

This page intentionally left blank

Digital Signal Processing using MATLAB

This page intentionally left blank

Digital Signal
Processing using

MATLAB

André Quinquis

First published in France in 2007 by Hermes Science/Lavoisier entitled “Le traitement du signal sous
Matlab : pratique et applications”, 2nd edition
First published in Great Britain and the United States in 2008 by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA.
Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
6 Fitzroy Square 111 River Street
London W1T 5DX Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd, 2008
© LAVOISIER, 2007

The rights of André Quinquis to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Quinquis, André.
 [Traitement du signal sous MATLAB. English]
 Digital signal processing using MATLAB / André Quinquis.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-1-84821-011-0
 1. Signal processing--Digital techniques. I. Title.
 TK5102.9.Q853 2008
 621.382'2--dc22

 2007043209

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN: 978-1-84821-011-0

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.

http://www.wiley.com

Table of Contents

Preface . ix

Chapter 1. Introduction . 1

1.1. Brief introduction to MATLAB . 1
1.1.1. MATLAB software presentation . 1
1.1.2. Important MATLAB commands and functions 3
1.1.3. Operating modes and programming with MATLAB 8
1.1.4. Example of work session with MATLAB 10
1.1.5. MATLAB language . 13

1.2. Solved exercises . 13

Chapter 2. Discrete-Time Signals . 23

2.1. Theoretical background. 23
2.1.1. Mathematical model of 1D and 2D discrete-time signals 25
2.1.2. Basic 1D and 2D discrete-time signals 26
2.1.3. Periodic 1D and 2D discrete-time signals representation
using the discrete-time Fourier series . 26
2.1.4. Representation of non-periodic 1D and 2D discrete-time
signals by discrete-time Fourier transform 27
2.1.5. Analytic signals . 27

2.2. Solved exercises . 29
2.3. Exercises . 51

Chapter 3. Discrete-Time Random Signals . 55

3.1. Theoretical background. 55
3.1.1. Introduction . 55
3.1.2. Real random variables . 56
3.1.3. Random processes . 60

vi Digital Signal Processing using MATLAB

3.2. Solved exercises . 64
3.3. Exercises . 80

Chapter 4. Statistical Tests and High Order Moments 83

4.1. Theoretical background. 83
4.1.1. Moments . 84
4.1.2. Cumulants . 84
4.1.3. Cumulant properties . 85
4.1.4. Chi-square (Chi2) tests. 86
4.1.5. Normality test using the Henry line 86

4.2. Solved exercises . 88
4.3. Exercises . 99

Chapter 5. Discrete Fourier Transform of Discrete-Time Signals 103

5.1. Theoretical background. 103
5.1.1. Discrete Fourier transform of 1D digital signals. 104
5.1.2. DFT of 2D digital signals . 105
5.1.3. Z-transform of 1D digital signals . 106
5.1.4. Z-transform of 2D digital signals . 106
5.1.5. Methods and algorithms for the DFT calculation 106

5.2. Solved exercises . 109
5.3. Exercises . 134

Chapter 6. Linear and Invariant Discrete-Time Systems. 137

6.1. Theoretical background. 137
6.1.1. LTI response calculation. 137
6.1.2. LTI response to basic signals . 139

6.2. Solved exercises . 141
6.3. Exercises . 169

Chapter 7. Infinite Impulse Response Filters 173

7.1. Theoretical background. 173
7.1.1. Transfer function and filter specifications for infinite
impulse response (IIR) filters. 173
7.1.2. Design methods for IIR filters . 174
7.1.3. Frequency transformations . 180

7.2. Solved exercises . 182
7.3. Exercises . 194

Preface vii

Chapter 8. Finite Impulse Response Filters . 197

8.1. Theoretical background. 197
8.1.1. Transfer function and properties of FIR filters. 197
8.1.2. Design methods . 199
8.1.3. General conclusion about digital filter design 203

8.2. Solved exercises . 204
8.3. Exercises . 213

Chapter 9. Detection and Estimation . 215

9.1. Theoretical background. 215
9.1.1. Matched filtering: optimal detection of a known noisy signal. . . . 215
9.1.2. Linear optimal estimates. 216
9.1.3. Least squares (LS) method . 221
9.1.4. LS method with forgetting factor . 222

9.2. Solved exercises . 223
9.3. Exercises . 239

Chapter 10. Power Spectrum Density Estimation 241

10.1. Theoretical background . 241
10.1.1. Estimate properties . 241
10.1.2. Power spectral density estimation 242
10.1.3. Parametric spectral analysis . 245
10.1.4. Superresolution spectral analysis methods 250
10.1.5. Other spectral analysis methods . 256

10.2. Solved exercises . 257
10.3. Exercises. 277

Chapter 11. Time-Frequency Analysis . 279

11.1. Theoretical background . 279
11.1.1. Fourier transform shortcomings: interpretation difficulties 279
11.1.2. Spectrogram . 280
11.1.3. Time-scale analysis – wavelet transform 281
11.1.4. Wigner-ville distribution . 284
11.1.5. Smoothed WVD (SWVD) . 287

11.2. Solved exercises . 288
11.3. Exercises. 304

Chapter 12. Parametrical Time-Frequency Methods 307

12.1. Theoretical background . 307
12.1.1. Fractional Fourier transform. 307

viii Digital Signal Processing using MATLAB

12.1.2. Phase polynomial analysis concept. 309
12.1.3. Time-frequency representations based on warping operators . . . 314

12.2. Solved exercises . 317
12.3. Exercises. 338

Chapter 13. Supervised Statistical Classification. 343

13.1. Theoretical background . 343
13.1.1. Introduction . 343
13.1.2. Data analysis methods . 344
13.1.3. Supervised classifiers. 348

13.2. Solved exercises . 362
13.3. Exercises. 379

Chapter 14. Data Compression . 383

14.1. Theoretical background . 383
14.1.1. Transform-based compression methods 384
14.1.2. Parametric (predictive) model-based compression methods 385
14.1.3. Wavelet packet-based compression methods 386
14.1.4. Vector quantization-based compression methods 387
14.1.5. Neural network-based compression methods 388

14.2. Solved exercises . 390
14.3. Exercises. 403

References . 405

Index . 407

Preface

Why and How this Book was Written

Sometimes it is easier to say what a book is not than what it exactly represents. It
may be also better to resume the authors’ motivations than to explain the book
content itself.

From this point of view, our book is certainly not a traditional course, although it
recalls many theoretical signal processing concepts. Indeed, we emphasize a limited
number of important ideas instead of making a detailed description of the involved
concepts. Intuitive manners have been used to link these concepts to physical
aspects. Hence, we hope that reading this book will be much more exciting than
studying a traditional signal processing course.

This book is also not a physics course, although a major purpose of most
proposed exercises is to link abstract signal processing concepts to real-life
problems. These connections are illustrated in a simple and comprehensive manner
through MATLAB simulations.

The main topics of this book cover the usual program of an undergraduate signal
processing course. It is especially written for language and computer science
students, but also for a much larger scientific community who may wish to have a
comprehensive signal processing overview. Students will certainly find here what
they are looking for, while others will probably find new and interesting knowledge.

This book is also intended to illustrate our pedagogical approach, which is based
on three major reasons:

1. Students need to know how the teaching provided can be useful for them; it is
their customer attitude.

x Digital Signal Processing using MATLAB

2. Students have good potential for doing independent work; their interest and
curiosity should be continuously stimulated by:

– using a diversified pedagogical approach that combines the two sides of a
complete presentation methodology: from components to the system and vice versa;

– encouraging them to take advantage of their creativity through interactive
educational tools; they should be allowed to make changes and even contribute to
their development.

3. Students have to improve and validate their knowledge through written work;
writing is still the best way to focus someone’s concentration.

The role of simulations is becoming more and more important in the framework
of a scientific education because it is an effective way to understand many physical
phenomena, some of them less known or mastered, and to take into account their
complexity. Simulations may be thus very useful for:

− understanding working principles and deriving behavior laws;

− learning about processing methods and systems running using algorithms to
reproduce them off-line;

− evaluating the performance and robustness of various algorithms and
estimating the influence of different parameters.

Simulations in signal processing education enable students to learn faster and
facilitate the comprehension of the involved physical principles. From a teaching
point of view, simulation tools lead to lower costs and time efficiency.

This book is based on a signal processing course, which has been successfully given
for many years in several universities. According to our experience, signal theory
abstract concepts and signal processing practical potentialities can be linked only through
tutorial classes and simulation projects. In this framework, simulations appear to be the
necessary complement for the classical tripod theory – modeling – experimentation.

This book brings together into a clear and concise presentation the main signal
processing methods and the related results, using MATLAB software as a simulation
tool. Why MATLAB? Because it is:

− simple to learn and to use;

− powerful and flexible;

− accurate, robust and fast;

− widespread in both academic and industrial environments;

− continuously updated by professionals.

Preface xi

The word “signal” stands for a physical entity, most often of an electrical nature,
like that observed at a microphone output. It is submitted to various transformations
when it goes through a system. Thus, in a communication chain, the signal is subject
to some changes (distortion, attenuation, etc.), which can make it unrecognizable.
The aim is to understand this evolution in order to properly recover the initial
message.

In other words, a signal is a physical support of information. It may carry the
orders in a control and command equipment or multimedia (speech and image) over
a network. It is generally very weak and it has to be handled with much caution in
order to reach the signal processing final goal, i.e. information extraction and
understanding.

Signal processing is widely used in many industrial applications such as:
telecommunications, audio and speech signal processing, radar, sonar, non-
destructive control, vibrations, biomedicine, imagery, etc. Standard signal
processing functions include signal analysis, improvement, synthesis, compression,
detection, classification, etc., which depend on and interact with each other in an
integrated information processing chain.

The digital signal processing methods provide noteworthy capabilities: accurate
system design, excellent equipment reproducibility, high stability of their
exploitation characteristics and an outstanding supervision facility.

The digital signal processing boom is related to the development of fast
algorithms to calculate the discrete Fourier transform. Indeed, this is the equivalent
of the Fourier transform in the discrete domain and so it is a basic tool to study
discrete systems. However, related concepts are generally considered highly
theoretical and accessible to scientific researchers rather than to most engineers.
This book aims to overcome this difficulty by putting the most useful results of this
domain within the understanding of the engineer.

Chapter 1 briefly describes essential concepts of MATLAB software, which is an
interactive software tailored for digital signal processing. Language rules,
elementary operations as well as basic functions are presented. Chapter 2 illustrates
the generation of 1D or 2D (image) digital signals as data vectors and matrices
respectively.

Finding the solution of a signal processing problem involves several distinct
phases. The first phase is the modeling: the designer chooses a representation model
for an observed data. When it can be done very accurately the signals are said to be
deterministic. A powerful tool for analyzing them is provided by the Fourier
transform, also called frequency representation, which is presented in Chapter 5. Its

xii Digital Signal Processing using MATLAB

equivalent in the discrete domain is represented by the z-transform, which is
developed in Chapter 6.

There are many other processes, which give different and apparently
unpredictable results, although they are observed using identical experimental
conditions. They are known as random processes, such as the receiver’s thermal
noise. The wide sense stationary random processes, which form a particularly
interesting class of these signals, are presented in Chapter 3. Some useful statistical
tools for testing different hypothesis about their parameters behavior are provided in
Chapter 4.

From a very general point of view, digital signal processing covers all the
operations, arithmetical calculations and number handling performed on the signal
to be processed, defined by a number series, in order to obtain a transformed number
series representing the processed signal. Very different functions can be carried out
in this way, such as classical spectral analysis (Chapter 10), time-frequency analysis
(Chapters 11 and 12), linear filtering (Chapters 7 and 8), detection and estimation
(Chapter 9), and feature extraction for information classification or compression
(Chapters 13 and 14).

Theoretical developments have been reduced to the necessary elements for a
good understanding and an appropriate application of provided results. A lot of
MATLAB programs, solved examples and proposed exercises make it possible to
directly approach many practical applications. The reader interested in some more
complementary information will find this in the references cited at the end of this
book.

Finally, I would like to acknowledge all the members of my team, Emanuel
Radoi, Cornel Ioana, Ali Mansour and Hélène Thomas, for their contributions to this
book.

André QUINQUIS

Chapter 1

Introduction

1.1. Brief introduction to MATLAB

1.1.1. MATLAB software presentation

MATLAB (MATrix LABoratory) is an interactive software, developed by Math
Works Inc. and intended especially for digital signal processing. It is particularly
effective when the data format is vector or matrix.

MATLAB integrates digital calculus, data visualization and open environment
programming. MATLAB exists under both Windows and UNIX. Many
demonstrations are available using the command demo.

This digital simulation software enables a fast and simple visualization of the
obtained results.

MATLAB was primarily written in FORTRAN and C. However, MATLAB
knows to interpret commands, while a compilation of the source code is required by
FORTRAN and C.

MATLAB is especially designed for digital signal processing and for complex
digital system modeling and simulation. It is also suitable for processing data series,
images or multidimensional data fields.

MATLAB software general structure is provided in Figure 1.1.

2 Digital Signal Processing using MATLAB

Figure 1.1. MATLAB software general structure

The toolboxes extend the basic MATLAB functions and perform specific tasks
corresponding to different digital processing fields, such as image processing,
optimization, statistics, system control and identification, neural networks, fuzzy
systems, etc.

SIMULINK is an interactive software designed for modeling and simulating
continuous-time or discrete-time dynamical systems or hybrid structures containing
both analog and digital systems. It makes use of a mathematical equation set and
provides a large variety of predefined or user-defined functional blocks.

MATLAB has been developed for several years, especially as a consequence of
its use in the academic environment as an excellent education tool in mathematics,
engineering and science. In addition, MATLAB has already proven its utility for
scientific research and technological development.

Introduction 3

In order to run MATLAB, type the command matlab with UNIX shell (if a
MATLAB license under UNIX is available) or double click on the MATLAB icon if
the operating system is Windows. To exit MATLAB, type exit or quit. If
MATLAB is running under UNIX, you may have access to all UNIX commands
using just before the symbol! (example: !ls -l).

1.1.2. Important MATLAB commands and functions

who lists the variables in the current workspace

whos the same as previous, but lists more information about each variable

what lists MATLAB-specific files in directory

size provides the size of a data array

length provides the size of a data vector

help displays help text in Command Window

exit, quit exits from MATLAB

Table 1.1. General commands

dir, chdir,
delete, load,
save, type

similar to the corresponding DOS commands

pack consolidates workspace memory

Table 1.2. Commands related to the workspace

+, -, *, /, ̂ usual arithmetical operators

.
followed by an arithmetical operator for applying it to each array
element

' Hermitian operator

.' transpose operator

Table 1.3. Arithmetical operators

4 Digital Signal Processing using MATLAB

<, <=, >, >= usual relational operators

== equality operator

~= inequality operator

& element-wise logical AND

| element-wise logical OR

~ logical complement (NOT)

Table 1.4. Relational and logical operators

= variable assignment operator

,
used to separate the arguments of a function or the elements of a data
array

[] used to build data arrays

() used in arithmetical expressions

: used for indexing variables

; used at the end of a statement to cancel displaying any output

... used to continue a command on the next line

% used to enter a comment

Table 1.5. Special characters

ans default name of a variable or a result

eps spacing of floating point numbers

pi value of 3.14159...π =

i,j value of 1−

Inf IEEE arithmetic representation for positive infinity (1/0)

NaN IEEE arithmetic representation for Not-a-Number (0/0)

nargin returns the number of function input arguments

nargout returns the number of function output arguments

Table 1.6. Special variables and constants

Introduction 5

abs absolute value function

sqrt square root function

real real part of a complex variable

imag imaginary part of a complex variable

angle returns the phase angles, in radians, of a complex variable

conj complex conjugate operator

sign signum function

rem returns the remainder after division

exp exponential function

log natural logarithm function

log10 base 10 logarithm function

Table 1.7. Elementary mathematical functions

sin, cos, tan, cot, sec usual trigonometric functions

asin, acos, atan, acot, asec inverse trigonometric functions

sinh, cosh, tanh, coth, sech hyperbolic functions

asinh, acosh, atanh, acoth, asech inverse hyperbolic functions

Table 1.8. Trigonometric functions

max largest component

min smallest component

mean average or mean value

std standard deviation

sum sum of elements

cumsum cumulative sum of elements

prod product of elements

cumprod cumulative product of elements

Table 1.9. Data analysis functions

6 Digital Signal Processing using MATLAB

conv convolution and polynomial multiplication

deconv deconvolution and polynomial division

roots finds polynomial roots

poly converts roots to polynomial

polyval evaluates polynomial

residue partial-fraction expansion (residues)

Table 1.10. Polynomial related functions

zeros enables generation of zero arrays

ones enables generation of ones arrays

rand enables generation of uniformly distributed random numbers

randn enables generation of normally distributed random numbers

linspace enables generation of linearly spaced vectors

logspace enables generation of logarithmically spaced vector

det calculates the determinant of a square matrix

norm calculates matrix or vector norm

inv calculates matrix inverse

eig calculates matrix eigenvalues and eigenvectors

Table 1.11. Vector or matrix related functions

input gives the user the prompt and then waits for input from the keyboard

ginput
gets an unlimited or a predefined number of points from the current
axes and returns their coordinates

Table 1.12. Input functions

Introduction 7

plot plot vectors or matrices

subplot create axes in tiled positions

bar draws a bar graph

hist draws a histogram graph

polar makes a plot using polar coordinates

stairs draws a stairstep graph

stem plots the data sequence as stems

semilogx,
semilogy

semi-log scale plot: a logarithmic (base 10) scale is used for the x-axis
or y-axis

loglog
log-log scale plot: a logarithmic (base 10) scale is used for both the x-
axis and y-axis

xlabel,
ylabel adds text beside the x-axis or y-axis

title adds text at the top of the current axes

grid adds grid lines to the current axes

figure creates a new figure window

clf clears current figure

close all closes all the open figure windows

hold on/off holds/discards the current plot and all axis properties

axis controls axis scaling and appearance

legend puts a legend on the current plot using the specified strings as labels

gtext allows placing text with mouse

image displays a matrix as an image

Table 1.13. 1D and 2D graphical commands

plot3 plot lines and points in 3-D space

mesh/surf plots a 3-D mesh/colored surface

contour
plots a contour plot of a matrix treating its values as heights above a
plane

Table 1.14. 3D graphical commands

8 Digital Signal Processing using MATLAB

if conditionally executes statements

else, elseif used with if command

end terminates scope of for, while, switch, try and if statements

for repeats statements a specific number of times

while repeats statements an indefinite number of times

switch switches among several cases based on expression

break terminates execution of while or for loop

return causes a return to the invoking function or to the keyboard

pause pauses and waits for the user response

Table 1.15. Control commands

1.1.3. Operating modes and programming with MATLAB

The “online command” default operating mode is available after MATLAB gets
started. It displays the prompt >> and then waits for an input command. Running a
command usually results in creating one or several variables in the current
workspace, displaying a message or plotting a graph. For instance, the following
command:

v = 0:10

creates the variable v and displays its elements on screen. A semicolon has to be
added at the end of the statement if it is not necessary to display the result.

The previously typed commands can be recalled with the key ↑, while a
statement can be modified using the keys ← and →. You may also analyze the
effects on the command lines of the following keys: ↓, home, end, esc, del,
backspace and of the following key combinations: ctrl + →, ctrl + ←, ctrl + k.

Besides the “online command” operating mode, MATLAB can also create script
files and function files. Both of these are saved with the extension .m, but the
function files accept input arguments and return output arguments and operate on
variables within their own workspace.

In order to create a script file you have to select the menu File/New/M-file, while
to edit an existing file you have to first select File/Open M-file etc., and then choose
the appropriate file. After these commands, an edition session will be open using the

Introduction 9

chosen editor from Edit/View/Edit Preference. The edited file can be saved with the
menu File/Save As etc., followed by the file name (with the extension .m).

In MATLAB, many functions are predefined and saved as m-files. Some of them
are intrinsic, the others being provided by external libraries (toolbox): they cover
specific domains such as mathematics, data analysis, signal processing, image
processing, statistics, etc.

A function may use none, one or several input arguments and return none, one or
several output values. These different cases for a MATLAB function are called:

− one output value and no input argument:
variable_name = function_name

− no output value and one input argument:
function_name (argument_name)

− several output values and several input arguments:

[var_1, var_2, ...,var_n] = function_name (arg_1, arg_2,, arg_m)

For the last case, the first line of the file function_name.m has the following
form:

− function [var_1, var_2, ...,var_n] = function_name(arg_1, arg_2,, arg_m)

Usually, the input arguments are not modified, even if their values change during
the function execution. In fact, all the variables are local by default. Nevertheless,
this rule can be changed using the command: global variable_name.

In a MATLAB file, the comment lines have to begin with the symbol %.

The on-line help can be obtained using: help <function_name>. The first lines
of the file <function_name>.m beginning with % are then displayed. It is also
possible to search all the files containing a given keyword in their help using the
command: lookfor <keyword>.

NOTE.– The user-defined MATLAB files are recognized only in the current
directory, unlike the original MATLAB functions (toolbox, etc.). In order to make
available a user-defined file <file_name.m> outside the current directory you have
to type the command:

path(path,'<file_acces_path>/file_name>')

(see help path, help addpath).

10 Digital Signal Processing using MATLAB

The data from the current workspace can be saved in a *.mat file using the
command save. They can be reloaded using the command load. (Type help save
and help load for more information).

Another possibility is to use the same procedure to manage the files as in the C
language:

fid = fopen('x.dat','wb'); fwrite(fid,x,'double'); fclose(fd);

MATLAB is also able to manage other file formats, such as postscript.

1.1.4. Example of work session with MATLAB

Format

All the calculations are performed in MATLAB using the format double, but the
display format can be controlled using the function format (type help format).
Some examples are provided here after:

− format short: scaled fixed point format with 5 digits (default);
− format long: scaled fixed point format with 15 (7) digits for double (simple);
− format short e: floating point format with 5 digits;
− format long e: floating point format with 15 (7) digits for double (simple).

Scalars, vectors, matrices

MATLAB handles only one data type, because all the variables are considered as
floating point complex matrices. It is not necessary to declare or to size these
matrices before using them. In fact, when a variable is assigned a value, MATLAB
replaces the previous value if this variable exists in the work space; otherwise the
variable is created and sized properly.

A vector is a one row or a one column matrix, while a scalar is a 1×1 matrix.
MATLAB is optimized for matrix calculations. You should try to use matrix
operation as much as possible instead of loops in order to save execution time and
memory space.

The effectiveness of an algorithm can be measured using the functions flops
(number of floating point operations) and etime (elapsed time). Thus, the couple of
commands flops(0) and flops inserted just before and after an algorithm code line
returns the number of operations required. The function clock yields the present
time, while etime(t1,t2) provides the time elapsed between t1 and t2.

Introduction 11

EXAMPLE

t = clock;

%Algorithm;
time = etime(clock,t)

etime is not an accurate measure of the algorithm effectiveness because the
execution speed depends on the CPU.

EXERCISE 1.1.

Type a = 3 and then a = 3;

What is the signification of the symbol “;”?

There are some predefined variables. For instance pi = π, while i and j are
defined as the square root of –1. Type a = 1+2*i.

Pay attention to the use of these keywords for defining new variables: any
assignment replaces the predefined value by the new input (for instance the
assignment pi = 3 replaces the value π). Type clear pi to recover the initial
value of this variable.

You should avoid assigning i and j other values in a MATLAB program which
handles complex numbers.

EXERCISE 1.2.

Type i = 2, then a = 1+2*i and finally clear i.

clear command allows one or several variables to be removed.

Elementary operations

An operation involving 2 variables is possible only if the corresponding matrix
sizes match.

EXERCISE 1.3.

Type v = [1 2 3] then v = [1; 2; 3] and v(1).

As opposed to the case of C language, where the array index begins with 0, in
MATLAB it begins with 1: see the effect of v(0).

A vector filled with equally spaced values is defined in the following manner:
initial_value:increment:final value (for example v = 4:-0.1:3.2).

12 Digital Signal Processing using MATLAB

A matrix can be defined as indicated below:
− M = [1 2; 3 4];
− N(1,:) = [1 2] and N(2,:) = [3 4].

Type M(:,1), M(:,2), N(:,1) and M(:,2).

The pointwise operators: ".*", "./" or ".̂ " are useful for performing matrix
operations.

EXERCISE 1.4.

Define the following matrix: A = [exp(j) 1; 2 j] and see A', A.', Â 2,
A.̂ 2.

The relational operators: <, <=, >, >=, ~= and == compare couples of
elements belonging to equal size matrices and return a matrix filled with 1 (true) and
0 (false).

The logical operators such as: &, |, ~, any or all consider all the non-zero
elements as true and return a matrix filled with 0 and 1, according to the logical
operation result.

MATLAB has no pointer structures, but it automatically allocates (when using =)
and recovers (when using clear) memory space. For example, for solving A*x=y,
MATLAB automatically creates a vector for x.

Notice the difference between matrix right division and matrix left division:
X=A\B (equivalent to A-1*B) is the solution to A*X=B while X=A/B (equivalent to
A*B-1) is the solution to X*B=A.

EXERCISE 1.5.

 A = [1 2 1; 2 1 3; 4 0 5];
 y = [3; 2; 1];
 x = A\y
 z = A/y

The matrices can be concatenated either line by line or column by column.

N = [1 2]; P = [M; N]; then Q = [M’; N’];

The inverse submatrix extraction can be performed using brackets as indicated below:

Type B=A(1:3,:) and C=A([1 3],:).

Introduction 13

1.1.5. MATLAB language

MATLAB is a true programming language. However, it is an uncompiled
language and thus is not particularly suitable for developing very complex
applications. However, it is provided with all the necessary algorithmic structures
for rigorous programming.

The “for” loops

 for (expression)

 code lines;

 end

The “while” loops

 while (condition)

 code lines;

 end

The “if ... then” loops

 if (condition1)

 code lines;

 else if (condition2)

 code lines;

 else

 code lines;

 end

1.2. Solved exercises

EXERCISE 1.6.

Define a 4×3 matrix zero everywhere excepting the first line that is filled with 1.

b = ones (1,3); m = zeros (4,3); m(1,:) = b

m =

 1 1 1

 0 0 0

 0 0 0

 0 0 0

14 Digital Signal Processing using MATLAB

EXERCISE 1.7.

Consider the couples of vectors (x1, y1) and (x2, y2). Define the vector x so that:

x(j) = 0 if y1(j) < y2(j);

x(j) = x1(j) if y1(j) = y2(j);

x(j) = x2(j) if y1(j) > y2(j).

function x = vectors(x1,y1,x2,y2)

x = x1.*[y1 == y2] + x2.*[y1 > y2];

vectors([0 1],[4 3],[-2 4],[2 0])

ans =

 -2 4

EXERCISE 1.8.

Generate and plot the signal: y(t) = sin(2πt) for 0 ≤ t ≤ 2, with an increment of
0.01, then undersample it (using the function decimate) with the factors 2 and 16.

t = 0:0.01:2;
y = sin(2*pi*t);
subplot(311)
plot(t,y) ;
ylabel('sin(2.pi.t)');
title('Original signal');
t2 = decimate(t,2);
t16 = decimate(t2,8);
y2 = decimate(y,2);
y16 = decimate(y2,8);
subplot(312)
plot(t2,y2);
ylabel('sin(2.pi.t)')
title('Undersampled signal with a factor 2');
subplot(313);
plot(t16,y16);
ylabel('sin(2.pi.t)');
xlabel('Time t');
title('Undersampled signal with a factor 16');

You can save the figures in eps (Encapsulated PostScript) format, which is
recognized by many software programs. The command print -eps file_name
creates the file file_name.eps.

Introduction 15

0 0.5 1 1.5 2
�1

�0.5

0

0.5

1

si
n(

2
pi

.t)

Original signal

0 0.5 1 1.5 2
�1

�0.5

0

0.5

1

si
n(

2.
pi

.t)

Undersampled signal with a factor 2

0 0.5 1 1.5 2
�1

�0.5

0

0.5

1

si
n(

2.
pi

.t)

Time t

Undersampled signal with a factor 16

Figure 1.2. Sinusoid waveform corresponding to different sample frequencies

EXERCISE 1.9.

Plot the paraboloid defined by the equation: z2 = x2 + y2 for -50 ≤ x, y ≤ 50.

N = 50; x = -N:N; y = -N:N;
% first solution (to avoid): two nested loops
%---
for k = 1: 2*N+1
 for l = 1: 2*N+1
 z1(k,l) = sqrt(x(k)^2 + y(l)^2);
 end;
end;
figure; meshc(x,y,z1);
xlabel('x'); ylabel('y'); zlabel('z');

fprintf('Type a key to plot the paraboloid using another
method\n'); pause;
% second solution: one loop
%---------------------------------------
z2 = zeros(2*N+1,2*N+1);

16 Digital Signal Processing using MATLAB

for k = 1: 2*N+1
 z2(k,:) = sqrt(x(k)^2 + y.^2); % pointwise multiplication
for y
end;
figure; meshc(x,y,z2);
xlabel('x'); ylabel('y'); zlabel('z');
fprintf('Type a key to plot the paraboloid using another
method\n'); pause;
% third solution (the best): no loop
%---
xc = x.^2; yc = y.^2;
mx=xc.'*ones(1,2*N+1); % line k of mx filled with the value
xc[k]
my=ones(1,2*N+1).'*yc; % column l of my filled with the value
yc[l]
z3 = sqrt(mx + my);
figure; meshc(x,y,z3);
xlabel('x'); ylabel('y'); zlabel('z');

�50

0

50

�50

0

50
0

20

40

60

80

xy

z

Figure 1.3. Paraboloid plot

EXERCISE 1.10.

1. Generate 1,000 independent values x1,...,x1,000 of a zero-mean random
Gaussian variable with variance 4 using the function randn.

Plot the corresponding histogram and calculate the mean and the standard
deviation of the generated series using the functions hist, mean and std.

Find out the mean and the standard deviation of the random series x2
1, …,x2

1,000.
Then compare the obtained results with the theoretical results.

Introduction 17

clear all
n = 1000;

% If X ~ N(m,sigmâ 2) then Y = (X-m)/sigma ~ N(0,1)
Y=randn(1,n); X=2*Y;
[histoX,bins]=hist(X);
plot(bins,histoX);
xlabel('Bins');
ylabel('Number of values belonging to each bin');
title('Histogram of X using 10 bins');

% Find below 2 ways for displaying the results:

% 1) Character chain concatenation:
moyX=num2str(mean(X));
ecartX=num2str(std(X));
varX=num2str(var(X))
fprintf(strcat('\nMean of X = ',moyX, '\n'));
fprintf(strcat('St. dev. of X = ',ecartX, '\n'));
fprintf(strcat('Variance of X = ',varX, '\n\n'));

% 2) Use of formats, just like in C:
% (type "help format" for more explanations)
fprintf('Mean of X = %2.5f\n',mean(X));
fprintf('St. dev. of X = %2.5f\n',std(X));
fprintf('Variance of X = %2.5f\n',std(X)̂ 2);
Z = X.*X;
fprintf('\nMean of Z = %2.5f\n',mean(Z));
fprintf('St. dev. of Z = %2.5f\n',std(Z));
fprintf('Variance of Z = %2.5f\n',std(Z)̂ 2);
fprintf('Var Z - 2*(Var X)̂ 2 = %2.5f\n\n',std(Z)̂ 2-2*std(X)̂ 4);

�8 �6 �4 �2 0 2 4 6 8
0

50

100

150

200

250

300

Bins

N
um

be
r

of
 v

al
ue

s
be

lo
ng

in
g

to
 e

ac
h

bi
n

Histogram of X using 10 bins

Figure 1.4. Histogram of a Gaussian random variable

18 Digital Signal Processing using MATLAB

Mean of X = 0.0085986
St. dev. of X = 1.963
Variance of X = 3.8533

Mean of X = 0.00860
St. dev. of X = 1.96298
Variance of X = 3.85328

Mean of Z = 3.84950
St. dev. of Z = 5.55695
Variance of Z = 30.87972
Var Z - 2*(Var X)̂ 2 = 1.18418

2. Use the function rand to generate 1,000 independent values of the random
variable X defined by:

;1)1(;)0(;)1(1010 ppXPpXPpXP −−=====−=

where 0p and 1p are the probabilities to be entered by the user.

function va_gen(n,po,p1)
help va_gen; Y = rand(1,n);
X = -1*[Y< po*ones(1,n)] + 1*[Y>((po+p1)*ones(1,n))];
% If Y is a uniformly distributed variable between 0 and 1, then the X
current value is obtained from the combination of 2 tests, so that X = -
1*(Y<p0) + 1*(Y>p0+p1):
% - if Y < p0 (this case occurs with the probability p0) then
% the first test is true and the second is false, so X = -1
% - if Y > p0+p1 (this case occurs with the probability 1-p0-p1)
% then the first test is false and the second is true, so X = 1
% - if p0 < Y < p0+p1 (this case occurs with the probability p1)
% then the two tests are false, so X = 0
prob = hist(X,3)/n;
fprintf('\np [X = -1] = %1.4f\n', prob(1));
fprintf('p [X = 0] = %1.4f\n', prob(2));
fprintf('p [X = 1] = %1.4f\n\n', prob(3));

When the function va_gen is called:
va_gen(1000,0.1,0.5)

it provides the following result:

If Y is a uniformly distributed variable between 0 and 1, then the X current
value is obtained from the combination of 2 tests, so that X = -1*(Y<p0) +
1*(Y>p0+p1):

- if Y < p0 (this case occurs with the probability p0) then
 the first test is true and the second is false, so X = -1
- if Y > p0+p1 (this case occurs with the probability 1-p0-p1)
 then the first test is false and the second is true, so X = 1

Introduction 19

- if p0 < Y < p0+p1 (this case occurs with the probability p1)
 then the two tests are false, so X = 0

p [X = -1] = 0.1000
p [X = 0] = 0.4840
p [X = 1] = 0.4160

EXERCISE 1.11.

Plot in polar coordinates the poles of the filter having the following transfer function:

1 2
1()

1
H z

az bz− −
=

+ +

The values of a and b are entered by the user and the function returns the poles.
(use the commands roots and polar).

function c = filter_bis(a,b)
c = roots([1 a b]); % Comment: H(z) = poly(c)
fprintf('The poles are:\n'); z1 = c(1,:)
z2 = c(2,:)
if (abs(z1)> 1 | abs(z2) > 1)
 fprintf ('There is at least an instable pole\n');
else
 clf; figure; polar(angle(z1),abs(z1),'r+');
 % Second solution: use zplane
 hold on; polar(angle(z2),abs(z2),'r+');
 legend('Polar plot of H(z) poles',0);
end

 0.2

 0.4

 0 6

 0 8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Polar plot of H(z) poles

Figure 1.5. Function call example – filter_bis (1.5,1)

20 Digital Signal Processing using MATLAB

The poles are:

z1 =

-0.7500 + 0.6614i

z2 =

-0.7500 - 0.6614i

EXERCISE 1.12.

Generate the signal: x(t) = A⋅sin(2πft + φ) + b(t), t = 0..1024, where φ is a uniformly
distributed random variable on [0, 2π] and b(t) is a white Gaussian noise with mean zero
and variance one (use rand and randn). A and f are chosen by the user.

Estimate the mean value, the autocorrelation function (xcorr) and the spectrum
of x(t) using the periodogram and the correlogram (use fft and fftshift).
Compare the obtained results to the theoretical results. Change A in order to control
the SNR.

function noisy_sin(A,f)
N = 1024; % Number of calculated frequencies
nech = 1024; % Number of samples
t = 0:nech;
b = randn(1,nech+1);
phi = 2*pi*rand(1);
x = A*sin(2*pi*f*t+phi)+b;
fprintf('\nMean of x(t) = %2.4f\n',mean(x));
fprintf('Mean of b(t) = %2.4f\n',mean(b));
cx = xcorr(x);
% plot(cx);
% Correlogram based spectrum estimation:
sx_correlo = (abs(fft(cx,N))).̂ 2;
sx_correlo = sx_correlo / max(sx_correlo);
% the first N/2 values correspond to 0<=f<0.5
% the last N/2 values correspond to 0.5<=f<1 (or -0.5<=f< 1)
sx_correlo = fftshift(sx_correlo);
% The spectrum is centred around 0:
% the first N/2 values correspond to -0.5<=f<0
% the last N/2 values correspond to 0<=f<0.5

% Periodogram based spectrum estimation:
%--
sx_periodo = (abs(fft(x,N))).̂ 2;
sx_periodo = sx_periodo / max(sx_periodo);
sx_periodo = fftshift(sx_periodo);

% SNR estimation for a noisy sinusoid
%--

Introduction 21

vector(1:N) = sx_periodo;
vector(N+1:2*N) = sx_correlo;

plot(-0.5:1/N:0.5-1/N,10*log10(sx_correlo(1:N)),'r-',-0.5:1/N:0.5-
1/N,10*log10(sx_periodo(1:N)),'b:');
legend('Correlogram','Periodogram',0);
xlabel('Normalized frequency');
ylabel('Magnitude spectrum [dB]');
axis([-0.5 0.5 min(10*log(vector)) 0]);

% 0 dB <=> 10.log10 (Psignal + Pnoise)
% background_noise <=> 10.log10 (Pnoise) < 0
% Psignal = Â 2/(2.N) (periodogram)
% Pnoise = sigmâ 2 = 1

SNRth = Â 2/2;

fprintf('\nSignal SNR = %2.4f dB \n',10*log10(SNRth));
fprintf('\t=> Theoretical mean background noise corresponding to the
periodogram estimated spectrum\n');
fprintf('\t in the range [-0.5:%1.2f] & [%1.2f:0.5] = %2.4f dB\n\n',-f-
0.05,0.05+f,-10*log10(N*SNRth/2+1));

background_noise1 = mean(10*log10(sx_periodo(1:round(N*(0.45-f)))));
background_noise2 = mean(10*log10(sx_periodo(round(N*(0.65+f)):N)));

mean_background_noise=mean([background_noise1,background_noise2]);

fprintf('Mean background noise corresponding to the periodogram estimated
spectrum \n');
fprintf('in the range [-0.5:%1.2f] & [%1.2f:0.5] = %2.4f dB\n',-f-0.05,
0.05+f, mean_background_noise);
fprintf('\t=> Estimated SNR = %2.4f dB \n',10*log10((2/N)*(-1+exp(-
noise_moy*log(10)/10))));

Function call example: noisy_sin(2,0.15)

Mean of x(t) = 0.0529
Mean of b(t) = 0.0499

Signal SNR = 3.0103 dB
 => Theoretical mean background noise corresponding to the periodogram
estimated spectrum in the range
[-0.5:-0.20] & [0.20:0.5] = -30.1072 dB

Mean background noise corresponding to the periodogram estimated spectrum in
the range [-0.5:-0.20] & [0.20:0.5] = -29.7643 dB
 => Estimated SNR = 2.6670 dB

22 Digital Signal Processing using MATLAB

The SNR estimation error is related to several odd spectrum values, which lead
to a biased mean background noise level.

�0.5 0 0.5
�80

�70

�60

�50

�40

�30

�20

�10

0

Normalized frequency

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

Correlogram
Periodogram

Figure 1.6. Spectral representation of a noisy sinusoidal signal

Chapter 2

Discrete-Time Signals

2.1. Theoretical background

A signal is a physical support for information, depending on one or several
independent variables, such as: time, range, temperature, pressure, etc. The signal
concept generally refers to its mathematical or physical model, chosen in the most
appropriate manner for describing the complexity of real signals.

According to whether a signal depends on only one variable or two variables, it
is called one-dimensional (1D) or two-dimensional (2D). As a general rule, a
multidimensional signal is defined as a function of several variables.

A discrete-time signal is represented by a digital series, uniformly or non-
uniformly sampled. The first case is considered in the following and corresponds to
a constant time delay between each two successive samples.

Usually, s(k) stands for the kth sample of the discrete-time signal {s(k)}k = 1, 2, .
However, the two notations usually overlap in order to simplify the theoretical
presentation.

The signal theory is mainly related to the signal mathematical representation in
the original or a transformed space, and to its algorithmic processing in order to
extract the useful information.

2.1.1. Mathematical model of 1D and 2D discrete-time signals

The mathematical model of a discrete-time signal can be defined in terms of the
function indicated below:

24 Digital Signal Processing using MATLAB

[]: ,x T X n x n→ → [2.1]

so that:

[]or orn T x n X ,∀ ∈ ⊆ ∈ ⊆N Z N R C [2.2]

while, for 2D discrete-time signals () ()2121 ,nnx,nnn →= and ()1 2n ,n∀ ⊆ ×N N

or []1 2 , orx n ,n× ∈Z Z N R C .

In addition to the mathematical model above, 1D discrete-time signals can be
also described as:

a. a data vector:

{ }with , or 0.. 1nx x n n N= ∈ ∈ −N Z [2.3]

b. a polynomial depending on a real variable z:

−

=

−
−++++==

1

0

1
1

2
210 ...)(

N

n

N
N

n
n zxzxzxxzxzX [2.4]

In the same manner, 2D discrete-time signals can be also represented as:
a. a data matrix:

(){ }1 21 2 1 2or with 0.. 1 and 0.. 1n ,nx x n ,n x n N n N′ ′′= = − = − [2.5]

b. a set of polynomials depending on one variable:

2
1 1 2

2

1
, 1

0
() with 0.. 1

N n
n n n

n
X z x z n N

′′−

=
′= = − [2.6]

c. a polynomial depending on two variables:

() 21

1 2
21 21

1

0

1

0
,21, nnN

n

N

n
nn zzxzzX

−′

=

−′′

=
= [2.7]

Discrete-Time Signals 25

2.1.2. Basic 1D and 2D discrete-time signals

1D 2D

Dirac pulse

[] 1, if 0
0, otherwise

n
nδ

=
= ,

so that:
[] [] []−=

)(r
rnrxnx δ

[] 1 2
1 2

1, if 0
,

0, otherwise
n n

n nδ
= =

= ,

so that:
[] [] []−−=

)()(
22112121

1 2

,,,
r r

rnrnrrxnnx δ

Step signal

[] 1, if 0
0, otherwise

n
u n

≥
=

and: [] []
∞

=
−=

0r
rnnu δ

[] 1 2
1 2

1, if , 0
,

0, otherwise
n n

u n n
≥

=

and: [] []
∞

=

∞

=
−−=

0 0
221121

1 2

,,
r r

rnrnnnu δ

Complex exponential signal

[])(00 ee Nnjnjnx +== ωω

with: 0/2 ωπ=N
[] 01 1 02 2

01 1 1 02 2 2

1 2
() ()

1 01 2 02

, e e

e e
with: 2 and 2

j n j n

j n N j n N

x n n

N N

ω ω

ω ω

π ω π ω

+ +

=

=
= =

Set of finite orthogonal complex signals

[] { }0e ,

where: 0.. 1

jk n
k n

k N

ωϕ =

= −

and:
≠
=

=
ji
jiN

ji ,0
,

,ϕϕ

[] { }20221011
21

ee, 21,
njknjk

kk nn ωωϕ =

where: 1 10. 1k N= − and 2 20. 1k N= −

and:
≠

===
=

2,12,1

221121
,, ,0

,
,

2121 ji
jijiNN

jjii ϕϕ

Set of orthonormal complex signals

[]1 , 0.. 1k n k N
N

ϕ = −

[]
1 2, 1 2 1,2 1,2

1 2

1 , , 0..k k n n k N
N N

ϕ =

Table 2.1. Mathematical representations of discrete-time signals

26 Digital Signal Processing using MATLAB

2.1.3. Periodic 1D and 2D discrete-time signal representation using the discrete-
time Fourier series

Harmonic analysis is the most important tool in signal analysis theory. The
generalized Fourier transform, which makes use of distributions, allows the spectral
representation of deterministic signals to be obtained. This describes the frequency
distribution of the signal amplitude, phase, energy or power.

The discrete-time Fourier series (DTFS) consists of decomposing a periodic
signal as a sum of several basic functions, which are easier to generate and to
observe. They may be the sin and cos functions in the case of the trigonometric
Fourier series or the exponential function exp(jωt) in the case of the complex
Fourier series.

A periodic 1D discrete-time signal, denoted1 by x [n], has the following form:

[] [] ()
1

0
exp 2

N
k

k
x n x n N c jk N nπ

−

=
= + = [2.8]

where:

[] ()
1

0

1 exp 2 , 0.. 1
N

k
n

c x n jk N n k N
N

π
−

=
= − = − [2.9]

A periodic 2D discrete-time signal, denoted by x [n1, n2] can be expressed as:

[] [] []
1 2

1 2
1 2

1 2 1 1 2 1 2 2
1 1

, 1 1 2 2
0 0 1 2

, , ,

2 2exp
N N

k k
k k

x n n x n N n x n n N

c jk n jk n
N N
π π− −

= =

= + = + =

= +
 [2.10]

where:

[]
1 2

1 2
1 2

1 1
, 1 2 1 1 2 2

0 01 2 1 2

1 1 2 2

1 2 2, exp

0.. 1, 0. 1

N N

k k
n n

c x n n jk n jk n
N N N N

k N k N

π π− −

= =
= − −

= − = −

 [2.11]

Consequently, DTFS1D and DTFS2D perform the following transformations:

[] 1DDTFS
kx n c←⎯⎯⎯→ , [] 2D

1 2

DTFS
1 2, k kx n n c←⎯⎯⎯→ [2.12]

1 Different notations are sometimes used for periodic (x [n] or x [n1, n2]) and non-periodic
discrete-time signals (x[n] or x[n1, n2]).

Discrete-Time Signals 27

2.1.4. Representation of non-periodic 1D and 2D discrete-time signals by discrete-
time Fourier transform

The discrete-time Fourier transform (DTFT) of a 1D discrete-time signal x[n] has
the following form:

() []{ } [] ()1De =DTFT expj

n
X x n x n j nω ω

+∞

=−∞
= − [2.13]

while the inverse transform is defined by:

[] (){ } ()1
1D

2

1=DTFT e e e d
2

j j j nx n X Xω ω ω

π
ω

π
− = [2.14]

Direct and inverse discrete Fourier transform of a discrete-time 2D signal are
given by very similar relationships:

() () []{ }

[] []

1 2

1 2

1 2 2D 1 2

1 2 1 1 2 2

e , DTFT ,

, exp

j j

n n

X X x n n

x n n j n j n

ω ω ω ω

ω ω

+

+∞ +∞

=−∞ =−∞

= =

= − −
 [2.15]

[]
()

() []1 2 1 2 1 1 2 2 1 22
2 2

1, , exp d d
2

x n n X j n j n
π π

ω ω ω ω ω ω
π

= + [2.16]

Consequently, DTFT1D and DTFT2D perform the following transformations:

[] () ()1DDTFT e jx n X Xω ω←⎯⎯⎯→ = , [] ()2DDTFT
1 2 1 2, ,x n n X ω ω←⎯⎯⎯→ [2.17]

2.1.5. Analytic signals

It is well known that the Fourier transform of a real signal has the Hermitian
symmetry property (odd absolute value and real part, even argument and imaginary
part). This means that giving the Fourier transform (FT) of a real signal for the
positive frequency axis is enough for its complete characterization.

It is thus possible to represent a real signal x(t) by a complex one zx(t), without
any information loss. The new complex signal zx(t) is called the analytic signal
associated with the real signal x(t).

28 Digital Signal Processing using MATLAB

Generally, a signal z(t) is an analytic signal if its spectrum Z(ν) is zero for any
negative frequency value. Bearing in mind that Z(ν) = Z(ν)U(ν), where U(ν) stands
for the frequency step function, it can be easily shown that the real and imaginary
parts of z(t) are a couple of the Hilbert transform. An analytical signal is therefore
completely determined if its real part is known.

Let us consider the DTFT of a real, non-periodic and causal 1D discrete-time
signal x[n]:

[]{ } () () ()1D Re ImDTFT e e ej j jx n X X jXω ω ω= = +

The real and imaginary parts of this DTFT are related by the Hilbert transform
(HT):

() () (){ }Im Re 1D Re
1e PV e cot d HT e

2 2
j j jX X X

π
ω θ ω

π

θ ω θ
π

+

−

−= = [2.18]

() () []

(){ } []

Re Im

1 Im

1e PV e cot d 0
2 2

HT e 0

j j

j
D

X X x

X x

π
ω θ

π

ω

θ ω θ
π

+

−

−= − +

= − +

 [2.19]

where “PV” denotes the principal value of an integral and the Hilbert transform is
defined by:

{ }1D
1HT () PV ()cot

2 2
f f d

π

π

θ ωω θ θ
π −

−= [2.20]

If the spectrum of a non-periodical discrete-time signal x[n] is constrained by the
causality condition over []ππω +−∈ , , we obtain:

()e 0, 0jX ω π ω= − ≤ < [2.21]

x[n] is thus an analytical signal and can be written in the following form:

[] [] []re imx n x n jx n= + [2.22]

Discrete-Time Signals 29

The relationship between its real and imaginary parts can be easily derived:

[] [] [] []{ }1DDHTim re re
m

x n x m h n m x n
+∞

=−∞
= − = [2.23]

[] [] [] []{ }1DDHTre im im
m

x n x m h n m x n
+∞

=−∞
= − − = − [2.24]

where h[n] is the impulse response corresponding to an ideal discrete Hilbert
transformer:

[] ()2

0, if 0

sin 22 , if 0

n
h n n

n
n
π

π

=
=

≠
 [2.25]

2.2. Solved exercises

EXERCISE 2.1.
The MATLAB code below generates and plots some basic discrete-time signals.

subplot(3,3,1);
stem([1;zeros(49,1)]);
title('Dirac pulse')
subplot(3,3,2); stem(ones(50,1));
title('Step function')
subplot(3,3,3);
stem([ones(1,5),zeros(1,3)])
title('Rectangular pulse')
subplot(3,3,4);
stem(sin(2*pi/8*(0:15)))
title('Sinusoidal signal')
subplot(3,3,5); stem(sinc(0:0.25:8));
title('"Sinc" signal')
subplot(3,3,6); stem(exp(-(0:15)));
title('ê -̂ n signal')
subplot(3,3,7);
stem(pow2(-0.5*(0:15)))
title('2̂ -̂ 0̂ .̂ 5̂ n signal')
subplot(3,3,8); stem(3.̂ (0:15));
title('3̂ n signal')
subplot(3,3,9); stem(randn(1,16));
title('Gaussian random signal')

30 Digital Signal Processing using MATLAB

0 50
0

0.5

1
Dirac pulse

0 50
0

0.5

1
Step function

0 5 10
0

0.5

1
Rectangular pulse

0 10 20
�1

0

1
Sinusoidal signal

0 20 40
�1

0

1
"Sinc" signal

0 10 20
0

0.5

1
e�n signal

0 10 20
0

0.5

1
2�0 5n signal

0 10 20
0

1

2
x 10

7 3n signal

0 10 20
�2

0

2
Gaussian random signal

Figure 2.1. Examples of discrete-time signals

EXERCISE 2.2.

Generate the following signal:

() exp[]x n K c n= ⋅ ⋅ ,

where: K = 2, 1/12 / 6c jπ= − + , and 0..40n n∈ = .

c = -(1/12)+(pi/6)*i;
K = 2; n = 0:40;
x = K*exp(c*n);
subplot(2,1,1); stem(n,real(x));
xlabel('Time index n');
ylabel('Amplitude');
title('Real part');
subplot(2,1,2); stem(n,imag(x));
xlabel('Time index n');
ylabel('Amplitude');
title('Imaginary part');

Discrete-Time Signals 31

0 5 10 15 20 25 30 35 40
�2

�1

0

1

2

Time index n

A
m

pl
itu

de
Real part

0 5 10 15 20 25 30 35 40
�1

0

1

2

Time index n

A
m

pl
itu

de

Imaginary part

Figure 2.2. Real and imaginary parts of a complex discrete-time signal

K is a constant amplitude factor and Re{c} sets the attenuation, while Im{c} is
related to the dumped signal period (12 points per period).

EXERCISE 2.3.

Generate the following amplitude modulated signal:

() (1 sin(2)) sin(2)b hy n m n nπυ πυ= + ⋅ ⋅

where m = 0.4, 1.0,01.0 == hb υυ , and 0..100n n∈ =N .

n = 0:100; m = 0.4;
fH = 0.1 ; fL = 0.01;
xH = sin(2*pi*fH*n);
xL = sin(2*pi*fL*n);
y = (1+m*xL).*xH;
stem(n,y); grid ;
xlabel('Time index n');
ylabel('Amplitude');

32 Digital Signal Processing using MATLAB

0 20 40 60 80 100
�1.5

�1

�0.5

0

0.5

1

1.5

Time index n

A
m

pl
itu

de

Figure 2.3. Amplitude modulated signal

EXERCISE 2.4.

Let us consider the continuous-time signal below:

]10,0[,2)(∈= − ttetx t

Show that sampling this signal results in spectrum aliasing if the sampling period
is Ts = 0.005 s.

t = 0:0.005:10; xa = 2*t.*exp(-t);
subplot(2,2,1); plot(t,xa); grid
xlabel('Time [ms]'); ylabel('Amplitude');
title('Continuous-time signal x_{a}(t)');
wa = 0:10/511:10 ; ha = freqs(2,[1 2 1],wa);
subplot(2,2,2); plot(wa/(2*pi),abs(ha)); grid;
xlabel('Frequency [kHz]'); ylabel('Amplitude');
title('|X_{a}(j\Omega)|'); axis([0 5/pi 0 2]);
T = 1; n = 0:T:10 ; xs = 2*n.*exp(-n); k = 0:length(n)-1;
subplot(2,2,3); stem(k,xs);grid;
xlabel('Time index n'); ylabel('Amplitude');
title('Discrete-time signal x[n]');
wd = 0:pi/255:pi; hd = freqz(xs,1,wd);
subplot(2,2,4); plot(wd/(T*pi), T*abs(hd)); grid;

Discrete-Time Signals 33

xlabel('Frequency [kHz]'); ylabel('Amplitude');
title('|X(ê {j\omega})|'); axis([0 1/T 0 2])

0 5 10
0

0.2

0.4

0.6

0.8

Time [ms]

A
m

pl
itu

de

Continuous�time signal x
a
(t)

0 0.5 1 1.5
0

0.5

1

1.5

2

Frequency [kHz]
A

m
pl

itu
de

|X
a
(jΩ)|

0 5 10
0

0.2

0.4

0.6

0.8

Time index n

A
m

pl
itu

de

Discrete�time signal x[n]

0 0.5 1
0

0.5

1

1.5

2

Frequency [kHz]

A
m

pl
itu

de
|X(ejω)|

Figure 2.4. Spectral aliasing illustration

A spectral representation provides information about the variation rate of the
corresponding signal in the time domain. The more extended the signal spectrum,
the faster the signal temporal variation is and the higher the sampling frequency has
to be in order to avoid information loss.

According to Nyquist’s theorem, there is no information loss if the sampling
frequency is at least equal to the double of the highest spectral component of the
signal. The discrete-time signal obtained by sampling the continuous-time one will
then account for all its variations.

It is always necessary to use an anti-aliasing filter before the sampling stage in
order to avoid any spectral aliasing risk and to set an appropriate sampling
frequency. In practice, a causal approximation of this ideal filter is used. Thus,
depending on the chosen filter synthesis method, some imperfections are introduced,
such as a passband amplitude ripple, a transition band and a stopband finite
attenuation.

34 Digital Signal Processing using MATLAB

Butterworth filters, whose 3 dB cutoff frequency is roughly equal to υm, are
generally considered for this task because there is no bandpass ripple in this case.
The main drawback of this type of filter is the residual aliasing due to the stopband
ripple.

The higher the order of the anti-aliasing filter, the closer the sampling frequency
υs can be to 2υm. There is therefore a trade-off to find between the sampling
frequency decrease toward the theoretical limit 2υm and the required anti-aliasing
filter complexity.

EXERCISE 2.5.

The goal of this exercise is to analyze the properties of some basic discrete-time
signals. First generate a sinusoidal signal on 1,000 points and represent it on 200
samples.

xsin=sin(2*pi*[1:0.1:1000]);
plot(1:200,xsin(1:200)); xlabel('time'); ylabel('amplitude')

0 50 100 150 200
�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

time

am
pl

itu
de

Figure 2.5. Sine signal

Find out its maximum value, minimum value, mean value, median value and its
standard deviation.

Discrete-Time Signals 35

max(xsin)

ans =

 1.0000

min(xsin)

ans =

 -1.0000

mean(xsin)

ans =

 4.6721e-004

median(xsin)

ans =

 0.0026

std(xsin)

ans =

 0.7070

Repeat the same exercise for the signals generated by the following MATLAB
commands: square, sawtooth, rand and randn.

EXERCISE 2.6.

Plot the waveforms corresponding to a continuous-time sinusoidal signal x(t) and
to its sampled version x[n], knowing that:

()00sin)(φ+Ω= tAtx

The sampled signal can be thus written as indicated below:

() () () ()0 0 0 0

0 0
0 0

sin sin 2

sin 2 sin 2
1/

t nT

s

x t x nT A nT A F nT

F F
A n A n

T F

φ π φ

π φ π φ

= = = Ω + = + =

= + = +

Consequently:

[] () ()0000 2sinsin φπφω +=+= nfAnAnx

where 0 0 02 2 / with 1/s sf F F F Tω π π= = = .

Because nTt = and T00 Ω=ω , we obtain:

[]0 0 rad/samplet
n

ω = Ω

The MATLAB code below plots the waveforms corresponding to a continuous-
time and a discrete-time sinusoidal signal for the following parameters:

0 0 01, 200 Hz, 16 kHz, 4 rad, 10 0 5 mss fF F / A , t , tϕ π= = = = = =

36 Digital Signal Processing using MATLAB

Fs=16e3; t=0:1/Fs:5e-3;
n=0:length(t)-1;
subplot(211);
plot(t,10*sin(2*pi*1200*t+pi/4));
xlabel('continuous time');
ylabel('amplitude')
title('Continuous-time sinusoidal signal')
subplot(212);
stem(10*sin(2*pi*1200/16000*n+pi/4))
xlabel('discrete time');
ylabel('amplitude')
title('Discrete-time sinusoidal signal')

0 1 2 3 4 5

x 10
�3

�10

�5

0

5

10

continuos time

am
pl

itu
de

Continuous�time sinusoidal signal

0 10 20 30 40 50 60 70 80 90
�10

�5

0

5

10

discrete time

am
pl

itu
de

Discrete�time sinusoidal signal

Figure 2.6. Continuous (top) and sampled (bottom) sinusoid

EXERCISE 2.7.
The generation of a digital signal using a computer or a digital signal processor

requires some cautions concerning the choice of the sampling frequency. The aim of
this exercise is to show that if the sampling frequency is not properly chosen, serious
interpretation errors may occur while simulating or generating synthetic signals.

1. Generate during 0.5 s a signal obtained by the sum of two sinusoids having the
same amplitude (1 V), sampled at 256 Hz and whose frequencies are 100 Hz and
156 Hz respectively. Plot this signal and conclude about its shape.

Discrete-Time Signals 37

2. Generate and plot a sinusoid of 356 Hz sampled at 256 Hz. Compare this
signal to another sinusoid of 100 Hz and sampled at the same frequency.

3. Generate during 0.5 s a signal obtained by the sum of two sinusoids, etc.

t=[1:128]; f1=100;
f2=156; fe=256;
y=sin(2*pi*f1/fe*t)+sin(2*pi*f2/fe*t);
plot(t/fe,y);
xlabel('time [s]');
ylabel('amplitude [V]')

0 0.1 0.2 0.3 0.4 0 5
�6

�4

�2

0

2

4

6
x 10

�14

time [s]

am
pl

itu
de

 [V
]

Figure 2.7. Sum of two sampled sinusoids

It can be readily seen that the final result does not represent the sum of two
sinusoids of amplitude equal to 1 V. In fact, the signal depicted on the figure above
is nothing else but the residual error related to the MATLAB computation precision.

This result can be explained by a wrong application of the sampling theorem.
Indeed, the sampling frequency has to be equal at least to the double of the
frequency of each one of the two sinusoids. This constraint is fulfilled only for the
first sinusoid, because for the second the sampling frequency would have been at
least 312 Hz.

Using some standard trigonometric relationships it is easy to see that after
sampling the two sinusoids appear to have the same frequency (100 Hz) and

38 Digital Signal Processing using MATLAB

opposite phases, as it is illustrated on the figure below. Thus, they cancel each other
and their sum is theoretically zero.

t=[1:30]; f1=100; f2=156; fs=256;
y1=sin(2*pi*f1/fs*t); y2=sin(2*pi*f2/fs*t);
plot(t/fs,y1,'-xb',t/fs,y2,'-or');
xlabel('time [s]') ; ylabel('amplitude [V]')
legend('Sinusoid at 100 Hz','Sinusoid at 156 Hz')
axis([min(t/fs) max(t/fs) -1.1 1.5])

0.02 0.04 0.06 0.08 0.1

�1

�0.5

0

0.5

1

1.5

time [s]

am
pl

itu
de

 [V
]

Sinusoid at 100 Hz
Sinusoid at 156 Hz

Figure 2.8. Inappropriate choice of the sampling frequency makes

two different sinusoids appearing as opposite phase signals

2. Generate and plot a sinusoid of 356 Hz sampled at 256 Hz, etc.

t=(1:100); f1=100; f2=356; fs=256;
y1=sin(2*pi*f1/fs*t); y2=sin(2*pi*f2/fs*t);
subplot(211); plot(t/fs,y1); ylabel('amplitude [V]');
title('Sinusoid at 100 Hz')
subplot(212); plot(t/fs,y2); xlabel('time [s]');
ylabel('amplitude [V]'); title('Sinusoid at 356 Hz')

Discrete-Time Signals 39

It can be readily seen from the equations below that the two sinusoids are identical:

2 356 2 (256 100)sin sin
256 256

2 356 2 256 2 256 2 100 2 256sin sin cos sin cos
256 256 256 256 256

2 356 2 100sin sin
256 256

n n

n n n n n

n n

π π

π π π π π

π π

+=

= +

=

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
�1

�0 5

0

0.5

1

am
pl

itu
de

 [V
]

Sinusoid at 100 Hz

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
�1

�0 5

0

0.5

1

time [s]

am
pl

itu
de

 [V
]

Sinusoid at 356 Hz

Figure 2.9. Sinusoids at 100 Hz (top) and 356 Hz (bottom)

EXERCISE 2.8.
A chirp pulse of width T can be expressed as: () ()0 cosx t A tφ= , where the

instantaneous phase is given by: () 2
0t t tφ β= Ω + . A linear variation of the

instantaneous frequency ()tΩ during the time support T is then obtained according

to: () () 0d /d 2t t t tφ βΩ = = Ω + , where () () ()0/ 2 / 2fT Tβ = ΔΩ = Ω − Ω .

The MATLAB code below performs the temporal and spectral analysis of a
chirp signal, whose instantaneous frequency varies between 0 and 5 MHz, during its
time support T = 10 μs. The sampling frequency is considered 50 MHz.

40 Digital Signal Processing using MATLAB

f0=0; ff=5e6; T=10e-6; beta=(ff-f0)*pi/T; Fs=5e7; t=0:1/Fs:T;
x=cos(2*pi*f0*t+beta*t.̂ 2);
subplot(211);plot(t,x);xlabel('time [s]');ylabel('amplitude [V]');
title('Chirp signal'); N=length(x);
X=fftshift(abs(fft(x))); freqv=linspace(-Fs/2,Fs/2,length(X));
subplot(212); plot(freqv,X)
xlabel('frequency [Hz]'); ylabel('amplitude [V]');
title('Signal spectrum'); axis([0 1.2*ff 0 1.1*max(X)])

0 0.2 0.4 0.6 0.8 1 1.2

x 10
�5

�1

�0.5

0

0.5

1

time [s]

am
pl

itu
de

 [V
]

Chirp signal

0 1 2 3 4 5 6

x 10
6

0

10

20

30

40

50

frequency [Hz]

am
pl

itu
de

 [V
]

Signal spectrum

Figure 2.10. Temporal and spectral representations of a chirp signal

EXERCISE 2.9.
In the case of a binary information transmission, the message consists of a series

of symbols, which are transmitted at a given constant rate. The time delay between
two symbols is called symbol width.

Plot the pulse modulation corresponding to the binary sequence below:

1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1

using the following codes:
− unipolar with and without return to zero (RZ);
− polar with and without return to zero;
− bipolar with and without return to zero.

Discrete-Time Signals 41

Plot the PSD (power spectral density) of each signal. Use a binary rate of 1,000
symbols per second and a sampling frequency of 10 KHz.

Rb = 1000; fs = 10000;
Ts = 1/fs; Tb = 1/Rb;
sequence=[1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1];
no= length(sequence);
no_ech = no* Tb/Ts;
time_t = [0:(no-1)] * Ts;
pulse=ones(1,fs/Rb);
x=(sequence'*pulse)'; x=x(:);
t_time=Ts*[0:no_ech];
figure(1);
subplot(231); plot(t_time,[x;0]);
axis([0 0.021 0 1.2]);
title('Unipolar WRZ code');
xlabel('t [s]'); ylabel('A [V]')
[y1,f]=psd(x,64,10000,64);
figure(2);
subplot(231); plot(f,y1);
xlabel('frequency [Hz]'); ylabel('PSD [W]')
title('Unipolar WRZ code');
n_middle = no /2;
pulse = ones(1,no);
pulse((n_middle + 1):(no)) = zeros(1,(no-n_middle));
x=(sequence'*pulse)';
x=x(:); t_time=Ts*[0:length(x)];
figure(1);
subplot(234); plot(t_time,[x;0]);
axis([0 0.041 0 1.2]);
title('Unipolar RZ code');
xlabel('t [s]');ylabel('A [V]')
[y1,f]=psd(x,64,10000,64);
figure(2);
subplot(234); plot(f,y1);
title('Unipolar RZ code');
xlabel('frequency [Hz]');
ylabel('PSD [W]')
pulse=ones(1,fs/Rb);
x=(2*sequence'*pulse)'-ones(size(pulse,2),size(sequence,2));
x=x(:); t_time=Ts*[0:length(x)];
figure(1);
subplot(232); plot(t_time,[x;0]);
axis([0 0.021 -1.2 1.2]);
xlabel('t [s]'); ylabel('A [V]')
title('Polar WRZ code');
[y1,f]=psd(x,64,10000,64);
figure(2);
subplot(232); plot(f,y1);
xlabel('frequency [Hz]');
ylabel('PSD [W]')
title('Polar WRZ code');
pulse = ones(1,no);

42 Digital Signal Processing using MATLAB

pulse((n_middle + 1):(no)) = zeros(1,(no-n_middle));
x=(2*sequence'*pulse)'-ones(size(pulse,2),size(sequence,2));
x=x(:);t_time=Ts*[0:length(x)];
figure(1);
subplot(235); plot(t_time,[x;0]);
axis([0 0.041 -1.2 1.2]);
xlabel('t [s]'); ylabel('A [V]')
title('Polar RZ code');
[y1,f]=psd(x,64,10000,64);
figure(2);
subplot(235); plot(f,y1);
title('Polar RZ code');
xlabel('frequency [Hz]');ylabel('PSD [W]')
pulse=ones(1,fs/Rb);
for ii = 1:no
 bipol(ii,1) =sequence(ii)*(-1)^(sum(sequence(1:ii)) - 1);
end
x=(bipol*pulse)';
x=x(:);t_time=Ts*[0:length(x)];
figure(1);
subplot(233);
plot(t_time,[x;0]);
axis([0 0.021 -1.2 1.2]);
xlabel('t [s]');ylabel('A [V]')
title('Bipolar WRZ code');
[y1,f]=psd(x,64,10000,64);
figure(2);
subplot(233) ;plot(f,y1);
xlabel('frequency [Hz]');
ylabel('PSD [W]')
title('Bipolar WRZ code');
pulse = ones(1,no);
pulse((n_middle + 1):(no)) = zeros(1,(no-n_middle));
for ii = 1:no
 bipol(ii,1) = sequence(ii)*(-1)^(sum(sequence(1:ii)) - 1);
end
x=(bipol*pulse)'; x=x(:);
t_time=Ts*[0:length(x)];
figure(1);
subplot(236); plot(t_time,[x;0]);
xlabel('t [s]'); ylabel('A [V]')
axis([0 0.041 -1.2 1.2]);
title('Bipolar RZ code');
[y1,f]=psd(x,64,10000,64);
figure(2);
subplot(236); plot(f,y1);
title('Bipolar RZ code');
xlabel('frequency [Hz]'); ylabel('PSD [W]')

Discrete-Time Signals 43

0 0.01 0.02
0

0.2

0.4

0.6

0.8

1

Unipolar WRZ code

t [s]

A
 [V

]

0 0.02 0.04
0

0.2

0.4

0.6

0.8

1

Unipolar RZ code

t [s]

A
 [V

]

0 0.01 0.02

�1

�0.5

0

0.5

1

t [s]
A

 [V
]

Polar WRZ code

0 0.02 0.04

�1

�0.5

0

0.5

1

t [s]

A
 [V

]

Polar RZ code

0 0.01 0.02

�1

�0.5

0

0.5

1

t [s]

A
 [V

]

Bipolar WRZ code

0 0.02 0.04

�1

�0.5

0

0.5

1

t [s]

A
 [V

]

Bipolar RZ code

Figure 2.11. Temporal representation of different codes

0 5000
0

5

10

15

frequency [Hz]

P
S

D
 [W

]

Unipolar WRZ code

0 5000
0

2

4

6
Unipolar RZ code

frequency [Hz]

P
S

D
 [W

]

0 5000
0

5

10

15

frequency [Hz]

P
S

D
 [W

]

Polar WRZ code

0 5000
0

2

4

6

8

10
Polar RZ code

frequency [Hz]

P
S

D
 [W

]

0 5000
0

2

4

6

8

frequency [Hz]

P
S

D
 [W

]

Bipolar WRZ code

0 5000
0

1

2

3

4
Bipolar RZ code

frequency [Hz]

P
S

D
 [W

]

Figure 2.12. Spectral representation of different codes

44 Digital Signal Processing using MATLAB

EXERCISE 2.10.

A chaotic signal generator can be set up using Lorentz’s equations:

()

−=

−−=

−=

zxy
t
z

xzyx
t
y

xy
t
x

3
8

d
d

28
d
d

10
d
d

The code below generates a chaotic signal using a MATLAB integration method,
and shows its behavior in time and frequency domains. The function cchua.m is as
indicated below:

xx = cchua(12,15,25,1024,0.05);

function xx = cchua(x0,y0,z0,n,h)
t=0; x=x0;
y=y0; z=z0;
for i=1:n
 k0=h*fchua(t,x,y,z);
 l0=h*gchua(t,x,y,z);
 m0=h*hchua(t,x,y,z);
 th2=t+h/2; xk0=x+k0/2;
 yl0=y+l0/2; zm0=z+m0/2;
 k1=h*fchua(th2,xk0,yl0,z+m0/2);
 l1=h*gchua(th2,xk0,yl0,zm0);
 m1=h*hchua(th2,xk0,yl0,zm0);
 xk1=x+k1/2; yl1=y+l1/2; zm1=z+m1/2;
 k2=h*fchua(th2,xk1,yl1,zm1);
 l2=h*gchua(th2,xk1,yl1,zm1);
 m2=h*hchua(th2,xk1,yl1,zm1);
 th=t+h; xk2=x+k2;
 yl2=y+l2; zm2=z+m2;
 k3=h*fchua(t+h,x+k2,y+l2,z+m2);
 l3=h*gchua(t+h,x+k2,y+l2,z+m2);
 m3=h*hchua(t+h,x+k2,y+l2,z+m2);
 x=x+(1/6)*(k0+2*k1+2*k2+k3);
 y=y+(1/6)*(l0+2*l1+2*l2+l3);
 z=z+(1/6)*(m0+2*m1+2*m2+m3);
 xx(i)=x; yy(i)=y; zz(i)=z;
 t=t+h; tt(i)=t;
end;
figure; subplot(211)
fs=1000000; tmp=0:1/fs:1023/fs;
plot(tmp,xx);
xlabel('time [s]'); ylabel('A');

Discrete-Time Signals 45

title('Chaotic signal'); grid;
subplot(212)
fxx=abs(fftshift(fft(xx,1024)));
vf=((-511:512)/1024)*fs;
plot(vf,fxx,'-b');
xlabel('frequency [Hz]');
ylabel('A'); grid;
title('Signal spectrum');

%first equation
function fc = fchua(t,x,y,z)
fc=10*(y-x);

% second equation
function gc = gchua(t,x,y,z)
gc=28*x-y-x*z;
% third equation
function hc = hchua(t,x,y,z)
hc=x*y-(8/3)*z;

0 0.2 0.4 0.6 0.8 1 1.2

x 10
�3

�20

�10

0

10

20

time [s]

A

Chaotic signal

�5 0 5

x 10
5

0

500

1000

1500

2000

frequency [Hz]

A

Signal spectrum

Figure 2.13. Temporal and spectral representation of a chaotic signal

46 Digital Signal Processing using MATLAB

EXERCISE 2.11.
The MATLAB code below is aimed at comparing the spectral representation of a

1D discrete-time signal to that obtained when it is periodized.

xd=[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0];
xdf=abs(fft(xd,64)); f=0:63;
subplot(221);
stem([xd,zeros(1,16)]);
xlabel('Time'); ylabel('Amplitude');
title('Rectangular pulse signal');
subplot(222); plot(f,xdf); xlabel('Time');
ylabel('Amplitude'); title('Signal spectrum');
subplot(223);
stem([xd,xd]);
xlabel('Time'); ylabel('Amplitude');
title('Periodic pulse burst');
subplot(224); stem(xdf); xlabel('Time');
ylabel('Amplitude'); title('Signal spectrum');

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time

A
m

pl
itu

de

Rectangular pulse signal

0 20 40 60 80
0

1

2

3

4

Time

A
m

pl
itu

de

Signal spectrum

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time

A
m

pl
itu

de

Periodic pulse burst

0 20 40 60 80
0

1

2

3

4

Time

A
m

pl
itu

de

Signal spectrum

Figure 2.14. Discrete-time signals and associated frequency spectra

Notice that when a discrete-time signal is periodized, its spectrum is sampled.

Run the same code again to perform this comparative analysis for the following
signals: triangular, sawtooth and exponential.

Discrete-Time Signals 47

EXERCISE 2.12.

