed
deviation from a constant for the proton form factor. �

29.1.4 Application to Differential Equations

The Fourier transform is very useful for solving differential equations. This is
because the derivative operator in r space turns into ordinary multiplication
in k space. For example, if we differentiate f(r) in Equation (29.10) with
respect to xj , we obtain

∂

∂xj
f(r) =

1
(2π)n/2

∫∫

Ωk
∞

dnk
∂

∂xj
ei(k1x1+···+kjxj+···+knxn)f̃(k)

=
1

(2π)n/2

∫∫

Ωk
∞

dnk(ikj)eik·rf̃(k). (29.16)

That is, every time we differentiate with respect to any component of r, the
corresponding component of k “comes down.” Thus, the n-dimensional gra-
dient and Laplacian can be written as

∇f(r) = (2π)−n/2

∫
dnk(ik)eik·rf̃(k)

∇2f(r) = (2π)−n/2

∫
dnk(−k2)eik·rf̃(k). (29.17)
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Let us illustrate the above points with a simple example. Consider the
ordinary second-order differential equation

C2
d2x

dt2
+ C1

dx

dt
+ C0x = f(t), (29.18)

where C0, C1, and C2 are constants. We can “solve” this equation by simply
substituting the following in it:

x(t) =
1√
2π

∫ ∞

−∞
dωx̃(ω)eiωt,

dx

dt
=

1√
2π

∫ ∞

−∞
dωx̃(ω)(iω)eiωt,

d2x

dt2
= − 1√

2π

∫ ∞

−∞
dωx̃(ω)ω2eiωt, f(t) =

1√
2π

∫ ∞

−∞
dωf̃(ω)eiωt.

This gives

1√
2π

∫ ∞

−∞
dωx̃(ω)(−C2ω

2 + iC1ω + C0)eiωt =
1√
2π

∫ ∞

−∞
dωf̃(ω)eiωt.

Equating the coefficients of eiωt on both sides, we obtain

x̃(ω) =
f̃(ω)

−C2ω2 + iC1ω + C0
. (29.19)

If we know f̃(ω) [which can be obtained from f(t)], we can calculate x(t)
by Fourier-transforming x̃(ω). The resulting integrals are not generally easy
to evaluate. In some cases the methods of complex analysis may be helpful; in
others numerical integration may be the last resort. However, the real power
of the Fourier transform lies in the formal analysis of differential equations.

Example 29.1.5. A harmonically driven circuit consisting of an inductor L, a
resistor R, and a capacitor C, obeys the following differential equation:

L
d2Q

dt2
+ R

dQ

dt
+

Q

C
= E cos ω0t,

where Q is the charge on the capacitor. Except for the constants, this is identical
to (29.18). The Fourier transform of cosine is a sum of two Dirac delta functions
(see Problem 29.6). Substituting in Equation (29.19), we obtain

Q̃(ω) = E

√
π

2

δ(ω − ω0) + δ(ω + ω0)

−Lω2 + iRω + (1/C)
.

Therefore,

Q(t) =
1√
2π

∫ ∞

−∞
dωQ̃(ω)eiωt =

E

2

∫ ∞

−∞
dω

δ(ω − ω0) + δ(ω + ω0)

−Lω2 + iRω + (1/C)
eiωt

=
E

2

(
eiω0t

−Lω2
0 + iRω0 + (1/C)

+
e−iω0t

−Lω2
0 − iRω0 + (1/C)

)

.
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Noting that the second term in the outer parentheses is the complex conjugate of
the first term, we obtain

Q(t) =
E

2
2Re

(
eiω0t

−Lω2
0 + iRω0 + (1/C)

)

and using Re(z1/z∗
2) = (x1x2+y1y2)/|z2|2, where x and y are the real and imaginary

parts of a complex number z, we finally obtain

Q(t) = E
[(1/C) − Lω2

0 ] cos ω0t + Rω0 sin ω0t

[−Lω2
0 + (1/C)]2 + R2ω2

0

for the charge on the capacitor and

I(t) =
dQ

dt
= E

−[(1/C) − Lω2
0 ]ω0 sin ω0t + Rω2

0 cos ω0t

[−Lω2
0 + (1/C)]2 + R2ω2

0

for the current in the circuit. Note the occurrence of a resonance (large current)
at the voltage source frequency of ω0 = 1/

√
LC. Note also that the Q(t) obtained

above is a particular, not the most general, solution of the differential equation (see
Box 24.4.1). �

Example 29.1.6. The one-dimensional heat equation, the PDE governing the
behavior of the temperature T (x, t) along a rod, is

∂T

∂t
= κ2 ∂2T

∂x2 , (29.20)

where we have used κ [see Equation (22.3)] to leave k exclusively for Fourier trans-
forms. Write T (x, t) as a Fourier transform in the x variable

T (x, t) =
1√
2π

∫ ∞

−∞
T̃ (k, t)eikxdk, (29.21)

and substitute in (29.20) to obtain

1√
2π

∫ ∞

−∞

∂T̃

∂t
eikxdk =

1√
2π

∫ ∞

−∞
(−κ2k2)T̃ (k, t)eikxdk or

∂T̃

∂t
= −κ2k2T̃ (k, t)

This is a first order ordinary differential equation which can be easily solved

T̃ (k, t) = C(k)e−κ2k2t, (29.22)

where C(k) is the constant of integration, which could depend on k. Now suppose
that initially the temperature distribution on the rod is T (x, 0) = f(x), where f(x)
is a given known function. Then the last equation gives T̃ (k, 0) = C(k), and (29.21)
yields

f(x) = T (x, 0) =
1√
2π

∫ ∞

−∞
T̃ (k, 0)eikxdk =

1√
2π

∫ ∞

−∞
C(k)eikxdk,

showing that C(k) is the inverse Fourier transform of f(x):

C(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx.
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Substituting this in (29.22) and the result in (29.21) yields

T (x, t) =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f(y)e−ikydy

)

e−κ2k2teikxdk

=
1

2π

∫ ∞

−∞
f(y) dy

∫ ∞

−∞
e−κ2k2t+ik(x−y)dk. (29.23)

The inner integral can be done by completing the square in the exponent as in
Example 29.1.2. The result is

∫ ∞

−∞
e−κ2k2t+ik(x−y)dk =

√
π

e
− (x−y)2

4κ2t

κ
√

t
.

Putting this in (29.23) and noting that f(y) = T (y, 0), we finally obtain

T (x, t) =
1√

4πκ2t

∫ ∞

−∞
T (y, 0)e

− (x−y)2

4κ2t dy. (29.24)

If we know the initial shape of the temperature distribution T (y, 0) on the rod,
we can calculate the temperature at every point of the rod for any time. A simple
example is if the temperature is infinitely hot at one point, say x0 of the rod and
zero every where else. Then

T (y,0) = T0δ(y − x0),

and (29.24) yields

T (x, t) =
1√

4πκ2t

∫ ∞

−∞
T0δ(y − x0)e

− (x−y)2

4κ2t dy =
T0e

− (x−x0)2

4κ2t

√
4πκ2t

.
�

29.2 Fourier Transform and Green’s Functions

Suppose you are given a system of n linear equations in n unknowns and asked
to slove them. An elegant approach would be to use matrices. So, let L be
the matrix of coefficients, y the column vector of the n unknowns, and f the
column vector of the constants appearing on the right-hand side of the system
of equations. The matrix equation and the corresponding system of equations
would look like the following:

Ly = f,
n∑

j=1

Lijyj = fi, i = 1, 2, . . . , n. (29.25)

If L has an inverse G, i.e., if there is a matrix G such that LG = 1, then
the solution to the above equation can formally be written as y = Gf, or in
component form as

yi =
n∑

j=1

Gijfj , i = 1, 2, . . . , n. (29.26)
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Thus, the problem of solving the system of linear equations turns into the
problem of finding the inverse of the coefficient matrix; and this is independent
of what f is ! Once I know the inverse of L, I can solve any system of linear
equations, regardless of the constants on the right-hand side. Recalling that
the elements of the unit matrix are just the correctly labeled Kronecker delta,
the equation that G has to satisfy becomes

LG = 1,

n∑

j=1

LijGjk = δik, i, k = 1, 2, . . . , n. (29.27)

Now think of a column vector v as a “machine:” feed the machine anFrom discrete
matrices to
continuous
differential
operators

integer between 1 and n, and it will give you a real number, i.e., the element
of the column vector carrying the integer as an index. Similarly, think of a
matrix M as another “machine” which gives you a real number if you feed it
a pair of integers between 1 and n. Write this as

v(i) = vi, and M(i, j) = Mij , i, j = 1, 2, . . . , n. (29.28)

Would it be beneficial to generalize the action of the machine to include
all real numbers? A vector machine that feeds on real numbers is a function:
feed a function a real number and it will spit out a real number. Replacing
i with x, we have v(x) = vx ≡ v(x), because vx is not a common notation.
Similarly, M(x, x′) = Mxx′ ≡ M(x, x′). Furthermore, all summations have
to be replaced by integrals. For example, the system of equations (29.25)
becomes

Ly = f

∫ b

a

L(x, x′)y(x′) dx′ = f(x),

where (a, b) is a convenient interval of the real line usually taken to be
(−∞,∞). What is the meaning of L(x, x′)? It can be merely a function
of two variables. But more interestingly, it can be a differential operator.
However, a differential operator is a local operator, i.e., it is a linear combi-
nation of derivatives of various orders at a single point, say x. This requires
the last integral above to collapse to x. The only way that can happen is if

L(x, x′) = δ(x − x′)L(x) ≡ δ(x − x′)Lx, (29.29)

where Lx is by definition a differential operator in the variable x.
Now that we have a differential operator which is the generalization of a

matrix, how do we find its inverse? In other words, how do we generalize
Equation (29.27)? We suspect that the Kronecker delta turns into a Dirac
delta function. With this suspicion, we generalize (29.27) to

LG = 1,

∫ b

a

L(x, x′)G(x′, x0) = δ(x − x0).

Substituting (29.29) in the second equation yieldsDifferential
equation for
Green’s function

∫ b

a

δ(x − x′)LxG(x′, x0) = δ(x − x0),
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or
LxG(x, x0) = δ(x − x0). (29.30)

A function which satisfies this equation is called the Green’s function for
the differential operator Lx. If we can find the Green’s function for Lx, then
the solution to the differential equation Lxy(x) = f(x) can be written as the
generalization of (29.26):

y(x) =
∫ b

a

G(x, x′)f(x′) dx′. (29.31)

To show this, note that

Lxy(x) = Lx

∫ b

a

G(x, x′)f(x′) dx′ =
∫ b

a

LxG(x, x′)f(x′) dx′

=
∫ b

a

δ(x − x′)f(x′) dx′ = f(x).

Green’s functions are powerful tools for solving differential equations. Or-
dinary differential equations have ordinary derivatives and the differential
operator involves a single variable. Partial differential equations correspond
to differential operators involving several variables. If x denotes the collec-
tion of all these variables, then the differential operator can be denoted by Lx

and the Green’s function by G(x,x′), which satisfies the partial differential
equation

LxG(x,x′) = δ(x − x′). (29.32)

Since Fourier transform turns differentiation into multiplication, and the
Dirac delta function has a very simple inverse Fourier transform, Green’s
function are very elegantly calculated via Fourier transform techniques. For
example, if Lx is a second order partial differential operator with constant
coefficients in n variables, then Fourier transforming only the x variables and
writing

G(x,x′) =
1

(2π)n/2

∫
dnkG̃(k,x′)eik·x,

δ(x − x′) =
1

(2π)n

∫
dnkeik·(x−x′), (29.33)

the differential equation (29.32) becomes
∫

dnkG̃(k,x′)Lxeik·x =
1

(2π)n/2

∫
dnkeik·(x−x′) =

1
(2π)n/2

∫
dnkeik·xe−ik·x′

.

When Lx acts on the exponential, it produces a polynomial p(kj) of second Green’s function
in n dimensionsdegree in components kj of k. Therefore, equating the coefficient of eik·x on

both sides, we obtain

G̃(k,x′)p(kj) =
1

(2π)n/2
e−ik·x′

or G̃(k,x′) =
1

(2π)n/2

e−ik·x′

p(kj)
.
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Substituting this in the first equation of (29.33), we get

G(x,x′) =
1

(2π)n

∫
dnk

eik·(x−x′)

p(kj)
,

which shows that the Green’s function is a function of the difference between
its arguments. We therefore have

G(x − x′) =
1

(2π)n

∫
dnk

eik·(x−x′)

p(kj)
. (29.34)

29.2.1 Green’s Function for the Laplacian

Equation (29.17) tells us that p(kj) = −k2 for the Laplacian. Thus, with
n = 3, (29.34) becomes

G(r − r′) = − 1
(2π)3

∫
d3k

eik·(r−r′)

k2
. (29.35)

To evaluate this integral, use spherical coordinates in the k-space, and choose
the polar axis to be along the vector r − r′. Then, d3k = k2 sin θdkdθdϕ and
(29.35) becomes

G(r − r′) = − 1
(2π)3

∫ ∞

0

k2dk

∫ π

0

sin θdθ

∫ 2π

0

dϕ
eik|r−r′| cos θ

k2
.

The ϕ integration gives 2π. For the θ integration, let u = cos θ. Then the
integral becomes

G(r − r′) =
1

(2π)2

∫ ∞

0

dk

∫ −1

1

dueik|r−r′|u =
1

(2π)2

∫ ∞

0

dk
eik|r−r′|u

ik|r− r′|

∣
∣
∣
∣
∣

−1

1

=
1

(2π)2|r − r′|

∫ ∞

0

dk
e−ik|r−r′| − eik|r−r′|

ik

= − 2
(2π)2|r − r′|

∫ ∞

0

dk
sin (k|r− r′|)

k
.

Example 21.3.3 calculated the last integral and yielded π/2 for it. We thus
obtain the important result that for the Laplacian, the Green’s function is

G(r − r′) = − 1
4π|r− r′| . (29.36)

From this and ∇2G(r − r′) = δ(r − r′), we obtain another important result:

∇2

(
1

|r− r′|

)

= −4πδ(r− r′). (29.37)
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With the Green’s function of the Laplacian at our disposal, we can solve
the Poisson equation ∇2Φ(r) = −4πkeρ(r) in electrostatics, using the three-
dimensional version of Equation (29.31): Green’s function

solves Poisson
equationΦ(r) = −4πke

∫
d3x′G(r − r′)ρ(r′) = ke

∫
d3x′ ρ(r′)

|r − r′| ,

which is the electrostatic potential of a charge distribution described by the
volume charge density ρ(r).

29.2.2 Green’s Function for the Heat Equation

The heat equation was given in (22.3), which, due to the special significance
attached to the letter k in this chapter, we write as

∂T

∂t
= κ2∇2T (r), or

∂T

∂t
− κ2∇2T (r) = 0. (29.38)

This is a PDE in four variables. We let t be the “zeroth” coordinate, and r
the remaining three. Similarly, the 4-dimensional k space consists of k0 and
k. The polynomial p(kj) of Equation (29.34) is

p(kj) = ik0 + κ2
(
k2
1 + k2

2 + k2
3

)
≡ ik0 + κ2k2.

Hence, with n = 4, (29.34) gives

G(x − x′) =
1

(2π)4

∫
d4k

eik0(x0−x′
0)+ik·(r−r′)

ik0 + κ2k2

=
1

(2π)4

∫
d3keik·(r−r′)

∫ ∞

−∞
dk0

eik0(x0−x′
0)

ik0 + κ2k2
. (29.39)

Let’s do the k0 integration first. Multiply the numerator and denominator by
−i to change the denominator to k0 − iκ2k2; then use the calculus of residues
and choose the contour in the UHP (assuming that x0 − x′

0 > 0). The only
pole of the integrand is at k0 = iκ2k2. Thus,

∫ ∞

−∞
dk0

eik0(x0−x′
0)

ik0 + κ2k2
= −i

∫ ∞

−∞
dk0

eik0(x0−x′
0)

k0 − iκ2k2
= −i

(
2πie−κ2k2(x0−x′

0)
)

.

Substituting this in (29.39) and using spherical coordinates in the 3-dimensional
k-space with the polar axis along r − r′ yields

G(x − x′) =
1

(2π)3

∫
d3keik·(r−r′)e−κ2k2(x0−x′

0)

=
1

(2π)3

∫ ∞

0

k2e−κ2k2(x0−x′
0)dk

∫ π

0

sin θdθ

∫ 2π

0

dϕeik|r−r′| cos θ.

The ϕ integration yields 2π, and as in the Laplacian case, the θ integration
gives 2 sin(k|r − r′|)/(k|r − r′|); and since the resulting integrand of the k
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integral is even, we can extend the lower limit of integration to −∞ and
introducing a factor of half. Thus, the equation above becomes

G(x − x′) =
2

(2π)2|r − r′|

∫ ∞

0

ke−κ2k2(x0−x′
0) sin(k|r − r′|)dk

=
1

(2π)2|r − r′|

∫ ∞

−∞
ke−κ2k2(x0−x′

0) sin(k|r − r′|)dk,

or, since sine is the imaginary part of complex exponential,

G(x − x′) =
1

(2π)2|r − r′| Im
∫ ∞

−∞
ke−κ2k2(x0−x′

0)eik|r−r′|dk

=
1

(2π)2|r − r′| Im
∫ ∞

−∞
ke−κ2k2(x0−x′

0)+ik|r−r′|dk. (29.40)

Completing the square in the exponent, we have

−κ2k2(x0−x′
0)+ik|r−r′| = −κ2(x0−x′

0)
(

k − i|r− r′|
2κ2(x0 − x′

0)

)2

− |r − r′|2
4κ2(x0 − x′

0)
.

Call the imaginary number in the large parentheses iα and substitute the
result in (29.40) to obtain

G(x − x′) =
e
− |r−r′|2

4κ2(x0−x′
0)

(2π)2|r − r′| Im
∫ ∞

−∞
ke−κ2(x0−x′

0)(k−iα)2dk. (29.41)

Change the variable of integration to u = k − iα. Then the integral becomes
∫ ∞

−∞
(u + iα)e−κ2(x0−x′

0)u
2
du = iα

∫ ∞

−∞
e−κ2(x0−x′

0)u
2
du = iα

√
π

κ2(x0 − x′
0)

.

The integral involving the u of (u+ iα) vanishes because the integrand is odd.
The Gaussian integral was evaluated in Example 3.3.1. Substituting this and
the value of α in (29.41), we obtain

G(x − x′) =
e
− |r−r′|2

4κ2(x0−x′
0)

(2π)2|r − r′|
|r − r′|

2κ2(x0 − x′
0)

√
π

κ2(x0 − x′
0)

,

or, recalling that x0 = t and assuming that x′
0 = t′ = 0, yields the final form

of the Green’s function for the heat equation:Green’s function
for heat equation

G(r − r′; t) =
e−

|r−r′|2
4κ2t

(4πκ2t)3/2
. (29.42)
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29.2.3 Green’s Function for the Wave Equation

The wave equation, which we write as

1
c2

∂2Ψ
∂t2

−∇2Ψ = 0, (29.43)

with c the speed of the wave, is a PDE in 4 variables. As in the case of the
heat equation, we let the fourth variable have 0 as subscript. Then

p(kj) = −k2
0

c2
+ k2

1 + k2
2 + k2

3 ≡ −k2
0

c2
+ k2,

and the Green’s function can be written as

G(x − x′) = − 1
(2π)4

∫
d4k

eik0(x0−x′
0)+ik·(r−r′)

k2
0/c2 − k2

= − c2

(2π)4

∫
d3keik·(r−r′)

∫ ∞

−∞
dk0

eik0t

k2
0 − c2k2

, (29.44)

where we substituted t for x0 and assumed x′
0 = t′ = 0.

Let us concentrate on the k0 integration and use the calculus of residues
to calculate it. The integrand has two poles k0 = ±ck on the real axis, and
depending on how these poles are handled, different Green’s functions are
obtained. One way to handle the poles is to move them up slightly, i.e.,
give them an infinitesimal positive imaginary part. If t > 0, the contour of
integration should be in the UHP with zero contribution from the large circle
there. If t < 0, the contour of integration should be in the LHP for which
the integral vanishes because there are no poles inside the contour. Thus,
denoting the integrand by f , we have

∫ ∞

−∞
dk0

eik0t

k2
0 − c2k2

= 2πi [Res(f(ck)) + Res(f(−ck))] .

But

Res(f(ck)) = lim
k0→ck

{

(k0 − ck)
eik0t

k2
0 − c2k2

}

= lim
k0→ck

{
eik0t

k0 + ck

}

=
eickt

2ck
.

Similarly, Res(f(ck)) = −e−ickt/2ck, and the k0 integral gives
∫ ∞

−∞
dk0

eik0t

k2
0 − c2k2

= 2πi

(
eickt

2ck
− e−ickt

2ck

)

= −2π
sin ckt

ck
.

Substituting this in (29.44) yields

G(x − x′) =
c

(2π)3

∫
d3keik·(r−r′) sin ckt

k
,
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which, through a by-now-familiar routine in k-space spherical integration
yields

G(r − r′; t) =
2c

(2π)2|r − r′|

∫ ∞

0

dk sin(k|r − r′|) sin ckt

=
c

(2π)2|r − r′|

∫ ∞

−∞
dk

eik|r−r′| − e−ik|r−r′|

2i

eickt − e−ickt

2i
.

Multiply the exponentials and note that
∫∞
−∞ e−ixdx =

∫∞
−∞ eixdx to obtain

G(r − r′; t) = − c

4(2π)2|r − r′|2
∫ ∞

−∞
dk

[
eick(t+|r−r′|/c) − eick(t−|r−r′|/c)

]

= − 1
2(2π)2|r − r′| [2πδ(t + |r − r′|/c) − 2πδ(t − |r − r′|/c)] .

(29.45)

The first delta function vanishes because t > 0. Therefore, the final form ofRetarded Green’s
function for wave
equation

the Green’s function for the wave equation is

Gret(r − r′; t) =
δ(t − |r − r′|/c)

4π|r − r′| . (29.46)

The subscript “ret” on the Green’s function stands for retarded. As the
argument of the delta function implies, Gret(r − r′; t) is zero unless t = |r −
r′|/c, i.e., unless the wave has had time to move from the source point r′ to the
observation point r. The signal is “retarded” by this amount of time. Had we
given the poles of the k0 integral of (29.44) an infinitesimal negative imaginary
part and chosen t to be negative, the first delta function of (29.45) would have
survived and we would have obtained the advanced Green’s function:Advanced Green’s

function for wave
equation Gadv(r − r′; t) =

δ(t + |r − r′|/c)
4π|r − r′| . (29.47)

29.3 The Laplace Transform

In the previous section, the power of the Fourier transform was illustrated by
formalism and application. Fourier transform is by far the most important of
all the transforms used in mathematical analysis. Another transform which is
widely used in solving ordinary differential equations is the Laplace transform,
the subject of this section.

Let f(t) be a sufficiently well-behaved function. The Laplace transform
of f is another function L[f ] whose value at s is given byLaplace transform

defined

L[f ](s) =
∫ ∞

0

e−stf(t) dt. (29.48)



29.3 The Laplace Transform 713

s could be complex, although it is usually taken to be real. To assure the
convergence of the integral, s must have a positive real part. The left-hand
side of (29.48) is usually denoted by F (s). It is also common to write it (less
precisely) as L[f(t)] with the letter s understood!

Example 29.3.1. The Laplace transform of the unit function—the function whose
value everywhere is 1—evaluated at s can easily be shown to be 1/s. The Laplace
transform of eiωt can be readily calculated as well:

F (s) =

∫ ∞

0

e−steiωt dt =

∫ ∞

0

e(−s+iω)t dt =
e(−s+iω)t

−s + iω

∣
∣
∣
∣

∞

0

=
1

s − iω
.

The Laplace transforms of sin ωt and cos ωt can now be evaluated:

L[cos ωt] = Re
(
L[eiωt]

)
= Re

(
1

s − iω

)

= Re

(
s + iω

s2 + ω2

)

=
s

s2 + ω2
, (29.49)

and

L[sin ωt] = Im
(
L[eiωt]

)
= Im

(
1

s − iω

)

= Im

(
s + iω

s2 + ω2

)

=
ω

s2 + ω2
. (29.50)

The Laplace transform of the step function θ(t−a) is very useful in applications
[see Section 5.1.3 for the definition of the step function].

L[θ(t − a)] =

∫ ∞

0

e−stθ(t − a) dt =

∫ ∞

a

e−st dt =
e−as

s
.

The lower limit of integration was changed because θ(t− a) is zero for t < a (and it
is equal to 1 for t > a).

Knowing L[1], we can find the Laplace transform of any power of t because

L[tn] =

∫ ∞

0

tne−st dt = (−1)n dn

dsn

∫ ∞

0

e−st dt.

Since L[1](s) = 1/s, we have

L[tn] = (−1)n dn

dsn

(
1

s

)

=
n!

sn+1
. (29.51)

What if n in the above equation is not an integer? Let’s evaluate L[tν ] directly.

L[tν ] =

∫ ∞

0

tνe−st dt =

∫ ∞

0

(u

s

)ν

e−u 1

s
du =

1

sν+1

∫ ∞

0

uνe−u du =
Γ(ν + 1)

sν+1
,

(29.52)
where Γ is the gamma function introduced in Section 11.1.1. Note that if ν = n, we
regain (29.51) because Γ(n + 1) = n!. �

29.3.1 Properties of Laplace Transform

In a typical application, one obtains the Laplace transform of a function from,
say a differential equation, and inverts it to find the actual function. This is
what was done in the case of the Fourier transform, and indeed in any other
transform used. While the formula for inverting a Fourier transform [see
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Equation (29.7)] is nice and symmetric, that for the Laplace transform is not
as nice. Furthermore, Fourier transform adapts itself very naturally to partial
differential equations as demonstrated in the previous section. However, the
adaptation of Laplace transform to PDEs is not so natural. That is why the
Fourier transform techniques are much more powerful—both formally and for
calculations—than the Laplace transform.

Because of this drawback, one has to rely on some formal properties of the
Laplace transform and its inverse—as well as a lot of examples—to be able to
reconstruct the original function.

Linearity

One such property is the linearity of the Laplace transform and it inverse:

L[af + bg] = aL[f ] + bL[g], L−1[af + bg] = aL−1[f ] + bL−1[g]. (29.53)

First shift property

Another is the first shift property. If F (s) is the Laplace transform of f(t),
then F (s− a) is the Laplace transform of eatf(t). This can easily be verified:

F (s−a) =
∫ ∞

0

e−(s−a)tf(t) dt =
∫ ∞

0

e−st
(
eatf(t)

)
dt = L[eatf(t)]. (29.54)

A more useful way of writing this equation is

L−1[F (s − a)] = eatL−1[F (s)]. (29.55)

Second shift property

The second shift property involves the step function:

L[θ(t − a)f(t − a)] = e−asL[f ](s). (29.56)

This is because

L[θ(t−a)f(t−a)] =
∫ ∞

a

e−stf(t−a) dt =
∫ ∞

0

e−s(τ+a)f(τ) dτ = e−asL[f ](s),

where in the second equality we changed the variable of integration to τ = t−a.
Denoting by F (s) the Laplace transform of f(t), we write (29.56) as

L−1[e−asF (s)] = θ(t − a)f(t − a) =

{
f(t − a) if a > 0
0 if a < 0.

(29.57)

Example 29.3.2. Since L[tn] = n!/sn+1, using the first shift property, we get

L[tneat] =
n!

(s − a)n+1
. (29.58)
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In particular, if n = 0, we have L[eat] = 1/(s − a). From this, and the linearity
property, we can find the Laplace transforms of the hyperbolic sine:

L[sinh γt] = L[ 1
2

(
eγt − e−γt)] =

1

2

(
L[eγt] − L[e−γt]

)

=
1

2

(
1

s − γ
− 1

s + γ

)

=
γ

s2 − γ2
(29.59)

and hyperbolic cosine:

L[cosh γt] = L[ 1
2

(
eγt + e−γt

)
] =

1

2

(
L[eγt] + L[e−γt]

)

=
1

2

(
1

s − γ
+

1

s + γ

)

=
s

s2 − γ2
. (29.60)

With our accumulated knowledge of the Laplace transform, let’s see if we can find
the inverse transform of 1/(s2 + 2as + b2). Complete the square in the denominator
and consider three cases: b > a, b < a, and b = 0. First assume b > a and define
ω2 = b2 − a2. Then

L−1

[
1

(s + a)2 + b2 − a2

]

=
1

ω
L−1

[
ω

(s + a)2 + ω2

]

=
e−at

ω
L−1

[
ω

s2 + ω2

]

=
e−at

ω
sinωt

where we used (29.55) and (29.50). Substituting for ω, we get

L
−1

[
1

s2 + 2as + b2

]

=
e−at

√
b2 − a2

sin(
√

b2 − a2 t), a < b.

For b < a define γ2 = a2 − b2. Then

L−1

[
1

(s + a)2 + b2 − a2

]

=
1

γ
L−1

[
γ

(s + a)2 − γ2

]

=
e−at

γ
L−1

[
γ

s2 − γ2

]

=
e−at

γ
sinh γt

where we used (29.55) and (29.59). Substituting for γ, we get

L
−1

[
1

s2 + 2as + b2

]

=
e−at

√
a2 − b2

sinh(
√

a2 − b2 t), a > b.

If b = a, then the denominator is a complete square and

L
−1

[
1

(s + a)2

]

= e−att

by (29.58).
Similarly, we can show that

L
−1

[
s

s2 + 2as + b2

]

=e−at cos(
√

b2 − a2 t)

− a√
b2 − a2

e−at sin(
√

b2 − a2 t), b > a

L
−1

[
s

s2 + 2as + b2

]

=e−at cosh(
√

a2 − b2 t)

− a√
a2 − b2

e−at sinh(
√

a2 − b2 t), b < a

We shall use the formulas derived in this example in solving differential
equations. �
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Periodic functions

Although Fourier series are better suited for periodic functions, Laplace trans-
form of periodic functions is also of interest. If f(t) is periodic of period T ,
i.e., if f(t + T ) = f(t), then

L[f(t)] =
∫ T

0

e−stf(t) dt

︸ ︷︷ ︸
call this F1(s)

+
∫ ∞

T

e−stf(t) dt = F1(s) +
∫ ∞

0

e−s(u+T )f(u + T ) du

= F1(s) + e−sT

∫ ∞

0

e−suf(u) du = F1(s) + e−sT

=L[f(t)]
︷ ︸︸ ︷∫ ∞

0

e−stf(t) dt .

We thus have L[f(t)] = F1(s) + e−sT L[f(t)], which upon solving for L[f(t)]
yields

L[f(t)] =
1

1 − e−sT
F1(s). (29.61)

Example 29.3.3. The Laplace transform of the square wave function of Example
10.6.1 defined by

V (t) =

{
V0 if 0 ≤ t ≤ T,

0 if T < t ≤ 2T,

can be readily found. We simply note that the period is 2T and F1(s) is

F1(s) =

∫ 2T

0

e−stV (t) dt = V0

∫ 2T

T

e−st dt =
V0

s
(e−sT − e−2sT ).

Substituting this in (29.61), we obtain

L[V (t)] =
1

1 − e−2sT

[
V0

s
(e−sT − e−2sT )

]

=
V0e

−sT (1 − e−sT )

s(1 − e−sT )(1 + e−sT )
=

V0e
−sT

s(1 + e−sT )
=

V0

s(1 + esT )
.

�

Convolution

The convolution of two functions is defined as

(f ∗ g)(t) =
∫ t

0

f(u)g(t − u)du.

Let v = t − u and change the variable of integration to v. Then

(f ∗ g)(t) =
∫ 0

t

f(t − v)g(v)(−dv) =
∫ t

0

g(v)f(t − v)dv = (g ∗ f)(t),

showing that convolution is commutative. Commutativity is only one of the
following properties of convolution:
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1. c(f ∗ g) = cf ∗ g = f ∗ cg, c a constant;

2. f ∗ g = g ∗ f (commutative property);

3. f ∗ (g ∗ h) = (f ∗ g) ∗ h (associative property);

4. f ∗ (g + h) = f ∗ g + f ∗ h (distributive property).

