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Introduction

Inequalities are useful in all fields of Mathematics. The aimof this problem-orientedbook is to
present elementary techniques in the theory of inequalities. The readers will meet classical theorems
includingSchur’s inequality, Muirhead’s theorem, the Cauchy-Schwarz inequality, the Power Mean
inequality, the AM-GM inequality, andHölder’s theorem. I would greatly appreciate hearing about
comments and corrections from my readers. You can send emailto me atultrametric@gmail.com
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To Students

My target readers are challenging high schools students andundergraduate students. The given
techniques in this book are just the tip of the inequalities iceberg. Young students should find their
own methods to attack various problems. A great Hungarian Mathematician Paul Erdös was fond
of saying that God has a transfinite book with all the theorems and their bestproofs. I strongly
encourage readers to send me their own creative solutions ofthe problems in this book.Have fun!
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1 Geometric Inequalities

It gives me the same pleasure when someone else proves a good theorem as when I do it myself.E. Landau

1 Ravi Substitution

Many inequalities are simplified by some suitable substitutions. We begin with a classical inequality
in triangle geometry. What is the first1 nontrivial geometric inequality ? In 1746, Chapple showed
that

Theorem 1.1. (Chapple 1746, Euler 1765)Let R and r denote the radii of the circumcircle and
incircle of the triangle ABC. Then, we have R≥ 2r and the equality holds if and only if ABC is
equilateral.

Proof. Let BC= a, CA= b, AB= c, s= a+b+c
2 andS= [ABC].2 Recall the well-known identities :

S= abc
4R , S= rs, S2 = s(s−a)(s−b)(s−c). Hence,R≥ 2r is equivalent toabc

4S ≥ 2S
s or abc≥ 8S2

s
or abc≥ 8(s−a)(s−b)(s−c). We need to prove the following.

1The first geometric inequality is the Triangle Inequality :AB+BC≥ AC
2In this book,[P] stands for the area of the polygonP.
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Theorem 1.2. ([AP], A. Padoa) Let a, b, c be the lengths of a triangle. Then, we have

abc≥ 8(s−a)(s−b)(s−c) or abc≥ (b+c−a)(c+a−b)(a+b−c)

and the equality holds if and only if a= b = c.

Proof. We use theRaviSubstitution : Sincea, b, care the lengths of a triangle, there are positive reals
x, y, zsuch thata = y+z, b= z+x, c= x+y. (Why?) Then, the inequality is(y+z)(z+x)(x+y) ≥
8xyzfor x, y, z> 0. However, we get

(y+z)(z+x)(x+y)−8xyz= x(y−z)2 +y(z−x)2+z(x−y)2 ≥ 0.

Exercise 1. Let ABC be a right triangle. Show that

R≥ (1+
√

2)r.

When does the equality hold ?

It’s natural to ask that the inequality in the theorem 2 holdsfor arbitrary positive realsa, b, c?
Yes ! It’s possible to prove the inequality without the additional condition thata, b, c are the lengths
of a triangle :

Theorem 1.3. Let x, y, z> 0. Then, we have xyz≥ (y+ z− x)(z+ x− y)(x+ y− z). The equality
holds if and only if x= y = z.

Proof. Since the inequality is symmetric in the variables, withoutloss of generality, we may assume
thatx ≥ y ≥ z. Then, we havex+ y > z andz+ x > y. If y+ z> x, thenx, y, z are the lengths of
the sides of a triangle. In this case, by the theorem 2, we get the result. Now, we may assume that
y+z≤ x. Then,xyz> 0≥ (y+z−x)(z+x−y)(x+y−z).

The inequality in the theorem 2 holds when some ofx, y, zare zeros :

Theorem 1.4. Let x, y, z≥ 0. Then, we have xyz≥ (y+z−x)(z+x−y)(x+y−z).

Proof. Sincex,y,z≥ 0, we can findpositivesequences{xn}, {yn}, {zn} for which

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z.

Applying the theorem 2 yields

xnynzn ≥ (yn +zn−xn)(zn +xn−yn)(xn +yn−zn).

Now, taking the limits to both sides, we get the result.

Clearly, the equality holds whenx = y = z. However,xyz= (y+z−x)(z+x−y)(x+y−z) and
x, y, z≥ 0 does not guarantee thatx = y = z. In fact, forx,y,z≥ 0, the equalityxyz= (y+z−x)(z+
x−y)(x+y−z) is equivalent to

x = y = z or x= y,z= 0 or y = z,x = 0 or z= x,y = 0.

It’s straightforward to verify the equality

xyz− (y+z−x)(z+x−y)(x+y−z)= x(x−y)(x−z)+y(y−z)(y−x)+z(z−x)(z−y).

Hence, the theorem 4 is a particular case of Schur’s inequality.
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Problem 1. (IMO 2000/2, Proposed by Titu Andreescu) Let a,b,c be positive numbers such that
abc= 1. Prove that (

a−1+
1
b

)(

b−1+
1
c

)(

c−1+
1
a

)

≤ 1.

First Solution. Sinceabc= 1, we make the substitutiona = x
y , b = y

z, c = z
x for x, y, z> 0.3 We

rewrite the given inequality in the terms ofx, y, z :
(

x
y
−1+

z
y

)(
y
z
−1+

x
z

)(z
x
−1+

y
x

)

≤ 1 ⇔ xyz≥ (y+z−x)(z+x−y)(x+y−z).

TheRaviSubstitution is useful for inequalities for the lengthsa, b, c of a triangle. After theRavi
Substitution, we can remove the condition that they are the lengths of the sides of a triangle.

Problem 2. (IMO 1983/6) Let a, b, c be the lengths of the sides of a triangle. Prove that

a2b(a−b)+b2c(b−c)+c2a(c−a)≥ 0.

First Solution. After settinga = y+z, b = z+x, c = x+y for x,y,z> 0, it becomes

x3z+y3x+z3y≥ x2yz+xy2z+xyz2 or
x2

y
+

y2

z
+

z2

x
≥ x+y+z,

which follows from the Cauchy-Schwarz inequality

(y+z+x)

(
x2

y
+

y2

z
+

z2

x

)

≥ (x+y+z)2.

Exercise 2. Let a, b, c be the lengths of a triangle. Show that

a
b+c

+
b

c+a
+

c
a+b

< 2.

Exercise 3. (Darij Grinberg) Let a, b, c be the lengths of a triangle. Show the inequalities

a3 +b3+c3+3abc−2b2a−2c2b−2a2c≥ 0,

and
3a2b+3b2c+3c2a−3abc−2b2a−2c2b−2a2c≥ 0.

We now discuss Weitzenböck’s inequality and related inequalities.

Problem 3. (IMO 1961/2, Weitzenb̈ock’s inequality) Let a, b, c be the lengths of a triangle with
area S. Show that

a2+b2+c2 ≥ 4
√

3S.

Solution. Write a = y+z, b = z+x, c = x+y for x,y,z> 0. It’s equivalent to

((y+z)2 +(z+x)2+(x+y)2)2 ≥ 48(x+y+z)xyz,

which can be obtained as following :

((y+z)2+(z+x)2+(x+y)2)2 ≥ 16(yz+zx+xy)2 ≥ 16·3(xy·yz+yz·zx+xy·yz).

Here, we used the well-known inequalitiesp2 +q2 ≥ 2pqand(p+q+ r)2 ≥ 3(pq+qr + rp).

3For example, takex = 1, y = 1
a , z= 1

ab.
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Theorem 1.5. (Hadwiger-Finsler inequality) For any triangle ABC with sides a, b, c and area F,
the following inequality holds.

2ab+2bc+2ca− (a2+b2+c2) ≥ 4
√

3F.

First Proof. After the substitutiona = y+z, b = z+x, c = x+y, wherex,y,z> 0, it becomes

xy+yz+zx≥
√

3xyz(x+y+z),

which follows from the identity

(xy+yz+zx)2−3xyz(x+y+z) =
(xy−yz)2+(yz−zx)2+(zx−xy)2

2
.

Second Proof.We give a convexity proof. There are many ways to deduce the following identity:

2ab+2bc+2ca− (a2+b2+c2)

4F
= tan

A
2

+ tan
B
2

+ tan
C
2

.

Since tanx is convex on
(
0, π

2

)
, Jensen’s inequality shows that

2ab+2bc+2ca− (a2+b2+c2)

4F
≥ 3tan

(
A
2 + B

2 + C
2

3

)

=
√

3.

Tsintsifas proved a simultaneous generalization of Weitzenböck’s inequality and Nesbitt’s in-
equality.

Theorem 1.6. (Tsintsifas)Let p,q, r be positive real numbers and let a,b,c denote the sides of a
triangle with area F. Then, we have

p
q+ r

a2 +
q

r + p
b2 +

r
p+q

c2 ≥ 2
√

3F.

Proof. (V. Pambuccian) By Hadwiger-Finsler inequality, it suffices to show that

p
q+ r

a2 +
q

r + p
b2 +

r
p+q

c2 ≥ 1
2

(a+b+c)2− (a2+b2+c2)

or (
p+q+ r

q+ r

)

a2 +

(
p+q+ r

r + p

)

b2 +

(
p+q+ r

p+q

)

c2 ≥ 1
2

(a+b+c)2

or

((q+ r)+ (r + p)+ (p+q))

(
1

q+ r
a2 +

1
r + p

b2 +
1

p+q
c2
)

≥ (a+b+c)2 .

However, this is a straightforward consequence of the Cauchy-Schwarz inequality.

Theorem 1.7. (Neuberg-Pedoe inequality) Let a1,b1,c1 denote the sides of the triangle A1B1C1

with area F1. Let a2,b2,c2 denote the sides of the triangle A2B2C2 with area F2. Then, we have

a1
2(b2

2 +c2
2−a2

2)+b1
2(c2

2 +a2
2−b2

2)+c1
2(a2

2 +b2
2−c2

2) ≥ 16F1F2.

Notice that it’s a generalization of Weitzenböck’s inequality.(Why?) In [GC] , G. Chang proved
Neuberg-Pedoe inequality by using complex numbers. For very interesting geometric observations
and proofs of Neuberg-Pedoe inequality, see[DP] or [GI, pp.92-93]. Here, we offer three algebraic
proofs.
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Lemma 1.1.

a1
2(a2

2 +b2
2−c2

2)+b1
2(b2

2 +c2
2−a2

2)+c1
2(c2

2 +a2
2−b2

2) > 0.

Proof. Observe that it’s equivalent to

(a1
2 +b1

2 +c1
2)(a2

2 +b2
2 +c2

2) > 2(a1
2a2

2 +b1
2b2

2 +c1
2c2

2).

From Heron’s formula, we find that, fori = 1,2,

16Fi
2 = (ai

2 +bi
2 +ci

2)2−2(ai
4 +bi

4 +ci
4) > 0 or ai

2 +bi
2 +ci

2 >

√

2(ai
4 +bi

4 +ci
4) .

The Cauchy-Schwarz inequality implies that

(a1
2 +b1

2 +c1
2)(a2

2 +b2
2 +c2

2) > 2
√

(a1
4 +b1

4 +c1
4)(a2

4 +b2
4 +c2

4)

≥ 2(a1
2a2

2 +b1
2b2

2 +c1
2c2

2).

First Proof. ([LC1], Carlitz) By the lemma, we obtain

L = a1
2(b2

2 +c2
2−a2

2)+b1
2(c2

2 +a2
2−b2

2)+c1
2(a2

2 +b2
2−c2

2) > 0,

Hence, we need to show that
L2− (16F1

2)(16F2
2) ≥ 0.

One may easily check the following identity

L2− (16F1
2)(16F2

2) = −4(UV +VW+WU),

where
U = b1

2c2
2−b2

2c1
2, V = c1

2a2
2−c2

2a1
2 and W = a1

2b2
2−a2

2b1
2.

Using the identity

a1
2U +b1

2V +c1
2W = 0 or W = −a1

2

c1
2U − b1

2

c1
2V,

one may also deduce that

UV +VW+WU = −a1
2

c1
2

(

U − c1
2−a1

2−b1
2

2a1
2 V

)2

− 4a1
2b1

2− (c1
2−a1

2−b1
2)2

4a1
2c1

2 V2.

It follows that

UV +VW+WU = −a1
2

c1
2

(

U − c1
2−a1

2−b1
2

2a1
2 V

)2

− 16F1
2

4a1
2c1

2V2 ≤ 0.

Carlitz also observed that the Neuberg-Pedoe inequality can be deduced from Aczél’s inequality.

Theorem 1.8. (Acźel’s inequality) Let a1, · · · ,an,b1, · · · ,bn be positive real numbers satisfying

a1
2 ≥ a2

2 + · · ·+an
2 and b1

2 ≥ b2
2 + · · ·+bn

2.

Then, the following inequality holds.

a1b1− (a2b2 + · · ·+anbn) ≥
√

(a1
2− (a2

2 + · · ·+an
2))
(
b1

2−
(
b2

2 + · · ·+bn
2))
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Proof. ([AI] ) The Cauchy-Schwarz inequality shows that

a1b1 ≥
√

(a2
2 + · · ·+an

2)(b2
2 + · · ·+bn

2) ≥ a2b2 + · · ·+anbn.

Then, the above inequality is equivalent to

(a1b1− (a2b2 + · · ·+anbn))
2 ≥

(
a1

2−
(
a2

2 + · · ·+an
2))(b1

2−
(
b2

2 + · · ·+bn
2)) .

In casea1
2−(a2

2+ · · ·+an
2) = 0, it’s trivial. Hence, we now assume thata1

2−(a2
2+ · · ·+an

2) > 0.
The main trick is to think of the following quadratic polynomial

P(x) = (a1x−b1)
2−

n

∑
i=2

(aix−bi)
2 =

(

a1
2−

n

∑
i=2

ai
2

)

x2 +2

(

a1b1−
n

∑
i=2

aibi

)

x+

(

b1
2−

n

∑
i=2

bi
2

)

.

SinceP(b1
a1

) =−∑n
i=2

(

ai

(
b1
a1

)

−bi

)2
≤ 0 and since the coefficient ofx2 in the quadratic polynomial

P is positive,P should have at least one real root. Therefore,P has nonnegative discriminant. It
follows that

(

2

(

a1b1−
n

∑
i=2

aibi

))2

−4

(

a1
2−

n

∑
i=2

ai
2

)(

b1
2−

n

∑
i=2

bi
2

)

≥ 0.

Second Proof of Neuberg-Pedoe inequality.([LC2], Carlitz) We rewrite it in terms ofa1, b1, c1, a2,
b2, c2:

(a1
2 +b1

2 +c1
2)(a2

2 +b2
2 +c2

2)−2(a1
2a2

2 +b1
2b2

2 +c1
2c2

2)

≥
√
((

a1
2 +b1

2 +c1
2
)2−2(a1

4 +b1
4 +c1

4)
)((

a2
2 +b2

2 +c2
2
)2−2(a2

4 +b2
4 +c2

4)
)

.

We employ the following substitutions

x1 = a1
2 +b1

2 +c1
2,x2 =

√
2a1

2,x3 =
√

2b1
2,x4 =

√
2c1

2,

y1 = a2
2 +b2

2 +c2
2,y2 =

√
2a2

2,y3 =
√

2b2
2,y4 =

√
2c2

2.

As in the proof of the lemma 5, we have

x1
2 > x2

2 +y3
2 +x4

2 and y1
2 > y2

2 +y3
2 +y4

2.

We now apply Aczél’s inequality to get the inequality

x1y1−x2y2−x3y3−x4y4 ≥
√

(x1
2− (x2

2 +y3
2 +x4

2))(y1
2− (y2

2 +y3
2 +y4

2)).

We close this section with a very simple proof by a former student in KMO4 summer program.

Third Proof. Toss two triangles△A1B1C1 and△A2B2C2 onR2:

A1(0, p1), B1(p2,0), C1(p3,0), A2(0,q1), B2(q2,0), andC2(q3,0).

4Korean Mathematical Olympiads
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It therefore follows from the inequalityx2 +y2 ≥ 2|xy| that

a1
2(b2

2 +c2
2−a2

2)+b1
2(c2

2 +a2
2−b2

2)+c1
2(a2

2 +b2
2−c2

2)

= (p3− p2)
2(2q1

2 +2q1q2)+ (p1
2 + p3

2)(2q2
2−2q2q3)+ (p1

2 + p2
2)(2q3

2−2q2q3)

= 2(p3− p2)
2q1

2 +2(q3−q2)
2p1

2 +2(p3q2− p2q3)
2

≥ 2((p3− p2)q1)
2 +2((q3−q2)p1)

2

≥ 4|(p3− p2)q1| · |(q3−q2)p1|
= 16F1F2 .

2 Trigonometric Methods

In this section, we employ trigonometric methods to attack geometric inequalities.

Theorem 1.9. (Erdös-Mordell Theorem) If from a point P inside a given triangle ABC perpendic-
ulars PH1, PH2, PH3 are drawn to its sides, then PA+PB+PC≥ 2(PH1+PH2+PH3).

This was conjectured by Paul Erdös in 1935, and first proved by Mordell in the same year.
Several proofs of this inequality have been given, using Ptolemy’s theorem by André Avez, angular
computations with similar triangles by Leon Bankoff, area inequality by V. Komornik, or using
trigonometry by Mordell and Barrow.

Proof. ([MB], Mordell ) We transform it to a trigonometric inequality. Leth1 = PH1, h2 = PH2 and
h3 = PH3. Apply the Since Law and the Cosine Law to obtain

PAsinA = H2H3 =

√

h2
2 +h3

2−2h2h3cos(π −A),

PBsinB = H3H1 =

√

h3
2 +h1

2−2h3h1cos(π −B),

PCsinC = H1H2 =

√

h1
2 +h2

2−2h1h2cos(π −C).

So, we need to prove that

∑
cyclic

1
sinA

√

h2
2 +h3

2−2h2h3cos(π −A) ≥ 2(h1+h2+h3).

The main trouble is that the left hand side has tooheavyterms with square root expressions. Our
strategy is to find a lower bound without square roots. To thisend, we express the terms inside the
square root asthe sum of two squares.

H2H3
2

= h2
2 +h3

2−2h2h3cos(π −A)

= h2
2 +h3

2−2h2h3cos(B+C)

= h2
2 +h3

2−2h2h3(cosBcosC−sinBsinC).

Using cos2B+sin2B = 1 and cos2C+sin2C = 1, one finds that

H2H3
2
= (h2sinC+h3sinB)2 +(h2cosC−h3cosB)2 .
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Since(h2cosC−h3cosB)2 is clearly nonnegative, we getH2H3 ≥ h2sinC+h3sinB. It follows that

∑
cyclic

√

h2
2 +h3

2−2h2h3cos(π −A)

sinA
≥ ∑

cyclic

h2sinC+h3sinB
sinA

= ∑
cyclic

(
sinB
sinC

+
sinC
sinB

)

h1

≥ ∑
cyclic

2

√

sinB
sinC

· sinC
sinB

h1

= 2h1 +2h2+2h3.

We use the same techniques to attack the following geometricinequality.

Problem 4. (IMO Short-list 2005) In an acute triangle ABC, let D, E, F, P, Q, R be the feet of
perpendiculars from A, B, C, A, B, C to BC, CA, AB, EF, FD, DE, respectively. Prove that

p(ABC)p(PQR)≥ p(DEF)2,

where p(T) denotes the perimeter of triangle T .

Solution. Let’s euler5 this problem. Letρ be the circumradius of the triangleABC. It is easy to
show thatBC = 2ρ sinA and EF = 2ρ sinAcosA. SinceDQ = 2ρ · sinCcosBcosA, DR = 2ρ ·
sinBcosCcosA, and∠FDE = π −2A, the Cosine Law gives us

QR2 = DQ2 +DR2−2DQ ·DRcos(π −2A)

= 4ρ2cos2A
[

(sinCcosB)2 +(sinBcosC)2 +2sinCcosBsinBcosCcos(2A)
]

or
QR= 2ρ cosA

√

f (A,B,C),

where
f (A,B,C) = (sinCcosB)2 +(sinBcosC)2 +2sinCcosBsinBcosCcos(2A).

So, what we need to attack is the following inequality:

(

∑
cyclic

2ρ sinA

)(

∑
cyclic

2ρ cosA
√

f (A,B,C)

)

≥
(

∑
cyclic

2ρ sinAcosA

)2

or
(

∑
cyclic

sinA

)(

∑
cyclic

cosA
√

f (A,B,C)

)

≥
(

∑
cyclic

sinAcosA

)2

.

Our job is now to find a reasonable lower bound of
√

f (A,B,C). Once again, we expressf (A,B,C)
asthe sum of two squares. We observe that

f (A,B,C) = (sinCcosB)2 +(sinBcosC)2 +2sinCcosBsinBcosCcos(2A)

= (sinCcosB+sinBcosC)2 +2sinCcosBsinBcosC[−1+cos(2A)]

= sin2(C+B)−2sinCcosBsinBcosC ·2sin2A

= sin2A[1−4sinBsinCcosBcosC] .

5euler v. (in Mathematics) transform the problems in triangle geometry to trigonometric ones
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So, we shall express 1−4sinBsinCcosBcosC as the sum of two squares. The trick is to replace 1
with

(
sin2 B+cos2B

)(
sin2C+cos2C

)
. Indeed, we get

1−4sinBsinCcosBcosC =
(
sin2B+cos2B

)(
sin2C+cos2C

)
−4sinBsinCcosBcosC

= (sinBcosC−sinCcosB)2 +(cosBcosC−sinBsinC)2

= sin2(B−C)+cos2(B+C)

= sin2(B−C)+cos2A.

It therefore follows that

f (A,B,C) = sin2A
[
sin2(B−C)+cos2A

]
≥ sin2Acos2A

so that

∑
cyclic

cosA
√

f (A,B,C) ≥ ∑
cyclic

sinAcos2A.

So, we can complete the proof if we establish that

(

∑
cyclic

sinA

)(

∑
cyclic

sinAcos2A

)

≥
(

∑
cyclic

sinAcosA

)2

.

Indeed, one sees that it’s a direct consequence of the Cauchy-Schwarz inequality

(p+q+ r)(x+y+z)≥ (
√

px+
√

qy+
√

rz)2,

wherep,q, r,x,y andzare positive real numbers.