The DTFS of a periodical discrete-time signal is illustrated by the following
MATLAB code:

x=[ones(1,32),zeros(1,32)]; N=64;
for k=0:N-1
 c(k+1)=0;
 for n=0:N-1
 c(k+1)=c(k+1)+x(n+1)*exp(-j*pi*2*k/N*n);
 end
 c(k+1)=c(k+1)/N;
end
stem(abs(c(1:N))); ylabel('Amplitude');
xlabel('coefficient index')
title('Absolute value of DTFS coefficients');

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
m

pl
itu

de

coefficient index

Absolute value of DTFS coefficients

Figure 2.15. Magnitude of the Fourier series coefficients

Verify the following main properties of the DTFS coefficients corresponding to a
periodical real discrete-time signal:

[] []
1 1

0 0

1 1(1) 1 , (2) 1 (1) ,
N N n

N k k
n n

c x n c N x n c c
N N

− − ∗
−

= =
= + = + − =

48 Digital Signal Processing using MATLAB

Write a new code to calculate the DTFS coefficients of a 2D discrete-time signal.

x=zeros(16);x(1:4,1:4)=ones(4);
c=zeros(16); N=16;
for k1=1:N
 for k2=1:N
 for n1=1:N
 for n2=1:N
 expo=exp(-j*2*pi*(n1-1)*(k1-1)/N-j*2*pi*(n2-1)*(k2-1)/N);
 c(k1,k2)=c(k1,k2)+x(n1,n2)*expo;
 end
 end
 end
end
figure;
subplot(211); mesh(real(c))
xlabel('k1'); ylabel('k2');
title('Real part of the coefficients')
subplot(212); mesh(imag(c))
xlabel('k1'); ylabel('k2');
title('Imaginary part of the coefficients')

0 5 10 15 20

0
5

10
15

20
�20

0

20

k1

Real part of the coefficients

k2

0 5 10 15 20

0
5

10
15

20
�20

0

20

k1

Imaginary part of the coefficients

k2
Figure 2.16. Fourier series coefficients for a 2D discrete-time signal

EXERCISE 2.13.
Write a MATLAB function for calculating the DTFT of a discrete-time finite

signal h[n] of length N, for N uniformly spaced frequencies on the unit circle.

Discrete-Time Signals 49

function [H,W]=tftd(h,N)
W=(2*pi/N)*[0:N-1]’;
mid=ceil(N/2)+1;
W(mid:N)=W(mid:N)-2*pi;
W=fftshift(W);H=fftshift(fft(h,N));

The following MATLAB code uses the new function tftd.m to calculate and

plot the DTFT of the discrete-time signal x[n] = 0.88n in N = 128 points.

nn=0:40; xn=0.88.^nn;
[X,W]=tftd(xn,128);
subplot(211); plot(W/2/pi,abs(X))
xlabel('normalized frequency');
ylabel('amplitude [V]')
subplot(212);
plot(W/2/pi,180/pi*angle(X))
xlabel('normalized frequency')
ylabel('phase [deg.]')

�0.5 0 0.5
0

2

4

6

8

10

normalized frequency

am
pl

itu
de

 [V
]

�0.5 0 0.5
�100

�50

0

50

100

normalized frequency

ph
as

e
[d

eg
.]

Figure 2.17. Magnitude (top) and phase (bottom) spectrum

EXERCISE 2.14.
Consider a discrete-time real signal defined by: x[n] = cos(2πn/N). Its Hilbert

transform y[n] is the imaginary part of the analytical signal: x[n] + j⋅y[n]. The
MATLAB code below allows the calculation of the analytical signal components.

50 Digital Signal Processing using MATLAB

N=64;n=0:N-1;
x=cos(2*pi/N*n);stem(x)
y=hilbert(x);
subplot(211);stem(real(y));
title('Real signal');
xlabel('n');ylabel('Amplitude');
subplot(212);stem(imag(y));
title('Signal Hilbert transform');
xlabel('n'); ylabel('Amplitude');

Figure 2.18. Discrete-time signal and its Hilbert transform

The Hilbert transformer impulse response h[n] and its frequency response H[υ]
can be obtained in the following manner:

for nn=-31:1:32;
 h(nn+32)=2*pi./nn.*((sin(pi*nn/2)).^2);
end
h(32)=0;
[H,f]=freqz(h); amp=20*log10(abs(H));
phase=unwrap(angle(H))*180/pi;
subplot(311); stem(h);
title('Impulse response'); xlabel('n')
subplot(312); semilogy(f,amp);
xlabel('Normalized frequency');
ylabel('Amplitude (dB)'); grid
subplot(313); plot(f,phase);
xlabel('Normalized frequency');
ylabel('Phase (deg.)'); grid

Discrete-Time Signals 51

0 10 20 30 40 50 60 70
�10

0

10
Impulse response

n

0 0.5 1 1.5 2 2.5 3 3.5
10

0

10
1

10
2

Normalized frequency

A
m

pl
itu

de
 (

dB
)

0 0.5 1 1.5 2 2.5 3 3.5
�10000

�5000

0

Normalized frequency

P
ha

se
 (

de
g.

)

Figure 2.19. Time (top) and frequency (bottom) representations of Hilbert operator

The impulse response of the Hilbert transformer can be also obtained using the
following MATLAB command:

h=remez(64,[0.1,0.9],[1,1],'Hilbert');

2.3. Exercises

EXERCISE 2.15.
Calculate and plot the spectrum of a periodic rectangular pulse of period N = 16, if:

[] 1 if 0..7
0 if 8..15

n
x n

n
=

=
=

Note the values of spectral components 0c and 2Nc , and show that *
kkN cc =−

for 0.15k = .

EXERCISE 2.16.

Verify the linearity property of the DTFT1D:

[] []{ } []{ } (){ }1D 1 1 2 2 1 1D 1 2 1D 2DTFT DTFT DTFTa x n a x n a x n a x n+ = +

52 Digital Signal Processing using MATLAB

using the following signals:

[] []1 2
4 , if 0,1,2,3,4 2 , if 0,1,2,3,4

,
0, otherwise 0, otherwise

n n n n
x n x n

− = =
= =

with 1 21 and 0.5.a a= =

EXERCISE 2.17.

Generate and plot the following signals:

[] []1 2
4, if 3..3 , if 3..3

,
0, otherwise 0, otherwise

n n n
x n x n

= − = −
= =

Verify that the imaginary part of the DTFT of signal x1[n] is zero; do the same
for the real part of the DTFT of signal x2[n].

EXERCISE 2.18.

Show that the DTFT1D is the same for the two discrete-time signals defined below:

[] [] [] []1 2; 1n nx n a u n x n a u n= = − − −

EXERCISE 2.19.

Write a MATLAB code to verify Parseval’s theorem:

[] []
−

=

−

=
=

1

0

21

0

2 1 N

k

N

n
kX

N
nx

for the signal:

[] if 0..7
0 otherwise
n n

x n
=

=

EXERCISE 2.20.

Write a MATLAB code to verify that the following exponential signal family:

[] ()2e , 0. 1jk N n
k n k Nπϕ = = −

a) contains only N different signals []k nϕ ;

Discrete-Time Signals 53

b) each signal []k nϕ is periodical, so that:

[] [] [], 0, 1k kn n N n Nϕ ϕ= + ∀ ∈ −

c) the N different signals []nkϕ form an orthogonal basis, so that:

()1 2

0

, if 0, , 2 ,...
e

0, otherwise

N jk N n

n

N k N Nπ−

=

= ± ±
=

This page intentionally left blank

Chapter 3

Discrete-Time Random Signals

3.1. Theoretical background

3.1.1. Introduction

Random signals form a particularly important signal class because they are the
only signals with the capability of transmitting information (this is a basic axiom of
information theory).

The apparent division between signal and noise is artificial and depends on the
criteria of the user. Some electromagnetic phenomena of galactic origin recorded by
electrical antennae are considered as noise by telecommunication engineers, while
they are very important signals for radioastronomers. The signal produced by a ship
could be considered as a noise, but from a passive sonar point of view it is the
information source that may allow localizing or even characterizing the ship. In fact,
the useful or noisy nature of the captured signal is relative and is related to the
observer’s objectives.

In the framework of statistical theory the random variable concept is associated
with a static study of the statistical phenomena. This is not often enough in practice
because the probability distributions may vary in time or space. A more general
concept is the stochastic process, which is defined as a system, or any variable set
representing it, submitted to random influences.

In the case of a stochastic process, a random experience is associated with a
function instead of a scalar or a vector, as in the case of a random variable. Although
this function may depend on several parameters, we will consider only one in the
following, which will be called time and will be denoted by t.

56 Digital Signal Processing using MATLAB

From a theoretical point of view a stochastic process can be represented as a two
arguments function),(),(tXt ωω → , where ω is an element of a probability space
(Ω, F, P) and t an element of a metric space.

The state of the system corresponding to given value t is a random variable. It is
thus required that the applications:

() : (,) = ()tX t w X t w X w→ [3.1]

be measurable for any value of t.

The random variable Xt is known as the t-section of the process. It represents the
possible states of the system at the time t.

An “outcome” or a “trajectory” of the stochastic process is associated with each
value of w:),(=)(twXtXt w→ . It depends on the parameter t and has a random
nature. That is why () wt X t→ is often called a random function and is denoted by
X(t). A set of equal duration recordings form an outcome family associated with this
random function.

3.1.2. Real random variables

A real random variable can be fully characterized by different means: cumulative
distribution function (cdf), probability density function (pdf), characteristic function,
moments, etc.

The cumulative distribution function of a real random variable X is denoted by
()XF x and is defined as indicated below:

() = ()XF x P X x≤ [3.2]

This function has the following properties:

− XF is a right-continuous, bounded, increasing function,

− () () ()X XP a X b F b F a≤ ≤ = − ,

− lim () 1, lim () 0X X
x x

F x F x
→+∞ →−∞

= = .

The probability density function ()Xf x represents the probability distribution
over the random variable outcomes and has the following properties:

−
-

() ()
x

X XF x f u du
∞

=

− () () 1X XF f u du
+∞

−∞
+∞ = =

Discrete-Time Random Signals 57

− [] () () ()
b

X X X
a

P a X b f u du F b F a≤ ≤ = = −

The nth order moment of the random variable X is defined as nE X .

[]X E X− is the zero-mean variable corresponding to X. The nth order centered

moment thus has the following expression: []()n
E X E X− .

The variance of a random variable is by definition its second order centered
moment. In the case of a continuous random variable:

[]()
+ 2

() ()XVar X x E X f x dx
∞

−∞
= − [3.3]

The standard deviation []X Var Xσ = is a probabilistic measure for the
dispersion of a random variable X around its mean value, as is shown by the
Bienaymé-Tchebycheff inequality:

[]
2
1

X

X E X
P t

tσ
−

≥ < [3.4]

The two characteristic functions of a random variable X are defined below:

() juX
X u E eΦ = , ()() ln ()X Xu uΨ = Φ [3.5]

They are very useful for calculating the moments and the cumulants of a random
variable in a straightforward way. It can easily be seen that if X is a continuous
random variable, the first characteristic function ()X uΦ is directly related to the
Fourier transform of its pdf:

+
() () jux

X Xu f x e dx
∞

−∞
Φ = [3.6]

Random vectors

An n-dimensional random vector corresponds to n random variables, called
marginals. The knowledge of the vector pdf involves the knowledge of the marginal
pdfs, but the reciprocal is not generally true. A notable exception is represented by
the case of independent marginals, when the multidimensional vector pdf is obtained
as the product of the n marginal pdfs.

58 Digital Signal Processing using MATLAB

Let us consider in the following the simplified case of a two-dimensional
continuous random vector denoted by { }, X Y . Its pdf is defined by:

2 (,)
(,) XY

XY
F x y

f x y
x y

∂
=

∂ ∂
 [3.7]

[and] (,)XYP x X x dx y Y y dy f x y dxdy≤ ≤ + ≤ ≤ + = [3.8]

Its statistical moments rsm have the following form:

(,)r s r s
rs XYm E X Y x y f x y dxdy

+∞ +∞

−∞ −∞
= = [3.9]

The 1st and 2nd order moments, which are the most important, are defined here
below:

[]10 (,) ()XY Xm E X xf x y dxdy xf x dx
+∞ +∞ +∞

−∞ −∞ −∞
= = = [3.10]

[]01 ()Ym E Y yf y dy
+∞

−∞
= = [3.11]

2 2 2
20 (,) ()XY Xm E X x f x y dxdy x f x dx

+∞ +∞ +∞

−∞ −∞ −∞
= = = [3.12]

2 2
02 ()Ym E Y y f y dy

+∞

−∞
= = [3.13]

{ }11 (,)XYm E XY xyf x y dxdy
+∞ +∞

−∞ −∞
= = [3.14]

The correlation and covariance of the random variable couple { }, X Y can thus
be calculated as:

[] []
[] [] [] []

11

10 01 11 10 01

cor ,

cov , ()()

X Y E XY m

X Y E X m Y m E XY E X E Y m m m

= =

= − − = − = −
 [3.15]

Discrete-Time Random Signals 59

According to the Schwarz inequality:

[] []()
[]()

22 2 2 2
02 20 11

22 2 2 2 2
10 01 10 01

cor

() () ()() covX Y

E X E Y E XY m m m XY

E X m E Y m E X m Y m XYσ σ

≥ ⇔ ≥ =

− − ≥ − − ⇔ ≥

The correlation and covariance coefficients measure the underlying behavior
similarity of the two variables and can be expressed in the following form:

2 2

cor(,) cov(,)(,) , (,)
X Y

X Y X Y
r X Y X Y

E X E Y
ρ

σ σ
= = [3.16]

It can easily be seen from the inequalities above that their values are comprised
between -1 and 1.

If Y is an affine function of X, i.e. bXaY + = , it can be shown that:

if 0 (,) (,) 1
if 0 (,) (,) 1

a r X Y X Y
a r X Y X Y

> = ρ =
< = ρ = −

 [3.17]

If (,) 0X Yρ = , X and Y are called uncorrelated random variables. The statistical
independence is a sufficient, but not a necessary condition. Indeed, we may
obtain [] [] []E XY E X E Y= even if X and Y are not independent.

Pdf examples

A continuous random variable is uniformly distributed if its pdf is constant over
the interval [a, b]:

1
()

0 otherwise
X

a x b
f x b a

≤ ≤
= − [3.18]

This results in:

[]
2

a b
E X

+= (interval center); []
2()var

12
b a

X
−= ; [3.19]

2 3X
b aσ −= ; ()()2

()() exp sinc
2

a b
X

b a
u ju uϕ + −= [3.20]

60 Digital Signal Processing using MATLAB

The random variable X is Gaussian or normally distributed if its pdf is bell shaped:

2

2
1 ()() exp

2 2
X

x m
f x

πσ σ
−= − [3.21]

Its mean, variance and characteristic function are given by:

[]
[] 2var

E X m

X σ

=

=
 [3.22]

2 2
() exp()exp

2X
uu jum σϕ −= [3.23]

This random variable is particularly interesting because it is fully characterized
by its two first moments. Its cdf is tabulated.

Central limit theorem

Consider n iid (independent and identically distributed) random variables
{Xk}k=1 n having the same mean and standard deviation, m and σ. Thus, the
characteristic function of the random variable defined below:

1

1()
n

k

k

X m
X n

n σ=

−
= [3.24]

tends towards the characteristic function of a zero-mean random Gaussian variable
with unit variance.

This theorem provides an explanation for the fact that most physical random
processes are Gaussian. Indeed, an observed random process can be considered as
the sum of a large number of weak identically distributed random variables.

3.1.3. Random processes

The two most important properties of a random process are the stationarity and
ergodicity. The strict sense stationarity (SSS) is related to the time-invariance of the
random process statistics and can be expressed by:

1 2 1 1 1 0 0

1 2 1 1 2 1 1

(, , , , , ,) (, , , , ,)
 (, , , , , ,) (, , 0, , ,)

X n n X n n

X n n X n n

f x x x t t f x x t t t t
f x x x t t f x x t t t t

+ +

− −

=
⇔ =

 [3.25]

Discrete-Time Random Signals 61

The specific 1D and 2D cases become:

(,) (,0) ()X X Xf x t f x f x= = time-independent [3.26]

() () ()1 2 1 2 1 2 2 1 1 2 2 1, , , , , 0, , , withX X Xf x x t t f x x t t f x x t tτ τ = −= − = [3.27]

It can be seen that the joint pdf corresponding to the 2D case depends only on the
difference between the moments corresponding to the two observations.

The 2nd order stationarity, also known as wide sense stationarity (WSS), involves
the time-invariance only for the 1st and 2nd order moments:

[] ()01 1 1() () , E X t m t m m t== = ∀ [3.28]

and []1 2 11 1 2() () (), E X t X t m t tτ τ= = − [3.29]

The wide sense stationarity does not involve the strict sense stationarity.
However, if the random process is completely described by the 1st and 2nd order
statistics, as in the Gaussian case, it is also a strict sense stationary if it is a wide
sense stationary.

A random process is ergodic if its statistical means of any order are equal to the
corresponding temporal means. The ergodicity is a very useful property because it
allows the calculation of any statistical moment over all the process outcomes to be
replaced by the calculation of a temporal average, over only one of them. Any
particular outcome of the random process becomes in this case completely
representative of it. From a practical point of view this means a lot of time and
memory space can be saved because it is enough to record only one outcome in
order to analyze a random process.

Two types of ergodicity are particularly interesting for a WSS random process:
mean ergodicity and covariance ergodicity:

[]
/ 2

1
/ 2

1() (,) lim ()
T

X
T T

m E X t xf x t dx X t dt
T

+∞

→∞−∞ −
= = = [3.30]

[]11 1 2 1 2 1 2

/ 2
*

/ 2

(,) () () (, , ,)

1lim () () ()

X

T

X
T T

m t t E X t X t x x f x x t t dx dx

X t X t dt
T

τ τ τ

τ τ

+∞ +∞

−∞ −∞

→∞ −

− = − = −

= − = Γ

 [3.31]

62 Digital Signal Processing using MATLAB

()X τΓ is the autocorrelation function of a random process X(t). It is a major tool
for the analysis of the ergodic WSS random processes. In order to simplify their
analysis they are generally zero-mean (this is easy to do as its mean is constant). The
main properties of this type of random process are listed below:

a) the autocorrelation function is maximum at origin: () (0)X Xτ τΓ ≤ Γ ∀ ;

b) the autocorrelation function is Hermitian:)()(* ττ XX Γ=−Γ . If X(t) is real,
)(τXΓ is real and even;

c) generally the following equation holds: [] 22lim ()x m E X
τ

τ
→∞

Γ = = . This

means that for a large enough τ, the random variables X(t) and) - (* τtX tend to be
uncorrelated;

d) the power spectral density (PSD) is the Fourier transform of the
autocorrelation function:

2() () j
X X e dπντγ ν τ τ

+∞
−

−∞
= Γ [3.32]

e) the PSD is a real, non-zero, positive function;

f) if X(t) is real, ()Xγ ν is even. Since ()Xγ ν is also real, it results that ()X τΓ
is real and even and thus:

() () cos(2)X X dγ ν τ πντ τ
+∞

−∞
= Γ [3.33]

A random process is Gaussian if for any n and any moment series 1, , nt t , the
n-dimensional variable [] []1 1(), , () , ,n nX X t X t x x= = is Gaussian. Its pdf is
given by:

1
1/ 2/ 2

1 1() exp () ()
2(2) det

t
n

p X X X
π

−= − − Σ −
Σ

μ μ [3.34]

where:

− []1, , nμ μ=μ is the mean vector with:

[]1 1() , , ()n nE X t E X tμ μ= =

− { } 1.. , 1..ij i N j n
σ

= =
Σ = is the covariance matrix with:

() ()ij i j i jE X t X tσ μ μ= −

Discrete-Time Random Signals 63

Notice that all the vectors considered above are column vectors and that Σ is a
Hermitian matrix: *

ij jiσ σ= .

A natural example of a Gaussian random process is the thermal noise, which is
related to the thermal chaotic motion of elementary particles in any physical system
(such as the voltage fluctuations measured on an unpolarized resistor).

An important point is that the mathematical derivations are simplified in the case
of random Gaussian processes. Their most important properties are recalled in the
following:

a) a Gaussian random process is completely defined by its 1st and 2nd order
statistics. In fact, the mean vector μ as well as the covariance matrix Σ can be
calculated for any series 1, , nt t from functions ()X tμ and 1 2(,)X t tΓ :

[]1(), , ()X X nt tμ μ=μ [3.35]

(,) () ()ij X i j X i X jt t t tσ μ μ= Γ − [3.36]

b) a wide sense stationary Gaussian process is also a strict sense stationary
because the temporal law is completely characterized by its two first moments. All
the components of its mean vector are equal in this case and its covariance matrix
has a Toeplitz structure;

c) the decorrelation involves the independence;

d) any linear combination of independent Gaussian variables is Gaussian. The
Gaussian character is thus preserved by any linear transformation or linear filtering;

e) the Gaussian character is often associated with the white random processes
defined below, but there is no implication between these two properties.

A random process b(t) whose power spectral density 2/)(0Nb =νγ is constant
over all frequencies is called white noise. Its autocorrelation function can thus be
obtained in the form:

{ }1 0() () ()
2bb b

N
TFτ γ ν δ τ−Γ = = [3.37]

In many applications, a signal ()r t can be expressed as the sum of a useful
component ()s t and a noise component ()b t :

() () ()r t s t b t= + [3.38]

64 Digital Signal Processing using MATLAB

The signal-to-noise ratio (SNR) provides the information about the relative
power of noise with respect to the useful signal component power. It can thus be
defined as the ratio between the mean power levels of the useful signal and noise
components:

s

b

P
RSB

P
= [3.39]

Notice that the noise mean power should be estimated within the useful signal
frequency band.

3.2. Solved exercises

EXERCISE 3.1.
The aim of this exercise is to become more familiar with the Gaussian

distribution, currently used in signal processing. Generate 1,000 zero-mean normally
distributed random samples with the variance 1 using the function randn. Plot on the
same figure the histogram and the theoretical pdf. Repeat the same experiment for a
non-zero mean. Then consider a different value for the signal variance. Finally,
decrease the number of samples from 1,000 to 20. Comment on the obtained results.

The Gaussian distribution occurs very frequently in the real world. For example,
a mechanical factory may specify a Gaussian distribution of its manufactured wheel
diameter around the nominal value of 1 m, with a standard deviation of 0.04 m. Let
us consider that customers only accept wheels whose diameter is between 0.95 and
1.05 m. Give an approximation of the merchandise percentage which will not be
sold by the manufacturer.

Ntotal=1000;
mu=0; sigma=1; %Mean and standard deviation
ech = randn(1,Ntotal) .* sigma + mu;
Nclas=8; dx=.01;
[N,X]=hist(ech,Nclas);
x=mu-4*sigma:dx:mu+4*sigma;
y=exp(-0.5*((x-mu)/sigma).^2)/(sqrt(2*pi)* sigma);
figure;clf;zoom on;
subplot(221); hold on;
bar(X,N/Ntotal); plot(x,y,'r');
title('N(0,1), 1000 samples ');
subplot(212);
hold on;plot(x,y,'r')

%% Change the mean
mu=2;sigma=1;x=mu-4*sigma:dx:mu+4*sigma;

Discrete-Time Random Signals 65

y=exp(-0.5*((x-mu)/sigma).^2)/(sqrt(2*pi)* sigma);
subplot(212);
hold on;plot(x,y,'b--')

%% Change the variance (or the standard deviation)
mu=2;sigma=5;
x=mu-4*sigma:dx:mu+4*sigma;
y=exp(-0.5*((x-mu)/sigma).^2)/(sqrt(2*pi)*sigma);subplot(212);
hold on;plot(x(1:50:end),y(1:50:end),'g+');grid;
legend('N(0,1)','N(2,1)','N(2,25)')

%%Change the number of samples
Ntotal=20;mu=0;sigma=1;
ech=randn(1,Ntotal)*sigma+mu;
Nclas=8;[N,X]=hist(ech,Nclas);
x=mu-4*sigma:dx:mu+4*sigma;
y=exp(-0.5*((x-mu)/sigma).^2)/(sqrt(2*pi)* sigma);
subplot(222); hold on;
bar(X,N/Ntotal);
plot(x,y,'r');
title('N(0,1), 20 samples')

�4 �2 0 2 4
0

0.1

0.2

0.3

0.4
N(0,1), 1000 samples

�20 �15 �10 �5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

�4 �2 0 2 4
0

0.1

0.2

0.3

0.4
N(0,1), 20 samples

N(0,1)
N(2,1)
N(2,25)

Figure 3.1. Gaussian pdf examples

It can be seen that the obtained histogram using 1,000 samples is bell shaped and
close to the theoretical pdf, unlike in the case when only 20 samples are used. The
quality of the statistical properties estimation for a random process is therefore
directly related to the number of its recorded samples.

66 Digital Signal Processing using MATLAB

The third figure illustrates the concepts of mean and variance. Thus, when the
mean is changed from 0 to 2, the initial curve (solid line) is shifted to the right
(dashed line) and its shape remains the same, while when the standard deviation is
modified the distribution becomes flatter. Notice that the surface under the pdf curve
still equals 1.

% Wheel manufacturer
mu=1;sigma=0.04; dx=.01; x=mu-4*sigma:dx:mu+4*sigma;
y=exp(-0.5*((x-mu)/sigma).^2)/(sqrt(2*pi)* sigma);
figure;clf;zoom on;hold on; plot(x,y)

The probability of having an incorrect wheel (which will not be sold) can be
calculated as the filled surface on the second figure, i.e. as the integral of the pdf on
(−∞ , 0.95] and [1.05, +∞). The value of this integral is estimated using the
rectangle method.

%% Surface filling
deltax=0.001;
x_axis=x(1):deltax:0.95;
y_axis=exp(-0.5*((x_axis-mu)/sigma).^2)/(sqrt(2*pi)* sigma);
bar(x_axis,y_axis);
x_axis=1.05:deltax:x(length(x));
y_axis=exp(-0.5*((x_axis-mu)/sigma).^2)/(sqrt(2*pi)* sigma);
bar(x_axis,y_axis);
legend('Gaussian distribution','Rejection zone')
%% Estimation of the rejection probability
half_area=sum(y_axis*deltax);
proba=2*half_area

0.8 0.85 0.9 0 95 1 1.05 1.1 1.15 1 2 1.25
0

1

2

3

4

5

6

7

8

9

10
Gaussian distribution
Rejection zone

Figure 3.2. Rejection test

Discrete-Time Random Signals 67

The obtained value for the rejection probability is 21.58%. The use of a table
would give 21.12%. Thus, about 21% of the manufactured wheels will not be
appropriate to be sold. Since this proportion is significant the manufacturer will have
to improve its equipment or to increase the product price in order to balance his
budget.

EXERCISE 3.2.

This exercise deals with the distribution of two independent random variables.
Let us consider X and Y, two i.i.d. random variables, whose pdf is an exponential
function with the parameter lambda = 2.

Determine the distribution of Z = X+Y. Compare the obtained distribution to the
analytical one. Then calculate the convolution of the pdfs corresponding to Z and -X.
How do you explain the difference with respect to the Y distribution knowing that
Z+(-X) = Y ?

%Pdf of X or Y on [0,6]
dx = .01 ; x = (0:dx:6);
npt = length(x);
lambda = 2;
Px = lambda*exp(-lambda*x);

Remember that the pdf of the sum of two i.i.d. random variables is the
convolution of the corresponding pdf.

% Distribution of X+Y
Pz = conv(Px,Px)*dx;
figure;
clf;
plot(x,Px);
hold on;
plot(x(1:5:end),Pz(1:5:npt),'r+')

% Comparison with the theoretical result
Pzanalytic=lambda^2*exp(-lambda*x).*x;
plot(x(1:5:end),Pzanalytic(1:5:npt),'g*')

% Convolution of the pdfs corresponding to Z and -X
Czx = conv(Pz,Px(length(Px):-1:1))*dx;
plot([-x(length(x):-1:2),x],Czx(1:2*npt-1),'k--')
legend('Pdf of X (or Y)', 'Pdf of Z=X+Y', 'Analytical pdf of
Z','pdf(Z)*pdf(-X)')

Figure 3.3 shows that the distribution obtained from the convolution of the pdfs
corresponding to X and Y and the pdf of Z are identical.

68 Digital Signal Processing using MATLAB

On the other hand, it can be seen that the convolution of pdfs corresponding to Z
and -X is not equal to the pdf of Y, although Y = Z + (-X), because -X and Z are not
independent (Z = X + Y). The pdf of the sum can no longer be obtained by the
convolution of the two pdfs.

�6 �4 �2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Pdf of X (or Y)
Pdf of Z=X+Y
Analytical pdf of Z
pdf(Z)*pdf(�X)

Figure 3.3. Illustration of the pdf of the sum of two random variables

EXERCISE 3.3.
The goal of this exercise is to use the central limit theorem. Let us consider a set

of independent Bernoulli-distributed random variables Xi. If the parameter of the
Bernoulli pdf is p, then E[Xi] = p and the var[Xi] = p − p2.

Write a MATLAB function for calculating recursively the pdf of X1 + X2 + +
Xi = Zi as the result of the convolution of the pdfs corresponding to the random
variables Zi -1 and Xi. Compare the pdf of Zi to the normal pdf N(m, s) with m =
i⋅E[Xi] and s2 = i⋅var[Xi], on the interval [m−4s, m+4s].

Use this function for p = 0.6, then p = 0.9, p = 0.99 and comment on the results
obtained.

function sumlaw(x,y,m,s,Nsum);
% x: domain of the random variable x=[0,1]; Bernoulli pdf)
% y: pdf(x) (y = [1-p p]; Bernoulli pdf)
% m: mean value (m = p; Bernoulli pdf)
% s: standard deviation (s = sqrt(p-m^2); Bernoulli pdf)
% Nsum: number of added variables
%
%%% Normal pdf set up

Discrete-Time Random Signals 69

dx = .01; xn= (m-4*s):dx: (m+4*s);
yn = exp(-0.5 * ((xn-m)/s) .^2) ./ (sqrt(2*pi) .* s);
plot(xn,yn,'r');hold on;stem(x,y);
hold off;
%%% Recursive calculation of the sum pdf
yp = y; xp = x;
for ii=2:Nsum
 yp = conv(yp,y); xp =
(x(1)+xp(1):x(length(x))+xp(length(xp)));
% Pdf sum
 mn = ii*m;
 sn = sqrt(ii)*s;
 xn=(mn-4*sn):dx:(mn+4*sn);
 yn=exp(-0.5*((xn-mn)/sn).^2)/(sqrt(2*pi).*sn);%Normal pdf
% Visualization
 plot(xn,yn,'r'),
 hold on,
 set(gca,'xlim',[xn(1),xn(length(xn))])
 ind = find(xp>mn-4*sn&xp<mn+4*sn);
 stem(xp(ind),yp(ind))
 hold off
 drawnow
end

% Use of the obtained pdf for different values of p
p = .6; x = [0:1]; y = [1-p p];
m = p; s = sqrt(p-m^2);
figure; clf; subplot(221);
sumlaw(x,y,m,s,20);
title('p=0.6, N=20')
p = .9;x = (0:1); y = [1-p p];
m = p; s = sqrt(p-m^2);
subplot(222);
sumlaw(x,y,m,s,20);
title('p=0.9,N=20')
p = .99;x = (0:1); y = [1-p p];
m = p; s = sqrt(p-m^2);
subplot(223);
sumlaw(x,y,m,s,20);title('p=0.99,N=20')
p = .9;x = (0:1); y = [1-p p];
m = p; s = sqrt(p-m^2);
subplot(224);
sumlaw (x,y,m,s,70);title('p=0.9,N=70');
legend('Normal pdf','Sum pdf')

70 Digital Signal Processing using MATLAB

Figure 3.4. Central limit theorem illustration

According to the obtained results, the sum of N = 20 independent Bernoulli-
distributed random variables asymptotically converges to N(m, s), with m = N⋅E[Xi]
and s2 = N⋅var[Xi], for p = 0.6.

However, the more p moves away from 0.5, the less good the results are. In fact,
the binomial pdf (Bernoulli-distributed random variables sum) can be approximated
by a Gaussian pdf only for large enough N, N⋅p > 5 and N⋅(1−p) > 5. Thus, p = 0.9 is
not an appropriate value because 20⋅(1−p) = 2.

In order to meet these conditions N has to be larger than 50. This statement is
sustained by the result depicted on the figure above for N = 70, p = 0.9. In the same
way, it would be necessary to have N > 500 for obtaining appropriate results with
p = 0.99. The explanation comes from the fact that the more p is different from 0.5,
the less symmetric the initial distribution is and the more random variables have to
be added in order to obtain the convergence.

EXERCISE 3.4.

Generate and plot 4 outcomes of the random process x(t), sampled at 100 kHz,
during 0.01 s, (,) cos(2 1,000)x t tϕ π ϕ= ⋅ ⋅ + , where ϕ takes the following values:
0, / 2, , 3 / 2π π π .

Discrete-Time Random Signals 71

Calculate the mean value []()E x t and the 2nd order statistical moment 2 ()E x t .

phas=[0 pi/2 pi 3*pi/2]; leng=1000;
Fs=100000; t=[1:1000]/(Fs);
nb_real= length(phas);
for ii = 1:nb_real
 x(ii,:) = cos(2*pi*1000*t + phas(ii))
end
subplot(411);plot(t,x(1,:));title('phase at origin = 0')
subplot(412);plot(t,x(2,:));title('phase at origin = pi/2')
subplot(413);plot(t,x(3,:));title('phase at origin = pi')
subplot(414);plot(t,x(4,:));
title('phase at origin = 3*pi/2');xlabel('time [s]')

0 0 002 0.004 0.006 0 008 0.01
�1

0

1
phase at origin = 0

0 0 002 0.004 0.006 0 008 0.01
�1

0

1
phase at origin = pi/2

0 0 002 0.004 0.006 0 008 0.01
�1

0

1
phase at origin = pi

0 0 002 0.004 0.006 0 008 0.01
�1

0

1
phase at origin = 3*pi/2

time (s)

Figure 3.5. Random phase sinusoids

The 1st and 2nd order moments are time-invariant. This random process is
therefore wide-sense stationary. Thus, it can also be demonstrated that its
autocorrelation function depends only on the difference between the observation
moments.

ave=mean(x); eqm=mean(x.̂ 2);
figure
subplot(211); plot(t,ave);
axis([0 0.01 -0.50 .5]);
title('statistical mean variation')
subplot(212); plot(t,eqm);

72 Digital Signal Processing using MATLAB

title('2̂ n̂ d order moment variation')

0 0.002 0.004 0 006 0.008 0 01
�0.5

0

0.5
statistical mean variation

0 0.002 0.004 0 006 0.008 0 01
0.5

0.5

0.5

0.5
2nd order moment variation

Figure 3.6. Temporal variation of the random process 1st and 2nd order moments

Plot the autocorrelation matrix of the random process x(t) and conclude about its
wide-sense stationarity.

corre=corrcoef(x(:,1:300));
figure
imagesc(t(1:300),t(1:300),corre)

0.5 1 1.5 2 2.5 3

x 10
-3

0.5

1

1.5

2

2.5

3

x 10
-3

Figure 3.7. Autocorrelation matrix representation

Discrete-Time Random Signals 73

As can be seen, the autocorrelation matrix (,) (,) (,)x i ji j E x t x tϕ ϕΓ = has a
Toeplitz-like structure. Consequently, the autocorrelation matrix only depends on
the difference among observation moments. Note that the curve corresponding to the
2nd order moment variation is obtained here as the main diagonal of the
autocorrelation matrix.

Test the 1st and 2nd order ergodicity property for this random process.

ave_erg=mean(x')
ave_erg =
 1.0e-015 *
 -0.0893 0.0919 0.0560 -0.1225
var_erg=mean(x'.̂ 2)
var_erg =
 0.5000 0.5000 0.5000 0.5000

It can be seen that the four temporal means are equal (up to the estimation error),
to the 1,000 statistical means obtained from the four process outcomes, for both the
1st and 2nd order moments. Thus, the process is 2nd order ergodic.

EXERCISE 3.5.

Generate a white Gaussian random process with the mean 3 and the variance 3
on 1,092 points. Plot its autocorrelation function and its power spectral density.

Filter the previously generated random process after removing its mean. Use an
IIR filter having a zero in 0 and a real simple pole in 0.95. Plot its autocorrelation
function and its power spectral density. The two signals will be considered 2nd order
ergodic.

Comment on the results obtained and conclude about the link between the signal
predictability and the shape of its autocorrelation function.

rho=0.95;
var=3;
meanval=0;
b = [1];
a = [1 -rho];
y = filter(b,a,(sqrt(var)*(randn(1,1092))))+meanval;
subplot(221);
plot(y);
axis([0 1091 -20 20])
xlabel('time [s]');
ylabel('amplitude (V)');
title('filtered signal');
corre=xcorr(y,'unbiased');
subplot(223);

74 Digital Signal Processing using MATLAB

plot([-400:400],corre(692:1492))
xlabel('time [s]');
ylabel('amplitude (V*V)');
title('autocorrelation function')
meanval=3;
y1 = sqrt(var)*(randn(1,1092))+meanval;
subplot(222);
plot(y1);
axis([0 1091 -5 10])
xlabel('time [s]');
ylabel('amplitude (V)');
title('signal before filtering');
corre1=xcorr(y1,'unbiased');
subplot(224);
plot([-400:400],corre1(692:1492))
xlabel('time [s]');
ylabel('amplitude (V*V)');
title('autocorrelation function')

0 500 1000
�20

�10

0

10

20

time (s)

am
pl

itu
de

 (
V

)

filtered signal

�400 �200 0 200 400
�20

0

20

40

60

time (s)

am
pl

itu
de

 (
V

*V
)

autocorrelation function

0 500 1000
�5

0

5

10

time (s)

am
pl

itu
de

 (
V

)

signal before filtering

�400 �200 0 200 400
9

10

11

12

13

time (s)

am
pl

itu
de

 (
V

*V
)

autocorrelation function

Figure 3.8. Signals and associated autocorrelation functions

The autocorrelation function of the white Gaussian noise is a Dirac pulse, as for
large temporal shifting it tends towards the square of the mean value, i.e. 9.

Discrete-Time Random Signals 75

In the case of the filtered noise, the autocorrelation function decreases very
slowly. It also tends towards the square of the mean value, which is zero in this case.
The lowpass filtering correlates the random process samples as it can be seen on the
corresponding autocorrelation function depicted on the left side of the figure above.

The effect of the convolution introduced by the linear filter depends on its pulse
response and it would be easy to verify that the lower its cutoff frequency, the larger
the main lobe of the autocorrelation function is and thus, the stronger the correlation
introduced by the lowpass filter. It is obvious then that the filtered signal can be
partially predicted, while the white noise is completely unpredictable.

freq=[0:1/1024:511/1024];
y_f=abs(fft(y,1024));
figure;
subplot(211);
semilogy(freq,y_f(1:512));
xlabel('Normalized frequency');
ylabel('amplitude (W/Hz)');
title ('Filtered signal PSD')
subplot(212);
y1_f=abs(fft(y1,1024));
semilogy(freq,y1_f(1:512));
xlabel('Normalized frequency');
ylabel('amplitude (W/Hz)');
title ('White noise PSD')

76 Digital Signal Processing using MATLAB

0 0.1 0.2 0.3 0.4 0.5
10

0

10
2

10
4

Normalized frequency

am
pl

itu
de

 (
W

/H
z)

Filtered signal PSD

0 0.1 0.2 0.3 0.4 0.5
10

0

10
2

10
4

Normalized frequency

am
pl

itu
de

 (
W

/H
z)

White noise PSD

Figure 3.9. PSDs of a filtered (top) and unfiltered (bottom) white noise

The filtering effect can be easily identified on the PSDs plotted on Figure 3.9.
Note the DC component in the spectrum of the white noise, which corresponds to its
mean value.

The depicted PSDs are very fluctuant because their estimation is performed
using a finite number of samples and no method is used to reduce the estimate
variance (this topic will be discussed in Chapter 10).

EXERCISE 3.6.

1,000 people, from 20 to 50 years old, participate in a statistical survey. They are
asked to provide their height and weight, which are compared with the standard
values. The difference between the real and the standard values is a random
Gaussian quantity, whose variance depends on the parameter considered.

Estimate the correlation coefficient for each pair of variables: (weight, height),
(age, weight) and (age, height).

height = fix(randn(in,1)*12+168);
height(height<150) = 150 + randn(sum(height<150),1)*3;

Discrete-Time Random Signals 77

weight = fix((height-168)*1.1 +64 + randn(in,1)*6+2);
weight(weight<45) = 45 + randn(sum(weight<45),1)*2;
weight(age>=35) = fix(weight(age>=35) + randn(sum(age>=35),1)*1+3);
weight(age>=40) = fix(weight(age>=40) + randn(sum(age>=40),1)*2+4);
weight(age>=45) = fix(weight(age>=45) + randn(sum(age>=45),1)*2+5);
x = [age height weight]; yx = x(:,3);yy = x(:,2);
subplot(311); plot(yx,yy,'*'); grid on;
xlabel('weight (Kg)'); ylabel('height (cm)')
title('height variation as a function of weight')
yx = x(:,1); yy = x(:,2);
subplot(312); plot(yx,yy,'*'); grid on;
xlabel('age'); ylabel('height (cm)')
title('height variation as a function of age')
yx = x(:,1); yy = x(:,3);
subplot(313);plot(yx,yy,'*'); grid on;
xlabel('age'); ylabel('weight (Kg)')
title('weight variation as a function of age')

Note that the height and the weight of any person are obviously correlated. Type
the following code line in order to measure this correlation:

yx = x(:,3); yy = x(:,2); corrcoef(yx,yy)

This results in the correlation matrix of the two random variables:

ans =
 1.0000 0.8466
 0.8466 1.0000

Their correlation coefficient is therefore equal to 0.8466, which means that they
are closely related. However, there is no statistical link between a person’s age and
his weight or his height, as can be shown from the results obtained below:

yx = x(:,1); yy = x(:,2); corrcoef(yx,yy)

ans =
 1.0000 0.0155
 0.0155 1.0000

yx = x(:,1); yy = x(:,3); corrcoef(yx,yy)

ans =
 1.0000 0.2655
 0.2655 1.0000

78 Digital Signal Processing using MATLAB

40 50 60 70 80 90 100 110 120
140

160

180

200

220

weight (Kg)

he
ig

ht
 (

cm
)

height variation as a function of weight

20 25 30 35 40 45 50
140

160

180

200

220

age

he
ig

ht
 (

cm
)

height variation as a function of age

20 25 30 35 40 45 50
40

60

80

100

120

age

w
ei

gh
t (

K
g)

weight variation as a function of age

Figure 3.10. Correlation illustration

EXERCISE 3.7.
A linear system can be characterized using a white noise as input. The power

spectral density of the output signal then provides an estimation of its transfer
function.

Simulate a 2nd order digital bandpass filter, having a central frequency of 2 kHz
and a frequency bandwidth of 1 kHz. Consider a sampling frequency of 10 kHz and
a zero-mean white Gaussian noise, with the variance 1, as input signal.

Discrete-Time Random Signals 79

Then define a bank of 6th order Butterworth filters, with a frequency bandwidth
of 200 Hz, which will be useful to measure the filtered signal power in each
frequency band. Finally, plot the power variation as a function of frequency.

Fs= 10000;
n = 1; fc = [1500 2500];
[b a] = butter(n,fc*2/Fs);
fs2 = Fs/2;
x0=randn(1024,1);
x = filter(b,a,x0);
rep_freq=freqz(b,a,25);
min_fract_bw = 200/5000;
min_fract_Hz = min_fract_bw * fs2;
normal= sqrt(length(x));
f_deb = 0; f_fin = fs2;
bw = min_fract_Hz;
band = [f_deb, f_deb+bw];
freq_length = f_fin - f_deb;
no_bpf= fix(freq_length/bw);
for k = 1:no_bpf
 if (min(band) == 0)
 band_vr = max(band);
 f(k) = sum(band)/2;
 band_vr = band_vr/fs2;
 [b a] = butter(6,band_vr);
 y(k) = (var(filter(b,a,x))+ (mean(filter(b,a,x)).̂ 2))/normal;
 elseif (max(band) == fs2)
 band_vr = min(band);
 f(k) = sum(band)/2;
 band_vr = band_vr/fs2;
 [b a] = butter(6,band_vr,'high');
 y(k) = (var(filter(b,a,x))+ (mean(filter(b,a,x)).̂ 2))/normal;
 else
 f(k)=sum(band)/2; band_vr=band/fs2;
 [b a]=butter(3,band_vr);
 y(k) = (var(filter(b,a,x))+ (mean(filter(b,a,x)).̂ 2))/normal;
 end;
 band = band + bw;
end
subplot(211);
semilogy(f/1000,abs(rep_freq).̂ 2);
xlabel('Frequency [kHz]');
ylabel('Amplitude');grid
title('Theoretical transfer function of the system')
subplot(212);
semilogy(f/1000,y) ;
xlabel('Frequency [kHz]');
grid ; ylabel('Power (W)');
title('Estimated transfer function of the system')

80 Digital Signal Processing using MATLAB

0 1 2 3 4 5
10

�4

10
�2

10
0

Frequency [kHz]

A
m

pl
itu

de

Theoretical transfer function of the system

0 1 2 3 4 5
10

�8

10
�6

10
�4

10
�2

Frequency [kHz]

P
ow

er
 (

W
)

Estimated transfer function of the system

Figure 3.11. Transfer functions

The filter bank outputs illustrate properly the frequency system behavior. More
accurate results could be obtained by the reduction of the filter frequency
bandwidth, but this increases the processing time and results in a more complex
filter synthesis (instability risk). The increased signal duration should also be
considered to integrate the measured power properly (system identification problem:
trade-off between the frequency bandwidths of the bandpass filters and the output
integrator filter).

3.3. Exercises

EXERCISE 3.8.
Consider a zero-mean random Gaussian signal with the variance 3 at the input of

the following systems:
− thresholder;
− rectifier;
− quadratic filter.

Determine the pdf of the output signals and estimate their 1st and 2nd order
moments.

Discrete-Time Random Signals 81

EXERCISE 3.9.

Go back to exercise 3.4 and consider a constant initial phase, but a uniformly
distributed random amplitude, with the mean value 3 and standard deviation 0.5.
Comment on the 2nd order stationarity of the new random process? Does the
ergodicity have any sense in this case?

EXERCISE 3.10.

Write a MATLAB code for generating N samples of a random variable X having
the following pdf:

2 2 0 1
()

0 otherwiseX
x x

f x
− ≤ ≤

=

Find out the mean value and the variance of this random variable.

EXERCISE 3.11.

A linear system such as the one used in exercise 3.5 is driven by a zero-mean
white uniform noise having a standard deviation of 5. Calculate and comment on the
output signal pdf for ρ values between 0 and 0.999, such as ρ = 0.001, ρ = 0.01, ρ =
0.1, ρ = 0.5 and ρ = 0.95.

Can you explain the different obtained pdfs? Calculate the mean values and the
variances of all variables. Let ρ = -0.7 and comment on the mean value and the
variance.

EXERCISE 3.12.

Simulate the effect of decreasing the number of quantification bits for a 32 bit
coded signal. Plot the quantification error and its pdf.

Calculate the SNR and demonstrate that it increases with 6 dB for each
additional quantification bit.

EXERCISE 3.13.

Calculate the autocorrelation function of a RZ and then a NRZ binary coded
random signal. Consider 1,024 points and 100 outcomes. Use this result for
obtaining the signal power spectral density.

What condition do these codes have to meet in order to obtain a wide-sense
stationary random signal?

This page intentionally left blank

Chapter 4

Statistical Tests and High Order Moments

4.1. Theoretical background

In everyday life, we are involved in different situations and we have to make
decisions in order to act, react or interact with the real world. These decisions are
generally subjective. Thus, for a simple task like crossing the street, the decision is
always individual and depends on the culture (driving on the right side in France and
driving on the left side in Great Britain), the age or on many other elements (street
type, number of cars and speed, traffic light state, etc.).

Probability theory can help us to make these decisions more objective. It is
suitable for the study of any partially or completely unpredictable process and forms
the basis of different applications: quantum mechanics, reliability, meteorological
predictions, radar, sonar, telecommunications, electronic warfare, noise filtering,
games of chance, etc. Statistical methods are generally considered to be the most
appropriate tools to exploit probabilistic concepts for real world applications. These
methods can be found in an increasing number of modern world applications, such
as information theory, industry, agriculture, science, politics, etc.

The distribution of an observed random variable is very often unknown in
practical situations. Several probability density function estimates are proposed in
the literature. However, most of them are not easy to implement and are time-
consuming. On the other hand, many recent algorithms do not use variable
distributions directly, but other equivalent quantities, which can be easily estimated,
such as statistical moments and cumulants. They are calculated using the
characteristic functions defined in Chapter 3 (see equation [3.5]).

84 Digital Signal Processing using MATLAB

4.1.1. Moments

Let us consider a continuous random variable X and its probability density
function fX(x). Their kth order and the kth order centered moments are thus defined as:

()
0

()
()

k
kk k X

k X k
u

u
m E X x f x dx j

u =

∂ Φ
= = = −

∂R
 [4.1]

[]() () ()1
k k

k XE X E X x m f x dxμ = − = −
R

 [4.2]

The kth order absolute moments of X have the following form:

()k k
XE X x f x dx=

R
 [4.3]

Finally, the kth order generalized moments are expressed as:

() () ()k k
k XE X a x a f x dxμ = − = −

R
 [4.4]

Note that if X has an even pdf then m(2 k+1) = 0.

4.1.2. Cumulants

In many recent applications, high order statistics are used in the form of
cumulants instead of moments. Their algebraic properties are very interesting and
allow the calculations to be simplified and algorithms’ performance to be improved.

For a given random variable X, the rth order cumulant can be calculated using the
moments up to the rth order. According to the Leonov-Shiryayev relationship:

() () () ()

() () 1

0
1

Cum Cum , ,

 1 1 ! p

r
r X

r r
u

k

u
X X X j

u

k E X E X ϑϑ
=

−

∂ Ψ
= = −

∂

= − −

 [4.5]

where the sum is taken on all the permutations of ϑi, 1 = i = p = r, ϑi form a
partition of the set {1, …, r} and K is the number of partition elements.

Statistical Tests and High Order Moments 85

High order statistics with orders higher than 4 are seldom used. Using equation
[4.7] it can be shown that the 3rd and 4th order cumulants are expressed as follows:

() [] []3 2 3
3Cum 3 2X E X E X E X E X= − + [4.6]

() []

[] []

4 3 2 2
4

2 2 4

Cum 4 3

12 6

X E X E X E X E X

E X E X E X

= − −

+ −
 [4.7]

For a zero-mean random variable X:

() 4 2 2
4Cum 3X E X E X= − [4.8]

4.1.3. Cumulant properties

For any random variable X, the following statements are valid:

1. The 2nd order cumulant is equal to the variance and measures the power of X.

2. The 3rd order cumulant is related to the symmetry of the distribution of X. The
skewness is a measure of the asymmetry of the data around the sample mean:

3
3kS

μ
σ

= [4.9]

3. The 4th order cumulant is related to the flattening of the distribution of X with
respect to a Gaussian pdf. The kurtosis is a measure of how outlier-prone a
distribution is:

() 4
4 3X

μκ
σ

= − [4.10]

4. The kurtosis and the 4th order cumulant are invariant to any linear transform.
Thus, ∀ a and b ∈ R, it can be shown that:

() ()4
4 4Cum aX b a Cum X+ = [4.11]

() ()aX b Xκ κ+ = [4.12]

5. It can be shown that the cumulants whose order exceeds 2 are zero for any
Gaussian random variable.

86 Digital Signal Processing using MATLAB

4.1.4. Chi-square (Chi2) tests

The Chi2 or 2 test was introduced by Karl Pearson in 1900. It is based on an
asymptotical property of the multinomial distribution, which yielded the 2 distance.

2 tests are non-parametric, i.e. hypothesis Hi is not linked to parameters of the pdfs,
but to the distributions themselves.

Let us consider the following H0 hypothesis: “X is distributed according L0”. The
non-parametric hypothesis H0 is called simple if it fully specifies the L0 pdf,
otherwise it is called composed. For instance, if L0 is a Gaussian pdf N(m,σ), with
known m and σ, the corresponding H0 hypothesis is simple.

In the case of a composed hypothesis, the missing parameters have to be
estimated to reduce it to a simple hypothesis. The observations are divided into
several classes or bins C1, C2, … Let us denote by ni the number of observations
belonging to Ci and by pi the probability that an observation belongs to Ci, under
hypothesis H0. The theoretical number of observations belonging to Ci is then given
by npi, where n is the total number of observations.

Usually, we only consider classes with npi = 5. Some bins may be merged in
order to meet this condition. Let us suppose r remaining classes and k parameters to
be estimated under the hypothesis H0. The quantity defined below thus measures the
“distance” between the observed and the theoretical distribution:

()2
2
0

1

r i i

i i

n np
np

χ
=

−
= [4.13]

It can be shown that for a large number of samples, 2
0χ is a 2 random variable

with r-k-1 freedom degrees. Using a 2 table, the observed value can be considered
acceptable or not, i.e. hypothesis H0 is satisfied or not.

4.1.5. Normality test using the Henry line

The main idea of this test is given in Figure 4.1. In fact, if X is a Gaussian
random variable with a mean value m and a standard deviation σ then its reduced
and centered correspondent T obeys N(0,1). The linear relationship between T and X
is known as the Henry straight line:

1 m
T X

σ σ
= − [4.14]

Statistical Tests and High Order Moments 87

�10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

bins

P
df

 v
al

ue

0 10 20
0

0 2

0.4

0 6

0 8

1

bins

C
df

 v
al

ue

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

bins

C
df

 v
al

ue

15 20 25
�4

�2

0

2

4

x

t

N(0,1)

N(m,σ)

N(0,1)
N(m,σ)

Estimated cdf
N(0,1)

Henry line
Couples (x,t)

Figure 4.1. Principle of the normality test using the Henry line

The cumulative density function of T can be expressed as follows using the
MATLAB notations:

[]() Normcdf (,0,1)TF t P T t t= ≤ = [4.15]

Let us now consider bins xk and values ak of the cumulative density function of
X, estimated from the observed data:

ˆ ()k X ka F x= [4.16]

These values are then used as values of a normalized Gaussian cdf.

1() ()k T k k T ka F t t F a−= = [4.17]

88 Digital Signal Processing using MATLAB

The affine transformation [4.14] exists between the two variables, X and T, if and
only if:

[]() Normcdf (, ,)XF x P X x x m σ= ≤ = [4.18]

The Gaussian nature of a distribution can thus be graphically certified if there is
a linear relationship between tk and xk.

4.2. Solved exercises

EXERCISE 4.1.
Consider 2,048 samples of a Gaussian white random process P with a unit mean

value and a variance of 0.25. Check if it is a Gaussian random variable using
different tests.

% Random process generation
P=0.5*randn(1,2048)+1;
mp = mean(P)
vp = var(P)

1st test: the simplest test uses the random process histogram.

bins = 20;
hist(P,bins);

It can easily be seen that the obtained histogram is very similar to a Gaussian pdf.

�1 �0.5 0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

Figure 4.2. Histogram of a Gaussian random process

Statistical Tests and High Order Moments 89

2nd test: Let us calculate 3rd and 4th order cumulants of the random process P
using equations [4.6] and [4.7].

Cum3 = mean(P.̂ 3) - 3*mean(P)*mean(P.̂ 2)+2* mean(P)̂ 3
Cum4 = mean(P.̂ 4) - 4*mean(P)*mean(P.̂ 3) - 3*mean(P.̂ 2)̂ 2 +
12*mean(P)̂ 2*mean(P.̂ 2)- 6*mean(P)̂ 4

Cum3 =

 0.0234

Cum4 =

 0.0080

The obtained values for the two cumulants are close to zero, so the Gaussianity
hypothesis on P is reinforced.

3rd test: Henry line.

nb_bins = 20;
[hv,x]=hist(P,nb_bins);
F=cumsum(hv)/sum(hv); F(end)=0.999 ;% empirical cdf
y=norminv(F,0,1); % percentile of a N(0,1) distributed variable
% Graphical matching
p=polyfit(x,y,1); % linear matching of x and y
s=1/p(1) % standard deviation estimation = inverse of the slope
z=polyval(p,x); % values on the Henry line
figure;
hold on;
plot(x,z,'-r');
plot(x,y,'*');
legend('Henry line','Couples (x,t)');
xlabel('x');
ylabel('t');

90 Digital Signal Processing using MATLAB

�1 �0.5 0 0.5 1 1.5 2 2.5
�4

�3

�2

�1

0

1

2

3

4

x

t
Henry line
Couples (x,t)

Figure 4.3. Henry line test

The linear relationship between x and t is obvious and thus the Gaussianity of the
random process is certified.

4th test: Chi2 test.

nb_bins = 20;
[hv,x]=hist(P,nb_bins);
Lc = x(2)-x(1);
My = sum(x .* hv) / sum(hv)
My2 = sum(x.̂ 2 .* hv) / sum(hv);
vare =My2-Mŷ 2 % Variance estimate
sde =sqrt(vare) % Standard deviation estimate

The estimation of the theoretical number of samples in each histogram bin is the
first step of the Chi2 test. For any Gaussian random variable X with the mean value
m and standard deviation σ, the probability of X ∈ [a, b] is given by:

() Normcdf Normcdfb m a m
P a X b

σ σ
− −≤ ≤ = −

The theoretical number of samples in each histogram bin can thus be calculated
in this case using the following code lines:

Statistical Tests and High Order Moments 91

eft = (normcdf((x+0.5*Lc-My)/sde)-normcdf((x-0.5*Lc-My)/sde));
eft = eft*sum(hv);

Note that this last calculation depends on the distribution considered.

while sum(eft < 10) > 0 % Verify if for any bin the number of
 % samples >=5
 % otherwise, the bins are merged
 [minef,indminef] = min(eft);Leff = length(eft);
 if indminef ==1 % first bin problem
 eft(2) = eft(2) +eft(1); % bins fusion
 hv(2) = hv(2) + hv(1);
 eft(1) = [];hv(1) = [];
 elseif indminef == Leff % last bin problem
 eft(Leff-1) = eft(Leff-1) +eft(Leff); % bins fusion
 hv(Leff-1) = hv(Leff-1) + hv(Leff);
 eft(Leff) = []; hv(Leff) = [];
 else
 Minval = eft(indminef+1) < eft(indminef-1);
 eft(indminef-1+2*Minval)=eft(indminef-1+2*Minval)+eft(indminef);
 hv(indminef-1+2*Minval)=hv(indminef-1+2*Minval)+hv(indminef);
 eft(indminef) = [];hv(indminef) = [];
 end
end
Leff = length(eft) % Number of remaining bins
% Calculation of the quantity used in the Chi2 test

chi2 = sum(((eft-hv).̂ 2)./eft)

% Chi2 test
k=2; % two estimated parameters(mean value and standard deviation)
deglib = Leff-k-1 % freedom degrees
NivConf = 0.95; % confidence level
if chi2 < chi2inv(NivConf,deglib)
 disp('The distribution is Gaussian')
else
 disp('The distribution is not Gaussian')
end

EXERCISE 4.2.

A factory supplies series of 1,000 pieces of a given type of product. Some
randomly chosen series, are checked. The table indicated below provides the number
of checked series nk having k faulty pieces:

k 0 1 2 3 4 5 6 7 8 9 10 11 12

nk 7 12 23 27 41 36 25 20 9 5 2 1 2

92 Digital Signal Processing using MATLAB

Use the Chi2 test for validating or rejecting the hypothesis that the number of
faulty pieces per series is Poisson distributed.

k = 0:12;
hv = [7 12 23 27 41 36 25 20 9 5 2 1 2]
L =length(hv);
My = sum(k .* hv)/sum(hv)
My2 = sum(k.̂ 2 .*hv)/sum(hv);
vare =My2-Mŷ 2;

For any Poisson distributed random variable X with the parameter λ:

[]E X λ=

Lam = My;
eft =poisspdf(k,Lam)* sum(hv);
while sum(eft < 5) > 0
 [minef,indminef] = min(eft);
 Leff = length(eft);
 if indminef ==1
 eft(2) = eft(2)+eft(1);
 hv(2) = hv(2) + hv(1);
 eft(1) = [];
 hv(1) = [];
 elseif indminef == Leff
 eft(Leff-1) = eft(Leff-1) +eft(Leff);
 hv(Leff-1) = hv(Leff-1) + hv(Leff);
 eft(Leff) = []; hv(Leff) = [];
 else
 Minval = eft(indminef+1) < eft(indminef-1);
 eft(indminef-1+2*Minval)=eft(indminef-1+2*Minval)+eft(indminef);
 hv(indminef-1+2*Minval)=hv(indminef-1+2*Minval)+hv(indminef);
 eft(indminef) = [];
 hv(indminef) = [];
 end
end
Leff = length(eft)
chi2 = sum (((eft - hv).̂ 2)./eft)
k=1; % only one estimated parameter (the mean value)
deglib = Leff - k - 1 % freedom degrees
NivConf = 0.95; % confidence level
if chi2 < chi2inv(NivConf,deglib)
 disp('The random variable is Poisson distributed')
else
 disp('The random variable isn’t Poisson distributed')
end

Statistical Tests and High Order Moments 93

EXERCISE 4.3.

The source separation is a recent problem in signal processing. It consists of
retrieving p mutually independent unknown sources of which q mixed signals are
used.

The p sources are denoted by a vector and are grouped in a vector S(t) = {si(t)},
with 1 ≤ i ≤ p. Let Y(t) be the observation vector with the components yi(t), 1 ≤ i ≤ q,
which are unknown functions of the p sources.

This exercise is aimed to stress the importance of high order statistics for
performing a blind or semi-blind source separation.

Let us consider a vector of unknown sources S and an observation vector1 Y
(mixtures of source signals).

% Blind sources separation using high order statistics
% Simplified model with p = q = 3 and echoless transmission channel

Vect = wavread('melange1.wav');
Y(:,1) = Vect;
Ns = length(Vect);
Vect = wavread('melange2.wav');
Ns = min(length(Vect),Ns);
Y(1:Ns,2) = Vect(1:Ns);

Vect = wavread('melange3.wav');
Ns = min(length(Vect),Ns);
Y(1:Ns,3) = Vect(1:Ns);
Ys = Y(1:Ns,:);clear Y;clear vect;
Ys = Ys';

figure
hist(Ys(1,:)) % Histogram of a mixture of signals

Note that it is not possible to separate the signals in the mixture using its
histogram.

1 The signals used in this exercise can be downloaded from the website:
http://ali mansour free fr/EXP.

94 Digital Signal Processing using MATLAB

Figure 4.4. Histogram of a mixture of signals

figure;
plot(Ys(1,:)); % temporal variation of a mixture of signals

The figure below shows that the observed signal cannot be decomposed into its
components using a temporal approach.

Statistical Tests and High Order Moments 95

Figure 4.5. Unknown mixture of temporal signals

% Plotting the frequency signal representation
S = Ys(1,1:4096);
l=length(S); t=0:l-1; ts=t/fe; FFT = fft(S);
FFTshift = fftshift(FFT)/l;
faxe=t/l-0.5; %recenter the curve
figure ; subplot(121),plot(fe*faxe,abs(FFTshift));
title('Amplitude spectrum [Hz]');
subplot(122); plot(fe*faxe,angle(FFTshift));
title('Phase spectrum [Hz]'); clear FFT FFTshift faxe t ts;

96 Digital Signal Processing using MATLAB

Figure 4.6. Spectral representation of the unknown signal mixture

It is obvious that a standard filter is not appropriate for our problem. The source
separation thus cannot be performed by simply filtering the signal mixture. More
powerful tools such as the time-frequency representations2 can also be considered.

tfrpwv(S'); % Pseudo Wigner-Ville representation for
 % non-stationary signals
clear S;

However, Figure 4.7 shows that even the time-frequency representation is not
able to separate the sources properly.

Let us now try high order cumulant based approaches. In fact, since the sources
are independent, high order cross-cumulants are equal to zero. Using this property,
Cardoso and Soulamiac proposed a source separation algorithm based on the
simultaneous diagonalization of several eigenmatrices of the 4th order cumulant
tensor.

2 The MATLAB codes corresponding to some time-frequency representations can be
downloaded from the website http://tftb nongnu.org/.

Statistical Tests and High Order Moments 97

PWV, Lh=128, Nf=1024, lin. scale, imagesc, Threshold=5%

Time [s]

F
re

qu
en

cy
 [H

z]

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 4.7. Time-frequency representation of the unknown signal mixture

Diagonalization is performed using the algorithm JADE3 “Joint Approximate
Diagonalization of Eigenmatrices”. The new algorithm is able to separate several
signals of different natures (acoustical or telecommunication signals).

% Source separation using the JADE algorithm
[A,Xs]=jade(Ys,3);
[Vect,fs] = wavread('source1.wav'); % fs is the sampling frequency
S(:,1) = Vect; Ns = length(Vect);
Vect = wavread('source2.wav');
Ns = min(length(Vect),Ns);
S(1:Ns,2) = Vect(1:Ns);
Vect = wavread('source3.wav');
S(1:Ns,3) = Vect(1:Ns);
Ns = min(length(Vect),Ns);
Ss = S(1:Ns,:); clear S;
Ss = Ss'; % the rows of the Ss matrix are the separated signals

The separation quality here is evaluated graphically or acoustically, although
much more complex and objective criteria can also be used.

figure; hold on; subplot(331); plot(Ss(1,:));

3 Jade can be downloaded on the website http://www.tsi.enst fr/~cardoso/guidesepsou html.

98 Digital Signal Processing using MATLAB

axis([0 7100 -1.5 1.5]); title('1st Source');
subplot(332);plot(Ss(2,:));
axis([0 7100 -1.5 1.5]); title('2nd Source');
subplot(333);plot(Ss(3,:));
axis([0 7100 -1.5 1.5]); title('3rd Source');
subplot(334);plot(Ys(1,:));
axis([0 7100 -1.5 1.5]); title('1st observed signal');
subplot(335);plot(Ys(2,:));
axis([0 7100 -1.5 1.5]); title('2nd observed signal');
subplot(336);plot(Ys(3,:));
axis([0 7100 -1.5 1.5]); title('3rd observed signal');
subplot(337);plot(Xs(1,:));
axis([0 7100 -4 4]); title('1st estimated signal');
subplot(338);plot(Xs(2,:));
axis([0 7100 -4 4]); title('2nd estimated signal');
subplot(339);plot(Xs(3,:));
axis([0 7100 -4 4]); title('3rd estimated signal');

Figure 4.8. Extracted signals after deconvolution

Statistical Tests and High Order Moments 99

The signal separation can also be tested acoustically.
disp('1st Source'); pause; sound(Ss(1,:),fe);
disp('2nd Source'); pause; sound(Ss(2,:),fe);
disp('3rd Source'); pause; sound(Ss(3,:),fe);

disp('1st Mixed signal'); pause; sound(Ys(1,:),fe);
disp('2nd Mixed signal'); pause; sound(Ys(2,:),fe);
disp('3rd Mixed signal'); pause; sound(Ys(3,:),fe);

disp('1st Recovered signal'); pause; sound(Xs(1,:),fe);
disp('2nd Recovered signal'); pause; sound(Xs(2,:),fe);
disp('3rd Recovered signal'); pause; sound(Xs(3,:),fe);

4.3. Exercises

EXERCISE 4.4.
Suppose that the probability of measuring k points of a random process X within

an interval T, is Pk = c ak, for k ≥ 0.

1. Determine the value of the constant c as a function of parameter a, which
belongs to an interval to be specified.

2. Demonstrate that E[K] = a/(1-a).

3. Calculate the probability of having at least k points within the interval T.

4. The following results are issued from process observations:

k 0 1 2 3 4 5 6 7 8 ≥ 9

Number of samples 29 22 15 12 9 7 6 3 2 4

a. Give an estimation of a.
b. Verify if the measured values obey the distribution defined above.
c. Explain why these values are trustworthy or not.

EXERCISE 4.5.

In order to control the homogenity of a factory production, 1,000 samples of a
manufactured mechanical part are randomly selected. The size X measured for each
of them is recorded in the table below:

 X [cm] 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1

Sample number 2 1 2 4 10 22 60 148 235

X [cm] 4.2 4.3 4.4 4.5 4.6 4.7 4.8

Sample number 207 160 92 41 11 2 3

100 Digital Signal Processing using MATLAB

The problem is to know if the distribution of X can be considered as Gaussian.
1. Calculate the empirical mean value, variance and standard deviation.
2. Plot the histogram and conclude.
3. For a Gaussian variable, what is the probability of having a value up to 2σ

from its mean value?
4. Give a probability for 4 ≤ X ≤ 4.2 and conclude.
5. Validate your conclusion using one or two statistical tests.

EXERCISE 4.6.

The following values are recorded with a receiver:

5.97 5.5 5.45 5.6 4.8 3.4 6.3 6.73 3.71 4.91

7.54 2.05 5.48 5.39 1.01 4.47 5.87 6.31 9.37 9.11

2.98 3.93 3.66 8.98 6.73 8.75 3.6 2.38 4.03 4.96

1. Sort these values in increasing order.
2. Group these values using bins of length 1: from 1 to 2, from 2 to 3, etc.
3. Determine the number of samples corresponding to each bin and calculate the

cumulated number of samples, the frequency4 of occurrence and the cumulated
frequency of occurrence.

4. Plot the histogram and find out the median value5.
5. Find out the mean value and standard deviation using a table of calculations.
6. Consider the following hypothesis H0: “the received signal s(t)=m+n(t),

where m is a constant value and n(t) is a Gaussian zero-mean noise”.
a. Estimate the value of m.

b. Test the hypothesis H0 using two different methods.

EXERCISE 4.7.

According to the central limit theorem the output signal of a MA FIR filter tends
to be Gaussian.

Generate a white random signal, uniformly distributed over [-2, 2], using the
function rand. Let Y be the signal obtained at the output of an nth order FIR filter
with the transfer function H(z). For different values of n:

4 The frequency of occurrence associated with a bin is the ratio between its sample number
and the total number of samples.
5 The median value divides the recorded samples, previously sorted in increasing order, into
two equal parts.

Statistical Tests and High Order Moments 101

1. Compare signals X and Y.
2. Plot the histograms for the two signals.
3. Plot, on the same figure, the Henry line for X and Y.
4. Calculate the 3rd and 4th order cumulants of X and Y.

Repeat the same exercise for a RII filter and conclude.

EXERCISE 4.8.

The cumulants defined in this chapter are often also called auto-cumulants. It has
already been shown (see exercise 4.1) that they are useful to certify the Gaussian
character of a random process.

The cross-cumulants may be used for evaluating the statistical independence of a
signal set. For two zero-mean real signals X and Y, three 4th order cross-cumulants
can be defined:

() []3 2
1,3Cum , 3X Y E XY E X E XY= −

() []3 2
3,1Cum , 3X Y E X Y E Y E XY= −

() []2 2 2 2 2
2,2Cum , 2X Y E X Y E X E Y E XY= − −

If X and Y are independent then their cross-cumulants are equal to zero.

The objective of this exercise is to exploit the cross-cumulant properties in order
to conceive a simple blind source separation algorithm.

Let S(t) be the vector of the two source signals6 s1(t) and s2(t) and Y(t) the
mixture vector obtained from S(t). If H(t) denotes the mixture matrix7 then:

()
() () ()

()
1 1
2 2

() () ()y t s t
Y t H t S t H t

y t s t
= = =

6 Consider the same signals as those used in exercise 4.3.
7 The mixture matrix takes into account the effect of the transmission channel. In the case of
an ideal transmission channel, without echo, delay or frequency fading, this effect can be
represented by a simple matrix product.

102 Digital Signal Processing using MATLAB

where:

1() 0 1
aH t H= =

and a is a given real parameter.

1. For several values of a ∈ [-1, 1] calculate the following cost function:

() () ()() () ()() () ()()2 2 2
1,3 1 2 2,2 1 2 3,1 1 2Cum , Cum , Cum ,f a y t y t y t y t y t y t= + +

2. Find the value amin that minimizes the cost function above. What do you
notice?

3. Write a MATLAB algorithm for separating the two sources s1(t) and s2(t).

4. Repeat the same exercise for the following mixture matrix:

1
()

1
a a

H t H
a a
−

= =
−

5. Consider the cases where the two mixed signals are generated using:
a. the MATLAB function rand,
b. the MATLAB function randn.

What do you notice and why?

Chapter 5

Discrete Fourier Transform
of Discrete-Time Signals

5.1. Theoretical background

The discrete Fourier transform (DFT) is a basic tool for digital signal processing.
From a mathematical point of view the DFT transforms a digital signal from the
original time domain into another discrete series, in the transformed frequency
domain. This enables the analysis of the discrete-time signal in both the original and
(especially) the transformed domains.

The frequency analyses of a digital filter and of a discrete-time signal are very
similar problems. It will be seen in the next chapter that, for a digital filter, it
consists of evaluating the transfer function H(z) on the unit circle ()2j Tz e πν= .

This is the same for the digital signal analysis using the z-transform, which is
closely related to the DFT.

As the calculations are performed on a digital computer there are 3 types of
errors related to the transition from the Fourier transform of the continuous-time
signal to the DFT of the discrete-time signal:

− errors due to time sampling (transition from ()x t to ())sx t ,

− errors due to time truncation (transition from ()sx t to () ())s Tx t tΠ ,

− errors due to frequency sampling.

104 Digital Signal Processing using MATLAB

5.1.1. Discrete Fourier transform of 1D digital signals

The DFT of finite time 1D digital signals, denoted by DFT1D, is defined by:

[] []{ } []

[] []{ } []

1
1

0
11

1
0

1

N kn
D N

n
N kn

D N
k

X k TFD x n x n W

x n TFD X k X k W
N

−

=
−− −

=

= =

= =
 [5.1]

where: 2 /j N
NW e π−= and , 0.. 1n k N= − .

In the above equations, the index of the vectors x[n] and X[k] should begin with
1 instead of 0, according to MATLAB notations, so that n → (n+1) and k → (k+1).

Just as in the case of the continuous Fourier transform the following properties
hold for the DFT:

− linearity
– if [] ()x n X k↔ and [] ()y n Y k↔ then [] [] () ()ax n by n aX k bY k+ ↔ +

− time-delay
– if [] ()x n X k↔ then [] () mn

Nx n m X k W− ↔

− phase shifting
– if [] ()x n X k↔ then [] ()mk

Nx n W X k m− ↔ −

− time inversion (duality)
– if [] ()x n X k↔ then [](1/) ()N X n x k↔ −

− cyclic convolution of two N-periodical digital signals x(n) and y(n):

[] [] []
1

0

N

m
z n x m y n m

−

=
= −

− multiplication
– if [] ()x n X k↔ and [] ()y n Y k↔ then:

[] []
1

0

1 1 () () () ()
N

m
x n y n X m Y k m X k Y k

N N

−

=
↔ − = ∗

− complex conjugate
– if [] ()x n X k↔ then []* *()x n X k↔

− Parseval theorem
– if [] ()x n X k↔ then

1 12 2

0 0

1() ()
N N

k n
x n X k

N

− −

= =
=

Discrete Fourier Transform of Discrete-Time Signals 105

Discrete cosine transform for 1D digital signals

This transformation is defined by:

[] []{ } [] ()

[] []{ } [] [] ()

1
1D

0
1-1

1D
0

DCT 2 cos 2 1
2

1DCT cos 2 1
2

N

n
N

k

X k x n x n k n
N

x n X k w k X k k n
N N

π

π

−

=
−

=

= = +

= = +
 [5.2]

where: [] 1 2, if 0
1, if 1 1

k
w k

k N
=

=
≤ ≤ −

 and , 0.. 1n k N= − .

