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Preface

This book achieves a goal that was set 25 years ago
when Anderson and Bower (1973) published the HAM
theory of human memory. That theory reflected one of a
number of then current efforts to create a theory of
human cognition that met the twin goals of precision and
complexity. Until that time, the standard for precision
had been the mathematical theories of the 1950s and
1960s. These theories took the form of precise models of
specific experiments along with some informal verbally
stated understanding of how they could be extended to
new experiments. They seemed to fall far short of
capturing the breadth and power of human cognition that
was being demonstrated by the new experimental work
in human cognition.

HAM represented an effort to create a computer
simulation system that overcame the shortcomings of
this earlier generation of mathematical models. These
computer simulation systems were efforts to create
computationally powerful models of human cognition
that actually performed a wide range of tasks.
Performing simulations instead of formal analyses
offered the promise of dealing with complexity without
sacrificing precision. Like other initial efforts of the
time, HAM fell short of the aspirations set for it. First, it
was only a theory of human memory and so failed to
address many critical phenomena in human cognition.
Second, although there was a running program, the sense
in which it actually performed the tasks in question was
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weak. There was a lot of accompanying verbal theory to
explain how it really applied to many tasks and in many
cases it just became a mathematical model.

The next 10 years saw two major efforts on our part to
address the problems of scope. In 1976, the ACT theory
(Anderson, 1976) was first described. It included a
production rule system of procedural memory to
complement HAM’s declarative memory. This provided
a computationally adequate system that was indeed
capable of accounting for all sorts of cognition. In 1983,
Anderson published the ACT* system, which extended
ACT with a neurally plausible model of subsymbolic
processing and a theory of production rule learning.
Perhaps the highlight of that era was a simulation of
child language acquisition in the 1983 book.

Each of these versions of ACT came with computer
simulation code but still much of the modeling took the
form of mathematical models of the simulations and
informal assumptions about their application. It is
perhaps telling that we no longer have access to any of
the code that underlay HAM or these early versions of
ACT. The theory still survived more as mathematical
models held together by a verbal story than as a
simulation. The last piece of code to disappear was the
GRAPES production system (Sauers & Farrell, 1982),
which implemented the procedural aspect of ACT*. This
survived into the 1990s largely because it served as a
basis for some of our intelligent tutoring systems. It
disappeared when we finally abandoned the Franz LISP
implementation of our LISP tutor.
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In 1993, a new version of ACT was published called
ACT-R. This system was an effort to summarize the
theoretical progress we had made on skill acquisition in
the intervening 10 years (e.g., Singley & Anderson,
1989) and tune the subsymbolic level of ACT with the
insights of the rational analysis of cognition (Anderson,
1990). Accompanying that book was a computer disk
containing the first comprehensive implementation of the
theory. The fact that we could produce this
implementation reflected both our growing
understanding (derived from all the partial
implementations we had produced) and that LISR the
implementation language of these theories, had become
standardized.

The appearance of a generally available, full-function
code set off a series of events that we hardly planned and
that have resulted in this book. The catalyst for this was
the emergence of a user community. When the book was
first published, Werner Tack suggested that we hold a
summer workshop. For years, this had been
recommended for earlier versions of ACT but Anderson
had always resisted the suggestion because he
recognized that the theory was not ready. However,
Lebiere insisted that assembling a critical mass of users
was essential to the ultimate success of the theory and
that a physical gathering was the only way to achieve
that goal. We held what was to be the first ACT-R
Summer School and Workshop in 1994. As a summer
school, the first was a disaster but as a workshop it was
the moment in which a real user community was born.
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The creation of that user community resulted in a whole
new dynamic to the theory. One dimension of change
was to the language of the theory. The theory became a
language spoken among all members of the community
rather than a language spoken by authors of the theory to
readers of the theory. This forced a greater
standardization and consistency. We successfully
worked on our problems with ACT-R education and later
summer schools were much more successful The goal of
successful education created a pressure against
unnecessary complexity and further pressure for
standardization.

Another change was to the implementation of the theory.
Inefficiencies and obscure features that the authors could
tolerate were not acceptable to the community. A good
example of this was the evolution of the older analogy
mechanism into the current production compilation as
described in Chapter 4. This was substantially driven by
user frustrations. We also produced a much more
efficient implementation of ACT-R. A development
environment was created that supported learners. The
development environment moved us away from our
private language (LISP) to the public language (ACT-R).

A third change was to the level of detail at which we
attempted to account for data. Different members of our
community were interested in different aspects of data
and we had no choice but to produce a theory that
accounted for it all. The experimental psychology
practice of computer-implemented experiments was the
computational experience that was most common as a
background for our community. As a consequence, we
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found ourselves moving to a system in which our
ACT-R models interacted with experimental software
just the way subjects did.

These influences bit by bit had an effect on the details of
the theory. The tweakings of the details slowly built up
and resulted in a net qualitative change in the theory. It
reached the point where we realized that the symbolic
knowledge units of the theory had acquired a new
psychological reality. As the title of this book
announces, they had become the atoms of thought.

The past books in this series had been planned as writing
exercises that would stimulate and discipline the creation
of advances in the theory. This book was written as a
response to the events that had occurred. We needed to
document and justify the new theory. In writing the
book, we became seized by an aspiration that went
beyond just describing the theory correctly. We decided
to try to display what the theory could do by collecting
together and describing some of its in-house
applications. Originally, this was conceived as a loose
collection of papers but the ever-increasing need for
uniformity and consistency took over. All of these
models are running on the World Wide Web and all use
the same ACT-R software. The result is
hardly everything that one could aspire for in terms of
precision and scope, but it is more than Anderson
dreamed of 25 years ago.

The book reflects tens of years of work in ACT-R
accumulated over many researchers. The chapters are
authored by the people who did that particular work. No
doubt the reader will be impressed by the scope of the
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research and the quality of the individual work.
However, less apparent but no less important was the
effort that everyone put into achieving the overall
consistency and technical integrity of the book. This is
the first work in cognitive science to precisely model
such a wide range of phenomena with a single theory.
No one person could have done it alone and it could not
have been done by a bunch of individuals working in
isolation.

The Cognitive Science Program at ONR (Susan
Chipman) and the Human Cognition and Perception
Program of the NSF have continued their long-standing
support of this research. We view the outcome as
evidence of the importance of sustained funding of
scientific research with a constant focus. Lawrence
Erlbaum Associates has done much to facilitate this
work in organizing an extensive set of reviews and
coordinating with our web-based efforts. In addition to
this, they continue to make available the prior books in
this series including Anderson (1983), which they
rescued from the premature abandonment by Harvard
Press. This is another sort of sustained support critical to
the growth of our science.

Many people have read and commented on these
chapters. Wayne Gray, Todd Johnson, Clayton Lewis,
Peter Pirolli, and Brian Ross each read all or most of the
chapters. In addition, Stu Card and Hal Paschler
provided expert comments on Chapter 6; Gordon Bower
and Stephen Lewandowsky provided expert comments
on Chapter 7; Jerry Busemeyer, Lynn Devenport, and
Rob Nosofsky provided expert comments on Chapter 8;
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Mark Ashcraft, Jamie Campbell, and Jane Zbrodoff
provided expert comments on Chapter 9; Keith Holyoak
and Laura Novick provided expert comments on Chapter
10; and Gary Bradshaw and Jeff Shrager provided expert
comments on Chapter 11. Anderson would also like to
acknowledge Chris Schunrís assistance in reading the
chapters in which Anderson is the first author. We want
to acknowledge Stellan Ohlsson’s general comments on
the direction of the ACT project.

Finally, we want to thank the people who provide the
support for the development of the total package. Mike
Matessa has maintained the ACT-R home page and Dan
Bothell is responsible for the ACT-R models running on
the web. Peter Brusilovsky and Elmar Schwarz have
developed the Web-based Interbook (Brusilovsky,
Eklund, & Schwarz, 1997; Brusilovsky,
Schwarz, & Weber, 1996), which implements the
ACT-R tutorial and the running models. Jon Fincham
has developed the ACT-R environment including its
tutorial components. Helen Borek has supported all of
the manuscript preparation and coordination. Her work
in tying all the pieces together has been nothing short of
heroic.
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1

Introduction

John R. Anderson

Christian Lebiere

Carnegie Mellon University

NEWELL’S DREAM

The challenge of science is to find the order that exists in
the complexity of the world. Certainly, psychology faces
one of the larger challenges: trying to understand the
structure of human cognition, which is perhaps the most
complex of all systems. Ever since modern cognitive
psychology took form in the 1950s and 1960s, it has
tended to adopt a divide-and-conquer approach to this
challenge. This involves focusing on specific aspects of
human cognition and trying to understand in detail what
is happening in those aspects. The classic example of
this was Sternberg’s (1969) effort to study how people
searched through a small number of elements in
short-term memory. The reason for such a narrow focus
was the respect for data that psychology had acquired
from its earlier history—one needs to care about the
exact response structure and temporal structure of
behavior if one wants to understand it. It seemed
impossible to be able to deal with data at that level of
detail unless one focused on relatively circumscribed
aspects of cognition. The assumption behind this
divide-and-conquer strategy was that one would be able
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to understand all the pieces of cognition separately and
then put them together into a single theory.

Twenty-five years ago at the 1972 Carnegie Symposium,
Allen Newell (Newell, 1973a) raised the question of
whether this strategy was really working in his famous
“You can’t play 20 questions with nature and win”
paper. In it, he lamented the tendency of cognitive
psychology to divide the world into little paradigms each
with its own set of questions and logic. Each seemed to
manufacture an endless stream of research without the
overall picture of human cognition becoming any
clearer. As he wrote prophetically:

Suppose that in the next thirty years we continued as we are
now going. Another hundred phenomena, give or take a few
dozen, will have been discovered and explored. Another
forty oppositions will have been posited and their resolution
initiated. Will psychology then have come of age? Will
it provide the kind of encompassing of its subject
matter—the behavior of man—that we all posit as a
characteristic of a mature science? It seems to me that clarity
is never achieved. Matters simply become muddier and
muddier as we go down through time. Thus, far from
providing the rungs of a ladder by which psychology
gradually climbs to clarity, this form of conceptual structure
leads rather to an ever increasing pile of issues, which we
weary of or become diverted from, but never really settle.
(Newell, 1973a, pp. 287–289)

Newell felt that the way to make progress was to work
on unified theories that simultaneously addressed all
aspects of cognition. Basically, NewelPs point was one
that will be familiar to a software engineer: There are
numerous constraints among all the pieces and one needs
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to try to understand from the beginning how they fit into
the whole.

In a companion piece at that symposium, Newell
(1973b) introduced his answer to this dilemma. He
described his first production system theory of human
cognition. It was a single system to perform the diverse
set of tasks that occupied cognitive psychology. As he
described production systems:

A production system is a scheme for specifying an
information processing system. It consists of a set of
productions, each production consisting of a condition and
an action. It has also a collection of data structures:
expressions that encode the information upon which the
production system works—on which the actions operate and
on which the conditions can be determined to be true or
false.

A production system, starting with an initially given set of
data structures, operates as follows. That production whose
condition is true of the current data (assume there is only
one) is executed, that is, the action is taken. The result is to
modify the current data structures. This leads in the next
instant to another (possibly the same) production being
executed, leading to still further modification. So it goes,
action after action being taken to carry out an entire program
of processing, each evoked by its condition becoming true of
the momentarily current collection of data structures. The
entire process halts either when no condition is true (hence
nothing is evoked) or when an action containing a stop
operation occurs.

Much remains to be specified in the above scheme to yield a
definite information processing system. What happens (a
likely occurrence) if more than one production is satisfied at
once? What is the actual scheme for encoding information?
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What sort of collection of data structures constitutes the
current state of knowledge on which the system works?
What sort of tests are expressible in the conditions of
productions? What sort of primitive operations are
performable on the data and what collections of these are
expressible in the actions of productions? What sorts of
additional memories are available and how are they accessed
and written into? How is the
production system itself modified from within, or is this
possible? How much time (or effort) is taken by the various
components of the system and how do they combine to yield
a total time for an entire processing? (Newell, 1973b, pp.
463–464)

Over the years, Newell explored a number of variations
on his production system conception, concluding with
his Soar theory of human cognition (Newell, 1990).
There have been many other production system
architectures of human cognition. Our work has been in
the production system framework since the introduction
of the ACT system (Anderson, 1976).

Like many good ideas, it has taken years of development
and exploration for the production-system construct to
reach its full potential.1 Now it has reached a point
where production system models can address phenomena
in cognitive psychology in a way that is competitive with
the narrow single-paradigm accounts. For most of this
time, production systems have been out of the focus of
attention of the cognitive psychology community.
However, there has been quiet and steady progress. The
field of production systems had become sufficiently rich
by 1987 that Klahr, Langley, and Neches could publish a
book reviewing no fewer than 26 (then past and present)
production systems. In the last 10 years, production
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systems have begun to truly realize the potential that
Newell had seen for them. They are the only modeling
formalism capable of spanning a broad range of tasks,
dealing with complex cognition, in complete detail, and
with a high degree of accuracy.2 Right now, there are at
least four current and active production system theories:
ACT–R (Anderson, 1993), 3CAPS (Just & Carpenter,
1992), EPIC (Meyer & Kieras, 1997), and Soar (Newell,
1991), with Kintsch’s (1992) construction-integration
theory being a close relative. The combined
accomplishments of these theories is nothing less than
staggering
Chapter 12 of this book provides a comparison of these
theories. However, the majority of this book is devoted
to describing the accomplishments of the ACT–R theory.
With obvious bias, we regard this theory as the one that
has best achieved Newell’s dream. The way we argue for
this conclusion is not to disparage the other theories,
which we admire, but rather to show what ACT–R can
do.

We pursue this demonstration in the spirit of Newell’s
original idea by showing how it can address the details
of some of the paradigms in cognitive psychology. Thus,
we try to show that ACT–R offers a potential for some
of the unity that Newell desperately wanted to see in
psychology. Newell’s 20-questions paper has often been
criticized for not appreciating the depth of understanding
that does exist in each of these domains. In later years,
Newell’s argument increasingly became that the
well-understood empirical regularities in these domains
had now set the stage for a new level of theory. This was
basically the argument in his 1990 book. That book
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described Soar as a theory to unify the regularities in
psychology. Like Soar, ACT–R is a theory that tries to
deal with the rich empirical detail that has evolved in
cognitive psychology.

We have written this book because ACT–R has passed a
critical point of practicality in its development where it
now offers a real potential of providing the unifying
theory. A wide range of researchers can now use ACT–R
to develop computer simulations of phenomena of
interest to them. The function of this book is to provide a
description of the theory at a level that will help
researchers use it and understand its use by others. The
book also provides examples of ACT–R’s application to
a wide range of phenomena in memory, problem solving,
and skill acquisition. ACT–R is applied to tasks that
range from recognizing whether an item is in a list to the
cognitive processes underlying the design of a memory
experiment. There have been a number of theoretical
developments in ACT–R that have helped enable this
practical breakthrough, and we describe these theoretical
developments at appropriate places in the book.
However, up front, in terms of what is new in this book,
we want to highlight the fact that it describes a usable
system for accurately modeling in detail a wide range of
cognitive phenomena.

When we say ACT–R is now a practical system, we
mean three things:

1. It is easy to learn to use the ACT–R modeling
system.

2. It is natural to develop cognitive models in the
ACT–R modeling system.
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3. The models developed tend to be accurate
models.

The degree to which these assertions are true of the
ACT–R system described here is a relative matter. We
claim they are much more true of the current ACT–R
than previous versions of ACT and more true of the
current ACT–R than competing formalisms. However,
there is plenty of room for improvement, and it is a
constant aspiration of our group to make ACT–R more
practical.

This book and ACT–R participate in a set of
technological developments that even Allen Newell
would not have imagined 25 years ago. This book is
really only an advance organizer to what is available as
part of the ACT–R theory. Corresponding to this book is
a World Wide Web site from which it is possible to
obtain (a) the ACT–R software for developing ACT–R
models, (b) extensive instructional material showing
how to develop models in ACT–R, (c) running versions
of all the models in the book, and (d) the data to which
these models were fit. The book is written in the spirit of
a (relatively) easy-to-follow highlight. The interested
reader can branch from it to appropriate portions of the
Web site. We have made a repository of ACT–R
material available as a Web site because we conceive of
this supporting material as a living document that will
grow as new applications of ACT–R are developed. The
ACT–R home page is to be found at the Web site
http://act.psy.cmu.edu. There is an active research
community around the world that is using ACT–R for
cognitive modeling. The research described in this book
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is only a fraction of the research involving ACT–R. One
can find pointers to this research and to other researchers
from the ACT–R home page.

A BRIEF SKETCH OF ACT–R

Before progressing any further, it is necessary to place
on the table a basic sketch of the ACT–R theory. ACT–R
consists of a theory of the nature of human knowledge, a
theory of how this knowledge is deployed, and a theory
of how this knowledge is acquired. As elaborated later,
ACT–R assumes that there are two types of
knowledge—declarative and procedural. Declarative
knowledge corresponds to things we are aware we know
and can usually describe to others. Examples of
declarative knowledge include “George Washington was
the first president of the United States” and “Three plus
four is seven.” Procedural knowledge is knowledge that
we display in our behavior but that we are not conscious
of. Procedural knowledge basically specifies how to
bring declarative knowledge to bear in solving problems.

Declarative knowledge in ACT–R is represented in
terms of chunks (Miller, 1956; Servan-Schreiber, 1991),
which are configurations of elements that encode various
things that we know. Figure 1.1 is a graphical display of
a chunk encoding the addition fact that 3 + 4 = 7. This
chunk can also be represented textually:
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Fig. 1.1. A network representation of an ACT–R chunk.

Fact3+4

is a ADDITION-FACT

addend1 Three

addend2 Four

sum Seven

In the preceding text, Fact3+4 is just an arbitrary name
given to the chunk. It is followed by a series of slots and
associated values. The first slot, isa, is special and gives
the type of the chunk. The remaining slots (addendl,
addend2, and sum) are associated with this addition-fact
type and their values define the 3 + 4 = 7 fact. Figure 1.1
reveals the structure of such a chunk. It serves essentially
to interassociate the slot values of the chunk. The Sji
terms in Fig. 1.1 refer to associative strengths between
slot values and chunks and the Bi refers to the base-level
activation of the chunk. These quantities are relevant to
calculating the activation levels of such chunks. These
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activation processes determine the availability of the
knowledge, as Chapter 3 develops.

Production rules specify how to retrieve and use such
declarative knowledge to solve problems. As an example
of procedural knowledge Table 1.1 gives a production
set for solving multicolumn addition problems. This and
all other examples in the book can be retrieved by
following the published models link from the ACT–R
Web site. This production set consists of a set of
productions where each production is a condition-action
pair. The condition specifies what must be true for the
production rule to apply, and the action specifies a set of
things to do if the production applies. The conditions test
for the state of the current goal and chunks in declarative
memory, whereas the actions can change the goal state.
The rules in
Table 1.1 are presented in an informal, English-like
form. We delay presenting them in formal ACT–R
syntax until the next chapter.

Table 1.1
The English Version of the Multi-Column Additional
Rules

Start-Problem

IF the goal is to do an addition problem but no
column has been identified

THEN
set a subgoal to add the digits in the ones column

and note that the tens column is the next one to
work on

Read-Number 1
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IF
the goal is to add the numbers in the column

and the first number has not been encoded

THEN encode the first number in the column

Read-Number 2

IF
the goal is to add the numbers in the column

and the second number has not been encoded

THEN encode the second number in the column

Add-Numbers

IF
the goal is to add the numbers in the column

and another number is their sum

THEN note that other number as the sum

Extract-Answer

IF

the goal is add the numbers in the column

and the sum has been computed

and the sum has a ones digit and a tens digit

THEN
note the tens digit as the digit to be carried

and set the answer to the ones digit

Process-Carry

IF
the goal is to add the numbers in the column

and there is an answer and a carry

THEN
change the answer to one more

and remove the marking of the carry

Write-Answer
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IF
the goal is to add the numbers in the column

and there is no carry

THEN
and the to-be-carried digit has been determined
write the answer in the answer row of the column
and pop the goal

Last-Column-No-Carry

IF

the goal is add the numbers in a column

and an item has been read into the bottom number
slot

and that item is a +

and there is no carry to be passed on

THEN
note the problem as finished

and pop the goal

Last-Column-Carry

IF

the goal is add the numbers in a column

and an item has been read into the bottom number
slot

and that item is a +

and there is a carry to be passed on

THEN
note the problem as finished write out the carry

and pop the goal

Next-Column

IF
the goal is to do an addition problem

and the column to add has been determined
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and the carry is known

THEN
set a subgoal to add the digits in that column with
the carry

and note that the next column is the one to add

Stop-Problem

IF
the goal is to do an addition problem

and the problem has been flagged as finished

THEN stop by popping the goal

An important part of the ACT–R theory concerns how it
organizes all of these small units of knowledge in order
to achieve organized higher level cognition. For
instance, Table 1.2 presents a trace of the productions in
Table 1.1 working together to produce a coherent
solution to the following problem:

Table 1.2
Trace* of Production Set in Table 1.1 Solving, 239+ 125

Cycle 0: Start-Problem

Cycle 1: Read-N umber 1

Cycle 2: Read-Number2

Cycle 3: Add-Numbers

Cycle 4: Extract-Answer

Cycle 5: Write-Answer

4

Cycle 6: Next-Column
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Cycle 7: Read-Number 1

Cycle 8: Read-Number2

Cycle 9: Add-Numbers

Cycle 10: Process-Carry

Cycle 11: Extract-Answer

Cycle 12: Write-Answer

6

Cycle 13: Next-Column

Cycle 14: Read-Numberl

Cycle 15: Read-Number2

Cycle 16: Add-Numbers

Cycle 17: Extract-Answer

Cycle 18: Write-Answer

3

Cycle 19: Next-Column

Cycle 20: Read-Number2

Cycle 21: Last-Column-No-Carry

Cycle 22: Stop-Problem

*The indentation of this trace reflects the depth of the
goal stack.

239

+ 125
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The first production, Start-Problem, applies when the
goal is to do an addition problem and no column is being
focused on. It focuses attention on the ones column. It
also sets a subgoal to process the numbers in that
column. The next productions, Read-Number 1 and
Read-Number 2, read the numbers from the column
(later Chapters 5 and 6 discuss the issue of how ACT–R
can actually read information from a visual array). The
fourth production, Add-Numbers, adds these numbers
by retrieving the
addition fact that 9 + 5 = 14. The fifth production,
Extract-Answer, identifies 4 as a number to be written
out. Then the production Write-Answer writes this out
and pops the goal of processing this column to return to
the original goal of solving the whole addition problem.
Then, Next-Column switches attention to the tens
columns and on it goes.

We regard each production in the sequence as being a
basic step of cognition. As we describe in more detail
later, only a very limited amount of processing can be
accomplished in these steps. The decisions about what
the steps are carry substantial psychological significance.
At each step, we can potentially record some action such
as an utterance, a keystroke, or an eye movement. Thus,
decisions in ACT–R about the grain size in which to
model human cognition are much determined by the
grain size of overt behavior. Another significance of this
step size involves learning. Each of these rules is learned
separately. Failures in competence can be understood as
missing or incorrect rules. Thus, a student may not have
the rule Process-Carry and so will fail to correctly
process columns that require a carry.
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These production rules also display the significance of
goal structures in providing a higher level organization
to control the running of production rules in ACT–R. At
any point in time, there is a “stack” of goals that encodes
the system’s intentions.3 ACT–R is always trying to
achieve the goal that is on top of that stack. It can “pop”
that goal, in which case the goal is removed from the
stack and ACT–R focuses on the next goal. In the
preceding example, this happened when it accomplished
a column addition and returned to the goal of the overall
addition. ACT–R can also push a new goal on the stack,
in which case that goal takes over as the focus of
attention. The ACT–R theory is a very fixed-attention
architecture. At any point in time, it is focused on a
single goal and at any point in time, a single production
fires. Despite the focus, the architecture can support the
distractibility and opportunism that is part of human
cognition, as the next chapter discusses.

Figure 1.2 displays the information flow in the ACT–R
system. There are essentially three memories—a goal
stack, which encodes the hierarchy of intentions guiding
behavior, a procedural memory, containing the
production rules, and a declarative memory, containing
the chunks. These are all organized through the current
goal, which represents the focus of attention. The current
goal can be pushed on the stack, or the current goal can
be popped, in which case the next goal is retrieved from
the stack. Productions are
selected to fire through a conflict resolution process,
which chooses one production from among the
productions that match the current goal. The selected
production can cause actions to be taken in the outside
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world, can transform the current goal (possibly resulting
in pushes and pops to the stack), and can make retrieval
requests of declarative memory (such as, what is the sum
of 3 and 4?). The retrieval result (such as 7) can be
returned to the goal. The arrows in Fig. 1.2 also describe
how new chunks and productions are acquired. Chunks
enter declarative memory either as popped goals,
reflecting the solutions to past problems, or as
perceptions from the environment. Productions are
created from declarative chunks through a process called
production compilation. Figure 1.2 provides one
overview of ACT–R and this book expands on each of
the arrows in that figure.
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Fig. 1.2 Flow of information among the various modules
of ACT–R.

ACT–R can be described as a purely symbolic system in
which discrete chunks and productions interact in
discrete cycles. However, ACT–R also has a
subsymbolic level in which continuously varying
quantities are processed, often in parallel, to produce
much of the qualitative structure of human cognition.
The Bi. and Sji terms like those in Fig. 1.1 are quantities
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that participate in neural-like activation processes that
determine the speed
and success of access to chunks in declarative memory.
Similar quantities control access to production rules.
Thus, even in the context of multicolumn addition, these
quantities influence things like speed of retrieval of the
number facts and choice among alternative strategies for
doing multi-column addition. ACT–R also has a set of
learning processes that can modify these subsymbolic
quantities. These learning processes serve to tune
ACT–R to the statistical regularities in the environment.
This subsymbolic level is described in detail in Chapters
3 and 4. As this book illustrates, ACT–Rthis book
illustrates, ACT–R’s behavioral predictions are more a
function of its subsymbolic assumptions than they are of
its symbolic assumptions.

This concludes the brief overview of the ACT–R theory.
The goal in this brief overview was to place on the table
the general conception of information processing in
ACT–R. The remainder of this chapter attempts to
highlight some of the significant features of the ACT–R
theory.

AN ATOMIC LEVEL OF THOUGHT

ACT–R is a theory with over 20 years of history. There
have been three relatively well-defined and distinct
theories defined in that framework: ACTE (Anderson,
1976), ACT* (Anderson, 1983), and ACT–R (Anderson,
1993). ACTE introduced most of the basic concepts that
have stayed part of all the ACT–R theories—declarative
memory as a set of units (then called propositions),
procedural memory as production rules, strengths in
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declarative and procedural memory, and declarative
activation processes to link declarative and procedural
memory. ACT* did much to work out a plausible
neural-like calculus of activation and produced the first
plausible theory of production learning. The evolution
from ACT* to ACT–R was guided by the rational
analysis of Anderson (1990), which was concerned with
how cognition achieved its adaptive function. Guided by
the rational analysis, ACT–R added further refinements
to the activation calculus and provided a substantially
different and more defensible theory of production
learning. The theory being described here is just a
variant of ACT–R as it was introduced in 1993. Its
variant status is denoted by the use of version numbers.
The 1993 theory was ACT–R 2.0 and the current theory
is ACT–R 4.0.4 The first section of Chapter 12 gives a
detailed review of the assumptions of ACT–R 4.0 and
where they differ from ACT–R 2.0. There are some new
details, and they are discussed at appropriate points in
the
book. However, it seemed inappropriate to get into such
details in an introductory chapter.

Here, we highlight what we see as the big theoretical
news in ACT–R 4.0 and what we think was critical to
passing the threshold of practicality such that ACT–R
can now be used by many researchers to model a wide
range of phenomena. The relatively small theoretical
adjustments in ACT–R have conspired together to
convey on the chunks and productions of ACT–R a
profound sense of psychological reality. This has
reached the point where we think we have identified the
atomic components of cognition, as announced in the
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title of this book. We think now that we can claim that
productions define the units with which thought
progresses and chunks define the units with which
knowledge is retrieved from declarative memory. As the
experienced ACT–R reader will discover, this is not just
a matter of anointing something already in the theory
with the title “atomic”. Over the past 5 years, there have
been significant changes in the details of ACT–R’s
chunks and productions that have enabled this title.

In using the word atom we are calling on a metaphor to
physical science, and we think it is an apt metaphor.
Chunks and productions in ACT–R 4.0 are as far down
as one can go in the symbolic decomposition of thought.
On average every couple of hundred milliseconds,
another production fires, a few declarative chunks are
processed, and cognition advances another step. Each
step of symbolic learning involves the acquisition of
another chunk or production. Thus, ACT–R now
captures the symbolic grain size of cognition.

Just as with the atomic level in the physical sciences,
there are significant levels above and below that level. In
ACT–R there is a level of goal structures above these
elements that provide the chemical structure of thought
and that fuse these elements into coherent cognition.
There is a subsymbolic level of activation-based
computations, which determines many of the
continuously varying, qualitative properties of the
symbolic cognitive elements. As the book develops, the
statistical tuning of knowledge at this subsymbolic level
underlies much of the adaptive character of thought.
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Just as the identification of the atom was the enabling
condition for much scientific progress at the subatomic
and superatomic levels, so we believe that the current
formulation in ACT–R enables similar progress in the
study of cognition. That is, we are not so much
announcing a scientific discovery; rather, we are
describing an enabling condition for progress to be
made. If the secret of science is carving nature at the
joints, we propose ACT–R’s chunks and productions as
defining the critical cognitive limbs. This book contains
a set of proposals for the properties of these cognitive
atoms—these properties are largely assertions about the
subsymbolic level. Undoubtedly,
these will change somewhat with time, just as our
understanding of the subatomic structure of matter has
changed with time.

THE NO-MAGIC DOCTRINE IN ACT–R

The next three chapters describe the basic theory in
terms of its assumptions about knowledge representation
(Chapter 2), performance (Chapter 3), and learning
(Chapter 4). The current ACT–theory maintains the
predictive successes of the past ACT theories, although
it often carries these to new levels of detail. These three
chapters contain a number of brief examples to illustrate
the theory and to show how ACT–R deals with domains
and phenomena that reflect its past—problem solving,
memory, and skill acquisition. The remainder of this
book contains some detailed applications of the ACT–R
theory, but they are more than just applications—they
illustrate the new aspirations of the theory.
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Emboldened both by the qualitative changes in ACT–R’s
success as a practical modeling system and the
psychological reality of its basic chunks and production
rules, we have increased our aspirations for the theory.
We have tried to banish completely the looseness that
has existed in all theoretical accounts in cognitive
science, including our own past theories. Essentially,
theories in psychology have always counted on a
sympathetic audience to understand how the theories
should be applied and evaluated. For instance, our theory
of fact retrieval (Anderson, 1974) counted on
understanding of how the experiment was broken into
study and retrieval trials, how presentations of probes
resulted in internal representation and instantiated the
parameters of the model, which aspects of the data (i.e.,
latency, not accuracy) were addressed, and so forth.
Although we cannot claim to have completely eliminated
such looseness, we have striven to do so as much as
possible. This is what we call the “no-magic” doctrine in
ACT–R. We describe here six tenets of that doctrine and
how they are realized in this book.

1. Experimentally Grounded. Typically, theories of
higher level cognition stop short of specifying how
subjects interact with the physical world. Recently,
Meyer and Kieras (1997) criticized this aspect of
theories as exemplifying what they call “disembodied
cognition.” Such theories fail to properly represent the
processing costs of extracting information from the
environment, and they have unprincipled degrees of
freedom in representing that information.
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Almost all of the experimental tasks used in the history
of ACT have involved subjects interacting with material
presented on a computer screen. This includes both
laboratory work and work with computer tutors (e.g.,
Anderson, Corbett, Koedinger, & Pelletier, 1995).
Therefore, it has been of priority to specify how subjects
access information from a computer screen and deal with
a keyboard and mouse. Chapter 5 describes an extension
to ACT–R called the “visual interface” that does this. It
incorporates existing ideas of other researchers about
visual attention and perception into a software system
that is capable of dealing with the same experimental
software that subjects do. It parses the screens as they do
and enters key presses and mouse gestures into the
computer event stream as they do. The data record it
creates is indistinguishable, formally, from the data
record that subjects create. For this limited domain, the
gap has been bridged between the physical world and the
theory.

In Chapter 6, Mike Byrne extends this effort more
generally to deal with audition, speech, and other hand
gestures. He has borrowed extensively from the Meyer
and Kieras’s EPIC work in this direction. However, there
are critical differences between the ACT–R system and
EPIC. In ACT–R, cognition remains serial at the level of
production rule firings, whereas EPIC is parallel. Byrne
compares the ACT–R and EPIC approach in the domain
of the psychological refractory period where EPIC has
been developed the most. He shows that ACT–R offers a
superior account. This domain provides a good test of
ACT–R’s scheme for which aspects of perception and
action can be carried out in parallel with cognition. In
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developing this extension to ACT–R, Byrne has brought
ACT–R’s theory of mental timing to a new level of
precision.

The experimental grounding of ACT–R has created a
relatively unique situation. In many modeling
formalisms, such as some connectionist formalisms, it is
possible to create models whose correspondence to
actual cognition is unclear.5 In contrast, every ACT–R
model corresponds to a subject performing in some
particular experiment. The fact that one can look at any
ACT–R model and think about the experiment it implies
and the behavior it predicts has created a new level of
reality in cognitive modeling. No longer are we plagued
with models that might or might not be neat ideas, but
we just cannot tell for sure because their mappings to
reality are not defined.

2. Detailed and Precise Accounting of Data. Many
cognitive theories of a phenomenon specify only general
aspects of the data that come from studies of the
phenomenon. This is not necessarily because they are
imprecise, but because they are specified at a level of
abstraction such that it is not clear what their
commitments are on certain aspects of the data. Thus, a
theory of free recall might specify how much a subject
will recall, but
not the order and latency of recall. A theory of analogy
might predict which analogy a subject will make, but not
specify the time course of how the analogy develops.
Such abstraction means that these theories fail to achieve
the specificity of mechanism that we aspire to in
psychological theory.
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Because of its experimental grounding, ACT–R is not
allowed such freedom from detail. ACT–R makes
predictions about every aspect of the empirical
phenomena that the experimental software registers. In
particular, ACT–R must make predictions about both
response choice and response latency and for any
variation of an experimental paradigm that one might
devise. Chapter 7 attempts to do this with respect to list
memory experiments, accounting for a wide range of
results concerning accuracy and latency. In such memory
experiments, response choice is typically measured in
terms of accuracy, but in fact, response choices can be
richer than just right or wrong. Marsha Lovett, in
Chapter 8, addresses choice generally, both in problem
solving and in simpler situations, both for humans and
for other organisms.

3. Leamable Through Experience. Most ACT–R
models assume a system that starts out with substantial
relevant knowledge, as is the case for the typical
undergraduate subject. This raises the question of
whether the knowledge is learnable through experience.
ACT–R does contain mechanisms for learning. It is an
aspiration in ACT–R to have all knowledge (chunks and
production rules) learnable through experience. This
substantially reduces our degrees of freedom in
proposing a model for a task. For instance, Chapter 9 on
cognitive arithmetic, examines what happens when
ACT–R is given the mathematical experience of a
typical American child. We see that it grows its basic
arithmetic knowledge from kindergarten to college as it
has been documented to evolve in American students.
Given the extensive research that has been done on
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cognitive arithmetic, this is an ideal domain for
addressing the issue of whether our ACT–R can model
the development of knowledge over an extensive period.

4. Capable of Dealing With Complex Cognitive
Phenomena. ACT has had a history of modeling
complex learning phenomena including the cognitive
models for intelligent tutors (Anderson et al, 1995). This
ability to model complex cognition is one of the great
strengths of production systems over other modeling
formalisms. There has been a perception that this may be
something ACT–R has lost with its new emphasis on the
detail of cognition and atomic components of thought.
The last two chapters illustrate that this is not the case.
Rather ACT–R is now better able to model complex
cognition. Chapter 10, by Dario Salvucci, on learning by
analogy to examples, models, in exquisite detail, the
process of learning to solve physics problems. It brings
the understanding of analogical learning to an
unprecedented
level of precision. Chapter 11, by Chris Schunn, raises
the bar of complexity and detail to a new level he
provides an ACT–R model for how a cognitive scientist
designs and interprets experiments to test a theory.

5. Principled Parameters. At the subsymbolic level,
numerous parameters govern the behavior of ACT–R. In
the past, reviewers have complained about what seemed
theoretical sleights of hand as parameter values jumped
around from experiment to experiment to fit the data.
This book reflects a considerable effort to constrain and
understand the effects of parameter variation in ACT–R.
The new atomic constraints on productions and chunks
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are critical to achieving an understanding of parameter
variation. Moreover, to communicate both the models
and their parameter choices, running simulation models
are available over the Web, so that readers can explore
the parameter space dynamically and see how the
behavior of the model varies.

6. Neurally Plausible. Ever since ACT* in 1983, there
has been the goal to have the computation in ACT be
plausible, given what was known about the brain. For
practical purposes, it never made sense to actually
implement ACT as a brain model, as this would get in
the way of being able to efficiently simulate higher level
cognitive processes. However, we had always intended
that correspondences could be made between ACT and
the brain. Since 1983, the developments in cognitive
neuroscience have been dramatic and they have
influenced the current version of ACT–R. The third
section of the last chapter, Chapter 12, briefly describes
a system called ACT–RN which is a connectionist
implementation of ACT–R. Its basic structure was
determined not only by an understanding of
connectionist computation, but also by knowledge of
how the brain organizes human cognition. That system
was completed (Lebiere & Anderson, 1993) shortly after
the completion of ACT–R 2.0 and has served as one of
the forces guiding the revisions that led to ACT–R 4.0.

Production systems have suffered from the perception
that they were computer-like and not brain-like in their
computation. In part, this is because they are computer
simulation models. However, this was never more than a
superficial reason because there are many computer
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simulations of brain processes. The greater difficulty has
been that it has not been clear how production systems
map onto specifications of brain processes. Hopefully,
ACT–RN will make this neural mapping clearer. ACT–R
can be regarded as an abstraction of neural computation
that is useful for modeling higher level cognition.

The major goal of ACT–R is to provide a system for
modeling human cognition that is easy to learn and use
and that naturally leads to accurate models. Each of these
no-magic principles can be seen as furthering that goal.

1The neural network framework is another example of
the maturation process; that is, it took about 25 years
from the early 1960s to the mid to late- 1980s for the
concept to become truly useful.
2Certainly, this claim is bound to raise certain hairs. The
most obvious current alternatives to this claim are the
various connectionist models, which have addressed a
wide variety of phenomena, sometimes with a great deal
of concern about correspondence to data. However, these
models have not been greatly concerned with
combinatorially complex tasks, such as studies of
problem solving or human-computer interaction. Along
with this neglect has been a neglect of a detailed
accounting for the temporal structure of cognition.
Connectionist cycles are typically loosely related to the
time to do a task and learning “epochs” to the actual
steps of learning a competence. Production system
models, as was intended by Newell, are at their strongest
when they are accounting for the control of complex
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cognition. This weakness of connectionist models may
change with the appearance of hybrid architectures,
which use symbolic structures to control connectionist
components. ACT–R is basically a hybrid architecture
that has a subsymbolic level performing
connectionist-like computations (see Chapter 12 for
details).
3A stack is a concept for storing information in a first-in,
last-out basis. It is analogous to a stack of trays at a
cafeteria. The last tray placed on the stack is the first
removed. In the case of goals, when one is “popped,” or
removed, the next most recent is retrieved. A goal stack
records the hierarchy of intentions, in which the bottom
goal is the most general and the goals above it are
subgoals set in its service.
4Tliere was an ACT–R 1.0, which was a precursor to
ACT–R 2.0, and an ACT–R 3.0, which was a more
efficient implementation of ACT–R 2.0.
5See earlier Footnote 2.
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2

Knowledge Representation

John R. Anderson

Christian Lebiere

Carnegie Mellon University

The function of this chapter is to specify how knowledge
is represented in ACT–R. However, to do this, we also
need to specify something about how ACT–R processes
this knowledge. The process assumptions in ACT–R can
be organized according to the 2×2×2 system illustrated
in Table 2.1. There are assumptions about how the
system performs and how the system learns. Within each
topic, one can distinguish between assumptions that are
relevant to declarative memory and assumptions that are
relevant to procedural memory. One can further divide
the assumptions according to whether they apply to
ACT–R at the symbolic level or at the subsymbolic
level. This and the next two chapters discuss all aspects
of the theory (i.e., all eight cells in Table 2.1). Table 2.1
indicates where each aspect of the theory is discussed.
Table 2.1 also indicates the units in the ACT–R Web
tutorial that correspond to these topics. This Web tutorial
can be accessed by following the tutorial link from the
ACT–R Web site http://act.psy.cmu.edu. In our ACT–R
classes, we typically devote 1 week to each tutorial unit.
There are nine tutorial units. Students appear to require
all 9 weeks (at 5–10 hours per week) to come to mastery
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of the material. So a word to the wise: The material in
these chapters is not to be taken lightly.

Table 2.1
Process Assumptions of the ACT–R Theory

Performance

Declarative Procedural

Symbol Chapter 2 Chapter 2

Tutorial Units 1 & 2 Tutorial Units 1 & 2

Subsymbolic Chapter 3 Chapter 3

Tutorial Units 4 & 5 Tutorial Unit 3

Learning

Declarative Procedural

Symbol Chapter 4 & 5 Chapter 4

Throughout Tutorial Unit 8

Subsymbolic Chapter 4 Chapter 4

Tutorial Unit 6 Tutorial Unit 7

As can be seen from Table 2.1, this chapter on
knowledge representation also discusses the performance
assumptions of ACT–R at the symbolic level. This is
because assumptions about how knowledge is
represented are not meaningful until they are tied to how
the knowledge is used. The symbolic performance
assumptions in this chapter are not the only
consequences of the ACT–R representational
assumptions. They are just the most immediate
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consequences. These representational assumptions also
serve as the framework for the other ACT–R process
assumptions.

This chapter contains sections to discuss the
procedural-declarative distinction, which is the most
fundamental assumption in the ACT–R theory, the
representation of declarative knowledge as chunks, the
representation of procedural knowledge as productions,
and the critical role of goal structures in organizing
behavior. At all points in the development of the ACT–R
theory, we maintain an intimate relationship with data.
Therefore, the chapter ends with a discussion of the
Tower of Hanoi task and the ACT–R model for it. This
is a task that depends on performance assumptions at the
symbolic level.

THE PROCEDURAL-DECLARATIVE DISTINCTION

The distinction between declarative and procedural
knowledge has been part of the ACT–R theory since its
inception in 1976. At that time, the
procedural-declarative distinction was somewhat in
disrepute in artificial intelligence (e.g., Winograd, 1975)
and was largely ignored in cognitive psychology. About
the only authority we could point to for support of the
distinction was the philosopher Ryle (1949). Reflecting
this intellectual climate, the series of production systems
associated with Allen Newell eschewed a long-term
declarative knowledge system and only had a long-term
repository of procedural knowledge in the form of
production rules.
The insistence on a parallel, long-term, declarative
repository in the ACT theories reflects their origins in
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the HAM theory (Anderson & Bower, 1973), which was
a theory of human declarative memory. Thus, ACT–R
sharply contrasts in this regard with the Soar production
system, which does not make such a distinction.

Since the 1970s, there has been quite a revival of the
procedural-declarative distinction in cognitive
psychology. There is the now well-known cognitive
neuroscience evidence pointing to such a distinction
(Phelps, 1989; Squire, 1992). This includes the evidence
that damage to the hippocampal area results in the loss of
ability to form new declarative memories, but not new
procedural memories.1 Also, research on implicit
learning (Curran & Keele, 1993; Lewicki, Hill, & Bizot,
1988; Nissen & Bullemeyer, 1987) indicates that it is
possible to create situations where normal subjects
appear to learn new procedural skills without
accompanying declarative knowledge. Thus, it seems
that ACT was right in its 1976 postulation of a
procedural-declarative distinction—that these two types
of knowledge are implemented neurally in
fundamentally different ways. Recently (Knowlton,
Mangels, & Squire, 1996), there has been evidence that
the basal ganglia play a critical role in the establishment
of procedural knowledge. Damage to this area results in
loss of ability to acquire procedural knowledge, but not
of the ability to acquire declarative knowledge.

Recent research reported by Rabinowitz and Goldberg
(1995) nicely illustrates some of the behavioral
differences between declarative and procedural
knowledge.2 They used a variant of the alphabet
arithmetic task developed by Logan and Klapp (1991).
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Rabinowitz and Goldberg presented subjects with
problems of the form letter + number = ? and subjects
had to respond with the letter that is that many numbers
advanced in the alphabetic sequence. Thus, given C + 3
= ?, the subject should respond F. In one condition,
subjects were practiced on answering just a certain 12 of
these letter-number combinations, whereas in another
condition, they received practice on many more (72).
Rabinowitz and Goldberg proposed that over time,
subjects came to respond in the first condition by just
retrieving the examples from declarative memory,
whereas in the second condition, they continue to use
and practice a general procedure for doing alphabet
addition. Thus, we can call the first group the declarative
subjects and the second group the procedural subjects.

In ACT–R terms, initially, both groups of subjects would
have to rely on general productions for performing
alphabet arithmetic. Thus, to a problem like C + 3 = ?,
the following production would apply:

IF the goal is to answer letter + number = ?

THEN
set a subgoal to increment letter number times

and then report the answer

Other productions would then count up the alphabet.
Initially, both groups of subjects took longer to answer
problems with larger addends, suggesting they were
indeed counting up the alphabet.

However, with practice, the declarative subjects would
have productions like the following to retrieve the
repeated facts from declarative memory:
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IF
the goal is to answer letter + number = ?

and letter + number = newletter

THEN respond with newletter

This would mean that they should become very good at
solving the specific 12 problems and become unaffected
by the size of the addend. However, these declarative
subjects would cease to practice their general
productions for alphabet arithmetic.

Rabinowitz and Goldberg found that the declarative
subjects performed the task more rapidly than the
procedural subjects and became unaffected by the size of
the digit being added to the letter. On the other hand, the
declarative subjects did worse than the procedural
subjects when transferred to a task where they had to
answer problems they had never seen before. This
indicates that they had memorized specific facts rather
than practiced general procedures. Rabinowitz and
Goldberg also used a transfer task of going from addition
to subtraction. That is, after training on C + 3 = ?,
subjects would then switch to F – 3 = ? Declarative
subjects showed much better transfer than did the
procedural subjects when tested for subtraction on the
same problems that they had studied. This shows that
they were able to reverse their declarative knowledge in
a way they were not able to reverse their procedural
knowledge. Procedural knowledge differs from
declarative knowledge in that it is committed to a
direction of use.
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Although ACT–R is compatible with the general results
of Rabinowitz and Goldberg, whether it can account for
the detailed data is another matter. This gets into issues
of ACT–R’s subsymbolic assumptions and other aspects
of the theory. Johnson (1997a) has undertaken the task of
developing such a model and with considerable success.
His work should be consulted for details.

THE STRUCTURE OF CHUNKS

Chunks encode small independent patterns of
information as sets of slots with associated values. The
type of the pattern is given in an isa3 slot, whereas other
slots of a chunk indicate the information that is being
configured together. For instance, consider the following
two possible chunks:

Fact3+4

isa ADDITION-FACT

addend 1 Three

addend2 Four

sum Seven

Objectl

isa WORD

part-of Sentence 1

value The

position First

The first is the perhaps now familiar addition fact with
its slots of addend 1, addend 2, and sum. The second is a
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chunk encoding that the word the occurred first in a
particular sentence.

Chunks have origins from one of two sources—either as
encoding of goals or as encoding of objects in the
environment. Thus, the 3 + 4 = 7 chunk, Fact 3+4, is a
record of some completed goal to find out what the sum
of 3 and 4 is (which was possibly accomplished by some
simple algorithm like counting). Other chunks have their
origin in the encoding of objects in the environment. The
most common chunks of this sort in this book encode
words, but any object can result in a chunk encoding.
Chapter 5 discusses the role of visual attention and
perception in creating such chunks.

Corresponding to the two sources for chunks, there tend
to be two styles of slot structures. Slots that encode goals
involve specification of a relation (like
ADDITION-FACT) and a set of arguments (like Three,
Four, and Seven). The second kind of chunk structure
comes from encoding of perceptual objects. As
illustrated in the preceding example, these contain slots
to provide the type of the object, pointers to the larger
structure in which the object is found, and the position of
that object in the larger structure. Although object
chunks and goal chunks tend to have different sorts of
slots, the two types of chunks are syntactically identical
and are identically processed by the production system.

The claim that all chunks have their origins either as
goals or as encodings of objects in the environment is a
strong one that we are still trying to digest in the ACT–R
community. Our experience so far is that it is a quite
workable constraint and a useful one because it provides
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needed guidance in how to represent knowledge. It is
interesting to see how it plays out in specific examples.
As one example, consider comprehending a printed
sentence. The physical sentence is encoded by a series of
chunks, such as Objectl shown earlier encoding the
words of the sentence. This encoding is delivered by the
visual interface (see Chapter 5). A goal is set to
comprehend the sentence, and if this goal is successfully
popped, it will have a representation of the sentence like:

Proposition 1

isa COMPREHENSION-GOAL

relation Give

agent Mary

object Fido

recipient John

This claim about the origins of declarative knowledge
has strong connections to well-worn philosophical issues
about the origins of knowledge (see Anderson & Bower,
1973, for a discussion). The chunks that come from the
environment represent the empiricist claim that
knowledge originates from experience. The chunks that
are popped goals represent the rationalist claim that
people construct their own knowledge. As often is the
case, a good scientific theory proclaims both sides of a
philosophical controversy to be right.

Although, syntactically, chunks in ACT–R 4.0 are much
the same as the chunks in ACT–R 2.0 (described in
Anderson, 1993), they do display one major
simplification over the ACT–R 2.0 chunks. They do not
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allow for lists of elements to be the values of slots.4 The
values of slots are either chunks or features. Even in
1993, we lamented the use of lists as slot values, but
permitted them in ACT–R to support programming
practices that can be traced back to the GRAPES
production system (Sauers & Farrell, 1982). However, as
we tried to systematize the theory, lists became a price
too great to pay. Basically, it is not possible to place a
coherent psychological interpretation on these list
structures. The decision to jettison lists as slot values
was key to the emergence of the chunk as an atomic
structure.

PRODUCTION RULES

Production rules involve a more complex set of
representational assumptions than do chunks. Therefore,
we develop their representation in two passes. The first
subsection provides a general description of their
features, and the second subsection provides the detailed
syntax.

General Features of Production Rules

Production rules are supposed to correspond, intuitively,
to steps of cognition. One of the important developments
from ACT–R 2.0 to ACT–R 4.0 is a more precise
interpretation of what is meant by a “step of cognition.”
The basic structure of a production in ACT–R 4.0 is:

goal condition + chunk retrieval → goal transformations

This “goal condition” involves some tests on the goal
state. If these tests succeed and the production is chosen,
then the retrieval is performed. The retrieval involves the
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matching of one or more chunk patterns to declarative
memory in order to retrieve information. On the basis of
the goal and the retrieved information, ACT–R then
makes some transformations to the goal state. These
transformations can involve changing the state of the
current goal, popping the current goal, or creating and
pushing subgoals. A subgoal can be achieved either by
firing more productions or by performing some motor
program. Thus, creating and pushing a subgoal can
amount to performing an action. By changing the goal
state, production rules can refract themselves and so
avoid loops where the same production rule fires over
and over again.5

Conflict Resolution is the term used in production
systems to refer to the process by which a production is
selected. ACT–R can filter out most production rules by
the tests on the goal.6 However, these tests do not always
identify a unique production rule, and the next chapter
discusses how ACT–R chooses among multiple
productions that match a goal. When it selects a
production, there may also be more than one alternative
chunk it can retrieve to match each chunk pattern. Again,
the next chapter discusses how ACT–R decides which
chunk to retrieve. Both of these choices are determined
by subsymbolic processes.

The image of cognition being painted by ACT–R is one
in which some production fires to change the goal state
every few hundred milliseconds (the range in latency is
from about 50 msec to, at most, about 1 sec) and thought
progresses serially by these goal transformations. Lest
this seem an overly serial image of cognition, it should
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be noted that at the subsymbolic level, millions of
parallel computations are taking place to support this
level of cognition. Lest this seem an overly microscopic
image of cognition, it should be noted that the goal
structures are organizing these individual steps into a
coherent whole.

As developed in Anderson (1993), there are four
significant claims associated with the use of production
rules:

1. Modularity. The modularity claim is that production
rules are the units in which procedural knowledge is
acquired and deployed. This amounts to the claim that
they are the procedural atoms. Much of the 1993 book
provided evidence for the modularity of production
rules. Basically, it showed that the learning of complex
skills could be decomposed into the learning of many
production rules. Figure 2.1 shows some more recent
data making the same point from Corbett, Anderson, and
O’Brien (1995) from the LISP tutor. Students are asked
to write a number of LISP functions and the figure
shows their error rate at each point in each function
across the early material. Students show a lot of jumps
and drops in their error rates at different points. The
figure also shows the predictions of a model that
assumes that each production rule has its own learning
curve. Figure 2.2 averages together those points where
the same production rule is applying. As Fig. 2.2
illustrates, there is smooth learning over these points.
Thus, the reason for the rises and falls in Fig. 2.1 is the
fact that new production rules are being introduced at
different points in the curriculum. The success in
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accounting for complex behavioral profiles like Fig. 2.1
is, for us, the most compelling support for the production
rule as the unit of skill acquisition.7

Fig. 2.1. Actual and predicted error rates across subjects
at each goal in a set of required tutor exercises. From
Corbett, Anderson, and O’Brien (1995). Reprinted by
permission.
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Fig. 2.2. Mean actual error rate and expected error rate
for the ideal coding rules across successive rule
applications. From Corbett and Anderson (1992).
Reprinted by permission.

2. Abstraction. The next two claims were those of
production abstraction and goal factoring. These claims
serve to provide the critical distinctions between
production rules and the stimulus-response bonds of the
earlier behaviorist era. The abstraction feature of
production rules refers to the fact that a production rule
can apply in many different situations producing
different actions in these situations. Thus, the production
rule for Add-Column in Table 1.1 would apply no
matter what numbers were
in the column nor what column was being processed. It
would retrieve a different sum depending on what
numbers were in the column. Thus, in contrast to
stimulus-response bonds, which have specific actions,
production rules can make their actions a function of the
abstract structure of the information. As Table 2.2 shows
later, this abstractness is achieved through the use of
variables that make the rules specific not to certain
elements (such as a specific number), but rather to the
pattern of elements.

Table 2.2
The Formal Specification of the Productions for
Multi-Column Addition Example (Compare to Table
1.1)

Start-Problem

=goal>
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isa ADDITION-PROBLEM

column nil

= = >

=newgoal>

isaADD-COLUMN

column Ones

note = carry

carry Zero

=goal>

column Tens

carry = carry

!push! =newgoal

Read-Number1

=goal>

isa ADD-COLUMN

number 1 nil

column =col

=object >

isa VISUAL-OBJECT

value = numl

row Top

column = col

= = >
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=goal>

number 1 =numl

Real-Number2

=goal>

isa ADD-COLUMN

number2 nil

column = col

=object>

isa VISUAL-OBJECT

value =num2

column = col

row Bottom

= = >

=goal>

number2 =num2

Add-Numbers

=goal>

isa ADD-COLUMN

number 1 =numl

number 2 =num2

answer nil

=fact>

isa ADDITION-FACT
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addend 1 =numl

addend2 =num2

sum = sum

= = >

=goal>

answer = sum

Extract-Answer

=goal>

isa ADD-COLUMN

answer =sum

note nil

carry Zero

=sum>

isa NUMBER

tens = num

units = number 1

= = >

=goal>

answer = number 1

note = num

Process-Carry

=goal>

isa ADD-COLUMN
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answer = number

carry One

=fact>

isa ADDITION-FACT

addend2 One

addend 1 = number

sum =new

= = >

=goal>

answer = new

carry Zero

Write – Answer

=goal>

isa ADD-COLUMN

carry Zero

answer = number

column =col

=number >

isa NUMBER

value = value

tens Zero

= = >

!output! = value
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!pop!

Last-Column-No-Carry

=goal>

isa ADD-COLUMN

number2 +

- carry One

= = >

=goal>

note Finished

!pop!

Last-Column-Carry

=goal>

isa ADD-COLUMN

number2 +

carry One

column = col

carry = carrynum

=carrynum>

isa NUMBER

value = val

= = >

!output! = value

=goal>
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note Finished

!pop!

Next-Column

=goal>

isa ADDITION-PROBLEM

column = posl

-carry Finished

carry = carry

=next>

isa NEXT-INFO

before = posl

after = pos2

= = >

=newgoal>

isa ADD-COLUMN

column =pos1

carry = carry

note =newcarry

=goal>

column =pos2

carry = newcarry

!push! =newgoal

Stop-Problem
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=goal>

isa ADDITION-PROBLEM

carry Finished

= = >

!pop!

3. Goal Factoring. In contrast to the generality
achieved by abstraction, the goal factoring of
productions allows productions to achieve restrictions on
their range of application that were difficult to achieve in
stimulus-response systems. Goal factoring refers to the
fact that production rules are specific to particular goal
types. For example, if the goal is to add, one set of
production rules applies to a column of numbers,
whereas if the goal is to subtract, a different set of
production rules applies. Thus, the goal allows the
system to respond differently to the same external state
(i.e., a column of numbers), depending on the system’s
internal state (i.e., its goal).

4. Conditional Asymmetry. On the other hand,
production rules share a particular feature with
stimulus-response bonds that serve to distinguish them
as a computing medium from other cognitive
formalisms, such
as schema theories (Abelson, 1981; Bobrow &
Winograd, 1976; Rumelhart & Ortony, 1976; Schank &
Abelson, 1977), some pattern-completion neural systems
(Rumelhart, Smolensky, McClelland & Hinton, 1986),
and indeed, the general version of the prolog rule system
(which allows forward and backward chaining). This is
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that there is a condition-action asymmetry. The flow of
control goes from condition to action and does not
progress in the other direction. Over the years, a
substantial body of research has accumulated
documenting the asymmetry that appears in knowledge
when it achieves a procedural form (Anderson, Fincham,
& Douglass, 1997; Kessler, 1988; McKendree &
Anderson, 1987; Pennington, Nicolich, & Rahm, 1995).
One example of this was the Rabinowitz and Goldberg
experiment described in the preceding section. This is a
significant contrast with knowledge in a declarative
form. When knowledge has declarative form, it can be
used in any direction. The knowledge that 4*3 = 12 can
be used to go from 4 and 12 to 3 as well as from 4 and 3
to 12.8 On the other hand, there is no way to generalize a
set of production rules for doing long multiplication to
doing long division. Essentially, to achieve efficiency in
access, proceduralized knowledge has abandoned the
flexibility of declarative knowledge.

Production Syntax

The formal syntax of ACT–R production rules is a bit
complex and we begin this subsection describing the
reason for this complexity. ACT–R is a precise theory of
human cognition. Often to ease the burden of
communication, we describe the theory informally.
Often such informality has been seized on by critics to
claim that ACT–R and theories like it are only
“metaphors” or “computer metaphors.” It is not a
metaphor, and no more a computer metaphor than the
theory of relativity is a mathematics metaphor. ACT–R
comes with mechanisms for unambiguously delivering
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predictions given a set of initial conditions just as any
scientific theory does. In ACT–R’s case, that mechanism
is a computer simulation, but this does not make ACT–R
a computer metaphor any more than a computer
simulation of the weather is a computer metaphor. The
simulation is just a way to get unambiguous predictions
from a set of assumptions that imply complex
interactions.

The price of precision, particularly when there is a
computer simulation, is formalism, and there is a formal
syntax for specifying the symbolic atoms of ACT–R: the
chunks and productions. We have already exposed the
syntax of chunks, and it is fairly simple. The syntax of
productions is more complex, but hopefully no more
complex than is necessary to specify the
transformations that they compute. This subsection
specifies this syntax, as it is key at certain places in the
book. However, we have no love of formalism for
formalism’s sake, and to the extent that we can proceed
with informal discussion, we do so.9 In reading the
production syntax, the reader should keep in mind that
there is nothing implied beyond the goal transformations
that these productions specify. It is easy to think that
there is something more implied by the syntax. For
instance, we have had people say to us, “Production
rules have variables and neuroscientists have never
found a variable in the brain.” However, just as an
integral sign in mathematics means nothing more than
integrate and the dx means nothing more than the
dimension being integrated over, so the ACT–R
formalisms mean nothing more than the operations they
help specify. In the case of variables, they just specify
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the transfer of information from goals to constrain
retrievals in declarative memory and from results
retrieved back to the goal structure. This transfer of
information, which is specified by variables, most likely
corresponds to neural pathways in the brain between
goal areas and declarative areas (see Chapter 12).

Table 2.2 shows the formal production rules
corresponding to the informal Table 1.1. As can be seen,
both the condition and action sides of the productions
correspond to a set of chunks. The condition of a
production begins with a specification of a goal chunk
(which defines the condition for applicability of the rule)
and is followed by some other chunk pattern (s) that
requires retrieval(s) from memory. The action involves
creating and modifying goal chunks.

There are a few conventions that are important in
reading these production rules. The production
Add-Numbers is probably the best for expository
purposes. Following the name of the production, there is
the following goal chunk pattern:

=goal>

isa ADD-COLUMN

number1 = num1

number2 =num2

answer nil

Anything beginning with an equal sign denotes a
variable. The variable = goal will be assigned to the
current goal.10 The > that follows = goal is a bit of
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syntax separating the chunk from its slots. The chunk
pattern specifies
in its isa slot that this goal be of type ADD-COLUMN.
The slots number1 and number2 contain the two
numbers read from the column to be added. The
variables = num1 and = num2 take on the value of these
numbers. (In production system terminology, we say a
variable is bound to a value when it assumes that value.)
Finally, there is a test that there is not yet a value in the
answer slot by means of the nil specification. The second
part of the condition of this production contains the
pattern of the chunk to be retrieved:

=fact>

isa ADDITION-FACT

addend1 =num1

addend2 =num2

sum = sum

This is looking for some chunk (bound to =fact) that
encodes an addition fact. The appearance of =num1 and
—num2 (same as in the goal pattern) in the addend 1 and
addend2 slots tests that this addition fact relates the two
numbers that the production is trying to add. The sum
will be extracted from the sum slot of the retrieved
chunk and bound to the =sum variable.
The action side of this production contains a simple
modification of the goal:

=goal>

answer =sum
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which stores the sum in the answer slot of the goal. This
also prevents this production rule from reapplying
because the answer slot is no longer nil. It is worth
emphasizing here again that the role of these variables is
to specify retrievals.11 The variables =num1 and =num2
are constraining what is being retrieved from the
addition table to be a sum of the numbers in the goal,
and the variable =sum is specifying that the retrieved
sum be returned to the goal.

The productions illustrate the full range of the goal
transformations. Some productions like Start-Problem
and Next-Column can create new goal chunks that are
pushed on the goal stack. Most productions modify the
state of the current goal chunk. Finally, productions like
Write-Answer and Stop-Problem can pop goal chunks.

Restrictions on Production Rules

There have been a number of changes in going from
ACT–R 2.0 to ACT–R 4.0 that have restricted the power
of the production conditions. Reflecting the absence of
list structures in the declarative representation, the
powerful and obtuse pattern-matching facilities
associated with list structures no longer apply in
production rules. Also, the only negations allowed are of
slot values. There are no longer unbounded negations of
pattern structures, which enable modelers to implicitly
embed complex searches in the matching of a production
condition.

A major simplification of ACT–R 4.0 over ACT–R 2.0
is that the chunk retrieval does not participate in the
initial selection of production rules. The test is made
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solely on the basis of the goal state. One motivation for
this was to simplify and rationalize ACT–Rs latency and
conflict resolution calculations, as the next chapter
discusses. Previously, a production rule would be
considered in conflict resolution only if chunks could be
retrieved to match all of its conditions. If there were
multiple ways to match chunks to
the condition (each way called an instantiation) each
instantiation was generated and ACT–R 2.0’s conflict
resolution had to choose among these instantitions. Now,
conflict resolution chooses which production to try
before any retrievals are done and then the retrievals are
attempted in an effort to instantiate the production. If no
instantiation of the chunk can be retrieved (e.g., we
cannot recall what is 13 times 14), then the production
rule fails and the system gets to try another production.
Thus, retrievals for different productions are sequentially
tried in ACT–R 4.0 rather than in parallel as in ACT–R
2.0.

Another major simplification is that only goal
modifications can be performed on the right-hand side of
a production.12 Previously, it was possible to create and
modify arbitrary declarative chunks. The current
restriction comes from the desire to have a more
principled theory of the origins of declarative chunks, as
developed further in Chapters 4 and 5.

Another significant simplification is the drastic reduction
in the size of production conditions. There is usually just
one and never more than a few chunks being retrieved.
For instance, in all of the production rules of Table 2.2,
no more than one chunk is retrieved. These chunks
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usually serve as bridges between the goal specification in
the condition and the goal transformations in the action.
The chunks retrieved typically share certain elements
with the slots of the goal. For instance, in Add-Numbers
from Table 2.2 = num1 and = num2 are the shared
elements. The retrieved chunks also usually share
variables with the actions because the principal reason
for retrieving them is to specify the action. In
Add-Numbers, =sum is such a variable. In contrast, the
production rules in ACT–R 2.0 typically involved many
more retrievals with complex constraints between
different retrievals, which were expressed by variables
shared by multiple chunks in the condition.

In ACT–R 2.0, one could write a production rule that
simplified a fraction, such as 24/56, in a single step:

Simplify-Fraction-In-One-Step

IF

the goal is to simplify a fraction of the form
numer1/denom1

and numerl = numer2 * factor

and denoml = denom2 * factor

and there is no x greater than factor such that

numerl = numer3 * x

and denoml = denom3 * x

THEN the answer is numer2/denom2

This would report out 3/7 as the answer. Presumably,
few people expert ence solving such a problem as a
single mental step. Correspondingly, in ACT–R 4.0, the
computation in this production would have to be broken
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up into a number of smaller rules. This reduced size has
enabled the production rule to emerge as the procedural
atom.

It is worth reviewing what this production rule does that
no longer works in ACT–R 4.0. Note that the value of
“factor” retrieved in “numerl = numer2 * factor” is
constrained to be the same as the value of “factor” as
retrieved in “denoml = denom2 * factor”. For instance,
suppose ACT–R 2.0 first matched 4 * 6 = 24 for the first
chunk pattern, binding 6 to the factor role. Then, when it
failed to find a multiplication fact of the form 56 =
denom2 * 6 for the second chunk pattern, it would back
up and try other values for “factor” in the first chunk
pattern until one was found that worked. This backup is
very implausible and is no longer possible in ACT–R
4.0. The negation at the end of the condition illustrates
another feature no longer supported. To determine the
truth of “there is no x greater than factor such that
numerl = numer3 * x and denoml = denom3 * x,” an
exhaustive search of the multiplication facts yielding 24
and 56 would be necessary. Again, such an exhaustive
search seems implausible in a simple step of cognition.
In current ACT–R 4.0 the searches embedded in this one
production would be distributed over multiple
productions. One production would generate a candidate
product like 3 * 8 = 24 and subsequent productions
would test this product for the necessary features. A
typical dimension of the transition from ACT–R 2.0 to
4.0, is this distribution of computation packed into a
single ACT–R 2.0 production to computation over many
ACT–R 4.0 productions. This has yielded production
rules that lead to accurate performance predictions
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(Chapter 3) and rules that are capable of being learned
(Chapter 4) at no cost in complexity or performance. It
has supported the emergence of the production rule as an
atomic component of thought.

Productions have very much the character of “directors”
of declarative retrieval. That is, each production
essentially does the next step of retrieval in elaborating a
goal structure. Each production rule retrieves usually
one, and at most, a few declarative chunks. These
retrievals cannot make any branching decisions based on
the contents of the chunks retrieved. Rather, retrieved
information can be placed in goal chunks and decisions
can be made in later cycles to fire one production versus
others in response to the new retrieved contents of the
goal. Thus, each cycle has the structure of: Decide on a
production (on basis of goal context), retrieve (on
specifications from the production), and modify the goal
structure (using the information retrieved). The next
chapter elaborates on how this works at the subsymbolic
level.

The idea of one layer of retrieval per production cycle
provides one definition of grain size of production rules.
Another “operational” definition of the grain size of
cognition is provided by the constraint that each discrete
behavior (i.e., key press, eye movement, generation of an
utterance) must be controlled by a separate production.13

Thus, the maximum time per production is the time to
perform one chunk retrieval, to perform one action, plus
the 50-msec overhead associated with every production
rule. Looking at latencies for such retrievals and actions
leads to the conclusion that the temporal grain size of
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production rules in ACT–R 4.0 must be less than a
second, perhaps sometimes less than 100 msec. The
exact times per production vary with the information
retrieved and action performed. In any case, the
production rules in ACT–R 4.0 are about a factor of 10
finer in grain size than were the productions in ACT–R
2.0. Qualitatively, this is the most significant difference
in the conception of cognition between the two theories.

Production rules in ACT–R 4.0 are simpler and more
constrained than in ACT–R 2.0 and yet they can do the
same work. The motivation for simplification is more
than just economy of assumptions. The constrained rules
lead to better predictions, as illustrated throughout the
book. There is often the suspicion, however, that we
have made modeling complex cognition more difficult.
The analogy is that perhaps we have replaced
programming in a high-level language with
programming in machine code. However, this is not our
experience, and perhaps this is the strongest evidence for
the new constrained representation. The end of this
chapter describes an ACT–R model for the Tower of
Hanoi task. Anderson, Kusivmerick, and Lebiere (1993)
described a model for the Tower of Hanoi task that took
full “advantage” of the greater flexibility of ACT–R 2.0.
The current model is no more complex in number of
lines of specification, is easier to read, and leads to much
more detailed and accurate predictions. However, before
describing the Tower of Hanoi model, it is necessary to
discuss further ACT–R’s goal structures and their
relationship to production rule form.

GOAL STRUCTURES AND PRODUCTION RULES
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Goal Structures in ACT–R

The original production systems of Newell and the
original ACTE (Anderson, 1976) did not provide any
special status for goal structures. Rather, they
just responded to whatever patterns were in working
memory. However, starting with ACT* (Anderson,
1983) goal structures became an increasingly frequent
part of production system architectures and are part of
each of the current four production systems (ACT–R,
Soar, EPIC, 3CAPS). They reflect a lesson learned,
which is that to properly model human cognition, it is
necessary to represent its current purpose and organize
behavior in response to that purpose. Efforts have failed
to achieve organized cognition without the architectural
primitive of a goal structure.

The existence of a goal structure creates a natural
seriality to Cognition, defined by changes in the goal
structure. Each time the goal structure changes, there is a
new goal state. At one level, cognition can be viewed as
a sequence of these goal states. However, this does not
necessarily mean only sequential firing of production
rules. In EPIC, Soar, and 3CAPS, multiple production
rules can fire in a cycle in response to the current goal
state, which may only change after several rounds of
parallel production rule firing. Only ACT–R has the
constraint that in each cycle, just one production rule
fires (which almost always produces some change in the
goal state). However, ACT–R is not a serial system
either. Much of what these other systems achieve with
parallelism at the production-rule level, ACT–R achieves
with parallelism at the subsymbolic level, as the next
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chapter discusses. Indeed, all systems are serial at
whatever level they achieve transformation of the goal
state and all systems are parallel at a finer grain level.

In ACT–R, there is always a stack of goals with
production rules responding to the top goal on the
stack—usually modifying it, popping it, or pushing
another goal on the stack. ACT–R models are almost
always of subjects doing some laboratory task such as
solving an equation. The goal stack at the current point
in time in such a task might be something like:

1. Add 3 and 4.
2. Solve x-4 = 3.
3. Solve equations on screen.

with the subject responding to the top goal. Realistically,
the goal on the bottom of the simulated stack, which
represents the goal of performing the laboratory task,
does not represent the ultimate goal of the subject. If we
could peer below this goal, we might see something like:

4. Get experimental credit.

5. Pass introductory psychology.

6. Get college degree.

However, we, like most of cognitive psychology, have
not bothered to peer beyond the goals we get subjects to
adopt in our experiments.

This conception of the goal structure frequently raises a
number of questions that we address here. The first
question is how can there be any interrupt-driven
cognition. If subjects were to hear “fire” in the middle of
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this experiment, presumably, they would not blissfully
continue to solve equations but would focus on new
goals. It is possible to model such switches in goal
structure in ACT–R because one can have high-priority
production rules that respond to such situations. These
would be rules like:

IF
the goal is to do any task

and one hears “fire”

THEN change the goal to escape the fire

This production illustrates that there can be rules in
ACT–R that respond to all goals.14 Cognitive
psychology has tended not to be in the business of
creating such emergency interrupts and studying the
cognition that results. Therefore, we cannot say that
ACT–R’s mechanism is the right mechanism for
modeling such interrupt handling because there is no
data with which to assess it. All we can say is that there
is no inherent contradiction between such interrupt
handling and ACT–R goal structures.

A second question concerns how ACT–R can model
people’s ability to pursue multiple goals in parallel in an
architecture that has only one current goal. Such tasks
are modeled in ACT–R by setting a single goal to do the
multiple-goal task and either switching serially among
multiple subgoals or having rules specific for performing
the multiple-goal task. This has been a successful
maneuver as illustrated in Chapter 6, which models
dual-task experiments.
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A third question concerns the perfect-memory
assumptions behind such a goal stack. In ACT–R, all of
the goals on the stack are retained perfectly in order. If
the current goal is popped, the next one is always there
ready to take over. We have to confess to not being
particularly sanguine about this feature. This assumption
has not been stressed much because most cognitive tasks
tend to have rather shallow goal structures (perhaps an
indication that deep goal structures are problematical).
One of the cognitive tasks that has the deepest goal
structure is the Tower of Hanoi task—at least under
certain strategies. As a later subsection displays, ACT–R
has considerable success in modeling the available data
from this task. Perhaps future research in this domain
will expose problems with ACT–R’s assumption of
perfect goal memory.

Thus, in ACT–R, the goal stack organizes the sequential
structure of production-rule firing. However, we
emphasize again that this does not imply that everything
in the human mind is serial. ACT–R has a highly parallel
subsymbolic structure. Also, as discussed in Chapter 6,
there is the potential for parallelism between the
production rule firing, perception, and motor action.

Types of Production Rules

There is a very close relationship between goals and
productions in ACT–R. Every production rule responds
to a goal state and potentially transforms it into a new
goal state. Basically, production rules are means for
choosing and specifying goal transformations. Usually,
the transformations involve retrieval of information from
declarative memory. Thus, the prototypical production
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involves a sequence of: goal match, declarative retrieval,
and goal transformation. The production rules possible in
ACT–R can all be classified in terms of what sorts of
goal transformations they produce. There are essentially
three things a production can do with respect to the goal
stack: pop, push, or nothing. Orthogonal to this, the
production can modify the current goal or not.15

Although it is syntactically possible to have various
combinations of one or more pushes, one or more pops,
or other goal modifications, it is conceptually clearer to
think of there being basically 6 (3 × 2) production types:

1. No Change (No Stack Change, No Goal
Modification). It is possible to have a production rule
that does no goal transformation. Such a production, to
have a point, must take some external action. To prevent
this production from firing forever, it must have some
test for a state change produced by that action. An
example of such a production rule is:

Hammer

=goal>

isa HAMMER-NAIL

object =nail

=state>

isa NAIL-STATE

object =nail

state Protruding

= = >

execute strike of hammer

82



This production will keep hammering the nail as long as
it is protruding. It might actually be better conceived of
as a production that sets a subgoal to hammer once
where this subgoal is discharged by motor routines. In
this case, the production would really be an instance of
Type 3.

2. Goal Elaboration (No Stack Change, Goal
Modification). There are production rules that take the
current goal and refine it in some way, but leave the
current goal as the focus. An example from multicolumn
addition is:

Read-Number1

=goal>

isa ADD-COLUMN

number 1 nil

column =col

=object >

isa VISUAL-OBJECT

value =numl

row top

column =col

= =>

=goal>

number 1 =numl

This production records the first number to be added in
the number 1 slot of the goal.
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3. Side Effect (Push on Stack, No Goal Modification).
There are productions that push a goal without
modifying the current goal. Because they do not modify
the current goal, the subgoal is being pushed for some
side effect it will produce in the external world in or the
mind of the subject. For instance:

Ask-Teacher

=goal>

isa SOLVE-EQUATION

equation = equation

=equation >

isa EQUATION

-leftX

-right X

= = >

=newgoal>

isa ASK-FOR-HELP

object = equation

resource Teacher

!push! =newgoal

This production responds to the fact that X is not isolated
on the left or the right of the equation. It sets the subgoal
of asking a teacher for help. Hopefully, this is not the
only rule at the student’s disposal.

4. Return Result (Push on Stack, Goal
Modification). There are production rules that push a
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new goal, but also refine the current goal so that when
they return to the goal, it is different and the same
production rule does not repeat. An example from
multicolumn addition is:

Start-Problem

=goal>

isa ADDITION-PROBLEM

column nil

= = >

=newgoal>

isa ADD-COLUMN

column Ones

note = carry

carry Zero

=goal>

column Tens

carry = carry

!push! =newgoal

This production rule sets a subgoal to add the ones
column and records in the column slot of = goal that it
should next work on the tens column. The appearance of
the variable = carry in the note slot of = newgoal and
the carry slot of = goal is a means of returning a result
from the subgoal to the goal. When = newgoal is pushed,
the value of =carry is not yet known, but when =
newgoal is achieved and popped, there is a value in its
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note slot and this value is passed back to carry slot of
=goal. This mechanism for passing results from a
subgoal to a parent goal is called the subgoal return
mechanism. In this case, the subgoal is being called to
output a result and to return the carry, but sometimes a
subgoal is like a function call in programming and is
only being called to find a result.

5. Pop Unchanged (Pop Stack, No Goal
Modification). There are production rules that pop
when a termination condition is met. These termination
production rules may or may not modify the goal before
they pop the goal. An example of a production that does
not modify the goal is:

Write-Answer

=goal>

isa ADD-COLUMN

carry Zero

answer = number

column =col

=number >

isa NUMBER

value = value

tens Zero

= = >

!output! = value

!pop!
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This production outputs the answer for the column and
pops the goal of adding in that column.

6. Pop Changed (Pop Stack, Goal Modification). The
final possibility is to modify the goal before popping it.
For instance, there is Stop-Count from the simulation of
addition as repeated counting (see Table 4.1 in Chapter
4):

Stop-Count

=goal>

isa FIND-SUM

argl =num1

arg2 =num2

count =num2

current =ans

= = >

=goal>

sum =ans

!pop!

This production stops the count process when the count
has reached the value of the second addition argument
(e.g., 6 + 3 would yield the count: 6, 7, 8, 9 and then
stop-count would fire). This production stores the final
number as the sum. A popped goal serves as a new
declarative chunk, so modifying its slot before popping
can affect subsequent behavior.16 Thus, the goal popped
in the production above serves as a memory for the sum
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that can be directly retrieved without going through
repeated counting.

These six rule types determine the behavior we see from
subjects. In the preceding material, we have represented
them in their ACT–R form, but
more typically we give them in their English form,
leaving the exact rules accessible over the Web.

Tower of Hanoi Example

There are certain tasks where the important factors
determining performance reside at the symbolic level.
These tend to be tasks that have an algorithmic character
so that there is always only one next thing to do (and so,
conflict resolution is not relevant) and where all the
declarative information necessary is supported in the
environment (and so, chunk retrieval is not problematic).
In such cases, there is little error or variation in behavior
and the relevant issues come to be the times to perform
the productions in the production sequence, which in
turn, are largely a function of the physical actions that
have to be performed. Many human-computer
interaction tasks have this character. It is interesting that
GOMS (Card, Moran, & Newell, 1983), EPIC, and Soar,
all of which do not have a subsymbolic level, have had
some of their most successful applications to such tasks.

This subsection is concerned with such a task—subjects
solving the Tower of Hanoi problem who know a
subgoaling strategy. The Tower of Hanoi problem is a
useful illustration of the symbolic level also because it
makes heavy use of ACT–R’s goal structure. Figure 2.3
shows a typical five-disk Tower of Hanoi problem. The
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subject’s task is to move the five disks from Peg A to
Peg C. The constraints on the movement of disks are that
only one disk can be moved at a time and that a larger
disk cannot be placed on a smaller disk. A number of
other researchers (e.g., Egan & Greeno, 1974; Karat,
1982) have found that subjects use hierarchical goal
structures to solve the Tower of Hanoi problem. With
appropriate instructions, one can more or less guarantee
that subjects will use hierarchical goal structures to solve
the Tower of Hanoi problem. For instance, Ruiz (1987)
taught subjects a strategy that involves the following two
principles:

Fig. 2.3. The Tower of Hanoi problem. There are three
pegs, A, B, and C, and five disks of different sizes, 1, 2,
3, 4, and 5, with holes in their centers so that they can be
stacked on the pegs. Initially, the disks are all on Peg A,
stacked in a pyramid. The goal is to move all the disks to
Peg C. Only the top disk on a peg can be moved, and it
can never be placed on top of a smaller disk.

1. The overall goal of solving an n-disk pyramid problem
can be accomplished by the subgoals of getting the nth
(bottom) disk to the destination
peg and then getting the (n–l)-disk pyramid into the
destination peg.

2. To get the nth disk to a peg, one tries to get the largest
disk that is blocking its move out of the way. This
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second rule can recurse in that to move this blocking
disk requires moving yet other disks.

Applied to a simpler goal of moving a four-disk tower
(rather than a five-disk tower, to reduce size of trace)
configuration, it generates a goal trace like the
following:

To get the 4-pyramid to C, get the 4-disk to C and then the
3-pyramid to C

To get the 4-disk to C, get the 3-disk out of the way to B

To get the 3-disk to B, get the 2-disk out of the way to C

To get the 2-disk to C, get the 1-disk out of the way to
B

The 1-disk can be moved to B

The 2-disk can be moved to C

To get the 3-disk to B, move the 1-disk out of the way to
C

The 1-disk can be moved to C

The 3-disk can be moved to B

To get the 4-disk to C, get the 2-disk out of the way to B

To get the 2-disk to B, get the 1-disk out of the way to A

The 1-disk can be moved to A

The 2-disk can be moved to B

To get the 4-disk to C, get the 1-disk out of the way to B

The 1-disk can be moved to B

The 4-disk can be moved to C
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To get the 3-pyramid to C, get the 3-disk to C and then the
2-pyramid to C

To get the 3-disk to C, get the 2-disk out of the way to A

To get the 2-disk to A, get the 1-disk out of the way to C

The 1-disk can be moved to C

The 2-disk can be moved to A

To get the 3-disk to C, get the 1-disk out of the way to A

The 1-disk can be moved to A

The 3-disk can be moved to C

To get the 2-pyramid to C, get the 2-disk to C and then the
1-disk to C

To get the 2-disk to C, get the 1-disk out of the way to B

The 1-disk can be moved to B

The 2-disk can be moved to C

The 1-disk can be moved to C

Figure 2.4 illustrates the goal structure involved.

To implement this strategy, one needs to be able to stack
a good number of goals. Specifically, in the preceding
case, one needs to hold a plan like “move 1 to B in order
to move 2 to C in order to move 3 to B in order to move
4 to C.” Simon (1975) discussed a number of other ways
of solving the problem. The one taught by Ruiz is sort of
a blend of Simon’s goal-recursive
strategy, which involves subgoaling, and his
sophisticated perceptual strategy, which involves
choosing to move disks by size.
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Ruiz (1987) forced subjects to implement this
subgoaling strategy by requiring them to post each
subgoal in a computer interface. Subjects did this by
hitting two keys—one to designate the disk and the other
to designate the destination peg. They had to hit another
key whenever they thought they could make a subgoaled
move and the computer would make the move. Table 2.3
shows the four production rules needed to implement
this strategy in ACT–R. The production Start-Tower
transforms a pyramid goal into the subgoal of moving
the largest disk and modifies the pyramid goal to move a
smaller pyramid (i.e., implements Step 1). Final-Move
is just a special-case rule that applies when the pyramid
has been reduced into a degenerate pyramid of a single
disk. Subgoal-Blocker sets a subgoal to move the
largest blocking disk out of the way (i.e., implements
Step 2 in Ruiz’s algorithm). The Move production
moves a disk when there are no blocking disks.

Table 2.3
Implementation of the Subgoaling Strategy for the
Restricted Case of Tower-to-Tower Problems (Model for
Ruiz, 1987)

Start-Tower

IF
the goal is to move a pyramid of size n to peg
x

and size n is greater than 1

THEN
set a subgoal to move disk n to peg x

and change the goal to move a pyramid of
size n-1 to peg x
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Final-Move

IF the goal is to move a pyramid of size 1 to peg
x

THEN move disk 1 to peg x and pop the goal

Subgoal-Blocker

IF

the goal is to move disk of size n to peg x

and y is the other peg

and m is the largest blocking disk

THEN
post the goal of moving disk n to x in the
interface

and set a subgoal to move disk m to y

Move

IF
the goal is move disk of size n to peg x

and there are no blocking disks

THEN move disk n to peg x andpop the goal

Ruiz used a five-disk tower problem and there are 31
moves involved in solving this problem. Figure 2.5
compares the time for each move generated by the model
with the latency profile of Ruiz’s subjects. The model
assumed
the default latency of .05 sec, for the Start-Tower
production, 1.12 sec for the two move productions, and
.69 sec for the Subgoal-Blocker production. Subjects
were required to hit two keys in the computer interface
to set each subgoal. Thus, the Subgoal-Blocker time of
.69 sec is reasonable. Subjects had to hit a key to move
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the disk. The 1.12 sec for the move productions is also
reasonable as it reflects the time to hit this key and then
reencode the screen, which would change at that point.
The R2 between theory and data is .79, which is pretty
good for 2 free parameters and 31 data points. This
model is available on the Web for the reader to run,
inspect the detailed trace, and play with the parameters.

Fig.2.4 An illustration of the goal structure underlying
the Ruiz’s (1987) goal strategy for a four-disk tower
problem. The letter p designates a pyramid and d a disk.
Thus, 4p ->C denotes the goal of moving a four-disk
pyramid to Peg C, while 2d -> A denotes the goal of
moving the second largest disk to Peg A.
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Fig. 2.5. Data from Ruiz (1987) and the ACT–R
simulation.

There are a number of aspects about the Ruiz experiment
that make it less than ideal. The interface he used
perhaps structured subjects’ behavior too much by
forcing them to explicitly post each goal. His subjects
were new to the interface and perhaps got a little faster
over the problem as they became familiar with the
interface. Correspondingly, the model tends to
underpredict early points and overpredict late points.
Pure pyramid problems he used are also quite simple and
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subjects quickly transition to a rote solution. This means
one cannot use later trials where subjects are familiar
with the interface.

To get a more demanding test of subject behavior, we
applied the ACT–R model to some data we collected
(Anderson, Kushmerick, & Lebiere, 1993). This data
comes from subjects solving the four-disk problems in
Fig. 2.6. These problems are cases where one has to
move from one arbitrary configuration to another, so
there is no possibility for subjects memorizing the
sequence of moves. The interface was one in which
subjects simply picked up a disk with a mouse and
moved it to another peg. Unlike the Ruiz experiment,
subjects were not monitored for using the subgoaling
strategy. Nonetheless, they were strongly encouraged to
in the instructions and the evidence is that they did. We
restrict our analysis to those move sequences where they
perfectly executed the minimal 15-move sequence
required to solve these problems. All problems involve
setting the same numbers of subgoals before a particular
numbered move in the sequence.
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Fig. 2.6. Four-disk Tower of Hanoi problems.

Because the configurations are arbitrary, subjects cannot
solve the task without first carefully encoding the
position of each disk in both the start state and the goal
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state. We also assumed they had to reencode the goal
after getting each major disk to its location because they
had not been attending
to the goal configuration during the interval and they
might have forgotten it.17 Table 2.4 shows the
productions used to solve this task. The first four
productions (Encode-Current-Configuration,
Encode-Target-Configuration, Find-Disk, and
Done-Finding) are responsible for encoding the screen
prior to trying to place a disk. As in the Ruiz model of
Table 2.3, Start-Tower subgoals placing the next largest
disk and Final-Move places that disk. However, because
disks are not in standard positions, one must note the
location of the disk in the current state and the target
state. Productions Note-Current-Peg and
Note-Target-Peg do this. Then Spare-Peg can assign
the remaining peg (not the one the disk is currently on,
nor the one it is on in the goal configuration) as the spare
peg. Another encoding production, Note-Checkee, has
to note the peg on which the smaller disk to be checked
is located. Then, the productions Subgoal-Blocker and
Move can apply as before (except that Subgoal-Blocker
does not have to post the subgoal). Again, this model is
available over the Web.

Table 2.4
Implementation of the Subgoaling Strategy for the
General Case of Tower of Hanoi Problems (Model for
Anderson, Kushmerick, & Lebiere, 1993)

Encode-Current-Confìguratíon

IF the goal is to solve a tower task of size n
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THEN set a subgoal to encode disks less than or
equal to n in the current configuration

Encode-Target-Configuration

IF the goal is to solve a tower task of size n

THEN set a subgoal to encode disks less than or
equal to n in the target configuration

Find-Disk

IF the goal is to encode disks less than or equal
to n in a configuration

THEN encode disk n in the configuration

and transform the goal to encoding disks less
than or equal to n_l

Done-Finding

IF the goal is to encode disks less than or equal
to 1 in a configuration

THEN encode disk 1 in the configuration and pop
the goal

Start-Tower

IF the goal is to solve a tower task of size n
greater than 1

THEN set a subgoal to move disk n checking disk n
-1

and change the goal to solve a tower task of
size n - 1

Final-Move

IF the goal is to move a tower of size 1 to peg x

99



THEN move disk 1 to peg x

and pop the goal

Note-Source-Peg

IF the goal is to move a disk of size n

and the source peg is not encoded

THEN encode location of disk n in the current
configuration as source

Note-Target-Peg

IF the goal is to move a disk of size n

and the location of the target peg is not
encoded

THEN encode disk n in the goal configuration as the
target peg

Spare-Peg

IF the goal is to move a disk

and there is source and target peg

THEN the remaining peg is the other peg

Note-Checkee

IF the goal is to move a disk of size n checking
smaller disk m

THEN encode the peg on which disk m is located in
the current configuration

Subgoal-Blocker

IF the goal is to move a disk of size n checking
m

100



and y is the other peg

and m is not at y

THEN set a subgoal to move disk m to y checking m
- 1

and change the goal to check m -1

Blocker-On-Other-Peg

IF the goal is to move a disk of size n checking
m

and y is the other peg

and m is at y

THEN change the goal to check m - 1

Move

IF the goal is move disk of size n to peg x

and all smaller disks have been checked

THEN move disk n to peg x

and pop the goal

This production system does not require a special action
time for Subgoal-Blocker because subjects did not have
to type their subgoals in. However, all the encoding
productions (Find-Disk, Done-Finding,
Note-Current-Disk, Note-Goal-Disk, Note-Checkee)
required an encoding time, which was estimated. Also, a
special action time was estimated for the move
productions as in the previous model. Thus, the two
estimated parameters were encoding time = 0.56 sec and
move time = 2.15 sec. The move time is longer than the
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Ruiz estimate and reflects the complex mouse action
required in this system. Figure 2.7 compares the
predictions of the model with the data.18 The
correspondence is very good with R2 = .99. As can be
confirmed by running the model over the Web, the
bumps in the figure are produced by the large encoding
times.

Fig. 2.7. Data from Anderson, Kushmerick, and Lebiere
(1993) and the ACT–R simulations.
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Compare the productions in Table 2.4 with the
productions in Table 2.5 that formed an ACT–R 2.0
model proposed for the same task (Anderson,
Kushmerick, & Lebiere, 1993). There are only three
productions and they are of much larger grain size than
the productions in Table 2.4. Although they are stated
briefly in their English form in Table 2.5, the actual
ACT–R code was complex and required resorting to
LISP tests in the production rules. This exemplifies some
of the transition between ACT–R 2.0 and ACT–R 4.0. It
is worth commenting on some of the condition lines in
production Subgoal-Disks from Table 2.519 that might
look innocent enough but that hide a great deal of
complex computation.

Table 2.5
ACT–R 2.0 Productions from Anderson, Kushmerick
and Lebiere (1993)

Subgoal-Disks

IF the goal is to achieve a particular configuration of
disks

and disk Dl is on peg P1 but should go to peg P2
in the configuration

and Dl is the largest disk out of place and one
cannot directly move

Dl to P2 and disk D2 is one smaller than Dl and
peg P3 is different than P1 or P2

THEN set a subgoal to move the D2 tower to P3 and Dl
to P2

Move-Disk
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IF the goal is to achieve a particular configuration of
disks

and disk Dl is on peg P1 but should go to peg P2

and Dl is the largest disk out of place and one can
directly move Dl to P2

THEN move Dl to P2

Satisfied

IF the goal is to achieve a particular configuration of
disks

and it is achieved

THEN pop the goal

1. “Disk Dl is on peg P1 but should go to peg P2 in the
configuration”: This reflects the combination of a test of
the current and goal configuration. As developed more
fully in Chapter 5, ACT–R 4.0 assumes one can only
encode information from one spatial location at a time.

