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ABSTRACT
Vehicle classification data, especially for trucks, is of consid-
erable use to agencies involved in almost all aspects of trans-
portation and pavement engineering. Current technologies
for classification involve expensive installation and calibra-
tion procedures. A wireless sensor network (WSN) for ve-
hicle classification based on axle count and spacing was de-
signed, calibrated, tested, and deployed near a weigh station
in Sunol, California. The WSN includes: vibration sensors
which report pavement acceleration; vehicle detection sen-
sors which report vehicle’s time of arrival and departure;
and an Access Point (AP) that logs the data collected from
all these sensors. Both sensors are packaged for durability,
occupy minimal space, have long lifetimes, and are embed-
ded inside the pavement. The vibration sensors are capable
of over-the-air software programming and are designed to be
immune to sound. Vibration and classification ground truth
data for 53 different trucks exiting the weigh station were
collected. The vibration data collected at 512 Hz had an
accuracy of 400 µg. A novel algorithm for estimating axle
count and spacing has been developed. The combination
of bandwidth-aware smoothing filter and peak detector that
we use in this algorithm could be useful in many other appli-
cations. The algorithm successfully classified all 53 trucks.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Realtime and Embedded Systems, Signal Processing Sys-
tems; I.5.4 [Applications]: Signal Processing, Waveform
Analysis

General Terms
Design, Experimentation, Algorithms
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Axle Detection, Traffic Monitoring

1. INTRODUCTION
Transportation agencies collect vehicle classification in-

formation to plan highway maintenance programs, evalu-
ate highway usage and optimize the deployment of vari-
ous resources on the road. Vehicles are typically classified
into different categories, such as passenger vehicles, buses
and trucks of different sizes. There are many classifica-
tion schemes but the most common ones use axle counts
and the spacing between axles to assign vehicles to different
classes [7].

Currently, various technologies are used for classification.
Existing intrusive technologies such as piezoelectric sensors
and inductive loops have very high installation and mainte-
nance costs and non-intrusive technologies such as infrared
and video imaging are sensitive to traffic and weather con-
ditions [18]. In this paper we propose an alternative system
based on a Wireless Sensor Network (WSN) that is both
cost effective and insensitive to environmental conditions.

The solution is based on a carefully designed sensor system
that is deployed in the pavement and is capable of measuring
the vibrations of the road caused by a moving vehicle and
the speed of a vehicle traveling on the road. A novel event
detection algorithm that combines measurements of multiple
sensors is used to provide an axle count and the spacing
between axles for each vehicle. The sensor system can be
installed on a road in less than 20 minutes [23]. Vehicles
can travel at normal speeds and no special lane is required.
There are many difficult challenges in this concept: the road
environment is very noisy, there are severe power constraints
and the correspondence between vehicle axles and pavement
vibration is not well understood. In this paper we detail how
each one of these challenges were addressed by our system
design. To the best of our knowledge, this is the first in-
pavement, easy to deploy, WSN based system for counting
axles and determining axle spacing for vehicles traveling in
a traffic lane.

2. WSN SYSTEM FOR CLASSIFICATION
In this section we state the problem of vehicle classifi-

cation, propose a wireless sensor network system for the
problem and detail the main challenges that need to be ad-
dressed. We conclude by reviewing the related literature.

2.1 Problem statement



Figure 1: Wireless Sensor Network for vehicle clas-
sification: four accelerometer sensors and two mag-
netometer sensors. Truck moving from right to left
is detected, its speed measured, and individual axles
counted and measured.

The problem of vehicle classification consists of classify-
ing vehicles traveling in a traffic lane into one of several
classes. Examples of typical classes are: cars, buses, three-
axle single unit trucks, and five-axle single trailer trucks.
The national standard for vehicle classification in the US is
given by the Federal Highway Administration (FHWA) [7].
One of the most widely implemented schemes for automatic
vehicle classification is scheme F [13]. It uses the number
of axles (axle count) and the distance between each axle
(axle spacing) to assign vehicles into the different classes.
The performance of the procedure relies on the accuracy of
measuring these two quantities.

The classification problem can be stated as: a vehicle trav-
els in a traffic lane at some varying speed and we wish to
count the number of axles and the spacing between each axle
in an accurate manner.

There are important challenges that need to be addressed
by any solution to this problem. First, any proposed sys-
tem should be able to count vehicle classes in individual
lanes. This already poses a significant difficulty for side of
the road solutions or even cameras, which require existence
of overpasses or installation of gantries. Moreover, the so-
lution should be sturdy and reliable enough to last many
years to avoid disruptive and expensive lane closures. The
measurements need to be accurate independent of time of
day and weather conditions. The system should work in the
noisy highway environment. It should be able to account
for vehicle wander i.e. vehicles may move slightly off-center
in a given lane. The wander is especially important when
systems are installed at the exit of inspection facilities on
the highway.

Finally, installation and operation costs should be kept at
a minimum to enable wide deployment. The most substan-
tial cost components are the loss of productivity associated
with lane closures, extensive pavement repairs and gantry
installation requirements. These costs are easily five to ten
times more than the cost of the measurement system. For
the same reason, the operation cost is directly related to the
lifetime of the system, since maintenance usually requires at
least a lane closure.

2.2 Proposed WSN System
One approach to reduce installation costs is to use the

highway pavement itself as a transducer1. As an axle moves
on the top of the road pavement it excites the structure
locally and causes it to vibrate. These vibrations could be
measured by a vibration sensor (accelerometer) embedded in
the road. The important question is whether the vibrations
induced by individual axles of a vehicle can be separated.
The hope is that since the road pavement is not very elastic,
vibrations are well localized in time and space. A commonly
accepted model of this system is a moving impulse on an
elastic beam [21]. The acceleration response at a fixed loca-
tion is then a decaying signal that peaks when the vehicle
reaches that location. A more detailed description of this
fact is given in Appendix A.

