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MANAGEMENT SCIENCE 
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Printed in U.SA. 

A MODIFIED BENDERS' PARTITIONING ALGORITHM 
FOR MIXED INTEGER PROGRAMMING* 

DALE MCDANIELt AND MIKE DEVINE4 

As applied to mixed-integer programming, Benders' original work made two primary 
contributions: (1) development of a "pure integer" problem (Problem P) that is equivalent to 
the original mixed-integer problem, and (2) a relaxation algorithm for solving Problem P that 
works iteratively on an LP problem and a "pure integer" problem. In this paper a modified 
algorithm for solving Problem P is proposed, in which the solution of a sequence of integer 
programs is replaced by the solution of a sequence of linear programs plus some (hopefully 
few) integer programs. The modified algorithm will still allow for taking advantage of any 
special structures (e.g. an LP subproblem that is a "network problem") just as in Benders' 
original algorithm. The modified Benders' algorithm is explained and limited computational 
results are given. 

In 1962, Benders [2] proposed a partitioning approach for solving programming 
problems that involve a mixture of either different types of variables or different types 
of functions. Two common applications are the solving of mixed integer linear 
programming problems and mixed linear and nonlinear problems. As applied to 
mixed integer problems, Benders' approach (1) defined a "pure" integer problem that 
is equivalent to the original problem, and (2) devised an iterative relaxation scheme 
for solving the "pure" integer problem. One drawback to this method is that it 
required solving a "pure" integer problem at each iteration. The purpose of this paper 
is to present an alternative relaxation scheme for solving the "pure" integer problem. 
Some limited computational results are also given. 

1. Problem Statement and Notation 

The general mixed integer problem may be stated as: 

Minimize: X0 = CX + C'Y 

Subject to: AX + A'Y > B 

DY > B' (P1) 

X > 0 Y > 0 and integer, 

where A is m X n, A' is m X p, D is m' X p and the vectors are appropriately 
dimensioned. The constraints DY > B' are those (if any) that do not contain any 
continuous variables. 

If one lets the integer variables Y assume some values, say Y', the dual of the 
remaining LP problem is 

Maximize: U0 = U(B - A'Y') 

Subject to: UA S C 

U > 0. (P2) 

To this problem, let us add a constraint UE < M, where E is an m x 1 vector of l's 
and M is some appropriately large number.' We will call this new problem P2'. If P2 

* Accepted by Arthur M. Geoffrion; received April 30, 1974. This paper has been with the authors 9 
months, for 2 revisions. 

t California State University at Northridge. 
t University of Oklahoma. 
'This is equivalent to adding a new continuous variable to P1 with a coefficient of M in the objective 

function and coefficients of 1 in each constraint. 
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is bounded, then the added constraint is redundant, so that P2 and P2' are equivalent. 
If for a given value of Y, the optimal solution to P2 is unbounded, then the optimal 
solution to P2' will be bounded, with the constraint UE < M "tight". Thus, if we solve 
P2' and UE S M is tight, then we can conclude that P2 is unbounded. Note that the 
feasible region of P2' (and P2) is independent of Y, so that regardless of what value Y 
may assume, the optimal solution of P2' will be a vertex of the feasible region. Let us 
denote each of the vertices of this space by UP, p = 1, . . . , T. 

2. Benders' Partitioning Algorithm 

Benders derived the following "pure"2 integer problem which is equivalent to P 1. 

Minimize: Z 

Subjectto: Z > C'Y+ UP(B-A'Y), p=1, ...,T, 

DY > B ' 
Y > 0 and integer. (P3) 

Note that this problem has T constraints (one for each of the vertices of P2') in 
addition to the m' constraints of DY > B'. As T is usually very large, however, 
Benders proposed a relaxation scheme to solve the problem. The procedure suggested 
by Benders is one in which P3 is relaxed by starting with a small subset of the T 
constraints in P3 (usually only 1 constraint). Then one successively generates con- 
straints for the "pure" problem by alternately solving P2' and the relaxed "pure" 
problem. (See, for example, Garfinkel and Nemhauser [6] for a more detailed 
development of the algorithm.) Very briefly, assuming P1 is feasible and bounded, 
Benders' algorithm is 

Step 0. Initialization: t = 1, BU = + ?? and select some e (convergence criteria). 
Select some U1 that is feasible for P2'. 

Step 1. Solve the relaxed "pure" integer problem: 

Minimize: Z 

Subject to: Z > C'Y + U'(B-A' Y), i =1,.. ., t, 

DY > B' 

Y > 0 and integer. (P4) 

Let Z' and Y' be the solution. If Z is unbounded from below, take Y' to be some 
value that gives Z' some arbitrarily large negative value. (P4 is the relaxed version of 
P3.) 