2. “Dl is the largest disk out of place”: Implementing a
test for “largest” is complex and no longer supported as a
primitive in ACT–R 4.0. Rather, it is now necessary to
go through the more complex logic in Table 2.4 that tests
each of the disks with a separate production firing.

3. “One cannot move Dl by to P2”: Again, this is a
complex test that is no longer supported. In the current
system, one checks that each smaller disk is out of the
way.

As one symptom of the larger grain size in ACT–R 2.0,
we did not aspire to account for actual latencies as in
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Fig. 2.7. Rather, we simply concerned ourselves with the
sequence of moves made and were content to note that
ordinal relationships among the latencies supported our
postulated goal structure.

The current model does not assign special latencies in
the productions that push and pop subgoals.20 These
productions have the default latencies of 50 msec.
Rather, the substantial latencies were required by
experimental procedures for indicating subgoals (Ruiz’s
experiment), time to encode states (our experiment) in
service of subgoaling, and time to make moves (both
experiments). Still, subgoaling does a play critical role in
organizing the behavior in the Tower on Hanoi task. This
illustrates the point in the first chapter that goal
structures provide the chemistry level in ACT–R,
organizing the atomic level of production firings into
coherent behavior.

CONCLUSIONS

This chapter has specified ACT–R’s representational
assumptions with enough information about processing
consequences to show how these representational
assumptions resulted in performance at the symbolic
level. For some members of the ACT–R community, this
is the only level at which they use ACT–R, getting
adequate models for the high-level tasks that they are
interested in. The models of the Tower of Hanoi task
illustrated how one could develop an accurate model at
this level. However, for many other tasks, one needs to
get down to the subsymbolic level, which is the topic of
the next two chapters. However, even here, the
representational assumptions serve a critical role as a
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framework for specifying these subsymbolic
assumptions.

1The hippocampal area is not the locus of these
declarative memories because old declarative memories
are not lost. It is thought that both procedural and
declarative memories are stored cortically, but that the
hippocampus plays a role in supporting new declarative
memories.
2We have reported similar research: Anderson and
Fincham (1994) and Anderson, Fincham, and Douglass
(1997).
3The isa slot is qualitatively different than other slots and
really serves to classify the pattern formed by the other
slots.
4More precisely, ACT–R 4.0 does not have facilities for
processing list structures with the exception of certain
slots for dependency types—see the second section of
Chapter 4.
5ACT–R does not have a scheme whereby production
rules automatically refract, as did some of the earlier
production systems, including ACT* (Anderson, 1983)
and OPS (Forgy & McDermott, 1977).
6That is, ACT–R selects only productions involving a
goal of the same type as the current goal with matching
slot values.
7Much of the tutor modeling involves the larger ACT–R
2.0 production rules, but in the case of Fig. 2.1, there
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would be only one critical unit of ACT–R 4.0 knowledge
(production or chunk) that needs to be acquired per
production rule in the tutor.
8Campbell (1997) presented data to suggest that
sometimes (but only sometimes) we do actually access
division facts through the multiplication table.
9In those cases where a running model is being
described, the actual productions can always be reached
by following the Published ACT–R models link from the
ACT–R home page.
10The first chunk in a production describes the goal. By
convention, we refer to this chunk as =goal, but this is
not required.
11Variables appearing in the condition can also serve as
tests. A variable in a goal slot tests that the slot is not
empty (nil). This is used to distinguish Next-Column
from Start-Problem in Table 2.2. Also, if the same
variable appears in two goal slots, it serves to test
whether these two slots have the same value. Finally, as
discussed with respect to the subgoal return mechanism
in the next section, variables can be used to specify the
transfer of results from a subgoal to a goal.
12This restriction is not enforced in the simulation
language ACT–R 4.0 for practical reasons. However, the
theory has made this commitment.
13This constraint of one action per production is a style
constraint and not enforced by ACT–R 4.0.
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14ACT–R 4.0 allows for type hierarchies in which
different goal types can be specializations of a general
goal type.
15In terms of the ACT–R simulation, if the production
rule changes the type of the current goal, a focus-on
command is required. If it just changes the slots, this is
not required.
16Also, this value may be returned to the supergoal by
the subgoal return mechanism.
17Thus, even in this task there is subsymbolic processing
(i.e., forgetting at work).
18The model predictions are the same for all problems in
Fig. 2.6.
l9The actual ACT–R 2.0 code can be found in Table 12.2
of Anderson (1993), where it occupied a full page per
production
20However, equally good fits could be obtained had we
assumed somewhat longer times for pushes and pops.
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3

Performance

John R. Anderson

Christian Lebiere

Marsha Lovett

Carnegie Mellon University

OVERVIEW

ACT–R aspires to provide detailed and accurate models
of the learning and performance of subjects across a
wide range of experimental paradigms. In cognitive
psychology, we typically measure the performance of
subjects in two ways—what responses they choose to
emit and how long it takes them to emit these responses.
The former measure often is presented as “percent
correct” or its complement “percent errors.” One can be
judgmental in this binary way in cases where there is a
designated correct response. However, in other cases,
there can be a richer category of potential responses and
we simply calculate the percentage of responses that fill
various categories. Usually, latency is measured as time
to complete a task, but in some cases we can collect
latency measures for intermediate responses (e.g., eye
movements, mouse movements, key presses) on the way
to task completion. As discussed in the first chapter,
production systems address these two dependent
measures of psychology more directly and more
completely than any other modeling formalism. Current
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production systems are committed to the exact timing
and identity of each response a subject emits.

The behavior of the ACT–R system and, in particular, its
predictions about these two dependent measures are a
function of the productions that fire. This chapter
examines which productions ACT–R chooses to fire,
how it instantiates these productions, and what
determines the latencies of these production firings. This
performance analysis assumes that we have a static
system that is not changing as a function of experience.
This is a typical assumption in much of the experimental
research on human cognition. It is justified in cases
where the behavior under study is at some relatively
asymptotic level or the critical factors being investigated
do not change over the range of experiences encountered
in the experiment. The next chapter
investigates learning issues—how an ACT–R model
changes itself as a function of its experience. However,
even in this chapter, much of the discussion is motivated
by implicit assumptions about the learning problem, and
at some points we are forced into an explicit discussion
of learning issues. The separation of performance from
learning is basically an exposetional strategy. They are
quite intertwined in the ACT–R theory.

The previous chapter already illustrated, in the case of
the Tower of Hanoi task, how ACT–R could deliver
predictions about response choice and latency. However,
this was a model purely at the symbolic level. A
production fired and incremented time by a set amount.
There was no place for the latencies that vary
continuously as a function of experimental manipulation,
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which occurs in many psychology experiments. The
system always made the same choices. There was no
room for the variability in human behavior. To model
continuous functions and variability, we need to go to
the subsymbolic level of ACT–R.

Figure 3.1 provides an overview of the various possible
levels of analysis in ACT–R. The information in that
figure is dense and we unpack its details as we go
through the chapter. Figure 3.1 illustrates these levels in
the abstract, but just to show that it corresponds to
ACT–R reality, an example production system and a
trace that realizes this abstraction are given in Appendix
C and are available over the Web. Part (a) of Fig. 3.1
represents the symbolic level where there are goal states
and productions transforming one goal state into another.
Sometimes productions result in pushing to a subgoal or
popping from a subgoal to return to a higher goal. This
symbolic level of ACT–R was the topic of the previous
chapter. As part of each production cycle, the system
goes through a conflict resolution process in which it
tries to determine which production to fire. This is the
start of the subsymbolic level in ACT–R and it is
illustrated in part (b) of Fig. 3.1 where productions are
selected and tried serially until one is found whose
condition can be matched. This conflict-resolution
process is discussed in the next section. The process of
retrieving chunks to match a production condition,
illustrated in part (c) of Fig. 3.1, is the declarative part of
the subsymbolic level and it is discussed in the following
section. Throughout this chapter, we refer back to this
figure and discuss the quantities that appear in it.
Throughout this book, we refer to various subsymbolic
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quantities. Appendix D at the end of the chapter provides
a definition of these terms and can be used for reference
when reading this book.

Fig. 3.1 Representation of the levels of assumptions in
the ACT–R theory. This is discussed throughout the
chapter.
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CONFLICT RESOLUTION

On the basis of the information in the goal, ACT–R must
commit to which production to attempt to fire. Because
many productions may potentially fire, deciding which
production to fire is referred to as conflict resolution.
Part (b) of Fig. 3.1 illustrates how this happens. The
productions that satisfy the current goal are placed into
the conflict set. It needs to be emphasized that the only
test for getting into the conflict set is whether the goal
matches. The retrievals required for the rest of the
condition are only attempted if
the production rule is selected from that conflict set. The
productions in the conflict set are ordered in terms of
their expected gain and ACT–R considers them
according to that ordering. The expected gain of a
production rule is defined as:

where P is the expected probability that the goal will be
achieved if that production rule is chosen, G is the value
of the goal, and C is the expected cost of achieving the
goal if that production is chosen. The scale or “currency”
for measuring cost in ACT–R is time. The quantity C is
an estimation of the time to achieve the goal. The
quantity G, the worth of the goal, can be thought of in
terms of how much time ACT–R should be willing to
spend on the goal.1 PG is the expected gain if the
production is taken, C is the expected cost, and the
difference is the expected net utility of the production.
Although this equation can be read as defining the
rational estimate of a production’s worth, it can also be
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read as a rule for trading off probability for cost
according to the value of the goal. That is, because P and
G multiply, one gives greater weight to probability as the
goal becomes more valuable. This produces the
speed-accuracy trade-off, which is an ubiquitous
phenomenon in human information processing—people
tend to expend more time to get improved accuracy
when the stakes are high. Weighting accuracy more
when the goal is more important is rational, and this
rationality is embedded in the fundamental
conflict-resolution equation.

Usually, the most highly valued production will fire and
that will be that. However, part (b) of Fig. 3.1 illustrates
the potential complication. In this case, P3 is first
considered (because it has the highest PG – C
evaluation), but fails and then the lower valued P4 is
tried and fires. P3 does not fire because there is a failure
in retrieving the chunk to match its condition. The
process of chunk matching is described in detail in the
next section, but basically, when a production is
selected, there is no guarantee that its nongoal chunks
can be successfully matched.2 If matching fails, ACT–R
will try the next highest production in the conflict set and
will keep trying lower-valued productions until one
matches, as long as these productions
have greater than zero expected utility. If no production
can be found with positive expected utility, the goal is
popped with failure.

There are two places where computation is highly
parallel in ACT–R. One is at the conflict-resolution level
where all productions are simultaneously matched
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against a single goal chunk and where the matching
productions are ordered with respect to their highest
expected gain. Although this ordering of productions is
done in parallel, they are tried serially one after another.
Because different productions require different chunk
patterns to be matched against declarative memory, these
retrievals need to be done serially. The other place for
parallelism is in part (c) of Fig. 3.1 where all of the
chunks are simultaneously accessed to retrieve the one
that best matches the chunk pattern from a specific
production. Thus, at both levels where ACT–R chooses
the best (the highest valued production, the best
matching chunk), the search for the best is carried out in
parallel. As Chapter 12 discusses, this is the kind of
parallelism that we think can be supported by the
nervous system.

Should the PG – C value for all applicable productions
be negative, ACT–R will pop the current goal with
failure and return to the higher goal that set it. This is the
basic principle that underlies goal abandonment in the
theory. In contrast to the automatic popping of a failed
goal, popping a goal with success must be accomplished
by a production firing. When a goal is popped with
failure it can return a failure value to a slot of the parent
goal. This failure value can be used to prevent the same
subgoal from being pushed again. More generally, this
failure value allows the higher goal level to detect and
deal with the subgoal failure.

One agenda in elaborating the conflict-resolution
principles in ACT–R is to specify how the quantities P,
G, and C are calculated. A second agenda is to specify
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the stochasticity in the calculation of the expected gain.
A third agenda is to discuss the behavioral evidence for
this conception of conflict resolution. These issues are
pursued in the next three subsections.

Role of P, G, and C in Conflict Resolution

Assigning probabilities or costs to production rules poses
a serious difficulty because each production rule is just
one component of a complex computation. How does
one estimate the probability of success of that
computation or its cost from the myopic perspective of
an individual production? ACT–R solves this problem
by separating the probability and cost for which the
production is responsible from the probability and cost
for which later productions are responsible. This is a
relatively simple solution but one that has worked well.
With respect to the probability P, there are two
subprobabilities: q, the probability of the production
working successfully, and r, the
probability of achieving the goal if the production works
successfully. The aggregate probability P is estimated as
the product of these two:

This equation reflects the view that success in achieving
the goal depends on the joint probability of the
production rule being successful and subsequent rules
eventually reaching the goal.3 A number of factors will
cause q to be less than 1. First, if a retrieval is attempted
and fails, the production will fail. Thus, to the extent that
the production fails to successfully retrieve, q will be
less than 1. Also, if the production sets a subgoal and
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that subgoal fails, the production will fail. The next
chapter discusses how q and r are learned from
experience.

As in the treatment of P, the cost C consists of two
subcosts:

The cost a is the amount of effort in time that this
production will take. The cost b is an estimate of the
amount of time from when the production completes
until the goal is achieved. The cost a is a sum of the
match time and right-hand-side costs for the production.
The next section of this chapter discusses the match
time. The default value for the right-hand-side cost is
0.05 sec, but can be larger if subgoals are set, because
achieving these subgoals is counted as part of the action.
The cost of the production can also be longer when the
production calls for executing an external action because
one must include the time for the action (e.g., for a finger
to strike a key). Both of these costs, a and b, are
estimated on the basis of experience, as are q and r. The
next chapter also discusses how these cost parameters
are learned.

Part (a) of Fig. 3.1 illustrates the scopes of these
parameters for two productions, P2 and P3. The
parameters q and a refer to the production and any
subgoals it might set. Thus, those quantities associated
with production P2 in Fig. 3.1 (q2 and a2) have a scope
that spans the subgoal that P2 sets (Cycles 2 to 5). In
contrast, those quantities associated with production P3
(q3 and a3) only span a single production (Cycle 3)
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because that production sets no subgoals. The a
quantities refer to the amount of time spanned and q
quantities reflect the probability of success over that
span. Thus, in the case of P2, a2 refers to the cost of
matching the production and achieving
the subgoal, while q2 refers to the probability of
achieving that. In contrast, a3 only refers to the matching
time and action time for P3 while q3only refers to the
matching probability. In both cases, the downstream
quantities r and b refer to the period until the production
goal is popped (i.e., r2 and b2 cover cycles 6 and 7 while
r3 and b3 cover cycles 4 and 5) The parameter r is the
probability of achieving that goal and b is the amount of
downstream time. We emphasize that a, b, q, and r, are
estimates of the costs and probabilities. They may or
may not be accurate estimates for the current situation.

The setting of the initial value G for a task goal is a topic
about which ACT–R has little to say. When an
experimenter tells a subject something is worth a dollar
versus a penny, how does this convert to an internal
value of G (which is thought of as being measured in
time units) ? How valuable is solving a puzzle, versus
passing a course, versus saving one’s life? ACT–R takes
the agnostic economist’s position of simply assuming
these maps onto some internal values without deeply
inquiring why. In practice, the parameter G may need to
be estimated in fitting the data. Frequently, its exact
value is irrelevant to the model’s predictions.

However, once the value of a goal is set, ACT–R does
have something to say. In particular, it has something to
say about the values of subgoals set in pursuit of that
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goal. One might think that a subgoal should inherit the
value of its supergoal. However, this ignores the fact that
even if the subgoal is achieved there remains uncertainty
about whether the supergoal will be achieved and there
remains some potential cost. One has to subtract this
from the expected value of the goal to calculate the
expected value for the subgoal. As is illustrated in part
(a) of Fig. 3.1, the expected value of the subgoal set by
P2 is G′ = r2G – b2.4 This value G′ is discounted from G
to reflect uncertainty (r) and cost (b) in achieving the
goal even after the subgoal is achieved. Thus, G′ reflects
the maximum amount that should be expended in
achieving the subgoal and this is the value attributed to
this subgoal. Thus, the value assigned to a subgoal
depends on the context in which it occurs. In the Table
3.1 instantiation of Fig. 3.1, G = 20, r2 = 1, and b2= land
so G′ = 1•20–1 = 19.

Table 3.1
Data from Siegler & Shrager (1984) and ACT–R’s
Predictions
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Let us work through another hypothetical example of
how these goal value computations might work. ACT–R
might be trying to solve an equation. Suppose this goal is
worth 20 sec. As a subgoal, ACT–R might try to collapse
multiple occurrences of the variable x into a single
occurrence [e.g., transform 3 (x – 2) = x – 7 into 2x = –
1]. ACT–R may be confident of solving the equation if
this can be achieved (r = 1), but expect another 2 sec of
further work (b = 2). Therefore, the value of the collapse
subgoal will be G′ = r•G–b = 1•20 – 2 = 18. As a part of
this subgoal, ACT–R may set
a subgoal to perform a distribution [e.g., convert 3 (x –
2) into 3x – 6]. The expected probability of achieving the
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goal of collapsing x, even if distribution is successful,
might only be 2/3, and the further expected cost might be
3 sec. Thus, the value of thedistribute subgoal would be
2/3•18–3 = 9. Note that this means that ACT–R will
value a goal less the more deeply it is embedded in
uncertain subgoals. As a consequence, ACT–R will more
likely abandon deeply embedded subgoals. On an
intuitive level, this seems right. For instance, in trying to
prove a theorem, one is willing to spend less effort in
trying to prove a subconjecture on the way to the
theorem than one is willing to spend proving the theorem
itself.

It is worth reviewing why conflict resolution requires
keeping separate the four quantities a, b, q, and r.
Separating the probability parameters (q,r) from the cost
parameters (a, b) allows the system to be differentially
sensitive to probability and cost as a function of the
value of the goal (as implied by the PG – C
formula—see the earlier speed-accuracy discussion).
Separating quantities associated with the current
production rule (a, q) from the quantities associated with
future rules (b, r) allows ACT–R to appropriately
discount the value of the subgoal (to the value rG–b).
Being able to assign appropriate values to subgoals is
critical to ACT–R’s use of the subgoal structure.

Stochasticity in Conflict Resolution

The actual conflict resolution behavior implied by the
previous description is totally deterministic—there will
be a highest valued rule in each situation and the subject
will always choose that rule first. However, in the
ACT–R simulation, some noise is added to these
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evaluation values. This noise is approximately normally
distributed and serves to introduce some stochasticity
into the behavior of the system. Thus, if two productions
are competing in conflict resolution, a production is only
chosen with a certain probability that reflects the
difference between the two productions’ evaluations
relative to the noise in the evaluation process.

The noise added to each production’s evaluation comes
from a logistic distribution.5 The logistic distribution
closely approximates a normal distribution
but is computationally simpler. It is for this
computational reason that we have used the logistic
distribution within ACT–R.

It would be useful to have some analytic description of
what the probability of selecting a production is. One
could find out the probability by running Monte Carlo
simulations, but closed-form descriptions are useful.
Appendix A to this chapter discusses the properties of a
distribution that approximates a normal distribution or a
logistic distribution and has a number of analytic
conveniences. In particular, it allows us to go from
production evaluations to probabilities of being selected
in conflict resolution. If Ei. is the evaluation of
alternative i, the probability of choosing that ith
production among n applicable productions with
evaluations Ej will be
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where the summation is over the n alternatives. The
parameter t in the preceding distribution is related to the
standard deviation, σ, of the noise by the formula

.6 Equation 3.4 is the same as the Boltzmann
equation used in Boltzmann machines (Ackley, Hinton,
& Sejnowsky, 1985; Hinton & Sejnowsky, 1986). In this
context t is called the temperature. Equation 3.4 is
sometimes referred to as a “soft-max” rule because it
tends to select the maximum item but not always. The
smaller that t is (and the less noise), the stronger the
tendency to select the maximum item. Note that
Equation 3.4 is an approximate closed-form
characterization of ACT–R’s conflict-resolution
behavior. The actual predictions of the ACT–R theory
depend on Monte Carlo simulations.

The connection of t to temperature in Boltzmann
machines points to an interesting perspective on this
noise parameter. The temperature parameter in
Boltzmann machines plays an important role in enabling
them to avoid local optima (or minima in their
terminology) in finding globally optimal solutions.
Similarly, as developed in detail in Chapter 8 on choice,
noise in production selection allows ACT–R to identify
better productions and to identify when the relative
payoffs of different productions change.

Evidence: “Probability Matching” Experiments

This theory of conflict resolution plays a critical role in
ACT–R’s ability to
account for many phenomena, particularly when it is
added to ACT–R’s theory of learning the a, b, q, and r
parameters. We return to the theory throughout this book
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and particularly in Chapter 8 on choice. However, as a
token of the power of this theory, this subsection
considers its application to the simplest choice situation
imaginable.

The simplest possible choice situation is one where a
subject has to make a single choice between two options,
each of which has a particular probability of success.
Many such experiments have been performed in what is
called the probability-learning paradigm where the
subject chooses one of two alternatives, receives
feedback as to whether that was the correct choice, and
then repeats this over and over again. For instance, a
subject might try to predict over and over again whether
a possibly biased coin will come up heads or tails.
Subjects’ behavior in such experiments is often
characterized as “probability matching.” That is, if an
option is correct on a proportion p of the trials, subjects
choose that option with probability p. This behavior has
often been judged irrational. It is argued that, if one
alternative occurs
with probability greater than .5, the subjects should
choose that alternative with probability 1 to maximize
their correct choices. We do not address the issue of the
rationality of their behavior until the next chapter where
we address learning issues, and further in Chapter 8 on
choice. In this section, we are content with showing that
behavior is not as simple as implied by the
probability-matching characterization and that ACT–R
can predict subjects’ asymptotic behavior in these choice
experiments.
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Figure 3.2 shows some data from Friedman et al.(1964)
that presents the proportion of times that their subjects
chose one of two buttons as a function of the probability
of it being reinforced. The data is from the last 24 trials
of 48-trial blocks where probabilities of choice have
appeared to have stabilized. As can be seen, subjects do
not exactly probability match in this experiment. The
best fitting linear equation giving probability of choice
as a function of experimental probability (P) is:
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Fig. 3.2 Proportion of choices for experimental
alternatives as a function of the probability. From
Friedman et al. (1964).

Choice probability = .124 + .722P

The fact that this equation is not a simple identity (i.e.,
choice probability = P) points to the fact that subjects
were not probability matching. In this experiment they
were undermatching (i.e., not responding as extremely as
the experienced probabilities). This undermatching is
reflected in the slope .722, which is less than 1.

There is a simple ACT–R model for this task.
Essentially, there were two productions in competition:

Choose-Button-1

IF the goal is to make a choice in the experiment

THEN press button 1

and pop the goal

Choose -Button-2

IF the goal is to make a choice in the experiment

THEN press button 2

and pop the goal

These productions have identical conditions and the one
selected in conflict resolution will be the one with the
momentarily higher value. Figure 3.2 also shows the
predictions of the ACT simulation involving these two
productions. We assumed that ACT had estimated P to
be the true probability (an assumption elaborated on in
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the next chapter on learning and Chapter 8 on choice).
More precisely, each production was given the following
parameters:

q = 1 since the rule always fires if selected

r = true probability of that button

a = .05 default action cost

b = 0 since goal is popped and there are no more
actions.

Thus, P = qr = true probability and C = a + b = .05.

There is an analytical characterization of ACT–R’s
predictions in this experiment based on the Conflict
Resolution Equation 3.4: If P1 is the probability of
choice 1 then the expected value for choice 1 will be
P1G – .05 and for choice 2 will be (1 – P1) G – .05. Then
the probability of choosing alternative 1 is:

It can be shown that:

The predictions of this equation depend on the ratio G/t
and to simplify the analysis, we will set t = 1 (or σ2 =
1.64) and just estimate G. The best fitting value of G is
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1.54. Figure 3.2 shows that ACT–R can predict choice
behavior assuming some noise in the conflict-resolution
process. It might seem remarkable that the noise would
be of just such a value so as to produce probability
matching. However, as we see, exact probability
matching is not the usual result, despite the popular
supposition to the contrary. Rather, although choice
probability does vary monotonically with experienced
probability, there is only approximate probability
matching.

One thing that should influence the response probability
is the value of G. If a constant noise is added to PG – C,
the larger the value of G, the greater the effect of P.
Thus, more extreme response probabilities should occur
when G is increased. Myers, Fort, Katz, and Suydam
(1963) performed an experiment in which subjects were
either not paid or given 10 cents for each correct
response. Presumably, this should influence probability
of choice. Figure 3.3 shows their results for conditions
where the probabilities were .6, .7, or .8 for one
alternative. As can be seen, subjects choose the
more probable alternative considerably more frequently
when there is a payoff for doing so.
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Fig. 3.3 Proportion choices for experimental alternatives
as a function of payoff and probability. The dotted lines
are data and the filled lines are theory. Data from Myers,
Fort, Katz, and Suydam (1963).

To fit the model, a value for G of 2.86 was estimated in
the zero payoff condition and a value of 4.66 in the 10
cents condition, continuing the assumption of t = 1.
Figure 3.3 illustrates that this model provides a good fit
to the data from the experiment.
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This is just one example of how the ACT–R
conflict-resolution mechanism can be used to predict
choice behavior. Anderson (1990) used a precursor of
ACT–R’s conflict resolution to predict a variety of
choice behavior in problem-solving search. Anderson,
Kushmerick and Lebiere (1993) used it to account for
detailed data about choices subjects made in an artificial
navigation task. More recently, Lovett and Anderson
(1995, 1996) pursued its application even more deeply,
and Chapter 8 extends the theory to explain behavior in
problem solving, choice experiments, and animal
learning experiments.

RETRIEVAL

As part (c) of Fig. 3.1 illustrates, when a production rule
is selected, it commits the system to try to perform the
retrieval of the chunks specified in its condition. Much
of the performance of the production system will turn on
how these retrievals fare. Speed of performance is often
a direct function of the speed of these retrievals.
Depending on what is retrieved, the subject may wind up
doing one thing or another. Errors of processing often
reflect errors of different sorts in the retrieval process.
This retrieval process is the connection between
declarative and procedural memory, and it is controlled
by the level of activation of the declarative chunks.

Activation-Based Retrieval

ACT–R makes chunks active to the degree that past
experiences indicate that they will be useful at the
particular moment. Using a common formula in
activation theories, the activation of a chunk is a sum of
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a base-level activation, reflecting its general usefulness
in the past, and an associative activation, reflecting its
relevance to the current context. The activation of a
chunk i is defined as:

where Bi is the base’level activation of the chunk i, the
Wj terms reflect the attentional weighting of the elements
j, which are slot values of the current goal (in Fig. 3.1c
Eight and Four are the goal slots that serve as sources),
and the Sji terms are the strengths of association from the
elements j to chunk i. Figure 3.4 displays the chunk
encoding that 8 + 4 = 12 and its various quantities (with
Wj terms for Four and Eight, assuming that they are
sources). Activations in ACT–R can often be negative,
but there is no particular significance to negative
activations. As Chapter 7 discusses further, activation in
ACT–R is an interval scale (Stevens, 1946) where
differences are meaningful, but where there is not a
natural zero.
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Fig. 3.4 Network representation of an ACT–R chunk.

Each of the components in Equation 3.5 requires
comment:

Base-Level Activation Bi. The base -level activation
of a chunk represents how recently and frequently it is
accessed. The next subsection discusses how base-level
activation changes with time and how there can be
random fluctuations in base-level activation. The next
chapter on learning discusses how these base-level
activations are learned to reflect the past log odds that
the chunks will be used.

Source Activations Wj. The source activations reflect
the amount of attention given to elements of the goal.
ACT–R assumes that there is a fixed capacity for source
activation and that each element of the goal has an equal
amount. As a scale assumption this capacity is set at 1
and if there are n elements in the slots of the goal each
source element gets 1/n source activation. Thus, there are
important consequences to what goal slots are
filled—whatever slots are filled become sources of
activation, and if extra slots are filled, they take source
activation away from others. Lovett, Reder, and Lebiere
(in press) speculated that there may be differences in
total source activation which correspond to differences
in cognitive capacity among individuals. Anderson and
Reder (in press) speculated that subjects may be able to
strategically alter the Wj values associated with various
slots (subject to the constraint that the sum reflects the
overall capacity).
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Strengths Of Association Sji. The strength of
association is a measure of how often the chunk i was
needed when j was an element of the goal. The next
chapter discusses how these associative strengths are
learned. They are given a default setting at the start of
any ACT–R simulation. As discussed in Anderson
(1993), the Sji terms can be thought of as estimations of
the likelihood of j being a source present if chunk i is
retrieved. More formally, Sji is an estimate of ln[P(i|j)/
P(i)] where P(i|j) is the probability i will be needed,
given j is a source and P(i) is the base probability.
ACT–R has developed a formula for setting initial values
for these probabilities (given as Prior Strength Equation
4.2 in Chapter 4) in the case when i is
connected to j (i.e., j is a slot of i or vice versa).7 The
initial estimate of P(i|j) is 1/n where n is the number of
chunks connected to j. The prior estimate of P(i) is 1/m
where m is the number of chunks in the declarative
database. Thus, Sji is estimated initially to be ln(m) –
ln(n). As the number of facts is often not known, we
sometimes set Sji to be S – ln(n) where S is an estimated
constant. In any case, these formulas imply that Sji
values will decrease as the logarithm of the number of
chunks attached to j. As a later section shows, this
produces fan effects and interference effects in memory.

Changes in Base-Level Activation

If the Activation Equation 3.5 described everything
determining activation, ACT–R would be a rigid system
that displayed none of the fluctuations typical of human
memory. This subsection describes how the base-level
component of activation fluctuates and decays with time.
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It discusses what happens to the base-level activation
from the moment when a new declarative chunk is
created, assuming it never gets strengthened. The next
chapter discusses how the base-level activation of a
chunk grows with repeated use. When a new chunk is
created it receives an amount of base-level activation
whose value is taken from an approximately normal
distribution with mean B and variance O^. This initial
base-level activation decays as a logarithmic function of
time. Moreover, the activation of a chunk fluctuates from
moment to moment with another variance G22- Thus, the
base-level activation of a chunk at time t after its
creation (assuming no intervening practice) is:

Each part of the right-hand side of the equation deserves
comment:

1. The initial expected value of the base-level activation
is β (at t = 1). Often β is set to 0, as it is absorbed in
other parameter estimates.

2. The factor – d ln(t) reflects decay with time. The
parameter d is the decay rate and it is normally set at 0.5
in ACT–R simulations. Thus, as in ACT–R 2.0, the
activation level decays as a logarithmic function of time.
As we discuss later, this yields the empirically observed
retention functions. Also, as shown by Anderson and
Schooler (1991), the log odds of something appearing in
the environment approximates such a function. Thus,
activation serves its intended role of encoding log odds
in the environment and yields adaptive behavior
functions.
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3. The term £j reflects some random noise in the initial
base “level activation. It could reflect stochasticity in the
nervous system but it could also reflect stochasticity in
our knowledge of the true history of that chunk.8 It
reflects a one-shot randomness that stays with the chunk.
Thus, some chunks start out lower than others and tend
to stay lower, whereas other chunks start out higher and
tend to stay higher.

4. The term £2 reflects moment-to-moment noise in the
activation levels of the system. Again, it could reflect
true stochasticity in the nervous system or just lack of
knowledge on our part of the factors determining
activation at a particular point in time.9

Both the permanent noise, ε1 and the transient noise, ε2,
are generated in ACT–R according to logistic
distributions, which approximate a normal distribution
(the same distribution chosen for expected gain noise,
again for computational reasons). These noise
distributions have means zero and variances σ12 and
σ22.10 In ACT–R 2.0 the only noise was this second,
moment-to-moment fluctuation. It led to unacceptable
behavior in certain simulations. To get an adequate
amount of nondeterminism in ACT–R 2.0, we had to set
σ22 sufficiently high to that the system radically switched
from moment to moment in the knowledge to which it
had access. Thus, for instance, to get 50% recall of a list
σ22 would have to be set so that a random half of the
items fell below threshold. However, because the noise
was random, there would be no relationship between the
50% that fell below threshold from one recall effort to
the next. Although people do show some
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moment-to-moment variation in access to knowledge,
they do not show as much as was displayed in ACT–R
2.0. ACT–R 4.0 can provide the right mix of transient
noise and permanent noise. If our modeling is not
sensitive to the distinction between moment-to-moment
and permanent variation then we can treat σ12 + σ22 as a
single variance, σ2.11

Besides producing the right behavior, the base-level
activation equation makes the system fundamentally
more adaptive. We have already noted that the decay
component allows ACT–R to adapt to changing needs
with time. Also, the randomness in activations allows
ACT–R to discover the true worth of different facts.
Chapter 9 on cognitive arithmetic discusses this in more
detail.

Relationship to Response Probability

When chunks in ACT–R fall below a threshold of
activation τ, they can no longer be retrieved. Because of
the stochastic volatility in activation levels, memory
elements fall below this threshold for retrieval with a
certain probability. Although in Monte Carlo simulations
the activations either do or do not fall below threshold on
a particular cycle, it is useful to have an equation that
describes this probability. Given the assumption that the
noise distribution is a logistic distribution, then the
probability of a successful retrieval is:
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where T is the threshold and where σ2 is

the combined temporary and permanent variance in the
activation levels. This equation
implies a particularly simple formula for the odds of
recall where odds = probability/(l – probability):

. Thus, recall is an exponential
function of the distance between activation level and the
threshold. Figure 3.5 plots Equation 3.7 as a function of
(A – τ) assuming a value of 5 = .5, which is a common
value. It shows a sigmoidal function with probability
being .5 when A – τ = 0.
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fig. 3.5 Mapping of activation into probability of
retrieval. This is based on the Retrieval Probability
Equation 3.7 with s = 0.5.

The Base-Level Equation 3.6 and the
Retrieval-Probability Equation 3.3 can be combined to
get predictions about retention functions. The A in
Equation 3.7 is β – d In t from Equation 3.6. Equations
3.6 and 3.7 can be transformed to express odds of recall
as a power function of delay:
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where and c = d/s. Thus, ACT–R
predicts that odds of recall
decrease as a power function of time. Rubin and Wenzel
(1996) documented that the power function is one of a
class of mathematical functions that describe retention
functions over a wide range of domains.

As an illustration, we tried fitting an ACT–R model
embodying this equation to the data of Runquist (1983),
who looked at the probability of recalling paired
associates at delays from 20 min to 21 days. The paired
associates had either been studied one time or three
times. The results are shown in Fig. 3.6. To fit this data,
we estimated just the two parameters τ and s in the
preceding equations, with the decay rate d fixed at .5 and
β = 0.12 Figure 3.6 displays the fit of ACT–R with
parameter estimates τ = –3.37 and s = 1.75. The overall
correlation is .93 and ACT–R is capturing the basic
forgetting functions.13 The data itself appear a little noisy
with some random nonmonotonicities in the retention
curves.
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Fig. 3.6 Data from Runquist (1983) on the probability of
recalling well-learned paired associates as a function of
delay and number of studies. The straight lines are the
predictions of ACT–R.

Partial Matching

Items that fall below the retrieval threshold result in
errors of omission. ACT–R can also produce errors of
commission when it retrieves a chunk that only partially
matches a production. In many domains, there are no
exact matches and a system has to be prepared to accept

141



the best matching memory—for instance, people’s faces
change and we need to still be able to recognize them; an
object is often not quite where we saw it last but we still
need to recognize it as what we are looking for, and so
on. In order to give preference to perfect matches but not
to totally disqualify partial matches, ACT–R subtracts
from the activation level of an item an amount that
reflects its degree of mismatch. ACT–R restricts the
chunks it can partially match to those of the same type as
specified in the production condition. Among the chunks
of the specified type, all compete for a match to the
production condition.

To explain partial matching, we need to complicate the
analysis of how activation determines whether a chunk
matches the condition of a producetion. The exposition
to this point has assumed that this activation does not
depend on the production. However, because of partial
matching, the quantity that controls chunk retrieval is
production-specific. This quantity is called the match
score. It will differ from the general activation, Ai, to
reflect the degree of mismatch, Dip, between the chunk
and the production condition. The match score for the
match of chunk i to production p is:

It is really this Mip that should be used for the A in the
Retrieval Probability Equation 3.7. In the case of a
perfect match, Dip = 0 and the match score is just the
activation. Using this match score in Equation 3.7
creates the possibility that a chunk will be retrieved that
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only partially matches the pattern in the production
condition.

The mismatch score Dip is determined by the number of
slots in which the chunk i mismatches the chunk pattern.
ACT–R measures the difference between the values for
each slot and then adds the differences together. Thus, it
implements a city-block metric in judging the distance
between a pattern and a potentially matching chunk.

Again, in actual simulations what ACT–R retrieves is
determined by adding logistic noise to the activation and
seeing what happens on a trial-to-trial basis. Still, it is
useful to have closed-form solutions that describe the
probability of a chunk being recalled. Using the
approximation in Appendix A, the following equation
describes (approximately) the probability of retrieving
chunk i as a match to production p:

where . This is basically the same
as the Conflict Resolution Equation 3.4. As in that case,
this is the Boltzmann “soft-max” rule, which tends to
select the chunk with the highest match score, but which
will sometimes select a lower-rated chunk because of
noise. This is how partially matching chunks intrude and
produce errors of comission.

Siegler and Shrager (1984) described an experiment
where we can illustrate these partial-matching ideas at
work. They asked 4-year-olds to retrieve the sums to
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various addition problems that had addends from 1 to 5.
Partial matching involves misre trieval of chunks, and it
is unclear whether all of these children had chunks for
problem with addends greater than 3. Therefore, we only
focus on the problems from 1 + 1 to 3 + 3. Table 3.1
reproduces the data for problems with addends from 1 to
3. The distribution of answers is given for each proble.

We simulated these data assuming that students had all
the problems from 0 + 0 to 5 + 5 as possible answers to
retrieve.14 The critical production to be matched was:

IF the goal is to say what the sum of N1 plus N2 is

and N1 + N2 = N3

THEN say N3

This production could match any of the addition facts
but there would be different match scores for different
addition facts. Combining Equations 3.5 and 3.8 the
match score was calculated as:

where B is the base-level activation, S1 was the strength
of association from the first addend and S2 was the
strength of association from the second addend. The
mismatch, D, was calculated as:

where p1 was the first addend in the problem, p2 the
second addend, f1 the first addend in the fact, and f2 the
second. Thus, the sum of the absolute differences in the
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addends is multiplied by penalty, which is a parameter to
be estimated.

To reflect the greater degree of practice and strength of
facts with low addends, we set base-level activation (B)
to be 1 for chunks that had a 1 or 0 addend, to be 0 for
chunks with a 2 addend (and no lower addend), and to be
– 1 for chunks with only larger addends.15 Chapter 9 on
cognitive arithmetic shows that these are crude
approximations to the base-level activations that ACT–R
would learn, given the differential frequencies of these
facts. The strengths of association were set to 1 in the
case that the addend in the problem was part of the fact
and 0 otherwise. We also set the activation threshold, τ,
to 0. Thus, there were just two parameters estimated: s
(the noise parameter) at .56 and penalty (the mismatch
factor) at 1.30. As an example of the computations,
consider the choice between chunks 1 + 1=2 and 1 + 2 =
3 as matches to a problem of 1 + 2 = ?. The 1 + 1=2
chunk would have a base-level activation of 1, the
strength of association from “1” to the fact would be 2
because “1” appears twice in the fact, the strength from
the “2” would be 1 because “2” appears as the answer,
and the mismatch would be 1.30 because of the 1 unit
mismatch between 1 and 2. Thus, its match score would
be 1 + .5 * 2 + .5 * 1 – 1.30 = 1.20. In contrast, consider
the match to 1 + 2 = 3. The base level would be 1, the
strengths of associations for each addend would be 1 and
there would be no mismatch penalty. Therefore, its
match score would be 1 + 0.5 *1 + 0.5* 1–0 = 2.0. The
probability of retrieving 1 + 1 = 2 rather than 1 + 2 = 3 is
determined by these match scores and the noise, which is
controlled by the value of s of 0.56 in Equation 3.9.
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Thus, the probability of confusion between these two
facts would be:

In fitting the data, we had to consider the probability that
each fact would be selected. Thus, the sum in the
denominator involved 36 terms for the 36 facts from 0 +
0 to 5 + 5 rather than just the 2 terms given earlier. This
reduces the .19 in the above equation to .16. The total
probability of a spurious 2 response was .23, summing
over all ways of retrieving 2 (1 + 1 = 2, 0 + 2 = 2, 2 + 0
= 2). Table 3.1 reproduces the predictions of the model.
The predictions of the model correlate at .969 with the
data,
indicating that the model is picking up the major trends
in the data with just estimating two parameters. This
analysis is just an illustration of the potential of ACT–R
to model a complex pattern of error data using the ideas
of activation threshold and partial matching. Chapter 9
on cognitive arithmetic will elaborate on these ideas at
great length.

Relationship to Latency

The activation (and more directly the match score) of a
chunk also plays a critical role in determining the other
basic dependent variable in cognitive research—latency
of response. The chunks in a production rule are
retrieved one after another; and the total retrieval time is
just the sum of the individual retrievals. Thus, the
retrieval time for production p is:
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where the summation is over the times, Timeip, to
retrieve the individual chunks i that have to be retrieved
for production p. In point of practice, usually only a
single chunk needs to be retrieved in a production and
thus, the retrieval time is just the time for that chunk.

The following equation that describes the time to retrieve
a chunk as a function of its match score Mip and the
strength, Sp, of the matching production:

where F is the latency scale factor and f is a factor
scaling the match score and production strength. The
time is thus an exponential function of the sum of the
match score (and less directly the activation) of the
chunk and the production strength.16 We often work with
the simplification that the production strength is 0 and
only deal with the match score. As Appendix B
discusses, there is reason to suppose that the parameter f
is 1, in which case the critical expression simply is Fe–M.
F is a latency scale parameter
representing the time to retrieve a chunk when M is zero.
If M is less than 0 (and negative activations are certainly
possible in ACT–R) the latency will be greater than F,
and if M is more than zero, it will be less than F.
Because the equation is an exponential function, time
will decrease ever more slowly as M becomes more
positive and it will increase ever more rapidly as M
becomes more negative. Figure 3.7 illustrates this

147



function in the case that the latency scale F is 1 sec and
the latency exponent, f, is the default 1. The existence of
a retrieval threshold prevents retrieval times from
becoming unboundedly long because low M values just
result in retrieval failure. If x is the activation threshold,
the time for a retrieval failure will be Fe-f(τ+Sp). For
instance, if τ and Sp are 0, then the time for retrieval
failure would be 1 sec in the case of Figure 3.7.

Fig. 3.7 Mapping of match scores into latency of
retrieval. This is based on Retrieval Time Equation 3.10
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with latency factor F = 1 sec, latency exponent f = 1, and
production strength Sp = 0.

The Fan Experiment

These assumptions about latency can be illustrated with
respect to the research on the “fan effect” (Anderson,
1974, 1983). This research has played an important role
in the development of the ACT theories, and it is
important to show that ACT–R 4.0 can account for the
phenomena involved in the fan effect. See Anderson and
Reder (in press) for a thorough discussion of the
application of the ACT–R model to fan data. This
subsection reviews just enough to describe the effect and
establish how the effect falls directly out of basic
ACT–R assumptions.

Let us consider the first fan study by Anderson (1974) in
which subjects studied facts such as “A hippie is in the
park.” The structure of the facts is illustrated in Table
3.2. As can be seen, the experiment manipulated the
number of facts studied about the person and the
location. “Fan” refers to the number of facts studied
about a concept and the fan was varied from 1 to 3
orthogonally for both person and location. Subjects were
drilled on the material to the point where they knew the
material quite well, and the interesting results concerned
the speed with which they could perform a recognition
task based on the material that they had memorized. The
results of the experiment in terms of latency to recognize
the targets and to reject foils (which were
recombinations of persons and locations) are displayed
in Table 3.3. There are three main effects in this
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experiment. The first two are that latency increases with
number of facts studied about person and
number of facts studied about location. The third is that
subjects are generally slower to reject foils. The fan
effect refers to the fact that latency increases with
number of facts studied about a concept in a probe. In
ACT theories, this has always been attributed to the
decrease in associative strength with fan. This is also the
mechanism by which ACT–R 4.0 accounts for the fan
effect.

Table 3.2
Examples of Experimental Material in the Fan
Experiment of Anderson (1974)

Material Studied Target Probes Foil Probes

A hippie is in the
park.

3–3. A hippie is in
the park.

3–1. A hippie is in
the cave.

A hippie is in the
church.

1–1. A lawyer is in
the cave.

1–3. A lawyer is in
the park.

A hippie is in the
bank.

1–2. A debutante is
in the bank.

1–1. A debutante is
in the cave.

A captain is in the
park. — 2–2. A captain is in

the bank.

A captain is in the
church. — —

A debutante is in
the bank — —
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A fireman is in the
park —

A lawyer is in the
cave.

—

—

—

Table 3.3
Observed Times (in Seconds) to Accept Targets and
Reject Foils Data from Anderson (1974), with
Predictions of ACT–R in Brackets

151



In the ACT–R 4.0 model the sentences were encoded as
chunks with slots pointing to person, location, and the
relation “in” (see Fig. 3.8). The strength of association to
the chunk from a concept like park will decrease with
the number of associations emanating from park. The
actual ACT–R model for this task also includes
production rules for performing such subtasks as
encoding of the sentence and generation of a response.
However,
these things are constant across all of the conditions of
the experiment. The latency differences result from the
retrieval of the proposition to match the probe. The

152



critical productions for implementing this retrieval are
the following ones:

Fig. 3.8 Network representations for four sentences used
in the experiment of Anderson (1974). The sentences are
The doctor is in the bank; The fireman is in the park;
The lawyer is in the church; and The lawyer is in the
park. Ovals represent facts encoding these sentences,
and the words represent concepts that are potential
sources of activation.

Retrieve -by-Person

IF the goal is to retrieve a sentence involving a
person and a location
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and there is a proposition about that person in
some location

THEN consider that person and location as the retrieved
pair

Retrieve -by-Location

IF

the goal is to retrieve a sentence involving a
person and a location

and there is a proposition about some person in
that location

THEN consider that person and location as the retrieved
pair

Mismatch-Person

IF the retrieved person mismatches the probe

THEN say no

Mismatch-Location

IF the retrieved location mismatches the probe

THEN say no

Match-Both

IF the retrieved person and location both match the
probe

THEN say yes

The basic scheme is to either retrieve a proposition
involving the person (Retrieve-by-Person) or a
proposition involving the location
(Retrieve-by-Location). If the other term mismatches
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(detected by either Mismatch-Person or
Mismatch-Location) then one rejects the probe; if it
matches (Match-Both) one accepts the probe. This
might seem a vulnerable scheme because one might
retrieve (in the case of fan being greater than 1) some
other proposition involving the term and then falsely
reject the probe. However, if there is a target, it will be
more active because it receives activation from both
terms (person and location) and therefore will be
retrieved in preference to a mismatching proposition.17

An alternative and simpler production system might
seem to be the following:

Retrieve

IF

the goal is to retrieve a sentence involving a
person and location

and there is a proposition involving both that
person and location

THEN say yes

Fail

IF the goal is to retrieve a sentence involving a
person and location

THEN say no

with Fail production given a lower value in the conflict
resolution so that it only fires after the Retrieve
production times out and so fails. This is a poorer
solution because one would have to wait a long time for
the Retrieve production to time out and so foils can only
be rejected slowly. The first scheme can reject foils
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faster because it does not have to wait until retrieval
failure. Thus, it is the preferred solution in paradigms
like the fan effect where subjects are trying to maximize
response speed.

In deriving predictions for this experiment, we ignore
production strength (equivalent to assuming production
strengths of 0)18 and assume only correct matches are
retrieved. In this case, we can predict latencies as a
function of chunk activations and ignore the match
scores. Let us first consider the activation predictions in
the case of targets. The time to perform this retrieval will
depend critically on the activation received from the
person and location. Let Sperson be the strength of
association from the person and Slocation the strength of
association from the location. The expected activation
will be:

where B is the base-level activation. The ⅓ values are in
the equation because the person and the location will
both receive a third of the source activation. The other
third of the activation goes to the preposition in, and we
assume it has such a high fan that its contribution is
negligible. The activation in the case of foils will be
either:
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The response latency will be:

where I reflects the time for all of the nonretrieval
productions plus the action latency for the retrieval
production. This assumes a latency exponent, f, of 1.

The critical quantities in accounting for the fan effect are
the associative strengths, Sperson and Slocation. Using the
Prior Strength Equation 4.2 (see discussion of strengths
of association there), we set these to be S – In (fan)
where fan is the fan of that concept and S is an estimated
constant. As noted earlier, this reflects the fact that the
probability of a chunk, given a cue, decreases as that cue
is associated with more chunks. Thus, the fan effect falls
directly out of the statistical character of activation and
strengths in the ACT–R theory.

We estimated three parameters in fitting this model. The
intercept parameter I was estimated at .85 seconds, the
time-scale parameter F at 0.61 seconds, and S at 1.45.
We did not estimate a separate base-level activation,
B, because its estimate is confounded with the estimate
of the time scale F. Thus, we arbitrarily set the base-level
activation B to be 0.

Table 3.3 gives the resulting predictions. The model does
a good job of capturing the size of the fan effects and the
relationship between targets and foils. The fan effect
results because less activation spreads to the chunk from
the high-fan source, and the target-foil difference results
because two sources activate targets and only one source
activates foils. The model fits the relative size of the fan
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effect compared to the target-foil effect. Note also that
the size of the fan effect is predicted to be relatively
similar for targets and for foils. Equal-sized fan effects
have been difficult to accommodate in other models
because the natural assumption was that responding
negatively required an exhaustive search, which would
be particularly slowed by fan. The current model avoids
the need for exhaustive search in order to respond
negatively. Also, the current model is the first theory that
accounts for the differences between targets and foils
without estimating an additional parameter. Foils are
slower in the current model because a mismatch involves
retrieving a less active fact, which only overlaps on one
concept with the probe.

Retrieval Failure

A production can be selected requesting a retrieval, but
that retrieval can fail resulting in a failure of the
production. As noted earlier, the time to register a failure
would be determined by the threshold, x, for activation:

As illustrated in Fig. 3.1b, this retrieval failure time
would be added to the total time to fire a production in
that cycle. Such situations are relatively rare because
productions that tend to lead to failed retrieval are biased
against in conflict resolution because of their low
probability of success (q, because the production failed
to match) and high cost (a, because there was this wait
for retrieval failure). Just as in the fan experiments,
people frequently retrieve a basis for lack of knowledge.
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Thus, rather than wait for retrieval failure when asked
what the capital of Zambia is, a person might retrieve the
fact that they do not know much about African countries
and so, just respond “don’t know.” The one occasion
where subjects are likely to try retrieval is when asked a
question about a domain for which they feel they should
know the answer. Reder (1988) reported that subjects are
slowest to say “don’t know” to questions about domains
with which they are most familiar, even though they are
fastest to answer the questions they can about these
domains.

Frequently, when subjects fail to retrieve something they
do not give up but rather they have some backup strategy
for finding the answer. The
relationship between direct retrieval and backup
computation has been studied at some length in the area
of cognitive arithmetic, which has contrasted subjects’
tendency to retrieve versus compute answers to
arithmetic problems. Presented with a particular addition
or multiplication fact, a subject has the option of
retrieving it or calculating it. Reder (1987), Reder and
Ritter (1992), Schunn, Reder, Nhouyvanisvong,
Richards, and Stroffolino, (1997) and Siegler (1988)
have argued that subjects make adaptive decisions in
choosing to retrieve in those cases where retrieval is
most likely to succeed and that they base their retrieval
decision on the level of activation of the elements. Reder
has argued that the decision to retrieve can be influenced
by the past history of success with retrieval and that if
more things have been retrieved one is more likely to
choose retrieval. Siegler has argued that subjects are
more likely to choose retrieval in the context of problem
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features where there has been a greater history of
retrieval success.

SUMMARY

ACT–R 4.0 delivers on the promise of production
systems to provide detailed and direct accounts of the
performance structure of human cognition. Behavior
takes place as a sequence of production firings. In each
production firing, it is possible to identify three discrete
stages:

1. Conflict Resolution: A production is selected
that matches the goal and that has the highest
evaluation relative to other productions that
match the goal. The variability and distribution
of choices made can be described by a single
equation (Conflict Resolution Equation 3.4).

2. Declarative Retrieval: The transformations
produced by the productions are determined by
the chunks retrieved. The speed of these
retrievals (Retrieval Time Equation 3.10) is
determined by the activations of the chunks
(Activation Equation 3.5) and their degree of
match (Match Equation 3.8). The choice
between alternative chunks is described by an
equation similar to that used in the
conflict-resolution stage (Chunk Choice
Equation 3.9).

3. Production Execution: The production cycle
concludes with the execution of the production.
The time for this is determined largely by the
amount of motor involvement. Chapter 5 and
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particularly Chapter 6 will discuss motor
processes at great length.

Each of these stages is determined by a number of
continuous-valued quantities stored with the chunks and
production rules. The function of the next chapter, in
part, is to describe how these subsymbolic quantities are
learned through experience.

APPENDIX A

In many situations we are interested is in the maximum
of a number of noisy distributions. The maximum of a
set of such distributions (normal, logistic or many others
that range from ∞ to + ∞) converges to what is
sometimes called the Gumbel distribution (Johnson,
Kotz, & Balakrishhnan, 1995).

Where m is the mode of the distribution and the mean is

where γ is Euler’s constant and is approximately 0.577.
The variance is
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Figure 3.9 displays some distributions for various values
of m and s. As can be seen, these distributions are bell
shaped but somewhat skewed to the right of their mode.
The parameter m determines their location and the
parameter s determines their width.

Fig. 3.9. Examples of Gumbel noise distributions
assumed. The wide distributions have s = 1 and the
narrow distributions have s = 0.5. For the narrow
distributions, the left has m = 0.0 and the right m = 0.8.
For the wide distribution, the left has m = 0.0 and the
right has m = 1.6.

The extrema of many distributions that go from ∞ to + ∞
converge on such a distribution. In the case of the
normaHike logistic distribution,
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The extreme of v random variables from such a
distribution converges to the distribution just given with
the s parameters the same and m = s In(v).

There are a number of attractive properties of these
distributions. For instance, suppose we are interested in
the maximum of n such distributions with location
parameters m1 m2, …, mn but all with the same shape
parameter s. The location parameter of this distribution
will be:

with shape parameter still s. Thus, the distribution of the
maximum is just shifted to the right. If we are interested
in the probability that the ith will be the highest, this
probability is given by:

which, as the main chapter noted, is the same as the
Boltzmann equation specifying the probability of being
in state i with energy mi, given temperature s. Although
the equation is the same, the situation it describes is
different. The Boltzmann equation describes the
probability of being in one of a number of mutually
exclusive states, whereas this describes the probability of
one of many current alternatives being maximum. There
is no conception of an extremum distribution in the
Boltzmann situation.
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This distribution can be converted into a Weibull
distribution under the transformation:

which is the relationship proposed in the Retrieval Time
Equation 3.10 between latency (t) and activation (x). The
Weibull distribution has been proposed as a distribution
of reaction times and especially the fastest of a set of
processes that are racing against each other (Logan,
1988).

The Weibull density is:

It is related to the Gumbel density by the following
transformation of parameters:

Thus, ACT-R’s assumption about noise in activation can
be seen as supporting a Weibull distribution of resulting
latencies. The mean and variance of the Weibull
distribution are:
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where Г is the gamma function. Note that in terms of f
and F (which characterize the latency transformation)
and m and 5 (which characterize the activation
distribution),

which is to say the expected latency is a multiplicative
factor Г (l + fs) larger than if there was not a distribution
of activation.

If the product of f and s is 1, the Weibull density
simplifies to an exponential density:

where

Such a distribution has numerous analytical advantages.
Although overall reaction times do not satisfy an
exponential distribution, they are the sums of many
events of which the exponentially distributed retrieval is
only one. Such a sum of randomly distributed times
might well look like the observed latency distributions,
which are more normal in appearance.
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We tend to favor f = 1, and s< 1, in which case the
product of f and s is less than 1 and the v parameter of
the Weibull is greater than 1. In this case, the individual
retrievals tend to have a distribution more like behavioral
latencies, as noted by Logan (1988).

APPENDIX B

The latency function in ACT-R is:

There are two ways to conceive of the mechanism
behind the latency function.

Rational Analysis Model

The origin of this latency function is the rational analysis
of memory (Anderson, 1990; Anderson & Schooler,
1991). This analysis assumed memories were serially
searched in the order of their likelihood of being needed.
The latency of retrieval was determined by how many
memories with likelihood greater than the target memory
would have to be considered first. That analysis still
could apply in ACT-R if we consider it to be searching
through chunks in order of activation levels (which can
be thought of as log likelihoods). To understand how this
would work in ACT-R, it is necessary to make a
distinction between the activation level, Ai, of a chunk i
before it is considered for a match to a chunk and its
match score, Mi, after any mismatch penalty is
subtracted.19 Suppose chunks are considered in order of
their Ai looking for one of the largest Mi Thus, it is quite
possible that a number of chunks of higher Ai are be

166



considered before the chunk with the largest Mi is
accepted. The basic algorithm is described as follow:

1. Select chunk of next highest Ai.
2. Calculate its Mi.
3. If Mi is largest so far make it the target chunk.
4. If there is no chunk with Ai greater than the

target’s Mi select the target. Otherwise go back
to step 1.

In the case where the target chunk is a perfect matching
chunk, this algorithm will progress through all the
partial-matching chunks with greater activation and stop
at the target chunk. Thus, the critical factor determining
latency factor is the number of partial matching chunks
with activation greater than that of the target. In the case
where the target chunk is a partiaUmatching chunk, this
algorithm will also progress through any
chunks with greater Ai (but lesser Mi) than the target Mi
before stopping.

The critical question concerns the distribution of Ai, and
the number that are greater than the target Mi Anderson
and Schooler assumed that the odds of memories would
be distributed according to Zipfs law, which is a
distribution of the frequency of items as a function of
their values. Simon and Ijiri (1977) suggested that Zipf’s
law takes the form:

However, the current situation is concerned with
distribution of activations that are like log-odds, rather
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than the odds distribution just mentioned. Transforming
this distribution by the function x = ey yields the
following distribution:

where f=m-1 This is an exponential distribution with a
possible nonzero minimum. The expected proportion of
chunks with activation greater than Mi, is:

If there are C potential chunks and each takes t seconds
to inspect, then the expected time is:

where F = aCt/f. The preceding expression is the
Retrieval Time Equation 3.10.

Ijiri and Simon noted that m is frequently 2 and this
implies that f is 1. We typically adopt this convention to
reduce the number of parameters and, as illustrated in
Table 3.3, the quality of the fits is quite good, even with
this constraint.

Neural Model

The model just described gives a serial characterization
of the search process. Another way to conceive of it,
more in keeping with ACT-RN (Lebiere & Anderson,
1993; see Chapter 12, this volume), would be as a
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process in which the activation of the target chunk grew
until it completely dominated all of the competing
chunks. A reasonable model of this growth process is as
a rich-gets-richer process in which the rate of change of
the activation was a function of its match score Mi. One
plausible growth function would be to make the
activation grow as an exponential function of the current
activation:

The reason for this, rather than the simpler proportional
growth function A’(t) = gA(t) is to assure that activation
always increases whether it starts out negative or
positive. The solution of this differential equation is:

where Mi is the initial activation as specified by the
Match Equation 3.8. According to this equation, the
activation completely dominates (i.e., becomes infinity)
when:

which is again the Retrieval Time Equation 3.10 with F
= 1/fg. More generally, the time for activation to reach
any level L is:
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Thus, Fe-fL is a constant for threshold L that is subtracted
from all retrieval times independent of initial level and
could be absorbed into the production action latency.

APPENDIX C: PRODUCTIONS AND TRACE THAT INSTANTIATE

THE ABSTRACT ANALYSIS IN FIG. 3.1

Productions

PI Reverse*Args

IF
the goal is to multiply num1 and num2 and the
answer is not known

and num1 is smaller than num2

THEN change the goal to multiply num2 and num1

P2 Subgoal-Addition

IF
the goal is to multiply num1 and num2 and the
answer is not known

and num1 is not smaller than num2

THEN set a subgoal to add num1 to num1 num2 times
starting

P3 Add-Once

IF
the goal is to add num1 to num2 × times and this
has been done y times

and the sum of num1 and num2 is num3

THEN change the goal to add num1 to num3 and
increment y by 1

P4 Add-Once-Reverse (non-default a = .2)
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IF
the goal is to add num1 to num2 × times and this
has been done y times

and the sum of num2 and num1 is num3

THEN
change the goal to add num1 to num3

and increment y by 1

P5 Pop-Addition

IF the goal is to add num1 to num2 × times and this
has been done x times

THEN pop the goal with the answer num2

P6 Retrieve-Output

IF

the goal is to multiply num1 and num2 and the
answer is known

but the output form has not been retrieved

and the answer has output form x

THEN set the answer to x

P7 Multiplication-Solved

IF
the goal is to multiply num1 and num2 and the
answer is known

and the output form x has been retrieved

THEN output the answer x

Trace

Matching production REVERSE-ARGS.

1 productions out of 1 considered; expected gain of chosen is:
18.950
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Cycle 0 Time 0.000: REVERSE-ARGS

Matching latency: 0.000

Action latency: 0.050

Matching production SUBGOAL-ADDITION.

1 productions out of 1 considered; expected gain of chosen is:
18.950

Cycle 1 Time 0.050: SUBGOAL-ADDITION

Matching latency: 0.447

Action latency: 0.050

Matching production ADD-ONCE.

1 productions out of 2 considered; expected gain of
chosen is: 17.950

Cycle 2 Time 0.547: ADD-ONCE

Matching latency: 0.250

Action latency: 0.050

Matching production ADD-ONCE.

Matching production ADD-ONCE-REVERSE

2 productions out of 2 considered; expected gain of
chosen is: 17.800

Cycle 3 Time 0.847: ADD-ONCE-REVERSE

Matching latency: 1.387

Action latency: 0.050

Matching production POP-ADDITION.
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1 productions out of 1 considered; expected gain of
chosen is: 17.950

Cycle 4 Time 2.285: POP-ADDITION

Matching latency: 0.000

Action latency: 0.050

Matching production RETRIEVE-OUTPUT

1 productions out of 1 considered; expected gain of chosen is:
18.950

Cycle 5 Time 2.335: RETRIEVE-OUTPUT

Matching latency: 0.585

Action latency: 0.050

Matching production MULTIPLICATION-SOLVED.

1 productions out of 1 considered; expected gain of chosen is:
18.950

Cycle 6 Time 2.969: MULTIPLICATION-SOLVED

Matching latency: 0.000

Matching latency: 0.000

Action latency: 0.050

The answer is 12

Top goal popped.

Run latency: 3.019

?

APPENDIX D: ACT-R’s VARIABLES AND PARAMETERS
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α prior number of successes for Probability Learning
Equation 4.5

Ai activation of chunk i; see Activation Equation 3.5

a expected cost of matching and firing a production,
typically measured in seconds

assocweighting of prior strength in Posterior Strength Equation
3.1

β prior number of failures for Probability Learning
Equation 4.5

Bi, base-level activation of chunk i

b expected cost, measured in seconds, from the firing of a
production to the resolution of the goal

C
cost incurred with trying to achieve the goal if a particular
production is selected, typically measured in seconds; see
Cost of Goal Equation 3.3

d decay rate in Equations 4.1, 4.4, 4.7, and 4.8; given
default value of 0 5

Dip mismatch penalty for match of chunk i to production p.

ε1 permanent noise in base-level activation

ε2 temporary noise in base-level activation

E expected gain of a production; see Expected Gain
Equation 3.1

f latency exponent in Retrieval Time Equation 3.11; given
default value of 1.0

F latency scale factor in Retrieval Time Equation 3.11

G value of the goal
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m total number of chunks in Prior Strength Equation 4.2

m number of experienced successes for Probability Learning
Equation 4.5

Mip match score for chunk i in production p

n number of associated chunks in Prior Strength Equation
4.2

n number of failures for Probability Learning Equation 4.5

P probability of the goal should the production be chosen;
see Probability of Goal Equation 3.2

q probability of a production succeeding including
matching of condition and achievement of subgoals

r probability of achieving the goal if the production
succeeds

Rji eSji

Sji strength of association between source j and chunk i

Sp production strength

s

parameter controlling noise in ACT-R logistic noise
distributions for utilities and activations; it is related to
the variance of the noise distribution by the formula
σ2=π2s2/3

S estimated constant in setting Sji —see discussion of
strengths of association

t temperature used in Conflict Resolution Equation 3.4 and
Chunk Choice Equation 3.9

τ retrieval threshold of activation in Retrieval Probability
Equation 3.7
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Wj
attentional weighting of the source j in Activation
Equation 3.5

z total prior cost for Cost Learning Equation 4.6

1An equivalent alternative would be to measure the goal
in terms of some other subjective utility scale and then
measure cost in terms of that scale.
2This scheme contrasts with ACT–R 2.0 where all
productions were matched in parallel. We have since
come to the conclusion that it was computationally too
powerful an assumption to have these parallel matches.
It required that the same chunk type be simultaneously
accessed for an unbounded number of potentially
contradictory matches.
3Anderson (1990, 1993) provided a more complex
formula for combining q and r of which Equation 2 is
only a special case. The simpler formula has been
adapted for parsimony and to eliminate an extra
parameter.
4This is different for ACT–R 2.0 where the value of the
subgoal was set as PG – C. Thus was too severe a
discounting.
5The logistic density is defined

and has a cumulative
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This produces noise ε for each

expected value Ei with mean 0 and variance

In the ACT–R simulation, it is

customary to set the noise by setting the s parameter.
6And t2 = 2s2 —see previous footnote.
7If they are unconnected, Sji = 0 initially.
8For instance, we often do not know if a subject attends
to a stimulus presentation or whether there are covert
rehearsals.
9For instance, our estimate of sources of activation and
strengths of association might have some error.
10Within the simulation these variances are set by setting
the s parameter-see Footnote 5.
11In actual practice, when we want to set an aggregate
variance in the ACT–R 4.0 simulation, we set one of σ12

or σ22 to a single σ2 and the other to zero.
12Different values of d and β would have just resulted in
different values estimated values for τ and s.
13The effect of the extra study is to increase base-level
activation, as is discussed in the next chapter.
14Because 5 4- 5 is relatively distant for our largest
problem 3 + 3, including it in the set or not has relatively
little impact on the predictions.
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15The exact difference among these strengths is
irrelevant, as it can be compensated for by different
estimates of the noise parameter s.
16In Appendix B to this chapter, we discuss some
mechanistic realizations of this exponential function. As
we develop in Appendix A, because of the distribution in
the underlying activations, there is a distribution in
times. The mean time bears an exponential relationship
to mean activation level, but it is larger than predicted by
the preceding equation by a constant multiplication
factor. The parameter F that we estimate, assuming no
variation in the activation levels, will be larger than the
true F by this multiplication factor. However, it does not
change any of our predictions.
17This is a variation of a logic suggested in the fan
simulation on the disk that accompanied Anderson
(1993).
18The predictions for this experiment do not depend on
this simplifying assumption or the others that we
introduce.
19Because all the chunks matching to a production share
the same strength production, we can ignore the
contribution of production strength to match score.
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4

Learning

John R. Anderson

Christian Lebiere

Carnegie Mellon University

The previous chapter discussed how ACT–R can model
human cognition, assuming that the person has a certain
set of knowledge structures with a certain set of
parameters. That chapter displayed some examples of the
relatively high degree of precision in the predictions of
ACT–R models. For purposes of expository
simplification, the examples were rather small, but later
chapters display more complex models. The success of
ACT–R’s performance models makes the topic of this
chapter all the more compelling. How did that
knowledge get in there in the first place? Performance
models should be learnable.

Table 2.1 classified ACT–R’s assumptions about
learning into a 2 × 2 scheme that paralleled the 2 x 2
classification of the performance assumptions. One
dimension is whether the assumptions are concerned
with the acquisition of procedural knowledge or whether
they are concerned with the acquisition of declarative
knowledge. The other dimension is whether they are
concerned with symbolic learning (the acquisition of the
chunks and productions themselves) or whether they are
concerned with subsymbolic learning (the acquisition of
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the parameters that govern the deployment of these
knowledge elements). The four sections of this chapter
address the topics defined by the four cells of this
classification.

LEARNING OF CHUNKS

Classically, philosophers have proposed that there are
two sources for knowledge—we can encode knowledge
through our senses or create knowledge through our
minds. Correspondingly, there are two sources for
chunks in the ACT–R theory. First, they can be encoded
directly from the environment. Chapters 5 and 6 describe
ACT–R’s perceptual component in more detail, but
basically, when objects are attended to in the
environment, ACT–R can synthesize representations of
them in the form of chunks. The other way ACT–R can
create chunks is in the action side of production
rules. However, a significant restriction on ACT–R 4.0
over past theories is that the only chunks that
productions can create are goal chunks.1 These goal
chunks essentially store the solutions to past problems.
As discussed in Chapter 2, goal chunks become
repositories for abstract knowledge, even as chunks from
the environment become repositories for concrete
knowledge.

ACT–R can recreate a chunk by moving attention again
to the same object or by solving the same goal. However,
ACT–R avoids creating of duplicate chunks. Rather, it
merges the new chunk with the old. In the case of goal
chunks, the decision to merge is made at the time the
goal is popped. If the goal chunk is the same as an
existing chunk when it is popped, it is merged with that
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chunk. The merged chunk is given a combined strength
in accordance with the principles set forth in the third
section of this chapter.

Addition-by-Counting Example

One of the classic and much-studied cases of knowledge
growth is the acquisition of the addition table. Children
at one point do not know their addition facts, but can
solve addition problems by repeated counting because
they know how to count. Repeated counting is one way
to learn the addition facts, and it is believed that at least
some children learn their addition tables by storing the
results of repeated counting (Siegler, 1987; Zbrodoff,
1979). Chapter 9, on cognitive arithmetic, pursues
modeling this transition in great detail, and this chapter
describes a related problem in the third section. Here, we
would like to describe it briefly as an example of
learning goal chunks.

Table 4.1 provides English descriptions of the critical
production rules that represent both the counting and the
retrieval strategy. If the answer is stored, Retrieve-Sum
will just retrieve the answer and say it. However, if it is
not known, Retrieve-Sum will fail and
Subgoal-Counting (which is lower valued in the
conflict resolution because it has higher cost) will apply
and set the goal to find the sum. The goal will be a chunk
like:

Table 4.1
Productions to Implement an Addition by Counting

Retrieve-Sum
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IF

the goal is to answer a question about the sum of
n1

and n2 and n1 and n2 have been found to have a
sum

THEN make the goal to say the sum

Subgoal-Counting

IF the goal is to answer a question about the sum of
n1 and n2

THEN
set a subgoal to find the sum of n1 and n2

and make the goal to say the sum

Start-Count

IF the goal is to find sum of n1 and n2

THEN push a goal to increment n1 counting from zero to
n2

Pop-Find-Sum

IF
the goal is to find the sum of n1

and n2 and it is found

THEN pop the goal

Increment-Count

IF

the goal is to increment n1 counting from n3 to n2

and n4 is one more than n

and n5 is one more than n3

THEN make the goal to increment n4 counting from n5 to
n2
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Stop-Count

IF the goal is to increment n1 counting from n2 to n2

THEN pop the goal with the answer nl

Say

IF the goal is to say x

THEN say x and pop the goal

Memory 1

isa FIND-SUM

arg1 Three

arg2 Two

sum nil

where nil denotes that the sum has yet to be calculated.
Start-Count will respond by setting up a process of
counting up and Increment-Count counts up.
Eventually, when Stop-Count pops the goal, it will store
its result in the chunk that encoded the goal of finding
the sum. That chunk will then be available to be
retrieved next time. For example, the following is a run
of this system faced with the goal of adding 3 + 2. It
computes the answer by repeated counting:

Cycle 0: Subgoal-Counting

Cycle 1: Start-Count

Cycle 2: Increment-Count

Cycle 3: Increment-Count

Cycle 4: Stop-Count
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Cycle 5: Pop-Find-Sum

Cycle 6: Say

Five

The following is a second run and this time, it retrieves
the answer:

Cycle 7: Retrieve-Sum

Cycle 8: Say

Five

The following is the chunk that was created to represent the
goal of finding the sum. The chunk then remained as a
repository of the sum for the second episode:

Memory1

isa FIND-SUM

arg1 Three

arg2 Two

sum Five

where the sum has now been filled in with Five. This
example is a little unrealistic in that it assumes a
one-trial transition from computation to retrieval. The
third section of this chapter and Chapter 9 on cognitive
arithmetic go into greater detail about how gradual
buildup of strength is essential for this chunk to be
reliably retrieved.

Relationship to Other Learning Theories

The idea of storing goal chunks has strong relationships
to a number of ideas already in the field. It has a clear
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relationship to chunking in Soar by which the results of
computations are stored. In Soar, past computations are
stored in terms of production rules, whereas in ACT–R,
they are stored in terms of declarative chunks. However,
as is discussed in Chapter 12, production rules in Soar do
not really correspond to production rules in ACT–R, and
often ACT–R’s declarative chunks behave like Soar
productions.

ACT–R can also be thought of as a production-system
implementation of Logan’s (1988) proposal of storing
the results of computations. In Logan’s theory, copies of
the answer are kept and later problems can be answered
by
retrieving a copy fast enough to beat out computation.
As more problems are encountered, more copies (in
Logan’s theory, not ACT–R) are stored. Assuming a
variability in their speed of retrieval, the more copies
there are, the more likely it is that the fastest retrieval
will beat out computation. In ACT–R, just one chunk is
created and that chunk is strengthened every time it is
used or an attempt is made to create an identical chunk.
However, in either system, the decision between
computation and retrieval will be determined by whether
the answer can be retrieved quickly enough.2 It may take
a number of practice trials before it is reliably retrieved
in both systems. Later in this chapter, when we discuss
subsymbolic learning, we describe an ACT–R simulation
of this shift from computation to retrieval.

Both Reder (1988, 1996) and Siegler (1988, 1996) have
theories where subjects decide between retrieving and
computing answers. In Reder’s theory, subjects assess
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the activation levels of declarative elements and decide
to try to compute if the elements are not sufficiently
active. However, the threshold for retrieval can be
influenced by what she calls extrinsic factors. For
instance, Reder has shown that subjects can respond to
instructions or global base rates in deciding to retrieve.
In Siegler’s theory, subjects use both the past problem’s
history of retrieval success and general past success of
the retrieval strategy in deciding whether to retrieve.
Thus, in both models, subjects’ decision to retrieve is
influenced both by a particular item’s strength and the
general success of retrieval. ACT–R can reflect this
mixture of efforts. Overall, history of retrieval success
influences the relative utility of the compute production
versus the retrieve production. Strength of the memory
chunk determines the success of the retrieve production
should it be tried first in the conflict resolution.

LEARNING OF PRODUCTIONS

Up to this point, we have always assumed models that
start out with all of the production rules that they need.
However, the rules used in these models had to be
acquired somewhere in the subject’s experience. One of
the significant challenges for a production system has
been to come up with an adequate theory of production
rule learning. Only two production systems have floated
serious proposals: ACT and Soar. Although Soar has
stayed with its one chunking mechanism, ACT has had a
history of various proposals for production-rule learning.

Past ACT Mechanisms for Learning Production Rules
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A major dimension in the evolution from ACT* to
ACT–R was a change in the process by which
production rules were learned. In ACT* (Anderson,
1983), there were no less than four basic mechanisms for
production-rule learning. These were:

1. Discrimination. If a rule successfully applied in
one situation and did not in another situation,
variants of the rule would be generated by
adding condition elements that restricted the
productions to the appropriate situations.

2. Generalization. If two rules were similar, a
generalized production was produced by either
deleting condition elements or replacing
constants by variables.

3. Composition. If there was a sequence of rules
that applied in a situation, a new single rule
could be formed that performed all the actions of
the sequence.

4. Proceduralization. If a rule retrieved some
information from declarative memory and used
this information to instantiate an action to be
performed, a variant of the rule could be created
that eliminated the retrieval and just performed
the instantiated action.

The basic motivation for these learning procedures was
the observation that people became more tuned in their
application of knowledge (discrimination), generalized
their knowledge (generalization), came to skip steps in
procedures (composition), and eliminated retrieval of
declarative knowledge (proceduralization). Although
there are indisputably such behavioral trends, there were
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at the time no data to test whether these specific ACT*
mechanisms captured the actual way these general
functions were achieved. The ACT* learning
mechanisms really constituted a research proposal, and
we went out and did experiments trying to find detailed
evidence of their existence. We found ample evidence
for the production rule as the unit of skill acquisition
(Anderson, 1987; Anderson, Conrad, & Corbett, 1989;
Singley & Anderson, 1989), but we generally failed to
find any evidence for these mechanisms of production
formation. It would be too strong to say our research
disconfirmed these learning mechanisms because their
behavioral consequences were underspecified. It would
be accurate to just say that we usually failed to find
positive evidence for them.

The one exception to the lack of behavioral evidence
came in our work on a model of category learning
(Anderson, Kline, & Beasley, 1979). The ACT* model
of categorization conceived of production rules as
reflecting various categorization rules. For instance,
production rules might be learned of the form:

IF
the goal is categorize a stimulus

and it is a red circle

THEN it is in category 1

The process of category learning was modeled by ACT*
discrimination and generalization mechanisms. For
instance, the feature test for red could be eliminated
(generalization) or a test for size could be added
(discrimination). Although the ACT* production-rule
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model still gives good accounts of many categorization
phenomena, it suffers from at least one fatal flaw. That
is, it places this knowledge in procedural form, so the
knowledge cannot be flexibly used. Thus, the rule just
given would give no basis for going from the fact that a
circle is in category 1 to a prediction of its color. In
contrast, subjects trained to categorize have been shown
to be capable of displaying their knowledge flexibly
(Anderson & Fincham, 1996; Heit, 1992). This
flexibility suggests that categorization behavior in
ACT–R depends on declarative knowledge. This is an
idea we have started to pursue in ACT–R 4.0 (Anderson
& Betz, 1997). The history of this effort illustrates the
moral that just because phenomena exist (generalization
and discrimination), it does not follow that they should
be embedded in production-learning mechanisms.

The lack of empirical evidence for the ACT*
production-learning mechanisms is one of the reasons
for our abandonment of them. A second reason was
frequent problems with their computational misbehavior.
Because they were automatic learning mechanisms, they
would “kick in” many times and produce unwanted
production rules. This phenomenon of excessive
production-rule formation has also been a problem with
the chunking mechanism in Soar, which is another
automatic mechanism for creation of production rules.

The third reason for abandoning the ACT*
production-rule learning mechanisms is that our studies
of skill acquisition made salient a phenomenon that
really had no explanation in ACT*. In our studies of how
subjects acquired new procedures, we saw that they gave
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a lot of attention to how specific problems were solved
and seemed to learn from examples (e.g., Anderson,
Farrell, & Sauers, 1984; Pirolli & Anderson, 1985). For
instance, Anderson (1993) described how a student
learned to make LISP arithmetic function calls from
observing that typing (+ 712 91) into LISP resulted in
the sum 803 being printed. By analogy, the student
induced the general rule that any arithmetic computation
could be accomplished by typing left parenthesis,
operator, operands, and right parenthesis. After
observing how prevalent learning from examples was,
ACT–R was given a general learning mechanism in
which production rules were created in the process of
problem solving by analogy to examples.

The experience with the analogy learning mechanism
has been somewhat more successful than with the ACT*
production-learning mechanisms. In particular,
researchers have been able to get their ACT–R models to
learn the production rules needed to perform complex
problem-solving tasks (Blessing & Anderson, 1996;
Taagten, 1997; Wallach, 1997). The analogy mechanism
in ACT–R 2.0 involved the following steps:

1. At some point in time, a declarative knowledge
structure (set of chunks) was created to represent
the understanding of a step in a problem-solving
task.

2. At another point in time, when a similar
problem-solving state was reached, this
declarative structure could be retrieved and used
as a basis for analogy. Two searches are evoked
at this point. The first was among past examples
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to serve as the source of the analogy. For each
example considered, a second search was
conducted among the different ways of making a
correspondence between the past example and
the current problem.

3. Analogy was an architectural primitive that
created a production rule to represent ACT–R’s
understanding how the example applied to the
current situation. This production rule was then
available for later use if needed without
re-analogy. However, it had to be strong enough
to fire.

4. If a production rule was not strong enough to
fire, it had to be re-analogized. It would be
strengthened and eventually become available.
Anderson and Fincham (1994; Anderson,
Fincham, & Douglass, 1997) provided evidence
for this gradual appearance of production rules.

Although ACT–R 2.0 analogy seemed a step forward, it
was not without its problems. These problems were with
respect to Steps 1 and 2 in its specification. With respect
to Step 1, the mechanism was not able to create the full
range of productions. Also, analogy created productions
that were of the ACT–R 2.0 scale, and these were
increasingly out of character with the smaller grain size
ACT–R 4.0 productions.

With respect to Step 2, the analogy mechanism remained
somewhat out of control—a problem that had haunted
the earlier ACT* learning mechanisms. For one thing, it
would occur when not needed and so still had the
problem of promiscuously creating production rules. For
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another thing, many times it had problems finding the
right example. Furthermore, it became harder to
integrate this step in the serial ACT–R 4.0
conflict-resolution scheme than it was in the parallel
ACT–R 2.0 scheme.

Production Compilation

To resolve the problems we had with controlling
analogy, we finally decided to cut the Gordian knot and
simply eliminated the troublesome Step 2. In Step 1 a
specific goal (called a dependency goal) is created to
understand a problem-solving step. Now, when this goal
is popped, a production rule is automatically compiled
from the dependency structure. This rule is available for
later uses but, as before, it may take some recreations
before it is strong enough to fire reliably.

This created a naming dilemma for us with respect to
continuing to call this learning mechanism “analogy.” As
analogy is typically used in cognitive science, it refers to
larger scale mappings like the ones done in ACT–R 2.0
productions and not the atomic mappings of ACT–R 4.0
productions. Second, as analogy is typically conceived,
it involves making a correspondence between a past
example and a current problem. By deleting Step 2, we
had eliminated this correspondence phase. Thus, the
term analogy seemed misleading at best, and we have
now chosen to call the ACT–R 4.0 production-learning
mechanism production compilation, which seems more
appropriate. Chapter 10, on analogy to examples,
discusses how this production-compilation mechanism
fits in with what the cognitive science field studies under
the label of analogy.
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The current formulation of production compilation
reflects the newest idea in ACT–R 4.0, finalized just as
the theory is going to press. As such, it is necessarily the
most tentative. However, the reports we have been
getting from our users have been uniformly positive.
They find it much more workable than the earlier
analogy mechanisms.

The current formulation of production compilation
permits a variant of our answer to a long-standing
criticism of the ACT theories of procedural learning.
Both in ACT* and ACT–R, new production rules
ultimately derive from declarative knowledge.
Conversion from declarative to procedural knowledge
was achieved by the proceduralization mechanism in
ACT*, by the analogy mechanism in ACT–R 2.0, and
now by the production-compilation mechanism in
ACT–R 4.0. This general transition from declarative to
procedural knowledge has been called knowledge
compilation in the ACT theories. There is a line of
research that is often viewed as challenging this ACT
assumption that procedural knowledge originally comes
from declarative knowledge. This is research that has
shown that people can acquire procedural knowledge,
but are unable to acquire the corresponding declarative
knowledge for various reasons including amnesia (e.g.,
Cohen, Eichenbaum, Deacade, & Corkin 1985), drug
administration (e.g., Nissen, Knopman, & Schacter,
1987), or because the structure of the task is obscure
(e.g., Broadbent, Fitzgerald, & Broadbent, 1986).

There is nothing inherently contradictory to ACT–R in
the fact that a subject can use production rules to
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perform a skill without being able to report the
declarative origins of these rules.3 This is because the
declarative origins may be forgotten by the time of the
report. For instance, amnesiacs can rehearse declarative
instructions and examples for short periods of time.
Indeed, Phelps (1989) argued that for amnesiacs to learn
many tasks, they need to be given special support in
retaining such information for the short term.

However, in ACT–R 2.0, this general response was
somewhat weakened because there was this Step 2 where
a past example had to be retrieved. Similarly, in ACT*,
the proceduralized knowledge had to be initially part of
long-term memory. Thus, the argument became that the
declarative knowledge was temporally retained but
subsequently forgotten. In contrast, in ACT–R 4.0
production compilation, the production rule is created
immediately upon popping the dependency goal—hence,
at zero delay. So, the need is eliminated to maintain the
declarative information even over a minimal delay.

To describe ACT–R 4.0 production compilation in
detail, it is necessary to describe the special declarative
structure from which productions are compiled. These
are chunks of type DEPENDENCY and represent a
person’s understanding of a particular step in a
problem-solving episode. A dependency is created when
a person sets a goal to understand a bit of an example or
instruction. When this dependency goal is popped, a
production rule is induced from the dependency and
added to the production system. The process of creating
a production rule has some subtleties. The next two
subsections go through the details of the dependency
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structure and the subtleties in production rule creation. A
final subsection demonstrates how production
compilation can model behavior in an experimental task.

Inducing Productions From Dependency Structures

In Chapter 2, the fourth section outlined the six basic
kinds of production rules in ACT–R that were defined in
terms of the goal transformations they produced. ACT–R
can create these six possible types of production rules by
understanding steps of problem solution that represent
these different kinds of goal transformations. It creates a
goal to represent the dependencies in a particular
problem-solving step. That is, it chooses, as a goal, to
reflect on the problem solution. If this goal is
successfully achieved and popped, a production will be
compiled (in addition to the dependency which remains
as a declarative structure). For example, Table 4–2 gives
a DEPENDENCY chunk, Example, encoding a student’s
understanding of a step in a multi-column addition
problem. This is the step where the two numbers are
added. The student has filled in its goal slot with Goall,
which is the state of the ADD-COLUMN goal before the
sum is retrieved, its modified slot with
Goal2, which is the state of the goal after the retrieval,
and the constraints slot with the critical addition fact,
Fact34. On popping this dependency subgoal, ACT–R
not only stores this dependency chunk, but also creates
the production rule, Add-Numbers, at the bottom of the
table.

The production rule learned in Table 4.2 is quite a bit
more general than the example and will add any two
numbers. It achieves this abstraction by the introduction
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of variables. Thus, the production rule is more than a
simple restatement of the dependency. ACT–R will
variabilize any chunk that occurs in two or more slots
anywhere in the condition or in the action. The
assumption is that these co-occurrences are not
accidental but indicate a general rule. Thus, it transforms
the Three, Four, and Seven in the examples into
=number1, =number2, and =sum in the production. It
also variabilizes items that are names of chunks specified
in the production. Thus, Fact34 becomes =addition-fact
in the production rule in Table 4.2. Although there are no
examples of this in Table 4.2, any terms that just appear
once as a slot value in a single chunk are left as
constants. The assumption here is that the rule must be
specific to these terms.

Table 4.2
Dependency, Chunks, and Resulting Production for
Multicolumn Addition from Table 2.2

Example

isa DEPENDENCY

goal Goal1

modified Goal2

constraints Fact34

Goal1

isa ADD-COLUMN

number 1 Three

number2 Four
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answer nil

Goal2

isa ADD-COLUMN

number1 Three

number2 Four

sum Seven

Fact34

isa ADDITION-FACT

arg1 Three

arg2 Four

sum Seven

Add-Numbers

=goal>

isa ADD-COLUMN

number1 = number1

number2 =number2

sum nil

=addition-fact>

isa ADDITION-FACT

arg1 =number1

arg2 =number2

sum =sum

= = >
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=goal>

sum=sum

The ability to go from a specific example to a general
rule reflects an inductive leap on the part of ACT–R. It is
worth analyzing the assumptions by which ACT–R
chooses to variabilize an example. Although the basic
principle is just to variablize repeating terms, one can
discriminate three subcases of repeating terms:

1. The first case is when the variable (like =sum in the
example) appears both in the condition and the action of
the production rule. This case of variabilization goes
back to the PUPS theory of analogy (Anderson &
Thompson, 1989) and was given a rational analysis in
Anderson (1990). Lewis (1988) reported an empirical
investigation of this variabilization rule and it appears to
be the default behavior of people in many situations. For
instance, if to achieve the goal of deleting the word dog
from a text one types e dog, the natural inference is that
typing e x will delete any word x. That is, one assumes
both that the first element must be e and that the second
element can be variabilized. In ACT–R terms:

=goal>

isa DELETE

word =word

= = >

=subgoal >

isa TYPE
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first e

second =word

This is because dog appears both in the condition and the
action, but e only appears in the action. The underlying
logic is that the slot role of the item in the action (not its
identity) is what achieves its slot role in the goal. That is,
the appearance of =word in the second slot of =subgoal
is what achieves its role in the word slot of =goal. This
logic does not apply to elements that only appear once,
like e.

2. The second case is when the variable (like =number1
and =number2 in the example in Table 4.2) appears in
multiple condition chunks (usually the goal and some
retrieval chunk). As in the earlier example, they usually
serve as part of the bridge between the goal and the
action (in the case in Table 4.2, the bridge goes from
=goal to =number1 and =number2 through =fact and
then to =sum, which also appears in the action). Thus,
this case is really just an extension of the configural
assumption that underlies Case 1. Note that the chunk
head =addition-fact is variabilized too, so that it can
participate in this bridging pattern.

3. The third case, not illustrated in Table 4.2, but
illustrated later in Table 4.3, is that the variable appears
in multiple goal chunks in the action. The assumption
here is that this is a mechanism for passing results from
the first goal called to the next through the subgoal
return mechanism.
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Table 4.3
Dependency, Chunks, and the Resulting Subgoal-Count
Production from Table 4.1

Example 1

isa DEPENDENCY

goal Goal3

modified Goal4

stack Goal5

Goal3

isa ANSWER-QUERY

arg1 Two

arg2 Four

relation Sum

Goal4

isa SAY

arg Six

Goal5

isa FIND-SUM

arg1 Two

arg2 Four

sum Six

count Zero

Subgoal-Counting

=goal>
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isa ANSWER-QUERY

arg1 =arg1

arg2 =arg2

relation Sum

answer nil

= = >

=subgoal>

isa FIND-SUM

arg1 =arg1

arg2 =arg2

sum =sum

count Zero

=subgoall>

isa SAY

arg =sum

!focus-on! =subgoall

!push! =subgoal

The basic principle that unifies these three subprinciples
for variabilization is that the terms being variabilized
appear in multiple chunks.4 This notion of variabilizing
the connecting elements is similar to the variabilization
principle used in Soar. It is impressive how often these
default variabilization rules work. This success suggests
that ACT–R’s default variabilization rules have captured
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an inductive primitive of the mind. However, as with any
inductive principle, there will be occasions where they
will produce the wrong rule, and the next subsection,
includes a discussion of how to deal with these
occasions.

Special Slots of the Dependency Structure

An important function of a dependency structure is to
encode what goal manipulations are involved in the
example. Four slots specify various aspects of the goal
transformation. As the dependency structure in Table 4.2
illustrates, the goal slot holds what the goal was like
before the problem-solving step. The constraints slot
holds chunks that serve as the bridges from condition to
action and become retrieval patterns in the compiled
rule. The modified slot holds what the changed goal
looks like (if there has been a
change). The stack (not illustrated in Table 4.2) slot
indicates any changes to the goal stack in terms of
pushes and pops: If the value of the stack slot is a goal
chunk, then that goal is pushed as a subgoal, if the value
is Success, the current goal is popped with success; if the
value is Failure, the current goal is popped with failure.
The dependency structure in Table 4.3, which results in
the creation of the production Subgoal-Counting (from
Table 4.1), illustrates the simultaneous use of the
modified slot and the stack slot. Table 4.4, which results
in the creation of the production Pop-Find-Sum (also
from Table 4.1), illustrates the use of Success in the
stack slot.5 Note that a !pop! appears in the resulting
production.
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Table 4.4
Dependency, Chunks, and the Resulting Pop-Find-Sum
Production From Table 4.1

Example2

isa DEPENDENCY

goal Goal6

modified Goal6

stack Success

Goal6

isa FIND-SUM

arg1 Two

arg2 Four

sum Six

Pop-Find-Sum

=goal>

isa FIND-SUM

arg1 =arg1

arg2 =arg2

sum =sum

= = >

!pop!

ACT–R can learn all and only the six sensible
production possibilities that were identified in the fourth
section of Chapter 2. These six basic productions were
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classified in a 2 × 3 scheme, according to whether they
modified the goal or not and whether they involved no
change to the stack, a push, or a pop. The modified slot
of the dependency structure specifies the first dimension,
whereas the stack slot specifies the second dimension.