We propose a sensor network system based on this con-
cept. The sensor network comprises of three main compo-
nents (Figure 1): vehicle detection sensors, vibration sen-
sors, and an Access Point (AP). The vehicle detection sen-
sors, based on magnetometers, report the arrival and depar-
ture times of a vehicle. The velocity of a vehicle is calculated
by using two such sensors and their known spacing. The vi-
bration sensors measure and report the acceleration of the
pavement when a vehicle passes by. This data is used to
detect/count individual axles of a vehicle and to calculate
the axle spacings. The AP serves as the central entity of
the network. It is used to send different commands to the
sensors and to log the incoming data from all sensors.

There are three main challenges to create a system that
works in practice: measuring the vehicle speed accurately,
measuring the road vibrations accurately, and detecting and
timing individual vehicle axles from these measurements.
We explain each of the challenges in more detail.

2.2.1 Wireless vehicle detection sensor
The vehicle detection system measures the changes in

magnetic field to infer the local presence of a vehicle. This
along with the AP are available as a Vehicle Detection Sys-
tem for traffic monitoring [11]. Each sensor reports a time
of arrival ta and time of departure td of the vehicle as it
arrives at the sensor and traverses it.

The sensors are easy to install (see Section 5.2), have low
maintenance cost and very good performance. Multiple sen-
sors installed in different lanes cooperatively transmit in-
formation using Synchronous Nanopower Protocol (SNP), a
TDMA based protocol that schedules sensor transmissions
to reduce power consumption. The proposed design lasts
10 years with a single 7200 mAhr battery. A typical sensor
node is shown in Figure 2.

Vehicle speed and length. A pair of sensors (i, j) in-
stalled at a fixed known distance (dij = 20’) apart from each
other are used to estimate speed accurately. Given the ar-
rival times tai and taj at the two sensors i and j, the speed

v is given by v =
dij

|taj−tai|
. A similar estimate can be ob-

tained by using the departure times. The speed can be used
to estimate the length (L) of the vehicle as L = v(tdj − taj).
These measurements have been shown to be very accurate
in practice [11].

2.2.2 Wireless vibration sensor
The wireless vibration sensor consists of an accelerometer

whose analog output is sampled and transmitted via a ra-

1Installation of a small sensor is much cheaper and conve-
nient than installing special material pavements required for
piezoelectric sensors and load cells.



dio. Designing a sensor that measures pavement vibrations
for axle detection has many unique challenges: the installed
sensor’s noise has to be much smaller than the pavement ac-
celeration resulting from even the lightest vehicle; the sensor
has to be well coupled to the roadway and be resistant to
heavy vehicle traffic; the sensor needs to sample fast enough
to capture the transient vibrations in the pavement; the vi-
brations due to truck engines and other sounds should have
a minimal effect on sensor readings; the sensor needs to be
insensitive to the vehicles traveling in the neighboring lanes
and should have a long lifetime.

The sensor resolution target of 500 µg and bandwidth of
50Hz is chosen based on field measurements and simulations
reported in [1, 21]. The sampling frequency is chosen to be 5
times greater than the Nyquist Frequency [20], so we target
512 Hz. The constraint in this case is power consumption
increase for higher sampling rates. We address the other
challenges in detail in the upcoming sections.

2.2.3 Axle detection and counting
Given vehicle speed measurement and a reliable measure-

ment from the wireless vibration sensor, we still need to
construct an axle detection algorithm that has good per-
formance. There are two important challenges in detecting
individual axles: the vibration signals from successive axles
tend to blend and in wide highway lanes, vehicles can ex-
perience significant wander. In this paper we introduce an
approach that can handle both challenges by relying on a
nonlinear event detection technique. The proposed tech-
nique can be useful in other problems as well.

2.3 Related Work
We identify three areas related to this work: applications

of wireless sensor networks (WSN) to transportation, appli-
cations of vibration sensor networks in infrastructure moni-
toring and systems for vehicle classification.

Applications of WSN in transportation have been grow-
ing. For example, WSNs have been used for vehicle detec-
tion using magnetic sensors [4, 15, 23] and increasing road
safety by intervehicular information sharing [22]. Much less
has been done in terms of monitoring the response of road
infrastructure itself.

Monitoring large infrastructures using accelerometer sen-
sor networks has been studied for structural monitoring of
bridges [14, 26], buildings [3] and underground structures
such as caves [16]. In these particular cases, the sensor did
not require embedding in the structure itself, although some
of the applications could clearly benefit from the reduced
noise and increased sensitivity in measurements. Wired em-
bedded sensors in concrete structures have been investigated
[17] but usually require complex installation procedures and
have limited lifetime if used in roads.

Systems for vehicle classification can be divided into in-
trusive and non-intrusive schemes[7]. Most common non-
intrusive schemes are based on digital imaging [10], range
sensors[12], acoustic[19], infrared and microradar sensors.
These systems suffer from accuracy issues with varying day-
light, weather, and traffic conditions; have special require-
ments for setup; and multiple systems are required for high
accuracy. More importantly, they may require special ar-
rangements for measuring multiple lanes at sites without an
overpass. The most common intrusive schemes are based
on either piezoelectric sensors or magnetic loop detectors.

Piezoelectric sensors are used to estimate axle count and
spacing. Loop detectors provide electric signatures propor-
tional to vehicles that traverse the loop, and the data can
be used for classification [25]. Both systems are costly to
install and also costly to maintain.

More closely related to this paper, a vehicle classifica-
tion scheme based on vehicle length and magnetic signature
classification [4] has been proposed and evaluated, but it is
shown to be very data intensive. A WSN system for vehi-
cle detection and classification was proposed [6] combining
acoustic, infrared and seismic. Its main application is for
classification of vehicles in open fields, and its performance
is dependent on environmental and other conditions. The
main limitations seem to be cost and the difficulty for sepa-
rating classification for different lanes.