The notion of convolution is useful for Laplace transform because one can
show the following:

Box 29.3.1. The Laplace transform of the convolution of two functions
is the product of the Laplace transforms of the two functions:

L[f ∗ g](s) = L[f ](s) · L[g](s) or (f ∗ g)(t) = L−1
[
L[f ](s) · L[g](s)

]

Example 29.3.4. Suppose we want to find the inverse transform of s/(s2 + a2)2.
We can write this as [see Equations (29.49) and (29.50)]

s

(s2 + a2)2
=

1

a

s

s2 + a2
· a

s2 + a2
=

1

a
L[cos at] · L[sin at].

Therefore,

L
−1

[
s

(s2 + a2)2

]

=
1

a
cos at ∗ sin at =

1

a

∫ t

0

cos au sin a(t − u)du =
1

2a
t sin at.

Similarly

L
−1

[
s2

(s2 + a2)2

]

= L
−1

[
L[cos at] · L[cos at]

]
= cos at ∗ cos at

=

∫ t

0

cos au cos a(t − u)du =
1

2
t cos at +

1

2a
sin at. �

29.3.2 Derivative and Integral of the Laplace Transform

By differentiating the integral of a Laplace transform, one can easily obtain
the formulas

dn

dsn
F (s) = L[(−1)ntnf(t)] or L−1

[
F (n)(s)

]
= (−1)ntnL−1[F (s)],

(29.62)
where F (n) denotes the nth derivative of F . For n = 1, this formula leads to
the following useful relation:

L−1 [F (s)] = −1
t
L−1 [F ′(s)] , (29.63)

because sometimes it is easier to find the inverse Laplace transform of the
derivative of a function than the function itself.
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Example 29.3.5. It is not easy to find the inverse transform of F (s) = ln[(s +
a)/(s + b)] directly. But the inverse transform of

F ′(s) =
d

ds
[ln(s + a) − ln(s + b)] =

1

s + a
− 1

s + b

is much easier to find. In fact,

L
−1

[
F ′(s)

]
= L

−1

[
1

s + a

]

− L
−1

[
1

s + b

]

= e−at − e−bt,

by (29.58) with n = 0. Therefore, according to (29.63)

L
−1

[

ln
s + a

s + b

]

=
e−bt − e−at

t
. �

One can also find the primitive (antiderivative, indefinite integral) of F (s).
Recall that the indefinite integral of a function can be written as a definite
integral with one of its limits being a variable [see Equation (3.18)]. Therefore,
let’s write the indefinite integral of F (s) as −

∫∞
s

F (u) du. This integral can
be easily evaluated:

∫ ∞

s

F (u) du =
∫ ∞

s

du

∫ ∞

0

e−utf(t) dt =
∫ ∞

0

f(t) dt

∫ ∞

s

e−utdu

=
∫ ∞

0

f(t) dt

(

−e−ut

t

∣
∣
∣
∣

u=∞

u=s

)

=
∫ ∞

0

e−st f(t)
t

dt.

This can be written as
∫ ∞

s

L[f ](u) du = L

[
f(t)

t

]

. (29.64)

Example 29.3.6. Let’s use (29.64) to find the Laplace transform of sin ωt/t. From
(29.50), we have

L

[
sin ωt

t

]

=

∫ ∞

s

ω

u2 + ω2
du = tan−1

( u

ω

)∣∣
∣
∞

s
=

π

2
− tan−1

( s

ω

)
= tan−1

(ω

s

)

(see Problem 29.17 for the last equality). Similarly,

L

[
sinh γt

t

]

=

∫ ∞

s

γ

u2 − γ2
du =

1

2
lim

x→∞

∫ x

s

(
1

u − γ
− 1

u + γ

)

du

=
1

2
lim

x→∞

(

ln
x − γ

x + γ
− ln

s − γ

s + γ

)

=
1

2
ln

s + γ

s − γ
. �

29.3.3 Laplace Transform and Differential Equations

Certain differential equations with appropriate boundary conditions or initial
values can be nicely solved by Laplace transform techniques. For the appli-
cation of Laplace transform to differential equations, we need to know the
transform of the derivative of a function. Using integration by parts, we have

∫ ∞

0

e−stf ′(t) dt = e−stf(t)
∣
∣∞
0

+ s

∫ ∞

0

e−stf(t) dt = −f(0) + sL[f ](s).
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Therefore,
L[f ′](s) = sL[f ](s) − f(0). (29.65)

This can be iterated to give

L[f ′′](s) = sL[f ′](s) − f ′(0) = s[sL[f ](s) − f(0)] − f ′(0),

or
L[f ′′](s) = s2L[f ](s) − sf(0) − f ′(0). (29.66)

We can continue iterating the formula, but since most differential equations
encountered in applications are of second order, we stop at the second deriva-
tive.

To solve a differential equation, take the Laplace transform of both sides
and use (29.65) and (29.66). Solve for L[f ](s) and take the inverse transform
to find the solution. Let’s look at a specific example. Consider a mass m
attached to a spring of spring constant k. The differential equation of motion
of this system is

mẍ + kx = 0 or ẍ + ω2
0x = 0, ω0 =

√
k

m
.

Taking the Laplace transform of both sides gives

L[ẍ](s) + ω2
0L[x](s) = 0.

Using (29.66), this becomes

s2L[x](s) − sx(0) − ẋ(0) + ω2
0L[x](s) = 0,

or, letting x0 = x(0) and ẋ0 = ẋ(0), we get

(s2 + ω2
0)L[x](s) = sx0 + ẋ0 or L[x](s) =

x0s + ẋ0

s2 + ω2
0

,

and from (29.49) and (29.50) we obtain

x(t) = x0L
−1

[
s

s2 + ω2
0

]

+
ẋ0

ω0
L−1

[
ω0

s2 + ω2
0

]

= x0 cosω0t +
ẋ0

ω0
sinω0t.

Note how the initial values are automatically included in the solution.
A more general problem has a damping term as well as a driving force.

This leads to a differential equation of the form

ẍ + γẋ + ω2
0x = f(t), ω0 =

√
k

m
. (29.67)

To solve this, once again take the Laplace transform of both sides:

L[ẍ](s) + γL[ẋ](s) + ω2
0L[x](s) = L[f ](s),
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and use (29.65) and (29.66) to get

s2L[x](s) − x0s − ẋ0 + γ{sL[x](s) − x0} + ω2
0L[x](s) = L[f ](s),

where x0 = x(0) and ẋ0 = ẋ(0). Therefore,

(s2 + γs + ω2
0)L[x](s) = L[f ](s) + x0s + ẋ0 + γx0,

which yields

L[x](s) =
L[f ](s) + x0s + ẋ0 + γx0

s2 + γs + ω2
0

.

The solution can be obtained by inversion once we know L[f ](s). Symbolically,
we write

x(t) = L−1

[
L[f ](s)

s2 + γs + ω2
0

]

+ x0L
−1

[
s

s2 + γs + ω2
0

]

+ (ẋ0 + γx0)L−1

[
1

s2 + γs + ω2
0

]

. (29.68)

We consider only the case of a damped harmonic oscillator, i.e., that
ω0 > γ/2. The second and third inversions are given in Example 29.3.2
with a = γ/2 and b = ω0. Then, with Ω ≡

√
ω2

0 − (γ/2)2, we have

L−1

[
s

s2 + γs + ω2
0

]

= e−γt/2 cosΩt − γ

2Ω
e−γt/2 sin Ωt,

L−1

[
1

s2 + γs + ω2
0

]

=
e−γt/2

Ω
sin Ωt. (29.69)

Substituting these in (29.68), we obtain

x(t) = e−γt/2

(

x0 cosΩt +
ẋ0 + x0γ/2

Ω
sinΩt

)

+ L−1

[
L[f ](s)

s2 + γs + ω2
0

]

.

(29.70)
Let us denote the last term of this equation by Φ(t) and evaluate the equation
at t = 0 to obtain x(0) = x0 + Φ(0) implying that Φ(0) = 0. Similarly,
differentiating the equation and evaluating the result at t = 0 yields ẋ(0) =
ẋ0 + Φ̇(0) implying that Φ̇(0) = 0. This is an interesting result since f(t)
is quite arbitrary! The following example looks at a specific instance of this
result.

Example 29.3.7. As an example of the general formula (29.70), let’s consider a
damped harmonic oscillator driven by a sinusoidal source f(t) = A sin ω0t operating
at the natural frequency of the oscillator as given in (29.67). Then by (29.50)

L[f ](s) = L[A sin ω0t] =
Aω0

s2 + ω2
0

,

and the last term of (29.70) becomes

L
−1

[
Aω0

(s2 + ω2
0)(s

2 + γs + ω2
0)

]

.
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Using partial fraction techniques, we can write this as

Aω0

(s2 + ω2
0)(s

2 + γs + ω2
0)

=
A

γω0

s

s2 + γs + ω2
0

+
A

ω0

1

s2 + γs + ω2
0

− A

γω0

s

s2 + ω2
0

.

Each term can now be inverted using the results we have obtained in several exam-
ples. Denoting the final result by Φ(t), we get

Φ(t) ≡ L
−1

[
L[f ](s)

s2 + γs + ω2
0

]

= − A

γω0
cos ω0t +

A

γω0
e−γt/2

(
cosΩt +

γ

2Ω
sin Ωt

)
.

Note that Φ(0) = 0 as expected from the discussion above. Differentiating, we
obtain

Φ̇(t) =
A

γ
sin ω0t − A

2ω0
e−γt/2

(
cos Ωt +

γ

2Ω
sinΩt

)
+

A

γω0
e−γt/2

(
−Ω sinΩt +

γ

2
cos Ωt

)
.

It is readily verified that Φ̇(0) = 0 as explained above. Substituting Φ(t) for the
last term of (29.70) yields

x(t) = e−γt/2

(

x0 cos Ωt +
ẋ0 + x0γ/2

Ω
sin Ωt

)

− A

γω0
cos ω0t +

A

γω0
e−γt/2

(
cos Ωt +

γ

2Ω
sin Ωt

)
. (29.71)

After a long time (i.e., as t → ∞), the terms containing an exponential—the so-
called transient terms—will be negligible and x(t) → − A

γω0
cos ω0t as expected from

the elementary analysis of the same problem. �

We can understand this interesting behavior of Φ(t) in terms of the prop-
erties of convolution. Let g(t) be the inverse transform of 1/(s2 + γs + ω2

0).
Then invoking Box 29.3.1, the last term of (29.70) can be written as

Φ(t) = L−1
[
L[f ](s) · L[g](s)

]
= (f ∗ g)(t) =

∫ t

0

f(u)g(t − u)du,

whose derivative is (see Box 3.2.2)

Φ̇(t) = f(t)g(0) +
∫ t

0

f(u)ġ(t − u)du.

It is now clear why Φ(0) = 0. As for the derivative, we see that Φ̇(0) =
f(0)g(0). But g(t) is given by (29.69) which is clearly 0 at t = 0.

29.3.4 Inverse of Laplace Transform

As mentioned earlier, the procedure for inverting a Laplace transform is im-
portant in solving differential equations, as the technique—like any other
transform—yields the transform of the solution, and to get the solution, one
has to invert that transform. So far, we have used various tricks and prop-
erties of the Laplace transform to get from F (s) ≡ L[f ](s) to f(t). Now, we
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provide a general formula that can always be used to yield the function. The
procedure is the Mellin inversion integral:Mellin inversion

integral

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
F (s)estds. (29.72)

The integration is along a line, called the Bromwich contour, parallel toBromwich contour

the imaginary axis of the complex s plane. The real number γ is arbitrary as
long as the integration line is to the right of all the singularities of F (s). To
find the actual value of the integral, one closes the contour with an infinite
semicircle to the left of the line and uses the residue theorem.

To prove that the right-hand side of (29.72) is indeed f(t), substitute the
definition of F (s),

F (s) =
∫ ∞

0

f(τ)e−sτdτ,

in the integral and switch the order of integrations to get

RHS =
1

2πi

∫ ∞

0

f(τ)dτ

∫ γ+i∞

γ−i∞
es(t−τ)ds

︸ ︷︷ ︸
Denote this by J

. (29.73)

Introduce a new variable of integration σ by s = γ + iσ in the inner integral
to get

J =
∫ ∞

−∞
e(γ+iσ)(t−τ)idσ = ieγ(t−τ)

∫ ∞

−∞
eiσ(t−τ)dσ

︸ ︷︷ ︸
=2πδ(t−τ) by (18.28)

= 2πiδ(t − τ).

The last step follows because δ(t − τ) = 0 unless t = τ in which case the
exponent of the exponential is zero. Substituting this in (29.73) and noting
that τ > 0, we get RHS = f(t).

To see why the integration line must lie to the right of all singularities,
take the Laplace transform of both sides of (29.72):

L[f(t)] =
1

2πi

∫ ∞

0

e−st

(∫ γ+i∞

γ−i∞
F (σ)eσtdσ

)

dt

=
1

2πi

∫ γ+i∞

γ−i∞
F (σ)dσ

∫ ∞

0

e(σ−s)tdt = − 1
2πi

∫ γ+i∞

γ−i∞

F (σ)
σ − s

dσ,

assuming that Re(s) > Re(σ) = γ. If F (σ) is analytic to the right of the
Bromwich contour, then closing the infinite semicircle on the right, there will
be a single pole at σ = s inside the closed contour, and the residue theorem
gives the value of the integral as −2πiF (s), with the negative sign coming
from the clockwise integration. If any of the poles of F were on the right of
the Bromwich contour we would not obtain −2πiF (s) for the integration.
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Example 29.3.8. Let us find the inverse Laplace transform of F (s) = 1/(s2+ω2).
This is given by

f(t) =
1

2πi

∫ γ+i∞

γ−i∞

est

s2 + ω2
ds

where the contour of integration includes the infinite semicircle to the left. The
poles of the integrand are at ±iω, so as long as γ > 0, the contour encloses both
poles. The residue theorem then yields

f(t) =
1

2πi

{

2πi

[

Res

(
est

(s − iω)(s + iω)

)∣
∣
∣
∣
s=iω

+ Res

(
est

(s − iω)(s + iω)

)∣
∣
∣
∣
s=−iω

]}

=
eiωt

2iω
+

e−iωt

−2iω
=

1

ω
sin ωt

which is the expected result (see Example 29.3.1). �

We can similarly find the inverse Laplace transform of F (s) = s/(s2 +ω2):

f(t) =
1

2πi

∫ γ+i∞

γ−i∞

sest

s2 + ω2
ds

The contour of integration again includes the infinite semicircle to the left,
and the poles of the integrand are at ±iω, as above. The residue theorem now
yields

f(t) =
1

2πi

{

2πi

[

Res
(

sest

(s − iω)(s + iω)

)∣
∣
∣
∣
s=iω

+ Res
(

sest

(s − iω)(s + iω)

)∣
∣
∣
∣
s=−iω

]}

=
iωeiωt

2iω
+

−iωe−iωt

−2iω
= cosωt

which is also treated in Example 29.3.1.

29.4 Problems

29.1. Find directly the Fourier transform of
(a) the constant function f(x) = C, and
(b) the Dirac delta function δ(x).

29.2. Show the second identity in (29.8).

29.3. Show that the inverse of a sine transform is another sine transform.

29.4. Show (29.9), the linearity property of Fourier transform and its inverse.

29.5. Suppose that f̃(k) is the inverse Fourier transform of f(x). Show that
the inverse Fourier transform of f(x + a) is eiakf̃(k).
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29.6. Show that if f(t) = cosω0t, then

f̃(ω) =
√

π

2
[δ(ω − ω0) + δ(ω + ω0)] .

29.7. Show that
(a) g(x) is real if and only if g̃∗(k) = g̃(−k),
(a) g(x) is imaginary if and only if g̃∗(k) = −g̃(−k), and
(c) if g(x) is even (odd), then g̃(k) is also even (odd).

29.8. Evaluate the Fourier transform of

g(x) =

{
b − b|x|/a if |x| < a,

0 if |x| > a.

29.9. Let

f(t) =

{
sinω0t if |t| < T,

0 if |t| > T.

Show that

f̃(ω) =
1√
2π

{
sin[(ω − ω0)T ]

ω − ω0
− sin[(ω + ω0)T ]

ω + ω0

}

.

Verify the uncertainty relation ΔωΔt ≈ 4π.

29.10. If f(x) = g(x + a), show that f̃(k) = e−iakg̃(k).

29.11. For a > 0 find the Fourier transform of f(x) = e−a|x|. Is f̃(k) sym-
metric? Is it real? Verify the uncertainty relations.

29.12. The displacement of a damped harmonic oscillator is given by

f(t) =

{
Ae−αteiω0t if t > 0,

0 if t < 0.

Find f̃(ω) and show that the frequency distribution |f̃(ω)|2 is given by

|f̃(ω)|2 =
A2

2π

1
(ω − ω0)2 + α2

.

29.13. Prove the convolution theorem for Fourier transform:convolution
theorem for
Fourier transform

∫ ∞

−∞
f(x)g(y − x) dx =

∫ ∞

−∞
f̃(k)g̃(k)eiky dk.

What will this give when y = 0?

29.14. Prove Parseval’s relation for Fourier transforms:Parseval’s relation
∫ ∞

−∞
f(x)g∗(x) dx =

∫ ∞

−∞
f̃(k)g̃∗(k) dk.
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29.15. Find the sine and cosine transform of e−ax.

29.16. Following Example 29.1.6, substitute the Fourier Transform of the
wave function Ψ(x, t) in the one-dimensional wave equation

1
c2

∂2Ψ
∂t2

=
∂2Ψ
∂x2 ,

and solve the differential equation in t to get

Ψ̃(k, t) = C(k)e±ickt.

Assuming that the initial shape of the wave Ψ(x, 0) is given by a function
f(x), show that the solution Ψ(x, t) can be written as

Ψ(x, t) = f(x ± ct).

29.17. Show the relation used in Example 29.3.6:

π

2
− tan−1

( s

ω

)
= tan−1

(ω

s

)
.

Hint: Let x denote the left-hand side and α = tan−1(s/ω). Take the tan of
both sides of the definition of x and use cotα = tan(π/2 − α) = 1/ tanα.

29.18. Let f(t) = sinωt be the periodic function of (29.61) and verify that
the equation holds (for T = 2π/ω). Do the same for f(t) = cosωt.

29.19. Find the Laplace transform of the periodic sawtooth function with
period T defined by

V (t) = V0
t

T
for 0 ≤ t < T.

29.20. Find the Laplace transform of 2t + 4e2t − 3 cos 3t.

29.21. Compute L[cosh2 γt] and L[sinh2 γt].

29.22. Compute L[cos2 ωt] and L[sin2 ωt] directly from the definition of Laplace
transform. Now show that

L[cos2 ωt] = L[1] − L[sin2 ωt].

29.23. A function N(t) is called a null function if
∫ t

0

N(u) du = 0

for all t > 0. Show that L[N(t)] = 0.

29.24. Compute L[e2t sin 3t], L[t2e−γt], L−1[e−2s/s3], and

L−1

[
a

s
− s

s2 + 1
e−bs

]

.
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29.25. Find L[e3t/
√

t], L[
√

t], and L−1[e−2s/
√

s].

29.26. (a) Show that
∂

∂ν
tν−1 = tν−1 ln t.

(b) Now use (29.52) to prove that

L[tν−1 ln t] =
Γ′(ν) − Γ(ν) ln s

sν
.

29.27. Using Laplace transform, solve the following initial-value problems

(a)
d2x

dt2
+ 4x = sin t, x(0) = 1, ẋ(0) = 0

(b)
d2x

dt2
− 2

dx

dt
− 3y = tet, x(0) = 2, ẋ(0) = 1

(c)
d2x

dt2
+

dx

dt
= θ(1 − t), x(0) = 1, ẋ(0) = −1, where θ is the step

function.

(d)
d2x

dt2
+ x = θ(π − t) cos t, x(0) = 0, ẋ(0) = 0, where θ is the step

function.

29.28. Using Laplace transform, solve the following boundary-value problems

(a)
d2x

dt2
+ ω2x = sinωt, x(0) = 1, x( π

2ω ) = π.

(b)
d2x

dt2
+ ω2x = t, x(0) = 1, ẋ(π

ω ) = −1.

29.29. Find L−1[ 1
2s2+2s+5 ] and L−1[ 1

s2−a2 ] using Mellin inversion integral
(29.72).



Chapter 30

Calculus of Variations

In a typical multivariable extremum problem, you are given a function of n
variables f(x1, x2, . . . , xn) and asked to find those n values of the variables
that maximize or minimize the function. The procedure is, of course, to set
the partial derivative of the function with respect to each variable equal to
zero and solve the resulting equations.

Geometrically, f is a function in an n-dimensional space, and the problem
is to find the point in that space at which f has the highest (or lowest)
value compared to the neighboring points. There is another geometric way
of looking at the extremum problem. Think of (x1, x2, . . . , xn) as a piecewise New way of

looking at the
multivariable
extremum problem

linear path in a two-dimensional coordinate system. The horizontal axis is
restricted to the values 1, 2, . . . , n, and for each of these values i the value of
the corresponding variable xi determines one point with coordinates (i, xi).
Connecting the neighboring points by a straight line segment produces the
path. Figure 30.1 shows a couple of such paths.

Figure 30.1: For each integer i between 1 and n, pick the real number xi and draw

a point with coordinates (i, xi). Connect these points to form a path. Two such paths

are shown for n = 5.
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The extremum problem can now be stated in terms of paths: Find the path
for which f has either the largest or the smallest value compared with its value
at the neighboring paths. And to do so, we differentiate with respect to a point
of the path. But let’s be more general in anticipation of the problems typical
of this chapter. Let xα be a variable where α is not necessarily an integer
between 1 and n. Differentiate the function with respect to xα and set the
result equal to zero:

∂f

∂xα
=

n∑

i=1

∂f

∂xi

∂xi

∂xα
=

n∑

i=1

∂f

∂xi
δαi = 0. (30.1)

If α is not equal to one of the integers between 1 and n, the sum vanishes
identically, i.e., the left-hand side is identically zero because f is not a function
of xα. However, if α is one of the integers between 1 and n, (30.1) gives one
of the equations to be solved for determining the extremizing path.

30.1 Variational Problem

Our treatment of the extremum problem above in terms of paths was mo-
tivated by situations in which variations of smooth paths are to be consid-
ered. A typical variational problem has a function whose value depends
on the path, i.e., it takes a path and puts out a number. We say that it is a
functional, because its argument is a function rather than a set of numbers.Functional defined

If L is a functional and x(t) represents a path in the tx-plane, then the value
of the functional for this path is represented by L[x]. The most common func-
tional integrates a certain function of x(t) and ẋ(t) over some interval (a, b).
If L(x, ẋ, t) is such a function, then

L[x] =
∫ b

a

L
(
x(t), ẋ(t), t

)
dt. (30.2)

For every path, the integrand becomes a function of t which can be integrated
to give a single number, and the variational problem asks for the path that
yields either the largest or the smallest such number.

Example 30.1.1. Before delving into formalism, let’s look at a very simple con-
crete example. Take two points Pa = (a, ya) and Pb = (b, yb) in the xy-plane.
Consider points PY = ( a+b

2
, Y ) lying on the perpendicular bisector of the interval

(a, b), and the path consisting of the line segments PaPY and PY Pb as shown in
Figure 30.2. For what value of Y is the length of this path minimum?

The length L of the path is given by

L =

∫ b

a

√
dx2 + dy2 =

∫ b

a

√

1 +

(
dy

dx

)2

dx. (30.3)
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Pa

ba

y

x

PY

Pb

Figure 30.2: Here, a path consists of only two line segments. The middle point PY

is constrained to move on the vertical line on which it is located to produce different

paths.

The equation of the path can be shown to be

y(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(Y − ya)

b − a
x +

(a + b)ya − 2aY

b − a
if a < x < (a + b)/2,

2(yb − Y )

b − a
x +

2bY − (a + b)ya

b − a
if (a + b)/2 < x < b.

Substituting this in the integral gives

L =

∫ (a+b)/2

a

√

1 +
4(Y − ya)2

(b − a)2
dx +

∫ b

(a+b)/2

√

1 +
4(yb − Y )2

(b − a)2
dx

=
1

2

[√
(b − a)2 + 4(Y − ya)2 +

√
(b − a)2 + 4(yb − Y )2

]
.

Differentiating with respect to Y and setting the result equal to zero leads to the
following equation:

Y − ya√
(b − a)2 + 4(Y − ya)2

=
yb − Y

√
(b − a)2 + 4(yb − Y )2

.

Square both sides and simplify to get Y − ya = yb − Y , whose solution is Y =
(ya + yb)/2, placing PY on the line joining Pa and Pb. Thus among all the paths
PaPY Pb the shortest is the straight line joining Pa and Pb. �

30.1.1 Euler-Lagrange Equation

The preceding example showed that from among paths consisting of two spe-
cific straight line segments, the one whose middle point lies on the straight
line joining the two end points gives the shortest length. What if the point
PY is not on the perpendicular bisector of (a, b), or if the path has more than
three points? There is a procedure which picks the minimizing path from
among all possible paths. Let’s discuss this procedure.
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Going back to Equation (30.2), we ask if there is a process whereby one
can take the derivative of L[x], set it equal to zero, and solve for the desired
path. Is there a derivative with respect to a path? To find out, let’s see ifFunctional

derivative
explained

we can generalize (30.1) from the discrete case of a path consisting of only n
points to a continuous path. The derivative with respect to a path is called
a functional derivative and δ is used instead of ∂ to symbolize it. So, let’s
write

δL[x]
δx(τ)

=
δ

δx(τ)

∫ b

a

L
(
x(t), ẋ(t), t

)
dt =

∫ b

a

δ

δx(τ)
L
(
x(t), ẋ(t), t

)
dt. (30.4)

In analogy with (30.1), and noting that L is to be considered as an ordinary
function (not functional) of x, ẋ, and t, we have

δ

δx(τ)
L
(
x(t), ẋ(t), t

)
=

∂L

∂x

δx(t)
δx(τ)

+
∂L

∂ẋ

δẋ(t)
δx(τ)

, (30.5)

because t is independent of x(τ). In the discrete case, we had ∂xi

∂xα
= δαi.

What is the generalization of the Kronecker delta to the continuous case?
The Dirac delta function! This can be shown more rigorously, but the proof
is outside the scope of this book. So, let’s write the fundamental functional
derivative:A fundamental

functional
derivative

δx(t)
δx(τ)

= δ(t − τ). (30.6)

What about the functional derivative in the second term of (30.5)? Using
the definition of the derivative and (30.6), we haveAnother

fundamental
functional
derivative

δẋ(t)
δx(τ)

=
δ

δx(τ)
lim
ε→0

x(t + ε) − x(t)
ε

= lim
ε→0

[
1
ε

(
δx(t + ε)

δx(τ)
− δx(t)

δx(τ)

)]

= lim
ε→0

[
1
ε

(
δ(t + ε − τ) − δ(t − τ)

)]

=
d

dt
δ(t − τ). (30.7)

Putting (30.6) and (30.7) in (30.5) and the result in (30.4), we obtain

δL[x]
δx(τ)

=
∫ b

a

[
∂L

∂x
δ(t − τ) +

∂L

∂ẋ

d

dt
δ(t − τ)

]

dt =
∂L

∂x
(τ) − d

dτ

∂L

∂ẋ
(τ), (30.8)

where in the last step we used the properties of the Dirac delta function and
its derivative as given in (5.10) and (5.11). We have assumed that τ lies in
the interval (a, b).

Having found the functional derivative, we now equate it to zero and find
the equation that determines the path—the function x(t)—which extremizes
the functional. The equation isEuler-Lagrange

equation
∂L

∂x
− d

dt

∂L

∂ẋ
= 0, (30.9)

and is called the Euler-Lagrange equation. It is at the heart of all varia-
tional problems. If we know the function L, we can differentiate it, substitute
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the derivatives in (30.9) and solve the resulting differential equation. We
should emphasize that a path could be written as y(x) or any other form,
depending on the variables used in a particular problem.

Example 30.1.2. Shortest Length Example 30.1.1 looked at very specific
paths connecting two points and found that the straight-line path minimizes the
length. Is this true for all paths?

For any path y(x), the length between (a, ya) and (b, yb) is given by the (30.3),
where the independent variable is x and dependent variable is y. Thus, L =

√
1 + y′2

and the Euler-Lagrange equation becomes

∂L

∂y
− d

dx

∂L

∂y′ = 0 or
d

dx

(
y′

√
1 + y′2

)

= 0. (30.10)

Differentiating the expression inside the parentheses yields

y′′

(1 + y′2)3/2
= 0, or y′′ = 0, or y = cx + d,

where c and d are the constants of integration. This is the equation of a straight line.
Thus out of all the possible paths between (a, ya) and (b, yb), the straight line gives
the smallest length. Actually, we don’t know if the straight line is the shortest or the
longest distance. Euler-Lagrange equation, being the first derivative, is necessary,
but not sufficient. As in calculus, to show minimality one has to look at the second
derivatives. We shall do this later. �

30.1.2 Beltrami identity

Most variational problems have an L which is independent of t. In such a
case, the Euler-Lagrange equation simplifies considerably. Consider the total
derivative of L with respect to t:

dL

dt
=

∂L

∂x
ẋ +

∂L

∂ẋ

dẋ

dt
.

Substitute for ∂L/∂x from Euler-Lagrange equation to obtain

dL

dt
= ẋ

d

dt

∂L

∂ẋ
+

∂L

∂ẋ

dẋ

dt
=

d

dt

(

ẋ
∂L

∂ẋ

)

, or
d

dt

(

L − ẋ
∂L

∂ẋ

)

= 0.

This gives the Beltrami identity:

L − ẋ
∂L

∂ẋ
= C. (30.11)

Example 30.1.3. The Brachistochrone Problem A bead slides on friction-
less bars of various shapes due to gravity. What shape gives the shortest time?
This is the famous brachistochrone problem which started the calculus of variations.
Specifically, consider various paths connecting Pa = (xa, ya) and Pb = (xb, yb) with
yb < ya. A mass m starts from rest at Pa and moves on a frictionless path from Pa

to Pb. Find the equation of the path that yields the shortest time.
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For each element ds of the path, the time of travel is dt = ds/v, where v is the
speed at ds. If ds is located at height y above the ground, then conservation of
energy gives

mgya = 1
2
mv2 + mgy or v =

√
2g(ya − y).

Therefore,

L[y] =

∫ Pb

Pa

ds

v
=

∫ Pb

Pa

√
dx2 + dy2

√
2g(ya − y)

=

∫ xb

xa

√
1 + y′2

2g(ya − y)
dx,

and L(y, y′) =
√

(1 + y′2)/[2g(ya − y)]. Since L is independent of x, we can use the
Beltrami identity:

√
1 + y′2

2g(ya − y)
− y′ ∂

∂y′

√
1 + y′2

2g(ya − y)
= C, or

√
1 + y′2 − y′ ∂

∂y′

√
1 + y′2 = C

√
2g(ya − y).

Differentiating and simplifying the left-hand side gives

1
√

1 + y′2
= C

√
2g(ya − y).

Square both sides, introduce a new constant, and solve for y′ to get

dy

dx
=

√
k

ya − y
− 1.

The substitution u = k/(ya − y) give dy = (k/u2)du and changes the differential
equation to

k

u2

du

dx
=

√
u − 1 or

du

u2
√

u − 1
=

1

k
dx.

Integrating both sides—and using an integral table—yields

x

k
=

√
u − 1

u
+ tan−1 (√

u − 1
)

+ C.

As y → ya, u → ∞ and x → xa. Therefore, C = xa/k − π/2, and the solution
becomes

x − xa

k
=

√
u − 1

u
+ tan−1 (√

u − 1
)
− π

2
. (30.12)

Let tan−1
(√

u − 1
)

= ϕ. Then
√

u − 1 = tanϕ and

u = 1 + tan2 ϕ = sec2 ϕ or y = ya − k cos2 ϕ. (30.13)

Substituting u in terms of ϕ in (30.12) yields

x − xa

k
= sin ϕ cos ϕ + ϕ − π

2
.

