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Summary Clustering methods

Advantages and Drawbacks of AHC and k-means
@ k-means is faster than AHC
@ Unlike k-means, in the merge process of AHC, once a cluster is formed, it does not

undo what was previously, then no modification of clusters or permutations of
objects are possible

@ Unlike k-means, AHC does not require the knowledge of the number of clusters

@ k-means depends on the initialization of the algorithm, The user must run it several

times and choose the best result corresponding to the smallest value of W. The user
can propose an initialization and in this case Run k-means one time

SOM

@ A neuron k is characterized by the weight vector 1)
@ Description of the basic SOM
(0)

@ Choose the size of the grid initialization of the neurons: p,
(c+1)

i

o Choose an object x

o Research of the winner k*, k* = argmin, HXS.CH) — p,Sf)H

@ The update of the weight vectors concern k* and all neurons near of k*

i = i+ e(0h(k*, (T — )
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Introduction Mixture Approach

Classical clustering methods

@ Clustering methods hierarchical and nonhierarchical methods have advantages and
disadvantages

@ Disadvantages. They are for the most part heuristic techniques derived from
empirical methods

@ Difficulties to take into account the characteristics of clusters (shapes, proportions,
volume etc.)

@ Geometrical approach: Clustering with "adaptives" distances:
dm, (%, ¥) = |Ix = yllIm,

@ In fact, the principal question "does it exist a model ?"

Mixture Approach

@ MA have attracted much attention in recent years
@ Is undoubtedly a very useful contribution to clustering

Q It offers considerable flexibility

Q provides solutions to the problem of the number of clusters

© lts associated estimators of posterior probabilities give rise to a fuzzy or hard clustering
using the a MAP

Q It permits to give a sense to certain classical criteria

@ Finite Mixture Models by (McLachlan and Peel, 2000)
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Finite Mixture Model  Definition of the model

Definition of the model

@ In model-based clustering it is assumed that the data are generated by a mixture of
underlying probability distributions, where each component k of the mixture
represents a cluster. Thus, the data matrix is assumed to be an i.i.d sample
x=(X1,...,Xxn) where x; = (xj1, ..., Xjp) € R” from a probability distribution with
density

f(x;;0) = Z Tok(Xi; k),
k

where

- k(. ; ak) is the density of an observation x; from the k-th component

- ay's are the corresponding class parameters. These densities belong to the same
parametric family

- The parameter 7y is the probability that an object belongs to the k-th component

- K, which is assumed to be known, is the number of components in the mixture
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Finite Mixture Model Example

Gaussian mixture model in R*

@ n=9000, d=1, K=3

@ (., ak) a Gaussian density o, = (my, sk)
1

07r1:7r2:7r3:§

The mixture density of the observed data x can be written as

1 Xi — My

0 — _ 1 LK mky2
S e

Mixture of 3 densities

Histogramme des données Histogramme des données

000 002 004 006 008 010 012 014

000 002 004 006 008 010 012 04
000 002 004 006 008 010 012 04

5

Données. Données.
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Finite Mixture Model Example

Bernoulli mixture model

@ The parameter of this model is the vector 8 = (7, ) containing the mixing
proportions = (71, ..., k) and the vector « = (@, ..., ak) of parameters of each
component. The mixture density of the observed data x can be expressed as

f(X 0 HZﬂ'kgOk x,,ak)

@ For instance, for binary data with x; € {0, 1}, using multivariate Bernoulli
distributions for each component, the mixture density of the observed data x can be

written as
H Z Tk H A i(1— akj)l_x"f

where x; € {0,1}, otk = (@1, - - -, i) and oy € (0,1)

Nadif (CRIP5 ) IRAN, December, 13-21, 2008 SEMINAIRES 9 /42



Finite Mixture Model Different approaches

ML and CML approaches

@ The problem of clustering can be studied in the mixture model using two different
approaches: the maximum likelihood approach (ML) and the classification likelihood
approach (CML)

© The ML approach (Day, 1699): It estimates the parameters of the mixture, and the
partition on the objects is derived from these parameters using the maximum a
posteriori principle (MAP). The maximum likelihood estimation of the parameters
results in an optimization of the log-likelihood of the observed sample