Alternatively, one may obtain another lower bound off (A,B,C):

f (A,B,C) = (sinCcosB)2 +(sinBcosC)2 +2sinCcosBsinBcosCcos(2A)

= (sinCcosB−sinBcosC)2 +2sinCcosBsinBcosC[1+cos(2A)]

= sin2(B−C)+2
sin(2B)

2
· sin(2C)

2
·2cos2A

≥ cos2Asin(2B)sin(2C).

Then, we can use this to offer a lower bound of the perimeter oftrianglePQR:

p(PQR) = ∑
cyclic

2ρ cosA
√

f (A,B,C) ≥ ∑
cyclic

2ρ cos2A
√

sin2Bsin2C

So, one may consider the following inequality:

p(ABC) ∑
cyclic

2ρ cos2A
√

sin2Bsin2C≥ p(DEF)2

or
(

2ρ ∑
cyclic

sinA

)(

∑
cyclic

2ρ cos2A
√

sin2Bsin2C

)

≥
(

2ρ ∑
cyclic

sinAcosA

)2

.

or
(

∑
cyclic

sinA

)(

∑
cyclic

cos2A
√

sin2Bsin2C

)

≥
(

∑
cyclic

sinAcosA

)2

.

However, it turned out that this doesn’t hold. Try to disprove this!
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Problem 5. Let I be the incenter of the triangle ABC with BC= a, CA= b and AB= c. Prove that,
for all points X,

aXA2 +bXB2 +cXC2 ≥ abc.

Proof. This geometric inequality follows from the following geometric identity:

aXA2 +bXB2 +cXC2 = (a+b+c)XI2+abc. 6

There are many ways to establish this identity. Toeuler this, we toss the picture on the cartesian
plane so thatA(ccosB,csinB), B(0,0) andC(a,0). Letting r be the inradius ofABCands= a+b+c

2 ,
we getI(s−b, r). It’s well-known that

r2 =
(s−a)(s−b)(s−c)

s
.

SetX(p,q). On the one hand, we obtain

aXA2 +bXB2 +cXC2

= a
[

(p−ccosB)2 +(q−csinB)2
]

+b
(
p2 +q2)+c

[
(p−a)2+q2]

= (a+b+c)p2−2acp(1+cosB)+ (a+b+c)q2−2acqsinB+ac2+a2c

= 2sp2−2acp

(

1+
a2 +c2−b2

2ac

)

+2sq2−2acq
[△ABC]

1
2ac

+ac2+a2c

= 2sp2− p(a+c+b)(a+c−b)+2sq2−4q[△ABC]+ac2+a2c

= 2sp2− p(2s)(2s−2b)+2sq2−4qsr+ac2+a2c

= 2sp2−4s(s−b) p+2sq2−4rsq+ac2+a2c.

On the other hand, we obtain

(a+b+c)XI2+abc

= 2s
[
(p− (s−b))2+(q− r)2]

= 2s
[
p2−2(s−b)p+(s−b)2+q2−2qr + r2]

= 2sp2−4s(s−b) p+2s(s−b)2+2sq2−4rsq+2sr2+abc.

It follows that

aXA2 +bXB2 +cXC2− (a+b+c)XI2−abc.

= ac2 +a2c−2s(s−b)2−2sr2−abc

= ac(a+c)−2s(s−b)2−2(s−a)(s−b)(s−c)−abc

= ac(a+c−b)−2s(s−b)2−2(s−a)(s−b)(s−c)

= 2ac(s−b)−2s(s−b)2−2(s−a)(s−b)(s−c)

= 2(s−b) [ac−s(s−b)−2(s−a)(s−c)].

However, we computeac−s(s−b)−2(s−a)(s−c)= −2s2 +(a+b+c)s= 0.

Problem 6. (IMO 2001/1) Let ABC be an acute-angled triangle with O as its circumcenter. Let
P on line BC be the foot of the altitude from A. Assume that∠BCA≥ ∠ABC+ 30◦. Prove that
∠CAB+∠COP< 90◦.

6IMO Short-list 1988
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Proof. The angle inequality∠CAB+ ∠COP< 90◦ can be written as∠COP< ∠PCO. This can
be shown if we establish the length inequalityOP > PC. Since the power of P with respect to
the circumcircle ofABC is OP2 = R2−BP·PC, whereR is the circumradius of the triangleABC, it
becomesR2−BP·PC> PC2 or R2 > BC·PC. Weeuler this. It’s an easy job to getBC= 2RsinA and
PC= 2RsinBcosC. Hence, we show the inequalityR2 > 2RsinA·2RsinBcosC or sinAsinBcosC<
1
4. Since sinA < 1, it suffices to show that sinAsinBcosC < 1

4. Finally, we use the angle condition
∠C≥ ∠B+30◦ to obtain the trigonometric inequality

sinBcosC =
sin(B+C)−sin(C−B)

2
≤ 1−sin(C−B)

2
≤ 1−sin30◦

2
=

1
4
.

We close this section with Barrows’ inequality stronger than Erdös-Mordell Theorem. We need
the following trigonometric inequality:

Proposition 1.1. Let x,y,z,θ1,θ2,θ3 be real numbers withθ1 + θ2+ θ3 = π . Then,

x2 +y2 +z2 ≥ 2(yzcosθ1 +zxcosθ2 +xycosθ3).

Proof. Usingθ3 = π − (θ1 + θ2), it’s an easy job to check the following identity

x2 +y2+z2−2(yzcosθ1 +zxcosθ2 +xycosθ3) = (z− (xcosθ2 +ycosθ1))
2 +(xsinθ2−ysinθ1)

2 .

Corollary 1.1. Let p, q, and r be positive real numbers. Letθ1, θ2, andθ3 be real numbers satisfying
θ1 + θ2 + θ3 = π . Then, the following inequality holds.

pcosθ1 +qcosθ2 + r cosθ3 ≤
1
2

(
qr
p

+
rp
q

+
pq
r

)

.

Proof. Take(x,y,z) =
(√

qr
p ,
√

rp
q ,
√

pq
r

)

and apply the above proposition.

Theorem 1.10. (Barrow’s Inequality) Let P be an interior point of a triangle ABC and let U, V ,
W be the points where the bisectors of angles BPC, CPA, APB cutthe sides BC,CA,AB respectively.
Prove that PA+PB+PC≥ 2(PU +PV+PW).

Proof. ([MB] and [AK] ) Let d1 = PA, d2 = PB, d3 = PC, l1 = PU, l2 = PV, l3 = PW, 2θ1 = ∠BPC,
2θ2 = ∠CPA, and 2θ3 = ∠APB. We need to show thatd1 + d2 + d3 ≥ 2(l1 + l2 + l3). It’s easy to
deduce the following identities

l1 =
2d2d3

d2 +d3
cosθ1, l2 =

2d3d1

d3+d1
cosθ2, and l3 =

2d1d2

d1 +d2
cosθ3,

By the AM-GM inequality and the above corollary, this means that

l1 + l2 + l3 ≤
√

d2d3cosθ1 +
√

d3d1cosθ2 +
√

d1d2cosθ3 ≤
1
2

(d1 +d2+d3) .

As another application of the above trigonometric proposition, we establish the following in-
equality
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Corollary 1.2. ([AK], Abi-Khuzam) Let x1, · · · ,x4 be positive real numbers. Letθ1, · · · ,θ4 be real
numbers such thatθ1 + · · ·+ θ4 = π . Then,

x1cosθ1 +x2cosθ2 +x3cosθ3 +x4cosθ4 ≤
√

(x1x2 +x3x4)(x1x3 +x2x4)(x1x4 +x2x3)

x1x2x3x4
.

Proof. Let p = x1
2+x2

2

2x1x2
+ x3

2+x4
2

2x3x4
q = x1x2+x3x4

2 andλ =
√

p
q . In the view ofθ1 +θ2+(θ3 +θ4) = π

andθ3 + θ4+(θ1 + θ2) = π , the proposition implies that

x1cosθ1 +x2cosθ2 + λ cos(θ3 + θ4) ≤ pλ =
√

pq,

and
x3cosθ3 +x4cosθ4 + λ cos(θ1 + θ2) ≤

q
λ

=
√

pq.

Since cos(θ3 + θ4)+cos(θ1 + θ2) = 0, adding these two above inequalities yields

x1cosθ1 +x2cosθ2 +x3cosθ3 +x4cosθ4 ≤ 2
√

pq=

√

(x1x2 +x3x4)(x1x3 +x2x4)(x1x4 +x2x3)

x1x2x3x4
.

3 Applications of Complex Numbers

In this section, we discuss some applications of complex numbers to geometric inequality. Every
complex number corresponds to a unique point in the complex plane. The standard symbol for the
set of all complex numbers isC, and we also refer to the complex plane asC. The main tool is
applications of the following fundamental inequality.

Theorem 1.11. If z1, · · · ,zn ∈ C, then|z1|+ · · ·+ |zn| ≥ |z1 + · · ·+zn|.
Proof. Induction onn.

Theorem 1.12. (Ptolemy’s Inequality) For any points A,B,C,D in the plane, we have

AB·CD+BC·DA≥ AC·BD.

Proof. Let a, b, c and 0 be complex numbers that correspond toA,B,C,D in the complex plane. It
becomes

|a−b| · |c|+ |b−c| · |a|≥ |a−c| · |b|.
Applying the Triangle Inequality to the identity(a−b)c+(b−c)a= (a−c)b, we get the result.

Problem 7. ([TD] ) Let P be an arbitrary point in the plane of a triangle ABC withthe centroid G.
Show the following inequalities

(1) BC·PB·PC+AB·PA·PB+CA·PC·PA≥ BC·CA·AB and
(2) PA

3 ·BC+PB
3 ·CA+PC

3 ·AB≥ 3PG·BC·CA·AB.

Solution. We only check the first inequality. RegardA,B,C,P as complex numbers and assume that
P corresponds to 0. We’re required to prove that

|(B−C)BC|+ |(A−B)AB|+ |(C−A)CA| ≥ |(B−C)(C−A)(A−B)|.

It remains to apply the Triangle Inequality to the identity

(B−C)BC+(A−B)AB+(C−A)CA= −(B−C)(C−A)(A−B).
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Problem 8. (IMO Short-list 2002) Let ABC be a triangle for which there exists an interior point F
such that∠AFB= ∠BFC= ∠CFA. Let the lines BF and CF meet the sides AC and AB at D and E,
respectively. Prove thatAB+AC≥ 4DE.

Solution. Let AF = x,BF = y,CF = z and letω = cos2π
3 + i sin 2π

3 . We can toss the pictures onC
so that the pointsF , A, B, C, D, andE are represented by the complex numbers 0,x, yω , zω2, d, and
e. It’s an easy exercise to establish thatDF = xz

x+z andEF = xy
x+y . This means thatd = − xz

x+zω and
e= − xy

x+yω . We’re now required to prove that

|x−yω |+ |zω2−x| ≥ 4

∣
∣
∣
∣

−zx
z+x

ω +
xy

x+y
ω2

∣
∣
∣
∣
.

Since|ω | = 1 andω3 = 1, we have|zω2 − x| = |ω(zω2 − x)| = |z− xω |. Therefore, we need to
prove

|x−yω |+ |z−xω | ≥
∣
∣
∣
∣

4zx
z+x

− 4xy
x+y

ω
∣
∣
∣
∣
.

More strongly, we establish that|(x−yω)+(z−xω)|≥
∣
∣
∣

4zx
z+x −

4xy
x+yω

∣
∣
∣ or |p−qω |≥ |r −sω |, where

p = z+x, q = y+x, r = 4zx
z+x ands= 4xy

x+y . It’s clear thatp≥ r > 0 andq≥ s> 0. It follows that

|p−qω |2−|r −sω |2 = (p−qω)(p−qω)− (r −sω)(r −sω)

= (p2− r2)+ (pq− rs)+ (q2−s2) ≥ 0.

It’s easy to check that the equality holds if and only if△ABC is equilateral.

2 Four Basic Techniques

Differentiate! Shiing-shen Chern

1 Trigonometric Substitutions

If you are faced with an integral that contains square root expressions such as
∫ √

1−x2 dx,
∫ √

1+y2 dy,
∫ √

z2−1 dz

then trigonometric substitutions such asx = sint, y = tant, z= sect are very useful. We will learn
that making a suitabletrigonometricsubstitution simplifies the given inequality.

Problem 9. (APMO 2004/5) Prove that, for all positive real numbers a,b,c,

(a2 +2)(b2+2)(c2+2)≥ 9(ab+bc+ca).

First Solution. ChooseA,B,C ∈
(
0, π

2

)
with a =

√
2tanA, b =

√
2tanB, andc =

√
2tanC. Using

the well-known trigonometric identity 1+ tan2 θ = 1
cos2θ , one may rewrite it as

4
9
≥ cosAcosBcosC(cosAsinBsinC+sinAcosBsinC+sinAsinBcosC) .

One may easily check the following trigonometric identity

cos(A+B+C) = cosAcosBcosC−cosAsinBsinC−sinAcosBsinC−sinAsinBcosC.
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Then, the above trigonometric inequality takes the form

4
9
≥ cosAcosBcosC(cosAcosBcosC−cos(A+B+C)).

Let θ = A+B+C
3 . Applying the AM-GM inequality and Jesen’s inequality, we have

cosAcosBcosC≤
(

cosA+cosB+cosC
3

)3

≤ cos3 θ .

We now need to show that
4
9
≥ cos3 θ (cos3 θ −cos3θ ).

Using the trigonometric identity

cos3θ = 4cos3 θ −3cosθ or cos3 θ −cos3θ = 3cosθ −3cos3 θ ,

it becomes
4
27

≥ cos4 θ
(
1−cos2 θ

)
,

which follows from the AM-GM inequality

(
cos2 θ

2
· cos2 θ

2
·
(
1−cos2 θ

)
) 1

3

≤ 1
3

(
cos2 θ

2
+

cos2 θ
2

+
(
1−cos2 θ

)
)

=
1
3
.

One find that the equality holds if and only if tanA = tanB = tanC = 1√
2

if and only if a = b = c =

1.

Problem 10. (Latvia 2002) Let a, b, c, d be the positive real numbers such that

1
1+a4 +

1
1+b4 +

1
1+c4 +

1
1+d4 = 1.

Prove that abcd≥ 3.

First Solution. We can writea2 = tanA, b2 = tanB, c2 = tanC, d2 = tanD, whereA,B,C,D∈
(
0, π

2

)
.

Then, the algebraic identity becomes the following trigonometric identity :

cos2A+cos2 B+cos2C+cos2D = 1.

Applying the AM-GM inequality, we obtain

sin2A = 1−cos2A = cos2B+cos2C+cos2D ≥ 3(cosBcosCcosD)
2
3 .

Similarly, we obtain

sin2 B≥ 3(cosCcosDcosA)
2
3 ,sin2C≥ 3(cosDcosAcosB)

2
3 , and sin2D ≥ 3(cosAcosBcosC)

2
3 .

Multiplying these four inequalities, we get the result!

Problem 11. (Korea 1998) Let x, y, z be the positive reals with x+y+z= xyz. Show that

1√
1+x2

+
1

√

1+y2
+

1√
1+z2

≤ 3
2
.

Since the functionf is not concave onR+, we cannot apply Jensen’s inequality to the function
f (t) = 1√

1+t2
. However, the functionf (tanθ ) is concave on

(
0, π

2

)
!
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First Solution. We can writex = tanA, y = tanB, z= tanC, whereA,B,C ∈
(
0, π

2

)
. Using the fact

that 1+ tan2 θ =
(

1
cosθ

)2
, we rewrite it in the terms ofA, B, C :

cosA+cosB+cosC≤ 3
2
.

It follows from tan(π −C) = −z= x+y
1−xy = tan(A+B) and fromπ −C,A+B∈ (0,π) thatπ −C =

A+B or A+B+C= π . Hence, it suffices to show the following.

Theorem 2.1. In any acute triangle ABC, we havecosA+cosB+cosC≤ 3
2.

Proof. Since cosx is concave on
(
0, π

2

)
, it’s a direct consequence of Jensen’s inequality.

We note that the function cosx is not concave on(0,π). In fact, it’s convex on
(π

2 ,π
)
. One

may think that the inequality cosA+cosB+cosC≤ 3
2 doesn’t hold for any triangles. However, it’s

known that it holds for all triangles.

Theorem 2.2. In any triangle ABC, we havecosA+cosB+cosC≤ 3
2.

First Proof. It follows from π −C = A+B that cosC =−cos(A+B) = −cosAcosB+sinAsinB or

3−2(cosA+cosB+cosC) = (sinA−sinB)2 +(cosA+cosB−1)2 ≥ 0.

Second Proof.Let BC= a, CA= b, AB= c. Use the Cosine Law to rewrite the given inequality in
the terms ofa, b, c :

b2 +c2−a2

2bc
+

c2 +a2−b2

2ca
+

a2 +b2−c2

2ab
≤ 3

2
.

Clearing denominators, this becomes

3abc≥ a(b2 +c2−a2)+b(c2+a2−b2)+c(a2+b2−c2),

which is equivalent toabc≥ (b+c−a)(c+a−b)(a+b−c) in the theorem 2.

In the first chapter, we found that thegeometricinequalityR≥ 2r is equivalent to thealgebraic
inequalityabc≥ (b+ c− a)(c+ a− b)(a+ b− c). We now find that, in the proof of the above
theorem,abc≥ (b+c−a)(c+a−b)(a+b−c) is equivalent to thetrigonometricinequality cosA+
cosB+cosC≤ 3

2. One may ask that

In any trianglesABC, is there anatural relation between cosA+ cosB+ cosC and R
r ,

whereR andr are the radii of the circumcircle and incircle ofABC?

Theorem 2.3. Let R and r denote the radii of the circumcircle and incircle of the triangle ABC.
Then, we havecosA+cosB+cosC = 1+ r

R.

Proof. Use the identitya(b2+c2−a2)+b(c2+a2−b2)+c(a2+b2−c2) = 2abc+(b+c−a)(c+
a−b)(a+b−c). We leave the details for the readers.

Exercise 4. (a) Let p,q, r be the positive real numbers such that p2+q2+ r2+2pqr = 1. Show that
there exists an acute triangle ABC such that p= cosA, q= cosB, r = cosC.
(b) Let p,q, r ≥ 0 with p2 +q2 + r2 +2pqr = 1. Show that there are A,B,C∈

[
0, π

2

]
with p= cosA,

q = cosB, r = cosC, and A+B+C= π .

Problem 12. (USA 2001) Let a,b, and c be nonnegative real numbers such that a2+b2+c2+abc=
4. Prove that0≤ ab+bc+ca−abc≤ 2.
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Solution. Notice thata,b,c > 1 implies thata2 + b2 + c2 + abc> 4. If a ≤ 1, then we haveab+
bc+ca−abc≥ (1−a)bc≥ 0. We now prove thatab+bc+ca−abc≤ 2. Lettinga = 2p, b = 2q,
c = 2r, we getp2 +q2+ r2+2pqr = 1. By the above exercise, we can write

a = 2cosA, b = 2cosB, c = 2cosC for someA,B,C∈
[

0,
π
2

]

with A+B+C= π .

We are required to prove

cosAcosB+cosBcosC+cosCcosA−2cosAcosBcosC≤ 1
2
.

One may assume thatA≥ π
3 or 1−2cosA≥ 0. Note that

cosAcosB+cosBcosC+cosCcosA−2cosAcosBcosC

= cosA(cosB+cosC)+cosBcosC(1−2cosA).

We apply Jensen’s inequality to deduce cosB+cosC≤ 3
2 −cosA. Note that 2cosBcosC = cos(B−

C)+cos(B+C)≤ 1−cosA. These imply that

cosA(cosB+cosC)+cosBcosC(1−2cosA) ≤ cosA

(
3
2
−cosA

)

+

(
1−cosA

2

)

(1−2cosA).

However, it’s easy to verify that cosA
(3

2 −cosA
)
+
(1−cosA

2

)
(1−2cosA) = 1

2.

2 Algebraic Substitutions

We know that some inequalities in triangle geometry can be treated by theRavi substitution and
trigonometricsubstitutions. We can also transform the given inequalities into easier ones through
some cleveralgebraicsubstitutions.

Problem 13. (IMO 2001/2) Let a, b, c be positive real numbers. Prove that

a√
a2 +8bc

+
b√

b2 +8ca
+

c√
c2 +8ab

≥ 1.

First Solution. To remove the square roots, we make the following substitution :

x =
a√

a2 +8bc
, y =

b√
b2 +8ca

, z=
c√

c2 +8ab
.

Clearly,x,y,z∈ (0,1). Our aim is to show thatx+y+z≥ 1. We notice that

a2

8bc
=

x2

1−x2 ,
b2

8ac
=

y2

1−y2 ,
c2

8ab
=

z2

1−z2 =⇒ 1
512

=

(
x2

1−x2

)(
y2

1−y2

)(
z2

1−z2

)

.

Hence, we need to show that

x+y+z≥ 1, where 0< x,y,z< 1 and(1−x2)(1−y2)(1−z2) = 512(xyz)2.

However, 1> x+y+z implies that, by the AM-GM inequality,

(1−x2)(1−y2)(1−z2) > ((x+y+z)2−x2)((x+y+z)2−y2)((x+y+z)2−z2)

= (x+x+y+z)(y+z)

(x+y+y+z)(z+x)(x+y+z+z)(x+y) ≥ 4(x2yz)
1
4 ·2(yz)

1
2 ·4(y2zx)

1
4 ·2(zx)

1
2 ·4(z2xy)

1
4 ·2(xy)

1
2

= 512(xyz)2. This is a contradiction !
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Problem 14. (IMO 1995/2) Let a,b,c be positive numbers such that abc= 1. Prove that

1
a3(b+c)

+
1

b3(c+a)
+

1
c3(a+b)

≥ 3
2
.

First Solution. After the substitutiona = 1
x , b = 1

y , c = 1
z , we getxyz= 1. The inequality takes the

form
x2

y+z
+

y2

z+x
+

z2

x+y
≥ 3

2
.

It follows from the Cauchy-Schwarz inequality that

[(y+z)+ (z+x)+ (x+y)]

(
x2

y+z
+

y2

z+x
+

z2

x+y

)

≥ (x+y+z)2

so that, by the AM-GM inequality,

x2

y+z
+

y2

z+x
+

z2

x+y
≥ x+y+z

2
≥ 3(xyz)

1
3

2
=

3
2
.

(Korea 1998) Let x, y, zbe the positive reals withx+y+z= xyz. Show that

1√
1+x2

+
1

√

1+y2
+

1√
1+z2

≤ 3
2
.

