

Use R!

Advisors:
Robert Gentleman
Kurt Hornik
Giovanni Parmigiani

For other titles published in this series, go to
http://www.springer.com/series/6991

Jim Albert

Bayesian Computation
with R

Second Edition

123

Jim Albert
Department of Mathematics & Statistics
Bowling Green State Univerrsity
Bowling Green OH
43403-0221
USA
albert@math.bgsu.edu

Series Editors
Robert Gentleman
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Avenue, N. M2-B876
Seattle, Washington 98109
USA

Giovanni Parmigiani
The Sidney Kimmel Comprehensive Cancer
Center at Johns Hopkins University

550 North Broadway
Baltimore, MD 21205-2011
USA

Kurt Hornik
Department of Statistik and Mathematik
Wirtschaftsuniversität Wien Augasse 2-6
A-1090 Wien
Austria

ISBN 978-0-387-92297-3 e-ISBN 978-0-387-92298-0
DOI 10.1007/978-0-387-92298-0
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number:

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

2009926660

Preface

There has been dramatic growth in the development and application of
Bayesian inference in statistics. Berger (2000) documents the increase in
Bayesian activity by the number of published research articles, the number of
books, and the extensive number of applications of Bayesian articles in applied
disciplines such as science and engineering.

One reason for the dramatic growth in Bayesian modeling is the availabil-
ity of computational algorithms to compute the range of integrals that are
necessary in a Bayesian posterior analysis. Due to the speed of modern com-
puters, it is now possible to use the Bayesian paradigm to fit very complex
models that cannot be fit by alternative frequentist methods.

To fit Bayesian models, one needs a statistical computing environment.
This environment should be such that one can:

• write short scripts to define a Bayesian model
• use or write functions to summarize a posterior distribution
• use functions to simulate from the posterior distribution
• construct graphs to illustrate the posterior inference

An environment that meets these requirements is the R system. R provides a
wide range of functions for data manipulation, calculation, and graphical dis-
plays. Moreover, it includes a well-developed, simple programming language
that users can extend by adding new functions. Many such extensions of the
language in the form of packages are easily downloadable from the Compre-
hensive R Archive Network (CRAN).

The purpose of this book is to illustrate Bayesian modeling by computa-
tions using the R language. At Bowling Green State University, I have taught
an introductory Bayesian inference class to students in masters and doctoral
programs in statistics for which this book would be appropriate. This book
would serve as a useful companion to the introductory Bayesian texts by Gel-
man et al. (2003), Carlin and Louis (2009), Press (2003), Gill (2008), or Lee
(2004). The book would also be valuable to the statistical practitioner who
wishes to learn more about the R language and Bayesian methodology.

vi Preface

Chapters 2, 3, and 4 illustrate the use of R for Bayesian inference for
standard one- and two-parameter problems. These chapters discuss the use
of different types of priors, the use of the posterior distribution to perform
different types of inferences, and the use of the predictive distribution. The
base package of R provides functions to simulate from all of the standard
probability distributions, and these functions can be used to simulate from a
variety of posterior distributions. Modern Bayesian computing is introduced
in Chapters 5 and 6. Chapter 5 discusses the summarization of the posterior
distribution using posterior modes and introduces rejection sampling and the
Monte Carlo approach for computing integrals. Chapter 6 introduces the fun-
damental ideas of Markov chain Monte Carlo (MCMC) methods and the use
of MCMC output analysis to decide if the batch of simulated draws provides
a reasonable approximation to the posterior distribution of interest. The re-
maining chapters illustrate the use of these computational algorithms for a
variety of Bayesian applications. Chapter 7 introduces the use of exchange-
able models in the simultaneous estimation of a set of Poisson rates. Chapter
8 describes Bayesian tests of simple hypotheses and the use of Bayes factors
in comparing models. Chapter 9 describes Bayesian regression models, and
Chapter 10 describes several applications, such as robust modeling, binary
regression with a probit link, and order-restricted inference, that are well-
suited for the Gibbs sampling algorithm. Chapter 11 describes the use of R
to interface with WinBUGS, a popular program for implementing MCMC
algorithms.

An R package, LearnBayes, available from the CRAN site, has been writ-
ten to accompany this text. This package contains all of the Bayesian R func-
tions and datasets described in the book. One goal in writing LearnBayes is
to provide guidance for the student and applied statistician in writing short R
functions for implementing Bayesian calculations for their specific problems.
Also the LearnBayes package will make it easier for users to use the growing
number of R packages for fitting a variety of Bayesian models.
Changes in the Second Edition

I appreciate the many comments and suggestions that I have received from
readers of the first edition. Although this book is not intended to be a self-
contained book on Bayesian thinking or using R, it hopefully provides a useful
entry into Bayesian methods and computation.

The second edition contains several new topics, including the use of mix-
tures of conjugate priors (Section 3.5), the use of the SIR algorithm to explore
the sensitivity of Bayesian inferences with respect to changes in the prior (Sec-
tion 7.9), and the use of Zellner’s g priors to choose between models in linear
regression (Section 9.3). There are more illustrations of the construction of in-
formative prior distributions, including the construction of a beta prior using
knowledge about percentiles (Section 2.4), the use of the conditional means
prior in logistic regression (Section 4.4), and the use of a multivariate normal
prior in probit modeling (Section 10.3). I have become more proficient in the

Preface vii

R language, and the R code illustrations have changed according to the new
version of the LearnBayes package. It is easier for a user to write an R func-
tion to compute the posterior density, and the laplace function provides a
more robust method of finding the posterior mode using the optim function
in the base package. The R code examples avoid the use of loops and illustrate
some of the special functions of R, such as sapply. This edition illustrates the
use of the lattice package in producing attractive graphs. Since the book
seems useful for self-learning, the number of exercises in the book has been
increased from 58 to 72.

I would like to express my appreciation to the people who provided assis-
tance in preparing this book. John Kimmel, my editor, was most helpful in
encouraging me to write this book and providing valuable feedback. I thank
Patricia Williamson and Sherwin Toribio for providing useful suggestions. Bill
Jeffreys, Peter Lee, John Shonder, and the reviewers gave many constructive
comments on the first edition. I appreciate all of the students at Bowling Green
who have enrolled in my Bayesian statistics class over the years. Finally, but
certainly not least, I wish to thank my wife, Anne, and my children, Lynne,
Bethany, and Steven, for encouragement and inspiration.

Bowling Green, Ohio Jim Albert
December 2008

Contents

1 An Introduction to R . 1
1.1 Overview . 1
1.2 Exploring a Student Dataset . 1

1.2.1 Introduction to the Dataset . 1
1.2.2 Reading the Data into R . 2
1.2.3 R Commands to Summarize and Graph

a Single Batch . 2
1.2.4 R Commands to Compare Batches 5
1.2.5 R Commands for Studying Relationships 6

1.3 Exploring the Robustness of the t Statistic 8
1.3.1 Introduction . 8
1.3.2 Writing a Function to Compute the t Statistic 9
1.3.3 Programming a Monte Carlo Simulation 10
1.3.4 The Behavior of the True Significance Level Under

Different Assumptions . 11
1.4 Further Reading . 13
1.5 Summary of R Functions . 14
1.6 Exercises . 15

2 Introduction to Bayesian Thinking . 19
2.1 Introduction . 19
2.2 Learning About the Proportion of Heavy Sleepers 19
2.3 Using a Discrete Prior . 20
2.4 Using a Beta Prior . 22
2.5 Using a Histogram Prior . 26
2.6 Prediction . 28
2.7 Further Reading . 34
2.8 Summary of R Functions . 34
2.9 Exercises . 35

x Contents

3 Single-Parameter Models . 39
3.1 Introduction . 39
3.2 Normal Distribution with Known Mean but Unknown

Variance . 39
3.3 Estimating a Heart Transplant Mortality Rate 41
3.4 An Illustration of Bayesian Robustness . 44
3.5 Mixtures of Conjugate Priors . 49
3.6 A Bayesian Test of the Fairness of a Coin 52
3.7 Further Reading . 57
3.8 Summary of R Functions . 57
3.9 Exercises . 58

4 Multiparameter Models . 63
4.1 Introduction . 63
4.2 Normal Data with Both Parameters Unknown 63
4.3 A Multinomial Model . 66
4.4 A Bioassay Experiment . 69
4.5 Comparing Two Proportions . 75
4.6 Further Reading . 80
4.7 Summary of R Functions . 80
4.8 Exercises . 81

5 Introduction to Bayesian Computation . 87
5.1 Introduction . 87
5.2 Computing Integrals . 88
5.3 Setting Up a Problem in R . 89
5.4 A Beta-Binomial Model for Overdispersion 90
5.5 Approximations Based on Posterior Modes 94
5.6 The Example . 95
5.7 Monte Carlo Method for Computing Integrals 97
5.8 Rejection Sampling . 98
5.9 Importance Sampling . 101

5.9.1 Introduction . 101
5.9.2 Using a Multivariate t as a Proposal Density 103

5.10 Sampling Importance Resampling . 105
5.11 Further Reading . 108
5.12 Summary of R Functions . 109
5.13 Exercises . 110

6 Markov Chain Monte Carlo Methods . 117
6.1 Introduction . 117
6.2 Introduction to Discrete Markov Chains . 117
6.3 Metropolis-Hastings Algorithms . 120
6.4 Gibbs Sampling . 122
6.5 MCMC Output Analysis . 122

Contents xi

6.6 A Strategy in Bayesian Computing . 124
6.7 Learning About a Normal Population from Grouped Data 124
6.8 Example of Output Analysis . 129
6.9 Modeling Data with Cauchy Errors . 131
6.10 Analysis of the Stanford Heart Transplant Data 140
6.11 Further Reading . 145
6.12 Summary of R Functions . 146
6.13 Exercises . 147

7 Hierarchical Modeling . 153
7.1 Introduction . 153
7.2 Three Examples . 153
7.3 Individual and Combined Estimates . 155
7.4 Equal Mortality Rates? . 157
7.5 Modeling a Prior Belief of Exchangeability 161
7.6 Posterior Distribution . 163
7.7 Simulating from the Posterior . 163
7.8 Posterior Inferences . 168

7.8.1 Shrinkage . 168
7.8.2 Comparing Hospitals . 169

7.9 Bayesian Sensitivity Analysis . 171
7.10 Posterior Predictive Model Checking . 173
7.11 Further Reading . 175
7.12 Summary of R Functions . 175
7.13 Exercises . 176

8 Model Comparison . 181
8.1 Introduction . 181
8.2 Comparison of Hypotheses . 181
8.3 A One-Sided Test of a Normal Mean . 182
8.4 A Two-Sided Test of a Normal Mean . 185
8.5 Comparing Two Models . 186
8.6 Models for Soccer Goals . 187
8.7 Is a Baseball Hitter Really Streaky? . 190
8.8 A Test of Independence in a Two-Way Contingency Table 194
8.9 Further Reading . 199
8.10 Summary of R Functions . 199
8.11 Exercises . 201

9 Regression Models . 205
9.1 Introduction . 205
9.2 Normal Linear Regression . 205

9.2.1 The Model . 205
9.2.2 The Posterior Distribution . 206
9.2.3 Prediction of Future Observations 206

xii Contents

9.2.4 Computation . 207
9.2.5 Model Checking . 207
9.2.6 An Example . 208

9.3 Model Selection Using Zellner’s g Prior . 217
9.4 Survival Modeling . 222
9.5 Further Reading . 227
9.6 Summary of R Functions . 227
9.7 Exercises . 229

10 Gibbs Sampling . 235
10.1 Introduction . 235
10.2 Robust Modeling . 236
10.3 Binary Response Regression with a Probit Link 240

10.3.1 Missing Data and Gibbs Sampling 240
10.3.2 Proper Priors and Model Selection 243

10.4 Estimating a Table of Means . 248
10.4.1 Introduction . 248
10.4.2 A Flat Prior Over the Restricted Space 250
10.4.3 A Hierarchical Regression Prior . 254
10.4.4 Predicting the Success of Future Students 259

10.5 Further Reading . 260
10.6 Summary of R Functions . 260
10.7 Exercises . 261

11 Using R to Interface with WinBUGS . 265
11.1 Introduction to WinBUGS . 265
11.2 An R Interface to WinBUGS. 266
11.3 MCMC Diagnostics Using the coda Package 267
11.4 A Change-Point Model . 268
11.5 A Robust Regression Model . 272
11.6 Estimating Career Trajectories . 276
11.7 Further Reading . 281
11.8 Exercises . 282

References . 287

Index . 293

1

An Introduction to R

1.1 Overview

R is a rich environment for statistical computing and has many capabilities
for exploring data in its base package. In addition, R contains a collection of
functions for simulating and summarizing the familiar one-parameter proba-
bility distributions. One goal of this chapter is to provide a brief introduction
to basic commands for summarizing and graphing data. We illustrate these
commands on a dataset about students in an introductory statistics class. A
second goal of this chapter is to introduce the use of R as an environment for
programming Monte Carlo simulation studies. We describe a simple Monte
Carlo study to explore the behavior of the two-sample t statistic when testing
from populations that deviate from the usual assumptions. We will find these
data analysis and simulation commands very helpful in Bayesian computation.

1.2 Exploring a Student Dataset

1.2.1 Introduction to the Dataset

To illustrate some basic commands for summarizing and graphing data, we
consider answers from a sheet of questions given to all students in an introduc-
tory statistics class at Bowling Green State University. Some of the questions
that were asked included:

1. What is your gender?
2. What is your height in inches?
3. Choose a whole number between 1 and 10.
4. Give the time you went to bed last night.
5. Give the time you woke up this morning.
6. What was the cost (in dollars) of your last haircut, including the tip?
7. Do you prefer water, pop, or milk with your evening meal?

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 1,
© Springer Science+Business Media, LLC 2009

2 1 An Introduction to R

This is a rich dataset that can be used to illustrate methods for exploring
a single batch of categorical or quantitative data, for comparing subgroups
of the data, such as comparing the haircut costs of men and women, and for
exploring relationships.

1.2.2 Reading the Data into R

The data for 657 students were recorded in a spreadsheet and saved as the file
“studentdata.txt” in text format with tabs between the fields. The first line of
the datafile is a header that includes the variable names.

One can read these data into R using the read.table command. There
are three arguments used in this command. The first argument is the name
of the datafile in quotes; the next argument, sep, indicates that fields in the
file are separated by tab characters; and the header=TRUE argument indicates
that the file has a header line with the variable names. This dataset is stored
in the R data frame called studentdata.

> studentdata = read.table("studentdata.txt", sep = "\t",

+ header = TRUE)

This dataset is also available as part of the LearnBayes package. Assuming
that the package has been installed and loaded into R, one accesses the data
using the data command:

> data(studentdata)

To see the variable names, we display the first row of the data frame using
the studentdata[1,] command.

> studentdata[1,]

Student Height Gender Shoes Number Dvds ToSleep WakeUp
1 1 67 female 10 5 10 -2.5 5.5
Haircut Job Drink

1 60 30 water

To make the variable names visible in the R environment, we use the
attach command.

> attach(studentdata)

1.2.3 R Commands to Summarize and Graph a Single Batch

One categorical variable in this dataset is Drink, which indicates the student’s
drinking preference between milk, pop, and water. One can tally the different
responses using the table command.

> table(Drink)

1.2 Exploring a Student Dataset 3

Drink
milk pop water
113 178 355

We see that more than half the students preferred water, and pop was more
popular than milk.

One can graph these frequencies with a bar graph using the barplot com-
mand. We first save the output of table in the variable t and then use barplot
with t as an argument. We add labels to the horizontal and vertical axes by
the xlab and ylab argument options. Figure 1.1 displays the resulting graph.

> table(Drink)

> barplot(table(Drink),xlab="Drink",ylab="Count")

milk pop water

Drink

C
ou

nt

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Fig. 1.1. Barplot of the drinking preference of the statistics students.

Suppose we are next interested in examining how long the students slept
the previous night. We did not directly ask the students about their sleeping
time, but we can compute a student’s hours of sleep by subtracting her go-
to-bed time from her wake-up time. In R we perform this computation for all
students, and the variable hours.of.sleep contains the sleeping times.

4 1 An Introduction to R

> hours.of.sleep = WakeUp - ToSleep

A simple way to summarize this quantitative variable uses the summary
command, which gives a variety of descriptive statistics about the variable.

> summary(hours.of.sleep)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
2.500 6.500 7.500 7.385 8.500 12.500 4.000

On average, we see that students slept 7.5 hours and half of the students slept
between 6.5 and 8.5 hours.

To see the distribution of sleeping times, we can construct a histogram
using the hist command (see Figure 1.2).

> hist(hours.of.sleep,main="")

The shape of this distribution looks symmetric about the average value of 7.5
hours.

hours.of.sleep

Fr
eq

ue
nc

y

2 4 6 8 10 12

0
50

10
0

15
0

Fig. 1.2. Histogram of the hours of sleep of the statistics students.

1.2 Exploring a Student Dataset 5

1.2.4 R Commands to Compare Batches

Since the gender of each student was recorded, one can make comparisons
between men and women on any of the quantitative variables. Do men tend
to sleep longer than women? We can answer this question graphically by
constructing parallel boxplots of the sleeping times of men and women. Parallel
boxplots can be displayed using the boxplot command. The argument is given
by

hours.of.sleep ~ Gender

This indicates that a boxplot of the hours of sleep will be constructed for
each level of Gender. The resulting graph is displayed in Figure 1.3. From
the display, it appears that men and women are similar with respect to their
sleeping times.

> boxplot(hours.of.sleep~Gender,

+ ylab="Hours of Sleep")

female male

4
6

8
10

12

H
ou

rs
 o

f S
le

ep

Fig. 1.3. Parallel boxplots of the hours of sleep of the male and female students.

For other variables, there are substantial differences between the two gen-
ders. Suppose we wish to divide the haircut prices into two groups – the

6 1 An Introduction to R

haircut prices for the men and the haircut prices for the women. We do this
using the R logical operator ==. The syntax

Gender=="female"

is a logical statement that will be TRUE if Gender is “female”; otherwise it will
be FALSE. The expression

Haircut[condition]

will produce a subset of Haircut according to when the condition is TRUE.
So the statement

> female.Haircut=Haircut[Gender=="female"]

will select the haircut prices only for the female students and store the prices
into the variable female.Haircut. Similarly, we use the logical operator to
store the male haircut prices into the variable male.Haircut.

> male.Haircut=Haircut[Gender=="male"]

By using the summary command, we summarize the haircut prices of the
women and the men.

> summary(female.Haircut)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.00 15.00 25.00 34.08 45.00 180.00 19.00

> summary(male.Haircut)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.00 0.00 12.00 10.54 15.00 75.00 1.00

We see large differences between men and women – the men average about
$10 for a haircut and the women average about $34.

1.2.5 R Commands for Studying Relationships

There are many interesting relationships that can be explored in this student
dataset. To get a good night’s sleep, one may want to go to bed early in the
evening. This raises the question:“Is the length of sleep for a student related to
the time that he or she goes to bed?”We can explore the relationship between
the ToSleep and hours.of.sleep variables by means of a scatterplot. The R
command plot(ToSleep,hours.of.sleep) will construct a scatterplot with
ToSleep on the horizontal scale and hours.of.sleep on the vertical scale. If
we draw this scatterplot, it is a little difficult to see the pattern in the graph
since many of the points are identical. We use the jitter function on each
variable before plotting – this has the effect of adding a small amount of noise
so that more points are visible on the graph (see Figure 1.4).

1.2 Exploring a Student Dataset 7

−2 0 2 4 6

4
6

8
10

12

jitter(ToSleep)

jit
te

r(
ho

ur
s.

of
.s

le
ep

)

Fig. 1.4. Scatterplot of wake-up time and hours of sleep for students.

> plot(jitter(ToSleep),jitter(hours.of.sleep))

We can describe the decreasing pattern in this scatterplot by fitting a line.
A least-squares fit is done using the lm command; this has the syntax

> fit=lm(hours.of.sleep~ToSleep)

The output of this fitting is stored in the variable fit. If we display this
variable, we see the intercept and slope of the least-squares line.

> fit

Call:
lm(formula = hours.of.sleep ~ ToSleep)

Coefficients:
(Intercept) ToSleep

7.9628 -0.5753

The slope is approximately −0.5, which means that a student loses about a
half hour of sleep for every hour later that he or she goes to bed.

We can display this line on top of the scatterplot by using the abline
command (see Figure 1.5), where the single argument is the variable fit.

8 1 An Introduction to R

> abline(fit)

−2 0 2 4 6

4
6

8
10

12

jitter(ToSleep)

jit
te

r(
ho

ur
s.

of
.s

le
ep

)

Fig. 1.5. Scatterplot of wake-up time and hours of sleep for students with least-
squares line plotted on top.

1.3 Exploring the Robustness of the t Statistic

1.3.1 Introduction

Suppose one has two independent samples, x1, ..., xm and y1, ..., yn, and wishes
to test the hypothesis that the mean of the x population is equal to the mean
of the y population:

H0 : μx = μy.

Let X̄ and Ȳ denote the sample means of the xs and ys and let sx and sy

denote the respective standard deviations. The standard test of this hypothesis
H0 is based on the t statistic

T =
X̄ − Ȳ

sp

√
1/m + 1/n

,

1.3 Exploring the Robustness of the t Statistic 9

where sp is the pooled standard deviation

sp =

√
(m − 1)s2

x + (n − 1)s2
y

m + n − 2
.

Under the hypothesis H0, the test statistic T has a t distribution with m+n−2
degrees of freedom when

• both the xs and ys are independent random samples from normal distri-
butions

• the standard deviations of the x and y populations, σx and σy, are equal

Suppose the level of significance of the test is set at α. Then one will reject
H when

|T | ≥ tn+m−2,α/2,

where tdf,α is the (1 − α) quantile of a t random variable with df degrees of
freedom.

If the underlying assumptions of normal populations and equal variances
hold, then the level of significance of the t-test will be the stated level of
α. But, in practice, many people use the t statistic to compare two samples
even when the underlying assumptions are in doubt. So an interesting prob-
lem is to investigate the robustness or sensitivity of this popular test statistic
with respect to changes in the assumptions. If the stated significance level is
α = .10 and the populations are skewed or have heavy tails, what will be the
true significance level? If the assumption of equal variances is violated and
there are significant differences in the spreads of the two populations, what
is the true significance level? One can answer these questions using a Monte
Carlo simulation study. R is a very suitable platform for writing a simulation
algorithm. One can generate random samples from a wide variety of proba-
bility distributions, and R has an extensive set of data analysis capabilities
for summarizing and graphing the simulation output. Here we illustrate the
construction of a simple R function to address the robustness of the t statistic.

1.3.2 Writing a Function to Compute the t Statistic

To begin, we generate some random data for the samples of xs and ys. We
simulate a sample of ten observations from a normal distribution with mean
50 and standard deviation 10 using the rnorm function and store the vector of
values in the variable x. Likewise we simulate a sample of ys by simulating ten
values from an N(50, 10) distribution and store these values in the variable y.

> x=rnorm(10,mean=50,sd=10)

> y=rnorm(10,mean=50,sd=10)

Next we write a few lines of R code to compute the value of the t statistic
from the samples in x and y. We find the sample sizes m and n by using the
R command length.

10 1 An Introduction to R

> m=length(x)

> n=length(y)

We compute the pooled standard deviation sp – in the R code, sd is the
standard deviation function and sqrt takes the square root of its argument.

> sp=sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))

With m, n, and sp defined, we compute the t statistic

> t.stat=(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))

By combining these R statements, we can write a short R function
tstatistic to compute the t statistic. This function has two arguments,
the vectors x and y, and the output of the function (indicated by the return
statement) is the value of the t statistic.

tstatistic=function(x,y)
{
m=length(x)
n=length(y)
sp=sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))
t.stat=(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))
return(t.stat)
}

Suppose this function has been saved in the file “tstatistic.R”. We enter
this function into R by using the source command.

> source("tstatistic.R")

We try the function by placing some fake data in vectors data.x and data.y
and then computing the t statistic on these data:

> data.x=c(1,4,3,6,5)

> data.y=c(5,4,7,6,10)

> tstatistic(data.x, data.y)

[1] -1.937926

1.3.3 Programming a Monte Carlo Simulation

Suppose we are interested in learning about the true significance level for
the t statistic when the populations don’t follow the standard assumptions
of normality and equal variances. In general, the true significance level will
depend on

• the stated level of significance α
• the shape of the populations (normal, skewed, heavy-tailed, etc.)
• the spreads of the two populations as measured by the two standard devi-

ations

1.3 Exploring the Robustness of the t Statistic 11

• the sample sizes m and n

Given a particular choice of α, shape, spreads, and sample sizes, we wish to
estimate the true significance level given by

αT = P (|T | ≥ tn+m−2,α/2).

Here is an outline of a simulation algorithm to compute αT :

1. Simulate a random sample x1, ..., xm from the first population and y1, ..., yn

from the second population.
2. Compute the t statistic T from the two samples.
3. Decide if |T | exceeds the critical point and H0 is rejected.

One repeats steps 1–3 of the algorithm N times. One estimates the true sig-
nificance level by

α̂T =
number of rejections of H0

N
.

The following is an R script that implements the simulation algorithm for
normal populations with mean 0 and standard deviation 1. The R variable
alpha is the stated significance level, m and n are the sample sizes, and N is
the number of simulations. The rnorm command is used to simulate the two
samples and T contains the value of the t statistic. One decides to reject if

abs(t)>qt(1-alpha/2,n+m-2)

where qt(p,df) is the pth quantile of a t distribution with df degrees of free-
dom. The observed significance level is stored in the variable true.sig.level.

alpha=.1; m=10; n=10 # sets alpha, m, n
N=10000 # sets the number of simulations
n.reject=0 # counter of num. of rejections
for (i in 1:N)
{
x=rnorm(m,mean=0,sd=1) # simulates xs from population 1
y=rnorm(n,mean=0,sd=1) # simulates ys from population 2
t.stat=tstatistic(x,y) # computes the t statistic
if (abs(t.stat)>qt(1-alpha/2,n+m-2))

n.reject=n.reject+1 # reject if |T| exceeds critical pt
}
true.sig.level=n.reject/N # est. is proportion of rejections

1.3.4 The Behavior of the True Significance Level Under
Different Assumptions

The R script described in the previous section can be used to explore the
pattern of the true significance level αT for different choices of sample sizes
and populations. The only two lines that need to be changed in the R script

12 1 An Introduction to R

are the definition of the sample sizes m and n and the two lines where the two
samples are simulated.

Suppose we fix the stated significance level at α = .10 and keep the sam-
ple sizes at m = 10 and n = 10. We simulate samples from the following
populations, where the only restriction is that the population means be equal:

• Normal populations with zero means and equal spreads (σx = σy = 1)

x=rnorm(m,mean=0,sd=1)
y=rnorm(n,mean=0,sd=1)

• Normal populations with zero means and very different spreads (σx =
1, σy = 10)

x=rnorm(m,mean=0,sd=1)
y=rnorm(n,mean=0,sd=10)

• T populations, 4 degrees of freedom, and equal spreads

x=rt(m,df=4)
y=rt(n,df=4)

• Exponential populations with μx = μy = 1

x=rexp(m,rate=1)
y=rexp(n,rate=1)

• One normal population (μx = 10, σx = 2) and one exponential population
(μy = 10).

x=rnorm(m,mean=10,sd=2)
y=rexp(n,rate=1/10)

The R script was run for each of these five population scenarios using N =
10000 iterations, and the estimated true significance levels are displayed in
Table 1.1. These values should be compared with the stated significance level
of α = .1, keeping in mind that the simulation standard error of each estimate
is equal to .003. (The simulation standard error, the usual standard error for a
binomial proportion, is equal to

√
.1(.9)/10000 = 0.003.) In this brief study, it

appears that if the populations have equal spreads, then the true significance
level is approximately equal to the stated level for different population shapes.
If the populations have similar shapes and different spreads, then the true
significance level can be slightly higher than 10%. If the populations have
substantially different shapes (such as normal and exponential) and unequal
spreads, then the true significance level can be substantially higher than the
stated level.

Since the true significance level in the last case is 50% higher than the
stated level, one might be interested in seeing the exact sampling distribution
of the t statistic. We rerun this simulation for the normal and exponential
populations. First we define the sample sizes m and n and write a short
function my.tsimulation that computes the t statistic for the simulated data.

1.4 Further Reading 13

Table 1.1. True significance levels of the t-test computed by Monte Carlo experi-
ments. The standard error of each estimate is approximately 0.003.

Populations True Significance Level

Normal populations with equal spreads 0.0986

Normal populations with unequal spreads 0.1127

t(4) distributions with equal spreads 0.0968

Exponential populations with equal spreads 0.1019

Normal and exponential populations with unequal spreads 0.1563

> m=10; n=10

> my.tsimulation=function()

+ tstatistic(rnorm(m,mean=10,sd=2), rexp(n,rate=1/10))

Then we repeat this simulation 10,000 times using the replicate function.

> tstat.vector=replicate(10000, my.tsimulation())

The simulated values of the t statistic are stored in the vector tstat.vector.
We use the R command density to construct a nonparametric density

estimate of the exact sampling distribution of the t statistic. The curve com-
mand is used to plot the t density with 18 degrees of freedom on top. Figure
1.6 displays the resulting graph of the two densities. Note that the actual
sampling distribution of the t statistic is right-skewed, which would account
for the large true significance level.

> plot(density(tstat.vector),xlim=c(-5,8),ylim=c(0,.4),lwd=3)

> curve(dt(x,df=18),add=TRUE)

> legend(4,.3,c("exact","t(18)"),lwd=c(3,1))

1.4 Further Reading

Although R is a sophisticated package with many commands, there are
many resources available for learning the package. Some basic instruction
on R can be found from the R Help menu. The R project home page at
http://www.r-project.org lists a number of books describing different lev-
els of statistical computing using R. Verzani (2004) is a good book describ-
ing the use of R in an introductory statistics course; in particular, the book
is helpful for getting started in constructing different types of graphical dis-
plays. Appendix A in Gentle (2002) gives a general description of Monte Carlo
experiments with an extended example.

14 1 An Introduction to R

−4 −2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

N = 10000 Bandwidth = 0.1626

D
en

si
ty

Fig. 1.6. Exact sampling density of the t statistic when sampling from normal and
exponential distributions. The t sampling density assuming normal populations is
also displayed.

1.5 Summary of R Functions

An outline of the R functions used in this chapter is presented here. Detailed
information about any specific function, say abline, can be found by typing

?abline

in the R command window.

abline – add a straight line to a plot

attach – attach a set of R objects to the search path

barplot – create a barplot with vertical or horizontal bars

boxplot – produce box-and-whisker plot(s) of the given (grouped) values

density – computes kernel density estimates

hist – computes a histogram of the given data values

lm – used to fit linear models such as regression

1.6 Exercises 15

mean – computes the arithmetic mean

plot – generic function for plotting R objects

read.table – reads a file in table format and creates a data frame from it,
with cases corresponding to lines and variables to fields in the file

rexp – random generation for the exponential distribution

rnorm – random generation for the normal distribution

rt – random generation for the t distribution

sd – computes the value of the standard deviation

summary – generic function used to produce result summaries of the results of
various model-fitting functions

table – uses the cross-classifying factors to build a contingency table of the
counts at each combination of factor levels

1.6 Exercises

1. Movie DVDs owned by students
The variable Dvds in the student dataset contains the number of movie
DVDs owned by students in the class.
a) Construct a histogram of this variable using the hist command.
b) Summarize this variable using the summary command.
c) Use the table command to construct a frequency table of the indi-

vidual values of Dvds that were observed. If one constructs a barplot
of these tabled values using the command

barplot(table(Dvds))
one will see that particular response values are very popular. Is there
any explanation for these popular values for the number of DVDs
owned?

2. Student heights
The variable Height contains the height (in inches) of each student in the
class.
a) Construct parallel boxplots of the heights using the Gender variable.
b) If one assigns the boxplot output to a variable

output=boxplot(Height~Gender)
then output is a list that contains statistics used in constructing the
boxplots. Print output to see the statistics that are stored.

c) On average, how much taller are male students than female students?
3. Sleeping times

The variables ToSleep and WakeUp contain, respectively, the time to bed
and wake-up time for each student the previous evening. (The data are
recorded as hours past midnight, so a value of −2 indicates 10 p.m.)

16 1 An Introduction to R

a) Construct a scatterplot of ToSleep and WakeUp.
b) Find a least-squares fit to these data using the lm command.
c) Place the least-squares fit on the scatterplot using the abline com-

mand.
d) Use the line to predict the wake-up time for a student who went to

bed at midnight.
4. Performance of the traditional confidence interval for

a proportion
Suppose one observes y that is binomially distributed with sample size n
and probability of success p. The standard 90% confidence interval for p
is given by

C(y) =

(
(p̂ − 1.645

√
p̂(1 − p̂)

n
, p̂ + 1.645

√
p̂(1 − p̂)

n
)

)
,

where p̂ = y/n. We use this procedure under the assumption that

P (p ∈ C(y)) = 0.90 for all 0 < p < 1.

The function binomial.conf.interval will return the limits of a 90%
confidence interval given values of y and n.

binomial.conf.interval=function(y,n)
{
z=qnorm(.95)
phat=y/n
se=sqrt(phat*(1-phat)/n)
return(c(phat-z*se,phat+z*se))
}

a) Read the function binomial.conf.interval into R.
b) Suppose that samples of size n = 20 are taken and the true value

of the proportion is p = .5. Using the rbinom command, simulate
a value of y and use binomial.conf.interval to compute the 90%
confidence interval. Repeat this a total of 20 times, and estimate the
true probability of coverage P (p ∈ C(y)).

c) Suppose that n = 20 and the true value of the proportion is p = .05.
Simulate 20 binomial random variates with n = 20 and p = .05, and
for each simulated y compute a 90% confidence interval. Estimate the
true probability of coverage.

5. Performance of the traditional confidence interval for
a proportion
Exercise 4 demonstrated that the actual probability of coverage of the
traditional confidence interval depends on the values of n and p. Construct
a Monte Carlo study that investigates how the probability of coverage
depends on the sample size and true proportion value. In the study, let n

1.6 Exercises 17

be 10, 25, and 100 and let p be .05, .25, and .50. Write an R function that
has three inputs, n, p, and the number of Monte Carlo simulations m, and
will output the estimate of the exact coverage probability. Implement your
function using each combination of n and p and m = 1000 simulations.
Describe how the actual probability of coverage of the traditional interval
depends on the sample size and true proportion value.

2

Introduction to Bayesian Thinking

2.1 Introduction

In this chapter, the basic elements of the Bayesian inferential approach are
introduced through the basic problem of learning about a population propor-
tion. Before taking data, one has beliefs about the value of the proportion and
one models his or her beliefs in terms of a prior distribution. We will illus-
trate the use of different functional forms for this prior. After data have been
observed, one updates one’s beliefs about the proportion by computing the
posterior distribution. One summarizes this probability distribution to per-
form inferences. Also, one may be interested in predicting the likely outcomes
of a new sample taken from the population.

Many of the commands in the R base package can be used in this setting.
The probability distribution commands such as dbinom and dbeta, and simu-
lation commands, such as rbeta, rbinom, and sample, are helpful in simulat-
ing draws from the posterior and predictive distributions. Also we illustrate
the special R commands pdisc, histprior, and discint in the LearnBayes
package, which are helpful in constructing priors and computing and summa-
rizing a posterior.

2.2 Learning About the Proportion of Heavy Sleepers

Suppose a person is interested in learning about the sleeping habits of Amer-
ican college students. She hears that doctors recommend eight hours of sleep
for an average adult. What proportion of college students get at least eight
hours of sleep?

Here we think of a population consisting of all American college students
and let p represent the proportion of this population who sleep (on a typical
night during the week) at least eight hours. We are interested in learning
about the location of p.

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 2,
© Springer Science+Business Media, LLC 2009

20 2 Introduction to Bayesian Thinking

The value of the proportion p is unknown. In the Bayesian viewpoint, a
person’s beliefs about the uncertainty in this proportion are represented by
a probability distribution placed on this parameter. This distribution reflects
the person’s subjective prior opinion about plausible values of p.

A random sample of students from a particular university will be taken to
learn about this proportion. But first the researcher does some initial research
to learn about the sleeping habits of college students. This research will help
her in constructing a prior distribution.

In the Internet article “College Students Don’t Get Enough Sleep” in The
Gamecock, the student newspaper of the University of South Carolina (April
20, 2004), the person doing the study reads that a sample survey reports that
most students spend only six hours per day sleeping. She reads a second article
“Sleep on It: Implementing a Relaxation Program into the College Curriculum”
in Fresh Writing, a 2003 publication of the University of Notre Dame. Based
on a sample of 100 students, “approximately 70% reported receiving only five
to six hours of sleep on the weekdays, 28% receiving seven to eight, and only
2% receiving the healthy nine hours for teenagers.”

Based on this information, the person doing the study believes that college
students generally get less than eight hours of sleep and so p (the proportion
that sleep at least eight hours) is likely smaller than .5. After some reflection,
her best guess at the value of p is .3. But it is very plausible that this proportion
could be any value in the interval from 0 to .5.

A sample of 27 students is taken – in this group, 11 record that they had
at least eight hours of sleep the previous night. Based on the prior information
and these observed data, the researcher is interested in estimating the pro-
portion p. In addition, she is interested in predicting the number of students
that get at least eight hours of sleep if a new sample of 20 students is taken.

Suppose that our prior density for p is denoted by g(p). If we regard a
“success” as sleeping at least eight hours and we take a random sample with
s successes and f failures, then the likelihood function is given by

L(p) ∝ ps(1 − p)f , 0 < p < 1.

The posterior density for p, by Bayes’ rule, is obtained, up to a proportionality
constant, by multiplying the prior density by the likelihood:

g(p|data) ∝ g(p)L(p).

We demonstrate posterior distribution calculations using three different choices
of the prior density g corresponding to three methods for representing the re-
searcher’s prior knowledge about the proportion.

2.3 Using a Discrete Prior

A simple approach for assessing a prior for p is to write down a list of plausible
proportion values and then assign weights to these values. The person in our

2.3 Using a Discrete Prior 21

example believes that

.05, .15, .25, .35, .45, .55, .65, .75, .85, .95

are possible values for p. Based on her beliefs, she assigns these values the
corresponding weights

1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0,

which can be converted to prior probabilities by dividing each weight by the
sum. In R, we define p to be the vector of proportion values and prior the
corresponding weights that we normalize to probabilities. The plot command
is used with the “histogram” type option to graph the prior distribution, and
Figure 2.1 displays the graph.

> p = seq(0.05, 0.95, by = 0.1)

> prior = c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)

> prior = prior/sum(prior)

> plot(p, prior, type = "h", ylab="Prior Probability")

0.2 0.4 0.6 0.8

0.
05

0.
10

0.
15

0.
20

0.
25

p

P
rio

r P
ro

ba
bi

lit
y

Fig. 2.1. A discrete prior distribution for a proportion p.

22 2 Introduction to Bayesian Thinking

In our example, 11 of 27 students sleep a sufficient number of hours, so
s = 11 and f = 16, and the likelihood function is

L(p) ∝ p11(1 − p)16, 0 < p < 1.

(Note that the likelihood is a beta density with parameters s + 1 = 12 and
f + 1 = 17.) The R function pdisc in the package LearnBayes computes
the posterior probabilities. To use pdisc, one inputs the vector of propor-
tion values p, the vector of prior probabilities prior, and a data vector data
consisting of s and f . The output of pdisc is a vector of posterior probabili-
ties. The cbind command is used to display a table of the prior and posterior
probabilities. The xyplot function in the lattice package is used to construct
comparative line graphs of the prior and posterior distributions in Figure 2.2.

> data = c(11, 16)

> post = pdisc(p, prior, data)

> round(cbind(p, prior, post),2)

p prior post
[1,] 0.05 0.03 0.00
[2,] 0.15 0.18 0.00
[3,] 0.25 0.28 0.13
[4,] 0.35 0.25 0.48
[5,] 0.45 0.16 0.33
[6,] 0.55 0.07 0.06
[7,] 0.65 0.02 0.00
[8,] 0.75 0.00 0.00
[9,] 0.85 0.00 0.00
[10,] 0.95 0.00 0.00

> library(lattice)

> PRIOR=data.frame("prior",p,prior)

> POST=data.frame("posterior",p,post)

> names(PRIOR)=c("Type","P","Probability")

> names(POST)=c("Type","P","Probability")

> data=rbind(PRIOR,POST)

> xyplot(Probability~P|Type,data=data,layout=c(1,2),

+ type="h",lwd=3,col="black")

Here we note that most of the posterior probability is concentrated on the
values p = .35 and p = .45. If we combine the probabilities for the three most
likely values, we can say the posterior probability that p falls in the set {.25,
.35, .45} is equal to .940.

2.4 Using a Beta Prior

Since the proportion is a continuous parameter, an alternative approach is to
construct a density g(p) on the interval (0, 1) that represents the person’s

2.4 Using a Beta Prior 23

P

P
ro

ba
bi

lit
y

0.0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8

prior
0.0

0.1

0.2

0.3

0.4

posterior

Fig. 2.2. Prior and posterior distributions for a proportion p using a discrete prior.

initial beliefs. Suppose she believes that the proportion is equally likely to be
smaller or larger than p = .3. Moreover, she is 90% confident that p is less
than .5. A convenient family of densities for a proportion is the beta with
kernel proportional to

g(p) ∝ pa−1(1 − p)b−1, 0 < p < 1,

where the hyperparameters a and b are chosen to reflect the user’s prior beliefs
about p. The mean of a beta prior is m = a/(a + b) and the variance of the
prior is v = m(1−m)/(a+b+1), but it is difficult in practice for a user to assess
values of m and v to obtain values of the beta parameters a and b. It is easier
to obtain a and b indirectly through statements about the percentiles of the
distribution. Here the person believes that the median and 90th percentiles of
the proportion are given, respectively, by .3 and .5. The function beta.select
in the LearnBayes package is useful for finding the shape parameters of the
beta density that match this prior knowledge. The inputs to beta.select are
two lists, quantile1 and quantile2, that define these two prior percentiles,
and the function returns the values of the matching beta parameters.

24 2 Introduction to Bayesian Thinking

> quantile2=list(p=.9,x=.5)

> quantile1=list(p=.5,x=.3)

> beta.select(quantile1,quantile2)

[1] 3.26 7.19

We see that this prior information is matched with a beta density with a =
3.26 and b = 7.19. Combining this beta prior with the likelihood function,
one can show that the posterior density is also of the beta form with updated
parameters a + s and b + f .

g(p|data) ∝ pa+s−1(1 − p)b+f−1, 0 < p < 1,

where a+s = 3.26+11 and b+f = 7.19+16. (This is an example of a conjugate
analysis, where the prior and posterior densities have the same functional
form.) Since the prior, likelihood, and posterior are all in the beta family, we
can use the R command dbeta to compute the values of the prior, likelihood,
and posterior. These three densities are displayed using three applications of
the R curve command in the same graph in Figure 2.3. This figure helps show
that the posterior density in this case compromises between the initial prior
beliefs and the information in the data.

> a = 3.26

> b = 7.19

> s = 11

> f = 16

> curve(dbeta(x,a+s,b+f), from=0, to=1,

+ xlab="p",ylab="Density",lty=1,lwd=4)

> curve(dbeta(x,s+1,f+1),add=TRUE,lty=2,lwd=4)

> curve(dbeta(x,a,b),add=TRUE,lty=3,lwd=4)

> legend(.7,4,c("Prior","Likelihood","Posterior"),

+ lty=c(3,2,1),lwd=c(3,3,3))

We illustrate different ways of summarizing the beta posterior distribution
to make inferences about the proportion of heavy sleepers p. The beta cdf and
inverse cdf functions pbeta and qbeta are useful in computing probabilities
and constructing interval estimates for p. Is it likely that the proportion of
heavy sleepers is greater than .5? This is answered by computing the posterior
probability P (p >= .5|data), which is given by the R command

> 1 - pbeta(0.5, a + s, b + f)

[1] 0.0684257

This probability is small, so it is unlikely that more than half of the students
are heavy sleepers. A 90% interval estimate for p is found by computing the
5th and 95th percentiles of the beta density:

2.4 Using a Beta Prior 25

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

p

D
en

si
ty

Prior
Likelihood
Posterior

Fig. 2.3. The prior density g(p), the likelihood function L(p), and the posterior
density g(p|data) for learning about a proportion p.

> qbeta(c(0.05, 0.95), a + s, b + f)

[1] 0.2562364 0.5129274

A 90% posterior credible interval for the proportion is (0.256, 0.513).
These summaries are exact because they are based on R functions for the

beta posterior density. An alternative method of summarization of a posterior
density is based on simulation. In this case, we can simulate a large number of
values from the beta posterior density and summarize the simulated output.
Using the random beta command rbeta, we simulate 1000 random proportion
values from the beta(a + s, b + f) posterior by using the command

> ps = rbeta(1000, a + s, b + f)

and display the posterior as a histogram of the simulated values in Figure 2.4.

> hist(ps,xlab="p",main="")

The probability that the proportion is larger than .5 is estimated using
the proportion of simulated values in this range.

26 2 Introduction to Bayesian Thinking

p

Fr
eq

ue
nc

y

0.2 0.3 0.4 0.5 0.6

0
50

10
0

15
0

20
0

25
0

Fig. 2.4. A simulated sample from the beta posterior distribution of p.

> sum(ps >= 0.5)/1000

[1] 0.075

A 90% interval estimate can be estimated by the 5th and 95th sample quantiles
of the simulated sample.

> quantile(ps, c(0.05, 0.95))

5% 95%
0.2599039 0.5172406

Note that these summaries of the posterior density for p based on simulation
are approximately equal to the exact values based on calculations from the
beta distribution.

2.5 Using a Histogram Prior

Although there are computational advantages to using a beta prior, it is
straightforward to perform posterior computations for any choice of prior.

2.5 Using a Histogram Prior 27

We outline a “brute-force”method of summarizing posterior computations for
an arbitrary prior density g(p).

• Choose a grid of values of p over an interval that covers the posterior
density.

• Compute the product of the likelihood L(p) and the prior g(p) on the grid.
• Normalize by dividing each product by the sum of the products. In this

step, we are approximating the posterior density by a discrete probability
distribution on the grid.

• Using the R command sample, take a random sample with replacement
from the discrete distribution.

The resulting simulated draws are an approximate sample from the posterior
distribution.

We illustrate this “brute-force” algorithm for a “histogram”prior that may
better reflect the person’s prior opinion about the proportion p. Suppose it
is convenient for our person to state her prior beliefs about the proportion of
heavy sleepers by dividing the range of p into ten subintervals (0, .1), (.1, .2),
. . . (.9, 1), and then assigning probabilities to the intervals. The person in
our example assigns the weights 1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0 to these
intervals – this can be viewed as a continuous version of the discrete prior
used earlier.

In R, we represent this histogram prior with the vector midpt, which con-
tains the midpoints of the intervals, and the vector prior, which contains
the associated prior weights. We convert the prior weights to probabilities by
dividing each weight by the sum. We graph this prior in Figure 2.5 using the
R functions curve and histprior in the LearnBayes package.

> midpt = seq(0.05, 0.95, by = 0.1)

> prior = c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)

> prior = prior/sum(prior)

> curve(histprior(x,midpt,prior), from=0, to=1,

+ ylab="Prior density",ylim=c(0,.3))

We compute the posterior density by multiplying the histogram prior by
the likelihood function. (Recall that the likelihood function for a binomial
density is given by a beta(s+1, f +1) density; this function is available using
the dbeta function.) In Figure 2.6, the posterior density is displayed using
the curve function.

> curve(histprior(x,midpt,prior) * dbeta(x,s+1,f+1),

+ from=0, to=1, ylab="Posterior density")

To obtain a simulated sample from the posterior density by our algorithm,
we first construct an equally spaced grid of values of the proportion p and
compute the product of the prior and likelihood on this grid. Then we convert
the products on the grid to probabilities.

28 2 Introduction to Bayesian Thinking

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

p

P
rio

r d
en

si
ty

Fig. 2.5. A histogram prior for a proportion p.

> p = seq(0, 1, length=500)

> post = histprior(p, midpt, prior) *

+ dbeta(p, s+1, f+1)

> post = post/sum(post)

Last, we take a sample with replacement from the grid using the R function
sample.

> ps = sample(p, replace = TRUE, prob = post)

Figure 2.7 shows a histogram of the simulated values.

> hist(ps, xlab="p", main="")

The simulated draws can be used as before to summarize any feature of the
posterior distribution of interest.

2.6 Prediction

We have focused on learning about the population proportion of heavy sleepers
p. Suppose our person is also interested in predicting the number of heavy

2.6 Prediction 29

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

p

P
os

te
rio

r d
en

si
ty

Fig. 2.6. The posterior density for a proportion using a histogram prior

sleepers ỹ in a future sample of m = 20 students. If the current beliefs about
p are contained in the density g(p), then the predictive density of ỹ is given
by

f(ỹ) =
∫

f(ỹ|p)g(p)dp.

If g is a prior density, then we refer to this as the prior predictive density, and
if g is a posterior, then f is a posterior predictive density.

We illustrate the computation of the predictive density using the different
forms of prior density described in this chapter. Suppose we use a discrete prior
where {pi} represent the possible values of the proportion with respective
probabilities {g(pi)}. Let fB(y|n, p) denote the binomial sampling density
given values of the sample size n and proportion p:

fB(y|n, p) =
(

n

y

)
py(1 − p)n−y, y = 0, ..., n.

Then the predictive probability of ỹ successes in a future sample of size m is
given by

f(ỹ) =
∑

fB(ỹ|m, pi)g(pi).

30 2 Introduction to Bayesian Thinking

p

Fr
eq

ue
nc

y

0.2 0.3 0.4 0.5 0.6

0
20

40
60

80
10

0
12

0
14

0

Fig. 2.7. A histogram of simulated draws from the posterior distribution of p with
the use of a histogram prior.

The function pdiscp in the LearnBayes package can be used to compute the
predictive probabilities when p is given a discrete distribution. As before, p is
a vector of proportion values and prior a vector of current probabilities. The
remaining arguments are the future sample size m and a vector ys of numbers
of successes of interest. The output is a vector of the corresponding predictive
probabilities.

> p=seq(0.05, 0.95, by=.1)

> prior = c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)

> prior=prior/sum(prior)

> m=20; ys=0:20

> pred=pdiscp(p, prior, m, ys)

> round(cbind(0:20,pred),3)

pred
[1,] 0 0.020
[2,] 1 0.044
[3,] 2 0.069
[4,] 3 0.092
[5,] 4 0.106

2.6 Prediction 31

[6,] 5 0.112
[7,] 6 0.110
[8,] 7 0.102
[9,] 8 0.089
[10,] 9 0.074
[11,] 10 0.059
[12,] 11 0.044
[13,] 12 0.031
[14,] 13 0.021
[15,] 14 0.013
[16,] 15 0.007
[17,] 16 0.004
[18,] 17 0.002
[19,] 18 0.001
[20,] 19 0.000
[21,] 20 0.000

We see from the output that the most likely numbers of successes in this future
sample are ỹ = 5 and ỹ = 6.

Suppose instead that we model our beliefs about p using a beta(a, b) prior.
In this case, we can analytically integrate out p to get a closed-form expression
for the predictive density,

f(ỹ) =
∫

fB(ỹ|m, p)g(p)dp

=
(

m

ỹ

)
B(a + ỹ, b + m − ỹ)

B(a, b)
, ỹ = 0, ...,m,

where B(a, b) is the beta function. The predictive probabilities using the beta
density are computed using the function pbetap. The inputs to this function
are the vector ab of beta parameters a and b, the size of the future sample m,
and the vector of numbers of successes y. The output is a vector of predictive
probabilities corresponding to the values in y. We illustrate this computation
using the beta(3.26, 7.19) prior used to reflect the person’s beliefs about the
proportion of heavy sleepers at the school.

> ab=c(3.26, 7.19)

> m=20; ys=0:20

> pred=pbetap(ab, m, ys)

We have illustrated the computation of the predictive density for two
choices of prior densities. One convenient way of computing a predictive den-
sity for any prior is by simulation. To obtain ỹ, we first simulate, say, p∗ from
g(p), and then simulate ỹ from the binomial distribution fB(ỹ|p∗).

We demonstrate this simulation approach for the beta(3.26, 7.19) prior.
We first simulate 1000 draws from the prior and store the simulated values
in p:

32 2 Introduction to Bayesian Thinking

> p=rbeta(1000, 3.26, 7.19)

Then we simulate values of ỹ for these random ps using the rbinom function.

> y = rbinom(1000, 20, p)

To summarize the simulated draws of ỹ, we first use the table command
to tabulate the distinct values.

> table(y)

y
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

13 32 65 103 102 115 114 115 95 83 58 36 29 14 15
15 16
6 5

We save the frequencies of ỹ in a vector freq. Then we convert the frequencies
to probabilities by dividing each frequency by the sum and use the plot
command to graph the predictive distribution (see Figure 2.8).

> freq=table(y)

> ys=as.integer(names(freq))

> predprob=freq/sum(freq)

> plot(ys,predprob,type="h",xlab="y",

+ ylab="Predictive Probability")

Suppose we wish to summarize this discrete predictive distribution by an
interval that covers at least 90% of the probability. The R function discint
in the LearnBayes package is useful for this purpose. In the output, the vector
ys contains the values of ỹ and predprob contains the associated probabili-
ties found from the table output. The matrix dist contains the probability
distribution with the columns ys and predprob. The function discint has
two inputs: the matrix dist and a given coverage probability covprob. The
output is a list where the component set gives the credible set and prob gives
the exact coverage probability.

> dist=cbind(ys,predprob)

> dist
ys predprob

[1,] 0 0.013
[2,] 1 0.032
[3,] 2 0.065
[4,] 3 0.103
[5,] 4 0.102
[6,] 5 0.115
[7,] 6 0.114
[8,] 7 0.115

2.6 Prediction 33

0 5 10 15

0.
02

0.
04

0.
06

0.
08

0.
10

y

P
re

di
ct

iv
e

P
ro

ba
bi

lit
y

Fig. 2.8. A graph of the predictive probabilities of the number of sleepers ỹ in a
future sample of size 20 when the proportion is assigned a beta(3.26, 7.19) prior.

[9,] 8 0.095
[10,] 9 0.083
[11,] 10 0.058
[12,] 11 0.036
[13,] 12 0.029
[14,] 13 0.014
[15,] 14 0.015
[16,] 15 0.006
[17,] 16 0.005

> covprob=.9

> discint(dist,covprob)

$prob
[1] 0.918

$set
[1] 1 2 3 4 5 6 7 8 9 10 11

34 2 Introduction to Bayesian Thinking

We see that the probability that ỹ falls in the interval {1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11} is 91.8%. To say it in a different way, let ỹ/20 denote the proportion
of sleepers in the future sample. The probability that this sample proportion
falls in the interval [1/20, 11/20] is 91.8%. As expected, this interval is much
wider than a 91.8% probability interval for the population proportion p. In
predicting a future sample proportion, there are two sources of uncertainty,
the uncertainty in the value of p and the binomial uncertainty in the value
of ỹ, and the predictive interval is relatively long since it incorporates both
types of uncertainty.

2.7 Further Reading

A number of books are available that describe the basic tenets of Bayesian
thinking. Berry (1996) and Albert and Rossman (2001) describe the Bayesian
approach for proportions at an introductory statistics level. Albert (1996) de-
scribes Bayesian computational algorithms for proportions using the statistics
package Minitab. Antleman (1996) and Bolstad (2004) provide elementary de-
scriptions of Bayesian thinking suitable for undergraduate statistics classes.

2.8 Summary of R Functions

beta.select – finds the shape parameters of a beta density that matches
knowledge of two quantiles of the distribution
Usage: beta.select(quantile1,quantile2)
Arguments: quantile1, list with components p, the value of the first proba-
bility, and x, the value of the first quantile; quantile2, list with components
p, the value of the second probability, and x, the value of the second quantile
Value: vector of shape parameters of the matching beta distribution

discint – computes a highest probability interval for a discrete distribution
Usage: discint(dist,prob)
Arguments: dist, a probability distribution written as a matrix, where the first
column contains the values and the second column contains the probabilities;
prob, the probability content of interest
Value: prob, the exact probability content of the interval, and set, the set of
values of the probability interval

histprior – computes the density of a probability distribution defined on a
set of equal-width intervals
Usage: histprior(p,midpts,prob)
Arguments: p, the vector of values for which the density is to be computed;
midpts, the vector of midpoints of the intervals; prob, the vector of probabil-
ities of the intervals
Value: vector of values of the probability density

2.9 Exercises 35

pbetap – computes the predictive distribution for the number of successes of
a future binomial experiment with a beta distribution for the proportion
Usage: pbetap(ab, n, s)
Arguments: ab, the vector of parameters of the beta prior; n, the size of the
future binomial sample; s, the vector of the numbers of successes for a future
binomial experiment
Value: the vector of predictive probabilities for the values in the vector s

pdisc – computes the posterior distribution for a proportion for a discrete
prior distribution
Usage: pdisc(p, prior, data)
Arguments: p, a vector of proportion values; prior, a vector of prior proba-
bilities; data, a vector consisting of the number of successes and number of
failures
Value: the vector of posterior probabilities

pdiscp – computes the predictive distribution for the number of successes of
a future binomial experiment with a discrete distribution for the proportion
Usage: pdiscp(p, probs, n, s)
Arguments: p, the vector of proportion values; probs, the vector of probabil-
ities; n, the size of the future binomial sample; s, the vector of the numbers
of successes for a future binomial experiment
Value: the vector of predictive probabilities for the values in the vector s

2.9 Exercises

1. Estimating a proportion with a discrete prior
Bob claims to have ESP. To test this claim, you propose the following
experiment. You will select one card from four large cards with different
geometric figures, and Bob will try to identify it. Let p denote the prob-
ability that Bob is correct in identifying the figure for a single card. You
believe that Bob has no ESP ability (p = .25), but there is a small chance
that p is either larger or smaller than .25. After some thought, you place
the following prior distribution on p:

p 0 .125 .250 .375 .500 .625 .750 .875 1
g(p) .001 .001 .950 .008 .008 .008 .008 .008 .008

Suppose that the experiment is repeated ten times and Bob is correct six
times and incorrect four times. Using the function pdisc, find the posterior
probabilities of these values of p. What is your posterior probability that
Bob has no ESP ability?

2. Estimating a proportion with a histogram prior
Consider the following experiment. Hold a penny on edge on a flat hard
surface, and spin it with your fingers. Let p denote the probability that it
lands heads. To estimate this probability, we will use a histogram to model

36 2 Introduction to Bayesian Thinking

our prior beliefs about p. Divide the interval [0,1] into the ten subinter-
vals [0, .1], [.1, .2], ..., [.9, 1], and specify probabilities that p is in each
interval. Next spin the penny 20 times and count the number of successes
(heads) and failures (tails). Simulate from the posterior distribution by
(1) computing the posterior density of p on a grid of values on (0, 1) and
(2) taking a simulated sample with replacement from the grid. (The func-
tions histprior and sample are helpful in this computation.) How have
the interval probabilities changed on the basis of your data?

3. Estimating a proportion and prediction of a future sample
A study reported on the long-term effects of exposure to low levels of
lead in childhood. Researchers analyzed children’s shed primary teeth for
lead content. Of the children whose teeth had a lead content of more than
22.22 parts per million (ppm), 22 eventually graduated from high school
and 7 did not. Suppose your prior density for p, the proportion of all such
children who will graduate from high school, is beta(1, 1), and so your
posterior density is beta(23, 8).
a) Use the function qbeta to find a 90% interval estimate for p.
b) Use the function pbeta to find the probability that p exceeds .6.
c) Use the function rbeta to take a simulated sample of size 1000 from

the posterior distribution of p.
d) Suppose you find ten more children who have a lead content of more

than 22.22 ppm. Find the predictive probability that nine or ten of
them will graduate from high school. (Use your simulated sample from
part (c) and the rbinom function to take a simulated sample from the
predictive distribution.)

4. Contrasting predictions using two different priors
Suppose two persons are interested in estimating the proportion p of stu-
dents at a college who commute to school. Suppose Joe uses a discrete
prior given in the following table:

p 0.1 0.2 0.3 0.4 0.5
g(p) 0.5 0.2 0.2 0.05 0.05

Sam decides instead to use a beta(3, 12) prior for the proportion p.
a) Use R to compute the mean and standard deviation of p for Joe’s prior

and for Sam’s prior. Based on this computation, do Joe and Sam have
similar prior beliefs about the location of p?

b) Suppose one is interested in predicting the number of commuters y in
a future sample of size 12. Use the functions pdiscp and pbetap to
compute the predictive probabilities of y using both Joe’s prior and
Sam’s prior. Do the two people have similar beliefs about the outcomes
of a future sample?

5. Estimating a normal mean with a discrete prior
Suppose you are interested in estimating the average total snowfall per
year μ (in inches) for a large city on the East Coast of the United States.

2.9 Exercises 37

Assume individual yearly snow totals y1, ..., yn are collected from a popu-
lation that is assumed to be normally distributed with mean μ and known
standard deviation σ = 10 inches.
a) Before collecting data, suppose you believe that the mean snowfall μ

can be the values 20, 30, 40, 50, 60, and 70 inches with the following
probabilities:

μ 20 30 40 50 60 70
g(μ) .1 .15 .25 .25 .15 .1

Place the values of μ in the vector mu and the associated prior proba-
bilities in the vector prior.

b) Suppose you observe the yearly snowfall totals 38.6, 42.4, 57.5, 40.5,
51.7, 67.1, 33.4, 60.9, 64.1, 40.1, 40.7, and 6.4 inches. Enter these data
into a vector y and compute the sample mean ybar.

c) In this problem, the likelihood function is given by

L(μ) ∝ exp
(
− n

2σ2
(μ − ȳ)2

)
,

where ȳ is the sample mean. Compute the likelihood on the list of
values in mu and place the likelihood values in the vector like.

d) One can compute the posterior probabilities for μ using the formula
post=prior*like/sum(prior*like)

Compute the posterior probabilities of μ for this example.
e) Using the function discint, find an 80% probability interval for μ.

6. Estimating a Poisson mean using a discrete prior (from Antle-
man (1996))
Suppose you own a trucking company with a large fleet of trucks. Break-
downs occur randomly in time and the number of breakdowns during an
interval of t days is assumed to be Poisson distributed with mean tλ. The
parameter λ is the daily breakdown rate. The possible values for λ are
.5, 1, 1.5, 2, 2.5, and 3 with respective probabilities .1, .2, .3, .2, .15, and
.05. If one observes y breakdowns, then the posterior probability of λ is
proportional to

g(λ) exp(−tλ)(tλ)y,

where g is the prior probability.
a) If 12 trucks break down in a six-day period, find the posterior proba-

bilities for the different rate values.
b) Find the probability that there are no breakdowns during the next

week. Hint: If the rate is λ, the conditional probability of no break-
downs during a seven-day period is given by exp{−7λ}. One can com-
pute this predictive probability by multiplying a list of conditional
probabilities by the posterior probabilities of λ and finding the sum
of the products.

3

Single-Parameter Models

3.1 Introduction

In this chapter, we introduce the use of R in summarizing the posterior distri-
butions for several single-parameter models. We begin by describing Bayesian
inference for a variance for a normal population and inference for a Pois-
son mean when informative prior information is available. For both problems,
summarization of the posterior distribution is facilitated by the use of R func-
tions to compute and simulate distributions from the exponential family. In
Bayesian analyses, one may have limited beliefs about a parameter and there
may be several priors that provide suitable matches to these beliefs. In esti-
mating a normal mean, we illustrate the use of two distinct priors in modeling
beliefs and show that inferences may or may not be sensitive to the choice
of prior. In this example, we illustrate the “brute-force” method of summariz-
ing a posterior where the density is computed by the “prior times likelihood”
recipe over a fine grid. One way to generalize the family of conjugate priors is
by the use of mixtures, and we illustrate the use of a mixture of beta distri-
butions to model the belief that a coin is biased. We conclude by describing
a Bayesian test of the simple hypothesis that a coin is fair. The computation
of the posterior probability of “fair coin” is facilitated using beta and binom
functions in R.

