Lai et al, Introduction to Continuum Mechanics

CHAPTER 2, PART A

2.1 Given
10 2 1
[Si]=|0 1 2|and [a]=|2
303 3

Evaluate (a) S;;, (b) S;Sji, (©) S;iSji, (d) SycSyj (€)apan, () Spnaman, (8) Spmamay,

Ans. (a) S;; =S;; +S5, +S33=1+1+3=5.

(d) S;S; = SH +Sh+ Sk +57 +S5, +57; +55, + S5, +S5; =
1+0+44+0+1+4+9+0+9=28.

(c) $;iS;i=5;S; =28.

(d) SjSyj = SiSki + Sk Ska + S3cSk3

=S511S11 + 512521 + 513531 + S31S13 + 522555 + 523535 + 53153 + 535593 + 533533
=(1)(1)+(0)(0)+(2)(3)+(0)(0)+(1)(1) +(2)(0) +(3)(2) +(0)(2) +(3)(3) = 23.
(e) aya, =al +a5 +a; =1+4+9=14.

®) Synama, =Siaa, + Sypasa, +S3,a3a, =

511818y + Spp@ @, + 5138183 + 5188 + Spy88) + 53883 + 531838 + S3p838, + 5338383
=()M®)+(0)(1)(2)+(2)(1)(B3)+(0)(2)(1)+(1)(2)(2)+(2)(2)(3)+(3)(3)(1)
+(0)(3)(2)+(3)(3)(3)=1+0+6+0+4+12+9+0+27=59.

(8) Snm@m@n = Spnama, =59.

2.2 Determine which of these equations have an identical meaning with g = Q;;aj .

(a) ap :mea;n > (b) ap :quaéh (C) an = ah an .

Ans. (a) and (c)

2.3 Given the following matrices
1 230
[a]=|0][B;]=|0 5 1
2 0 2 1

Demonstrate the equivalence of the subscripted equations and corresponding matrix equations in
the following two problems.

(a) by =Bya; and [b]=[B][a], (b) s=B;aa; ands=[a]' [B][a]

Ans. (a)
bi = B,Jaj _)bl = B”-aj = Bllal + 812612 + Bl3a3 2(2)(1)+(3)(0)+(0)(2) =2
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2 3 0]1 2
[b]=[B][a]=|0 5 1]/ 0|=|2]|. Thus, b =B;a; gives the same results as [b]=[B][a]
0 2 1]|2 2

(b)

S= Bijaiaj =By +Bj,aa, + Bzaa5 ++B,,2,8 + Byya,a, + Bysa,as
+By 338, + By,83a, + Byzazas = (2) (1) +(3)(1)(0)+(0) (1)(2) +(0) (0)(1)
+(5)(0)(0) + (1)(0)(2) + (0)(2)(1) + (2)(2)(0) + (1)(2)(2) =2+4=6.

2 3 0]1 2
and s=[a] [B][a]=[t 0 2]j0 5 1| 0[=[1 0 2]|2|=2+4=6.
02 1)2 2

24 Write in indicial notation the matrix equation (a) [A] = [ B][C] , (b) [D] = [B]T [C] and (c)

[E]=[B]'[C][F].

Ans. (a) [A]=[B][C] = Aj =BinCnj> (®)[D]=[B]'[C]-> Aj=BnC

mj *

(©) [E]=[B]"[C][F]~ Ejj = BmiCmFi

U . . 2 a2 2 0’9 3’ 04
2.5 Write in indicial notation the equation (a) s=A" + A; + Ay and (b) —-+—+—=0.
oX;  0Xy 0X3
o’ ¢ 0% 0%
Ans. (a) s=AZ+AZ+AZ=AA. (b L 99.99 o _
@s=A+h+rA=Ak. © o oG X3 %0,

2.6 Giventhat S;;=8,a;and S;=a/a, where 8/=Q;a,and a;=Q,;a,,and Q,Q, =J;.
Show that S;=S,,.

Ans. S|; :Qmiaanjan :Qmianaman - SI’I :QmiQniaman :5mnaman :amam = Smm =S;.

2.7 Write & = %+ Vj sv—' in long form.

]

Ans
| ov, 0oV ov, ov, ov,
I=l->a = HVj =V — V3 —.
ot oxj ot X 0%y 0X3
|=2—>a2=%+vj%=%+v1%+v2%+v3%
ot oxj ot X 0%y 0X3
|=3—)3.3=%+V18v3=% 1%+V2% V3%
ot ox; ot 0% 0%y 0X3
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2.8 Given that le = 2,UEU + ;i’Ekké‘"

ij » show that

2 2

Ans. (a)

TiEyy = QuEjj + AEy5)Eyy = 2uE;Eyj + AE 5y = 2uEy Eyj + AE Eyy = 2uE; Eyj + A(E )’
(b)

Ti Ty = QUE;; + A 5y )2uE;j + AE ) = 41 B4y + 2UAE;Ey 5 + 2pAE 55 E;

2 2

+A% (B )" 06 =447 By Byj + 2uAE; Eyye + 2pAEG By + A7 (B ) 6
2

=41 BB + (B )" (4ud+327).

29 Given that a.i :lebj . and a;:T”’b] , where 4 :Qima;n and le :QimanTn’wn .

(a) Show that Qian'wnbr; = leQJnTn[me and (b) if Qiinm :§km , then Tk’n (b;] - anbj) =0.

Ans. (a) Since 8=Qjnay and T;;=QinQj Ty, therefore, a=Tj;b; —.

Qimam =QimQjnTmnbj (1), Now, a=Tbj — ap=Ty;bj =Ty,by, therefore, Eq. (1) becomes
QimTmabh =QimQjnTmabj - (2)

(b) To remove Q,, from Eq. (2), we make use of Q, Q, =0,,, by multiplying the above equation,
Eq.(2) withQ, . That is,

Qi QinTrnbr = Qi Qi Qi Trnbj = G Tabh = 61, Qi TPy = Ty = Q; Ty b;

— Ty, (b, — Qb)) =0.

1 0
2.10  Given [a]=|2|and [b]=| 2| Evaluate [d;], if d, = &ij3ib; and show that this result is
0 3

the same as d, =(axb)-e,.

Ans. dy =gijkaibj -

dy = &ij1aibj = 63318005 + £331a30, = ayby —a3h, =(2)(3) - (0)(2) =6
d, = gijjraibj = 310830 + &38405 = a3by —ayby = (0)(0) - (1)(3) =-3
dy = gjzab; = 15310, +&5138,b =aib, —a,by =(1)(2) - (2)(0) =2
Next, (axb)=(e, +2e,)x(2e, +3e;)=06e, —3e, +2e;.

d, =(axb)-e,=6, d,=(axb)-e,=-3, d;=(axb)-e;=2.

211 (a) If &Tj; =0, show that T; =T;;, and (b) show that &;&; =0

jiv

Copyright 2010, Elsevier Inc
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Ans. (a) for k=1, ;T =06y T3 +&3 T3 =0Ty3 = T3, > T3 =T;,.
for k=2, ;T =0 &3,T3 + 63,713 =0T =Tj3 > T3, =Ty5.

for k=3, &j3Tj =0 &3T, + 651375 =0T, =T > Ty =Ty

(b) Sj&ij = dn111k + Fanéani +I33¢33¢ =(1)(0)+(1)(0)+(1)(0)=0.

2.12 Verify the following equation: &;jm&qm = G — %O -
(Hint): there are 6 cases to be considered (i) i=j,(2) i=k,(3) i=1,4) j=k,(5) j=I,and (6)
k=I.

Ans. There are 4 free indices in the equation. Therefore, there are the following 6 cases to consider:
@Oi=j,Qi=k,3)i=1,4) j=k,(5) j=I,and (6) k=1. We consider each case below
where we use LS for left side, RS for right side and repeated indices with parenthesis are not sum:
(1) For i= j, LS:g(i)(i)mgklm = 0, RS = 5(i)k5(i)| _5(i)|5(i)k =0.

(2) For i=k, LS=¢gjigiy +&iyjaiyz + €0y jzéins> RS =840 = dindja

0 if j=I

LS=RS =40 if j=I=i.
1ifj=1=i

(3) For i=I, LS=¢j)iméiym> RS =3« — %iyi)Oik
0 if j=k

LS=RS =1 0 if j=k =i
1 ifj=k i

(4) For j=K, LS=&i(jmé(jm: RS =di(jdj —%djyi)
0 if izl

LS=RS =10 if i=I= j
Sl ifi=l#

(S) For j=1, LS=&jmekm> RS =6ud(jyj) =iy
0 if i=k

LS=RS =10 if i=k = |
1ifizkj

(6) For k =1 , LS:gijmg(k)(k)m :O, RS = é‘l(k)é‘J(k) _5i(k)5j(k) =0

2.13  Use the identity &j,&4m = O j1 — 9 jk as a short cut to obtain the following results:
(@) €imejim =26 and (b) & &k =6.

ANs. (a) &im&jim = 0 jOn = 60y =30} — G =26,

(b) &ijsijk = G5idjj — 60

j .

ji=(3)3)-8;=9-3=6.

2.14 Use the ldentlty 8ijm‘9klm = 5”(5“ — 5”5“( to show that ax (b X C) = (a. . C)b — (a. . b)C .

Copyright 2010, Elsevier Inc
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Ans. ax(bxc)=apen x (&jb;c&) = &ijanbjcy ey X €))

= &ijk8mD;Cy (&nmi€n) = Eijk €nmi8mPjCk€n = € jkiEnmiBmbDjCien

= (5jn§km _5jm5kn)ambjcken = 6jn§kmambjcken - 5jm5knambjcken
= ab,ce, —a;bjce, =(a-c)b—(a-byc.

2.15 (a) Show that if le :_Tji . Tijaiaj =0 and (b) if TIJ ==1ji» and SIJ = SJI , then TIJSIJ =0

Ans. Since Tja;a; =Tj;@;a; (switching the original dummy index i to j and the original index

] =)

j toi), therefore Tja;a; =T
(b) TSy =T;Sji
therefore, T;S;; =T

(switching the original dummy index i to j and the original index j toi),

jivji = T lijvji

R =-R;

2.16 Let T” Z(Sij +Sj|)/2 and RIJ :(Sij _SJI)/2 , show that le :Tji’ ij ji»

and SI] =Tij +Rij .

Ans. Ty =(Sj+S5)/2> Tji=(S;i+8)/2=Ty.

R =(s-j —Sji)/2—>Rji =(sji —sij)/2=—(sij —Sji)/2=—Rij.

T +Rij=(Sij + sji)/2+(sij —sji)/z =S;.

2.17  Let f(X,X;,X;) be a function of X;,X,,and X; and V;(X;,X,,X;) be three functions of
X;,X;,and X5 . Express the total differential df and dv; in indicial notation.

Ans. df = idxl Jridx2 +idx3 = ﬁdxi .
0%, 0%y 0X3 OX;
dv; = %dxl + %dxz +%dx3 = ﬁdxm .
X 0%, 0X3 X

2.18  Let ‘Aij ‘ denote that determinant of the matrix [AJ— J . Show that ‘AJ-‘ = &ij A Aj2 Acs

Ans. i AT ARAG =€k AT AR AG T €2k P A As T &3k A1 A2 A
=13 1A A3 + E130 A A Aoy + 6031 Ao Ay A + 8313 A0 1 A Ass + &30 A5 1 A Ay + 6301 Ay Agy A
= A1 AR A = A AR A + Ay A Ay — Ay A Ay + Ay A Avs — Ay A Ayg

A Ay A
=1A An Ay
Ay Ay Ay
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CHAPTER 2, PART B

2.19 A transformation T operate on any vector ato give Ta=a/ |a

, where |a| is the magnitude

of a. Show that T is not a linear transformation.

b

a for any a, therefore T(a+b) = ﬂ .Now Ta+Thb :i+_
4 ja+b 2" |b|

therefore T(a+b)=Ta+ Tb and T is not a linear transformation.

Ans. Since Ta=

2.20  (a) A tensor T transforms every vector ainto a vector Ta=mxa where m is a specified
vector. Show that T is a linear transformation and (b) If m =e, +e,, find the matrix of the
tensor T .

Ans. (a) T(ea+ pb)=mx(cea+ pb)=mxca+mx pgb=amxa+ pmxb=aTa+ STb. Thus,
the given T is a linear transformation.

(b) Te, =mxe, =(e; +e,)xe, =—€3, Te,=mxe, =(e; +€,)xe, =¢€5,

Te; =mxe; =(e, +e,)xe; =—e, +¢€,. Thus,

0 0 1
[T]=| 0 0 -1|.
-1 1 0

2.21  Attensor T transforms the base vectors €, and e, such that Te; =e, +e, and Te, =¢, —¢,.
If a=2e, +3e, and b =3e, + 2e,, use the linear property of T to find (a) Ta ,(b) Tb, and (c)
T(a+b).

Ans.
(a)Ta=T(2e, +3e,)=2Te, +3Te, =2(e, +e,)+3(e; —€, ) =5€, —e,.
(c)T(a+b)=Ta+Th=(5e, —e,)+(5e, +e,)=10g,.

2.22  Obtain the matrix for the tensor T which transforms the base vectors as follows:
Te, =2e, +e;, Te, =e, +3e;, Te; =—¢ +3e,.

-1
Ans. [T]=

— O N
w - O

3
0

2.23  Find the matrix of the tensor T which transforms any vector ainto a vector b =m(a-n)

where m=(v2/2)(e, +e,)and n=(2/2)(-¢, +e3).

Ans. Te, =m(e;- n)=nm =(—\/§/2)[(x/§/2)(e1 +e2)J=—(e1 +e,)/2.

Copyright 2010, Elsevier Inc
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Te, =m(e,- n)=n,m=0m=0.
Te; =m(e;- n)=n3m=(x/§/2)[(x/§/2)(el+e2)}=(e1+e2)/2.
-1/2 0 1/2

Thus, [T]=|-1/2 0 1/2].
0 0 0

2.24  (a) A tensor T transforms every vector into its mirror image with respect to the plane whose
normal is€, . Find the matrix of T . (b) Do part (a) if the plane has a normal in the e; direction.

1 0 O
Ans. (a) Te, =e;, Te,=—e,, Te;=e;,thus, [T]=|0 -1 0].
0 0 1
1 0 0
(b) Te,=e;, Te,=e,, Te;=-e;,thus, [T|=|0 1 0
0 0 -1

2.25 (a) Let Rcorrespond to a right-hand rotation of angle & about the X, -axis. Find the matrix
of R. (b) do part (a) if the rotation is about the X, -axis. The coordinates are right-handed.

Ans.(a) Re, =e;, Re, =0e, +cosfe, +sinde;, Re;=0e —sinfe, +cosde;. Thus,

1 0 0
[R]=|0 cos® —sind]|.
|0 sind cosd |
(b) Re; =—sinfe; +cosde;, Re, =e,, Re;=cosfe; +sinde,. Thus,
[ cos@ 0 sind]
[R]=] 0 1 0
| —sin€ 0 cosd |

2.26  Consider a plane of reflection which passes through the origin. Let n be a unit normal
vector to the plane and let r be the position vector for a point in space. (a) Show that the reflected
vector for ris given by Tr=r —2(r-n)n, where T is the transformation that corresponds to the

reflection. (b) Let n=(g, +e, +€;5)/ V3, find the matrix of T. (c) Use this linear transformation to
find the mirror image of the vector a =e,; +2e, +3e;.

Ans. (a) Let the vector r be decomposed into two vectors I, and I; , where I, is in the direction of
n and r;is in a direction perpendicular ton . That is, I, is normal to the plane of reflection and r; is
on the plane of reflection and r =r; +r,,. In the reflection given by T, we have,

Tr,=-r,and Tr, =1, sothat Tr=Tr,+Tr, =1, -1, =(r—r,)—r, =r=2r, =r=2(r-n)n.

(b)y n=(e,+e, +e;)//3>e,-n=e,-n=e;-n=1/-3.

Copyright 2010, Elsevier Inc
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Te, =€, —2(e;-nN)n=¢g, —2(1/«/5)[@1 +e, +e3)/\/§]=(el —2e,-2e;)/3.
Te, =e2—2(e2-n)n=e2—2(1/\/§)[(el +e, +e3)/\/§}:(—2e1+e2—2e3)/3.
Tey =€, —2(e;-N)n =g, —2(1/\5)[(e1 +e, +e3)/\/§]=(—2e1 ~2e,+65)/3.

1 -2 =2
[T]z% 21 2.
-2 2 1

1 =2 =21] [-3
(c) [T][a]:% -2 1 -2|2|=|-2|>Ta=—(3e +2e,+e;).
-2 -2 1]3] |1

2.27  Knowing that the reflected vector for ris given by Tr =r —2(r-n)n (see the previous

problem), where T is the transformation that corresponds to the reflection and n is the normal to the
mirror, show that in dyadic notation, the reflection tensor is given by T =1 —2nn and find the

matrix of T if the normal of the mirror is given by n = (e, +e, +€;5)/ NE) ,

Ans. From the definition of dyadic product, we have ,
Tr=r=-2(r-n)n=r=-2(nN)r =(Ir=2(nn)r)=(1-2nn)r > T=1-2nn.

1 111
For n:(e1+e2+e3)/\@—>[2nn]=%1[1 1 1]:31 1 1.
34 IR
1 2 =2
—[T]=[1]-[2nn]==|—2 1 =2
2 2 1

2.28  Arrotation tensor Ris defined by the relation Re; =e,, Re, =e;, Re; =g, (a) Find the

matrix of R and verify that RTR=1 and detR =1and (b) find a unit vector in the direction of the
axis of rotation that could have been used to effect this particular rotation.

001 0 1 0]fo 0 1] [1 0 0 001
Ans.(a) [R]=|1 0 0|>[R]'[R]=|0 0 1|[1 0 0|=|0 1 0}, det[R]=[1 0 0=1.
010 1 0 0JJ0 1 0] |00 1 010

(b) Let the axis of rotation be n = ¢, + a,€, + a3€5, then
-1 0 1| 0

Rn =n—>[R—I][n]:[O]—> 1 -1 0o, |=|0|>-a+a3=0, oq—0a,=0, a,—a3=0 .
0 1 -l|o 0

Thus, a; = a, = az, so that a unit vector in the direction of the axis of rotation is

n=(e +e, +e3)/\/§.

Copyright 2010, Elsevier Inc
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2.29  Arigid body undergoes a right hand rotation of angle & about an axis which is in the
direction of the unit vectorm . Let the origin of the coordinates be on the axis of rotation and I be
the position vector for a typical point in the body. (a) show that the rotated vector of r is given by:
Rr = (1 - cosH)(m . r)m +cosér + siné’(m X r) , where R is the rotation tensor. (b) Let

m=(e +e, +e3)/\/§, find the matrix for R.

Ans. (a) Let the vector r be decomposed into two vectors Iy, and I, where Iy, is in the direction

of mand r, is in a direction perpendicular to m, thatis, r =rp +r,.Let p=r, /‘rp‘ be the unit

p
vector in the direction of r,, and let g=mxp. Then, (m,p, q) forms an orthonormal set of

vectors which rotates an angle of & about the unit vectorm . Thus,

Rry, =1y and Rry =‘rp‘(cosﬁp+sin6'q). From r=r, +r,, we have,

Rr=Rr, +Rr, =‘rp‘(cosﬂp+sin€q)+ I ={cosH‘rp‘p+sin9‘rp‘(mxp)}-l—rm
={cost9rp +sin6’(mxrp)}+rm ={cosa9(r—rm)+sin9(mx(r—rm))}+rm
=rcos@+ry, (1-cos@)+sindmx(r—ry,)=rcosf+r, (1-cosd)+sindmxr

We note that I, =(r-m)m, so that Rr=rc0s6’+(r-m)m(l—cosH)Jrsinmer.
(b) Use the result of (a), that is, Rr =rcos@+(r - m)(l —cos 0) +sindmxr , we have,
Re, =, cos @+ (e, -m)m(1-cos)+sindmxe,,

Re, =e, cos &+ (e, -m)m(1—-cosd)+sinfdmxe,,

Re; =e;cosf+(e; -m)m(1—cos@)+sindmxe;.

Now, M= (e, +e, +e;)/~/3, therefore, m-e, =m-e, =m-e, =1//3

mxe, :(1/\5)(—e3 +e,), mxe, :(1/\/§)(e3 —e)), mxe, :(1/\5)(—e2 +e,). Thus,
Re, =, cos @+ (e, -m)m(1—cos)+sindmxe,

=g cosO+(1/3)(e, +e, +e3)(1—c0s0)+sin0(l/\/§)(—e3 +e,)

—(1/3){1+2c0s0}e, +&,{(1/3)(1-cos0) + sin0(1//3 )} +&; {(1/3)(1-cos6) ~sin6(1/ 3}
Re, =e, cosd + (e, -m)m(1—cosf)+sindmxe,

=e,c0s0+(1/3)(e; +e, +e5)(1-cos0) +sinO(1/3)(e; -e))
:{(1/3)(1_cose)_(1/ﬁ)sme}el+(1/3)(1+zcose)e2+{(1/3)(1_cose)+sme(1/ﬁ)}e3
Re; =e;cosf+(e;-m)m(1—cosd)+sindmxe,

=e;cos0+(1/3)(e; +e, +e)(1-cos) +sin0(1/3)(-e, +¢))

= {(1/3)(1—cos9)+(1/\/§)sin¢9}e1 +{(1/3)(1—0050)—sin9(1/\/§)}e2 +(1/3)(1+2cos8)e,
Thus,

Copyright 2010, Elsevier Inc
2-9



Lai et al, Introduction to Continuum Mechanics

1+2cosé (l—cosﬁ)—x/gsinﬁ (1—cosf)+~/3sin6
[T]:% (l—cos€)+\/§sin9 (1+2cos8) (l—cosH)—\/gsinH )
(l—cosﬁ)—\/gsinﬁ (I—cos@)+~/3sind (1+2cos8)

2.30  For the rotation about an arbitrary axis m by an angle &, (a) show that the rotation tensor is
given by R = (1-cosd)(mm)+ cosfl +sin fE , where mm denotes that dyadic product of m and

E is the antisymmetric tensor whose dual vector (or axial vector) is m, (b) find the R” | the
antisymmetric part of R and (c) show that the dual vector for R is given by (sind)m . Hint,
Rr=(1—cos@)(m-r)m+cosdr +sind(mxr) (see previous problem).

Ans. (a) We have, from the previous problem, Rr = (1 —COoS 9)(m . r)m +cos Or + sinH(m X r) .
Now, by the definition of dyadic product, we have (m . r) m = (mm)r, and by the definition of dual
vector we have, mxr =Er, thus Rr= (l —cos 9)(mm)r +cosér +sinOEr

= {(1 —cos 9)(mm) +cosdl + sinHE} r, from which, R = (1 —cos 9)(mm) +cosél +sin GE .

b) R*=(R-R")/2>

2RA = {(1—cos€)(mm)+cos€l +sin¢9E} —{(l—cos@)(mm)T +cos Ol +sin0ET} . Now

[mm]= [mimj ] = [mjmi ] = [mm]T , and the tensor E, being antisymmetric, E =—E", therefore,

2R™ =2sin@E , thatis, R™ =sin6E.
(¢) dual vector of RA = (sin @)(dual vector of E) =sin&m .

2.31  (a) Given a mirror whose normal is in the direction of €, . Find the matrix of the tensor S

which first transforms every vector into its mirror image and then transforms them by a 45° right-
hand rotation about the e;-axis. (b) Find the matrix of the tensor T which first transforms every

vector by a 45° right-hand rotation about the e, -axis, and then transforms them by a reflection with

respect to the mirror (whose normal is €, ). (¢) Consider the vector a = (e, + 2e, +3e;), find the

transformed vector by using the transformation S .
(d) For the same vector a = (e, +2e, +3e;), find the transformed vector by using the
transformation T .

Ans. Let T, and T, correspond to the reflection and the rotation respectively. We have

1 0 0
0 0 1

1 0 0
Toe =¢e, Tzezzi(ez‘*‘%), Tze3=L(—ez+e3)—>[T2]= 0 1/\/5 —1/\/5 .

V2 V2 0 1/:2 1/42

Copyright 2010, Elsevier Inc
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10 0 1 o o] [t 0 0

@) [S]=[T][T]=|0 /N2 -1/42|0 -1 o|=]0 -1/v2 -1/42].
0 /52 13210 0 1] jo -1/42 142
1 o ol 0 0 1 0 0

®) [T]=[T][T]=|0 -1 of|0o 1/v2 -1/V2|=|0 -1/N2 1/42].
0 0 1o 1/v2 142 ] [0 N2 142

1 0 0 1 1]

(©) [b]=[S][a]=|0 -1/N2 -1/v2||2|=]-5/32].

0 —1/42 142 |13) [ 142

1 0 0 1M 1

@ [c]=[T][a]=|0 -1/v2 1/N2]2|=|1/V2 .

0 /N2 12 13] |52

2.32  Let Rcorrespond to a right-hand rotation of angle 6 about the X; -axis (a) find the matrix

of R?. (b) Show that R? corresponds to a rotation of angle 26 about the same axis (c) Find the

matrix of R" for any integer n.

cosd —sind 0
Ans. (a) [R]= sinf cos@ O0].
0 0 1

cosd —sinf 0} cosd —sind 0 cos’ @—sin’@ —2sinfcosd 0

—)[Rz]z sin@ cos® 0] sin@ cos® 0|=| 2sinfcosd cos>O—sin’6 0].
0 0 1 0 0 1 0 0 1

()
cos>@—sin’@ —2sinfcosd 0O cos26 —sin26 0
[Rsz 2sinfcos® cos’@—sin’@ 0|=|sin20 cos20 0].
0 0 1 0 0 1

Thus, R? corresponds to a rotation of angle 26 about the same axis
cosnd —sinnd 0

(©) [Rng sinnd coshd O0].
0 0 1

2.33  Rigid body rotations that are small can be described by an orthogonal

transformation R = | + éR™ where & — 0as the rotation angle approaches zero. Consider two
successive small rotations R;and R, , show that the final result does not depend on the order of
rotations.

Copyright 2010, Elsevier Inc
2-11



Lai et al, Introduction to Continuum Mechanics

Ans. RyR, = (1+2R; )(1+2R]) =1+ 2R3 +2R; +£°R3R; =1 +5(Ry +R} )+ £R3R]

As £0, RyR ~1+2(Ry+R])=RR;.

2.34  Let T andS be any two tensors. Show that (a) T'is a tensor, (b) Th+sT = (T+ S)T and (c)
(TS)T =sT1T.

Ans. Let a,b,c be three arbitrary vectors and « S be any two scalars, then

(@) a-T'(ab+ fBc)=(ab+ fc)-Ta=ab-Ta+fc-Ta=aa-T'b+pa-Tlc

=a- (aTTb + ﬂTTC) —> T (ab+ pc)= (aTTb + ﬁ’TTC) . Thus, T"is a linear transformation, i.e.,
tensor.

(b)a-(T+S)'b=b-(T+S)a=b-Ta+b-Sa=a-T'b+a-S'b

—a-(TT+SHb > (T+S)T =TT +5T.

(c) a-(TS)'b=b-(TS)a=b-T(Sa)=(Sa)- T'b=a-STTTh > (TS)T =s'TT.

2.35  For arbitrary tensors T and S, without relying on the component form, prove that (a)
T H =T and (b) (TS) ' =57'T!

Ans. (@) TT ' =1 > TTH =15 TH' T =15@H =TH "
®) (TS IT H=T6ESHT ' =TT =1, thus, (TS) ! =577,

236 Let {e;}and{e]}be two Rectangular Cartesian base vectors. (a) Show that if €] = Qe
then &; =Qiney, and (b) verify QuiQu; = Jjj = QinQjm -

Ans. (a) ei’ =Qmiem —)e{ ‘ej :Qmiem 'ej =Qmi§mj =jS —)ej :Qjme;n —)ei =Qime;n .
(b) We haVe, ei' . e’j = é‘” = ei . ej , thus,

é‘ij zei’ 'e'j =Qnmi€m 'an n :Qmianem € :Qmiané‘mn sziQmj . And

é‘ij =€ -€;= Qimem an n= Qimanem €h = Qiman5mn = QimQjm'

2.37  The basis {]} is obtained by a 30° counterclockwise rotation of the {e; } basis about the e;
axis. (a) Find the transformation matrix [Q] relating the two sets of basis, (b) by using the vector

transformation law, find the components of a = \/§e1 + e, in the primed basis, i.e., find & and (c)
do part (b) geometrically.

Ans. (a) ej =cos30%, +sin30°¢e,, €, =—sin30°e, +cos30°e,, €; =e;. Thus,
c0s30° —sin30° 0

[Q], =|sin30° cos30° 0.
0 0 1

Copyright 2010, Elsevier Inc
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a | (V372 172 0|[y3] 2
®) [a], =[Q]'[a], —| & |=|-1/2 ~3/2 0| 1 |=|0|>a=2e
a, 0 0 1f o] [0

(¢) Clearly a= \/gel + €, is a vector in the same direction as €] and has a length of 2. See figure
below

30° |
e,

2.38 Do the previous problem with the {e} } basis obtained by a 30° clockwise rotation of the
{ei } basis about the e;axis.

Ans.
(a) e] =cos30°e, —sin30°e,, €, =sin30°¢e, +cos30°e,, €5 =e;. Thus,
cos30° sin30° 0
[Q]ei =| —sin30° co0s30° 0].
0 0 1

a | (V372 -172 of[y3] [1
®) [a], =[Q]'[a], —|a [=| 1/2 VB3/2 0| 1 |=|+3|>a=¢]+/3e)
a, 0 o 1o |o

(c) See figure below

239 The matrix of a tensor T with respect to the basis {e; | is

Copyright 2010, Elsevier Inc
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1 5 -5
[T]=|5 0 o
-5 0 1

Find T/}, T/, and T, with respect to a right-handed basis {e{ } where €] is in the direction of

—e, +2e; and € is in the direction of ¢, .

Ans. The basis {e]} is given by:
e =(-e,+2e5)//5, ey =e,, e;=e|xe)=(2e,+e5)//5.

(15 5] 0
Th=e-Tei=[0 -1/\5 2/45) 5 0 0 |-1/5|=4/5.

5 0 1] 2/45

1 5 -5][1
T{2=e1-Te'2=[o ~1//5 2/\5{5 0 010|=-15/5.

5 0 1][0

15 5] 0
Ti=e;-Tej=[0 2/V5 1/5][5 0 0|-1/35|=2/5.

-5 0 1|l 2/45

2.40  (a) For the tensor of the previous problem, find [Tijf J ,l.e., [T]e._ if {ej} is obtained by a
90° right hand rotation about the e; axis and (b) obtain T;j and the determinant ‘Tijf‘ and compare

them with T;;and [Ty|.

“1
Ans. (a) €] =e,, €y =—¢, ej=e;>[Q]=[1 0
0

S = O

0
0].
1
[T ]=[T] =[QI'[T][Q]=|-1 0 o|[5 0 o1 ol=l-5 1

0
0 0 1)l-s 0 1]o o 1] [0 5

010155{010 0 -5 0

2.41  The dot product of two vectors a = a;¢; and b = b;e; is equal to ab;,. Show that the dot
product is a scalar invariant with respect to orthogonal transformations of coordinates.

Ans. From a =Qqia,and b, = Qb , we have,
ai’bi :Qmiaanibn :QmiQniambn = 5mnambn = ambm = aibi .

Copyright 2010, Elsevier Inc
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242 If T;jare the components of a tensor (a) show that Tj;T;; is a scalar invariant with respect to

orthogonal transformations of coordinates, (b) evaluate T;;Ty; with respect to the basis {e; } for

100 00 1
[T]=]1 2 5| ,(c)find [T],if & =Qe;, where [Q]=|1 0 0| and
12 3] 0 1 0]

(d) verify for the above [T]and[T]' that Ty Ty =T;;T;; -

Ans. (a) Since Tj; are the components of a tensor, Tjj = QniQp Ty, - Thus,

TiiTij = Qumi Qnj Tin (Qpi Qg Tpg ) = (Qmi Qi N Qi Qg YTrnn T pg = Fmp g Tran Tpg = Tron Trnn

O) TyTy =TI +Ta + T3 +T5 + T + T + T + T + Ty =141+ 44 25+1+4+9=45.
01 01 0 0fj0 O 1| (0O 1 0}JO O 1| |2 51

© [T] =[Q]'[T][Q]=|0 0 1|1 2 5|1 0 of|=|0 0 1|2 5 1|=|2 3 1
1 0 01 2 30 1 O (I O Of2 3 1| |0 O 1

(d) TyTjj =4+25+1+4+9+1+1=45.

’

243  Let [T]and[T]l be two matrices of the same tensor T , show that det[T] =det[T]

Ans. [T] =[Q]' [T][Q] - det[ T] =det[Q]" det[Q]det[T] = (1)1 det[ T] = det[ T].

244 (a) If the components of a third order tensor are Ry, , show that Rj are components of a
vector, (b) if the components of a fourth order tensor are Ry, show that Ry are components of a

second order tensor and (c) what are components of Ry, if Rj; _are components of a tensor of

n" order?

Ans. (a) Since Ry are components of a third order tensor, therefore,

i'jk = Qmianka Rmnp — Riix = QmiQnika Rmnp = §anpk Rmnp = ka Rnnp , therefore, Ry are
components of a vector.

(b) Consider a 4™ order tensor Rijui » we have,
i,jkl = QmiankaQqI I:\)mnpq - Ri'ikl = QmiQnikaqu Rmnpq = ankaqI R npq — kaQqI Rnnpq >
therefore, R;;, are components of a second order tensor.

(¢) Rijx_ are components of a tensor of the (n— 2)" order.

2.45  The components of an arbitrary vector aand an arbitrary second tensor T are related by a
triply subscripted quantity R; in the manner & = Ry T for any rectangular Cartesian basis {ei}.

Prove that Ry are the components of a third-order tensor.

Copyright 2010, Elsevier Inc
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Ans. Since & = Ry T} is true for any basis, therefore, aj = Ri'jij'k ; Since ais a vector, therefore,
& =Qpidy and since T is a second order tensor, therefore, Tjj = Qi Qyi Ty - Thus,

& =Qmian = RijTjk = Qmi (RyjkTjk) - Multiply the last equation with Qg and noting that

QsiQmi = Osm » we have,

QuiRij T = Qi Qumi (RmjcTji) = Qsi Rie ik = Som R T = Qui Rije T = Reji T

= Qs Rijk Quj QuicTrmn = RsjkTjk = Qs Rijk Qunj Qe Trnn = Remn Tn - Thus,

(Rsmn - QSiQmj Qnk REjk )Tmn =0. Since this last equation is to be true for all T, , therefore,

Romn = QsiQmjQni Rijk » Which is the transformation law for components of a third order tensor.

2.46  For any vector aand any tensor T, show that (a) a- T*a=0 and (b)a-Ta=a- Ta,

where T*and TS are antisymmetric and symmetric part of T respectively.

Ans. (a) TAis antisymmetric, therefore, (TA )T =-TA , thus,
a-T*a=a-(TM"a=-a-T*a—>2a-T*a=0—>a-T*a=0.

(b) Since T=T5 +TA | therefore, a-Ta=a-(T>+T*)a=a-Ta+a-T*a=a-T"a.

2.47  Any tensor can be decomposed into a symmetric part and an antisymmetric part, that is

T=T5+T". Prove that the decomposition is unique. (Hint, assume that it is not true and show
contradiction).

Ans. Suppose that the decomposition is not unique, then ,we have,

T=T5+TA=5%+5* > (TS - SS) + (TA - SA) =0. Let abe any arbitrary vector, we have,
a-(T5-S%a+a-(TA-S*)a=0—-a-T%a-a-S%a+a-T*a-a-S*a=0.

But a-T*a=a-S*a=0 (see the previous problem). Therefore,
a-TSa-a-SSa=0—-a-(T5-5%)a=0->T5-5%=0- T3 =5S°. It also follows from

(TS - SS) + (TA - SA) =0 that T* =S*. Thus, the decomposition is unique.

1 23
2.48  Given that a tensor T has the matrix [T] =4 5 6/, (a)find the symmetric part and the
7 8 9

anti-symmetric part of T and (b) find the dual vector (or axial vector) of the anti-symmetric part of
T.

1 23 ra) [2 o6 0] 13

S| _ T

Ans.(a)[T]—E{[T]+[T]}=§456+258:—610 14|=[3 5 7|.
7809 (3609 10 14 18] |5 7 9

Copyright 2010, Elsevier Inc
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12311 4 7 0 2 -4] [0 -1 -2

TAzl[T]—[T]T:l456—258=120—2=1 0 -1|.
2 2 2

7 8 9/ 1(3 6 9 4 2 18| |2 1 0

(b) t* =—(ThHe, +The, +Tres) =—(~le, +2e, —le;) =€, —2e, +e;.

2.49  Prove that the only possible real eigenvalues of an orthogonal tensor Q are 4 =+1. Explain

the direction of the eigenvectors corresponding to them for a proper orthogonal(rotation) tensor and
for an improper orthogonal (reflection) tensor.

Ans. Since Q is orthogonal, therefore, for any vector n, we have,Qn-Qn=n-n. Let n be an
eigenvector, then Qn = An, so that Qn-Qn=n-n -
22M-m=Mn-n)—>A2=-1)Nn-nN)=0>12-1=0—>A==1.

The eigenvalue 4 =1 (Qn =n) corresponds to an eigenvector parallel to the axis of rotation for a
proper orthogonal tensor (rotation tensor); Or, it corresponds to an eigenvector parallel to the plane
of reflection for an improper orthogonal tensor (reflection tensor). The eigenvalue 4 =-1,

(Qn =-n) corresponds to an eigenvector perpendicular to the axis of rotation for an 180° rotation;
or, it corresponds to an eigenvector perpendicular to the plane of reflection.

1 -2 =2
2.50  Given the improper orthogonal tensor [Q] =% -2 1 =2].(a) Verify that det [Q] =-1.
-2 2 1

(b) Verify that the eigenvalues are 4 =1 and —1 (c¢) Find the normal to the plane of reflection (i.e.,
eigenvectors corresponding to 4 =—1) and (d) find the eigenvectors corresponding A =1 (vectors
parallel to the plane of reflection).

Ans. (a) det[Q]=(1/3)’ (1-8—-8—4—4—4)=(-27)/27=—1.
b) 1,=3/3=1, L=(1/3{(1-4H+(1-4)+(1-4)}=-1, L;=-1->

=2 2+1=05UA-DA*-1)=0>1=1,1-1
(c) For A=-1,
1 2 2 2 1 2 2 2 1
—+1l|loy——a,——a;=0, ——a;+|—+1|a,——a;=0, ——a;——a,+| —+1|ay; =0. That
(Fet)a-2a-2a=0 -Sae(Jetfe-2a -0 -2a-Zay (31
is, 20—, —a3 =0, —o+2a,-03=0, —o—a,+2a;=0,thus, a =a, = a;, therefore,
n=x(e +e,+e3)/ \/3, this is the normal to the plane of reflection.
(d) For 1=1,
1 2 2 2 1 2 2 2 1
——1llogy—=a,——o3=0,——o+| =-1|ay ——o3=0,——oa;——a, +| =—1|a; =0
(3-1)a-2a-2as=0-2a s [1-1)ar - 2o =020 -2y 4 -1
All three equations lead to o) + o, + a3 =0 —> a3 =-a; —a, . Thus,

1

1
N=—[x€ + %6, —(; + 2,)e3], e.g., N=—=(g; +e, —2e;)etc. these vectors are all
o +a3 +aj V6

perpendicular to n==x(e, +e, +e3)/ V3 and thus parallel to the plane of reflection.

Copyright 2010, Elsevier Inc
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2.51  Given that tensors R and S have the same eigenvector n and corresponding eigenvalue
I, and s, respectively. Find an eigenvalue and the corresponding eigenvector for the tensor T=RS.

Ans. We have, Rn=rnand Sn=s;n, thus, Tn=RSn = Rs;n =s;Rn =rs;n. Thus, an eigenvalue
for T=RS is rs; with eigenvectorn .

2.52  Show that if nis a real eigenvector of an antisymmetric tensor T, then the corresponding
eigenvalue vanishes.

Ans. Tn=An —->n-Tn=A(n-n). Now, from the definition of transpose, we have n-Tn=n- T'n.

But, since T is antisymmetric, i.e.,TT =-T, therefore, n- T'h=-n-Tn. Thus,
n-Tn=-n-Tn—->2n-Tn=0—->n-Tn=0. Thus, A(n-N)=0—>1=0.

2.53  (a) Show that ais an eigenvector for the dyadic product ab of vectors a and b with
eigenvalue a-b, (b) find the first principal scalar invariant of the dyadic product ab and (c) show
that the second and the third principal scalar invariants of the dyadic product ab vanish, and that
zero is a double eigenvalue of ab.

Ans. (a) From the definition of dyadic product, we have, (ab)a=a(b-a), thus ais an eigenvector
for the dyadic productab with eigenvaluea-b.
(b) Let T=ab, then Tj; =ajb; and the first scalar invariant of abis T;; =a;jb; =a-b.

© 1, = ab ab,| |ab, aybs N ab,  ab; 0404020,
by ahy| |ash, ashs| jash sy
ab, ab, abs by b, by
Iy =laby @b, abs|=aaaz b b, bs=0.
ashy  ash, asb; by b, b

Thus, the characteristic equation is
P12 =0>A-1DA* =054 =1, 4 =4=0.

2.54  For any rotation tensor, a set of basis {ei'} may be chosen with €5 along the axis of rotation
so that Re| =cosée] +sinde);, Re, =—sinfe| +cosde,, Re;=e;, where @ is the angle of right
hand rotation. (a) Find the antisymmetric part of R with respect to the basis {e{} , 1.e., find [RA]eir .

(b) Show that the dual vector of RA is given by t* =sin 0e; and (c) show that the first scalar
invariant of R is given by 1+ 2cosé. That is, for any given rotation tensor R , its axis of rotation

and the angle of rotation can be obtained from the dual vector of R” and the first scalar invariant of
R.

Ans. (a) From Re| =cos@e; +sinde,, Re, =-sinfe| +cosde,, Re;=¢e}, we have,

cos@ -—sind O 0 -—sind O
[R]e._ =|sinfd cosd 0 —>[RA] =|sind 0 0
1 ei
0 0 1 " 0 0 0 "

(b) the dual vector (or axial vector) of R* is given by
Copyright 2010, Elsevier Inc
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th = —(Ty5e] +T3,85 + T)5e5) = —(0€] + 0}, —sin Oe}) = sin Ge} .
(c) The first scalar invariant of R is |, =cos@+cos@+1=1+2cosf.

2.55  The rotation of a rigid body is described by Re; =e,, Re, =e;, Re;=e,. Find the axis
of rotation and the angle of rotation. Use the result of the previous problem.

Ans From the result of the previous problem, we have, the dual vector of R is given by
t* =sinfe;, where €} is in the direction of axis of rotation and @ is the angle of rotation. Thus, we
can obtain the direction of axis of rotation and the angle of rotation & by obtaining the dual vector
of R*. From Re, =e,, Re,=e;, Re;=¢;, we have,

0 0 1 0 -1 1
[R]=|1 0 0 —>[RA]=% 10 1|t :%(e1 +e,+6;). Thus,

010 -1 1 0

tA:ﬁ(el+e2+e3) V3

=——e,, where e; =——(€, +€, + &, ) is in the direction of the axis of
> 5 e 3 ( 176 3)

NE

rotation and the angle of rotation is given bysind = V372, which gives @=60° or 120°. On the
other hand, the first scalar invariant of R is 0. Thus, from the result in (c) of the previous problem,

we have, |, =1+2cos@ =0, so that cos®=—1/2which gives 8 =120°r 240°. We therefore
conclude that 8 =120°.

-1 0 0
2.56  Given the tensor [Q] =| 0 -1 0].(a) Show that the given tensor is a rotation tensor. (b)
0 0 1

Verify that the eigenvalues are 4 =1 and —1. (¢) Find the direction for the axis of rotation (i.e.,
eigenvectors corresponding to A =1). (d) Find the eigenvectors corresponding A =—1and (¢) obtain
the angle of rotation using the formula |, =1+2cos@ (see Prob. 2.54), where |, is the first scalar
invariant of the rotation tensor.

Ans. (a) det[Q]=+1, and [Q][Q]I =[1]therefore it is a rotation tensor.

(b) The principal scalar invariants are: |, =-1, 1, =-1, |5 =1-— characteristic equation is
AP+at-a-1= (A+ l)(/12 - 1) =0 —> the eigenvalues are: A =—1,1,1.

(c) For =1, clearly, the eigenvector are: n = €5, which gives the axis of rotation.

(d) For A=-1, with eigenvector N = o€, + @€, + 3€3, we have

0c; =0, Oa, =0, 2a53=0.Thus, ¢ =arbitrary,a, = arbitrary, a3 =0. The eigenvectors are:
n =o€, + a,e,, alz + a22 =1. That is, all vectors perpendicular to the axis of rotation are

eigenvectors.
(e) The first scalar invariant of Q is I, =—1. Thus, 14+2cosf=-1—>cos@=-1—->0=7.(We

note that for this problem, the antisymmetric part of Q =0, so that t* =0=sind n, of which
6 = is a solution).

Copyright 2010, Elsevier Inc
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2.57 Let F be an arbitrary tensor. (a) Show that F'Fand FFT are both symmetric tensors. (b) If
F=QU =VQ, where Q is orthogonal and U and V are symmetric, show that U? =F'Fand

V2 =FFT (c) If Aand n are eigenvalue and the corresponding eigenvector for U, find the
eigenvalue and eigenvector for V. [note corrections for text]

Ans. (a) (FTFH)T =FT(FHT =FTF, thus F'Fis symmetric. Also (FF)T =(F)TFT =FFT,
therefore, FF is also symmetric.

(b) F=QUF' =U'Q" »F'F=UTQ'"QU=UTU>F'F=U".

F=VQ-F =Q"VI 5 FF' =vQQ'V' =w' 5 FFT =Vv2,

(¢) Since F=QU =VQ, and Un=/4n, therefore, VQn =QUn=Q(4in) —> V(Qn)=4(Qn),
therefore, Qnis an eigenvector for V with the eigenvalue A .

2.58  Verify that the second principal scalar invariant of a tensor T can be written:

1, =(T“Tjj —TijTji)/Z.

TiT;i =T Tj + 1o Tjo + T35 =T121 + 15T +TisT3 + Ty Ty +T222 + T3l + T3 Tj3 + T35 T3 +T323~

Thus, TyT; —TyTji = (T +To +T53 + 2T Ty +2T5, T3 + 2T33Ty)
2, T2 2
—(Ty1+ T3 + T3+ 2T Ty +2Ty5T5y + 2Tp5T55) =2(T) Ty =Ty Toy + Top T = TosTay + T35y = TisTsy)
Thus,
(TiiTjj _TijTji)/2 =T Toy = TiaToy +TopTs3 = TosTyp + TasTyy —TisT3y)
T T T T
L2 ' 1 3

Tll T12
T21 T22 T32 T33 T31 T33

=1,.

2.59 A tensor has a matrix [T] given below. (a) Write the characteristic equation and find the
principal values and their corresponding principal directions. (b) Find the principal scalar
invariants. (¢) If n;,n,,n; are the principal directions, write [T]n_ . (d) Could the following matrix

[S] represent the same tensor T with respect to some basis.

5 40 720
[T]=|4 -1 0|, [S]=|2 1 ©
0 0 3 00 -1

Ans.
(a) The characteristic equation is:
5-4 4 0

4 -1-4 0 =0—>(3—/1)[(5—/1)(—1—/1)—16]=(3—/1)(/12—4/1—21)=(3—/1)(/1+3)(/1—7)=0
0 0 3-4

Thus, 4, =3,4, =-3, 4 =7.

For 4 =3, clearly, n; =+e;.

Copyright 2010, Elsevier Inc
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For 4, =-3

(5+3)a; +4a, =0, 4oy +(-1+3)a, =0, 3+3)a3=0, af +aj3 +aj =1

—>8a; +4a, =0, 4oy +2a, =0, 603 =0—>a, =—2a;, a3 =0.—>n, =%(e, —2e,)//5.
For 4; =7

(5-Tay +4a, =0, 4oy +(-1-T)ay =0, 3-Tz =0, af+aj+aj=1

—2a; +4a, =0, 4a;—8a, =0, —4ay=0—>a =2a,, a3=0.->N;=%(2e +e,)/5.
(b) The principal scalar invariants are:
[ =5-1+3=7, I, =(-5-16)+(-3-0)+(15-0)=-9, I3 =-15-48=—-63. We note that

A3 =T72%-92+63=0—(1-7)A* =9(1-7)=0—(1-7)(A* =9) =0, same as obtained in (a)

3 0 0 7 2 0
©[T], =|0 -3 0 . (d)det|2 1 0 |=-3%#-63,therefore, the answer is NO. Or,
0o 0 7 0 0 -1

{n.ny.n3}
clearly one of the eigenvalue for [S] is —1, which is not an eigenvalue for [T] , therefore the

answer is NO.

2.60 Do the previous problem for the following matrix:

[T]=

S O W
B~ O O
S bk~ O

Ans. (a) The characteristic equation is:
3-4 0 0

0 0-42 4 [=053B-D)A*-16)=B-D)(A-4)(A+4)=0
0 4 0-2
Thus, 4, =3, A, =4, A =-4.
For A, =3, clearly, n, =te,, because Te, =3e,.
For 4, =4
B-4a =0, (0-Ha, +4a;=0, 4a,+(0-Na; =0, af+a3+aj=1
-, =0, —4a,+4a;=0, 4, —4a3;=0—> 0, =0, a2=a3,—>n2=i(e2+e3)/x/§.
For 4; =—4
BG+da =0, (0+d)a, +4a;=0, 4a, +(0+4)a; =0, af +a3 +ai =1
—70,=0, 40, +4a;=0, 4a, +40;,=0—> 0, =0, a2=—a3,—>n3=i(ez—e3)/\/§

(b)
I, =3, 1,=(0-0)+(0—16)+(0—0)=-16, I =-48.

A3 =327 -164+48=0—(1-3)2*-16(1-3)=0-(1-3)(4* -16)=0, same as in (a) .

30 0
©[T], =[0 4 o0
00 —4

{nn,.ns}
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7 2 0
(d)det[S]=det|2 1 0 |=—(7—-4)=-3#-48, therefore, the answer is NO.
0 0 -1

Or, clearly one of the eigenvalue for [S] is —1, which is not an eigenvalue for [T], therefore the
answer is NO.

2.61  Atensor T has a matrix given below. Find the principal values and three mutually
1 10

perpendicular principal directions: [T]z 1 10
0 0 2

Ans. The characteristic equation is:
-4 1 0

L= 0 |=05(2-2) -2 -1]=(2-2)(-22+ ") ==2(2- )" =0.
0 0 2-4
Thus, 4, =0, A, =4 =2.Thatis, there is a double root A, =4; =2.
For 4 =0,
1-0)a + @, =0, a+(1-0)a, =0, 2-0)a; =0, af+aj+ai=1
—a+a,=0, 203=0->0a=-0,, a3=0,->n==%(g —ez)/\/i.
For A, =43 =2, one eigenvector is clearly n;. There are infinitely many others all lie on the plane
whose normal is N, =+(e; —e,)/ 2 . In fact, we have,
(1-2)a; +a, =0, oy +(1-2)ay =0, 2-2)a3=0, af +a3+a; =1
—>-o+a,=0, 03=0->0=0,=a, o =~1-2a* —>nN=x(ae +ae, +a3e3),
which include the case where =0, a3 =*1—->n=xe;.