3. IN-PAVEMENT WIRELESS VIBRATION
SENSOR

This section develops and implements the sensor design
for the wireless vibration sensor, including the choice of ac-
celerometer, casing and noise mitigating filters. We then
describe in detail the communication protocol developed for
this sensor node. We continue by explaining the calibration
procedure required for accurate readings. We conclude by
benchmarking the performance of the sensor in some con-
trolled experiments to verify digitization performance and
power consumption.

3.1 Sensor Design

3.1.1 Resolution: selecting an accelerometer

SD1221-005 MS9002.D
Sensitivity (V/g) @ 5V 2 1

Noise Density (µg/
√
Hz) 5 18

Current Consumption (mA) 8 ≤ 0.4
Min. Operating Voltage (V) 4.75 2.5

Table 1: Comparison of important properties of ac-
celerometers.

To build a sensor with 500µg sensitivity and 50 Hz band-
width, we evaluated two different MEMS accelerometers:
SD1221-005 from Silicon Designs and MS9002.D from Col-
ibrys [5, 24]. These were selected from amongst many oth-
ers in the market because of their very low noise density
(µg/

√
Hz) and high sensitivity (V/g). As seen in Table 1,

SD1221-005 has higher sensitivity and lower noise density
than MS9002.D, both of which are very desirable character-
istics. However, SD1221-005 consumes more than 20 times
the current consumed by MS9002.D and has to be oper-
ated at a much higher voltage. Consistent with the table,
SD1221-005 outperformed MS9002.D during our evaluation
of the devices but both devices achieved our aimed mini-
mum resolution of 500 µg. We selected MS9002.D due its
low operating voltage and low current consumption.

3.1.2 Noise: filters for mitigating sound noise
One of the problems that is often underreported about

systems using accelerometers is their sensitivity to sound.
A sensitive accelerometer such as the MS9002.D behaves
like a microphone under the device’s bandwidth. A single



Figure 2: Packaging of the sensors in a sealed case.

pole anti-aliasing filter is not sufficiently aggressive to atten-
uate the interference due to sound under 1 kHz. A simple
clapping sound near the accelerometer is picked up by the
sensor as vibration. Thus, any sensor deployed in the open
is vulnerable to this interference. It is reported in [1] that
a 3rd order (or higher) low-pass filter with cutoff frequency
of 50 Hz is sufficiently aggressive to filter out most of the
sound in the audible spectrum. We use a 3rd butterworth
filter with transfer function

H(jω) =
1

(1 + jω
50

)2(1 + jω
500

)
.

The filter is less aggressive for the frequencies of interest
(< 50Hz), causing less phase distortion and becomes more
aggressive for higher frequencies. We also enclose the sensor
board in Sensys’ custom proprietary packaging and embed
the sensor inside the pavement, thus attenuating any sound
before it reaches the accelerometer. We tested the response
of the sensor to loud sounds both in lab and in the field; it
was very unresponsive to any sound.

3.1.3 Casing: Sound isolation and in-pavement in-
stallation

The circuit board and the battery are placed into the hard
plastic casing as shown in Figure 2. The casing is then
filled with fused silica and sealed air tight. This protects
the electronics from rain water, oil spills etc on the road
and helps in attenuating interference due to sound.

3.1.4 Circuit Description
Figure 3 shows the block diagram of the electronic circuit.

The accelerometer and the operational amplifiers are pow-
ered by a 2.5 V supply voltage that can be turned on/off
by the microcontroller as needed. The amplifier stage of the
circuit subtracts a DC offset voltage from the accelerometer
output and amplifies this difference by a gain of 10. This
offset voltage is chosen to center the output of this stage at
1.25 V when there are no vibrations in the vicinity. The
gain of 10 reduces the range of the accelerometer to ≈ ±225
mg. This was necessary in order to ensure that the quan-
tization noise from the analog-to-digital converter (ADC) is
less than the noise from the accelerometer, otherwise the

Figure 3: Block Diagram of the vibration Sensor.

resolution of the system would be limited by ADC noise.
The reduced range is still sufficient as the expected accel-
eration range even for the heavy trucks is ±200mg [1, 21].
The output of the amplifier stage is then sampled by the
12-bit ADC, and the collected samples are transmitted via
the radio transceiver.

3.2 Communication Protocol Design
For wireless communication, we adapted the Synchronous

Nanopower Protocol (SNP) detailed in [11]. The architec-
ture of the protocol consists of three logical entities: an Ac-
cess Point (AP), an optional repeater, and wireless sensor
nodes. The protocol ensures clock synchronization of all
nodes within 60 µs while minimizing the power consump-
tion of nodes.

3.2.1 PHY Layer
The AP and all the nodes use IEEE 802.15.4 compatible

radio transceivers. The transceiver uses the 2.4 GHz ISM
band at a data transmission rate of 250 kbits/s and can be
operated on one of 16 IEEE 802.15.4 compliant RF channels.
The AP has a wired connection and a wireless connection,
while the sensor nodes only have a wireless connection. The
wireless connection is used to communicate with the sen-
sor nodes while the wired connection of the AP is used to
communicate with a computer running the Sensys’ graphi-
cal user interface used to issue commands to the AP and the
sensor nodes.

3.2.2 MAC Layer
The MAC layer is TDMA based and uses headers very

similar to IEEE 802.15.4 MAC layer. Time is divided into
multiple frames with each frame about 125 ms long. Each
frame is further divided into 64 time slots, numbered 0 to 63,
most of which can be used by the sensor nodes to transmit
data. Timeslot 0 is used by the AP to send clock synchro-
nization information and other commands to the sensors.
The AP assigns every node unique time slots and a network
address (or node ID) to communicate with it. This sched-
ule enables individual nodes to stay awake for the minimum
amount of time and prevents any packet collisions in the
network.