Four other slots, generals, specifics, don’t-cares, and
differents, are needed because sometimes the default
rules for variabilization are not appropriate. As an
example of the issue of variabilization consider a student
learning the mathematical rule that X * 0 = 0. Table 4.5
gives an example where it is necessary to use the
specifics slot. (Note that the example asserts that 0 is
specific and so prevents it from being variabilized.)
Without this information, the following incorrect
production rule would be learned because Zero and Five
appear both in Goal7 and Goal8:

Multiply-Zero

=goal>

isa CALCULATE-PRODUCT

arg1 =arg1

arg2 = arg2

product nil

= = >

=goal>

product =arg2
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Table 4.5
Dependency, Chunks, and the Resulting Multiply-Zero
Production

Example3

isa DEPENDENCY

goal Goal7

modified Goal8

specifics Zero

Goal7

isa CALCULATE-PRODUCT

arg1 Five

arg2 Zero

product nil

Goal8

isa CALCULATE-PRODUCT

arg1 Five

arg2 Zero

product Zero

Multiply-Zero

=goal>

isa CALCULATE-Product

arg1 =arg1

arg2 Zero

product nil
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= = >

=goal>

product Zero

in which the Zero has been variabilized (as =arg2)
because it occurs in both Goal7 and Goal8. To assure
that Zero remains a constant in the resulting rule, the
dependency lists the Zero in its specifics slot. Note,
however, that the Five is appropriately variabilized as
=arg1 (because it appears unchanged as a slot in both
Goal7 and Goal8 and does not appear in the specifics
slot).

The generals and dont-cares slots achieve the opposite
function of the specifics slot. If something appears just
once in the condition, it would normally have been left
as a constant in the resulting production. However, if it
appears in the generals slot, it will be variabilized,
whereas if it appears in the dont-cares slot, it will be
omitted. The difference between variabilization and
omission is that the empty slot value nil cannot match to
a variable. Therefore, omitting the test altogether
(don’t-cares) makes the condition even more general.

The final slot is the differents slot. It allows ACT–R to
encode that it is critical that one item be different from
another item. Table 4.6 illustrates a dependency structure
with the constraint that six not be one.6 The learned
production retrieves a factorization of a number subject
to the constraint that the first term of the factor not be
one.
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Table 4.6
Dependency, Chunks, and Resulting Non-Trivial-Factor
Production

Example4,

isa DEPENDENCY

goal Goal9

modified Goal10

constraints Six*four

difference (Six One)

Goal9

isa FACTOR

arg Twenty-Four

prod1 nil

prod2 nil

Goal10

isa FACTOR

arg Twenty-Four

prod1 Six

prod2 Four

Six*four

isa MULTIPLICATION-FACT

arg1 Six

arg2 Four

product Twenty-Four
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Non-Trivial-Factor

=goal>

isa FACTOR

arg =arg

prodl nil

prod2 nil

=multiplication-fact >

isa MULTIPLICATION-FACT

arg1 =arg1

arg1 One

arg2 =arg2

product =arg

= =>

=goal>

prod1 =arg1

prod2 =arg2

The constraints, specifics, generals, dont-cares, and
differents slots reflect facilities for directing production
compilation in a way that was not possible in ACT–R
2.0. They reflect places where the instruction that
accompanies examples can direct what is learned. They
also reflect where people’s knowledge of the semantics
of the domain (e.g., what it means to multiply by zero)
can influence what is learned. We would expect that, in
the absence of instruction or background knowledge,
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people would induce the default form of the ACT–R
rules.

An Example of Production Compilation

Reflecting the looser sense of modeling in earlier
versions of ACT–R, there have not been detailed models
of how ACT–R 2.0 analogy was involved in the
moment-by-moment execution of experiments. One of
the lessons we have learned is the need to compare
proposed mechanisms closely with data. This production
compilation mechanism, being new and still somewhat
tentative, does not have an abundance of
correspondences to data. However, researchers are
starting to develop models that involve production
compilation in the detailed accounting of empirical
results. Chapter 10, on
learning by analogy to examples, contains a fairly
elaborate application. This subsection describes a
simpler application by Niels Taatgen (see Taatgei 1997,
for an earlier model) to a classic experimental paradigm
in psycholog which is the contrast between reversal-shift
and extradimensional-shift problems (Kendler &
Kendler, 1959).

In these experiments, subjects have to classify stimuli
that vary on two dimensions such as size (large or small)
and color (red or green). Initially one dimension is
relevant—for instance, all red objects might be positive
and all green objects might be negative. After the subject
has reached the criterion of 10 consecutive correct
classifications, the reinforcement scheme changes. In the
reversal-shift condition, the values switch on the same
dimension—for instance, green will now be positive and
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red negative. 1 the extradimensional shift, the other
dimension now becomes relevant—for instance, large
objects might be positive and small objects negative.
Your children typically find extradimensional shifts
easier and older children and adults find reversal shifts
easier.

Table 4.7 shows some results from Kendler and Kendler
illustrating t1 classic pattern with children (58 to 72
months in age) classified according to their learning rate.
The slower learners find reversal shifts harder, whereas
the faster learners find the extradimensional shifts
harder. The table also shows the results from Taatgen’s
ACT–R simulation. In the case of the slow-learning
simulation, ACT–R created separate production rules for
each of the four stimuli (large-red, small-red,
large-green, small-green). 1 the reversal-shift condition,
it had to learn four new rules to reverse the answer to all
stimuli because the classification for all four changes.
On the other hand, in the extradimensional shift
condition it only had to learn two new rules because only
two stimuli change. Thus, for the slow-child model the
reversal-shift condition is easier because it involves
learning only two rules. The exact process by which
these new rules came to dominate the old rules depended
on conflict-resolution learning, which we describe in the
fourth section of this chapter. For now, we are more
interested in the process by which the rules are created.

Table 4.7
Results and Taatgen’s Simulation (in parentheses) of
Kendler and Kendler (1959): Mean Number of Trials to
Criterion of 10 Correct Classifications
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Type of Shift

Reversal Extradimensional

Fast child 6 15.8

(6.4) (18.2)

Slow child 24.4 9.0

(23.2) (11.3)

Table 4.8 shows the critical elements of this process in
the case of a model for the slow child. When the
simulation makes an error, it pushes a goal to learn a
new production to represent the correct mapping. This
goal is of type DEPENDENCY and it is passed in its
modified slot the goal with the study stimulus correctly
classified. Production Build-Dependency, given in Part
(a) of Table 4.8, represents a rule for completing the
dependency. The production creates =start-goal, which
represents the goal before the answer was filled in,
places this in the goal slot of the dependency, and notes
that the resulting rule has to be specific to the values in
the property slots. Part (b) of Table 4.8 shows an
example of the completed dependency, Dependency1,
with the modified goal, Cat-goal1, and the original goal,
Start-goal1, which the production created. Part (c) of
Table 4.8 shows the production, Gen-Goal1, that results
when this dependency is popped. It is a rule for
classifying a small green stimulus.

Table 4.8
Critical Knowledge Elements in Simulating the Slow
Child in the Kendler and Kendler(1959) Experiment
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(a) Critical Rule

Build-Dependency

=goal>

isa DEPENDENCY

modified =end-goal

=end – goal >

isa GEN-GOAL

propl =pl

prop2 =p2

answer = answer

= = >

=start-goal >

isa GEN-GOAL

propl =pl

prop2 =p2

=goal>

goal = start-goal

specifics (=pl =p2)

!pop!

(b) Declarative Structures

Dependency1

isa DEPENDENCY

goal Start-goal 1
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modified Cat-goal1

specifics (Small Green)

Cat-goal1

isa GEN-GOAL

propl Small

prop2 Green

answer No

Start-goal 1

isa GEN-GOAL

propl Small

prop2 Green

answer nil

(c) Resulting Production

Gen-Goall

=goal>

isa GEN-GOAL

propl Small

prop2 Green

answer nil

= = >

=goal>

answer No
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The production rules that are learned for the fast-child
model focus on a single dimension. This focus enables
the model to learn faster, initially because it only has to
learn two rules—one for each value of the critical
dimension. Successful practice in using one dimension
inclines the system to use that same dimension to learn
new rules when the old rules no longer apply after the
subject is transferred from the original condition. This
gives the reversal-shift condition the advantage. This
tendency to stick with the same dimension depends again
on conflict-resolution learning. However, for current
purposes, the important observation is that the model
again learns new productions by this process of creating
and completing a dependency. It is just that the fast-child
model has a different procedure for completing the
dependency than the slow-child model. The slow-child
model thinks rules should be specific to particular
examples, whereas the fast-child model thinks rules
should be specific to dimensions.7 This difference
illustrates the idea that dependencies reflect
understanding of a problem-solving step and different
subjects can have different understandings. Others (e.g.,
Chi, Bassok, Lewis, Reimann, & Glaser, 1989) have
proposed that the difference between good and poor
learners can be explained in terms of how they
understand examples.

LEARNING OF DECLARATIVE PARAMETERS

To this point, we have discussed how new symbolic
structures are learned. However, as the previous chapter
discussed, the actual behavioral realization of these
structures depends very much on the subsymbolic
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parameters associated with them. This section discusses
the learning of declarative
parameters, and the next section discusses the learning of
procedural parameters. These subsymbolic parameters in
ACT–R are estimates of probabilities of events and costs
of actions. ACT–R’s learning of these parameters is
really a statistical estimation of the probabilities and
costs. Therefore, ACT–R’s subsymbolic learning is
sometimes called statistical learning.

The declarative parameters associated with chunks
determine their level of activation. There are two
declarative parameters that the system learns: the
base-level activations of chunks and the strengths of
associations among chunks. In both cases, “learning”
really comes down to using past experience to estimate
the quantities that these parameters are supposed to
reflect. The activation of a chunk is taken to reflect the
log posterior odds that the chunk will be needed (needed
means “match to a production in the next cycle”), given
the current context (where the current context is defined
by the elements of the goal). In Bayesian terms, if Hi is
the hypothesis that chunk i is needed and E are the
elements in the current context, then the posterior odds
of needing chunk i in the current context is:

where the multiplication reflects the assumption that the
conditional probabilities are independent. The quantity

is the posterior odds, the quantity
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is the prior odds, and the quantities
are the likelihood ratios.

The odds formula just shown is given in multiplicative
terms. However, it is natural to think of activations as
adding. Because the logarithmic transformation converts
multiplication into addition, we think of activation as
reflecting log odds. More precisely, the activation Ai of a
chunk is an estimate of the log posterior odds ln

, the base-level activation Bi is an
estimate of the log prior odds In and
the strength of association Sji is an estimate of the log
likelihood ratio ln . This yields the
equation given earlier:

where Wj is the attention that can be given to source j.8
The next subsections
discuss the learning of the two quantities, Bi and Sji and
the general evidence for this conception of their learning.

Before discussing these, it is worthwhile to be precise
about what Hi is. This is the hypothesis that the chunk i
will be used in the next production cycle. A successful
use is counted as occurring whenever a chunk is
retrieved by a production that actually fires. A successful
use is also counted as occurring each time an identical
copy of the chunk is created. As noted in the first section
of this chapter, ACT–R does not maintain multiple
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copies, but rather reflects repetition by increasing the
strength of a single chunk.

Learning of Base-Level Activations

Each chunk has a base-level activation, Bi which reflects
some context-independent estimate of how likely that
chunk is to match to a production. This depends on the
frequency and recency with which that chunk has been
used. Precisely, it is an estimate of the log odds that an
item will be used. Anderson and Schooler (1991), in a
series of environmental studies, showed
that the odds that an item will be needed are related to its
history of past exposure by the formula:

where α is a scaling constant and the item has been
encountered n times in the past at lags t1, t2, …, tn from
the present. This means that the formula for base-level
activation should be:

where β = In (a) and typically gets absorbed in the
estimates of other parameters. Figure 4.1 shows the
growth of Bi, assuming 20 encounters randomly
scattered over the first 200 sec. In this function, ß = 0
and d = 0.5, which are the default values in ACT–R. As
can be seen, the function slowly grows, although it
shows some decay from presentation to presentation.
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Fig. 4.1 Growth in strength when 20 presentations are
randomly presented over 200 sec. The smooth curve is
the prediction of the approximation formula.

The Base-Level Learning Equation has a number of
interesting consequences. First, if there has been a single
presentation t time units ago, then base -level activation
will simply be β – d In (t), which is the earlier Base –
Level Equation 3.6. As discussed in Chapter 3, this
combined with the response functions implies that odds
of recall and latency of recall should be power functions
of delay, which is the common empirical result known as
the Power Law of Forgetting (Rubin & Wenzel, 1996).
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Second, it is less obvious, but the Base-Level Learning
Equation also predicts the Power Law of Learning
(Newell & Rosenbloom, 1981). If the n presentations in
that equation are spaced approximately evenly, the
quantity is closely approximated by nT-d/(1 – d)
where T is the total life of the unit (i.e., the time since its
creation at time T = t1). This means the activation is
closely approximated as ln[n/(1–d)] – d InT. The smooth
line on Fig. 4.1 shows the prediction of this function
given the default d= 0.5 and n = 0.1T which is the
average number of presentations by time T if 20 are
spread out uniformly over the 200 sec. Combined with
ACT–R’s response assumptions, this predicts the Power
Law of Learning for the dependent measures of latency
and odds of recall.

An issue concerns specification of the lags of encounter,
the tj terms in the Base-Level Learning Equation 4.1.
There were two ways a chunk could be encountered, and
each way has its own definition of tj:

1. It can be created or merged. If it is encoded from the
environment, it is created at the moment when attention
moves to the object that this chunk encodes. It can be
recreated and merged into the original chunk if attention
moves to that object again. The lag tj for this is measured
from when attention moves to the object. If it is a goal
chunk, the first t1 is measured from when the goal was
created. If a subsequent goal chunk is merged with it, the
tj is measured from the time of the merging.
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2. It is matched to the condition of a production that
fires. In this case, the tj is measured from the time at the
start of the cycle when the pattern matching began.

An Example of Base-Level Learning

The preceding subsection described how declarative
chunks can gradually accrue base-level activation with
practice. Thus, as facts are practiced, they can come to
be more and more reliably retrieved. The consequences
of this gradual accrual of base-level activation are nicely
illustrated in a recent experiment by Zbrodoff (1995).
The first section of this chapter discussed a simple
addition model that would either retrieve an addition fact
(e.g., 3 + 4 = 7) or compute an addition fact by counting.
It is difficult to study such variation in adult subjects
because they tend to know their addition tables.
Therefore, Zbrodoff used an alphabet arithmetic task
developed by Logan and Klapp (1991) where people do
addition on the alphabet—for example, C + 4 = G,
because G is 4 past C in the alphabet sequence. Her task
involved subjects judging the validity of such alphabet
arithmetic problems. She manipulated whether the
addend was 2, 3, or 4 and whether the problem was true
or false. She had 2 problems of each of the 6 (3 × 2)
kinds for 12 problems. She also manipulated the
frequency with which problems were studied in sets of
24 trials. In the control condition, each of 12 problems
occurred twice per set of 24 problems. In the standard
condition, the +2 problems occurred three times, the +3
problems twice, and the +4 problems once.9 In the
reverse condition, the +2 problems occurred once, the +3
problems twice, and the +4 problems three times. Each
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block of her experiment involved eight repetitions of
these sets of 24 problems. There were three blocks for
576 problems in all.

Figure 4.2 presents the data from her experiment as a
function of the addend separately for each block (curves
within panels) and for each condition (across panels). As
can be seen in the control condition, subjects take longer
to solve the larger addend problems, times decrease with
practice, and the addend effect diminishes with practice.
In the standard condition, the addend effect is magnified
compared to the control condition. In the reverse
condition, the effect is diminished and even reversed
with enough practice. Zbrodoff explained this data by
assuming that subjects initially solve these problems by a
counting algorithm that produces the addend effect. With
enough practice, they come to store the answer and the
critical variable becomes how much practice that answer
has had.
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Fig. 4.2 Data from Zbrodoff (1995) showing the effect of
addend and practice on judg-ment time: (a) control
condition (b) standard condition, and (c) reverse
condition.

We simulated these data assuming the
computation-versus-retrieval model described earlier (in
the first section of this chapter). Basically, the model
used the same production set as in Table 4.1, except that
when counting or retrieval was done, the answer was
compared with the problem and a “yes” or “no” answer
was given. Thus, if the activation of the target fact was
above threshold, subjects would respond by retrieval.
Otherwise, they would count. In this model, practice has
two effects on response time. First, it increases the
probability of retrieval thus, bypassing computation.
Second, it decreases the time to perform the retrieval.

We fitted the model to the 27 data points in Fig. 4.2. Our
intuition was that the result largely depends on
computation switching to retrieval. Therefore, we set all
the timing parameters at a default of 1 sec (these timing
parameters were time to count up by one, intercept, and
retrieval scale factor F). We just tried to find values of
the threshold parameter τ and activation noise parameter,
s, that yield the best transition from computation to
retrieval (see Retrieval Probability Equation 3.7). These
values were τ = 2.27 and s = 0.66. The value of s is
consistent with other estimates.10 The overall R2 was .90,
which is good considering that just two parameters were
estimated. Figure 4.3 presents the predictions of the
theory from running 500 simulated subjects in each
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condition. It produces the same basic trends as are seen
in the data (Fig. 4.2).
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Fig. 4.3 Simulation of data from Zbrodoff (1995)
showing the effect of addend and practice on judgment
time: (a) control condition (b) standard condition, and (c)
reverse condition. Compare with Fig. 4.2.

This experiment nicely illustrates the potent effects of
practice on retrieval. Subjects switched in this
experiment from exclusive reliance on computation to
nearly exclusive reliance on retrieval. Although it was
this switch that produced the largest effect on latency,
practice also had a large effect on the relative retrieval
times. Comparing extremes, the mean time with which
subjects performed the retrieval decreased from about
100 msec in first block of the low-frequency conditions
(once per problem set for 8 presentations by block’s end)
to about 10 msec in the third block of the
high-frequency conditions (three times per problem set
for 72 presentations by block’s end).

More generally, Chapter 7, on list memory, reports how
these assumptions about base-level learning lead to
accurate predictions about human memory. The rises and
falls on base-level activation, illustrated in Fig. 4.1, serve
to capture much of the volatility of human memory.
Chapter 9 presents a much more extensive application of
ACT–R to the phenomena involved in cognitive
arithmetic. That model involves not just base-level
learning, which was used in this Zbrodoff simulation, but
also associative learning, described in the next
subsection.

Learning of Associative Strengths
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The strength of association from a cue j to a chunk i
adjusts the base-level activation of the chunk to reflect
how probable the chunk is in the context of the cue. The
associative strengths, Sji, are supposed to estimate a log
likelihood ratio measure of how much the presence of j
in a goal slot increases the probability that i is needed.
For example, the 4 + 8 = 12 fact (see Figs. 3.1 and 3.4)
becomes much more likely when 4 is in the goal. To
specify how ACT–R estimates Sji requires introducing
some new notation. Let G represent the event that j is in
a goal slot and Ni represent the event that i is needed.
Then, for the Activation Equation 3.5 to calculate log
posterior odds, Sji should be an estimate of the log
conditional probability ratio

where is the

probability that j is present in the goal, given that chunk i
is needed and is the probability that j is
present, given that i is not needed. ACT–R approximates
this ratio by

which is a measure of how more or less probable i is in
the context of j than its base probability. This
approximation can be justified by the observation that
conditionalizing the presence of j on the absence of
needing just one chunk i will change little
from P(Cj)because there are so many chunks. Adopting
this approximation for analytic convenience, this
subsection discusses how to calculate Sji For expository
convenience, we discuss how to calculate the quantity
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before the logarithmic transformation. That is, we
discuss how to calculate Rji where Sji = ln(Rji).

On the creation of a new chunk, i, the Rji are set to
default prior strengths Rji* that reflect guesses as to what
the strengths of association should be. The value of Rji*

will depend on whether; is connected to i in declarative
memory. It is considered to be connected if j appears as a
slot value element in chunk i. Thus, for example, 4 is
connected to the chunk encoding that 4 + 8 = 12.
Otherwise, they are considered unconnected. If they are
unconnected, Rji*= 1 (or equivalently Sji = 0), which
reflects the assumption that i is no more or no less likely
in the presence of; than its base probability. If they are
connected, the strength depends on the ratio between n,
the number of chunks connected to j, and m, the number
of chunks in declarative memory. As a default, it is
assumed that P(Ni |Cj) = 1/n (i.e., all chunks connected to
j are equally likely when j is present) and P(Ni) = 1/m
(i.e., all facts in declarative memory are equally likely).
Thus,

With experience, one gathers evidence about what the
true probabilities are. The empirical proportions are

and Pe(Ni) and are estimated from
frequency counts F. is defined as

where F(N
i

& C
j
) is the number
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of times i has been needed when j is present in a goal
slot and F(Cj) is the number of times; has been present in
a goal slot. Similarly, Pe(Ni) is empirically defined as
F(Ni)/F(i) where F(Ni) is the number of times i is needed
and F(i) is the number of production firings since i was
created. Rji is a weighted combination of the prior
estimate, Rji*, and the empirical ratio,

. A typical Bayesian
solution to such estimation problems is to take a
weighted average of the prior (weighted by some
constant assoc) and the empirical value (weighted by the
number of observations F(Cj)):

This is the same equation that was used in ACT–R 2.0.

Equation 4.3 implies the fan effect, which has played a
major role in other ACT theories and was discussed in
the previous chapter. The fan effect refers to the fact that
the time to retrieve trace i given a component j increases
as the number of memories associated to j increases. A
typical fan experiment might manipulate the number of
facts (i terms) a subject studies about a fictitious person
(j) and observe an impact on speed in recognizing any
fact. The number of facts studied will increase n in the
Prior Strength Equation 4.2 and so lower Rji*. Similarly,
as more facts are studied about a
person, any one will be less probable when the person
appears. This lowers Pe(Ni|Cj.) and so Eji
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Research on the fan effect has shown that with practice,
the critical variable in determining latencies becomes the
probability ratio, Eji and not fan, Rji* (Anderson, 1976, p.
287; Anderson & Reder, in press). For instance, suppose
that two facts are learned about the hippie and one of
them is “The hippie is in the park” and four facts are
learned about lawyer and one of them is “The lawyer is
in the bank.” Initially, subjects are faster to retrieve the
two-fan hippie fact than the four-fan lawyer fact because
there is only one interfering fact. This follows from the
Prior Strength Equation 4.2 where n is the differential
fan. However, suppose only one third of the time when a
fact about hippie is tested it is the “hippie in park” fact
and the other two thirds of the time the other hippie fact
is tested. In contrast, suppose half the time when a
lawyer fact is tested, it is “lawyer in bank.” Then, the
lawyer fact comes to be retrieved more rapidly.
According to the Posterior Strength Equation 4.3, this is
because the particular lawyer fact has a greater Eji than
the particular hippie fact.

In addition to predicting the fan effect, it turns out that
Posterior Strength Equation 4.3 implies priming effects,
whereby associatively related primes speed up access to
target information. Indeed, as reviewed in Anderson and
Milson (1989), there is a wide range of memory
phenomena that are predicted by the rational analysis of
memory underlying the equations we have reviewed.
ACT–R, embodying that rational analysis, inherits these
predictive successes.

LEARNING OF PROCEDURAL PARAMETERS
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The previous section described declarative learning,
where the critical questions were selecting what, if any,
chunks to retrieve and how fast to retrieve these chunks.
This section describes procedural learning, where the
critical questions are determining which, if any,
productions to fire (conflict resolution) and how fast
these productions will fire. A number of parameters
associated with a production rule determine its firing.
The strength parameter SP determines the time for the
retrieval aspects of a production rule firing. With respect
to conflict resolution, there are two probability
parameters, q (probability that a production is
successful) and r (probability of achieving the goal), and
two cost parameters, a (cost of executing the production)
and b (future costs after the production has fired until the
goal is achieved). In each case, the learning processes
produce statistical estimates of the appropriate quantities
that these parameters are supposed to reflect.

Production Strength

Production strength, SP, is an estimate of the log odds
that a production will fire in the next cycle. It increases
according to the same computation as does the growth of
chunk strength (See Base-Level Learning Equation 4.1):

where the summation is over the various time lags tj that
have passed since the uses of the production.11 As in the
case of chunk strength, ß is typically absorbed in other
parameter estimates.
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As in the case of chunks, the lags tj have two definitions.
One involves the situation where the production rule is
created (or recreated and merged with the existing rule).
In this case, the tj corresponds to the time since the
moment of creation. The other case is where an existing
production rule is fired. In this case, tj. corresponds to
the time since the start of the cycle when it fired.

Note that production strength influences speed of a
production if it is selected by conflict resolution, but it
does not determine whether the production is selected. In
the previous ACT*, speed and conflict resolution were
both determined by a single strength measure at the cost
of considerable confusion. ACT–R achieves greater
clarity by separating the measure of production-rule
success from frequency of use. In ACT–R, it is possible
to learn that a production rule is less successful and so
ACT–R will choose it less often, but still increase its
strength on its occasional use and so, come to execute it
more quickly.

Basically, ACT–R’s production-strength mechanism is
the equivalent of Thorndike’s Law of Exercise, whereas
its rules for learning probability and cost become the
equivalent of Thorndike’s Law of Effect (Thorndike,
1913). The research of Lovett (Lovett & Anderson,
1996) nicely illustrates the separation of these two
factors. She explored the effect of practice with
problem-solving operators that yield differential success.
Figure 4.4 shows her task, which she called the
building-sticks task. It is an isomorph of Luchins’
waterjug problem (Luchins, 1942; Luchins & Luchins,
1959). The goal in this task is to construct a stick of a
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particular desired length, given three stick lengths from
which to build (there is an unlimited supply of sticks of
each length). There are basically two strategies to use in
trying to solve this problem. The undershoot strategy is
to take smaller sticks and build up to the target stick. The
overshoot strategy is to take the stick longer than the
goal and cut off pieces equal in length to the smaller
stick until one reaches the target length. Lovett arranged
it so that only one strategy would work for a particular
problem and gave subjects problems where one of the
two strategies worked on a majority of the problems (and
she counterbalanced over subjects which strategy was
the more successful).

Fig. 4.4 Initial and successor states in the building sticks
task. From Lovett (1994). Reprinted by permission.

A later subsection describes an ACT–R model for her
choice data (for more details, see Lovett & Anderson,
1996, and Chapter 8). However, for the current purpose,
the interesting qualitative results concerned the subjects’
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choice among the two strategies and their speed of
choice. Showing sensitivity to the differential success
rate, they came to prefer the more successful strategy.
However, they also sped up on both strategies. They did
not speed up as much on the less successful strategy, but
this was because they chose it less frequently.

It is adaptive both to speed up on the less successful
operator and to choose it less frequently. One strategy is
more successful, and subjects are justified in having a
bias toward that strategy. On the other hand, both
strategies are increasing in their base frequency above
what they had been before the experiment. Thus,
subjects are justified in allocating more of their mental
resources into making both strategies run rapidly.

Production Rule Success and Cost

Which production is chosen is often more important than
how rapidly it is executed. The production selected is the
one with the highest expected gain. Figure 4.5 displays
the quantities that underlie the calculation of expected
gain. As Chapter 3 discussed, the expected gain of a
production is calculated as PG – C, where P is the
estimated probability of achieving the goal if that
production is taken, G is the value of the goal, and C is
the estimated cost of achieving the goal if that
production is taken. P is defined as the product of the
underlying parameters q and r. The parameter q is the
probability of successful execution of the production,
which includes successfully performing any retrievals
and achieving any subgoals. It is estimated as:
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Fig. 4.5 Representation of the quantities relating conflict
resolution decision to learning of production parameters.

The parameters Successes and Failures in this equation
refer both to events before the beginning of the
simulation and to outcomes after the beginning of the
simulation. Anderson (1993) used α to refer to the
number of prior successes, ß to refer to the number of
prior failures, m to refer to number of experienced
successes, and n to refer to number of experienced
failures. Then, the equation becomes:
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This formula can be viewed as giving a weighted
average of the prior probability, α/(α + β) and the
empirical proportion, m/(m + n). As the number of
experiences, (m + n), increases, the estimate of q
becomes dominated by the empirical proportion. A
similar function describes the estimation of r, which is
the probability that the goal will be achieved should the
rule successfully fire.12

ACT–R also uses statistical learning to estimate its cost
parameters a and b whose sum determines C. The
parameter a describes the expected effort spent executing
the production rule. This effort includes both the rule’s
retrieval time and its action time, which may be
significant if that action includes the fulfilling of a
subgoal. It is estimated as:

where Efforts is the total amount of time taken over all
past uses of the production rule, successful or failed. In
Anderson (1993), as in the case of the probability
estimates, these quantities were divided into prior costs
before the simulation and experiment costs after the
simulation. The parameter z refers to total prior effort.
Then the equation becomes:

This formula gives a weighted average of a prior
estimate z/(α+ ß) and empirical average of past efforts
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∑efforti/(m + n). A similar formula describes the
estimation of b except that the efforts going into ∑efforti
are further costs after the production executes until the
goal succeeds or fails.13

An important issue in learning r and learning b concerns
the scope over which these probabilities and costs are
defined. As the previous chapter discussed, r and b for a
production refer to all productions that fire after it that
are concerned with achieving its goal. When the goal is
popped, it is popped with either success or failure. The r
parameter for each production that fired in the sequence
that led to the goal being popped will be credited for the
eventual success or failure. The b cost assigned to a
production will be the time from which it fired until the
popping of the goal.

A frequent question asked about ACT–R is,”how does
one really know which productions were responsible for
a success or failure?” The goal structure enables ACT–R
to implicitly reason about this problem and restrict its
credit assignments to rules that were logically involved
in trying to achieve the current goal. Productions
involved in achieving subgoals of the current goal
receive blame or credit (for its b and r parameters)
according to whether the subgoal failed or succeeded.
Only the production that set the subgoal will receive
blame or credit (for its a and q parameters) according to
whether the suboal failed or succeeded. It certainly is
possible for an innocent production rule to be blamed for
the mistake of another one in achieving the goal.
However, it will get credit in successful sequences,
whereas the buggy rule will only receive discredit. It is
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also possible for a mistaken production to be on a line of
productions that lead to success because other
productions compensated for its mistake. However, it
will, therefore, be on a relatively costly path and
productions that more directly lead to the solution would
come to be preferred.14

Application to an Experiment About Learning
Conflict-Resolution Parameters

These ideas can be illustrated in a simulation of an
experiment by Lovett and Anderson (1996). We have
already introduced Lovett’s building-sticks task earlier in
this chapter with respect to Fig. 4.4. This is an isomorph
of Luchins’ waterjug problem, and one of Lovett’s early
experiments was based very closely on one of Luchins’
experiments. Subjects received a sequence of 15
problems:

Problem 1. This could be solved by either the overshoot
or undershoot method.

Problems 2–8. These could be solved only by the
overshoot method.

Problems 9–11. These could be solved only by the
undershoot method.

Problems 12–14. These could solved only by the
overshoot method.

Problem 15. This could be solved by either method and
indeed was identical to problem 1, although no subject
reported being aware of this.
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Figure 4.6 shows the results from this experiment. Two
basic factors determine the data in the figure. First, the
appearance of specific problems has a large effect and is
responsible for some of the ups and downs. For instance,
80% of the subjects choose to use undershoot on the first
problem. It is a problem where the undershoot option
gets one closer to the goal. The goal stick is 125 pixels in
length, the undershoot stick is 55 pixels and the
overshoot stick is 250 pixels. Thus, the undershoot stick
gets one to a distance of 70 pixels from the target,
whereas the overshoot stick gets one to 125 pixels.
Second, the history of success also has a large effect.
Across the seven problems (2–8) that are solved by
overshoot, there is an increasing tendency to choose
overshoot. This drops off as undershoot begins to be
successful (Problems 9–11) and picks up again as
overshoot resumes its success (Problems 12–14). On the
last problem, which is identical to Problem 1, subjects
now choose overshoot 53% of the time (rather than the
prior 20%), reflecting their greater history of success
with that operator.
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Fig. 4.6 Mean percent choice of overshoot in the first
experiment of Lovett and Anderson (1996). A dotted line
connects the data points and the solid line expresses the
theory.

To simulate subject behavior, we used the production
rules in Table 4.9. Other production rules were
responsible for executing the strategies and backing up if
blocked, but the ones in Table 4.9 represent the critical
decision-making productions. The full set of production
rules is available over the Web. Basically, there were
two productions to choose overshoot and two
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productions to choose undershoot. The Decide-Under
and Decide-Over productions decide on the basis of the
differences between the sticks and the goal (i.e., which
got closest to the goal), whereas the Force-Under and
Force-Over productions decide arbitrarily.

Table 4.9
Production Rules for the Building Sticks Task

Encode

IF the goal is to solve the BST task

THEN

calculate the undershoot difference between the
goal and the second largest stick

and calculate the overshoot difference between the
largest stick and the goal

Decide-Under

IF
the goal is to solve the BST task

and the undershoot difference is less than the
overshoot difference

THEN choose undershoot

Decide-Over

IF
the goal is to solve the BST task

and the overshoot difference is less than the
undershoot difference

THEN choose overshoot

Force-Under

IF the goal is to solve the BST task

THEN choose undershoot
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Force-Over

IF the goal is to solve the BST task

THEN choose overshoot

Figure 4.6 illustrates the predictions of the ACT–R
model for this task. There were three parameters
involved in fitting the data. The first modeled the
potential for misperceiving the problem. If du was the
undershoot difference and d0 was the overshoot
difference, we assumed that there was some normally
distributed noise in these perceptions and that the
probability of perceiving overshoot as closer was (using
a logistic approximation) :

We estimated s to be 18.2, which implies a standard
deviation of 33.0 pixels in the
perception of the differences d0 and du.

Depending on which way the problem was classified,
three of the four productions described above could be
chosen (one of the decide productions not being
applicable). Then, the choice among the productions
would be determined by their r probabilities of success.15

We set the α and ß terms of Equation 4.5 to 0.5 except
for the a for the two decide productions, which was a
free parameter to be estimated. This reflected the idea
that the subject had some prior experience favoring
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hillclimbing. This value of α was estimated as 14.61,
which means it was worth about 15 trials of success. The
applicable productions were chosen according to the
probability formula given in the previous chapter
(Conflict Resolution Equation 3.4). Every time a
production led to a success, it had its successes counter
increased and every time it experienced a failure, it had
its failures counter increased.

The final parameter involved the noise in the expected
gain. This controlled mapping of expected gain into
probability of choosing a production rule (Conflict
Resolution Equation 3.4). Assuming a value of G of 20,
the s parameter for the logistic distribution was .717,
which implied a standard deviation of 1.30.

Thus, the three estimated parameters were the noise in
perception of 33.0 pixels standard deviation, the noise in
evaluation of 1.30 standard deviation, and a for decide
productions of 14.61. The overall fit is quite good,
yielding an R2 of .866. The actual performance plotted in
Fig. 4.6 is the average of many runs and the behavior
varies from run to run.

On average, by the end of the experiment the probability
of success associated with Decide-Over had switched
from 0.97 to 0.95, Decide-Under from 0.97 to 0.78,
Force-Over from 0.50 to 0.83, and Force-Under from
0.50 to 0.72. These probabilities plus the noise determine
choice on the last problem. Note that these changes do
not involve a dramatic depression of the productions that
choose undershoot: The success for Decide-Under has
gone from 0.97 to 0.78, whereas the success for
Force-Under has actually gone up to 0.72. However,
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given the expected-gain noise, there is enough of a
difference between these undershoot productions and the
overshoot productions to produce the change in behavior
observed in the subjects. On problems where overshoot
appears closer, Decide-Over will usually apply. On
problems where undershoot appears closer, Force-Over
has a slight edge over the two undershoot productions
and will more often apply.

Optimality of Choice Behavior

We promised in the previous chapter that we would
return to the issue of the optimality of choice behavior.
Chapter 8, on choice, discusses this further, but we can
provide a preliminary discussion here in the context of
how the choice parameters are learned. People have been
characterized as probability matching in their choice
behavior, which means that they choose alternatives with
the probabilities that these alternatives prove successful
rather than exclusively choosing the most successful
alternative. As the previous chapter noted, describing
subjects as probability matching is somewhat simplistic.
Nonetheless, subjects typically do not absorb into a
behavior pattern where they only choose the most
successful behavior. As shown, the experiment just
simulated in Fig. 4.6, this is produced in ACT–R because
of noise in the choice evaluation.

There are a number of views of this noise in the
evaluation process. One is that it just reflects inherent
noise in the system and the subject is behaving as
optimally as would be allowed by their noisy systems.
However, this noise can also reflect our own ignorance
as to the controlling factors rather than problems within
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the subject. Thus, we saw in Fig. 4.6 that what might
appear to be highly erratic choice behavior is, in fact,
subjects’ responding reasonably to problem
characteristics. Indeed, even in simple two-alternative
choice situations some of the subjects’ behavior is in
response to apparently predictive patterns in the data
(Feldman, 1963; Jarvik, 1951). The subjects’
reliance on problem appearance in the building-sticks
task is not unreason-able. It turns out that the
experimental design frustrates this reliance, and subjects
learn to rely less on it. In other research, Lovett and
Schunn (1997) found that subjects can learn to
completely disregard a feature like distance from the
goal with enough negative experience. However,
attention to potentially predictive features can appear as
simple nonoptimality in the eyes of an experimenter who
fails to see the problem from the perspective of the
subject.

Deviation from just selecting the most successful
alternative has an adaptive function because it allows the
system to learn about its environment. If things change,
then one is not going to know this unless one
occasionally tries an alternative that has been less
successful in the past. A very simple form of this is the
two-armed bandit problem, studied in statistics (Berry &
Frisedt, 1985), where one has to choose between two
alternatives, each of which has a constant but unknown
probability of payoff. Even in such a simple constant
situation it is optimal to sometimes choose the
alternative that has displayed the lower payoff because
one might learn with more data that it really has the
better payoff. In an environment where things can
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change, it makes even more sense to sample the
alternative with the poorer track record (Goldberg,
1990).

In this regard, we should note that our description of the
ACT–R theory of conflict-resolution learning has
ignored a complication. To this point, all the past
successes are equally weighted in coming up with a
current estimate. However, as is reviewed in Chapter 8,
there is evidence that subjects discount their past
experiences, such that the most recent experiences are
weighted the most. In fact, the ACT–R simulation allows
one to discount experiences according to the same
summation rule that is used for the Base-Level Learning
Equation 4.1 and the Strength Learning Equation 4.4. In
this case the Successes and Failures appearing in the
Probability Learning Equation 4.5 are calculated:

and the Efforts appearing in the Cost Learning Equation
4.6 are calculated:

Our discussion in this chapter describes what happens
when d = 0 and there is no decay. Chapter 8, on choice,
describes an ACT–R theory that uses this decay for
successfully modeling a variety of choice phenomena.

The extreme version of a decay theory yields pure
probability matching. If only the last event is weighted
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significantly (because of rapid decay), this system will
simply choose what worked last. Thus, it tends to choose
alternatives in proportion to their frequencies of success.
Such a theory predicts that subjects always repeat the
last success. This prediction is too strong, but there is a
tendency for such short-term effects to hold. There is
also some tendency for subjects (human and other
organisms) to learn how stable their environment is and
to adjust more rapidly in a less stable environment. As
Chapter 8 reviews, many species in many situations are
sensitive to the timing of their successes and failures.

Thus, characterizations of probability-matching behavior
as nonrational are simplistic. First, people and other
organisms often deviate empirically from pure
probability matching. Sometimes, they settle down into
just selecting the more successful alternative, but more
often, they do not. However, to characterize the failure to
select just the more profitable alternative as nonrational
is a classic example of experimenter error. It assumes
that the subject’s representation of the situation should
be the same as the experimenter’s. The subject’s
behavior is shaped by an evolutionary history where the
goal was to succeed in the world at large and not in a
particular experiment. In that world at large, it makes
sense to pay attention to potential predictors of success
besides past success and it makes sense to be sensitive to
the potential for the world to change. ACT–R provides a
more robust approach, given the true complexity of the
world.
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1As in many cases, this is a restriction in theory rather
than implementation. To facilitate user exploration in
4.0, we allow users to create any chunks they want in a
production’s right-hand side. The simulations
corresponding to the models presented in this book tend
to observe the restriction of creating only goal chunks.
The chunk merging described in this chapter only applies
to goal chunks and not to other chunks that might be
created in the action of production.
2This is true in ACT–R as long as the retrieval
production is preferred in conflict resolution.
3However we want to withhold judgment about what is
the best ACT–R model for each of these demonstrations.
4It is also the case that a variable will be introduced if the
same term appears in multiple slots of the same chunk.
In this case, it serves as a test for identity of the slots.
5Note all the slots in the goal of Pop-Find-Sum are
variabilized. This is because they appear implicitly in the
action as slot values of the unchanged goal.
6Note that there is a list here. DEPENDENCY chunks
are the only case in ACT–R where lists are processed as
arguments. Although not illustrated in Tables 4.2–4.6,
one can have lists in the stack, specifics, generals,
dont-cares, differents, and constraints slots, in which
case all the elements are processed.
7The exact pattern of simulated predictions in Table 4.7
depends on the conflict resolution process and in
particular on the estimated noise in this process. For a
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more detailed understanding of this, the reader is
encouraged to inspect the running model on the Web.
8The term Wj can be thought of as reflecting the validity
of cue j. Lovett, Reder, and Lebiere (in press) have also
suggested that it reflects the capacity of an individual to
attend to a cue. In any case it is not subject to learning as
are the quantities Bi and Sji.
9This is called the standard condition because it appears
in the real world that small-addend problems are more
frequent than large-addend problems (Hamann &
Ashcraft, 1986; Thorndike, 1922).
10The value of τ is a bit hard to interpret unless one gets
into the details of base-level activation and associative
strengths for this experiment (see the end of Chapter 7
for a detailed discussion of the relationship between the
threshold and activation levels), but it can basically be
thought of as defining the best fitting 50th percentile
between computation and retrieval given all the other
parameters.
11The d in this equation need not be identical to the d in
Equation 4.1, although both default to 0.5.
12The default values for both q and r are α = 1 and β = 0,
which can be viewed as being optimistic about the
prospects of a new production.
13The default value of z is 0.05 for a and 1 for b. Because
α + β = 1 for both, a starts out at 0.05/1 = 0.05 and b at
1/1 = 1.
14 Dietterich (1997) intoduced a similar hierarchial
scheme to help guide reinforcement learning.
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15There is also some cost learning going on in this
experiment, but these effects are minor.
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The Visual Interface

John R. Anderson

Michael Matessa

Christian Lebiere

Carnegie Mellon University

Theories of higher-level cognition typically ignore
lower-level processes such as visual attention and
perception. They simply assume that lower-level
processes deliver some relatively abstract description of
the stimulus situation on which the higher-level
processes operate. This certainly is an accurate
characterization of our past work on the ACT–R theory
(e.g., Anderson, 1993). The typical task that ACT–R has
been applied to is one in which the subject must process
some visual array. The array may contain a sentence to
be recognized, a puzzle to be solved, or a computer
program being written. We had always assumed that
some processed representation of this visual array is
placed into declarative memory in some highly encoded
form, and we modeled processing given that
representation.

The strategy of focusing on higher-level processes might
seem eminently reasonable for a theory of higher-level
cognition. However, the strategy creates two stresses for
the plausibility of the resulting models. One stress is that
the theorists are granting themselves unanalyzed degrees
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of freedom by assuming a processed representation of
the input. They can choose ad hoc representations to
make their theories fit the data. It is not always clear
whether the success of the model depends on the theory
of the higher-level processes or on the choice of the
processed representation. The other stress is that the
theorist may be ignoring significant problems in access
to that information, which may be contributing to
dependent variables such as accuracy and latency. For
instance, the visual input may contain more information
than can be held in a single attentional fixation, and
shifts of attention (with or without accompanying eye
movements) may become a significant but ignored part
of the processing. To avoid these stresses we decided to
join the growing number of efforts (e.g., Kieras &
Meyer, 1994; Wiesmeyer, 1992) to embed a theory of
visual processing within a higher-level theory of
cognition.

The choice to focus on vision was largely strategic,
reflecting the fact that most of the tasks modeled in
ACT–R have involved input only from the visual
modality. To be more precise, most tasks have involved
processing input from a computer screen. Therefore, we
developed a theory of the processing of a computer
screen. However, although we started with a theory of
the visual interface, we have recently become concerned
with a more general theory of the coordination of
perception, action, and cognition. This more general
system is described in the next chapter on ACT–R/PM.
This chapter describes ACT–R’s visual interface and the
evidence for its connection to the cognitive system. The
visual interface is the most developed part of ACT–R/
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PM and major parts of it are incorporated into ACT–R/
PM.

The visual interface in this chapter and ACT–R/PM in
the next chapter reflect a general effort to close the gap
between the external world and ACT–R. This gap
reflects one of the few remnants of the era of informal
theorizing in psychology that can be found in computer
simulation models. Computer simulation models
typically specify precisely the internal operations that are
taking place in processing information but leave it
largely up to informal judgment to decide on exactly
what corresponds to the input and output of the theory.
We want to create a theory of these connections with as
much precision as the internal simulations. Such a theory
should remove anything implicit about how an ACT–R
model relates to the behavior obtained from subjects. To
accomplish this we are moving to having ACT–R
simulations interact with the same software that presents
the experiment to the subject. The ACT–R Visual
Interface was the first effort to do this and contained a
number of primitive actions to supplement the ACT–R
cognitive system. Basically, the visual interface allows
an ACT–R simulation to operate the computer
application just as a subject can. The simulation has
access to the same computer screens that the subject
sees, must scan these screens like a subject must, and
must enter keystrokes and mouse motions.1 The data
from the simulation are collected by the same software
that collects the human’s data and are subject to the same
analyses. The one difference between an ACT–R
simulation and a human is that ACT–R’s whole world is
the computer screen, the mouse, and the keyboard,
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whereas this is only a small part of the subject’s world.
Many of the simulations in this book can interact with
the same software the subjects used. With the exception
that there is not a human body in front of the terminal,
we would want to claim that the behavior of these
ACT–R simulations would be indistinguishable from
those of human subjects.2

One of the early dividends of this effort to develop a
serious theory of the processing of the external world has
been progress on the long-standing issue within the
ACT–R theory concerning the origins of knowledge. As
outlined at the beginning of the previous chapter,
ACT–R now has a theory of the origins of declarative
knowledge. This theory claims that all declarative
chunks are either past goals or encodings of objects from
the environment. Thus, ACT–R’s visual interface
provides it with a sensory basis for knowledge.

ACT–R’s visual interface consists of a theory of visual
perception and attention as well as their relationship to
higher-level cognition. It is important to define our
approach to visual attention and perception from the
outset: We require a theory of visual attention and
perception that is psychologically plausible, but it is not
our intention to propose a new theory of visual attention
and perception. Therefore, we have embedded within
ACT–R a theory that might be seen as a synthesis of the
attentional spotlight theory of Posner (1980), the
feature-synthesis theory of Treisman (Treisman & Sato,
1990), and the attentional theory of Wolfe (1994). The
resulting ACT–R theory of visual attention provides a set
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of motivated constraints on ACT–R models of
higher-level cognition.

Figure 5.1 provides a basic overview of the system.
There are three entities to be related: the ACT–R theory
of higher-level cognition, the environment with which
the system is interacting, (in ACT–R’s case, this is the
computer application), and an iconic memory, which is a
feature
representation of the information on the screen. As can
be seen, there is a limited number of actions that ACT–R
can take—it can issue keystrokes and mouse presses to
the computer, and it can move its attention around the
iconic memory. Wherever it moves its attention it can
synthesize the features there into declarative chunks,
which can then be processed by the ACT–R system. The
computer program that it is interacting with can issue
updates to the screen (and thence to the visual icon)
either spontaneously or in response to actions of
ACT–R.
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Fig. 5.1: Relationship among ACT–R, the environment,
and iconic memory.

The subsequent sections of this chapter flesh out this
basic description. The next section focuses on the theory
of visual attention, which determines what ACT–R
encodes from the screen. The section after that focuses
on the theory of pattern recognition that underlies the
synthesis of chunks that ACT–R can recognize. The final
section considers an application of this system to a
typical problem from the HCI literature.

Visual Attention

The ACT–R visual interface implements a feature theory
of perception. The information in the visual icon consists
of features, but ACT–R cannot process features directly.
It can only process chunks that represent the objects that
these features compose. In the ACT–R visual interface,
there is a variable-sized spotlight of attention that can be
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moved across the visual field. When the spotlight fixates
on an object, its features can be recognized as a pattern.
Once recognized, the objects are then available as
chunks in ACT–R’s declarative memory and can receive
higher-level processing. The following is a potential
chunk encoding of the letter H:

Object

isa VISUAL-OBJECT

screen-position (125 100)

value H

That is, it is represented as a visual object with a
particular value and screen position (125 100), which
gives the x-y coordinates of the object’s center. We do
not mean to imply that actual lists of integers are part of
the chunk representation. This is just a way of denoting
the stored locations. The next chapter, ACT–R/PM,
describes a different system where locations are encoded
as chunks.

In the ACT–R visual interface, on appearance of an
object in the visual field, the features composing the
object (e.g., the vertical and horizontal bars composing
an H) are available but the object itself is not recognized.
The system can respond to the appearance of a feature
anywhere in the visual field, but only when it has moved
its attention to that location can it
recognize the conjunction of features that correspond to
the object. For instance, it can respond immediately to a
vertical bar but can recognize an H only after moving
attention to that object. Thus, in order for the ACT–R
theory of higher-level processing to “know” what is in
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its environment, it must move its attentional focus over
the visual field. In ACT–R the calls for shift of attention
are controlled by explicit firings of production rules. It
will take time for ACT–R to encode visual information,
and ACT–R is forced to honor the limited capacity of
visual attention.

What information can ACT–R use to guide where it
looks on a screen? There are three types of information it
can use to guide where attention goes. One is that it can
look in particular locations and directions. The second is
that it can look for particular features. The third is that it
can look for objects that have not yet been attended. It
can conjoin these in scanning requests, asking for things
like “Find the next unattended pink vertical bar to the
left of the current location.”

This kind of search deserves a number of comments.
First, note that this request searches for a conjunction of
visual features (pink and vertical). It had at one time
been argued that attention could only be drawn by single
features (e.g., Treisman & Gelade, 1980). However, a
more current view is that attention can be guided by
conjunctions of features but that such conjunction
searches are more noisy (Wolfe, 1994). Second, ACT–R
can specifically restrict itself to unattended objects.
There is evidence that people have difficulty returning
attention to attended objects even if they want to (Klein,
1988; Tipper, Driver, & Weaver, 1991). Although
ACT–R can restrict itself to unattended objects, it is not
more difficult for ACT–R to attend to previously
attended objects than to previously unattended objects.
Thus, this “inhibition of return” is not modeled in
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ACT–R, nor are details such as the noise in attentional
component. At some point in time, ACT–R’s attentional
module might be extended to incorporate these details.
Right now it should be viewed as a system that is
consistent at a general level with what is known about
visual attention but that does not model the
microstructure of these attentional processes. As stated
earlier, our goal is to focus on how the cognitive system
uses visual attention.

A final general comment is that ACT–R can select the
scale of the features it looks for and the size of the object
it is recognizing. Thus, as shown later, ACT–R can
recognize either letters or words as objects. Also,
depending on how it sets its feature scale, it would
recognize either the H in Fig. 5.2 or the Xs that compose
it.
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Fig. 5.2: ACT–R can either see the Xs or the H,
depending on how it sets its attention scale.

The best way to understand how this theory works is to
study its application to various tasks that involve visual
perception. The next subsections describe ACT–R’s
theory of visual attention applied to the Sperling task, the
subitizing task, and the visual search task.

The Sperling Task

Sperling (1960) reported a classic study of visual
attention. Figure 5.3 illustrates the material he used in
one of his experiments. In the whole-report condition he
presented subjects with brief exposures (50-msec,
followed by a mask) of visual arrays of letters (three
rows and four columns) and found that on average they
could report back 4.4 letters. In the partial-report
condition he gave subjects an auditory cue to identify
which row they would have to report. Then he found that
they were able to report 3.3 letters in that row. As he
delayed the presentation of the auditory cue to 1 sec after
the visual presentation he found that subjects’ recall fell
to about 1.5 letters. Figure 5.4 shows his results as a
function of the delay in the tone. Subjects’ recall at a
second’s delay fell to about a third of the whole report
level because
they were only able to report as many items from the
cued row as they happened to encode without the cue.
This research has been interpreted as indicating that
subjects have access to all the letters in a visual buffer
but they have difficulty in reporting them before they
decay away.
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Fig. 5.3: Example of the kind of display used in a
visual-report experiment. This display is presented
briefly to subjects, who are then asked to report the
letters it contains.
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Fig. 5.4: Number of items reported for a row of four as a
function of the delay on the cue identifying the row.
Data from Sperling (1960).

This experiment and other subsequent research have two
dimensions of significance. One is information about the
limited duration of visual sensory memory. The general
importance of this limitation has been questioned
(Haber, 1983) because people seldom have to process
visual information given in 50-msec exposures. The
other significance is that it indicates how fast visual
attention can move over an array. This information is
quite relevant to many domains, including many
experimental tasks involving higher-level cognition. This
is why it is important to show that the ACT–R theory of
visual attention can model this result.

There is an ACT–R model of this task in which the
letters in the visual array are encoded by the visual
interface as sets of features grouped into unidentified
objects. When a report row has not been identified the
following production would apply:

Encode-Screen

IF
one is encoding digits without a tone

and there is an unattended object on the screen

THEN move attention to that object

Once a row has been identified, different productions
would fire depending on the tone. For instance, the
following production is responsible for reporting the top
row:
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Encode-Top-Row

IF

one is encoding digits and there is a high
tone

and there is an unattended object in the top
row

THEN move attention to that object

and there are similar productions for the middle and
bottom rows.

These productions call for attention to be moved to
unattended objects. When the production moves
attention to the location of that object, the letter is
recognized and a chunk created to encode it. If no tone is
presented, Encode-Screen will encode any letter in the
array; if a tone is present, productions like
Encode-Top-Row will encode letters in the cued row.
After the visual array disappears, the following
production is responsible for the report:

Do-Report

IF
the goal is to report the digits

and there is a chunk encoding an item

THEN report the item

This production will report only those letters that have
been encoded, because only these have a chunk
representation in declarative memory.

The number of letters encoded in the whole-report
procedure is essentially equal to the number of
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Encode-Screen productions that can fire before the
iconic memory of the letters disappears. Physically, the
stimulus is only presented for 50 msec, but the critical
issue is the duration of the stimulus or the “icon” in the
visual system. We estimate that it must be 4.4 times the
firing time per production because 4.4 items are recalled
on average. In fitting the data in Fig. 5.4, three
parameters were estimated. Two of these were the
duration of the icon at 810 msec and the time for each
production firing to move attention and encode another
digit at 185 msec. Note that 4.4 × 185 = 810.

To understand the fit to the data in Fig. 5.4, it is
necessary to think through how the advantage of the
partial report works. First, consider the situation before
the tone is encoded. Subjects have a 1/3 chance of
guessing the right row, in which case they will be able to
report the four letters. They
have a 2/3 chance of guessing wrong, in which case they
would only start encoding the row once they switched to
that row,3 There will be some delay in time for the tone
to be perceived and for attention to switch to the correct
row (note that in Fig. 5.4 subjects never report all four
items and are doing better given a 0.05-sec head start on
the tone than a simultaneous presentation). This is the
third parameter, the switch-over delay, which is
estimated to be 335 msec. This can be seen as 150 msec
to register the signal (the time for auditory signal to get
from the ear to being registered in the goal chunk) and
185 msec for an attention-changing production to fire
(same time as all other attention-switching productions).
Thus, the effective time spent encoding an array if the
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tone is presented t msec after the array will be 810 - (t
+335). Thus, the predicted number of digits reported is

or

Figure 5.4 presents the predictions of this model. As can
be seen, it does a nice job of simulating the data. The
ACT–R model of this task consists of the production
rules given plus a rule to switch from attending to
reporting. It actually predicts a two-legged function that
decreases linearly until the threshold delay is reached
(475 msec) and then is flat at the minimum of 1.33
items. The sharp bend in the function might well be
rounded by random variations in the exact duration of
iconic memory as well as by variability in the time for
production firing.4 However, the function gives the
essence of the theory and that theory does a good job of
accounting for the data. In part, it is implementing the
standard understanding of the data but it makes clear
both the control structure of the task (which is vague in
the standard understanding) and the need to postulate the
switching time (335 msec) to consistently account for the
data. For purposes of comparison with later modeling
efforts, the critical number is the 185 msec for switching
attention. This number comes directly from the slope in
Fig. 5.4. Every 185 msec the memory report is dropping
by 2/3 of an item.
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The Subitizing Task

In the Sperling task, time is controlled by the duration of
the iconic memory and the interest is in how many things
can be attended to in that time. Another way to measure
switching time for attention is to see how long it takes to
attend to a number of objects on a screen. One way to
get people to attend to all of the objects on a screen is to
ask them to say how many objects there are. This is
precisely what is done in a subitizing task (see the recent
discussion by Simon, Cabrera, & Kliegl, 1994) in which
a number of objects are presented to a subject and the
subject must identify as quickly as possible how many
objects are on the screen. Figure 5.5 illustrates the
classic result obtained (Jensen, Reese, & Reese, 1950) in
this task, which is that latency increases with the number
of digits to be identified. There is an apparent
discontinuity in the increase, with the slope being much
shallower until three or four items and then getting much
steeper. The slope is about 50 msec until three or four
items and approximately 275 msec afterwards. Figure
5.5 also shows the results from the ACT–R simulation
described later.
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Fig. 5.5. Amount of time to name the number of objects
in a presentation as a function of the number of objects.
Data from Jensen, Reese, and Reese (1950).

In the ACT–R subitizing model there are special
productions to recognize one object, two objects (as
lines), three objects (as triangles), and familiar
configurations of larger number of objects (such as five
on a die face), and there is a production that can count
single objects. This is the basic model
of the subitizing task that has been proposed by
researchers such as Mandler and Shebo (1982).5 Again,
what ACT–R adds to this standard model is an explicit
theory of the control structure. Table 5.1 gives some of
the productions used in modeling the task. Faced with an
array of objects, Start will move attention to some part
of the screen and the largest pattern will be recognized.
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This model has the capacity to see patterns of one, two,
and three objects. Depending on which pattern is
attended to, one of the productions See-One, See-Two,
or See-Three will apply to initialize the count. After that
point Attend-Another will move attention to other
unattended objects and Add-One will add 1 to the count.
When there are no more unattended objects, Stop will
report the count.

Table 5.1
Productions Involved in the Subitizing Task

Start

IF the goal is to count the objects starting from a
count of 0

THEN move attention to some object on the screen

See-One

IF
the goal is to count the objects starting from a
count of 0

and a single object has been attended

THEN initialize the count to 1

See-Two

IF
the goal is to count the objects starting from a
count of 0

and a line of two objects has been attended

THEN initialize the count to 2

See-Three
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IF
the goal is to count the objects starting from a
count of 0

and a triangle of three objects has been attended

THEN initialize the count to 3

Attend-Another

IF
the goal is to count the objects and the count is not
0

and there is another unattended object

THEN move attention to that object

Add-One

IF

the goal is to count the objects and the count is not
0

and another object has been attended

and X is one more than count

THEN reset the count to X

Stop

IF
the goal is to count the objects

and there are no more unattended objects

THEN respond with the count

There are a number of noteworthy aspects of this model.
First, it makes clear that successful performance of
subitizing depends on ACT–R’s ability to tag items in
the visual array as attended so that double counts are
avoided. Second, beyond three items, subitizing depends
on retrieval of counting facts. One could have an
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alternative model that aggregated additional items in
units larger than one. Thus, six objects might be counted
by twice attending to three objects and adding 3 + 3 = 6.
However, retrieval of such addition facts would be
slower than retrieval of counting facts because additional
facts are less well practiced. Also, the remaining objects
after the first group has been segmented may not
themselves form a group. The model in Table 5.1
predicts a flat function from 1 to 3 and an equal rise from
3 to 4 as from 4 to 5 and beyond—neither of which is
quite true. This may reflect some probability of counting
in the sub-three range and some probability of pattern
matching for four elements. Although the model could
be complicated to incorporate these ideas, it did not seem
worth it to make the points we wanted to with this
example. Moreover, the correlation between prediction
and data is already. 995.

The ACT–R model provides an accounting for the 275
msec slope that holds beyond four digits. There is a
185-msec time to switch attention to a new object as in
the Sperling model. In addition, we estimated a 90-msec
time to retrieve the counting fact in production
Add-One—”x is one more than the count.” Although
this 90 msec depends on other parameters controlling
declarative retrieval, it is consistent with ACT–R’s
model of cognitive arithmetic (see Chapter 9). Thus, the
275 msec represents 185 msec for attention switching
and 90 msec for fact retrieval.

A Visual Search Task

Another way to investigate the time to shift attention is
to display an array of objects and ask subjects to search
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among them for a target object. If one can manipulate
the number of objects that a subject must search through,
one can manipulate search time. The slope of the
function relating search time to number of objects
attended gives an estimate of the time to move attention.
This straightforward logic is complicated by the fact that
subjects
can select which objects to attend to on the basis of their
features. Thus, for instance, in looking for a red object,
subjects will not be affected by the number of green
objects in the array.

An example of such a paradigm and its complexities is
Shiffrin and Schneider’s (1977) study of visual search.
In their Experiment 2, subjects had to detect a target item
(number or digit) when it was presented in a visual
display of one to four items (frame size). The target
letter was in a memory set of one to four items (memory
set size). For instance, subjects might hold a memory set
of B and K and be asked if either element occurred in a
visual array that contained G, K, M, and F (in which case
they would respond yes). Subjects were either in what
was called the varied-mapping or the consistent-mapping
condition. In the varied-mapping condition both
distractors and the memory set items were letters (drawn
from the same pool on each trial), and in the
consistent-mapping condition the memory set was
composed of numbers and the distractors were letters
(therefore, they were always drawn from different
pools).

Figure 5.6a shows their results. Judgment times increase
with memory set size and frame size, but the effects are
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much stronger for the varied-mapping condition. The
frame-size effects show that subjects pay a cost for the
number of objects they must attend to. The size of the
memory set and the consistent-varied manipulation both
modulate the cost of the number of items in a frame.

Fig. 5.6a. Results of the simulation from Shiffrin and
Schneider (1977).

We developed an ACT–R model in which this per-item
cost reflects both
the fraction of the items they must attend to on the
screen and the time to judge those items that they do
attend to. It involved the following stages:

1. Preparation: Upon receipt of the memory the
model found a feature that was common to all
members of the memory set. If there was more
than one such feature, then the feature was
selected that was least frequent among the
distractors6. (There was always a “null” feature
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that all items had in common.) This defined the
target feature. The features used were those
proposed by McClelland and Rumelhart (1981;
we describe them in more detail in the next
section) plus one global feature to encode
whether the character was left-facing,
right-facing, or symmetric. This global feature
often proved to be most discriminative. Also,
because Schneider and Shiffrin claim that their
subjects developed an ability to automatically
discriminate letters from numbers, we added a
special discriminating feature for numbers.

2. Search: ACT–R directed attention to a location
on the basis of the target feature. On
presentation of the display, the system examined
all positions that had the target feature. If no
position had the target feature, it randomly
selected one position to look at.7 It would look at
more only if more than one position had a target
feature. This search was self-terminating in the
case of positive trials, but all positions with the
target feature had to be examined in the case of
negative trials. The first production that applies
to start the scanning is:

Encode-Object

IF
the goal is to search for an object with feature F

and an unattended object with feature F occurs in
location L

THEN move attention to that object
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3. Judgment: For each position examined, the model
decided whether that item was in the memory set. In the
case of the consistent-mapping condition this could be
done by simply judging whether the item was a number,
and this judgment could be done by a direct retrieval of a
category label. In the case of the varied-mapping
condition it was necessary to determine if the item was
in the memory set. This did not require a sequential
search but was done by a production pattern-match test
whose time increased with the size of the set. This is
analogous to existing ACT models for fan experiments
and the Sternberg task (see Chapters 4 and 7). The basic
productions for the two conditions are:

Judge-Consistent-Postive

IF
the goal is to search for an object with feature F

and object attended is a number

THEN pop the goal and respond yes

Judge-Consistent-Negative

IF
the goal is to search for an object with feature F

and object attended is a letter

THEN move attention to another object with feature F

Judge-Varied-Positive

IF
the goal is to search for an object with feature F

and object attended is in the memory set

THEN pop the goal and respond yes

Judge-Varied-Negative
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IF
the goal is to search for an object with feature F

and object attended is not in the memory set

THEN move attention to another object with feature F

Terminate-No

IF
the goal is to search for an object with feature F

and there are no unattended objects with feature F

THEN respond no

According to this model, the consistent condition enjoys
two advantages over the varied condition. First, only one
position will have to be examined because numbers have
acquired a unique feature through the extensive training.
In contrast, in the extreme condition for the varied
condition (frame size 4, set size 4, negative trial), an
average of 2.83 item positions had to be examined.
Second, one can judge whether an object is the target
simply by recognizing that it is a digit. In contrast, the
target set had to be examined during judgment in the
varied condition and this condition suffered a “fan”
effect (see Chapter 3) such that time was greater the
more letters in the target set.

The ACT–R model for this task was fit using the 185
msec parameter estimate for the time to switch visual
attention. In addition, the time to make a response was
estimated at 209 msec and the latency factor F was
estimated at 139 msec (which affected the varied
condition only). Finally, to account for the longer
negative times in the consistent condition, we estimated
a nondefault latency of 172 msec for
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Judge-Consistent-Negative. Figure 5.6b displays the
predictions of the model. The R2 between the data and
the predictions is .948 and the average mean deviation in
prediction is 39 msec. The parameter values are also
quite reasonable. The actual model is not very different
from the original Shiffrin and Schneider’s model. This
reflects a reoccurring theme in ACT–R modeling efforts,
which is that ACT–R often serves to implement theories
already out in the literature. ACT–R serves as a means of
integrating these models. For instance, the ACT–R
model fit the Schneider and Shiffrin data using the same
185 msec attentional shift estimate that was used for
other models in this section. It also used the same
memory search mechanism as used for the Sternberg
task in Chapter 7.

Fig. 5.6b. Result of the ACT–R simulation.

Conclusions
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This section has shown that the ACT–R theory is
consistent with some of the classic results from the
literature on visual attention. In each of three tasks the
ACT–R model fit the data assuming a time of about 185
msec to switch attention. In the Sperling task,
attention-switching is the only activity. In the subitizing
task, additional time is also required to set up and
increment a count. In the Shiffrin and Schneider task,
judgment time plays a significant role. In more
cognitively loaded tasks, other processes play still
more significant roles. However, every time visual
attention switches, approximately another 185 msec is
added to the processing time.

Pattern Recognition

Visual attention gets the system to process an object. The
pattern recognition module converts this object into a
chunk, which ACT–R can then process. We have used
the rational analysis of categorization (Anderson &
Matessa, 1992) to provide a theory of how objects are
assigned to patterns. This section briefly reviews that
theory and its application to pattern recognition.

The Rational Theory of Categorization

The fundamental equation of the rational theory of
categorization specifies the calculation of the posterior
probability that an instance with features F comes from
category k. The Pattern Recognition Equation states that
the posterior probability will be proportional to the
product of the prior probability and the conditional
probabilities:
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where P(k) is the prior probability of being in category k
and P(f|k) is the conditional probability of displaying
feature f given that the object comes from category k.
This quantity can basically be thought of as a match to a
category based on feature overlap. This equation is used
in the visual interface to determine the identity of an
object. Thus, if attention moved to the letter D the
following chunk would be created:

Obj 74

isa VISUAL-OBJECT

value “D”

screen-pos (75 100)

where the value slot encodes the category (in this case
the letter). The categories for recognizing visual objects
(in this example D) and their features are not things that
the visual interface dictates. They can be specified by the
user, although the visual interface does come with a
default set of features for letters and numbers. Also, like
the rational theory for
categorization, this theory of object recognition is not
intended as a process model of recognition. Rather, it is
just a specification of what chunk gets created to encode
the environmental object.

The theory of categorization is concerned with
predicting what categories subjects will assign objects to,
but in most of the ACT–R applications there is very little
uncertainty about what category an object should be
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assigned to. In typical experiments the stimuli are
familiar letters and words, and they are exposed
sufficiently long such that there is no confusion about
what was seen. Therefore, in most ACT–R applications
this aspect of the model is totally unproblematic. Thus,
in solving equations, for instance, subjects do not have
any question about what the numbers and letters are.

Nonetheless, one can get action out of the model by
degrading the stimuli or making them ambiguous or by
introducing novel stimuli. In these situations the
underlying theory of pattern recognition comes to the
forefront.8 The theory does apply to the recognition of
degraded familiar patterns, as when subjects are asked to
recognize brief and often masked presentations of letters
and words. The next subsection discusses one such
phenomenon from this literature.

The Word Superiority Effect

The word superiority effect has become a litmus test for
theories of perception. The effect refers to the fact that it
is easier to recognize a letter when it occurs in a word
context than it is to recognize a letter alone. Thus,
presented with a brief exposure of WORD (usually
followed by a mask), subjects are better at making a
forced choice between whether the last letter was D or K
(both of which make a word) than they are given a brief
visual presentation of a D and making a forced choice
between a D or K.

In a test of whether ACT–R’s pattern recognition
component could model this effect, we used the corpus
of four-letter words compiled by McClelland and
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Rumelhart (1981) and used the same features to define
letters that they used. When presented with a single
letter, ACT–R would try to recognize a letter pattern.
When presented with a four-letter string, it would try to
recognize a word pattern. It chose the word or letter that
was most probable according to Pattern-Recognition
Equation 5.1. This equation requires having a prior
probability P(k) of each word or letter, which was set to
a quantity proportional to the square root of the item’s
frequency (based on the work of Anderson & Schooler,
1991, investigating the relationship between frequency
in the environment and memory). Equation 5.1 also
requires the
conditional probabilities P(f|k) of the features given the
pattern. We set P(f|k) = .94 if f is a feature that should be
present for the pattern and P(f|k) = .04 if f is a feature
that should be absent. These values are rather arbitrary,
but they represent the assumption that it is more likely,
in a sloppy encoding, that a feature would not be
encoded than that a feature would be mistakenly
encoded. Although this seems like a plausible
assumption, the simulation results do not depend on it.
Moreover, ACT–R’s prediction of a word superiority
effect does not depend on the values assigned to P(f|k) or
P(k), although the actual level of the recognition rates
does.

When single letters were presented, the model
recognized letter patterns, and when words were
presented, it recognized word patterns. This was done by
changing the size of the attentional spotlight as discussed
earlier. This meant that for four-letter words, the model
was dealing with four times as many features as for
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pattern recognition. It based its response on either the
letter that it recognized in the letter condition or the word
it recognized in the word condition (from which it
extracted the letter). In the forced-choice procedure, it
chose the letter if it was one of the alternatives or
guessed randomly if not. Noise was introduced by
having a 25% probability of a feature being switched
(i.e., added the feature if it was not part of the letter and
removed it if it was) .9 The model’s error rate in the
letter condition was 37% and in the word condition 26%.
These are similar to the typical error rates and the typical
differences in studies of the word-superiority effect.

The word-superiority effect occurs in this model because
the word context provides more information (four times
as many features) for decision making and the signal is
consequently more reliable in the presence of noise. For
instance, if the subject only perceived the top half of the
D it would be ambiguous among many letters. However,
there is no ambiguity in the context of a word beginning
WOR_ as to the letter given this partial feature
information. This model assumes that subjects perceive
an object and do not have access to the basis of their
perception. Thus, given the top half of the D, a subject
might perceive R. Thinking they perceived R and given a
choice between D and K they have no option but to
guess; they do not have access to the features that gave
rise to the R perception and that would allow them to
choose between D and K. This is consistent with the
basic premise in the visual interface that ACT–R only
has access to the chunks encoding objects and not to the
perceptual features that define these objects.
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Application to Menu Selection Data

As part of writing a recent report on ACT–R for the
journal Human
Computer Interaction (Anderson, Matessa, & Lebiere,
1997), we were motivated to think about how ACT–R’s
visual interface would deal with the task of menu
selection. That article described a fit of ACT–R to some
menu selection data reported by Nilsen (1991) that had
been addressed in the same issue by the EPIC theory of
Kieras and Meyer. This is the first case of a model where
the visual interface is serving a significant role in a real
ACT–R application. The previous results reviewed in
this chapter served just to illustrate how the visual
interface realizes standard models of visual information
processing and to extract 185 msec as an estimate of the
time to switch attention. The menu search task is not
necessarily more complex than these earlier experiments
but does reflect a domain of application for which
ACT–R was intended. Many experiments modeled in
ACT–R do involve menu selection as a subtask (e.g., see
Chapter 11).

Fit to the Nilsen Data

Nilsen’s task involved selecting a digit from a menu of
the digits 1–9 randomly ordered vertically. The data to
be modeled is the time for subjects to move a mouse
from the home position above the menu to the target
item. Figure 5.7 shows the time for this action as a
function of the serial position of the item in the menu.
The best-fitting linear function to these data has a slope
of 103 msec per position.
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Fig. 5.7: Observed and predicted menu selection times.
Observed data are from Nilsen (1991).

These results depend on the fact that the items in the
menu are ordered
randomly. Because the subject does not know where the
target item is, a critical component to latency has to be a
serial search of the list looking for the target item.
Subjects tend to move the mouse down as they scan for
the target (we have mouse movement and eye scanning
data confirming simultaneous movement). Thus, once
they identify the target, the distance to move the mouse
tends not to vary much with serial position. Thus, when
the target position is unknown, time is dominated by
visual search. In contrast, if the position of the item was
known (as in a fixed-order menu), the critical latency
component might be a Fitts Law (Fitts, 1954) description
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of the motion. In this case, time would be a logarithmic
function of distance, and Nilsen has data from such a
condition that confirm this relationship.

ACT–R’s model for this task is essentially the same
model as proposed for the Shiffrin and Schneider data
(Fig. 5.6). We assume that, given a target, subjects
selected one of its features and scanned down the menu
for the first item with that feature. If this was the target
they stopped. If not, they scanned for the next item that
contained the target feature.

The two critical productions are

Hunt-Feature

IF
the goal is to find a target that has feature F

and there is an unattended object below the current
location with feature F

THEN move attention to closest such object

Found-Target

IF
the goal is to find a target

and the target is at location L

THEN move the mouse to L and click

The first production, Hunt-Feature, moves attention
down looking at objects that have a feature in common
with the target. The movement of attention to an object
will cause its identity to be encoded. If it is the target
letter, Found-Target can apply. The production
Found-Target will retrieve the location of the target and
move the mouse to that location.
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The time to reach a target will be a function of the
number of digits that precede it and have the selected
feature. Given the McClelland-Rumelhart feature set,
there is a .53 probability that a randomly selected feature
of one number will overlap with the feature set of
another number.10 Using the now standard estimate of
185 msec for a shift of attention, ACT–R predicts 185 ×
.53 = 98 msec per menu item, which is close to the slope,
103 msec, in the Nilsen data. The fit of the ACT–R
model to the data is illustrated in
Fig. 5.7. This is a striking demonstration of how the
ACT–R theory can be used to predict new data sets using
old parameters.

The Kieras and Meyer EPIC model is able to do an
equally good job assuming a model in which there are
eye movements every 103 msec. This seems an
improbable speed of eye movement, which is
conventionally set at about 200 msec (and in fact
subjects do not fixate each item). Kieras and Meyer
suggest an alternative model in which as many as three
items are processed in each gaze. Either of these models
would predict no effect of distractor similarity on search
time. The next subsection examines this prediction.

Effect of Distractor Set

A critical difference between ACT–R and EPIC is the
fact that ACT–R predicts an effect of distractor
similarity on time to search a menu. To test this
prediction, we performed a menu search task in which
subjects had to select either a capital letter or digit in a
background of letters or digits. There is a 53%
probability overlap of the number-on-number condition,
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39% in the number-on-letter condition, 42% in the
letter-on-number condition, and 43% in the
letter-on-letter condition. Thus, these overlap scores
predict that there will be less ability to use features to
guide search in the number-on-number condition.

Table 5.2 presents the results from subjects for menus of
size 9 as in the Nilsen experiment. As predicted by
ACT–R, subjects are significantly (F1,20 = 104.77; p <
.01) faster when the distractors are from a different
category than the target. This is a confirmation of
ACT–R’s conception of visual attention and a token of
its potential for modeling human-computer interaction
(HCI) tasks. Although the interaction is predicted, there
is one unexpected result in the data. This is the
significant effect of background, with subjects slower
(41 msec) in the presence of a letter background (F 1,20 =
29.96; p < .001). We have no explanation for this effect.

Table 5.2
Time to Select a Target in Different Backgrounds

Target Background

Number Letter

Number 1324 msec 1293 msec

Letter 1253 msec 1366 msec

The strongest prediction of the ACT–R theory is that
there should be a significant interaction between serial
position, target, and background.

Because there is a greater feature overlap in the
number-on-number condition than in any other, ACT–R
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predicts a steeper slope because it will have to consider,
on average, more distractors before the target. In fact,
there are significant interactions between target and
position (F8,160 = 6.49; p < .001), background and
position (F8,160 = 430; p < .001), and target, background,
and position (F8,168 = 2.18; p < .05). There are
significant differences among slopes, with 103 msec in
the number-on-number condition, 84 msec in the
number-on-letter condition, 80 msec in the
letter-on-number condition, and 82 msec in the
letter-on-letter condition. Thus, the basic effect is a
steeper slope in the number-on-number condition, as
predicted.

Figure 5.8 plots the predictions of the ACT–R theory for
number and letter targets holding constant the
background as numbers (because of the main effect of
background in the analysis of variance). ACT–R is
already committed as to the slopes in these cases. For
number targets it is 185 × .53 = 98 msec (actual slope is
103 msec) and for letter targets it is 185 × .42 = 78 msec
(actual slope is 80 msec). The only degree of freedom in
estimating this is the “intercept” when the serial position
is 1. This was
estimated as 927 msec. This is a striking confirmation of
the ACT–R analysis of menu scanning in comparison to
the EPIC model, which fails to predict these effects of
target-background interaction.
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Fig. 5.8: Observed and predicted menu selection times
for number and letter targets against a number
background.

Conclusions

This chapter has mainly looked at phenomena that are
concerned only with visual attention to establish the
general correctness of this theory. However, the issues of
visual attention are important to ACT–R because they
are involved in almost every task that ACT–R performs.
Visual attention plays a central role in a number of the
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following chapters that are concerned with specific
content areas. Much of our experimental research with
ACT–R is on skill acquisition, which involves the
evolution of more efficient scanning strategies. For
instance, Anderson, Matessa and Douglass (1995) and
Anderson and Douglas (submitted) showed that as
subjects repeatedly solve a fixed set of equations they
come to know where to look for critical information.
Haider and Frensch (in press) also showed that improved
scanning strategies are an important part of skill
development.

One of the important contributions of this chapter has
been to place visual attention squarely within the domain
of higher level cognition. Most existing research on
visual attention has looked at low-level peripheral
effects, ignoring that there is a mind guiding the eye. The
ACT–R model shows how a cognitive system can
control where the visual system is attending to achieve
its information-processing goals. In terms of ACT–R
principles, there is no difference between a production
that shifts attention to a location on a screen and a
production that retrieves an addition fact from memory.

1To be more precise, we pass an iconic representation of
the screen to ACT–R and enter events into the event
stream that correspond to keystrokes and mouse
movements.
2These simulations can be accessed at our Web site.
They are implemented in the more general ACT–R/PM
system—see Chapter 6.
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3This model assumes that once a subject starts reading a
row, the subject will continue to read in the row—this is
how ACT–R’s visual interface operates, in that it has a
bias to read left-to-right and top-down.
4In ACT–R/PM, there is the potential to introduce
variability in the actions—see the next chapter.
5Peterson, Morton, and Simon (1997) described an
ACT–R model of how these configurations are learned.
That model shows that there is nothing magical about
three or four. It is just that the combinatorics are such
that the number of possible configurations of more than
three or four objects is too many to learn.
6In the ACT–R simulation, we effect this selection
through base-level activation values.
7We assumed that subjects could not inhibit looking at
one position on the screen.
8Basically, in the ACT–R visual interface module, either
one can set a flag so that the pattern recognition process
is enabled or one can set the flag so that the letters and
words are directly represented in the visual icon rather
than the component features.
9Loss of features could be due to the brief presentation,
whereas erroneous features could be due to the mask.
10Unlike the Shiffrin and Schneider consistent mapping
condition, we did not assume that subjects had enough
practice or time to create a special feature that
discriminated numbers from letters.
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6
Perception and Action

Michael D. Byrne

John R. Anderson

Carnegie Mellon University

Experimental psychology has traditionally been
partitioned into separate subdisciplines, with surprisingly
little communication across the boundaries. Cognition
has traditionally occupied one subdiscipline, with
perception and action occupying another subdiscipline.
As a result, theories of cognition have typically
neglected the perception and action side of our everyday
experience. However, it is possible—even likely—that
cognition is con-strained by human perceptual-motor
capabilities. Furthermore, it is likely that perception and
action are constrained by cognition. If such constraints
exist, then by ignoring them, cognition researchers have
been negligent in their pursuit of a complete picture of
human cognition.

The goal of this chapter is to pave the way for
investigations into a more complete theory of cognition
that pays more than marginal attention to perception and
action. This theory is called ACT–R/PM (for ACT–R
Perceptual Motor) and consists of a set of modules for
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perception and action that are integrated with the
cognitive facilities of ACT–R. We believe this theory is
the most complete theory of cognition, perception, and
action to date. We demonstrate some of the potential of
this new architecture by modeling a task with both
perceptual-motor and cognitive demands.

Previous Approaches to Perception and
Action

Despite the traditional barriers between cognition and
perception and action, some limited work in integrating
the two subfìelds has gone on before. Much of this work
is motivated by real-world situations where perception,
action, and cognition routinely interact, such as piloting
an airplane. One of the better summaries of these efforts
can be found in Card, Moran, and Newell’s (1983)
Psychobgy of Human-Computer Interaction, which
presents a synthesis of work in this areas and a
framework for predicting cognitive/perceptual/motor
performance, the Model Human Processor (or MHP).
The MHP has been used to analyze and predict
performance on several complex tasks involving the
interleaving of cognition, perception, and action, such as
transcription typing (John, 1996) and call handling by
telephone operators (Gray, John, & Atwood, 1993).
Some attempts have also been made by the Soar
community (Newell, 1990) to incorporate perceptual/
motor constraints with a theory of cognition. An
excellent sample of other work in this area can be found
in Elkind, Card, Hochberg, and Huey (1990).
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Before describing the current approach to integrating
cognition with perceptual-motor capabilities, it is
instructive to review in more detail the foundation upon
which it is based. The current system is based on the
Visual Interface for ACT–R, which was described in the
previous chapter, and EPIC (for Executive Process
Interactive Control), a brainchild of Meyer and Kieras
(e.g., 1997). The Visual Interface was our first foray into
dealing with perceptual-motor issues. While we think it
has a number of insights, we also recognize that it is
incomplete in many ways. EPIC, on the other hand, is a
system designed primarily to model perceptual-motor
constraints, with cognition taking a somewhat peripheral
role. In some ways, the two systems have taken steps
toward one another, and ACT–R/PM is their synthesis.

The ACT–R Visual Interface

Work on ACT–R and perception/action has already been
presented in this volume (Chapter 5) in the form of the
ACT–R Visual Interface. The Visual Interface gives
ACT–R the ability to interact with simple computer
displays via a visual attention system and extensions for
mouse and keyboard manipulation. The Visual Interface
is capable of handling the relatively simple
perceptual-motor requirements typical of psychology
experiments, and has provided good fits to a number of
such experiments. This is an important step toward
removing the homunculus from the input/output aspect
of ACT–R. On the other hand, the Visual Interface is not
well suited for modeling tasks that have richer or more
demanding perceptual-motor components, which may be
more typical of tasks outside the laboratory. The Visual
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Interface needs to be expanded on three key dimensions
in order to more adequately model human cognition:

1. Parallelism. The Visual Interface enforces a
strictly serial model of cognition, perception,
and action. However, there is a significant
amount of parallelism possible, as, for instance,
when people move both the mouse and their
eyes at the same time. Also it is possible to
overlap cognition with perception and action, as
when one thinks about a problem while
navigating (walking, driving) to a destination.
Although we think cognition is basically serial,
as it is in ACT-R, one can clearly perform a
number of perceptual and motor operations in
parallel with it. The seriality in the visual
interface is not a significant limitation when one
is modeling tasks such as those in the previous
chapters where the logical structure of the task
eliminates opportunity for overlap. However,
many real-world tasks have this potential, and
people certainly take advantage of it. Many of
these tasks are of interest to researchers in the
psychological community.

2. Wider Range of Actions. The Visual Interface
supports only three basic motor operations:
mouse moves, mouse clicks, and keystrokes.
Although this is a useful set, it is limited in
scope. Furthermore, each motor operation in the
Visual Interface has a single execution time
associated with it; for example, every mouse
movement in a particular model may be set to
take 1.1 sec, regardless of the actual distance to
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be moved. Such approximations provide a useful
starting point, but a great deal more is known
about human motor performance and this
knowledge could and should be incorporated.

3. Dynamic Displays. The Visual Interface
presented in Chapter 5 allows ACT-R to “see” a
computer display, and represents an important
step in integrating ACT-R and perception. The
Visual Interface is a feature-based theory of
perception that has several important
capabilities, such as categorization-based object
recognition and the ability to interact with the
same experimental software with which human
subjects interact. However, this interaction is
limited in important ways. The Visual Interface
assumes that displays are essentially static.
Thus, if a screen object moves or only a portion
of the screen changes, the Visual Interface is
unable to correctly represent these new states of
the screen. For static environments in which the
task consists of viewing and reacting to a display
that does not change after it appears, this is
perfectly adequate. For even simple dynamic
tasks, however, this is considerably less than
optimal.

Thus, although the Visual Interface is a good “first pass”
at integrating ACT–R with perception and action, it is
still incomplete in several areas. An immediate and
obvious question, then, is whether integrating a strong
and more complete set of perceptual-motor mechanisms
with a production system such as ACT–R is feasible.
The answer is a resounding “yes,” as such a system,
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called EPIC, has recently emerged (Meyer & Kieras,
1997).

EPIC

EPIC consists of a series of individual “processors,”
each of which handles one aspect of the total
perceptual-motor-cognitive system. Most processors
handle a single aspect of one input or output modality;
for example, the Ocular Motor Processor handles only
the “output” of eye movement commands
. Figure 6.1 presents the system diagram, showing all of
EPIC’s processors.

Fig. 6.1 Overview of EPIC architecture.
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In EPIC, each processor works in parallel with the other
processors. Thus, EPIC can be outputting mouse
movements (handled by the Manual Motor Processor)
while simultaneously perceiving a new object on the
screen (handled by the Visual Processor) and computing
a stimulus-response mapping (Cognitive Processor).

EPIC is both exceptional and ordinary. It is exceptional
in that the designers of EPIC have gone to great lengths
to ensure that the various subcomponents of EPIC reflect
the most current knowledge, synthesized from the human
performance literature, about the timing information
appropriate to the input or output modality which they
control (Kieras & Meyer, 1996). There is a notable
exception, though, and this is where EPIC is ordinary:
the Cognitive Processor. EPIC’s Cognitive Processor is
based on a simple production system interpreter called
the Parsimonious Production System, or just PPS
(Covrigaru & Kieras, 1987). PPS, as the name suggests,
is a minimalist production system in several ways. There
is no conflict resolution mechanism, so all productions
that match on a given cycle fire in parallel. Production
matching is simple: All chunks in memory can be
matched instantly by all productions, meaning that
declarative memory is not “graded” in any way—all
chunks are either instantly available or not at all
available to productions. Nor does PPS contain any kind
of learning mechanism. This simplified model of thought
has been useful for modeling certain classes of
cognition, most notably transfer of routine cognitive
skills (Bovair, Kieras, & Polson, 1990; Kieras & Polson,
1985).
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In EPIC’s relatively short lifetime, it has been applied to
a number of tasks with great success: psychological
refractory period (PRP) experiments (Meyer & Kieras,
1997), various tasks from the human-computer
interacttion and human factors literature, including some
manual tracking tasks (Kieras & Meyer, 1997),
telephone operator interaction (Kieras, Wood, & Meyer,
1997), menu selection (Hornof & Kieras, 1997), and
others. These successes provide convincing evidence
that the effort put into the specific cation of EPIC’s
individual perceptual-motor processors has resulted in
faithful mirroring of the human perceptual-motor
system, at least at the level of movement specification
and timing (the details of how the motor system
executes, e.g., a mouse movement are not part of EPIC).

On the other hand, the tasks to which EPIC has been
applied have a particular flavor to them: They all have
very simple cognitive requirements. They all require
only the cognition necessary for “routine skill” (Card et
al., 1983) behaviors; that is, they do not involve problem
solving or even retrieval from long-term declarative
memory. Either the tasks are so cognitively simple that
these kinds of thinking are not required, or the subjects
are so skilled in the tasks that the demanding cognitive
components have been routinized, which is typical of
tasks from the human performance literature.

However, this is quite atypical of the tasks to which
ACT–R has been applied. Most of the tasks that have
been modeled with ACT–R have strong cognitive
demands for problem solving, learning, memory
retrieval, or some combination of those abilities. This is
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not to say that the class of tasks covered by EPIC is
trivial or uninteresting; however, ACT–R’s theory of
cognition is both more plausible and more complete. We
point out two examples of the problems that result from
EPIC’s minimalist approach to modeling cognition:

1. EPIC does not remember anything not currently
in view unless productions are written to
explicitly construct long-term representations of
the objects; that is, EPIC predicts that subjects
should be able to remember nothing about a
previously seen display if they were not warned
in advance that they would be asked to
remember the contents of the display. And if
they were asked, their memory for the display
should be perfect, also hardly a tenable
prediction.

2. Because productions can fire in parallel, EPIC is
left making predictions such as that a person can
simultaneously solve a mental arithmetic
problem and a mental multiplication problem.
Later in this chapter, we report a PRP
experiment that exposes EPIC’s problems in this
regard.

Thus, for the tasks EPIC was designed to model, it
contains an adequate approximation to human cognition,
but for more sophisticated tasks, such as those that have
been approached by ACT–R, EPIC’s model of cognition
is inadequate. The strengths of EPIC’s perceptual-motor
system, however, are hard to dismiss. A more complete
approach, then, could be to incorporate an EPIC-like
perceptual-motor system with ACT–R’s model of
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cognition. The next section describes just such an
approach.

A Theory of Cognition, Perception, and
Action: ACT–R/PM

ACT–R/PM has been designed and built to provide a
more complete psychological theory of human
performance, including serious consideration of both the
cognitive side and the perceptual-motor side of behavior.
The perceptual-motor system is conceptualized as a layer
between cognition (which consists of ACT–R’s
procedural and declarative memories and mechanisms)
and the external environment. That is, the environment
does not directly provide inputs to cognition, nor can
cognition directly influence the environment.
Communication between cognition and the outside world
is mediated by the perceptual-motor capabilities of the
system. The goal of this effort is to retain the positive
aspects of the ACT–R Visual Interface while
incorporating many of the advances in perception and
action found in EPIC.

In building ACT–R/PM, we integrated ACT–R with
much of EPIC’s perceptual-motor system. From ACT–R,
we took the theory of cognition and the Visual Interface
(see Chapter 5). From EPIC, we borrowed ideas and
components that ACT–R lacked: a richer system for
manual motor control, parallel operation of system
components, and timing parameters for speech and
audition. The resulting synthesis eliminates many of the
weaknesses found in ACT–R and EPIC. For example,
ACT–R had been unable to model tasks involving
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overlapping of perceptual-motor and cognitive
operations (e.g., the telephone operators in Gray et al.,
1993) and had a simplistic theory of motor movement.
These problems are addressed with EPIC’s parallelism
and Manual Motor Processor. On the other side of the
coin, EPIC’s cognitive parallelism and limited scope are
replaced by ACT–R’s serial but richer production
system. Hopefully, this should yield a
system capable of modeling both dynamic,
high-performance perceptual-motor tasks and
sophisticated cognition.

Like EPIC, ACT–R/PM contains several modules that
work in parallel with one another (see Fig. 6.2).
Productions send commands to the modality-specific
modules via right-hand-side actions. For example, to
shift attention in the visual array, a production would
send a MOVE-ATTENTION command to the Vision
Module specifying the new location to be attended.
Perceptual-motor modules output results in one of two
ways. First, they can create or modify chunks in
ACT–R’s declarative memory. Following up on the
previous example, once the Vision Module has executed
the requested MOVE-ATTENTION, a chunk
representing the visual object at that location will be
placed in declarative memory. The second kind of output
from the perceptual-motor modules is output to the
environment, such as keystrokes, mouse clicks, or
speech.
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Fig. 6.2 Overview of ACT–R/PM architecture.

Each module has several commands it can receive from
the cognition layer, as well as a connection to the
environment. The environment can be a simulated one
or, as with the Visual Interface, the same software with
which human subjects interact. Timing of a given
perceptual motor operator depends on the individual
module associated with that operator, which in turn
reflects a simple theory of the perceptual or motor
domain built into the module. Because of the
asynchronous nature of ACT–R/PM, different modules
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and the central production system can operate in parallel.
Thus, for instance, other productions can fire when a
movement command has been issued but not yet
completed.

The perceptual-motor layer is made up of four modules:
Vision, Speech, Motor (in particular, “manual” motor),
and Audition. They vary somewhat in their complexity
and completeness, with Vision and Motor being the most
developed, and Speech and Audition little more than
fragments of timing information. We describe these in
the following subsections.