3.2 Normal Distribution with Known Mean but
Unknown Variance

Gelman et al. (2003) consider a problem of estimating an unknown variance
using American football scores. The focus is on the difference d between a game
outcome (winning score minus losing score) and a published point spread. We
observe d1, ..., dn, the observed differences between game outcomes and point
spreads for n football games. If these differences are assumed to be a random

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 3,
© Springer Science+Business Media, LLC 2009

40 3 Single-Parameter Models

sample from a normal distribution with mean 0 and unknown variance σ2, the
likelihood function is given by

L(σ2) ∝ (σ2)−n/2 exp

{
−

n∑
i=1

d2
i /(2σ2)

}
, σ2 > 0.

Suppose the noninformative prior density p(σ2) ∝ 1/σ2 is assigned to the
variance. This is the standard vague prior placed on a variance – it is equivalent
to assuming that the logarithm of the variance is uniformly distributed on the
real line. Then the posterior density of σ2 is given, up to a proportionality
constant, by

g(σ2|data) ∝ (σ2)−n/2−1 exp{−v/(2σ2)},
where v =

∑n
i=1 d2

i . If we define the precision parameter P = 1/σ2, then it can
be shown that P is distributed as U/v, where U has a chi-squared distribution
with n degrees of freedom. Suppose we are interested in a point estimate and
a 95% probability interval for the standard deviation σ.

In the following R output, we first read in the datafile footballscores
that is available in the LearnBayes package. For each of 672 games, the datafile
contains favorite and underdog, the actual scores of the favorite and under-
dog teams, and spread, the published point spread. We compute the difference
variable d. As in the preceding notation, n is the sample size and v is the sum
of squares of the differences.

> data(footballscores)

> attach(footballscores)

> d = favorite - underdog - spread

> n = length(d)

> v = sum(d^2)

We simulate 1000 values from the posterior distribution of the standard
deviation σ in two steps. First, we simulate values of the precision parame-
ter P = 1/σ2 from the scaled chi-square(n) distribution using the command
rchisq(1000, n)/v. Then we perform the transformation σ =

√
1/P to get

values from the posterior distribution of the standard deviation σ. We use the
hist command to construct a histogram of the draws of σ (see Figure 3.1).

> P = rchisq(1000, n)/v

> s = sqrt(1/P)

> hist(s,main="")

The R quantile command is used to extract the 2.5%, 50%, and 97.5%
percentiles of this simulated sample. A point estimate for σ is provided by
the posterior median 13.85. In addition, the extreme percentiles (13.2, 14.6)
represent a 95% probability interval for σ.

> quantile(s, probs = c(0.025, 0.5, 0.975))

2.5% 50% 97.5%
13.17012 13.85135 14.56599

3.3 Estimating a Heart Transplant Mortality Rate 41

s

Fr
eq

ue
nc

y

13.0 13.5 14.0 14.5 15.0 15.5

0
50

10
0

15
0

20
0

Fig. 3.1. Histogram of simulated sample of the standard deviation σ of differences
between game outcomes and point spreads.

3.3 Estimating a Heart Transplant Mortality Rate

Consider the problem of learning about the rate of success of heart transplant
surgery of a particular hospital in the United States. For this hospital, we
observe the number of transplant surgeries n, and the number of deaths within
30 days of surgery y is recorded. In addition, one can predict the probability
of death for an individual patient. This prediction is based on a model that
uses information such as patients’ medical condition before surgery, gender,
and race. Based on these predicted probabilities, one can obtain an expected
number of deaths, denoted by e. A standard model assumes that the number
of deaths y follows a Poisson distribution with mean eλ, and the objective is
to estimate the mortality rate per unit exposure λ.

The standard estimate of λ is the maximum likelihood estimate λ̂ = y/e.
Unfortunately, this estimate can be poor when the number of deaths y is close
to zero. In this situation when small death counts are possible, it is desirable
to use a Bayesian estimate that uses prior knowledge about the size of the
mortality rate. A convenient choice for a prior distribution is a member of the
gamma(α, β) density of the form

42 3 Single-Parameter Models

p(λ) ∝ λα−1 exp(−βλ), λ > 0.

A convenient source of prior information is heart transplant data from a
small group of hospitals that we believe has the same rate of mortality as the
rate from the hospital of interest. Suppose we observe the number of deaths
zj and the exposure oj for ten hospitals (j = 1, ..., 10), where zj is Poisson
with mean ojλ. If we assign λ the standard noninformative prior p(λ) ∝ λ−1,
then the updated distribution for λ, given these data from the ten hospitals,
is

p(λ) ∝ λ
∑10

j=1 zj−1 exp

⎛
⎝−(

10∑
j=1

oj)λ

⎞
⎠ .

Using this information, we have a gamma(α, β) prior for λ, where α =∑10
j=1 zj and β =

∑10
j=1 oj . In this example, we have

10∑
j=1

zj = 16,

10∑
j=1

oj = 15174,

and so we assign λ a gamma(16, 15174) prior.
If the observed number of deaths from surgery yobs for a given hospital

with exposure e is Poisson (eλ) and λ is assigned the gamma(α, β) prior, then
the posterior distribution will also have the gamma form with parameters
α + yobs and β + e. Also the (prior) predictive density of y (before any data
are observed) can be computed using the formula

f(y) =
f(y|λ)g(λ)

g(λ|y)
,

where f(y|λ) is the Poisson(eλ) sampling density and g(λ) and g(λ|y) are,
respectively, the prior and posterior densities of λ.

By the model-checking strategy of Box (1980), both the posterior density
g(λ|y) and the predictive density f(y) play important roles in a Bayesian anal-
ysis. By using the posterior density, one performs inference about the unknown
parameter conditional on the Bayesian model that includes the assumptions
of sampling density and the prior density. One can check the validity of the
proposed model by inspecting the predictive density. If the observed data
value yobs is consistent with the predictive density p(y), then the model seems
reasonable. On the other hand, if yobs is in the extreme tail portion of the pre-
dictive density, then this casts doubt on the validity of the Bayesian model,
and perhaps the prior density or the sampling density has been misspecified.

We consider inference about the heart transplant death rate for two hospi-
tals – one that has experienced a small number of surgeries and a second that
has experienced many surgeries. First consider hospital A, which experienced
only one death (yobs = 1) with an exposure of e = 66. The standard estimate
of this hospital’s rate, 1/66, is suspect due to the small observed number of

3.3 Estimating a Heart Transplant Mortality Rate 43

deaths. The following R calculations illustrate the Bayesian calculations. Af-
ter the gamma prior parameters alpha and beta and exposure ex are defined,
the predictive density of the values y = 0, 1, ..., 10 is found by using the pre-
ceding formula and the R functions dpois and dgamma. The formula for the
predictive density is valid for all λ, but to ensure that there is no underflow
in the calculations, the values of f(y) are computed for the prior mean value
λ = α/β. Note that practically all of the probability of the predictive density
is concentrated on the two values y = 0 and 1. The observed number of deaths
(yobs = 1) is in the middle of this predictive distribution, so there is no reason
to doubt our Bayesian model.

> alpha=16;beta=15174

> yobs=1; ex=66

> y=0:10

> lam=alpha/beta

> py=dpois(y, lam*ex)*dgamma(lam, shape = alpha,

+ rate = beta)/dgamma(lam, shape= alpha + y,

+ rate = beta + ex)

> cbind(y, round(py, 3))

y
[1,] 0 0.933
[2,] 1 0.065
[3,] 2 0.002
[4,] 3 0.000
[5,] 4 0.000
[6,] 5 0.000
[7,] 6 0.000
[8,] 7 0.000
[9,] 8 0.000
[10,] 9 0.000
[11,] 10 0.000

The posterior density of λ can be summarized by simulating 1000 values
from the gamma density.

> lambdaA = rgamma(1000, shape = alpha + yobs, rate = beta + ex)

Let’s consider the estimation of a different hospital that experiences many
surgeries. Hospital B had yobs = 4 deaths, with an exposure of e = 1767. For
these data, we again have R compute the prior predictive density and simulate
1000 draws from the posterior density using the rgamma command. Again we
see that the observed number of deaths seems consistent with this model since
yobs = 4 is not in the extreme tails of this distribution.

> ex = 1767; yobs=4

> y = 0:10

44 3 Single-Parameter Models

> py = dpois(y, lam * ex) * dgamma(lam, shape = alpha,

+ rate = beta)/dgamma(lam, shape = alpha + y,

+ rate = beta + ex)

> cbind(y, round(py, 3))

y
[1,] 0 0.172
[2,] 1 0.286
[3,] 2 0.254
[4,] 3 0.159
[5,] 4 0.079
[6,] 5 0.033
[7,] 6 0.012
[8,] 7 0.004
[9,] 8 0.001
[10,] 9 0.000
[11,] 10 0.000

> lambdaB = rgamma(1000, shape = alpha + yobs, rate = beta + ex)

To see the impact of the prior density on the inference, it is helpful to
display the prior and posterior distributions on the same graph. In Figure
3.2, density estimates of the simulated draws from the posterior distributions
of the rates are shown for hospitals A and B. The gamma prior density is
also displayed in each case. We see that for hospital A, with relatively little
experience in surgeries, the prior information is significant and the posterior
distribution resembles the prior distribution. In contrast, for hospital B, with
many surgeries, the prior information is less influential and the posterior dis-
tribution resembles the likelihood function.

> par(mfrow = c(2, 1))

> plot(density(lambdaA), main="HOSPITAL A",

+ xlab="lambdaA", lwd=3)

> curve(dgamma(x, shape = alpha, rate = beta), add=TRUE)

> legend("topright",legend=c("prior","posterior"),lwd=c(1,3))

> plot(density(lambdaB), main="HOSPITAL B",

+ xlab="lambdaB", lwd=3)

> curve(dgamma(x, shape = alpha, rate = beta), add=TRUE)

> legend("topright",legend=c("prior","posterior"),lwd=c(1,3))

3.4 An Illustration of Bayesian Robustness

In practice, one may have incomplete prior information about a parameter in
the sense that one’s beliefs won’t entirely define a prior density. There may
be a number of different priors that match the given prior information. For

3.4 An Illustration of Bayesian Robustness 45

0.0005 0.0010 0.0015 0.0020

0
50

0
15

00

HOSPITAL A

lambdaA

D
en

si
ty

prior
posterior

0.0005 0.0010 0.0015 0.0020

0
50

0
15

00

HOSPITAL B

lambdaB

D
en

si
ty

prior
posterior

Fig. 3.2. Prior and posterior densities for heart transplant death rate for two hos-
pitals.

example, if you believe a priori that the median of a parameter θ is 30 and its
80th percentile is 50, certainly there are many prior probability distributions
that can be chosen that match these two percentiles. In this situation where
different priors are possible, it is desirable that inferences from the posterior
not be dependent on the exact functional form of the prior. A Bayesian analysis
is said to be robust to the choice of prior if the inference is insensitive to
different priors that match the user’s beliefs.

To illustrate this idea, suppose you are interested in estimating the true
IQ θ for a person we’ll call Joe. You believe Joe has average intelligence, and
the median of your prior distribution is 100. Also, you are 90% confident that
Joe’s IQ falls between 80 and 120. By using the function normal.select, we
find the values of the mean and standard deviation of the normal density that
match the beliefs that the median is 100 and the 95th percentile is 120.

quantile1=list(p=.5,x=100); quantile2=list(p=.95,x=120)

normal.select(quantile1, quantile2)

$mu
[1] 100

46 3 Single-Parameter Models

$sigma
[1] 12.15914

We see from the output that the normal density with mean μ = 100 and
τ = 12.16 matches this prior information.

Joe takes four IQ tests and his scores are y1, y2, y3, y4. Assuming that an
individual score y is distributed as N(θ, σ) with known standard deviation
σ = 15, the observed mean score ȳ is N(θ, σ/

√
4).

With the use of a normal prior in this case, the posterior density of θ will
also have the normal functional form. Recall that the precision is defined as
the inverse of the variance. Then the posterior precision P1 = 1/τ2

1 is the sum
of the data precision PD = n/σ2 and the prior precision P = 1/τ2,

P1 = PD + P = 4/σ2 + 1/τ2,

The posterior standard deviation is given by

τ1 = 1/
√

P1 = 1/(
√

4/σ2 + 1/τ2).

The posterior mean of θ can be expressed as a weighted average of the sample
mean and the prior mean where the weights are proportional to the precisions:

μ1 =
ȳPD + μP

PD + P
=

ȳ(4/σ2) + μ(1/τ2)
4/σ2 + 1/τ2

.

We illustrate the posterior calculations for three hypothetical test results
for Joe. We suppose that the observed mean test score is ȳ = 110, ȳ = 125, or
ȳ = 140. In each case, we compute the posterior mean and posterior standard
deviation of Joe’s true IQ θ. These values are denoted by the R variables mu1
and tau1 in the following output.

> mu = 100

> tau = 12.16

> sigma = 15

> n = 4

> se = sigma/sqrt(4)

> ybar = c(110, 125, 140)

> tau1 = 1/sqrt(1/se^2 + 1/tau^2)

> mu1 = (ybar/se^2 + mu/tau^2) * tau1^2

> summ1=cbind(ybar, mu1, tau1)

> summ1

ybar mu1 tau1
[1,] 110 107.2442 6.383469
[2,] 125 118.1105 6.383469
[3,] 140 128.9768 6.383469

3.4 An Illustration of Bayesian Robustness 47

Let’s now consider an alternative prior density to model our beliefs about
Joe’s true IQ. Any symmetric density instead of a normal could be used, so
we use a t density with location μ, scale τ , and 2 degrees of freedom. Since our
prior median is 100, we let the median of our t density be equal to μ = 100.
We find the scale parameter τ , so the t density matches our prior belief that
the 95th percentile of θ is equal to 120. Note that

P (θ < 120) = P

(
T <

20
τ

)
= .95,

where T is a standard t variate with two degrees of freedom. It follows that

τ = 20/t2(.95),

where tv(p) is the pth quantile of a t random variable with v degrees of free-
dom. We find τ by using the t quantile function qt in R.

> tscale = 20/qt(0.95, 2)

> tscale

[1] 6.849349

We display the normal and t priors in a single graph in Figure 3.3. Although
they have the same basic shape, note that the t density has significantly flatter
tails – we will see that this will impact the posterior density for “extreme” test
scores.

> par(mfrow=c(1,1))

> curve(1/tscale*dt((x-mu)/tscale,2),

+ from=60, to=140, xlab="theta", ylab="Prior Density")

> curve(dnorm(x,mean=mu,sd=tau), add=TRUE, lwd=3)

> legend("topright",legend=c("t density","normal density"),

+ lwd=c(1,3))

We perform the posterior calculations using the t prior for each of the
possible sample results. Note that the posterior density of θ is given, up to a
proportionality constant, by

g(θ|data) ∝ φ(ȳ|θ, σ/
√

n)gT (θ|v, μ, τ),

where φ(y|θ, σ) is a normal density with mean θ and standard deviation σ,
and gT (μ|v, μ, τ) is a t density with median μ, scale parameter τ , and de-
grees of freedom v. Since this density does not have a convenient functional
form, we summarize it using a direct “prior times likelihood” approach. We
construct a grid of θ values that covers the posterior density, compute the
product of the normal likelihood and the t prior on the grid, and convert
these products to probabilities by dividing by the sum. Essentially we are
approximating the continuous posterior density by a discrete distribution on

48 3 Single-Parameter Models

60 80 100 120 140

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

theta

P
rio

r D
en

si
ty

t density
normal density

Fig. 3.3. Normal and t priors for representing prior opinion about a person’s true
IQ score.

this grid. We then use this discrete distribution to compute the posterior mean
and posterior standard deviation. We first write a function norm.t.compute
that implements this computational algorithm for a single value of ȳ. Then,
using sapply, we apply this algorithm for the three values of ȳ, and the pos-
terior moments are displayed in the second and third columns of the R matrix
summ2.

> norm.t.compute=function(ybar) {

+ theta = seq(60, 180, length = 500)

+ like = dnorm(theta,mean=ybar,sd=sigma/sqrt(n))

+ prior = dt((theta - mu)/tscale, 2)

+ post = prior * like

+ post = post/sum(post)

+ m = sum(theta * post)

+ s = sqrt(sum(theta^2 * post) - m^2)

+ c(ybar, m, s) }

> summ2=t(sapply(c(110, 125, 140),norm.t.compute))

> dimnames(summ2)[[2]]=c("ybar","mu1 t","tau1 t")

> summ2

3.5 Mixtures of Conjugate Priors 49

ybar mu1 t tau1 t
[1,] 110 105.2921 5.841676
[2,] 125 118.0841 7.885174
[3,] 140 135.4134 7.973498

Let’s compare the posterior moments of θ using the two priors by combin-
ing the two R matrices summ1 and summ2.

> cbind(summ1,summ2)

ybar mu1 tau1 ybar mu1 t tau1 t
[1,] 110 107.2442 6.383469 110 105.2921 5.841676
[2,] 125 118.1105 6.383469 125 118.0841 7.885174
[3,] 140 128.9768 6.383469 140 135.4134 7.973498

When ȳ = 110, the values of the posterior mean and posterior standard de-
viation are similar using the normal and t priors. However, there can be sub-
stantial differences in the posterior moments using the two priors when the
observed mean score is inconsistent with the prior mean. In the“extreme”case
where ȳ = 140, Figure 3.4 graphs the posterior densities for the two priors.

> theta=seq(60, 180, length=500)

> normpost = dnorm(theta, mu1[3], tau1)

> normpost = normpost/sum(normpost)

> plot(theta,normpost,type="l",lwd=3,ylab="Posterior Density")

> like = dnorm(theta,mean=140,sd=sigma/sqrt(n))

> prior = dt((theta - mu)/tscale, 2)

> tpost = prior * like / sum(prior * like)

> lines(theta,tpost)

> legend("topright",legend=c("t prior","normal prior"),lwd=c(1,3))

When a normal prior is used, the posterior will always be a compromise be-
tween the prior information and the observed data, even when the data result
conflicts with one’s prior beliefs about the location of Joe’s IQ. In contrast,
when a t prior is used, the likelihood will be in the flat-tailed portion of the
prior and the posterior will resemble the likelihood function.

In this case, the inference about the mean is robust to the choice of prior
(normal or t) when the observed mean IQ score is consistent with the prior
beliefs. But in the case where an extreme IQ score is observed, we see that
the inference is not robust to the choice of prior density.

3.5 Mixtures of Conjugate Priors

In the binomial, Poisson, and normal sampling models, we have illustrated
the use of a conjugate prior where the prior and posterior distributions have
the same functional form. One straightforward way to extend the family of

50 3 Single-Parameter Models

60 80 100 120 140 160 180

0.
00

0
0.

00
5

0.
01

0
0.

01
5

theta

P
os

te
rio

r D
en

si
ty

t prior
normal prior

Fig. 3.4. Posterior densities for a person’s true IQ using normal and t priors for an
extreme observation.

conjugate priors is by using discrete mixtures. Here we illustrate the use of
a mixture of beta densities to learn about the probability that a biased coin
lands heads.

Suppose a special coin is known to have a significant bias, but we don’t
know if the coin is biased toward heads or tails. If p represents the probability
that the coin lands heads, we believe that either p is in the neighborhood of
0.3 or in the neighborhood of 0.7 and it is equally likely that p is in one of the
two neighborhoods. This belief can be modeled using the prior density

g(p) = γg1(p) + (1 − γ)g2(p),

where g1 is beta(6, 14), g2 is beta(14, 6), and the mixing probability is γ = 0.5.
Figure 3.5 displays this prior that reflects a belief in a biased coin.

In this situation, it can be shown that we have a conjugate analysis, as
the prior and posterior distributions are represented by the same “mixture of
betas” functional form. Suppose we flip the coin n times, obtaining s heads
and f = n − s tails. The posterior density of the proportion has the mixture
form

g(p|data) = γ(data)g1(p|data) + (1 − γ(data))g2(p|data),

3.5 Mixtures of Conjugate Priors 51

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

P

D
en

si
ty

Fig. 3.5. Mixture of beta densities prior distribution that reflects belief that a coin
is biased.

where g1 is beta(6 + s, 14 + f), g2 is beta(14 + s, 6 + f), and the mixing
probability γ(data) has the form

γ(data) =
γf1(s, f)

γf1(s, f) + (1 − γ)f2(s, f)
,

where fj(s, f) is the prior predictive probability of s heads in n flips when p
has the prior density gj .

The R function binomial.beta.mix computes the posterior distribution
when the proportion p has a mixture of betas prior distribution. The inputs to
this function are probs, the vector of mixing probabilities; betapar, a matrix
of beta shape parameters where each row corresponds to a component of the
prior; and data, the vector of the number of successes and number of failures
in the sample. The output of the function is a list with two components –
probs is a vector of posterior mixing probabilities and betapar is a matrix
containing the shape parameters of the updated beta posterior densities.

> probs=c(.5,.5)

> beta.par1=c(6, 14)

> beta.par2=c(14, 6)

52 3 Single-Parameter Models

> betapar=rbind(beta.par1, beta.par2)

> data=c(7,3)

> post=binomial.beta.mix(probs,betapar,data)

> post

$probs
beta.par1 beta.par2
0.09269663 0.90730337

$betapar
[,1] [,2]

beta.par1 13 17
beta.par2 21 9

Suppose we flip the coin ten times and obtain seven heads and three tails.
From the R output, we see that the posterior distribution of p is given by the
beta mixture

g(p|data) = 0.093 beta(13, 17) + 0.907 beta(21, 9).

The prior and posterior densities for the proportion are displayed (using sev-
eral curve commands) in Figure 3.6. Initially we were indifferent to the direc-
tion of the bias of the coin, and each component of the beta mixture had the
same weight. Since a high proportion of heads was observed, there is evidence
that the coin is biased toward heads and the posterior density places a greater
weight on the second component of the mixture.

> curve(post$probs[1]*dbeta(x,13,17)+post$probs[2]*dbeta(x,21,9),

+ from=0, to=1, lwd=3, xlab="P", ylab="DENSITY")

> curve(.5*dbeta(x,6,12)+.5*dbeta(x,12,6),0,1,add=TRUE)

> legend("topleft",legend=c("Prior","Posterior"),lwd=c(1,3))

3.6 A Bayesian Test of the Fairness of a Coin

Mixture of priors is useful in the development of a Bayesian test of two hy-
potheses about a parameter. Suppose you are interested in assessing the fair-
ness of a coin. You observe y binomially distributed with parameters n and p,
and you are interested in testing the hypothesis H that p = .5. If y is observed,
then it is usual practice to make a decision on the basis of the p-value

2 × min{P (Y ≤ y), P (Y ≥ y)}.
If this p-value is small, then you reject the hypothesis H and conclude that
the coin is not fair. Suppose, for example, the coin is flipped 20 times and
only 5 heads are observed. In R we compute the probability of obtaining five
or fewer heads.

3.6 A Bayesian Test of the Fairness of a Coin 53

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

P

D
E

N
S

IT
Y

Prior
Posterior

Fig. 3.6. Prior and posterior densities of a proportion for the biased coin example.

> pbinom(5, 20, 0.5)

[1] 0.02069473

The p-value here is 2 × .021 = .042. Since this value is smaller than the
common significance level of .05, you would decide to reject the hypothesis H
and conclude that the coin is not fair.

Let’s consider this problem from a Bayesian perspective. There are two
possible models here – either the coin is fair (p = .5) or the coin is not fair
(p �= .5). Suppose that you are indifferent between the two possibilities, so
you initially assign each model a probability of 1/2. Now, if you believe the
coin is fair, then your entire prior distribution for p would be concentrated
on the value p = .5. If instead the coin is unfair, you would assign a different
prior distribution on (0, 1), call it g1(p), that would reflect your beliefs about
the probability of an unfair coin . Suppose you assign a beta(a, a) prior on
p. This beta distribution is symmetric about .5 – it says that you believe the
coin is not fair, and the probability is close to p = .5. To summarize, your
prior distribution in this testing situation can be written as the mixture

g(p) = .5I(p = .5) + .5I(p �= .5)g1(p),

54 3 Single-Parameter Models

where I(A) is an indicator function equal to 1 if the event A is true and
otherwise is equal to 0.

After observing the number of heads in n tosses, we would update our
prior distribution by Bayes’ rule. The posterior density for p can be written
as

g(p|y) = λ(y)I(p = .5) + (1 − λ(y))g1(p|y),

where g1 is a beta(a+y, a+n−y) density and λ(y) is the posterior probability
of the model where the coin is fair,

λ(y) =
.5p(y|.5)

.5p(y|.5) + .5m1(y)
.

In the expression for λ(y), p(y|.5) is the binomial density for y when p = .5,
and m1(y) is the (prior) predictive density for y using the beta density.

In R, the posterior probability of fairness λ(y) is easily computed. The
R command dbinom will compute the binomial probability p(y|.5), and the
predictive density for y can be computed using the identity

m1(y) =
f(y|p)g1(p)

g1(p|y)
.

Assume first that we assign a beta(10, 10) prior for p when the coin is not
fair and we observe y = 5 heads in n = 20 tosses. The posterior probability of
fairness is stored in the R variable lambda.

> n = 20

> y = 5

> a = 10

> p = 0.5

> m1 = dbinom(y, n, p) * dbeta(p, a, a)/dbeta(p, a + y, a + n -

+ y)

> lambda = dbinom(y, n, p)/(dbinom(y, n, p) + m1)

> lambda

[1] 0.2802215

We get the surprising result that the posterior probability of the hypothesis
of fairness H is .28, which is less evidence against fairness than is implied by
the p-value calculation above.

The function pbetat in the LearnBayes package performs a test of a bi-
nomial proportion. The inputs to the function are the value of p to be tested,
the prior probability of that value, a vector of parameters of the beta prior
when the hypothesis is not true, and a vector of numbers of successes and
failures. In this example, the syntax would be

> pbetat(p,.5,c(a,a),c(y,n-y))

3.6 A Bayesian Test of the Fairness of a Coin 55

$bf
[1] 0.3893163

$post
[1] 0.2802215

The output variable post is the posterior probability that p = .5, which agrees
with the calculation. The output variable bf is the Bayes factor in support of
the null hypothesis, which is discussed in Chapter 8.

Since the choice of the prior parameter a = 10 in this analysis seems
arbitrary, it is natural to ask about the sensitivity of this posterior calculation
to the choice of this parameter. To answer this question, we first write a short
function prob.fair that computes the probability of a fair coin as a function
of log a.

> prob.fair=function(log.a)

+ {

+ a = exp(log.a)

+ m2 = dbinom(y, n, p) * dbeta(p, a, a)/

+ dbeta(p, a + y, a + n - y)

+ dbinom(y, n, p)/(dbinom(y, n, p) + m2)

+ }

Using the curve function, we graph the posterior probability for a range of
values of log a (see Figure 3.7).

> n = 20; y = 5; p = 0.5

> curve(prob.fair(x), from=-4, to=5, xlab="log a",

> ylab="Prob(coin is fair)", lwd=2)

We see from this graph that the probability of fairness appears to be greater
than .2 for all choices of a. It is important to remember that the p-value is not
interpretable as a probability of fairness, although it is sometimes mistakenly
viewed as this probability. But the Bayesian posterior probability of .2 is larger
than the p-value calculation of .042, suggesting that the p-value is overstating
the evidence against the hypothesis that the coin is fair.

Another distinction between the frequentist and Bayesian calculations is
the event that led to the decision about rejecting the hypothesis that the
coin was fair. The p-value calculation was based on the probability of the
event “5 heads or fewer,” but the Bayesian calculation was based solely on the
likelihood based on the event “exactly 5 heads.”That raises the question: How
would the Bayesian answers change if we observed “5 heads or fewer”? One
can show that the posterior probability that the coin is fair is given by

λ(y) =
.5P0(Y ≤ 5)

.5P0(Y ≤ 5) + .5P1(Y ≤ 5)
,

where P0(Y ≤ 5) is the probability of five heads or fewer under the binomial
model with p = .5 and P1(Y ≤ 5) is the predictive probability of this event

56 3 Single-Parameter Models

−4 −2 0 2 4

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

log a

P
ro

b(
co

in
 is

 fa
ir)

Fig. 3.7. Posterior probability that a coin is fair graphed against values of the prior
parameter log a.

under the alternative model with a beta(10, 10) prior on p. In the following
R output, the cumulative probability of five heads under the binomial model
is computed by the R function pbinom. The probability of five or fewer heads
under the alternative model is computed by summing the predictive density
over the six values of y.

> n=20

> y=5

> a=10

> p=.5

> m2=0

> for (k in 0:y)

+ m2=m2+dbinom(k,n,p)*dbeta(p,a,a)/dbeta(p,a+k,a+n-k)

> lambda=pbinom(y,n,p)/(pbinom(y,n,p)+m2)

> lambda

[1] 0.2184649

Note that the posterior probability of fairness is .218 based on the data “5
heads or fewer.” This posterior probability is smaller than the value of .280

3.8 Summary of R Functions 57

found earlier based on y = 5. This is a reasonable result since observing “5
heads or fewer” is stronger evidence against fairness than the result “5 heads.”

3.7 Further Reading

Chapter 2 of Carlin and Louis (2009), and Chapter 2 of Gelman et al. (2003)
provide general discussions of Bayesian inference for one-parameter prob-
lems. Lee (2004), Antleman (1996), and Bolstad (2004) provide extensive de-
scriptions of inference for a variety of one-parameter models. The notion of
Bayesian robustness is discussed in detail in Berger (1985). Bayesian testing
for basic inference problems is outlined in Lee (2004).

3.8 Summary of R Functions

binomial.beta.mix – computes the parameters and mixing probabilities for
a binomial sampling problem where the prior is a discrete mixture of beta
densities
Usage: binomial.beta.mix(probs,betapar,data)
Arguments: probs, vector of probabilities of the beta components of the prior;
betapar, matrix where each row contains the shape parameters for a beta
component of the prior; data, vector of number of successes and number of
failures
Value: probs, vector of probabilities of the beta components of the posterior;
betapar, matrix where each row contains the shape parameters for a beta
component of the posterior

normal.select – finds the mean and standard deviation of a normal density
that matches knowledge of two quantiles of the distribution
Usage: normal.select(quantile1,quantile2)
Arguments: quantile1, list with components p, the value of the first proba-
bility, and x, the value of the first quantile; quantile2, list with components
p, the value of the second probability, and x, the value of the second quantile
Value: mean, mean of the matching normal distribution; sigma, standard de-
viation of the matching normal distribution

pbetat – Bayesian test that a proportion is equal to a specified prior using a
beta prior
Usage: pbetat(p0,prob,ab,data)
Arguments: p0, the value of the proportion to be tested; prob, the prior prob-
ability of the hypothesis; ab, the vector of parameter values of the beta prior
under the alternative hypothesis; data, vector containing the number of suc-
cesses and number of failures
Value: bf, the Bayes factor in support of the null hypothesis; post, the pos-
terior probability of the null hypothesis

58 3 Single-Parameter Models

3.9 Exercises

1. Cauchy sampling model
Suppose one observes a random sample y1, ..., yn from a Cauchy density
with location θ and scale parameter 1. If a uniform prior is placed on θ,
then the posterior density is given (up to a proportionality constant) by

g(θ|data) ∝
n∏

i=1

1
1 + (yi − θ)2

.

Suppose one observes the data 0, 10, 9, 8, 11, 3, 3, 8, 8, 11.
a) Using the R command seq, set up a grid of values of θ from −2 to 12

in steps of 0.1.
b) Compute the posterior density on this grid.
c) Plot the density and comment on its main features.
d) Compute the posterior mean and posterior standard deviation of θ.

2. Learning about an exponential mean
Suppose a random sample is taken from an exponential distribution with
mean λ. If we assign the usual noninformative prior g(λ) ∝ 1/λ, then the
posterior density is given, up to a proportionality constant, by

g(λ|data) ∝ λ−n−1 exp{−s/λ},

where n is the sample size and s is the sum of the observations.
a) Show that if we transform λ to θ = 1/λ, then θ has a gamma density

with shape parameter n and rate parameter s. (A gamma density with
shape α and rate β is proportional to h(x) = xα−1 exp(−βx).)

b) In a life-testing illustration, five bulbs are tested with observed burn
times (in hours) of 751, 594, 1213, 1126, and 819. Using the R function
rgamma, simulate 1000 values from the posterior distribution of θ.

c) By transforming these simulated draws, obtain a simulated sample
from the posterior distribution of λ.

d) Estimate the posterior probability that λ exceeds 1000 hours.
3. Learning about the upper bound of a discrete uniform density

Suppose one takes independent observations y1, ..., yn from a uniform dis-
tribution on the set {1, 2, ..., N}, where the upper bound N is unknown.
Suppose one places a uniform prior for N on the values 1, ..., B, where B
is known. Then the posterior probabilities for N are given by

g(N |y) ∝ 1
Nn

, y(n) ≤ N ≤ B,

where y(n) is the maximum observation. To illustrate this situation, sup-
pose a tourist is waiting for a taxi in a city. During this waiting time, she
observes five taxis with the numbers 43, 24, 100, 35, and 85. She assumes
that taxis in this city are numbered from 1 to N , she is equally likely to

3.9 Exercises 59

observe any numbered taxi at a given time, and observations are inde-
pendent. She also knows that there cannot be more than 200 taxis in the
city.
a) Use R to compute the posterior probabilities of N on a grid of values.
b) Compute the posterior mean and posterior standard deviation of N .
c) Find the probability that there are more than 150 taxis in the city.

4. Bayesian robustness
Suppose you are about to flip a coin that you believe is fair. If p denotes the
probability of flipping a head, then your “best guess” at p is .5. Moreover,
you believe that it is highly likely that the coin is close to fair, which you
quantify by P (.44 < p < .56) = .9. Consider the following two priors for
p:
P1:p distributed as beta(100, 100)
P2:p distributed according to the mixture prior

g(p) = .9fB(p; 500, 500) + .1fB(p; 1, 1),

where fB(p; a, b) is the beta density with parameters a and b.
a) Simulate 1000 values from each prior density P1 and P2. By summa-

rizing the simulated samples, show that both priors match the given
prior beliefs about the coin flipping probability p.

b) Suppose you flip the coin 100 times and obtain 45 heads. Simulate
1000 values from the posteriors from priors P1 and P2, and compute
90% probability intervals.

c) Suppose that you only observe 30 heads out of 100 flips. Again simulate
1000 values from the two posteriors and compute 90% probability
intervals.

d) Looking at your results from (b) and (c), comment on the robustness
of the inference with respect to the choice of prior density in each case.

5. Test of a proportion
In the standard Rhine test of extra-sensory perception (ESP), a set of
cards is used where each card has a circle, a square, wavy lines, a cross, or
a star. A card is selected at random from the deck, and a person tries to
guess the symbol on the card. This experiment is repeated 20 times, and
the number of correct guesses y is recorded. Let p denote the probability
that the person makes a correct guess, where p = .2 if the person does not
have ESP and is just guessing at the card symbol. To see if the person
truly has some ESP, we would like to test the hypothesis H : p = .2.
a) If the person identifies y = 8 cards correctly, compute the p-value.
b) Suppose you believe a priori that the probability that p = .2 is .5 and

if p �= .2 you assign a beta(1, 4) prior on the proportion. Using the
function pbetat, compute the posterior probability of the hypothesis
H. Compare your answer with the p-value computed in part (a).

c) The posterior probability computed in part (b) depended on your
belief about plausible values of the proportion p when p �= .2. For

60 3 Single-Parameter Models

each of the following priors, compute the posterior probability of H:
(1) p ∼ beta(.5, 2), (2) p ∼ beta(2, 8), (3) p ∼ beta(8, 32).

d) On the basis of your Bayesian computations, do you think that y = 8
is convincing evidence that the person really has some ESP? Explain.

6. Learning from grouped data
Suppose you drive on a particular interstate roadway and typically drive
at a constant speed of 70 mph. One day, you pass one car and get passed by
17 cars. Suppose that the speeds are normally distributed with unknown
mean μ and standard deviation σ = 10. If you pass s cars and f cars pass
you, the likelihood of μ is given by

L(μ) ∝ Φ(70, μ, σ)s(1 − Φ(70, μ, σ))f ,

where Φ(y, μ, σ) is the cdf of the normal distribution with mean μ and
standard deviation σ. Assign the unknown mean μ a flat prior density.
a) If s = 1 and f = 17, plot the posterior density of μ.
b) Using the density found in part (a), find the posterior mean of μ.
c) Find the probability that the average speed of the cars on this inter-

state roadway exceeds 80 mph.
7. Learning about a mortality rate using a mixture prior

In the heart transplant surgery example in Section 3.3, suppose you are
interested in estimating the mortality rate λ for a particular hospital. To
construct your prior, you talk to two experts. The first expert’s beliefs
about λ are described by a gamma(1.5, 1000) distribution and the second
expert’s beliefs are described by a gamma(7, 1000) distribution. You place
equal credence in both experts, so your prior beliefs are represented by
the mixture prior

g(λ) = .5g1(λ) + .5g2(λ),

where g1 and g2 are respectively the gamma(1.5, 1000) and gamma(7,
1000) distributions.
a) Using the curve function, construct a graph of the prior density for

λ.
b) Suppose this hospital experiences yobs = 4 deaths with an exposure of

e = 1767. Using the function poisson.gamma.mix in the LearnBayes
package, compute the posterior distribution of λ. The inputs to this
function are similar to the inputs to the function binomial.beta.mix
described in Section 3.5.

c) Plot the prior and posterior densities of λ on the same graph.
d) Find the probability that the mortality rate λ exceeds .005.
e) Based on the mixing probabilities, were the data more consistent with

the beliefs of the first expert or the beliefs of the second expert? Ex-
plain.

8. Learning about an exponential mean based on selected data
In the scenario of Exercise 2, suppose we are testing 12 light bulbs from
an exponential distribution with mean λ. Unfortunately, although all light

3.9 Exercises 61

bulbs are tested, one only observes that the fourth smallest burn time, y4

is 100 hours, and the eighth smallest burn time, y8, is 300 hours. The
likelihood function given these selected data is equal to

L(λ) ∝ F (100;λ)3f(100;λ)(F (300;λ)−F (100;λ))3f(300;λ)(1−F (300;λ))4,

where f(y;λ) and F (y;λ) are, respectively, the density function and cu-
mulative distribution function for an exponential random variable with
mean λ. An R script to compute this likelihood follows:

LIKE = pexp(100,1/lambda)^3*dexp(100,1/lambda)*
(pexp(300,1/lambda)-pexp(100,1/lambda))^3*
dexp(300,1/lambda)*(1-pexp(300,1/lambda))^4

a) Suppose λ is assigned the standard noninformative prior proportional
to 1/λ. Plot the posterior distribution.

b) Compute the posterior mean and standard deviation for λ.
c) Find the probability that the mean lifetime is between 300 and 500

hours.

4

Multiparameter Models

4.1 Introduction

In this chapter, we describe the use of R to summarize Bayesian models
with several unknown parameters. In learning about parameters of a normal
population or multinomial parameters, posterior inference is accomplished by
simulating from distributions of standard forms. Once a simulated sample is
obtained from the joint posterior, it is straightforward to perform transforma-
tions on these simulated draws to learn about any function of the parameters.
We next consider estimating the parameters of a simple logistic regression
model. Although the posterior distribution does not have a simple functional
form, it can be summarized by computing the density on a fine grid of points.
A common inference problem is to compare two proportions in a 2 × 2 contin-
gency table. We illustrate the computation of the posterior probability that
one proportion exceeds the second proportion in the situation in which one
believes a priori that the proportions are dependent.

4.2 Normal Data with Both Parameters Unknown

A standard inference problem is to learn about a normal population where
both the mean and variance are unknown. To illustrate Bayesian computation
for this problem, suppose we are interested in learning about the distribution
of completion times for men between ages 20 and 29 who are running the New
York Marathon. We observe the times y1, . . . , y20 in minutes for 20 runners ,
and we assume they represent a random sample from an N(μ, σ) distribution.
If we assume the standard noninformative prior g(μ, σ2) ∝ 1/σ2, then the
posterior density of the mean and variance is given by

g(μ, σ2|y) ∝ 1
(σ2)n/2+1

exp
(
− 1

2σ2
(S + n(μ − ȳ)2)

)
,

where n is the sample size, ȳ is the sample mean, and S =
∑n

i=1(yi − ȳ)2.

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 4,
© Springer Science+Business Media, LLC 2009

64 4 Multiparameter Models

This joint posterior has the familiar normal/inverse chi-square form where

• the posterior of μ conditional on σ2 is distributed as N(ȳ, σ/
√

n)
• the marginal posterior of σ2 is distributed as Sχ−2

n−1, where χ−2
ν denotes

an inverse chi-square distribution with ν degrees of freedom

We first use R to construct a contour plot of the joint posterior density
for this example. We read in the data marathontimes; when we attach this
dataset, we can use the variable time that contains the vector of running
times. The R function normchi2post in the LearnBayes package computes
the logarithm of the joint posterior density of (μ, σ2). We also use a func-
tion mycontour in the LearnBayes package that facilitates the use of the R
contour command. There are four inputs to mycontour: the name of the func-
tion that defines the log density, a vector with the values (xlo, xhi, ylo, and
yhi) that define the rectangle where the density is to be graphed, the data
used in the function for the log density, and any optional parameters used
with contour. The function produces a contour graph, shown in Figure 4.1,
where the contour lines are drawn at 10%, 1%, and .1% of the maximum value
of the posterior density over the grid.

> data(marathontimes)

> attach(marathontimes)

> d = mycontour(normchi2post, c(220, 330, 500, 9000), time,

+ xlab="mean",ylab="variance")

It is convenient to summarize this posterior distribution by simulation.
One can simulate a value of (μ, σ2) from the joint posterior by first simulating
σ2 from an Sχ−2

n−1 distribution and then simulating μ from the N(ȳ, σ/
√

n)
distribution. In the following R output, we first simulate a sample of size 1000
from the chi-square distribution using the function rchisq. Then simulated
draws of the “scale times inverse chi-square” distribution of the variance σ2

are obtained by transforming the chi-square draws. Finally, simulated draws
of the mean μ are obtained using the function rnorm.

> S = sum((time - mean(time))^2)

> n = length(time)

> sigma2 = S/rchisq(1000, n - 1)

> mu = rnorm(1000, mean = mean(time), sd = sqrt(sigma2)/sqrt(n))

The function normpostsim in the LearnBayes package implements this sim-
ulation algorithm. We display the simulated sampled values of (μ, σ2) on top
of the contour plot of the distribution in Figure 4.1.

> points(mu, sigma2)

Inferences about the parameters or functions of the parameters are avail-
able from the simulated sample. To construct a 95% interval estimate for the
mean μ, we use the R quantile function to find percentiles of the simulated
sample of μ.

4.2 Normal Data with Both Parameters Unknown 65

220 240 260 280 300 320

20
00

40
00

60
00

80
00

meanmean

va
ria

nc
e

Fig. 4.1. Contour plot of the joint posterior distribution of (μ, σ2) for a normal
sampling model. The points represent a simulated random sample from this distri-
bution.

> quantile(mu, c(0.025, 0.975))

2.5% 97.5%
254.0937 301.7137

A 95% credible interval for the mean completion time is (254.1, 301.7) minutes.
Suppose we are interested in learning about the standard deviation σ that

describes the spread of the population of marathon running times. To obtain
a sample of the posterior of σ, we take square roots of the simulated draws
of σ2. From the output, we see that an approximate 95% probability interval
for σ is (37.5, 70.9) minutes.

> quantile(sqrt(sigma2), c(0.025, 0.975))

2.5% 97.5%
37.48217 70.89521

66 4 Multiparameter Models

4.3 A Multinomial Model

Gelman et al. (2003) describe a sample survey conducted by CBS News be-
fore the 1988 presidential election. A total of 1447 adults were polled to indi-
cate their preference; y1 = 727 supported George Bush, y2 = 583 supported
Michael Dukakis, and y3 = 137 supported other candidates or expressed no
opinion. The counts y1, y2, and y3 are assumed to have a multinomial distribu-
tion with sample size n and respective probabilities θ1, θ2, and θ3. If a uniform
prior distribution is assigned to the multinomial vector θ = (θ1, θ2, θ3), then
the posterior distribution of θ is proportional to

g(θ) = θy1
1 θy2

2 θy3
3 ,

which is recognized as a Dirichlet distribution with parameters (y1 + 1, y2 +
1, y3 + 1). The focus is to compare the proportions of voters for Bush and
Dukakis by considering the difference θ1 − θ2.

The summarization of the Dirichlet posterior distribution is again con-
veniently done by simulation. Although the base R package does not have
a function to simulate Dirichlet variates, it is easy to write a function to
simulate this distribution based on the fact that if W1, W2, W3 are inde-
pendentlt distributed from gamma(α1, 1), gamma(α2, 1), gamma(α3, 1) dis-
tributions and T = W1 + W2 + W3, then the distribution of the proportions
(W1/T,W2/T,W3/T) has a Dirichlet(α1, α2, α3) distribution. The R function
rdirichlet in the package LearnBayes uses this transformation of random
variates to simulate draws of a Dirichlet distribution. One thousand vectors θ
are simulated and stored in the matrix theta.

> alpha = c(728, 584, 138)

> theta = rdirichlet(1000, alpha)

Since we are interested in comparing the proportions for Bush and Dukakis,
we focus on the difference θ1 − θ2. A histogram of the simulated draws of
this difference is displayed in Figure 4.2. Note that all of the mass of this
distribution is on positive values, indicating that there is strong evidence that
the proportion of voters for Bush exceeds the proportion for Dukakis.

> hist(theta[, 1] - theta[, 2], main="")

In the United States presidential election, there are 50 states plus the
District of Columbia, and each has an assigned number of electoral votes. The
candidate receiving the largest number of votes in a particular state receives
the corresponding number of electoral votes, and for a candidate to be elected,
he or she must receive a majority of the total number (538) of electoral votes.
In the 2008 election between Barack Obama and John McCain, suppose we
wish to predict the total number of electoral votes EVO obtained by Obama.
Let θOj and θMj denote the proportion of voters respectively for Obama and

4.3 A Multinomial Model 67

theta[, 1] − theta[, 2]

Fr
eq

ue
nc

y

0.00 0.05 0.10 0.15

0
50

10
0

15
0

20
0

25
0

Fig. 4.2. Histogram of simulated sample of the marginal posterior distribution of
θ1 − θ2 for the multinomial sampling example.

McCain in the jth state. One can express the number of electoral votes for
Obama as

EVO =
51∑

j=1

EVjI(θOj > θMj),

where EVj is the number of electoral votes in the jth state and I() is the
indicator function, which is equal to 1 if the argument is true and 0 otherwise.

On the Sunday before Election Day, the website www.cnn.com gives the
results of the most recent poll in each state. Let qOj and qMj denote the
sample proportions of voters for Obama and McCain in the ith state. We
make the conservative assumption that each poll is based on a sample of
500 voters. Assuming a uniform prior on the vector of proportions, the
vectors (θO1, θM1), ..., (θO51, θM51) have independent posterior distributions,
where the proportions favoring the candidates in the ith state, (θOi, θMi, 1 −
θOi, θMi), have a Dirichlet distribution with parameters (500qOj +1, 500qMj +
1, 500(1 − qOj − qMj) + 1).

Based on the posterior distribution of the state proportions, one can sim-
ulate from the posterior distribution of the electoral votes for Obama. The

68 4 Multiparameter Models

dataset election.2008 in the LearnBayes package contains for each state
the percentage of voters in the poll for McCain M.pct, the percentage of vot-
ers in the poll for Obama O.pct, and the number of electoral votes EV.

> library(LearnBayes)

> data(election.2008)

> attach(data)

We write a short function prob.Obama that will use simulation from the
Dirichlet distributions to compute the posterior probability that θOj exceeds
θMj in the jth state.

> prob.Obama=function(j)

+ {

+ p=rdirichlet(5000,

+ 500*c(M.pct[j],O.pct[j],100-M.pct[j]-O.pct[j])/100+1)

+ mean(p[,2]>p[,1])

+ }

We compute this Obama win probability for all states by using the sapply
function.

> Obama.win.probs=sapply(1:51,prob.Obama)

Now that we have the win probabilities, we can simulate from the posterior
distribution of the Obama electoral votes by flipping a set of 51 biased coins,
where the coin probabilities correspond to the Obama state win probabilities.
Then we compute the number of Obama electoral votes based on the results of
the coin flips. We implement one simulation using the function sim.election
and repeat this simulation 1000 times using the replicate function. The
vector sim.EV contains the number of electoral votes in the simulations.

> sim.election=function()

+ {

+ winner=rbinom(51,1,Obama.win.probs)

+ sum(EV*winner)

+ }

> sim.EV=replicate(1000,sim.election())

We construct a histogram of the posterior of EVO, which is displayed in Figure
4.3.

> hist(sim.EV,min(sim.EV):max(sim.EV),col="blue")

> abline(v=365,lwd=3) # Obama received 365 votes

> text(375,30,"Actual \n Obama \n total")

The actual Obama electoral vote total of 365 is displayed on the graph. It
would have been possible to improve our prediction by using more data than
just the results of a single poll in each state. But the actual electoral vote
total did fall within the 90% equal-tail prediction interval.

4.4 A Bioassay Experiment 69

sim.EV

Fr
eq

ue
nc

y

300 350 400

0
10

20
30

40

Actual
 Obama

 total

Fig. 4.3. Histogram of 1000 simulated draws of the total electoral vote for Barack
Obama in the 2008 U.S. presidential election. The actual electoral vote of 365 is
indicated by a vertical line.

4.4 A Bioassay Experiment

In the development of drugs, bioassay experiments are often performed on
animals. In a typical experiment, various dose levels of a compound are ad-
ministered to batches of animals and a binary outcome (positive or negative)
is recorded for each animal. We consider data from Gelman et al. (2003),
where one observes a dose level (in log g/ml), the number of animals, and the
number of deaths for each of four groups. The data are displayed in Table 4.1.

Table 4.1. Data from the bioassay experiment.

Dose Deaths Sample Size

−0.86 0 5
−0.30 1 5
−0.05 3 5
0.73 5 5

70 4 Multiparameter Models

Let yi denote the number of deaths observed out of ni with dose level xi.
We assume yi is binomial(ni, pi), where the probability pi follows the logistic
model

log(pi/(1 − pi)) = β0 + β1xi.

The likelihood function of the unknown regression parameters β0 and β1 is
given by

L(β0, β1) ∝
4∏

i=1

pyi

i (1 − pi)ni−yi ,

where pi = exp(β0 + β1xi)/(1 + exp(β0 + β1xi)).
We begin in R by defining the covariate vector x and the vectors of sample

sizes and observed success counts n and y.

> x = c(-0.86, -0.3, -0.05, 0.73)

> n = c(5, 5, 5, 5)

> y = c(0, 1, 3, 5)

> data = cbind(x, n, y)

A standard classical analysis fits the model by maximum likelihood. The
R function glm is used to do this fitting, and the summary output presents
the estimates and the associated standard errors.

> response = cbind(y, n - y)

> results = glm(response ~ x, family = binomial)

> summary(results)

Call:
glm(formula = glmdata ~ x, family = binomial)

Deviance Residuals:
1 2 3 4

-0.17236 0.08133 -0.05869 0.12237

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8466 1.0191 0.831 0.406
x 7.7488 4.8728 1.590 0.112

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.791412 on 3 degrees of freedom
Residual deviance: 0.054742 on 2 degrees of freedom
AIC: 7.9648

Number of Fisher Scoring iterations: 7

4.4 A Bioassay Experiment 71

Suppose that the user has prior beliefs about the regression parameters
that she inputs through the following conditional means prior. This prior is
constructed by thinking about the probability of death at two different dose
levels, xL and xH . When the dose level is xL = −0.7, the median and 90th
percentile of the probability of death pL are respectively 0.2 and 0.5. One
matches this information with a beta prior using the beta.select function.

> beta.select(list(p=.5,x=.2),list(p=.9,x=.5))

[1] 1.12 3.56

We see that this prior information is matched with a beta(1.12, 3.56) distribu-
tion for pL. When the dose level is xH = 0.6, the user believes that the median
and 90th percentile of the probability of death pH are given respectively by 0.8
and 0.98. Again using the beta.select function, this information is matched
with a beta(2.10, 0.74) prior.

> beta.select(list(p=.5,x=.8),list(p=.9,x=.98))

[1] 2.10 0.74

Suppose that the beliefs about the probability pL are independent of the beliefs
about pH . Then the joint prior of (pL, pH) is given by

g(pL, pH) ∝ p1.12−1
L (1 − pL)3.56−1p2.10−1

H (1 − pH)0.74−1.

Figure 4.4 displays the conditional means prior by using error bars placed on
the probability of death for two dose levels. As will be explained shortly, the
smooth curve is the fitted probability curve using this prior information.

If this prior on (pL, pH) is transformed to the regression vector (β0, β1)
through the transformation

pL =
exp(β0 + β1xL)

1 + exp(β0 + β1xL)
, pH =

exp(β0 + β1xH)
1 + exp(β0 + β1xH)

,

one can show that the induced prior is

g(β0, β1) ∝ p1.12
L (1 − pL)3.56p2.10

H (1 − pH)0.74.

Note that this prior has the same functional form as the likelihood, where the
beta parameters can be viewed as the numbers of deaths and survivals in a
prior experiment performed at two dose levels (see Table 4.2). If we combine
these “prior data” with the observed data, we see that the posterior density is
given by

g(β0, β1|y) ∝
6∏

i=1

pyi

i (1 − pi)ni−yi ,

where (xj , nj , yj), j = 5, 6, represent the dose, number of deaths, and sample
size in the prior experiment.

72 4 Multiparameter Models

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dose

P
ro

b(
de

at
h)

Beta(1.12, 3.56)

Beta(2.10, 0.74)

Fig. 4.4. Illustration of conditional means prior for the bioassay example. In each
bar, the point corresponds to the median and the endpoints correspond to the quar-
tiles of the prior distribution for each beta distribution.

Table 4.2. Prior information in the bioassay experiment.

Dose Deaths Sample Size

−0.7 1.12 4.68
0.6 2.10 2.84

The log posterior density for (β0, β1) in this logistic model is contained
in the R function logisticpost, where the data argument is a matrix with
columns dose, number of successes, and sample size. We first combine the
data (contained in the matrix data) with the prior data and place them in
the matrix data.new.

> prior=rbind(c(-0.7, 4.68, 1.12),

+ c(0.6, 2.10, 0.74))

> data.new=rbind(data, prior)

To summarize the posterior distribution, we first find a rectangle that
covers essentially all of the posterior probability. The maximum likelihood fit
is helpful in giving a first guess at the location of this rectangle. As shown in

4.4 A Bioassay Experiment 73

the contour plot displayed in Figure 4.5, we see that the rectangle −3 ≤ β0 ≤
3,−1 ≤ β1 ≤ 9 contains the contours that are greater than .1% of the modal
value.

> mycontour(logisticpost,c(-3,3,-1,9),data.new,

+ xlab="beta0", ylab="beta1")

beta0

be
ta

1

 −6.9

 −4.6

 −2.3

−3 −2 −1 0 1 2 3

0
2

4
6

8

Fig. 4.5. Contour plot of the posterior distribution of (β0, β1) for the bioassay
example. The contour lines are drawn at 10%, 1%, and .1% of the model height.

Now that we have found the posterior distribution, we use the function
simcontour to simulate pairs of (β0, β1) from the posterior density computed
on this rectangular grid. We display the contour plot with the points super-
imposed in Figure 4.6 to confirm that we are sampling from the posterior
distribution.

> s=simcontour(logisticpost,c(-2,3,-1,11),data.new,1000)

> points(s)

We illustrate several types of inferences for this problem. Figure 4.7
displays a density estimate of the simulated values (using the R function
density) of the slope parameter β1. All of the mass of the density of β1 is

74 4 Multiparameter Models

beta0

be
ta

1

 −6.9

 −4.6

 −2.3

−3 −2 −1 0 1 2 3

0
2

4
6

8

Fig. 4.6. Contour plot of the posterior distribution of (β0, β1) for the bioassay
example. A simulated random sample from this distribution is shown on top of the
contour plot.

on positive values, indicating that there is significant evidence that increasing
the level of the dose does increase the probability of death.

> plot(density(s$y),xlab="beta1")

In this setting, one parameter of interest is the LD-50, the value of the dose
x such that the probability of death is equal to one-half. It is straightforward
to show that the LD-50 is equal to θ = −β0/β1. One can obtain a simulated
sample from the marginal posterior density of θ by computing a value of θ
from each simulated pair (β0, β1). A histogram of the LD-50 is shown in Figure
4.8.

> theta=-sx/sy

> hist(theta,xlab="LD-50",breaks=20)

In contrast to the histogram of β1, the LD-50 is more difficult to estimate
and the posterior density of this parameter is relatively wide. We compute a
95% credible interval from the simulated draws of θ.

> quantile(theta,c(.025,.975))

4.5 Comparing Two Proportions 75

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

beta1

D
en

si
ty

Fig. 4.7. Density of simulated values from the posterior of the slope parameter β1

in the bioassay example.

2.5% 97.5%
-0.3542899 0.5061084

The probability that θ is contained in the interval (−.354, .506) is .95.

4.5 Comparing Two Proportions

Howard (1998) considers the general problem of comparing the proportions
from two independent binomial distributions. Suppose we observe y1 dis-
tributed as binomial(n1, p1), and y2 distributed as binomial(n2, p2). One wants
to know if the data favor the hypothesis H1 : p1 > p2 or the hypothesis
H2 : p1 < p2 and wants a measure of the strength of the evidence in support
of one hypothesis. Howard gives a broad survey of frequentist and Bayesian
approaches for comparing two proportions.

From a Bayesian viewpoint, the important task is the construction of an
appropriate prior distribution. In Exercise 3, we explore the assumption that
p1 and p2 are independent, where each proportion is assigned a beta prior. In
this case, p1 and p2 have independent beta posterior distributions and it is

76 4 Multiparameter Models

LD−50

Fr
eq

ue
nc

y

−0.5 0.0 0.5 1.0 1.5

0
50

10
0

15
0

20
0

Fig. 4.8. Histogram of simulated values of the LD-50 parameter −β0/β1 in the
bioassay example.

straightforward to compute the probability of the hypotheses. However, the as-
sumption of independence of the proportions is questionable, and we consider
instead Howard’s “dependent prior” that he recommends for this particular
testing problem.

Suppose that one is given the information that one proportion is equal to
a particular value, say p1 = .8. This knowledge can influence a user’s prior
beliefs about the location of the second proportion p2. Specifically, if the user
is given that p1 = .8, she may also believe that the value of p2 is also close to
.8. This belief implies the use of dependent priors for p1 and p2.

Howard’s special form of dependent prior is expressed as follows. First the
proportions are transformed into the real-valued logit parameters

θ1 = log
p1

1 − p1
, θ2 = log

p2

1 − p2
.

Then suppose that given a value of θ1, the logit θ2 is assumed to be normally
distributed with mean θ1 and standard deviation σ. By generalizing this idea,
Howard proposes the dependent prior of the general form

g(p1, p2) ∝ e−(1/2)u2
pα−1
1 (1 − p1)β−1pγ−1

2 (1 − p2)δ−1, 0 < p1, p2 < 1,

4.5 Comparing Two Proportions 77

where
u =

1
σ

(θ1 − θ2).

This class of dependent priors is indexed by the parameters (α, β, γ, δ, σ). The
first four parameters reflect one’s beliefs about the locations of p1 and p2, and
the parameter σ indicates one’s prior belief in the dependence between the
two proportions.

Suppose that α = β = γ = δ = 1, reflecting vague prior beliefs about
each individual parameter. The logarithm of the dependent prior is defined in
the R function howardprior. Using the function mycontour, Figure 4.9 shows
contour plots of the dependent prior for values of the association parameter
σ = 2, 1, .5, and .25. Note that as the value of σ goes to zero, the prior is
placing more of its mass along the line where the two proportions are equal.

> sigma=c(2,1,.5,.25)

> plo=.0001;phi=.9999

> par(mfrow=c(2,2))

> for (i in 1:4)

> mycontour(howardprior,c(plo,phi,plo,phi),c(1,1,1,1,sigma[i]),

+ main=paste("sigma=",as.character(sigma[i])),

+ xlab="p1",ylab="p2")

Suppose we observe counts y1, y2 from the two binomial samples. The
likelihood function is given by

L(p1, p2) ∝ py1
1 (1 − p1)n1−y1py2

2 (1 − p2)n2−y2 , 0 < p1, p2 < 1.

Combining the likelihood with the prior, one sees that the posterior density
has the same functional “dependent” form with updated parameters

(α + y1, β + n1 − y1, γ + y2, δ + n2 − y2, σ).

We illustrate testing the hypotheses using a dataset discussed by Pearson
(1947), shown in Table 4.3.

Table 4.3. Pearson’s example.

Successes Failures Total

Sample 1 3 15 18
Sample 2 7 5 12
Totals 10 20 30

Since the posterior distribution is of the same functional form as the prior,
we can use the same howardprior function for the posterior calculations. In
Figure 4.10, contour plots of the posterior are shown for the four values of the
association parameter σ.

78 4 Multiparameter Models

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p1

p2

sigma=2

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma=1

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma=0.5

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma=0.25

p1

p2

Fig. 4.9. Contour graphs of Howard’s dependent prior for values of the association
parameter σ = 2, 1, .5, and .25.

> sigma=c(2,1,.5,.25)

> par(mfrow=c(2,2))

> for (i in 1:4)

+{

+ mycontour(howardprior,c(plo,phi,plo,phi),

+ c(1+3,1+15,1+7,1+5,sigma[i]),

+ main=paste("sigma=",as.character(sigma[i])),

+ xlab="p1",ylab="p2")

+ lines(c(0,1),c(0,1))

+ }

We can test the hypothesis H1 : p1 > p2 simply by computing the posterior
probability of this region of the parameter space. We first produce, using the
function simcontour, a simulated sample from the posterior distribution of
(p1, p2), and then find the proportion of simulated pairs where p1 > p2. For
example, we display the R commands for the computation of the posterior
probability for σ = 2.

4.5 Comparing Two Proportions 79

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma= 2

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma= 1

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma= 0.5

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

sigma= 0.25

p1

p2

Fig. 4.10. Contour graphs of the posterior for Howard’s dependent prior for values
of the association parameter σ = 2, 1, .5, and .25.

> s=simcontour(howardprior,c(plo,phi,plo,phi),

+ c(1+3,1+15,1+7,1+5,2),1000)

> sum(s$x>s$y)/1000

[1] 0.012

Table 4.4 displays the posterior probability that p1 exceeds p2 for four
choices of the dependent prior parameter σ. Note that this posterior proba-
bility is sensitive to the prior belief about the dependence between the two
proportions.

Table 4.4. Posterior probabilities of the hypothesis.

Dependent Parameter σ P (p1 > p2)

2 0.012
1 0.035
.5 0.102
.25 0.201

80 4 Multiparameter Models

4.6 Further Reading

Chapter 3 of Gelman et al. (2003) describes the normal sampling problem and
other multiparameter problems from a Bayesian perspective. In particular,
Gelman et al. (2003) illustrate the use of simulation when the posterior has
been computed on a grid. Chapter 2 of Carlin and Louis (2009) and Lee
(2004) illustrate Bayesian inference for some basic two-parameter problems.
Bedrick et al. (1996) describe the use of conditional means priors for regression
models. Howard (1998) gives a general discussion of inference for the two-by-
two contingency table, contrasting frequentist and Bayesian approaches.