Finally defining θ = 2ϕ − π, this equation and (30.13) give x and y in terms of the
parameter θ:

x − xa =
k

2
(θ − sin θ) , y − ya = −k

2
(1 − cos θ) .

This is the parametric equation of a cycloid. �
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Example 30.1.4. The Soap Film Problem When a film of soap is stretched
across a frame, the surface tension causes the area to be a minimum. The film of
Figure 30.3 is an area of revolution with an element of area shown. This element of
area is 2πy

√
dx2 + dy2. Therefore, we have to extremize the functional

L[y] = 2π

∫ h

0

y
√

1 + y′2 dx, y(0) = a, y(h) = b.

Since L(x, y, y′) = y
√

1 + y′2 is independent of x, we can use the Beltrami identity
and get

y
√

1 + y′2 − y′ ∂

∂y′

(
y
√

1 + y′2
)

= C1.

This yields

y = C1

√
1 + y′2 or y′ =

√
(y/C1)2 − 1.

Let u = y/C1 to simplify this equation to

C1u
′ =

√
(u2 − 1 or C1

du
√

(u2 − 1
= dx,

which can be easily integrated to give

x = C1 ln
(
u +

√
u2 − 1

)
+ C2 or u +

√
u2 − 1 = e

x−C2
C1 ≡ ev,

where v is the exponent of the exponential. From this, we get

√
u2 − 1 = ev − u or u2 − 1 = e2v − 2uev + u2 or u =

ev + e−v

2
= cosh v.

Returning to y and x, we obtain

y

C1
= cosh

(
x − C2

C1

)

or y = C1 cosh

(
x − C2

C1

)

.

The constants C1 and C2 can be found by the conditions y(0) = a, y(h) = b. �

y

x

b
a

h

Figure 30.3: The soap film attaches itself to the two rings in such a way that the area

obtained is minimum.
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30.1.3 Several Dependent Variables

The path of (30.2) had only one dependent variable. One can consider paths in
an m-dimensional space where L depends on

{
xα(t)

}m

α=1
and their derivatives.

Such a generalization is straightforward: In (30.4) instead of x(τ), we have
xα(τ), which changes (30.5) to

δ

δxα(τ)
L
(
x(t), ẋ(t)

)
=

m∑

β=1

[
∂L

∂xβ

δxβ(t)
δxα(τ)

+
∂L

∂ẋβ

δẋβ(t)
δxα(τ)

]

,

where x = (x1, x2, . . . , xm). For this we need the equivalent of (30.6) and
(30.7) which are easily shown to be

δxβ(t)
δxα(τ)

= δαβδ(t − τ),
δẋβ(t)
δxα(τ)

= δαβ
d

dt
δ(t − τ). (30.14)

Substituting this in the above sum yields

δ

δxα(τ)
L
(
x(t), ẋ(t)

)
=

∂L

∂xα
δ(t − τ) +

∂L

∂ẋα

d

dt
δ(t − τ),

which replaces the x and ẋ of (30.8) with xα and ẋα. We thus obtain the
multivariable version of the Euler-Lagrange equation:

∂L

∂xα
− d

dt

∂L

∂ẋα
= 0, α = 1, 2, . . . , m. (30.15)

30.1.4 Several Independent Variables

Equation (30.15) is one generalization of the Euler-Lagrange equation. It still
corresponds to a path, a (generally) curved line, albeit in a multi-dimensional
space. There is another generalization which is also important: going from a
path to a surface. In this case, our dependent variable is a function of several
independent variables. So, consider a function φ of m variables which we
collectively denote by x, and instead of (30.2) consider the functional

L[φ] =
∫∫

Ω

dmxL(φ; φ,1, φ,2, . . . , φ,m;x), (30.16)

where φ,α denotes the derivative of φ with respect to xα, and Ω is some region
in the m-dimensional space. Note the change in notation: we use L instead
of L when integration is over a multidimensional “volume.” The variational
derivative (30.5) now becomes

δ

δφ(y)
L
(
φ; φ,1, φ,2, . . . , φ,m;x

)
=

∂L

∂φ

δφ(x)
δφ(y)

+
m∑

α=1

∂L

∂φ,α

δφ,α

δφ(y)
. (30.17)
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Furthermore, (30.6) and (30.7) generalize to More fundamental
functional
derivativesδφ(x)

δφ(y)
= δ(x − y),

δφ,α(x)
δφ(y)

=
∂

∂xα
δ(x − y). (30.18)

Substituting these in the functional derivative of the integral (30.16) and
setting the result equal to zero yields another Euler-Lagrange equation:

∂L

∂φ
−

m∑

α=1

∂

∂xα

∂L

∂φ,α
= 0. (30.19)

Finally if we have several dependent variables
{
φi

}N

i=1
, collectively repre-

sented by Φ, and several independent variables {xα}m
α=1, collectively repre-

sented by x, then the variational functional becomes

L[Φ] =
∫∫

Ω

dmxL(Φ;Φ,1,Φ,2, . . . ,Φ,m;x), (30.20)

with the variational derivatives

δ

δφi(y)
L
(
Φ;Φ,1,Φ,2, . . . ,Φ,m;x

)
=

N∑

j=1

∂L

∂φj

δφj(x)
δφi(y)

+
N∑

j=1

m∑

α=1

∂L

∂φj
,α

δφj
,α

δφi(y)
,

(30.21)
and ... and more

fundamental
functional
derivatives

δφj(x)
δφi(y)

= δijδ(x − y),
δφj

,α(x)
δφi(y)

= δij
∂

∂xα
δ(x − y). (30.22)

Substitution of these in (30.20) leads to the Euler-Lagrange equations

∂L

∂φi
−

m∑

α=1

∂

∂xα

∂L

∂φi
,α

= 0, i = 1, 2, . . . , N. (30.23)

In many situations, the variational problem consists of various parts each
having one or several dependent or independent variables.

30.1.5 Second Variation

Euler-Lagrange equation was obtained by setting the first variational deriva-
tive (30.8) equal to zero. As in the multivariable calculus, this only finds
the extremum. And just as in the multivariable calculus, to see if we have a
minimum or a maximum, we have to run the second derivative test.

The easiest way to apply the second derivative test in calculus is to consider
the Taylor expansion of the function. And since we are interested in local
minima and maxima, we ignore the third and higher orders in the Taylor
expansion. Now recall from Section 10.7 that the Taylor series of a function
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f of N independent variables
{
xi
}N

i=1
≡ x up to the second order around x0

is

f(x) = f(x0)+
N∑

i=1

(xi−x0i)f,i(x0)+
1
2

N∑

i,j=1

(xi−x0i)(xj−x0j)f,ij(x0), (30.24)

where

f,i ≡
∂f

∂xi
and f,ij ≡ ∂2f

∂xi∂xj
.

If x0 is an extremum of f , then f,i(x0) = 0 and the above equation becomes

f(x) − f(x0) =
1
2

N∑

i,j=1

(xi − x0i)(xj − x0j)f,ij(x0) ≡ δ2f(x0), (30.25)

where we introduced the abbreviation δ2f(x0)—the second variation of f at
x0—for the sum. The test for maximum or minimum of f can now be stated:
If for any x that is close enough to x0, the second variation δ2f(x0) is positive,
then x0 is a minimum point, and if δ2f(x0) is negative, then x0 is a maximum
point.

The generalization to the variational problem follows from our usual pas-
sage from the discrete to the continuous. For the most general integral (30.20),
the second variation is

δ2L[Φ0] =
1
2

N∑

i,j=1

∫∫

Ω

dmx

∫∫

Ω

dmy
(
φi(x) − φi

0(x)
)(

φi(y) − φi
0(y)

)

δ2L

δφi(x)δφj(y)
[Φ0], (30.26)

where the last term means “find the second variational derivative and evaluate
the result at the solution Φ0 of the Euler-Lagrange equation.” For a single
dependent variable and several independent variables this becomes

δ2L[φ0] =
1
2

∫∫

Ω

dmx

∫∫

Ω

dmy
(
φ(x) − φ0(x)

)(
φ(y) − φ0(y)

) δ2L

δφ(x)δφ(y)
[φ0],

(30.27)
and for a single independent variable and several dependent variables we get

δ2L[x0] =
1
2

N∑

i,j=1

∫ b

a

dt

∫ b

a

dτ
(
xi(t)−xi0(t)

)(
xj(τ)−xj0(τ)

) δ2L

δxi(t)δxj(τ)
[x0],

(30.28)
and for the simplest case of a single independent variable and a single depen-
dent variable (30.26) reduces to

δ2L[x0] =
1
2

∫ b

a

dt

∫ b

a

dτ
(
x(t)−x0(t)

)(
x(τ)−x0(τ)

) δ2L

δx(t)δx(τ)
[x0]. (30.29)
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In the calculation of the second variation, we need to find the variational
derivatives of second derivatives of dependent variables. It is not hard to show
that Fundamental

functional
derivatives
involving second
partial derivatives

δφj
,αβ(x)

δφi(y)
= δij

∂2

∂xβ∂xα
δ(x − y). (30.30)

Example 30.1.5. The necessary condition for the straight line to be the shortest
distance between two given points is that it satisfies the Euler-Lagrange equation
(30.10). Example 30.1.2 showed that y0(x) = cx+d solves the Euler-Lagrange equa-
tion. To see if this is minimum or not, calculate the second variation (30.29). The
first derivative is given by (30.8), which with the current symbols for independent
and dependent variables, becomes

δL[y]

δy(x)
=

∂L

∂y
(x) − d

dx

∂L

∂y′ (x) = − d

dx

(
y′

√
1 + y′2

)

= − y′′

(1 + y′2)3/2
,

and

δ2L[y]

δy(x′)δy(x)
= − δ

δy(x′)

{
y′′

(1 + y′2)3/2

}

= − δ

δy(x′)

{
y′′ (1 + y′2)−3/2

}
,

or
δ2L[y]

δy(x′)δy(x)
= − δy′′(x)

δy(x′)

(
1 + y′2)−3/2 − y′′ δ

δy(x′)

(
1 + y′2)−3/2

.

Using (30.30), this yields

δ2L[y]

δy(x′)δy(x)
= − δ′′(x − x′)

(1 + y′2)3/2
+ y′′ 3

2
(2y′)

(
1 + y′2)−5/2 δy′(x)

δy(x′)

= − δ′′(x − x′)

(1 + y′2)3/2
+

3y′y′′δ′(x − x′)

(1 + y′2)5/2
.

Now we have to evaluate this at the solution y0(x) of the Euler-Lagrange equation
for which y′

0 = c and y′′
0 = 0. Thus,

δ2L[y]

δy(x′)δy(x)
[y0] = − δ′′(x − x′)

(1 + c2)3/2
.

Substituting this in (30.29) and using the derivative property (5.12) of the Dirac
delta function yields

δ2L[y0] = − 1

2(1 + c2)3/2

∫ b

a

dx

∫ b

a

dx′
(
y(x) − y0(x)

)(
y(x′) − y0(x

′)
)
δ′′(x − x′)

= − 1

2(1 + c2)3/2

∫ b

a

dx
(
y(x) − y0(x)

) d2

dx2

(
y(x) − y0(x)

)
.

The last integral can be integrated by parts to give

(
y(x) − y0(x)

) d

dx

(
y(x) − y0(x)

)∣∣
∣
∣

b

a︸ ︷︷ ︸
=0 because y(a) = y0(a), y(b) = y0(b)

−
∫ b

a

dx

{
d

dx

(
y(x) − y0(x)

)}2

.
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Therefore,

δ2L[y0] =
1

2(1 + c2)3/2

∫ b

a

dx

{
d

dx

(
y(x) − y0(x)

)}2

,

which is a manifestly positive quantity for any y(x). Hence, y0(x) = cx + d does
indeed minimize the distance between any two given points. �

We should emphasize that although the calculation of the second varia-
tional derivative is rather straightforward, showing that the second variation
δ2L—the integral of the second variational derivative as given in Equations
(30.26) to (30.29)—is positive or negative is by no means trivial. Example
30.1.5 is one of those rare cases where the calculation of δ2L is manageable.

30.1.6 Variational Problems with Constraints

The variational problems treated so far have been problems with boundary
conditions, namely that all “paths,” or extremal candidates, must go through
the same boundary. In many applications, there are other auxiliary conditions
or constraints that the extremal candidates must obey. A typical example is
the problem of finding the closed curve of the largest area when the perimeter
is a given fixed length. The most elegant way of treating the constrained
variational problems is via Lagrange multipliers discussed in Section 12.3.1.

Suppose that we are looking for a curve that not only extremizes L[x] ofIsoperimetric
problem (30.2), but also is such that another functional,

K[x] =
∫ b

a

G
(
x(t), ẋ(t), t

)
dt, (30.31)

takes a fixed value l. Such a problem is called isoperimetric. In exact
analogy with the multivariable calculus, we form a new function L + λG and
extremize that function. This means that we have to solve the Euler-Lagrange
equation

∂L

∂x
− d

dt

∂L

∂ẋ
+ λ

(
∂G

∂x
− d

dt

∂G

∂ẋ

)

= 0. (30.32)

Example 30.1.6. As an example of the isoperimetric variational problem, con-
sider all curves of length l in the upper half plane passing through the points (−a, 0)
and (a, 0). What is the equation of the curve that together with the interval [−a, a]
encloses the largest area? The sought-after function y(x) must extremize

L[y] =

∫ a

−a

ydx,

subject to the condition that

y(−a) = 0 = y(a), K[y] =

∫ a

−a

√
1 + y′2 dx = l.

Equation (30.32) with L = y and G =
√

1 + y′2 gives

1 + λ
d

dx

y′
√

1 + y′2
= 0.
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Integrating this yields

x + λ
y′

√
1 + y′2

= C1,

which can be solved for y′ to give

y′ = ± C1 − x
√

λ2 − (C1 − x)2
,

whose solution is
y = ±

√
λ2 − (C1 − x)2 + C2,

or
(x − C1)

2 + (y − C2)
2 = λ2.

This is a circle of radius λ. The values of the three unknowns C1, C2, and λ are
determined from the conditions

y(−a) = 0 = y(a), K[y] = l. �

There is another type of variational problem with constraint applicable Finite constraint
problemto the case of one independent and several dependent variables, in which the

constraint is given by an equation of the form

g
(
x(t), ẋ(t), t

)
= 0

This is called the finite constraint problem and is similar to Equation
(12.31) where the discrete index j has been replaced with the continuous index
t. Thus, the Lagrange multipliers λj should be replaced with λ(t) and the
sum in (12.32) replaced with an integral over t, which is already present in the
extremal problem. Therefore, the problem changes to finding the extremum
of ∫ b

a

{
L
(
x(t), ẋ(t), t

)
+ λ(t)g

(
x(t), ẋ(t), t

)}
dt, (30.33)

and the Euler-Lagrange equation becomes

∂L

∂xi
− d

dt

∂L

∂ẋi
+ λ

(
∂g

∂xi
− d

dt

∂g

∂ẋi

)

− dλ

dt

∂g

∂ẋi
= 0, i = 1, 2, . . . , N. (30.34)

If there are multiple constraint equations,

gα

(
x(t), ẋ(t), t

)
= 0, α = 1, 2, . . . , m,

then there will be m Lagrange multipliers and a sum over α in (30.33),

∫ b

a

{

L
(
x(t), ẋ(t), t

)
+

m∑

α=1

λα(t)gα

(
x(t), ẋ(t), t

)
}

dt, (30.35)

leading to the following Euler-Lagrange equation:

∂L

∂xi
− d

dt

∂L

∂ẋi
+

m∑

α=1

{

λα

(
∂gα

∂xi
− d

dt

∂gα

∂ẋi

)

− dλα

dt

∂g

∂ẋi

}

= 0, i = 1, 2, . . . , N.

(30.36)
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Example 30.1.7. Among all curves lying on the sphere centered at the origin
and of radius a and passing through two points (x1, y1, z1) and (x2, y2, z2), find the
shortest one. This is a finite constraint problem with

L[y, z] =

∫ x2

x1

√
1 + y′2 + z′2 dx

and

g(x, y, z) = x2 + y2 + z2 − a2.

The solution is the set of functions {y(x), z(x)} which extremize the integral

∫ x2

x1

{√
1 + y′2 + z′2 + λ(x)(x2 + y2 + z2 − a2)

}
dx,

i.e., functions that satisfy the Euler-Lagrange equations

2yλ(x) − d

dx

y′
√

1 + y′2 + z′2
= 0,

2zλ(x) − d

dx

z′
√

1 + y′2 + z′2
= 0.

Solving these equations, we get the solutions in terms of four constants which can
be determined from the boundary conditions

y(x1) = y1, y(x2) = y2,

z(x1) = z1, z(x2) = z2. �

30.2 Lagrangian Dynamics

Variational calculus has become an indispensable tool in physics. Almost all
(partial) differential equations of physics can be derived from some variational
problem. Furthermore, symmetry considerations, which are the cornerstones
of modern fundamental physics, find their natural settings in functionals.
And a very elegant and powerful formulation of quantum mechanics done by
Richard Feynman uses the variational techniques.

30.2.1 From Newton to Lagrange

For most conservative systems one can define functionals whose extremization
leads to differential equations of motion of those systems. The second law of
motion for a particle acted on by a conservative force can be written as

−∇Φ = m
dv
dt

or − ∂Φ
∂xi

= m
dẋi

dt
or

∂

∂xi
(−Φ) − d

dt
(mẋi) = 0.

(30.37)
This looks very much like (30.15)! Let’s see if we can construct an L that leads
to the equations of mechanics. Use x, y, and z for the moment with n = 3.
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By equating the first term of (30.15) to the first term of the last equation in
(30.37), we get

∂L

∂x
=

∂

∂x
(−Φ).

Antidifferentiation yields L = −Φ(x, y, z) + f(y, z, ẋ, ẏ, ż), where f is the
“constant” of integration. If the partials of L with respect to y and z are to
be equal to the corresponding partials of −Φ, then f cannot depend on y and
z. So, f is a function of velocity components. If the second term of (30.37) is
to equal the second term of (30.15), then

mẋ =
∂L

∂ẋ
=

∂f

∂ẋ
or f(ẋ, ẏ, ż) = 1

2mẋ2 + g(ẏ, ż),

where g(ẏ, ż) is the “constant” of this new integration. Applying the same
argument to y and z, we conclude that f is just the kinetic energy. Therefore,
we arrive at the important conclusion that for a single particle with position
vector r, the extremization of

L(r, ṙ, t) = −Φ(r) + 1
2m |ṙ|2 = −Φ(x, y, z) + 1

2m
(
ẋ2 + ẏ2 + ż2

)
(30.38)

gives the equation of motion of the particle. L(r, ṙ, t) is called the Lagrangian
of a single particle moving in potential Φ.

For N non-interacting particles in an external potential, the Lagrangian
is the sum of the single-particle Lagrangians:

L =
N∑

i=1

Li =
N∑

i=1

(
−Φi + 1

2mi |ṙi|2
)

=
N∑

i=1

[
−Φi + 1

2mi

(
ẋ2

i + ẏ2
i + ż2

i

)]
,

where Φi = Φ(xi, yi, zi). Note that this can be written as

L = KE − Φ, where KE =
N∑

i=1

1
2mi

(
ẋ2

i + ẏ2
i + ż2

i

)
, and Φ =

N∑

i=1

Φi.

(30.39)
If the particles are interacting, then Φ is no longer the sum of individual

potentials, but a general function of all coordinates. It is therefore common to
collect all the N triple coordinates into one big 3N -component vector q and
call it the generalized coordinates vector. Then the Lagrangian is written
as

L (q, q̇, t) = KE − Φ =
3N∑

i=1

1
2μiq̇

2
i − Φ(q1, q2, . . . , q3N ). (30.40)

We changed the mass to μi to avoid confusion with the mi of the previous
equation. For example, for three particles interacting gravitationally,

Φ(q1, q2, . . . , q9) = Φ(r1, r2, r3) = − Gm1m2

|r1 − r2|
− Gm1m3

|r1 − r3|
− Gm2m3

|r2 − r3|
,

which can be written in terms of the q’s, once the latter are defined in terms
of the position vectors. Note that many of the μi’s in (30.40) are equal. For
instance, if q1 = x1, q2 = y1, and q3 = z1, then μ1 = μ2 = μ3 = m1, etc.
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r

X θ

Figure 30.4: The inclined plane moves as m moves on it.

Example 30.2.1. A block of mass m slides on a frictionless inclined plane, which
has mass M and moves on a frictionless horizontal surface as shown in Figure 30.4.
The position of the incline is denoted by X and that of the block by r, or (x, y) with

x = X + r cos θ, y = (l − r) sin θ,

where l is the length of the inclined plane. The kinetic energy of the system is

KE = 1
2
MẊ2 + 1

2
m

(
ẋ2 + ẏ2

)

= 1
2
MẊ2 + 1

2
m

[(
Ẋ + ṙ cos θ

)2

+ ṙ2 sin2 θ

]

= 1
2
MẊ2 + 1

2
m

(
Ẋ2 + ṙ2 + 2Ẋṙ cos θ

)
,

and the potential energy

Φ = mgy = mg(l − r) sin θ,

giving rise to the Lagrangian

L = 1
2
MẊ2 + 1

2
m

(
Ẋ2 + ṙ2 + 2Ẋṙ cos θ

)
− mg(l − r) sin θ.

The equations of motion

∂L

∂X
− d

dt

(
∂L

∂Ẋ

)

= 0,
∂L

∂r
− d

dt

(
∂L

∂ṙ

)

= 0,

can now be calculated:

−MẌ − m
(
Ẍ + r̈ cos θ

)
= 0, mg sin θ − m

(
r̈ + Ẍ cos θ

)
= 0.

Solving for the two accelerations, we get

Ẍ =
−mg sin θ cos θ

M + m sin2 θ
, r̈ =

(m + M)g sin θ

M + m sin2 θ
.

Note that for an infinitely heavy inclined plane, Ẍ = 0 and r̈ = g sin θ, as
expected. �

Historical Notes
was born Giuseppe Luigi Lagrangia but adopted the French version of his name. He
was the eldest of eleven children, most of whom did not reach adulthood. His father
destined him for the law—a profession that one of his brothers later pursued—
and Lagrange offered no objections. But having begun the study of physics and
geometry, he quickly became aware of his talents and henceforth devoted himself to



30.2 Lagrangian Dynamics 743

the exact sciences. Attracted first by geometry, at the age of seventeen he turned
to analysis, then a rapidly developing field.

In 1755, in a letter to the geometer Giulio da Fagnano, Lagrange speaks of
one of Euler’s papers published at Lausanne and Geneva in 1744. The same letter
shows that as early as the end of 1754 Lagrange had found interesting results in
this area, which was to become the calculus of variations (a term coined by Euler

Joseph Louis
Lagrange
1736–1813

in 1766). In the same year, Lagrange sent Euler a summary, written in Latin, of
the purely analytical method that he used for this type of problem. Euler replied
to Lagrange that he was very interested in the technique. Lagrange’s merit was
likewise recognized in Turin; and he was named, by a royal decree, professor at the
Royal Artillery School with an annual salary of 250 crowns—a sum never increased
in all the years he remained in his native country. Many years later, in a letter
to d´Alembert, Lagrange confirmed that this method of maxima and minima was
the first fruit of his studies—he was only nineteen when he devised it—and that he
regarded it as his best work in mathematics.

In 1756, in a letter to Euler that has been lost, Lagrange, applying the calculus of
variations to mechanics, generalized Euler’s earlier work on the trajectory described
by a material point subject to the influence of central forces to an arbitrary system
of bodies, and derived from it a procedure for solving all the problems of dynamics.

In 1757 some young Turin scientists, among them Lagrange, founded a scientific
society that was the origin of the Royal Academy of Sciences of Turin. One of the
main goals of this society was the publication of a miscellany in French and Latin,
Miscellanea Taurinensia ou Mélanges de Turin, to which Lagrange contributed fun-
damentally. These contributions included works on the calculus of variations, prob-
ability, vibrating strings, and the principle of least action.

To enter a competition for a prize, in 1763 Lagrange sent to the Paris Academy
of Sciences a memoir in which he provided a satisfactory explanation of the trans-
lational motion of the moon. In the meantime, the Marquis Caraccioli, ambassador
from the kingdom of Naples to the court of Turin, was transferred by his government
to London. He took along the young Lagrange, who until then seems never to have
left the immediate vicinity of Turin. Lagrange was warmly received in Paris, where
he had been preceded by his memoir on lunar libration. He may perhaps have been
treated too well in the Paris scientific community, where austerity was not a leading
virtue. Being of a delicate constitution, Lagrange fell ill and had to interrupt his
trip. In the spring of 1765 Lagrange returned to Turin by way of Geneva.

In the autumn of 1765 d´Alembert, who was on excellent terms with Frederick II
of Prussia, and familiar with Lagrange’s work through Mélanges de Turin, suggested
to Lagrange that he accept the vacant position in Berlin created by Euler’s departure
for St. Petersburg. It seems quite likely that Lagrange would gladly have remained
in Turin had the court of Turin been willing to improve his material and scientific
situation. On 26 April, d´Alembert transmitted to Lagrange the very precise and
advantageous propositions of the king of Prussia. Lagrange accepted the proposals
of the Prussian king and, not without difficulties, obtained his leave through the
intercession of Frederick II with the king of Sardinia. Eleven months after his arrival
in Berlin, Lagrange married his cousin Vittoria Conti who died in 1783 after a long
illness. With the death of Frederick II in August 1786 he also lost his strongest
support in Berlin. Advised of the situation, the princes of Italy zealously competed
in attracting him to their courts. In the meantime the French government decided
to bring Lagrange to Paris through an advantageous offer. Of all the candidates,
Paris was victorious.
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Lagrange left Berlin on 18 May 1787 to become pensionnaire vétéran of the Paris
Academy of Sciences, of which he had been a foreign associate member since 1772.
Warmly welcomed in Paris, he experienced a certain lassitude and did not imme-
diately resume his research. Yet he astonished those around him by his extensive
knowledge of metaphysics, history, religion, linguistics, medicine, and botany.

In 1792 Lagrange married the daughter of his colleague at the Academy, the
astronomer Pierre Charles Le Monnier. This was a troubled period, about a year
after the flight of the king and his arrest at Varennes. Nevertheless, on 3 June the
royal family signed the marriage contract “as a sign of its agreement to the union.”
Lagrange had no children from this second marriage, which, like the first, was a
happy one.

When the academy was suppressed in 1793, many noted scientists, including
Lavoisier, Laplace, and Coulomb were purged from its membership; but Lagrange
remained as its chairman. For the next ten years, Lagrange survived the turmoil of
the aftermath of the French Revolution, but by March of 1813, he became seriously
ill. He died on the morning of 11 April 1813, and three days later his body was
carried to the Panthéon. The funeral oration was given by Laplace in the name of
the Senate.

30.2.2 Lagrangian Densities

Particles are localized objects (indeed mathematical points), whose trajecto-
ries, determined by ordinary differential equations, describe curves in space.
A Lagrangian of the form (30.40), with one independent variable (time), is
therefore appropriate for particles.

Most of physical quantities, however, are not particles, but fields, which
are not localized. In order to apply the variational techniques to fields, one has
to consider a Lagrangian density L, whose integral over some volume gives
the Lagrangian, which can now be integrated over time as in (30.2). Thus,
in field theories, the integration is over the 4-dimensional spacetime, a nat-
ural setting for relativity—which is very relevant because most field theories
are relativistic—to operate. A physical field usually has several components,
making Equation (30.23) relevant to the situation.

Electrodynamics Lagrangian

Section 17.3.2 derived the electromagnetic field tensor Fαβ and wrote the four
Maxwell’s equations in terms of it. Since Fαβ seems to be so fundamental,
and the variational techniques seem to yield the (partial) differential equations
of physics, there may be a chance that electrodynamics can be described by
a Lagrangian density. In the language of tensors, a Lagrangian density is a
scalar. Thus, we have to construct a scalar out of Fαβ . The simplest such
scalar is FαβFαβ . Equation (17.47) showed that the field tensor can be written
as derivatives of the 4-potential Aα, which is therefore more “fundamental”
than Fαβ . There is another 4-vector appearing in Maxwell’s equations, namely
the 4-current Jα. Thus, by taking the dot product JαAα, we form another
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scalar. We therefore write

L = aFαβFαβ + bJαAα = aηαμηβνFμνFαβ + bJαAα,

where a and b are to be determined later. Writing the field tensor in terms of
the 4-potential, we get

L = aηαμηβν(∂μAν − ∂νAμ)(∂αAβ − ∂βAα) + bJαAα

≡ aηαμηβν(Aν,μ − Aμ,ν)(Aβ,α − Aα,β) + bJαAα. (30.41)

The Euler-Lagrange equation for Aα can be written as

∂L

∂Aσ
− ∂

∂xρ

∂L

∂Aσ,ρ
= 0. (30.42)

The first term is easy to calculate:

∂L

∂Aσ
= bJα ∂Aα

∂Aσ
= bJαδσ

α = bJσ.

The second term is only slightly more complicated once we realize that

∂Aβ,α

∂Aσ,ρ
= δσ

βδρ
α.

With this in mind, the second term of (30.42) can be shown to be

∂

∂xρ

∂L

∂Aσ,ρ
= 4a∂ρ (∂ρAσ − ∂σAρ) = 4a∂ρF

ρσ,

and (30.42) becomes

4a∂ρF
ρσ = bJσ or 4a∂ρFρσ = bJσ.

This becomes Maxwell’s first and fourth equations combined [see Equation
(17.45)] if a = 1

4 and b = μ0. Thus the Lagrangian density for electrodynamics
is

L =
1
4
ηαμηβν(Aν,μ − Aμ,ν)(Aβ,α − Aα,β) + μ0J

αAα. (30.43)

This, like any other Lagrangian, can be multiplied by a constant without
affecting the Euler-Lagrange equations.

Example 30.2.2. Charged Particle in EM Field Problem 30.18 shows that
the Lagrangian density (30.43) can be written as

L =
1

2

(
|B|2 − |E|2

)
+ μ0 (ρΦ − J · A) ,

with the variational problem

L =

∫ b

a

(∫∫

Ω

L d3x′
)

dt.
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Now consider a single particle of charge q interacting with an electromagnetic field.
For such a particle,

ρ = qδ(r− r′) and J = ρv = qvδ(r− r′),

and L becomes

L =
1

2

∫ b

a

dt

∫∫

Ω

(
|B|2 − |E|2

)
d3x′ + μ0

∫ b

a

dt

∫∫

Ω

(
qΦδ(r− r′) − qv · Aδ(r− r′)

)
d3x′

=
1

2

∫ b

a

dt

∫∫

Ω

(
|B|2 − |E|2

)
d3x′ + μ0q

∫ b

a

dt {Φ(r, t) − v · A(r, t)} .

The particle also has kinetic energy, which needs to be added to this Lagrangian.
When adding Lagrangians, one has to incorporate the freedom in multiplying La-
grangians by constants. In the case at hand, the kinetic energy of the particle should
be added to the negative of the scalar potential energy (recall that L = KE − Φ).
To assure this, we have to divide the entire EM Lagrangian by −1/μ0 and add it to
the kinetic energy of the particle. Hence the total Lagrangian becomes

L = − 1

2μ0

∫ b

a

dt

∫∫

Ω

(
|B|2 − |E|2

)
d3x′ +

∫ b

a

dt
{

1
2
m|v|2 − qΦ(r, t) + qv · A(r, t)

}
.

Notice how the first integral is four-dimensional while the second integral is over a
single variable.