5.1.2. DFT of 2D digital signals

The DFT2D is used for the analysis of finite (rectangular) support 2D digital
signals. If { }2 / , 1, 2i

i

j N
NW e iπ−= ∈ and 1 10. 1n N= − , 2 20.. 1n N= − , then the

direct and the inverse DFT2D are defined as follows:

[] []

[] []

1 2
1 1 2 2

1 2
1 2

1 2
1 1 2 2

1 2
1 2

1 1
1 2 1 2

0 0

1 1
1 2 1 2

0 01 2

, ,

1, ,

N N
n k n k
N N

n n

N N
n k n k

N N
k k

X k k x n n W W

x n n X k k W W
N N

− −

= =

− − − −

= =

=

=

 [5.3]

Discrete cosine transform of 2D digital signals

This transformation is defined by:

[] [] () ()

[] [] [] []

() ()

1 2

1 2

1 2

1 2

1 1
1 2 1 2 1 1 2 2

0 0 1 2

1 1
1 2 1 1 2 2 1 2

0 01 2

1 2
1 2

1 2

, 4 , cos 2 1 cos 2 1
2 2

1, ,

cos 2 1 cos 2 1
2 2

N N

n n

N N

k k

X k k x n n k n k n
N N

x n n w k w k X k k
N N

k k
n n

N N

π π

π π

− −

= =

− −

=

= + +

=

+ +

 [5.4]

where:
1 2 , if 0
1, if 1.. 1, with 1,2

i
i i

i i

k
w k

k N i
=

=
= − =

106 Digital Signal Processing using MATLAB

5.1.3. Z-transform of 1D digital signals

The direct and inverse unilateral z-transform (ZT) of 1D digital signals has the
following expressions:

() []{ } []

[] ()

1
1

0

11 where RoC (region of convergence)
2

N n
D

n

n

C

X z TZ x n x n z

x n X z z dz C
jπ

− −

=

−

= =

= ∈
 [5.5]

The ZT1D allows the DFT1D to be calculated if it is evaluated using N points on
the unit circle. If it is evaluated on a spiral of equation z = a[exp(j2π/N)]-k, with k =
0. N-1 and |a| < 1, it defines the discrete chirp ZT.

5.1.4. Z-transform of 2D digital signals

The unilateral ZT of finite 2D digital signals have the following form:

() []{ } []

[]
()

() −−

−−
−

=

−

=

=

==

1 2

21

21
1

1

2

2

21
1

2
1

121221

2121
1

0

1

0
21221

dd,
2

1
,

,,,

C C

nn

nn
N

n

N

n
D

zzzzzzX
j

nnx

zznnxnnxTZzzX

π

 [5.6]

5.1.5. Methods and algorithms for the DFT calculation

Method of direct calculation of the DFT2D

This method makes use of the fast DFT1D algorithms and can be applied to a 2D
digital signal if the DFT2D can be expressed in one of the following two forms:

=

=

−

=

−

=

−

=

−

=

21

1

1

11

1

2

2

22

221

21

2

2

22

2

1

1

11

121

,
1

0

1

0
,

,
1

0

1

0
,

nn
N

n

kn
N

N

n

kn
Nkk

nn
N

n

kn
N

N

n

kn
Nkk

xWWX

xWWX

 [5.7]

It thus becomes possible to calculate the DFT2D using the fast DFT1D, firstly on
each column (or row) and then on each row (or column).

Discrete Fourier Transform of Discrete-Time Signals 107

Cooley-Tukey algorithm for DFT1D calculation

This algorithm converts a vector of length 212 NNN m == into a matrix of size

21 NN × , using an index transformation. The most commonly used techniques are
given below:

− decimation-in-time, for 1
1 22 and 2mN N −= = , so that:

2 1 2 1,2 1,2

1 1 2 1,2 1,2

, 0.. 1 and 0. 1

, 0.. 1 and 0.. 1

n N n n n N n N

k k N k k N k N

= + = − = −

= + = − = −
 [5.8]

− decimation-in-frequency, for 1
1 22 and 2m mN N−= = , so that:

1 1 2 1,2 1,2

2 1 2 1,2 1,2

, 0. 1 and 0.. 1

, 0. 1 and 0.. 1

n n N n n N n N

k N k k k N k N

= + = − = −

= + = − = −
 [5.9]

Consequently, for the calculation of DFT1D by decimation-in-frequency, the
following equation is obtained:

=
−

=

−

=
21

2

2

2221
1

1

11
21 ,

1

0

1

0
, nn

N

n

knkn
N

N

n

kn
kk xWX γβ [5.10]

where 2 1andN N
N NW Wβ γ= = .

Equation [5.10] is equivalent to the following sequence of operations: DFT1D
calculated in 2N points on each column, multiplication of each element by 21kn

NW
and DFT1D calculated in 1N points on each row.

Cooley-Tukey algorithm for the DFT2D calculation

This method converts a 2D sequence of size NN × (with NNN m ′′′== 2),
using the index transform:

2211221121 ,,,,, nnnnnNnnNnnn xxx ′′′′′′′′′+′′′′+′ =→ [5.11]

into the 2D sequence:

2211221121 ,,,,, kkkkkkNkkNkk XXX ′′′′′′′′+′′′′′+′′′ =→ [5.12]

according to the following equation:

108 Digital Signal Processing using MATLAB

1 1 2 2 1 1 2 2 1 1 2 2
1 1 2 2 1 1 2 2

1 2 1 2

1 1 1 1
, , , , , ,

0 0 0 0

N N N Nn k n k n k n k n k n k
k k k k n n n n

n n n n
X W W xβ β γ γ

′ ′ ′′ ′′− − − −′ ′ ′ ′ ′ ′′ ′ ′′ ′′ ′′ ′′ ′′
′ ′′ ′ ′′ ′ ′′ ′ ′′

′ ′ ′′ ′′= = = =
= [5.13]

The DFT2D calculation is performed in 3 steps:

− calculate the DFT2D in '''' NN × points for each 1 2andn n′ ′ ,

− multiply each calculated element by 2211 knkn WW ′′′′′′ ,

− calculate the DFT2D in NN ′×′ points for each index 1 2andn n′′ ′′ .

Rader’s algorithm for DFT1D calculation

The basic idea of this method is to transform the calculation of the DFT1D for a
digital signal having a prime number of samples N, into the calculation of a 1D
convolution product using the variable changes below:

()()
()()Nkk

N
nn

Nk

Nn

ρρ

ρρ

=→

=→ −−

mod

mod
 [5.14]

where ρ is a primitive root of N, so that []1, 1i N∀ ∈ − there exists a number
[]() 1, 1r i N∈ − satisfying () iNir =mod)(ρ and 0)(≠irρ .

With these variable changes the DFT1D can be written in the form of the
following convolution product:

()()
()()

()()
2

0
0

, 0. 2
k n

N
k n

N N

N

N
n

X X W x k N
ρ

ρ ρ

−

−

−

=
= + = − [5.15]

with
−

=
=

1

0
0

N

n
nxX .

Winograd’s algorithm for the DFT1D calculation

This algorithm works in two steps:

− conversion of a DFT1D, by data block of length N – prime number, into a
convolution product using the Rader permutation,

− fast calculation of the obtained convolution product.

NOTE.– Although the same principle is used, the Winograd algorithm is different
according as N is a prime number, a power of a prime number or a power of 2.

Discrete Fourier Transform of Discrete-Time Signals 109

5.2. Solved exercises

EXERCISE 5.1.
Calculate and plot the spectrum of the 1D digital signal:

[] 1, if 0..7
0, otherwise

n
x n

=
=

x=ones(1,8) ;
X=fft(x,128);
subplot(3,1,1),
stem(x),
xlabel('n'),ylabel('x[n]')
subplot(3,1,2),
stem(abs(X)),
xlabel('k'),ylabel('abs(X[k])')
subplot(3,1,3),
stem(angle(X)),
xlabel('k'),ylabel('angle(X)')

1 2 3 4 5 6 7 8
0

0.5

1

n

x[
n]

0 20 40 60 80 100 120 140
0

5

10

k

ab
s(

X
[k

])

0 20 40 60 80 100 120 140
�5

0

5

k

an
gl

e(
X

)

Figure 5.1. Time and frequency representation of a digital pulse signal

EXERCISE 5.2.

This exercise is aimed at stressing how important the phase spectrum is in the
case of an image.

110 Digital Signal Processing using MATLAB

Write a MATLAB code to evaluate the two-dimensional Fourier transform of the
two images “Clown” and “Gatlin2” from MATLAB. Plot the corresponding
frequency representations and reconstruct the two images by inverse transformation,
but exchanging their phase spectra.

clear; clf
%%%% IMAGE LOADING
% Loading the image x from the file clown.mat
load clown; x = X;
% Loading the image x from the file gatlin2.mat
load gatlin2; y = X;
% Resizing x and y to have the same size
l = min(size(x,1),size(y,1));
c = min(size(x,2),size(y,2));
x = x(1:l,1:c);y = y(1:l,1:c);
%%%%% RECONSTRUCTION OF THE NEW IMAGES
% Calculation of the FT of x and y
X=fft2(x); Y=fft2(y);
% Reconstruction of z1 using the magnitude of X and the phase of Y
z1 = real(ifft2(abs(X).*exp(i*angle(Y))));
% Reconstruction of z2 using the magnitude of Y and the phase of X
z2 = real(ifft2(abs(Y).*exp(i*angle(X))));
%%%%%% DISPLAYING THE IMAGES
% Displaying the FT of x and y: magnitude and phase
fh = ([1:l]-l/2)/l;
fv = ([1:c]-c/2)/c;
figure(1); subplot(3,2,1);
image(x); axis('image');
title('image x'); axis off
subplot(3,2,2);
image(y); axis('image');
title('image y'); axis off
subplot(3,2,3);
imagesc(fh,fv,log(abs(fftshift(X.̂ 2))));
axis('image'); title('Magnitude of X');
xlabel('horizontal frequencies');
ylabel('vertical frequencies')
subplot(3,2,4);
imagesc(fh,fv,log(abs(fftshift(Y.̂ 2))));
axis('image'); title('Magnitude of Y');
xlabel('horizontal frequencies');
ylabel('vertical frequencies')
subplot(3,2,5);
imagesc(fh,fv,angle(fftshift(X))); axis('image');
title('X phase');
xlabel('horizontal frequencies');
ylabel('vertical frequencies')
subplot(3,2,6);
imagesc(fh,fv,angle(fftshift(Y))); axis('image');
title('Y phase') ;

Discrete Fourier Transform of Discrete-Time Signals 111

xlabel('horizontal frequencies');
ylabel('vertical frequencies')
% Displaying the reconstructed images z1 and z2
figure(2)
subplot(2,2,1); image(x); axis('image');
title('image x'); axis off
subplot(2,2,2); image(y); axis('image');
title('image y'); axis off
subplot(2,2,3); image(z1);
axis('image'); axis off
title('magnitude of x & phase of y')
subplot(2,2,4); image(z2);
axis('image'); axis off
title('magnitude of y & phase of x')
colormap('gray')

image x image y

magnitude of x & phase of y magnitude of y & phase of x

Figure 5.2. Original and reconstructed images after exchanging the phase spectra

EXERCISE 5.3.
Calculate the DFT of a 1D cosine defined on 50=N points, and with the

normalized frequency 2.25/50.

n=(0:49)';
x=cos(2*pi*2.25/50*n);
X=abs(fft(x));
Xsh=fftshift(X);
subplot(3,1,1);
stem(x);

112 Digital Signal Processing using MATLAB

title('discrete-time signal')
subplot(3,1,2);
stem(X);
title('magnitude of the DFT')
subplot(3,1,3),
stem(Xsh);
title('magnitude of the symmetric DFT')

0 10 20 30 40 50
�1

0

1
discrete�time signal

0 10 20 30 40 50
0

20

40
magnitude of the DFT

0 10 20 30 40 50
0

20

40
magnitude of the symmetric DFT

Figure 5.3. Time and frequency representations of a cosine signal

EXERCISE 5.4.

Write a MATLAB code to illustrate the following DFT properties: time-delay,
frequency shifting, modulation and time inversion, using the digital signal:

[] if 1..8
0 if 9..16
n n

x n
n

=
=

=

% Time-delay property illustration
w = -pi:2*pi/255:pi;
wo = 0.4*pi; D = 10;
num = [1 2 3 4 5 6 7 8 9];
h1 = freqz(num, 1, w);
h2 = freqz([zeros(1,D) num], 1, w);
subplot(2,2,1)

Discrete Fourier Transform of Discrete-Time Signals 113

plot(w/(2*pi),abs(h1));
grid
title('Original signal magnitude spectrum')
subplot(2,2,2)
plot(w/(2*pi),abs(h2));
grid
title('Time-delayed signal amplitude spectrum')
subplot(2,2,3)
plot(w/(2*pi),angle(h1));
grid
title('Original signal phase spectrum')
subplot(2,2,4)
plot(w/(2*pi),angle(h2));
grid
title('Time-delayed signal phase spectrum')

�0.5 0 0.5
0

20

40

60
Original signal magnitude spectrum

�0.5 0 0.5
0

20

40

60
Time�delayed signal amplitude spectrum

�0.5 0 0.5
�4

�2

0

2

4
Original signal phase spectrum

�0.5 0 0.5
�4

�2

0

2

4
Time�delayed signal phase spectrum

Figure 5.4. Illustration of the time-delay property of the DFT

% Frequency shifting property illustration
clf;
w = -pi:2*pi/255:pi;
wo = 0.4*pi;
num1 = [1 3 5 7 9 11 13 15 17];
L = length(num1);
h1 = freqz(num1, 1, w);
n = 0:L-1;

114 Digital Signal Processing using MATLAB

num2 = exp(wo*i*n).*num1;
h2 = freqz(num2, 1, w);
subplot(2,2,1)
plot(w/(2*pi),abs(h1));grid
title('Original signal magnitude spectrum')
subplot(2,2,2)
plot(w/(2*pi),abs(h2));grid
title('Modulated signal amplitude spectrum')
subplot(2,2,3)
plot(w/(2*pi),angle(h1));grid
title('Original signal phase spectrum')
subplot(2,2,4)
plot(w/(2*pi),angle(h2));grid
title('Modulated signal phase spectrum')

�0.5 0 0.5
0

20

40

60

80

100
Original signal magnitude spectrum

�0.5 0 0.5
0

20

40

60

80

100
Modulated signal amplitude spectrum

�0.5 0 0.5
�4

�2

0

2

4
Original signal phase spectrum

�0.5 0 0.5
�4

�2

0

2

4
Modulated signal phase spectrum

Figure 5.5. Illustration of the frequency shifting property of the DFT

% Modulation property illustration
clf;
w = -pi:2*pi/255:pi;
x1 = [1 3 5 7 9 11 13 15 17];
x2 = [1 -1 1 -1 1 -1 1 -1 1];
y = x1.*x2;
h1 = freqz(x1, 1, w);
h2 = freqz(x2, 1, w);
h3 = freqz(y,1,w);

Discrete Fourier Transform of Discrete-Time Signals 115

subplot(3,1,1)
plot(w/(2*pi),abs(h1));
grid
title('1̂ ŝ t signal magnitude spectrum')
subplot(3,1,2)
plot(w/(2*pi),abs(h2));
grid
title('2̂ n̂ d signal magnitude spectrum')
subplot(3,1,3)
plot(w/(2*pi),abs(h3));
grid
title('Product signal magnitude spectrum')

�0.5 0 0.5
0

50

100
1st signal magnitude spectrum

�0.5 0 0.5
0

5

10
2nd signal magnitude spectrum

�0.5 0 0.5
0

50

100
Product signal magnitude spectrum

Figure 5.6. Illustration of the modulation property of the DFT

% Time inversion property illustration
clf;
w = -pi:2*pi/255:pi;
num = [1 2 3 4];
L = length(num)-1;
h1 = freqz(num, 1, w);
h2 = freqz(fliplr(num), 1, w);
h3 = exp(w*L*i).*h2;
subplot(2,2,1);
plot(w/(2*pi),abs(h1));grid
title('Original signal magnitude spectrum')

116 Digital Signal Processing using MATLAB

subplot(2,2,2);
plot(w/(2*pi),abs(h3));grid
title('Time inverted signal amplitude spectrum')
subplot(2,2,3);
plot(w/(2*pi),angle(h1));grid
title('Original signal phase spectrum')
subplot(2,2,4);
plot(w/(2*pi),angle(h3));grid
title('Time inverted signal phase spectrum')

�0.5 0 0.5
2

4

6

8

10
Original signal magnitude spectrum

�0.5 0 0.5
2

4

6

8

10
Time inverted signal amplitude spectrum

�0.5 0 0.5
�4

�2

0

2

4
Original signal phase spectrum

�0.5 0 0.5
�4

�2

0

2

4
Time inverted signal phase spectrum

Figure 5.7. Illustration of the time inversion property of the DFT

EXERCISE 5.5.
Write a MATLAB code for illustrating the influence of the observation time of a

signal on its spectrum. Consider a 10 Hz sine signal, sampled at 100 Hz, and deal
with the following cases:

− the number of signal periods is complete,
− the signal is zero-padded before its spectrum calculation,
− the number of signal periods is not complete.

% Time support definition (50 samples = 5 periods)
t = 0:0.01:0.5-0.01;

Discrete Fourier Transform of Discrete-Time Signals 117

% Signal definition
x = cos(20*pi*t);
% Spectrum calculation
N = length(x); X = fft(x,N);
% Amplitude spectrum plot
fp = (0:N-1)/N/0.01; fp = fp - 1/2/0.01;
stem(fp,fftshift(abs(X))); axis([-1/(2*0.01) 1/(2*0.01) 0 25]);
xlabel('Frequency [Hz]'); ylabel('Amplitude spectrum')
axis([-50 50 0 30])

�50 0 50
0

5

10

15

20

25

30

Frequency (Hz)

A
m

pl
itu

de
 s

pe
ct

ru
m

Figure 5.8. Amplitude spectrum of a sine signal

Figure 5.8 shows only one spectral component, at the frequency of the sine
signal.

% Zero-padding on 100 periods
X = fft(x,20*N);
N = length(X);
fp = (0:N-1)/N/0.01;
fp = fp - 1/2/0.01;
plot(fp,abs(fftshift(X)));
axis([-1/(2*0.01) 1/(2*0.01) 0 25]);
xlabel('Frequency [Hz]')
ylabel('Amplitude spectrum')
axis([-50 50 0 30])

118 Digital Signal Processing using MATLAB

�50 0 50
0

5

10

15

20

25

30

Frequency (Hz)

A
m

pl
itu

de
 s

pe
ct

ru
m

Figure 5.9. Amplitude spectrum of a zero-padded sine signal

In this case, besides the dominant spectral component, many other spectral
components appear because of the zero-padding. The spectral representation
accuracy has thus been enhanced, but with no improvement of the spectral
resolution.

% Time support definition (45 samples = 4.5 signal periods)
t = 0:0.01:0.5-0.01-1/20;
x = cos(20*pi*t);
N = length(x); X = fft(x,N);
fp = (0:N-1)/N/0.01;
fp = fp - 1/2/0.01;
stem(fp,abs(fftshift(X)));
axis([-1/(2*0.01) 1/(2*0.01) 0 25]);
xlabel('Frequency [Hz]')
ylabel('Amplitude spectrum')
axis([-50 50 0 20])

Discrete Fourier Transform of Discrete-Time Signals 119

�50 0 50
0

2

4

6

8

10

12

14

16

18

20

Frequency (Hz)

A
m

pl
itu

de
 s

pe
ct

ru
m

Figure 5.10. Amplitude spectrum of a truncated sine signal

As can be seen in Figure 5.10, the spectral component corresponding to the
sinusoid frequency is not present in the calculated amplitude spectrum because of
the number of periods, which is not complete, and the low resolution. Its energy is
distributed around the true frequency value (spectral leakage effect).

EXERCISE 5.6.

Consider the following two digital signals: []0, 0.25, 0.5, 0.75, 1x = and
[]0, 0.5, 1, 0.5, 0h = . Calculate the product of their DFTs and then come back to the

time domain by inverse DFT. Compare the obtained result to the convolution
product of the two signals and conclude.

x=[0,0.25,0.5,0.75,1]; h=[0,0.5,1,0.5,0];
X=fft(x,9); H=fft(h,9);Y=X.*H;
y=abs(ifft(Y)); y2=conv(x,h)
figure
subplot(211);
stem(y); xlabel('n'); ylabel('A');
title('Signal obtained with the first method')
subplot(212);
stem(y2); xlabel('n'); ylabel('A');
title('Signal obtained with the second method')

120 Digital Signal Processing using MATLAB

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

n

A
Signal obtained with the first method

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

n

A

Signal obtained with the second method

Figure 5.11. Illustration of the convolution product calculation using two different methods

EXERCISE 5.7.

Consider the sum of two sinusoids of 50 Hz and 120 Hz, corrupted by an
additive, zero-mean, white noise. Calculate and plot its power spectral density.

t=0:0.001:0.8; % T=0.001, so Fs=1 kHz
x=sin(2*pi*50*t)+sin(2*pi*120*t)+2*randn(1,length(t));
subplot(211);
plot(x(1:500));
title('Signal')
X=fft(x,512);
Px=X.*conj(X)/512;
f=1000*(0:255)/512; % f=Fe*(k-1)/N
subplot(212);
plot(f,Px(1:256));
title('Power spectral density')

Discrete Fourier Transform of Discrete-Time Signals 121

0 100 200 300 400 500
�10

�5

0

5

10
Signal

0 100 200 300 400 500
0

20

40

60

80
Power spectral density

Figure 5.12. Noisy sinusoid mixture and its power spectral density

Because of the random nature of the analyzed signal, its power spectral density
has to be estimated. The power spectral density estimation methods will be
discussed in Chapter 10.

EXERCISE 5.8.

Calculate the DCT1D of the digital signal [] ()50cos 2 / 40x n n nπ= + , 1..100n =
and determine the percentage of its total energy cumulated by its first three
coefficients.

x=(1:100)+50*cos(2*pi/40*(1:100)); X=dct(x);
norm([X(1),X(2),X(3)])/norm(X)

The percentage of the cumulated energy is thus:

ans =
 0.8590

EXERCISE 5.9.

Consider the following impulse response of a digital filter: 1 2 1h , ,= .

a. Calculate its z-transform.

122 Digital Signal Processing using MATLAB

b. Find the zeros of transfer function H(z).

c. Plot function H(z) for z = ejω.

d. Evaluate function H(ejω) in N = 16 points.

a. The ZT1D definition: () [] n

n
H z h n z−= , leads to:

() 2121 −− ++= zzzH .

b. h=[1,sqrt(2),1]; r=roots(h)

The following zeros of the transfer function are obtained:

r =
 -0,707+0,707i
 -0,707-0,707i

zplane(h,1)

�1 �0.5 0 0.5 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

2

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 5.13. Zeros of the transfer function

c.

[H,w]=freqz(h,1)
figure
plot(w/(2*pi),abs(H))
xlabel('Normalized frequency')
ylabel('Amplitude')

Discrete Fourier Transform of Discrete-Time Signals 123

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

Normalized frequency

A
m

pl
itu

de

Figure 5.14. Transfer function magnitude representation

d..

 H = fftshift(fft(h,16)); N = length(H);
fqv = [-0.5:1/N:0.5-1/N];
stem(fqv,abs(H))
title('Absolute value of the transfer function');
xlabel('Normalized frequency');ylabel('Amplitude')

or:

Hz=czt([h,zeros(1,13)]);
fqv = [-0.5:1/N:0.5-1/N];
stem(fqv,abs(H))
title('Absolute value of the transfer function');
xlabel('Normalized frequency');ylabel('Amplitude')

124 Digital Signal Processing using MATLAB

�0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

3.5
Absolute value of the transfer function

Normalized frequency

A
m

pl
itu

de

Figure 5.15. Absolute value of the Fourier transform of the filter pulse response

EXERCISE 5.10.

Calculate the DFT2D of the following matrix using two DFT1D:

=
1110

0100
xx
xx

x

The DFT2D definition: 1 1 2 2
1 2 1 2

1 2

1 1
, ,2 2

0 0

n k n k
k k n n

n n
X W W x

= =
= , results in:

1DTFD
0 0 0 1

00 01 00 01 00 01
0 0 0 1(linewise)10 11 10 11 10 11

x x W x W x W x W x
x x W x W x W x W x

+ +

+ +

Discrete Fourier Transform of Discrete-Time Signals 125

()
()

()
()

()
()

()
()

1D

0 0 0 0 0 1
00 01 00 01

TFD 0 0 0 0 0 1
10 11 10 11

0 0 1 0 0 1(columnwise)
00 01 00 01

1 0 0 1 0 1
10 11 10 11

W W x W x W W x W x

W W x W x W W x W x

W W x W x W W x W x

W W x W x W W x W x

+ +

+ + + +

+ +

+ + + +

For example, in the case of the matrix =
32
21

x , the following MATLAB

code:

x=[1,2;2,3];
for n1=1:2; X1(n1,1:2)=fft(x(n1,1:2)); end
for n2=1:2; X(1:2,n2)=fft(X1(1:2,n2)); end

yields: 1
3 1
5 1

X
−

=
−

 and then
8 2
2 0

X
−

=
−

.

The same result can be obtained with:

X=fft(fft(x).').' or X=fft2(x)

Verify that: X(1,1)=sum(sum(x));

EXERCISE 5.11.

The following matrix:

x=[1 1 1 1 1
 1 0 0 0 1
 1 0 0 0 1
 1 0 0 0 1
 1 1 1 1 1];

represents a binary digital image in the form of a black square on a white
background.

Plot this image. Then calculate and plot the DFT2D and the DCT2D of this image.

Xf=fft2(x);Xfsh=fftshift(Xf); Xc=dct2(x);
subplot(221);
imagesc(x); title('Original image')
subplot(222);

126 Digital Signal Processing using MATLAB

imagesc(log(abs(Xf)));
title('Magnitude of the image spectrum')
subplot(223);
imagesc(log(abs(Xfsh)));
title('Magnitude of the image symmetric spectrum')
subplot(224);
imagesc(log(abs(Xc)));
title('Magnitude of the image cosine transform')
colormap(gray)

Original image

1 2 3 4 5

1

2

3

4

5

Magnitude of the image spectrum

1 2 3 4 5

1

2

3

4

5

Magnitude of the image symmetric spectrum

1 2 3 4 5

1

2

3

4

5

Magnitude of the image cosine transform

1 2 3 4 5

1

2

3

4

5

Figure 5.16. Binary image and its Fourier and cosine transform

EXERCISE 5.12.

DFT calculation with a digital computer requires truncating the signal because
the number of samples has to be finite (generally a power of 2 in the case of the fast
Fourier transform). The signal is truncated by default with a rectangular window, but
several other weighting windows can also be used (Hamming, Hanning, Blackman,
etc.). Its choice depends on the spectral and dynamic resolutions required for a given
application.

The objective of this exercise is to compare different weighting windows in two
important cases: two closely spaced sinusoids having the same amplitude and two
distant sinusoids with very different amplitudes.

Discrete Fourier Transform of Discrete-Time Signals 127

1. Generate a sinusoid on N = 32 points, with the amplitude 1 V and a frequency
of 100 Hz, sampled at 256 Hz. Calculate its DFT on 1,024 points using successively
the rectangular, triangular, Hamming, Hanning and Blackman windows to truncate
the signal. Conclude about the spectral resolution provided by each weighting
window.

t=(1:32);f1=50;
Fe=256;Nfft=1024;
y1=sin(2*pi*f1/Fe*t);
sig=y1.*boxcar(32)';
y_rect=abs(fftshift((fft(sig,Nfft))));
sig=y1.*triang(32)';
y_tria=abs(fftshift((fft(sig,Nfft))));
sig=y1.*hamming(32)';
y_hamm=abs(fftshift((fft(sig,Nfft))));
sig=y1.*hanning(32)';
y_hann=abs(fftshift((fft(sig,Nfft))));
sig=y1.*blackman(32)';
y_blac=abs(fftshift((fft(sig,Nfft))));
f=[-Fe/2:Fe/Nfft:(Fe/2-Fe/Nfft)];
subplot(511)
semilogy(f(513:1024),y_rect(513:1024));
axis([0 128 1e-3 100]);grid
legend('rectangular window',-1)
subplot(512);
semilogy(f(513:1024),y_tria(513:1024));
axis([0 128 1e-3 100]);grid
legend('triangular window',-1)
subplot(513);
semilogy(f(513:1024),y_hamm(513:1024));
grid;ylabel('Spectral amplitude')
axis([0 128 1e-4 100]);
legend('Hamming window',-1)
subplot(514);
semilogy(f(513:1024),y_hann(513:1024));
axis([0 128 1e-3 100]);grid ;
legend('Hanning window',-1)
subplot(515);
semilogy(f(513:1024),y_blac(513:1024));
axis([0 128 1e-3 100]);grid;
legend('Blackman window',-1)
xlabel('frequency [Hz]')

128 Digital Signal Processing using MATLAB

0 20 40 60 80 100 120

10
0 rectangular window

0 20 40 60 80 100 120

10
0 triangular window

0 20 40 60 80 100 120

10
0

S
pe

ct
ra

l a
m

pl
itu

de

Hamming window

0 20 40 60 80 100 120

10
0 Hanning window

0 20 40 60 80 100 120

10
0

frequency (Hz)

Blackman window

Figure 5.17. Spectral representation of the weighting windows

The simplest spectral window is the rectangular one. It provides the best spectral
resolution among all the weighting windows because it has the narrowest main lobe.
However, the maximum level of its sidelobes is also the highest (about 13 dB), so it
provides the worse dynamical resolution.

The other spectral windows improve the dynamical resolution, but degrade the
spectral resolution. Thus, it is necessary to achieve a trade-off between the following
elements:

− first sidelobe level (or maximum sidelobe level),

− mainlobe width,

− sidelobe attenuation rate.

2. Generate a mixture of two sinusoids with the amplitude 1 and the frequencies
100 Hz and 94 Hz. Consider N = 32 samples for the signal and calculate its DFT on
1,024 points.

t=(1:32); f1=94; f2=100; Fe=256;Nfft=1024;
y1= sin(2*pi*f1/Fe*t)+ sin(2*pi*f2/Fe*t);
sig=y1.*boxcar(32)';
y_rect=abs(fftshift((fft(sig,Nfft)))); sig=y1.*triang(32)';

Discrete Fourier Transform of Discrete-Time Signals 129

y_tria=abs(fftshift((fft(sig,Nfft)))); sig=y1.*hanning(32)';
y_hann=abs(fftshift((fft(sig,Nfft)))); sig=y1.*hamming(32)';
y_hamm=abs(fftshift((fft(sig,Nfft)))); sig=y1.*blackman(32)';
y_blac=abs(fftshift((fft(sig,Nfft))));
f=[-Fe/2:Fe/Nfft:(Fe/2-Fe/Nfft)];
subplot(511)
plot(f(513:1024),y_rect(513:1024)); grid; axis([0 128 0 20])
legend('rectangular window',-1)
subplot(512);
plot(f(513:1024),y_tria(513:1024));grid; axis([0 128 0 7])
legend('triangular window',-1)
subplot(513);
plot(f(513:1024),y_hann(513:1024)); grid; axis([0 128 0 7])
legend('Hanning window',-1)
ylabel('spectral amplitude')
subplot(514);
plot(f(513:1024),y_hamm(513:1024)); grid; axis([0 128 0 7])
legend('Hamming window',-1)
subplot(515);
plot(f(513:1024),y_blac(513:1024)); grid; axis([0 128 0 6])
legend('Blackman window',-1); xlabel('frequency [Hz]')

0 20 40 60 80 100 120
0

10

20

0 20 40 60 80 100 120
0

5

0 20 40 60 80 100 120
0

5

sp
ec

tr
al

 a
m

pl
itu

de

0 20 40 60 80 100 120
0

5

0 20 40 60 80 100 120
0

5

frequency (Hz)

rectangular window

triangular window

Hanning window

Hamming window

Blackman window

Figure 5.18. Spectral representation of two closely spaced sinusoids

The spectral accuracy should be not taken for the spectral resolution, which has
the capability of resolving two closely spaced spectral components. It is generally

130 Digital Signal Processing using MATLAB

defined as the frequency difference between two sinusoids having the same
amplitude which allow us to obtain on their sum spectrum a gap of minimum 3 dB
between their maxima.

The time support limited to N points leads to the lobe occurrence in the sinusoid
spectrum. For a rectangular weighting window the width of the main lobe is equal to
2/N. Thus, if x[n] contains two sinusoids whose frequencies are separated by at least
1/N, the corresponding main lobes are considered separable. If fs = 1/Ts stands for
the sampling frequency, the spectral resolution in Hz is equal to fs/N, i.e. the inverse
of the total analysis time.

3. Finally generate the following signal on 32 points:

100 74[] sin 2 0.1sin 2
256 256

x n n nπ π= +

Plot its spectrum obtained for different weighting windows and comment upon this.

t=(1:32);f1=74;f2=100;
Fe=256;Nfft=1024;
y1= 0.1*sin(2*pi*f1/Fe*t)+ sin(2*pi*f2/Fe*t);
sig=y1.*boxcar(32)'; y_rect=abs(fftshift(fft(sig,Nfft)));
sig=y1.*triang(32)'; y_tria=abs(fftshift(fft(sig,Nfft)));
sig=y1.*hanning(32)'; y_hann=abs(fftshift(fft(sig,Nfft)));
sig=y1.*hamming(32)'; y_hamm=abs(fftshift(fft(sig,Nfft)));
sig=y1.*blackman(32)'; y_blac=abs(fftshift(fft(sig,Nfft)));
f=[-Fe/2:Fe/Nfft:(Fe/2-Fe/Nfft)];
subplot(511); plot(f(513:1024),y_rect(513:1024));grid;
axis([0 128 0 20]); legend('rectangular window',-1)
subplot(512);plot(f(513:1024),y_tria(513:1024));grid;
axis([0 128 0 10]); legend('triangular window',-1)
subplot(513);plot(f(513:1024),y_hann(513:1024));grid;
axis([0 128 0 10]);
legend('Hanning window',-1)
ylabel('spectral amplitude')
subplot(514);plot(f(513:1024),y_hamm(513:1024));grid;
axis([0 128 0 10]);
legend('Hamming window',-1)
subplot(515);plot(f(513:1024),y_blac(513:1024));grid;
axis([0 128 0 8])
legend('Blackman window',-1);
xlabel('frequency [Hz]')

Discrete Fourier Transform of Discrete-Time Signals 131

0 20 40 60 80 100 120
0

10

20
rectangular window

0 20 40 60 80 100 120
0

5

10
triangular window

0 20 40 60 80 100 120
0

5

10

sp
ec

tr
al

 a
m

pl
itu

de

Hanning window

0 20 40 60 80 100 120
0

5

10
Hamming window

0 20 40 60 80 100 120
0

5

frequency (Hz)

Blackman window

Figure 5.19. Spectral representation of a mixture of two sinusoids with different amplitudes

It can be seen that the two components are not resolved when the rectangular
window is used. The weak sinusoid is hidden by the sidelobes of the weighting
window spectrum, centered on the high amplitude sinusoid frequency.

The Hamming window provides a lower resolution than the rectangular window
for an amplitude ratio of 0 dB, but it becomes more interesting for an amplitude ratio
of 30 dB.

EXERCISE 5.13.

The last step of the DFT calculation is the frequency sampling. In fact, a
continuous frequency cannot be considered when using a digital computer. The
frequency axis is therefore sampled and the Fourier transform is calculated for
harmonic frequencies:

s
n

nF
f

N
=

where n = -N/2..N/2-1 and Fs denotes the sampling frequency.

132 Digital Signal Processing using MATLAB

The number of samples N is very important because the normalized frequency
axis is sampled with the increment 1/N. N is thus directly related to the spectral
resolution, which also depends on the window choice. If the weighting window has
a main lobe width of B = b/N, (b = 2 for the rectangular window, 4 for the Hanning
window, etc.) and if the required spectral resolution is Δf, then N should meet the
following constraint:

f
b

N
Δ

≥

Notice that the frequency sampling involves periodization in the time domain.
Consequently, the signal reconstructed by inverse DFT is a periodical version of the
original signal. It is therefore necessary to consider a Fourier transform order high
enough (at least equal to the signal length) to have the same one-period signal as the
original one. In fact, this is the necessary condition for avoiding time aliasing due to
an insufficient frequency sampling rate (Nyquist dual theorem).

Consider a 128 point sinusoid with the amplitude 1 and frequency f = 12.5 Hz.
This signal is sampled at Fs = 64 Hz or Fs = 128 Hz. Its DFT is calculated on 128 or
256 points.

Write a MATLAB code for illustrating the spectral representation of the signals
corresponding to the following three cases:

a. Fs = 64 Hz, Nfft = 128

b. Fs = 128 Hz, Nfft = 128

c. Fs = 128 Hz, Nfft = 256

t=(1:128); f1=12.5 ;Fs=64;
y1= sin(2*pi*f1/Fs*t); sig=y1; Nfft=128;
y=abs(((fft(sig,Nfft))));
f0=[0:Fs/Nfft:(Fs-Fs/Nfft)];
f1=12.5;Fs=128;
y1= sin(2*pi*f1/Fs*t); sig=y1; Nfft=128 ;
y_rect=abs(fftshift((fft(sig,Nfft))));
Nfft1=256;
y_rect1=abs(fftshift((fft(sig,Nfft1))));
f=[-Fs/2:Fs/Nfft:(Fs/2-Fs/Nfft)];
f1=[-Fs/2:Fs/Nfft1:(Fs/2-Fs/Nfft1)];
subplot(311); stem(f0,y);
grid; axis([0 64 0 80]);
title('Fs=64 kHz, Nfft=128 points');
ylabel('Spectral amplitude')
subplot(312)
stem(f(Nfft/2+1:Nfft),y_rect(Nfft/2+1:Nfft));

Discrete Fourier Transform of Discrete-Time Signals 133

grid; axis([0 64 0 80]);
title('Fs=128 kHz, Nfft=128 points');
ylabel('Spectral amplitude')
subplot(313);
stem(f1(Nfft1/2+1:Nfft1),y_rect1(Nfft1/2+1:Nfft1));
grid; axis([0 64 0 80])
xlabel('frequency [Hz]');
ylabel('Spectral amplitude');
title('Fs=128 kHz, Nfft=256 points');

0 10 20 30 40 50 60
0

50

Fs=64 kHz, Nfft=128 points

S
pe

ct
ra

l a
m

pl
itu

de

0 10 20 30 40 50 60
0

50

Fs=128 kHz, Nfft=128 points

S
pe

ct
ra

l a
m

pl
itu

de

0 10 20 30 40 50 60
0

50

frequency [Hz]

S
pe

ct
ra

l a
m

pl
itu

de

Fs=128 kHz, Nfft=256 points

Figure 5.20. Influence of the FFT parameters

In the first case, the spectral resolution is equal to 0.5 Hz and the analyzed
frequency is a harmonic one. The spectrum thus has the aspect of a Dirac pulse
centered on 12.5 Hz. Another spectral component occurs at 64−12.5 Hz because the
spectrum is represented on an interval of width Fs.

In the second case, the spectral resolution is equal to 1 Hz and the sinusoid
frequency is not analyzed by the DFT (spectral leakage). For the frequencies which
are not equal to or a multiple of Fs/Nfft, where Nfft is the number of points used by the
FFT, a pure sinusoid appears in the form of several non-zero values around the true
frequency. Without an a priori model, it is not possible to detect spectral
components closer than 1/ Nfft in normalized frequency.

134 Digital Signal Processing using MATLAB

In the third case, when the zero-padding is used, the spectral accuracy is equal to
0.5 Hz, while the spectral resolution is 1 Hz. The spectral representation is sampled
with an increment of 0.5 Hz and contains the main lobe centered on the true
frequency and the associated sidelobes.

5.3. Exercises

EXERCISE 5.14.
Consider the following digital signals:

[] []

0.5, if 8.. 1
1, if 0..8 1, if 0

,
0, otherwise 0.5, if 1..8

0, otherwise

n
n n

x n y n
n

= − −
= =

= =
=

Demonstrate analytically that the real parts of the DFT1D of the signals
[] []andx n y n are equal. Verify this property using a MATLAB code.

EXERCISE 5.15.

Using a MATLAB code, verify the Parseval theorem:

[] []
−

=

−

=
=

1

0

1

0

22 1N

n

N

k
kX

N
nx

for the following digital signal:

[] , if 0..7
0, otherwise
n n

x n
=

=

EXERCISE 5.16.

The function []mod , 1, 1i N i Nρ ∀ ∈ − performs the permutation of the
sequence { }1, 2, 3, ... , 1N − into the sequence { }1 2 3 1, , , ..., Nρ ρ ρ ρ − if N is a prime
number and ρ is a primitive root of N. For example, the permutation of the
sequence {1, 2, 3, 4} into the sequence {2, 4, 3, 1} is obtained for N = 5, as it is
illustrated in the table below.

Discrete Fourier Transform of Discrete-Time Signals 135

i = 1 2 3 4

() =5modiρ 2 4 3 1

The sequence { }1, 2, 3, ... , 1N − can be also permutated into the sequence
{ }mod with 0. 2i N i Nρ = − . Thus, in the case 5 and 2N ρ= = , the following
permutation is obtained:

i = 0 1 2 3

() =5modiρ 1 2 4 3

In the Galois field GF(5), the element 2=ρ is a primitive root, while 31 =−ρ
is the inverse element, because ()() ()() 132 5

1 =⋅=⋅ −
Nρρ . In this case, the

sequence { }1, 2, 3, 4i = or { }0, 1, 2, 3i = is permutated in the following manner:

i = 0 1 2 3

() [] () () === −− 5mod3modmod 1 iii NN ρρ 1 3 4 2

Write a MATLAB code for performing these permutations.

This page intentionally left blank

Chapter 6

Linear and Invariant Discrete-Time Systems

6.1. Theoretical background

A discrete-time system transforms an input digital signal into an output one
according to its transfer function. A discrete linear time-invariant system (LTI) can
be mathematically described by an operator { }xℵ , so that { }x y x→ = ℵ , where x
and y are the input and output signals respectively.

Digital filtering is one of the most important signal processing functions and the
digital filters are the most commonly used LTI. The filtering algorithm can be
implemented in the form of a “software solution”, as a routine of a more general
program running in the memory of a digital signal processor, or in the form of a
“hardware solution”, as a dedicated electronic circuit.

6.1.1. LTI response calculation

The output signal y of a LTI is calculated as the convolution product of its
impulse response h with the input signal x, which is considered here as a finite
energy signal:

[]{ } { }
[]{ } { }

0.. 1 0. 1

0.. 1 0.. 1

n

n

x x n , n N x , n N

h h n , n L h , n L

= = − = = −

= = − = = −
 [6.1]

138 Digital Signal Processing using MATLAB

[] ()[] ()[] [] [] [] []

[] [] [] []
()

()

1 1

0 0
min 1

1 max 1 0
0.. 2

N L

m m
n,Nn

m n N m n L,

y n x h n h x n x m h n m h m x n m

h m x n m x m h n m , n N L

− −

= =
−

= − + = + −

= ∗ = ∗ = − = − =

= − = − = + −
 [6.2]

Notice that the output signal y is the sum of partial products obtained through
three main operations:

− time-reversing of the input signal x[-m],

− time-shifting of the reversed input signal x[n-m],

− multiplication of h[m] by x[n-m].

If x[n] and h[n] are represented by the polynomials:

() { }

() { }

1

0
1

0

with order () 1

with order () 1

N i
i

i
L i

i
i

X z x z X z N

H z h z H z L

−

=
−

=

= = −

= = −
 [6.3]

then the following polynomial is associated with the output signal hxy ∗= :

() () ()zHzXzyzY
LN

i

i
i ==

−+

=

2

0
 with order { } 2)(−+= LNzY [6.4]

In the case of two 2D signals, x and h:

{ }
{ }

1 2

1 2

1 2

1 2

with 0.. 1 and 0. 1

with 0.. 1 and 0.. 1

n ,n

n ,n

x x n N n N

h h n L n L

′ ′′= = − = −

′ ′′= = − = −
 [6.5]

the linear convolution can be defined:

– as a matrix xhhxy ∗∗=∗∗= having the following elements:

1 2 1 1 2 2 1 2
1 2

1 1
, , ,

0 0

1 20. 2 with 0.. 2

N N
n n n r n r r r

r r
y h x

n N L n N L

′ ′′− −
− −

= =
=

′ ′ ′′ ′′= + − = + −

 [6.6]

Linear and Invariant Discrete-Time Systems 139

– as a polynomial convolution:

() () ()
1 1 1 1

1

1
1

0
with 0.. 2

N
n n r r

r
Y z H z X z n N L

′−
−

=
′ ′= = + − [6.7]

– as a polynomial product:

() () ()212121 ,,, zzXzzHzzY = [6.8]

6.1.2. LTI response to basic signals

The impulse response of a LTI is defined by:

1D: [] []{ }1Dh n nδ= ℵ

2D: [] []{ }1 2 2 1 2, ,Dh n n n nδ= ℵ

The indicial response of a LTI is defined by:

1D: [] []{ } []1
0

D
m

g n u n h n m
∞

=
= ℵ = −

2D: [] []{ } []
1 2

1 2 2 1 2 1 1 2 2
0 0

, , ,D
m m

g n n u n n h n m n m
∞ ∞

= =
= ℵ = − −

LTI response to complex exponential signals

1D: if [] withnx n z z= ∈C , then the LTI1D response to this type of signal is:

[] () () ()ωω
ω

jnj
jz

n HzHzny eeexp →= = [6.9]

On the unit circle, for ()Njkz /2exp π= , 1..k N= , this results in:

[] 2 2exp expy n jk n H jk
N N
π π= [6.10]

2D: if [] 21
2121
nn zz,nnx = , then the LTI2D response is given by:

[] () ()
() ()1 1 2 21 2 1 2

1,2 1,2
1 2 1 21 2 exp, , e e ,ej n nn n j j

z jy n n z z H z z Hω ω ω ω
ω

+
== → [6.11]

140 Digital Signal Processing using MATLAB

On the unit sphere, for ()2,12,12,1 /2exp Njkz π= , 1,2 1,21..k N= this results in:

[] =
+

2
2

1
12

2
21

1
1

2222

21 e,ee, N
jk

N
jkn

N
kn

N
kj

Hnny

ππππ

 [6.12]

LTI response to periodical signals

1D: if [] [] [] ()
−

=
=+=

1

0
/2exp

1 N

k
NjknkX

N
Nnxnx π , then the LTI1D response is

the periodical signal:

[] [] []=+=
−

=

N
jkN

k

n
N

jk
HkX

N
Nnyny

ππ 2
1

0

2

ee
1

 [6.13]

2D: if:

[] []

[]
2

2
21

1

2

2

1
1

1
2

1

0

1

0

2

21
21

221121

ee,
1

,,

n
N

jkN

k

N

k

n
N

jk
kkX

NN

NnNnxnnx
ππ

−

=

−

=
=

=++=

then the LTI2D response is the periodical signal:

[] []

[] ()1 1 2 21 2
1 2 1 1 2 2

1 2

1 2 1 1 2 2
2 2

1 1
2 / 2 /

1 2
0 01 2

, ,

1 , ,
jk n jk nN N

N N jk N jk N

k k

y n n y n N n N

X k k e e H e e
N N

π π
π π

− −

= =

= + + =

=
 [6.14]

LTI response to a general signal

1D: let us consider the signal [] []{ }1Dy n x n= ℵ , which meet the following
condition:

[] [] []−+−−=
= =

a bN

m

N

m
mm mnxbmnya

a
ny

1 00

1
 [6.15]

or the 1D convolution relationship:

Linear and Invariant Discrete-Time Systems 141

[] [] []nhnxny ∗= [6.16]

The LTI1D can thus be calculated using one of the following equations:

[] () (){ }
[] () (){ }
[] [] []{ }

1
1D

1
1D

1
1

ZT

DTFT e e

DFT

j j

D

y n H z X z

y n H X

y n H k X k

ω ω

−

−

−

=

=

=

 [6.17]

2D: let us consider the signal [] []{ }1 2 2D 1 2, , ,y n n x n n= ℵ which meets the
following condition:

[] []

[]−−+

+−−−=

= =

= =

1

1

2

2
21

1

1

2

2
21

0 0
2211,

1 1
2211,

0,0
21

,

,
1

,

b b

a a

N

m

N

m
mm

N

m

N

m
mm

mnmnxb

mnmnya
a

nny

 [6.18]

or the 2D convolution relationship:

[] [] []212121 ,,, nnhnnxnny ∗∗= [6.19]

The LTI2D can thus be calculated using one of the following equations:

[] () (){ }
[] () (){ }
[] [] []{ }

1
1 2 2 1 2 1 2

1
1 2 2 1 2 1 2

1
1 2 2 1 2 1 2

, ZT , ,

, DTFT , ,

, DFT , ,

D

D

D

y n n H z z X z z

y n n H X

y n n H k k X k k

ω ω ω ω

−

−

−

=

=

=

 [6.20]

6.2. Solved exercises

EXERCISE 6.1.
1. Write a MATLAB code to verify the linearity of system ℵ , represented by the

transfer function:

1 2

1 2
2.2403 2.4908 2.2403()

1 0.4 0.75
z z

H z
z z

− −

− −
+ +=
− +

142 Digital Signal Processing using MATLAB

Consider for this two different signals x and y and demonstrate the following
relationship: [] []{ } []{ } []{ }x n y n x n y nℵ + = ℵ +ℵ .

clf; n = 0:40; a = 2;b = -3;
x1 = cos(2*pi*0.1*n); x2 = cos(2*pi*0.4*n); x = a*x1 + b*x2;
num = [2.2403 2.4908 2.2403]; den = [1 -0.4 0.75];
ic = [0 0]; % set the initial conditions to zero
y1 = filter(num,den,x1,ic); %Calculation of the output signal y1[n]
y2 = filter(num,den,x2,ic); %Calculation of the output signal y2[n]
y = filter(num,den,x,ic); %Calculation of the output signal y[n]
yt = a*y1 + b*y2; d = y - yt; %Calculation of the error signal d[n]
% Plotting the error and the output signals
subplot(3,1,1); stem(n,y); ylabel('Amplitude');
title('Output corresponding to: a\cdot x_{1}[n] + b\cdot x_{2}[n]');
subplot(3,1,2); stem(n,yt); ylabel('Amplitude');
title('Output calculated as: a\cdot y_{1}[n] + b\cdot y_{2}[n]');
subplot(3,1,3); stem(n,d); xlabel('Time index n');
ylabel('Amplitude'); title('Error signal');

0 5 10 15 20 25 30 35 40
�50

0

50

A
m

pl
itu

de

Output corresponding to: a ⋅ x
1
[n] + b ⋅ x

2
[n]

0 5 10 15 20 25 30 35 40
�50

0

50

A
m

pl
itu

de

Output calculated as: a ⋅ y
1
[n] + b ⋅ y

2
[n]

0 5 10 15 20 25 30 35 40
�5

0

5
x 10

�15

Time index n

A
m

pl
itu

de

Error signal

Figure 6.1. Linearity of the convolution operator

Note that the error signal amplitude is very close to zero, so the two output
signals are equivalent.

Linear and Invariant Discrete-Time Systems 143

2. Verify that this system is also time invariant.

clf; n = 0:40; D = 10; a = 3.0;b = -2;
x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n); xd = [zeros(1,D) x];
num = [2.2403 2.4908 2.2403]; den = [1 -0.4 0.75];
ic = [0 0]; % set the initial conditions to zero
% Calculation of the output y[n]
y = filter(num,den,x,ic);
% Calculation of the output yd[n]
yd = filter(num,den,xd,ic);
% Calculation of the error signal d[n]
d = y - yd(1+D:41+D);
% Plotting the outputs
subplot(3,1,1); stem(n,y); ylabel('Amplitude');
title('Output y[n]'); grid;
subplot(3,1,2); stem(n,yd(1:41)); ylabel('Amplitude');
title(['Output corresponding to the shifted input x[n -', num2str(D),']']);
grid;
subplot(3,1,3); stem(n,d); xlabel('time index n');
ylabel('Amplitude');title('Error signal'); grid;

0 5 10 15 20 25 30 35 40
�50

0

50

A
m

pl
itu

de

Output y[n]

0 5 10 15 20 25 30 35 40
�50

0

50

A
m

pl
itu

de

Output corresponding to the shifted input x[n �10]

0 5 10 15 20 25 30 35 40
�1

0

1

time index n

A
m

pl
itu

de

Error signal

Figure 6.2. Time invariance of the convolution operator

It can be easily seen from the example above that when the input signal of a time
invariant linear system is shifted, its output is also time delayed by the same amount.

144 Digital Signal Processing using MATLAB

EXERCISE 6.2.

Using a MATLAB code, demonstrate that the execution time associated with the
function conv.m is proportional to N2 where N is the number of points.

maxlengthlog2=5; m=9;
for k=1:maxlengthlog2
 i=k+m;
 disp(['The convolution length is: ' num2str(2̂ i)]);
 h=[1:2̂ i]; dep=cputime; y=conv(h,h);
 timeexe(k)=cputime-dep;
end
longvec=[2.̂ [m+1:maxlengthlog2+m]];
subplot(211); plot(longvec,timeexe,'o'); grid
xlabel('convolution length') ;
ylabel('CPU time [s]');
subplot(212); plot(log2(longvec),log2(timeexe),'o') ;grid
xlabel('log2(convolution length)'); ylabel('log2(CPU time [s])');

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

2

3

convolution length

C
P

U
 ti

m
e

[s
]

10 10.5 11 11.5 12 12.5 13 13.5 14
�6

�4

�2

0

2

log2(convolution length)

lo
g2

(C
P

U
 ti

m
e

[s
])

Figure 6.3. Execution time associated with the convolution operator

EXERCISE 6.3.

Calculate the 1D linear convolution for the following signals:

{ } ()
{ } ()

2
0 1 2 0 1 2

0 1 0 1

with 3

with 2

x x ,x ,x X z x x z x z , N

h h ,h H z h h z, L

= = + + =

= = + =

Linear and Invariant Discrete-Time Systems 145

According to the definition:
−

=
−=

1

0

N

m
mnmn hxy . This results in:

{ } { }0 1 2 3 0 0 0 1 1 0 1 1 2 0 2 1, , , , , ,y y y y y x h x h x h x h x h x h= = + +

The same result is obtained using the polynomial representations of the two
signals, () ()andX z H z :

() () () ()()

() ()

2
0 1 2 0 1

2 3
0 0 0 1 1 0 1 1 2 0 2 1

Y z X z H z x x z x z h h z

x h x h x h z x h x h z x h z

= = + + + =

= + + + + +

The MATLAB function, conv.m, for the linear convolution calculation, in fact
performs the product of the polynomials () and ()X z Y z . For example, for

{ } { }1 2 3 and 1 1x , , h ,= = the following result is obtained:

x = [1,2,3] ; h = [1,1] ; [y] = conv(x,h)

y = 1 3 5 3

The inverse operator is the deconvolution and performs the polynomial division.

Thus, the MATLAB function deconv.m leads to:

[q,r]=deconv(y,x)

q = 1 1 r = 0 0 0 0

EXERCISE 6.4.

Write a MATLAB code to illustrate Plancherel’s theorem using the following
signals:

1

2

() 2 1, 1..9
() 1, 2, 3, 2, 1, 0, 0, ...

x n n n
x n

= − =
= − −

w = -pi:2*pi/255:pi;
x1 = [1 3 5 7 9 11 13 15 17];
x2 = [1 -2 3 -2 1];
y = conv(x1,x2);
h1 = freqz(x1, 1, w);
h2 = freqz(x2, 1, w);
hp = h1.*h2;
h3 = freqz(y,1,w);
subplot(2,2,1);
plot(w/(2*pi),abs(hp));grid
title('Product of the amplitude spectra')

146 Digital Signal Processing using MATLAB

subplot(2,2,2);
plot(w/(2*pi),abs(h3));grid
title('Amplitude spectrum of the convolution result')
subplot(2,2,3);
plot(w/(2*pi),angle(hp));grid
title('Sum of the phase spectra')
subplot(2,2,4);
plot(w/(2*pi),angle(h3));grid
title('Phase spectrum of the convolution result')

�0.5 0 0.5
0

20

40

60

80

100
Product of the amplitude spectra

�0.5 0 0.5
0

20

40

60

80

100
Amplitude spectrum of the convolution result

�0.5 0 0.5
�4

�2

0

2

4
Sum of the phase spectra

�0.5 0 0.5
�4

�2

0

2

4
Phase spectrum of the convolution result

Figure 6.4. Plancherel’s theorem illustration

EXERCISE 6.5.
Calculate sequentially the convolution of two discrete-time signals. The origin of

the two functions is assumed to be 0=n .

x=ones(3,1); h=exp(-[1:10]);
% Convolution length calculation
Ly=length(x)+length(h)-1;
lh=length(h);
lx=length(x);
y=zeros([Ly,1]);
% x inversion
xf=fliplr(x);
disp(['Type any key to begin']);

Linear and Invariant Discrete-Time Systems 147

for i=1:1:Ly
 indlo=max(0,i-lx);
 indhi=min(i-1,lh-1);
 for j=indlo:indhi
 y(i)=h(j+1)*x(i-j)+y(i);
 end;
 subplot(311);
 stem(-lx+i:1:i-1,xf);
 ylabel('Reversed x');
 lim1= max(lh,lx) ;
 lim2= min(min(min(x),min(h)),0) ;
 lim3= max(max(x),max(h)) ;
 axis([-lx,lim1,lim2,lim3]);
 subplot(312);
 stem(0:1:lh-1,h);
 ylabel('h');
 axis([-lx,lim1,lim2,lim3]);
 subplot(313);
 stem(0:1:Ly-1,y);
 ylabel('y');
 pause;
end

The first and last step of the convolution is illustrated in Figures 6.5 and 6.6. The

rectangular signal is reversed and is then shifted along the exponential signal.

The convolution value corresponding to each point is finally obtained as the sum
of the partial point to point products of the two signals.

�2 0 2 4 6 8 10
0

0.5

1

R
ev

er
se

d
x

�2 0 2 4 6 8 10
0

0.5

1

h

0 2 4 6 8 10 12
0

0.2

0.4

y

Figure 6.5. First step of the convolution of two discrete-time signals

148 Digital Signal Processing using MATLAB

�2 0 2 4 6 8 10
0

0.5

1

R
ev

er
se

d
x

�2 0 2 4 6 8 10
0

0.5

1

h

0 2 4 6 8 10 12
0

0.5

1

y

Figure 6.6. Last step of the convolution of two discrete-time signals

EXERCISE 6.6.
Calculate the 2D linear convolution for the following discrete-time signals:

{ } []
{ } []

1 2

1 2

1 2

1 2

0 1 0 1 2 0 1 2; 3 4 5

0 1 0 1 2 1 0 1;1 0 1

n ,n

n ,n

x x ,n , ; n , , , , , ,

x h ,n , ; n , , , , , ,

= = = =

= = = =

The first elements of the matrix issued from the 2D linear convolution
xhy ∗∗= , are given below:

22100

110

0

2000
1

0

2

0
101000202020

1

0

2

0
100000101010

1

0

2

0
00000000

1 2
2121

1 2
2121

1 2
2121

=⋅++=++==

=+=+==

===

= =
−−

= =
−−

= =
−−

,,
r r

,,,,,rrr,r,

r r
,,,,,rrr,r,

r r
,,,rrr,r,

xhxhxhxhy

xhxhxhy

xhxhy

The final result can be obtained using the following MATLAB code:

x=[0,1,2;3,4,5];
h=[1,0,1;1,0,1];

Linear and Invariant Discrete-Time Systems 149

y=conv2(x,h)

y=0 1 2 1 2
 3 5 10 5 7
 3 4 8 4 5

The same result can be obtained if the convolution is calculated as a product of

polynomials.

() () () () ()

() () ()

() () () () () 432
11

1

0
22

432
1001

1

0
11

432
00

1

0
00

54843

751053

22

1
1

1

1
1

1

1
1

1

zzzzzXzHzXzHzY

zzzzXHXHzXzHzY

zzzzzXzHzXzHzY

r
r

r

r
r

r

r
r

r

++++===

++++=+==

+++===

=
−

=
−

=
−

Each 2D signal can also be represented as a polynomial depending on two
variables:

()

()
2
211

2
2

2
2

1
1

1
2

1
1

0
2

1
1

2
2

0
1

1
2

0
1

0
2

0
121

2
21211

2
22

2
2

1
1

1
2

1
1

0
2

1
1

2
2

0
1

1
2

0
1

0
2

0
121

1

101101,

5432

543210,

zzzz

zzzzzzzzzzzzzzH

zzzzzzz

zzzzzzzzzzzzzzX

+++=

+++++=

++++=

+++++=

The 2D convolution thus takes the form of such a polynomial:

() () ()
() ()2

211
2
2

2
21211

2
22

212121

15432

,,,

zzzzzzzzzzz

zzXzzHzzY

+++++++=

=

EXERCISE 6.7.

Write a MATLAB code to demonstrate that the filtering operator is in fact a
convolution operator. Consider for this the following signal:

x(n) = 1, -2, 3, -4, 3, 2, 1, 0,...

and the system with the finite impulse response given below:

h(n) = 3, 2, 1, -2, 1, 0, -4, 0, 3, 0, ...

150 Digital Signal Processing using MATLAB

h = [3 2 1 -2 1 0 -4 0 3];
x = [1 -2 3 -4 3 2 1];
y = conv(h,x) ; n = 0:14 ;
subplot(2,1,1);stem(n,y);
xlabel('Time index n');
ylabel('Amplitude');
title('Output obtained by convolution');
grid;
x1 = [x zeros(1,8)];
y1 = filter(h,1,x1);
subplot(2,1,2);stem(n,y1);
xlabel('Time index n');
ylabel('Amplitude');
title('Output obtained by filtering');
grid;

0 2 4 6 8 10 12 14
�20

�10

0

10

20

Time index n

A
m

pl
itu

de

Output obtained by convolution

0 2 4 6 8 10 12 14
�20

�10

0

10

20

Time index n

A
m

pl
itu

de

Output obtained by filtering

Figure 6.7. Equivalence of the convolution and the filtering operators

EXERCISE 6.8.
Consider a LTI1D, characterized in the discrete-time domain by the following

equation:

[] [] [] []1334,0334.01334.0 −+=−− nxnxnyny

Linear and Invariant Discrete-Time Systems 151

or equivalently by the transfer function:

() ()
() 1

1

334.01
334.0334.0

−

−

−

+
==

z

z
zX
zY

zH

Because of the MATLAB rule about the vector and matrix indices, the transfer
function coefficients are denoted as indicated below:

() () () ()
() () ()

1

1
1 2 ... 1

1 2 ... 1

nb

na

b b z b nb z
H z

a a z a na z

− −

− −
+ + + +

=
+ + + +

If a(1) ≠ 1, the coefficients are normalized so that a(1) = 1.

The following MATLAB code calculates and plots the complex gain, the poles
and the zeros of a LTI1D.

b=[0.334,0.334]; a=[1.0,-0.334];
figure(1); zplane(b,a); figure(2); freqz(b,a)

�1 �0.5 0 0.5 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 6.8. Localization of the transfer function poles and zeros

152 Digital Signal Processing using MATLAB

0 0.2 0.4 0.6 0.8 1
�100

�80

�60

�40

�20

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.2 0.4 0.6 0.8 1
�60

�40

�20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 6.9. Amplitude and phase responses of the system

EXERCISE 6.9.

Calculate the impulse response of the system defined by the following transfer
function:

21

21

75.04.01
2403.24908.22403.2

)(−−

−−

+−

++
=

zz

zz
zH

clf;
N = 40;
num = [2.2403 2.4908 2.2403];
den = [1 -0.4 0.75];
y = impz(num,den,N);
% Impulse response representation
stem(y);
xlabel('Time index n');
ylabel('Amplitude');
title('Impulse response');
grid;

Linear and Invariant Discrete-Time Systems 153

0 5 10 15 20 25 30 35 40
�3

�2

�1

0

1

2

3

4

Time index n

A
m

pl
itu

de
Impulse response

Figure 6.10. System impulse response

If initial conditions are not zero, the previously defined functions are not able to
take them into account. In this case the function filter.m should be used.

A simple calculation indicates that for a first order system, the initial conditions
can be written in the form:

)]1()1(1[0 −−−= ayxbz

For a 2nd order system, they become:

)]1(2)1(1),2(2)1(1)2(2)1(1[0 −−−−−−−−+−= yaxbyayaxbxbz

Consider for example the previous system with y(−1) = 2, y(−2) = 1 and x(n) = u(n).

n=0:34 ; x=ones(1,35);
num = [2.2403 2.4908 2.2403]; den = [1 -0.4 0.75];
z0=[0.4*2-0.75*1,-0.75*2] ;
y=filter(num,den,x,z0);
stem(y); xlabel('Time index n'); ylabel('Amplitude');
title('Indicial response'); grid;

154 Digital Signal Processing using MATLAB

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Time index n

A
m

pl
itu

de

Indicial response

Figure 6.11. System indicial response

EXERCISE 6.10.
Compare the impulse responses of two 5th order lowpass Butterworth and Cauer

filters, whose normalized cutoff frequency is equal to 0.5nW = .

[b,a]=butter(5,0.5);
imp=[1;zeros(49,1)]; % Dirac pulse
h=filter(b,a,imp);
subplot(211)
stem(h);
title('butterworth')
[b,a]=ellip(5,1,20,0.5);
h=filter(b,a,imp);
subplot(212)
stem(h);
title('cauer')

The same result can be obtained using the MATLAB command:

impz(b,a)

Linear and Invariant Discrete-Time Systems 155

Figure 6.12. Impulse response of two systems corresponding
to Butterworth (top) and Cauer (bottom) models

EXERCISE 6.11.
Consider two 2nd order systems defined by the following transfer functions:

21

21

2

21

21

1

85.07.01
3.05.02.0

)(

8.09.01
4.02.03.0

)(

−−

−−

−−

−−

++

+−
=

++

+−
=

zz

zz
zH

zz

zz
zH

Find the transfer function equivalent to that of the series connection of the two
systems.

clf;
x = [1 zeros(1,40)]; n = 0:40;
% 4th order system coefficients
den = [1 1.6 2.28 1.325 0.68];
num = [0.06 -0.19 0.27 -0.26 0.12];
% 4th order system output
y = filter(num,den,x);

156 Digital Signal Processing using MATLAB

% Coefficients of the 2nd order systems
num1 = [0.3 -0.2 0.4];
den1 = [1 0.9 0.8];
num2 = [0.2 -0.5 0.3];
den2 = [1 0.7 0.85];
% Output of the 1st system
y1 = filter(num1,den1,x);
% Output of the 2nd system
y2 = filter(num2,den2,y1);
% Difference between y[n] and y2[n]
d = y - y2;
% Plotting the output and the error signal
subplot(3,1,1);
stem(n,y);
ylabel('Amplitude');
title('output of the 4̂ t̂ h order system'); grid;
subplot(3,1,2); stem(n,y2);
ylabel('Amplitude');
title('output of the series connection of the two systems');
grid;
subplot(3,1,3);
stem(n,d)
xlabel('Time index n');
ylabel('Amplitude');
title('Error signal'); grid;

0 5 10 15 20 25 30 35 40
�1

0

1

A
m

pl
itu

de

output of the 4th order system

0 5 10 15 20 25 30 35 40
�1

0

1

A
m

pl
itu

de

output of the series connection of the two systems

0 5 10 15 20 25 30 35 40

�0.5

0

0.5

x 10
�14

Time index n

A
m

pl
itu

de

Error signal

Figure 6.13. Influence of the series connection of two digital systems

Linear and Invariant Discrete-Time Systems 157

Notice that this result is also valid for analog filters only if the series connection
does not change their features, i.e. if the input impedance of the second filter is
much larger than the output impedance of the first. This condition is always met in
the case of digital filters.

EXERCISE 6.12.

Demonstrate that the system with the transfer function below is stable using time
domain and z domain tests:

21

1

9.05.11
8.01

)(−−

−

++

−
=

zz

z
zH

clf;
num = [1 -0.8];
den = [1 1.5 0.9];
N = 200;
% Impulse response calculation
h = impz(num,den,N+1);
parsum = 0;
for k = 1:N+1;
 parsum = parsum + abs(h(k));
 if abs(h(k)) < 10̂ (-6),
 break,
 end
end
% Plotting the impulse response
n = 0:N;
stem(n,h);
xlabel('Time index n');
ylabel('Amplitude');
% Plotting abs(h(k))
figure;
zplane(num,den);
disp('Value =');
disp(abs(h(k)));

158 Digital Signal Processing using MATLAB

0 50 100 150 200
�3

�2

�1

0

1

2

3

Time index n

A
m

pl
itu

de

Figure 6.14. Impulse response of a stable system

�1 �0.5 0 0.5 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 6.15. Poles and zeros localization on the unit circle

Linear and Invariant Discrete-Time Systems 159

Value =
 1.6761e-005

In the z-domain the stability condition requires that all the poles of the transfer

function, which are the roots of its denominator, have a magnitude less than 1.

% Stability test
ki = poly2rc(den);
disp('The denominator roots are the poles of the transfer function and are
equal to: '); disp(ki);

The denominator roots are the poles of the transfer function and are
equal to:

 0.7895

 0.9000

EXERCISE 6.13.

The poles and the zeros of a LTI1D, in the Z plane are:

z=[exp(j*pi/5);exp(-j*pi/5)]; p=[0.9*z];

while the coefficients of its transfer function can be obtained by:

b=poly(z);
a=poly(p);

Calculate the transfer function of this LTI1D using the function freqz.m and

conclude about its type.

The residues, poles and direct terms of the transfer function are related by the
following relationship:

() ()
()

()
()

()
()

() () +++
−

++
−

== −
−−

1
11 21

111

1
zkk

znp

nr

zp

r
zA
zB

zH

With MATLAB they are obtained using the function residue.m:

[r,p,k]=residue(b,a);

The system impulse response can thus be calculated in the form:

[] []nkprprnh nn δ++= 2211

160 Digital Signal Processing using MATLAB

Compare the two impulse responses coded below:

n=(0:100)';
h1=r(1)*p(1).̂ n+r(2)*p(2).̂ n;
h1(1)=h1(1)+k;
h2=impz(b,a,n);
subplot(211);
stem(h1);
xlabel('Time index n');
ylabel('Impulse response');
title('First method')
subplot(212);
stem(h2)
xlabel('Time index n');
ylabel('Impulse response');
title('Second method')

0 20 40 60 80 100 120
�0.5

0

0.5

1

Time index n

Im
pu

ls
e

re
sp

on
se

First method

0 20 40 60 80 100 120
�0.5

0

0.5

1

Time index n

Im
pu

ls
e

re
sp

on
se

Second method

Figure 6.16. Impulse response obtained with the residue method (top)
and by direct calculation (bottom)

Find out the system response for the following two sinusoids and their sum:

x1=sin(pi/5*n);
y1=filter(b,a,x1);

Linear and Invariant Discrete-Time Systems 161

x2=sin(pi/6*n);
y2=filter(b,a,x2);
subplot(221)
plot(n,y1);
xlabel('Time index n');
ylabel('Amplitude');
title('System response for the 1̂ ŝ t sinusoid');
subplot(222)
plot(n,y2)
xlabel('Time index n');
ylabel('Amplitude');
title('System response for the 2̂ n̂ d sinusoid');
x=x1+x2;y=y1+y2;
subplot(223)
plot(n,x)
xlabel('Time index n');
ylabel('Amplitude');
title('Sum of the two sinusoids');
subplot(224)
plot(n,y)
xlabel('Time index n');
ylabel('Amplitude');
title('System response for the sum of the 2 sinusoids');

0 50 100
�1

�0.5

0

0.5

1

Time index n

A
m

pl
itu

de

System response for the 1st sinusoid

0 50 100
�1

�0.5

0

0.5

1

Time index n

A
m

pl
itu

de

System response for the 2nd sinusoid

0 50 100
�2

�1

0

1

2

Time index n

A
m

pl
itu

de

Sum of the two sinusoids

0 50 100
�1

0

1

2

Time index n

A
m

pl
itu

de

System response for the sum of the 2 sinusoids

Figure 6.17. Filtering of the sum of two sinusoids

162 Digital Signal Processing using MATLAB

Finally, evaluate the transfer function for ()exp / 6z jπ= and then calculate the
stationary response of the system to the signal ()sin / 6nπ .

H=polyval(b,exp(j*pi/6))/polyval(a,exp(j*pi/6));
ys=abs(H)*sin(pi/6*n+angle(H));
plot(n,ys)
xlabel('Time index n');
ylabel('Amplitude');

0 20 40 60 80 100
�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

Time index n

A
m

pl
itu

de

Figure 6.18. Result of a sinusoid filtering

EXERCISE 6.14.
Consider the following impulse responses corresponding to four LTI1D:

h1=[1,2,1]; h2=[1,2,2,1]; h3=[1,0,-1]; h4=[1,2,0,-2,-1];

Calculate and plot their zeros in the Z plane, using the following code lines:

figure;
subplot(221);
zplane(roots(h1));
title('1̂ ŝ t system')
subplot(222);
zplane(roots(h2));

Linear and Invariant Discrete-Time Systems 163

title('2̂ n̂ d system')
subplot(223);
zplane(roots(h3));
title('3̂ r̂ d system')
subplot(224);
zplane(roots(h4));
title('4̂ t̂ h system')

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

2

Real Part

Im
ag

in
ar

y
P

ar
t

1st system

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

2nd system

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

3rd system

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

3

Real Part

Im
ag

in
ar

y
P

ar
t

4th system

Figure 6.19. Zeros of the four transfer functions provided in exercise 6.15

The MATLAB code below can be used for plotting the magnitude of the transfer
functions ()ωj

iH e :

figure;
[H1,W]=freqz(h1,1,512,2);
subplot(221);
plot(W/2,abs(H1));
title('1̂ ŝ t system')
xlabel('Normalized frequency');
ylabel('Amplitude')
axis([0 0.5 0 1.1*max(abs(H1))])
[H2,W]=freqz(h2,1,512,2);
subplot(222);

164 Digital Signal Processing using MATLAB

plot(W/2,abs(H2));
title('2̂ n̂ d system')
xlabel('Normalized frequency');
ylabel('Amplitude')
axis([0 0.5 0 1.1*max(abs(H2))])
[H3,W]=freqz(h3,1,512,2);
subplot(223);
plot(W/2,abs(H3));
title('3̂ r̂ d system')
xlabel('Normalized frequency');
ylabel('Amplitude')
axis([0 0.5 0 1.1*max(abs(H3))])
[H4,W]=freqz(h4,1,512,2);
subplot(224);
plot(W/2,abs(H4));
title('4̂ t̂ h system')
xlabel('Normalized frequency');
ylabel('Amplitude')
axis([0 0.5 0 1.1*max(abs(H4))])

0 0.1 0.2 0.3 0.4
0

1

2

3

4

1st system

Normalized frequency

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4
0

2

4

6

2nd system

Normalized frequency

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

3rd system

Normalized frequency

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4
0

2

4

4th system

Normalized frequency

A
m

pl
itu

de

Figure 6.20. Spectral characterization of the four systems described in exercise 6.15

The first system has a double zero in z = −1, so it has a lowpass filter behavior.
This is the same for the second system, whose zeros are: −1, −0.5 + 0.866i and −0.5
− 0.866i.

Linear and Invariant Discrete-Time Systems 165

The two last systems have the same zeros, 1 and −1, but the second zero is triple
in the case of the 4th system. They have therefore a bandpass filter behavior.

EXERCISE 6.15.