The Vision Module

The Vision Module in ACT–R/PM is based on the
ACT–R Visual Interface described in Chapter 5, with
some implementational enhancements. As described in
the previous chapter, the Visual Interface is a synthesis
of Posner’s (1980) spotlight theory of attention,
Triesmar’s (Triesman & Sato, 1990) theory of feature
synthesis, Wolfe’s (1994) attentional theory, and
Anderson’s (Anderson & Matessa, 1992) theory of
rational categorization. Visual perception in the Visual
Interface, and thus ACT–R/PM’s Vision Manager,
roughly works as follows: the visual scene (a computer
display) is parsed into basic visual features, which are
stored in an iconic memory, or icon. Attention can be
directed to locations in the icon, where features are
synthesized by the rational categorization algorithm into
representations of visual objects in the form of
declarative chunks. This differs from EPIC’s visual
perception system primarily in that it is feature based
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rather than object based (see the fourth section of
Chapter 5 for an example of the ramifications of this
difference).

The Vision Module is a reimplementation of the Visual
Interface with several enhancements:

1. Besides encoding objects from the environment
it also encodes locations. This gives ACT–R a
location-based as well as an object-based
representation of the environment. This makes it
easier to reason about locations and direct
attention to locations. For instance, it is possible
to direct attention to a location and encode the
fact that there is no object at that location.

2. The Vision Module allows productions to
discriminate between the current state of the
visual system and past states. Under the old
Visual Interface, when a chunk was created to
represent a visual object, it was often impossible
to tell if that chunk was the currently attended
chunk or a memory of a previously attended
chunk.

3. The Vision Module can now handle movement
and change. The Vision Module can be
instructed to track moving objects, can adjust to
very small movements of objects it is trying to
attend to, and can correctly identify objects that
it has already attended to on changed displays.
All of these features help support cognition in
dynamic environments.
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These enhancements are primarily designed to make it
possible to use the Vision Manager to model tasks with
dynamic displays in which objects move and/or
disappear and do not represent substantial changes to the
underlying theory. Overall, the Vision Module can be
thought of as a more comprehensive visual system than
the Visual Interface, while building on the foundation
laid by the older system.

The Motor Module

ACT–R/PM’s Motor Module is based directly on the
specifications described in Kieras and Meyer’s (1996)
description of EPIC’s Manual Motor Processor. Taking
advantage of the parallelism built into ACT–R/PM, ACT
can now issue motor commands and then fire other
productions while the Motor Module performs the
requested action. Actions typically have several
parameters, such as hand (left/right) and location.
Performing an action is divided into two phases,
preparation and execution. The Motor Module can only
prepare one movement at a time; requests by the
cognition layer to prepare another movement while one
is in preparation are ignored.

The preparation phase of movement performance occurs
when a com-mand is received and the Motor Module is
computing the parameters necessary to actually execute
the movement. The duration of the preparation phase
depends on the difference between the specification of
the previous movement and the current movement. If the
current movement is identical to the previous movement,
no preparation is necessary. If there are differences,
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however, then the preparation time depends on the
number of new features that need to be prepared. Some
action types, such as PUNCH (the simple
downstroke-upstroke of a finger at its present location on
a keyboard), require three features to be prepared: the
type of movement (PUNCH), the hand, and the finger to
use. However, if the last action was also a PUNCH, then
the movement type does not need to be prepared,
cutting down preparation time. Similarly, if the last
action was also a PUNCH and the last hand is the same
as the currently specified hand, then only one feature
(the finger) needs to be prepared. Other movement types,
such as MOVE-CURSOR, use a similar hierarchical
sequence to determine the number of features that
require preparation. ACT–R/PM continues the EPIC
convention that features are prepared at a rate of 50 msec
per feature.

After movement preparation completes, movement
execution begins. The time taken for movement
execution depends on the characteristics of the
movement to be executed. Simple down-up keystrokes
take a fixed time, whereas movements that require
positioning of a hand or finger to a new location take
time according to Fitts’s Law (e.g., Fitts, 1954; Card et
al, 1983), given in the Fitts Equation:

where d is the distance to be moved, w is the width of the
target, and k is a constant that depends on time scale and
the specific type of movement to be performed (e.g.,
finger point vs. mouse move vs. joystick move). The
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value of k for a mouse move is typically 100 msec/bit.
This model of hand movement as preparation of features
followed by execution of movement governed by Fitts’s
Law is borrowed from EPIC (especially Kieras &
Meyer, 1996), based on various summaries of work on
motor movement (e.g., Rosenbaum, 1980).

The Audition and Speech Modules

The Audition and Speech Modules give ACT–R/PM
rudimentary abilities to process sound and speech, but
they are not yet fully developed. The Audition Module is
designed to work similarly to the Vision Module. There
is a store of features called the audicon, and these
features can be transformed into ACT chunks by way of
an attention operator. Features in the audicon are, of
course, not things that have spatial extent like visual
features, but instead have temporal extent—they are
sound events. These events have onsets and offsets, take
some time before they can be detected by the Audition
Module (called the content delay), and take time to be
encoded into chunks (the recode time). Basic kinds of
simulated sounds currently supported are tones, digits,
and simple strings. Finally, the audicon has a decay
parameter, a time delay computed from sound offset
after which the sound is no longer available to the
Audition Module, and therefore to ACT–R.

The Speech Module gives ACT–R/PM a rudimentary
ability to speak, This system is not designed to provide a
sophisticated simulation of human speech production,
but to allow ACT–R to speak words and short phrases
for simulating verbal responses in experiments. The
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Speech Module understands only one command,
SPEAK, to speak specified text. Speech output works in
much the same way as motor output: Speech is first
prepared and executed. Preparation is assumed in this
case to be fixed at two movement features (as per EPIC)
before detectable vocal output occurs, and execution
time is determined by the length of the string.

Clearly, the Speech and Audition Modules will require
considerable work before they are able to model
complex listening/speaking experiments, but they do
provide a system that allows hearing of simple stimuli
and responding with simple short responses, which
represents a considerable percentage of psychology
experiments that use audio and speech, particularly those
based on brief reaction times.

The Theory at Work: Psychological
Refractory Period

One of the original motivations for constructing ACT–R/
PM as a parallel system was to enable ACT–R to model
experiments in which subjects clearly overlapped
processing. Probably the simplest experimental paradigm
for which there is evidence for such overlapping is PRP
experiments. EPIC has been extensively applied to PRP
tasks, and therefore they offer an excellent domain for
comparison with ACT–R. Before delving into the
relationship between ACT–R/PM and PRP experiments,
some familiarity with the PRP paradigm is required.
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PRP Basics

PRP experiments are among the simplest dual-task
experiments conceived by experimental psychologists
and have a long and rich history (see Pashler, 1994, and
Meyer & Kieras, 1997, for excellent reviews of the PRP
literature). Interest in PRP experiments grew out of
interest in more complex everyday dual-task behavior,
such as carrying on a conversation while driving a car.
Because such complex tasks are difficult to analyze in
the laboratory, the essence of dual-task behavior was
boiled down to the simplest dual-task situation,
represented by PRP experiments. PRP tasks can be
thought of as discrete, special cases of the more
continuous real-world tasks. If limitations on
dual-tasking ability appear in these simplest cases, then
they should certainly appear in more complex situations.

PRP experiments require subjects to perform two tasks,
usually called Task 1 (T1) and Task 2 (T2), which
consist of simple responses to the presentation of simple
stimuli. Typically T1 and T2 are choice reaction tasks
(e.g., say the word “high” upon detection of a
high-pitched tone or the word “low” for a low-pitched
tone), and the stimulus modality, response modality, and
task difficulty are often manipulated in PRP
experiments. Subjects are explicitly instructed to
complete Task 1 before completing Task 2. Finally, there
is a delay between presentation of the T1 stimulus and
the T2 stimulus, called the stimulus onset asynchrony
(SOA). Response times of PRP experiments are typically
plotted as a function of SOA, as in Fig. 6.3, which
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represents more or less typical results of many PRP
experiments.

Fig. 6.3 Typical results of a PRP experiment.

There are several things to note about the graph in Fig.
6.3. First, note that T1 is unaffected by SOA, a typical
PRP finding. This makes sense in that subjects are
instructed to give Task 1 priority over Task 2, and flat
curves for T1 are taken to mean they have done just that.
Second, notice the curve for T2 (called a PRP curve).
The T2 reaction time is elevated at short SO As and
gradually falls until it is more or less flat as well. The
elevation at short SOAs, called the PRP effect, indicates
some kind of delay in responding to T2 and is the source
of the term psychological refractory period. The PRP
effect has been used to argue for a variety of limitations
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and properties of the human cognitive-perceptual-motor
system, including bottlenecks of
various kinds (see the reviews for exhaustive discussions
of this and numerous other debates PRP experiments
have sparked).

The curves also suggest some kind of parallelism—as
with most PRP experiments, the T2 reaction time at very
small (or zero) SOA is typically measurably less than the
sum of T1 and T2 reaction times at long SOAs. If the
human system were completely serial, at SOA zero, the
T2 response time should be the simple sum of the T1 and
T2 base reaction times, but it is usually found to be less
in PRP experiments. Thus, there must be some kind of
overlapping of the Task 1 and Task 2 processing.

Another factor that has received a great deal of attention
in PRP experiments is the difficulty of Task 2. If Task 2
difficulty is manipulated by simply increasing the
demands of the cognitive component of the task, then
different predictions emerge about what should happen
to T2 response time. If ACT–R is correct about the serial
nature of cognition, then the data would more or less
correspond to the predictions of the “response selection
bottleneck” model proposed by Pashler (e.g., 1994). This
model proposes that the cognitive processing of Task 2
cannot overlap with the cognitive processing of Task 1,
so making Task 2 more difficult will often have the
effect of simply moving the T2 PRP curve up uniformly
at all SOAs. An illustration of this logic appears in Fig.
6.4. The figure represents the sequences of Task 1 and an
“easy” and “hard” version of Task 2, with Task 2
difficulty reflected in longer times for the cognition part
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of the task. Figure 6.4a shows what can happen at short
SOAs. Although cognition for Task 1 and perception for
Task 2 can be overlapped, the cognitive component of
Task 2 must wait for the cognitive component of Task 1
to complete before it can begin. At longer SOAs,
depicted in Fig. 6.4b, cognition for Task 2 can proceed
as soon as Task 2 perception is complete. Notice that in
both cases, the longer cognition time for the hard version
of Task 2 is reflected in the response times.
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Fig. 6.4. Schematic illustration of stages of processing in
the central bottleneck model of the PRP effect, at (a)
short and (b) long SOAs.

In contrast, the parallel cognition module in EPIC
predicts that, in certain cases, this is not what should be
observed. Because the cognitive processing for Task 1
and Task 2 can be done in parallel in EPIC, EPIC
predicts that there are many cases in which difficulty and
SOA should interact. In particular, the EPIC–SRD model
(Meyer & Kieras, 1997; SRD stands for strategic
response deferment) predicts that the difficulty effect
should disappear (or be greatly reduced) at short SOAs
when Task Ts perception and response selection
(cognition) completes later than Task 2’s perception and
response selection. Under these conditions, because Task
2 is proceeding during Task 1 processing, Task 2 is
“waiting” for Task 1 to finish, and the difficulty effect is
absorbed into the wait time. This logic is depicted in Fig.
6.5, which again represents two sequences of Task 1
with both an easy and hard Task 2. Figure 6.5a
represents the situation at short
SOAs when Task 1 perception and cognition takes
longer than perception and cognition for Task 2. Because
cognition for Task 1 and Task 2 can be done in parallel
in EPIC, the Task 2 response time is unaffected by Task
2 difficulty—the difficulty effect is said to be
“absorbed.” At longer SOAs, however, when Task 2 is
not waiting for Task 1 to finish, the difficulty effect
reappears, as depicted in Fig. 6.5b.
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Fig. 6.5. Schematic illustration of stages of processing in
the EPIC PRP model, at (a) short and (b) long SO As.

Clearly, EPIC and ACT–R disagree about what should
happen in case where Task 1 perception and cognition
take longer than Task 2 perception and cognition. Thus,
modeling a PRP experiment seems like a good initial
testbed for ACT–R/PM, providing the opportunity to test
its ability to overlap cognition with perceptual-motor
activity and potentially testing one of the central claims
of ACT–R, the serial nature of cognition.
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A Simple PRP Model

We decided first to apply ACT–R/PM to a PRP
experiment which lacked any significant cognitive
component. This would illustrate how ACT–R/PM
applies to such a task and how its noncognitive
components are totally determined. For this purpose, we
chose to first model data from Karlin and Kestenbaum’s
(1968) PRP study (Experiment 1, 2–2 condition). As the
longest observed mean response time in this study is just
over 500 msec—hardly enough time for much
cognition—this should provide a good test of the
low-level integration between cognition and perception/
action in ACT–R/PM.

In this study,1 the participants had extensive practice
with two tasks, both of which were choice reaction time
tasks. For Task 1, participants were briefly shown a digit
on a display, with the digit being either a 1 or a 2. If the
presented digit was a 1, participants were to respond by
pressing a key with the little finger of their left hand,
whereas for a 2 the key was pressed with the ring finger.
Task 2 was also a two-choice reaction with button-press
responses. Participants heard either a low tone (600 Hz)
or a high tone (3000 Hz) and responded with a
right-handed button press, either with the middle or
index finger, respectively. Twelve different SOAs were
used, ranging from 90 to 1150 msec. Results are
presented in Fig. 6.6.
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Fig. 6.6 Results from Karlin and Kestenbaum (1968)
Experiment 1, 2–2 condition.

The results here are fairly typical in that the curve for
Task 1 is essentially flat and the curve for Task 2 is
elevated at short SOAs and flat at longer SOAs. Notice
also that this exhibits dual-task savings. If the tasks were
performed purely sequentially, the fastest expected Task
2 response time at the 90 msec SOA would be the Task 1
mean time, 383 msec, plus the fastest Task 2 time, 284
msec, minus the SOA of 90 msec, for a total of 577 msec
(383 + 284 – 90 = 577). The observed mean, however, is
514 msec, meaning that there is approximately 60 msec
of overlap to account for. This would have been
impossible for older instantiations of the ACT theory,
which serialized not just cognition but all activity.
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The ACT–R/PM model handles the experiment with four
productions (one for each stimulus in each task), which
simply map results from perception onto motor
commands. From the cognition standpoint, nothing
happens until the digit is recognized. When it is, the
appropriate production fires and sends the corresponding
motor command and sets a marker in the goal enabling
the Task 2 productions. These productions do essentially
the same thing, one for the high tone and one for the low
tone. However, the Task 2 productions do one other
thing at short SOAs—they wait. They are
forced to wait because at short SOAs, the motor
command for Task 1 is still being prepared by the Motor
Module, which is only allowed to prepare one command
at a time. Thus, the Task 2 command is not sent until the
Task 1 movement has been initiated, which ensures that
the Task 2 response does not precede the Task 1
response, as per the task instructions.

Table 6.1 shows the timing involved in performing the
two tasks. There is an initial 135 msec to encode the
digit,2 50 msec for the appropriate production to fire to
request the keypress, 150 msec for the features of that
action to be generated by the Motor Module (three
features: punch, left hand, ring/little finger, each taking
50 msec), 50 msec to initiate the action, and 10 msec for
the key close to register. In the case of the second task,
there is 50 msec for the tone to be detected, 50 msec for
the production, 100 msec to prepare movement features
(two new features—right hand, index/middle
finger—each 50 msec), 50 msec for initiation, and 10
msec for the key close to be detected. Except for the
visual encoding time and
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the 50 msec production time, all of these latencies are
taken from EPIC. The productions for the second task
wait until the initiation of the first action. Thus, as
illustrated in Table 6.1, the overlap between the two
tasks is the 50 msec to detect the tone in Task 2 and the
10 msec to register the key closure in Task 1.

Table 6.1.
Sequencing of the Karlin and Kestenbaum Model

Figure 6.7 presents the fit of the model to the data.
Overall, the fit is a good one, although the model slightly
underpredicts the Task 2 response time, particularly at
intermediate SOAs where the curve is flattening out.
However, the fit is impressive in light of the fact that it is
essentially a zero-parameter fit. That is, no parameters
were estimated to fit the model to the data; the default
values for all timing parameters were used without
adjustment.

321



Fig. 6.7 ACT–R/PM model fit of the Karlin and
Kestenbaum data.

The lesson to take from this example is how the
specification of the task dictates the degree of
parallelism and degree of seriality. The perceptual
modules, the motor module, and cognitive system can all
run in parallel. However, when multiple demands are
made on one of these systems we get seriality. In this
case, multiple demands are being made of the motor
system for manual action, and one must be postponed
until the other is ready. EPIC has this sort of seriality
built into it in terms of its use of perceptual and motor
modules. However, it does assume unlimited parallelism
in terms of its use of the cognitive production system.
This turns out not to be an issue in the Karlin and
Kestenbaum experiment because there is no overlap
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between the two single productions that fire. In the next
experiment we look at a situation where there is the
possibility of cognitive overlap and hence we can
discriminate between the two theories.

A Cognitive PRP Experiment

The Karlin and Kestenbaum experiment is typical of
PRP experiments, making use of simple tasks such as
choice reaction time (but see Carrier & Pashler, 1995,
for an exception). Such cognitively lean experiments do
not map closely onto what has been the main goal of
ACT–R, which is the modeling of higher-level human
cognition. In order to make PRP experiments more
cognitive, we have selected two relatively simple tasks
that also include an important cognitive component:
memory retrieval. ACT–R has a strong theory of
memory retrieval based on the activations of declarative
units and spreading activation from the goal. Thus,
including a retrieval component augments the simple
perceptual-motor requirements of the typical PRP task to
provide a true perception-cognition-action experiment.
One of the most developed theories of retrieval with
ACT–R is in the domain of arithmetic (Chapter 9, this
volume); therefore, we chose single-digit multiplication
and addition as the two tasks for our experiment. This
allowed us to manipulate the difficulty of Task 2 by
varying the size of the operands involved in the problem.
Finally, we wanted to test the EPIC-SRD prediction of a
reduced difficulty effect at short SOAs.
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Methods

Participants. Participants were 29 Carnegie Mellon
undergraduates who participated for credit in a
psychology course.

Stimuli and Procedures. Participants were presented
with two tasks: multiplication as Task 1, and addition as
Task 2. The multiplication task consisted of the audio
presentation of two one-digit numbers, to which
participants were to respond verbally with the product of
the two numbers. Each number was digitized audio of a
person’s voice, and the audio clips were normalized for
volume and length, which was fixed at 400 msec. There
was a 500-msec pause between the completion of the
first audio clip and the onset of the second clip.

Multiplication problems were randomly generated and
used the numbers from one to nine. Problems never used
the same number for both multiple cands, the number
one was never the first digit presented, and participants
never received the identical problem on consecutive
trials. Response time for the multiplication task was
measured from the onset of the second digit to the
detection of the spoken response.

The addition problems were single-digit addition
verification problems, presented visually. Each problem
consisted of an addend, the plus sign, the second addend,
the equals sign, and a result, such as 6 + 3 = 10. If the
result was the correct answer to the addition problem,
participants were to respond by pressing the 6 key on the
numeric keypad section of the keyboard. If the result was
incorrect, participants were to respond by pressing the 4

324



key on the numeric keypad section of the keyboard.
Participants were instructed to use two different fingers
(to prevent hand movements) of their right hand for the
two keys.

Again, addends were randomly selected digits with the
constraint that digits were not repeated within a problem.
For foils, the result was off from the correct answer by 2,
1, –1, or –2, and the amount of deviation was randomly
selected.

As is standard for PRP experiments, participants were
instructed to respond to the first task (multiplication)
first. The experiment software rejected addition
responses that occurred prior to multiplication responses
to further enforce this constraint.

Participants first completed 120 practice trials consisting
of 40 multiplication-only trials, then 40 addition-only
trials, and then 40 dual-task trials. After practice,
participants received three blocks of trials. Each block
was divided into five sets of 40 trials: one
multiplication-only set, one addition-only set, and three
dual-task sets. Ordering of sets within a block was
random.

Design. For multiplication-only trials, there was a
single within-subjects factor, block, with three levels.
For addition-only trials, there was the same block factor
and an additional two-level difficulty factor; trials were
either “easy” or “hard.” For easy problems, each addend
was between one and four, inclusive; for hard problems,
each addend was between six and nine, inclusive. The
numbers used in each problem were randomly generated
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(according to the problem constraints) on a trial-by-trial
basis.

Dual-task trials had factors of block (three levels),
difficulty of addition problem (two levels), and 10 levels
of stimulus onset asynchrony (SOA). SOA was defined
as the amount of time elapsed between the onset of the
second digit in the multiplication problem (audio) and
the presentation of the addition problem. The SOAs used
were 0, 100, 200, 400, 500, 600, 800, 1200, 1800, and
2400 msec.

Materials. An Apple Power Macintosh 8500/120 with
a standard Apple PlainTalk microphone was used to
present all stimuli and record all data. Audio stimuli
were presented using the computer’s built-in speaker.
Visual stimuli were presented in 18-point sans serif
(Helvetica) text on an Apple 17-in color monitor.

Results. An alpha level of .01 was used for all tests.
Some of the degrees of freedom reported contain
decimal values, which is a result of applying the
Greenhouse-Geiser correction for nonsphericity in
within-sub-jects tests. Error rates were low for all
subjects (approximately 5%), and error rates were not a
function of any independent variables, so error rates are
not considered in the discussion of the results.

Single Task. Single-task results are summarized in
Fig. 6.8. For the multiplication, there were no reliable
effects of block. For addition, there were reliable effects
of both block, F(2, 56) = 30.52, p < .001, indicating
some speedup over time, and of difficulty, F(1, 28) =
35.80, p < .001, indicating that “hard” problems were
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indeed slower. There was also an interaction F(2, 56) =
11.12, p < .001, with a slightly larger difference between
easy and hard problems on block 2. Further,
multiplication did indeed take longer than addition
verification, as was expected.

Fig. 6.8 Single-task arithmetic results in the PRP
arithmetic experiment.

Dual Task (PRP). Figure 6.9 presents the standard PRP
curve, showing both multiplication and addition
performance as a function of SOA, aggregating across
blocks. Note that PRP effects are substantial, with
participants slowing by approximately a full second from
SOA 2400 to SOA
0. Again, as expected, the addition problems are faster
than the multiplication problems at long SOAs.
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Fig. 6.9 PRP curve for the PRP arithmetic experiment.

Ideally, participants should be responding to Task 1 first
and without regard to Task 2, and thus there should be
no effect of SOA on Task 1 RT In this experiment, that
was the case. There was also no effect of block, so there
is no evidence for learning in multiplication performance
(mirroring the single-task data).

The more critical measure is reaction time for Task 2,
which in this case is the addition. There was, as
expected, a large effect of SOA, F(9, 252) = 193.14, p <
.001, and a large effect of difficulty, F(1, 28) = 39.34, p
< .001. Participants also sped up somewhat over time
(mirroring the single-task data), resulting in a main
effect of block, F(2, 56) = 7.85, p = .001. Note also that
there is evidence for overlapping of processing; the base
(single -task) reaction time means for the combination of
Task 1 and Task 2 should be 2216 and 2426 msec for
easy and hard addition problems, whereas the SOA 0
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reaction times in the dual-task experiment are faster than
these values (2073 and 2247 msec, respectively).

Most critical for the evaluation of the EPIC-SRD model
is the interaction of difficulty and SOA; the EPIC-SRD
model predicts that such an interaction should occur
because there should be a greatly attenuated difficulty
effect at short SOAs. We did find a difficulty-SOA
interaction, F(4.42, 123.68) = 3.86, p = .004.
However, this interaction is not driven by a
monotonically nondecreasing difficulty effect of SOA,
as the EPIC-SRD model predicts—it is driven primarily
by fluctuating difficulty effects across most SOAs.
Figure 6.10 presents the difficulty effect as a function of
SOA, which hardly appears to indicate absorption of the
difficulty effects at short SOAs. Trend analysis on the
means differences reveals no reliable trend in the size of
the difficulty effect, and fitting a linear function through
the means produces a line with a near-zero slope (0.025)
and an r2 of only .07. Thus, there does not appear to be
any systematicity in the size of the difficulty effect,
which does not support the predictions of the EPIC-SRD
model.
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Fig. 6.10 Difficulty effect as a function of SOA for the
PRP arithmetic experiment.

Single-Versus Dual-Task Performance. A second
key prediction of the EPIC–SRD model is that there
should be no increase in response time as a function of
being in the dual-task situation for Task 1. This should
also be true for Task 2 at long SOAs. This is not what
was observed—Fig. 6.11 presents the single-task versus
dual-task response times for multiplication and addition.
For addition problems, only the long SOAs of 1800 and
2400 are included in this analysis, though both hard and
easy problems are included.
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Fig. 6.11 Dual-task effects on multiplication and
addition.

The overall effect of the dual task was about 100 msec in
both multiplication and addition, and this difference is
reliable (for multiplication, F(1, 28) = 37.46, p < .001,
and for addition, F(1, 28) = 834, p = .007). The dual-task
effect did not interact with block or with difficulty of
addition. Clearly, something caused the reaction times to
elevate when the participants entered the dual-task
situation, although it is not entirely clear what that was,
nor is it predicted by the EPIC-SRD model. The
typicality of this result is difficult to assess, because the
PRP literature has generally not presented single-task
versus dual-task comparisons (but see Pashler &
Johnston, 1989, for another example of dual-task
slowing).
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Discussion

Overall, the results of this experiment are consistent with
typical PRP findings. PRP effects were observed at short
SOAs, and the total time for the dual task suggests
overlapping of processing. Further, there was no
systematic increase of the difficulty effect as SOA
increased, and there was an effect of being in the
dual-task condition on response time for both
multiplication and addition. Overall, these results are
problematic for EPIC in several ways:

1. The difficulty effect is based on different
content of facts in long-term declarative
memory, which EPIC has in only very primitive
form.

2. The difficulty effect does not systematically
shrink as SOA approaches zero, which
EPIC-SRD predicts should happen when Task 2
response selection can complete before Task 1
response selection.

3. There is a penalty for Task 1, and Task 2 at long
SOAs, associated with being in a dual-task
condition.

On the other hand, these results are equally problematic
for ACT–R using the Visual Interface, because that
instantiation of ACT–R cannot possibly reproduce the
total time savings in the dual-task condition. However,
as we show later, ACT–R/PM predicts all of these
effects.
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An ACT–R/PM Model of the PRP Experiment

The suggestion of overlapping of processing in PRP
experiments is one of the key considerations that
ACT–R/PM was designed to address. The question
remains, however, of whether this potential for overlap is
realized in quantitatively realistic way. In order to assess
this, a model of the arithmetic-based PRP experiment
was constructed. The basic approach taken was to fit
model parameters to the single-task version of each task
and use those parameters to predict performance in the
dual-task situation.
Table 6.2 describes the models for the two tasks and
their relationship. We describe these models individually
and their fit to single-task performance. Then we
describe their combination in the dual-task model.

Table 6.2.
Sequencing in the PRP Arithmetic Model

333



Single-Task Performance. For both multiplication
and addition, the model goes through four steps: (1)
perceive, (2) encode, (3) retrieve, and (4) respond. For
multiplication, the basic perception process consists of
applying a LISTEN-FOR operator until a chunk
representing the sound is produced. Encoding consists of
retrieving from memory a chunk that maps the raw
chunk produced by the listen operator (e.g., the sound
“3”) to a semantic chunk representing the number (e.g.,
3). Once both numbers have
been encoded and stored in the goal, retrieval begins.
The two operands serve as retrieval cues from which
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activation spreads. A fact is retrieved that corresponds to
the multiplication fact involving those two numbers.
Responding in the multiplication task involves retrieving
a chunk that maps the semantic representation of the
result (e.g., 27) to the verbal code for the number (e.g.,
the audio string “twenty-seven”), and then issuing a
SPEAK command to speak the string.

For addition, the process is similar. The model begins by
moving attention to the equation on the screen, which it
takes in as a single phrase. The two operands are
extracted from the representation of the phrase and then
encoded into semantic units as was done for
multiplication. Here the model has a choice: It can either
retrieve the answer from declarative memory via
production Addition-Retrieve, or encode the answer on
the screen via production Addition-Encode-Answer.

Addition-Retrieve

IF

the goal is to do the addition task

and the two operands have been encoded

and there is an addition fact with those operands

THEN place the result of the addition fact in the goal

Addition-Encode-Answer

IF

the goal is to do the addition task

and the two operands have been encoded

and there is a semantic code for the answer on the
screen

THEN encode the answer in the goal
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Both Addition-Retrieve and Addition-Encode-Answer
have to fire to verify the addition fact on the screen, and
there is no necessary ordering of their firing. If
Addition-Retrieve fires first, then the two operands and
the operator serve as activation sources in the retrieval of
the addition fact. However, if Addition-Encode-Answer
fires first, then the operands, the operator,3 and the
answer all serve as activation sources for retrieval. This
involves a trade-off: Retrieval of the answer from
memory with four sources (two arguments, operator,
answer) versus only three is faster when the answer on
the screen is correct, but slower when the answer on the
screen is incorrect. Thus, given no clearly superior
strategy because the trials were half correct and half
incorrect, the model randomly picks between the two
productions with equal probability of each firing first.
Finally, once all three numbers have been encoded and
an answer retrieved, the model compares
the two answers, the retrieved one and the one encoded
from the screen.4 If they match, a production fires to
punch the ring finger, and if there is a mismatch, another
production fires to punch the index finger.

The latency for the model to complete a given trial is
dependent on several factors. First, there are various
parameter values that affect the time to completion, such
as digit delay and recoding times, ACT–R’s latency
scale (F), activation noise(s), and the base-level
activations of the chunks used for digit encoding.
Parameter values used to fit this model are given in
Table 6.3. Because activation noise is used in this model,
results tend to vary from trial to trial. Also, the type of
problem and the numbers that appear in each problem
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both affect response latency. Thus, the retrieval latencies
are listed as variable in Table 6.2. These also vary
because of the different base levels and associative
strengths used for the arithmetic facts. The values were
taken from Lebiere and Anderson’s work (Chapter 9 of
this volume) on mental arithmetic. In general, facts
involving smaller numbers are retrieved faster than facts
involving larger numbers, and addition facts are
generally faster than multiplication facts. Because
operands are randomly generated for each problem, this
adds variability to the model. Finally, the choice of
strategy for the addition problem combined with the
correctness of the addition problem also affects latency.
For these reasons, all model predictions are based on the
mean of 100 Monte Carlo runs of the model.

Table 6.3
Parameters Used in the PRP Arithmetic Model

Parameter Value

Noise (s) 0.27

Latency factor (F) 0.85

Digit recode time 350 msec

Digit detection delay 200 msec

Base level activation for
encoding chunks 3.00

Fit of the model to the single-task data is shown in Fig.
6.12. Overall, the fit of the model to the data is good.
The fact that multiplication is slower than addition is a
direct result of the different chunk base levels and Sji
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values used; multiplication chunks generally have lower
base levels than addition chunks and have lower Sji
values with their operands than addition chunks. This
advantage for addition occurs despite the fact that the
perception and encoding take longer for addition (as the
visual system has to deal with three numbers and the
auditory system only two, and on multiplication trials
one of the numbers is handled before the trial actually
begins—multiplication trials begin at the onset of the
second operand). The difficulty
effect found in the addition problems is also a result of
the base levels and activations used—larger operands are
seen less often and thus have lower base levels, so they
are retrieved more slowly. This effect is fairly large; hard
problems impose a roughly 200 msec increase in
response time for a task that, in its easy form, takes
around 900 msec. This is a more than 20% slowdown
that the model is able to reproduce. Of course, fitting the
single-task situation is only part of the story.
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Fig. 6.12 Model and data for single-task versions of
multiplication and addition.

Dual-Task Performance. Dual-task performance is
somewhat more complex than the simple union of the
two tasks. There are two related issues to address when
considering the dual-task situation: (1) How will goal
management/task switching be handled, and (2) where
and when should cognitive, motor, and perceptual
processing be overlapped? When considering goal
management and task switching, there are several
approaches one could take, and the approach taken
impacts the model’s ability to produce the dual-task
effect observed (this is the increased response time
associated with being in the dual-task condition).
Probably the most obvious approach to goal
management is to have a dual-task goal that does the
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multiplication and addition tasks as subgoals. That is, the
model would begin the task with
a “do dual-task” goal on the stack, push and then pop a
“do multiplication” subgoal, then push and pop a “do
addition” subgoal. This approach has two drawbacks.
First, it is difficult to manage overlap in processing
between subgoals, because the subgoals are in a sense
“unaware” of the overall dual-task situation. Second, in
this scheme, the dual-task effect ought to come from the
additional pushing and popping of subgoals. Although
these additional pushes and pops would occur, they do
not produce the kind of dual-task effects seen in the data.
In fact, for multiplication, the additional push produces
no dual-task effect at all. The time for the extra push gets
“absorbed” into the time the model spends waiting for
the second multiplication operand to be presented. For
much the same reason, this kind of model generates no
dual-task effect for the Task 2 addition at long SOAs
either, because the extra pop and push get absorbed into
the time the model spends waiting for the Task 2
stimulus to appear.

An alternative approach, and the one we took, involves
using a single goal throughout the entirety of each
dual-task trial. This allows for better control over
interleaving but does raise another issue, that of task
control: How does the model keep track of whether it is
doing multiplication or addition? We handled this by
adding a slot to the goal to represent the operator, either
multiply or add. The presence of this additional operator
in the goal means that the operands receive less source
activation because source activation must be divided
evenly among more slots. This single-goal approach
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reduces basic task-switching overhead, but predicts that
retrieval times may be slower due to the divided source
activation. In this model, this dividing of the source
activation among the two operands and the operator does
indeed slow down retrieval of the arithmetic facts.
Although it is true that the operator also becomes a
source and does spread some activation to help retrieve
the arithmetic facts, the fan is so high from the operator
that this has little impact. The net effect of this
single-goal-with-operator strategy is to minimize task
switching time, but in such a way as to cause a resulting
slowdown in arithmetic fact retrieval. This produces a
dual-task effect, but one based on increased retrieval
time, not on goal management cost.

There is also the question of overlapping cognitive and
perceptual-motor operations. Although it is theoretically
possible to overlap in a wide variety of places (e.g., Task
2 perception with Task 1 perception/encoding/retrieval),
the overall savings in time seen in the data, although
clearly present, are not great enough to indicate more
than a small amount of overlap. In fact, the amount of
saving (around 200 msec at an SOA of 0 msec) suggests
that the savings might come from simply overlapping the
Speech Module’s processing of the response in Task 1
with the Visual Module’s perception of the Task 2
stimulus. This is the approach that was taken in
constructing the
dual-task model.5 Thus, the same production that
initiates the speech processing also initiates the attention
shift:

T1-Respond
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IF

the goal is to do the dual-task and there is an
answer for T1

and there is a verbal code for the answer and there
is a visual location to attend

THEN
speak the verbal code

and move attention to that location

It is after this last Task 1 production has fired that the
cognitive system is now free to devote its production
firing to Task 2. Thus, by postponing movement of
visual attention until this point, the model guarantees
that no Task 2 productions will intrude to delay Task 1
productions.

The critical question is whether, given these structural
commitments (i.e., the goal strategy producing the
dual-task effect and the relatively conservative approach
to overlap), one can get the parameters estimated from
the single-task model to produce behavior in the
dual-task model that is quantitatively close to that
observed in the laboratory. Figure 6.13 presents the fit of
the model to the data. Note that the model generates a
PRP effect that is much like the effect observed in the
data. In the model, this is a result of postponing any
processing of Task 2 (the addition) until the response for
Task 1 has been selected. There is, however, a total
savings in time when the two tasks are done together;
that is, the sum of the two single-task times is greater
than the T2 response time at SOA0. This savings comes
from the parallelism built into ACT–R/PM. This
parallelism comes into play immediately after the
T1-Respond production fires. At that point, three things
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are going on in the model in parallel: (1) The cognition
layer is executing a production that switches the operator
in the goal and clears out the other slots in the goal, (2)
the Speech Module is preparing and executing the vocal
response, and (3) the Vision Module is shifting attention
and recognizing to the equation on the screen. Without
this parallelism, ACT–R would actually predict that the
dual-task version should take longer than the sum of the
single-task parts because of the dual-task cost. The
model exhibits a dual-task cost similar to the one
observed in the data. As described earlier, this is a result
of the operator being stored in the goal. Because of this
extra slot, there is less source activation supplied to the
operators, and thus retrieval of the appropriate arithmetic
facts is slower.
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Fig. 6.13 Model and data for dual-task performance in
the PRP arithmetic experiment.

Note also that the model predicts that the difficulty effect
should be roughly constant across SOAs. This is not
quite what was observed, as the
difficulty effect fluctuates up and down some in the data.
In general, the data are simply noisier than the model
The lack of variability in the model is also likely
responsible for the poor fit at 1200 msec SO A. Because
the model almost always completes Task 1 response
selection in less than 1200 msec, Task 2 is usually not
forced to wait. Thus, the model produces very little PRP
effect at 1200 msec. However, there were a number of
subjects who had mean multiplication times much higher
than the model who still showed evidence of a PRP
effect at 1200 msec, which drives up the overall mean.
Other work on ACT–R and individual differences
(Lovett, Reder, & Lebiere, in press) suggest that it is
possible to produce such individual differences, although
that was not the focus of the current model.

Overall, though, the model fits the data quite well.
Figure 6.14 presents the observed means as a function of
the predicted means, an R2 of .97. The quality of the fit
of the ACT–R/PM model is impressive given that all the
parameters were estimated for the single-task condition.
ACT–R with the Visual Interface did not have the
perceptual-motor capabilities to simulate any overlap in
processing, and could not have generated such a fit.
EPIC,
on the other hand, lacks the cognitive capability to
simulate even fairly simple retrievals, and thus cannot
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handle the difficulty effect or the dual-task effect found
here. Moreover, even if EPIC could produce the
difficulty effect, it would seem to be committed to
predicting that the effect should vanish at short SOAs
because processing on Task 1 and Task 2 would be
overlapped. Overall, by combining features of the two
theories, a better model of performance on this task
emerges.

Fig. 6.14 Observed versus predicted means for the PRP
arithmetic experiment and the ACT–R/PM model.
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Summary

The world we live in is richer than one in which pure
cognition or pure perception and action would suffice,
but rather requires a mix of the two. ACT–R/PM
represents an important step in integrating a serious
theory of cognition, ACT–R, with a serious set of
perceptual-motor constraints, borrowed largely from
EPIC. The cognitive capabilities of ACT–R are
well-documented (e.g., this volume), but until now the
perceptual-motor properties of ACT have been
somewhat impoverished. ACT–R/PM is another step
beyond the Visual Interface in solving this problem, by
incorporating a system of asynchronous peripheral
modules to handle the perception/
action side of behavior. The individual modules
themselves are generally patterned after those found in
EPIC, with the exception of the Vision Module, which is
patterned largely after the ACT–R Visual Interface.

A good starting challenge for a more complete system is
a task that is dominated by neither cognitive nor
perceptual-motor requirements, but rather a mixture of
both. Traditionally, PRP tasks have been a good
demonstration of our ability to overlap different kinds of
processing, but have had relatively weak cognitive
demands. In order to better test ACT–R/PM, we created
a new PRP task that has a clear declarative memory
retrieval component, an arithmetic PRP task. The results
of this experiment are difficult to handle with a system
that handles exclusively cognition or exclusively
perception and action well, but not both.
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Therefore, the experiment was amenable to modeling
with ACT–R/PM. The combination of a strong theory of
cognition with serious perceptual-motor constraints has
yielded a system that is capable of handling the
challenge of this PRP experiment. Of course, although
PRP experiments are illustrative of dual-task situations,
this is still a limited demonstration of ACT–R/PM’s
abilities. A fully integrated theory of cognition,
perception, and action could potentially have a wide
range of application that goes far beyond this simple
laboratory task and into areas such as mental workload,
manual tracking, perceptual-motor errors, typewriting,
divided attention, high-performance human-machine
interaction, and so on. This simple dual task modeled
here merely scratches the surface. Just as HAM evolved
from models of simple memory experiments into its
current form (ACT–R) and expanded its range of
application to domains such as choice and scientific
discovery, ACT–R/PM applied to these simple PRP
experiments will hopefully begin a widening of the ACT
theory into integrated cognitive-perceptual-motor tasks.
There are certainly many challenges for ACT–R/PM to
face, but sound models of PRP experiments represent a
promising start on which to build more sophisticated
models.

1There were several other conditions presented in the
original Karlin and Kestenbaum (1968) paper. This
condition was chosen as the most representative; other
aspects of the original experiments have failed to
replicate (Van Selst & Jolicoeur, 1997).
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2Recall from Chapter 5 that we estimated 185 msec to
switch attention and encode an object. This is
decomposed into 50 msec to switch attention and 135
msec to encode. We assume that switch has already
occurred.
3Actually, as we discuss later, the operator was only
specified in the dual task. However, the same analysis
applies when the operator is not specified in the single
task.
4This is similar to the model for the fan effect described
in Chapter 3.
5Many of our subjects reported that they did not look at
the addition problem until they had solved the
multiplication problem.
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7

List Memory

John R. Anderson

Daniel Bothell

Christian Lebiere

Michael Matessa

Carnegie Mellon University

From our vantage point on psychology it seems that
more experiments have been run using the list memory
paradigm than any other experimental paradigm (for
recent reviews see Healy & McNamara, 1996;
Raajimakers & Shiffrin, 1992). This is a paradigm in
which subjects are presented with a list of words and
then are tested for their memory of the words. The test
may involve an attempt to recall the words in their
presented order, in which case it is called serial memory;
an attempt to recall the words in any order, in which case
it is called free recall; an attempt to recognize the words,
in which case it is called recognition memory; or an
attempt to do something involving the words (like stem
completion) but not requiring that the subject
consciously retrieve these words, in which case it is
called implicit memory.

The list memory paradigm was the paradigm that
Ebbinghaus used in the first experiments on human
memory (although he used nonsense syllables). It
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continued to be used in a great many studies in the
subsequent decades. Ebbinghaus and other early
researchers usually used serial memory tests. With the
rise of cognitive psychology, research on human
memory grew in importance and the list memory
paradigm seemed to rise with it. The free-recall
paradigm was initially of great importance in showing
the effects of organizational factors on memory. More
recently, recognition memory has become important in
discriminating among major theories of memory. The
implicit memory research is almost exclusively a
phenomenon of the last two decades but has risen to
perhaps the hottest area of research in cognitive
psychology. The serial memory version of this paradigm
has not been forgotten and is currently prominent in the
form of tests of immediate or working memory.

Numerous theories have been proposed to account for
phenomena in one or more of these subdomains of list
memory, but there does not seem to
be an integrated account that spans all of the domains.
Different subdomains involve different aspects of
cognition—memory for serial order, free recall
strategies, structure of lexical memory, and so forth.
Therefore, it is natural that detailed accounts of specific
subdomains should focus on different aspects of the
cognitive system. Still the similarity of the learning
experience (study a list of words) creates the expectation
that there should be some way of integrating these
accounts. This chapter tries to do this by applying
ACT–R to the list memory experiments in the order of
serial memory, recognition memory, free recall, and
implicit memory.
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Serial Memory

The area of serial memory has had the longest history of
research in psychology. It started with Ebbinghaus’s
interest in relatively permanent memory, evolved into an
interest in transfer among lists, and most recently has
focused on theories of memory span. It has seen a fair
amount of theory in the last third of this century (e.g.,
Baddeley, 1986; Burgess & Hitch, 1992; Conrad, 1964;
Ebbinghaus, 1885; Estes, 1973; Lewandowsky
&Murdock, 1989; Murdock, 1993; Richman,
Staszewski, & Simon, 1995; Shiffrin & Cook, 1978;
Wickelgren, 1965a; Young, 1968). Although the ACT–R
theory is applicable to all types of serial recall
paradigms, this chapter describes an application of
ACT–R to the relatively immediate recall of relatively
short lists, as this is where most of the recent interest has
been. Much of the recent theory has been dominated by
Baddeley’s theory of the phonological loop. His theory
assumes that the amount that can be maintained in a
memory span is the number of words that can be
rehearsed in approximately 2 sec. The strong evidence
for this proposal comes from research showing that
people can maintain fewer words that take longer to
articulate—either because the words have more syllables
or have syllables that are longer to articulate. In one very
influential study Baddeley, Thompson, and Buchanan
(1975) looked at the number of words (out of five) that
could be repeated back as a function of syllable length of
the words. Varying syllable length from one to five, they
found that the amount recalled was approximately equal
to the number of words that could be said in 2 sec.
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Anderson and Matessa (1997) published an application
of ACT–R 2.0 to serial memory tasks. The models
reported there were mathematical approximations to the
ACT–R theory, whereas this chapter reports the results
from actual running simulations (reflecting the more
efficient implementation of ACT–R 4.0). This allows us
to deal more adequately with the effects of rehearsal
strategy and partial matching. We could not always
capture their effects in the Anderson and Matessa article
with closed-form equations.

The ACT–R theory shares with Baddeley’s theory an
emphasis on time-based decay (based on Base-Level
Equation 3.6 or Base-Level Learning Equation 4.1).
However, it also emphasizes important roles for
associative interference (based on Prior Strength
Equation 4.21) and for confusions among items in a list
(based on Match Equation 3.8). In fact, there is good
evidence for all of these factors as reviewed by
Anderson and Matessa. Holding retention time constant,
subjects are worse when they must remember more
items, indicating associative interference. Confusions
among items that are similar sounding (acoustic
confusions) or are in similar positions (positional
confusions) are a major fact of memory span
performance. It is a major challenge to be able to
integrate these factors together. This section shows that
ACT–R can do this. Rather than reporting applications
of ACT–R to past experiments as in Anderson and
Matessa, ACT–R is applied here to some new data that
were collected expressly to provide a powerful test of the
predictions of the ACT–R theory.
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An ACT–R Model of Serial Recall

A key issue concerns the nature of the representation of
the serial list. Our assumption is that a list is organized
as a set of groups and each group is represented as a set
of items. Most critically we assume that there is a chunk
for each group encoding its position in the list and a
chunk for each item encoding its position in the group.
Positional coding, rather than associative chaining, has
been advocated by a number of researchers (Burgess &
Hitch, 1982; Conrad, 1965; Johnson, 1991; Shifrrin &
Cook, 1978; Slamecka, 1967; Young, 1968). Figure 7.1
illustrates a possible representation for a list of 9 digits
grouped as 329 714 856. There is substantial evidence
for such a grouped representation (e.g., Bower
&Winzenz, 1969; Johnson, 1970), and it is part of other
models of serial memory (e.g., Estes, 1973). Each oval in
Fig. 7.1 represents an ACT–R chunk. There is one chunk
for each group and each element. A group chunk
encodes the list the group is in, the size of the group, and
its position in the list. Thus, the first group chunk
encodes a group of size 3 in the first position of the list.
This is indicated by pointers from Group1 Size3, and
List. The elements are represented by chunks encoding
the position of the element in the group, its group
position in the list, the list it is in, and its content. Thus,
for example, the first element 3 is encoded by a chunk
with pointers to 1st, Group 1, List, and Three.
Performance is going to depend critically on the retrieval
of these chunks. Most critical is the link to the list
context. There are so many links to the List context in
Fig. 7.1 that we have had to merge them. However, in
actual fact,
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List is the least used index into each chunk.2 Terms like
1st, Group 1, and Three will appear in thousands of
contexts. Thus, fan (number of associations) out of List
becomes critical.

Fig. 7.1. Network representation of the chunk structure
encoding a nine-element list.

Retrieval of chunks encoding list elements is
orchestrated by the following production rule:

Get-Next

IF

the goal is to retrieve the nth element of the mth
group of the list

and x is the element at position n in group m in the
list

THEN
set a subgoal to process x

and update the goal to retrieve the n+1st element
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Each element is then produced by the following
production:

Type-Item

IF
the goal is to process an item

and the item is associated with a key

THEN type the key.

This production rule is specific to typing as the output
mode because this is the output modality in the
experiment to be reported. Similar productions could
produce the response by means of written or verbal
report.

In addition to retrieving the elements of a group, it is
also necessary to first retrieve the groups themselves:

Retrieve-Group

IF
the goal is to retrieve the mth group of the list

and x is a group of size s in position m of the list

THEN
set as a subgoal to retrieve the s elements of the
group x starting in position 1

and update the goal to retrieve the m + 1st element

This also retrieves the size, s, of the group. The group
size is important because it allows the system to know
when to terminate recall of the group.

Note that it is a feature of both Get-Next and
Retrieve-Group that they recall in the forward direction.
This forward bias to serial recall played an important
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role in Anderson and Matessa (1997) and is a critical
feature in the experiment reported here.

According to the ACT–R theory, the critical factor
determining speed and accuracy of retrieval will be the
activation of the chunks that encode the group and item
information. According to Activation Equation 3.5, this
activation will be a sum of base-level activation and
associative activation. The base-level activation will in
turn be determined by the amount of practice (through
rehearsal) that these chunks received and how long ago
those rehearsals were. As lists get longer the delays will
tend to increase, thereby decreasing base-level
activations (Base-Level Learning Equation 4.1). The
associative activation will come from the list element.
As the list is longer, there will be more associations from
the list element and less associative activation to any
member of the list. This is basically a fan effect (see
Chapter 3). Therefore, performance will go down with
list length memory because of both increased delay
impacting base-level activation and increased fan
impacting associative activation.

Although this chapter presents the results of Monte Carlo
runs of ACT–R simulations, it is useful to have an
equation that gives the approximate activation values
that determine performance. The approximate equation
that characterizes activation levels in serial memory
experiments is:

where B reflects the constant factors, n is the number of
presentations and rehearsals, T is time since presentation,
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L is the length of the list, d is the decay rate, and W is the
attentional weighting of the list context. The decay
parameter is 0.5, which is the value used throughout this
book. The value of the W in this simulation is 1 because
the list is the only useful source of
activation.3 Thus, the effective equation for serial recall
becomes the Serial Memory Equation:

ignoring the constant. This equation is only approximate,
and the predictions presented come from the running
ACT–R simulation.

There is one additional important aspect to the ACT–R
model of serial recall. This is partial matching of chunks,
which can produce positional confusions. Partial
matching of the group slot will cause ACT–R to retrieve
an element from a corresponding position in another
group. Partial matching of the position slot will cause
ACT–R to retrieve an element from another position in
the current group. The degree of mismatch (Dip in Match
Equation 3.8) between elements is proportional to their
distance apart. Thus, for instance, the mismatch between
First and Second, Second and Third, or Group1 and
Group2 is 1 × D, whereas the degree of mismatch
between First and Third or Group2 and Group4 is 2 × D.
D is referred to as the scale factor for mismatches. This
similarity-based confusion produces many more
positional confusions between adjacent elements than
distant items. The existence of positional confusions
within and between groups is well documented (e.g.,
Aaronson, 1968; Bjork &Healy, 1974; Lee &Estes,
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1981; Nairne, 1992). We do not deal with acoustic
confusions because the study to be reported involves
digits, which are not particularly confusable acoustically.
Acoustic confusions were handled in Anderson and
Matessa, again by the mechanism of partial matching.

To review, the key assumptions in the ACT–R model of
serial recall are the hierarchical representation of the list,
the activation-driven recall, and the potential for
positional confusions through partial matching. A later
subsection describes in more detail the ACT–R model of
serial recall and its consequences for base-level
activation and associative activation. However, first, the
next subsection describes the experiment that is the
target of the modeling efforts.

A Study of Backward and Forward Recall

Like the Baddeley theory, the ACT–R theory claims that
timing of the recall is important to memory performance
and that with the passage of time
memory chunks can decay to the point where they are no
longer available for recall. However, in addition it claims
that the activations of the memory chunks have a strong
influence on the timing of recall (Retrieval Time
Equation 3.10). Thus, there is a feedback loop between
timing and activations, with higher activations yielding
shorter retrieval times and shorter times yielding higher
activations. Because there has not been research that has
delved into this interaction between timing and recall,
Anderson, Bothell, Lebiere, and Matessa (in press)
performed an experiment that focused on this issue.
They looked at memory span for digits, presented at the
typical rate of 1 per second. They varied list lengths
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from 3 to 12 digits to get a good range of performance
and measured both the timing and the accuracy of recall.
They also looked at both forward and backward recall to
manipulate the delay between presentation and recall. In
forward recall the digits presented first are recalled first,
whereas in backward recall the digits presented last are
recalled first. This creates very different delays for the
recall of digits that are studied in the same serial
position. Anderson et al. also controlled the grouping of
the digits by presenting them visually segregated into
units. All the groups were of length 3 except for the last,
which varied from 2 to 4 to accommodate various list
lengths.

A series of boxes would appear on the screen—one box
for each group. The number of items that would appear
in each box was made obvious by the number of spaces
in the box. Thus, the subject knew immediately the
number of and structure of the items to be studied.
However, while subjects were studying the items they
did not know whether they would be tested in the
forward or the backward condition. This was done to test
the same memory structure in different orders. The items
were presented one at a time in the appropriate spaces
within the appropriate boxes. When one digit appeared,
the other disappeared, so only one digit was visible at a
time. As soon as the last digit disappeared a signal
appeared telling subjects the direction in which to recall
the digits. The cursor would either move to the first slot
in the first box (for forward recall) or the last slot in the
last box (for backward recall). As each digit was typed
the cursor moved to the next slot (or previous slot in the
case of backward recall). The subject could skip over
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positions by typing a space or terminate the recall by
hitting the return key. However, the subject could not
back up and change recall of a digit.

Figure 7.2 shows the serial position curves for the
various list lengths. Both Figs. 7.2a and 7.2b plot the
probability of correctly recalling a digit in position as a
function of serial position in input. For forward recall
(Fig. 7.2a) output order is the same as the input order,
but for backward recall (Fig. 7.2b) output order is the
reverse of the plotted input order. The forward recall
curves are quite typical, showing decreased accuracy
with serial position. There is an upturn for the last item,
indicating a weak recency
effect. Henson, Norris, Page, and Baddeley (1996) have
argued that this one-item recency effect is due to
decreased positional confusion regarding the last item.
The backward curves largely show a weak primacy
effect and a stronger recency effect spanning many
items. Because input and output are reversed, this
indicates better recall for the first items recalled just as in
the forward recall. Such contrasting serial position
curves for backward and forward recall is typical (e.g.,
Hinrichs 1968; Li & Lewandowsky, 1995; Metcalfe &
Sharpe, 1985). These curves also show some effect of
the group structure. There are steep drops in the forward
recall curves at positions 3 and 6, which are chunk
boundaries. Thus, subjects show significant drops in
recall from group 1 to group 2 and from group 2 to group
3. The group structure is less apparent in backward
recall, but there are precipitous rises from positions 9 to
10 in the lists of length 11 and 12, which correspond to
the boundary defining the first group recalled.
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Fig. 7.2. Probability of correct positional recall for items
recalled in (a) the forward direction and (b) the backward
direction.

Figure 7.3 shows the times to type the digits as a
function of input positions. These are the means of the
mean correct recall times for each subject. Here the
group structure shows through very clearly. Large spikes
occur in the latency curves whenever subjects must
begin recall of another group. In the case of forward
recall the latency associated with recalling the first group
is much longer than the other latencies, whereas in
backward recall all group boundaries have comparable
latencies. This suggests that in backward recall subjects
start all over again from the start of the list with each
group, whereas in forward recall they maintain some
positional information within the list from group to
group. Also, in both forward and backward recall, the
size of these spikes is very much a function of list length
with longer lists resulting in larger spikes. In contrast,
there is relatively little difference in within-chunk
latency as a function of list length. This suggests that
subjects are doing all of their recall for a group before
typing any of the items. Other research (e.g., Cowan,
1992; Sternberg, Monsell, Knoll, & Wright, 1978) has
found increased latency for all list items as a function of
list length, but this research has not tried to control group
structure. The increased latency for all items may reflect
the fact that different subjects used different structures
and the data were averaged over different structures.
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Fig. 7.3. Time to recall digits as a function of serial
position and list length for (a) forward recall and (b)
backward recall.

This one experiment has brought together many of the
powerful effects documented in the memory span
literature. The study indicates a rich pattern of data
reflecting factors such as direction of recall, list length,
and grouping. The data in Figs. 7.2 and 7.3 should serve
as a substantial challenge to any theory including the
ACT–R theory.

The ACT–R Simulation

We developed an ACT–R simulation of this task. Table
7.1 gives a trace of the simulation studying and recalling
the nine-element list whose representation
is in Fig. 7.1. Part (a) illustrates the study process, part
(b) illustrates the forward recall, and part (c) the
backward recall. During study, ACT–R is interleaving
study and rehearsal. The productions Attend-Start and
Attend are responsible for encoding the digits as they
appear on the screen. The first production, Attend-Start,
encodes a digit at the beginning of a group, creating a
chunk for both the group and the item. The second
production, Attend, deals with the digits within a group.

Table 7.1
Study and Recall of “329 714 856”

(a) Study

Cycle 0 Time 0.000: attend-start Study 3

Cycle 1 Time 0.200: rehearse-start
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Cycle 2 Time 0.334: rehearse-item Rehearse 3

Cycle 3 Time 0.879: rehearse-reset

Cycle 4 Time 0.929: rehearse-item Rehearse 3

Cycle 5 Time 1.462: rehearse-abort

Cycle 6 Time 1.512: attend Study 2

Cycle 7 Time 1.712: rehearse-current Rehearse 2

Cycle 8 Time 2.246: rehearse-abort

Cycle 9 Time 2.296: attend Study 9

Cycle 10 Time 2.496: rehearse-current Rehearse 9

Cycle 11 Time 3.105: rehearse-abort

Cycle 12 Time 3.155: attend-start Study 7

Cycle 13 Time 3.355: rehearse-item Rehearse 2

Cycle 14 Time 3.891: rehearse-item Rehearse 9

Cycle 15 Time 4.518: rehearse-abort

Cycle 16 Time 4.568: attend Study 1

Cycle 17 Time 4.768: rehearse-next-group

Cycle 18 Time 4.942: rehearse-item Rehearse 7

Cycle 19 Time 5.573: rehearse-abort

Cycle 20 Time 5.623: attend Study 4

Cycle 21 Time 5.823: rehearse-item Rehearse 1

Cycle 22 Time 6.455: rehearse-abort

Cycle 23 Time 6.505: attend-start Study 8

Cycle 24 Time 6.705: rehearse-current Rehearse 8
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Cycle 25 Time 7.212: rehearse-abort

Cycle 26 Time 7.262: attend Study 5

Cycle 27 Time 7.462: rehearse-current Rehearse 5

Cycle 28 Time 8.019: rehearse-abort

Cycle 29 Time 8.069: attend Study 6

Cycle 30 Time 8.269: rehearse-item Rehearse 4

Cycle 31 Time 8.872: rehearse-next-group

Cycle 32 Time 9.052: rehearse-abort-last Rehearse 6

(b)Forward Recall

Cycle 1 Time 9.000: start-group

Cycle 2 Time 9.782: retrieve-group

Cycle 3 Time 9.905: retrieve-group

Cycle 4 Time 9.992: dispatch-three-groups

Cycle 5 Time 10.042: get-next-start

Cycle 6 Tim e 10.244: get-next

Cycle 7 Time 10.383: get-next

Cycle 8 Time 10.644: dispatch-three-items

Cycle 9 Time 10.694: type-item Recall 3

Cycle 10 Time 11.198: type-item Recall 2

Cycle 11 Time 11.701: type-item Recall 9

Cycle 12 Time 12.208: get-next-start

Cycle 13 Time 12.357: get-next
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Cycle 14 Time 12.656: get-next

Cycle 15 Time 12.808:
dispatch-three-items

Cycle 16 Time 12.858: type-item Recall 8

Cycle 17 Time 13.359: type-item Recall 7

Cycle 18 Time 13.866: type-item Recall 4

Cycle 19 Time 14.369: get-next-start-skip

Cycle 20 Time 14.701: get-next

Cycle 21 Time 14.986: get-next

Cycle 22 Time 15.220: dispatch-three-items

Cycle 23 Time 15.270: skip-item skip

Cycle 24 Time 15.770: type-item Recall 5

Cycle 25 Time 16.276: type-item Recall 6

(c) Backward Recall

Cycle 1 Time 9.000: start-group

Cycle 2 Time 9.604: retrieve-group

Cycle 3 Time 9.920: retrieve-group

Cycle 4 Time 10.237:
dispatch-three-group-backward

Cycle 5 Time 10.287: get-next-start

Cycle 6 Time 10.458: get-next-skip

Cycle 7 Time 10.620: get-next
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Cycle 8 Time 10.837:
dispatch-three-items-backward

Cycle 9 Time 10.887: type-item Recall 6

Cycle 10 Time 11.392: skip-item skip

Cycle 11 Time 11.896: type-item Recall 8

Cycle 12 Time 12.401: start-group

Cycle 13 Time 12.942: retrieve-group

Cycle 14 Time 13.165:
dispatch-two-group-backward

Cycle 15 Time 13.215: get-next-start

Cycle 16 Time 13.442: get-next

Cycle 17 Time 13.634: get-next

Cycle 18 Time 13.755:
dispatch-three-items-backward

Cycle 19 Time 13.805: type-item Recall 4

Cycle 20 Time 14.306: type-item Recall 1

Cycle 21 Time 14.809: type-item Recall 9

Cycle 22 Time 15.315: start-group

Cycle 23 Time 15.842:
dispatch-one-group-backward

Cycle 24 Time 15.892: get-next-start

Cycle 25 Time 15.988: get-next

Cycle 26 Time 16.241: get-next-skip
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Cycle 27 Time 16.493:
dispatch-three-items-backward

Cycle 28 Time 16.543: type-item skip

Cycle 29 Time 17.047: type-item Recall 3

Cycle 30 Time 17.553: type-item Recall 2

The rehearsal strategy illustrated in part (a) of Table 7.1
is one where the system starts at the beginning of a list
and keeps rehearsing until it comes to the end of the list.
As the list keeps growing, the model takes longer to
complete a rehearsal loop, and usually it does not get to
the end of the list in the last loop. Along with this linear
rehearsal it interleaves rehearsal of the current item.
Rehearse-Start initiates recall at the beginning of the
list, and Rehearse-Reset reinitiates recall at the
beginning of the list when the current end of the list has
been reached. The production Rehearse-Item is
responsible for stepping through the items in serial order,
whereas Rehearse-Current is responsible for rehearsing
the current item. These two productions compete, and
either is equally likely to fire next. This is a rehearsal
strategy that is biased to rehearse the beginning of the
list but has some probability of rehearsing all the
members of the list. Rehearse-Abort stops rehearsal
when a new item appears so that this new item can be
encoded. Rehearse-Next-Group, which first appears on
cycle 17, fires when one group has been rehearsed and
switches rehearsal to the next group.

In forward recall (part (b) of Table 7.1), productions
Retrieve-Group and Start-Group (a variant of
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Retrieve-Group for the first group) retrieve the group
chunks. A production Dispatch-Three-Groups sets
subgoals to retrieve the groups in the order encoded. For
each group, the productions Get-Next and
Get-Next-Start (a variant of Get-Next) retrieve the
individual item chunks, and Dispatch-Three-Items sets
subgoals to type each in the order encoded. Then the
production Type-Item types the individual digits. Note
that this scheme retrieves all the items in a group before
typing any. This corresponds to the data indicating that
the subjects tended to do just that.

For backward recall (part (c) of Table 7.1), the rehearsal
and encoding processes have identical structure because
the subjects do not know how they will be tested. The
structure of the recall is the same except with respect to
the productions that dispatch the subgoals. The
production Dispatch-Three-Items-Backward is like
Dispatch-Three-Items except that it sets the subgoals to
type the items in opposite order. On the other hand, the
productions for dispatching groups in backward order
only subgoal one group at a time. In contrast, the
forward productions subgoaled all the groups. Therefore,
when the group is completed in backward recall, the
simulation must scan through all the groups in the list up
to the to-be-re-called group. Thus, the structure for
backward recall of the list in Fig. 7.2 is: recall group1,
recall group2, recall group3, retrieve members of
group3, recall group1, recall group2, retrieve members
of group2, recall group1, and retrieve members of
group1. This restarting contributes to recall latencies at
the beginning of subsequent groups that are as long as
the latency at the beginning of the first group. The other
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factor is that the later groups being unpacked have not
been practiced for a while. The backward protocol in
Table 7.1 also illustrates failure to retrieve a couple of
items. These are cases where the activation of the critical
items randomly fell below threshold.4 The system is able
to skip over the missing items and resume recall in place
by means of the Skip-Item production. It can use the
visual structure of the recall display to know where to
begin the next group.

In both forward and backward recall it is the
forward-moving Retrieve-Group and Get-Item
productions that are responsible for retrieving the items.
Forward or reverse recall is achieved by subgoaling the
group to be recalled in either forward or reverse order by
different Dispatch productions.

The protocol in Table 7.1 illustrates another feature of
ACT–R’s recall that results from the partial matching. In
the forward recall, part (b), note that the 8 from the first
position of the third group is recalled as the first member
of the second group. In addition, the 7 that is the first
member of the second group is recalled in the second
position of the second group. Finally, because the 8 is
“used up” nothing is recalled in the first position of the
third group.5 In the backward recall, note that the 3 and
the 2 of the first group (recalled last) are reversed. These
kinds of positional confusions are typical of serial recall
and are produced by partial matching of the positional
information.

The exact timings of the item recalls and their
probabilities of success depend on random fluctuations
in the activation levels. We ran 620 trials per condition,
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which corresponded to the number of observations from
the experiment. This yielded fairly stable predictions.
These predictions depend on four estimated parameters:

1. The activation noise level, s, estimated to be 0.300
(corresponding to a variance of 0.296)—see Retrieval
Probability Equation 3.7.

2. The activation threshold, τ, estimated to be
–0.35—see Retrieval Probability Equation 3.7.

3. The time scale parameter, F, for retrievals,
estimated to be 220 msec—see Retrieval Time Equation
3.10.

4. The scale factor, D, for mismatches, estimated to
be 2.5.

In addition a number of productions were given
non-default action times (the default is 50 msec). These
times were just set to plausible ballpark values:

5. The time to encode an item, which was 200 msec.
This is the ballpark time established from the simulations
of visual attention (see Chapter 5).

6. The response time to type an item, which was set to
500 msec.

7. The time to rehearse an item, which was set to 500
msec to reflect speech time.

8. The intercept time to start recall, for the
Start-Group production, which was set to 500 msec.

The last four parameters are constant across all the
simulations reported in this chapter, whereas the first
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four parameters, s, τ, F, and D, were estimated to
produce a good fit to this experiment. However, our
search for these four parameters was informal and there
is no guarantee that we found the ones that produce
optimal fits. The D parameter, reflecting positional
similarity, is unique to this experiment but the other
three, S, τ, and F, are potentially estimated anew for each
experiment. Table 7.2 tracks all of the parameter
estimates. At the end of the chapter we discuss the issue
of variations in the s, τ, and F parameters across
experiments.

Table 7.2
Parameter Estimates of Various Experiments

* Because accuracy data are not modeled there was no
need to estimate the s or τ parameters for these
experiments. There was also no study process modeled
in the Burrows and Okada experiment.

Figures 7.4 and 7.5 show the resulting simulated recall
behavior. The latency profiles in Fig. 7.5 capture the
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general structure of the profiles in Fig. 7.3. The overall
R2 between the two sets of latencies is .946. The
accuracy profiles in Fig. 7.4 do not match as well,
producing an overall R2 of .906. Nonetheless, the
correspondences between the profiles are quite
compelling. This indicates some of the power of ACT–R
to account for a complex data pattern. The model is
predicting 300 numbers, estimating only four parameters
and without carefully optimizing the fit.
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Fig. 7.4. Results of simulation: Predicted probability of
correct positional recall (a) for items recalled in the
forward direction and (b) for times recalled in the
backward direction. Compare with Fig. 7.2.
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Fig. 7.5. Results of simulation: Time to recall digits as a
function of serial position and list length for (a) forward
recall and (b) backward recall. Compare with Fig. 7.3.

To summarize what lies behind the ACT–R account of
the data: The latency data speak to a very systematic
group -by-group recall procedure that subjects are using
to pace their recall. This strategy is implemented by the
basic production rules that execute the task. Within this
relatively fixed procedure there is considerable variation
in latencies at chunk boundaries as a function of list
length. This is produced by increasing interference in
associative activation from the list context.

With respect to the accuracy data, recall of items varied
considerably as a function of both list length and input
position. ACT–R does not change the fundamental
algorithm to predict these variations. These variations
reflect the changes in activations of the elements being
retrieved. These activations increase with rehearsal
(base-level activation), decrease with time (base-level
activation), and decrease with memory list length
(associative activation). These are all basic processes in
the ACT–R theory, and they combine to form the
behavioral profiles in Figs. 7.4 and 7.5. Both time-based
decay and associative interference are required to
account for the span limitations. The very different recall
profiles for forward and backward recall reflect
differences in the time at which the same items are
recalled. On the other hand, in the backward data one
can look at recall of items that have the same delay
between study and test. For instance, the last item is
always cued immediately after the offset in its
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presentation. However, as Fig. 7.2b illustrates, recall for
this item systematically drops, reflecting the contribution
of associative interference from the other items. In
addition to associative activation, which produces the
differences among lists, and base-level decay, which
produces the recency effect, the rehearsal strategy
assumed by ACT–R
is critical. The tendency for the earlier items to receive
greater rehearsal is what is producing the primacy effect.

Recognition Memory

A very different way of testing memory involves simply
showing subjects the words in the list and asking them
whether they recognize the items. To keep the subjects
honest these target words are mixed in with distractors
(or foils) that they have not seen. The ACT–R model for
this task is basically the one that Anderson and Bower
(1972, 1974) developed 25 years ago, where it is
assumed that a memory trace is set up that encodes that
an item occurred in a particular list. Thus, ACT–R
records that words occurred in the list by means of
chunks like the one illustrated in Fig. 7.6, which encodes
that the word imply occurred in List3. This is the same
representation used in serial memory.6

Fig. 7.6. A chunk encoding that the word imply has
occurred in List-3.
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Recognition of a word is achieved by productions like

Recognize-a-Word

IF
the goal is to judge whether the word occurred in a
context and there is a trace of seeing the word in
that context

THEN respond yes

This is a very straightforward model, which views
recognition memory as a simple process. The memory
trace just consists of two items—the word and the list
context. In recognizing a word, a subject has access to
both sources of association (in contrast to free recall,
where the subject has only access to the list context).
Thus, the activation of a memory trace can be written:

where Ww is the attentional weight given to the word, Sw
is the strength of association from the word to the trace,
WL is the weight of the list context, and SL is the strength
of association from the list context to the trace. Although
the word becomes an important additional source of
activation, the Ww Sw term remains constant across
conditions. As in the case of the Serial Memory Equation
7.1, base -level activation can be expanded to show the
effect of rehearsal time, decay, and list length:

where B´ reflects constant effects including Ww Sw.
Thus, just as in serial recall, the critical variables remain
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the amount of rehearsal n, delay time T, and the list
length L.

Ignoring the constant, using the standard setting of the
decay parameter d to 0.5, and assuming an equal division
of source activation between word and list context so
that WL = 0.5, the equation becomes the Recognition
Memory Equation:

This is the critical activation equation for this section.
This is identical to the Serial Memory Equation 7.1,
except that the list length is weighted by 0.5 reflecting
the division of source activation (the Ws) between the
list and the word. Again, this only gives an
approximation to the results of the simulation, and the
predictions come from simulation runs.

An additional relevant factor in recognition memory
involves partial matching to either the word or the list
context. Partial matching to the word will produce false
alarming to similar words. There are ample experiments
showing effects of distractor similarity on recognition
memory (e.g., Anisfeld &Knapp, 1968; Underwood
&Freund, 1968). Similarly, subjects are likely to false
alarm to a word if it occurred in a similar list (e. g.,
Anderson & Bower, 1974).

This section focuses on three results that have proven
important in the last 25 years of research and theory on
recognition memory. These are latencies to recognize
items, particularly in the Sternberg paradigm, the
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relationship between list length and list strength, and the
effects of context in recognition memory. One
subsection is devoted to each topic.

The Sternberg Paradigm

The Sternberg paradigm is one in which subjects see a
relatively small list of items and then are presented with
a single item and have to judge whether that item is from
the list. As the result was originally described and is still
described in many textbooks, the claim is that there is a
linear relationship between the number of items in the
memory set and time to make this judgment. In fact, the
relationship is more typically curvilinear and extends out
to lists as long as 20 items (Briggs, 1974). Figure 7.7
shows some data from Burrows and Okada (1975)
illustrating this relationship and a fit of the ACT–R
model, described next.
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Fig. 7.7. Observed (dotted lines) and predicted (solid
lines) latencies for recognizing probes as a function of
set size.

Because Burrows and Okada do not report the details of
presentation timing or practice, we simulated in ACT–R
only the recognition judgment task and not the study. For
this recognition judgment task we used a model similar
to the model of sentence recognition in studies of the fan
effect (discussed in Chapter 3). This kind of model
seems appropriate for time-pressured recognition
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judgments. On presentation of a probe, the subject
retrieves the most active item from the list:

Retrieve-a-Candidate

IF
the goal is to recognize whether a word is in the
list

and X is some word in the list

THEN consider X as the retrieved word

If the probe is a word in the list, that candidate word will
be most active because it receives activation from the
probe. Thus, it is only necessary for the preceding
production to retrieve one item. The subject then checks
whether the retrieved item matches the probe and
responds “yes” if it does:

Match-Word

IF
the goal is to recognize whether a probe word is in
the list

and the probe word matches the retrieved word

THEN say yes

In the case of a foil, some list member will be retrieved
(because no condition is placed on which word to
retrieve) only to be rejected as mismatching the probe by
Mismatch-Word:

Mismatch-Word

IF the goal is to recognize whether a probe word is in
the list
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and the probe word does not match the retrieved
word

THEN say no.

For its success, this scheme relies on the fact that if the
word was studied, the chunk encoding its occurrence in
the list will be more active than chunks encoding the
occurrence of other items. This will be the case because
this chunk will receive activation from the probe word.

Because Burrows and Okada do not describe the study
process, we just modeled the test phase of their
experiment, assuming that chunks had an activation that
depended only on list length and ignoring the effect of
the number of rehearsals, n, and delay, T. Thus, the
recognition equation simply becomes:

where L is the length of the list and 3.76 is the activation
of an element in a list of length 1 in the ACT–R
simulation.7 This activation value and the latency scale F
parameter (see Retrieval Time Equation 3.11) trade off
such that there is only one degree of freedom in fitting
the data. Thus, we left
the activation value at its default and estimated F at 4.15
sec. Then using Retrieval Time Equation 3.11, ACT–R’s
prediction for latency is

where 0.5 is the fixed intercept I (which is the same as
the intercept parameter used in the serial recall model), F
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is the latency factor estimated at 4.15, and 0.097 =
4.15e–3.76.8 The fit of this one-parameter model is
basically identical to that of a logarithmic equation given
by Burrows and Okada (which has two parameters) and
is slightly worse than their bilinear model (which has
four parameters). Although this does involve the
estimation of one parameter, it does make the
parameter-free prediction that latency should increase as
a function of the square-root of list length. The data do
correspond closely to this predicted form with an R2 of
.957 for the square-root function as compared to .908 for
a linear function.

To have better tests of ACT–R it would be useful to have
data with better specification of the presentation timing
and information about the effect of serial position on
latency. Raeburn (1974) reported such an experiment, in
which items were presented at the rate of 1.5 sec per
item and tested at a delay of 1.2 sec. Figure 7.8 presents
his data as a function of serial position of the targets plus
the mean performance for foils.
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Fig. 7.8. Data (in dotted lines) from Raeburn (1974):
time to recognize an item for lists of various lengths as a
function of serial position. The predictions of the
ACT–R model are in solid lines.

We developed a running ACT–R simulation of these
data. In modeling the study of the items we wanted to
carry over as much of the representations and processes
as possible from the model in the previous section for
serial memory. This seemed desirable because the lists
were of similar length and the presentation timings were
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similar. The same productions were used for encoding
and rehearsal. The recognition judgment at test was
made by productions used for the Burrows and Okada
simulation. As in the case of the Burrows and Okada
data, we estimated the parameter, F, in fitting the data.
This was estimated at 2.29 sec. However, in this
experiment only we also needed to estimate a nondefault
intercept parameter of 0.6 sec.9

The quality of the fit is quite good, with a mean error of
prediction of 19 msec and an R2 of .886 with just two
parameters estimated. The data and the model both
reflect strong effects of target versus foil, set size, and
serial position. It is worth reviewing what produces these
effects in the ACT–R model. The effect of target versus
foil is due to the lower activation of the chunk retrieved
by Retrieve-a-Candidate in the case of a foil because
the probe is not a source of activation. The effect of
serial position reflects the
effects of extra rehearsal of the beginning of the list and
shorter recency of the end of the list. These are the same
factors operating in the memory span except that time to
recall in memory span is also affected by order of output
in span tests. Finally, the effect of set size is due to the
combined effects of decreased associative activation and
increased decay of base-level activation, because on
average the delay is longer between presentation and
test.

Recognition Memory and Signal Detectability Analysis

The Sternberg task is one where lists tend to be short,
accuracy is nearly perfect, and interest is focused on
latency. As lists become longer, interest shifts to
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recognition accuracy. In ACT–R, errors on targets (false
negatives) will occur because of low activation levels,
which result in failed retrieval of the target chunk. Errors
on foils (false alarms) will occur because ACT–R
retrieves similar contexts to the target contexts and
accepts the partial match.

The ACT–R model of recognition with longer lists
involves a number of changes from the simulation we
used for the Sternberg recognition memory task. First,
given the long length of the lists and given that this was
not a serial memory test, ACT–R no longer represented
the serial order of the list and just stored the fact that the
word occurred in the list (see Fig. 7.6).10 As a
consequence, ACT–R could not use serial position as a
basis for rehearsing items but rather just rehearsed each
item that came to mind (i.e., the item that is momentarily
most active) a maximum number of times, which we set
to two. Thus, the critical rehearsal rule was

Rehearse

IF
the goal is to study the words in a list

and there is a trace of a word which has occurred
in the list and has not been rehearsed 2 times

THEN rehearse it one more time

The following two rules accepted targets and rejected
foils:

Accept
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IF
the goal is to recognize if a probe word occurred
in the list

and there is a trace of that word in the list

THEN accept it

Reject

IF the goal is to recognize if a probe word occurred
in the list

THEN reject it

where the rejection rule was rated lower in ACT–R’s
conflict resolution (which means it will only fire if the
acceptance rule fails). Thus, the Reject rule has to wait
for the Accept rule to time out before it fires. We used
this rather than the reject rule in the previous simulation
that retrieved some trace because (1) latency was not
critical, making the longer time-out latency for Reject
acceptable, and (2) sometimes no chunk (after mismatch
penalty) was above threshold because of the longer list
structure. False alarms occur when the Accept rule
partially matches to a memory of the word in another
context. False negatives occur when no trace involving
the word, including memory of it in the list, is above
threshold and the Reject rule applies.

The focus on accuracy with longer lists and the
occurrence of both false negatives and false alarms raise
the issue of how one is going to measure the accuracy of
recognition memory. Subjects could guarantee they
would recognize all targets if they just accepted all
words. This would be at the expense of false alarms to
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all foils. A frequent measure of recognition memory is
called d´. The fundamental logic of this measure is
illustrated in Fig. 7.9. It is assumed that the targets and
foils have some distribution of evidence for list
membership and that subjects set up some criterion for
acceptance such that anything above the threshold is
accepted. The proportion of correct acceptances of
targets is the proportion of the target distribution above
the criterion. Similarly, the proportion of false alarms is
the proportion of the foil distribution above the criterion.
Assuming normal distributions with equal variance, one
can use these two proportions to estimate the distance
the two distributions are apart in terms of standard
deviations. This measure is called d´. ACT–R produces
d´ measures in essentially the same way. Targets and
foils define two distributions of activation (or, more
precisely, match scores), and by setting a threshold, τ,
ACT–R is setting a criterion for separating targets and
foils.
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Fig. 7.9. Distribution of evidence for targets and
distractors (foils) in a recognition memory experiment.

Sometimes experiments are performed in which subjects
are not simply asked whether they recognize the words
or not but rather are asked to rate
their confidence on an n-point scale (e.g., 1–9) that the
word was in the list. In terms of Fig. 7.9, this can be
conceived of subjects setting up n – 1 criterion points to
separate the scale into n regions for the n confidence
values. Often data from such experiments are used to
plot what are called z-ROC functions. The probability
that subjects will rate targets and foils with confidence i
+ 1 or greater is used to define an ith “hit” rate and an ith

393



“false alarm” rate. With an n-point scale, n – 1 different
hit and false alarm rates are obtained, and these are
transformed into z scores from the standard normal
distribution. The z scores for the hit rates are plotted as a
function of the z scores for the false alarm rates. Figure
7.10 shows an example of such a z-ROC function in the
case of a nine-point scale (which yields 8 pairs of z
scores).11 The curve is typically linear, which is taken as
evidence that the underlying target and noise
distributions are normal. It is also the case that the slope
of the plot is less than 1, which is taken as evidence that
the distribution is broader for targets than for foils.
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Fig. 7.10. ACT–R’s prediction about the z-ROC curve.

Strictly speaking, ACT–R 4.0 is unable to produce such
z-ROC curves. The obvious quantity within the theory
that would allow such curves to be generated is the
match score. One might think about mapping different
match scores onto different levels of confidence or
varying the threshold such that different match scores
were required to recognize a word. However, ACP–R
does not have access to its match scores, nor does it have
direct control over its criterion. The lack of access to
activation or match scores turns out be a feature that
distinguishes ACT–R from Reder’s SAC theory (Reder
& Schunn, 1996). We would not want to argue, however,
that it is a fundamental feature. Here we would like to
display what would happen if we used differential match
scores to map out a z-ROC function.

The curve in Fig. 7.10 comes from an ACT–R model for
recognition of longer lists and was obtained by varying
the threshold, τ, from 1 to 3 in 0.25 intervals. It
reproduces the character of the empirical z-ROC curves
including the slope of less than 1. The slope is shallow
because targets get differing amounts of practice and
some targets do not get encoded at all. This variability of
encoding results in a distribution of match scores for
targets that is wider than the distribution for foils. The
actual slope in Fig. 7.10 is 0.75, which is close to the
slope that is obtained in actual experiments (e.g.,
Ratcliff, McKoon, &Tindall, 1994). However, we could
have manipulated the study procedure to produce greater
or lesser variability in the encoding process. So we
would not want to imply that ACT–R makes a firm
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prediction about the slope—only that it should be
definitely less than 1. This same
prediction was part of the Anderson and Bower (1972)
model and for the same reason.

List Strength and List Length Effects

Recently, a considerable stir has been caused by what are
called the list strength and list length effects on
recognition memory (e.g., Ratcliff, Clark, & Shiffrin,
1990). Recognition memory for individual items
deteriorates as the list has more items (the list length
effect). It also gets better as items are studied more (the
list strength effect). The interesting question is what
happens when some items of the list are studied more
often or longer and others are not. By analogy to the list
length effect, one might imagine that if some items are
studied more (this is analogous to making the list longer)
the remaining items in a list would suffer greater
interference. Just these effects occur with mixed lists in
free recall where extra study for some items makes other
items less available. However, in recognition memory
there is no effect of amount of study of other items.
Ratcliff et al. (1990) proclaimed that no extant theory of
memory could accommodate these results. Since that
time a number of theories (e.g., McClelland & Chappel,
1994; Shiffrin
& Steyvers, 1997) have been modified or proposed to
accommodate the result. It turns out that ACT–R is in
this list of theories, although we have to say this result
was far from our mind when we proposed the ACT–R
theory in 1993, and we have only recently realized that it
explained these effects.
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A representative experiment that captures these results is
Experiment 4 reported by Ratcliff et al. (1990). In five
conditions they had subjects either study 10 items four
times (the 10PS condition for “pure strong”), 16 items
four times (the 16PS condition), 16 items with half
presented four times and half presented one time (the
mixed condition, which contains 8 strong items,
designated 16MS, and 8 weak items, designated 16MW),
16 items each presented once (the 16PW condition for
“pure weak”), or 40 items each presented once (the
40PW condition). Figure 7.11 displays the results
measured in terms of d´ For otherwise comparable lists
there is a length effect—worse performance for longer
lists. It can also be seen within the 16 item lists that there
is a strength effect—performance is worse for words that
are only presented once (W words are worse than S
words). However, there is effectively no difference
between items that come from mixed or pure lists. That
is, holding list length and the strength of the target items
constant, there is no effect of the strength of the other
items in the list.
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Fig. 7.11. Effects of list length and list strength from
Ratcliff, Clark, and Shiffrin (1990). Data are the dotted
lines and model the solid lines.

Figure 7.11 also presents the results from an ACT–R
simulation of this experiment using the production set
described in the previous section. In addition to the
parameters that are held constant in all the simulations,
the latency factor F was set to be 2.00 sec, which is
comparable to its value in the Raeburn experiment.12

Each word was associated with three nonlist contexts,
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which could serve as sources of false alarms. Three
parameters were estimated:

1. The activation threshold τ, which was estimated
to be 1.8.

2. The parameter s, which controls the noise in the
activation values. This was estimated to be 0.55.

3. A P parameter for the partial matching penalty
between list contexts (see Match Equation 3.8).
This was estimated to be 1.5.

The correspondence between the model and the data is
quite good. The Recognition Memory Equation 7.2
directly implies that list strength and list length will have
an effect on recall. More study results in increased
practice producing greater base-level activation. Longer
lists result in greater fan, producing less associative
activation. In addition to these two major factors, there
are two minor factors. First, longer lists also result in
longer delays.
Second, there is rehearsal borrowing in the mixed list
conditions such that weak words get rehearsed at the
expense of strong words. Rehearsal borrowing is weak in
the simulation: There are on average 2.00 rehearsals for
16PS words, 1.99 rehearsals for 16MS words, 1.96
rehearsals for 16MW words, and 1.61 rehearsals for
16PW words. Thus, weak words enjoy a rehearsal
advantage in the mixed condition over the pure
condition, but these differences in number of rehearsals
are weak compared to the one versus four difference in
number of presentations. ACT–R explains the
differences among the conditions as follows:
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10PS versus 16PS: The 10 PS condition is at an advantage
because of lower associative interference and shorter lag to
test.

16PS versus 16MS: These two conditions are equivalent on
the important factors of list length (associative interference)
and number of presentations (differential practice). The
16MS condition does suffer a very little from rehearsal
borrowing but has a somewhat shorter delay until test.

16MS versus 16MW: The 16MS condition has advantages of
number of presentations, differential rehearsal, and slightly
shorter delays until test.

16MW versus 16PW: These two conditions are again
equivalent on the important factors of associative
interference and number of presentations. The 16MW
condition has slightly more rehearsal but also slightly longer
delay until test.

16PW versus 40PW: The 40PW items are at a disadvantage
with respect to associative interference and delay until test.

The critical variables from Recognition Memory
Equation 7.2 are n, which will be dominated by number
of presentations and L, the list length. These factors are
basically the same in the mixed conditions as in the
corresponding pure conditions.

Context Effects in Recognition Memory

As noted earlier, the current theory of recognition
memory is basically a descendant of the Anderson and
Bower (1972, 1974) theory. That theory has been
undergoing a bit of a revival lately, with Bower (1996)
using it as part of his theory of implicit memory. There is
a perception held by some in the field that the Anderson

400



and Bower theory was discredited by Tulving’s
demonstrations of encoding specificity. Although these
demonstrations did cause some difficulty for the HAM
version of the theory proposed in 1972 and 1974, they do
not extend to the current ACT–R version. It is worth
reviewing here what these demonstrations were and why
they do not extend to the current version of the theory.
Anderson (1983) developed the basic explanation of
these Tulving demonstrations in ACT*, and we update
that explanation here for ACT–R 4.0.

The most direct demonstrations of the context
dependency of recognition memory involved
experiments such as those reported by Tulving and
Thomson (1971). Subjects would study a pair of words
like train-black with instructions that they would be
tested for their memory for the second word in the pair,
namely, black. Their ability to recognize black was much
lower if they were later asked to recognize the item in
the pair white-black than in the pair train-black. The
HAM theory assumed that traces were formed with a
certain probability of recall but, if formed, they would be
recalled with certainty. Given this assumption, Tulving
and Thomson’s results were mysterious. If a trace for
black had been formed it should be retrievable in all
contexts and it should not matter whether it is tested in
train-black or white-black. However, it is very easy to
produce this sort of context dependency in the current
theory, which assumes traces are always formed but
these
traces vary in their availability. The effect of the original
study is to create an association between train and the
trace encoding the fact that black occurred in the context.
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At test, train becomes a source of associative activation
and makes the trace more retrievable.

An elaboration of this basic demonstration involved the
demonstration that words that could be recalled could
not be recognized. Again subjects studied pairs of words
like train-black and were either tested on their
recognition memory for the item black or on their ability
to retrieve the word black primed with train. Table 7.3
shows a typical pattern of results obtained by Tulving
and Wiseman (1975). There are at least two noteworthy
results in this experiment. The first is that subjects were
better able to recall the words than recognize them. This
result was used to challenge the generate-recognize
theory of free recall, which the next section discusses.
The other result is that many words could be recalled but
not recognized (also, some words could be recognized
but not recalled). Words in the recall-but-not-recognize
category (called recognition failures) were again a
challenge to the direct-access assumption. A trace had
been formed (as the words were being recalled), but
subjects were unable to access this trace in a recognition
memory test.

Table 7.3
Proportion of Words in Various Conditions

Recognized Not Recognized Totals

Recalled .30 .30 .60

Not recalled .10 .30 .40

Totals .40 .60 1.00
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The explanation of this dissociation between recall and
recognition is not very different from the explanation of
the Tulving and Thomson context-specificity result.
There are two test contexts. One involves presenting
black and asking for its recognition, and the other
involves presenting train and asking for its studied
associate. However, both involve going back to the
original train–black trace, whose availability will depend
upon its activation. This will in turn depend on a
base-level activation, an associative activation, and some
temporary random noise (Activation Equation 3.5 and
Base-Level Equation 3.6). The base-level activation
component will produce some correlation between these
two forms of test because it is the same base level in
either test. However, the temporary random component
and the associative components are not shared and they
will cause the correlation to be far less than perfect. This
poor correlation in activation results in recallable words
that cannot be recognized and recognizable words that
cannot be
recalled. As Hintzman (1992) noted, a wide range of
correlations is obtained between recognition and recall.

Which is better, recognition or recall, depends on the
strengths of the associations, Sji, between black and the
trace versus train and the trace. As noted by Rabinowitz,
Mandler, and Barsalou (1977), there is a peculiarity in
those studies that find recall better than recognition,
which is that the stimuli are chosen so that train evokes
black occasionally in free associate tests but not vice
versa. They looked at the relationship between
recognition of black and recall of train given black as a
prompt. They found that recall is much poorer in the
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reverse direction (black as a prompt for train),
confirming that target words (black) are poorer cues to
memory than cue words (train). Moreover, recognition
failure is much lower when one conditionalizes on recall
in the reverse direction. That is, the probability is very
high that one can recognize black in a recognition test
conditional on being able to recall train given the cue of
black. This is what one would expect because either in
the recall or recognition test one is looking at the ability
of black to evoke the trace and so is tapping the same Sji
(the j is black and the i is the trace). Thus, Tulving and
his associates were able to get recall to be better than
recognition because they created a situation where the
recall test provided better cues for memory than did the
recognition test.

A wide range of results has been obtained over the years
concerning levels of recall, levels of recognition, and
levels of recognition given recall. Attention has focused
on a regularity called the Tulving-Wiseman Law (e.g.,
Flexser & Tulving, 1970; Nilsson & Gardiner, 1993;
Tulving & Wiseman, 1975). This concerns the
relationship between probability of recognition p(Rn)
and probability of recognition given recall p(Rn|Rc):

This indicates a relatively weak relationship between the
two. It turns out that ACT–R very closely predicts the
Tulving-Wiseman function (for details see Anderson,
Bothell, Lebiere, & Matessa, in press). The two
measures—p(Rn) and P(Rn|Rc)—are somewhat related
because of the shared base-level activation between
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recall and test, but they are substantially unrelated
because of the uncorrelated temporary noise and
variability in the Sji between the cues j and the chunks i.

Free Recall

Free recall is an experimental paradigm where the
subject is allowed to recall the items of a list in any
order. The removal of the constraint of recalling in serial
order may seem to simplify the task from serial recall.
However, in fact
it complicates the task substantially because it frees the
subject to choose among a wide variety of strategies for
studying items and recalling them. Some subjects repeat
groups of words over and over again, other subjects look
for associative or categorical relationships among the
words, and still other subjects make up stories involving
these words. The more organizational structure that
subjects try to impose on the material, the better memory
they display (e.g., Mandler, 1967).

The generate-test model described in Anderson and
Bower (1972) and realized in the FRAN simulation
model (Anderson, 1972) was an attempt to extract the
essence of these strategies. The assumptions of the
FRAN model were:

1. The subjects maintain in a short-term memory a
small set of about four items from the list, which
they rehearse and among which they try to find
relationships. When a new item is encountered it
enters this buffer and an old item is removed.
This is basically the buffer model of Atkinson
and Shiffrin (1968), with the added assumption
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that subjects search for semantic relationships
among the items in the buffer.