We are interested in the motion of the particle. Therefore, the first integral
is just a constant (independent of the coordinates and velocity components of the
particle) and can be dropped. Thus, substituting ṙ for v, we have

Lpart =

∫ b

a

dt
{

1
2
m|ṙ|2 − qΦ(r, t) + qṙ · A(r, t)

}
,

with the LagrangianLagrangian of a
charged particle in
EM field L(r, ṙ, t) = 1

2
m|ṙ|2 − qΦ(r, t) + qṙ · A(r, t). (30.44)

Let’s look at the x-component of the motion:

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 or − q

∂Φ

∂x
+ qṙ · ∂A

∂x
− d

dt
(mẋ + qAx) = 0,

or

mẍ + q
∂Φ

∂x
+ q

(
dAx

dt
− ṙ · ∂A

∂x

)

= 0. (30.45)

Now note that
dAx

dt
=

∂Ax

∂t
+

∂Ax

∂x
ẋ +

∂Ax

∂y
ẏ +

∂Ax

∂z
ż,

and

ṙ · ∂A

∂x
= ẋ

∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x
.

Putting these two equations in (30.45) and rearranging, we obtain

mẍ + q

(
∂Φ

∂x
+

∂Ax

∂t

)

︸ ︷︷ ︸
=−Ex by (15.31)

+qẏ

(
∂Ax

∂y
− ∂Ay

∂x

)

︸ ︷︷ ︸
=−Bz by (15.31)

+qż

(
∂Ax

∂z
− ∂Az

∂x

)

︸ ︷︷ ︸
=By by (15.31)

= 0,
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or
mẍ − qEx − q (ẏBz − żBy) = 0. (30.46)

The expression in parentheses is just the x-component of v×B. Thus, (30.46) is the
x-component of the Lorentz force law, governing the motion of a charged particle in
an electromagnetic field. �

Klein-Gordon Lagrangian

One of the first attempts at combining the special theory of relativity with
quantum mechanics was made by Oskar Klein and Walter Gordon. In fact,
Schrd̈inger himself started with the relativistic version of his equation, but
abandoned it because of some difficulty he encountered when applying it to
hydrogen atom. By the usual substitution

E → i�
∂

∂t
, p → −i�∇

in the relativistic equation E2/c2 − p · p = m2c2, Klein and Gordon derived
the equation that now bears their names:

1
c2

∂2φ

∂t2
−∇2φ +

m2c2

�2
φ = 0,

which, in units � = 1 = c, becomes

∂2φ

∂t2
−∇2φ + m2φ = 0.

This equation can also be obtained from the Lagrangian density

L = ηαβ (∂αφ) (∂βφ) − m2

2
φ2, (30.47)

as the reader can verify.

30.3 Hamiltonian Dynamics

The Lagrangian formulation of mechanics treated in the previous section is a
powerful tool for studying many different dynamical systems and fields. Fur-
thermore, considerations of symmetry, an indispensable technique in the inves-
tigation of fundamental forces, is most adequately handled in the Lagrangian
language. Once the Lagrangian is known, the Euler-Lagrange equations pro-
vide second-order differential equations to be solved under given boundary (or
initial) conditions.

There is another formulation of mechanics, which instead of second-order
differential equations, yields twice as many first-order DEs. It is called the
Hamiltonian formulation. We describe only the case of several dependent
and one independent variables, the other cases being very similar. Let us
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assume that our dynamical system has n generalized coordinates {qi}n
i=1 and

a Lagrangian L (q, q̇, t). In the simplest case (30.40), L = KE−Φ where KE
is a quadratic term in velocities alone and Φ dependent on the coordinates
alone. In such a case,

∂L

∂q̇j
=

∂KE

∂q̇j
= μj q̇j ,

which is the momentum associated with the jth generalized coordinate. It is
therefore natural to generalize the concept of momentum as well, write

pj ≡ ∂L (q, q̇, t)
∂q̇j

, (30.48)

and call pj so defined the generalized momentum of the dynamical system.
The transition from Lagrangian to Hamiltonian formulation, from a strictly

mathematical standpoint, is to go from the set of variables (q, q̇, t) to (q,p, t).
The procedure for making this transition is the Legendre transformation dis-
cussed in Section 2.2.2. To find the variables involved, consider the differential
of the Lagrangian:

dL =
n∑

i=1

(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i

)

+
∂L

∂t
dt,

and use (30.48) and the Euler-Laggrange equation to rewrite the above as

dL =
n∑

i=1

(ṗi dqi + pi dq̇i) +
∂L

∂t
dt.

If we want to switch the independent variable from q̇i to pi, then we have to
define the Hamiltonian as

H (q,p, t) =
n∑

i=1

piq̇i − L (q, q̇, t) . (30.49)

To verify this, we note that

dH =
n∑

i=1

(q̇idpi + pidq̇i)−dL=
n∑

i=1

(q̇idpi + pidq̇i)−
n∑

i=1

(ṗi dqi + pi dq̇i)−
∂L

∂t
dt.

Note that pidq̇i terms cancel and we are left with

dH =
n∑

i=1

(q̇idpi − ṗi dqi) −
∂L

∂t
dt.

On the other hand,

dH =
n∑

i=1

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)

+
∂H

∂t
dt.
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Comparison of the last two equations gives

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, −∂L

∂t
=

∂H

∂t
, i = 1, 2, . . . , n, (30.50)

which are called Hamilton or canonical equations. Note that instead of n
second-order DEs, we now have 2n first order DEs.

To discover the physical significance of the Hamiltonian, consider the fa-
miliar simple Lagrangian L = KE −Φ, where KE is the usual kinetic energy
term and Φ is the potential energy which is independent of velocities. Then,
(30.48) yields pi = μiq̇i and Hamiltonian is the

total energy.

H =
n∑

i=1

piq̇i − L =
n∑

i=1

μiq̇
2
i

︸ ︷︷ ︸
=2KE

−KE + Φ = KE + Φ.

So H is the sum of the kinetic and potential energies, i.e., the total energy.

Example 30.3.1. Hamiltonian of a Charged Particle in EM Field The
Lagrangian of a charged particle in an electromagnetic field is given by (30.44).
Let’s find the Hamiltonian of this system. First we need the generalized momentum
(30.48):

pi =
∂L

∂ẋi
= mẋi + qAi or p = mṙ + qA. (30.51)

This is an important equation in its own right. It says that the momentum of the
system is not just that of the particle, but that it also includes a contribution from
the EM field. In particular, that EM field has momentum.1

To find the Hamiltonian, compute ṙ from (30.51):

ṙ =
p − qA

m
,

and substitute in the definition of the Hamiltonian (30.49), where, in this case the
sum is just the dot product:

H(r, p, t) = p ·
(

p − qA

m

)

− 1

2
m

∣
∣
∣
∣
p − qA

m

∣
∣
∣
∣

2

+ qΦ − q

(
p − qA

m

)

· A

= (p − qA) ·
(

p − qA

m

)

− 1

2

|p − qA|2

m
+ qΦ,

or

H(r,p, t) =
|p − qA(r, t)|2

2m
+ qΦ(r, t). (30.52)

Thus, in the presence of an electromagnetic field, the Hamiltonian of a particle takes
the same form as the total energy of a particle in a potential qΦ, except that in the
expression for the KE part, p − qA replaces p. Such a replacement is called the
minimal coupling and plays a key role in the quantum mechanical treatment of
charged particles interacting with EM fields. �

1This momentum is the source of radiation pressure.
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30.4 Problems

30.1. Show that, in Example 30.1.6, C1 = 0, λ = λ0, and C2 =
√

λ2
0 − a2,

where λ0 is the solution of the equation

λ sin
(

l

2λ

)

= a.

30.2. Find the extremal of the functional

L[x, y] =
∫ π/2

0

(ẋ2 + ẏ2 + 2xy) dt

subject to the boundary conditions

x(0) = 0, x(π/2) = 1, y(0) = 0, y(π/2) = 1.

30.3. Find the extremals of the following functionals:

(a)L[x, y] =
∫ b

a

(ẋ2 + ẏ2 + ẋẏ) dt, (b)L[x, y] =
∫ b

a

(2xy − 2x2 + ẋ2 − ẏ2) dt.

30.4. Find the extremal of a functional of the form

L[x, y] =
∫ b

a

L(ẋ, ẏ) dt,

given that
∂2L

∂ẋ2

∂2L

∂ẏ2 −
(

∂2L

∂ẋ∂ẏ

)2

�= 0 for a ≤ x ≤ b.

30.5. Find the extremal of the functional

L[x] =
∫ 1

0

(ẋ2 + t2) dt,

subject to the boundary conditions

x(0) = 0, x(1) = 0,

∫ 1

0

x2 dt = 2.

30.6. Show that the extremization of (30.33) leads to the Euler-Lagrange
equations (30.34).

30.7. Among all triangles with a given base line and a fixed perimeter, show
that the isosceles triangle has the largest area.

30.8. An airplane with fixed air speed v0 flies for a time T on a closed curve.
The wind velocity u is constant in magnitude and direction and |u| < v0.
What closed curve encloses the largest area?
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30.9. Among all curves joining a given point (0, b) on the y-axis to a point
on the x-axis and enclosing a given area S together with the x-axis, find the
curve which generates the least area when rotated about the x-axis.

30.10. An Atwood machine consists of two masses m1 and m2 connected by
a light inextensible cord of length l which passes over a pulley whose radius
is a and whose moment of inertia is I. Let x denote the distance of m1 from
the top of the pulley. Using Lagrangian methos, show that the acceleration
of m1 is

ẍ =
g(m1 − m2)

m1 + m2 + I/a2
.

30.11. Using polar coordinates, write the Lagrangian of a particle of mass m
moving in a central force field with potential Φ(r). Show that the equations
of motion are

mr̈ = mrθ̇2 − dΦ
dr

,
d

dt
(mr2θ̇) = 0.

30.12. Using Lagrangian method, find the acceleration of a solid sphere
rolling without sliding down an inclined plane having an angle θ with the
horizontal.

30.13. Using Lagrangian method, find the acceleration of a solid sphere
rolling without sliding down a movable wedge of mass M having an angle
θ. The wedge moves on a frictionless horzontal surface.

30.14. Two blocks of equal mass m are connected by an inextensible cord
whose linear mass density is μ. One block is placed on a smooth horizontal
table, the other hangs over the edge of the table. What is the acceleration of
the system? Use the Lagrangian method.

30.15. A simple pendulum of length l and mass m oscillates about its point of
support which is attached to a block of mass M moving without friction along
a horizontal line lying in the plane of the pendulum. Write the Lagrangian in
terms of x, the position of M on the horizontal line, and θ, the angle l makes
with the vertical. Find the equations of motion of m and M .

30.16. Find the equation of a curve describing the equilibrium position of
a uniformly dense heavy flexible inextensible cord of length l fastened at its
ends. Hint: The Lagrangian is just the potential energy written as an integral.

30.17. Show that the Lagrangian density (30.43) can be written as

L =
1
2

(
|B|2 − |E|2

)
+ μ0 (ρΦ − J · A) .

Hint: See Sections 17.3.1 and 17.3.2 and be careful about possible change of
sign when raising or lowering indices.

30.18. Show that the Lagrangian density (30.47) leads to the Klein-Gordon
equation.





Chapter 31

Nonlinear Dynamics
and Chaos

A variety of techniques including the Frobenius method of infinite power series
could solve almost all linear DEs of physical interest. However, some very fun-
damental questions such as the stability of the solar system led to DEs that
were not linear, and for such DEs no analytic (including series representation)
solution existed. In the 1890s, Henri Poincaré, the great French mathemati-
cian, took upon himself the task of gleaning as much information from the
DEs describing the whole solar system as was possible. The result was the
invention of one of the most powerful branches of mathematics (topology) and
the realization that the qualitative analysis of (nonlinear) DEs could be very
useful.

One of the discoveries made by Poincaré, which much later became the
cornerstone of many developments, was that

Box 31.0.1. Unlike the linear DEs, nonlinear DEs may be very sensitive
to the initial conditions.

In other words, if a nonlinear system starts from some initial conditions and
develops into a certain final configuration, then starting it with slightly dif-
ferent initial conditions may cause the system to develop into a final config-
uration completely different from the first one. This is in complete contrast
to the linear DEs where two nearby initial conditions lead to nearby final
configurations.

In general, the initial conditions are not known with infinite accuracy.
Therefore, the final states of a nonlinear dynamical system may exhibit an
indeterministic behavior resulting from the initial (small) uncertainties. This
is what has come to be known as chaos. The reader should note that the inde- chaos due to

uncertainty in
initial conditions

terminism discussed here has nothing to do with the quantum indeterminism.
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All equations here are completely deterministic. It is the divergence of the
initially nearby—and completely deterministic—trajectories that results in
unpredictable final states.

There are two general categories exhibiting chaotic behavior: systems
obeying iterated maps and systems obeying DEs. We shall study the first
category in some detail, and only outline some of the general features of the
much more complicated category of systems obeying DEs.

31.1 Systems Obeying Iterated Maps

Consider the population of a species in consecutive years if the population is
initially N0. The simplest relation connecting N1, the population after one
year, to N0 is

N1 = αN0,

where α is a positive number depending on the environment in which the
species lives. Under the most favorable conditions, α is a large number, indi-
cating rapid growth of population. Under less favorable conditions, α will be
small. And if the environment happens to be hostile, then α will be smaller
than one, indicating a decline in population.

The above equation is unrealistic because we know that if α > 1 and the
population grows excessively, there will not be enough food to support the
species. So, there must be a mechanism to suppress the growth. A more
realistic equation should have a suppressive term which is small for small N0

and grows for larger values of N0. A possible term having such properties is
one proportional to N2

0 . This leads to

N1 = αN0 − βN2
0 where 0 < β � α.

The minus sign causes the second term to decrease the population. Iterating
this equation, we can find the population in the second, third, and subsequent
years:

N2 = αN1 − βN2
1 , N3 = αN2 − βN2

2 , . . . ,

and, in general,
Nk+1 = αNk − βN2

k . (31.1)

It is customary to rewrite (31.1) in a slightly different form. First we note
that since population cannot be negative, there exists a maximum number
beyond which the population cannot grow. In order for Nk+1 to be positive,
we must have

αNk − βN2
k > 0 ⇒ Nk <

α

β

for all k. It follows that Nmax = α/β. Dividing (31.1) by Nmax yields

xk+1 = αxk(1 − xk), (31.2)
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where xk is the fraction of the maximum population of the species after k
years, and therefore, its value must lie between zero and one. Any equation
of the form

xk+1 = fα(xk), (31.3)

where α is—as in the case of the logistic map—a control parameter, and in
which a value of some (discrete) quantity at k+1 is given in terms of its value
at k, is called an iterated map, and the function fα is called the iterated iterated map,

iterated map
function, and
logistic map
function

map function. The particular function in (31.2) is called the logistic map
function.

Starting from an initial value x0, one can generate a sequence of x values
by consecutively substituting in the RHS of (31.3). This sequence is called a
trajectory or orbit of the iterated map.

31.1.1 Stable and Unstable Fixed Points

It is clear that the first few points of an orbit depend on the starting point.
What may not be so clear is that, for a given α, the eventual behavior of
the orbit is fairly insensitive to the starting point. There are, however, some
starting points which are manifestly different from others. For example, in the
logistic map, if x0 = 0, no other point will be produced by iteration because
fα(0) = 0 or fα(x0) = x0, and further application of fα will not produce any
new values of x. In general, a point xα which has the property that

fα(xα) = xα (31.4)

is called a fixed point of the iterated map associated with α. For the logistic fixed point of an
iterated mapmap we have

xα = αxα(1 − xα) ⇒ xα(1 − α + αxα) = 0 ⇒ xα = 0, 1 − 1
α

. (31.5)

Since 0 ≤ xα ≤ 1, there is only one fixed point (i.e., x = 0) for α ≤ 1, and
two fixed points (i.e., x = 0 and x = 1 − 1/α) for α > 1.

What is the significance of fixed points? When α < 1, Equation (31.2)
shows—since both xk and 1− xk are at most one—that the population keeps
decreasing until it vanishes completely. And this is independent of the initial graphical way of

approaching a
fixed point

value of x. It is instructive to show this pictorially. Figure 31.1(a) shows the
logistic map function with α = 0.5. Start at any point x0 on the horizontal
axis; draw a vertical line to intersect the logistic map function at f(x0) ≡ x1;
from the intersection draw a horizontal line to intersect the line y = x at y1 =
x1; draw a vertical line to intersect the logistic map function at f(x1) ≡ x2;
continue to find x3 and the rest of x’s. The diagram shows that the x’s are
getting smaller and smaller.

What happens when α > 1? Figure 31.1(b) shows the logistic map function
with α = 2. We note that the orbit is attracted to the fixed point at x =
0.5. We also note that the fixed point at x = 0 has now turned into a
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α = 2

y = f (x)

1

10
x

y

y = x

1

α = 0.5

y = f (x)

1

0 x3 x0x2 x1

y

y = x

f (x0)

(a) (b)

x0 x3x2x1

Figure 31.1: (a) Regardless of the value of x0, the orbit always ends up at the origin

when α < 1. (b) Even for α > 1, it appears that the orbit always ends up at some

attractor regardless of the value of x0. Note that now the origin has become a “repellor.”

“repellor.” We can treat the behavior of the logistic map at general fixed
points analytically.

First let us consider a general (one-dimensional) iterated map as given by
Equation (31.3). We are seeking the fixed points of (31.3). These points—
commonly labeled by an asterisk—satisfy

x∗ = fα(x∗),

i.e., they are intersections of the curves y = x and y = fα(x) in the xy-plane.
An important property of fixed points is their stability—or whether they are
attractors or repellors. To test this property, we Taylor-expand the iteratedstability of fixed

points map function around x∗, keeping the first two terms:

xk+1 = fα(xk) = fα(x∗) +
dfα

dx

∣
∣
∣
∣
x∗

(xk − x∗) = x∗ +
dfα

dx

∣
∣
∣
∣
x∗

(xk − x∗)

or
|xk+1 − x∗|
|xk − x∗| =

∣
∣
∣
∣
dfα

dx

∣
∣
∣
∣
x∗

= |f ′
α(x∗)|.

So, xk+1 will be farther away from (or closer to) x∗ than xk if the absolute
value of the derivative of the function is greater than one (or less than one).analytic criterion

for stability of a
fixed point of an
iterated map Box 31.1.1. A fixed point x∗ of an iterated map (31.3) is stable if

|f ′
α(x∗)| < 1 and unstable if |f ′

α(x∗)| > 1.

Example 31.1.1. For the logistic map, fα(x) = αx(1−x) so that f ′
α(x) = α−2αx.

The fixed points are x∗
1 = 0 and x∗

2 = 1 − 1/α. Therefore,

f ′
α(x∗

1) = f ′
α(0) = α and f ′

α(x∗
2) = f ′

α(1 − 1/α) = 2 − α. (31.6)
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It follows that the fixed point at x = 0 is stable (attractive) if α < 1, while for
this same value of α the fixed point x∗

2 is unstable (repulsive). Thus, for α < 1, all
trajectories are attracted to the fixed point at x = 0.

Equation (31.6) also shows that for 1 < α < 3, the other fixed point becomes
stable while the fixed point at the origin becomes unstable. This is also consistent
with the behavior of the logistic map depicted in Figure 31.1(b). �

The criterion of Box 31.1.1 can also be stated graphically. Since 1 is the
slope of the line y = x, and since a fixed point is an intersection of the two
curves y = x and y = fα(x), the criterion of Box 31.1.1 is a comparison of the
slope of the tangent to y = fα(x) with the slope of y = x: A fixed point x∗

of an iterated map (31.3) is stable, if the acute angle that the tangent line at
(x∗, fα(x∗)) makes with the x-axis is smaller than the corresponding angle of
the line y = x. If this angle is larger, then the fixed point is unstable. This is
equivalent to the simpler statement: graphical criterion

for stability of a
fixed point of an
iterated mapBox 31.1.2. A fixed point x∗ of an iterated map fα(x) is stable (unstable)

if immediately to the right of x∗, the curve y = fα(x) lies below (above)
the line y = x.

31.1.2 Bifurcation

Although the logistic map has no stable fixed points beyond xα = 1−1/α, we
may ask whether there are points at which the iterated map is “semi-stable.”
What does this mean? Instead of demanding strict stability or instability, let
us consider a case in which the map may oscillate between two values. This
situation is neither completely stable nor completely unstable: Although the
system moves away from the point in question, it does not leave it forever.
Suppose that just above the largest value of a stable α, the system starts to
oscillate between two values of x. This is an example of bifurcation: bifurcation and

period doubling

Box 31.1.3. When the development of a system splits into two regions as
a parameter of the equations of motion of the system increases slightly, we
say that a bifurcation has occurred and call the splitting of the trajectory
a period-doubling bifurcation.

Suppose that there are two “fixed” points x∗
1 and x∗

2 between which the
function oscillates such as the two points illustrated in Figure 31.2(a). These
fixed points must satisfy

x∗
2 = fα(x∗

1), x∗
1 = fα(x∗

2). (31.7)

To gain further insight into the behavior of the logistic map, we introduce the
so-called second iterate of fα denoted by f

[2]
α and defined by second iterate
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x00 0.2

1

0.558 0.7646

(a) (b)

Figure 31.2: (a) For α = 3.1, there are clearly two attractors located at x = 0.5580

and x = 0.7646. (b) For α = 3.99, no attractor seems to exist because the iterations

do not seem to converge in the diagram.

f [2]
α (x) ≡ fα(fα(x)). (31.8)

From this definition, it is clear that every fixed point of fα is also a fixed
point of f

[2]
α . However, the converse statement is not true. In fact, x∗

1 and x∗
2

defined in Equation (31.7) are fixed points of f
[2]
α :

f [2]
α (x∗

1) = fα(fα(x∗
1)) = fα(x∗

2) = x∗
1,

f [2]
α (x∗

2) = fα(fα(x∗
2)) = fα(x∗

1) = x∗
2,

but not of fα. It now follows that fixed points of f
[2]
α give information about

period-doubling bifurcation.
For the logistic map, f

[2]
α can be found easily:

f [2]
α (x) = fα(fα(x)) = αfα(x)[1 − fα(x)]

= α[αx(1 − x)][1 − αx(1 − x)] = α2x(1 − x)(1 − αx + αx2)

= −α3x4 + 2α3x3 − (α2 + α3)x2 + α2x. (31.9)

The fixed points of f
[2]
α (x) are, therefore, determined by the equation

x = −α3x4 + 2α3x3 − (α2 + α3)x2 + α2x

which shows that there are, in general, four fixed points, one at x = 0, and
three others satisfying the cubic equation

α3x3 − 2α3x2 + (α3 + α2)x − α2 + 1 = 0. (31.10)

We can actually solve this equation because we know that one of its roots is
x1(α) = 1 − 1/α, a fixed point of fα(x). The cubic polynomial in Equation
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(31.10) can thus be factored out as α3[x−x1(α)] times a quadratic polynomial
whose roots give the remaining solutions to (31.10). The reader may verify
that these roots are

x2(α) =
1 + α +

√
α2 − 2α − 3
2α

,

x3(α) =
1 + α −

√
α2 − 2α − 3
2α

. (31.11)

These two functions start out at the common value of 2
3 when α = 3. Then, as

a function of α, x2(α) monotonically increases and asymptotically approaches
1; x3(α) monotonically decreases and asymptotically approaches 0.

We are interested in those values of α for which the fixed points are not
completely unstable. In the present case, this means that the value of the
iterated map must oscillate between only two values. This will happen only
if the two points are stable fixed points of f

[2]
α . Since by Box 31.1.1 stability

imposes a condition on the derivative of the function, we need to look at the
derivative of f

[2]
α .

Using the chain rule, which in its most general form is

d

dx
[g(h(x))] = g′(h(x))h′(x)

we obtain
d

dx
f [2]

α (x) = [f ′
α(fα(x))]f ′

α(x). (31.12)

In particular, if x happens to be a fixed point x∗ of fα, then

df [2]
α

dx

∣
∣
∣
∣
∣
x∗

= f ′
α(fα(x∗)

︸ ︷︷ ︸
=x∗

)f ′
α(x∗) = [f ′

α(x∗)]2. (31.13)

This shows that if x∗ is a stable fixed point of fα, then

|f ′
α(x∗)| < 1 ⇒ [f ′

α(x∗)]2 < 1 ⇒
∣
∣
∣
∣

d

dx
f [2]

α (x∗)
∣
∣
∣
∣ < 1

and x∗ is a stable fixed point of f
[2]
α as well. Furthermore, at the two fixed

points of f
[2]
α discussed above, Equation (31.12) yields

df [2]
α

dx

∣
∣
∣
∣
∣
x∗
1

= f ′
α(fα(x∗

1)︸ ︷︷ ︸
x∗
2

)f ′
α(x∗

1) = f ′
α(x∗

2)f
′
α(x∗

1),

df [2]
α

dx

∣
∣
∣
∣
∣
x∗
2

= f ′
α(fα(x∗

2)︸ ︷︷ ︸
x∗
1

)f ′
α(x∗

2) = f ′
α(x∗

1)f
′
α(x∗

2). (31.14)

It follows that f
[2]
α has the same derivatives at these two points.
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The concept of iteration of fα can be readily generalized. The nth iteratenth iterate

of fα is
f [n]

α ≡ f(f(. . . f
︸ ︷︷ ︸

n times

(x) . . .))

and as in the case of f
[2]
α , the fixed points of fα are also fixed points of f

[n]
α and

the stable fixed points of fα are also stable fixed points of f
[n]
α . The converse

of neither of these statements is, in general, true.
The utility of the concept of the nth iterate comes in the analysis of the

location of bifurcation points. To be specific, let us go back to the logistic map
and Equation (31.6). The stable points, being characterized by the absolute
value of the derivative of the map function, occur at x = 0 when 0 < α < 1
and at x = 1 − 1/α when 1 < α < 3. Within the α-range of stability, the
derivative of fα ranges between1 −1 and +1, starting with +1 at α = 1 and
ending with −1 at α = 3 [see the second equation in (31.6)]. Beyond this
value of α—which is the parameter at which the 2-cycle fixed point occurs
and which we now denote by α1—fα has no stable points. Equation (31.13),
however, shows that the derivative of f

[2]
α is +1 there. This means that the

derivative of f
[2]
α can decrease down to −1 as α increases beyond α1. In fact,

what happens as α increases past α1 is precisely a repetition of what happened
to fα between α = 1 and α = 3: The derivative of f

[2]
α keeps decreasing until

at a certain value of α denoted by α2 a period-doubling bifurcation occurs
for f

[2]
α . This corresponds to a 4-cycle fixed point. Thus a 4-cycle fixed point4-cycle fixed point

x∗, as well as the corresponding value of α, is obtained by imposing the two
requirements

f [2]
α2

(x∗) = x∗ and
df [2]

α2

dx

∣
∣
∣
∣
∣
x∗

= −1. (31.15)

This equation entails an important result. By Equation (31.14), the derivative
of f

[2]
α2 at its two stable points are equal. Therefore, both stable points give

rise to the same pair of equations (31.15). In particular,

Box 31.1.4. Any value of α2 that gives a solution for the first fixed point
must also give a solution for the second fixed point. In fact, we should ex-
pect two values of x∗ for every α2 that solves the pair of equations (31.15).

For the logistic map, Equation (31.15) becomes [see (31.9)]

x∗ = α2
2x

∗(1 − x∗)(1 − α2x
∗ + α2x

∗2),

−1 = −4α3
2x

∗3 + 6α3
2x

∗2 − 2(α2
2 + α3

2)x
∗ + α2

2.

1The x = 0 is an exception because we are assuming that α is a positive quantity,
therefore, f ′(0) = α cannot be negative.
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One can solve these equations and obtain eight possible pairs (x∗, α2). The
only two acceptable real pairs which have a value of α2 larger than three are
(

4 +
√

6 ±
√

14 − 4
√

6
10

, 1 +
√

6

)

= (0.644949± 0.204989, 3.44949). (31.16)

In particular, α2 = 1 +
√

6 = 3.44949 is the 4-cycle fixed point depicted in
Figure 31.3 corresponding to the two x values of approximately 0.85 and 0.44.

The generalization to 2n-cycles is now clear. One simply constructs the
2nth iterate of fα and solves the two equations

f [2n]
α (x∗) = x∗ and

df [2n]
α

dx

∣
∣
∣
∣
∣
x∗

= −1.

In practice, these are too complicated to solve analytically, but numerical
methods are available for their solution. Each solution consists of a pair
(x∗

n, αn) where x∗
n is the 2n-cycle fixed point and αn is the corresponding

control parameter. As in the case of f
[2]
α , for each acceptable αn, there are 2n

fixed points.

31.1.3 Onset of Chaos

Suppose we keep increasing α slowly. It may happen that at a certain value of
α no finite set of “stable” points exists. A graphical analysis of this situation
is depicted in Figure 31.2(b) showing that the behavior of the logistic map
is chaotic. What is the relation between the value of α at which chaos sets
in (which we denote by αc) and αn? Considering the chaotic behavior as

Figure 31.3: The bifurcation diagram for the logistic map. The behavior of the function

is analytically very simple for α < 3. For α > 3, the behavior is more complicated. The

4-cycle fixed points are clearly shown to occur at α ≈ 3.45. From approximately 3.57

onward, chaotic behavior sets in.
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one corresponding to an infinite-cycle fixed point, we conclude that, on a
bifurcation diagram, chaos will occur at

αc = α∞ ≡ lim
n→∞

αn. (31.17)

The limit in (31.17) is one way of characterizing chaos. A more direct way
is to look at the trajectories. Two nearby points starting at x0 and x0 + ε will
be separated after n iterations by a distance

the n-th iterative
Lyapunov
exponent

dn ≡
∣
∣
∣f [n]

α (x0 + ε) − f [n]
α (x0)

∣
∣
∣ .

If this separation grows exponentially, we have a chaotic behavior. We define
λ

[n]
x0 , the nth iterative Lyapunov exponent at x0, by

dn ≡ d0e
λ[n]

x0
n ≡ εeλ[n]

x0
n.

Then

λ[n]
x0

=
1
n

ln
(

dn

ε

)

=
1
n

ln

⎧
⎨

⎩

∣
∣
∣f

[n]
α (x0 + ε) − f

[n]
α (x0)

∣
∣
∣

ε

⎫
⎬

⎭
.

As ε → 0, the RHS becomes the absolute value of the derivative of the n-th
iterate at x0. But by the chain rule

df [n]
α

dx

∣
∣
∣
∣
∣
x0

=
d

dx

[
fα(f [n−1]

α (x))
]∣∣
∣
∣
x0

= f ′
α(f [n−1]

α (x0)︸ ︷︷ ︸
=xn−1

)
df [n−1]

α

dx

∣
∣
∣
∣
∣
x0

= f ′
α(xn−1)

df [n−1]
α

dx

∣
∣
∣
∣
∣
x0

.

Using this relation repeatedly, we obtain

df [n]
α

dx

∣
∣
∣
∣
∣
x0

= f ′
α(xn−1)f ′

α(xn−2) . . . f ′
α(xn−k)

df [n−k]
α

dx

∣
∣
∣
∣
∣
x0

= f ′
α(xn−1)f ′

α(xn−2) . . . f ′
α(x0),

where in the last step we set k = n and noted that f
[0]
α = fα. It now follows

that

λ[n]
x0

=
1
n

ln [|f ′
α(x0)| |f ′

α(x1)| · · · |f ′
α(xn−1)|]

which can also be written as

λ[n]
x0

=
1
n

n−1∑

k=0

ln |f ′
α(xk)| . (31.18)
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It is common to define the local Lyapunov exponent as follows: local Lyapunov
exponent

λx0 ≡ lim
n→∞

λ[n]
x0

= lim
n→∞

1
n

n−1∑

k=0

ln |f ′
α(xk)| . (31.19)

To characterize the chaotic behavior of systems obeying iterated maps,
one has to calculate λx0 for a sample of trajectory points and then take their
average. The result is called the Lyapunov exponent for the system. It Lyapunov

exponentturns out that

Box 31.1.5. A necessary condition for a system obeying an iterated map
function fα(x) to be chaotic for α is for its Lyapunov exponent to be
positive at α.