Consider a LTI2D having the transfer function:

() ()
= =

−−==
1

0

1

0
21,2121

1 2

21
21

,,
m m

mm
mm zzbzzBzzH

The coefficient matrix
21,mmb has the form:

==
2212

2111
01
11

,,

,,
bb
bb

b

The MATLAB code below calculates the impulse response, the indicial response
and the response to a complex exponential of this LTI2D, on 5050 × points.

b=[1,1;1,0];
dirac2D=zeros(50);
dirac2D(1,1)=1;
h=conv2(b,dirac2D);
subplot(221)
mesh(dirac2D);
title('2D Dirac pulse');
subplot(223)
mesh(h);
title('impulse response')
subplot(222)
unit2D=ones(50);
mesh(unit2D);
title('2D Heaviside function');
subplot(224)
g=conv2(b,unit2D);
mesh(g);
title('indicial response')
for n1=1:64
 for n2=1:64
 e(n1,n2)=exp(j*n1*2*pi/64)*exp(j*n2*2*pi/64);
 end
end
y=conv2(b,e);
figure;
subplot(211)
mesh(real(e));
title('real part of the 2D exponential sequence')

166 Digital Signal Processing using MATLAB

subplot(212)
mesh(real(y));
title('real part of the system response')

0

50

0

50
0

0.5

1

2D Dirac pulse

0
50

100

0
50

100
0

0.5

1

impulse response

0

50

0

50
0

1

2

2D Heaviside function

0
50

100

0
50

100
0

2

4

indicial response

Figure 6.21. Impulse and indicial responses of a LTI1D

EXERCISE 6.16.
The impulse response of a LTI2D is given by:

[] [] [] [] []1,1,,1,1, 2121212121 −+++−++= nnnnnnnnnnh δδδδ

The transfer function of this system can thus be calculated as follows:

() [] () ()
1 2

1 2 1 2 1 1 2 2 1 2, , exp 2 cos cos
n n

H h n n j n j nω ω ω ω ω ω
+∞ +∞

=−∞ =−∞
= − − = +

The following MATLAB code calculates and plots this transfer function:

h=[0,1,0;1,0,1;0,1,0];
freqz2(h,[64 64]);
title('Transfer function');

Linear and Invariant Discrete-Time Systems 167

�1
�0.5

0
0.5

1

�1

�0.5

0

0.5

1
0

1

2

3

4

F
x

Transfer function

F
y

M
ag

ni
tu

de

Figure 6.22. 2D transfer function

The code lines below lead to the same result:

for w1=1:64
 for w2=1:64
 H(w1,w2)=2*cos(w1*2*pi/64)+2*cos(w2*2*pi/64);
 end
end
mesh(abs(H))

EXERCISE 6.17.

Calculate the impulse response []21, nnh of a LTI2D, whose transfer function is
given by:

() 1 2
1 2

1, ,
,

0, otherwise
a b

H
ω π ω π

ω ω
≤ < ≤ <

=

According to the definition:

[] () 1 2
1 2 1 1 2 2 1 22

1 2

sin sin1, exp
4

a b

a b

an bn
h n n j n j n d d

n n
ω ω ω ω

π ππ

+ +

− −
= + =

168 Digital Signal Processing using MATLAB

The same result can be obtained with the following MATLAB code:

H(1:20,1:20)=ones(20); H(21:40,21:40)=zeros(20);
h=fsamp2(H); [f1,f2]=freqspace([40,40]); [x,y]=meshgrid(f1,f2);
figure; subplot(221),mesh(x,y,H);
title('ideal transfer function')
subplot(222); mesh(abs(h)); title('impulse response')
subplot(223);freqz2(h,[4,4]);title('estimated transfer function')
subplot(224);freqz2(h,[16,16]);title('estimated transfer function')

�1
0

1

�1
0

1
0

0.5

1

ideal transfer function

0
20

40

0
20

40
0

0.2

0.4

impulse response

�1
0

1

�1
0

1
0

1

2

F
x

estimated transfer function

F
y

M
ag

ni
tu

de

�1
0

1

�1
0

1
0

1

2

F
x

estimated transfer function

F
y

M
ag

ni
tu

de

Figure 6.23. Approximation of a 2D transfer function

Notice that the impulse response is similar to the “2D sinc” function. The
transfer function estimates make use of 4×4 and 16×16 impulse response
coefficients. The approximation is obviously better when the number of coefficients
increases.

Linear and Invariant Discrete-Time Systems 169

6.3. Exercises

EXERCISE 6.18.
Consider the following transfer functions:

()
()
()

()

1 2
1

1 2
2

1 2
3

21

4 1 2

1 2

1 2

1 0.5

1
()

1 0.5

H z z z

H z z z

H z z z

z
H z

z z

− −

− −

− −

−

− −

= − +

= + +

= − +

−
=

− +

() 21

5 1 2

6 1 2

1
()

1 0.5
1()

1 0.5

z
H z

z z

H z
z z

−

− −

− −

+
=

− +

=
− +

a. Plot the poles and zeros of these functions using the command zplane.m.

b. Represent the above transfer functions, using the command freqz.m, and
indicate the type of corresponding systems.

c. Determine the indicial response of the system represented by ()zH5 .

EXERCISE 6.19.

A LTI1D is characterized by the following discrete-time equation:

[] [] [] [] []1
2
1

281.01
16

cos8.1 −+=−+−− nxnxnynyny
π

a. Determine the poles of the system transfer function which are the roots kp of

the polynomial: ()
=

+=
Na

m

m
mzazA

1
1 (use the MATLAB command roots.m). If

these roots are complex conjugated, the system response will have the form of a
complex exponential. Represent the real and imaginary parts of signals []nupn

k .

b. As the transfer function of the system is of 2nd order, its impulse response has
the form [] () []1 2

n nh n p p u nα β= + . Verify this statement using the system impulse

response calculated using the MATLAB function impz.m.

c. Find constants α and β from the expression of h[n].

d. Calculate the system stationary response to the complex exponential signal
[] / 4e , 0..30j nx n nπ= = , using the MATLAB function filter.m .

170 Digital Signal Processing using MATLAB

EXERCISE 6.20.

Consider the following transfer function:

()
() ()

() ()
2

2

0.5 4

0.8 0.64

z z
H z

z z z

+ +
=

− − +

a. Calculate and plot its poles and zeros.

b. Plot the system phase function and conclude about its linearity.

c. Write the transfer function H(z) as the product between a minimum phase
function ()zHMP and an all-pass transfer function ()zH A . Plot the phase functions
of the two systems characterized by ()zHMP and ()zH A .

d. Calculate and plot the phase shifting introduced by the systems corresponding
to the following transfer functions: () (), MPH z H z and ()AH z , if the input signal
is the sinusoid [] ()2/sin πnnx = .

EXERCISE 6.21.

Analyze the effect of the poles and the zeros of a transfer function ()zH D1 on its

magnitude ()ωjH e .

a. Consider the transfer function () 11 (/ 2)H z j z−= − , having only one zero:
/ 2z j= . The polynomial coefficients are introduced as follows:

b1=[1,-0.5*j];

In order to analyze the variation of ()ωjH e when the zero of the transfer

function approaches the unit circle, the following additional polynomials are also
defined:

b2=[1,-0.7*j]; b3=[1,-0.9*j]; b4=[1,-j];

Then use the following code line, with k taking values from 1 to 4:

figure(k), zplane (bk),

Linear and Invariant Discrete-Time Systems 171

b. Consider the transfer function () 1
1

1 (/ 2)
H z

j z−=
−

, having only one pole

/ 2z j= . The polynomial coefficients are therefore introduced using:

a1=[1,-0.5*j];

In order to analyze the variation of ()ωjH e when the pole of the transfer
function approaches the unit circle, repeat the previous procedure, but using the
command:

zplane(1,a1)

EXERCISE 6.22.

Verify if the systems characterized by the following impulse responses are stable
or not:

[] ()
[] ()
[]

1

2

3

cos 2 / 6

0.9 cos 2 / 6

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0,

n

h n n

h n n

h n

π

π

=

=

=

This page intentionally left blank

Chapter 7

Infinite Impulse Response Filters

7.1. Theoretical background

7.1.1. Transfer function and filter specifications for infinite impulse response
(IIR) filters

The infinite impulse response (IIR) filters, also called recursive filters due to the
implementation method, are defined by the finite difference equation below:

[] [] []
==

−⋅=−⋅+
M

i
i

N

i
i inxainybny

01
 [7.1]

This equation results in the following rational transfer function in the z-domain:

)(
)(

1
)(

1

0
zQ
zP

zb

za
zH N

i

i
i

M

i

i
i

=
⋅+

⋅
=

=

−

=

−

 [7.2]

where at least one of the ib coefficients is non-zero and NM < .

The IIR filters are quite similar to the analog filters. Indeed, in both cases the
filter specifications are defined in the form of margin constraints on its frequency
response (magnitude, phase and group propagation time). An example is provided in
the figure below for the transfer function magnitude of a lowpass analog (a) and IIR
digital (b) filter.

174 Digital Signal Processing using MATLAB

)(00 Δδ stands for the maximum accepted passband ripple,)(bb Δδ is the

minimum required stopband rejection (or attenuation), (), ,p b p bω ω Ω Ω

defines the transition band and ()cc Ωω represents the cutoff frequency.

Figure 7.1. Filter specifications for the transfer function magnitude
of an analog (a) and an IIR digital lowpass filter (b)

The specifications of the two types of filters are linked by the following
relationships:

()
0

0 0
00

0

2
1

20 log 1 20 log1
1or

20 log 20 log
1

M

b
b m b b

b

a

a

δ
δ

δ
δ

δ
δ

δ

⋅
Δ = +

Δ = − ⋅ − Δ = ⋅+
−

Δ = Δ = − ⋅ Δ = − ⋅
+

 [7.3]

7.1.2. Design methods for IIR filters

Different digital filter design methods have been conceived. Some of them are
specific to the digital filters, others are very similar to those used for analog filter
design.

An IIR filter design involves three main steps:

a. define the filter specifications;

Infinite Impulse Response Filters 175

b. calculate the filter parameters to meet these specifications,

b1. direct design by CAD (computer-aided-design) procedures,

b2. analog prototype based design:

− filter specification transformation (according to section 7.1.3),

− analog prototype design,

− transfer function sampling,

− frequency transformation (possibly);

c. set up the IIR filter using a specific structure.

Direct filter design

The direct filter design aims to adjust its coefficients in order to optimize a given
criterion. The filter structure (the numerator and denominator orders, M and N) is
supposed fixed prior to the optimization procedure.

The following criterion is usually considered in the case when the filter
specifications are relative to the transfer function magnitude:

() () 2
01.. 1..

1
, () () ()

L q
k k i i ik M k N

i
Q a b W v H Hν ν= =

=
= ⋅ − [7.4]

where: 0 ()iH ν is the ideal frequency response for iν ν= ,

()iH ν is the actual filter response for iν ν= and a given set of coefficients

{ } 1..k k Ma = and { } 1..k k Nb = ,

() 0iW ν ≥ is a weighting function,

2q is the criterion order, with q a positive integer (2q = 2: quadratic criterion).

The optimization algorithm looks for the best set of the transfer function
coefficients { } 1..k k Ma = and { } 1..k k Nb = , so that Q is minimized.

Iterative methods (“Fletcher and Powell” and others) are used to solve this non-
linear problem. It can be also useful to combine several criteria: magnitude response,
phase response, group propagation time, etc.

176 Digital Signal Processing using MATLAB

Analog prototype based design

In this case, the coefficients of the corresponding analog prototype transfer
function:

0

0

()() ,
()

M i
i

i
a N i

i
i

c s
C s

H s N M
D s

d s

=

=

⋅
= = ≥

⋅
 [7.5]

are considered already calculated by one of the methods specific to the analog filter
design (Butterworth, Chebychev, Cauer, etc.).

In all the cases, the following equation is used for separating the analog
prototype transfer function)(sHa :

)(
)(

)(
)()(
)()(

)()(2

2
2

22 sG

sE
jH

sDsD
sCsC

sHsH
s

aaa
−
−

=Ω=
−⋅
−⋅

=−⋅
−=Ω

 [7.6]

This separation is performed through the two steps described below:

− the poles of)(sHa are represented by the zeros of ()2G s− , localized in the
left side of the s-plane (for insuring the stability),

− the zeros of)(sHa are obtained from the zeros of ()2sE − after distributing
them between)(sHa and)(sHa − , so that the complex conjugated zero couples are
not separated (the solution is thus not unique).

The analog prototype transfer function sampling should meet two basic
requirements:

1. stability conservation;

2. transfer function amplitude and phase conservation.

These conditions are equivalent to the following two requirements:

1. transformation of the s-plane left side into the z-plane unit circle inside;

2. linear conversion of the s-plane axis jΩ into the z-plane unit circle contour (z = ejω).

Two methods are currently used to perform the transformation)()(zHsHa → :

a. the impulse invariance method;

b. the bilinear transformation.

Infinite Impulse Response Filters 177

The first method creates a digital filter whose impulse response is equal to the
sampled impulse response of the analog filter (Te is the sampling period):

∞

−∞=
Ω⋅+Ω=Ω⋅=

k
ea

e
aeTaae kH

T
Htthth

e
)(

1
)()()()(δ [7.7]

According to the Nyquist theorem:

0)(=ΩaH for MΩ≥Ω and Me Ω≥Ω 2 [7.8]

This results in:

)()(Ω=Ω⋅ aaee HHT for
ΩΩ

−∈Ω
2

,
2

ee [7.9]

Consequently:

∞

−∞=

Ω−∞

−∞=

− ⋅⋅=⋅⇔

Ω⋅=⇔=Ω

n

Tjn
eae

n

nj

aeea

eenThTenh

HTHHH

)(][

)()()()(

ω

ωω

[] ()e a e

e

h n T h nT
Tω

= ⋅
= Ω

 [7.10]

The following relationship is therefore obtained:

=
e

a T
HH

ωω)(for],[ππω −∈ [7.11]

This means that the digital filter obtained with this method has exactly the same
frequency response as the corresponding analog prototype.

The main steps of the algorithm used for implementing the impulse invariance
method are given below:

1. Decompose)(sHa in the form:

= +
=

N

k k

k
a cs

A
sH

1
)([7.12]

178 Digital Signal Processing using MATLAB

2. Calculate:

)()(
1

tueAth tcN

k
ka

k ⋅⋅= ⋅−

=
 [7.13]

3. Derive:

][)(][
1

nueATnThTnh ek TncN

k
keeae ⋅⋅⋅=⋅= ⋅⋅−

=
 [7.14]

4. Determine:

=
−⋅−

∞

=

−

⋅−

⋅
=⋅=

N

k
Tc

ke

n

n

ze

AT
znhzH

ek1
1

0 1
][)([7.15]

The link between the s-plane and the z-plane is represented by the transformation
below and is illustrated in Figure 7.2.

eee TjTTs eeez ⋅Ω⋅⋅ ⋅== σ [7.16]

Figure 7.2. Connection between the s-plane and the z-plane
from the impulse invariance method

Although the two previously mentioned constraints are fulfilled by the impulse
invariance method, its application is not very convenient. In fact, when the
frequency 2 /e eTπΩ = is increased to avoid aliasing, the poles ei Ts

i ez ⋅= approach
the unit circle and may lead to unstable system behavior after the quantification of
its transfer function denominator coefficients { } 1..k k Nb = .

Infinite Impulse Response Filters 179

The bilinear transformation (Figure 7.3) is performed using the following
relationship:

s
T

s
T

z
z

z
T

s

e

e

e −

+
=⇔

+

−
⋅= −

−

2

2

1
12

1

1
 [7.17]

Figure 7.3. Connection between the s-plane and the z-plane from the bilinear method

Figure 7.3 shows that the bilinear transformation meets the stability constraint,
but axis jΩ of the s-plane is not linearly converted to the contour of the unit circle in
the z-plane:

Ω
⋅=⇔

+

−
=

Ω −
−

−

2
tan2

1

1
2

1 e
j

j
e T

e

eT
j ωω

ω
 [7.18]

However, in the low frequency domain ω/2 << π/2 ⇔ tan(ω/2) ≅ ω/2 this
condition is satisfied:

/ 2 / 2e eT Tω ωΩ = ⇔ = Ω [7.19]

Furthermore, even in the high frequency domain, the non-linearity of the
transformation can be corrected using a predistortion technique.

In the last case, the application of the bilinear transformation method involves
the following steps:

1. define the digital filter specifications;

180 Digital Signal Processing using MATLAB

2. perform the frequency distortion using the equation:

()(2 /) tan / 2eT ωΩ = ⋅ [7.20]

3. calculate H(s) using standard methods;

4. sample the obtained transfer function using equation [7.17].

7.1.3. Frequency transformations

Frequency transformations are aimed at converting a given lowpass filter (LPF)
into another type of filter: highpass (HPF), bandpass (BPF), bandstop (BSF), or into
another lowpass filter having different specifications. They can be applied either to
the analog prototype filter or to the corresponding digital filter obtained after
conversion.

The required transformations in the two cases are presented in Tables 7.1 and
7.2. The following notations are used in Table 7.1:

'
'

' '
0 0 0

, ,n n
s s B

s s δ= = =
Ω Ω Ω

 [7.21]

where Ω0 is the cutoff frequency of the initial lowpass filter, while Ω’
0 stands for the

cutoff frequency of the transformed filter if this is a lowpass or highpass filter and is
defined by the following relationship in the case of a bandpass or a bandstop filter:

' 2
0 H BΩ = Ω ⋅Ω [7.22]

BΩ and HΩ denote the lower and upper edges of the passband or stopband
filter and:

BHB Ω−Ω= [7.23]

In Table 7.2, ωc is the cutoff frequency of the initial lowpass filter, while ωB and
ωH stand for the lower and upper edges of the passband or stopband of the
transformed filters.

Infinite Impulse Response Filters 181

Conversion Normalized frequency
transformation

Frequency
transformation

LPF LPF '
nn ss =

'
'
0

0
nn ss

Ω

Ω
=

LPF HPF '
1

n
n

s
s =

'

'
00

n
n

s
s

Ω⋅Ω
=

LPF BPF
δ'

2' 1

n

n
n

s

s
s

+
=

' 2 ' 2
0 0 0

'
n

n
n

s
s

B s

Ω ⋅ + Ω ⋅Ω
=

⋅

LPF BSF
1

2'

'

+
=

n

n
n

s

s
s

δ
 2'

0
2'

'
0

Ω+

⋅⋅Ω
=

n

n
n

s

sB
s

Table 7.1. Frequency transformations in the analog domain

Conversion Transformation Parameter expression

LPF LPF
1

1
1

1 −

−
−

−
−

=
z

z
z

α
α

 =
+

−

2

2

 sin

 sin

Bc

Bc

ωω

ωω

α

LPF HPF
1

1
1

1 −

−
−

+
+

−=
z

z
z

α
α

 cos

 cos

2

2
−=

−

+

Hc

Hc

ωω

ωω

α

LPF BPF
()

1

1

1
22

1
1

1
11

1
22

1

+−

+−
−= −

+
−

+
−

+
−−

+
−

−

zz

zz
z

k
k

k
k

k
k

k
k

α

α

=
−

+

2

2

 cos

 cos

BH

BH

ωω

ωω

α

cot tan
2 2

cH Bk
ωω ω−

=

LPF BSF
()2 12 1

1 11
2 11 2

1 1

 1

k
k k

k
k k

z z
z

z z

α

α

− − −
+ +−

− −−
+ +

− +
=

− +

=
−

+

2

2

 cos

 cos

BH

BH

ωω

ωω

α

2
tan

2
 tan cBHk

ωωω −
=

Table 7.2. Frequency transformations in the discrete-time domain

182 Digital Signal Processing using MATLAB

7.2. Solved exercises

EXERCISE 7.1.
Define in the Laplace domain the transfer function of an anti-aliasing filter,

which attenuates with 0.5 dB at the frequency 3,500 Hzpν = and with 30 dB at the
frequency 4,500 Hzaν = .

Fp = 3500;Fs = 4500;
Wp = 2*pi*Fp; Ws = 2*pi*Fs;
[N, Wn] = buttord(Wp, Ws, 0.5, 30,'s');
[b,a] = butter(N, Wn, 's');
wa = 0:(3*Ws)/511:3*Ws;
h = freqs(b,a,wa);
plot(wa/(2*pi), 20*log10(abs(h)));grid
xlabel('Frequency [Hz]');
ylabel('Gain [dB]');
title('Frequency response');
axis([0 3*Fs -60 5]);

0 2000 4000 6000 8000 10000 12000
�60

�50

�40

�30

�20

�10

0

Frequency [Hz]

G
ai

n
[d

B
]

Frequency response

Figure 7.4. Frequency response of an analog Butterworth lowpass filter

EXERCISE 7.2.
Consider a system with the impulse response nnh 9.0][= . Plot the impulse

response of this system sampled at 1 Hz for values of n between 0 and 50.
Demonstrate that its time constant is equal to 10.

Infinite Impulse Response Filters 183

n=[0:50]; h=(0.9).̂ n;
subplot(211); stem(n,h)
grid; xlabel('n'); ylabel('h(n)')
title('Impulse response')
h1=exp(-n/10);
subplot(212)
plot(n,h1,'+',n,h,'-r')
grid; xlabel('n');
legend('exp(-n/10)','h(n)')

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

n

h(
n)

Impulse response

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

n

exp(�n/10)
h(n)

Figure 7.5. Impulse response of the system from exercise 7.2

The system indicial response can be calculated using the function cumsum.m.
The transfer function has a zero in 0 and a pole in 0.9. The impulse and indicial
responses can also be calculated using the function filter.m, with the Dirac pulse
and the step function as input signals.

The following MATLAB code evaluates the indicial response s(n) of the system
having the impulse response h(n).

s=cumsum(h); n1=[0:length(s)-1];
subplot(311); stem(n,s)
title('Indicial response obtained using the function CUMSUM');

184 Digital Signal Processing using MATLAB

ylabel('s(n)'); grid
u=ones(1,100); b=[1]; a=[1 -0.9];
s1=filter(b,a,u);
subplot(312) ;
stem(n,s1(1:length(n)))
title('Indicial response obtained using the function FILTER');
ylabel('s1(n)'); grid
delta=zeros(1,100); delta(1)=1;
h1=filter(b,a,delta);
subplot(313);
stem(n,h1(1:length(n)))
title('Impulse response obtained using the function FILTER');
xlabel('n'); ylabel('h1(n)'); grid

0 10 20 30 40 50
0

5

10
Indicial response obtained using the function CUMSUM

s(
n)

0 10 20 30 40 50
0

5

10
Indicial response obtained using the function FILTER

s1
(n

)

0 10 20 30 40 50
0

0.5

1
Impulse response obtained using the function FILTER

n

h1
(n

)

Figure 7.6. Two methods for calculating the indicial and
impulse response of the system from exercise 7.2

EXERCISE 7.3.
Use the function filter.m to calculate the impulse response h(n) of the system

defined by the following equation:

)1-(5.0+)(+)2-(81.0-)1-(7654.1=)(nxnxnynyny

Infinite Impulse Response Filters 185

Plot h(n) between -10 and 60. Compare the obtained result with the theoretical
result.

a=[1 -1.7654 0.81]
b=[1 0.5]
delta=[1 zeros(1,99)];
h=filter(b,a,delta);
n=[-10:59];
h1=[zeros(1,10) h];
stem(n,h1(1:70));
xlabel('n');
ylabel('h(n)');
grid

�10 0 10 20 30 40 50 60
�1

0

1

2

3

4

5

n

h(
n)

Figure 7.7. Impulse response of the system from exercise 7.3

EXERCISE 7.4.
Identify the type of filter which corresponds to the following difference

equations:

1. [] [] 0.5 [1] 1.8cos[/16] [1] 0.81 [2]y n x n x n y n y nπ= + − + − − −

2. [] 0.634 [] 0.634 [1] 0.268 [1]y n x n x n y n= + − − −

186 Digital Signal Processing using MATLAB

3. [] 0.16 [] 0.48 [1] 0.48 [2] 0.16 [3]
0.13 [1] 0.52 [2] 0.3 [3]

y n x n x n x n x n
y n y n y n

= − − + − − −
− − − − − −

4. [] 0.634 [] 0.634 [1] 0.268 [1]y n x n x n y n= − − + −

5. [] 0.1 [] 0.5 [1] [2] 0.5 [1] 0.1 [2]y n x n x n x n y n y n= − − + − + − − −

The sampling frequency is 20 kHz in all cases.

Fs = 20e3;
% Lowpass filter
b=[1 0.5]; a=[1 -1.8*cos(pi/16) 0.81];
% b=[0.634 0.634]; a=[1 0.268];
% Highpass filters
% b=[0.16 -0.48 0.48 -0.16];
a=[1 0.13 0.52 0.3];
% b=[0.634 -0.634]; a=[1 -0.268];
% Allpass filter
% b=[.1 -.5 1]; a=[1 -.5 .1];
[H,w]=freqz(b,a,256);fq = Fs*w/(2*pi);
subplot(211);
plot(fq,abs(H)); axis([0 Fs/2 0 1.1*max(abs(H))]);
xlabel('Frequency [Hz]');
ylabel('|H(\nu)|'); grid
subplot(212); plot(fq,angle(H))
axis([0 Fs/2 min(angle(H)) max(angle(H))]);
xlabel('Frequency [Hz]');
ylabel('\Phi(\nu)'); grid

The result obtained from the first set of coefficients is plotted on the figure

below and corresponds to a lowpass filter. It is an IIR filter because the phase of its
transfer function is clearly non-linear.

Furthermore, the transfer function magnitude indicates a Chebychev type I filter,
because it is equiripple in the passband and is maximally flat in the stopband. The
filter order (2 in this case) can also be derived from the corresponding difference
equation.

Perform the same type of analysis for the other four cases.

Infinite Impulse Response Filters 187

0 2000 4000 6000 8000 10000
0

10

20

30

40

Frequency [Hz]

|H
(ν

)|

0 2000 4000 6000 8000 10000

�2

�1.5

�1

�0.5

0

Frequency [Hz]

Φ
(ν

)

Figure 7.8. Amplitude and phase response of the system
described by the first difference equation

EXERCISE 7.5.
Calculate the poles of a 5th order analog Butterworth filter with the cutoff

frequency 1 kHz.

% Prototype filter design
N=5;
[zc,pc,kc]=buttap(N);
% Frequency transformation
Omega=2*pi*10̂ 3;
pc=pc*Omega;
% Plotting the poles
zplane(zc,pc)

188 Digital Signal Processing using MATLAB

�10000 �5000 0 5000

�6000

�4000

�2000

0

2000

4000

6000

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 7.9. Poles of a 5th order analog Butterworth filter

EXERCISE 7.6.
Design an IIR lowpass filter for a sampling frequency of 1 Hz, with an

attenuation of 0.75 dB in the frequency band [0 0.1306] Hz, an attenuation in the
stopband of at least 20 dB and a lower stopband edge frequency of 0.201 Hz.
Calculate the poles of the associated analog filter using a Butterworth model.

% wp: upper passband edge frequency [rad]
% ws: lower stopband edge frequency [rad]
% atmax: passband ripple or maximum permissible passband loss [dB]
% atmin: minimum stopband attenuation [dB]
atmax=0.75
atmin=20
Wp=0.1306*2*pi
Ws=0.201*2*pi
% Butterworth analog filter design
N=ceil(log10((10̂ (0.1*atmin)-1)/(10̂ (0.1*atmax)-1))/Wnorm);
Wnorm=2*log10(Ws/Wp);Whp=Wp/((10̂ (.1*atmax)-1)̂ (1/(2*N)));
Omega=Whp;[zc,pc,kc]=buttap(N);
% Frequency transformation
pc=pc*Omega;
% Plotting the poles
zplane(zc,pc)

Infinite Impulse Response Filters 189

�1 �0.5 0 0.5 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 7.10. Poles of the filter designed in exercise 7.6

EXERCISE 7.7.
Design a digital filter which meets the following specifications using the bilinear

method:
− sampling frequency: 1 Hz,
− 0 dB attenuation of the DC component,
− maximum attenuation of 1 dB at 0.1 Hz,
− minimum attenuation of 15 dB at 0.15 Hz.

Consider a Butterworth and then a Chebychev model for the filter transfer
function.

% FS: sampling frequency [Hz]
% wp: upper passband edge frequency [rad]
% ws: lower stopband edge frequency [rad]
% atmax: maximum attenuation in the passband[dB]
% atmin: minimum attenuation in the stopband[dB]
% fil: filter type (1 = Butterworth, 0 = Chebyshev)
%[b,a]: numerator/denominator coefficients
Fs = 1; atmax = 1; atmin = 15; wp = 0.1*2*pi;
ws=0.15*2*pi; fil=0; %(or fil=1 according to the filter type)
Ws=2*tan(ws/2);

190 Digital Signal Processing using MATLAB

Wp=2*tan(wp/2);
if fil==1
 % Filter design using a Butterworth model
 Wnorm=2*log10(Ws/Wp);
 N=ceil(log10((10̂ (0.1*atmin)-1)/(10̂ (0.1*atmax)-1))/Wnorm);
 Whp=Wp/((10̂ (.1*atmax)-1)̂ (1/(2*N)));
 whp=2*atan(Whp/2);
 wn=whp/pi;
 [b,a]=butter(N,wn);
else
 % Filter design using a Chebyshev1 model
 epsilon=sqrt(10̂ (0.1*atmax)-1);
 num=sqrt(10̂ (0.1*atmin)-1)/epsilon;
 N=ceil(acosh(num)/acosh(Ws/Wp))
 Whp=Wp*cosh((1/N)*acosh(1/epsilon));
 whp=2*atan(Whp/2);
 wn=whp/pi;
 Rp=atmax;
 [b,a]=cheby1(N,Rp,wn);
end
[H,w]=freqz(b,a,512);fq=Fs*w/(2*pi);
subplot(221)
zplane(b,a)
subplot(222)
mag=abs(H);
plot(fq,mag)
ylabel('Amplitude');
xlabel('Frequency [Hz]');
axis([0 0.5 0 1.1*max(mag)]); grid
thresh1 = [-atmax*ones(1,length(mag))];
thresh2 = [-atmin*ones(1,length(mag))];
subplot(223)
plot(fq,20*log10(mag),w/pi,thresh1,w/pi,thresh2)
ylabel('Amplitude [dB]');
xlabel('Frequency [Hz]'); grid
axis([0 .5 -1.1*atmin 1]);
xlabel('Frequency [Hz]'); grid
phase_function = unwrap(angle(H));
subplot(224)
plot(fq,phase)
axis([0 .5 1.1*min(phase_function) 1]);
ylabel('Phase [rad]');
xlabel('Frequency [Hz]'); grid

The example of the Chebychev filter is shown in the figure below.

Infinite Impulse Response Filters 191

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

4

Real Part

Im
ag

in
ar

y
P

ar
t

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

Frequency [Hz]

0 0.1 0.2 0.3 0.4

�15

�10

�5

0

 A
m

pl
itu

de
 [d

B
]

Frequency [Hz]
0 0.1 0.2 0.3 0.4

�6

�4

�2

0

P
ha

se
 [r

ad
]

Frequency [Hz]

Figure 7.11. Poles, zeros and transfer function for a digital lowpass Chebychev type I filter

EXERCISE 7.8.
Implementing a digital filter on a digital signal processor requires the

quantification of its coefficients. Thus, the actual filter characteristics are slightly
modified with respect to the designed filter.

Consider a 6th order elliptic filter having a cutoff normalized frequency of 0.2, a
ripple of 0.05 dB in the passband and a minimum attenuation of 60 dB in the
stopband.

Write a MATLAB code to illustrate the effect of the quantification on 5 bits on
the filter characteristics (transfer function, poles and zeros).

[b,a] = ellip(6,0.05,60,2*0.2);
w = 0:pi/255:pi;
h = freqz(b,a,w); g = 20*log10(abs(h));
bq = a2dT(b,5); aq = a2dT(a,5);
h = freqz(bq,aq,w); gq = 20*log10(abs(h));
subplot(211);
plot(w/(2*pi),g,'b',w/(2*pi),gq,'r--');
axis([0 0.5 -80 10]); grid;
xlabel('Normalized frequency');
ylabel('Gain [dB]');

192 Digital Signal Processing using MATLAB

legend('designed', 'quantified');
subplot(223);
zplane(b,a);
title('designed')
subplot(224);
zplane(bq,aq);
title('quantified')

function beq = a2dT(d,n)
% BEQ = A2DT(D, N) generate the decimal equivalent
% beq of the binary representation
% of a decimal number D using N bits
m = 1; d1 = abs(d);
while fix(d1) > 0
 d1 = abs(d)/(10̂ m); m = m+1;
end
beq = 0;
for k = 1:n
 beq = fix(d1*2)/(2̂ k) + beq; d1 = (d1*2) - fix(d1*2);
end
beq = sign(d).*beq.*10̂ (m-1);

0 0.1 0.2 0.3 0.4 0.5
�80

�60

�40

�20

0

Normalized frequency

G
ai

n
[d

B
]

designed
quantified

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

designed

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

quantified

Figure 7.12. Effect of the quantification of a filter’s coefficients on its characteristics

EXERCISE 7.9.
Write a MATLAB code to illustrate the effect of the quantification of a filter’s

coefficients when it is formed by the series connection of 2nd order cells.

Infinite Impulse Response Filters 193

[z,p,k] = ellip(6,0.05,60,2*0.2);
[b,a] = zp2tf(z,p,k);
w = 0:pi/255:pi;
h = freqz(b,a,w);
g = 20*log10(abs(h));
sos = zp2sos(z,p,k);
sosq = a2dR(sos,6);
R1 = sosq(1,:); R2 = sosq(2,:); R3 = sosq(3,:);
b1 = conv(R1(1:3),R2(1:3));
bq = conv(R3(1:3),b1);
a1 = conv(R1(4:6),R2(4:6));
aq = conv(R3(4:6),a1);
h = freqz(bq,aq,w);
gg = 20*log10(abs(h));
subplot(211);
plot(w/(2*pi),g,'b-', w/(2*pi),gq,'r--');
axis([0 0.5 -80 10]);grid;
xlabel('Normalized frequency');
ylabel('Gain [dB]');
legend('designed','quantified');
subplot(223);
zplane(b,a);
title('designed');
subplot(224) ;
zplane(bq,aq);
title('quantified');

function beq = a2dR(d,n)
% BEQ = A2DR(D, N) generate the decimal equivalent
% beq of the binary representation
% of a decimal quantity D using N bits (rounded)
m = 1; d1 = abs(d);
while fix(d1) > 0
 d1 = abs(d)/(10̂ m); m = m+1;
end
beq = 0;
d1 = d1 + 2̂ (-n-1);
for k = 1:n
 beq = fix(d1*2)/(2̂ k) + beq;
 d1 = (d1*2) - fix(d1*2);
end
beq = sign(d).*beq.*10̂ (m-1);

194 Digital Signal Processing using MATLAB

0 0.1 0.2 0.3 0.4 0.5
�80

�60

�40

�20

0

Normalized frequency

G
ai

n
[d

B
]

designed
quantified

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

designed

�2 �1 0 1

�1

0

1

Real Part

Im
ag

in
ar

y
P

ar
t

quantified

Figure 7.13. Effect of the coefficient quantification for a filter
formed by the series connection of 2nd order cells

7.3. Exercises

EXERCISE 7.10.

a. Calculate the coefficients of a digital IIR 4th order lowpass filter for a
sampling frequency of 10 kHz and a cutoff frequency of 3 kHz.

b. Plot the amplitude and phase of its frequency response.

c. Plot the poles and zeros of the filter transfer function.

d. Plot the filter impulse response.

e. Repeat the exercise for a Chebyshev type I filter, having the same
specifications and a maximum passband ripple of 0.5 dB. Then compare the two
filters.

EXERCISE 7.11.

Design a lowpass filter with the following specifications: sampling frequency 2
Hz, passband upper edge 0.28 Hz, lower stopband edge 0.32 Hz, bandpass
maximum ripple 0.1 dB and stopband minimum attenuation 30 dB.

Infinite Impulse Response Filters 195

a. Find out the order of the Butterworth, Chebychev type I and II, and elliptic
filters, which meet these specifications.

b. Why is the elliptic filter order always the lowest for the same required
specifications?

EXERCISE 7.12.

A linear sampled filter, with initial conditions equal to zero, is defined by the
following recurrent relationship:

])6[(])5[(2])4[(3
])3[(4])2[(3])1[(2][][

TnxTnxTnx
TnxTnxTnxnTxnTy

−+−+−+
−+−+−+=

a. Calculate the filter transfer function and impulse response.

b. Plot the magnitude of the transfer function. Indicate the type of
corresponding filter.

c. Find the zeros of the transfer function. What is their effect on the filter
frequency response?

This page intentionally left blank

Chapter 8

Finite Impulse Response Filters

8.1. Theoretical background

Unlike IIR filters, finite impulse response (FIR) filters are specific to the
discrete-time domain and cannot be obtained by direct transposition of analog filters.
The linear phase of the transfer function makes them useful for many applications.

8.1.1. Transfer function and properties of FIR filters

For this type of filter, also called non-recursive due to the implementation
method, the transfer function is defined by:

[] []
−

=

⋅⋅−−

=

− ⋅=⋅=
1

0

1

0
)()(

N

n

njN

n

n enhHznhzH ωω [8.1]

where []nh stands for the (finite) impulse response of the filter.

In order to avoid the phase discontinuities of the transfer function,)(ωH is
expressed in the following form:

)(
0)()(ωθωω jeHH ⋅= [8.2]

where the zero-phase transfer function)(0 ωH and the phase function)(ωθ are real
and continuous.

In practice, the impulse response []nh is required to be real, which means that
the real part of)(ωH is even, while its imaginary part is odd. The linearity
constraint for the phase function)(ωθ leads to the four FIR filter classes, whose
properties are summarized in Table 8.1.

198 Digital Signal Processing using MATLAB

FIR N []nh)(0 ωH)(ωθ
)(ωH

or)(0 ωH
 0=ω πω =

1

odd

Symmetric

[] []nNhnh −−= 1 []
−

=
⋅

2
1

0
cos

N

n
n na ω ω

2
1−

−
N

W
ithout

constraints

W
ithout

constraints

2

even

Symmetric

[] []nNhnh −−= 1 =
−⋅

2

1 2
1

cos

N

n
n nb ω ω

2
1−

−
N

W
ithout

constraints

0

3

odd

anti-symmetric

[] []nNhnh −−−= 1

0
2

1
=

−N
h

[]
−

=
⋅

2
1

0
sin

N

n
n na ω ωπ

2
1

2
−

−
N

0 0

4

even
anti-symmetric

[] []nNhnh −−−= 1 =

−⋅
2

1 2
1

sin

N

n
n nb ω ωπ

2
1

2
−

−
N

0

W
ithout

constraints

Table 8.1. Properties of FIR filters

Coefficients ia and ib in Table 8.1 can be obtained using the following equations:

0
1

2
1 12 , 1..

2 2

2 , 1..
2 2

n

n

N
a h

N N
a h n n

N N
b h n n

−=

− −= − =

= − =

 [8.3]

Finite Impulse Response Filters 199

The first two classes’ filters are usually involved in pure filtering applications,
while the others are useful for phase shifting filtering applications (integrator
operator, derivative operator, Hilbert transformer). The following relationship can
easily be obtained using equation [8.1] and the symmetry/anti-symmetry property of
a FIR impulse response (see Table 8.1):

() ()zHzzH N ⋅±= −− 11 [8.4]

According to equation [8.4], if zi is a zero of)(zH , then iz/1 also becomes a
zero. On the other hand, as []nh is real, *

iz and */1 iz are also zeros of)(zH . Thus,
the typical distribution of FIR filter zeros is shown in Figure 8.1.

Figure 8.1. Typical distribution of FIR filter zeros

1−=z and 1=z are always zero for a 2nd class and 4th class FIR filter
respectively, while they are both always zero for a 3rd class filter (see Table 8.1).

8.1.2. Design methods

The main methods which can be used for designing digital FIR filters are given
below:

1. window method,
2. frequency sampling method,
3. optimization methods.

200 Digital Signal Processing using MATLAB

Window method

The basic idea of this method is to fix the ideal frequency response:

ω
ωω 2

1

)()(
−

−
∞ ⋅=

N
j

d eHH [8.5]

and then to invert it to obtain the filter impulse response:

[]
2

1 ()
2

j nh n H e dω

π
ω ω

π∞ ∞= [8.6]

In equation [8.5] Hd(ω) stands for the zero-phase transfer function of the ideal
filter. As sequence h∞[n] does not have a finite support, only N samples are kept to
obtain a FIR filter:

[] [] if 0.. 1
0 otherwise
h n n N

h n ∞ = −
= [8.7]

The ideal impulse response truncation leads to the Gibbs phenomenon, because
the transfer function of the designed filter is actually obtained by the convolution of
the target transfer function and the spectrum of the rectangular window of length N.
This statement is still true for an ideal filter zero-phase transfer function:

() () ()ωω
π

ω 00 2
1

WHH d ∗= [8.8]

W0(ω) can be seen as the analog domain equivalent of the function sinc(ω):

())(

2
sin

2
sin

0 ω
ω

ω
ω aS

N

W == [8.9]

The effects of the infinite impulse response truncation (passband and stopband
ripple non-zero transition band), are illustrated in Figure 8.2.

Finite Impulse Response Filters 201

Figure 8.2. Effect of the ideal impulse response truncation
on the transfer function of a FIR filter

The rectangular window, which is used by default, has to be replaced by another
type of window to damp out these effects. The spectrum of this new window should
meet the following conditions:

a. narrow mainlobe to obtain a narrow transition band;

b. the mainlobe should concentrate the main part of the window energy to
obtain low sidelobes level;

c. the energy should be uniformly distributed over the window sidelobes to
obtain a uniform ripple in the filter passband and stopband.

The first two constraints are contradictory because the first requires a narrow
mainlobe, while the second a large one. Several windows (Hamming, Hanning,
Blackman, Kaiser, etc.) have been proposed to perform a trade-off between these
constraints.

Table 8.2 is helpful to determine the number of points N for the impulse response
of a FIR filter and the appropriate window.

202 Digital Signal Processing using MATLAB

Window Maximum sidelobe
level

Minimum
attenuation in the

stopband

Mainlobe
width

Rectangular -13 dB 21 dB 2/N

Hanning -31 dB 44 dB 4/N

Hamming -42 dB 54 dB 4/N

Blackman -57 dB 74 dB 6/N

Kaiser (for β = 7.865) -57 dB 80 dB 8/N

Table 8.2. Parameters of the main windows used for a FIR filter design

The main shortcoming of the window method is that it requires the analytical
expression of)(ω∞H , which is then integrated according to equation [8.6].

Frequency sampling method

Only N samples of the transfer function)(ω∞H are considered in the case of the
frequency sampling method:

2() () , 0.. 1k
N

H k H k Nπωω∞ == = − [8.10]

The impulse response of the corresponding FIR filter is then calculated as the
inverse DFT of this sequence.

The transfer function of the designed filter will thus be expressed as follows:

−

=

−
−

⋅=
1

0
2

1

)(),()(
N

k
d

N
j

kHkAeH ωω
ω

 [8.11]

where)(kHd stand for the zero-phase transfer function samples and:

−=
−

−
=

N
kS

N
N

k

N
k

N

N
kA a

πω
πω

πω
ω 21

2
2
1

sin

2
2

sin
1

),([8.12]

Finite Impulse Response Filters 203

The zero-phase transfer function of the FIR filter is then obtained in the form:

−

=
−⋅=

1

0
0

2
)(

1
)(

N

k
ad N

kSkH
N

H
πωω [8.13]

Note that H0(ω) is issued from the interpolation of the ideal sampled transfer
function, i.e. each sample Hd(k) is weighted by a shifted version of function Sa(ω).
Consequently, the approximation error is zero for ωk = 2πk/N and is finite elsewhere.

Optimization methods

In order to increase the approximation quality in the case of the frequency
sampling method, several transfer function samples from the passband can be used
as additional variables. They are then optimized using specific CAD (computer-
aided design) tools to minimize the approximation error.

The LS (least squares) method for the digital FIR filter design is widely used to
perform the optimization. This method is also very useful when the transfer function
samples are not equally spaced.

Another solution is provided by Remetz’s method, which is based on the
alternance theorem. This method leads to the best approximation of the transfer
function Hd(ω), in the Chebychev sense.

8.1.3. General conclusion about digital filter design

The choice of filter type (IIR or FIR) and its design method depends on the
considered application, on the associated constraints and on the available design
tools. Thus, if the filter specifications are defined with respect to the magnitude of
its frequency response, the IIR filters are much more cost effective than the FIR
filters, which are much larger. The IIR filters are also the best choice whenever a
very narrow passband, stopband or transition band is required or whenever the
stopband attenuation has to be large.

On the other hand, when the filter specifications are defined with respect to the
phase of its frequency response, the FIR filters justify the implementation cost
overrun. Indeed, unlike the IIR filter, they have the capability of insuring a linear
phase due to the symmetry of the impulse response coefficients. They remain stable
for any set of coefficients, which make them suitable for implementing adaptive
systems. Finally, we should mention that it is easy to obtain high order FIR filters
using the series connection of several basic cells.

204 Digital Signal Processing using MATLAB

8.2. Solved exercises

EXERCISE 8.1.
Design a 25th order FIR lowpass filter with a minimum transition band, using the

window method. Consider a sampling frequency fs = 20 kHz and the following
lower and upper passband frequency edges: f1 = 3 kHz and f2 = 7 kHz. Plot the
transfer function, the impulse response and the zeros of the designed filter.

N=25; f1=3e3; f2=7e3; fs=2e4;
wn1=2*f1/fs; wn2=2*f2/fs;
b=fir1(N,[wn1 wn2],boxcar(N+1));
[h,w] = freqz(b,1); fq = fs*w/(2*pi);
amp=20*log10(abs(h)); phase=unwrap(angle(h))*180/pi;
figure; subplot(221); plot(fq,amp);
axis([0 max(fq) min(amp) 10])
xlabel(‘Frequency [Hz]’); ylabel(‘Amplitude [dB]’) ; grid
subplot(223); plot(fq,phase);
axis([0 max(fq) 1.2*min(phase) 1.2*max(phase)])
xlabel(‘Frequency [Hz]’); ylabel(‘Phase [°]’); grid
subplot(2,2,2); impz(b,1); xlabel(‘n’)
subplot(2,2,4); zplane(b,1);

0 2000 4000 6000 8000

�60

�40

�20

0

Frequency [Hz]

A
m

pl
itu

de
 [d

B
]

0 2000 4000 6000 8000

�1000

�800

�600

�400

�200

0

Frequency [Hz]

P
ha

se
 [°

]

0 5 10 15 20 25
�0.4

�0.2

0

0.2

0.4

n

 A
m

pl
itu

de

Impulse Response

�1 0 1

�1

�0.5

0

0.5

1

25

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 8.3. Characteristics of the filter from exercise 8.1

Finite Impulse Response Filters 205

The rectangular window is the most suitable in this case because it provides the
narrowest transition band. Since the impulse response has an even dimension (26)
and is symmetric, the designed filter belongs to the 2nd class of FIR filters class.

A common error which should be avoided is to take the filter order (N) for its
length or number of coefficients (N +1). Also note the presence of the zero z = −1,
and the fact that the zeros occur as couples of inverse and conjugated values.

EXERCISE 8.2.

Calculate the coefficients of a FIR filter having the same parameters as in the
previous exercise, but using a Blackman window instead of the rectangular window.
Compare the obtained results in terms of the transition band and the stopband
attenuation.

The same MATLAB code as for the previous exercise is used with the exception
of the option boxcar, which is replaced by blackman. The obtained result is
provided on the figure below.

0 2000 4000 6000 8000

�80

�60

�40

�20

0

Frequency [Hz]

A
m

pl
itu

de
 [d

B
]

0 2000 4000 6000 8000

�1500

�1000

�500

0

Frequency [Hz]

P
ha

se
 [°

]

0 5 10 15 20 25
�0.4

�0.2

0

0.2

0.4

n

 A
m

pl
itu

de

Impulse Response

�2 �1 0 1 2

�1

0

1

25

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 8.4. Characteristics of the filter from exercise 8.2

Note that the transition band is about two times wider than in the previous case.
In addition, the stopband attenuation has been increased by about 30 dB.
Consequently, the rectangular window should be used whenever a high selectivity is

206 Digital Signal Processing using MATLAB

required, while the other windows are more appropriate in the case of a large
stopband rejection.

EXERCISE 8.3.

Design a 24th order FIR highpass filter using the frequency sampling method.
Consider a cutoff frequency fc = 6 kHz and a sampling frequency fs = 20 kHz. Plot
the transfer function, the impulse response and the zeros of the designed filter.

N=24; fc=6e3; fs=20e3; inc=0.01; wcn=2*fc/fs; ff=[0:inc:1];
hh=[zeros(1,wcn/inc-1) ones(1,(1-wcn)/inc+2)];
b=fir2(N,ff,hh); [h,w] = freqz(b,1); fq = fs*w/(2*pi);
amp=20*log10(abs(h)); phase=unwrap(angle(h))*180/pi;
subplot(221); plot(fq,amp); axis([0 max(fq) min(amp) 10])
xlabel(‘Frequency [Hz]’); ylabel(‘Amplitude [dB]’); grid
subplot(223); plot(fq,phase);
axis([0 max(fq) 1.2*min(phase) 1.2*max(phase)])
xlabel(‘Frequency [Hz]’);ylabel(‘Phase [°]’);grid
subplot(2,2,2);impz(b,1);xlabel(‘n’);subplot(2,2,4); zplane(b,1);

0 2000 4000 6000 8000

�100

�80

�60

�40

�20

0

Frequency [Hz]

A
m

pl
itu

de
 [d

B
]

0 2000 4000 6000 8000

�1000

�500

0

Frequency [Hz]

P
ha

se
 [°

]

0 5 10 15 20
�0.5

0

0.5

1

n

 A
m

pl
itu

de

Impulse Response

0 20 40
�20

�10

0

10

20

24

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 8.5. Characteristics of the filter from exercise 8.3

It can easily be seen from the impulse response shape that the designed filter
belongs to the 2nd class FIR filters. In fact, its impulse response is symmetric and its

Finite Impulse Response Filters 207

order is even. One of the filter zeros is far from the unit circle because it is the
inverse of another one, which is close to the origin. In this case there is no constraint
on the zero localization with the exception of the conjugation and the inverse
symmetry.

In this case the quality of transfer function approximation is equivalent to that
obtained by a window method. Actually, the function fir2 is a combination
between the frequency sampling method and the window method (the Hamming
window is used by default).

EXERCISE 8.4.

Calculate the coefficients of a 25th order FIR bandstop filter using a LS method.
Consider a sampling frequency fs = 20 kHz and the following lower and upper
stopband frequency edges: f1 = 3 kHz and f2 = 7 kHz. Plot the transfer function, the
impulse response and the zeros of the designed filter. Imagine a possible application
for this type of filter.

N=25; f1=3e3; f2=7e3; fs=2e4;
wn1=2*f1/fs; wn2=2*f2/fs;
inc=0.01; ff=[0:inc:1-inc];
hh=[ones(1,round((wn1/inc)-1)) zeros(1,round(((wn2-wn1)/inc)+1))];
hh=[hh ones(1,round((1-wn2)/inc))];
b=firls(N,ff,hh);
[h,w] = freqz(b,1); fq = fs*w/(2*pi);
amp=20*log10(abs(h));
phase=unwrap(angle(h))*180/pi;
figure; subplot(221); plot(fq,amp);
axis([0 max(fq) min(amp) 10])
xlabel(‘Frequency [Hz]’);
ylabel(‘Amplitude [dB]’) ; grid
subplot(223); plot(fq,phase);
axis([0 max(fq) 1.2*min(phase) 1.2*max(phase)])
xlabel(‘Frequency [Hz]’);
ylabel(‘Phase [°]’); grid
subplot(2,2,2); impz(b,1); xlabel(‘n’)
subplot(2,2,4); zplane(b,1);

Although the filter is not equiripple in the stopband, it could be helpful to reject
some interferences or perturbations present in this band and which corrupt the useful
signal component. A better rejection in the stopband can be obtained either with a
higher order FIR filter or with an IIR filter.

208 Digital Signal Processing using MATLAB

0 2000 4000 6000 8000

�60

�40

�20

0

Frequency [Hz]

A
m

pl
itu

de
 [d

B
]

0 2000 4000 6000 8000

�1200

�1000

�800

�600

�400

�200

0

Frequency [Hz]

P
ha

se
 [°

]

0 5 10 15 20 25
�0.2

0

0.2

0.4

0.6

n

 A
m

pl
itu

de

Impulse Response

�3 �2 �1 0 1
�2

�1

0

1

2

25

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 8.6. Characteristics of the filter from exercise 8.4

EXERCISE 8.5.
Design a bandpass FIR filter having the same parameters as in exercise 8.1 using

the Remez method. Plot the transfer function, the impulse response and the zeros of
the obtained filter and compare with the filter designed in exercise 8.1.

f11=2.5e3; f12=3.5e3;
f21=6.5e3; f22=7.5e3;
fs=2e4;
wvect=[f11 f12 f21 f22];
[n,fo,mo,w] = remezord(wvect,[0 1 0],[0.04 0.03 0.05],fs)
b = remez(n,fo,mo,w);
[h,w] = freqz(b,1);
fq = fs*w/(2*pi);
amp=20*log10(abs(h));
phase=unwrap(angle(h))*180/pi;
figure;
subplot(221); plot(fq,amp);
axis([0 max(fq) min(amp) 10])
xlabel(‘Frequency [Hz]’);
ylabel(‘Amplitude [dB]’); grid
subplot(223); plot(fq,phase);
axis([0 max(fq) 1.2*min(phase) 1.2*max(phase)])
xlabel(‘Frequency [Hz]’);
ylabel(‘Phase [°]’); grid
subplot(2,2,2);

Finite Impulse Response Filters 209

impz(b,1); xlabel(‘n’)
subplot(2,2,4);
zplane(b,1);

0 2000 4000 6000 8000

�60

�40

�20

0

Frequency [Hz]

A
m

pl
itu

de
 [d

B
]

0 2000 4000 6000 8000

�1000

�500

0

Frequency [Hz]

P
ha

se
 [°

]

0 5 10 15 20 25
�0.4

�0.2

0

0.2

0.4

n

 A
m

pl
itu

de

Impulse Response

�2 �1 0 1

�1

�0.5

0

0.5

1

25

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 8.7. Characteristics of the filter from exercise 8.5

Recent MATLAB versions have replaced the functions remezord.m and
remez.m with firpmord.m and firpm.m.

Just as with the filter designed in exercise 8.1 the order of the obtained filter is
25. It can also be retrieved from the number of samples of its impulse response or
from its number of zeros.

Compared to the filter designed in exercise 8.1 this filter provides a better
stopband rejection (the attenuation gain is about 10 dB) and a reduced passband
ripple. Furthermore, the filter designed by the Remez method is equiripple in the
stopband.

EXERCISE 8.6.

Consider a sum of two sinusoids, whose frequencies are 1 kHz and 1.56 kHz,
sampled at 10 kHz. Extract the first sinusoid of this mixture using a lowpass FIR
filter, designed using the Remez method:

210 Digital Signal Processing using MATLAB

a. Define the filter specifications, calculate its coefficients and plot its transfer
function.

b. Filter the mixture of the two sinusoids using the designed filter and plot the
output signal.

a.
fs=10e3; fp=1e3; fc=1.56e3; ondp=.01; ondc=.1; ap=1; ac=0;
[n,fo,mo,w] = remezord([fp fc],[ap ac],[ondp ondc],fs);
b = remez(n,fo,mo,w);
f1=1e3;f2=1.56e3; f1n=f1/fs; f2n=f2/fs;
sig1=sin(2*pi*f1n*[0:99]); sig2=sin(2*pi*f2n*[0:99]);
sig=sig1+sig2; y=filter(b,1,sig);
[h,w]=freqz(b,1); fq = fs*w/(2*pi);
amp=20*log10(abs(h));
figure ; plot(fq,amp);
axis([0 max(fq) min(amp) 10])
xlabel(‘Frequency [Hz]’); ylabel(‘Amplitude [dB]’); grid

0 500 1000 1500 2000 2500 3000 3500 4000 4500

�60

�50

�40

�30

�20

�10

0

10

Frequency [Hz]

A
m

pl
itu

de
 [d

B
]

Figure 8.8. Magnitude of the transfer function of the lowpass filter designed in exercise 8.6

b.
figure ; subplot(2,2,1);
plot(sig1); title(‘First signal’)
subplot(2,2,3); plot(sig2); title(‘Second signal’)
subplot(2,2,2); plot(sig); title(‘Mixture of the two signals’)
subplot(2,2,4); plot(y); title(‘Filtered signal’)

Finite Impulse Response Filters 211

0 50 100
�1

�0.5

0

0.5

1
First signal

0 50 100
�1

�0.5

0

0.5

1
Second signal

0 50 100
�2

�1

0

1

2
Mixture of the two signals

0 50 100
�2

�1

0

1

2
Filtered signal

Figure 8.9. Mixture of two sinusoids and filtered signal

EXERCISE 8.7.
The methods for designing 2D FIR filters are similar to those used for the 1D

filter design. The goal of this exercise is to illustrate the lowpass filtering of an
image.

Consider to this end, a mask of 7×7 pixels, the 9 pixels in the middle having the
value 1 and the other the value 0. Calculate the coefficients of this filter and plot the
corresponding ideal and actual transfer functions.

Using the designed filter then perform the lowpass filtering of the image “clown”
from the MATLAB image library, corrupted by a zero-mean white Gaussian noise
with the variance 0.05.

H = zeros(7,7); H(3:5,3:5) = ones(3,3);
h = fsamp2(H);
figure
subplot(2,2,1);
freqz2(h,32,32);
title(‘Actual transfer function’)
[f1,f2]=freqspace([7 7]);
[x,y]=meshgrid(f1,f2);
subplot(2,2,2)

212 Digital Signal Processing using MATLAB

mesh(x,y,H); title(‘Ideal transfer function’)
load clown;
I=ind2gray(X,map);
I=imnoise(I,’gaussian’,0,0.05);
subplot(2,2,3)
imshow(I); title(‘Noisy image’)
F=filter2(h,I);
subplot(2,2,4)
imshow(F); title(‘Filtered image’)

�1
0

1

�1
0

1
0

1

2

F
x

Actual transfer function

F
y

M
ag

ni
tu

de

�1
0

1

�1
0

1
0

0.5

1

Ideal transfer function

Noisy image Filtered image

Figure 8.10. Lowpass filtering image

Point out the ripple of the transfer function due to the same Gibbs phenomenon
as for the 1D filters.

EXERCISE 8.8.

This exercise is aimed at illustrating the effect of the quantification of lowpass
FIR filter coefficients. Consider a cutoff normalized frequency of 0.2 and a lower
stopband normalized frequency edge of 0.225. Use 19 coefficients coded on 5 bits to
design the filter.

f = [0 2*0.2 2*0.225 1]; m = [1 1 0 0];
b = remez(19, f, m);
[h,w] = freqz(b,1); g = 20*log10(abs(h));
fq = w/(2*pi); bq = a2dT(b,4);
hq = freqz(bq,1); gq = 20*log10(abs(hq));

Finite Impulse Response Filters 213

figure
subplot(211); plot(fq,g,’b-‘,fq,gq,’r—‘);
axis([0 0.5 -60 10]);grid
xlabel(‘Normalized frequency’);
ylabel(‘Gain [dB]’);
legend(‘original’,’quantified’);
subplot(223);
zplane(b); title(‘original’);
subplot(224);
zplane(bq); title(‘quantified’);

0 0.1 0.2 0.3 0.4 0.5
�60

�40

�20

0

Normalized frequency

G
ai

n
[d

B
]

original
quantified

0 2 4 6

�2

0

2

19

Real Part

Im
ag

in
ar

y
P

ar
t

original

�1 0 1

�1

�0.5

0

0.5

1

18

Real Part

Im
ag

in
ar

y
P

ar
t

quantified

Figure 8.11. Influence of the coefficient quantification on a FIR filter’s characteristics

8.3. Exercises

EXERCISE 8.9.
Plot the rectangular, triangular, Hanning, Hamming, Blackman and Kaiser

windows using MATLAB functions boxcar, bartlett, hanning, hamming,
blackman and kaiser. Calculate and plot the magnitude of their spectra. Emphasize
the sidelobe level and the bandwidth of these spectra. Conclude about the effect of
these windows on a FIR filter design.

EXERCISE 8.10.

Using the properties of the four classes of FIR filters summarized in Table 8.1,
find the appropriate applications for each of them from the following list: lowpass

214 Digital Signal Processing using MATLAB

filter, bandpass filter, highpass filter, stopband filter, Hilbert transformer and
derivative filter.

EXERCISE 8.11.

Calculate the coefficients of a 25th order derivative filter using the LS method,
for a sampling frequency fs = 20 kHz. Plot its transfer function, impulse response
and zeros. Imagine a possible application for this filter.

EXERCISE 8.12.

a. Use H(4,4) = 0 in exercise 8.7 and observe the effect on the original image.
Can you explain the results obtained?

b. Perform a highpass filtering of the same image using an appropriate transfer
function.

c. Repeat exercise 8.7 for a “salt and pepper” and then a “speckle” noise.
Compare the effectiveness of the lowpass filtering in the three cases.

EXERCISE 8.13.

Design a 120th order FIR highpass filter using the frequency sampling method.
Consider a cutoff frequency fc = 6 kHz, and a sampling frequency fs = 20 kHz. Plot
the filter transfer function. Compare its order to that of an IIR filter having a similar
transfer function.

Chapter 9

Detection and Estimation

9.1. Theoretical background

This chapter presents the most important decision models considered in detection
or estimation problems.

9.1.1. Matched filtering: optimal detection of a known noisy signal

The matched filter is an optimal linear system for the detection of a known signal
s(t) corrupted by an independent additive noise. It maximizes the signal-to-noise
ratio at the moment when the decision is made. If the noise is white, the impulse
response of the matched filter to the signal s(t) has the following expression:

*
0() ()ag t k s t t= ⋅ − [9.1]

where k is a constant depending on the filter gain, and t0 is a time-delay parameter
which usually corresponds to the signal duration T.

The output signal of the matched filter driven by the signal x(t) = s(t) + n(t)
becomes thus:

0 0() () () () ()a ss sny t x t g t k t t k t t= ∗ = Γ − + Γ − [9.2]

Consequently, the matched filter has the behavior of a correlator with respect to
the signal to be detected.

The signal-to-noise ratio is maximum in t = t0 and depends on the signal energy
Ws and the noise power spectral density Ν0/2. For a given noise and different signals

216 Digital Signal Processing using MATLAB

having the same energy Ws, the corresponding matched filters give the same signal-
to-noise ratio. However, they may be very different in terms of the time resolution,
which means the capability of resolving two closely spaced signals.

In fact, without matched filtering the time resolution is equal to the signal
duration T. After matched filtering it is related to the signal correlation length Dτ,
which is inversely proportional to the signal bandwidth Bτ. Consequently, the
matched filter may greatly improve the time resolution provided that the signal has a
large bandwidth (i.e. a narrow autocorrelation function).

In real world applications the signal amplitude is limited by physical systems.
Thus, a long signal is often necessary in order to insure the required energy level.
Thus, a large BT product is finally the global condition to have both a good signal-
to-noise ratio and a high time resolution. The most often used signals with large BT
products are the frequency modulated pulse (chirp) or the pseudorandom binary
phase modulated signal.

In the case of a colored noise, the matched filter is obtained by the series
connection of a whitening filter with the matched filter corresponding to the
whitened signal.

9.1.2. Linear optimal estimates

The approaches presented in this section look for the optimal estimate over the
class of linear filters. The solution is thus the best linear estimate, although an even
better non-linear solution could exist. The main advantage of any linear approach is
its simplicity of implementation.

The most used linear optimal filters were introduced by Wiener and Kalman.
Although the signal presentation mode is different in the two cases, the two filters
make use of the same optimization criterion and lead essentially to the same results.

Wiener filter

Norbert Wiener’s approach is based on an external signal representation.
According to this representation, signals are described by their statistical properties:
probability density function, moments, correlation function, etc. Since the
considered filters are linear, only the 1st and 2nd order statistics are involved.
Actually, Wiener’s approach requires the knowledge of the autocorrelation and
cross-correlation functions in the time domain or of the spectra and interspectra in
the frequency domain.

Detection and Estimation 217

Let us consider a discrete-time, real, zero-mean and stationary random process
{Xk}k∈Z and an infinite series of observations {Yk}k∈Z. The linear estimates of Xk
over {Yk}k∈Z have the following form:

1

0

ˆ N
k n k n

n
X Yθ

−
−

=
= [9.3]

They depend only on a finite number of observations {Yk, k = 0. N-1}. It is more
interesting in this case to adopt matrix notations. Thus, the N observations can be
considered as a vector Y = [Y0, … ,YN-1], whose autocorrelation matrix is denoted by
ΓYY = E[Y⋅YT].

Let us also denote by ΓXX = E[X1⋅X1-k] the autocorrelation function of Xk and by
ΓXY = E[Xk⋅Y] the cross-correlation vector between Xk and Y. Equation [9.3] can then
be rewritten in the form:

ˆ T
kX Y= Θ , with 0 1, ,T

Nθ θ −Θ = [9.4]

The optimal linear estimate is therefore obtained as follows:

()2
opt arg min

N

T
k

R
E Y X

Θ∈
Θ = Θ − [9.5]

According to the orthogonal projection theorem, this estimate also meets the
condition below:

ˆ() 0k kE X X Y− = [9.6]

This results in the following expression of a discrete Wiener filter provided that
1

YY
−Γ exists:

1
opt YY XY

−Θ = Γ Γ [9.7]

Taking advantage of the orthogonal relationship between ˆ
k kX X− and ˆ

kX the
estimation error is thus simply obtained in the form:

2 2
min opt

ˆ ˆ() () (0) T
k k k k k XX XYE X X E X X Xε = − = − = Γ − Θ Γ [9.8]

218 Digital Signal Processing using MATLAB

PROPERTIES

1. As the matrix 1−ΓYY is positive defined, the following equation holds:

1
opt 0T T

XY XY YY XY
−Θ Γ = Γ Γ Γ ≥ [9.9]

and thus:

)0(2
min XXΓ≤ε [9.10]

If observation Y is not correlated with X, no information on X can be inferred
from Y. In this case)0(2

min XXΓ=ε . In other words, if only the first two moments
of a random process are known, its minimal variance estimate is its mean value.

2. If Y is linearly related to Xk, the estimation error is zero. Obviously, this
statement is valid only if the filter length is large enough to represent the true linear
relationship between the two quantities.

3. The autocorrelation matrix ΓYY and the cross-correlation vector ΓXY has to be a
priori known. Otherwise, they have to be estimated prior to the Wiener filter
calculation. While the estimation of ΓYY is straightforward because Y is the observed
quantity, the estimation of ΓXY is more difficult because the statistical characteristics
of X may be unknown.

Kalman filter

Kalman proposed a filter structure based on an internal signal representation.
According to this representation any random process is seen as the output of a linear
filter driven by a white noise.

In fact, according to the Wiener-Khintchine theorem, the power spectral density
of a linear filter output signal is the product between the input signal power spectral
density and the square of the transfer function magnitude. If the input signal is a
unitary white noise its power spectral density is constant and equal to 1.
Consequently, the power spectral density γXX(ν) of the wide sense stationary process
represented by the output signal {Xk}k∈Z can be expressed as γXX(ν) = |G(ν)|2, where
G(ν) is the transfer function of a minimal phase linear filter (i.e., with all the poles
and zeros inside the unit circle).

If the filter transfer function is rational, this relationship corresponds in the
discrete-time domain to a difference equation with constant coefficients. If the filter
is not homogenous these coefficients vary over time. This type of internal
representation is especially preferred in control theory since some physical
properties of the system can be integrated into the model. Furthermore, since the
internal approach is recursive, it is particularly suitable for non-stationary systems.

Detection and Estimation 219

These two aspects make the Kalman approach an interesting, sometimes
indispensable, alternative to the Wiener filter.

The main features of a Kalman filter result from the internal signal
representation and are listed below:

− state-space system model;
− recursive formulation of the mean-square optimal solution;
− appropriate integration of non-stationary variations.

The state-space system model is represented by the following state and
measurement equations:

11 −− += kkkk WXAX [9.11]

kkkk VXCY += [9.12]

and involves the elements indicated below:
− kX : state vector; this fully describes the state of the system at moment k

(example: position and speed of harmonic oscillator);
− kA : transition matrix; this determines the free evolution of the system state

(without excitation 0=kW); the state-space model is stable if all the eigenvalues of

kA are inside the unit circle;

− kW : zero-mean white noise; this represents the input of the state-space model
and is sometimes called system or process noise;

− kQ : covariance matrix of kW ;

− kY : observation vector at moment k;

− kC : observation or measurement matrix; this indicates how the state vector is
observed;

− kV : stands for the noise which corrupts the observation vector (measurement
noise);

− kR : covariance matrix of kV ;

− kψ : the space spanned by observations { }kYY ,,1 .

If kW is Gaussian, then kX becomes Gaussian, because of the linearity of the
state model. The two noises kW and kV are assumed to be uncorrelated.

The measurement equation shows that kY is just a partial noisy observation of
the state vector kX . The Kalman filter provides the best linear estimate of kX ,

220 Digital Signal Processing using MATLAB

according to the LMS criterion, based on the observations measured up to moment
k.

The optimal LMS estimate of kX based on the observations measured until the

moment m is denoted by ˆ
k mX . An estimation error ˆ

kk m k mX X X= − and its

covariance matrix T
k m k m k mP E X X= are thus associated with this estimate.

The Kalman filter provides the LMS optimal estimate in a recursive form
including the following equations:

11 1 1

1 1

1

1 1 1

1

(variance of the prediction error)

() (Kalman gain)

() (variance of the estimation error)

ˆ ˆ (linear prediction)

ˆ (

T
K k kk k k k

T T T
k k k k kk k k k

k kk k k k

kk k k k

k kk k k k

P A P A Q

K P C R C P C

P I K C P

X A X

X X K Y

−− − −

− −

−

− − −

−

= +

= +

= −

=

= = 1
ˆ) (state estimation)k k kC X −−

 [9.13]

Deterministic approach

In the framework of the two previously presented stochastic approaches, the
observation is considered an outcome of a random process. The 2nd order statistical
properties of this process are assumed to be completely known. Consequently, the
associated processing algorithms do not depend on a particular outcome of the
observed process, they only depend on its statistical properties a priori known. In
this way, the most probable outcomes are favored against the less probable ones.

The processing algorithm is, on the contrary, adapted to a particular outcome if a
deterministic approach is considered. The random aspect of the process is secondary
in this case. A data dependent algorithm is obtained which provides the best estimate
for a particular outcome of the observed process.

Obviously, the two approaches converge in practice whenever the statistical
properties of the process have to be estimated using its outcomes. Thus, the link
between the two approaches is represented by the ergodicity property of the
observed process.

Detection and Estimation 221

9.1.3. Least squares (LS) method

The LS method was introduced by Gauss to estimate noisy parameters. Let us
consider a series of k scalar measured values {yn}n=1 k which linearly depend on an
observable vector set {Xn}n=1 k:

T
n opt n ny X bθ= + for 1 kn ≤≤ [9.14]

where bn stands for the noise samples.

In practice, these measures may be issued from a set of N sensors. Let us
consider the following notations:

− []1, , T
opt Nθ θ θ= vector of the parameters to be estimated,

−
1
, , for 0..

N

T
n n nX x x n k= = the observed vector at the moment n,

− { } 1.. , 1..ij i k j N
x

= =
Γ = matrix of all observations,

− []1, , T
kY y y= .

θopt is the LS solution of the following matrix equation:

kY θ⋅Γ= [9.15]

The only interesting case is k ≥ N (overdetermined system). The LS solution of
the system at moment k can be obtained as follows:

{ }arg min () ()
N

T
k Y Y

θ
θ θ θ

∈
= − Γ − Γ [9.16]

This results in:

() 1T T
k Yθ

−
= Γ Γ Γ [9.17]

According to the orthogonal projection theorem, the optimal estimate is the
orthogonal projection of Y on the observation space. In fact, (ΓTΓ)-1ΓT (known as the
right pseudo-inverse of Γ) is the orthogonal projection operator on the image of Γ. If
Γ is square (k = N) and invertible, the pseudo-inverse (ΓTΓ)-1ΓT becomes simply the
inverse matrix; a Wiener solution is thus obtained as: θ = Γ-1Y.

222 Digital Signal Processing using MATLAB

The following recursive algorithm is finally derived using the Woodbury
identity:

1 1

1 1

1 1

/(1)

()

T
k k k k k k

T
k k k k k k

T
k k k k k

K P X X P X

K y X

P P K X P

θ θ θ
− −

− −

− −

= +

= + −

= −

 [9.18]

where:

1

1

−

=
=

k

n

T
nnk XXP [9.19]

9.1.4. LS method with forgetting factor

If vector θ is time-variant, the LS method cannot be directly applied. The
algorithm should “forget” the old process “history” in this case because the
corresponding information is not relevant for the current value of parameter θ . The
basic idea is to observe only the data inside a sliding window. Its task is to weigh the
data according to its credibility. The simplest and most used window is the
exponential function. In this case the optimal LS estimate is given by:

2
*

0
arg min

k k n
n

R n
e

θ
θ λ −

∈ =
= , with n n ne y xθ= − [9.20]

Forgetting factor λ takes values between 0 and 1. The following function is thus
minimized:

() 2 2 2 2 2
1 2 0

k
k k kJ e e e eθ λ λ λ− −= + + + + [9.21]

The closer to zero λ is, the larger the forgetting rate is. For λ =1 the particular
case of the exact LS method is obtained. The more recent an observation is, the
larger its weight is in estimating the current value of θ . The LS algorithm with
forgetting factor (RLS, recursive least square) has the following form:

1 1
1 1

1 1
1 1

1 1

/(1)

()

T
k k k k k k

T
k k k k k k

T
k k k k k

K P X X P X

K y X

P P K X P

λ λ

θ θ θ

λ λ

− −
− −

− −
− −

− −

= +

= + −

= −

 [9.22]

Detection and Estimation 223

9.2. Solved exercises

EXERCISE 9.1.
A digital signal containing 20 binary elements is transmitted on a communication

channel. This signal has the following characteristics:

− binary rate: 1000 symbols/s,

− sampling frequency: 10 kHz,

− symbol duration: 1 ms,

− code: unipolar without return to zero.

1. Using the function subplot plot the signal, the matched filter impulse
response and its output signal. Define the decision threshold and the optimal
decision moments.