2. At time of recall subjects try to generate
candidate items, using among other things the
associative relationships that they have laid
down.

3. Every time subjects generate a word they then
try to recognize it. Thus, the recognition process
discussed in the previous section is embedded as
part of the recall process.

The SAM theory of Raaijmakers and Shiffrin (1981) was
another attempt to achieve an abstract characterization of
this process. In that theory items were generated
according to strength of association to the context and to
the last retrieved item. The subject then judged each item
on the basis of its familiarity (rather than retrieval of
contextual information as in the Anderson and Bower
theory).

The ACT–R model for free-recall experiments in this
section is simpler than either SAM or FRAN in that it
omits an embedded recognition process. The model
simply needs to be able to recall the elements. It has a
buffer of four elements for rehearsal, and when a new
element comes in, the simulation randomly replaces a
member of the buffer. This buffer is implemented by
storing the items in slots of the goal. After that the
system randomly chooses items to rehearse from the
buffer as time allows. At time of recall, ACT–R dumps
the members of the buffer and then recalls items whose
activation is above a threshold. Thus, if PB is the
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probability the item is still in the buffer, the probability
of recalling the item is approximately

where τ is the threshold. The activation for an element
would vary with the number of times it has been
rehearsed, the length of time since those rehearsals, and
the fan out of the list node (determined by list size).
Although the predictions in this section come from
actual simulations, it would be useful to have in hand an
equation approximately giving the activation levels. In
this case with a single source of activation (the list—the
word is not presented), the operative equation is identical
to the serial memory equation and is the Free Recall
Equation:

where n is the number of encodings and rehearsals, T is
the time since encoding, and L is the list length.

Serial Position Effects

One of the basic results about free recall is the
serial-position curve, which is a function giving
probability of recall as a function of position of the item
in the input sequence. Figure 7.12a shows some data
gathered by Murdock (1962) looking at recall of lists
that varied in length from 10 to 40 words, presented at 1
or 2 sec for each word. These results show the classic
recency effect, which is the high level of recall at the end
of the list, and the primacy effect, which is the somewhat
higher level of recall at the beginning of the list. The
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performance level is somewhat flat in intermediate
positions with levels higher for shorter lists or for lists
with more study time. Figure 7.12b shows the
corresponding predictions of the ACT–R model. The
latency-scale parameter F was preset to 2.0 sec (same
value as Ratcliff et al., 1990) for this experiment. The
estimated parameters for this simulation were τ = 3.2 and
s (activation noise) = 0.70. The recency effect in ACT–R
is produced by the probability that the item is still in the
buffer, plus the short delay in recall while the primacy
effect is produced by the extra rehearsals given to the
target item. The overall correspondence is quite good,
with an R2 of .911 predicting 135 points with two
estimated parameters.
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Fig. 7.12. Probability of recall of lists of various lengths
and amount of study time as a function of serial position,
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(a) Data from Murdock (1962). (b) Predictions of the
ACT–R model.

Under this analysis the striking recency effect is due to
the tendency to rehearse and recall first the last few
items of the list. In experiments where interfering
activity is given after the list to wipe out the buffer, the
advantage of the last few items disappears and they often
show poorer recall—the so-called negative recency
effect (Craik, 1970; Gardiner, Thompson, & Maskarinec,
1974). In experiments where an effort is made to
eliminate rehearsal the primacy effect largely goes away
and so does the negative recency effect when tested after
a delay (Baddeley, 1986). In such studies, where subjects
are prevented from forming a rehearsal buffer and forced
just
to process the item under study, one also sees a
diminished positive recency effect. Performance tends to
drop off continuously from the end of the list.

Figure 7.13 shows some data from an experiment by
Glenberg et al. (1980) that tries to eliminate rehearsal.
Subjects studied pairs of words for 2 sec. In one
condition they studied 36 such pairs (for 72 items) each
preceded by 4 sec of distracting activity, while in the
other condition they studied 9 such pairs (for 18 items)
each preceded by 22 sec of distracting activity. The
experiment was designed so that subjects spent 216 sec
studying the list. The effect of the distraction was to
prevent any cumulative rehearsal and force subjects just
to attend to the presented items. In both conditions there
was 20 sec of intervening activity before recall. As can
be seen, the recency effect is reduced (no longer are
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subjects recalling nearly 100% of the last item) and there
is no primacy effect to speak of.

Fig. 7.13. Data from Glenberg et al. (1980) in which
interspersed arithmetic was used to eliminate use of a
rehearsal buffer. The dotted lines are the data and the
solid lines are the predictions of the ACT–R model.

In the ACT–R simulation of these data, we took a very
extreme interpretation of the intervening activity and
assumed that it eliminated the buffer and all rehearsal.
Thus, there was just a single study when the item was
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presented. Recall began 20 sec after the last presentation.
Recall was determined by the activation of the chunks in
declarative memory. Figure 7.13 presents the predictions
of the ACT–R model with s =0.60 and τ = 1.40.13 The fit
is quite good, with an R2 of .860.

Note that ACP–R predicts a recency effect for the
Glenberg et al. data even in the absence of a buffer. This
is because activation decreases as a logarithm of delay
(Free Recall Equation 7.3). Glenberg, Bradley, Kraus,
and Renzaglia (1983) proposed that recency varies
roughly as a function of the logarithm of the ratio of the
interitem presentation interval (IPI) to the retention
interval (RI). In Fig. 7.13 note that the serial position
curve is steeper for the 9 pairs condition where the IPI/
RI ratio is 24/20 than the 36 pairs condition where it is
6/20. ACP–R predicts this regularity as a consequence of
the logarithmic transformation of time in the Free Recall
Equation. Consult Anderson, Bothell, Lebiere, and
Matessa (in press) for details.

List Length and List Strength Effects

We have discussed list length and list strength effects in
recognition. In free recall researchers have also
examined how memory for list items increases with the
length of the list or the amount of time per item. Figure
7.14a shows some data from Roberts (1972) displaying
how number of words recalled increases as the list length
increases from 10 to 40 items and as study time increases
from 0.5 to 8 sec per item. As Fig. 7.14b shows, the
ACT–R model (same simulation as in the Murdock
experiment—see Fig. 7.12) does a good job in
accounting for this pattern of data. The parameters in this
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model fit were τ = 2.9 and s = 0.85. The correspondence
is particularly good, and the overall R2 is .990.
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Fig. 7.14. (a) Data from Roberts (1972) showing how
number of words recalled increases with depth lengths
and study time, (b) Predictions from ACT–R.

The ACT–R model’s correspondence to the Roberts data
is much more immediate than through the simulation. It
is basically a direct consequence of the Free Recall
Equation 7.3. In that equation, n, the amount of practice
per item, is going to be proportional to the amount of
study; L is the list length. As an approximation we can
assume T is equal to total study time and therefore is
equal to nL. Substituting T = nL into the Free Recall
Equation 7.3 we obtain:

where n is now study time per item. This equation does
not include the constant factor, but it states how
activation varies with study time and list length. ACT–R
predicts that log odds of recall should be equal to this
quantity divided by the noise parameter s plus some
constant, that is,

If we set s to 1, which it nearly is in the fit, this predicts:

Thus, ACT–R makes parameter-free predictions about
the log-odds differences among the 20 Roberts
conditions. Figure 7.15 displays this predicted
relationship for the 20 conditions of Roberts experiment.
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The line in the graph reflects the prediction, with the
constant estimated at 4.63. The correlation between log
odds and this parameter-free activation estimate is .983.

Fig. 7.15. Predicted relationship between study time (n)
and list length (L) and observed odds of recall.

Implicit Memory

The most recent domain of interest in list-learning
experiments has been implicit memory. Such
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experiments involve demonstrations that subjects are
facilitated in their memory for words in ways that they
do not realize. Many of these demonstrations involve
perceptual facilitation. For instance, subjects may be
able to read words faster that they have studied in a list,
even though they may not be able to remember seeing
these words (Feustel,
Shiffrin, & Salasoo, 1983; Johnston, Dark, & Jacoby,
1985; Johnston, Hawley, & Elliott, 1991; Watkins &
Gibson, 1988). Other work (e.g., Hayman & Tulving,
1989; Jacoby, Toth, & Yonelinas, 1993) on implicit
memory involves word fragment completion. For
instance, subjects might study a word like HARE. Then,
later they will be tested with a fragment like H_R_ and
be asked to complete it as a word. They are more likely
to complete it as HARE after seeing the word than as
other possible completions like HIRE or HURT.
Sometimes subjects will show this tendency even when
they are explicitly instructed not to complete the
fragment with the word they have studied. They make
these “errors” because they do not explicitly remember
seeing the word but their system has been implicitly
affected by seeing the word. One of the reasons for
excitement about this research is that some types of
amnesic patients show normal levels of implicit memory
but show almost no explicit memory for the word (Graf,
Squire, & Mandler, 1984).

There have been a number of attempts to account for
these results in terms of activation-based network
theories of memory (Bower, 1996; Reder & Gordon,
1996; Reder et al., 1997; Reder & Schunn, 1996). The
fundamental idea is that declarative network structures
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can be left in heightened states of activation as a result of
processing. These heightened states, which can facilitate
later processing, constitute an implicit memory for the
words. In contrast, explicit memory requires adding new
declarative network structures rather than just priming
existing ones. This basic idea of other researchers can be
easily incorporated into the ACT–R system, as this
section describes. Although this idea could be extended
to priming of conceptual information, this section
focuses on priming of lexical information. Typical tasks
involve reading a word, judging whether a word is
correctly spelled, or completing a word fragment. In all
cases the subject must get access to information about
word spelling.

Relationship Between Word Naming and Word
Recognition

Figure 7.16 shows the ACT–R representation for a word,
its spelling, and its occurrence in a list. The letters are
stored as part of a spelling chunk, and the word is stored
as having occurred in the list as part of a context
chunk.14 Reading the word requires retrieving the word
from the letter representation. The operative production
is:
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Fig. 7.16. A representation that encodes lexical
information at this spelling chunk and list information at
the context chunk.

Read-Word

IF
the goal is to read a word consisting of the letters
LI, L2, L3, andL4

and LI, L2, L3, and L4 spell Word

THEN say Word

Reading a word will strengthen the base-level activation
of the chunk encoding the word’s spelling. As a
consequence, the next time that word is presented or a
fragment of the word is presented, the subject will be
faster and more likely to access that chunk.

An ACT–R model was developed for the first
experiment of Johnston et al. (1991). Subjects in their
experiment studied 96 four- or five-letter words at the
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rate of one word per 2 sec. The first and last 4 words
were buffers but the middle 88 were critical. Subjects
were then tested with 206 words that consisted of a
buffer of 30 words followed by the 88 critical words
mixed in with 88 foils. The words were presented for
recognition camouflaged in dots that disappeared at
either a slow rate or a fast rate. The subjects were to read
the word as fast as they could. In the ACT–R simulation
the reading of the word was governed by the
Read-Word production just given. The actual timing
consisted of three components. There was the time to
encode the letters (estimated at the default of 200 msec
during study, 750 msec during test in the fast uncovering
condition, and 950 msec during test in the slow
uncovering condition), the time to retrieve the word in
the Read-Word production, and the time to say the word
(given a standard estimate of 500 msec). After reading
the word, ACT–R recognized the word
using the same productions as used in this chapters
Recognition Memory Section to model the
length-strength effect, ACT–R simulated 32 subjects, the
same number as in the Johnston et al experiment. The
nondefault parameter settings were the encoding times
(set longer than usual to reflect the difficult encoding
conditions), the latency-scale parameter F set at 1.30 sec,
the activation noise parameter s set at 0.65, and the
activation threshold parameter τ set at 0.90.

Table 7.4 presents the data and the simulation results
broken down according to whether the word was a target
or a foil, whether the word was recognized or not, and
whether the uncovering was fast or slow. The
correspondence between data and model is good. The R2
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between Simulation and data is .921 in the case of the
percentages and .910 in the case of latencies. Two
effects are apparent in the data and the simulation. First,
ACT–R is faster at reading words it has seen before.
Second, it is faster at recognizing words it thinks it has
seen. Note that it is approximately as fast at reading a
word that it has seen before but it thinks it has not seen
(a false negative) as a word that it has not seen before
and thinks it has (a false alarm). This dissociation
between reading and recognition occurs because the
spelling chunk supports the reading process, whereas the
context chunk supports the recognition judgment. The
context chunk can be low in
activation without the spelling chunk being low in
activation.

Table 7.4
Reading Time and Recognition Proportions for Words
From the Simulation

Fast Uncovering

Recognized Not Recognized

Target Hits False negatives

1313 msec (1324) 1521 msec (1446)

73% (75%) 27% (25%)

Foil False alarms Correct rejections

1455 msec (1531) 1670 msec (1724)

39% (37%) 61% (63%)
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Slow Uncovering

Recognized Not Recognized

Target Hits False negatives

1481 msec (1531) 1737 msec (1658)

72% (72%) 28% (28%)

Foil False alarms Correct rejections

1789 msec (1718) 1876 msec (1918)

35% (36%) 65% (64%)

Note: Data from Johnson, Hawley, and Elliott (1991),
simulation in parentheses.

Note that, holding constant whether the word is
presented, ACT–R is slower to read words that it does
not recognize. The overall ordering of conditions in
terms of reading times is hits < false negatives, false
alarms < correct rejections. It has been argued that this is
evidence that subjects use perceptual fluency as a basis
for performing word recognition—that is, that they tend
to say that they recognize words which they can read
more rapidly. This claim has come in for considerable
dispute. For instance, Poldrack and Logan (1997) argued
that, although there is a difference in the latencies for
targets and foils, there is so much overlap in the latency
distributions that subjects would be very poor in the
recognition judgments if they used their reading times as
a basis for making recognition judgments. Watkins and
Gibson (1988) have argued that the correlation between
identification time and recognition performance is due to
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item selection effects such that items that are more easily
identified also tend to be more recognizable.

ACT–R’s explanation for why the reading latencies are
shorter for yes’s than no’s is a variation of the item
selection argument. To understand what is happening in
ACT–R, it is important to appreciate the contribution of
associative strengths to the reading times and to
recognition accuracy. Because the letters are part of the
goal, associative activation from the letters influences
both the reading times and the recognition judgment.
Reading time will be determined by the Sji terms from
the letters to the word chunk, and the recognition
judgment will be influenced by the Sji terms from the
letters to the context chunk.15 Both of these associations
involve the same sources (js) but different chunks
(is—either word or context chunk). Because of the fan
effect, some sources will have weaker associations than
other sources. That is, some letters appear in relatively
few words and so will have strong associations to both
these words and the word contexts. This means that
words that are read faster are also more likely to produce
recall of contexts (resulting in hits if they occurred in the
study context and false alarms if they occurred only in
other contexts).

Fragment Completion

Hayman and Tulving (1989) reported a study on stem
completion that shows some of the subtlety of implicit
memory tests. Subjects studied lists of 160 words. These
included 16 primacy fillers, 64 critical words, and 80
recency fillers. Subjects performed two fragment
completion tests. The first test involved 32 words that
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the subject had studied plus 32 words not studied. The
second test involved the other 32 studied words, 32
nonstudied
words, plus whatever words the subjects had not
successfully completed in the first test. These repeated
words were either tested with the same fragment or a
different fragment. For instance, if the original word was
aardvark the two fragments were either a—d—rk or
–ar–va—. Note the two are complementary. Table 7.5
displays the results and the ACT–R simulation of these
results.

Table 7.5
Proportions of Fragments Solved and ACT–R
Predictions (in Parentheses)

aTest 2 responses are conditional on failure in Test 1.

The simulation modeled the data, assuming subjects tried
to retrieve the words by means of productions like:

Complete-Fragment-1–3

IF the goal is to complete a word consisting of the
letters L1 __ L3 __
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and L1, L2, L3, and L4 spell Word

THEN say Word

Probability of firing this production will depend on both
the base-level activation of the word and the strength of
association from L1 and L3 to the word. Because of the
base-level factor, there will be a higher probability of
completing the word if it had been studied. The
latency-scale parameter F was set to 0.5 sec in fitting
these data, and s was estimated at 0.3 and τ at –0.45. The
other parameters were kept constant. The
correspondence between model and data is quite good,
with an overall R2 of .962.

There are two results in the data. First, subjects and
simulation are almost twice as good at completing words
they have studied. This shows the base-level
strengthening effect of that experience. Second, they are
worse when retested in the same way with the same
string on which they have failed. This is because one is
conditionalizing on items that are likely to have low
base-level activations and associative strengths. There is
no deficit for
items tested with different fragments. The conditional
performance on the different fragments reflects a
plus–minus effect. As in the case of the same fragment
condition, one is conditionalizing on lower base-level
activations, which should result in lower recall. On the
other hand, one is testing with new letters, which might
have stronger associations. Indeed, because the two
fragments are complementary only one will have the first
letter, which is probably the best cue for the word. This
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was represented in the ACT–R model by setting the
strengths of association from the first letter much higher
than for the other letters (4.0 vs. 0.4). This setting of
associative strengths was basically determined to
produce equal recall of the different fragments in the
conditional tests as control fragments, so the model does
not really predict this effect (although it does predict
better performance in the conditional test for different
fragments than for same fragments).

Process Dissociation

Jacoby’s process dissociation methodology has attracted
a great deal of interest. It is a methodology for
estimating the contribution of implicit and explicit
memory to performance in a task. Table 7.6 gives some
representative results that come from the first experiment
of Toth, Reingold, and Jacoby (1994). Subjects studied a
list of words. For half of these words they made
semantic (pleasantness) judgments and for the other half
they made nonsemantic (vowel) judgments. Then they
were later given word stems and asked to complete the
stems. In the indirect condition they were asked to
complete the stem with the first word that came to mind.
In the inclusion
condition they were asked to complete the stem with a
word they studied if they could (but they were to try to
complete the word with some word). In the exclusion
condition they were told to complete the stem with a
word they had not studied. All stems had multiple
completions, only one of which was the target word that
they might study. The data presented in Table 7.6 are the
proportion of target words generated in each of these
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conditions. In addition, Table 7.6 shows the proportion
of completions with the designated target to new words
that had not been studied.

Table 7.6
Proportion of Stems Completed with Critical Items and
Estimates of Controlled and Automatic Influences of
Memory in Toth, Reingold, and Jacoby’s (1994)
Experiment 1 (ACT–R Predictions in Parentheses)

Study Processing

Performance
Measure Semantic Nonsemantic New

Test

Indirect .51 (.53) .45 (.44) .30 (.31)

Inclusion .60 (.59) .47 (.45) .29 (.31)

Exclusion .33 (.37) .43 (.42) .26 (.31)

Estimate

Controlled .27 (.22) .03 (.03) —

Automatic .42 (.47) .45 (.44) —

Toth et al. proposed that subjects’ performance in this
task can be conceived of as reflecting a probability C of
retrieving the word in a controlled way and a probability
A of retrieving it in an automatic way. The probability I
of retrieving the word in the inclusion condition is the
probability of retrieving it by controlled means and, if
that fails, by automatic means:
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whereas the probability in the exclusion condition is
probability of retrieving it by automatic means but not
being able to retrieve it by controlled means to exclude
it:

Toth et al. noted that the probability of retrieving it by
controlled means can be estimated:

With C estimated, the probability of retrieving it by
automatic means can be estimated:

The same ACT–R model as used for the Hayman and
Tulving experiment was used to model this experiment.
As in the previous simulation, a studied word would
have a somewhat more active encoding of its spelling.
This produced the advantage of either semantic or
nonsemantic processing in the indirect condition where
we simply had ACT–R report the first word that it
retrieved. The effect of semantic processing was
modeled by giving ACT–R two rehearsals of the item.
This increased both the strength of the spelling
representation and the strength of the encoding of the
trace storing
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the fact that the word occurred in the list. Retrieval of
this contextual trace was necessary in both the inclusion
and exclusion conditions. In the inclusion condition,
ACT–R output the first word that it retrieved if it
recognized it as studied or if it could not generate any
other completions that it recognized as studied. It
rejected this first word only if it could not recognize it as
coming from the list and could generate another word
that it could so recognize. In the exclusion condition,
ACT–R generated a word only if it could not recognize it
as coming from the list. The recognition judgment was
based on retrieval of a trace encoding the word in the list
context, which was facilitated by the rehearsal in the
semantic condition.

Table 7.6 also displays the predictions of the ACT–R
model. Two parameters were estimated to fit these data.
One was the threshold parameter τ, which was estimated
at 0.1, and the other was the activation noise parameter s,
which was estimated at 0.45. The ACT–R model closely
reproduces the data, including Jacoby’s estimates of
controlled and automatic probabilities, A and C. It is
worth reviewing the ACT–R account of the basic effects:

1. There are more target completions of studied
words than new words because the target word
has its spelling more active and is more likely to
be retrieved.

2. Performance is better in the indirect condition
for semantic processing than for nonsemantic
processing because rehearsal further strengthens
the word representation.
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3. Recall is slightly higher in the inclusion
condition than in the indirect condition because
ACT–R has some probability of rejecting a first
candidate if it was not studied.

4. Recall is lower in the exclusion condition than in
the indirect condition because ACT–R is
throwing out words it can recognize as studied.

5. Effects in 3 and 4 are greater in the semantic
condition because ACT–R has a higher
probability of retrieving the contextual trace on
which recognition judgment depends.

One can derive estimates from the ACT–R simulation of
an automatic and controlled components using the
Jacoby equations. However, it does not follow that any
quantities in the ACT–R simulation correspond exactly
to the automatic and controlled components. Roughly
speaking, there are three critical quantities in the ACT–R
analysis: P(first), which is the probability of generating
the target word first; P(all), the probability of generating
the target word at all; and P(recognize), the probability
of recognizing the word. Then, according to ACT–R,
performance in the three conditions derives from these
underlying quantities as follows:

Both P(first) and P(all) will increase with manipulation
that cause the subject to process the lexical item and so
behave roughly like Jacoby’s automatic components.
Conversely, P(recognize) will vary with manipulations
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that produce explicit encoding of the contextual trace
and so behave, roughly, like Jacoby’s controlled
component.

Parameter Variation

Table 7.2 was given earlier to track the parameters used
in fitting the models to the experiments and the
proportion of variance accounted for. Except for s, τ, and
F, the parameters have been held constant across the
experiments. The variations in s, the noise parameter, are
rather small. One reason for variation in this parameter is
that it will reflect heterogeneity in the population of
subjects and variability in items and how subjects attend
to them. The more variable they are, the larger will be
the estimate of this parameter, which controls variance in
ACT–R activations. Better performance on some items
will be modeled by higher ACT–R activations and worse
performance by lower activations. Thus, the mixture of
activations produced by s will tend to mirror the mixture
of performances of subjects.

The other two parameters, τ and F, do appear to vary
more dramatically from experiment to experiment. It
turns out that these variations are related to the mean
activation level of memory chunks. The bottom line in
Table 7.2 shows these activations at the point at which
study is completed and before testing begins. In the
experiments with multiple conditions these averages are
calculated over the conditions. The activations are sums
of base-level activations and associative activations
when the goal is set to retrieve these items. These
base-level and associative activations are also shown.
These mean activations fluctuate from experiment to
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experiment. The exact activation levels in ACT–R are
somewhat arbitrary. The activations reflect things like
how many chunks are in the system, and in any
simulation the number is going to be much less than the
true number. The τ and F parameters serve to map
activation levels onto performance. This is particularly
apparent in the case of the τ parameter, where probability
of recall is a function of the gap between τ and
activation. Similarly, latency is a function of the gap
between the logarithm of F and the activation level.
Retrieval time will be equal to the exponential of the
difference between In F and activation.16

Figure 7.17 plots τ and In F as a function of average
activation level. We have separately plotted t from the
free-recall experiments (Murdock, Glenberg, Roberts—F
does not vary across these experiments). Although the
relationship is not perfect, there is an approximately
linear relationship between τ and In F and average
activation over the experiments. Thus, a major reason for
the fluctuation in τ and F is to compensate for the
arbitrary differences in mean activation levels from
experiment to experiment. Activation is an interval scale
in ACT–R where absolute differences are meaningful
but there is no meaningful zero.
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Fig. 7.17. Relationship between average activation in an
experiment and the threshold parameter τ and the
logarithm of the latency factor.

It might seem strange that the curve for the free-recall τ
is so far above other t curve in Fig. 7.17. The reason for
this is that in the free-recall models a word can be
recalled if, on any cycle before recall terminates, its
noise brings it above threshold. Thus, there are many
opportunities to recall a
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word in free recall, whereas in the recognition or
serial-memory paradigms there is just one opportunity to
recall the word. Because activation noise was
independent from cycle to cycle, this meant that chances
were good for recall unless the threshold was very high.
The solution to this is to have the noise correlated from
cycle to cycle in the simulation—something we did not
pursue in the free-recall models. This can be achieved in
ACT–R, utilizing the distinction between transient and
permanent noise (see Base-Level Equation 3.6).

Although these studies reveal a general relationship
between activation and the parameters τ and F, there is
no reason to believe the relationship should be perfect,
because there should be experiment and population
differences in these parameters just as there should be in
the s parameter. Differences in τ correspond to
differences in levels of recall and bias. Some subjects in
some experiments will show a greater recall and
tendency to false alarm. This is captured by a lower
value of the τ parameter. Similarly, it is reasonable to
assume that there will be population differences in
retrieval speed (e.g., Salthouse, 1991). Moreover, in
some experiments subjects will have practiced more and
so display higher activations. Thus, all differences in
activation levels are not arbitrary and there should not
always be compensating changes in τ and F.
Nonetheless, Fig. 7.17 suggests that variations in the
average activation levels are the main reason in the
model fits for the large variation in the parameters τ and
F.
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Because τ and In F both show an approximate linear
relationship to mean activation, they should show a
linear relationship to one another. In fact, one can do a
pretty good job in predicting F from τ:

This equation accounts for 93.9% of the variance in the
F parameter across the non-free-recall experiments
where estimates of both τ and F were obtained.17 So
really in some cases only one parameter is being
estimated per experiment. This parameter is τ, and the
prediction is that retrieval time is about a third of a
second when the activation is at the threshold τ. This
equation also describes a situation where subjects can
trade off increased accuracy for increased latency by
lowering the threshold.

Conclusions

This chapter has shown that ACT–R is capable of
accounting for a large range of phenomena in the field of
list memory. As such, it has proven its
potential for being the integrating theory that Newell
wanted (see Chapter 1). This effort at modeling has
contributed to our understanding of ACT–R in that we
have come to a better understanding of the parameters in
ACT–R and the constraints on their variation. The
parameter variation across experiments in this chapter
has been exceedingly regular. The s parameter shows
little variation, and the F and τ parameters are related by
the Speed-Accuracy Equation just given. This regularity
is a major piece of evidence for the underlying ACT–R
theory. As a final note, the s parameter was always
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estimated to be less than 1. As Chapter 9 shows, this is a
precondition for ACT–R’s learning over a lifetime to
converge on a stable knowledge base.

1In all the simulations in this chapter, associative
strength learning is turned off. Therefore, the Posterior
Strength Equation 4.3 is not applicable.
2The assumption here is that each list will have its own
token. Perhaps to avoid ambiguity, we should have
called this something like List-7136.
3In the standard ACT–R 4.0 simulation, source
activation (W) is divided equally among all goal slots.
Because positional information is in the goal slots, this
means the source activation for the list would be less
than 1. However, Anderson and Reder (in press) have
speculated that subjects can dynamically reallocate
source activation to more useful sources. We modified
the simulations in this chapter to enable this focused
source activation.
4It is also possible for the activation of the group chunk
to randomly fall below threshold, in which case the
whole chunk will be skipped.
5This is achieved by explicitly marking the chunk
encoding the item as recalled.
6In Fig. 7.6 we do not show encoding of position. As
discussed later, we continue use of positional
information for the short Sternberg lists but not for the
longer lists.
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7The value 3.76 is just the value delivered by ACT–R
simulation for relatively arbitrary reasons—see the
discussion later in this chapter.
8Although we estimated F at 4.15, it would have been
mathematically equivalent to use the equation just given
and estimate 0.097 as our free parameter.
9As can be seen comparing Figs. 7.7 and 7.8, the
minimum times in Raeburn’s data are longer than the
averages for comparable list lengths in the Burrows and
Okada data.
10Also as a consequence, the D parameter for positional
confusions is no longer relevant.
11Another way to obtain such curves is to ask subjects in
different conditions to accept words with stricter or
weaker criteria (sometimes encouraged by introducing
different payoffs for hits and penalties for false alarms).
The numbers of hits and false alarms systematically
increase as subjects adopt laxer criteria, thus producing a
series of points for a z-ROC curve.
12In experiments where latency is not a
dependent-measure prediction, our predictions are only
weakly dependent on the setting of F. Therefore, in these
experiments we satisfied ourselves with ballpark setting
and did not search for a good fitting parameter.
13The latency-scale parameter F was preset to 2.0 as in
the other free-recall experiments.
14To deal with conceptual priming we would have to
elaborate this representation to include a distinction
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between words and concepts, but this is not done in the
current figure for the sake of simplicity.
15In the case of recognition, the word and the list context
will also be sources of activation.
16According to Retrieval Time Equation 3.10, Time =
Fe–Mii = e ln F–Mi, assuming f = 1 and SP = 0.
17The free-recall experiments provide very little
constraints for the estimate of the F parameter, and it
was just arbitrarily set at 2 for all of these experiments.
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8

Choice

Marsha Lovett

Carnegie Mellon University

Elaborating ACT–R’s Theory of Choice

For both humans and animals, choice is a necessary part
of life. Some choices mark global decisions (e.g., for
whom to cast a vote, whom to choose as a mate), but the
majority of choices, encountered in daily life, have more
immediate consequences and tend not to evoke explicit,
deliberate reasoning (e.g., which route to take to work, in
which patch to forage for food). This chapter focuses on
the processes mediating the latter kind of choice—choice
in service of a local goal—particularly when the chooser
has repeated exposures to the same choice point.
Problem-solving tasks offer many examples of choice in
service of a local goal. For example, when working on a
problem (e.g., solving an algebra equation), solvers often
have multiple strategies available (e.g., graphing,
quadratic formula) and must choose among these
strategies in order to progress toward the local goal of
reaching a solution. The same framework maps onto
many animal choice situations. For example, in foraging,
the animal’s goal is to obtain some food, and the choices
are the multiple patches in which food may be sought.

Making such choices involves facing two questions: (1)
how to evaluate different options when the successful
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option cannot be known in advance, and (2) how to
adapt one’s choice tendencies to a potentially changing
environment. The ability to evaluate options (and choose
among them) in a way that is sensitive to the
contingencies of one’s environment is important for
success. For example, people who choose more robust
solution strategies will tend to solve more problems, and
foraging animals who seek food in richer patches will
tend to find more food. This sensitivity to environmental
contingencies, however, is useless unless it adjusts to
changing circumstances. For example, problem solvers
need to be able to shift their choice tendencies when a
strategy that was unsuccessful at first eventually
outperforms other strategies once it is practiced.
Similarly, animals
need to adjust their foraging choices when a patch that
was previously plentiful eventually becomes depleted,
making it much less rewarding. In both situations, the
choosers’ goals are best served when their choice
tendencies adapt to changing experiences of success and
failure with the various alternatives.

ACT–R must face the same questions of evaluation and
adaptation in choice situations. What does ACT–R do
when more than one production applies to the current
situation? The performance discussion in the third
section of Chapter 3 specified how ACT–R’s conflict
resolution mechanism uses productions’ parameter
values to select the production with the highest expected
utility. How does ACT–R adjust its choice tendencies to
a changing environment? The learning discussion in the
fourth section of Chapter 4 specified how ACT–R
estimates production parameters from past experiences.
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Together, these performance and learning mechanisms
allow ACT–R to choose adaptively within its
environment. When the environment changes, the model
learns new values for its productions’ parameters, and its
selection among those productions changes accordingly.
As shown in various examples throughout Chapters 3
and 4, these ACT–R mechanisms do a good job of fitting
problem solvers’ choice tendencies in relatively stable
environments.

In this chapter, we raise several issues regarding
ACT–R’s ability to adjust to rapidly changing
environments and its applicability to choice situations
beyond problem-solving choice. In particular, we focus
on the predictions of ACT–R when time-based decay is
incorporated into the computation of productions’
success histories. This time-based adjustment was
addressed briefly at the end of Chapter 4. Here we
discuss in more detail how it affects the way
productions’ parameters are learned and how it
influences the time course of choice among competing
productions. Through a variety of examples, we
demonstrate that the decay-based parameter-learning
mechanism allows ACT–R models to account for a
variety of learning and choice data at a fine-grained level
of detail.

A Review of How ACT–R Learns to Choose

In ACT–R, each production rule i is chosen according to
a probability that reflects its expected gain, Ei, relative to
its competitors’ expected gains, Ej. ACT–R chooses the
production with highest gain, but because of noise in the
evaluation, the production with highest expected gain is
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only chosen a certain proportion of the time. The
Conflict Resolution Equation 3.4 describes the
probability that a production with expected gain Ei will
have the highest noise-added expected gain:

where t controls the noise in the evaluations. These
evaluations of expected gain are computed as the
quantity E = PG – C, where P is the estimated
probability of achieving the production’s goal, G is the
value of the goal, and C is the estimated cost to be
expended in reaching the goal. This chapter focuses on
the impact of successes and failures on choice, so we
take C as fixed and expand on P. Because P is the
estimated probability of eventual success in attaining the
goal, it is decomposed into two parts: P = qr, where q is
the probability that the production under consideration
will achieve its intended next state, and r is the
probability of achieving the production’s goal given
arrival at the intended next state. For practical purposes,
we can take q as 1, leaving r as the main quantity to
estimate. Under this constraint, the r parameter is
important for determining the choice among competing
productions. When a production’s r parameter is low, it
implies that the production tends not to lead to the goal
even when it leads to its intended next state; this low r
value will be represented in a low P value, which will
lead the production to have a low expected gain. In
contrast, a production with a high likelihood of leading
to its goal (i.e., high r value) will have a higher estimated
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probability of achieving the goal and hence a higher
expected gain evaluation.

In ACT–R, the value of a production’s r parameter is
estimated as:

where Successes and Failures refer to the number of
eventual successes and failures that occurred when this
production was used. This includes all prior such events
(i.e., those before the beginning of the simulation) and
expert enced events (i.e., those during the current
simulation). Thus, before a production has been used in
the current simulation, these values represent a prior
estimation of the production’s successes and failures. As
the current simulation runs and the production is
exercised, the values of Successes and Failures will
include more and more experienced successes and
failures, and the ratio in Equation 4.5 will emphasize the
experienced success rate of the
production. A more explicit breakdown of experience
into “prior” and “experienced” quantities rewrites
Equation 4.5 as:

where α and β represent prior successes and failures and
m and n represent observed successes and failures.

Two important ACT–R predictions stem from this basic
mechanism:
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1. As solvers experience success and failure, their
choices will shift from initial tendencies to a
preference of the more successful production (s).

2. Because success and failure information is
maintained at the production level, solvers’
preferences will be exhibited at the production
level—that is, success with a certain production
will generalize to all situations where it is
applicable (even if the solver’s successes with
this production were limited to a small set of
situations).

An Example of ACT–R’s Mechanisms for Choice

The building sticks task (BST), described in the fourth
section of Chapter 4, offers a problem-solving situation
where solvers must learn to choose between various
solution approaches. By studying how solvers’ choice
patterns change with different experiences in this task,
we can test the preceding predictions and illustrate the
basic ACT–R mechanisms described earlier. After doing
so, the remainder of this chapter explores choice in
ACT–R when the decay-based component is enabled.

Figure 8.1 (top) presents a typical problem that solvers
face in the BST. It includes an unlimited supply of three
different-sized building sticks that can be added together
or subtracted from each other to build a new stick. The
solver’s goal is to build this new stick to be equal in
length to the desired stick. There are two approaches to
this task: The overshoot approach starts with a building
stick that is longer than the goal stick and cuts it down
using the other building sticks; the undershoot approach
starts with a building stick that is shorter than the goal
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stick and lengthens it using the other sticks. (Note that
the undershoot approach is generally initiated with the
medium-sized stick; solvers almost never select the
smallest stick for their first move.) If separate
productions implement these two approaches, ACT–R
will be able to keep separate records of the number of
successes and failures associated with each and hence
learn associated r parameters that estimate the
probability of each production leading to achievement of
the goal.

Fig. 8.1. The initial state (top) and three possible first
moves (bottom) for a problem in the building sticks task.

In the fourth section of Chapter 4, we described a model
of the first experiment in Lovett and Anderson (1996).
Table 4.7 described some of the
basic productions for doing the task. To review, there
were four critical productions:

1. Decide-under. This production decided to try
undershoot for those problems where the
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difference between the goal and the
medium-length building stick seemed less than
the difference between the longest building stick
and the goal.

2. Decide-over. This production decided to try
overshoot for those problems where the
difference between the longest building stick
and the goal seemed less than the difference
between the goal and the medium building stick.

3. Force-under. This production chose undershoot
no matter how the differences appeared.

4. Force-over. This production chose overshoot no
matter how the differences appeared.

Figure 4.4 reported a successful fit of this model to the
first experiment of Lovett and Anderson (1996). Here we
describe the fit of the model to their third experiment,
which pushes the parameter-learning mechanism to
account for choice learning across a longer sequence of
problems.1

In the third experiment, participants solved 90 BST
problems while their solution choices were tracked. For
each participant, one of the approaches (undershoot or
overshoot) was more successful. This more successful
approach was counterbalanced over subjects. The
structure of the experiment was designed so that 10 out
of each 30 problems looked like they could be solved by
the more successful approach (i.e., the corresponding
“decide” production would match the current goal),
whereas the remaining 20 problems looked like they
could be solved by the less successful approach (i.e., the
less successful approach’s “decide” production would
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match the current goal). The 10 problems that looked
like they could be solved by the more successful
approach were indeed solvable by that approach (and
only that approach). However, depending on the
condition, only 5 or 10 of the problems that looked like
they could be solved by the less successful approach
were actually solvable by that approach (i.e., a full 15 or
10 of these 20 problems were actually solved by the
more successful approach). Thus, the two probability
conditions in this experiment are labeled 83% and 67%
(i.e., 10/10 + 15/20 ≈ 83% of problems solved by the
more successful approach and 10/10 + 10/20 ≈ 67% of
problems solved by the more successful approach). Note
that each problem was solvable by one and only one of
the two approaches (i.e., undershoot or overshoot), and
subjects had to complete a solution of the current
problem before they could advance to the next problem.
In addition to these solved problems, subjects were given
test problems on which they specified their first move
but did not complete the problem (i.e., they could not see
whether that move led to a solution). These test problems
occurred before the first solved problems and between
each block of 30 solved problems. The ten test problems
varied along a dimension we call test problem bias (i.e.,
the relative closeness of an undershoot move versus an
overshoot move to the desired stick length2).
Specifically, the test problems ranged from strongly
overshoot biased (overshoot was much closer) to
strongly undershoot biased (undershoot was much
closer) and included the three intermediate categories of
weak
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overshoot bias, weak undershoot bias, and neutral
(undershoot and over-shoot were equally close to the
goal).

Figure 8.2 presents a summary of subjects’ choices on
the test problems and the corresponding ACT–R 4.0
model predictions. These data are plotted as a function of
test problem bias, where “High Against” test problems
are those for which the less successful approach looked
closer to the goal and “High Toward” test problems are
those for which the more successful approach looked
closer to the goal. The data points labeled 0 show
solvers’ initial choice tendencies (before the
experimental trials began). The other data points (labeled
1 and 3) show solvers’ choice tendencies on the same
test problems after 30 and 90 problems of experience
with the two approaches. The left panel presents average
choice proportions of participants in the 67% condition,
and the right panel presents average choice proportions
of participants in the 83% condition.

449



Fig. 8.2. Problem solvers’ choice proportions as a
function of the test problem type (plotted on the
abscissa) and amount of experience in the task. Solvers
were tested before solving any problems (test 0), after
solving 30 problems (test 1), and after solving 90
problems (test 3). Test 2 data are not shown on the
graphs, for clarity of presentation.

In both conditions, solvers increased their tendency to
choose the more successful strategy across subsequent
test phases. Moreover, these shifts are greater for the
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condition experiencing a more extreme (83%) success
rate. These results conform to the first prediction
mentioned earlier, namely, that solvers adapt their choice
tendencies to prefer the more successful strategy. Solvers
also show a large effect of test problem bias, tending to
choose the approach that appears to be more successful.
A striking feature of the data is that the various curves
are approximately parallel except where they run into the
ceiling of 100%. This suggests that solvers increased
their use of the more successful strategy across all
problem types even though they had only solved
problems that were similar to two of the five test
problem types (“High Against” and “High Toward”).
This general shift in solvers’ choices thus conforms to
the second ACT–R prediction mentioned earlier, namely,
that solvers change their choice tendencies at the
production level, not on a problem-by-problem basis.
That is, solvers increased their choice of the more
successful strategy for all problem types, not just the
ones with which they had gained experience. This is
consistent with the ACT–R notion that
history-of-success parameters are stored at the
production level.

As can be seen from the bottom of Fig. 8.2, ACT–R does
a good job in accounting for this shift in probabilities.
The ACT–R model was fit to this data by fixing the
parameters α and β for the “force” productions and β for
the “decide” productions at 0.5 and by estimating the
remaining critical production parameter, the “decide”
productions’ α. The best-fitting value for the decide
productions’ α was 10.68. We also estimated the model’s
t parameter to be 8.17 (or, s = 5.78), which reflects the
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amount of noise added to productions’ expected gain
evaluations (with the value of the goal G set to 20.0).
Finally, the perceptual noise added to stick length
differences (used in determining which approach looks
closer) was logistic with spread
parameter s = 2.5. The resulting model predictions,
based on these two free parameters, fit the data quite
well with the best-fitting line being Observed = 0.99 ×
predicted − 0.0005, MSE = 0.003, R2 = .96.

In terms of the critical production rules, what happens is
that subjects decrease their evaluation of the less
successful productions (e.g., Decide-Undershoot and
Force-Undershoot when undershoot is the less
successful
approach) and increase their evaluations of the more
successful productions (e.g., Decide-Overshoot and
Force-Overshoot). Table 8.1 documents what happens
to the r values of these productions. The first column of
that table shows the initial r value for the “force”
productions as 0.5 (based on the priors,

) and the initial r value for the

“decide” productions as 0.96 (based on the priors,

). This represents an initial

preference for using the “decide” productions, that is,
choosing the strategy toward which the stick lengths are
biased. Because the approach that looks closest will not
always lead to a solution, however, the corresponding
“decide” production will experience a certain number of
failures (depending on the condition). Also, with
expected gain noise, there is always some chance that a
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less successful production will be attempted; this allows
the system to gather at least some information about the
success of all of the four critical productions. After 90
trials of experience, the productions’ r values will have
been adjusted based on this information (see Table 8.1).
Note that in both conditions, the production
corresponding to the more successful approach (within
both the “force” and “decide” pairs) had a higher
evaluation. Moreover, in the 83% condition, this
preference for the more successful production was even
more extreme than in the 67% condition.3

Table 8.1
ACT–R Model r Values Before and After
Problem-Solving Experience in Experiment 3 (Lovett &
Anderson, 1996)

Production Initial Value Final Value

67% Condition83% Condition

MS “force” .50 .60 .71

LS “force” .50 .38 .27

MS “decide”a .96 .98 .98

LS “decide”b .96 .63 .54

Note. MS = more successful approach, LS = less
successful approach.

aProduction only competes when problem suggests
more successful approach.

bProduction only competes when problem suggests less
successful approach.
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Decay in ACT–R’s Conflict-Resolution Learning

The preceding results suggest that ACT–R’s general
predictions concerning learning and choice are consistent
with problem solvers’ overall choice tendencies. These
results, however, do not address choosers’ potential
sensitivity to the timing of successes and failures;
instead, only intermittent test data, averaged by
condition, were fit, ACT–R originally had no way to
make its behavior sensitive to the timing of successes
and failures. However, as explained in Chapter 4, this
was changed to accommodate results such as the ones
discussed in this chapter. Now one can optionally allow
ACT–R to decay the success and failure experiences
used in computing expected gain.4

There are a number of issues that motivate this switch to
the decay-based version of the theory:

Issue 1. The ACT–R parameter-learning mechanism without
decay cannot exhibit special sensitivity to a recent success or
to a particular sequence of success. That mechanism will
exhibit the same choice tendencies after m successes and n
failures, regardless of different time delays or orderings of
these experiences. This is because, without decay, ACT–R
takes all experiences of success and failure as
interchangeable in time and equal in weight.

Issue 2. Without decay, the information recorded in a
production’s r parameter is maintained perpetually. The
estimation of r in Equation 4.5 only changes when there is
an intervening experience, so a production that goes unused
will maintain its parameter values indefinitely. This is not
true of ACT–R Base-Level Learning Equation 4.1. And, as
shown later, it is not true of production parameters when
decay-based parameter learning is enabled.
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Issue 3. Without decay, an ACT–R model with vast
experience can change its choice tendencies only slowly.
Because the basic learning mechanism estimates the r
parameter as a ratio of successes to all experiences, this ratio
will change more and more sluggishly with accumulating
experience (i.e., when Successes and Failures are large, any
additional experience exerts a very small change in r).5 And
yet,
there may be cases where choosers can adapt more quickly
(even with vast experience).

Issue 4. The magnitudes of the prior values for Successes
and Failures (α and β in the second version of Equation 4.5)
affect the rate at which r can adjust to experience. Without
decay, the larger these prior values, the smaller is the effect
of a single experienced success or failure on r. Because
ACT–R allows these prior parameters to be assigned
separately for each production, there is no architecturally
required commonality to the rate of production-parameter
learning.6

This chapter considers the implications of enabling
time-based decay in ACT–R’s production parameter
learning. This decay leads to a discounting of past
experience and enables sensitivity to the timing of
success and failure experiences. In particular, each
experience of success and failure with a given
production is decayed according to a power function.
This function is similar to the decay of chunk activation
after each access of a given chunk (see Base-Level
Learning Equation 4.1). Equation 4.5 thus becomes:

with Successes (t) and Failures (t) now defined as
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where tj is defined as how long ago each past success or
failure was, (Equations 8.1, 8.2, and 8.3 correspond to
Equations 4.5 and 4.7 from Chapter 4.) Like the
nondecaying mechanism, these equations adjust a
production’s r values after each experience in the
direction of that most recent experience (i.e., r increases
after success and decreases after failure). With decay
enabled, however, the size of the shift depends on the
number and timing of previous experiences and the rate
of decay d. For instance, the shift will be larger when d
is larger and when the delay from previous experiences
is longer. This decay-based learning mechanism thus
allows a time-weighted ratio of successes and failures,
with more recent experiences weighted more heavily
than distant ones. (Note that this decay-based version of
parameter learning decays both the prior and experienced
components of Successes and Failures.)

Figure 8.3 shows how r changes in response to two
different productions’ histories of experience:
SSSSFFFF for production A and SFFSFSFS for
production B. The top panel shows the time-decayed r(t),
and the bottom panel shows the nondecaying r. Note that
the experiences for these two productions contain the
same number of successes and failures but in different
orders. And yet, in the top panel of Fig. 8.3 (with decay),
the r values of the two productions cross over at time t =
5, leaving production A with a lower r value at time t =
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8. In contrast, in the bottom panel of Fig. 8.3 (without
decay), r values are based on equally weighted
experiences, so the two productions have equal r values
at time t = 8. This example illustrates a new prediction of
decay-based parameter learning—that the exact order
and timing of successes and failures in a production’s
history impact choice.
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Fig. 8.3. Estimates of the success rates of two
productions, A and B, when success and failure
experiences are time-decayed (top) or equally weighted
(bottom).

Incorporating this decay function into ACT–R allows
some responses to the issues raised earlier regarding the
parameter-learning mechanism.

Issue 1. With the decay-based learning mechanism enabled,
ACT–R can exhibit special sensitivity to a recent success or
to a particular sequence of successes. Success and failure
experiences that occur at different times or in different
orders will contribute differentially to the r parameter (i.e.,
distant-in-time experiences contribute less than recent
experiences). This enables models to differentially weight
success information that is new versus old and to choose in a
way that is sensitive to the timing of past experiences.

Issue 2. With the decay-based learning mechanism, the
information recorded in a production’s r parameter is not
maintained perpetually. Success and failure information
decays with the passage of time, changing r values, even
when no experiences intervene. This kind of
temporal weighting makes sense because success
information is likely to be increasingly unreliable as time
passes.

Issue 3. With its decay process enabled, an ACT–R model
with vast experience can more quickly adjust to changes in
environmental contingencies, even among productions that
have long track records. This is because decay reduces the
influence of a potentially large number of past experiences
(by downweighting them) relative to the impact of a new
success or failure.

458



Issue 4. Several factors affect the learning rate of production
parameters when decay-based learning is enabled: the
number and timing of prior successes and failures, the
number and timing of experienced successes and failures,
and the decay rate for parameter learning. Note, however,
that because a single decay rate applies to all of the success
and failure contributions, there is a more systematic theory
of production-parameter learning.

Another advantage of adding a decay component to
production-parameter learning is that it points to
potential unification with other aspects of cognition such
as memory and categorization. The power-law decay
functions presented earlier are analogous to those used in
ACT–R’s declarative memory. A model of
categorization by Elliott and Anderson (1995) also uses a
similar power-law decay function to weigh recent
exemplars more heavily than distant ones. With this new
learning mechanism for production parameters,
information regarding the statistical regularities of the
environment is maintained in a similar fashion for
declarative knowledge and for procedural knowledge.

Plan

In the remaining sections of this chapter, we explore how
decay-based production parameters impact choice in the
ACT–R theory. In particular, we use the decay-based
mechanism to fit models to data in the following five
areas:

• “Probability matching” behavior in probability
learning.

• Overmatching under conditions of reward.
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• Sensitivity to history of success during problem
solving.

• “Ratio matching” behavior under concurrent
variable interval schedules.

• Sensitivity to time delay in foraging.

Capturing this breadth of results is a challenge by itself.
Where possible, we also attempt to capture these results
at a fine-grained level of detail, that is, modeling
trial-by-trial or subject-by-subject data. For each of the
five phenomena, the presentation is organized as
follows: First, we define the basic result, generalizing
across multiple studies. Then, we describe a particular
experiment that exemplifies the phenomenon. We devote
considerable attention to the procedure of the highlighted
experiment in each section because the same details
(e.g., timing and ordering of trials) are used in fitting the
model to that experiment’s results. Finally, we present
choice predictions for the experiment and discuss the
goodness of fit.

Probability Learning

“Probability Matching” in Probability Learning

The phenomenon of probability matching occurs when
people choose an option a proportion of the time equal to
its probability of being correct. For example, in a simple
binary choice task, if one of the two options has a 70%
probability of being correct and the other has a 30%
probability of being correct, probability matching occurs
when people choose the first option 70% of the time, on
average. This basic effect has been documented in many
probability-learning experiments (e.g., Estes, 1964;
Friedman et al., 1964; Hake & Hyman, 1953;
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Humphreys, 1939). These experiments support the
importance of probability matching: The phenomenon
has been observed among children, adults, and various
patient populations, as well as across disparate
situations—from word learning to spatiomotor tasks.
One caveat, however, is that the label probability
matching is sometimes only an approximate
characterization of the observed behavior. That is,
subjects’ choice behavior often deviates from the exact
proportion that probability matching would predict. (For
examples of this, see the third section of Chapter 3 and
the following section on overmatching with reward.)
Regardless of the accuracy of its name, however,
probability matching (or probability-matching-like
behavior) is a very robust phenomenon. Chapter 3
provided a very simple account of this literature as an
introduction to ACT–R’s conflict resolution
mechanisms. Here, we provide a more detailed analysis
that is additionally sensitive to issues of learning in the
face of a changing environment.

Data from a study by Friedman et al. (1964) are used for
the first test of the decay-based learning mechanism. In
this study, college students completed more than 1,000
choice trials over the course of 3 days. For each trial, a
signal light was illuminated, participants pressed one of
two buttons, and then one of two outcome lights was
illuminated. A button press that matched the subsequent
outcome light was considered “correct,” and a button
press that did not match the outcome light was
considered “incorrect.” Task instructions encouraged
participants to try to guess the correct outcome for each
trial.
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This study extended the standard probability-learning
paradigm by changing the two buttons’ success
probabilities (p and 1 –p) across 48-trial blocks during
the experiment. Specifically, for the even-numbered
blocks 2–16, p took on the values .1, .2, .3, .4, .6, .7, .8,
.9 in a randomly permuted order. These were labeled the
variable-p blocks. For the odd-numbered blocks 1–17, p
was set to .5. These .5 blocks served to equilibrate the
success probabilities of the two responses before the next
variable-p block. We focus this analysis and modeling
on the data from these 17 blocks because they
are reported in greatest detail. In the experiment as a
whole, however, there were additional .5 blocks and .8
blocks preceding and following the 17 blocks described
here.

This experiment allowed for the test of several
hypotheses with respect to probability matching. First, as
Fig. 8.4 indicates, people were exhibiting
probability-matching behavior within each block. Each
small graph in this figure represents a 48-trial variable-p
block during which participants’ choice probabilities
(filled circles) asymptoted to close to the outcome
probabilities (horizontal lines). Second, the time course
of probability matching was affected by the outcome
probability that had occurred during the previous block.
This result is also supported by Fig. 8.4, which shows
that participants’ choice probabilities tended toward .5
(the outcome probability of the preceding block) at the
beginning of each block before climbing or falling to the
probability associated with the current block. Third,
choices were influenced by individual, recent outcomes.
By inspecting the choice probabilities in Fig. 8.5, it is
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clear that participants’ choices differed systematically,
depending on the outcome of the previous one or two
trials. For instance, the first-order conditional
probabilities (AA and BA columns combined vs. AB and
BB columns combined) show that participants were
more likely to choose the button on trial n that had been
correct on the preceding trial than the button that had
been incorrect on the preceding trial. Participants’
choices were also somewhat influenced by the outcome
that occurred two trials ago, as demonstrated by
differences in the second-order conditional probabilities.
For example, the probability of choosing A after the AA
outcome sequence was greater than that after the BA
sequence, and the probability of choosing A after the AB
sequence was greater than that after the BB sequence. In
sum, the data from this experiment demonstrate a
sensitivity to past experience of success at three
scopes—across block, within block, and trial-to-trial.
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Fig. 8.4. Observed and predicted choice proportions
across 12-trial subblocks of the variable-p blocks in the
experiment by Friedman et al. (1964). Horizontal lines
represent probability-matching values.

Fig. 8.5. Observed and predicted second-order
conditional probabilities averaged over the variable-p
blocks in Friedman et al. (1964)

To compute model predictions for this experiment, we
must first gather data on participants’ history of success
throughout the experiment. We take the two critical
productions for this task as Choose-Left-Button and
Choose-Right-Button. Both productions match at the
beginning of each trial, but only one will be correct. For
each of the variable-p blocks, Friedman et al. (1964)
reported the exact sequence of outcomes experienced by
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participants.7 This provides a sequence of successes and
failures within each of the variable-p blocks. The same
procedure is followed for the p = .5 blocks. Notice that
the reported history of success information is only
accurate within blocks; participants experienced the
variable-p blocks in random orders. Therefore, we must
approximate participants’ exact history of success for
trials preceding the current block. We take this average
preceding experience to be 384 trials of evenly spaced
successes and failures of the two options; 384 trials at p
= .5 is the expected history before each variable-p block
because, on average, participants have 8 blocks of
experience preceding a variable-p block, and 384 trials =
8 blocks at 48 trials each. This approximation, together
with the exact within-block histories, provides an
explicit representation of participants’ history of success
preceding each trial.

This information serves as input to the computation of
r(t) (see Probability Learning Equation 8.1) for the two
alternatives. (Note that we approximate the average time
per trial as 1 sec.) For simplicity in model fitting, we
took G = 1, C ≈ 0, and q = 1 for both productions.
Setting the value of the goal, G, equal to 1 merely sets a
particular scale for expected net gain. The assumption
that expected cost, C, equals 0 is made throughout the
chapter, but it is not required by ACT–R.8

This leaves only two free parameters, d and t. To predict
choice probabilities spanning the range [0–1], we
constrained the noise parameter t to be 0.24 (which is
equivalent to s = 0.17 and σ2 = 0.1) and then estimated
the decay rate d to minimize the SSE between the
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trial-by-trial observed choice proportions (computed as
proportions of participants) and the predicted choice
probabilities.9 Thus, we are presenting a one-parameter
fit to these data.

Figure 8.6 plots these observed choice proportions
against the predicted choice probabilities, with d =
0.714. This fit has R2 = .88, SSE = 8.697, and MSE =
0.01. The best-fitting line is Observed = 0.943 ×
predicted + 0.014, which is quite close to the “perfect
prediction” line, y = x. The unique
achievement here is that the ACT–R model is accurately
predicting participants’ choice proportions trial by trial
Figure 8.4 presents these predicted values (as open
circles) aggregated by 12-trial subblocks to give a better
sense of how they would be ordered in time within the
variable-p blocks. Here, one can see that the model
exhibits within-block changes in choice
proportions that are similar to those of participants in the
Friedman et al. experiment. At this level of aggregation,
the fit has R2 = .95, SSE = 0.06, and MSE = 0.002. Also,
the model’s conditional probabilities (computed based
on the original trial-by-trial predictions) are very similar
to the corresponding observed values (see Fig. 8.5). With
decay, the model is coming very close to the observed
data on several measures of choice, with only one free
parameter in total.
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Fig. 8.6. Trial-by-trial observed versus predicted choice
proportions for Friedman et al. (1964).

The model’s fit to these data shows that
probability-matching behavior can arise from a basic
mechanism that chooses based on individual, decaying
experiences of success and failure. We used trial-by-trial
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data across the full time course of the experiment to
model the gradual and systematic changes in choice.
This approach thus promotes the view of probability
matching as a natural by-product of choice processes that
are sensitive to individual past experiences. In addition,
the model’s decay component is critical to achieving a
good fit to the data from this experiment: When we fit an
ACT–R model without decay to the preceding data set
(i.e., decay fixed at 0), the trial-by-trial fit suffered
greatly with R2 dropping to .41; the best-fitting line was
Observed = 1.3 × predicted – 0.13. This misfit is due to a
lack of trial-by-trial sensitivity in the no-decay model,
which even impacts the fit when these predictions are
aggregated into 12-trial blocks. In that case, the
best-fitting line is Observed = 2.8 × predicted – 0.90, R2

= .88. Here, the slope of 2.8, which is significantly
different from 1, suggests that, without decay, any new
set of experiences with a new outcome probability
cannot exert a big enough impact on choice (see Issue 3
given earlier). In contrast, as shown earlier, the
decay-based model captures these data easily at both
levels of aggregation.

Overmatching With Reward

Although the general characterization of choice during
probability-learning experiments is that people tend to
“match” the outcome probabilities, there is also evidence
that, under certain circumstances, people will
“overmatch” or even “maximize” in their choice
behavior—that is, they will choose the more probable
alternative a proportion of the time that is greater than
the proportion it has been successful (e.g., Braveman &
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Fischer, 1968; Edwards, 1956; Myers, Fort, Katz, &
Suydam, 1963; Myers & Atkinson, 1964; Myers &
Cruse, 1968; Siegel & Goldstein, 1959). Maximizing
occurs when people select the more successful
alternative all (or almost all) of the time, and
overmatching occurs when they select the more
successful alternative with some probability p´, where p´
is less than 1 but greater than p, the experienced success
probability of that alternative. When the experienced
probability p is close to 1, it is clear that choices
consistent with probability
matching, overmatching, and maximizing will be hard to
differentiate. In this section, then, we refrain from
classifying results into these different categories and
instead quantitatively study people’s choice tendencies.

To evoke overmatching and maximizing behavior,
experiments tend to employ monetary reward or specific
task instructions. The instructional manipulations
required to obtain significant levels of overmatching
tend to be quite extreme. For instance, subjects might be
told to “think of this task as a whole, and try to come up
with one solution for the entire task.” Given such
instructions, it is likely that participants would view the
task as qualitatively different from the standard
discrete-trial choice situation. For this reason, we focus
on how monetary reward, manipulated under standard
instructions, leads people to overmatch.

Myers et al. (1963) performed an experiment in which
they varied both (1) the probability that one alternative
would be correct and (2) the amount of reward that
participants would receive for each correct guess.
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Specifically, participants were assigned to conditions p =
.6, p = .7, or p = .8 in which the better of two
alternatives was correct with probability p and the other
alternative was correct with probability 1 – p. Crossed
with this manipulation, people were assigned to
conditions in which they would receive ±10¢ for each
correct/incorrect guess, ±1¢ for each correct/incorrect
guess, or ±0¢ (no reward or penalty) for each correct/
incorrect guess.

The proportions of choices of the better alternative on
the last 100 out of 400 trials are presented for each
condition in Table 8.2. In general, choice of the better
alternative is close to probability-matching levels (where
probability matching equals the p for each condition).
Notice, however, that an additional effect appears in
these data: The greater the reward, the more the choice
proportion exceeds the matching probability. Thus, it
seems that under monetary reward conditions, exact
probability matching is not the rule, but the exception. A
subset of these data were fit in the second section of
Chapter 3, but there only a performance model was fit to
subjects’ asymptotic choice behavior. Here, we show
that an ACT–R model can learn production parameters
through experience in such an experiment and produce
the same quality of fit.

Table 8.2
Observed and Predicted Choice Proportions of the More
Probable Option Under Different Reward Conditions

Probabilities

Reward p = .6 p = .7 p = .8
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0 cents 0.624 0.753 0.869

(0.661) (0.756) (0.843)

1 cent 0.653 0.871 0.925

(0.715) (0.829) (0.917)

10 cents 0.714 0.866 0.951

(0.737) (0.856) (0.939)

Note: Predicted proportions for each condition are given
in parentheses. From Myers et al. (1963).

The model for this simple choice task (as in the previous
section) has two critical productions, Choose-Left and
Choose-Right. We model the reward manipulation from
this experiment with different values for G, the value of
achieving success. Because the monetary rewards were
0¢, 1¢, and 10¢, we would expect the values of G to be
monotonically increasing for these three conditions, that
is, G0 < G1 < G10. The other parameter values, however,
remain constant across conditions. Specifically, we fix d
= 0.714, t = 0.24—the values from the previous model
fit. This leaves three free parameters, G0, G1 G10.

Because Myers et al. did not provide any sequence
information with respect to history of success and
choice, we approximate the temporal nature of
participants’ success and failure experiences by
generating a random sequence of correct outcomes
consistent with each condition’s probability. As in the
previous model fit, we represent each outcome as a
success experience for the correct alternative or as a
failure experience for the incorrect alternative. Based on
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this estimated history of success for each condition, we
compute the model’s predicted choice probabilities using
the G values that minimize the SSE between the
observed choice proportions and the model’s average
choice probability over the last 100 trials in each
condition. These best-fitting G values are G0 = 0.753, G1
= 1.039, and G10 = 1.165. Note that as reward increases
the G value increases, but that the increase is not
proportional to or even linear with reward amount. This
is consistent with other research on the psychological
measurement of differential rewards (e.g., Kahneman &
Tverksy, 1984). The predicted choice proportions from
this fit are presented in parentheses in Table 8.2. The fit
has R2 = .97, SSE = 0.008, and MSE = 0.0009.

Again, a model that makes choices based on decaying
success information achieves a good fit to the data with
relatively few parameters. Notice that, just like the
participants in this study, the model tends to overmatch
and does so by a greater amount under higher reward
conditions. This effect can be understood by examining
ACT–R’s basic choice mechanism. In this situation,
choice depends mainly on the product PG for each
alternative, so G can be viewed as scaling the model’s
sensitivity to differences in the alternatives’ predicted
probabilities of success, P. (Remember, when q = 1, P =
r.) When G is large, the difference between two
alternatives’ P values
will be magnified and (assuming a fixed amount of noise
in the system) the alternative with higher P will more
likely be chosen. In other words, with increasing reward,
the model is more sensitive to the relative success rates
of the alternatives and, hence, is more likely to choose
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the more successful option. This same result was
captured in Chapter 3, where a standard ACT–R model
was fit to a subset of these data.10 However, in that case,
the parameter learning mechanism was not invoked.
Here, we have shown that giving the model a history of
experience consistent with what participants experienced
allows the model to learn production parameters that
give an adequate fit. If more trial-by-trial information on
subjects’ experiences were available for this data set, we
could have put the learning mechanism to a more
stringent test. The next section uses a data set we
collected with the intent of maintaining such
triai-by-trial information.

Sensitivity to History of Success in Problem Solving

Probability learning does not just occur in simple,
contextually sparse tasks like those already described. It
also occurs in more complex, naturally occurring
situations where a solver has multiple solution
approaches, or strategies, for a particular problem. The
different strategies available to the solver constitute the
different choices, each of which may or may not lead to
a successful solution. As solvers gain experience in these
situations, they tend to use more successful
problem-solving strategies more often and less
successful strategies less often (Lemaire & Siegler,
1995; Lovett & Anderson, 1996; Reder, 1987, 1988; Wu
& Anderson, 1993). Experiments in which the success
rates of different strategies are varied across time reveal
that problem solvers also distinguish between recent and
global success rates when making strategy choices
(Reder, 1988).
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The building sticks task (BST) offers one example of
probability learning in a complex task. Lovett and
Anderson (1995) used it to study the relationship
between problem-solving success on one trial and
strategy choice on the next. For each problem, solvers
were presented with three building sticks and a desired
stick and were asked to use these building sticks to
create a new stick equal in length to the desired stick
(see Fig. 8.1). For a given problem in this task, solvers
had to choose which strategy to use, Undershoot or
Overshoot. The problems were designed so that (1) both
strategies were applicable in the first move, (2) only one
strategy led to a solution, and (3) all problems made the
two strategies appear equally close
to the goal. Because of this third constraint, all problems
looked neutral and the Decide productions from the
previous BST model were not necessary. Here, then,
there are two critical productions that match at the
beginning of every problem, Force-Undershoot and
Force-Overshoot.

Participants in the different conditions received different
sequences of problems that would lead them to
experience certain histories of success and failure with
these two productions. The overall success rates of
overshoot versus undershoot were extreme for two
conditions (80%: 20% and 20%:80%) and less extreme
for two other conditions (60%:40% and 40%:60%).
Figure 8.7 presents the proportion of solvers choosing
the more successful strategy (where “more successful” is
defined by their condition), averaged over blocks of 15
problems. In both the extreme and the less extreme
conditions, participants learned to prefer the more
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successful strategy as the experiment progressed, with
the extreme conditions attaining a more noticeable
preference. The two horizontal lines in the figure
represent pure probability-matching behavior for the two
conditions. In both
cases, the observed proportions in the last three blocks
are within 95% confidence intervals of the matching
proportions.

Fig. 8.7. Observed and predicted choice proportions of
the more successful strategy for the experiment by
Lovett and Anderson (1995).

Although the aggregate data suggest that probability
matching occurs in this problem-solving context, the
individual participant data presented in Fig. 8.8 belie that
notion. Here, each individual’s probability of choosing
the more successful strategy (over the last 45 problems)
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is plotted against the proportion of problems actually
solved by the more successful strategy (averaged over
the last 45 problems).11 The line y = x represents
probability matching, and yet many data points deviate
from that line, R2 = .41. If any trend can be found, it
appears that the majority of solvers are overmatching
relative to their experience. Nevertheless, only two
participants show absolute “maximizing” behavior by
choosing the more successful strategy on all of the last
45 trials of the experiment.

Fig. 8.8. Proportion of last 45 problems on which the
more successful strategy (MS) was selected against the
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experienced proportion of success for the more
successful strategy, computed for each participant based
on the individual’s solution history.

Even though overall probabilities of success were fixed
for participants in
a given condition, different problem solvers in this
experiment had their own unique histories of success and
failure with overshoot and undershoot because they
could choose freely between the two strategies on each
problem. We can use this history information to see if
we can predict the aggregate choice tendencies in Fig.
8.7 and the individual differences in Fig. 8.8. In
particular, we used the individual success and failure
information to compute model predictions on a
problem-by-problem, solver-by-solver basis. These
probabilities were compared with the actual choices (i.e.,
overshoot or undershoot) made on the corresponding
trials. For this fit, we constrained t = 0.24 and d = 0.714
(from previous fits), fixed G at 1, and allowed the prior
experience for the two critical productions to vary. In
particular, we constrained the prior experiences of
success and failure for both productions to be equal in
number (setting r initially to 0.5) and to be long ago in
the past so that their decay would have asymptoted (i.e.,
the time lag for eventual-successes and eventual-failures
was fixed at 100.0 sec before the beginning of the
simulation). Thus, there was one free parameter to fit the
data, the number of previous successes.

Estimating this parameter to fit the entire data set by
individual subject-trials leads to 281 previous
successes—an effective α = β = 11.2 for both critical
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productions. The predicted choice proportions,
aggregated and plotted with the observed values in Fig.
8.7, produce an R2 of .92, MSE = 0.001, and best-fitting
line is Observed = 1.1 × predicted – 0.08. This model fit
successfully captures the trends and changes in solvers’
choices during problem solving. Moreover, it helps to
explain the lack of pure probability-matching behavior at
the individual level in terms of the particular sequence of
successes and failures experienced by each subject.
Figure 8.9 plots the model’s predicted choice behavior
over the last 45 trials for each participant against their
observed choice behavior on the last 45 trials. This
individual-subject fit based on each participant’s history
of success is quite good, even though it used a single
parameter set (with only one freely varying parameter)
across the entire population of participants. In particular,
the best-fitting line is Observed = 1.1 × predicted – 0.07,
R2 = 0.52, which is superior to the fit obtained by
predicting probability matching behavior for each
participant (Fig. 8.8).
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Fig. 8.9. Model fit and observed choice behavior for
each participant on the last 45 trials of Lovett and
Anderson (1995).

Comparisons of this model, which decays success and
failure experiences, with a nondecaying ACT–R model
that treats all such experiences as equal does not show
marked differences. For example, the no-decay model
has only slightly lower R2 of .90 for its fit to the
aggregate data. However, by looking at a more
fine-grained level of analysis than 15-problem blocks,
the decay-based model’s advantage becomes more
apparent. Figure 8.10 shows the second-order
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conditional probabilities for the entire experiment (top
panel) and for the second half of the experiment (bottom
panel). Next to
each conditional probability is the prediction of the
decay-based model and the no-decay counterpart. In both
panels, the decay-based model shows sensitivity across
the four situations (UU, OU, UO, and OO) that is
comparable to subjects’ sensitivity, whereas the
no-decay model shows insufficient sensitivity.
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Fig. 8.10. Observed and predicted second-order
conditional probabilities for Lovett and Anderson
(1995). Top panel is for the entire experiment and the
bottom panel is for the second half of the experiment.

Animal Choice

Concurrent Variable-Interval Schedules
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The phenomena described thus far have all involved
human choice. Nevertheless, choice behavior among
animals has a vast literature of its own. The phenomenon
described in this subsection is one of the classic results
in operant conditioning. It consists of the basic result that
animals tend to match their ratio of choices between two
different options to the ratio of rewards they have
received from those two options. For example, if an
animal has experienced five times as many rewards from
option A as from
option B, such ratio matching would imply that the
animal would choose option A five times as often as B.
This relationship has been named the matching law
(Herrnstein, 1961):

Behavior that fits the matching law can be related to
probability-matching behavior discussed earlier. Both
imply that choice tendencies in some sense “match”
environmental payoff tendencies. However, there are a
few practical differences that we note briefly. First, the
matching law is stated in terms of choice and success
ratios that relate one option to the other (i.e., A/B),
whereas probability matching is stated in terms of choice
and success proportions that relate one option to the total
of all options [i.e., A/(A + B) ]. Second, in most
probability-matching experiments, every trial produces a
success (for one option or the other), whereas in
matching-law experiments there tend to be many trials
with no success. This difference implies that
probability-matching computations of success take into
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account all trials, and matching-law computations of
success focus on a subset of trials (success trials).
Finally, matching-law behavior is usually observed in
continuous-trial paradigms, where one choice is not
necessarily equivalent to one trial, whereas
probability-matching behavior is usually discussed in the
context of discrete-trial paradigms (see the second
section of this chapter). Therefore, in this section we
explore how ACT–R’s relatively discrete (at the
production level) learning of success and failure can
account for continuous-trial learning.

The matching law was first demonstrated with pigeons
choosing between two concurrent variable-interval (VI)
schedules (Herrnstein, 1961). In a variable-interval
schedule, a reward is programmed to occur a certain
number of seconds after the corresponding key has been
pecked, regardless of the number of intervening pecks in
that time interval. As the name suggests, however, this
time interval is not fixed from reward to reward but
varies about a central number of seconds. For instance,
the time to each reward (assuming the triggering peck) in
a VI-5 schedule would be 5 sec on average.

In Herrnstein’s (1961) experiment, pigeons were placed
in choice situations where they could peck on each of
two keys programmed according to independent VI
schedules. Figure 8.11 (top panel) presents the pigeons’
proportion of choices of key A against their proportion
of rewards from key A for each of several conditions.
Each condition was specified by a certain pair of VI
schedules (one schedule for each key), and each data
point represents the average of the last five sessions
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under that condition. The data points of the same shape
in Fig. 8.11 (top) represent choice behavior of a single
pigeon. From this figure, it is clear that, across a variety
of VI-VI schedules, the animals’ choices asymptoted to
match the experienced ratio of rewards.
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Fig. 8.11. Choice and reward proportions from
Herrnstein (1961) (top panel) and those simulated by
ACT–R with history-of-success information decayed
(bottom panel). The VI-VI schedules used in this study
were 5:25, 5:10, 5:5, 10:5, 25:5. These correspond to the
first through fifth clusters of data points, reading from
left to right. Different curves correspond to different
pigeons (top panel) or different simulations (bottom
panel).

To fit these data using the decay-based learning
mechanism, we had to overcome a new challenge that
had more to do with the nature of this experimental
paradigm than with the model itself. The challenge was
twofold. First, we had no specific information from
Herrnstein’s report on the timing or sequence of
successes and failures that the animals experienced.
Second, because success in a VI-VI environment is a
complex stochastic process depending on both past
rewards and past choices, we had no simple way to
approximate a fixed history of experience for animals in
the different VI-VI environments. Instead, we chose to
emulate the VI-VI environments (using Lisp code) and
then test the model’s choice performance within these
environments. Because both the ACT–R model and the
VI-VI environments include their own sources of
stochasticity and because the actions of each depend in a
specific way on the output of the other, this is a highly
interactive system. For example, even if the environment
were set to represent a VI5 VI25 schedule, there is no
guarantee that the rewards will be given in exactly a 5:1
ratio; the reward outcomes depend on the timing of the
schedules relative to the timing of the animals’ choices.
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For these reasons, the analytically based
parameter-fitting techniques used in the preceding model
fits were not much help in this case.

Therefore, we elected to run a set of simulations using
the same schedules as in Herrnstein’s experiment and to
compare the model’s output to the data. The simulation
was endowed with separate productions for pecking on
the left key, pecking on the right key, switching to the
left key, and switching to the right key. The reason for
the distinction between “pecking” and “switching” is
that the two types of productions incur different costs;
for example, switching requires that the pigeon actually
walk around an obstacle to reach the other key, whereas
pecking just involves pecking on the local key. In these
simulations, the model made its choices among the four
critical productions with the decay-based
parameter-learning mechanism enabled. If the model
chose to peck a certain key and did not receive a reward
immediately on completion of the “peck” (according to
the schedule that was running for that key), a failure was
recorded for the productions leading up to that failure.
Similarly, in the rare event that the model chose to peck
a certain key and did receive a reward, a success was
recorded for the productions leading up to that success.
(Also, the timer for that key’s schedule was reset.12) We
ran this simulation under a few parameter
settings and compared the model’s choices from the end
of each simulation run with Herrnstein’s data. We also
specified a certain amount of previous success with each
of the four critical productions to represent the fact that
these pigeons had previously been tested in this choice
paradigm. Thus, the modeling results presented in this
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section are more qualitative demonstrations of ACT–R’s
ability to model the phenomenon under study using the
decay-based parameter learning.

To constrain this parameter exploration, we fixed d and t
to the values used in previous model fits, 0.714 and 0.24,
respectively. Further, we set the prior successes and
failures associated with the four critical productions to
have approximately 50 past experiences of success out of
either 250 past uses (“peck” productions for an initial r
of .20) or 200 past uses (“switch” productions for an
initial r of .25). This left one free parameter G, the value
of achieving the goal. The bottom panel of Fig. 8.11
presents the model’s choice behavior with G = 75 for all
conditions, but other values provided similar results.
(The main constraint on G in this simulation is that it be
high enough such that all productions’ PG – C values do
not fall below 0. This is an issue in any task where the
probabilities of success are low as they are here.) Each
data point in this graph plots the proportion of choices of
key A against the proportion of rewards from key A
during the last 300 out of 1,200 simulation cycles, for a
particular VI-VI pair.

Because all of the model’s predicted values in Fig. 8.11
lie close to the line y = x, these simulations demonstrate
consistency with the matching law. Moreover, the
similarity across the two panels in Fig. 8.11 suggests that
the decay-based model exhibits the same choice
tendencies as did the pigeons in Herrnstein’s experiment.
This demonstration is particularly important because it is
the first example to show that ACT–R with decay-based
parameter learning can capture real choice behavior in a
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continuous time environment. Gallistel and others
(Gallistel, 1993; Mark & Gallistel, 1994) have claimed
that this phenomenon arises because animals are
estimating the rate parameter of a Poisson process (i.e.,
the time between successes). However, without
explicitly recording or estimating the time interval
between rewards, the ACT–R model was able to exhibit
the same choice tendencies as did the pigeons. It
accomplished this by virtue of its time-based decay of
information on success. With the differential weighting
of recent versus distant experiences, the model combined
local and global differences in the two keys’ success
rates so that the richer key would be
preferred but not selected exclusively. For example, a
recent series of failures with the richer key could lead to
a key switch, but this switch would not last long because
the influence of those experiences would soon decay and
be counterbalanced by the globally greater success of the
richer key. Without decay of this success information,
the thousands of trials typical in this paradigm would
have led the model to become sluggish and unable to
change its behavior based on recent experience.

We have demonstrated that the model can capture both
ratio-matching behavior (this model) and
probability-matching behavior (second section of this
chapter). As mentioned earlier, matching-law and
probability-matching behavior arise in different choice
environments (VI-VI schedules and probability-learning
paradigms). For example, probability-learning paradigms
generally have one success per trial, which implies a
complementarity among the options, which does not
hold in VI-VI schedules (i.e., in VI-VI environments,
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one option failing does not imply that the other option
succeeded). ACT–R can model the different adaptive
behavior in these two cases by using the same
decay-based parameter-learning mechanism in both
situations. The key is that the different environments
produce different histories of success to which the same
decay-based learning mechanism is applied. ACT–R
produces the appropriate behavior in the two types of
choice environments because it bases its choices on the
particular timing and sequence of past successes in their
different histories.

Effects of Time Delay on Foraging

Another classic task for animal choice, studied from a
more ecological approach, is foraging: In which of n
different patches does the animal choose to forage for
food? The generic result in the animal foraging literature
is that animals, like humans, are sensitive to their past
experiences of success, so they tend to forage in patches
that have better records of leading to food. Further, as in
the case of human problem solving, there are additional
factors that contribute to this choice. For example,
animals’ patch choices suggest that they are also taking
into account the effort they would have to expend to
reach the different alternatives (Kamil, Lindstrom, &
Peters, 1985), the danger involved in the trip (Wishaw &
Dringenberg, 1991), and the “reliability” of success
information gathered for each patch (Devenport &
Devenport, 1993, 1994; Devenport, Hill, & Ogden, in
press). Here, we focus on the last factor weighing into
animals’ foraging choices—the reliability of patch
information.
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By the term reliability, Devenport, Devenport, and their
colleagues are referring to both the recency and
durability of information on the past success of different
patches. They have shown in both lab and field studies
that animals make foraging decisions based on these
factors. Specifically,
animals tend to choose a patch that has been recently
successful over one that was successful a long time ago,
and they tend to choose a patch that has had a long
history of success over a patch with a short-lived history
of success. Both of these tendencies would seem
effective for making choices in a potentially changing
environment because they base choice on past success
information that is more likely to be reliable now—either
because that information was gathered recently or
because it was found to be stable over a long period of
time. This sensitivity to the reliability of past success
information has been observed in studies with domestic
dogs, ground squirrels, chipmunks, and rats (Devenport
& Devenport, 1993, 1994; Devenport et al., in press).

In one experiment performed by Devenport et al. (in
press), animals were presented with a series of foraging
experiences in the laboratory and then, after various
delays, they were tested in the same choice situation.
Specifically, rats were run in a two-arm maze and were
forced to experience a particular time-based sequence of
successes (baited trials) and failures (unbaited trials)
before the delay and testing. The experimental procedure
included three phases after a preliminary familiarization
phase. During the first phase, the rats went through 36
alternating trials on which they were forced to run down
one arm and the other. This was accomplished by
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lowering a door that would block one arm of the maze at
a time. For these trials, only arm A was baited, so half of
the trials were success experiences with arm A, and the
other half of the trials were failure experiences with arm
B. The second phase began after a 30-min break. During
the second phase, the same alternate arm-blocking
procedure was used, but now only arm B was baited and
there were only one third as many trials. Finally, after a
variable time delay of 5 min, 25 min, 1 hr, 3.5 hr, 10 hr,
or 2 days, the third phase began. In this “test” phase,
both arms were unblocked and unbaited, and the animal
was allowed to freely choose in a single test trial.

Table 8.3 shows the percentage of animals in each delay
condition choosing arm B for the test trial. Note that the
number of animals in each condition varied from 4 to 16
(see Table 8.3). After short delays, the animals chose B
exclusively, suggesting a greater weighting of their
recent successes with arm B. After long delays, however,
the animals chose A almost exclusively, suggesting a
sensitivity to the longer duration of this arm’s success
despite the greater time delay since its success. At an
intermediate delay, approximately 40% of the rats’
choices involved arm B, suggesting that at this delay the
long duration of arm A’s success weighed about equally
against the more recent exposure to arm B’s success.
Devenport et al. concluded from these results that
animals are temporally weighting success information in
such a way that information is emphasized according to
its reliability: Recent information is reliable because it is
unlikely that the
environment has changed in the small amount of
intervening time, and stable (or long-lasting) information
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is reliable because it represents a good long-term
estimate of success in the environment.

Table 8.3
Observed and Predicted Proportions of Animals
Choosing the More Recently Successful Arm (Arm B)
According to Delay Condition

Delay
Condition (in
min)

Number of
Subjects

Proportion
Choosing B

Predicted
Proportion

5 7 1.00 0.99

25 4 1.00 0.98

60 5 1.00 0.90

210 16 0.38 0.40

360 8 0.13 0.26

2,880 8 0.13 0.14

Note: Adapted from Figure 1, Devenport et al. (in press).

To fit the choice data observed in this study, we assumed
two separate productions for choosing to travel down
arm A versus arm B. Phase 1 trials were input as
alternating arm A successes and arm B failures and
phase 2 trials as alternating arm B successes and arm A
failures (just as the animals experienced). With this
history of experience and the “standard” decay rate of
0.714, the model predicts the switch in arm preference to
occur after 25 min instead of after 210 min, as was
observed. The decay parameter is most influential on the
timing of this switch because it specifies the relative
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weighting of old versus recent experiences, which
essentially balances the “A success” and “B success”
phases in this experiment. Thus, to obtain a set of
predictions that fit the exact switchover time in the
observed data, we varied the decay parameter and found
that with 2.0 ≤ d ≤ 8.0, the crossover point occurs in the
appropriate 210-min delay condition. For the best
quantitative fit to the data, we fixed G at 3 (from the
previous model) and estimated d, obtaining the
best-fitting value of 4.61; this produces an almost perfect
fit to the data (R2 = .99, SSE = 0.03, and MSE = 0.005).
Table 8.3 provides the predicted choice proportions for
this fit.

Again, the model has provided an excellent fit to the
data. However, this is the first case in which doing so
required a decay parameter that was substantially
different from the other model fits. What makes this
experiment different? Two features stand out. First,
during the training (phases 1 and 2) the animals were not
given the opportunity to choose between the two arms.
This could have affected their early representations of
the task as well as what they learned from it; that is, they
may not have distinguished
the two arms of the maze as readily as if they had been
in a free-choice training situation. In some sense, then,
the model may be representing this “decreased learning”
as “increased forgetting” relative to the other
experiments’ fits. Second, the choice data in this
experiment were based on relatively few subjects (as low
as four in one condition), which led to many choice
measurements at the extremes of [0,1]. Such extreme
choice proportions exert a strong influence on the
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model’s “best-fitting” parameters. These distinguishing
features suggest that we not take the exact parameter
estimates from this fit too seriously.

The basic conclusion is that both the experimental data
and the predictions suggest that, even in an adapted
laboratory environment, these rats are choosing based on
a time-weighted function of their past experiences of
success and failure. Without the time weighting that the
decay component implies, “test” performance in this
experiment would forever favor the more often
successful option over the more recently successful
option. That is, a standard ACT–R model with no decay
of past success experiences would be unable to show any
shift in preference across time delays. In contrast, the
decay component allows the model to capture the
observed behavior across a variety of d parameter
values.

Conclusions

Summary

We have fit a new version of ACT–R to five separate
data sets that span a wide range of choice phenomena:
choice by both humans and animals, choice in service of
various goals, choice in rich and sparse contexts, choice
in discrete-time and continuous-time situations, and
choice in stable and variable environments. In all cases,
models with decay-based parameter learning did a good
job of capturing the observed choice behavior. Table 8.4
provides a quantitative summary of the model fits. In
particular, notice that we have fit these disparate data
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sets while still maintaining a fairly consistent set of
parameters.

Table 8.4
Summary of Parameter Values and Model-Fit Statistics
Across Five Data Sets

Note. Bold numbers indicate parameter values that were
estimated. Model-fit statistics in the table are computed
from aggregated data (as reflected in adjusted N) even
though the parameters were estimated from individual
data whenever possible.
aDue to the stochastic complexities in Herrnstein’s
(1961) task, this model fit was obtained via simulation
(see text for details).

It is interesting to note that the new decay-based feature
incorporated into production-parameter learning for the
models presented in this chapter is quite similar to the
decay of declarative chunks in ACT–R. It is possible that
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declarative, example-based models of some of these
tasks would be able to show a similar sensitivity to
recent experiences. One difference between models
involving the decay of declarative examples versus the
decay of production-relevant information is that
example-based models will tend to exhibit strong effects
of sensitivity to specific problems, whereas rule-based
models will tend to display similar behavior on new
trials, regardless of their
similarity to previous problems. Another difference is
that the selection of relevant examples from declarative
memory is based only on their activation (relative to
some activation threshold), whereas the selection of
which production to be fired is based on an evaluation of
expected gain (that is sensitive to probability of success
of the competing productions, estimated costs of
competing productions, and current value of the goal).
Past work (Lovett & Anderson, 1996) compared a
rule-based model and an example -based model of
choice in the BST and found the rule-based model
provided a superior fit. However, the example-based
model used in that case was not built within the ACT–R
framework. Further research on choice may reveal
whether the differences between ACT–R’s
example-based learning and this chapter’s procedural
learning are distinguishable in the data.

Relating ACT–R to Normative and Other Theories of
Choice

The models in this chapter show that ACT–R’s learning
and performance mechanisms are able to fit choice data
of humans and animals quite accurately and at a good
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level of detail. This empirical approach still leaves open
the question of the adaptiveness of the mechanisms
employed by these models. In other words, even though
these models fit the data, are there related models of
choice that could perform better (i.e., better than people
or animals do)? There are two features in ACT–R that
might appear to be “imperfections” with respect to
optimal choice. One is the noisiness of the choice
mechanism: With expected gain noise, these models did
not always choose the production with the highest
expected gain. The second such feature is the decay of
success and failure experiences that was the focus of this
chapter. This decay process forces models to
increasingly ignore information from the past. However,
to judge these features as imperfections assumes certain
things about the world. In particular, it assumes that the
probabilities of success associated with various options
stay constant over time. This is demonstrably not so in
many environments. In foraging, patches become
depleted and others blossom and become rich. Fortunes
of companies change such that average performance over
the last century tends not to predict performance in the
next quarter. Problem solvers improve their execution of
various strategies, so judging a strategy based on its
early record of success may hide its new-found potential.
In such a variable environment, it may actually be
advantageous (1) to explore options that previously
appeared suboptimal and (2) to downweight “old”
information of the relative success of a certain option
because things may have changed.

The noise in ACT–R’s production evaluation process
allows the system to occasionally choose poorer options
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and so allows the system to discover whether these other
options have become more fruitful. The decay process
for learning production parameters allows the system to
weight its most recent experiences most heavily. Do
these two features reflect the right combination of
deviation from maximizing and discounting of the past?
The answer to this question depends in part on what the
correct characterization of the environment is. Anderson
and Milson (1989) showed that power law decay gave
the best estimate of probability of success in an
environment where (1) options gradually became
depleted and decayed away from original high levels and
(2) options could occasionally undergo “revivals” and
return to their original high levels. Moreover, they
provided evidence that this characterized at least some
environments. Thus, there may be some optimality in the
power law decay proposed and used earlier.

Nevertheless, the situation faced by a chooser requires
more than coming up with best estimates of the
probabilities of success. It also involves deciding when it
is worthwhile to choose the less-successful-appearing
option to see if it has changed. This is basically the
n-arm bandit problem that has been studied by
statisticians (Berry & Fristedt, 1985). These problems
are difficult, and suffice it to say there are no results on
optimal strategies that begin to match the complexity of
situations faced by typical organisms choosing in the real
world.

In the absence of any results on optimality, then, we
decided to compare a number of generic choice models
that varied in their discounting of past information and
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maximization policy. Each model had a learning
component that it used to estimate the value of each
option based on past experience with the option, and
each model had a choice component that governed how
it used those values to choose. The learning component
of each model used one of the two following schemes:
equal weighting of all past events, or time-decay of past
experiences with a decay parameter of d = 0.5. Crossed
with this, the choice component of each model used one
of the two following policies: Always choose the option
with the highest estimated success rate (which we denote
maximizing) or choose each option with a probability
that matched its success rate estimate (which we denote
probability matching). One could argue that the
“perfect” choice model is the one that includes no decay
of past experiences (equal weighting) and maximizing.
In contrast, the ACT–R models explored in this chapter
are consistent with the generic model that includes decay
of past events and approximate probability matching.

Table 8.5 presents a 2 × 2 grid representing these four
generic choice models. The table also places several
specific models of choice in the appropriate cells. Note
that each of the specific choice models included have
been fit to various choice data and performed well. The
fact that each cell is represented by an extant model of
choice suggests that the field is still wrangling over the
issues of choice policy and weighting of past
information. This table also serves to place ACT–R in a
larger context of theories of choice. Note that the lower
right cell includes several models that share with ACT–R
the features of time-based weighting of success
information and probability-matching-like choice among
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options. Interestingly, these models were developed for
and have primarily been concerned with modeling
categorization tasks and simple choice tasks and have
done so very well. In particular, ACT–R is the only
model in that cell that has been applied to
problem-solving choice. Based on the work presented in
this chapter, we suggest that ACT–R can fit data from
both humans and animals and that it can model both
simple choice tasks and choice in service of
problem-solving goals.

Table 8.5
Table of Choice Models According to Learning
Component and Choice Policy

Learning Component

Choice Policy No Weighting Decay-Based

Maximizing

CE

(Davis, Staddon,
Machado, &
Palmer, 1993)

TWR

(Devenport et al.,
1995)

Probability-matching
ASCM

(Siegler &
Shipley, 1995)

ACT–R (this
volume)

Frequency array

(Estes, 1986)

Adaptive network

(Gluck & Bower,
1988)

Rule competition
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(Busemeyer &
Myeung, 1992)

Rescorla-Wagner

(Rescorla &
Wagner, 1972)

With the four generic models now described, we decided
to test them in a simulated world that approximated the
environment formalized by Anderson and Milson. In this
simulated environment, the probability of an option
having a probability of success x was

Figure 8.12 illustrates such a probability density. This
distribution of probabilities has a mean of .5, which
suggests that on average, options have success
probabilities of .5. But the distribution tends to
emphasize large and small probabilities (the edges of the
U-shape), which suggests that most options have success
rates near 0 or 1.0, meaning choice between two options
will often be consequential. The environment we
simulated did not have options with fixed probabilities
taken from this distribution. Rather, we designed the
environment so that on any trial there was a 10% chance
that the success probability of one of the two options
would switch to another value from this distribution.
Thus, there were two options with independently varying
probabilities of success, and the chooser had to try to
maximize its wins.
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Fig. 8.12. Probability density used in the simulation of
different probabilistic environments.

In the simulated environment, random guessing would
yield 50% success, and the expected maximum possible
correct (if the chooser were omniscient
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and knew the true probabilities of the two options at all
times) is 69.7%. How do the four different choice
models described earlier fare? We ran all four generic
choice models over 250 events in this simulated
environment. All models started out assuming that each
alternative had a .5 probability of success and then
learned and chose according to their features in Table
8.5. All four models performed more closely to random
than omniscient choice, but they were ordered as
follows. The best was the probability-matching/decay
combination, which returned 53.4% correct choices. The
next best at 52.7% was the choice model that used a
maximizing/decay combination. Then followed the
“perfect” choice model of maximizing without decay at
51.7% correct. The worst choice model was probability
matching without decay at 50.9% correct. One thousand
Monte Carlo trials with each of the four options yielded
standard errors of these estimated
percentages between 0.2% and 0.3%. Thus, in the
simulation of a variable world, the probability-matching/
decay combination (representative of ACT–R’s noisy
choice and decay-based evaluation) is significantly better
than the three other generic models.