31.2 Systems Obeying DEs

As a paradigm of a nonlinear dynamical system, we shall study the motion
of a harmonically driven dissipative pendulum whose angle of oscillation is
not necessarily small. The equation of motion of such a pendulum, coming
directly from the second law of motion, is

m
d2x

dt2
= F0 cos(Ωt) − b

dx

dt
− mg sin θ, (31.20)

where x is the length (as measured from the equilibrium position) of the arc
of the circle on which mass m moves (see Figure 31.4).

The first term on the RHS of Equation (31.20) is the harmonic driving
force with angular frequency Ω, the second is the dissipative (friction, drag,
etc.) force, and the last is the gravitational force in the direction of motion.

l

h

θ

x mg

θ

Figure 31.4: The displacement x and the gravitational force acting on the pendulum.
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The minus signs appear because the corresponding forces oppose the motion.
Since the pendulum is confined to a circle, x and θ are related via x = lθ, and
we obtain

ml
d2θ

dt2
= F0 cos(Ωt) − bl

dθ

dt
− mg sin θ.

Let us change t to t = τ
√

l/g where τ is a dimensionless parameter measuring
time in units of T/(2π) with T being the period of the small-angle pendulum.2

Then, with the dimensionless constants

γ ≡ b

m

√
l

g
, φ0 ≡ F0

mg
, ωD ≡ Ω

√
l

g
,

the DE of motion becomes

d2θ

dτ2 + γ
dθ

dτ
+ sin θ = φ0 cos(ωDτ).

It is customary to write this as

θ̈ + γθ̇ + sin θ = φ0 cos(ωDt), (31.21)

where now t is the “dimensionless” time, and the dot indicates differentiation
with respect to this t.

31.2.1 The Phase Space

The study of dynamical systems—i.e., systems obeying DEs—is considerably
more complicated than systems obeying iterated maps. While in the latter
case we were able to use a fair amount of analytical tools, the discussion of
the former requires an enormous amount of numerical computation.

One of the devices that facilitates our understanding of dynamical systems
is the phase space diagram. The phase space of a dynamical system is aphase space

diagram Cartesian multidimensional space whose axes consist of positions and mo-
menta of the particles in the system. Instead of momenta the velocities of
particles are mostly used. Thus a single particle confined to one dimension
(such as a particle in free fall, a mass attached to a spring, or a pendulum)
has a two-dimensional phase space corresponding to the particle’s position and
speed. Two particles moving in a single dimension have a four-dimensional
phase space corresponding to two positions and two speeds. A single par-
ticle moving in a plane also has a four-dimensional phase space because two
coordinates are needed to determine the position of the particle, and two com-
ponents to determine its velocity, and a system of N particles in space has a
6N -dimensional phase space.

A trajectory of a dynamical system is a curve in its phase space corre-phase space
trajectory sponding to a possible motion of the system. If we can solve the equations

2Recall that T = 2π
√

l/g. So τ = t/(T/2π) is indeed dimensionless.
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of motion of a dynamical system, we can express all its position and velocity
variables as a function of time, constituting a parametric equation of a curve
in phase space. This curve is the trajectory of the dynamical system.

Let us go back to our pendulum, and consider the simplest situation in
which there is no driving force, the dissipative effects are turned off, and the
angle of oscillation is small. Then (31.21) reduces to θ̈ + θ = 0, whose most
general solution is θ = A cos(t + α) so that

x1 ≡ θ = A cos(t + α),

x2 ≡ ω ≡ θ̇ ≡ dθ

dt
= −A sin(t + α). (31.22)

This is a one-dimensional system (there is only one coordinate, θ) with a two-
dimensional phase space. Equation (31.22) is the parametric equation of a
circle of radius A in the x1x2-plane. Because A is arbitrary (it is, however,
determined by initial conditions), there are (infinitely) many trajectories for
this system, some of which are shown in Figure 31.5.

Let us now make the system a little more complicated by introducing a
dissipative force, still keeping the angle small. The DE is now

θ̈ + γθ̇ + θ = 0

and the general solution for the damped oscillatory case is

x1 = θ(t) = Ae−γt/2 cos(ω0t + α) where ω0 ≡
√

4 − γ2

2

with

x2 = ω = θ̇ = −Ae−γt/2
{γ

2
cos(ω0t + α) + ω0 sin(ω0t + α)

}
.

x1

x2

Figure 31.5: The phase space trajectories of a pendulum undergoing small-angle

oscillations with no driving or dissipative forces. Different circles correspond to different

initial conditions.
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θ

ω

Figure 31.6: The phase space trajectories of a damped pendulum undergoing small-

angle oscillations with no driving force. Different spirals correspond to different initial

conditions. The larger shaded region, in time, shrinks to the smaller one.

The trajectories of this system are not as easily obtainable as the un-
damped linear oscillator discussed above. However, since the two coordinates
of the phase space are given in terms of the parameter t, we can plot the
trajectories. Two such trajectories for two different A’s (but the same γ) are
shown in Figure 31.6.

A new feature of this system is that regardless of where the trajectory
starts at t = 0, it will terminate at the origin. The analytic reason for this is
of course the exponential factor in front of both coordinates which will cause
their decay to zero after a long time.3 It seems that the origin “attracts” all
trajectories, and for this reason is called an attractor.4attractor

There are other kinds of attractors in nonlinear dynamics theory. For
example, if trajectories approach an arc of a curve, or an area of a surface,
then the curve or the area becomes the attractor. Furthermore, for a given
value of the parameter, there may be more than one attractor for a given
dynamical system (just as there were more than one fixed point for iterated
maps); and it may happen that the trajectories approach these attractors only
for certain initial values of the dynamical variables. The set of initial values
corresponding to trajectories that are attracted to an attractor is called the
basin of attraction for that attractor. The set of initial values that lie onbasin of attraction

the border between the basin of attraction of two different attractors is called
a separatrix.separatrix

31.2.2 Autonomous Systems

Now we want to consider motion with large angles. The DE is then no longer
linear. The discussion of (nonlinear) DEs of higher orders is facilitated by

3“Long” compared to 1/γ.
4This is what we called a fixed point in our discussion of iterated maps. However,

because of the existence of a variety of “fixed objects” for dynamical systems, it is more
common to call these attractors.
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treating derivatives as independent variables. The defining relations for these
derivatives as well as the DE itself give a set of first-order DEs. For example,
the third-order DE

d3x

dt3
= x4 d2x

dt2
+ sin(ωt − kx)

dx

dt
+ ex cos(ωt)

can be turned into three first-order DEs by setting ẋ ≡ x1 and ẍ ≡ x2. Then
the DE splits into the following three first-order DEs:

ẋ = x1, ẋ1 = x2,

ẋ2 = x4x2 + sin(ωt − kx)x1 + ex cos(ωt).

This is a set of three equations in the three unknowns x, x1, and x2, which,
in principle, can be solved.

It is desirable to have a so-called autonomous system of first-order DEs. autonomous and
nonautonomous
dynamical systems

These are systems which have no explicit dependence on the independent
variable (in our case, t). Our equations above clearly form a set of nonau-
tonomous DEs. The nonautonomous systems can be reduced to autonomous
ones by a straightforward trick: One simply calls t a new variable. More specif-
ically, in the equation above, let x3 ≡ ωt. Then the nonautonomous equations
above turn into the following autonomous system:

ẋ = x1, ẋ1 = x2,

ẋ2 = x4x2 + sin(x3 − kx)x1 + ex cosx3,

ẋ3 = ω.

We have had to increase the dimension of our phase space by one, but in
return, we have obtained an autonomous system of DEs.

Based on the prescription above, we turn the second-order DE of the driven
pendulum into a set of first-order DEs. First we rewrite the DE describing a
general pendulum [see Equation (31.21)] as

θ̈ + γθ̇ + sin θ = φ0 cosα,

where α is simply ωDt. Then turn this equation into the following entirely
equivalent set of three first-order DEs:

θ̇ = ω, ω̇ = −γω − sin θ + φ0 cosα, α̇ = ωD. (31.23)

The two-dimensional (θ, ω) phase space has turned into a three-dimensional
(θ, ω, α) phase space. But the resulting system is autonomous.

Just as in the linear case, it is instructive to ignore the damping and driving
forces first. We set γ and φ0 equal to zero in Equation (31.23) and solve the set
of DEs numerically.5 For small angles, we expect a simple harmonic motion

5The solution can be given in terms of elliptic functions as discussed in Chapter 11.
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(SHM). So, with θ(0) = π/10 and ω(0) = 0,6 we obtain the plot on the left of
Figure 31.7. This plot shows a simple trigonometric dependence of angle on
time.

The initial angular displacement of the plot on the right of Figure 31.7 is
approximately π radians corresponding to raising the mass of the pendulum
all the way to the top.7 The flattening of curves at the maxima and minima
of the plot indicates that the pendulum almost stops once it reaches the top
and momentarily remains motionless there. This is expected physically as
θ(0) = π is a location of (unstable) equilibrium, i.e., with ω(0) = 0, the
pendulum can stay at the top forever. So, for θ(0) ≈ π, the pendulum is
expected to stay at the top, not forever, but for a “long” time.

The phase space diagram of the pendulum can give us much information
about its behavior. With the initial angular velocity set at zero, the pendulum
will exhibit a periodic behavior represented by closed loops in the phase space.
Figure 31.8 shows four such closed loops corresponding—from small to large

Figure 31.7: The undamped undriven pendulum shows an SHM for small initial angles

(the plot on the left has a maximum angle of π/10). For large angles, the motion is

periodic but not an SHM. The maximum angle of the plot on the right is slightly less

than π.
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Figure 31.8: Phase space diagrams for a pendulum corresponding to different values

of maximum displacement angles (horizontal axis). The inner diagrams correspond to

smaller values; the outermost plot has a maximum angle of 179.98 degrees at which the

angular speed is 1.

6It is important to keep ω(0) small, because a large initial angular velocity (even at a
small initial angle) can cause the pendulum to reach very large angles!

7For this to be possible, clearly the mass should be attached to a rigid rod (not a string)!
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loops—to the initial angular displacement of π/5, π/2, 2π/3, and (almost) π.
These loops represent oscillations only: the angular displacement is bounded
between a minimum and a maximum value determined by θ(0). The closed
loops are characterized by the fact that the angular speed vanishes at maxi-
mum (or minimum) θ, allowing the pendulum to start moving in the opposite
direction.

The outermost curves result from θ(0) = −π, ω(0) = 1 (the upper curve),
and θ(0) = π, ω(0) = −1 (the lower curve), and represent rotations. The an-
gular displacement is unbounded: it keeps increasing for all times. Physically,
this corresponds to forcing the pendulum to “go over the hill” at the top by
providing it an initial angular velocity. If the pendulum is pushed over this
hill once, it will continue doing it forever because there is no damping force.
The rotations are characterized by a nonzero angular velocity at θ = ±π. This
is clearly shown in Figure 31.8.

What happens when the damping force it turned on? We expect the tra-
jectories to spiral into the origin of the phase space as in the case of the linear
(small-angle) pendulum. Figure 31.9 shows two such trajectories correspond-
ing to an initial displacement of just below π (on the right), and just above
−π (on the left). For both trajectories, the initial angular velocity is zero. It
is intuitively obvious that regardless of the initial conditions, the pendulum
will eventually come to a stop at θ = 0 if there are no driving forces acting
on it. So, Figure 31.9 is really representative of all dissipative motions of the
pendulum.

The origin of the phase space is a fixed point of the pendulum dynamics.
But it is not the only one. In general, any point in the phase space for which
the time derivative of all coordinates of the trajectory are zero is a fixed point
(see Problem 31.6). If we set all the functions on the RHS of Equation (31.23)
equal to zero,8 we obtain

ω = 0 and sin θ = 0

corresponding to infinitely many fixed points at (nπ, 0) with n an integer.
Points in the neighborhood of the origin, i.e., those lying in the basin of
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Figure 31.9: Phase space diagrams for a dissipative pendulum. Two trajectories

starting at θ ≈ −π, ω = 0 and θ ≈ π, ω = 0 eventually end up at the origin.

8Still assuming no driving force.
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attraction of the origin are attracted to the origin; the rest of the fixed points
are repellors (or unstable) for such points.

The interesting motion of a pendulum begins when we turn on a driving
force regardless of whether the dissipative effect is present or not. Neverthe-
less, let us place the pendulum in an environment in which γ = 0.3. Now
drive this pendulum with a (harmonic) force of amplitude φ0 = 0.5 and angu-
lar frequency ωD = 1. A numerical solution of (31.23) will then give a result
which has a transient motion lasting until t ≈ 32. From t = 32 onward, the
system traverses a closed orbit in the phase diagram as shown in Figure 31.10.
This orbit is an attractor in the same sense as a point is an attractor for the
logistic map and a dissipative nondriven pendulum. An attractor such as the
one exhibited in Figure 31.10 is called a limit cycle.limit cycle

31.2.3 Onset of Chaos

As we increase the control parameter φ0, the phase space trajectories go
through a series of periodic limit cycles until they finally become completely
aperiodic: chaos sets in. Figure 31.11 shows four trajectories whose common
initial angular displacement θ0, initial angular velocity ω0, damping factor γ,
and drive frequency ωD are, respectively, π, 0, 0.5, and 2/3. The only (con-
trol) parameter that is changing is the amplitude of the driving force φ0. This
changes from 0.97 for the upper left to 1.2 for the lower right diagram.

A closer scrutiny of Figure 31.11—which we shall forego—will reveal that
the chaotic behavior of the diagram at the lower right takes place after the
pendulum goes through a bifurcation process as in the case of the logistic
map. However, unlike the logistic map whose bifurcation stages were divided
by fixed “points,” the stages for the pendulum are characterized by limit cy-
cles. In fact, the diagram at the upper left, corresponding to φ0 = 0.97,
consists of two (very closely spaced) limit cycles. Bifurcations involving limit
cycles are called Hopf bifurcation after the mathematician E. Hopf whoHopf bifurcation

generalized the earlier results of Poincaré on such bifurcations to higher di-
mensions. The logistic map and the nonlinear pendulum have the following
property in common: their “route to chaos” is via bifurcation. This is not
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Figure 31.10: The moderately driven dissipative pendulum with γ = 0.3 and φ0 = 0.5.

After a transient motion, the pendulum settles down into a closed trajectory.
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Figure 31.11: Four trajectories in the phase space of the damped driven pendulum.

The only difference in the plots is the value of φ0 which is 0.97 for the upper left, 1.1

for the upper right, 1.15 for the lower left, and 1.2 for the lower right diagrams.

true for all chaotic systems; there are other “routes to chaos,” but we shall
not investigate them here.

The main characteristic of chaos is the exponential divergence of neigh-
boring trajectories. We have seen this behavior for the logistic map. A very
nice illustration of this phenomenon for the nonlinear pendulum is depicted
in Figure 31.12 where two nearby trajectories in the neighborhood of point
(−2,−2) are seen to diverge dramatically (in eight units of time).

The divergence of trajectories and the ensuing chaos has been termed the
butterfly effect by Lorenz who, in the title of one of his talks, asked the butterfly effect

question: “Does the flap of a butterfly’s wings in Brazil set off a tornado
in Texas?” The point Lorenz is making in this statement is that if the at-
mosphere displays chaotic behavior (as a simple model proposed by Lorenz
predicts), then a very small disturbance, such as the flapping of a butterfly’s
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Figure 31.12: The projection onto the θω-plane of two trajectories starting at approxi-

mately the same point near (−2,−2) diverge considerably after eight units of time. The

loop does not contradict the DE uniqueness theorem!
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wings, would make it impossible to predict the long-term behavior of the
weather.

In general, for a dynamical system obeying an autonomous set of first-
order DEs to be chaotic three requirements are to be met:

1. The trajectories must not intersect.

2. The trajectories must be bounded.

3. Nearby trajectories ought to diverge exponentially.

The first requirement is a direct consequence of the uniqueness theorem9 for
the solution of DEs: if two trajectories cross, the system will have a “choice”
for its further development starting at the intersection point, and this is not
allowed. The very notion of fixed point as well as the crisscrosses of Figures
31.11 and 31.12 may appear to violate the first property above. However,
we have to remind ourselves that fixed points are (asymptotically) achieved
after an infinite amount of time. As for the two figures, the reader recalls
that all plots in those figures are projections of the three-dimensional trajec-
tories onto the yz-plane. The three-dimensional trajectories never cross (see
Figure 31.13).

The second requirement is important because unbounded regions of phase
space correspond to infinities which are to be avoided. The third requirement
is simply what defines chaos. It turns out that one- and two-dimensional
phase spaces cannot accommodate all of these requirements. However, in
three dimensions, one can “stretch” out the trajectories that want to loop in
two dimensions as shown in Figure 31.13 where the loop of Figure 31.12 is
seen to have been only a two-dimensional shadow! Thus,
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Figure 31.13: The two trajectories of Figure 31.12 shown in the full three-dimensional

phase space.

9For our purposes this theorem states that if the dynamical variables and their first
derivatives of a system are specified at some (initial) time, then the evolution of the system
in time is uniquely determined. In the context of phase space this means that from any
point in phase space only one trajectory can pass.
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Box 31.2.1. A necessary condition for a system obeying autonomous DEs
of first degree to be chaotic is to have a phase space that has at least three
dimensions.

The reader may wonder how a (one-dimensional) pendulum can satisfy
the condition of Box 31.2.1. After all, the phase space of such a pendulum
has only two dimensions. The answer lies in the fact that although a driven
pendulum—with only θ and ω = θ̇ regarded as independent variables—obeys
DEs that are not autonomous, when time is turned into the third dimension Only a driven

pendulum (of
large-angle
oscillation)
exhibits chaotic
behavior.

of the phase space, a set of three autonomous DEs will result which allows
chaotic behavior. This is in fact obvious from Equation (31.23) where α—the
third dimension of the phase space—is seen to be essentially time in units of
ωD. A pendulum that is not driven does not exhibit chaotic behavior.

31.3 Universality of Chaos

In the preceding sections, we examined two completely different systems dis-
playing chaotic behavior. Although there are different “routes” to chaos, we
shall concentrate only on the period-doubling route because it has been the-
oretically developed further than the other routes, and because it displays a
universal character common to all such chaotic systems as discovered by one
of the founders of the theory of chaos, Mitchell Feigenbaum.

31.3.1 Feigenbaum Numbers

In our theoretical investigation of the logistic map, we introduced the control
parameters αn at which the nth bifurcation takes place and for which there
are a number of 2n-cycle fixed points. It turns out that the ratio

δn ≡ αn − αn−1

αn+1 − αn
(31.24)

is almost the same for all large n, and that, in the limit as n → ∞, it ap-
proaches a number δ∗, now called the Feigenbaum delta: Feigenbaum delta

δ∗ ≡ lim
n→∞

δn = lim
n→∞

αn − αn−1

αn+1 − αn
= 4.66920 . . . . (31.25)

Feigenbaum looked at the same ratio for the so-called iterated sine function

xn+1 = β sin(πxn)

and found that exactly the same number was obtained in the limit. Later, he
showed that δ∗ is the same for all iterated map functions!10

10This is not entirely true. The map functions should have a parabolic “shape” at their
maximum. The logistic map and the sine function—as well as many other functions—have
this property.
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We can use δ∗ to calculate approximations to αn for large values of n, and,
in particular, to find an approximate value for α∞. First we note that, if we
approximate δn with δ∗, then (31.24) yields

αn+1 =
αn − αn−1

δn
+ αn ≈ αn − αn−1

δ∗
+ αn.

For example,

α3 ≈ α2 − α1

δ∗
+ α2, α4 ≈ α3 − α2

δ∗
+ α3,

or

α4 ≈ (α2 − α1)/δ∗

δ∗
+ α3 = (α2 − α1)

(
1
δ∗

+
1

δ∗2

)

+ α2.

We can easily generalize this to

αN ≈ (α2 − α1)
(

1
δ∗

+
1

δ∗2
+ · · · + 1

δ∗(N−1)

)

+ α2. (31.26)

In the limit that N → ∞, the sum becomes a geometric series which adds up
to 1/(δ∗ − 1). So,

α∞ ≈ α2 − α1

δ∗ − 1
+ α2. (31.27)

With α1 = 3 and α2 = 1 +
√

6, we obtain

α∞ ≈
√

6 − 2
3.66920

+ 1 +
√

6 = 3.572.

The actual value—obtained by more elaborate calculations—is 3.5699 . . ..
Another quantity that seems to be universal is the ratio of the consecutive

“bifurcation sizes.” We mentioned earlier that there are several fixed points
associated with the 2n-cycle parameter αn. At each stage of bifurcation, these
fixed points come in pairs. For example, at α2 ≡ 1+

√
6, Equation (31.16) gives

the two fixed points at x = 0.849938 and x = 0.43996. We define the “size”
d1 of the 4-cycle bifurcation as the (absolute value of the) difference between
these x-values. In general, we define dn, the size of the bifurcation pattern
of period 2n as the largest (in absolute value) of the differences between the
two x’s of each of the 2n pairs of fixed points. On a bifurcation diagram, one
would measure the vertical distance between the points where each curve of the
diagram starts to branch out. If there are several such distances, one chooses
the largest one. The second Feigenbaum number, the so-called Feigenbaum
alpha, is then defined asFeigenbaum alpha

α∗ ≡ lim
n→∞

dn

dn+1
= 2.5029 . . . . (31.28)

Feigenbaum found that this number is obtained for the bifurcation pattern of
all chaotic systems which reach chaos via bifurcation.
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Aside from its universality as applied to different chaotic systems, this
number suggests a general “size” scaling within the bifurcation pattern of
a single system: For large enough values of n, the ratio of the size of each
bifurcation is the same as the previous one. If we “blow up” the small bifur-
cations taking place for large values of n, they look almost identical to the
ones occurring before them. This property is also called self-similarity. self-similarity

31.3.2 Fractal Dimension

An elegant way of quantifying chaos is by examining the geometric properties
of the trajectory of the chaotic system under study. Suppose we let the system
run for a long time and suppose that it gravitates toward an attractor and
remains there.11 What is the “dimension” of the trajectory? The clarification
of this question and the logic (as well as the application) of its answer is the
subject of this subsection.

Intuitively, one assigns the dimension of 0 to points, 1 to curves, 2 to
surfaces, 3 to volumes, and n to “solid” objects residing in spaces requiring
n coordinates to describe their points. How can we go beyond intuition? We
use the so-called Hausdorff dimension, whose calculation goes as follows. Hausdorff

dimensionTry to cover the geometrical object by appropriate “boxes” of side length r.
Now count the number N(r) of boxes required to contain all points of the
geometric object. The Hausdorff dimension D is defined by

N(r) = lim
r→0

(
kr−D

)
, (31.29)

where k is an inessential proportionality constant which describes the shape of
the “box.” For example, as a box, we could use a “sphere” of radius r. Then
the “volume” would be 2r for a line, πr2 for a circle, and 4

3πr3 for a sphere.
Thus, k is 2, or π or 4

3π. If we choose “cubes,” k will always be 1. Furthermore,
by changing the unit of length, one can change k. Fortunately, as we shall see
shortly, k will not enter the final definition of Hausdorff dimension.

Equation (31.29) can be solved for D,

D = lim
r→0

[

− ln N(r)
ln r

+
ln k

ln r

]

.

Now, we can see why k is not essential: As r → 0 the denominator of the
second term grows beyond bound. So,

D = − lim
r→0

ln N(r)
ln r

(31.30)

Let us test (31.30) on some familiar geometric objects. If the object is a
single point on a line, then only one “box” is needed to cover it regardless of
the size of the box. So, N(r) = 1 for all r, and Equation (31.30) gives D = 0.

11By an attractor, we mean any geometrical object on which the trajectory hovers. It can
be a fixed point, a limit cycle, or some multidimensional object in the phase (hyper-)space.
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In fact, the Hausdorff dimension of any finite number of points on a line is
found to be zero. Similarly, the dimension of a finite number of points on a
surface or in a volume is also zero.

If the object is a surface of area A, then we require A/r2 boxes (squares)
to cover the entire area. Thus,

D = − lim
r→0

ln(A/r2)
ln r

= − lim
r→0

(
ln A − 2 ln r

ln r

)

= 2.

Similarly, the reader may check that the Hausdorff dimension for a curve is
1, and for a volume it is 3. So, the formula seems to be working for familiar
geometric objects.

Example 31.3.1. A not-so-familiar geometric object is the Cantor set: Take theCantor set
closed interval [0, 1]; remove its middle third; do the same with the remaining two
segments; continue the process ad infinitum (Figure 31.14). What is left of the line
segment is the Cantor set, named after the German mathematician whose work on
set theory, controversial at the time, laid the foundation of modern formal mathe-
matics. Figure 31.14 should convince the reader that after n steps, 2n segments are
left and that the length of each segment is (1/3)n. Thus, denoting the size of the
box after n steps by rn, we have

rn = (1/3)n, N(rn) = 2n.

Therefore,

D = − lim
r→0

ln N(r)

ln r
= − lim

n→∞

lnN(rn)

ln rn
= − lim

n→∞

ln(2n)

ln[(1/3)n]

= − lim
n→∞

n ln 2

n ln(1/3)
= − ln 2

ln(1/3)
=

ln 2

ln 3
= 0.6309 . . . . (31.31)

So, the Cantor set is more than just a set of points (dimension zero) and less than a
line segment (dimension one). It is amusing to note—as the reader may verify—that
the length of the Cantor set is zero! �

The Cantor set is only one example of geometrical objects whose dimen-
sions are nonintegers:fractal object or

fractal
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Figure 31.14: The Cantor set after one, two, three, and four “dissections.”
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Box 31.3.1. A geometrical object, whose Hausdorff dimension in not an
integer, is called a fractal object or simply a fractal.

Example 31.3.2. Another example of a fractal object is the so-called Koch
snowflake. Start with an equilateral triangle of side L [Figure 31.15(a)]; remove Koch snowflake
the middle third of each side and replace it with two identical segments (a “wedge”)
to form a star [Figure 31.15(b)]. Do the same to the small segments so obtained
[Figure 31.15(c)], and continue ad infinitum. The result is the Koch snowflake.

Let us find the Hausdorff dimension of the Koch snowflake.12 It should be clear A finite area
bounded by an
infinite closed
curve!

that the number of line segments on each side of the triangle at step n is 4n so that
N(rn) = 3 × 4n, and the length rn of each line segment is L/3n. Therefore, the
Hausdorff dimension of the Koch snowflake is

D = − lim
n→∞

ln N(rn)

ln rn
= − lim

n→∞

ln(3 × 4n)

ln(L/3n)

= − lim
n→∞

ln 3 + n ln 4

ln L − n ln 3
=

ln 4

ln 3
= 1.2618595 . . . . (31.32)

The length of the perimeter of the snowflake is

lim
n→∞

N(rn)rn = lim
n→∞

(3 × 4n) (L/3n) = 3L lim
n→∞

(
4
3

)n → ∞.

It is interesting to note that the area enclosed by the Koch snowflake is finite while
its perimeter is infinite! �

The fractals discussed so far have the property which we called self-similarity.
The present case is, however, a true (or regular) self-similarity because, as we
scale the object, we obtain the exact replica of the original. In contrast, for

(a) (b) (c)

Figure 31.15: (a) Begin with an equilateral triangle. (b) Remove the middle third of

each side and replace it with a “wedge” to form a star. (c) Remove the middle third of

each new segment and replace them with “wedges.” Continue ad infinitum to obtain

the Koch snowflake.

12This is the dimension of the perimeter, not the area of the snowflake.
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the logistic map, we obtained bifurcations which contained different scaling
ratios: The ratio was α∗ only for the largest bifurcation size at each stage.
Comparison of the largest size with smaller sizes would not have yielded α∗.
These (irregular) self-similarities occur frequently in chaotic systems and the
determination of their Hausdorff dimension can give information about the
long-term behavior of the dynamics of the system.

In the case of the logistic map, the Hausdorff dimension of the set of verti-
cal (fixed) points on the bifurcation diagram—which is zero at all finite stages
of bifurcation—will not be zero at α∞. It has, in fact, been calculated to be
0.5388 . . .. This is an example of attractors that have noninteger dimensions,
i.e., they are neither points nor lines. If the attractor of a dissipative dy-
namical system has a fractal dimension, then we say that the system has astrange attractor

strange attractor. Strange attractors play a fundamental role in the theory
of chaos.

31.4 Problems

31.1. Show that (31.1) leads to (31.2).

31.2. For the logistic map, assume that 1 < α < 3. Show that if xk > 1−1/α,
then xk+1 < xk, and if xk < 1 − 1/α, then xk+1 > xk. Therefore, conclude
that x∗ = 1 − 1/α is a stable fixed point.

31.3. Write the cubic polynomial in Equation (31.10) as

α3

(

x − 1 +
1
α

)

(x2 + ax + b)

and determine a and b by expanding and comparing the result with (31.10).
Now solve x2 + ax + b = 0 to obtain x2(α) and x3(α) of (31.11).

31.4. Derive Equation (31.21) from the equation that precedes it.

31.5. Convince yourself that a system of N particles in space has a 6N -
dimensional phase space.

31.6. Consider a set of autonomous first-order DEs. Suppose that a point P
of the phase space is a root of all functions on the RHS. By expanding each
coordinate of a trajectory in a Maclaurin series in t and keeping only the first
two terms, show that the trajectory does not move away from P . So, fixed
points are determined by setting all functions on the RHS of an autonomous
system equal to zero and solving for the coordinates.

31.7. Derive Equation (31.27) from (31.26).

31.8. Show that the dimension of a finite number of points on a surface or
in a volume is zero.
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31.9. Show that the Hausdorff dimension of any finite number of points is
zero, of a curve is 1, and of a volume is 3.

31.10. Show that the Hausdorff dimension of the Cantor set is independent
of the length of the original line segment.

31.11. Verify that the length of the Cantor set is zero.





Chapter 32

Probability Theory

Although probability theory did not flourish until after the Renaissance, and
in particular in the 17th and 18th centuries, its roots go back to ancient
history. Archaeological excavations reveal the presence of knuckle-bones (or
astragali) in numbers far larger than any other kind of bones, indicating the
possibility of the use of these bones in games. There is strong evidence that as-
tragali were in use for board games at the time of The First Dynasty in Egypt
(c.3500 B.C.). Other archaeological excavations, unearthing more recent pe-
riods, e.g. 1300 B.C. in Turkey, also reveal a definite connection between
astragalus and recreation.

It seems that games of chance, such as the board game mentioned above,
are, like counting, as old as civilization itself. Yet the science of counting,
arithmetic, was already in an advanced stage of evolution when probability
started to take root as a mathematical science in the 17th century. Why?
Perhaps the reason is the crudeness with which “randomizers” such as dice—
the artificial substitutes of astragali—were made for a long time. Abstraction
requires perfection. Although the abstraction of counting from what was being
counted took place naturally, the corresponding abstraction of randomness
from what is random demanded an ideal device capable of producing random
events, and a large number of experimental data for analysis, and this did not
happen until well into the 17th century.

32.1 Basic Concepts

The reader no doubt has some familiarity with the notion of a random event. Random event:
basis for
probability

Any occurrence or experiment, whose outcome is uncertain is such an event.
Flipping a coin, pulling a card out of a deck of cards, and throwing a die
are all examples of experiments whose outcome are uncertain (if the coin, the
deck of cards, and the die are all “unbiased”). The reader may also know
intuitively that the chance of getting a head in the toss of a coin is 50% (or
1 out of 2, or 0.5); that the chance of getting a 3 in the throw of a die is 1
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out of 6; and that the chance of getting a club in drawing a card is 1 out of 4.
The aim of the theory of probability is to make precise these intuitive notions
and to develop a mathematical procedure for answering questions related to
random events. First we need to review some simple concepts from set theory.

32.1.1 A Set Theory Primer

The most fundamental entity in any branch of mathematics is a universal
set. It is the collection of all objects under consideration. For example, theUniversal set

universal set of plane geometry is a flat surface, and of solid geometry is
the three-dimensional space. The universal set of calculus is the set of real
numbers (or the real line), and the complex plane is the universal set of
complex analysis. The generic universal set is denoted by S, but each specific
universal set has its own symbol: R is the set of real numbers, C is the set of
complex numbers, Z is the set of integers, and N is the set of natural numbers
(nonnegative integers).