3.2.3 Application Layer
There are three main applications that are used in the



protocol:
I. Sync Application: The basic TDMA structure is de-

fined by this application. Sync packets are sent by the AP
on a periodic basis with very low jitter. Nodes must first
synchronize their clocks to these sync packets before they
are allowed to transmit. When a sensor node first starts, it
listens to sync packets every 125 ms. It learns the difference
between its clock and the AP’s clock, and over time improves
its estimate of the AP’s clock. As the estimate improves, the
node converges to steady state in which it listens for a sync
packet only once in 30 s. If a node loses sync, it repeats
the above process to get synchronized again. In addition to
sending clock information, the sync application is also used
to send commands to individual sensors. Some of the useful
commands sent are:

• Set Mode: used to switch between the Idle mode and
Raw Data mode in Accelerometer application.

• Reset: used to reset the node to factory defaults.

• Set Timeslot: used to set the timeslot of the sensor.

• Set RF Channel: used to set the RF channel of the
sensor.

• Download Firmware: used to put the sensor node in
over-the-air software programming mode.

• Set ID: used to change the sensor node ID.

The node’s clock is synchronized to within ±60 µs of the
AP’s clock under this protocol. The sync application is al-
ways running in the background and other applications can
run concurrently with it.

II. Accelerometer Application: The accelerometer ap-
plication is the most important application for the vibration
sensor. The application controls when to turn on the ac-
celerometer and related circuitry, when to sample, and when
to wake up the radio to transmit the vibration data collected.

• Idle Mode (Mode E): This is the default power saving
mode of each sensor node. In this mode, the accelerom-
eter and related conditioning circuitry are turned off
by disabling the voltage regulator that powers this part
of the circuit. Even the microcontroller and the radio
transceiver are put to a low power consuming state for
the majority of time. Once every 30 seconds, the mi-
crocontroller and the transceiver wake up and acquire
the sync packet.

• Raw Data Mode (Mode AccelR): In this mode the ac-
celerometer and related circuitry are turned on. The
microcontroller wakes up every 1/512 seconds and sam-
ples the analog output from the accelerometer unit ,
as shown in Figure 3. In addition to waking up for
the sync packet, the transceiver wakes up right before
its allotted timeslots to send the sampled data. We
collect 32 samples at a sampling frequency of 512 Hz,
each sample containing 12 bits of information. Thus,
in every frame (125 ms) we accumulate 96 bytes of
useful information to transmit. In order to have a rea-
sonable packet size, we fragment the data in two parts,
48 bytes each, and transmit it using two different time
slots 62.5 ms apart. The AP receives data from each
sensor, appends useful information such as the time
stamp, Received Signal Strength Indicator (RSSI), the
Link Quality Indicator (LQI), and records it into a file
that can be processed as desired.

III. Download Firmware Application: For maximum
flexibility, the protocol allows a user to reprogram the en-
tire flash memory of a sensor node over the air, via an AP.
The general procedure for downloading new code consists of
having the AP transmit new code repeatedly and the node
updating its code in small pieces. In order to aid the man-
agement of code in the flash memory, each program is ap-
pended with a program header, which contains a description
of the program, its address and length, its interrupt vectors,
and some other information. The download stream actually
contains two copies of the download code linked at different
addresses. Only the data in addresses that do not overwrite
the current running program are updated by the node. An
algorithm is used to decide, based on all stored program
headers, which program to run after download. The algo-
rithm picks the highest priority image most recently down-
loaded, reboots and starts with this program.

The vehicle detection sensor follows the same protocol
with a few minor differences. The required sampling for
this application is just 128 Hz. For our purposes, we only
use one of the modes of this sensor in which it transmits
a vehicles arrival and departure times. Since there isn’t a
continuous stream of data to transmit in this mode, every
packet is retransmitted until an acknowledgement is received
from the AP.

3.3 Sensor Calibration Procedure

Figure 4: Calibration Setup

This section describes the procedure we use to calibrate
the sensors for their sensitivity (V/g) and resolution (µg).
Figure 4 models the calibration setup used. The idea is
to use gage blocks of different heights to change the incli-
nation of the sensor box, thus changing the component of
acceleration due to gravity (g) along the sensing direction of
the accelerometer. We estimate the sensitivity (V/g) of the
accelerometer by using the sensor output at different accel-
eration levels. Using simple geometry, the component along
the sensing axis of the accelerometer is g cos (θ1 + θ2 − θ3).
If we let α be the sensitivity, θ = θ3 − θ1 be the net tilt, h
be the height of gage block, L be the length of calibration
plate, A=αg cos θ, B=αg sin θ, then the output voltage (v)



Figure 5: Calibration results for sensitivity. The
expected output is the regression line.

must be:

v = αg cos (θ2 − θ)
= αg cos θ2 cos θ + αg sin θ2 sin θ

= A cos θ2 + B sin θ2

= A

√
1−

(
h

L

)2

+ B

(
h

L

)
= A

√
1− x2 + Bx. (1)

α =
√

A2 + B2. (2)

In reality, the measured output at a given inclination is
never constant and fluctuates around some mean value due
to noise in the surroundings and electronics. We model this
by adding a zero mean gaussian random variable to equa-
tion (1). To estimate A, B and the sensitivity (α), given
by equation (2), we measured the sensor output at different
inclinations. At every inclination we collected 2500 samples
(sampling frequency: 512 Hz) of data. We used linear re-
gression to estimate the A and B in equation (1). Figure 5
shows the calibration results and the estimated sensitivity of
one of the sensors. To estimate the resolution of the sensor
we divide the standard deviation of the collected data by
the estimated sensitivity. This gives us a measure of noise
in the recorded acceleration. For this particular sensor, the
resolution was found to be 388 µg. All the other sensors had
similar calibration results.