Second Solution.The starting point is lettinga = 1
x , b = 1

y , c = 1
z. We find thata+ b+ c= abc is

equivalent to 1= xy+yz+zx. The inequality becomes

x√
x2 +1

+
y

√

y2 +1
+

z√
z2 +1

≤ 3
2

or
x

√

x2 +xy+yz+zx
+

y
√

y2 +xy+yz+zx
+

z
√

z2 +xy+yz+zx
≤ 3

2

or
x

√

(x+y)(x+z)
+

y
√

(y+z)(y+x)
+

z
√

(z+x)(z+y)
≤ 3

2
.

By the AM-GM inequality, we have

x
√

(x+y)(x+z)
=

x
√

(x+y)(x+z)
(x+y)(x+z)

≤ 1
2

x[(x+y)+ (x+z)]
(x+y)(x+z)

=
1
2

(
x

x+z
+

x
x+z

)

.

In a like manner, we obtain

y
√

(y+z)(y+x)
≤ 1

2

(
y

y+z
+

y
y+x

)

and
z

√

(z+x)(z+y)
≤ 1

2

(
z

z+x
+

z
z+y

)

.

Adding these three yields the required result.

We now prove a classical theorem in various ways.

Theorem 2.4. (Nesbitt, 1903) For all positive real numbers a,b,c, we have

a
b+c

+
b

c+a
+

c
a+b

≥ 3
2
.
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Proof 1. After the substitution x= b+c, y = c+a, z= a+b, it becomes

∑
cyclic

y+z−x
2x

≥ 3
2

or ∑
cyclic

y+z
x

≥ 6,

which follows from the AM-GM inequality as following:

∑
cyclic

y+z
x

=
y
x

+
z
x

+
z
y

+
x
y

+
x
z

+
y
z
≥ 6

(
y
x
· z
x
· z
y
· x
y
· x
z
· y
z

) 1
6

= 6.

Proof 2. We make the substitution

x =
a

b+c
, y =

b
c+a

, z=
c

a+b
.

It follows that

∑
cyclic

f (x) = ∑
cyclic

a
a+b+c

= 1, where f(t) =
t

1+ t
.

Since f is concave on(0,∞), Jensen’s inequality shows that

f

(
1
2

)

=
1
3

=
1
3 ∑

cyclic

f (x) ≤ f

(
x+y+z

3

)

or f

(
1
2

)

≤ f

(
x+y+z

3

)

.

Since f is monotone increasing, this implies that

1
2
≤ x+y+z

3
or ∑

cyclic

a
b+c

= x+y+z≥ 3
2
.

Proof 3. As in the previous proof, it suffices to show that

T ≥ 1
2
, where T=

x+y+z
3

and ∑
cyclic

x
1+x

= 1.

One can easily check that the condition

∑
cyclic

x
1+x

= 1

becomes1 = 2xyz+xy+yz+zx. By the AM-GM inequality, we have

1= 2xyz+xy+yz+zx≤ 2T3+3T2 ⇒ 2T3+3T2−1≥ 0 ⇒ (2T−1)(T +1)2 ≥ 0 ⇒ T ≥ 1
2
.

(IMO 2000/2) Let a,b,c be positive numbers such thatabc= 1. Prove that
(

a−1+
1
b

)(

b−1+
1
c

)(

c−1+
1
a

)

≤ 1.

Second Solution.([IV], Ilan Vardi ) Sinceabc= 1, we may assume thata≥ 1≥ b. 7 It follows that

1−
(

a−1+
1
b

)(

b−1+
1
c

)(

c−1+
1
a

)

=

(

c+
1
c
−2

)(

a+
1
b
−1

)

+
(a−1)(1−b)

a
. 8

7Why? Note that the inequality is not symmetric in the three variables. Check it!
8For a verification of the identity, see [IV].
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Third Solution.As in the first solution, after the substitutiona = x
y , b = y

z, c = z
x for x, y, z> 0, we

can rewrite it asxyz≥ (y+ z− x)(z+ x− y)(x+ y− z). Without loss of generality, we can assume
thatz≥ y≥ x. Sety−x= p andz−x= q with p,q≥ 0. It’s straightforward to verify that

xyz− (y+z−x)(z+x−y)(x+y−z)= (p2− pq+q2)x+(p3+q3− p2q− pq2).

Since p2 − pq+ q2 ≥ (p− q)2 ≥ 0 and p3 + q3 − p2q− pq2 = (p− q)2(p+ q) ≥ 0, we get the
result.

Fourth Solution.(From the IMO 2000 Short List ) Using the conditionabc= 1, it’s straightforward
to verify the equalities

2 =
1
a

(

a−1+
1
b

)

+c

(

b−1+
1
c

)

,

2 =
1
b

(

b−1+
1
c

)

+a

(

c−1+
1
a

)

,

2 =
1
c

(

c−1+
1
a

)

+b

(

a−1+
1
c

)

.

In particular, they show that at most one of the numbersu = a−1+ 1
b, v = b−1+ 1

c , w = c−1+ 1
a

is negative. If there is such a number, we have
(

a−1+
1
b

)(

b−1+
1
c

)(

c−1+
1
a

)

= uvw< 0 < 1.

And if u,v,w≥ 0, the AM-GM inequality yields

2 =
1
a

u+cv≥ 2

√
c
a

uv, 2 =
1
b

v+aw≥ 2

√
a
b

vw, 2 =
1
c

w+aw≥ 2

√

b
c

wu.

Thus,uv≤ a
c , vw≤ b

a, wu≤ c
b, so (uvw)2 ≤ a

c · b
a · c

b = 1. Sinceu,v,w ≥ 0, this completes the
proof.

Problem 15. Let a, b, c be positive real numbers satisfying a+b+c= 1. Show that

a
a+bc

+
b

b+ca
+

√
abc

c+ab
≤ 1+

3
√

3
4

.

Solution. We want to establish that

1

1+ bc
a

+
1

1+ ca
b

+

√
ab
c

1+ ab
c

≤ 1+
3
√

3
4

.

Setx =
√

bc
a , y =

√ ca
b , z=

√
ab
c . We need to prove that

1
1+x2 +

1
1+y2 +

z
1+z2 ≤ 1+

3
√

3
4

,

wherex,y,z> 0 andxy+yz+zx= 1. It’s not hard to show that there existsA,B,C∈ (0,π) with

x = tan
A
2
,y = tan

B
2

,z= tan
C
2

, andA+B+C= π .

The inequality becomes

1

1+
(
tanA

2

)2 +
1

1+
(
tanB

2

)2 +
tanC

2

1+
(
tanC

2

)2 ≤ 1+
3
√

3
4
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or

1+
1
2

(cosA+cosB+sinC) ≤ 1+
3
√

3
4

or

cosA+cosB+sinC≤ 3
√

3
2

.

Note that cosA+cosB = 2cos
(

A+B
2

)
cos
(

A−B
2

)
. Since

∣
∣A−B

2

∣
∣< π

2 , this means that

cosA+cosB≤ 2cos

(
A+B

2

)

= 2cos

(
π −C

2

)

.

It will be enough to show that

2cos

(
π −C

2

)

+sinC≤ 3
√

3
2

,

whereC∈ (0,π). This is a one-variable inequality.9 It’s left as an exercise for the reader.

Here, we give another solution of the problem 10.

(Latvia 2002) Let a, b, c, d be the positive real numbers such that

1
1+a4 +

1
1+b4 +

1
1+c4 +

1
1+d4 = 1.

Prove thatabcd≥ 3.

Second Solution.(given by Jeong Soo Sim at the KMO Weekend Program 2007) We need to prove
the inequalitya4b4c4d4 ≥ 81. After making the substitution

A =
1

1+a4 , B =
1

1+b4 , C =
1

1+c4 , D =
1

1+d4 ,

we obtain

a4 =
1−A

A
, b4 =

1−B
B

, c4 =
1−C

C
, d4 =

1−D
D

.

The constraint becomesA+B+C+D = 1 and the inequality can be written as

1−A
A

· 1−B
B

· 1−C
C

· 1−D
D

≥ 81.

or
B+C+D

A
· C+D+A

B
· D+A+B

C
· A+B+C

D
≥ 81.

or
(B+C+D)(C+D+A)(D+A+B)(A+B+C)≥ 81ABCD.

However, this is an immediate consequence of the AM-GM inequality:

(B+C+D)(C+D+A)(D+A+B)(A+B+C)≥ 3(BCD)
1
3 ·3(CDA)

1
3 ·3(DAB)

1
3 ·3(ABC)

1
3 .

9 Differentiate! Shiing-shen Chern
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Problem 16. (Iran 1998) Prove that, for all x,y,z> 1 such that1x + 1
y + 1

z = 2,

√
x+y+z≥

√
x−1+

√

y−1+
√

z−1.

First Solution. We begin with the algebraic substitutiona =
√

x−1, b =
√

y−1, c=
√

z−1. Then,
the condition becomes

1
1+a2 +

1
1+b2 +

1
1+c2 = 2 ⇔ a2b2 +b2c2 +c2a2 +2a2b2c2 = 1

and the inequality is equivalent to

√

a2 +b2+c2 +3≥ a+b+c ⇔ ab+bc+ca≤ 3
2
.

Let p = bc, q = ca, r = ab. Our job is to prove thatp+ q+ r ≤ 3
2 wherep2 + q2 + r2 + 2pqr = 1.

By the exercise 7, we can make the trigonometric substitution

p = cosA, q = cosB, r = cosC for someA,B,C∈
(

0,
π
2

)

with A+B+C= π .

What we need to show is now that cosA+cosB+cosC≤ 3
2. It follows from Jensen’s inequality.

Problem 17. (Belarus 1998) Prove that, for all a,b,c > 0,

a
b

+
b
c

+
c
a
≥ a+b

b+c
+

b+c
c+a

+1.

Solution. After writing x = a
b andy = c

b, we get

c
a

=
y
x
,

a+b
b+c

=
x+1
1+y

,
b+c
c+a

=
1+y
y+x

.

One may rewrite the inequality as

x3y2 +x2+x+y3+y2 ≥ x2y+2xy+2xy2.

Apply the AM-GM inequality to obtain

x3y2 +x
2

≥ x2y,
x3y2 +x+y3+y3

2
≥ 2xy2, x2 +y2 ≥ 2xy.

Adding these three inequalities, we get the result. The equality holds if and only if x = y = 1 or
a = b = c.

Problem 18. (IMO Short-list 2001) Let x1, · · · ,xn be arbitrary real numbers. Prove the inequality.

x1

1+x1
2 +

x2

1+x1
2 +x2

2 + · · ·+ xn

1+x1
2 + · · ·+xn

2 <
√

n.

First Solution. We only consider the case whenx1, · · · ,xn are all nonnegative real numbers.(Why?)10

Let x0 = 1. After the substitutionyi = x0
2 + · · ·+xi

2 for all i = 0, · · · ,n, we obtainxi =
√

yi −yi−1.
We need to prove the following inequality

n

∑
i=0

√
yi −yi−1

yi
<
√

n.

10 x1
1+x1

2 + x2
1+x1

2+x2
2 + · · ·+ xn

1+x1
2+···+xn2 ≤ |x1|

1+x1
2 + |x2|

1+x1
2+x2

2 + · · ·+ |xn|
1+x1

2+···+xn2 .
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Sinceyi ≥ yi−1 for all i = 1, · · · ,n, we have an upper bound of the left hand side:

n

∑
i=0

√
yi −yi−1

yi
≤

n

∑
i=0

√
yi −yi−1√
yiyi−1

=
n

∑
i=0

√

1
yi−1

− 1
yi

We now apply the Cauchy-Schwarz inequality to give an upper bound of the last term:

n

∑
i=0

√

1
yi−1

− 1
yi

≤
√

n
n

∑
i=0

(
1

yi−1
− 1

yi

)

=

√

n

(
1
y0

− 1
yn

)

.

Sincey0 = 1 andyn > 0, this yields the desired upper bound
√

n.

Second Solution.We may assume thatx1, · · · ,xn are all nonnegative real numbers. Letx0 = 0. We
make the followingalgebraicsubstitution

ti =
xi

√

x0
2 + · · ·+xi

2
, ci =

1
√

1+ ti2
and si =

ti
√

1+ ti2

for all i = 0, · · · ,n. It’s an easy exercise to show that xi
x0

2+···+xi
2 = c0 · · ·cisi . Sincesi =

√

1−ci
2 ,

the desired inequality becomes

c0c1

√

1−c1
2 +c0c1c2

√

1−c2
2 + · · ·+c0c1 · · ·cn

√

1−cn
2 <

√
n.

Since 0< ci ≤ 1 for all i = 1, · · · ,n, we have

n

∑
i=1

c0 · · ·ci

√

1−ci
2 ≤

n

∑
i=1

c0 · · ·ci−1

√

1−ci
2 =

n

∑
i=1

√

(c0 · · ·ci−1)2− (c0 · · ·ci−1ci)2.

Sincec0 = 1, by the Cauchy-Schwarz inequality, we obtain

n

∑
i=1

√

(c0 · · ·ci−1)2− (c0 · · ·ci−1ci)2 ≤
√

n
n

∑
i=1

[(c0 · · ·ci−1)2− (c0 · · ·ci−1ci)2] =
√

n[1− (c0 · · ·cn)2].

3 Increasing Function Theorem

Theorem 2.5. (Increasing Function Theorem) Let f : (a,b) −→ R be a differentiable function. If
f ′(x) ≥ 0 for all x ∈ (a,b), then f is monotone increasing on(a,b). If f ′(x) > 0 for all x ∈ (a,b),
then f is strictly increasing on(a,b).

Proof. We first consider the case whenf ′(x) > 0 for all x ∈ (a,b). Let a < x1 < x2 < b. We want
to show thatf (x1) < f (x2). Applying the Mean Value Theorem, we find somec∈ (x1,x2) such that
f (x2)− f (x1) = f ′(c)(x2−x1). Sincef ′(c) > 0, this equation means thatf (x2)− f (x1) > 0. In case
when f ′(x) ≥ 0 for all x∈ (a,b), we can also apply the Mean Value Theorem to get the result.

Problem 19. (Ireland 2000) Let x,y≥ 0 with x+y= 2. Prove that x2y2(x2 +y2) ≤ 2.

First Solution. After homogenizing it, we need to prove

2

(
x+y

2

)6

≥ x2y2(x2 +y2) or (x+y)6 ≥ 32x2y2(x2 +y2).
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(Now, forget the constraintx+y = 2!) In casexy= 0, it clearly holds. We now assume thatxy 6= 0.
Because of the homogeneity of the inequality, this means that we may normalize toxy= 1. Then, it
becomes

(

x+
1
x

)6

≥ 32

(

x2 +
1
x2

)

or p3 ≥ 32(p−2).

where p =
(
x+ 1

x

)2 ≥ 4. Our job is now to minimizeF(p) = p3 − 32(p− 2) on [4,∞). Since

F ′(p) = 3p2−32≥ 0, wherep≥
√

32
3 , F is (monotone) increasing on[4,∞). So,F(p) ≥ F(4) = 0

for all p≥ 4.

Second Solution.As in the first solution, we prove that(x+y)6 ≥ 32(x2 +y2)(xy)2 for all x,y≥ 0.
In casex = y = 0, it’s clear. Now, ifx2 + y2 > 0, then we may normalize tox2 + y2 = 2. Setting

p = xy, we have 0≤ p≤ x2+y2

2 = 1 and(x+y)2 = x2 +y2+2xy= 2+2p. It now becomes

(2+2p)3 ≥ 64p2 or p3−5p2+3p+1≥ 0.

We want to minimizeF(p) = p3−5p2 + 3p+ 1 on [0,1]. We computeF ′(p) = 3
(
p− 1

3

)
(p−3).

We find thatF is monotone increasing on[0, 1
3] and monotone decreasing on[1

3,1]. SinceF(0) = 1
andF(1) = 0, we conclude thatF(p) ≥ F(1) = 0 for all p∈ [0,1].

Third Solution.We show that(x+y)6 ≥ 32(x2+y2)(xy)2 wherex≥ y≥ 0. We make the substitution
u = x+y andv = x−y. Then, we haveu≥ v≥ 0. It becomes

u6 ≥ 32

(
u2 +v2

2

)(
u2−v2

4

)2

or u6 ≥ (u2 +v2)(u2−v2)2.

Note thatu4 ≥ u4−v4 ≥ 0 and thatu2 ≥ u2−v2 ≥ 0. So,u6 ≥ (u4−v4)(u2−v2) = (u2 +v2)(u2−
v2)2.

Problem 20. (IMO 1984/1) Let x,y,z be nonnegative real numbers such that x+ y+ z= 1. Prove
that0≤ xy+yz+zx−2xyz≤ 7

27.

First Solution. Let f (x,y,z) = xy+ yz+ zx−2xyz. We may assume that 0≤ x ≤ y ≤ z≤ 1. Since
x+ y+ z = 1, this implies thatx ≤ 1

3. It follows that f (x,y,z) = (1− 3x)yz+ xyz+ zx+ xy≥ 0.

Applying the AM-GM inequality, we obtainyz≤
( y+z

2

)2
=
(

1−x
2

)2
. Since 1−2x≥ 0, this implies

that

f (x,y,z) = x(y+z)+yz(1−2x)≤ x(1−x)+

(
1−x

2

)2

(1−2x) =
−2x3+x2 +1

4
.

Our job is now to maximize a one-variable functionF(x) = 1
4(−2x3 + x2 + 1), wherex ∈

[
0, 1

3

]
.

SinceF ′(x) = 3
2x
(

1
3 −x

)
≥ 0 on

[
0, 1

3

]
, we conclude thatF(x) ≤ F(1

3) = 7
27 for all x∈

[
0, 1

3

]
.

(IMO 2000/2) Let a,b,c be positive numbers such thatabc= 1. Prove that
(

a−1+
1
b

)(

b−1+
1
c

)(

c−1+
1
a

)

≤ 1.

Fifth Solution. (based on work by an IMO 2000 contestant from Japan) Sinceabc= 1, at least one
of a, b, c is greater than or equal to 1. Sayb≥ 1. Puttingc = 1

ab, it becomes

(

a−1+
1
b

)

(b−1+ab)

(
1
ab

−1+
1
a

)

≤ 1
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or

a3b3−a2b3−ab3−a2b2 +3ab2−ab+b3−b2−b+1≥ 0.

Settingx = ab, it becomesfb(x) ≥ 0, where

fb(t) = t3 +b3−b2t −bt2+3bt− t2−b2− t−b+1.

Fix a positive numberb≥ 1. We need to show thatF(t) := fb(t) ≥ 0 for all t ≥ 0. It follows from
b≥ 1 that the cubic polynomialF ′(t) = 3t2−2(b+1)t− (b2−3b+1) has two real roots

b+1−
√

4b2−7b+4
3

and λ =
b+1+

√
4b2−7b+4
3

.

SinceF has a local minimum att = λ , we find thatF(t)≥ Min {F(0), F(λ )} for all t ≥ 0. We have
to prove thatF(0) ≥ 0 andF(λ ) ≥ 0. We haveF(0) = b3− b2− b+ 1 = (b− 1)2(b+ 1) ≥ 0. It
remains to show thatF(λ ) ≥ 0. Notice thatλ is a root ofF/(t). After long division, we get

F(t) = F ′(t)

(
1
3

t − b+1
9

)

+
1
9

(
(−8b2+14b−8)t +8b3−7b2−7b+8

)
.

Puttingt = λ , we have

F(λ ) =
1
9

(
(−8b2 +14b−8)λ +8b3−7b2−7b+8

)
.

Thus, our job is now to establish that, for allb≥ 0,

(−8b2+14b−8)

(

b+1+
√

4b2−7b+4
3

)

+8b3−7b2−7b+8≥ 0,

which is equivalent to

16b3−15b2−15b+16≥ (8b2−14b+8)
√

4b2−7b+4 .

Since both 16b3−15b2−15b+16 and 8b2−14b+8 are positive,11 it’s equivalent to

(16b3−15b2−15b+16)2 ≥ (8b2−14b+8)2(4b2−7b+4)

or

864b5−3375b4+5022b3−3375b2+864b≥ 0 or 864b4−3375b3+5022b2−3375b+864≥ 0.

Let G(x) = 864x4−3375x3+5022x2−3375x+864. We prove thatG(x) ≥ 0 for all x∈ R. We find
that

G′(x) = 3456x3−10125x2+10044x−3375= (x−1)(3456x2−6669x+3375).

Since 3456x2−6669x+ 3375> 0 for all x∈ R, we find thatG(x) andx−1 have the same sign. It
follows thatG is monotone decreasing on(−∞,1] and monotone increasing on[1,∞). We conclude
thatG has the global minimum atx = 1. Hence,G(x) ≥ G(1) = 0 for all x∈ R.

11 It’s easy to check that 16b3−15b2−15b+16= 16(b3−b2−b+1)+b2+b> 16(b2−1)(b−1)≥ 0 and 8b2−14b+8=
8(b−1)2 +2b > 0.
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4 Establishing New Bounds

We first give two alternative ways to prove Nesbitt’s inequality.

(Nesbitt) For all positive real numbersa,b,c, we have

a
b+c

+
b

c+a
+

c
a+b

≥ 3
2
.

Proof 4. From
(

a
b+c − 1

2

)2 ≥ 0, we deduce that

a
b+c

≥ 1
4
·

8a
b+c −1

a
b+c +1

=
8a−b−c

4(a+b+c)
.

It follows that

∑
cyclic

a
b+c

≥ ∑
cyclic

8a−b−c
4(a+b+c)

=
3
2
.

Proof 5. We claim that

a
b+c

≥ 3a
3
2

2
(

a
3
2 +b

3
2 +c

3
2

) or 2
(

a
3
2 +b

3
2 +c

3
2

)

≥ 3a
1
2 (b+c).

The AM-GM inequality gives a
3
2 +b

3
2 +b

3
2 ≥ 3a

1
2 b and a

3
2 +c

3
2 +c

3
2 ≥ 3a

1
2 c . Adding these two

inequalities yields2
(

a
3
2 +b

3
2 +c

3
2

)

≥ 3a
1
2 (b+c), as desired. Therefore, we have

∑
cyclic

a
b+c

≥ 3
2 ∑

cyclic

a
3
2

a
3
2 +b

3
2 +c

3
2

=
3
2
.

Some cyclic inequalities can be proved by finding new bounds.Suppose that we want to establish
that

∑
cyclic

F(x,y,z) ≥C.