4.7 Summary of R Functions

howardprior – computes the logarithm of a dependent prior on two propor-
tions proposed by Howard in a Statistical Science paper in 1998
Usage: howardprior(xy,par)
Arguments: xy, a matrix of parameter values where each row represents a
value of the proportions (p1, p2); par, a vector containing parameter values
alpha, beta, gamma, delta, sigma
Value: vector of values of the log posterior where each value corresponds to
each row of the parameters in xy

logisticpost – computes the log posterior density of (beta0, beta1) when yi
are independent binomial(ni, pi) and logit(pi)=beta0+beta1*xi
Usage: logisticpost(beta,data)
Arguments: beta, a matrix of parameter values where each row represents
a value of (beta0, beta1); data, a matrix of columns of covariate values x,
sample sizes n, and number of successes y
Value: vector of values of the log posterior where each value corresponds to
each row of the parameters in beta

mycontour – for a general two parameter density, draws a contour graph where
the contour lines are drawn at 10%, 1%, and .1% of the height at the mode
Usage: mycontour(logf,limits,data,...)
Arguments: logf, a function that defines the logarithm of the density; limits,
a vector of limits (xlo, xhi, ylo, yhi) where the graph is to be drawn;
data, a vector or list of parameters associated with the function logpost;
..., further arguments to pass to contour
Value: a contour graph of the density is drawn

normchi2post – computes the log of the posterior density of a mean M and
a variance S2 when a sample is taken from a normal density and a standard
noninformative prior is used
Usage: normchi2post(theta,data)
Arguments: theta, a matrix of parameter values where each row is a value of
(M, S2); data, a vector containing the sample observations

4.8 Exercises 81

Value: a vector of values of the log posterior where the values correspond to
the rows in theta

normpostsim – gives a simulated sample from the joint posterior distribution
of the mean and variance for a normal sampling prior with a noninformative
prior
Usage: normpostsim(data,m)
Arguments: data, a vector containing the sample observations; m, number of
simulations desired
Value: mu, vector of simulated draws of normal mean; sigma2, vector of sim-
ulated draws of normal variance

rdirichlet – simulates values from a Dirichlet distribution
Usage: rdirichlet(n,par)
Arguments: n, the number of simulations required; par, the vector of param-
eters of the Dirichlet distribution
Value: a matrix of simulated draws, where a row contains one simulated Dirich-
let draw

simcontour – for a general two-parameter density defined on a grid, simulates
a random sample
Usage: simcontour(logf,limits,data,m)
Arguments: logf, a function that defines the logarithm of the density; limits,
a vector of limits (xlo, xhi, ylo, yhi) that cover the joint probability
density; data, a vector or list of parameters associated with the function
logpost; m, the size of the simulated sample
Value: x, the vector of simulated draws of the first parameter; y, the vector of
simulated draws of the second parameter

4.8 Exercises

1. Inference about a normal population
Suppose we are interested in learning about the sleeping habits of stu-
dents at a particular college. We collect y1, ..., y20, the sleeping times (in
hours) for 20 randomly selected students in a statistics course. Here are
the observations:

9.0 8.5 7.0 8.5 6.0 12.5 6.0 9.0 8.5 7.5
8.0 6.0 9.0 8.0 7.0 10.0 9.0 7.5 5.0 6.5

a) Assuming that the observations represent a random sample from a
normal population with mean μ and variance σ2 and the usual nonin-
formative prior is placed on (μ, σ2), simulate a sample of 1000 draws
from the joint posterior distribution.

b) Use the simulated sample to find 90% interval estimates for the mean
μ and the standard deviation σ.

82 4 Multiparameter Models

c) Suppose one is interested in estimating the upper quartile p75 of the
normal population. Using the fact that p75 = μ + 0.674σ, find the
posterior mean and posterior standard deviation of p75.

2. The Behrens-Fisher problem
Suppose that we observe two independent normal samples, the first dis-
tributed according to an N(μ1, σ1) distribution, and the second accord-
ing to an N(μ2, σ2) distribution. Denote the first sample by x1, ..., xm

and the second sample by y1, ..., yn. Suppose also that the parameters
(μ1, σ

2
1 , μ2, σ

2
2) are assigned the vague prior

g(μ1, σ
2
1 , μ2, σ

2
2) ∝ 1

σ2
1σ2

2

.

a) Find the posterior density. Show that the vectors (μ1, σ
2
1) and (μ2, σ

2
2)

have independent posterior distributions.
b) Describe how to simulate from the joint posterior density of (μ1, σ

2
1 ,

μ2, σ
2
2).

c) The following data give the mandible lengths in millimeters for 10
male and ten female golden jackals in the collection of the British
Museum. Using simulation, find the posterior density of the difference
in mean mandible length between the sexes. Is there sufficient evidence
to conclude that the males have a larger average?

Males
120 107 110 116 114 111 113 117 114 112

Females
110 111 107 108 110 105 107 106 111 111

3. Comparing two proportions
The following table gives the records of accidents in 1998 compiled by the
Department of Highway Safety and Motor Vehicles in Florida.

Injury
Safety Equipment in Use Fatal Nonfatal

None 1601 162,527
Seat belt 510 412,368

Denote the number of accidents and fatalities when no safety equipment
was in use by nN and yN , respectively. Similarly, let nS and yS denote the
number of accidents and fatalities when a seat belt was in use. Assume
that yN and yS are independent with yN distributed as binomial(nN , pN)
and yS distributed as binomial(nS , pS). Assume a uniform prior is placed
on the vector of probabilities (pN , pS).
a) Show that pN and pS have independent beta posterior distributions.
b) Use the function rbeta to simulate 1000 values from the joint posterior

distribution of (pN , pS).
c) Using your sample, construct a histogram of the relative risk pN/pS .

Find a 95% interval estimate of this relative risk.
d) Construct a histogram of the difference in risks pN − pS .

4.8 Exercises 83

e) Compute the posterior probability that the difference in risks exceeds
0.

4. Learning from rounded data
It is a common problem for measurements to be observed in rounded form.
Suppose we weigh an object five times and measure weights rounded to
the nearest pound of 10, 11, 12, 11, and 9. Assume that the unrounded
measurements are normally distributed with a noninformative prior dis-
tribution on the mean μ and variance σ2.
a) Pretend that the observations are exact unrounded measurements.

Simulate a sample of 1000 draws from the joint posterior distribution
by using the algorithm described in Section 4.2.

b) Write down the correct posterior distributions for (μ, σ2), treating the
measurements as rounded.

c) By computing the correct posterior distribution on a grid of points
(as in Section 4.4), simulate a sample from this distribution.

d) How do the incorrect and correct posterior distributions for μ com-
pare? Answer this question by comparing posterior means and vari-
ances from the two simulated samples.

5. Estimating the parameters of a Poisson/gamma density
Suppose that y1, ..., yn are a random sample from the Poisson/gamma
density

f(y|a, b) =
Γ (y + a)
Γ (a)y!

ba

(b + 1)y+a
,

where a > 0 and b > 0. This density is an appropriate model for observed
counts that show more dispersion than predicted under a Poisson model.
Suppose that (a, b) are assigned the noninformative prior proportional to
1/(ab)2. If we transform to the real-valued parameters θ1 = log a and
θ2 = log b, the posterior density is proportional to

g(θ1, θ2|data) ∝ 1
ab

n∏
i=1

Γ (yi + a)
Γ (a)yi!

ba

(b + 1)yi+a
,

where a = exp{θ1} and b = exp{θ2}. Use this framework to model data
collected by Gilchrist (1984), in which a series of 33 insect traps were
set across sand dunes and the numbers of different insects caught over a
fixed time were recorded. The number of insects of the taxa Staphylinoidea
caught in the traps is shown here.

2 5 0 2 3 1 3 4 3 0 3
2 1 1 0 6 0 0 3 0 1 1
5 0 1 2 0 0 2 1 1 1 0

By computing the posterior density on a grid, simulate 1000 draws from
the joint posterior density of (θ1, θ2). From the simulated sample, find
90% interval estimates for the parameters a and b.

84 4 Multiparameter Models

6. Comparison of two Poisson rates (from Antleman (1996))
A seller receives 800-number telephone orders from a first geographic area
at a rate of λ1 per week and from a second geographic area at a rate
of λ2 per week. Assume that incoming orders behave as if generated by
a Poisson distribution; if the rate is λ, then the number of orders y in
t weeks is distributed as Poisson(tλ). Suppose a series of newspaper ads
is run in the two areas for a period of four weeks, and sales for these
four weeks are 260 units in area 1 and 165 units in area 2. The seller is
interested in the effectiveness of these ads. One measure of this would be
the probability that the sales rate in area 1 is greater than 1.5 times the
sales rate in area 2:

P(λ1 > 1.5λ2).

Before the ads run, the seller has assessed the prior distribution for λ1 to
be gamma with parameters 144 and 2.4 and the prior for λ2 to be gamma
(100, 2.5).
a) Show that λ1 and λ2 have independent gamma posterior distributions.
b) Using the R function rgamma, simulate 1000 draws from the joint pos-

terior distribution of (λ1, λ2).
c) Compute the posterior probability that the sales rate in area 1 is

greater than 1.5 times the sales rate in area 2.
7. Fitting a gamma density

Suppose we observe a random sample y1, ..., yn from a gamma density
with shape parameter α and scale parameter λ with density f(y|α, λ) =
yα−1 exp(−y/λ)

λαΓ (α) . If we place a uniform prior on θ = (α, λ), then the posterior
density of θ is given by

g(θ|y) ∝
n∏

i=1

f(yi|α, β).

The following function gamma.sampling.post computes the logarithm of
the posterior density:

gamma.sampling.post=function(theta,y)
sum(dgamma(y,shape=theta[1],scale=theta[2],log=TRUE))

Suppose we use this model to fit the durations (in minutes) of the following
sample of cell phone calls.

12.2,.9,.8,5.3,2,1.2,1.2,1,.3,1.8,3.1,2.8

a) Compute the joint density of θ over a suitable grid using the func-
tion mycontour. By simulating from the grid using the function
simcontour, construct a 90% interval estimate for the mean parame-
ter μ = αλ.

4.8 Exercises 85

b) Instead suppose one parameterizes the model by using the shape pa-
rameter α and the rate parameter β = 1/λ. Write a function to com-
pute the posterior density of (α, β) (don’t forget the Jacobian term)
and simulate from the posterior to construct a 90% interval estimate
for μ.

c) Instead suppose one parameterizes the model by using the shape pa-
rameter α and the mean parameter μ = αλ. Write a function to com-
pute the posterior density of (α, μ) (again don’t forget the Jacobian
term) and simulate from the posterior to construct a 90% interval
estimate for μ.

d) Compare your three computational methods. Which is the best method
for computing the interval estimate for μ?

8. Logistic modeling
A math department is interested in exploring the relationship between
students’ scores on the ACT test, a standard college entrance exam, and
their success (getting an A or a B) in a business calculus class. Data were
obtained for a sample of students; the following table gives the sample size
and number of successful students for each of seven ACT scores.

ACT Score No. of Students No. Receiving A’s and B’s
16 2 0
18 7 0
20 14 6
22 26 12
24 13 7
26 14 9
28 3 3

Let yi denote the number of successful students out of ni with ACT score
xi. We assume that yi is binomial(ni, pi), where the success probabilities
follow the logistic model

log
pi

1 − pi
= β0 + β1xi.

a) Suppose the department has some prior information that they would
like to input using a conditional means prior. When the ACT score is
18, they believe that the quartiles for the success probability are 0.15
and 0.35, and when the ACT score is 26, they believe the quartiles
for the success probability are 0.75 and 0.95. Using the beta.select
function, determine the parameters for the beta distributions that
match this prior information.

b) Use the mycontour function together with the logisticpost function
to find a region that contains the posterior density of (β0, β1).

c) Use the simcontour function to simulate 1000 draws from the poste-
rior distribution.

86 4 Multiparameter Models

d) Use the simulated draws to find a 90% interval estimate for the prob-
ability of succeeding in the course for an ACT score equal to 20.

5

Introduction to Bayesian Computation

5.1 Introduction

In the previous two chapters, two types of strategies were used in the sum-
marization of posterior distributions. If the sampling density has a familiar
functional form, such as a member of an exponential family, and a conju-
gate prior is chosen for the parameter, then the posterior distribution often
is expressible in terms of familiar probability distributions. In this case, we
can simulate parameters directly by using the R collection of random variate
functions (such as rnorm, rbeta, and rgamma), and we can summarize the
posterior using computations on this simulated sample. A second type of com-
puting strategy is what we called the “brute-force” method. In the case where
the posterior distribution is not a familiar functional form, then one simply
computes values of the posterior on a grid of points and then approximates
the continuous posterior by a discrete posterior that is concentrated on the
values of the grid. This brute-force method can be generally applied for one-
and two-parameter problems such as those illustrated in Chapters 3 and 4.

In this chapter, we describe the Bayesian computational problem and in-
troduce some of the more sophisticated computational methods that will be
employed in later chapters. One general approach is based on the behavior of
the posterior distribution about its mode. This gives a multivariate normal
approximation to the posterior that serves as a good first approximation in the
development of more exact methods. We then provide a general introduction
to the use of simulation in computing summaries of the posterior distribution.
When one can directly simulate samples from the posterior distribution, then
the Monte Carlo algorithm gives an estimate and associated standard error
for the posterior mean for any function of the parameters of interest. In the
situation where the posterior distribution is not a standard functional form,
rejection sampling with a suitable choice of proposal density provides an alter-
native method for producing draws from the posterior. Importance sampling
and sampling importance resampling (SIR) algorithms are alternative gen-
eral methods for computing integrals and simulating from a general posterior

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 5,
© Springer Science+Business Media, LLC 2009

88 5 Introduction to Bayesian Computation

distribution. The SIR algorithm is especially useful when one wishes to inves-
tigate the sensitivity of a posterior distribution with respect to changes in the
prior and likelihood functions.

5.2 Computing Integrals

The Bayesian recipe for inference is conceptually simple. If we observe data
y from a sampling density f(y|θ), where θ is a vector of parameters and one
assigns θ a prior g(θ), then the posterior density of θ is proportional to

g(θ|y) ∝ g(θ)f(y|θ).

The computational problem is to summarize this multivariate probability dis-
tribution to perform inference about functions of θ.

Many of the posterior summaries are expressible in terms of integrals.
Suppose we are interested in the posterior mean of a function h(θ). This
mean is expressible as a ratio of integrals,

E(h(θ)|y) =
∫

h(θ)g(θ)f(y|θ)dθ∫
g(θ)f(y|θ)dθ

.

If we are interested in the posterior probability that h(θ) falls in a set A, we
wish to compute

P (h(θ) ∈ A|y) =

∫
h(θ)∈A

g(θ)f(y|θ)dθ∫
g(θ)f(y|θ)dθ

.

Integrals are also involved when we are interested in obtaining marginal
densities of parameters of interest. Suppose we have the parameter θ =
(θ1, θ2), where θ1 are the parameters of interest and θ2 are so-called nuisance
parameters. One obtains the marginal posterior density of θ1 by integrating
out the nuisance parameters from the joint posterior:

g(θ1|y) ∝
∫

g(θ1, θ2|y)dθ2.

In the common situation where one needs to evaluate these integrals nu-
merically, there are a number of quadrature methods available. However, these
quadrature methods have limited use for Bayesian integration problems. First,
the choice of quadrature method depends on the location and shape of the
posterior distribution. Second, for a typical quadrature method, the number
of evaluations of the posterior density grows exponentially as a function of the
number of components of θ. In this chapter, we focus on the use of computa-
tional methods for computing integrals that are applicable to high-dimensional
Bayesian problems.

5.3 Setting Up a Problem in R 89

5.3 Setting Up a Problem in R

Before we describe some general summarization methods, we first describe
setting up a Bayesian problem in R. Suppose one is able to write an ex-
plicit expression for the joint posterior density. In writing this expression, it
is not necessary to include any normalizing constants that don’t involve the
parameters. Next, for the algorithms described in this book, it is helpful to
reparameterize all parameters so that they are all real-valued. If one has a
positive parameter such as a variance, then transform using a log function. If
one has a proportion parameter p, then it can be transformed to the real line
by the logit function logit(p) = log(p/(1 − p)).

After the posterior density has been expressed in terms of transformed
parameters, the first step in summarizing this density is to write an R function
defining the logarithm of the joint posterior density.

The general structure of this R function is

mylogposterior=function(theta,data)
{
[statements that compute the log density]
return(val)
}

To apply the functions described in this chapter, theta is assumed to be a
vector with k components; that is, θ = (θ1, ..., θk). The input data is a vector
of observed values or a list of data values and other model specifications such
as the values of prior hyperparameters. The function returns a single value of
the log posterior density.

One common situation is where one observes a random sample y1, ..., yn

from a sampling density f(y|θ) and one assigns θ the prior density g(θ). The
logarithm of the posterior density of θ is given, up to an additive constant, by

log g(θ|y) = log g(θ) +
n∑

i=1

log f(yi|θ).

Suppose we are sampling from a normal distribution with mean μ and stan-
dard deviation σ, the parameter vector θ = (μ, log σ), and we place an
N(10, 20) prior on μ and a flat prior on log σ. The log posterior would have
the form

log g(θ|y) = log φ(μ; 10, 20) +
n∑

i=1

log φ(yi; μ, σ),

where φ(y;μ, σ) is the normal density with mean μ and standard deviation
σ. To program this function, we first write the simple function that evaluates
the log likelihood of (μ, σ) for a component of y:

logf = function(y, mu, sigma)
dnorm(y,mean=mu,sd=sigma,log=TRUE)

90 5 Introduction to Bayesian Computation

Note that we use the log = TRUE option in dnorm to compute the logarithm
of the density. Then, if data represents the vector of observations y1, ..., yn,
one can evaluate the sum of log likelihood terms

∑n
i=1 log φ(yi; μ, σ) using the

sum command:

sum(logf(data,mu,sigma))

The function mylogposterior defining the log posterior would in this case be
written as follows.

mylogposterior=function(theta,data)

{

n=length(data)

mu=theta[1]; sigma=exp(theta[2])

logf = function(y, mu, sigma)

dnorm(y,mean=mu,sd=sigma,log=TRUE)

val=dnorm(mu, mean=10, sd=20,log=TRUE)+sum(logf(data,mu,sigma))

return(val)

}

5.4 A Beta-Binomial Model for Overdispersion

Tsutakawa et al. (1985) describe the problem of simultaneously estimating the
rates of death from stomach cancer for males at risk in the age bracket 45–64
for the largest cities in Missouri. Table 5.1 displays the mortality rates for 20
of these cities, where a cell contains the number nj at risk and the number of
cancer deaths yj for a given city.

Table 5.1. Cancer mortality data. Each ordered pair represents the number of
cancer deaths yj and the number at risk nj for an individual city in Missouri.

(0, 1083) (0, 855) (2, 3461) (0, 657) (1, 1208) (1, 1025)

(0, 527) (2, 1668) (1, 583) (3, 582) (0, 917) (1, 857)

(1, 680) (1, 917) (54, 53637) (0, 874) (0, 395) (1, 581)

(3, 588) (0, 383)

A first modeling attempt might assume that the {yj} represent indepen-
dent binomial samples with sample sizes {nj} and common probability of
death p. But it can be shown that these data are overdispersed in the sense
that the counts {yj} display more variation than would be predicted under
a binomial model with a constant probability p. A better-fitting model as-
sumes that yj is distributed from a beta-binomial model with mean η and
precision K:

f(yj |η, K) =
(

nj

yj

)
B(Kη + yj ,K(1 − η) + nj − yj)

B(Kη,K(1 − η))
.

5.4 A Beta-Binomial Model for Overdispersion 91

Suppose we assign the parameters the vague prior proportional to

g(η,K) ∝ 1
η(1 − η)

1
(1 + K)2

.

Then the posterior density of (η,K) is given, up to a proportionality constant,
by

g(η,K|data) ∝ 1
η(1 − η)

1
(1 + K)2

20∏
j=1

B(Kη + yj , K(1 − η) + nj − yj)
B(Kη,K(1 − η))

,

where 0 < η < 1 and K > 0.
We write a short function betabinexch0 to compute the logarithm of the

posterior density. The inputs to the function are theta, a vector containing
the values of η and K, and data, a matrix having as columns the vector of
counts {yj} and the vector of sample sizes {nj}.

betabinexch0=function (theta, data)
{

eta = theta[1]
K = theta[2]
y = data[, 1]
n = data[, 2]
N = length(y)
logf = function(y, n, K, eta) lbeta(K * eta + y, K * (1 -

eta) + n - y) - lbeta(K * eta, K * (1 - eta))
val = sum(logf(y, n, K, eta))
val = val - 2 * log(1 + K) - log(eta) - log(1 - eta)
return(val)

}

We read in the dataset cancermortality and use the function mycontour
together with the log density function betabinexch0 to display a contour plot
of the posterior density of (η,K) (see Figure 5.1).

> data(cancermortality)

> mycontour(betabinexch0,c(.0001,.003,1,20000),cancermortality,

+ xlab="eta",ylab="K")

Note the strong skewness in the density, especially toward large values of the
precision parameter K. This right-skewness is a common characteristic of the
likelihood function of a precision or variance parameter.

Following the general guidance in Section 5.3, suppose we transform each
parameter to the real line by using the reexpressions

θ1 = logit(η) = log
(η

1 − η

)
, θ2 = log(K).

92 5 Introduction to Bayesian Computation

The posterior density of (θ1, θ2) is given by

g1(θ1, θ2|data) = g
(eθ1

1 + eθ1
, eθ2

) eθ1+θ2

(1 + eθ1)2
,

where the right term in the product is the Jacobian term in the transformation.
The log posterior density of the transformed parameters is programmed in the
function betabinexch. Note the change in the next-to-last line of the function
that accounts for the logarithm of the Jacobian term.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

0
50

00
10

00
0

15
00

0
20

00
0

eta

K

Fig. 5.1. Contour plot of parameters η and K in the beta-binomial model problem.

betabinexch=function (theta, data)
{

eta = exp(theta[1])/(1 + exp(theta[1]))
K = exp(theta[2])
y = data[, 1]
n = data[, 2]
N = length(y)
logf = function(y, n, K, eta) lbeta(K * eta + y, K * (1 -

eta) + n - y) - lbeta(K * eta, K * (1 - eta))

5.4 A Beta-Binomial Model for Overdispersion 93

val = sum(logf(y, n, K, eta))
val = val + theta[2] - 2 * log(1 + exp(theta[2]))
return(val)

}

Figure 5.2 displays a contour plot of the posterior of (θ1, θ2) using the
mycontour function.

> mycontour(betabinexch,c(-8,-4.5,3,16.5),cancermortality,

+ xlab="logit eta",ylab="log K")

Although the density has an unusual shape, the strong skewness has been
reduced and the distribution is more amenable to the computational methods
described in this and the following chapters.

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0 −4.5

4
6

8
10

12
14

16

logit eta

lo
g

K

Fig. 5.2. Contour plot of transformed parameters logit(η) and log K in the beta-
binomial model problem.

94 5 Introduction to Bayesian Computation

5.5 Approximations Based on Posterior Modes

One method of summarizing a multivariate posterior distribution is based on
the behavior of the density about its mode. Let θ be a vector-valued parameter
with prior density g(θ). If we observe data y with sampling density f(y|θ),
then consider the logarithm of the joint density of θ and y,

h(θ, y) = log(g(θ)f(y|θ)).

In the following, we write this log density as h(θ) since after the data are
observed θ is the only random quantity. Denoting the posterior mode of θ by
θ̂, we expand the log density in a second-order Taylor series about θ̂. This
gives the approximation

h(θ) ≈ h(θ̂) + (θ − θ̂)′h′′(θ̂)(θ − θ̂)/2,

where h′′(θ̂) is the Hessian of the log density evaluated at the mode. Using
this expansion, the posterior density is approximated by a multivariate normal
density with mean θ̂ and variance-covariance matrix

V = (−h′′(θ̂))−1.

In addition, this approximation allows one to analytically integrate out θ
from the joint density and obtain the following approximation to the prior
predictive density,

f(y) ≈ (2π)d/2g(θ̂)f(y|θ̂)| − h′′(θ̂)|1/2,

where d is the dimension of θ.
To apply this approximation, one needs to find the mode of the posterior

density of θ. One general-purpose optimization algorithm for finding this mode
is provided by Newton’s method. Suppose one has a guess at the posterior
mode θ0. If θt−1 is the estimate at the mode at the t − 1 iteration of the
algorithm, then the next iterate is given by

θt = θt−1 − [h′′(θt−1)]−1h′(θt−1),

where h′(θt−1) and h′′(θt−1) are the gradient and Hessian of the log density
evaluated at the current guess at the mode. One continues these iterations
until convergence. There are many alternative algorithms available for finding
the posterior mode. In the following, we will use the Nelder-Mead algorithm,
which is the default method in the R function optim in the R base pack-
age. This algorithm is an iterative method based on the evaluation of the
objective function over vertices of a simplex (a triangle for two variables). For
the examples described in this book, the Nelder-Mead algorithm appears to
be preferable to Newton’s method since it is less sensitive to the choice of
starting value.

5.6 The Example 95

After one writes an R function to evaluate the log posterior density, the R
function laplace in the LearnBayes package finds the joint posterior mode by
using optim and the default Nelder-Mead algorithm. The inputs to laplace
are the function defining the joint posterior, an intelligent guess at the poste-
rior mode, and data and parameters used in the definition of the log posterior.
The choice of “intelligent guess” can be important since the algorithm may
fail to converge with a poor choice of starting value. Suppose that a suitable
starting value is used and laplace is successful in finding the posterior mode.
The output of laplace is a list with four components. The component mode
gives the value of the posterior mode θ̂, the component var is the associated
variance-covariance matrix V , the component int is the approximation to
the logarithm of the prior predictive density, and converge indicates if the
algorithm converged.

5.6 The Example

We illustrate the use of the function laplace for our beta-binomial modeling
example. Based on our contour plot, we start the Nelder-Mead method with
the initial guess (logit(η), log K) = (−7, 6).

> fit=laplace(betabinexch,c(-7,6),cancermortality)

> fit

$mode
[1] -6.819793 7.576111

$var
[,1] [,2]

[1,] 0.07896568 -0.1485087
[2,] -0.14850874 1.3483208

$int
[1] -570.7743

$converge
[1] TRUE

We find the posterior mode to be (−6.82, 7.58). From the output of laplace,
we have the approximation that (logit(η), log K) is approximately bivariate
normal with mean vector fit$mode and variance-covariance matrix fit$var.
Using the mycontour function with the log bivariate normal function lbinorm,
Figure 5.3 displays the contours of the approximate normal density. Compar-
ing Figure 5.2 and Figure 5.3, we see significant differences between the exact
and approximate normal posteriors.

96 5 Introduction to Bayesian Computation

> npar=list(m=fit$mode,v=fit$var)

> mycontour(lbinorm,c(-8,-4.5,3,16.5),npar,

+ xlab="logit eta", ylab="log K")

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0 −4.5

4
6

8
10

12
14

16

logit eta

lo
g

K

Fig. 5.3. Contour plot of normal approximation of logit(η) and log K in the beta-
binomial model problem.

One advantage of this algorithm is that one obtains quick summaries of
the parameters by using the multivariate normal approximation. By using
the diagonal elements of the variance-covariance matrix, one can construct
approximate probability intervals for logit(η) and log K. For example, the
following code constructs 90% probability intervals for the parameters:

> se=sqrt(diag(fit$var))

> fit$mode-1.645*se

[1] -7.282052 5.665982

> fit$mode+1.645*se

[1] -6.357535 9.486239

5.7 Monte Carlo Method for Computing Integrals 97

So a 90% interval estimate for logit(η) is (−7.28,−6.36), and a 90% interval
estimate for log K is (5.67, 9.49).

5.7 Monte Carlo Method for Computing Integrals

A second general approach for summarizing a posterior distribution is based on
simulation. Suppose that θ has a posterior density g(θ|y) and we are interested
in learning about a particular function of the parameters h(θ). The posterior
mean of h(θ) is given by

E(h(θ)|y) =
∫

h(θ)g(θ|y)dθ.

Suppose we are able to simulate an independent sample θ1, ..., θm from the
posterior density. Then the Monte Carlo estimate at the posterior mean is
given by the sample mean

h̄ =

∑m
j=1 h(θj)

m
.

The associated simulation standard error of this estimate is estimated by

seh̄ =

√∑m
j=1(h(θj) − h̄)2

(m − 1)m
.

The Monte Carlo approach is an effective method for summarizing a poste-
rior distribution when simulated samples are available from the exact posterior
distribution. For a simple illustration of the Monte Carlo method, return to
Section 2.4, where we were interested in the proportion of heavy sleepers p
at a college. With the use of a beta prior, the posterior distribution for p
was beta(14.26, 23.19). Suppose we are interested in the posterior mean of p2.
(This is the predictive probability that two students in a future sample will
be heavy sleepers.) We simulate 1000 draws from the beta posterior distribu-
tion. If {pj} represent the simulated sample, the Monte Carlo estimate at this
posterior mean will be the mean of the {(pj)2}, and the simulated standard
error is the standard deviation of the {(pj)2} divided by the square root of
the simulation sample size.

> p=rbeta(1000, 14.26, 23.19)

> est=mean(p^2)

> se=sd(p^2)/sqrt(1000)

> c(est,se)

[1] 0.149122267 0.001885676

The Monte Carlo estimate at E(p2|data) is 0.149, with an associated simula-
tion standard error of 0.002.

98 5 Introduction to Bayesian Computation

5.8 Rejection Sampling

In the examples of Chapters 2, 3, and 4, we were able to produce simulated
samples directly from the posterior distribution since the distributions were
familiar functional forms. Then we would be able to obtain Monte Carlo es-
timates of the posterior mean for any function of the parameters of interest.
But in many situations, such as the beta-binomial example of this chapter,
the posterior does not have a familiar form and we need to use an alternative
algorithm for producing a simulated sample.

A general-purpose algorithm for simulating random draws from a given
probability distribution is rejection sampling. In this setting, suppose we wish
to produce an independent sample from a posterior density g(θ|y) where the
normalizing constant may not be known. The first step in rejection sampling
is to find another probability density p(θ) such that:

• It is easy to simulate draws from p.
• The density p resembles the posterior density of interest g in terms of

location and spread.
• For all θ and a constant c, g(θ|y) ≤ cp(θ).

Suppose we are able to find a density p with these properties. Then one
obtains draws from g using the following accept/reject algorithm:

1. Independently simulate θ from p and a uniform random variable U on the
unit interval.

2. If U ≤ g(θ|y)/(cp(θ)), then accept θ as a draw from the density g; other-
wise reject θ.

3. Continue steps 1 and 2 of the algorithm until one has collected a sufficient
number of “accepted” θ.

Rejection sampling is one of the most useful methods for simulating draws
from a variety of distributions, and standard methods for simulating from
standard probability distributions such as normal, gamma, and beta are typ-
ically based on rejection algorithms. The main task in designing a rejection
sampling algorithm is finding a suitable proposal density p and constant value
c. At step 2 of the algorithm, the probability of accepting a candidate draw
is given by g(θ|y)/(cp(θ)). One can monitor the algorithm by computing the
proportion of draws of p that are accepted; an efficient rejection sampling
algorithm has a high acceptance rate.

We consider the use of rejection sampling to simulate draws of θ =(logit(η),
log K) in the beta-binomial example. We wish to find a proposal density of
a simple functional form that, when multiplied by an appropriate constant,
covers the posterior density of interest. One choice for p would be a bivari-
ate normal density with mean and variance given as outputs of the function
laplace. Although this density does resemble the posterior density, the nor-
mal density has relatively sharp tails and the ratio g(θ|y)/p(θ) likely would
not be bounded. A better choice for a covering density is a multivariate t with

5.8 Rejection Sampling 99

mean and scale matrix chosen to match the posterior density and a small
number of degrees of freedom. The small number of degrees of freedom gives
the density heavy tails and one is more likely to find bounds for the ratio
g(θ|y)/p(θ).

In our earlier work, we found approximations to the posterior mean
and variance-covariance matrix of θ =(logit(η), log K) based on the Laplace
method. If the output variable of laplace is fit, then fit$mode is the pos-
terior mode and fit$var the associated variance-covariance matrix. Suppose
we decide to use a multivariate t density with location fit$mode, scale matrix
2 fit$var, and 4 degrees of freedom. These choices are made to mimic the
posterior density and ensure that the ratio g(θ|y)/p(θ) is bounded from above.

To set up the rejection algorithm, we need to find the value of the bounding
constant. We want to find the constant c such that

g(θ|y) ≤ cp(θ) for all θ.

Equivalently, since g is programmed on the log scale, we want to find the
constant d = log c such that

log g(θ|y) − log p(θ) ≤ d for all θ.

Basically we wish to maximize the function log g(θ|y) − log p(θ) over all θ. A
convenient way to perform this maximization is by using the laplace function.
We write a new function betabinT that computes values of this difference
function. There are two inputs, the parameter theta and a list datapar with
components data, the data matrix, and par, a list with the parameters of the
t proposal density (mean, scale matrix, and degrees of freedom).

betabinT=function(theta,datapar)
{
data=datapar$data
tpar=datapar$par
d=betabinexch(theta,data)-dmt(theta,mean=c(tpar$m),
S=tpar$var,df=tpar$df,log=TRUE)

return(d)
}

For our problem, we define the parameters of the t proposal density and the
list datapar:

> tpar=list(m=fit$mode,var=2*fit$var,df=4)

> datapar=list(data=cancermortality,par=tpar)

We run the function laplace with this new function and using an “intel-
ligent” starting value.

> start=c(-6.9,12.4)

> fit1=laplace(betabinT,start,datapar)

> fit1$mode

100 5 Introduction to Bayesian Computation

[1] -6.888963 12.421993

We find that the maximum value d occurs at the value θ = (−6.889, 12.422).
We note that this θ value is not at the extreme portion of the space of simulated
draws, which indicates that we indeed have found an approximate maximum.
The value of d is found by evaluating the function at the modal value.

> betabinT(fit1$mode,datapar)

[1] -569.2829

We implement rejection sampling using the function rejectsampling. The
inputs are the function logf defining the log posterior, the parameters of the t
covering density tpar, the maximum value of d denoted by dmax, the number
of candidate values simulated n, and the data for the log posterior function
data. In this function, we simulate a vector of θ from the proposal density,
compute the values of log g and log f on these simulated draws, compute the
acceptance probabilities, and return only the simulated values of θ where the
uniform draws are smaller than the acceptance probabilities. In the function
rejectsampling, these four steps are accomplished by the commands

theta=rmt(n,mean=c(tpar$m),S=tpar$var,df=tpar$df)
lf=logf(theta,data)
lg=dmt(theta,mean=c(tpar$m),S=tpar$var,df=tpar$df,log=TRUE)
prob=exp(lf-lg-dmax)
theta[runif(n)<prob,]

We run the function rejectsampling using the constant value of d found
earlier and simulate 10,000 draws from the proposal density. We see that
the output value theta has only 2406 rows, so the acceptance rate of this
algorithm is 2406/10,000 = .24. This is a relatively inefficient algorithm since
it has a small acceptance rate, but the proposal density was found without
too much effort.

> theta=rejectsampling(betabinexch,tpar,-569.2813,10000,

+ cancermortality)

> dim(theta)

[1] 2406 2

We plot the simulated draws from rejection sampling on the contour plot
of the log posterior density in Figure 5.4. As expected, most of the draws fall
within the inner contour of the exact density.

> mycontour(betabinexch,c(-8,-4.5,3,16.5),cancermortality,

+ xlab="logit eta",ylab="log K")

> points(theta[,1],theta[,2])

5.9 Importance Sampling 101

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0 −4.5

4
6

8
10

12
14

16

logit eta

lo
g

K

Fig. 5.4. Contour plot of logit(η) and log K in the beta-binomial model problem
together with simulated draws from the rejection algorithm.

5.9 Importance Sampling

5.9.1 Introduction

Let us return to the basic problem of computing an integral in Bayesian in-
ference. In many situations, the normalizing constant of the posterior density
g(θ|y) will be unknown, so the posterior mean of the function h(θ) will be
given by the ratio of integrals

E(h(θ)|y) =
∫

h(θ)g(θ)f(y|θ)dθ∫
g(θ)f(y|θ)|dθ

,

where g(θ) is the prior and f(y|θ) is the likelihood function. If we were able
to simulate a sample {θj} directly from the posterior density g, then we could
approximate this expectation by a Monte Carlo estimate. In the case where we
are not able to generate a sample directly from g, suppose instead that we can
construct a probability density p that we can simulate and that approximates
the posterior density g. We rewrite the posterior mean as

102 5 Introduction to Bayesian Computation

E(h(θ)|y) =

∫
h(θ) g(θ)f(y|θ)

p(θ) p(θ)dθ∫ g(θ)f(y|θ)
p(θ) p(θ)dθ

=
∫

h(θ)w(θ)p(θ)dθ∫
w(θ)p(θ)dθ

,

where w(θ) = g(θ)f(y|θ)/p(θ) is the weight function. If θ1, ..., θm are a simu-
lated sample from the approximation density p, then the importance sampling
estimate of the posterior mean is

h̄IS =

∑m
j=1 h(θj)w(θj)∑m

j=1 w(θj)
.

This is called an importance sampling estimate because we are sampling values
of θ that are important in computing the integrals in the numerator and de-
nominator. The simulation standard error of an importance sampling estimate
is estimated by

seh̄IS
=

√∑m
j=1((h(θj) − h̄IS)w(θj))2∑m

j=1 w(θj)
.

As in rejection sampling, the main issue in designing a good importance
sampling estimate is finding a suitable sampling density p. This density should
be of a familiar functional form so simulated draws are available. The density
should mimic the posterior density g and have relatively flat tails so that the
weight function w(θ) is bounded from above. One can monitor the choice of
p by inspecting the values of the simulated weights w(θj). If there are no
unusually large weights, then it is likely that the weight function is bounded
and the importance sampler is providing a suitable estimate.

To illustrate the use of different proposal densities in importance sampling
in our example, consider the problem of estimating the posterior mean of a
function of θ2 = log K conditional on a value of θ1 =logit(η). The posterior
density of θ2, conditional on θ1 is given by

g1(θ2|data, θ1) ∝ K

(1 + K)2

20∏
j=1

B(Kη + yj ,K(1 − η) + nj − yj)
B(Kη,K(1 − η))

,

where η = exp(θ1)/(1 + exp(θ1)) and K = exp(θ2). In the following, we write
the function betabinexch.cond to compute this posterior density conditional
on the value θ1 = −6.818793. This function is written to allow the input of a
vector of values of θ2 = log K. Also, unlike the other functions in this chapter,
the function betabinexch.cond returns the value of the density rather than
the value of the log density.

5.9 Importance Sampling 103

betabinexch.cond=function (log.K, data)
{

eta = exp(-6.818793)/(1 + exp(-6.818793))
K = exp(log.K)
y = data[, 1]; n = data[, 2]; N = length(y)
logf=0*log.K
for (j in 1:length(y))
logf = logf + lbeta(K * eta + y[j], K * (1 -
eta) + n[j] - y[j]) - lbeta(K * eta, K * (1 - eta))

val = logf + log.K - 2 * log(1 + K)
return(exp(val-max(val)))

}

To compute the mean of log K for the cancer mortality data, suppose we
let the proposal density p be normal with mean 8 and standard deviation 2.
In the R code below, we use the integrate function to find the normalizing
constant of the posterior density of log K. Then, using the curve function,
we display the conditional posterior density of log K and the normal proposal
density in the top left graph of Figure 5.5. The top right graph displays the
weight function, the ratio of the posterior density to the proposal density.

> I=integrate(betabinexch.cond,2,16,cancermortality)

> par(mfrow=c(2,1))

> curve(betabinexch.cond(x,cancermortality)/I$value,from=3,to=16,

+ ylab="Density", xlab="log K",lwd=3, main="Densities")

> curve(dnorm(x,8,2),add=TRUE)

> legend("topright",legend=c("Exact","Normal"),lwd=c(3,1))

> curve(betabinexch.cond(x,cancermortality)/I$value/

+ dnorm(x,8,2),from=3,to=16, ylab="Weight",xlab="log K",

+ main="Weight = g/p")

Although the normal proposal density resembles the posterior density with re-
spect to location and spread, the posterior density has a flatter right tail than
the proposal and the weight function is unbounded for large log K. Suppose
instead that we let the proposal density have the t functional form with loca-
tion 8, scale 2, and 2 degrees of freedom. Using a similar set of R commands,
the bottom graphs of Figure 5.5 display the posterior and proposal densities
and the weight function. Here the t proposal density has flatter tails than the
posterior density and the weight function is bounded. Here the t functional
form is a better proposal for importance sampling.

5.9.2 Using a Multivariate t as a Proposal Density

For a posterior density of a vector of real-valued parameters, a convenient
choice of sampler p is a multivariate t density. The R function impsampling
will implement importance sampling for an arbitrary posterior density when

104 5 Introduction to Bayesian Computation

4 6 8 10 12 14 16

0.
00

0.
10

0.
20

Densities

log K

D
en

si
ty

Exact
Normal

4 6 8 10 12 14 16

0
1

2
3

4

Weight = g/p

log K

W
ei

gh
t

4 6 8 10 12 14 16

0.
00

0.
10

0.
20

Densities

log K

D
en

si
ty

Exact
T(2)

4 6 8 10 12 14 16

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Weight = g/p

log K

W
ei

gh
t

Fig. 5.5. Graph of the posterior density of log K and weight function using a normal
proposal density (top) and a t(2) proposal density (bottom). By using a t proposal
density, the weight function appears to be bounded from above.

p is a t density. There are five inputs to this function: logf is the function
defining the logarithm of the posterior, tpar is a list of parameter values of
the t density, h is a function defining the function h(θ) of interest, n is the size
of the simulated sample, and data is the vector or list used in the definition
of logf. In the function impsampling, the functions rmt and dmt from the
mnormt library are used to simulate and compute values of the t density. In
the following portion of R code from impsampling, we simulate draws from
the sampling density, compute values of the log sampling density and the
log posterior density at the simulated draws, and compute the weights and
importance sampler estimate.

theta = rmt(n, mean = c(tpar$m), S = tpar$var, df = tpar$df)
lf = matrix(0, c(dim(theta)[1], 1))
lp = dmt(theta, mean = c(tpar$m), S = tpar$var, df = tpar$df,

log = TRUE)
md = max(lf - lp)
wt = exp(lf - lp - md)
est = sum(wt * H)/sum(wt)

5.10 Sampling Importance Resampling 105

Note that the value md is the maximum value of the difference of logs of
the posterior and proposal density – this value is used in the computation
of the weights to prevent possible overflow. The output of impsampling is
a list with four components: est is the importance sampling estimate, se is
the corresponding simulation standard error, theta is a matrix of simulated
draws from the proposal density p, and wt is a vector of the corresponding
weights.

To illustrate importance sampling, let us return to our beta-binomial ex-
ample and consider the problem of estimating the posterior mean of log K.
For this example, the proposal density used in the development of a rejection
algorithm seems to be a good choice for importance sampling. We choose a t
density where the location is the posterior mode (found from laplace), the
scale matrix is twice the estimated variance-covariance matrix, and the num-
ber of degrees of freedom is 4. This choice for p will resemble the posterior
density and have flat tails that we hope will result in bounded weights. We
define a short function myfunc to compute the function h. Since we are inter-
ested in the posterior mean of log K, we define the function to be the second
component of the vector θ. We are now ready to run impsampling.

> tpar=list(m=fit$mode,var=2*fit$var,df=4)

> myfunc=function(theta)

+ return(theta[2])

> s=impsampling(betabinexch,tpar,myfunc,10000,cancermortality)

> cbind(sest,sse)

[,1] [,2]
[1,] 7.957802 0.01967276

We see from the output that the importance sampling estimate of the mean
of log K is 7.958 with an associated standard error of 0.020. To check if the
weight function is bounded, we compute a histogram of the simulated weights
(not shown here) and note that there are no extreme weights.

5.10 Sampling Importance Resampling

In rejection sampling, we simulated draws from a proposal density p and
accepted a subset of these values to be distributed according to the poste-
rior density of interest g(θ|y). There is an alternative method of obtaining a
simulated sample from the posterior density g motivated by the importance
sampling algorithm.

As before, we simulate m draws from the proposal density p denoted by
θ1, ..., θm and compute the weights {w(θj) = g(θj |y)/p(θj)}. Convert the
weights to probabilities bu using the formula

pj =
w(θj)∑m

j=1 w(θj)
.

106 5 Introduction to Bayesian Computation

Suppose we take a new sample θ∗1, ..., θ∗m from the discrete distribution
over θ1, ..., θm with respective probabilities p1, ..., pm. Then the {θ∗j} will
be approximately distributed according to the posterior distribution g. This
method, called sampling importance resampling, or SIR for short, is a weighted
bootstrap procedure where we sample with replacement from the sample {θj}
with unequal sampling probabilities.

This sampling algorithm is straightforward to implement in R using the
sample command. Suppose we wish to obtain a simulated sample of size n.
As in importance sampling, we first simulate from the proposal density which
in this situation is a multivariate t distribution, and then compute the impor-
tance sampling weights stored in the vector wt.

theta = rmt(n, mean = c(tpar$m), S = tpar$var, df = tpar$df)
lf = logf(theta, data)
lp = dmt(theta, mean = c(tpar$m), S = tpar$var, df = tpar$df,

log = TRUE)
md = max(lf - lp)
wt = exp(lf - lp - md)

To implement the SIR algorithm, we first convert the weights to probabilities
and store them in the vector probs. Next we use sample to take a sample
with replacement from the indices 1, ..., n, where the sampling probabilities
are contained in the vector probs; the simulated indices are stored in the
vector indices.

probs=wt/sum(wt)
indices=sample(1:n,size=n,prob=probs,replace=TRUE)

Finally, we use the random indices in indices to select the rows of theta
and assign them to the matrix theta.s. The matrix theta.s contains the
simulated draws from the posterior.

theta.s=theta[indices,]

The function sir implements this algorithm for a multivariate t proposal
density. The inputs to this function are the function defining the log posterior
logf, the list tpar of parameters of the multivariate proposal density, the
number n of simulated draws, and the data used in the log posterior func-
tion. The output is a matrix of simulated draws from the posterior. In the
beta-binomial modeling example, we implement the SIR algorithm using the
command

> theta.s=sir(betabinexch,tpar,10000,cancermortality)

We have illustrated the use of the SIR algorithm in converting simulated
draws from a proposal density to draws from the posterior density. But this
algorithm can be used to convert simulated draws from one probability density
to a second probability density. To show the power of this method, suppose we
wish to perform a Bayesian sensitivity analysis with respect to the individual

5.10 Sampling Importance Resampling 107

observations in the dataset. Suppose we focus on posterior inference about the
log precision parameter log K and question how the inference would change
if we removed individual observations from the likelihood. Let g(θ|y) denote
the posterior density from the full dataset and g(θ|y(−i)) denote the posterior
density with the ith observation removed. Let {θj} represent a simulated
sample from the full dataset. We can obtain a simulated sample from g(θ|y(−i))
by resampling from {θj}, where the sampling probabilities are proportional
to the weights

w(θ) =
g(θ|y(−i))

g(θ|y)

=
1

f(yi|θ)

=
B(Kη,K(1 − η))

B(Kη + yi,K(1 − η) + ni − yi)
.

Suppose that the inference of interest is a 90% probability interval for the
log precision log K. The R code for this resampling for the “leave observation
i out” follows. One first computes the sampling weights and the sampling
probabilities. Then the sample command is used to do the resampling from
theta and the simulated draws from the “leave one out” posterior are stored
in the variable theta.s. We summarize the simulated values of log K by the
5th, 50th, and 95th quantiles.

weight=exp(lbeta(K*eta,K*(1-eta))-
lbeta(K*eta+y[i],K*(1-eta)+n[i]-y[i]))

probs=weight/sum(weight)
indices=sample(1:m,size=m,prob=probs,replace=TRUE)
theta.s=theta[indices,]
summary.obs[i,]=quantile(theta.s[,2],c(.05,.5,.95))

The function bayes.influence computes probability intervals for log K
for the complete dataset and“leave one out”datasets using the SIR algorithm.
We assume one already has simulated a sample of values from the complete
data posterior, and the draws are stored in the matrix variable theta.s. The
inputs to bayes.influence are theta.s and the dataset data. In this case,
suppose we have just implemented the SIR algorithm, and the posterior draws
are stored in the matrix theta.s. Then the form of the function would be

> S=bayes.influence(theta.s,cancermortality)

The output of this function is a list S; S$summary is a vector containing the
5th, 50th, and 95th percentiles, and S$summary.obs is a matrix where the ith
row gives the percentiles for the posterior with the ith observation removed.

Figure 5.6 is a graphical display of the sensitivity of the posterior inference
about log K with respect to the individual observations. The bold line shows
the posterior median and 90% probability interval for the complete dataset,

108 5 Introduction to Bayesian Computation

and the remaining lines show the inference with each possible observation re-
moved. Note that if observation number 15 is removed ((yi, ni) = (54, 53637)),
then the location of log K is shifted toward smaller values. Also, if either obser-
vation 10 or observation 19 is removed, log K is shifted toward larger values.
These two observations are notable since each city experienced three deaths
and had relatively high mortality rates.

> plot(c(0,0,0),S$summary,type="b",lwd=3,xlim=c(-1,21),

+ ylim=c(5,11), xlab="Observation removed",ylab="log K")

> for (i in 1:20)

+ lines(c(i,i,i),S$summary.obs[i,],type="b")

0 5 10 15 20

5
6

7
8

9
10

11

Observation removed

lo
g

K

Fig. 5.6. Ninety percent interval estimates for log K for the full dataset (thick line)
and interval estimates for datasets with each individual observation removed.

5.11 Further Reading

Rejection sampling is a general method used in simulating probability dis-
tributions; rejection sampling for statistical problems is described in Givens

5.12 Summary of R Functions 109

and Hoeting (2005), Monahan (2001), and Robert and Casella (2004). Tanner
(1996) introduces normal approximations to posterior distributions in Chap-
ter 2 and Monte Carlo methods in Chapter 3. Robert and Casella (2004) in
Chapter 3 describe different aspects of Monte Carlo integration. Smith and
Gelfand (1992) introduce the use of rejection sampling and the SIR algorithm
in simulating from the posterior distribution.

5.12 Summary of R Functions

bayes.influence – computes probability intervals for the log precision pa-
rameter K in a beta-binomial model for all “leave one out” models using sam-
pling importance resampling
Usage: bayes.influence(theta,data)
Arguments: theta, matrix of simulated draws from the posterior of (logit eta,
log K) for a beta-binomial model; data, matrix with columns of counts and
sample sizes
Value: summary, vector of 5th, 50th and 95th percentiles of log K for the
posterior of complete sample; summary.obs, matrix where the ith row contains
the 5th, 50th and 95th percentiles of log K for the posterior when the ith
observation is removed

betabinexch0 – computes the logarithm of the posterior for the parameters
(mean and precision) in a beta-binomial model
Usage: betabinexch0(theta,data)
Arguments: theta, vector of parameter values (eta, K); data, matrix with
columns of counts and sample sizes
Value: value of the log posterior

betabinexch – computes the logarithm of the posterior for the parameters
(logit mean and log precision) in a beta-binomial model
Usage: betabinexch(theta,data)
Arguments: theta, vector of parameter values (logit eta, log K); data, matrix
with columns of counts and sample sizes
Value: value of the log posterior

impsampling – implements importance sampling to compute the posterior
mean of a function using a multivariate t proposal density,
Usage: impsampling(logf,tpar,h,n,data)
Arguments: logf, function defining the log density; tpar, list of parameters of
a multivariate t proposal density including the mean m, the scale matrix var,
and the degrees of freedom df; h, function that defines h(theta); n, number
of simulated draws from the proposal density; data, data and or parameters
used in the function logf
Value: est, estimate at the posterior mean; se, simulation standard error of
the estimate; theta, matrix of simulated draws from proposal density; wt,
vector of importance sampling weights

110 5 Introduction to Bayesian Computation

laplace – for a general posterior density, computes the posterior mode, the
associated variance-covariance matrix, and an estimate of the logarithm of the
normalizing constant
Usage: laplace(logpost,mode,par)
Arguments: logpost, function that defines the logarithm of the posterior den-
sity; mode, vector that is a guess at the posterior mode; par, vector or list of
parameters associated with the function logpost
Value: mode, current estimate of the posterior mode; var, current estimate
of the associated variance-covariance matrix; int, estimate of the logarithm
of the normalizing constant; converge, indication (TRUE or FALSE) if the
algorithm converged

lbinorm – computes the logarithm of a bivariate normal density
Usage: lbinorm(xy,par)
Arguments: xy, vector consisting of two variables x and y; par, list containing
m, a vector of means, and v, a variance-covariance matrix
Value: value of the kernel of the log density function

rejectsampling – implements a rejection sampling algorithm for a probabil-
ity density using a multivariate t proposal density
Usage: rejectsampling(logf,tpar,dmax,n,data)
Arguments: logf, function that defines the logarithm of the density of interest;
tpar, list of parameters of a multivariate t proposal density, including the
mean m, the scale matrix var, and the degrees of freedom df; dmax, logarithm
of the rejection sampling constant; n, number of simulated draws from the
proposal density; data, data and/or parameters used in the function logf
Value: matrix of simulated draws from density of interest

sir – implements the sampling importance resampling algorithm for a multi-
variate t proposal density
Usage: sir(logf,tpar,n,data)
Arguments: logf, function defining logarithm of density of interest; tpar, list
of parameters of a multivariate t proposal density including the mean m, the
scale matrix var, and the degrees of freedom df; n, number of simulated draws
from the posterior; data, data and parameters used in the function logf
Value: matrix of simulated draws from the posterior, where each row corre-
sponds to a single draw

5.13 Exercises

1. Estimating a log-odds with a normal prior
Suppose y has a binomial distribution with parameters n and p, and we
are interested in the log-odds value θ = log (p/(1 − p)) . Our prior for θ is
that θ ∼ N(μ, σ). It follows that the posterior density of θ is given, up to
a proportionality constant, by

5.13 Exercises 111

g(θ|y) ∝ exp(yθ)
(1 + exp(θ))n

exp
[−(θ − μ)2

2σ2

]
.

More concretely, suppose we are interested in learning about the proba-
bility that a special coin lands heads when tossed. A priori we believe that
the coin is fair, so we assign θ an N(0, .25) prior. We toss the coin n = 5
times and obtain y = 5 heads.
a) Using a normal approximation to the posterior density, compute the

probability that the coin is biased toward heads (i.e., that θ is posi-
tive).

b) Using the prior density as a proposal density, design a rejection algo-
rithm for sampling from the posterior distribution. Using simulated
draws from your algorithm, approximate the probability that the coin
is biased toward heads.

c) Using the prior density as a proposal density, simulate values from
the posterior distribution using the SIR algorithm. Approximate the
probability that the coin is biased toward heads.

2. Genetic linkage model from Rao (2002)
Suppose 197 animals are distributed into four categories with the following
frequencies:

Category 1 2 3 4
Frequency 125 18 20 34

Assume that the probabilities of the four categories are given by the vector(
1
2

+
θ

4
,
1
4
(1 − θ),

1
4
(1 − θ),

θ

4

)
,

where θ is an unknown parameter between 0 and 1. If θ is assigned a
uniform prior, then the posterior density of θ is given by

g(θ|data) ∝
(

1
2

+
θ

4

)125(1
4
(1 − θ)

)18(1
4
(1 − θ)

)20(
θ

4

)34

,

where 0 < θ < 1. If θ is transformed to the real-valued logit η =
log (θ/(1 − θ)), then the posterior density of η can be written as

f(η|data) ∝
(

2 +
eη

1 + eη

)125 1
(1 + eη)39

(
eη

1 + eη

)35

,−∞ < η < ∞.

a) Use a normal approximation to find a 95% probability interval for η.
Transform this interval to obtain a 95% probability interval for the
original parameter of interest θ.

b) Design a rejection sampling algorithm for simulating from the pos-
terior density of η. Use a t proposal density using a small number
of degrees of freedom and mean and scale parameters given by the
normal approximation.

112 5 Introduction to Bayesian Computation

3. Estimation for the two-parameter exponential distribution
Martz and Waller (1982) describe the analysis of a“type I/time-truncated”
life testing experiment. Fifteen reciprocating pumps were tested for a pre-
specified time and any failed pumps were replaced. One assumes that the
failure times follow the two-parameter exponential distribution

f(y|β, μ) =
1
β

e−(y−μ)/β , y ≥ μ.

Suppose one places a uniform prior on (μ, β). Then Martz and Waller
show that the posterior density is given by

g(β, μ|data) ∝ 1
βs

exp{−(t − nμ)/β}, μ ≤ t1,

where n is the number of items placed on test, t is the total time on test,
t1 is the smallest failure time, and s is the observed number of failures in
a sample of size n. In the example, data were reported in cycles to failure;
n = 15 pumps were tested for a total time of t = 15962989. Eight failures
(s = 8) were observed, and the smallest failure time was t1 = 237217.
a) Suppose one transforms the parameters to the real line using the trans-

formations θ1 = log β, θ2 = log(t1 − μ). Write down the posterior
density of (θ1, θ2).

b) Construct an R function that computes the log posterior density of
(θ1, θ2).

c) Use the laplace function to approximate the posterior density.
d) Use a multivariate t proposal density and the SIR algorithm to simu-

late a sample of 1000 draws from the posterior distribution.
e) Suppose one is interested in estimating the reliability at time t0, de-

fined by
R(t0) = e−(t0−μ)/β .

Using your simulated values from the posterior, find the posterior
mean and posterior standard deviation of R(t0) when t0 = 106 cycles.

4. Poisson regression
Haberman (1978) considers an experiment involving subjects reporting
one stressful event. The collected data are y1, ..., y18, where yi is the num-
ber of events recalled i months before the interview. Suppose yi is Poisson
distributed with mean λi, where the {λi} satisfy the loglinear regression
model

log λi = β0 + β1i.

The data are shown in Table 5.2. If (β0, β1) is assigned a uniform prior,
then the logarithm of the posterior density is given, up to an additive
constant, by

log g(β0, β1|data) =
18∑

i=1

[
yi(β0 + β1i) − exp(β0 + β1i)

]
.

5.13 Exercises 113

Table 5.2. Numbers of subjects recalling one stressful event.

Months 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

yi 15 11 14 17 5 11 10 4 8 10 7 9 11 3 6 1 1 4

a) Write an R function to compute the logarithm of the posterior density
of (β0, β1).

b) Suppose we are interested in estimating the posterior mean and stan-
dard deviation for the slope β1. Approximate these moments by a
normal approximation about the posterior mode (function laplace).

c) Use a multivariate t proposal density and the SIR algorithm to simu-
late 1000 draws from the posterior density. Use this sample to estimate
the posterior mean and standard deviation of the slope β1. Compare
your estimates with the estimates using the normal approximation.

5. Grouped Poisson data
Hartley (1958) fits a Poisson model to the following grouped data:

Number of Events 0 1 2 3+ Total
Group Frequency 11 37 64 128 240

Suppose the mean Poisson parameter is λ, and the frequency of observa-
tions with j events is nj , j = 0, 1, 2, and n3 is the frequency of observations
with at least three events. If the standard noninformative prior g(λ) = 1/λ
is assigned, then the posterior density is given by

g(λ|data) ∝ e−λ(n0+n1+n2)λn1+2n2−1

[
1 − e−λ

(
1 + λ +

λ2

2

)]n3

.

• Write an R function to compute the logarithm of the posterior density
of λ.

• Use the function laplace to find a normal approximation to the pos-
terior density of the transformed parameter θ = log λ.

• Use a t proposal density and the SIR algorithm to simulate 1000 draws
from the posterior. Use the simulated sample to estimate the posterior
mean and standard deviation of λ. Compare the estimates with the
normal approximation estimates found in part (a).

6. Mixture of exponential data
Suppose a company obtains boxes of electronic parts from a particular
supplier. It is known that 80% of the lots are acceptable and the lifetimes
of the “acceptable” parts follow an exponential distribution with mean
λA. Unfortunately, 20% of the lots are unacceptable and the lifetimes of
the “bad” parts are exponential with mean λB , where λA > λB . Suppose
y1, ..., yn are the lifetimes of n inspected parts that can come from either
acceptable or unacceptable lots. The yis are a random sample from the
mixture distribution

114 5 Introduction to Bayesian Computation

f(y|λA, λB) = p
1

λA
exp(−y/λA) + (1 − p)

1
λB

exp(−y/λB),

where p = .8. Suppose (λA, λB) are assigned the noninformative prior
proportional to 1/(λAλB).
The following function log.exponential.mix computes the log posterior
density of the transformed parameters θ = (θA, θB) = (log λA, log λB) :

log.exponential.mix=function(theta, y)
{
lambda.A=exp(theta[1]); lambda.B=exp(theta[2])
sum(log(.8*dexp(y,1/lambda.A)+(1-.8)*dexp(y,1/lambda.B)))
}

The following lifetimes are observed from a sample of 30 parts:

9.3 4.9 3.5 26.0 0.6 1.0 3.5 26.9
2.6 20.4 1.0 10.0 1.7 11.3 7.7 14.1
24.8 3.8 8.4 1.1 24.5 90.7 16.4 30.7
8.5 5.9 14.7 0.5 99.5 35.2

a) Construct a contour plot of (θA, θB) over the grid (1,4, −2, 8).
b) Using the function laplace, search for the posterior mode with a

starting guess of (θA, θB) = (3, 0).
c) Search for the posterior mode with a starting guess of (θA, θB) = (2, 4).
d) Explain why you obtain different estimates of the posterior mode in

parts (a) and (b).
7. Variance components model

Box and Tiao (1973) analyze data concerning batch-to-batch variation in
yields of dyestuff. The following data arise from a balanced experiment
whereby the total product yield was determined for five samples from each
of six randomly chosen batches of raw material.

Batch Batch Yield (in grams)
1 1545 1440 1440 1520 1580
2 1540 1555 1490 1560 1495
3 1595 1550 1605 1510 1560
4 1445 1440 1595 1465 1545
5 1595 1630 1515 1635 1625
6 1520 1455 1450 1480 1445

Let yij denote the jth observation in batch i. To determine the relative
importance of between-batch variation versus sampling variation, the fol-
lowing multilevel model is applied (N denotes the number of batches and
n denotes the number of observations per batch).
• yij is N(μ + bi, σy), i = 1, ..., N, j = 1, ..., n.
• b1, ..., bN are a random sample from N(0, σb).
• (σ2

y, σ2
b) is assigned a uniform prior.

5.13 Exercises 115

In this situation, the focus is on the marginal posterior distribution of
the variance components. It is possible to analytically integrate out the
random effects b1, ..., bN , resulting in the marginal posterior density of
(μ, σ2

y, σ2
b) given, up to a proportionality constant, by

N∏
i=1

[
φ
(
ȳi|μ,

√
σ2

y/n + σ2
b

)
fG

(
Si|(n − 1)/2, 1/(2σ2

y)
)]

,

where ȳi and Si are respectively the mean yield and the “within sum of
squares” of the ith batch, φ(y|μ, σ) is the normal density with mean μ
and standard deviation σ, and fG(y|a, b) is the gamma density propor-
tional to ya−1 exp(−by). The posterior density of θ = (μ, log σy, log σb) is
programmed in the following R function log.post.var.comp. The input
y in the function is a matrix with N rows and n columns, where a row
contains the measurements for a particular batch.

log.post.var.comp=function(theta,y)

{

mu = theta[1]; sigma.y = exp(theta[2]); sigma.b = exp(theta[3])

Y=apply(y,1,mean); n=dim(y)[2]

S=apply(y,1,var)*(n-1)

loglike=sum(dnorm(Y,mu,sqrt(sigma.y^2/n+sigma.b^2),log=TRUE)+

dgamma(S,shape=(n-1)/2,rate=1/(2*sigma.y^2),log=TRUE))

return(loglike+theta[2]+theta[3])

}

a) Using the function laplace, find the posterior mode of θ using the
starting value θ = (1500, 3, 3). Try the alternative starting values of
θ = (1500, 1, 1) and θ = (1500, 10, 10) to assess the sensitivity of the
Nelder-Mead algorithm to the starting value.

b) Use the normal approximation to find 90% interval estimates for the
logarithms of the standard deviations log σb and log σy.

c) Using the results from part (b), find 90% interval estimates for the
variance components σ2

b and σ2
y.