Rb = 1000; % binary rate
fs = 10000; % sampling frequency
Ts = 1/fs; % sampling period
Tb = 1/Rb; % binary element duration
sequence=[0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1];
no= length(sequence); % number of bits
no_ech = no * Tb/Ts; % number of samples
t = [0:(no_ech-1)]*Ts; % sampling moments
pulse =ones(1,fs/Rb); % waveform (unipolar without return to zero)
x=(sequence’*pulse)’; % signal generation
x=x (:);
t_time = Ts * [0:no_ech];
figure
subplot(311);
plot(t_time,[x;0]);
axis([0 0.021 0 1.2]);grid
title(‘Bandbase signal’)
g = (pulse);
h = g(length(g):-1:1); % matched filter impulse response
subplot(312);
plot([0:size(h,2)+1]*Ts,[h 1 0]);
axis([0 0.021 0 1.2]);grid
title(‘Matched filter impulse response’)
y_fil = conv(h,x); % matched filter output signal
y_fil = [y_fil(:)’ 0];
subplot(313);
plot([0:size(y_fil,2)]*Ts,[0 y_fil]);
axis([0 0.021 0 1.2*max(y_fil)]);grid
xlabel(‘Time [s]’);
title(‘Matched filter output signal’)

224 Digital Signal Processing using MATLAB

0 0.005 0.01 0.015 0.02
0

0.5

1

Bandbase signal

0 0.005 0.01 0.015 0.02
0

0.5

1

Matched filter impulse response

0 0.005 0.01 0.015 0.02
0

5

10

Time (s)

Matched filter output signal

Figure 9.1. Input signal, matched filter impulse response and its output signal

As the impulse response width is 1 ms, the optimal decision moments should be
multiples of this quantity.

For equiprobable symbols, the optimal decision threshold is equal to half of the
symbol amplitude according to the maximum likelihood criterion.

The amplitude of the matched filter output signal is equal to the energy of the
projection of the received signal on the matched filter impulse response.

2. Real communication channels are not flat; they have limited passband and
suffer from additional noise.

Write a MATLAB code to simulate a channel which is characterized by a
bandwidth of 4,900 Hz and a zero-mean white Gaussian additive noise with the
variance 1. Filter the transmitted signal using an IIR 8th order Chebychev type I filter.

Plot on the same figure the ideal signal, the noisy signal and the matched filter
output signal.

Decode the previous message using the noisy signal and the symbol length as
time unit. Repeat this procedure using the matched filter output signal and the same
detection threshold. Explain why the matched filter performs better.

Detection and Estimation 225

ondul = 0.1; % passband ripple
ord_filt = 8; % filter order
fc = 4900; % cutoff frequency
[Bc,Ac] = cheby1(ord_filt,ondul,fc/(fs/2));
y = filter(Bc,Ac,x); % signal filtering
r = randn(size(y)); noise_power=1;
y = y + sqrt(noise_power)*r; % adding the zero-mean Gaussian white noise
figure ; subplot(311) ; plot(t_time,[y ;0]);
axis([0 0.021 -1.2*max(y) 1.2*max(y)]);
grid on; title(‘Baseband noisy signal’)
subplot(312); plot([0:size(h,2)+1]*Ts,[h 1 0]);
axis([0 0.021 0 1.2]); grid on;
title(‘Matched filter impulse response’)
y_fil = conv(h,y)*Ts; % matched filter output signal
y_fil = [y_fil(:)’ 0];
subplot(313); plot([0 :size(y_fil,2)]*Ts,[0 y_fil]);
axis([0 0.021 -1.2*max(y_fil) 1.2*max(y_fil)])
grid on; xlabel(‘Time [s]’);
title(‘Matched filter output signal’)

0 0.005 0.01 0.015 0.02
�4
�2

0
2
4

Baseband noisy signal

0 0.005 0.01 0.015 0.02
0

0.5

1

Matched filter impulse response

0 0.005 0.01 0.015 0.02

�1

0

1

x 10
�3

Time [s]

Matched filter output signal

Figure 9.2. Noisy input signal, matched filter response and output signal

3. The choice of the decision threshold and of the decision moments is a very
interesting point to investigate. This choice is made difficult by symbol interferences
due to the symbol delay and the channel features. The eye diagram allows these
quantities to be optimized.

226 Digital Signal Processing using MATLAB

Generate the eye diagram using a binary sequence of 1,000 symbols and the
channel previously defined.

sequence=round(rand(1,1000));
x=(sequence’*pulse)’; % signal generation
x=x(:); y = filter(Bc,Ac,x); % signal filtering
r = randn(size(y)); noise_power=0.25;
y = y + sqrt(noise_power)*r; % adding noise
no_eyes=2; % number of diagram eyes
no_block = fix(tot_ech/(no_eyes*no)); % number of samples blocks
index = [1:(no_eyes*no_ech)];
t_time = Ts *[0:no_eyes*no_ech];
time = Ts *[1:no_eyes*no_ech];
foo = zeros((no_eyes*no_ech), no_block-1);
foo(:) = y_fil((no_eyes *no_ech)+1: no_block* no_eyes *no_ech);
first_row = foo(no_eyes *no_ech,:);
first_row = [y_fil(maxindex) first_row(1:no_block-2)];
foo = [first_row; foo];
plot(t_time, foo,’b’);

The eye diagram is a practical tool to study the effects of intersymbol

interference and other channel imperfections in digital communications.

Noisy channels introduce decision errors, whose probability is inversely
proportional to the “eye” width. Thus, the decision moments for demapping a
demodulated signal and recovering the underlying digital message, should be chosen
where the “eye” is open most widely.

The horizontal opening provides information about the influence of the distance
between an optimal decision moment and real ones.

0 0.5 1 1.5 2

x 10
�3

�5

0

5

10

15
x 10

�4

Time [s]

Eye diagram

Figure 9.3. Eye diagram

Detection and Estimation 227

EXERCISE 9.2.1
This exercise is aimed at comparing results provided by three types of 2D filters:

Prewitt, Sobel and Roberts. An image containing a vertical outline is generated at
this end and two quantities are estimated for each type of filter:

− the detection probability: percentage of well detected outline points;

− the false alarm probability: percentage of points taken from outside the vertical
outline and considered as outline points.

In order to simplify the comparison, detection thresholds are set to obtain
roughly the same false alarm probability level. The three filters are then compared
using only the detection probability.

I=0.6*ones(64,64); I(:,1:32)=0.5*ones(64,32);
J=I+sqrt(.001)*randn(64,64);
fil_pre_h=[1 1 1 ;0 0 0 ;-1 -1 -1] ; fil_pre_v=-fil_pre_h’;
fil_sob_h=[1 2 1;0 0 0;-1 -2 -1]; fil_sob_v=-fil_sob_h’;
fil_rob_h=[1 0;0 -1]; fil_rob_v=[0 1;-1 0];
d_pre_h=filter2(fil_pre_h,J);
d_pre_v=filter2(fil_pre_v,J);
d_sob_h=filter2(fil_sob_h,J);
d_sob_v=filter2(fil_sob_v,J);
d_rob_h=filter2(fil_rob_h,J);
d_rob_v=filter2(fil_rob_v,J);
cont_pre=sqrt(d_pre_h.* d_pre_h+ d_pre_v.* d_pre_v);
cont_sob=sqrt(d_sob_h.* d_sob_h+ d_sob_v.* d_sob_v);
cont_rob=sqrt(d_rob_h.* d_rob_h+ d_rob_v.* d_rob_v);
% contour thresholding
cont_pre_s=(cont_pre>0.25);
cont_sob_s=(cont_sob>0.35);
cont_rob_s=(cont_rob>0.145);
% plotting the filtering results
subplot(221);
imagesc(J);
title(‘noisy image’);
subplot(222);
imagesc(cont_pre_s);
title(‘contours obtained with the Prewitt mask’);
subplot(223);
imagesc(cont_sob_s);
title(‘contours obtained with the Sobel mask’);
subplot(224);
imagesc(cont_rob_s);
title(‘contours obtained with the Roberts mask’);
% Detection and false alarm probability calculation

1 This exercise was proposed by Gilles Burel, from the University of West Brittany, Brest,
France.

228 Digital Signal Processing using MATLAB

medium=cont_pre_s(2:63,2:63);
det=(medium(:,31)+medium(:,32))>0;
nbdet=sum(det);
pdet_prewitt=nbdet/62
medium(:,31:32)=zeros(62,2);
nbfa=sum(sum(medium));
pfa_prewitt=nbfa/(60*62)
medium=cont_sob_s(2:63,2:63);
det=(medium(:,31)+medium(:,32))>0;
nbdet=sum(det);
pdet_sobel=nbdet/62
medium(:,31:32)=zeros(62,2);
nbfa=sum(sum(medium));
pfa_sobel=nbfa/(60*62)
medium=cont_rob_s(2:63,2:63);
det=(medium(:,31)+medium(:,32))>0;
nbdet=sum(det);
pdet_roberts=nbdet/62
medium(:,31:32)=zeros(62,2);
nbfa=sum(sum(medium));
pfa_roberts=nbfa/(60*62)

noisy image

20 40 60

10

20

30

40

50

60

contours obtained with the Prewitt mask

20 40 60

10

20

30

40

50

60

contours obtained with the Sobel mask

20 40 60

10

20

30

40

50

60

contours obtained with the Roberts mask

20 40 60

10

20

30

40

50

60

Figure 9.4. Contour detection using different operators

Prewitt’s filters detect both horizontal and vertical outlines. That can be obtained
by thresholding the “norm” of the two images issued from the filtering process.

Detection and Estimation 229

Thus, the Prewitt filters do not perform very well for detecting some types of
outlines, which are neither vertical nor horizontal, such as closed forms.

The same comments are also valid for Sobel’s filters. Note that the threshold
choice is essential. In fact, the first two images are quite similar before the
thresholding, so the final results are also similar.

Roberts filters are quite useful for detecting diagonal contours, while the
associated run-time is considerably reduced due to the mask dimension of 2.
However, the threshold choice is more difficult. In fact, the obtained image contains
many short separated straight lines, which make the contour detection more
complex.

Prewitt’s filter outperforms the two other filters in this example. In fact, it
provides the best detection rate, for roughly the same level of the false alarm rate,
while the outline is well detected and continuous.

EXERCISE 9.3.

Consider a system having the transfer function below, which is assumed
unknown and has to be estimated:

1

21

8.01
5.0

)(−

−−

−

−
=

z

zz
zH

Write a MATLAB code in order to estimate the model parameters using a RLS
algorithm and a binary pseudorandom sequence (BPRS) containing 1,023 values
(this length is large enough with respect to the system frequency bandwidth).

Plot the time variation of the estimated coefficients and evaluate the
autocorrelation function of the error signal defined as the difference between the
system outputs corresponding to its actual and estimated coefficients respectively.

The problem can be formulated in an equivalent manner as a model
identification problem for the following process:

)()2()1()1()(211 tvtubtubtyaty +−+−+−=

where 1 1 20.8, 1, 0.5a b b= = = − and v(t) is a zero-mean white additive Gaussian
noise with a unit variance.

a1=0.8; b1=1; b2=-0.5;
para=[a1 b1 b2];

230 Digital Signal Processing using MATLAB

n=1000; np=3;
u=1:10;u=(1).̂ u;
for i=11:n
 u(i)=-u(i-7)*u(i-10); % generation of the BPRS
end
figure
plot([1:n],u);
axis([0 100 -1.1 1.1]);
xlabel(‘time’);
ylabel(‘amplitude’);
title(‘Binary pseudo-random sequence’);

p=1e8*eye(np); teta=zeros(np,2);
v=randn(1,n); y=[0 0];
for i=3:n
 x(:,1)=[y(i-1) u(i-1) u(i-2)]’;
 y(i)=para*x(:,1)+v(i);
 k=(p*x)/(1+x’*p*x);
 teta(:,i)=teta(:,i-1)+k*(y(i)-x’*teta(:,i-1));
 p=p-k*x’*p;
end
para_fin=teta(:,i);
figure
subplot(211)
for i=1:np
 plot(1:n,teta(i,:)); hold on
end
axis([0 1000 -1.5 1.5]);
title(‘parameters variation’);
xlabel(‘time’);grid on;
ys=[0 0];
for i=3:n
 ys(i)=[ys(i-1) u(i-1) u(i-2)]*para’;
end
err=ys-y; average=mean(err);
var=std(err-average)̂ 2;
err=err-average; cor_err=xcorr(err,err);
subplot(212)
plot([-length(err)+1:length(err)-1],cor_err);
grid; xlabel(‘time’);
title(‘autocorrelation function of the error signal’);

Detection and Estimation 231

Figure 9.5. Binary pseudorandom sequence

Figure 9.6. Parameter estimation (top) and the autocorrelation
function of the error signal (bottom)

232 Digital Signal Processing using MATLAB

The model is valid as the autocorrelation function of the error signal is similar to
that corresponding to a white noise (orthogonality principle).

EXERCISE 9.4.

Consider the following observed signal:

1 [] if 1..200
[]

6 [] if 201..1000
b n n

y n
b n n

+ =
=

+ =

where b[n] is a zero-mean white Gaussian noise with variance 1.

Write a MATLAB code to estimate the constant values involved in the observed
signal y[n] using a Kalman filter. The following two cases will be considered:

1. The state equation is almost certain. In this case a zero-mean white Gaussian
state noise with a variance of 0.1 will be considered.

2. The state model is assumed to be unknown. In this case a zero-mean white
Gaussian state noise with a variance 0.64 will be considered.

Plot on the same figure the ideal constant signal, the noisy signal and the
estimated signal. Comment on the obtained results.

The Kalman filter allows the state of a dynamical system to be estimated from its
inputs-outputs (a posteriori knowledge) and its model (a priori knowledge).

sigmau=1; T=1000;
x=[ones(200,1);6*ones(T-200,1)];
y=x+sigmau*randn(T,1) ;t=(0 :T-1);
sigmaw=.01;
s_n=(sigmaw/sigmau)̂ 2;
moy_x=zeros(T,1);
g(1)=sigmaû 2;
moy_x(1)=y(1);
for k=2:T
 g(k)=(s_n+g(k-1))/(1+s_n+g(k-1));
moy_x(k)=moy_x(k-1)+g(k-1)*(y(k)-moy_x(k-1));
end
subplot(211);
plot(t,x,’-‘,t,y,’ :’,t,moy_x,’o’);
title(‘sigmau=1, sigmaw=.01’)
legend(‘ideal signal’,’noisy signal’,’estimated signal’,0)
axis([0 500 -2 8]);
xlabel(‘time [s]’);
ylabel(‘Amplitude [V]’)
sigmau=1;

Detection and Estimation 233

sigmaw=.8;
T=1000 ;t=(0 :T-1);
y=x+sigmau*randn(T,1);
s_n=(sigmaw/sigmau)̂ 2;
moy_xx=zeros(T,1);
g(1)=sigmaû 2;
moy_xx(1)=y(1);
for k=2 :T
 g(k)=(s_n+g(k-1))/(1+s_n+g(k-1));
 moy_xx(k)=moy_xx(k-1)+g(k-1)*(y(k)-moy_xx(k-1));
end
subplot(212)
plot(t,x,’-‘,t,y,’ :’,t,moy_xx,’o’);
title(‘sigmau=1, sigmaw=.8’)
legend(‘ideal signal’,’noisy signal’,’estimated signal’,0)
axis([0 500 -2 8]);
xlabel(‘time [s]’);
ylabel(‘Amplitude [V]’)

0 100 200 300 400 500
�2

0

2

4

6

8
sigmau=1, sigmaw= 01

time [s]

A
m

pl
itu

de
 [V

]

ideal signal
noisy signal
estimated signal

0 100 200 300 400 500
�2

0

2

4

6

8
sigmau=1, sigmaw=.8

time [s]

A
m

pl
itu

de
 [V

]

ideal signal
noisy signal
estimated signal

Figure 9.7. Kalman filter performance

The model and characteristics of the noise are assumed to be known in the case
of the standard Kalman filtering algorithm. However, this is not always true in
practice. Thus, in the first case, when the state equation is considered almost certain,
the filter heavily follows the slow signal variations and completely ignores the fast
ones. In the second case, a rapid variation of the signal to be estimated is expected.
The filter then follows the signal variations very closely, but proposes an estimation
with a significant variance.

234 Digital Signal Processing using MATLAB

EXERCISE 9.5.

Write a MATLAB code to illustrate the influence of the two basic signal
parameters (frequency bandwidth B and pulse length T) on the matched filter
performance. Consider a chirp signal sampled at 12 kHz in the following two cases:

− the frequency is linearly swept between 3,500 and 4,000 Hz (B = 500 Hz) and
T = 25 ms,

− the frequency is linearly swept between 500 and 5,000 Hz (B = 4,500 Hz) and
T = 50 ms.

Plot the two autocorrelation functions without normalization between -0.01 s and
0.01 s and explain the obtained results.

% Fs: sampling frequency in Hz
% pulselength: pulse length in seconds,
Fs=12000;; pulselength=0.025; t1=(0:1/Fs:pulselength); fmin=3500;
fmax=4000;chirp1=vco(sawtooth((2*pi/pulselength)*t1,1),[fmin/Fs,fmax/Fs]*Fs,F
s);
pulselength=0.05; t2=(0:1/Fs:pulselength);
fmin=500;fmax=5000;chirp2=vco(sawtooth((2*pi/pulselength)*t2,1),[fmin/Fs,fmax
/Fs]*Fs,Fs);
c_chirp1=xcorr(chirp1,chirp1); c_chirp2=xcorr(chirp2,chirp2);
lc=length(c_chirp1); t1=linspace((-lc/2+1)*1/Fs,(lc/2-1)*1/Fs,lc);
subplot(211); plot(t1,c_chirp1);grid;
title(‘Autocorrelation of a chirp with T=25 ms, B=500 Hz ‘)
axis([-0.01 0.01 -200 200]); xlabel(‘time [s]’); ylabel(‘amplitude’)
lc=length(c_chirp2); t2=linspace((-lc/2+1)*1/Fs,(lc/2-1)*1/Fs,lc);
subplot(212); plot(t2,c_chirp2);grid;
title(‘Autocorrelation of a chirp with T=50 ms, B=4500 Hz’)
axis([-0.01 0.01 -100 400]); xlabel(‘time [s]’); ylabel(‘amplitude’)

Detection and Estimation 235

�0.01 �0.005 0 0.005 0.01
�200

�100

0

100

200
Autocorrelation of a chirp with T=25 ms, B=500 Hz

time [s]

am
pl

itu
de

�0.01 �0.005 0 0.005 0.01
�100

0

100

200

300

400
Autocorrelation of a chirp with T=50 ms, B=4500 Hz

time [s]

am
pl

itu
de

Figure 9.8. Autocorrelation function of a chirp signal

The width of the autocorrelation function of a chirp signal is about 1/B. In the
first case, the autocorrelation function is large due to the narrow frequency
bandwidth, while in the second case, the large frequency bandwidth leads to a an
autocorrelation function with a very narrow mainlobe.

The amplitude of the autocorrelation function at origin is equal to the signal
energy. Since the two signals have the same amplitude, the ratio of their energies is
the ratio of their lengths and can be also retrieved from the graph above.

A high performance matched filter requires a signal with both a large time length
and a broad frequency bandwidth. The first condition allows the detection
probability to be maximized, while keeping the level of false alarm probability low.
The second provides a high time resolution at the matched filter output.

However, the signal time length and frequency bandwidth are limited in practice
by the transmitter power supply or the associated furtivity requirements and by the
transmission channel constraints respectively.

EXERCISE 9.6.

Assume that the results issued from an experiment seem to be outcomes of a
linear process (approximation by a 1st order polynomial function).

236 Digital Signal Processing using MATLAB

Write a MATLAB code to simulate such an experiment and find the equation of
the LS linear estimate. Plot the variation of the square error as a function of the
order of the polynomial approximation.

The MATLAB function polyfit provides a polynomial which fits the data,

while the function polyval evaluates this polynomial for a given number of inputs.

x=[0:10]; sigma=3.5;
y=x+sigma*randn(1,11); % 11 process values are simulated
coef=polyfit(x,y,1); % 1-st order polynomial estimation
m=coef(1); b=coef(2); y_meil=m*x+b;
er_quadrat=sum((y-y_meil).̂ 2)
subplot(211); plot(x,y_meil,x,y,’xr’); title(‘Linear regression’)
xlabel(‘Time [s]’); ylabel(‘Amplitude [V]’); grid on;
newx=(0:1:10);
for n=1:11 % order from 1 to 11
 f(:,n)=polyval(polyfit(x,y,n),newx)’;
 er(n)=sum((y’-f(:,n)).̂ 2);
end
subplot(212); plot([1:11],er);grid;xlabel(‘Polynomial order’);
ylabel(‘Amplitude’);title(‘Approximation square error’)

When the polynomial order is equal to 10 or higher, the error is zero because this
approximation includes all the available information (11 coefficients or more to be
estimated from 11 recorded data values). The problem is well-conditioned and the
solution is unique in this case.

0 2 4 6 8 10
�5

0

5

10

15
Linear regression

Time [s]

A
m

pl
itu

de
 [V

]

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

Polynomial order

A
m

pl
itu

de

Approximation square error

Figure 9.9. Illustration of a linear regression and variation

of the quadratic error as a function of the approximation order

Detection and Estimation 237

EXERCISE 9.7.

a. Generate the three signals defined below over 1,024 samples:

− a sum of two sinusoids with normalized frequencies 0.075 and 0.175,

− a 50 point length pulse,

− a signal obtained at the output of a bandpass elliptic filter driven by a zero-
mean white Gaussian noise with the variance 1; the filter specifications are the
following: passband frequency edges 0.205 and 0.245, stopband frequency edges
0.195 and 0.255, passband ripple 0.5 dB, stopband minimum attenuation 50 dB.

Add a zero-mean white Gaussian noise with a variance of 3 to each signal.

b. Filter the three noisy signals using the corresponding Wiener filters. Explain
the filtering effect in each case.

a.

% Signal generation
nivbr=3;
s1=sin(2*pi*.075*[1:1024])+sin(2*pi*.175*[1:1024]);
sf1=abs(fft(s1));
s2=[ones(1,50) zeros(1,1024-50)];
sf2=abs(fft(s2));
[n,wn] = ellipord([0.205,0.245],[0.195,0.255],0.5,20)
[b0,a0] = ellip(n,0.5,50,wn);
[h0,w0]=freqz(b0,a0,512);
s3=filter(b0,a0,randn(1,1024)); sf3=abs(fft(s3));

% Noise adding
x1=s1+nivbr*randn(1,1024); x1f=abs(fft(x1));
x2=s2+nivbr*randn(1,1024); x2f=abs(fft(x2));
x3=s3+nivbr*randn(1,1024); x3f=abs(fft(x3));

b.

% Wiener filtering
nb=9; na=10; % filter numerator and denominator orders
hz=fft(xcorr(x1,s1))./fft(xcorr(x1));
[b,a]=invfreqz(hz,[1:2047]*2*pi/2047,nb,na);
[h1,w1]=freqz(b,a,512); sr1=filter(b,a,x1); srf1=abs(fft(sr1));
hz=fft(xcorr(x2,s2))./fft(xcorr(x2));
[b,a]=invfreqz(hz,[1:2047]*2*pi/2047,nb,na);
[h2,w2]=freqz(b,a,512); sr2=filter(b,a,x2); srf2=abs(fft(sr2));
hz=fft(xcorr(x3,s3))./fft(xcorr(x3));
[b,a]=invfreqz(hz,[1:2047]*2*pi/2047,nb,na);
[h3,w3]=freqz(b,a,512); sr3=filter(b,a,x3); srf3=abs(fft(sr3));

% Plotting the results

238 Digital Signal Processing using MATLAB

figure; subplot(311)
plot(sf1(1:512)/max(sf1)); hold on
plot(x1f(1:512)/max(x1f),’m:’); plot(abs(h1)/max(abs(h1)),’k—‘)
axis([50 250 0 1.2]); legend(‘initial’,’noisy’,’Wiener’)
subplot(312)
plot(sf2(1:512)/max(sf2)); hold on
plot(x2f(1:512)/max(x2f),’m:’); plot(abs(h2)/max(abs(h2)),’k—‘)
axis([0 250 0 1.2]); legend(‘initial’,’noisy’,’Wiener’)
subplot(313)
plot(abs(h0)/max(abs(h0))); hold on
plot(x3f(1:512)/max(x3f),’m:’); plot(abs(h3)/abs(h3),’k—‘)
axis([50 250 0 1.2]); legend(‘initial’,’noisy’,’Wiener’)

In the first two cases, the useful signal spectrum is plotted as a solid line. The
transfer function of the bandpass filter used to generate the third signal is plotted in
the same way on the last image since it corresponds to its power spectral density.

In all three cases the noisy signal spectrum is plotted as a dotted line. The
transfer function of the Wiener filter corresponding to each case is plotted as a
dashed line. Notice that the Wiener filter is able to find the frequency bands which
concentrate the signal energy despite of the noise high level. However, it is less
accurate for the first signal because of the very narrow frequency support of the two
mixed sinusoids.

50 100 150 200 250
0

0.5

1 initial
noisy
Wiener

0 50 100 150 200 250
0

0.5

1 initial
noisy
Wiener

50 100 150 200 250
0

0.5

1 initial
noisy
Wiener

Figure 9.10. Illustration of the Wiener filtering

Detection and Estimation 239

9.3. Exercises

EXERCISE 9.8.
Repeat exercise 9.1 using a different basic pulse for the transmitted waveform:

− bipolar code without return to zero;

− triangular pulse;

− Manchester code.

Compare the theoretical and experimental error probabilities obtained from a
large number of simulations.

EXERCISE 9.9.

An active early warning radar transmits a pulse burst (1200 pulses/s) with an
amplitude A, using a uniformly rotating antenna (15 rotations/min) with the
mainlobe width of 1.5°.

1. How many pulses are backscattered by a scanned target?

2. Using an appropriate process, the N pulses backscattered by the scanned target
form an observation vector having N components, corrupted by a zero-mean additive
white Gaussian noise with a standard deviation σ.

The detection is performed using the Neyman-Pearson criterion, which fixes the
false alarm probability level and maximizes the detection probability. Prove that this
criterion is equivalent to comparing the sum of N components to a threshold which
should be defined. Evaluate the results obtained for: A = 1, σ = 0.6, N = 20, PFA =
10-10.

Write a MATLAB code to predict the detection performance for different values
of the involved parameters and to plot the ROC (receiver operating characteristics)
curves. These curves illustrate the variation of the detection probability as a function
of the false alarm probability, for different values of the signal-to-noise ratio.

EXERCISE 9.10.

Consider a random signal s(t) corrupted by a white noise b(t). s(t) and b(t) are

uncorrelated and have the following power spectral densities: 2 2
3()

4 4
sγ ν

π ν
=

+

and 2)(=υγ b W/Hz..

Write a MATLAB code to estimate s(t) from the observation x(t)=s(t)+b(t),
using a Wiener filter.

240 Digital Signal Processing using MATLAB

EXERCISE 9.11.

A measured signal x(t) is the sum of a useful component s(t) with a power

spectral density 22448.0
848.1

)(
υπ

υγ
+

=s , and a zero-mean noise n(t). The two

components of x(t) are assumed to be uncorrelated.

The noise power spectral density is 2)(=υγ b W/Hz between -1/2T and 1/2T and
is zero otherwise.

1. Write the state equations of the system.

2. Sample the signal x(t) with a sampling period of 1 second to perform a
discrete Kalman filtering on x[k] and to estimate s[k].

3. Convert the state equations of the analog system (differential equations) into
discrete state equations (difference equations) using the function c2d.

4. Find the discrete state-space model.

5. Write a MATLAB code to implement the filter.

Chapter 10

Power Spectral Density Estimation

10.1. Theoretical background

Spectral analysis is one of the most important signal processing techniques and
consists of identifying the spectral content of a time-varying quantity. The usual
spectral analysis methods can be divided into two main classes:

− direct methods (selective filtering, periodogram);

− indirect methods (correlogram, parametric methods, etc.).

In an experimental framework, a signal spectral analysis can be performed using
spectral analyzers, which represent an essential investigation tool in many
applications. In real world applications, the observation period (continuous-time
signals) or the number of samples (discrete-time signals) is finite. Thus, the spectral
content will be estimated using the limited available information.

10.1.1. Estimate properties

Let us consider a stochastic process x(n) depending on a parameter a, and an
estimate of this parameter obtained from N outcomes of x:

[]ˆ= (0) ... (-1)a F x x N [10.1]

The quality of an estimate is evaluated using its bias and its variance defined below:

[]ˆ = - B a E a [10.2]

[]()2ˆ ˆ ˆvar[]=a E a E a− [10.3]

242 Digital Signal Processing using MATLAB

A low variance indicates a low dispersion of the estimate values around its mean
E[â]. An estimate converges if its bias and variance will vanish when the number of
observations N becomes infinite (estimate asymptotic characteristics).

Let us consider the example of an autocorrelation function, which is generally
calculated using one of the two following estimates:

a.
1

0
0

1ˆ () () ()
N k

N N
i

k x i x i k
N k

− −

=
Γ = +

−
, 1k N< − [10.4]

It can easily be seen that this estimate is unbiased and it can be also shown that
its variance is asymptotically zero.

b.
1

1
0

1ˆ () () (), 1
N k

N N
i

k x i x i k k N
N

− −

=
Γ = + < − [10.5]

which is the same as: 1ˆ ()
N k

k
N
−

Γ = 0ˆ ()kΓ [10.6]

and thus: { }1ˆ () 1 ()
k

E k k
N

Γ = − Γ [10.7]

The second estimate is therefore asymptotically unbiased. It is equivalent to the
first estimate if |k| << N and becomes even better when |k| comes close enough to N.
In fact, the variance of the first estimate significantly increases in the second case.

10.1.2. Power spectral density estimation

Periodogram

Let us estimate the power spectral density (PSD) using the discrete Fourier
transform of 1ˆ ()kΓ , i.e.:

1 2
1

0
ˆˆ() ()

N j kv

k
v k e πγ

− −

=
= Γ [10.8]

It can be shown that:

21ˆ() ()Nv X v
N

γ = with
1 2

0
() ()

N j kv
N N

k
X v x k e π− −

=
= [10.9]

Power Spectral Density Estimation 243

This estimate, called a periodogram, can thus be directly evaluated as the square
of the Fourier transform of a recorded signal. Since the evaluation can be performed
using FFT algorithms, this solution seems to be very attractive.

However, this estimate is not a good one because it is biased and its variance
does not decrease when the number of samples increases. In fact, the estimate
variance is proportional to the square of the actual spectrum magnitude irrespective
of the value of N.

Averaged periodogram

Let us divide the length-N recorded signal into K length-M signals. The kth
sample of the ith signal is defined by:

() () (), 0.. 1, 0. 1i
MMx k x iM k i K k M= + = − = − [10.10]

The previously defined periodogram is straightforwardly obtained using each signal:

2()() 1ˆ () ()ii
Mv X v

M
γ = , with () () 2() ()i i j kv

M MX v x k e π−= [10.11]

Finally, the partial PSD estimates obtained in this way are averaged to obtain the
final estimate:

1 ()

0

1ˆ ˆ() ()
K i

m
i

v v
K

γ γ
−

=
= [10.12]

Suppose that the successive signals () ()i
Mx k are not correlated (i.e. M is higher

than the process memory). The bias of the averaged periodogram is then related to
the triangular window that weights the autocorrelation function, while its variance is
divided by K.

However, the spectral resolution is K = N/M, which is lower than that obtained in
the case of the periodogram. Therefore, a trade-off has to be found between the
spectral resolution and the estimate variance for a given value of N.

Modified periodogram (Welch’s method)

The modified periodogram, also known as Welch’s method, is calculated using a
similar approach as before, but multiplying each length-M signal with a weighting
window. It is different from the rectangular window, which is considered by default
in the case of the averaged periodogram in order to truncate the signal. The weighted
samples and the new PSD estimate are expressed as follows:

244 Digital Signal Processing using MATLAB

() ()(). () ()i i
M wMx k w k x k= [10.13]

2()
1

0

()1ˆ ()
i

K w
w

i

X v

K M
γ ν

−

=
= [10.14]

Compared to the averaged periodogram, the new estimate does not reduce either
the bias or the variance, and it even decreases the spectral resolution. Nevertheless,
it highly improves the sidelobes’ attenuation and it minimizes the risk to identify
false spectral components.

A correction factor has to be added to the estimate defined above because the
weighting window also modifies the signal mean power. The final expression of the
modified periodogram becomes:

()

1 2 1

0

()1ˆ ()
()

i
K w

w M
i

M
k

X vM
v

K M
w k

γ −
=

=

= [10.15]

Notice that just as for the averaged periodogram, a trade-off between the spectral
resolution and the estimate variance is required by the Welch’s method. A useful
idea to obtain a minimum variance for a given spectral resolution is to consider
partially superposed signals instead of separate signals. However, the reduction of
the variance is less important in this case because the signals become more and more
correlated. A signal recovery of 50% is generally considered a good trade-off
between the variance reduction and the additional required calculations.

Correlogram

This method estimates the autocorrelation function on the interval [],M M− +
and then calculates its Fourier transform:

[] [] []
1

0

1ˆ , 0.
N k

M
i

k x i x i k k M
N

− −

=
Γ = + = [10.16]

[] 2ˆˆ ()
M j kv

M M
k M

v k e πγ −

=−
= Γ [10.17]

If the DFT is used instead of the Fourier transform, then:

Power Spectral Density Estimation 245

[] []
2

2 1ˆˆ
kM j n

M
M M

k M
n k e

π
γ

−
+

=−
= Γ [10.18]

where M << N (typically M < N/10).

Consequently, only the points which are well enough averaged are considered
for the autocorrelation function estimate []ˆ

M kΓ .

The spectral resolution of ˆ ()M vγ is thus reduced because of the truncation on
the interval [-M, M], while the variance is improved compared to the periodogram.
A weighting window is generally used to multiply []ˆ

M kΓ in order to avoid sidelobe
effects and to insure the positiveness of ˆ ().M vγ

10.1.3. Parametric spectral analysis

The central concept of the previously presented methods is the Wiener-
Khintchine theorem, which states that the power spectral density of a signal is the
Fourier transform of its autocorrelation function. Since the calculations are always
performed using a finite observation time or number of samples the spectral
resolution becomes a problem, especially for short signals.

The parametric spectral analysis makes use of PSD models depending on a set of
parameters instead of the Fourier transform. Estimating the signal PSD is then
equivalent to calculating these parameters.

ARMA model

Let us consider a stable LTI system, characterized by the following rational
transfer function:

1
0 1

1
1

...
()

1 ...

m
m

n
n

z z
A z

z z

α α α

β β

− −

− −

+ + +
=

+ +
 [10.19]

Suppose that it is driven by a discrete-time white noise with the variance σ2 (see
Figure 10.1).

Figure 10.1. LTI system driven by a white noise

246 Digital Signal Processing using MATLAB

The input-output relationship can thus be written in the form:

1 2() () ()x z A z A zγ σ−= [10.20]

which results in:

2

22 2
20 1

2 2
1

...
() ()

1 ...
j v

j v j mv
m

x x z e j v j nv
n

e e
v z

e e
π

π π

π π
α α αγ γ σ

β β

− −

= − −
+ +

= =
+ +

 [10.21]

The filtering can be seen in this context as a model for generating random
signals, whose power spectral density is rational. The output signal can also be
described using the following difference equation, also known as the ARMA model:

1 0() (1) () () ... ()n mx k x k x k n b k b k mβ β α α= − − − − + + − [10.22]

A simplified model, called MA (moving average) or all-zeros method, is obtained
under the condition below, and corresponds to a FIR filtering of a white noise:

0 ,i iβ = ∀ then 0() () ... ()mx k b k b k mα α= + − [10.23]

Another simplified model, called AR (auto regressive) or all-poles method, is
obtained under the following condition:

0 0i iα = ∀ > then 1 0() (1) ... () ()nx k x k x k n b kβ β α= − − − − + [10.24]

The AR model is widely used in practice. It considers a linear relationship
between the value of a signal at moment k and its previous values in addition with an
uncorrelated new value, often called innovation.

The Yule-Walker equations can then be easily derived from equation [10.24]:

1
() ()

n
x i x

i
p p i

=
Γ = − Γ −β , for p > 0 [10.25]

For p = 0 this results in:

2

1
(0) ()

n
x i x

i
i

=
Γ = − Γ − +β σ [10.26]

Power Spectral Density Estimation 247

AR model parameter estimation

Equation [10.24], which defines an AR model, can be rewritten in the following
form:

1
() () ()

n
i

i
x k x k i b kβ

=
= − − + [10.27]

where b(k) is a white noise with the variance 2σ .

The Yule-Walker equations can be also put into the following matrix form:

2

1

1(0) (1) ()
(1) (0) ((1)) 0

() (0) 0n

n
n

n

σ
β

β

Γ Γ − Γ −
−Γ Γ Γ − −

=

−Γ Γ

 [10.28]

or:
21

0
σ

βΓ ⋅ = [10.29]

Matrix Γ is symmetric and has a Toeplitz structure.

If the n+1 values of Γ involved in this matrix are supposed known, the
estimation of the AR model parameters (i.e. βi and σ2) is a straightforward problem.

The Levinson-Durbin algorithm is an effective recursive solution to this
problem. In addition to its effectiveness, this algorithm allows the model order to be
estimated, which is very useful when it is a priori unknown.

Note that identifying a 10th order AR model requires knowledge of the following
11 successive values of the autocorrelation function: (0)xΓ , (1)xΓ , …, (10)xΓ .

The AR model identified in this way provides a PSD estimate which is not
related to the trade-off variance-spectral resolution, while the PSD estimate obtained
by the DFT of the sequence{ }(0), (1), , (10)x x xΓ Γ Γ would lead to a much lower
spectral resolution.

Actually, values ()x iΓ are not a priori known and they also have to be
estimated, which requires the acquisition of much more data than the AR model
order.

248 Digital Signal Processing using MATLAB

A common choice for estimating the model order is Akaike’s FPE (final
prediction error) criterion:

2 2 2() () ()N p p
FPE p p p

N p N p
σ σ+= = +

− −
 [10.30]

Another usual criterion is AIC (Akaike information criterion):

2() () 2AIC p NLn p pσ= + [10.31]

These two criteria tend to be equivalent for a large number of samples as the
following relationship holds:

()() ()AIC p N Ln FPE p= ⋅ [10.32]

If the observed random signal is not an AR process, it can still be represented by
an AR model of infinite order. In the same way, the model identification can also be
performed using an estimate of the autocorrelation function.

Since the number of samples is finite, a trade-off bias-variance is necessary. In
fact, the larger the model order is, the lower the error power is and the closer the
predicted values are to the observed signal (the bias decreases).

However, increasing the model order also increases the estimate variance
because the autocorrelation function values corresponding to larger time-delays are
required.

MA model

The all-zeros model for the signal and its power spectral density is given below:

0
() () ()

M

j
x k b j e k j

=
= − [10.33]

2 1() () ()x z B z B zγ σ −= [10.34]

where e(k) is a zero-mean discrete-time white noise with the variance 2σ and:

0
() ()

M j

j
B z b j z−

=
= [10.35]

Power Spectral Density Estimation 249

Coefficients b(j) are related to the autocorrelation function by a non-linear
convolution relationship, which cannot be easily solved:

[]ˆ () () ()x k E x i x k iΓ = + [10.36]

0
() () , 0..ˆ ()

0,

M k

jx
b j b k j k M

k

k M

−

=
+ =

Γ =

>

 [10.37]

Therefore, the calculation of these coefficients requires an estimation of Γx(k) for
k = 0..M. Nevertheless, if we are only interested in estimating the signal PSD, it is
not useful to perform such an estimation. In fact, once the autocorrelation function
of the observed signal is estimated, its PSD can be obtained directly by taking its
Fourier transform.

A possible solution to calculate coefficients b(j) without estimating the signal
autocorrelation function is to find a high order AR model and evaluate an inverse
filter (a MA model) which minimizes the square error.

In fact, an MA model can be seen as an infinite order AR model, since a zero of
the PSD can always be approximated by a series of poles. This statement can be
illustrated as follows:

1
() () () ()

k
a m b i a m i mδ

∞

=
+ − = [10.38]

Since the number of coefficients b(i) is finite, error e(m) associated with this
model is given by the following equation:

1
() () () ()

M
p p

i
a m b i a m i e m

=
+ − = [10.39]

In this case, the problem becomes the minimization of E[e2(m)], which is
equivalent to solving the Yule-Walker equations by exchanging x(i) with a(i). In
order to find coefficients b(i), the Levinson algorithm is applied twice: first on the
data x(i), then on coefficients a(i) from the first modeling.

250 Digital Signal Processing using MATLAB

10.1.4. Super-resolution spectral analysis methods

These methods consider a signal model in the form of a mixture of noisy
complex exponentials:

1
() exp(2) () () () , 0.. 1

N
k k n s

k
x n c j f t w n s n w n n Nπ

=
= ⋅ ⋅ ⋅ ⋅ + = + = − [10.40]

where x(n) and w(n) stand for Ns samples of the observed noisy signal, {fk}k=1 N
designate the frequencies of the complex exponentials, and tn = nTs are the sampling
instants.

Super-resolution methods aim to separate the observation space in a signal
subspace, containing only useful information, and its orthogonal complement, called
noise subspace. This decomposition makes the spectral analysis more robust and
highly improves the spectral resolution.

The above equations can be expressed in the following matrix form:

1

N
k

k
c E

=
= ⋅ + = ⋅ +kx e w c w [10.41]

where: []1 exp(2) exp(2 (1)) T
s k e s kj T f j N T fπ π= ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ke

[](0) (1) (1) T
sw w w N= −w

[]E = 1 2 Ne e e , []1 2
T

Nc c c=c

Autocorrelation matrix estimation

The first step for implementing super-resolution methods is the eigenanalysis of
the data autocorrelation matrix:

H
xR E= ⋅x x [10.42]

Since Rx is not generally known, it is estimated from the acquired data samples.
A widely used approach consists of averaging the Nobs data vectors:

1

1ˆ obsN
H

x i i
iobs

R
N =

= ⋅x x [10.43]

Power Spectral Density Estimation 251

The ˆ
xR matrix must be of full rank in order to properly separate the two

subspaces as well as the spectral components. The spatial smoothing method can be
used to insure the full rank property, even though only one data vector is available.
According to this method, the autocorrelation matrix of order p N> is estimated as
follows:

H
p p pR D D= ⋅ [10.44]

where Dp is the data matrix defined below:

(0) (1) ()
(1) (2) (1)

(1) () (1)

e

e
p

e

x x x N p
x x x N p

D

x p x p x N

−
− +

=

− −

 [10.45]

This matrix is obtained by shifting a p-length window along the data snapshot.
The 1eN p− + columns of the Dp matrix can be considered as the new observation
vectors. They form the observation space which has the dimension p. Consequently,
the dimension of signal and noise vectors will be also limited to p.

MUSIC algorithm

The MUSIC (MUltiple Signal Classification) algorithm is the most well known
super-resolution method and can be seen as a generalization of Pisarenko’s method.
Equation [10.41] results in:

H
p c w p p pR E R E I S Wρ= ⋅ ⋅ + ⋅ = + [10.46]

where cR is the autocorrelation matrix of vector c , wρ represents the noise power
and pI stands for the p-order identity matrix.

Autocorrelation matrices pS and pW correspond to the signal and the noise
respectively. Since the “signal” vectors ke are linearly independent, the rank of
matrix E is equal to N . Matrix cR has the same rank, so that the rank of matrix

pS should also be equal to N .

Let us denote by iμ and i the eigenvalues and eigenvectors of matrix pS .
This matrix can thus be decomposed as follows:

1 1

p N
p i i

i i
S μ μ

= =
= ⋅ ⋅ = ⋅ ⋅H H

i i i iv v v v [10.47]

252 Digital Signal Processing using MATLAB

In the equation above 0iμ = for 1..i N p= + due to the rank of pS . On the
other hand, because all the eigenvalues of the identity matrix are equal to 1 and any
othonormal vector can be its eigenvector, the following relationship holds:

1

p
p

i
I

=
= ⋅ H

i iv v [10.48]

Finally, combining equations [10.47], [10.48] and [10.46] yields:

1 1 1 1
()

p pN N
p i w i w w

i i i i N
R μ ρ μ ρ ρ

= = = = +
= + = + +H H H H

i i i i i i i iv v v v v v v v [10.49]

Thus, matrix pR has the same eigenvectors as pS , and the eigenvalues
()i wμ ρ+ up to the order N and wρ for higher orders.

Consequently, the autocorrelation matrix eigenvectors corresponding to the
largest N eigenvalues, known as main eigenvectors, span the same subspace as the
signal vectors, while the other eigenvectors span the noise subspace. Since all the
eigenvectors of an autocorrelation matrix are orthogonal, the two subspaces are also
orthogonal.

Let us define the following mode vector:

[1 exp(2) exp(2 (1))]Ts i s ij T j p Tπ ν π ν= −ia [10.50]

For different values of iν , the mode vector sweeps the whole observation space.
It will be in the signal subspace for i kfν = (detection of a spectral component).
Therefore, it becomes orthogonal to any linear combination of the eigenvectors
spanning the noise subspace. This is the main idea of the MUSIC estimate which is
defined below using the projection operator on the noise subspace H

n n nV V⊥∏ = ,
where nV is the column matrix of the noise subspace eigenvectors:

1 12

1 1

1 1 1()MUSIC i p p
n

l N l N

PSD ν + ⊥+

= + = +

= = =
⋅∏ ⋅⋅ ⋅ ⋅ ⋅

H
H H H i i
i l i l l i

a aa v a v v a
 [10.51]

According to equation [10.51] the estimate value tends theoretically towards
infinity whenever it is evaluated at a frequency corresponding to a signal spectral
component. Actually, the estimate values are always finite because of the limited
calculation accuracy and estimation errors.

Power Spectral Density Estimation 253

The spectral resolution is highly improved since very sharp peaks are detected,
but their amplitudes lose any physical significance. Due to this particular behavior,
the MUSIC algorithm is often considered a frequency estimate rather than a PSD
estimate. However, the spectral amplitude information can be recovered, if
necessary, using an additional LS optimization procedure.

Root-MUSIC algorithm

The main advantage of the Root-MUSIC algorithm is the possibility of making a
direct calculation of the signal spectral components, instead of the maxima search
performed by the MUSIC algorithm. The basic idea is to consider the polynomials:

() (), 1..H
l lP z z l N p= ⋅ = +v q [10.52]

with () 1
Tpz z z=q .

It can easily be seen that the N zeros of each polynomial defined above are
represented by ()exp 2 , 1..k s kz j T f k Nπ= = . In fact, in this case vector ()zq
becomes a signal vector, i.e. orthogonal to any eigenvector lv .

The problem is now to calculate the zeros of the polynomials ()lP z . Bearing in
mind that the useful zeros should be located on the unit circle, the roots of the
polynomial below are calculated instead, in order to move away the other zeros and
minimize the error probability:

() () ()H H
n nP z z V V z= ⋅ ⋅ ⋅q q [10.53]

Due to the Hermitian operator, this polynomial depends on both z and *z . It is
transformed in the root-MUSIC polynomial, which only depends on z:

1() () ()p T H
RM n nP z z z V V z−= ⋅ ⋅ ⋅ ⋅q q [10.54]

The frequencies corresponding to different signal spectral components are then
obtained in the form:

()1 arg 1..
2k k

s
f z k N

Tπ
= =

⋅
 [10.55]

ESPRIT algorithm

The principle of the ESPRIT (estimation of signal parameters via rotational
invariance techniques) algorithm can be easily understood from the following
relationships:

254 Digital Signal Processing using MATLAB

H H H
p c w s s s w n nR E R E I V V V Vρ ρ= ⋅ ⋅ + ⋅ = ⋅ Λ ⋅ + ⋅ ⋅ [10.56]

H H
s s n nI V V V V= ⋅ + ⋅ [10.57]

where sΛ stands for the diagonal matrix of the eigenvalues corresponding to the
signal subspace.

The above equations result in:

()H H H H H
c w s s n n s s s w n nE R E V V V V V V V Vρ ρ⋅ ⋅ + ⋅ ⋅ + ⋅ = ⋅ Λ ⋅ + ⋅ ⋅

H H H H
c w s s s s s c s w s s sE R E V V V V E R E V V Vρ ρ⋅ ⋅ + ⋅ ⋅ = ⋅ Λ ⋅ ⋅ ⋅ ⋅ + ⋅ = ⋅ Λ

() 1
s

H
c s s w

V E T

T R E V Iρ −

= ⋅

= ⋅ ⋅ ⋅ Λ − ⋅
 [10.58]

Let us define matrices 1E and 2E obtained from the E matrix by taking off its
last and first row respectively. It is then easy to show that the following relationship
holds:

2 1E E= ⋅Φ [10.59]

where:

() () ()1 2diag exp 2 exp 2 exp 2 T
s s s Nj T f j T f j T fπ π πΦ =

Using equation [10.58] the following two matrices can be defined:

1

2

1

2

s

s

V E T

V E T

= ⋅

= ⋅
 [10.60]

Also taking into account equation [10.59], we obtain:

2

2 1

1

1 1
1

1

s
s s

s

V E T
V V T T

E V T
−

−

= ⋅Φ ⋅
= ⋅ ⋅Φ ⋅

= ⋅
 [10.61]

Finally, with the following notation:

1T T−Ψ = ⋅Φ ⋅ [10.62]

equation [10.61] becomes:

2 1s sV V= ⋅ Ψ [10.63]

Power Spectral Density Estimation 255

The eigenvalues of matrix Φ have the form exp(2)k s kj T fη π= , 1.k N= ,
because:

[] ()
1

det 0 0
N

k
k

Iη η η
=

Φ − ⋅ = − =∏ [10.64]

Matrix Φ and Ψ are related by a similarity transformation and therefore their
eigenvalues are the same. Consequently, the solution is obtained from the
eigenvalues of the Ψ matrix, determined by solving equation [10.63]. A direct
solution can be developed using the Moore-Penrose pseudo-inverse of matrix

1sV ,

denoted by
1

#
sV :

1 2

#
s sV VΨ = ⋅ [10.65]

Estimation of the signal subspace dimension

The previously introduced super-resolution methods need accurate estimation of
the signal subspace dimension, i.e. of the number of signal spectral components.

It is well known that the variation of the autocorrelation matrix eigenvalues
{ } 1..k k pλ = is directly related to the signal subspace dimension. Thus, in the noise-

free case the number of non-zero eigenvalues equals N.

When the signal is noisy, the N most important eigenvalues are still associated
with the eigenvectors which span the signal subspace, but it is no longer possible to
make a robust decision using only their simple variation. Nevertheless, they can still
be used, in a different form, in order to obtain a robust estimate of N.

The most well known technique for estimating the signal subspace dimension is
the Akaike information criterion (AIC). The number of signal spectral components
is estimated to perform the best trade-off between the model and the observation
data. Analytically, this condition is expressed in the form:

[]
1,

ˆ arg min ()
n p

N C n
=

= [10.66]

where ()C n is a cost function, which has the following general expression:

() () PLC n L n N= − + [10.67]

256 Digital Signal Processing using MATLAB

with:

()() (2) () log
()e

MA n
L n N p p n

MG n
= − − ⋅ − ⋅ [10.68]

L(n) is the maximal value of the log-likelihood ratio with respect to the model
parameters for N = n, and:

1

1()
p

i
i n

MA n
p n

μ
= +

=
−

and

1

1
()

p p n
i

i n
MG n μ

−

= +
= ∏ [10.69]

stand for the arithmetic and geometric means respectively of the p n− last
eigenvalues.

The AIC is obtained when NPL is equal to the number of free parameters of the
model, i.e.:

[2]PLN n p n= − [10.70]

The main drawback of Akaike’s criterion is that it yields an inconsistent estimate
that tends, asymptotically, to overestimate the number of signal spectral
components.

To overcome this problem Rissanen proposed the MDL (minimum description
length) criterion. It only changes the expression of PLN as indicated below in order
to obtain an asymptotical overestimation probability equal to zero:

0.5 [2] log(2)PL eN n p n N p= ⋅ ⋅ ⋅ − ⋅ − − [10.71]

Although the estimate of N is consistent now, the signal subspace dimension
tends to be underestimated when the number of samples is small.

10.1.5. Other spectral analysis methods

In the literature, we can find many other spectral analysis methods beside the
methods already presented in this chapter. Some of these methods assume, just like
the previously described algorithms, a particular signal model (mixture of noisy
sinusoids).

Thus, Prony’s method is an extension of this idea to the non-stationary case,
since it considers as signal model the mixture of noisy damped sinusoids.

Power Spectral Density Estimation 257

Capon’s method, sometimes inappropriately called the maximum likelihood
method, is at the border between parametric and nonparametric approaches. Based
on the signal selective filtering, it can be decomposed into three simple steps:
Fourier transform, square detection and averaging.

Its spectral resolution depends on the S/N ratio: for low S/N ratios, it is similar to
the periodogram, while for high S/N ratios it is close to the MUSIC algorithm.

Generally, there is no optimal spectral estimation method. The choice of the
most suitable spectral analysis algorithm highly depends on both the specific
considered application and on the a priori information about the signal features.

10.2. Solved exercises

EXERCISE 10.1.

Consider a zero-mean white Gaussian process P with the variance 2 0.25,pσ =

defined on 2,048 samples. Calculate its periodogram and find out the bias and the
variance of this PSD estimate. The process is assumed ergodic.

Repeat the same procedure for 512, 1,024 and 4,096 samples.

Periodogram

% This function allows the signal periodogram to be calculated
function [PSD_periodogram,frequency] = simple_periodogram (x,N)
K = N;
sequence = x;
Y = fft(sequence,K);
PSD=Y.*conj(Y);
PSD_periodogram = PSD/K;
PSD_periodogram = PSD_periodogram(1:1+K/2);
frequency=(0:N/2)/N; % 0<ν<0.5

% The function defined above is now applied to the signal
N = 2048; % change then this value with 512, 1024, and 4096
x = randn(1,N)*sqrt(0.25);
[PSD_periodogram,frequency] = simple_periodogram(x,N);
semilogy(frequency, PSD_periodogram,'b');
xlabel('normalized frequency');
ylabel('Amplitude');
title('Periodogram of a zero-mean white Gaussian process');

The bias and the variance of this estimate can be calculated as indicated below:

bias = mean(PSD_periodogram)-0.25 % estimate bias

258 Digital Signal Processing using MATLAB

variance = std(PSD_periodogram)̂ 2 % estimate variance

Since the process is white, its power spectral density is constant and equal to its

variance. It can be thus verified that the periodogram is a biased estimate and that its
variance does not decrease when the observation time gets longer; thus, it is an
inconsistent estimate.

Figure 10.2. Estimation of the white noise PSD using the periodogram

EXERCISE 10.2.
Consider again the Gaussian white process previously generated. Calculate and

plot its averaged and modified periodogram. Find out their bias and variance.
Change the number of averaged sequences and study the effect of different windows
on the modified periodogram using the MATLAB functions boxcar, triang,
hamming, hanning, and blackman.

Averaged periodogram

The averaged periodogram in calculated with the MATLAB code below, without
sequence recovery.

Power Spectral Density Estimation 259

% This function allow calculating the signal averaged periodogram
function [PSD_averaged_periodogram,frequency]=averaged_periodogram(x,K)
N=length(x); L=N/K; origin=0; PSD=0;
for index_loop=1:L
 sequence=x(origin+1:origin+K); origin = origin + K;
 Y=fft(sequence,K); PSD = PSD+Y.*conj(Y);
end
PSD_averaged_periodogram=PSD/(L*K);
PSD_averaged_periodogram=PSD_averaged_periodogram(1:1+K/2);
frequency = (0:K/2)/K; % 0<ν<0.5

% The function defined above is now applied to the signal
K=256;
[PSD_averaged_periodogram,frequency]=averaged_periodogram(x,K);
semilogy(frequency,PSD_averaged_periodogram,'b:');
xlabel('normalized frequency');
ylabel('Amplitude'); hold on;

K=32;
[PSD_averaged_periodogram,frequency]=averaged_periodogram(x,K);
semilogy(frequency,PSD_averaged_periodogram,'-r');
title('Averaged periodogram of a zero-mean white Gaussian process');
legend('averaging on 8 sequences','averaging on 64 sequences');

Figure 10.3. Results obtained with the averaged periodogram

260 Digital Signal Processing using MATLAB

It can be seen that this estimate is still biased, but its variance decreases when the
number of averaged sequences increases (see Table 10.1). Note also that the spectral
resolution gets lower when the length of the averaged sequences decreases.

Length of the averaged
sequences

Normalized spectral resolution
Δν/νs

Variance

512 0.00195 0.0157

256 0.0039 0.0081

128 0.0078 0.0032

64 0.0156 0.0025

Table 10.1. Variation of the spectral resolution and variance
with the length of the averaged sequences

Modified periodogram

The same algorithm as before is used in this case, except that each sequence is
multiplied by a weighting window before the FFT calculation.

% This function allows the signal modified periodogram function to be
calculated
[PSD_modified_periodogram,frequency]=modified_periodogram(x,K,weighting_windo
w)
...
sequence=sequence.* weighting_window;
...

% The function defined above is now applied to the signal
weighting_window=[blackman(K)];
weighting_window=weighting_window*sqrt(K/sum(weighting_window.*weighting_wind
ow));
weighting_window=weighting_window.';
[PSD_modified_periodogram,frequency]=modified_periodogram(x,K,weighting_windo
w);
figure
semilogy(frequency, PSD_modified_periodogram,'b');
xlabel('normalized frequency');
ylabel('Amplitude');
hold on;
% different other weighting windows may be then tried
title('Modified periodogram using different weighting windows');

The results provided by different types of weighting windows can thus be
compared for a given signal.

Power Spectral Density Estimation 261

0 0.1 0.2 0.3 0.4 0.5
10

�2

10
�1

10
0

normalized frequency

A
m

pl
itu

de

Modified periodogram using different weighting windows

Rectangular window
Blackman window

Figure 10.4. Results obtained with the modified periodogram

EXERCISE 10.3.
Perform the spectral analysis of the mixture of two noisy sinusoids having the

parameters indicated below:

1st sinusoid: 2nd sinusoid: Gaussian noise:
frequency = 25 Hz frequency = 50 Hz mean value = 0
amplitude = 1 amplitude = 0.01 standard deviation = 0.031

The sampling frequency is 200 Hz. Consider the following signal lengths: K =
{512, 1,024, 2,048, 4,096} and calculate its periodogram in each case.

Then test the averaged periodogram in the following cases: { K =512, L =2},
{ K =1,024, L =4}, { K =2,048, L =8}, { K =4,096, L =16} (L is the number of
sequences).

N=512; % change then this value with 1024, 2048 and 4096
t=0:1/200:(N/200)-1/200;
y1=sin(2*pi*25*t); y2=0.01*sin(2*pi*50*t);
noise=randn(1,N);
signal=y1 + y2 + noise * 0.031;

262 Digital Signal Processing using MATLAB

Use the algorithms from exercise 10.1 to calculate the signal periodogram and
averaged periodogram.

Periodogram

[PSD_periodogram,frequency]=simple_periodogram(signal,N);
semilogy(frequency,PSD_periodogram,'b');
xlabel('normalized frequency');
ylabel('Amplitude');
title('Signal periodogram calculated on 512 points');

0 0.1 0.2 0.3 0.4 0.5
10

�6

10
�4

10
�2

10
0

10
2

10
4

normalized frequency

A
m

pl
itu

de

Signal periodogram calculated on 512 points

Figure 10.5. Signal spectral analysis using the periodogram

The peak corresponding to the high amplitude signal spectral component is
clearly detected by the periodogram. However, as this estimate is not consistent the
identification of the weak signal spectral component is much more difficult.

Therefore, the periodogram is unable to detect weak sinusoids in white noise due
to its large variance.

Averaged periodogram

K=128;
[PSD_averaged_periodogram,frequency]=averaged_periodogram(signal,K);
semilogy(frequency,PSD_averaged_periodogram,'b');

Power Spectral Density Estimation 263

xlabel('normalized frequency');
ylabel('Amplitude');
title('Signal averaged periodogram calculated for N=512 and L=4');

0 0.1 0.2 0.3 0.4 0.5
10

�4

10
�3

10
�2

10
�1

10
0

10
1

10
2

normalized frequency

A
m

pl
itu

de

Signal averaged periodogram calculated for N=512 and L=4

Figure 10.6. Signal spectral analysis using the averaged periodogram

In the case of the averaged periodogram, for the same spectral resolution, (K/L
constant), increasing the number of averaged sequences L allows the noise variance
to be reduced and thus the two sinusoids to be detected.

EXERCISE 10.4.

Repeat exercise 10.3 using the modified periodogram to perform the signal
spectral analysis. Use a Hamming and then a Blackman window, with K = 512
and L = 4. Compare this result to those obtained previously. Use the algorithm from
exercise 10.2 to calculate the signal modified periodogram.

K=128;
weighting_window=[hamming(K)];
weighting_window=weighting_window*sqrt(K/sum(weighting_window.*weighting_wind
ow));
weighting_window=weighting_window.';
[PSD_modified_periodogram,frequency]=modified_periodogram(signal,K,weighting_
window);

264 Digital Signal Processing using MATLAB

figure;
semilogy(frequency,PSD_modified_periodogram,'b');
hold on
weighting_window=[blackman(K)];
weighting_window=weighting_window*sqrt(K/sum(weighting_window.*weighting_wind
ow));
weighting_window=weighting_window.';
[PSD_modified_periodogram,frequency]=modified_periodogram(signal,K,weighting_
window);
semilogy(frequency,PSD_modified_periodogram,'r:');
xlabel('normalized frequency');
ylabel('Amplitude')
title('Signal modified periodogram calculated for N=512 and L=4');
legend('Hamming window','Blackman window')

0 0.1 0.2 0.3 0.4 0.5
10

�4

10
�3

10
�2

10
�1

10
0

10
1

10
2

normalized frequency

A
m

pl
itu

de

Signal modified periodogram calculated for N=512 and L=4

Hamming window
Blackman window

Figure 10.7. Signal spectral analysis using the modified periodogram

The two peaks corresponding to the two spectral components are detected again.
However, compared to the averaged periodogram they are larger in this case due to
the mainlobe width of the weighting window. This can be a shortcoming for the
frequency estimation of the detected peaks, but it can be also useful when these
frequencies are not harmonic (exercise 10.8).

Power Spectral Density Estimation 265

EXERCISE 10.5.

Consider the filter having the transfer function given below and driven by a zero-
mean white Gaussian noise with the variance 2σ = 0.25:

1 2
1()

1 0.5 0.75
H z

z z− −=
+ + .

The goal of this exercise is to identify the AR process and to retrieve parameters
2σ , 1a and 2a corresponding to the data. Suppose that the model order is known

(2p =). Prove that the signal spectrum is proportional to the filter transfer function.

function [coefficients,sigma2]=parameter_AR(signal,order);
length_signal=length(signal);
r=zeros(order+1,1);
autocor=xcorr(signal,'unbiased');
[maximum,position]=max(autocor);
for index=1:order+1
 r(index,1)=autocor(position+index-1);
end;
Matrice_toeplitz=toeplitz(r);
parameters=inv(Matrice_toeplitz)*[1;zeros(order,1)];
coefficients=parameters/parameters(1);
sigma2=1/parameters(1);
zplane(1,coefficients.');

% Signal generation and filtering
noise=randn(1,2048)*0.5;
b=1; a=[1 0.5 0.75];
y=filter(b,a,noise); y=y.';

% The function defined above is now applied to estimate the AR
% parameters
[coef,sigma2]=parameter_AR(y,2);
title('Poles and zeros of a 2̂ n̂ d order AR process');

266 Digital Signal Processing using MATLAB

�1 �0.5 0 0.5 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

2

Real Part

Im
ag

in
ar

y
P

ar
t

Poles and zeros of a 2nd order AR process

Figure 10.8. Poles and zeros of a 2nd order AR process

The following MATLAB code estimates the power spectral density of the
filtered signal:

order=2;PSD=0;
for nu=0:200
 denominator=1;
 for ind=1:order
 coefm=coef(ind+1,1)*exp(-2*pi*j*ind*nu/200);
 denominator=denominator+coefm ;
 end;
 PSD=[PSD sigma2/(abs(denominator).̂ 2)];
end;
nu=0:1/200:0.5;
plot(nu,PSD(1,1:length(nu)));
xlabel('normalized frequency');
ylabel('Amplitude');

It is clear from the figure below that the estimated PSD corresponds to the

transfer function of a filter having two complex poles i.e. a bandpass filter.

Power Spectral Density Estimation 267

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

normalized frequency

A
m

pl
itu

de

Figure 10.9. Estimated signal PSD using a 2nd order AR model

EXERCISE 10.6.
Generate a pure sinusoid with the frequency 50 Hz, sampled at 200 Hz (defined

on 4,096 samples). Plot its power spectral density estimated using an AR model.
Find out the order of this model using the AIC. Use the function parameter_AR
previously defined.

% Signal generation
sig_length=4096;
t=0:1/200:(sig_length /200)-1/200;
y=sin(2*pi*50*t);y=y.';

% Akaike's criterion
PSD=[];
FPE=zeros(1,10);
for order=1:10
 [coef,sigma2]=parameter_AR(y,order);
 FPE(1,order)=((sig_length+order)/(sig_length-order))*sigma2;
end
FPE(FPE<1e-10)=0;
[mini,position]=min(FPE);
selected_order =position;
% Estimation of the parameters of the AR model
[coef,sigma2]=parameter_AR(y,selected_order);

268 Digital Signal Processing using MATLAB

% Estimation of the signal PSD
for nu=0:200
 denominator=1;
 for ind=1:selected_order
 coefm= coef(ind+1,1)*exp(-2*pi*j*ind*nu/200);
 denominator=denominator+coefm ;
 end;
 PSD=[PSD sigma2/(abs(denominator).̂ 2)];
end;
nu=0:1/200:0.5;
PSD=PSD/max(PSD);
plot(nu,PSD(1,1:length(nu)));
xlabel('normalized frequency');
ylabel('Amplitude');

The estimated order is 2. The normalized frequency of the signal 50 / 200 0.25=
is perfectly detected.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

normalized frequency

A
m

pl
itu

de

Figure 10.10. Signal PSD estimated using an AR model

EXERCISE 10.7.
a. Generate a mixture of 6 complex exponentials having unit amplitudes and the

frequencies 100 Hz, 150 Hz, 175 Hz, 200 Hz, 375 Hz and 400 Hz during 15 ms.
Add a DC component of 1 V and a white Gaussian noise. Sample this signal at 1
KHz. Calculate the number of samples and the spectral resolution corresponding to
the considered observation time.

Power Spectral Density Estimation 269

b. Perform the spectral analysis of the generated signal using the Fourier
transform and the MUSIC algorithm. Use a number of calculation points 10 times
higher than the number of samples and a large SNR (100 dB for example). For the
Fourier transform use successively the rectangular, Bartlett and Blackman windows.

c. Consider the same signal, but containing only 5 complex exponentials having
the frequencies 100 Hz, 150 Hz, 200 Hz, 350 Hz and 400 Hz. Perform again the
spectral analysis of this signal using the Fourier transform and the algorithms
MUSIC, root-MUSIC and ESPRIT for two SNR: 100 dB and 30 dB.

d. Perform a statistical study on the estimation of one spectral component with
the frequency 250 Hz be means of the four methods previously used. Consider that
the SNR sweeps the range from 0 dB to 30 dB and plot the variance variation of
each obtained estimate over 1,000 outcomes.

a.

The number of samples and the spectral resolution corresponding to the given
observation time are obtained as follows:

[] 31 1 0.015 10 16s obs sN T F= + ⋅ = + ⋅ =

1 1 66.66 Hz
0.015obsT

νΔ = = =

Consequently, most frequency gaps between the signal spectral components are
less than νΔ .

Fs=1e3; time_obs=1.5e-2; comp_cont=1; snr=100;
freq_vect=[100 150 175 200 375 400]; amp_vect=[1 1 1 1 1 1];
freq_res=1/time_obs
N=1+round(time_obs*Fs); p=round(2*N/3); Np=100*N;
time_vect=linspace(0,time_obs,N); sig_util=zeros(N,1);
for k=1:length(amp_vect)
sig_util=sig_util+amp_vect(k)*exp(j*2*pi*freq_vect(k)*time_vect');
end
sig_util=sig_util+comp_cont; noise=randn(N,1)+j*randn(N,1);
pb=norm(abs(noise))̂ 2/N; ec_type=(pb̂ -0.5)*10̂ (-snr/20);
sig=sig_util+ec_type*noise;

b.

The following MATLAB code performs the spectral analysis of the generated
signal using the Fourier and MUSIC algorithms:

% Fourier transform based spectral analysis

270 Digital Signal Processing using MATLAB

sigrf=fftshift(abs(fft(sig.*hamming(N),Np)));
sigrf=sigrf-min(sigrf); sigrf=sigrf/max(sigrf);
% Estimation of the autocorrelation matrix
Rxx=zeros(p); J=fliplr(eye(p)); L=(N+1-p);
for k=1:N+1-p
 xv=sig(k:k+p-1); Rk=xv*xv'; Rxx=Rxx+Rk+J*conj(Rk)*J;
end
Rxx=Rxx/L;
% Autocorrelation matrix eigenanalysis
[vctp,valp]=eig(Rxx); valpv=abs(diag(valp));
[valpvs,idxvp]=sort(valpv); ld=flipud(valpvs);
idxvp=flipud(idxvp); vctps=vctp(:,idxvp);
% Estimation of the signal subspace dimension
ris=zeros(1,p-1); aic=zeros(1,p-1);
for m=1:p-1
 S=(sum(ld(m+1:p,1))/(p-m)).̂ (p-m); P=prod(ld(m+1:p,1));
 if P<1e-6; P=1e-6; end
 aic(m)=(N-p-2)*log(S/P)+m*(2*p-m);
 ris(m)=(N-p-2)*log(S/P)+.5*m*(2*p-m)*log(N-p-2);
end
[vmin,da]=min(aic);
[vmin,dr]=min(ris)
figure;plot(aic,'b--');
hold on;plot(ris,'r-')
xlabel('n');ylabel('Cost function value')
legend('AIC','MDL');grid
% Calculation of the projection operator on the noise subspace
vctpb=vctps(:,dr+1:p);
mb=vctpb*vctpb';
% Spectral analysis by means of the MUSIC algorithm
sigrm=zeros(Np,1);
xv=[0:Np-1]/Np; yv=[0:p-1];
am=xv'*yv;
am=exp(-j*2*pi*am);
matr_prod=am*mb*am';
vect_prod=diag(matr_prod);
sigrm=abs(1./vect_prod);
sigrm=fftshift(log10(abs(sigrm)));
sigrm=sigrm-min(sigrm); sigrm=sigrm/max(sigrm);
% Plotting the results
freqv=linspace(-Fs/2,Fs/2,Np+1);
figure
hold on
plot(freqv(1:Np),sigrf,'b--');
plot(freqv(1:Np),sigrm,'r-')
axis([-Fs/2 Fs/2 0 1.1]); grid
xlabel('Frequency [Hz]');
ylabel('Normalized amplitude')
legend('Fourier','MUSIC')

Power Spectral Density Estimation 271

The Fourier transform based spectral analysis coded above makes use of a
rectangular weighting window. To obtain the other required results on the first line
“boxcar” must be replaced by “barlett” and then by “Blackman”.

The spectral analysis results using the three types of weighting windows are
shown in the figure below together with the estimation of the signal subspace
dimension by means of the Akaike and Rissanen criteria. Note that the MUSIC
algorithm is able to separate spectral components much closer than the resolution
given by the inverse of the observation time.

1 2 3 4 5 6 7 8 9 10
�200

�150

�100

�50

0

50

100

150

n

C
os

t f
un

ct
io

n
va

lu
e

AIC
MDL

�500 �400 �300 �200 �100 0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Fourier
MUSIC

�500 �400 �300 �200 �100 0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Fourier
MUSIC

�500 �400 �300 �200 �100 0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Fourier
MUSIC

Figure 10.11. MUSIC algorithm and Fourier transform based spectral analysis results

c.

The signal generation and its spectral analysis using the Fourier transform and
the MUSIC algorithm are performed with the previous MATLAB codes. A
Hamming window is considered here for the Fourier transform based PSD estimate,
due to the good trade-off between the associated spectral and dynamic resolutions.

272 Digital Signal Processing using MATLAB

The MATLAB codes corresponding to the root-MUSIC and ESPRIT algorithms
are provided below. Only the 2N roots closest to the unit circle of the root-MUSIC
polynomial are plotted for the first of the two algorithms. In the same way, the N
eigenvalues of the Ψ matrix corresponding to the signal spectral components are
plotted for the second algorithm.

% Spectral analysis by means of the root-MUSIC algorithm
pol=zeros(1,2*p-1);
for k=dr+1:p
 vect=vctps(:,k);
 vect1=fliplr(vect');
 vect2=vect.';
 pol=pol+conv(vect1,vect2);
end
vr=roots(pol);
vra=abs(abs(vr)-1);
[vrs,idxs]=sort(vra);
vf=vr(idxs(1:2*dr));
vect_phase=angle(vf);
freq_est_rm=Fs*vect_phase/(2*pi)

% Spectral analysis by means of the ESPRIT algorithm
Vs=vctps(:,1:dr);
Vs_sup=Vs(1:end-1,:);
Vs_inf=Vs(2:end,:);
F=pinv(Vs_inf)*Vs_sup;
[T,Tvlp]=eig(F);
Mf=inv(T)*inv(F)*T;
vect_phase=angle(diag(Mf));
freq_est_ep=Fs*vect_phase/(2*pi);

% Plotting the results
figure
hh=zplane(diag(Mf),diag(Mf));
set(hh,'MarkerEdgeColor','r','MarkerSize',[10])
title('ESPRIT algorithm eigenvalues')
figure
hh=zplane(vf,vf);
set(hh,'MarkerEdgeColor','r','MarkerSize',[10])
title('Useful roots of the root-MUSIC polynomial')

Power Spectral Density Estimation 273

1 2 3 4 5 6 7 8 9 10
�250

�200

�150

�100

�50

0

50

100

150

n

C
os

t f
un

ct
io

n
va

lu
e

AIC
MDL

�500 �400 �300 �200 �100 0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Fourier
MUSIC

�1 �0.5 0 0.5 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1 2

22

2

2
2

22

2

2

Real Part

Im
ag

in
ar

y
P

ar
t

Useful roots of the root�MUSIC polynomial

�1 �0.5 0 0.5 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

ESPRIT algorithm eigenvalues

Figure 10.12. Comparison of Fourier transform based
and super-resolution spectral analysis methods

For a SNR of 30 dB, the results are plotted on Figure 10.13. Compare these
results to those previously obtained and notice the modifications which occur in this
case.

274 Digital Signal Processing using MATLAB

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

n

C
os

t f
un

ct
io

n
va

lu
e

AIC
MDL

�500 �400 �300 �200 �100 0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
or

m
al

iz
ed

 a
m

pl
itu

de

Fourier
MUSIC

�1 �0.5 0 0.5 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Useful roots of the root�MUSIC polynomial

�1 �0.5 0 0.5 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

ESPRIT algorithm eigenvalues

Figure 10.13. Comparison of Fourier transform based and super-resolution
spectral analysis methods for a SNR value of 30 dB

d.