If a functionG satisfies

(1) F(x,y,z) ≥ G(x,y,z) for all x,y,z> 0, and
(2) ∑cyclic G(x,y,z) = C for all x,y,z> 0,

then, we deduce that

∑
cyclic

F(x,y,z) ≥ ∑
cyclic

G(x,y,z) = C.

For example, if a functionF satisfies

F(x,y,z) ≥ x
x+y+z

for all x,y,z> 0, then, taking the cyclic sum yields

∑
cyclic

F(x,y,z) ≥ 1.

As we saw in the above two proofs of Nesbitt’s inequality, there are various lower bounds.
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Problem 21. Let a, b, c be the lengths of a triangle. Show that

a
b+c

+
b

c+a
+

c
a+b

< 2.

Proof. We don’t employ the Ravi substitution. It follows from the triangle inequality that

∑
cyclic

a
b+c

< ∑
cyclic

a
1
2(a+b+c)

= 2.

One day, I tried finding a new lower bound of(x+ y+ z)2 wherex,y,z > 0 . There are well-

known lower bounds such as 3(xy+yz+zx) and 9(xyz)
2
3 . But I wanted to find quite different one. I

tried breaking the symmetry of the three variablesx,y,z. Note that

(x+y+z)2 = x2 +y2+z2 +xy+xy+yz+yz+zx+zx.

I applied the AM-GM inequality to the right hand side except the termx2 :

y2 +z2 +xy+xy+yz+yz+zx+zx≥ 8x
1
2 y

3
4 z

3
4 .

It follows that
(x+y+z)2 ≥ x2 +8x

1
2 y

3
4 z

3
4 = x

1
2

(

x
3
2 +8y

3
4 z

3
4

)

.

(IMO 2001/2) Let a, b, c be positive real numbers. Prove that

a√
a2 +8bc

+
b√

b2 +8ca
+

c√
c2 +8ab

≥ 1.

Second Solution.We find that the above inequality also gives another lower bound ofx+y+z, that
is,

x+y+z≥
√

x
1
2

(

x
3
2 +8y

3
4 z

3
4

)

.

It follows that

∑
cyclic

x
3
4

√

x
3
2 +8y

3
4 z

3
4

≥ ∑
cyclic

x
x+y+z

= 1.

After the substitutionx = a
4
3 ,y = b

4
3 , andz= c

4
3 , it now becomes

∑
cyclic

a√
a2 +8bc

≥ 1.

Problem 22. (IMO 2005/3) Let x, y, and z be positive numbers such that xyz≥ 1. Prove that

x5−x2

x5 +y2+z2 +
y5−y2

y5 +z2 +x2 +
z5−z2

z5 +x2 +y2 ≥ 0.

First Solution. It’s equivalent to the following inequality

(
x2−x5

x5 +y2 +z2 +1

)

+

(
y2−y5

y5 +z2 +x2 +1

)

+

(
z2−z5

z5 +x2 +y2 +1

)

≤ 3
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or
x2 +y2+z2

x5 +y2+z2 +
x2 +y2 +z2

y5 +z2 +x2 +
x2 +y2+z2

z5 +x2 +y2 ≤ 3.

With the Cauchy-Schwarz inequality and the fact thatxyz≥ 1, we have

(x5 +y2 +z2)(yz+y2+z2) ≥ (x2 +y2+z2)2 or
x2 +y2+z2

x5 +y2+z2 ≤ yz+y2+z2

x2 +y2 +z2 .

Taking the cyclic sum andx2 +y2+z2 ≥ xy+yz+zxgive us

x2 +y2+z2

x5 +y2+z2 +
x2 +y2 +z2

y5 +z2 +x2 +
x2 +y2+z2

z5 +x2 +y2 ≤ 2+
xy+yz+zx
x2 +y2+z2 ≤ 3.

Second Solution.The main idea is to think of 1 as follows :

x5

x5 +y2+z2 +
y5

y5 +z2 +x2 +
z5

z5 +x2+y2 ≥ 1≥ x2

x5 +y2+z2 +
y2

y5 +z2 +x2 +
z2

z5 +x2 +y2 .

We first show the left-hand. It follows fromy4 +z4 ≥ y3z+yz3 = yz(y2 +z2) that

x(y4 +z4) ≥ xyz(y2 +z2) ≥ y2 +z2 or
x5

x5 +y2+z2 ≥ x5

x5 +xy4 +xz4 =
x4

x4 +y4+z4 .

Taking the cyclic sum, we have the required inequality. It remains to show the right-hand.
[First Way] As in the first solution, the Cauchy-Schwarz inequality andxyz≥ 1 imply that

(x5 +y2+z2)(yz+y2 +z2) ≥ (x2 +y2+z2)2 or
x2(yz+y2+z2)

(x2 +y2+z2)2 ≥ x2

x5 +y2+z2 .

Taking the cyclic sum, we have

∑
cyclic

x2(yz+y2+z2)

(x2 +y2+z2)2 ≥ ∑
cyclic

x2

x5 +y2 +z2 .

Our job is now to establish the following homogeneous inequality

1≥ ∑
cyclic

x2(yz+y2+z2)

(x2 +y2+z2)2 ⇔ (x2 +y2 +z2)2 ≥ 2 ∑
cyclic

x2y2 + ∑
cyclic

x2yz⇔ ∑
cyclic

x4 ≥ ∑
cyclic

x2yz.

However, by the AM-GM inequality, we obtain

∑
cyclic

x4 = ∑
cyclic

x4 +y4

2
≥ ∑

cyclic

x2y2 = ∑
cyclic

x2
(

y2 +z2

2

)

≥ ∑
cyclic

x2yz.

[Second Way]We claim that

2x4 +y4 +z4+4x2y2 +4x2z2

4(x2 +y2 +z2)2 ≥ x2

x5 +y2+z2 .

We do this by proving

2x4 +y4 +z4+4x2y2 +4x2z2

4(x2 +y2 +z2)2 ≥ x2yz
x4 +y3z+yz3
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becausexyz≥ 1 implies that

x2yz
x4 +y3z+yz3 =

x2

x5

xyz+y2+z2
≥ x2

x5 +y2+z2 .

Hence, we need to show the homogeneous inequality

(2x4 +y4+z4 +4x2y2 +4x2z2)(x4 +y3z+yz3) ≥ 4x2yz(x2 +y2+z2)2.

However, this is a straightforward consequence of the AM-GMinequality.

(2x4 +y4+z4 +4x2y2 +4x2z2)(x4 +y3z+yz3)−4x2yz(x2 +y2 +z2)2

= (x8 +x4y4 +x6y2 +x6y2 +y7z+y3z5)+ (x8+x4z4 +x6z2 +x6z2 +yz7+y5z3)

+2(x6y2 +x6z2)−6x4y3z−6x4yz3−2x6yz

≥ 6 6
√

x8 ·x4y4 ·x6y2 ·x6y2 ·y7z·y3z5 +6 6
√

x8 ·x4z4 ·x6z2 ·x6z2 ·yz7 ·y5z3

+2
√

x6y2 ·x6z2−6x4y3z−6x4yz3−2x6yz

= 0.

Taking the cyclic sum, we obtain

1 = ∑
cyclic

2x4 +y4+z4 +4x2y2 +4x2z2

4(x2 +y2+z2)2 ≥ ∑
cyclic

x2

x5 +y2+z2 .

Third Solution. (by an IMO 2005 contestant Iurie Boreico12 from Moldova) We establish that

x5−x2

x5 +y2+z2 ≥ x5−x2

x3(x2 +y2 +z2)
.

It follows immediately from the identity

x5−x2

x5 +y2+z2 −
x5−x2

x3(x2 +y2 +z2)
=

(x3−1)2x2(y2 +z2)

x3(x2 +y2+z2)(x5 +y2+z2)
.

Taking the cyclic sum and usingxyz≥ 1, we have

∑
cyclic

x5−x2

x5 +y2 +z2 ≥ 1
x5 +y2+z2 ∑

cyclic

(

x2− 1
x

)

≥ 1
x5 +y2 +z2 ∑

cyclic

(
x2−yz

)
≥ 0.

Here is a brilliant solution of

Problem 23. (KMO Weekend Program 2007) Prove that, for all a,b,c,x,y,z> 0,

ax
a+x

+
by

b+y
+

cz
c+z

≤ (a+b+c)(x+y+z)
a+b+c+x+y+z

.

Solution. (by Sanghoon) We need the following lemma:
Lemma. For all p,q,ω1,ω2 > 0, we have

pq
p+q

≤ ω1
2p+ ω2

2q

(ω1 + ω2)
2 .

12He received the special prize for this solution.
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Proof of lemma. It’s equivalent to

(p+q)
(
ω1

2p+ ω2
2q
)
− (ω1 + ω2)

2 pq≥ 0

or
(ω1p−ω2q)2 ≥ 0.

Taking(p,q,ω1,ω2) = (a,x,x+y+z,a+b+c) in the lemma, we get

ax
a+x

≤ (x+y+z)2a+(a+b+c)2x

(x+y+z+a+b+c)2
.

Similarly, we obtain
by

b+y
≤ (x+y+z)2b+(a+b+c)2y

(x+y+z+a+b+c)2

and
cz

c+z
≤ (x+y+z)2c+(a+b+c)2z

(x+y+z+a+b+c)2
.

Adding the above three inequalities, we get

ax
a+x

+
by

b+y
+

cz
c+z

≤ (x+y+z)2(a+b+c)+ (a+b+c)2(x+y+z)

(x+y+z+a+b+c)2
.

or
ax

a+x
+

by
b+y

+
cz

c+z
≤ (a+b+c)(x+y+z)

a+b+c+x+y+z
.

Exercise 5. (USAMO Summer Program 2002) Let a, b, c be positive real numbers. Prove that

(
2a

b+c

) 2
3

+

(
2b

c+a

) 2
3

+

(
2c

a+b

) 2
3

≥ 3.

(Hint. [TJM]) Establish the inequality
( 2a

b+c

) 2
3 ≥ 3

(
a

a+b+c

)
.

Exercise 6. (APMO 2005) (abc= 8, a,b,c > 0)

a2
√

(1+a3)(1+b3)
+

b2
√

(1+b3)(1+c3)
+

c2
√

(1+c3)(1+a3)
≥ 4

3

(Hint.) Use the inequality 1√
1+x3

≥ 2
2+x2 to give a lower bound of the left hand side.

3 Homogenizations and Normalizations

Every Mathematician Has Only a Few Tricks. A long time ago an older and well-known number theorist
made some disparaging remarks about Paul Erdös′s work. You admire Erdos′s contributions to mathematics
as much as I do, and I felt annoyed when the older mathematician flatly and definitively stated that all of
Erdos′s work could be reduced to a few tricks which Erdös repeatedly relied on in his proofs. What the number
theorist did not realize is that other mathematicians, eventhe very best, also rely on a few tricks which they
use over and over. Take Hilbert. The second volume of Hilbert′s collected papers contains Hilbert′s papers in
invariant theory. I have made a point of reading some of thesepapers with care. It is sad to note that some of
Hilbert′s beautiful results have been completely forgotten. But on reading the proofs of Hilbert′s striking and
deep theorems in invariant theory, it was surprising to verify that Hilbert′s proofs relied on the same few tricks.
Even Hilbert had only a few tricks! Gian-Carlo Rota,Ten Lessons I Wish I Had Been Taught, Notices of the
AMS, January 1997
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1 Homogenizations

Many inequality problems come with constraints such asab = 1, xyz= 1, x+ y+ z = 1. A non-
homogeneoussymmetricinequality can be transformed into a homogeneous one. Then we apply two
powerful theorems : Shur’s inequality and Muirhead’s theorem. We begin with a simple example.

Problem 24. (Hungary 1996) Let a and b be positive real numbers with a+b= 1. Prove that

a2

a+1
+

b2

b+1
≥ 1

3
.

Solution. Using the conditiona+b= 1, we can reduce the given inequality to homogeneous one, i.
e.,

1
3
≤ a2

(a+b)(a+(a+b))
+

b2

(a+b)(b+(a+b))
or a2b+ab2 ≤ a3 +b3,

which follows from(a3 +b3)− (a2b+ab2) = (a−b)2(a+b)≥ 0. The equality holds if and only if
a = b = 1

2.

The above inequalitya2b+ab2 ≤ a3 +b3 can be generalized as following :

Theorem 3.1. Let a1,a2,b1,b2 be positive real numbers such that a1+a2 = b1+b2 and max(a1,a2)
≥ max(b1,b2). Let x and y be nonnegative real numbers. Then, we have xa1ya2 +xa2ya1 ≥ xb1yb2 +
xb2yb1.

Proof. Without loss of generality, we can assume thata1 ≥ a2,b1 ≥ b2,a1 ≥ b1. If x or y is zero,
then it clearly holds. So, we assume that bothx andy are nonzero. It follows froma1+a2 = b1+b2

thata1−a2 = (b1−a2)+ (b2−a2). It’s easy to check

xa1ya2 +xa2ya1 −xb1yb2 −xb2yb1 = xa2ya2

(

xa1−a2 +ya1−a2 −xb1−a2yb2−a2 −xb2−a2yb1−a2

)

= xa2ya2
(

xb1−a2 −yb1−a2
)(

xb2−a2 −yb2−a2
)

=
1

xa2ya2

(

xb1 −yb1

)(

xb2 −yb2

)

≥ 0.

Remark 3.1. When does the equality hold in the theorem 8?

We now introduce two summation notations∑cyclic and∑sym. Let P(x,y,z) be a three variables
function ofx, y, z. Let us define :

∑
cyclic

P(x,y,z) = P(x,y,z)+P(y,z,x)+P(z,x,y),

∑
sym

P(x,y,z) = P(x,y,z)+P(x,z,y)+P(y,x,z)+P(y,z,x)+P(z,x,y)+P(z,y,x).

For example, we know that

∑
cyclic

x3y = x3y+y3z+z3x, ∑
sym

x3 = 2(x3 +y3+z3)

∑
sym

x2y = x2y+x2z+y2z+y2x+z2x+z2y, ∑
sym

xyz= 6xyz.

Problem 25. (IMO 1984/1) Let x,y,z be nonnegative real numbers such that x+ y+ z= 1. Prove
that0≤ xy+yz+zx−2xyz≤ 7

27 .
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Second Solution.Using the conditionx+y+z= 1, we reduce the given inequality to homogeneous
one, i. e.,

0≤ (xy+yz+zx)(x+y+z)−2xyz≤ 7
27

(x+y+z)3.

The left hand side inequality is trivial because it’s equivalent to

0≤ xyz+ ∑
sym

x2y.

The right hand side inequality simplifies to

7 ∑
cyclic

x3 +15xyz−6∑
sym

x2y≥ 0.

In the view of

7 ∑
cyclic

x3 +15xyz−6∑
sym

x2y =

(

2 ∑
cyclic

x3− ∑
sym

x2y

)

+5

(

3xyz+ ∑
cyclic

x3− ∑
sym

x2y

)

,

it’s enough to show that

2 ∑
cyclic

x3 ≥ ∑
sym

x2y and 3xyz+ ∑
cyclic

x3 ≥ ∑
sym

x2y.

We note that

2 ∑
cyclic

x3− ∑
sym

x2y = ∑
cyclic

(x3 +y3)− ∑
cyclic

(x2y+xy2) = ∑
cyclic

(x3 +y3−x2y−xy2) ≥ 0.

The second inequality can be rewritten as

∑
cyclic

x(x−y)(x−z)≥ 0,

which is a particular case of Schur’s theorem in the next section.

After homogenizing, sometimes we can find theright approach to see the inequalities:

(Iran 1998) Prove that, for allx,y,z> 1 such that1x + 1
y + 1

z = 2,

√
x+y+z≥

√
x−1+

√

y−1+
√

z−1.

Second Solution.After the algebraic substitutiona = 1
x , b = 1

y , c = 1
z, we are required to prove that

√

1
a

+
1
b

+
1
c
≥
√

1−a
a

+

√

1−b
b

+

√

1−c
c

,

wherea,b,c∈ (0,1) anda+b+c= 2. Using the constrainta+b+c= 2, we obtain a homogeneous
inequality

√

1
2
(a+b+c)

(
1
a

+
1
b

+
1
c

)

≥

√

a+b+c
2 −a

a
+

√

a+b+c
2 −b

b
+

√

a+b+c
2 −c

c

or √

(a+b+c)

(
1
a

+
1
b

+
1
c

)

≥
√

b+c−a
a

+

√

c+a−b
b

+

√

a+b−c
c

,
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which immediately follows from the Cauchy-Schwarz inequality

√

[(b+c−a)+ (c+a−b)+(a+b−c)]

(
1
a

+
1
b

+
1
c

)

≥
√

b+c−a
a

+

√

c+a−b
b

+

√

a+b−c
c

.

2 Schur’s Inequality and Muirhead’s Theorem

Theorem 3.2. (Schur) Let x,y,z be nonnegative real numbers. For any r> 0, we have

∑
cyclic

xr(x−y)(x−z)≥ 0.

Proof. Since the inequality is symmetric in the three variables, wemay assume without loss of
generality thatx≥ y≥ z. Then the given inequality may be rewritten as

(x−y)[xr(x−z)−yr(y−z)]+zr(x−z)(y−z)≥ 0,

and every term on the left-hand side is clearly nonnegative.

Remark 3.2. When does the equality hold in Schur’s Inequality?

Exercise 7. Disprove the following proposition: For all a,b,c,d ≥ 0 and r> 0, we have

ar(a−b)(a−c)(a−d)+br(b−c)(b−d)(b−a)+

cr(c−a)(c−c)(a−d)+dr(d−a)(d−b)(d−c) ≥ 0.

The following special case of Schur’s inequality is useful :

∑
cyclic

x(x−y)(x−z)≥ 0 ⇔ 3xyz+ ∑
cyclic

x3 ≥ ∑
sym

x2y ⇔ ∑
sym

xyz+ ∑
sym

x3 ≥ 2 ∑
sym

x2y.

Corollary 3.1. Let x,y,z be nonnegative real numbers. Then, we have

3xyz+x3+y3 +z3 ≥ 2
(

(xy)
3
2 +(yz)

3
2 +(zx)

3
2

)

.

Proof. By Schur’s inequality and the AM-GM inequality, we have

3xyz+ ∑
cyclic

x3 ≥ ∑
cyclic

x2y+xy2 ≥ ∑
cyclic

2(xy)
3
2 .

We now use Schur’s inequality to give an alternative solution of

(APMO 2004/5) Prove that, for all positive real numbersa,b,c,

(a2 +2)(b2+2)(c2+2)≥ 9(ab+bc+ca).
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Second Solution.After expanding, it becomes

8+(abc)2+2 ∑
cyclic

a2b2 +4 ∑
cyclic

a2 ≥ 9 ∑
cyclic

ab.

From the inequality(ab−1)2+(bc−1)2+(ca−1)2 ≥ 0, we obtain

6+2 ∑
cyclic

a2b2 ≥ 4 ∑
cyclic

ab.

Hence, it will be enough to show that

2+(abc)2+4 ∑
cyclic

a2 ≥ 5 ∑
cyclic

ab.

Since 3(a2 +b2+c2) ≥ 3(ab+bc+ca), it will be enough to show that

2+(abc)2+ ∑
cyclic

a2 ≥ 2 ∑
cyclic

ab,

which is a particular case of the following result fort = 1.

Corollary 3.2. Let t∈ (0,3]. For all a,b,c≥ 0, we have

(3− t)+ t(abc)
2
t + ∑

cyclic

a2 ≥ 2 ∑
cyclic

ab.

In particular, we obtain non-homogeneous inequalities

5
2

+
1
2
(abc)4 +a2+b2+c2 ≥ 2(ab+bc+ca),

2+(abc)2+a2+b2+c2 ≥ 2(ab+bc+ca),

1+2abc+a2+b2+c2 ≥ 2(ab+bc+ca).

Proof. After settingx = a
2
3 , y = b

2
3 , z= c

2
3 , it becomes

3− t + t(xyz)
3
t + ∑

cyclic

x3 ≥ 2 ∑
cyclic

(xy)
3
2 .

By the corollary 1, it will be enough to show that

3− t + t(xyz)
3
t ≥ 3xyz,

which is a straightforward consequence of the weighted AM-GM inequality :

3− t
3

·1+
t
3
(xyz)

3
t ≥ 1

3−t
3

(

(xyz)
3
t

) t
3

= 3xyz.

One may check that the equality holds if and only ifa = b = c = 1.

(IMO 2000/2) Let a,b,c be positive numbers such thatabc= 1. Prove that

(

a−1+
1
b

)(

b−1+
1
c

)(

c−1+
1
a

)

≤ 1.



34 Olympiad Training Materials/TIN, www.imomath.com, ultrametric.googlepages.com

Second Solution.It is equivalent to the following homogeneous inequality13 :
(

a− (abc)1/3+
(abc)2/3

b

)(

b− (abc)1/3+
(abc)2/3

c

)(

c− (abc)1/3+
(abc)2/3

a

)

≤ abc.

After the substitutiona = x3,b = y3,c = z3 with x,y,z> 0, it becomes
(

x3−xyz+
(xyz)2

y3

)(

y3−xyz+
(xyz)2

z3

)(

z3−xyz+
(xyz)2

x3

)

≤ x3y3z3,

which simplifies to
(
x2y−y2z+z2x

)(
y2z−z2x+x2y

)(
z2x−x2y+y2z

)
≤ x3y3z3

or
3x3y3z3 + ∑

cyclic

x6y3 ≥ ∑
cyclic

x4y4z+ ∑
cyclic

x5y2z2

or
3(x2y)(y2z)(z2x)+ ∑

cyclic

(x2y)3 ≥ ∑
sym

(x2y)2(y2z)

which is a special case of Schur’s inequality.

Here is another inequality problem with the constraintabc= 1.

Problem 26. (Tournament of Towns 1997) Let a,b,c be positive numbers such that abc= 1. Prove
that

1
a+b+1

+
1

b+c+1
+

1
c+a+1

≤ 1.

Solution. We can rewrite the given inequality as following :

1

a+b+(abc)1/3
+

1

b+c+(abc)1/3
+

1

c+a+(abc)1/3
≤ 1

(abc)1/3
.