6

Markov Chain Monte Carlo Methods

6.1 Introduction

In Chapter 5, we introduced the use of simulation in Bayesian inference. Rejec-
tion sampling is a general method for simulating from an arbitrary posterior
distribution, but it can be difficult to set up since it requires the construc-
tion of a suitable proposal density. Importance sampling and SIR algorithms
are also general-purpose algorithms, but they also require proposal densities
that may be difficult to find for high-dimensional problems. In this chapter,
we illustrate the use of Markov chain Monte Carlo (MCMC) algorithms in
summarizing posterior distributions. Markov chains are introduced in the dis-
crete state space situation in Section 6.2. Through a simple random walk
example, we illustrate some of the important properties of a special Markov
chain, and we use R to simulate from the chain and move toward the sta-
tionary distribution. In Section 6.3, we describe two variants of the popular
Metropolis-Hastings algorithms in setting up Markov chains, and in Section
6.4 we describe Gibbs sampling, where the Markov chain is set up through the
conditional distributions of the posterior. We describe one strategy for sum-
marizing a posterior distribution and illustrate it for three problems. MCMC
algorithms are very attractive in that they are easy to set up and program and
require relatively little prior input from the user. R is a convenient language
for programming these algorithms and is also very suitable for performing out-
put analysis, where one does several graphical and numerical computations
to check if the algorithm is indeed producing draws from the target posterior
distribution.

6.2 Introduction to Discrete Markov Chains

Suppose a person takes a random walk on a number line on the values 1, 2, 3,
4, 5, 6. If the person is currently at an interior value (2, 3, 4, or 5), in the next
second she is equally likely to remain at that number or move to an adjacent

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 6,
© Springer Science+Business Media, LLC 2009

118 6 Markov Chain Monte Carlo Methods

number. If she does move, she is equally likely to move left or right. If the
person is currently at one of the end values (1 or 6), in the next second she is
equally likely to stay still or move to the adjacent location.

This is a simple example of a discrete Markov chain. A Markov chain de-
scribes probabilistic movement between a number of states. Here there are
six possible states, 1 through 6, corresponding to the possible locations of the
walker. Given that the person is at a current location, she moves to other lo-
cations with specified probabilities. The probability that she moves to another
location depends only on her current location and not on previous locations
visited. We describe movement between states in terms of transition proba-
bilities – they describe the likelihoods of moving between all possible states
in a single step in a Markov chain. We summarize the transition probabilities
by means of a transition matrix P :

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

.50 .50 0 0 0 0

.25 .50 .25 0 0 0
0 .25 .50 .25 0 0
0 0 .25 .50 .25 0
0 0 0 .25 .50 .25
0 0 0 0 .50 .50

⎤
⎥⎥⎥⎥⎥⎥⎦

The first row in P gives the probabilities of moving to all states 1 through 6 in
a single step from location 1, the second row gives the transition probabilities
in a single step from location 2, and so on.

There are several important properties of this particular Markov chain.
It is possible to go from every state to every state in one or more steps –
a Markov chain with this property is said to be irreducible. Given that the
person is in a particular state, if the person can only return to this state at
regular intervals, then the Markov chain is said to be periodic. This example
is aperiodic since it is not a periodic Markov chain.

We can represent one’s current location as a probability row vector of the
form

p = (p1, p2, p3, p4, p5, p6),

where pi represents the probability that the person is currently in state i. If
pj represents the location of the traveler at step j, then the location of the
traveler at the j + 1 step is given by the matrix product

pj+1 = pjP.

Suppose we can find a probability vector w such that wP = w. Then w is
said to be the stationary distribution. If a Markov chain is irreducible and
aperiodic, then it has a unique stationary distribution. Moreover, the limiting
distribution of this Markov chain, as the number of steps approaches infinity,
will be equal to this stationary distribution.

We can empirically demonstrate the existence of the stationary distribu-
tion of our Markov chain by running a simulation experiment. We start our

6.2 Introduction to Discrete Markov Chains 119

random walk at a particular state, say location 3, and then simulate many
steps of the Markov chain using the transition matrix P . The relative fre-
quencies of our traveler in the six locations after many steps will eventually
approach the stationary distribution w.

We start our simulation in R by reading in the transition matrix P and
setting up a storage vector s for the locations of our traveler in the random
walk.

> P=matrix(c(.5,.5,0,0,0,0,.25,.5,.25,0,0,0,0,.25,.5,.25,0,0,

+ 0,0,.25,.5,.25,0,0,0,0,.25,.5,.25,0,0,0,0,.5,.5),

+ nrow=6,ncol=6,byrow=TRUE)

> P

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.50 0.50 0.00 0.00 0.00 0.00
[2,] 0.25 0.50 0.25 0.00 0.00 0.00
[3,] 0.00 0.25 0.50 0.25 0.00 0.00
[4,] 0.00 0.00 0.25 0.50 0.25 0.00
[5,] 0.00 0.00 0.00 0.25 0.50 0.25
[6,] 0.00 0.00 0.00 0.00 0.50 0.50

> s=array(0,c(50000,1))

We indicate that the starting location for our traveler is state 3 and perform
a loop to simulate 50,000 draws from the Markov chain. We use the sample
function to simulate one step – the arguments to this function indicate that
we are sampling a single value from the set {1, 2, 3, 4, 5, 6} with probabilities
given by the sj−1 row of the transition matrix P , where sj−1 is the current
location of our traveler.

> s[1]=3

> for (j in 2:50000)

+ s[j]=sample(1:6,size=1,prob=P[s[j-1],])

We summarize the frequencies of visits to the six states after 500, 2000,
8000, and 50,000 steps of the chain using of the table command. We convert
the counts to relative frequencies by dividing by the number of steps.

> m=c(500,2000,8000,50000)

> for (i in 1:4)

+ print(table(s[1:m[i]])/m[i])

1 2 3 4 5 6
0.164 0.252 0.174 0.130 0.174 0.106

1 2 3 4 5 6
0.1205 0.1965 0.1730 0.1735 0.2170 0.1195

120 6 Markov Chain Monte Carlo Methods

1 2 3 4 5 6
0.109250 0.188000 0.183875 0.194625 0.212000 0.112250

1 2 3 4 5 6
0.10970 0.20770 0.19450 0.19342 0.19628 0.09840

It appears from the output that the relative frequencies of the states are con-
verging to the stationary distribution w = (0.1, 0.2, 0.2, 0.2, 0.2, 0.1). We can
confirm that w is indeed the stationary distribution of this chain by multiply-
ing w by the transition matrix P :

> w=matrix(c(.1,.2,.2,.2,.2,.1),nrow=1,ncol=6)

> w%*%P

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.1 0.2 0.2 0.2 0.2 0.1

6.3 Metropolis-Hastings Algorithms

A popular way of simulating from a general posterior distribution is by using
Markov chain Monte Carlo (MCMC) methods. This essentially is a continuous-
valued generalization of the discrete Markov chain setup described in the pre-
vious section. The MCMC sampling strategy sets up an irreducible, aperiodic
Markov chain for which the stationary distribution equals the posterior distri-
bution of interest. A general way of constructing a Markov chain is by using
a Metropolis-Hastings algorithm. In this section, we focus on two particular
variants of Metropolis-Hastings algorithms, the independence chain and the
random walk chain, that are applicable to a wide variety of Bayesian inference
problems.

Suppose we wish to simulate from a posterior density g(θ|y). In the follow-
ing, to simplify notation, we write the density simply as g(θ). A Metropolis-
Hastings algorithm begins with an initial value θ0 and specifies a rule for
simulating the tth value in the sequence θt given the (t − 1)st value in the
sequence θt−1. This rule consists of a proposal density, which simulates a can-
didate value θ∗, and the computation of an acceptance probability P , which
indicates the probability that the candidate value will be accepted as the next
value in the sequence. Specifically, this algorithm can be described as follows:

• Simulate a candidate value θ∗ from a proposal density p(θ∗|θt−1).
• Compute the ratio

R =
g(θ∗)p(θt−1|θ∗)

g(θt−1)p(θ∗|θt−1)
.

• Compute the acceptance probability P = min{R, 1}.
• Sample a value θt such that θt = θ∗ with probability P ; otherwise θt =

θt−1.

6.3 Metropolis-Hastings Algorithms 121

Under some easily satisfied regularity conditions on the proposal density
p(θ∗|θt−1), the sequence of simulated draws θ1, θ2, ... will converge to a random
variable that is distributed according to the posterior distribution g(θ).

Different Metropolis-Hastings algorithms are constructed depending on the
choice of proposal density. If the proposal density is independent of the current
value in the sequence,

p(θ∗|θt−1) = p(θ∗),

then the resulting algorithm is called an independence chain. Other proposal
densities can be defined by letting the density have the form

p(θ∗|θt−1) = h(θ∗ − θt−1),

where h is a symmetric density about the origin. In this type of random walk
chain, the ratio R has the simple form

R =
g(θ∗)

g(θt−1)
.

The R functions rwmetrop and indepmetrop in the LearnBayes pack-
age implement, respectively, the random walk and independence Metropolis-
Hastings algorithms for special choices of proposal densities. For the function
rwmetrop, the proposal density has the form

θ∗ = θt−1 + scale Z,

where Z is multivariate normal with mean vector 0 and variance-covariance
matrix V and scale is a positive scale parameter. For the function indepmetrop,
the proposal density for θ∗ is multivariate normal with mean vector μ and co-
variance matrix V .

To use a Metropolis-Hastings algorithm, one first decides on the proposal
density and then obtains a simulated sample of draws {θt, t = 1, ...m} by
using the R functions rwmetrop or indepmetrop. The output of each of these
functions has two components: par is a matrix of simulated draws where each
row corresponds to a value of θ, and accept gives the acceptance rate of the
algorithm.

Desirable features of the proposal density in an algorithm depend on the
MCMC algorithm employed. For an independence chain, we desire that the
proposal density p approximate the posterior density g, suggesting a high
acceptance rate. But, as in rejection sampling, it is important that the ratio
g/p be bounded, especially in the tail portion of the posterior density. This
means that one may choose a proposal p that is more diffuse than the posterior,
resulting in a lower acceptance rate. For random walk chains with normal
proposal densities, it has been suggested that acceptance rates between 25%
and 45% are good. The “best” choice of acceptance rate ranges from 45% for
one and two parameters to 25% for problems with more parameters. This
advice also applies when one monitors the Metropolis within Gibbs algorithm
described in Section 6.4.

122 6 Markov Chain Monte Carlo Methods

6.4 Gibbs Sampling

One of the attractive methods for setting up an MCMC algorithm is Gibbs
sampling. Suppose that the parameter vector of interest is θ = (θ1, ..., θp). The
joint posterior distribution of θ, which we denote by [θ|data], may be of high
dimension and difficult to summarize. Suppose we define the set of conditional
distributions

[θ1|θ2, ..., θp,data],

[θ2|θ1, θ3, ..., θp,data],

...
[θp|θ1, ..., θp−1,data],

where [X|Y,Z] represents the distribution of X conditional on values of the
random variables Y and Z. The idea behind Gibbs sampling is that we can set
up a Markov chain simulation algorithm from the joint posterior distribution
by successfully simulating individual parameters from the set of p conditional
distributions. Simulating one value of each individual parameter from these
distributions in turn is called one cycle of Gibbs sampling. Under general
conditions, draws from this simulation algorithm will converge to the target
distribution (the joint posterior of θ) of interest.

In situations where it is not convenient to sample directly from the condi-
tional distributions, one can use a Metropolis algorithm such as the random
walk type to simulate from each distribution. A “Metropolis within Gibbs” al-
gorithm of this type is programmed in the function gibbs in the LearnBayes
package. Suppose that θt

i represents the current value of θi in the simulation,
and let g(θi) represent the conditional distribution where we have suppressed
the dependence of this distribution on values of the remaining components of
θ. Then a candidate value for θi is given by

θ∗i = θt
i + ciZ,

where Z is a standard normal variate and ci is a fixed scale parameter. The
next simulated value of θi, θt+1

i , will be equal to the candidate value with
probability P = min{1, g(θ∗i)/g(θt

i)}; otherwise the value θt+1
i = θt

i . To use
the function gibbs, one inputs the function defining the log posterior, the
starting value of the simulation, the number of Gibbs cycles, and a vector
of scale parameters containing c1, ..., cp. The output of gibbs is a list; the
component par is a matrix of simulated draws and accept is a vector of
acceptance rates for the individual Metropolis steps.

6.5 MCMC Output Analysis

For the MCMC algorithms described in this book, the distribution of the sim-
ulated value at the jth iterate, θj , will converge to a draw from the posterior

6.5 MCMC Output Analysis 123

distribution as j approaches infinity. Unfortunately, this theoretical result pro-
vides no practical guidance on how to decide if the simulated sample provides
a reasonable approximation to the posterior density g(θ|data).

In typical practice, one monitors the performance of an MCMC algorithm
by inspecting the value of the acceptance rate, constructing graphs, and com-
puting diagnostic statistics on the stream of simulated draws. We call this
investigation an MCMC output analysis. By means of this exploratory anal-
ysis, one decides if the chain has sufficiently explored the entire posterior
distribution (there is good mixing) and the sequence of draws has approxi-
mately converged. If one has a sample from the posterior distribution, then
one wishes to obtain a sufficient number of draws so that one can accurately
estimate any particular summary of the posterior of interest.

In this section we briefly describe some of the important issues in interpret-
ing MCMC output and describe a few graphical and numerical diagnostics for
assessing convergence. One issue in understanding MCMC output is detecting
the size of the burn-in period. The simulated values of θ obtained at the be-
ginning of an MCMC run are not distributed from the posterior distribution.
However, after some number of iterations have been performed (the burn-in
period), the effect of the initial values wears off and the distribution of the new
iterates approaches the true posterior distribution. One way of estimating the
length of the burn-in period is to examine trace plots of simulated values of
a component or particular function of θ against the iteration number. Trace
plots are especially important when MCMC algorithms are initialized with
parameter values that are far from the center of the posterior distribution.

A second concern in analyzing output from MCMC algorithms is the de-
gree of autocorrelation in the sampled values. In both the Metropolis and
Gibbs sampling algorithms, the simulated value of θ at the (j + 1)st iteration
is dependent on the simulated value at the jth iteration. If there is strong
correlation between successive values in the chain, then two consecutive val-
ues provide only marginally more information about the posterior distribution
than a single simulated draw. Also, a strong correlation between successive
iterates may prevent the algorithm from exploring the entire region of the
parameter space. A standard statistic for measuring the degree of dependence
between successive draws in the chain is the autocorrelation that measures the
correlation between the sets {θj} and {θj+L}, where L is the lag or number
of iterates separating the two sets of values. A standard graph is to plot the
values of the autocorrelation against the lag L. If the chain is mixing ade-
quately, the values of the autocorrelation will decrease to zero as the lag value
is increased.

Another issue that arises in output analysis is the choice of the simulated
sample size and the resulting accuracy of calculated posterior summaries. Since
iterates in an MCMC algorithm are not independent, one cannot use stan-
dard “independent sample” methods to compute estimated standard errors.
One simple method of computing standard errors for correlated output is the
method of batch means. Suppose we estimate the posterior mean of θi with

124 6 Markov Chain Monte Carlo Methods

the summary sample mean

θ̄i =

∑m
j=1 θj

i

m
.

What is the simulation standard error of this estimate? In the batch means
method, the stream of simulated draws {θj

i } is subdivided into b batches, each
batch of size v, where m = bv. In each batch, we compute a sample mean;
call the set of sample means θ̄1

i , ..., θ̄b
i . If the lag one autocorrelation in the

sequence in the batch means is small, then we can approximate the standard
error of the estimate θ̄i by the standard deviation of the batch means divided
by the square root of the number of batches.

6.6 A Strategy in Bayesian Computing

For a particular Bayesian inference problem, we assume that one has defined
the log posterior density by an R function. Following the recommendation of
Chapter 11 in Gelman et al. (2003), a good approach for summarizing this den-
sity is to set up a Markov chain simulation algorithm. The Metropolis-Hastings
random walk and independence chains and the Gibbs sampling algorithm are
attractive Markov chains since they are easy to program and require rela-
tively little prior input. But these algorithms do require some initial guesses
at the location and spread of the parameter vector θ. These initial guesses
can be found by non-Bayesian methods such as the method of moments or
maximum likelihood. Alternatively, one can obtain an approximation to the
posterior distribution by finding the mode using some optimization algorithm.
For example, Nelder and Mead’s method gives the posterior mode and an ap-
proximation to the variance-covariance matrix that can be used in specifying
the proposal densities in the Metropolis-Hastings algorithms.

In our examples, we illustrate the use of the function laplace to locate
the posterior density. We can check the accuracy of the normal approxima-
tion in the two-parameter case by constructing a contour graph of the joint
posterior. These examples show that there can be some errors in the normal
approximation. But the laplace function is still helpful in that the values of
θ̂ and V can be used to construct efficient Metropolis-Hastings algorithms for
simulating from the exact joint posterior distribution. Once one has decided
that the simulated stream of values represents an approximate sample from
the posterior, then one can summarize this sample in different ways to perform
inferences about θ.

6.7 Learning About a Normal Population from
Grouped Data

As a first example, suppose a random sample is taken from a normal popula-
tion with mean μ and standard deviation σ. But one only observes the data

6.7 Learning About a Normal Population from Grouped Data 125

in “grouped” form, where the frequencies of the data in bins are recorded. For
example, suppose one is interested in learning about the mean and standard
deviation of the heights (in inches) of men from a local college. One is given
the summary frequency data shown in Table 6.1. One sees that 14 men were
shorter than 66 inches, 30 men had heights between 66 and 68 inches, and
so on.

Table 6.1. Grouped frequency data for heights of male students at a college.

Height Interval (in.) Frequency

less than 66 14
between 66 and 68 30
between 68 and 70 49
between 70 and 72 70
between 72 and 74 33

over 74 15

We are observing multinomial data with unknown bin probabilities p1, ..., p6

where the probabilities are functions of the unknown parameters of the normal
population. For example, the probability that a student’s height is between
66 and 68 inches is given by p2 = Φ(68, μ, σ) − Φ(66, μ, σ), where Φ(;μ, σ) is
the cdf of a normal(μ, σ) random variable. It is straightforward to show that
the likelihood of the normal parameters given this grouped data is given by

L(μ, σ) ∝ Φ(66, μ, σ)14(Φ(68, μ, σ) − Φ(66, μ, σ))30

× (Φ(70, μ, σ) − Φ(68, μ, σ))49(Φ(72, μ, σ) − Φ(70, μ, σ))70

× (Φ(74, μ, σ) − Φ(72, μ, σ))33(1 − Φ(74, μ, σ))15.

Suppose (μ, σ) are assigned the usual noninformative prior proportional
to 1/σ. Then the posterior density of the parameters is proportional to

g(μ, σ|data) ∝ 1
σ

L(μ, σ).

Following our general strategy, we transform the positive standard deviation
by λ = log(σ) and the posterior density of (μ, λ) is given by

g(μ, λ|data) ∝ L(μ, exp(λ)).

We begin by writing a short function groupeddatapost that computes the
logarithm of the posterior density of (μ, λ). There are two arguments to this
function: a vector theta corresponding to a value of (μ, λ), and a list data.
The list has three components: data$int.lo is a vector of lower boundaries
for the bins, data$int.hi is a vector of bin upper boundaries, and data$f is
a vector of bin frequencies.

126 6 Markov Chain Monte Carlo Methods

groupeddatapost=function(theta,data)
{

dj = function(f, int.lo, int.hi, mu, sigma)
f * log(pnorm(int.hi, mu, sigma) -
pnorm(int.lo, mu, sigma))

mu = theta[1]
sigma = exp(theta[2])
sum(dj(data$f, data$int.lo, data$int.hi, mu, sigma))

}

We begin by defining the grouped data by the list d.

> d=list(int.lo=c(-Inf,seq(66,74,by=2)),

+ int.hi=c(seq(66,74,by=2), Inf),

+ f=c(14,30,49,70,33,15))

To use the function laplace, one requires a good guess at the location
of the posterior mode. To estimate the mode of (μ, log σ), we first create
an artificial continuous dataset by replacing each grouped observation by its
bin midpoint. Then we approximate the posterior mode by computing the
sample mean and the logarithm of the standard deviation of these artificial
observations.

> y=c(rep(65,14),rep(67,30),rep(69,49),rep(71,70),rep(73,33),

+ rep(75,15))

> mean(y)

[1] 70.16588

> log(sd(y))

[1] 0.9504117

Based on this computation, we believe that the posterior of the vector
(μ, log σ) is approximately (70, 1). We use the laplace function, where the
log posterior is defined in the function groupeddatapost, start is set equal
to this starting value, and the grouped data are contained in the list d.

> start=c(70,1)

> fit=laplace(groupeddatapost,start,d)

> fit

$mode
[1] 70.169880 0.973644

$var
[,1] [,2]

[1,] 3.534713e-02 3.520776e-05
[2,] 3.520776e-05 3.146470e-03

6.7 Learning About a Normal Population from Grouped Data 127

$int
[1] -350.6305

$converge
[1] TRUE

From the output, the posterior mode of (μ, log σ) is found to be (70.17, 0.97).
The associated posterior standard deviations of the parameters can be esti-
mated by computing the square roots of the diagonal elements of the variance-
covariance matrix.

> modal.sds=sqrt(diag(fit$var))

We use the output from the function laplace to design a Metropolis ran-
dom walk algorithm to simulate from the joint posterior. For the proposal
density, we use the variance-covariance matrix obtained from laplace and we
set the scale parameter equal to 2. We run 10,000 iterations of the random
walk algorithm starting at the value start. The output fit2 is a list with two
components: par is a matrix of simulated values where each row corresponds
to a single draw of the parameter vector, and accept gives the acceptance
rate of the random walk chain.

> proposal=list(var=fit$var,scale=2)

> fit2=rwmetrop(groupeddatapost,proposal,start,10000,d)

We monitor the algorithm by displaying the acceptance rate; here the
value is .2826, which is close to the desired acceptance rate for this Metropolis
random walk algorithm.

> fit2$accept

[1] 0.2826

We can summarize the parameters μ and log σ by computing the posterior
means and posterior standard deviations.

> post.means=apply(fit2$par,2,mean)

> post.sds=apply(fit2$par,2,sd)

One can assess the accuracy of the model approximation to the posterior by
comparing the means and standard deviations from the function laplace with
the values computed from the simulated output from the MCMC algorithm.

> cbind(c(fit$mode),modal.sds)

modal.sds
[1,] 70.1702518 0.18801241
[2,] 0.9736653 0.05609447

> cbind(post.means,post.sds)

128 6 Markov Chain Monte Carlo Methods

post.means post.sds
[1,] 70.1631820 0.18160482
[2,] 0.9778666 0.05404014

For this model, there is close agreement between the two sets of posterior
moments which indicates that the modal approximation to the posterior dis-
tribution is reasonably accurate.

We confirm this statement by using the function mycontour to draw a
contour plot of the joint posterior of μ and log σ. The last 5000 simulated draws
from the random walk Metropolis algorithm are drawn on top in Figure 6.1.
Note that the contour lines have an elliptical shape that confirms the accuracy
of the normal approximation in this example.

> mycontour(groupeddatapost,c(69,71,.6,1.3),d,

+ xlab="mu",ylab="log sigma")

> points(fit2$par[5001:10000,1],fit2$par[5001:10000,2])

69.0 69.5 70.0 70.5 71.0

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

mu

lo
g

si
gm

a

Fig. 6.1. Contour plot of posterior of μ and log σ for grouped data example. A
simulated sample of 5000 draws of the posterior is also shown.

6.8 Example of Output Analysis 129

6.8 Example of Output Analysis

We illustrate the use of MCMC output analysis using the R package coda
which will be described in Chapter 11. Suppose we rerun the Metropolis ran-
dom walk algorithm for the grouped data posterior with poor choices of start-
ing value and proposal density. As a starting value, we choose (μ, log σ) =
(65, 1) (the choice of μ is too small) and we select the small scale factor of 0.2
(instead of 2):

> start=c(65,1)

> proposal=list(var=fit$var,scale=0.2)

We then rerun the Metropolis function rwmetrop:

> bayesfit=rwmetrop(groupeddatapost,proposal,start,10000,d)

We find that the acceptance rate of this modified algorithm is 0.89, which is
much larger than the 0.29 rate that we found using the scale factor 2.

In this example, the first 2000 iterations are discarded to remove the burn-
in period due to the poor starting value. Figure 6.2 displays trace plots of
the simulated draws of μ and log σ from this Metropolis algorithm using the
xyplot function in the coda library.

> library(coda)

> dimnames(bayesfit$par)[[2]]=c("mu","log sigma")

> xyplot(mcmc(bayesfit$par[-c(1:2000),]),col="black")

Note that the simulated draws appear to have reached the main support of the
posterior of μ. However the simulated sequence appears irregular; for example,
the iterates will explore the region where μ > 70.5 for a while before returning
to the center of the distribution.

One can observe the strong correlation structure of the sequences by us-
ing autocorrelation plots produced by the autocorr.plot function shown in
Figure 6.3.

> par(mfrow=c(2,1))

> autocorr.plot(mcmc(bayesfit$par[-c(1:2000),]),auto.layout=FALSE)

The autocorrelations are close to one for lag one and reduce very slowly as a
function of the lag.

The following summary output of the simulated draws of μ confirms the
behavior of the MCMC run seen in Figure 6.2 and Figure 6.3. The estimate
at the posterior mean of μ is 70.17. If we assume naively that this simulated
sample represented independent draws, then the standard error of this esti-
mate is 0.0021. However, a more accurate estimate of the standard error is
the Batch SE given by 0.013.

130 6 Markov Chain Monte Carlo Methods

Iteration number

70
.0

70
.5

0 2000 4000 6000 8000

mu

0.
8

0.
9

1.
0

1.
1

log sigma

Fig. 6.2. Trace plots of simulated draws of μ and log σ for an MCMC chain with
poor choices for the starting value and scale factor. The first 2000 draws have been
discarded to remove the burn-in factor.

Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Batch SE
mu 70.1676 0.18474 0.0020654 0.012634
log sigma 0.9812 0.05789 0.0006472 0.004046

It is instructive to compare these diagnostic graphs with the graphs using
the better starting value and choice of proposal density used in Section 6.7.
Figure 6.4 and Figure 6.5 display trace plots and autocorrelation graphs of the
simulated draws of μ and log σ using the starting value (μ, log σ) = (70, 1) and
a scale factor equal to 2. (As in the first case, we have discarded the first 2000
draws.) The trace plot of the simulated streams of μ and log σ looks more like
random noise. The lag one autocorrelations are high, but the autocorrelation
values dissipate rapidly as a function of the lag.

As before, we can compute summary statistics for this stream of MCMC
output.

6.9 Modeling Data with Cauchy Errors 131

0 5 10 15 20 25 30 35

−1
.0

0.
0

1.
0

Lag

A
ut

oc
or

re
la

tio
n

mu

0 5 10 15 20 25 30 35

−1
.0

0.
0

1.
0

Lag

A
ut

oc
or

re
la

tio
n

log sigma

Fig. 6.3. Autocorrelation plots of simulated draws of μ and log σ for an MCMC
chain with poor choices for the starting value and scale factor.

Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Batch SE
mu 70.1679 0.19761 0.0022093 0.005650
log sigma 0.9832 0.05747 0.0006425 0.001754

Here the estimate of the posterior mean of μ is 70.17, with a batch standard
error of 0.0056. The graphs and the summary statistics confirm the better
performance of the MCMC chain with a starting value (μ, log σ) = (70, 1) and
scale factor of 2.

6.9 Modeling Data with Cauchy Errors

For a second example, suppose that we are interested in modeling data where
outliers may be presented. Suppose y1, ..., yn are a random sample from a
Cauchy density with location parameter μ and scale parameter σ,

132 6 Markov Chain Monte Carlo Methods

Iteration number

69
.5

70
.0

70
.5

71
.0

0 2000 4000 6000 8000

mu

0.
8

0.
9

1.
0

1.
1

1.
2

log sigma

Fig. 6.4. Trace plot of simulated draws of μ for an MCMC chain with good choices
for the starting value and scale factor.

f(y|μ, σ) =
1

πσ(1 + z2)
,

where z = (x − μ)/σ. Suppose that we assign the usual noninformative prior
to (μ, σ):

g(μ, σ) ∝ 1
σ

.

The posterior density of μ and σ is given, up to a proportionality constant,
by

g(μ, σ|data) ∝ 1
σ

n∏
i=1

f(yi|μ, σ)

=
1
σ

n∏
i=1

[1
σ

(
1 + (yi − μ)2/σ2

)−1]
.

Again we first transform the positive parameter σ to the real line using
the reexpression λ = log σ, leading to the posterior density of (μ, λ):

g(μ, λ|data) ∝
n∏

i=1

[
exp(−λ)

(
1 + exp(−2λ)(yi − μ)2

)−1]
.

6.9 Modeling Data with Cauchy Errors 133

0 5 10 15 20 25 30 35

−1
.0

0.
0

1.
0

Lag

A
ut

oc
or

re
la

tio
n

mu

0 5 10 15 20 25 30 35

−1
.0

0.
0

1.
0

Lag

A
ut

oc
or

re
la

tio
n

log sigma

Fig. 6.5. Autocorrelation plot of simulated draws of μ for an MCMC chain with
good choices for the starting value and scale factor.

The logarithm of the density is then given, up to an additive constant, by

log g(μ, λ|data) =
n∑

i=1

[
− λ − log

(
1 + exp(−2λ)(yi − μ)2

)]
.

We write the following R function cauchyerrorpost to compute the loga-
rithm of the posterior density. There are two arguments to the function: theta,
a vector corresponding to a value of the pair (μ, λ), and the vector of observa-
tions y. To simplify the code, we use the R function dt, which computes the
density of the t random variable. (The Cauchy density is the t density with a
single degree of freedom.)

cauchyerrorpost=function (theta, data)
{

logf = function(data, theta)
log(dt((data - theta[1])/exp(theta[2]),
df = 1)/exp(theta[2]))

return(sum(logf(data, theta)))
}

134 6 Markov Chain Monte Carlo Methods

We apply this model to Darwin’s famous dataset concerning 15 differences
of the heights of cross- and self-fertilized plants quoted by Fisher (1960). This
dataset can be found in the LearnBayes library with the name darwin. We
read in the dataset and attach the data frame so we can access the variable
difference. We initially compute the mean and logarithm of the standard
deviation of the data to get some initial estimates of the locations of the
posterior distributions of μ and λ = log(σ).

> data(darwin)

> attach(darwin)

> mean(difference)

[1] 21.66667

> log(sd(difference))

[1] 3.65253

To find the posterior mode, we use the function laplace. The arguments
are the name of the function cauchyerrorpost defining the log posterior
density, a vector of initial estimates of the parameters, and the data used in
the log posterior function. For initial estimates, we use the values μ = 21.6
and λ = 3.6 found earlier.

> laplace(cauchyerrorpost, c(21.6,3.6), difference)

$mode
[1] 24.701745 2.772619

$var
[,1] [,2]

[1,] 34.9600524 0.3672899
[2,] 0.3672899 0.1378279

$int
[1] -73.2404

$converge
[1] TRUE

The posterior mode is given by (μ, λ) = (24.7, 2.77). The output also
gives the associated variance-covariance matrix and an estimate of the log
integral.

We can use these estimates of center and spread to construct a rectangle
that covers essentially all of the posterior probability of the parameters. As an
initial guess at this rectangle, we take for each parameter the posterior mode
plus and minus four standard deviations, where the standard deviations are
obtainable from the diagonal elements of the variance-covariance matrix.

6.9 Modeling Data with Cauchy Errors 135

> c(24.7-4*sqrt(34.96),24.7+4*sqrt(34.96))

[1] 1.049207 48.350793

> c(2.77-4*sqrt(.138),2.77+4*sqrt(.138))

[1] 1.284066 4.255934

After some trial and error, we use the rectangle μ ∈ (−10, 60), λ ∈ (1, 4.5) as
the bounding rectangle for the function mycontour. Figure 6.6 displays the
contour graph of the exact posterior distribution.

> mycontour(cauchyerrorpost,c(-10,60,1,4.5),difference,

+ xlab="mu",ylab="log sigma")

−10 0 10 20 30 40 50 60

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

mu

lo
g

si
gm

a

Fig. 6.6. Contour plot of the posterior of μ and log σ for the Cauchy error model
problem.

The contours of the exact posterior distribution have an interesting shape
and one may wonder how these contours compare with those for a bivari-
ate normal approximation. In the R code, we rerun the laplace function to
obtain the posterior mode t$mode and associated variance-covariance matrix

136 6 Markov Chain Monte Carlo Methods

t$var. Using these values as inputs, we draw contours of a bivariate normal
density in Figure 6.7, where the log bivariate normal density is programmed
in the function lbinorm. The elliptical shape of these normal contours seems
significantly different from the shape of the exact posterior contours, which
indicates that the normal approximation may be inadequate.

> fitlaplace=laplace(cauchyerrorpost,c(21.6,3.6),

+ difference)

> mycontour(lbinorm,c(-10,60,1,4.5),list(m=fitlaplace$mode,

+ v=fitlaplace$var)), xlab="mu",ylab="log sigma")

−10 0 10 20 30 40 50 60

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

mu

lo
g

si
gm

a

Fig. 6.7. Contour plot of the normal approximation to the posterior of μ and log σ
for the Cauchy error model problem.

Although the normal approximation may not be the best summary of the
posterior distribution, the estimated variance-covariance matrix is helpful in
setting up a Metropolis random walk chain. We initially define a list proposal
that contains the estimated variance-covariance matrix and a scale factor. We
define the starting value of the chain in the array start. The simulation
algorithm is run using the function rwmetrop. The inputs are the function

6.9 Modeling Data with Cauchy Errors 137

defining the log posterior, the list proposal, the starting value, the number
of simulations, and the data vector.

> proposal=list(var=fitlaplace$var,scale=2.5)

> start=c(20,3)

> m=1000

> s=rwmetrop(cauchyerrorpost,proposal,start,m,difference)

> mycontour(cauchyerrorpost,c(-10,60,1,4.5),difference,

+ xlab="mu",ylab="log sigma")

> points(s$par[,1],s$par[,2])

In Figure 6.8, we display simulated draws from rwmetrop on top of the contour
graph.

−10 0 10 20 30 40 50 60

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

mu

lo
g

si
gm

a

Fig. 6.8. Contour plot of the posterior of μ and log σ with a simulated sample for
the Cauchy error model problem.

Figure 6.9 and Figure 6.10 show the “exact” marginal posterior densities
of μ and log σ found from a density estimate from 50,000 simulated draws
from the random walk algorithm. Each figure also shows the approximate
normal approximation from the laplace output. These figures demonstrate
the non-normal shape of these marginal posteriors.

138 6 Markov Chain Monte Carlo Methods

−20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

mu

P
os

te
rio

r D
en

si
ty

Random walk
Normal

Fig. 6.9. Posterior density of μ using the normal approximation and simulated
draws from the Metropolis random walk chain.

It is instructive to illustrate “brute-force” and other Metropolis-Hastings
algorithms for this problem. The brute-force algorithm is based on simulating
draws of (μ, log σ) from the grid using the function simcontour. One can use
a Metropolis-Hastings independence chain, where the proposal density is mul-
tivariate normal with mean and variance given by the normal approximation.
Alternatively, one can apply a Gibbs sampling algorithm with a vector of scale
parameters equal to (12, .75); these values are approximately equal to twice
the estimated posterior standard deviations of the two parameters. All the
simulation algorithms were run with a simulation sample size of 50,000. The
R code for the implementation of the four simulation algorithms follows.

> fitgrid=simcontour(cauchyerrorpost,c(-10,60,1,4.5),difference,

+ 50000)

> proposal=list(var=fitlaplace$var,scale=2.5)

> start=c(20,3)

> fitrw=rwmetrop(cauchyerrorpost,proposal,start,50000,

+ difference)

> proposal2=list(var=fitlaplace$var,mu=t(fitlaplace$mode))

6.9 Modeling Data with Cauchy Errors 139

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log sigma

P
os

te
rio

r D
en

si
ty

Random walk
Normal

Fig. 6.10. Posterior density of log σ using the normal approximation and simulated
draws from the Metropolis random walk chain.

> fitindep=indepmetrop(cauchyerrorpost,proposal2,start,50000,

+ difference)

> fitgibbs=gibbs(cauchyerrorpost,start,50000,c(12,.75),

+ difference)

The simulated draws for a parameter can be summarized by the computation
of the 5th, 50th, and 95th percentiles. For example, one can find the summaries
of μ and log σ from the random walk simulation by using the command

> apply(fitrw$par,2,mean)

[1] 25.562859 2.843484

> apply(fitrw$par,2,sd)

[1] 7.175004 0.372534

Table 6.2 displays the estimated posterior quantiles for all of the algorithms
described in this chapter. In addition, the acceptance rates for the Metropolis-
Hastings random walk and independence chains and the Gibbs sampler are
shown. Generally there is agreement among the simulation-based methods,

140 6 Markov Chain Monte Carlo Methods

and these “exact” posterior summaries are different from the quantiles found
using the Laplace normal approximation. The exact marginal posterior dis-
tribution of μ has heavier tails than suggested by the normal approximation
and there is some skewness in the marginal posterior distribution of log σ.

Table 6.2. Summaries of the marginal posterior densities of μ and log σ using five
computational methods.

Method Acceptance Rate μ log σ

Normal approximation (15.0, 24.7, 34.4) (2.16, 2.77, 3.38)

Brute force (14.5, 25.1, 37.7) (2.22, 2.85, 3.45)

Random walk .231 (14.8, 25.1, 38.0) (2.23, 2.85, 3.45)

Independence .849 (14.4, 25.0, 37.1) (2.22, 2.85, 3.44)

Gibbs (.318, .314) (14.5, 25.2, 38.0) (2.20, 2.86, 3.45)

6.10 Analysis of the Stanford Heart Transplant Data

Turnbull et al (1974) describe a number of approaches for analyzing heart
transplant data from the Stanford Heart Transplanation Program. One of the
inferential goals is to decide if heart transplantation extends a patient’s life.
One of their models, the Pareto model, assumes individual patients in the
nontransplant group have exponential lifetime distributions with mean 1/θ,
where θ is assumed to vary between patients and is drawn from a gamma
distribution with density

f(θ) =
λp

Γ (p)
θp−1 exp(−λθ).

Patients in the transplant group have a similar exponential lifetime distribu-
tion, where the mean is 1/(θτ). This model assumes that the patient’s risk of
death changes by an unknown constant factor τ > 0. If τ = 1, then there is
no increased risk by having a transplant operation.

Suppose the survival times {xi} are observed for N nontransplant patients.
For n of these patients, xi represents the actual survival time (in days); the
remaining N−n patients were still alive at the end of the study, so xi represents
the censoring time. For the M patients that have a heart transplant, let yj

and zj denote the time to transplant and survival time; m of these patients
died during the study. The unknown parameter vector is (τ, λ, p), with the
likelihood function given by

6.10 Analysis of the Stanford Heart Transplant Data 141

L(τ, λ, p) ∝
n∏

i=1

pλp

(λ + xi)p+1

N∏
i=n+1

(λ

λ + xi

)p

×
m∏

j=1

τpλp

(λ + yj + τzj)p+1

M∏
j=m+1

(λ

λ + yj + τzj

)p

,

where all the parameters are positive. Suppose we place a uniform prior on
(τ, λ, p), so the posterior density is proportional to the likelihood.

Following our summarization strategy, we transform the parameters by
logs:

θ1 = log τ, θ2 = log λ, θ3 = log p.

The posterior density of θ = (θ1, θ2, θ3) is given by

g(θ|data) ∝ L(exp(θ1), exp(θ2), exp(θ3))
3∏

i=1

exp(θi).

The dataset stanfordheart in the LearnBayes package contains the data
for 82 patients; for each patient, there are four variables: survtime, the sur-
vival time; transplant, a variable that is 1 or 0 depending on whether the
patient had a transplant or not; timetotransplant, the time a transplant
patient waits for the operation; and state, a variable that indicates if the
survival time was censored (0 if the patient died and 1 if he was still alive).
We load this datafile into R.

> data(stanfordheart)

We write a function transplantpost that computes a value of the log
posterior. In the following code, we generally follow the earlier notation. The
numbers of nontransplant and transplant patients are denoted by N and M. We
divide the data into two groups using the transplant indicator variable t. For
the nontransplant patients, the survival times and censoring indicators are
denoted by xnt and dnt, and for the transplant patients, the waiting times,
survival times, and censoring indicators are denoted by y, z, and dt.

transplantpost=function (theta, data)
{

x = data[, 1]
y = data[, 3]
t = data[, 2]
d = data[, 4]
tau = exp(theta[1])
lambda = exp(theta[2])
p = exp(theta[3])
xnt = x[t == 0]
dnt = d[t == 0]

142 6 Markov Chain Monte Carlo Methods

z = x[t == 1]
y = y[t == 1]
dt = d[t == 1]
logf = function(xnt, dnt, lambda, p)

(dnt == 0) * (p * log(lambda) +
log(p) - (p + 1) * log(lambda + xnt)) + (dnt == 1) *
p * log(lambda/(lambda + xnt))

logg = function(z, y, tau, lambda, p)
(dt == 0) * (p * log(lambda) +
log(p * tau) - (p + 1) * log(lambda + y + tau * z)) +
(dt == 1) * p * log(lambda/(lambda + y + tau * z))

val = sum(logf(xnt, dnt, lambda, p)) +
sum(logg(z, y, tau, lambda, p))

val = val + theta[1] + theta[2] + theta[3]
return(val)

}

To get an initial idea about the location of the posterior, we run the func-
tion laplace. Our initial estimate of the posterior mode is θ = (0, 3,−1). The
algorithm converges and we obtain the posterior mode and an estimate at the
variance-covariance matrix.

> start=c(0,3,-1)

> laplacefit=laplace(transplantpost,start,stanfordheart)

> laplacefit

$mode
[1] -0.09210954 3.38385249 -0.72334008

$var
[,1] [,2] [,3]

[1,] 0.172788526 -0.009282308 -0.04995160
[2,] -0.009282308 0.214737053 0.09301323
[3,] -0.049951602 0.093013229 0.06891796

$int
[1] -376.2504

$converge
[1] TRUE

We use a Metropolis random walk algorithm (implemented in the function
rwmetrop) to simulate from the posterior. We use a proposal variance of 2V ,
where V is the estimated variance-covariance matrix from the Laplace fit.
We run the simulation for 10,000 iterations, and as the output indicates, the
acceptance rate was equal to 19%.

6.10 Analysis of the Stanford Heart Transplant Data 143

> proposal=list(var=laplacefit$var,scale=2)

> s=rwmetrop(transplantpost,proposal,start,10000,stanfordheart)

> s$accept

[1] 0.1893

One primary inference in this problem is to learn about the three parame-
ters τ, λ, and p. Figure 6.11 displays density estimates of the simulated draws
from the marginal posterior densities of each parameter. These are simply ob-
tained by exponentiating the simulated draws of θ that are output from the
function rwmetrop. For example, the first plot in Figure 6.11 is constructed by
first computing the simulated draws of τ and then using the plot(density())
command.

> tau=exp(s$par[,1])

> plot(density(tau),main="TAU")

0 1 2 3 4

0.
0

0.
4

0.
8

1.
2

TAU

N = 10000 Bandwidth = 0.05912

D
en

si
ty

0 50 100 150

0.
00

0
0.

01
0

0.
02

0
0.

03
0

LAMBDA

N = 10000 Bandwidth = 1.958

D
en

si
ty

0.5 1.0 1.5

0.
0

1.
0

2.
0

3.
0

P

N = 10000 Bandwidth = 0.0181

D
en

si
ty

Fig. 6.11. Posterior densities of parameters τ , λ, and p in the Pareto survival model.

We can summarize the parameters τ, λ, and p by computing the 5th, 50th,
and 95th percentiles of the simulated draws using the apply command.

144 6 Markov Chain Monte Carlo Methods

> apply(exp(s$par),2,quantile,c(.05,.5,.95))

[,1] [,2] [,3]
5% 0.4720614 13.35309 0.3133939
50% 0.9562069 29.01064 0.4746410
95% 2.0703049 63.54526 0.7623879

From Figure 6.11 and these summaries, we see that the value τ = 1 is in
the center of the posterior distribution and so there is insufficient evidence to
conclude from these data that τ �= 1. This means that there is insufficient evi-
dence to conclude that the risk of death is higher (or lower) with a transplant
operation.

In this problem, one is typically interested in estimating a patient’s survival
curve. For a nontransplant patient, the survival function is equal to

S(t) =
λp

(λ + t)p
, t > 0.

For a given value of the time t0, one can compute a sample from the posterior
distribution of S(t0) by computing the function λp/(λ+t0)p from the simulated
values from the joint posterior distribution of λ and p. In the following code,
we assume that simulated samples from the marginal posterior distributions
of λ and p are stored in the vectors lambda and p, respectively. Then we (1)
set up a grid of values of t and storage vectors p5, p50, and p95; (2) simulate
a sample of values of S(t) for each value of t on the grid; and (3) summarize
the posterior sample by computing the 5th, 50th, and 95th percentiles. These
percentiles are stored in the variables p5, p50, and p95. In Figure 6.12, we
graph these percentiles as a function of the time variable t. Since there is little
evidence that τ �= 1, this survival curve represents the risk for both transplant
and nontransplant patients.

> p=exp(s$par[,3])

> lambda=exp(s$par[,2])

> t=seq(1,240)

> p5=0*t; p50=0*t; p95=0*t

> for (j in 1:240)

+ { S=(lambda/(lambda+t[j]))^p

+ q=quantile(S,c(.05,.5,.95))

+ p5[j]=q[1]; p50[j]=q[2]; p95[j]=q[3]}

> plot(t,p50,type="l",ylim=c(0,1),ylab="Prob(Survival)",

+ xlab="time")

> lines(t,p5,lty=2)

> lines(t,p95,lty=2)

6.11 Further Reading 145

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

P
ro

b(
S

ur
vi

va
l)

Fig. 6.12. Posterior distribution of probability of survival S(t) for heart transplant
patients. Lines correspond to the 5th, 50th, and 95th percentiles of the posterior of
S(t) for each time t.

6.11 Further Reading

A good overview of discrete Markov chains is contained in Kemeny and
Snell (1976). Since MCMC algorithms currently play a central role in ap-
plied Bayesian inference, most modern textbooks devote significant content
to these methods. Chapter 11 of Gelman et al. (2003) and Chapter 3 of Carlin
and Louis (2009) provide good introductions to MCMC methods and their
application in Bayesian methods. Robert and Casella (2004) and Givens and
Hoeting (2005) give more detailed descriptions of MCMC algorithms within
the context of computational statistical methods. Introductory discussions of
Metropolis and Gibbs sampling are provided, respectively, in Chib and Green-
berg (1995) and Casella and George (1992).

146 6 Markov Chain Monte Carlo Methods

6.12 Summary of R Functions

cauchyerrorpost – computes the log posterior density of (M, log S) when
a sample is taken from a Cauchy density with location M and scale S and a
uniform prior distribution is taken on (M, log S)
Usage: cauchyerrorpost(theta, data)
Arguments: theta, vector of parameter values of (M, log S); data, vector
containing sample of observations
Value: value of the log posterior

gibbs – implements a Metropolis within Gibbs algorithm for an arbitrary
real-valued posterior density defined by the user
Usage: gibbs(logpost,start,m,scale,data)
Arguments: logpost, function defining the log posterior density; start, vector
giving the starting value of the parameter; m, the number of iterations of the
Gibbs sampling algorithm; scale, vector of scale parameters for the random
walk Metropolis steps; data, data used in the function logpost
Value: par, a matrix of simulated values where each row corresponds to a value
of the vector parameter; accept, vector of acceptance rates of the Metropolis
steps of the algorithm

groupeddatapost – computes the log posterior for (M, log S), when sampling
from a normal density and the data are recorded in grouped format
Usage: groupeddatapost=function(theta,data)
Arguments: theta, vector of parameter values of (M, log S); data, list with
components int.lo, a vector of left endpoints, int.hi, a vector of right end-
points, and f, a vector of bin frequencies
Value: value of the log posterior

indepmetrop – simulates iterates of a Metropolis independence chain for an
arbitrary real-valued posterior density defined by the user
Usage: indepmetrop(logpost,proposal,start,m,data)
Arguments: logpost, function defining the log posterior density; proposal,
a list containing mu, an estimated mean, and var, an estimated variance-
covariance matrix of the normal proposal density; start, array with a single
row that gives the starting value of the parameter vector; m, the number of
iterations of the chain data, data used in the function logpost
Value: par, a matrix of simulated values where each row corresponds to a
value of the vector parameter; accept, the acceptance rate of the algorithm.

rwmetrop – simulates iterates of a random walk Metropolis chain for an arbi-
trary real-valued posterior density defined by the user
Usage: rwmetrop(logpost,proposal,start,m,par)
Arguments: logpost, function defining the log posterior density; proposal,
a list containing var, an estimated variance-covariance matrix, and scale,
the Metropolis scale factor; start, vector giving the starting value of the

6.13 Exercises 147

parameter; m, the number of iterations of the chain; par, data used in the
function logpost
Value: par, a matrix of simulated values where each row corresponds to a
value of the vector parameter; accept, the acceptance rate of the algorithm

transplantpost – computes the log posterior for (log tau, log lambda, log p)
for a Pareto model for survival data
Usage: transplantpost=function(theta,data)
Arguments: theta, vector of parameter values (log tau, log lambda, log p);
data, data matrix where columns are survival time, time to transplant, trans-
plant indicator, and censoring indicator
Value: value of the log posterior

6.13 Exercises

1. A random walk
The following matrix represents the transition matrix for a random walk
on the integers {1, 2, 3, 4, 5}.

P =

⎡
⎢⎢⎢⎢⎣

.2 .8 0 0 0

.2 .2 .6 0 0
0 .4 .2 .4 0
0 0 .6 .2 .2
0 0 0 .8 .2

⎤
⎥⎥⎥⎥⎦

a) Suppose one starts at the location 1. Using the sample command,
simulate 1000 steps of the Markov chain using the probabilities given
in the transition matrix. Store the locations of the walk in a vector.

b) Compute the relative frequencies of the walker in the five states from
the simulation output. Guess at the value of the stationary distribution
vector w.

c) Confirm that your guess is indeed the stationary distribution by using
the matrix computation w %*% P.

2. Estimating a log-odds with a normal prior
In Exercise 1 of Chapter 5, we considered the estimation of a log-odds
parameter when y is binomial(n, p) and the log-odds θ = log (p/(1 − p))
is distributed as N(μ, σ) with μ = 0 and σ = .25. The coin was tossed
n = 5 times and y = 5 heads were observed.
Use a Metropolis-Hastings random walk algorithm to simulate from the
posterior density. In the algorithm, let s be equal to twice the approximate
posterior standard deviation found in the normal approximation. Use the
simulation output to approximate the posterior mean and standard devi-
ation of θ and the posterior probability that θ is positive. Compare your
answers with those obtained using the normal approximation in Exercise
1 of Chapter 5.

148 6 Markov Chain Monte Carlo Methods

3. Genetic linkage model from Rao (2002)
In Exercise 2 of Chapter 5, we considered the estimation of a parameter θ
in a genetic linkage model. The posterior density was expressed in terms
of the real-valued logit η = log (θ/(1 − θ)).
a) Use a Metropolis-Hastings random walk algorithm to simulate from

the posterior density of η. (Choose the scale parameter s to be twice
the approximate posterior standard deviation of η found in a normal
approximation.) Compare the histogram of the simulated output of η
with the normal approximation. From the simulation output, find a
95% interval estimate for the parameter of interest θ.

b) Use a Metropolis-Hastings independence algorithm to simulate from
the posterior density of η. Use a normal proposal density. Again com-
pare the histogram of the simulated output with the normal approxi-
mation and find a 95% probability interval for the parameter of inter-
est, θ.

4. Modeling data with Cauchy errors
As in Section 6.8, suppose we observe y1, ..., yn from a Cauchy density with
location μ and scale σ and a noninformative prior is placed on (μ, σ). Con-
sider the following hypothetical test scores from a class that is a mixture
of good and poor students.

36 13 23 6 20 12 23 93
98 91 89 100 90 95 90 87

The function cauchyerrorpost computes the log of the posterior density.
A contour plot of the posterior (μ, log σ) for these data is shown in Figure
6.13.
a) Use the laplace function to find the posterior mode. Check that you

have indeed found the posterior mode by trying several starting values
in the Nelder and Mead algorithm.

b) Use the Metropolis random walk algorithm (using the function rwmetrop)
to simulate 1000 draws from the posterior density. Compute the pos-
terior mean and standard deviation of μ and log σ.

5. Estimation for the two-parameter exponential distribution
Exercise 3 of Chapter 5 considered the “type I/time-truncated” life testing
experiment. We are interested in the posterior density of θ = (θ1, θ2),
where θ1 = log β, θ2 = log(t1 − μ).
a) Using the posterior mode and variance-covariance matrix from laplace,

simulate 1000 values from the posterior distribution using the Metropo-
lis random walk algorithm (function rwmetrop).

b) Suppose one is interested in estimating the reliability at time t0 defined
by

R(t0) = e−(t0−μ)/β .

Using your simulated values from the posterior, find the posterior
mean and posterior standard deviation of R(t0) when t0 = 106 cycles.

6.13 Exercises 149

20 40 60 80 100

0
1

2
3

4
5

mu

lo
g

si
gm

a

Fig. 6.13. Posterior distribution of μ and log σ for the Cauchy sampling exercise.

6. Poisson regression
Exercise 4 of Chapter 5 describes an experiment from Haberman (1978)
involving subjects reporting one stressful event. The number of events
recalled i months before an interview yi is Poisson distributed with mean
λi, where the {λi} satisfy the loglinear regression model

log λi = β0 + β1i.

One is interested in learning about the posterior density of the regression
coefficients (β0, β1).
a) Using the output of laplace, construct a Metropolis random walk

algorithm for simulating from the posterior density. Use the function
rwmetrop to simulate 1000 iterates, and compute the posterior mean
and standard deviation of β1.

b) Construct a Metropolis independence algorithm, and use the function
rwindep to simulate 1000 iterates from the posterior. Compute the
posterior mean and standard deviation of β1.

c) Use a table such as Table 6.2 to compare the posterior estimates using
the three computational methods.

150 6 Markov Chain Monte Carlo Methods

7. Generalized logit model
Carlin and Louis (2009) describe the use of a generalized logit model to
fit dose-mortality data from Bliss (1935). Table 6.3 records the number of
adult flour beetles killed after five hours of exposure to various levels of
gaseous carbon disulphide. The number of insects killed yi under dose wi

is assumed binomial(ni, pi), where the probability pi of death is given by

pi =
(

exp(xi)
1 + exp(xi)

)m1

,

where xi = (wi − μ)/σ. The prior distributions for μ, σ, m1 are assumed
independent, where μ is assigned a uniform prior, σ is assigned a prior pro-
portional to 1/σ, and m1 is gamma with parameters a0 and b0. In the ex-
ample, the prior hyperparameters of a0 = .25 and b0 = 4 were used. If one
transforms to the real-valued parameters (θ1, θ2, θ3) = (μ, log σ, log m1),
then Carlin and Louis (2009) show that the posterior density is given by

g(θ|data) ∝
8∏

i=1

[
pyi

i (1 − pi)ni−yi
]

exp(a0θ3 − eθ3/b0).

Table 6.3. Flour beetle mortality data.

Dosage Number Killed Number Exposed
wi yi ni

1.6907 6 59
1.7242 13 60
1.7552 18 62
1.7842 28 56
1.8113 52 63
1.8369 53 59
1.8610 61 62
1.8839 60 60

a) Write an R function that defines the log posterior of (θ1, θ2, θ3).
b) Carlin and Louis (2009) suggest running a Metropolis random walk

chain with a multivariate normal proposal density where the variance-
covariance matrix is diagonal with elements 0.00012, 0.033, and 0.10.
Use the function rwmetrop to run this chain for 10,000 iterations.
Compute the acceptance rate and the 5th and 95th percentiles for
each parameter.

c) Run the function laplace to get a nondiagonal estimate of the
variance-covariance matrix. Use this estimate in the proposal den-
sity of rwmetrop and run the chain for 10,000 iterations. Compute the
acceptance rate and the 5th and 95th percentiles for each parameter.

6.13 Exercises 151

d) Compare your answers in parts (b) and (c).
8. Mixture of exponentials model

In Exercise 6 of Chapter 5, a mixture of exponential densities was used to
model the lifetimes of electronic parts sampled from a mixture of accept-
able and unacceptable. That exercise gives the R function for computing
the log posterior of θ = (log λA, log λB), where λA and λB are the mean
lifetimes for the acceptable and unacceptable parts, respectively.
a) Use the output from laplace to construct a random walk Metropolis

chain for sampling from the posterior of θ. Run the chain for 10,000
iterations, and construct density estimates for log λA and log λB.

b) Construct a Metropolis within Gibbs sampler using the function
gibbs. Also run the chain for 10,000 iterations and construct den-
sity estimates for log λA and log λB.

c) By looking at diagnostic plots and acceptance rates, compare the ef-
ficiency and accuracy of the two samplers in estimating log λA and
log λB .

9. Variance components model
In Exercise 7 of Chapter 5, a variance components model was described for
describing batch to batch variation in yields of dyestuff. In that exercise,
a function log.post.var.comp was given for computing the log posterior
density of θ = (μ, log σy, log σb), where σy and σbrespectively measure the
within batch and between batches variations in yield.
a) Use laplace to get an initial guess at the location and variance-

covariance matrix of θ, and then use rwmetrop to construct a random
walk Metropolis chain with 10,000 iterations.

b) Use the output from laplace to construct a“Metropolis within Gibbs”
sampling algorithm using the function gibbs.

c) Compare the performances of the two algorithms in parts (b) and (c),
including acceptance rates and means and standard deviations of the
standard deviation components σy and σb.

10. Inference about the Box-Cox transformation
Suppose one observes the positive values y1, ..., yn that exhibit some right-
skewness. Box and Cox (1964) suggested using the power transformation

wi =
yλ

i − 1
λ

, i,= 1, ..., n,

such that w1, ..., wn represent a random sample from a normal distribu-
tion with mean μ and standard deviation σ. Suppose that the vector of
parameters (λ, μ, σ) is assigned the noninformative prior proportional to
1/σ. Then the posterior density of θ is given, up to a proportionality
constant, by

g(θ|y) ∝ 1
σ

n∏
i=1

[
φ

(
yλ

i − 1
λ

;μ, σ

)
yλ−1

i

]
.

152 6 Markov Chain Monte Carlo Methods

Suppose this transformation model is fit to the following survival times
(from Collett, 1994) of patients in a study on multiple myeloma.

13 52 6 40 10 7 66 10 10 14 16 4
65 5 11 10 15 5 76 56 88 24 51 4
40 8 18 5 16 50 40 1 36 5 10 91
18 1 18 6 1 23 15 18 12 12 17 3

a) Write an R function to compute the logarithm of the posterior distri-
bution of (λ, μ, log σ).

b) Use laplace to find the posterior mode of (λ, μ, log σ) using an initial
starting value of (0.1, 3, 0.5).

c) Use an MCMC algorithm such as random walk Metropolis, indepen-
dent Metropolis, or Gibbs sampling to simulate 10,000 values from the
posterior distribution.

d) Construct 90% interval estimates of λ, μ, and σ.
e) For these data, use the result from part (d) to decide whether a log

or square root transformation is more appropriate for these data.

7

Hierarchical Modeling

7.1 Introduction

In this chapter, we illustrate the use of R to summarize an exchangeable
hierarchical model. We begin by giving a brief introduction to hierarchical
modeling. Then we consider the simultaneous estimation of the true mortal-
ity rates from heart transplants for a large number of hospitals. Some of the
individual estimated mortality rates are based on limited data, and it may be
desirable to combine the individual rates in some way to obtain more accurate
estimates. We describe a two-stage model, a mixture of gamma distributions,
to represent prior beliefs that the true mortality rates are exchangeable. We
describe the use of R to simulate from the posterior distribution. We first use
contour graphs and simulation to learn about the posterior distribution of the
hyperparameters. Once we simulate hyperparameters, we can simulate from
the posterior distributions of the true mortality rates from gamma distribu-
tions. We conclude by illustrating how the simulation of the joint posterior
can be used to perform different types of inferences in the heart transplant
application.

7.2 Three Examples

In many statistical problems, we are interested in learning about many pa-
rameters that are connected in some way. To illustrate, consider the following
three problems described in this chapter and the chapters to follow.

1. Simultaneous estimation of hospital mortality rates
In the main example of this chapter, one is interested in learning about
the mortality rates due to heart transplant surgery for 94 hospitals. Each
hospital has a true mortality rate λi, and so one wishes to simultaneously
estimate the 94 rates λ1, ..., λ94. It is reasonable to believe a priori that
the true rates are similar in size, which implies a dependence structure

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 7,
© Springer Science+Business Media, LLC 2009

154 7 Hierarchical Modeling

between the parameters. If one is told some information about a particular
hospital’s true rate, that information would likely affect one’s belief about
the location of a second hospital’s rate.

2. Estimating college grade point averages
In an example in Chapter 10, admissions people at a particular university
collect a table of means of freshman grade point averages (GPA) organized
by the student’s high school rank and his or her score on a standardized
test. One wishes to learn about the collection of population mean GPAs,
with the ultimate goal of making predictions about the success of fu-
ture students that attend the university. One believes that the population
GPAs can be represented as a simple linear function of the high school
rank and standardized test score.

3. Estimating career trajectories
In an example in Chapter 11, one is learning about the pattern of perfor-
mance of athletes as they age during their sports careers. In particular, one
wishes to estimate the career trajectories of the batting performances of a
number of baseball players. For each player, one fits a model to estimate
his career trajectory, and Figure 7.1 displays the fitted career trajectories
for nine players. Note that the shapes of these trajectories are similar; a
player generally will increase in performance until his late 20s or early
30s and then decline until retirement. The prior belief is that the true
trajectories will be similar between players, which again implies a prior
distribution with dependence.

In many-parameter situations such as the ones described here, it is natural
to construct a prior distribution in a hierarchical fashion. In this type of model,
the observations are given distributions conditional on parameters, and the
parameters in turn have distributions conditional on additional parameters
called hyperparameters. Specifically, we begin by specifying a data distribution

y ∼ f(y|θ),

and the prior vector θ will be assigned a prior distribution with unknown
hyperparameters λ:

θ ∼ g1(θ|λ).

The hyperparameter vector λ in turn will be assigned a distribution

λ ∼ g2(λ).

One general way of constructing a hierarchical prior is based on the prior
belief of exchangeability. A set of parameters θ = (θ1, ..., θk) is exchangeable if
the distribution of θ is unchanged if the parameter components are permuted.
This implies that one’s prior belief about θj , say, will be the same as one’s
belief about θh. One can construct an exchangeable prior by assuming that
the components of θ are a random sample from a distribution g1:

θ1, ..., θk random sample from g1(θ|λ),

7.3 Individual and Combined Estimates 155

Age

Fi
tte

d

0.02

0.04

0.06

0.08

0.10

20 25 30 35 40

Sosa Greenberg

20 25 30 35 40

Aaron

Ott Mays

0.02

0.04

0.06

0.08

0.10
Mantle

0.02

0.04

0.06

0.08

0.10
Schmidt

20 25 30 35 40

Ruth Killebrew

Fig. 7.1. Plots of fitted career trajectories for nine baseball players as a function of
their age.

and the unknown hyperparameter vector λ is assigned a known prior at the
second stage:

λ ∼ g2(λ).

This particular form of hierarchical prior will be used for the mortality rates
example of this chapter and the career trajectories example of Chapter 11.

7.3 Individual and Combined Estimates

Consider again the heart transplant mortality data discussed in Chapter 3.
The number of deaths within 30 days of heart transplant surgery is recorded
for each of 94 hospitals. In addition, we record for each hospital an expected
number of deaths called the exposure, denoted by e. We let yi and ei denote
the respective observed number of deaths and exposure for the ith hospital.
In R, we read in the relevant dataset hearttransplants in the LearnBayes
package.