3.4 Sensor Performance Benchmarks

3.4.1 ADC performance
As we discussed earlier, we amplify the signal from the ac-

celerometer to ensure that the quantization noise from the
12-bit ADC is not the limiting factor for the resolution of
the system. To verify the acceleration reported by the vi-
bration sensor, we compare its reported measurements with
the output of the amplifier stage (Figure 3) measured by
a 24-bit data acquisition system (DAQ) from National In-
struments. The vibrations were generated by applying an
impulse like input (using a hammer) to the surface the sen-
sor sat on. Figure 6 shows that the two data sets are in
very close agreement. The Fast Fourier Transform of the
signal, in Figure 7, shows there is almost no energy in the
signal around 256 Hz, confirming there is no significant alias-
ing during sampling. The sampling frequency of the sensors
was verified by measuring it using an oscilloscope and was

Figure 6: Comparison of data collected by the vi-
bration sensor and a 24-bit DAQ.

Figure 7: Fast Fourier Transform of the data mea-
sure by vibration sensor.

found to be 512 ± 0.2 Hz.

Figure 8: Current consumption in Raw Data mode.

3.4.2 Current Consumption
The average current consumption of the vibration sensor

in both modes was estimated by connecting a resistor in
series to the circuit board, measuring the voltage across it
and using ohm’s law to calculate the current drawn from the
battery.

Mode AccelR. Figure 8 shows the current consumption
in one of the transmit cycles. The square pulse in the plot is
when the radio is turned on and actively transmitting. As
expected, sending a packet over the radio consumes most
of the current, but since we only transmit for about 2ms in
62.5ms, the duty cycle is relatively low and thus the average



current consumption is much lower and found to be 1.96 mA.
It is interesting to note that the transmission of a packet of
48 bytes takes about 2ms (estimated from the width of the
pulse), which almost occupies two time slots. The oscilla-
tions seen in the baseline of this plot are due to the extra
current consumption, every 1.95 ms (512 Hz), when the 12-
bit ADC samples. The current consumption by the ADC
can be reduced by using the external source of voltage refer-
ence instead of the internal 2.5V reference. This, however,
reduces the effective number of bits (ENOB) of the ADC.

Mode E. In the idle mode, most of the circuitry is turned
off or in sleep mode, except when a sync packet is acquired.
The duty cycle for this (once in 30 s) is very low and so is the
average current consumption. Average current consumption
in this mode was found to be 35 µA.

Expected Lifetime. Using a 7200 mAhr battery, the
sensor can last over 23 years in Mode E and over 5 months
in Mode AccelR. If needed, the lifetime in the raw data mode
can be increased by compressing the data. This, however,
won’t be necessary once we implement the axle detection
algorithm in the sensor. The only data that needs to be
transmitted in that case are the axle count and the axle
separation in time. This reduction in amount of data that
needs to be transmitted would increase the lifetime in this
mode to several years.

4. AXLE DETECTION ALGORITHM

Figure 9: System representation of the Axle Detec-
tion Algorithm. The moving average filter length
(M) and the minimum peak separation (ζ) depend
on the velocity of the vehicle.

4.1 ADET Algorithm Description
Each moving axle can be modeled as a moving impul-

sive force applied on the pavement. This force causes the
pavement and sensors to vibrate such that the measured ac-
celeration decays in time. The overall acceleration measured
for a multi-axle vehicle, as shown in Figure 11, has this sig-
nature decaying waveform due to each axle. It is very easy
to spot the different axles from the measured acceleration if
the signal due to each axle is sufficiently separated in time,
i.e. the effect of the past axles has sufficiently decayed be-
fore the arrival of a new axle. This is often not the case at
highway speeds.

Instead we need to rely on a statistical approach to axle
detection. The running average of the energy of an axle
with an appropriately chosen time window can still manifest
appropriate separation even with moderate overlaps in the
acceleration signal. We propose an algorithm ADET for axle
detection based on this idea.

Figure 9 shows the block diagram of ADET. It finds the
smooth energy envelope of measured acceleration, and lo-
cates the peaks that are sufficiently separated in time. The
signal a(n) is first divided by 3 times the noise (found in
Section 3.3). This ensures that in the absence of an axle
the signal is below 1. The normalized signal is then squared
to calculate the energy. This step further increases the sig-
nal to noise ratio (SNR) as noise is attenuated by squaring
whereas the signal, which is greater than 1, is amplified.

The next step is smoothing of e(n) by passing it through
a moving average filter (MAF) with M(v) taps to obtain its
envelope. The number of taps determines the bandwidth of
the filter. Since the bandwidth of the measured acceleration
signal increases linearly with the speed of the vehicle [2], the
cut-off frequency of the filter needs to be speed dependent
as well. Using data from four trucks at different speeds, we
observed the bandwidth of the energy signal and empirically
defined M(v) = 900

v
. An additional stage of a single pole low

pass filter with a fixed cutoff is used to further smoothen the
signal. This step is optional and in practice we observed that
similar results are obtained even in its absence.

The last step finds peaks in the smooth energy (s(n)) with
a minimum time separation (ζ(v)). This step ensures that
local variations around peaks of s(n) are not detected as new
axles. Minimum time separation for axles was chosen by as-
suming that the axles are at least 6 ft apart. Weigh stations
typically consider tandem axles as one axle and therefore
ground truth data also counted tandem axles as one axle.
Tandem axles are typically between 4 and 5 ft apart. It is
important to note that by reducing the minimum axle sepa-
ration to less than 4 ft, the algorithm is able to detect both
the axles in the tandem axle but for the sake of easy com-
parison with the collected ground truth data we kept it at
6 ft. Converting the axle separation to time separation we
obtain ζ(v) = 6

v
.