The code which allows this statistical study to be performed is provided below:

snr_dbv=[0:30]; Nr=1000;
Fs=1e3; time_obs=1.5e-2;
comp_cont=0; freq0=250;
N=1+round(time_obs*Fs);
p=round(2*N/3); Np=100*N;
freqv=linspace(-Fs/2,Fs/2,Np+1);
matr_fqf=zeros(Nr,length(snr_dbv));
matr_fqm=zeros(Nr,length(snr_dbv));
matr_fqe=zeros(Nr,length(snr_dbv));
matr_fqr=zeros(Nr,length(snr_dbv));
for k1=1:length(snr_dbv)
 snr=snr_dbv(k1)
 for k2=1:Nr
 % Signal generation
 time_vect=linspace(0,time_obs,N);

Power Spectral Density Estimation 275

 sig_util=exp(j*2*pi*freq0*time_vect');
 noise=randn(N,1)+j*randn(N,1);
 pb=norm(abs(noise))̂ 2/N;
 ec_type=(pb̂ -0.5)*10̂ (-snr/20);
 sig=sig_util+ec_type*noise;
 % Estimation of the autocorrelation matrix
 Rxx=zeros(p); J=fliplr(eye(p)); L=(N+1-p);
 for k=1:N+1-p
 xv=sig(k:k+p-1);
 Rk=xv*xv';
 Rxx=Rxx+Rk+J*conj(Rk)*J;
 end
 Rxx=Rxx/L;
 % Autocorrelation matrix eigenanalysis
 [vctp,valp]=eig(Rxx); valpv=abs(diag(valp));
 [valpvs,idxvp]=sort(valpv); ld=flipud(valpvs);
 idxvp=flipud(idxvp); vctps=vctp(:,idxvp); dr=1;
 % Calculation of the projection operator
 vctpb=vctps(:,dr+1:p); mb=vctpb*vctpb';
 % Fourier transform based spectral analysis
 sigrf=fftshift(abs(fft(sig.*hamming(N),Np)));
 sigrf=sigrf-min(sigrf); sigrf=sigrf/max(sigrf);
 % Spectral analysis by means of the MUSIC algorithm
 sigrm=zeros(Np,1); xv=[0:Np-1]/Np; yv=[0:p-1];
 am=xv'*yv; am=exp(-j*2*pi*am);
 matr_prod=am*mb*am';
 vect_prod=diag(matr_prod);
 sigrm=abs(1./vect_prod);
 sigrm=fftshift(log10(abs(sigrm)));
 sigrm=sigrm-min(sigrm); sigrm=sigrm/max(sigrm);
 % Spectral analysis by means of the root-MUSIC algorithm
 pol=zeros(1,2*p-1);
 for k=dr+1:p
 vect=vctps(:,k);
 vect1=fliplr(vect'); vect2=vect.';
 pol=pol+conv(vect1,vect2);
 end
 vr=roots(pol); vra=abs(abs(vr)-1);
 [vrs,idxs]=sort(vra);
 vf=vr(idxs(1:dr)); vect_phase=angle(vf);
 freq_est_rm=Fs*vect_phase/(2*pi);
 % Spectral analysis by means of the ESPRIT algorithm
 Vs=vctps(:,1:dr); Vs_sup=Vs(1:end-1,:); Vs_inf=Vs(2:end,:);
 F=pinv(Vs_inf)*Vs_sup; [T,Tvlp]=eig(F);
 Mf=inv(T)*inv(F)*T; vect_phase=angle(diag(Mf));
 freq_est_ep=Fs*vect_phase/(2*pi);
 % Estimation of the signal frequency
 [valmx,idxmx]=max(sigrm); matr_fqm(k2,k1)=freqv(idxmx);
 [valmx,idxmx]=max(sigrf); matr_fqf(k2,k1)=freqv(idxmx);
 matr_fqe(k2,k1)=freq_est_ep;

276 Digital Signal Processing using MATLAB

 matr_fqr(k2,k1)=freq_est_rm;
 end
end
var_vectf=var(matr_fqf);
var_vectm=var(matr_fqm);
var_vectr=var(matr_fqr);
var_vecte=var(matr_fqe);
% Plotting the results
figure
plot(snr_dbv,moy_vectf,'-rx',snr_dbv,moy_vectm,'-bo',snr_dbv,moy_vectr,'-
k<',snr_dbv,moy_vecte,'-gs')
xlabel('SNR [dB]'); ylabel('Frequency [Hz]');
legend('Fourier','MUSIC','root-MUSIC','ESPRIT'); grid
figure
plot(snr_dbv,10*log10(var_vectf),'-rx',snr_dbv,10*log10(var_vectm),'-
bo',snr_dbv,10*log10(var_vectr),'-k<',snr_dbv,10*log10(var_vecte),'-gs')
xlabel('SNR [dB]'); ylabel('Variance [dB]');
legend('Fourier','MUSIC','root-MUSIC','ESPRIT'); grid

The results of this statistical study are shown in the figures below. The obtained
curves demonstrate that the statistical behavior of the four estimates is similar for
SNR larger than 2 dB.

The variances of the root-MUSIC and ESPRIT estimates are slightly lower than
the ones for the two other estimates due to the exact calculation of the signal
frequency, while the accuracy of the Fourier and MUSIC methods is limited by the
number of considered calculation points. This phenomenon is much less visible for
low signal-to-noise ratios, where the difference introduced by the calculation
accuracy is small compared to the variance due to the noise.

0 5 10 15 20 25 30
�15

�10

�5

0

5

10

15

20

25

30

35

SNR [dB]

V
ar

ia
nc

e
[d

B
]

Fourier
MUSIC
root�MUSIC
ESPRIT

Figure 10.14. Statistical behavior of some spectral analysis methods

Power Spectral Density Estimation 277

10.3. Exercises

EXERCISE 10.8.
Consider again the signal from exercise 10.3; calculate its modified periodogram

(using the algorithm already proposed) for different windows and conclude.

EXERCISE 10.9.

Generate the mixture of the two sinusoids below, whose frequencies are not
harmonic. Add a zero-mean white Gaussian noise with the variance 0.031.

1st sinusoid: 2nd sinusoid:
frequency = 25.4 Hz frequency = 51.3 Hz
amplitude = 1 amplitude = 0.01

Calculate the periodogram of this signal for the following signal lengths: K =
256, 512, 1,024, and identify the harmonic frequencies as a function of K ?

Then test the averaged periodogram for { K =2,048, L =8}, { K =4,096, L =16}
and { K =4,096, L =8}. Which are, in each case, the harmonic frequencies? Do they
depend on K ? Comment on these results and highlight the spectral leakage
phenomenon. Finally, apply the modified periodogram for different windows and
conclude.

EXERCISE 10.10.

Consider again the signal previously generated. Plot its power spectral density
using a parametric spectral analysis (assume an AR model for the signal and find out
its order – see exercise 10.5). Compare the estimated PSD with that obtained using
the averaged and the modified periodogram (see exercise 10.2).

EXERCISE 10.11.

Consider an ARMA(2,2) model having the following transfer function:

()
2

1 2
1 0.9025

1 0.5562 0.81
z

H z
z z

−

− −
+=

− +

driven by a zero-mean white Gaussian noise with the variance 1. Calculate and plot
the corresponding power spectral density (dB scale).

278 Digital Signal Processing using MATLAB

EXERCISE 10.12.

Consider a white noise filtered with a 1st order recursive filter, characterized by
the following difference equation:

() 0.9 (1) ()y k y k x k− − =

The output signal is filtered again with a similar filter having the coefficient 0.8.
Find out the power spectral density of the second filter output signal. Compare the
simulation result to the theoretical calculation.

What is the variance of the white Gaussian noise mean, with 2 1nσ = , estimated
from 100K = samples?

(answer: 2
ˆ 0.01

nmσ =)

The true value belongs to the interval []ˆ ˆ0.3, 0.3b bm m− + with the probability
0.9973. Write a MATLAB code to retrieve this result from a large number of
simulations.

Chapter 11

Time-Frequency Analysis

11.1. Theoretical background

11.1.1. Fourier transform shortcomings: interpretation difficulties

The Fourier transform is involved in a wide range of signal processing
applications. However, despite its rigorous mathematical definition it may lead to
some physical interpretation difficulties. It is, for example, clear from its definition
that the evaluation of a spectrum value X(ν) requires the knowledge of all signal
history, from − ∞ to + ∞. In the same way, the signal value at any time t is expressed
by the inverse Fourier transform as a superposition of an infinite number of complex
exponentials, i.e. eternal waves perfectly delocalized in the time domain. If this
mathematical point of view is able to reveal interesting signal properties in many
cases, it may also be sometimes rather inappropriate.

This is typically the case with transient signals, which are known to be bounded
in time. The Fourier analysis can provide this image of the signal, but in a somehow
artificial manner, i.e. as a sum of an infinite number of virtual sinusoids which
cancel each other. Consequently, we obtain a “dynamic” zero on a time interval
where the signal is vanishing, while from a physical point of view this should be a
“static” zero, since the signal does not exist on this interval. Furthermore, the
Fourier analysis expresses a finite energy signal as a linear superposition of infinite
energy basic signals.

These physical interpretation difficulties suggest that the Fourier transform
should be replaced in these cases by other signal analysis tools, such as those
presented in this chapter. The latest are able to take into account both the signal
spectral description and its time localization.

280 Digital Signal Processing using MATLAB

11.1.2. Spectrogram

The main idea of the spectrogram is to analyze the signal using a sliding
window. The window length is chosen so that the signal may be considered to be
almost stationary inside. In this case, its spectral energy density can be evaluated
using the Fourier transform over each time interval obtained by shifting the sliding
window. The spectrogram is thus defined in the following form:

21 2

0
(,) () ()

N j vn

n
S k v h n x k n e π− −

=
= + [11.1]

It is obviously calculated using the FFT for the frequencies /iv i N= .

The short-time Fourier transform (STFT) or its square magnitude (spectrogram)
consider therefore a non-stationary signal as a concatenation of stationary signals
within the sliding window h(u). Thus, the time resolution of this analysis is given by
the window size, while the spectral resolution is proportional to its inverse. This
means that it is not possible to increase the two resolutions simultaneously.

For highly non-stationary signals a fine time resolution is required; thus, window
h(u) should be short in this case and the spectral resolution will be low. If a fine
spectral resolution is required, window h(u) should be large, which reduces the time
resolution.

In order to obtain the best trade-off between the spectral resolution and the time
resolution, Gabor proposed the following transform:

()(,) () () exp 2G t x h t j dυ θ θ πνθ θ= − − [11.2]

with: ()2() exp (0)h θ λθ λ= − > [11.3]

Note that the time-shifted function)(th −θ is a sliding window. The term
()() exp 2h t jθ πνθ− − can be seen as the impulse response of a frequency selective

filter at ν. Therefore, Gabor’s transform can be considered as a bank of similar
filters, shifted in the frequency domain.

According to the Heisenberg-Gabor uncertainty principle, the product of time
and frequency resolutions θ νΔ ⋅ Δ is minimal if function ()h θ is Gaussian. In this
case, minimum surface cells are obtained in the time-frequency plane. However, the
two resolutions are still limited and do not adapt to the signal variation.

Time-Frequency Analysis 281

11.1.3. Time-scale analysis – wavelet transform

The wavelet transform (WT) is an important evolution of the STFT as it makes
use of a sliding window, whose length tΔ is adapted to the analyzed spectral region,
so that the ratio /ν νΔ is kept constant. A wavelet is the shortest vibration in a
given frequency range, so it is very concentrated in time or in frequency.

The basic idea is to decompose a signal on a set of functions, obtained by
shifting and scaling a single function)(θψ , called the mother wavelet. The set of
functions are therefore expressed in the form:

−
a

t
a

θψ1
 [11.4]

The time-scale transform is defined as follows:

1(,) () t
WT t a x d

aa
θθ ψ θ−= [11.5]

It may also be seen as a bank of filters, whose selectivity depends on the
parameter a, so that the product tνΔ ⋅ Δ has a minimum but constant value.

The time-scale analysis (TSA) can be linked to the time-frequency analysis
(TFA) by the following relationship:

(,) (, /)TFA t TSA t aν ν= [11.6]

Note:
a. It is possible to reconstruct the signal as the sum of its projections provided

that the mother wavelet meets the admissibility constraint:

= 0)(dttψ [11.7]

b. ()tψ should be selected so that its Fourier transform { } ˆ() ()TF tψ ψ ν= meets

the following constraints:
2

0

ˆ ()
d

ψ ν
υ

ν

+∞
< ∞ and ˆ ()ψ ν is small enough in the

neighborhood of ν = 0;

c. the Gabor functions define a wavelet family, but the Gabor transform is very
different from the wavelet analysis;

d. the wavelet transform is a “multiresolution” analysis in time and frequency.

282 Digital Signal Processing using MATLAB

Although it does not make use of the Fourier transform, the time and spectral
resolutions also have inverse variations. However, compared to the STFT the two
resolutions are not the same over the entire time-frequency plane:

− in the case of transient or localized structures, the wavelet transform will be
concentrated essentially in the small scales domain which are able to highlight signal
details; however, since these small scales correspond to an analyzing wavelet of
reduced time support, the associated frequency support is large and the spectral
resolution is low;

− in the other sense, a spectral resolution can be increased by only applying a
long analyzing wavelet, i.e. large observation scales; a spectral resolution gain is
then obtained, but it is paid for by the reduction of the time resolution.

Similar to the spectrogram, a filter bank interpretation of the wavelet transform is
also possible. The signal is analyzed using a set of non-uniform filters, each of them
being obtained by a homothetic transformation of a single bandpass filter.

This is a constant-Q filtering, which means that all filters have the same relative
passband, defined as the ratio between the filter passband and its central frequency.
Thus, the larger the frequencies corresponding to the analyzed scale, the lower the
spectral resolution.

In order to insure a parsimonious signal representation and to be able to perfectly
reconstruct the signal from its decomposition, Mallat and Meyer proposed in 1989
an effective and flexible tool, called multiresolution analysis, which has led to many
applications so far.

It aims at approximating a signal f(t) by its projections on a set of L2(R)
subspaces, denoted by {Vm}m∈Z, so that:

a.)]([)]([Proj)(tfPtftf LV
L

L
== is obtained from f(t) after a successive

removal of its details { } 1..[()]m m LQ f t = ;

b. the original signal f(t) can be completely recovered from its approximation
)]([tfPL and all the details, which have been successively removed.

More precisely, the multiresolution analysis performs the signal decomposition
using a set of approximation and detail coefficients, corresponding to the different
scales. These coefficients are obtained by means of two mirror filters (lowpass and
highpass), denoted by h(n) and g(n) respectively, according to the decomposition
tree shown in Figure 11.1.

Time-Frequency Analysis 283

At each step, approximation and detail coefficients are obtained by filtering the
signal approximation from the previous level with the two filters. The signal is
therefore analyzed with different resolutions, which explains the name of the
method.

Figure 11.1. Multiresolution analysis decomposition

The signal is analyzed at low resolution with large wavelets and a few
coefficients, in order to obtain a rough approximation. It is analyzed at higher
resolutions, using many narrow wavelets in order to extract its details. This is why
the wavelets may also be seen as a “mathematical microscope”. In fact, when the
wavelets are compressed the magnification of this microscope gets higher and it is
able to reveal finer and finer signal details.

The analysis processing flow is reversible and leads to a dual synthesis
algorithm. It allows the signal approximation corresponding to a given resolution
level to be obtained from the approximation and the details associated with the
previous resolution level.

Compared to the analysis algorithm, which consists of successive filtering-
decimation steps, the synthesis algorithm performs an interpolation followed by the

284 Digital Signal Processing using MATLAB

signal filtering at each step. The flowchart of the analysis and synthesis algorithms is
illustrated in Figure 11.2.

It can be seen that the two algorithms are implemented as a series connection of
a similar processing cell. In the case of the analysis algorithm these cells, denoted by
A, contain the two filters H and G, and a decimation operator, which downsamples
the signal by 2.

The synthesis processing cells, denoted by S, first perform an interpolation of the
input (a zero is added between any successive samples), then filter it using the
transposed versions of H and G. These filters are denoted by H' and G' and are
defined so that: [] []'h n h n= − and [] []'g n g n= − .

Figure 11.2. Multiresolution analysis and synthesis flowchart

11.1.4. Wigner-Ville distribution

This non-stationary signal analysis tool was introduced in 1948 by Ville.
Actually, it represents an energy distribution and should be compared to the
spectrogram or the scalogram rather than to the STFT or the wavelet transform. The

Time-Frequency Analysis 285

Wigner-Ville distribution (WVD) belongs to a more general distribution class,
known as Cohen’s class.

The main idea of this transformation is to measure the local symmetry of a signal
around any point of the time-frequency plane. It does not suppose any a priori signal
local stationarity.

The Wigner-Ville distribution is defined as follows, for the finite energy
continuous-time signals:

2(,) *
2 2

jt x t x t e dπνττ τρ ν τ
∞

−

−∞
= + − [11.8]

while for the discrete-time signals it takes the form:

4(,) 2 () *() j n

n
k x k n x k n e πνρ ν

+∞ −

=−∞
= + − [11.9]

It is clear from the above equations that the WVD is a non-linear transformation.

The term x(k+n)x*(k-n) is an instantaneous correlation corresponding to the time
delay 2n and measures the signal symmetry around instant k. Its Fourier transform is
thus considered (abusively, as it will be shown later) as a time-frequency energy
distribution.

Properties

a. The WVD is real since −+ ∗

22
ττ

txtx is an even function of .τ

b. Energy conservation:

2(,) ()t dtd x t dtρ ν ν
∞ ∞ ∞

−∞ −∞ −∞
= [11.10]

1/ 4 2

1/ 4
(,) ()

k k
k v dv x kρ

∞ ∞

=−∞ =−∞−
= [11.11]

The integration limits ()1/ 4, 1/ 4− + result from the downsampling by 2
performed when calculating the correlation term x(k+n)x*(k-n). This calculation
supposes that there is no spectral aliasing, i.e. that the spectrum ()X ν of x(k) is
confined within the normalized frequency band ()1/ 4, 1/ 4− + .

286 Digital Signal Processing using MATLAB

c. The following equalities are valid for all ν ∈ R :

2 2(,) () , (,) ()
k

t dt X k Xρ ν ν ρ ν ν= = [11.12]

1/ 42 2

1/ 4
(,) () , (,) ()t d x t k d x kρ ν ν ρ ν ν

+

−
= = [11.13]

d. The WVD preserves signal time and frequency supports.

e. The WVD of an analytic signal z(t) associated with x(t) is expressed in the
form:

2(,) *
2 2

j
z t z t z t e dπνττ τρ ν τ−= + − [11.14]

This allows the signal instantaneous frequency f(t) to be defined as indicated
below:

(,)
()

(,)
z

z

t d
f t

t d
νρ ν ν
ρ ν ν

= [11.15]

f. The WVD is a reversible transform.

Nevertheless, the WVD also leads to some interpretation difficulties. In fact, it
may have negative values, which are not compatible with an energy density. It
produces interference terms between signal components, due to its non-linearity.

Thus, a point 1 1(,)t ν belonging to the WVD of the signal component x1 interacts
with a point 2 2(,)t ν belonging to the WVD of the signal component x2 and creates

an interference located in () (){ }1 2 1 2/ 2, / 2t t ν ν+ + . The interference amplitude

(,)I t ν meets the following constraint:
1 2

(,) 2 sup (,) sup (,)x xI t t tν ρ ν ρ ν≤ .

By construction, the interferences have an oscillating nature. The oscillations
occur across the axis linking the centers of

1
(,)x tρ ν and

2
(,)x tρ ν . Their period is

equal to the inverse of the distance between the two centers.

Time-Frequency Analysis 287

11.1.5. Smoothed WVD (SWVD)

The two main problems of the WVD are therefore the negative values and the
interference terms. An interesting solution for facilitating its interpretation is to
apply a smoothing operator in the time-frequency plane. In fact, this operation has
little effect on signal components, but it highly attenuates the interference terms
because of their oscillating nature.

The time-frequency smoothing leads to a much more readable distribution, but
this gain is paid for by the failure of some theoretical properties of the WVD
(marginal densities and instantaneous frequency).

In practice, the use of a separable time-frequency smoothing window is
preferred. In the continuous-time case this results in:

(,) () ()F t g t Hν ν= with (,) 1F t dtdν ν = [11.16]

The SWVD is defined as follows:

2

(,) (,) (,)

* () ()
2 2

x

j w

SWVD t w F t w dwd

x x g t H w e dwd dπ τ

ν ρ θ θ ν θ

τ τθ θ θ ν θ τ

∞ ∞

−∞ −∞
∞ ∞ ∞

−

−∞ −∞ −∞

= − −

= + − − −

 [11.17]

Finally, we obtain:

2(,) * () ()
2 2

j
xSWVD t x x g t h e d dπνττ τν θ θ θ τ θ τ

∞ ∞
−

−∞ −∞
= + − − [11.18]

It can be readily understood from the above equation that the WVD of a signal
x(t) is separately smoothed in time and frequency. The smoothing characteristics can
thus be independently controlled along the two axes, time and frequency.

The frequency domain smoothing, obtained using sliding window h, is useful for
removing the interferences which occur along the time axis. The time domain
smoothing, performed by the filter with the impulse response g, is effective against
the interferences which occur along the frequency axis.

Many other time-frequency distributions are available in the Cohen’s class.
Compared to the WVD they differ by the form of the kernel defining the smoothing
operators in the time-frequency domain.

288 Digital Signal Processing using MATLAB

11.2. Solved exercises

EXERCISE 11.1.
A chirp signal, whose instantaneous frequency linearly sweeps the band between

f1 and f2, is expressed as follows:

[]1 0() sin (2 2)s t f t tπ πβ= + + Φ

with 2 1() /(2)f f PulseLengthβ = − , Pulselength being the signal duration.

a. Generate this signal using a MATLAB code for Φ0 = 0.

b. Plot the generated signal and its power spectral density.

c. It is difficult to obtain a complete image about the signal structure from these
partial representations. In fact, they are not able to clearly indicate the modulation
parameters or the time evolution of the signal spectral content. This information can
be easily retrieved in the time-frequency plane. Illustrate this capability of the time-
frequency distributions using the spectrogram for example.

a.

% Generation of a linear frequency modulated signal
f1=2000; f2=8000;
pulselength=0.025;
Fs=20000; % Sampling frequency
% Warning: Fs should verify the Nyquist constraint: Fs>2*max(f1,f2)
t=(0:1/Fs:pulselength);
beta=(f2-f1)/(2*pulselength);
chirp1=sin(2*pi*(f1+beta*t).*t);
% Another way to generate the chirp signal
chirp2 = vco(sawtooth((2*pi/pulselength)*t,1),[f1/Fs,f2/Fs]*Fs,Fs);
% chirp1 and chirp2 are similar up to a phase term

b.

figure; clf;
subplot(211)
plot(t,chirp1);
xlabel('Time [s]');
ylabel('Amplitude');
title('Time variation of a chirp signal')
C=fftshift(abs(fft(chirp1)).̂ 2);
lc=length(chirp1); mc=lc/2;
freq=(-mc:1:mc-1)*Fs/lc;
subplot(212)
plot(freq,C);
xlabel('Frequency [Hz]');
ylabel('Power spectral density')

Time-Frequency Analysis 289

0 0.005 0.01 0.015 0.02 0.025
�1

�0.5

0

0.5

1

Time [s]

A
m

pl
itu

de

Time variation of a chirp signal

�1 �0.5 0 0.5 1

x 10
4

0

200

400

600

Frequency [Hz]

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

Figure 11.3. Time and frequency representations of a chirp signal

c.

Wsize = 32;
N_recover = 16;
NFFT = 1024;
[Cspec,F,T] = spectrogram(chirp1,hamming(Wsize),N_recover,NFFT,Fs);
figure;clf
imagesc(1000*T,F/1000,abs(Cspec).̂ 2);
colormap(flipud(hot))
axis xy
xlabel('Time [ms]');
ylabel('Frequency [kHz]');
title('Spectrogram of a chirp signal')

Notice that the linear variation of the signal frequency in time is clearly indicated
in the figure below.

290 Digital Signal Processing using MATLAB

Time [ms]

F
re

qu
en

cy
 [k

H
z]

Spectrogram of a chirp signal

5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

Figure 11.4. Time-frequency representation of a chirp signal

EXERCISE 11.2.
The spectrogram is the most traditional time-frequency analysis tool. However, it

requires a trade-off between the time and frequency resolutions. Illustrate this
spectrogram drawback using the procedure indicated below:

a. Generate a mixture of a Dirac pulse, which occurs at 26 ms, and a sinusoid
with the frequency of 1 kHz, which occurs between 5 and 16 ms.

b. Plot the spectrogram of this signal for different lengths of the analysis window
and comment on the results obtained.

a.

% Signal generation
Fs=10000; % Sampling frequency
f1=1000; Td=0.016;
t=[0.005:1/Fs:Td];
delta=0.005*Fs; % Time delay of 5ms between any couple of signal components
sig=[zeros(1,delta), sin(2*pi*f1*t), zeros(1,2*delta), 5*ones(1,1),
zeros(1,delta)];

b.

% Time-frequency analysis
figure; subplot(311);

Time-Frequency Analysis 291

plot(0:1e3*(1/Fs):1e3*(length(sig)/Fs-1/Fs),sig);
axis([0 31 -2 6]);
title('Analyzed signal');
xlabel('Time [ms]'); ylabel('Amplitude');
[S,F,T] = spectrogram(sig,hamming(64),0,128,Fs);
subplot(312);
imagesc(T*1000,F/1000,abs(S).̂ 2);
colormap(flipud(hot));
axis xy; axis([0 31 0 5])
xlabel('Time [ms]');
ylabel('Frequency [kHz]');
title('Spectrogram with a window length of 64 points'),
[S,F,T] = spectrogram(sig,hamming(16),0,128,Fs);
subplot(313);
imagesc(T*1000,F/1000,abs(S).̂ 2);
colormap(flipud(hot));
axis xy; axis([0 31 0 5])
xlabel('Time [ms]'); ylabel('Frequency [kHz]');
title('Spectrogram with a window length of 16 points')

Figure 11.5. Signal spectrogram calculated using two window lengths

The above figure clearly illustrates the influence of the analysis window length.
In fact, it can be seen that if the window is long, the time resolution is low. It is thus
difficult to verify that the sinusoid occurs between 5 and 16 ms, and the Dirac pulse
at 26 ms. However, the spectral resolution is high in this case and allows an accurate
identification of the sinusoid frequency.

292 Digital Signal Processing using MATLAB

A short analysis window increases the time resolution, but significantly reduces
the spectral resolution. Thus, a trade-off between the two resolutions is always
required in the case of the spectrogram.

EXERCISE 11.3.

The scalogram is also an energy distribution obtained by taking the square of the
continuous wavelet transform. Similarly to the spectrogram, it is also submitted to
the Heisenberg-Gabor inequality involving the time and frequency resolutions.

a. Write a MATLAB function to generate a Morlet wavelet, having as input
parameters its length, the central frequency and the sampling frequency.

b. The Morlet wavelet is defined by the following modulated Gaussian function:

()
21/ 42

0 0
0

1() exp exp(2)
2

t
h t t i t

t
π πν

−
= − −

Although this wavelet does not meet the zero-mean admissibility constraint, a
good approximation is however obtained for 4285.52 00 =tπν . Plot the Morlet
wavelet for different parameters.

c. Write a MATLAB function to calculate the wavelet transform, having the
following input parameters: sampling frequency, number of calculated points,
maximum frequency, number of octaves and number of voices per octave.

d. Generate the sum of a Dirac pulse and two truncated sinusoids and plot its
scalogram. Discuss the variation of the time and frequency resolutions over the
time-frequency plane.

a.

function [waveform,ts] = ond_mor(wavelet_length,analyzed_freq,FE)
W0=5.4285; ts = [-n2:1:n2]/FE;
t0=W0/(2*pi*analyzed_freq);
n2 = (wavelet_length-1)/2;
wave = exp(-i*2 *pi*ts*analyzed_freq);
EnvGauss = exp(-0.5*(ts/t0).̂ 2);
waveform=(pi*t0̂ 2)̂ (-1/4).* wave.* EnvGauss; % Morlet wavelet

b.

[waveform,ts] = ond_mor(129,10,100);
figure; clf; subplot(211); plot(ts,real(waveform));
hold on; plot(ts,abs(waveform),'r');
grid; title('Morlet wavelet')

Time-Frequency Analysis 293

c.

% FE: sampling frequency
% NB_TIME: number of calculated points for the wavelet transform
% FMAX: maximum frequency
% NB_OCT: number of octaves
% NB_VOICES: number of voices per octave

function [TOnd_SIG, analyzed_freqs] = morlet(SIG, FE, NB_TIME, FMAX, NB_OCT,
NB_VOICES)
a0 = 2; W0=5.4285;
Sigma0 = W0/(2*pi*FMAX/FE);
NB = length(SIG);
total = NB_OCT*NB_VOICES-1;
TOnd_SIG = zeros(NB_OCT*NB_VOICES,NB_TIME);
% Calculation of the associated analytic signal
% Adding zeros allows shifting the signal instead of shifting the wavelet
function
length_max = fix(7*Sigma0*a0̂ (total/NB_VOICES)/2)+1;
ze = zeros(1,length_max);
ze = ze + ze.*i;
s = [ze hilbert(SIG) ze];
analyzed_freqs=[];
PT = length_max + 1;
for compt = 0:total
 a = a0̂ (compt/NB_VOICES);
 wavelet_length = fix(7*a*Sigma0);
 if rem(wavelet_length,2)==0
 wavelet_length = wavelet_length + 1;
 end;
 analyzed_freq = FMAX/a;
 analyzed_freqs = [analyzed_freqs,analyzed_freq];
 [Wavelet, vectime] = ond_mor(wavelet_length,analyzed_freq,FE);
 for index = 1:NB_TIME,
 signal=s(PT-(wavelet_length-1)/2:PT + (wavelet_length-1)/2);
 val = sum(signal .* Wavelet)/sqrt(a);
 TOnd_SIG(compt + 1,index) = val;
 PT = PT + NB/NB_TIME;
 end
 PT = length_max + 1;
end

d.

% Signal generation
Fs=64000;
f1=500; f2=8000; T=0.01;
t=[0:1/Fs:T];
delta=0.005*Fs;
sig1=[zeros(1,delta), sin(2*pi*f1*t), zeros(1,2*delta)];
sig2=[zeros(1,delta), sin(2*pi*f2*t), zeros(1,2*delta)];

294 Digital Signal Processing using MATLAB

sig=sig1 + sig2;
sig(4*delta+1:4*delta+5) = 10*ones(1,5);
subplot(212); plot(sig);
title('Analyzed signal: sum of 2 sinusoids and a Dirac pulse')

�0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8
�3

�2

�1

0

1

2

3
Morlet wavelet

0 200 400 600 800 1000 1200 1400 1600

0

5

10

Analyzed signal: sum of 2 sinusoids and a Dirac pulse

Figure 11.6. Morlet wavelet (top) and analyzed signal (bottom)

NB_OCT=8; NB_VOICES=1;
[TOnd_SIG,freqs]=morlet(sig,Fs,length(sig),Fs/2,NB_OCT,NB_VOICES);
vec_time=[0:1/Fs:length(sig)/Fs]*1000; vec_freqs=[0:1:7];

figure; clf; colormap(gray);
imagesc(vec_time,vec_freqs,2*log10(abs(TOnd_SIG)));
axis xy; set(gca,'YTickLabels',250*2.̂ ([0:7]));
title('Scalogram of a Dirac pulse and 2 sinusoids');
xlabel('Time [ms]'); ylabel('Frequency [Hz]')

The two sinusoids seem to be detected with the same resolution. However, this is

not true since the vertical axis is logarithmic. Thus, the rectangle corresponding to
the sinusoid at 8 kHz covers a frequency band four times larger than the sinusoid at
500 Hz. As a general rule, the higher the frequency, the lower the spectral
resolution.

Time-Frequency Analysis 295

Scalogram of a Dirac pulse and 2 sinusoids

Time [ms]

F
re

qu
en

cy
 [H

z]

0 5 10 15 20 25

250

500

1000

2000

4000

8000

16000

32000

Figure 11.7. Scalogram of a Dirac pulse and two sinusoids

The wavelet transform of the Dirac pulse also illustrates the variation of the time
resolution with the frequency. Indeed, as can be seen in the above figure, the lower
the frequency, the better the time resolution. The wavelet transform is therefore well
suited for detecting transient signals, which exhibit a large frequency band during a
short period of time.

EXERCISE 11.4.

a. Calculate the Wigner-Ville distribution of a linear frequency-modulated
signal, and verify the following properties:

− the WVD is real,
− the WVD contains negative terms,
− the WVD conserves the signal time and frequency supports,
− it is possible to obtain 1D energy distributions (spectral density and

instantaneous power) as marginal distributions of the WVD.

b. Illustrate the main drawback of this distribution, related to the interference
terms, which occur if the signal contains two or more atoms. Generate a mixture of
three truncated sinusoids, two of them starting at time 1t , and having the frequencies

1f and 2f , and the third one starting at time 2t , and having the frequency 1f .

296 Digital Signal Processing using MATLAB

Plot the Wigner-Ville distribution of this signal and identify the time and
frequency interferences. Focus particularly on the following aspects:

− the interference localization at equal distance between the two time-frequency
atoms;

− the interference oscillating nature;
− the link between the interference frequency and the localization of the two

atoms.

a.

%% Signal generation
f1=2000; f2=8000; T=0.008;
Fs=20000; t=(0:1/Fs:T);
beta=(f2-f1)/(2*T); delta=0.001*Fs;
x=[zeros(1,delta), sin(2*pi*(f1+beta*t).*t), zeros(1,delta)];

function [W,Wr,fwv,x_axis]=wigner(sig,Fs)
N=length(sig)+rem(length(sig),2);
length_FFT=N; % Take an even value of N
if N~=length(sig); sig=[sig 0];end
length_time=length(sig);posi=length_time;
%% Generation of the associated analytic signal and adding zeros to allow
translating the sliding window, even on the signal borders
s=[zeros(1,length_time) hilbert(sig) zeros(1,length_time)];
s_conj=conj(s);
W=zeros(length_FFT,length_time);
tau1=linspace(0,N/2,N/2+1);
tau2=linspace(2,N/2,N/2-1);
%% Calculation of the Wigner-Ville distribution
for t=1:length_time,
 R(tau1+1,t)=(s(posi+tau1).*s_conj(posi-tau1)).';
 R(N+2-tau2,t)=conj(R(tau2,t)); posi=posi+1;
end
W=fft(R,length_FFT)/(2*length_FFT); Wr=real(W);
%%Plotting the results
x_axis=1e3*linspace(0,N*1/Fs,N);
fwv=linspace(0,Fs/2,N)/1e3;
f=linspace(0,Fs/2,N/2)/1e3;
Sig=abs(fft(sig));
figure; subplot(232)
plot(x_axis,sig); title('Time domain');
xlabel('time [ms]');
subplot(233); plot(f,Sig(1:N/2));
title('Spectral domain'); xlabel('frequency [kHz]');
subplot(234); plot(x_axis,Wr(N/2,:));
title('WVD frequency cross section'); xlabel('time [ms]');
subplot(231)
imagesc(x_axis,fwv,Wr); axis xy; colormap(flipud(hot))
title('Wigner-Ville distribution ');

Time-Frequency Analysis 297

xlabel('time [ms]'); ylabel('frequency [kHz]');
subplot(235); plot(x_axis,sum(W));
title('Marginal in time'); xlabel('time [ms]');
subplot(236); plot(fwv,(sum(W.')));
title('Marginal in frequency');
xlabel('frequency [kHz]');

% The function defined above is now applied to the signal
[W,Wr,x_axis]=wigner(x,Fs);

Figure 11.8. Wigner-Ville distribution results

Using the commands below it can be seen that the imaginary part of the WVD is
zero (actually it is equal to the calculation accuracy).

max(max(real(W)))

ans = 0.3959

max(max(imag(W)))

ans = 6.5943e-015

The signal modulation type can be readily identified from its signal time-

frequency representation. It is also clear from this image that the time support (1-9
ms) and the frequency support (2-8 kHz) are conserved.

298 Digital Signal Processing using MATLAB

The frequency cross-section highlights the negative values of the WVD. The last
property can be easily verified by comparing the time and frequency marginals and
the initial signal time and frequency representations.

Finally, the signal energy can be retrieved from its Wigner-Ville distribution as
indicated below:

sum(sum(W))

ans = 79.9730 - 0.0000i

sum(x.̂ 2)

ans = 79.9883

b.

% Signal generation
f1=1000; deltaf=3000;
f2=f1+deltaf;
Fs=round(3*f2);
T=0.01;t=[0:1/Fs:T];
deltat=0.01*Fs;
marge=20;
sig1=[zeros(1,marge),sin(2*pi*f1*t),zeros(1,T*Fs+deltat+marge)];
sig2=[zeros(1,marge),sin(2*pi*f2*t),zeros(1,T*Fs+deltat+marge)];
sig3=[zeros(1,marge + T*Fs+deltat),sin(2*pi*f1*t),zeros(1,marge)];
sig=sig1+sig2+sig3;

% WVD calculation
[W,Wr,fwv,x_axis]=wigner(sig,Fs); [N1,N2]=size(W);

Figure 11.9. Wigner-Ville distribution of the sum of three truncated sinusoids

Time-Frequency Analysis 299

figure
subplot(311)
middlef = round(((f1+f2)/2)/(Fs/2)*N1);
plot(x_axis,Wr(middlef,:))
xlabel('time [ms]');
title('Interference illustration')
subplot(312)
middlet = round(marge + T*Fs + deltat/2);
plot(fwv,Wr(:,middlet));
xlabel('frequency [kHz]');
subplot(313)
index = round(marge + T/2*Fs);
plot(fwv,Wr(:,index));
xlabel('frequency [kHz]')

0 5 10 15 20 25 30 35
�0.5

0

0.5

time [ms]

Interference illustration

0 1 2 3 4 5 6
�0.2

0

0.2

0.4

frequency [kHz]

0 1 2 3 4 5 6
�0.4

�0.2

0

0.2

frequency [kHz]

Figure 11.10. Interferences related to the Wigner-Ville distribution

Let us first have a look to the interferences which occur along the horizontal
axis, around 2,500 Hz. This is the mean of the frequencies corresponding to two of
the signal components (f1 = 1,000 Hz, f2 = 4,000 Hz). A cross-section along this axis
(first curve) shows the oscillating nature of these interferences. The oscillating
period is 0.33 ms, which is the inverse of the distance separating these two first
atoms (3 kHz).

300 Digital Signal Processing using MATLAB

The two signal components having the same frequency (1f), but delayed in time
with 20 ms, lead to time interferences. Their period is the inverse of this time-delay
(0.05 kHz) and can be read on the cross-section along the frequency axis (second
curve).

The third interference occurs between the two sinusoids with different
localizations both in time and frequency.

Finally, note that the sinusoids are not represented as straight lines in the time-
frequency plane. In fact, they are bordered by several evanescent parallel lines. The
third cross-section indicates a “sinc”-type variation of their amplitudes, which is the
consequence of the sinusoid truncation.

EXERCISE 11.5.

Perform the multiresolution analysis of a noisy sinusoid using the Haar wavelet.
Then verify that the synthesis reciprocal algorithm is able to reconstruct the signal
from the last approximation level and all the details. Demonstrate that it is possible
to denoise the signal by canceling some of its decomposition coefficients before the
reconstruction.

% MULTIRESOLUTION ANALYSIS (Haar wavelets)
% The number of points should be a power of 2, since the successive
approximations are downsampled with 2
function [approx,detail]=analyzehaar(data)
numpts= length(data);numrows= log2(numpts);
top = numpts; ctr= numrows;normalize=1/sqrt(2);
apx(numrows+1,:)=data;
while ctr >= 1
 n = numrows-ctr+1; % resolution level
 top = top/2; % decimation with 2
 shift = 2̂ n; shift1 = shift/2;
 for k = 1:top,
 jump = shift*(k-1);
 index1=jump+1; index2= jump+shift1+1;
 firsttrm=apx(ctr+1,index1);
 secndtrm=apx(ctr+1,index2);
 apx(ctr,index1) = normalize*(firsttrm+secndtrm);
 d(ctr,index1) = normalize*(firsttrm-secndtrm);
 for j = 0:(shift-1),
 if j < shift1,
 detail(ctr,index1+j) = d(ctr,index1);
 else
 detail(ctr,index1+j) = -d(ctr,index1);
 end
 approx(ctr,index1+j) = apx(ctr,index1);
 end
 end

Time-Frequency Analysis 301

 ctr = ctr-1;
end

%%% SYNTHESIS ALGORITHM
function sig=synthesehaar(approx,detail)
% The reconstruction is performed from the last approximation level and all
the successively removed details
[numrows,numpts]=size(detail);normalize=1/sqrt(2);
newsig=zeros(size(approx));
newsig(1,:)=approx(1,:);
for ctr=1:numrows
 n= numrows-ctr+1;top = numpts/(2̂ n);shift = 2̂ n;
 shift1 = shift/2;
 for k=1:top
 jump = shift*(k-1);index1=jump+1;index2= jump+shift1+1;
 firsttrm=newsig(ctr,index1);secndtrm=detail(ctr,index1);
 newsig(ctr+1,index1)=normalize*(firsttrm+secndtrm);
 newsig(ctr+1,index2)=normalize*(firsttrm-secndtrm);
 end
end
sig=newsig(size(newsig,1),:);

%%% Signal generation
clear; Fs=5000; wavelet_length=1024;
time=[1:1:wavelet_length]/Fs;
numpts=length(time);
data=sin(2*pi*25*time)+0.25*randn(1,wavelet_length);

%%% Analysis
[approx,detail]=analyzehaar(data);
%%% Reconstruction
newsig=synthesehaar(approx,detail);
%%% Signal denoising
selection=detail; selection(8:10,:)=zeros(3,numpts);
denoised_sig =synthesehaar(approx,selection);

%%% Plotting the results%%%%%%
figure; clf; zoom on
for plt = 1:size(detail,1),
 s=detail(plt,1:numpts);
 subplot(10,2,2*(plt-1)+1),plot(time,detail(plt,1:numpts));grid;
 axis([0 max(time) -1.2*max(abs(s)) 1.2*max(abs(s))])
 if (plt == 1),
 title('Detail');
 end;
 if (plt == 10);
 xlabel('time [s]');
 end
 end
for plt = 1:size(approx,1),
 s=approx(plt,1:numpts);

302 Digital Signal Processing using MATLAB

 subplot(10,2,2*plt),plot(time,approx(plt,1:numpts));grid
 axis([0 max(time) -1.2*max(abs(s)) 1.2*max(abs(s))])
 if (plt == 1),
 title('Approximation');
 end;
 if (plt == 10);
 xlabel('time [s]');
 end
end

0 0.05 0.1 0.15 0.2
�4
�2

0
2
4

Detail

0 0.05 0.1 0.15 0.2
�2

0
2

0 0.05 0.1 0.15 0.2
�5

0
5

0 0.05 0.1 0.15 0.2

�5
0
5

0 0.05 0.1 0.15 0.2
�4
�2

0
2
4

0 0.05 0.1 0.15 0.2

�1
0
1

0 0.05 0.1 0.15 0.2
�1

0
1

0 0.05 0.1 0.15 0.2

�0.5
0

0.5

0 0.05 0.1 0.15 0.2

�0.5
0

0.5

0 0.05 0.1 0.15 0.2
�1

0
1

time [s]

0 0.05 0.1 0.15 0.2
�0.5

0
0.5

Approximation

0 0.05 0.1 0.15 0.2

�2
0
2

0 0.05 0.1 0.15 0.2

�2
0
2

0 0.05 0.1 0.15 0.2
�5

0
5

0 0.05 0.1 0.15 0.2

�5
0
5

0 0.05 0.1 0.15 0.2
�5

0
5

0 0.05 0.1 0.15 0.2
�5

0
5

0 0.05 0.1 0.15 0.2

�2
0
2

0 0.05 0.1 0.15 0.2
�2

0
2

0 0.05 0.1 0.15 0.2
�2

0
2

time [s]

Figure 11.11. Multiresolution analysis of a noisy sinusoid

Time-Frequency Analysis 303

The approximation coefficients are related to the low frequencies and especially
to the sinusoid, unlike the detail coefficients, which are related to the signal high
frequency content. The last approximation level is a constant related to the signal
DC component. It can be verified that this constant is equal to
mean(data)*sqrt(2)̂ 10, which results from the sum of the lowpass Haar filter
coefficients (2).

figure;clf;zoom on;
subplot(311);plot(time,data);title('Original signal');
axis([0 max(time) -1.2*max(data) 1.2*max(data)])
subplot(312);plot(time,newsig);title('Reconstructed signal');
axis([0 max(time) -1.2*max(newsig) 1.2*max(newsig)])
subplot(313);plot(time,denoised_sig);
axis([0 max(time) -1.2*max(denoised_sig) 1.2*max(denoised_sig)])
title('Denoised signal');xlabel('time [s]')

0 0.05 0.1 0.15 0.2

�1

0

1

Original signal

0 0.05 0.1 0.15 0.2

�1

0

1

Reconstructed signal

0 0.05 0.1 0.15 0.2

�1

0

1

Denoised signal

time [s]

Figure 11.12. Signal denoising by multiresolution analysis

The signal reconstructed from the last level approximation and all the
successively removed details is the same as the original signal. The denoised signal
is not smoothed enough because the Haar wavelet is not appropriate for the
continuous signal analysis, unlike some more complex wavelets (Daubechies
wavelets for example). However, the Haar wavelet remains interesting for the
analysis of some pulse signals, such as those used in digital communications.

304 Digital Signal Processing using MATLAB

11.3. Exercises

EXERCISE 11.6.
Consider again the signal generated in exercise 11.4, whose WVD contains

interference terms. Write a MATLAB function to calculate the SWVD of this signal
and choose the appropriate length for windows h and g. Verify the effect of these
windows on the time and frequency resolutions. Note also the failure of the WVD
theoretical properties, such as the time and frequency support conservation.

Note: modify the loop of the function wigner (see exercise 11.4) using the code
lines below to obtain the new time-frequency distribution:

% Defining the windows
length_FFT=N;nh=N;NG=16;
g=hamming(2*NG+1)’;
h=hamming(nh);
% Variables initialization
ECH=t_s;inc=1; length_time=t_s/inc;
WX=zeros(length_FFT,length_time);
A=zeros(1,ng);
X=linspace(0,ng-1,ng);
coef_norm=length_FFT*sum(g)*h(nh/2)/4;
for t=1:length_time,
 % Calculation of the first term for tau=0
 ind=X+ECH-fix(ng/2); % g window centred on the first signal value
 A=s(ind).*s_conj(ind).*g;
 R=zeros(1,nh); R(1)=sum(A)*h(nh/2)
 for tau=1:fix(nh/2);
 A=s(ind+tau).*s_conj(ind-tau).*g;
 R(tau+1)=sum(A)*h(tau+nh/2) ;
 R(fix(nh+1-tau))=conj(R(tau+1)) ;
 end
 WX(:,t)=fft(R,length_FFT)’/coef_norm;
 ECH=ECH+inc;
end

Other weighting windows may also be used (functions boxcar, triang,

hanning, etc.). Remember that the multiplication by window h leads to a spectral
smoothing and removes the frequency interferences if its length is smaller than the
time distance between the time-frequency atoms. In the same way, window g
performs a time domain smoothing and removes the time interferences if its length
is smaller than the inverse of the frequency distance between the time-frequency
atoms.

Time-Frequency Analysis 305

EXERCISE 11.7.

Consider two chirps)(1 ts and)(2 ts , and denote by 1()f t and 2 ()f t the
associated instantaneous frequencies. It can be demonstrated that the sum signal

)(+)(=)(21 tststs has the instantaneous frequency ()1 2()= () + () /2f t f t f t . Thus,
unlike a time-frequency representation, the instantaneous frequency is not suitable to
identify the two signal components.

Illustrate this limitation of the instantaneous frequency using such a signal, sum
of two time-frequency atoms. Plot its Wigner-Ville distribution and show that it
allows the two linear frequency modulations to be identified properly. Verify that
the instantaneous frequency of ()s t can be obtained as the associated analytical
signal distribution mean.

EXERCISE 11.8.

The first step of the function wigner, proposed in exercise 11.4, consists of
calculating the analytical signal associated with the considered real signal. In this
way the spectral support is divided by 2 and the aliasing phenomenon is avoided.
Illustrate the advantage of this procedure by comparing it with the direct calculation
of the Wigner-Ville distribution (without the use of the analytical signal). Consider a
real signal, containing several time-frequency atoms, sampled at the Nyquist
frequency.

EXERCISE 11.9.

Verify that it is possible to obtain the spectrogram from the smoothed Wigner-
Ville distribution. In fact, the equivalence between the two representations can be
obtained using a separable time-frequency smoothing (see exercise 11.6), with
Gaussian windows h and .g

EXERCISE 11.10.

Write a MATLAB code to calculate the time-frequency distributions associated
with other kernels (Choï-Williams, Rihaczek, etc.) and verify their theoretical
properties.

This page intentionally left blank

Chapter 12

Parametrical Time-Frequency Methods

12.1. Theoretical background

In many classification problems, salient features may be searched and extracted
from the time-frequency plane. This process is optimized if the time-frequency
representation (TFR) is matched to the processed signal.

For simple signals, the matched TFR may be one of the Cohen’s class
representations. For more complicated signals the construction of the matched TFR
is a difficult problem, since the standard kernels do not preserve some properties
required by the optimization procedure.

This chapter deals with some recently proposed approaches for constructing the
matched TFR corresponding to a given signal. The optimization procedure aims to
cancel the interference terms and to obtain the best time-frequency resolution (in an
equivalent manner to the chirp representation with the Wigner-Ville distribution).

12.1.1. Fractional Fourier transform

The a-order fractional Fourier transform (FRFT) is defined, for 0 2a< < , by
means of its kernel:

{ }() () ()

() ()2 2

,

, exp cot 2 csc cot

a
a a a

a a a a

f t K t t f t dt

K t t K j t t t tφ π φ φ φ

∞

−∞
ℑ =

= − +

 [12.1]

308 Digital Signal Processing using MATLAB

where / 2aφ π= and ()() () 0.5exp sgn / 4 / 2 sinK jφ π φ φ φ= − − .

For a = 0 and a = ± 2 the kernel Ka(ta, t) is defined by () ()0 ,a aK t t t tδ= − and
() ()2 ,a aK t t t tδ± = + . This definition can be extended to orders higher than 2 or

lower than -2, using the following FRFT periodicity property:

{ }() { }()4l a a
a af t f t+ℑ = ℑ [12.2]

for any integer l.

The FRFT physical interpretation as the counter-clockwise rotation with the
angle φ of the time-frequency coordinate system, is shown in Figure 12.1.

Figure 12.1. Fractional Fourier transform

The FRFT verifies the following properties:

a. Unitarity

This property insures the exact and univocal inverse FRFT transform:

() () ()1 *a a a− −ℑ = ℑ = ℑ [12.3]

where “*” denotes here the Hermitian operator.

b. Additivity

This property is expressed as follows:

1 2 2 1 1 2a a a a a a+ℑ ℑ = ℑ ℑ = ℑ [12.4]

Parametrical Time-Frequency Methods 309

12.1.2. Phase polynomial analysis concept

The signals having non-linear time-frequency content, such as non-linear
frequency modulations, can be characterized using a polynomial modeling1 of their
phase function, as indicated below:

() ()
0

exp exp
K k

k
k

y t A j t A j a tφ
=

= ≅ [12.5]

where {ak} stand for the polynomial coefficients and K is the approximation order of
the signal phase φ(t).

The polynomial modeling of a signal consists of estimating the associated {ak}
coefficients, in order to obtain the best approximation of the non-linear phase
function. Compared to the deformation based time-frequency representations, which
have to adapt to each type of non-linearity, the polynomial modeling tools are more
adequate, since they can be similarly used for almost any signal of interest.

The currently used approach to estimate the parameters of a polynomial phase
signal (PPS) is based on the high order ambiguity function (HAF) and has the
following shortcomings:

1. the masking effects for low signal-to-noise ratios,

2. the presence of interferences in the case of multi-component PPS (mc-PPS).

Different methods have been recently proposed to overcome these limitations.
The main idea consists of using the multi-lags concept to calculate the HAF.

High order ambiguity function

The high order ambiguity function has been initially proposed to estimate the
parameters of a polynomial phase signal expressed according to equation [12.5]. y(t)
corresponds to a sinusoid for K = 1, to a linear chirp for K = 2 or to a cubic
frequency modulation for K = 3.

If integer q counts how many times the conjugate operator is applied then:

() ()
()
()*

, if is even

, if is odd
q y t q

y t
y t q

∗ = [12.6]

1 This polynomial modeling is based on the Weierstrass theorem, which states that any non-
linear function can be decomposed as a polynomial series.

310 Digital Signal Processing using MATLAB

The Kth order high order instantaneous moment (HIM) is defined by the
following relationship:

() () () 11 *

0
;

q
KCK q

K
q

M y t y t qτ τ
−−

=
= −∏ [12.7]

where:

()
()1

1 !1
! 1 !

q
K

KKC q q K q−
−−≡ =

− −
 [12.8]

are the binomial coefficients.

The main HIM properties are given below:

1. the HIM can be iteratively calculated using:

() ()2 1; ; ;K KM y t M M y tτ τ τ−= [12.9]

2. the HIM calculation is equivalent to differentiating the PPS phase;

3. the 2nd order HIM reduces a Kth order PPS to a (K-1)th order PPS;

4. for y(t) defined by equation [12.5] the following relationship holds:

() ()12; exp
K

k k kM y t A j tτ ω φ
−

= ⋅ + [12.10]

where:
1! k

k kk aω τ −= [12.11]

() ()1
11 ! 0.5 ! 1k k

k k kk a k k aφ τ τ−
−= − − − [12.12]

The above equation means that the Kth order HIM applied to a Kth order PPS is a
complex exponential having a constant amplitude

22K

A
−

, a frequency ω and a
phase φ . The Kth order ambiguity function of signal y(t) is defined by the Fourier
transform of MK[y(t);τ]:

[] (); , ; j t
K KP y M y t e dtαα τ τ

∞
−

−∞
= [12.13]

Parametrical Time-Frequency Methods 311

It allows the polynomial coefficients corresponding to the PPS y(t) to be
estimated as indicated below:

[]1
1 arg max ; ,

!
K KK

a P y
K α

α τ
τ −= [12.14]

This result means that a constant amplitude signal can be characterized by a Kth
order polynomial phase if its Kth order HAF is a pure spectral component for any
positive τ. The HAF is thus an appropriate tool for the PPS analysis, since all the
coefficients of the phase function can be estimated by its successive application.

The discrete HIM and the discrete HAF are defined by the following
relationships:

() 11 *

0

q
KCK q

K K n q
q

DHIM DM y τ
−−

−
=

= = ∏ [12.15]

[] []; , ; j n
K K K n

n
DHAF DP y DM y e αα τ τ

∞ − Δ

=−∞
= = [12.16]

where τ is a positive integer and Δ stands for the sampling period.

In the case of finite length signals, the sum in equation [12.16] is finite and the
discrete HAF calculation is performed by FFT.

COMMENTS

a. The choice of τ is arbitrary, but it is decisive for the accuracy of the
coefficients estimation. A small value of τ increases the number of admissible
frequency values, but decreases the resolution. The asymptotic analysis of the
algorithm performance as a function of τ was carried out by Peleg. He stated that the
lowest asymptotic variance of ˆKa is obtained for:

− τ = N/K if K = 2 or 3,

− τ = N/(K+2) if 4 ≤ K ≤ 10.

The last result is based on a numerical evaluation of a certain function and has
not been demonstrated for any K so far. In the same way, the optimal choice of τ for
k < K has not been analytically determined yet. Nevertheless, many simulations
indicated that the choice τ = N/k is close to the optimal value. Furthermore, some
authors state that this choice yields the best estimation accuracy for the signal
polynomial coefficients.

312 Digital Signal Processing using MATLAB

b. Since the discrete HAF is periodic with the period 2π/Δ, coefficient ak can be
unambiguously expressed if and only if:

() 1!
k k

a
k

π
τ −<

Δ Δ
 [12.17]

This constraint results in a Nyquist type condition on the value of Δ.

Multi-lags HAF concept (ml-HAF)

For a Kth order PPS, x(t), the Kth order ml-HIM is defined in the following
sequential manner:

() ()
() () ()

() () ()

1
*

2 1 1 1 1 1

*
1 1 1 2 1 1 2

;

; ; ;K K K K K K K K

t x t

t T t t

t T t T t T

τ τ

τ τ− − − − − − −

=

= + −

= + −

x

x x x

x x x

 [12.18]

where:

()1 2, ,...,i iT τ τ τ= [12.19]

It can be seen that the ml-HIM is equal to the HIM if 1 2 1... .Kτ τ τ τ−= = = = If
the signal s(t) contains M Kth order PPS:

()
1 1

1

,
1 0

exp 2
M K k

k k k
k k

s t A j a tπ
= =

= [12.20]

then the corresponding ml-HIM is also a mc-PPS:

() ()
1 1 1 12 2

1 12

1 ,..., ;
,..., 1 0

; exp 2
K K

K

M K K k
K K k k k k k

k k k
t T A A j b tπ

− −
−

−
= =

=s [12.21]

Coefficients ()
1 12
,..., ;K

K k
k k kb t

−
 are calculated using following iterative rule:

()
11

1
;; , 0..k kk kb a k K= = [12.22a]

() () () ()
1 2 1 2

2 1 1
1, ; ; ;

0
1

K k lk l
k lk k k k k l k k l

l
b C b b τ

−
+ + +

=
= − − [12.22b]

Parametrical Time-Frequency Methods 313

() () () ()
1 1 1 2 122 2 22 1

1 1
1,..., ; ,..., ; ,..., ;

0
1

K K k KK

K kK K Klk l
k l Kk k k k k k l k k k l

l
b C b b τ

− − −− +

− − −
+ −+ +

=
= − − [12.22c]

The coefficients expressed by [12.22a] correspond to (11 2 2... Kk k k −= = =) and
are called auto-terms, while the others are called interference or cross-terms.

For example, for K = 2, the 2nd order ml-HIM is the sum of quadratic phase
signals whose 1st and 2nd order coefficients are given by:

() () ()

() () () () ()()
1 2 1 2

1 2 1 2 1 2

2 1 1
, ;2 ;2 ;2

2 1 1 1 1
1, ;1 ;1 ;1 ;2 ;22

k k k k

k k k k k k

b b b

b b b b b τ

= −

= − + +
 [12.23]

The 2nd order ml-HIM is then expressed as:

()
2 2(2) (2)2 2

2 1 1 21,1; 2,2;
0 0

2 2(2) (2)
1 2 1 22,1; 1,2;

0 0

; exp 2 exp 2

auto-terms

exp 2 exp 2

cross-terms

k k
k k

k k

k k
k k

k k

s t T A j b t A j b t

A A j b t A A j b t

π π

π π

= =

= =

= +

+ +

 [12.24]

The polynomial coefficients involved in equation [12.24] are indicated in the
table below.

 k=0 k=1 k=2

()2
1,1;kb 11 12a τ 12 14a τ 0

()2
2,2;kb 21 12a τ 22 14a τ 0

()2
2,1;kb

()
()

10 20 11 21 1
2

12 22 1

a a a a

a a

τ

τ

− + +

+ −

()
()
11 21

12 22 12

a a

a a τ
− +

+
 12 22a a−

()2
1,2;kb

()
()
20 10 11 21 1

2
22 12 1

a a a a

a a

τ

τ

− + +

+ −

()
()
21 11

12 22 12

a a

a a τ
− +

+
 22 12a a−

Table 12.1. The polynomial coefficients of the 2nd order
ml-HIM for a PPS having 2 components

314 Digital Signal Processing using MATLAB

The following notes can be made using the above equations:

a. A 2nd order coefficient of the auto-terms is zero, while the 1st order coefficients

are given by ()
11 2

2
;2 1, ;1 4 kk kb a τ= . Consequently, the auto-terms are represented by

spectral peaks.

b. The cross-terms generally have a 2nd order instantaneous phase if
1 2;2 ;2k ka a≠

for 1 2k k≠ . However, the cross-terms are also sinusoids if the 2nd order coefficients
are the same (

1 2;2 ;2k ka a= for 1 2k k≠). In this case, the cross-terms are also

represented by spectral peaks localized at () () () ()
1 2 1 1

2 1 1 1
12;1, ;1 ;1 ;24kk k k kb b b b τ= − + .

The useful peaks (associated with the auto-terms) are related to the time-delays
or lags by the following relationship:

11

1
2 !

K
K

i K
i

f K aτ
−−

=
= ∏ [12.25]

The cross-terms can thus be canceled using several lag values. For K = 2 or 3,
the optimal lag is /N Kτ = , where N stands for the number of samples and K is the
polynomial order.

12.1.3. Time-frequency representations based on warping operators

The family of modulation operators is formed by all the linear operators Mβ
defined on a Hilbertian space as indicated below:

()() () ()2j m ts t e s tπβ
β =M [12.26]

where m(t) represents the irreversible modulation function, β stands for the
modulation rate and s is the analyzed signal.

The eigenfunctions and eigenvalues of the operator Mβ are given by:

() () ()()
2

'a

j a
a

u t m t m t a

e

β

β πβ

δ

λ

= −

=

M

M
 [12.27]

where a denotes the variable of the new domain from the application of this
operator.

Parametrical Time-Frequency Methods 315

The family of warping operators is formed by all linear operators Wα defined on
a Hilbertian space as indicated below:

()() () ()()'s t w t s w tα α α=W [12.28]

where wα(t) represents the warping function corresponding to the time axis.

This function depends on parameter α and is assumed differentiable, irreversible
and satisfactory for the composition property:

()() ()
1 2 1 2

w w t w tα α α α•= [12.29]

where • is the operation corresponding to the composition rule:
1 2 1 2α α α α•=A A A .

If m(t) is an irreversible and differentiable modulation function, then the
associated warping function is given by:

() ()()1 1w t m m tα α− −= • [12.30]

This result allows the unambiguous design of the warping operator associated
with a given modulation function. The design methodology steps will be described
in the following.

Warping function calculation

Warping function wα(t) and warping operator Wα are calculated using function
m(t) and equations [12.30] and [12.28].

Prewarping

This step consists of changing the time or frequency axis using the previously
designed operator. The application of a TFR from the Cohen class leads to a new
joint distribution, which represents the signal in the time-frequency plane (,)t f :

() ()()
()() ()

1

1

; time operator

ˆ ˆ ˆ; frequency operator

t w t f fw w t

t tw w f f w f

α α α

α α α

−

−

= = −

= = −
 [12.31]

The application of a TFR from the Cohen class to the prewarped signal leads to
the linearization of its instantaneous frequency in the (,)t f plane.

316 Digital Signal Processing using MATLAB

Unwarping

The result obtained after the previous step is a two-dimensional distribution,
without cross-terms, of a linear structure. The matched non-linear TFR
corresponding to the analyzed signal can be obtained using the inverse
transformation indicated below:

() ()
()

()

() ()

1

1
1

1
1

, ,

; time unwarping

ˆ; frequency unwarping
ˆ

a b t f

f
a w t b

w t

t
a b w f

w f

α

α

−

−
−

−
−

= Γ

= = −

= = −

 [12.32]

Application to the hyperbolic TFR class

This class is represented by a non-linear TFR set, derived from the Altes-
Marinovich distribution, which was designed to match the hyperbolic chirp class.
This signal class is defined by:

() ()1 exp 2 lnc
r

f
H f j c u f

ff
π= − [12.33]

where u(f) stands for the Heaviside function and fr is a fixed “reference” frequency
chosen so that the Nyquist condition is met. A hyperbolic chirp is characterized by
an energy spectral density () ()2 /cH f u f f= and a group delay /t c f= .

Let us consider fr = 1 for simplicity. The frequency warping operator, which
matches Hc and transforms it into a stationary structure, is then obtained as follows:

()() () ()() 2
log log

ˆ ˆ ˆ' j cf
c cH f w f H w f e π−= =logW

() ()logˆ2 ln 2
logˆj c w f j cf fe e w f eπ π− −⇔ = = [12.34]

Thus, if this operator is used for the prewarping step, a Dirac pulse is obtained in
the time domain. The application of the DWV to the prewarped signal leads to the
linear time-frequency structure plotted in Figure 12.2b.

The hyperbolic TFR class can be obtained from this distribution using the

inverse transform (unwarping). Therefore, a non-linear (hyperbolic) TFR matching

Parametrical Time-Frequency Methods 317

signal hc (hTFR) (Figure 12.2c) in the plane (,)t f is obtained. The axes of the
latest TFR are obtained as a particular case of equation [12.31] for ()logŵ f .

()exp ln

ln

t t f tf

f f

= =

=
 [12.35]

Thus, the Atlas-Marinovich distribution (AMD) can be also defined by the
following equation:

() ()
log

, , lnx xAMD t f DWV tf f= W [12.36]

Figure 12.2. Illustration of the hTFR construction

The general form of the hyperbolic TFRs class can be obtained if a generic
Cohen class distribution replaces the DWV in equation [12.36]. The hyperbolic
TFRs have the same properties as the Cohen class TFRs.

The most important property of the hTFR is that it is perfectly focused on the
group delay c/f of signals hc (given by the inverse Fourier transform of the Hc
function):

() 1,
ch

c
hTFR t f t

f f
δ= − [12.37]

12.2. Solved exercises

EXERCISE 12.1.
Write a MATLAB function to calculate the FRFT of a signal for a given order.

function FRFT = FracFR(x0,a);
% Inputs: x0 – Original signal

318 Digital Signal Processing using MATLAB

% a – FRFT order
% Output: FRFT – Transformed signal
deltax = sqrt(length(x0)/2);
phi= a*pi/2; N = fix(length(x0)/2);
deltax1 = 2*deltax;
alpha = 1/tan(phi);
beta = 1/sin(phi);
% Kernel implementation
T = [-N:N-1]/deltax1;
T = T(:);x0=x0(1:2*N);
f1 = exp(-i*pi*tan(phi/2)*T.*T);
f1 = f1(:);x = x0.*f1;clear T;
t = [-2*N+1:2*N-1]/deltax1;
hlptc = exp(i*pi*beta*t.*t);
clear t; hlptc=hlptc(:);
N2 = length(hlptc);
N3 = 2̂ (ceil(log(N2+2*N-1)/log(2)));
hlptcz=[hlptc;zeros(N3*N2,1)];
xz = [x;zeros(N3-2*N,1)];
Hcfft = ifft(fft(xz).*fft(hlptcz));
clear hlptcz; clear xz;
Hc = Hcfft(2*N:4*N-1);
clear Hcfft;clear hlptc;
Aphi = exp(-i*(pi*sign(sin(phi))/4-phi/2))/sqrt(abs(sin(phi)));
xx = [-N:N-1]/deltax1;
f1 = f1(:); FRFT = (Aphi*f1.*Hc)/deltax1;

EXERCISE 12.2.

This exercise aims to estimate the linear modulation rate of a chirp signal using
the FRFT.

The MATLAB code below generates the analyzed signal.

t=0:255;
x0=[zeros(1,128),exp(j*2*pi*(.1*t+.0007*t.̂ 2)),zeros(1,128)].';

The instantaneous frequency law and the modulation rate corresponding to this
signal are calculated as follows:

LFI=.1+.0014*t;
c=4*(LFI(256)-LFI(1)) ; % the modulation rate
plot(t,LFI);
xlabel('Temps');
ylabel('Normalized frequency');
title('Instantaneous frequency law');

Parametrical Time-Frequency Methods 319

Figure 12.3. Instantaneous frequency law for a chirp signal

The modulation rate estimate can be found by applying the FRFT to the signal,
for different values of its order a. Thus, if â is the order leading to the best
concentration of the spectral energy for the signal obtained by FRFT, then the
modulation rate estimate is given by ()ˆtan / 2c aπ= .

figure
for a=0:.01:1
 disp('Order value a = '); a
 c=tan(a*pi/2) % modulation rate value
 FRFT=FracFR(x0,a);
 X1=fft(FRFT); plot(abs(X1))
 xlabel('Frequency'); ylabel('Amplitude')
 title(['Transformed signal spectrum: FRFT for a=',num2str(a)])
 pause
end
FRFT=FracFR(x0,a);
subplot(221); X=fft(x0); plot(abs(X))
xlabel('Frequency');ylabel('Amplitude')
title('Original signal spectrum')
a=0.5; FRFT=FracFR(x0,a);
subplot(222); X1=fft(FRFT); plot(abs(X1))
xlabel('Frequency'); ylabel('Amplitude')

320 Digital Signal Processing using MATLAB

title(['Signal spectrum: FRFT for a=',num2str(a)])
a=0.6; FRFT=FracFR(x0,a);
subplot(223); X1=fft(FRFT); plot(abs(X1))
xlabel('Frequency'); ylabel('Amplitude')
title(['Signal spectrum: FRFT for a=',num2str(a)])
a=0.8; FRFT=FracFR(x0,a);
subplot(224); X1=fft(FRFT); plot(abs(X1))
xlabel('Frequency'); ylabel('Amplitude')
title(['Signal spectrum: FRFT for a=',num2str(a)])

The results obtained for several values of a are plotted on the figure below.

0 200 400 600
0

10

20

30

40

Frequency

A
m

pl
itu

de

Original signal spectrum

0 200 400 600
0

20

40

60

80

Frequency

A
m

pl
itu

de

Signal spectrum: FRFT for a=0.5

0 200 400 600
0

50

100

150

200

Frequency

A
m

pl
itu

de

Signal spectrum: FRFT for a=0.6

0 200 400 600
0

20

40

60

Frequency

A
m

pl
itu

de

Signal spectrum: FRFT for a=0.8

Figure 12.4. Application of the fractional Fourier transform

Note that the best concentration of the spectral energy is obtained for a = 0.6.
This value corresponds to a modulation rate of 1.3764, which is close to the
theoretical value, 1.42. An even better estimation accuracy could be obtained using
more values for a.

EXERCISE 12.3.

Write a MATLAB function to calculate the Mth order moment of an input signal,
for a given lags vector.

function h=him(x,l,M);
% Inputs:
% x - the signal

Parametrical Time-Frequency Methods 321

% l – lags vector
% M – HIM order
% Output:
% h – M-th order HIM
h = x;
for i=2:M
 hpp=[h,zeros(1,l(i-1))];
 hmm=[zeros(1,l(i-1)),h];
 h=hpp.*conj(hmm);

end

EXERCISE 12.4.

Estimate the polynomial coefficients of the signal below.

() ()4 2 6 3exp 2 0.25 9.76 10 3.204 10 , 0..255s t j t t t tπ − −= − ⋅ + ⋅ =

% Signal generation
t=0:255;
a=[0.25,-9.76*10̂ -4,3.204*10̂ -6];
s=exp(j*2*pi*(a(1)*t+a(2)*t.̂ 2+a(3)*t.̂ 3));
LFI=a(1)+2*a(2)*t+3*a(3)*t.̂ 2;
plot(LFI);
title('Instantaneous frequency law');
axis([1 256 0 0.5]);
xlabel('Time');
ylabel('Normalized frequency')

50 100 150 200 250
0

0.05

0.1

0.15

0 2

0.25

0 3

0.35

0.4

0.45

0 5
Instantaneous frequency law

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Figure 12.5. Instantaneous frequency law of the signal from exercise 12.4

322 Digital Signal Processing using MATLAB

% Estimation of the polynomial coefficients
N = length(s); K = 3;
Nfft=2̂ 12; F=-0.5:1/Nfft:0.5-1/Nfft;
a_est=zeros(1,K); tau = N/K ;
for i=K:-1:1
 h=him(s,tau*ones(1,3),i);
 hf=abs(fft(h,Nfft));
 hf=[hf(length(hf)-Nfft/2+1:length(hf)),hf(1:Nfft/2)];
 subplot(2,K,i);plot(F,hf);
 title(['HAF: order ',num2str(i)])
 [ym,zm]=max(hf); Fmax=(zm-Nfft/2-1)/Nfft;
 a_est(i)=Fmax/(factorial(i)*taû (i-1));
 xlabel(['Est. a',num2str(i),'=',num2str(a_est(i))]);
 s=s.* exp(-j*2*pi*a_est(i)*t.̂ (i));
end
LFI_est=a_est(1)+2*a_est(2)*t+3*a_est(3)*t.̂ 2 ;
subplot(212); plot(LFI,'--');
hold on; plot(LFI_est,'r');
legend('Theoretical','Estimated');
xlabel('Time'); ylabel('Normalized frequency')
title('Theoretical and estimated instantaneous frequency laws')

�0.5 0 0.5
0

20

40

60

80

100
HAF: order 3

Est. a3=3.1795e�006
�0.5 0 0.5
0

50

100

150

200
HAF: order 2

Est. a2=�0.00096273
�0.5 0 0.5
0

100

200

300
HAF: order 1

Est. a1=0.24805

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Theoretical and estimated instantaneous frequency laws

Theoretical
Estimated

Figure 12.6. Polynomial coefficients estimated using
the HAF and the recovered instantaneous frequency law

Parametrical Time-Frequency Methods 323

Note that the polynomial coefficients are well recovered and lead to an accurate
estimation of the instantaneous frequency law.

EXERCISE 12.5.

The noise-free and single component signal case was considered in exercise
12.4. Let us now suppose the case of a signal having two components (s1(t)), and
then the case of a noisy signal (s2(t)), where b(t) is a white noise.

() ()
()

() ()

4 2 6 3
1

4 2 6 3

4 2 6 3
2

exp 2 0.25 9.76 10 3.204 10

exp 2 0.12 -4.687 10 1.525 10 ;

exp 2 0.25 9.76 10 3.204 10 (), 0..255

s t j t t t

j t t t

s t j t t t b t t

π

π

π

− −

− −

− −

= − ⋅ + ⋅

+ ⋅ + ⋅

= − ⋅ + ⋅ + =

The polynomial modeling of the phase of these signals can be performed using
the following MATLAB code:

% For the signal s1
t=0:255;
a=[0.25,-9.76*10̂ -4,3.204*10̂ -6 ;.12,-4.687*10̂ -4,1.525*10̂ -6];
s1=exp(j*2*pi*(a(1,1)*t+a(1,2)*t.̂ 2+a(1,3)*t.̂ 3)) +
exp(j*2*pi*(a(2,1)*t+a(2,2)*t.̂ 2+a(2,3)*t.̂ 3));
N = length(s1);
K = 3;
Nfft=2̂ 12;
F=-0.5:1/Nfft:0.5-1/Nfft;
a_est=zeros(1,K);
tau = N/K ;
for i=K:-1:1
 h=him(s1,tau*ones(1,3),i);
 hf=abs(fft(h,Nfft));
 hf=[hf(length(hf)-Nfft/2+1:length(hf)),hf(1:Nfft/2)];
 subplot(2,K,i);
 plot(F,hf);
 title(['HAF: order ',num2str(i)])
 [ym,zm]=max(hf);
 Fmax=(zm-Nfft/2-1)/Nfft;
 a_est(i)=Fmax/(factorial(i)*taû (i-1));
 xlabel(['Est. a',num2str(i),'=',num2str(a_est(i))]);
 s1=s1.* exp(-j*2*pi*a_est(i)*t.̂ (i));
end
LFI1= a(1,1)+2*a(1,2)*t+3*a (1,3)*t.̂ 2;
LFI2= a(2,1)+2*a(2,2)*t+3*a (2,3)*t.̂ 2 ;
LFIe= a_est(1,1)+2*a_est(1,2)*t+3*a_est (1,3)*t.̂ 2 ;
subplot(212)
plot(LFI1,'--'); hold on;

324 Digital Signal Processing using MATLAB

plot(LFI2,':g');
plot(LFIe,'r');
legend('Theoretical 1st cmp.','Theoretical 2nd cmp.','Estimated');
xlabel('Time');
ylabel('Normalized frequency')
title('Theoretical and estimated instantaneous frequency laws')

Note that the HAF contains cross-terms because of the multicomponent nature of

the analyzed signal and therefore the polynomial modeling of the signal phase
becomes less accurate in this case.