It is rather difficult to choose well in an uncertain and
variable world, so learning and adapting to one’s
environmental contingencies are critical. A decay-based
and noisy set of learning and choice mechanisms
produces an effective system for making choices in
probabilistic environments. The decay and noise
processes integrated in the ACT–R models given earlier
fit a variety of choice phenomena, outperform other
learning and choice processes in a simulated
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environment, and, perhaps most importantly,
demonstrate a framework for unifying our understanding
of choice across several tasks and species.

1The BST models presented in this book differ from th
model specified in Lovett and Anderson (1996) in one
important way: the models here conform to the ACT–R
4.0 conflict-resolution scheme which only allows
separate production rules to compete: the Lovett and
Anderson (1996) model instead allowed multiple
instantiations of the same …… production to compete
based both on the production’s overall success rate and
on the specific instantiation’s anticipated success rate. (A
production instantiation is a production whose variables
have been bound to certain values.) Conflict resolution
in ACT–R 4.0 does not distinguish different
instantiations of a production, so it is often helpful to
represent different productions that will apply in
situations where success rates are likely to differ. The
BST model presented here exemplifies this practice by
incorporating two productions each for undershoot and
overshoot (a “decide” production applies when the
corresponding approach looks closer for the current
problem, and both “force” productions apply regardless
of the current problem details).
2Specifically, we estimated a problem’s undershoot bias
to be (b – g) – (g – c) where b and c are the big and
medium-sized building stick lengths respectively and g
is the desired stick length. The larger this quantity, the
closer an initial undershoot move gets to the goal as
compared to an initial overshoot move.
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3Note that the final r values for production p do not
exactly correspond to (αp + success-ratep • 90) / (αp + βp
+ 90) because the number of successes and failures will
tend to be less than the corresponding rate times 90
because a given production will not be attempted on all
90 problems.
4For nondecaying production parameter learning, the
global :pl flag in the ACT–R simulation must be set to t.
For decay-based production parameter learning, this flag
should be set to the decay rate desired, that is, a
non-negative number (usually around 0.5).
5The nondecaying learning mechanism makes a fairly
extreme prediction in this regard. For example, when
two productions’ r parameters have complementary
values based on n trials of experience (e.g., 0.7 and 0.3),
it will take more than n additional trials of experience
with the productions’ success rates reversed (e.g., 0.3
and 0.7) for those r values to reflect the reversal.
6This is a mixed blessing in that different learning rates
may arise in situations where different prior weights
provide a reasonable explanation for the difference, but
they may also arise in situations where different prior
weights do not make sense. For example, learning rates
(measured in terms of change in choice tendencies per
trial) for the same productions in different experiments
are sometimes different even though subjects
participating in the experiments would not be expected
to have different prior histories. In particular, Lovett and
Anderson (1996) modeled two experiments of different
number of trials using the same productions. The
learning rates observed in these two experiments differed
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(e.g., learning rates tend to be lower for longer
experiments), leading to estimates for α and β that varied
by an order of magnitude. These parameters allowed the
same model to fit two experiments involving the same
task, but the different values did not make sense, given
the similarity of the task and subject populations.
7When ACT–R learns by experience in this task, it only
records a single success or failure experience for the
production responsible for the current trial’s outcome.
Thus, ACT–R’s learning is not only specific to the actual
sequence of outcomes, but also to its sequence of
choices.
8In general, decay-based parameter learning affects the
estimation of a and b, the two components of C in PG-C.
By setting prior and experienced costs to 0 we eliminate
their influence.
9Although Friedman et al. did not provide complete
history of success information, their report contained the
most precise information on participants’ sequences of
success and failure and the longest set of trial-by-trial
choice data of all the studies we could find. Therefore,
we use these data to derive an estimate for the decay
parameter and then use the estimated value in as many
model fits as possible throughout this chapter.
10Note that the current model’s best-fitting values for G0
and G10 are approximately one fourth those of the
corresponding parameters in the performance-based fit
from Chapter 3. This makes sense because the noise
value used here is also approximately one fourth that

507



used in the previous model. When G and the noise are
similarly magnified, choice behavior remains the same.
11As each subject’s experience was randomly generated,
they would not experience exactly 60% or 80% correct
solutions.
12In this environment, as in the conditions presented in
Fig. 8.8, we included a changeover delay (COD), which
prohibited the dispensing of a reward on a “new” key
until 1.5 sec had passed after the animal switched to that
key. The inclusion of a COD in this paradigm greatly
affects the behavior of pigeons by decreasing their
tendency to alternate between the keys with each peck.
We simulated this (presumably learned) behavior by
representing both the right and the left “pecking”
productions as leading to pecking bursts. That is, when
the “peck right” production is chosen, a certain amount
of pecking time (fluctuating around ……COD time)
passed before the next choice was made. Although this
solution sidesteps the issue of how such “staying”
behavior arises, ACT–R could be used to study and
model this learning process via the expected cost
component. ACT–R is sensitive to the expected costs of
different options and can adapt its estimates of expected
cost based on experience. Because the COD manipulates
(i.e., increases) the cost of switching keys, an ACT–R
model would likely be able to adapt to it.
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Cognitive Arithmetic

Christian Lebiere
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Carnegie Mellon University

CHARACTERISTICS OF THE DOMAIN

Cognitive arithmetic studies the mental representation of
numbers and arithmetic facts (counting, addition,
subtraction, multiplication, division) and the processes
that create, access, and manipulate them. Although the
task is trivial for computers, it is quite difficult for
humans to master, and presents a domain that is both
propitious and challenging for ACT–R.

Arithmetic is one of the fundamental cognitive tasks
(one of the three basic “Rs”) that humans have to master.
Children go through years of formal schooling to learn
first the numbers and then the facts and skills needed to
manipulate them. Many adults have not mastered and
will never completely master the domain. Yet it is a task
that is trivial for computer architectures to perform
correctly. It is also trivial for ACT–R if we only consider
its symbolic level. All one needs to do is give ACT–R
the correct chunks representing arithmetic facts and
productions encoding procedures to manipulate them,
and perfect performance will result. This, however,
ignores the impact of ACT–R’s subsymbolic level and is
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not a very satisfactory model of human performance,
especially that of children.

Some tasks, such as natural language processing or
chess, are hard for both humans and machines to perform
and require years of learning or engineering. Other tasks,
such as vision, which seem to come naturally to humans,
require much programming for computers to perform
even poorly. One can attribute this to humans possessing
complex systems for vision and other tasks which
resulted from millions of years of evolution, but will
require painstaking work to reverse-engineer and
replicate in computers. But a task such as arithmetic
seems so straightforward and easy to accomplish that it
is surprising that it takes years of learning for humans to
master. This suggests that human cognition at the
subsymbolic level embodies some assumptions about its
environment that are at odds with the structure of
arithmetic as it is taught. Arithmetic, being a formal
mathematical theory, assumes a set of precise and
immutable objects (the numbers), facts, and procedures.
Human cognition, on the other hand, has evolved to deal
with approximate concepts, changing facts, and adaptive
procedures. Studying how such a system deals with a
formal task such as arithmetic provides an excellent
window to its assumptions and mechanisms.

This task is both well suited and challenging to ACT–R
for a number of reasons. Unlike tasks artificially
designed for the purpose of isolating a particular
cognitive mechanism, the learning and performance of
arithmetic involve almost every mechanism of the
architecture. It is therefore an excellent test of whether
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these parts can perform together as well as separately.
Unlike laboratory tasks, large amounts of data are
available for every cross section of the population and
every aspect of the task, making it easier to establish the
trends being analyzed.

Although numbers can be seen as having a concrete
interpretation (e.g., children learn the concept three by
being shown three rabbits), the rest of arithmetic has an
essentially abstract structure. It is much less likely that
people have brain structures optimized to perform
arithmetic than, for example, vision or language. This
fact suggests a complete reliance on general-purpose
learning mechanisms. Because each skill builds on the
previous ones—for example, counting can be used to
perform addition, which in turn can be used to perform
multiplication—learning can be a mostly self-contained
process, rather than entirely dependent on external
factors such as teaching. Arithmetic also has an
inherently clear, simple, and regular structure, with a
systematic organization of knowledge into tables of
immutable facts. This strong regularity, unlike, for
example, the many exceptions of tasks such as natural
language processing, also helps in reducing degrees of
freedom in modeling the task and provides a good test of
ACT–R’s statistical learning. These factors lead to a
simpler, more regular model that is more predictive than
one with many unanalyzed degrees of freedom.

Basic Empirical Phenomena

There are two classes of empirical phenomena in the
domain of arithmetic for which any model needs to
account. One concerns the fact that children, and to a
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certain degree adults, approach arithmetic problems with
two basic strategies. One strategy is simply to retrieve
the answer. The second strategy, referred to hereafter as
the backup strategy or backup computation, is to
compute the answer. Thus, given a problem such as 3 +
4 = ?, children may choose to count (perhaps 4, 5, 6, 7)
to provide the answer, and given 3 × 4 = ?, they may
choose to add to get the answer (perhaps 4 + 4 + 4). One
class of empirical phenomena involves how people
choose between the computation strategy and the
retrieval strategy.

The second class of empirical phenomena involves the
problem-size effect. Children and adults take longer to
answer problems involving larger
numbers, and they also make more errors on these
problems. In the case of backup computation, the reason
for this is fairly obvious—one has to count more to add
large numbers and one has to add more things when
multiplying by a larger number. Although much reduced,
the problem-size effect occurs for adults. It has been
suggested that this is due to residual use of the backup
strategy (LeFevre et al., 1996a), although recent research
put those results in doubt (Kirk & Ashcraft, 1997).
However, it has been argued that smaller problems also
occur more often, offering greater practice. This is true
in studies of textbooks (Ashcraft, 1987; Ashcraft &
Christy, 1995; Hamann & Ashcraft, 1986; Siegler,
1988), but it is also true in the world at large. As many
(Benford, 1938; Newcomb, 1881; Raimi, 1976) have
noted, small numbers occur more often in the world
generally. As just one interesting token of the ubiquity of
small numbers, consider the addition problems created
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by adding the two rows in multiplication problems
involving two-digit numbers. An example is:

The problem creates a 3 + 8 addition problem and a 1 +
6 addition problem. If one looks at all such
multiplication problems with multiplicands from 10 to
99, one finds that addition problems involving smaller
addends occur more frequently. Figure 9.1 plots, as a
function of the size of the addend, the frequency of all
addition problems created by adding the tens digit from
the top row (i.e., 138) with the ones digit from the
bottom row (i.e., 368) or the hundreds digit from the top
row with the tens digit from the bottom row. There is a
clear drop-off with size of the addend.1
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Fig. 9.1. Frequency of one-digit addition problems
created by two-digit multiplication problems.

These effects of problem size and strategy are ubiquitous
throughout the literature on cognitive arithmetic (for
reviews of the field, see, e.g., Ashcraft, 1992, 1995;
Campbell, 1995; Geary, 1996). Although these effects
are not by far the only ones to account for, they
constitute a good basis for a comprehensive model of
cognitive arithmetic. In the Chapter 4 discussion of
Zbrodoff’s experiment, we showed that ACT–R had the
ability to account for these effects in miniature.
However, it is another question whether, when we turn
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on ACT–R’s learning mechanisms and give it a lifetime
of experience,
we will get behavior that looks at all like human
behavior. This is the challenge that this chapter
addresses.

In subsequent sections of this chapter, we describe the
basic model and its ability to account for basic results in
the performance and learning of cognitive arithmetic.
These demonstrations are typical “minimodels,” which
assume a certain distribution of knowledge strength at a
particular point in time. The final section describes a
simulation in which we simulate the growth of arithmetic
knowledge over a lifetime.

The Model

This section sets forth our basic model for cognitive
arithmetic. There is nothing particularly novel in the
types of chunks and productions that we choose. They
reflect the basic approach introduced in earlier chapters
and are already used to model many phenomena.

Basic Representation and Productions

Arithmetic problems are represented as chunks with four
slots: one for the operator, one for each operand, and one
for the result. For example, the
chunk representing the fact 2 + 3 = 5 would be:

Fact-2+3=5

isa arithmetic

first 2

operator +
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second 3

result 5

where 2, 3, +, and 5 are other chunks representing the
numbers and operator.2 The most basic action that one
can perform on knowledge chunks is to retrieve them.
This is accomplished by the Retrieval production, which
solves an arithmetic problem by simply retrieving the
answer to the problem stored in long-term memory:

Retrieval

=goal>

isa arithmetic

first = first

operator = operator

second = second

result nil

=fact>

isa arithmetic

first = first

operator = operator

second = second

result = answer

= = >

=goal>

result = answer
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This production simply retrieves a chunk (fact) matching
the goal (problem), then copies the answer back to the
goal. One can notice that the chunk retrieved from
memory is of the same type as the goal representing the
problem, and wonder how the fact was initially created.
In ACT–R 4.0, there are only two possibilities. The first
is that it results from the encoding of an environmental
stimulus. This case would correspond to an external
source of arithmetic knowledge such as a teacher, a table
from a book, or a calculator. The second possibility is
the long-term encoding of a past goal.
If one cannot retrieve a fact, one can (re) generate the
arithmetic knowledge by the use of backup computation
strategies. An example of such a strategy, which is to
perform an addition by repeatedly counting up from one
argument a number of times equal to the second
argument, can be implemented by the production
Iteration:

Iteration

=goal>

isa arithmetic

first = first

operator +

second = second

result nil

= =>

=subgoal>

isa iterate

518



result = first

counter 0

limit = second

increment 1

result = answer

!push! =subgoal

=goal>

result = answer

This production solves an addition problem by setting a
subgoal to add the second argument iteratively to the
first by increments of 1, using the basic counting skills.
Table 9.1 shows the two production rules that were used
to accomplish this iterative counting procedure. This
counting subgoal is pushed on the stack, and its result
will be returned to the current goal as the answer to the
problem using the subgoal value return mechanism.
When an answer to the problem has been found using
either retrieval or one of the backup strategies, the
answer is output and the goal is popped by the Answer
production:

Answer

=goal>

isa arithmetic

first = first

operator = operator

second = second
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result = answer

= =>

! output! = answer

!pop!

Table 9.1
Productions for Addition by Iterative Counting

Iterate-count

=goal>

isa iterate

counter =counter

limit =counter

result =result

increment 1

=factl>

isa count

number =counter

next =next-counter

=fact2>

isa count

number =result

next =next-result

= = >

=goal>
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counter =next-counter

result =next-result

Done

=goal>

isa iterate

counter = counter

limit = counter

= = >

!pop!

When the goal is popped, it becomes a fact in long-term
memory. If this fact did not already exist, then the
solving of this problem (presumably using the backup
strategies) has added a new arithmetic fact to the
knowledge base. If an identical fact already existed
(modulo the chunk name3), then the new chunk is
merged with the existing one, reinforcing it, and the
duplicate copy is removed from declarative memory. If
the problem could not be solved by retrieval, this
reinforcement from the
merging with the new problem will raise the activation
of the fact until ultimately the problem can be solved by
retrieval. If the problem was already solved by retrieving
the fact, then it will receive two learning reinforcements:
first, from its use in the retrieval production, and second,
from being merged with the problem goal. This double
reinforcement is not essential, but is a direct
consequence of the separate rules for retrieval and
merging. As seen in the Lifetime Simulation section, this
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simply speeds up the convergence to retrieval-based
performance.

This technique of either directly retrieving the answer
from the corresponding fact or using a number of backup
strategies is a general ACT–R technique to model
problem solving. By gradually raising the activation of
the resulting goal with practice, it provides a general
account of the transition from general problem-solving
strategies toward more efficient ones. As noted in
Chapter 4 in this regard, ACT–R implements Logan’s
(1988) proposal for transition from algorithmic solutions
to direct retrieval.

Our discussion has focused on addition, but we have
developed a parallel model for multiplication. The
iterative addition procedure, corresponding to the
counting procedure, is given in Table 9.2. The
productions there try to retrieve the multiplication
answers and, if they fail, call on a backup strategy of
repeated addition.

Table 9.2
Productions for Multiplication by Iterative Addition

Iteration-times

=goal>

isa arithmetic

first =first

operator *

second =second

result nil
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= = >

=subgoal>

isa iterate

result 0

counter 0

limit =second

increment =first

result =answer

!push! =subgoal

=goal>

result =answer

Iterate-add

=goal

isa iterate

counter =counter

- limit =counter

result =result

increment =increment

=fact>

isa count

number =counter

next =next-counter

= = >
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=subgoal>

isa arithmetic

first =result

operator +

second =increment

result =next-result

!push! =subgoal

=goal>

counter =next-counter

result =next-result

Note. The Retrieval and Done productions are the same
as for addition.

Conflict Resolution

Because the retrieval and iteration productions (and
possibly other backup strategies) share the same goal
condition, conflict resolution is needed to determine
which productions to attempt and in which order.
Typically (and this may not be true for, say, small
children), the retrieval production provides a high
probability of producing a correct answer at low cost,
and thus will have the highest evaluation and will be
attempted first. If no arithmetic fact for that problem is
above threshold, the retrieval production will time out
and the next production in the conflict resolution order,
such as iteration, will be allowed to fire.
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A general observation is that children will choose to
retrieve more often for smaller problems and choose to
compute more often for larger problems (Siegler, 1988).
The simplest explanation for this in ACT–R is that
subjects cannot retrieve the answer in the case of large
problems and fall back on computation. This would
occur more often for larger problems because they have
less practice (e.g., Fig. 9.1).

It is possible to have more sophisticated decision criteria
in ACT–R. Thus, ACT–R might have a rule that chooses
to calculate (perhaps on paper or with a calculator) for
all problems that involved greater than one-digit
numbers. Again, it might have a special rule of adding a
zero for multiplication by 10. The exact special-case
rules might vary from subject to subject.
Reder (1982, 1987; Reder &Ritter, 1992; Schunn, Reder,
Nhouyvanisvong, Richards, & Stroffolino, 1997)
presented evidence that subjects can be more strategic in
their decision making than simply choosing to compute
when retrieval fails. Her paradigm involved subjects
being shown the same two-digit multiplication and
addition problems, which they solved over and over
again. Eventually, they got to the point where they could
retrieve the answer, and Reder’s interest was in the
process by which they made the transition from
computation to retrieval. She required her subjects to
indicate very quickly (within 850 msec of seeing the
problem) whether they would retrieve or compute the
answer. She found they could make this decision with
some reliability, even though it took them much longer
than 850 msec to retrieve the answer. She found that
they were making their decision on the basis of
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superficial features of the problem. Thus, if subjects had
been trained on 34 + 47 they would false alarm and think
that they could retrieve the answer to 34 × 47. We
(Anderson, 1996) have suggested that subjects in
Reder’s task were making their decisions on the basis of
memory for the problem rather than memory for the
answer. Thus, subjects might be using productions like

IF
the goal is to solve a problem involving n1 and n2

and n1 and n2 have been presented together

THEN indicate retrieve

This production has the advantage of not requiring that
the problem be analyzed in detail before making a
commitment to an answer strategy.

In general, people may evolve complex sets of strategies
for making the decision between retrieve and compute.
However, we ignore these complications and simply
assume that the two strategies are retrieve and compute.
Moreover, subjects will only choose to compute after
they have failed to retrieve the answer.

Activation Processes and Errors

Clearly, the activation of chunks storing arithmetic facts
is going to be very critical to ACT–R’s performance in
cognitive arithmetic. The activation of a chunk is given
as a sum of a base-level activation and associative
activation according to the Activation Equation:
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where Bi is the base-level activation (or strength) of the
chunk i, Wj reflects the attentional weighting of the
elements j that are slots of the current goal, and the Sji
terms are the strengths of association from the elements
j. The Bi value will change with experience according to
the Base-Level Learning Equation 4.1 in such a way that
it grows approximately as a log function of amount of
practice. The Sji will change with experience according
to the Posterior Learning Equation 4.3 such that it will
come to vary approximately as a log function of the odds
of the chunk i occurring when j is in the environment.

These activation quantities are converted into match
scores, which reflect the effects of partial matching
(Match Equation 3.8). In the case of a perfect match, the
match score is just the activation, but in the case of a
mismatch, a penalty will be subtracted from the match
score. There is noise in these match scores because of
activation noise. If the match score is above a threshold,
the chunk will be retrievable and the probability of it
being retrievable is described by the Retrieval
Probability Equation 3.7. If there are multiple possible
chunks that might match, the one chosen is the one with
the highest match score and the probability of any one
being chosen is described by the Chunk Choice Equation
3.9. Finally, match scores determine latency through the
Retrieval Time Equation 3.10.

Errors can be committed whether the subject is
computing or retrieving. Let us consider the example of
the problem 2 + 3 = ?. Because of ACT–R’s partial
matching process, it is possible for ACT–R to retrieve an
arithmetic chunk (e.g., 2 + 4 = 6) other than the correct
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one. Recall that chunks are retrieved on the basis of their
match scores, which are calculated as their activation
levels minus mismatch penalties. It is possible that even
after the mismatch penalty is subtracted off, the wrong
chunk will have the highest match score, be retrieved,
and its answer stored in the current goal. In this model,
the mismatch penalty between numbers increases
linearly as a function of the difference between the two
numbers. Thus, the mismatch penalty between numbers i
and j is D | i – j | where D is the scale factor to be
estimated. The mismatch measure essentially encodes
the representational similarity between numbers.4,5 This
assumption about the representation of numbers has been
adopted in a number of other models of numerical
memory (J. A. Anderson, Spoehr, & Bennett, 1992;
Campbell, 1995; McCloskey &Lindemann, 1992).

Errors can also occur using the backup procedure when
the iteration subgoal returns an erroneous answer
because of a misretrieval, a procedural error, or any other
reason. The erroneous answer will also be stored in the
goal. In both cases of retrieval and computation errors,
not only will the answer to this particular problem be
wrong, but the goal holding the incorrect answer is
popped and becomes an erroneous long-term fact (here,
2 + 3 = 6)6. This fact can then be retrieved as the answer
to future problems and perpetuate the error. This
otherwise correct retrieval of an erroneous fact becomes
another source of error. This competition between
memories for both correct and erroneous answers is quite
similar to Siegler’s treatment (e.g., Siegler, 1988). It
might seem possible that ACT–R could reach an
unfortunate state where it has so practiced the wrong
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facts that it comes to believe them. Indeed this can occur,
and we describe in the Learning section and the
Appendix what must be true for ACT–R to avoid getting
absorbed into such error states.

PERFORMANCE

This section examines how this ACT–R model can
account for a wide range of effects in cognitive
arithmetic, including the problem-size effect and the
patterns of errors in retrieval and computation of
addition and multiplication problems. Even though these
effects typically have multiple, complex sources, we
have chosen to make some simplifying assumptions for
the sake of analytical simplicity. A more complex
simulation could and will eliminate the simplifying
assumptions and account for these effects in a more
complex manner. The basic import of the results
presented here is that even a fairly simple approach can
successfully account for those effects.

The Problem-Size Effect

The most basic and robust effect in cognitive arithmetic
is that larger problems are harder. This holds for
measures of retrieval time and error rates, for the four
basic operations, for production and verification tasks,
and for the entire age span from children to adults and
elderly (e.g., Ashcraft, 1992). Ashcraft (1987) reported
the change in response time for addition problems in
adults. Figure 9.2 illustrates the relationship between the
sum of the digits and retrieval time. Although most
problems exhibit an increase in response time roughly
corresponding to the square of the sum of their
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operands,7 the slope for problems involving a zero
operand (squares in the graph) is approximately flat, and
the increase in response time for tie problems (those
having identical operands—triangles in the graph) is
much smaller than for nonzero, non-tie problems (circles
in the graph). The effect therefore reflects a more
complex measure of problem difficulty than simply
problem size.

Fig. 9.2. Problem-size effect for addition for adults: The
data are the open points and the predictions of ACT–R
are the closed points connected by lines.
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The flat response time for problems involving zero is
usually assumed to be the result of a special-purpose rule
for those problems (“0 + x = x = x + 0 for all x”). We
model it by use of the special Zero production. Two
main explanations have emerged to account for the rest
of the data. Groen and Parkman (1972) initially argued
that the problem-size effect resulted from the use of
backup strategies such as iterative counting. Larger
problems involve more counting and therefore higher
latencies and more errors. If the first number is always
added to the second (or vice versa), then the latency will
increase linearly with the sum of the numbers. A better
fitting model, called the min model, assumes instead that
the smaller number is always added to the larger one,
thereby minimizing the number of increments necessary.
Although this model certainly explains part of the
problem-size effect for children and other poorly trained
subjects, it has difficulties in fully accounting for the
effect in well-trained adults as well as the better
performance on tie problems.

The other category of models relies on the difference of
presentation frequency between problems. As we noted
earlier, smaller problems occur
more frequently than larger ones. Smaller problems are
therefore easier because they are presented and practiced
more often. Ashcraft (1987) presented the frequency of
presentation of addition facts by operand in Grades K to
3 and Siegler (1988) presented the frequency of
multiplication problems in second- and third-grade
workbooks. In each case, the frequency decreases
roughly linearly with operand size, except for very small
operands, which are special cases. It is generally
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assumed that the distribution in school books
approximately reflects the real-life problem distribution.
This frequency information was used in an ACT–R
simulation whose results are illustrated as lines in Fig.
9.2. We assumed that the ratio of frequencies of the
smallest (0 + 0) to the largest (9 + 9) was 4-to-l and that
intermediate problems had a frequency that varied
linearly with each operand. Thus, if 0 + 0 occurred four
times, 0 + 9 and 9 + 0 would occur twice, and 9 + 9
would occur once.8 This distribution approximates
closely the occurrence frequency in textbooks as
described by Hamann and Ashcraft (1986). We assumed
500,000 problems presented according to these
frequencies at an average of 100 problems per day. In
the simulation, the underlying equation (based on
Retrieval Time Equation 3.10) determining latency is

where I is an intercept reflecting encoding/answering
times, F is the latency factor from the Retrieval Time
Equation 3.10, and A is the activation of the chunk
encoding the addition fact. The activation was
determined by the half-million trials of experience in
ACT–R. In our model, I was estimated at 0.4 sec and F
was left at the default value of 1.0. We also estimated an
additional latency of 0.5 sec for the Zero production. As
can be seen in Fig. 9.2, the model does a pretty good job
of capturing the effects in the data.

The basic increase in latency with problem size comes
from ACT–R’s base-level learning. It follows from the
simplified form of the Base-Level Learning and
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Retrieval Time Equations (Equations 4.1 and 3.10) that
retrieval time is a power function of frequency, and
because frequency decreases roughly linearly with
problem size, the response time for arithmetic retrieval
grows as a power function of problem size.

The retrieval time for the zero operand problems is
constant at 0.9 sec, whereas it increases slowly for tie
problems to about 1.15 sec for the largest problem. Tie
problems generate additional spreading activation in
ACT–R because one of the arguments appears twice in
the context. We explain next why, comparing the
addition problems 3 + 3 and 3 + 4. Let us compare the Sji
values learned according to the Posterior Strength
Equation 4.3 from the
number 3 to a tie arithmetic fact (3 + 3 = 6) and a non-tie
arithmetic fact (e.g., 3 + 4 = 7). In this case, j is the 3 and
i is the fact. To review, that equation is

With extensive experience, Rji converges to Eji, where
(see discussion of the Posterior Strength Equation in
Chapter 4):
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where F(Ni&Cj) is the frequency that i and j co-occur,
F(Ni) is the frequency that i is used, F (Cj) is the
frequency that j is a source in the goals, and F is the total
number of retrievals (approximated by the number of
production firings). Assuming for simplicity that the two
facts (3 + 3 = 6 and 3 + 4 = 7) are equally frequently
needed, then all the components of the equation for the
two facts are equal except for F(Ni&Cj), which is double
for the tie fact because 3 is twice in the goal context for
each retrieval so the frequency is also doubled, resulting
in Sji values larger by log(2) for tie facts. This additional
activation spread to tie facts will in turn result in a
decrease of their retrieval latency. Thus, the advantage of
tie problems is a parameter-free prediction of ACT–R’s
mechanisms for associative learning.9

This simple model largely relies on differential
presentation frequencies to produce the problem-size
effect. As seen later, differential frequencies of rehearsal
(small problems are retrieved and thus reinforced before
larger ones) and backup strategies (recomputing larger
facts is more error-prone than smaller ones) also
contribute to the problem-size effect. Finally, even for
adults, part of the effect may result from the residual use
of nonretrieval procedures (LeFevre et al., 1996a, but see
Kirk & Ashcraft, 1997). As
mentioned previously, a more complex simulation could
take all these factors into account and determine their
relative importance.

Errors in Addition Retrieval

Table 9.3a presents the pattern of retrieval errors of
addition facts by 4-year-olds found by Siegler and
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Shrager (1984). The subjects were presented with
addition problems ranging from 1 + 1 to 5 + 5 and were
asked to state what they thought the answer was, without
resorting to any overt strategy such as putting up fingers
or counting. The main effect, similar to the problem-size
effect, is an increase in errors for larger facts. The facts
showing a comparatively low percentage of errors are
those involving the operand 1, tie problems, and
problems where the first operand is larger than the
second one. Erroneous answers also tend to be smaller
than the correct answer.

Table 9.3
Retrieval Percentages for 5 × 5 Addition Retrieval in
4-Year-Olds (Siegler & Shrager, 1994)
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Because according to instructions the children were
asked not to use any procedure other than retrieval, the
computation productions in our model were disabled.
Although guessing and other such procedures could be
considered, the basic mechanism for producing an
arithmetic error in ACT–R is the mistaken retrieval of
another partially matching fact (see Match Equation 3.8).
According to the Chunk Choice Equation 3.9, the
probability of such commission errors is proportional to
the scaled activation of the intruding facts relative to the
correct fact. Because activation is related to frequency,
the frequency difference between problems10 is critical
to explaining the patterns of errors. The other factor is
that partial matching penalties will be smaller among
similar addition facts.

In the case of the retrieval of addition facts, small sums
(especially those involving 1, which can be reduced to
the well-practiced skill of counting) are practiced at a
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higher frequency and are therefore more likely to intrude
on another problem, leading to an error for that problem,
than to be intruded on. This higher activation for smaller
facts also explains why the errors for larger facts tend to
be biased toward numbers smaller than the correct
answer. Tie problems receive an additional amount of
activation, as described in the previous section, and are
therefore more likely to be retrieved correctly. Finally,
we assume a small probability that, given a problem
where the first operand is smaller than the second one
(e.g., 2 + 4), students reverse the order of arguments to
simplify counting (the min strategy) and therefore also
rehearse the reverse answer (4 + 2 = 6), giving it an
advantage. The results are shown in part b of Table 9.3.
The model generates answer probabilities that are very
close to the data.

This model uses 1,000 problem presentations (an
average of 40 for each of the 25 problems in Table 9.3)
with a distribution frequency ratio (between smallest and
largest problems) of 6.25,11 an activation noise s
parameter of 0.15, a scaling mismatch penalty factor D
of 0.15 per digit difference,12 and a retrieval threshold13

τ of –2.25. The strategy of swapping arguments to make
sure that the first is larger than the second (and therefore
the extra rehearsals to facts of that type) is modeled by
an additional probability of presentation of those
problems that has been estimated at 6%.

Another way to examine this data is to plot the
probability of correct retrieval for each argument, as in
Fig. 9.3. Both plots show a fairly close match, with the
jump in percentage correct for problems involving 1, and
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the greater slope of the addend curve resulting from the
probability of swapping arguments to further favor
smaller addends.
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Fig. 9.3. Percentage of correct retrievals in addition: (a)
augend; (b) addend.

As was mentioned in the overview, this is a somewhat
simplified model in that it assumes that only correct facts
can be retrieved, albeit sometimes incorrectly. Of course,
4-year-olds may also hold some incorrect addition facts
(at least weakly encoded), which if correctly retrieved
will lead to error (or conversely if incorrectly retrieved
could potentially yield a correct answer). In fact, the
incorrect answers generated by the model’s answer to
this experiment would lead to just such incorrect facts.
Another source of such errors could be results from past
attempts at trying to reconstruct unavailable addition
facts through counting (on their fingers or mentally) or
other strategies. It is not necessary to specify such past
history, however, because the basic assumptions of
partial matching and a difference in rehearsal frequency
can lead to a satisfactory model.

Errors in Multiplication Computation

Figure 9.4, from Siegler (1988), presents the percentage
of errors in multiplication by repeated addition, a
standard backup computation, for fourth graders.
Subjects were given single-digit multiplication problems
in the form of a column of numbers in which the
multiplicand was repeated the number of times specified
by the multiplier; for example, 8 × 6 was presented as a
column in which 8 was written 6 times. Subjects were
asked to add the columns of numbers and write down the
answer. Analogous to the addition problems, the
probability of error increases with the size of both the
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multiplicand and the multiplier. Particularly remarkable
is the very low percentage of errors for repeated addition
of 5.
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Fig. 9.4. Percentage of errors in multiplication by
repeated addition: (a) multiplicand; (b) multiplier.

Because multiplication by repeated addition essentially
involves the same retrieval of arithmetic facts (counting
and addition), the same mechanism can also explain that
pattern of errors. Error percentage increases with the size
of the multiplier because of the increase in the
opportunities for retrieval error, and with the size of the
multiplicand because of the increased probability of
error in the retrieval of larger facts. The particularly low
percentage of errors for repeated addition by 5 is
obtained because only two facts are needed (0 + 5 = 5
and 5 + 5 = 10) and repeatedly reinforced, unlike other
repeated additions where 5 or all 10 of the facts on that
row of the addition table are needed.

Figure 9.4 compares the predictions of the model with
the data. Because the subjects were fourth graders, this
model assumes about 4 years of presentation of addition
facts at a rate of 100 problems per day, for a total of
about 150,000. The frequency ratio of this distribution
was estimated at 16. In addition, it is assumed that
subjects have previously solved a certain number of
multiplication problems by repeated addition. The
distribution of problems is the one reported by Siegler
for second- and third-grade textbooks. About 1,000
multiplication problems are used, resulting in 5,000
additional addition rehearsals. The activation noise
parameter s is 0.12, with the same standard mismatch
penalty factor of 0.15 per digit as used in the addition
retrieval model. The plot by multiplicand shows a
general increase in error percentage with the size of the
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argument, resulting from the decrease in rehearsal
frequency for larger problems, and very few errors for
addition by 5, resulting from the limited set of facts
needed (and, incidentally, the fact that they both contain
the number 5 twice and therefore receive additional
activation). The plot by multiplier also shows an increase
in error for larger arguments, this time because the
number of steps is directly proportional to the multiplier
and each step introduces a new opportunity for error.
One feature of the data that is not replicated by this
model is the lower percentage of errors for even
multiplier values. One possibility is that this may result
from a hidden strategy of adding in pairs, such as adding
14 three times rather than adding 7 six times.

LEARNING

The previous section described a number of cognitive
arithmetic performance results at a particular point in the
learning cycle and how to model them, assuming a
specific state of knowledge at that time. This section
examines how these skills improve with time and how
ACT–R’s learning mechanisms can account for that.

The Problem-Size Effect Over Time

Ashcraft (1987) described the decrease in response time
to addition problems across grades, as well as the
gradual flattening of the problem-size effect, from about
a 2.5 to 1 ratio for large versus small problems (two-digit
sum vs. singledigit sum) in first grade to about a 1.1 to 1
ratio by college. Figure 9.5a presents his data as a
function of problem size and academic level of his
subjects.
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Fig. 9.5. Effect of problem size across grades: (a) data;
(b) model.

Although some of this effect may be due to the gradual
adoption over time of more efficient strategies (e.g,.
simply retrieving the fact instead of counting on one’s
fingers), the simplest way to account for it is by
examining the increase in activation with practice and
the resulting decrease in retrieval latency. Assuming that
the frequency of presentation of each problem remains
constant, the Sji values in the Activation Equation 2.5
will also remain fairly constant and most of the effect of
practice on activation will be reflected in the base levels
of the facts. Thus, the critical equation is the Base-Level
Learning Equation 4.1. If the number of references n in
that equation is replaced by pL, where p is the
presentation rate in terms of number of presentations per
unit of time and L is the length of training, then as we
noted in Chapter 4, the Base-Level Learning Equation
4.1 can be approximated as:

Then by substituting this quantity into the Retrieval
Time Equation 3.10, the retrieval latency can be shown
to be a power function of the life of the chunk:

where c = Fp/(1 – d) and so reflects the presentation rate
p. Thus, we would expect that time to answer these
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addition problems would speed up as a power function
of length of training (L). Figure 9.6 plots the data as a
pair of small- and large-problem curves across grades
with a log-log scale. It does appear roughly to speed up
as a power-law function of grade.

Fig. 9.6. Power-law speed-up of response time.

The slope of the small-problem curve of about 0.5 is
perfectly compatible with the default parameter values of
0.5 for the base-level decay d. The somewhat higher
slope of about 0.75 for the larger problems can be
explained by a switch from computation to retrieval in
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addition to retrieval speedup, because first graders are
still likely to use computation for some
large problems. Another factor could be a leveling of the
problem distribution over time, with large problems
becoming gradually more frequent relative to small
problems.

The results from the ACT–R model are displayed in Fig.
9.5b. All parameters were the same as those used for the
problem-size effect model presented earlier in this
chapter. The amount of presentations for each grade
corresponds to that many years of training (minus a half,
assuming that subjects were tested mid-year) at the usual
average rate of 100 problems per day. This model fails to
produce the degree of speeding up for the large
problems. The most probable explanation is its failure to
include computation. Children are probably using this
backup computation extensively for the large problems
and it is producing a considerable slow-down.14

However, Fig. 9.5b shows how much of the effect we
can account for purely in terms of speed up in retrieval.

Learning the Correct Answer

Cognitive arithmetic performance increases over the
years from marginal (less than 50% correct retrieval of
small addition facts among 4-year-olds as reported by
Siegler & Shrager, 1984, and even much worse for larger
ones) to almost perfect and efficient retrieval for most
adults under normal circumstances. At some point,
children largely stop using computation to answer their
arithmetic problems and just retrieve the answer. They
still make errors, and according to the model there are
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two sources for errors, which we call type-a and type-b,
on a problem like 3 + 5 = ?:

(a) They will have stored incorrect answers (e.g., 3 +
5 = 7) from past miscomputations or misretrievals and
these can be retrieved.

(b) They can partially match and retrieve a correct
answer (e.g., 3 + 4 = 7) to a different problem.

What happens when a child starts retrieving answers
subject to these errors and stops getting regular feedback
on the additions? Can these errors be reduced through
sheer practice at retrieval? We examine this question
separately with respect to these two types of errors in
ACT–R.

First, will continued practice lead to a reduction in type-a
errors? Every time the child retrieves the right answer or
the wrong answer, it will increase the answer’s
base-level activation. Suppose p1 is the frequency with
which the correct answer is retrieved and p2 is the
frequency with which the incorrect answer is retrieved.
Then from the earlier equation it follows that the
difference in their base-level activations will be

which is a function of their relative frequencies p1 and
p2. Thus, the difference in base-level activations between
a correct and incorrect fact will increase if and only if the
ratio of their frequencies increases. Without a change in
ratio of frequencies, the associative activation will not
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change because, according to the Posterior Strength
Equation 4.3, the Sji values only depend on the relative
frequencies, not the amount of practice. Similarly, the
other activation quantities (mismatch penalty, noise) do
not change with practice. Under certain circumstances,
the presentation frequencies and the base-level
activations will diverge. This is essentially a
rich-get-richer dynamics. Strong chunks (hopefully the
correct ones) are more likely to be recalled, which will
strengthen them further, whereas weak chunks
(hopefully the wrong ones) will be increasingly less
likely to be retrieved
until they are gradually forgotten. The Appendix to this
chapter presents a mathematical analysis of this
situation. It turns out that the critical parameter in this is
ACT–R’s activation noise parameter, s. If the parameter
s is set well below 1, ACT–R can “clean itself up,” so to
speak. Through repeated retrieval it will come more and
more to retrieve the stronger answer and so strengthen its
base-level activation.

The analysis of type-b errors is different. Under the
assumption that the perfectly matching correct fact (3 +
5 = 8) and the partially matching correct fact (3 + 4 = 7)
reflect problems that occur with a constant rate of
frequencies, there will be no effect of practice on their
relative base levels. Mismatch penalty and noise will not
change with practice either. On the other hand, the
critical factor concerns the associative strengths, Sji,
between the cue 5 and the two facts 3 + 5 = 8 and 3 + 4 =
7. Again, under the assumption of not too much noise in
the system, 5 becomes an increasingly good predictor of
the perfect matching fact and an increasingly bad
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predictor of the partial matching fact. Because
association strength reflects log odds and because 5 is
associated with multiple facts, there is a bound on how
strong the association between 5 and 3 + 5 = 8 can be.
However, there is no bound on how negative the
association between 5 and 3 + 4 = 7 can become. As the
odds go to zero, the associations can become
unboundedly negative and so completely inhibit the
mismatching fact. As the Appendix develops, this
requires that the value of the noise parameter s be less
than 1/3.

Figure 9.7 illustrates some results from a simulation in
which the system starts out making a fair number of
errors and eventually cleans itself up. The odds of
commission errors decrease approximately as a power
function of practice for a range of low noise values. The
odds start at about 2.0 for the first block independently
of the noise, but decrease by the hundredth block to
about 0.02 for a noise variance of 0.1 and to 0.2 for a
variance of 0.4. The decrease is roughly linear on a
log-log scale, confirming the power-law nature of the
process.

551



Fig. 9.7. Power-law decrease of retrieval errors (model).

ACT–R’s behavior with s values as in Fig. 9.7 can be
seen as the middle ground between two extreme
strategies to deal with conflicting information, also
known as nonmonotonic knowledge (e.g., Bobrow,
1980). One strategy would be to consider all facts to be
immutable (as is the case for arithmetic knowledge) and
reject any information that conflicts with accepted
knowledge. Although this may be the right thing to do in
the case of cognitive arithmetic, in general it leaves one
overly determined by one’s initial knowledge state and
incapable of dealing with a changing, evolving world.
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The opposite strategy is to immediately reject previous
knowledge when faced with conflicting information.
Although this may again be the right thing to do in
situations where information is absolutely reliable, it
could lead to catastrophic imbalance in many cases,
including cognitive arithmetic.
Consider the consequences of trying to instantly
rearrange your knowledge base if someone told you that
2 + 2 = 5. Gradually shifting the strength of each piece
of knowledge to reflect its strength of evidence (practice)
is ACT–R’s way of gracefully coping with conflicting
knowledge.

Comparisons to Other Models

A number of cognitive arithmetic models have been
proposed (e.g., Ashcraft, 1987; Campbell, 1991; Siegler,
1988; Siegler & Shrager, 1984). Although they differ in
their focus, their details, and their complexity, they share
a similar approach: They are based on the retrieval of
facts from long-term memory, they employ a
network-type approach where activation is spread and
decays, and they control those processes using strengths
that reflect past patterns of use.

ACT–R, an activation-based production system with
Bayesian statistical learning of underlying real-valued
parameters, is highly compatible with this approach. One
of the details about which these models differ is the
precise form of the decrease in error probability over
time. Ashcraft (1987) increased the network strength
values for correct associations (percentage of correct
retrievals) yearly according to the formula:
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where g is the growth rate, estimated at 0.2. This
equation originates from the incremental learning theory
(e.g., Estes, 1964). It implies that the probability of error
decreases exponentially with time:

Siegler and Shrager (1984) and Siegler (1988) used a
reinforcement rule that increments associations between
problems and correct answers twice as much as
associations between problems and erroneous answers.
Although the exact form of the learning curve was not
discussed, graphs in Siegler and Shrager (1984) suggest
that the increase in the probability of a correct answer is
roughly linear through most of the range until ceiling
effects are encountered.

ACT–R’s prediction of power-law decrease in retrieval
errors differs from linear and exponential predictions.
Error percentages in arithmetic retrieval from childhood
to adulthood would enable us to choose among these
theories, assuming that reliable data exist. As another
data source, one could use error curves from artificial
substitutes such as alpharithmetic.

Finally, the analysis presented here is entirely consistent
with reports that convergence to perfect retrieval occurs
at sharply different speeds among individuals and indeed
may sometimes not happen at all. Goldman, Pellegrino,
and Mertz (1988) concluded from data on the learning of
addition facts by learning-disabled students that the
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performance of most of these children is
developmentally delayed (rather than developmentally
different) relative to that of normally achieving children.
An obvious explanation to account for this result would
be through the use of a larger noise value. LeFevre et al.
(1996b) also reported that some undergraduate college
students have not entirely switched to retrieval of
multiplication facts and occasionally still use
nonretrieval procedures. Again, this is consistent with
this analysis, including a strong sensitivity of the
convergence time to initial performance.

The Lifetime Simulation

The simulations presented earlier in the Performance
section all shared the same simplifying approach. To
focus on a particular effect at hand, they assumed a
certain distribution of knowledge strength at a particular
point in time and proceeded to model the results given
that state of knowledge and a particular set of parameter
values. For example, the simulation of the problem-size
effect assumed a distribution of strength for each
arithmetic
fact and derived the retrieval latency from these
strengths. The simulation of the retrieval of addition
facts by 4-year-olds assumed the distribution of strengths
of those facts given the distribution of problems and
backup procedures such as counting, and derived the
probability of correct retrieval and errors for each fact.
The simulation of multiplication by repeated addition by
fourth graders assumed a distribution of strengths for the
addition facts used and derived the probabilities of errors
for each problem. Even the evolution of the problem-size
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effect over time, in the Learning section, relied on
assumptions about the growth of strength of facts over
time.

Although this method is widely used in cognitive science
and produces both tractable analyses and often excellent
simulation fits, it suffers from a number of
disadvantages. It requires additional assumptions about
the state of knowledge at particular points in time. It
allows different parameter values to be estimated for
each fit. And it provides only an incomplete
understanding of how each part fits with the others. For
example, errors in the computation and retrieval of
addition problems will lead to permanent erroneous
facts, which in turn should have an impact on the
computation of multiplication by repeated addition. The
only way to account for those interactions is to develop a
single simulation to trace the evolution of knowledge
and performance through the hundreds of thousands of
problems of the entire development cycle, from
childhood to adulthood, all with the same set of
parameters. That is the goal of the lifetime simulation
described in this section.

The Model

The model of the lifetime simulation is essentially an
assembly of the partial models described previously,
with a few modifications. It models the impact of a
lifetime of solving addition problems. Although we
present some results about multiplication by repeated
addition, we do not model experience with subtraction,
multiplication, or division problems.
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Table 9.4 presents the basic productions of the model.
Part a of the table displays the productions that are
responsible for performing arithmetic by retrieval. The
main production, Arithmetic-Retrieval, solves an
arithmetic problem by retrieving the corresponding fact.
Addition problems of type “x + 0” and “0 + x” are
solved by the special-purpose productions
First-Plus-Zero and Zero-Plus-Second, respectively.
Part b of Table 9.4 displays the productions that do
addition by backup computation. The production
Addition-Counting generates a subgoal to iteratively
count up to the answer from the first operand to the
second. The production Iterate-Count counts up with
Count-Up doing the actual counting, and the production
Done-Count recognizes that the limit has been reached
and pops the answer. Similarly, part c of Table 9.4
displays the productions that solve a multiplication
problem by iteratively adding the multiplicand a number
of times equal to the multiplier. The production
Iterate-Add subgoals the operations to execute one step
of repeated addition. Because we do not model
multiplication otherwise, there is not a production
corresponding to Addition-Counting in part b, which
converts multiplication into repeated addition. Rather,
we assume the subject starts with the goal of repeated
addition. When all the steps have been completed, the
production Done-Add pops the answer. Because only
single-digit addition facts are systematically stored, the
Iterate-Add production performs multidigit addition by
splitting the numbers into tens and units digits using the
Split production, incrementing tens and units digits
separately, then finally reconstituting the digits into a
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single number using the Merge-Numbers production
and returning the result as the answer.

Table 9.4
Production Rules in the Lifetime Simulation

(a) Basic Arithmetic Productions

Arithmetic-Retrieval

IF
the goal is to solve an arithmetic problem of the
type X OP Y

and there is a fact stating that X OP Y = Z

THEN set the answer as Z

Done-Arithmetic

IF the goal is to solve an arithmetic problem and the
answer has been found

THEN output the answer and pop the goal

First-Plus-Zero

IF the goal is to solve an arithmetic problem of the
type X + 0

THEN set the answer as X

Zero-Plus- Second

IF the goal is to solve an arithmetic problem of the
type 0 + X

THEN set the answer as X

Double-Recoding

IF the goal is to solve an arithmetic problem of the
type X + X
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THEN recode the problem as X + Double

(b) Productions for Addition by Repeated Counting

Addition-Counting

IF the goal is to solve an arithmetic problem of the
type X + Y

THEN set a subgoal to count from X a number of times
equal to Y

Done-Count

IF the goal is to count Y times and the counter is Y

THEN return the result and pop the goal

Iterate-Count

IF the goal is to count from X and the counter Z is
less than the limit Y

THEN
set a subgoal to increment X

and a subgoal to increment Z

Count-Up

IF
the goal is to increment the number X

and the number following X is Y

THEN return the number Y

Double-Counting

IF the goal is to solve an arithmetic problem of the
type X + Double

THEN set a subgoal to count from X a number of times
equal to X
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(c) Productions for Multiplication by Repeated Addition

Iterate-Add

IF the goal is to add Y a total of X times and the
counter Y is less than X

THEN

set subgoals to increment the counter

to add Y to he units digit

to split the result to extract the carry

and to increment the tens digit with the carry

Construct-Result

IF the goal is to add X times and the counter is X

THEN set a subgoal to merge the tens and units digits

Done-Add

IF
the goal is to add X times and the counter is X

and the tens and units digits have been merged

THEN return the result and pop the goal

Split

IF the goal is to split the number X

THEN return the tens and units digits of number X

Merge-Numbers

IF the goal is to merge the tens digit T and units digit
U

THEN pop the goal with answer TU
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Two features of this model are worth mentioning, both
of which are related to the functioning of the Sji values.
As developed in the previous section, the Sji values
become increasingly differentiated as the simulation
progresses given the right parameters. Numbers are the
basic components of goals and chunks, and as such they
will be the sources of activation (i.e., the j terms). The Sji
values between numbers and related facts (e.g., 3 and 3 +
4 = 7) become large positive numbers, and the Sji values
between numbers and unrelated facts (e.g., 5 and 3 + 4 =
7) become increasingly and unboundedly negative. The
latter results from the increasingly infrequent retrieval of
the fact given the unrelated number, and is the essential
condition to achieving asymptotically perfect
performance given initial error-prone performance.

The first feature that we want to note concerns an
interaction between these Sji values and our subgoal
structure. In complex computational goals such as to
perform addition by repeated counting and multiplication
by repeated addition, the source activation will be
divided among many sources such as counters and
intermediate results, only a subset of which are involved
in any given retrieval. For example, the following goal to
compute the sum of 4 and 3 by iterative counting starts
as:

Goal

isa ITERATE-COUNT

count Zero

limit Three

Result Four
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The first step is to increment the intermediate result Four
and counter Zero by retrieving the appropriate counting
facts. However, if those retrievals are done directly, then
Zero, Three, and Four will all be sources when the
counting facts Four → Five and Zero → One are
retrieved. The Sji values between those numbers and
facts will all be reinforced, including incidental ones
such as between Four and Zero → One, and Three and
Four → Five. This would have two undesirable
consequences. The first is interference errors, such as
retrieving Four → Five instead of Three → Four,
because the extra spreading activation from the source
Three overcomes the mismatch penalty between Three
and Four. Although the errors produced by this type of
interference do occur, in this case the interference leads
to an excessively deterministic pattern of errors. An even
more fundamental problem is that because of these
accidental reinforcements between unrelated facts and
numbers, the Sji values between them will not become
increasingly negative but instead settle at some base
value that will prevent further improvement in
performance. The solution is to subgoal retrievals instead
of performing them directly. This corresponds to moving
the retrievals from the left-hand side of productions to
the right-hand side and pushing subgoals to perform
them on the stack. This operation focuses on the retrieval
to be performed by creating a new goal, which only
includes the activation sources necessary
to the retrieval Examples of this technique can be found
in productions Iterate-Count (which subgoals a count)
and Iterate-Add (which subgoals a number of
operations). Once the retrieval patterns have been
subgoaled, a production must fire to perform the actual
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retrieval, complete the pattern, and pop the goal. These
productions are Count-Up and Arithmetic-Retrieval
for counting and arithmetic facts, respectively. This
technique, in addition to allowing Sji values to achieve
optimal predictiveness, has the advantage of increasing
the modularity of knowledge. Instead of having to
generate separate productions for retrieval and backup
computation in each situation in which an arithmetic fact
would be needed, a single production would be needed
to set up a subgoal of that type, which could be solved
by either retrieval or backup computation without the
need to duplicate those productions.

The second feature of the model is the introduction of
the production Double-Recoding (see part a of Table 9.4
and the corresponding Double-Counting in part b) to
recode tie problems in a way that explicitly recognizes
the special character of the problem. The reason that this
recoding is necessary is quite subtle. After all, the
additional Sji strength from numbers such as 4 to tie
problems such as 4 + 4 = ? over other problems such as 3
+ 4 = ? is sufficient, in the simulations developed in the
previous sections, to provide enough of an activation
boost to tie problems to reproduce the tie effect.
However, in the lifetime simulation, that additional
strength is ultimately overcome by the lack of
distinctiveness of the basic tie-problem representation.
Although non-tie problems such as 3 + 4 = ? include two
distinct number sources, at least one of which will
develop over time a very negative Sji value to tie facts
such as 4 + 4 = 8 (in this case, from the number 3), tie
problems such as 4 + 4 = ? only have one number
source, and thus cannot develop a negative Sji link to
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non-tie facts that involve that number, such as 3 + 4 = 7.
Therefore, over time, errors of non-tie facts being
retrieved for tie problems will become increasingly more
common than vice versa, and tie problems develop a
worse error performance than non-tie problems. To
prevent that, tie problems such as 4 + 4 = ? are recoded
into a form such as 4 + Double = ? where the chunk
Double explicitly recognizes the number duplication and
presents a form for tie problems distinct from non-tie
problems. Attributing the extra strength of tie problems
to an explicit recoding step rather than (only) to a
built-in advantage is consistent with results such as those
reported by Eliaser, Siegler, Campbell, and Lemaire
(1997). They found that subjects spend more time
encoding tie problems and that non-tie problems exhibit
better performance than tie problems in artificial
problem sets where tie problems are the rule rather than
the exception, as they are in arithmetic.

Finally, the parameters for the lifetime simulation
include an activation noise s = 0.25 and a retrieval
threshold τ = – 1.0. As argued in Whalen (1996), we also
introduced a similarity measure that was sensitive to the
magnitude of numbers. We used perhaps the simplest
such measure, in which the similarity between the
numbers i and; is proportional to the ratio between those
numbers, that is, i/j, where i is the smaller of the
numbers and j is the larger. This similarity measure has
the advantage of scalability—that is, the similarity
between 3 and 5 is the same as the similarity between 30
and 50, an intuitively desirable property. The mismatch
penalty is proportional to one minus the similarity—that
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is, D(1 - i/j). The mismatch scale, D, was set to the
default ACT–R value of 1.5.

The Results

In the previous section, we described the structure of the
lifetime simulation model, which is essentially the same
as the previously introduced partial models, except for a
few minor changes. Although the models themselves fit
together nicely, an important question was whether the
different parameter values used to model each separate
result could be unified in a single parameter set with
which the lifetime simulation could reproduce the entire
set of results. The answer is affirmative, and this section
describes each result and how it was obtained.

The first result presented was the problem-size effect in
adults. As in the model for Fig. 9.2, the latency factor F
was left unchanged at the default value of 1.0 sec, the
constant latencies for the input and output procedures
were 0.4 sec, and the latencies for the zero productions
were 0.5 sec. Because the latency of backup computation
is now taken into account, a constant action latency of
0.5 sec for the Iterate-Add production is added. The
purpose of this parameter is to account for the
context-switching part of the counting task, either in the
form of subgoal creation and pushing, or external
strategies such as finger counting. Another set of
parameters concerns the distribution of problems over
time. Because when retrieval becomes the dominant
strategy each problem results in two rehearsals of the
solution fact, one from the retrieval and one from the
merging when the completed goal is popped, the
frequency is lowered to about 55 problems a day, or
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20,000 problems a year. A 3 to 1 ratio between most
frequent (0 + 0) and least frequent (9 + 9) problem is
assumed, which is slightly smaller than the 4 to 1 ratio
assumed previously. The reason is that because smaller
problems are solved and thus reinforced more
consistently than large ones, the actual reinforcement
distribution is steeper than the problem-presentation
distribution.

Altogether this simulation has to go through 250,000
addition problems to simulate the experience of a human
through college. On our 180-MHz PowerMacs, this
experience can be covered in about 16 hr of simulation.
The fact that we can perform this degree of compression
is testimony to the considerable efficiency of the ACT–R
simulation language, even with all of its real-valued
computations enabled.15 Even if someone did nothing
but addition, we estimate that it would take them in the
order of 50 hr to cover 250,000 addition problems.

Figure 9.8 presents the results of this simulation in terms
of the problem-size effect at various ages. The results of
the lifetime simulation are even better than those of the
previous simulation, because the additional latency of
backup computation provides a closer fit to the long
response times for large problems in the early grades
(see Fig. 9.5). The response times are decreasing not
only because the answers are getting stronger but also
because the model is increasingly switching from
computation to retrieval.
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Fig. 9.8. Problem’size effect as a function of practice
(lifetime simulation).

We also modeled the early retrieval accuracy data
displayed in Fig. 9.3. In this case the distribution is
restricted to problems from 0 + 0 to 5 + 5, again on the
assumption that 4-year-olds did not have much exposure
to double-digit facts. Twenty-five hundred previous
problem presentations are assumed, which is more than
the thousand presentations assumed by the previous
simulation because the retrieval threshold (τ = –1.0) of
the lifetime simulation is significantly higher than the
threshold used in that simulation (τ = –2.25). The

567



probabilities of correct retrieval as a function of
argument
size are given in Fig. 9.9. Because at that age addition
problems are still solved mostly by counting, the use of
that backup procedure is reflected in the slightly steeper
pattern for addend than augend, reflecting the increased
error rate, and therefore weaker reinforcement, for
problems that required a larger number of counting
cycles. Therefore, although the simulation is fired to
solve the problems by retrieval instead of counting (as
were the subjects), the past computation errors are
reflected in the retrieval performance.
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Fig. 9.9. Percentage of correct retrievals in addition
(lifetime simulation).

The multiplication computation data are obtained by
running 1,000 multiplication problems after 70,000
addition problems, which at a rate of about 20,000
problems per year corresponds to the middle of the
fourth grade, as was the case for the subjects. The results
are given in Fig. 9.10 (compare with Fig. 9.4), which
reproduces the problem-size effect for both multiplicand
and multiplier. The slightly noisy nature of the effect is
compatible with the noise in the data. This is just one run
of the simulation (corresponding to one child), and
different runs would yield different results. The
decreased error rate for the multiplicand 5 is present,
resulting from the lower error rate for the two main
single-digit addition facts used in counting by 5, that is,
0 + 5 = 5, which is solved by the zero rule, and 5 + 5 =
10, which is a tie problem. The overall error rate of
about 25% also corresponds closely to the fourth
graders.
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Fig. 9.10. Percentage of errors in multiplication
computation (lifetime simulation).

Finally, one can look at the detailed latency pattern for
addition facts at the end of the simulation, which here
corresponds to about 20 years of training, or 400,000
problems. These results are displayed in Fig. 9.11, which
can be compared to the earlier Fig. 9.2. Although an
occasional computation is performed (0.1% of all
answers are by computation), the latencies here
overwhelmingly reflect the retrieval latencies for the
correct fact, or the constant time (0.5 sec) of application
of a rule for the problems involving zero, plus a constant
time for encoding the problem and outputting the result
(0.4 sec). The curve for tie facts is lower and flatter than
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the curve for nonzero, non-tie facts. This is due not only
to the increased spreading activation to those facts, but
also to the fact that because those problems could be
retrieved earlier and more reliably than the others, they
have received a comparatively higher amount of
reinforcement.

Fig. 9.11. Problem size effect for zero, ties, and other
problems (lifetime simulation).

We ran two simulations, one with a noise of s = 0.25 and
another with a noise of s = 0.35 (see Retrieval
Probability Equation 3.7 and Chunk Choice Equation
3.9). The results from these two runs are displayed in
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Fig. 9.12. For the relatively low noise value (s = 0.25),
the error percentage for addition problems decreases
from 16.7% in the first grade to 6.7% in the fourth grade,
1.5% in the seventh grade, 0.6% in the tenth grade, and
0.4% in the first year of college. For a slightly higher
noise value (s = 0.35), however, the error curve starts at
a somewhat higher error level of 23.7% in
the first grade, then drops quickly to 4.5% in the fourth
grade, but stabilizes at that level and does not improve
further. This confirms our earlier theoretical analysis
(and see the Appendix) on the effect of noise on
learning. This fundamental performance difference under
slightly different parameter sets may explain why under
similar sets of circumstances (teaching, presentation
schedule, etc.) some people attain perfect knowledge
whereas others get stuck at some suboptimal
performance level.
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Fig. 9.12. Percentage of addition errors as a function of
practice and noise (lifetime simulation).

Discussion

Although the model presented here focused on the
problem-size effect, it is clear that it should be able to
account straightforwardly for a number of other results
in the field. As previously mentioned, human errors tend
to be close to the correct answer, and in verification
tasks close foils tend to be more difficult to reject. As
seen in the model of addition retrieval, ACT–R can
account for that error pattern through the use of both
computation and retrieval procedures. Because of its
iterative nature, backup computation tends to produce
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errors that are close to the actual answer, and those
errors, if not immediately corrected, become facts that
can later be retrieved directly. Partial matching of correct
answers, too, tends to produce close misses because the
degree of mismatch increases with the difference
between numbers.

Another type of error is cross-operator confusion, which
is particularly common in verification problems such as
3 + 4 = 12 (Miller, Perlmutter, & Keating, 1984;
Winkelman & Schmidt, 1974). The activation spread
from the number sources 3, 4, and 12 may be enough to
overcome the mismatch penalty between + and ×, and
the misretrieval of the 3 × 4=12 fact would then produce
a “correct” answer. Of course, the error can always be
detected if the operator of the fact retrieved is explicitly
compared to the original operator, and the mismatch
between × and + noticed, but for a number of reasons,
such a procedure is fairly unlikely. First, the extra step
taken and its associated latency are undesirable factors in
situations where the subject is implicitly or explicitly
pressured to minimize response time. Second, there is
the need for extra slot(s) in the goal structure to hold the
retrieved operator and operands for comparison. These
extra slots would diffuse activation spreading and would
typically be used only in situations where error
correction is critical. However, it is quite possible that
this error-checking procedure could account for people’s
ability sometimes to correct their own errors and prevent
error propagation.

For multiplication facts, a pervasive effect is the
dominance of table errors; that is, the most likely error
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when solving a multiplication problem is a number that
is the answer to a fact in the same row or column in the
multiplication table, usually close to the original
problem. This effect is predicted in the ACT–R model by
the form of the mismatch penalty. Facts in the same table
row or column will only incur one mismatch
penalty—for instance, 3 × 7 mismatches 3 × 6 only in
the 6 versus 7 discrepancy. The size of this mismatch
penalty is smaller the closer the retrieved number is to
the actual number in the problem. In contrast, facts that
are neither in the same row nor column as the problem
will incur two mismatch penalties, one for each
argument, resulting in a much reduced probability that
the fact’s activation after penalties will be the highest of
all the competing facts. In addition, facts that are neither
in the same row nor column will not receive spreading
activation from either argument.

Another phenomenon is error priming (Campbell, 1991),
which results when the answer to a particular problem
(e.g., 3 × 8 = 24) tends to generate errors in subsequent
trials (e.g., 4 × 7 = 24). This can be accounted for
through base-level activation decay, because a fact that
has been recently retrieved maintains for a short time a
significant activation advantage that may be sufficient to
overcome mismatch penalties. It is not clear, however,
how to explain such priming errors when only the
answer (e.g., 24) is presented as the prime, because no
arithmetic fact is (at least explicitly) accessed. The fact
that a number (e.g., 24) was recently activated has no
impact on the activation spreading for a separate
problem (e.g., 4 × 7), because only the components of
this problem are activation sources at the time. Perhaps
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the solution would be to assume that when the new
problem is presented, the previous activation source (24)
only decays away gradually and thus still produces some
interference effect.

Conclusion

Up to now, ACT–R has been understood as an adaptive
system tuned to the statistics of its environment.
Although this is certainly still the case for this model,
our results suggest a certain generalization of that view.
Cognitive systems are driven not only by external
statistics but also by their internal dynamics. There are
two sources for chunks in ACT–R. The external
environment can introduce new declarative knowledge to
ACT–R’s long-term memory or reinforce existing facts.
But the system itself, running in isolation from the
external world, constantly affects its own statistics
through retrieval and creation of new chunks when each
new goal is popped off the stack.

This view can be carried further. Each model can be
decomposed into a set of skills, composed of the
production (s) acting on a certain set of goals and the
declarative knowledge that they use. The retrieval of
addition facts and the computation of multiplication by
repeated addition are two such
skills. We saw in a previous section how one could be
used to solve the other, with the multiplication imposing
in the process a different set of statistics on the addition
problem (e.g., the high retrieval of facts such as 0 + 5
and 5 + 5) and therefore altering their performance
(latency, error probability) in the process. Each set of
problems can be viewed as imposing a statistical pattern
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on the knowledge structures of the skills that it uses just
as the external environment does.

Like physical systems, cognitive systems are partly
determined by the boundary conditions imposed by their
environment. But they also share enough complexity to
exhibit internal dynamics of their own.

Appendix

Basic Dynamics of Retrieval Odds

To formalize the dynamics of retrieval, let us first
assume that the two chunks C1 and C2 are competing for
retrieval without any context. The Chunk Choice
Equation 3.9 can be rewritten to express the odds of
chunk C1 being retrieved as a function of the two
chunks’ activations and the activation noise level:

Ignoring the contribution of associative activation and
considering only base-level activation, the difference
between the activations of C1 and C2 can be expressed
using the equation in the main chapter giving the
difference in base-level activation as the logarithm of the
ratio of their presentation frequencies. This yields:

where Ratio1 = p1/p2 is the past ratio of the frequencies
of retrieving C1 and C2. This equation shows that the
current odds of retrieval are sensitive to the activation
noise level. If s > 1, the current odds of retrieval are
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closer to even odds (Odds = 1) than past history. This
will ultimately lead to each chunk becoming equally
likely to be retrieved. If s = 1, the current odds of
retrieval are equal to the past odds of retrieval. This does
not imply that the retrieval odds will be fixed, but rather
that they will drift randomly with experience, driven by
chance and external events. If s < 1, then the odds of
retrieval become more extreme, with one becoming
arbitrarily large and the other becoming infinitesimal.
This is the winner-take-all dynamics
mentioned previously. The noise level thus behaves
much like the temperature in a Boltzmann machine: If it
is too high, then the system is very disorganized and its
entropy is maximized. If the noise is low enough,
however, the system settles down into a fixed answer
pattern.

Each new experience will be added by the declarative
learning mechanisms to the statistics of past history. This
incremental change in the history of retrieval odds can
be expressed by a differential equation, which for the s <
1 case admits of two approximate solutions:

which means that the past frequency ratio of retrieving
either chunk gradually diverges according to a power
law in the amount of practice of exponent –1 for the
loser and +1 for the winner (c is a constant that depends
on initial conditions and n is the total amount of
practice). Combining this with the Dynamic Odds
Equation 9.1, the current or observed odds of retrieving
either chunk, and therefore the odds of commission
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errors, are a function of the amount of practice to the
power of the inverse of the noise measure:

The Retrieval Odds Equation implies that the noise will
determine the speed of convergence. But whereas a
lower noise level implies a faster emergence of the
winning, although not necessarily correct, answer, a
higher noise level (still smaller than 1) causes slower
convergence but a higher probability of the right answer
emerging as the winner because the slower convergence
lowers the impact of initial randomness.

Another way to view the Retrieval Odds Equation is in
terms of the number of training examples needed to
reach a particular accuracy. The number n of
presentations of a particular problem needed to lower the
odds of confusion errors below some threshold ε is:

As a final comment, the power law form of the
Rehearsal Ratio and Retrieval Odds Equations (or the
sigmoidal form of the equivalent probabilities) can also
be found in the evolution of biological and technological
systems between states of equilibrium (e.g., West &
Salk, 1987). This is probably related to the fact that these
systems follow power-law distributions similar to those
of the cognitive environment (Anderson & Schooler,
1991).

Context and Complexity
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The previous section analyzed what is described in the
main chapter as type -a errors, that is, the competition
between correct and incorrect answers through
base-level strength. A similar analysis can be applied to
type-b errors, the competition between two correct
answers for different problems. Each will continue to be
rehearsed because they are correct answers, but they will
gradually become more sensitive to the exact features of
the problem through the Sji values, which control
spreading activation. Based on our discussion of the
Posterior Strength Equation 4.3 in the main text of this
chapter, the difference between the Sji values from the
context C to chunks N1 and N2, respectively, is:

Assuming a total source activation level W of 1 (the
ACT–R default), then when adding base-level strength to
spreading activation, the base level difference will cancel
the second term of the previous equation and the
difference in total activation between the chunks N1 and
N2 is:

which means that the results derived in the previous
section still hold, that is, that the odds of retrieving either
chunk in a given context is the same function of the past
odds to the power of 1/s that was obtained in the
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context-free condition, but this time specific to the
context.

But usually the context is not composed of a single
chunk, and only part of the context can be used to
differentiate between competing chunks. For example, if
the problem is 3 + 4 = ?, 4 is the only part of the context
which can differentiate between 3 + 4 = 7 and 3 + 5 = 8.
Because W must be divided among all three features
(goal slots holding 3, +, and 4) the 4 will only receive a
1/3 weighting. Thus, the difference in activation between
those chunks is:

It can be shown that the 1/3 factor multiplies the noise
level s and the odds equation becomes:

This implies that the more complex the problem, the
lower the noise level needs to be to guarantee
convergence. Note in Fig. 9.12 that the lifetime
simulation achieved convergence for s = 0.25 but not for
s = 0.35.

Mismatch Penalty

This analysis focused on the influence of past rehearsal
frequency through base-level and spreading activation.
An additional component of the Activation Equation is
the mismatch penalty. The mismatch penalty P biases
the system in favor of one particular fact by adding or
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subtracting from the difference in activation between
chunks:

This introduces a factor proportional to the exponential
of the penalty in the odds equation:

Although strongly biasing the initial odds toward the
correct answer, the mismatch does not directly affect the
speed of convergence.

Multiple Alternatives

Until this point we have only discussed the odds of
retrieval when two competing chunks were involved. It
can be shown from the Chunk Choice Equation 3.9 that
the odds of retrieving one of many alternatives is a direct
function (the harmonic average) of the pairwise odds:

The same dynamic therefore applies in which the
strongest alternative will get increasingly dominant over
all others since it dominates each independently. This
result is a variant of Luce’s Choice Axiom (Luce, 1959).

External Feedback Sources
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The analysis up to here assumed a closed system
following its internal dynamics. Human cognition, of
course, constantly interacts with the outside world. A
particularly salient form of interaction in the case of
cognitive arithmetic is teacher instruction. It can be
shown that although teacher correction has a major
impact on the dynamic odds equation early on in the
process, it becomes overwhelmed by the weight of
experience if one allows the system to run uncorrected
for a long time. This may be why ingrained errors are so
hard to root out from human cognition.

Error correction will still be possible later on, but a much
larger amount of correct feedback will then be necessary
to reverse the odds in favor of the correct solution. This
need to keep the system relatively stochastic early on in
the learning to prevent the odds from growing large (and
therefore less susceptible to correction) suggests a
positive effect of activation noise on long-term accuracy.
Keeping the process sufficiently random early on
prevents an occasional error (random or otherwise) from
being locked in as the dominant answer too quickly and
allows more time for the correct answer to emerge.
Noise therefore performs a function similar to simulated
annealing in a Boltzmann machine. In other words, noise
is not (only) a shortcoming of the system but an essential
contribution to its robustness in an imperfect
environment. This reinforces a theme of Chapter 8.

1The drop-off with size of addend in Fig. 9.1 is because
the hundreds digit in these multiplication facts tends to
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be small, and the sawtooth pattern is produced because
the ones digit of products is more often even.
2Although addition and multiplication are commutative
operations, this is not reflected in the declarative
representation of facts; that is, 2 + 3 = 5 and 3 + 2 = 5
are represented as separate chunks. Of course, this does
not prevent explicit procedures to exploit the inherent
commutativity, such as a production which would solve
the problem 2 + 3 = ? by retrieving the fact 3 + 2 = 5.
3This, together with the rather dubious meaning of
whichever name happens to be associated with such
facts, suggests that chunk names are superfluous and that
chunks could be best understood as the contents of their
slots rather than referred to by name.
4Past models have been relatively insensitive to the exact
form of the mismatch measure, but Whalen (1996)
argued that the internal representation of numerical
magnitude is not uniform and influences performance of
numerical tasks.
5The process of calculating these mismatch scores in the
ACT–R simulation is more complex than this description
implies, but it comes down to the same thing. In the
ACT–R simulation, similarities range between 0 and 1
and if sim is the similarity, the mismatch penalty is
MP(1 – sim), where MP is a global parameter called the
Mismatch Penalty.
6This assumes that error correction, provided by another
procedure, a teacher, or a calculator, does not take effect
before the goal is popped and becomes a long-term fact.
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7The product is in fact the best predictor (Siegler, 1988).
8More generally, the relative frequency of a problem
involving i and j was (2 – i/9) (2 – j/9).
9It is also possible that subjects encode tie problems
using a special representation to reflect their unusual
character (data supporting this conclusion is presented
by Eliaser, Siegler, Campbell, & Lemaire, 1997), which
would affect the activation calculus as well as matching
procedures. Finally, tie problems are often assumed to
appear more frequently than indicated by their size
alone, although that is not used in the simulation.
10Again, this difference can arise from presentation,
rehearsal, and computation processes.
11We used a ratio of 6.25 rather than 4 as in the previous
simulation to reflect the assumption that young children
have a steeper distribution of frequencies than do adults.
12This corresponds to the default value of ACT–R’s
mismatch penalty scaling parameter.
13 Answers in the “other” category are assumed to be
retrieval failures resulting in guessing outside the 0 to 10
range or simply failure to answer.
14The final section of this chapter, on lifetime
simulation, shows that this discrepancy goes away when
we include a computation component.
15This is with the optimized-learning flag on, which
allows the summation in Equation 4.1 to be
approximated.
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Analogy

Dario D. Salvucci

John R. Anderson

Carnegie Mellon University

THEORIES OF ANALOGY

Anology is one important way in which people acquire
new information. Most knowledge acquisition by
analogy is rather mundane, as when a student learns to
solve a physics problem by analogy to an example
presented in a textbook. This type of analogical problem
solving is the focus of this chapter. Occasionally,
knowledge acquisition by analogy can be more
profound, as when a scientist discovers a new theory by
analogy to an existing theory. Our general view is that
all forms of analogy, mundane or profound, involve the
same basic processes. Given the importance of learning
by analogy and the peculiar role of analogy in the history
of the ACT–R theory, we aim in this chapter to
formulate a detailed understanding of analogy in ACT–R
4.0. This both significantly extends the scope of what
can be modeled in ACT–R and helps complete our
understanding of production compilation as introduced
in Chapter 4.

Changing Conceptions of Analogy in ACT-R
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The ACT–R view of analogy has evolved greatly since
the days of ACT–R 2.0 and its predecessor PUPS system
(Anderson & Thompson, 1989). In ACT–R 2.0 and
PUPS, the “analogy mechanism” served as both a
theoretical account of behavioral phenomena associated
with analogy and the sole mechanism for production
creation. The mechanism operated by finding a mapping
between the current problem and a previously solved
problem and creating a production rule that implemented
this mapping. The analogized production rule typically
solved large problems in a single step—the left-hand
side matched a full description of the problem and the
right-hand side created or modified all chunks needed for
the response. It has become clear that such productions
are not in keeping with the new “atoms of cognition”
conception of production rules; these productions could
not account for the
low-level, multistep processing evident in many
problem-solving tasks. For this reason and others
outlined in Chapter 4, the analogy mechanism has been
eliminated in ACT–R 4.0. Production creation is now
handled by the simpler production compilation
mechanism. The new ACT–R view of analogy is that
analogy is no different than other problem-solving skills
and can be modeled as a standard production system
without a dedicated analogy mechanism.

The goal of this chapter is to illustrate this new ACT–R
view of analogical problem solving. We develop two
models of how people take a complex example,
decompose it into its components, and use it analogically
to solve new problems. Each of the two models
represents a different approach to modeling analogy in a
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production-system architecture. The first model stores
the analogical mappings in declarative chunks and
strengthens these chunks through repeated retrieval. The
second model represents mappings with production rules
that are created and strengthened through production
compilation. Both models represent detailed process
models of analogical problem solving that decompose
analogy into a fine-grained temporal structure.
Interestingly, both models fit the observed data equally
well, highlighting the need for further investigations into
whether declarative or procedural representations are
more appropriate.

We begin our exposition by outlining several existing
theories of analogy and their similarities and differences
with our approach. We then describe empirical results
and two ACT–R models for a task in which students
solved physics problems by example. We conclude by
attempting to place ACT–R’s view of analogy in context
with other existing theories and by describing
implications of the ACT–R approach for future analogy
research.

Other Theories of Analogy

Numerous theories of analogy and analogical reasoning
have emerged in the past two decades (e.g., Gentner,
1983, 1989; Holyoak & Thagard, 1989a, 1989b;
Hummel & Holyoak, 1997; Keane, Ledgeway, & Duff,
1994). These theories approach analogy in its most
general sense, describing how some process of mapping
can infer relations between concepts. Colloquially,
people often use the term analogy to refer to this process
of mapping, or finding correspondences between two
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conceptual structures; for instance, students often think
of analogy in terms of problems like

herd : buffalo :: school: ?

for which the student must infer the relation between the
first and second objects and apply it to the third to obtain
the solution (in this case, fish). Researchers have
overwhelmingly agreed that mapping is the core
component
of analogy, although each has taken a slightly different
approach to the problem. Gentner (1983, 1989)
postulated that mapping centers on finding structural
relations among concepts, with a systematicity that
favors higher-order relations. Holyoak and Thagard
(1989a) used similar ideas to implement an analogy
mechanism based on constraint satisfaction. Keane et alii
994) presented a mapping engine that operates
incrementally on the components of the given analog.
Hummel and Holyoak (1997) used distributed patterns of
activation and dynamic binding to perform analogical
mapping. Regardless of their particular approaches, these
and other theories have considered mapping the
centerpiece of the analogy process.

Successful problem solving by analogy requires more
than just mapping, however. It is also necessary to
represent the problem in a way that allows or facilitates
analogical mapping. Representation, or encoding, of the
mental structures that participate in mapping is crucial to
the ability of any theory to construct analogical
mappings (e.g., Novick, 1992). Of course, representation
is important not only for analogy, but for all problem
solving. As just one example, Hinsley, Hayes, and
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Simon (1977) discussed the importance of representation
for word-problem solving. Representation is pervasive in
the analogy process, and although it is sometimes
labeled as the first subprocess of analogy (Reeves &
Weisberg, 1994), we may more appropriately think of it
as a precondition for successful analogizing.

Another key element of analogical reasoning is the
retrieval of an appropriate source analog for mapping
(Gentner & Forbus, 1991; Thagard, Holyoak, Nelson, &
Gochfeld, 1990). The source may constitute some mental
structure stored in memory (e.g., Anderson &
Thompson, 1989) or may come from the external world
in another form, such as written text (e.g., VanLehn &
Jones, 1993). In tasks involving a mentally recalled
source analog, successful retrieval can be extremely
difficult; for instance, using a hint/no -hint paradigm,
Gick and Holyoak (1980) found that only 20% of
subjects who received no hint recalled the appropriate
source analog for Duncker’s (1945) tumor-ray problem.
Such studies provide strong support for the contention
that the retrieval stage is crucial to the analogy process
and can provide substantial difficulty in certain
situations.

Researchers have identified several other components of
the analogy process. After the retrieval and mapping
processes have been completed, the mappings can be
applied to generate new conjectures about the target
analog. This process of inference allows for the
formation of new concepts based on existing ones.
Inference is not necessarily an automatic consequence of
successful mapping; adaptation is sometimes needed to

591



modify the source analog to fit the requirements of the
target analog (Novick & Holyoak, 1991). Furthermore,
schema induction often occurs during the analogy
process (Gick & Holyoak, 1983; Novick & Holyoak,
1991; Ross &
Kennedy, 1990). The literature is somewhat undecided
on whether schema induction occurs during mapping, as
a separate stage, or along with some other component of
analogy. Nevertheless, further use of analogical
mappings after the initial application seems to involve
inference of some schematic knowledge.

Comparison of Existing Theories and the ACT–R
Approach

The approach to analogy taken in this chapter and that
taken by existing theories of analogy are different in
several ways. Our approach has two primary foci:
developing a fine-grain process model of analogy that
addresses its detailed temporal structure, and placing
analogy within the larger context of problem solving.
Rather than stressing one particular model of analogy,
we emphasize the framework for analogical models that
ACT–R 4.0 provides and the ways in which ACT–R
models can be developed for analogical problem-solving
tasks. Although existing theories have addressed these
issues to some extent, their primary focus has been on
other issues, such as generality to many domains and
incorporation of all the components of analogical
processing. We believe that our approach provides an
interesting complement to existing theories and sheds
light on areas that have not been emphasized in previous
research.
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The first major difference between our approach and that
of others is our emphasis on the process and
subprocesses involved in analogy. Most theories have
tended not to use detailed empirical data concerning
what happens during the analogy process, focusing
instead on the results of the analogy process; in other
words, they have focused on analogy at the
computational level rather than at the algorithmic level
(Marr, 1982). For example, Keane et al. (1994) presented
empirical data on subjects’ performance in an
attribute-mapping task. They compared their empirical
data to the predictions of three analogical theories: SME
(Falkenhainer, Forbus, & Gentner, 1989), ACME
(Holyoak & Thagard, 1989a), and their own IAM.
Because none of the theories make predictions about
latency, Keane et al. were forced to a crude evaluation of
the theories by comparing subjects’ total time for
completion to the number of mappings generated by the
models. For comparison purposes, this metric works in
showing how IAM captures several aspects of analogical
problem solving in the attribute-mapping task. However,
arguing for the plausibility of such metrics in general
could be difficult, and the metrics may not generalize
when considering observables during the analogy
process. Ideally, we would like the theory to make
predictions about both observable events during the
analogy process and observable results of the process.
Some work has been done in this vein (e.g., R. J.
Sternberg, 1977; R. J. Sternberg & Gardner, 1983), but
there have not
been detailed process models of analogical strategies.
We feel that existing work on the computational level of
analogy has provided a necessary basis for work on the
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algorithmic level and we are now at a stage where we
can analyze the algorithmic level of analogy in a
rigorous manner.

The second major difference between our approach and
others’ is our emphasis on placing analogy within a
larger problem-solving context. Analogy in the real
world arises in various forms, each of which has unique
aspects to its solution, just as any problem-solving task
may have domain-specific components. As such,
analogy encompasses a broad spectrum of tasks that
involve not only analogical reasoning but a great number
of other skills. Existing theories of analogy have
typically been developed as a basis for future work on
more general theories of problem solving. We take the
opposite approach: We start with an existing general
theory, ACT–R, and attempt to account for analogy
within this theory. Such an approach allows us to
combine our model of analogy with models that are
specific to the particular task domain. In addition, it
provides a framework for higher level goals to influence
when analogy takes place. Our approach also allows for
different models of analogy that implement different
analogical strategies, modeling the strategy variability in
analogy that many researchers have found (Chi,
Feltovich, & Glaser, 1981; Grudin, 1980; Novick, 1988;
Spell-man & Holyoak, 1993; Whitely & Barnes, 1979).
Any theory of analogy must lie within a more general
processing system, and the ACT–R theory provides an
excellent opportunity to explore how analogy interacts
with other problem-solving skills.
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Because of our emphasis on low-level algorithmic
details and interaction with general problem solving, we
do not stress certain other issues that existing theories of
analogy have. For instance, we have little to say about
retrieval and adaptation in analogy, or the application of
our models to typical analogy test problems (such as the
solar system and atom analogy). Thus, we do not attempt
to achieve the breadth of empirical support that other
studies have achieved (e.g., Hummel & Holyoak, 1997).
However, our investigation demonstrates that ACT–R is
capable of successfully modeling the detail of analogical
problem solving, and develops an approach in which
broader empirical and modeling studies can be done in
the future. We certainly believe that ACT–R can model
these other aspects, and indeed it has a lot to say about
issues such as the retrieval of sources.

A Study of Analogy in the Physics Task

We decided to examine the analogical strategies utilized
by subjects in solving physics problems. We consider
data that allow us to trace the detail
of the information processing that occurs during the use
of analogy. The experimental task involved solving
several sets of physics problems by analogy to a given
sample problem and solution. We chose this task for
several reasons. First, many researchers have used
physics problems in exploring the role of analogy (e.g.,
Chi, Bassock, Lewis, Reimann, & Glaser, 1989; Chi et
al., 1981; VanLehn & Jones, 1993); thus the physics
domain is a familiar one in the literature, facilitating
comparison of other work to our own. Second, the task
allowed relatively terse problems and solutions with a
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small naturaUanguage component, allowing us to ignore
language comprehension to a large extent. Third, the task
is representative of real-world physics problem solving
from a textbook; we can imagine the student doing a test
problem at the end of the chapter, referring back to a
worked out example in an earlier section.

The Physics Paradigm and Display

In the physics task, problems were presented to subjects
on computer screens like Fig. 10.1. The left half of the
screen contained the worked out sample. The sample
problem first gave a description of the problem situation,
then listed the relevant quantities (in short phrases) with
their respective values. The sample solution used
variables (e.g., f for flux), operators (e.g., *), and
constants (e.g., c for speed of light, not shown in Fig.
10.1) in the first step, and values (e.g., 4), operators, and
constants in the second step. The right half of the screen
contained the test problem to be solved and an editable
text field in which to enter the answer. The test problem
had a structure similar to the sample problem, except for
different
quantity values and a possibly different ordering of
quantity-value pairs. For future reference, we define the
screen’s visual areas (labeled in Fig. 10.1 in boxes) as
sample problem quantities and values (SP), sample
solution step 1 symbols (S1), sample solution step 2
symbols (S2), test problem quantities and values (TP),
and a test solution block (TS).
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Fig. 10.1. Physics experiment screen, without blocks.
The labels in grayed boxes indicate the names of the
visual areas.

Subjects were asked to solve sets of five problems in
each of eight topics, all dealing with basic physics and
all involving instantiation of a single equation. Table
10.1 shows the equations used for each topic; the first
three equations are of equal complexity, whereas the
others range in difficulty from fairly easy to fairly
difficult. Ail topics and equations were taken from a
standard physics textbook (Halliday & Resnick, 1988),
massaged in some cases to fit the task, but still
mathematically correct. The program presented the eight
sets and the five problems within each set in the same
order. The same sample problem and solution were used
for all problems within a particular set, but the order of
the quantities in each test problem varied from screen to
screen. The numeric values used were constrained to one
digit integers so that typing times would be comparable
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across all problems. Subjects were to type their answers
as instantiated equations, without simplifying; for
example, they were to type answers such as “3*6/2”
instead of simplifying this quantity and entering “9.”
Thus, the task involved learning a schematic equation
such that values could be plugged in for quantities to
produce the desired answer. The sample problems and
solutions used in each of the eight topics can be obtained
from this chapter’s Web page (accessible from the
book’s home page, which is in turn accessible from the
Published ACT–R Models link available from the
ACT–R home page, http://act.psy.cmu.edu/).

Table 10.1
Experiment Topics and Equations

Because we wished to examine the step-by-step nature of
subjects’ analogical behavior in detail, we needed some
method of recording subjects’ activity during the
analogy process, specifically their visual scanning and
typing activity. To accomplish this, we modified the
stimulus presentation so that parts of the screen were
covered with opaque blocks, which would disappear
when clicked on and reappear on release of the button.
An actual experiment screen, namely, the screen in Fig.
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10.1 with blocks included, is shown in Fig. 10.2. The
program concealed each symbol in S1 and S2, allowing
us to examine which equation and symbol subjects were
scanning. Blocks also covered the SP quantities and the
TP values, but left the SP values and TP quantities
uncovered. The reason for leaving the latter pair
uncovered centered on the strategies expected of
subjects. When a subject reads a value in S2, we expect
the subject to search for that value in SP; to facilitate the
search and to obtain simpler data, we left the SP values
uncovered so that subjects can quickly locate the desired
value. Similarly, when typing the solution equation,
subjects search for a TP quantity to obtain its value; we
thus uncovered the TP quantities. It is possible that the
setup of the blocks changes the character of the task,
because the blocks may alter the strategies that subjects
utilize during the analogy process. Nevertheless, it does
not change the fact that the task is fundamentally
analogical and can provide rich empirical data
concerning strategies of analogy.
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Fig. 10.2. Physics experiment screen, as seen by
subjects.

The block approach for recording scanning activity is an
adaptation of a common information-search paradigm
where text or pictures appear on the backs of cards, such
that subjects must turn the card over to reveal the
information. For example, Payne (1976) used this
paradigm in studying strategies of gathering evidence for
decision making. Our technique differs from Payne’s in
that the information is reconcealed after being looked at,
whereas the information in Payne’s experiment remained
visible for the duration of the task. We used the
reconcealing technique to record not only
the order in which symbols are scanned, but also how
often they need to be scanned. A third option for
uncovering blocks would not require the subject to click
on the block, but only move the pointer to it (e.g.,
Anderson, Matessa, & Douglass, 1995). We decided
against this option to avoid an inevitable flux of
unintended references in the data, when subjects
incidentally uncover blocks as they move to the intended
block.

During an experiment, the program recorded two types
of information: the time, location, and duration of each
mouse click, and the time and identity of each key press.
Therefore, the program not only logged subject
responses after each problem, but also much of how
subjects went about solving the problem. In fact, the
experiment program (in a different mode) can read
subject data files and simulate all mouse clicks and key
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presses, allowing the experimenter to “watch” the
subject at work.

In order to induce subjects to learn different analogical
strategies, we manipulated the presentation of variables
in S1. Subjects were randomly assigned to one of two
conditions. In the positive-correlation (PC) condition,
each variable was named using the first letter of the
quantity it represented; for instance, m would represent
mass and L length. In the negative-correlation (NC)
condition, each variable was named using the first letter
of a quantity it did not represent; for example, L might
represent mass and m length. Thus, the PC variables
suggested correct relations, whereas the NC variables
deliberately misled the subject by suggesting incorrect
relations. The equations used in each condition appear in
Table 10.1. Note that in both conditions, the S2 values
did correspond to the correct quantities, so the solutions
remained correct—the only discrepancy between
conditions is the mapping from variable to quantity.

Because of the different variable namings in the
conditions, we can predict different strategies for the two
groups. PC subjects, encountering names they would
likely expect, should utilize a solve-by-variable strategy.
That is, they should eventually tend to focus on S1 rather
than S2, using variables more heavily than values for
inferring the correct schema.1 Indeed, the most efficient
strategy for PC subjects involves looking only at S1; the
subject can infer mappings from variable to quantity by
referring to the visible TP quantities. NC subjects should
utilize a solve-by-value strategy, relying more heavily on
SP and S2. Here the most efficient strategy involves
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finding a corresponding SP quantity for each S2 value
and storing the mapping from value to quantity. Of
course, because the S1 variable names are misleading,
NC subjects can get no (or little) useful information from
the variables in the sample solution. In addition, because
we expect NC
subjects to be deceived initially by the incorrect
namings, we also expect them to make more errors in the
initial sets of the experiment.

The cross-mapping manipulation in the physics task is
reminiscent of Ross’s (1989) work on superficial
similarities. Ross showed that superficial similarities
between the sample and test problems can affect the
quality of solution by analogy. In several studies, he
manipulated the similarity between corresponding
objects in probability problems presented to subjects. To
summarize his results, performance on the problems
increased with high similarity between corresponding
objects and decreased with high similarity between
noncorresponding objects. We expect our physics task to
lead to similar subject behavior. The variable namings
used in each condition hint at superficial similarities
between variables and quantities; for instance, subjects
are more likely to associate the variable m with the
quantity mass rather than length, although there is no
structural justification for such reasoning. In the PC
condition, we expect high initial performance because of
the similarity between corresponding objects. In the NC
condition, we expect poor initial performance because of
the similarity between noncorresponding objects. Note
that there are also differences between Ross’s work and
our own that we discuss in a later section.
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In summary, the physics task involves analogy in the
learning of problem mappings and the application of the
mappings to new problems. The mapping process
produces a schematic equation that describes the
quantities and values that belong in the desired answer
expression. The schema is then applied to a new problem
to infer the problem’s solution. Admittedly, the task does
not capture all the complexities of analogy that have
been discussed in other work. However, we feel that the
task is complex enough to allow for interesting
analogical strategy differences in a problem-solving
context, yet simple enough to facilitate analysis at the
level of visual encoding of analog components. This
balance of complexity and simplicity helps to achieve
the primary goal in this study—to demonstrate how
ACT–R can be used to model the detailed step-by-step
process of analogical problem solving.