CHAPTER 2, PART C

2.62  Prove the identity %(T + S) = c:j—-{ + Z—f , using the definition of derivative of a tensor.
Ans.
i(T N S) _ im {T{A+A)+S(t+ A} —{T()+S(t)}  lim {T{A+A)=T()}+{S(t+At)-S(1)}
dt At—0 At At—0 At
lim {T(t+At)-T(t)} + lim {{S(t + At) - S(1)} :d_T+d_S' -
At—0 At At—>0 At dt dt
) . d ds dT : .. .
2.63  Prove the identity E(TS) = TE + ES using the definition of derivative of a tensor.
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d

Ans. —(TS) - lim T(t+ At)S(t + At) - T(1)S(1)

dt At—0 At
lim T(t+AD)S(t+ At) — T(t+ AD)S() + T(t + At)S(t) — T(t)S(t)
At—0 At
lim T(t+A){S(t + At) - S(t)} + lim {T(t+At)-T()}S(t)
At—0 At At—0 At
“T(t) lim {S(t+At)— S(t)} {T(t +At)-T(t)} sty=TE dS dT are
At—0 At At»o At dt dt
dar™ (dT) . . . . I
2.64  Prove that = Y by differentiating the definition a- Tb=b-T a, where

aand b are constant arbitrary vectors.

Ans. a-Tb=b-TTa—a-(dT/dt)b=b-(dT"' /dt)a. Now, the definition of transpose also gives
a-(dT/dt)p=b-(dT/dt) a. Thus, b-(dT/dt) a=b-(dT" /dt)a.

T T
Since aand b arbitrary vectors, therefore, (Z—-{j = [%J

2.65  Consider the scalar field ¢ = X’ +3X,X, + 2X; . (a) Find the unit vector normal to the surface
of constant ¢ at the origin (0,0,0) and at (1,0,1) . (b) what is the maximum value of the directional
derivative of ¢ at the origin? At (1,0,1)? (c) Evaluate d¢/ dr at the origin if dr =ds(e, +e;3).

Ans. (a) Vg =(2x, +3X;)e, +3xe, +2e;3,

at (0,0,0), Vg=2e; >n=e;, at(1,0,1), Vg=2e, +3e, +2e;,—>n=(2e, +3e, +26;)//17 .
(b) At(0,0,0), (dg/dr),,, =|V¢|=2 in the direction of n=e;.

At (1,0,1), (dg/dr)e =V =17

(c) At (0,0,0), dg/dr =(Vg), -dr/dr=2e;-(e,+e5)/~2=2.

2.66  Consider the ellipsoidal surface defined by the equation x> / a + y* /b* + 2% /¢? =1. Find
the unit vector normal to the surface at a given point (X, Y,Zz).

2 2 2
X z
Ans. Let f(x,y,z)=—2+g—2+—2—1,then
ﬂZE, izﬂ’ ﬂ:z_)Vf:—el 2ye2 e3,thus
ox a’> oy b> o ¢? a’ b? c?

S GRHRE )Mz—ﬁy 2,

QD
o
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2.67  Consider the temperature field given by: ©® =3X;X,. (a) Find the heat flux at the point
A(,1,1), if g=-kV®. (b) Find the heat flux at the same point if = -KV®, where

k 0 0
[K]={0 2k 0
0 0 3k

Ans. O =3xX, > VO =3(X,€, +X€,) > (VO), =3(e; +e,).

(a) q=-kVO =-3k(e; +e,).
k 0 03 3k

(b) [a]=-[KVO]=—0 2k 0 ||3|=—|6k |—>q=—(3ke, +6ke,).
0 0 3k||0 0

2.68  Let ¢(X;,X%y,%3) and w(X,X,,X;) be scalar fields, and let v(X;,X,,X;) and W(X;,X,,X;) be
vector fields. By writing the subscripted components form, verify the following identities.
(a) V(g +yw)=Vé+ Vi, sample solution: [V(¢d+y)]; =M =%+a—l’” =V¢+Vy.
0% 0% OX
(b) div(v+w)=divv +divw, (c) div(¢v) =(V@)- v+ ¢(divw) and (d) div(curlv)=0.

o(y; +Wi)_%+%

Ans. (b) div(v+w)= L=div +divw .
0% 0% 0%

(o) div(gv) =2 _ g N | O\ 4wy + (Vg)-v.

OX; 0% 0%

OV oV 0 ov 0 ov
d) curlv=-¢;, —e =¢ e—>d1 curlv) = —¢; —& = =X
(d) cu ijk X i ijk a0 x J v(curlv) o ik =~ GXJ ik 2 ox, 8X
By changing the dummy indices, (i — j, j —1) we have, & aizv—k Ejik 88 ?’k Thus,

X; OX: Xi OXi

]

0 6Vk 0 8Vk 0 aVk —0 0

OV .
K= K —| & — |=0. Thus, div(curlv)=0.
ox; 0X; i oX; 0% “ ,{ ! axJ

9
Giik 5y ox; OX; OX;

2.69  Consider the vector field v = Xlze1 + X3ze2 + X§e3. For the point (1,1,0), find (a) Vv, (b)
(VV)Vv, (c) divV and curl v and (d) the differential dv for dr = ds(e, +e, +e5)/ V3.

2 0 0 2.0 0

Ans.(a) [Vv]=| 0 0 2x —>[VV]110 000
0 2x, 0 020
2 0 off1] [2

(b) [(VV)V]=|0 0 0] 0[=|0|—>(VV)V=2e.
0 2 0J1] |0

(c) divv=2x+0+0=2x —at (1,1,0), divv=2.
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curlv = %_% e + %_% e, + %_% 9322(X2—X3)e1.
O0Xy OXg 0X; 0% X 0%,

At (1,1,0), curlv=2(1-0)e, =2e,.
(d)
2 0 0]/ds/~3] [2ds/4/3
At(1,1,0), dv=(vv)dr —[dv]=[vv][dr]=[0 0 0| ds/3|=| 0 |
0 2 0fds/3| |2ds/+f3

—>dv =2ds(e, +e;)//3

CHAPTER 2, PART D

2.70  Calculate div u for the following vector field in cylindrical coordinates:
(a) U, =u, =0, u,=A+Br’. (b)u, =sind/r, uy=u, =0, and

() Uy =r*sin@/2, uy,=r*cos@/2, u,=0.

Ans.(a) u, =u, =0, uz=A+Br2—>divu=%+l%+u—r+%=0+0+0+0=0.
rog r oz
(b)ur=sin¢9/r,u9=uz=0—>divu=%+l%+u—r+%=—sin0/r2+O+sin<9/r2+0=0
oo rofd r oz
() U, =r’sin@/2, u,=r’cos@/2, u,=0

Lodivu=r 1 Ur Uy s 024 rsing /24 0=rsing.
or r 00 r 0z

2.71  Calculate Vu for the following vector field in cylindrical coordinate:
u =A/r, uy,=Br, u,=0.

[ou, 1(éu, au |l [ A 7
L Ly, =] |- O _
or r(ae gj P z B0
Ans. [Vu]= aaﬁ l(%+u,j aaﬁ =| B Az 0.
ror 7 r
a1, a0 00
| or r oo oz | L J

2.72  Calculate divu for the following vector field in spherical coordinates

U =Ar+B/r’, uy=u,=0

2 i ou
Ans. —>divu =20 1 OWpsind) | 1 ¢
r2  or rsin@ 00 rsiné o¢
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o)

rlaor
2.73  Calculate Vu for the following vector field in spherical coordinates:
U =Ar+B/r*, ug=u,=0.

12

e (Ar3+B)=3A.
r

ou, (lou, U, I ou, Uy
or \rof r rsind o¢ r
u,cotd
Ans. [Vu] = ou, (lou, u I, Ugco
or \rof r rsing og¢ r
My 1M, 1 du, u u,cotd
| or r oo rsing o r r )|
8ur/6l’ 0 0 A—zB/r3 0 0
=| 0 u/r 0 |=| 0  A+B/r' 0
0 0 ur 0 0 A+B/r
2.74

From the definition of the Laplacian of a vector, Viv=vV (diV V) —curlcurl v, derive the
following results in cylindrical coordinates:

2 2 2
e
(Vzv)g

r’ 06
Ans. Let v(r)be a vector field. The Laplacian of vis V?v =V/(divv)-curlcurl v. Now,

R

o —2J and

.
0Ny 100y Oy 1V 20% Yy
o rroee* at ror rrod

r

divV:%+l%+v—r+%,sothat
or rof r oz
V(divv):i %4_1% V_r % er+li %4_1% V_r+% eg
or\er ro68 r oz roé\ or ro0 r oz
2(%+1%+v_r+%jezz O 1%y 1 Qg 1% Ve OV, ),
oz\or ro0 r oz orr roroé r* o6 ror rr oroz

{1 O, 1, 1 ov 10%,

r o6or
Next,

r

curl v = (l%_%

2-26

r’ 06>

00 oz

r2 00

ov, ov,
e, +| ———=leg+
o0z or

r 060z

v, 1%, lov, &%,
=00 _r 2z
ozor rozo6 r oz oz2

2 -

e (%ﬂ_e_l%

e,, so that
o r raﬁj
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roé\ or r roo oz\ 0z or

_{lazvg, Loy 1 azvrj_(azvr 62vZJ

(curlcurl V)r = li(% +V_9_1%J _2(% _%j

rogr r2 o0 r? 962 o2 ozor

(curlcurlv), = i(l% _%j _i[%+v_ﬁ_l%j

¢ oz\reo oz ) arlor r roo
t or\oz or r\oz or rod\r 06 oz
Thus,

— - +
orr roréld r* o060 ror rr oroz
~ 152V9+L%_ 1 8%, s o, %, |_ azvr+iazvr+azvr_ 20v 1ov, v |
rodor r 00 r? 0H*? o0z>  ozor o rr2o0* oz2 o0 ror r?

2 2 2
(V2V) — lﬂ_FLa Ve +i%+l&
0 |roér % o0* %06 roboz

2
(Vzv) z(azvr 0y 1oy 1ov v +6ZVZJ
r

8(18v2 %j 5(‘3V0+V_0_l%]:(lﬁzvr+L52V0+i%+152V2J

—_— —_ +__
r o0 oz or\or r roo roéor % 00* r? o0 roboz

J{_l %V, +62vg}{a2v9 Loy vy ] v, 1 aer

rozo0 oz a2 ror 2 rordd 2 a0

%y, +i82v€+82v9 vy 20 v

o r2 06> > ror (206 %

2.75  From the definition of the Laplacian of a vector, Viv=V (diV V) —curlcurl v, derive the
following result in spherical coordinates:
) 1 8%, 2ar’y, 1%, cotfoy, 1 d%, 2 dvpsind 2 0V
(VV):_z 2 3 te ot ot e 2 2 ) Y
r\r° or r’ or r” 00 r 00 r°sin“@ o4~ r°sind 00 r“sind o¢

Ans.
2
1 @(r Vr) 1 0(vysing) 1 ov
From 5 +— ( o )+ - ¢ , we have,
r or rsind o0 rsiné o¢
o 1 ar’v 1 ov,sind 1 o 1o 1 oy 1 ov,sind 1 o
V(diw)=—| ——L+ - + e 4——| ——L+ : + —2 e,
or\ r? or rsind 06 rsin@ o¢ roo\ r* or rsind 06 rsin@ o¢

1 a[larzvr 1 ov,sind 1 oV,
+ — + + —

——| 5 + : : e,, that is
rsin@ og\ r= or rsind 00 rsin@ O¢

2( 2 2 2. . 2
v (diw) = 19 (rvf)_2a(r Vf)+ I OWysiné 1 Vsin6 1 0V 1 %% e
r* oo’ Pooar rsin@ oro6  r’sing 00 rsind ordg r*sing 0p |
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2( 2
[ 10 (r Vr) 1 62(vgsinc9) 1 & VgsmH 1 (cos& 6v smH 10 1 3\/¢]
+ + et?

— +
r* o6r  r’sing  06° r’sind 06° sin” 0 20 rsino o

1o a(rzvr)+ 1 O (vysind)
r’sin@ 0 or r’sin@ 0400 r’sin’ @ 6

(1 ovysind 1 o, v, 10V [1 orvg 10V, j
curl v =| — —— et ——————— gy +| — e
rsind 06 rsind o¢ rsm@ ogp r or r or roé

so that

1 of(lorvg 10ov,) . 0 1 oy, 1arv¢
curlcurl v =— —|—————|Sih——| —————— /&,
rsind |06\r or r 06 o\ rsinf op r or

L o[ 1 snd ] %_lir(laﬂ’a_l%je
rsind dg\ rsind 060  rsind g ) ror \r or roo)|°

IO [ v 1) 10 1 sind 1 dvy )|
ror (rsin@og r or | rod\rsind 060  rsind og )| ?

ie.,
curlcurl v =

azrvg %y, +cot«9(larvg_18vrj_ 1 v, 1 2y .
odor 56> r\r o raod) |r’sin®0 o> r’sin@ ogor ||

L1 Ovysind o, _i(@rva _%)_ 10°rv, 1 arv, 13%, LLove |l
r2sin?0| o000 o2 | r2\ar a6) \r o> 2 or rorod r2 o6 )"

ey Also,

Loov, 1 1 oy 16 rv¢ 1arv¢ +L 1 %_arv¢
rsin@ orog r?sind op r or? r2 or r?\sin@ 0¢  or
+ e
¢
v, 8 v, sin@
_Lz , —V,sin@ +sind f— ) + zcosf ¢ _ Ny
r2 sin 06~ 06og | r-sin“0\ 00 o¢

Thus, V?v=V (diVV) —curlcurl v gives:

(Vzv)_ 152(rzvr)_za(rzvr)+ 1 0°(vpsing) 1 G(VgsinB)Jr 1 82v¢_ 1oy,
rolr o r’ o rsind orog r’sing 00 rsind ordgp r2sin@ O

) azrvg 0%, +cot0£l arv, 1ov, 1oy, 1 2y
obor 692 r \r or ro6) (rsin20 04 rsing ogor
1.e.,

(Vzv) B Lazrzvr_£8r2Vr+L62Vr+cot0%+ 1 &%, 2 dvsingd 2 o
rlrr o o rre*  r? 00 r*sin’@ o4 r’sing 00 r’sing 0¢
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2.76  From the equation (divT)-a= diV(TTa) - tr(TTVa) [See Eq. 2.29.3)] verify that in polar
OTgr  10Tgp  Trg +Tor ‘
o r o6 r

coordinates, the @ -component of the vector (divT) is:(divT), =

Ans. (divT)-a=div(T a)—tr(T'Va) - (divT)-ey = div(T ey) — tr(T Vey)
Now,
Te, =T, e, +Ty ey, Teg =T,pe, +Tppey €, - Tleg=ey-Te, =Ty, €T eg=e4-Tey =Ty
aTi + la_rﬂ + Tﬂ . Also
or r 06 r
T

0 -1/r Tor [|O —1/71 0 —T,/r
ey =06, +1ey > [Vey]= - [TTVee} —|m = i
0 0 Ty Twllo 0 | |0 =T, /r

Thus,
(divT), = div(T ey) - tr(T Vey) =

ie,T ey =Tye, +Tyey — div(T ey) =

IMor 1 A n Tor

- - —(O—Tm/r)zaTHr +15T09 +T9r +Tr9'
rr r

or r 00 r

2.77  Calculate div T for the following tensor field in cylindrical coordinates;

B B

Trr = A+r_2, Teg = A TZZ = Constal’lt, Tre :Ter :Trz :Tzr :Tez :ng = 0

-
Ans. (divT), = e 10T  Trr =Top T _ 2B 2B
o r 00 r 0z S
(divT), = Ty, +15T99 " Tro+ Tor N Ty, —0.
or r 06 r oz
(divT), = Mo (1 ap T T g,

or r 060 0z r

2.78  Calculate divT for the following tensor field in cylindrical coordinates;

Az 3Br’z Az Az 3Bz’ Ar 3Brz?
=== Tw="5 Ta="Zt— | e=Ta=-| 3+
R R R RP R R R

Tro=Tor =Tp, =Ty =0, R®=r>+7",

Ans.
. 2 2
(divT), :6’Trr +16Tm +Trr Too +6’TrZ 22 Az 3Br'z| 3Brz o ﬂ+3Brz
or r 06 r oz or|R? R’ R° oaz|\R? R’
:[Azii—mrzziL—L&Erzj—3Brz—(Arii+3—8rizz+38rzziLj
or R? orRrRS R or R’ 0ZR? R oz 0z R?

_+ JEN—

( 3Az8R 15Br’zéR 6Brz) 3Brz [ 3ArdR 6Bzr 15Brz’ 6R
R* oz R’ RS oz

3Arz 15Br’z 6Brz)| 3Brz (3Arz 6Bzr 15Brz°
= - + - - + - +
R’ R’ R> R’ R> R’ R’
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3 3
_ BL15r7z _1522 +15r7z Jz B(ISEZ(rz +Zz)_1522j:[1522 _ISZZJZO'
R R R R R R R

(divT), = OTogr  10Tgp  Tro+Tor  OTo,
o r 06 r 0z

P 3 P
(divT), _OTy 10Ty 0Ty Ty _ O A 3Brz”) OfAz 3Bz | [ A 3Bz
o rof oz r orlR? RS oz\R? R® RP R’

__(A_:SArz | 382 _1SBr222J_( A _3AZ 9BZ _ISBZ4J_[ A +3822j

=0+0+0+0=0

R R® R R’ R R R R’ R R
[ 3A 3A;, 5\ 15Bz* 15Bz®[ ,  ,\| [ 3A 3A 15BZ* 15Bz°)
—{—¥+¥(r +7Z )— RS + R7 (I‘ +Z ) e _¥+¥—?+? =0.

2.79  Calculate divT for the following tensor field in spherical coordinates;

2B B
Trr:A_r_3’ T99:T¢¢:A+r_3, TI‘@:TQF =T9¢=T¢9=Tr¢=T¢r=0

o(r T, o(T,,sin @ oT, T,+T
Ans. (leT)r:i2 ( ) + 1 ( ro 1 )+ 1 rg 60 oy
r or rsin @ 00 rsinf o¢ r

o(r'T,) T,+T
:Lz ( )_ o ¢¢_1£(Ar2_£j_2(é+ij

r or r r? or r ror!

a2 ALB) (28,28 4,8,
r r r r r r r r

18(r3T€r)+ 1 0(Tpsin®) 1 8Ty  Tip—Ty —Tyc0t0

(divT),=— - +—
r or rsiné 06 rsinf o¢ r
_ Ty cot¢9+ —T,, cotd _o.
r r

o(r’T, o(T. sing T T T 4T
(diVT)¢=i3 ( ’ )+ 1 ( oo S )+ 1 g 4 1o g T 9¢C0t‘920
r or rsind 06 rsind o¢ r

2.80  From the equation (divT)-a= diV(TTa) - tr(TTVa) [See Eq. 2.29.3)] verify that in
spherical coordinates, the @ -component of the vector (divT) is:

1o Ty) 1 0Tgsin®) 1 Ty Trg—Tor ~Tyycot®

r*or rsind 00 rsind O¢ r '

(divT), =

Ans. (divT)-a=div(T a)—tr(T'Va) - (divT)-e, = div(T ey) — tr(T ' Vey) . Now,
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, 10(0rTy) 1 d(Tyysing) 1 0Ty
TTe, =T, e +Toeq +Tose, — div(Tley) = —<n o) | & +
0 = lor®r T 196%0 T lap%¢ (T"€) 2 or rsiné 00 rsinf o¢
0 -1/r 0

eg =0e, +1ey + 08, > [Veg]=|0 0 0
0 0 cotd/r

. Also,

To To T [O —1/r 0 0 T /r Tycotd/r
- [TTVee] =|To Togo Ty |0 O 0 =10 —Tp/r Tycotd/r
T Tap Tyy 0 0 cot@/r 0 T, /r Tycotd/r
- tr[TTVee ] = —T%a + Tgp et iow _
(divT), =div(T ey) — tr(T Vey)

_100Ty) 1 0gpsing) 1 OTgy Ty Tyyootd

Thus,

r2 or rsind 06 rsind ogp r r
_1o(CTy) Tor 1 0(gpsin®) 1 gy Ty Typcotd
P or r rsind 00 rsinfd o¢ r ro
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CHAPTER 3

3.1 Consider the motion: X, =(1+kt)X;/(1+kt,), X, =X,, X3 =Xj.

(a) Show that reference time is t =t . (b) Find the velocity field in spatial coordinates. (c) Show

that the velocity field is identical to that of the following motion:

Ans. (a) At t=t,, X, =X, X, =X,, X3 =Xj3. Thus, t=tis the reference time.

(b) In material description, v; =kX, /(1+kt,), Vv, =v;3=0.Now, from X, =(1+kt)X, /(1+Kkt,),
— X, =(+kt,)x, /(1+kt), therefore, - v, =kX; =kx, /(1+Kkt), v, =v;3=0.

() Forx, =(1+kt)X;, X, =X,, X3=X3, 2>V, =kX|, v, =v;=0

—V; =kx, /(1+kt), v, =v; =0, which are the same as the velocity components in (b).

3.2 Consider the motion: X =at+ X;, X, = X,, X3 = X3, where the material coordinates X;

designate the position of a particle at t=0. (a) Determine the velocity and acceleration of a
particle in both a material and a spatial description. (b) If the temperature field in spatical
description is given by @ = Ax;, what is its material description? Find the material derivative of

0, using both descriptions of the temperature. (c) Do part (b) if the temperature field is 6 = Bx,

Ans. (a) Material description: Vv, = Dx; / Dt =(&x, / ét)

X,—fixed =% V2= V3=0,

Xi—ﬁxed 20, 8.2 :a.3 :0

Spatial description: The same as above vV, =, V, =V; =0, a =a,=2a;=0..

(b) The material description of 8 is 8 = A(at + Xl) .
Using the material description: 6= A(at+X;)—D6/Dt=(3/at) A(at+X,)]=Aa.
Using the spatical description: 8= Ax; -
%=aat—0+v12—z+v2%+v3%:O+a(A)+(O)(O)+(O)(O)= Ax.

(c) Using the material description: € =BX, — D8/ Dt=(0/0t)(BX,)=0.
Using the spatical description: 8 = Bx, —

Do o6 00 00

00
o o +v1a—)(]+v2£+v3£=O+a(0)+(0)(B)+(O)(O)=0.

3.3 Consider the motion

X=X, X = ,BXlztz + X,, X3 = X;3, where X; are the material coordinates. (a) at t=0, the
corners of a unit square are at A(0,0,0),B(0,1,0),C(1,1,0) and D(1,0,0) . Determine the position
of ABCD at t =1and sketch the new shape of the square. (b) Find the velocity v and the
acceleration in a material description and (c) Find the spatial velocity field.
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Ans. For the material line AB, (X;,X5,X3)=(0,X,,0);at t=1, (x,%,%)=(0,X,,0)
For the material line BC, (Xy,X,,X3)=(X;,1,0); at t=1, (x,%,% ) =(X;, AX? +1,0)
For the material line AD, (X, X,,X3)=(X,0,0);at t=1, (xl,xz,x3)=(Xl,ﬁX12,0)
For the material line CD, (X, X5, X3)=(1,X,,0);at t=1, (X,%,% )= (LA +X,,0)

The shape of the material square at t =1 is shown in the figure.

CI
X
: /B
B C
DI
B
A D X
(b) v, {%j ,a =(%j >V =V, =0, v, =28Xt; a,=ay =0, a, =28X;
X;—fixed X;—fixed

(c) Since X, = X,, in spatial descrip. V; =V3 =0, v, =28Xt; 8 =a, =0, a, = 23%;

3.4 Consider the motion: X, = X3t + X;, X, =kX,yt+ X5, X3 = X,
(a) At t =0, the corners of a unit square are at A(0,0,0),B(0,1,0),C(1,1,0) and D(1,0,0) . Sketch

the deformed shape of the square at t =2 . (b) Obtain the spatial description of the velocity field.
(¢) Obtain the spatial description of the acceleration field.

Ans. (a)
For material line AB,(X;, X2, X3) = (0, X2,0); at t=2, (x,%,%5) = (4/8X3,2kX; + X,,0) .

For material line BC, (X, X5, X3)=(X,,1,0);at t=2, (X,%,,%;)=(48+ X,,2k+1,0).
For material line AD, (X, X,,X3)=(X,0,0);at t=2, (X,%,,X;)=(X,,0,0).
For mat. lineCD, (X;,X5,X;)=(1,X,,0);at t=2, (%,%,%) =(48X3 +1,2KX, + X3,0).

The shape of the material square at t =2 is shown in the figure.
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ox, o,
b) viz(ij ,aiz(—'j -,V =28X5t, vy =kX,, v; =0; &, =28X;, a,=a,=0.
ot X; —fixed a X;—fixed
28x3t kx 28x3
(©) X =(kt+D)X; =, v, = ﬂZZ,V2= 2, v3=0; 8 = '822, a,=2;=0.
(1+kt) (1+kt) (1+kt)

(a) For this motion, repeat part (a) of the previous problem. (b) Find the velocity and acceleration
as a function of time of a particle that is initially at the orgin. (c) Find the velocity and
acceleration as a function of time of the particles that are passing through the origin.

Ans. a) For material line AB,(X|, X5, X3)=(0,X,,0); at t=2, (X, Xy, %; ) =(2ks, X,,0).
For material line BC, (X, X5, X3)=(X,,1,0);at t=2, (X,X;,X;)=(2ks +2kX, + X;,1,0).
For material line AD, (X, X,,X3)=(X,0,0);at t=2, (X, X, %3 ) =(2ks +2kX; + X;,0,0).
For material lineCD, (X, X,,X3)=(1,X;,0);at t=2, (X,%,X; ) =(2ks + 2k +1,X,,0).
The shape of the material square at t =2 is shown in the figure.

X
2ks P CIE —
B[ BT |C ©
1
A A D D X1

OX; oV,
(b) Vi:(_lj andai:(—') —),V1=k(S+X1), V2:O, V3:O, a1=8.2=a3=0
0 X; —fixed ot X; —fixed

Thus, for the particle (X, X,,X3)=(0,0,0), v, =ks, v, =0, v;=0anda, =0, a,=0, a;=0
(€) X, =k(s+ X, )t+X; > x =kst+(kt +1) X; = X, = (¥ —kst) / (1 +kt),
thus, in spatial descriptions,

x —kst | k(s+Xx
vlzk{s+(i+kt)}: ((l+kt1))’ V,=0, v;=0anda =0, a,=0, a;=0.

At the position (X;,X,,X;)=(0,0,0), v, =ks/(1+kt), v, =0, v;=0anda, =0, a,=0, a;=0.

3.6 The position at time t of a particle initially at (X,, X,, X, )is given by

X, = X, = 28X7t%, X, =X, —kXst, X; = X5, where f=1andk =1.
(a) Sketch the deformed shape, at time t =1of the material line OA which was a straight line at
t = 0 with the point O at (0,0,0) and the point Aat (0,1,0) . (b) Find the velocity at t =2, of the
particle which was at (1,3,1) at t =0. (c) Find the velocity of the particle which is at (1,3,1) at
t=2.
Copyright 2010, Elsevier Inc
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Ans. With B=landk=1, x =X, -2X5t%, X, =X, = Xst, X; = X,
For the material line OA: (X,,X,,X;)=(0,X,,0):at t=1, X =—2X22, X, = X,, X3 =0. Thus,
the deformed shape of the material line at t =1 is a parabola given in the figure shown.

X2

A A

X
0O 1

(b) v, =Dx, / Dt =—4X;t, v, =Dx, /Dt=-X;, v; =Dx; /Dt =0
For the particle (X,,X,,X;)=(3,1),att=2, v, = ~4(3)*(2) =72, v, =—1, v;=0.
(c) The particle, which is at (x;,X,,%;) =(1,3,1) at t =2, has the material coordinates given by the

2
2

following equations: 1= X, —8X,, 3=X, -2X,, 1=X, > X, =201, X, =5, X, =1

v, =—4X5t=—4(5)°(2) = 200, v, =X, =—1, v, =0.

3.7 The position at time t of a particle initially at (X, X,, X;)1s given by:

X =X k(X + X))t X, =X, + k(X + X,)t, %3 =Xj,

(a) Find the velocity at t =2, of the particle which was at (1,1,0) at the reference time t=0.
(b) Find the velocity of the particle which is at (1,1,0)at t=2.

Ans. (a) v, =Dx, / Dt=k(X; +X,), v, =Dx, /Dt=k(X; +X,), v;=Dx; / Dt=0.
For the particle (X,,X,,X;)=(1,1,0),at t=2, v, =k(1+1)=2k, v, =k(1+1) =2k, v; =0
(b) The particle, which is at (X;,X,,%;)=(1,1,0)at t =2, has the material coordinates given by
the following equations: 1= X, +2k(X, +X,), =X, +2k(X, + X,), 0=X;.
1 1
1: s Xz = s
1+ 4k 1+ 4k

2
— X X;=0, —>v1:v2=k(X1+X2)=l—,v3=0

+ 4k

3.8 The position at time t of a particle initially at (Xl , X5, X5 ) is given by

X, =X, + XA, X, = X, +kX,t, X3 = X5, where f=landk =1.
(a) for the particle which was initially at (1,1,0), what are its positions in the following instant of
time: t=0,t =1,t =2. (b) Find the initial position for a particle which is at (1,3,2) at t=2. (¢)
Find the acceleration at t =2 of the particle which was initially at (1,3,2) and (d) find the
acceleration of a particle which is at (1,3,2) at t=2.

Ans. With f=Tandk =1, x; = X; + XJt%, X, = X, + X,t, X3 = X5
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(@) =0 (X, %, X3) = (X}, X5, X3) =(1,1,0),
t=1-(X,%,X)=(X; + X3, X, + X5, X3)=(2,2,0)

t=2—> (X, X9, %) = (X; +4X3, X, +2X,,X3)=(5,3,0)

() X =X, + X312 Xy =Xy + Xot, X3 =X5,at t=2—1=X,+4X3, 3=3X,, 2=X,

> X, =-3, X, =1, X3=2.

(©) X = X, + X3t Xy =Xy + Xot, X3 = X3 >V, =2X5t, v, =X,, V3=0.

—>a =2X2, a,=0, & =0.For (X;,X,,X3)=(1,3,2),>a =2(3) =18, a, =a, =0atany

time.
(d) The initial position of this particle was obtained in (b), i.e., &> X; =-3, X, =1, X;=2.

Thus, —a, =2X3 =2(1)* =2, a, =0, a;=0.

3.9 (a) Show that the velocity field v; =kx; / (1+kt) corresponds to the motion X; = X; (1 + kt)

and (b) find the acceleration of this motion in material description.

Ans. (a) From Xi = Xi (1+kt) and Xi = Xi /(l-i-kt)—)V, = kX, =kXi /(l+ kt) .
(b) Vi =kXi — g :0,01‘

a-_(%j VAR R M. L T .
x;— fixed

ot L ox; (1+kt)’ (1+kt) (1+kt)  (1+kt) (1+kt)(1+kt)

3.10 Given the two dimensional velocity field: v, =-2y, v, =2x. (a) Obtain the acceleration

field and (b) obtain the pathline equation.

Ans. (a) ay =%+vx%+vy%= 0+(-2y)(0)+(2x)(-2)=—4x,

ov ov 0
=Ly, YLy iz0+(—2y)(2)+(2x)(0)=—4y, ie, a=—4xe, —4ye,

a
Yoot ox Yoy

(b) d—X=—2y and ¥ ox WX ks ydy =0, — x> + y? = constant=X > +Y 2,
dt dt dx y

d’x _ _dy d’?

dy =—2(2x) > X 4 ax=0
dt

Or, %z—Zy and —=2X—>——
dt dt dt dt

— X = Asin2t + Bcos2t and y=—-Acos2t+ Bsin2t, where A=-Y,B=X .

3.11 Given the two dimensional velocity field: v, =Kkx, vy = —ky . (a) Obtain the acceleration
field and (b) obtain the pathline equation.

Ans. (a) a, =%+vx%+vy (Z/X =0+ (kx) (k) +(—ky)(0) =k*x
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ov ov 0
y :EervXa—;’+vy%=0+(kx)(0)+(—ky)(—k)=kzy, That is, a=k”(xe, + yey )

X t
) ¥ ok —>J‘%:Jkdt—>lnx—lnx:kt—>lni:kt—>X=Xekt.
dt X % X

Similarly derivation gives — Yy = \Cal Or, xy = XY where (X Y ) are material coordinates.

3.12 Given the two dimensional velocity field: v, = k(x? —y?), vy ==2kxy . Obtain the

acceleration field.

Ans. a, =%+vx§+vyai;= 0+ k(x2 _ y2)(2kx)+(—2kxy)(—2ky) =2xk2(x2 + y2) .
ov

ov ovy
o S, 2k ) ) )

Thatis, a= 2k2( ) xe +ye

a

3.13 In a spatial description, the equation to evaluate the acceleration % = % + (VV)V is

nonlinear. That is, if we consider two velocity fields vAand vB , then at+aB zat'B , Where
a”and a® denote respectively the acceleration fields corresponding to the velocity fields

vAand vB each existing alone, a™B denotes the acceleration field corresponding to the combined
velocity field vA+E. Verify this inequality for the velocity fields:

A B

Ans. From ﬂ = Q-‘r (VV)V
Dt ot

0 0 2| —-2x —4x 0 0 2| 2x —4X
[aA]: + 2| _ 1 ’ |:aB:| _ + 2 | _ 1

0] (2 0] 2x —4X, 0 =2 0] -2x —4X,
—a* +a® =—8xe, —8xe,.

A+B

On the other hand, vA+vB =0, so that a =0. Thus, a*+a® = a’*B

3.14 Consider the motion: X, = X;, X, = X, +(sinzt)(sinzX,), X3 = X3

(a) At t =0, a material filament coincides with the straight line that extends from (O, 0,0) to

(1,0,0) . Sketch the deformed shape of this filamentat t=1/2, t=1andt=3/2.
(b) Find the velocity and acceleration in a material and a spatial description.
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Ans. (a) Since X; = X; and X; = X3, therefore there is no motion of the particles in the
X; and X; directions. Every particle moves only up and down in the X, direction.
When t=1/2 > X, = X, +sinzX;, t=1>X,=X,, t=3/2->X, =X, -sinzX
The deformed shapes of the n;/aterial at three different times are shown in the figure.

=0, t=1

(1,0)
t=3/2

(b) v =0, v, =7z (cosat)(sinzX,;), v;=0, a =0, a =’ (sinzt)(sinzX,), a;=0
Since X; = X, the spatial descriptions are of the same form as above except that X, is replaced
with X .

3.15 Consider the following velocity and temperature fields:
V= a(xe + %8,/ (6 +X3), O=K(X +X3)

(a) Write the above fields in polar coordinates and discuss the general nature of the given velocity
field and temperature field (e.g.,what do the flow and the isotherms look like?) (b) At the point

A(l,l,O) , determine the acceleration and the material derivative of the temperature field.

Ans. (a) In polar coordinates, X, + X,&, =r€,, where r? = X12 + X22 and e, is the unit vector in
L a . . .
the r direction, so that v=—e,, ©=kr?. Thus, the given velocity field is that of a two
r

dimensional source flow from the origin, the flow is purely radial with radial velocity inversely

proportional to the radial distance from the origin. With ©=kr?, the isotherms are circles.

(b) From v, -2 and Vo =0, and Eq.(3.4.12)
r

2 2
ar=%+vr%+v_g%_v_‘9=0+ g _ﬁ +O+0=_a_'
ot or r o8 r r r2 3

Vg Ny Vg Vg  V,Vy
—Z vV, L+ S+ =
ot or r 06 r
That is, a= —a? / r’e, . At the point A(L,1,0), r=~/2, a=—-a’?/(2)’e, =—a*\2 / 4e, .
be_o® , 90 V36

=—+V,—+ =0+| < |(2kr) =20k .
Dt ot or r o0d r

agz 0

3.16 Do the previous problem for the following velocity and temperature fields:
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a (X8 +X8;)

2

V=
2
X+ X5

, @=k(xl2 +x§)

Ans. With X, =rcos@, X, =rsin@ and x{ + X3 =r”, we have

a(-X,8 +X8€,) ar(—sinde, +cosde, )

V= 2

a
SR =Ze, and O=kr?
Xi + X% r r

Particles move in concentric circles with their speed inversely proportional to r . Isotherms are
circles.

(b) With v, =0, v, s , we have, from Eq.(3.4.12).
r
a =—>t+y L+ L _C —=——, ay= +v, —4+-2
"ot Tar roe r roor Tt Toar r oo
ie., a= —a?/ r3er . At the point A, r =\/5, therefore, a = —\/Eaz / 4e,

ov oV, V0V, vé__(a]zl a? Ny OV v9%+vrvg_0
r

PO_ y.vo=0+%e, | 2kre, =0.
Dt ot r

3.17 Consider : x =X+ Xke, . let dX(l)=(d81 /\/5) (e,+e,) & dX(z)I(dsz /ﬁ)(—eﬁez) be
differential material elements in the undeformed configuration. (a) Find the deformed elements
dxMand dx®). (b) Evaluate the stretches of these elements ds; / dS; and ds, / dS, and the change

in the angle between them. (c) Do part (b) for k =1 and k =107 and (d) compare the results of
part (¢) to that predicted by the small strain tensor E .

1+k 0 0
Ans. (a) X =X, +KX;, X=Xy, X3=X;>[F]=| 0 1 0|, dx=FdX—
0 0 1
i [1+k 0 0]1 is
dx(l)}z(—lj 0 1 0 1—>dx(1)=[—1j 1+k)e, +e, |.
[ \/5 \/5 [( )1 2:|
0 o0 1]0
i 1+k 0 0] -1 a5
dx(z)Jz(_Z o 1 ol 1 %dx(z):{—zj—1+ke+e .
[ V2 0 0 1|0 \E[( e

ds, ds 1 2
b) —L=—"2=| — [\/(1+k) +1.
® s, s, (ﬁj“( )
Let y be the decrease in angle (from 90°), then (ﬂ' / 2) — 7 is the angle between the two
deformed differential elements. Thus,
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005[1_7} ax.ax® g [ﬁj[d&j[_(lﬂ()z +1]= (1K) 41

2 dsds,  dsds,\ 2 )\ 2 (14K) +1
2
—(1+k)" +1
(1+k)"+1
(c) For kzl,ﬁzdiz E, Sin]/:_é.
ds, ds, 2 5

, ds ds 1 2 1
For k=102, —lz—zz[—J 1+k) +1 z(—}/2+2k =J1+k =41.01 =1.005 .
ds, ds, (V2 (1+k) 2

~(1+k)’ 41 2k -k -0.01

siny = 3 ~ = = — 7 =-0.0099 radian (- sign indicates increase in
(1+k) +1 2+2k 1+k 1.01
angle).
k 00 k 00
0 00 0 00
. | k 0 0]f1 . k
eizT(e1+e2)_>E{1=5[1 1 0]jo 0 of1 =5[1 1 0]jo|==,
2 0 0 0|0 0
E{lzds_ds :£—>£=1+£=1.005,sameastheresultofpart(c).
ds 2 dS 2
Also with
| | k 0 0| -1 . -k y
ey =—(-e,+&,) >E,=—[1 1 0]]0 0 Of 1 |==[1 1 0]] 0|=-=—2E,=—k
B 2 2
0 0 O0ff O 0

Thus, the decrease in angle =—k , or the increase in angle is 0.01~0.0099 .

3.18 Consider the motion: X = X+ AX, where A is a small constant tensor (i.e., whose
components are small in magnitude and independent of X;). Show that the infinitesimal strain

tensor is given by E=(A+AT)/2.

Ans. u=x-X=AX—->Vu= V(AX). Since Ais a constant, therefore,
Vu=V(AX)=A(VX).Now, [VX]=[aX; /oX; =] & |=[I] > Vu=A >E=(A+AT)/2

3.19 At timet, the position of a particle, initially at (X, X,, X3 )is defined by:

X = X; kX5, X =X, +kX,, X3 =X;, k=107 (a) Find the components of the strain tensor

and (b) find the unit elongation of an element initially in the direction of €, +¢,.
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00 k Gulaloglt | 00 K/2
NP IO LKL [
0 0 0 k/2 0 0
0 0 k/2]1
1 VR k_107
(b)Let el:_(el+e2)—>E11:e1‘Eel—>E11=—[1 1 O] 0 k O 1 ==
2 2 2 2
k/2 0 0 |0

3.20 Consider the displacements: U, =k(2X? + X, X,), u, =kX3, u; =0, k= 107 (a) Find the
unit elongations and the change of angles for two material elements

ax) = dX,e, and ax® = dX,e, that emanate from a particle designated by X =¢, +e,. (b)
Sketch deformed positions of these two elements.

4kX, +kX, KX, 0

Ans. (a) [Vu]= 0 2kX, 0/,
0 0 0
5k k0 5k k/2 0
At (X},X5,X3)=(L1,0), [Vu]=| 0 2k 0|—>[E]=|k/2 2k 0.
0 0 0 0 0 0

Unit elong. for ax = dX,e, is E;; =5k =5x107*, unit elong. for dx?) = dX,e, is
E,, =2k =2x107*,

Decrease in angle between them is 2E;, =k =10"*radian .

(b) For dX =dx,e,, dx =dxV) + (vu)dx!) = dX e, + 5kdX e, = (1+5k)dX e, ,
For dx(?) = dX,e,,

dx?) = dX@) + (vu)dx?) = dX e, + (kdX e, +2kdX,e,) = kdX e, + (1+2K)dX e,
The deformed positions of these two elements are shown below:

| kax, |

N

<

o

<

N

+

)

dx i P’

* 1+ 5K dXq
P  —————
dx,

ul:3k —

Copyright 2010, Elsevier Inc

3-10



Lai et al, Introduction to Continuum Mechanics

3.21 Given displacement field: u; =kX;, u, =u; =0, k= 107", Determine the increase in
length for the diagonal element OA of the unit cube (see figure below) in the direction of
e, +e, +€; (a) by using the strain tensor and (b) by geometry.

k 0 0
Ans. (a) [u]: 0 00 :[E]. Let eizi(el+e2 +e3),then the unit elongation in the e; -
V3
0 00
k 0 0}1 4
TS | k 10°
direction is E“:el-Eelzg[l 1 1]jo 0 0 1=§=T.
0 0 Of!1

(b) From the given displacement field, we see that the unit cube becomes longer in the
X; direction by an amount of k , while the other two sides remain the same. The diagonal

OAbecomes OA', (see Figure), where OA=+/3 and
OA = (1 +K)2 +1+1 =3+ 2k + k2 =[3(1+ 2k /3+k2 /3)
—>OA-0A=~3(1+2k/3+k>/3)"2 -3,

X2

X3
1/2
Using binomial theorem, (1 +2k/3+k> /3) —1+(1/2)(2K/3) +...~1+k/3
Thus, OA'—OA=~/3(1+k /3)—+/3 =3k /3 — (OA'-OA)/OA=k /3, same as that obtained in
part (a).

3.22 With reference to a rectangular Cartesian coordinate system, the state of strain at a point is

5 3 0
given by the matrix [E] =3 4 -1|x10™. (a) What is the unit elongation in the direction of
0 -1 2

2e, +2e, +e5? (b) What is the change in angle between two perpendicular lines (in the
undeformed state) emanating from the point and in the directions of 2e, + 2e, +e;and 3e, —6e; ?

Ans. Let €] =(2e, +2e, +e5)/3, the unit elongation in this direction is:

Copyright 2010, Elsevier Inc
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. 53 02 53
E{lze;-Ee;=§[2 2 1|3 4 1|2 x104=3x10*4.
0 -1 2|1
Let €5 = L(3e1 - 6e3) , then the decrease in angle between the two elements is:
7
5 3 03
2E/, = 2¢] - Ee! :L[z 2 1|3 4 -1]0 <107 = 22«10 rad
12 1 2 3\/5 \/E

0 -1 2| -6

3.23 For the strain tensor given in the previous problem, (a) find the unit elongation in the
direction of 3e; —4e, and (b) find the change in angle between two elements in the dir. of

3e, —4esand 4e; +3e;.

Ans. (a) Let e = §(3e1 —4e, ), the unit elongation in this direction is:
2 5 3 03 37
E, =e-Ee; :(Ej [3 -4 0]|3 4 -1|-4|x10™ :Ex10*4 =1.48x107*
0 -1 2|0

(b) Let €] = %(361 - 4e3) and e; = %(461 + 3e3) , then the decrease in angle between these two
elements is:

2 s 3 074 .
2y 22‘*1"593:2(;) [3 0 —4]|3 4 —1]0)x107*=_x10 =2.88x10 " rad.
0 -1 23

3.24 (a) Determine the principal scalar invariants for the strain tensor given below at the left and
(b) show that the matrix given below at the right can not represent the same state of strain.

530 300
[E]=|3 4 -1|x107*,]0 6 0xl0™*
0 -1 2 00 2

Ans. (a) 1, =(5+4+2)x107* =11x107*,

3| . -1 o5 0 . 3
I, = x107 + x107 + x107" =28x10
3 4 - 2
53 0
=13 4 -—1{x10"?=17x10""
0 -1 2

Copyright 2010, Elsevier Inc
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300
(b)For |0 6 0 |x 1074, I; =36x 107!2, which is different from the I5 in (a), therefore, the
0 0 2

two matrices can not represent the same tensor.

3.25 Calculate the principal scalar invariants for the following two tensors. What can you say
about the results?

0z O 0 - 0
[T(l)}z 0 0 and[T(z)Jz -7
00 0 0
07 0
Ans.For[T(l)]: 0 0| , 1,=0,1,=—¢2 1,=0.
00 0},
0 - 0
For [T(z)}: o 0 0| 1,=0,1,=—¢% 1;=0
0 0 0

{ei}
We see that these two tensors have the same principal scalar invariants. This result demonstrates
that two different tensors can have the same three principal scalar invariants and therefore the
same eigenvalues (in fact, 4, =7, 4, =—7, 4; =0). However, corresponding to the same

eigenvalue 7, the eigenvector for T s (e, +e,)/ V2 , whereas the eigenvector for T®is

(e, —ey)/ V2. We see from this example that having the same principal scalar invariants is a
necessary but not sufficient condition for the two tensors to be the same.

3.26 For the displacement field: u; = kX#, u, =kX,Xj, u3=k(2X1X3+X12), k=107°, find

the maximum unit elongation for an element that is initially at (1,0,0) .

2kX, 0 0
Ans. [Vu]= 0 kX3 kX, |, thus, for (X}, X,,X3)=(1,0,0),
k(2X5+2X;) 0 2kX,
2k 0 0 2k 0 k
[Vu] =0 0 0]|—> [E] =| 0 0 O |, the characteristic equation for this tensor is:
2k 0 2k k 0 2k

k-4 0k
0 0-4 0 |=0-(-2)(2k=2) k2|02 =0, 2 =3k % =k
kK 0 2k-2

Copyright 2010, Elsevier Inc
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Thus, the maximum unit elongation at (1,0,0)is 4, =3k =3x 107°.

3.27 Given the matrix of an infinitesimal strain tensor as

kKX, 0 0

(a) Find the location of the particle that does not undergo any volume change.
(b) What should the relation between k; and k, be so that no element changes its volume?

A(dV
Ans. (a)% =E,, + Ey + B33 =(k —2k; ) X, =0.. Thus, the particles which were on the plane

X, =0do not suffer any change of volume.

(b) If (k, —2k, ) =0,ie.,k; =2k, , then no element changes its volume.

3.28 The displacement components for a body are:

U =K(X? +X,), uy =k(4XF = X)), u3=0, k=107*.
(a) Find the strain tensor. (b) Find the change of length per unit length for an element which was
at (1,2,1)and in the direction of €, +e, . (¢) What is the maximum unit elongation at the same

point (1,2,1) ? (d) What is the change of volume for the unit cube with a corner at the origin and

with three of its edges along the positive coordinate axes?

2kX, k0 2kX, 0 0
Ans. (a) [Vu]=| -k 0 8kX; [>[E]=| 0 0 4kX;
0 0 0 0 4kX; 0
2k 0 0
(b) At (1,2,1), [E]=| 0 0 4k|,
0 4k 0
2k 0 01
forei:%(e1+e2), El'lze'l-Ee'I:%[l 1 0][0 0 4k|1|=k
0 4k 010
2k—-4 0 0
(c) The characteristic equationis | 0 -4 4k =0—>(2k—/1)[/12—(4k)2J=0
0 4k -2

— A4 =2k, A, =4k, 43 =-4k.The maximum elongation is 4K .

(d) Change of volume per unit volume = E; =2kX,, which is a function of X,. Thus,

1
1
AV = [2KkX,dV = 2[ kX, (dX, =KX P| =k.
0
0

Copyright 2010, Elsevier Inc
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3.29 For any motion, the mass of a particle (material volume) remains a constant (conservation of
mass principle). Consider the mass to be the product of its volume and its mass density and show
that (a) for infinitesimal deformation p(1+ Ey, )= p, where p, denote the initial density and p,

the current density. (b) Use the smallness of E to show that the current density is given by
P=p,(1-Ey).

Ans. (a) p,dV, = pdV — p, = Y =p v

o

pdV  dV, +AdV =p(1+ Adv},

For small deformation, ?deV =Ey > 0o =p(1+Eg).

o

(b) From bionomial theorem, for small E,;, (1+Ekk )71 ~1-Ey, thus,

p=po(1+Eq) " =po(1-Eg).

3.30 True or false: At any point in a body, there always exist two mutually perpendicular material
elements which do not suffer any change of angle in an arbitrary small deformation of the body.
Give reason(s).

Ans. True. The strain tensor E is a real symmetric tensor, for which there always exists three
principal directions, with respect to which, the matrix of E is diagonal. That is, the non-diagonal
elements, which give one-half of the change of angle between the elements which were along the
principal directions, are zero.

3.31 Given the following strain components at a point in a continuum:

Does there exist a material element at the point which decreases in length under the deformation?
Explain your answer.

Ans.
k k 0 k-4 k 0

[E]=|k k 0|5k k=2 0 |=0. >(3k=2)| (k-2 -k?|=0
003 |0 0 3k-2
> (3k=2)(-22k+27) =024 =3k, =0, % =2k

Thus, the minimum unit elongation is 0. Therefore, there does not exist any element at the point
which has a negative unit elongation (i.e., decreases in length).

3.32 The unit elongation at a certain point on the surface of a body are measured experimentally

by means of strain gages that are arranged 45° apart (called the 45° strain rosette) in the direction

of e ,L(el +te, )and e, . If these unit elongation are designated by a,b,c respectively, what are

NG

the strain components E;,,E,, and E,?
Copyright 2010, Elsevier Inc
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Ans.
el1

o

45 e,

With e =L(e1 +e, ), we have,

V2
1 Ell E12 E13 1 1
Bfy=ef-Bej=_[1 1 0] By Ep Ey || 1|=2(E;+Ep+Ey+Eyp), with Ejp=Ey,
E31 E32 E33 0

1 (E11+E22)

E,= E( E;, +2E,+Ep)—>E,=Ef - 5 . Thus, the strain components are:

(a+c).

Eii=a, Ep=c, Ep=b- >

3.33 (a) Do the previous problem, if the measured strains are 200 x 10°, 50x107® and
100x107° in the direction e;.e; and e, respectively. (b) Find the principal directions, assuming
E;; = B3, = B33 =0. (c) How will the result of part b be altered if E5; #0.

Ans. (a) With E;; =200x107°, E/, =50x107® and E,, =100x10~®, we have, from the results
of the previous problem, E;, =E|, - @ = (50 - wj x1076 =-100x107°

E,-4 E» 0
® | Ep Ep-4 0 =0—>/1[(E“—/1)(E22—/1)—E122]=0
0 0 -1

—>/”t[+,12 _/I(E11 + E22)+(E11E22 —Efz)}=0,

_(En+E22)i\/(E11_E22)2+4E122 ~o
12 = , A4 =0,

2

thus,

(200+100)i\/(200—100)2+4(—100)2 |6 261.8x10°°
= X = 5
b2 2 38.2x107°

23=0

The principal direction for 4; is €;. The principal directions corresponding to the other two
eigenvalues lie on the plane of e, and e,. Let

N=ae +a,e, =cosde, +sinbe,,then (E,, — 1) + Ejra, =0,

Copyright 2010, Elsevier Inc
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eﬁztanez—(/l_Ell),
Q) Epn

4 —E; 261.8-200 61.8

For 4, =261.8x107°, tang= = TTR——TT,
12 - -

=-0.618—>0=-31.7°,

Or, n=0.851e, —0.525€,

=1.618 > 6§ =58.3°

—E g
For 4, =38.2x107°, tanﬁz’b 1 _38.2-200
SH -100

Or, n=0.525¢, +0.851e,.
(c) If Es; # 0, then the principal strain corresponding to the direction €5 is Ej;instead of zero.
Nothing else changes.