The simplest relation in set theory is that of belonging. We write a ∈ S

(and say “a belongs to S” or “a is in S” to express the fact that a is one of
the objects in S. An object in S is called an element of S. A collection AElement and

subset of a set of elements of S is called a subset of S, and we write A ⊂ S. In particular,
S ⊂ S. Any subset can be considered as a set with its elements and subsets.
Thus, a ∈ A means that a is one of the elements of the subset A, a �∈ A
means that a is not one of the elements A, and B ⊂ A means that B consists
of elements, all of which belong to A. Subsets are often specified either by
enumeration or by some statement enclosed between a pair of curly brackets.
For example,

{0, 1, 2, 3, . . .}, {2, 4, 6, . . .}, {2n + 1|n ∈ N},

{(x, x)|x ∈ R},
{

−13.6
n2

∣
∣
∣n ∈ N, n �= 0

}

.

The first describes N; the second, the set of even numbers; the third, the set of
odd numbers; the fourth, the line y = x; and the fifth, the energy levels of the
hydrogen atom in electron volt. Two subsets are equal if each is a subset of
the other. In other words, if A ⊂ B and B ⊂ A, then A = B. It is convenient
to introduce the empty set, a subset ∅ of S, which has no element.

The subsets of a universal set have a rich mathematics which we can only
briefly outline here. Given two sets1 A and B, we can form another set, called
the union of A and B and denoted by A ∪ B, which consists of all elements
belonging to either A or B or both. Thus,

A ∪ B = {x ∈ S|x ∈ A or x ∈ B}.

1It is very common to delete the prefix ‘sub’ and refer to subsets of a universal set as
simply sets.
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The intersection of A and B, denoted by A∩B, consists of all elements that Union,
intersection, and
complement

belong to both A and B:

A ∩ B = {x ∈ S|x ∈ A and x ∈ B}.

The complement of a set A is the subset of S which contains all the elements
of S which are not in A. Denoting this set by Ac, we have

Ac = {x ∈ S|x �∈ A}.

The reader may easily verify that S = A∪Ac and ∅ = A∩Ac. When A∩B = ∅,
we say that A and B are disjoint. Disjoint sets

The operations of union and intersection are commutative and associative:

A ∪ B = B ∪ A, A ∩ B = B ∩ A,

(A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C).

Thus one can take the union and intersection of a number of sets without wor-
rying about the order of the sets or where to put the parentheses. This makes
it possible to introduce the following notations for the union and intersection
of a family of sets:

n⋃

i=1

Ai ≡ A1 ∪ A2 ∪ · · · ∪ An,

n⋂

i=1

Ai ≡ A1 ∩ A2 ∩ · · · ∩ An. (32.1)

We define the difference between two sets A−B ≡ A∩Bc as the collection
of elements in A that are not in B. It is not hard to show that A−B, B −A,
and A ∩ B are mutually disjoint. Furthermore,

A = (A − B) ∪ (A ∩ B),
B = (B − A) ∪ (A ∩ B), (32.2)

A ∪ B = (A − B) ∪ (A ∩ B) ∪ (B − A).

Note that all sets on the right-hand side of each equation are mutually disjoint.
A useful way of picturing sets and operations on them is a Venn diagram. Venn diagrams

The universal set is depicted as a rectangle, and its subsets as circles in the
rectangle. Figure 32.1 shows some examples of the use of Venn diagrams.
Venn diagrams are intuitive representations of relations among sets. For ex-
ample, the diagram on the right of Figure 32.1 shows clearly the equalities of
Equation (32.2).

Using Venn diagrams, one can show that the operation of union distributes
over intersection and vice versa:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), (32.3)
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A Ac A ∩ B A ∪ B

Figure 32.1: Venn diagrams of some sets. The grey region represents the set labeled

at the bottom.

and more generally,

A ∩
(

n⋃

i=1

Bi

)

=
n⋃

i=1

(A ∩ Bi),

A ∪
(

n⋂

i=1

Bi

)

=
n⋂

i=1

(A ∪ Bi). (32.4)

32.1.2 Sample Space and Probability

The underlying concept in probability theory is the sample space, which is
the same as the universal set of the set theory and is also denoted by S. It is
the collection of all possible outcomes of an experiment. For example, for the
toss of a coin, S = {H, T }; for the toss of two coins, S = {HH, HT, TH, TT };
and for a die, S = {1, 2, 3, 4, 5, 6}. An event E is simply a subset of the
sample space. Thus, the event {HT, TH} is described as the outcome in
the toss of two coins, in which one of the coins is head; and {2, 4, 6} is theEvent: elementary

and compound event that the roll of a die produces an even number. An event, therefore,
can be elementary or compound, with the latter being a collection of the
former.

We are now ready to define probability. Since the sample space—whichProbability space
is sample space. is now also called the probability space—includes all possible events, its

probability should be one, corresponding to absolute certainty. The probabil-
ity of any event (any subset of the probability space) has to be a nonnegative
number less than one. We may be tempted to say that the probability of
the union of two events is the sum of their probabilities, but that would be
wrong. For example, let S = {1, 2, 3, 4, 5, 6} be the universal set of a die,
and consider E1 = {1, 3, 5}, the odd outcomes, and E2 = {4, 5, 6}, all out-
comes greater than 3. Intuitively, we know that the probability for each of
these two events is 1

2 . But E1 ∪ E2 = {1, 3, 4, 5, 6}, and if we were to add
probabilities for the union, we would get that the probability of {1, 3, 4, 5, 6}
is one, which is clearly wrong. The reason for this is that we have actu-
ally double-counted {5}, the intersection of the two sets. Only if the two
sets are disjoint, can we add the probabilities for the union. Now we define
probability:
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Box 32.1.1. S is called a probability space if for each event E ⊂ S

there is a number P (E) satisfying the following conditions.

1. 0 ≤ P (E).

2. P (S) = 1.

3. If E1 and E2 are disjoint events, then P (E1∪E2) = P (E1)+P (E2).

Example 32.1.1. In this example we derive some relations involving probabilities.
(1) If E1 ⊂ E2, then P (E1) ≤ P (E2). To show this, use the first equation in (32.2)
and the fact that E1 ∩ E2 = E1 to write

E2 = (E2 − E1) ∪ E1 and P (E2) = P (E2 − E1) + P (E1).

Since P (E2 − E1) is nonnegative, we get P (E2) ≥ P (E1).

(2) P (E) ≤ 1 for every event E. This is a consequence of (1), because E ⊂ S and
P (S) = 1.

(3) For any two events E1 and E2,

P (E1 ∪ E2) = P (E1) + P (E2) − P (E1 ∩ E2). (32.5)

Use Equation (32.2) to write

P (E1) = P (E1 − E2) + P (E1 ∩ E2),

P (E2) = P (E2 − E1) + P (E1 ∩ E2), (32.6)

P (E1 ∪ E2) = P (E1 − E2) + P (E1 ∩ E2) + P (E2 − E1).

Substituting P (E1 − E2) and P (E2 − E1) of the first two equations in the last
equation, we obtain the desired result.

Using E as E1 and Ec as E2, and noting that E −Ec = E and E ∩Ec = ∅, the
first (or second) equation in (32.6) gives P (E) = P (E) + P (∅), implying that
(4) P (∅) = 0.

Using E as E1 and Ec as E2 again, and noting that E−Ec = E and E∪Ec = S,
the third equation in (32.6) and (4) give P (S) = P (E) + P (Ec), implying that
(5) P (Ec) = 1 − P (E). �

Condition 3 of Box 32.1.1 can be generalized to the case of a collection of
mutually disjoint sets E1, E2, . . . , Em:

P (E1 ∪ E2 ∪ ... ∪ Em) = P (E1) + P (E2) + · · ·+ P (Em) =
m∑

i=1

P (Ei). (32.7)

A collection of mutually disjoint sets E1, E2, ..., Em with S = E1∪E2∪...∪Em

is called a partition of S. Such a collection has the property that partition of
universal set

m∑

i=1

P (Ei) = 1. (32.8)
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Up to now, we have not assigned any value to P (E) for a given set E, and
it cannot be done without some further assumptions concerning the physical
properties of the probability space and the events that make it up. In fact,
if E1, E2, ..., Em partition S, any set of nonnegative numbers p1, p2, ..., pm

adding up to 1 with P (Ei) = pi will satisfy the conditions of Box 32.1.1 and
will turn S into a probability space. Physically, however, certain choices will
not make sense. For instance, for S = {H, T }, the sample space of a single
coin, one can set P (H) = 0.75 and P (T ) = 0.25. However, this assignment
is not very useful for ordinary coins, and in practice gives false results. For a
probability space composed of elementary events, it is often natural to assign
equal probability values to the elementary events. Thus if the Ei of Equation
(32.8) are all elementary, then the natural assignment would be P (Ei) = 1/m
for i = 1, 2, . . . , m. For a coin, m = 2 and P (H) = P (T ) = 0.5 is a natural
choice, while for a die P (i) = 1/6, and for a deck of cards, P (Ei) = 1/52.

32.1.3 Conditional and Marginal Probabilities

In many situations, the sample space is partitioned in two different ways.
For example, a deck of cards can be partitioned either by 4 suits or by 13
values; the employees of a company can be partitioned by gender or by de-
partments in which they work. Suppose E1, E2, . . . , Em and F1, F2, . . . , Fn

are two collections of events that partition S. It should be clear that Ei ∩Fj ,
i = 1, 2, . . . , m; j = 1, 2, . . . , n is also a partition of S, and that

n⋃

j=1

(Ei ∩ Fj) = Ei and
m⋃

i=1

(Ei ∩ Fj) = Fj . (32.9)

Since Ei, Fj , and Ei ∩ Fj are all partitions of S, we can define the proba-
bilities P (Ei), P (Fj), and P (Ei ∩ Fj). Then, Equation (32.9) implies that

P (Ei) =
n∑

j=1

P (Ei ∩ Fj) and P (Fj) =
m∑

i=1

P (Ei ∩ Fj). (32.10)

P (Ei) and P (Fj) are called marginal probabilities.Marginal and
conditional
probabilities

Associated with the marginal probability is the conditional probability.
Suppose we know that Ei has occurred. What is the probability of Fj? For
example, we draw a card from a deck of cards and somebody tells us that it is
a heart. What is the probability that it is a jack? This conditional probability
is denoted by P (Fj |Ei) and is the probability of Fj given that Ei has occurred.

Example 32.1.2. The best way to understand marginal and conditional proba-
bilities is to look at an example. Suppose that in a container, we have 100 marbles
coming in three different sizes: small, medium, and large; and five different colors:
white, black, red, green, and blue. Table 32.1 shows the distribution of the marbles
according to color and size.

First note that from the very definition of probability, the chance of getting a
medium red marble in a random drawing is 0.07, that of a large green marble is 0.03,
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White Black Red Green Blue Total
Small 5 7 6 8 4 30

Medium 8 10 7 12 8 45
Large 9 5 4 3 4 25
Total 22 22 17 23 16 100

Table 32.1: The distribution of marbles according to size and color.

and there is a likelihood of 0.05 for drawing a small white marble. Similarly the
probability that on a random drawing from the container, the ball is black is 0.22,
and for the ball to be medium it is 0.45. This suggests the construction of another
table, Table 32.2, which shows the distribution of the probabilities according color
and size.

Each entry of the last row and last column of Table 32.2 is what we have called a
marginal probability. The conditional probability that the marble is small given that
its color is white is 5/22. This is because, by restricting the color to white, we limit
the number of marbles to 22 rather than 100. Similarly, the probability that the
marble is green given that its size is medium is 12/45; this also is a conditional prob-
ability. Conditional probabilities can be rewritten as ratios of probabilities. Thus,
the probability that the marble is small given that its color is white is 0.05/0.22,
and the second probability is 0.12/0.45. �

The results of the foregoing example can be easily generalized. Let pij =
P (Ei ∩ Fj), construct a table with m rows and n columns, and fill the cells
with the numbers pij . Add one more row for the totals with entries P (F1),
P (F2), all the way to P (Fn). Add one more column for the totals with entries
P (E1), P (E2), all the way to P (Em). It should now be clear that P (Fj |Ei),
the probability of Fj given that Ei has occurred, is

P (Fj |Ei) =
P (Ei ∩ Fj)

P (Ei)
. (32.11)

Since any event and its complement partition the universal set, we can let
F1 = A and F2 = Ac (only two F ’s), and write the equation above as

P (A|Ei) =
P (Ei ∩ A)

P (Ei)
, (32.12)

White Black Red Green Blue Total
Small 0.05 0.07 0.06 0.08 0.04 0.3

Medium 0.08 0.1 0.07 0.12 0.08 0.45
Large 0.09 0.05 0.04 0.03 0.04 0.25
Total 0.22 0.22 0.17 0.23 0.16 1

Table 32.2: The distribution of probabilities according to size and color.
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or if we have two sets A and B and their complements as two partitions of S,
then

P (A|B) =
P (B ∩ A)

P (B)
, (32.13)

and this is true for any two sets.
If the probability P (A|B) does not depend on the event B in any way, i.e.,

if P (A|B) = P (A), then we say that the two events A and B are statistically
independent. Equation (32.13) now yieldsStatistically

independent
events

P (A) =
P (B ∩ A)

P (B)
or P (A ∩ B) = P (A)P (B), (32.14)

and the second equation becomes the definition for two events to be statisti-
cally independent.

It is important to differentiate between statistical independence and mu-Difference
between statistical
independence and
mutual exclusion

tual exclusion. If two events are mutually exclusive then they have to be
statistically dependent since the occurrence of one precludes the occurrence
of the other. Similarly, Equation (32.14) shows that if P (A) > 0, P (B) > 0,
and A and B are statistically independent, then P (A∩B) �= 0, implying that
A ∩ B �= ∅ and, therefore, that A and B cannot be mutually exclusive.

Equation (32.12) could be rewritten as

P (A ∩ Ei) = P (Ei)P (A|Ei),

and since A∩Ei are mutually exclusive and their union is A, we have [see the
second equation in (32.10) with A = Fj ]

P (A) =
m∑

i=1

P (Ei)P (A|Ei). (32.15)

This is called Bayes’ theorem.Bayes’ theorem

Example 32.1.3. A selective four-year college admits mostly students whose ACT
scores are 32 and higher, with a small number of admitted students whose scores are
below 32. The college has a graduation rate of 97%. Of those who graduate, 98%
have an ACT score of 32 and higher. Of those who drop out, 85% have an ACT
score below 32. We want to calculate the probability of graduation for a student
who has an ACT score below 32.

Let E1 and E2 denote the events corresponding, respectively to graduating and
dropping out. Let F1 and F2 denote the events corresponding to an ACT score of
32 or higher and lower than 32, respectively. We are after P (E1|F2).

Consider the following table, in which the most obvious probabilities are entered:

F1 F2 Total

E1 0.97

E2 0.03

Total 1
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Since we are given that P (E1) = 0.97 and P (F1|E1) = 0.98, we can use Equation
(32.11) to find the entry, p11, in the first row and first column:

p11 = P (F1 ∩ E1) = P (E1 ∩ F1) = P (F1|E1)P (E1) = 0.98 × 0.97 = 0.9506.

The entry, p12, in the first row and second column can now be calculated because
the total is given as 0.97:

p12 = P (F2 ∩ E1) = 0.97 − 0.9506 = 0.0194.

The table now looks like

F1 F2 Total

E1 0.9506 0.0194 0.97

E2 0.03

Total 1

We are also given that P (F2|E2) = 0.85. So, using Equation (32.11) again, we
can find p22:

p22 = P (F2 ∩ E2) = P (F2|E2)P (E2) = 0.85 × 0.03 = 0.0255.

The remaining entries are now trivial to calculate:

p21 = P (F1 ∩ E2) = 0.03 − 0.0255 = 0.0045,

P (F1) = 0.9506 + 0.0045 = 0.9551,

P (F2) = 0.0194 + 0.0255 = 0.0449,

and the complete table becomes

F1 F2 Total

E1 0.9506 0.0194 0.97

E2 0.0045 0.0255 0.03

Total 0.9551 0.0449 1

The desired probability is therefore,

P (E1|F2) =
P (E1 ∩ F2)

P (F2)
=

0.0194

0.0449
= 0.432.

So, there is almost a 43% chance for the graduation of a student whose ACT score
is below 32. �

32.1.4 Average and Standard Deviation

When we are given a set of values—say the scores of students in a class—and
asked to find the average, we add the values and divide by the total number
of values. If {xi}N

i=1 is the set of values, then the average x̄ is given by

x̄ =
∑N

i=1 xi

N
=

N∑

i=1

(

xi
1
N

)

.
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This equation tacitly assumes that the probability is the same for all values
and equal to 1/N . If the probability depends on i, the definition of the average
has to take this into account. Let pi denote the probability for the occurrence
of xi, and change the notation for the average to the more common notation
whereby capital letters are used inside angle brackets. Then the average or
mean or expectation value of {xi}N

i=1 is defined asAverage,
expectation value,
mean

〈X〉 =
N∑

i=1

xipi. (32.16)

Another quantity of interest is the standard deviation, which is a mea-Standard deviation

sure of how the values are spread from the mean. It is the average “distance”
between x̄ and xi. The obvious choice xi− x̄ will have a zero average, because
it is both positive and negative and the definition of x̄ makes the positive and
negative values cancel. To avoid this cancellation, one takes the square of
these differences and then averages them. The variance σ2 is defined byVariance

σ2 =
∑N

i=1(xi − x̄)2

N
,

and the standard deviation by

σ =

√
∑N

i=1(xi − x̄)2

N
. (32.17)

When probability varies with xi, the definition of the variance changes to

σ2 =
N∑

i=1

(xi − 〈X〉)2pi. (32.18)

In many situations one may be interested in the average of a quantity that
depends on the random variable xi. Thus, if g(xi) is such a quantity, one
writes

〈g(X)〉 =
N∑

i=1

g(xi)pi. (32.19)

In terms of such averages, one can show that

σ2 = 〈X2〉 − 〈X〉2. (32.20)

Related to averages is the moment generating function defined byMoment
generating
function 〈etX〉 =

N∑

i=1

etxipi. (32.21)

The name comes from the fact that

dk

dtk
〈etX〉

∣
∣
∣
∣
t=0

= 〈Xk〉. (32.22)
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32.1.5 Counting: Permutations and Combinations

The probability space of many situations is discrete. In fact, one can say
that all probability spaces are discrete, and only in the limit of large samples
(atoms and molecules in thermodynamics, for example) can one approximate
the random variable as a continuous variable. Therefore, it is important to
find formulas that give the number of particular events of a universal set.

Suppose you have N distinguishable particles and you want to place
them in M bins. There are two cases that are used in practice: each bin
can hold as many particles as you place in it; or each bin can hold only one
particle. For each case, we are interested in finding the number of distinct
arrangements, or the number of configurations. Let this number be denoted
by Ω(N, M).

If there is no restriction on the occupancy number, then you have M
choices for the first particle, M choices for the second particle, etc. Therefore,

ΩMB(N, M) = MN . (32.23)

In statistical mechanics, this is called the Maxwell-Boltzmann statistics. Maxwell-
Boltzmann
statistics

If the occupancy number is one, then you have M choices for the first
particle, M − 1 choices for the second particle, etc. Therefore,

Ωp(N, M) = M(M − 1)(M − 2) · · · (M − N + 1) =
M !

(M − N)!
, M > N.

(32.24)
This is called the permutation of M objects taken N at a time. If M = N , Permutation

then Ω(N, N) = N ! is simply called the permutation of N objects.
The elementary constituents of nature are indistinguishable or iden-

tical. How does this affect the formulas above? Let’s consider the single-
occupancy case first because it is easier. Equation (32.24) is overcounting the
arrangement by N ! because a permutation of the particles does not give any
new arrangement. Therefore,

Ωb(N, M) =
M !

N !(M − N)!
≡

(
M
N

)

, M > N. (32.25)

In statistical mechanics, this is called the Fermi-Dirac statistics. It is also Fermi-Dirac
statisticscalled the combination of M objects taken N at a time.

The multiple-occupancy case for indistinguishable particles is harder, but
there is a trick that can make it easier to derive the formula. Figure 32.2(a)
shows some bins with particles inside them. We can represent the arrangement
by placing the particles outside and to the right of the bins and represent the
bins by vertical lines as in Figure 32.2(b). Each vertical line has some particles
to its right and left except the bin on the extreme left, which has particles only
to its right. Since there is no limitation on the number of occupancy, the
number of arrangements can be calculated by permuting both the lines and
dots except the line on the extreme left. Since the dots are identical (as
are the lines), the problem reduces to finding the number of permutations of
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(b)(a)

Figure 32.2: (a) The bins with particles inside them. (b) Bins are represented by

vertical lines with the occupying particles to their right.

N + M − 1 objects N of which are identical and M − 1 of which are also
identical, but different from the other N . Therefore,

ΩBE(N, M) =
(N + M − 1)!
N !(M − 1)!

=
(

N + M − 1
N

)

. (32.26)

In statistical mechanics, this is called the Bose-Einstein statistics.Bose-Einstein
statistics

32.2 Binomial Probability Distribution

The Fermi-Dirac statistics is closely related to the so-called binomial distri-
bution. Each of the M bins has two states: either it is occupied or empty.
There are many situations where the binomial distribution applies. For exam-
ple, in tossing n coins, each coin can be a head or a tail; a quantum mechanical
spin-half particle can have its spin “up” or “down;” in a binary alloy system
each site of the alloy can be occupied by an atom A or B.

In fact, the binomial distribution is more general than this. In any trial,Universality of
binomial
distribution

one can talk about success and failure, where success refers to one particular
outcome (out of the many possible outcomes), and failure to the rest of the
possible outcomes. Thus, if we are after a 6 in a toss of a die, then getting a
6 is a success, and getting 1, 2, 3, 4, or 5 is a failure.

Let p be the success probability, then the failure probability is q = 1 − p.
What is the probability P (m, n) that in n trials we have m successes? Be-
cause the events are statistically independent (what happens in each trial is
independent of what has happened and what will happen), by (32.14), the
probabilities multiply. Thus the probability of m successes and n−m failures

is pmqn−m; and since there are
(

n
m

)

ways that this can happen in n trials,

the probability P (m, n) of m successes in n trials is

P (m, n) =
(

n
m

)

pmqn−m =
n!

m!(n − m)!
pmqn−m. (32.27)

Using the Stirling approximation x! ≈
√

2π e−xxx+1/2 of Equation (11.6), the
reader can show that

P (m, n) ≈ 2n

√
2

nπ
e−(n−2m)2/2n pmqn−m, (32.28)

assuming that both m and n − m are large, which is true in almost all cases
of large systems.
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The special case of p = q = 1
2 is of importance:

P (m, n) =
n!

m!(n − m)!2n
≈

√
2

nπ
e−(n−2m)2/2n. (32.29)

Sometimes (32.28) is written in terms of the difference s between the number
of successes and failures. This is conveniently equal to 2m − n which is the
exponent of the exponential. We call s the success excess. Thus, (32.28)
becomes

P (s, n) ≈
√

2
nπ

e−s2/2n, Ωb(s, n) = 2nP (s, n) = 2n

√
2

nπ
e−s2/2n,

(32.30)
where Ωb is the number of configurations now written in terms of s.

For the binomial distribution we can easily find the moment generating
function. From its definition, we have

〈etX〉 =
n∑

x=0

etxP (x, n) =
n∑

x=0

etx

(
n
x

)

pxqn−x

=
n∑

x=0

(
n
x

)

(pet)xqn−x = (pet + q)n, (32.31)

the last equality following from the binomial theorem. Equation (32.31) allows
us to easily calculate the average and variance for the binomial distribution.
First note that

d

dt
〈etX〉 = npet(pet + q)n−1,

d2

dt2
〈etX〉 = npet(q + npet)(pet + q)n−2.

Now evaluate these at t = 0—and note that p + q = 1—to obtain

〈X〉 = np, 〈X2〉 = n2p2 + npq, σ2 = 〈X2〉 − 〈X〉2 = npq. (32.32)

Example 32.2.1. Assume that the probability at birth that the newborn is male
(or female) is 1

2
. What is the probability that in a household of six, three are male?

Blind intuition tells us that the probability is 1
2
; but that is wrong! Rephrasing the

question to “What is the probability that in six trials we get three successes?” leads
us to the binomial distribution and the following answer:

P (3, 6) =
6!

3!3!

(
1

2

)3 (
1

2

)6−3

=
6!

3!3!

(
1

2

)6

= 0.3125.

This result may be surprising, but even more surprising is the result we obtain
if we ask the same question about a (small) school: “What is the probability that
in a school with 200 pupils, 100 are male?”

P (100, 200) =
200!

100!100!

(
1

2

)100 (
1

2

)200−100

=
200!

100!100!

(
1

2

)200

= 0.056.
�
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The surprise encountered in the preceding example is due to the confusion
caused by mixing the expected value with its probability. In a binomial distri-
bution, the expected value (or the mean or average) 〈X〉 = np, or 〈X〉 = n/2
when p = 0.5, which is the answer we intuitively gave to the two questions in
the example above. Since our surprise increases with n, let us investigate the
behavior of the binomial distribution for values of m close to the mean for
very large n.

For large n and m, we can use (32.29), from which we obtain

P (n/2, n) ≈
√

2
nπ

.

This shows that P (n/2, n) → 0 as n → ∞. Thus the probability of having
n/2 successes in n trials becomes negligible as the number of trials increases.
But this is the maximum probability! Therefore, any other probability goes
to zero even faster. Where have all the probabilities gone?

Consider the graph of (32.29) for large n and plot it to a scale such that
the peak of the maximum, although small, is conspicuous. Figure 32.3 shows
such a graph for n = 1000. Note that the maximum probability has a value of
only 0.025, and that the graph drops to a value that is indistinguishable from
zero at about m = 560 on the right and m = 440 on the left. We can actually
calculate the ratio r of the small probability at m = 560 to the maximum at
m = 500 using (32.29):

r ≡ P (560, 1000)
P (500, 1000)

=

√
2

1000π e−(−120)2/2000

√
2

1000π

= e−(−120)2/2000 = 0.00075.

460 480 500 520 540 560

0.005

0.010

0.015

0.020

0.025

Figure 32.3: The plot of the binomial probability distribution for n = 1000.



32.2 Binomial Probability Distribution 795

This same ratio is obtained if we use m = 440, and we can therefore conclude
that the nonzero probabilities are essentially concentrated between m− = 440
and m+ = 560 for n = 1000.

Now let’s turn to a general n and find the corresponding values of m− and
m+. These are the values of m at which the probability drops to 0.00075 of
its maximum value. To find m±, we have to solve the equation

r ≡ P (m, n)
P (n/2, n)

=

√
2

nπ e−(n−2m)2/2n

√
2

nπ

= e−(n−2m)2/2n = 0.00075.

The answer is
m± = 1

2 (n ± 3.8
√

n), (32.33)

as the reader may verify. So for a general n, a large fraction of the total
probability is concentrated between 1

2 (n − 3.8
√

n) and 1
2 (n + 3.8

√
n). But

how much? What is the probability that the number of successes lies between
m− and m+?

To answer this question, we have to add all probabilities between m− and
m+. For large numbers, one can replace the sum with an integral:

P (m− ≤ m ≤ m+, n) =
∫ m+

m−

√
2

nπ
e−(n−2m)2/2ndm.

Define a new variable of integration x so that the exponent of the integrand
becomes −x2. This means

n − 2m√
2n

= x, or m =
n −

√
2nx

2
, dm = −

√
2n

2
dx,

and the integral in terms of x becomes

1√
π

∫ 3.8/
√

2

−3.8/
√

2

e−x2
dx = 0.999855,

with the last result obtained by numerical integration. Therefore,

P (m− ≤ m ≤ m+, n) = 0.999855, (32.34)

which is interestingly independent of n.
Let us investigate the meaning of this result. It says that for very large n,

99.99% of the time the successes lie between m− and m+, and the probability
of not getting a success between m− and m+ is only 0.0145%. Note also
that when n gets large, m− and m+ become very nearly equal to n/2. For
example, if n = 109, then

n

2
= 5 × 108 and m+ = 1

2 (109 + 3.8
√

109) = 5.001× 108.
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So the probabilities are concentrated in a very narrow interval; i.e., the prob-
ability curve is extremely sharp.

Going back to the probability of the male gender, we note that in a very
populous country such as China or India with approximately 109 inhabitants,
although the probability that exactly half the population is male is extremely
small, and of the order of

√
2

nπ
=

√
2

109π
= 0.000025,

the probability of the male population deviating too far from half is also
small. So although the exact success (half male) is highly unlikely, a number
of successes very close to exact is almost certain.

Example 32.2.2. An isolated spin- 1
2

particle has equal probability of being in
either spin-up or spin-down states. If there are n such particles, then the probability
of m of them being in the up state is given by (32.29) or (32.30).

When a spin- 1
2

particle with magnetic moment μ is placed in a magnetic field
B, it has two possible states: in the direction of the field (called up) and opposite
to it (called down). In the first case the energy of the particle is −μB and in the
second case +μB. The energy of the system is therefore determined by the success
excess s, which in the present context is called the spin excess.

Now suppose that you have two systems that can exchange energy between
themselves with the combined system isolated. This means that the total energy
of the system is conserved. This energy is determined by the total spin excess s.
Let Ω1b(s1, n1) be the configuration number of the first system and Ω2b(s2, n2) for
the second. Let Ωb(s, n) be the number of configurations for the combined system,
where n = n1 + n2 and s = s1 + s2 is a constant. Since the total configuration
number is the product of the configuration number of the components, we have

Ωb(s, n) = Ω1b(s1, n1)Ω2b(s − s1, n2) = C exp

(

− s2
1

2n1
− (s − s1)

2

2n2

)

, (32.35)

where C is independent of s1.

What is the equilibrium state of the system? This corresponds to the most prob-
able state of the combined system, i.e., the state that maximizes Ωb(s, n). Instead
of maximizing Ωb, let’s maximize its logarithm, which is

lnΩb = lnC − s2
1

2n1
− (s − s1)

2

2n2
.

Differentiating with respect to s1, we get

∂ ln Ωb

∂s1
= − s1

n1
+

s − s1

n2
. (32.36)

Note that the second derivative is

−
(

1

n1
+

1

n2

)

,
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which is negative, so the extremum is a maximum. Setting (32.36) equal to zero
yields the most probable configuration: Condition for

thermal
equilibrium

ŝ1

n1
=

s − ŝ1

n2
=

ŝ2

n2
=

s

n
,

where the last equality follows from the previous ones (see Problem 32.13) and a
caret on a quantity indicates its value at maximum. If we substitute these in (32.35),
we get the maximum number of configurations:

Ωmax
b (s, n) = C exp

(

− ŝ2
1

2n1
− ŝ2

2

2n2

)

= Ce−s2/2n. (32.37)

The verification of the last equality is the subject of Problem 32.14.
Once in equilibrium, how likely is it for the system to move away from it? To

investigate this, let s1 and s2 be slightly different from their equilibrium values

s1 = ŝ1 + δ, s2 = s − s1 = s − ŝ1 − δ = ŝ2 − δ.

Substituting these in (32.35) yields

C exp

(

− ŝ2
1 + 2ŝ1δ + δ2

2n1
− ŝ2

2 − 2ŝ2δ + δ2

2n2

)

= Ωmax
b (s, n) exp

(

−2ŝ1δ + δ2

2n1
+

2ŝ2δ − δ2

2n2

)

.