Step 2. Generate the most violated constraint of P3 by solving the linear program 
P2': 

Maximize: UO = U(B - A' Y') 

Subject to: UA < C 

UES M 

U > 0. 

Let the solution to this linear program be Uoj` and U` - 
Step 3. Check convergence criteria: Bu<- min{B", Uol+ + C'Y'}. If Z' > BU- , 

2 The quote around pure is used to signify that P3 actually contains one continuous variable. Several 
special methods for solving this problem have been proposed (see, for example, Balas [1] and Zoutendijk 
[12]). 
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stop-the optimal solution has been reached. Otherwise, add the constraint Z 
? C'Y + U'+1(B - A'Y) to P4. Let t = t + 1. Return to Step 1. 

At the end of any iteration t, Z' represents a lower bound on the optimal solution 
to P1, and it is monotonically increasing. Also, c Yt + U0+ represents an upper 
bound, but it is not necessarily monotonically decreasing. Therefore, the best upper 
bound (Bu) is given by BU = min{ C'Y i+ U0+ 1 }, i = 1, ... , t. 

There have been some encouraging results reported (for example, see [4], [5], [7] and 
[11]) which show that Benders' algorithm can often solve the mixed integer program in 
relatively few iterations. Unfortunately, when the original problem involves many 
integer variables, solving the "pure" integer problem at each iteration can be very 
costly. 

3. A Modified Algorithm 

The purpose of the iterative process of Benders' algorithm is to successively 
generate constraints for P4. This is accomplished by solving P4 to optimality and then 
solving P2' in order to generate the most violated constraint of P3. Of course, any UP 
(p = 1, ..., T), or in fact any feasible U, not necessarily an extreme point, forms a 
legitimate constraint that can be added to P4. The objective of the proposed algorithm 
is to generate "good" constraints for P4 without having to solve the "pure" integer 
problem at each iteration. 

The approach of this alternative algorithm is to solve the "pure" integer subproblem 
P4 for some number of iterations as if it were a linear program, i.e., the integer 
restrictions are dropped. The resulting solution to P4 (which may be fractional) is then 
used in P2' to generate a new constraint for P4. The constraints generated for P4 are 
still legitimate since any extreme point from P2', regardless of how it was determined, 
may form a constraint for P4. The hope is that many of the necessary constraints for 
P4 may be generated by solving linear programs in the place of integer programs. 

There are a variety of heuristic rules possible for determining when to solve P4 as 
an IP or when to solve it as an LP. Some possibilities are (a) Continue LP iterations 
on P4 until no further iterations are possible (in which case one has found the LP 
solution to P1 via Benders' partitioning), and from then on solve P4 as an IP; (b) 
solve P4 as an LP for the first k iterations, say k = 10, and then switch to IP's; (c) if 
Bu- Zt < S, then switch to the IP. 

One should note that when P2 is solved with a fractional value for Y', then 
Uo + C'Y' is not necessarily an upper bound for P1 since the Y's are not integer 
feasible. Thus, with rule (c) above one is not comparing upper and lower bounds on 
P1, but rather on the LP version of P1 (i.e., P1 with the integer restriction relaxed). 

An algorithm using a combination of these heuristics is given below: 
Step 0. Same as Benders' original algorithm. Also, specify k and S (> e). 
Step 1. If t > k, go to Step IA. If t < k, solve the linear program: 

Minimize: Z 

Subject to: Z > C'Y + U'(B-A'Y), i=1, ... , t, 
DY > B' 

Y > 0. 

Let Y' and Z' be the solution. Go to Step 2. (Note no integer restriction on Y.) 
Step IA. Solve the integer program: 

Minimize: Z 

Subjectto: Z > C'Y+ U'(B-A'Y), i= ,.. .,t, 
DY > B' 

Y ? 0 and integer. 
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Let y' and Zt be the solution. Go to Step 2. 
Step 2. Same as Benders' original algorithm. 
Step 3. B--mincB, Uo'1 + C'Y'c. If Zt > B c- , and Step 2 was entered from 

Step IA, stop-optimal solution has been reached. 
If Z' > B, - 6, and Step 2 was entered from Step 1, set k = 0 and go to Step IA. If 

Z < Bu - 6, add the constraint Z > C'Y + Ut"'(B - A'Y) to the subproblem of 
Step 1 and Step IA. Let t -t + 1. Go to Step 1. 