3.34 Repeat the previous problem with E;; = E{; = E,, =1000x107°.

Ans. (a) From the results of Problem 3.32, E;, = E|| —@ = (1000 —@] x107° =0,

10° 0 0
(b) and (c) [E] =l 0 102 0 |,the principal strains are 107 in any directions lying on the
0 0 Ej

plane of e, and e, and the principal strain E;; is in e; direction.

3.35 The unit elongation at a certain point on the surface of a body are measured experimentally

by means of strain gages that are arranged 60° apart (called the 60° strain rosette) in the direction
1 1 . . .
of e, 5(61 + \/§ez )and 5(—e1 + \/562) . If these unit elongation are designated by a,b,c

respectively, what are the strain components E;,E,, and E}, ?

Ans.
el!| el_l
60°

60°
€

With €] = (e, +~/3e,)/2, €] =(—e, +~/3e,)/2, we have,

Copyright 2010, Elsevier Inc

3-17



Lai et al, Introduction to Continuum Mechanics

! En Ep Esl ! !
E11=ei'Eeizz[1 V3 O] Ey Epn Exn|+3 zz(E11+2\/§E12+3E22) (1)

En Ep Esl ! |
Ejy =e -Ee = [ 1 V30 ] Ey Epn Ex |3 ZZ(Ell_Z‘/gElz"'?’EZZ) (ii)
Byy By B3| O
Ey - E11 b-

N

. .. 1 | " 1

3.36 If the 60° strain rosette measurements give a =2 x 107 , b=1x 1076, c=1.5x10"° , obtain
E,;,E;, and E,, . Use the formulas obtained in the previous problem.

Ans. Using the formulas drived in the previous problem, we have,
E,, =%[2b +2c-a =%[(2)(1) +(2)(1.5)-2]x107° =1x107°,

£ _b-c_ 1
12 \/g 2\/5

x107%, E;, =2x107°.

3.37 Repeat the previous problem for the case a =b=c=2000x 107°.

Ans. E,, =l[2b+20—a]=%[(2)(2000)+(2)(2000)—2000]x10‘6 =2x107,
b-c

NG

Ep=——=0, E;; =2x107°

3.38 For the velocity field: v = kxfe1 , (2) find the rate of deformation and spin tensors. (b) Find

the rate of extension of a material element dx = dsn where n=(e, +e, )/ V2 at x= 5e; +3e, .

— kx2 —v. —
Ans. v; =kxy, v, =v; =0,

0 2kx, 0 0 k¢ 0 0 kx 0
>[w]=[0 0 o|>[D]=[W[]=|ke, 0 0, [W]=[W] =|-kx, 0 0
0 0 0 0 0 0 0 0 0
(b) At the position X = 5¢; +3e,,
0 3k 0 0 3k 0
[D]=[3k 0 0|, [W]=[-3k 0 0
0 0 0 0 0 0

Copyright 2010, Elsevier Inc
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For the element dx = dsnwith n= (e, +e,)/ /2, the rate of extension is:

| 0 3k o1
Diymy=n-Dn=—[1 1 0]j3k 0 0] 1|=3k.
0 0 0f0

t+k
1+

3.39 For the velocity field: v= 0{ Jel , find the rates of extension for the following material

elements: dx!) = ds,e, and dx?) = (d32 /ﬁ)(el +e, ) at the origin at time t=1.

0 0
Ans. vlzo{ﬂj, Vy=V3=0 > [VVv]= 0 0 0|=[D]
1+ 0 0 0
—a(l+k) 0 0
At t=1and at (X,%,,%)=(0,0,0), [D]= 0 0 0.
0 0 0

Rate of extension for dx!) = dsie; is Dy =—a(1+k); for dx?) = (d52 /\/5)(61 +e,), itis:

—a(l+k) 0 0f1
C 1
D11=5[1 1ol o 00 1:—50:(1+k)
0 0 00

3.40 For the velocity field v =(cost)(sinzX, )e, (a) find the rate of deformation and spin tensors,

and (b) find the rate of extension at t = 0 for the following elements at the origin:
dxt) = dse,, dx?) = ds,e, and dx®) = (ds3 /\/5)(e1 +e,).

Ans. (a) With v; =0, v, =(cost)(sinzX ), v;=0,

0 0 0 0 (wcostcoswx)/2 0
[VV]=| zcostcoszx, 0 0|—>[D]=|(7costcosmx)/2 0 0],
0 0 0 0 0 0
0 —(zcosteoszx)/2 0
[W]=| (7 costcoszx)/2 0 0.
0 0 0
0 #/2 0
(b) At t=0 and (x,%.%)=(0,0,0), [D]=|z/2 0 0.
0 0 0

Copyright 2010, Elsevier Inc
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For dx!) = ds,e,, rate of extension is D;;=0, for dx?) = ds,e,, Dy, =0 and

0 =x/2 0}1
for dx(3)=(ds3/ﬁ)(el+e2),D1'1=%[1 1 0]z/2 0 o1 =§
0 0 ofo

3.41 Show that the following velocity components correspond to a rigid body motion.

0 1 -1 000
Ans. [Vv]=|-1 0 1 [—>[D]=|0 0 ©
1 -1 0 000

Therefore, the velocity field is a rigid body motion..

3.42 Given the velocity field v = ler, (a) find the rate of deformation tensor and the spin tensor
r

and (b) find the rate of extension of a radial material line element.

Ans. With v, =l, Vo =V, =0, we have, using Eq. (2.34.5)
r

v 1o Y]
or r[ae Vaj al| |2 00
| 1 ) el o L gliipl [wl-
wv]-| 2 r[aeer ol o L ool=[p) [=[o]
1 vy 0000
| or r oo o | L i

(b) The rate of extension for a radial element is D,, = ——-

3.43 Given the two-dimensional velocity field in polar coordinates:
v, =0, Vy _ored
r

(a) Find the acceleration at r =2 and (b) find the rate of deformation tensor at r =2.

2 2
V
Ans. (a) Using Eq. (3.4.12), a,=%+vr%+v—g(%—vgj=—( ) =—l(2r+i) ,
r r r r r

a9=%+vr%+v—9 %+vr 0. Atr=2,a =—(6)*/2=-18, a,=0.
ot or r\ o0

Copyright 2010, Elsevier Inc
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d
(b) Eq. (2.34.5)>[Vv]= = =

ov
Mo 1 %Jrvr 20 z_i 0
or rl{ 00 L or r2

[D]:[VV]S:L‘(;r2 ‘4(;1, wr=2.[o]- ° ‘01}

3.44 Given the velocity field in spherical coordinates:

r2

(a) Determine the acceration field and (b) find the rate of deformation tensor.

vV, =0, vy =0, Vy :[Ar +E)sin9

Ans. (a) From Eq. (3.4.16),

2 2
ov oV, V,(ov v ov Vv 1 B
ar:—r+vr—r+—‘9 ——v, |+ .¢ —r—V¢sin6’ - | Ar+— | sin®0
ot o r\o6 rsin@\ o¢ r r r2

2 . 2
ov Vg, V[ oV Vv ov \/ Osin @ B
a9:_9+vr_‘9+_9 _‘9+Vr +.—¢ _9—V¢COSQ :__f”cotg:_w Ar + —
ot or r\ o6 rsind\ o¢ r r 2

r

ov N, v, OV v ov

a¢:_¢+vr_¢+—9—¢+.—¢ —¢+vrsin9+v5,cos6’ =0
ot o r 00 rsin@\ 0¢

(b) Eq. (2.35.25) >

v (1ov vy Lo v} | v, |
o \roo r rsind o r 0 0 Y
(wo]=| Yo (1% Ve L v Veot0) || g Vel
or \ro6 r rsin@ o¢ r ro |
vy 10 1o, v, veeoto)| (Do 1M
- e e A T T or  r oo
or r oo rsinf og¢ r r L J

the nonzero components of rate of deformation tensor are:

v, oV
Drs=o| £+ 2 | =3B g,
20 r or or?

vV, cotd ov
D9¢=l __¢ +l_¢ :l —(A+Ej+(A+Ej cosf@=0.
2 r rog ) 2 r3 r3

3.45 A motion is said to be irrotational if the spin tensor vanishes. Show that the following
velocity field is irrotational:

—X,€5 + X€
V:M’ I’2=X12+X§
r2

Copyright 2010, Elsevier Inc
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o ) [ a1 e
X X 0% OX r’ ox r* r ox
Ans. vy =—2, v, =L P =xt+xd, > [w]=| 1 7= ! 2
S  n| 1l 2er 2400
o 0% | [rr r ooy r* ox,
r rx rx
r2=x12+x22—>2ra—=2x1_>a_=_1, also, F %2
axl axl 8X2 r
2X % X3 =X
r r S
[Vv]= =[vv] —>[W]=0.
2 2
r r

3.46 Let dx!) = ds;n and dx?) = ds,m be two material elements that emanate from a particle

P which at present has a rate of deformation D . (a) Consdier (D / Dt)(dx(l) -dx(z)) to show that
1 D(ds)) L D(ds,)
ds, Dt ds, Dt

where @ is the angle between mand n .

cos¢9—sin¢9D—€=2m-Dn

(b) Consider the case of dx(l) = dx(z), what does the above formula reduce to?
(¢) Consider the case where 6 = % ,l.e., dx(l) and dx(z) are perpendicular to each other, where

does the above formula reduces to?

Ans.
(2)
D fi-0x) - D ) +[dx<l> Do J ()0 o + o (v) o)
Dt Dt Dt

=dxV). (Vv)T dx® 4+ axV). (Vv) dx®) = axV). {(Vv)T + (Vv)} dx?) = 2dx . Dax(?) .
with dx!) = ds,n and dx?) = ds,m, the above formula give,
%(dsldszn -m)=2ds,ds, (n-Dm) — %(dslds2 cos@) = 2ds,ds, (n-Dm) . Thus,

DdtS] (ds, cos®) + Dds, Dcosé

Dt

(ds, cos)+ (ds,ds, ) =2ds,ds, (n-Dm),

_){ 1 D(dsl)JrLD(dsz)}cosﬁ—sin0%=2(n'Dm)=2(m'Dn)-
ds, Dt ds, Dt Dt

D(d
(b) For, dax) = dx® = dsn the above formula — {i ( S)

s Dt }:(n-Dn)zD(n)(n),no sumon Nn.

(c) For dx() perpendicular to dx?) , 0=90°, we have,

D6
—522(n . Dm)ZZDnm .

Copyright 2010, Elsevier Inc
3-22



Lai et al, Introduction to Continuum Mechanics

3.47 Let e,,e,,e; and D,;,D,, D, be the principal directions and corresponding principal values of
a rate of deformation tensor D . Further, let dxV) = dse,, dx?) = ds,e, and dx®) = ds;e; be

three material elements. Consider the material derivative (D / Dt){dx(l) . dx(z) X dx(3)} and show

D(dVv
dv Dt

Ans. Since the principal directions are (or can always be chosen to be) mutually perpendicular,
therefore, dx(l) -dx(z) X dx(3) =ds,ds,ds; =dV .

N D(dV) _ D(ds,ds,ds; ) _ds s, D(ds,) + ds,ds, D(ds,) + ds s, D(ds;) |
Dt Dt Dt Dt Dt
1 D(dv) 1 D(ds) L D(ds,) L D(ds;) _ Dy, + Dy + Dys.

dv Dt ds, Dt ds, Dt ds; Dt

3.48 Consider a material element dx = dsn (a) Show that (D/Dt)n=Dn+Wn—(n-Dn)n,

where D is rate of deformation tensor and W is the spin tensor. (b) Show that if n is an
eigenvector of D , then,

Dn

—=Wn=wxn
Dt
Ans. (a)R(dsn)zdsm+nD—dS=ds m+niD—OIS =ds m+(n-Dn)n . [see
Dt Dt Dt Dt ds Dt Dt

Eq.(3.13.12) ]. We also have, DRt(dsn) DRt(dX)z(Vv)dx=dS(Vv)n , therefore,
(Vv)n=(%+n(n-Dn)je%:(Vv)n—n(n-Dn):(D+W)n—n(n-Dn).

(b) If nis an eigenvector of D, then Dn = An , therefore,

%T:(D+W)n—n(n-Dn)=in+Wn—nﬂ,=Wn. That is, %T:Wn.
Since W is antisymmetric > Wn = @xn , where @ is the dual vector for W . Thus
m:Wn=a)><n.

Dt

That is, the principal axes of D rotates with an angular velocity given by the dual vector of the
spin tensor.

3.49 Given the following velocity field: v; =k (X, — 2)2 X3, Vo ==X X3, V3 =Kkx;X; foran

incompressible fluid, determine the value of k , such that the equation of mass conservation is
satisfied.

Copyright 2010, Elsevier Inc
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aVl aVz a\/3
0X; 0%y OX3

Ans. =0->0-x +kx,=0>k=1

3.50 Given the velocity field in cylindrical coordinates: v, = f(r,8), vy, =V, =0. For an

incompressible material, from the conservation of mass principle, obtain the most general form of
the function f(r,8).

Ans. The equation of continuity for an incompressible material is [see Eq.(3.15.11)]:
al4r1%+v—r+%=O—>ﬂ+i=0—>li( fr)=0,— fr=g(0).
o rog r oz o r ror

Therefore, f =g(8)/r, where ¢ (0) is an arbitrary function of 4.

3.51 An incompressible fluid undergoes a two-dimensional motion with v, =kcosé/ Jr . From
the consideration of the principle of conservation of mass, find Vv, , subject to the condition that
Vg=0at 0=0.

Ans.

kcos® ov 1Y 1 v, (kcosh) o, Vv 1\ (kcos®)
vV, = \/F —)a—rr:(kCOSH)[——JrS/Z,Tr— 32 —)a—rr-l—Tr:(Ej—yz .

r r
The equation of continuity for an incompressible fluid is [see

Eq.(3.15.11)]:%+1%+v—r+%= 0. Thus,
r

rog r oz
%__(EJM—)VQ :—(gjw+ f(r). Since v, =0at =0, Therefore,

o0 \2) Jr Jr
k

sin @
f(r)=0. Thus, v, =—(—j .
2) \r

3.52 Are the following two velocity fields isochoric (i.e., no change of volume)?

. X(€) + X ) —%,€) + X€

(i) v="E1 27272 1r2 222 r2 = x? +x? and (i) v= 21272 lrz P2 2 =xt+x3

Ans. (i) With v; =x /12, vy =X, /12, 12 =x} +x3,

v 1 2xer 1 2% or or

o S T =g > 2r=—=2x, 2r—=2x, |.
13 P

X r r’oX r r X 0%,

My _ 1 Deor 126 M 2 2% 262 2

- - B
axz I"2 r3 axz r2 r4 axl axz r.2 r.4 r4 r.2 r.2

(i) vy ==X /1%, vy =x /1%, P =x} +x3
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2 2
%:%ﬁ=—xixl r? =x? +x3 —>2rﬂ=2x1
X r’ 0% r 0%

8v2 2xl ar _ 2% %+%_ 2XX 2% %,

— , =0.
5X2 6X r X 0%, r r

3.53 Given that an incompressible and inhomogeneous fluid has a density field given by p=Kkx, .
From the consideration of the principle of conservation of mass, find the permissible form of
velocity field for a two dimensional flow (V3 = 0) .

Ans. Since the fluid is incompressible, therefore,

Do Py Py, % 04 (0)+ v,k =0 v, =0,

Dt ot lox o

The conservation of mass equation of an incompressible fluid in two dimensional flow is
\ V.

Lo A i SN 0>V, =f(x;), v, =0.

OX; 0%, 0%,

3.54 Consider the velocity field: v = laxlit e, . From the consideration of the principle of
+

conservation of mass, (a) Find the density if it depends only on timet, i.e., p = p(t) , with

,0(0) = p, - (b) Find the density if it depends only on X, i.e., p=p(X), with p(x,)=p*

Ans.(a) Equation of conservation of mass is

a—p+vla—’0+v28—’0+v3a—’0+p %+%+% =0. With Vl:_axl , Vp =V3=0,
OX;  OX, OXg 1+kt

P P a P -al/k
dp_ =__1 T+ kt) o> L= (14 k)%
~dt 1+kt pjp J1+kt e )_)po (1+k)

(b) with p=p(x) and v, =%, V=3 =0
+

(a_’l)_;_vla_p_i_v2 8/) V3a_p+p(%+%+%j=0_)a_xld_p+ L:
d

ot 0X 0%y 0%s X, 0%y, OX3 1+kt dx p1+ kt

X

— X d—p+p 0—>_[ =
d P X, X

ox P

where p, is the density atX; =X, .

1
X
I—l—>ln
X
XO

3.55 Given the velocity field: v = a( X te; + X,te, ). From the consideration of the principle of

conservation of mass, determine how the fluid density varies with time, if in a spatial description,
it is a function of time only.

Copyright 2010, Elsevier Inc
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Ans. Equation of conservation of mass is

ov .

ot o, Cox, Coxg L lox %, 0xs
P t
d_p+ plat+at)=0— J dp _ —Zajtdt Sl = ot 5 p= poef"’t2
dt o P 0 Po
Wi E; E ;
3.56 Show that Wi _ i _ Eian , where Ej, _1p +8u_m is the strain tensor and
X, X, X 2l ax, | ox,
m = 1f o _ is the rotation tensor.
2\ ox, o,
Ans.

MWy 0 10y ouy ) 1f 'y uy |
Xy X 200X, OX; ) 2| aXp0X,  X0X,
l[ ’u, N u  u duy, J
2

XX OXpOX; X OX;  OX;OX,
1 0 (ou ou ) o (au  ouy))_ 0By 0B
20X, o, X ) X\ X, X, )) ox, ox

3.57 Check whether or not the following distribution of the state of strain satisfies the
compatibility conditions:

X +Xy, X X,
[E]=k| X,  Xy+X; X3 |, k=107"
X, Xy X+ Xy

Ans. Yes. We note that the given Ej; are linear in X,, X, and X;and the terms in the

compatibility conditions all involve second derivatives with respect to X;, therefore these
conditions are obviously satisfied by the given strain components.

3.58 Check whether or not the following distribution of the state of strain satisfies the
compatibility conditions:

XP XTI+ XT XX
[E]=k| X5 + X3 0 X, |, k=107
XIXS Xl X22

Ans.
Copyright 2010, Elsevier Inc
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azEll " 82Ezz -9 82E12
X2 AXEOXX,
& Ex + o Ess ) o Exs
X3 AX5 XXy

The given strain components are not compatible.

—>0+0=0,0K

— 0+ 2k # 0, not satisfied

3.59 Does the displacement field: u; =sin X;, U, = X13X2, U; =cos X3 correspond to a
compatible strain field?

Ans. Yes. The displacement field obviously exists. In fact, the displacement field is given. There
is no need to check the compatibility conditions. Whenever a displacement field is given, there is
never any problem of compatibility of strain components.

3.60 Given the strain field: E;, = E; =kX,X,, k =10"*and all other Ej=0.

(a) Check the equations of compatibility for this strain field and (b) by attempting to integrate the
strain field, show that there does not exist a continuous displacement field for this strain field.

OBy 0°Ey _, O’Ep

+
2 o2 A X,

Ans. (a)
oX;

— 0+ 0 # 2k . This compatibility condition is not satisfied.

(b) Ell ZO%%ZO%Ulzul(Xz,X3). AISO, E22 ZO—)S%ZO—)Uz =U2(X1,X3).

1 2
ouy( X5, X OUy ( X, X
2 1 2 1

That is,
2kX X, = £(X,,X3)+9(X,,X3). Clearly, there is no way this equation can be satisfied,

because the right side can not have terms of the form of X;X,.

3.61 Given the following strain components:
1 v
Eil ZE f (XZ,X3), Ey=Es Z—E f (Xz,x3)= E; =E;3=Ey;=0.

Show that for the strains to be compatible, f(X,,X 3) must be linear in X, and X;.

Ans

2 2
O°Eyy +52E22 -9 O°Ey _)la f(XZ,X3): ol =M +62E33 5 62E13 _)la f(Xz,X3):
X3 XE XXy @ X3 C X2 ox2 X Xs a ox2

b

2
OBy _ 0 [_8E23+8E31+8E12J_)lM:0’ Thus,

X,0X; X | OX, X, X3 ) a  OX,0X,

Copyright 2010, Elsevier Inc
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2 (X, X 7 (X, X ? (X, X
( 22 3)=0, ( 22 3)=0, Mzo.—)f(Xz,X3)isalinearfunctionof
X3 X3 0X,0X ;3
X, and X;. We note also
62E22+82E33__L ?f o f L 9’Ey
X X5~

X3 X3 aloxi X3

OBy _ v oo 0 [ OBy B, OBy
XX, @ OX40X, Xyl Xy Xy X )
By _ v Of oo 0 [ OB 0By OBy )
XX, @ OX,0X, Xy OX;  OX, o,

Thus, if f (X,,X;) is a linear function of X, and X5, then all compatibility equations are
satisfied.

3.62 In cylindrical coordinates (r,¢9, Z) , consider a differential volume bounded by the three pairs
of faces: r=randr=r+dr; =0 and §=60+d0O; z =z and z = z + dz. The rate at which mass is
flowing into the volume across the face r =r is given by pv, (rd 0)(dz) and similar expressions

for the other faces. By demanding that the net rate of inflow of mass must be equal to the rate of
increase of mass inside the differential volume, obtain the equation of conservation of mass in
cylindrical coordinates. Check your answer with Eq. (3.15.7 ).

Ans. Mass flux across the face I =r into the differential volume dV is (pv, )(rd@)dz . That

r=r+dr (I’ + dl’)d@dz . Thus ,
the net mass flux into dV through the pair of faces r =r and r =r +dr is

(Y ),., (rdO)dz—(pV, ),_, g (r+dr)dodz=[ (p¥,),_, = (%), _, o |rdOdz
~(PV),_,, g drdedz.

across the face r =r +dr out of the volume is (pv, )

o(pvr)
NOW’ [(er )r:r - (,DVr )r:r+dr :| rdodz = _|:Tr:| dl’(l’d QdZ) and

—(,ovr )r=r+dr drd@dz = —[(pvr ) +d (pvr )]drd 6dz = —(pvr )drd @dz , where we have dropped

the higher order term involving [d ( PV, )} drd#dz which approaches zero in the limit compared to

the terms involving only three differentials. Thus, the net mass flux into dV through the pair of
faces r=r andr=r+dris

{—r(a’;’f j— (o, )}drd 0dz. Similarly,
the net mass flux into dV through the pair of faces 8 =6 and 8 =6 +d0b is

—[%)de(drdz),
00

and the net mass flux into dV through the pair of faces z=z andz=z+dz is

Copyright 2010, Elsevier Inc
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Z
Thus, the total influx of mass through these three pairs of faces is:

_{(52;4 ]+ (P;/r) +%(6529J+(52:z j}dr(rdé’)dz

On the other hand, the rate of increase of mass inside dV is %( prd erdz) = 2—’? rdddrdz .

_(a,gvz jdz [dr(rdo)]

Therefore, the conservation of mass principle gives,

_{(apvrJJF(PVr)Jrl[aPVejJF(asz j}dr(rde)dzz%)rdedrdz, That is:
z

or r r\ o6

9 OpYy PV 1( 0PV ) (OPVs 0. 0r,
ot or r r\ o0 oz

{2—'[;+v 8_p+v_9(8_pj+v 8_p}+p[8vr +V—r+l%+%j=0.This is the same as

Tor  rlog) tez o r roo oz
Eq.(3.15.7).

3.63 Given the following deformation in rectangular Cartesian coordinates:

X =3X3, X ==X|, X3 =-2X,
Determine (a) the deformation gradient F, (b) the right Cauchy-Green tensor Cand the right
stretch tensor U, (¢) the left Cauchy-Green tensor B, (d) the rotation tensor R, (e) the
Lagrangean strain tensor E (f) the Euler strain tensor €, (g) ratio of deformed volume to initial

volume, (h) the deformed area (magnitude and its normal) for the area whose normal was in the
direction of €, and whose magnitude was unity for the undeformed area.

0 0 3 0 -1 offo o 3] [t 0 0
Ans. (a) [F]=[-1 0 of, ) [C]=[F]'[F]=[o 0 —2|-1 0 o|=|0 4 of,
2 0 30 0o 2 0] 0009

0
1
[U]=[c]" =|o0
0

0 0 3J[o -1 0] [9 00
© [B]=[F][F]'=|-1 o of0 0o —2[={0 1 o
0 2 0J3 0 0] |00 4
0 0 3]t o o] T[o
@ [R]=[F][U] " =[-1 o© 0{0 /2 0 |=[-1 0 0
0 2 0Jlo o 1/3] |0 -1 0

Copyright 2010, Elsevier Inc
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1 oo o] fo o o 1 4/9 0 0
* _ 1 _ _! _ x| _ 1 _ -1 _
(e)[E]_Z[c =30 3 0f=|{0 3/2 0 ,(ﬂ[e]_z[l B }_ 0 0 0
008/ |0 0 4 0 0 3/8
(© 2 JaetB = [(9)(1)(4) =6.
) 0 -6 0
(h) dA:dA)(detF)(F’l) Ny, dA =1, detF =6, [F]lzé 0 0 -3[,n,=6,,
2 .0 0
: 0o o 2]o] [o
[dA]:dAb[(detF)(F“) no}z(l)(6)% 6 0 0f1|=|0|—>dA=-3e,
0 -3 00| |-3

3.64 Do the previous problem for the following deformation:

0 2 0] 00 1][o 2 0] [1 0 O
Ans. (a) [F]=|0 0 3|. ® [C]=[F]'[F]=|2 0 0][0o 0 3|=|0 4 of.
1 0 0] 03 0f1 00| |0 o009
(1 0 0]
[U]z[C]m: 0 2 0]. (The only positive definite root).
0 0 3]
02 0o 0 17 [4 0 0
© [B]=[F][F]"' =0 0 3|2 0 o|=[0 9 0
1 0 oflo 3 0/ |0 01
0 2 0]t o o] o100
(d)[R]—[F][u]l—[o 0 3 {o 1/2 0 |=|0 0 1
10 o0J0 0 1/3] [1 00
1 [fooo]fo o 0]
(@) [E}:E[C—I]:EO 3 0|=|0 3/2 of, ( [e*]:
0080 0 4
© Y _ JaetB = [(4)(9)(1) =6
o
0
(h) dA=dA)(detF)(F’1) Ny, dA, =1, detF =6, [F]" =é 3
0

3-30
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: 0 3 offo] [3
[dA]:dAb[(detF)(Fl) no}:(l)(6)% 00 2|1|=|0|> dA=3¢
6 0 0fo| |o

3.65 Do Prob. 3.63 for the following deformation:

1 0 0
Ans. (a) [F]={0 0 3.
0 2 0
1 0 ot o o] 100
(b) [C] [F] [F]z 0 0 2|0 0 3|=|0 4 0], The only positive definite root
03 00 =2 0] |00
1 00
is[u]l=[c]*=|0 2 of.
0 0 3
1 0 o|[1t 0 o 1 00
(c)[B][][] 003]002_090.
0 2 00 3 0] |0 0 4
1 offt o 0 1 0 0]
@ [R]=[F][U]"" {0 3{0 1/2 0}{0 0 1/,
0 -2 0Jl0 0 1/3] [0 -1 0]
| 0 0 0 | 0 0 o
(€) [E]:E[C—I]z 0 3/2 0], (f [e*]:il—Bﬂ: 0 4/9 0
0 0 4 0 0 3/8

= JdetB = /(1) E

6 0 0
(h) dA:d/\,(detF)(F—l)T Ny, dA, =1, detF =6, [F]" =% 0 0 -3|,n,=¢e,
02 0
6 0 o]fo] [o
[dA]:dA{(detF)(F—l)Tno}z(l)(@% 0 0 2|1|=]|0 |- dA=-3e,
0 -3 ollo| |-3

3.66 Do Prob. 3.63 for the following deformation:

Copyright 2010, Elsevier Inc
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0 20 0 -1 0][o 2 0] [1 0 0
Ans. (a) [F]=|-1 0 0. ) [C]=[F]'[F]=|2 0 of-1 0 o|=/0 4 o],
0 0 3 0 0 3]lo 03] [0o009
100
[U]z[C]m: 0 2 0].(The only positive definite root).
00 3
0 2 0][0o -1 0] [4 0 0
© [B]=[F][F]'=|-1 0 0|2 o of=|0 1 o
0 0 3J0 0 3] |00 9
0 2 o]t 0 1
@ [R]=[F][u] " =|-1 o o{o 1/2 ] {1 0
0 0 3 0 0
1 0 0 0 1 3/8 0 0
(e)[E}zz[C—l]z 0 3/2 0], (f)[e*]za[l—Bl}z 0 0 0
0 0 4 0 0 4/9

(@) = VdetB = [{4)(1)(9) =6

0 -6 0
(h) dA=dA)(detF)(F_1)TnO, dA, =1, detF =6, [F]_lzé 30 0fn,=e,
0 0 2
0 3 offo] [3
[dA]:dAO(detF)[F1]T[n0]=(1)(6)% 6 0 0| 1]|=|0]|—>dA=3g
0 0 20| |o

Obtain (a) the deformation gradient F and the right Cauchy-Green tensor C, (b) The eigenvalues

and eigenvector of C, (c) the matrix of the stretch tensor U and U™ with respect to the e; -basis
and (d) the rotation tensor R with respect to the €; -basis.

130 1 0 offt 3 0] [t 3 0O
Ans. (a) [F]=|0 1 of, [C]=[F]'[F]=|3 1 0|0 1 0[=[3 10 0
00 1 0 0 1Jj0 0 1] [0 0 1

(b) the characteristic equation is

Copyright 2010, Elsevier Inc
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-2 3 0
3010-2 0 |=0-(1-2)(4’ ~112+1)=0,
0 0 1-Z

11+£4121-4

Ao == 4 =10908326, 5,=0.0916735, 4 =1

For 4, =10.908326,

n = ;(el +3.302775€, ) = 0.289785¢, +0.957093e,.
3.450843

For 4, =0.0916735,

(1-2)eq +3a, =0 > ay =—(1- 2, )y / 3=-0.3027755¢x,,
B 1
RITTER
For 4 =1,n; =¢;,

(c) The matrices with respect to the principal axes are as follows

n, e, —0.3027755€, ) = 0.957093¢, —0.289784e,.

10.9083 0 0 3.30277 0 0
[C], =] 0 00916735 0| [U] = 0 0302774 0.
0 0 1 0 0 1
0.302774 0 0
U] = 0 3302772 0.
| 0 0 1

The matrices with respect to the €, -basis are given by the formula [U] — [Q]T [U] ) [Q] :

0.289785 0.957093 0| 3.30277 0 01](0.289785 0.957093 0
[U]e_ =|0.957093 —0.289785 0 0 0.302774 01 0.957093 -0.289785 0
0 0 1 0 0 1 0 0 1

0.554704 0.832057 0
=1 0.832057 3.05087 0].
0 0 1
0.289785  0.957093  07[0.302774 0 01[0.289785 0.957093 0
[U’l]e_: 0.957093 —0.289785 0 0 3302772 0| 0.957093 —0.289785 0
' 0 0 1 0 0 1 0 0 1
3.050852 —0.832052 0
= -0.832052 0.554701 0.
0 0 1

Copyright 2010, Elsevier Inc
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1 3 0] 3.050852 —0.832052 0] [ 0.55470 0.83205 0
(d) [R]e_:[F][U’I}: 0 1 0] -0.832052 0.554701 0 |=|-0.83205 0.55470 0.
00 1 0 0 1 0 0 1

3.68 Verify that with respect to rectangular Cartesian base vectors, the right stretch tensor U and
the rotation tensor R for the simple shear deformation, X; = X; +kX,, X, =X,, X3 =Xj,

are given by: With f =(1+k*/4)™"2,

f kf /2 0 f kf/2 0
[U]=|kf /2 (14K /2)f 0], [R]=|-kf/2 f o
0 0 1 0 o 1
¢ k2 ol f Ki/2 0
Ans. [RU]=|—kf /2 £ 0|[kf/2 (1+K*/2)f 0
0 o 1 o 0 i

t2a(kE/2)(K/2)  f(KE/2)+ (K /2)(14K2/2) T 0
=| (—KF /2) f+ £ (kf /2) (Kf /2)(Kf /2)+ f(14K>/2)f O
0 0 1

f2(1+k2/4) kf2(1+k2/4) 0
- 0 P2(1+k7/4) 0=

k 0
1 0 |=the given [F]
0 0 1 0 1

(=

Since the decomposition of F is unique, therefore, the given R and U are the rotation and the
stretch tensor respectively.

3.69 Let dX() = dSlN(l), dx?) = ds, N be two material elements at a point P. Show that if &

denotes the angle between their respective deformed elements dx! =ds;m and dx?) = ds,n,

C .NOND
Zebe T8 where N =NOe,, N®) = NPe,, 4 =33 and 1, =32

then, cos@ = , = .
A, @ ds, das,

~—

Ans. dx\V . dx?) = FaxM . Fdx?) = axV . FTrdx?) = axV . cdx?,
> dsds, cos0 = d5,dS,N") .CN1?) = dsds, (NVe,)- (N[ e ),

c NOND)
> cos0= 1952 NOINCle .o, e T
ds,ds, Ay

Copyright 2010, Elsevier Inc
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3.70 Given the following right Cauchy-Green deformation tensor at a point

90 0
[C]=[0 4 o0
0 0 036

(a) Find the stretch for the material elements which were in the direction of €;,e,,and e;. (b)

Find the stretch for the material element which was in the direction of e, +e, . (c) Find cos@,
where @ is the angle between dx") and dx® where dx() = dS,e, and ax?) = dS,e, deform to

dax!) = ds;m and dx?) = ds,n.

Ans. (a) For the elements which were in €;,€,,and e; direction, the stretches are

\JCi154/Cy5,4/C53 , that is, 3,2 and 0.6 respectively.

90 0 |1
(b) Let e =%(el+e2)—>ql=%[1 1 0Jjo 4 0 |1 =l[1 1 0] 4 =%.
0 0 036]0 0

That is, the stretch for dX = dSe/is (ds/dS)=4/C;; =+/13/2.

(¢) C;, =0—>cos@=0—6=90°. There is no change in angle. (note, {e,,e,,e;} are principal
axes for C.

3.71 Given the following large shear deformation:

Xp =X+ Xy, X=X,, X3=X3.
(a) Find the stretch tensor U (Hint: use the formula given in problem 3.68) and verify that
U?=C, the right Cauchy-Green deformation tensor. (b) What is the stretch for the element
which was in the direction e, ?
(c) Find the stretch for an element which was in the direction of e, +e, .
(d) What is the angle between the deformed elements of dS,e, and dS,e, ?.

Ans. (a) For x; = X; +kX,, X, =X,, X; = X3, from Prob. 3.68, we have

f kf/2 0 1
[U]=|kf /2 (1+K*/2)f 0 Wheref:(l+§J *Thus, with k=1, f=2/45
| 0 0 1
[ f f/2 0 1 1/2 0 1172 0
[Ul=| f/2 (3/2)f o|=f[1/2 3/2 0 :%1/2 3/2 0
| 0 0 1 0 0 1/f 0 0 J5/2

Copyright 2010, Elsevier Inc
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1 1/2 0 1 1/2 0
[U][U]=§ 1/2 (3/2) 0 1/2 (3/2) 0 |=
0 0 ~s5/2]l0 o 5/2f [0 01
(b) The stretch for the element which was in the direction €, is \/@ =\2.

(c)Let e] =(e, +e,)/2,

1 1 0f1 2
o1 1 5 ds
Ch==[1 1 01 2 Of1|==[1 1 0||3|== =~/5/2.
! 2[ J 2[ J 27ds
0 0 1{0 0
(d) a5 | G5, cosd=C —>(1)(\/§)0056’=1—>0059=L—>9:45°.
ds, )\ ds, 12 2

3.72 Given the following large shear deformation:
(a) Find the stretch tensor U (Hint: use the formula given in problem 3.68) and verify that

U2 =C, the right Cauchy-Green deformation tensor.
(b) What is the stretch for the element which was in the direction e, .

(c) Find the stretch for an element which was in the direction of e, +e, .
(d) What is the angle between the deformed elements of dS,e; and dS,e, .

Ans. For X =X, +kX,, X, =X,, X3 =Xz, from Prob. 3.68, we have

f Ki/2 0] L
2
[U]=[Kf /2 (1+K>/2)f 0 wherefz[H—%J _Thus, with k=2, f=1/2
0 0 1]
f Ki/2 0 11 o
_ 2 _ 1
[U]=|kf /2 (14K /2)f 0 -5|l 30
0 0 1] 00 V2
fod/200 [1 1 0
R]=|-kf/2 f o0f=—|-1 1 0|
[R] 5
|0 0 0 0 2
21 o] 1 20
Ul 2 5 0/-[c]
0 0 \/_ 00 \/_ 001

(b) The stretch for the element which was in the direction €, is /C,, = V5.
(c) Let €] = (e, +e,) /2,
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1 2 0]f1
C;lzl[l 1 0]|2 50 1:1[1 1 0]7 —5 > B 5203
2 2 ds
0 0 1]0 0
(d) ﬁ dﬁcos6’=C —>(1)(x/§)cos6'=2—>cosl9:i.
ds, )| ds, 12 J5
0 B 1y %A
3.73 Show that for any tensor A( X, X,, X3), —detA—(detA)(A ) _
X nj OX,
Ans
oAy Ay OA;
X oX oX All A12 A13
A Ay Al (B B Xl | A A, A,
|A|=A21 Ay A23_)6X =l Ay Ay Ay +6X1 8X2 8X3+ A Ay Ay
A A A TlAL Ay A A3m A3m A3m OAy  OPy,  Ohyy
! 2 SoX, X, X,
Let Aj denote the cofactor of Ay, i.e., A = " A23,A1°2=—A21 s etc.
Ao A A A
0|A
Then, AL 01 pe  OAp po OAs o Ry e PRy e
Xy Xy, X X X X
O0|A|  OA; AS
Thatis,ﬂzi/s;j. On the other hand, (A—l)_,z L —>A;?i=detA(A‘1)__.
Xy, Xy, ij  detA ]
0|A oA; OA,;
Thus, | |:detA(A1)__i=detA(Al)_ i
X i OXp, in X,

3.74 Show that if TU =0, where the eigenvalues of U are all positive (nonzero), then T =0.

Ans. Using the eigenvectors of U as basis, we have,
Th Ty T34 0 0 ATy AT AT
[TUI=[T][U]=|To1 Ty T || 0 A 0 |=| ATy ATy ATy
T T T3]0 0 4 ATy ATy AT
Thus, TU =0gives, all T; =0, thatis, T=0.

2 2 2
3.75 Derive Eq. (3.29.21), that is, By, =| 22 | +| F99_| 4| r9?
or, r,00, 0oz,

Copyright 2010, Elsevier Inc
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Ans. By, =€, -Be, =€, - FF'e,. From Eq. (3.29.15). we have,

Fle, = roo ey + roe e + roo ey, thus,
or, 1,00, 0z,
By =€y - F roo e+ roo e+ roo e |= roo ey - Fey +_ra¢9 ey - Feg + @ee Fe;.
or, ro6, | oz, or, - 00, oz,
Since, & -Fe? =97 o .Fed =99 o Fe0 =19 [see Bq. (3.29.10)], therefore,
or, r,00, azO

2 2 2
roo roo roo
or, 1,06, oz,
3.76 Derive Eq. (3.29.23), ice., B, =| 2 || 2 || || %2 || 0| 22
or, )\ or, 1,00, )\ 1,00, oz, )\ oz,

Ans. B, =e, -Be, =e, -FF'e,, from Eq. (3.29.16), we have,

Fle, =£ef A ey + + g0 o, thus,
or, 1,00, 0z,
Brzzer'F(ze;# o e + j —e -Fey + o er'Feg+£er~Fe§.
ar0 0 0 o o az0
From Eq. (3.29.9), e, - Fe; = —, e, -Fe) :i, thus,
8r0 .00, 0z,

or | oz or oz or || oz
B, =| — || = |* +H ==
or, )\ or, r,06, )\ r,06, oz, )\ oz,

3.77From 1, =T, (r,H, Z,t), 6, =6, (r,@, Z,t), Z,=1, (r,H,Z,t) ,derive the components of B!

with respect to the basis at X.

Ans. From dX = F~'dx, where dx = dre, +rdfe, + dze, and dX = dr.e° +r,d6,e5 + dz.e2, we
have, dr,e? +r,dg,e§ +dz,ed =F ' (dre, +rdde, + dze, )

—dr, = dr(e? Fle )+ rdH(e‘r’ -F’lee)+ dz(ef -F’lez)

aro a0 ﬁr -1 o -1 o -1
ar —dr + aad9+a dz_dr( ‘F er)+rd¢9(er-F ee)+dz(er-F ez)
E e, _ar ;’-F‘leezar", Fl _ar,
or’ roo T

Copyright 2010, Elsevier Inc
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Similarly,

r.o06, r.o6, r.o6,
e -Fle, =00 ¢ .Flgy=2"0 ¢f.Fle =00
o T T T ee” T T &

oz _ 0z _ oz
es-Fle, = P es lee:ra(;’ es 1ez_é—z".
Thus,
Flo _6r0 e0+r08€0 e°+aie° Flo — or, e0+r06¢90 o 0y o

o T oar 2 00 reg Y roo ?
Fle, _ o ef+—r°ae° eg+aZO ey.
oz oz 0z

Also, we have,

& '(F_I)T ef =€y -Fle =%, € '(F_I)T e =¢° Flg, =

e, '(F“)T el =¢° '(F‘l )eZ Sy
Thus,

(F‘1 )T e’ —Z—r;’er + farog €y +%—r;ez, (F‘l)T ey = 5000 ¢ 4 1000 ¢, 10000 ¢
(F’l )T 00 _ 0z, 0z, azo

Z ° er z*
or roe 82

The components of B! with respect to the basis at X are:

B, =e,-B'e, =¢, -(FFT )_l e, =€ -(F“)T(F‘ler)

(ool oS (e ot {3 (2] (3]
By =€ -B ey =6 -(FFT )_lee =gy -(F‘I)T(F‘lee)

o T 06, T T o, ¥ (ro6,Y (o, Y
rare (F 1) er +rra6* o’ (F 1) 0 .(F 1) eg:[r(;o&) J{r(;a&oj +(r;2’} .
(3] (2] 2]
“ \a oz oz )’
By =€, -B ey =¢, -(FFT )_lee =e, -(F‘I)T (F‘lee)

or, \T o, 00, \T o Oz, \T o[ 0% ) O ro00, \( r,o0, az, \( oz,
" ro0 ~(F 1) er+We"(F 1) e9+raaer'(F 1) ez_(raej(ar){ ro6 j( or j{raej( 62)
B, =e,-B'e, =¢, (FFT) 1ezze ~(F“) (F e)
S A e E R R E R C SR e &
B! or, r,o 0z,
92_(@0}( J+(r6¢9 j[ oz j (r@&}(@zj'

Copyright 2010, Elsevier Inc
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378 Derive Eq. (3.29.47), thatis, Cy o =| —— | +| 190 | 4| &
%% 1,00, r,00, .00,

Ans. Cy, =€9-Cef =g -F Fej. Now, Fej = o e + roo e + o e,[Eq.3.29.3],
ovo r,00, 1,00, 1,00,

therefore,
Coo =€5-F' or e, + roo ey + o e, |= or e)-Fle, + roo ey -Fle,

oo r,00, r,00, r,00, 1,00, r,00,
+- eS-FTe,. Now, from Eqgs. (3.29.14) (3.29.15) and (3.29.16),

r,06,
ey-Fle, = o ey -Fley = roo_. ey -Fle, = % thus.

1,00, 1,00, 1,00,

2 2 2
or roo oz
Cee = + +
o\ r,00, 1,06, r,00,
3.79 Derive Eq. (3.29.49), C,, =| -0 || 00| [ ro0 |[ro0 oz | o
o {r,06, )\ or, r,06, )\ or, r,06, )\ or,

O o 4190 o P ¢ [Eq(3.293)],
1,00, r,00, r,00,

C,o =€ -F' or e, + roo e + o e, |= or e -Fle + roo e?-Fle,
oo r,00, 1,00, r,00, 1,00, r,00,

o o

Ans. C,q =e-Cef e -F'Fey. Now, Fej =

oz
+———€;
r.oo

o (o]

-FTe,. From Egs. (3.29.14), (3.29.15) and (3.29.16)

r
e®-Fle, :S—r

(4] (4]

NP B P

3.80 Derive the components of C'with respect to the bases at X.

e -Fle, :g e?-Fle, =
r

Ans.
-1 __o0 T -1 0_,0 —1{-1 T o _ aro o -1 aro o -1 al'-o o -1
Croro—er~(F F) e, =€, -F (F ) e, _Eer-F er+r89er'F e9+§er'F e,

Copyright 2010, Elsevier Inc
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AN

Cor or rofrod oz oz
1,00, .00, .

-1 T
Cr;é,o:ef-(FTF) eg=ef-F“(F‘1) ey = ar"ef-F‘lerJrWer

_ [ 1,96, \( or N r,o06, \( or, N r,00, %
or or rog )\ rod oz oz

The other components can be similarly derived.

. [See Eqs.(3.29.30), (3.29.31) and (3.29.32)].

ﬂeo .Ele
oz

T zZ

3.81 Derive components of B with respect to the basis {er ,€o ,ez} at X for the pathline equations
givenby r=r(X,Y,Z,t), 6=60(X,Y,Z,t), z=z(X,Y,Z,1).

Ans. From dx =dre, + rdfe, + dze, and dX = dXey + dYey +dZe,and
r=r(X,Y,zZ,t), 0=0(X,Y,Z,t), z=z(X,Y,Z,t), we have,
dx = FdX — dx = dre, + rd@e, + dze, = dXFey + dYFey +dZFe,
S + Ly + Lz e +[F9%x + 1% gy 1 199 47 e,
oX oY oz oX oY oz

o PLax + L ay + 24z Je, = dxFey +dYFe, +dzZFe,
x T ez

or rog 0z or roe oz
—->Fey=—e+—¢;+—¢,, Fey=—=e,+—¢;+—¢,,
oX oX oX oY oY oY
or roo oz
Fe,=—e, +—e¢;+—¢,,
0z 0z oz

ey -Fle =e, -Fey :(;9_:(’ ey -Fle =e, -Fey :g—;,etc.

and

or or or
Fle, =——ex+—ey+—¢€,, Fle,=
TTox Xley Y ozt 0
oz oz oz
Fle,=——ey +——ey +—e,.
Tox KXoy Yzt

The components of B are:

2 2 2
Brr=er-FFTer:%er-FeX+%er-FeY+%er-Fezz[ij +[arj +(8rj .

roé roo roe
ex + ey +
oX oY oz

yA)

oY) \ez
roo roo roe

B,, =6, -FFle, =——e, -Fey +—-e, -Fey +—-e, -

ré r 0 oX r X oY r Y oz

(o M HE )

3.82 Derive the components of B~ with respect to the basis {er,ee ,ez} at X for the pathline
equations given by X = X(r,8,z,t), Y =Y(r,0,z,t), Z=2(r,0,z,1).

Ans. From dx = dre, + rdfe, + dze, and dX = dXeyx + dYey +dZe, and

Copyright 2010, Elsevier Inc
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X = X(r.0,2.1), Y =Y(1.0,2.t), Z=Z(r.6.2.t), we have,
dX = F'dx — dXey +dYey +dZe, =drF ‘e, + rdoF ‘e, + dzF e,

- %dr+%d9+%dz ex + ﬂdr+ﬁd9+ﬂdz ey
or 00 oz or 00 oz

 Zar+ Z 49+ %% 4 e, =drF'e, + rdgF e, + dzF e,
or 06 oz
Thus,
Fle X + T e, +Ze, Flogg=Le + T + %y
o X e Yo 2 a0 X a0 ¥ ve0 -
Fle, = Xe 1Mo, + %
T X a Y a”
and
T o OX N\ a, oY
e A EE e
AT _ oz .
er'(F 1) e,=¢e,-F lerza, etc. that is,
T oX oX oX T oY oY oY
F') ex=—e +—ey+—e,, (F')ey=—Te +——ey+—e
( )X or " ro0? azz( )Y or " ro0 "’ a ”
T 8z ez ez
(F ) eZ:_el‘+_ee +_ez.
or roé oz
Thus,
-1 _ ', _ N ey JK ()] N e (1)
Brr _er'(FF ) er_er.(F ) F er_ar er (F ) ex+arer (F ) eY

oz ) X\ (oYY (ozY
+Eer-(F I)Tez=(ﬁj J{E] +(Ej '

oz _\T oX [ oX oY \( oY oZ \( oZ
+—er-(F )ezz— — |t == |t = || =
roo or J\rof or )\.rod or )\ rod

3.83 Verify that (a) the components of B with respect to {er 4.8, } can be obtained from [FFT}

and (b) the component of C, with respect to {e? ,eg,e‘z’} can be obtained from [FTF] , where [F]

is the matrix of the two points deformation gradient tensor given in Eq. (3.29.12).

Ans.
(a) Eq. (3.29.12) >

Copyright 2010, Elsevier Inc
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o o oo rog & |
o, r,00, oz, or, or, or,
[FFT}z rod rof roé or rood oz N
o, r,06, oz, ||r006, ro006, 71,00,
o2 @2 a0 &
| o, 1,00, oz, || Oz, 0z, 0z,
oY (o Y (o) or oo or 1d0 or ro0
By =|—| + +—1], Byp= +— etc.
or, 1,00, 0z, or, or, r860 r,06, oz, az
® - ]
o re & |fer o o
or, or, or, or, r,068, 0z,
[FTF]: or rog oz ro rof rof N
r,0o6, r,06, r,00, | or, r,06, oz,
o r0 & e & @
| 0z, 0z, oz, || o, 1,00, 0z,
2 2 2
or roo oz or or rog || roé@ oz (674
re == | Y= | Y= | ré, —| A, + + .
o\ or, or, or, ° or, )\ r,00, or, )\ r,06, or, )\ 1,00,
3.84Given r=r,, 6=6,+kz,, z=1,.(a) Obtain the components of the Left Cauchy-Green

tensor B, with respect to the basis at the current configuration (r, 0, Z) . (b) Obtain the
components of the right Cauchy-Green tensor C with respect to the basis at the reference

configuration.

Ans. (a), Using Egs (3.29.19) to (3.29.24). we obtain

or
Brr = [5_
r-O

2 2
or
+
J [ r,06, )

2
or
+ R
(&OJ

00 ([ roo
= = +
or, r,00,

)

0z

2
0z 0z

= —1| +
(6r (r 00,

=1,

2
aeJ
0

(i) e
J (e -

(6]
ro0)( ar
or. 6r

0z

roo
r,00,

or
0oz,

0z

or
r, )\ or,

No

0z

) (aa

G

00,

(o

Jeaa) (&)
|

roé
0z,

+(kr)?,

b

J-o.

=rk.
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10 0
Thus, [B]=|0 1+(rk)> rk|.
0 rk 1

(b) Using Egs.(3. 29.43) to (3. 29.51), we have,
2 2 2 2 2 2
cuar) ) (&) = ow () ) leda)
o Lo, or, or, oo\ r,00, r,00, r,06,
cuncli) (5] ) e
( : Jﬁa—H ) e
o\ r,06, )\ 0 r,o00, )\ or, r,06, )\ or,
8_ rog \( roo z or | _ 0
oz, o, )
raH roe oz |6z |_ "
% r, 69 r,00, azo r,00, '

0
Thus, [C]=|0 1 rk

0 rk 1+(rk)’

3.85 Given r=(2aX +b)"?

cuurent configuration and (X LY, Z) are rectangular coordinates for the reference configuration.

, 8=Y/a, z=7, where (r,H, Z) are cylindrical coordinates for the

(a) Obtain the components of [B] with respect to the basis at the current configuration and (b)
calculate the change of volume.