We make the substitutiona = x3,b = y3,c = z3 with x,y,z> 0. Then, it becomes

1
x3 +y3+xyz

+
1

y3 +z3 +xyz
+

1
z3 +x3+xyz

≤ 1
xyz

which is equivalent to

xyz ∑
cyclic

(x3 +y3+xyz)(y3 +z3 +xyz) ≤ (x3 +y3 +xyz)(y3 +z3+xyz)(z3 +x3+xyz)

or

∑
sym

x6y3 ≥ ∑
sym

x5y2z2 !

We apply the theorem 9 to obtain

∑
sym

x6y3 = ∑
cyclic

x6y3 +y6x3

≥ ∑
cyclic

x5y4 +y5x4

= ∑
cyclic

x5(y4 +z4)

≥ ∑
cyclic

x5(y2z2 +y2z2)

= ∑
sym

x5y2z2.

13For an alternative homogenization, see the problem 1 in the chapter 2.
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Exercise 8. ([TZ], pp.142) Prove that for any acute triangle ABC,

cot3A+cot3B+cot3C+6cotAcotBcotC≥ cotA+cotB+cotC.

Exercise 9. (Korea 1998) Let I be the incenter of a triangle ABC. Prove that

IA2 + IB2+ IC2 ≥ BC2 +CA2+AB2

3
.

Exercise 10. ([IN], pp.103) Let a,b,c be the lengths of a triangle. Prove that

a2b+a2c+b2c+b2a+c2a+c2b > a3 +b3+c3+2abc.

Exercise 11. (Surányi’s inequality)) Show that, for all x1, · · · ,xn ≥ 0,

(n−1)(x1
n + · · ·xn

n)+nx1 · · ·xn ≥ (x1 + · · ·xn)
(
x1

n−1 + · · ·xn
n−1) .

Theorem 3.3. (Muirhead) Let a1,a2,a3,b1,b2,b3 be real numbers such that

a1 ≥ a2 ≥ a3 ≥ 0,b1 ≥ b2 ≥ b3 ≥ 0,a1 ≥ b1,a1 +a2 ≥ b1 +b2,a1 +a2+a3 = b1 +b2+b3.

Let x,y,z be positive real numbers. Then, we have∑symxa1ya2za3 ≥ ∑symxb1yb2zb3.

Proof. Case 1.b1 ≥ a2 : It follows from a1 ≥ a1+a2−b1 and froma1 ≥ b1 thata1 ≥ max(a1+a2−
b1,b1) so thatmax(a1,a2) = a1 ≥ max(a1+a2−b1,b1). Froma1+a2−b1 ≥ b1+a3−b1 = a3 and
a1 +a2−b1 ≥ b2 ≥ b3, we havemax(a1 +a2−b1,a3) ≥ max(b2,b3). Apply the theorem 8 twice to
obtain

∑
sym

xa1ya2za3 = ∑
cyclic

za3(xa1ya2 +xa2ya1)

≥ ∑
cyclic

za3(xa1+a2−b1yb1 +xb1ya1+a2−b1)

= ∑
cyclic

xb1(ya1+a2−b1za3 +ya3za1+a2−b1)

≥ ∑
cyclic

xb1(yb2zb3 +yb3zb2)

= ∑
sym

xb1yb2zb3.

Case 2.b1 ≤ a2 : It follows from 3b1 ≥ b1+b2+b3 = a1+a2+a3 ≥ b1+a2+a3 thatb1 ≥ a2+
a3−b1 and thata1 ≥ a2 ≥ b1 ≥ a2+a3−b1. Therefore, we havemax(a2,a3)≥max(b1,a2+a3−b1)
andmax(a1,a2 +a3−b1) ≥ max(b2,b3). Apply the theorem 8 twice to obtain

∑
sym

xa1ya2za3 = ∑
cyclic

xa1(ya2za3 +ya3za2)

≥ ∑
cyclic

xa1(yb1za2+a3−b1 +ya2+a3−b1zb1)

= ∑
cyclic

yb1(xa1za2+a3−b1 +xa2+a3−b1za1)

≥ ∑
cyclic

yb1(xb2zb3 +xb3zb2)

= ∑
sym

xb1yb2zb3.
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Remark 3.3. The equality holds if and only if x= y = z. However, if we allow x= 0 or y = 0 or
z= 0, then one may easily check that the equality holds when a1,a2,a3 > 0 and b1,b2,b3 > 0 if and
only if

x = y = z or x= y, z= 0 or y = z, x = 0 or z= x, y = 0.

We can use Muirhead’s theorem to prove Nesbitt’s inequality.

(Nesbitt) For all positive real numbersa,b,c, we have

a
b+c

+
b

c+a
+

c
a+b

≥ 3
2
.

Proof 6. Clearing the denominators of the inequality, it becomes

2 ∑
cyclic

a(a+b)(a+c)≥ 3(a+b)(b+c)(c+a) or ∑
sym

a3 ≥ ∑
sym

a2b.

(IMO 1995) Let a,b,c be positive numbers such thatabc= 1. Prove that

1
a3(b+c)

+
1

b3(c+a)
+

1
c3(a+b)

≥ 3
2
.

Second Solution.It’s equivalent to

1
a3(b+c)

+
1

b3(c+a)
+

1
c3(a+b)

≥ 3

2(abc)4/3
.

Set a = x3,b = y3,c = z3 with x,y,z > 0. Then, it becomes∑cyclic
1

x9(y3+z3)
≥ 3

2x4y4z4 . Clearing
denominators, this becomes

∑
sym

x12y12+2∑
sym

x12y9z3 + ∑
sym

x9y9z6 ≥ 3∑
sym

x11y8z5 +6x8y8z8

or
(

∑
sym

x12y12− ∑
sym

x11y8z5

)

+2

(

∑
sym

x12y9z3− ∑
sym

x11y8z5

)

+

(

∑
sym

x9y9z6− ∑
sym

x8y8z8

)

≥ 0,

and every term on the left hand side is nonnegative by Muirhead’s theorem.

Problem 27. (Iran 1996) Let x,y,z be positive real numbers. Prove that

(xy+yz+zx)

(
1

(x+y)2 +
1

(y+z)2 +
1

(z+x)2

)

≥ 9
4
.

Proof. It’s equivalent to

4∑
sym

x5y+2 ∑
cyclic

x4yz+6x2y2z2− ∑
sym

x4y2−6 ∑
cyclic

x3y3−2∑
sym

x3y2z≥ 0.

We rewrite this as following
(

∑
sym

x5y− ∑
sym

x4y2

)

+3

(

∑
sym

x5y− ∑
sym

x3y3

)

+2xyz

(

3xyz+ ∑
cyclic

x3− ∑
sym

x2y

)

≥ 0.

By Muirhead’s theorem and Schur’s inequality, it’s a sum of three nonnegative terms.
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Problem 28. Let x,y,z be nonnegative real numbers with xy+yz+zx= 1. Prove that

1
x+y

+
1

y+z
+

1
z+x

≥ 5
2
.

Proof. Usingxy+yz+zx= 1, we homogenize the given inequality as following :

(xy+yz+zx)

(
1

x+y
+

1
y+z

+
1

z+x

)2

≥
(

5
2

)2

or
4 ∑

sym
x5y+ ∑

sym
x4yz+14∑

sym
x3y2z+38x2y2z2 ≥ ∑

sym
x4y2 +3∑

sym
x3y3

or
(

∑
sym

x5y− ∑
sym

x4y2

)

+3

(

∑
sym

x5y− ∑
sym

x3y3

)

+xyz

(

∑
sym

x3 +14∑
sym

x2y+38xyz

)

≥ 0.

By Muirhead’s theorem, we get the result. In the above inequality, without the conditionxy+
yz+ zx= 1, the equality holds if and only ifx = y,z = 0 or y = z,x = 0 or z = x,y = 0. Since
xy+yz+zx= 1, the equality occurs when(x,y,z) = (1,1,0),(1,0,1),(0,1,1).

3 Normalizations

In the previous sections, we transformed non-homogeneous inequalities into homogeneous ones.
On the other hand, homogeneous inequalities also can be normalized invariousways. We offer two
alternative solutions of the problem 8 by normalizations :

(IMO 2001/2) Let a, b, c be positive real numbers. Prove that

a√
a2 +8bc

+
b√

b2 +8ca
+

c√
c2 +8ab

≥ 1.

Third Solution.We make the substitutionx = a
a+b+c, y = b

a+b+c, z= c
a+b+c.14 The problem is

x f(x2 +8yz)+y f(y2+8zx)+z f(z2+8xy)≥ 1,

where f (t) = 1√
t
. Since f is convex onR+ andx+ y+ z = 1, we apply (the weighted) Jensen’s

inequality to obtain

x f(x2 +8yz)+y f(y2+8zx)+z f(z2+8xy)≥ f (x(x2 +8yz)+y(y2+8zx)+z(z2+8xy)).

Note thatf (1) = 1. Since the functionf is strictly decreasing, it suffices to show that

1≥ x(x2 +8yz)+y(y2+8zx)+z(z2+8xy).

Using x+ y+ z = 1, we homogenize it as(x+ y+ z)3 ≥ x(x2 + 8yz) + y(y2 + 8zx) + z(z2 + 8xy).
However, this is easily seen from

(x+y+z)3−x(x2+8yz)−y(y2+8zx)−z(z2+8xy) = 3[x(y−z)2+y(z−x)2+z(x−y)2] ≥ 0.

14Dividing by a+b+c gives the equivalent inequality∑cyclic

a
a+b+c√

a2

(a+b+c)2
+ 8bc

(a+b+c)2

≥ 1.
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In the above solution, we normalized tox+y+z= 1. We now prove it by normalizing toxyz= 1.

Fourth Solution.We make thesubstitution x= bc
a2 , y = ca

b2 , z= ab
c2 . Then, we getxyz= 1 and the

inequality becomes
1√

1+8x
+

1√
1+8y

+
1√

1+8z
≥ 1

which is equivalent to

∑
cyclic

√

(1+8x)(1+8y)≥
√

(1+8x)(1+8y)(1+8z).

After squaring both sides, it’s equivalent to

8(x+y+z)+2
√

(1+8x)(1+8y)(1+8z) ∑
cyclic

√
1+8x≥ 510.

Recall thatxyz= 1. The AM-GM inequality gives usx+y+z≥ 3,

(1+8x)(1+8y)(1+8z)≥ 9x
8
9 ·9y

8
9 ·9z

8
9 = 729 and ∑

cyclic

√
1+8x≥ ∑

cyclic

√

9x
8
9 ≥ 9(xyz)

4
27 = 9.

Using these three inequalities, we get the result.

(IMO 1983/6) Let a, b, c be the lengths of the sides of a triangle. Prove that

a2b(a−b)+b2c(b−c)+c2a(c−a)≥ 0.

Second Solution.After settinga = y+z, b = z+x, c = x+y for x,y,z> 0, it becomes

x3z+y3x+z3y≥ x2yz+xy2z+xyz2 or
x2

y
+

y2

z
+

z2

x
≥ x+y+z.

Since it’s homogeneous, we can restrict our attention to thecasex+y+z= 1. Then, it becomes

y f

(
x
y

)

+z f

(
y
z

)

+x f
(z

x

)

≥ 1,

where f (t) = t2. Sincef is convex onR, we apply (the weighted) Jensen’s inequality to obtain

y f

(
x
y

)

+z f

(
y
z

)

+x f
(z

x

)

≥ f

(

y · x
y

+z· y
z

+x · z
x

)

= f (1) = 1.

Problem 29. (KMO Winter Program Test 2001) Prove that, for all a,b,c> 0,
√

(a2b+b2c+c2a)(ab2+bc2+ca2) ≥ abc+ 3
√

(a3 +abc)(b3 +abc)(c3 +abc)

First Solution. Dividing by abc, it becomes
√
(

a
c

+
b
a

+
c
b

)(
c
a

+
a
b

+
b
c

)

≥ abc+ 3

√
(

a2

bc
+1

)(
b2

ca
+1

)(
c2

ab
+1

)

.

After the substitutionx = a
b, y = b

c , z= c
a, we obtain the constraintxyz= 1. It takes the form

√

(x+y+z)(xy+yz+zx)≥ 1+ 3

√
(

x
z

+1

)(y
x

+1
)(z

y
+1

)

.
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From the constraintxyz= 1, we find two identities

(
x
z

+1

)(y
x

+1
)(z

y
+1

)

=

(
x+z

z

)(
y+x

x

)(
z+y

y

)

= (z+x)(x+y)(y+z),

(x+y+z)(xy+yz+zx) = (x+y)(y+z)(z+x)+xyz= (x+y)(y+z)(z+x)+1.

Letting p = 3
√

(x+y)(y+z)(z+x), the inequality now becomes
√

p3 +1 ≥ 1+ p. Applying the
AM-GM inequality, we havep≥ 3

√
2
√

xy·2√yz·2√zx= 2. It follows that(p3 + 1)− (1+ p)2 =
p(p+1)(p−2)≥ 0.

Problem 30. (IMO 1999/2) Let n be an integer with n≥ 2.

(a) Determine the least constant C such that the inequality

∑
1≤i< j≤n

xix j(x
2
i +x2

j ) ≤C

(

∑
1≤i≤n

xi

)4

holds for all real numbers x1, · · · ,xn ≥ 0.
(b) For this constant C, determine when equality holds.

First Solution. (Marcin E. Kuczma15) For x1 = · · · = xn = 0, it holds for anyC ≥ 0. Hence, we
consider the case whenx1 + · · ·+ xn > 0. Since the inequality is homogeneous, we may normalize
to x1 + · · ·+xn = 1. We denote

F(x1, · · · ,xn) = ∑
1≤i< j≤n

xix j(x
2
i +x2

j ).

From the assumptionx1 + · · ·+xn = 1, we have

F(x1, · · · ,xn) = ∑
1≤i< j≤n

xi
3x j + ∑

1≤i< j≤n

xix j
3 = ∑

1≤i≤n

xi
3 ∑

j 6=i

xi = ∑
1≤i≤n

xi
3(1−xi)

=
n

∑
i=1

xi(xi
2−xi

3).

We claim thatC = 1
8. It suffices to show that

F(x1, · · · ,xn) ≤
1
8

= F

(
1
2
,
1
2
,0, · · · ,0

)

.

Lemma 3.1. 0≤ x≤ y≤ 1
2 implies x2−x3 ≤ y2−y3.

Proof. Sincex+ y ≤ 1, we getx+ y ≥ (x+ y)2 ≥ x2 + xy+ y2. Sincey− x ≥ 0, this implies that
y2−x2 ≥ y3−x3 or y2−y3 ≥ x2−x3, as desired.

Case 1. 1
2 ≥ x1 ≥ x2 ≥ ·· · ≥ xn

n

∑
i=1

xi(xi
2−xi

3) ≤
n

∑
i=1

xi

((
1
2

)2

−
(

1
2

)3
)

=
1
8

n

∑
i=1

xi =
1
8
.

15I slightly modified his solution in [Au99].
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Case 2.x1 ≥ 1
2 ≥ x2 ≥ ·· · ≥ xn Let x1 = x and y= 1−x= x2 + · · ·+xn. Since y≥ x2, · · · ,xn,

F(x1, · · · ,xn) = x3y+
n

∑
i=2

xi(xi
2−xi

3) ≤ x3y+
n

∑
i=2

xi(y
2−y3) = x3y+y(y2−y3).

Since x3y+y(y2−y3) = x3y+y3(1−y) = xy(x2 +y2), it remains to show that

xy(x2 +y2) ≤ 1
8
.

Using x+y= 1, we homogenizethe above inequality as following.

xy(x2 +y2) ≤ 1
8
(x+y)4.

However, we immediately find that(x+y)4−8xy(x2+y2) = (x−y)4 ≥ 0.

Exercise 12. (IMO unused 1991) Let n be a given integer with n≥ 2. Find the maximum value of

∑
1≤i< j≤n

xix j(xi +x j),

where x1, · · · ,xn ≥ 0 and x1 + · · ·+xn = 1.

We close this section with another proofs of Nesbitt’s inequality.

(Nesbitt) For all positive real numbersa,b,c, we have

a
b+c

+
b

c+a
+

c
a+b

≥ 3
2
.

Proof 7. We may normalize to a+b+c = 1. Note that0 < a,b,c < 1. The problem is now to prove

∑
cyclic

a
b+c

= ∑
cyclic

f (a) ≥ 3
2
, where f(x) =

x
1−x

.

Since f is convex on(0,1), Jensen’s inequality shows that

1
3 ∑

cyclic

f (a) ≥ f

(
a+b+c

3

)

= f

(
1
3

)

=
1
2

or ∑
cyclic

f (a) ≥ 3
2
.

Proof 8. (Cao Minh Quang) Assume that a+b+c= 1. Note that ab+bc+ca≤ 1
3(a+b+c)2 = 1

3.
More strongly, we establish that

a
b+c

+
b

c+a
+

c
a+b

≥ 3− 9
2
(ab+bc+ca)

or (
a

b+c
+

9a(b+c)
4

)

+

(
b

c+a
+

9b(c+a)

4

)

+

(
c

a+b
+

9c(a+b)

4

)

≥ 3.

The AM-GM inequality shows that

∑
cyclic

a
b+c

+
9a(b+c)

4
≥ ∑

cyclic

2

√

a
b+c

· 9a(b+c)
4

= ∑
cyclic

3a = 3.
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Proof 9. We now break the symmetry by a suitable normalization. Sincethe inequality is symmetric
in the three variables, we may assume that a≥ b≥ c. After the substitution x= a

c ,y = b
c , we have

x≥ y≥ 1. It becomes

a
c

b
c +1

+
b
c

a
c +1

+
1

a
c + b

c

≥ 3
2

or
x

y+1
+

y
x+1

≥ 3
2
− 1

x+y
.

We apply the AM-GM inequality to obtain

x+1
y+1

+
y+1
x+1

≥ 2 or
x

y+1
+

y
x+1

≥ 2− 1
y+1

+
1

x+1
.

It’s enough to show that

2− 1
y+1

+
1

x+1
≥ 3

2
− 1

x+y
⇔ 1

2
− 1

y+1
≥ 1

x+1
− 1

x+y
⇔ y−1

2(1+y)
≥ y−1

(x+1)(x+y)
.

However, the last inequality clearly holds for x≥ y≥ 1.

Proof 10. As in the previous proof, we may normalize to c= 1 with the assumption a≥ b≥ 1. We
prove

a
b+1

+
b

a+1
+

1
a+b

≥ 3
2
.

Let A= a+b and B= ab. It becomes

a2 +b2+a+b
(a+1)(b+1)

+
1

a+b
≥ 3

2
or

A2−2B+A
A+B+1

+
1
A
≥ 3

2
or 2A3−A2−A+2≥ B(7A−2).

Since7A−2> 2(a+b−1)> 0 and A2 = (a+b)2 ≥ 4ab= 4B, it’s enough to show that

4(2A3−A2−A+2)≥ A2(7A−2) ⇔ A3−2A2−4A+8≥ 0.

However, it’s easy to check that A3−2A2−4A+8= (A−2)2(A+2)≥ 0.

4 Cauchy-Schwarz Inequality and Ḧolder’s Inequality

We begin with the following famous theorem:

Theorem 3.4. (The Cauchy-Schwarz inequality) Let a1, · · · ,an,b1, · · · ,bn be real numbers. Then,

(a1
2 + · · ·+an

2)(b1
2 + · · ·+bn

2) ≥ (a1b1 + · · ·+anbn)
2.

Proof. Let A =
√

a1
2 + · · ·+an

2 andB =
√

b1
2 + · · ·+bn

2. In the case whenA = 0, we geta1 =
· · · = an = 0. Thus, the given inequality clearly holds. So, we may assume thatA,B > 0. We may
normalize to

1 = a1
2 + · · ·+an

2 = b1
2 + · · ·+bn

2.

Hence, we need to to show that
|a1b1 + · · ·+anbn| ≤ 1.

We now apply the AM-GM inequality to deduce

|x1y1 + · · ·+xnyn| ≤ |x1y1|+ · · ·+ |xnyn| ≤
x1

2 +y1
2

2
+ · · ·+ xn

2 +yn
2

2
= 1.

hamid
Highlight
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Exercise 13.Prove the Lagrange identity :

(
n

∑
i=1

ai
2

)(
n

∑
i=1

bi
2

)

−
(

n

∑
i=1

aibi

)2

= ∑
1≤i< j≤n

(aib j −a jbi)
2 .

Exercise 14.(Darij Grinberg) Suppose that0< a1≤ ·· · ≤ an and0< b1≤ ·· · ≤bn be real numbers.
Show that

1
4

(
n

∑
k=1

ak

)2( n

∑
k=1

bk

)2

>

(
n

∑
k=1

ak
2

)(
n

∑
k=1

bk
2

)

−
(

n

∑
k=1

akbk

)2

Exercise 15.([PF], S. S. Wagner) Let a1, · · · ,an,b1, · · · ,bn be real numbers. Suppose that x∈ [0,1].
Show that

(
n

∑
i=1

ai
2 +2x∑

i< j

aia j

)(
n

∑
i=1

bi
2 +2x∑

i< j

bib j

)

≥
(

n

∑
i=1

aibi +x∑
i≤ j

aib j

)2

.

Exercise 16.Let a1, · · · ,an,b1, · · · ,bn be positive real numbers. Show that
√

(a1 + · · ·+an)(b1 + · · ·+bn) ≥
√

a1b1+ · · ·+
√

anbn.

Exercise 17.Let a1, · · · ,an,b1, · · · ,bn be positive real numbers. Show that

a1
2

b1
+ · · ·+ an

2

bn
≥ (a1 + · · ·+an)

2

b1 + · · ·+bn
.

Exercise 18.Let a1, · · · ,an,b1, · · · ,bn be positive real numbers. Show that

a1

b1
2 + · · ·+ an

bn
2 ≥ 1

a1 + · · ·+an

(
a1

b1
+ · · ·+ an

bn

)2

.

Exercise 19.Let a1, · · · ,an,b1, · · · ,bn be positive real numbers. Show that

a1

b1
+ · · ·+ an

bn
≥ (a1 + · · ·+an)

2

a1b1 + · · ·+anbn
.

As an application of the Cauchy-Schwarz inequality, we givea different solution of the following
problem.

(Iran 1998) Prove that, for allx,y,z> 1 such that1x + 1
y + 1

z = 2,

√
x+y+z≥

√
x−1+

√

y−1+
√

z−1.

Third Solution.We note thatx−1
x + y−1

y + z−1
z = 1. Apply the Cauchy-Schwarz inequality to deduce

√
x+y+z=

√

(x+y+z)

(
x−1

x
+

y−1
y

+
z−1

z

)

≥
√

x−1+
√

y−1+
√

z−1.