4. Computational Results 

Some preliminary computational tests have been obtained on the algorithm pre- 
sented and compared to Benders' original algorithm. Table 1 summarizes the 
characteristics of some of the problems that have been solved. (Another set of very 
small test problems were solved in the process of debugging the code, but these results 
are not presented here due to space limitations. The omission of these small problems 
does not affect the conclusions drawn.) The number of continuous variables given is 
exclusive of slack or artificial variables and all integer variables are 0-1. 

TABLE 1 

Number of Number of 
Continuous 0-1 Number 

Problem Variables Variables of Rows Type 

3a-3f 36 24 14 Production Allocation with 
Set-up Costs 

4a-4f 36 24 38 Production Allocation with 
Piecewise Linear Costs 

5a-5f 12 25 12 Capital Budgeting 

6c-6e 24 24 32 Fixed Charge Transportation 

It is not feasible in this paper to describe fully each of these test problems. However, 
complete descriptions (including all numerical data) can be found in [10]. Very briefly, 
problems 3a-3f are production allocation problems with set-up costs, which can be 
modeled as: 

n I m I n 

minimize E E E CkijXkij+ E E Vki Yki 
i=1 k=1 j=1 k=1 i=1 

n 

subject to: E Xkij? dk1, k= l,. ..,l;= ,...,m 
i=1 

I m 

Y4 tkiXkij+ E hkiYki ri i = 1, ... , n 
k=1 j=1 k=1 

m 

E Xkij 
-< Myki, k = 1, 9 ,1 . . . .., n, 

j=1 

all Xk~i > 0 and all Yki = 0, 1, 

where the decision variables are 

Xkij = amount of production of product k at plant i 
for delivery to warehouse]; 

Vki = 1 if product k is produced at plant i, 
0 otherwise; 
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and the problem data are 
Ckij = per unit cost of producing product k at plant i (excluding set-up cost) and 

delivering to warehousej, 
Vki = set-up cost for product k at plant i, 
dkj = demand at warehouse j for product k, 
tki = production time for product k at plant i (excluding set-up), 
hki = set-up time for product k at plant i, 

ri = total available production time at plant i, 
M = sufficiently large number. 

Problems 4a-4f are similar production allocation problems but with piecewise linear 
concave production costs. 

Problems 5a-5f are simple capital budgeting problems of the following form: 
n m 

maximize E C1XI+ E Cj' Y 
i=l j=l 

n 

subject to: Y, A XI + Yj -Yj_ - bj, j=1 ,m 
i= I 

all Xi =0, 1; Y0 =0, and all Y) > 0, 

where the decision variables are 

Xi = 1 if project i is selected, 

= 0 otherwise; 

Y1 = amount of cash left uninvested at the end of periodj; 

and the problem data are 
Ci =present value of project i, 
C)' =present rate of loss on money left uninvested in period j, 
A= amount of investment required in period j for project i, 
bj = budgeted amount of cash for all projects in period j. 
Problems 6c-6e are fixed-charge transportation problems of the type described in 

[8], [9]. In fact, problems 6d and 6e correspond to problems 2 and 3 respectively of [8, 
p. 68]. 

Table 2 lists the timings and the number of iterations required for both of the 
algorithms on each test problem. For the modified algorithm, the number of iterations 
required was separated into those where only LP subproblems were solved and those 
where an IP solution was required. All problems were run on the UNIVAC 1108 
located on the Madison Campus of the University of Wisconsin and all timings are in 
CPU seconds. Relatively unsophisticated and inefficient codes were used to solve the 
LP subproblem and the IP subproblems, and no attempt was made to take advantage 
of special problem structures; e.g., the transportation subproblems in problems 6c-6e 
were solved with the standard simplex method. For all of these problems e= 
max{0.001, 0.0003Z'}, Z = 0.06Zt, and k = arbitrarily large number. 

Of interest in these results is the fact that the modified algorithm resulted in at most 
50% more iterations and in two cases fewer iterations than Benders' algorithm. Since 
one is trading linear programming problems for integer programming problems at 
most of the iterations, this is an encouraging result. The inability of Benders' 
algorithm to find answers in five minutes on a large number of the problems, caused 
largely by the computation times to solve the IP problems, restricts many of the 
comparisons. 