Ans. (a) Using Eqs.(3.29.59) to (3.29.64), we have,
(arjz (arjz Karjz (ajz [raejz (r@ﬁ)z (raejz [rjz
Br=|—| +| == | *| = | =|—=|,Bw= + + =|—
oX oY oz r oX oY oz a
2 2 2
(3] (3](2]
oX oY oz
(raej (8r][r86’) (arj(raeJ
+— || —|+| = || = |=0,
oX oY )\ oY 0Z )\ oZ
(azj (arJ(fizj (arJ(azj
— |+ — || = |+ — || — =0,
oX oY J\ oY oZ )\ oZ
(raej(azj (r&@j(&z) (r@@j(&zj
Bo: =| V|| = | = = I|=
%) oX oY oY oZ )\ 0Z

Copyright 2010, Elsevier Inc

3-44



Lai et al, Introduction to Continuum Mechanics

(a/r) 0 0
Thus, [B]=| 0  (r/a)’® o]
0 0 1

(b) detB =1=1, thus, there is no change of volume.

3.86 Given r=r(X), #=9(Y), z=h(Z), where (r,6,z)and (X,Y,Z)are cylindrical and
rectangular Cartesian coordinate with respect to the current and the reference configuration
respectively. Obtain the components of the right Cauchy-Green Tensor C with respect to the basis
at the reference configuration.

Ans. Using Eqgs.(3.29.68) etc. we have,
or Y (reoY (e Y 2 2 2

ax) Lax ) "lox
or \( or rog \( rod oz \( oz
Cyy =| — || S|+ 22 2|4+ || £ |=0, Cyy =0, Cyy =0.
Xy (axj[avj{ax j(av j{axj(av] vz =5 Xz
(re))y? o 0
[C]=| 0 (g'")* 0 |, where r'(X)=dr/dX,etc,
0 0o (NM@)

Copyright 2010, Elsevier Inc
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CHARTER 4

MPa. .

o 01 W

1 2

4.1  The state of stress at a certain point in a body is given by:[T]=| 2 4
3 5

€

On each of the coordinate planes (with normal in e;,e,,e; directions), (a) what is the normal
stress and (b) what is the total shearing stress

Ans. (a) The normal stress on the e, plane (i.e., the plane whose normal is in the directione,) is
1 MPa., on the e, plane is 4 MPa., and on the e; plane is 0 MPa.

etotasearlngstressonteepanels + = =o. a. Onthe e plane IS
(b) Th | sheari he e, plane is /22 +3% =+/13 =3.61 MPa. On the e, plane i

V2% +5% =/29 =5.39 MPa., and on thee;plane is /3% +5° =+/34 =5.83 MPa.

2 -1 3
4.2  The state of stress at a certain point in a body is given by: [T] =/-1 4 0| MPa
3 0 -1

€;

(a) Find the stress vector at a point on the plane whose normal is in the direction of
2e, + 2e, +e5. (b) Determine the magnitude of the normal and shearing stresses on this plane.

Ans. (a) The stress vector on the plane is t=Tn, where n = (2e; + 2e, +e3) /3. Thus
2 -1 3142 5

-1 4 012 =% 6 |,— t=(5e; +6e,+5e3)/3 MPa.

3 0 -1|1 5

(b) Normal stress T, =n-t = (1/9)(2e, + 2e, +e3)-(5e; + 6e, +5e5) =3 MPa.

Magnitude of shearing stress T, = 1/|t|2 ~T72 =+/86/9—-9 =0.745 MPa. Or,

T, =t-T,n =(5e, +6e, +5e5)/ 3-3(1/3)(2e, + 28, +&5) = (&, +2e5) /3> T, =/5/3=0.745

Wl

[t]=

4.3 Do the previous problem for a plane passing through the point and parallel to the plane

Ans. (a) The normal to the plane is n = (e, — 2e, +3e5) /14 . [t]=[T][n] >

2 -1 3|1 13
—>[t]=i 14 0-2|=—L|9 , > t=(1/14)(13e, - %,) = 3.47¢, — 2.41e, MPa.
N N7
3 0 -1| 3 0
1 13
(b) Normal stress T, =n-t :ﬂ[l -2 3]|-9|=31/14=2.21 MPa.
0
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Magnitude of shearing stress T, = \/|t|2 -T2 = \/250 /14—(2.21)° =3.60 MPa. Or,

T, =t—T,n = (3.47e, — 2.41e,) — (2.21/~/14)(e, — 2e, + 3e,) = 2.88e, —1.23e, —1.77e,,
—T, =3.60 MPa.

4.4 The stress distribution in a certain body is given by
0 100x; —100x,

[T]=| 00,  © 0 [MPa.
~100x, 0 0

Find the stress vector acting on a plane which passes through the point (1/ 2,312, 3) and is

tangent to the circular cylindrical surface x? + x2 =1at that point.

Ans. Let f =xZ +xZ, then the unit normal to the circle f =1 at a point (%, %, ) is given by
Vi 2xe; +2x58,

n= =
V[ a2 + ax2

= X;8; + X,€, . At the point (1/2, V312, 3), n=%(e1+\@e2).

0 50 -503
and [T]=| 50 0 0 |, thus,
5043 0 0

0 50 -50V3| 1/2 253
[t]=] 50 0 0 |[V3/2|=| 25 |-t=25/3e,+25€,25{3e; MPa.

5043 0 0 0 _253

45  Given Tj; =1MPa.,, T, =-1MPa., and all other T;; =0at a point in a continuum.  (a)

Show that the only plane on which the stress vector is zero is the plane with normal in the
egdirection. (b) Give three planes on which there is no normal stress acting.

1 0 0flmy n
Ans.(a) [t]=|0 -1 O/ ny|=|-n,|>t=ne —ne,. t=0>n=n,=0->t=e;.

0 0 0ln| | 0
(b) T, =n-t=nZ —n3. Thus, the plane with n? —n3 = 0 has no normal stress. These include
n=e; n=(e,+e,)/\/2, n= (e, —e,) /2 etc.

10 50 -50
4.6 For the following state of stress [T]=| 50 0 0 |MPa., find T} and Tj; where e]
50 0 O

is in the direction of e; + 2e, +3e;and e} is in the direction of e; +e, —e5.
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Ans. €] = (e, +2e, +3e;) /14, e, =(e,+e,—e3)/+/3, thus

1 10 50 501 . —40
T1‘1 = ﬂ[l 2 3] 50 0 0 (|2|= ﬂ[l 2 3] 50 |=-90/14=-6.43 MPa.
-50 0 0 |3 -50

e; =€ xe, =(—5e1+4e2—e3)/\/ﬁ,therefore,
. 10 50 -50|-5

T1'3=—*[1 2 3] 50 0 0 || 4 |=450/+/588 =18.6 MPa.
>88 50 0 0 (|1

ax, B0
4.7 Consider the following stress distribution [T]=| B 0 0| where « and Bare
0O 00

constants. (a) Determine and sketch the distribution of the stress vector acting on the square in the
x, = 0 plane with vertices located at (0,1,1),(0,-1,1),(0,1,—1)and(0,~1,-1). (b) Find the total
resultant force and moment about the origin of the stress vectors acting on the square of part (a).

Ans. () The normal to the plane x, =01is e, thus, t, =ax,e; + Se,. On the plane, there is a

constant shearing stress £ in the e, direction and a linear distribution of normal stress ax,, (see
figure).

(0,-1,-1) (0,-1,1) "
RERRICNRR
RERY mu i X
PR —\

0.1.,-1) . 0,1,1) a

(b) 11

Fr = [tdA=] [ (a8, + fes Yot =Oey + 45,

11
Mo = [xxtdA =] [ (xpe; + Xge3)x (a8, + e, )dxclxg
b}

11 3t
= _[ I (—ﬁx3e1 + Xy X8y — X305 )dxzdx3 = 0e, +Oe, —a(Z){ﬁ} g3 = —4—0le3
-1-1 -1
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4.8 Do the previous problem if the stress distribution is given by T,; =ax3 and all other

Ans. (a) The normal to the plane x, =0isey, thus, t, = ax5e, . On the plane, there is a parabolic

distribution of normal stress ax§ , (see figure).
0,-1,-1) 0,-1,1)

—_—

X3

0,1,-1) ,1,1) a
X

2

(b) Fe = tdA:} Jl‘(axgel)dxzdx3 :%“el.
14

M, =.|'xxtdA:} Jl'(xze2 + x3e3)><(0:x22e1)dx2dx3

e
11
= I(ax§x3e2 - ax3e, )dxzdx3 = Oe, + O,
e

4.9 Do problem 4.7 for the stress distribution: T;; =, T, =T,y =aX; and all other T;; =0.

Ans. () The normal to the plane x, =0isey, thus, t, =ae; +axse,. On the plane, there is a
constant normal stress of o and a linear distribution of shearing stress axse,, (see figure).

0,-1,-1) ©0,-1,1) o

X3

Il

0,1,-1) 0,1,1) o
X

2

T

11
-1-1
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11
M, = [xxtdA = [ [ (xp, +Xg85)x (a8; +arxge, Jdxydxg

-1-1
11
2 do
= I I (—05X3el + OtX362 - (ZX263 )dXZdX3 = —?el
-1-1

4.10 Consider the following stress distribution for a circular cylindrical bar:

0 -ax3 ax
[T] = —aX3 0 0

(a) What is the distribution of the stress vector on the surfaces defined by (i) the lateral
surface x§ + x32 =4, (i) the end face x; =0, and (iii) the end face x; = ¢? (b) Find the total
resultant force and moment on the end face x; = ¢ .

Ans. (a) The outward unit normal vector to the lateral surface x3 + x2 =4 is given by

Xp€) + Xqf : : :
n :%. The outward unit normal vector to x, =0is n, =—e;and thatto x =/ is

ns =e;. Thus,
L 0 -ax3 ax, |l 0 0
[td:E —axg 0 0 |[x|=|0]|>t, =0.

(b) Ontheend face x =/, t, =Te; =—aXse, + aXe;

FR = ItnSdA :j(_aX362 + aX263)dA B (—a62 )J X3dA+ (aes)j deA = 0 .
[note: the axes are axes of symmetry, the integrals are clearly zero].

M, = jx x tdA =I(x2e2 + X983 ) X (—Xa€y + aXqe3) dA

2 2
= j(ax% + oexfo?)dAe1 = a[r®2zrdre; = 2za[ ridre, =87ae;
0 0

4.11 An elliptical bar with lateral surface defined by x§ + 2x§ =1 has the following stress

0 -2X3 X
distribution: [T]=| -2x3 0 0 |. (a) Show that the stress vector at any point (X, X,, X3 ) On
X5 0 0

the lateral surface is zero. (b) Find the resultant force, and resultant moment, about the origin O,
of the stress vector on the left end face x =0.

Copyright 2010, Elsevier Inc



Lai et al, Introduction to Continuum Mechanics

T

42

Note: [xjdA= and [x3dA=

T
82

Ans. (a) The outward unit normal vector to the lateral surface x5 +2x3 =1 is given by:
Xo€y + 2X3€3 R 1 0
1 ,7)(5 i thus, [t]=[T][n,] izxs 8 8 QX)Z, ,—XZZ o 8
(b) On the left end face x; =0, n =—e, the stress vector is t = 2X3e, — X,€3,
Fr = ItdA:I(2x3e2 — Xp€3)dA= (2e2)jx3dA—(e3)Ix2dA= 0.
[note: the axes are axes of symmetry, the integrals are clearly zero]]
M, = IxxtdA :J(xze2 + X383 ) % (2X3€5 — Xp€3 )dA

[ 2 2 _ |z 27 _ 7z
- j(x2+2x3)eldA_ {—4\/§+—8\/§}e1_ PN

4.12  For any stress state T, we define the deviatoric stress Sto be S=T —(T /3)1, where
Ty Is the first invariant of the stress tensor T . (a) Show that the first invariant of the deviatoric

6 5 -2
stress vanishes. (b) Given the stress tensor [T]=100 5 3 4 |kPa.,evaluate S. (c) Show
-2 4 9

that the principal directions of the stress tensor coincide with those of the deviatoric stress tensor.

Ans. (a) From S=T—(Ty /3)I, we have, trS=trT —(Ty /3)trl =T — (T, /3)(3)=0.

6 5 -2 0 500 -200
(b) [S]=100] 5 3 4 |-(1800/3)[I]=| 500 300 400 |kPa.
2 4 9 ~200 400 300

(c) Let nbe an eigenvector of T, then Tn=An. Now Sn=Tn—(T /3)In=An—(Ty /3)n,
thatis Sn=4'n where 2'=1—(Ty /3). Thus, nis also an eigenvector of S with eigenvalue
A—(Tg 13).

4.13  An octahedral stress plane is one whose normal makes equal angles with each of the
principal axes of stress. (a) How many independent octahedral planes are there at each point? (b)
Show that the normal stress on an octahedral plane is given by one-third the first stress invariant.
(c) Show that the shearing stress on the octahedral plane is given by

1/2
T, = %[(Tl -T, )2 +(T, —T3)2 +(T, —Tl)zJ , where T;,T,, T, are principal values of the stress

tensor.

Ans. (a) There are four independent octahedral planes. They are given by the following unit
normal vectors:
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_Gitertey _ete,—ey -6+l € -8 —e

n N NN N

+e, +
We note that — 21 f/% % gives the same plane as n,, etc.
(b) Using the principal directions as the orthonormal basis, the matrix of T is diagonal, i.e.,
T, 0 0
. e te,te,
[T]=]| 0 T, 0 |.Thenormal toan octahedral plane is +—2&——=, thus,
J3
0 0 T,
. T, 0 o1
T, :n-Tn=§[1 +1 #1]| 0 T, 0 ||+1| where in this equation, the row matrix and column
0 0 T+t

matrix of n have the same elements, that is if the row matrix is [1 -1 1] then the column matrix
1 T, 0 01

is|—1|.Thus, T, =%[1 +1 J_rl] 0 T, 0|1 =%(T1+T2 +T3).
1 0 0 Ty #1

© TE=|t, -T2 = %(le 7 +T9)- %(le T3 +T3 + 21T, + 21Ty + 2T,y

I+

2 1
- 5(Tl2 AT 4TS =TT, =TT =TT ) = 5[(1 )+ (T =Ta)* +(Ts —Tl)z}

. 1 2 2 22
That is, Ts=§[(T1—T2) (T, =Ty +(Ty-Ty) J

4.14 (a) Let mand n be two unit vectors that define two planes M and N that pass through a
point P . For an arbitrary state of stress defined at the point P, show that the component of the
stress vector t,, in the n -direction is equal to the component of the stress vector t, in the

m direction. (b) If m =e;and n =e,, what does the results of (a) reduce to?

Ans. (a) The component of the stress vector t, in the n -direction is n-t,, =n-Tmand the
component of the stress vector t,,in the m directionis m-t, =m-Tn=n-T'm. Since Tis

symmetric, therefore, n-T'm =n-Tm, therefore, n-t,, =m-t,,.
(b) If m=¢, and n=e,, then e -ty =€ty —> T, =T,y

4.15 Let m be a unit vector that defines a plane M passing through a point P . Show that the
stress vector on any plane that contains the stress traction t,, , lies in the M plane.

Ans. Referring to the figure below, where m is perpendicular to the planeM , and t,, is the stress
vector for the plane. Let N be any plane which contains the vector t,, and let n be the unit vector
perpendicular to the plane N . Then t,, = Tn. We wish to show that t,, is perpendicular to m .
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L m

M
N P

Now, t,-m=Tn-m=n-T'm=n-Tm=n-t., =0, because t,, is on the N plane.
Thus, t,-m=0,so that t,lies on the M plane.

4.16 Let t,, and t,be stress vectors on planes defined by the unit vector m and n respectively
and pass through the point P . Show that if k is a unit vector that determines a plane that contains
t,, and t,, thent, is perpendicular tomand n.

Ans. Since K is a unit vector that determines a plane that contains t,, and t,, therefore,

k="m"%_ Since t, =Tk, t, =Tm,andt, = Tn, therefore,
|thtn|
_ T 3 th, -ty xt, -
m-t,=m-Tk=k-T'Tm=k-Tm=k-t,, =-2 0" _0 similarly,
[t xty|
n.tk:n.Tk:k.TTn:k-Tnzk-tn=m=
|thtn|

4.17 Given the function f (x,y)=4- X2 — y2 , find the maximum value of f subjected to the
constraint that x+y=2.

Ans. Let g(x,y)=4—x2—y?+ A(x+y—2), then we have the following three equations to solve
for x,yand 1:

a—g=—2x+/1=0, a—g=—2y+/1=0 and x+y=2.
OX oy

Thus, -2x+1=0—>1=2x, -2y+1=0—> A=2y, therefore, x=y—
X+y=2—>2x=2—>x=1=y. Thatis, f,, occursat x=y=1. Thatis,

frax =4 - (0% = ()% =2

4.18 True or false:

(i) Symmetry of stress tensor is not valid if the body has an angular acceleration.
(ii) On the plane of maximum normal stress, the shearing stress is always zero.

Ans. (i) False. (ii) True.
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419 True or false:

(i) On the plane of maximum shearing stress, the normal stress is always zero.
(i) A plane with its normal in the direction of e, + 2e, —2e; has a stress vector

t =50e; +100e, —100e; MPa. It is a principal plane.

Ans. (i) Not true in general. Maybe true in some special cases.
(ii) True. We note that t =50e; +100e, —100e; =50(e; + 2e, — 2e3). Therefore, t is normal to
the plane, so that there is no shearing stress on the plane. That is, it is a principal plane.

4.20 Why can the following two matrices not represent the same stress tensor?
100 200 40 40 100 60
200 O 0 [MPa,[100 100 O |MPa..
40 0 -50 60 0 20

Ans. The first scalar invariant for the first matrix is 50 MPa. The first scalar invariant for the
second matrix is 160 MPa. They are not the same, therefore, they can not represent the same
stress tensor.

0 100 O
421 Given [T] =[100 0 0 |MPa. (a) Find the magnitude of shearing stress on the plane
0 0 O

whose normal is in the direction of e; +e, . (b) Find the maximum and minimum normal stresses

and the planes on which they act. (c) Find the maximum shearing stress and the plane on which it
acts.

L . 0 100 01 100 1
Ans. (a) Let n=—=(e;+e,).Then t, =—=[100 0 O 1|===|1]ie,
V2 V2 0 0 0}l0 V2 0
t, =100n — shearing stress T, =0.
0-4 100 O
(b) The characteristic equationis | 100 0-1 0|=0-—> —/1(12 —100? ) =0
0 0 -1

— 4 =100MPa., 4, =-100MPa., A; =0. The maximum normal stress is 100 MPa. and the
minimum normal stress is —100MPa.

For 4 =100MPa., —100¢; +100c, =0, sothat &g =, Ny =(g; +e2)/\/§ :

For 4, =—100MPa., 100c; +100c, =0 — cy =z, , N, = (&, —€,) /2 .

T —(T,)..  100—(-100
© (Ts)m = (T ) 2( " i = (2 ) =100 MPa. The maximum shearing stress acts on

the planes n=(n; + nz)/\/E, i.e., on the planes e; and e,.
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4.22  Show the equation for the normal stress on the plane of maximum shearing stress is

(Tn )max + (Tn )min .

T =
n 2

Ans. Let {n;,n,,n3} be the principal axes of the stress tensor with principal values T, >T, >Tj,

T, 0 0
then [T]=| 0 T, 0 |.Ontheplane n=(n,£n,)/+/2, the shearing stress is a maximum. On
0 0 T,

this plane, the normal stress is:

T, 0 01

T :

Tn=n-Tn—>Tn=%[1 0 #1Jj0 T, 0] 0 =T1;T3=(”)ma><2(”)mm

0 0 Tyl|l#1

4.23  The stress components at a point are given by: T;; =100MPa., T,, =300MPa.,
Tz3 =400MPa. T;, =T;3 =T, =0. (a) Find the maximum shearing stress and the planes on

which they act. (b) Find the normal stress on these planes. (c) Are there any plane/planes on
which the normal stress is 500MPa. ?

Ans. (a) The maximum normal stress is clearly T;; =400MPa ., acting on the e;plane and the
minimum normal stress is clearly T,; =100MPa., acting on the e; plane. Thus, the maximum

shearing stress is (T;), . _400-100 =150 MPa., acting on the plane n = %(e1 tey).
. 100 O 0|1 1 100
(0) Ty=f1 0 +1] 0 300 0 | 0|=7[1 0 1]} 0 |=250MPa
0 0 400| £1 +400
Note: We can also use the result of Prob. 4.22 to obtain T, = T ;Tm"‘ _400+100 _ 250 MPa.
(c) No, because T, =400MPa
4.24  The principal values of a stress tensor T are T; =10MPa., T, =-10MPa.and
T; 0 O
T; =30MPa. If the matrix of the stress is givenby: [T]=| 0 1 2 [x10 MPa,, find the
0 2 Ty

values of T;; and Ts3.

Ans.

I3 = (10)(~10)(30) = (10)° (TyyTaz — 4Ty, ) > -3 =Ty Ta3 — 4T,y ) (i)
(i) and (i) > —3=(2-Ts)(Tag —4) —>Td3 —6Ts3 +5=0. Thus,
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Ty3 =[6++/36—-20]/2=3%2. Thus, Ts3 iseither5or1.

To determine which is the correct value, we check

|, =(~10)(30) +(10)(~10) +(10)(30) =10%[ (Ta5 — 4) + TysTag + Ty |

= Ta3 + Ty T35+ T3 —3=0. (iii)

Try Tg3 =1first, from (i), T;; =1, so that (iii) is clearly satisfied. Nexttry T3 =5, eq (i)
givesT;; =2-5=-3 , then left side of (iii) becomes 5+ (-3)(5) -3-3=-16=0.

Thus, Tag =1and Tj; =1.

300 O 0
4.25 If the state of stress at a point is: [T] = 0 =200 O [kPa.,find (a)the magnitude of
0 0 400

the shearing stress on the plane whose normal is in the direction of (2e1 +2e, + e3) and (b) the
maximum shearing stress.

Ans. (a) Let n= %(Ze1 +2e,+€3), then

30 0 02 600
[t.]=2 0 —200 0 | 2|=1]-400]—>t,=2%(6e, e, + 2e,)
3 3 3
0 0 4001 400

T,=n-t :%(12—8+4):%:88.89kPa.

n n

4 4

T2 =[t,[? -T2 = 10768 10" x64 104, 676 T, =260 kPa.

9 81

400 —(-200

() (T ) e _200=(2200) _ 500 kpa,

1 40
4.26 Given [T] =|4 1 0 |MPa. (a) Find the stress vector on the plane whose normal is in

0 01

the direction of ¢; +e, . (b) Find the normal stress on the same plane. (c) Find the magnitude of

the shearing stress on the same plane. (d) Find the maximum shearing stress and the planes on
which this maximum shearing stress acts.

1 4 0]|1 5
1 1 1 5
Ans. (a) Let n=——(e, +e,),then |t |[=—=|4 1 O0||1l|=—=|5|—>t,=—(e,+6,).
() \/5(1 2) [n] \/EO o 1llo \/EO n \/E(l 2)

(b) T,=n-t, :%(5+5)=5 MPa. (c) T2 =|tn|2 ~T2=25-25=0
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(d) The characteristic equation is (1—/1)[(1—/1)2 —42} =0— 4 =5, 4, =-3, 43=1. Thus,
(Tn) e =5 MPa.and (T,) . =-3 MPa.
FOr (T ) =5 MPa. (1-5)e + 4, =0—> o =t >y = (1/42) (e, + €.

m

FOr (Ty )i =3 MPa. (143)ay +4at, =0 g =—a >N, = (112} (e, -¢,).

min

5-(-3
Thus, (TS) =¥ =4 MPa., acting on the plane whose normal is

max

n=(1/\/§)(n1in2)—>n=e1 andn=e,.

4.27 The stress state in which the only non-vanishing stress components are a single pair of
shearing stresses is called simple shear. Take T;, =T,; =7 and all other T;; =0. (a) Find the

principal values and principal directions of this stress state. (b) Find the maximum shearing stress
and planes on which it acts.

0 O
Ans. (a) With [T]=|z 0 0/, the characteristic equation is
0 00

A2 =) =0 hy =7, Jp =7, & =0,

For 4, =—7 —>(0+7)ay +72, =0 > o =—a1, —>n2:(1/\/§)(e1—e2).
T—(-7

©) ()=S0

n=(1/\/§)(nlirn2)—>n=e1 andn=e,.

=7, acting on the plane whose normal is

4.28 The stress state in which only the three normal stress components do not vanish is called a
tri-axial state of stress. Take Ty; =0y, Ty, = 0, T35 = 03 With 03 >0, > 03 and all other T;; =0.

Find the maximum shearing stress and the plane on which it acts.

Ans. (T,) =" n=i(elire3).

max 2 \/E

4.29  Show that the symmetry of the stress tensor is not valid if there are body moments per unit
volume, as in the case of a polarized anisotropic dielectric solid.

Copyright 2010, Elsevier Inc



4-13

Lai et al, Introduction to Continuum Mechanics

Ans. Let M" =M, e, + M,e, + Mze, be the body moments per unit volume. Then referring to the

figure shown below, the total moments of all the surface forces and the body force and body
moment about the axis which passes through the center point Aand parallel to the x; axis is :

Typ (A% AXG ) (A%, 1 2) = (Typ + ATy, ) (A% AXg ) (AX, 1 2) + M3 (A% AxyAX5 )

=(1/12) (density) (Ax AX, AXg )[(Ax1 )2 +(AX, )2 }053

where a4 is the X3 components of the angular acceleration of the element. We now let
AX; = 0,Ax, — 0,Ax3 — 0and drop all terms of small quantities of higher order than
(AxAx,AX3) , We obtain,

Tzl (AX]_AXZAX3) _T12 (AX]_AXZAX3) + M; (AX]_AXZAX3) = 0 —> le _T21 = M; y

Similarly, one can show that Ty =Ty, = M, and Ty — Ty, = M.

T, +AT,,
T +AT,
T, +AT,,
THC‘~ Ax, Q “—’ T,+AT,
T, Ax,

XX Tp(X.X) O
4.30  Given the following stress distribution: [T]=| T, (X, %) % —2%, 0 |, find T;, so
0 0 Xo

that the stress distribution is in equilibrium with zero body force and so that the stress vector on
the plane x, =1is given by t =(1+x;)e; +(5— X, )e,.

Ty

Ans. The equations of equilibrium are 8_”+ pB; =0. Now with B; =0, we have,
X.
j

oX; 0%y  OX3 0Xy
0Ty N 0Ty, N 0Tys _ 0Ty

OX; OXy OX3 0%

OX; OXp  OXg
To determine C, we have, the stress vector on the plane x; =1is

=0T ==X+ f(x).

0—>0=0.

t=Te, =Tye; +Tyey +Tares =[ (X + X )&y + (2% — X, + C)ezl(l:l. Thus,

(1+x)e;+(2=%, +C)ey =(1+ X% )e; +(5—X;)e; > C=3>Tp, =2x — X, +3.
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X —X3 0
4.31 Consider the following stress tensor: [T]=a|—X; 0  —X, |. Find an expression

0 —x Ty
forTg3 such that the stress tensor satisfies the equations of equilibrium in the presence of body
force vector B = —ge;, where g is a constant.

ot

Ans. The equations of equilibrium are 8_”+ pB; =0. With B, =B, =0, B; =-g, we have,
X :
j

My, T | s +pB, =0+0+0+0=0 M1 OTp | o
X % 0% Cox OX, 0%

8;'31 + | OTss +pBy=a 14+ T - pg —0> T P9,
X, 0%y  OXg 0X3 OX3 a

pB,=0+0+0+0=0,

4.32 In the absence of body forces, the equilibrium stress distribution for a certain body is
Ty = AXy, Tpp =Ty =X, Tpp =BX; +CXy, T3 =(Tyy + Ty, )/ 2, all other T;; =0. Also, the
boundary plane x;, —x, =0 for the body is free of stress.

(a) Find the value of C and (b) determine the value of AandB.

ot
Ans. (a) The equations of equilibrium are —2> + pB, =0. With B, =0, , we have,
X

My , 0Nz | Mg +pB =0+0+0+0=0,
oX; 0%y  OX3
0%,  OXy  OX3
0% OXp  OXg

(b) The unit normal to the boundary plane X, —X, =0is n = (e1 —ez)/\/E . Thus, on this plane

(note x; =X, ), we have,

+pB,=1+C+0+0=0—->C=-1,

pB;=0+0+0+0=0.

Axq Xy 0 1 Axg — X 0
1 1 B 01, thus
t|=——=| X Bx, — X 0 “ll=——%| % —BX, + % |= , ,
[] 2 1 1~ M 2 1 1T %
0 0 (T11+T22)/2 0 0 0

A =X =0—->A=landx, —Bx +%=0—>B=2.

4.33 In the absence of body forces, do the following stress components satisfy the equations of
equilibrium:
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Tt =a[x§ +v(x12 —x%)] To =a[x12 +v(x§ —xf)] Tss =av(x12 +x§),

T12 =T21 = —20!VX1X2, T13 =T3]_ = 0’ T23 = T32 = 0

oT;
Ans. The equations of equilibrium are 6_”+ pB; =0. With B; =0, , we have,
X .
j
oX; OXy  OX3
0Ty N Ty, N 0Tyg
0%,  OXy  OX3
0% OXp  OXg

+ pB =2av¥ —2avx +0+0=0,

+ pBy ==2avX, + 2avX, +0+0=0

pB;=0+0+0+0=0. Yes, the equations of equilibrium are all satisfied.

4.34 Repeat the previous problem for the stress distribution
Xp+X 2% —X%X, 0
[T]l=a|2x %, %-3%, 0
0 0 X

ot

Ans. The equations of equilibrium are —L + pB, =0. With B, =0, , we have,
X.
j

OX,  OXy  OXg

0Ty N 0Ty, . 0Tyg

OX  OX,  0OX3
No, the second equation of equilibrium is not satisfied.

+pB =0->a(1-1+0)=0-0=0,

+pBy,=a(2-3+0)#0

4.35 Suppose that the stress distribution has the form (called a plane stress state)

T11(X1,X2) T12(X1,X2) 0
[T]= T12(X1:X2) T22(X1’X2) 0

0 0 0
(a) If the state of stress is in equilibrium, can the body forces be dependent on x5 ? (b) If we
2 2 2
introduce a function ¢(x, X, ) such that T;; :6_?, Ty :8_? and T =— O¢ , What should

be the function gp(xl, x2) for the equilibrium equations to be satisfied in the absence of body
forces?

Ty | 0Ty, 0Ty 4 pBy = Ty (%, %) L T2 (%, %)

Ans. (a)
OX,  OXy  OXg 0% 0Xy

+pB,=0.
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0Ty N Ty, . 0Ty3 4 pB, = Ty (X4, %) . ATy, (X, %2 )
0%  OX; OXg 0% 0%,
Thus, B; and B, must be independent of X; .

2 2 2 2
(b) aTll_+_a-r12_}_aT13 +pBl_>i a_(é) _i a_(/) +0+0=i 8_2) _i 8_(20 =0
OX,  OXy  OXg OX | Ox5 ) OXy | OX10%, OX \ Ox5 ) 0% | 05

2 2 2 2

Mo Moo Moz, g O 0@ |, 000 g, 00|, 0|00
aXl 8X2 8X3 5X1 8X18X2 6X2 axlz 8X2 aXlz 8X2 axlz

Thus, the equations of equilibrium are satisfied for any function (p(xl, xz)which is continuous up

to the third derivatives.

4.36 In cylindrical coordinates (r,H, z) , consider a differential volume of material bounded by

the three pairs of faces: r=r andr=r+dr; #=6 and 6=6+d@8; z=1z and z = z + dz. Derive the

r and & equations of motion in cylindrical coordinates and compare the equations with those
given in Section 4.8.

Ans.

X

From the free body diagram above, we have,
> F ==T, (rd@)dz+(T,, +dT,, )((r+dr)d6#)dz - T,,drdzcos(d6 / 2)

+(Typ +dT,y )drdzcos(d@ / 2) —Tyedrdzsin(d@ / 2) — (T, + dTy ) drdzsin(d6 / 2)
T, (rd@)dr +(T,, +dT, )(rd@)dr + pB, (rd@)drdz =[ p(rd6)drdz |a, .

2 3
Now, cos(d—ajzﬂi(%j +...and sm(d—ejz(d—aj—i(d—ej +...and keeping only terms
2 210 2 2 2 32

involving products of three differentials (i.e., terms involving product of 4 or more differentials
drop out in the limit when these differentials approach zero), we have,
T, drd@dz +(dT,, )rd6dz + dT, zdrdz — 2T,,drdz(d6/ 2)

+(dT,, )(rd6)dr + pB, (rd6)drdz =| p(rd6)drdz |a,

Dividing the equation by rdé&drdz , we get,

T, 0T, 0T,y Ty 0T, I
L4424 oB =pa. . Thisis Eq. (4.8.1
ror rde  r o CorTP G- (481)
Next,

Copyright 2010, Elsevier Inc
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> Fy =Ty (rd@)dz +(Ty, +dTp, )((r +dr)d@)dz +T,,drdzsin(d6 / 2)
+(Typ +dT,g )drdzsin(d@/ 2) - Tyedrdzcos(d @ / 2)+(Ty, +dTy, )drdzcos(d6 / 2)
Ty, (rd@)dr +(T,, +dT,, )(rd@)dr + pB, (rdo) drdz—[p (rdo) drdz]ag

Again, cos(dej 1+ _(d_@j +...and sin[d—er(d—ej (dé’j ... and keeping only terms
2 21\ 2 2 2 312

involving products of three differentials, we have,
(Tgr )drd@dz +(dT,, )rdodz + 2T, ,drdz(d@/ 2) +(dTy, )drdz +(dT,, ) rd&dr

+pBy (rd)drdz =[ p(rd6)drdz |a,
Dividing the equation by rdé&drdz , we get,
Tﬂ+ Ty, +Tﬁ+ 10Tyy 8ng

+ pB, = pa, , thisis Eq. (4.8.2
r or r r 00 0z PB0 = P% - ( )

4.37 Verify that the following stress field satisfies the z-equation of equilibrium in the absence
of body forces:

7 3r?z Az z 328 3rz°
I A G AR

RZ=r%4+7°

Ans. The z equation of equilibrium in cylindrical coordinate is:
My (1T Tor aTZZ+pB =0. Now @:L, R _Z 5 that
or r 06 r 0z oo R o0z R

aT,, o r 0 3rz? 1 3roR 3z° 15rz° 4R
or orr® or R® R® R*ar R® R® or

2 2 2.2 2 2.2
=—A i_3L+3L_15L =—A i_3L+32 _15r z , aTZH =0
R® R® RS R’ R® R® RS R’ 00

TLZ_A i+£
r R R®)
oT 1 3z8R 972 152° R 1 322 972 157%
e/ S il Tt P | el
oz R RY‘az RS RS oz R® R R R’

My, Tu 0Ty _ [ 3 3r° 32° 3% 32 92° 15r%2% 157"
"o r oz

—t—+—+

R® R R R R° R R’ R’
__al 3 3% 32 32° 3% 97° 15r°2° 157°
lRR R R R R R R

2, 2 2(.2, 2
3 3(r +z ) 15,2 152 (r +z ) 3 3R? 15722 157%R2
+ =—A 3 5 + 5 - 7 :0-
R R R R
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4.38 Given the following stress field in cylindrical coordinates:

2 3 2
Ter Z_PP%’ T :_3P—Z5’ Ty, =_3P—Z5r’ Too =Tro =T29 =0, R*=r?+ 7
27R 27R 27R

Verify that the state of stress satisfies the equations of equilibrium in the absence of body forces.

Ans.

My Mg Tu=Tog Ty _ 0 3Pzr’ ) 1 3Par? L0 _3PZr
o rde r oz or| 2zR® 27zR% ) az| 24R®

;
3Pz a(z 3Pzr2o( 1) 1 3Pzr? 3Pr o , 3Pz’r)o( 1
=— —r)+— —|l = || - = || - etk e - ==
27R or 2r Jor\ R ri 2zR 27R° ) oz 2r Joz\ R
3Pzr (15Pzr? \éR ( 3Pzr 3Pzr) (15Pz%r |éR
=5 6 |Ar 3 B R 6 |~
7R 27zR® Jor \2zR 7R 27R° ) oz
2 2
15Pzr (15Pzr® | (15P2% ) 15Par [ 15Par(rP+2)
- 5 7|t 7|7 5 " 7
27R 27R 27R 27R 27R

=0.

OTor , 2Trg  10Tgy  OTo,
or r r oo oz

oT, 1aT,, T, 0T, o 3Pz’r| 1( 3pPz’r) of 3rP
— A=+ 2 pB, =—| - = |t~ 5|t =]~ 3
o r 06 r oz or{ 2zR ri. 2zR oz\ 2zR

_(_3pz2 ) [ 3Pz’ Q(LJ_ 3Pz*  9pz* (3P’ i(i)
27R° 2z Jor\R®) 27zR® 2xR® 27 |oz\ R®
3Pz? 15Pz%r \oR 3Pz2 9Pz® [15Pz% \6R

= 7o o5 |t 6 | A 5 5" 6 | A,
27R 27R° Jor 2zR° 2zR 27R° )0z

3Pz? 15Pz°r? | 3Pz? 9Pz? (15Pz* 15Pz? o r? + 22
=| - ik — |- T 3 == - = |+15Pz —|=0
27R 27R 27R 27R 27R 27R 27R

=0+0+0+0=0

4.39 For the stress field given in Example 4.9.1, determine the constants A and B if the inner
cylindrical wall is subjected to a uniform pressure p; and the outer cylindrical wall is subjected to

a uniform pressure p, .

Ans. The given stress field is:
B

Trr =A+_, Tee :A_ B
r

r—z, T,, =constantand T,y =T,, =Ty, =0.

On the outer wall, r =r,, and T,, =—p,, and on the inner wall, r =r;, and T,, =—p;, therefore,

we have, —p, = A+E2 (i)and —p; = A+%(ii).
o i

2 2
pp BB g (eop)iE (P

2 2 2 2 ! 2 2
fi o (ro - ) (ro - )
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4.40 Verify that Eq. (4.8.4) to (4.8.6) are satisfied by the stress field given in Example 4.9.2 in
the absence of body forces.

2B B

Ans. The given stress field is: T, = A—r—3, Tog =Tyy = A+r—3, Tio=Try=Tg =0

r2 or rsind 06 rsind o¢ r
=ii(r2A—@j+0+0— E(A+Ej:E(A+EJ+O+O—E[A+E):0.
r2 or r r r3)r r3 r re

3 .
%5(”&) 1 6(T6,93|n0)+ 1 Ty, Tro—Tor —Tys 0010

+
r or rsiné@ 08 rsingd og¢ r
T,;coté
04040+ 000 T 07
r r
15(r‘°’T¢r) 1 0(Tysing) 1 8Ty, T, —T, +Tgc0t0
-3 +— +— + =0+0+0+0=0.
3 or rsind 06 rsind o¢ r

4.41 In Example 4.9.2, if the spherical shell is subjected to an inner pressure p; and an outer
pressure p, , determine the constant A and B .

Ans. From the example, we have, T, = A—Z—E, thus, —p, = A—2—3B and —p; = A—2—3B
r o rl
3 3 3,3
—>A=——p°r°3_r;iri andB:——(pc’_spi)l;f’ri :
(I‘O—I’i) 2(ro_ri)

4.42 The equilibrium configuration of a body is described by:

X =16Xq, X, = —% Xy, Xg = —%X3. If the Cauchy stress tensor is given by:

Ty; =1000 MPa.,and all other T;; =0, (a) calculate the first Piola —Kirchhoff stress tensor and the

corresponding pseudo stress vector for the plane whose undeformed plane is e; plane and (b)

calculate the second Piola-Kirchhoff tensor and the corresponding pseudo stress vector for the
same plane.

1 1 - . . .
Ans. From x; =16Xy, X, = 2 Xy, Xg = 2 X3, we obtain the deformation gradient F and its

inverse as:

Copyright 2010, Elsevier Inc
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6 0 0 1/16 0 0
[Fl=|o -174 o |, [F']=] 0 -4 0 |anddetF=1.
0 0 -1/4 0 0 -4

.
(a) The first Piola-Kirchhoff stress tensor is, from T, =(detF)T(F’1) ;

1000 0 0]f1/16 0 O 1000/16 0 O
[TO]:(detF)[T]{(F1)1:(1) 0 00 0 -4 0f=f 0 0 0lMPa
0 00O 0 -4 0 00
For a unit area in the deformed state in the e, direction, its undeformed area is
16 0 0 [[1] [16
(d%no)zﬁFTn =(1)) 0 -1/4 0 |[0|=| 0 |—>dAn,=16e,.
0 0 -1/4]0 0
That is, its undeformed plane is also e, plane. The corresponding pseudo stress vector is given by
1000/16 0 01
t, =Toh,, Where n, =e;. Thus t, =Ton, > [t,]=| 0 0 0[0|—>t,=(1000/16)e;
0 0 0f|0

We note that the pseudo stress vector is in the same direction as the Cauchy stress vector and the
intensity of the pseudo stress vector is 1/16 of the Cauchy stress vector simply because the
undeformed area is 16 times the deformed area and both areas have the same normal direction.

- T
(b)The second Piola-Kirchhoff stress tensor is, from T = (det F) F‘lT(F‘l)
1/16 0 0 |[1000 O O|/1/16 O O

[ﬂ:(detF)[F1][T][(F1)T}=(1) 0 -4 0| 0 oo 0 -4 0
0 0 -4/ 0 o000 0 -4
1/16 0 07[1000/16 0 0] [1000/256 0 O
o -4 0| 0o 00l 0 0 0[MPa
0 0 -4 0 00 0 00

The corresponding pseudo stress vector is given t = 'T'no , Where n, =e;. Thus,
t=Tn, —t=(1000/256)e;.

4.43 Can the following equations represent a physically acceptable deformation of a body?

Give reason.
1 1
X =——=Xq, Xo==Xg3, Xg=—4X,.
1= 75 25 e 2
-1/2 0 O
Ans. [F]z 0 0 1/2|—detF=-1. The given equations are not acceptable as a
0o -4 0

physically acceptable deformation because it gives a negative ratio of deformed volume to the
undeformed volume.

Copyright 2010, Elsevier Inc
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4.44  The deformation of a body is described by:

X =4Xy, X, =—(1/4)X,, x3 =—(1/4) X;. (a) For a unit cube with sides along the coordinate
axes what is its deformed volume? What is the deformed area of the e, face of the cube? (b) If
the Cauchy stress tensor is given by: T;; =100 MPa.,and all other T;; =0, calculate the first

Piola —Kirchhoff stress tensor and the corresponding pseudo stress vector for the plane whose
undeformed plane is e, plane. (c) Calculate the second Piola-Kirchhoff tensor and the
corresponding pseudo stress vector for the plane whose undeformed plane is e; plane. Also,
calculate the pseudo differential force for the same plane.

Ans. From x =4X;, X, =—(1/4) X,, X3 =—(1/4) X5, we have (a)

4 0 0
[F]=|0 -1/4 0 |—>detF=1/4,thus dV =(detF)dV, —dV =(1/4)(1)=1/4,
0 0 -1/4
/4 0o o1 1/4
dA=dA0(detF)(F‘1)Tno:(1)(1/4) 0 —4 00[=(1/4) 0 |>dA=(1/16)g
0 0 -4J0 0

That is, the deformed volume is 1/4 of its original volume and the e, face of unit area deformed

into an area 1/16 of it original area and remain in the same direction. These results are quite
obvious from the geometry of the deformation.

(b) The first PK stress tensor is:

100 0 0f|1/4 0 O 100/16 0 O
[TO]=(detF)[T]{(F‘1)T}=(lj 0 00/[0 —4 0[=| 0 0 0|MPa
0O 0 0|0 O -4 0 00
The corresponding pseudo stress vector for e; -plane in the deformed state, whose undeformed
plane is also e, -plane, is given by t, =T,n,, wheren, =e, , thatis t, =(100/16)e;MPa. The
Cauchy stress vector on the e, face in the deformed state is t =100e;MPa. Clearly the Cauchy

stress vector has a larger magnitude because the area in the deformed state is 1/16 of the
undeformed area.

(c) The second PK stress tensor is:
1/4 0 0]{100/16 0 0| (100/64 0 O

[T]=[F*][%]=| © -4 of o o0 o0]- 0 o0 0MPa

0O 0 -4 0 00 0 00
The corresponding pseudo stress vector for the e; -plane in the deformed state, whose undeformed
plane is also e, -plane, is given by t=Tn,, where n, =g, . Thus, t=(100/64)e;MPa. The

Copyright 2010, Elsevier Inc
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pseudo force df is related to the force df (= t.dA =100/16e, for dA =1) by the formula
1/4 0 0 ]/100/16
df =F'df , Ths, [of |=[F*|[df]=| 0 -4 0| 0 |->df= (%jel
0O 0 -4

4.45 The deformation of a body is described by:

X = Xy +kX,, X, = X,, X3 = X3. (a) For a unit cube with sides along the coordinate axes what is
its deformed volume? What is the deformed area of the e, face of the cube? (b) If the Cauchy
stress tensor is given by: T, =T,; =100 MPa.,and all other T;; =0, calculate the first Piola -

Kirchhoff stress tensor and the corresponding pseudo stress vector for the plane whose
undeformed plane is e; plane and compare it with the Cauchy stress vector in the deformed state.

(c) Calculate the second Piola-Kirchhoff tensor and the corresponding pseudo stress vector for the
plane whose undeformed plane is e; plane. Also, calculate the pseudo differential force for the

same plane.

Ans. From x; = X; +kX,, X, = X5, X3 = X3, we have (a)
1 k O
[F]=[0 1 0|—>detF=1,thus dV =(detF)dV, —»dV =dV, =1,
0 01
1 0 01 1
dAszO(detF)(F’l)T ne=(1)(1)[—* 1 0]|0|=|—k|>dA=e —ke,
0 0 1]l0 0
That is, the deformed volume is the same as its original volume and the e, face of unit area

deformed into an area v/1+k? of it original area and whose normal is in the direction of e, — ke, .
These results are quite obvious from the geometry of the deformation.

(b) The first PK stress tensor is:

0 100 0|1 O O] |-100k 100 O
-1 T

[To]z(detF)[T][(F ) }: 100 0 0f-k 1 0|=| 100 0 0|MPa

0O 0 o0 01 0 0 0
The corresponding pseudo stress vector for the (e; —ke,) plane, whose undeformed plane is the
e;plane, is givenby t, =T,n,, wheren, =e;. Thus, t, =100(—ke, +e,) MPa. The Cauchy
stress vector on the (e; — ke, ) face in the deformed configuration is

0 100 O 1

! 1100 0 of«k|o>t=—1% (—key +e;)

B e L B R ves

The Cauchy stress vector has a smaller magnitude because the deformed area is v1+ k? times the
undeformed area.
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(c) The second PK stress tensor is:
1 -k O -100k 100 0| |-200k 100 O

[T]=[F*][T]=|0 2 of 00 o0 o0|-| 100 0 0|MPa
0 0 1 0 0 O 0 0 O
The corresponding pseudo stress vector for the e; — ke, plane, whose undeformed plane is the
e, plane, is given by t=Tn,, where n, =e, . Thus, t =100(—2ke, +e, )MPa. The pseudo force

df is related to the force df (= t,dA =100(-ke, +e,) for dA, =1) by the formula df = Fdf ,

1 —k 0]k
Thus, [df ]=| F* |[df]=100/0 1 0O 1 |—df =100(-2ke; +¢,).
0 0 10

4.46 The deformation of a body is described by:
X =2Xq, Xp =2X,, X3 =2X5. (a) For a unit cube with sides along the coordinate axes, what is
its deformed volume? What is the deformed area of the e, face of the cube? (b) If the Cauchy

100 0 O
stress tensor isgivenby: | 0 100 0 |[Mpa., calculate the first Piola —Kirchhoff stress tensor
0 0 100

and the corresponding pseudo stress vector for the plane whose undeformed plane is the e; plane
and compare it with the Cauchy stress vector on its deformed plane, (c) calculate the second
Piola-Kirchhoff tensor and the corresponding pseudo stress vector for the plane whose
undeformed plane is the e; plane. Also, calculate the pseudo differential force for the same plane.

Ans. From, x; =2X;, X, =2X,, X3 =2Xzwe have (a)

200
[F]=|0 2 0| detF=8, thus dv = (detF)dv, - dv =8dV, =8.
00 2
12 0 oT1] [u2
dA=dA, (detF)(F ) n=(1)(8) 0 1/2 0 [0]=(8) 0 |>dA=4e
0o 0 1/2]0 0

(b) The first PK stress tensor is:
100 0 0 |{1/2 O 0 400 O 0

[TO]:(detF)[T]{(F‘l)T}:(8) 0 100 0| 0O 1/2 0 |=| 0 400 0 |MPa

0 0 100} O 0 1/2 0 0 400
The corresponding pseudo stress vector for the e; plane in the deformed state, whose undeformed
plane is also e; plane, is t, =400e; MPa. The Cauchy stress vector on the e; plane is

t=100e; MPa. The Cauchy stress vector has a smaller magnitude because the area is four times
larger.

(c) The second PK stress tensor is:
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1/2 0 0 |[400 O 0 200 O 0
[T]=[F*][T]=| 0 2/2 o | 0 400 0| 0 200 0 |MPa
0 0 1/2| O 0 400 0 0 200

The corresponding pseudo stress vector for the e; plane in the deformed state, whose undeformed
plane is also e; plane, is t =200e,MPa. The pseudo force df is related to the force
df (= t,dA =400e, for dA, =1) by the formula df = Fldf . Thus,

1/2 0 0 |1
[df ]=|F*|[df]=400] 0 1/2 0 | 0| df =200e,.

0 0 1/2]0
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CHAPTER 5, PART A

5.1  Show that the null vector is the only isotropic vector. (Hint: Assume that ais an
isotropic vector, and use a simple change of basis to equate the primed and unprimed
components).

Ans. For an isotropic a, by definition, [a], =[a], , where {e;}and{e]} are any two orthonormal

bases. That is [a]ei :[Q]eTi [a]ei —>[a]ei =[Q]; [a]ei for all [Q]ei .

-1 0 O Y -1 0 0|g
Method I. Choose[Q]=| 0 -1 0 |,then|a, |=| 0 -1 0 ||a,|gives
0 0 -1 ag 0 0 -1ja
a =—a =0,a, =—a, =0,a3 =—a3 =0. In other words, the only isotropic vector is the null
vector.

Method II. The matrix equation[a], = [Q]eT [a], , with the same basis for each matrix, is

equivalent to the equation a = Q'a. Thatis, a isan eigenvector for Q' for any orthogonal
tensor Q . But clearly, there is no non-zero vector which is an eigenvector for all orthogonal
tensors.

5.2 Show that the most general isotropic second-order tensor is of the form of «l , where
a is a scalar and | is the identity tensor.

Ans. For an isotropic T, by definition, [T], =[T], , where {e;}and{e;} are any two orthonormal

-1 00
bases. Choose [Q]=| 0 1 0/, then [T]ei =[Q]eTi [T]ei [Q]ei gives
0 01
Ty T T3 -1 0 0||Ty Tp T|-1 0 O -1 0 0||-Ty T Ty
Toy Ty Tog|=| 0 1 0Ty Ty Tog|| 0 1 0= 0 1 0| -Tyy Ty To3
Ty T Ta 0 0 1Ty T3 Tz 0 0 1 0 0 1Ty T Ti

T T —Tig
= _T21 T22 T23 —>T12 = _T12 =0, T21 = _T21 =0, T13 = _T13 =0 T31 = _T31 =0.