> data(hearttransplants)

> attach(hearttransplants)

156 7 Hierarchical Modeling

A standard model assumes that the number of deaths yi follows a Poisson
distribution with mean eiλi and the objective is to estimate the mortality
rate per unit exposure λi. The fraction yi/ei is the number of deaths per
unit exposure and can be viewed as an estimate of the death rate for the ith
hospital. In Figure 7.2, we plot the ratios {yi/ei} against the logarithms of
the exposures {log(ei)} for all hospitals, where each point is labeled by the
number of observed deaths yi.

> plot(log(e), y/e, xlim=c(6,9.7), xlab="log(e)", ylab="y/e")

> text(log(e),y/e,labels=as.character(y),pos=4)

6 7 8 9

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

log(e)

y/
e

0 0

2

1

1

00

1

3

00

1

0

2

3

0 0

3

1

111

4

3

3

1

0

2
2

4
4

3

2

4

1

3

0

4

1

2

3

4
4

2

2

4

2

3

00

2

5
5

11

3

11

3

1

2

6

0

2

2

1
2

8

6

1

6

4

1

3

5

2

43

4
5

2

6

8

5

0

6

8

7

3 3

9

7

1817

Fig. 7.2. Plot of death rates against log exposure for all hospitals. Each point is
labeled by the number of observed deaths.

Note that the estimated rates are highly variable, especially for programs with
small exposures. The programs experiencing no deaths (a plotting label of 0)
also are primarily associated with small exposures.

Suppose we are interested in simultaneously estimating the true mortality
rates {λi} for all hospitals. One option is simply to estimate the true rates by
using the individual death rates

7.4 Equal Mortality Rates? 157

y1

e1
, ...,

y94

e94
.

Unfortunately, these individual rates can be poor estimates, especially for
the hospitals with small exposures. In Figure 7.2, we saw that some of these
hospitals did not experience any deaths and the individual death rate yi/ei = 0
would likely underestimate the hospital’s true mortality rate. Also, it is clear
from the figure that the rates for the hospitals with small exposures have high
variability.

Since the individual death rates can be poor, it seems desirable to combine
the individual estimates in some way to obtain improved estimates. Suppose
we can assume that the true mortality rates are equal across hospitals; that
is,

λ1 = ... = λ94.

Under this “equal-means” Poisson model, the estimate of the mortality rate
for the ith hospital would be the pooled estimate∑94

j=1 yj∑94
j=1 ej

.

But this pooled estimate is based on the strong assumption that the true
mortality rate is the same across hospitals. This is questionable since one
would expect some variation in the true rates.

We have discussed two possible estimates for the mortality rate of the ith
hospital: the individual estimate yi/ei and the pooled estimate

∑
yj/

∑
ej .

A third possibility is the compromise estimate

(1 − λ)
yi

ei
+ λ

∑94
j=1 yj∑94
j=1 ej

.

This estimate shrinks or moves the individual estimate yi/ei toward the pooled
estimate

∑
yj/

∑
ej where the parameter 0 < λ < 1 determines the size of

the shrinkage. We will see that this shrinkage estimate is a natural by-product
of the application of an exchangeable prior model to the true mortality rates.

7.4 Equal Mortality Rates?

Before we consider an exchangeable model, let’s illustrate fitting and checking
the model where the mortality rates are assumed equal. Suppose yi is dis-
tributed as Poisson(eiλ), i = 1, ..., 94, and the common mortality rate λ is
assigned a standard noninformative prior of the form

g(λ) ∝ 1
λ

.

158 7 Hierarchical Modeling

Then the posterior density of λ is given by

g(λ|data) ∝ 1
λ

94∏
j=1

[
λyj exp(−ejλ)

]

= λ
∑94

j=1 yj−1 exp

⎛
⎝−

94∑
j=1

ejλ

⎞
⎠

which is recognized as a gamma density with parameters
∑94

j=1 yj and
∑94

j=1 ej .
For our data, we compute

> sum(y)

[1] 277

> sum(e)

[1] 294681

and so the posterior density for the common rate λ is gamma(277, 294681).
One general Bayesian method of checking the suitability of a fitted model

such as this is based on the posterior predictive distribution. Let y∗i denote
the number of transplant deaths for hospital i with exposure ei in a future
sample. Conditional on the true rate λ, y∗i has a Poisson distribution with
mean eiλ. Our current beliefs about the ith true rate are contained in the
posterior density g(λ|y). The unconditional distribution of y∗i , the posterior
predictive density, is given by

f(y∗i |ei, y) =
∫

fP (y∗i |eiλ)g(λ|y)dλ,

where fP (y|λ) is the Poisson sampling density with mean λ. The posterior
predictive density represents the likelihood of future observations based on
our fitted model. For example, the density f(y∗i |ei, y) represents the number
of transplant deaths that we would predict in the future for a hospital with
exposure ei. If the actual number of observed deaths yi is in the middle of
this predictive distribution, then we can say that our observation is consistent
with our model fit. On the other hand, if the observed yi is in the extreme
tails of the distribution f(y∗i |ei, y), then this observation indicates that the
model is inadequate in fitting this observation.

To illustrate the use of the posterior predictive distribution, consider hos-
pital 94, which had 17 transplant deaths, that is, y94 = 17. Did this hospital
have an unusually high number of deaths? To answer this question, we simu-
late 1000 values from the posterior predictive density of y∗94.

To simulate from the predictive distribution of y∗94, we first simulate 1000
draws of the posterior density of λ

> lambda=rgamma(1000,shape=277,rate=294681)

7.4 Equal Mortality Rates? 159

and then simulate draws of y∗94 from a Poisson distribution with mean e94λ.

> ys94=rpois(1000,e[94]*lambda)

Using the following R code, Figure 7.3 displays a histogram of this posterior
predictive distribution, and the actual number of transplant deaths y94 is
shown by a vertical line.

> hist(ys94,breaks=seq(0.5,max(ys94)+0.5))

> lines(c(y[94],y[94]),c(0,120),lwd=3)

Since the observed yj is in the tail portion of the distribution, it seems in-
consistent with the fitted model – it suggests that this hospital actually has
a higher true mortality rate than estimated from this equal-rates model.

ys94

Fr
eq

ue
nc

y

0 5 10 15 20 25

0
20

40
60

80
10

0
12

0

Fig. 7.3. Histogram of simulated draws from the posterior predictive distribution
of y∗

94. The actual number of transplant deaths is shown by a vertical line.

We can check the consistency of the observed yi with its posterior pre-
dictive distribution for all hospitals. For each distribution, we compute the
probability that the future observation y∗i is at least as extreme as yi:

min{P (y∗i ≤ yi), P (y∗i ≥ yi)}.

160 7 Hierarchical Modeling

The following R code computes the probabilities of “at least as extreme” for
all observations and places the probabilities in the vector pout. Note that
we first write a short function prob.out that computes this probability for a
single subscript and then use sapply to apply this function for all indices.

> lambda=rgamma(1000,shape=277,rate=294681)

> prob.out=function(i)

+ {

+ ysi=rpois(1000,e[i]*lambda)

+ pleft=sum(ysi<=y[i])/1000

+ pright=sum(ysi>=y[i])/1000

+ min(pleft,pright)

+ }

> pout=sapply(1:94,prob.out)

We plot the probabilities against the log exposures and display this in Figure
7.4.

> plot(log(e),pout,ylab="Prob(extreme)")

6.5 7.0 7.5 8.0 8.5 9.0 9.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

log(e)

P
ro

b(
ex

tre
m

e)

Fig. 7.4. Scatterplot of predictive probabilities of “at least as extreme” against log
exposures for all observations.

7.5 Modeling a Prior Belief of Exchangeability 161

Note that a number of these tail probabilities appear small (15 are smaller
than 0.10), which means that the “equal-rates” model is inadequate for ex-
plaining the distribution of mortality rates for the group of 94 hospitals. We
will have to assume differences between the true mortality rates, which will
be modeled by the exchangeable model described in the next section.

7.5 Modeling a Prior Belief of Exchangeability

At the first stage of the prior, the true death rates λ1, ..., λ94 are assumed to
be a random sample from a gamma(α, α/μ) distribution of the form

g(λ|α, μ) =
(α/μ)αλα−1 exp(−αλ/μ)

Γ (α)
, λ > 0.

The prior mean and variance of λ are given by μ and μ2/α, respectively.
At the second stage of the prior, the hyperparameters μ and α are assumed
independent, with μ assigned an inverse gamma(a, b) distribution with density
μ−a−1 exp(−b/μ) and α the density g(α).

This prior distribution induces positive correlation between the true death
rates. To illustrate this, we focus on the prior for two particular rates, λ1

and λ2. Suppose one assigns the hyperparameter μ an inverse gamma(a, b)
distribution and sets the hyperparameter α equal to a fixed value α0. (This is
equivalent to assigning a density g(α) that places probability 1 on the value
α0.) It is possible to integrate out μ from the prior, resulting in the following
distribution for the true rates:

g(λ1, λ2|α0) ∝ (λ1λ2)α0−1

(α0(λ1 + λ2) + b)2α0+a
.

The function pgexchprior is written to compute the log prior density. The
arguments are the vector of true rates lambda and a vector pars consisting of
the prior parameters α0, a, and b.

pgexchprior=function(lambda,pars)
{
alpha=pars[1]; a=pars[2]; b=pars[3]
(alpha-1)*log(prod(lambda))-(2*alpha+a)*log(alpha*sum(lambda)+b)
}

We assign μ an inverse gamma(10, 10) distribution (a = 10, b = 10). In the
following R code, we construct contour plots of the joint density of (λ1, λ2)
for the values α0 equal to 5, 20, 80, and 400. (See Figure 7.5.)

> alpha=c(5,20,80,400); par(mfrow=c(2,2))

> for (j in 1:4)

+ mycontour(pgexchprior,c(.001,5,.001,5),c(alpha[j],10,10),

+ main=paste("ALPHA = ",alpha[j]),xlab="LAMBDA 1",ylab="LAMBDA 2")

162 7 Hierarchical Modeling

Since μ is assigned an inverse gamma(10, 10) distribution, both the true rates
λ1 and λ2 are centered about the value 1. The hyperparameter α is a precision
parameter that controls the correlation between the parameters. For the fixed
value α = 400, note that λ1 and λ2 are concentrated along the line λ1 = λ2. As
the precision parameter α approaches infinity, the exchangeable prior places
all of its mass along the space where λ1 = ... = λ94.

ALPHA = 5

LAMBDA 1

LA
M

B
D

A
 2

 −6.9

 −4.6

 −2.3

0 1 2 3 4 5

0
1

2
3

4
5

ALPHA = 20

LAMBDA 1

LA
M

B
D

A
 2 −6.9

 −4.6

 −2.3

0 1 2 3 4 5

0
1

2
3

4
5

ALPHA = 80

LAMBDA 1

LA
M

B
D

A
 2

 −6.9

 −4.6

 −2.3

0 1 2 3 4 5

0
1

2
3

4
5

ALPHA = 400

LAMBDA 1

LA
M

B
D

A
 2

 −6.9

 −4.6

 −2.3

0 1 2 3 4 5

0
1

2
3

4
5

Fig. 7.5. Contour graphs of the exchangeable prior on (λ1, λ2) when μ has an inverse
gamma(10, 10) distribution and for values of the precision parameter α = 5, 20, 80,
and 400.

Although we used subjective priors to illustrate the behavior of the prior
distribution, in practice vague distributions can be chosen for the hyperpa-
rameters μ and α. In this example, we assign the mean parameter the typical
vague prior of the form

g(μ) ∝ 1
μ

, μ > 0.

The precision parameter α assigned the proper, but relatively flat, prior den-
sity of the form

g(α) =
z0

(α + z0)2
, α > 0.

7.7 Simulating from the Posterior 163

The user will specify a value of the parameter z0 that is the median of α. In
this example, we let z0 = 0.53.

7.6 Posterior Distribution

Owing to the conditionally independent structure of the hierarchical model
and the choice of a conjugate prior form at stage 2, there is a relatively simple
posterior analysis. Conditional on values of the hyperparameters μ and α, the
rates λ1, ..., λ94 have independent posterior distributions. The posterior distri-
bution of λi is gamma(yi +α, ei +α/μ). The posterior mean of λi, conditional
on α and μ, can be written as

E(λi|y, α, μ) =
yi + α

ei + α/μ
= (1 − Bi)

yi

ei
+ Biμ,

where
Bi =

α

α + eiμ
.

The posterior mean of the true rate λi can be viewed as a shrinkage estimator,
where Bi is the shrinkage fraction of the posterior mean away from the usual
estimate yi/ei toward the prior mean μ.

Also, since a conjugate model structure was used, the rates λi can be
integrated out of the joint posterior density, resulting in the marginal posterior
density of (α, μ),

p(α, μ|data) = K
1

Γ 94(α)

94∏
j=1

[
(α/μ)αΓ (α + yi)
(α/μ + ei)(α+yi)

]
z0

(α + z0)2
1
μ

,

where K is a proportionality constant.

7.7 Simulating from the Posterior

In the previous section, the posterior density of all parameters was expressed
as

g(hyperparameters|data) g(true rates|hyperparameters,data),

where the hyperparameters are (μ, α) and the true rates are (λ1, ..., λ94). By
using the composition method, we can simulate a random draw from the joint
posterior by

• simulating (μ, α) from the marginal posterior distribution
• simulating λ1, ..., λ94 from their distribution conditional on the values of

the simulated μ and α

164 7 Hierarchical Modeling

First we need to simulate from the marginal density of the hyperparameters
μ and α. Since both parameters are positive, a good first step in this simulation
process is to transform each to the real-valued parameters

θ1 = log(α), θ2 = log(μ).

The marginal posterior of the transformed parameters is given by

p(θ1, θ2|data) = K
1

Γ 94(α)

94∏
j=1

[
(α/μ)αΓ (α + yi)
(α/μ + ei)(α+yi)

]
z0α

(α + z0)2
.

The following R function poissgamexch contains the definition of the log
posterior of θ1 and θ2.

poissgamexch=function (theta, datapar)
{

y = datapar$data[, 2]
e = datapar$data[, 1]
z0 = datapar$z0
alpha = exp(theta[1])
mu = exp(theta[2])
beta = alpha/mu
logf = function(y, e, alpha, beta)

lgamma(alpha + y) - (y + alpha) * log(e + beta) +
alpha * log(beta) - lgamma(alpha)

val = sum(logf(y, e, alpha, beta))
val = val + log(alpha) - 2 * log(alpha + z0)
return(val)

}

Note that this function has two inputs:

• theta– a vector corresponding to a value of (θ1, θ2)
• datapar – an R list with two components, the data and the value of the

hyperparameter z0

Note that we use the function lgamma, which computes the log of the gamma
function, log Γ (x).

Using the R function laplace, we find the posterior mode and associated
variance-covariance matrix. The Nelder and Mead algorithm is run using the
starting value (θ1, θ2) = (2,−7). The output of laplace includes the mode
and the corresponding estimate at the variance-covariance matrix.

> datapar = list(data = hearttransplants, z0 = 0.53)

> start=c(2, -7)

> fit = laplace(poissgamexch, start, datapar)

> fit

7.7 Simulating from the Posterior 165

$mode
[1] 1.883954 -6.955446

$var
[,1] [,2]

[1,] 0.233694921 -0.003086655
[2,] -0.003086655 0.005866020

$int
[1] -2208.503

$converge
[1] TRUE

This output gives us information about the location of the posterior density.
By trial and error, we use the function mycontour to find a grid that contains
the posterior density of (θ1, θ2). The resulting graph is displayed in Figure
7.6.

> par(mfrow = c(1, 1))

> mycontour(poissgamexch, c(0, 8, -7.3, -6.6), datapar,

+ xlab="log alpha",ylab="log mu")

Inspecting Figure 7.6, we see that the posterior density for (θ1, θ2) is
nonnormal shaped, especially in the direction of θ1 = log α. Since the nor-
mal approximation to the posterior is inadequate, we obtain a simulated
sample of (θ1, θ2) by using the “Metropolis within Gibbs” algorithm in the
function gibbs. In this Gibbs sampling algorithm, we start at the value
(θ1, θ2) = (4,−7) and iterate through 1000 cycles with Metropolis scale pa-
rameters c1 = 1, c2 = .15. As the output indicates, the acceptance rates in the
simulation of the two conditional distributions are each about 30%.

> start = c(4, -7)

> fitgibbs = gibbs(poissgamexch, start, 1000, c(1,.15), datapar)

> fitgibbs$accept

[,1] [,2]
[1,] 0.312 0.284

Figure 7.7 shows a simulated sample of size 1000 placed on top of the con-
tour graph. Note that most of the points fall within the first two contour lines
of the graph, indicating that the algorithm appears to give a representative
sample from the marginal posterior distribution of θ1 and θ2.

> mycontour(poissgamexch, c(0, 8, -7.3, -6.6), datapar,

+ xlab="log alpha",ylab="log mu")

> points(fitgibbs$par[, 1], fitgibbs$par[, 2])

166 7 Hierarchical Modeling

0 2 4 6 8

−7
.3

−7
.2

−7
.1

−7
.0

−6
.9

−6
.8

−6
.7

−6
.6

log alpha

lo
g

m
u

Fig. 7.6. Contour plot of the posterior density of (log α, log μ) for the heart trans-
plant example. Contour lines are drawn at 10%, 1%, and .1% of the modal value.

Figure 7.8 shows a kernel density estimate of the simulated draws from
the marginal posterior distribution of the precision parameter θ1 = log(α).

> plot(density(fitgibbs$par[, 1], bw = 0.2))

We can learn about the true mortality rates λ1, ..., λ94 by simulating values
from their posterior distributions. Given values of the hyperparameters α and
μ, the true rates have independent posterior distributions with λi distributed
as gamma(yi +α, ei +α/μ). For each rate, we use the rgamma function in R to
obtain a sample from the gamma distribution, where the gamma parameters
are functions of the simulated values of α and μ. For example, one can obtain
a sample from the posterior distribution of λ1 using the R code

> alpha = exp(fitgibbs$par[, 1])

> mu = exp(fitgibbs$par[, 2])

> lam1 = rgamma(1000, y[1] + alpha, e[1] + alpha/mu)

After we obtain a simulated sample of size 1000 for each true rate λi, we
can summarize each sample by computing the 5th and 95th percentiles. The
interval from these two percentiles constitutes an approximate 90% probability
interval for λi. We graph these 90% probability intervals as vertical lines on our

7.7 Simulating from the Posterior 167

0 2 4 6 8

−7
.3

−7
.2

−7
.1

−7
.0

−6
.9

−6
.8

−6
.7

−6
.6

log alpha

lo
g

m
u

Fig. 7.7. Contour plot of the posterior density of (log α, log μ) for the heart trans-
plant example with a sample of simulated values placed on top.

original graph of the log exposures and the individual rates in Figure 7.9. In
contrast to the wide variation in the observed death rates, note the similarity
in the locations of the probability intervals for the true rates. This indicates
that these Bayesian estimates are shrinking the individual rates toward the
pooled estimate.

> alpha = exp(fitgibbs$par[, 1])

> mu = exp(fitgibbs$par[, 2])

> plot(log(e), y/e, pch = as.character(y))

> for (i in 1:94) {

+ lami = rgamma(1000, y[i] + alpha, e[i] + alpha/mu)

+ probint = quantile(lami, c(0.05, 0.95))

+ lines(log(e[i]) * c(1, 1), probint)

+ }

168 7 Hierarchical Modeling

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

N = 1000 Bandwidth = 0.2

D
en

si
ty

Fig. 7.8. Density estimate of simulated draws from the marginal posterior of log α.

7.8 Posterior Inferences

Once a simulated sample of true rates {λi} and the hyperparameters μ and
α has been generated from the joint posterior distribution, we can use this
sample to perform various types of inferences.

7.8.1 Shrinkage

The posterior mean of the ith true mortality rate λi can be approximated by

E(λi|data) ≈ (1 − E(Bi|data))
yi

ei
+ E(Bi|data)

∑94
j=1 yj∑94
j=1 ej

,

where Bi = α/(α + eiμ) is the size of the shrinkage of the ith observed rate
yi/ei toward the pooled estimate

∑94
j=1 yj/

∑94
j=1 ej . In the following R code,

we compute the posterior mean of the shrinkage sizes {Bi} for all 94 compo-
nents. In Figure 7.10, we plot the mean shrinkages against the logarithms of
the exposures. For the hospitals with small exposures, the Bayesian estimate

7.8 Posterior Inferences 169

0 0

2

1

1

00

1

3

00

1

0

2

3

0 0

3

1

111

4

3

3

1

0

2
2

4
4

3

2

4

1

3

0

4

1

2

3

4
4

2

2

4

2
3

00

2

5
5

11

3

11

3

1

2

6

0

2
2

1 2

8

6

1

6

4

1

3

5

2
43

4
5

2

6

8

5

0

6

8

7

3 3

9

7

11

6.5 7.0 7.5 8.0 8.5 9.0 9.5

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

log(e)

z/
e

Fig. 7.9. Plot of observed death rates against log exposures together with intervals
representing 90% posterior probability bands for the true rates {λi}.

shrinks the individual estimate by 90% toward the combined estimate. In con-
trast, for large hospitals with high exposures, the shrinkage size is closer to
50%.

> shrink=function(i) mean(alpha/(alpha + e[i] * mu))

> shrinkage=sapply(1:94, shrink)

> plot(log(e), shrinkage)

7.8.2 Comparing Hospitals

Suppose one is interested in comparing the true mortality rates of the hos-
pitals. Specifically, suppose one wishes to compare the “best hospital” with
the other hospitals. First, we find the hospital with the smallest estimated
mortality rate. In the following R output, we compute the posterior mean of
the mortality rates, where the posterior mean of the true rate for hospital i is
given by

E

(
yi + α

ei + α/μ

)
,

170 7 Hierarchical Modeling

6.5 7.0 7.5 8.0 8.5 9.0 9.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log(e)

sh
rin

ka
ge

Fig. 7.10. Plot of the posterior shrinkages against the log exposures for the heart
transplant example.

where the expectation is taken over the marginal posterior distribution of
(α, μ):

> mrate=function(i) mean(rgamma(1000, y[i] + alpha, e[i]

+ alpha/mu))

> hospital=1:94

> meanrate=sapply(hospital,mrate)

> hospital[meanrate==min(meanrate)]

[1] 85

We identify hospital 85 as the one with the smallest true mortality rate.
Suppose we wish to compare hospital i with hospital j. One first obtains

simulated draws from the marginal distribution of (λi, λj). Then the probabil-
ity that hospital i has a smaller mortality rate, P(λi < λj), can be estimated
by the proportion of simulated (λi, λj) pairs where λi is smaller than λj . In
the following R code, we first simulate the posterior distribution for all true
rates λ1, ..., λ94 and store the simulated draws in the matrix LAM. Using a
simple function compare.rates (supplied by Maria Rizzo), we compute the
comparison probabilities for all pairs of hospitals and store the results in the

7.9 Bayesian Sensitivity Analysis 171

matrix better. The probability that hospital i’s rate is smaller than hospital
j’s rate is stored in the ith row and jth element of better.

> sim.lambda=function(i) rgamma(1000,y[i]+alpha,e[i]+alpha/mu)

> LAM=sapply(1:94,sim.lambda)

> compare.rates <- function(x) {

+ nc <- NCOL(x)

+ ij <- as.matrix(expand.grid(1:nc, 1:nc))

+ m <- as.matrix(x[,ij[,1]] > x[,ij[,2]])

+ matrix(colMeans(m), nc, nc, byrow = TRUE)

+ }

> better=compare.rates(LAM)

To compare the best hospital, 85, with the remaining hospitals, we display
the 85th column of the matrix better. This gives the probabilities P (λi < λ85)
for all i. We display these probabilities for the first 24 hospitals. Note that
hospital 85 is better than most of these hospitals since most of the posterior
probabilities are close to zero.

> better[1:24,85]

[1] 0.166 0.184 0.078 0.114 0.131 0.217 0.205 0.165 0.040 0.196
[11] 0.192 0.168 0.184 0.071 0.062 0.196 0.231 0.056 0.303 0.127
[21] 0.160 0.135 0.041 0.070

7.9 Bayesian Sensitivity Analysis

In any Bayesian analysis, it is important to assess the sensitivity of any infer-
ences with respect to changes in the model assumptions, including assumptions
about the sampling density f(y|θ) and the prior density g(θ). Here we briefly
explore the sensitivity of our posterior inferences with respect to the choice of
parameters in the prior distribution.

In our prior, we assumed the true mortality rates {λi} were a random
sample from a gamma(α, α/μ) distribution, where the common mean μ was
assigned a noninformative prior proportional to 1/μ and α was assigned the
proper density z0/(α + z0)2, where the user assesses the median z0. Since the
parameter α controls the shrinkage of the individual estimates toward the
pooled estimate in the posterior analysis, it is natural to wonder about the
sensitivity of the posterior of α with respect to changes in the specification of
z0.

We focus on the posterior of θ1 = log α since the distribution of this
transformed parameter is approximately symmetric and more amenable to
inspection. The prior for θ1 has the form

g(θ1|z0) =
z0 exp(θ1)

(z0 + exp(θ1))2
.

172 7 Hierarchical Modeling

Suppose that instead of the choice z0 = 0.53, the user decides on using the
value z0 = 5. Will this change, a tenfold increase in the prior median of α,
have a substantial impact on the posterior distribution of log α?

The SIR algorithm, described in Section 5.10, provides a convenient way
of converting simulated draws of θ1 from one posterior distribution to a new
distribution. In this case, the weights would correspond to a ratio of the prior
of θ1 at the new and current values of z0:

w(θ1) =
g(θ1|z0 = 5)

g(θ1|z0 = 0.53)
.

We then resample from the original posterior sample of θ1 with sampling
probabilities proportional to the weights to obtain the new posterior sample.

We write an R function sir.old.new that implements the SIR algorithm
for a change of priors for a one-dimensional inference. The inputs are theta,
a sample from the original posterior, prior, a function defining the original
prior; and prior.new, a function defining the new prior. The output is a
sample from the new posterior sample.

sir.old.new=function(theta, prior, prior.new)
{
log.g=log(prior(theta))
log.g.new=log(prior.new(theta))
wt=exp(log.g.new-log.g-max(log.g.new-log.g))
probs=wt/sum(wt)
n=length(probs)
indices=sample(1:n,size=n,prob=probs,replace=TRUE)
theta[indices]
}

To use this function, we write short functions defining the original and new
prior densities for θ1 = log α:

prior=function(theta)
0.53*exp(theta)/(exp(theta)+0.53)^2

prior.new=function(theta)
5*exp(theta)/(exp(theta)+5)^2

Then we apply the function sir.old.new using the simulated draws of log α
from the posterior.

> log.alpha=fitgibbs$par[, 1]

> log.alpha.new=sir.old.new(log.alpha, prior, prior.new)

The vector log.alpha.new contains a simulated sample of the posterior of
log α using the new prior.

Figure 7.11 illustrates the impact of the choice of prior on the posterior
inference of the precision parameter log α. The thin solid and dotted lines show
respectively the original and new priors, which are substantially different in

7.10 Posterior Predictive Model Checking 173

location. The thick solid and dotted lines represent the corresponding posterior
densities. Despite the fact that the priors are different, note that the posteriors
of log α are similar in location. This indicates that the choice of z0 has only
a modest effect on the posterior shrinkage of the model. In other words, this
particular posterior inference appears to be robust to the change in prior
specification of the median of α.

Original Prior and Posterior (solid),
 New Prior and Posterior (dashed)

log alpha

D
en

si
ty

0.0

0.2

0.4

0.6

−2 0 2 4

Fig. 7.11. Prior and posterior distributions of log α for the prior parameter choices
z0 = 0.53 and z0 = 5 for the heart transplant problem.

7.10 Posterior Predictive Model Checking

In Section 7.3, we used the posterior predictive distribution to examine the
suitability of the “equal-rates” model where λ1 = ... = λ94, and we saw that
the model seemed inadequate in explaining the number of transplant deaths
for individual hospitals. Here we use the same methodology to check the ap-
propriateness of the exchangeable model.

Again we consider hospital 94, which experienced 17 deaths. Recall that
simulated draws of the hyperparameters α and μ are contained in the vectors

174 7 Hierarchical Modeling

alpha and mu, respectively. To simulate from the predictive distribution of
y∗94, we first simulate draws of the posterior density of λ94

> lam94=rgamma(1000,y[94]+alpha,e[94]+alpha/mu)

and then simulate draws of y∗94 from a Poisson distribution with mean e94λ94.

> ys94=rpois(1000,e[94]*lam94)

Figure 7.12 displays the histogram of y∗94 and places a vertical line on top,
corresponding to the value y94 = 17, using the commands

> hist(ys94,breaks=seq(-0.5,max(ys94)+0.5))

> lines(y[94]*c(1,1),c(0,100),lwd=3)

Note that in this case the observed number of deaths for this hospital is in
the middle of the predictive distribution, which indicates agreement of this
observation with the fitted model.

ys94

Fr
eq

ue
nc

y

0 5 10 15 20 25 30 35

0
20

40
60

80
10

0

Fig. 7.12. Histogram of the posterior predictive distribution of y∗
94 for hospital 94

from the exchangeable model. The observed value of y94 is indicated by the vertical
line.

Again this exchangeable model can check the consistency of the observed
yi with its posterior predictive distribution for all hospitals. In the following

7.12 Summary of R Functions 175

R code, we compute the probability that the future observation y∗i is at least
as extreme as yi for all observations; the probabilities are placed in the vector
pout.exchange.

> prob.out=function(i)

+ {

+ lami=rgamma(1000,y[i]+alpha,e[i]+alpha/mu)

+ ysi=rpois(1000,e[i]*lami)

+ pleft=sum(ysi<=y[i])/1000

+ pright=sum(ysi>=y[i])/1000

+ min(pleft,pright)

+ }

> pout.exchange=sapply(1:94,prob.out)

Recall that the probabilities of“at least as extreme”for the equal-means model
were contained in the vector pout. To compare the goodness of fits of the two
models, Figure 7.13 shows a scatterplot of the two sets of probabilities with a
comparison line y = x placed on top.

> plot(pout,pout.exchange,xlab="P(extreme), equal means",

+ ylab="P(extreme), exchangeable")

> abline(0,1)

Note that the probabilities of extreme for the exchangeable model are larger,
indicating that the observations are more consistent with the exchangeable fit-
ted model. Note that only two of the observations have a probability smaller
than 0.1 for the exchangeable model, indicating general agreement of the ob-
served data with this model.

7.11 Further Reading

Chapter 5 of Gelman et al. (2003) provides a good introduction to hierarchical
models. Chapter 5 of Carlin and Louis (2009), introduces hierarchical model-
ing from an empirical Bayes perspective. Posterior predictive model checking
is described as a general method for model checking in Chapter 6 of Gelman
et al. (2003). The use of hierarchical modeling to analyze the heart transplant
data is described in Christiansen and Morris (1995).

7.12 Summary of R Functions

poissgamexch – computes the logarithm of the posterior for the parameters
(log alpha, log mu) in a Poisson/gamma model
Usage: poissgamexch(theta,datapar)
Arguments: theta, matrix of parameter values, where each row represents a
value of (log alpha, log mu); datapar, list with components data (matrix

176 7 Hierarchical Modeling

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P(extreme), equal means

P
(e

xt
re

m
e)

, e
xc

ha
ng

ea
bl

e

Fig. 7.13. Scatterplot of posterior predictive probabilities of “at least as extreme”
for the equal means and exchangeable models.

with column of counts and column of exposures) and z0, the value of the
second-stage hyperparameter
Value: vector of values of the log posterior, where each value corresponds to
each row of the parameters in theta

7.13 Exercises

1. Poisson/gamma exchangeable model
Instead of using the parameterization of Section 7.5, suppose we model
exchangeability by assuming that the true rates λ1, ..., λ94 are a random
sample from a gamma(α, β) distribution of the form

g(λ|α, β) =
λα−1 exp(−βλ)

Γ (α)βα
, λ > 0.

At the second stage of the prior, assume that α and β are independent
where

g(α, β) =
1

(α + 1)2
1

(β + 1)2
, α > 0, β > 0.

7.13 Exercises 177

a) Construct an R function to compute the log posterior density of θ =
(log α, log β). For the heart transplant mortality data, use an MCMC
algorithm to simulate a sample of size 1000 from the posterior density
of θ.

b) Using simulation, construct 90% interval estimates for the true rates.
c) Compare the interval estimates computed in part (b) with the interval

estimates obtained in Section 7.8. Is the posterior analysis sensitive
with respect to the choice of exchangeable model?

2. Normal/normal exchangeable model
Suppose we have J independent experiments where in the jth experiment
we observe the single observation yj , which is normally distributed with
mean θj and known variance σ2

j . Suppose the parameters θ1, ..., θJ are
drawn from a normal population with mean μ and variance τ2. The vector
of hyperparameters (μ, τ) is assigned a uniform prior. Gelman et al. (2003)
describe the posterior calculations for this model. To summarize:
• Conditional on the hyperparameters μ and τ , the θj have independent

posterior distributions, where θj |μ, τ, y is normally distributed with
mean θ̂j and variance Vj , where

θ̂j =
yj/σ2

j + μ/τ2

1/σ2
j + 1/τ2

, Vj =
1

1/σ2
j + 1/τ2

.

• The marginal posterior density of the hyperparameters (μ, τ) is given
by

g(μ, τ |y) ∝
J∏

j=1

φ
(
yj |μ,

√
σ2

j + τ2
)

,

where φ(y|μ, σ) denotes the normal density with mean μ and standard
deviation σ.

To illustrate this model, Gelman et al. (2003) describe the results of inde-
pendent experiments to determine the effects of special coaching programs
on SAT scores. For the jth experiment, one observes an estimated coach-
ing effect yj with associated standard error σj ; the values of the effects
and standard errors are displayed in Table 7.1. The objective is to com-
bine the coaching estimates in some way to obtain improved estimates of
the true effects θj .
a) Write an R function to compute the logarithm of the posterior den-

sity of the hyperparameters μ and log τ . (Don’t forget to include the
Jacobian term in the transformation to (μ, log τ).) Use a simulation
algorithm such as Gibbs sampling (function gibbs), random walk
Metropolis (function rwmetrop), or independence Metropolis (func-
tion indepmetrop) to obtain a sample of size 1000 from the posterior
of (μ, log τ).

b) Using the simulated sample from the marginal posterior of (μ, log τ),
simulate 1000 draws from the joint posterior density of the means

178 7 Hierarchical Modeling

Table 7.1. Observed effects of special preparation on SAT scores in eight random-
ized experiments.

School Treatment Effect yj Standard Error σj

A 28 15

B 8 10

C −3 16

D 7 11

E −1 9

F 1 11

G 18 10

H 12 18

θ1, ..., θJ . Summarize the posterior distribution of each θj by comput-
ing a posterior mean and posterior standard deviation.

3. Normal/normal exchangeable model (continued)
We assume that the sampling algorithm in Exercise 2 has been followed
and one has simulated a sample of 1000 values from the marginal posterior
of the hyperparameters μ and log τ and also from the posterior densities
of θ1, ..., θJ .
a) The posterior mean of θj , conditional on μ and τ , can be written as

E(θj |y, μ, τ) = (1 − Bj)yj + Bjμ,

where Bj = τ−2/(τ−2 + σ−2
j) is the size of the shrinkage of yj toward

the mean μ. For all observations, compute the shrinkage size E(Bj |y)
from the simulated draws of the hyperparameters. Rank the schools
from the largest shrinkage to the smallest shrinkage, and explain why
there are differences.

b) School A had the largest observed coaching effect, 28. From the simu-
lated draws from the joint distribution of θ1, ..., θJ , compute the pos-
terior probability P(θ1 > θj) for j = 2, ..., J .

4. Beta/binomial exchangeable model
In Chapter 5, we described the problem of simultaneously estimating
the rates of death from stomach cancer for males at risk in the age
bracket 45–64 for the largest cities in Missouri. The dataset is available
as cancermortality in the LearnBayes package. Assume that the num-
bers of cancer deaths {yj} are independent, where yj is binomial with
sample size nj and probability of death pj . To model a prior belief of
exchangeability, it is assumed that p1, ..., p20 are a random sample from
a beta distribution with parameters a and b. We reparameterize the beta
parameters a and b to new values

η =
a

a + b
, K = a + b.

7.13 Exercises 179

The hyperparameter η is the prior mean of each pj and K is a precision
parameter. At the last stage of this model, we assign (η, K) the noninfor-
mative proper prior

g(η,K) =
1

(1 + K)2
, 0 < η < 1, K > 0.

Due to the conjugate form of the prior, one can derive the following pos-
terior distributions.
• Conditional on the values of the hyperparameters η and K, the prob-

abilities p1, ..., p20 are independent, with pj distributed beta with pa-
rameters aj = Kη + yj and bj = K(1 − η) + nj − yj .

• The marginal posterior density of (η,K) has the form

g(η,K|y) ∝ 1
(1 + K)2

20∏
j=1

B(Kη + yj , K(1 − η) + nj − yj)
B(Kη,K(1 − η)

,

where K > 0 and 0 < η < 1.
a) To summarize the posterior distribution of the hyperparameters η and

K, first transform the parameters to the real line using the reexpres-
sions θ1 = log K and θ2 = log(η/(1 − η)). Write an R function to
compute values of the log posterior of θ1 and θ2.

b) Use a simulation algorithm such as Gibbs sampling (function gibbs),
random walk Metropolis (function rwmetrop), or independence Metropo-
lis (function indepmetrop) to obtain a sample of size 1000 from the
posterior of (θ1, θ2). Summarize the posterior distributions of K and
η using 90% interval estimates.

c) Using the simulated sample from the marginal posterior of (θ1, θ2),
simulate 1000 draws from the joint posterior density of the probabil-
ities p1, ..., p20. Summarize the posterior distribution of each pj using
a 90% interval estimate.

5. Beta/binomial exchangeable model (continued)
We assume that the sampling algorithm in Exercise 4 has been followed
and one has simulated a sample of 1000 values from the marginal posterior
of the hyperparameters K and m, and also from the posterior densities of
p1, ..., p20.
a) Let y∗j denote the number of cancer deaths of a future sample of size

nj from the jth city in Missouri. Conditional on the probability pj ,
the distribution of y∗j is binomial(nj , pj). For city 1 (with nj = 1083
patients) and city 15 (with nj = 53637 patients), simulate a sample
of 1000 values from the posterior predictive distribution of y∗j .

b) For cities 1 and 15, the observed numbers of cancer deaths were 0 and
54, respectively. By comparing the observed values of yj against the
respective predictive distributions, decide if these values are consistent
with the beta/binomial exchangeable model.

8

Model Comparison

8.1 Introduction

In this chapter, we illustrate the use of R to compare models from a Bayesian
perspective. We introduce the notion of a Bayes factor in the setting where one
is comparing two hypotheses about a parameter. In the setting where one is
testing hypotheses about a population mean, we illustrate the computation of
Bayes factors in both the one-sided and two-sided settings. We then generalize
to the setting where one is comparing two Bayesian models, each consisting
of a choice of prior and sampling density. In this case, the Bayes factor is
the ratio of the marginal densities for the two models. We illustrate Bayes
factor computations in two examples. In the analysis of hitting data for a
baseball player, one wishes to compare a “consistent” model with a “streaky”
model where the probability of a success may change over a season. In the
second application, we illustrate the computation of Bayes factors against
independence in a two-way contingency table.

8.2 Comparison of Hypotheses

To introduce Bayesian measures of evidence, suppose one observes Y from a
sampling distribution f(y|θ) and one wishes to test the hypotheses

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1,

where Θ0 and Θ1 form a partition of the parameter space. If one assigns a
proper prior density g(θ), then one can judge the two hypotheses a priori by
the prior odds ratio

π0

π1
=

P (θ ∈ Θ0)
P (θ ∈ Θ1)

=

∫
Θ0

g(θ)dθ∫
Θ1

g(θ)dθ
.

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 8,
© Springer Science+Business Media, LLC 2009

182 8 Model Comparison

After data Y = y are observed, one’s beliefs about the parameter are
updated by the posterior density

g(θ|y) ∝ L(θ)g(θ),

where L(θ) is the likelihood function. One’s new beliefs about the two hy-
potheses are summarized by the posterior odds ratio

p0

p1
=

P (θ ∈ Θ0|y)
P (θ ∈ Θ1|y)

=

∫
Θ0

g(θ|y)dθ∫
Θ1

g(θ|y)dθ
.

The Bayes factor is the ratio of the posterior odds to the prior odds of the
hypotheses

BF =
posterior odds

prior odds
=

p0/p1

π0/π1
.

The statistic BF is a measure of the evidence provided by the data in support
of the hypothesis H0. The posterior probability of the hypothesis H0 can be
expressed as a function of the Bayes factor and the prior probabilities of the
hypotheses by

p0 =
π0BF

π0BF + 1 − π0
.

8.3 A One-Sided Test of a Normal Mean

In an example from Chapter 14 of Berry (1996), the author was interested in
determining his true weight from a variable bathroom scale. We assume the
measurements are normally distributed with mean μ and standard deviation
σ. The author weighed himself ten times and obtained the measurements (in
pounds) 182, 172, 173, 176, 176, 180, 173, 174, 179, and 175. For simplicity,
assume that he knows the accuracy of the scale and σ = 3 pounds.

If we let μ denote the author’s true weight, suppose he is interested in
assessing if his true weight is more than 175 pounds. He wishes to test the
hypotheses

H0 : μ ≤ 175, H1 : μ > 175.

Suppose the author has little prior knowledge about his true weight and so he
assigns μ a normal prior with mean 170 and standard deviation 5

μ distributed as N(170, 5).

The prior odds of the null hypothesis H0 is given by

π0

π1
=

P (μ ≤ 175)
P (μ > 175)

.

We compute this prior odds from the N(170, 5) density using the pnorm
function. In the following output, pmean and pvar are, respectively, the prior
mean and prior variance of μ.

8.3 A One-Sided Test of a Normal Mean 183

> pmean=170; pvar=25

> probH=pnorm(175,pmean,sqrt(pvar))

> probA=1-probH

> prior.odds=probH/probA

> prior.odds

[1] 5.302974

So a priori the null hypothesis is five times more likely than the alternative
hypothesis.

We enter the ten weight measurements into R and compute the sample
mean ȳ and the associated sampling variance sigma2 equal to σ2/n.

> weights=c(182, 172, 173, 176, 176, 180, 173, 174, 179, 175)

> ybar=mean(weights)

> sigma2=3^2/length(weights)

By the familiar normal density/normal prior updating formula described
in Section 3.4, the posterior precision (inverse of the variance) of μ is the sum
of the precisions of the data and the prior.

> post.precision=1/sigma2+1/pvar

> post.var=1/post.precision

The posterior mean of μ is the weighted average of the sample mean and
the prior mean, where the weights are proportional to the respective precisions.

> post.mean=(ybar/sigma2+pmean/pvar)/post.precision

> c(post.mean,sqrt(post.var))

[1] 175.7915058 0.9320547

The posterior density of μ is N(175.79, 0.93).
Using this normal posterior density, we calculate the odds of the null

hypothesis.

> post.odds=pnorm(175,post.mean,sqrt(post.var))/

+ (1-pnorm(175,post.mean,sqrt(post.var)))

> post.odds

[1] 0.2467017

So the Bayes factor in support of the null hypothesis is

> BF = post.odds/prior.odds

> BF

[1] 0.04652139

From the prior probabilities and the Bayes factor, we can compute the
posterior probability of the null hypothesis.

184 8 Model Comparison

> postH=probH*BF/(probH*BF+probA)

> postH

[1] 0.1978835

Based on this calculation, the author can conclude that it is unlikely that his
weight is at most 175 pounds.

There is an interesting connection between this Bayesian measure of evi-
dence and the frequentist p-value. Here, with a known value of the standard
deviation σ, the traditional test of H0 is based on the test statistic

z =
√

n(ȳ − 175)
3

.

The p-value is the probability that a standard normal variate exceeds z. In
the R output, we compute the p-value using the pnorm function.

> z=sqrt(length(weights))*(mean(weights)-175)/3

> 1-pnorm(z)

[1] 0.1459203

Suppose we repeat the Bayesian analysis using a very flat prior where
the mean and standard deviation are 170 and 1000, respectively. The func-
tion mnormt.onesided in the LearnBayes package performs the calculations,
where one inputs the value of the mean to be tested, the parameters (mean
and standard deviation) of the normal prior, and the data values (sample
mean, sample size, known sampling standard deviation).

> weights=c(182, 172, 173, 176, 176, 180, 173, 174, 179, 175)

> data=c(mean(weights),length(weights),3)

> prior.par=c(170,1000)

> mnormt.onesided(175,prior.par,data)

$BF
[1] 0.1694947
$prior.odds
[1] 1.008011
$post.odds
[1] 0.1708525
$postH
[1] 0.1459215

Note that the probability of the null hypothesis is approximately equal to
the p-value. This illustrates the general result that a Bayesian probability of a
hypothesis is equal to the p-value for one-sided testing problems when a vague
prior distribution is placed on the parameter.

8.4 A Two-Sided Test of a Normal Mean 185

8.4 A Two-Sided Test of a Normal Mean

Consider the “two-sided” test of the hypothesis that a mean from a normal
distribution (with known standard deviation) is equal to a specific value. Con-
tinuing the example from the last section, suppose that Berry knows that his
weight last year was 170 pounds and he wonders whether he still weighs 170
this year, so he is interested in the hypothesis H0 that his true current weight
μ is equal to 170. The alternative hypothesis H1 is that his weight is now
either larger or smaller than 170.

The construction of the prior distribution is somewhat unique here since
there will be a point mass at the value of μ in the null hypothesis. In the
example, the author believes that there is a good chance that his weight
did not change from last year, and so he assigns the statement μ = 170 a
probability of .5.

Next, the author has to think about plausible values for μ if the hypothesis
H0 is not true. If his weight did change from last year, then he may think that
it is more likely that μ is close to last year’s weight (170) than far from it. A
normal distribution with mean 170 and standard deviation τ will then be a
suitable model for alternative values for μ.

In general, we are testing the hypothesis H0 : μ = μ0 against the alter-
native hypothesis H1 : μ �= μ0 in the case where the standard deviation σ is
known. A normal prior distribution with mean μ0 and standard deviation τ
will be used to represent one’s opinion under the alternative hypothesis H1.

In this situation, the Bayes factor in support of the hypothesis H is given
by

BF =
n1/2

σ exp{− n
2σ2 (ȳ − μ0)2}

(σ2/n + τ2)−1/2 exp{− 1
2(σ2/n+τ2) (ȳ − μ0)2}

.

As before, if π0 is the prior probability of the null hypothesis H0 that μ = μ0,
then the posterior probability of H0 is

p0 =
π0BF

π0BF + 1 − π0
.

To compute the Bayes factor in practice, one has to input the standard
deviation τ of the normal density under the alternative hypothesis H1. If the
author’s weight did change from last year, how large will the change be? One
way of obtaining the value of τ is to think of the range of possible alternative
values for μ and then solve for this standard deviation by setting the 95%
range of the normal distribution, 4τ , to this range. To illustrate, suppose that
the author thinks that his current weight could be five pounds less or more
than last year’s weight of 170. The range of alternative values for μ is 175−165
= 10, and by setting 10 = 4τ one obtains τ = 2.5.

The function mnormt.twosided in the LearnBayes package computes the
Bayes factor and the posterior probability of the null hypothesis in this prob-
lem. The inputs to the function are the value μ0 to be tested, the prior prob-
ability π0 of the hypothesis H0, the prior standard deviation τ , and the data

186 8 Model Comparison

values (sample mean, sample size, known sampling standard deviation). Since
it may be difficult to assess values for τ , the function allows the user to input
a vector of plausible values.

The R code for the computation in this example is shown here. Note that
the values .5, 1, 2, 4, and 8 are inputted as possible values for τ .

> weights=c(182, 172, 173, 176, 176, 180, 173, 174, 179, 175)

> data=c(mean(weights),length(weights),3)

> t=c(.5,1,2,4,8)

> mnormt.twosided(170,.5,t,data)

$bf
[1] 1.462146e-02 3.897038e-05 1.894326e-07 2.591162e-08
[5] 2.309739e-08
$post
[1] 1.441076e-02 3.896887e-05 1.894325e-07 2.591162e-08
[5] 2.309739e-08

For each value of the prior standard deviation τ , the program gives the
Bayes factor in support of the hypothesis that μ takes on the specific value
and the posterior probability that the hypothesis H is true. If the author uses
a normal (170, 2) density to reflect alternative values for his weight μ, then
the Bayes factor in support of the hypothesis μ = 170 is equal to .0000002.
The posterior probability that his weight hasn’t changed is .0000002, which
is much smaller than the author’s prior probability of .5. He should conclude
that his current weight is not 170.

8.5 Comparing Two Models

The Bayesian approach to comparing hypotheses can be generalized to com-
pare two models. If we let y denote the vector of data and θ the parameter,
then a Bayesian model consists of a specification of the sampling density f(y|θ)
and the prior density g(θ). Given this model, one can compute the marginal
or prior predictive density of the data,

m(y) =
∫

f(y|θ)g(θ)dθ.

Suppose we wish to compare two Bayesian models,

M0 : y ∼ f1(y|θ0), θ0 ∼ g1(θ0), M1 : y ∼ f2(y|θ1), θ1 ∼ g2(θ1),

where it is possible that the definition of the parameter θ may differ between
models. Then the Bayes factor in support of model M0 is the ratio of the
respective marginal densities (or prior predictive densities) of the data for the
two models.

8.6 Models for Soccer Goals 187

BF =
m0(y)
m1(y)

.

If π0 and π1 denote the respective prior probabilities of the models M0 and
M1, then the posterior probability of model M0 is given by

P (M0|y) =
π0BF

π0BF + π1
.

A simple way of approximating a marginal density is by Laplace’s method,
described in Section 5.3. Let θ̂ denote the posterior mode and H(θ) denote
the Hessian (second derivative matrix) of the log posterior density. Then the
prior predictive density can be approximated as

m(y) ≈ (2π)d/2g(θ̂)f(y|θ̂)| − H(θ̂)|1/2,

where d is the number of parameters. On the log scale, we have

log m(y) ≈ (d/2) log(2π) + log(g(θ̂)f(y|θ̂)) + (1/2) log | − H(θ̂)|.
Once an R function is written to compute the logarithm of the product
f(y|θ)g(θ), then the function laplace can be applied and the component
of the output int gives an estimate of log m(y). By applying this method for
several models, one can use the computed values of m(y) to compute a Bayes
factor.

8.6 Models for Soccer Goals

To illustrate the use of the function laplace in computing Bayes factors,
suppose you are interested in learning about the mean number of goals scored
by a team in Major League Soccer. You observe the number of goals scored
y1, ..., yn for n games. Since goals are relatively rare events, it is reasonable to
assume that the yis are distributed according to a Poisson distribution with
mean λ. We consider the use of the following four subjective priors for λ:

1. Prior 1. You assign a conjugate gamma prior to λ of the form

g(λ) ∝ λα−1 exp{−βλ}, λ > 0,

with α = 4.57 and β = 1.43. This prior says that you believe that a team
averages about 3 goals a game and the quartiles for λ are given by 2.10
and 4.04.

2. Prior 2. It is more convenient for you to represent prior opinion in terms
of symmetric distributions, so you assume that log λ is normal with mean
1 and standard deviation .5. The quartiles of this prior for log λ are 0.66
and 1.34, which translates to prior quartiles for λ of 1.94 and 3.81. Note
that Prior 1 and this prior reflect similar beliefs about the location of the
mean rate λ.

188 8 Model Comparison

3. Prior 3. This prior assumes that log λ is N(2, .5). The prior quartiles for
the rate λ are 5.27 and 10.35. This prior says that you believe teams score
a lot of goals in Major League Soccer.

4. Prior 4. This prior assumes that log λ is N(1, 2) with associated quartiles
for the rate λ of 1.92 and 28.5. This prior reflects little knowledge about
the scoring pattern of soccer games.

The number of goals was observed for a particular team in Major League
Soccer for the 2006 season. The dataset is available as soccergoals in the
LearnBayes package. The likelihood of λ, assuming the Poisson model, is given
by

L(λ) ∝ exp(−nλ)λs∏n
i=1 yi!

,

where s =
∑n

i=1 yi. For our dataset, n = 35 and s = 57. Figure 8.1 displays the
likelihood on the log λ scale together with the four proposed priors described
earlier. Priors 1 and 2 seem pretty similar in location and shape. We see
substantial conflict between the likelihood and Prior 3, and the shape of Prior
4 is very flat relative to the likelihood.

−1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

log lambda

de
ns

ity

like
prior 1
prior 2

−1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

log lambda

de
ns

ity

like
prior 3
prior 4

Fig. 8.1. The likelihood function and four priors on θ = log λ for the soccer goal
example.

8.6 Models for Soccer Goals 189

To use the function laplace, we have to write short functions defining the
log posterior. The first function, logpoissgamma, computes the log posterior
with Poisson sampling and a gamma prior. Following our usual strategy, we
transform λ to the real-valued parameter θ = log λ. The arguments to the
function are theta and datapar, a list that contains the data vector data
and the parameters of the gamma prior par. Note that we use the R function
dgamma in computing both the likelihood and the prior.

logpoissgamma=function(theta,datapar)
{
y=datapar$data
npar=datapar$par
lambda=exp(theta)
loglike=log(dgamma(lambda,shape=sum(y)+1,rate=length(y)))
logprior=log(dgamma(lambda,shape=npar[1],rate=npar[2])*lambda)
return(loglike+logprior)
}

Similarly, we write the function logpoissnormal to compute the log posterior
of log λ for Poisson sampling and a normal prior. This function uses both the
R functions dgamma and dnorm.

logpoissnormal=function(theta,datapar)
{
y=datapar$data
npar=datapar$par
lambda=exp(theta)
loglike=log(dgamma(lambda,shape=sum(y)+1,scale=1/length(y)))
logprior=log(dnorm(theta,mean=npar[1],sd=npar[2]))
return(loglike+logprior)
}

We first load in the datafile soccergoals; there is one variable, goals, in
this dataset, which we make available using the attach command. For each
of the four priors, we use the function laplace to summarize the posterior. If
the output of the function is fit, fit$mode is the posterior mode, fit$var is
the associated estimate at the posterior variance, and fit$int is the estimate
of log m(y).

> data(soccergoals)

> attach(soccergoals)

> datapar=list(data=goals,par=c(4.57,1.43))

> fit1=laplace(logpoissgamma,.5,datapar)

> datapar=list(data=goals,par=c(1,.5))

> fit2=laplace(logpoissnormal,.5,datapar)

> datapar=list(data=goals,par=c(2,.5))

> fit3=laplace(logpoissnormal,.5,datapar)

190 8 Model Comparison

> datapar=list(data=goals,par=c(1,2))

> fit4=laplace(logpoissnormal,.5,datapar)

We display the posterior modes, posterior standard deviations, and log
marginal densities for the four models corresponding to the four priors.

> postmode=c(fit1$mode,fit2$mode,fit3$mode,fit4$mode)

> postsd=sqrt(c(fit1$var,fit2$var,fit3$var,fit4$var))

> logmarg=c(fit1$int,fit2$int,fit3$int,fit4$int)

> cbind(postmode,postsd,logmarg)

postmode postsd logmarg
[1,] 0.5248047 0.1274414 -1.502977
[2,] 0.5207825 0.1260712 -1.255171
[3,] 0.5825195 0.1224723 -5.076316
[4,] 0.4899414 0.1320165 -2.137216

By using the values of log m(y), one can use Bayes factors to compare the
different models. Does it matter if we use a gamma(4.57, .7) prior on λ or
a normal(1, .5) prior on log λ? To answer this question, we can compute the
Bayes factor in support of Prior 2 over Prior 1:

BF21 =
m2(y)
m1(y)

= exp(−1.255171 + 1.502977) = 1.28.

There is slight support for the normal prior – this makes sense from Figure
8.1 since Prior 2 is slightly closer to the likelihood function. Comparing Prior
2 with Prior 3, the Bayes factor in support of Prior 2 is

BF23 =
m2(y)
m3(y)

= exp(−1.255171 + 5.076316) = 45.7,

indicating large support for Prior 2. Actually, note that the locations of the
likelihood and Prior 3 are far apart, indicating a conflict between the data
and the prior and a small value of m3(y). Comparing Prior 2 with Prior 4,
the Bayes factor in support of Prior 2 is

BF24 =
m2(y)
m4(y)

= exp(−1.255170 + 2.137214) = 2.42.

Generally, the marginal probability for a prior will decrease as the prior density
becomes more diffuse.

8.7 Is a Baseball Hitter Really Streaky?

In sports, we observe much streaky behavior in players and teams. For exam-
ple, in the sport of baseball, one measure of success of a hitter is the batting

8.7 Is a Baseball Hitter Really Streaky? 191

average or proportion of base hits. During a baseball season, there will be
periods when a player is “hot” and has an unusually high batting average, and
there will also be periods when the player is “cold” and has a very low batting
average. We observe many streaky patterns in the performance of players.
The interesting question is what these streaky data say about the ability of a
player to be streaky.

In baseball, the player has opportunities to bat in an individual season –
we call these opportunities “at-bats.” In each at-bat, there are two possible
outcomes – a hit (a success) or an out (a failure) (drawing a walk doesn’t count
as an at-bat). Suppose we divide all of the at-bats in a particular baseball
season into N periods. Let pi denote the probability that the player gets a
hit in a single at-bat during the ith period, i = 1, ..., N . If a player is truly
consistent, or nonstreaky, then the probability of a hit stays constant across
all periods; we call this the nonstreaky model M0:

M0 : p1 = ... = pN = p.

To complete this model specification, we assign the common probability value
p a uniform prior on (0, 1).

On the other hand, if the player is truly streaky, then the probability of a
hit pi will change across the season. A convenient way to model this variation
in the probabilities is to assume that p1, ..., pN are a random sample from a
beta density of the form

g(p) =
1

B(Kη,K(1 − η))
pKη−1(1 − p)K(1−η)−1, 0 < p < 1.

In the density g, η is the mean and K is a precision parameter. We can index
this streaky model by the parameter K; we represent the streaky model by

MK : p1, ..., pN iid beta(Kη,K(1 − η)).

For this model, we place a uniform prior on the mean parameter η, reflecting
little knowledge about the location of the random effects distribution. Note
that as the precision parameter K approaches infinity, the streaky model MK

approaches the consistent model M0.
To compare the models M0 and MK , we need to compute the associated

marginal densities. Under the model M0, the numbers of hits y1, ..., yN are
independent, where yi is binomial(ni, p). With the assumption that p is uni-
form(0, 1), we obtain the marginal density

m0(y) =
∫ N∏

i=1

(
ni

yi

)
pyi(1 − p)ni−yidp

=
N∏

i=1

(
ni

yi

)
B

(
N∑

i=1

yi + 1,

N∑
i=1

(ni − yi) + 1

)
.

192 8 Model Comparison

Under the alternative “streaky” model, the marginal density is given by

mK(y) =
∫ N∏

i=1

(
ni

yi

)
pyi

i (1 − pi)ni−yi
pKη−1

i (1 − pi)K(1−η)−1

B(Kη,K(1 − η))
dp1...dpN

=
N∏

i=1

(
ni

yi

)∫ 1

0

∏N
i=1 B(yi + Kη, ni − yi + K(1 − η))

B(Kη,K(1 − η))N
dη.

The Bayes factor in support of the “streaky” model HK compared with
the “nonstreaky” model H0 is given by

BK =
mK(y)
m0(y)

=
1

B(
∑

yi+1,
∑

(ni−yi) + 1)

∫ 1

0

∏N
i=1 B(yi+Kη, ni − yi + K(1−η))

B(Kη,K(1 − η))N
dη.

We use the function laplace to compute the integral in the Bayes factor
BK . We first transform the variable η in the integral to the real-valued variable
θ = log(η/(1−η)). Using the R function lbeta, which computes the logarithm
of the beta function, we define the following function bfexch, which computes
the log integrand. The inputs to this function are theta and a list datapar
with components data (a matrix with columns y and n) and K.

bfexch=function (theta, datapar)
{

y = datapar$data[, 1]
n = datapar$data[, 2]
K = datapar$K
eta = exp(theta)/(1 + exp(theta))
logf = function(K, eta, y, n)

lbeta(K * eta + y, K * (1 - eta) + n - y) -
lbeta(K * eta, K * (1 - eta))

sum(logf(K, eta, y, n)) + log(eta * (1 - eta)) -
lbeta(sum(y) + 1, sum(n - y) + 1)

}

To compute the Bayes factor BK for a specific value, say K0, we use the
function laplace with inputs the function bfexch, a starting value of η = 0,
and the list datapar using the value K0.

> s=laplace(bfexch,0,list(data=data,K=K0))

The list s is the output of laplace; the component s$int gives the estimate
of the logarithm of the Bayes factor log BK .

To illustrate the use of this method, we consider the hitting data for the
New York Yankee player Derek Jeter for the 2004 baseball season. Jeter was
one of the “star” players on this team, and he experienced an unusual hitting

8.7 Is a Baseball Hitter Really Streaky? 193

slump during the early part of the season that attracted much attention from
the local media.

Hitting data for Jeter were collected for each of the 154 games he played
in that particular season. A natural way of defining periods during the season
is by games, so N = 154. However, it is difficult to detect streakiness in these
hitting data since Jeter only had about 4–5 opportunities to hit in each game,
so we group the data into five-game intervals. The original game-by-game
data are available as jeter2004 in the LearnBayes package. In the following
R code, we read in the complete hitting data for Jeter and use the regroup
function to group the data into periods of five games.

> data(jeter2004)

> attach(jeter2004)

> data=cbind(H,AB)

> data1=regroup(data,5)

The matrix data1 contains the grouped hitting data (yi, ni), i = 1, ..., 30i,
where yi is the number of hits by Jeter in ni at-bats in the ith interval of
games. These data are listed in Table 8.1.

Table 8.1. Hitting data of Derek Jeter for 2004 baseball season.

Period (y, n) Period (y, n) Period (y, n) Period (y, n)

1 (4, 19) 9 (8, 24) 17 (5, 22) 25 (4, 18)
2 (6, 22) 10 (10,24) 18 (5, 20) 26 (6, 18)
3 (4, 22) 11 (4, 15) 19 (3, 22) 27 (10, 22)
4 (0, 20) 12 (10,21) 20 (10, 21) 28 (9, 20)
5 (5, 22) 13 (5 ,21) 21 (7, 20) 29 (8, 21)
6 (5, 24) 14 (11, 22) 22 (6, 24) 30 (11, 35)
7 (7, 26) 15 (7, 18) 23 (3, 20)
8 (3, 20) 16 (6, 21) 24 (6, 19)

We compute the Bayes factor for a sequence of values of log K using the
function laplace and the definition of the log integral defined in the function
bfexch. In this example, we write a short wrapper function that computes the
log Bayes factor for a single value of log K. The vector logK contains the values
log(K) = 2, 3, 4, 5, and 6. By using the sapply function, the corresponding
values of the log Bayes factor log BK are stored in the variable log.BF. We
display in a data frame the values of log K, the values of K, the values of
log BK , and the values of the Bayes factor BK .

> log.marg=function(logK)

+ laplace(bfexch,0,list(data=data1,K=exp(logK)))$int

> log.K=seq(2,6)

> K=exp(log.K)

194 8 Model Comparison

> log.BF=sapply(log.K,log.marg)

> BF=exp(log.BF)

> round(data.frame(log.K,K,log.BF,BF),2)

log.K K log.BF BF
1 2 7.39 -4.04 0.02
2 3 20.09 0.17 1.19
3 4 54.60 0.92 2.51
4 5 148.41 0.57 1.78
5 6 403.43 0.26 1.29

We see from the output that the value log K = 4 is most supported by the
data with a corresponding Bayes factor of BK = 2.51. This particular streaky
model is approximately two and a half times as likely as the consistent model.
This indicates that Jeter did indeed display some true streakiness in his hitting
behavior for this particular baseball season.