A heuristic mathematical analysis of the procedure is shown
in Appendix A which confirms the choices for the filter
length and power of the procedure.

4.2 Wide Lane ADET: Combining Multiple Sen-
sors

When the lane is wide vehicles can experience significant
wander movement inside the lane. For example, substantial
wander is observed at the wide approaches that connect the
exits of truck inspection stations to the highway. Trucks are
moving from right to left in the approach as they get ready
to merge into the highway.

In such situations a single vibration sensor at the center of
the lane fails to capture the vehicle in its entirety. If ADET
is applied to the single sensor, most likely the number of
axles will be undercounted. Instead we propose a modifi-
cation of our system that combines vibration readings from
multiple sensors.

If a truck wanders across a lane, and a vibration sensor
array covers the width of the lane it is expected that at least
one sensor will measure the strongest vibration signal. This
is the idea behind the wide lane extension of ADET. It uses



Figure 10: System representation of the adjustment
made to correct vehicle wander.

a redefinition of the notion of energy (e(n)) in Figure 9 as
e(n) in Figure 10. The energy of the total signal at time n
is the maximum of the energy of the individual signals ei(n)
of each sensor i.

Since the sensors are spatially offset in their installation,
the peak energy due to a single axle is measured by the sen-
sors at different times. For instance sensor 2 will measure
the peak energy a little later than sensor 1. Therefore, the
individual energy measurements need to be appropriately
delayed. The delay Di for each sensor i can be easily com-
puted given the speed v of the vehicle and the distance di
between sensor i and sensor 1 in the installation: Di = di/v.
Now instead of using a single sensor, perhaps the one with
maximum total energy, we choose maximum instant energy
from each sensor to make a new time series. The e(n) pro-
duced here can be processed using ADET as before.

4.3 Estimating Axle Spacing
ADET also outputs for each axle k the time of peak de-

tection tk. Using the speed v of the vehicle, the axle spacing
sk between axles k and k + 1 can be determined using

sk = v(tk+1 − tk).

Notice that in a non-wide lane scenario with multiple sensors
installed, there is no significant wander and therefore the
spacing estimates can be done using a single sensor and then
averaged to obtain a global, more accurate estimate.

4.4 Application of ADET
To illustrate the algorithm, we show the results of apply-

ing ADET to data measured from a single vibration sensor,
and for a truck (Truck 49) of the class shown in Figure 12.
The setup used to acquire the data is explained in Section 5
and shown in Figure 13. The data was acquired from sensor
L.

Data Cleansing. Before applying ADET to the vibra-
tion data, we remove the mean of the measured acceleration.
This removes any transient effects of filtering the data. For
occasional packet drops (even with the retransmission), we
replace the unknown data by the last received data value.

Results for Truck 49. Figure 11 shows the results when
ADET is applied to truck number 49 in the dataset. The
improvement in the SNR can be seen by comparing the peaks
to the baseline (or noise) for a(n) and e(n). The envelope
of e(n) or the smooth energy is shown as s(n). The peaks
of s(n) signify the individual axles. The axles detected by

Figure 11: Results of ADET on truck 49 (two single
axles and one tandem axle), a(n) is the measured
acceleration in mg, e(n) is the scaled energy in mg2,
and s(n) is the smooth energy in mg2. The red aster-
isks on s(n) are the axle locations found by ADET.
By reducing the minimum axle separation, the indi-
vidual axles in the tandem axle can also be detected,
as shown by the black circle.

ADET are shown as red asterisks on s(n). Note that ADET
only detected one of the last two peaks in s(n), thus counting
the tandem axle as only one axle. By reducing the minimum
axle separation to 3 ft, ADET successfully detects both axles
in the tandem axles as shown by the black circle.

5. DEPLOYMENT ON HIGHWAY I-680

5.1 Experimental Setup
With the permission of California Highway Patrol, 4 vi-

bration sensors and 4 vehicle detection sensors were installed
on California Highway I-680 as shown in Figure 13. The
site is a highway on-ramp used by vehicles coming from
the Sunol Weigh Station. The site was particularly suit-
able since the vehicles slowed down at the weigh station and
gave us enough time for collecting ground truth data on
the number of axles. Two researchers collected data: Re-
searcher 1 at the weigh station and Researcher 2 on the side
of the highway near the AP. Researcher 1 noted the vehicle



Figure 13: Top left shows a truck approaching the sensors and not traveling in a straight line. Top right
shows the sensors embedded in the pavement. Bottom shows the WSN setup at Sunol site. D, H, M, N are
vehicle detection sensors whereas I, J, K, L are vibration sensors. Dimensions are in inches unless specified
otherwise.

Figure 12: Picture of a FHWA class 7 (2S2) truck.

description, its number of axles, and signalled Researcher 2
via a cellular phone about the upcoming test vehicle. Re-
searcher 2 triggered the AP to start logging the data from
all sensors at the arrival of test vehicle and noted the vehicle
description for comparison. Data from 53 different trucks,
ranging from pickup trucks to 5-axle commercial trucks, was
collected.

5.2 Installation Procedure

Figure 14: Installation procedure for embedding the
sensors in the pavement.

As shown in Figure 14 installing the sensors in the ground

involves boring a 4-inch diameter hole approximately 2 1
4

inches deep at the desired location, placing the sensor into
the hole so that it is properly leveled with the earth’s sur-
face, and sealing the hole with fast-drying epoxy [23].

5.3 Deployment Challenges
Packet Drops. While testing in the lab, we were able

to receive data from the sensor at 50 feet away, and in the
presence of other wireless equipment like cell phones, blue-
tooth devices and WiFi devices. However, we dropped quite
a few packets while testing in the field. Even though the
packet drop rate was low (1 %), the packets were dropped
when the vehicle was on top of the sensors causing the loss
of useful information. To fix this problem, we tried simple
retransmission of the packets with a delay of 1 packet i.e. we
send the current packet (packet 1), the next packet (packet
2), packet 1 again, and then packet 2 again. By interleaving
the packets in this way, we could drop up to two consecutive
packets and still not lose any information. After implement-
ing retransmissions we reduced the useful information drop
rate to almost zero.