T3 T Ta3
1 0 0
Next, the choice of [Q]=|0 -1 0| gives,
0 0 1
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T, 0 0] 1 0 0]y, 0 o071 0o 0] 1 0 O],; O O
0 T3 Ta3 0 0 1|0 T3 Tia||0 0 1 0 0 1|0 -T3 Ta3

T; O 0
= 0 Ty Ty |>Ty=-Ty=0 T;p=-T;=0.
0 T3 Ta3

010
Next, the choice of [Q]=|1 0 0| gives,
0 01

Finally, the choice of [Q]=

T, 0 07701 0], 0 070 1 0] [T, O O
0 T, O|=/1 000 T, O 100]0 Ty 0 [5Ty =Ty
0 0 Ty |00 1[0 0 Tgf00 1] [0 0 Ty

1 T, 0 0] [T, 0 O

0

0

0 0
0 1 g IVGS 0 Tll 0 = 0 T33 0 e d Tll = T33 .
10 0 0 Tyg| [0 0O Ty

5.3  Foranisotropic linearly elastic body, (a) verify the x= y(ﬁ, Ey ) as given in Table 5.1.
(b) Obtain the value of pas E, /A —0

Ans. From Table 5.1, 2= “E =24) 5 2 + (34— By )~ EyA=0
3u—Ey
(32— By )+ (32— By ) +8E,
- u= .
4
o) ~(34- By )+ (32— By )\1+8(Ey 1 )/ (3, 1 A)°
/l:
4

AsE, /10, \/1+8(EY 1 2)1(3-Ey //1)2 —1+4(Ey / 1)/9, where we have used the

binomial theorem. Thus,
uU—>{-BA-Ey)+BA-E\)A1+4(Ey /A) I}/ 4=BA—-E/)Ey /A)/9=(3-E, I 1)(Ey)/9
Thus,as E, /41 —>0, u—>E, /3.

vE 2uv A(1+v) :
54  From 1= u A= d k=" obt =u(Ey,v)and
rom )i-2) 2] an 5, obtain x #(Ey,v)an
k=k(uv)
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vEy 2uv Ey
L)-2v) (1—2v) 721wy
2uv =%—>k 2,u(1+ )
(1-2v) 1+v 3(1-2v)

Ans. A=

A=

5.5  Show that for an incompressible material (v —1/2) that
(@u=E, 13, 1>, k—>ow, butk—A=24/3

(b) T =2uE + (T /3)l where T, is constitutively indeterminate.

Ans. (a) From Table 5.1, we have

2l+v) 2(1+1/2) 3 T @+v)(- 2v) 3 3
(b) In general, T = Ael + 2uE . Now, from Eq.(5.4.2), we have
T

=—% Asyv—>1/2, A >, and /‘te—>Tﬂsothat T:Tﬂl+2yE.
(2u+34) 3 3

We note that because of incompressibility, Ty, will be constitutively indeterminate. It becomes
determinate when the boundary condition(s) is (are) taken into account.

56 Given Ajk| = §ij5k| and Bijk| = é‘iké‘ﬂ . (a) Obta|n Alljk and Blljk . (b) Identlty those
Ay j that are different from B, .

Ans. (@) Ay =110 =0, Braw =y -
(b)
A11 = Aigp = Agz =1 all other Ay =0, Byyy3 =1 all other Byyy =0
A122 # Bi12o, Auiss # Buass-

5.7  Show that for an anisotropic linear elastic material, the principal directions of stress and
strain are in general not coincident.

Ans. We have, Tj; =Cj; Ey . Let e; be the principal basis for E, then [E] is diagonal. Thus,

T12 = C12k| Ek| = C1211E11 + C1222 E22 + C1233E33 . ThIS equatlon ShOWS that In general, T12 ES 0 .
Similarly, in general T;53 # 0 and T,3 # 0 . Thus the matrix of T is not diagonal with respect to the
principal basis of E.
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5.8 If the Lamé Constants for a material are:
2 =119.2GPa (17.3x10° psi), z =79.2GPa (11.5x10° psi)

Find Young's modulus, Poisson's ratio and the bulk modulus.

Ans. From Table 5.1, we have,
u(3a+2u) T792[3(119.2)+2(79.2)]
 d+u 119.2 +79.2

A 119.2 _
20+ )  2(119.2+79.2)

k=2+2413=119.2+2(79.2)/3=172 GPa (25x10° psi).

Ey

206 GPa (3ox106 psi)

5.9  Given Young's modulus E, =103 GPaand Poisson's ratiov = 0.34 . Find the Lamé
constants 4 and . Also find the bulk modulus.

Ans.
VE 0.34(103) .
A= ! = =81.7 GPa (11.8x10
(L+v)(1-2v)  (1.34)(0.32) 2 (11.8x10° psi)

E, 103
2(1+v) 2x1.34

k=2+2413=817+2(38.4)/3=107.3 GPa (15.6x10° psi)

U= ~38.4 GPa (5.56><106 psi)

5.10 Given Young's modulus Ey, =193 GPa ., shear modulus =76 GPa. Find Poisson's
ratiov , Lamé constant A and the bulk modulusk .

Ans.v=Er 12198 (o7 424V _2(76)(0.27)
2u 2(76) 1-2v  1-054

k=2+24/3=89.1+2(76)/3=140 GPa (20.3><106 psi)

-89.1GPa (12.9><106 psi)

5.11 The components of strain at a point of structural steel are:
Ey; =36x10°°, Ey, =40x10°%, Egy =25x107°
Ey;, =12x107°, E,3 =0, E;3 =30x107°
Find the stress components. A =119.2 GPa (17.3><106 psi), 1=79.2 GPa (11.5><1O6 psi)

Ans. From T = Jel + 2uE , we have, with e =(36+40 + 25)x107° =101x10™°
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100 3 12 30 177 19 475
[T]=(119.2)(101)[ 0 1 0[x10°+2(79.2)|12 40 0 [x10°=| 19 184 0 |MPa
001 30 0 25 475 0 160

5.12 Do the previous problem if the strain components are:
Ey; =100x107°, E,, =—200x107°, E;3 =100x107°
Ey, =-100x10"°, E,3 =0, E;3=0

Ans. From T = el + 2uE , we have, with e= (100 -200 +100) x107% =0

100 -100 O 158 -158 O
[T]:2(79.2) ~100 —200 0 |x10°=|-158 -31.7 0 |MPa.
0 0 100 0 0 158

5.13 Anisotropic elastic body (EY =207GPa, u= 79.ZGPa) has a uniform state of stress

100 40 60
given by:[T]=| 40 -200 0 |MPa.
60 0 200

(a) What are the strain components?
(b) What is the total change of volume for a five centimeter cube of the material?

Ans. (a) We would like to use the equation E;; = [(1+ V)T —v(Tkk)5ij] , therefore, we first

1
Ey
obtain v =E—Y—1= 207

—————-1=0.306, then obtain T,, =T;; +T,, + To» =100MPa . Thus,
2,Ll 2(792) kk 11 22 33

100 40 60 100
[E]:Ei 131 40 -200 0 |-(0.306)(100){0 1 O

v 60 0 200 001
100 52.4 78.6] [0.483 0.253 0.380
524 -292 0 |=/0253 -141 0 |x107°
786 0 231| 0380 0 112

(b) Dilatation e = Eq =(0.483-1.41+1.12)x10™> =0.193x10"°.
Total change of volume = AV =(V)(e) = (53)(0.193><10‘3) =24.1x107% cm®.

© 207x10°
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5.14  An isotropic elastic sphere (EY =207GPa, u= 79.ZGPa) of 5 cm radius is under the
uniform stress field
6 2 0
[T] =2 -3 0[MPa
0 0 O
Find the change of volume for the sphere.

B, . 207 1 .
Ans, V—Z—l—m—l—O.SOG, E; _E—[(1+V)Tij ~v(T )3 ] gives
. 6 2 0 10 0] [33 126 0
[E]=Z-1131/2 -3 0|-(0306)(3|0 1 0|;=|126 -234 0 x107°
0 0 0 001 0 -0.443

Thus, e=0.567x10" — AV =(0.567 {4 2

]xlO_ =2.96x107°

5.15 Given a motion
X =Xy +K(Xp+X3), X=X, +k(X;—Xj,), show that for a function f (a,b)=ab
of (X, %) of (X1, X3)
a) T(x,%)=f(X;,X,)+0(K), =
@ 103 = 00, X2)+00), = x

where O(k) >0 ask -0

+0(k) ,

Ans. (a) (X, ) =% =[ Xy +k(X;+X,) ][ X5 +k(X; = X,)]
Thatis, f(x,X;)=X;X,+0(k),where O(k) >0ask —0,i.e.
f(Xl,X2)= f(xl,X2)+O(k)—> f()(]_,xz)z f(xl,XZ) as k—)O

(b) f (Xl’XZ): X1X2 —)s_f: X2 e X2 +k(X1— XZ): X2 +O(k), and
X

f(Xl,X2)=X1X2 —)%:XZThUS, ﬂzi as k—)O

1 X 0Xy

5.16 Do the previous problem for f(a,b)=a? +b?

AnS (a) f(Xl,X2)=X12+X§ :I:X1+k(xl+ Xz):lz +|:XZ+k(X1_X2)]2

= X2+ X3+ 2K { Xy (Xy + Xp)+ Xp (Xy = X, )} + kz{(x1+ X, )2 + (X - xz)z}.
Copyright 2010, Elsevier Inc
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Thatiis, f(x,%,)=X{+X%+0(k), where O(k) >0ask -0, i.e.

X

f(Xl,X2)=X12+X22—>§7f=2X1.Thus, A s k0.

1 X 0Xq

5.17 Given the following displacement field in an isotropic linearly elastic solid:

(a) Find the stress components and (b) in the absence of body forces, is the state of stress a
possible equilibrium stress field?

Ans.
0 kX3 kX, 0 2X,4 (2X1+X5)
(@) [Vu]=| kX3 0 kX —>[E]=; 2X4 0 (X1-2X3)
2kX; —2kX, 0 (2X;+Xy) (X;—2X;) 0
0 2X5 (2X1+X3)
Thus, Eyy =0—>[T]=2u[E]=uk| 2X; 0 (X;—2X;)
(2X1+X5) (X1 —2X;) 0

Since the displacement components are small (of the order of k), therefore, x; = X; , so that
T1=To=Tsz =0, Typ =Ty =2ukxg, Ti3=Ta=uk(2X +%;), Tps=Tap = uk(X —2%;).
(b) Substituting the above stress components into the equations of equilibrium, we have,
My, The , T3 _g_,040+0=0, T2ty T2z, iz g, 0404 0=0and
OX  OXy  OXg OX  OX  OX3
0Ty . 0Ty, . 0Tg3
OX  OX,  OXg
Since the stress field is obtained from a given displacement field, therefore, the state of stress is a
possible equilibrium stress field.

=0—2uk —2uk +0=0. Thus, all equations of equilibrium are satisfied.

5.18 Given the following displacement field in an isotropic linearly elastic solid:

U = kX, X3, Uy =kX; X3, Uz =kX;X,, k=107
(a) Find the stress components and (b) in the absence of body forces, is the state of stress a
possible equilibrium stress field?

Ans.

Copyright 2010, Elsevier Inc
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0 kX3 KX, 0 X3 X,
@ [Vu]=| kX3 0 kX, [=[E], Thus, Ey =0—>[T]=2u[E]=2uk| X; 0 X,

Since the displacement components are small (of the order of k), therefore, x; = X;, so that
T =Ty =Ta3 =0, Tpp =Ty =24kXg, Ti3=Ta =24KXy, To3=Tay =2ukx,.
(b) Substituting the above stress components into the equations of equilibrium, we have,
M, e s _o_,04040-0, T2t T2, s __,0,040-0and
OX; OXy  OX3 OX; OXy  OX3
0Ty . 0Ty, . 0Tg3
OX  OX,  OXg
stress field is obtained from a given displacement field, therefore, the state of stress is a possible
equilibrium stress field.

=0—->0+0+0=0. Thus, all equations of equilibrium are satisfied. Since the

5.19 Given the following displacement field in an isotropic linearly elastic solid:
Uy =KX, X3, Uy =KX, X3, Uy =k(XyXp+ X3 ), k=107

(a) Find the stress components and (b) in the absence of body forces, is the state of stress a
possible equilibrium stress field?

Ans.
0 kX3 kX,
@ [Vu]: kXg 0 kX; =[E],Thus, Ei = 2kX3 —>[T]=/1(2kx3)l +2,u[E]
kX, kX; 2kX;
Since the displacement components are small (of the order of k), therefore, x; = X, so that
Axg  HXg HXo
HXg Xy (A+2u)%

(b) Substituting the above stress components into the equations of equilibrium, we have,
M, e s _o_,04040=0, T2, 22,958 _g_,0,040=0and
OX,  OXy  OXg OX  OX  0OX3
0Ty . 0Ts, . 0Tg3
OX  OXy,  OXg
field in the absence of body forces. The given state of stress is not a possible equilibrium stress
field.

=0—>0+0+(2+2u)#0. Thus, the stress field is not an equilibrium stress

Copyright 2010, Elsevier Inc
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5.20 Show that for any function f(s), the displacement u, = f(s) where

du du
s = x, +c, t satisfies the wave equation —=% =¢? ~—=
2 2
ot 29

Ans.
ou, df os  df oy d?f os  ,d?f
——=——=—o/(%C ) > —=(£C )—5—=C{ —5,
ot ds ot ds( L) at? ( I')dszé’t L ds?

au_df s o P _d’f e _d
o dsox ds  ox2  ds? Ox  ds?

Thus o'uy =c? d°f =c? o*uy
ot? ds? ox?

5.21 Calculate the ratio of the phase velocities ¢, /¢ for Poisson 's ratio equal
1/3,0.49 and 0.499 .

2uv A4 __2,u(1-—v)__> U 1-2v

Ans. From Table 5.1, we have 1=

1-2v T 1-2v a+2u 2(1-v)
Thus, 2t = A+op =\/2(1_V) . Thus, for
Cr 7 1-2v

v=1/3, ¢, /oy =\[2(2/3)1(1-2/3) =/(4/3)/(1/3) =2.
v=049, ¢, /¢ =,/2(0.51)/(1-0.98) =+/1.02/0.02 =7.14,
v=0.499, ¢ /¢ =,/2(0.501)/ (1-0.998) =+/1.002/0.002 = 22.4.

5.22  Assume a displacement which depends only x, and t, i.e., u; =U; (X,,t),i=1,2,3.
Obtain the differential equations which u; (xz,t) must satisfy in order to be a possible motion
in the absence of body forces.

Ans. From the Navier equations, we have,
e=0u,/dx, >0eldx =0, el dx, =d%u, | OxZ, deldxg =0. Thus,
2o QU2 1 3t%) = u(0°uy 1 0%5) — (8u? 1 ot?) = 62 (0°uy / x3),
Do (U2 1 6t2) = (A + p)(0uy 1 6X3) + p(0%u, | 2%3),
— py (B2 1 6t%) = (1 +2u)(8%u, | x3) — (8u2 | 6t%) = cf (azu2 /axg)

Do (0UZ 1 3t%) = 1(0°ug 1 6%5) — (BuZ | Bt%) = c2 (02ug 1 6X3).
Copyright 2010, Elsevier Inc
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5.23  Consider a linear elastic medium. Assume the following form for the displacement field:
U =&[sin B(xg —ct)+asinf(xg +ct)], u;=uz=0
(a) What is the nature of this elastic wave (longitudinal, transverse, direction of propagation?)
(b) Find the strains, stresses and determine under what condition(s), the equations of motion are

satisfied in the absence of body forces.
(c)Suppose that there is boundary at X; =0 that is traction free. Under what condition(s) will the
above motion satisfy this boundary condition for all time.
(d) Suppose that there is boundary at x5 = ¢ that is also traction free. What further conditions will
be imposed on the above motion to satisfy this boundary condition for all time.

Ans. (a) Transverse wave, propagating in the esdirection.
(b)The only nonzero strain components are:

Eys = Egy =(1/2)(0uy / 0x3) = (81 2)[ cos B(xg — Ct) + czcos (g +ct) |
The only nonzero stress components are:
Tia =Tay = 110Uy 1 0g) = ()| cOs (X — Ct) + czCOs B(Xg +Ct) |,
x, equation of motion is: p, (62u1 / atz) = OTy5 | 0xg = —p, f2C%U = =2y - ¢ = ul p, .
The other two equations are 0=0.
(c) The boundary condition on X3 =0is:
T(—e3)=0-T;3(0,t)=0—[cos Bct +acos fct]=0—> a=-1.

(d) The boundary condition on x5 = /s,

T(e3)=0-Ty3(4,t)=0—[cos B(¢—ct)—cosB(¢+ct)|=0,[note & =-1].

—2sinplsin pct=0—->sinpl=0—-> f=nx/¢,n=1223..

5.24 Do the previous problem (Prob. 5.23) if the boundary x; =0is fixed (no motion) and
X3 = £ is still traction free.

Ans. (a) and (b) are the same as in the previous problem.
(c) The boundary condition on x; =0 is: ul(O,t) =0->u = g[—sin pct+asin ﬁct] =0>a=1.
(d) The boundary condition on x; = /is:
T(e3)=0—>Ty5(¢,t)=0—[cos B(¢—ct)+cos B(¢+ct)]=0

—» 2c0s Blcos fet =0—>cos fl=0— f=nz/(2(),n=135..

5.25 Do Problem 5.23 if the boundary x; =0and x; = ¢ are both rigidly fixed (no motion)

Ans. (a) and (b) are the same as in the previous problem 5.23.

Copyright 2010, Elsevier Inc
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(c) The boundary condition on x; =01is: u; (0,t)=0—u; = &[—sin Bct +asin fct]=0—> a =1
(d) The boundary condition on x; = /1is:
Uy (£,t)=0—uy =&[sin B(¢—ct)+sin B(¢+ct)]=0
—>singlcospct >0— f=nz/¢,n=123..

5.26 Do Problem 5.23, if the assumed displacement field is of the form:

Uz = &[ sin B(x3 —ct)+asin B(xg+ct) ], t=uy=0

Ans. (a) Longitudinal, propagating in the e;direction.
(b)The only nonzero strain components are:
Egs =(0U3/ 0%3) = £B] c0s B(%; —ct) + & Cos B( x5 +ct) ] .
The nonzero stress components are:
Tyy =Ty = A(0U3 1 OX3), Tag = A(0Us [ OXz)+241(0OUg / OX3) = (A +2p)(U3 / D%g),
where (8ug / 8%y) = (8)[ cos B(xg —ct) +acos B(xg +ct) |
X5 equation of motion is:
20 (82u3 /6t2) = OTay | % = —p B2C%Ug = B2 (A+2u)Ug > 2 = (A +2u) ] p,
The other two equations are 0=0.

(c) The boundary condition on x3 =0is:
T(—e3)=0->Ta3(0,t)=0—> (A+2u)(B)[ cos B(ct) +acos B(ct) | =0 > a =-1.
(d) The boundary condition on x5 = /is:
T(e3)=0-Ty(4,t)=0—cos (¢ —ct)—cos B(¢+ct) |=0.[Note & =-1],

—2singlsin pct=0—->sinpl=0—> g=nx/(,n=123..

5.27 Do the previous problem, Problem 5.26, if the boundary x5 =0is fixed (no motion) and
X3 = (s traction free (t=0).

Ans. (a) and (b) are the same as the previous problem, problem 5.26.
(c) The boundary condition on x; =0is: uz(0,t)=0— us = [-sin Sct + asin fct]=0— o =1.
(d) The boundary condition on x3 =/ is, with a =1,
T(e3)=0-Tg(4t)=0—[cos B(¢ —ct)+cos B(¢+ct)]=0

— 2c0s Blcos fet =0—>cos Bl =0— f=nz/(2(),n=135..

5.28 Do Problem 5.26, if the boundary x; =0 and boundary x; = ¢ are both rigidly fixed.

Copyright 2010, Elsevier Inc
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Ans. (a) (b) and (c) are the same as in Prob. 5.27, with « =1.
(d) The boundary condition on x5 = /is

Uz (£,t)=0—>ug =&[sin f(¢—ct)+sin B(¢+ct)]=0
—>singlcospet=0—->sinpl=0—- fF=nz/l,n=12,3..

5.29  Consider the displacement field: u; =u; (X, X;, X3, t) . In the absence of body forces,

(a) obtain the governing equation for u; for the case where the motion is equivoluminal and
(b) obtain the governing equation for the dilatation e for the case where the motion is irrotational

ou; 1 0x; =ou; 1 ox; |.
j j

Ans. From the Navier equations of motion, Eq. (5.6.4)

o%u, e o’u;
— L =pBi+(A+u)—+ L, we have
Po o2~ Fom ( ”)axi ”axjaxj
. ou; o%u;
a) with e=0and B, =0, L - L.
(@) T e T e
. OU; 2. ou; ou;
(b) For irrotational motion M My, oW 0 M 0 M _ o Thus,
OXj OX;  OXjOXj OXj 0% 0% OXj OX;
ou, e  oe de 0% oy d%
—t=(A+pu)—+pu—=(A+2u)——> py——=(1+2
Po o2 ( ”)axi ”axi ( ﬂ)axi Po o2 ox; ( #)axiaxi

e (A+2u) o%
at? Po  OXOX

5.30 (a) Write a displacement field for an infinite train of longitudinal waves propagating in
the direction of 3e; +4e,. (b) Write a displacement field for an infinite train of transverse

waves propagating in the direction of 3e; + 4e, and polarized in the x;x, plane.

Ans. Let e, =(1/5)(3e, +4e, ), then x-e, =(1/5)(3%, +4x,). Also, e, =+(1/5)(4e; —3e,)

() Equation 5.10.8 of Example 5.10.3 gives u = gsin(%x-en —c.t —njen . Thus,

3¢ . | 27 3%x  4X 4e . | 273X 4Xy
U =2sin| S50 220222 _ct—p ], Uy=—sin| 22| 224222 _ct—p ||, u;=0
1775 [ / ( 5 5 - nﬂ 277 { / ( 5 5 - )R

(b) Equation 5.10.10 of Example 5.10.3 gives u = gsin[%x-en —Cyt —q]et. Thus,

de . | 2w (3% 4X, _3e . | 273X 4Xy
U =t—sin| S5 22 7%2 _ct—pll, Uy=Fsin| Z2] 2L+ 222 ¢ t—pn |, uz=0
175 [ / ( 5 5 UH 2775 { / ( 5 5 )]

Copyright 2010, Elsevier Inc
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5.31 Solve for &, and &5 in terms of & from the following two algebra equations:

£,(C0S201) + &3n(Sin 23) = & C0S 2 (i) &, SN 20 — ggl(cos 20q) =—¢&15in 2ay, (i)
n

Ans.
Cos2¢q  N(sin2eas)

2 2, . A
= =—=|(cos2a) +n“(sin2c SIHZ(Z}
sin 2a. 1 oS 2cr n[( 1) ( 3) 1
1 n 1

Thus,
{52}_ 1 —%(cosZal) —n(sin 2a3) {6‘1 cos2a }
] Al gin 20y cos2e, |L7N 20
_ & | (cos2ay)® —n(sin 205) (sin 201 )
nA nsinde
That is,
05204 )% — n?(sin 2a3) (sin 2c i
oy =5, (COS20) —(Sin2a;)(sin2ey) - nsin 4oy

(cos2a; )* +n? (sin 2a3)sin 2a; (c0s2a; )* +n?(sin 2az5)sin 2a,

5.32 Atransverse elastic wave of amplitude & incidents on a traction free plane boundary. If
the Poisson's ratio v =1/ 3, determine the amplitudes and angles of reflection of the reflected

waves for the following two incident angles (a) &; =0 and (b) oy =15°.

Ans. From Eq. (5.11.14), we have, for v=1/3
n=cy /¢, =(1-2v)/2(1-v)=,/(1-2/3)/2(1-1/3)=/(1/3)/2(2/3) =1/ 2.
vl =y(1-2v)/2(1-v) =(1-2/3)/ 2(1-1/3) = [(1/3)/ 2(2/3)

Thus, (1/2)sinas =sine, . Using this equation, and Equations

(cos2a4)? —n(sin 2a3) (sin 24 nsin4e;
&2=4 2 2. ) » 354
(c0s2a;)” +n“(sin 2a3)sin 2oy
we have,
(@) &y =0—>a, =0 and (1/2)sinas =siney =0— a3 =0. Also, the above equations give
& =&, and g =0,. That is, there is no reflected longitudinal wave. There is only a reflected

transverse wave of the same amplitude which completely cancels out the incident transverse
wave.

(c0s2a; )* +n?(sin 2az5)sin 2a4

(b) o =15° —» a, =15° and sinag = 2sin15° =0.5176 — a5 =31.17°,

Copyright 2010, Elsevier Inc
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(cos30°)2 —(1/4)(sin 62.340)(sin 300)

6‘2 = 51 = 074251

(cos30° )2 +(L14)(sin62.34°) sin30° )
- sin60f)/2 _
(cos30 ) +(1/4)(sm62.34°)(sm30°)

That, the reflected transverse wave has an amplitude ¢, =0.742¢, , with a reflected angle of

53 = (91 = 050381

a, =aq =15° . The reflected longitudinal wave has an amplitude &; = 0.503¢; ,with a reflected

angle of a3 =31.17°.

5.33 Referring to Figure 5.11.1 (Section 5.11), consider a transverse elastic wave incident on
a traction-free plane surface (x, = 0) with an angle of incident & with the x, axis and
polarized normal to x; X, , the plane of incidence. Show that the boundary condition at

X, = 0can be satisfied with only a reflected transverse wave that is similarly polarized. What

is the relation of the amplitudes, wavelengths, and direction of propagation of the incident
and reflected wave?

Ans. Let the plane of incidence be x;x, plane with the angle of incidence of the transverse wave
be ¢;. Thatis, e, =sina,e; —cosaye,. The waves are polarized normal to the plane of

incidence, therefore, u; =u, =0, and u; = & sing, + &, sing,, with
2r . 2r .
o= 7(xls|n oy — X9 C0Say —Crt—1,), @5 =7(xls|n Oy + Xp COSaty —Crt—175)

1 2
The nonzero stress components are:

T13 :T3l =/16U3 /8X1 = 271'#[(51 /El)COSngSIn al+(82 /fz)COS@Z Sln a2:|,
Tys =Tap = g | 8%, =271 —(£1 1 1)COS @y COS ey +(25 1 £ )COS @, COS @y .

The x4 equation of motion p, (62u3 /6’[2) = 0Ty, | 0% +Tay | OX, gives:

2 2\ .- 2\ .. _ 2 2\ .- 2\ .-
Po(27cr) [(51/€1)5|ngol+(gz lﬂz)sm%}_(Zﬂ) ,u[(gllﬁl)smgoﬁ(gz /Ez)smgon
—)pOC-% Z/J_>C'Ig =ul py.

The traction free boundary at x, =0 requires that T;, =T,, =T3, =0 on the surface, thus,

[—(&1/ £1)cos gy cosay+ (e, 1 £5)cos COSaZ]X _, =0, where
-

2z . 2r .
¢h=szﬁﬂnar—%t—ml ¢2=z—(ﬁﬂnaz—ﬁi—ﬁﬂ-
1 2

Thus, the boundary condition is satisfied if o =a,, =65, {1 =05, M =175

Copyright 2010, Elsevier Inc
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5.34 Do the problem of Section 5.11.(Reflection of Plane Elastic Waves, Figure 5.11-1) for
the case where the boundary x, =0 is fixed.

Ans. As in Section 5.11, we assume
U =(cosay )& singy +(cosa, )&, Sing, +(sinag ) e3sin gy
Uy =(siney )& singy —(sina, ) &, sing, +(Cosag ) &3sings, Uz =0
where

2 . 2 .
o =7(xls|n o — %9 COSay —Crt =), @, =7(X13|na2 + Xp COSary —Crt—175)
1 2

2r .
3
The equations of motion are satisfied with (c, )* =(2+2u)/ py, (cr )’ = 1/ po
Now, at X, =0,

[ (cosay) & singy +(cosay )&, sing, +(sinag ) &;sin ¢3]X2=0 =0

[(siney) & singy —(sinay ) &, 5N, +(cosaz ) £sin (/)3])(2:0 =0
Thus, at x, =0, sing; =sing, =sings, so that

2

. 27 . N 27 . ,
= (Xls'nal—CTt—Th)=7(X15'naz—CTt—Uz)=€—(X15'nas_CLt—773)y

1 2 3
=1, —(£pls).m3 =13 —(£0¢,)
Thus, as in Section 5.11, we have, with n=c; /¢,
ly=ly, Nly=l1, y=a,, NSinag=siney, ny=m, Nnzg=nm.
However, the relations between the amplitudes are different. In fact, from
(cosay )&y +(sinag )3 =—(cosay ) &1,
(siney )&, —(cosaz)e3 =(sinay ).
we can obtain,
_ (sinag)(siney ) —(cosaz )(cos ey ) —sin 2oy

¢ ~ (siney )(sinag ) +(cosey )(cosazs) 83:(sinal)(sina3)+(cosal)(cosa3)'

5.35 A longitudinal elastic wave is incident on a fixed boundary x, =0 with an incident
angle of o with the X, axis (similar to Fig. 5.11.1 of Section 5.11). (a) Show that in general,

there are two reflected waves, one longitudinal and the other transverse (also polarized in the
incident plane x;x, ). (b)Find the amplitude ratio of reflected to incident elastic waves.

Ans. (a) Let
U =(sinag )& sing +(sina, )&, sing, +(cosaz ) £35in g
Uy =(—Cosay )& Singy +(cosa, )&, Sing, —(Sinag ) 3Sings, Uy =0, where

Copyright 2010, Elsevier Inc
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2r . 2r .
o =7(xls|n o — X, CosSay —C t—m), @, =7(xls|n Qy + X9 COSay —C t—17,)
1 2

2 .
®3 =7(xls|n a3+ X, COSaz — Crt —173)
3
The equations of motion are satisfied with (c, ) =(A+2u)/ po, (¢r )’ =/ po.
Now, at X, =0,

[(sin )& sing +(sina, )&, sing, +(cosa3)83 Sin%]xz:o =0

[(—cosay) e singy +(cosay) e, sing, —(sinag)ggsing; | =0

Xo =
Thus, atx, =0, sing, =sing, =sing;, so that
¢)1 = (27T/€1)(X15|n 0!1 _CLt_771) = (27[/%2)()(15'” az —CLt—ﬂé) = (272'/€3)(X13In0!3 —CTt—né),
my =1, —(£ply),m5 =13 —(£0q/3).
Thus, we have,
o=@l i) (Xsinog —c t—m)=Q2xl L)% Sina, —c t—ny)= (271 {3)(X%Sinag —Crt—1n3),
5 =1, —(£ply).m5 =113 —(£0¢,).

Thus,
singg _sina, _sinag ¢, ¢ o m_m_m
A ly Oa " dy Uy Ay 0y Ly s

SO that al :az, £2 =£1, 63 = nfl, Sln a3 . I’lSII’lO(l, né :771, 77\’;) = n771
where n=c; /¢ . We note that unlike the problem in Sect. 5.11, here /3 =n/y, sinas =nsinegy(

instead of n¢5 =/;, nsinag =singy ). With sing, =sing, =sing;, we have

(siney)e; +(cosag)es =—(siney )&, (cosay)e; —(sinas)e; =(cosey )&
Thus,
53 /(91 =—S|n 2a1/COS(a1 —053), (92 /81 =COS(a1 +(Z3)/COS(C¥1 —a3)

5.36 Do the previous problem (Prob. 5.35) for the case where x, =0 is a traction free
boundary

Ans. Let
U =(sinag )& sing +(sina, )&, sing, +(cosaz ) &3 5in g

Uy =(—Cosay )& Singy +(cosa, )&, Sing, —(Sinag )3 Sings, Uy =0, where

2z . 27 .
o =7(xls|n o — %, C0Say —C L t—m), ¢, =7(xls|n oy + Xy COSaty —C t—17,)
1 2

T .
@3 :7(xls|n 03 + X, COSaz —Crt —173)
3

The equations of motion are satisfied with (c, )2 =(A+2u)! py, (cr )2 =ul py.
At X2 =O, T21 =T22 =T23 :O . ThUS,
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Uy [ 0%y +0Uy [ 0% =0 and (A+2u)(0u, / D%, )+ A(0uy 1 0% )=0.
That is,
(&1 01)cosgy(—sin2ay)+(&, 1 £5)C0Sp,(SiN2a, )+ (&3 / £3)c0S g3 (COS205) =0 (i)
and

(gllﬂl)[/i + Zy(cosal)z}cowl +(&, /62)[/% 2u(cosa, )Z}COS(/)Z

+(&3103)(2u)[ (~sinazcosaz) |cosps =0
In order for the above two equations to be satisfied for all x; and t, we must have, at x, =0
COS @, = COS@, = COS @, Which gives
singy _ sina, _ sinag C_C _C m_mFply, mFqls

(i)

A ly b3 0ty 434 0y A
Thus, o =y, U, =14, l3=n1lq, SiNaz =nSiney, 1, F ply, =1, 13 Fql3=n1, Where
n=cr/cp.
(i) and (ii) now gives
(e 01)(=sin2eq)+ (&5 1 05)(sin 20y )+ (&5 £3)(COS203) =0 (iii)

(611 01)(A+ 211008 ) + (65 1 £1)(A+ 211005 ) — (83 1 £3)(21)SiN @23 COS czg = 0

l+2yux2a1=l+2y—2ysm2a1=y[ﬂ+2ﬂ—2§n2%}= (iv)
7

(gz)ﬁ(l— 2n?sin? al) —(&3)(2p)sin a3 cos g = —glﬁ(l— 2n?sin? 0!1)
n n

Since
A+241€08% o = A+ 2 —2usin? o = ,u(i ;2’” —2sin? al] :n—‘;(l— 2n? sin? al) ,
and /5 =n/,, therefore, (iii) and (iv) become
(nsin2ay ) &, +(c0s2a3) &3 = gnsin 2o v)
(1— 2n?sin? 061)52 —2nsina; CoS e, = —(1— 2n?sin? 051)51 (vi)

(v) and (vi) give
& _ 2nsin 2¢; (1- 2n%sin® o)
& n?sin2asin2a; + (1—2n2sin? ;) cos 2as

& _ N?sin2a;sin 20 — (1-2n°sin® o) cos 2azg
& n%sin2asin2a; + (1-2n%sin? ;) c0s 2a

5.37  Verify that the thickness stretch vibration given by Eq.(5.12.3), i.e.,
Uy = (Acoskx, + Bsinkx;)(Ccosc kt + Dsinc, kt)
does satisfy the longitudinal wave equation 82y, / at? = (c, )? (82ul / 8x12)
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Ans.
Uy = (Acoskx, + Bsinkx; )(Ccosc kt + Dsinc kt),

d2uy | ox? = —k*(Acoskx + Bcoskx )(C coscy kt + Dsinc kt)
duy 1 ot? =—(ke, ) (Acoskx + Bcoskx,)(C cosc, kt + Dsincy kt)

that is, 62u, / ox2 = —k2u, and &2y, / at? =—(c k) u,. Thus, c202u, / oxZ = 0%u, / at?

5.38 (a) Find the thickness-stretch vibration of a plate, where the left face (x; =0) is
subjected to a forced displacement u = (acoswt)e; and the right face x, = ¢ is free.
(b)Determine the values of wthat give resonance.

Ans. Let (a) u; =(Acoskx; +Bsinkx;)(Ccosc kt+ Dsinc kt). Using the boundary
conditionu(0,t) = (e cosmt)e; , we have , acosawt =u;(0,t) = ACcosc kt+ ADsinc kt
Thus, AC=a, k=w/c , D=0-—>u =(acoskx +BCsinkx)cosat.
At x; =0, T;; =Ty, =Ty3=0. Now, Tyy =(A+2u)(0u /0% ), thus (aullaxl)xlzé =0,ie,
k(—asink/+ BCcosk/)coswt =0 —> BC = atank/,
— U = a[cos(wx, /¢ ) +tan(wl /¢, )sin(wx, / ¢, )]cosawt .
(b) Resonance occursat: @f//c . =nz/2, n=135..

5.39 (a) Find the thickness stretch vibration if the x; =0 face is being forced by a traction
t=(Bcoswt)e; and the right hand face x, = ¢ is fixed. (b) Find the resonance frequencies.

Ans. (a) u; = (Acoskx; + Bsinkx;)(Ccosc, kt+ Dsinckt).
At
X, =0,n=—e,t=-Te; =—(T;18; + T8, + T3183) = fcosate; > T,y =—Lfcosat, T, =T5 =0
SinceTyy =(A+24)(0uy / 0% ) , therefore, the boundary condition at x, =0is:

(A+2u)(0uy /%)), o, =—pcosawt, —(A+2u)k(B)(Ccosckt+Dsinc kt) =—fcosat

X1 =

—-D=0, ck=o, BC:—L, —>u1=(ACcoskx1—Lsinkxl)COSa)t
k(ﬂ+2y) k(ﬂ+2y)
At X]_:f,
ul=(ACcoskf—Lsinkﬂ)COSa)t=O—>ACcoskﬁ—LsinM:O—)
k(A+2u) k(A+2u)
AC=Ltank£—>u1= PO @ eos @ PO in @M | cos
k(A+2u) o(A+2u) ¢ . w(A+2u) ¢

(b) Resonance occurs at
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w=nzc_/(2¢),n=135...

5.40 (a) Find the thickness-shear vibration if the left hand face x; =0 has a forced
displacement u = (acosmt)e; and the right-hand face x; = /is fixed. (b) Find the resonance
frequencies.

Ans. (a) Let uz = (Acoskx; + Bsinkx;)(Ccoscrkt + Dsincrkt), u; =u, =0
In the absence of body forces, the x; Navier equation of motion (5.6.7) gives:
%ug oe 2 7 o d%uy;  0%ug
Po—=(A+p)—+ | —S+—+— U3 > py—=pu——
° at? % {axf ob k) Thar o
leads to —pq (k) Uy = —pekug — (cr ) = i/ .
The boundary condition at x, =0,
Uz (0,t) = (acosawt) — uz = (A)(Ccoscrkt + Dsincrkt) =acoswt - D=0, AC=a, k=w/c;.
— Uy = (acoskx; + BCsinkx;)coswt .
The boundary condition at x =/,
Uz (,t)=0— uy = (acosk’/+BCsink/)coswt =0 — BC =—a cotk?.
— Uz = a[cos(wx / ¢; ) —cot(w! / cr )sin(wx, / ¢r)|coswt .
(b) Resonance occurs at @ =nzcy //,n=1,2,3...

5.41 (a) Find the thickness-shear vibration if the left hand face x; =0 has a forced
displacement u = a(coswte, +sin wte;) and the right-hand face x; = /is fixed. (b) Find the
resonance frequencies.

Ans.
(a) If the left hand face x; =0 has a forced displacement u = acosawte, and the right-hand face

X, = (s fixed, it is clear from the result of the previous problem,
Uy = [ cos(wx, / o ) —cot(wl /¢ )sin(ex / cr)]coset, Uy =uy=0.
If the left hand face x; =0 has a forced displacement u = & sin wte; and the right-hand face
X, = is fixed, the displacement field is clearly given by
Uz = ar[ cos(wx / ¢ )= cot(el I ¢ )sin(exy / ¢ ) Jsinat, uy=u, =0
Thus, the solution to the present problem can be obtained by superposition to be
u =0,

Uy = | cos(ax, / ¢ ) —cot(wl  cr )sin(wx / ¢; ) Jcosat
Uz = | cos(wx / ¢ )—cot(el I o )sin(ewx, / ¢ ) Jsinat .
(b) Resonance occurs at @ =nzcy /4,n=1,2,3...
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5.42 A castiron bar, 200 cm long and 4 cm in diameter, is pulled by equal and opposite axial
force P at its ends. (a) Find the maximum normal and shearing stresses if P=90,000N. (b)

Find the total elongation and lateral contraction. (EY =103GPa.,v = 0.3)

Ans. A=7(4x1072)%/4=12.6x10"*m?.
@)(Tn), o =P/ A:90,000/(12.6x10-4)= 71.4x10°N, (T,)  =P/(2A)=35.7x10°N.
(b) 5, =(P/ A)(¢/E,)=(71.4x10%)x 2/ (103x10%) =1.39x10>m,
Sy =—v(P/A)(d/Ey)=(0.3)(71.4x10°) x (4x107%) / (103x10°) = —0.832x 10> m.

max

5.43 A composite bar, formed by welding two slender bars of equal length and equal cross-
sectional area, is loaded by an axial load P as shown in Figure below. If Young's moduli of

the two portions are E\El)and E@ , find how the applied force is distributed between the two
halves.

Ans. Taking the whole bar as a free body, let B, be the compressive reactional force from the
right wall to the bar and P, be the compressive reactional force from the left wall to the bar, then
the equation of static equilibrium requires

—— P

P=R-P,. ()
There is no net elongation of the composite bar, therefore,

14 Pl ..
AED ' AER w
Combining Eq. (i) and (ii), we obtain

P -P
P = , - . (iii)
F1EPIED) P 1+ (EP 1ED)

5.44 A bar of cross-sectional area Ais stretched by a tensile force P at each end. (a)
Determine the normal and shearing stresses on a plane with a normal vector which makes an
angle & with the axis of the bar. (b) For what value of « are the normal and shearing stresses
equal? (c) If the load carrying capacity of the bar is based on the shearing stress on the plane

defined by o = o, to be less than 7, what is the maximum allowable load P ?
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c 00
Ans. [T]=|0 0 0
0 0O
(a) For the plane with a normal given by n =cosae; +sinae,, we have,
o 0 0} cosex oCcosa
[t]=[T][n]=|0 0 O sina|=| 0 |—>t=occosae,—>T,=t-n=ccos’a,
0 0 0ff O 0

, N=cosae; +sinae,,

2 .
T2 =[t|]" - T = 0% cos® @ — o% cos* & = &2 coszoc(l—cos2 a)z o’ cos? asin®
—T,=0osin2a/2.

in2a
b osin
(b) 5

Thus, (i) cosa=0—>a=7/2—->T, =T, =0, and (ii) sihna=cosa >a=7/4—>T,=T,=0/2.

= 0082 o — cosasina = cos® a —>cosa(sina—cosa) =0.

27,

() ——2<r, >0< 2% . Max allowable P < A

° sin2a,, sin2a,

5.45 A cylindrical bar, whose lateral surface is constrained so that there can be no lateral
expansion, is then loaded with an axial compressive stress T;; =—o . (a) Find T,, and Ty; in

terms of o and the Poisson's ratio v, (b) show that the effective Young's modulus
(Ey )y =Tu1/ Eqis given by (Ey ) = (1-v)/(1-v—-2v?). [note misprint in text].

Ans. (a) E22 =0 —)T22 _V(T33 +T11) =0 y E33 =0 —)T33 —V(Tll +T22) =0. ThUS,
Ty —vVIz3=—vo and T3 —vTy, =—vo . From these two equations, we have,
T22 :T33 =—VG/ (1—V) .

1 1 vo - 212 o[ 1-v-2v?
(b) Eyy = E[Tll ~v(Ty +T33)] = E{—a +2v (Eﬂ = E{l_ (EH - E(T]

T, -0 E/(1-v) Ey (1-v)
Thus, (Ey ), =—1 (B ), =—=—" S— .
us ( Y )eff Ell _)( Y )eff E]_l 1—y— 2V2 (1_ 2V)(1+V)

5.46 Let the state of stress in a tension specimen be given by Ty; = o and all other T; =0. (a)
Find the components of the deviatoric stress defined by T° =T —(1/3)Ty1 . (b) Find the

principal scalar invariants of T°
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Ty =Ty —Tu /3=-013=Tg, T3=T3=Tn=0.
(b)
l, =TS +T% +T3 =20/3-0/3-0/3=0.

I, =TTTe =(2013) (-0 /3)(-0 /3) =25/ 27.

5.47 A circular cylindrical bar of length ¢ hangs vertically under gravity force from the
ceiling. Let x; axis coincides with the axis of the bar and points downward and let the

point (X, Xy, X3 ) =(0,0,0) be fixed at the ceiling. (a) Verify that the following stress field
satisfies the equations of equilibrium in the presence of the gravity force: T;; = pg (f - xl) ,
all other T; =0and (b) verify that the boundary conditions of zero surface traction on the

lateral face and the lower end face are satisfied and (c) obtained the resultant force of the
surface traction at the upper face.

Ans. (a) The body force per unit volume is given by pB = pge, . Thus, with T;; = pg (f - xl) , We
have,

My, g , Ol pg=-—pg+0+0+ pg=0 and the other two equations are trivially
oX; 0%y  OX3

satisfied.
(b) On the bottom end face x, =/, n=¢;, t=Te,=T;y| _, & =pg(¢—/)e;=0.
-
T, 0 0][07 [0
On the lateral face, n =nye, +nge;, [t]=| 0 0 0}/ n, |=|0|>t=0.
0 0 0fng| |O
(c) Onthetop faceat x, =0, n=—-¢;, t=-Te,; = —T11|X1:0 e, =—pg(¢—0)e, =—pgle
Let the area of the face be A, then the resultant force is tA = —pg/Ae, = -We,; where

W = pgA/ is the weight of the bar and the minus sign indicates that the resultant force at the
ceiling is upward which balances the weight of the bar.

5.48 A circular steel shaft is subjected to twisting couples of 2700 Nm. The allowable tensile
stress is0.124 GPa.. If the allowable shearing stress is 0.6 times the allowable tensile stress,
what is the minimum allowable diameter?

=Mta/(ﬂa4/2)=2—'\/|;.Thus

za

M.a
Ans. (Tn)max = (Ts)max =|—t
p
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2(2700)

ra’

2(2700)
7(0.6)(0.124x10°

<(0.6)(0.124x10°) >a° > = 23.1x10°m®

>a>2.85x102m=2.85¢cm—>d >5.7 cm

5.49 In Figure 5P.2, a twisting torque M is applied to the rigid disc A. Find the twisting
moments transmitted to the circular shafts on either side of the disc.

A

Figure 5P.2

Ans. Let M; and M, be the twisting moments transmitted to the left and the right shaft
respectively. Then equilibrium of the disc demands that
M; +M, =M, (i)
In addition, the disc is rigid, therefore, the angle of twist of the left shaft at the disc relative to the
left wall must equal the angle of twist of the right shaft at the disc relative to the right wall, i.e.,

Mify _ Mo e, =My, (i)
Ml uly
Thus,
M, = —2 M, M,=|—2|m, (i)
b+, b+,

fOf flzfz, M1=M2=Mt/2.

5.50 What needs to be changed in the solution for torsion of a solid circular bar obtained in
Section 5.14 for it to be valid for torsion of a hollow circular bar with inner radius a and
outer radius b ?

Ans. The hollow circular bar differs from the solid circular bar in that there is an inner lateral
surface which is also traction free. However, the normal to the inner lateral surface differs from
that to the outer surface only by a sign so that the zero surface traction in the inner surface is also

satisfied since that for the outer surface is satisfied. However, in calculating the resultant force
and resultant moment due to the surface traction on the end faces, the integrals are now to be
integrated over the circular ring area between by r =a and r = b rather than the whole solid
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circular area of radiusb . Thus, the only change that needs to be made is that the polar area second

. . T
moment |, is now given by I, :E(b4 —a4) .

5,51 Acircular bar of radius r, is under the action of an axial tensile load P and a twisting
couple of M, . (a) Determine the stress throughout the bar. (b) Find the maximum normal and
shearing stress

Ans. Superpose the solutions for tension and for torsion, we have, with ¢ =

P _ M
e Ly
(@) Ty =0, Ty =Ty =—pX%3, Ti3=Tz = BX,, all otherT;; =0.
(b) The characteristic equation is
o-4 —fX3 Px
By —A 0 |=0502" =224 A(Bx,)" +A(Bx)" =0 A(4° — oA~ B ) =0,where r° =X] +3G

px, 0 -4

]2 2.2
Thus, /?112:0_ o' HApT , 43=0.Thus

2
+v 2 4+ 45%r2 1
(T =S5 Tyl w4

5.52 Compare the twisting torque which can be transmitted by a shaft with an elliptical cross-
section having a major diameter equal to twice the minor diameter with a shaft of circular
cross-section having a diameter equal to the major diameter of the elliptical shaft. Both shafts
are of the same material. Also compare the unit twist (i.e., twist angle per unit length) under
the same twisting moment. Assume that the maximum twisting moment which can be
transmitted is controlled by the maximum shearing stress.

Ans. (a) For an elliptical shaft with major diameter 2b and minor diameter 2a (i.e., b>a),

(T,) _2Mey
S /max 7Z'a2b
For a circular shaft with radius b (T) (Mt)c” thus
' UTS Jmax 7Z'b3 !
T _ Z(Mt)en _ 2(Mt)cir (Mt)en _(a
( S)max - 2 - 3 - M - B
ra‘h b ( t)cir
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5.53 Repeat the previous problem except that the circular shaft has a diameter equal to the
minor diameter of the elliptical shaft.

Ans. (a) For an elliptical shaft with major diameter 2b and minor diameter 2a (i.e., b>a),

(T,) 2oy
S /max 7Z'a2b
2(M;) .
For a circular shaft with radiusa, (T) =(—t3)°”, thus,
7a
T _Z(Mt)en _Z(Mt)cir (Mt)en _(b)_(2a —9
(S)max_ 2y 3 _)M 0 Pt PR
rah za ( t)cir a a

5.54  Consider torsion of a cylindrical bar with an equilateral triangular cross-section as
shown in Fig. P.5.3. (a) Show that a warping function ¢ =C (3x§x3 - xg) generate an
equilibrium stress field. (b) Determine the constant C , so as to satisfy the traction free

boundary condition on the lateral surface x, =a . With C so obtained, verify that the other

two lateral surfaces are also traction free. (c) Evaluate the shear stress at the corners and
along the line X3 =0.(d) Along the line X3 = 0 where does the greatest shear stress occur?

2 2 2 2
Ans. (a) o9 =6CXs, o9 =—-6CX, thus a—¢+a—(p =0, so that equations of equilibrium are
2 3 2 3 2 2
OX5 0X3 X5 — OX3
satisfied.
X3

(—22.0) \I @o) 2

(b) For the lateral surface X, =a, n=e,,t=Te, =T;,e, =[ —uXea '+ u(3p/0x,)] _ €=0

Xp=a

- Xga'= [6Cx2x3]x2:a — Xga'=6Caxg >C=a'/6a.
On the lateral surface X = (1/ \/5)(x2 +2a) > /3% %, =2a—>n=(1/ 2)(—e2 + \@eg,)

t=Tn=(1/2)(-Te, +/3Tes ) = (1/2)(~Toz +/3Ty5 ), . Now, for ¢ = (¥ 62)(3x3% -3 )
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Tip = —pxga'+ (0@ 1 0Xy) = —pxaar'+ pa(a'l @)(XoX3),
Tig = X+ (091 0X3) = pxper'+ u(er'l 2a)(x5 = X3).
Therefore, ~Ty, +/3T;5 = & - [Zax3 2%, X3 + 2+/33X, +f( —X3 )J With x, =+/3%; - 2a,

2
-Ty, +\/_T13 = {Zax3 - 2(\/_x3 - Za) X3 + 2\/_a(x/—x3 - 2a) \/5((\/§X3 - Za) - ‘%ﬂ
- ’;—Q[Zax?, + (—2\/§x§ + 4ax3) + (Gax3 RVNEES ) + \/5(3X§ ~4J3ax; +4a’ ~ x5 )}
a
= Z—a[(Zax3 + daxg + 6axg —12ax; — 4+/3a% + 4+/3a° ) + (—2\/§X§ +33% 3% )J =
a

That is, on xq =(1/\@)(x2 +2a), t=0. Clearly, for the lateral surface
~(1/3)(x, +2a), t=0.
(c) at the corner (—2a,0), Ty, =—uXqa'+ ('l @)(Xo%3) =0 and
T3 = uXoa +,u(a/2a)(x2 ) (- 2a),ua +u(a'l2a) (4 )
At the corners (a,i\/§a) Ty = ua'(xg/a)(x, —a ( )
Tis =,ua'[x2 +(x§ —x§)/2a}=,ua'[a+(a2 ~3a )/2a]=0.
That is, the shear stress at all three corners are zero. Along X; =0,
Typ =—pxsar'+ p(a'l a)(Xyx3) =0,
Tis =,ua'[x2 +(x§ - x§)/2a} =(ua'l 2&1)(2ax2 + xf)

(d) dTyg/dx, =(ua'l2a)(2a+2x%,)=0—> X, =—a—>‘
Butat (X,,%;)=(a,0), Ti3 =,ua'[x2 +(x2 — X3 )/2a}=ya‘[a+(a )/2a}=(3a/2)/m'.