Overall Results

Data were collected from 19 subjects in the PC condition
and (a different) 19 subjects in the NC condition. We
discuss the results in two stages. First, we consider
high-level data for the entire task, examining total
latency and correctness per set of problems. Second, we
look at low-level data for the final set, because we
expect fairly stable behavior by the end of the
experiment. Because the sets were presented in the same
order, the final set always corresponded to the final topic
in Table 10.1. On average, subjects required
approximately 20 min to complete all 40 problems.

We begin by analyzing the correctness summary in Fig.
10.3, where solid lines represent subject data in each
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condition (dashed lines, representing model predictions,
are discussed later). PC subjects worked essentially at
ceiling, hovering around 95% correct for all sets. NC
subjects exhibited more numerous errors in the initial
sets, but eventually approached ceiling as well. A
two-factor analysis of variance (ANOVA) shows that the
effects of set, F(7,288) = 2.59, MSE = 5.63, condition,
F(1,288) = 20.0, MSE = 43.50, and their interaction,
F(7,288) = 2.50, MSE = 5.44, are all significant, p < .02.
Particularly, PC and NC errors differ significantly in
earlier sets, namely, in the first, second, and fourth sets,2
t(36) = 3.63, t(36) = 3.52, t(36) = 2.75, respectively, p <
.01; the differences between PC and NC errors on other
sets are not significant, p > .1.

Fig. 10.3. Average correctness for all sets. Correctness
denotes the percentage of the five set problems answered
correctly. Solid lines show subject data; dashed lines
show learning model predictions.
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We explain the correctness results as follows. Both PC
and NC subjects initially rely on the S1 variables to
induce the meaning of the equations and to solve the test
problems. For PC subjects, this method works well,
because the variables correspond directly to the first
letters of the quantities they represent. For NC subjects,
however, this strategy leads to incorrect solutions, given
that the variables are mismatched. Eventually, NC
subjects experience an epiphany; they notice the
discrepancy in the S1 variable namings, and begin to use
the S2 values and SP quantities for mapping. The
aggregate correctness graph reflects how subjects one by
one arrive at this epiphany, and eventually NC subjects
too perform at ceiling. It is important to note that when
subjects made errors, they typically made them across all
five problems in a particular set, so singleton errors
appear infrequently.

We can also examine the total latency per set of five
problems. The solid lines in Fig. 10.4 show the average
time (in seconds) taken by subjects to complete the five
problems in sets 1 through 8. The first three points
manifest the beginnings of the familiar power learning
curve (Newell & Rosenbloom, 1981); recall that the
problems in these sets have the same complexity, each
having an equation with two variables and one operator.
Subjects here were both familiarizing themselves with
the system and honing their analogy skills as they pertain
to these problems. For the other sets, the total latency
corresponds roughly to the complexity of the problems
in the set. The sixth and most complex set has the
highest latency; in fact, the latency is unexpectedly high
given that the complexity difference between the sixth
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and eighth sets is only one operator (the sine
operator—see Table 10.1). The fifth and least complex
set3 shows the lowest overall latency. A two-factor
ANOVA shows a very significant effect of set, F(7,288)
= 48.85, MSE = 56193.80, p < .001. The ANOVA also
shows a significant effect of condition, F(1,288) = 8.36,
MSE = 9615.60, p < .01. This effect arises primarily
because NC subjects required additional time to reach
their epiphanies and additional mouse clicks to
analogize. There is no set-condition interaction, F(7,288)
= .72, MSE = 828.12, p > .6.

Fig. 10.4. Average set latency for all sets. Set latency
denotes the time needed to complete all five problems in
the set. Solid lines show subject data; dashed lines show
learning model predictions.
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As expected, the results of the physics study corroborate
the results of Ross (1989): We see high initial
performance in the PC condition with
similar corresponding objects, but poor initial
performance in the NC condition with similar
noncorresponding objects. If we look more closely at the
cause of high versus poor performance, though, we can
see subtle differences in the origin of subjects’ behavior.
In the physics task, the misleading variable names
almost certainly lead to a mistaken schematic structure
for the equation. Subjects seem to map variables to
quantities incorrectly, thus remembering the schematic
equation with the quantities in the wrong places. Errors
in Ross’s probability problems arose from superficial
similarities between the sample and test problems, rather
than between the sample problem and sample solution.
Thus superficial similarities can affect both the mapping
process that produces a schema (our research) and the
use of the schema (Ross’s research).

Final Set Results

We now focus on subjects’ performance in the eighth
and final set, which, roughly speaking, reflects
asymptotic performance in the task. We first examine the
average latency per problem in the final set, shown as
solid lines in Fig. 10.5. Not surprisingly, the subjects
took more time in the first problem, as they needed to
study the sample and understand the meaning of the
equation before solving the test problem. The latency
curves flatten out quickly in later problems, most notably
in the PC condition; subjects were essentially just
checking the TP values and entering the solution
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equation. The problem effects are very significant,
F(4,180) = 1.72, MSE = 10876.01, p < .001, whereas the
effects of condition, F(1,180) = 2.64,
MSE = 231.18, and of the interaction of problem and
condition, F(4,180) = 1.72, MSE = 150.92, are not, p >
.1.

Fig. 10.5. Average problem latency for final set. Problem
latency denotes the time needed to complete a single
problem. Solid lines show subject data; dashed lines
show terminal model predictions.

Subject latency data illustrate approximately when and
how often subjects analogized. Visual scanning data, on
the other hand, give important clues to how subjects
analogized. We first consider our original hypothesis that
PC subjects would rely more heavily on the S1 variables,
whereas NC subjects would favor the S2 values. Table
10.2 contains the number of references4 per area item in
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the final set, across all subjects. From the table we see
that PC subjects did indeed scan S1 more often than NC
subjects, who exhibited more references to SP and S2.
The effects of area, F(3,144) = 29.31, MSE = 761.38,
and the area-condition interaction, F(3,144) = 8.21, MSE
= 213.25, are very significant, p < .001, whereas the
effect of condition is not, F(1,144) = 1.42, MSE = 37.01,
p > .2. The values across conditions for SR S1, and S2
differ significantly, t(36) = 2.23, t(36) = 3.18, and t(36)
=3.31, p<.05.

Table 10.2
Subject References per Area Item

SP S1 S2 TP

PC 1.74 2.11 1.13 1.11

(1.75) (2.40) (0.85) (1.00)

NC 2.96 1.05 2.22 1.11

(2.95) (0.80) (2.20) (1.00)

Note. Values represent average number of references
per item in each area. Unparenthesized values represent
subject data; parenthesized values represent terminal
model predictions.

Although subjects’ area references correspond to our
predictions, it is interesting to note that overall subjects
do not utilize what would be the most efficient strategy
for our class of problems. On the one hand, PC subjects
could have safely ignored the S2 values if desired and
looked only at the S1 variables, yet they still scanned the
S2 values. On the other hand, NC subjects did not need
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to look at the S1 variables, because the variables were
always misleading; nevertheless, they clicked on the S1
variables approximately half as often as they did on the
S2 values. Of course, subjects were not aware that the
experimental condition would not change during the
task, so these extra clicks can be viewed as checking that
mapping conventions remained the same.

We can also analyze the time taken to look at objects in
each area, as shown in Table 10.3. The reference time
corresponds to elapsed time between the click on some
item and a subsequent click or key press; note that
duration of a click may not be an accurate measure,
because some subjects
may hold the button down while processing information,
whereas others may release the button. The reference
times shown in the table reveal no significant effect of
condition, F(1,189) = .78, MSE = 0.27, p > .3, or of the
interaction between condition and area, F(5,189) = .35,
MSE = 0.12, p > .8. The effect of area, however, is very
significant, F(5,189) = 47.80, MSE = 16.67, p < .001.
This effect arises partly because of the high latency for
the SP area; the SP times reflect the fact that the SP
quantity blocks covered not only letters or words but
partial sentences. Other significant differences occur in
the times between S1 variables and S1 operators and
between S2 values and S2 operators, t(34) = 4.46 and
t(28) = 3.98 for PC, t(21) = 3.11 and t(35) = 3.90 for NC,
p < .01. Subjects took only half as much time to process
an operator in comparison with a variable or value.

Table 10.3.
Subject Reference Times per Area Item

610



Note. Values represent average reference times, in
seconds, per reference in each area. Un-parenthesized
values represent subject data; parenthesized values
represent terminal model predictions.

These data give us a general sense of subjects’ strategies
of analogical behavior during the task, but we can
characterize their behavior in more detail. We define a
reference path as the sequence of area scans or area
groupings that a subject accesses during a problem. An
area scan, denoted by a single area such as S1, represents
a scan of all objects within the area, hitting each at least
once. An area grouping enclosed in parentheses, such as
(S2 SP), indicates a “bouncing” scan between two or
more groups. A bouncing scan does not necessarily hit
every object within the groups. For example, assume we
observe the following subject behavior: scan all S1
symbols, bounce between the S2 symbols and the SP
quantities, and bounce between the TP values and the
test solution block TS. We can characterize this behavior
in the reference path S1 (S2 SP) (TP TS). Area
groupings with a single area, such as (S2), indicate an
incomplete scan of a single area bracketed by complete
scans of other areas; such groupings that represent only
one item access are considered spurious and are omitted
from our analyses.

611



Table 10.4a shows the reference paths for each PC
subject in the five final-set problems. The variability
between subjects is quite striking; even with this rough
characterization of analogical strategies, very few used
identical strategies. Only one subject (PC1) used the
most efficient strategy, scanning only S1 before
proceeding to enter the solution. Approximately half the
subjects began with a scan of SR and generally
continued by scanning S1. It seems that these subjects
read top-down from the sample problem until they
reached the relevant equation for mapping (the S1
equation for PC subjects). Also, most subjects exhibited
some bouncing scans between SP and S2 after scanning
S1, apparently checking the quantity equation derived
from S1 by mapping S2 values to their respective SP
quantities. Only one subject (PC15) seemed to use a
solve-by-value strategy, scanning SP and S2 exclusively;
this fact provides evidence that subjects tend toward the
more efficient (solve-by-variable) strategy in the PC
condition. Finally, PC subjects showed very little
dependence on the sample problem and solution after the
first problem. They seem to have abstracted out the
solution during the first presentation.

Table 10.4
Subject Reference Paths
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Table 10.4b lists the reference paths for NC subjects. We
see a fair number of scans of the S1 equation, even
though the S1 variables are misleading. Again the
subjects seem to manifest the top-down reading
behavior, frequently reading SP and S1 before using the
variable equation S2. NC subjects also exhibited the (S2
SP) bouncing, but presumably for the purpose of
inferring the correct equation rather than for checking
the variable equation. Several subjects inferred a
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mapping by scanning SP and S2 separately rather than
bouncing between them. As in the PC condition, only
one NC subject (NC16) exhibited the most efficient
strategy, scanning SP and S2 once. Use of the test
problem and entering of the solution are fairly similar
across conditions. Both PC and NC subjects prefer to
bounce between the test problem TP and the solution TS,
as the behavior (TP TS) lightens working memory load.
However, a minority of subjects showed the behavior TP
TS, scanning all the test values first, then entering the
entire equation into the solution block.

In summary, PC subjects generally followed the
solve-by-variable strategy, whereas NC subjects
followed the solve-by-value strategy. We have also seen
that subjects exhibited a great deal of variability in
analogizing, and adapted their strategy of analogy to
either solve-by-variable or solve-by-value according to
experimental condition. In the discussion of the model
for these empirical data, we characterize subjects’
behavior more formally and investigate how well
ACT–R can fit these data.

Declarative Model for the Physics Task

We developed two models of the physics task that are
capable of predicting the high- and low-level data
presented earlier. The first model, described in this
section, learns declarative chunks that represent the
schematic knowledge
necessary to solve the problems. The second model,
described in the next section, learns similar schematic
knowledge in procedural form using the production
compilation mechanism. Because the final models are
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quite large (over 120 production rules each), we cannot
simply present the rules as they are. However, we give a
sense of how we designed and implemented the models
at a high level and illuminate their most crucial elements.

This section outlines the declarative model for the
physics task and discusses how well the model fits the
observed data. For ease of exposition, we introduce the
model as two terminal models that represent the
asymptotic behavior of subjects (for each condition).
That is, the terminal models capture the behavior of
subjects after the subjects have optimized their strategy
for a particular condition. Thus we present one terminal
model that executes the solve-by-variable strategy (for
the PC condition), and another that executes the
solve-by-value strategy (for the NC condition). After
describing the terminal models and their predictions, we
merge the two terminal models into a single learning
model. The learning model can account for the evolution
to the appropriate terminal model based on the condition
(PC vs. NC) of the simulation.

The Basic Declarative Terminal Model

As the first step in creating the terminal models, we need
to perform a task analysis to determine the overall
strategy that subjects undertake in analogizing. The data
support our original predictions that PC subjects focus
on S1, whereas NC subjects focus on S2 and SP. The
correctness data suggests that subjects begin using the
solve-by-variable strategy, and eventually adjust to the
appropriate strategy for their condition. The reference
paths manifest, for some subjects, a tendency to read the
sample problem from the top down to the area relevant
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for analogy. Finally, the data show that PC subjects seem
to look at the S2 equation to check that the equation
derived from the variables is correct. Taking all these
facts into account, we can propose a general strategy for
subjects on first seeing the problem. The general strategy
applies to both the PC and NC terminal models, but is
implemented slightly differently for each model.

The overall model strategy is illustrated in Fig. 10.6,
where the control flow for the initial problem in a set
appears on the left and the graph for subsequent
problems appears on the right. Before examining the
stages of the model in detail, let us briefly outline its
general control flow. First, subjects either read top-down
to the relevant area, or skip directly to the area. For PC
subjects, the relevant area is the S1 equation; for NC
subjects, it is the S2 equation. Second, in the
study-mapping stage, subjects use the equation to build a
mental representation of the schematic equation. This
schematic equation, which we call the quantity equation,
contains quantity names in place of the variables or
values, such that the representation could be used to
solve the test problem. For instance, for the induction
problem shown in Fig. 10.1, the equation L = N*f/c
would map to the quantity equation L = number*flux/
current. The quantity equation is the essential product of
the analogy process from which all subsequent problem
solving flows. Third, in the check-mapping stage,
subjects either check the quantity equation or skip the
check. PC subjects would check the quantity equation
against the equation represented by the S2 equation,
whereas NC subjects cannot perform any check, because
the variable names are known to be misleading. Fourth,
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in the solve-problem stage, subjects solve the test
problem using the quantity equation and the TP values.
For subsequent problems, the quantity equation may
need to be reviewed before solving the problem, and this
review would constitute restudying the equation.

Fig. 10.6. Main control flow graph for the physics
model. The graph on the left illustrates the control flow
for the initial problem, and the graph on the right
represents the flow for subsequent problems.
Percentages in parentheses indicate statically computable
frequencies for their respective paths.
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The first stage allows two options, reading top-down to
the study equation or skipping ahead. Reading top-down
means reviewing material in the problem that appears
before the critical material, that is, the S1 equation for
PC subjects and the S2 equation for NC subjects. To
decide between
reading top-down and skipping ahead, the model has two
productions that compete through conflict resolution. If
the model opts to read top-down, this subgoal is pushed
onto the goal stack. For PC subjects, reading top-down
involves simply reading the SP quantities and values in
order. For NC subjects, reading top-down involves
reading SP and S1.

The second stage, study mapping, requires inferring the
quantity equation. The PC terminal model uses S1 to
infer the quantity equation. The model performs a
different action for each S1 symbol type (variable,
constant, or operator). For each S1 variable, the model
scans TP for the quantity that begins with the variable
letter.5 It then creates a knowledge chunk that stores the
quantity name along with its position within the
equation. For each S1 constant, the model similarly
scans TP but finds no quantity with the same first letter.
Thus it assumes that the letter is a constant and stores the
constant along with its position. For each S1 operator,
the model simply stores the operator with its position. In
contrast to the PC terminal model, the NC terminal
model focuses on S2 and SP to infer the quantity
equation. For each S2 value, the model finds the value in
SP and clicks on its covered block, exposing the
corresponding SP quantity. Constants and operators are
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immediately recognized, and all three types are again
stored with their position.

The study-mapping stage thus uses either S1 or SP and
S2 to build a declarative representation of the quantity
equation, of which each element (quantity, constant, or
operator) is associated with its position in the equation.
The first component of this declarative representation is
the EQUATION chunk, which acts as a tag for the
current type of problem being studied. For instance, for
inductance problems with the quantity equation L =
number*flux/current, we have the following
EQUATION chunk:

Inductance-Equation

isa EQUATION

type Inductance

Each element of the quantity equation is then represented
as an EQUATION-SYMBOL chunk that contains its
equation tag, type (quantity or constant), position, and
value. For example, the third and fourth positions of the
preceding quantity equation would be represented by the
following chunks:

Equation-Symbol-3

isa EQUATION-SYMBOL

equation Inductance-Equation

type Quantity

position Three

value Flux
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Equation-Symbol-4

isa EQUATION-SYMBOL

equation Inductance-Equation

type Constant

position Four

value /

Note that a value of Constant in the type slot can
represent operators, integers, or constant variables, all of
which are simply typed out at response time with no
additional processing. This representation is very similar
to the chunk representation for serial lists in Chapter 7. It
is one instance of the convergence that is occurring in
representation for different ACT–R models.

After the model studies the equation, it must decide
whether to stop studying or to review. If the equation can
be readily retrieved, the model advances to the checking
stage and studying terminates. Otherwise, the model
reviews (or restudies) the equation. Base-level learning
(see Base-Level Learning Equation 4.1) controls how
easily the quantity equation can be retrieved; as the
equation is reviewed, its activation increases steadily,
facilitating retrieval on the next attempt. Thus more
reviews make it more likely that the model can recall the
equation and move on.

The third stage, check mapping, allows the models to
check the quantity equation created in the study stage.
Because NC subjects can use only the S2 equation to
solve the problem correctly, only PC subjects can
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actually check their equations. As before, the model
contains two competing productions, one for checking
and one for skipping the check. To check, the PC model
goes through the same steps as the NC model does for
studying, bouncing between S2 and SP. By definition in
the PC case, the check will never fail, so after the check
the model simply continues to the next stage. We modify
this check stage later when we merge the terminal
models into a single learning model.

The fourth stage, solve problem, where the terminal
models solve the current test problem, is relatively
straightforward. The model traverses the mental
representation of the quantity equation, beginning with
the first symbol. If the symbol is a quantity, the model
searches TP for that quantity, clicks on its corresponding
value, and types the value. If the symbol is an operator,
the model simply types it in. Finally, when the model has
traversed
the entire equation, it clicks on the lower right button to
indicate that it has finished with the problem. For
subsequent problems, the model enters a
review-mapping stage in which the quantity equation is
reviewed until it can be readily retrieved (just as in the
study stage). When this review finishes, the model shifts
back to the solve-problem stage to enter the solution.

The stage descriptions just given refer to many
subprocesses, such as scanning the sample problem for a
particular value or searching the test problem for a
quantity. Each of these processes is implemented by a
separate subgoal and a set of production rules. In this
sense, the models are rather low-level, because they
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describe what the model is “looking at” during all stages
of the analogy process. The leaf subprocesses are
primarily visual- or motor-related, such as clicking on a
block or typing in a number. The model executes these
visual and motor actions via the ACT–R visual interface
(see Chapter 5). The model can also be made to produce
a trace that can be compared directly with experimental
results, or even run through the experiment program in
simulation mode.

Parameter Setting

At this point, we have provided a broad overview of the
models at the symbolic level. However, we still need to
define the subsymbolic, real-valued parameters
associated with chunks and productions. Important
parameters for the performance of the model are the
levels of activation of the chunks encoding the quantity
equation. These activations were not estimated but
determined by the base-level learning model, which in
turn depends on the default setting of the activation and
decay parameters. For productions, we used the default
settings6 for all parameters except the a and r parameters
for certain conflicting productions.

We set all productions to have the standard ACT–R
default effort time of 50 msec. In setting the latencies for
the visual and motor actions, we found that we could
work with very approximate assumptions. Moving the
mouse a short distance (less than 50 pixels on the
Macintosh screen) has a latency of 300 msec, whereas
long movements require an additional 500 msec. To
model the adjustment to a new screen when starting a
trial, the initial reading for a new screen takes 2 sec.
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Reading the SP quantities takes 1 sec, due to the
difficulty of reading partial sentences as opposed to
simple numbers and letters. Finally, typing a value
requires 1 sec, which includes time needed for the
subject’s hand to move from the mouse to the keyboard.7

We manipulated the a and r parameters in order to adjust
conflict resolution between productions in the cases
where we design the model to have competing
productions. Recall that the a parameter denotes the
estimated effort spent executing the production (Cost of
Goal Equation 3.3) and the r parameter determines the
production’s estimated probability of success
(Probability of Goal Equation 3.2). Both parameters in
turn help determine the expected gain of the production
rule (Expected Gain Equation 3.1). The probability of
selecting a production during conflict resolution is a
function of its expected gain (Conflict Resolution
Equation 3.4). For most productions, setting the
production parameters is straightforward, merely
reflecting which rule we prefer over others. However,
the a and r parameters for certain crucial decision points
need to be estimated using empirical data. The points
where we estimated these parameters are the decision
points shown in Fig. 10.6. These decision points
generally represent a trade-off between further work in
executing a subgoal (e.g., checking the equation) versus
the probability of failure if the subgoal is not executed
(e.g., not noticing the incorrectness of the variables when
skipping the check). Fitting the model to the data was
essentially a hill-climbing search manipulating these
crucial parameters. We performed the search manually;
that is, we ran several simulations, examined the output,
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and adjusted the parameters accordingly. We repeated
this process until the parameters produced satisfactory
results.

Stating the actual values of the estimated a and r
parameters would not be highly illustrative, because it is
not obvious how they correspond to the probabilities of
firing the respective productions.8 However, we can
actually derive the expected probabilities using the
parameters and the amount of expected-gain noise using
the Conflict Resolution Equation 3.4. Thus, we can
compute the probability of choosing each path in the
general control flow graph. There is one caveat,
however: The likelihood of firing a production that
retrieves the studied (quantity) equation depends not just
on its being selected during conflict resolution, but also
on retrieval of the quantity equation. This dependence
means we cannot statically compute the probabilities for
these paths. The control flow graph in Fig. 10.6 includes
probabilities for all statically computable paths. The
probabilities displayed in the figure are intuitively
reasonable.

From our presentation, one might get the impression that
so many parameters could easily fit almost any data set.
This is far from true. Although the two terminal models
(for the PC and NC conditions) are indeed distinct
models, they actually differ in only a few productions.
Specifically, we vary only the specific subgoals pushed
for the read top-down, study-mapping, check-mapping,
and review-mapping productions; all other
productions, and all continuous parameters, are kept the
same across models. This high degree of overlap allows
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us to combine the models into one learning model, as we
show later. More importantly, though, the overlap
manifests the real predictive power behind these models.
It highly constrains the predictions of one terminal
model given the parameters of the other. Thus, if both
models provide good fits to their respective data sets, we
have strong evidence to support our underlying theory.

Declarative Terminal Model Results

Let us now examine the predictions and behavior of the
terminal models in comparison with the final set data.
Given the two models, we can run repeated simulations
that model individual subjects performing the final set of
five problems. To compare the models’ results with the
experimental data, we ran 20 simulations for each model
and examined the resulting traces.9 Overall, the models
produced good fits to many aspects of the data.

We first compare the total latencies to complete each
problem, for both the models and subjects. Figure 10.5
includes the models’ predictions (dashed lines) with the
experimental data (solid lines) for the PC and NC
conditions. Both models’ latency curves fit their
respective data nicely. Most of the analogizing is
completed in the first problem, with the latencies
flattening out quickly in later problems. The fit is
especially good considering our rigid demand that every
production’s action time be set at the ACT–R default of
50 msec (with the exception of the visual and motor
actions).

Regarding the visual data, Table 10.2 shows the
predicted (parenthesized) and observed
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(unparenthesized) number of references per item. Again,
the models capture many of the nuances of the data. For
example, recall that NC subjects scanned S1 almost half
as much as S2, even though the S1 variables were
misleading. The NC model reproduces this phenomenon
in the read top-down stage (Fig. 10.6), predicting that
many subjects read S1 on the scan from the top of the
screen down to the relevant equation for analogizing (S2
for the NC condition). Also, the PC model explains why
PC subjects referred to the S2 equation, namely, to check
that their inferences from the S1 equation are correct.

Table 10.3 shows the empirical data and model
predictions for reference times across the two
experimental conditions. The model captures several
aspects of the data, including the fact that latencies vary
little across conditions. The high latency for reading SP
quantities stems from a higher
production latency for reading sentences rather than
single words or symbols. The models also predict that
reference latencies for S1 variables and S2 values are
significantly longer than those for S1 or S2 operators.
The extra time spent arises from the visual scans
necessary for variables and values; for instance, after
reading a value, the model must scan SP for that value.
On the whole, the models account for much of the time
spent looking at and processing the items in the various
visual fields.

The reference paths for the experimental data revealed
some variability in the strategies of analogy during the
task. Because of ACT–R’s activation and expected gain
noise, the models are able to account for this variability.
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Although the models do not exhibit as much variability
as the subjects, they are able to produce some of the
important facets of these differences. Tables 10.5a and
10.5b illustrate the reference paths for the 20 simulation
runs for each model. For both models, we see varying
amounts of studying and reviewing across simulations.
Also, many of the simulations begin by reading SP, just
as many subjects did. We can observe several reviews of
the equation in later problems, although the reviews are
less frequent than in the empirical data. Interestingly,
only one simulation (MNC9) executed the most efficient
strategy; recall that of our 38 subjects, only 2 (PC1 and
NC16) did the same. Thus the models not only reproduce
the latency and visual data present in the experiment, but
also much of the qualitative variability in the detail of
subjects’ scanning behavior.

Table 10.5
Terminal Model Reference Paths
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The Declarative Learning Model

We have seen how the PC and NC terminal models
operate to fit the final set data. However, there is still the
question of how these terminal models might evolve. We
would like for the models to arise from a single initial
model, which would itself evolve into one of the
terminal models. That is, we desire a learning model that
runs on the entire task (i.e., all eight sets) and, depending
on the problems presented to the model, would shift to
either the solve by – variable strategy (the PC terminal
model) or the solve -by-value strategy (the NC terminal
model).

Because the terminal models were designed with the
learning model in mind, merging them is fairly
straightforward. The learning model retains a single
chunk that describes the current strategy to utilize, either
solve-by-variable or solve-by-value. The few
productions that differ between the terminal models are
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modified to retrieve this chunk and determine the current
strategy. If the strategy dictates to solve by variable, the
productions push the subgoals corresponding to the PC
terminal model; otherwise, they push the subgoals
corresponding to the NC terminal model. Initially, the
strategy chunk is set to solve by variable. As the model
simulates the task, it will frequently check the S2 values
to ensure that they correspond to the
S1 variables. In the PC condition, the variables and
values always correspond, so the learning model
continues to use the solve-by-variable strategy. In the
NC condition, the check detects a discrepancy with a
probability of .5. The model should sometimes fail to
detect the discrepancy during a check because subjects
sometimes performed the sequence of clicks for a check
but apparently did not notice the discrepancy in variable
namings; when the discrepancy is discovered, the model
switches to the solve-by-value strategy. The learning
model thus adjusts to the condition in which the
simulation is run, shifting in the NC condition from the
solve-by-variable to the solve-by-value strategy.

The other form of learning that takes place over the
course of the problems is the strengthening of the
productions that are responsible for creating and
applying quantity equations. We thus enable strength
learning in the learning model simulations, as defined by
the Production Strength Equation 4.4. This learning
increases the production strength for frequently fired
productions, resulting in lower firing latencies.

We now present the results of 10 learning model
simulations of the entire task in each condition.10 The
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learning model correctness results are included in Fig.
10.3. Comparing the model’s predictions (dashed lines)
with the empirical data (solid lines), we see that the
model captures several aspects of subjects’ behavior.
The PC model, like PC subjects, performs at ceiling.
This behavior arises from the fact that the learning
model always tries initially to solve by variable, which is
the correct approach in the PC condition. In the NC
condition, the model requires some number of trials
before it notices the discrepancy between the sample
solution variables and values; recall that subjects
exhibited similar epiphanies. The NC error curve then
essentially maps out when the model simulations
reached their epiphanies.

Figure 10.4 shows the average set latencies for the model
(dashed lines) and the experiment (solid lines). We see
that the learning model nicely reproduces the shape of
our empirical data—namely, the sets involving more
complex problems require more time to complete. In the
three initial sets (which have identical complexities), we
observe a steady decrease in latency, due primarily to the
strengthening of relevant productions. Also, the model
requires slightly more time in the NC condition than in
the PC condition, because the NC times include an
overhead for epiphanies that occur during the sets.

Generally, the learning model captures the important
aspects of the data. Nonetheless, we can point to two
incompletenesses of the model. First, the
model does not account for the acquisition of
productions specific to the task. Second, there may be
other strategies that subjects utilize when first attempting
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the task. Our model assumes that subjects begin with the
solve-by-variable strategy, and sometimes (i.e., in the
NC condition) shift to the solve-by-value strategy. It is
possible, though, that subjects initially use a different
strategy, perhaps a hybrid of solve-by-variable and
solve-by-value or perhaps an altogether different
approach.

Procedural Model for the Physics Task

The previous section described how the declarative
model learns schematic knowledge for the physics task
as declarative chunks that represent the quantity
equation. The schematic knowledge was then used by
interpretive productions to perform the task. Rather than
involving this indirect process of interpretation, an
alternative approach would acquire new productions that
directly apply schematic knowledge to solve problems in
the domain. This section describes a procedural model
for the physics task that implements this direct approach.
The procedural model learns schematic productions that
represent the quantity equation through production
compilation. In essence, there is a one-to-one
correspondence between schematic chunks in the
declarative model and schematic productions in this
model. The declarative and procedural models have few
differences, both in the models themselves and in their
simulation predictions. The similarity between these
models is one token of what is increasingly becoming an
issue in the ACT–R community—when to represent
knowledge declaratively and when to represent
knowledge procedurally.
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Before turning to the actual procedural model, we
digress briefly to evaluate one idea that initially may
seem reasonable but fails to capture low-level subject
behavior. This idea is that we learn single production
rules that solve each problem in one instantiation. We
could learn such rules if we represent the entire sample
problem as a single chunk with values for each quantity
and the sample solution as a single chunk with the
appropriate answer values and operators. We could then
form a dependency with a blank solution chunk as the
goal, the sample solution chunk as the modified goal,
and the sample problem as the given constraint. Given
this dependency, production compilation would form a
single production that can solve any new problem of that
equation type. Such a model would have been typical of
the grain size of modeling used in previous versions of
ACT–R, such as ACT–R 2.0 (Anderson, 1993).
However, as a model of the information processing of
actual subjects, the model is woefully inadequate: Only a
single production rule is created and executed in one
atomic step. The model
ignores the process by which subjects inspect the
problem, inspect the equation, build up a representation
of the two, and relate them. There is no representation of
how subgoals must be set to execute the individual steps.
Clearly subjects take a much more piecemeal approach
to analogy, and the advantage of the new ACT–R theory
of analogy in this chapter is that it captures this
piecemeal approach.

The Procedural Learning Model
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The procedural model we now describe is more in
keeping with the current “atoms of thought” approach by
having ACT–R learn smaller productions that map and
apply each of the equation symbols separately. In fact,
the procedural model is identical to the declarative
model with one modification: With repeated practice of a
particular equation, subjects no longer retrieve the
declarative representation of the quantity equation but
rather “just do it” by means of productions that step
through the solution symbol by symbol. Instead of
creating a declarative representation for each equation
symbol that encodes its position in a particular equation,
the model creates a declarative dependency that encodes
the action(s) taken for that symbol. When this
dependency is pushed onto the goal stack and
subsequently popped, the production compilation
mechanism uses the dependency to create a specific
production for that symbol. With further study of that
symbol, the production is strengthened through repeated
production compilation and strength learning.

The actual productions created during production
compilation act on the SOLVE-PROBLEM subgoal,
which signifies the intention to determine and type out
the solution. The productions have one of two forms
depending on the type of equation symbol needed, that
is, whether the symbol represents a quantity whose value
must be determined or a constant that can be
immediately typed. For quantities, the new production
would resemble the following example:

Solve-Problem-3
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=goal>

isa SOLVE-PROBLEM

equation Inductance-Equation

position Third

= = >

=subgoal >

isa FIND-TEST-PROBLEM-VALUE

quantity Flux

result = result

=subgoal 1>

isa TYPE-SYMBOL

symbol = result

=goal>

position Fourth

!push!
=subgoall

!push!
=subgoal

The production first matches the SOLVE-PROBLEM
subgoal for the current equation and the third position. It
then sets two subgoals to find the value of the quantity
Flux in the test problem and to type the resulting value.
The goal is then reset to continue solving the problem at
the fourth position. For constants (integers, operators,

634



and constant variables), the new production would
resemble this example:

Solve-Problem-4

=goal>

isa SOLVE-PROBLEM

equation Inductance-Equation

position Fourth

= = >

=subgoal >

isa TYPE-SYMBOL

symbol /

=goal

Position Fifth

!push! =
subgoal

Here the production matches the equation in the fourth
position, sets a subgoal to type the symbol /, and resets
the goal to continue to the fifth position.

Thus, we now have a procedural model that closely
resembles the declarative model, except we have a shift
from declarative knowledge of the equation symbols to a
proceduralized version of this knowledge. The only
differences from the declarative model are the addition
of two productions to create each type of dependency
(quantity and constant), slight changes to existing
productions to subgoal to these productions, and the
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removal of the existing interpretive SOLVE-PROBLEM
productions, because the necessary productions are
generated from the appropriate dependencies. All other
productions and parameter settings are identical across
the two models.

Because the procedural model so closely resembles the
declarative model, it may not be surprising to discover
that they produce almost identical predictions, modulo
the variability inherent in both models. The two models
are almost indistinguishable in terms of their fits to set
latencies and correctness, problem latencies, area
references per area, and area reference times. Thus, we
omit the specifics of these simulation results, because
examining them in detail would provide little insight into
the model. Instead, we proceed to a more qualitative
evaluation of the two models.

Evaluating the Declarative and Procedural Models

Of the two models, declarative and procedural, which
better captures the nature of subject behavior in the
physics task? The quantitative fits of the two models
reveal little in the search for an answer to this question.
We now give a brief qualitative evaluation of the models
to help provide an answer. Because the models are
similar in so many respects, we focus our discussion on
two issues: the representation of schematic knowledge,
and the model’s decisions about when to review this
knowledge.

Because the declarative and procedural models represent
schematic knowledge in different ways, one interesting
aspect of the models is how well each lives up to the
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“atoms of thought” goal in this book. In the creation of
schemata, the declarative model produces equation
symbol chunks that represent each item in the quantity
equation. The chunks are created in a straightforward
manner, with the creating productions and the chunks
themselves being small and psychologically reasonable.
The procedural model produces dependencies that,
through production compilation, are transformed into
appropriate production rules. The compiled production
rules, like the chunks in the declarative model, are
atomic and psychology cally plausible. To ensure that
the productions that create the dependencies are also
atomic, the procedural model includes several
productions that build up the dependency incrementally.
The model unfortunately requires the use of lists in its
dependencies, a problem that seems to us more rooted in
the syntax of the production compilation mechanism
than in this particular model. With this possible
exception, both models seem equally plausible and
consistent with ACT–R 4.0’s “atoms of thought”
principle.

Another interesting aspect of the two models is how and
when the models decide to review previously studied
schematic knowledge. At the highest level, both models
decide to review the equation in the same way: The
model attempts to retrieve the equation chunk to solve
the problem, and if the chunk cannot be retrieved, the
model reviews the sample problem and solution to
strengthen the studied schemata. This flow of control
seems reasonable in that the decision to review is based
on whether studied knowledge can be recalled. However,
retrieval of the equation chunk does not guarantee that
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the problem can be solved: The declarative model must
still retrieve an EQUATION-SYMBOL chunk for each
equation position, and the procedural model must have
SOLVE-PROBLEM productions of sufficient strength to
fire. Thus, both models rely solely on the equation chunk
as an indicator of when to review and ignore the
possibility of failure in using lower level schematic
knowledge (i.e., equation-symbol chunks or
solve-problem productions). As it turns out, such a
failure never occurs in simulation, but this possibility
does raise the issue of what subjects do when failures
occur. Although the empirical evidence shows that
subjects usually review the entire equation, surely they
have more sophisticated methods of dealing with failure
to use individual schemata components and reviewing
just those components. The declarative and procedural
models thus capture overall reviewing behavior for the
entire equation but cannot account for reviewing
behavior for components of the equation.

Overall, this brief evaluation sheds little light on which
model better captures subject performance in the physics
task. The models, through declarative learning of
schematic chunks and procedural learning of schematic
productions, seem to capture the quantitative and
qualitative aspects of the task equally well. Our own
intuition is that subjects are using a declarative
representation for the five problems they solve for each
physics equation. However, with enough practice they
would transition to a procedural representation. Further
empirical work would be needed to help establish
whether our intuitions about such a
declarative-to-procedural transition for this task are
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correct. In other tasks (Anderson, Fincham, & Douglass,
1997), we showed evidence for this sort of transition
with extended practice.

The juxtaposition of both a procedural and a declarative
model of knowledge compilation reflects the now
complete separation in ACT-R of issues of analogy from
issues of production formation. We see that we can
equally model analogy formation with or without
creating production rules.

General Issues in Analogy

In this section, we address issues about analogy that go
beyond the physics example. First, we show that the
basic ideas apply to a different experimental paradigm
where detailed latency data were collected. Second, we
examine the relationship between this theory of analogy
and other theories of analogy in the literature.

Generalizing the Physics Model: The People-Piece
Model

We have seen how an ACT–R model can capture many
aspects of the physics task. Nevertheless, we might
reasonably question how useful the model is when
considering the broader picture of problem solving by
analogy. Can we generalize the physics model to make
predictions about other analogical tasks? More generally,
can production-rule models for specific analogical tasks
assist in modeling similar tasks? The answer is yes, and
centers on our earlier claim that models for similar
analogical tasks share
common production rules that implement analogy. We
now provide evidence for this claim by presenting a rule
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model for a similar analogical task, where the model
uses specific productions taken from the physics model.

Sternberg (1977) used a “people-piece” analogy task
and, as we did, systematically investigated the latency
structure of analogy formation. Sternberg presented
subjects with picture analogies of the form A:B::C:D.
The elements of the analogy were drawings of people
varying four binary attributes: sex (male or female),
color (blue or red), height (short or tall), and girth (fat or
thin). Sternberg asked subjects to respond whether the
analogy was true or false. Figure 10.7 shows a sample
correct people-piece problem where the A–B and C–D
pairs differ in sex and color and the A–C and B–D pairs
differ in height. Sternberg’s data showed that subject
response latencies increased as elements A and B
differed by more attributes; the data showed a similar
effect for differences between A and C. The solid lines
in Fig. 10.8 graph Sternberg’s results for differences of
one and two attributes for both the A–B and A–C pairs.
The data thus suggest that subjects consider both A–B
and A–C mappings, and take more time as these
mappings become more complex.
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Fig. 10.7. Sample people-piece problem from Sternberg
(1977). The problem is a correct analogy in which the
A-B and C-D pairs differ in sex and color and the A-C
and B-D pairs differ in height.

Fig. 10.8. People-piece data and model predictions. The
solid lines show the empirical data from Sternberg
(1977) for one and two attribute changes from A to B
and A to C. The dashed lines show the people-piece
model predictions.

We can further characterize subject behavior in the
people-piece task by considering the process models of
Sternberg (1977) and Grudin (1980). Sternberg provided
four distinct process models for solving people-piece
analogies. Although the models differ in specifics, each
requires encoding of the elements, mapping between
source and target elements, and application of the
mapping to derive a solution. Sternberg proposed that
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subjects map both A to B and A to C during the process.
Grudin suggested a change
to Sternberg’s model: Subjects map either A to B or A to
C, but do not infer both mappings. We combine the ideas
of both researchers into our process model for the
people-piece task. Our process model first decides to
execute one of two strategies, either the one using the
A–B mapping or the one using the A–C mapping. If the
model chooses to use the A-B strategy, it runs through
the following sequence of steps: Encode A and B, infer
the A-B mapping, encode C and D, apply the mapping to
C to create D’, compare D and D’ for equality, and
respond. If the model chooses the A–C strategy, it
follows the same steps with B and C switched.

We can frame this process model within the general
strategy for the physics task (Fig. 10.6). Our model for
this task induces an attribute mapping, which serves the
same role as the quantity equation in the physics
experiment. The study-mapping stage of the physics
model handles the encoding of the sample and the
formation of the mapping. Similarly for the people-piece
model, we bundle the encoding and mapping of A and B
(or C) into a study-mapping stage. The solve-problem
stage of the physics model corresponds to the application
of the mapping. For the people-piece model, the
solve-problem stage similarly involves the application of
the A-B or A-C mapping. The read top-down and
check-equation stages in the physics model have no
analog in the people-piece model, so they are omitted.
Thus, the two models share the study-mapping and
solve-problem stages.
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The production-rule specification for the people-piece
process model utilizes this overlap between models. The
common stages allow us to borrow productions from the
physics model and insert them directly into the
people-piece model. Specifically, the people-piece
model uses the productions in the physics model that
implement the study-mapping and solve -problem stages
in Fig. 10.6. We also insert productions that skip over
the read top-down and check-equation stages, because
they are not applicable here. Other productions are also
added to implement subprocesses specific to the
people-piece task. Before analogizing, the rule model
decides (by choosing among competing productions in
conflict resolution) whether to use the A–B or A–C
strategy. It encodes people-piece drawings as chunks
with four slots for each of the binary attributes. The
model handles mapping by examining the four attributes
sequentially and creating a declarative linked list of
attribute mapping chunks. Each mapping chunk indicates
a single attribute, which changes from source to target.
To apply this attribute mapping, the model first copies
the source person chunk into a target person chunk. It
then runs through the list of mapping chunks and
changes each mapped attribute. The model finally
compares the target chunk to the solution chunk and
responds true or false.

We set production parameters for the people-piece
model by following the basic assumptions of the physics
model. Productions that were copied from the physics
model maintained similar parameter settings, although
the a and r parameters changed to more accurately
reflect the task at hand. For other productions, action

643



times were again set at the ACT–R default of 50 msec.
The only crucial parameters are those for the competing
productions that choose the A–B or A–C strategy; in that
case, the r parameters were given identical values so that
the model would choose each with equal likelihood. We
also increased the productions’ strength parameters to
model repeated trials, because subjects solved over 1,000
people-piece analogies in the original Sternberg task; we
estimated these strengths to have a value of 3.5.

Figure 10.8 includes the predictions of the model
averaged from 10 simulations (dashed lines) along with
Sternberg’s empirical data (solid lines). The model
provides an excellent fit to the data. The model predicts
increasing latencies as the number of differing attributes
between A and B (or C) increases. This behavior arises
from both the mapping and application stages. In the
mapping stage, different attributes call for several extra
productions that handle the creation of a new mapping
chunk. In the application stage, each attribute that must
be mapped requires several additional production firings
to change values in the target person chunk. Because the
model chooses the A–B and A–C strategies with equal
likelihood, the effects are the same for attribute changes
in the A–B and A–C pairs.

We have thus shown that it is possible to transfer the
implementations of analogical skills between models for
different analogical tasks. The physics
and people-piece models share several analogy
productions, and also incorporate domain-specific
knowledge relevant to the particular task. Both models
also illustrate how production-rule models can account
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for multiple strategies of analogy: The physics model
can use either a solve-by-variable or solve-by-value
strategy, and the people-piece model can choose between
the A–B and A–C strategies. Presumably, if one of the
A–B or A–C strategies proved more effective (which is
not the case in Sternberg’s experiment), the people-piece
model could incorporate learning of that strategy similar
to the learning in the physics model.

Related Theories of Analogy

In understanding how ACT–R’s theory of analogy
relates to other theories of analogy, it is important to
realize that ACT–R addresses the steps of analogy at a
much finer grain size than most theories. As such
ACT–R is often not in contradiction with other theories
and often could actually implement these theories. The
one strong assumption it makes in contradiction with a
number of theories is that the steps of mapping occur
serially in time. Several other theories, including the
analogy mechanism in ACT–R 2.0, assume that
mappings are computed in parallel. However, in research
that has inspected the temporal structure of the analogy,
such as ours or Sternberg’s, the evidence seems strong
that the mapping is indeed computed serially, step by
step over time.

Although ACT–R addresses analogy at a finer grain size,
there are other senses in which the ACT–R account is
not as complete as these theories. One issue that arises is
the trade-off between the generality of the model and the
specificity of its predictions. Although most theories of
analogy operate over many domains, our theory posits
distinct but similar models for each domain, which
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overlap usually in only the high-level productions.
Although certain ideas and productions carry over
directly from existing models, some domain-specific
skills must be added for models in any particular new
domain. On one hand, this has the disadvantage of a loss
of generality, because each model operates over a
specific domain; on the other hand, the inclusion of some
domain-specific skills seems more accurate
characterization of analogy in many contexts and allows
us to make finer grained predictions to compare to
empirical data. Another issue on which our model
clearly needs further elaboration concerns the mapping
process. We assume that the problem involves a fixed
number of roles (quantities in the physics task or
attributes in the people-piece task) and the system simply
determines what fills these roles in the current problem.
A number of existing theories have addressed the
question of what happens when more complex mapping
relationships are required, and we review some of these
theories here.

The mapping process is the heart of Gentner’s (1983)
structure-mapping theory of analogy. Gentner proposed
three principles for inferring mappings between a source
and target analog: discard attributes of objects, preserve
relations between objects, and prefer systems of relations
(i.e., systematicity; see also Gentner & Toupin, 1986).
Using these principles, analogy then forms a mapping
between structures expressed in a predicate language
comprising relations and objects. Gentner’s theory does
not contradict the ACT–R account of analogy; in fact, it
is quite feasible that an ACT–R model could implement
such a theory. To build a production-rule model of the
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theory, we would need to represent the relevant concepts
as hierarchical structures of declarative chunks. The
model would contain production rules that can traverse
such a structure and build up a representation of a
mapping. These rules would implement Gentner’s three
principles and would produce a structure mapping from
source to target. Such a production-rule model would
decompose analogy into a number of discrete steps
rather than treating it as a single act. As such, it would be
possible to predict observables like the sequence of
visual scanning actions that subjects would make in
performing the analogy. Decomposing the overall
process into a number of rules would also enable us to
make predictions about how the analogy process would
improve with practice. Such predictions could be made
by ACT–R’s strength learning mechanism, as we have
seen with respect to the physics learning model in Fig.
10.4.

The structure-mapping theory has been the foundation
for several computational models of analogy, such as
SME (Falkenhainer et al., 1989) and I AM (Keane et al.,
1994). We believe that the empirical support for such
models could be strengthened in at least two ways. First,
the empirical support is based on comparisons using
metrics that correspond only indirectly with empirical
data; for instance, Keane et al. compared subject
latencies to the number of alternative mappings
computed by the model. Although the comparison works
adequately in this context, such metrics may not
generalize well to other theories and make it difficult to
evaluate the models with real data. Second, those models
that address working memory constraints (such as IAM)
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do not actually incorporate a dedicated limited-capacity
working memory, again complicating evaluation of their
ability to handle such constraints. Production-system
architectures can help address such problems. Because
architectures like ACT–R have a limited-capacity
memory built into the system, any analogy model
developed in the architecture must necessarily deal with
working memory constraints. Also, production-system
models produce traces that can be directly compared
with empirical evidence, avoiding the problem of
determining suitable metrics for comparison.

Like the mechanisms just described, Holyoak and
Thagard’s (1989a) ACME model considers analogy as
the creation of mappings between structures, but takes a
slightly different approach. ACME builds up a network
of mapping propositions with excitatory and inhibitory
connections, and uses constraint-satisfaction methods to
arrive at a solution. Although some work has linked
network-based systems to rule-based systems (Cho,
Rosenbloom, & Dolan, 1991; Lebiere & Anderson,
1993), fitting ACME into a production rule framework
seems awkward and certainly nontrivial. It is also the
case that the parallel constraint-mapping process is
fundamentally different than our serial mapping. We can
discuss, however, how our framework addresses some of
the same issues as ACME. Holyoak and Thagard
emphasized three constraints that affect analogical
behavior: structural, semantic, and pragmatic. Structural
constraints state that the system can form
correspondences between the objects and relations of the
source and target analogs; the mappings are usually
one-to-one. Semantic constraints add a similarity metric
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between objects and predicates that allow the system to
prefer certain mappings over others. Finally, pragmatic
constraints guarantee that analogy is relevant to the
current context—that is, that the current goal directs the
mapping process.

Production-rule models of analogy can implement each
of these constraints. Structural constraints arise from the
particular rules that implement the mapping process.
These rules can map relations to relations and objects to
objects; for instance, the physics model contains rules
that find one-to-one correspondences between the
symbols in the solution equation and the schematic
quantity equation, mapping operators to operators and
operands to operands. Semantic constraints fall out of
the spreading activation process for facts in declarative
memory. During rule matching, the source facts being
considered help to activate similar target facts, thus
facilitating retrieval of similar target objects and
relations. Pragmatic constraints arise from the fact that
we handle analogy within a general problem-solving
framework. Within such a framework, all actions are
purpose directed, taking into account the current goal
and context. Thus production-rule systems are well
suited to address all three constraints.

A recent entry into the field of analogical models,
Hummel and Holyoak’ s (1997) LISA model, embodies
arguably the most comprehensive theory of analogy to
date. LISA implements a theory of both analogical
access and mapping, which represents propositions as
distributed patterns of activation and learns mappings
through the process of dynamic binding. Like ACME,
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LISAs distributed nature makes it difficult for the model
to be expressed as a production system. Nevertheless,
LISA begins to address several of the problems we noted
in earlier models by focusing closely on working
memory constraints and by discussing (to a limited
extent) implications of the LISA
model for analogical processing at the algorithmic level.
However, the empirical support for LISA still
concentrates on the computational level of analogical
processing with model-specific metrics for evaluation.
Overall, we view LISA as a comprehensive model of
analogy at the computational level and as a promising
step toward understanding analogy at the algorithmic
level. However, a transition to a more process-oriented
theory like ACT–R would eventually be needed to
account for the moment-by-moment computation of
analogy.

It is important to emphasize two major differences
between the ACT–R theory and related theories. First, all
of the preceding models, with the exception of LISA, use
a single deterministic mechanism to represent the
analogical process. Therefore, as discussed earlier, these
theories cannot predict variability in analogical
strategies, nor can they predict adaptation of these
strategies during learning. Second, the theories as
presented are not incorporated into a more general
processing system, although the current trend seems to
indicate a move toward this incorporation (e.g., Gentner,
1989). Production-system models of analogy do not have
these limitations, as evidenced in the physics and
people-piece models.
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CONCLUSIONS

This chapter has described the new ACT–R 4.0 view of
analogy, namely, that analogy can be modeled by a
standard production system without the need for a
specialized analogy mechanism. ACT–R models of
analogy share higher-level productions for general
analogical processing but contain different lower-level
productions for domain-specific skill knowledge. In
contrast with most existing computational models,
ACT–R models of analogy predict both the results and
the intermediate steps of the analogical process, account
for variability and learning of analogical strategies, and
generate predictions that can be compared directly to
empirical data without the need for model-dependent
metrics. ACT–R thus provides an excellent theoretical
framework for the development and exploration of
models of analogical processing.

We view this study as having two major implications for
future analogy research. First, our study has
demonstrated how low-level data for analogical tasks
can elucidate the step-by-step process of analogy. Given
our now thorough understanding of analogy at the
computational level, we should focus our attention on
analogy at this algorithmic level. Second, our study has
shown that models of analogy implemented in general
problem-solving architectures can successfully account
for analogical behavior at both the computational and
algorithmic levels. We believe that modeling analogy
within ACT–R and other general theories of cognition
will prove to be a fruitful direction for future analogy
research.
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1It is possible that PC subjects might use the S2 values
exclusively when analogizing, which would in fact yield
correct results. However, the empirical results indicate
that very few subjects did this.
2All t-tests conducted are two-tailed.
3It has only one variable—c is a constant.
4In these and all other reference data reported, multiple
references to a single block with no intervening actions
were collapsed into one reference. This adjustment was
made because of subjects who tended to click several
times on the same block.
5We could ask why subjects would scan TP for the
quantity names, rather than SP. Because the SP quantity
names are covered by blocks, searching them would take
more time, and thus searching TP is more efficient. The
reference paths for PC subjects exhibit little bouncing
between S1 and SP supporting these conclusions.
6The default settings for these parameters are strength =
0, a = .05, b = 1, q = 1, and r = 1.
7This typing speed is slower than continuous typing
speed, but justifiably, because subjects are entering
numbers and operators rather than words in text.
8The values of these and other parameters are available
with the Web models.
9Terminal model simulations were run with base-level
learning enabled (decay rate of 0.5), strength learning
disabled, an expected gain noise variance of 0.2 (t =
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.247), and an activation noise variance of 0.1 (t =

.174)—see discussion of Conflict Resolution Equation
3.4 in Chapter 3.
10As with the terminal model, the learning model
simulations were run with base-level learning enabled
(decay rate of 0.5), strength learning enabled (decay rate
of 0.5), an expected gain noise variance of 0.2 (t = .247),
and an activation noise variance of 0.1 (t = .179).
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Scientific Discovery

Christian D. Schunn

John R. Anderson

Carnegie Mellon University

OVERVIEW

Earlier chapters demonstrated how ACT–R can do a
good job of accounting for the microlevel of cognition.
This emphasis on the lower level, however, raises the
question of whether ACT–R can scale to very complex
cognitive tasks—can ACT–R models of very complex
tasks be developed at this microlevel of detail both in a
reasonable amount of time and without being
overwhelmed by microdetail? Moreover, does this
microlevel bring any advantages or new insights to the
modeling of very complex tasks?

As an existence proof that the new ACT–R can scale to
very complex tasks, we present an ACT–R model of one
of the most complex tasks that we know of: designing
and interpreting experiments in psychology. We present
no proof of the relative complexity of this task, but
expect that most of the readers will agree, based on their
own experiences, that scientific discovery is a very
complex task.

In addition to providing another test of ACT–R, this
chapter seeks to provide further understanding of
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scientific discovery behavior and expertise in general.
Two particular questions are at the center of attention.
First, how much of scientific discovery behavior can be
understood by examining the microlevel processes?
Second, what skills underlie expertise in scientific
reasoning? Addressing these questions will involve a
mixture of new empirical and modeling work. But before
we present this work, we expand on this issue of
expertise in scientific discovery.

There is a mix of claims about the nature of scientific
discovery skills. On the one hand, there are claims that it
primarily involves very general skills (Qin & Simon,
1990; Shraagen, 1993; Voss, Tyler, & Yengo, 1983). For
example, scientific discovery is typically thought to
involve two primary activities: developing (and
evaluating) hypotheses and designing experiments (cf.
Klahr & Dunbar, 1988). At this basic level, it is similar
to the exploratory activities of children as they interact
and learn from their
environment (Klahr, Fay, & Dunbar, 1993; D. Kuhn,
1989; Piaget, 1952) and the way many adults learn to
program VCRs (i.e., by means other than reading the
manual). Along those lines, some research has found that
scientists do not have improved general-reasoning skills
(Griggs & Ransdell, 1986; Kern, Mirels, & Hinshaw,
1983; Mahoney & DeMonbreun, 1977). On the other
hand, there are claims that it, like any other area of
expertise, primarily involves many specific skills that are
acquired through extended experience in the domain. For
example, each scientific discipline has specific
experimental paradigms (Baker & Dunbar, 1996; T. S.
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Kuhn, 1970; Schunn & Klahr, 1995) and specific
methods for evaluating evidence (e.g., statistical tests).

To investigate the role of expertise in scientific
reasoning, we conducted an experiment that attempts to
assess empirically the skills available to expert and
novice scientists. In the next section, we describe this
experiment and its results. Following the experiment, we
describe an ACT–R model of the task and data. Of
particular importance is the issue of whether the model
can further illuminate the origins and nature of expertise
in a complex task like scientific reasoning.

An Experimental Study of Psychological
Experimentation

Method

The experiment used two groups of experts (4 Domain
Experts and 6 Task Experts) and two groups of novices
(14 High-Ability and 16 Mid-Ability undergraduates).
These groups were used to tease apart the effects of
domain expertise (i.e., declarative and procedural
knowledge specific to a particular domain of scientific
inquiry) and the effects of task expertise (i.e., the
procedural knowledge general to scientific inquiry in
many domains). The logic of the experiment was that
skills for which the two groups of experts perform
equally are domain-general skills and skills for which the
Domain Experts outperform the Task Experts are
domain-specific skills (or at least require
domain-specific declarative knowledge). The relative
performance of the novices would testify as to whether
the domain-general skills were learned through the
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experience of being a scientist or whether they were
shared by most adults. To examine the influence of
general reasoning ability, the undergraduates were
divided into two groups (High-Ability and Mid-Ability1)
using a median split on Math SAT scores. If the
differences between the undergraduates and the Task
Experts were due to task expertise and not general
reasoning ability differences, then there should be no
differences between the two groups of undergraduates.

We chose a particular scientific task that simultaneously
satisfied three constraints:

1. The solution was unknown to the Domain
Experts, as science involves the discovery of
previously unknown solutions.

2. The problem was free of domain-specific jargon
and easily understandable to even the novices.

3. The solution was obtainable through
experimentation.

A problem that seemed to meet these constraints was
taken from the domain of cognitive psychology. In
particular, the problem was to find the cause of the
spacing effect in memory—that items with longer
intervening intervals tend to be better remembered.

Because the domain was memory research in cognitive
psychology, the Domain Experts were cognitive
psychology faculty doing research in memory. The Task
Experts were social and developmental psychology
faculty not doing research in memory. The novices were
undergraduates who had not yet had courses in
psychology research methods.
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The subjects were given a description of the spacing
effect as well as two theories about the cause of the
spacing effect. These theories were simplified forms of
actual theories from the literature. The first theory was
the shifting-context theory, which stated that memories
are associated with the context under study and that
context gradually shifts with time. Under this theory, the
spacing effect occurs because spaced practice produces
associations to more divergent contexts, which in turn
are more likely to overlap with the test context. The
second theory was the frequency-regularity theory,
which states that the mind estimates how long memories
will be needed based on regularities in the environment
and, in particular, adjusts forgetting rates according to
the spacing between items. Under this theory, items
learned with short intervening spaces are forgotten
quickly because they need not be remembered for very
long, whereas items learned with long intervening spaces
are forgotten more slowly because otherwise they would
be long forgotten before they were needed again.

The subject’s goal was to develop experiments that could
determine that explanation of the spacing effect was
correct. The subjects used a computer interface called the
Simulated Psychology Lab (SPL) to design experiments.
The interface provided a set of variables that could be
manipulated, as well as the facility to conduct
factorial-design experiments easily. The use of the
computer interface allowed the subjects to observe the
outcomes of their
experiments and iterate through several
experiments—important aspects of scientific discovery.
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In the interface, the subjects could manipulate six
different factors:

1. Repetitions—the number of times that the list of
words was studied.

2. Spacing—the amount of time spent between
repetitions.

3. Source context—whether the studying occurred
in the same context for each repetition or
whether the context changed on each repetition.

4. The test task—free recall, recognition, or stem
completion.

5. Delay—the amount of time from the last study
repetition until the test was given.

6. Test context—whether the testing occurred in
the same context or a different context at test
relative to the study context.

For each variable, the subjects could either hold the
variable constant or vary it. Values had to be selected on
all dimensions, including the dimensions that were held
constant in the given experiments; no default values
were used. There was no restriction on the order of value
selection, and subjects could go back to change their
selections for any of the variables at any point in time up
until they selected to run the experiment. Figure 11.1
shows the six variables that could be manipulated as they
appeared on the screen and their current settings. In this
example, the experiment is only partially specified, with
only the repetitions and spacing variables
determined—repetitions was not manipulated (it was
held constant at 3) and spacing was manipulated (5 min
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vs. 20 min). An experiment was not complete until
values for all six variables were specified.

Fig. 11.1. The interface used for displaying the variables
that could be manipulated and their current settings in
the experiment being designed.

Subjects selected variable settings by clicking on sliders
and scrolling lists using a mouse. Figure 11.2 provides
an example of how values were selected for the source
context variable. The slider on the left was used to select
whether the variable was held constant (by setting it to
1—Fig. 11.2a) or whether the variable was manipulated
(by setting it to 2 or 3—Fig. 11.2b). Values for repetition
were selected using a slider, which varied from 2 to 5.
Values for context and test task were selected from a
scrolling list of three options. Values for spacing and
delay were selected using a slider (which varied from 1
to 20) and a scrolling list of units (minutes, hours, or
days).
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Fig. 11.2. The interface used for selecting how many
levels of an independent variable and the values for each
level. In (a), only one level is selected (i.e., this variable
is held constant), and the constant value is “Same.” In
(b), two levels are selected (i.e., this variables is
manipulated), and the values are “Same” and
“Diff-Rooms.”

The subjects made predictions and were given outcomes
in a table format with all cells being shown at once. A
table format was used rather than a graphical format
because it was thought that the table format was less
difficult to understand and manipulate for the
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undergraduate subjects. Before being given the table,
subjects had to decide on which dimension each
manipulated factor would be plotted. After deciding on
the table structure, subjects made numerical predictions
for their tasks. After completing their predictions, the
subjects were shown the results of their
experiment in table format (see Fig. 11.3). In addition,
the outcome tables also displayed the subject’s
predictions for each cell in italics. To facilitate
comparison across rows, columns, and tables, the row,
column, and table marginals were also provided. To
provide a rough evaluation of the quality of the
predictions, the subjects were shown the Pearson
correlation between the predictions and outcomes. The
actual results displayed were generated by a
mathematical model that is roughly consistent with
results from research on memory and the spacing effect.
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Fig. 11.3. The interface used for displaying the outcomes
of experiments. Actual outcomes are the main entry in
each cell. Predicted outcomes are in italics. The r value
is the Pearson correlation between the predictions and
actual outcomes.

Subjects worked at the task until they felt that they had
found out what the cause of the spacing effect was. The
primary data gathered in this experiment was the
keystroke data generated as the subjects designed
experiments, chose the table structures, and interpreted
experiments. To provide additional information about
the processes they used, the subjects were asked to give
a think-aloud verbal protocol throughout the task, and at
the end of the task they were asked to report verbally
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their conclusions about the two theories for the spacing
effect and their conclusions about the effects of each of
the six variables.

It is important to note that the SPL environment and the
structure of the experiment simplified many aspects of
scientific discovery that a scientist would often have to
accomplish. Just to name a few: The subjects did not
have to work in groups (e.g., with collaborators,
advisors, students, or
research assistants), they did not have to propose the
theories to test, they did not have to propose which
variables might be manipulated, they did not have to
decide on the general experimental paradigm (i.e., they
were forced to use a between-subjects factorial design
involving a study of words followed by a single test),
there were many other variables for which values would
have to be selected (e.g., subject Ns) and yet were not
mentioned, the subjects did not have to compute
inferential statistics, and the subjects did not have to
publish their results. In part, these components of
scientific discovery had to be removed for practical
considerations (e.g., in order to be able to present the
subjects with experimental outcomes and allow them to
iterate through the process of experiment design and
outcome evaluation).

It is equally important to note that many of the important
and difficult aspects of scientific discovery were
maintained in this task. First, subjects designed
experiments to test theories and evaluated those tests,
two very basic and important aspects of scientific
discovery. Second, the subjects were given a real
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scientific phenomenon, real scientific theories, and real
expert mental variables. In particular, the mapping of the
two theories for the spacing effect onto these six
variables was not simple. This is typical of the
relationship between theory and operational variables in
most psychological theories and experiments. Third,
there were many complex experiment design decisions
that remained, as we will see in the results. Fourth, the
stopping criterion for when the theories were adequately
tested was not well defined. Thus, it is fair to say that the
subjects were presented with a complex and relatively
ill-defined problem.2

Results

Comparisons of the different groups of subjects revealed
several kinds of skills that were common to experts but
were lacking in undergraduates. Schunn and Anderson
(1997) gave a more complete listing of skills that were
examined. In this chapter we focus on five skills that
involved clear expert-novice differences. Later in the
chapter, we discuss how these differences can be
understood within ACT–R.

Design Experiments to Test the Given
Theories. Using the verbal protocols, we classified the
participants according to whether or not they mentioned
either of the two theories (frequency regularity and
shifting context) during the course of design
experiments, either during the first experiment or during
any experiment. Note that this is a very lax criterion for
measuring use of theories in experiment design—only
one theory need be mentioned and the theory need only
be mentioned in passing, thereby
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ensuring that the understanding of both theories was not
required to be successful under this measure. All of the
Domain Experts and Task Experts mentioned the
theories, starting with the very first experiment (see Fig.
11.4). However, only 64% of the High-Ability
undergraduates and 6% of the Mid-Ability
undergraduates mentioned the theories during any of the
experiments, significantly fewer than the Task and
Domain Experts. Thus, it appears that not even all of the
brighter undergraduates understood that theories are used
to guide experiment design. Instead these undergraduates
simply designed experiments to explore the effects of the
various factors.

Fig. 11.4. Proportion of subjects in each group who
mention the theories during experiment design (during
the first experiment or during any experiment).

How did these differences in orientation toward the
overall task impact the choice of factors to include in the
experiments? Focusing on the undergraduates, Fig. 11.5
presents the proportion of undergraduates including each
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of the factors in their first experiment as function of
whether they were trying to test theories (mentioned the
theories during the design of the first experiment) or
simply exploring the factors (did not mention either
theory during the design of the first experiment).
Although the undergraduates testing theories focused on
the factors relevant to the theories under test (spacing
and source context), the undergraduates exploring the
factors selected among the factors using a simple visual
strategy, preferring leftmost and topmost variables (as
shown in Fig. 11.1).

Fig. 11.5. Percentage of undergraduate subjects varying
each of variables in the first experiment as a function of
whether they were explicitly testing the given theories or
simply exploring the factors.

Keep General Settings Constant Across
Experiments. Another general heuristic of
experimental design is to use the same constant values
across experiments—it makes comparisons across
experiments easier, and it capitalizes on the success of
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previous experiments. Note that this is subtly different
from the focus of previous psychological research on
variable variation (e.g., Schauble, 1990; Tschirgi, 1980).
Previous research examined whether individuals vary
one factor at a time within their experiments (i.e., avoid
confounding variables). In the SPL environment, the
interface forces
valid, factorial designs. However, there remains the issue
of consistency across experiments.

Consider the following example. Suppose that in the first
experiment the individual decides to vary only
repetitions, selecting 2 versus 3 repetitions. The
remaining variables are held constant, and the particular
constant values are shown in Table 11.1. Then suppose
that in the second experiment the individual decides to
vary repetitions again, but this time using a stronger
manipulation of 2 versus 5 repetitions. The issue of
interest here is what constant values the individual
selects for the other variables. The individual could
select all the same constant values as in the first
experiment (see Experiment 2 in Table 11.1).
Alternatively, the individual could select different
constant values (see Experiment 2’ in Table 11.1). Both
permit logically valid conclusions regarding the effects
of repetitions. However, Experiment 2 is more
conservative; varying all the factors as in Experiment 2’
increases the risk of producing a useless experiment
(e.g., producing floor or ceiling effects).

Table 11.1
Example Experiments Illustrating the Difference
Between Holding General Settings Constant
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(Experiment 2) and Varying General Settings
(Experiment 2’)

Variable Experiment 1 Experiment 2 Experiment 2’

Repetitions 2 vs. 3 2 vs. 5 2 vs. 5

Spacing 10 min 10 min 2 days

Source context Same room Same room Different room

Test task Recall Recall Recognition

Delay 1 day 1 day 20 min

Test context Same room Same room Different mood

Violations of this heuristic were counted by examining
the situations in which a variable was not manipulated in
consecutive experiments and then determining whether
the same constant value was used in both experiments
(e.g., hold spacing constant at 10 min across multiple
experiments). Three measures of the tendency to keep
values constant were used: whether the subject ever
changed more than one unmanipulated variable value
(i.e., minor violations that might even have a
justification), whether the subject ever changed more
than two values, and whether the subject ever changed
more than three values (i.e., major violations). Across
the different measures of value variation, the Domain
Experts, Task Experts, and High-Ability undergraduates
did not differ significantly (see Fig. 11.6). By contrast,
the Mid-Ability undergraduates were higher on all
measures of value variation, with almost one third of
them varying three or more constant values, suggesting
that many of them did not understand this heuristic.
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Fig. 11.6. Percentage of subjects varying more than one,
two, or three values.

Avoid Floor and Ceiling Effects. In designing
experiments, it is a good heuristic to try to avoid floor
and ceiling effects because they make the interpretation
of null effects and interactions very problematic. To
examine whether the groups were differentially effective
at avoiding floor and ceiling effects, we coded which
experiments produced all outcome values over 90%
correct or all outcome values less than 10% correct.
Figure 11.7 presents the proportion of participants with
any such floor or ceiling effect experiments. The
Domain Experts never produced such experiments,
indicating that domain knowledge could be used to avoid
floor and ceiling effects. The High-Ability
undergraduates were just as likely as the Task Experts to
produce a floor or ceiling effect experiment, and the
Mid-Ability under-graduates
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were even more likely to produce such an
experiment—possibly a result of being less conservative
in their value selections.

Fig. 11.7. Percentage of subjects with floor- or
ceiling-effect experiments.

How did subjects respond to these potentially invalid
experiments? Of the seven subjects producing floor or
ceiling effects, five changed the delay values
appropriately on the next experiment (i.e., decreasing it
if there was a floor effect and increasing it if there was a
ceiling effect). One subject changed the spacing values,
which was also effective. The remaining subject held
delays constant (at 1 min) and, consequently, had
frequent ceiling-effect problems—in six of nine
experiments. In sum, the majority of the subjects who
produced floor and ceiling effects were able to react
appropriately. This, combined with the previous result,
suggests that they understood at some level what floor or
ceiling effects were and that they should be avoided, but

672



did not initially have sufficient domain knowledge to
avoid them.

Keep Experiments Simple (When
Necessary). Another general principle of experiment
design is to keep experiments simple, especially as a first
approach. Figure 11.8 presents the mean experiment
complexity for participants in the various groups (the
mean number of factors per experiment). The Domain
Experts designed more complex experiments than did
the Task Experts, and both groups of undergraduates
designed more complex experiments than did the Task
Experts. The High- and Mid-Ability undergraduates
produced equally complex experiments. From the verbal
protocols, it was clear that the Domain Experts were able
to interpret their complex experiments, whereas the
undergraduates were often overwhelmed with the large
tables they produced. Thus, it appears that Domain
Experts do not need to keep experiments simple, and that
undergraduates do not know that they should keep
experiments simple.
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Fig. 11.8. The mean number of factors varied per
experiment.

Encode Interactions and Ignore Noise Levels. An
important general outcome-interpretation skill is the
ability to encode the main effects and interactions within
a table. All groups of subjects were able to correctly
report the main effects of the variables at the end of the
task (if they had run an experiment manipulating the
variables). Therefore, we can assume that the groups
were all capable of encoding main effects. However,
there were differences in ability to encode interactions.
In this task, there were two two-way interactions. First,
there was a quantitative Spacing × Delay interaction,
such that the spacing effect was larger at longer delays.
Second, there was an effect/no-effect Spacing × Test
Task interaction, such that there was no spacing effect
with stem completion. As with the main effect analysis,
subjects’ final hypotheses were coded for correctness on
these two interactions, and only those subjects who had
conducted the relevant experiments were included in this
analysis. Overall, the Domain Experts and Task Experts
were equally able to correctly encode these interactions
(see Fig. 11.9). By contrast, the High-Ability
undergraduates were less able to encode the interactions,
and the Mid-Ability undergraduates rarely encoded the
interactions.
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Fig. 11.9. Percentage of subjects making correct
conclusions about each interaction given opportunity to
observe the interaction (hits) and percentage of subjects
making extraneous interaction conclusions (false
alarms).

In addition to being able to encode interactions when
they exist, there is also the skill of noting noninteractions
(i.e., not being deceived by small levels of noise). To see
whether the groups differed in their ability to note
noninteractions, the subjects’ final conclusions were
coded for descriptions of nonexistent interactions. The
Domain Experts and Task Experts almost never made
such errors, whereas the undergraduates made a
significant number of such errors (see Fig. 11.9). In fact,
the undergraduates are just as likely to report nonexistent
interactions as to report existing interactions.

In sum, this experiment found several skills that are
common across Domain and Task Experts, but that many
undergraduates are missing. The differences between
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experts and undergraduates suggests that this task tapped
aspects of expertise in science. The lack of differences
between
Domain Experts and Task Experts further indicates that
some aspects of this expertise are general to scientific
reasoning (at least within trained psychologists). Given
that bright undergraduates are missing these
competencies, they must have been acquired through the
practice of doing science. In the next section we present
an ACT–R model of the SPL task, which may further
illuminate this issue of generality of expertise.

The ACT–R Model of the SPL Task

Overview

We had three primary goals in building an ACT–R
model of the Simulated Psychology Laboratory (SPL)
task. First, as discussed in the introduction to this
chapter, we wanted to see whether we could build a
model of a complex task in the new, smaller grain size
ACT–R. Second, we were interested in what kinds of
general modeling styles would emerge from building a
model of this task. Many subtasks had to be solved and
the methods for solving these subtasks may generalize to
modeling other phenomena. Third, we were interested in
what insights a detailed process model might provide for
understanding the group differences observed in the SPL
task. The model as presented focuses on capturing
Domain Expert performance, but we also discuss how it
can be modified to capture the group differences. We
touch on each of these three goals throughout the
description of the SPL model. Although the model is by
no means a complete model of all the aspects of behavior
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in the SPL task, the model is quite complex, reflecting
the complexity of the task. There are 48 chunk types and
116 productions. Consequently, we sketch the
functionality of the model rather than simply presenting
the productions.

Much of the model is concerned with interactions with
the environment. That is, at many points the model has
to encode information from the visual array or perform
actions in that array. Although we could have, we did not
make the model interact with the actual SPL interface
(because it would have to be reimplemented in LISP).
Nonetheless, we were careful to put into the model the
necessary rules for interacting with the interface. Most
importantly, the model distinguishes between internal
and external memory, and productions do not directly
access external memory. Thus, the model could be
hooked up to a LISP reimplementation of the interface
without having to modify the core productions. The
details of these rules are discussed relatively little in this
report, but they can be examined by following the
Published ACT–R Models from the ACT–R home page
(http://act.psy.cmu.edu/).

The top level goal of the task is a DISCOVERY goal. It
specifies that the goal of the task is to discover whether a
given hypothesis is correct. To implement the full goal
of the task—discover which of two hypotheses is
correct—we push two DISCOVERY goals onto the
stack, one for each hypothesis. From the verbal
protocols, it appears that this divide-and-conquer
strategy was used by many of the subjects.
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The DISCOVERY goal leads to repeated pushing of
EXPERIMENT goals to perform individual experiments
and EVALUATE-EVIDENCE goals to examine whether
these experiments have produced results that satisfy the
DISCOVERY goal. The terminating condition that
EVALUATE-EVIDENCE seeks is that some
consequence of the hypothesis under test has been
directly proven true or false. For example, the
shifting-context hypothesis (that source context mediates
the spacing effect) has as a consequence that there
should be an effect of source context. When source
context is found to have no effect, then the
shifting-context hypothesis is assumed to be false, and
the DISCOVERY goal for that hypothesis is achieved.
Currently these consequences are not derived via
inductions or deductions, but are simply retrieved from
memory. Because the subjects were given consequences
of each theory in the explanations of how the theories
explain the spacing effect, retrieval of such
consequences from memory is a reasonable model of
subjects’ behavior.

Each hypothesis for a variable consists of an effect
direction (greater-than, less-than, or equal-to), and a
belief level (true and maybe). Each experiment can:

1. Create a new hypothesis with initial truth level
of maybe (if no prior hypothesis for the given
variable existed).

2. Move the belief level from maybe to true (if the
same effect direction was observed).

3. Move the belief level from true to maybe (if a
different effect direction was observed).
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4. Change the effect direction, holding the belief
level at maybe (if the belief level was maybe
and a different effect direction was observed).

Thus, three consistent outcomes will lead the model to
either accept or reject any hypothesis even if the prior
beliefs were in the opposite direction, two consistent
outcomes are required if no prior hypothesis exists, and
only one if the prior knowledge is consistent with the
outcome.

Each EXPERIMENT goal leads to the design, running,
and encoding of one experiment (see Fig. 11.10). There
are three different subtypes of EXPERIMENT goal,
which can be thought of as different experimental
paradigms: HYPOTHESIS-TESTING,
EXPLORE-SYSTEM, and TEST-FACTOR.3 The
HYPOTHESIS-TESTING and EXPLORE-SYSTEM
subtypes correspond to the two general approaches that
subjects took toward the task: designing experiments
relevant to the hypotheses, versus simply investigating
the effects of the six factors. Previous models of
scientific discovery have also distinguished among such
different approaches to experimentation (e.g., Cheng,
1990; Klahr & Dunbar, 1988; Shrager, 1985, 1987). The
TEST-FACTOR is produced as a consequence of an
experiment that produced an ambiguous result that needs
to be explored further. The three types of goals lead to
similar experiment design behaviors, although there are
some critical differences. In the next subsection, we first
describe experimental design for hypothesis testing.
Then we discuss the differences for the other two types
of goals.
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Fig. 11.10. The model’s top-level goal structures.

Experimental Design

The experimental design process is similar for the three
EXPERIMENT goal subtypes in Fig. 11.10. We describe
the experimental design process with respect to the
HYPOTHESIS-TESTING goal, which produces the
overall structure of designing an experiment to test a
hypothesis. A HYPOTHESIS-TESTING goal pushes
two primary goals: to vary the hypothesis factors, and to
fix the remaining variables. The goal to vary hypothesis
factors selects whether to vary one or two factors
relating to the hypothesis and which factors to vary. The
goal to fix the remaining variables then iterates over the
variables visually and selects the remaining unselected
variables.

The content of the hypothesis under test drives the
selection of factors to vary. The hypothesis has three
components: the variable causing the effect, the direction
of the effect of the variable (greater-than, less-than,
equal-to),
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and the current belief level (true or maybe). To select a
variable to manipulate, the simulation searches for a
consequence of the hypothesis under test, which names a
variable and an expected effect direction. For example, a
consequence of the shifting-context theory is that source
context should have a greater-than effect (i.e., varying
study contexts should improve retention). The simulation
then sets a goal to vary that consequent variable.

A series of productions are responsible for setting the
factors. They start with task-specific productions of the
form, “if you want to vary some factor and you are
looking at the main screen then press the button relating
to that factor.” When the screen relating to the desired
factor is achieved, a VARIABLE-SETTING goal is
created and pushed on the stack. This
VARIABLE-SETTING goal serves as both a control
structure and a memory for details of the experiment
design. The VARIABLE-SETTING goal initially
contains only information about which variable is being
considered. Incrementally, slots are filled regarding the
number of levels of that variable and what value each
level has. For example, if the repetitions variable is to be
varied, then the number of levels is set at 2, the first
value may be set to 3, and the second value may be set to
5. Alternatively, if the repetitions variable is not to be
varied, then the number of levels is set at 1, the first
value may be set to 3 repetitions, and the second value is
left empty.

By default, if the simulation does not have a goal to vary
this particular factor, it chooses not to vary the factor.
However, there is one exception. If the simulation is
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planning on varying some other factor B and can retrieve
an INTERACTION hypothesis involving that factor B
and the current factor A, then the simulation chooses to
vary the current factor A. In other words, the simulation
prefers to vary only the one selected factor unless it
expects to find interactions with that factor. More is said
about these INTERACTION hypotheses when it comes
to encoding the results of experiments.

How are particular values selected for each variable?
Knowledge of possible selections for a particular
variable is presented in the form of
POSSIBLE-SELECTION chunks. At first, when the
simulation has not previously considered a variable, it
has no POSSIBLE-SELECTION chunks in memory for
that variable, and must create POSSIBLE-SELECTIONS
by conducting a visual search of the options available in
the interface. This visual search creates a
POSSIBLE-SELECTION chunk for each possibility.
Given a set of POSSIBLE-SELECTION chunks, there
are four alternative schemes for selecting a particular
one. The alternative schemes are implemented as
productions competing in conflict resolution. The first
scheme is to choose the visually leftmost (or topmost)
selection. The second scheme is to choose randomly
among the POSSIBLE-SELECTIONS, which favors the
most active one in memory. The third scheme is to
specifically retrieve the value that was used for that
variable in a prior experiment (and activation differences
will favor the just previous experiment). The fourth and
final scheme is to retrieve specific knowledge of what
values must be avoided and find a value that satisfies
these constraints. For example, a previous experiment
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may have determined that short delay values lead to
ceiling-effect problems. Therefore, short delay values
will be avoided.

The alternative EXPERIMENT goal types in Fig. 11.10
have similar goal structures as the
HYPOTHESIS-TESTING goal. The most similar is
TEST-FACTOR, which pushes a goal to vary the factor
it desires to test and another goal to fix the remaining
variables. In contrast, EXPLORE-SYSTEM simply
conducts a visual search for the variables not yet set, and
then pushes a goal to vary the first such factor found.

Encoding the Table

After the experiment is designed and run, the resulting
table must be encoded. The ENCODE-TABLE goal
initializes and directs the search over the table, setting
ENCODE-DIMENSION subgoals for each of the table
dimensions. The slots of ENCODE-TABLE are method,
start-cell, current-dimension, and searched-dim. All of
these slots start out empty and are filled in that order.
The method slot encodes the method that will be used to
search the table. The LtR-scan method is the default
method and searches tables from left to right and top to
bottom. The start-cell indicates the reference cell to
initiate all dimension searches. It is set by default to the
upper leftmost cell in the upper leftmost table. The
current-dimension slot encodes which physical
dimension is currently selected to be searched (i.e.,
horizontally vs. vertically vs. across tables vs. down
tables). When its value is nil, it is initialized to be
dimension-1 (searching down within a table). The
searched-dim slot encodes whether the selected
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dimension has been searched yet. If its value is nil, then
an ENCODE-DIMENSION goal is pushed for that
subgoal (and the searched-dim slot is then set to true). If
its value is true, then the next search dimension is sought
(by visually searching
the table) and the searched-dim slot is reset to nil. If no
more unsearched dimensions can be found, then the table
is assumed to be fully encoded, and the
ENCODE-TABLE goal is popped.

The ENCODE-DIMENSION goal directs the search for
a main effect of a particular dimension. Its slots are
dimension, variable, current-cell, current-value,
prev-value, value 1, value2, feature, and prev-feature.
The dimension and current-cell values are initialized
with the values taken from the ENCODE-TABLE goal.
The next slot to be filled is the variable slot, which
encodes the name of the dimension being searched.
Value 1 and value2 encode the names of the factor levels
of the dimension (or factor) being encoded (e.g., same
and different room levels on the source-context
dimension).

The current-cell slot encodes the physical location in the
table where the search is currently focused. The
current-value slot encodes the value of that cell and the
prev-value slot encodes the prior value on that
dimension. When the current-value and prev-value slots
are both filled, the feature slot is used to encode the
pattern formed by these two values. The relationship
between the two values is encoded as greater-than,
less-than, or equal-to. An equal-to feature is immediately
created only when exact equality is found. However,
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when the size of the difference is below some threshold
(5 in this simulation), the feature is recoded to be
equal-to as well. For example, the comparison between
prev-value = 65 and current-value = 63 would result in
an equal-to feature (after first encoding a less-than
feature).

Once the feature is encoded, the search for effects of that
dimension continues in the next row (or column) of the
table. For example, in a 2 × 2 table, the first column is
searched first, followed by the second column. When the
search of the second column begins, the value of the
feature slot is placed in the prev-feature slot, and the
feature slot is reset to nil. At the end of the search of the
second column (and all subsequent ones) of a given
dimension, the values of the feature and prev-feature slot
are compared. If the two values are the same, then the
search continues. When there are no new columns to
search, the simulation assumes there is a consistent main
effect of the dimension and the ENCODE-DIMENSION
goal is popped. When the two values are not the same,
then the simulation assumes there is an interaction and
no consistent main effect and the
ENCODE-DIMENSION goal is popped even if there are
more columns to encode on that dimension.

In either case (consistent or no consistent main effect), a
TEST-GENERALITY goal is pushed, with the name of
the examined variable and the found feature, in the
consistent case, or with an equal-to feature, in the
inconsistent case. The generality of the feature is tested
by comparing it to the current hypothesis regarding that
variable. If no such hypothesis exists,

685



it is created and the truth level is set to maybe. If the
hypothesis for that variable exists and is consistent with
current outcome, then the hypothesis truth level is
strengthened (i.e., is changed from maybe to true).
However, if the hypothesis is inconsistent with the
current outcome, then a subgoal to explain the
inconsistency is pushed.

The subgoal to explain the inconsistency initiates a
search for possible design problems in the current
experiment that might have lead to misleading results.
The simulation can currently detect three types of
problems. If the values in the table are above 90% and
there was no effect of the variable, then the simulation
proposes that there was a ceiling effect. If the values in
the table are below 10% and there was no effect of the
variable, then the simulation proposes that there was a
floor effect. If the two values of the variable were too
close together (e.g., 1 min and 2 min) and there was no
effect, then the simulation proposes that the
manipulation was too weak. In the case of the floor and
the ceiling effects, the simulation examines the details of
the experiment design to see what might have caused
those effects.

A discovered experiment problem is stored in a chunk
(called EXPERIMENT-PROBLEM), which then can be
used to influence later experiment designs. In the case of
a weak manipulation, the next experiment will use the
TEST-FACTOR paradigm to design the experiment
(instead of TEST-HYPOTHESIS or
EXPLORE-SYSTEM). For all three types of problems,
when that particular variable is being considered during
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the design of the next experiment, a production will set a
subgoal to try to find a value that avoids the problematic
values found in the previous experiment. Thus, although
the simulation is conservative in that it prefers to pick
the same variable values as in the previous experiment, it
will specifically avoid values that were found to be
problematic.

When interactions are found, an INTERACTION chunk
is created and pushed as a goal. Its slots are variable 1,
variable2, feature 1, feature2, cell, and prev-cell.
Variable 1 encodes the variable that was being searched
when the interaction was found. Feature 1 and feature2
encode the two inconsistent features that were found.
Cell encodes the table location that was last viewed
when the interaction was found (and was associated with
feature2). To determine what the interacting variable
(variable2) was, the simulation first retrieves a cell that
was associated with the other feature (feature 1), and
then determines which dimension differentiated the two
cells.

In sum, experiments are designed by considering factors
one at a time, focusing on the theory-relevant ones first.
Experiment outcomes are interpreted by scanning the
table, noticing main effects and interactions, and testing
the generality of these effects. The simulation iterates
through these processes until the hypothesis under test
has been either confirmed or disconfirmed.

General Features of the Model

There were a number of general approaches adopted in
this model that are useful in developing ACT–R models
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for many domains. We mention three here. Performance
in this task required interleaving productions that were
not specific to the interface with productions that were
(cf. Gray, 1997). For instance, experimentation-general
productions selected which variables were relevant to the
hypothesis, but device-specific productions chose to
initiate manipulation of the variable by pressing the
button for that variable. The experimentation-general
productions represent what subjects knew about
designing experiments before our task whereas the
device-specific productions represent what they had to
learn to perform our task. The critical problem is to
enable the general productions to transfer from scientific
discovery to our task without having the specific
productions learned in our task transfer back to other
environments. For example, our expert subjects would
not want to return to their offices, try to design an
experiment, and then be looking for a particular factor
button on the screen. This delimitation of transfer was
achieved by giving all goals a looking-at slot that
referred to the general contents of the current screen. The
device-specific productions contained tests for the value
of the slot and so would not generalize to other contexts.

Second, we used a context slot to bind together in
memory all the chunks representing a particular
experiment. For example, there were
VARIABLE-SETTING chunks encoding the values
selected for each factor and EN-CODE-DIMENSION
chunks encoding the outcomes for each variable that was
varied. The model could tell when they referred to the
same experiment by seeing if they had the same value in
the context slot. This allows the model to distinguish
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between the current experiment and previous
experiments, all of which must be maintained in
declarative memory. This use of the context slot is
similar to the list slot used in the simulations of the list
memory experiments (see Chapter 7) and is an idea that
can be traced back to the list memory models of
Anderson and Bower (1972). In the SPL simulation, the
context slot is always the number of the current
experiment. This context value is automatically updated
when a new experiment is begun.

A third feature of the simulation is the distinction
between memory retrieval and visual retrieval. In many
instances, information can be obtained either by doing a
memory retrieval or by setting a VISUAL-SEARCH
goal to retrieve the information from the interface. For
example, in the design of experiments after the first one,
either the POSSIBLE-SELECTION chunks can be
retrieved from memory from the design of the previous
experiment, or new ones can be created again by another
visual search of the interface. With production parameter
learning turned on, the productions
tune themselves to switch from visual retrieval to
memory retrieval over time.

A Trace of the Running Model

We now step through a trace of the running model. We
do not, however, present every step, since a full run
requires over 1,000 cycles and contains many repetitive
aspects. Moreover, we suppress the steps relating to
motor activities. A full trace can be found by running the
model available on the Web.4 The snippets of trace that
we provide take advantage of the user feature (!output!)
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to print out a message in a production to announce what
it is doing. This produces something with the flavor of a
verbal protocol.

Setting Variables

Our general exposition strategy in this section is to
present a fragment of protocol and follow it by an
explanation. The protocol for one run begins:

Looking for a screen_type

Found screen_type object Main_Screen

Evaluate evidence for hypothesis Shifting_Context.

Found consequence Source_Context Greater_Than.

Design an experiment to test hypothesis Shifting_Context

Vary hypothesis factors and fix remaining variables.

Found consequent variable Source_Context of the
hypothesis

Shifting_Context

Vary variable Source_Context

Click on the button relating to factor Source_Context

ACTION: Click button 3LEFT

NEW SCREEN: Choose Variable

The model begins by looking to environment to uncover
what screen type is on the screen and finds that the
environment is in the MAIN_SCREEN state. Then the
model evaluates the current evidence for the hypothesis
under test by considering when one of its consequences
is true. It cannot retrieve any knowledge about the truth
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of this consequence and so returns to designing an
experiment. At this point, the model chooses to design
an experiment to test the shifting-context hypothesis
(i.e., push a HYPOTHESIS-TESTING subgoal). This in
turn pushes goals to vary factors relevant to the
hypothesis and fix the remaining factors. With respect to
varying factors relevant to the hypothesis, the model
selects to vary the
variable identified in one of the consequences of the
hypothesis. The model then clicks on the button relating
to that factor.5 The protocol continues:

Looking for a screen_type

Found screen_type object Source_Context

On the right screen to pick Source_Context

How many levels are we currently at for Source_Context?

Found nlevels One

Source_Context is at 1, but we want 2, so change it

Clicking slider Source_Context

ACTION: Update nlevels for Source_Context to Two

Look for options for variable Source_Context

Visually found option Same

Visually found option Diff_Room

Visually found option Diff_Mood

Pick the top value (Same) as a default.

Making selection One for Source_Context

ACTION: Update value One for Source_Context to be Same
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Picking Diff_Room as second value.

Making selection Two for Source_Context

ACTION: Update value Two for Source_Context to be
Diff_Room

Done picking values for Source_Context

ACTION: Click Done

NEW SCREEN: Main Screen

After clicking on the source context button, the model
discovers that it is now on the correct screen to actually
modify source context. It then creates a
VARIABLE-SETTING goal for source context and
proceeds to fill in the slots for that goal. The first slot to
be filled is how many levels is the variable currently set
at, which it discovers is currently 1. However, because
the goal was to vary this variable, this must be updated
to 2. Then the model looks to the environment to
discover which possible selections there are. Three are
found (Same, Diff-Room, and Diff-Mood), and Same is
selected for the first value (because it is the topmost
value in the interface), and Diff-Room is selected
randomly for the second value (because it happened to
be the most active in memory, other than Same). Thus,
this aspect of the experiment is designed without
significant amounts of knowledge. The protocol
continues:

Looking for a screen_type

Found screen_type object Main_Screen

Look for first unselected variable.
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Found variable Repetitions

Consider factor Repetitions

Click on the button relating to factor Repetitions

ACTION: Click button 1LEFT

NEW SCREEN: Choose Variable

Looking for a screen_type

Found screen_type object Repetitions

On the right screen to pick Repetitions

How many levels are we currently at for Repetitions?

Found nlevels One

Search memory to see if Source_Context is an interacting
variable with Repetitions

Look for options for variable Repetitions

Visually found option Two

Visually found option Three

Visually found option Four

Pick the top value (Two) as a default.