�0.5 0 0.5
0

50

100

150

200
HAF: order 3

Est. a3=�4.2468e�007
�0.5 0 0.5
0

50

100

150
HAF: order 2

Est. a2=8.297e�005
�0.5 0 0.5
0

50

100

150
HAF: order 1

Est. a1=0.15381

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Theoretical and estimated instantaneous frequency laws

Theoretical 1st cmp.
Theoretical 2nd cmp.
Estimated

Figure 12.7. Polynomial coefficients estimated using the HAF and the recovered
instantaneous frequency law for the signal s1(t)

% For the signal s2
t=0:255;
a=[0.25,-9.76*10̂ -4,3.204*10̂ -6];
s2=exp(j*2*pi*(a(1,1)*t+a(1,2)*t.̂ 2+a(1,3)*t.̂ 3));
s2= s2+ 0.7*hilbert(randn(1,256));
N = length(s2); K = 3;
Nfft=2̂ 12;
F=-0.5:1/Nfft:0.5-1/Nfft;
a_est=zeros(1,K);
tau = N/K ;

Parametrical Time-Frequency Methods 325

for i=K:-1:1
 h=him(s2,tau*ones(1,3),i);
 hf=abs(fft(h,Nfft));
 hf=[hf(length(hf)-Nfft/2+1:length(hf)),hf(1:Nfft/2)];
 subplot(2,K,i); plot(F,hf);
 title(['HAF: order ',num2str(i)])
 [ym,zm]=max(hf);
 Fmax=(zm-Nfft/2-1)/Nfft;
 a_est(i)=Fmax/(factorial(i)*taû (i-1));
 xlabel(['Est. a',num2str(i),'=',num2str(a_est(i))]);
 s2=s2.* exp(-j*2*pi*a_est(i)*t.̂ (i));
end
LFI = a(1,1)+2*a(1,2)*t+3*a (1,3)*t.̂ 2;
LFIe = a_est(1,1)+2*a_est(1,2)*t+3*a_est (1,3)*t.̂ 2;
subplot(212); plot(LFI,'--');
hold on; plot(LFIe,'r');
legend('Theoretical','Estimated');
xlabel('Time');
ylabel('Normalized frequency')
title('Theoretical and estimated instantaneous frequency laws')

�0.5 0 0.5
0

20

40

60

80

100
HAF: order 3

Est. a3=4.2859e�006
�0.5 0 0.5
0

50

100

150
HAF: order 2

Est. a2=�0.001236
�0.5 0 0.5
0

50

100

150

200
HAF: order 1

Est. a1=0.2666

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Theoretical and estimated instantaneous frequency laws

Theoretical
Estimated

Figure 12.8. Polynomial coefficients estimated using the HAF
and the recovered instantaneous frequency law for the signal s2(t)

326 Digital Signal Processing using MATLAB

The result, depicted in Figure 12.8, illustrates the high noise sensitivity of the
HAF.

The two examples considered in this exercise highlight the HAF limitations in
the case of a multicomponent of noisy signals.

EXERCISE 12.6.

Repeat exercise 12.5 but using the ml-HAF instead of the HAF for the analysis
of signal s1(t).

t=1:256;
a=[0.25,-9.76*10̂ -4,3.204*10̂ -6;.12,-4.687*10̂ -4,1.525*10̂ -6];
s1=exp(j*2*pi*(a(1,1)*t+a(1,2)*t.̂ 2+a(1,3)*t.̂ 3))+
exp(j*2*pi*(a(2,1)*t+a(2,2)*t.̂ 2+a(2,3)*t.̂ 3));
Ncomp = 2; Lag = 30;
N = length(s1); K = 3;
Nfft = 2̂ 14; F = -0.5:1/Nfft:0.5-1/Nfft;
s = s1; a_est = zeros(Ncomp,K); warning off;
for icomp=1:Ncomp
 for i=K:-1:2
 Topt=round(N/(i));
 if fix(Topt/Lag)<=0
 L=Topt-1; dec=1;
 else
 L=Lag; dec=fix(Topt/L);
 end
 LAG=round(Topt)*ones(L,1)-dec*(0:L-1)';
 PROD=(LAG).̂ (i-1);
 mlHAF=ones(1,Nfft);
 for k=1:Lag
 h=him(s1,LAG(k)*ones(1,i-1),i);
 hf=abs(fft(h,Nfft));
 hf=hf(1:PROD(k)/PROD(1):Nfft);
 hf=[hf(length(hf)-Nfft/2+1:length(hf)),hf(1:Nfft/2)];
 mlHAF=mlHAF.*hf;
 end
 subplot(Ncomp+1,K,K*(icomp-1)+i);
 plot(F,mlHAF/max(mlHAF));
 title(['ml-HAF: order ',num2str(i)])
 [ym,zm]=max(mlHAF); Fmax=(zm-Nfft/2-1)/Nfft;
 a_est(icomp,i)=Fmax/(factorial(i)* PROD(1));
 xlabel(['Est. a',num2str(i),'=',num2str(a_est(icomp,i))]);
 s1=s1.* exp(-j*2*pi*a_est(icomp,i)*t.̂ (i));
 end
 hf=fftshift(abs(fft(s1,Nfft)));
 subplot(Ncomp+1,K,K*(icomp-1)+1);
 plot(F,hf);
 title(['ml-HAF: order ',num2str(1)]);grid

Parametrical Time-Frequency Methods 327

 [ym,xm]=max(hf);
 fmax=(xm-Nfft/2-1)/Nfft;
 a_est(icomp,1)=fmax;
 xlabel(['Est. a',num2str(1),'=',num2str(a_est(icomp,1))]);
 s1=s-exp(j*2*pi*(a_est(1,1)*t+a_est(1,2)*t.̂ 2+a_est(1,3)*t.̂ 3));
end
LFI1= a(1,1)+2*a(1,2)*t+3*a (1,3)*t.̂ 2;
LFI2= a(2,1)+2*a(2,2)*t+3*a (2,3)*t.̂ 2;
LFIe1= a_est(1,1)+2*a_est(1,2)*t+3*a_est (1,3)*t.̂ 2;
LFIe2= a_est(2,1)+2*a_est(2,2)*t+3*a_est (2,3)*t.̂ 2;
subplot(313);
plot(LFI1,'--b'); hold on;
plot(LFIe1,'r');
plot(LFI2,'--b');
plot(LFIe2,'r');
legend('Theoretical','Estimated');
xlabel('Time');
ylabel('Normalized frequency')
title('Theoretical and estimated instantaneous frequency laws')

�0.5 0 0.5
0

0.5

1
ml�HAF: order 3

Est. a3=3.0539e�006
�0.5 0 0.5
0

0.5

1
ml�HAF: order 2

Est. a2=�0.00091743
�0.5 0 0.5
0

200

400
ml�HAF: order 1

Est. a1=0.24384

�0.5 0 0.5
0

0.5

1
ml�HAF: order 3

Est. a3=1.6515e�006
�0.5 0 0.5
0

0.5

1
ml�HAF: order 2

Est. a2=�0.00051737
�0.5 0 0.5
0

200

400
ml�HAF: order 1

Est. a1=0.125

0 50 100 150 200 250 300
0

0.2

0.4

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Theoretical and estimated instantaneous frequency laws

Theoretical
Estimated

Figure 12.9. Polynomial coefficients estimated using the ml-HAF
and the recovered instantaneous frequency law for the signal s1(t)

328 Digital Signal Processing using MATLAB

It can be seen on the figure obtained that the ml-HAF approach yields an
accurate estimation of the polynomial coefficients corresponding to this signal
mixture. Even better results could be obtained by increasing the number of lags and
the number of calculation points for the FFT.

EXERCISE 12.7.

Suppose a radar target having a constant radial acceleration during the
observation time. Demonstrate that the distance between the radar and the target has
in this case the following expression:

() 2
0 0 0.5r t r r t rt= + +

where 0 0 0, ,r r r are the distance, the radial speed and the radial acceleration at the
beginning of the observation period.

Denote by λ the wavelength and by Δ the sampling period. Demonstrate that the
discrete complex form of the radar data is given by:

()()2
0 1 2expn ny A j a a n a n u= + Δ + Δ +

where:

0 0
1 2

4 2
,

r r
a a

π π
λ λ
⋅ ⋅

= − = −

Write a MATLAB code to estimate the kinematical parameters of a radar target
for λ = 0.2 m, 2

0 0250 m/s, 20 m/sr r= − = − , SNR = −3 dB and the radial speed
range ± 400 m/s.

Demonstrate that in this case Δ = (1/8,000) sec and that at least Nfft = 4,000
points are required for the FFT calculation. Choose for simplicity Nfft = 4,096.

% Radar parameters
L=0.2; % wavelength
Range_v=400; % speed range
PRI=L/(4*Range_v); % sampling period
Nfft=4096;
% Target parameters
vt=-250; % radial speed
at=-20; % radial acceleration
% Received signal simulation
t=0:Nfft-1; A=1; % amplitude
SNR=-3; a0=0;

Parametrical Time-Frequency Methods 329

a1=-4*pi*vt/L;a2=-2*pi*at/L;
x=A*exp(j*(a0+a1*PRI*t+a2*(PRI*t).̂ 2));
B=sqrt(Â 2*10̂ (-SNR/10));
b=B*randn(1,Nfft); y=x+b;
% 3-rd order HAF analysis
Lag=20; % lags number
N=length(y); K=3; % polynomial modeling order
Nfft=4096; % FFT calculation points
F=-0.5:1/Nfft:0.5-1/Nfft; % frequencies vector
a_est=zeros(1,K); % coefficients vector
warning off; figure
s2 = y; tau = N/K ;
for i=K:-1:1
 h=him(s2,tau*ones(1,3),i);
 hf=abs(fft(h,Nfft));
 hf=[hf(length(hf)-Nfft/2+1:length(hf)),hf(1:Nfft/2)];
 subplot(2,K,i); plot(F,hf);
 title(['HAF: order ',num2str(i)])
 [ym,zm]=max(hf); Fmax=(zm-Nfft/2-1)/Nfft;
 a_est(i)=Fmax/(factorial(i)*taû (i-1));
 xlabel(['Est. a',num2str(i),'=',num2str(a_est(i))]);
 s2=s2.* exp(-j*2*pi*a_est(i)*t.̂ (i));
end
% 3-rd order ml-HAF analysis
a_est=zeros(1,K);
for i=K:-1:2
 Topt=round(N/(i));
 if fix(Topt/Lag)<=0
 L=Topt-1; dec=1;
 else
 L=Lag; dec=fix(Topt/L);
 end
 LAG=round(Topt)*ones(L,1)-dec*(0:L-1)';
 PROD=(LAG).̂ (i-1); mlHAF=ones(1,Nfft);
 for k=1:Lag
 h=him(y,LAG(k)*ones(1,i-1),i);
 hf=abs(fft(h,Nfft));
 hf=hf(1:PROD(k)/PROD(1):Nfft);
 hf=[hf(length(hf)-Nfft/2+1:length(hf)),hf(1:Nfft/2)];
 mlHAF=mlHAF.*hf;
 end
 subplot(2,K,i+K);plot(F,mlHAF/max(mlHAF));
 title(['ml-HAF: order ',num2str(i)])
 [ym,zm]=max(mlHAF); Fmax=(zm-Nfft/2-1)/Nfft;
 a_est(i)=Fmax/(factorial(i)* PROD(1));
 xlabel(['Est. a',num2str(i),'=',num2str(a_est(i))]);
 y=y.* exp(-j*2*pi*a_est(i)*t.̂ (i));
end
hf=fftshift(abs(fft(y,Nfft)));
subplot(2,K,1+K); plot(F,hf);

330 Digital Signal Processing using MATLAB

title(['ml-HAF: order ',num2str(1)]); grid; [ym,xm]=max(hf);
fmax=(xm-Nfft/2-1)/Nfft; a_est(1)=fmax;
xlabel(['Est. a',num2str(1),'=',num2str(a_est(1))]);

�0.5 0 0.5
0

500

1000

1500

2000
HAF: order 3

Est. a3=�3.224e�008
�0.5 0 0.5
0

200

400

600
HAF: order 2

Est. a2=�0.00012714
�0.5 0 0.5
0

100

200

300

400
HAF: order 1

Est. a1=0.40234

�0.5 0 0.5
0

0.2

0.4

0.6

0.8

1
ml�HAF: order 3

Est. a3=0
�0.5 0 0.5
0

0.2

0.4

0.6

0.8

1
ml�HAF: order 2

Est. a2=1.5497e�006
�0.5 0 0.5
0

1000

2000

3000

4000
ml�HAF: order 1

Est. a1=0.3125

Figure 12.10. Estimation of the polynomial coefficients using
the HAF (top) and the ml-HAF (bottom)

The polynomial coefficients estimated using the HAF and the ml-HAF are
shown in Figure 12.10. Note that despite the noise, the ml-HAF approach yields a
zero value for the third coefficient, since the analyzed signal is a 2nd order PPS. This
result is due to the calculation of the HAF for several lags, which makes the
polynomial modeling less sensitive to the order overestimation.

The ml-HAF based estimation obviously outperforms the HAF approach. Indeed,
unlike the last case, the spectral peaks are clearly identified in the first case, so that
the target motion parameters can be accurately estimated (see the MATLAB code
below).

% Estimation of the target motion parameters
c2=2*pi*a_est(2)/(PRÎ 2)
a2
c1=2*pi*a_est(1)/(PRI)
a1

Parametrical Time-Frequency Methods 331

EXERCISE 12.8.

Consider the signal () 1.5exp 2 0.02 , 0..255.s t j t tπ= ⋅ ⋅ = Estimate its
instantaneous frequency law using the warping operators.

The ideal instantaneous frequency law and the signal Wigner-Ville distribution
are generated by the MATLAB code given below.

t=0:255; k=1.5;
f=0:0.5/256:0.5-0.5/256;
s0=exp(j*2*pi*0.02*t.̂ k);
LFI=.02*k*t.̂ (k-1);
figure; plot(LFI);
title('Instantaneous frequency law')
xlabel('Time');
ylabel('Normalized frequency');
axis([0 256 0 .5])
tfr=tfrwv(s0.');
figure; imagesc(t,f,tfr);
axis xy; colormap(flipud(jet))
title('Wigner-Ville distribution')
xlabel('Time');ylabel('Normalized frequency');

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Instantaneous frequency law

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Wigner�Ville distribution

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 12.11. Instantaneous frequency law (left) and Wigner-Ville distribution (right)
for the signal from exercise 12.8

The first two steps to evaluate the non-linear matched TFR are implemented by
the MATLAB code given below:

% 1st step: warping operator calculation
u=3; Tu=0:1/u:255-1/u;
fu=0:0.5/256:u*0.5-0.5/256;
fu=fu(1:length(Tu)); w=Tu.̂ (1/(k));
% 2nd step: Prewarping

332 Digital Signal Processing using MATLAB

tw=w; fw=fu.*(Tu.̂ (1-k))/k; w=Tu.̂ (1/(k));
s1=interp1(t,s0,tw,'cubic');
subplot(221);plot(Tu,w);
title('Warping law');
xlabel('Time'); ylabel('Warped time')
subplot(122); tfr=tfrwv(s1.');
imagesc(t,f,tfr); axis xy
colormap(flipud(hot));
axis([0 256 0 0.1])
title('Warped signal WVD'); xlabel('Time');
ylabel('Normalized frequency');
subplot(223);S1=fft(s1);
ff=-0.5:1/length(S1):.5-1/length(S1);
plot(ff,abs(fftshift(S1)));
title('Prewarped signal spectrum')
xlabel('Normalized frequency');
ylabel('Amplitude')

Figure 12.12 illustrates the linearization of the time-frequency content performed
by the warping operator.

0 100 200 300
0

20

40

60
Warping law

Time

W
ar

pe
d

tim
e

Warped signal WVD

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

0 100 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

�0.5 0 0.5
0

200

400

600

800
Prewarped signal spectrum

Normalized frequency

A
m

pl
itu

de

Figure 12.12. Influence of the warping operator on the signal spectral features

The prewarped signal, obtained after the first two steps, is equivalent to a
sinusoid, whose frequency is related to the non-linear modulation rate. In the case of
this exercise we obtain 6.5⋅10-3. This value is multiplied by 3 (upsampling rate) and

Parametrical Time-Frequency Methods 333

finally yields 0.0195, which is close to the theoretical value, 0.02. An even better
accuracy could be obtained by increasing the upsampling rate.

The last processing step consists of calculating the Wigner-Ville distribution of
the prewarped signal. The associated MATLAB code is given below.

% 3rd step: Inverse transformation
[N,N]=size(tfr);
% Find the frequency of the prewarped signal = max(tfr)
[M,C]=max(tfr(:,ceil(N/2)));
TFR=zeros(N,N);
% Calculate the inverse coordinates
Fs1=fw*N/fw(end);Fs1(1)=1;
for i=1:N-1,
 TFR(ceil(Fs1(i)),i)=tfr(C,i);
end
% Retrieve the original time-frequency coordinates
t1=0:1/u:256-1/u;f1=0:0.5/(256):0.5-.5/256;
figure; imagesc(t1,f1,log2(TFR));
axis xy ; title('Non-linear TFR');
colormap(flipud(hot)); xlabel('Time');
ylabel('Normalized frequency');
figure; tfr=tfrwv(s0.');
imagesc(t,f,tfr); axis xy ;
title('Wigner-Ville distribution')
xlabel('Time'); colormap(flipud(jet))
ylabel('Normalized frequency');

Wigner�Ville distribution

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Nonlinear TFR

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 12.13. Wigner-Ville distribution (left) and non-linear matched TFR (right)
of the signal from exercise 12.8

Note that the non-linear TFR of the signal has no cross-terms. Furthermore, its
resolution is better than that obtained in the case of the WVD.

334 Digital Signal Processing using MATLAB

The “dotted-line” aspect of the non-linear TFR is due to the non-linear
distribution of the time-frequency coordinates. This problem could be overcome by
using a more effective interpolation technique.

Consequently, the non-linear TFRs yield a perfect image of the signal time-
frequency content provided that its modulation law is known. If not, it can be
estimated using a bank of warping operators, as it is shown in exercise 12.10.

The methodology illustrated by this exercise also allows the calculation of the
matched TFRs for some standard signal classes. An example is provided by exercise
12.9, in the case of the hyperbolic modulations.

EXERCISE 12.9.

Determine the operator which insures the best time-frequency representation of
the hyperbolic modulations. Illustrate the application of this operator in the case of a
hyperbolic chirp.

The following MATLAB code calculates the matched TFR corresponding to a
hyperbolic chirp, defined by equation [12.33].

N=128;N=N/2;
c=4 ; % hyperbolic modulation rate
df=1/N;f=df:df:1; inverse=1./sqrt(f);
HM = inverse.*exp(-j*2*pi*c*log(f));
HM=[HM.*hamming(N)' zeros(1,N)]; x=ifft(HM);

% Calculate the warping operator + prewarping
u = 8; L = length(x); N = u*L;
inputzero = [x zeros(size(1:N-L))];
fftinsig = fft(inputzero);
npos = L/2; M=2*L-6;
dv=log((L/2)/(L/2 -1));
df=((N/2)/(N/2 -u))̂ M * u/(N/2) ;
fftinsig(1:npos*u)=fftinsig(1:npos*u).*sqrt(df.*[0:npos*u-1]);
for count=0:M-1
 est = exp(count*dv)/df*u;%
 estint = floor(est);
fftwarp0(count+1)=(fftinsig(estint+1)-fftinsig(estint))*(est-
estint)+fftinsig(estint);
end
fftwarp0(M+1) = fftinsig(npos*u);
fftwarp0(M+2:4*npos)=zeros(size(M+2:4*npos));
fftwarp(1:npos*2)=fftwarp0(M+2-npos*2:M+1);
fftwarp(npos*2+1:npos*8)=zeros(size(1:npos*8-npos*2));
fftwarp(npos*8-M+npos*2:npos*8)=fftwarp0(1:M-npos*2+1);
warpsig = ifft(fftwarp); L2=npos*4*2; tfr=tfrwv(warpsig.');

Parametrical Time-Frequency Methods 335

% Unwarping
L=L2/4;
for count=0:L2-1
 countd=count+1;
 tfr(L,countd)=0;
 for count2=1:L-1
 est=log(count2*df/2)/dv;
 est=2*(est+L2/4-M); est=est+L2/2;
 estint=floor(est);
 est=L2-est+1; estint=L2-estint+1;
 count1=L-count2+1; tfr(count1-1, count+1)=0;
 if estint>0
 if estint<=L2
diff=(tfr(estint-1, count+1)-tfr(estint, count+1))*(est-estint);
 tfr(count1-1,count+1) = diff+tfr(estint-1,count+1);
 end
 end
 end
end
tfr1=zeros(L,L);
for count1=1:L
 for count2=1:L
 freqcnt=L-count2+1;
 expand=freqcnt/L*L2/L;
 arg = (count1-1)*expand+1;
 intarg = floor(arg);
 if intarg>=1
 if intarg<=L2
diff=(tfr(count2,intarg+1)-tfr(count2,intarg))*(arg-intarg);
 tfr1(count2, count1) = diff+tfr(count2,intarg);
 end
 end
 if intarg<1
 tfr1(count2,count1)=tfr(count2,1);
 end
 end
end
tx=0:1/u:128-1/u;
fy=0:0.5/(128):0.5-.5/128;
imagesc(tx,fy,tfr1);
axis xy ; title('Hyperbolic TFR');
colormap(flipud(hot)); xlabel('Time');
ylabel('Normalized frequency');

336 Digital Signal Processing using MATLAB

Hyperbolic TFR

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

0 20 40 60 80 100 120
0

0 05

0.1

0.15

0.2

0 25

0.3

0 35

0.4

0.45

Figure 12.14. Matched TFR corresponding to a hyperbolic chirp

EXERCISE 12.10.

The warping concept is useful to precisely estimate the type of non-linearity of
the time-frequency content. The basic idea is to use a bank of warping operators and
to select the one which minimizes the width of the spectral peak corresponding to
the prewarped signal. Its order k thus characterizes the signal modulation.

Illustrate this concept for the following mixture of two signals:

() 1.5 6 3exp 2 0.02 exp 2 10 , 0..255s t j t j t tπ π −= ⋅ + ⋅ =

t=0:255; f=0:0.5/256:0.5-0.5/256;
s0=exp(j*2*pi*0.02*t.̂ 1.5)+exp(j*2*pi*0.1*10.̂ -5*t.̂ 3);
LFI1=.02*1.5*t.̂ (1.5-1); LFI2=3*10̂ -6*t.̂ 2;
subplot(221); plot(LFI1); hold on; plot(LFI2);
title('Instantaneous frequency laws');
xlabel('Time'); ylabel('Normalized frequency');
axis([0 256 0 .5])
subplot(222); tfr=tfrwv(s0.'); imagesc(t,f,tfr); axis xy;
title('Wigner-Ville distribution');
xlabel('Time');ylabel('Normalized frequency');
u=10; Tu=0:1/u:255-1/u;
fu=0:0.5/256:u*0.5-0.5/256; fu=fu(1:length(Tu));
S=zeros(length([1:.25:3]),length(Tu));
i=1;

Parametrical Time-Frequency Methods 337

for k=1:.25:3,
 w=Tu.̂ (1/(k)); tw=w;fw=fu.*(Tu.̂ (1-k))/k;
 s1=interp1(t,s0,tw,'cubic');
 subplot(212); S1=fft(s1);
 ff=-0.5:1/length(S1):.5-1/length(S1);
 S(i,:)=abs(fftshift(S1))/max(abs(S1));
 plot(ff,S(i,:)); i=i+1; pause
end
k=1:.25:3; imagesc(ff,k,S); axis xy;
title('Prewarped signal spectrum for several values of k')
xlabel('Normalized frequency'); ylabel('k');
axis([-5*10̂ -3 5*10̂ -3 1 3.2]); colormap(flipud(jet));

0 100 200
0

0.1

0.2

0.3

0.4

0.5
Instantaneous frequency laws

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Wigner�Ville distribution

Time

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

0 100 200
0

0.1

0.2

0.3

0.4

Prewarped signal spectrum for several values of k

Normalized frequency

k

�5 0 5

x 10
�3

1

1.5

2

2.5

3

Figure 12.15. Illustration of the warping operator bank concept

The two-dimensional structure S containing the prewarped signal spectrum for
several warping operators t1/k, with k between 1 and 3, is plotted in Figure 12.15
(bottom). Note that the best spectral concentrations are obtained for k = 1.5 and 3,
which correspond to the modulation laws of the analyzed signal components.

338 Digital Signal Processing using MATLAB

12.3. Exercises

EXERCISE 12.11.
Calculate the FRFT to the sum of two chirps given below:

() ()() ()()2 2exp 2 0.1 0.0012 exp 2 0.4 0.0012 , 0..255s t j t t j t t tπ π= + + − =

for an order sweeping the range between 0 and 2 with an increment of 0.1.

a. Plot the instantaneous frequency law for each component of the signal.

b. Estimate the linear modulation rate using different FRFT representations.

EXERCISE 12.12.

Consider the signal:

() ()()2exp 2 0.1 0.0012 , 0..255s t j t t b tπ= + + =

where b stands for a Gaussian noise.

a. Estimate the signal parameters using the FRFT.

b. Calculate the minimum SNR, for which it is still possible to estimate these
parameters.

EXERCISE 12.13.

Consider the following signal:

() ()()2 6 3exp 2 0.1 .0012 .13 10 , 1..256.s t j t t t tπ −= + + ⋅ =

Express the time-frequency content of this signal as the sum of two chirps using
the FRFT.

EXERCISE 12.14.

Consider the signal below:

() ()() ()()2 2exp 2 0.1 0.0012 exp 2 0.12 0.0012 , 0..255s t j t t j t t tπ π= + + + =

Parametrical Time-Frequency Methods 339

a. Plot the instantaneous frequency law for each component of the signal.

b. Estimate the parameters of each component using the FRFT.

c. Propose a solution to increase the obtained resolution.

EXERCISE 12.15.

Let us consider the following sinusoidal frequency modulation:

() ()()exp 2 0.3 0.1sin 2 0.02 , 0..255s t j t t tπ π= + ⋅ = .

a. Model the phase of this signal by means of the HAF.

b. Comment on the influence of the modeling order on the estimation quality.
Find the most appropriate order value.

EXERCISE 12.16.

Repeat exercise 12.15 but using ml-HAF and discuss the influence of the number
of lags on the modeling quality.

EXERCISE 12.17.

Consider the noisy signal given below:

() ()4 2 6 3exp 2 0.25 9.76 10 3.204 10 (), 0..255s t j t t t b t tπ − −= − ⋅ + ⋅ + = .

Find the minimum SNR for which the ml-HAF still provides appropriate results.
Propose an objective criterion for the assessment of the results.

EXERCISE 12.18.

Consider the following 6th order polynomial phase signal:

()
4 2 7 3

8 4 10 5 13 6

0.17 9.7 10 2.35 10
exp 2

3.8 10 2.8 10 3.29 10

t t t
s t j

t t t
π

− −

− − −

⋅ − ⋅ ⋅ − ⋅ ⋅
=

+ ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅

Modelize the phase of this signal by means of the ml-HAF for several orders (4,
5, 6, 7, 8). Comment on the results obtained.

EXERCISE 12.19.

Consider the received signal from a mobile underwater source, which moves
away with speed v = 6 m/s and acceleration a = 0.07 m/s2. The transmitted signal is

340 Digital Signal Processing using MATLAB

a chirp given by exp[j2π(410t+2.48t2)]. The received signal is sampled with the
sampling frequency Fs = 1,000 Hz.

Give the theoretical expression of the received signal phase (the speed of the
sound in the water is considered equal to 1,500 m/s). Estimate the signal phase using
the ml-HAF.

EXERCISE 12.20.

The chirp signal below:

() ()4 2 6 3exp 2 0.25 9.76 10 3.204 10 , 0..255s t j t t t tπ − −= − ⋅ + ⋅ =

propagates in a multipath channel characterized by the following impulse response:

() () () ()0.8 24 0.4 64h t t t tδ δ δ= + − + −

a. Demonstrate that the received signal is expressed as the sum of three 3rd order
PPSs. Calculate the polynomial coefficients corresponding to this mixture.

b. Modelize this mixture by means of the ml-HAF and find out the channel
parameters.

c. Comment on the performance of this method and indicate its possible
applications.

EXERCISE 12.21.

Consider the following signal:

() [] []exp 2 3ln exp 2 4lns t j t j tπ π= +

a. Compare the Wigner-Ville distributions corresponding to this signal and to
its prewarped version obtained using the hyperbolic warping operator.

b. Analyze the errors and identify the cross-terms.

c. Indicate the type of errors which are removed by the warping operator.

d. Propose a solution for the time-frequency representation of the prewarped
signal in order to obtain a TFR without cross-terms.

Parametrical Time-Frequency Methods 341

EXERCISE 12.22.

Consider a signal with two similar components:

() 1.5 1.5exp 2 0.02 exp 2 0.01 , 0..255s t j t j t tπ π= ⋅ ⋅ + ⋅ ⋅ = .

Estimate the modulation rate of each component using the warping principle.
Calculate the non-linear matched TFR corresponding to this signal. Compare the
results obtained to the instantaneous frequency laws of the two components.

EXERCISE 12.23.

Consider a signal with two different components:

() []1.5exp 2 0.02 exp 2 3ln() , 0..255s t j t j t tπ π= ⋅ ⋅ + ⋅ = .

a. Extract each component of this mixture by projecting the signal on the
function sets exp(atk) and exp(bln(t)).

b. Calculate the matched TFR corresponding to each component.

c. Find the non-linear matched TFR corresponding to signal s(t) by superposing
the two previously calculated TFRs.

This page intentionally left blank

Chapter 13

Supervised Statistical Classification

13.1. Theoretical background

13.1.1. Introduction

Pattern recognition, one of the most important aspects of artificial intelligence,
is an appropriate field for the development, validation and comparison of different
learning techniques: statistical or structural, supervised or unsupervised, inductive or
deductive, etc.

Patterns are general concepts describing an object (mechanical part, obstacle,
human face, etc.) or a phenomenon (disease, system operating state, emotion, etc.).
They are provided by a sensor or transducer to a recognition system in the form of a
data set. The classification is possible only if characteristic information about the
observed pattern is confined in this data set, which is then called a pattern signature
or fingerprint.

Since the signatures are generally measured, they have a random nature. Thus,
the statistical approach, which is described in this chapter, is the most used for
pattern recognition. More precisely, we consider the supervised learning framework,
which requires a database. This database contains labeled patterns belonging to the
M predefined classes ω1, ω2, …, ωM. These patterns are repeatedly presented to the
classifier in order to derive a decision rule optimizing a given criterion.

The general structure of a supervised statistical classification chain is presented
in Figure 13.1. This process aims at classifying any unknown pattern using its
signature and consists of the following steps:

344 Digital Signal Processing using MATLAB

− feature vector extraction from the recorded signatures; the feature vector
confines the discriminant information, which allows the different classes to be
separated;

− data analysis, which is useful for reducing the initial space dimension while
keeping the discriminant properties of the extracted features;

− classification, which is the decision step and associates a label with an
unknown input pattern.

The first step may involve many different techniques: statistical, spectral, time-
frequency, etc.). However, there is no rule for finding the best salient features while
their nature essentially depends on the considered application.

The two last steps are, from this point of view, easier to implement, since they
make use of some standard techniques, which will be briefly described in this
chapter.

Figure 13.1. Supervised statistical classification flowchart

13.1.2. Data analysis methods

The data analysis is a key step of any pattern recognition process, which is
closely related to the classifier performance and complexity. It is also the interface
between the signal processing and the information processing domains. In fact, if the
features extracted from recorded signatures still have a physical mean (amplitude,
frequency, contour, etc.), the characteristics obtained after the data analysis step
loose it in the new representation space.

Two data analysis approaches are generally used for reducing the initial space
dimension. The first consists of selecting from among the extracted features the best

Supervised Statistical Classification 345

subset using sequential methods, such as SFS (sequential forward selection), SBS
(sequential backward selection), etc. However, these methods are suboptimal and
the convergence rate toward the final solution depends on the extracted feature set.
Furthermore, this approach does not completely remove the feature redundancy.

The second approach, which will be described in this section, deals with
projection methods, such as the principal component analysis, the discriminant
factor analysis, the Sammon method, etc. The projection is performed by a linear or
non-linear transformation, which aim to optimize a given criterion: variance
maximization, distance conservation, class separability maximization, etc.

The linear transformations are the most used thanks to their simplicity and
calculation speed. They are defined by the following relationship:

= ⋅y K x [13.1]

where K is the transformation matrix, x = [x1 x2 … xn]T denotes the feature vector
and y = [y1 y2 … ym]T is the characteristic vector (m < n).

Principal component analysis

The most well known linear method for data analysis is the Karhunen-Loève
transform or the principal component analysis method (PCA), which maximizes the
variance of the projected vectors.

It is defined by a matrix having as rows the eigenvectors of the feature space
covariance matrix Σx. The main steps for the implementation of this transform are
indicated in Figure 13.2.

The PCA removes any redundancy between the components of the projected
vectors, since the covariance matrix in the transformed space becomes diagonal:

[]1 2= diag ...T
nλ λ λ=y xK K [13.2]

where {λi}i=1 n stand for the eigenvalues of matrix Σx.

The mean square error associated with this transform is minimal among all the
linear transforms, and is given by:

1

n
i

i m
EQM λ

= +
= [13.3]

346 Digital Signal Processing using MATLAB

This result shows that the contribution of each projection space dimension to the
mean square error is proportional to the associated eigenvalue. Consequently, the
selected components correspond to the most important eigenvalues.

Figure 13.2. Main steps of the PCA implementation

The PCA performs the vector projection without any knowledge of their labels.
It is therefore an unsupervised data analysis method.

Linear discriminant analysis

Unlike the PCA, the linear discriminant analysis (LDA) is a supervised
projection method, which aims to maximize the separability of the projected classes.
It is defined by the corresponding projection matrix according to equation [13.1].

The LDA objective is to minimize the distances among the vectors belonging to
the same class and to maximize the distances among the class centers. These
distances are represented by matrices SW and SB respectively.

The rows of matrix K are the eigenvectors of matrix ΣLDA in this case. This last
matrix is obtained as shown in Figure 13.3 using the two matrices SW and SB. Note
that the number of non-zero eigenvalues of matrix ΣLDA is the number of classes

Supervised Statistical Classification 347

minus 1. All the eigenvalues are comprised between 0 and 1 and indicate the
discriminant capability of the axes represented by the corresponding eigenvectors.

Figure 13.3. Main steps of the LDA implementation

Sammon method

Non-linear transforms generally perform better than linear methods since they
are able to better describe measured data using significant characteristics.

A particularly interesting non-linear transform is the Sammon method, which
tries to ensure the best conservation of the distances among the vectors. This is
equivalent to maintaining the same neighborhood relationship as in the initial space.
Therefore, the transformed space will be the closest image of the initial space in a
lower dimension.

The Sammon method minimizes the following cost function:

2*1

1 *
1 1*

1 1

(,) (,)1
(,)(,)

v v

v v

N N i j i j

N N
i j i i j

i j
i j i

d d
E

dd

−

−
= = +

= = +

−
= ⋅

x x y y

x xx x
 [13.4]

348 Digital Signal Processing using MATLAB

where Nv is the number of vectors, while d*(xi,xj) and d(yi,yj) stand for the distances
between a couple of vectors in the initial and transformed space respectively.

The normalized cost function given by equation [13.4] is known as the Sammon
stress, and measures the conservation of the distance between the feature vectors
after their projection.

Different approaches are possible for minimizing function E: gradient method,
simulated annealing, etc. The projected vectors update rule using the gradient
method for the optimization process is given below:

()
*

1 ** 1

1 1

(,) (,)
(1) ()

(,)(,)

N
k i k i

k k k iN N
i k ii j i k

i j i

d d
t t

dd

α
−

=
≠

= = +

−
+ = + ⋅ −

x x y y
y y y y

x xx x
 [13.5]

where α is a positive constant which controls the convergence rate.

An example which illustrates the projection of two non-linearly separable classes
is presented in Figure 13.4.

Figure 13.4. Application of the Sammon method to the case of two classes

The most recent approach makes use of neural networks to generalize the
optimization process result. The projection of a new vector can thus be performed by
a trained neural network without repeating the optimization process.

13.1.3. Supervised classifiers

The classifier is the decision element of a pattern recognition system. The
previous two phases (feature extraction and data analysis) aimed to extract the
essential information about the observed patterns and present it in the most

Supervised Statistical Classification 349

appropriate and condensed form to the classifier. From this point, the quality of
decision made depends only on the classifier choice and its implementation.

The general structure of a supervised classifier is illustrated in Figure 13.5.
Implementing such a classifier is equivalent to finding out, during the training phase,
and to using, during the test phase, the discriminant functions g1, g2, … , gM, so that:

1..
() max ()i i j

j M
g gω

=
∈ =x x x [13.6]

The classifier is optimal according to the mean error probability Perr_mean
minimization criterion if:

() (|) ()i i ig f Pω ω= ⋅x x [13.7]

In the above equation, P(ωi) is the a priori probability of class ωi, while f(x|ωi)
denotes the conditional probability density function of the vectors belonging to this
class.

Figure 13.5. General structure of a supervised classifier

Equation [13.7] defines the Bayes classifier, which is the reference for any other
classifier. In fact, it fixes the highest performance level, which can be reached in the
best case. However, it is not feasible and has only a theoretical interest, since the
exact expressions of P(ωi) and f(x|ωi) are unknown in real situations.

If Perr_emp is an empirical mean error probability evaluated over a training set
containing Ntrain vectors, thus:

_ _lim
train

err emp err mean
N

P P
→∞

=

350 Digital Signal Processing using MATLAB

However, the minimization of Perr_emp does not automatically lead to a high
generalization capability, since the training vector set is rather limited in practical
situations. The discriminant functions calculated in this way are also linked to some
particular aspects of the training vector distribution.

To avoid the data overfitting two solutions are possible. The first is empirical
and consists of introducing a third vector set, which is used during the training phase
only to evaluate the system performance. The classification rate corresponding to
this set measures the generalization capability. Thus, the training phase is finished
when it reaches a maximum value.

The start point for the second solution is the relationship between the
discriminant function complexity and the data overfitting risk. The key idea is thus
to use the simplest functions which are able to fit the data, according to the Occam
razor principle.

It is therefore possible to define an upper limit for the mean error probability,
which will be minimized by the training process. This limit depends on the empirical
mean error probability Perr_emp and on a penalty term Ψ. Ψ is defined with respect to
the complexity of the discriminant function class G and to the number of the training
vectors Nappr. Consequently:

_ _ _ (,)err Bayes err mean err empP P P G N≤ ≤ + Ψ [13.8]

The above equation illustrates two main approaches for the classifier design. The
first one aims to minimize Perr_mean, which tends towards Perr_Bayes. This can be
considered as an “estimation” approach, since it requires the estimation of the
conditional pdf corresponding to each class.

The second approach aims to minimize Perr_mean by means of its upper limit
minimization. The key idea is to minimize Perr_emp for a discriminant functions class
G of minimum complexity, i.e. the linear function class. Thus, the corresponding
approach is called “linear”.

Supervised classifiers using the estimation approach

The methods derived from this approach rely on either the explicit (parametric or
non-parametric) estimation of the classes’ distributions or their implicit estimation
(neural networks).

The parametric estimation assumes that the analytic form of these distributions
is known up to a given number of parameters, which will then be estimated using the
training vector set. Although this approach is close to the original Bayes theory, it
has some shortcomings:

Supervised Statistical Classification 351

− most theoretical distributions are unimodal, unlike the real data distributions,
which are generally multimodal,

− even if the analytical forms of the data distributions can be identified, the
estimation of their parameters require a large number of training vectors; this
approach is therefore inappropriate whenever the number of available training
vectors is reduced.

The non-parametric estimation does not consider any assumptions on the
analytical form of the different classes’ distributions. They are locally estimated
using the training vector set.

KNN (K nearest neighbor) classifiers

KNN classifiers are the most used non-parametric classification techniques. The
decision rule is very simple and can be easily generalized to the multiclass case.
Thus, if VK(x) is the Kth order neighborhood of the vector x and:

{ }() card , ()j n n j n KK Vω= ∈ ∈x x x x x [13.9]

thus:

1..
() max ()i j i

j M
K K ω

=
= ∈x x x [13.10]

This decision rule, illustrated in Figure 13.6, consists of assigning an unknown
vector x to the class which has the largest number of vectors among its K nearest
neighbors. If K = 1 the unknown vector is classified in the same class as its nearest
neighbor (NN or nearest neighbor rule).

The performance of the KNN classifier can be increased if some additional
information is considered. The new classifier, called fuzzy KNN, takes into account
not only the number of neighbors but also their distances to the unknown vector and
their membership coefficients calculated for each class.

352 Digital Signal Processing using MATLAB

Figure 13.6. KNN classifier principle

The membership coefficient of an element (vector) to a set (class) is the central
concept of the fuzzy logic theory. It can take any value between 0 and 1, provided
that the sum of all the membership coefficients associated with a given vector is
equal to 1. This membership definition is much more flexible than the standard
definition, which is based on a binary rule, so that a vector belongs to a class or not.
Furthermore, the fuzzy membership concept is also more appropriate for real world
problems, where the transition from one pattern to another is often continuous.

The fuzzy KNN algorithm involves the three main steps shown in Figure 13.7:
fuzzification, calculation of unknown vector membership coefficients, and
unfuzzification.

Figure 13.7. Fuzzy KNN classifier principle

Supervised Statistical Classification 353

The first step consists of calculating the membership coefficients of each
learning vector corresponding to all classes. A commonly used fuzzification rule is
indicated below:

(){ }
()

() () (), card |
F

m
j m j j

jm n n K mj
F

K
u K V

K
= = ∈x x x [13.11]

In the above equation, ujm is the membership coefficient of the training vector xm
corresponding to the class ωj, Kj

(m) stands for the number of its nearest neighbors
belonging to this class and KF denotes the total number of nearest neighbors
considered in the fuzzification step. Coefficient ujm can be seen as a measure of the
matching between the components of vector xm and the characteristics of class ωj.

In the next step, the unknown vector membership coefficients corresponding to
each class are given by the following relationship:

2 /

()
2 /

()

() m K

m K

jm m
V

j
m

V

u

u

δ

δ

−

∈
−

∈

−

=
−

x x

x x

x x
x

x x
 [13.12]

where K denotes the total number of nearest neighbors considered in this phase and δ is
an appropriately chosen constant (usually δ = 1).

Finally, a decision is made in the third step about the classification of the
unknown vector according to the following rule:

{ }() max ()i j i
j

u u ω= ∈x x x [13.13]

Furthermore, these membership coefficients can also be helpful to provide a
confidence measure for the classification result.

The main drawback of the KNN classifier comes from the fact that all the
training vectors are used in the classification phase for calculating their distances to
the unknown vector and selecting its nearest neighbors. Thus, the use of this
classifier for real-time applications is inappropriate in most cases.

Neural networks

The connectionist approach, represented by the neural networks, relies on the
parallel-distributed processing performed by simple elementary structures called

354 Digital Signal Processing using MATLAB

neurons. Their weights are randomly initialized and then repeatedly updated during
the training phase using different recursive learning algorithms. The neural network
final configuration is highly adapted to the structure of the training vectors’ space.

There is a large variety of neural networks for the supervised classification:
multilayer perceptron, radial basis function (RBF) networks, learning vector
quantization (LVQ) networks, etc. The basic component of each of them is the
neuron, which generally calculates a scalar product or a distance.

The neural networks are trained using a learning rule of biological inspiration
(such as the Hebb rule) or of mathematical inspiration (such as the generalized delta
rule or the backpropagation algorithm). These rules calculate automatically the
network weights, which confine the information about the distribution of the vector
classes. In other words, the network weights generate borders which separate the
classes and approximate the discriminant functions of the Bayes classifier.

No a priori knowledge is needed about the classes’ statistics (as in the case of
the non-parametric classifiers) and a significant compression of the database volume
is obtained (as in the case of the parametric classifiers), since the whole information
is concentrated in the network weights.

The neural networks are very fast classifiers, since the classification time of an
unknown vector is the propagation time through the network layers. Furthermore,
they are much less sensitive than other classifiers to local failures (one or even
several defective neurons) due to the information distribution all over the network.

Finally, a very important property of neural networks is that if the training set is
statistically characteristic for the input vectors’ distribution and if the network is
properly trained, its outputs approximate the a posteriori probabilities associated
with the considered classes. As the unknown vector is assigned to the class whose
corresponding output is maximal, a neural network makes the same optimal decision
as the Bayes classifier.

However, due to the finite number of training vectors, a real neural network
minimizes the mean square error (MSE) instead of the mean error probability. The
MSE is expressed in this case as follows:

2

1 1

1 () ()
vNM

i j i j
i jv

MSE o d
N = =

= −x x [13.14]

where Nv is the number of training vectors, while oi(xj) and di(xj) denote the actual
and target outputs of the neural network corresponding to class ωi and training
vector xj.

Supervised Statistical Classification 355

The most well known neural network for the supervised classification is the
multilayer perceptron (MLP). Its general structure is illustrated in Figure 13.8. The
neurons are organized in an input layer, an output layer and one or two hidden
layers. The output of each neuron is connected to the input of all neurons from the
next layer (fully connected forward network).

The MLP neuron performs the scalar product between the input vector and its
weight vector. Its output is then calculated by means of a differentiable non-linear
function f(net), called the activation function.

Its most commonly used forms are indicated below together with the
corresponding derivatives:

− sigmoid function:

() []1() 1 exp () () 1 ()f net net f net f net f netα α− ′= + − = −

− tanh function:

() 2() tanh () 1 ()f net net f net f netα α′= − = −

The constant α controls the variation rate of function f(net).

Figure 13.8. Structure of a multilayer perceptron

356 Digital Signal Processing using MATLAB

The neurons’ weights are the network free parameters. They are randomly
initialized and reach stable values at the end of the training process.

During the training process all the couples training vector – target outputs are
repeatedly presented to the neural network. At each iteration, called an epoch, the
neurons’ weights change according to the backpropagation learning algorithm in
order to minimize the error function defined by equation [13.14]. The output layer
neurons’ weights are updated using the following relationships:

(2) (2) (2)(1) () () ()m kmk mkw t w t t c tηδ+ = + [13.15]

[](2) 2() 1 () ()m m m mt o t d o tδ α= − − [13.16]

where η is a constant which controls the learning rate.

For the hidden layers, the updating rule is given below:

(1) (1) (1)(1) () () iki ki kw t w t t xηδ+ = + [13.17]

(1) (2)2 (2)

1
() 1 () () ()

M
k mk mk

m
t c t w t tδ α δ

=
= − [13.18]

The function “tanh” has been used as activation function in the above equations.

The convergence of this learning algorithm can be improved using different
heuristic solutions (additional momentum term or adaptive learning speed) or
mathematical methods (Newton, Levenberg-Marquardt, etc.).

Supervised classifiers using the linear approach

The linear approach is essentially represented by the perceptron and its variants
and by the support vector machines (SVM). These classifiers are very fast, as the
separating hyperplanes require only the scalar product calculation. They are
perfectly adapted to the case of linearly separable classes. Otherwise, these
classifiers are optimal only in the case of Gaussian classes with identical covariance
matrices.

Fuzzy perceptron

Let us consider the case of two classes ω1 and ω2 and denote by μ1 and μ2 the
corresponding mean vectors. If the classes are linearly separable the perceptron

Supervised Statistical Classification 357

having the structure illustrated in Figure 13.9 is able to find the equation of the
separating hyperplane in a finite number of epochs.

Its learning rule is given below:

(1) () ()k k kt t d o+ = + −w w x [13.19]

where the target output dk is considered equal to 1 for the training vectors belonging
to ω1 and 0 for those belonging to ω2.

Figure 13.9. Fuzzy perceptron structure and principle

The actual output value ok can be either 0 or 1 due to the Heaviside activation
function. At the end of the training process, all the training vectors are well
classified. However, if the classes are not linearly separable, as illustrated in Figure
13.9, the learning algorithm does not converge.

The fuzzy perceptron has the same structure as the perceptron, but its learning
rule is different:

1 2(1) () ()k k k k kt t u u d oδ+ = + − −w w x [13.20]

where u1k and u2k are the membership coefficients of vector xk relative to the two
classes, η stands for the learning rate and δ is a positive appropriately chosen
constant.

The membership coefficients of each training vector have to be inside the
interval [0.5, 1] for its own class, and inside the interval [0, 0.5] for the other class.
They are defined so that the following conditions are met:

358 Digital Signal Processing using MATLAB

− the membership coefficient of a training vector to its own class is equal to 1 if
it is the mean vector of its class and is equal to 0.5 if it is the mean vector of the
other class;

− the membership coefficients of a vector equally spaced with respect to the
mean vectors of the two classes is close to 0.5;

− the membership coefficients vary exponentially with the distance to each class
mean vector.

Let us denote by D = ||μμ1 - μ2|| the distance between the mean vectors of the two
classes and by D1k = ||μμ1 – xk|| and D2k = ||μμ2 – xk|| the distances between vector xk
and these mean vectors. Thus u1k and u2k are calculated in the following manner:

− if xk ∈ ω1 then:

()2 1
1

2 1

1 1 exp exp
2
1

k k
k

k k

D D
u g g

A D
u u

−
= + − −

= −
 [13.21]

− if xk ∈ ω2 then:

()

1 2

1 2
2

1

1 exp exp

k k

k k
k

u u

D D
u g g

A D

= −

−
= − −

 [13.22]

where A = 2[exp(g)-exp(-g)] = 4sh(g) and g is a positive constant which controls the
variation rate of the membership coefficients.

The learning rate defined by equation [13.20] reduces the influence of the
training vectors whose class membership is ambiguous. These vectors define the
fuzzy zone illustrated in Figure 13.9, which corresponds to a membership coefficient
value around 0.5:

0.5 0.5ikuβ β− < < + [13.23]

The width of the fuzzy region is determined by the largest membership
coefficient of the training vectors equally spaced with respect to the mean vectors of
the two classes, denoted by β. Thus, the largest membership coefficients of the
training vectors outside this zone have to be higher than β. Thus, the β value is
calculated as follows:

Supervised Statistical Classification 359

[]
1 exp() , 0

2 exp() exp()
g

g g
β ε ε− −= + ≥

− −
 [13.24]

where constant ε is related to the convergence rate (typically ε = 0.02).

The learning process is stopped when, during a complete epoch, the fuzzy
perceptron weight vector is updated only by the training vectors from the fuzzy
zone. Therefore, the fuzzy perceptron is able to find a separating hyperplane in a
finite number of epochs, even if the classes are not linearly separable.

SVM classifiers

The key idea of the SVM classifiers is to find a separating hyperplane between
two classes (h: wTx + b = 0), so that its minimal distance with respect to the training
vectors, called the margin, is maximum.

The optimal solution is obtained when this hyperplane is located in the middle of
the distance between the convex envelopes of the two classes. This distance is
denoted by dm in Figure 13.10, and is expressed as follows:

2
md =

w
 [13.25]

The support vectors are situated on the margins of the two classes. If the training
vectors’ membership is defined by:

1

2

1 if
1 if

k
k

k
u

ω
ω

∈
=

− ∈
x
x

 [13.26]

then the support vectors’ set can be written in the form Ωs = {xk | uk(wTxk + b) = 1}.

Figure 13.10. SVM classifier basic principle

360 Digital Signal Processing using MATLAB

Consequently, the optimal hyperplane separates the vectors of the two classes so
that the margin is maximized. This is equivalent to finding the solution of the
following constrained optimization problem:

() ()

22 1max min || ||
|| || 2

 1 0 1 kk u bu b
⇔

+ − ≥+ ≥

ww

TT
kk

w
w

w xw x
 [13.27]

Since both the function to be optimized and the associated constraints are
convex, solution (w, b) can be determined using the Lagrange multipliers:

() 1

s

k k k k
k

k

u u

u b

λ λ
∈Ω

= =

+ ≥

k

k k
x

T
k

w x x

w x
 [13.28]

The coefficients λk are obtained by solving the following optimization problem:

()

1max
2

0

0 (0 if 1 0)

T
k j k j k j k

k j k

k k
k

k k k

u u

u

u b

λ λ λ

λ

λ λ

−

=

≥ = + − >T
k

x x

w x

λ

 [13.29]

Note that the separating hyperplane requires only the calculation of the scalar
product between the input space vectors. The solution thus depends only on the
number of support vectors and does not depend on the input space dimension.

If the classes are not linearly separable, the constraints associated with the
coefficients λk change. Thus, their values are limited to a finite interval 0 ≤ λk ≤ c,
where the constant c is chosen by the user (typically c = 5). A similar solution to that
provided by equation [13.28] can then be obtained.

The structure of the SVM classifiers can be modified to also generate non-linear
separating surfaces (Figure 13.11). The basic idea is to project the input vectors in a
higher dimension space, where the classes become linearly separable. This
transformation is performed by means of a non-linear function Φ, which modifies
the scalar products in equation [13.29], so that:

Supervised Statistical Classification 361

()
() ()

()
T T
j

→ Φ
→ Φ Φ

→ Φ
k k

k k j
j j

x x
x x x x

x x
 [13.30]

Figure 13.11. SVM classification using non-linear separating surfaces

Function Φ does not appear explicitly in the expression of the final solution. In
fact, it is replaced by a symmetric and separable function, called kernel1 in order to
overcome the problem related to the scalar product calculation in a higher dimension
space. The kernel function is defined as follows:

n nΔ : × →R R R , (,) () ()TΔ = Φ Φk j k jx x x x [13.31]

The solution is then obtained in the following form:

(,)
s

T
k kb u bλ

∈Ω
+ = Δ +

k

k
x

w x x x [13.32]

Some normal kernel functions are provided below, α and a being positive
constants:

– linear kernel: (,) T
jΔ =k j kx x x x ,

– polynomial kernel: ()(,) 1
nT

jαΔ = +k j kx x x x ,

– Gaussian RBF kernel: ()2(,) exp || ||αΔ = − −k j k jx x x x ,

1 The kernel function has to meet Mercer’s condition: () () (), 0x y g x g x dxdy
∞

−∞

≥Δ for any

finite energy function g(x).

362 Digital Signal Processing using MATLAB

– exponential RBF kernel: ()(,) exp || ||αΔ = − −k j k jx x x x ,

– sigmoid kernel: ()(,) tanh T
j aαΔ = −k j kx x x x .

The performance of a SVM classifier depends on the kernel function and its
parameters. The dimension of the internal representation space has to be lower than
the number of training vectors in order to insure a good generalization capability.

13.2. Solved exercises

EXERCISE 13.1.
a. Generate and plot three classes of 100 three-dimensional vectors having the

mean vectors and the covariance matrices given below:

3
5
2

=1μ ,
1 2.5 1
2.5 1 1
1 1 1

− −
= − −

− −
1 ,

1
3
3

=2μ ,
.5 2 2
2 .5 1.5
2 1.5 .5

− −
= − −

− −
2 ,

5
2
1

=3μ ,
1 2 1
2 3 1.5
1 1.5 1

− −
= − −

− −
3

b. Project all these vectors in a two-dimensional space using the principal
component analysis. What is the resulting relative error?

c. Perform the linear discriminant analysis on the same vectors’ set. Conclude
about the interest of this method for better organizing the data before the
classification phase.

a.

The following function can be used for generating Gaussian classes:

function matr_gen =
generation_class_gauss(mean_vect,cov_matr,vect_nbr)
% Generation of a Gaussian class
% matr_gen=generation_class_gauss(mean_vect,cov_matr,vect_nbr);
% mean_vect - mean vector
% cov_matr - covariance matrix
% vect_nbr – number of vectors
% matr_gen - matrix of generated vectors
nbre_var=length(mean_vect); matr_init=randn(nbre_var,vect_nbr);
cov_matr_init=cov(matr_init’);
matr_transf=real((cov_matr̂ .5)*(cov_matr_init̂ -.5));
matr_gen_centered=matr_transf*matr_init ;
matr_gen=repmat(mean_vect,1,vect_nbr)+matr_gen_centered;

Supervised Statistical Classification 363

The MATLAB code below allows then generating and plotting the three classes:

mean_vect1=[3;5;2]; cov_matr1=[1 -2.5 -1;-2.5 1 -1;-1 -1 1];
mean_vect2=[1;3;3]; cov_matr2=[.5 -2 -2;-2 .5 -1.5;-2 -1.5 .5];
mean_vect3=[5;2;1]; cov_matr3=[1 -2 -1;-2 3 -1.5;-1 -1.5 1];
vect_nbr=100;
class1=generation_class_gauss(mean_vect1,cov_matr1,vect_nbr);
class2=generation_class_gauss(mean_vect2,cov_matr2,vect_nbr);
class3=generation_class_gauss(mean_vect3,cov_matr3,vect_nbr);
figure; plot3(class1(1,:),class1(2,:),class1(3,:),’vr’)
hold on; plot3(class2(1,:),class2(2,:),class2(3,:),’ob’)
plot3(class3(1,:),class3(2,:),class3(3,:),’.k’)
xlabel(‚x_1’); ylabel(‚x_2’); zlabel(‚x_3’);
title(‘Distribution of the vectors belonging to the three classes’)
legend(‘Class 1’,’Class 2’,’Class 3’,0); grid

�5

0

5

10

�5

0

5

10
�4

�2

0

2

4

6

x
1

Distribution of the vectors belonging to the three classes

x
2

x 3

Class 1
Class 2
Class 3

Figure 13.12. Distribution of the vectors belonging to the three classes

b.

An example of a function implementing the principal component analysis is
provided below.

function [kmat,pes]=pca(pen,threshold)

364 Digital Signal Processing using MATLAB

% Principal component analysis
% [kmat,pes]=pca(pen,threshold);
% pen – matrix of input vectors
% threshold – if higher than 1, stands for the projection space dimension; if
lower than 1, stands for the percentage of the preserved variance
% kmat – projection matrix
% pes – matrix of projected vectors
moy=mean(pen,2); sigx=cov(pen’);
[vectp,valp]=eig(sigx);
vlpr=abs(diag(valp));
[ld,idx]=sort(vlpr);
idx=flipud(idx);
ld=flipud(ld);
vectps=vectp(:,idx);
if threshold<1
 ldn=(norm(ld))̂ 2; ldns=cumsum(ld.̂ 2);
 ldns=ldns/ldn; idxc=find(ldns>=threshold); ns=idxc(1);
else
 ns=threshold;
end
figure; stem(ld); grid;
xlabel(‘Index’); ylabel(‘Eigenvalue’);
title(‘Eigenvalues distribution (PCA)’)
disp([‘Eigenvalues vector ld = ‘, num2str(ld’)])
kmat=vectps(:,1:ns).’; pes=kmat*pen;

The following MATLAB code performs the PCA projection of the previously
generated vectors:

matr_vect=[class1 class2 class3];
[kmat,matr_proj]=pca(matr_vect,2);
matr_proj1=matr_proj(:,1 :vect_nbr);
matr_proj2=matr_proj(:,vect_nbr+1 :2*vect_nbr);
matr_proj3=matr_proj(:,2*vect_nbr+1 :3*vect_nbr);
figure; hold on
plot(matr_proj1(1,:),matr_proj1(2,:),’vr’)
plot(matr_proj2(1,:),matr_proj2(2,:),’ob’)
plot(matr_proj3(1,:),matr_proj3(2,:),’.k’)
xlabel(‘y_1’); ylabel(‘y_2’);
title(‘PCA projection’)
legend(‘Class 1’,’Class 2’,’Class 3’,0);

The PCA yields the following eigenvalues: 6.77, 3.16 and 0.42. Thus, equation
[13.3] leads to the relative error calculated below:

3
3

1

0.42 0.04
6.77 3.16 0.42r

i
i

λε
λ

=

= = =
+ +

Supervised Statistical Classification 365

Consequently, there is a minor information loss associated with this projection.
The space dimension reduction from 3 to 2 almost without any information loss was
possible due to the initial space redundancy.

The projection result is illustrated in Figure 13.13. The axes of the projection
plane correspond to the maximum variance directions in the initial space.

c.

The following function performs the linear discriminant analysis.

function [kmat,pes]=lda(pen,threshold)
% Linear disriminant analysis
% [kmat,pes]=lda(pen,threshold);
% pen – matrix of input vectors (the last row contains the labels)
% threshold – if higher than 1, stands for the projection space dimension; if
lower than 1, stands for the percentage of the preserved variance
% kmat – projection matrix
% pes – matrix of projected vectors (the last row contains the labels)
x=pen(1:size(pen,1)-1,:);
labelx=pen(size(pen,1),:);
nc=max(labelx); [np,nvt]=size(x);
for k=1:nc
 ic=num2str(k); idxc=find(labelx==k);
 eval([‘x’,ic,’=x(:,idxc);’]);
 eval([‘xr’,ic,’=x’,ic,’’’;’]);
end
moy0=zeros(np,1); sw=zeros(np,np); sb=zeros(np,np);
for l=1:nc
 eval([‘moy’,num2str(l),’=mean(xr’,num2str(l),’)’’;’]);
 eval([‘moy0=moy0+(1/nc)*moy’,num2str(l),’;’]);
 eval([‘vary’,num2str(l),’=cov(xr’,num2str(l),’);’]);
 eval([‘sw=sw+(1/nc)*vary’,num2str(l),’;’]);
end
for l=1:nc
 eval([‘dif=moy’,num2str(l),’-moy0;’]);
 eval([‘sb=sb+(1/nc)*dif*dif’’;’]);
end
s=(inv(sw+sb)*sb);
[vectpr,valpr]=eig(s);
ld=abs(diag(valpr));
[ld,idxvp]=sort(ld);
idxvp=flipud(idxvp);
ld=flipud(ld);
vectprs=vectpr(:,idxvp);
if threshold<1
 ldn=(norm(ld))̂ 2; ldns=cumsum(ld.̂ 2);
 ldns=ldns/ldn; idxc=find(ldns>=threshold); ns=idxc(1);
else

366 Digital Signal Processing using MATLAB

 ns=threshold;
end
figure; stem(ld);
xlabel(‘Index’); ylabel(‘Eigenvalue’);
title(‘Eigenvalues distribution (LDA)’)
disp([‘Eigenvalues vector ld = ‘, num2str(ld’)])
kmat=vectprs(:,1:ns).’;
y=kmat*x; pes=[y;labelx];

The following MATLAB code performs the LDA projection of the previously
generated vectors:

etiq1=ones(1,vect_nbr);
vect_labeluettes=[etiq1 2*etiq1 3*etiq1];
matr_vect=[matr_vect ;vect_labeluettes]; [kmat,matr_proj]=lda(matr_vect,2);
matr_proj1=matr_proj(:,1 :vect_nbr);
matr_proj2=matr_proj(:,vect_nbr+1 :2*vect_nbr);
matr_proj3=matr_proj(:,2*vect_nbr+1 :3*vect_nbr);
figure;
hold on;
plot(matr_proj1(1,:),matr_proj1(2,:),’vr’)
plot(matr_proj2(1,:),matr_proj2(2,:),’ob’);
plot(matr_proj3(1,:),matr_proj3(2,:),’.k’)
xlabel(‘y_1’);
ylabel(‘y_2’);
title(‘LDA projection’)
legend(‘Class 1’,’Class 2’,’Class 3’,0)

The LDA yields the following normalized eigenvalues: 0.96, 0.55 and 0. The
first eigenvalue is close to 1 and indicates that the corresponding eigenvector has a
high discriminant capability.

The LDA leads to a maximum separability of the projected classes, so that it
makes the classifier task much easier.

�8 �6 �4 �2 0 2 4 6 8
�8

�6

�4

�2

0

2

4

y
1

y 2

PCA projection

Class 1
Class 2
Class 3

�6.5 �6 �5.5 �5 �4.5 �4 �3.5
�4

�2

0

2

4

6

8

y
1

y 2

LDA projection

Class 1
Class 2
Class 3

Figure 13.13. PCA (left) and LDA (right) projection of the three Gaussian classes

Supervised Statistical Classification 367

EXERCISE 13.2.
a. Generate two Gaussian classes of 200 two-dimensional vectors with the mean

vectors and the covariance matrices given below:

1
3
5=μ , 1

4 6
6 12= , 2

15
4=μ , 2

12 4
4 8

−= −

Then divide each class randomly into a training subset and a test subset
containing the same number of vectors.

b. The a priori probabilities of the two classes are considered equal. Perform the
classification of the test subset using a direct approximation of the Bayes classifier
obtained from the training subset.

c. Repeat the classification using the fuzzy KNN method. Plot on the same figure
the test vectors and the separating surfaces generated by the two classifiers.

d. Evaluate the classification rate for the two classifiers by averaging their
performances on 1,000 outcomes.

a.

The vectors of the two classes can be generated using the following MATLAB
code (the function randperm.m performs the random permutation of the integer
from 1 to n):

class_nbr=2; vect_nbr=200;
mean_vect1=[5;10]; cov_matr1=[4 6;6 12];
class1=generation_class_gauss(mean_vect1,cov_matr1,vect_nbr);
mean_vect2=[10;20]; cov_matr2=[12 -4;-4 8];
class2=generation_class_gauss(mean_vect2,cov_matr2,vect_nbr);
idx=randperm(vect_nbr);
vect_nbr_test=fix(vect_nbr/2);
idx_test=idx(1:vect_nbr_test);
idx_train=idx(vect_nbr_test+1:end);
vect_label_train1=ones(1,vect_nbr-vect_nbr_test);
vect_label_test1=ones(1,vect_nbr_test);
vect_label_train2=2* vect_label_train1;
vect_label_test2=2* vect_label_test1;
vect_train1=class1(:,idx_train);
vect_test1=class1(:,idx_test);
vect_train2=class2(:,idx_train);
vect_test2=class2(:,idx_test);
matr_train=[vect_train1 vect_train2];
vect_label_train=[vect_label_train1 vect_label_train2];
matr_test=[vect_test1 vect_test2];

368 Digital Signal Processing using MATLAB

vect_label_test=[vect_label_test1 vect_label_test2];

b.

Equation [13.7] can be used for implementing the Bayes classifier with the class
distributions given by the following 2D Gaussian functions:

()
() ()1

1/ 2
1 1(|) exp

22 det

T
i i i i

i

f ω
π

−= − − −x x μ x μ

The logarithmic form of the Bayes classifier discriminant functions has been
preferred in the MATLAB code provided below.

mean_vect1_est=mean(vect_train1,2);
cov_matr1_est=cov(vect_train1’);
matr_moy1=repmat(mean_vect1_est,1,2*vect_nbr_test);
mean_vect2_est=mean(vect_train2,2);
cov_matr2_est=cov(vect_train2’);
matr_moy2=repmat(mean_vect2_est,1,2*vect_nbr_test);
restest=zeros(2,2*vect_nbr_test);
restest(1,:)=vect_label_test;
vect_fun_discrim1=log(abs(det(cov_matr1_est)))+sum(((matr_test-
matr_moy1)’*inv(cov_matr1_est))’.*(matr_test-matr_moy1));
vect_fun_discrim2=log(abs(det(cov_matr2_est)))+sum(((matr_test-
matr_moy2)’*inv(cov_matr2_est))’.*(matr_test-matr_moy2));
vect_fun_discrim=vect_fun_discrim1-vect_fun_discrim2;
restest(2,vect_fun_discrim<=0)=1;
restest(2,vect_fun_discrim>0)=2;
conf_matr=zeros(class_nbr);
for k1=1:class_nbr
 for k2=1:class_nbr
 conf_matr(k1,k2)=length(find((restest(1,:)==k1)&(restest(2,:)==k2)));
 end
end
conf_matr
vect_vect_nbr=sum(conf_matr,2);
vect_prob_classif=diag(conf_matr)./vect_vect_nbr
maxx=max(matr_test(1,:)); maxx=maxx+.1*abs(maxx);
maxy=max(matr_test(2,:)); maxy=maxy+.1*abs(maxy);
minx=min(matr_test(1,:)); minx=minx-.1*abs(minx);
miny=min(matr_test(2,:)); miny=miny-.1*abs(miny);
xv=linspace(minx,maxx,100);
yv=linspace(miny,maxy,100);
matr_x,matr_y]=meshgrid(xv,yv);
matr_test0=[matr_x(:)’;matr_y(:)’];
vect_nbr_test0=size(matr_test0,2);
matr_moy1=repmat(mean_vect1_est,1,vect_nbr_test0);
matr_moy2=repmat(mean_vect2_est,1,vect_nbr_test0);

Supervised Statistical Classification 369

vect_fun_discrim1=log(abs(det(cov_matr1_est)))+sum(((matr_test0-
matr_moy1)’*inv(cov_matr1_est))’.*(matr_test0-matr_moy1));
vect_fun_discrim2=log(abs(det(cov_matr2_est)))+sum(((matr_test0-
matr_moy2)’*inv(cov_matr2_est))’.*(matr_test0-matr_moy2));
vect_fun_discrim=vect_fun_discrim1-vect_fun_discrim2;
matr_fun_discrim=reshape(vect_fun_discrim,size(matr_x,1),size(matr_x,2));
figure; imagesc(xv,yv,matr_fun_discrim);
colormap(flipud(spring));
colorbar; hold on;
xlabel(‚x_1’); ylabel(‚x_2’);
contour(xv,yv,matr_fun_discrim,[0 0],’-k’,’LineWidth’,[3]);
plot(vect_test1(1,:),vect_test1(2,:),’db’,’Markersize’,[8])
plot(vect_test2(1,:),vect_test2(2,:),’og’,’Markersize’,[8])
title(‘Classification of the test vectors using the Bayes rule’)
legend(‘S_s_e_p_a_r_a_t_i_o_n’,’Class 1’,’Class 2’)

c.

The Fuzzy KNN classifier has been implemented using equation [13.11], [13.12]
and [13.13]. The result is shown in Figure 13.14.

kn=3; kf=10;
% Calculation of the training vectors’ membership coefficients
vect_nbr_train=size(matr_train,2);
vect_nbr_test=size(matr_test,2);
matr_dist=dist(matr_train’,matr_train);
matr_max=max(max(matr_dist))*eye(vect_nbr_train);
matr_dist=matr_dist+matr_max;
[matr_dists,matr_idxs]=sort(matr_dist);
matr_label=vect_label_train(matr_idxs); matr_label_red=matr_label(1 :kf,:);
matr_hist_label=histc(matr_label_red,[.5 :1 :class_nbr+.5]);
matr_hist_label=matr_hist_label(1 :class_nbr,:);
matr_coeff_appart=matr_hist_label/kf;
% Fuzzy KNN classification
matr_sort=zeros(class_nbr,vect_nbr_test); mc=2;
matr_dist=dist(matr_train’,matr_test);
matr_dist_inv=matr_dist.̂ (-2/mc);
[matr_dists,matr_idxs]=sort(matr_dist);
matr_label=vect_label_train(matr_idxs);
matr_label_red=matr_label(1 :kn,:);
matr_idxs_red=matr_idxs(1 :kn,:); matr_dist_inv_red=zeros(kn,vect_nbr_test);
for k=1 :vect_nbr_test
 matr_dist_inv_red(1 :kn,k)=matr_dist_inv(matr_idxs_red(:,k),k);
end
vect_denom=sum(matr_dist_inv_red); matr_sort=zeros(class_nbr,vect_nbr_test);
for k1=1:vect_nbr_test
 denom=vect_denom(k1);
 for k2=1:class_nbr
 numer=sum(matr_dist_inv_red(:,k1).*matr_coeff_appart(k2,matr_idxs_red(:,
k1))’);

370 Digital Signal Processing using MATLAB

 matr_sort(k2,k1)=numer/denom;
 end
end
[valmax,idxmax]=max(matr_sort);
restest=[vect_label_test;idxmax];
conf_matr=zeros(class_nbr);
for k1=1:class_nbr
 for k2=1:class_nbr
 conf_matr(k1,k2)=length(find((restest(1,:)==k1)&(restest(2,:)==k2)));
 end
end
conf_matr
vect_vect_nbr=sum(conf_matr,2);
vect_prob_classif=diag(conf_matr)./vect_vect_nbr
matr_sort0=zeros(class_nbr,vect_nbr_test0);
matr_dist=dist(matr_train’,matr_test0);
matr_dist_inv=matr_dist.̂ (-2/mc);
[matr_dists,matr_idxs]=sort(matr_dist);
matr_label=vect_label_train(matr_idxs);
matr_label_red=matr_label(1:kn,:);
matr_idxs_red=matr_idxs(1:kn,:);
matr_dist_inv_red=zeros(kn,vect_nbr_test0);
for k=1:vect_nbr_test0
 matr_dist_inv_red(1:kn,k)=matr_dist_inv(matr_idxs_red(:,k),k);
end
vect_denom=sum(matr_dist_inv_red);
for k1=1:vect_nbr_test0
 denom=vect_denom(k1);
 for k2=1:class_nbr
 numer=sum(matr_dist_inv_red(:,k1).*matr_coeff_appart(k2,matr_idxs_red(:,
k1))’);
 matr_sort(k2,k1)=numer/denom;
 end
end
vect_fun_discrim=matr_sort(2,:)-matr_sort(1,:);
matr_fun_discrim=reshape(vect_fun_discrim,size(matr_x,1),size(matr_x,2));
figure;imagesc(xv,yv,matr_fun_discrim);
colormap(flipud(spring)); colorbar; hold on
contour(xv,yv,matr_fun_discrim,[0 0],’-k’,’LineWidth’,[3]);
plot(vect_test1(1,:),vect_test1(2,:),’db’,’Markersize’,[8])
plot(vect_test2(1,:),vect_test2(2,:),’og’,’Markersize’,[8])
xlabel(‚x_1’); ylabel(‚x_2’);
title(‘Classification of the test vectors using the Fuzzy KNN rule’)
legend(‘S_s_e_p_a_r_a_t_i_o_n’,’Class 1’,’Class 2’)

Supervised Statistical Classification 371

x
1

x 2

Classification of the test vectors using the Bayes rule

0 5 10 15 20

5

10

15

20

25
�50

0

50

100

150

200

250

300

350
S

separation

Class 1
Class 2

x
1

x 2

Classification of the test vectors using the Fuzzy KNN rule

0 5 10 15 20

5

10

15

20

25

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1
S

separation

Class 1
Class 2

Figure 13.14. Classification of the test vectors using the Bayes and Fuzzy KNN rules

d. The averaged classification rates are provided in the table below.

Classifier Class 1 Class 2

Bayes 0.969 0.979

Fuzzy KNN 0.967 0.973

Table 13.1. Mean classification rates obtained using the Bayes and Fuzzy KNN classifiers

EXERCISE 13.3.
a. Generate two classes of 1,500 vectors uniformly distributed inside a disk with

the radius 3 (first class) and inside a circular zone whose radius varies from 3 to 6
(second class). The two classes are centered at the origin.