We now apply the Cauchy-Schwarz inequality to prove Nesbitt’s inequality.

(Nesbitt) For all positive real numbersa,b,c, we have

a
b+c

+
b

c+a
+

c
a+b

≥ 3
2
.
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Proof 11. Applying the Cauchy-Schwarz inequality, we have

((b+c)+ (c+a)+(a+b))

(
1

b+c
+

1
c+a

+
1

a+b

)

≥ 32.

It follows that

a+b+c
b+c

+
a+b+c

c+a
+

a+b+c
a+b

≥ 9
2

or 3+ ∑
cyclic

a
b+c

≥ 9
2
.

Proof 12. The Cauchy-Schwarz inequality yields

∑
cyclic

a
b+c ∑

cyclic

a(b+c)≥
(

∑
cyclic

a

)2

or ∑
cyclic

a
b+c

≥ (a+b+c)2

2(ab+bc+ca)
≥ 3

2
.

Problem 31. (Gazeta Matematic̃a) Prove that, for all a,b,c > 0,

√

a4 +a2b2 +b4+
√

b4+b2c2 +c4+
√

c4 +c2a2 +a4

≥ a
√

2a2+bc+b
√

2b2+ca+c
√

2c2 +ab.

Solution. We obtain the chain of equalities and inequalities

∑
cyclic

√

a4 +a2b2 +b4 = ∑
cyclic

√
(

a4 +
a2b2

2

)

+

(

b4 +
a2b2

2

)

≥ 1√
2

∑
cyclic

(√

a4 +
a2b2

2
+

√

b4 +
a2b2

2

)

(Cauchy-Schwarz)

=
1√
2

∑
cyclic

(√

a4 +
a2b2

2
+

√

a4 +
a2c2

2

)

≥
√

2 ∑
cyclic

4

√
(

a4 +
a2b2

2

)(

a4+
a2c2

2

)

(AM-GM)

≥
√

2 ∑
cyclic

√

a4 +
a2bc

2
(Cauchy-Schwarz)

= ∑
cyclic

√

2a4+a2bc .

Here is an ingenious solution of

(KMO Winter Program Test 2001) Prove that, for alla,b,c > 0,

√

(a2b+b2c+c2a)(ab2+bc2+ca2) ≥ abc+ 3
√

(a3 +abc)(b3 +abc)(c3 +abc)
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Second Solution.(based on work by a winter program participant) We obtain
√

(a2b+b2c+c2a)(ab2+bc2+ca2)

=
1
2

√

[b(a2+bc)+c(b2+ca)+a(c2+ab)][c(a2 +bc)+a(b2+ca)+b(c2+ab)]

≥ 1
2

(√
bc(a2 +bc)+

√
ca(b2 +ca)+

√
ab(c2 +ab)

)

(Cauchy-Schwarz)

≥ 3
2

3
√√

bc(a2 +bc) ·
√

ca(b2 +ca) ·
√

ab(c2 +ab) (AM-GM)

=
1
2

3
√

(a3 +abc)(b3 +abc)(c3 +abc)+ 3
√

(a3 +abc)(b3 +abc)(c3 +abc)

≥ 1
2

3
√

2
√

a3 ·abc·2
√

b3 ·abc·2
√

c3 ·abc+ 3
√

(a3+abc)(b3 +abc)(c3 +abc) (AM-GM)

= abc+ 3
√

(a3 +abc)(b3 +abc)(c3 +abc).

Problem 32. (Andrei Ciupan) Let a, b, c be positive real numbers such that

1
a+b+1

+
1

b+c+1
+

1
c+a+1

≥ 1.

Show that a+b+c≥ ab+bc+ca.

First Solution. (by Andrei Ciupan) By applying the Cauchy-Schwarz inequality, we obtain

(a+b+1)(a+b+c2) ≥ (a+b+c)2

or
1

a+b+1
≤ c2 +a+b

(a+b+c)2.

Now by summing cyclically, we obtain

1
a+b+1

+
1

b+c+1
+

1
c+a+1

≤ a2 +b2+c2+2(a+b+c)
(a+b+c)2

But from the condition, we can see that

a2 +b2+c2+2(a+b+c)≥ (a+b+c)2,

and therefore
a+b+c≥ ab+bc+ca.

We see that the equality occurs if and only ifa = b = c = 1.

Second Solution.(by Cezar Lupu) We first observe that

2≥ ∑
cyclic

(

1− 1
a+b+1

)

= ∑
cyclic

a+b
a+b+1

= ∑
cyclic

(a+b)2

(a+b)2+a+b
.

Apply the Cauchy-Schwarz inequality to get

2≥ ∑
cyclic

(a+b)2

(a+b)2+a+b
≥ (∑a+b)2

∑(a+b)2+a+b
=

4∑a2 +8∑ab
2∑a2 +2∑ab+2∑a

.

or
a+b+c≥ ab+bc+ca.
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We now illustrate normalization techniques to establish classical theorems. Using the same idea
in the proof of the Cauchy-Schwarz inequality, we find a natural generalization :

Theorem 3.5. Let ai j (i, j = 1, · · · ,n) be positive real numbers. Then, we have

(a11
n + · · ·+a1n

n) · · · (an1
n + · · ·+ann

n) ≥ (a11a21· · ·an1 + · · ·+a1na2n · · ·ann)
n.

Proof. Since the inequality is homogeneous, as in the proof of the theorem 11, we can normalize to

(ai1
n + · · ·+ain

n)
1
n = 1 or ai1

n + · · ·+ain
n = 1 (i = 1, · · · ,n).

Then, the inequality takes the forma11a21· · ·an1 + · · ·+ a1na2n · · ·ann ≤ 1 or ∑n
i=1ai1 · · ·ain ≤ 1.

Hence, it suffices to show that, for alli = 1, · · · ,n,

ai1 · · ·ain ≤ 1
n
, where ai1

n + · · ·+ain
n = 1.

To finish the proof, it remains to show the followinghomogeneousinequality :

Theorem 3.6. (AM-GM inequality) Let a1, · · · ,an be positive real numbers. Then, we have

a1 + · · ·+an

n
≥ n

√
a1 · · ·an.

Proof. Since it’s homogeneous, we may rescalea1, · · · ,an so thata1 · · ·an = 1. 16 We want to show
that

a1 · · ·an = 1 =⇒ a1 + · · ·+an ≥ n.

The proof is by induction onn. If n = 1, it’s trivial. If n = 2, then we geta1 + a2 − 2 = a1 +
a2−2

√
a1a2 = (

√
a1−

√
a2)

2 ≥ 0. Now, we assume that it holds for some positive integern≥ 2.
And let a1, · · · , an+1 be positive numbers such thata1 · · ·anan+1=1. We may assume thata1 ≥ 1≥
a2. (Why?) It follows thata1a2 + 1− a1− a2 = (a1− 1)(a2− 1) ≤ 0 so thata1a2 + 1 ≤ a1 + a2.
Since(a1a2)a3 · · ·an = 1, by the induction hypothesis, we havea1a2 +a3 + · · ·+an+1 ≥ n. Hence,
a1 +a2−1+a3+ · · ·+an+1 ≥ n.

The following simple observation is not tricky :

Let a,b> 0 andm,n∈ N. Takex1 = · · ·= xm = a andxm+1 = · · ·= xxm+n = b. Applying
the AM-GM inequality tox1, · · · ,xm+n > 0, we obtain

ma+nb
m+n

≥ (ambn)
1

m+n or
m

m+n
a+

n
m+n

b≥ a
m

m+n b
n

m+n .

Hence, for all positiverationalsω1 andω2 with ω1 + ω2 = 1, we get

ω1 a+ ω2 b≥ a ω1b ω2.

We immediately have

Theorem 3.7. Let ω1, ω2 > 0 with ω1 + ω2 = 1. For all x, y> 0, we have

ω1 x+ ω2 y≥ xω1yω2.

16Setxi = ai

(a1···an)
1
n

(i = 1, · · · ,n). Then, we getx1 · · ·xn = 1 and it becomesx1 + · · ·+xn ≥ n.
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Proof. We can choose a positiverational sequencea1,a2,a3, · · · such that

lim
n→∞

an = ω1.

And lettingbi = 1−ai, we get
lim
n→∞

bn = ω2.

From the previous observation, we have

an x+bn y≥ xanybn

By taking the limits to both sides, we get the result.

Modifying slightly the above arguments, we see that the AM-GM inequality implies that

Theorem 3.8. (Weighted AM-GM inequality) Let ω1, · · · ,ωn > 0 with ω1 + · · ·+ ωn = 1. For all
x1, · · · ,xn > 0, we have

ω1 x1 + · · ·+ ωn xn ≥ x1
ω1 · · ·xn

ωn.

Alternatively, we find that it is a straightforward consequence of the concavity of lnx. Indeed,
the weighted Jensen’s inequality says that ln(ω1 x1 + · · ·+ ωn xn) ≥ ω1 ln(x1) + · · ·+ ωn ln(xn) =
ln(x1

ω1 · · ·xn
ωn).

Recall that the AM-GM inequality is used to deduce the theorem 18, which is a generalization of
the Cauchy-Schwarz inequality. Since we now get theweightedversion of the AM-GM inequality,
we establishweightedversion of the Cauchy-Schwarz inequality.

Theorem 3.9. (Hölder) Let xi j (i = 1, · · · ,m, j = 1, · · ·n) be positive real numbers. Suppose that
ω1, · · · ,ωn are positive real numbers satisfyingω1 + · · ·+ ωn = 1. Then, we have

n

∏
j=1

(
m

∑
i=1

xi j

)ω j

≥
m

∑
i=1

(
n

∏
j=1

xi j
ω j

)

.

Proof. Because of the homogeneity of the inequality, as in the proofof the theorem 12, we may
rescalex1 j , · · · ,xm j so thatx1 j + · · ·+xm j = 1 for eachj ∈ {1, · · · ,n}. Then, we need to show that

n

∏
j=1

1ω j ≥
m

∑
i=1

n

∏
j=1

xi j
ω j or 1≥

m

∑
i=1

n

∏
j=1

xi j
ω j .

The weighted AM-GM inequality provides that

n

∑
j=1

ω jxi j ≥
n

∏
j=1

xi j
ω j (i ∈ {1, · · · ,m}) =⇒

m

∑
i=1

n

∑
j=1

ω jxi j ≥
m

∑
i=1

n

∏
j=1

xi j
ω j .

However, we immediately have

m

∑
i=1

n

∑
j=1

ω jxi j =
n

∑
j=1

m

∑
i=1

ω jxi j =
n

∑
j=1

ω j

(
m

∑
i=1

xi j

)

=
n

∑
j=1

ω j = 1.

4 Convexity

Any good idea can be stated in fifty words or less.S. M. Ulam
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1 Jensen’s Inequality

In the previous chapter, we deduced the weighted AM-GM inequality from the AM-GM inequality.
We use the same idea to study the following functional inequalities.

Proposition 4.1. Let f : [a,b]−→ R be acontinuousfunction. Then, the followings are equivalent.

(1) For all n∈ N, the following inequality holds.

ω1 f (x1)+ · · ·+ ωn f (xn) ≥ f (ω1 x1 + · · ·+ ωn xn)

for all x1, · · · ,xn ∈ [a,b] andω1, · · · ,ωn > 0 with ω1 + · · ·+ ωn = 1.
(2) For all n∈ N, the following inequality holds.

r1 f (x1)+ · · ·+ rn f (xn) ≥ f (r1 x1 + · · ·+ rn xn)

for all x1, · · · ,xn ∈ [a,b] and r1, · · · , rn ∈ Q+ with r1 + · · ·+ rn = 1.
(3) For all N ∈ N, the following inequality holds.

f (y1)+ · · ·+ f (yN)

N
≥ f

(
y1 + · · ·+ yN

N

)

for all y1, · · · ,yN ∈ [a,b].
(4) For all k∈ {0,1,2, · · ·}, the following inequality holds.

f (y1)+ · · ·+ f (y2k)

2k ≥ f

(
y1 + · · ·+ y2k

2k

)

for all y1, · · · ,y2k ∈ [a,b].
(5) We have1

2 f (x)+ 1
2 f (y) ≥ f

( x+y
2

)
for all x,y∈ [a,b].

(6) We haveλ f (x)+(1−λ ) f (y) ≥ f (λx+(1−λ )y) for all x,y∈ [a,b] andλ ∈ (0,1).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) is obvious.
(2) ⇒ (1) : Let x1, · · · ,xn ∈ [a,b] andω1, · · · ,ωn > 0 with ω1 + · · ·+ ωn = 1. One may see that

there exist positive rational sequences{rk(1)}k∈N, · · · , {rk(n)}k∈N satisfying

lim
k→∞

rk( j) = wj (1≤ j ≤ n) and rk(1)+ · · ·+ rk(n) = 1 for all k∈ N.

By the hypothesis in(2), we obtainrk(1) f (x1) + · · ·+ rk(n) f (xn) ≥ f (rk(1) x1 + · · ·+ rk(n) xn).
Since f is continuous, takingk→ ∞ to both sides yields the inequality

ω1 f (x1)+ · · ·+ ωn f (xn) ≥ f (ω1 x1 + · · ·+ ωn xn).

(3) ⇒ (2) : Let x1, · · · ,xn ∈ [a,b] and r1, · · · , rn ∈ Q+ with r1 + · · ·+ rn = 1. We can find a
positive integerN ∈N so thatNr1, · · · , Nrn ∈ N. For eachi ∈ {1, · · · ,n}, we can writer i =

pi
N , where

pi ∈ N. It follows from r1 + · · ·+ rn = 1 thatN = p1 + · · ·+ pn. Then, (3) implies that

r1 f (x1)+ · · ·+ rn f (xn)

=

p1 terms
︷ ︸︸ ︷

f (x1)+ · · ·+ f (x1)+ · · ·+
pn terms

︷ ︸︸ ︷

f (xn)+ · · ·+ f (xn)

N

≥ f








p1 terms
︷ ︸︸ ︷

x1 + · · ·+x1+ · · ·+
pn terms
︷ ︸︸ ︷

xn + · · ·+xn

N








= f (r1 x1 + · · ·+ rn xn).
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(4) ⇒ (3) : Let y1, · · · ,yN ∈ [a,b]. Take a largek ∈ N so that 2k > N. Let a = y1+···+yN
N . Then,

(4) implies that

f (y1)+ · · ·+ f (yN)+ (2k−n) f (a)

2k

=
f (y1)+ · · ·+ f (yN)+

(2k−N) terms
︷ ︸︸ ︷

f (a)+ · · ·+ f (a)

2k

≥ f









y1 + · · ·+yN +

(2k−N) terms
︷ ︸︸ ︷

a+ · · ·+a
2k









= f (a)

so that

f (y1)+ · · ·+ f (yN) ≥ N f(a) = N f

(
y1 + · · ·+yN

N

)

.

(5) ⇒ (4) : We use induction onk. In casek = 0,1,2, it clearly holds. Suppose that (4) holds for
somek≥ 2. Lety1, · · · ,y2k+1 ∈ [a,b]. By the induction hypothesis, we obtain

f (y1)+ · · ·+ f (y2k)+ f (y2k+1)+ · · ·+ f (y2k+1)

≥ 2k f

(
y1 + · · ·+ y2k

2k

)

+2k f

(
y2k+1 + · · ·+ y2k+1

2k

)

= 2k+1
f
(

y1+···+ y2k

2k

)

+ f
(

y2k+1+···+ y2k+1

2k

)

2

≥ 2k+1 f





y1+···+ y2k

2k +
y2k+1+···+ y2k+1

2k

2





= 2k+1 f

(
y1 + · · ·+ y2k+1

2k+1

)

.

Hence, (4) holds fork+1. This completes the induction.
So far, we’ve established that (1), (2), (3), (4), (5) are allequivalent. Since(1) ⇒ (6) ⇒ (5) is

obvious, this completes the proof.

Definition 4.1. A real valued function f is said to be convex on[a,b] if

λ f (x)+ (1−λ ) f (y)≥ f (λx+(1−λ )y)

for all x,y∈ [a,b] andλ ∈ (0,1).

The above proposition says that

Corollary 4.1. (Jensen’s inequality) Let f : [a,b] −→ R be a continuous convex function. For all
x1, · · · ,xn ∈ [a,b], we have

f (x1)+ · · ·+ f (xn)

n
≥ f

(
x1 + · · ·+ xn

n

)

.

Corollary 4.2. (Weighted Jensen’s inequality) Let f : [a,b]−→ R be a continuous convex function.
Let ω1, · · · ,ωn > 0 with ω1 + · · ·+ ωn = 1. For all x1, · · · ,xn ∈ [a,b], we have

ω1 f (x1)+ · · ·+ ωn f (xn) ≥ f (ω1 x1 + · · ·+ ωn xn).
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In fact, we can almost drop the continuity off . As an exercise, show that every convex func-
tion on [a,b] is continuous on(a,b). So, every convex function onR is continuous onR. By the
proposition again, we get

Corollary 4.3. (Convexity Criterion I) Let f : [a,b] −→ R be a continuous function. Suppose that

f (x)+ f (y)
2

≥ f

(
x+y

2

)

for all x,y∈ [a,b]. Then, f is a convex function on[a,b].

Exercise 20.(Convexity Criterion II) Let f : [a,b]−→ R be a continuous function which are differ-
entiable twice in(a,b). Show that the followings are equivalent.

(1) f ′′(x) ≥ 0 for all x ∈ (a,b).
(2) f is convex on(a,b).

When we deduce(5) ⇒ (4) ⇒ (3) ⇒ (2) in the proposition, we didn’t use the continuity off :

Corollary 4.4. Let f : [a,b] −→ R be a function. Suppose that

f (x)+ f (y)
2

≥ f

(
x+y

2

)

for all x,y∈ [a,b]. Then, we have

r1 f (x1)+ · · ·+ rn f (xn) ≥ f (r1 x1 + · · ·+ rn xn)

for all x1, · · · ,xn ∈ [a,b] and r1, · · · , rn ∈ Q+ with r1 + · · ·+ rn = 1.

We close this section by presenting an well-known inductiveproof of the weighted Jensen’s
inequality. It turns out that we can completely drop the continuity of f .

Second Proof.It clearly holds forn = 1,2. We now assume that it holds for somen ∈ N. Let
x1, · · · ,xn,xn+1 ∈ [a,b] and ω1, · · · ,ωn+1 > 0 with ω1 + · · ·+ ωn+1 = 1. Since ω1

1−ωn+1
+ · · · +

ωn
1−ωn+1

= 1, it follows from the induction hypothesis that

ω1 f (x1)+ · · ·+ ωn+1 f (xn+1)

= (1−ωn+1)

(
ω1

1−ωn+1
f (x1)+ · · ·+ ωn

1−ωn+1
f (xn)

)

+ ωn+1 f (xn+1)

≥ (1−ωn+1) f

(
ω1

1−ωn+1
x1 + · · ·+ ωn

1−ωn+1
xn

)

+ ωn+1 f (xn+1)

≥ f

(

(1−ωn+1)

[
ω1

1−ωn+1
x1 + · · ·+ ωn

1−ωn+1
xn

]

+ ωn+1xn+1

)

= f (ω1x1 + · · ·+ ωn+1xn+1).

2 Power Means

Convexity is one of the most important concepts in analysis.Jensen’s inequality is the most powerful
tool in theory of inequalities. In this section, we shall establish the Power Mean inequality by
applying Jensen’s inequality in two ways. We begin with two simple lemmas.
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Lemma 4.1. Let a, b, and c be positive real numbers. Let us define a function f : R −→ R by

f (x) = ln

(
ax +bx+cx

3

)

,

where x∈ R. Then, we obtain f′(0) = ln (abc)
1
3 .

Proof. We computef ′(x) = ax lna+bx lnb+cx lnc
ax+bx+cx . Then, f ′(0) = lna+lnb+lnc

3 = ln (abc)
1
3 .

Lemma 4.2. Let f : R −→ R be a continuous function. Suppose that f is monotone increasing on
(0,∞) and monotone increasing on(−∞,0). Then, f is monotone increasing onR.

Proof. We first show thatf is monotone increasing on[0,∞). By the hypothesis, it remains to show
that f (x) ≥ f (0) for all x > 0. For allε ∈ (0,x), we havef (x) ≥ f (ε). Since f is continuous at 0,
we obtain

f (x) ≥ lim
ε→0+

f (ε) = f (0).

Similarly, we find that f is monotone increasing on(−∞,0]. We now show thatf is monotone
increasing onR. Let x andy be real numbers withx > y. We want to show thatf (x) ≥ f (y). In
case 06∈ (x,y), we get the result by the hypothesis. In casex≥ 0≥ y, it follows that f (x) ≥ f (0) ≥
f (y).

Theorem 4.1. (Power Mean inequality for three variables) Let a, b, and c be positive real numbers.
We define a function M(a,b,c) : R −→ R by

M(a,b,c)(0) =
3
√

abc, M(a,b,c)(r) =

(
ar +br +cr

3

) 1
r

(r 6= 0).

Then, M(a,b,c) is a monotone increasing continuous function.

First Proof. Write M(r) = M(a,b,c)(r). We first establish thatM is continuous. SinceM is continuous
at r for all r 6= 0, it’s enough to show that

lim
r→0

M(r) =
3
√

abc.

Let f (x) = ln
(

ax+bx+cx

3

)

, wherex∈ R. Since f (0) = 0, the lemma 2 implies that

lim
r→0

f (r)
r

= lim
r→0

f (r)− f (0)

r −0
= f ′(0) = ln 3

√
abc.

Sinceex is a continuous function, this means that

lim
r→0

M(r) = lim
r→0

e
f (r)
r = eln 3√abc =

3
√

abc.

Now, we show thatM is monotone increasing. By the lemma 3, it will be enough to establish that
M is monotone increasing on(0,∞) and monotone increasing on(−∞,0). We first show thatM is
monotone increasing on(0,∞). Let x≥ y > 0. We want to show that

(
ax +bx +cx

3

) 1
x

≥
(

ay +by +cy

3

) 1
y

.