Lm(6) = L(6;x) = > _ log (Z (i ak))
i P

©Q The CML approach (Symons, 1981): It estimates the parameters of the mixture and
the partition simultaneously by optimizing the classification log-likelihood

Lc(8) = L(6;x,2) = log f(x,2;8) = ) _ zjx log (msp(xi; cx))
ik
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ML and CML approaches EM algorithm

Introduction of EM
@ Much effort has been devoted to the estimation of parameters for the mixture model

@ Pearson used the method of moments to estimate 8 = (m1, mo, 52,53, m) of a
unidimensional Gaussian mixture model with two components

f(xi; 0) = mp(xi; M, s7) + (1 — 7)p(xi; m2,s3)

required to solve polynomial equations of degree nine

@ Generally, the appropriate method used in this context is the EM algorithm
(Dempster et al., 1977). Two steps Estimation and Maximization

@ This algorithm can be applied in different contexts where the model depends on
unobserved latent variables. In mixture context z represents this variable. It denotes
which x; is from. Then we note y = (x, z) the complete data.

@ Starting from the relation between the densities
f(y,0) = £((x,2);0)) = f(y|x; 0)f(x; 0)

we have
log(f(x; 0)) = log(f(y, 0)) — log(f(y|x; €))

or
Lm(0) = Lc(z; 0) — log f(y|x; 0)
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Principle of EM
@ Objective: Maximization of Ly(0)
@ EM rets on the hypothesis that maximizing L¢ is simple

@ An iterative procedure based on the conditional expectation of Ly(0) for a value of
the current parameter 6’
Lm(6) = Q(66") — H(6]6")

where Q(0]0") = E(Lc(0]x,0")) and H(0]0") = E(log f(y|x; 8)|x,0")
@ Using the Jensen inequality (Dempster et al;, 1977) for fixed 8’ we have
V0, H(0|6') < H(6'|0’) This inequality can proved also

H(816') — H(O'|6") = > f(z[x; ') f((z||x g))

As log(x) < x — 1, we have

f(z|x; 8)

f(z|x; 9)
& F(zlx. @)

f(z|x;0)

<

then
H(016') — H(0'|6") < > f(zlx;0) — Y f(zlx;0')=1—-1=0
zeZ zeZ
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ML and CML approaches EM algorithm

Q(616")

@ The value & maximizing maximization Q(6|0’) satisfies the relation
Q(616') > Q(6'16') and,

Lm(0) = Q(010") — H(6]6") > Q(6'|0") — H(6|0") = Lm(8")
@ In mixture context

Q(616") = E(Lc(01x,0") = Y E(zi|x, 0") log(mkf (xi; k)
ik
@ Note that E(zi|x,0') = p(zik = 1|x,0")
As the conditional distribution of the missing data z given the observed values :
f(x,z,0)  f(x|z;0)f(z;0)
f(x; 0) - f(x; 9)

f(z|x; 0) =

we have
meo(xi;ak)  mree(xi; o)

f(x;0) >, mep(xi; o)

p(zik = 1x,0") = sy =
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ML and CML approaches EM algorithm

The steps of EM

@ The EM algorithm involves constructing, from an initial 0©, the sequence 1)

satisfying
6™ = argmax Q(0]6')

and this sequence causes the criterion Ly(0) to grow The EM algorithm takes the
following form

o Initialize by selecting an initial solution 6(%)
9o Repeat the two steps until convergence

@ E-step: compute Q(8|6'9)). Note that in the mixture case this step reduces to the
computation of the conditional probabilities s'f:)
Q M-step: compute 8(¢tY) maximizing Q(8, 6¢)). This leads to 71';:+1) =15, sgkc“) and

the exact formula for the a;:+1)

distribution probabilities

will depend on the involved parametric family of

Properties of EM

@ Under certain conditions, it has been established that EM always converges to a
local likelihood maximum

@ Simple to implement and it has good behavior in clustering and estimation contexts
@ Slow in some situations
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ML and CML approaches EM algorithm

An other interpretation of EM

Hathaway interpretation of EM : classical mixture model context
@ EM = alternated maximization of the fuzzy clustering criterion
Fc(s,0) = Lc(s;0) + H(s)
o s = (sj): fuzzy partition
o Le(s,0) = Ei,k sik log(mre(xi; ag)): fuzzy classification log-likelihood
o H(s)=— Ei,k six log s : entropy function