Thus, along X3 =0, the greatest shear stress occurs at (X,, %3 )=(a,0) with T, =(3a/2) ua'.

(a—a)=0 and

=ua'al 2.

5.55 Show from the compatibility equations that the Prandtl's stress function 1//(x2 : x3) for
2 2

torsion problem must satisfy the equatlona—l// +8_¢/2/ = constant
o oxs
. oy oy .
Ans. With T, = Ti3 = "o and all other T;; =0, we have, the nonzero strain components
X3 X2
are: Ep = = al/’ , Ei3 __tow , all other Ej; = 0. All equations of compatibility are

identically satisfied except the following two:
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0K, OXp | DXy DXg  OXy MKy OXg| DXy OX 0%
which leads to

2 3 2 2 2 2
2 8_1/2/+6_1/3/ =0, 2 8_1,/3/+8_y2/ =0-> a—l/3/+(’j—l/2/=constant
8X2 5X2 8X3 aX3 5X3 8X2 (3X3 8X2

2
By _ 0 [_ OEsy , OBy 6E23j 0°Egg 0 {_ OF1p , 03 aEglJ

5.56 Given that the Prandtl' stress function for a rectangular bar in torsion is given by

a2 00
= {_32#0!3 : j Z i13(_]-)(“_1)/2 {1_ cosh (nﬂ-X3 / 23‘)}COS X

T 35N cosh(nzb/2a) 2a
The cross section is defined by —a<x, <aand —b<x; <b.Assume b>a, (a) Find the
maximum shearing stress. (b) Find the maximum normal stress and the plane it acts.

Ans. We know that when a rectangular membrane, fixed on its side, is subjected to a uniform
pressure on one side of the membrane, the deformed surface has a maximum slope at the mid
point of the longer side. Thus, based on the membrane analogy discussed in Example 5.17.3, on
any plane x; =constant , the maximum shearing stress occurs on the mid point of the longer side
That is at the point x, =a and X; =0. From the given functiony (x,,%; ), we obtain the stress
components as

a2) o :
T ZZ_Z: _(32;;0; a j s is(_l)( _1)/2(nnj{smh(mxﬂZa)}ms X,

35N 2a )| cosh(nzb/2a) 2a
' 2 - cosh(nzx; / 2a
T13=—8—V/= 32#0{ 2’ > %(— ) Ry (n7xq /22) sin 222,
X, 7 )W Esn 2a|  cosh (nzb/2a) 2a
At X, =a,X3 = (note sin(nz/2)=(- 1)(n+3)/2,n=1,3,5..)
louc'a) < 1 1
Tia=| =52 e
. ( 7 jnﬂ%,S nz{ cosh(n;;b/Za)} 1
That is
lbuac'a) & 1 1
(TS )max :( 2 j Z _2 1- h '
7% J)nasn cosh(nzb/2a)
. 1 z? 6ua'a) & 1 1
Or, since —=—, therefore =2uo'a— -
nzlz;;,g—,nz (T ey =21 ( z? jn=1,3,5 nz{cosh(nanZa)}

Since at this point, the only nonzero stress components are T;3 and Ty (=Ty3), therefore, the
characteristic equation is —4% + AT,3 = 0 so that the maximum normal stress is

(T ) max = T1z =(Ts),a - Which acts on plane whose normal is in the direction (1/ \/5)(el tey).
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5.57  Obtain the relationship between the twisting moment M, and the twist angle per unit

1 z

. 1
length «'for a rectangular bar under torsion. Note: 1+ —+—+...=—.
3* 5 96

Ans. We have, [see Eq. (5.18.10)],

_ (32,ua 152 J i is(—l)(n_l)/z {1_ cosh(nzxz / 2&1)}00S N7 X,

3 cosh(nzb/ 2a) 2a

n=1,35 N

o2
Thus, if let A= 32/¢+a and F(x3)=COSh(nﬂX3/2a),then,we have,
T cosh(nzb/2a)
M, =2[ydA=
1/2 a NTX 1)/2 nzX, [ ¢b
(ZA _1235n (1) (20)]* cos 22 dxz] (ZA _1235n (- j_acosTaZU_bF(xs)dedxz]
=M —N.

nz

M =28 3 () ) oo T, =A% o0) 3 %< e ) 3

_135n =135 0N 4

Now, Ia cos 72 gy X, = 28 )ogin N7 _[ 42 (—1)(n+3)/2,n=1,3,5,therefore,
-a 2a ns 2

Next. J-b F (%, )i, = b cosh(nzx;/ 2a) X3=(2aJ25mh(n7rb/2a) =(ﬁjtanhn—”b,so hat
-b -b cosh(nzb/2a) cosh(nzb/2a)

Nz 14 2a

e}

© q _ NzXy [ ¢b 64uc'(2a ! 1 nzh
N=2A Y —3(—1)(n 1)/2ja cos Zaz |:I_bF(X3)dX3:|dX2 ={#J > —ctanh—=

n=13,5 n -8 T n=1,3,5 n 2a
Thus,
32/105') 3 1 |6dua’(2a) | & 1 nzb
M =M—N:( 2a) (2b —— —tanh——
4
Rua j 4 64pc'(2a)’ | & 1 nzb
= 2 2b - —tanh——
(2 Y 5 ] 22482 5 L
Or,
o' 3 192(aj 21 nzh
M= — (2 2b)|[1-—| — —tanh——
()1 () 5
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5.58 In pure bending of a bar, let M| =M,e, + Mse; =—Mpg, where e, and e;are not along
the principal axes, show that the flexural stress T;; is given by

Mjlos + Msly, o + Mjlgs + Mglys

T = —
o —1,2) 7 (Ll — 1,2
33122 23 33122 23

3

Ans. Refer to Section 5.19, we had [see Eq.(5.19.4)(5.19.6) and (5.19.7)]
Ty =BX% + X, where My = Blyg +yly, Mg=—plg -yl
Solving the above two equations for g and y, in terms of M, and M, we obtain
M, 1,5 + Mjl M, 33 + Mgl
f=—r22 3222 and y =233 3223_
('33'22"23 ) ('33'22"23)
Mjlas + Mjslp Mjlss +Mjlys

Laolor = 15:2) 2 (Laalyy — 1,2
33122 7 123 33122 7123

5.59 From the strain components for pure bending

M, x vM,x
E11:| 2E3, EzzzEsa:—I 2=
2By 2By
Obtain the displacement field

, E12=E13=E23=0

Ans. Integration of ou; / 0x; = AXg, OuU, [ OXy =—VAX3, OUg/OX3 =—vAXg, WhereA=

gives
2Fy

Uy = AxgX + Ty (Xp, %), Up =—VAXgXy + T (X, X3 ), Ug=—VAXS [ 2+ f5(x%, %) (i)
where fi(Xy,X3), fo (X, X3)and f5 (X, x, ) are integration functions. Substituting (i) into
Ouy [ OXy +0Uy [ 0% =0, Ouy /Ox3 +0uz /0% =0 and du, / X3 +dug / Ox, =0, we obtain
Oy (Xa1 %5 ) 1 O%p = =0f (X4, X5 ) | %y = Gy (¥5)
Ofy (Xp, %3 ) / OXg = —0f3 (X, Xz ) | 0% = G2 (X;) (i)
Oy (X, Xg) | O%g = —0f5 (X, Xz ) 1 9%, = G5 (%)
where g(x,),9(X;),9(%s)are integration functions. Integrations of (ii) give,

fi = 01(X3) % +94(%3) and f; =g, (%) X3 + Jg (Xz) (iii)

—f5 = 01(%3)% + 95(%3), and f, = g3(%)%3 + gg (%) (iv)

—f3=9,06)% + 97 (X )and — f3 = g3(x)%; + g (%) V)

From (iii), g;(¥3) =aX3 +bi, 9,() =X +by, 9s(¥g) =byXg +Cy, G (X)) =byXo +¢, (vi)

From (iv) and (vi), g3(%)=—a% +bs, Gg(%)=-bx +C3, —0s(x3) =b3x3+0C5 (vii)

From (v) (vi),(vii), & =0, gg(X)=0yX +C4, G7(Xy)=bsXy +C4 (viii)
Thus,

fi=bX +0yX3 +Cy,  f =DaX3 —byXg +C3, f3=—byxg —b3X;, — ¢4 (ix)
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So that,
vM,
ulzl = XaX + 0y Xo +DyXg +Cy, u2=—I x3x2+b3x3 by X +C3,
22Ey 22Ey (x)
VM, 2
U =— X3 —byX —bgX; —
215,Ey

5.60 In pure bending of a bar, let M| =M,e, + Mse; =—Mp, where e,and e; are along the

principal axes, show that the neutral axis, (that is, the axis on the cross section where the
flexural stress T, is zero) is, in general, not parallel to the couple vectors.

M,X;  MjXx L
273 _ 32 thus the neutral axis is given by:
22 I3

Ans. From Eq.(5.19.10), we have, T;; =
MaXs  MaXp 1
122 l33 l33

I,, = 155 is the neutral axis parallel to the couple vector M| = M,e, + Mje; =—Mg.

=0. That is, the neutral axis is given by ﬁ:[ j% . Thus, only when
X2 2

5.61 For plane strain problem, derive the bi-harmonic equation for the Airy stress function

Ans. We have [Eq.(5.20.7)}
2

Ell—El {(1 v )zi— (1+v )ZZT(;’},EQ_EY {(1 )2 (1 )aﬂ’

y x2 1 axl 0X,
1 %y
E,=——@Q+v , Ei3=E,;=E;=0.
12 E, (1+v) x,0%, 13 = F23 = EBg3
2 4 4 2 4 4
3 0 E211 _ (1—V2)a—(f—v(1+v) 0'p E, 0 E222 _ (1_‘/2)8—(40—1/(1+V) o ¢
OX5 0Xy 8x2 6x1 OX{ Xy axl E)x2
2 2
2Ey 525122 =201+v)—— e . Thus, the compatibility equation
OX50X{ XEox;
OBy By, OEny |__,
x5 oxs oxdoxd
4 4 4
>|(1-v?) 92,000 Hasv)-2v1+v) =22 | =0,
Xy 8x1 X30XE

—>(1-v?) 54‘f+a4j’+2 o |_o,[Ze, D0, P | g
OXy 0% axzf)xl 6x2 axl 8x28x1
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5.62 For plane stress problem, derive the bi-harmonic equation for the Airy stress function

Ans.
2 2 2 2 2
Ey | ox; OX{ Ey | ox OX5 Ey 0x0x%,
we get

O°Ey %Ep | 09 09 3% °Ep, L, Op 8%
Ey + =—t - v—H— 2F 22— v———
oxy 0%y OX{ OX5 0% 0Xy OX{ OX5 OX{ OX5

s oxd

O’Ey | O°Epy _

2
The compatibility equation 2 OBy then gives

8x§ 6X12 8x16x2
4 4 4 2 2 4 4 2
_)6 f+a f—Zv 62(02 =-2 02(02 —2v 82¢2 — Thus, 0 ([/1)4_6 f+2 82(02 =
OX;  OXy OX{ OX5 OX{ OX5 OX{ OX5 oX; 0%y OX{ OX5

5.63 Consider the Airy stress function ¢ = oy X2 + a,X %, + a3%5 . (a) Verify that it satisfies
the bi-harmonic equation. (b) Determine the in-plane stresses Ty;, T;, and T, . (c) Determine
and sketch the tractions on the four rectangular boundaries X, =0,% =b,x, =0,X, =c.(d) As

a plane strain solution, determine T3, T»3, T35 and all the strain components . (e) As a plane
stress solution, determine Ty3, Tog, T3, and all the strain components .

Ans. (a) d*plox} =0, d*ploxs =0, d*p/oxioxs =0, thus @ =ayX +ayX X, + agX5 satisfies
the bi-harmonic equation.
(b) Ty, =0%p/ 0x% =203 Typ= —0°p | Ox% =~y Tpp =0°p | OXE =201,
(©

On Xl = O, t= _Tel = _(Tllel +T21e2) = —20[361 + 0[262, on Xl = b, t= Tel =T1161 +T21e2 = 20!361 — azez,

on X2 = 0, t = —T62 = —(T1261 +T2262 ) = 0!261 - 20!162, on Xl = C, t = TeZ = leel +T22€2 = —0!261 + 2a1e2.
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20,

IRRRERRN

FFFFFFFFG’)
—>

G e
20L3:; C i»zocs
B e

2
Fhbbbddy

2 OL]
(d) As a plane strain solution,
T =v(Tu+Tp)=2v(ag+ oy ), Tig=Tp3 =0, Ej3=Ep3=E5=0,

Epy =(1/ By )| @A)y —v(14v)Ty | =21/ By ) @-vP)es —v (14 V) e |,
Bz =(1/ By )| 0= v2) T —v(L+v) i | =2(2/ By )| 0= vP)ay —v(L+v)a |,
Epp =(1/Ey)(1+v)Tp =—(1/Ey )(1+v) ey,

(e) As a plane stress solution,

Eas =(1/Ey )[~v(Tu+Tp) | =-2(v I Ey ) (a3 + ).

Note, for this problem, since T;; +T,, is a linear function of x; and x,, in fact, a constant,
therefore, all the compatibility equations are satisfied so that Ez; is meaningful and u; does exist.

5.64 Consider the Airy stress function ¢ = ozxfx2 . (a) Verify that it satisfies the bi-harmonic
equation. (b) Determine the in-plane stresses T4, T;, and T,, . (c) Determine and sketch the
tractions on the four rectangular boundaries x; =0,% =b,x, =0,x, =c. (d) As a plane strain

solution, determine T;5, To3, T3 and all the strain components. (e) As a plane stress solution,
determine T3, T,3, Tg3. and all the strain components .

Ans. () d*p/ox} =0, d*plox; =0, d*ploxioxs =0, thus ¢ = ax?x, satisfies the bi-harmonic
equation.
(b) Ty, =320l x5 =0, Tpp= —0%p 1 6x0xy =—2ax, Ty =d%pl X = 2ax,
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(C) On Xl = 0, t= —Tel = _(Tllel +T21e2 ) = 2aX162 = 0, On Xl = b, t= Tel = Tllel +T2192 = _Zabez

OI’] X2 . C, t = TeZ :leel +T22€2 = _2axlel + 20(X282 = —20!X181 + 2aC€2
X2

20C

REARRRRRR

« <« <« <« <— <«<—20Xq

y

Clv2ob
'
b }

> > > —> > —>
2 OLXl
(d) As a plane strain solution,
Ta3 =v(Tyy + T ) =2vaXy, T3 =Tp3=0. Ej3=Ep =Egz =0,

By =(1/ By )| @2 )T —v(1+)Tp | =—[2av(1+v)/ By ],
E22 =(1/ EY )|:(1_V2)T22 _V(1+ V)Tll:|=|:20.’(1_1/2)/ EY:|X2,
Epp =(1/Ey )(1+v)Thp =—[ 2a(1+v)/ Ey |x.
(d) As a plane stress solution,
Ell :(1/ EY )(Tll _VT22):_(2aV/ EY )X2, E22 e (1/ EY )(T22 _VTll) = (20.’/ EY )X2
Eyp = (1/ Ey )(1+v)Thp =—[ 2a(1+v)/ Ey | =—ax / .

Note, for this problem, since T;; +T,, is a linear function of x; and x,, therefore, all the
compatibility equations are satisfied so that E;; is meaningful and u; does exist.

X1

5.65 Consider the Airy stress function ¢ = a(xf - xﬁ') . (a) Verify that it satisfies the bi-
harmonic equation. (b) Determine the in-plane stresses Ty;, T;, and T,, . (c) Determine and
sketch the tractions on the four rectangular boundaries ¥ =0,% =b,X, =0,x, =c. (d) As a
plane strain solution, determine T,3, T,3, Tg3 and all the strain components . (e) As a plane

stress solution, determine Ty3, Tog, T35 and all the strain components .
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Ans. (a) 0%p/ox' =24a, 0*plox; =—24a, 0*ploxioxs =0, thus ¢ = a(xf - xg) satisfies the
bi-harmonic equation.
(b) Ty =%/ x5 =—12ax2, T,y =@l oxt =12ax?, Ty, =—0p ] 0%0% =0.
(€) Onx =0, t=-Te, =—(Tye; +Tpe, ) =12axZe;, Onx =b, t=Te, =Tye, +Tpe, = —12ax3e;.

x2 2
el
1204 g C §120LX§
0—~—, +b2¢ P l X

12 oX]

(d) As a plane strain solution,

By = (1/ By )| @A) Ty —v(1+v)Ty, | =-12a(1/ By ) B A=V +v(14v)xE |
Ezo =(1/ By )| 0= V)T —v(L+v) Ty | =120 (2/ By )| (0= v2) + v (1+V) |
(d) As a plane stress solution,
_ _ _ _ _ _ _ 2 2
Ta3=Ti3 =Ty =0, Ej3=E,3=0, Ejy=(1/Ey)(Tyy —vTy)=-12c(1/E, )(x2 + VX )

2 _ 2
Since T;; +T,, is not a linear function of x; and x,, Eszis meaningless, because us does not exist.

5.66 Consider the Airy's stress function ¢ = axx3 + X5 . (a) Verify that it satisfies the bi-

harmonic equation. (b) Determine the in-plane stresses T4, Ty, and T,, . (c) Determine the

condition necessary for the traction at x, = c to vanish and (d) determine the tractions on the
remaining boundaries ¥ =0,% =b and x, =0.

Ans. (a) d*plaxg =0, d*plaxg =0, d*plaxtoxs =0, thus @ =axxs + x x5 satisfies the bi-
harmonic equation.
(b) Tyy = 20| X5 =2a%) + 6% Xy, Tpp =020 X2 =0, Ty, =00 8x0%, =—2a%, —3X3.
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(C)On X, =¢, t = Te, =Type; + Tpoey = (—2aC —3c?)ey, > —2a¢ —3¢® =0 — 2ac =—-3c¢* > a =-3c/ 2

(d) On Xl = 0, t = —Tel = —(Tllel +T21€2): (ZaXZ +3X§)e2 = 3X2 (Xz —C)EZ
Onx =b, t=Te, =Ty e; +Tye, =3b(2x, —C)e; — 3%, (X, —C)e,.

5.67 Obtain the in-plane displacement components for the plane stress solution for the
cantilever beam from the following strain strain-displacement relations.

ou _Pxxo o _0up _ vPxiX Eng[ P )(E—XZJ.

2

U B 2T, I a1 )| 4
Ans,
ou Px, x Px2x ou VvPX, X VPX X2
—1:—12—)U1= 172 fl( 2), —22——12—)U2=— 12+f2(X1),
o, Eyl 2Ey | Xy Ey | 2Ey |

ou o PN o) PR dh vPx df (PR )
2 2 2
_)le +£=_ﬂ+va2_X§ P . P h_
2E, 1 dx dx, Eyl 2ul 2ul )| 4
In the above equation, the left side is a function of x; only, right side is a function of x, only,
thus both sides must equal to the same constant, say c;. That is,

Px’ df, df, Px? Px;
——+—==0>—==0C— — fr=0% - +Cy.
2E,1  dx dx 2E, | 6E, |
df, vPxs [ P P \(h? vPxs x3( P P\ h?
—= X = |+ — || — |- fi= -—= + — [Xo —CiXp +C3
dx, Eyl 2ul 2ul )| 4 6E,1 3 2ul 2ul )| 4
Thus,

Px’x, vPx3 [ Px3 P )(hY
2E,1  6E/I 6ul 2ul )\ 2

2 3
T L. WP
27 2B, 6Bl PP

mzx
"X Show that the most

5.68 (a) Let the Airy stress function be of the form ¢ = f (x,)cos

general form of
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f(Xp) is f (X, ) =Cycosh A X, + C, sinh Ay, X, + C3X, COSh A X, + CyX, Sinh A, X, . () Is the

ITVZXl 2

answer the same if ¢ = f(x,)sin

Ans. (a) The function ¢(x;, X,) must satisfy the bi-harmonic equation. Now,

2 2 4 4
M:—[Mj f(xz)cosmle, a—q):[mj f(xz)cosmle,

oxf ¢ ot ¢
4 2 42 4 4
82¢2:_(Mj d ;Cosmﬂxl, ‘ f:d Icosmﬂxl,
OX{ OX5 ) dx; ¢ Oxy  dxy l
Thus,

4 4 4 4 2 2 4
V4¢”:a f+2 a2(02 = f:COSmﬂxl [Mj f(Xz)—ZEMj d ; +d 4f— =0.
O OX{OX5 OX ¢ ¢ C) dx;  dx;

4 2
Therefore, 3 I —222 d I + 24 =0, where 4, ="
dx; dx; ?

The characteristic equation for the above ODE is D* —242D? + A+ = 0. The roots of this
equation consists of two sets of double roots. They are: D = A, 4, — Ay, =4y - THUS,
f (X, ) =Cy cosh A, X, + C; sinh Ay X, + CqX, €0Sh Ay Xy + Cy Xy Sinh Ay X, .

(b) Yes, the same

5.69 Consider a rectangular bar defined by —¢ <x </, —c<X,<c, —b<x3<b,where
b/ ¢is very small. At the boundaries x, =+c, the bar is acted on by equal and opposite
cosine normal stress A, cos A, %, where A,, =mz /¢ (per unit length in x5 direction). (a)

Obtain the in-plane stresses inside the bar. (b) Find the surface tractions at x ==x/. Under
what conditions can these surface tractions be removed without affecting T,, and T;, (except
near X, =+/)? How would T, be affected by the removal. Hint: Assume
@ = f(X;)cos A,X, where 4, =mz / ¢ and use the results of the previous problem

Ans. (a) Boundary conditions are
(le)xzzic =0, (Tyo )XZ:ic = A, COS A, %
Let ¢ = f(X,)c0s A%, where 4, =mzx /(. Then (see previous problem) ,
f (%o ) =Cycosh A, X, +C; sinh A X, + C3X, €0sh Ay X, + Cy Xy Sinh Ay X, .
The in-plane stresses are:
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%0 2 e (.2 2
T, =% —_ f(x,)cosA %, T, =—==(d“f /dx5|cosA,X ,
22 o (Am)" f(%2)C08 AmXy, Ty o ( 2) Am¥y
T, =—aig—¢=ﬂ,m(df I dx, )sin A, . Now, applying the boundary condition:
XL OXp

(TQZ)XZZic = A, COS A, % —> —(/1m)2 f (£c)cos Ay X, = A, COs X — f(£c)=-A, /(;tm)z.
From f(+c)=-A, /(lm)z, f (+c)=f(-c),sothat C, =C; =0 and
f (+c)=C,cosh A, +Cycsinh e =—A, [ A5 (i)
Applying the other boundary condition:
(le )X2=iC = 0 —)(df / dX2 )X2=iC = 0 —>
CiAm sinh A;,¢ + Cy (sinh A,¢ + A, ccosh A,¢) =0 (ii)
(i) and (ii) give
c __2A; (AmC)cosh A,c +sinh 4,c o _2An|  Iysinhyc
o2 sinh24,c+24,¢ |+ 42 [sinh24,c+24,c |
With
f (o) =Cycosh A, X, +CyXy sinh A, X, , we have
T, :—(/1m)2 f (Xy)C0S Ay X :—(/1m)2 {C1€08h Ay Xy + CydmXo SINh A X, | €0S A X

{(Amc)cosh 2y, +sinh A,¢} cosh Ay Xy = { A Xo Sinh A, X, sinh Ac} 08 Ay
sinh24,,¢ +24,,C '

:2%[

Typ = A (df /dXy )sin A% = [Cl/lrﬁ Sinh A, Xy + C gy (Sinh A Xg + Ay X, €0sh A X, )]sin Am¥e

{=(Amc)cosh Ay} sinh A, X, +sinh 4,¢( Ay X, COsh A, X, )
sinh24,,c + 24,,,C

=2A{ }sinﬂmxl.

o (2 2 _
Tll—g—(d f 1 )c0s 2y =

—(Amc)cosh Anccosh Ay, X, +sinh Ay, (A X, Sinh A, X, +cosh A, X, )
sinh24,,c+24,,C

ZA{ }cosﬂmxl.
(b) Surface tractions at x; =+/ are:
Ty (£4,% ) =[lsinmz =0.
—(Amc)cosh Anccosh A, X, +sinh A, (A X, Sinh A, X, + cosh A, X, )
sinh24,,c +24,,C
At x; =+/,T;4is an even function of x,, which gives rise to equal and opposite resultant force of
magnitude Fg at the two ends. Removal of these resultants will have little effects on T, and T,, ,

:|COS mrz
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if ¢/cis very large. However, T;; will need to be modified by subtracting the normal stress ( Fg
/Area) caused by the resultant forces.

5.70  Verify that the equations of equilibrium in polar coordinates are satisfied by
T _18(/)+i62(/) % 8(18_(0)

"Tror 2oer Y o T ar\roe

Ans.,
18(%)_13(%16%)_{3#@1 o ia%o} Tw_ 1%

r r or?

10T,, 10[o(109 101 8% | 10 1( % | 1%
r oo 7@{5(?5” - T@{F(ame} _r_z@} B {r_z(araez ]_r_%ez }
Thus, [See Eq.(4.8.1),

10(rT,) 10Ty _Top
r or r o6 r
{qu o _iazwj_H o ]_iaz_cz»]_zaz_wzo
ror? r?ore0? r2o6% ) |r?l\oroo? ) ro6%| roor?
Similarly,

Lo(r'Ty) 10 rzg[za_wj __ 10| [0 op|__1f O
2 or r2 or or\r o6 r2 or oro0 | 66 rl oron

10Ty, 10 0% 1 8%

r oo radar’ rogr?

roar  rorlar rog?) \ror? r?orad? r® 06> -

1 o(r’T,) 16T
Thus, [See Eq.(4.8.2)] = A AR)
[ ©(4.82)] r2 or r oo

. T T cos@ sin@ || T, T cos@ -sind@
5.71  From the transformation Iaw:{ a re}:{ H 1 12}{ }

or oo —sin@ cos@ || Ty, Ty, || SiN@ cosd
and
2 2 2 2
Tll :a_¢, T22 :a—(zo and T12 = — 0 @ ' Obtaln TI’I’ 218_¢+[i2j6_(§
OX5 X 0% 0%y r or r2 ) o6
Ans.
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coséd

M e |

Ty, 082 0 + 2T;, Sin@cos @ + Ty, sin 6

Trr
T9 r

Tr6’

THH

sind || Ty, cos@ —siné

T21

T12

sing cosé T, || sSin@  cosd@

|

(Tp, —Ty1)COSOSING + Ty, (0052 6 —sin? «9) (Tllsin2 0 +T,, cos? 0 — 2T;, sin Hcosa)

2

r 2

X2+ X5 > 0r | ox =% | r=c0s6, r/dx, =X,/ r=sind,

T,, —T;, )sin@cos@+T,, (cos? @ —sin? @
22— T 12

o=tan22 00 o0 =2 =Y 5g ox, - MO0
a_¢=a_¢ﬂ+a_¢%:a_¢sin9+la_¢cosg,
OXy OF OXy 000X, or roe
2
1= P9 _ 0 (a(p |n9+1a—(pcosé’jsinHJri(a—(osinéhrla—(ocosejw
ax2 “orlor r oo 00\ or r oo r
2 2 2
:a—¢5m 6 +cosédsing| — 10% 10 + Gl (p5|n6?+a¢cos€+—a—cose—la—(psm¢9 cosd
or? rorod 206 ) | orod or r 06 roo r
62—¢sin2¢9 cos? 0 0p  cos 6’82(0 2c0s6sin® d%p  2cosésind op
or? ror 12 o8% r o0 r2 06
Op _0por 0p00 _0¢ o OPSING
ox,  Or ox, 00d%  or 00 T
- ago g[a_gacosa_a_gasmejcose_i[a_ga _a_gosmelsme
axl or\ or r 00\ or o0 r r
~ 82¢COS g, Sin eaq) sin®0 8%p  2sindcosd d%p ¢, 2singcosd dp
or? o 2 o0 r oro0 2 00/
T, = 0 Op i[a—(ﬂcosﬁ—a—gosmejsinmri(a—go _a_gosmﬁjcose
8x2 ox or\or r 00\ or o0 r r
_82_(pcosesin0_sin9cose %0 sinzea(p_coszea_(p+c0329 o’p sin’@ 8°p sindcosd dp
or? r2 002 2 00 2 06 r dGr r  ordl ror
Thus,
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Ty =T11€08% 6+ 2T;, SinOcos O + Ty, 5in? 6 =

2 2 2 2 2
a_gosm 0+cos 08(0 Ccos ea(p 2cos@sing 0°p  2cosdsing dp cos2 0
or? r ar r? 592 r oroo r2 o0
2 R 2 .2 2 2 2
a—fcos@sin@—smggosea q§+smzez_(g_cosz HZ_Z+COS 9(;36;0
-2 or r 00 r r r r sin@cosd
_sin®g 8°p sindcosd dp
r oroé r or
2 2 2 :
+sin2o a_(pcosze sin ea(p sin6 8 @ 2sindcosd 0°p +Zsmacosé? op .
or? r 8r 2 06° r oroé r2 06
2 2 2
T =sin? @cos® 6| —— o 26—(f+6—(f (cos40+sm 0 +2sin? O cos? 9) a(p
or? orc or ror
4 cind .2 2\ 1% 209 3 . 3 3 pei -3
+(cos f+sin” @+ 2sin“ @cos 0)—————(S|n @cosd—singcos” @+ cos” @sin @ —sin ecose)
r2 00> r? 00
( 2 62
sin@cos® @ —cos® @sin @ +sin® O cos O —sin 90059)
oro0’
That is,
2
T, - 1a¢+[1ja .
ror 062

5.72  Obtain the displacement field for the plane strain solution of the axis-symmetric stress
distribution from that for the plane stress solution obtained in Section 5.28.

Ans. From Section 5. 29, we have, for plane stress solution, [See Eq.(5.29.15) and .(5.29.16) and
note Ey =2u(1+v)]

Uy =;[—é(l+v)+28(l—v)rlnr—(1+v)Br+2C(1—v)r}+ Hsin@+Gcosd,
2y(l+v) r
Ug= 2Bro +Hcos@—-Gsind+Fr.
uld+v)

To obtain the corresponding displacement field for the plane strain solution, we replace the
Poisson ratio v with v/ (1—v) in the above equation [see Section. 5.26]. That is,

(1+v)—> (1+1%] :1%, (1-v)—> [1—%) = 11__2‘;/ :

14 14 14
Thus, for plane strain:
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ur=(1_v) A +ZB(1_2V)rInr—B 1 r+2C(1_2v)r +Hsind+Gcosd
2u r (1—1/) (1—v) (l—v) (1—1/

zzi{—é+28(l—2v)rlnr—Br+2C(1—2v)r}+ H sin 6 + G cosd
U r

1
:(I;r_")[_ﬁJr 2B(1-2v)rinr- Br+2C(l—2v)r}+ H sin & + G cos 4.
v r

and
u9=—28r0(1_v) +Hcos@—Gsing+ Fr = 2Brod=1{+v)

H Ey

+Hcos@-Gsin@+Fr.

5.73 Let the Airy stress function be ¢ = f (r)sinné, find the differential equation for f(r).
Is this the same ODE for f (r) if ¢ = f(r)cosng?

Ans.
2 2
Q= f(r)sinn6—>a—¢= f 'sinn9—>a—(p= f "sinng; 6_qo:nf cosn9—>a—(p:—n2fsinn9.
or or? o0 06?
Thus,

16¢ 1az¢ ?p (10 1 8% o2 . (f' 1, J .
-ty 4| g ——— 4+ —— | f(r)sinnd=| ———=n“f + f"|sinn@=g(r)sinnd
ror r?00> or? \ror r?206% or? ) ror? 9(r)

fr1, d2 1d n?

Now,

2 A2 20 &9 22
10 1 82 " J1op 10 (/2>+5 Ei+i25_+a_2 g(r)sinng
ror r200* or? 6’r r’ 06° or?

9 2 2 2 2 2
:(d L1d _n_jg(r)sinnez[d— Ld n—j(d—Jrli—n—]f(r)Si”ne:O'

ar2 rdr 2 ar2 rdr 2
Therefore,

2 2 2
d_+li I’] d +1d—n— f(r)=0.
dr2 rdr r2)ldr2 rdr r?

The same equation will be obtained if ¢ = f (r)cosng

5.74  Obtain the four independent solutions for the following equation
d> 1d d*f 1df n?
—+———— —+——-—1f1]=0
dr? rdr dr? rdr r
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Ans. Letf=r"

2
[ ijfr :2 f}:[m(m—1)+m—n2]rm‘2=(m2—n2)rm‘2
d2 1d n dof 1df n2 2 2 27 m-4
F+?a - J[dr o r—zf]z(m -n )[(m—s)(m—2)+(m—2)—n ]r =0
e(mz—nz)[(m—z)z—nz}zo.
Thus, my=+n, my=-n, my=2+n, my=2-n.
For n=0and n=1, the four independent solutions for f are: r™",r™", r*"2and r "*2.

For n=0, m, =m, =0, my=m, =2. Two independent solutions for f are given by C and r?.
Additional solutions are given by

d =(r”|nr) =Inr, and d pne2 =[r”+2 Inr} =r2Inr.
dn N0 n=0 dn n—0

The four independent solutions are: C,r?,Inr and rInr .

n—0

For n=1, m =m, =1 , in addition to r,r%,r®, we have,(ir”J =(r”|n r) =rinr
dn n—-1 n=1

Thus, the four independent solutions are: r,r %, r3and rinr.

5.75 Evaluate{ r cosne} { r smne)} ,
n=0 n=0

i(r cos n¢9 i r" cos nH
dn dn el

Ans.

L;j_n(rn cos nQ)}no = [(r“ In r)cos ngd—r"@sin naL:o =Inr.

L;j—n(r” sin ne)}

= [(r” In r)sin né +r"@cos nH} =60.

n=0 n=0
[ d (r‘”+2 cosn@)} =[—r‘”"2 Inrcosnd —r"2@sin ne} =—rinrcosd—résind
n n=1 n=1
{ (r” cosn@)} =[r”|n rcosne—rnesinna] =riInrcosé—r@sind
n n=1 n=1
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5.76  In the Flamont Problem (Sect. 5.37), if the concentrated line load F , acting at the origin
on the surface of a 2D half-space (defined by —z /2 <8<z /2), is tangent to the surface

and in the direction of #=90°, show that: T,, = —(ij Too=T;p =0
T)r
Ans. The boundary conditions are: Ty, =T,, =0 at@=x7/2,r=0. (1),
7l2 7l2
[ (Trcoso-Tysind)rdo=0 (i), [ (T, sin@+T,yc080)rd6=—F . (iii)
—l2 -2
From the stress field obtained in Sect. 5.37,
T =1 1(2Bscos0—2B5sin@), Ty =0, T,y =0, (iv)
we obtain, from Egs.(ii) and (iv) :
2 w2
| (2Bscos® 0-Bysin20)d0=0—285 | cos®0do=0->B5=0 .
—l2 —l2
From Eqgs.(iii) and (iv)
7l2 _ 72 _ _ 2F
| (Bssin20-2B5sin®0)do=-F 285 | sin®0d0=-F 285~ =F —2B; =~
712 712 2 4
Thus
= (sin@ 2F (sin@
TI’I’ = —2 B5 (Tj = —7[Tj, ng = 0, TI’G = 0 . (V)

5.77  Verify that the displacement field for the Flamont Problem under a normal force P is
given by

Uy :—%{(1—v)05in9+2|n rcosd}, U :%{(H v)sind+2Inrsind —(1-v)0coso},

The 2D half space is defined by —7z/2<60<x/2.

Ans. From the given displacement field, we have,

E,, =0u, /or =—£(wj, ie, E, :Ti.
Eyz\ r Ey

ou P .
a_;+ur :E{(“ v)cos@+2Inrcosd —(1-v)cosd +(1-v)0sin o)
—%{(1—v)63in6+ 2In rcose} =%{(1+ v)cosﬁ—(l—v)cosﬁ} =%§:SH.
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That is, E%:i %le :&/—Pﬁ, i_e,,E%:_VT".
r\ o6 7By r E,
Next,
1( au, ou,  P{(-v)sind+(1+v)sind} 2p sing
r\ 00 or wEyr 7Ey r

B 2P sinH+ 2P sin@
7By 1 By 1

=0, |e,2ﬂEr9=O:Tr9

1

5.78 Show that Eq. (5.38.6), i.e., u=¥ —
4(1-v)

V(X-W+)

can also be written as:

2uu=—-4(1-v)y +V(x-w+¢) where ‘Pz—yxz ,

U U
Ans. With ¥ = -y 2(1_V), (I)=—¢2(1_V),We have, X-T:—Mx-y/—»
u u u
2(1-v) 1
= VX-¥+®)=——"—2y +-—V(x- :
—u W) (X-¥+®) P y/+2# (x-y+9)
That is,

2uu =—4(1—v)y/+V(X-yI+¢).

5.79  Show that with

U= - ! i(xn‘Pn +®), the Navier Equations become :
4(1L-v) ox,
2 2
- X, V¥ ~(1-4v) V¥, + VO, B =0
21-2)| " ox ox,

4(1-v) ox 4(1-v) 0% 0%
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2
el ¥y 1 ( Py Wy OO j

o X, A=) T ox,ox, X, 0%y 0%
G _ oMy 1 [0 ¥ | ,00, o o0
o O Xy AL-v)[ % | " XX 0% OXy  OX; OXpO%m,

m

oW, (-2 1 (X o o2,

= §— +V2y, +-9 v
0%, OXy 2(1-v) 41-v)| = 0% OXnOXn 0

2
puooe 4 0 0Wn_ £ x, 2 0% g2y 0 g2,
1-2vax 20-v)ox ox, 4(l-2v)A-v)( " ox OX, ax oXi
Also,
2 OV .
AL 2 M B VZ‘I’ 22T vy % v
anan 4(1 V) 6XJ axi axi
O°Y
SYR = d VA VA1 4(- v)]+iv ®
2(1-v) 8xj6x “aa-w” ox
Thus,
2 .
p U H e M [ o)k, L vR, o1 av)(L-v) VR, £ (2-2v) 2 v
oxjox; 1-2v E 41-v)(1-2v) X o
My Oy, (1—4v)v2\Pi+iV2cD
2(1 2V) axi axi
i.e.,
2
p T p iy gy (1 a)vRy 4 v |,
XX e 20-20) "o ox;

so that the Navier Equations become:

2
___H av i) (1—4v)v2\1'i+5v—® +B=0.
2(1- 21/) ox; ox;

5.80 Consider the potential function given in Eq. (5.38.32) [See Example 5.38.5], i.e.,
w=y(R)er, #=¢(R),
where

2
¢_d¢ 2dg Oand(dv/ 2 dy ZW}

dr2 R dR dRZ RdR R?

Show that these functions generate the following displacements, dilatation and stresses as given
in Eq.(5.38.5) to (5.38.38):
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. dy d¢
a) Displacements: 2uuy =| R—+(-3+4 +——1, uy=u,=0
(a) Disp HUR ( R ( 9% dRJ 0 =Ug

1-2
(b) Dilation: e=—( V){d_y/+2_1//}
dR R

(c) Stresses: Tpg =(2v — 4)d—l//

dr

y  d% dy 3y 1dg¢
+H(2-dv)=+—=, Tyy=Typy=—1(2v-1)—+——-——-
( V)R dR2 BB a0 {( v )dR R R dR

Ans. With x =Reg , we have,x-y = Ry, thus 2uu=-4(1-v)y +V(X-y +¢)—>

d de¢
2uu=-4(1- en +—(Ry +¢)es =(=3+4v)peg +| R-Z + eRr
pu=—4(l-v)yep +—-(Ry +p)eg =(3+4v)yeq ( R de

ie, 2uug =(-3+4v)y +
(b) The non zero strain components are:

2,uERR=2,uaL—( 3+4v )dw (Rdl// dl//+d¢] (—2+ 4)d'//+Rd‘// d¢

R drR drR2 drR d dR drR? dR?’
g SV, 2dv 2y o dv 2y 2dy
dR2 RdR R?2 dRZ2 R%? RdR

2 2 2
— 2uEgg =(—2+4v)d—w+ Rd—w+d—¢=—4(1—v)a—w+2—w+d—¢_

dR  drR? dR? R R dRr?
2pUg y dy 1d¢
2uE 5, =2uE,, = =(-3+4v)—+—+——=.
HEpp =210 == = (B V) R Y R R
Therefore,
2
2ye=—>2ye=—4(1—v)d—‘”+2—‘/’+u+{2( 3+4v)Z APLN 21d—¢}
dR R dR? R drR R dR
2
=(—2+4v)d—y/+(—2+4v)2—w+ d—¢+£d—¢ -2(1-2v )[dy/+2yxj'
drR R drR? RdR dR R
1-2
%e:_w(d_*/fﬂ_‘//j_
Y7 dR R
(c) the stresses are:
2uv dy 21//) dy 2y d2¢
Ter = e+2uEp, =2 + 41-v)—+ ——+——
RR=1_ g, HERRT V(dR R )RR TR
dy v, d2¢
(v -4) S+ (2-av) % £
2 dy 2w v 1dg
Tes =Tyy = e+2uEy =-2v| —+ — |+ (-3+4v) =+ —+——F
pB =00 =7 HEgg V(dR R) ( v) R dR
oy % 10g
dR R RdR
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5.81 Consider the following potential functions for axis-symmetric problems:
w=0, ¢=¢(r,2)=¢(RB), V2p=V3p=0,
where (r,0,z) and (R,#, f) are cylindrical and spherical coordinates respectively with z as the

axis of symmetry, @ the longitudinal angle and £ the angle between z axis and eg (the azimuthal
angle). Shows that these functions generate the following displacements, dilatation and stresses:

Cylindrical coordinates
o9
oz

o¢

(a) Displacements: 2.u, = o
r

(b) Dilation: e=0

, Up=0, 2uu,=

2uv 6 o9 2uv _1og
)T, =—"——e+2uE, = y Top = e+2uEy, =
© Ty = 1o, 8t 2HEn S 0T o, 0= 5

2uv i o
Tp = £ e+2:uEZZ=_¢ Erp =0,Ep, =0, Tr2=2/1Erz:—¢

1-2v oz2’ oroz
Spherical coordinates:
. 0 1 0¢
d) Displacements: 2uug =—, Uy =0, 2uugz=——
(d) Disp HUR R’ MU g R 0p

(e) Dilation: e=0

(F) Stresses:

2uv 0’ 2uv 1 az¢? 109
Teg = e+ 2uEpg =—o, Tpp=—t e+2uE ,=——"
RR l 2V Iu RR aRZ ﬂﬁ 1_2V ‘Il /Bﬂ R2 aﬂ R 6R

20V 10¢ cotp o
Ty =Y e 0yE,, -~ LW 1 _o T,-0
06 _2v 00 = R R R2 8,8 RO ap
1% 10
Trp =2HERp = R iR R 05

Ans. With x=re, +ze, =Reg, w =0, ¢=¢(r,2) =¢?(R,ﬁ) we have,[see Egs.(2.34.4) and
(2.35.15)]

200 =~4(1—v)y +V(x- l//+¢)—>2,uu—%e L0, 0, 104

0z aR R op
That is, in cylindrical coordinates

o¢ o¢
2uu. =——, U, =0, 2uu,=——
HUy or 0 HU; oz
and in spherical coordinates;
o¢ 109
2u=—,u:0,2u——
HUR R ¢ HUpg R 0

(b) The non zero strain components are:

In cylindrical coordinates: [See Egs.(3.7.20)]
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ou, 0% 2p0 109 ou, 0%
2uE, =2y =% oy, = 2yE. =2, M09
Hom =y T2 T T T Ty T2

ou, ou a¢
E,p=0,E,, =0, 2uE,, = u| —L+—2 |=——
o oz Her #[ oz 8rj oroz
a¢ 104, -
2ue=2u(E, +E, +E =V4=0
H ,U( rr 00 zz) or ~o ' r al’ P ¢
In spherical coordinates: [see Eqs.(3.7.21)]
ug 9% 2udp  2uup 1 az¢ 109

R R YPTR PR R R
2uup 24U COL S :£8¢ cotﬂ%
R R RAR R%Z 9B’
2uE, zyﬂiau_R_u_Mauﬂj [1 6 104 1% 104
P72 R8B R @R ) 2|ROBR R20B RORIB R2OB
1(2 3% 204) (1 0% 1 o
2|R3BR R20B) |ROBR RZOB
a¢ 13% 104 104 cotpop
o
oR? Rzaﬂ ROR ROR R? op

39 1azg$+ga¢ cot 04
oR? RZaﬂZ ROR R? op

2uEpy = Ero =0, Egy =0

2ue=241(Epg +Epp+Epg) =

=V2$=0 [see Eq.2.35.37)]

(c) the stresses are:

In cylindrical coordinates:

2uv ¢ 2uv 109
L T T
2uv %9 %
Tzzzl_zve+2yEzz=62—2, Erg=0.Epy =0, Ty =2uEr =——
In spherical coordinates:
2uv 0% 2uv 1 % 104
Tag = e+2uEpg =—=2, Tpp=—t——e+2uEp=——" +=
R oy HERRTGRE T g T T R 52 TR R
2uv 104 cotp o
T, = e+2uE,, ==, 2 Tay =0, Ty=0
00 =1 _9, HEgg ROR  RZ 0f RO o
10 1 04

Trs =2uE
RE=HERETROBR  R2 Of
These are the formulas given in Example 5.38.6.
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5.82  For the potential functions given in Eq.(5.38.46), [see Example 5.38.7)], i.e., :

w=y(R fS)e, ¢#=0,where V2 =0,
shows that these functions generate the following displacements u;, dilatation e and the stresses
T;; (in spherical coordinates) as given in Eq.(5.38.47) to (5.38.50)::
(a) Displacements:

oy . oy
2uUn =—<(3-4 —-R—}cosfB, 2uu,=<(3-4 sinf+cosf——+F, u,=0.
HUR {( vy 6R} B, 2pug {( v)ysin B ﬁaﬂ} 0

(b) Dilation: 2ue=—-(2- 4v)(cosﬂa—w —ﬂa—lﬂ} :

(c) Stresses

81,// 2vsin g oy
R op

Trr =— (2(1 v)cosﬂ W Rcosﬁ

2
Tpp =~ [(ZV 1)Cosﬂaw (2-2v )S”F‘zﬂz; CO;ﬂZﬂJ

ngz—((Zv—l)aa—zcosﬂ—((Zv 1)sin B + 1ﬁjsg’ﬁ]

52
v oy
Tes=—|2(1-v)—cos f———C0S -sinpBl-2v)——|. Trp=T,, =0
RS {( ) '883 ﬂ@?& B( )8R} ro = lop

Ans (a) with x=Reg, egle, =cosf and
X-y=Reg-ye, =wRcosfB, e,=cospeg —sinﬂeﬂ,
2uu=-4(1-v)y +V(x-w +¢)=—4(1-v)ye, + V(Rycos ) >

200 =—-4(1-v)y (cos Beg —sin ﬁeﬁ)+%(1/1Rcosﬁ)eR +%%(chosﬂ)eﬁ
= —4(1—1/)1//(cosﬁeR —sin ,Beﬂ){z//cosﬂeR + Rcosﬂaa—zeR +cosﬂg—Zeﬁ —wysin ﬂeﬂ}

oy . oy
=—-cosf|(3-4 -R—|eg +|(3-4 sinf+cosfp— |e
(b) The strain components are:

au oy 0y oy 81// O’y
2uEBpn =2u—R =—{(3-4) L —-R—L cos 24y R— cos

10ug ug) 10
2UE gy =2u| ——L+-R
R R) RO

smﬂa:// 7 cospoy| 1 oy
{(2 4v)—— ¥, +(@8-4v)= cos,B 5 aﬂ} {(3 )y — RaR}cos,H

L {(3— 4y — Raa—z}cosﬂ

{(3 4v)ysin B +cos S ﬁ}_ﬁ
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=(2-4v )Slnﬂaw+cosﬂaw+cosﬂa—w.
R op R op° oR

2,uE6,6,_2y[R uﬂ(:tﬁj:—l{@ W)y —RZZ}cosﬂ+Coéﬁ{(3—4v)y/sinﬂ+cosﬂg—;§}
az,y cotf oy cos 3.
8R R op
1oug Uy  Oug cos B oy O’y PN AW
2,u(2ERﬁ) 2 (R 5 R + 8Rj {(3 4v)—— R op cosﬂaﬂOR} {( )R 6R}smﬂ

sing  cosB oy e ROV %y
{(3 vy ; —t— 5 Gﬂ} {(3 4v)smﬂa +cosﬂaRaﬂ}

Py
=—4(1- )COS’B 61,// +2c0s f—— oy +2(1—2v)sinﬁa—l’”.
R op OROp

ie., 2uEq; =—2(L—v )Cosﬁ ZZ cosﬁai;/ﬂﬂl 2v)5|nﬁ—

81// %y oy cotf oy
2u(Erg +Eyp +E 2—4v —R—=}cos g+ + ————|cos
/U( RR 06 ﬂﬂ) {( ) oR2 } s (OR R 0B s

L(2— 4y )S|nﬁ61//+cosﬂa 7
R op R

oy _ %y cos B 8%y oy
=4y—+R—=-tcosf+—— cos? B+ (2 —4v)sin
{ 6R2} B o~ +(cos? B+ (2~ av)sin? B)———

sﬂ—

oR R Rsin B 0p

2 2
=Rcos oy 2 1281/;+cot2/38_w +4vcos/3a +(2—-4v )Smﬂal//
OR® R°0p R op oR R op

=Rcosﬂ(—ga—wj+4vcosﬂa—w+(2—4V)M6—W=—(2—4v) cosﬂa—w—ﬂa—w :
R OR R R op

oR R op
2 2
where we have used, the relation: a—l//+i oy +£6_y/+_cotﬂa_y/:
oR? R%*(9p?) ROR R? 0p
Thus, Zﬂe=—(2—4V) COSﬂ M@_l// )
aR R op

(c) The stresses are:

with 21V e=-2v cosﬂa—w—ﬂa—w , We have,
2v oR R op
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2
sinf ov 2—4v)aa—z—R—‘2R'/;}cosﬂ

2’u2 e+2uEpg = ZV[COS'B__Tﬁ] {(

2
=(- 2+2v)cosﬂaw szmﬂal// cosﬁa—
R 8,8 oR?

Similarly,

TRR -

2uv sin 8 0y cos 3 %y
Tss = e+ 2uE ., =—(2v —1)cos —+ 2—-2v .

2uv oy .
T, = e+2uE,, =—(2v-1)——cos S +| (2v —1)sin B+
60 =7 HEgp ==(2v—1) o cosf [(V Jsin 5 sinB JROB

cos B 0 02 . 0
TR,B = ZﬂERﬁ =-2(1-v) R’B%+cosﬂﬂ—;’/[R+smﬂ(l—2v)a—z. Tro :Tgﬂ =0

5.83 Show that (1/ R) is a harmonic function (i.e., it satisfies the Laplace
Equation V2 (1/ R) =0), where R is the radial distance from the origin.