8.8 A Test of Independence in a Two-Way
Contingency Table

A basic problem in statistics is to explore the relationship between two categor-
ical measurements. To illustrate this situation, consider the following example
presented in Moore (1995) in which North Carolina State University looked
at student performance in a course taken by chemical engineering majors.
Researchers wished to learn about the relationship between the time spent
in extracurricular activities and the grade in the course. Data on these two
categorical variables were collected from 119 students, and the responses are
presented using the contingency table in Table 8.2.

Table 8.2. Two-way table relating student performance and time spent in extracur-
ricular activities.

Extracurricular Activities
(hr per week)

< 2 2 to 12 > 12

C or better 11 68 3

D or F 9 23 5

To learn about the possible relationship between participation in extracur-
ricular activities and grade, one tests the hypothesis of independence. The
usual non-Bayesian approach of testing the independence hypothesis is based
on a Pearson chi-squared statistic that contrasts the observed counts with
expected counts under an independence model. In R, we read in the table of
counts and use the function chisq.test to test the independence hypothesis:

8.8 A Test of Independence in a Two-Way Contingency Table 195

> data=matrix(c(11,9,68,23,3,5),c(2,3))

> data

[,1] [,2] [,3]
[1,] 11 68 3
[2,] 9 23 5

> chisq.test(data)

Pearson’s Chi-squared test

data: data
X-squared = 6.9264, df = 2, p-value = 0.03133

Warning message:
Chi-squared approximation may be incorrect in: chisq.test(data)

Here the p-value is approximately .03, which is some evidence that one’s grade
is related to the time spent on extracurricular activities.

From a Bayesian viewpoint, there are two possible models – the model MI

that the two categorical variables are independent and the model MD that the
two variables are dependent in some manner. To describe the Bayesian models,
assume that these data represent a random sample from the population of
interest and the counts of the table have a multinomial distribution with
proportion values as shown in Table 8.3. Under the dependence model MD,
the proportion values p11, . . . , p23 can take any values that sum to 1, and we
assume that the prior density places a uniform distribution over this space.

Table 8.3. Probabilities of the table under the hypothesis of dependence.

Extracurricular Activities
(hr per week)

< 2 2 to 12 > 12

C or better p11 p12 p13

D or F p21 p22 p23

,

Under the independence model MI , the proportions in the table are de-
termined by the marginal probabilities {p1+, p2+} and {p+1, p+2, p+3} as dis-
played in Table 8.4. Here the unknown parameters are the proportions of stu-
dents in different activity levels and the proportions with different grades. We
assume that these two sets of proportions, {pi+} and {p+j}, are independent
and assign to each set a uniform density over all possible values.

We have defined two models – a dependence model MD, where the multi-
nomial proportions are uniformly distributed, and an independence model
MI , where the multinomial proportions have an independence structure and

196 8 Model Comparison

Table 8.4. Probabilities of the table under the hypothesis of independence.

Extracurricular Activities
(hr per week)

< 2 2 to 12 > 12

C or better p1+p+1 p1+p+2 p1+p+3 p1+

D or F p2+p+1 p2+p+2 p2+p+3 p2+

p+1 p+2 p+3

the marginal proportions are assigned independent uniform priors. It can be
shown that the Bayes factor in support of the dependence model over the
independence model is given by

BF =
D(y + 1)D(1R)D(1C)

D(1RC)D(yR + 1)D(yC + 1)
,

where y is the matrix of counts, yR is the vector of row totals, yC is the vector
of column totals, 1R is the vector of ones of length R, and D(ν) is the Dirichlet
function defined by

D(ν) =
∏

Γ (νi)/Γ (
∑

νi).

The R function ctable will compute this Bayes factor for a two-way con-
tingency table. One inputs a matrix a of prior parameters for the matrix of
probabilities. By taking a matrix a of ones, one is assigning a uniform prior
on {pij} and uniform priors on {pi+} and {p+j} under the dependence model.
The output of this problem is the value of the Bayes factor. Here the value is
BF = 1.66, which indicates modest support against independence.

> a=matrix(rep(1,6),c(2,3))

> a

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1

> ctable(data,a)

[1] 1.662173

We are comparing“uniform”with“independence”models for a contingency
table. One criticism of this method is that we may not really be interested in
a “uniform” alternative model. Perhaps we would like to compare “indepen-
dence” with a model where the cell probabilities are “close to independence.”
Such a model was proposed by Albert and Gupta (1981). Suppose the table
probabilities {pij} are assigned a conjugate Dirichlet distribution of the form

g(p) ∝
∏

p
Kηij−1
ij ,

8.8 A Test of Independence in a Two-Way Contingency Table 197

where the prior means {ηij} satisfy an independence configuration

ηij = ηA
i ηB

j .

This structure of prior means is illustrated for our example in Table 8.5. Then
the vectors of prior means of the margins {ηA

i } and {ηB
j } are assigned uniform

distributions. This model will be labeled MK , as it is indexed by the Dirichlet
precision parameter K. As K approaches infinity, the model approaches the
independence hypothesis MI , where the marginal probabilities have uniform
distributions.

Table 8.5. Prior means of the cell probabilities of the table under the “close to
independence” model.

Extracurricular Activities
(hr per week)

< 2 2 to 12 > 12

C or better ηA
1 ηB

1 ηA
1 ηB

2 ηA
1 ηB

3 ηA
1

D or F ηA
2 ηB

1 ηA
2 ηB

2 ηA
2 ηB

3 ηA
2

ηB
1 ηB

2 ηB
3

It can be shown that the Bayes factor in support of the “close to indepen-
dence” model MK over the independence model MI is given by

BFK =
1

D(yR + 1)D(yC + 1)

∫
D(KηAηB + y)

D(KηAηB)
dηAdηB,

where KηAηB + y is the vector of values {KηA
i ηB

j + yij} and the integral is
taken over the vectors of marginal prior means ηA = {ηA

i } and ηB = {ηB
j }.

One straightforward way of computing the Bayes factor is by importance
sampling. The Bayes factor can be represented as the integral

BFK =
∫

h(θ)dθ,

where θ = (ηA, ηB). Suppose the integrand can be approximated by the den-
sity g(θ), where g is easy to simulate. Then by writing the integral as

BFK =
∫

h(θ)
g(θ)

g(θ)dθ,

we can approximate the integral as

BFK ≈
∑m

j=1 h(θj)/g(θj)
m

,

198 8 Model Comparison

where θ1, ..., θm are independent simulated draws from g(θ). The simulation
standard error of this importance sampler estimate is given by

se = standard deviation ({h(θj)/g(θj)})/
√

m.

In our example, it can be shown that, as K approaches infinity, the pos-
terior of the vectors of marginal prior means ηA and ηB can be shown to be
independent with

ηAdistributed asDirichlet(yR + 1), ηBdistributed as Dirichlet(yC + 1),

where the Dirichlet distribution on the vector η with parameter vector a has
a density proportional to

∏
ηai−1

i . This density is a convenient choice for
an importance sampler since it is easy to simulate draws from a Dirichlet
distribution.

Using this importance sampling algorithm, the function bfindep computes
the Bayes factor using this alternative “close to independence” model. One
inputs the data matrix y, the Dirichlet precision parameter K, and the size of
the simulated sample m. The output is a list with two components: bf, the
value of the Bayes factor, and nse, an estimate of the simulation standard
error of the computed value of BF.

In the following R input, we compute the Bayes factor for a sequence of
values of log K. We write a short function compute.log.BF to compute the
Bayes factor for a single value of log K. The output gives the value of the log
Bayes factor and the Bayes factor for six values of log K. Figure 8.2 displays
the log Bayes factor as a function of log K computed over a finer grid and
10,000 simulation draws. (We used the R function spm in the SemiPar package
to smooth out the simulation errors in the computed log Bayes factors before
plotting.) Note that this maximum value of the Bayes factor is 2.3, indicating
some support for an alternative model that is in the neighborhood of the
independence model.

> log.K=seq(2,7)

> compute.log.BF=function(log.K)

+ log(bfindep(data,exp(log.K),100000)$bf)

> log.BF=sapply(log.K,compute.log.BF)

> BF=exp(log.BF)

> round(data.frame(log.K,log.BF,BF),2)

log.K log.BF BF
1 2 -1.71 0.18
2 3 0.33 1.39
3 4 0.97 2.64
4 5 0.73 2.07
5 6 0.43 1.54
6 7 0.20 1.22

8.10 Summary of R Functions 199

2 3 4 5 6 7

−1
.0

−0
.5

0.
0

0.
5

logK

fit
$f

it$
fit

te
d

Fig. 8.2. Plot of log Bayes factor in support of model MK over MI against the
precision parameter log K.

8.9 Further Reading

Chapter 4 of Carlin and Louis (2009), and Kass and Raftery (1995) provide
general discussions of the use of Bayes factors in selecting models. Berger
and Sellke (1987) and Casella and Berger (1987) describe the relationship
between Bayesian and frequentist measures of evidence in the two-sided and
one-sided testing situations, respectively. Gunel and Dickey (1974) describe
the use of Dirichlet distributions in the development of tests for contingency
tables, and Albert and Gupta (1981) introduce the use of mixtures of Dirichlet
distributions for contingency tables.

8.10 Summary of R Functions

bfexch – computes the logarithm of the integrand of the Bayes factor for
testing homogeneity of a set of probabilities
Usage: bfexch(theta,datapar)

200 8 Model Comparison

Arguments: theta, vector of values of the logit of the prior hyperparameter
η; datapar, list with components data (matrix with columns y and n) and K
(prior precision hyperparameter)
Value: vector of values of the logarithm of the integral

bfindep – computes a Bayes factor against independence for a two-way con-
tingency table assuming a “close to independence” alternative model
Usage: bfindep(y, K, m)
Arguments: y, matrix of counts; K, Dirichlet precision hyperparameter; m, num-
ber of simulations
Value: bf, value of the Bayes factor against independence; nse, estimate of
the simulation standard error of the computed value of the Bayes factor

ctable – computes a Bayes factor against independence for a two-way con-
tingency table assuming uniform prior distributions
Usage: ctable(y,a)
Arguments: y, matrix of counts; a, matrix of prior parameters for the matrix
of probabilities
Value: the Bayes factor against the hypothesis of independence

logpoissgamma – computes the logarithm of the posterior with Poisson sam-
pling and a gamma prior
Usage: logpoissgamma(theta, datapar)
Arguments: theta, vector of values of the log mean parameter; datapar, list
with components data (vector of sample values) and par (vector of parameters
of the gamma prior)
Value: value of the log posterior for all values in theta

logpoissnormal – computes the logarithm of the posterior with Poisson sam-
pling and a normal prior
Usage: logpoissnormal(theta, datapar)
Arguments: theta, vector of values of the log mean parameter; datapar, list
with components data (vector of sample values) and par (vector of parameters
of the normal prior)
Value: value of the log posterior for all values in theta

mnormt.onesided – Bayesian test of the hypothesis that a normal mean M is
less than or equal to a specific value
Usage: mnormt.onesided(mu0,normpar,data)
Arguments: mu0, value of the normal mean to be tested; normpar, vector of
mean and standard deviation of the normal prior distribution; data, vector
of sample mean, sample size, and known value of the population standard
deviation
Value: BF, Bayes factor in support of the null hypothesis; prior.odds, the
prior odds of the null hypothesis; post.odds, the posterior odds of the null
hypothesis, postH, the posterior probability of the null hypothesis

8.11 Exercises 201

mnormt.twosided – Bayesian test of the hypothesis that a normal mean M is
equal to a specific value
Usage: mnormt.twosided(mu0, probH, tau, data)
Arguments: mu0, the value of the normal mean to be tested; probH, the prior
probability of the null hypothesis; tau, vector of values of the prior standard
deviation under the alternative hypothesis; data, vector of sample mean, sam-
ple size, and known value of the population standard deviation
Value: bf, vector of values of the Bayes factor in support of the null hypothesis;
post, vector of values of the posterior probability of the null hypothesis

8.11 Exercises

1. A one-sided test of a binomial probability
In 1986, the St. Louis Post Dispatch was interested in measuring public
support for the construction of a new indoor stadium. The newspaper
conducted a survey in which they interviewed 301 registered voters. Let
p denote the proportion of all registered voters in the St. Louis voting
district opposed to the stadium. A city councilman wishes to test the
hypotheses H : p ≥ .5, K : p < .5.
a) The number y opposed to the stadium construction is assumed to be

binomial(301, p). Suppose the survey result is y = 135. Using the
R function pbinom, compute the p-value P (y ≤ 135|p = .5). If this
probability is small, say under 5%, then one concludes that there is
significant evidence in support of the hypothesis K : p < .5.

b) Suppose one places a uniform prior on p. Compute the prior odds of
the hypothesis K.

c) After observing y = 135, the posterior distribution of p is beta(136,
167). Using the R function pbeta, compute the posterior odds of the
hypothesis K.

d) Compute the Bayes factor in support of the hypothesis K.
2. A two-sided test of a normal mean (example from Weiss (2001))

For last year, a sample of 50 cell phone users had a mean local monthly
bill of $41.40. Do these data provide sufficient evidence to conclude that
last year’s mean local monthly bill for cell phone users has changed from
the 1996 mean of $47.70? (Assume that the population standard deviation
is σ = $25.)
a) The usual statistic for testing the value of a normal mean μ is z =√

n(ȳ − μ)/σ. Use this statistic and the R function pnorm to compute
a p-value for testing the hypothesis H : μ = 47.7.

b) Suppose one assigns a prior probability of .5 to the null hypothesis. Use
the R function mnormt.twosided to compute the posterior probability
of H. The arguments to mnormt.twosided are the value to be tested
(47.70), the prior probability of H (.5), the standard deviation τ of
the prior under the alternative hypothesis (assume τ = 4), and the

202 8 Model Comparison

data vector (values of sample mean, sample size, and known sampling
standard deviation).

c) Compute the posterior probability of H for the alternative values τ
= 1, 4, 6, 8, and 10. Compare the values of the posterior probability
with the value of the p-value computed in part (a).

3. Comparing Bayesian models using a Bayes factor
Suppose that the number of births to women during a month at a partic-
ular hospital has a Poisson distribution with parameter R. During a given
year at a particular hospital, 66 births were recorded in January and 48
births were recorded in April. If the birthrates during January and April
are given by RJ and RA, respectively, then (assuming independence) the
probability of the sample result is

f(data|RJ , RA) =
e−RJ R66

J

66!
e−RAR48

A

48!
.

Consider the following two priors for (RJ , RA):
• M1 : RJ ∼ gamma(240, 4), RA ∼ gamma(200, 4).
• M2: RJ = RA and the common value of the rate R ∼ gamma(220, 4).
a) Write R functions to compute the logarithm of the posterior density of

(RJ , RA) under model M1 and the logarithm of the posterior density
of R under model M2.

b) Use the function laplace to compute the logarithm of the predictive
density for both models M1 and M2.

c) Compute the Bayes factor in support of the model M1.
4. Is a basketball player streaky?

Kobe Bryant is one of the most famous players in professional basketball.
Shooting data were obtained for Bryant for the first 15 games in the 2006
season. For game i, one records the number of field goal attempts ni and
the number of successful field goals yi; the data are displayed in Table 8.6.
If pi denotes the probability that Kobe makes a shot during the ith game,
it is of interest to compare the nonstreaky hypothesis

M0 : p1 = ... = p15 = p, p ∼ uniform(0, 1)

against the streaky hypothesis that the pi vary according to a beta distri-
bution

MK : p1, ..., p15 random sample from beta(Kη,K(1−η)), η ∼ uniform(0, 1).

Use the function laplace together with the function bfexch to compute
the logarithm of the Bayes factor in support of the streaky hypothesis MK .
Compute the log of the Bayes factors for values of K = 10, 20, 50, and
100. Based on your work, is there much evidence that Bryant displayed
true streakiness in his shooting performance in these 15 games?

8.11 Exercises 203

Table 8.6. Shooting data for Kobe Bryant for the first 15 games during the 2006
basketball season.

Game (y, n) Game (y, n)

1 (8, 15) 9 (12, 23)
2 (4, 10) 10 (9, 18)
3 (5, 7) 11 (8, 24)
4 (12, 19) 12 (7, 23)
5 (5, 11) 13 (19, 26)
6 (7, 17) 14 (11, 23)
7 (10, 19) 15 (7, 16)
8 (5, 14)

5. Test of independence (example from Agresti and Franklin (2005))
The 2002 General Social Survey asked the question “Taken all together,
would you say that you are very happy, pretty happy, or not too happy?”
The survey also asked “Compared with American families in general,
would you say that your family income is below average, average, or above
average?” Table 8.7 cross-tabulates the answers to these two questions.

Table 8.7. Happiness and family income from 2002 General Social Survey.

Happiness

Income Not Too Happy Pretty Happy Very Happy

Above Average 17 90 51

Average 45 265 143

Below Average 31 139 71

a) Using the Pearson chi-square statistic, use the function chisq.test to
test the hypothesis that happiness and family income are independent.
Based on the p-value, is there evidence to suggest that the level of
happiness is dependent on the family income?

b) Consider two models, a “dependence model” where the underlying
multinomial probability vector is uniformly distributed and an “inde-
pendence model” where the cell probabilities satisfy an independence
configuration and the marginal probability vectors have uniform dis-
tributions. Using the R function ctable, compute the Bayes factor in
support of the dependence hypothesis.

c) Instead of the analysis in part (b), suppose that one wishes to compare
the independence model with the “close to independence” model MK

described in Section 8.8. Using the function bfindep, compute the
Bayes factor in support of the model MK for values of log K = 2, 3,
4, 5, 6, and 7.

204 8 Model Comparison

d) Compare the frequentist measure of evidence against independence
with the Bayesian measures of evidence computed in parts (b) and
(c). Which type of measure, frequentist or Bayesian, indicates more
evidence against independence?

9

Regression Models

9.1 Introduction

In this chapter, we illustrate R to fit some common regression models from a
Bayesian perspective. We first outline the Bayesian normal regression model
and describe algorithms to simulate from the joint distribution of regression
parameters and error variance and the predictive distribution of future obser-
vations. One can judge the adequacy of the fitted model using the posterior
predictive distribution and the inspection of the posterior distributions of
Bayesian residuals. We then illustrate the R Bayesian computations in an ex-
ample where one is interested in explaining the variation of extinction times
of birds in terms of their nesting behavior, their size, and their migratory
status. Zellner (1986) proposed a simple way of inputting prior information
in a regression model. We illustrate the use of Zellner’s class of g priors to
select among a set of best regression models. We conclude by illustrating the
Bayesian fitting of a survival regression model.

9.2 Normal Linear Regression

9.2.1 The Model

In the usual multiple regression problem, we are interested in describing the
variation in a response variable y in terms of k predictor variables x1, ..., xk.
We describe the mean value of yi, the response for the ith individual, as

E(yi|β,X) = β1xi1 + ... + βkxik, i = 1, ..., n,

where xi1, ..., xik are the predictor values for the ith individual and β1, ..., βk

are unknown regression parameters. If we let xi = (xi1, ..., xik) denote the
row vector of predictors for the ith individual and β = (β1, ..., βk) the column
vector of regression coefficients, we can reexpress the mean value as

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 9,
© Springer Science+Business Media, LLC 2009

206 9 Regression Models

E(yi|β,X) = xiβ.

The {yi} are assumed to be conditionally independent given values of the pa-
rameters and the predictor variables. In the ordinary linear regression setting,
we assume equal variances, where var(yi|θ,X) = σ2. We let θ = (β1, ..., βk, σ2)
denote the vector of unknown parameters. Finally, we assume that the errors
εi = yi − E(yi|β,X) are independent and normally distributed with mean 0
and variance σ2.

In matrix notation, this model can be written for all observations as

y|β, σ2, X ∼ Nn(Xβ, σ2I),

where y is the vector of observations; X is the design matrix with rows
x1, ..., xn; I is the identity matrix; and Nk(μ, A) indicates a multivariate nor-
mal distribution of dimension k with mean vector μ and variance-covariance
matrix A.

To complete the Bayesian formulation of the model, we assume (β, σ2)
have the typical noninformative prior

g(β, σ2) ∝ 1
σ2

.

9.2.2 The Posterior Distribution

The posterior analysis for the normal regression model has a form similar to
the posterior analysis of a mean and variance for a normal sampling model.
We represent the joint density of (β, σ2) as the product

g(β, σ2|y) = g(β|y, σ2)g(σ2|y).

The posterior distribution of the regression vector β conditional on the error
variance σ2, g(β|y, σ2), is multivariate normal with mean β̂ and variance-
covariance matrix Vβσ2, where

β̂ = (X ′X)−1X ′y, Vβ = (X ′X)−1.

If one defines the inverse gamma(a, b) density proportional to y−a−1 exp{−b/y},
then the marginal posterior distribution of σ2 is inverse gamma((n−k)/2, S/2),
where

S = (y − Xβ̂)′(y − Xβ̂).

9.2.3 Prediction of Future Observations

Suppose we are interested in predicting a future observation ỹ corresponding
to a covariate vector x∗. From the regression sampling model, we have that ỹ,
conditional on β and σ2, is N(x∗β, σ). The posterior predictive density of ỹ,
p(ỹ|y), can be represented by a mixture of these sampling densities p(ỹ|β, σ2),
where they are averaged over the posterior distribution of the parameters β
and σ2:

p(ỹ|y) =
∫

p(ỹ|β, σ2)g(β, σ2|y)dβdσ2.

9.2 Normal Linear Regression 207

9.2.4 Computation

The expressions for the posterior and predictive distributions lead to efficient
simulation algorithms. To simulate from the joint posterior distribution of the
regression coefficient vector β and the error variance σ2, one

• simulates a value of the error variance σ2 from its marginal posterior den-
sity g(σ2|y)

• simulates a value of β from the conditional posterior density g(β|σ2, y).

Since the two component distributions (inverse gamma and multivariate nor-
mal) are convenient functional forms, it is relatively easy to construct an al-
gorithm in R such as the one programmed in the function blinreg to perform
this simulation.

Once the joint posterior distribution has been simulated, it is straight-
forward to obtain a sample from the marginal posterior distribution of any
function h(β, σ) of interest. For example, if x∗ denotes a row vector of par-
ticular values of covariates, suppose one is interested in the mean response at
x∗,

E(y|x∗) = x∗β.

If β∗ is a simulated draw from the marginal posterior of β, then x∗β∗ will
be a simulated draw from the marginal posterior of x∗β. The R function
blinregexpected facilitates the simulation of linear combinations of the beta
coefficients.

Likewise, the representation of the posterior predictive distribution of fu-
ture response values suggests a simple algorithm for simulation. Suppose ỹ is
a future response value corresponding to the row vector of covariates x∗. One
simulates a single value of ỹ by:

• simulating (β, σ2) from the joint posterior given the data y
• simulating ỹ from its sampling density given the simulated values of β and

σ2,
ỹ ∼ N(x∗β, σ)

The R function blinregpred can be used to simulate sets of draws of future
observations corresponding to a list of covariate values of interest.

9.2.5 Model Checking

One method of assessing the goodness of fit of the model uses the posterior
predictive distribution defined in the previous section. Suppose one simulates
many samples ỹ1, ..., ỹn from the posterior predictive distribution conditional
on the same covariate vectors x1, ..., xn used to simulate the data. To judge if
a particular response value yi is consistent with the fitted model, one looks at
the position of yi relative to the histogram of simulated values of ỹi from the
corresponding predictive distribution. If yi is in the tail of the distribution,
that indicates that this observation is a potential outlier.

208 9 Regression Models

A second approach is based on the use of “Bayesian residuals.” In a tra-
ditional regression analysis, one judges the adequacy of the fitted model by
inspecting the standardized residuals

ri =
yi − xiβ̂

σ̂
√

1 − hii

,

where β̂ and σ̂ are the usual estimates of the regression vector and error stan-
dard deviation and hii is the ith diagonal element of the “hat” matrix. From
a Bayesian perspective, one can consider the distribution of the parametric
residuals

{εi = yi − xiβ}.
Before any data are observed, the parametric residuals are a random sample
from an N(0, σ) distribution. Suppose we say that the ith observation is an
outlier if |εi| > kσ, where k is a predetermined constant such as 2 or 3. The
prior probability that a particular observation is an outlier is 2Φ(−k), where
Φ(z) is the standard normal cdf.

After data y are observed, we can compute the posterior probability that
each observation is an outlier. Define the functions z1 and z2 as

z1 = (k − ε̂i/σ)/
√

hii, z2 = (−k − ε̂i/σ)/
√

hii,

where
ε̂i = yi − xiβ̂.

Then the posterior probability that the ith observation is an outlier is

pi = P (|εi| > kσ|y) =
∫

(1 − Φ(z1) + Φ(z2))g(σ2|y)dσ2.

In practice, the pis can be computed and compared with the prior proba-
bility 2Φ(−k). The R function bayesresiduals can be used to compute the
posterior outlying probabilities for a linear regression model.

9.2.6 An Example

Ramsey and Schafer (1997) describe an interesting study from Pimm et al.
(1988) on the extinction of birds. Measurements on breeding pairs of land-
bird species were collected from 16 islands around Britain over the course of
several decades. For each species, the dataset contains TIME, the average time
of extinction on the islands where it appeared, NESTING, the average number
of nesting pairs, SIZE, the size of the species (large or small), and STATUS,
the migratory status of the species (migrant or resident). The objective is to
fit a model that describes the variation in the time of extinction of the bird
species in terms of the covariates NESTING, SIZE, and STATUS.

This dataset is available as birdextinct in the LearnBayes package. We
read in the datafile and construct some initial graphs. Since the TIME variable

9.2 Normal Linear Regression 209

is strongly right-skewed, we initially transform it using a logarithm creating
the variable LOGTIME. Figures 9.1, 9.2, and 9.3 plot LOGTIME against
each of the three predictor variables. Since the categorical variables SIZE and
STATUS take only two values, we use the jitter function in R to jitter the
horizontal location of the points so we can see any overlapping points. Note
that there is a positive relationship between the average number of nesting
pairs and time to extinction. However, there are five particular species (la-
beled in the graph) with points that seem to vary from the general pattern.
There may be relationships of each of the categorical variables with LOG-
TIME, but the strength of the relationship seems weak in comparison with
the relationship of NESTING and LOGTIME.

> data(birdextinct)

> attach(birdextinct)

> logtime=log(time)

> plot(nesting,logtime)

> out = (logtime > 3)

> text(nesting[out], logtime[out], label=species[out], pos = 2)

> plot(jitter(size),logtime,xaxp=c(0,1,1))

> plot(jitter(status),logtime,xaxp=c(0,1,1))

We write the regression model as

E(log TIMEi|x, θ) = β0 + β1NESTINGi + β2SIZEi + β3STATUSi.

As two of the covariates are categorical with two levels, they can be represented
by binary indicators; in the datafile birdextinct, SIZE is coded 0 (1) for small
(large) and STATUS is coded 0 (1) for migrant (resident).

We first perform the traditional least-squares fit using the lm command.

> fit=lm(logtime~nesting+size+status,data=birdextinct,x=TRUE,

y=TRUE)

> summary(fit)

Residuals:
Min 1Q Median 3Q Max

-1.8410 -0.2932 -0.0709 0.2165 2.5167

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.43087 0.20706 2.081 0.041870 *
nesting 0.26501 0.03679 7.203 1.33e-09 ***
size -0.65220 0.16667 -3.913 0.000242 ***
status 0.50417 0.18263 2.761 0.007712 **

We see from the output that NESTING is a strong effect; species with a
larger number of nesting pairs tend to have longer extinction times, which
means that these species are less likely to be extinct. The SIZE and STATUS
effects appear to be less significant; larger birds (with SIZE = 1) have smaller

210 9 Regression Models

2 4 6 8 10 12

0
1

2
3

4

nesting

lo
gt

im
e

Ringed_plover

Rock_dove

Raven

Skylark
Starling

Fig. 9.1. Plot of logarithm of the extinction time against the average number of
nesting pairs for the bird study.

extinction times and resident birds (with STATUS = 1) have longer extinction
times.

The function blinreg is used to sample from the joint posterior distri-
bution of β and σ. The inputs to this function are the vector of values of
the response variable y, the design matrix of the linear regression fit X, and
the number of simulations m. Note that we used the optional arguments x =
TRUE, and y = TRUE in the function lm so that the design matrix and response
vector are available as components of the structure fit.

> theta.sample=blinreg(fity,fitx,5000)

The algorithm in binreg is based on the decomposition of the joint pos-
terior [β, σ2|y] as the product [σ2|y][β|σ2, y]. To simulate one draw of (σ2, β),
σ2 is first drawn from the inverse gamma((n − k)/2, S/2) density:

S=sum(fit$residual^2)
shape=fit$df.residual/2; rate=S/2
sigma2=rigamma(1,shape,rate)

Then the regression vector β is simulated from the multivariate normal density
with mean β̂ and variance-covariance matrix Vβσ2. Note that we obtain the

9.2 Normal Linear Regression 211

0 1

0
1

2
3

4

jitter(size)

lo
gt

im
e

Fig. 9.2. Plot of the logarithm of the extinction time against the bird size for the
bird study. The bird size variable is coded 0 for small and 1 for large.

matrix Vβ by dividing the estimated variance-covariance matrix vcov from
the least-squares fit by the mean square error stored in the variable MSE.

MSE = sum(fit$residuals^2)/fit$df.residual
vbeta=vcov(fit)/MSE
beta=rmnorm(1,mean=fit$coef,varcov=vbeta*sigma2)

The function blinreg returns two components: beta is a matrix of simulated
draws from the marginal posterior of β, where each row is a simulated draw,
and sigma is a vector of simulated draws from the marginal posterior of σ.

The following R commands construct histograms of the simulated posterior
draws of the individual regression coefficients β1, β2, and β3 and the error
standard deviation σ (see Figure 9.4):

> par(mfrow=c(2,2))

> hist(theta.sample$beta[,2],main="NESTING",

+ xlab=expression(beta[1]))

> hist(theta.sample$beta[,3],main="SIZE",

+ xlab=expression(beta[2]))

> hist(theta.sample$beta[,4],main="STATUS",

+ xlab=expression(beta[3]))

212 9 Regression Models

0 1

0
1

2
3

4

jitter(status)

lo
gt

im
e

Fig. 9.3. Plot of the logarithm of the extinction time against the bird status for the
bird study. The bird status variable is coded 0 for migrant and 1 for resident.

> hist(theta.sample$sigma,main="ERROR SD",

+ xlab=expression(sigma))

We can summarize each individual parameter by computing the 5th, 50th, and
95th percentiles of each collection of simulated draws. In the output, we use
the apply and quantile commands to summarize the simulation matrix of
β theta.sample$beta. Similarly, we use the quantile command to simulate
the draws of σ.

> apply(theta.sample$beta,2,quantile,c(.05,.5,.95))

X(Intercept) Xnesting Xsize Xstatus
5% 0.09789072 0.2038980 -0.9374168 0.2050562
50% 0.42705148 0.2648745 -0.6475561 0.5024234
95% 0.77067086 0.3259122 -0.3803261 0.8082491

> quantile(theta.sample$sigma,c(.05,.5,.95))

5% 50% 95%
0.5679346 0.6576295 0.7725279

As expected, the posterior medians of the regression parameters are similar in
value to the ordinary regression estimates. Actually they are equivalent since

9.2 Normal Linear Regression 213

NESTING

1

Fr
eq

ue
nc

y

0.10 0.20 0.30 0.40

0
20

0
60

0
10

00

SIZE

2

Fr
eq

ue
nc

y

−1.0 −0.5 0.0

0
20

0
60

0
10

00

STATUS

3

Fr
eq

ue
nc

y

0.0 0.5 1.0

0
20

0
60

0
10

00

ERROR SD
Fr

eq
ue

nc
y

0.5 0.6 0.7 0.8 0.9 1.0

0
50

0
10

00
15

00

Fig. 9.4. Histogram of simulated draws from the marginal posterior distributions
of β1, β2, β3, and σ.

we applied a vague prior for β; any small differences between the posterior
medians and the least-squares estimates are due to small errors inherent in
the simulation.

Next, suppose we are interested in estimating the mean log extinction time
E(y|x∗) = x∗β for four nesting pairs and for different combinations of SIZE
and STATUS. The values of the four sets of covariates are shown in Table 9.1.

Table 9.1. Four sets of covariates of interest in the bird study.

Covariate Set Nesting Pairs Size Status

A 4 small migrant
B 4 small resident
C 4 large migrant
D 4 large resident

In the following input, we define the four sets of covariates and stack these
sets in the matrix X1. The function blinregexpected will give a simulated

214 9 Regression Models

sample for the expected response E(y|x∗) = x∗β for each set of covariate
values. The inputs to the function are the matrix X1 of covariate values and
the list of simulated values of β and σ obtained from the function binlinreg.
The output of the function is a matrix where a column contains the simulated
draws for a given covariate set. We construct histograms of the simulated
draws for each of the mean extinction times, and the plots are displayed in
Figure 9.5.

> cov1=c(1,4,0,0)

> cov2=c(1,4,1,0)

> cov3=c(1,4,0,1)

> cov4=c(1,4,1,1)

> X1=rbind(cov1,cov2,cov3,cov4)

> mean.draws=blinregexpected(X1,theta.sample)

> c.labels=c("A","B","C","D")

> par(mfrow=c(2,2))

> for (j in 1:4)

> hist(mean.draws[,j],

+ main=paste("Covariate set",c.labels[j]),xlab="log TIME")

In the preceding work, we were interested in learning about the mean re-
sponse value E(y|x∗) for a given set of covariate values. Instead, suppose we
are interested in predicting a future response ỹ for a given covariate vector x∗.
The function blinregpred will produce a simulated sample of future response
values for a regression model. Similar to the function binlinregexpected, the
inputs to the function blinregpred are a matrix X1 where each row corre-
sponds to a covariate set and the structure of simulated values of the param-
eters β and σ.

> cov1=c(1,4,0,0)

> cov2=c(1,4,1,0)

> cov3=c(1,4,0,1)

> cov4=c(1,4,1,1)

> X1=rbind(cov1,cov2,cov3,cov4)

> pred.draws=blinregpred(X1,theta.sample)

> c.labels=c("A","B","C","D")

> par(mfrow=c(2,2))

> for (j in 1:4)

> hist(pred.draws[,j],

+ main=paste("Covariate set",c.labels[j]),xlab="log TIME")

Figure 9.6 displays histograms of the simulated draws from the predictive
distribution for the same four sets of covariates. Comparing Figure 9.5 and
Figure 9.6, note that the predictive distributions are substantially wider than
the mean response distributions.

We illustrate two methods of checking if the observations are consistent
with the fitted model. The first method is based on the use of the posterior

9.2 Normal Linear Regression 215

Covariate set A

log TIME

Fr
eq

ue
nc

y

1.0 1.5 2.0

0
20

0
60

0
10

00

Covariate set B

log TIME

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5

0
20

0
60

0
10

00

Covariate set C

log TIME

Fr
eq

ue
nc

y

1.6 1.8 2.0 2.2 2.4

0
40

0
80

0
12

00

Covariate set D

log TIME

Fr
eq

ue
nc

y

1.0 1.2 1.4 1.6 1.8

0
20

0
40

0
60

0
80

0

Fig. 9.5. Histograms of simulated draws of the posterior of the mean extinction
time for four sets of covariate values.

predictive distribution described in Section 9.2.5. Let y∗i denote the density
of a future log extinction time for a bird with covariate vector xi. Using
the function binregpred, we can simulate draws of the posterior predictive
distributions for all y∗1 , ..., y∗62 by using fit$x as an argument. In the R code,
we summarize each predictive distribution by the 5th and 95th quantiles and
graph these distributions as line plots using the matplot command (see Figure
9.7). We place the actual log extinction times y1, ..., y62 as solid dots in the
figure. We are looking to see if the observed response values are consistent
with the corresponding predictive distributions; any points that fall outside
of the corresponding 90% interval band are possible outliers. There are three
points (labeled in the figure) that exceed the 95th percentile, corresponding
to the species snipe, raven, and skylark.

> pred.draws=blinregpred(fit$x,theta.sample)

> pred.sum=apply(pred.draws,2,quantile,c(.05,.95))

> par(mfrow=c(1,1))

> ind=1:length(logtime)

> matplot(rbind(ind,ind),pred.sum,type="l",lty=1,col=1,

+ xlab="INDEX",ylab="log TIME")

216 9 Regression Models

Covariate set A

log TIME

Fr
eq

ue
nc

y

−1 0 1 2 3 4

0
40

0
80

0
12

00

Covariate set B

log TIME

Fr
eq

ue
nc

y

−1 0 1 2 3 4

0
40

0
80

0
12

00

Covariate set C

log TIME

Fr
eq

ue
nc

y

−1 0 1 2 3 4 5

0
40

0
80

0
12

00

Covariate set D

log TIME

Fr
eq

ue
nc

y

−1 0 1 2 3 4

0
50

0
10

00
15

00

Fig. 9.6. Histograms of simulated draws of the predictive distribution for a future
extinction time for four sets of covariate values.

> points(ind,logtime,pch=19)

> out=(logtime>pred.sum[2,])

> text(ind[out], logtime[out], label=species[out], pos = 4)

Another method for outlier detection is based on the use of the Bayesian
residuals εi = yi − xiβ. Following the strategy described in Section 9.2.5, we
can compute the posterior outlying probabilities,

P (|εi| > k|y),

for all observations for a constant value k. These probabilities can be com-
puted using the function bayesresiduals. The inputs are the lm fit structure
fit, the matrix of simulated parameter draws theta.sample, and the value of
k. The output is a vector of posterior outlying probabilities. In this example,
we use a cutoff value of k = 2. We use the plot command to construct a scat-
terplot of the probabilities against the nesting covariate; the resulting display
is in Figure 9.8. By using the identify command, we identify four birds that
have outlying probabilities of .4 or higher. These birds have extinction times
that are not well-explained by the variables NESTING, SIZE, and STATUS.

9.3 Model Selection Using Zellner’s g Prior 217

0 10 20 30 40 50 60

−1
0

1
2

3
4

INDEX

lo
g

TI
M

E

Snipe

Raven

Skylark

Fig. 9.7. Posterior predictive distributions of {y∗
i } with actual log extinction times

{yi} indicated by solid points. Three times that exceed the 95th percentile of the
predictive distributions are labeled with the name of the species.

Two of the outlying species, raven and skylark, were also identified by the
posterior predictive methodology.

> prob.out=bayesresiduals(fit,theta.sample,2)

> par(mfrow=c(1,1))

> plot(nesting,prob.out)

> out = (prob.out > 0.35)

> text(nesting[out], prob.out[out], label=species[out], pos = 4)

9.3 Model Selection Using Zellner’s g Prior

In the previous sections, we have considered the use of a noninformative prior
for (β, σ2). Arnold Zellner introduced a simple way of inputting subjective
information in a regression problem. This particular choice of distribution is
called a g prior. In this section, we illustrate the use of g priors and show that
this prior distribution provides a convenient way of choosing among a set of
regression models.

218 9 Regression Models

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nesting

pr
ob

.o
ut

Snipe

JackdawRaven

Skylark

Fig. 9.8. Plot of posterior probabilities of outliers for all observations. Four unusu-
ally large probabilities are identified with the name of the species.

For a g prior, we assume that the regression vector β, conditional on σ,
has a multivariate normal prior distribution with mean β0 and variance-
covariance matrix cσ2(X ′X)−1, and then we assign σ2 the standard noninfor-
mative prior proportional to 1/σ2. To use this prior, the user needs to specify
only two quantities, a guess β0 at the regression vector, and a constant c that
reflects the amount of information in the data relative to the prior. If one
believes strongly in the prior guess, one would choose a small value for c. In
contrast, choosing a large value of c would have an effect similar to choosing
the standard noninformative prior for (β, σ2).

One nice feature of the g prior analysis is that the posterior distribution
has a relatively simple functional form. One can represent the joint posterior
density of (β, σ2) as

g(β, σ2|y) = g(β|y, σ2)g(σ2|y).

The posterior distribution of the regression vector β conditional on σ2,
g(β|y, σ2), is multivariate normal with mean β1 and variance-covariance ma-
trix V1, where

9.3 Model Selection Using Zellner’s g Prior 219

β1 =
c

c + 1

(
β0

c
+ β̂

)
, V1 =

σ2c

c + 1
(X ′X)−1.

The marginal posterior distribution of σ2 is inverse gamma(a1, b1), where

a1 = n/2, b1 =
S

2
+

1
2(c + 1)

(β0 − β̂)′X ′X(β0 − β̂).

A simulated sample from the joint posterior distribution can be obtained using
the same algorithm described in Section 9.2.4. First, one simulates a value of
the variance from the inverse gamma distribution, and then one simulates β
from the conditional multivariate normal density. The R function blinreg,
with the prior option, will simulate draws from the regression model with
Zellner’s g prior.

To illustrate the application of Zellner’s g prior, consider data from a study
described in Peck, Devore, and Olsen (2005) that relates the breeding success
of the common puffin in different habitats at Great Island, Newfoundland. For
28 birds, we observe NEST, the nesting frequency, GRASS, the grass cover,
SOIL, the mean soil depth, ANGLE, the angle of slope, and DISTANCE, the
distance from the cliff edge.

Suppose we explore the relationship between NEST and DISTANCE using
the simple regression model

NESTi = β0 + β1(DISTANCEi − DISTANCE) + εi,

where NESTi and DISTANCEi are, respectively, the nesting frequency and
grass cover for the ith puffin, and the {εi} are a random sample from a
normal(0, σ) distribution. Suppose our prior guess at the regression vector
β = (β0, β1) is equal to β0 = (8, 0). This guess says that we don’t think that
DISTANCE is a useful predictor of nesting frequency and so β1 = 0; the value
β0 = 8 is the average nesting frequency.

To use the blinreg function, we add the option prior, a list with com-
ponents b0 and c0, which correspond to the prior parameter values of β0

and c, respectively. In the following R code, we simulate posterior samples of
(β, σ) using the g prior with the prior guess β0 = (8, 0) and the prior con-
stant c = 0.1, 0.5, 2, 5. Using the xyplot function in the lattice package,
we construct scatterplots of the simulated draws from the posterior distribu-
tion of (β0, β1) for the four values of c. (See Figure 9.9.) We see that, as c
decreases from 5 to 0.1, corresponding to stronger prior beliefs, the posterior
distribution moves toward the prior guess (β0, β1) = (8, 0).

> data(puffin)

> X=cbind(1, puffin$Distance - mean(puffin$Distance))

> c.prior=c(0.1,0.5,5,2)

> fit=vector("list",4)

> for (j in 1:4)

+ {

220 9 Regression Models

+ prior=list(b0=c(8,0), c0=c.prior[j])

+ fit[[j]]=blinreg(puffin$Nest, X, 1000, prior)

+ }

> BETA=NULL

> for (j in 1:4)

+ {

+ s=data.frame(Prior=paste("c =",as.character(c.prior[j])),

+ beta0=fit[[j]]$beta[,1],beta1=fit[[j]]$beta[,2])

+ BETA=rbind(BETA,s)

+ }

> library(lattice)

> with(BETA,xyplot(beta1~beta0|Prior,type=c("p","g")))

beta0

be
ta

1

−0.4

−0.3

−0.2

−0.1

0.0

6 7 8 9

c = 0.1 c = 0.5

c = 5

6 7 8 9

−0.4

−0.3

−0.2

−0.1

0.0

c = 2

Fig. 9.9. Posterior distribution of β0, β1 for four choices of the prior parameter c
for the puffin dataset.

Zellner’s class of g priors can be used to select a best model in a regression
problem. Suppose that there are k potential predictors of the response variable
y. There are a total of 2k possible regression models, corresponding to the
inclusion or exclusion of each predictor in the model. Let β denote the full

9.3 Model Selection Using Zellner’s g Prior 221

model including all of the predictors. We assign β a g prior with prior guess
β0 = 0 and a “large” value of c, say c = 100, corresponding to vague prior
information about the location of β. Then if βP denotes a regression model
containing a subset P of the predictors, we assign βP a g prior of the same
functional form with a prior guess of 0 and the same value of c.

We compare the different regression models by computing the prior pre-
dictive density. If the sampling density of the response variable is given by
f(y|β, σ2) and the parameter vector (β, σ2) is assigned the prior density
g(β, σ2), then the prior predictive density of y is given by the integral

m(y) =
∫

f(y|β, σ2)g(β, σ2)dβdσ2.

If we transform σ2 by a logarithm where η = log σ, then this integral over
(β, η) can be accurately approximated using Laplace’s method implemented
in the R function laplace in the LearnBayes package.

The function reg.gprior.post computes the log posterior density for
a regression model with a g prior. The log posterior is the sum of the log
likelihood and the log prior, where the following R code is used to compute
the two terms.

loglike = sum(dnorm(y, mean = X %*% as.vector(beta),
sd = sigma, log = TRUE))

logprior = dmnorm(beta, mean = beta0, varcov = c0 *
sigma^2 *solve(t(X) %*% X), log = TRUE)

Suppose one is interested in computing the prior predictive density for the
specific model that includes the covariates GRASS and SOIL. One first defines
the data list that contains the response vector y and the design matrix X.
Then one defines the prior list that contains the values of β0 and c. One gets
a reasonable starting value for β in laplace by performing a least-squares
regression fit, and the starting value for log σ is an estimate of the error
standard deviation. The component int of the output from laplace is the
estimate of the logarithm of the predictive density.

> data=list(y=puffin$Nest, X=cbind(1,puffin$Grass,puffin$Soil))

> prior=list(b0=c(0,0,0), c0=100)

> beta.start=with(puffin,lm(Nest~Grass+Soil)$coef)

> laplace(reg.gprior.post,c(beta.start,0),

+ list(data=data,prior=prior))$int

[1] -136.3957

In practice, one wishes to compute the predictive density for a collection of
plausible models. The function bayes.model.selection uses the algorithm
above to compute the predictive density for all 2k models. The function has
three inputs: y is the vector of responses, X is the design matrix (in this case,
the design matrix does not contain a column corresponding to the constant

222 9 Regression Models

term, so the option constant is set to FALSE), and c is the value of the con-
stant c of the g prior. The output of bayes.model.selection is a matrix that
gives the value of the log predictive density for all models. Suppose that the
2k models are believed equally likely a priori. Then the posterior probability
of model Mj is given by

P (Mj |y) =
mj(y)∑2k

i=1 mi(y)
.

Under this assumption that the models all have the same prior probability,
this function also outputs the posterior model probabilities.

> X=puffin[,-1]; y=puffin$Nest; c=100

> bayes.model.selection(y,X,c,constant=FALSE)

$mod.prob
Grass Soil Angle Distance log.m Prob

1 FALSE FALSE FALSE FALSE -132.18 0.00000
2 TRUE FALSE FALSE FALSE -134.05 0.00000
3 FALSE TRUE FALSE FALSE -134.51 0.00000
4 TRUE TRUE FALSE FALSE -136.40 0.00000
5 FALSE FALSE TRUE FALSE -112.67 0.00000
6 TRUE FALSE TRUE FALSE -113.18 0.00000
7 FALSE TRUE TRUE FALSE -114.96 0.00000
8 TRUE TRUE TRUE FALSE -115.40 0.00000
9 FALSE FALSE FALSE TRUE -103.30 0.03500
10 TRUE FALSE FALSE TRUE -105.57 0.00360
11 FALSE TRUE FALSE TRUE -100.37 0.65065
12 TRUE TRUE FALSE TRUE -102.35 0.08992
13 FALSE FALSE TRUE TRUE -102.81 0.05682
14 TRUE FALSE TRUE TRUE -105.09 0.00581
15 FALSE TRUE TRUE TRUE -101.88 0.14386
16 TRUE TRUE TRUE TRUE -104.19 0.01434

From this output, we see the most probable models are {SOIL, DISTANCE},
{SOIL, ANGLE, DISTANCE}, and {GRASS, SOIL, DISTANCE}. The log
marginal density and posterior probability of the most likely model {SOIL,
DISTANCE} are −100.37 and 0.65065, respectively.

9.4 Survival Modeling

Suppose one is interested in constructing a model for lifetimes in a survival
study. For a set of n individuals, one observes the lifetimes t1, ..., tn. It is
possible that some of the lifetimes are not observable since some individuals
are still alive at the end of the study. In this case, we represent the response

9.4 Survival Modeling 223

by the pair (ti, δi), where ti is the observation and δi is a censoring indicator.
If δi = 1, the observation is not censored and ti is the actual survival time.
Otherwise when δi = 0, the observation ti is the censored time.

Suppose we wish to describe the variation in the survival times using p
covariates x1, ..., xp. One can describe this relationship by using the Weibull
proportional hazards model. This model can be expressed as the loglinear
model

log ti = μ + β1xi1 + ... + βpxip + σεi,

where xi1, ..., xip are the values of the p covariates for the ith individual and
εi is assumed to have a Gumbel distribution with density f(ε) = exp(ε − eε).
There are p+2 unknown parameters in this model, the p regression coefficients,
the constant term μ, and the scale parameter σ.

It can be shown that the density of the log time, yi = log ti is given by

fi(yi) =
1
σ

exp(zi − ezi),

where zi = (yi −μ− β1xi1 − ...− βpxip)/σ. Also, the survival function for the
ith individual is given by Si(yi) = exp(−ezi). Then the likelihood function of
the regression vector β = (β1, ..., βp), μ and σ is given by

L(β, μ, σ) =
n∏

i=1

{fi(yi)}δi{Si(yi)}1−δi .

Suppose we assign μ, β uniform priors and the scale parameter σ the usual
noninformative prior proportional to 1/σ. Then the posterior density is given,
up to a proportionality constant, by

g(β, μ, σ|data) ∝ 1
σ

L(β, μ, σ).

To illustrate the application of this model, Edmonson et al. (1979) studied
the effects of different chemotherapy treatments following surgical treatment
of ovarian cancer. The response variable TIME was the survival time in days
following randomization to one of two chemotherapy treatments. Also, we
record a censoring variable STATUS that indicates if TIME is an actual
survival time (STATUS = 1) or censored at that time (STATUS = 0). The
two covariates are TREAT , the treatment group, and AGE, the age of the
patient. The loglinear model is

log TIMEi = μ + β1TREATi + β2AGEi + σεi.

The dataset is given the name chemotherapy in the LearnBayes package.
To begin, we read in the dataset and illustrate fitting this model using the
survreg function in the survival library.

224 9 Regression Models

> data(chemotherapy)

> attach(chemotherapy)

> library(survival)

> survreg(Surv(time,status)~factor(treat)+age,dist="weibull")

Call:
survreg(formula = Surv(time, status) ~ factor(treat) + age,
dist = "weibull")

Coefficients:
(Intercept) factor(treat)2 age
10.98683919 0.56145663 -0.07897718

Scale= 0.5489202

Loglik(model)= -88.7 Loglik(intercept only)= -98
Chisq= 18.41 on 2 degrees of freedom, p= 1e-04

n= 26

Unlike the normal regression model, the posterior distribution of the pa-
rameters of this survival model cannot be simulated by standard probability
distributions. But we are able to apply our general computing strategy de-
scribed in Chapter 6 to summarize the posterior distribution for this problem.
We first make all parameters real-valued by transforming the scale parameter
σ to η = log σ. We write the following function weibullregpost, which com-
putes the joint posterior density of θ = (η, μ, β1, β2). The argument data is the
data matrix where the first two columns are {ti} and {ci} and the remaining
columns are the covariates TREAT and AGE.

weibullregpost=function (theta, data)
{

logf = function(t, c, x, sigma, mu, beta) {
z = (log(t) - mu - x %*% beta)/sigma
f = 1/sigma * exp(z - exp(z))
S = exp(-exp(z))
c * log(f) + (1 - c) * log(S) }

k = dim(data)[2]
p = k - 2
t = data[, 1]
c = data[, 2]
X = data[, 3:k]
sigma = exp(theta[1])
mu = theta[2]
beta = array(theta[3:k], c(p, 1))
return(sum(logf(t, c, X, sigma, mu, beta)))

}

9.4 Survival Modeling 225

To get some initial estimates of the location and spread of the posterior
density, we use the laplace function. We use the output of the survreg fit to
suggest the initial guess at the posterior mode (−.5, 9, .5,−.05). The output
of this function is the posterior mode θ̂ and associated variance-covariance
matrix V .

> start=c(-.5,9,.5,-.05)

> d=cbind(time,status,treat-1,age)

> fit=laplace(weibullregpost,start,d)

> fit

$mode
[1] -0.59986796 10.98663371 0.56151088 -0.07897316

$var
[,1] [,2] [,3] [,4]

[1,] 0.057298875 0.13530436 0.004541435 -0.0020828431
[2,] 0.135304360 1.67428176 -0.156631947 -0.0255278352
[3,] 0.004541435 -0.15663195 0.115450201 0.0017880712
[4,] -0.002082843 -0.02552784 0.001788071 0.0003995202

$int
[1] -25.31207

$converge
[1] TRUE

We then use the information from the laplace function to find a proposal
density for the Metropolis random walk chain programmed in the R function
rwmetrop. The proposal density will be a multivariate normal density with
mean 0 and variance-covariance scaleV , where scale is a scale parameter
chosen so that the random walk chain has an acceptance range in the 20–40%
range. With some trial and error, we find that scale = 1.5 seems to give a
satisfactory acceptance rate.

> proposal=list(var=fit$var,scale=1.5)

> bayesfit=rwmetrop(weibullregpost,proposal,fit$mode,10000,d)

> bayesfit$accept

[1] 0.2677

By using several hist commands, we display histograms of the simulated
draws from the marginal posterior densities of β1 (corresponding to TREAT),
β2 (corresponding to AGE), and the scale parameter σ (see Figure 9.10).

> par(mfrow=c(2,2))

> sigma=exp(bayesfit$par[,1])

> mu=bayesfit$par[,2]

226 9 Regression Models

> beta1=bayesfit$par[,3]

> beta2=bayesfit$par[,4]

> hist(beta1,xlab="treatment")

> hist(beta2,xlab="age",main="")

> hist(sigma,xlab="sigma",main="")

treatment

Fr
eq

ue
nc

y

−1 0 1 2 3

0
10

00
30

00

age

Fr
eq

ue
nc

y

−0.25 −0.15 −0.05

0
10

00
20

00
30

00

sigma

Fr
eq

ue
nc

y

0.5 1.0 1.5 2.0 2.5

0
10

00
30

00

Fig. 9.10. Plot of the posterior probabilities of regression coefficients for TREAT
and AGE and the scale parameter σ for the chemotherapy example.

Suppose one is interested in estimating the survival curve for an individual
in the treatment group (TREAT = 1) who is 60 years old. For a given time t,
the probability that this individual survives beyond t days is given by

P (T > t) = exp(− exp(z)),

where z = (log t−μ−β1(1)−β2(60))/σ. A simulated sample of draws from this
survival probability is obtained by computing this function on the simulated
draws of θ, and this simulated sample can be summarized by the 5th, 50th, and
95th percentiles. This procedure was repeated for a grid of t values between 0
and 2000 days. Figure 9.11 graphs the 5th, 50th, and 95th percentiles for the
survival curve for this individual. In a similar fashion, it is straightforward to
make inferences about any function of the parameters of interest.

9.6 Summary of R Functions 227

0 500 1000 1500 2000

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l

Fig. 9.11. Posterior median and 90% Bayesian interval estimates for the survival
function S for an individual 60 years old in the treatment group.

9.5 Further Reading

Chapter 14 of Gelman et al. (2003) introduces Bayesian model building and
inference for normal linear models. Analogous methods for generalized linear
models are presented in Chapter 16 of Gelman et al. (2003). The Bayesian lin-
ear regression model is also described in chapter 4 of Gill (2008) and Chapter
12 of Press (2003). Zellner (1986) and Chapter 3 of Marin and Robert (2007)
describe the class of g priors and the use of these priors in model selection.
The classical Weibull survival regression model is discussed in Collett (1994).
Chaloner and Brant (1988) describe the use of Bayesian residuals in a linear
regression model.

9.6 Summary of R Functions

bayes.model.selection – using Zellner’s g priors, computes the log predic-
tive density for all possible regression models
Usage: bayes.model.selection(y, X, c, constant=TRUE)

228 9 Regression Models

Arguments: y, vector of response values; X, matrix of covariates c, parameter
of the g prior constant, logical value indicating if a constant term is in the
matrix X
Value: mod.prob, data frame specifying the model, the value of the log pre-
dictive density and the value of the posterior model probability; converge,
logical vector indicating if the Laplace algorithm converged for each model

bayesresiduals – computation of posterior outlying probabilities for a linear
regression model with a noninformative prior
Usage: bayesresiduals(fit, theta.sample, k)
Arguments: fit, output of a least-squares fit (R function lm); theta.sample,
list with components beta (matrix of simulated draws from the posterior of
beta) and sigma (vector of simulated draws from the posterior of sigma); k,
cutoff value that defines an outlier
Value: vector of posterior outlying probabilities

blinreg – gives a simulated sample from the joint posterior distribution of
the regression vector and the error standard deviation for a linear regression
model with a noninformative prior or a g prior
Usage: blinreg(y,X,m,prior=NULL)
Arguments: y, vector of responses; X, design matrix; m, number of simulations
desired; prior, list with components c0 and beta0 of Zellner’s g prior
Value: beta, matrix of simulated draws of beta where each row corresponds
to one draw; sigma, vector of simulated draws of the error standard deviation

blinregexpected – simulates draws of the expected response for a linear
regression model with a noninformative prior
Usage: binregexpected(X,theta.sample)
Arguments: X, matrix where each row corresponds to a covariate set;
theta.sample, list with components beta (matrix of simulated draws from
the posterior of beta) and sigma (vector of simulated draws from the posterior
of sigma
Value: matrix where a column corresponds to the simulated draws of the
expected response for a given covariate set

blinregpred - simulates draws of the predicted future response for a linear
regression model with a noninformative prior
Usage: binregpred(X,theta.sample)
Arguments: X, matrix where each row corresponds to a covariate set;
theta.sample, list with components beta (matrix of simulated draws from
the posterior of beta) and sigma (vector of simulated draws from the posterior
of sigma
Value: matrix where a column corresponds to the simulated draws of the
predicted future response for a given covariate set

reg.gprior.post – computes the log posterior of a normal regression model
with a g prior

9.7 Exercises 229

Usage: reg.gprior.post(theta, dataprior)
Arguments: theta, vector of components of beta and log sigma; dataprior,
list with components data and prior; data is a list with components y and X,
and prior is a list with components b0 and c0
Value: value of the log posterior

weibullregpost – computes the logarithm of the posterior of (log sigma, mu,
beta) for a Weibull proportional odds model
Usage: weibullregpost(theta,data)
Arguments: theta, vector of parameter values of (log sigma, mu, beta); data,
matrix with columns survival time, censoring variable, and covariate matrix
Value: value of the log posterior

9.7 Exercises

1. Normal linear regression
Dobson (2001) describes a birthweight regression study. One is interested
in predicting a baby’s birthweight (in grams) based on the gestational age
(in weeks) and the gender of the baby. The data are presented in Table 9.2
and available as birthweight in the LearnBayes package. In the standard
linear regression model, we assume that

BIRTHWEIGHTi = β0 + β1AGEi + GENDERi + ε,

where the εi are independent and normally distributed with mean 0 and
variance σ2.

Table 9.2. Birthweight (in grams) and gestational age (weeks) for male and female
babies.

Male Female

Age Birthweight Age Birthweight

40 2968 40 3317
38 2795 36 2729
40 3163 40 2935
35 2925 38 2754
36 2625 42 3210
37 2847 39 2817
41 3292 36 3126
40 3473 37 2539
37 2628 36 2412
38 3176 38 2991
40 3421 39 2875
38 2975 40 3231

230 9 Regression Models

a) Use the R function lm to fit this model by least-squares. From the out-
put, assess if the effects AGE and GENDER are significant, and if they
are significant, describe the effects of each covariate on birthweight.

b) Suppose a uniform prior is placed on the regression parameter vector
β = (β0, β1, β2). Use the function blinreg to simulate a sample of
5000 draws from the joint posterior distribution of (β, σ2). From the
simulated sample, compute the posterior means and standard devia-
tions of β1 and β2. Check the consistency of the posterior means and
standard deviations with the least-squares estimates and associated
standard errors from the lm run.

c) Suppose one is interested in estimating the expected birthweight for
male and female babies of gestational weeks 36 and 40. From the simu-
lated draws of the posterior distribution and function binregexpected,
construct 90% interval estimates for 36-week males, 36-week females,
40-week males, and 40-week females.

d) Suppose instead that one wishes to predict the birthweight for a 36-
week male, a 36-week female, a 40-week male, and a 40-week female.
Use the function blinregpred and the simulated posterior sample to
construct 90% prediction intervals for the birthweight for each type of
baby.

2. Model selection in regression
The dataset achievement in the LearnBayes package, from Abraham and
Ledolter (2006), contains information on 109 Austrian schoolchildren. The
following variables were measured: gender (0 for male and 1 for female),
age (in months), IQ, Read1, a test on assessing reading speed, and Read2,
a test for assessing reading comprehension. One is interested in using a
normal linear regression model to understand the variation in each of the
reading tests based on the predictors gender, age, and IQ.
a) Suppose one is interested in finding the best model to predict the

Read1 reading score. Use the function bayes.model.selection to
compute the prior predictive density for all 23 = 8 possible models
using a Zellner g prior with a constant value c = 100.

b) Check the sensitivity of the predictive densities with respect to the
choice of the constant c by applying the function bayes.model.
selection for several alternative values of c.

c) Use a classical model-checking strategy to find the best regression
model, and compare the best model with the best model chosen in
parts (a) and (b) using a Bayesian model-selection strategy.

3. Logistic regression
For a given professional athlete, his or her performance level will tend
to increase until midcareer and then deteriorate until retirement. Let yi

denote the number of home runs hit by the professional baseball player
Mike Schmidt in ni at-bats (opportunities) during the ith season. Table
9.3 gives Schmidt’s age, yi, and ni for all 18 years of his baseball career.

9.7 Exercises 231

The datafile is named schmidt in the LearnBayes package. The home
run rates {yi/ni} are graphed against Schmidt’s age in Figure 9.12. If
yi is assumed to be binomial(ni, pi), where pi denotes the probability of
hitting a home run during the ith season, then a reasonable model for the
{pi} is the logit quadratic model of the form

log
(pi

1 − pi

)
= β0 + β1AGEi + β2AGE2

i ,

where AGEi is Schmidt’s age during the ith season.

Table 9.3. Home run hitting data for baseball player Mike Schmidt.

Age Home Runs At-Bats Age Home Runs At-Bats

22 1 34 31 31 354

23 18 367 32 35 514

24 36 568 33 40 534

25 38 562 34 36 528

26 38 584 35 33 549

27 38 544 36 37 552

28 21 513 37 35 522

29 45 541 38 12 390

30 48 548 39 6 148

a) Assume that the regression vector β = (β0, β1, β2) has a uniform non-
informative prior. Write a short R function to compute the logarithm
of the posterior density of β.

b) Use the function laplace to find the posterior mode and associated
variance-covariance matrix of β.

c) Based on the output from laplace, use the function rwmetrop to
simulate 5000 draws from the posterior distribution of β.

d) One would expect the fitted parabola to have a concave down shape
where β2 < 0. Use the simulation output from part (c) to find the
posterior probability that the fitted curve is concave down.

4. Logistic regression (continued)
For this exercise, we assume that a simulated sample from the posterior
distribution of the regression vector β has been obtained.
a) When evaluating a baseball player, one is interested in estimating the

player’s ability at his peak. One can show that if β2 < 0, the peak
value of the probability on the logit scale is given by

PEAK = β0 − β2
1

4β2
.

Compute a density estimate of the marginal posterior density of the
peak value.

232 9 Regression Models

25 30 35

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Age

H
om

e
R

un
 R

at
e

Fig. 9.12. Scatterplot of home run rates HR/AB against age for Mike Schmidt.

b) One is also interested in the age at which a player achieves his peak
performance. From the quadratic model, the peak age can be shown
to be equal to

PEAK AGE = − β1

2β2
.

Using the simulated draws from the posterior of β, find a 90% interval
estimate for the peak age.