Vehicle Wander. Since the sensors were installed on a
highway on-ramp and vehicles were in the process of merg-
ing on to I-680 when they went over the sensors, very of-
ten they were not traveling straight in the lane as shown
in Figure 13. Ideally, we would like choose the data from
the vibration sensor that was closest to the vehicle’s tires
because it will have the maximum vibration signal but due
to wandering different axles/tires of the same vehicle were
closer to different sensors. The solution of this problem is



to use Wide Lane ADET algorithm in Section 4.2 .
Sensor Failure. Sensor K, as seen in Figure 13, did not

work after installation and is being recovered for inspection.
Thus, vibration data was available only from 3 sensors.

6. EXPERIMENTAL RESULTS
In this section we evaluate the performance of the pro-

posed WSN system and ADET in the data collected at the
I-680 site. For the experiments we used sensors H and M
(see Figure 13) for speed estimation. Section 6.2 discusses
the noise of the vibration sensor measured in the field, Sec-
tion 6.2 the performance of ADET and Wide Lane ADET
and Section 6.3 concludes with an analysis of axle spacing
estimates.

6.1 Vibration Sensor Performance
We measured the noise of the installed vibration sensor

with no vehicle in vicinity and found it to be 414 µg RMS.
When we compared this to all the truck data we collected,
we found that the acceleration amplitude in all trucks was
greater than 10 mg and therefore significantly higher than
the sensor noise. Most of the noise is due to ambient vibra-
tions induced by the environment surrounding the road. The
amplitude of the noise depends on the layered structured of
the road. However, in practice we observed identical noise
levels in a road made with different materials in different
layers, but same layered structure.

We also measured the noise when a truck was parked on
top of the sensors, truck engines were on in one case and
truck blew its horn in another. Compared to vibrations
due to a moving axle, there were no additional peaks in the
measured. The noise level increased slightly for each case,
and it was 7% and 4% higher respectively.

Using incoming acceleration data measured continuously
for 2 hours on a real-time plot and paying special attention
to when a heavy vehicle traveled in the closest lane, we eval-
uated the effect of vehicles in nearby lanes. The sensors did
not register any noticeable peaks, whereas even the lightest
pickup truck in the same lane as the sensors had appreciably
high peaks. This supports the fast decay of the seismic waves
[8] so vibrations from nearby lanes decay before reaching the
sensor.

6.2 Axle Count
We applied ADET to each sensor individually and ap-

plied adjusted ADET to all sensors combined for all 53
trucks. Count error is defined to be the difference between
the ground truth axle count and the estimated axle count.
Table 2 summarizes the performance of the two algorithms.
The maximum axle count error is 3, sensor I under-counts 3
axles of a truck in this case. By combining the measurements
from all sensors, the algorithm always gives the correct axle
count. Axle count performance is strongly affected by truck
wander. Trucks that moved closer to the right side of the
road caused errors in sensor I counting. Undercounting was
observed because the signal becomes weaker as the tire is
further from the sensor and thus noise affects peak detection
performance. Similarly, sensors J and L experience under-
count errors when the truck moves diagonally from right to
left due to the geometry of the merge at the site. Some axles
are captured but not others. Since wander is always present
in actual lanes, multiple sensors will be required in counting
deployments.

Count Error Sensor I Sensor J Sensor L Combined
3 1 0 0 0
2 1 2 1 0
1 2 2 3 0
-1 3 1 1 0
Correct 46 48 48 53
Performance 86.8% 90.6% 90.6% 100%

Table 2: Performance of ADET using individual sen-
sors and combination of sensors. Count Err. is the
difference between the ground truth and ADET es-
timate. Under each sensor column is the observed
frequency of the errors

6.3 Axle Spacing

Figure 15: Distribution of estimated axle spacings.
There are three clusters in the data separated by
empty bins. The dotted lines represent the means
of these clusters.

We estimate the axle spacings using multi-sensor ADET.
Figure 15 shows the distribution of estimated axle spacings.
The data appears to be naturally clustered into three differ-
ent groups separated by empty bins in the histogram. The
first cluster includes axles that are spaced between 3 ft and
6 ft. This is very typical for tandem axles and provides
encouraging evidence supporting the accuracy of the esti-
mates. The second cluster is mostly accounted by pickup
trucks, small two axle commercial trucks, and the first two
axles of the larger commercial trucks. The third group is
mostly comprised of axles of the trailers. A typical grandfa-
thered Semitrailer in California [9] ranges between 48 ft to
53 ft and therefore axles spacings can be as large as 40 ft.
The large variation in the second and third cluster in Fig-
ure 15 is expected and is consistent with Federal Highway
Administration’s data [9].

Trucks at the weigh station could not be stopped for axle
spacing measurement and therefore the only ground truth
data we have for this section is the vehicle description. We
compared the estimated axle spacings to the expected spac-
ings based on the vehicle description and verified that the
estimates were reasonable. One instance of such comparison
involved two similar looking pickup trucks (numbers 14 and
46) and we found their estimated axle spacings to be 13.7
ft and 13.4 ft. We measured the axle spacing for a similar
truck and found it to be 13.5 ft.

7. CONCLUSIONS AND FUTURE WORK
Conclusions. A wireless sensor network capable of vehi-

cle classification based on axle count and spacing was suc-



cessfully implemented and tested. The requirements for us-
ing pavement vibrations to detect axles were identified. The
pavement accelerations varied from 10 mg to 180 mg depend-
ing on the axle load. Range of ±225 mg and bandwidth of 50
Hz is sufficient to capture the individual effect of axles on the
pavement. Embedding the sensor in the pavement and the
use of a aggressive low-pass filter isolates the sensor from vi-
brations due to sound. The sensor must be strongly coupled
to pavement in order to measure the pavement acceleration
accurately and the suggested installation procedure gets the
job done.