Ans (a) R =xZ +x5 +x3, therefore, R_KR_X R_X o that
o R ox, R 0x

0 (1} 1R X o (1} 1 3x1(x1j 1 3%
—| = === ad —| = =t T | —
RZox R® ox? \ R R® R*(R R® RS

% \ R
2 2 2 2
Similarly, a—(£j=—%+3isz, a—z(ij:—%+3ig’
X5 \R R R ox5 \ R R® R
Thus,
o (LJ K (1) SEIN 1 S TN
oxox\R) a2 a2 a2 ) R) | R® R® R® R® R® R®
3(x1+x2+x3) 3 3
‘_¥+T RR

5.84 In Kelvin's problem, we used the potential function ¥ = we, where in cylindrical

. A . . .
coordinates: == R2 =12 + z2 .Using the results in Example 5.38.6, obtain the stresses.

oy _ 2z Py 3% 1

Ans _Loov,
. l// R) 82 R31 az R5 R3l
5'/’=_L_>52‘// 3° 1 %y _of r)_ 3z
o2 R R® o @z
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0z or?

oy 10y z z r z
Tp=2 Yy 2V _ o[ 2 V2o L
0= s T ar V[ R?’j r( R3j ( V)[R3]
oy %y r 3rz r 3rz?
L P AVl ZP A C P 1 (LI Y - JE P | L 1 L
=25 zns = V)( R3j [RSJ ( V)(R3j (RF’

O’y oy (322 1 z 378 z
T,=1——2(0-v)—=z7| 2 - |+2(0—v) = =2+ (1-2v)—.
7z 822 ( )az [RS R3 ( )R3 RS ( )RS

2 2 2
T :_zﬂ_h28_'/'=_2V[_ij+[3f_z_ij=_(1_2V)Ri+3;_2.

5.85 Show that for p=CIn(R+z), R%=r2+122,
82_(”:C z_ 1 _
or? R® R(R+2)

Ans op_C 1 1ldp_ C
" or (R+z)R’ ror R(R+z)'

Pp [ro 1 L1 or|__ ¢

o2 |Ror(R+z) (R+z)orR| R(R+2) R(R+z) R2
__Cc | _r r RR+z C |RP-r?+zR r?
“RR+2)| RR+2 REZ R(R+2)[ RR+2)| RR+2z RZ

C i_Rz—z2 ~ C Rz +2° —R? _clt_ 1
"R(R+2) R2Z [ R(R+2) R2 TR RR+2)|

5.86 Given the following potential functions:
y=(0¢ldz)e,, ¢=1-v)p, where p=CIn(R+2), R2=r%+22,
From the results of Example 5.38.4, and Eqs (i), (ii) (iii) of Section 5.40, obtain
T, :c{3r2z IR® —(1-2v)/[R(R+ z)]} Ty :c(1—2v){—z IR +1/[R(R + z)]} .

T, =C(32°/R%), T,=C(3rz%)/R°.

Ans.

=7 _—
N ror) or?

C{ [?:r2 1 ] 2v [ z 1 ]} {[?ﬁzzJ 1-2v }
=Ci2| s [t T 5 =S /
R R R(R+2) R R(R+2) R R(R+2)

Copyright 2010, Elsevier Inc
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2 2
T, = {—2va—‘/’+ia—¢’+ (1-2 )15—(”}

1%
072 roroz ror
Cz z( Cr C Cz C
=-2v|-— |[+—| ——< |+1-2v =——(1-2v)+(1-2v ,
( R3] r( R3J ( )R(R+z R3( A )R(R+z

1
ZC(l— 2‘/){—é+m}

g %o z 3% z 3z° ¢ 3rz?
T,=299 9% ) |2 2|, 2l 3 1 _|,; L
ot e R® R®) R® R® "o erez? R®

Tr0 ZTQZ =0

5.87 The stresses in Boussinesq problem in cylindrical coordinate are given by:

F, 3r?z (1—21/) F, (1—21/) 7 1
Te=—7> 5 v Tgg=——F7— By e——
27 | R R(R+72) 2z R> R(R+2)

k3 _F 37
27 R% ' 27 R%
Obtain the stresses in rectangular Cartesian coordinates.

7

rz —

Trg :THZ =0

Ans,
T Ty Te| [cos® —sing 0T, O T,]|[ cos@ sing 0
Tx Ty Ty |=|sin@ cos® 0[ 0 T, 0 |-sind cosd 0
T,y Tyz T, 0 0 1T, 0 T, 0 0 1

Ty €082 0+ Tpysin®@ (T, —Tyy)sindcosd T, cosé

(T =Ty )SinOcosd Ty sin*O+Tyc08°@ Tp,sind |. Thus,
T,, cosé T,,sin@ 1

T, =T, €082 0 +T,,sin% 0

2 1-2 F,(1-2
:_i 3r Z_ ( V) COSZQ—M _i+; Sinze
27| R® R(R+2) 2z R® R(R+2)

2 1-2 1-2 1-
__R 3z (1-2) cosze—wsin29+(—)sin29
27| R® R(R+2) R3 R(R+2)
2 1-2v)z (1-2
__ R |3z (1-2) + (1-2v) {L(R+z)cosze—200529+1}
27| R® R® R(R+2) [R?
27 (1-2v)z (1-2 1-2
__ Rz (1-2) + (1-2v) + (1-2v) {L(R+z)cosze—200529}
27| R® R3 R(R+z) R(R+z)|R?
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9,2 _ _ _ B 2 2
R 3z _(-2v)z (1-2v) (@ ZV){R(Z R)+2%-R }COSZG

27| R® R3 R(R+z) R(R+2) R2
[3x27 (1-2v)z (1-2 1-2 _ 2 _R2 ]
__ Rz (-2v)z (1-2v)  (1-2) [Rz-R)+2*-R*| .,
27| R® R® R(R+z) R(R+2) R?
Now,
X2 X2

rcosd=x-—>cos@=x/r,r>+z>=R? cos’0=

RZ_z2 (R+2z)(R-2)

Therefore,
. 3% (1-2v)z  (1-2v) (1-2v) [R(z-R)+2%-R? x?
= + +
"o R® R® R(R+z) R(R+z) R? (R+z)(R-2)

27 RS RR+z) R(R+2)|R(R+z) RZ

_F, [3x z (-2v)z (1-2v) (1-2v) {l( X H

5.88 Obtain the variation of T,, along the z axis for the case where the normal load on the
surface of an elastic half-space is uniform with intensity ¢, and the loaded area is a circle of
radius r, with its center at the origin.

Ans Using Eq.(5.41.3), we have,

J-q027zrdr _ 3,0 J‘ro r'dr . where
R|5 0 r'=o0 R-5
R ’
R?=r?+z> 5RdR' =rdr' > T, =—3Z3qOIz O(Fji%
R 3 3
1 |° 0,2 0,2
—T,, =-32% [— } =20° g, =—20" ____q,.
2z ") 3R,3 . Rg 0 (r02+22)3/2 Y

5.89 For the potential function y = DlR‘2 cos Se, , where (R, S,6) are the spherical
coordinates with £ as the azimuthal angle. Find Tgg and Tgg.

- oy -3 %y -4 oy 2
Ans, =D,R2cosf— 2 =-2D,R>cos B — —~- =6D,R™*cos , —=-D,R™“sing.
=D p R 1 B R 1 B o5 W B

From Example 5.38.7,
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ay/ 2vsin g oy
R op

=D, [—2(1—v)c:osﬂ(—2R‘3 cosﬁ)+ Rcosﬁ(GR‘4 cosﬁ)+@(—R‘2 sin ,8)}

Trr =—2(1—v)cos ﬂ— + Rcosﬂ

= Dl[2(5 ~v)cos® f— 2‘/] R
2(1-v) 0 o°

v Vo oy
cos f——+cos f——+sin f(1-2v)—
RSP TS g TN A2

=D [—%cosﬁ(—Rz sin ﬂ) + cosﬂ(ZR’3 sin ,6) +sin B(1- 2v)(—2R’3 cosﬂ)}

- Dl[z(l—v)R—3 cos sin + 2R3sin Bcos B — 2R3 cos Asin AL — 21/)]
= DR cos Bsin f[2(1-v) + 2 2(1-2v)] = 2D,R (L +v) cos Ssin .

5.90  For the potential function, ¢ =¢(R,)=Cy[R™ (30032 B —1)/ 2]+C,R,

where (R, 3,0) are the spherical coordinates with S as the azimuthal angle, obtainTgg and Ty .

Ans. With
$(R.B)=(C1/2)R7>(3c0s* f-1)+ C,R™ —> (Cl/2)(—3R‘4)(3cosz,B—l)+(C2)(—R‘2)

%P -5 2 -3
>~ 7=6CR (3cos f-1)+2C,R

and 99 = _3C1R‘3 sin #cos 8 — —% QClR‘4 sin gcosf .
op Rop

From Example 5.38.6, we have

Ter = 2R¢ 6C,R"®(3cos” f—1)+2C,R°.

%9 10| 1 4. 1 3. .
T, - 9C,R™"sin Scos B ——(—-3C,R™"sin S cos =12C,R™sin S cos
R~ R(&ﬁaR RaﬂJ R[ 1 peosp R( 1 poosf) 1 Beospp

CHARTER 5, PART B

591 Demonstrate that if only E, and E;are nonzero, then Eq.(5.46.4) becomes
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C:22 C23 E2
U =[E, E3]{C et
32 33 3

Ans. Eg. .(5.46.4) gives
| CpE; +Ci3E; |
CorEy +Cy3Es
Ca3E; +Ca3E3
CosEy +CyyEs
CosEp +CssE3
| C26E2 +CssE3 |

This is the same as

C C E
[Ez E3]{CZ szMEj=[E2(C22E2+C23E3)+E3(C23Ez+C33E3)]-

2U=[0 E, E; 0 0 0] =[ E»(CyE +CyaE3 )+ E3(CysE, +CyEs) |

5.92 Demonstrate that if only E; and E; are nonzero, then Eq.(5.46.4) becomes

Cu C||&
2[5 E3][C31 Cas L Bs

= |:El (CiiE1 +Ci3Eg) + B3 (CisEy + C33E3)]
This is the same as

C, C E 1
5 ES]{CE C;j{Ej:E[El(Elcn+C13E3)+ES(C13E1+C33E3)]=2U

5.93  Write stress strain laws for a monoclinic elastic solid in contracted notation, whose
plane of symmetry is the x;X, plane.

Ans. All Cyy =0 where the indices ijkl contain an odd number of 3. Therefore,
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[C]=

5.94  Write stress strain laws for a monoclinic elastic solid in contracted notation, whose
plane of symmetry is the x;X; plane.

Ans. All Cyq =0 where the indices ijkl contain an odd number of 2. Therefore,

[C]=

5.95 For transversely isotropic solid with €5 as the axis of transversely isotropy, show from
the transformation law Cjj = Qi Qpj Qri Qsi Crnnrs that Ci3153 =0 (See Sect.5.50)

Ans. Since Q33 =1, Q3 =Q,3 =Q3; =Q3, =0, therefore,

C1'113 = leinerQSSCman = leinQr1Q33Cmnr3 = leinercman = Q11Qn1Qr1C1nr3 + QZlinQr1C2nr3
=Q11Q11QnCr1r3 + Qu1Q21Qr1Crzrs + Q21Q11QrCotrs + Q21Q21Qr1C o013
Now, all Cj, with odd number of either 1 or 2 are zero because e, plane and e, -plane are planes

of material symmetry. Thus, Q,1Ci1r3 =Q1Ci2r3 = Q11Co1r3 =Q11Coo3 =0. Thus, C{113=0

5.96 Show that for a transversely isotropic elastic material with e, as the axis of transverse
isotropy, Cj133 =Cy33 (S€€ Sect.5.50) .

Ans. e; =cos fe; +sin fe,, e, =—sinfe; +Ccosfe,, €3 ==e;
Qi1 =088, Qi =—sinf, Qy =sinf, Qp =c0sf, Q=1 Q3 =0Q;3=Q;3=0Q3 =0. Thus,
Ci233 = Qm1Qn2Qr3Qs3Cmnrs = Qm1Qn2Q33Qa3Cmnas = QuiQn2Crinsz = Q11Qn2C1nzs + Q21Qn2Conss
=Q11Q12C133 + Q11Q21C1233 + Q21Q12Co133 + Q21Q2C233.
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Now C;,33 =Cyq33 =0 because e; plane (as well as e, -plane) is a plane of material symmetry.
Thus,
Ci233 = QuQ12C133 + Q21Q55Cr233 = —C08 Asin SCyy33 +5iNn 5€0S SCo045
= (~Chaas + Cpp33) COS Bsin .
Again, Cj,33 =0, because e] is also a plane of symmetry. Thus C;;33 =Cyy33.

5.97 Show that for a transversely isotropic elastic material with e; as the axis of transverse
isotropy(see Sect.5.50)

(5in 8)* Cyyyy +[ (€0 B)* = (5in ) |Cryzy +2| (c0 B) = (5in B)? | Crasz = (€08 8)* Cr = 0.

Ans. Since Q3 = Q3 =Q3 =Q3, =0 and Cyjy =0 when the indices ijkl contain an odd number
of either 1 or 2, therefore,
C1'222 = Qm1Cn2Qr2Qs2Cmnrs = Q11Qn2Qr2Qs2C1nrs + Q21Qn2Qr2Qs52C2nrs
= Q11Q12Qr2Qs2C11rs + Q11Q22Q12Q52C 115 + Q21Q12Qr2Q52Co1rs + Q21Q22Qr 2Q52C 01
= Q1Q12Q12Q12C 111 + Q11Q12Q22Q22C1127 + Q11Q22Q12Q22Cr212 + Q11Q22Q2Q12C1221

+Q51Q12Q12Q22C5112 + Q1Q12Q22Q12C121 +Q21Q22Q12Q12C 5211 + Q21Q22Q22Q22C 2225
Thus,
Clazp =08 A(sin )’ Cyyy1 —Sin f3(¢08 1) Cry, — (c08 ) sin fC1y1, — (€08 ) sin SC101
+(sin 3)° €0s BCy11, + (sin B)° €08 AC 151 + (5iN B)° €05 BC 011 + (€08 B)° SN BCo00
= —cos fsin ﬂ[sin2 BCi11q + (c0s% B—sin? B)Cy1pp + 2(cos? B —sin? B)Cypy, — COS? ﬂszzz}.
where we have used Cyj =Cjiy, Cjjg =C

jik and Gy = Cyg -

Now, C{5,, =0 because e; is also a plane of symmetry, therefore,

sin? BC,1q; + (c0s? 8 —sin? B)Cyypp + 2(C0s% B —sin? )Cypyp —COS? SCop00 =0.

5.98 In Section 5.50, we obtained the reduction in the elastic coefficients for a transversely
isotropic elastic solid by demanding that each S ; plane is a plane of material symmetry. We

can also obtain the same reduction by demanding the Cy be the same for all 5. Use this
procedure to obtain the result: C;j33 =Cyoas.

Ans. Since Qg =Q3 =Q3, =Q,3 =0, Qz3 =1, therefore,

C1'133 = leinQrSQSSCmnrs = leQn1Q33Q33Cmn33 = leincmnBS .
Now, Cijkl =0 when the indices contain an odd number of either 1 or 2, therefore,

2 .2
Cl133 = Qu1Q11Cr133 + Q21Q51C 233 = €0S” BCyy35 +5IN BCo0s3 -

Now, C{i33 =C,q35 forall g, therefore,

2 " " "
Ci133 =C08" fCy133 +5IN” SCyp33 —> Cyq338IN” f=5IN" fCypp35.
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Thus, Cyy33 =Cyppa3-

5.99 Invert the compliance matrix for a transversely isotropic elastic solid to obtain the
relationship between C;; and the engineering constants. That is, verify Eq. (5.53.2) and

(5.53.3) by inverting the following matrix:
1/E;, -vyulE -vy/E;g
[A]l=| v /B,  1IE  —vylE
-3l B —v3lE 1/Es

1/ El _V21 / El _V31 / E3
AI’]S [A]: _VZl / El 1/ El _V31 / E3
_Vl3 / El _V13 / El 1/ E3

1 1
A = det[A] = 2 (1— 2V21V13V31 - 2V13V31 - V21V21) = 2 (1+ V21)(1— V21 - 2V13V31) .
1 =3 El E3
NOW, V31 / E3 = V13 / El —>

1 1

(1+vy4)D
3

o 1| VE  velE| EfE, 1 a - _E |[1-VAi(E /Es) |
= — = — Va1 V- =
YAl /B UEs | D(L#vy)EE T R (T4vy) D
Cy=Cpy
2
1| 1/E, -vylE| 1 (e ) MRERACUN]
= — = —V =
BUAlvyu B 1UEy | AEEY NN (1hy) D
1|-vy IEy —va /By 1 El(Vzl +viEy / E3)
Cpo=—— =——(vyr +vai3) =
A —V13 / El 1/ E3 AE1E3 (1+ V21)D
1|-vy /B —va/Eg 1 vy E
13 = :—(V21V31 +V31): —
A 1/ El _V31 / E3 AE1E3 D
1 1/ El _V31/ E3 1 V. E
Ca3 N :—(V31+V21V31): ——

5.100 Obtain Eq.(5.53.6) from Eq. (5.53.2) and (5.53.3).

Ans. From
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C. - E, [1—V§1(E1/ Es)] and C.. E1("21+V321E1/E3)
T (14vy) D 27 (1+vy)D
C._Co. E1|:1_VI:?1(E1/E3):| ~ El(V21+V321E1/ Es)
BT (Levy)D (1+v,;)D
E 2 E E
= 11— -2 E /E)}=—=——ID!=
v /a2 B = e (D)=

Thus, [see Eq.5.53.5], 2G;, = (1 E
+

V21) '

Invert the compliance matrix for an orthotropic elastic solid to obtain the relationship

5.101
between C;; and the engineering constants.

-1

1 va va
& E, B
y 1 y Ci G Gy
Ans. Let [A] "= —% = _% =|C, Cyp Co
1 2 3 C. Co. C
13 23 L33
s Vs 1
| B B E |
1—V,5VoaVay —ViaVoqVas — VyaVaq — VoaVas — Vo, V-
det[A]sAz[ 12V23V31 —V13V21V32 —V13Va1 —Va23V32 Vo1 12] Since
E,E,E,
E E E
V]_ZVZSVS]_:[ ]-EV21\]( 2EV32 J[ ?’EV13}:V21V32V13,therefore,
2 3 1
_ [1 —2V13V21V30 —V13V31 —V23Va2 — V21V12]
E.E,E;5
Next
1 v
1| E E 1({1 1 1
Cll:Z ? 13 :Z[E_E__‘/EﬁVEﬁ]:AE E (1-vapvas), ete,,
_Ys L 2 B3 B3 B 2E3
E, E;
_ﬁ _ﬁ _m _ﬁ
1 E2 E3 1 1 E2 E3 1
C = —— =——(Vyq + VoV , C = — =——(Vaq + Vo1V
12 Alve 1 AE2E3( 21T V31 23) 13774 1 vy AE2E3( 31TVl 32)
E, Es

B, B
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C 1 B = ZL(
P Ave _ve| AEE
El E3

V3p +V31V1o )

5.102 Obtain the restriction given in Eq.(5.54.8) for engineering constants for an orthotropic

elastic solid
AnNs.
1 va va
= E, Es i _Ya
E E
Sz Lo Ve el ’ : = (1=vap) > 1-vym1, >0,
E E  E v 1| EE
Mz Vs L 5B
E, E, E; |
But, Y2 -Y2t 9y oo Yavab o JBe 2 pgg
1 B E, E
2
1_V21V12 :1_ V12E2 >0—)E>V122
1 2
1 vy
Next, det =———(1-VaoVor ) > 1—Vayvyr >0.
v L EzEs( 32 23) 32V23
E, E;
1% Vo3 = E
But,i —)1 V32V23—1 V23 —1 ng 2
s B = Es’
1-vyvy >0 —=% 5 >vaand —=>v5,.
E; E,
Also,
1l va
E  E; 1 1 , E 1 , E
det 1 |TEE ) g (1 "1 E3j EE [1_V:‘31|5_1
W L 1E3 1E3 1 1E3 3
B, Es
E
(1 V31V13)>0—)V123 <— E and V31< 3
E; E,

5.103 Write down all the restrictions for the engineering constants for a monoclinic solid in
determinant form (no need to expand the determinant).
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(En | [ VB —vulE, vy lEs nylGy 0 0 [Tl
Ex | | v2/Be 1/E, —vyplE3 71/Gy 0 0 || T
Ans. | E38 || T3 IRy —vy3lEy,  1/E3  143/Gy 0 0 Tas
2Ep; malBy Mgl By m /By 1/G, 0 0 Tos
2E,, 0 0 0 0 1/Gs s ! Gg || Tay
2E,| | o0 0 0 0  ig/Gs 1/Gg || Ty,
(i)

E,>0,E, >0,E;>0,G;, >0,G5 >0,G5 >0
1/E, -v3/E;g 1/E; 1nu/Gy

—va lEy  1/Eg Ml Ey  1/G,
1/E;  —vg/Eg 1/E, 141Gy

-vi3l By 1/Eg nalEy 1/G,

(i) 1/, -vyulE,

—vip By —vys | Ey

1/Gs g5 /G
tss | By 1/ Gg

>0

1B 141Gy

>0
mal By 1/Gy

i
1/, -vylE, -vy/E; o 1/E, —vyplE; n4plGy
- By 1/E,  —v3p [E5|>0,|-vys/E, 1/E3  143/G4[>0
i3/ E —vlE;  1/Eg MmalEy 134 lEy  1/G,
1B —va /By 1y /Gy /Ry —vyulEy 1n4/Gy
izl B 1IEy  nmuglGy|>0,|-vip TE;  1/E, 14/ Gy>0
mal By maal B3 1/G, mal By malEy  1/G,
(iv)

1B —vulEy —va /By 114 1Gy
vipl B UE, vyl Ey /Gy
—vigl B —vp3lEy  1IEy  1g3/Gy
mal B Mgl By 13/ Ey 1/Gy

>0

CHAPRTR 5, PART C

5.104 Show that if a tensor is objective, then its inverse is also objective .

Ans. Let T be an objective tensor, then in a change of frame: x*=c(t) + Q(t)(X —X,)
T*=Q(t)TQ(t)" . Taking the inverse of this equation, we get, since Q1 =Q".

T = (QWTQM" )_1 =QMT'QMT. Thus, T tis objective.
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5.105 Show that the rate of deformation tensor D =[Vv +(VV)T] /2 is objective. [See
Example 5.56.2)].

Ans. From Eq.(5.56.13), we have V *v*=Q(t)(Vv)Q (t) + QQ" . Thus,
Vv =QO(W) Q"1 +Q(Q)" . Now,
(d/dt)(QQN)=0-QQ" +QQ" -»QQ" =-QQ". Thus,
VIR VT = QM (W)QT(H+QQT +QM(W) QT(H-QQT = QW) (W)+(Vv)' |QT®)
—D*=Q(1)DQ' ().

5.106 Show that in a change of frame, the spin tensor W = [Vv—(Vv)T] /2 transforms in
accordance with the equation W*=Q(t)WQ' (t)+Q Q" . [See Example 5.56.2)].

Ans. From Eq.(5.56.13), we have V *v*=Q(t)(Vv)Q' (t) + QQ" . Thus
Vv =QM)(W) Q") +Q(Q)' . Now,
(d/dt)(QQ7)=0=QQ" +QQ"T »QQT =-QQT, > (v*v)" =Q)(V) Q') -QQ".
Thus, (V*v*)—(V*v¥)T =Q®)[(VV)-(Vv)'1QT (t) + 2QQ"
—>W*=QMWQ' () +QQ".

5.107 Show that in a change of frame, the material derivative of an objective tensor
T transforms in accordance with the equation T*=OTQT (t) + Q(t) TQ" () + Q) TOT,
where a super-dot indicates material derivative. Thus the material derivative of an objective
tensor T is not objective.

Ans. Since T is objective, therefore, in a change of frame, T* = Q(t)TQT (t) . Taking the material
derivative of this equation and noting that t*=t, we have,

T*=0TQ"+QTQ" +QTQ". Since T*=Q(t)TQ (1), therefore, % is non-objective.

5.108 The second Rivlin-Ericksen tensor is defined by:
A, =A+A (VV)+(VV)" A, where A, = DRtAl ,where A, =2D=Vv+(Vv)". Show

that A, is objective. [See Prob.Error! Reference source not found. and Error! Reference
source not found.].
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Ans. From Prob. 5.105, we had, D*=Q(t)DQ" (t) » A,*=Q(t)A,Q" (t).
- A" =QHAQT (1) + QAR () +QMAQ' (). (i)
We also have, from Eq.(5.56.13), V*v*=Q(t)(Vv)Q' (t) + QQ" .
Thus A, *V *v*+(V*v)T A
=QAQ'Q(W)Q" +QQ'I+[Q(VV)Q" +QQ'T"QAQT
=[QAL(VV)QT +QAQT(QQ" I+[Q(VV)' AQ" +QQQAQ].
Since (D/DH)QQ"T =0->0Q" +QAQT =0 QQT =—QQ", therefore,

AFVIVEH(VEVE)T A * =
[QA(VV)QT -QARQT (QQ" I+[Q(V)" AQ" -QQTQAQT]
ie.,
ALKV V(Y V)T A = [QA(VY)QT +Q(V)' AQTT-QAQT -QAQT (i)

(i) and (ii) give
S A AV IV (V )T A
=QAQT +QAQT +QAQT +[QA,(VW)QT +Q(W) AQT]-QAQT -QAQT
=QAQT +QAL(VV)QT +Q(V¥)  AQT = Q| Ay + Ay(Vv)+ (V) A |QT.

Thus, A, + A, (VV)+(Vv)" A,is objective.

5.109 The Jaumann Derivative of a second order objective tensor Tis: T+ TW —WT, where
W is the spin tensor. Show that the Jaumann derivative of T is objective. [See Prob. 5.106
and Prob. 5.107]

Ans. We have, since T is objective, therefore, in a change of frame, T*=QTQ" .
In Prob.5.106, we had W*=Q(t)WQT (t)+Q Q" and in Prob. 5.107, we had
T*=QTQ (1) +Q()TQ (1) +Q(t)TQ" . Also,

(D/Dt)QQT =0-QQ" +QQ" - QQ" =-QQ"
Thus,

T*W*=QTQ'QWQ" +QTQ"(-QQ")=QTWQ" -QTQ",
W*T*=QWQ'QTQ" +QQ'QTQ" =QWTQ" +QTQ".

ST*W*-W*T*=Q(TW-WT)Q" -QTQ" -QTQ".
Thus,
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TH4T*W*-W*T*=QTQ" +QTQ" +QTQ +Q(TW-WT)Q" QT Q" -Q TQ”
=QTQ" +Q(TW-WT)Q",
Thatis, T*+T*W*-W*T*=Q(T+TW-WT)Q".

Therefore, the Jaumann derivative of T, that is (T FTW - WT) is objective.

5.110 The second Piola Kirchhoff stress tensor T is related to the first Piola-Kirchhoff stress
tensor T, by the formula T = F‘lT0 , or to the Cauchy stress tensor T by

T = (detF)F*T(F1)T Show that, in a change of frame, T* =T . [See Example 5.56.3 and
Example 5.57.1]

Ans. In Example 5.56.3 and Example 5.57.1, we obtained that in a change of frame,
F*=Q(t)F and T,*=QT,. Thus,

T =F* 1T *=(Q)F)'QT, =F'Q'QT, =F'T,. Thatis, T*=T.

5.111 Starting from the constitutive assumption that T=H(F) and T*=H(F*), where Tis

Cauchy stress and F is deformation gradient, show that in order that the assumption be
independent of observers, H(F) must transform in accordance with the equation

QTQ" =H(QF). (b) Choose Q = R to obtain T=RH(U)R", where Ris the rotation
tensor associated with F and U is the right stretch tensor. (c) Show that T =h(U) , where
h = (det U)U™tH(U)U™. Since C=U?, therefore, we may write T =f(C).

Ans. (a) In a change of frame, T*=QTQ" and F*=QF, therefore,
T*=H(F*) > QTQ" = H(QF).
(b) From QTQ" =H(QF), with Q=R > RTTR=H(R'F). But R'TF = RT(RU) = U where
U is the right stretch tensor. Therefore, RTTR=H(R'F) > T=RH(U)R".
() F=RUS>R=FU S RT=UFT, thus,
T=RH(U)RT 5 T=FUHU)UFT > FIT(F)=utHU)U .
Now since J =|detF|=detU, we can write JF'T(F')™" = (detU)U'H(U)U ™.
The left side of the above equation is the second Piola-Kirchhoff stress tensor T and the right side
is a function of the right stretch tensor U . Thus, T= h(U), or since u?=c , One can write
T=h(C).
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5.112 From r =(2aX +ﬂ)l/2, #=cY, z=Z, «a=1/c, obtainthe right Cauchy-Green
deformation tensorB .

Ans., we have, with r =(2aX +,B)1/2, O=cY, z1=2,

or 1 ~1/2 12 a or or

N _LoaX + 20) = a(2aX + _aoa_oa g

X ~p\2aX+p) " (2a)=a(2aX+ f) FoY oz
0o w0  a0_o @ oa
ox oY oz ox oY oz

Thus, Using Eq.3.29.59 to 3.29.64,

a ¥ (or ¥ (orV (a) r060\° (roe\? (roo)? 2
Br=|—| +|==| +| = | =|=|+ Bw=|—| *|=| +| = | =(rc)
ox oY oz r ox oY oz
a ¥ (a2 (e ar \(ro0) (or\(reo) (or\ roo
B, =| — | +| | +| = | =1, By=| — || =2 |+| = || 2L |+| = || =2 | =0
ox oY oz ox L ax oy )\ oy oz )\ oz
& EHFFEE)

B, =| — | = |+| & || Z |+] £ || £ | =0,
ox )lox ) Loy Nay ) \az )\ oz
[raa (62) (raa [az roo\( oz
By, =| — || == |+| =— || = |+| = || == |=0
ax )\ ax oy JLay oz \oz

5113 Fromr=4R, 0=0+KZ, z=1Z, 21223 =1, obtain the right Cauchy-Green
deformation tensor B .

Ans. With r=4R, 0=0+KZ, z=XZ, A4 =1, we have,
r=i4R, 0=0+KZ, 1=1Z, I3ii=1

ﬂ:ﬂi’ ﬂ:o, ﬂ:o, %:0' %:1, %:K'
oR 00 oz oR 00 oz

2 _o Z_o Z_y

oR 00 oz

Using Eq. (3.29.19) to Eq. (3.29.24) and noting that r, =R, 6,=0, z,=7,
2 2 2
or or or 2
Br=|—| +| =—| +| = | = .
" (6RJ (R@@j (azj ()
5., =[r89j[arj+( roé j[ or j+(r69j( arj=0=Ber-
oR J\ 0R RoO )\ RGO oz )\ oZ
2 2 2 2
roé roé rod r 2 2 2
Bgy = + + = —| +(rK)" = +(rK)”.
0 (6Rj (R&@j (az) (Rj (1K) =(4)"+ ()

oz ) oz oz \ 2
(5] (ree) *(&) -
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CHAPTER 6

6.1 InFigure P 6-1, the gate AB is rectangular with width b =60 cm and length L= 4 m. The

gate is hinged at the upper edge A. Neglect the weight of the gate, find the reactional force atB.
Take the specific weight of water to be 9800 N / m® and neglect frictions.

Figure P 6-1

Ans. Take the gate AB as a free body. With s, measured from the water surface along the inclined

plane to point A, s measured from point A along the length of the plate (AB) and & = 30° as
shown in the figure, we have,

dF = pdA=[ pg(s, +5)sina |(bds), thus,

L 2 3
> M, =0->RgL = [sdF =bpgsina[s(s, +s)ds=bpg sina{sol‘?Jr%} . Therefore,
A 0

Rg =bLpg {SO S;” 2+ "Sign “ } - (0.6)(4)(9800){g+@} ~5.1x10°N.

6.2 The gate AB in Figure P 6-2 is 5 m long and 3 m wide. Neglect the weight of the gate,
compute the water level h for which the gate will start to fall. Take the specific weight of water
to be 9800 N /m®.

20,000 N

20,000 N

<

60°

Figure P 6-2

Ans. Consider the gate plus the triangular region of water above the gate as the free body
diagram. Then,

Horizontal force from water to gate: F = pg(h/2)(bh) = pgbh? / 2 acting at 1/3 from base.

Copyright 2010, Elsevier Inc



Lai et al, Introduction to Continuum Mechanics

Weight of water on gate: W=pgb(1/ 2)[h(htan30°)] = ,ogbh2 / (2\/§) .
> Mg =0->W(/3)(h/3)+Fh/3=P(AB) -
43 _ 9 P(AB) _ 9 (20000)(5)

_ =2 =15.31— h=2.48m,
2 pgb 2 (9800)(3)

6.3 The liquids in the U-tube shown in Figure P 6-3 is in equilibrium. Find h, as a function of
1 P2, Pz, 1y and hy. The liquids are immiscible.

Figure P 6-3

Ans.  p;=pghy, Py = p3ghs + p,ghy,
PL= Py = o = p3ghs + poghy —hy = (o1 — 3hs) / o, .

6.4 In Figure P 6-4, ,the weightWy is supported by the weightW, , via the liquids in the

container. The area under Wg is twice that under W . Find Wy in terms of W, p;, p,, A_, and h
(2 < pand assume no mixing).

Figure P 6-4

Ans. p3=p, =p +pgh, ps=p;—p0h= p1+(P1—P2)9h
Wr = PsAr = PiAR +(P1—,02)9hAR’ e,
Wr =2p A +2(Pl—,02)9hAL :Z\NL+2(P1—Pz)ghAL
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6.5 Referring to Figure P 6-5, the radius and length of the cylinder are r and L respectively,
The specific weight of the liquid is y .

(a) Find the buoyancy force on the cylinder and
(b) Find the resultant force on the cylindrical surface due to the water pressure. The centroid of a
semi-circular area is 4r / 3z from the diameter.

Av4

Figure P 6-5

Ans. (a) Buoyancy force is the net upward force due to the water pressure on the left half of the
boundary of the cylinder which is submerged in the water. It is therefore equal to the weight of

the water displaced by this left half. That is, Buoyancy force = 7/(7zr2 /2)L.
(b) Horizontal water force: F, = »(2r / 2)(2rL) = }/(ZI‘ZL) . The line of action of Fis 2r/3

above the ground. The line of action of F, (the buoyancy force) passes through the centroid of
the semi-circular area, i.e., 4r /3x left of the diameter.

6.6 A glass of water moves vertically upward with a constant acceleration a . Find the pressure
at a point whose depth from the surface of the water is h. Take the atmospheric pressure to
be p, .

Ans. Let z axis be appointing vertically upward, then

d d
—d—g—pg =pa—>—d—5=p(g+a)—> p=-p(g+a)z+C.
At the instant of interest, let the origin be at the free surface, then C = p,, the atmospheric

pressure. Thus, p— p, =—p(g+a)z. Atapointwhichisat z=-h, p—p, =p(g+a)h.

6.7 A glass of water moves with a constant acceleration a in the direction shown in
Figure P 6-6. (a) Show that the free surface is a plane and find its angle of inclination and (b)
find the pressure at the point A. Take the atmospheric pressure to be p, .
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y
\ X
a
o] JAY
rr 'h
A 1
Figure P 6-6

Ans. (a) With respect to the coordinates shown, the governing equations are:

. op . op . o Op
i) ——=pacosd , (i) ——-— = pasind, (iii)——=0, thus
(i) P (i) Y pY=p (iii) P

. op df
(i) > p=p(x,y), (i)—> p=—(pacosd)x+f(y)—>—=—.
( ) "0y
(i) —>%=—p(g+asin6)—> f=—p(g+asind)y+C— p=—(pacosd)x—p(g+asind)y+C

At the instant of interest, let the origin be at the center of the surface, then C = p, .and
p=—(pacosd)x—p(g+asind)y+ p,. Onevery point on the free surface, p=p, ,
therefore, —(pacose)x —p(g +asin 49) y =0. Thus, the free surface is a plane. The angle of
inclinations is given by tan g =ﬂ = —ﬂ.
dx g+asind

(b) At the point A, x=—1,,y=—h. Thus, p=(pacosé)r, + p(g+asind)h+ p,

6.8 The slender U-tube shown in Figure P 6-7 moves horizontally to the right with an
acceleration a . Determine the relation between a, ¢ and h .

- ®
Figure P 6-7
Ans. The slope of the free surface is given by _a . Thus _a_ —% —h :a_f.
g g
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6.9 A liquid in a container rotates with a constant angular velocity @ about a vertical axis.

Show that the free surface is a paraboloid given by z = r2w? / (2g) where the origin is on the
axis of rotation and z is measured upward from the lowest point of the free surface.

Ans. Let z be pointing vertically upward with the origin at the lowest point of the free surface. We
have,

(i)—@=p(—ra)2) and (ii)_a—p_pg:o S p=—pgz+ f(r)_)ap:df _
or oz dr
d

2 .2 2.2
0 TSI SN oL S pr o
or 2

+C, > p=—p0z+
dr

+C.

2 2
At (r,z)=(0,0), p=p,, therefore, p:—pgz+pr2w

+p,. The free surface is characterized

2 2
by p = p,, therefore, the equation of the surface is: z= ro .

29

6.10 The slender U-tube rotates with an angular velocity @ about the vertical axis shown in
Figure P 6-8. Find the relation between sh(=h, —h,), @, andr,.

Figure P 6-8

Ans. The equation for the free surface is given by (see the previous problem) z =r?»? / (29g) ,

where the origin is on the axis of rotation and z is measured upward from the lowest point of the
free surface. Thus, we have,

2 2 2 2 2
Lo Iy
=1 andz,=-2

Zl —)21—22=(I’12-r22)2)—g, bUt,Zl—22=h1—h2

—hy —hy = (1?-t))a’ 1 (29).

6.11 For minor altitude differences, the atmosphere can be assumed to have constant
temperature. Find the pressure and density distribution for this case. The pressure p, density o
and absolute temperature ® are related by the ideal gas law p = pRO.

Ans.: Let gravity be in the negative x; direction, then we have

oplox =0, oplox, =0, op/oxX3=—pg (i
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Thus, pdependsonly onx;. Let p,denote the pressure at x=0, then, we have

dp dp g g ~(9/RO)x .
— = — =———dx Inp=——-X3+1In = p,e 8 ii
axg prY—> 0 RO 3—~>Inp RO 3 Po = P= Py (ii)

If p, is the density at x; =0, then p = p,e (9RO

6.12 In astrophysical applications, an atmosphere having the relation between the density o and

the pressure pgivenby p/p, = ( ol p, )n, where p,and p, are some reference pressure and

density, is known as a polytropic atmosphere. Find the distribution of pressure and density in a
polytropic atmosphere.

Ans. Let z axis point upward, thendp / dz =—pg . From p/ p, =(p/ p, )", we have,
p=CpY", where C = p,p;". Thus, dp/dz=-Cp""g— p"dp =-Cgdz

P —Uny._  [?
- Ipo p~Y"dp = LO Cgdz. Thus,

(A) forn=1,

(n-1

[/ (n-21p" " =—cgzf. - p" V" _ p I —_n-1)/n]Cg (2-2) -

pO
=" " —[(n-1) /(o 95" )9 (2 20) = P6™" [ Po ~{(N-1) /o0 (22, )]

p(nfl)/n

n/(n-1)
— n— —1
p:pol/( 1)|:p0_nTpog(z_zo):|

(B) forn=1,
p dp z
'[po?z—LOngze In(p/ py)=—Cg(z-2,) > p=p,exp[-Cg(z-2,)]

= p=Poexp| —pP5 "9 (2-2,) |

6.13 Given the following velocity field for a Newtonian liquid with viscosity
££=0.982 mPa.s (2.05><10’5Ib><s/ft2) :
Vi=—C(X +X), V,=C(X,—%), V3=0, c=1s"

For a plane whose normal is in the e, direction, (a) find the excess of the total normal
compressive stress over the pressure p, and (b) find the magnitude of the shearing stress.

Ans. () Ty =—p+2uDy; —(=Tyy )~ p=-2uDy;, where Dn:%:—c:—l st

1

Thus, (-Ty;)— p=-2(0.982)(-1)=1.96 mPa.

o, oV oV, oV
b) Ty, =2uDyy = 11| —+ + —2 |=—2cu=-1.96 mPa. Tys =2uD. = u| —2 +—2 |=0.
(b) Ty, HY12 ﬂ(ﬁxz GXJ H 13 HUy3 ﬂ[@x?, %,

Thus, the magnitude of shearing stress = 1.96 mPa.
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6.14 For a steady parallel flow of an incompressible linearly viscous fluid, if we take the flow
direction to be e;, (a) show that the velocity field is of the form

v; =0, v, =0 and vz =V(X;,Xy)
(b) If v(x,%,) =kx,, find the normal and shear stresses on the plane whose normal is in the
direction of e, +e5in terms of viscosity and pressure p.
(c) On what planes are the total normal stresses given by p .

Ans. (a) From the equation of continuity %+%+%: 0, we get, aﬁ:O , thus vy is
OX, OX, OXg OX3
independent of Xgi.e., V3 =Vv(X,X,).
(b) withv; =0, v, =0 and v; =kx, , we have,
0 00O 0 O 0 -p 0 O
[Vv]=]0 0 0|—>[D]=|0 0 k/2|—>[T]=-p[l]+2u[D]=| 0 -p uk
0 kO 0 k/2 0 0 wk -p
On the plane withn = (e, +e;) /~/2,
-p 0 0|0 0
[=[T]N]=%| 0 —p pk|1|=—s|puk—p|>T,=t-n=pk—p.
V2 V2
0 wuk -pll1 uk—p
2 2 1 2 2 2
T8 =t (1) = (k= o)+ (s = p)* |- (s~ p)" =0
(©)
-p 0 O |m -pny
[t]=| 0 —p wk|[n,|=|-pny+ukny |, nf+ns+nf=1

0wk —pjlns] | pkny—png
—>T,=t-n=—pn? +(—pn§ +ykn3n2)+(ykn2n3 - pn32)=—p+ 2ukngn, . Thus,
—p+2ukngn, =—p —n, =0 and/or n; =0
That is, on any plane(nl,O,ns) and (ny,n,,0), where n12 + n22 + n32 =1, the normal component of

stress is —p, these include the three coordinate planes (1,0,0),(0,1,0) and (0,0,1).

6.15 Given the following velocity field for a Newtonian incompressible fluid with a viscosity
1 =0.96 mPas:
v = k(xl2 - x%) Vp =—2kx Xy, v3=0, k=1s"m™,

At the point (1,2,1)m and on the plane whose normal is in the direction of e,

(a) find the excess of the total normal compressive stress over the pressure p and
(b) find the magnitude of the shearing stress.

Ans. (a)
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2kx,  —2kx, O —p+4Aukyy,  —4ukx, 0
[Vv]=|-2kx, -2k, 0|=[D], [T]=| —dukx, -p-4ukxq O
0 0 0 0 0 -p

-p+4u  8u 0

At (1,2 andfork=1, [T]=—| -84 —-p-4u O

0 0 -p

On e, -plane (-Ty;)— p=—4u=-3.84 mPa.
(b) on the same plane, [T;| =8 =7.68 mPa.

6.16 Do Problem 6.15 except that the plane has a normal in the direction 3e; +4e,.

Ans.
2kx,  —2kx, 0 —p+Aukyg  —dukx, 0
[Vv]=|-2kq -2k 0|=[D]>[T]=| —4ukq  —p-dukq 0
0 0 0 0 0 p
—-p+4u —8u 0
At (1,20 andfork=1, [T]=-| -8 —-p-4u O
0 0 -p
~p+4u -8y 0 |[3/5 —3p-20u
[t]=[T]ln]=| -8« -p-4u O |4/5|=7|-4p-40u|.
0 0 -pJloO 0

(b) [t =2i5[(—3p —20u) +(-4p —40;1)2} =2i5(25 p2 +440pu+ 2000;12)

2 88up 1936 s oo 64 81
() =+ IR TR 2 (L =l () = g T =T

6.17 Use the results of Sect. 2.34., chapter 2 and the constitutive equations for the Newtonian
viscous fluid, verify the Navier Stokes Equation in the r -direction for cylindrical coordinates,
i.e., Eq. (6.8.1).

Ans. For a Newtonian fluid, the stress tensor in cylindrical coordinates is given by:
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- ov 1ov, v, ov o, ov, ) |
_ +2 _r __r__9+_0 _r+_z
P ”ar 'u[r o0 r arJ ﬂ( oz ar)
lov, v ov, lov
T|= T —p+2u| == 4+ 0,
7] 21 P “[raa r) ﬂ[&z raej
ov
T T —p+2ut
31 32 p #az

The E(_Juations of motion in terms of the stress components in Ehe r-direction is [see Eq.(4.8.1)]:
aTrr 1 aTre Trr _Tt%' aTrz
+ + + + pB, = pa
o roo  r o TP
We also have the equation of continuity [see Eq.(2.34.6) or Eq.(6.8.4)]:

%+[1%+v_rj+%_o

or \ro0 r) oz

ov, ot op %V
Now, T, =-p+2u—"——>—""=—"T142y—7"
L P

1ov, Vv, oV 10T 10% 1ov, 10%
To=u 2 70,700 _)__rH:ﬂ = 2r_ > 0,=-9%Y%

r 06 r or r 06 r< 06 rc 00 r oroé
Tee =Too _, (1avr 1 ovy, vrj

aTrr +16Tr9 + Trr _THH + aTrz :_@4_
or r 00 r oz or or?

+u iazvr _iaVQ +182V6 +2,U lﬁ_i%_v_r + azvr +_82VZ
r2 06% r? 00 rorod oz oroz

(divT), =

_p, [0 10, O 1oy, 20vy v
or or2 r2060% 22 ror r2 o0 2

o, 1aov, 10%, v, 1lov, 0%,
+u - += -4 T4+

o2 r200 rord 2 ror ooz
But using the equation of continuity, we have,

(azvr _Lov 1%, _v_r+1%+azsz 0 (%+1%+v_r+%)zo

o2 200 roro0 2 ror oroz) or\or roo r ez
Thus,
(divT), +pB,=pa, >
o, azvr+i82vr+azvr+1avr 2 vy v
or o2 r200% oz22 ror r?2 060 r?
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6.18 Use the results of Sect. 2.35, chapter 2 and the constitutive equations for the Newtonian
viscous fluid, verify Navier-Stokes Equation in the r-direction in spherical coordinates, i.e., Egs.

(6.8.5).

Ans. For a Newtonian fluid, the stress tensor in spherical coordinates is given by:

I v, oV 1
or rog r or rsind o r or

v, cotd ov,
rog r rsing o¢ r r oo

1 0v4 v, vycotd
T T —p+2 L,
d 9 P ﬂ[rsine op ot r ]J
The equation of motion in the r-direction is given by [see Eq.(4.8.4)]

r2 or rsind o0 rsingd o¢
We also have the equation of continuity [see Eq.(2.35.26) or Eq.(6.8.8)]

%+(l%+ﬁ}+[ 1 %+V9C0t€j—o

+ pB, = pa,.

or rog r rsin@ o¢ r

Now,

19("Te)_ w20, [ 20n
rZ  or o r M T |
1 0(T,ysing)

rsiné o0

2 2
=u i%_v_,g +1% C0t0+y ia Vi _i% +1% .
r2 06 r? r or r2 56% r? 00 r orog

1 0Ty [{ 1 v, 1 av¢J+ 1 62v¢]

rsind o¢ r?sin® @ o¢> 2 sin&% rsiné orog
T +T ov
_M=+Q_2ﬂ(i%+ﬁj_2 1L N vpcotd)
r r r2 060  r? rsing o¢ r?

Thus.
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r2 or rsing 96 rsind o¢ ro

2
_@_Q_leu oV, +gﬁ +u i%_vij+l% cotéd
o r or2 r or r200 r2) ror

10%, 1) 1%, 1 d%, 1 ov,) 1 8%
+u|| 5—+ +——Z +u L_ L
r2 002 200 ) rorod r’sin0 04> r?sing 0p | rsing orog

ov,
+Q_2/u(i%+ﬂj_2/u{ 1 _¢+V9C0t0j

r 200 r? r?sing o¢ r?

op o, 2dov, 2v, 10%, 1oy 1 %y,
=——+u e '

or o2 ror % p? 692 r? 06 r?sin® @ o¢?

. 2 Vg 2 0v, 2vycotd
r’sing 0¢ r% 00 r?

2 2
ﬂ{avuzavr v, 1%y 1y, 1Y,

or2 ror % rored r? 20 1 or r2 rZsin@ 0¢ rsin@ orog

Now, differentiate the equation of continuity with respect to r, we have,
O v v 1ov 1 %Jrvgcote
orl| or r rof rsind o¢ r

ov o%v
cot6’— 9 cotd — L —¢+ L ﬂ

J:O,that is,

OV 20 2 1y Ldvg 1 Vg 1
or ror % rored r? 06 T rsing ordg  rlsing 8(/5

cotd ov, Vvycotd
roor 2

=0

- 1a(r Trr)+ 1 0(Tsing) 1 Ty Ta+Ty

r2  or rsind 00 rsin@ o¢ r
op oV, 20v, 2v, 1%, 1dv 1 %y,
=ty —F+ L -+ - —L+ S —Lcot@+——F—
or ot ror % p? 602 r2 00 r?sin? 6 o¢°

w2 N 2 vy 2vpc0t0
r’sing 0¢ r% 00 r?

ap o1 0 1 8 v, 1 oY,
=——+u| — (r vr)+ singd—- t———">
or or 2 or r2sing 00 00 ) r?sin%0 o¢
ov
+ 2 %o _ 2 0 (Vgsino)
r’sing ¢ r?sing 00
Finally, the Navier-Stokes equation in r direction is:

Copyright 2010, Elsevier Inc
6-11



Lai et al, Introduction to Continuum Mechanics

op o010, 1 of(. . ov 1 %
=——+ul ———|\r°v, |+ ———| sin0—~ |+ ———~
or ’{arrzar( r) ﬂsineae( aej rzsin298¢2}

2 3V¢ 2 0 .
+u| — —— Vysing) |+ pB, = pa
'L{ r?sing 0¢ rzsin6’89( o )} P =P

6.19 Show that for a steady flow, the streamline containing a point P coincides with the pathline
for a particle which passes through the point P at some timet .

Ans. For a steady flow, the velocity at every point on a streamline does not change with time.
Therefore, any particle, which is at a point P on the streamline at a given time t, will move along
the streamline at all time. That is, its pathline coincides with the streamline containing the point
P. We can also demonstrate this mathematically as follows:
For steady flow, the velocity field is independent of time, that is, v = v(x) . Let x = x(t) be the
pathline, then, the differential system for the pathline is:
(;—1( = v{x(t)}, subjected to the condition x(t, ) =X, 1)
Let x = x(s) be the parametric equation for the streamline passing though x,, , then the differential
system for the streamline is:
3—)( =v{x(s)}, subjected to the condition x(s, ) =X, 2)

S

The two differential systems are identical. They determine the same curve.

6.20 Given the two dimensional velocity field

_ kX
1+ kot

(a) Find the streamline at time t, which passes through the spatial point (al,az) and,

(b) find the pathline equation x = x(t) for a particle which is at ( Xy, X, ) at time t,

1 2=

Ans. (a) Since the flow is in e; direction only, therefore, both the streamline and the pathline are
straight line in the e; direction. The streamline equation which passes through the spatial point
(e, ap) issimply X, =y .

(b) The pathline for a particle which is at ( Xy, X, ) at time t, is simply x, = X, . To find the time
history of the particle along the pathline, i.e., to find x = x(t) with X =x(t,) ,we have,

X t
ax kX, _’J%:j kX, It—>|nizln1+kxzt,
dt  1+kX,t 4 1+ kXt X4 1+ kXt

_1+kXot

=——+< X,and X, = X,.
14kXt, + 2 TP

X

6.21 Given the two dimensional flow: v; =kx,, v, =0

Copyright 2010, Elsevier Inc
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(a) Obtain the streamline passing through the point(al,az) . (b) Obtain the pathline for the
particle which is at (Xl, X, ) at t =0, including the time history of the particle along the pathline

Ans. (a) The streamline is clearly x, =, .
(b) The pathline for the particle which is at (X, X,) attime Ois simply x, = X, . To find the
time history of the particle along the pathline, i.e., to find x = x(t) with X = x(0) , we have,

_ZO—)X2=X2,—)—=kX2 —>X1=X1+kX2t, OStSOO
dt dt
6.22 Do Prob. 6.21 for the following velocity field : v, =Xy, Vo =—wX;.
Ans. (a) From O _ @Xy, O _ —0X —> X% — XX + X,0x, =0,
ds ds dx, Xy

> X2+ x5 =C— X2 + X5 =af +a3. The streamline is a circle.