Algorithm

@ Maximizing Fc w.r. to s yields the E step
@ Maximizing Fc w.r. to 0 yields the M step
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Stochastic EM "SEM", (Celeux and Diebolt, 1985)

Steps of SEM

@ S-step between E-step and M-step
@ In CEM (C-step), In SEM (S-step)
o E-step compute the posterior probabilities
o S-step This stochastic step consists to look for the partition z. Each object i is
assigned to the kth component. the parameter k is selected according to the
multinomial distribution (s, .. ., Sik)
o M-step As the CEM algorithm this step is based on z

Advantages and Disadvantages of SEM
@ It gives good results when the size of data is large enough

@ It can be used even if the number of clusters is unknown. It suffices to fix K to
Kmax the maximum number of clusters and this number can be reduced when the a
cluster has a number of objects so lower that the estimation of parameters is not
possible. For example when the cardinality of a cluster is less than a threshold, we
run SEM with (K — 1)

@ It can avoid the problem of initialization and other problems of EM

@ Instability of the results. Solution: SEM (for estimation of paremetrs et the number
of clusters), The obtained results are used by EM
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ML and CML approaches EM algorithm

Stochastic Annealing EM "SAEM" (Celeux and Diebolt, 1992)

Steps of SEM

@ The aim of the SAEM is to reduce the "part" of random in estimations of the
parameters

@ SAEM is based on SEM and EM
@ Solution

o E-step: Idem for EM, SEM
o S-step: Idem for SEM
o M-step: The compute of parameters depends on this expression:

o(t+1) — (t+1)9(f+1) (1At )9 (t+1)

The initial value of v =1 and decreases until 0.
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ML and CML approaches CEM algorithm

CEM algorithm

@ In the CML approach the partition is added to the parameters to be estimated. The
maximum likelihood estimation of these new parameters results in an optimization of
the complete data log-likelihood. This optimization can be performed using the
following Classification EM (CEM) algorithm (Celeux and Govaert, 1992), a variant
of EM, which converts the s 's to a discrete classification in a C-step before
performing the M-step:

()

o E-step: compute the posterior probabilities s;, .

o C-step: the partition z{*1) is defined by assigning each observation x; to the cluster
which provides the maximum current posterior probability.

o M-step: compute the maximum Iikelihood estimate (7r(c+1), (c+1) ) using the k-th
cluster. This leads to 7T§<C+l) -z,(CH) and the exact formula for the ai +1)

depend on the involved parametnc family of distribution probabilities

will

Properties of CEM
@ Simple to implement and it has good practical behavior in clustering context
@ Faster than EM and scalable
@ Some difficulties when the clusters are not well separated
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ML and CML approaches CEM algorithm

Link between CEM and the dynamical clustering methods

Dynamical clustering method The CEM algorithm

Assignation-step E-step

zp = {i;d(x;,a) < d(x,-,a;(); k' # k} Compute sy o< Tpp(xi, oy )
C-step

z, = {i; Sik > S k' # k}

2z = {is —log(mpp(xis ay)) < —log(mpp(xi, ap))i k' # k}
Representation-step M-step

Compute the center a; of each cluster Compute the m;'s and oy

Density and distance

@ When the proportions are supposed equal we can propose a distance D by

D(xi,ax) = —log(p(xi, ak))
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Applications Gaussian mixture model

The Gaussian model
@ The density can be written as: f(x;;0) =Y, mp(Xi; py, k) where

1 _
i eXP{—E(Xi — ) T (% — ) }

1
O(Xis oy, Zk) = ———1
NPT

@ Spectral decomposition of the variance matrix
Tk = MDikADY
- Ak = |Zk|Y/P positive real represents the volume of the kth component
- A = Diag(ay, . .., ak,) formed by the normalized eigenvalues in decreasing order

|Ak] = 1. It defines the shape of the kth cluster
- Dy formed by the eigenvectors. It defines the direction of the kth cluster

@ Example in R?, Dy is a rotation, and Ay is diagonal matrix, the equidensity ellipse of
the distribution depends on the center p,, semimajor axis and semiminor axis v/Axa

and /Ax/a .
Dy = ( f‘s’fn(&)) ié"s((ﬁ )Ak - ( 0 1(/)3 )
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Applications Gaussian mixture model