But ŝ1/n1 = ŝ2/n2. Therefore,

Ω1b(ŝ1 + δ, n1)Ω2b(ŝ2 − δ, n2)

Ωmax
b (s, n)

= exp

(

− δ2

2n1
− δ2

2n2

)

. (32.38)

As a realistic numerical example, let n1 = n2 = 1023 and δ = 1013 so that the
fractional deviation δ/n1 = 10−10, a very small number. Then, the ratio in (32.38)
is e−1000 = 5 × 10−435. The probability for fractional deviations larger that 10−10

is smaller than e−1000. Assuming equal probability and adding the terms (about n1 How likely is it for
the system to
abandon its
equilibrium state?

of them), the upper bound for the total probability becomes n1e
−1000 or 5× 10−412

times the probability of finding the system in equilibrium.
What is the meaning behind the statement “the probability to find the sys-

tem with a fractional deviation larger than 10−10 is 5 × 10−412 of the probabil-
ity of finding the system in equilibrium?” To have a reasonable chance of finding
the system in such a deviated state, we have to sample 5 × 10412 similar systems.
Even if we could sample at the rate of 1012 systems per second, we would have
to sample for 5 × 10400 seconds, or over 10393 years, or 10383 times the age of the
universe! Therefore, it is safe to say that deviations described above will never be
observed. �

32.3 Poisson Distribution

Poisson processes are famous results in the probability theory. A Poisson
process occurs in circumstances under which an event is repeated at a constant
rate of probability. Suppose that dt is so small that the probability of the
occurrence of two or more successes is negligible. Then the probability P1(dt)
of one success in dt is νdt, where ν is a constant.
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We are interested in Pn(t), the probability of n successes in a time interval
t. We can obtain a recursive differential equation involving Pn(t) and Pn−1(t),
which we hope to solve to get Pn(t). Consider Pn(t+dt), the probability that
n successes occur in time t+dt. This can be written as the sum of two disjoint
probabilities, each consisting of the product of two independent probabilities:
(a) n successes occur in time t and none in time dt, (b) n− 1 successes occur
in time t and one in time dt. In symbols,

Pn(t + dt) = Pn(t)P0(dt) + Pn−1(t)P1(dt).

But P1(dt) = νdt and P0(dt) = 1 − P1(dt) = 1 − νdt. Therefore,

Pn(t + dt) = Pn(t)(1 − νdt) + Pn−1(t)νdt.

Expanding the left-hand side as Pn(t + dt) = Pn(t) + dPn
dt

dt and dividing
both sides by dt, we obtain the desired recursive DE:

dPn(t)
dt

+ νPn(t) = νPn−1(t). (32.39)

For n = 0 the right-hand side is zero and the DE

dP0(t)
dt

+ νP0(t) = 0

has the solution P0(t) = Ae−νt. The fact that the probability of no success
in zero time interval is 1 yields A = 1.

Equation (32.39) is a first order DE which can be solved. In fact, the
solution is given in Theorem 23.3.1, where in the case at hand

μ(t) = exp
[∫

νdt

]

= eνt

and

Pn(t) =
1

eνt

[

C + ν

∫ t

0

eνt1Pn−1(t1) dt1

]

.

We must have Pn(0) = 0 because there is no chance that n successes can
be achieved in zero time interval. This sets C = 0, and we get the integral
recursion relation:

Pn(t) = νe−νt

∫ t

0

eνt1Pn−1(t1) dt1. (32.40)

Substitute for Pn−1(t1) as an integral of Pn−2 to get

Pn(t) = νe−νt

∫ t

0

eνt1

{

νe−νt1

∫ t1

0

eνt2Pn−2(t2) dt2

}

dt1,

or

Pn(t) = ν2e−νt

∫ t

0

∫ t1

0

eνt2Pn−2(t2) dt2 dt1.
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It should now be clear that if we repeat this k times, we get

Pn(t) = νke−νt

∫ t

0

∫ t1

0

· · ·
∫ tk−2

0

∫ tk−1

0

eνtkPn−k(tk) dtkdtk−1 · · · dt1.

In particular when k = n,

Pn(t) = νne−νt

∫ t

0

∫ t1

0

· · ·
∫ tn−2

0

∫ tn−1

0

eνtnP0(tn) dtndtn−1 · · · dt1.

But P0(t) = e−νt so P0(tn) = e−νtn , and the above equation becomes

Pn(t) = νne−νt

∫ t

0

∫ t1

0

· · ·
∫ tn−2

0

∫ tn−1

0

dtndtn−1 · · · dt1. (32.41)

Starting with the innermost integral over tn and integrating all the t’s, the
reader can show that the result will be tn/n!. We thus finally obtain the
Poisson process

Pn(t) =
(νt)n

n!
e−νt. (32.42)

Poisson process is naturally a time-dependnent process and ν is the rate or
the frequency of that process.

The discrete Poisson distribution p(n) is defined by setting νt = λ to
obtain Poisson probability

distributionp(n) =
λn

n!
e−λ, n = 0, 1, 2, . . . ,∞. (32.43)

The moment generating function is

〈etX〉 =
∞∑

x=0

etx λx

x!
e−λ = e−λ

∞∑

x=0

(λet)x

x!
= eλ(et−1). (32.44)

This gives

d

dt
〈etX〉 = λeteλ(et−1),

d2

dt2
〈etX〉 = λeteλ(et−1)(λet + 1).

Evaluating these at t = 0 yields

〈X〉 = λ, 〈X2〉 = λ(λ + 1), σ2 = 〈X2〉 − 〈X〉2 = λ. (32.45)

Example 32.3.1. A city had 24 major fire accidents in a year. What is the
probability that there will be (a) one major fire next month, (b) at least 5 major
fires in the next 6 months?

Here ν, the frequency of fire is 24 per year or 2 per month. So for (a) we have
λ = 2 × 1 = 2 and

p(1) = λe−λ = 2e−2 = 0.27.

For (b), λ = 2 × 6 = 12 and

p(n ≥ 5) = 1 − p(0) − p(1) − p(2) − p(3) − p(4)

= 1 − e−12 − 12e−12 − 122

2!
e−12 − 123

3!
e−12 − 124

4!
e−12 = 0.992. �
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Example 32.3.2. In a department store, 39 light bulbs burn out per year. The
light bulbs are replaced from the store stock, which is replenished every week. What
is the minimum number of light bulbs the stock should hold so that the store will
have all its light bulbs working with a probability of at least 99%?

The frequency is ν = 39/52 = 0.75 per week. Thus, λ = 0.75 × 1 = 0.75. Let
n stand for the number of bulbs burnt per week and m the number of bulbs in the
stock. Then the store will have all its lights on as long as n ≤ m. Therefore, we
want p(n ≤ m) ≥ 0.99. This gives

p(n ≤ m) =
m∑

n=0

λn

n!
e−λ ≥ 0.99,

or

p(n ≤ m) =
m∑

n=0

(0.75)n

n!
≥ 0.99e0.75 = 2.096,

or (

1 + 0.75 +
0.752

2!
+ · · · + 0.75m

m!

)

≥ 2.096.

By trial and error, the reader can verify that m = 3. �

Poisson distribution is the limiting case of the binomial distribution when
n → ∞, p → 0, and λ = np is constant. To see this, expand n!/(n−m)! using
the Stirling approximation:

n!
(n − m)!

≈
√

2π e−nnn+1/2

√
2π e−n+m(n − m)n−m+1/2

= e−m

(
n

n − m

)n+1/2

(n − m)m.

Now note that
(

n

n − m

)n+1/2

≈
(

n

n − m

)n

=
1

(1 − m/n)n
→ 1

e−m
= em,

and (n − m)m ≈ nm. Furthermore,

qn−m = (1 − p)n−m =
(

1 − λ

n

)n−m

≈
(

1 − λ

n

)n

→ e−λ.

Substituting all this in (32.27) yields

P (m, n) → nm 1
m!

pme−λ =
(np)m

m!
e−λ =

λm

m!
e−λ,

which is the Poisson distribution p(m).

Example 32.3.3. A 3000-letter long message has been transmitted electronically
with an error probability of 10−3. What is the probability that there are at least
two errors in the message?

This is a binomial distribution (error is success!) with small probability and large
n. Therefore, we can use Poisson distribution (32.43) with λ = np = 3000×10−3 = 3.
Then

p(n ≥ 2) = 1 − p(0) − p(1) = 1 − e−3 − 3e−3 = 0.8.

The probability that there is exactly one error in the message is

p(1) = 3e−3 = 0.149. �
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32.4 Continuous Random Variable

Most probability sample spaces are so large that approximating the discrete
events with continuous variables becomes very useful and accurate. Take the
case of the binomial distribution discussed above. We started with discrete
counting, but when our sample grows to 1023, not only does the discrete sum
become unmanageable, it becomes unnecessary as well. This is also reflected
in the replacement of the strictly discrete factorial with the more adaptable
exponential function through the use of the Stirling approximation.

When continuous variables are used, probability is described by proba-
bility density. In the case of a single random variable x, the probability Probability density

density f(x) is used to give the probability that x lies in an interval of length
dx:

P (x − dx/2 < x < x + dx/2) = f(x) dx,

∫ b

a

f(x) dx = 1,

where (a, b) is the interval for which x is defined. This interval can be taken
to be (−∞,∞) by assigning zero probability density to points on the left of
a and on the right of b. The integral describes the total probability, which is
1 as in the case of the discrete variable.

For more variables, the generalization is clear. If x = (x1, x2, . . . xm) and
the probability density function is f(x), then the probability that x is in an
infinitesimal m-dimensional volume dmx is

P (x ∈ dmx) = f(x) dmx,

∫∫

Ω

f(x) dmx = 1, (32.46)

where Ω is the region for which f(x) is defined. If V is a subset of Ω, then

P (x ∈ V ) =
∫∫

V

f(x) dmx

gives the probability that x lies in V .
For example, a quantum mechanical wave function Ψ(r) gives rise to a

density f(r) = |Ψ(r)|2, and all wave functions are normalized so that
∫∫

Ω

|Ψ(r)|2 d3x = 1 and P (r ∈ V ) =
∫∫

V

|Ψ(r)|2 d3x, (32.47)

where r is a set of convenient coordinates.
The average and variance is defined in exactly the same way. For example,

the average of the ith component of x, denoted by 〈Xi〉, is given by

〈Xi〉 =
∫∫

Ω

xif(x) dmx. (32.48)

Similarly

σ2(Xi) =
∫∫

Ω

(xi − 〈Xi〉)2f(x) dmx, (32.49)
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and
〈g(X)〉 =

∫∫

Ω

g(x)f(x) dmx. (32.50)

Example 32.4.1. The ground state of the hydrogen atom is described in spherical
coordinates by the wave function Ae−r/a0 , where a0 is the Bohr radius, A is a
constant to be determined by the normalization (32.47), and r is the distance of the
electron to the nucleus, which is placed at the origin. Using the volume element in
spherical coordinates, we have

1 = A2

∫ ∞

0

∫ π

0

∫ 2π

0

e−2r/a0r2 sin θ dr dθdϕ = 4πA2

∫ ∞

0

e−2r/a0r2 dr

︸ ︷︷ ︸
a3
0/4

= πA2a3
0,

giving A =
√

1/πa3
0. Thus the normalized wave function for the ground state of the

hydrogen atom is

Ψ(r, θ, ϕ) =

√
1

πa3
0

e−r/a0 ,

with |Ψ(r, θ, ϕ)|2 being the probability density of finding the electron at (r, θ, ϕ).
From this, we can calculate, for instance, the probability that the electron ap-

proaches the nucleus to within 10% of the Bohr radius. The second equation in
(32.47) gives the answer where V is the volume of a sphere with radius 0.1a0.
Therefore,

P (r ∈ V ) =
1

πa3
0

∫ 0.1a0

0

∫ π

0

∫ 2π

0

e−2r/a0r2 sin θdr dθ dϕ

=
4

a3
0

∫ 0.1a0

0

e−2r/a0r2dr =
1

2

∫ 0.2

0

e−xx2dx ≈ 0.0013,

where we used the change of variables r = a0x/2 in the last integral to turn it into
a numerical factor.

We can also calculate some averages. For instance, the average for the x coor-
dinate of the electron is (remember that x = r sin θ cos ϕ)

〈X〉 =
1

πa3
0

∫ ∞

0

∫ π

0

∫ 2π

0

r sin θ cos ϕ e−2r/a0r2 sin θdr dθ dϕ = 0.

The result of zero being due to the ϕ integration. Similarly, 〈Y 〉 and 〈Z〉 also vanish.
This null result should be expected because it is just as likely for the electron to
have a positive x value as it is to have a negative value. On the other hand, r is
always positive, and we expect its average value to be nonzero. In fact,

〈R〉 =
1

πa3
0

∫ ∞

0

∫ π

0

∫ 2π

0

r e−2r/a0r2 sin θdr dθ dϕ =
4

a3
0

∫ ∞

0

e−2r/a0r3 dr

︸ ︷︷ ︸
=3a4

0/8

= 3
2
a0.

�

A random variable xα is said to be independent of the rest of the variablesIndependent
random variable if the probability density f(x) factors out into

f(x) = g(xα)h(x1, x2, . . . , xα−1, xα+1, . . . , xm) ≡ g(xα)hα(x),
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where hα(x) is a function of all x’s except xα. By multiplying it by a constant,
we can always choose g(xα) in such a way that

∫ ∞

−∞
g(xα) dxα = 1. (32.51)

Then since

1 =
∫∫

Ω

f(x) dmx =
∫ ∞

−∞
g(xα) dxα

∫∫

Ω′
hα(x) dm−1x,

where Ω′ is the region of integration of the remaining variables, we also have
∫∫

Ω′
hα(x) dm−1x = 1.

From this we conclude that the average of any function depending on xα alone
can be calculated using not the whole density f(x), but g(xα). In particular,

〈Xα〉 =
∫ ∞

−∞
xαg(xα) dxα, σ2(Xα) =

∫ ∞

−∞
(xα − 〈Xα〉)2g(xα) dxα.

(32.52)
Define cov(Xα, Xβ), the covariance of xα and xβ , for a general density Covariance defined

function f(x), by

cov(Xα, Xβ) ≡
∫∫

Ω

(xα − 〈Xα〉)(xβ − 〈Xβ〉)f(x) dmx

≡ 〈(Xα − 〈Xα〉)(Xβ − 〈Xβ〉)〉, (32.53)

and note that by (32.49),

cov(Xα, Xα) = σ2(Xα), cov(Xβ, Xβ) = σ2(Xβ). (32.54)

Now suppose that xα is independent of the rest of the variables and β �= α.
Then

cov(Xα, Xβ) =
∫ ∞

−∞
(xα − 〈Xα〉)g(xα) dxα

∫∫

Ω′
(xβ − 〈Xβ〉)hα(x) dm−1x = 0.

The result follows from the fact that the integration over Ω′ is a constant and
the integral over xα can be done independently:
∫ ∞

−∞
(xα − 〈Xα〉)g(xα) dxα =

∫ ∞

−∞
xαg(xα) dxα

︸ ︷︷ ︸
=〈Xα〉 by (32.52)

−〈Xα〉
∫ ∞

−∞
g(xα) dxα

︸ ︷︷ ︸
=1 by (32.51)

= 0.

The preceding discussion shows that cov(Xα, Xβ) measures how much xα

is independent of the rest of the variables. If it is, then cov(Xα, Xβ) = 0; if
it is not, then cov(Xα, Xβ) �= 0. A quantity related to cov(Xα, Xβ), called Correlation

definedcorrelation, is
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cor(Xα, Xβ) =
cov(Xα, Xβ)
σ(Xα)σ(Xβ)

. (32.55)

The “strongest” correlation occurs when α = β, in which case

cor(Xα, Xα) =
cov(Xα, Xα)

σ2(Xα)
= 1 by (32.54).

The “weakest” correlation occurs when α �= β and xα is independent of the
rest of the variables, in which case cor(Xα, Xβ) = 0. Thus, cor(Xα, Xβ)
indeed measures how much xα and xβ are correlated. Problem (32.22) shows
that |cor(Xα, Xβ| ≤ 1.

32.4.1 Transformation of Variables

Sometimes it is necessary or convenient to change a given set of random
variables to another set. Suppose that x = {xi}m

i=1 is a set of variables, and
u = {ui}m

i=1 are new variables of which the xi are functions. Given a density
f(x), the probability of finding x in an infinitesimal volume dmx is f(x)dmx.
What is the corresponding probability in terms of the u variables? What is
the probability density g(u) so that g(u)dmu is the probability that u lies in
the infinitesimal volume dmu? The answer is

g(u) = f
(
x1(u), x2(u), . . . , xm(u)

)
J(x,u), (32.56)

where J(x,u) is the Jacobian of the x-to-u transformation, whose special cases
in two and three dimensions were given in (6.65) and (6.66). Equation (32.56)
is obtained from f(x)dmx by writing x’s in terms of u’s, keeping in mind that
dmx = J(x,u)dmu.

In most cases, there are only two variables x and y, which are transformed
into u and v. Then (32.56) yields

g(u, v) = f
(
x(u, v), y(u, v)

)
∣
∣
∣
∣
∣
∣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣
∣
∣
∣
∣
∣
. (32.57)

Example 32.4.2. The random variables x and y have the density function

f(x, y) =

{
c(x + y)e−x if 0 < x, 0 < y < 1;

0 otherwise,
(32.58)

where c is a positive constant. What is the density function h(u) for the sum
u = x + y?

As will become clear below, it is convenient to write f(x, y) in terms of the θ
function introduced in Section 5.1.3 Equation (5.18):

f(x, y) = cθ(x)θ(y)θ(1− y)(x + y)e−x. (32.59)
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The reader is urged to verify that this is identical to (32.58). Let x = v. Then
u = x + y gives y = u − v, and the Jacobian for the transformation is

∣
∣
∣
∣
∣
∣
∣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣
∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

0 1

1 −1

∣
∣
∣
∣
∣
= 1. (32.60)

Therefore, all is needed is to replace x and y in f(x, y):

g(u, v) = cθ(v)θ(u − v)θ(1 − u + v)ue−v.

This is the convenience we mentioned above: we don’t have to worry about different
cases corresponding to different limits of u and v; the θ function automatically takes
care of that!

To find h(u), we need—by definition—to integrate over all values of v. Because
of the last θ factor in g(u, v), we need to consider two cases: 0 < u < 1 and u > 1. In
the first case, θ(1− u + v) = 1 because the first θ function requires v to be positive.
Then the middle θ function sets the upper limit of v integration to u. Hence,

h(u) ≡
∫ ∞

−∞
g(u, v) dv =

∫ u

0

cue−v dv = cu
(
1 − e−u

)
, 0 < u < 1.

In the second case, θ(1−u+v) requires v to be grater than u−1, and the middle
θ function still sets the upper limit of v integration to u. Therefore,

h(u) =

∫ u

u−1

cue−v dv = −cu e−v
∣
∣u
u−1

= cue−u(e − 1), u > 1.

The two cases can be combined using the θ function:

h(u) = cu
[
θ(u)θ(1 − u)

(
1 − e−u

)
+ θ(u − 1)e−u(e − 1)

]
. �

Suppose that x and y are independent random variables with the density
function

f(x, y) = f1(x)f2(y).

We want to find the density function h(u) of their sum u = x + y. Let
x = v and y = u − v, so that the sum is indeed x + y. The Jacobian of the
transformation is 1 by (32.60). Therefore, by (32.57),

g(u, v) = f
(
x(u, v), y(u, v)

)
= f1(v)f2(u − v).

The density function of each variable is obtained by integrating over the other
variable. Thus,

h(u) ≡
∫ ∞

−∞
g(u, v) dv =

∫ ∞

−∞
f1(v)f2(u − v) dv. (32.61)

The reader may recall from our discussion of Laplace transform that h is the
convolution of f1 and f2.
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Example 32.4.3. Assume that x and y are independent variables with

f1(x) =
1

π(x2 + 1)
, −∞ < x < ∞;

f2(y) =
1

π(y2 + 1)
, −∞ < y < ∞.

Then their sum u = x + y has the density function

h(u) =
1

π2

∫ ∞

−∞

dv

(v2 + 1)[(u − v)2 + 1]
=

2

π(u2 + 4)
, −∞ < u < ∞

leaving the verification of the last integration for Problem 32.25. �

32.4.2 Normal Distribution

One of the most frequently used probability distributions is Gauss’ normal
distribution given by

f(x) =
1√
2π σ

e−(x−m)2/2σ2
, −∞ < x < ∞. (32.62)

It can be easily shown that 〈X〉 = m and, as the notation suggests, the
variance is σ2.

To find the probability that x lies in the interval (a, b), we have to integrate
f(x) from a to b:

p(a < x < b) =
1√
2π σ

∫ b

a

e−(x−m)2/2σ2
dx.

Let y = (x − m)/
√

2σ and substitute for x in terms of y. Then

p(a < x < b) =
1√
π

∫ b−m√
2 σ

a−m√
2 σ

e−y2
dy =

1
2

[

erf
(

b − m√
2 σ

)

− erf
(

a − m√
2 σ

)]

,

(32.63)
where erf is the error function introduced in Equation (11.9). The error
function has been tabulated precisely because of its relation to the normal
distribution.

Suppose a and b are given in terms of their distance from the mean as a
multiple of the standard deviation: a = m + k1σ and b = m + k2σ, then we
have the important relation

p(m + k1σ < x < m + k2σ) =
1
2

[
erf

(
k2/

√
2
)
− erf

(
k1/

√
2
)]

. (32.64)

In particular, if k1 = −k2 ≡ −k, then

p(m − kσ < x < m + kσ) =
1
2

[
erf

(
k/

√
2
)
− erf

(
−k/

√
2
)]

. (32.65)
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For k = 1, 2, 3 this yields

p(m − σ < x < m + σ) = 0.6827
p(m − 2σ < x < m + 2σ) = 0.9545
p(m − 3σ < x < m + 3σ) = 0.9973.

Let x and y be random variables having the same normal distribution with
mean m and variance σ2

f1(x) =
1√
2π σ

e−(x−m)2/2σ2
, f2(y) =

1√
2π σ

e−(y−m)2/2σ2
.

We want to find the distribution of the sum u = x + y. This is a special case
of (32.61). Therefore, we can immediately write

h(u) =
1

2πσ2

∫ ∞

−∞
e−(v−m)2/2σ2

e−(u−v−m)2/2σ2
dv

=
1

2πσ2

∫ ∞

−∞
exp

[

− (v − m)2 + (u − v − m)2

2σ2

]

dv.

The reader may verify that the exponent can be simplified to

− (v − u/2)2 + (u − 2m)2/4
σ2

.

Substituting back in the integrand gives

h(u) =
e−(u−2m)2/4σ2

2πσ2

∫ ∞

−∞
e−(v−u/2)2/σ2

dv

︸ ︷︷ ︸
=
√

πσ2

=
e−(u−2m)2/4σ2

√
2π

√
2σ2

.

This shows that

Box 32.4.1. If the random variables x and y have the same normal dis-
tribution, then their sum has a normal distribution with twice the mean
and twice the variance.

Example 32.4.4. Let x and y be independent random variables whose density
functions f1 and f2 are normal distribution with m = 0 and σ = 1. What is the
density function h(u) for the ratio x/y?

Let x = v, then y = v/u makes u the sought-after ratio. The Jacobian of the
transformation is

J =

∣
∣
∣
∣
∣
∣
∣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣
∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

0 −v/u2

1 1/u

∣
∣
∣
∣
∣
=

|v|
u2

.
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Then

g(u, v) = f1(v)f2

( v

u

) |v|
u2

=
1

2π
e−v2/2e−v2/2u2 |v|

u2
.

To find h(u) we integrate g(u, v) over all values of v, namely −∞ to ∞. Since
the integrand is even, we can integrate from 0 to ∞ and multiply the result by 2.
Therefore,

h(u) =
1

πu2

∫ ∞

0

e
−( 1

2+ 1
2u2 )v2

v dv =
1

π(u2 + 1)
.

The integration is straightforward as the reader can verify. �

Equation (32.29), when written in the form (replacing m with x)

P (x, n) =

√
2

nπ
e−(x−n/2)2/(n/2)

displays the similarity of the binomial distribution and the normal distribution
for the special case of p = q = 1

2 . The equation shows that the mean is n/2
and the variance n/4. We now generalize this to arbitrary p and q.

Using the Stirling approximation x! ≈
√

2π e−xxx+1/2 and replacing m
with x, we write (32.27) as

P (x, n) ≈
√

2π e−nnn+1/2pxqn−x

√
2π e−xxx+1/2

√
2π e−n+x(n − x)n−x+1/2

=
nn+1/2pxqn−x(n − x)x

√
2π xx+1/2(n − x)n+1/2

,

or, pulling out the power of 1/2 and collecting all terms with equal powers
together, we obtain

P (x, n) ≈
√

n

2πx(n − x)

(
nq

n − x

)n (
p(n − x)

xq

)x

.

In the approximation we are seeking, we assume that x is close to the mean
np and write x = np + δ where δ is small compared to np. Then we get

P (x, n) ≈
√

n

2π(np + δ)(n − np − δ)

(
nq

n − np − δ

)n (
p(n − np − δ)

(np + δ)q

)np+δ

=
√

n

2π(np + δ)(nq − δ)

(
nq

nq − δ

)n (
npq − pδ

npq + qδ

)np+δ

,

or

P (x, n) ≈
√

1
2πnpq

(
1

1 − δ/nq

)n (
1 − δ/nq

1 + δ/np

)np+δ

︸ ︷︷ ︸
≡A

. (32.66)

To proceed, we take the log of the term we have designated as A:

ln A = −n ln
(

1 − δ

nq

)

+ (np + δ)
[

ln
(

1 − δ

nq

)

− ln
(

1 +
δ

np

)]

= (−nq + δ) ln
(

1 − δ

nq

)

− (np + δ) ln
(

1 +
δ

np

)

.
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Expanding the log terms up to the second order yields

ln A ≈ (−nq + δ)
(

− δ

nq
− δ2

2n2q2

)

− (np + δ)
(

δ

np
− δ2

2n2p2

)

= − δ2

2nq
− δ2

2np
= − δ2

2n

(
1
q

+
1
p

)

= − δ2

2npq
⇒ A ≈ e−

δ2
2npq .

Substituting this in (32.66) with δ = x − np, we obtain

P (x, n) ≈
√

1
2πnpq

e−
(x−np)2

2npq ,

which shows that P (x, n) is a normal distribution with mean np and variance
npq.

It can also be shown that the Poisson distribution (32.43) approaches the
normal distribution when n and λ are both large and δ = n − λ is small
compared to both:

p(n) → 1√
2πλ

e−(n−λ)2/2λ.

We therefore have the law of large numbers: law of large
numbers

Box 32.4.2. In the limit that the random variable and the mean go to
infinity, both the binomial and Poisson distributions approach the Gauss’
normal distribution.

Normal distribution is a remarkable density function. We just saw that
both binomial and Poisson distributions approach it in the limit of large n.
But it goes beyond these two distributions. In fact it can be shown that a
set of identically distributed random variables with an arbitrary distribution
is approximately normally distributed if the number of components is large
enough. This is the content of the central limit theorem, and the rea- central limit

theoremson that normal distribution is the distribution of choice in many statistical
applications.

32.5 Problems

32.1. Using Venn diagrams, show that the operation of union distributes over
intersection and vice versa:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

32.2. Using Venn diagrams, show that

A ∩ (B − C) = (A ∩ B) − (A ∩ C),
A − (B ∪ C) = (A − B) − C.
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32.3. Using Venn diagrams, show that

(A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc.

32.4. Fill in the rest of the following table assuming that all probabilities pij

are independent.

F1 F2 Total
E1 0.3
E2

Total 0.4

32.5. Fill in the rest of the following table assuming that all probabilities pij

are independent.

F1 F2 F3 Total
E1 0.3
E2

E3 0.5
Total 0.1 0.7

32.6. Prove Equation (32.22).

32.7. What is the probability of obtaining 400 heads in 800 coin tosses? Of
obtaining more than 500 heads? Of obtaining between 350 and 450 heads?

32.8. A graphic calculator is needed! Plot the binomial distribution
P (m, n) as a function of m for n = 50 and p = q = 1

2 using the exact formula
(32.27).
(a) From the plot estimate m−, the largest value on the left of maximum at
which the probability is (almost) zero, and m+, the smallest value on the right
of maximum at which the probability is (almost) zero. Compare these values
with (32.33).
(b) Sum the exact formula from m− to m+ to find the probability that the
number of successes lies between m− and m+.
(c) Using the Stirling approximation (32.28) estimate the probability found
in (b) and compare the two values.

32.9. Example 32.2.2 used the exponential approximation to the binomial
distribution because the number of spins were assumed very large. Now as-
sume two systems with n1 = 8 and n2 = 12, and the total energy being
exchanged is represented by s = 4.
(a) Find ŝ1 and ŝ2, and show that ŝ1/n1 is (approximately) equal to ŝ2/n2

and s/n.
(b) Find the ratio of the probability that s1 = ŝ1−1 (and therefore, s2 = ŝ2+1)
to the maximum probability. How does this compare with the same ratio
found in Example 32.2.2?
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32.10. Using the Stirling approximation x! ≈
√

2π e−xxx+1/2 of Equation
(11.6), show that

n!
m!(n − m)!

≈ 2n

√
2

nπ
e−(n−2m)2/2n,

assuming that both m and n − m are large.

32.11. For the binomial distribution,
(a) show that

n∑

m=0

P (m, n) =
n∑

m=0

(
n
m

)

pmqn−m = 1,

(b) and that

∫ ∞

−∞
P (s, n) ds =

∫ ∞

−∞

√
2

nπ
e−s2/2n ds = 1.

32.12. Let r ≡ P (m,n)
P (n/2,n) . Solve for m and show that

m = 1
2 (n ±

√
n
√
−2 ln r).

32.13. Show that if a/b = c/d then a/b = (a + c)/(b + d).

32.14. Derive (32.37) from (32.35).

32.15. Using the definitions of average and variance, show that σ2 =
〈X2〉 − 〈X〉2.

32.16. Show directly that (32.43) satisfies
∑∞

n=0 p(n) = 1.

32.17. A city had two earthquakes in a century. Find the probability that in
this city, there will be one earthquake
(a) next year,
(b) in the next 50 years.
(c) What is the probability of three or more independent earthquakes in the
same months?

32.18. The number of α particles emitted from a sample of a radioactive
atom is counted every minute for 50 hours. The total count is 1500.
(a) What is ν for this Poisson distribution?
(b) What is the probability that in the next 6 minutes three α particles will
be emitted?
(b) What is the probability that in the next 3 minutes at least four α particles
will be emitted?

32.19. One of the first excited states of the H-atom has the wave function

Ψ(r, θ, ϕ) = Are−r/2a0 cos θ.
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(a) Find A so that Ψ(r, θ, ϕ) is normalized to 1.
(b) Evaluate 〈X〉, 〈Y 〉, and 〈Z〉. Are they all zero? Do you expect them to
be?
(c) What is the expectation value of the distance of the electron from the
nucleus for this state?

32.20. Suppose that φ is a function of xα alone and xα is independent of
the rest of the variables of f(x), the density function for a multidimensional
probability space. Show that

〈φ(Xα)〉 =
∫∫

Ω

φ(xα)f(x) dmx =
∫ ∞

−∞
φ(xα)g(xα) dxα.

32.21. The uniform probability density function over (a, b) is

f(x) =

{
1/(b − a) if a < x < b;
0 otherwise.

What is the expectation value 〈X〉 for this distribution?

32.22. Consider the nonnegative function

x(t) = 〈[t(xα − 〈Xα〉) + (xβ − 〈Xβ〉)]2〉.

(a) Show that

x(t) = t2σ2(Xα) + 2tcov(Xα, Xβ) + σ2(Xβ),

which is a parabola in the tx-plane.
(b) If the parabola is to be nonnegative, it should have at most one real root.
Show that for this to happen, the following inequality must hold:

cov2(Xα, Xβ) ≤ σ2(Xα)σ2(Xβ).

32.23. Show that
∫ t

0

∫ t1

0

· · ·
∫ tn−2

0

∫ tn−1

0

dtndtn−1 · · · dt1 =
tn

n!
.

32.24. Let c be a positive constant and

f(x, y) =

{
cx(x + y) if 0 < x, 0 < y < 1;
0 otherwise.

Let u = x + y. Show that the density h(u) for the variable u is

h(u) =

{
cu3/2 if 0 < u < 1;
cu(u − 1

2 ) if u > 1.