5. Survival modeling
Collett (1994) describes an investigation to evaluate a histochemical
marker HPA, which discriminates between primary breast cancer that
has metastasized and that which has not. The question is whether HPA
staining can be used to predict the survival experience of women with
breast cancer. Tumors of the women were treated with HPA, and each
tumor was classified as being positively or negatively stained, positively
staining corresponding to a tumor with the potential for metastasis. Sur-
vival times of the women who died of breast cancer were collected; the
data are displayed in Table 9.4. For some women (indicated by an aster-
isk in Table 9.4), the survival status at the end of the study was unknown
and the time from surgery to last date they were known to be alive is

9.7 Exercises 233

a censored survival time. The datafile breastcancer in the LearnBayes
package contains the data. There are three variables: time is the survival
time (in months); status gives the censoring status, where status = 1
indicates a complete survival time and status = 0 indicates a time that
is censored; and stain indicates the group, where stain = 0 (1) indicates
a tumor that was negatively (positively) stained.

Table 9.4. Survival times of women with tumors that were negatively or positively
stained with HPA from Collett.

N egative Staining Positive Staining

23 181 5 31 68 118
47 198∗ 5 35 71 143
69 208∗ 10 40 78∗ 154∗

70∗ 212∗ 13 41 105∗ 162∗

71∗ 224∗ 18 48 107∗ 188∗

100∗ 24 50 109∗ 212∗

101∗ 26 59 113 217∗

148 26 116 61∗ 225∗

a) Use the function survreg to fit a Weibull proportional hazards model
of the form

log TIMEi = μ + βGROUPi + σεi,

where εi is assumed to have a standard Gumbel distribution. Obtain
estimates and associated standard errors for the group regression co-
efficient β and the scale parameter σ.

b) The function weibullregpost computes the log posterior of (log σ, μ, β)
assuming the standard noninformative prior. Use the function laplace
to find the posterior mode and associated variance-covariance ma-
trix. Then apply the function rwmetrop to simulate a sample of 1000
iterates from the joint posterior. Compute the posterior mean and
standard deviation of β and σ, and compare your answers with the
estimates from part (a).

c) Using the simulated sample from the posterior of (log σ, μ, β), estimate
the survival curve S(t) for a patient in the negatively stained group
and a patient in the positively stained group. Choose a sequence of
values of the time t, and for each t find 5th, 50th, and 95th percentiles
of the survival probability S(t). As in Figure 9.11, graph the median
estimates of the survival curves for the two individuals.

6. Modeling team competition
A professional baseball season consists of a series of games played be-
tween teams in the league. Suppose that the qualities of the N teams are
measured by the talent parameters η1, ..., ηN , and the probability pij that
team i defeats team j in a single game is given by the logistic model

234 9 Regression Models

log (pij/(1 − pij)) = ηi − ηj .

(This is the well-known Bradley-Terry model.) Suppose one believes that
the talent parameters {ηk} are a random sample from a normal distri-
bution with mean 0 and standard deviation σ. Assuming independent
Bernoulli game outcomes, the likelihood function is given by

L(η1, ..., ηN , σ) =
∏
i<j

[
p

sij

ij (1 − pij)fij
] N∏

k=1

φ(ηk; 0, σ),

where sij (fij) are the number of games won by team i (team j) in the
games played between teams i and j and φ(;μ, σ) is the normal density
with mean μ and standard deviation σ. If we assign the parameter vec-
tor θ = (η1, ..., ηN , log σ) a uniform prior, then the posterior density is
proportional to the likelihood function. The following data give the game
results for the 1964 National League. These data are stored in the dataset
baseball.1964, and the function bradley.terry.post contains the def-
inition of the log posterior density of θ.

Team CHC CIN HOU LAD MLN NYM PHI PIT SFG STL
1 CHC NA 6 11 10 8 11 6 9 9 6
2 CIN 12 NA 12 14 9 11 9 8 7 10
3 HOU 7 6 NA 7 12 9 5 5 7 8
4 LAD 8 4 11 NA 8 15 8 10 6 10
5 MLN 10 9 6 10 NA 14 10 12 9 8
6 NYM 7 7 9 3 4 NA 3 6 7 7
7 PHI 12 9 13 10 8 15 NA 10 10 5
8 PIT 9 10 13 8 6 12 8 NA 8 6
9 SFG 9 11 11 12 9 11 8 10 NA 9
10 STL 12 8 10 8 10 11 13 12 9 NA

a) Construct a random walk MCMC algorithm to draw a sample of
20,000 from the joint posterior distribution.

b) Construct a density estimate of the standard deviation parameter σ
that describes the spread of the talent distribution of the ten teams.

c) Suppose Cincinnati (team 2) plays Chicago (team 1) in ten additional
games. Use simulations from the posterior predictive distribution to
predict the number of games Cincinnati will win.

10

Gibbs Sampling

10.1 Introduction

One attractive method for constructing an MCMC algorithm is Gibbs sam-
pling, introduced in Chapter 6. To slightly generalize our earlier discussion,
suppose that we partition the parameter vector of interest into p components
θ = (θ1, ..., θp), where θk may consist of a vector of parameters. The MCMC
algorithm is implemented by sampling in turn from the p conditional posterior
distributions

[θ1|θ2, ..., θp], ..., [θp|θ1, ..., θp−1].

Under general regularity conditions, draws from this Gibbs sampler will con-
verge to the target joint posterior distribution [θ1, ..., θp] of interest.

For a large group of inference problems, Gibbs sampling is automatic in
the sense that all conditional posterior distributions are available or easy to
simulate using standard probability distributions. There are several attractive
aspects of “automatic” Gibbs sampling. First, one can program these simu-
lation algorithms with a small amount of R code, especially when one can
use vector and matrix representations for parameters and data. Second, un-
like the more general Metropolis-Hastings algorithms described in Chapter
6, there are no tuning constants or proposal densities to define. Last, these
Gibbs sampling algorithms provide a nice introduction to the use of more
sophisticated MCMC algorithms in Bayesian fitting.

We illustrate the use of R to write Gibbs sampling algorithms for several
popular inferential models. We revisit the robust modeling example of Sec-
tion 6.8, where we applied various computational algorithms to summarize
the exact posterior distribution. In Section 10.2, we illustrate a simple Gibbs
sampler by representing the t sampling model as a scale mixture of normal
densities. In Section 10.3, we apply the idea of latent variables to simulate
from a binary response model where a probit link is used. This algorithm is
attractive in that one can simulate from this probit model by iterating between
truncated normal and multivariate normal probability distributions.

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 10,
© Springer Science+Business Media, LLC 2009

236 10 Gibbs Sampling

We conclude the chapter by considering a problem where one desires to
smooth a two-way table of means. One model for these data is to assume
that the underlying population means of the table follow a particular order
restriction. A second model assumes that the population means follow a hier-
archical regression model, where the population means are a linear function
of row and column covariates. For both problems, R functions can be used to
implement Gibbs sampling algorithms for simulating from the joint posterior
of all parameters. These algorithms are automatic in that they are entirely
based on standard probability distribution simulations.

10.2 Robust Modeling

We revisit the situation in Section 6.9 where we model data with a symmetric
continuous distribution. When there is a possibility of outliers, a good strategy
assumes the observations are distributed from a population with tails that are
heavier than the normal form. One example of a heavy-tailed distribution is
the t family with a small number of degrees of freedom.

With this motivation, we suppose y1, ..., yn are a sample from a t distri-
bution with location μ, scale parameter σ, and known degrees of freedom ν.
If we assign the usual noninformative prior on (μ, σ),

g(μ, σ) ∝ 1
σ

,

the posterior density is given by

g(μ, σ|y) ∝ 1
σ

n∏
i=1

1
σ

(
1 +

(yi − μ)2

σ2

)−(ν+1)/2

.

In the case of Cauchy sampling (ν = 1), we illustrated in Section 6.9 the use
of different computational algorithms to summarize this representation of the
posterior density.

By using a simple trick, we can implement an automatic Gibbs sampler
for this problem. A t density with location μ, scale σ, and degrees of freedom
ν can be represented as the following mixture:

y|λ ∼ N(μ, σ/
√

λ), λ ∼ gamma(ν/2, ν/2).

Suppose each observation yi is represented as a scale mixture of normals with
the introduction of the scale parameter λi. Then we can write our model as

yi|λi ∼ N(μ, σ/
√

λi), i = 1, ..., n,

λi ∼ gamma(ν/2, ν/2), i = 1, ..., n,

(μ, σ) ∼ g(μ, σ) ∝ 1/σ.

10.2 Robust Modeling 237

In the following, it is convenient to express the posterior in terms of the
variance σ2 instead of the standard deviation σ. Using the scale-mixture rep-
resentation, the joint density of all parameters (μ, σ2, {λi}) is given by

1
σ2

n∏
i=1

(
λ

1/2
i

σ
exp

[
− λi

2σ2
(yi − μ)2

]) n∏
i=1

(
λ

ν/2−1
i exp

[
−νλi

2

])
.

On the surface, it appears that we have complicated the analysis through
the introduction of the scale parameters {λi}. But Gibbs sampling is easy now
since all of the conditional distributions have the following simple functional
forms:

1. Conditional on μ and σ2, λ1, ..., λn are independent where

λi ∼ gamma
(

ν + 1
2

,
(yi − μ)2

2σ2
+

ν

2

)
.

2. Conditional on σ2 and {λi}, the mean μ has a normal distribution:

μ ∼ N

(∑n
i=1 λiyi∑n
i=1 λi

,
σ√∑n
i=1 λi

)
.

3. Conditional on μ and {λi}, the variance σ2 has an inverse gamma distri-
bution:

σ2 ∼ inv − gamma
(

n

2
,

∑n
i=1 λi(yi − μ)2

2

)
.

In R, we can let lam denote the vector {λi}, and mu and sig2 denote the
values of μ and σ2. These three conditional distribution simulations can be
implemented by the following R commands:

lam=rgamma(n,shape=(v+1)/2,rate=v/2+(y-mu)^2/2/sig2)
mu=rnorm(1,mean=sum(y*lam)/sum(lam),sd=sqrt(sig2/sum(lam)))
sig2=rigamma(1,n/2,sum(lam*(y-mu)^2)/2)

Note that we are using the random gamma function rgamma using a vector
rate parameter; due to the conditional independence property, λ1, ..., λn can
be simultaneously simulated by a single command. Also we have defined the
function rigamma in the LearnBayes package to simulate from the inverse
gamma density y−a−1 exp(−b/y) with arguments a and b.

The function robustt will implement this Gibbs sampling algorithm. The
three arguments to this function are the data vector y, the degrees of freedom
v, and the number of cycles of the Gibbs sampler m. The output of this function
is a list with three components: mu is a vector of simulated draws of μ, s2 is
a vector of simulated draws of σ2, and lam is a matrix of simulated draws of
{λi}, where each row corresponds to a single draw.

We apply this algorithm to Darwin’s dataset of the differences of the
heights of cross- and self-fertilized plants analyzed in Chapter 6. We model
the observations with a t(4) density and run the algorithm for 10,000 cycles.

238 10 Gibbs Sampling

> data(darwin)

> attach(darwin)

> fit=robustt(difference,4,10000)

We use the density estimation command density to construct a smooth
estimate of the marginal posterior density of the location parameter μ. The
resulting graph is shown in Figure 10.1.

> plot(density(fit$mu),xlab="mu")

−20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

mu

D
en

si
ty

Fig. 10.1. Density estimate of a simulated sample of marginal posterior density of
μ in the t modeling example.

The {λi} parameters are interesting to examine since λi represents the
weight of the observation yi in the estimation of the location and scale pa-
rameters of the t population. In the following R code, we compute the posterior
mean of each λi and place the posterior means in the vector mean.lambda.
Likewise, we compute the 5th and 95th percentiles of each simulated sam-
ple of {λi} (by using the apply command with the function quantile) and
store these quantiles in the vectors lam5 and lam95. We first plot the poste-
rior means of the {λi} against the observations {yi}, and then overlay lines

10.2 Robust Modeling 239

that represent 90% interval estimates for these parameters (see Figure 10.2).
Note that the location of the posterior density of λi tends to be small for the
outlying observations; these particular observations are downweighted in the
estimation of the location and scale parameters.

> mean.lambda=apply(fit$lam,2,mean)

> lam5=apply(fit$lam,2,quantile,.05)

> lam95=apply(fit$lam,2,quantile,.95)

> plot(difference,mean.lambda,lwd=2,ylim=c(0,3),ylab="Lambda")

> for (i in 1:length(difference))

+ lines(c(1,1)*difference[i],c(lam5[i],lam95[i]))

> points(difference,0*difference-.05,pch=19,cex=2)

−60 −40 −20 0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

La
m

bd
a

Fig. 10.2. Ninety percent posterior interval estimates of scale parameters {λi} plot-
ted against the observations y. The observations are also plotted along the horizontal
axis.

240 10 Gibbs Sampling

10.3 Binary Response Regression with a Probit Link

10.3.1 Missing Data and Gibbs Sampling

In Section 4.4, we considered a regression problem where we modeled the
probability of death as a function of the dose level of a compound. We now
consider the more general case where a probability is represented as a function
of several covariates. By regarding this problem as a missing-data problem,
one can develop an automatic Gibbs sampling method described in Albert
and Chib (1993) for simulating from the posterior distribution.

Suppose one observes binary observations y1, ..., yn. Associated with the
ith response, one observes the values of k covariates xi1, ..., xik. In the probit
regression model, the probability that yi = 1, pi, is written as

pi = P (yi = 1) = Φ(xi1β1 + ... + xikβk),

where β = (β1, ..., βk) is a vector of unknown regression coefficients and Φ()
is the cdf of a standard normal distribution. If we place a uniform prior on β,
then the posterior density is given by

g(β|y) ∝
n∏

i=1

pyi

i (1 − pi)1−yi .

In the example to be discussed shortly, the binary response yi is an in-
dicator of survival, where yi = 1 indicates the person survived the ordeal
and yi = 0 indicates the person did not survive. Suppose that there exists
a continuous measurement Zi of health such that if Zi is positive, then the
person survives; otherwise the person does not survive. Moreover, the health
measurement is related to the k covariates by the normal regression model

Zi = xi1β1 + ... + xikβk + εi,

where ε1, ..., εn are a random sample from a standard normal distribution. It
is a straightforward calculation to show that

P (yi = 1) = P (Zi > 0) = Φ(xi1β1 + ... + xikβk).

So we can regard this problem as a missing data problem where we have a
normal regression model on latent data Z1, ..., Zn and the observed responses
are missing or incomplete in that we only observe them if Zi > 0 (yi = 1) or
Zi ≤ 0 (yi = 0).

An automatic Gibbs sampling algorithm is constructed by adding the (un-
known) latent data Z = (Z1, ..., Zn) to the parameter vector β and sampling
from the joint posterior distribution of Z and β. Both conditional posterior
distributions, [Z|β] and [β|Z], have convenient functional forms. If we are
given a value of the vector of latent data Z, then it can be shown that the
conditional posterior distribution of β is

10.3 Binary Response Regression with a Probit Link 241

[β|Z,data] ∼ Nk((X ′X)−1X ′Z, (X ′X)−1),

where X is the design matrix for the problem. If we are given a value of the
regression parameter vector β, then Z1, ..., Zn are independent, with

[Zi|β,data] ∼ N(xiβ, 1)I(Zi > 0), if yi = 1,

[Zi|β,data] ∼ N(xiβ, 1)I(Zi < 0), if yi = 0,

and xi denotes the vector of covariates for the ith individual. So given the
value of β, we simulate the latent data Z from truncated normal distributions,
where the truncation point is 0 and the side of the truncation depends on the
values of the binary response.

The function bayes.probit implements this Gibbs sampling algorithm
for the probit regression model. The key lines in the R code of this function
simulate from the two conditional distributions. To simulate a variate Z from
a normal(μ, 1) distribution truncated on the interval (a, b), one uses the recipe

Z = Φ−1
[
Φ(a − μ) + U(Φ(b − μ) − Φ(a − μ))

]
+ μ,

where Φ() and Φ−1() are, respectively, the standard normal cdf and inverse
cdf, and U is a uniform variate on the unit interval. In the following code, lp
is the vector of linear predictors and y is the vector of binary responses. Then
the latent data z are simulated by the following code:

lp=x%*%beta
bb=pnorm(-lp)
tt=(bb*(1-y)+(1-bb)*y)*runif(n)+bb*y
z=qnorm(tt)+lp

Given values of the latent data in the vector z and the design matrix in x,
the following code simulates the vector data from the multivariate normal
distribution:

v=solve(t(x)%*%x)
mn=solve(t(x)%*%x,t(x)%*%z)
beta=rmnorm(1,mean=c(mn),varcov=v)

To illustrate the use of the function bayes.probit, we consider a dataset
on the Donner party, a group of wagon train emigrants who had difficulty in
crossing the Sierra Nevada mountains in California and a large number starved
to death. (See Grayson (1990) for more information about the Donner party.)
The dataset donner in the LearnBayes package contains the age, gender, and
survival status for 45 members of the party age 15 and older. For the ith
member, we let yi denote the survival status (1 if survived, 0 if not survived),
MALEi denote the gender (1 if male, 0 if female), and AGEi denote the age
in years. We wish to fit the model

P (yi = 1) = Φ(β0 + β1MALEi + β2AGEi).

242 10 Gibbs Sampling

We read in the dataset that has variable names survival, male, and age.
We create the design matrix and store it in the variable X.

> data(donner)

> attach(donner)

> X=cbind(1,age,male)

A maximum likelihood fit of the probit model can be found using the glm
function with the family=binomial option, indicating by link=probit that
a probit link is used.

> fit=glm(survival~X-1,family=binomial(link=probit))

> summary(fit)

Call:
glm(formula = survival ~ X - 1, family = binomial(link = probit))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

X 1.91730 0.76438 2.508 0.0121 *
Xage -0.04571 0.02076 -2.202 0.0277 *
Xmale -0.95828 0.43983 -2.179 0.0293 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

To fit the posterior distribution of β by Gibbs sampling, we use the function
bayes.probit. The inputs to this function are the vector of binary responses
survival, the design matrix X, and the number of cycles of Gibbs sampling
m.

> m=10000

> fit=bayes.probit(survival,X,m)

The output of this function is a list with two components beta and
log.marg. The matrix of simulated draws is contained in beta, where each
row corresponds to a single draw of β. We can compute the posterior means
and posterior standard deviations of the regression coefficients by use of the
apply function.

> apply(fit$beta,2,mean)

[1] 2.10178712 -0.05090274 -1.00917397

> apply(fit$beta,2,sd)

[1] 0.78992508 0.02127450 0.45329737

The posterior mean and standard deviations are similar in value to the max-
imum likelihood estimates and their associated standard errors. This is ex-
pected since the posterior analysis was based on a noninformative prior on
the regression vector β.

10.3 Binary Response Regression with a Probit Link 243

Since both the age and gender variables appear to be significant in this
study, it is interesting to explore the probability of survival

p = P (y = 1) = Φ(β0 + β1AGE + β2MALE)

as a function of these two variables. The function bprobit.probs is useful for
computing a simulated posterior sample of probabilities for covariate sets of
interest. For example, suppose we wish to estimate the probability of survival
for males age 15 through 65. We construct a matrix of covariate vectors X1,
where a row corresponds to the values of the covariates for a male of a particu-
lar age. The function bprobit.probs is used with inputs X1 and the simulated
matrix of simulated regression coefficients from bayes.probit that is stored
in fit$beta. The output is a matrix of simulated draws p.male, where each
column corresponds to a simulated sample for a given survival probability.

> a=seq(15,65)

> X1=cbind(1,a,1)

> p.male=bprobit.probs(X1,fit$beta)

We can summarize the simulated matrix of probabilities by the apply
command. We compute the 5th, 50th, and 95th percentiles of the simulated
sample of

p = Φ(β0 + β1AGE + β2(MALE = 1))

for each of the AGE values. In Figure 10.3, we graph these percentiles as a
function of age. For each age, the solid line is the location of the median of
the survival probability and the interval between the dashed lines corresponds
to a 90% interval estimate for this probability. In Figure 10.4, we repeat this
work to estimate the survival probabilities of females of different ages. These
two figures clearly show how survival is dependent on the age and gender of
the emigrant.

> plot(a,apply(p.male,2,quantile,.5),type="l",ylim=c(0,1),

+ xlab="age",ylab="Probability of Survival")

> lines(a,apply(p.male,2,quantile,.05),lty=2)

> lines(a,apply(p.male,2,quantile,.95),lty=2)

10.3.2 Proper Priors and Model Selection

The previous section illustrated the use of an automatic Gibbs sampling algo-
rithm for fitting a probit regression model with a noninformative prior placed
on the regression vector β. With a small adjustment, this algorithm can also
be used to sampling from the posterior distribution using an informative prior.
Suppose β is assigned a multivariate normal prior with mean vector β0 and
variance-covariance matrix V0. With the introduction of the latent data vector
Z, the Gibbs sampling algorithm again iterates between sampling from the

244 10 Gibbs Sampling

20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

P
ro

ba
bi

lit
y

of
 S

ur
vi

va
l

Fig. 10.3. Posterior distribution of probability of survival for males of different
ages. For each age, the 5th, 50th, and 95th percentiles of the posterior are plotted.

distributions of [Z|β] and [β|Z], where the conditional distribution of β has
the slightly revised form

[β|Z, data] ∼ Nk(β1, V1),

where the mean vector and variance-covariance matrix are given by

β1 = (X ′X + V −1
0)−1(X ′Z + V −1

0 β0), V1 = (X ′X + V −1
0)−1.

With the introduction of proper priors, one may be interested in compar-
ing Bayesian regression models by the use of Bayes factors. As described in
Chapter 8, a Bayes factor calculation requires the evaluation of the marginal
or predictive density value

m(y) =
∫

f(y|β)g(β)dβ,

where f(y|β) and g(β) are respectively the sampling density and prior corre-
sponding to a particular Bayesian model.

10.3 Binary Response Regression with a Probit Link 245

20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

P
ro

ba
bi

lit
y

of
 S

ur
vi

va
l

Fig. 10.4. Posterior distribution of probability of survival for females of different
ages. For each age, the 5th, 50th, and 95th percentiles of the posterior are plotted.

By use of Gibbs sampling, one can estimate the value of the marginal
density from a simulated sample from the posterior distribution. In Section
3.3, we introduced the formula

m(y) =
f(y|β)g(β)

g(β|y)
,

where g(β|y) is the posterior density. Suppose we write this equation in the
equivalent form

log m(y) = log f(y|β) + log g(β) − log g(β|y).

In this probit modeling problem, both the sampling density and the prior
density are known, and so the main task is to compute the logarithm of the
posterior density log g(β|y) at a particular value of β, say β∗. Suppose we
introduce the latent data Z into this computation problem. Then we write
the posterior density of β at β = β∗ as

g(β∗|y) =
∫

g(β∗|Z, y)g(Z|y)dZ,

246 10 Gibbs Sampling

where g(β∗|Z, y) is the posterior density of β (evaluated at β∗) conditional on
Z, and g(Z|y) is the marginal posterior density of Z. From our work above,
we know that [β|Z, y] is N(β1, V1), and we can simulate from the marginal
posterior density of Z. So a simulation-based estimate at the posterior density
ordinate is

g(β∗|y) ≈ 1
m

m∑
j=1

g(β∗|Zj , y) =
1
m

m∑
j=1

φ(β∗; β1, V1),

where {Zj} is a simulated sample of m sets of latent data and φ(x;μ, V) is
the multivariate normal density with mean μ and variance-covariance matrix
V evaluated at x. An estimate at the logarithm of the marginal density is

log m(y) ≈ log f(y|β∗) + log g(β∗) − 1
m

m∑
j=1

φ(β∗; β1, V1).

Typically, one chooses the fixed value β∗ to be a value that is likely under
the posterior distribution such as the posterior, the posterior mode, or the
maximum likelihood estimate.

The function bayes.probit will compute the log marginal density when
a subjective prior is used. One inputs the prior by means of the optional
argument prior, a list with components beta, the prior mean vector, and
P, the prior precision matrix. (The precision matrix is the inverse of the
variance-covariance matrix. The default value for P is a zero matrix which is
equivalent to using a noninformative prior for β.) When a subjective prior is
used, one component of the output of bayes.probit is log.marg, an estimate
at the logarithm of the marginal density.

To illustrate the computation of marginal density values and Bayes factors,
suppose we wish to select the best regression for the Donner party example. A
convenient choice for prior is given by a slight variation of the Zellner g prior
introduced in Section 9.3. For the full regression model with all predictors, we
let β have a normal distribution with mean vector 0 and variance-covariance
matrix c(X ′X)−1, where c is a large value, say c = 100 that reflects vague prior
knowledge about the location of β. Then if βP represents a regression model
with a subset of the predictors, we assign βP a prior of the same functional
form with the same value of c.

We begin by loading in the donner dataset, define the response vector y
and covariate matrix X, and define the prior mean vector beta0 and prior
precision matrix P0.

> data(donner)

> y=donner$survival

> X=cbind(1,donner$age,donner$male)

> beta0=c(0,0,0); c0=100

> P0=t(X)%*%X/c0

10.3 Binary Response Regression with a Probit Link 247

Then we apply the bayes.probit function, finding respectively the log
marginal density for the full model, the model with AGE excluded, the model
with MALE excluded, and the model with both variables excluded.

> bayes.probit(y,X,1000,list(beta=beta0,P=P0))$log.marg

[1] -31.55607

> bayes.probit(y,X[,-2],1000,

+ list(beta=beta0[-2],P=P0[-2,-2]))$log.marg

[1] -32.77703

> bayes.probit(y,X[,-3],1000,

+ list(beta=beta0[-3],P=P0[-3,-3]))$log.marg

[1] -32.05644

> bayes.probit(y,X[,-c(2,3)],1000,

+ list(beta=beta0[-c(2,3)],P=P0[-c(2,3),-c(2,3)]))$log.marg

[1] -33.00806

Using these marginal likelihoods, one is able to compare any two of these
models by using a Bayes factor. For example, suppose we wish to compare
the “Age, Gender” model with the “Only Age” model. From our work, the log
marginal densities of these two models are given respectively by −31.55607
and −32.77703, so the Bayes factor in support of the full model containing
both variables is

BF =
exp(−31.55607)
exp(−32.77703)

= 3.4,

indicating that there is support for including both variables in the model.
Table 10.1 displays the Bayes factors comparing all pairs of models for this
example. From the table, it is clear that Gender is a more important variable
than Age in explaining the variation in the Survival variable.

Table 10.1. Bayes factors comparing all possible models for the Donner party ex-
ample. Each number represents the Bayes factor in support of Model 1 over Model 2.

Model 2
Model 1 Age, Gender Only Age Only Gender Null

Age, Gender 1 3.4 1.6 4.3
Only Age 0.3 1 0.5 1.3
Only Gender 0.6 2.0 1 2.6
Null 0.2 0.8 0.4 1

248 10 Gibbs Sampling

10.4 Estimating a Table of Means

10.4.1 Introduction

A university would like its students to be successful in their classes. Since not
all students do well and some may eventually drop out, the admissions office
is interested in understanding what measures of high school performance are
helpful in predicting success in college. The standard measure of performance
in university courses is the grade point average (GPA). The admissions people
are interested in understanding the relationship between a student’s GPA and
two particular high school measures: the student’s score on the ACT exam (a
standardized test given to all high school juniors) and the student’s percentile
rank in his or her high school class.

The datafile iowagpa in the LearnBayes package contains the data for this
problem. This dataset is a matrix of 40 rows, where a row contains the sample
mean, the sample size, the high school rank percentile, and the ACT score.
By using the R matrix command, these data are represented by the following
two-way table of means. The row of the table corresponds to the high school
rank (HSR) of the student, and the column corresponds to the level of the
ACT score. The entry of the table is the mean GPA of all students with the
particular high school rank and ACT score.
> data(iowagpa)

> rlabels = c("91-99", "81-90", "71-80", "61-70", "51-60",

+ "41-50","31-40", "21-30")

> clabels = c("16-18", "19-21", "22-24", "25-27", "28-30")

> gpa = matrix(iowagpa[, 1], nrow = 8, ncol = 5, byrow = T)

> dimnames(gpa) = list(HSR = rlabels, ACTC = clabels)

> gpa

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 2.64 3.10 3.01 3.07 3.34
81-90 2.24 2.63 2.74 2.76 2.91
71-80 2.43 2.47 2.64 2.73 2.47
61-70 2.31 2.37 2.32 2.24 2.31
51-60 2.04 2.20 2.01 2.43 2.38
41-50 1.88 1.82 1.84 2.12 2.05
31-40 1.86 2.28 1.67 1.89 1.79
21-30 1.70 1.65 1.51 1.67 2.33
The following table gives the number of students in each level of high

school rank and ACT score. Note that most of the students are in the upper
right corner of the table corresponding to high values of both variables.

> samplesizes = matrix(iowagpa[, 2], nrow = 8, ncol = 5,

byrow = T)

> dimnames(samplesizes) = list(HSR = rlabels, ACTC = clabels)

> samplesizes

10.4 Estimating a Table of Means 249

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 8 15 78 182 166
81-90 20 71 168 178 91
71-80 40 116 180 133 46
61-70 34 93 124 101 19
51-60 41 73 62 58 9
41-50 19 25 36 49 16
31-40 8 9 15 29 9
21-30 4 5 9 11 1

The admissions people at this university believe that both high school
rank and ACT score are useful predictors of grade point average. One way of
expressing this belief is to state that the corresponding population means of
the table satisfy a particular order restriction. Let μij denote the mean GPA
of the population of students with the ith level of HSR and jth level of ACT
score. If one looks at the ith row of the table with a fixed HSR rank, it is
reasonable to believe that the column means satisfy the order restriction

μi1 ≤ μi2 ≤ ... ≤ μi5.

This expresses the belief that if you focus on students with a given high
school rank, then students with higher ACT scores will obtain higher grade
point averages. Likewise, for a particular ACT level (jth column), one may
believe that students with higher percentile ranks will get higher grades, and
thus the row means satisfy the order restriction

μ1j ≤ μ2j ≤ ... ≤ μ9j .

The standard estimates of the population means are the corresponding
observed sample means. Figure 10.5 displays the matrix of sample means
using a series of line graphs where each row of means is represented by a
single line. (This graph is created using the R function matplot.) Note from
the figure that the sample means do not totally satisfy the order restrictions.
For example, in the “31–40” row of HSR, the mean GPA for ACT score 19–21
is larger than the mean GPA in the same row for larger values of ACT. It
is desirable to obtain smoothed estimates of the population means that more
closely follow the belief in order restriction. See Robertson et al. (1988) for a
description of frequentist methods for order restricted problems.

> act = seq(17, 29, by = 3)

> matplot(act, t(gpa), type = "l", lwd = 2,

+ xlim = c(17, 34))

> legend(30, 3, lty = 1:8, lwd = 2, legend = c("HSR=9", "HSR=8",

+ "HSR=7", "HSR=6", "HSR=5", "HSR=4", "HSR=3", "HSR=2"))

250 10 Gibbs Sampling

20 25 30

1.
5

2.
0

2.
5

3.
0

act

t(g
pa

)

HSR=9
HSR=8
HSR=7
HSR=6
HSR=5
HSR=4
HSR=3
HSR=2

Fig. 10.5. Sample mean GPAs of students for each level of high school rank (HSR)
and ACT score.

10.4.2 A Flat Prior Over the Restricted Space

Suppose one is certain before sampling that the population means follow the
order restriction but otherwise has little opinion about the location of the
means. Then, if μ denotes the vector of population means, one could assign
the flat prior

g(μ) ∝ c, μ ∈ A,

where A is the space of values of μ that follow the order restrictions.
Let yij and nij denote the sample mean GPA and sample size, respectively,

of the (i, j) cell of the table. We assume that the observations y11, ..., y85 are
independent with yij distributed normal with mean μij and variance σ2/nij ,
where σ is known. The likelihood function of μ is then given by

L(μ) =
8∏

i=1

5∏
j=1

exp
{
− nij

2σ2
(yij − μij)2

}
.

Combining the likelihood with the prior, the posterior density is given by

g(μ|y) ∝ L(μ), μ ∈ A.

10.4 Estimating a Table of Means 251

This is a relatively complicated 40-dimensional posterior distribution due
to the restriction of its mass to the region A. However, to implement the Gibbs
sampler, one only requires the availability of the set of full conditional distri-
butions. Here “available” means that the one-dimensional distributions have
recognizable distributions that are easy to simulate. Note that the posterior
distribution of μij , conditional on the remaining components of μ, has the
truncated normal form

g(μij |y, {μjk, (j, k) �= (i, j)}) ∝ exp
{
− nij

2σ2
(yij − μij)2

}
,

where max{μi−1,j , μi,j−1} ≤ μij ≤ min{μi,j+1, μi+1,j}.
The R function ordergibbs implements Gibbs sampling for this model. As

mentioned earlier, we assume that the standard deviation σ is known, and the
known value σ = .65 is assigned inside the function. To begin the algorithm,
the program uses a starting value for the matrix of means μ that satisfies
the order restriction. Also, for ease in programming, the means are embedded
within a larger matrix augmented by two rows and two columns containing
values of −∞ and +∞. Note that in this programming we have changed the
ordering of the rows so that the means are increasing from the first to last
rows.

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -Inf -Inf -Inf -Inf -Inf -Inf -Inf
[2,] -Inf 1.59 1.59 1.59 1.67 1.88 Inf
[3,] -Inf 1.85 1.85 1.85 1.88 1.88 Inf
[4,] -Inf 1.85 1.85 1.85 2.10 2.10 Inf
[5,] -Inf 2.04 2.11 2.11 2.33 2.33 Inf
[6,] -Inf 2.31 2.33 2.33 2.33 2.33 Inf
[7,] -Inf 2.37 2.47 2.64 2.66 2.66 Inf
[8,] -Inf 2.37 2.63 2.74 2.76 2.91 Inf
[9,] -Inf 2.64 3.02 3.02 3.07 3.34 Inf
[10,] -Inf Inf Inf Inf Inf Inf Inf

In the one main loop, the program goes sequentially through all entries
of the population matrix μ, simulating at each step from the posterior of an
individual cell mean conditional on the values of the remaining means of the
table. The posterior density of μij is given by a truncated normal form, where
the truncation points depend on the current simulated values of the means in a
neighborhood of this (i, j) cell. For example, beginning with the starting value
of μ, one would first simulate μ11 from a normal (y11, σ/

√
n11) distribution

truncated on the interval (−∞,min{1.59, 1.85}). As shown in this fragment
of the function ordergibbs, a truncated normal simulation is accomplished
by using the special R function rnormt.

lo=max(c(mu[i-1,j],mu[i,j-1]))
hi=min(c(mu[i+1,j],mu[i,j+1]))
mu[i,j]=rnormt(1,y[i-1,j-1],s/sqrt(n[i-1,j-1]),lo,hi)

252 10 Gibbs Sampling

Given the R matrix iowagpa containing two columns of sample means
and sample sizes, the command s=ordergibbs(iowagpa,m) implements Gibbs
sampling for m cycles and the matrix of simulated values is stored in the
matrix MU. A column of the matrix represents an approximate random sample
from the posterior distribution for a single cell mean. In the following, we use
m = 5000 iterations.

> MU = ordergibbs(iowagpa, 5000)

The apply command is used to find the posterior means of all cell means,
and the collection of posterior means is placed in an 8-by-5 matrix. Figure
10.6 displays these posterior means. Note that since the prior support is en-
tirely on the order-restricted space, these posterior means do follow the order
restrictions.

> postmeans = apply(MU, 2, mean)

> postmeans = matrix(postmeans, nrow = 8, ncol = 5)

> postmeans=postmeans[seq(8,1,-1),]

> dimnames(postmeans)=list(HSR=rlabels,ACTC=clabels)

> round(postmeans,2)

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 2.66 2.92 3.01 3.09 3.34
81-90 2.41 2.62 2.73 2.78 2.92
71-80 2.33 2.47 2.62 2.67 2.71
61-70 2.20 2.29 2.33 2.37 2.50
51-60 1.99 2.11 2.15 2.31 2.40
41-50 1.76 1.86 1.94 2.10 2.21
31-40 1.58 1.74 1.80 1.91 2.05
21-30 1.23 1.42 1.55 1.69 1.88

> matplot(act, t(postmeans), type = "l", lwd = 2,

xlim = c(17, 34))

> legend(30, 3, lty = 1:8, lwd = 2, legend = c("HSR=9", "HSR=8",

+ "HSR=7", "HSR=6", "HSR=5", "HSR=4", "HSR=3", "HSR=2"))

One way of investigating the impact of the prior belief in order restriction
on inference is to compute the posterior standard deviations of the cell means
and compare these estimates with the classical standard errors. By using the
apply command, we compute the posterior standard deviations:

> postsds = apply(MU, 2, sd)

> postsds = matrix(postsds, nrow = 8, ncol = 5)

> postsds=postsds[seq(8,1,-1),]

> dimnames(postsds)=list(HSR=rlabels,ACTC=clabels)

> round(postsds,3)

10.4 Estimating a Table of Means 253

20 25 30

1.
5

2.
0

2.
5

3.
0

act

t(p
os

tm
ea

ns
)

HSR=9
HSR=8
HSR=7
HSR=6
HSR=5
HSR=4
HSR=3
HSR=2

Fig. 10.6. Plot of posterior means of GPAs using a noninformative prior on order-
restricted space.

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 0.139 0.082 0.053 0.043 0.051
81-90 0.079 0.058 0.038 0.038 0.062
71-80 0.066 0.052 0.038 0.038 0.045
61-70 0.065 0.039 0.035 0.038 0.082
51-60 0.073 0.054 0.055 0.048 0.075
41-50 0.082 0.069 0.068 0.071 0.086
31-40 0.118 0.080 0.074 0.075 0.096
21-30 0.181 0.137 0.118 0.114 0.131

The standard error of the observed sample mean yij is given by SE(yij) =
σ/

√
nij , where we assume that σ = .65. The following table computes the

ratios {SD(μij |y)/SE(yij)} for all cells. Note that most of the ratios are in
the .5 to .7 range, indicating that we are adding significant prior information
using of this order-restricted prior.

254 10 Gibbs Sampling

> s=.65

> se=s/sqrt(samplesizes)

> round(postsds/se,2)

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 0.61 0.49 0.71 0.89 1.00
81-90 0.54 0.75 0.75 0.78 0.91
71-80 0.64 0.87 0.79 0.67 0.47
61-70 0.58 0.58 0.60 0.58 0.55
51-60 0.72 0.71 0.66 0.57 0.34
41-50 0.55 0.53 0.63 0.76 0.53
31-40 0.51 0.37 0.44 0.62 0.44
21-30 0.56 0.47 0.54 0.58 0.20

10.4.3 A Hierarchical Regression Prior

The use of the flat prior over the restricted space A resembles a frequentist
analysis where one would find the maximum likelihood estimate. However,
from a subjective Bayesian viewpoint, alternative priors could be considered.
If one believes that the means satisfy an order restriction, then one may also
have prior knowledge about the location of the means. Specifically, one may
believe that the mean GPAs may be linearly related to the high school rank
and ACT scores of the students.

One can construct a hierarchical regression prior to reflect the relationship
between the GPA and the two explanatory variables. At the first stage of the
prior, we assume the means are independent, where μij is normal with the
location given by the regression structure

β0 + β1ACTi + β2HSRj

and variance σ2
π. At the second stage of the prior model, we assume the hy-

perparameters β = (β0, β1, β2) and σ2
π are independent with β distributed as

N3(β̄, Σβ) and σ2
π distributed as Sχ−2

ν .
Prior knowledge about the regression parameter β is expressed by means

of the normal prior with mean β̄ and variance-covariance matrix Σβ . These
values can be obtained by analyzing similarly classified data for 1978 Iowa
students. One can find the MLE and associated variance-covariance matrix
from an additive fit to these data. If one assumes that the regression structure
between GPA and the covariates did not change significantly between 1978
and 1990, these values can be used for β̄ and Σβ .

To construct a suitable prior for σ2
π, observe that this parameter reflects

the strength of the user’s prior belief that the regression model fits the table
of observed means. Also, this parameter is strongly related to the prior belief
that the table of means satisfies the order restriction. The prior mean and
standard deviation are given respectively by E(σ2

π) = S/(v − 2) and

10.4 Estimating a Table of Means 255

SD(σ2
π) =

√
2/(v − 2)/

√
v − 4. By fixing a value of S and increasing v, the

prior for σ2
π is placing more of its mass toward zero and reflects a stronger belief

in order restriction. In the following, we use the parameter values S = 0.02
and v = 16.

The posterior density of all parameters (μ, β, σ2
π) is given by the following:

g(μ, β, σ2
π|y) ∝

8∏
i=1

5∏
j=1

exp
{
− nij

2σ2
(yij − μij)2

}

×
8∏

i=1

5∏
j=1

1
σπ

exp
{
− 1

2σ2
π

(μij − x′ijβ)2
}

× exp
{
−1

2
(β − β̄)′Σ−1(β − β̄)

}
(σ2

π)−ν/2−1 exp
{
− S

2σ2
π

}
.

Simulation from the joint posterior distribution is possible using a Gibbs
sampling algorithm. We partition the parameters into the three components
μ, β, and σ2

π and consider the distribution of each component conditional on
the remaining parameters. We describe the set of conditional distributions
here; we will see that all of these distributions have convenient functional
forms that are easy to simulate in R.

• The population means μ11, ..., μ85, conditional on β and σ2
π, are indepen-

dent distributed as N(μij(y),√vij), where

μij(y) = vij

(nijyij

σ2
+

x′ijβ
σ2

π

)
, vij =

(nij

σ2
+

1
σ2

π

)−1

.

• The regression vector β, conditional on μ and σ2
π, is distributed as

N3(β∗, Σβ∗), where

Σβ∗ = (Σ−1
β + X ′Xσ−2

π)−1, β∗ = Σβ∗(Σ−1
β β̄ + X ′σ−2

π μ).

• The variance σ2
π, conditional on μ and β, is distributed according to the

inverse gamma form

σ2
π
−(40+v)/2−1

exp
{

1
2σ2

π

(
S +

∑
(μij − x′ijβ)2

)}
.

The R function hiergibbs implements this Gibbs sampling algorithm.
There are two inputs to this function: the data matrix data and the number
of iterations of the Gibbs sampler m. In the program setup, one defines the
vector of cell means {yij} (y), the vector of sample sizes {nij} (n), the design
matrix consisting of rows {(1, ACTi,HSRj)} (X), and the vector of known
sampling variances {σ2/nij} (s2). One defines the prior mean β̄ (b1), the
prior covariance-variance matrix Σβ (bvar), and the hyperparameters of the
prior on σ2

π, S (s), and v (v). Also, the inverse of Σβ (ibar) is computed.

256 10 Gibbs Sampling

Before the Gibbs sampling begins, initial values need to be set for the
population means {μij} and the prior variance σ2

π. It is convenient to simply
let an initial estimate for μij be the observed sample mean yij . Also we let
σ2

π denote the relatively large value .006 that corresponds to little shrinkage
toward the regression model.

We describe the R implementation for a single Gibbs cycle that simulates
in turn from the three sets of conditional posterior distributions.

1. Simulation of β. This fragment of R code simulates the regression vector
β from a multivariate normal distribution. The R command solve is used
to compute the inverse of the matrix Σ−1

β + X ′Xσ−2
π , and the variance-

covariance matrix is stored in the variable pvar. The posterior mean is
stored in the variable pmean, and the function rmnorm is used to simulate
the multivariate normal variate.
pvar=solve(ibvar+t(a)%*%a/s2pi)

pmean=pvar%*%(ibvar%*%b1+t(a)%*%mu/s2pi)

beta=rmnorm(1,mean=c(pmean),varcov=pvar)

2. Simulation of σ2
π. This R fragment simulates the prior variance from an

inverse gamma distribution.
s2pi=rigamma(1,(N+v)/2,sum((mu-a%*%beta)^2)/2+s/2)

3. Simulation of μ. Conditional on the remaining parameters, the com-
ponents of μ have independent normal distributions. It is convenient to
simultaneously simulate all distributions by means of vector operations.
The R variable postvar contains values of the posterior variances for the
components of μ, and postmean contains the respective posterior means.
Then the command rnorm(n,postmean,sqrt(postvar)) simulates the
values from the 40 independent normal distributions.
postvar=1/(1/s2+1/s2pi)

postmean=(y/s2+a%*%beta/s2pi)*postvar

mu=rnorm(n,postmean,sqrt(postvar))

The Gibbs sampler is run for 5000 cycles by executing the function
hiergibbs.

> FIT=hiergibbs(iowagpa,5000)

The output variable FIT is a list consisting of three elements: beta, the matrix
of simulated regression coefficients β, where each row is a simulated draw; mu,
the matrix of simulated cell means; and var, the vector of simulated variances
σ2

π.
Figure 10.7 shows density estimates of the simulated draws of the regres-

sion coefficients β1 and β2, corresponding respectively to the two covariates
high school rank and ACT score. We summarize each coefficient by the com-
putation of the .025, .25, .5, .75, and .975 quantiles of each batch of simulated
draws. A 95% interval estimate for β2, for example, is given by the .025 and
.975 quantiles (.0223, .0346).

10.4 Estimating a Table of Means 257

0.017 0.018 0.019 0.020 0.021 0.022

0
20

0
40

0

HIGH SCHOOL RANK

2

D
en

si
ty

0.015 0.020 0.025 0.030 0.035 0.040

0
40

80
12

0

ACT SCORE

3

D
en

si
ty

Fig. 10.7. Density estimates of simulated draws of regression coefficients β1 and β2

in the hierarchical regression model.

> par(mfrow=c(2,1))

> plot(density(FIT$beta[,2]),xlab=expression(beta[2]),

+ main="HIGH SCHOOL RANK")

> plot(density(FIT$beta[,3]),xlab=expression(beta[3]),

+ main="ACT SCORE")

> quantile(FIT$beta[,2],c(.025,.25,.5,.75,.975))

2.5% 25% 50% 75% 97.5%
0.01800818 0.01883586 0.01926438 0.01968747 0.02052101

> quantile(FIT$beta[,3],c(.025,.25,.5,.75,.975))

2.5% 25% 50% 75% 97.5%
0.02231820 0.02628508 0.02844086 0.03050381 0.03464926

We summarize the posterior distribution of the variance parameter σ2
π; this

parameter is helpful for understanding the shrinkage of the observed sample
means toward the regression structure.

> quantile(FIT$var,c(.025,.25,.5,.75,.975))

258 10 Gibbs Sampling

2.5% 25% 50% 75% 97.5%
0.001163374 0.002017212 0.002771330 0.003924643 0.007475468

Last, we compute and display the posterior means of the cell means in Fig-
ure 10.8. These posterior mean estimates using a hierarchical prior look similar
to the posterior estimates using a noninformative prior on the restricted space
displayed in Figure 10.6.

> posterior.means = apply(FIT$mu, 2, mean)

> posterior.means = matrix(posterior.means, nrow = 8, ncol = 5,

+ byrow = T)

> par(mfrow=c(1,1))

> matplot(act, t(posterior.means), type = "l", lwd = 2,

+ xlim = c(17, 34))

> legend(30, 3, lty = 1:8, lwd = 2, legend = c("HSR=9", "HSR=8",

+ "HSR=7", "HSR=6", "HSR=5", "HSR=4", "HSR=3", "HSR=2"))

20 25 30

1.
5

2.
0

2.
5

3.
0

act

t(p
os

te
rio

r.m
ea

ns
)

HSR=9
HSR=8
HSR=7
HSR=6
HSR=5
HSR=4
HSR=3
HSR=2

Fig. 10.8. Plot of posterior means of GPAs using the hierarchical prior.

10.4 Estimating a Table of Means 259

10.4.4 Predicting the Success of Future Students

The university is most interested in predicting the success of future students
from this model. Let z∗ij denote the college GPA for a single future student
with ACT score in class i and high school percentile in class j. If the university
believes that a GPA of at least 2.5 defines success, then they are interested in
computing the posterior predictive probability

P (z∗ij ≥ 2.5|y).

One can express this probability as the integral

P (z∗ij ≥ 2.5|y) =
∫

P (z∗ij ≥ 2.5|μ, y)g(μ|y)dμ,

where g(μ|y) is the posterior distribution of the vector of cell means μ. In our
model, we assume that the distribution of z∗ij , conditional on μ, is N(μij , σ).
So we can write the predictive probability as

P (z∗ij ≥ 2.5|y) =
∫ [

1 − Φ

(
2.5 − μij

σ

)]
g(μ|y)dμ,

where Φ() is the standard normal cdf. A simulated sample from the posterior
distribution of the cell means is available as one of the outputs of the Gibbs
sampling algorithms ordergibbs and hiergibbs. If {μt

ij , t = 1, ...,m} rep-
resents the sample from the marginal posterior distribution of μij , then the
posterior predictive probability that the student will be successful is estimated
by

P (z∗ij ≥ 2.5|y) ≈ 1
m

m∑
t=1

[
1 − Φ

(
2.5 − μt

ij

σ

)]
.

We illustrate this computation when a hierarchical regression model is
placed on the cell means. Recall that the output of the function hiergibbs in
our example was FIT, and so FIT$mu is the matrix of simulated cell means from
the posterior distribution. We transform all the cell means to probabilities of
success by using the pnorm function and compute the sample means for all
cells by using the apply function.

> p=1-pnorm((2.5-FIT$mu)/.65)

> prob.success=apply(p,2,mean)

We convert this vector of estimated probabilities of success to a matrix
by using the matrix command, attach row and column labels to the table by
using the dimnames command, and then display the probabilities, rounding to
the third decimal space.

> prob.success=matrix(prob.success,nrow=8,ncol=5,byrow=T)

> dimnames(prob.success)=list(HSR=rlabels,ACTC=clabels)

> round(prob.success,3)

260 10 Gibbs Sampling

ACTC
HSR 16-18 19-21 22-24 25-27 28-30
91-99 0.689 0.748 0.781 0.812 0.878
81-90 0.555 0.617 0.663 0.690 0.757
71-80 0.466 0.504 0.579 0.630 0.627
61-70 0.360 0.410 0.426 0.440 0.538
51-60 0.249 0.304 0.304 0.410 0.441
41-50 0.168 0.193 0.222 0.283 0.321
31-40 0.107 0.141 0.153 0.190 0.225
21-30 0.062 0.079 0.096 0.121 0.153

This table of predictive probabilities should be useful to the admissions officer
at the university. From this table, one may wish to admit students who have
a predictive probability of, say, at least 0.70 of being successful in college.

10.5 Further Reading

Gelfand and Smith (1990) and Gelfand et al. (1990) were the first papers
to describe the statistical applications of Gibbs sampling. Wasserman and
Verdinelli (1991) and Albert (1992) describe the use of Gibbs sampling in
outlier models. The use of latent variables and Gibbs sampling for fitting
binary response models is described in Albert and Chib (1993). Chib (1995)
describes how Gibbs sampling can be used to compute values of the marginal
density. The use of Gibbs sampling in modeling order restrictions in a two-way
table of means was illustrated in Albert (1994).

10.6 Summary of R Functions

bayes.probit – simulates from a probit binary response regression model
using data augmentation and Gibbs sampling
Usage: bayes.probit(y, X, m, prior=list(beta=0,P=0))
Arguments: y, vector of binary responses; X, covariate matrix; m, number of
simulations; prior, list with components beta, the prior mean, and P, the
prior precision matrix
Value: beta, matrix of simulated draws of the regression vector beta, where
each row corresponds to a draw of beta; log.marg, simulation estimate at log
marginal likelihood of the model

bprobit.probs – simulates fitted probabilities for a probit regression model
Usage: bprobit.probs(X, fit)
Arguments: X, matrix where each row corresponds to a covariate set;
fit, matrix of simulated draws from the posterior distribution of the regres-
sion vector beta

10.7 Exercises 261

Value: matrix of simulated draws of the fitted probabilities, where a column
corresponds to a particular covariate set

hiergibbs – implements Gibbs sampling for estimating a two-way table of
normal means under a hierarchical regression model
Usage: hiergibbs(data, m)
Arguments: data, data matrix where the columns are observed sample means,
sample sizes, and values of two covariates; m, number of cycles of Gibbs sam-
pling
Value: beta, matrix of simulated values of regression parameter; mu, matrix of
simulated values of cell means; var, vector of simulated values of second-stage
prior variance

ordergibbs – implements Gibbs sampling for estimating a two-way table of
normal means under an order restriction
Usage: ordergibbs(data, m)
Arguments: data, data matrix where the first column contains the sample
means and the second column contains the sample sizes; m, number of itera-
tions of Gibbs sampling
Value: matrix of simulated draws of the normal means, where each row rep-
resents one simulated draw

robustt – implements Gibbs sampling for a robust t sampling model with
location mu, scale sigma, and degrees of freedom v
Usage: robustt(y, v, m)
Arguments: y, vector of data values; v, degrees of freedom for t model; m,
number of cycles of the Gibbs sampler
Value: mu, vector of simulated values of mu; s2, vector of simulated draws of
sigma2; lam, matrix of simulated draws of lambda, where each row corresponds
to a single draw

10.7 Exercises

1. Gibbs sampling when parameters are correlated
In Exercise 8 of Chapter 4, we explored the relationship between a stu-
dent’s ACT score and his success in a calculus class. If yi and ni are the
total number and number of successful students with ACT score xi, we
assume yi is binomial(ni, pi), where the probabilities satisfy the logistic
model

log
pi

1 − pi
= β0 + β1xi.

The data are given in the exercise. Assuming a uniform prior, the log-
arithm of the posterior density is given by the LearnBayes function
logisticpost, where the data matrix consists of columns of the ACT
scores {xi}, the sample sizes {ni}, and the success counts {yi}.

262 10 Gibbs Sampling

a) Construct a contour plot of the joint posterior density of (β0, β1) using
the function mycontour.

b) Find the posterior mode and associated variance-covariance matrix of
(β0, β1) using the function laplace.

c) Using the “Metropolis within Gibbs” algorithm of Section 6.4 imple-
mented in the function gibbs, implement a Gibbs algorithm for sam-
pling from the joint posterior distribution of (β0, β1) using 1000 iter-
ations. Adjust the scale parameters c1, c2 of the algorithm so that the
acceptance rate for each component is approximately 25%.

d) Using of trace plots and autocorrelation graphs, inspect the simulated
stream of values for each regression parameter. Explain why the Gibbs
sampler is not an efficient method of sampling for this problem.

2. Robust modeling with Cauchy sampling
In Section 6.9, different computational methods are used to model data
where outliers may be present. The data y1, ...yn are assumed independent,
where yi is Cauchy with location μ and scale σ. Using the standard nonin-
formative prior of the form g(μ, σ) = 1/σ and Darwin’s dataset, Table 6.2
presents 5th, 50th, and 95th percentiles of the marginal posterior densities
of μ and log σ using Laplace, brute-force, random walk Metropolis, inde-
pendence Metropolis, and Metropolis within Gibbs algorithms. Use the
“automatic” Gibbs sampler as implemented in the function robustt to fit
this Cauchy error model, where the degrees of freedom of the t density is
set to 1. Run the algorithm for 10,000 cycles, and compute the posterior
mean and standard deviation of μ and log σ. Compare your answers with
the values given in Table 6.2 using the other computational methods.

3. Probit regression modeling
The dataset calculus.grades in the LearnBayes package contains grade
information for a sample of 100 calculus students at Bowling Green State
University. For the ith student, one records yi = 1 if he or she receives an
A or a B in the class. In addition, one records PREV.GRADEi = 1 if the
student received an A in a prerequisite mathematics class and ACTi, the
student’s score in an ACT math test. Suppose one wishes to predict the
grade of the student by using a probit regression model using explanatory
variables PREV.GRADE and ACT .
a) Using the model checking strategy of Section 10.3.2 and the function

bayes.probit to compute marginal density values, find the best pro-
bit regression model.

b) Using the bayes.probit function, fit the best probit model. By sum-
marizing the simulated sample from the posterior distribution of β,
describe how the fitted probability p varies as a function of the ex-
planatory variables.

4. Mixtures of sampling densities
Suppose one observes a random sample y1, ..., yn from the mixture density

f(y|p, λ1, λ2) = pf(y|λ1) + (1 − p)f(y|λ2),

10.7 Exercises 263

where f(y|λ) is a Poisson density with mean λ, p is a mixture parame-
ter between 0 and 1, and λ1 < λ2. Suppose that a priori the parameters
(p, λ1, λ2) are independent, with p assigned a uniform density and λi as-
signed gamma(ai, bi), i = 1, 2. Then the joint posterior density is given
by

g(p, λ1, λ2|data) ∝ g(p, λ1, λ2)
n∏

i=1

f(yi|p, λ1, λ2).

Suppose one introduces the latent data Z1, ..., Zn, where Zi = 1 or 2 if
yi ∼ Poisson(λ1) or yi ∼ Poisson(λ2), respectively. The joint posterior
density of the vector of latent data Z = (Z1, ..., Zn) and the parameters
is given by

g(p, λ1, λ2, Z|data) ∝ g(p, λ1, λ2)

×
n∏

i=1

(
I(Zi = 1)pf(yi|λ1) + I(Zi = 2)(1 − p)f(yi|λ2)

)
,

where I(A) is the indicator function, which is equal to 1 if A is true and
0 otherwise.
a) Find the complete conditional densities of p, λ1, λ2, and Zi.
b) Describe a Gibbs sampling algorithm for simulating from the joint

density of (p, λ1, λ2, Z).
c) Write an R function to implement the Gibbs sampler.
d) To test your function, the following data were simulated from the

mixture density with p = .3, λ1 = 5, and λ2 = 15:
24 18 21 5 5 11 11 17 6 7
20 13 4 16 19 21 4 22 8 17

Let the prior hyperparameters be equal to a1 = b1 = a2 = b2 = 1. Run
the Gibbs sampler for 10,000 iterations. From the simulated output,
compute the posterior mean and standard deviation of p, λ1, and
λ2 and compare the posterior means with the parameter values from
which the data were simulated.

5. Censored data
Suppose that observations x1, ..., xn are normally distributed with mean
μ and variance σ2. However, the measuring device has malfunctioned and
one only knows that the first observation x1 exceeds a known constant c;
the remaining observations x2, ..., xn are recorded correctly. If we regard
the censored observation x1 as an unknown and we assign the usual non-
informative prior on (μ, σ2), then the joint density of all unknowns (the
single observation and the two parameters) has the form

g(μ, σ2, x1|data) ∝ 1
σ2

n∏
i=2

1√
2πσ2

exp
{
− 1

2σ2
(xi − μ)2

}

× 1√
2πσ2

exp
{
− 1

2σ2
(x1 − μ)2

}
.

264 10 Gibbs Sampling

a) Suppose one partitions the unknowns by [μ, σ2] and [x1]. Describe the
conditional posterior distributions [μ, σ2|x1] and [x1|μ, σ2].

b) Write an R function to program the Gibbs sampling algorithm based
on the conditional distributions found in part (a).

c) Suppose the sample observations are 110, 104, 98, 101, 105, 97, 106,
107, 84, and 104, where the measuring device is “stuck”at 110 and one
knows that the first observation exceeds 110. Use the Gibbs sampling
algorithm to find 90% interval estimates for μ and σ.

6. Order-restricted inference
Suppose one observes y1, ..., yN , where yi is distributed binomial with
sample size ni and probability of success pi. A priori suppose one assigns
a uniform prior over the space where the probabilities satisfy the order
restriction

p1 < p2 < ... < pN .

a) Describe a Gibbs sampling algorithm for simulating from the joint
posterior distribution of (p1, ..., pN).

b) Write an R function to implement the Gibbs sampler found in part
(a).

c) Suppose N = 4, the sample sizes are n1 = ... = n4 = 20, and one
observes y1 = 2, y2 = 5, y3 = 12, and y4 = 9. Use the R func-
tion to simulate 1000 draws from the joint posterior distribution of
(p1, p2, p3, p4).

7. Grouped data
In Section 6.7, inference about the mean μ and the variance σ2 of a normal
population is considered, where the heights of male students are observed
in grouped form, as displayed in Table 6.1. Let y = (y1, ..., yn) denote the
vector of actual unobserved heights, which are distributed N(μ, σ). Con-
sider the joint posterior distribution of all unobservables (y, μ, σ2). As in
Section 6.7, we assume that the parameters (μ, σ2) have the noninforma-
tive prior proportional to 1/σ2.
a) Describe the conditional posterior distributions [y|μ, σ2] and [μ, σ2|y].
b) Program an R function that implements a Gibbs sampler based on

the conditional posterior distributions found in part (a).
c) Using the R function, simulate 1000 cycles of the Gibbs sampler. Com-

pute the posterior mean and posterior standard deviation of μ and
σ and compare your estimates with the values reported using the
Metropolis random walk algorithm in Section 6.7.

11

Using R to Interface with WinBUGS

11.1 Introduction to WinBUGS

The BUGS project is focused on the development of software to facilitate
Bayesian fitting of complex statistical models using Markov chain Monte Carlo
algorithms. In this chapter, we introduce the use of R in running WinBUGS,
a stand-alone software program for the Windows operating system.

WinBUGS is a program for sampling from a general posterior distribution
of a Bayesian model by using Gibbs sampling and a general class of proposal
densities. To describe the use of WinBUGS in a very simple setting, suppose
you observe y distributed as binomial(n, p) and a beta(α, β) prior is placed
on p, where α = 0.5 and β = 0.5. You observe y = 7 successes in a sample of
n = 50 and you wish to construct a 90% interval estimate for p.

After you launch the WinBUGS program, you create a file that describes
the Bayesian model. For this example, the model script looks like the following:

model
{

y ~ dbin(p, n)
p ~ dbeta(alpha, beta)

}

Note that the script begins with model and one indicates distributional as-
sumptions by the “∼” symbol. The names for different distributions (dbin,
dbeta, etc.) are similar to the names of these densities in the R system.

After the model is described, one defines the data and any known param-
eter values in the file. This script begins with the word data, and we use a
list to specify the values of y, n, α, and β.

data
list(y = 7, n = 50, alpha = 0.5, beta = 0.5)

Last, we specify the initial values of parameters in the MCMC simulation.
This section begins with the word inits, and a list specifies the initial values.

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0 11,
© Springer Science+Business Media, LLC 2009

266 11 Using R to Interface with WinBUGS

Here we have a single parameter p and decide to begin the simulation at
p = .1.

inits
list(p = 0.1)

Once the model, data, and initial values have been defined, we tell Win-
BUGS, in the Sample Monitor Tool, what parameters to monitor in the sim-
ulation. These will be the parameters of primary interest in the inferential
problem. Here there is only one parameter p that we wish to monitor.

By using the Update Tool, we are able to use WinBUGS to take a sim-
ulated sample of a particular size from the posterior distribution. Once the
MCMC simulation is finished, we want to make plots or compute diagnostic
statistics of the parameters that help us learn if the MCMC simulation has
approximately converged to the posterior distribution. If we believe that the
simulation draws represent (approximately) a sample from the posterior, then
we want to construct a graph of various marginal posterior distributions of
interest and compute various summaries to draw inferences about the param-
eters.

WinBUGS is useful for fitting a variety of Bayesian models, some of high
dimension. But the program runs independently of other programs such as R,
and one is limited to the data analysis tools available in the WinBUGS sys-
tem. Recently, there have been efforts to provide interfaces between popular
statistical packages (such as R) and WinBUGS. In the remainder of the chap-
ter, we describe one attractive R function, bugs, that simplifies the process of
using the WinBUGS program and allows one to use the R system to analyze
the simulation output.

11.2 An R Interface to WinBUGS

Before you can use this R/WinBUGS interface, some setup needs to be done.
The WinBUGS and OpenBUGS programs should be downloaded and installed
on your Windows system. Also, special packages, including R2WinBUGS and
BRugs, need to be downloaded and installed on your R system. This setup
procedure likely will be modified over time; you should consult the WinBUGS
home page (http://www.mrc-bsu.cam.ac.uk/bugs/) for the most recent in-
formation.

Once the setup is completed, it is easy to define a Bayesian problem for
WinBUGS using this R interface. There are four necessary inputs, which are
similar to the inputs required within the WinBUGS program:

• Model. One describes the statistical model by means of a “model” file
that describes the model in the BUGS language.

• Data. One inputs data directly into R in the form of constants, vectors,
matrices, and model parameters.