Different Gaussian models

@ The Gaussian mixture depends on: proportions, centers, volumes, shapes and
Directions then different models can be proposed
@ In the following models proportions can be assumed equal or not

@ Spherical models: A, = I then T = X\, /. Two models [A/] and [A\/]

Q Diagonal models: no constraint on Ay but Dy is a permutation matrix with
By = DiAD]l such as |Bi| =1, ¥ is diagonal. Four models [AB], [A«B], [ABx] and
[ABk]

 General models: the eight models assuming equal or not volumes, shapes and
directions [ADAD[], [\DADT], [ADA,DT], [\cDADT], [ADKAD[ ].[AxDAD]],
[ADxA(D/]] and [\« DxAcD/]]

@ Finally we have 28 models, we will study the problem of the choice of the models
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Applications Gaussian mixture model

CEM

@ In clustering step, each x; is assigned to the cluster maximizing
Sik o Trp(Xii ik, Xk) or equivalently the cluster that minimizes

—log(mp(xis ar)) = (xi — py) T (xi — py) + log [Zk| — 2log (i) + cste

@ From density to Distance (or dissimilarity), x; is assigned to the cluster according
the following dissimilarity

dy-1 (xii pae) + log [Zic| — 2log (i)

where dzI:;(x,-; pk) = (xi — ) TE H(xi — py) is the Mahanalobis distance

@ Note that when the proportions are supposed equal and the variances identical, the
assignation is based only on

dék—l(xl-: )

@ When the proportions are supposed equal and for the spherical model [A/] (Xx = 1),
one uses the usual euclidean distance

d?(xi; pr)
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Applications Gaussian mixture model

Description of CEM

& E-step: classical, C-step: Each cluster z i formed by using d?(x;; )

@ M-step: Given the partition z, we have to determine the parameter & maximizing

Lc(0) = L(O;x,2) = Z zik log (mrp(xi; ak)) Z Z log (mrp(xi; o))

ik k i€z,
For the Gaussian model
Z(x, )T (X0 — ) + #2zi log | Zi| — 2# 2z log ()
k lEzk
Yiez Xi

- The parameter p, is thus necessary the center p) =
- The proportions satisfy m, = ﬁ
- The parameters must then for the general model

F(X1,..., %K) = Y _(trace(Wi X 1) + #2 log |X|)
k

where Wy =37, (xi — mi) T (xi — )

#zy
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Applications Gaussian mixture model

Consequence for the spherical model [\/]

@ Exercise: The function to maximize for the model [A/] becomes
FO\) = %trace(W) + nplog(\)
where W =37, W
With X = tr%i(w) maximizing F(\), the classification log-likelihood becomes
Lc(0) = —%trace( W) + cste = —% W (z) + cste

@ Maximizing L¢ is equivalent to minimize the SSQ criterion minimized by the
kmeans algorithm
@ Interpretation

- The use of the model [A/] assumes that the clusters are spherical having the same
proportion and the same volume
- The CEM is therefore an extension of the kmeans
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Applications Gaussian mixture model

Description of EM
@ E-step: classical

@ M-step: we have to determine the parameter 6 maximizing Q(,0’) taking the
following form

Lc(0) = L(O;x,2) = Z sik log (mro(xi; ak))
ik

For the Gaussian model

1 _
—5 37 (silxi = ) TE (i = i) + sic og [T| — 2sic log(e)
ik

- The parameter p is thus necessary the center p;, = ZEL'S":'
i Si

- The proportions satisfy m) = %

- The parameters ¥ ) must then minimize

F(T1,..,5k) = Y _(trace(We X, ") + #2x log | Tl)
K

where W) = Ziezk(x" — ;Lk)T(x,- — )
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Applications Bernoulli mixture

Binary data

@ For binary data, considering the conditional independence model (independence for
each component), the mixture density of the observed data x can be written as

I e IT o0 - ot
i k Jj

where x; € {0,1}, ayx = (1, ..., 0up) and ay; € (0,1)
@ Latent Class Model
@ The different steps of EM algorithm

Q E-step: compute s y
Q M-step: of = Z‘ ’k SR and my = LiSik

n

@ The different steps of CEM algorithm

Q E-step: compute s
Q C-step: compute z

g Tizd _ #7
© M-step: o, = S = %1 and m = Tk
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Applications Bernoulli mixture