After the substitutionu = ay, v = ay, w = az, it becomes

(

u
x
y +v

x
y +w

x
y

3

) 1
x

≥
(

u+v+w
3

) 1
y

.
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Since it is homogeneous, we may normalize tou+v+w= 3. We are now required to show that

G(u)+G(v)+G(w)

3
≥ 1,

whereG(t) = t
x
y , wheret > 0. Sincex

y ≥ 1, we find thatG is convex. Jensen’s inequality shows that

G(u)+G(v)+G(w)

3
≥ G

(
u+v+w

3

)

= G(1) = 1.

Similarly, we may deduce thatM is monotone increasing on(−∞,0).

We’ve learned that the convexity off (x) = xλ (λ ≥ 1) implies the monotonicity of the power
means. Now, we shall show that the convexity ofxlnx also implies the power mean inequality.

Second Proof of the Monotonicity.Write f (x) = M(a,b,c)(x). We use the increasing function theo-
rem. By the lemma 3, it’s enough to show thatf ′(x) ≥ 0 for all x 6= 0. Letx∈ R−{0}. We compute

f ′(x)
f (x)

=
d
dx

(ln f (x)) = − 1
x2 ln

(
ax +bx +cx

3

)

+
1
x

1
3 (ax lna+bx lnb+cx lnc)

1
3(ax +bx +cx)

or
x2 f ′(x)

f (x)
= − ln

(
ax +bx +cx

3

)

+
ax lnax +bx lnbx +cx lncx

ax +bx +cx .

To establishf ′(x) ≥ 0, we now need to establish that

ax lnax +bx lnbx +cx lncx ≥ (ax +bx +cx) ln

(
ax +bx+cx

3

)

.

Let us introduce a functionf : (0,∞) −→ R by f (t) = t ln t, wheret > 0. After the substitution
p = ax, q = ay, r = az, it becomes

f (p)+ f (q)+ f (r) ≥ 3 f

(
p+q+ r

3

)

.

Since f is convex on(0,∞), it follows immediately from Jensen’s inequality.

As a corollary, we obtain the RMS-AM-GM-HM inequality for three variables.

Corollary 4.5. For all positive real numbers a, b, and c, we have
√

a2 +b2+c2

3
≥ a+b+c

3
≥ 3

√
abc≥ 3

1
a + 1

b + 1
c

.

Proof. The Power Mean inequality states thatM(a,b,c)(2) ≥ M(a,b,c)(1) ≥ M(a,b,c)(0) ≥ M(a,b,c)(−1).

Using the convexity ofxlnx or the convexity ofxλ (λ ≥ 1), we can also establish the mono-
tonicity of the power means forn positive real numbers.

Theorem 4.2. (Power Mean inequality) Let x1, · · · ,xn > 0. The power mean of order r is defined by

M(x1,··· ,xn)(0) = n
√

x1 · · ·xn , M(x1,··· ,xn)(r) =

(
xr

1 + · · ·+xn
r

n

) 1
r

(r 6= 0).

Then, M(x1,··· ,xn) : R −→ R is continuous and monotone increasing.
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We conclude that

Corollary 4.6. (Geometric Mean as a Limit) Let x1, · · · ,xn > 0. Then,

n
√

x1 · · ·xn = lim
r→0

(
x1

r + · · ·+xn
r

n

) 1
r

.

Theorem 4.3. (RMS-AM-GM-HM inequality) For all x1, · · · ,xn > 0, we have
√

x1
2 + · · ·+xn

2

n
≥ x1 + · · ·+xn

n
≥ n

√
x1 · · ·xn ≥

n
1
x1

+ · · ·+ 1
xn

.

3 Majorization Inequality

We say that a vector x= (x1, · · · ,xn) majorizesanother vector y= (y1, · · · ,yn) if

(1) x1 ≥ ·· · ≥ xn, y1 ≥ ·· · ≥ yn,
(2) x1 + · · ·+xk ≥ y1 + · · ·+yk for all 1≤ k≤ n−1,
(3) x1 + · · ·+xn = y1 + · · ·+yn.

Theorem 4.4. (Majorization Inequality) Let f : [a,b] −→ R be a convex function. Suppose that
(x1, · · · ,xn) majorizes(y1, · · · ,yn), where x1, · · · ,xn,y1, · · · ,yn ∈ [a,b]. Then, we obtain

f (x1)+ · · ·+ f (xn) ≥ f (y1)+ · · ·+ f (yn).

For example, we can minimize cosA+cosB+cosC, whereABC is an acute triangle. Recall that
−cosx is convex on

(
0, π

2

)
. Since

(π
2 , π

2 ,0
)

majorize(A,B,C), the majorization inequality implies
that

cosA+cosB+cosC≥ cos
(π

2

)

+cos
(π

2

)

+cos0= 1.

Also, in a triangle ABC, the convexity of tan2
(

x
4

)
on [0,π ] and the majorization inequality show

that

21−12
√

3= 3tan2
( π

12

)

≤ tan2
(

A
4

)

+ tan2
(

B
4

)

+ tan2
(

C
4

)

≤ tan2
(π

4

)

+ tan20+ tan20 = 1.

(IMO 1999/2) Let n be an integer withn≥ 2.

Determine the least constantC such that the inequality

∑
1≤i< j≤n

xix j(x
2
i +x2

j ) ≤C

(

∑
1≤i≤n

xi

)4

holds for all real numbersx1, · · · ,xn ≥ 0.

Second Solution.(Kin Y. Li 17) As in the first solution, after normalizingx1+ · · ·+xn = 1, we max-
imize

∑
1≤i< j≤n

xix j(x
2
i +x2

j ) =
n

∑
i=1

f (xi),

wheref (x) = x3−x4 is a convex function on[0, 1
2]. Since the inequality is symmetric, we can restrict

our attention to the casex1 ≥ x2 ≥ ·· · ≥ xn. If 1
2 ≥ x1, then we see that

(1
2, 1

2,0, · · ·0
)

majorizes
(x1, · · · ,xn). Hence, the convexity off on [0, 1

2] and the Majorization inequality show that

n

∑
i=1

f (xi) ≤ f

(
1
2

)

+ f

(
1
2

)

+ f (0)+ · · ·+ f (0) =
1
8
.

17I slightly modified his solution in [KYL].
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We now consider the case when12 ≥ x1. Write x1 = 1
2 − ε for someε ∈

[
0, 1

2

]
. We find that

(1−x1,0, · · ·0) majorizes(x2, · · · ,xn). By the Majorization inequality, we find that

n

∑
i=2

f (xi) ≤ f (1−x1)+ f (0)+ · · ·+ f (0) = f (1−x1)

so that

n

∑
i=1

f (xi) ≤ f (x1)+ f (1−x1) = x1(1−x1)[x1
2 +(1−x1)

2]

=

(
1
4
− ε2

)(
1
2

+2ε2
)

= 2

(
1
16

− ε4
)

≤ 1
8
.

4 Supporting Line Inequality

There is a simple way to find new bounds for given differentiable functions. We begin to show that
every supporting lines are tangent lines in the following sense.

Proposition 4.2. (Characterization of Supporting Lines) Let f be a real valued function. Let
m,n∈ R. Suppose that

(1) f(α) = mα +n for someα ∈ R,
(2) f(x) ≥ mx+n for all x in some interval(ε1,ε2) includingα, and
(3) f is differentiable atα.

Then, the supporting line y= mx+n of f is the tangent line of f at x= α.

Proof. Let us define a functionF : (ε1,ε2) −→ R by F(x) = f (x)−mx−n for all x∈ (ε1,ε2). Then,
F is differentiable atα and we obtainF ′(α) = f ′(α)−m. By the assumption (1) and (2), we see
thatF has a local minimum atα. So, the first derivative theorem for local extreme values implies
that 0= F ′(α) = f ′(α)−mso thatm= f ′(α) and thatn= f (α)−mα = f (α)− f ′(α)α. It follows
thaty = mx+n= f ′(α)(x−α)+ f (α).

(Nesbitt, 1903) For all positive real numbersa,b,c, we have

a
b+c

+
b

c+a
+

c
a+b

≥ 3
2
.

Proof 13. We may normalize to a+b+c= 1. Note that0< a,b,c< 1. The problem is now to prove

∑
cyclic

f (a) ≥ 3
2

⇔ f (a)+ f (b)+ f (c)
3

≥ f

(
1
3

)

, where f(x) =
x

1−x
.

The equation of the tangent line of f at x= 1
3 is given by y= 9x−1

4 . We claim that f(x) ≥ 9x−1
4 for

all x ∈ (0,1). It follows from the identity

f (x)− 9x−1
4

=
(3x−1)2

4(1−x)
.

Now, we conclude that

∑
cyclic

a
1−a

≥ ∑
cyclic

9a−1
4

=
9
4 ∑

cyclic

a− 3
4

=
3
2
.
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The above argument can be generalized. If a functionf has a supporting line at some point on
the graph off , then f satisfies Jensen’s inequality in the following sense.

Theorem 4.5. (Supporting Line Inequality) Let f : [a,b] −→ R be a function. Suppose thatα ∈
[a,b] and m∈ R satisfy

f (x) ≥ m(x−α)+ f (α)

for all x ∈ [a,b]. Letω1, · · · ,ωn > 0 with ω1 + · · ·+ ωn = 1. Then, the following inequality holds

ω1 f (x1)+ · · ·+ ωn f (xn) ≥ f (α)

for all x1, · · · ,xn ∈ [a,b] such thatα = ω1x1 + · · ·+ ωnxn. In particular, we obtain

f (x1)+ · · ·+ f (xn)

n
≥ f

( s
n

)

,

where x1, · · · ,xn ∈ [a,b] with x1 + · · ·+xn = s for some s∈ [na,nb].

Proof. It follows that ω1 f (x1) + · · ·+ ωn f (xn) ≥ ω1[m(x1 −α) + f (α)] + · · ·+ ω1[m(xn − α) +
f (α)] = f (α).

We can apply the supporting line inequality to deduce Jensen’s inequality for differentiable func-
tions.

Lemma 4.3. Let f : (a,b) −→ R be a convex function which is differentiable twice on(a,b). Let
y = lα (x) be the tangent line atα ∈ (a,b). Then, f(x) ≥ lα(x) for all x ∈ (a,b).

Proof. Let α ∈ (a,b). We want to show that the tangent liney= lα(x) = f ′(α)(x−α)+ f (α) is the
supporting line off atx= α such thatf (x) ≥ lα(x) for all x∈ (a,b). However, by Taylor’s theorem,
we can find aθx betweenα andx such that

f (x) = f (α)+ f ′(α)(x−α)+
f ′′(θx)

2
(x−α)2 ≥ f (α)+ f ′(α)(x−α).

(Weighted Jensen’s inequality) Let f : [a,b] −→ R be a continuous convex function
which is differentiable twice on(a,b). Let ω1, · · · ,ωn > 0 with ω1 + · · ·+ ωn = 1. For
all x1, · · · ,xn ∈ [a,b],

ω1 f (x1)+ · · ·+ ωn f (xn) ≥ f (ω1 x1 + · · ·+ ωn xn).

Third Proof. By the continuity of f , we may assume thatx1, · · · ,xn ∈ (a,b). Now, letµ = ω1 x1 +
· · ·+ ωn xn. Then,µ ∈ (a,b). By the above lemma,f has the tangent liney = lµ(x) = f ′(µ)(x−
µ)+ f (µ) at x = µ satisfying f (x) ≥ lµ(x) for all x∈ (a,b). Hence, the supporting line inequality
shows that

ω1 f (x1)+ · · ·+ ωn f (xn) ≥ ω1 f (µ)+ · · ·+ ωn f (µ) = f (µ) = f (ω1 x1 + · · ·+ ωn xn).

We note that the cosine function is concave on
[
0, π

2

]
and convex on

[ π
2 ,π
]
. Non-convex func-

tions can be locally convex and have supporting lines at somepoints. This means that the supporting
line inequality is a powerful tool because we can also produce Jensen-type inequalities for non-
convex functions.

(Theorem 6) In any triangleABC, we have cosA+cosB+cosC≤ 3
2.
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Third Proof. Let f (x) = −cosx. Our goal is to establish a three-variables inequality

f (A)+ f (B)+ f (C)

3
≥ f

(π
3

)

,

whereA,B,C ∈ (0,π) with A+ B+C = π . We computef ′(x) = sinx. The equation of the tangent

line of f at x = π
3 is given byy =

√
3

2

(
x− π

3

)
− 1

2. To apply the supporting line inequality, we need
to show that

−cosx≥
√

3
2

(

x− π
3

)

− 1
2

for all x∈ (0,π). This is a one-variable inequality! We omit the proof.

Problem 33. (Japan 1997) Let a, b, and c be positive real numbers. Prove that

(b+c−a)2

(b+c)2+a2 +
(c+a−b)2

(c+a)2+b2 +
(a+b−c)2

(a+b)2+c2 ≥ 3
5
.

Proof. Because of the homogeneity of the inequality, we may normalize toa+ b+ c = 1. It takes
the form

(1−2a)2

(1−a)2+a2 +
(1−2b)2

(1−b)2+b2 +
(1−2c)2

(1−c)2+c2 ≥ 3
5

⇔ 1
2a2−2a+1

+
1

2b2−2b+1
+

1
2c2−2c+1

≤ 27
5

.

We find that the equation of the tangent line off (x) = 1
2x2−2x+1

at x = 1
3 is given byy = 54

25x+ 27
25

and that

f (x)−
(

54
25

x+
27
25

)

= −2(3x−1)2(6x+1)

25(2x2−2x+1)
≤ 0.

for all x > 0. It follows that

∑
cyclic

f (a) ≤ ∑
cyclic

54
25

a+
27
25

=
27
5

.

5 Problems, Problems, Problems

Each problem that I solved became a rule, which served afterwards to solve other problems.Rene Descartes

1 Multivariable Inequalities

M 1. (IMO short-list 2003) Let (x1,x2, · · · ,xn) and(y1,y2, · · · ,yn) be two sequences of positive real
numbers. Suppose that(z1,z2, · · · ,zn) is a sequence of positive real numbers such that

zi+ j
2 ≥ xiy j

for all 1≤ i, j ≤ n. Let M= max{z2, · · · ,z2n}. Prove that

(
M +z2 + · · ·+z2n

2n

)2

≥
(

x1 + · · ·+xn

n

)(
y1 + · · ·+yn

n

)

.
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M 2. (Bosnia and Herzegovina 2002) Let a1, · · · ,an,b1, · · · ,bn,c1, · · · ,cn be positive real numbers.
Prove the following inequality :

(
n

∑
i=1

ai
3

)(
n

∑
i=1

bi
3

)(
n

∑
i=1

ci
3

)

≥
(

n

∑
i=1

aibici

)3

.

M 3. (C182113, Marcin E. Kuczma) Prove that inequality

n

∑
i=1

ai

n

∑
i=1

bi ≥
n

∑
i=1

(ai +bi)
n

∑
i=1

aibi

ai +bi

for any positive real numbers a1, · · · ,an,b1, · · · ,bn

M 4. (Yogoslavia 1998) Let n> 1 be a positive integer and a1, · · · ,an,b1, · · · ,bn be positive real
numbers. Prove the following inequality.

(

∑
i 6= j

aib j

)2

≥ ∑
i 6= j

aia j ∑
i 6= j

bib j .

M 5. (C2176, Sefket Arslanagic) Prove that

((a1 +b1) · · · (an +bn))
1
n ≥ (a1 · · ·an)

1
n +(b1 · · ·bn)

1
n

where a1, · · · ,an,b1, · · · ,bn > 0

M 6. (Korea 2001) Let x1, · · · ,xn and y1, · · · ,yn be real numbers satisfying

x1
2 + · · ·+xn

2 = y1
2 + · · ·+yn

2 = 1

Show that

2

∣
∣
∣
∣
∣
1−

n

∑
i=1

xiyi

∣
∣
∣
∣
∣
≥ (x1y2−x2y1)

2

and determine when equality holds.

M 7. (Singapore 2001) Let a1, · · · ,an,b1, · · · ,bn be real numbers between1001and2002inclusive.
Suppose that

n

∑
i=1

ai
2 =

n

∑
i=1

bi
2.

Prove that
n

∑
i=1

ai
3

bi
≤ 17

10

n

∑
i=1

ai
2.

Determine when equality holds.

M 8. (Abel’s inequality) Let a1, · · · ,aN,x1, · · · ,xN be real numbers with xn ≥ xn+1 > 0 for all n.
Show that

|a1x1 + · · ·+aNxN| ≤ Ax1

where
A = max{|a1|, |a1 +a2|, · · · , |a1 + · · ·+aN|}.

18CRUX with MAYHEM
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M 9. (China 1992) For every integer n≥ 2 find the smallest positive numberλ = λ (n) such that if

0≤ a1, · · · ,an ≤
1
2
, b1, · · · ,bn > 0, a1 + · · ·+an = b1+ · · ·+bn = 1

then
b1 · · ·bn ≤ λ (a1b1+ · · ·+anbn).

M 10. (C2551, Panos E. Tsaoussoglou) Suppose that a1, · · · ,an are positive real numbers. Let
ej ,k = n−1 if j = k and ej ,k = n−2 otherwise. Let dj ,k = 0 if j = k and dj ,k = 1 otherwise. Prove
that

n

∑
j=1

n

∏
k=1

ej ,kak
2 ≥

n

∏
j=1

(
n

∑
k=1

d j ,kak

)2

M 11. (C2627, Walther Janous) Let x1, · · · ,xn(n≥ 2) be positive real numbers and let x1+ · · ·+xn.
Let a1, · · · ,an be non-negative real numbers. Determine the optimum constant C(n) such that

n

∑
j=1

a j(sn−x j)

x j
≥C(n)

(
n

∏
j=1

a j

) 1
n

.

M 12. (Hungary-Israel Binational Mathematical Competition 2000) Suppose that k and l are
two given positive integers and ai j (1 ≤ i ≤ k,1 ≤ j ≤ l) are given positive numbers. Prove that if
q≥ p > 0, then





l

∑
j=1

(
k

∑
i=1

ai j
p

) q
p




1
q

≤





k

∑
i=1

(
l

∑
j=1

ai j
q

) p
q




1
p

.

M 13. (Kantorovich inequality) Suppose x1 < · · ·< xn are given positive numbers. Letλ1, · · · ,λn ≥
0 andλ1 + · · ·+ λn = 1. Prove that

(
n

∑
i=1

λixi

)(
n

∑
i=1

λi

xi

)

≤ A2

G2 ,

where A= x1+xn
2 and G=

√
x1xn.

M 14. (Czech-Slovak-Polish Match 2001) Let n≥ 2 be an integer. Show that

(a1
3 +1)(a2

3 +1) · · ·(an
3 +1)≥ (a1

2a2 +1)(a2
2a3 +1) · · ·(an

2a1+1)

for all nonnegative reals a1, · · · ,an.

M 15. (C1868, De-jun Zhao) Let n≥ 3, a1 > a2 > · · · > an > 0, and p> q > 0. Show that

a1
pa2

q +a2
pa3

q + · · ·+an−1
pan

q +an
pa1

q ≥ a1
qa2

p +a2
qa3

p + · · ·+an−1
qan

p +an
qa1

p

M 16. (Baltic Way 1996) For which positive real numbers a,b does the inequality

x1x2 +x2x3 + · · ·+xn−1xn +xnx1 ≥ x1
ax2

bx3
a +x2

ax3
bx4

a + · · ·+xn
ax1

bx2
a

holds for all integers n> 2 and positive real numbers x1, · · · ,xn.

M 17. (IMO short List 2000) Let x1,x2, · · · ,xn be arbitrary real numbers. Prove the inequality

x1

1+x1
2 +

x2

1+x1
2 +x2

2 + · · ·+ xn

1+x1
2 + · · ·+xn

2 <
√

n.
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M 18. (MM191479, Donald E. Knuth) Let Mn be the maximum value of the quantity

xn

(1+x1+ · · ·+xn)2 +
x2

(1+x2+ · · ·+xn)2 + · · ·+ x1

(1+xn)2

over all nonnegative real numbers(x1, · · · ,xn). At what point(s) does the maximum occur ? Express
Mn in terms of Mn−1, and findlimn→∞ Mn.

M 19. (IMO 1971) Prove the following assertion is true for n= 3 and n= 5 and false for every
other natural number n> 2 : if a1, · · · ,an are arbitrary real numbers, then

n

∑
i=1

∏
i 6= j

(ai −a j) ≥ 0.

M 20. (IMO 2003) Let x1 ≤ x2 ≤ ·· · ≤ xn be real numbers.
(a) Prove that

(

∑
1≤i, j≤n

|xi −x j |
)2

≤ 2(n2−1)

3 ∑
1≤i, j≤n

(xi −x j)
2.

(b) Show that the equality holds if and only if x1,x2, · · · ,xn is an arithmetic sequence.

M 21. (Bulgaria 1995) Let n≥ 2 and0≤ x1, · · · ,xn ≤ 1. Show that

(x1 +x2 + · · ·+xn)− (x1x2 +x2x3 + · · ·+xnx1) ≤
[n

2

]

,

and determine when there is equality.

M 22. (MM1407, M. S. Klamkin) Determine the maximum value of the sum

x1
p +x2

p + · · ·+xn
p−x1

qx2
r −x2

qx3
r −·· ·xn

qx1
r ,

where p,q, r are given numbers with p≥ q≥ r ≥ 0 and0≤ xi ≤ 1 for all i.

M 23. (IMO Short List 1998) Let a1,a2, · · · ,an be positive real numbers such that

a1 +a2+ · · ·+an < 1.

Prove that
a1a2 · · ·an(1− (a1+a2+ · · ·+an))

(a1 +a2+ · · ·+an)(1−a1)(1−a2) · · · (1−an)
≤ 1

nn+1 .

M 24. (IMO Short List 1998) Let r1, r2, · · · , rn be real numbers greater than or equal to1. Prove
that

1
r1 +1

+ · · ·+ 1
rn +1

≥ n

(r1 · · · rn)
1
n +1

.

M 25. (Baltic Way 1991) Prove that, for any real numbers a1, · · · ,an,

∑
1≤i, j≤n

aia j

i + j −1
≥ 0.

M 26. (India 1995) Let x1,x2, · · · ,xn be positive real numbers whose sum is1. Prove that

x1

1−x1
+ · · ·+ xn

1−xn
≥
√

n
n−1

.

19Mathematics Magazine
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M 27. (Turkey 1997) Given an integer n≥ 2, Find the minimal value of

x1
5

x2 +x3+ · · ·+xn
+

x2
5

x3 + · · ·+xn+x1
+ · · · xn

5

x1 +x3 + · · ·+xn−1

for positive real numbers x1, · · · ,xn subject to the condition x1
2 + · · ·+xn

2 = 1.