11.3 MCMC Diagnostics Using the coda Package 267

• Parameters. Within R, one specifies the parameters to be monitored in
the simulation run.

• Initial values. One specifies initial values of the parameters in the R
console.

Suppose the model is defined in the file model.bug in the working directory
and the data, parameters, and initial values are defined in R in the respective
variables data, parameters, and inits. Then one simulates from the Bayesian
model by using the R command bugs:

> model.sim <- bugs (data, inits, parameters, "model.bug")

When this command is executed, the model information is sent to the Win-
BUGS program. The WinBUGS program will run in the background, simu-
lating parameters from the model. At the completion of the simulation, Win-
BUGS will close and one is returned to the R console. The output of bugs is
a structure containing the output from the WinBUGS run. Specifically, from
the object model.sim, one can access the matrix of simulated draws of the
monitored parameters.

One controls different aspects of the simulation by using optional argu-
ments to the function bugs. A more general form of bugs that includes op-
tional arguments is given here:

bugs(data, inits, parameters.to.save, model.file = "model.bug",
n.chains = 3, n.iter = 2000, n.burnin = floor(n.iter/2),
n.thin = max(1, floor(n.chains * (n.iter - n.burnin)/1000)),
bin = (n.iter - n.burnin) / n.thin)

• n.chains contains the number of Markov chains that are run. By default,
three parallel chains will be run; if one wishes to simulate only one chain,
the argument n.chains = 1 should be used.

• n.iter is the number of total iterations for each chain.
• n.burnin is the number of iterations to discard at the beginning. Typically,

one will discard a specific number of the initial draws and base inference
on the remaining output. By default, the first half of the iterations are
removed; that is, n.burnin = n.iter/2.

• n.thin is the thinning rate. If n.thin = 1, every iterate will be collected;
if n.thin = 2, every other iterate will be collected, and so on. By default,
the thinning rate is set so that 1000 iterations will be collected for each
chain.

• bin is the number of iterations between savings of results; the default is
to save only at the end.

11.3 MCMC Diagnostics Using the coda Package

Once the MCMC chain has been run and simulated samples from the algo-
rithm have been stored, then the user needs to perform some diagnostics on

268 11 Using R to Interface with WinBUGS

the simulations to determine if they approximately represent the posterior
distribution of interest. Some diagnostic questions include the following:

1. How many chains should be run in the simulation? Does the choice of
starting value in the chain make a difference?

2. How long is the burn-in time before the simulated draws approximately
represent a sample from the posterior distribution?

3. How many simulated draws should be collected to get accurate approxi-
mations of summaries of the posterior?

4. What is the simulation standard error of a particular summary of the
posterior distribution?

5. Are there high correlations between successive simulated draws?

The coda package (Output Analysis and Diagnostics for MCMC), written
by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines, provides a
variety of diagnostic functions useful for MCMC output. (The package boa
described in Smith (2007) also gives diagnostic functions for MCMC runs.) In
particular, the coda package:

• provides various summary statistics, such as means, standard deviations,
quantiles, highest-probability density intervals, and simulation standard
errors for correlated output based on batch means

• allows one to compare autocorrelations and cross-correlations of simulated
samples from different parameters

• computes various convergence diagnostics, such as those proposed by
Geweke, Gelman and Rubin, and Raftery and Lewis

• provides a variety of different plots, such as lag correlations, density esti-
mates, and running means

After the bugs function is used to perform the MCMC sampling in Win-
BUGS, the coda provides a collection of functions that operate on the bugs
output. Also, the coda functions will accept as input vectors or matrices of
simulated parameters such as those generated in the previous chapters. We
illustrate the use of these MCMC diagnostic functions in the examples of this
chapter.

11.4 A Change-Point Model

We begin with an analysis of counts of British coal mining disasters described
in Carlin et al. (1992). The number of disasters is recorded for each year from
1851 to 1962; we let yt denote the number of disasters in year t, where t =
actual year− 1850. Looking at the data, it appears that the rate of accidents
decreased in some year during the end of the 19th century. We assume for
the early years, say when t < τ , that yt has a Poisson distribution where the
logarithm of the mean log μt = β0, and for the later years (t ≥ τ) log μt =
β0 + β1. We represent this as

11.4 A Change-Point Model 269

yt ∼ Poisson(μt), log(μi) = β0 + β1 × δ(t − τ),

where δ() is defined to be 1 if its argument is nonnegative and 0 otherwise. The
unknown parameters are the regression parameters β0 and β1 and the change-
point parameter τ . We complete the model by assigning vague uniform priors
to β0 and β1 and assigning τ a uniform prior on the interval (1, N), where N
is the number of years.

The first step in using WinBUGS is to write a short script defining the
model in the BUGS language. The description of the change-point model is
displayed next. Note that the observation for a particular year is denoted
by D[year] and the corresponding mean as mu[year]. The parameters are
b[1],b[2], and the change-point parameter τ is called changeyear. Note that
the syntax is similar to that used in R, with some exceptions. The syntax

D[year] ~ dpois(mu[year])

indicates that D[year] is Poisson distributed with mean mu[year]. Similarly,
the code

b[j] ~ dnorm(0.0,1.0E-6)

indicates that βj is assigned a normal prior distribution with mean 0 and a
precision (reciprocal of the variance) equal to 0.000001. In WinBUGS, one
must assign proper distributions to all parameters, and this normal density
approximates the improper uniform prior density. Also,

changeyear ~ dunif(1,N)

indicates that τ has a continuous uniform prior density on the interval (1, N).
The operator <- indicates an assignment to a variable; for example, the syntax

log(mu[year]) <- b[1] + step(year - changeyear) * b[2]

assigns the linear expression on the right-hand side to the variable
log(mu[year]). The step function in WinBUGS is equivalent to the function
δ() defined earlier. The entire model description file is saved as the text file
coalmining.bug.

model
{
for(year in 1 : N)
{

D[year] ~ dpois(mu[year])
log(mu[year]) <- b[1] + step(year - changeyear) * b[2]

}
for (j in 1:2) {b[j] ~ dnorm(0.0,1.0E-6)}
changeyear ~ dunif(1,N)

}

270 11 Using R to Interface with WinBUGS

After the model has been defined, we enter the data directly into the
R console. The R constant N is the number of years, and D is the vector
of observed counts. The variable data is a list containing the names of the
variables N and D that are sent to WinBUGS.

> N=112

> D=c(4,5,4,1,0,4,3,4,0,6,

+ 3,3,4,0,2,6,3,3,5,4,5,3,1,4,4,1,5,5,3,4,2,5,2,2,3,4,2,1,3,2,

+ 1,1,1,1,1,3,0,0,1,0,1,1,0,0,3,1,0,3,2,2,

+ 0,1,1,1,0,1,0,1,0,0,0,2,1,0,0,0,1,1,0,2,

+ 2,3,1,1,2,1,1,1,1,2,4,2,0,0,0,1,4,0,0,0,

+ 1,0,0,0,0,0,1,0,0,1,0,0)

> data=list("N","D")

Next we indicate by the parameters line

> parameters <- c("changeyear","b")

that we wish to monitor the simulated samples of the change-point parameter
τ and the regression vector β.

Last, we indicate by the line

> inits = function() {list(b=c(0,0),changeyear=50)}

that the starting value for the parameter (β1, β2) is (0, 0) and the starting
value of τ is 50.

Now that the problem has been set up, the function bugs is used to run
WinBUGS.

> coalmining.sim <- bugs (data, inits, parameters,

+ "coalmining.bug", n.chains=3, n.iter=1000, codaPkg=TRUE)

If we did not include the option codaPkg=TRUE, the output of bugs would
be a simulation object that we could summarize and plot using the print
and plot commands. Here, by including the codaPkg=TRUE option, the bugs
function returns the filenames of the WinBUGS output that are used by the
coda package. To create a Markov chain Monte Carlo (mcmc) object from the
WinBUGS output files, we use the read.bugs command.

> coalmining.coda = read.bugs(coalmining.sim)

Now that an mcmc object has been created, we can use coda functions to
summarize and graph the simulated draws. Summary statistics for the MCMC
run are obtained using the summary command. The output explains that three
chains were used, each with 1000 iterations, and the first 500 iterations (the
burn-in) were discarded in each chain. Summary statistics for each parameter
are given for the 1500 iterations that were saved. Also, the “deviance row”
gives the posterior mean and posterior standard deviation of the deviance
function

D(θ) = −2 log L(θ) + 2h(y),

11.4 A Change-Point Model 271

where L(θ) is the likelihood and h(y) is a standardizing function of the data.
The posterior mean of D(θ) is a summary measure of model fit. If one combines
this measure with an estimate of model complexity, one obtains the deviance
information criterion (DIC), which can be used to select models analogous to
the predictive density approach described in Chapter 8.

> summary(coalmining.coda)

Iterations = 501:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 500

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
b[1] 1.14 0.0956 0.00247 0.00390
b[2] -1.26 0.1573 0.00406 0.00611
changeyear 39.53 2.0631 0.05327 0.08298
deviance 337.46 2.6442 0.06827 0.10248

2. Quantiles for each variable:

2.5% 25% 50% 75% 98%
b[1] 0.943 1.08 1.14 1.20 1.326
b[2] -1.568 -1.36 -1.26 -1.15 -0.954
changeyear 36.075 37.79 39.80 40.74 43.620
deviance 334.200 335.60 336.80 338.60 344.000

Once the MCMC object coalmining.coda has been created, the coda
package provides simple functions for MCMC diagnostic graphs. Lattice style
trace plots of all parameters and the deviance function are constructed using
the xyplot command and displayed in Figure 11.1.

> xyplot(coalmining.coda)

Autocorrelation graphs of all parameters are created using the acfplot com-
mand and displayed in Figure 11.2.

> acfplot(coalmining.coda)

Last, density plots of the parameters are constructed using the densityplot
command.

> densityplot(coalmining.coda,col="black")

From looking at the density plots in Figure 11.3, we note that the density for
τ has an interesting bimodal shape; this indicates that there is support for a

272 11 Using R to Interface with WinBUGS

change point near 37 and 40 years past 1850. It is also clear from Figure 11.3
that β2 < 0, which indicates a drop in the rate of coal mining facilities beyond
the change-point year.

.index

0.
9

1.
1

1.
3

0 100 200 300 400 500

b[1]−1
.8

−1
.4

−1
.0

−0
.6 b[2]

35
40

45

changeyear

33
53

40
34

53
50

35
5 deviance

Fig. 11.1. Trace plots of the parameters and the deviance function for the change-
point problem.

11.5 A Robust Regression Model

As a second illustration of the R/WinBUGS interface, we consider the fitting
of a robust simple linear regression model. One is interested in the relationship
between the vote count in the 1996 and 2000 presidential elections in the state
of Florida. For each of 67 counties in Florida, one records the voter count for
Pat Buchanan, the Reform Party candidate in 2000, and the voter count for
Ross Perot, the Reform Party candidate in 1996. Figure 11.4 plots the square
root of the Buchanan vote against the square root of the Perot count. One
notices a linear relationship with one distinctive outlier. This outlier is due to
an unusually high vote count for Buchanan in Palm Beach County due to a
butterfly ballot design used in that county.

11.5 A Robust Regression Model 273

Lag

A
ut

oc
or

re
la

tio
n

−0.4

−0.2

0.0

0.2

0.4

0 5 10 15 20 25

b[1] b[2]

changeyear

0 5 10 15 20 25

−0.4

−0.2

0.0

0.2

0.4

deviance

Fig. 11.2. Autocorrelation plots of the parameters and the deviance function for
the change-point problem.

Let yi and xi denote the square root of the voter count in the ith county
for Buchanan and Perot, respectively. From our preliminary analysis, a linear
regression assuming normal errors seems inappropriate. Instead, we assume
that y1, ..., yn follow the regression model

yi = β0 + β1xi + εi,

where ε1, ..., εn are a random sample from a t distribution with mean 0, scale
parameter σ and ν = 4 degrees of freedom. As in Section 10.2, we can represent
this model as the following scale mixture of normal distributions:

yi ∼ N(β0 + β1xi, (τλi)−1/2),
λi ∼ gamma(2, 2).

To complete the model, we assign β0 and β1 uniform priors and let the preci-
sion τ have the standard noninformative prior proportional to 1/τ .

This model is described by means of the following model script in Win-
BUGS. The observations are y[1], ..., y[N]; the observation means are

274 11 Using R to Interface with WinBUGS

D
en

si
ty

0
1

2
3

4

0.8 1.0 1.2 1.4

b[1]

0.
0

1.
0

2.
0

−1.5 −1.0 −0.5

b[2]

0.
00

0.
10

0.
20

35 40 45

changeyear

0.
00

0.
10

0.
20

335 340 345 350 355

deviance

Fig. 11.3. Parameter and deviance function density estimates for the change-point
problem.

mu[1], ..., mu[N]; and the observation precisions are p[1], ..., p[N].
The ith precision, p[i], is defined by tau*lam[i], where the scale parameter
lam[i] is assigned a gamma(2, 2) distribution. One cannot formally assign
improper priors to parameters, but we approximate a uniform prior for b[1]
by assigning it a normal prior with mean 0 and the small precision value .001.
In a similar fashion, we assign the precision parameter tau a gamma prior
with shape and scale parameters each set to the small value of .001. This
script is saved as the file robust.bug.

model {
for (i in 1:N) {
y[i] ~ dnorm(mu[i],p[i])
p[i] <- tau*lam[i]
lam[i] ~ dgamma(2,2)
mu[i] <- b[1]+b[2]*x[i]}

for (j in 1:2) {b[j] ~ dnorm(0,0.001)}
tau ~ dgamma(0.001,0.001)
}

11.5 A Robust Regression Model 275

50 100 150 200

10
20

30
40

50
60

sqrt(perot)

sq
rt(

bu
ch

an
an

)

Fig. 11.4. Scatterplot of Buchanan and Perot voter counts in Florida in the 1996
and 2000 presidential elections.

Next we define the data in R. The Florida voter data for the 1996 and
2000 elections are stored in the dataset election in the package LearnBayes.
The variables buchanan and perot contain, respectively, the Buchanan and
Perot vote totals. There are three quantities to define: the number of paired
observations N, the vector of responses y, and the vector of covariates x. Recall
that we applied an initial square root reexpression of both 1996 and 2000 vote
totals.

> data(election)

> attach(election)

> y=sqrt(buchanan)

> x=sqrt(perot)

> N=length(y)

The final two inputs are the selection of initial values for the parameters
and the decision on what parameters to monitor in the simulation run. In the
command

> inits = function() {list(b=c(0,0),tau=1)}

276 11 Using R to Interface with WinBUGS

we indicate that the starting values for the regression parameters are 0 and
0 and the starting value of the precision parameter τ is 1. We last indicate
through the parameters statement that we wish to monitor τ , the vector of
values {λi}, and the regression vector β.

> data=list("N","y","x")

> inits = function() {list(b=c(0,0),tau=1)}

> parameters <- c("tau","lam","b")

We are ready to use WinBUGS to simulate from the model using the bugs
function.

> robust.sim <- bugs (data, inits, parameters, "robust.bug")

Suppose we are interested in estimating the mean Buchanan (root) count
E(y|x) for a range of values of the Perot (root) count x. In the R code, we first
create a sequence of x values in the variable xo and store the corresponding
design matrix in the variable X0. By multiplying this matrix by the matrix of
simulated draws of the regression vector b, we get a simulated sample from
the posterior of E(y|x) for all values of x in xo. We summarize the matrix of
posterior distributions meanresponse with the 5th, 50th, and 95th percentiles
and plot these values as lines in Figure 11.5. Note that this robust fit is
relatively unaffected by the one outlier with an unusually large value of y.

> attach.bugs(robust.sim)

> xo=seq(18,196,2)

> X0=cbind(1,xo)

> meanresponse=b%*%t(X0)

> meanp=apply(meanresponse,2,quantile,c(.05,.5,.95))

> plot(sqrt(perot),sqrt(buchanan))

> lines(xo,meanp[2,])

> lines(xo,meanp[1,],lty=2)

> lines(xo,meanp[3,],lty=2)

11.6 Estimating Career Trajectories

A professional athlete’s performance level will tend to increase until the middle
of his or her career and then deteriorate until retirement. For a baseball player,
suppose one records the number of home runs yj out of the number of balls
that are put into play nj (formally, the number of balls put in play is equal
to the number of “at-bats” minus the number of strikeouts) for the jth year
of his career. One is interested in the pattern of the home run rate yj/nj as a
function of the player’s age xj . Figure 11.6 displays a graph of home run rate
against age for the great slugger Mickey Mantle.

11.6 Estimating Career Trajectories 277

50 100 150 200

10
20

30
40

50
60

sqrt(perot)

sq
rt(

bu
ch

an
an

)

Fig. 11.5. Scatterplot of Buchanan and Perot voter counts. The solid line represents
the median of the posterior distribution of the expected response, and the dashed
lines correspond to the 5th and 95th percentiles of the distribution.

To understand a player’s career trajectory, we fit a model. Suppose yj is
binomial(nj , pj), where pj is the probability of a home run during the jth
season. We assume thath the probabilities follow the logistic quadratic model

log
(

pj

1 − pj

)
= β0 + β1xj + β2x

2
j .

Figure 11.6 displays the fitted probabilities for Mickey Mantle using the glm
function.

In studying a player’s career performance, one may be interested in the
player’s peak ability and the age where he achieved this peak ability. From
the quadratic model, if β2 < 0, then the probability is maximized at the value

agePEAK = − β1

2β2

and the peak value of the probability (on the logit scale) is

PEAK = β0 − β2
1

4β2
.

278 11 Using R to Interface with WinBUGS

20 25 30 35

0.
06

0.
08

0.
10

0.
12

AGE

H
O

M
E

 R
U

N
 R

A
TE

Fig. 11.6. Career trajectory and fitted probabilities for Mickey Mantle’s home run
rates.

Although fitting this model is informative about a player’s career trajec-
tory, it has some limitations. Since a player only plays for 15–20 years and
there is sizable binomial variation, it can be difficult to get precise estimates of
a player’s peak age and his peak ability. But there are many players in base-
ball history who display similar career trajectories. It would seem that one
could obtain improved estimates of players’ career trajectories by combining
data from players with similar abilities.

One can get improved estimates by fitting an exchangeable model. Suppose
we have k similar players; for player i, we record the number of home runs yij ,
number of balls put in play nij , and the age xij for the seasons j = 1, ...Ti.
We assume that the associated probabilities {pij} satisfy the logistic model

log
(

pij

1 − pij

)
= βi0 + βi1xij + βi2x

2
ij , j = 1, ..., Ti.

Let βi = (βi0, βi1, βi2) denote the regression coefficient vector for the ith
player. To represent the belief in exchangeability, we assume that β1, ..., βk

are a random sample from a common multivariate normal prior with mean
vector μβ and variance-covariance matrix V :

11.6 Estimating Career Trajectories 279

βi|μβ , R ∼ N3(μβ , V), i = 1, ..., k.

At the second stage of the prior, we assign vague priors to the hyperparame-
ters.

μβ ∼ c, V ∼ inverseWishart(S−1, ν),

where inverse Wishart(S−1, ν) denotes the inverse Wishart distribution with
scale matrix S and degrees of freedom ν. In WinBUGS, information about a
variance-covariance matrix is represented by means of a Wishart(S, ν) distri-
bution placed on the precision matrix P :

P = V −1 ∼ Wishart(S, ν).

Data are available for ten great home run hitters in baseball history in the
dataset sluggerdata in the package LearnBayes. This dataset contains bat-
ting statistics for these players for all seasons of their careers. The R function
careertraj.setup is used to extract the matrices from sluggerdata that
will be used in the WinBUGS program.

> data(sluggerdata)

> s=careertraj.setup(sluggerdata)

> N=s$N; T=s$T; y=s$y; n=s$n; x=s$x

The variable N is the number of players and the vector T contains the number
of seasons for each player. The matrix y has 10 rows and 23 columns, where
the ith row in y represents the number of home runs of the ith player for the
years of his career. Similarly, the matrix n contains the number of balls put
in play for all players and the matrix x contains the ages of the players for all
seasons.

A listing of the file career.bug describing the model in the WinBUGS
language is shown next. The variable beta is a matrix where the ith row
corresponds to the regression vector for the ith player. The syntax

beta[i , 1:3] ~ dmnorm(mu.beta[], R[,])

indicates that the i row of beta is assigned a multivariate normal prior with
mean vector mu.beta and precision matrix R. The syntax

y[i,j] ~ dbin(p[i,j],n[i,j])
logit(p[i,j])<-beta[i,1]+beta[i,2]*x[i,j]+

beta[i,3]*x[i, j]*x[i, j]

gives the logistic model for the home run probabilities in the matrix p. Finally,
the syntax

mu.beta[1:3] ~ dmnorm(mean[1:3],prec[1:3 ,1:3])
R[1:3, 1:3] ~ dwish(Omega[1:3 ,1:3], 3)

assigns the second-stage priors. The mean vector mu.beta is assigned a multi-
variate normal prior with mean mean and precision matrix prec; the precision
matrix R is assigned a Wishart distribution with scale matrix Omega and de-
grees of freedom 3.

280 11 Using R to Interface with WinBUGS

model
{
for(i in 1 : N) {
beta[i , 1:3] ~ dmnorm(mu.beta[], R[,])
for(j in 1 : T[i]) {
y[i,j] ~ dbin(p[i,j],n[i,j])
logit(p[i,j])<-beta[i,1]+beta[i,2]*x[i,j]+

beta[i,3]*x[i, j]*x[i, j]
}

}
mu.beta[1:3] ~ dmnorm(mean[1:3],prec[1:3 ,1:3])
R[1:3 , 1:3] ~ dwish(Omega[1:3 ,1:3], 3)
}

The dataset variables N, T, y, n, and x have already been defined in R with
the help of the careertraj.setup function. One defines the hyperparameter
values at the last stage of the prior.

mean = c(0, 0, 0)

Omega=diag(c(.1,.1,.1))

prec=diag(c(1.0E-6,1.0E-6,1.0E-6))

Next one gives initial estimates for β, μβ , and R. The estimate of βi is
found by fitting a logistic model to the pooled dataset for all players, and μβ

is also set to be this value. The precision matrix R is initially given a diagonal
form with small values.

beta0=matrix(c(-7.69,.350,-.0058),nrow=10,ncol=3,byrow=TRUE)

mu.beta0=c(-7.69,.350,-.0058)

R0=diag(c(.1,.1,.1))

We then indicate in the data line the list of variables, the inits func-
tion specifies the initial values, and the parameter line indicates that we will
monitor only the matrix beta. We run the MCMC simulation using the bugs
command.

data=list("N","T","y","n","x","mean","Omega","prec")

inits = function() {list(beta=beta0,mu.beta=mu.beta0,R=R0)}

parameters <- c("beta")

career.sim <- bugs (data, inits, parameters, "career.bug",

n.chains=1, n.iter=50000, n.thin=1)

Since we saved the output in the variable career.sim, the simulated draws
of β are contained in the component career.sims$sims.list$beta. This is
a three-dimensional array, where beta[,i,1] contains the simulated draws of
βi0, beta[,i,2] contains the simulated draws of βi1, and beta[,i,3] contains
the simulated draws of βi2. Suppose we focus on the estimates of the peak age
for each player. In the following R code, we create a new matrix to hold the
simulated draws of the peak age and then compute the functions in a loop.

11.7 Further Reading 281

> peak.age=matrix(0,50000,10)

> for (i in 1:10)

> peak.age[,i]=-career.sim$sims.list$beta[,i,2]/2/

+ career.sim$sims.list$beta[,i,3]

We apply functions in the coda package to graph and summarize the sim-
ulated samples. We first use the dimnames command to label the columns
of the matrix of simulated draws with the player names. Then we use the
densityplot command to construct density estimates of the peak ages for
the ten players. (Note that we use the as.mcmc command to convert the ma-
trix to an mcmc object.)

> dimnames(peak.age)[[2]]=c("Aaron","Greenberg", "Killebrew",

+ "Mantle","Mays", "McCovey" ,"Ott", "Ruth",

+ "Schmidt", "Sosa")

> densityplot(as.mcmc(peak.age),plot.points=FALSE)

The density estimate graphs are displayed in Figure 11.7. To compute 95%
interval estimates of each parameter, we use the summary command.

> summary(as.mcmc(peak.age))

Quantiles for each variable:

2.5% 25% 50% 75% 98%
Aaron 31.3 32.2 32.8 33.4 34.8
Greenberg 29.7 31.2 32.1 33.2 35.8
Killebrew 26.1 27.1 27.6 28.0 28.9
Mantle 27.1 27.9 28.3 28.7 29.8
Mays 28.8 29.8 30.2 30.8 31.8
McCovey 26.8 28.6 29.2 29.7 30.7
Ott 26.3 27.3 27.8 28.4 29.8
Ruth 30.1 31.0 31.5 32.0 33.1
Schmidt 27.6 28.7 29.2 29.7 30.7
Sosa 30.8 32.1 32.9 33.9 35.9

We see that baseball players generally peak in home run hitting ability in their
early 30s, although there are some exceptions.

11.7 Further Reading

Cowles (2004) gives a general review and evaluation of WinBUGS. A tutorial
on computing Bayesian analyses via WinBUGS is provided by George Wood-
worth in the complement to Chapter 6 of Press (2003). General information
about WinBUGS, including the program code for many examples can be found
in the WinBUGS user manual of Spiegelhalter et al. (2003). Congdon (2003,

282 11 Using R to Interface with WinBUGS

D
en

si
ty

0.
0

0.
2

0.
4

30 32 34 36 38

Aaron

0.
00

0.
15

30 35 40

Greenberg

0.
0

0.
3

0.
6

24 26 28 30

Killebrew
0.

0
0.

4

26 27 28 29 30 31 32

Mantle

0.
0

0.
3

26 28 30 32 34

Mays

0.
00

.2
0.

4

24 26 28 30 32

McCovey

0.
00

.2
0.

4

24 26 28 30 32 34

Ott

0.
0

0.
3

30 32 34 36

Ruth

0.
00

.2
0.

4

26 28 30 32

Schmidt

0.
0

0.
2

30 32 34 36 38 40

Sosa

Fig. 11.7. Density estimates of the peak age parameters for the ten baseball players.

2005, 2007) describes a wide variety of Bayesian inference problems that can
be fit using WinBUGS. Cowles and Carlin (1996) give an overview of diag-
nostics for MCMC output. Sturtz et al. (2005) give a general description of
the R2WinBUGS package, including examples demonstrating the use of the
package.

11.8 Exercises

1. Estimation of a proportion with a discrete prior
In Chapter 2, we considered the situation where one observes y ∼
binomial(n, p) and the proportion p is assigned a discrete prior. Suppose
the possible values of p are .05, .15, ..., .95, with respective prior probabil-
ities .0625, .125, .25, .25, .125, .0625, .03125, .03125, .03125, .03125. Place
the values of p in a vector p and the probabilities in the vector prior. As
in the example of Chapter 2, set y = 11 and n = 27. Define data, inits,
and parameters as follows:

data=list("p","prior","n","y")
inits=function() {list(ind=2)}

11.8 Exercises 283

parameters=list("prob")

Save the following script in a file “proportion.bug”.

model
{
ind~dcat(prior[])
prob<-p[ind]
y~dbin(prob,n)
}

Use the R interface to simulate 1000 draws from the posterior distribution
of p. Compute the posterior probability that p is larger than .5.

2. Fitting a beta/binomial exchangeable model
In Chapter 5, we considered the problem of simultaneously estimating the
rates of death from stomach cancer for males at risk for cities in Missouri.
Assume the number of cancer deaths yj for a given city is binomial with
sample size nj and probability of success pj . To model the belief that
the {pj} are exchangeable, we assume that they are a random sample
from a beta(α, β) distribution. The beta parameters α and β are assumed
independent from gamma(.11, .11) distributions. The WinBUGS model
file is shown here. Note that the variable betamean is the prior mean of
pj and K1 is the prior precision.

model
{
for (i in 1:N) {

y[i] ~ dbin(p[i], n[i])
p[i] ~ dbeta(alpha, beta)

}
alpha ~ dgamma(.11, .11)
beta ~ dgamma(.11, .11)
betamean <- alpha /(alpha + beta)
K1<-alpha+beta;
}

Use the R interface to simulate from the joint posterior distribution of
({pj}, α, β). Summarize each probability pj and the prior mean α/(α+β)
and prior precision K = α + β using 90% interval estimates.

3. Smoothing multinomial counts
Consider the observed multinomial frequencies (14, 20, 20, 13, 14, 10, 18,
15, 11, 16, 16, 24). Using a GLIM formulation for these data, suppose that
the counts {yi} are independent Poisson with means {μi}. The multino-
mial proportion parameters are defined by θi = μi/

∑
j μj . Suppose one

believes that the {θi} are similar in size. To model this belief, assume that
{θi} has a symmetric Dirichlet distribution of the form

284 11 Using R to Interface with WinBUGS

g({θi}|k) ∝
12∏

i=1

θk−1
i .

The hyperparameter k has a prior density proportional to (1+k)−2, which
is equivalent to log k distributed according to a standard logistic distribu-
tion. The WinBUGS model description is shown here:

model
{
logk~dlogis(0,1)
k<-exp(logk)
for (i in 1:I) {mu[i] ~ dgamma(k,1)

x[i] ~ dpois(mu[i])
theta[i] <- mu[i]/mu.sum}

mu.sum <- sum(mu[]);
}

Using the R interface, simulate from the posterior distribution of {θi}
and K. Summarize each parameter using a posterior mean and standard
deviation.

4. A gamma regression model
Congdon (2007) gives a Bayesian analysis of an example from McCul-
lagh and Nelder (1989) modeling the effects of three nutrients on coastal
Bermuda grass. The design was a 4 × 4 × 4 factorial experiment defined
by replications involving the nutrients nitrogen (N), phosphorus (P), and
potassium (K). The response yi is the yield of grass in tons/acre. We as-
sume yi is gamma with shape ν and scale parameter νεi, where the mean
εi satisfies

1/εi = β0 + β1/(Ni + α1) + β2/(Pi + α2) + β3/(Ki + α3).

In Congdon’s formulation, α1, α2, and α3 (background nutrient levels) are
assigned independent normal priors with respective means 40, 22, and 32
and variance 100. Noninformative priors were assigned to β0 and ν and
the growth effect parameters β1, β2, and β3, except that the growth effects
are assumed to be positive.
The WinBUGS model description is shown here. The LearnBayes datafile
bermuda.grass contains the data; the factor levels are stored in the vari-
ables Nit, Phos, and Pot, and the response values are stored in the variable
y. Also one needs to define the sample size variable n = 64 and the nutri-
ent value vectors N = 0, 100, 200, and 400, P = 0, 22, 44, and 88, and K
= 0, 42, 84, and 168.

model {for (i in 1:n) {y[i]~ dgamma(nu,mu[i])
mu[i] <- nu*eta[i]
yhat[i] <- 1/eta[i]
eta[i] <- beta0

11.8 Exercises 285

+beta[1]/(N[Nit[i]+1]+alpha[1])
+beta[2]/(P[Phos[i]+1]+alpha[2])
+beta[3]/(K[Pot[i]+1]+alpha[3])}

beta0 ~ dnorm(0,0.0001)
nu ~ dgamma(0.01,0.01)
alpha[1] ~ dnorm(40,0.01)
alpha[2] ~ dnorm(22,0.01)
alpha[3] ~ dnorm(32,0.01)
for (j in 1:3) {beta[j] ~ dnorm(0,0.0001) I(0,)}}

Use WinBUGS and the R interface to simulate 10,000 iterations from this
model. Compute 90% interval estimates for all parameters.

5. A nonlinear hierarchical growth curve model
The BUGS manual presents an analysis of data originally presented in
Draper and Smith (1998). The response yij is the trunk circumference
recorded at time xj = 1, ..., 7 for each of i = 1, ..., 5 orange trees; the data
are displayed in Table 11.1. One assumes yij is normally distributed with
mean ηij and variance σ2, where the means satisfy the nonlinear growth
model

ηij =
φ1i

1 + φi2 exp(φi3xj)
.

Suppose one reexpresses the parameters as the real-valued parameters

θi1 = log φi1, θi2 = log(φi2 + 1), θi3 = log(−φi3), i = 1, ...5.

Table 11.1. Data on the growth of five orange trees over time.

Response for Tree Number

x 1 2 3 4 5

118 30 33 30 32 30
484 58 69 51 62 49
664 87 111 75 112 81
1004 115 156 108 167 125
1231 120 172 115 179 142
1372 142 203 138 209 174
1582 145 203 140 214 177

Let θi = (θi1, θi2, θi3) represent the vector of growth parameters for the
ith tree. To reflect a prior belief in similarity in the growth patterns of
the five trees, one assumes that {θi, i = 1, ..., 5} are a random sample
from a multivariate normal distribution with mean vector μ and variance-
covariance matrix Ω. At the final stage of the prior, one assumes Ω−1 is
Wishart with parameters R and 3, and assumes μ is multivariate normal
with mean vector μ0 and variance-covariance matrix M . In this example,

286 11 Using R to Interface with WinBUGS

one assumes R is a diagonal matrix with diagonal elements .1, .1, and
.1, μ0 is the zero vector, and M−1 is the diagonal matrix with diagonal
elements 1.0E-.6, 1.0E-6, and 1.0E-6.
The WinBUGS model description is shown here:

model {
for (i in 1:K) {
for (j in 1:n) {

Y[i, j] ~ dnorm(eta[i, j], tauC)
eta[i, j] <- phi[i, 1] / (1 + phi[i, 2] *
exp(phi[i, 3] * x[j]))

}
phi[i, 1] <- exp(theta[i, 1])
phi[i, 2] <- exp(theta[i, 2]) - 1
phi[i, 3] <- -exp(theta[i, 3])
theta[i, 1:3] ~ dmnorm(mu[1:3], tau[1:3, 1:3])

}
mu[1:3] ~ dmnorm(mean[1:3], prec[1:3, 1:3])
tau[1:3, 1:3] ~ dwish(R[1:3, 1:3], 3)
sigma2[1:3, 1:3] <- inverse(tau[1:3, 1:3])
for (i in 1 : 3) {sigma[i] <- sqrt(sigma2[i, i])}
tauC ~ dgamma(1.0E-3, 1.0E-3)
sigmaC <- 1 / sqrt(tauC)
}

Use WinBUGS and the R interface to simulate 10,000 iterations from this
model. Compute 90% interval estimates for all parameters.

References

Abraham, B., and Ledolter, J. (2006), Introduction to Regression Modeling,
Belmont, CA: Thomson Higher Education.

Agresti, A., and Franklin, C. (2005), Statistics: The Art and Science of Learn-
ing from Data, Englewood Cliffs, NJ: Prentice-Hall.

Albert, J. (1992), “A Bayesian analysis of a Poisson random effects model for
home run hitters,” The American Statistician, 46, 246–253.

Albert, J. (1994),“A Bayesian approach to estimation of GPAs of University of
Iowa freshmen under order restrictions,” Journal of Educational Statistics,
19, 1–22.

Albert, J. (1996), Bayesian Computation Using Minitab,Belmont, CA:
Duxbury Press.

Albert, J., and Chib, S. (1993), “Bayesian analysis of binary andpolychoto-
mous response data,” Journal of the American Statistical Association, 88,
669–679.

Albert, J., and Gupta, A. (1981), “Mixtures of Dirichlet distributions and
estimation in contingency tables,” Annals of Statistics, 10, 1261–1268.

Albert, J., and Rossman, A. (2001), Workshop Statistics: Discovery with Data,
a Bayesian Approach, Emeryville, CA: Key College.

Antleman, G. (1996), Elementary Bayesian Statistics, Cheltenham: Edward
Elgar Publishing.

Bedrick, E., Christensen R., and Johnson, W. (1996), “A new perspective on
priors for generalized linear models,” Journal of the American Statistical
Association, 91, 1450–1460.

Berger, J. (1985), Statistical Decision Theory and Bayesian Analysis, New
York: Springer-Verlag.

Berger, J. (2000), “Bayesian analysis: A look at today and thoughts of tomor-
row,” Journal of the American Statistical Association, 95, 1269–1276.

288 References

Berger, J., and Sellke, T. (1987), “Testing a point null hypothesis: The irrec-
oncilability of p values and evidence,” Journal of the American Statistical
Association, 397, 112–122.

Berry, D. (1996), Statistics: A Bayesian Perspective, Belmont, CA: Duxbury
Press.

Bliss, C. (1935), “The calculation of the dosage-mortality curve,” Annals of
Applied Biology, 22, 134–167.

Bolstad, W. (2004), Introduction to Bayesian Statistics, Hoboken, NJ: John
Wiley and Sons.

Box, G. (1980), “Sampling and Bayes’ inference in scientific modelling and ro-
bustness (with discussion),” Journal of the Royal Statistical Society, Series
A, 143, 383–430.

Box, G. and Cox, D. (1964), “An analysis of transformations (with discus-
sion),” Journal of the Royal Statistical Society, Series B, 126, 211–252.

Box, G. and Tiao G. (1973), Bayesian Inference in Statistical Analysis, Wiley
Classics Library.

Carlin, B., Gelfand, A. and Smith, A. (1992), “Hierarchical Bayesian analysis
of changepoint problems,” Applied Statistics, 41, 389–405.

Carlin, B., and Louis, T. (2009), Bayesian Methods for Data Analysis, Boca
Roton, FL: Chapman and Hall.

Casella, G., and Berger, R. (1987), “Testing a point null hypothesis: The irrec-
oncilability of p values and evidence,” Journal of the American Statistical
Association, 397, 106–111.

Casella, G., and George, E. (1992),“Explaining the Gibbs sampler,”The Amer-
ican Statistician, 46, 167–174.

Chaloner, K., and Brant, R. (1988), “A Bayesian approach to outlierdetection
and residual analysis,” Biometrika, 75, 651–659.

Chib, S. (1995), “Marginal Likelihood from the Gibbs Output,”Journal of the
American Statistical Association, 90, 1313–1321.

Chib, S., and Greenberg, E. (1995), “Understanding theMetropolis-Hastings
algorithm,” The American Statistician, 49, 327–335.

Christiansen, C., and Morris, C. (1995), “Fitting and checking a two-level
Poisson model: Modeling patient mortality rates in heart transplant pa-
tients,” in D. Berry, and D. Stangl, , editors, Bayesian Biostatistics, New
York: Marcel Dekker.

Collett, D. (1994), Modelling Survival Data in Medical Research, London:
Chapman and Hall.

Congdon, P. (2003), Applied Bayesian Modelling, Chichester: John Wiley and
Sons.

Congdon, P. (2005), Bayesian Models for Categorical Data, Chichester: John
Wiley and Sons.

References 289

Congdon, P. (2007), Bayesian Statistical Modelling, second edition, Chich-
ester: John Wiley and Sons.

Cowles, K. (2004), “Review of WinBUGS 1.4,”The American Statistician, 58,
330–336.

Cowles, K., and Carlin, B. (1996), “Markov chain Monte Carlo convergence
diagnostics: A comparative review,”Journal of the American Statistical As-
sociation, 91, 883–904.

Dobson, A. (2001), An Introduction to Generalized Linear Models, New York:
Chapman and Hall.

Draper, N., and Smith, H. (1998), Applied Regression Analysis, New York:
John Wiley and Sons.

Edmonson, J., Fleming, T., Decker, D., Malkasian, G., Jorgensen, E., Jefferies,
J., Webb, M., and Kvols, L. (1979),“Different chemotherapeutic sensitivities
and host factors affecting prognosis in advanced ovarian carcinoma versus
minimal residual disease,” Cancer Treatment Reports, 63, 241–247.

Fisher, R. (1960), Statistical Methods for Research Workers, Edinburgh: Oliver
and Boyd.

Gelfand, A., Hills, S., Racine-Poon, A., and Smith, A. (1990),“Illustration of
Bayesian inference in normal data models using Gibbs sampling,” Journal
of the American Statistical Association,85,972–985.

Gelfand, A., and Smith, A. (1990), “Sampling-based approaches tocalculating
marginal densities,”Journal of the American StatisticalAssociation, 85, 398–
409.

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2003), Bayesian Data Anal-
ysis, New York: Chapman and Hall.

Gelman, A., Meng, X., and Stern, H. (1996), “Posterior predictive assessment
of model fitness via realized discrepancies,” Statistics Sinica, 6, 733–807.

Gentle, J. (2002), Elements of Computational Statistics, New York: Springer.
Gilchrist, W. (1984), Statistical Modeling, Chichester: John Wiley and Sons.
Gill, J. (2008), Bayesian Methods, New York: Chapman and Hall.
Givens, G., and Hoeting, J. (2005), Computational Statistics, Hoboken, NJ:

John Wiley and Sons.
Grayson, D. (1990), “Donner party deaths: A demographic assessment,”Jour-

nal of Anthropological Assessment, 46, 223–242.
Gunel, E., and Dickey, J. M. (1974), “Bayes factors for independence in con-

tingency tables,” Biometrika, 61, 545–557.
Haberman, S. (1978), Analysis of Qualitative Data: Introductory topics, Vol-

ume 1, New York: Academic Press.
Hartley, H. O. (1958),“Maximum likelihood estimation from incomplete data,”

Biometrics, 14, 174–194.

290 References

Howard, J. (1998), “The 2 × 2 table: A discussion from a Bayesian viewpoint,”
Statistical Science, 13, 351–367.

Kass, R., and Raftery, A. (1995), “Bayes factors,” Journal of the American
Statistical Association, 90,773–795.

Kemeny, J., and Snell, J. (1976), Finite Markov Chains, New York: Springer-
Verlag.

Lee, P. (2004), Bayesian Statistics: An Introduction, New York: Oxford Uni-
versity Press.

Marin, J. and Robert, C. (2007), Bayesian Core: A Practical Approach to
Computational Bayesian Statistics, New York: Springer.

Martz, H., and Waller, R. (1982), Bayesian Reliability Analysis, New York:
John Wiley and Sons.

McCullagh, P., and Nelder, J. (1989), Generalized Linear Models, New York:
Chapman and Hall.

Monahan, J. (2001), Numerical Methods of Statistics, Cambridge: Cambridge
University Press.

Moore, D. (1995), The Basic Practice of Statistics, New York: W. H. Freeman.
Pearson, E. (1947), “The choice of statistical tests illustrated in the interpre-

tation of data classed in a 2 x 2 table,” Biometrika, 34, 139–167.
Peck, R., Devore, J., and Olsen, C. (2005), Introduction to Statistics And Data

Analysis, Thomson Learning.
Pimm, S., Jones, H., and Diamond, J. (1988), “On the risk of extinction,”

American Naturalist, 132, 757–785.
Press, J. (2003), Subjective and Objective Bayesian Statistics, Hoboken, NJ:

John Wiley and Sons.
Ramsey, F., and Schafer, D. (1997), The Statistical Sleuth,Belmont, CA:

Duxbury Press.
Rao, C. R. (2002), Linear Statistical Inference and Applications,New York:

John Wiley and Sons.
Robertson, T., Wright, F., and Dykstra, R. (1988), Order Restricted Statistical

Inference, London: John Wiley and Sons.
Robert, C., and Casella, G. (2004), Monte Carlo Statistical Methods, New

York: Springer.
Smith, A., and Gelfand, A. (1992), “Bayesian statistics without tears: a

sampling-resampling perspective,” The American Statistician, 46, 84–88.
Smith, B. (2007), “boa: An R Package for MCMC Output Convergence As-

sessment and Posterior Inference,” Journal of Statistical Software, 21.
Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2003), WinBUGS 1.4

Manual.

References 291

Sturtz, S., Ligges, U., and Gelman, A. (2005), “R2WinBUGS: A package for
running WinBUGS from R,” Journal of Statistical Software, 12, 1–16.

Tanner, M. (1996), Tools for Statistical Inference, New York: Springer-Verlag.
Tsutakawa, R., Shoop, G., and Marienfeld, C. (1985), “Empirical Bayes esti-

mation of cancer mortality rates,” Statistics in Medicine, 4, 201–212.
Turnbull, B., Brown, B., and Hu, M. (1974), “Survivorship analysis of heart

transplant data,”Journal of the American Statistical Association, 69, 74–80.
Verzani, J. (2004), Using R for Introductory Statistics, Boca Raton, FL: Chap-

man and Hall.
Wasserman, L., and Verdinelli, I. (1991), “Bayesian analysis of outlier models

using the Gibbs sampler,” Statistics and Computing, 1, 105–117.
Weiss, N. (2001), Elementary Statistics, Boston: Addison-Wesley.
Zellner, A. (1986), “On Assessing Prior Distributions and Bayesian Regression

Analysis with g-Prior Distributions,” in P. K. Goel and A. Zellner, editors,
Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de
Finetti, Amsterdam: North-Holland.

Index

acceptance rate
for Metropolis/Hastings algorithm,

121
in rejection sampling, 98, 100

approximating a posterior by a discrete
distribution, 48

association parameter, 77

baseball data
for Derek Jeter, 192

Bayes factor
for comparing two hypotheses, 185
for testing for independence in a

contingency table, 196, 197
in support of a model, 190
in support of a streaky model, 192
to compare models, 186
to compare two hypotheses, 182, 183

bayes.influence function, 107
bayes.model.selection function, 221
bayes.probit function, 241
Bayesian model, 265
Bayesian recipe for inference, 88
Bayesian residuals, 208, 216
bayesresiduals function, 208, 216
Behrens-Fisher problem, 82
beta distribution, 54

as a likelihood, 27
as posterior, 24, 97
as prior, 23, 53, 191

beta-binomial model, 90, 105, 106
beta.select function, 23, 71
betabinexch function, 92
betabinexch.cond function, 102

betabinexch0 function, 91
bfexch function, 192, 193
bfindep function, 198
biased coin

belief in, 50
binary response regression, 240
binomial distribution, 29, 52
binomial.beta.mix function, 51
bioassay experiment, 69
bivariate normal density, 98, 136
blinreg function, 207, 210, 219
blinregexpected function, 207, 213
blinregpred function, 207, 214
bounding constant in rejection

sampling, 98
Box-Cox transformation model, 151
bprobit.probs function, 243
breeding dataset, 219
British coal mining disasters, 268
brute force method, 27
bugs function, 266
BUGS project, 265

cancer mortality dataset, 90
candidate draw, 98
careertraj.setup function, 279
Cauchy sampling model, 58, 131
cauchyerrorpost function, 133
censored data, 141
chemotherapy treatment survival data,

223
chi-squared distribution, 40
close to independence model, 197
coda package, 129

294 Index

college admissions data, 248
comparing Bayesian models, 186
comparing hospital rates, 169
complete data posterior, 107
composition simulation method, 163
conditional means prior, 71
consistent ability in sports, 191
contour function, 64
contour plot, 64
credible interval, 65, 74
ctable function, 196

Darwin’s dataset, 134, 237
dbeta function, 27, 54
dbinom function, 54
density estimate, 13, 73, 166, 238, 256
density function, 143, 238
dependence model, 195
dependent prior for proportions, 76
dgamma function, 43, 189
Dirichlet distribution, 66, 196

simulating from, 66
Dirichlet function, 196
discint function, 32
dmt function, 100
dnorm function, 90, 189
dpois function, 43
dt function, 47, 133

evidence
against coin is fair, 54

exchangeable prior model, 154
of career trajectories, 278
of mortality rates, 161
of normal means, 177
of proportions, 178

exponential lifetime distribution, 140
exponential sampling model, 58, 60,

112, 148
extinction of birds dataset, 208

Florida voting data, 272
football scores, 39

g prior in regression, 218
gamma distribution

as a posterior for a rate, 42, 158
as a prior for a rate, 41, 187
as a sampling model, 84

as posterior in exchangeable model,
163

as prior in exchangeable model, 161
as random effects distribution, 140
in outlier model, 236

generalized logit model, 150
genetic linkage model, 111, 148
gibbs function, 122, 165
glm function, 70, 242
grouped data

from a normal population, 60
from Poisson distribution, 113

grouped data from a normal population,
125

groupeddatapost function, 125, 126
Gumbel distribution, 223

heart transplant mortality data, 41, 155
heart transplant survival data, 140
hierarchical prior, 154

for regression model, 254
hiergibbs function, 255
histprior function, 27
home run rate, 276
howardprior function, 77
hyperparameters, 161

importance sampling estimate, 102, 197
impsampling function, 103
independence hypothesis, 194
indepmetrop function, 121
integrate function, 103
intelligence quotient, 45
interval estimate, 64, 256
inverse chi-square distribution, 64
inverse gamma distribution, 206, 237
inverse Wishart distribution, 279

Jacobian term in a transformation, 92

Laplace expansion, 94
laplace function, 95, 99, 126, 134, 142,

164, 187, 189, 192, 193, 225
Laplace’s method, 187
latent data representation, 240
lbeta function, 192
lbinorm function, 95
LD-50, 74
lgamma function, 164
likelihood function, 40

Index 295

linear regression, 205
Bayesian formulation, 206
Bayesian residuals, 208, 216
estimating mean response, 213, 276
model checking, 215
posterior analysis, 206
posterior simulation, 207, 210
prediction, 206, 214
residuals, 208
robust model, 272
with t errors, 273

log-linear model, 223
logistic regression model, 70, 230, 277
logisticpost function, 72
logpoissgamma function, 189
logpoissnormal function, 189

marathon running times, 63
marginal density, 186, 191
marginal posterior distributions, 88
Markov chain simulation

acceptance rate, 129, 139, 165
autocorrelation plot, 123, 129
batch means method, 123
burn-in length, 267
diagnostics, 267
discrete case, 118
Gibbs sampling, 122
independence chain, 121, 138
initial values, 265
Metropolis within Gibbs algorithm,

122, 165
Metropolis/Hastings algorithm, 120
number of chains, 267
output analysis, 123
random walk algorithm, 121, 127,

142, 225
thinning rate, 267
trace plot, 123, 129
using WinBUGS, 265

matplot function, 249
maximum likelihood estimate, 41

of logistic regression model, 70
probit model, 242

mixture of beta priors, 50
mixture of exponentials sampling

model, 113, 151
mixture of gamma priors, 60
mnormt.onesided function, 184

mnormt.twosided function, 185
model checking

Bayesian residuals, 216
outlying probabilities, 216
using posterior predictive distribu-

tion, 158, 173, 207, 215
using the prior predictive distribution,

42
model file

for WinBUGS, 266, 269
model selection in regression, 221
Monte Carlo estimate, 97
Monte Carlo simulation study, 9
multinomial distribution, 66, 125
multivariate normal approximation, 94
multivariate normal distribution, 206,

218, 278
multivariate t density, 98

as importance sampler, 103
mycontour function, 64, 93, 95,

128, 165

Newton’s method, 94
noninformative prior

for a rate, 157
for a proportion, 191
for a variance, 40, 218
for beta-binomial parameters, 91
for mean and scale parameters, 236
for mean and variance, 63, 125
for Poisson mean, 42
for regression model, 206
for Weibull survival model, 223
mean and standard deviation, 132
on changepoint parameter, 269
on order restricted space, 250
on regression coefficients, 240, 269

normal distribution, 40
as a posterior, 46, 183
as a prior, 46, 76, 177, 182, 185, 187
as a sampling distribution, 63
scale mixture of, 236, 273
truncated, 241

normal.select function, 45
normal/inverse chisquare posterior, 64
normalizing constant, 89, 98
normchi2post function, 64
nuisance parameters, 88

296 Index

observed significance level, 11

optim function, 94
order restricted inference, 249
ordergibbs function, 251
outliers

in regression, 208, 215, 272
posterior probability of, 208

Output Analysis and Diagnostics for
MCMC (coda) package, 268

overdispersed data, 90

p-value, 53, 55, 184
relationship with Bayesian measure

of evidence, 184
parametric residuals, 208
Pareto survival model, 140
pbeta function, 24
pbetap function, 31
pbetat function, 54
pbinom function, 56
pdisc function, 22
pdiscp function, 30
peak ability, 277
Pearson chi-squared statistic, 194

percentiles of a posterior distribution,
40

pnorm function, 182, 184, 259
poissgamexch function, 164
Poisson gamma sampling model, 83
Poisson model, 41, 156, 187, 268

equal means, 157
two samples, 84

Poisson regression model, 112, 149
pooled estimate, 157
posterior computation

brute force method, 27, 87, 138
by simulation, 87

posterior mean, 88, 127
by Monte Carlo estimate, 101
computation by simulation, 97

posterior median, 40
posterior mode, 94
posterior model probabilities, 222
posterior odds of hypothesis, 182

posterior outlying probability, 216
posterior predictive distribution, 158,

173
for linear regression, 206

for model checking in regression, 207,
215

posterior probability

coin is fair, 54, 55

of a hypothesis, 185

of a set, 88

of hypothesis, 182

posterior simulation

beta posterior, 25

by rejection sampling, 100

Dirichlet distribution, 66

exchangeable posterior, 163

logistic regression model, 73

Monte Carlo method, 97

of a mean and variance, 64

of a standard deviation, 40

that one proportion exceeds a second
proportion, 78

posterior standard deviation, 127

precision, 40

precision parameter, 191, 198

of a beta-binomial, 90

predicting the outcome of an election,
66

predictive density, 29

Laplace approximation to, 95

predictive distribution computation

for beta prior, 31

for discrete prior, 30

using simulation, 31

prior belief

order restriction, 249

prior distribution

beta for proportion, 23

conditional means for a logistic
model, 71

constructing, 45

dependent type for proportions, 76

discrete for normal mean, 36

discrete for Poisson mean, 37

discrete for proportion, 20

for testing if a coin is fair, 53

for variance parameter, 255

g form, 218

histogram type, 27

independent for proportions, 82

informative normal, 254

mixture of betas for a proportion, 50

Index 297

mixture of gammas for a Poisson
mean, 60

multivariate normal for a regression
vector, 218

normal for a logit parameter, 110, 147
normal for a mean, 46
t for a normal mean, 47

prior information
about a heart transplant death rate,

42
about a proportion, 23
that coin is biased, 50

prior odds of hypothesis, 181
prior predictive density

approximation using Laplace’s
method, 94, 187

probability interval, 32
prior predictive distribution, 42
prior robustness, 45
probability interval, 24, 40, 96, 107, 166
probit regression model, 240
proposal density

for importance sampling, 102
for Metropolis-Hastings algorithm,

120
in rejection sampling, 98

qbeta function, 24
qt function, 47
quadrature methods, 88

rbeta function, 25
rchisq function, 40, 64
rdirichlet function, 66
reg.gprior.post function, 221
regression model, 205

model selection, 221
regression slope

inference about, 73
regroup function, 193
rejection sampling, 98
rejectsampling function, 100
residuals in regression, 208
rgamma function, 43, 158, 237
rigamma function, 237, 256
rmnorm function, 211, 241, 256
rmt function, 100
rnorm function, 64, 237, 256
rnormt function, 251

robust regression, 272
robustness

of t statistic, 9
with respect to the prior, 49

robustt function, 237
rounded normal data, 83
rpois function, 159
rwmetrop function, 121, 136, 142, 225

sample function, 28, 106, 119
sampling distribution, 12
sampling importance sampling

algorithm, 106
sampling with replacement, 106
selected data

learning from, 60
sensitivity

of posterior with respect to prior, 45
sensitivity analysis

of posterior with respect to parameter,
55

with respect to observation, 106
sensitivity of posterior with respect to

prior, 171
shrinkage, 168

towards regression model, 256
shrinkage estimator, 163
simcontour function, 73
simulation standard error, 12

of importance sampling estimate,
102, 198

of Monte Carlo estimate, 97
SIR algorithm, 106
sir function, 106
sir.old.new function, 172
smoothing table of means, 249
square root transformation, 272
stationary distribution, 118
streaky ability in sports, 191
student performance dataset, 194
survival curve, 144, 226
survival probability, 226, 243
survreg function, 223

t distribution
as a prior, 47
as a sampling model, 236
in sampling, 9

298 Index

t statistic, 8
sampling distribution, 13

Taylor series, 94
testing

if a coin is fair, 52
testing hypotheses, 181

one-sided, 182
two-sided, 185

transformation of parameters, 91
transition probability matrix, 118
transplantpost function, 141
true significance level, 10
truncated normal distribution, 251

uniform prior, 195
uniform sampling density, 58

variance

estimating, 39

variance components model, 114, 151

variance-covariance matrix, 95

voting preferences data, 66

Weibull proportional hazards model,
223

weibullregpost function, 224

weighted bootstrap, 106

weights

for importance sampling, 102

Wishart distribution, 279

writing a R function to define posterior,
89

This book focuses on tools and techniques for building regres-
sion models using real-world data and assessing their validity. A
key theme throughout the book is that it makes sense to base
inferences or conclusions only on valid models. One of the as-
pects of the book that sets it apart from many other regression
books is that complete details are provided for each example.
The book is aimed at first year graduate students in statistics
and could also be used for a senior undergraduate class.

 Nonlinear Regression with R

 Christian Ritz
 Jens Carl Streibig

springer.com

Easy Ways to Order► Call: Toll-Free 1-800-SPRINGER ▪ E-mail: orders-ny@springer.com ▪ Write:
Springer, Dept. S8113, PO Box 2485, Secaucus, NJ 07096-2485 ▪ Visit: Your
local scientific bookstore or urge your librarian to order.

A Modern Approach to Regression with R

Simon J. Sheather

Applied Spatial Data Analysis with R
Roger S. Bivand
Edzer J. Pebesma
Virgilio Gómez-Rubio

This book provides a coherent and unified treatment of nonlin-
ear regression with R by means of examples from a diversity of
applied sciences such as biology, chemistry, engineering, medi-
cine and toxicology. The book begins with an introduction on
how to fit nonlinear regression models in R. Subsequent chap-
ters explain in more depth the salient features of the fitting func-
tion nls(), the use of model diagnostics, the remedies for various
model departures, and how to do hypothesis testing. In the final
chapter grouped-data structures, including an example of a
nonlinear mixed-effects regression model, are considered.

2009. XII, 148 p. (Use R) Softcover
ISBN 978-0-387-09615-5

2009. Approx. 495 p. (Springer Texts in Statistics) Hardcover
ISBN 978-0-387-09607-0

Applied Spatial Data Analysis with R is divided into two basic parts,
the first presenting R packages, functions, classes and methods for
handling spatial data. Data import and export for many file formats
for spatial data are covered in detail, as is the interface between R
and the open source GRASS GIS. The second part showcases
more specialised kinds of spatial data analysis, including spatial
point pattern analysis, interpolation and geostatistics, areal data
analysis and disease mapping. All the examples can be run using
R contributed packages available from the CRAN website, with
code and additional data sets from the book's own website.

2008. XIV, 378 p. (Use R) Softcover
ISBN 978-0-387-78170-9

	Cover
	Bayesian Computation with R, Second Edition
	Copyright - ISBN: 9780387922973
	Preface
	Contents
	1. An Introduction to R

	1.1 Overview
	1.2 Exploring a Student Dataset
	1.2.1 Introduction to the Dataset
	1.2.2 Reading the Data into R
	1.2.3 R Commands to Summarize and Graph a Single Batch

	1.2.4 R Commands to Compare Batches
	1.2.5 R Commands for Studying Relationships

	1.3 Exploring the Robustness of the t Statistic
	1.3.1 Introduction
	1.3.2 Writing a Function to Compute the t Statistic
	1.3.3 Programming a Monte Carlo Simulation
	1.3.4 The Behavior of the True Significance Level Under Different Assumptions

	1.4 Further Reading
	1.5 Summary of R Functions
	1.6 Exercises

	2. Introduction to Bayesian Thinking
	2.1 Introduction
	2.2 Learning About the Proportion of Heavy Sleepers
	2.3 Using a Discrete Prior
	2.4 Using a Beta Prior
	2.5 Using a Histogram Prior
	2.6 Prediction
	2.7 Further Reading
	2.8 Summary of R Functions
	2.9 Exercises

	3. Single-Parameter Models
	3.1 Introduction
	3.2 Normal Distribution with Known Mean but Unknown Variance
	3.3 Estimating a Heart Transplant Mortality Rate
	3.4 An Illustration of Bayesian Robustness
	3.5 Mixtures of Conjugate Priors
	3.6 A Bayesian Test of the Fairness of a Coin
	3.7 Further Reading
	3.8 Summary of R Functions
	3.9 Exercises

	4. Multiparameter Models
	4.1 Introduction
	4.2 Normal Data with Both Parameters Unknown
	4.3 A Multinomial Model
	4.4 A Bioassay Experiment
	4.5 Comparing Two Proportions
	4.6 Further Reading
	4.7 Summary of R Functions
	4.8 Exercises

	5. Introduction to Bayesian Computation
	5.1 Introduction
	5.2 Computing Integrals
	5.3 Setting Up a Problem in R
	5.4 A Beta-Binomial Model for Overdispersion
	5.5 Approximations Based on Posterior Modes
	5.6 The Example
	5.7 Monte Carlo Method for Computing Integrals
	5.8 Rejection Sampling
	5.9 Importance Sampling
	5.9.1 Introduction
	5.9.2 Using a Multivariate t as a Proposal Density

	5.10 Sampling Importance Resampling
	5.11 Further Reading
	5.12 Summary of R Functions
	5.13 Exercises

	6. Markov Chain Monte Carlo Methods
	6.1 Introduction
	6.2 Introduction to Discrete Markov Chains
	6.3 Metropolis-Hastings Algorithms
	6.4 Gibbs Sampling
	6.5 MCMC Output Analysis
	6.6 A Strategy in Bayesian Computing
	6.7 Learning About a Normal Population from Grouped Data
	6.8 Example of Output Analysis
	6.9 Modeling Data with Cauchy Errors
	6.10 Analysis of the Stanford Heart Transplant Data
	6.11 Further Reading
	6.12 Summary of R Functions
	6.13 Exercises

	7. Hierarchical Modeling
	7.1 Introduction
	7.2 Three Examples
	7.3 Individual and Combined Estimates
	7.4 Equal Mortality Rates?
	7.5 Modeling a Prior Belief of Exchangeability
	7.6 Posterior Distribution
	7.7 Simulating from the Posterior
	7.8 Posterior Inferences
	7.8.1 Shrinkage
	7.8.2 Comparing Hospitals

	7.9 Bayesian Sensitivity Analysis
	7.10 Posterior Predictive Model Checking
	7.11 Further Reading
	7.12 Summary of R Functions
	7.13 Exercises

	8. Model Comparison
	8.1 Introduction
	8.2 Comparison of Hypotheses
	8.3 A One-Sided Test of a Normal Mean
	8.4 A Two-Sided Test of a Normal Mean
	8.5 Comparing Two Models
	8.6 Models for Soccer Goals
	8.7 Is a Baseball Hitter Really Streaky?
	8.8 A Test of Independence in a Two-Way Contingency Table
	8.9 Further Reading
	8.10 Summary of R Functions
	8.11 Exercises

	9. Regression Models
	9.1 Introduction
	9.2 Normal Linear Regression
	9.2.1 The Model
	9.2.2 The Posterior Distribution
	9.2.3 Prediction of Future Observations
	9.2.4 Computation
	9.2.5 Model Checking
	9.2.6 An Example

	9.3 Model Selection Using Zellner's g Prior
	9.4 Survival Modeling
	9.5 Further Reading
	9.6 Summary of R Functions
	9.7 Exercises

	10. Gibbs Sampling
	10.1 Introduction
	10.2 Robust Modeling
	10.3 Binary Response Regression with a Probit Link
	10.3.1 Missing Data and Gibbs Sampling
	10.3.2 Proper Priors and Model Selection

	10.4 Estimating a Table of Means
	10.4.1 Introduction
	10.4.2 A Flat Prior Over the Restricted Space
	10.4.3 A Hierarchical Regression Prior
	10.4.4 Predicting the Success of Future Students

	10.5 Further Reading
	10.6 Summary of R Functions
	10.7 Exercises

	11. Using R to Interface with WinBUGS
	11.1 Introduction to WinBUGS
	11.2 An R Interface to WinBUGS
	11.3 MCMC Diagnostics Using the coda Package
	11.4 A Change-Point Model
	11.5 A Robust Regression Model
	11.6 Estimating Career Trajectories
	11.7 Further Reading
	11.8 Exercises

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