The solution provided in this paper for vehicle classifica-
tion has many advantages over existing technologies:

• Majority of the existing technologies are wired solu-
tions instead of wireless.

• Both the sensors and the AP can be powered by bat-
teries and consume much less power than other tech-
nologies.

• The installation procedure and the sensors themselves
are much cheaper compared to others.

• There is minimal maintenance required whereas main-
tenance costs are a bulk of the total costs associated
with some of the other technologies.

The wireless sensor network was deployed on I-680 and
data was successfully collected. A novel algorithm that es-
timates the axle count and spacing from pavement acceler-
ation was designed and tested on the collected data. The
Axle Detection algorithm (ADET) is a combination of en-
ergy envelope detection and peak detection, and could be
useful in many other applications. ADET is simple enough
to be implemented on a sensor node with very limited pro-
cessing power. A configuration of vibration sensors and ve-
hicle detections sensors that can be used for axle detection
was successfully tested. ADET was used on the data col-
lected using this configuration for 53 different trucks. The
estimated axle count was compared with the ground truth
classification data with an accuracy of 100 percent.

Future Work. The main challenges for future deploy-
ments are: to find an optimal arrangement of sensors in or-
der to minimize the number of sensors deployed; to reduce
the amount of data transmitted while minimizing the packet
drop rate; and to reduce the sensor power consumption. Op-
timized sensor arrangements can capture different cases of
wander while minimizing the number of sensors needed. In
its current form, ADET requires the full acceleration signal
be transmitted to the base station for detecting axles but
use of Discrete Cosine Transform (DCT) or wavelet approx-
imation schemes could potentially reduce the amount of data
transmitted, and still enjoy the benefits of combined ADET.
It is also important to explore packet encoding or delaying
schemes to reduce the packet drop rate further. Moreover,
developing and deploying a distributed version of ADET and
incorporating known axle length distributions into estima-
tion are avenues of future work. Power consumption can be
reduced drastically by implementing ADET inside the sensor
but techniques to estimate the required velocity-dependent
bandwidth of the smoothing filter need to be explored fur-
ther. The sensing setup could also benefit from energy har-
vesting since truck loads cause substantial vibrations. The
current setup also enables other interesting applications and

we are actively looking into truck load inference and pave-
ment condition management schemes.
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APPENDIX
A. MODEL ANALYSIS OF ADET
A.1 Model of a Single Axle

In [21] (Chapter 7, Theorem 1) it is shown that the dis-
placement response at location x and time t to a moving
axle with speed V in a smooth road can be approximated
by

y(x, t) = F × Φ(V t− x), (3)

where F is proportional to the axle weight and Φ(r) is a
function defined for both r ≥ 0 and r < 0. It also has
the property that its maximum is |Φ(0)| and goes to zero
exponentially with r → ±∞. Notice this property implies
that the signal y(x, t) is maximum at t = x/V , i.e., when
the axle is at the location where the sensor is.

A.2 ADET applied to a measured signal
We approximate the behavior of ADET in the measured

signal by following a continuous time analysis. This gives
a heuristic understanding of the procedure, but also can be
used with technical modifications to show properties for a
sampled system. First notice that for a fixed location, the
acceleration is given by ÿ(x, t) = FV 2 × Φ̈(V t − x). Since
the measurement is noisy, assume that a sensor measures
z(t) = ÿ(x, t)+η(t), where η(t) is a white noise with variance
σ2. Now, the output of the mean filter of length τ/V at time
t:

z(t) =
1

τ/V

∫ t+τ/V

t

[FV 2 × Φ̈(V t̃− x) + η(t̃)]2dt̃,

=
1

τ

∫ V t−x+τ

V t−x
[FV 2 × Φ̈(r) + η(r/V + x/V )]2dr,

=
1

τ

∫ V t−x+τ

V t−x
{V 4[F × Φ̈(r)]2dr

+ 2[FV 2 × Φ̈(r)η(r/V + x/V )]dr

+ η(r/V + x/V )2dr}

= V 4z0(V t− x) +
1

τ

∫ V t−x+τ

V t−x
η(r/V + x/V )2dr

+ V 2 2F

τ

∫ V t−x+τ

V t−x
Φ̈(r)η(r/V + x/V )dr

≈ V 4z0(V t− x) +
σ2

τ/V

∫ τ/V

0

η(t̃)2/σ2dt̃.

The approximation in the last equation is due to assuming
the fluctuations in the next to last term is a zero mean term
with bounded variance proportional to V 4/τ2, so for large
enough windows, it can be assumed zero. The white prop-
erty of the random process is used as well. The expectation
of the second term is σ2. More importantly, the first term
is the filtered term obtained for a unit speed example with
magnitude proportional to V 4. Furthermore, since

z0(t) =
1

τ

∫ t+τ

t

Φ̈(r)dr,

the peak of z0(t) will coincide with the peak of Φ̈(r) if τ is
sufficiently small. Thus the variable τ represents a choice of
peak width. Finally, from the definition of Φ it is possible
to show that the peak of Φ̈ coincides with that of Φ in this
problem. Thus we have justified that the peak of z0(t) is an
axle and moreover the timing of the peak is the time when
the axle is at the location where the sensor is installed.

A more careful analysis of the noise term can even reveal
the error term for the peak location under the given noise
assumptions. But a simple observation shows the power
of the method. While the noise has variance V 2/τ2κ where
κ = E[X4] for X gaussian, the signal has power proportional
to V 8. Intuitively, for a false peak to overcome a true peak
the noise would have to have a deviation of order O(V 6).
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