Show that this can be written as

h(u) = cu
[
θ(u)θ(1 − u)u2/2 + θ(u − 1)(u − 1

2 )
]
.
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32.25. Using partial fractions write the integrand of Example 32.4.3 as

1
(v2 + 1)[(u − v)2 + 1]

=
av + b

v2 + 1
+

cv + d

(u − v)2 + 1
.

Now write the right-hand side as a single fraction with the same denominator
as the left-hand side. Set the coefficients of the powers of v in the numerator
equal to zero, except the constant which must be equal to 1. Find a, b, c, and
d. Show that the integral becomes

(b + d + cu)
∫ ∞

−∞

dv

v2 + 1
=

2
u2 + 4

∫ ∞

−∞

dv

v2 + 1
.

32.26. Using the Stirling approximation and a procedure similar to the one
used for binomial distribution in the text, show that in the limit of large
n and λ, the Poisson distribution of Equation (32.43) becomes the normal
distribution.

32.27. Certain measurements are assumed to be normally distributed with
25 as the mean 25 and 0.5 as the standard deviation. What is the probability
that a measurement lies between 23 and 27?
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Liouville substitution, 589
Bessel function, 333–335, 644

addition theorem, 651
confluent hypergeometric, 652
expansion in, 653–654

physical examples, 654–656
generating function, 651
integral representation, 652
Laplace’s equation, 642–654
order

negative integer, 646
orthogonality relation, 649
properties, 646–652
recurrence relation, 646
second kind, 645

Bessel’s integral, 652
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Bessel, Friedrich Wilhelm

biography, 641

beta function, 320

Bezout, 210
Bianchi identity, 470

bifurcation, 757

Hopf, 770

period-doubling, 757

binding energy, 582

binomial probability distribution,
792–797

binomial theorem, 265

biography

Abel, Niels Henrik, 326
Archimedes, of Syracuse, 81

Barrow, Isaac, 47

Bessel, Friedrich Wilhelm, 641

Biot, Jean-Baptiste, 115

Cauchy, Augustin-Louis, 503

Cavalieri, Bonaventura, 90
Cavendish, Henry, 23

Cayley, Arthur, 192

Coulomb, Charles, 23

d’Alembert, Jean Le Rond, 548

Descartes, Rene, 15

Dirac, Paul Adrien Maurice, 151

Euler, Leonhard, 321
Fermat, Pierre de , 15

Fourier, Joseph, 304

Gauss, Johann Carl Friedrich,
330

Gibbs, Josiah Willard, 381

Hamilton, William R., 10

Heaviside, Oliver, 382

Hermite, Charles, 674

Jacobi, Carl Gustav Jacob, 326

Kepler, Johannes, 579
Laplace, Pierre Simon de, 593

Legendre, Adrien-Marie, 617

Leibniz, Gottfried Wilhelm, 103

Maxwell, James Clerk, 419

Newton, Isaac, 96

Savart, Felix, 115

Stokes, George Gabriel, 398
Sylvester, James Joseph, 210

Taylor, Brook, 294

Wallis, John, 90

Biot, Jean-Baptiste

biography, 115

Biot–Savart law, 30
circuit, 111
general, 110

bipolar coordinates, 73
three-dimensional, 74, 438

Boltzmann, 419
Bose-Einstein statistics, 792
boundary condition, 542

Dirichlet, 593
Neumann, 593

boundary conditions
periodic, 574
separated, 574

brachistochrone, 731
Bromwich contour, 722
butterfly effect, 771

calculus
fundamental theorem, 87

calculus of residues, 525–536
canonical equations, 749
Cantor set, 776
Cardan, 481
Cartesian vector, 216

component, 216
Cauchy, 279, 326, 331, 594
Cauchy criterion, 261
Cauchy integral formula, 508–509
Cauchy, Augustin-Louis

biography, 503
Cauchy–Goursat theorem, 505
Cauchy–Riemann conditions, 500
Cauchy–Riemann theorem, 501
Cavalieri, Bonaventura

biography, 90
Cavendish, Henry

biography, 23
Cayley, 192, 211
Cayley, Arthur

biography, 192
center of mass, 21
central force, 354, 579–583

eccentricity, 581
central limit theorem, 809
centrifugal potential, 581
chain rule, 55–57
Champollion, 304
chaos, 753

theory
systems obeying DE, 770–773
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systems obeying iterated map, 763
universality, 773–778

coefficient, 173
cofactor, 205
collision

relativistic, 250–253
column vector, 177
combination, 791
complement, 783
complex

conjugate, 479
function

analytic, 499
continuous, 499
regular point, 499
singular point, 499
singularity, 499

integral
positive sense, 507

number, 478
absolute value, 479
argument, 483
imaginary part, 478
real part, 478

plane, 478
complex amplitude, 486
complex function, 497–511

derivative, 499–503
derivative as integral, 509–511
integration, 503–508

complex number
Cartesian form, 478
Fourier series, 489
polar form, 482
roots, 486

complex numbers, 477–488
Cartesian form, 477–481
Fourier series, 488–491
polar form, 482–488

complex power series, 516
analyticity, 517
convergence circle, 517
differentiation, 517
integration, 517
uniform convergence, 517

complex series
absolute convergence, 516

component, 176
Compton wavelength, 253
conditional probability, 786–789

conducting cylindrical can, 655
conductor

electrical, 594
heat, 598

confluent hypergeometric function, 332–
333

connection
affine, 462–464, 470
metric, 465–468

constraints, 360, 738
continuity equation, 378–381

differential form, 380
integral form, 380

contour, 505
Bromwich, 722
simple closed, 505

contractible to zero, 400
contraction, 451
contravariant vector, 445–447
convergence

test, 267–272
convolution, 716
coordinate

generalized, 741
coordinate system, 11–15

bipolar, 73
three-dimensional, 74, 438

Cartesian, 11, 12
cylindrical, 12
elliptic, 73, 213
elliptic cylindrical, 73, 213, 436
parabolic, 73
paraboloidal, 74, 437
polar, 11
prolate spheroidal, 74, 213, 437
spherical, 12
toroidal, 74, 213, 437
unit vector, 31–36
vector, 16–31

coordinate time, 239–240
Copernicus, 97, 417, 580
correlation

probability, 803
cosine transform, 697
Coulomb, 744
Coulomb’s law, 22, 24
Coulomb, Charles

biography, 23
covariance

in probability, 803
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covariant derivative, 464–465
covariant differential, 462–464
covariant vector, 445–447
Cramer, 210
Crelle, 326
cross product, 7, 28–31

as a tensor, 447
Levi-Civita symbols, 458
parallelepiped volume, 10
parallelogram area, 9

curl
curvilinear coordinates, 431–435
vector field, 391–398

current density, 379
and flux, 379

curvature, 468–471
scalar, 470

curve
parametric equation, 61
primary, 59

curvilinear
vector analysis, 423–435

curvilinear coordinates
curl, 431–435
divergence, 427–431
gradient, 425–427
Laplacian, 435

cycloid, 732

d’Alembert, 273, 303
d’Alembert, Jean Le Rond

biography, 548
d´Alembert, 743
damping factor, 311
DE

first-order, 551–561
integrating factor, 553–555
linear, 556–561

second-order, 563–570
de Broglie, 666
de Moivre theorem, 485
del operator, 359
delta

Kronecker, 442
delta function

and Laplacian, 412
cylindrical, 160
derivative, 147, 159
Legendre expansion, 630
limit of sequence, 492

one-variable, 139–151
point sources, 144
polar, 156
representation, 491–492
spherical, 160
three-variable, 159–165
two-dimensional, 155
two-variable, 154–159

density, 45
current, 379
flux, 371–381
of states, 677
probability, 801

density function
surface, 154

derivative, 44–46
covariant, 464–465
functional, 730
mixed, 52
normal, 593
partial, 47–59
time

vector, 350–355
total, 86

Descartes, 46, 97, 103, 215, 417, 481, 482
Descartes, Rene

biography, 15
determinant, 202–207, 222–227

parallelepiped volume, 10
differential, 53–54

absolute, 463
covariant, 462–464
exact, 553

differential equation
Bessel, 548, 641

recursion relation, 644
second solution, 645–646
solutions, 642–645

confluent hypergeometric, 332
Hermite

recursion relation, 668
hypergeometric, 328
Legendre, 608

second solution, 617–619
order of, 556
ordinary, 542
partial, 542
second-order linear

adjoint, 572
integrating factor, 571
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differential operator, 217, 576
diffusion equation, 661

time-dependent, 663
dimension, 176

fractal, 775–778
dipole

approximation, 298
magnetic, 410

dipole moment, 298
dipole potential, 299
Dirac, 26

biography, 151
Dirac delta function

in variational problems, 730
step function, 153

Dirac, Paul Adrien Maurice
biography, 151

disjoint sets, 783
distance

spacetime, 240–242
distribution, 146

normal, 806–809
sum of two, 807

divergence, 371–381
curvilinear coordinates, 427–431
spherical coordinates, 430
theorem, 374–378
vector field, 374

Doppler shift
relativistic, 255

dot product, 5, 21
double del operation, 407–412
double factorial, 319
dummy index, 262
dynamical system

autonomous, 767
nonautonomous, 767

eccentricity, 581
eigenvalue, 224
eigenvalue equation, 224
eigenvector, 224
Einstein, 215, 666

summation convention, 441
Einstein curvature tensor, 471
Einstein equation, 471
electric field, 104

point charge, 25
electrical conductor, 594
electrodynamics

Lagrangian density, 745
tensors, 459–461

element
area, 59–68
Cartesian, 60–62
cylindrical, 65–68
length, 59–68
spherical, 62–64
volume, 59–68

elliptic coordinates, 73, 213
elliptic cylindrical coordinates, 73, 213,

436
elliptic functions, 322–326
elliptic integral

complete, 324
first kind, 323
second kind, 323

empty set, 782
energy

relativistic, 249
zero mass particle, 250

energy momentum tensor, 471
equation

canonical, 749
Klein-Gordon, 747

error function, 322, 806
Euclid, 47, 80, 90
Euler, 272, 303, 326, 330, 503, 642, 743
Euler angles, 201
Euler equation, 483
Euler’s equation, 414
Euler, Leonhard

biography, 321
Euler-Lagrange equation, 729–731,

734–736, 738, 739
event, 784

compound, 784
elementary, 784
random, 781

exact differential, 553
expectation value, 790
extremum problem, 727

gradient, 359–361

factorial
double, 319

factorial function, 99, 318
Faraday, 26
Feigenbaum alpha, 774
Feigenbaum delta, 773
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Feigenbaum numbers, 773–775
Fermat, Pierre de

biography, 15
Fermi energy, 677
Fermi-Dirac statistics, 791
Feynman, 26
field, 21–28, 343

electric, 104
scalar, 343
spinor, 343
tensor, 343
vector, 343

field point, 25, 78
fine structure constant, 679
finite constraint problem, 739
fixed point

iterated map, 755
stable, 756

flat space, 470
Florence Nightingale, 210
fluid dynamics, 413–415
flux, 365–369

density, 371–381
vector field, 365–369

FODE, 551–561
Bernoulli, 560
homogeneous, 560
integrating factor, 553–555
Lagrange, 561
linear, 556–561
normal, 551

integral of, 552
FOLDE, 556–561

explicit solution, 557
force

central, 354
force density, 414
form factor, 702
four-acceleration, 248
four-momentum, 247–250
four-vector, 243
four-velocity, 247–250
Fourier, 115, 279, 322
Fourier series, 299–303

complex numbers, 488–491
to Fourier transform, 693–696

Fourier transform, 693–712
and derivatives, 702–703
and quark model, 702
application to DEs, 702–704

convolution theorem, 724
Coulomb potential

charge distribution, 701
point charge, 700

definition, 695
examples, 698–702
Gaussian, 699
Green’s functions, 705–712
heat equation

one-dimensional, 704
higher dimensions, 696
inverse, 695
of delta function, 698
properties, 696

Fourier, Joseph
biography, 304

Fourier-Bessel series, 655
fractal, 777
fractal dimension, 775–778
free index, 440
frequency

natural, 586
Frobenius method, 608–610, 693
function

analytic
isolated singularity, 525
principal part, 528

antiderivative, 87
as integral, 317–326
as power series, 327–335
Bessel, 333–335, 644

Laplace’s equation, 642–654
beta, 320
complex, 497–511

derivative, 499–503
residue, 526

complex hyperbolic, 502
complex trigonometric, 502
confluent hypergeometric, 332
delta

point sources, 144
elliptic, 322–326
error, 322
even, 84
factorial, 318
gain, 586
gamma, 318–319

Stirling approximation, 319
harmonic, 501
homogeneous, 57–59
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hypergeometric, 328–330
integral representation, 329

iterated map, 755
linear density, 143
logistic map, 755
odd, 84
periodic, 299
piecewise continuous, 82
primitive, 87
rational

integral, 529–531
sequence, 274–279
series, 274–279
special, 550
transfer, 586

functional, 728
functional derivative, 730
fundamental theorem of algebra, 478
fundamental theorem of calculus, 87

G-orthogonal, 187, 219
matrix, 191, 222

space, 200
vector

in space, 199
gain function, 586
Galileo, 26, 90, 97, 325
gamma function, 318–319

Stirling approximation, 319
gauge transformation, 418
Gauss, 279, 321, 326, 503, 617, 641
Gauss elimination, 231
Gauss’s law, 369

differential form, 378
integral form, 377

Gauss, Johann Carl Friedrich
biography, 330

Gaussian
Fourier transform of, 699

Gay–Lussac, 594
generalized coordinates, 741
generalized momentum, 748
generating function

Hermite polynomials, 673
geodesic, 465

relativity, 466
sphere, 466

geometric series, 271
geometry

and metric tensor, 456

distance formula, 241
Gibb’s phenomenon, 302

Gibbs, 370
Gibbs, Josiah Willard

biography, 381
Goldbach, 320

gradient, 355–361, 445
components, 440
curvilinear coordinates, 425–427
normal to surface, 358

three dimensions, 357
two dimensions, 357

Gram–Schmidt process, 221

for space, 199
Grassmann, 382
Green, 210
Green’s function

advanced, 712
differebtial eq. for, 707
heat equation, 709–710

Laplacian, 708–709
Poisson equation, 709
retarded, 712
wave equation, 711–712

Green’s Functions, 705–712
Gregory, 272, 294
guided wave, 682–686

TE, 684
TEM, 685
TM, 684

Halley, 641
Hamilton, 369, 382

Hamilton, William R.
biography, 10

Hamiltonian, 747–749
harmonic oscillator

quantum, 667
Hermite DE, 668

heat-conducting plate

circular, 664–665
rectangular, 663–664

heat-conducting rod, 662–663
heat conductor, 598

heat equation, 543, 661–665
Green’s function, 709–710
one-dimensional, 704

heat transfer

time-dependent, 663
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heat-conducting rod, 662
Heaviside, 370
Heaviside, Oliver

biography, 382
Heisenberg, 26, 151, 675
Heisenberg uncertainty relation, 699
Helmholtz Coil, 291–293
Helmholtz free energy, 54
Hermite DE

recursion relation, 668
Hermite polynomial, 670

orthogonality, 672
Hermite polynomials, 229, 575

generating function, 673
Hermite, Charles

biography, 674
HNOLDE, 575

characteristic polynomial, 576
homogeneous

function, 57
homogeneous function, 57–59
homogeneous SOLDE

exact, 571
Hooke, 97
Hopf bifurcation, 770
HSOLDE, 564

second solution, 568
Huygens, 97, 103
hydrogen atom, 677–680, 802
hyperbolic cosine, 290
hyperbolic sine, 290
hypergeometric function, 328–330

confluent, 332–333
integral representation, 329

identity matrix, 180
indeterminate form, 294–297
index

free, 440
indicial equation, 609
induction

mathematical, 265–266
inductive definition, 266
infinite series, 266–274
inner product, 218–222

positive definite, 187
Riemannian, 187

inner product matrix, 185
integral, 79

as function, 317–326

Bessel’s, 652
derivative of, 85–86
function of trigonometric, 534–536
indefinite, 87
line, 387–391
Mellin inversion, 722
rational function, 529–531
rational trigonometric, 532–534

integral transform, 693
kernel, 693

integrand, 80
integrating factor, 553–555
integration, 77–80

application
Cartesian coordinates, 104–107,

112, 115–117
cylindrical coordinates, 107–109,

112–115, 118–119
double integrals, 115–122
electricity, 104–109
general, 91–96
gravity, 104–109
magnetostatics, 109–115
mechanics, 101–103
single integral, 101–115
spherical coordinates, 120–122
triple integrals, 122–128

Cauchy integral formula, 508–509
change of dummy variable, 82
complex function, 503–508
interchange of limits, 82
linearity, 82
parameter, 80
partition of range, 82
point, 79
properties, 81–89
region of, 79
small region, 83
symmetric range, 84
transformation of variable, 83
variable, 80

intersection, 783
inverse

matrix, 203, 207
of a matrix, 180

inverse Fourier transform, 695
ionic crystal

one-dimensional, 145
potential energy, 164
two-dimensional, 157
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ISOLDE, 569
isoperimetric problem, 738
iterated map, 754–763

fixed point, 755
orbit, 755

Jacobi, 211, 331
Jacobi, Carl Gustav Jacob

biography, 326
Jacobian, 207–210

in probability, 804
Jacobian matrix, 208

Kaluza, 215
Kepler, 89, 97
Kepler’s first law, 582
Kepler’s second law, 582
Kepler’s third law, 583
Kepler, Johannes

biography, 579
kernel

integral transform, 693
Klein-Gordon equation, 747
Koch snowflake, 777
Kronecker delta, 222, 442, 449, 489

Euclidean metric, 466
generalized, 452

Lagrange, 294, 304, 326, 330, 594,
617, 642

biography, 742
Lagrange identity, 572
Lagrange multiplier, 360, 738
Lagrangian, 740–745

interacting particles, 741
Klein-Gordon, 747
particle in EM field, 746
single particle, 741

Lagrangian density, 744–745
electrodynamics, 745

Laguerre polynomials, 230, 679
Laplace, 115, 304, 322, 326, 744
Laplace transform, 712–723

and differential equations, 718–721
Bromwich contour, 722
convolution, 716
cosine, 713
derivative, 717–718
first shift, 714
gamma function, 713

imaginary exponential, 713
integral, 717–718
inverse, 721–723
linearity, 714
Mellin inversion integral, 722
periodic functions, 716
properties, 713–717
second shift, 714
sine, 713
step function, 713
unit function, 713

Laplace’s equation, 411, 542, 546
Bessel functions, 642–654
Cartesian coordinates, 594–603
cylindrical coordinates, 639–656
Legendre polynomials, 610–617
radial equation, 619–622
solution

uniqueness, 592
spherical coordinates, 607–634
uniqueness of solution, 592–593

Laplace, Pierre Simon de
biography, 593

Laplacian, 411
and Dirac delta function, 412
curvilinear coordinates, 435
Green’s function, 708–709

Laurent series
complex, 518–522

Lavoisier, 744
law of addition of velocities, 237
law of large numbers, 809
law of motion

relativistic, 253–254
Legendre, 304, 326
Legendre equation, 575

recursion relation, 611
Legendre functions

second kind, 618
Legendre polynomial, 228, 614, 616

expansion in, 628–630
physical examples, 631–634

generating function, 621
Laplace’s equation, 610–617
multipole expansion, 621
orthogonality, 625
parity, 622
properties, 622–628
recurrence relation, 623
Rodrigues formula, 626
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Legendre polynomials, 229, 575
Legendre transformation, 54, 748
Legendre, Adrien-Marie

biography, 617
Leibniz, 46, 87, 90, 97, 210, 272, 482
Leibniz, Gottfried Wilhelm

biography, 103
length element

primary, 59
Levi-Civita symbol, 453
Levi-Civita symbols

cross product, 458
l’Hôpital’s rule, 294–297
limit cycle, 770
line integral, 387–391
linear combination, 173
linear dependence, 174
linear equation, 230–234

compatible, 231
echelon form, 232
homogeneous, 234
incompatible, 231

linear independence, 174
linear operator, 216
linear transformation, 216–218
Liouville substitution, 588
logistic map, 755

second iterate, 757
Lorentz gauge, 419
Lorentz transformation, 243–247

general, 244
in 2 dimensions, 245

lowering indices, 457–459
Lyapunov exponent, 763

Maclaurin, 210, 272
Maclaurin series, 287
Madelung constant, 165
magnetic charge, 409
magnetic dipole moment, 410
magnetic field

moving charge, 30
magnetic force

current loop, 420
moving charge, 30

magnetic monopole, 409
manifold, 456, 469
map

iterated, 754–763
marginal probability, 786–789

mathematical induction, 265–266

matrix, 177
G-orthogonal, 191, 222

space, 200

identity, 180

inner product, 185
inverse, 180, 203, 207

Jacobian, 208

metric, 185

multiplication rule, 442
orthogonal, 190

symmetric, 182

transformation

in space, 195
transpose, 181

unit, 180

zero, 180

Maxwell, 26, 369, 382
Maxwell’s equations, 415–419

derivation of wave equation, 417

relation to relativity, 237

Maxwell, James Clerk
biography, 419

Maxwell-Boltzmann statistics, 791

mean, 790

Mellin inversion integral, 722
membrane, 686–687

metric connection, 465–468

relativity, 466

metric matrix, 185
metric tensor, 454–461

definition, 456

relativity, 458

minimal coupling, 749
Minkowski, 215

mode

of oscillation, 682

Möbius band, 366
moment

quadrupole, 449

moment generating function, 790

binomial distribution, 793
Poisson distribution, 799

moment of inertia, 122

momentum

generalized, 748
relativistic, 249

zero mass particle, 250

Monge, 115, 304
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motion
constant of, 552

multipole expansion, 297–299

Napoleon, 304, 593
natural frequency, 586
Neumann function, 645
Newton, 16, 26, 43, 46, 78, 87, 90, 103,

122, 272, 294, 317, 322, 326,
330, 481, 482, 548, 593

Newton, Isaac
biography, 96

NOLDE, 575
nonautonomous, 767
normal distribution, 806–809

sum of two, 807
nth iterate, 760

ODE, 542
ODE and PDEs, 542–550
Olbers, 641
operator

angular momentum, 412
spherical coordinates, 435

del, 359
differential, 576

linear, 217
linear, 216

orientable surface, 366
orthogonal

matrix, 190
orthogonal polynomial

standardization, 227
orthogonal polynomials, 227–230
orthonormal

basis, 186

parabolic coordinates, 73
paraboloidal coordinates, 74, 437
parallel translation, 465
Parseval relation, 654
Parseval’s relation, 724
partial derivative, 47–59
particle in a box, 675
Pascal, 15, 103, 481
passive transformation, 178
PDE, 542

separation
Cartesian coordinates, 544–546
cylindrical coordinates, 547–548

spherical coordinates, 548–550
PDE and ODE, 542–550
period-doubling, 757
periodic BC, 574
permutation, 791
phase space, 764–766

diagram, 764
trajectory, 764

Planck, 666
plane

basis, 175
Poincaré, 674
Poisson, 594
Poisson distribution, 797–800
Poisson equation, 411, 542

astrophysics, 415
Green’s function, 709

polar coordinates, 16
polar equation, 549
pole

of order m, 528
simple, 528

polynomial
Hermite, 229, 670
Laguerre, 230, 679
Legendre, 228, 229, 614, 616

Laplace’s equation, 610–617
orthogonal, 227–230

standardization, 227
position vector, 19
potential, 21–28, 399

centrifugal, 581
difference, 399
of a dipole, 299

potential energy, 553
power series, 283–299

continuity, 285
differential equations, 307
differentiation, 285
integration, 285
operations, 520
radius of convergence, 283
zero, 285

pressure, 46
primary curve, 59
primary surface, 60
probability

average, 790
basic concepts, 781–792
binomial distribution, 792–797
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conditional , 786–789
correlation, 803
covariance, 803
density, 801
expectation value, 790
independent random variable, 802
marginal , 786–789
mean, 790
moment generating function, 790
Poisson distribution, 797–800
sample space, 784–786
set theory, 782–784
standard deviation, 790
variance, 790

probability space, 784
prolate spheroidal coordinates, 74, 213,

437
proper time, 239–240

quadrupole moment, 449
quantization

hydrogen atom, 679
quantum harmonic oscillator, 667–674
quantum mechanics

angular momentum operator, 412
spherical coordinates, 435

quantum particle
in a box, 675–677

quantum tunneling, 676
quaternions, 11

radial, 19
radial equation, 549
raising indices, 457–459
random event, 781
random variable

continuous, 801–809
independent, 802
transformation, 804–806

rate of change, 44
ratio test

Waring, 273
recursion relation, 308, 610
relativistic collision, 250–253
relativistic energy, 249
relativistic law of motion, 253–254
relativistic momentum, 249
relativity

geodesic, 466
metric connection, 466

metric tensor, 458
principle, 238
special, 237

residue, 526
calculus, 525–536

residue theorem, 527
definite integral

rational function, 529
rational trigonometric, 532
trigonometric function, 534

retarded Green’s function, 712
Ricci tensor, 470
Riemann, 321
Riemann curvature tensor, 468–471
Riemann zeta function, 269
Riemannian manifold, 456
right-hand rule, 392
rigid transformation, 190
Rodrigues formula, 626
Rosetta stone, 304
row vector, 181

sample space, 784–786
Savart, Felix

biography, 115
scalar curvature, 470
scalar function, 445
Schrödinger, 675

biography, 666
Schrödinger equation, 543, 546, 666–680

time-independent, 666
Schwarz inequality, 185, 220
Schwinger, 26
second iterate, 757
second variation, 735–738
self-similarity, 775
separated boundary conditions, 574
separation of time, 543
separatrix, 766
sequence, 259–262

bounded, 261
convergence, 260

Cauchy criterion, 261
divergence, 260
functions, 274–279
limit, 260
monotone decreasing, 261
monotone increasing, 261
partial sum, 259, 267

series, 266–274
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alternating
test, 270

application to DE, 307–311
complex, 518

Laurent, 518–522
Taylor, 518–522

convergence
absolute, 268
comparison test, 268
conditional, 272
generalized ratio test, 270
integral test, 268
n-th term test, 267
ratio test, 269

convergent
grouping, 273
rearranging, 273

familiar functions, 287–291
Fourier, 299–303

complex numbers, 489
Fourier–Bessel, 655
functions, 274–279

uniform convergence, 276
geometric, 271
harmonic

order p, 269
Laurent

complex, 518
Maclaurin, 287

binomial function, 288
complex, 518
exponential function, 287
hyperbolic function, 289
logarithmic function, 291
trigonometric function, 287

operations on, 273–274
power, 283–299

differential equations, 307
Taylor, 286–287

complex, 518
multivariable, 305–307

uniform convergence
differentiation, 278
integration, 278

uniformly convergent, 277–279
set theory, 782–784

complement, 783
difference, 783
disjoint sets, 783
intersection, 783

union, 782
Venn diagrams, 783

sine transform, 697
soap film problem, 733
SOLDE, 563–570

basis of solutions, 565
central force, 579
constant coefficient, 575–587

homogeneous, 576–583
inhomogeneous, 583–587

homogeneous, 564
second solution, 567–569

inhomogeneous
general solution, 569–570

Kepler problem, 580
linearity, 564–565
normal form, 563
singular point, 563
superposition, 564–565
superposition principle, 564
uniqueness of solution, 564–565
uniqueness theorem, 565
variation of constants, 569
Wronskian, 566–567

solid angle, 344–350
total, 349

source point, 25, 79
space

dimension, 11
flat, 470
point, 11
probability, 784

spacetime distance, 240–242
being zero, 242

span, 175
special functions, 550
standard basis, 216
standard deviation, 790
statistical independence, 788
statistics

Bose-Einstein, 792
Fermi-Dirac, 791
Maxwell-Boltzmann, 791

stellar equilibrium, 415
step function, 152–153

Dirac delta function, 153
Laplace transform, 713

Stifel, 481
Stirling, 320
Stirling approximation, 319, 792, 808
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Stokes’ theorem, 391–398
Stokes, George Gabriel

biography, 398
strange attractor, 778
Sturm–Liouville

system, 574
Sturm-Liouville equation, 574
subset, 782
success excess, 793
summation, 262–266
superposition principle, 25, 564
surface

primary, 60
Sylvester, and Cayley, 192
Sylvester, James Joseph

biography, 210
symmetric matrix, 182
symmetric tensor, 452

Taylor series, 286–287
complex, 518–522
multivariable, 305–307

Taylor, Brook
biography, 294

tensor, 447–454
addition, 450
algebraic properties, 450–452
contraction, 451
differentiation, 462–468
Einstein curvature, 471
electrodynamics, 459–461
energy momentum, 471
Levi-Civita symbols, 453
metric, 454–461

definition, 456
relativity, 458

multiplication, 451
numerical, 452–454
rank of, 448
Ricci, 470
Riemann curvature, 468–471
symmetrization, 452
torsion, 463

terminal velocity, 559
theorem

central limit, 809
time

coordinate, 239–240
proper, 239–240

time constant, 586

toroidal coordinates, 74, 213, 437
torque, 28
torsion tensor, 463
transfer function, 586
transform

cosine, 697
Fourier, 693–712

and quark model, 702
application to DEs, 702–704
convolution theorem, 724
examples, 698–702
Gaussian, 699
Green’s functions, 705–712
heat equation in 1D, 704
inverse, 695
of delta function, 698
properties, 696

integral, 693
Laplace, 712–723

and differential equations, 718–
721

Bromwich contour, 722
convolution, 716
cosine, 713
derivative, 717–718
first shift, 714
gamma function, 713
imaginary exponential, 713
integral, 717–718
inverse, 721–723
linearity, 714
Mellin inversion integral, 722
periodic functions, 716
properties, 713–717
second shift, 714
sine, 713
step function, 713
unit function, 713

sine, 697
transformation

active, 178
coordinate, 13
differentiation, 197
gauge, 418
Legendre, 54, 748
linear, 216
Lorentz, 243–247
matrix

in space, 195
orthogonal, 442
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passive, 178
rigid, 190

transient term, 586
transpose

of a matrix, 181
transposition, 181

properties, 182
triangle inequality, 480
tunneling, 676

uncertainty relation, 699
uniform convergence

Weierstrass M-test, 276
uniformly convergent series, 277–279
union, 782
unit matrix, 180
unit vectors, 5
universal set, 782

partition, 785

Van de Graff, 117
Vandermonde, 210
variable

random
continuous, 801–809
transformation, 804–806

variance, 790, 801
variational problem, 728–740

constraints, 738–740
several dependent variables, 734
several independent variables, 734
soap film, 733

vector
Cartesian

component, 216
n-dimensional, 216

column, 177
component, 176
contravariant, 445–447
coordinate system, 16–31
covariant, 445–447
cross product, 7–10
field

conservative, 398–404
curl, 391–398
flux, 365–369

G-orthogonal, 219
in space, 199

indices, 439–471

inner product, 182–191, 198–202
plane, 3–10, 174–191
position, 19
row, 181
space, 3–10, 192–207
time derivative, 350–355
transformation, 194–198
transformation of components, 176–

182
transformation properties, 441–445
unit, 5

vector analysis
curvilinear, 423–435

vector field
conservative

curl, 400
curl of, 394
divergence, 374

vector potential, 408
vector space, 173, 215–227
velocity, 44

terminal, 559
Venn diagrams, 783
vibrating membrane, 686–687
Vieta, 481

Wallis, 97, 293, 321, 326
Wallis, John

biography, 90
wave equation, 543, 680–687

advanced Green’s function, 712
from Maxwell’s equations, 417
Green’s function, 711–712
retarded Green’s function, 712

wave guide, 682–686
cylindrical, 686
longitudinal part, 682
rectangular, 685
transverse part, 682

weight function, 227
Wheatstone, 382
Wronskian, 566–567

Yukawa potential, 700

zero mass, 250
zero matrix, 180
zero spacetime distance, 242
zeta function, 269
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