Parsimonious model

@ As for the Gaussian, several parsimonious models can be proposed
. —agjl 1—|xji—ap;
f(X,', E ﬂ'kH J —Ekj) xij — a1

where
a = 0,615 = ayj if o < 0.5
ayj = l,Ekj =1- akj if Qpj > 0.5

@ The parameter a is replaced by the two parameters ax and e

- The binary vector aj represents the center of the cluster z, each a; indicates the
most frequent binary value
- The binary vector 4 €]0,1/2[P represents the degrees of heterogeneity of the cluster
2y, each g represents the probability of j to have the value different from that of the
center,
o p(xj = lag; = 0) = p(x;j = Olag; = 1) = ¢;
9 p(xj =0lag; =0) = p(xj =1a =1)=1—¢y

@ 8 Models assuming proportions equal or not : [e4], [ek]. ). [€]
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Applications Bernoulli mixture

Binary data matrix and reorganized data matrix

a b c d e a b c d e

11 o0 1 0 1 T[T 0 1 o0 1

2|0 1 0o 1 o0 4|11 0o 1 o0 o

31 0o o 0 o0 8|1 0o 1 o0 1

411 o 1 o o 20 1 0 1 0

5|0 1 0o 1 1 50 1 0o 1 1

6|0 1 0o 0 1 6|0 1 0o 0 1

7/0 1 0o o0 o0 10]|0 1 0 1 o0

8|1 0o 1 0 1 3|1 0 0 0 0

9|1 0o 0o 1 o0 7/l0 1 0o o0 o

0|0 1 0o 1 o0 9|1 0o o 1 o0

Centers a, and Degree of heterogeneity ¢,

| a b c d e | a b c d e
a1 |1 0 1 0 1 =& 0 0 100 0 033
a2 |0 1 0 1 0 e 0 0 100 025 05
a3 |1 0 0 0 0 e3| 033 033 0 033 0

Nadif (CRIP5 ) IRAN, December, 13-21, 2008 SEMINAIRES 30




Applications Bernoulli mixture

CEM for the simplest model [¢]

@ Exercise: When the proportions are supposed equal The classification log-likelihood
to maximize

Lc(0) = L(6; x,2) = log(;— Z > d(xi,ak) + nplog(1 — ¢)
k i€z,
where d(x;,ax) = ZJ- |xij — axj|
@ The parameter ¢ is fixed for each cluster and for each variable, as (log(;
this maximization leads to the minimization of

W(z,a) =) > d(xia)

k i€z,

=) <0)

@ Exercise: The CEM algorithm is equivalent to the dynamical clustering method

CEM and EM for the other models
@ Exercise: Describe the different steps of CEM for the models [g]], [ex] and [e4j]

@ Exercise: Deduce the different steps of EM for these models
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Applications Multinomial Mixture

Nominal categorical data
o Categorical data are a generalization of binary data

@ Generally this kind of data are represented by a complete disjunctive table where the
categories are represented by their indicators

@ A variable j with h categories is represented by a binary vector such as

x{h =1 if i takes the categorie h forj
xI" =0  otherwise

@ The probability of the mixture can be written
F(xi;0) =Y me [ (4%
K J.h

where a’,.(h is the probability that the variable j takes the categorie h when an object
belongs to the cluster k.
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Multinomial Mixture

Applications

Notation

Ziezk

Jih
o d;
o o

jh
Zi i

o di = Zj,h dih

np

Zk di = Zk,j,h X{h

o d=

Example

a2 a3 bl b2 b3

al

a2 a3 bl b2 b3

al

10

10

10

- d'=0d?=3,d =1, d* =0d{*=1,d*=3

- di
-d

=4

8, d3

8, d>
84+8+4=10x2

)
el

SEMINAIRES

IRAN, December, 13-21, 2008
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Applications Multinomial Mixture

Interpretation of the model

@ The different steps of EM algorithm

Q E-step: compute sj

ih
L jh_ Xisaxd 2k Sik
Q M-step: o = Sal and mj = =he

@ The different steps of CEM algorithm

Q E-step: compute sj
Q C-step: compute z

; sz dh dih
© M-step (Exercise) : o' = % = #—’;k and m, = #—:"
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Applications Multinomial Mixture