Then divide each class randomly into three subsets (training, test and validation)
containing the same number of vectors. Plot the training vectors of the two classes.

b. Use the first subset to train a multilayer perceptron and the third subset to
decide the end of this process when its generalization capability becomes maximal.
Consider the backpropagation learning algorithm with momentum term and variable
learning rate. Classify the test vectors using trained multilayer perceptron.

c. Plot the outputs of the multilayer perceptron corresponding to the zone
occupied by the two classes and highlight their link with the vectors’ distributions.

a.

The MATLAB code below generates the vectors of the two classes and divides
them to form the training, test and validation subsets.

372 Digital Signal Processing using MATLAB

vect_nbr=1500; rv=3*rand(1,vect_nbr);
agv=2*pi*rand(1,vect_nbr);
class1=[rv.*cos(agv);rv.*sin(agv)];
rv=3+3*rand(1,vect_nbr); agv=2*pi*rand(1,vect_nbr);
class2=[rv.*cos(agv);rv.*sin(agv)];
idx=randperm(1500);
vect_train1=class1(:,idx(1:500)); vect_test1=class1(:,idx(501:1000));
vect_valid1=class1(:,idx(1001:1500)); vect_train2=class2(:,idx(1:500));
vect_test2=class2(:,idx(501:1000)); vect_valid2=class2(:,idx(1001:1500));
vect_train1=[vect_train1;ones(1,size(vect_train1,2))];
vect_train2=[vect_train2;2*ones(1,size(vect_train2,2))];
matr_train=[vect_train1 vect_train2];
vect_test1=[vect_test1;ones(1,size(vect_test1,2))];
vect_test2=[vect_test2;2*ones(1,size(vect_test2,2))];
matr_test=[vect_test1 vect_test2];
vect_valid1=[vect_valid1;ones(1,size(vect_valid1,2))];
vect_valid2=[vect_valid2;2*ones(1,size(vect_valid2,2))];
matr_valid=[vect_valid1 vect_valid2];
figure; hold on;
plot(vect_train1(1,:),vect_train1(2,:),’xr’,’Markersize’,[8])
plot(vect_train2(1,:),vect_train2(2,:),’ob’,’Markersize’,[8])
xlabel(‘x_1’); ylabel(‘x_2’);
title(‘Distribution of the training vectors’)
legend(‘Class 1’,’Class 2’); axis equal

b.

The multilayer perceptron is trained using the MATLAB code given below. The
test vectors and the separation surface between the two classes are plotted in Figure
13.15.

vect_ettiq_train=matr_train(end,:);
matr_train=matr_train(1 :2,:);
vect_ettiq_test=matr_test(end,:);
matr_test=matr_test(1 :2,:);
vect_ettiq_valid=matr_valid(end,:);
matr_valid=matr_valid(1 :2,:);
class_nbr=max(vect_ettiq_train);
vect_nbr_train=size(matr_train,2);
vect_nbr_test=size(matr_test,2);
vect_nbr_valid=size(matr_valid,2);
PR_matr=minmax(matr_train); nbre_neuro=[10 10 class_nbr];
net=newff(PR_matr, nbre_neuro,{‘logsig’ ‘logsig’ ‘logsig’});
target_train=zeros(class_nbr,vect_nbr_train);
target_test=zeros(class_nbr,vect_nbr_test);
target_valid=zeros(class_nbr,vect_nbr_valid);
for k=1:class_nbr
 idx=find(vect_ettiq_train==k);
 target_train(k,idx)=ones(1,length(idx));
 idx=find(vect_ettiq_test==k);

Supervised Statistical Classification 373

 target_test(k,idx)=ones(1,length(idx));
 idx=find(vect_ettiq_valid==k);
 target_valid(k,idx)=ones(1,length(idx));
end
net.trainFcn=’traingdx’; net.trainParam.epochs=1000;
net.trainParam.goal=0; net.trainParam.lr=0.01;
net.trainParam.lr_inc=1.05; net.trainParam.lr_dec=0.7;
net.trainParam.max_fail=10; net.trainParam.max_perf_inc=1;
net.trainParam.mc=0.9; net.trainParam.min_grad=0;
net.trainParam.show=50; net.trainParam.time=inf;
VV.P=matr_valid;VV.T=target_valid;
TV.P=matr_test;TV.T=target_test;
net = train(net,matr_train,target_train,[],[],VV,TV);
Yr = sim(net,matr_test);
[valmax,idxmax]=max(Yr);
restest=zeros(2,vect_nbr_test);
restest(1,:)=vect_ettiq_test;
restest(2,:)=idxmax;
for k1=1:class_nbr
 for k2=1:class_nbr
 conf_matr_nnet(k1,k2)=length(find((restest(1,:)==k1)&(restest(2,:)==k2))
);
 end
end
conf_matr_nnet
vect_vect_nbr=sum(conf_matr_nnet,2);
vect_prob_classif_nnet=(diag(conf_matr_nnet)./vect_vect_nbr)’
maxx=max(matr_train(1,:)); maxx=maxx+.1*abs(maxx);
maxy=max(matr_train(2,:)); maxy=maxy+.1*abs(maxy);
minx=min(matr_train(1,:)); minx=minx-.1*abs(minx);
miny=min(matr_train(2,:)); miny=miny-.1*abs(miny);
xv=linspace(minx,maxx,100); yv=linspace(miny,maxy,100);
[matr_x,matr_y]=meshgrid(xv,yv);
matr_xy=[matr_x(:)’; matr_y(:)’];
nv=size(matr_xy,2);
sortie_pmc = sim(net,matr_xy);
g1_pmc=reshape(sortie_pmc(1,:),size(matr_x,1),size(matr_x,2));
g2_pmc=reshape(sortie_pmc(2,:),size(matr_x,1),size(matr_x,2));
figure; contour(xv,yv,g1_pmc-g2_pmc,[0 0],’-k’,’LineWidth’,[3]);
hold on;plot(vect_test1(1,:),vect_test1(2,:),’xr’,’Markersize’,[8])
plot(vect_test2(1,:),vect_test2(2,:),’ob’,’Markersize’,[8])
xlabel(‚x_1’); ylabel(‚x_2’);
title(‘Classification using a MLP’)
legend(‘S_s_e_p_a_r_a_t_i_o_n’,’Class 1’,’Class 2’); axis equal

The confusion matrix and the classification rates corresponding to the two
classes are obtained as follows.

conf_matr_nnet =

 497 3

374 Digital Signal Processing using MATLAB

 2 498

vect_prob_classif_nnet =

0.9940 0.9960

�6 �4 �2 0 2 4 6

�5

�4

�3

�2

�1

0

1

2

3

4

5

x
1

x 2

Distribution of the training vectors

Class 1
Class 2

x
1

x 2

Classification using a MLP

�5 0 5

�6

�4

�2

0

2

4

6 S
separation

Class 1
Class 2

Figure 13.15. Distribution of the training vectors and classification
of the test vectors using a multilayer perceptron

c.

The following MATLAB code plots the outputs of the multilayer perceptron
corresponding to the zone occupied by the vectors of each class.

figure; imagesc(xv,yv,g1_pmc); hold on;
contour(xv,yv,g1_pmc);
axis xy; colormap(spring)
xlabel(‘x_1’); ylabel(‘x_2’);
colorbar; axis equal
title(‘MLP output corresponding to the class 1’)
figure; imagesc(xv,yv,g2_pmc); hold on;
contour(xv,yv,g2_pmc);
axis xy; colormap(spring)
xlabel(‘x_1’); ylabel(‘x_2’);
colorbar; axis equal
title(‘MLP output corresponding to the class 2’)

Supervised Statistical Classification 375

x
1

x 2
MLP output corresponding to the class 1

�6 �4 �2 0 2 4 6

�6

�4

�2

0

2

4

6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
1

x 2

MLP output corresponding to the class 2

�6 �4 �2 0 2 4 6

�6

�4

�2

0

2

4

6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 13.16. MLP outputs corresponding to the vectors of the two classes

It can be seen that at the end of the training phase, the two outputs of the
multilayer perceptron approximate the statistical distributions of the two classes.
The decision is therefore optimal according to the MAP (maximum a posteriori)
criterion and the trained MLP approximates the Bayes classifier.

EXERCISE 13.4.

a. Generate two classes of 200 two-dimensional Gaussian vectors having the
following mean vectors and covariance matrices:

1
5

10=μ , 2
12
10=μ , 1 2

4 0
0 4= =

Then divide each class randomly into two subsets (training and test) containing
the same number of vectors. Normalize the two subsets so that for each variable the
mean is 0 and the standard deviation is 1.

b. Indicate the optimal separation surface in this case. Classify the test vectors
using a fuzzy perceptron and a SVM classifier and compare the obtained results.

a.

The generation of the two classes is the same as for the previous exercises.

class_nbr=2; vect_nbr=200;
mean_vect1=[5;10]; cov_matr1=[4 0;0 4];
class1=generation_class_gauss(mean_vect1,cov_matr1,vect_nbr);
mean_vect2=[10;5]; cov_matr2=cov_matr1;
class2=generation_class_gauss(mean_vect2,cov_matr2,vect_nbr);
idx=randperm(vect_nbr); vect_nbr_test=fix(vect_nbr/2);
vect_nbr_train=vect_nbr-vect_nbr_test;

376 Digital Signal Processing using MATLAB

idx_test=idx(1:vect_nbr_test); idx_train=idx(vect_nbr_test+1:end);
vect_label_train1=ones(1,vect_nbr_train);
vect_label_test1=ones(1,vect_nbr_test);
vect_label_train2=-ones(1,vect_nbr_train);
vect_label_test2=-ones(1,vect_nbr_test);
vect_train1=class1(:,idx_train);
vect_test1=class1(:,idx_test);
vect_train2=class2(:,idx_train);
vect_test2=class2(:,idx_test);
matr_train=[vect_train1 vect_train2];
vect_label_train=[vect_label_train1 vect_label_train2];
matr_test=[vect_test1 vect_test2];
vect_label_test=[vect_label_test1 vect_label_test2];
matr_train = prestd(matr_train); matr_test = prestd(matr_test);
vect_train1=matr_train(:,1 :vect_nbr_train);
vect_train2=matr_train(:,vect_nbr_train+1 :end);

b.

Since the two classes are Gaussian, with the same covariance matrices, the
optimal separating surface is a line. The MATLAB code below is able to find an
approximation of this line by training a fuzzy perceptron and a SVM classifier (see
Figure 13.17). In the second case, the results were obtained using the functions
provided by “SVM-KM, SVM and Kernel Methods MATLAB Toolbox”, created by
Stéphane Canu and Alain Rakotomamonjy (Perception Systems and Information
Laboratory, Rouen, France).

% Calculation of the membership coefficients for the training vectors
moy1=mean(vect_train1,2);
moy2=mean(vect_train2,2);
D=dist(moy1’,moy2);
epsy=0.02; g=2; eta=.1;
delta=.1; A=4*sinh(g);
bety=epsy+(1-exp(-g))/A
matr_coeff_train1=zeros(2,vect_nbr_train);
matr_coeff_train2=zeros(2,vect_nbr_train);
for k=1 :vect_nbr_train
 xk=vect_train1(:,k);
 D1k=(dist(moy1’,xk));
 D2k=(dist(moy2’,xk));
 u1k=1/2+(1/A)*(exp(g*(D2k-D1k)/D)-exp(-g));
 matr_coeff_train1(1,k)=u1k;
 matr_coeff_train1(2,k)=1-u1k;
 xk=vect_train2(:,k);
 D1k=(dist(moy1’,xk));
 D2k=(dist(moy2’,xk));
 u2k=1/2+(1/A)*(exp(g*(D1k-D2k)/D)-exp(-g));
 matr_coeff_train2(2,k)=u2k;
 matr_coeff_train2(1,k)=1-u2k;

Supervised Statistical Classification 377

end
% Training
maxx=max(matr_train(1,:));
maxx=maxx+.1*abs(maxx);
maxy=max(matr_train(2,:));
maxy=maxy+.1*abs(maxy);
minx=min(matr_train(1,:));
minx=minx-.1*abs(minx);
miny=min(matr_train(2,:));
miny=miny-.1*abs(miny);
matr_train=[matr_train;ones(1,2*vect_nbr_train)];
matr_test=[matr_test;ones(1,2*vect_nbr_test)];
target_output=[ones(1,vect_nbr_train) zeros(1,vect_nbr_train)];
matr_coeff_train=[matr_coeff_train1 matr_coeff_train2];
idx_ext_fuzzy_zone=find((matr_coeff_train(1,:)<0.5-
bety)|(matr_coeff_train(1,:)>0.5+bety));
idx_fuzzy_zone=find((matr_coeff_train(1,:)>=0.5-bety)
&(matr_coeff_train(1,:)<=0.5+bety));
plot(matr_train(1,idx_fuzzy_zone),matr_train(2,idx_fuzzy_zone),’xr’,’Markersi
ze’,[8])
label_ext_fuzzy_zone=vect_label_train(idx_ext_fuzzy_zone);
vect_diff_uk=(abs(matr_coeff_train(1,:)-matr_coeff_train(2,:))).̂ delta;
weight_vect=0.1*randn(3,1); stop_criterion=1;
while stop_criterion~=0
 vect_net=weight_vect’*matr_train;
 actual_output=(1+sign(vect_net))/2;
 dec_ext_fuzzy_zone=actual_output(idx_ext_fuzzy_zone);
 dec_ext_fuzzy_zone(dec_ext_fuzzy_zone==0)=-1;
 stop_criterion=sum(abs(dec_ext_fuzzy_zone-label_ext_fuzzy_zone))
 xhp=[minx maxx];
 yhp=-(weight_vect(1)/weight_vect(2))*xhp-
(weight_vect(3)/weight_vect(2));
 hh=plot(xhp,yhp,’r-‘,’LineWidth’,[3]);
 axis([minx maxx miny maxy]); drawnow
 weight_vect=weight_vect+eta*matr_train*((target_output-
actual_output).*vect_diff_uk)’;
 pause; set(hh,’Visible’,’off’);
 legend(‘Class 1’,’Class 2’,’Vect. zone floue’,’S_s_e_p_a_r_a_t_i_o_n’)
end
set(hh,’Visible’,’on’);
legend(‘Class 1’,’Class 2’,’Vect. zone floue’,’S_s_e_p_a_r_a_t_i_o_n’)
vect_net_test=weight_vect’*matr_test; restest=zeros(2,2*vect_nbr_test);
restest(1,:)=vect_label_test;
restest(2,:)=sign(vect_net_test);
restest(restest==-1)=2;
for k1=1:class_nbr
 for k2=1:class_nbr
 conf_matr_fuzzy_perceptron(k1,k2)=length(find((restest(1,:)==k1)&(restes
t(2,:)==k2)));
 end

378 Digital Signal Processing using MATLAB

end
conf_matr_fuzzy_perceptron
vect_vect_nbr=sum(conf_matr_fuzzy_perceptron,2);
vect_prob_classif_fuzzy_perceptron=(diag(conf_matr_fuzzy_perceptron)./vect_ve
ct_nbr)’
xv=linspace(minx,maxx,100);
yv=linspace(miny,maxy,100);
[matr_x,matr_y]=meshgrid(xv,yv); matr_train0=[matr_x(:)’;matr_y(:)’];
matr_train0=[matr_train0; ones(1,size(matr_train0,2))];
vect_nbr_train0=size(matr_train0,2);
vect_net=weight_vect’*matr_train0;
matr_net=reshape(vect_net,size(matr_x,1),size(matr_x,2));
figureimagesc(xv,yv,matr_net);
axis xy; colormap(flipud(spring));
colorbar; hold on
plot(xhp,yhp,’k-‘,’LineWidth’,[3]);
axis([minx maxx miny maxy]);
plot(vect_train1(1,:),vect_train1(2,:),’sb’,’Markersize’,[8])
plot(vect_train2(1,:),vect_train2(2,:),’og’,’Markersize’,[8])
plot(matr_train(1,idx_fuzzy_zone),matr_train(2,idx_fuzzy_zone),’xk’,’Markersi
ze’,[8])
xlabel(‚x_1’); ylabel(‚x_2’);
title(‘Fuzzy perceptron based classification’)
legend(‘S_s_e_p_a_r_a_t_i_o_n’,’Class 1’,’Class 2’,’Fuzzy zone vectors’)
xapp= matr_train(1 :2,:)’;
yapp= vect_label_train’;
xtest= matr_test (1 :2,:)’;
matr_train=[xapp’;vect_label_train];
matr_test=[xtest’;vect_label_test];
C=10000000; verbose=0; lambda=1e-7;
kernel=’poly’; kerneloption=1;
[xsup,w,b,pos,timeps,alpha,obj]=svmclass(xapp,yapp,C,lambda,kernel,kernelopti
on,verbose);
vect_support= matr_train (1 :2,pos);
ypred = svmval(xtest,xsup,w,b,kernel,kerneloption);
ypred(ypred>=0)=1; ypred(ypred<0)=2;
vect_label_test(vect_label_test==-1)=2;
restest = zeros(2,size(matr_test,2));
restest(1,:) = vect_label_test;
restest(2,:) = ypred;
for k1=1:class_nbr
 for k2=1:class_nbr
 conf_matr_svm(k1,k2)=length(find((restest(1,:)==k1)&(restest(2,:)==k2)))
;
 end
end
conf_matr_svm
vect_prob_classif_svm=(diag(conf_matr_svm)./vect_vect_nbr)’
[matr_x,matr_y]=meshgrid(xv,yv);
matr_test_g =[matr_x(:);matr_y(:)];

Supervised Statistical Classification 379

vect_classif_g = svmval(matr_test_g,xsup,w,b,kernel,kerneloption);
matr_classif_g=reshape(vect_classif_g, size(matr_x,1),size(matr_x,2));
figure
imagesc(xv,yv,matr_classif_g);
axis xy; colormap(flipud(spring));
colorbar; hold on
contour(xv,yv,matr_classif_g,[0 0],’-k’,’LineWidth’,[3]);
plot(vect_train1(1,:),vect_train1(2,:),’sb’,’Markersize’,[8])
plot(vect_train2(1,:),vect_train2(2,:),’og’,’Markersize’,[8])
plot(vect_support(1,:),vect_support(2,:),’xk’,’Markersize’,[8])
xlabel(‚x_1’);
ylabel(‚x_2’);
title(‘SVM based classification’)
legend(‘S_s_e_p_a_r_a_t_i_o_n’,’Class 1’,’Class 2’,’Support vectors’)

Figure 13.17 shows that the obtained solutions are quite similar in the two cases.
The vectors from the fuzzy zone play the same role for the first classifier as the
support vectors for the SVM.

x
1

x 2

Fuzzy perceptron based classification

�2 �1 0 1 2

�2.5

�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

�60

�40

�20

0

20

40

60

S
separation

Class 1
Class 2
Fuzzy zone vectors

x
1

x 2

SVM based classification

�2 �1 0 1 2

�2.5

�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

�10

�8

�6

�4

�2

0

2

4

6

8

S
separation

Class 1
Class 2
Support vectors

Figure 13.17. Separation surfaces obtained after training a fuzzy perceptron and a SVM
classifier in the case of two classes having the same covariance matrix

13.3. Exercises

EXERCISE 13.5.

a. Generate two sets of 100 three-dimensional Gaussian vectors having the
following mean vector and covariance matrix:

3
5
2

=
−

μ ,
5 7 7
7 13 12
7 12 11

−
= −

− −

380 Digital Signal Processing using MATLAB

b. Perform the principal component analysis on the first set and then use the
obtained result to project the second set. Conclude on the generalization capability
of this type of analysis.

c. Repeat the previous analysis after preprocessing the generated vectors, so that
the mean of each component is 0 and its standard deviation is 1. Compare to the
results previously obtained and conclude about the role of this data preprocessing.

EXERCISE 13.6.

Generate two classes of 500 vectors uniformly distributed inside a sphere of
radius 0.3 (first class) and inside a spherical calotte whose radius varies from 0.7 to
1 (second class). The two classes are centered at the origin.

Project the two classes in a two-dimensional space using the PCA, the LDA and
the Sammon method randomly initialized. Then repeat the projection using the
Sammon algorithm initialized with the PCA solution and conclude on the obtained
results.

Use the function below to perform the projection according to the Sammon
method.

function
[matr_proj,Sammon_stress,esr_vect]=Sammon_method(matr_init,matr_proj_init,
alpha,threshold)
% Non-linear projection using the Sammon method
%[matr_proj,Sammon_stress,esr_vect]=Sammon_method(matr_init,matr_proj_init,
alpha,threshold);
% matr_init – matrix of the input vectors
% matr_proj_init – initial solution for the projected vectors
% alpha – convergence rate
% threshold - threshold for the stop criterion
% matr_proj - matrix of the projected vectors
% Sammon_stress – Sammon stress vector
% esr_vect – relative error vector
matr_dist_init=triu(dist(matr_init',matr_init));
matr_dist_proj_init=triu(dist(matr_proj_init',matr_proj_init));
coeff_sam=1/sum(sum(matr_dist_init));
matr_dist_diff=((matr_dist_init-matr_dist_proj_init).̂ 2)./matr_dist_init;
matr_dist_diff(isnan(matr_dist_diff))=0;
Sammon_stress_old=coeff_sam*sum(sum(matr_dist_diff));
Sammon_stress(1)=Sammon_stress_old;
cont=1; esr=1e3;
vect_nbr=size(matr_proj_init,2);
while esr>threshold
 matr_distc=(matr_dist_init-matr_dist_proj_init)./matr_dist_init;
 matr_distc(isnan(matr_distc))=0;
 for k=1:vect_nbr

Supervised Statistical Classification 381

 vectc=matr_proj_init(:,k);
 matref=repmat(vectc,1,vect_nbr-1);
 if k==1
 matrc=matr_proj_init(:,2:vect_nbr);
 vect_distc=matr_distc(1,2:vect_nbr);
 elseif k==vect_nbr
 matrc=matr_proj_init(:,1:vect_nbr-1);
 vect_distc=matr_distc(1:vect_nbr-1,vect_nbr)';
 else
 matrc=[matr_proj_init(:,1:k-1) matr_proj_init(:,k+1:vect_nbr)];
 vect_distc=[matr_distc(1:k-1,k)' matr_distc(k,k+1:vect_nbr)];
 end
 matrc=matref-matrc;
 matr_proj(:,k)=vectc+(4*alpha*coeff_sam)*matrc*vect_distc';
 end
 matr_dist_proj=triu(dist(matr_proj',matr_proj));
 matr_dist_diff=((matr_dist_init-matr_dist_proj).̂ 2)./matr_dist_init;
 matr_dist_diff(isnan(matr_dist_diff))=0;
 Sammon_stress_new=coeff_sam*sum(sum(matr_dist_diff))
 esr=abs((Sammon_stress_old-Sammon_stress_new)/Sammon_stress_old)
 Sammon_stress_old=Sammon_stress_new;
 Sammon_stress(cont+1)=Sammon_stress_old;
 esr_vect(cont)=esr;
 matr_dist_proj_init=matr_dist_proj;
 matr_proj_init=matr_proj;
 cont=cont+1;
end

EXERCISE 13.7.

a. Generate three classes of 1,500 three-dimensional Gaussian vectors having the
following mean vectors and the covariance matrices:

1
3
5=μ , 1

4 6
6 12= , 2

18
10=μ , 2

12 4
4 8

−= − , 3
10
3=μ , 3

4 0
0 4=

Then divide each class randomly into three subsets (training, test and validation)
containing the same number of vectors.

b. Classify the test vectors using the Bayes classifier, the KNN rule and the MLP
and compare the results obtained. For the last classifier consider the
backpropagation learning algorithm with momentum term and variable learning rate.
Then use the Levenberg-Marquardt learning algorithm and plot the training results
every ten epochs. Conclude on the performance of the three classifiers and on the
advantages and the limitations of each of them.

382 Digital Signal Processing using MATLAB

EXERCISE 13.8.

a. Generate three classes of 100 two-dimensional Gaussian vectors having the
following mean vectors and the covariance matrices

1
1.5
1.5

−= −μ , 2
0
2=μ , 3

2
1.5= −μ , 1 2 3

0.25 0
0 0.25= = =

b. Classify the generated vectors using a SVM classifier. Consider successively a
Gaussian and then a polynomial kernel.

c. Repeat the classification, after centering the third class and increasing the
number of vectors. Conclude on the SVM classifier limitations.

Chapter 14

Data Compression

14.1. Theoretical background

Data compression aims to reduce the volume of data to be transmitted, processed
or recorded, without significant information loss. Although many other quality
indices exist, the mean square error defined below will be considered in this chapter
to compare the different data compression algorithms:

() 2ˆ1ˆ, ss
N

ssEQM
d

−= [14.1]

In the above equation, s is the original signal (1D or 2D) initial, ŝ stands for the
compressed signal and Nd denotes the signal length (number of samples or number
of pixels). Note that in the case of an image compression ŝ is not always the best
solution from the human eye point of view. For example, the properties of the two-
dimensional discrete Fourier transform are not adapted to the human vision system.
Thus, it is replaced by the discrete cosine transform in compression schemes.

Most compression algorithms presented in this chapter are defined for the 2-D
case (image compression). Compression algorithms for the 1-D case can be easily
obtained as particular cases. An image is often cut up into blocks before performing
its compression. Their sizes and forms depend on the processing speed, compression
rate and memory organization. Furthermore, the spatial correlation of the gray
levels, which is usually isotropic, also has to be taken into account. At present, the
best trade-off is obtained for square blocks of 4×4 pixels.

The intensities of the pixels belonging to each block form a vector, denoted by
Si. The set of all vectors {Si}i=1 M associated with an image define the original vector
space. All the compression methods aim to reduce the dimension of this space.

384 Digital Signal Processing using MATLAB

Some of the most important strategies for the data compression will be presented
hereafter.

14.1.1. Transform-based compression methods

The key idea in this case is to transform the original signal, so that the main part
of its energy is confined to a minimum number of coefficients. Generally, the signal
transform is linear in order to insure both the generalization capability of the
solution obtained and the signal reconstruction.

The discrete cosine transform (DCT) and Karhunen-Loève transform (KLT) are
the best known transforms for data compression. In the case of the DCT-2D the
following coefficients are calculated:

1 1

0 0

2 1 1[,] cos cos
2 2

N N

uv
n m

u v
a s n m n m

N N N
π π− −

= =

= ⋅ + ⋅ + [14.2]

with u = 0. N -1, v = 0..N -1.

According to the above equation, the image is projected on the basis of cosine
functions. An important property of this transform is that high order coefficients
contain only high spatial frequencies. Since the human eye is much less sensitive to
these frequencies, the corresponding coefficients can be discarded without any
significant information loss.

Actually, this type of compression is equivalent to a lowpass image filtering. The
larger the compression rate is, the lower the quality of the reconstructed image is,
since fewer details are preserved.

The KLT is an optimal linear transform, because there is no redundancy in the
projection space and the obtained coefficients are completely uncorrelated. It
consists of projecting the input image on an orthonormal basis formed by its
covariance matrix eigenvectors:

() ()−

=
−⋅−=Σ

1

0

1 M

i

T
iis SSSS

M
 [14.3]

where Si stand for vectors derived from the images to be compressed, and S is the
mean vector.

It is well known that matrix K, having as rows the eigenvectors of matrix sΣ , is
a unitary matrix. Consequently:

Data Compression 385

, 0. 1i iY K S i M= ⋅ = − [14.4]

where M is the number of blocks issued from the original image and Yi are the
projected vectors.

If the sΣ matrix eigenvectors are sorted in decreasing order according to the
corresponding eigenvalues, then the components of the projected vectors will also be
sorted in decreasing order according to their contribution to the original image
reconstruction. Image compression is thus possible by preserving only the
components which yield an appropriate reconstruction according to some quality
criterion.

Despite its optimality, the KLT requires a large number of calculations compared
to other data compression methods. Thus, some suboptimal linear transforms, such
as the Walsh or Hadamard transforms, are sometimes preferred due to their
simplicity and low calculation effort.

14.1.2. Parametric (predictive) model-based compression methods

These compression methods also rely on removing the data redundancy, but in a
different way. In the case of images, for example, it is often possible to predict the
intensity value of a pixel using the intensity values of its neighbors. An AR-2D
model is usually preferred in the form:

∈
−−⋅=

),(,()
),(),(ˆ

kl mnV
lk kmlnsamns [14.5]

where V(n,m) denote the neighborhood of the pixel (n,m).

The coefficients of this model are obtained, just as in the 1-D case, by
minimizing the mean square error:

−−⋅−=
∈

2

),(),(
),(),(

kl mnV
lk kmlnsamnsEEQM [14.6]

This optimization procedure leads to the Yule-Walker equations, which are
expressed as indicated below:

=−−⋅
∈)(,),(

),(),(
ji klV

lk jiRkjliRa [14.7]

386 Digital Signal Processing using MATLAB

where R(i,j) is the 2-D autocorrelation function of the image s(n,m).

The coefficients alk issued from the above equations allow removing the data
redundancy, since the error, calculated as the difference between the original and the
reconstructed images, is equivalent to a white noise. The original image is thus
compressed, because it is replaced by the AR model coefficients and the error
variance.

14.1.3. Wavelet packet-based compression methods

Wavelet packets, introduced by Coifman and Wickerhauser, represent a
generalization of the multiresolution analysis described in Chapter 11. They are
recursively defined in the form:

−⋅=

−⋅=

+
k

nn

k
nn

ktWkgtW

ktWkhtW

)2()(2)(

)2()(2)(

12

2
 [14.8]

W0(t) corresponds to the scale function ϕ(t), while W1(t) corresponds to the
wavelet function ψ(t). Its scaled and delayed versions form a zero-mean function
library, well localized in time and frequency and called wavelet packets.

Each wavelet packet is characterized by three parameters: frequency, scale and
position in time. These functions form a set of possible decomposition bases for the
analyzed signal.

The wavelet packet decomposition can be represented by means of a table of
coefficients. The row index is related to the scale factor, while the column index is
related to the frequency and/or the time position, according to the coefficient
grouping on each row. This representation is provided in Figure 14.1 in the
particular case of a discrete signal, defined on 8 points {x1, x2, ... x8}.

A table cell which is divided into two other cells on the next decomposition level
is called the “father cell”, while the two resulting cells are called “children cells”.

The selection of the best decomposition basis is usually performed using a
minimal entropy criterion. It is defined in the Shannon-Weaver sense and makes use
of the following cost function:

()2 2() logi i
i

s s sλ = − [14.9]

Data Compression 387

Figure 14.1. Wavelet packet decomposition in the form of a table of coefficients

The minimization of this function is equivalent to the entropy minimization, but
it is also an additive information measure. After the wavelet packet decomposition,
the algorithm for the selection of the best basis compares the entropies of the
children cells to the entropy of their father cell, starting from the last decomposition
level. The father cell entropy is replaced by the sum of its children entropies if it is
higher, otherwise it is preserved.

Only the coefficients above an appropriately chosen threshold are finally
selected (for example, the threshold may be calculated so that 90% of the total
energy is preserved by the selected coefficients).

The minimum entropy of the best basis means that the signal energy is confined
to a minimum number of coefficients. This makes the wavelet packet decomposition
particularly suitable to the data compression.

14.1.4. Vector quantization-based compression methods

Vector quantization (VQ) is one of the most effective data compression methods.
Let us consider an image as a set of q-length vectors, {Sj}j=1 M. Its VQ is thus
defined as an application:

() ()
0: , jq

jQ R W Q S W→ = [14.10]

where W = {Wi, i = 1. Nc} is the code vector set and W0
(j) denotes the nearest code

vector to input vector Sj.

As the code vector set is also available to the decoder, only the indices of the
code vectors corresponding to the input vectors have to be conserved. Thus, a high
compression rate can be obtained.

The VQ effectiveness depends on the code vector set, which is obtained by
means of different clustering methods, such as the K-means algorithm. Its main steps
are given below:

388 Digital Signal Processing using MATLAB

1. randomly choose W = {Wi, i = 1..Nc};

2. update the vector clusters iD so that:

{ },i i jD S S W S W j i= − < − ∀ ≠ [14.11]

3. calculate the mean square error:

= ∈
−=

c

i

N

i DS
iWS

N
EQM

1

21
 [14.12]

and stop if:

ε<
−

−−
)1(

)1()(
tEQM

tEQMtEQM
 [14.13]

where ε is a positive constant;

4. replace each code vector Wi by the mean vector of Di;

5. return to step 2.

14.1.5. Neural network-based compression methods

The learning and generalization capabilities of neural networks are also very
useful for data compression. Two neural network based compression techniques are
illustrated in this chapter: neural KLT and VQ using the Kohonen map.

Neural KLT

The key idea of this method is to train a neural network, having the structure
shown in Figure 14.2, for performing the KLT. It can be easily seen that the last
layer ith neuron output corresponding to the vector () () ()

1 2[]k k k T
k qS s s s= is

given by:

, 1..ki i k il kl
l i

o W S u o i r
<

= ⋅ + ⋅ = [14.14]

where Wi = [wi1 wi2 … wiq]T is the weight vector associated with the ith neuron.

Data Compression 389

Figure 14.2. Structure of a neural network for the KLT calculation

Weights wij and uli are updated using the Hebb and anti-Hebb rules respectively,
with momentum term and variable learning rate:

Δ⋅+⋅⋅−=+Δ

Δ⋅+⋅⋅=+Δ

)()()()1(

)()()()1()(

tutoottu

twtosttw

likiklli

ijki
k
jij

βμ

βη
 [14.15]

Rubner and Tavan have proven that at the end of the training process, the r
weight vectors associated with the last layer neurons represent the r eigenvectors of
the covariance matrix corresponding to its largest eigenvalues. Consequently, the
trained network is able to project any new vector and therefore perform data
compression in the KLT sense. However, the projection matrix is coded in the
neural network weights, unlike in the case of the KLT, which provides it in an
explicit form.

VQ using the Kohonen map

Although easy to implement, standard VQ algorithms sometimes converge to
suboptimal solutions, corresponding to a local minimum of the error function. The
self-organizing Kohonen map, which involves the neighborhood concept, makes it
possible to overcome this problem thanks to its topological properties.

Thus, the self-organizing Kohonen map (whose structure is similar to that of the
previously presented neural network) is able to learn both the input space vector
distribution and the topology of this space. In other words, two closely spaced
neurons will be activated by neighbor zones from the input space.

The main idea is then to progressively reduce the neighborhood extent in the
Kohonen model. In this way, at the end of the training process (when the

390 Digital Signal Processing using MATLAB

neighborhood extent is almost zero), the network balanced state is defined by the
same conditions as the K-means algorithm.

Nevertheless, the probability of getting caught in a shallow minimum is much
lower thanks to the neighborhood relationships, which have been activated during
the training process. The learning rule is given below:

[]iniki WStW −⋅=Δ)(α [14.16]

where k is the index of the neuron having the lowest output and:

()2

22
0 t

i k

ik e σα α
−

−
= ⋅ ,

1
0

0

1
t

TT
t

σσ σ
σ

−−
= [14.17]

In the above equation T is the number of epochs. At the end of the training
process, the weights of the neurons on the output layer form the code vector set.

14.2. Solved exercises

EXERCISE 14.1.
Perform the DCT compression of the image “dots”, which can be found in the

file “imdemos” of the image processing toolbox. Use the MATLAB function
dct2.m.

a. Plot the mean square error variation with the number of conserved
coefficients.

b. Perform the image compression by preserving only the 1,024 largest
coefficients.

a.
load imdemos dots;
[N1,N2]=size(dots);
sl=double(dots); s=zeros(N1,N2);
s=sl; y=dct2(s); [ly,cy]=size(y);
yv=y(:); [yvs,idxs]=sort(abs(yv));
yvs=flipud(yvs); idxs=flipud(idxs);
cont=0;
for r=2.̂ [0 :14]
 yvr=yv ; yr=y;
 yvr(idxs(r+1 :N1*N2))=zeros(N1*N2-r,1);
 for k=1:N2
 yr(:,k)=yvr((k-1)*N1+1:k*N1,1);

Data Compression 391

 end
 sr=idct2(yr); cont=cont+1;
 eqm(cont)=(sum(sum(s-sr).̂ 2))/(N1*N2);
end
plot(eqm);
set(gca,’XTickLabel’,2.̂ (str2num(get(gca,’XTickLabel’))-1))
xlabel(‘Number of preserved coefficients’);
ylabel(‘Error’); title(‘Variation of the mean square error’)

Note that the mean square error decreases very fast with the number of
conserved coefficients due to the high redundancy of the original image.

0.5 16 512 16384
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of preserved coefficients

E
rr

or

Variation of the mean square error

Figure 14.3. Variation of the mean square error (the horizontal
axis is represented in logarithmic scale)

b.

load imdemos dots
r=1024; [N1,N2]=size(dots); sl=double(dots);
s=zeros(N1,N2); s=sl;
y=dct2(s); [ly,cy]=size(y); yv=y(:);
[yvs,idxs]=sort(abs(yv));
yvs=flipud(yvs); idxs=flipud(idxs); cont=0;
yv(idxs(r+1:N1*N2))=zeros(N1*N2-r,1);
for k=1:N2

392 Digital Signal Processing using MATLAB

 y(:,k)=yv((k-1)*N1+1:k*N1,1);
end
sr=idct2(y); figure
subplot(121); imagesc(s); colormap(gray);
title(‘Original image’)
subplot(122); imagesc(sr); colormap(gray);
title(‘Reconstructed image’)

Original image

20 40 60 80 100 120

20

40

60

80

100

120

Reconstructed image

20 40 60 80 100 120

20

40

60

80

100

120

Figure 14.4. Original image (left) and reconstructed image (right)
with the DCT 1,024 largest coefficients

The image is properly reconstructed although only 6.25% of its DCT have been
conserved. The main shortcoming of this method is that its coefficients are not
integers, so that they cannot be obtained by simple calculations. This is why other
transforms (Walsh, Hadamard, etc.) have been long preferred to the DCT.

Consequently, the coefficients issued from the DCT have to be quantified,
according to their dynamic range and weight for image reconstruction. The number
of discarded coefficients depends on the required compression rate, the image
content and the expected quality of the reconstructed image.

EXERCISE 14.2.

Consider again the image used in the previous exercise. Perform its compression
using the KLT of the vectors obtained by cutting up the image into 4×4 pixels
blocks.

Data Compression 393

a. Plot the mean square variation according to the number of conserved
coefficients.

b. Perform the compression by preserving only the largest component of each
vector in the projection space.

a.

load imdemos dots;
[N1,N2]=size(dots);
sl=double(dots);
s=zeros(N1,N2); s=sl;
x=im2col(s,[4 4],’distinct’);
xr=x’; sigx=cov(xr);
[vectp,valp]=eig(sigx);
vlpr=diag(valp);
[ld,idx]=sort(vlpr);
idx=flipud(idx);
ld=flipud(ld);
for r=1:16
 vectps=’=[‘;
 for k=1:r
 no=num2str(k);
 eval([‘vectps=[vectps ‘’vectp(:,idx(‘,no,’)) ‘’];’])
 end
 vectps=[vectps ‘]’’;’];
 eval([‘kmat’,vectps]);
 kmatc=zeros(16,16);
 kmatc(1:r,:)=kmat;
 sc=kmat*x;
 srcol=kmat’*sc;
 sr=col2im(srcol,[4 4],[N1 N2],’distinct’);
 eqm(R)=(sum(sum(s-sr).̂ 2))/(N1*N2);
end
plot(eqm);
xlabel(‘Number of preserved coefficients’)
ylabel(‘Error’);
title(‘Variation of the mean square error’)

The high redundancy level of the original image is again clearly visible, since all
information is confined by the first 9 coefficients of each data block.

394 Digital Signal Processing using MATLAB

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of preserved coefficients

E
rr

or
Variation of the mean square error

Figure 14.5. Mean square error variation

b.

load imdemos dots; r=1;[N1,N2]=size(dots);
sl=double(dots); s=zeros(N1,N2); s=sl;
x=im2col(s,[4 4],’distinct’);
xr=x’; sigx=cov(xr);
[vectp,valp]=eig(sigx);
vlpr=diag(valp); [ld,idx]=sort(vlpr);
idx=flipud(idx); ld=flipud(ld);
vectps=’=[‘;
for k=1:r
 no=num2str(k);
 eval([‘vectps=[vectps ‘’vectp(:,idx(‘,no,’)) ‘’];’])
end
vectps=[vectps ‘]’’;’];
eval([‘kmat’,vectps]);
kmatc=zeros(16,16);kmatc(1:r,:)=kmat;
sc=kmat*x;srcol=kmat’*sc;
sr=col2im(srcol,[4 4],[N1 N2],’distinct’);
subplot(121); imagesc(s)
colormap(gray); title(‘Original image’)
subplot(122); imagesc(sr)
colormap(gray); title(‘Reconstructed image’)

Data Compression 395

Original image

20 40 60 80 100 120

20

40

60

80

100

120

Reconstructed image

20 40 60 80 100 120

20

40

60

80

100

120

Figure 14.6. Original and reconstructed image using the KLT

The best compression rate is provided by the KLT since it leads to completely
uncorrelated vector components in the projection space. It minimizes the mean
square error minimization and performs the best mean power concentration in a
minimum number of coefficients. However, the DCT compression is much faster,
while its performance is close to that provided by the KLT.

EXERCISE 14.3.

Compare the compression performance of the DCT and the Wavelet Packet
Decomposition (WPD) using the functions from the toolbox “Wavelab” (URL:
http://www-stat.stanford.edu/~wavelab).

Generate a linearly frequency modulated signal, whose frequency varies between
1 kHz and 15 kHz, sampled at 100 kHz, on 512 points. Perform the compression
using the two methods, by preserving only the largest 150 coefficients, and plot the
obtained result. Repeat the compression in the case of 80 preserved coefficients.

fe=1e5; f1=1e3; f2=15e3; fn1=f1/fe; fn2=f2/fe;
sig=(vco(sawtooth(2*pi*[1:512]/512,1),[fn1 fn2],1))’;
nocof=150; sigdct=dct(sig);
[sigdcts,idcts]=sort(abs(sigdct)); idcts=reverse(idcts);
sigdct(idcts(nocof+1:512))=zeros(512-nocof,1); sigrecdct=idct(sigdct);

396 Digital Signal Processing using MATLAB

qmf=MakeOnFilter(‘Coiflet’,3);
[n,D]=dyadlength(sig);
wp=WPAnalysis(sig,D,qmf);
stree=CalcStatTree(wp,’Entropy’);
[btree,vtree]=bestbasis(stree,D);
wpex=unpackbasiscoeff(btree,wp);
[wpexs,idpos]=sort(abs(wpex)); idpos=reverse(idpos);
wpex(idpos(nocof+1:512))=zeros(512-nocof,1);
wpnew=PackBasisCoeff(btree,wp,wpex);
sigrecdpo=WPSynthesis(btree,wpnew,qmf);
subplot(321); plot(sig/max(abs(sig)));
title(‘Original signal’); ylabel(‘A’); axis([0 512 -1 1]); grid
subplot(323); plot(sigrecdct/max(abs(sigrecdct)));
axis([0 512 -1 1]); grid
title(‘DCT compressed signal’); ylabel(‘A’)
subplot(325); plot(sigrecdpo/max(abs(sigrecdpo)));
axis([0 512 -1 1]); grid; xlabel(‘t’); ylabel(‘A’)
title(‘WPD compressed signal’);

0 200 400
�1

0

1
Original signal

A

0 200 400
�1

0

1
DCT compressed signal

A

0 200 400
�1

0

1

t

A

WPD compressed signal

0 200 400
�1

0

1
Original signal

A

0 200 400
�1

0

1
DCT compressed signal

A

0 200 400
�1

0

1

t

A

WPD compressed signal

Figure 14.7. DCT and WPD compression results

The compression results are plotted on the left side column in the first case and
on the right side column in the second case. Note the robustness of the WPD
compression as the number of preserved coefficients decreases.

Data Compression 397

EXERCISE 14.4.

Repeat exercise 14.3 by preserving 99.5% of the original signal energy, for both
DCT and WPD compression methods. Determine the number of required
coefficients in the two cases and plot the compression result.

fe=1e5;f1=1e3;f2=15e3;fn1=f1/fe;fn2=f2/fe;
sig=(vco(sawtooth(2*pi*[1:512]/512,1),[fn1 fn2],1))’;
part =sum(sig.̂ 2); enethreshold=0.995 ;
sigdct=dct(sig);
[sigdcts,ixdcts]=sort(abs(sigdct));
ixdcts=reverse(ixdcts);
sigdcts=reverse(sigdcts) ;
enedct=cumsum(sigdcts.̂ 2);
ixdct=find(enedct>=enethreshold*energ);
nocoeffdct=ixdct(1);
sigdct(ixdcts(ixdct(1)+1:512))=zeros(512-ixdct(1),1);
sigrecdct=idct(sigdct);
qmf=MakeOnFilter(‘Coiflet’,3);
[n,D]=dyadlength(sig);
wp=WPAnalysis(sig,D,qmf);
stree=CalcStatTree(wp,’Entropy’);
[btree,vtree]=BestBasis(stree,D);
wpex=UnpackBasisCoeff(btree,wp);
[wpexs,ixdpos]=sort(abs(wpex));
ixdpos=reverse(ixdpos); wpexs=reverse(wpexs);
enedpo=cumsum(wpexs.̂ 2);
ixdpo=find(enedpo>=enethreshold*energ);
nocoeffdpo=ixdpo(1);
wpex(ixdpos(ixdpo(1)+1:512))=zeros(512-ixdpo(1),1);
wpnew=PackBasisCoeff(btree,wp,wpex);
sigrecdpo=WPSynthesis(btree,wpnew,qmf);
subplot(311);plot(sig/max(abs(sig)));
title(‘Original signal’);
ylabel(‘A’);axis([0 512 -1 1]); grid
subplot(312); plot(sigrecdct/max(abs(sigrecdct)));
axis([0 512 -1 1]); grid
title(‘DCT compressed signal’);ylabel(‘A’)
subplot(313); plot(sigrecdpo/max(abs(sigrecdpo)));
axis([0 512 -1 1]); grid
title(‘WPD compressed signal’);
xlabel(‘t’);ylabel(‘A’)

398 Digital Signal Processing using MATLAB

0 100 200 300 400 500
�1

0

1
Original signal

A

0 100 200 300 400 500
�1

0

1
DCT compressed signal

A

0 100 200 300 400 500
�1

0

1
WPD compressed signal

t

A

Figure 14.8. Comparison of DCT and WPD compression methods
for the same preserved energy level

It can be seen that the compression results are very similar when the same
preserved energy level is considered. However, 99.5% of the signal energy is
confined into 140 coefficients in the case of the DCT, while the WPD requires only
83 coefficients for the same preserved energy percentage, thanks to its time-
frequency localization property.

The variation of the cumulated energy of each decomposition coefficient is
plotted in Figure 14.9.

enedct=cumsum(sigdcts.̂ 2);
enedpo=cumsum(wpexs.̂ 2);
figure; plot(enedct,’-‘);
hold on; plot(enedpo,’—r’)
title(‘Variation of the cumulated energy of the decomposition coefficients’)
ylabel(‘Energy’);
xlabel(‘Number of preserved coefficients’);
grid; axis([0 512 0 1.1*energ]);
legend(‘DCT’,’WPD’,0)

Data Compression 399

0 100 200 300 400 500
0

50

100

150

200

250

Variation of the cumulated energy of the decomposition coefficients
E

ne
rg

y

Number of preserved coefficients

DCT
WPD

Figure 14.9. Variation of the cumulated energy of the DCT and WPD coefficients

Note that the higher the compression rate is, the more effective the use of the
WPD is. It can be also very useful for the compression of signals which are
wideband, highly irregular or contain discontinuities.

EXERCISE 14.5.

a. Generate 9 Gaussian clusters, containing 1,000 points, with variance 1, and
centered on: (0,0), (0,5), (0,10), (5,0), (5,5), (5,10), (10,0), (10,5) and (10,10).

b. Use the K-means algorithm to find the code vectors corresponding to the 9
clusters.

a.

Nc=9; epsi=1e-3; nv=900; sigma=1;
centr=[0 0 0 5 5 5 10 10 10;0 5 10 0 5 10 0 5 10];
[noc,ncls]=size(centr); nvc=nv/ncls; pin=zeros(noc,nv);
for k1=1:ncls
 c=centr(:,k1); cc=c*ones(1,nvc); pinc=cc+sigma*randn(noc,nvc);
 pin(:,(k1-1)*nvc+1:k1*nvc)=pinc;
end

400 Digital Signal Processing using MATLAB

b.

[noc,nov]=size(pin); wi=(mean(pin’))’; chposcenter=0;
chapartvect=0; eqmold=0;
w=wi*ones(1,Nc)+.1*randn(noc,Nc);
wnew=zeros(noc,Nc); eqmrap(1)=1;
dism=dist(w’,pin);
[valm,appart]=min(dism);
figure
for k=1:Nc
 idx=find(appart==k);
 if length(idx)~=0
 matvect=pin(:,idx); w(:,k)=(mean(matvect’))’;
 end
end
for k=1:nov
 eqmold=eqmold+dism(appart(k),k);
end
plot(pin(1,:),pin(2,:),’xr’); hold on;
plot(w(1,:),w(2,:),’ob’);
pause(.1); clf; cont=1;
while (chapartvect~=0|eqmrap(cont)>epsi)
chposcenter=0; chapartvect=0;
dism=dist(w’,pin);
[valm,appart]=min(dism);
for k=1:Nc
 idx=find(appart==k);
 if length(idx)~=0
 matvect=pin(:,idx); w(:,k)=(mean(matvect’))’;
 end
end
dism=dist(w’,pin); [valm,appartnew]=min(dism); eqmnew=0;
for k=1:nov
 eqmnew=eqmnew+dism(appartnew(k),k);
end
cont=cont+1;
eqmrap(cont)=abs((eqmold-eqmnew)/eqmold); eqmold=eqmnew;
if appartnew~=appart
 chapartvect=chapartvect+1;
end
appart=appartnew; plot(pin(1,:),pin(2,:),’.r’);
hold on; plot(w(1,:),w(2,:),’ob’); clf
end
subplot(211); plot(pin(1,:),pin(2,:),’xr’);
hold on; plot(w(1,:),w(2,:),’ob’); axis([-5 15 -5 20])
legend(‘Original vectors’,’Code vectors’,0)
subplot(212); plot(eqmrap);
title(‘Variation of the relative mean square error’)

Data Compression 401

�5 0 5 10 15
�5

0

5

10

15

20
Original vectors
Code vectors

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Variation of the relative mean square error

Figure 14.10. Code vectors obtained using the K-means method

The stop criterion for the K-means algorithm implemented above consists of two
conditions which have to be met simultaneously: the training vectors have to be
stable and the relative mean square error has to be under the appropriately chosen
“epsi” threshold.

Note the fast convergence of this algorithm and the fact that the obtained
solution is well suited to the distribution of the input vectors.

EXERCISE 14.6.

Compare the performance of the KLT, the VQ using the K-means algorithm and
the QV using the Kohonen map for the compression of the image “trees”, which can
be found in the file “imdemos” of the image processing toolbox.

Cut up the image into blocks of 4×4 pixels. Keep 5 coefficients for each block in
the case of the KLT and use 32 code vectors for the K-means algorithm and the
Kohonen map. Consider a Manhattan distance based neighborhood system for the
last case.

warning off; load imdemos trees; s=double(trees);
[N1,N2]=size(trees); pin=im2col(s,[4 4],’distinct’);
Nc=32; epsi=1e-3;
[noc,nov]=size(pin); wi=(mean(pin’))’;
w=wi*ones(1,Nc)+.1*randn(noc,Nc);
eqmold=0; eqmrap(1)=1; cont=1;

402 Digital Signal Processing using MATLAB

wnew=zeros(noc,Nc); chapartvect=0;
dism=dist(w’,pin); [valm,appart]=min(dism);
for k=1:Nc
idx=find(appart==k);
 if length(idx)~=0
 matvect=pin(:,idx);
 w(:,k)=(mean(matvect’))’;
 end
end
for k=1:nov
 eqmold=eqmold+dism(appart(k),k);
end
while (chapartvect~=0|eqmrap(cont)>epsi)
chapartvect=0; dism=dist(w’,pin);
[valm,appart]=min(dism);
for k=1:Nc
 idx=find(appart==k);
 if length(idx)~=0
 matvect=pin(:,idx);
 w(:,k)=(mean(matvect’))’;
 end
end
dism=dist(w’,pin);
[valm,appartnew]=min(dism); eqmnew=0;
for k=1:nov
 eqmnew=eqmnew+dism(appartnew(k),k);
end
cont=cont+1;
eqmrap(cont)=abs((eqmold-eqmnew)/eqmold);
eqmold=eqmnew;
if appartnew~=appart
 chapartvect=chapartvect+1;
end
appart=appartnew;
end
smkam=zeros(size(pin));
for k=1:nov
 smkam(:,k)=w(:,appart(k));
end
pinm=min(pin’); pinM=max(pin’); pini=[pinm’ pinM’];
wkoh=initsm(pini,Nc); dp=[50 5000 1];
mtvois=nbman([Nc Nc]);
wkoh=trainsm(wkoh,mtvois,pin,dp);
dism=dist(wkoh,pin);
[valm,appart]=min(dism); smkoh=zeros(size(pin));
for k=1:nov
 smkoh(:,k)=(wkoh(appart(k),:))’;
end
srkam=col2im(smkam,[4 4],[N1 N2],’distinct’);
srkoh=col2im(smkoh,[4 4],[N1 N2],’distinct’);

Data Compression 403

subplot(221); imagesc(s);
colormap(gray); title(‘Original image’)
subplot(222); imagesc(srtkl);
colormap(gray); title(‘KLT based compression’)
subplot(223); imagesc(srkam);
colormap(gray); title(‘K-means based compression’)
subplot(224); imagesc(srkoh); colormap(gray);
title(‘Kohonen map based compression’)

Original image

20 40 60 80 100 120

20

40

60

80

100

120

KLT based compression

20 40 60 80 100 120

20

40

60

80

100

120

K�means based compression

20 40 60 80 100 120

20

40

60

80

100

120

Kohonen map based compression

20 40 60 80 100 120

20

40

60

80

100

120

Figure 14.11. Comparison of KLT, K-means and Kohonen map based compression methods

Note the performance level of the two VQ based compression methods. The
compression rate is higher than for any other method, since only one integer
corresponding to the code vector index replaces a whole data block. However, the
set of code vectors is supposed to be available for decompression.

14.3. Exercises

EXERCISE 14.7.
Compare the compression performed using the DCT and the KLT for the image

“flower”, which can be found in the file “imdemos” of the image processing
toolbox. Use the MATLAB codes provided in the first two solved exercises.
Consider successively image block partitions of 4×4, 8×8 and 16×16 pixels.

404 Digital Signal Processing using MATLAB

Comment on the effect of the block size on the compression effectiveness and
calculation time.

EXERCISE 14.8.

Perform the wavelet packet based compression of a sinusoid having the
frequency 1 kHz, sampled at 100 kHz, represented on 512 points and exhibiting
random phase discontinuities at the zero-crossing instants. Perform the compression
of the same signal using the DCT. In the two cases, preserve 99.5% of the initial
signal energy. Comment on the results obtained.

EXERCISE 14.9.

a. Run the algorithm “K-means”, provided in exercise 14.5, for 4 clusters
centered on: (0,0), (0,10), (10,0), (10,10), and for a number of code vectors equal to
4, then to 5. Comment on the solution obtained.

b. Consider a random initialization of the code vectors and repeat the training
process several times. What do you conclude?

EXERCISE 14.10.

Train a Kohonen map to compress the image “Saturn”, which can be found in the
file “imdemos” of the image processing toolbox. Consider successively image block
partitions of 2×1, 2×2 and 4×4 pixels. For each case, plot the compression result
using 16, 32 and 64 code vectors. Use a Manhattan distance and then a Euclidian
distance based neighborhood. Conclude on the compression quality and on the
training period in the two cases.

References

APPRIOU A., Décision et reconnaissance des formes en signal, Hermes, 2002.

ASSELIN DE BEAUVILLE J.P., KETTAF F.Z., Bases théoriques pour l'apprentissage et la
décision en reconnaissance des formes, Cépaduès, 2005.

BELLANGER M., Analyse des signaux et filtrage numérique adaptatif, Masson, 1989.

BELLANGER M., Traitement numérique du signal: théorie et pratique, Masson, 1989.

BELLANGER M., Filtres numériques: analyse et synthèse des filtres unidimensionnels,
Masson, 1990.

BISHOP C.M., Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.

CANDY J.V., Signal Processing: The Model Based Approach, Masson, 1989.

CHARBIT M., Eléments de théorie du signal: les signaux aléatoires, Ellipses, 1990.

COHEN L., Time-Frequency Analysis, Prentice Hall, 1995.

COULON F., Théorie et traitement des signaux, Dunod, 1987.

DUDA R.O., HART P.E., STORK D.G., Pattern Classification, Wiley, 2001

DUVAUT P., Traitement du signal: concepts et applications, Hermes, 1991.

FLANDRIN P., Temps fréquence, Hermes, 1998.

HAMMING R., Digital Filters, Prentice Hall, 1989.

JACKSON L., Digital Filters and Signal Processing, Kluwer, 1989.

KAY S.M., Modern Spectral Estimation: Theory and Applications, Prentice Hall, 1988.

KAY S.M., Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall,
1993.

KUNT M., Traitement de l’information: techniques modernes de traitement numérique des
signaux, PPUR, 1991.

KUNT M., Traitement numérique des signaux, Dunod, 1986.

406 Digital Signal Processing using MATLAB

LACOUME J.L., Théorie du signal, P.U.F., 1983.

LE CHEVALIER F., Principes de traitement des signaux radar et sonar, Masson, 1989.

MARPLE S.L., Digital Spectral Analysis with Applications, Prentice Hall, 1987.

MATEESCU A., Traitement numérique des signaux, Editions Techniques, Bucarest, 1997.

MITRA S.K., Handbook of Digital Signal Processing, John Wiley and Sons, 1993.

OPPENHEIM A.V., Advanced Topics in Signal Processing, Prentice Hall, 1988.

OPPENHEIM A.V., Discrete-Time Signal Processing, Prentice Hall, 1989.

PAPOULIS A., Signal Analysis, McGraw-Hill, 1977.

PAPOULIS A., Circuits and Systems: A Modern Approach, Holt, Rinehart and Wiston, 1980.

PAPOULIS A., Probability, Random Variables and Stochastic Processes, McGraw-Hill,
1984.

PEEBLES P.Z., Probability, Random Variables and Random Signal Principles, McGraw-
Hill, 1987.

PERSONNAZ L., Réseaux de neurones formels pour la modélisation, la classification et la
commande, CNRS Editions, 2003

PICINBONO B., Eléments de théorie du signal, Dunod, 1986.

PICINBONO B., Signaux aléatoires: probabilités et variables aléatoires, avec problèmes
résolus, Masson, 1989.

PORAT B., Digital Processing of Random Signals: Theory & Methods, Prentice Hall, 1994.

RANDALL R.B., Frequency Analysis, Bruel & Kjaer, 1987.

SCHARF L.L., Statistical Signal Processing: Detection, Estimation and Time Series Analysis,
Addison Wesley, 1991.

STANKOVIC L., Time-Frequency Signal Analysis, Research monograph 1993-2003, 2004.

STOICA P., MOSES R., Introduction to Spectral Analysis, Prentice Hall, 1997.

THERRIEN C.W., Discrete Random Signals and Statistical Signal Processing, Prentice Hall,
1992.

VAIDYANATHAN P.P., Multirate Systems and Filter Banks, Prentice Hall, 1993.

VAN TREES H.L., Detection, Estimation and Modulation Theory, John Wiley, 1971.

Index

A

a posteriori probabilities 354
additive information measure 387
Akaike information criterion 248, 255
amplitude modulated 31, 32
analog filter design 174, 176, 188
analytic signal 27, 28, 286
anti-aliasing filter 33, 34
AR-2D model 385
Atlas-Marinovich distribution (AMD) 317
auto regressive (AR) model 246–249, 265,
266, 268, 277, 386
auto regressive moving average (ARMA)
model 245, 246, 277
autocorrelation matrix estimation 250
auto-terms 314

B

backpropagation algorithm 354
bandpass filter 78, 80, 165, 214, 238, 266,
282
bandstop filter 207
Bayes classifier 349, 354, 367, 368, 371,
375, 381
best basis 387
Bienaymé-Tchebycheff inequality 57
bilinear transformation method 179
binary information transmission 40
Blackman window 127, 205, 263, 269
Butterworth filters 34, 79

C

Capon’s method 257
Cauer filters 154
central limit theorem 70, 100
characteristic function 56, 57, 60, 83
Chebychev filters 176, 186, 189, 190, 191,
195, 224
chirp signal 39, 40, 234, 235, 288–290, 318,
319, 340
Chi-square (Chi2) test 86, 90, 92
clustering methods 387
Cohen class 315, 317
composed hypothesis 86
compression rate 383, 384, 387, 392, 395,
399, 403
constant-Q filtering 282
Cooley-Tukey algorithm 107
correlation coefficient 76, 77
correlogram 20, 241, 244
covariance matrix 62, 63, 219, 220, 345,
379, 384, 389
cross-terms 313, 314, 316, 324, 333, 340
cumulants 57, 83–85, 89, 96, 101
cumulative distribution function (cdf) 56,
60, 87

D

data analysis 5, 9, 344–346, 348
data compression 383–385, 387, 389
data overfitting 350
data redundancy 385, 386

408 Digital Signal Processing using MATLAB

Daubechies wavelets 303
decimation-in-frequency 107
decimation-in-time 107
decision threshold 223–225
decomposition bases 386
decomposition tree 282
detection probability 227, 235, 239
digital filter design 174, 203
digital signal processing 1, 103
digital system modeling and simulation 1
discrete cosine transform (DCT) 105, 121,
125, 383, 384, 390, 392, 395–399, 403, 404
discrete Fourier transform (DFT) 27, 103–
108, 111–116, 119, 124–128, 131–134, 202,
242, 247, 383
discrete-time Fourier series (DTFS) 26, 47,
48
discrete-time Fourier transform (DTFT) 27,
28, 48, 49, 51, 52
discrete-time system 137
discriminant functions 349, 350, 354, 368
discriminant information 344

E

empirical mean error probability 349, 350
ergodicity 60, 61, 73, 81, 220
ESPRIT algorithm 253, 272
estimate bias 257
estimate variance 76, 243, 244, 248, 258
eye diagram 225, 226

F

false alarm probability 227, 235, 239
fast Fourier transform (FFT) 126, 133, 243,
260, 280, 311, 328
feature extraction 348
feature space 345
feature vector 344, 345, 348
filter bank 80, 282
filter coefficients 212, 303
filter gain 215
filter order 186, 195, 205
filter specifications 173–175, 179, 203, 210,
237
final prediction error (FPE) criterion 248

finite impulse response (FIR) filters 100,
197–214
Fletcher and Powell method 175
Fourier transform (FT) 26, 27, 57, 62, 103,
104, 110, 124, 126, 131, 132, 243–245, 249,
257, 269, 271, 273, 274, 279–282, 285, 310
fractional Fourier transform (FRFT) 307,
308, 317–320, 338
frequency sampling method 199, 202, 203,
206, 207, 214
frequency transformations 180, 181
fuzzification 352, 353
fuzzy KNN 351, 352, 367, 369, 371
fuzzy perceptron 356, 357, 359, 375, 376,
379

G

Gabor transform 281
Gaussian classes 356, 362, 366, 367
Gaussian distribution 64
Gaussian random process 63, 73
generalization capability 350, 362, 371, 380,
384
Gibbs phenomenon 200, 212

H

Haar wavelet 300, 303
Hamming window 131, 207, 271
Hanning window 132
Hebb and anti-Hebb rules 354, 389
Heisenberg-Gabor uncertainty principle 280
Henry line 86, 87, 89, 90, 101
high order ambiguity function (HAF) 309,
311, 312, 322, 324–330, 339, 340
high order instantaneous moment (HIM)
310–313
high order statistics 84, 85, 93
highpass filter 180, 206, 214
Hilbert transform (HT) 28, 29, 49–51, 199,
214
hyperbolic TFR class 316

I

image compression 383, 385, 390
impulse invariance method 176–178

Index 409

independent random variables 67
indicial response 139, 154, 165, 166, 169,
183
infinite impulse response (IIR) filters 173,
174, 197, 203
instantaneous frequency 39, 286–288, 305,
315, 318, 319, 321–325, 327, 331, 338, 339,
341
interference terms 286, 287, 295, 304, 307

J, K

JADE algorithm 97
Kalman filter 218–220, 232, 233, 240
Karhunen-Loève transform (KLT) 345, 384,
385, 388, 389, 392, 395, 401, 403
kernel functions 361
K-means algorithm 387, 390, 399, 401
KNN (K nearest neighbor) classifiers 351–
353, 367, 369, 371, 381
kurtosis 85

L

Lagrange multipliers 360
learning techniques 343
learning vector quantization (LVQ) 354
least squares (LS) method 203, 207, 214,
221, 222
Leonov-Shiryayev relationship 84
Levinson-Durbin algorithm 247
linear convolution 138, 144, 145, 148, 249
linear discriminant analysis (LDA) 346,
347, 362, 365, 366, 380
linear time-invariant system (LTI) 137, 139,
140, 141, 150, 151, 159, 162, 165–167, 169,
245
linearly separable classes 348, 356
Lorentz’s equations 44
lowpass filter 75, 164, 174, 180, 182, 186,
188, 194, 204, 210–214

M

matched filter 215, 216, 223–225, 234, 235
MATLAB commands 3, 35
MATLAB functions 2, 9, 213, 258
MATLAB software 1, 2

MATLAB toolbox 376
matrix eigenanalysis 270, 275
matrix eigenvalues 6, 255
matrix eigenvectors 252, 384, 385
matrix operations 12
mean square error 345, 346, 354, 383, 385,
388, 390, 391, 394, 395, 401
membership coefficients 351–353, 357, 358
minimal entropy criterion 386
minimum description length (MDL)
criterion 256
mirror filters 282
model order estimation 247, 248
modified periodogram 243, 244, 258, 260,
261, 263, 264, 277
Morlet wavelet 292, 294
mother wavelet 281
moving average (MA) model 246, 248, 249
multi-component PPS (mc-PPS) 309, 312
multi-lags HAF (ml-HAF) 312, 326–328,
330, 339, 340
multilayer perceptron 354, 355, 371, 372,
374, 375
multiresolution analysis 281–284, 300, 302,
303, 386
MUSIC algorithm 251, 253, 257, 269, 271

N

neural KLT 388
neural networks 2, 348, 350, 353, 354, 388
Neyman-Pearson criterion 239
noise subspace 250, 252
non-linear frequency modulation 309
non-parametric estimation 351
non-stationary signals 280
normality test 86, 87
Nyquist theorem 177

O

Occam razor principle 350
optimal decision 223, 224, 226, 354
optimization methods 199, 203
orthonormal basis 384

410 Digital Signal Processing using MATLAB

P

parametric estimation 350, 351
parametric spectral analysis 245, 277
Parseval theorem 104, 134
passband ripple 174, 194, 209, 237
pattern recognition 343, 344, 348
pattern signature 343
polynomial modeling 309, 323, 324, 330
polynomial phase signal (PPS) 309–313,
330, 339, 340
power spectral density (PSD) 41, 62, 63, 73,
76, 78, 81, 120, 121, 215, 218, 238, 240,
242, 243, 245–249, 253, 257, 258, 266–268,
271, 277, 278, 288
prewarping 315, 316
Prewitt filter 229
principal component analysis (PCA) 345,
346, 362–364, 366, 380
probability density function (pdf) 56–62,
64–70, 80, 81, 83–86, 88, 216, 349, 350
projection methods 345
Prony’s method 256
pulse modulation 40

R

Rader’s algorithm 108
radial basis function (RBF) 354, 361, 362
random vector 57, 58
receiver operating characteristics (ROC) 239
rectangular window 126, 131, 132, 200,
201, 205, 243
recursive least square (RLS) method 222,
229
Remez method 208, 209
Roberts filters 229
root-MUSIC algorithm 253

S

Sammon method 345, 347, 348, 380
Sammon stress 348
Schwarz inequality 59
self-organizing Kohonen map 389
separating hyperplane 356, 357, 359, 360
Shannon-Weaver entropy 386

short-time Fourier transform (STFT) 280–
282, 284
signal reconstruction 382
signal subspace 250, 252, 254–256, 271
signal-to-noise ratio (SNR) 20, 22, 64, 81,
269, 273, 274, 276, 328, 338, 339
skewness 85
smoothed WVD (SWVD) 287, 304
Sobel’s filters 227, 229
spectral aliasing 33, 285
spectral leakage 119, 133, 277
spectral resolution 118, 127–130, 132–134,
243–247, 250, 253, 257, 260, 263, 268, 269,
280, 282, 291, 292, 294
spectrogram 280, 282, 284, 288, 290–292,
305
stability 159, 176, 179
state-space model 219, 240
statistical classification 343, 344
statistical moments 58, 83
stochastic process 55, 56, 241
stopband attenuation 203, 205
strict sense stationarity (SSS) 60, 61
super-resolution spectral analysis 273, 250
supervised learning 343
support vector machines (SVM) 356, 359,
360–362, 375, 376, 379, 382
support vectors 359, 360, 379

T

time-frequency analysis 281, 290
time-frequency atoms 296, 304, 305
time-frequency plane 280, 282, 285, 287,
288, 292, 300, 307, 315
time-frequency representation (TFR) 96, 97,
290, 297, 305, 307, 309, 314–317, 331, 333,
334, 336, 340, 341
time-scale analysis 281
Toeplitz structure 63, 247
transfer function poles 151
transfer function sampling 175, 176
transfer function zeros 122, 151, 163, 170,
191, 194, 195, 218
transition band 33, 174, 200, 201, 203–205
triangular window 243

Index 411

U, V

unwarping 316
vector quantization (VQ) 354, 387–389,
401, 403

W

warping operators 314, 315, 331, 334, 336,
337
wavelet family 281
wavelet packets 386
wavelet transform (WT) 281–283, 292, 295
Welch’s method 243, 244
wide sense stationarity (WSS) 61, 62
Wiener-Khintchine theorem 218, 245
Wigner-Ville distribution (WVD) 284, 285,
295–299, 305, 307, 331, 333, 340
windowg method 199, 200, 202, 204, 207
Winograd algorithm 108

Y, Z

Yule-Walker equations 246, 247, 249, 385
zero-padding 118, 134
zero-phase transfer function 197, 200, 202,
203
Z-transform (ZT) 103, 106, 121, 122

	Digital Signal Processing using MATLAB®
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Brief introduction to MATLAB
	1.1.1. MATLAB software presentation
	1.1.2. Important MATLAB commands and functions
	1.1.3. Operating modes and programming with MATLAB
	1.1.4. Example of work session with MATLAB
	1.1.5. MATLAB language

	1.2. Solved exercises

	Chapter 2. Discrete-Time Signals
	2.1. Theoretical background
	2.1.1. Mathematical model of 1D and 2D discrete-time signals
	2.1.2. Basic 1D and 2D discrete-time signals
	2.1.3. Periodic 1D and 2D discrete-time signals representation using the discrete-time Fourier series
	2.1.4. Representation of non-periodic 1D and 2D discrete-time signals by discrete-time Fourier transform
	2.1.5. Analytic signals

	2.2. Solved exercises
	2.3. Exercises

	Chapter 3. Discrete-Time Random Signals
	3.1. Theoretical background
	3.1.1. Introduction
	3.1.2. Real random variables
	3.1.3. Random processes

	3.2. Solved exercises
	3.3. Exercises

	Chapter 4. Statistical Tests and High Order Moments
	4.1. Theoretical background
	4.1.1. Moments
	4.1.2. Cumulants
	4.1.3. Cumulant properties
	4.1.4. Chi-square (Chi2) tests
	4.1.5. Normality test using the Henry line

	4.2. Solved exercises
	4.3. Exercises

	Chapter 5. Discrete Fourier Transform of Discrete-Time Signals
	5.1. Theoretical background
	5.1.1. Discrete Fourier transform of 1D digital signals
	5.1.2. DFT of 2D digital signals
	5.1.3. Z-transform of 1D digital signals
	5.1.4. Z-transform of 2D digital signals
	5.1.5. Methods and algorithms for the DFT calculation

	5.2. Solved exercises
	5.3. Exercises

	Chapter 6. Linear and Invariant Discrete-Time Systems
	6.1. Theoretical background
	6.1.1. LTI response calculation
	6.1.2. LTI response to basic signals

	6.2. Solved exercises
	6.3. Exercises

	Chapter 7. Infinite Impulse Response Filters
	7.1. Theoretical background
	7.1.1. Transfer function and filter specifications for infinite impulse response (IIR) filters
	7.1.2. Design methods for IIR filters
	7.1.3. Frequency transformations

	7.2. Solved exercises
	7.3. Exercises

	Chapter 8. Finite Impulse Response Filters
	8.1. Theoretical background
	8.1.1. Transfer function and properties of FIR filters
	8.1.2. Design methods
	8.1.3. General conclusion about digital filter design

	8.2. Solved exercises
	8.3. Exercises

	Chapter 9. Detection and Estimation
	9.1. Theoretical background
	9.1.1. Matched filtering: optimal detection of a known noisy signal
	9.1.2. Linear optimal estimates
	9.1.3. Least squares (LS) method
	9.1.4. LS method with forgetting factor

	9.2. Solved exercises
	9.3. Exercises

	Chapter 10. Power Spectrum Density Estimation
	10.1. Theoretical background
	10.1.1. Estimate properties
	10.1.2. Power spectral density estimation
	10.1.3. Parametric spectral analysis
	10.1.4. Superresolution spectral analysis methods
	10.1.5. Other spectral analysis methods

	10.2. Solved exercises
	10.3. Exercises

	Chapter 11. Time-Frequency Analysis
	11.1. Theoretical background
	11.1.1. Fourier transform shortcomings: interpretation difficulties
	11.1.2. Spectrogram
	11.1.3. Time-scale analysis – wavelet transform
	11.1.4. Wigner-ville distribution
	11.1.5. Smoothed WVD (SWVD)

	11.2. Solved exercises
	11.3. Exercises

	Chapter 12. Parametrical Time-Frequency Methods
	12.1. Theoretical background
	12.1.1. Fractional Fourier transform
	12.1.2. Phase polynomial analysis concept
	12.1.3. Time-frequency representations based on warping operators

	12.2. Solved exercises
	12.3. Exercises

	Chapter 13. Supervised Statistical Classification
	13.1. Theoretical background
	13.1.1. Introduction
	13.1.2. Data analysis methods
	13.1.3. Supervised classifiers

	13.2. Solved exercises
	13.3. Exercises

	Chapter 14. Data Compression
	14.1. Theoretical background
	14.1.1. Transform-based compression methods
	14.1.2. Parametric (predictive) model-based compression methods
	14.1.3. Wavelet packet-based compression methods
	14.1.4. Vector quantization-based compression methods
	14.1.5. Neural network-based compression methods

	14.2. Solved exercises
	14.3. Exercises

	References
	Index