Probably the most interesting and promising result is that on all of the problems 
solved to optimality with the modified algorithm, it was necessary to solve only one IP 
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TABLE 2 

Computational Results 

Benders' Original Algorithm Modified Algorithm 

No. of Iterations 
Problem Time No. of Iterations Time LP IP 

3a 4.16 7 5.53 8 1 
3b 5.23 9 8.13 15 1 
3c 4.00 7 5.20 8 1 
3d 5.23 11 5.90 10 1 
3e 3.31 7 4.57 8 1 
3f 5.15 7 7.82 10 1 

4a 290.55* 2 + 83.32 17 1 
4b 290.25* 3 + 89.57 18 1 
4c 272.82 10 66.79 11 1 
4d 209.27 10 97.76 14 1 
4e 290.25* 2 + 101.97 19 1 
4f 290.85* 5 + 85.78 17 1 

5a 126.00 5 63.11 4 1 
Sb 13.12 3 11.79 3 1 
5c 98.47 4 64.05 2 1 
Sd 20.32 3 19.05 2 1 
5e 29.73 4 18.23 3 1 
Sf 7.71 4 9.31 5 1 

6c 288.75* 17 + 76.88 18 1 
6d 288.00* 20 + 74.62 17 1 
6e 191.56 15 289.20* 19 1 + 

* No final solution in stated time. 

problem. That is, after P4 was solved as an IP for the first time, the procedure 
terminated with the optimal solution. (This result also holds for the smaller test 
problems that are not presented here.) 

To get a better comparison between Benders' original algorithm and the modified 
algorithm, Table 3 gives some computational results for some of the same problems 
using a slightly improved computer code.3 This table gives a breakdown of CPU time 
between the LP and IP problems, and times are CPU seconds for an IBM 360/50.4 
For the results in Table 3, e = max{0.001, 0.003Z'}, S = 0.05Z', and k = arbitrarily 
large number. Notice in comparing the results in Tables 2 and 3 that in most cases 
there was a different number of iterations required. This resulted because (1) different 
convergence tolerances were used; (2) different amounts of round-off error were 
caused by different algorithms for the LP problems and different computers, and (3) 
in the case of alternative optimums in the subproblems, it is likely that the different 
codes found different solutions, thereby affecting the subsequent sequence of solu- 
tions. The results of Tables 2 and 3 generally agree in that the modified algorithm was 
superior in CPU time; but in cases where Benders' algorithm finished, it is superior in 
terms of the number of iterations. One interesting difference in the two sets of results 
is that problem 6d required more than three IP iterations in Table 3. This dem- 
onstrates that one cannot always expect only one IP iteration with the modified 

I The authors wish to gratefully acknowledge the efforts of David H. Cookerly and Hee Man Bae in 
developing this improved computer code. The code was partially developed as part of [3], and most of the 
results in Table 3 also appear in [3]. 

4As a rough estimate the UNIVAC 1108 used for the results in Table 2 is about five times faster than the 
IBM 360/50. 
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TABLE 3 

Comparison of Original Benders' and New Algorithm 

Benders's Algorithm Modified Algorithm 

CPU Time Iteration CPU Time 
Prob. Iteration Total LP IP LP IP Total LP IP 

4a 5 + 291.6* 19.6 272.0 15 1 168 45.9 122.1 
4b 9 255.2 38.5 216.7 17 1 112.0 47.1 64.9 
4c 8 227.3 43.8 183.5 19 1 179.4 66.7 112.7 
4d 5 + 291.1* 38.3 252.8 20 1 288.1 70.1 218.0 
4e 10 + 291.7* 56.4 235.3 18 1 207.9 63.5 144.4 
4f 5 + 291.8* 32.0 259.8 23 1 177.7 84.4 93.3 
5a 4 434.2 6.5 427.7 4 1 13.0 9.2 3.8 
5c 3 197.0 6.2 190.8 4 1 9.8 8.9 0.9 
6d 6 + 291.8* 23.2 268.6 17 3 224.9** 9.8 215.1 

* No solution in stated time. 
** These times for problem 6d using the new algorithm are for a IBM 370/155J computer. 

algorithm; in general, it will depend on the particular problem, the convergence 
criteria and the computer code. 

Figures 1, 2 and 3 plot the convergence rates for the original Benders' algorithm 
and the modified algorithm for problems 4b, 4c and 6d respectively. The plots 
indicate where IP solutions were first determined by the modified algorithm. As one 
would expect, the original Benders' algorithm converges more rapidly in terms of the 
number of iterations. 
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In summary, the computational tests are on relatively small problems using crude 
computer codes, and therefore no definite conclusions can be drawn about the 
possible advantages of the modified Benders' algorithm. However, thus far the results 
for the modified algorithm appear promising. To draw firmer conclusions, more 
experimentation will be required using more sophisticated codes on larger problems to 
determine which of the Benders' approaches is superior, and more importantly, 
whether any of the partitioning procedures are comparable to branch and bound 
techniques. 
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