Making selection One for Repetitions

ACTION: Update value One for Repetitions to be Two

Done picking values for Repetitions

ACTION: Click Done

NEW SCREEN: Main Screen

…
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Back at the MAIN_SCREEN, the model looks for the
nextmost unselected variable and finds repetitions. For
this variable, the number of levels is left unmodified at 1
as a default, and the topmost value of 2 is selected as the
value. This process continues until values for the
remaining four variables are selected.

Interpreting an Experiment

We resume the protocol when the experiment design is
complete:

…

Looking for a screen_type

Found screen_type object Main_Screen

Look for first unselected variable.

Finished selecting variable values.

Finished designing the experiment, click on run

ACTION: Click Run

NEW SCREEN: Outcome Table

Exper1

Repetitions — Two

Spacing — One_minute

Source_context — Same Diff_room

Test_task — Stem

Delay — One_minute

Test_context — Same

Source_Context
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Same 100

Diff_Room 99

When no more unselected variables can be found, the
experiment design is complete and the experiment is run.
The simulation of the SPL task prints the designed
experiment and outcome of the experiment. In this case,
only source context was varied, and the results were
100% for Same and 99% for Diff-Room. Then the
interpretation of these results begins:

Looking for a screen_type

Found screentype object Outcome_Table

Encode table.

Try scanning left-to-right.

Visually find starting place — top left.

Found top-left cell 1111

Start with dimension dim1.

Push goal to encode dimension Dim1

Visually get cell value

Found value 100

Look for value 1 visually

Found dimension value Same

Visually locate dimension variable.

Found dimension name Source_Context

To encode the outcomes, the model first selects the
default scanning strategy—top-down, left-to-right. Then
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the model locates the table reference cell (upper
leftmost—encoded as 1111) to begin the search. Finally,
the model looks for a dimension to search, beginning
with dimension 1 (going down). Because this dimension
has not yet been searched (i.e., no
ENCODE-DIMENSION chunk for that dimension can
be retrieved), the model pushes an
ENCODE-DIMENSION goal to search that dimension.
At this point, the model could either look to find the
name of dimension variable, or encode the contents of
the first cell. In this case, it happens to encode the
contents of the first cell (100%). Then it searches for the
value on that dimension that corresponds to the cell
(Same). Finally, it looks for the name of the dimension
variable (Source_Context).

Move in desired direction.

Found location below, 2111

Visually get cell value

Found value 99

Look for value2 visually

Found dimension value Diff_Room

Notice less than pattern.

Difference −1 in Dim1 is not significant.

Finished first row of dimension Dim1

The model then moves to the next cell in the direction of
the search dimension, encodes the cell contents, and
discovers what variable value is associated with that cell
(Diff-Room). Comparing the table cell values of 99 and
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100 (encoded in the earlier trace fragment), the model
creates a pattern chunk encoding a less-than relation.
This feature is elaborated to note that the difference of 1
is not significant, thereby changing the feature to an
equal-to relation. Then the first pass at dimension 1 is
complete, and the model attempts to move to the next
row (or column in this case) in this dimension.

Finished encoding dimension. See if main effect generalizes.

Hypothesize that Source_Context may have no effect and
check for problems.

Pop hypothesis.

Rehearsing hypothesis involving Source_Context

Suspect a ceiling effect.

Delay One_Minute too short.

Rehearsing experiment_problem involving Delay

…

Because there are no more rows to search on that
dimension, and no interactions have been found, the
model assumes that the found effect (equal-to) is the
main effect for that dimension and tests the generality of
that effect. No previous hypotheses for that variable are
found, and so a new hypothesis is proposed that it may
not produce an effect. This hypothesis is also rehearsed
once to insure that it will be remembered later. Because
there was no effect of the variable, the model also looks
for problems in the experiment that might have lead to
an artifactual null result. Because the values were above
90%, the model suspects a ceiling effect, and guesses
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that the delay of 1 min was too short. This proposed
experiment problem is also rehearsed once to insure that
it will be remembered during the design of the next
experiment.

Designing a Second Experiment

The first steps in the design of the second experiment
begin:

…

Evaluate evidence for hypothesis Shifting_Context.

Found consequence Source_Context Greater_Than.

Design an experiment to test hypothesis Shifting_Context

Vary hypothesis factors and fix remaining variables.

Found consequent variable Source_Context of the
hypothesis Shifting_Context

Vary variable Source_Context

ACTION: Click button 3LEFT

NEW SCREEN: Choose Variable

Again, the model evaluates the evidence for the
hypothesis under test, and finds no definite evidence for
or against. For the next experiment, the model chooses
again to vary source-context because it is involved in a
consequence of the shifting-context theory:

Looking for a screen_type

Found screen_type object Source_Context

On the right screen to pick Source_Context
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Already know options for Source_Context

How many levels are we currently at for Source_Context?

Found nlevels One

Source_Context is at 1, but we want 2, so change it

ACTION: Update nlevels for Source_Context to Two

Pick previous value Same.

Making selection One for Source_Context

ACTION: Update value One for Source_Context to be Same

Picking previous value2 (Diff_Room)

Making selection Two for Source_Context

ACTION: Update value Two for Source_Context to be
Diff_Room

Done picking values for Source_Context

ACTION: Click Done

NEW SCREEN: Main Screen

…

Because this is no longer the first experiment to be
designed, the process is changed. Because the model can
remember the possible options presented previously, it
no longer has to look externally to find these options.
Moreover, instead of choosing values arbitrarily, the
model specifically chooses the same values for source
context as in the previous experiment. Although it is not
shown, the process for picking the other variables is
similarly shortened. However, we look at the critical
selection of the delay variable:
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On the right screen to pick Delay

Already know options for Delay

How many levels are we currently at for Delay?

Found nlevels One

Look for something greater than One_Minute

Failed finding something for value1. Look for more options.

Visually found option One_Minute

Visually found option Five_Minutes

Visually found option Ten_Minutes

Look for something greater than One_Minute

Found Ten_Minutes to be greater than One_Minute

Making selection One for Delay

ACTION: Update value One for Delay to be Ten_Minutes

The process of selecting a value for the delay variable is
changed in one additional manner. Because there was an
experiment problem associated with delay in a previous
experiment, the model explicitly sets a goal of avoiding
this problematic value (1 min). However, the model
forgot about values other than 1 min, and must do
another visual search of the available options. Then a
delay of 10 min is selected instead of the previously
selected 1-min delay. Consequently, the resulting
experiment no longer suffers from ceiling effects (both
Same and Diff-Room produce 64% recall). The search
process through the table, not shown in the preceding
material, is the same as in the previous experiment. Once
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again, the model finds no effect of source context, and
therefore concludes that it definitely has no effect:

…

Evaluate evidence for hypothesis Shifting_Context.

Found consequence Source_Context Greater_Than.

Found consequence to be false. Therefore reject
hypothesis Shifting_Context.

Examined consequence. Therefore done testing hypothesis
Shifting_Context.

When the evidence is evaluated again, the
shifting-context hypothesis is rejected because its
consequence involving source context is found to be
false. The model then turns to examining the
frequency-regularity hypothesis.

Testing the Frequency Regularity Theory

The design of the third experiment begins:

Update context for Start2 to be Exper3

Looking for a screen_type

Found screen_type object Main_Screen

Evaluate evidence for hypothesis Frequency_Regularity.

Found consequence Spacing Greater_Than.

Design an experiment to test hypothesis Frequency_Regularity

Vary hypothesis factors and fix remaining variables.

Found consequent variable Spacing of the hypothesis
Frequency_Regularity
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Vary variable Spacing

…

The model decides to vary spacing, a variable implicated
in a consequence. The critical portion of the variable
selection is reproduced here:

On the right screen to pick Spacing

How many levels are we currently at for Spacing?

Found nlevels One

Spacing is at 1, but we want 2, so change it

ACTION: Update nlevels for Spacing to Two

Already know options for Spacing

Pick previous value One_Minute.

Making selection One for Spacing

ACTION: Update value One for Spacing to be One_Minute

Failed finding something for value2 in memory. Look for
more options.

Visually found option One_Minute

Visually found option Five_Minutes

Visually found option Ten_Minutes

Picking Five_Minutes as second value.

Making selection Two for Spacing

ACTION: Update value Two for Spacing to be Five_Minutes

Done picking values for Spacing

ACTION: Click Done
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NEW SCREEN: Main Screen

…

In selecting values for spacing, the simulation chooses
the same first value from the previous experiments.
However, in selecting the second value, it must
reexamine its options visually because it has forgotten
what the other options were. Five minutes is selected as
the second value (because it happens to be most active in
memory). The model selects the other values as before,
but when it comes to selecting test task something
interesting happens:

…

On the right screen to pick Test_Task

Already know options for Test_Task

How many levels are we currently at for Test_Task?

Found nlevels One

Search memory to see if Spacing is an interacting variable
with Test_Task

Found interaction between Spacing and Test_Task.

Test_Task is an interacting variable with Spacing, so set
nlevels to 2

ACTION: Update nlevels for Test_Task to Two

Pick previous value Stem.

Making selection One for Test_Task

ACTION: Update value One for Test_Task to be Stem
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Failed finding something for value2 in memory. Look for
more options.

Visually found option Recall

Visually found option Recog

Visually found option Stem

Picking Recall as second value.

Making selection Two for Test_Task

ACTION: Update value Two for Test_Task to be Recall

Done picking values for Test_Task

ACTION: Click Done

NEW SCREEN: Main Screen

…

When it examines test task, it find the prior belief that
test task may interact with the spacing variable. This
reflects the sort of knowledge we might expect of a
memory expert. Also, when it comes to the variables of
delay, it retrieves the fact that the frequency regularity
theory implies an interaction of spacing and delay.
Therefore it chooses to vary that, too (this decision is not
shown in the protocol). The experiment finally designed
is shown here:

NEW SCREEN: Outcome Table

Exper3

Repetitions — Two

Spacing — One_minute Five_minutes

Source_context — Same
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Test_task — Stem Recall

Delay — Ten_minutes One_minute

Test_context — Same

Delay

Ten_Minutes Test_Task

Spacing Stem Recall

One_Minute 65 11

Five_Minutes 63 31

One_Minute Test_Task

Spacing Stem Recall

One_Minute 100 93

Five_Minutes 99 92

…

Experiment 3 results in a three-dimensional table, whose
results show the interaction of spacing with test task.

Interpreting an Interaction

The interpretation of this table is interesting because it
contains an interaction:

…

Start with dimension dim1.

Push goal to encode dimension Dim1

Visually get cell value

Found value 65
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Visually locate dimension variable.

Found dimension name Spacing

Look for value1 visually

Found dimension value One_Minute

Move in desired direction.

Found location below, 2111

Visually get cell value

Found value 63

Look for value2 visually

Found dimension value Five_Minutes

Notice less than pattern.

Difference −2 in Dim1 is not significant.

Finished first row of dimension Dim1.

The model begins with the first dimension as before,
encodes the first column, and finds an equal-to relation.
Then it searches the second column:

Visually get cell value

Found value 11

Move in desired direction.

Found location below, 2211

Visually get cell value

Found value 31

Notice greater than pattern.
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Found interaction. No main effect? Investigate interaction.

Found the cell 2111 with the Equal_To effect.

Search for variable which separates 2211 from 2111.

Found separating dimension, Test_Task

Done investigating interaction of Spacing with Test_Task.

This time, however, the search over that dimension is not
finished. The next column is searched, and a greater-than
relation is found. Note that the dimension name and
dimension values must only be examined for the first
column that is searched—that information is simply
carried over for the other columns. Because the
greater-than effect is different from the equal-to effect
found in the first column, the model assumes no main
effect and investigates this interaction. This involves
looking for the cell that produced the other effect
(equal-to), and then searching for the dimension that
separates that cell from the current one. The resulting
dimension (test task) is assumed to interact with the
current one (spacing).

Hypothesize that Spacing may have no effect and check for
problems.

Pop hypothesis.

Rehearsing hypothesis involving Spacing

Insufficient range One_Minute Five_Minutes

Rehearsing hypothesis related to Spacing

Rehearsing experiment_problem involving Spacing

…
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Because an interaction was found, the search of that
dimension halts and the variable (spacing) is assumed to
have no main effect. The generality of this relationship is
tested. Because there are no priors for this variable, the
model tentatively assumes there may be no effect of
spacing and checks for possible experiment problems
that may have produced an artifactual null result. It
suspects that the difference of 1 min versus 5 min (in the
spacing manipulation) may have been an insufficient
range. The hypothesis for spacing and this experiment
problem is rehearsed to insure that it will be remembered
later.

Note that the model’s reasoning about the absence of a
main effect is not the same as what would be produced
by an analysis of variance (ANOVA). Even though there
may be an effect of spacing overall, the model reasons
(as did the Domain Experts) that because there is a case
in which there is no spacing effect, then the prediction of
a consistent main effect of spacing is falsified (and hence
the frequency regularity is falsified). In general, the
model reasons about main effects and interactions
qualitatively rather than quantitatively. In fact, purely
quantitative interactions (same effect direction but
different magnitudes) are ignored.

The rest of the examination of the table is not shown but
we briefly summarize it. Because there is a second
dimension (and it has not yet been searched), the model
turns to this second dimension (going across within a
table). The values 65 and 11 are encoded, along with the
less-than relationship. The search continues over this
dimension and completes all four rows because the same
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effect (less-than) is found in all cases. Because no
interactions are found, the model assumes there is a
consistent less-than
main effect of test task, and creates a new hypothesis for
this belief (which is rehearsed).

The model then searches dimension three (going down
across tables). Note that in selecting the next dimension
to search, the dimensions are always considered in the
same order until one is found for which no matching
ENCODE-DIMENSION chunk can be found. This third
dimension is also searched exhaustively because the
same relation (greater-than) is found in all cases.

The Final Experiment

Because an insufficient range problem was found for the
spacing variable in experiment 3, experiment 4 is
designed to retest the effect of that variable. This
involves pushing a TEST-VARIABLE goal, which then
bypasses the need to evaluate the current evidence or
choose which factor to vary. In selecting a value for
spacing, the model retrieves its previous experiment
problem and thus chooses a second value that is further
apart from 1 min than 5 min, which in turn involves
searching visually again to find more options. Once
again, the test task and delay variables are also varied
because they are suspected to interact with spacing,
although in this case both values for each variable are
selected from memory without having to search visually
for options. The rest of the variables are also held to the
same values as in the previous experiment. The resulting
experiment is displayed here:

…
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Exper4

Repetitions — Two

Spacing — One_minute Ten_minutes

Source_context — Same

Test_task — Stem Recall

Delay — Ten_minutes One_minute

Test_context — Same

Delay

Ten_Minutes Test_Task

Spacing Stem Recall

One_Minute 64 12

Five_Minutes 63 39

One_Minute Test_Task

Spacing Stem Recall

One_Minute 99 92

Five_Minutes 100 92

…

The exact same search path over the table is followed as
in experiment 3, and the same conclusions are drawn.
The differences are that the conclusions are now
believed more strongly and no experiment problems are
sought (because the null effect is found as expected).

…

Evaluate evidence for hypothesis Frequency_Regularity.
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Found consequence Spacing Greater_Than.

Found consequence to be false. Therefore reject
hypothesis Frequency_Regularity.

Examined consequence. Therefore done testing hypothesis
Frequency_Regularity.

Top goal popped.

…

When evaluating evidence this time, the model discovers
that the frequency-regularity theory has been falsified
because there is no main effect of the implied variable
spacing. Thus the goal to test that theory is popped, and
the task is done. Table 11.2 summarizes the experiments
that were designed and the conclusions that were reached
from each of them.

Table 11.2
The Experiments Designed in the Example Model Trace,
Their Outcomes, and the Conclusions Regarding Them
Reached by the Model
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Relating Model to Data

How does the model account for the group differences
data presented earlier in the chapter? In this section, we
step through the relationship between the model and
each of the five skill differences. The model that is on
the Web allows one to set structural variables to produce
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these individual differences. The experimentation traces
produced are correspondingly different.

First, there is the issue of using the theories to design the
experiments. In the model, there are productions that
create and push the TEST-HYPOTHESIS goal and there
are other productions that create and push the
EXPLORE-FACTORS goal. Moreover, there is a set of
productions relevant to achieving each of these two
goals. Thus, by selecting either one goal or the other, the
model is able to simulate the experts and theory-oriented
undergraduates or simulate the non-theory-oriented
undergraduates. There are many ways of implementing
this preference. For example, it could be that some
undergraduates do not have the production for proposing
the TEST-HYPOTHESIS goal or the productions for
attaining that goal. Alternatively, it may be that some of
the undergraduates simply prefer to select the
EXPLORE-FACTORS goal (i.e., the expected utilities
of the EXPLORE-FACTORS productions are higher
than those of the TEST-HYPOTHESIS productions).6
Whichever of these schemes is used, they all capture the
important underlying difference of theory-orientedness
between
the groups. That is, the difference is not just whether the
theories are mentioned; rather, there are also large
changes in which variables are varied. Figure 11.11
presents a comparison between the performance of the
under-graduates (as a function of whether they
mentioned the hypotheses during experiment design) and
the model with and without the production that proposes
the TEST-HYPOTHESIS goal.7 The measure of
performance is the set of variables that are varied in the
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first experiment. We see that, with the relevant
production, the model focuses (as do the subjects) on the
spacing and shifting context variables, whereas without
the relevant production, the model focus (as do the
subjects) on the repetitions variable.

Fig. 11.11. Top: Percentage of undergraduate subjects
varying each of variables in the first experiment as a
function of whether they were explicitly testing the given
theories or simply exploring the factors. Bottom:
Percentage of model runs in which the model varies each
of the variables in its first experiment as a function of
whether the model is run with or without the production
that sets the TEST-HYPOTHESIS subgoal.

Second, there were group differences in the number of
general settings held constant across experiments. The
Experts and High-Ability undergraduates were much
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more conservative in their selections than were the
Mid-Ability undergraduates, who seemed to select these
general settings randomly on each experiment. In the
model, there is a specific production that retrieves the
value used in previous experiments. By simply removing
this production (or reducing its expected utility), the
model transitions from an Expert model to an
undergraduate model on this dimension (see Fig. 11.12)
.8 It is interesting the model does not produce as many
extreme feature variations (i.e., >3) as did the
Mid-Ability undergraduates. Because the model was
essentially choosing values randomly from one
experiment to another (unless an
EXPERIMENT-PROBLEM motivated a particular
value), it appears that some of the Mid-Ability
undergraduates were purposely picking entirely different
values rather than simply selecting values randomly.
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Fig. 11.12. Left: Percentage of subjects varying more
than one, two, or three values. Right: Percentage of
model runs in which the model varies more than one,
two, or three values as a function of whether the model is
run with or without is run with or without the production
to retrieve from memory and use values from the
previous experiment.

Third, there were group differences in the ability to
avoid floor and ceiling effects. Here the model begins
like the worst undergraduates—it avoids floor and
ceiling effects only by chance selections of the spacing
and delay variables. However, from feedback in the
outcomes, the model is able to quickly learn to avoid
delay values that produce floor and ceiling effects—as
did the majority of the undergraduates who produced
floor and ceiling effects. To account for the initial group
differences, one might posit that the Experts and
High-Ability undergraduates already had this declarative
knowledge (or were more likely to use this knowledge),
which the model had to learn through experience with
the task.

Fourth, there were differences in the number of variables
varied within experiments. Domain Experts and
undergraduates varied more variables per experiment
than did the Task Experts. The model as described
behaved like a mixture of Domain and Task Experts. By
default it preferred to vary
only one variable per experiment (as in Experiments 1
and 2 in the example trace). The default preference for
varying only one variable occurred because, in
considering the other variables, there was a default
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production that proposed to hold the variable constant. A
model of the undergraduates might not have such a
default production, randomly selecting whether to vary
or hold a variable constant. Also, when the model is
using the EXPLORE-SYSTEM goal rather than the
TEST-HYPOTHESIS goal, the decision as to which and
how many variables to vary is arbitrary. Thus, the model
can reproduce the undergraduate behavior in two
different ways. To account for the Domain Expert
behavior, there are productions that access
domain-specific knowledge. This domain-specific
knowledge is hypotheses about which variables are
likely to interact with the variables currently being
varied. If such a hypothesis can be retrieved, then the
interacting variable is added to the experiment (as in
Experiments 3 and 4 in the example trace). Thus, to
model the Domain Experts, we simply add the prior
knowledge of INTERACTION hypotheses that the test
task variable may interact with the spacing effect and
that spacing may interact with delay. These are plausible
hypotheses for an expert on memory. Figure 11.13
presents the subject data as well as the performance of
the model with these interaction hypotheses (modeling
Domain Experts), without these interaction hypotheses
(modeling Task Experts), and both without the
interaction hypotheses and without the production that
proposes the TEST-HYPOTHESIS goal (modeling
High- and Mid-Ability undergraduates). Although the
model overall generates simpler experiments than all
four groups, the model does capture the magnitude of the
group differences.
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Figure 11.13. Left: The mean number of factors varied
per experiment by the subjects. Right: The mean number
of factors varied by the model as a function of whether
the model was run with or without prior INTERACTION
chunks, or both without prior INTERACTION chunks
and without the production that sets the
TEST-HYPOTHESIS subgoal.

Fifth, the Experts were better able to encode interactions
and ignore noise levels in the data. Here we saw that
encoding interactions was a complex process. Many
productions were required to successfully encode
interactions, and the absence of even a small subset of
these productions would greatly limit performance. The
ability to generate the exhaustive search path over the
multiple dimensions is a likely skill that the
undergraduates were missing. Another important
component of table encoding is the ability to ignore
small noise levels. The model is able to ignore small
differences in the data through a production that
recategorizes a small difference as no difference. By
simply removing this production, the model’s
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performance would become more undergraduate-like on
this dimension.

In addition to capturing many aspects of the data
described thus far, the model also makes new predictions
for other group differences. For example, with respect to
the order in which subjects select variables to consider,
the model predicts (1) that the order for all groups will
usually follow the left-to-right, top-to-bottom sequence,
and (2) that the experts, because they are more focused
on testing the theories, should be somewhat less likely to
follow this sequence. The most interesting aspect of this
prediction is that the experts should show both aspects of
the overall trend (because the model predicts that aspects
of the visual interface determines search order of a
variable when theory does not implicate the variable)
and important violations of the trend (because the model
predicts that variables implicated by the theory should be
selected first). Table 11.3 reveals that these predictions
are confirmed. It displays the order in which variables
were set in the interface in terms of what variables were
set after what other variables. For Undergraduates, the
most frequent transitions in the design of the first
experiment are from the left-to-right, top-down
sequence: Repetitions to Spacing, Spacing to Source
Context, Source Context to Test Task, Test Task to
Delay, and Delay to Test Context. These transitions are
also common for the Experts but they show two marked
deviations—the Experts prefer to set repetitions after
spacing and test context after source context.
Undergraduates were more likely to follow the
left-to-right, top-down pattern, with 68% of their
transitions following with the five cells that define this
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pattern, in contrast to only 47% for the Experts. Similar
patterns are found when the transitions are aggregated
across just the first experiment, or when one focuses on
the frequency with which each variable is selected first.

Table 11.3
During the Design of Each Experiment, the Proportion
of Transitions from One Variable (Rows) to Another
Variable (Columns) Including Returns to the Same
Variable and Finishing of the Experiment Design (Stop),
Separately for Experts and Undergraduates

Conclusions

The modeling effort presented in this chapter served
three primary goals. First, it served as an existence proof
that models of complex cognition can still be built in the
smaller grain size ACT–R 4.0. Although the construction
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of this model was not the task of a single afternoon, it
was certainly no more
difficult than our previous modeling efforts using the
larger grain size ACT–R 2.0. Also, although there is
much to be added to the model to account for the full
range of behaviors and strategies displayed by the
different faculty and undergraduate subjects, the model
was sufficiently detailed to account for the data
described earlier in the chapter. With simple changes in
the model, the model could provide an account of the
differences in expert and novice performance. Moreover,
focusing on the smaller grain size led to many insights
regarding the source of various behaviors (discussed
later).

It is important to note that there were many aspects of
scientific discovery that were not modeled, some
because the task being modeled did not include all
aspects of scientific discovery (as noted in the
introduction to the task), and others simply not yet
included in the model. The goal of this modeling effort
was not to produce an exhaustive model of scientific
discovery, but rather to show whether and how some
important aspects could be modeled in the ACT–R 4.0
cognitive architecture and be understood in terms of that
architecture.

The second goal of the modeling effort was to further
illuminate the cognitive processes underlying scientific
discovery behavior. In fact, building this model did
produce several insights for us regarding the nature of
scientific discovery processes. First, we found that the
experimental design process was controlled by a goal
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structure for specifying which subgoals must be
achieved to design an experiment. Different design
paradigms involved slightly different goal structures. For
example, a hypothesis-testing, factorial-design
experimental paradigm consists of selecting which
factors to vary and then fixing the remaining variables.
By contrast, the explore-system paradigm specifies a
slightly different goal structure. A paradigm other than
factorial design would involve yet another goal structure.
Although it might be argued that the artificial structured
interface used in the SPL task favored the use of such a
goal structure and that real scientific discovery would
not involve such a goal structure, we would argue the
opposite. Because the SPL task presented so much
information about the experiment design visually, the
individual could rely somewhat on the visual interface
(rather than a goal structure) to control search in
experiment design. By contrast, in real scientific
discovery, with less information contained in a simple
visual interface, the individual would have to rely more
heavily on a regular goal structure to control search in
experiment design.

As another insight gathered from the modeling process,
we found that the process of encoding the results in even
simple tables is much more detailed and complex than
we expected. There must be a careful coordination of
table cell and table dimension information to encode
main effects and interactions. Relatively little past
research has been conducted on how people encode
information from tables, which is surprising given how
commonly scientific information is presented in tabular
form. By developing a better understanding of how
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tables are read, we may learn how table organization
influences when and how discoveries are made.

As a third insight regarding scientific discovery
processes, the model illuminated the relationship
between performance and the external aspects of the SPL
interface in the way that it relied heavily on information
in the interface to guide experiment design. Although
cognitive science in general has long understood the role
of external information in guiding problem space search
generally (e.g., Anzai & Simon, 1979; Larkin, 1989) and
hypothesis generation and revision specifically (e.g.,
Cheng, 1990; Shrager, 1987, 1990), past research on
scientific discovery has placed little emphasis on the
external world for understanding experiment design.
This new-found emphasis on the external aspects of the
interface led to new predictions about group differences,
which we found to be confirmed. Of particular note was
that even the experts showed some tendency to rely on
the visual interface to order experiment design.

Why should the model rely on external aspects of the
interface? First, the environment provided a convenient
method for organizing search (Larkin, 1989). Second,
the declarative memory decay aspects of ACT–R made
this reliance on the external aspects especially important
to model performance. For information that could not be
found in the environment (hypotheses and previous
experiment problems), the model had to engage in extra
memory rehearsals to insure that the information would
be remembered later. Recall that the analogy model of
the previous chapter had to similarly rehearse its
hypotheses as to formula structure. When information
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was obtainable externally, it was often easier and more
reliable to simply retrieve it from the external world.
Related to this point, another difference (not modeled)
between the Experts and undergraduates in the SPL task
was that the Experts were much more likely than the
undergraduates to use external memory aids like paper
and pencil during the task—Experts in the task were
aware that forgetting is a common occurrence in
scientific discovery. The model was not committed to
relying on the interface exclusively—it was capable of
using different strategies for retrieving information and
making choices, and it adapted its strategy use over time.

Did these three insights derive from specific aspects of
ACT–R, or would we have come to these insights in
modeling performance using any cognitive architecture?
Although such questions are invariably difficult to
answer in models of complex problem solving, we
believe that the learning and forgetting equations
embedded in ACT–R combined with the new restrictions
placed on production complexity in ACT–R 4.0 had a
strong impact on the final structure of the model. For
example, when the model was first written with very
little reliance on the external interface or environment,
model performance was very poor because things were
constantly being forgotten. Other consequences of using
ACT–R are explored in our modeling styles comments
that follow. However, it is likely that some of our
insights were simply a result of having to think through
all the detailed steps involved in making decisions in this
complex task—and that such insights could have been
obtained from using other architectures as well.
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The third and final goal of the modeling effort was to
examine the modeling styles that emerge from building a
model of a complex task. In other words, what features
of this model might be useful for ACT–R models in
other domains? Several features come readily to mind.
For example, making use of information in the
environment is likely to be a general feature of human
behavior. Cognitive models in earlier versions of
ACT–R have represented internally all information that
is available to the subject externally, and thus these
models have not examined how the organization of the
environment can structure behavior. Chapters 5 and 6 of
this book describe how ACT–R models can be fully
integrated with the external environment.
This chapter and the previous one have shown the
importance of such integration.

Another feature that is likely to be general is the use of
contextual indexing. Many complex tasks require
keeping track of both what has occurred thus far in the
current situation and what has happened in previous
situations. In order to access both types of information
reliably and separately, chunks need to have some form
of a context slot. Similar context indexing was seen in
the chapters on list memory (Chapter 7) and analogy
(Chapter 10). One might further speculate that episodic
and semantic memory distinctions might be related to
chunks that have or do not have such context slots.

A third general feature is the use of multiple strategies
and transitioning between strategies over time. As Reder
(1982, 1987) and Siegler (1996) demonstrated,
performance in most domains involves multiple
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strategies within even the same individual. Just as our
model can transition from testing a hypothesis to testing
the effects of a particular variable, so did the subjects in
the SPL task. Chapter 8, on choice, illustrated the details
of ACT–R’s views on strategy selection, and this chapter
merely instantiates the use of multiple strategies within a
complex domain.

A fourth feature is that the model was able to improve its
performance by storing constraints on future behavior.
Specifically, certain outcomes of experiments cued
search for experiment problems, and experiment
problems that were found produced specific
recommendations for subsequent experiments. This use
of stored constraints is likely to be another general
feature. A yet unresolved issue is whether such
constraints are best stored declaratively and used by
productions that try to retrieve them later during design
(as in our SPL model), or whether these constraints are
better viewed as new productions created by production
compilation, which essentially act as “demons” to
monitor the design of later experiments. A similar issue
was raised in the earlier analogy chapter.

As a final point, we would like to address what this
model says about the nature of the scientific enterprise
itself. When all is said and done, our model is just
composed of production rules and chunks like all the
other models in this book. There are certainly more
knowledge units and the model is incomplete in ways
that would require adding many more knowledge units.
However, there is none of the “magic” that many
associate with the scientific process. There is just a lot of
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knowledge required. The model can take different paths
in solving a problem, depending on momentary
differences in activation levels and conflict resolution.
Maybe this is what is meant by insight and intuition in
science. That is, perhaps scientists are sometimes lucky
and have random fluctuations in the subsymbolic
quantities that cause them to explore a particularly
profitable line of experimentation. However,
this does not convey much credit to the scientist. What
brings credit to the scientist is to have more of the right
knowledge (chunks and productions), just as this is what
separated our undergraduates from domain experts. In
the end, we think this ACT–R model instantiates
Simon’s (1989) characterization of science:

Moreover, the insight that is supposed to be required for
such work as discovery turns out to be synonymous with the
familiar process of recognition; and other terms commonly
used in the discussion of creative work—such terms as
“judgment,” “creativity,” or even “genius”—appear to be
wholly dispensable or to be definable, as insight is, in terms
of mundane and well-understood concepts, (p. 376)

1Because the novices were undergraduates were from
Carnegie Mellon University, we thought it
unrepresentative to call any of them Low-Ability.
2In fact, many of the experts complained that the task
was unfairly complex.
3Note that these are different types of experiment goal,
not subgoals of the experiment goal. ACT–R allows for
different types of a general chunk type.

727



4Please note that because of random choices the path
(and trace) taken by the model will vary from run to run.
To see this trace, turn on action trace and experiment
trace for the Fig. 11.2 simulation. This will produce a
novice and expert sequence of experiments.
5As a note about the trace formatting: When the model
takes a physical action, the LISP code implementing this
action states which action was taken (ACTION: ) and
what new screen is displayed if there is a screen change
(NEW SCREEN: ).
6We capture these differences in the Web model by
varying utilities.
7Because this comparison is to different undergraduate
groups, prior knowledge of plausible interactions was
first removed (for both cases).
8The model means were produced by running 100
simulations.
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12

Reflections

John R. Anderson

Christian Lebiere

Carnegie Mellon University

This book has reported the results of our efforts to make
ACT–R a theory capable of modeling a wide range of
phenomena. The key step in that development has been
reducing the size of ACT–R’s knowledge units to what
have been advertised as the atomic components of
thought As a result of this commitment to a consistent,
atomic grain size in knowledge representation, modeling
in ACT–R has become much more principled and there
has been a substantial convergence on the values for the
subsymbolic parameters that control the system. This
book described some of the in-house applications of
ACT–R as demonstrations of the productivity of this
approach. However, these application are but a few of
the many that researchers have developed. As a better
representation of the range of applications of ACT–R,
Table 12.1 lists the research papers presented at the 4th
Annual ACT–R Workshop in August 1997. The range of
applications is truly gratifying in that it indicates that
ACT–R is becoming a useful tool for modeling many
aspects of human cognition. This breadth of application
is a sign that the ACT–R theory is capturing significant
generalizations about the nature of human cognition.
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Table 12.1
Papers Presented at the 1997 ACT–R Summer
Workshop

Saturday, August 2

Session 1

Bruno Emond Models of natural language comprehension
and parsing

Eric Scott Implementing a schema theory in ACT–R

Mike Matessa Focused learning in linguistic role
assignment

Session 2

Kevin Gluck
Learning to learn from a computer-based
tutor: An ACT–R model as
proof-of-concept

Chris Schunn Psychologist in a box: An ACT–R model
that designs and interprets experiments

Brian Ehret ACT–R models of submariner situation
assessment

Wayne Gray &
Erik Altmann

Dynamic microstrategies as an explanation
of cognitive workload

Sunday, August 3

Session 1

Tony Simon Computational evidence for the
nonnumerical basis of number competence

Todd Johnson Computation and retrieval in alphabet
arithmetic
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Christian
Lebiere Lessons from cognitive arithmetic

Session 2

Marsha Lovett,
Lynne Reder, &
Christian Lebiere

Modeling working memory effects at the
individual level

Dieter Wailach Modeling complex problem solving

John Anderson
& Jonathan Betz Modeling categorization in ACT–R

Niels Taatgen Explicit learning in ACT–R

Monday, August 4

Session 1

Joyce Tang
Boyland Modeling syntactic priming in ACT–R

Todd Johnson Multistrategy learning and transfer in
tic-tac-toe

Ken Koedinger
& Ben MacLaren Modeling strategy learning in early algebra

Session 2

Frank Lee Eye tracking in the air traffic controller task

Dario Salvucci Relating ACT–R models and eye movement
protocols

Tony Simon Modeling a functional limit to the subitizing
phenomenon

Mike Byrne ACT–R and PRP

Tuesday, August 5
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Session 1

Raluca
Vasilescu

An ACT–R model for learning anaphoric
metaphors

Peter
Brusilovsky ACT–R on the Web

John Anderson,
Dan Bothell, Scott
Douglass, &
Christian Lebiere

ACT–R models of the navigation task

The major function of this chapter is to recapitulate and
to speculate about the future. It has four sections. The
first serves the role of recapitulation in stating the
theoretical assumptions of ACT–R and discussing how
these assumptions have evolved from past theories. On
the view that one can best appreciate the force of these
assumptions by comparing ACT–R to its near cousins,
the second section provides a comparison of the ACT–R,
3CAPS, EPIC, and Soar architectures. The third section
presents our current speculation about the neural
realization of ACT–R. Ever since ACT* (Anderson,
1983) we have been concerned with the issue of how
ACT might be realized neurally. Such considerations
have influenced current developments and will influence
future developments. The fourth and last section presents
some thoughts about possible directions for the future
development of the ACT–R theory.

ACT–R’s Assumptions

There has been a tradition of laying out the foundation of
the ACT theories as a set of about 12 assumptions.
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Although the segmentation of the theory into a small
number of assumptions is both a bit arbitrary and
uneven, it provides a useful way to succinctly describe
the theory and address the question of what is new. This
section uses the same assumptions numbered 0 to 13 that
were used by Anderson (1993) to describe ACT–R 2.0.
We can use the same ACT–R 2.0 structure because the
basic assumptions have largely stayed the same. Most
changes have been in the implementation details. We
state the position of ACT–R 4.0 on each assumption and
describe how it has changed from ACT–R 2.0, if it has.
This discussion makes reference to the ACT–R
Equations, which are collected together in Table 12.2.
These equations make use of the ACT–R parameters and
variables defined in Table 12.3 (which is similar to
Appendix D to Chapter 3).

Table 12.2
The Fundamental Equations in ACT–R

(a) Performance-Procedural

Expected Gain = E = PG – C Expected Gain
Equation 3.1

P = qr Probability of Goal
Equation 3.2

C = a + b Cost of Goal Equation
3.3
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Conflict Resolution
Equation 3.4

(b) Performance’Declaratwe

Activation Equation
3.5

B(t) = β – d*ln(t) + ε1 + ε2 Base-Level Equation
3.6

Retrieval Probability
Equation 3.7

Mip = Ai – Dip Match Equation 3.8

Chunk Choice
Equation 3.9

Retrieval Time
Equation 3.10

(c) Learning-Declarative
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Base-Level Learning
Equation 4.1

R*ji = (l/n)/(l/m) = m/n Prior Strength
Equation 4.2

S*ji = In (m/n) = ln(m) – ln(n)

Posterior Strength
Equation 4.3

Sji = ln(Rji)

(d) Learning-Procedural

Production Strength
Equation 4.4

Probability Learning
Equation 4.5

Cost Learning
Equation 4.6
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Event Discounting
Equation 4.7

Effort Discounting
Equation 4.8

Table 12.3
ACT–R’s Variables and Parameters

α** prior number of successes in instantiation of
Probability Learning Equation 4.5

a**
expected cost of matching and firing a production,
typically measured in seconds. The default value
is 50 msec

Ai activation of chunk i; see Activation Equation 3.5

assoc* weighting of prior strength in Posterior Strength
Equation 3.1

β** prior number of failures in instantiation of
Probability Learning Equation 4.5

β* base-level constant in Base-Level Equation 3.6

b** expected cost, measured in seconds, from the
firing of a production to the resolution of the goal

Bi base-level activation of chunk i

C

cost incurred in trying to achieve the goal if a
particular production is selected, typically
measured in seconds; see Cost of Goal Equation
3.3
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d* decay rate which appears in Equations 3.6, 4.1,
4.4, 4.7, and 4.8. The default value is .5

Dip
mismatch penalty for match of chunk i to
production p

ε1
permanent noise in base-level activation—settable
as s parameter

ε2
temporary noise in base-level activation—settable
as s parameter

E expected gain of a production; see Expected Gain
Equation 3.1

f* latency exponent in Retrieval Time Equation 3.11;
given default value of 1.0

F* latency scale factor in Retrieval Time Equation
3.11

G* value of the goal

m total number of chunks in Prior Strength Equation
4.2

m number of experienced successes in instantiation
of Probability Learning Equation 4.5

Mip match score for chunk i in production p

n number of associated chunks in Prior Strength
Equation 4.2

n number of failures in instantiation of Probability
Learning Equation 4.5

P probability of the goal should the production be
chosen; see Probability of Goal Equation 3.2
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q**
probability of a production succeeding, including
matching of condition and achievement of
subgoals

r** probability of achieving the goal if the production
succeeds

Rji eSji

s*

parameter controlling noise in ACT–R logistic
noise distributions for utilities and activations; it is
related to the variance of the noise distribution by
the formula σ2 = π2s2/3

S estimated constant in setting Sji—see discussion of
strengths of association

Sji** strength of association between source j and chunk
i

Sp** production strength

τ* retrieval threshold of activation in Retrieval
Probability Equation 3.7

t

temperature used in Conflict Resolution Equation
3.4 and Chunk Choice Equation 3.9.
where s is the parameter of the logistic
distribution—settable as s parameter

t variable for time

Wj

attentional weighting of the source j in Activation
Equation 3.5; typically set to 1/number of filled
goal slots

z** total prior cost in instantiation of Cost Learning
Equation 4.6
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* Global parameters that can be set in the ACT–R
simulation.

** Parameters that can be set for specific chunks and
productions.

Assumption 0: Technical Time Assumption

Time is continuous. This assumption has been part of the
ACT theory since ACT*. With each iteration of the
theory our assumptions about timing have become more
detailed. One step in this direction was the addition in
ACT–R 4.0 of 50 msec as the default time for a
production action. Perhaps the high point on the
real-time nature of cognition is Chapter 6 on the
perceptual-motor interface. There we coordinated
ACT–R’s real-time cognitive timing with parallel timing
occurring in various perceptual and motor systems.

Assumption 1: Procedural-Declarative Distinction

ACT–R has a procedural component that operates on a
declarative component. Both declarative and procedural
representations are permanent. This has been the
unchanging assumption of all ACT theories.

Assumption 2: Declarative Representation

As in ACT–R 2.0, the declarative representation consists
of a set of chunks. A chunk consists of a limited number
of elements (about three) in specific relationships or
slots. ACT–R 4.0 has elaborated these assumptions in
two ways. First, we have become more serious about the
size limitation by eliminating lists of elements as slot
values. Such lists previously had provided a means of
giving chunks unlimited capacity. Second, ACT–R has
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begun to address the question of the origin of chunks
with the assumption that all chunks are either popped
goals or encodings of objects in the environment.

Assumption 3: Procedural Representation

Production rules are the basic units of skills. This is the
representational assumption that has evolved the most in
ACT–R 4.0. There is now a very restricted sense of a
production rule that involves

1. In the condition, a specification of a goal to
which the production can match.

2. In the condition, a specification of retrievals
from declarative memory.

3. In the action, a transformation of the goal
structure on the basis of these retrievals.

In ACT–R 2.0 it was possible to have complex
interdependent retrievals with backtracking for pattern
matching and complex computations in the action side.
These computations were unrealistically powerful.
ACT–R 4.0 has instituted a substantial limitation on the
complexity of production rules. This has been part of an
overall move to have production rules that model
cognition at a finer grain size.

Assumption 4: Goal-Directed Processing

Goals are ordered on a last-in-first-out (LIFO) goal
stack. Productions can push goals on the stack or pop
goals off the stack. Goals have specific values associated
with them. Every production that fires must respond to
the top goal on the stack. This assumption has not
changed since ACT*.
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Assumption 5: Sources of Activation

The slots of the current goal are the sources of
activation—the j terms in Activation Equation
3.5—which have source activations Wj. Earlier versions
of ACT–R allowed for arbitrary elements to be sources
of activation with the goal itself being the default source
of activation. As a further constraint in ACT–R 4.0, the
Wj are bounded to sum to 1.1 Although the assumption of
a bound on source activation is a strong theoretical
claim, the setting of this bound at 1 just serves to
establish the scale for associative activation.

Assumption 6: Activation in Declarative Memory

Chunks have activation levels, which reflect the log odds
that they will match a particular production instantiation.
On each production cycle the base-level activation of a
chunk is combined with activation from associated
sources according to Activation Equation 3.5. This
equation is identical to the original formulation in
ACT–R 2.0 (it was Equation 3.1 in Anderson, 1993). In
ACT–R 2.0 there was noise in the base-level activations.
This has been elaborated in ACT–R 4.0 with the
potential for separate permanent and temporary noise
(see Base-Level Equation 3.6).

Assumption 7: Production Pattern Matching

The chunks in a production condition are matched
sequentially. The quantity controlling matching of a
chunk is the match score, defined by Match Equation
3.8. This equation involves a partial matching
component, which was not part of the original
formulation of ACT–R 2.0. The retrieval latency
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function (Retrieval Time Equation 3.10) is the same as in
ACT–R 2.0 except that the quantity controlling time in
ACT–R 2.0 was the chunk activation whereas now it is
the match score (which combines the chunk activation
and the mismatch penalty). In ACT–R 4.0 a chunk is
retrieved if its activation is above threshold (probability
described by Retrieval Probability Equation 3.7) and
greater than the activations of other chunks (probability
described by Chunk Choice Equation 3.9). The other
fundamental change is that the pattern matcher no longer
backtracks and only one instantiation is computed for
any production: Each chunk pattern is matched by the
chunk with the highest match score. If one chunk pattern
is matched in a way that makes it impossible to match
later patterns then the production fails. If everything
succeeds a single instantiation results. ACT–R is moving
in the direction of productions with a single chunk
retrieval, so this backtracking limitation is often not
relevant.

Assumption 8: Production Selection

A major change in ACT–R 4.0 is that productions are
selected for the conflict set based solely on whether the
top goal matches the goal pattern in the condition. In
contrast, in ACT–R 2.0 they were selected for the
conflict set only if all of their condition chunks matched.
Because the pattern matching of all condition chunks
was done in parallel in ACT–R 2.0 this led again to
excessive pattern-matching power. Productions in the
conflict set in ACT–R 4.0 are selected according to the
expected gain PG–C (Expected Gain Equation 3.1)
where P is their expected probability that they will lead
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to the goal, G is the value of the goal, and C is the
expected
cost of the path. P is defined by the Probability of Goal
Equation 3.2 and C is defined by the Cost of Goal
Equation 3.3. These equations are the same as in ACT–R
2.0, but in ACT–R 2.0 each instantiation of a production
had its own PG–C evaluation, which could be different
from other instantiations of the same production. In
contrast, in ACT–R 4.0 each production has a single
PG–C because productions are selected before they are
instantiated by retrieving chunks to match to condition
pattern. Noise in the evaluation of productions results in
probabilistic selection described by the Conflict
Resolution Equation 3.4. Only if a production is selected
from the conflict set will an attempt be made to retrieve
chunks to match the rest of its condition.

Assumption 9: Strength in Declarative Memory

The activation of a chunk is a sum of its base-level
activation and the weighted strengths of association to it
from the sources (Base-Level Equation 3.5). Chunks
acquire base levels of activation, which reflect their log
prior odds of matching a production. Similarly,
associations among chunks acquire strengths, which
reflect the log-likelihood ratios of one chunk being a
source if the other chunk is going to match. The growth
in base-level activation is described by Base-Level
Equation 4.1 and the change in associative strength is
described by Posterior Strength Equation 4.3. These are
the same strength adjustment functions as in ACT–R 2.0.
In these equations a chunk is considered to have been
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used (the j terms in the summation in Equation 4.1) if it
is retrieved by a production or created anew.

Assumption 10: Production Strength

Production strength grows and decays according to the
Production Strength Equation 4.4, which is the same as
Base-Level Equation 4.1 that describes changes in
base-level activation. In this equation a use (the j terms
in the summation) of a production is defined as a firing
of an instantiation of that production or an attempt to
recreate it.

Assumption 11: Interpretive Application of Declarative
Knowledge

In the ACT theories one way to get behavior is to have
general productions interpret declarative knowledge as in
instruction following or problem solving by analogy.
Until the current ACT–R 4.0, there always was the
further assumption that this interpretive use of
declarative knowledge resulted in the creation of new
productions. However, as Chapter 10 on learning from
examples illustrated, this is no longer the case.
Declarative
knowledge can be interpreted without being compiled
into production rules or, as we discuss in the next
assumption, declarative knowledge can be directly
compiled into production rules without first being used.
Thus, interpretation application of declarative knowledge
no longer has any implications for production formation.

Assumption 12: Knowledge Compilation
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Production rules are created from declarative structures
called dependencies through a process called production
compilation. Dependency structures represent the goal
transformations and any deviations from the default
variabilization rule. Dependency structures are formed
when a goal is set to understand a problem-solving step.
When the dependency goal is popped a production rule
is created along with the dependency chunk. Production
compilation derived from the analogy process in ACT–R
2.0 but has become much more controlled and produces
the smaller grain size productions of ACT–R 4.0.

Assumption 13: Learning Production-Rule Utilities

The parameters q and r (underlying P) and a and b
(underlying C) are all estimated by Bayesian methods as
a weighted combination of a prior and the empirical
quantities. The probabilities, q and r, are defined through
the Probability Learning Equation 4.5 and the cost
quantities, a and b, are learned through the Cost
Learning Equation 4.6. These equations are unchanged
from ACT–R 2.0 but there has been a change in the
scope of the parameters. In ACT–R 4.0 the r and b
parameters are associated with the set of productions that
fire until the current goal is popped (see Fig. 3.1)
whereas they had arbitrary scopes in ACT–R 2.0.
Similarly, the scope of the q and a parameters has been
extended from the action side of the production to its
matching condition side as well as any production cycles
to solve the subgoal(s) pushed by the action side.
Another change is that the experiences shaping these
estimates can decay with time, as described by Event
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Discounting Equation 4.7 and Effort Discounting
Equation 4.8.

Summary

Although the changes from ACT–R 2.0 to ACT–R 4.0
have been in the details, the cumulative impact of these
changes has resulted in a qualitative change in the
theory. These changes are responsible for the emergence
of ACT–R chunks and productions as the atomic
components of thought and for the broad range of
applicability of the theory as documented in Table 12.1.
The devil is in such details. If we were to point to where
changes in
the details have been most critical it would be
Assumptions 7 and 8 about production selection and
matching and Assumptions 12 and 13 about production
learning. The first pair of assumptions have been tuned
to make ACT–R much more applicable to addressing a
wide range of performance data. The second pair of
assumptions have been tuned to give ACT–R a more
realistic theory of production learning.

Comparisons of Production-Rule Architectures

As noted in the introductory chapter, there are four
current production system architectures: ACT–R,
3CAPS2 (Just & Carpenter, 1992), EPIC (Meyer &
Kieras, 1997), and Soar (Newell, 1990). This section
does not provide an exposition of the other three
architectures. The reader can go to the original sources
for this.3 Rather, the goal of this section is to help the
reader of this book place ACT–R by drawing
comparisons between these architectures and ACT–R.
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This can be achieved without complete descriptions of
the other architectures because they all share the same
basic conception of cognition. Thus, in describing
ACT–R we have established the basis for making
relevant comparisons to the other architectures. This
description is organized around a set of criteria
established at the Cognitive Science Meetings in 1995
(Anderson, John, Just, Carpenter, Kieras, & Meyer,
1995) for comparing the production systems. The
participants in that symposium agreed to compare the
production systems with respect to a set of issues that
can be organized into three main categories: their
architectural features, their relationship to data, and their
practical considerations. These categories form the three
subsections of this section. We should say in advance
that we are not attempting an artificial sense of neutrality
in our description. We think that at many points ACT–R
represents the right decisions and we say so and why.
One may look at this section as motivating the ACT–R
assumptions by looking at the near misses. The reader
should also consult Johnson (1997b) for a comparison of
Soar and a slightly older version of ACT–R.

Architectural Features

Parallelism. The first architectural feature on which
we agreed to compare the production systems was their
stance on parallelism. All production systems allow for
some degree of parallelism but ACT–R allows for the
least. The other production systems have a fixed cycle
time in which it is possible to match many production
rules and fire these in parallel. A major problem with
this stance is that it allows an unbounded amount of
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computation to be compacted into a single production
cycle. This was also a problem with ACT–R 2.0 in
which all productions could be matched in a single cycle
even if only one was fired. As Wallach (1998) showed, it
is possible to embed in a single production match a
solution to the traveling salesman problem, which is
known to be NP-complete.4 The next section, on
ACT–R’s possible neural realization, describes some of
the unrealistic assumptions about neural computation
that this kind of parallelism would imply.

In ACT–R 4.0, production rules are processed in parallel
only with respect to their match to the goal chunk. As the
next section of this chapter discusses, this is an amount
of parallelism that the nervous system can support. Any
declarative retrievals to instantiate the selected
productions must be performed serially. Perhaps the
complete serialization of declarative retrievals is too
extreme, but it is not possible to process in parallel
unboundedly many declarative retrieval requests. On the
other hand, there is a great deal of parallelism in
ACT–R’s processing of a specific retrieval request. All
of the declarative chunks of a particular type are
accessed in parallel to see if any match the retrieval
request. As the next section of this chapter shows, this is
a reasonable amount of parallelism to expect from the
brain.

An additional reason for wanting to have only one
production fire at a time is the problem of coordinating
potentially contradictory actions, such as when requests
are made to move the hands in two incompatible
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directions. We discuss this issue further under conflict
resolution.

Activation Processes. The second question we agreed
to address was whether there were continuously varying,
real-valued quantities modulating performance. The
answer in the case of Soar and EPIC is that there are not.
This creates serious problems for these theories in
accounting for the continuously varying graded character
of human behavior, which has been constantly
referenced throughout this book. It also creates
something of a mystery as to how such discrete
computation can arise out of something as continuous
and stochastic as the human nervous system. ACT–R
and 3CAPS have taken the stance of hybrid systems in
which continuously varying quantities modulate the
performance of the symbolic system. They can also be
seen as systems in which their symbolic structure is
really an approximation achieved from the subsymbolic
processes.

In ACT–R, continuously varying quantities modulate
performance of procedural memory as well as
declarative memory. However, for comparison with
3CAPS we will focus on the activation processes in
ACT–R’s declarative memory. Here the similarities are
substantial. In both, activation of a declarative element
underlies its retrieval, that activation is a sum of a
base-level activation plus activation spread from sources,
and the base-level activation reflects the log frequency of
the declarative element. However, the conception of
spreading is substantially different. In ACT–R activation
is spread from slots in the goal, whereas in 3CAPS
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activation is spread by the actions of production rules.
The role of activation in retrieval is also different. In
ACT–R level of activation determines rate of retrieval,
whereas in 3CAPS productions have to fire repeatedly
until some threshold of activation is reached. This makes
the effect of activation on latency more like a step
function in 3CAPS. If there is not quite enough
activation to fire a production, a whole additional cycle
must be spent in building up activation. It is not always
possible in 3CAPS to get the number of steps to match
up with the observed timing effects.

Declarative Memory. The third architectural question
is whether there is a long-term declarative memory
separate from the long-term procedural memory created
by the production rules. All production systems require
at least a temporary declarative memory because this is
what the production rules match to. However, in Soar
this working memory is attached to the goals and
disappears as the goals are achieved. The other three
production systems all have separate long-term
declarative memories. Soar can encode the effect of a
long-term declarative memory by productions like

IF George Washington appears

THEN note that George Washington is the president of
the United States

This creates declarative memories (called “data chunks”
in Soar) that are asymmetric in their access. For instance,
the production rule just given can go from George
Washington to the fact but not from United States to the
fact.
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The process of learning such production rules is one of
the most problematic aspects of the Soar architecture,
which was solved by a mechanism called data chunking.
It was a major discovery within the Soar architecture and
is a very complex mechanism, which would be too long
to recount here (but see Newell, 1990). The contrast
between its complexity and the ease people have in
learning new declarative facts is evidence, in our view,
that data chunking reflects a confluence of mistaken
assumptions in the Soar architecture.

The origins of ACT–R in the HAM (Anderson & Bower,
1973) theory of memory has meant that it has always had
an elaborate theory of declarative memory. It is fair to
say that it is the only production-system architecture that
has taken seriously the task of modeling results from the
human memory literature. This book does represent
some of that effort. Within the human memory literature
ACT–R has sometimes been criticized for its complexity
because it has not been clear to many in the memory
community what the contribution of the
production-system architecture is to accounting for the
basic effects of the field. We hope that this book has
demonstrated some of the integration that is possible by
adopting a production-system framework.

Conflict Resolution. The fourth architectural question
concerned how decisions are made about which path to
follow at points of non-determinism. EPIC and 3CAPS
are parallel-firing production systems that do not have
any conflict-resolution principles. In both systems the
programmer must make sure that contradictory actions
are not taken. Control issues seem not to have been a
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focus of attention in 3CAPS but have been a major
concern in the EPIC system, where modeling dual
processing has been an important topic. The actual
control regimens that have been programmed in
published EPIC models are very difficult to understand,
and it stretches credibility to believe that such control
structures could ever have been learned. Moreover, as
Chapter 6 displayed, the degree of parallelism predicted
by EPIC does not appear to occur.

Although Soar is a parallel-firing production system, it
does not have the problem of contradictory actions firing
because production-rule firings do not actually determine
control of cognition. Rather, Soar operates in an
elaborate-decide cycle. In the elaboration phase
productions do fire in parallel, bringing information to
bear in deciding what operator to apply. Then in a
decision cycle a single operator is applied. As Johnson
(1997b) noted, Soar operators are really the equivalent of
ACT–R productions and the elaborate-decide cycle is the
equivalent of an ACT–R cycle. At the level of selecting
operators that control cognition, Soar is every bit as
serial as ACT–R. In some ways, the discrete
accumulations of elaborations play the same role as
continuous ACT–R subsymbolic computations.

ACT–R, by placing its conflict resolution at the
subsymbolic level, is capable of modeling many of the
continuously varying properties of human choice. It can
also adapt itself to the statistics of the environment.
Chapter 8, on choice, displayed the virtues of this
approach.
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Goal-Oriented Behavior. As Chapter 2 noted, it is
remarkable that all of these architectures have converged
on using goal structures to control production-rule firing.
It is remarkable in part because none of the original
production systems (including ACTE—Anderson, 1976)
had such a goal
structure. The need for a goal structure was a lesson
learned in all of these systems. Although all architectures
have goal-factored production rules, it is in Soar and
ACT–R that one finds an elaborate set of architectural
assumptions to support this goal-based processing. Both
involve a goal stack, but in Soar, productions can
respond to any goal on that stack, whereas in ACT–R,
only the current goal can control behavior. Although this
is a significant distinction, data do not seem to be
available that are relevant to the distinction.

The principles for the creation of subgoals are quite
different in Soar versus ACT–R. In ACT–R production
rules explicitly set subgoals at appropriate times. In
contrast, in Soar subgoals are only created when an
impasse is encountered. An impasse occurs when there is
not a basis for making a decision in a decision cycle. At
such points Soar automatically creates a subgoal to
obtain relevant knowledge for making a decision. For
instance, a classic example would be when Soar is trying
to make a move in a game, cannot decide, creates a
subgoal to get information for deciding, and tries
look-ahead as a method for deciding. Although this is a
different mechanism for subgoaling, in practice Soar
production rule systems are designed so that they often
subgoal just at the points where ACT–R productions
would deliberately set a subgoal.
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The issue of what to do at true impasses is a profound
one for any cognitive architecture. What does one do
when one comes to a problem state for which there is no
relevant knowledge about how to proceed? For instance,
suppose a subject in an experiment suddenly finds that
the computer administering the experiment has died and
the screen has gone blank. Assume, for the sake of
making this a true impasse, that this subject is totally
computer naive and so has no knowledge relevant to the
state. What would the subject do? If the subject were
Soar it would impasse to a new subgoal and could
potentially impasse forever going into ever deeper
problem states. ACT–R’s architectural primitive is to
abandon the subgoal5 and return to the higher goal that
set it. Thus, if the subject were ACT–R it would return to
its goal of getting experimental credit and seek out the
experimenter with the problem.

Learning. The final architectural question concerned
what kinds of learning and self-improvement the systems
could achieve. All production systems allow themselves
to add declarative elements.6 However, the only
production system other than ACT–R with a serious
theory of learning is
Soar. In contrast to ACT–R, Soar has only a single
mechanism for learning, called chunking, and it is a
symbolic mechanism for learning production rules.
Chunking compiles the computation that was done to
resolve an impasse. It compares the state of working
memory before an impasse occurred and a subgoal was
spawned, with the state after the subgoal was popped. It
notes the knowledge that was added to this state by the
subgoal and creates a production rule that will directly
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provide this knowledge without going into a subgoal.
Thus, the chunking mechanism finds the knowledge that
was relevant to making that decision and provides it
directly in a single elaboration production. For instance,
if a look-ahead subgoal in a game situation found some
principle for selecting a move, that principle will be
available the next time without look-ahead.

Chunking has similarities to the production compilation
mechanism in ACT–R. For instance, Soar’s chunking
incorporates a similar default variabilization rule to the
one in ACT–R and has similar problems as ACT–R in
terms of occasions when a different variabilization is
needed. The major difference is that the dependencies,
from which productions are compiled in ACT–R, are
created by deliberate computation and so the default
variabilization rule can be tuned, whereas variabilization
occurs automatically in the Soar architecture.

A general problem with Soar chunking is that it creates
too many productions. The ACT theory has evolved,
from mechanisms in ACT* that created production rules
much too promiscuously, to the more focused analogy
mechanism of ACT–R 2.0, to the deliberate production
compilation of ACT–R 4.0. This need to control and
direct production creation has been a lesson learned in
the ACT systems.

In addition to symbolic learning, ACT–R has
subsymbolic learning mechanisms that play a major role
in the adaptiveness of the system and its ability to
account for data as was displayed throughout this book.
In particular in this context, ACT–R’s ability to learn
conflict-resolution parameters allows it to learn that a
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production rule is bad and so recover from a mistake. In
contrast, there is no direct way to get rid of a bad
production rule in Soar.

Relationship to Data

The second major issue discussed at the Cognitive
Science Symposium was how these theories related to
data. There were four subtopics.

Time. With respect to latency predictions the four
architectures offer interesting similarities and contrasts.
All four have converged on 50 msec as the minimum
cycle time for processing. In all but Soar this is the
minimum
time for a production firing. In Soar this is the
approximate time for an elaborate-decide cycle. The
actual length of the cycle depends on the number of
rounds of elaboration, with each round of elaboration
taking about 10 msec.

In all the models except ACT–R, time progresses in
discrete ticks. These are 50-msec ticks in EPIC and
3CAPS and 10-msec ticks in Soar. Human behavior does
not occur in discrete time ticks, so these models would
have to add some variability in the timing of the cycles
to obtain the latency distributions observed of human
subjects. Such variability is built into EPIC simulations.
In our view the continuous nature of human timing is not
just a matter of noise rounding off the corners of a
discrete process but is a fundamental property of human
cognition (at least at the level at which it is usually
measured). For instance, the problem-size effect in
cognitive arithmetic (Chapter 9) shows that latency
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increases relatively continuously with the size of
operands. It would be difficult to produce such effects in
the other production-system models. As another example
from Chapter 9, the gradual improvement with practice
is not easy to capture. The gradual slowing that occurs
with delay and disuse is even harder to capture without
recourse to a subsymbolic level.

Errors. An important question for production-system
models of human cognition, which goes to the issue of
whether they are “computer” models or cognitive
models, is whether and how they can make errors. One
kind of error in production systems and humans is what
is called knowledge errors. That is, errors occur because
the system has the wrong production rules or wrong
declarative chunks. These are the kinds of errors that all
systems can make, including the most non-human-like
computer programs, as anyone knows who has received
an error in a banking statement.

Other kinds of errors occur infrequently and randomly
and are more uniquely human. For instance, errors can
occur because of loss of relevant declarative information.
In 3CAPS or ACT–R, errors in processing can occur
because needed declarative information is not
sufficiently active. Adding some stochasticity to
activation levels in ACT–R enables it to model the
graded error rates that are characteristic of human
cognition and that one cannot get from the EPIC or Soar
architectures.

In addition, and unique to ACT–R, there is a
partial-matching process that produces the kind of
confusion among declarative chunks that is critical in

758



modeling other slips that people make that are not just
errors of omission. Such slips also cannot be knowledge
errors because they tend to occur infrequently and
probabilistically. So, for instance, the false alarms that
are characteristic of human memory in many situations
depend on some sort of partial matching (see Chapter 7).

Connections to the External World. The presence of
EPIC at the symposium assured that we all addressed the
issue of what the connection was between our
architectures and the external world. As Chapters 5 and 6
argued, it is not possible to give truly principled
predictions about human cognition without addressing
the issue of how these systems sense and act on the
external world and the consequences of these operations
for the flow of cognition. The data and model in Chapter
10 are striking evidence for the importance of
understanding such details for high-level models. That
chapter showed that essentially all existing models of
analogy were wrong because they incorporated mistaken
assumptions about how the development of an analogy
was interleaved with external access to information
about the problem.

EPIC established a high-water mark for concern with the
external world, but we think that the ACT–R/PM system
(Chapter 6) has reached and surpassed that mark. In part
this is because it incorporates the best ideas from the
EPIC system. Recently, there has been an effort to
directly tie together EPIC’s system with the Soar
architecture (Chong & Laird, 1997). Such efforts enable
these production systems (ACT–R, EPIC, Soar) to
interact with the actual software that runs experiments
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(see the discussion of ACT–R’s no-magic doctrine in
Chapter 1). This is an important demonstration of the
sufficiency of the system, and it is also an important aid
to applications where interaction with an external piece
of software is critical. We have more to say about this
when discussing practical applications.

Individual Differences. The presence of 3CAPS at the
symposium likewise assured that we all addressed the
issue of individual differences. One way to deal with
individual differences in a production-system
architecture is in terms of knowledge differences.
Different individuals bring different sets of knowledge
(productions and chunks) to bear in solving a task and so
show differences in behavior. This is the only kind of
account EPIC or Soar can give of individual differences.
This was also basically the account offered in Chapter 11
of differences in scientific discovery. On the other hand,
3CAPS and ACT–R can also relate individual
differences to system parameters that reflect
performance differences in the individuals’ cognitive
architecture. So, for instance in ACT–R, Lovett, Reder,
and Lebiere (in press) have explained differences in
working memory capacity in terms of the total amount of
source activation, the sum of the Wj terms, available for
activation spread in the Activation Equation 3.5. They
called this total capacity W.

3CAPS has another dimension to individual differences
in that it postulates distinct activation resource pools for
performing different activities like spatial versus
linguistic processing. Thus, it can explain different
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patterns of individual strengths as different capacities for
these resource pools. In
ACT–R, the parameters are global and do not allow for
the potential of different values in different content
domains. Although one could always elaborate the
ACT–R theory with such distinctions, Lovett et al.
speculated that the domain-specific differences might be
due to differential practice that would affect things like
base-level activation. The source activation, W, captures
domain-general effects that do not depend on practice.
This domain-general W would be like Spearman’s
(1904) g in theories of intelligence.

Practical Considerations

It is significant that practical considerations were one of
the categories of evaluation at the Production System
Symposium. This reflects an emerging consensus that
production systems should serve as useful modeling
tools. The following were the issues we considered.

Applications. What are the potentials for practical
applications? Each system has its own strengths here.
EPIC, Soar, and ACT–R all have some investment in
providing cognitive models for human-computer
interaction domains. In the case of ACT–R, the system
has also provided cognitive models for intelligent
tutoring systems. In this regard, it should be noted that
the cognitive models that exist in our current tutoring
systems (Anderson, Corbett, Koedinger, & Pelletier,
1995) reflect a production-system architecture that
actually predates ACT–R 2.0 and served as a source of
many of the ideas for ACT–R 2.0. As such, it models
cognition at a much larger grain size than is done in
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ACT–R 4.0. It remains to be seen how much
instructional leverage can be gained from the finer grain
size of analysis in ACT–R 4.0.

Our deepest hopes for the practical applications of the
ACT–R architecture are to education. Education is a
domain where psychology should be making greater
contributions and where there is a real lack of
applications with good theoretical foundations
(Anderson & Schunn, in press). Applications of
cognitive architectures to education need not be confined
to development of tutoring systems, however. Cognitive
architectures should have implications for all aspects of
instruction.

In the case of Soar, the major domain of application of
the architecture has been to building artificial
intelligence systems. Given the increasing standards for
success both in artificial intelligence applications and
cognitive modeling, it is becoming increasingly difficult
to have one system serve both domains. In recent years
the cognitive modeling use of Soar has been receiving
less attention.

Model Re-Use. The presence of Soar at the
symposium assured that we all addressed the issue of
model re-use. One of the admirable attributes of the Soar
community is that models for one application use models
developed in another application. Thus, for instance, the
NASA Test Director model (Nelson, Lehman, & John,
1994) used NL Soar (Lehman, VanDyke, & Rubinoff,
1995) to model language processing. This means that
constraints developed in one model are preserved in
another. EPIC is only used by Kieras and Meyer and is

762



not publicly available, so re-use has not been a major
issue. The amount of re-use in 3CAPS is modest and of
the same pattern and degree as described next for
ACT–R.

There is some modest model re-use in the ACT–R
system. So, for instance, the PRP model reported in
Chapter 6 used the arithmetic facts and parameters
developed in the cognitive arithmetic model in Chapter
9. However, in ACT–R there has been relatively little
wholesale re-use of models from one task to another.
This is related to the issue of the size of ACT–R models.
Because ACT–R models are relatively small there is
little need or opportunity to re-use exact productions or
chunks. What has transferred across models, as
illustrated throughout the book, is a style of knowledge
representation and a set of constraints on the global
parameters.

Scalability. Again, the presence of Soar at the
symposium raised the question of whether our models
would scale up. The artificial intelligence (AI)
applications of Soar with learning of new productions
have involved as many as a million production rules
(Doorenbos, 1992, 1995). In contrast, ACT–R, EPIC,
and 3CAPS models have had at most a few hundred
production rules. This difference reflects at least three
factors. First, as already noted, it takes many Soar
production rules to implement an operator that is the
equivalent of one ACT–R production rule. Second, again
as noted, there is the overfecundity of Soar’s chunking
mechanism in creating too many production rules. Most
of the production rules learned are not particularly
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useful.7 Third, the emphasis on large-scale AI
application in Soar require coding more knowledge than
modeling detailed human data from a particular
cognitive task. With respect to cognitive models with
detailed concern for correspondence to data, there is not
a difference in the complexity of the tasks to which
ACT–R and Soar have been applied.

However, it does seem reasonable to assume that human
cognition does involve millions of chunks and at least
tens of thousands of ACT–R style production rules.
ACT–R 4.0 has been designed to have its efficiency not
be impacted much by scale. Much of this comes from the
use of chunk types in the implementation. Production
rules are selected by matching the chunk
type of the goal. This goal factoring of production rules
allows the system to efficiently focus on the relevant
production rules without having to match them all.
Similarly, retrievals must specify the chunk type, again
allowing the system to focus on a small subset of its
declarative knowledge. The elimination of backtracking
in matching has eliminated the danger of any
combinatorics involved in production-rule matching.
Typically, ACT–R simulations run many times faster
than subjects.8 The elimination of expensive pattern
matching not only means that ACT–R simulations are
efficient but, as the next section of the book will review,
also means that ACT–R avoids inconsistencies with
what we understand about the neural basis of cognition.
The same is not true of Soar production rules, which can
potentially be quite expensive to match (Tambe, Newell,
& Rosenbloom, 1990).
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Most of ACT–R’s computation time is actually spent
performing real-valued mathematics to simulate
subsymbolic computations. This is not an issue in a
symbolic system like Soar. However, the costs of these
real-valued computations are bounded for the same
reasons that the symbolic computation is bounded.
ACT–R performs calculations on an as-needed basis for
the simulation and so is not always updating all the
quantities in the database. There is one notorious “hole”
in the bound that ACT–R places on subsymbolic
computation. This occurs in computing the sums defined
in Equations 4.1, 4.4, 4.7, and 4.8. The past references
can increase linearly with time, and the sum needs to be
computed anew each time the quantities are needed
because the power-law decay equation is not open to
simplification, unlike, say, exponential decay. As a
consequence, the long simulations have been known to
grind to a halt. There is an Optimized Learning option in
ACT–R that enables these sums to be approximated in a
manner that is usually quite satisfactory (e.g., see Fig.
4.1). When this is set there is not significant slowing of
ACT–R simulations.

Modeling Effort. The question here is, how easy is it to
develop models in the architecture? As the first chapter
discussed, ease of model development is a major goal in
the ACT–R system. Of course, an added constraint is
that the models that are easy to develop also have to be
the models that give accurate accounts of the data.
Although model development is never easy, model
development in ACT–R by researchers other than the
original developers is easier than in any of the other
competitive architectures. This is both because of the
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structure of ACT–R and because of the set of facilities
that we have put in place to support model development.
Moreover, reflecting our major commitment to this goal,
we are continually improving the situation in this
respect.

Time to Learn. We have also continually refined the
teaching of ACT–R. In 1994 we taught the first ACT–R
summer school. As an instructional effort it was frankly
a disaster, although some students still managed to learn.
However, we constantly try to absorb the lessons of our
teaching experience to improve the instruction of
ACT–R. Each year, the ACT–R summer school has
improved and in 1998 we hope to reach a major point in
ACT–R instruction. We plan to take students in 10 days
to the point where they understand all the aspects of
ACT–R and have begun to model some of their own
data. The 10 days will be very busy and students will
still have much to learn (as indeed we do), but we will
have reached the point where cognitive scientists can
learn to use ACT–R in their research with a modest
investment of time. The instructional material for this
summer school is generally available and is also used for
other summer schools and to teach courses at other
universities. With respect to university courses, the
experience seems to be that students can get a basic
“feel” for ACT–R in less than a month,9 can come to
master all of the basics of ACT–R in a quarter course,
and can also complete a significant project in a semester
course. Researchers can come up to speed in modeling in
ACT–R faster than in any of the other production-system
formalisms. Furthermore, when one considers the range
of tasks to which students can apply ACT–R after
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mastering the material, we can confidently say that
learning is much more efficient now in ACT–R than in
any other modeling formalism (i.e., not just production
systems).

ACT–R’s Possible Neural Realization

Two lines of research in cognitive neuroscience are
currently receiving a lot of attention. One is concerned
with how cognition might be achieved by computation
that is neurally plausible. The second is concerned with
how cognition is mapped onto regions of the brain and
the functional consequences of this mapping. We have
given thought to how ACT–R relates to both of these
issues. This section describes ACT–RN (Lebiere &
Anderson, 1993), which is a potential connectionist
realization of ACT–R and addresses the first cognitive
neuroscience issue. This has served to help us think
through a number of the changes that transitioned from
ACT–R 2.0 to ACT–R 4.0. It also serves as the basis for
thinking about how ACT–R might map onto neural
structure—the second cognitive neuroscience issue,
which we speculate about as we describe ACT–RN.

The end of the ACT–R 2.0 book (Anderson, 1993),
described some ideas for realizing the computation in a
neurally plausible manner. That served as
a starting point for the development of ACT–RN.
However, as we went down that path we recognized a
number of unnecessary complexities. Therefore, in the
Lebiere and Anderson (1993) conference paper we
described a version of ACT–RN that was much simpler,
easier to imagine neurally implemented, and much closer
to the current version of ACT–R 4.0. ACT–RN has
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never been a very practical system for simulating
cognition because it requires specifying a fair amount of
connectionist detail to create a model, in addition to what
has to be specified for ACT–R. It is also much less
efficient to run simulations. It also suffers from some
shortcomings typical of connectionist simulations, in
particular the difficulty in interpreting and analyzing
what is happening. ACT–R has served as a more useful
level of abstraction for developing cognitive models.
However, ACT–RN has served as an existence proof that
ACT–R could be achieved in a current connectionist
architecture. ACT–RN has also served as an inspiration
for many of the ideas that led to the development of
ACT–R 4.0. We describe later the implementation of
ACT–RN and how it has influenced the development of
ACT–R 4.0. In writing this section we are assuming that
the reader knows the basic concepts of connectionist
models (as are found in McClelland & Rumelhart, 1986;
Rumelhart & McClelland, 1986).

As was illustrated in Fig. 1.2, there are three major
memories in ACT–R: declarative memory, procedural
memory, and goal memory. The next three subsections
describe how ACT–RN implements each memory. The
actual running code for ACT–RN can be obtained by
following the ACT–R Software link from the ACT–R
home page, http://act.psy.cmu.edu.

Declarative Memory

Figure 12.1 illustrates how ACT–RN implements
declarative chunks. A chunk in ACT–R consists of a
unique identifier called the header, together with a
number of slots each containing a value which can be
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another chunk. Retrieval of chunks in ACT–R involves
specifying some of these elements and retrieving other
elements by activating the declarative network. To
implement this kind of associative memory, ACT–RN
uses a simplified version of a real-valued Hopfield
network (Hopfield, 1984). Each slot, as well as the
chunk identifier itself, is represented by a separate pool
of units. The unit pool for the chunk identifier is called
the header in Fig. 12.1. Instead of having complete
connectivity among all pools, the slots are only
connected to the header and vice versa. Therefore
retrieval works not by energy minimization on a
recurrent network but through a forward-backward
mapping mechanism. Retrieval involves activating
patterns in some of the pools and trying to fill in the
remaining patterns corresponding to the retrieved chunk.
If some slot patterns are activated, they are mapped to
the header units to retrieve the chunk identifier that most
closely matches these
contents (path 1 in Fig. 12.1). Then, the header is
mapped back to the slots to fill the remaining values
(path 5). If the header pattern is specified then the step
corresponding to path 1 is omitted.
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Fig. 12.1. ACT–R represents chunks as connections
between a header module and slot modules with a chunk
module to perform the cleanup.

To insure optimal retrieval, we found it necessary to
“clean” the header. This can be achieved in a number of
ways. One would be to implement the header itself as an
associative memory. We chose instead to connect the
header to a pool of units called the chunk layer in which
each unit represented a chunk, achieving a localist
representation (path 2). The header units are connected
to all the units in the chunk layer. The pattern of weights
heading to a particular localist unit in the chunk layer
corresponds to the representation of that chunk in the
header. By assembling these chunk-layer units in a
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winner-take-all network (path 3), the chunk with the
representation closest to the retrieved header ultimately
wins. That chunk’s representation is then reinforced in
the header (path 4). A similar mechanism is described in
Dolan and Smolensky (1989). The initial activation level
of the winning chunk is related to the number of
iterations in the chunk layer needed to find a clear
winner. This maps onto retrieval time in ACT–R. (See
the neural model in Appendix B of Chapter 3.)

Every time a new chunk is created, a new representation
appears in the header pool, and a new unit is initialized
in the localist chunk layer with the proper connections.
One-step Hebbian learning is then used to add the
correlation between header units and slot units (paths 1
and 5) to the
connections between header and slots. If header
representations are orthogonal, such one-time learning is
sufficient (Hinton & Anderson, 1981). If rather than
using orthogonal header representations we use random
representations, we get interference between
representations that decreases with the size of the
representation (number of units in the header).

The other possibility is to allow chunk representations to
be correlated to the extent they are similar. This would
both increase interference and promote generalization.
To learn this type of representation, an iterative
supervised learning algorithm such as the generalized
Delta Rule (Rumelhart & McClelland, 1986) would be
necessary. Such representations can be directly specified
in ACT–RN but cannot be learned.
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For those chunks that we regard as symbolic, we used
either random or orthogonal representations for
identifiers. For those chunks that we regard as analog,
we encoded their similarity in the patterns of correlations
among their identifiers. For instance, in a simulation of
the multicolumn addition model, we had symbolic
chunks representing the addition columns but we
specified for the integers a representation encoding their
magnitude. That allows the addition table to be
represented compactly and to generalize well. This was
the beginning of the partial-matching mechanism that is
now part of ACT–R.

ACT–RN uses separate connectionist modules like Fig.
12.1 to implement each chunk type. This segregation of
memory by chunk type plays a major role in terms of
optimizing the storage requirements of ACT–RN. It is
widely assumed that the capacity of associative
memories grows linearly with their size (Hopfield,
1982). If full connectivity is used, however, the number
of connections grows with the square of the number of
units. By breaking up declarative memory into type
memories, ACT–RN preserves capacity while
considerably decreasing the number of connections
necessary. Separate type memories can also learn better
the representational structure of each chunk type without
being perturbed by the other types. Finally, because
various types have different numbers of slots and
therefore different lengths, having separate memories for
each type improves memory efficiency.

We suspect that each type in ACT–RN corresponds
cortically to a hypercolumn or small cortical area of
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10,000 or more cells. There are tens of thousands of such
cortical areas that could more than support the
implementation of the different types in ACT–RN. These
cortical regions have the sort of interconnectivity to
support the iterative processing and cleanup described
with respect to Fig. 12.1. Note that we are assuming that
declarative memories are stored cortically in ACT–RN.
As noted in Chapter 2, the hippocampus seems to be
involved in the creation of new declarative memories,
but it is not the permanent long-term repository of
declarative memory.

Procedural Memory

ACT–R is a goal-oriented system. To implement this,
ACT–RN has a central memory, which at all times
contains the current goal chunk (Fig. 12.2), with
connections to and from each type memory. Central
memory consists of a pool of units where each pool
encodes a slot value of the goal. With this system we
implemented productions that retrieve information from
a type memory and deposit it in central memory. Such a
production might retrieve from an addition table the sum
of two digits held in central memory. For example, given
the goal of adding 2 and 3, a production would copy to
the addition-fact type memory the chunks 2 and 3 in the
proper slots, let the memory retrieve the sum 5, and then
transfer that chunk to the appropriate goal slot. This
operation implements the basic goal transformation by
retrieval that has been characteristic of many ACT–R 4.0
productions throughout this book.
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Fig. 12.2. The realtionship among the various memories
in ACT–RN (compare with Fig. 1.2). Production rules
are basically implemented as gates to control flow of
information between the memories.

To provide control over production firing, we needed a
way to decide not only what is to be transferred where,
but also under what conditions. That is the role of the
conflict-resolution mechanisms in ACT–R. In ACT–RN,
that task is achieved by gating units. Each gating unit
implements a particular production and has incoming
connections from central memory that reflect the goal
constraints on the left-hand side of that production.
For example, suppose goal slot S is required to have as
value chunk C in production P. To implement this the
connections between S and the gating unit for P would
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be the representation for C, with an appropriate
threshold. At each production cycle, all the gating units
are activated by the current state of central memory, and
a winner-take-all competition selects the production to
fire. This is similar to the scheme in ACT–R 4.0 of only
testing against the goal in selecting which productions to
try.

Connections between central and type memories
describe the patterns of transfer to and from central
memory. The winning gating unit is used to turn on the
connections used by that production with all other
connections left off. Each gating unit is restricted to
enabling paths back and forth between central memory
and a particular type memory.10 Thus, the basic
production type is:

Type I: Lookup-Fact

goal

fact

= =>

transformed goal

This looks up some fact and copies some slot value (s)
(or header) back into the goal, thus transforming the
goal. It is possible to replace the goal with the fact itself.
In this case the production rule is:

Type II: New-Goal

goal

= =>
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fact as new goal

Although this syntax is a severe restriction over ACT–R
2.0, it anticipated the format of production rules in
ACT–R 4.0 (see Chapter 2).

It is worth noting that production rules in ACT–RN are
basically rules for enabling pathways back and forth
between a central goal memory and the various
declarative memory modules. This makes it clear than
production rules are not really structures that are stored
in particular locations but are rather specifications of
information transfer. Neurally, they would correspond to
pathways between cortical areas.

Goal Memory

The goal stack is an important construct in ACT–R. It is
implemented in ACT–RN by using a dedicated type
memory of the same character as Fig. 12.1 but with
enough slots to encode the slots of both the new goal G
and parent goal PG. The header representation is chosen
at random in order to minimize interference. To push the
new subgoal, both G and PG are copied in the
appropriate slots of the stack memory, and the
correlations between the slots and the header are
memorized, just as type memories are encoded.11 When
G is to be popped, it is copied from central memory to
the stack memory and PG is retrieved, just as for any
other type retrieval, and restored back to central
memory. The association between G and PG is erased
from the stack memory through explicit unlearning.
Weight decay would be a less exact but perhaps more
psychologically plausible technique to accomplish this.
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ACT–RN introduced a variant of the mechanism,
currently in use in ACT–R 4.0, for returning a result
from a subgoal to its parent goal. We had long felt that
the inability to do this led to rather awkward production
rules in past ACT theories. In addition, this facility
avoids a problem that would otherwise arise in
ACT–RN: When the goal has been restored to its
previous value, the production that initially pushed the
subgoal would fire again and the system could be caught
in a loop. The appearance of the result value changes the
goal and so prevents the old production from firing. The
subgoal return mechanism serves a similar refraction
role in ACT–R 4.0.

This goal stack mechanism is implemented by gating the
transmission of values back and forth between central
memory and the result memory, just as information is
gated between type memory and central memory. This is
represented in the syntax of ACT–RN by augmenting it
with a push and a pop command. The push command
specifies a slot of the parent goal in which the result
returned by the subgoal is to be copied. The pop
command in turn specifies a value to be returned when
the subgoal is popped. That value is copied to a result
memory, which is then restored in the proper goal slot
after popping. These commands modify the second
production type, New-Goal, given earlier to add the push
command and the pop command:

Push-Goal

goal

= =>
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[ push goalslot ]

subgoal

Pop-Goal

goal

= =>

pop value

The ACT–R 4.0 production rules given in Chapter 2 bear
a close relationship to these ACT–RN rules.

In this context one is led to speculate about the neural
location of goal memory. Given that damage to the
prefrontal cortex results in deficits in executive function
(Luria, 1965; Milner, 1963), it is natural to associate goal
memory with the prefrontal cortex. Indeed, Kimberg
(1994) and Kimberg and Farah (1993) developed a
version of ACT–R that models frontal patients in terms
of goal-memory deficits that can be conceived as of loss
of source activation from the goal (the Wj in Activation
Equation 3.5). Similarly, Lovett, Reder, and Lebiere (in
press) have modeled individual differences in working
memory capacity in terms of source activation.
However, goal memory is not associated with a
circumscribed small area of prefrontal cortex, because
damage to many areas of prefrontal cortex results in
similar deficits. Rather, goal memory is probably
distributed over large areas of prefrontal cortex.

The Status of ACT–RN

ACT–RN does not perfectly mirror the performance of
ACT–R 4.0. For one thing, the connectionist learning
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algorithms used in ACT–RN do not perfectly mirror the
activation processes in ACT–R 4.0 nor the activation
learning processes. More substantially, ACT–RN did not
address the issue of the learning of new production rules
or the tuning of production rules to reflect their expected
gain. Still, ACT–RN serves as an existence proof that the
basic conception of cognition in ACT–R 4.0 is neurally
plausible. At a future time we may work further at
improving the correspondence between ACT–R and
ACT–RN. Maybe new versions of each system will
result. And this takes us to the last point in this book, the
future of ACT–R.

The Future of ACT–R

ACT–R is not an unchanging theory, and it will be tuned
and elaborated as experiences with it warrant. However,
we are keenly aware that the cognitive science
community does not profit by a rapidly changing theory,
especially when it is a complex cognitive architecture.
The architecture acquires increased impact and
credibility as additional successful models are
implemented within the same system without ad hoc
changes from one
model to another. Researchers who are developing
theories of subdomains in ACT–R do not want to see the
basis for their theories change under them nor the syntax
of ACT–R change capriciously. Researchers who want
to perform some critical test or analysis of ACT–R want
assurance that their efforts will still be relevant when
they are completed. Researchers want a basis for sharing
their modeling experiences. Students and scholars who
study ACT–R for general edification want some
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assurance that their knowledge will be relevant.
Therefore, for all of these reasons, we have adopted a
deliberate strategy of being conservative in changes
introduced into the theory. The rate of change from
ACT–R 2.0 to ACT–R 4.0, although not rapid, is
probably more rapid than in the future, as many of the
changes reflect the early growing experiences of
ACT–R.

We have made the ACT–R 4.0 code less restrictive than
the theory. For instance, although the theory does not
perform backtracking in pattern matching, one can get
the simulation system to do so.12 In fact, at a symbolic
level almost13 anything that worked in ACT–R 2.0 can
work in ACT–R 4.0. Also, researchers can and do
change the code to suit their needs. When we published
ACT–R 2.0 we had anticipated more people would have
taken the code and produced modified theories to suit
their needs. There has been relatively little of this, and
we suspect this reflects the value researchers place on
having their research in a context similar to that of other
re-searchers. We have offered to produce variants of
ACT–R for users that are having problems with some
feature, and they have declined to use the variants unless
we assured them that these would become part of the
common ACT–R.

Although we want to maintain a stable official version of
ACT–R 4.0, there will be pressures for change. There
will inevitably be discussions in the ACT–R community
about strengths and weaknesses of ACT–R 4.0 and
researchers trying out variations. Undoubtedly, an idea
will arise that is so good that we will be compelled to
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incorporate it into the official ACT–R. We would like to
assure that any such changes will constitute cumulative
progress. To help achieve this, we have decided to
commit to a conservative policy for entering any
significant changes into the official ACT–R 4.0 over the
next 5 years. This policy involves a commitment to
support all of the running ACT–R models that are
available from the published models link in the ACT–R
home page. This repository contains running ACT–R
models that are described in generally available written
papers (they do not actually have to be published but the
papers have to be available to the public), including all
of the models described in this book. We have also
included a
number of other models by other researchers, and we
encourage and support more submissions. Our
commitment for 5 years is to not introduce any
modifications to ACT–R 4.0 that negate the successful
behavior of these models. If we do introduce a change
that hurts a model’s account of some behavioral
phenomena, it is our obligation to find some
transformation of the model that will allow it to provide
at least as good an account. As we will not introduce any
changes to ACT–R unless they allow the system to
account for some new data, this published models
repository becomes a way of guaranteeing that all
changes to ACT–R constitute cumulative progress.

For the intermediate term, we are committed to the idea
that these published models will be the principal
instrument for the evaluation of ACT–R 4.0. ACT–R 4.0
will be successful to the degree that models are built in it
that cover a wide range of phenomena in a broad range
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of domains. Although ACT–R researchers are engaged
in this process of model accumulation, undoubtedly new
and important issues will arise and be discussed. What
might the future directions be for the development of the
ACT–R system? We have learned from past experience
the perils of predicting the future of the ACT theory, but
nonetheless we will describe the dimensions that
currently seem most prominent to us, as follows.

Probably, the aspects of ACT–R that seem most
problematic are the assumptions surrounding its goal
stack. This is curious because, as mentioned throughout
this chapter and the book, a goal structure is critical to
the success of modern production systems. However, as
Chapter 2 noted, the perfect-memory feature of the goal
stack seems unrealistic. The research described in this
book has not really focused on that assumption. Another
important function of the goal structure is localizing
conflict resolution and credit assignment to small spans
of information processing in service of a goal (see Fig.
3.1). However, again the research to date has not focused
on the particulars of these assumptions. Future research
may indicate modifications that maintain what ACT–R’s
goal structure has achieved in terms of focus but are
more accurate in terms of details of implementation that
have yet to be stressed in ACT–R modeling.

There are a number of issues in our mind surrounding
partial matching. For one, the similarity metrics that
determine it are currently ad hoc and could use
constraint. Also, the mismatch penalty and the
associative Sji terms in ACT–R have similar effects and
there may be a possible unification. Note that in
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ACT–RN the Sji terms are represented in the associations
between slots and header, but similar inputs (j terms)
will evoke similar header representations. Thus,
mismatch and association are not simply added as they
are in ACT–R. Perhaps related is the fact (noted in
Chapter 7) that ACT–R does not have a mechanism for
producing continuously varying answers like confidence
ratings, similarity judgments, or magnitude
estimates. Wallach and Lebiere have explored
mechanisms for converting degree of match into such
quantities. Whether partial matching is the right
mechanism or not, a major hole in ACT–R is the lack of
some principled mechanism for producing continuously
varying answers. Much psychology cal research involves
such dependent measures, and the relationships
involving these measures can be quite systematic.

Finally, there are a number of issues involving
production-rule learning. The production compilation
mechanism described in Chapter 4 is basically a research
proposal, and most of that research has yet to come in.
Another issue is the process of production-rule strength
learning and the role of production-rule strength in rule
execution. Again, the research in this book did not stress
those assumptions. For instance, although it is clear
some rule-strengthening mechanism is needed, it is
unclear whether it should play the role it does in
determining retrieval speed (Equation 3.10) but not
accuracy (Equations 3.7 and 3.9). Perhaps related to this
is the fact the ACT–R community is still working out
when learning should be implemented declaratively and
when it should be implemented procedurally. This was a
major theme of the most recent ACT–R Workshop
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(Table 12.1). This issue is also reflected in the contrast
between the declarative and procedural learning models
in Chapter 10 on analogy.

We conclude by reiterating our commitment that ACT–R
will continue to grow as a system for developing models
in cognitive science and that any further changes will
move it even closer to capturing an emerging consensus
about the nature of human cognition. Indeed, our hope
for ACT–R is that it ceases to be “our” theory of
cognition and that it comes to formalize the common
wisdom about how to integrate and organize the research
and theory in cognitive science. To return to the opening
theme of this book, this is what Allen Newell would
have wanted.

1However, Lovett, Reder, and Lebiere (in press) have
speculated that this bound might be an individual
difference parameter.
2As this book goes to press, we understand that 3CAPS
is to be replaced by a new system, 4CAPS.
3Bonnie John’s Chapter 9 in Pew and Mavor (1998)
offers a general review of these and related cognitive
architectures.
4NP-complete problems are generally considered not to
be solvable in bounded time but rather to require
solution times that grow exponentially with their size.
Thus, they are not candidates for “atoms of thought.”
5Recall that ACT–R 4.0 will abandon a subgoal
whenever there are no productions that apply with
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positive expected utility. Note that the utility threshold is
settable in the ACT–R 4.0 simulation system.
6However, in Soar these are lost when the goal context is
lost.
7For instance, in Altmann’s (1996) dissertation, 63% of
the learned production rules were never used.
8This is time for the simulation to deliver its predictions.
Predicted times are, of course, on the same scale as the
human times.
9ACT–R has been used for this period in “Comparative
Architectures” or “Introduction to Cognitive Science”
courses.
10This is the origin of the constraint in ACT–R 4.0
restricting the condition to independent chunk retrievals,
preferably just one chunk retrieval.
11Because it has double the slots of goal memory, it is a
particularly large type memory.
12This is the behavior of ACT–R when the flag Enable
Rational Analysis is off, which essentially disables all
subsymbolic computations in ACT–R.
13The exceptions are string matching to lists, and
generalized negation.
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