M 28. (China 1996) Suppose n∈ N, x0 = 0, x1, · · · ,xn > 0, and x1 + · · ·+xn = 1. Prove that

1≤
n

∑
i=1

xi√
1+x0+ · · ·+xi−1

√
xi + · · ·+xn

<
π
2

M 29. (Vietnam 1998) Let x1, · · · ,xn be positive real numbers satisfying

1
x1 +1998

+ · · ·+ 1
xn +1998

=
1

1998
.

Prove that
(x1 · · ·xn)

1
n

n−1
≥ 1998

M 30. (C2768 Mohammed Aassila) Let x1, · · · ,xn be n positive real numbers. Prove that

x1
√

x1x2 +x2
2

+
x2

√

x2x3 +x3
2

+ · · ·+ xn
√

xnx1 +x1
2
≥ n√

2

M 31. (C2842, George Tsintsifas) Let x1, · · · ,xn be positive real numbers. Prove that

(a)
x1

n + · · ·+xn
n

nx1 · · ·xn
+

n(x1 · · ·xn)
1
n

x1 + · · ·+xn
≥ 2,

(b)
x1

n + · · ·+xn
n

x1 · · ·xn
+

(x1 · · ·xn)
1
n

x1 + · · ·+xn
≥ 1.

M 32. (C2423, Walther Janous) Let x1, · · · ,xn(n≥ 2) be positive real numbers such that x1 + · · ·+
xn = 1. Prove that (

1+
1
x1

)

· · ·
(

1+
1
xn

)

≥
(

n−x1

1−x1

)

· · ·
(

n−xn

1−xn

)

Determine the cases of equality.

M 33. (C1851, Walther Janous) Let x1, · · · ,xn(n≥ 2) be positive real numbers such that

x1
2 + · · ·+xn

2 = 1.

Prove that
2
√

n−1
5
√

n−1
≤

n

∑
i=1

2+xi

5+xi
≤ 2

√
n+1

5
√

n+1
.

M 34. (C1429, D. S. Mitirinovic, J. E. Pecaric) Show that

n

∑
i=1

xi

xi
2 +xi+1xi+2

≤ n−1

where x1, · · · ,xn are n≥ 3 positive real numbers. Of course, xn+1 = x1,xn+2 = x2. 20

20 Original version is to show thatsup∑n
i=1

xi
xi

2+xi+1xi+2
= n−1.
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M 35. (Belarus 1998 S. Sobolevski) Let a1 ≤ a2 ≤ ·· · ≤ an be positive real numbers. Prove the
inequalities

(a)
n

1
a1

+ · · ·+ 1
an

≥ a1

an
· a1 + · · ·+an

n
,

(b)
n

1
a1

+ · · ·+ 1
an

≥ 2k
1+k2 ·

a1 + · · ·+an

n
,

where k= an
a1

.

M 36. (Hong Kong 2000) Let a1 ≤ a2 ≤ ·· · ≤ an be n real numbers such that

a1 +a2+ · · ·+an = 0.

Show that
a1

2 +a2
2 + · · ·+an

2 +na1an ≤ 0.

M 37. (Poland 2001) Let n≥ 2 be an integer. Show that

n

∑
i=1

xi
i +

(
n
2

)

≥
n

∑
i=1

ixi

for all nonnegative reals x1, · · · ,xn.

M 38. (Korea 1997) Let a1, · · · ,an be positive numbers, and define

A =
a1 + · · ·+an

n
,G = (a1 · · ·n)

1
n ,H =

n
1
a1

+ · · ·+ 1
an

(a) If n is even, show that
A
H

≤−1+2

(
A
G

)n

.

(b) If n is odd, show that
A
H

≤−n−2
n

+
2(n−1)

n

(
A
G

)n

.

M 39. (Romania 1996) Let x1, · · · ,xn,xn+1 be positive reals such that

xn+1 = x1 + · · ·+xn.

Prove that
n

∑
i=1

√

xi(xn+1−xi) ≤
√

xn+1(xn+1−xi)

M 40. (C2730, Peter Y. Woo) Let AM(x1, · · · ,xn) and GM(x1, · · · ,xn) denote the arithmetic mean
and the geometric mean of the positive real numbers x1, · · · ,xn respectively. Given positive real
numbers a1, · · · ,an,b1, · · · ,bn, (a) prove that

GM(a1 +b1, · · · ,an +bn) ≥ GM(a1, · · · ,an)+GM(b1, · · · ,bn).

For each real number t≥ 0, define

f (t) = GM(t +b1,t +b2, · · · ,t +bn)− t

(b) Prove that f is a monotonic increasing function, and that

lim
t→∞

f (t) = AM(b1, · · · ,bn)
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M 41. (C1578, O. Johnson, C. S. Goodlad) For each fixed positive real number an, maximize

a1a2 · · ·an

(1+a1)(a1 +a2)(a2 +a3) · · · (an−1+an)

over all positive real numbers a1, · · · ,an−1.

M 42. (C1630, Isao Ashiba) Maximize

a1a2 +a3a4 + · · ·+a2n−1a2n

over all permutations a1, · · · ,a2n of the set{1,2, · · · ,2n}
M 43. (C1662, M. S. Klamkin) Prove that

x1
2r+1

s−x1
+

x2
2r+1

s−x2
+ · · · xn

2r+1

s−xn
≥ 4r

(n−1)n2r−1 (x1x2 +x2x3 + · · ·+xnx1)
r

where n> 3, r ≥ 1
2, xi ≥ 0 for all i, and s= x1 + · · ·+ xn. Also, Find some values of n and r such

that the inequality is sharp.

M 44. (C1674, M. S. Klamkin) Given positive real numbers r,s and an integer n> r
s, find positive

real numbers x1, · · · ,xn so as to minimize
(

1
x1

r +
1

x2
r + · · ·+ 1

xn
r

)

(1+x1)
s(1+x2)

s · · ·(1+xn)
s.

M 45. (C1691, Walther Janous) Let n≥ 2. Determine the best upper bound of

x1

x2x3 · · ·xn +1
+

x2

x1x3 · · ·xn +1
+ · · ·+ xn

x1x2 · · ·xn−1 +1

over all x1, · · · ,xn ∈ [0,1].

M 46. (C1892, Marcin E. Kuczma) Let n≥ 4 be an integer. Find the exact upper and lower bounds
for the cyclic sum

n

∑
i=1

xi

xi−1 +xi +xi+1

over all n-tuples of nonnegative numbers x1, · · · ,xn such that xi−1+xi +xi+1 > 0 for all i. Of course,
xn+1 = x1, x0 = xn. Characterize all cases in which either one of these bounds is attained.

M 47. (C1953, M. S. Klamkin) Determine a necessary and sucient condition on real constants
r1, · · · , rn such that

x1
2 +x2

2 + ·+xn
2 ≥ (r1x1 + r2x2 + · · ·+ rnxn)

2

holds for all real numbers x1, · · · ,xn.

M 48. (C2018, Marcin E. Kuczma) How many permutations(x1, · · · ,xn) of {1,2, · · · ,n} are there
such that the cyclic sum

|x1−x2|+ |x2−x3|+ · · ·+ |xn−1−xn|+ |xn−x1|

is (a) a minimum, (b) a maximum ?

M 49. (C2214, Walther Janous) Let n≥ 2 be a natural number. Show that there exists a constant
C = C(n) such that for all x1, · · · ,xn ≥ 0 we have

n

∑
i=1

√
xi ≤

√
n

∏
i=1

(xi +C)

Determine the minimum C(n) for some values of n. (For example, C(2) = 1.)
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M 50. (C2615, M. S. Klamkin) Suppose that x1, · · · ,xn are non-negative numbers such that

∑xi
2∑(xixi+1)

2 =
n(n+1)

2

where e the sums here and subsequently are symmetric over thesubscripts{1, · · · ,n}. (a) Determine

the maximum of∑ xi . (b) Prove or disprove that the minimum of∑ xi is
√

n(n+1)
2 .

M 51. (Turkey 1996) Given real numbers0 = x1 < x2 < · · · < x2n,x2n+1 = 1 with xi+1−xi ≤ h for
1≤ i ≤ n, show that

1−h
2

<
n

∑
i=1

x2i(x2i+1−x2i−1) <
1+h

2
.

M 52. (Poland 2002) Prove that for every integer n≥ 3 and every sequence of positive numbers
x1, · · · ,xn at least one of the two inequalities is satsified :

n

∑
i=1

xi

xi+1 +xi+2
≥ n

2
,

n

∑
i=1

xi

xi−1 +xi−2
≥ n

2
.

Here, xn+1 = x1,xn+2 = x2,x0 = xn,x−1 = xn−1.

M 53. (China 1997) Let x1, · · · ,x1997 be real numbers satisfying the following conditions:

− 1√
3
≤ x1, · · · ,x1997≤

√
3,x1 + · · ·+x1997= −318

√
3

Determine the maximum value of x1
12+ · · ·+x1997

12.

M 54. (C2673, George Baloglou) Let n> 1 be an integer. (a) Show that

(1+a1 · · ·an)
n ≥ a1 · · ·an(1+a1

n−2) · · · (1+a1
n−2)

for all a1, · · · ,an ∈ [1,∞) if and only if n≥ 4.
(b) Show that

1
a1(1+a2

n−2)
+

1
a2(1+a3

n−2)
+ · · ·+ 1

an(1+a1
n−2)

≥ n
1+a1 · · ·an

for all a1, · · · ,an > 0 if and only if n≤ 3.
(c) Show that

1
a1(1+a1

n−2)
+

1
a2(1+a2

n−2)
+ · · ·+ 1

an(1+an
n−2)

≥ n
1+a1 · · ·an

for all a1, · · · ,an > 0 if and only if n≤ 8.

M 55. (C2557, Gord Sinnamon,Hans Heinig) (a) Show that for all positive sequences{xi}

n

∑
k=1

k

∑
j=1

j

∑
i=1

xi ≤ 2
n

∑
k=1

(
k

∑
j=1

x j

)2
1
xk

.

(b) Does the above inequality remain true without the factor2? (c) What is the minimum constant c
that can replace the factor2 in the above inequality?

M 56. (C1472, Walther Janous) For each integer n≥ 2, Find the largest constant Cn such that

Cn

n

∑
i=1

|ai | ≤ ∑
1≤i< j≤n

|ai −a j |

for all real numbers a1, · · · ,an satisfying∑n
i=1ai = 0.
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M 57. (China 2002) Given c∈
(1

2,1
)
. Find the smallest constant M such that, for any integer n≥ 2

and real numbers1 < a1 ≤ a2 ≤ ·· · ≤ an, if

1
n

n

∑
k=1

kak ≤ c
n

∑
k=1

ak,

then
n

∑
k=1

ak ≤ M
m

∑
k=1

kak,

where m is the largest integer not greater than cn.

M 58. (Serbia 1998) Let x1,x2, · · · ,xn be positive numbers such that

x1 +x2 + · · ·+xn = 1.

Prove the inequality
ax1−x2

x1 +x2
+

ax2−x3

x2 +x3
+ · · · axn−x1

xn +x1
≥ n2

2
,

holds true for every positive real number a. Determine also when the equality holds.

M 59. (MM1488, Heinz-Jurgen Seiffert) Let n be a positive integer. Show that if0 < x1 ≤ x2 ≤ xn,
then

n

∏
i=1

(1+xi)

(
n

∑
j=0

j

∏
k=1

1
xk

)

≥ 2n(n+1)

with equality if and only if x1 = · · · = xn = 1.

M 60. (Leningrad Mathematical Olympiads 1968) Let a1,a2, · · · ,ap be real numbers. Let M=
maxS and m= minS. Show that

(p−1)(M−m)≤ ∑
1≤i, j≤n

|ai −a j | ≤
p2

4
(M−m)

M 61. (Leningrad Mathematical Olympiads 1973) Establish the following inequality

8

∑
i=0

2i cos
( π

2i+2

)(

1−cos
( π

2i+2

))

<
1
2
.

M 62. (Leningrad Mathematical Olympiads 2000) Show that, for all0 < x1 ≤ x2 ≤ . . . ≤ xn,

x1x2

x3
+

x2x3

x4
+ · · ·+ xn1x1

x2
+

xnx1

x2
≥

n

∑
i=1

xi

M 63. (Mongolia 1996) Show that, for all0 < a1 ≤ a2 ≤ . . . ≤ an,
(

a1 +a2

2

)(
a2 +a3

2

)

· · ·
(

an +a1

2

)

≤
(

a1 +a2+a3

3

)(
a2 +a3+a4

3

)

· · ·
(

an +a1+a2

3

)

.

2 Problems for Putnam Seminar

P 1. Putnam 04A6 Suppose that f(x,y) is a continuous real-valued function on the unit square
0≤ x≤ 1,0≤ y≤ 1. Show that

∫ 1

0

(∫ 1

0
f (x,y)dx

)2

dy+

∫ 1

0

(∫ 1

0
f (x,y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0
f (x,y)dxdy

)2

+

∫ 1

0

∫ 1

0
( f (x,y))2dxdy.
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P 2. Putnam 04B2 Let m and n be positive integers. Show that

(m+n)!
(m+n)m+n <

m!
mm

n!
nn .

P 3. Putnam 03A2 Let a1,a2, . . . ,an and b1,b2, . . . ,bn be nonnegative real numbers. Show that

(a1a2 · · ·an)
1/n +(b1b2 · · ·bn)

1/n ≤ [(a1 +b1)(a2 +b2) · · · (an +bn)]
1/n.

P 4. Putnam 03A3 Find the minimum value of

|sinx+cosx+ tanx+cotx+secx+cscx|

for real numbers x.

P 5. Putnam 03A4 Suppose that a,b,c,A,B,C are real numbers, a6= 0 and A6= 0, such that

|ax2 +bx+c| ≤ |Ax2 +Bx+C|

for all real numbers x. Show that

|b2−4ac| ≤ |B2−4AC|.

P 6. Putnam 03B6 Let f(x) be a continuous real-valued function defined on the interval[0,1].
Show that

∫ 1

0

∫ 1

0
| f (x)+ f (y)|dxdy≥

∫ 1

0
| f (x)|dx.

P 7. Putnam 02B3 Show that, for all integers n> 1,

1
2ne

<
1
e
−
(

1− 1
n

)n

<
1
ne

.

P 8. Putnam 01A6 Can an arc of a parabola inside a circle of radius 1 have a length greater than
4?

P 9. Putnam 99A5 Prove that there is a constant C such that, if p(x) is a polynomial of degree
1999, then

|p(0)| ≤C
∫ 1

−1
|p(x)|dx.

P 10. Putnam 99B4 Let f be a real function with a continuous third derivative such that f(x),
f ′(x), f ′′(x), f ′′′(x) are positive for all x. Suppose that f′′′(x) ≤ f (x) for all x. Show that f′(x) <
2 f (x) for all x.

P 11. Putnam 98B4 Let am,n denote the coefficient of xn in the expansion of(1+x+x2)m. Prove
that for all integers k≥ 0,

0≤
⌊ 2k

3 ⌋

∑
i=0

(−1)iak−i,i ≤ 1.

P 12. Putnam 98B1 Find the minimum value of

(
x+ 1

x

)6−
(

x6 + 1
x6

)

−2
(
x+ 1

x

)3
+
(

x3 + 1
x3

)

for x > 0.
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P 13. Putnam 96B2 Show that for every positive integer n,

(
2n−1

e

) 2n−1
2

< 1 ·3 ·5· · ·(2n−1) <

(
2n+1

e

) 2n+1
2

.

P 14. Putnam 96B3 Given that{x1,x2, . . . ,xn}= {1,2, . . . ,n}, find, with proof, the largest possible
value, as a function of n (with n≥ 2), of

x1x2 +x2x3 + · · ·+xn−1xn +xnx1.

P 15. Putnam 91B6 Let a and b be positive numbers. Find the largest number c, in terms of a and
b, such that

axb1−x ≤ a
sinhux
sinhu

+b
sinhu(1−x)

sinhu

for all u with 0 < |u| ≤ c and for all x,0 < x < 1.

P 16. (CMJ21416, Joanne Harris) For what real values of c is

ex +e−x

2
≤ ecx2

.

for all real x?

P 17. (CMJ420, Edward T. H. Wang) It is known [Daniel I. A. Cohen, Basic Techniques of Combi-
natorial Theory, p.56] and easy to show that2n <

(2n
n

)
< 22n for all integers n> 1. Prove that the

stronger inequalities
22n−1
√

n
<

(
2n
n

)

<
22n
√

n

hold for all n≥ 4.

P 18. (CMJ379, Mohammad K. Azarian) Let x be any real number. Prove that

(1−cosx)

∣
∣
∣
∣
∣

n

∑
k=1

sin(kx)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n

∑
k=1

cos(kx)

∣
∣
∣
∣
∣
≤ 2.

P 19. (CMJ392 Robert Jones) Prove that
(

1+
1
x2

)(

xsin
1
x

)

> 1 for x≥ 1√
5
.

P 20. (CMJ431 R. S. Luthar) Let0 < φ < θ < π
2 . Prove that

[(1+ tan2 φ)(1+sin2 φ)]csc2 φ < [(1+ tan2 θ )(1+sin2 θ )]csc2 θ .

P 21. (CMJ451, Mohammad K. Azarian) Prove that

πsec2 α cos2 α + πcsc2 α sin2 α ≥ π2,

provided0 < α < π
2 .

P 22. (CMJ446, Norman Schaumberger) If x, y, and z are the radian measures of the angles in a
(non-degenerate) triangle, prove that

π sin
3
π
≥ xsin

1
x

+ysin
1
y

+zsin
1
z
.

21The College Mathematics Journal
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P 23. (CMJ461, Alex Necochea) Let 0 < x < π
2 and0 < y < 1. Prove that

x−arcsiny≤
√

1−y2−cosx
y

,

with equality holding if and only if y= sinx.

P 24. (CMJ485 Norman Schaumberger) Prove that
(1) if a≥ b > 1 or 1 > a≥ b > 0, then ab

b
baa ≥ aba

bab
; and

(2) if a > 1 > b > 0, then ab
b
baa ≤ aba

bab
.

P 25. (CMJ524 Norman Schaumberger) Let a, b, and c be positive real numbers. Show that

aabbcc ≥
(

a+b
2

)a(b+c
2

)b(c+a
2

)c

≥ bacbac.

P 26. (CMJ567 H.-J. Seiffert) Show that for all ditinct positive real numbers x and y,

(√
x+

√
y

2

)2

<
x−y

2sinhx−y
x+y

<
x+y

2
.

P 27. (CMJ572, George Baloglou and Robert Underwood) Prove or disprove that forθ ∈
(
− π

4 , π
4

)
,

coshθ ≤ 1√
1−tan2 θ

.

P 28. (CMJ603, Juan-Bosco Romero Marquez) Let a and b be distinct positive real numbers and
let n be a positive integer. Prove that

a+b
2

≤ n

√

bn+1−an+1

(n+1)(b−a)
≤ n

√

an +bn

2
.

P 29. (MM22904, Norman Schaumberger) For x > 2, prove that

ln

(
x

x−1

)

≤
∞

∑
j=0

1
x2 j ≤ ln

(
x−1
x−2

)

.

P 30. (MM1590, Constantin P. Niculescu) For given a,0 < a < π
2 , determine the minimum value

of α ≥ 0 and the maximum value ofβ ≥ 0 for which

(x
a

)α
≤ sinx

sina
≤
(x

a

)β
.

(This generalize the well-known inequality due to Jordan, which asserts that2x
π ≤ sinx≤ 1 on [0, π

2 ].)

P 31. (MM1597, Constantin P. Niculescu) For every x,y∈
(
0,
√π

2

)
with x 6= y, prove that

(

ln
1−sinxy
1+sinxy

)2

≥ ln
1−sinx2

1+sinx2 ln
1−siny2

1+siny2 .

P 32. (MM1599, Ice B. Risteski) Givenα > β > 0 and f(x) = xα(1− x)β . If 0 < a < b < 1 and
f (a) = f (b), show that f′(α) < − f ′(β ).

P 33. (MM Q197, Norman Schaumberger) Prove that if b> a > 0, then
(

a
b

)a ≥ ea

eb ≥
(

a
b

)b
.

22Mathematics Magazine
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P 34. (MM1618, Michael Golomb) Prove that0 < x < π ,

x
π −x
π +x

< sinx <
(

3− x
π

)

x
π −x
π +x

.

P 35. (MM1634, Constantin P. Niculescu) Find the smallest constant k> 0 such that

ab
a+b+2c

+
bc

b+c+2a
+

ca
c+a+2b

≤ k(a+b+c)

for every a,b,c > 0.

P 36. (MM1233, Robert E. Shafer) Prove that if x> −1 and x 6= 0, then

x2

1+x+ x2

2 −
x4
120

1+x+ 31
252x2

< [ln(1+x)]2 <
x2

1+x+ x2

2 −
x4
240

1+x+ 1
20x2

.

P 37. (MM1236, Mihaly Bencze) Let the functions f and g be defined by

f (x) =
π2x

2π2+8x2 and g(x) =
8x

4π2+ πx2

for all real x. Prove that if A, B, and C are the angles of an acuted-angle triangle, and R is its
circumradius then

f (A)+ f (B)+ f (C) <
a+b+c

4R
< g(A)+g(B)+g(C).

P 38. (MM1245, Fouad Nakhli) For each number x in open interval(1,e) it is easy to show that
there is a unique number y in(e,∞) such thatlny

y = lnx
x . For such an x and y, show that x+ y >

xlny+ylnx.

P 39. (MM Q725, S. Kung) Show that(sinx)y≤ sin(xy), where0 < x < π and0 < y < 1.

P 40. (MM Q771, Norman Schaumberger) Show that if0 < θ < π
2 , thensin2θ ≥ (tanθ )cos2θ .
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AK F. F. Abi-Khuzam,A Trigonometric Inequality and its Geometric Applications, Mathematical
Inequalities and Applications, Vol. 3, No. 3 (2000), 437-442

AMN A. M. Nesbitt, Problem 15114, Educational Times (2) 3(1903), 37-38

AP A. Padoa, Period. Mat. (4)5 (1925), 80-85

Au99 A. Storozhev,AMOC Mathematics Contests 1999, Australian Mathematics Trust

DP D. Pedoe,Thinking Geometrically, Amer. Math. Monthly 77(1970), 711-721
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