Interpretation of the model

@ The classification log-likelihood can be written as

Le(0) =D dlog(al) + Z #2 log (i)

k.j,h

@ When the proportions are supposed equal, the restricted likelihood

Ler(0) = Z dih |°g(O‘J/.<h)

k.j,h
"
@ Given ath = #’;k, it can be shown that the CEM algorithm maximizes H(z)
df  d'd
H(z) = Z P log dod

This expression is very close to

Z (d d dkdjh)
— " dydifd
kijsh
@ To assume that the date derive form the latent class model where the proportions
are assumed equal is approximatively equivalent to use the x2 criterion
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Applications Multinomial Mixture

Parsimonious model

@ Number of the parameters in latent class model is equal (K —1) + K x> ;m; — 1
where mj is the number of categories of j

@ This number is smaller than HJ. mj required by the complete log-linear model,
example (p = 10, K=5, m; = 4 for each j), this number is equal to
(5—1)+ 5= (40 — 10) = 154

@ This number can reduced by using parsimonious model by imposing constraints on
the paremetre ;. Instead to have a probability for each categorie, we associate for
a categorie of j having the same of value that the center for j the probability
(1 — exj) and the others categories the probability e4;/(m; — 1)

@ Then the distribution depends on ax and ¢, defined by

(1 —ex) forx,{::a{(
akj/(mj—l) fOer{ 7535(

@ The parametrization concerns only the variables instead of all categories, the number
of parameters becomes (K — 1) + 2Kp

@ This model is an extension of the Bernoulli model
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Applications Multinomial Mixture

The simplest model
@ We assume that (1 — &4;) does not depend the cluster k and the variable j

{ (1-¢) for xJ = al
e/(mj—1) forx # 4

@ Exercise: The restricted classification log-likelihood takes the following form

Ler(0) = L(B;x,2) = Y Zlog —1))0(xi,ax) | + nplog(1 — ¢)

k ez J

or,
LCR(G) = Z Z d(X,', ak) + np |og(1 — 6)
k i€z
where d(x;,ax) = Zj log( 1;5('771‘ — 1))d(xij, ak;)
@ If all variables have the same number of categories, the criterion to minimize is

>k ElEZk d(x;,ak), why ?

@ The CEM is an extension of k-modes
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Applications Multinomial Mixture

Contingency table

@ As for categorical, we can associate a multinomial model
@ See (Govaert and Nadif 2007)
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Outline

© Model Selection
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Model Selection

Different approaches
@ In Finite mixture model, the problem of the choice of the model include the problem
of the number of clusters

@ To simplify the problem, we distinguish the two problems and we consider the model
fixed and K is unknown. Let be tow models Ma and Mg. ®(Ma) and ©(Mzg)
indicates the "domain" of free parameters. if Lmax(M) = L(@rm) where
On = argmax L(0) then we have

O(MA) C G(MB) = Lmax(MA) S Lmax(MB)

For example Lmax [T Akl k=2 < Lmax|[mTkAkl]k=3. Generally the likelihood increases
with the number of clusters.

@ First solution: Plot (Likelihood*number of clusters) and use the elbows

@ Second solution: Minimize the classical criteria (Criteria in competition) taking this
form

C(M) = —2Lmax(M) + Tcnp(M)

where np indicates the number of parameters of the model M, it represents the
complexity of the model

@ Different variants of this criterion AIC with 7a;c = 2, AIC3 with Taic = 3 and the
famous

BIC(M) = —2Lmax(M) + log(n)n,(M)
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Conclusion

Conclusion
@ Finite mixture approach is interesting
@ The CML approach gives interesting criteria and generalize the classical criteria
@ The different variants of EM offer good solutions

@ The choice of the model is performed by using the maximum likelihood penalized by
the number of parameters

Nadif (CRIP5 ) IRAN, December, 13-21, 2008 SEMINAIRES 42 / 42



	Summary
	Clustering methods

	Introduction
	Mixture Approach

	Finite Mixture Model
	Definition of the model
	Example
	Different approaches

	ML approach
	EM algorithm
	CEM algorithm

	Applications
	Gaussian mixture model
	Bernoulli mixture
	Multinomial Mixture

	Model Selection
	Conclusion