(b) Since the flow is steady, clearly, the pathline is also a circle given by
xZ +x5 = X +X2. To find the time history of the particle along the pathline, i.e., to find

x = X(t) with X = x(0) , we have,
2 2
dt dt dt? dt dt?

. 1 dx .
— X, = Asinat + Becosat, = X, :__t1: Acoswt —Bsinwt .
(0

att=0, X, = X1, Xp = X,, thus, x = X, sinet + X, coswt,— x, = X, coswt — X, sin wt

Q

6.23 Given the following velocity field in polar coordinates (r,8): v, = Ve = 0.
xr

(a) Obtain the streamline passing through the point(r,,6, ),
(b) Obtain the pathline for the particle which is at (R,@) at t=0, including the time history of
the particle along the pathline

Ans. Both the streamline and the path lines are radial lines with 8 =constant.

(a) the streamline passing through the point r =r,,0 =6, is 8=46,.

(b) the pathline for the particle which is at (R,@) att=0is 6=0. To find the time history of
the particle, we have,

d—0=0—>«9=®, £=i—>jrrdr=rgdt—>r2=R2+gt.
dt dt  2zr R 027 T

6.24 Do Prob. 6.23 for the following velocity field in polar coordinates (r,@) :
v, =0,vy=C/r.

Copyright 2010, Elsevier Inc
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Ans. Both the streamline and the path lines are circles r = constant .

(a) the streamline passing through the point r=r,8=6, is r =r,

(b) the pathline for the particle which is at (R,G)) at t=0is r=R. To find the time history of
d¢ _C d¢_C C

theparticle,wehave,ﬂ=0—>r=R—>R—=——>—_ —0=—1t+0.
dt dt R dt R? R2

6.25 From the Navier-stokes equations, obtain Eq. (6.11.2) for the velocity distribution of the
plane Couette flow.

Ans. With x, axis pointing vertically upward, we have

v =V(Xp),V, =0,v3=0and a, =a, =a3 =0, thus, with p= p(x, ), the Navier-Stoke’s equation

in the x, direction become

ozijzz’—wzclxz 1C, Atx=0v=0,5C,=0. Atx,=d,v=v, —>C1:\;—°—>v=\a—°x2.
2

6.26 For the plane Couette flow, if in addition to the movement of the upper plate, there is also
an applied negative pressure gradient op / 0, , obtain the velocity distribution. Also obtain the

volume flow rate per unit width.

Ans. With x, axis pointing vertically upward, we have
V; =V(Xp),V, =0,v3=0and & =a, =a3 =0, thus, the Navier-Stoke’s Equations become,

2
0=, v, 2] g
Xy dxy 0%\ 0x

0=-P , OfR|_I[R|_,
OXy 0%\ OXy | OXy | O%

oo 0 (o) o) g
OX3 0% | OX3 ) OX3 | 0%

Thus 8_p =constant = -«

X%
dv  « a x5
—=——2V=—| — | =+CX+Cy, AtX,=0v=0->C, =0. Atx, =d,v=v, >
dx; U u) 2
2
VO:_ g d_+C1d _)Cl V_o+ g 9—)
U d u)2

2
2
alXy; |V, [ea)d a 2\ Vo
Va—| =[5+ -2 4| = | =X = — [[ %d = X5 | +—2X, .
[ﬂj2+{d+(ﬂ]2}2 {Zﬂ](z 2)+d ’

The volume flow rate per unit width is given by
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o f ({3
(et Gll TGl

6.27 Obtain the steady uni-directional flow of an incompressible viscous fluid layer of uniform
depth d flowing down an inclined plane which makes an angle & with the horizontal.

Ans. With x, axis normal to the flow and pointing away from the fluid and x; axis in the flow
direction, we are looking for the velocity field in the following form: v; = v(xz),v2 =0,v3 =0,
which clearly satisfies the continuity equation. Now the N-S equations give

2
Oz—a—p+pgsin6?+ud—;/—>i P» =0
6Xl dX2 8Xl 8X1

O:_a_p_pgcosg_)iﬂ:ia_pzo
Xy 0% OXy  OXp OXq

0=-P g, 2P _ 0P _4 1hys
OX3 OX; OX3  OX3 OXq

P _c

0%

The constant C can be determined from the pressure condition on the free surface (x, =d ),

where pressure p = p,, the atmospheric pressure which is independent of x; , thus
op/ox,=0—C=0sothat op/ox =0
for the whole flow field. Thus,
. 2 d2v . dv .
0=pgsind+pu—7s - u—7s=-pgsingd - p—=—-pgsindx, + C;
dx2 dx3 dx,
2
— v =—pgsin 9%2+ CiX, +C,. At X, =0,v=0 (non slip condition) > C, =0.

At X, =d, shear stress T, =0 — udv/dx,=0— C;=pgdsiné .

= uv :pgsina(d —X—sz X5 .

6.28 A layer of water (pg =62.4lb/ ft*) flows down an inclined plane (6 =30°) with a
uniform thickness of 0.1ft . Assuming the flow to be laminar, what is the pressure at any point
on the inclined plane. Take the atmospheric pressure to be zero.

Ans. With flow in the x, direction, the N-S equation in the X, direction (pointing away from the
inclined plane) gives, [note: p is independent of x; and x5, see Prob. 6.27]
—op /%y — pgcos@=0—> p=—(pgcosd)x, +C.

Copyright 2010, Elsevier Inc
6-15



6-16

Lai et al, Introduction to Continuum Mechanics

Atx, =d,p=p, =0—(pgcosd)d =C,— p=(pgcosd)(d—x,).
At x, =0 p=(pg cosH)(d)=(62.400530°)(0.1):5.40 b/ ft%.

We can also obtain the same result by using the fact that the piezometric head
p/(pg)+ z =constant for any points on the same plane perpendicular to the direction of the flow

(see example 6.7.2), therefore &+ Z, :&+ Z, = P, =LY (za - zb): pgdcosé.

rY rY

6.29 Two layers of liquids with viscosities ¢4 and , , densities p; and p, respectively, and with

equal depthshb, flow steadily between two fixed horizontal parallel plates. Find the velocity
distribution for this steady uni-directional flow. Neglect body forces.

Ans. We are looking for velocity fields in the two layers in the following form corresponding to
the uni-directional steady laminar flows:

For the top layer: vft) vl (%2), vgt) = vgt) =0.

For the bottom layer: v}b) v (x2), vgb) = vgb) =0.

From the N-S equations for the top layer, we have

0=-ap® 1 ax + ,d Y 1 dx2 — (81 %) (@p™) 1 %) =0

0=-ap" /6%, - (81 ax) (@M 1 %) = (81 8%, (@™ 1 8%) = 0

0=-ap" 1 axg — (81 %)@V 1 6%3) = (81 Ex5) (@™ 1 %) = 0

Thus, ap(t) | 0%, =—ay (@ constant) . Now,

29 1 dx2 =~y — v 1dx, = —ayxp + A —> 1Y) = (X2 12) + Ax, + B,
Similarly from the N-S equations for the bottom layer, we have,

ap(b) | 0% =—a, (aconstant) .

The constants A, B, Ay, B, will be determined from the boundary and the interface conditions:

At x, =D (the top plate), v(!) =0, 0=—(e40? /1 2) + Ab + B, 1)
At x, =—b (the bottom plate), v(®) =0, 0=—(a,b? /2) - Ab+B, @)
At x, =0 (the interface), there is no slip between the two layers of flow, i.e., v(t) —y(®) -

B/ =8By 11y 3)

Also, according to Newton’s 3 Jaw, the action and reaction at the interface between the two fluid
must be equal and opposite, that is, both the shear stress and the normal stress must by continuous

at x,=0.Since T))| = yl(dv(t) /dx2) A T = (dv(‘) /dx2) - A

X, =0 Xo=0 Xo=0 Xo=0
Therefore, A =A,, 4)
and ng) . =—p(t)(x1,0), Tz(zb) . =—p(b)(xl,0), ng) T Tz(g) - -

p0,0) = p) (3, 0) > (@) 1), 0) = (@p"") 1 6)(44,0) > &y = ary =2p / 2.
Now, Egs.(1)(2)(3)(4) determine the four constants A, B;, A,, B, as a function of a =—0p/0x;:
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Hy — t4 2 H 2 H2
2(m+ 1) M+ ? o+
2
) = g X_z_E(uj x, b2 (Lj |
2 2\ m+up i+t

o = L%_E(usz_bz (Lj |
2 2\ m+ 1y iy

6.30 For the Couette flow of Section 6.15, (a) obtain the shear stress at any point inside the fluid
(b) obtain the shear stress on the outer and inner cylinder (c) obtain the torque which must be
applied to the cylinders to maintain the flow.

Ans. (a) Eq.(6.15.4) and (6.15.7), give v, = Ar + B/ r,where B = i’r} (Q -, )/ (rf — %)

d(vp) 2uB  2ufrf(Q-0) 1
Thus, Ty =Ty =2uDyy=pur—| -2 |=- =— =
ré or /,l ré ,U dr( r j r2 |"22 _ rlz r2

(b) On the outer wall: r =, , the shear stress is T,, =Ty, = 241> (Q, - )/ (rf —F2),
On the inner wall, r =1, , the shear stress is T, =T, =21 (Q — )/ (rf —12).
(c) On the outer wall, per unit height, the torque is given by

2’ (=), 5\ Amui’r (% -Q))
(M )r2 = [(Trg,)r:r2 (27Z'r2)(1):|r28g :T(zm )eg - o ey

2—h 2—h

The torque on the inner wall is equal and opposite to that on the outer wall.

6.31 Verify the equation 82 = pew/ 21 for the oscillating plane problem of Section 6.16.

Ans. With v =ae ™ cos(at — X, +£), v/ ot=—wae " sin(wt— fx, + &),
NV | D%y = —Pae P2 cos(wt — Bx, + &) + Bae P2 sin(wt - Bx, + &) and

0%V | ox2 = BPae P cos(wt — Bx, + &) — fPae P2 sin(wt — BX, +£)
—BPae P sin(wt — Bx, + &) — Brae P2 cos(wt — BX, + €)

= 2% sin(wt — BX, + €)

Thus pov /ot = ud®v | oxé —

— pwae™P% sin(wt — Lo +€)= —,uZﬂzoze_ﬂX2 sin(at — B, +¢)

— pw= 2% - %= pol u).

6.32 Consider the flow of an incompressible viscous fluid through the annular space between
two concentric horizontal cylinders. The radii area and b . (a) Find the flow field if there is no
variation of pressure in the axial direction and if the inner and the outer cylinders have axial
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velocities v, and v, respectively and (b) find the flow field if there is a pressure gradient in the
axial direction and both cylinders are fixed. Take body forces to be zero.

Ans. (a) We look for the following form of velocity field in cylindrical coordinates:
v, =0,v, =0,v, =v(r) and op/ 0z = 0. The N-S equations give, in the absence of body forces

2
0=-P - 1 ozy[ﬂﬁﬂ}

o’ roe dr2  rdr
The first two equations together with op/0z =0 give, p =constant .
2
O=u u+£ﬂ —>li rﬂ =0—>rﬂ=C—>ﬁ=£—>v:Clnr+D
dr? rdr rdr dr dr ar r

Atr=a,v=v,andatr=b, v=yv,, thus,
v,=Clna+Dandv,=CInb+D —>v, —-v, =ClIn(a/b).
V, —Vp VInb—-v,Ina
= n R e —
In(a/b) In(b/a)
veVa=Y% rJrv(,jllnb—vblnat
In(a/b) In(b/a)
(b) O=—oplor and 0=—(@/r)op/ 06 — p=p(2),

2 2
O:—@+y[u+1ﬂ)—>M:O—>%=constantz—a,

. So that,

dz dr? rdr dz? dz
dv 1dv yd( dvj d[ dvj ar
S Ul —+—— |=—a > ——|— |=—a>—|I— |=—"—>
dr? rdr rdr dr dr\ dr 1
dv  ar? dv ar C ar?
>r—=--—+C—>»>—=-"—+——>v=—"—+ClInr+D.
dr i 2 dr u22 r 4u
The boundary conditions are: v(a)=v(b)=0—
2 2
0=-%% Clna+D and O=—ﬂ+CInb+D—>
4u 4u
2 12 2 12 2 2
_i(a b )__id_p(a -b?) D——i@(a Inb-b”Ina)
4u In(al/b)  4pdz In(alb)’ 4udz  In(b/a)

2 _p? b’Ina—a’Inb
v:id—p r2+—(a )Inr+( na-a m )
4y dz In(b/a) In(b/a)

6.33 Show that for the velocity field : v, =v(y,z), v, =v, =0,

2 2
the Navier-Stokes equations, with B =0, reduces to a—\z/+ﬂ —l%

e 0 dx = [ =constant.

Ans. With v, =v(y, z), Vy =V, =0, we have,

Copyright 2010, Elsevier Inc
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X=ﬂ+v ﬁ+v Oy VZ%=O+O+O+O:O, and a, =a, =0, thus, the N-S equations in
ot x Yoy

the absence of body forces are:
2 2
0—_ 6p #(a Vy +8 VXJ’ O:—@, 0:_(2_p_ Thus, p = p(x), and
z

a

oy>  ar? oy
2 2 2 2 2
A :d_p_)gﬂ OV OV | _d%p _d P,
622 dx = oax | ay?  oz? X2 a2
2 2
—p—constant—>av +8V2xz£d_p5'gl
0 M dx

6.34 Given the velocity field in the form of
Vy =V= A(y2 la%+2° /b2)+ B, v, =V, =0. Find Aand B for the steady laminar flow of a

Newtonian fluid in a pipe having an elliptical cross section given by y? / a + z? / b? =1. Assume
no body forces and use the governing equation obtained in the previous problem.

Ans. The governing equation is [see the previous problem] :
o, az _1ldp
6‘y2 oz pdx

2 2 2 2 2 2 2112
a"zua"zsz[z2 22} 2Aa2+t2) B\l ;’S _ B A-p_0
oy oz a’ b a’h a’b Z(a2 +b2)
On the boundary y?/a® +z? /b® =1, no slip condition requires that v, =0, therefore,
A(1)+B=0—B=-A, thus,

2 2 212 2 2

v =Al| L+i |-t __anvp Li I |1
a? b 2(a®+b?)[(@® b

6.35 Given the velocity field in the form of

ol -

Find Aand B for the steady laminar flow of a Newtonian fluid in a pipe having an equilateral
triangular cross-section defined by the planes:

b b b
e D0 By 0, - ay--
23 e e

Assume no body forces and use the governing equation obtained in Prob. 6.33.

=pf. Now, v, =v= A(y la%+z /b2)+B—>

oV, .\ %y 1 dp

With v, =A(z+b/(2\/5))(2+\/§y—b/\/§)(z—\/§y—b/x/§)+B

Ans. The governing equation is = f. [See problem 6.33]
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avx/ay=A(z+b/(2J§)){J§(z—ﬁy—b/ﬁ)—ﬁ(uﬁy—b/ﬁ)}
=A(z+b/(2\/§))(—6y)—>

0%v, 1 dy? =—6A(z+b/(2J§)).

Let f(z):(z+b/(2\/§)), g(y,z):(z+J§y—b/J§), h(y,z):(z—@y—b/ﬁ),
then v, = Af (2)g(y, z)h(y, z) + B — ov, / oz = Ag(y,z)h(y, ) + Af () {h(y,z) + 9 (Y, 2)}
Now, h(y,z)+g(y,z):(z+\/§y—b/\/§)+(z—\/§y—b/\/§):2(z—b/\/§)
f(z){h(y,z)+g(y,z)}=2(z—b/J§)(z+b/(2\E))=(2z2—zb/Jé—bZ/s)

2
g(y,z)h(y,z):(z—b/\/g) —3y? =22 - 2bz//3+b?/3-3y%. Thus,

8{;/2 Ag(y,2)h(y,z) + Af (2){h(y,2) + 9(y.2)}

=A(z2 —2bz/\/§+b2/3—3y2)+A(222—zb/\/§—b2/3)=A(322 —3bz/\/§—3y2)
0%, 1622 = A(ez—sb/ﬁ)zﬁA(z—b/(zﬁ)). Thus,

2

5—"; o, E%=-6A(2+b/(243))+6A(z-b/ (2/3))=-6A(b/3)= id—p— ,

oy o072

from which, A=—,B/(2\/§b). The non-slip condition on the boundary requires B=0.

6.36 For the steady-state, time dependent parallel flow of water ( density p=103Kg/m?,

viscosity, u =10°Ns/ m2) near an oscillating plate, calculate the wave length for w =2 cps.

Ans. v =ae % (coswt - Bx, + ¢, the wave length is given by 27/ 5, where

5= |P% Herewe have, p=10°Kg/m3 =4z rad /s, u=10"3Ns/m?, thus
2
7

(103)(47r)

2(107%)

=102z m™ - wave Iength-%[: 13” =2.51x103%m

6.37 The space between two concentric spherical shells is filled with an incompressible
Newtonian fluid. The inner shell (radius r, ) is fixed; the outer shell (radius r, ) rotates with an

angular velocity Q about a diameter. Find the velocity distribution. Assume the flow to be
laminar without secondary flow.
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Ans. We look for solution in the form of v, =0, v, =0, V= f (r)sine. This velocity field
clearly satisfies the continuity equation [see Section 6.8, Eq.(6.8.8)]:
%.}.ﬁ.}.l%_’_v'gco‘:g_’_ 1 %20

or r roe r rsin@ o¢
The N-S equations in spherical coordinates give[see Section 6.8]:

2
Y _ 1

y T = 2 ]
r p or @) r pr oo @)
ov

0oL P 4 102 % +ii(_i£(v¢sin9)J A).

prsind og  p| r2 or or ) r2o6\sing o6

2 2 2
Ee o 2P —0 eq2)>-"P 0 and eq.@)> 2P 0.
dgor 0go6 0oy

Thus, dp / 6¢ = constant . The constant must be zero, otherwise p will not be single-valued.
Eqg. (3) now becomes, with op/9¢ =0 and v, = f(r)sing,
‘ 21 (r 2
Ozﬂi(rzﬂj—ﬁsine. That is, i[rzd—fj—Zf =0—>r2d—f+2rd—f—2f =0.
r2 dr\ dr r2 dr\ dr dr? dr
The general solution of this equation is: f =Ar+B/ r?. Thus, Vy = (Ar +B/ rz)sine.

The inner shell (radius 1; ) is fixed; therefore, at r=r; v, =0— 0= (Ari +B/ riz) (@)
The outer shell (radius r, ) rotates with an angular velocity €, therefore, at
r=r, v;=(1,sin0)Q-(r,sind)Q =(ArO +B/ roz)sin9—> r(,Qz(ArO +B/ roz) (5)
Equations (4) and (5) are two equations for the two unknowns Aand B:
or? N
A=_——"0 pg—__oi _
(@7

(@)

6.38 Consider the following velocity field in cylindrical coordinates for an incompressible fluid:
v, =V(r), vp=0, v,=0

2

Q, and vy =(Ar +Ejsin¢9.
r

A . . . .
(a) Show that v, =—where Ais a constant so that the equation of conservation of mass is
r

satisfied. (b) If the rate of mass flow through the circular cylindrical surface of radius r and unit
length (in z direction) is Q,,, determine the constant Ain terms of Q.

Ans. (a) The equation of continuity is

li(rvr)Jri%JravZ =0. Thus, li(rvr):0—>rvr =A>v, _A
ror r o6 oz rdr r
(b) v, (227)(1) =Qy v, =2 5 A_COn 2O

2rr r 2xr 27

6.39 Given the following velocity field in cylindrical coordinates for an incompressible fluid:
v, =V(r,0), vy=0, v, =0

Copyright 2010, Elsevier Inc
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(a) Show that v, = f (8)/r, where f(&)isany function of &. (b) In the absence of body forces,

show that
2 2
d Z 4f+i+k 0, p= Zyi+k +C , where k and C are constants.
dée yz 2r?

Ans. (a). The equation of continuity is

10 1ovy, ov, 10

=—(rv,)+=—%+—%£=0. Thus, v, )=0->rv,=f(@)—>v,=f@)/r

rar( ) r oo oz rar( () =01 = 1(O) >V, = 1(0)

(b).The N-S equation in the r direction gives
Ny Mo v_%av Vaj by, Qe 1,
ot "or o0 0z p or
2 2 2 2
ﬁ 6Vr +ia Vr+8Vr +E%_i%_v_r _)_f_:_ia_p_i_’u 1 d f (1)
o2 1206 o2 ror 200 r? P por plrdde?
The N-S equation in the z direction gives —0p/ 0z =0— p is independent of z.
The N-S equation in the @ direction gives

_1lop LM 1ap (dfj_o_)ap Zu(dfj
praé? P 269 pr6¢9 pr do 00 rc\do

- p:_f+g(r)_>a_p__ﬂ+dg Thus, Eq.(1) gives:
r2 or I’3 dr
2 d2f 2
B R E A )
P dr) de d6? 7 dr

The left side of the above equation is a function of @, the right side is a function of r, therefore,
they must be equal to a constant, say, —k , i.e.,

2
(d fj+4f pt (d—g):—kegzﬂ—kfrc. Therefore,

do? u dr or

2
a’f z cat P o, p=—2“2f K,
do Yz, r 2r?

6.40 Consider the steady two dimensional channel flow of an incompressible Newtonian fluid
under the action of an applied negative pressure gradientop / 0x, , as well as the movement of the
top plate with velocity v, in its own plane.[See Prob. 6.26]. Determine the temperature

distribution for this flow due to viscous dissipation when both plates are maintained at the same
fixed temperature 6, . Assume constant physical properties.

Ans. From the result of Prob. 6.26, we have v; =V, X, / d +(a/2,u)(x2d - xg) Vv, =V3 =0.

Let the temperature distribution be denoted by ® = ®(x2) . From Eq. (6.18.3), we have,

DO GRC) 2 . 2 .12 2 2 2
pcﬁ =Djc + KW, where ;. = 2/,{(Dll + D5, + D33 +2D5 +2Dj3 + 2D23) , represents
i97

the heat generated through viscous forces. For this problem, only D, is nonzero, thus,

Copyright 2010, Elsevier Inc
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2 2 2
1) (v a v, a
A e G| BV R EA Tl
0%0 v, e [y, ’
O Y [ Vg gy 500 s (@) g0l e
0% k| d \2u X, 3xa| d 2u
3 Ty 4
0=--—* 5 —°+[ij(d—2x2) +Cx, +D.
12k | d \2u

3 (v, ad)
Atx, =0, @:00—>90=—”—(—°+“—j +D.

12ka*\ d  2u
3 (v, ad)'

Atx, =d, ®=00—>00=—u—2 o 22| icd+D.
12xka” \ d Y7

Thus,

3 4 4
NS (V_o+ﬂj _(V_o_ﬂJ |
2xad |\ d 24 d 2u

6.41 Determine the temperature distribution in the plane Poiseuille flow where the bottom plate
is kept at a constant temperature ®; and the top plate ®, . Include the heat generated by viscous
dissipation.

Ans. For the plane Poiseuille flow [see Eq.(6.12.9)],
v =(a/2u)(b? =33, vy =v;=0,0=—0p/ ¥ >0
Let the temperature distribution be denoted by ® = @(xz) . From Eq. (6.18.3), we have,

2

pc@ =D, + =29 \where ;. = Zy(Dfl + D%, + D% +2D5 +2D5 + 2D223) , represents
Dt OXjOX;

the heat generated through viscous forces. For this problem, only D;, is nonzero,

2 2
2 OXy 2 u 2 u Y7
DO 020 o? , d d 1(op) .,
pPC— =D +K —20=—X+x—F>—F=—"—"| | X
Dt OX jax i Y7 dx5 dx5 K\ 0
2 3 2 4
—>d—®:—i P X—Z+C—>®=—i @ X—2+Cx2+D.
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4
K axl 12
4
Athz_b, ®:®l ®l:__ @ b_—Cb+D ThUS
K\ 0% ) 12
2
0-0r0, 1 () ¢ 00,
2 12xul 0% 20

6.42 Determine the temperature distribution in the steady laminar flow between two coaxial
cylinders (Couette flow) if the temperatures at the inner and the outer cylinders are kept at the
same fixed temperature 6, .

B
Ans. For Couette flow, we have, v, =0, v, =Ar+—, v, =0, where

A-2OF g_ iy (-0

, ——. The only nonzero rate of deformation is
r2 _rl p) _rl
Drgzl 1 %_Vg +% :l _V_‘9+% :_E.
2|rl 06 or 2| r or r2
~2(203)- B ? 4,uBZ DO L 0%
Pine = 24 2 Dt M Kaxjaxj -

2 2 2
_)024/18 1d( a4 ( j _4uB _)d®:2,uB C
4 dr\ dr

r r dr xrd ar  xrd r
B2
—>®=—’u—2+CInr+D.
KT

2

Alr=r, ©=0,50,=—*>_+Clnr+D.

Atr=r,, ®:®O—>®0=—/;7+Clnro+D.
0

Thus,

2 .2 2 2

_r - r B r
C= % HB™ . D=|©,In2+ 'uz 2{rozlnro—rizlnri} /In-2 .

LTy K o i KGT h

i o i

6.43 Show that the dissipation function for a compressible fluid can be written as that given in
Eq. (6.17.10).

Ans. From

O =A(Dyy + Dy + D33)2 +2;1(D121 + D2, + D% +2D5 +2D% + 2D223) , We get,
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) :(/1 + 2#)(D121 + D222 + D§3)+ 2/1(D11D22 + D11D33 + D22D33)+4/U(D122 + Dl23 + D223)
We now verify that this is the same as

= 2 2 2 2 2

® =(A+2413)(Dyy + Dy, + Ds3) +§#[(D11 —Dj,)" +(Dyy —Dyg)” +(Dz, — D) }
+4u(D}, + DYy + D3

Expanding the above equation, we have,

® =(4+2413)(Df; + D3, + D3; +2D1,Dy + 2Dy Dy + 2D, Dy |

+(2;¢/3)[2(D121 +D}, + D2~ (2DyDy, +2Dy;Dgg + 2D22D33)J +4u(D% + D3 + D% ).
ie.,

_ 2
® =(A+2u13)(Dfy + D, + D§3)+(/I+§,uj(2DllD22 +2Dy;Da; +2D,,Dy;)
= (D + D3, + D33 )(4+ 24/ 3+ 442/ 3)+ 2(Dy; Dy + Dy; Dy + Dy Dy ) (A -+ 2041 3~ 241/ 3)

+4(D}, + Dy + D3y).

That is

® =(Dfy + D3, + D3; ) (4 + 24) + 24(Dyy Dy + Dyy Dy + Dy Dgg) + 4 DS + Dy + D3y
Thus, @ =®

6.44 Given the velocity field of a linearly viscous fluid
Vi =KX, Vo =—kX;, V3=0
(a) Show that the velocity field is irrotational. (b) Find the stress tensor. (c) Find the acceleration

field. (d) Show that the velocity field satisfies the Navier-Stokes equations by finding the pressure
distribution directly from the equations. Neglect body forces. Take p = p, at the origin. (e) Use

the Bernoulli equation to find the pressure distribution. (f) Find the rate of dissipation of
mechanical energy into heat. (g) If x, =0is a fixed boundary, what condition is not satisfied by
the velocity field.

k 0 O k 0 0 0 0O
Ans. (@) [Vv]=|0 -k 0|—>[D]=|0 -k 0| [wW]=|0 0 0
0 0 O 0 0 O 0 0O

therefore, the flow is irrotational.
(b) Ty =—p+2uK, Ty =—p-2uK, Tg3=—p, Tp=Tj3=T,3=0.

al [k 0 ) kqg ] |[KX
a;| |0 0 0f 0 0

(d)
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op 0%y 0% % op
k2%, )=———+ Ly 1 11 pk2x, =——"
p( 1) /J( o oxs oxg e 0%

2 2 2
2 op 0V, 0%V, 0%V, 2 op
PlK Xy |=———+ u + + — pk“x, =——— and
( 2) { S A 2T

0= _% — p is independent of x5 .
OX3

Thus,

2,2
pklez_a_p_) p:_pk—)(1+ f(xz)_)@: df (x,) —>—pk2X2 _ df (x,)

0%y 2 X,  dxy dx,

LS

2.2
—>f=—L2X2+C—> p:—T( g +x§)+C. Atx,=x,=0,p=p, >C=p,

That is, p:—(pk2 /2)(x12 + x§)+ Py — p:—(,o/Z)(vl2 +v§)+ P -
(e) From the Bernoulli Equation, we have

2 2 2 2 2
ﬂ%zcmsmm%Lm{Lm} _Po g
P P P at origin P

—>p=p, —pkz(xl2 +x§)/2.
Q)

(h) if x, =0 is a fixed boundary, then v must be zero there. But v =k (Xe; — X,€, ) = kxje; # 0
at x, =0, therefore the non slip boundary condition at x, =0 is not satisfied for a viscous fluid.

6.45 Do Problem 6.44 for the following velocity field: v, = k(xl2 - x%) Vy =—2Kxq Xy, V3 =0.

Ans.
(@)
2kxg  —2kx, O XX X 0 000
[Vv]=| —2kx, —2kq O|—>[D]=2k|-x, —% O|[W]=/0 0 0
0 0 O 0 0 0 0 00

therefore, the flow is irrotational
(b) Ty =—p+aukxy, Typ=-p—4ukx, Tz==p, Tj,=T3=T,3=0

(©)
2 (2 4 42
a 2k, —2kx, 0 k(xf—x%) 2K xl(x1+x2)
a |=|—2kx, —2kx; O] —-2kxX, |= 2k2x2(x12+x22)
ag 0 0 O 0 0
(d)
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ap o%, %y v ap
2k?x, (%2 + %2 i|:——+ SR W ) BN [Zkzx %2 + x2 }z_
,0[ 1( 1 2) %, H 8X12 8)(5 8X§ P 1( 1 2) o

op %, 0%, o% op
2k Xy (X2 + X3 :|=——+ 2, -2 - 2 [Zkzx X2 + X2 Jz_
p[ 2( ' 2) o ot x5 0% ? 2( ' 2) X,

0= _% — p is independent of x,

OX3
Thus,
4
p[Zkle(xf + XS)J :—§—z—> p =—pk2{x?1+ xfx§j+ f (%) —>§72=—2pk2x12x2 +%
and
p[Zkzx2 (xl2 + xg)} __e —p[ZkZXZ (xl2 + xgﬂ = -2 pk?xZx, 3
0%y dx,

2,4
—>—2pk2x§’ =i—> f =—’0k—x2
dx,

Since p = p, at origin, therefore, C = p,,

K2 k2 2
- p:—pT(xf+2x12x22+x§)+ Py = p:—pT(xf+x22) + Py -

+C.

Or, since

v =k(x12 —xf), Vy = —2kx Xy, VZ+V3 =k2{(x12 —x%)2 +4x12x§}=k2(x12 +x§)2
— p:—p(vl2 +v22)/2+ Po -

(e) From the Bernoulli Equation, we have

2 2 2 2 2

\' Vi +V Vi + V.

£+_zcon3tant_>£+¥=|:£+¥:| :&_’_0
P at origin P

p 2 P

2
Sp= po—pkz(x12+x§) /2.
)
® = 2(Dy; + Dy, + D5 )’ +2y(D121 +D2, + 2D122)=0+ 2,u(8k2x12 +8k2X22)=16ﬂk2(X12 + Xg)(h)

if x, =0 is a fixed boundary, then v must be zero there. Butv = kxZe, = 0 at x, = 0, therefore the
non slip boundary condition at x, = 0is not satisfied for a viscous fluid.

6.46 Obtain the vorticity vector for the plane Poiseuille flow.

Ans. With v, =v(x, ) =(a/ 2;1)(b2 - x§) , Where a = —0p/ dx;and v, =v; =0, the spin tensor is
0 ovy/ox, 0

(W]=[W]*=2|-ow/o, 0 0
0 0 0

Copyright 2010, Elsevier Inc
6-27



6-28

Lai et al, Introduction to Continuum Mechanics

The vorticity tensor is 2W and the vorticity vector is twice the axial vector

1o
2 OXy

je

3=

_v
OXo

axy

€3 =

)7

6.47 Obtain the vorticity vector for the Hagen-Poiseuille flow.

83 =————X,€5.
3T o 2

Ans. With v, =i(d—— rzj, V,=Vy =0, a= —@, the spin tensor is
4u oz
1ov, v, &v 1(ov, ov,) | . -
=2 _T0_ T | Zr _~"z 1 avz
rod r or 2\ oz or 0 —-—| ==
1(ov, 1lov 2\ or
[W]:[VV]A: Wy 0 S| =222 l=| 0 0 The
2oz r 06 1o
W. W. 0 o 0
31 32 _2( or j
vorticity tensor is 2W and the vorticity vector is twice the axial vector
ov ar 1 0p

6.48 For a two-dimensional flow of an incompressible fluid, we can express the velocity
components in terms of a scalar function y (known as the Lagrange stream function) by the

oy

relations v, = E v, = _85_1//. (a) Show that the equation of conservation of mass is
X

y

automatically satisfied for any z//(x, y)which has continuous second partial derivatives.
(b) Show that for two-dimensional flow of an incompressible fluid, y =constants are streamlines.

__%

(c) If the velocity field is irrotational, then v; = where ¢ is known as the velocity potential.

1
Show that the curves of constant velocity potential ¢ =constant and the streamline y =constant

are orthogonal to each other. (d) Obtain the only nonzero vorticity component in terms ofy .

ov
Ans. (a) With v, _ % and vy = _ov , we have, %-F—y _00y 9oy _
oy OXx o0y oOxoy oy ox
(b) From w(x,y)=C , we have,
v
aX ay dX y =constant al///ay dX y=constant VX
Thus, w(x,y)=C are streamlines.
(c) From
o(x,y)=C—> d¢=a—¢dx+a—(/)dy=0_>(ﬂ} :_5(0/5X_)[ﬂj =_V_X
ox 8y dx @=constant 8(/) / ay dx @=constant Vy
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Thus, — (d_yj (d_y] 1
dx p=constant dx w=constant

(d)

YRy 2y &
& =20 =2(Wye, +W,.e, +Wye, )= (a—;’—a"Jez = —{—V/+—W e, .

2

6.49 Show that =Voy[1— Jrepresents a two-dimensional irrotational flow of an

X2 +y?
inviscid fluid.
2
Ans. With l//=Voy[1— 5 2J,We have,
X2 +y
oy 2xa’ o’y 22 (-2)(2x)*a?
EZV"V 2 22—>8X2=V0y 2 22+ 2 2\3
(x+y) (x+y) (x+y)
O’y ) 1 4x2 2a%y, 8a2yx?
oo~V (2 - V|

(X2+y2)2 (X2+y2)3

x?+y? oy
o (P (e e
Z}/z/ -V, (XZZi/a;)Z W, (X24iay22)2 (ij;?z | Thus,
A o e | R L e ey

20(v2 L 2
8a%y 8aZyx? 8y%a® 8a%y 8a y(x +y )
-V, + =V, V| —————— |=
2, .2\° 2 2\ 2 .2\ 2 2\ 2 .2\
(x+y) (x+y) (x+y) (x+y) (x+y)
Therefore, the given stream function i represents a two-dimensional irrotational flow of an
inviscid fluid.

0
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6.50 Referring to Figure P 6-9, compute the maximum possible flow of water. Take the

atmospheric pressure to be 93.1kPa., the specific weight of water 9810 N / m?, and the vapor
pressure 17.2 kPa. Assume the fluid to be inviscid. Find the length ¢ for this rate
of discharge.

10cm dia

>3

1
—

Figure P 6-9

Ans. The Bernoulli equation gives, with point 1 at the reservoir top and point 2 at the highest
point inside the tube, we have,

P /p+V12 12+9(0)=p, /p+v§ 12+ 9(3). Thus, assuming Vv; to be very small and negligible,
we have, with p, = 93,100 Pa., p, =17,200 Pa., p =1000 kg / m*® and g = 9.81m / s2.
v§ 12=(p,—p,)/ p—39=(93100-17,200)/1000-3(9.81) = 46.47

v, =9.64m/s. QmM:ﬂ@A:954@401f/4):ooﬂwrﬁ/s

With point 3 at the exit, we have, p, / p+VZ /2+g(0)=ps/ p+V3 [ 2+g(~f)
now, Vv, =Vs, p, = p, (the vapor pressure), p; = p, (atm.pressure)
0=(pa—py)/(p9)=(93100-17,200)/9810="7.74 m.

6.51 Water flows upward through a vertical pipeline which tapers from cross sectional area A
to area A, in a distance of h. If the pressure at the beginning and end of the constriction are

p,and p, respectively. Determine the flow rate Q in terms of p, A, Ay, p, P, and h. Assume
the fluid to be inviscid.

Ans. Let the lower point be denoted as point 1, and the upper point denoted as point 2, we have
ol P Vi 12+49(0)= P/ p+v3 12+ 9(N) > (P Pp) p—g(h) = (v5 —7 ) /2
Let Q be the flow rate, then Q = Av; = A)v, and
PL— P2 11/ Q ’ Q ’ 2 2[(p1—p2)—pgh]A22Af
A2 oghy=|| =] -] | |»Q°= —
p 2|\ A A p(A-A)
2[(pi—p2)-p9(M)]
p(A2-A)

~a-an|
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6.52 Verify that the equation of conservation of mass is automatically satisfied if the velocity

components in cylindrical coordinates are given by

oy _dlow
proz’ b pror

where the density pis a constant and y is any function of r and z having continuous second

partial derivatives.

= , V€:0

r

Ans. The equation of continuity is

10 (st Yo ity = 1OV oLV
ror roe oz pr oz pr or

10 1o Loy) 1[0 &, 0(1oy) 1[0
ror: " ror\ pr oz priorez ) oz az\ pr or pr\ ozor

Thus, the equation of continuity is automatically satisfied for any functiony/ (X, y).

, Vo =0, we have,

6.53 From the constitutive equation for a compressible fluid

: oV 2y, oV
pﬁzpBi_@‘Fﬂi e +u avl +ki e
Dt oX; 3 0% | OX; OXjOX; oX; | 0

Ans.
OT;i - OV
—”:—a—pé)}j _gﬂa_Agij +2ﬂi£ ﬁ.,._l +k6_A5ij
OX; OX; 30X oXj 2\ oxj X OX;

ap 2 oA v, oA oA
=————pU—+ | ——+— |+ k—

0% 3 OX OXjOXj  OX; 0%
That is,
oT;; 2y. : OT;;
OX; 0% 3 0% OXOXj 0% Dt X

2

p%:pBi —@'Fﬁa—A'Fluﬂ-F ka_A

Dt 0% 30X OX OX; 0%

6.54 Show that for a one-dimensional, steady, adiabatic flow of an ideal gas, the ratio of
temperature ®; / ®, at sections 1 and 2 is given by

1 2
&_ l+5(}/—1)|\/|1

o, ., 1
2 14 E( y—1)MZ
where y is the ratio of specific heat, M;and M, are local Mach number at section 1 and section 2
respectively.
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plr-1 o 2 p\y-1) 2°
In terms of the Mach numbers M; =v; /¢, and M, =V, /¢, , we have,

&( y }wf:&( y ]M
ply-1 2 pp\r-1 2

2 2 2
Ans. B[LJ+V7=constant,we have &(L}r\i—&( r ]+V—2
v

For an ideal gas, p=pR®, and c? 7P _ ¥RO, therefore,
Yo
2 2
PlR®1[ /4 J+7R®1M1 :P2R®2( /4 j+7R@2M2 N
P \r-1 2 P \r-1 2

2 2
4 4 7O,M; /O My 1 2 1 2
2 _le,-| Lo, = = >0, +=(y-1)OM2=0,+=(y-1)0,M2 -
[7/—1) 1 [}/_J 2 5 5 1 2(7’ )©,M; 2 2(7 )®,M;

1 2 1 2} e, 1+Mi(y-1)/2
O 1+=(y-1)MZ |=0,[1+Z(y-1)M2 | > =L = .
1[ 2(7 )1} 2[ 2(7 JM3 o, 1+M12(;/—1)/2

6.55 Show that for a compressible fluid in isothermal flow with no external work,

dM? _dv :
VE = 27, where M is the Mach number. (Assume perfect gas).

Ans. Since M2 =v2/c? and ¢ = yR® for ideal gas, therefore, M? =v? / (yRO)
For isothermal flow, ® =constant , therefore,
2 2
M2 = v _>dM2=2VdV_>dM =2vdv;/R®=2dv.
7RO 7RO M? 7RO 2 Vv

6.56 Show that for a perfect gas flowing through a duct of constant cross sectional area at
dp 1dm?

constant temperature 5
2 M

[Use the results of the last problem].

Ans. We have, from pAv =constant, (dp)v+ p(dv)=0—>dp/p=—dv/v
dp _ROdp _dp
pRO  p
Thus, dp/ p=-dv/v. From the results of last problem, we have, dM 2 /M2 =2dv/v, therefore,
dp/ p=—(1/2)(dM?/M?).

Since ® =constant , therefore, p=pRO® - dp=ROGdp —

6.57 For the flow of a compressible inviscid fluid around a thin body in a uniform stream of
speed V,, in the X, direction, we let the velocity potential be ¢ =-V, (X, + ¢, ), where ¢, is
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assumed to be very small. Show that for steady flow the equation governing ¢, is, with

82401 azgol 62g01
M, =V /c,, (1-M2 + + =0.
°er ( O)ﬁxlz x5 X2

Ans. For steady flow, the equation of continuity is v; Z_er p% =0, interms of the potential
X X
2
function ¢, we have, _)_6(0 % -p ¢ =0. ().
0% OX; 0% 0%

The equation of motion is:

J- Nl _ _1dop_ 12 {note 1¢2 =P _ocal sound speed}

OX; P OX; P 0p 0% P OX op

which becomes,
2 2
Op 0% __1.20p Op__pOp 0% (ii)

6_)(j6Xj5Xi B 1% 8Xi 8Xi C2 8XJ anaXi

2 2
(ii) into (i) —>a—¢’(6‘” op J_CZ P9 __0 (iii). Now, with =V, (% +¢,), we have,

OX; | OXj OX;0X; OX;OX;
2 2

W _ |50 00000 e |y ls 0%y 5jl+6_¢1 v, 2

OX; 0% OX; | OX;j OX;0X; 0% X OX OX;

2 2 2
~ _V03 g + 88(01 g e ~ _Vogé‘ilé‘jla—(pl = _V03 o .
Xi OX OX; OXjOX; 0% 0%

2 2 2 2
Thus, Eqiii) —>-VZ2L4cdy,| T2, 0a, 00| o
O%{ Ox — OXy  OX3

2 2 2
—>—>(1—M§)a (/2)1+ 0 (/2)1+8 (/2’1 =0,
OX{ OX5  OX3

6.58 For a one dimensional steady flow of a compressible fluid through a convergent channel,
obtain (a) the critical pressure and (b) the corresponding velocity. That is, verify equation
(6.30.7) and Eq. (6.30.8)

Ans. (a) From Eg. (6.30.6),

N

2 4
dm 2]/ pz}’ pz V4
-l |
dt R ™ Py

we have,

(i)

Copyright 2010, Elsevier Inc
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1 27 1
d(dm/dt)_l(d_m)_z 2 g[&Jy _y+1(&j7 (i)
d(py/p) 2\ dt y-1" v 7y (P
d(dm/dt
Thus, w:o gives,
d(p2/m)
2y 1 1 Iy
E(&] 4 _7_”(&}720, or (&Jy 3(&J 7y, (iii)
7\ Py 7 P P 7\ Py I
That is,
r ya
g(&j g =7/—+1, therefore (&] =£i]74. (iv)
7\ Pt 4 P Jeritica y+1
(b) Substituting this critical pressure into Eq. (6.30.4) for the velocity, we get
7-1

— -1
o2 P 1{&} A 1_(7_+1j 2 ﬂ[d]:&( 27 j
7=1p Peit | 71,1 2 y=lp\r+1) plr+1

o (2] (231 (31T 2]

1 1y Ty Ty
(&J:(&Jy _{&J :(&] g %(ﬂJ:[&j 4 (&] Now, at
y2 Py P Py P Py P2
e
(&) :[&le_y ,we have, {&J:}/_ﬂ(&} Thus,
PL Jeritical 2 PL 2 \p2

v§ = }/(%} =speed of sound at section (2) .
2
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CHAPTER 7

7.1 Verify the divergence theorem Js v-ndS = .[v divv dV for the vector field v =2xe; + ze,,

by considering the region bounded by x=0, x=2, .y=0,y=2, z=0,z=2.

Ans. Withv = 2xe, + ze, , we have
For the face x=0, n=—-e;, v-n=-2x=0, J'v-ndS=0.

For the face x=2, n=+e;, v-n=+42x =4, fv-ndS:4A:4(4):16.
_ _ _ _ (2 _ 25
For the face y=0, n=—e,, v-n=-z, .[v-ndS_—fO z(2dz)_—2[z /2]0_—4.

Forthe face y=2, n=+e,, v-n=z, Jv-ndS=J§z(2dz)=+4.
For the face z=0, n=-e;, v-n =0, jv-ndS=0.
For the face z=2, n=+e;, v-n=0, jv-ndS=0.
Thus, [ v-ndS =16-4+4=16 and [(divv)dV = [2dV =2(2x2x2)=16.
So, I v~ndS=J div vdV .
s v

7.2 Verify the divergence theorem JS v-ndS = IV divv dV for the vector field, which in

cylindrical coordinates, is v = 2re, + ze, , by considering the region bounded by r=2, z=0 and
71=4.

Ans. For the cylindrical surface r=2,
n=e,—> v:n=2r=2(2)=4, — [v-ndS=4[dS =4S =4[(272)(4)]=64r.

For the end face z=0, n=—e,,— v-n=-z,_, =0, —>J‘v'nd8=0.
Fortheend face z=4, n=e,,»> v-n=12, , =4, —>jv-ndS=4S:47r22=167z.
Therefore, IS v-ndS =647 +167 =80r .

o(2r
divv=%+v—r+%:g+£+@:2+2+1=5.
or r oz or r oz

[, divvdv=5 (72%)(4) =80z, thus, [ v-nds = [ diwvaV .

7.3 Verify the divergence theorem Js v-ndS = jv divv dV for the vector field, which in

spherical coordinates isv = 2re,, by considering the region bounded by the spherical surface
r=2.
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Ans. For the spherical surface at r =2,
n=e, — v-n=2r=2(2)=4,— [v-ndS=[4ds =45 =4(472° =64z
On the other hand [see Eq.(2.35.26)],

d(r? d(2r®
divv=— (r Vr):% 2) ¢ jdivvdV:ﬁ[“”ZB):Mﬁ.
r dr re dr 3

7.4 Show that
jsx.nds =3v.

where x is the position vector and V is the volume enclosed by the boundary S .

OX; OXy, OXg

ANS. X = X€; + X9€y + Xg€3, diV X = =1+1+1=3.

Thus Jsx-nd8=jvdivxdv =3V .

7.5  (a) Consider the vector field v =ga, where ¢ is a given scalar field and a s an arbitrary
constant vector (independent of position). Using the divergence theorem, prove that

jv VodV = js ondS .
(b) Show that for any closed surface S that
[snds =0.

Ans. () With v=ga, v-n=pa-n— [v-ndS =a-[pnds ,

opa;

OX; 0%
Thus, jsv-ndS =Isdiv vdVvV — a-fsgonds =a-jVVgodV. Since ais arbitrary, therefore,
IS(/)ndS =JVV(/)dV :

(b) Take @ =1in the results of part (a), we have I s ndS=0.

divv =div(pa)=

7.6 Astress field Tis in equilibrium with a body force pB . Using the divergence theorem,
show that for any volume V and boundary surface S, that

jstds +ijde =0.

where t is the stress vector. That is, the total resultant force is equipollent to zero.

Ans. The stress vector t is related to the stress tensor T by t =Tn, therefore,
[stds =] Tnds = divTdv, thus, [ tdS+[ pBdV = | (divT+pB)dV .
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But in equilibrium, (divT + pB)=0, therefore, IS tdS +_[V pBdV =0.

7.7  Let u*define an infinitesimal strain field E* = %[Vu* +(Vu* )TJ and let T** be the

symmetric stress tensor in static equilibrium with a body force pB™* and a surface tractiont™.
Using the divergence theorem, verify the following identity (theory of virtual work).

[ -urds+ (pB™)-urdv = [ T Ejdv .

Ans.

**k 4 Kk * *x\T o . *x\T o
ot -ur s = [ (T n)-ux ds = [ n- (T°)  ux a5 = [, div| (T")  u* oV |
= jv div(T™* u*)dv

o uy) Ol . . ou o OU]
_ (T J): 1 uj+T; —L —divT™* .u* +Tj —1L | therefore,
x; i o 0

) X:
[ U ds+ [ pB™ uxdV = [| (VT + pB** ). ux 4Ty au] /o jav = [Ti"au] / axav .

Now, div(T™ u*)

*k

Now, since Ti;* =T , therefore,

Tij Ejj =5

oXj O

wx dowf U U] 1_wdu 1w U] 1_wdu 10U
— 75T o ol = =5 o o =
27 ox; 2 o 27 ox; 27 0%

QU e BU e OU
=T; a_IZTji _':'rij i
X; OX; 0%
Thus,
** * el il
[ -umds+ | (pB*)-u*dv =] TiEjav

7.8  Using the equations of motion and the divergence theorem, verify the following rate of
work identity. Assume the stress tensor to be symmetric.

2
[(t-vds+[ pB-vav =] pDRt(V?JdV +] TyDyav

Ans. jst.vds = js Tn-vdS = js n-TTvdS = jv div(TTv)dV = jv div(Tv)dV

Now, div(Tv)=———= —Vj+Tj—= divT-v+ Ty —, therefore,
0% 0% 0% 0%

jst.vds +jv pB-vdv :jv [(divT + pB)-v +T;;v; / oxJdV :jv p(DV/ Dt)-vdV +T;ov; /0% .

D(v-v 2 OV : ov;
Now, [p2)v=2,RUY) DIV p, —d [ |y g
Dt 2 Dt Dt{ 2 2 7 oxj o
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V2

Therefore, J'St-vdS +J'V oB-vdV :IV p%( .

Jdv + [, TyDyav .

7.9  Consider the velocity and density fields®

V=axe, p= Poe_a(t_tO)

(a) Check the equation of mass conservation.
(b) Compute the mass and rate of increase of mass in the cylindrical control volume of cross-
section A and bounded by x =0and x; =3.

(c) Compute the net mass inflow into the control volume of part (b). Does the net mass inflow
equal the rate of mass increase inside the control volume?

Ans. (a). %Ito + pdivv = —apoe_“(t_t‘J) + poe_“(t_t") (a)=0. That is, the conservation of mass

equation is satisfied.
(b) Inside the control volume,

3 _gt- —a(t— —a(t= .

mz_[pdv =j0 eX- ot t")Adxl =3p,8 ) A and dm/dt =-3ap,e A=) A That s, the

mass inside the volume is decreasing at the rate of Sapoe_“(t_t‘J)A.

(c). Rate of inflow from the face x; =0is zero because at x, =0, v; =0.

Rate of outflow from the face x; =3 is given by ,ov1|X L A= 3ap0e’“(t’t°)A . There is no flow
=

across the cylindrical surface because flow is only in the x; direction. Thus, the rate of outflow
exactly equals the rate of decrease of mass inside the volume.

7.10 (a) Check that the motion

Xl = Xlea(t_to), X2 = X2, X3 = X3
corresponds to the velocity field v =axe;.

(b) For a density field p = poe_“(t_t°) , verify that the mass contained in the material volume that
was coincident with the control volume of Prob. 7.9 at timet, , remains a constant at all times, as

it should (conservation of mass).
(c) Compute the total linear momentum for the material volume of part (b).
(d) Compute the force acting on the material volume

Ans. (a) v =%:axle“(t_t°) =ax, V, =aﬁtﬁ=0, Vg =%=0, i.e., V=aXe.

(b) The particles which are at x; =0 at time t, have the material coordinates X; =0. These
particles remain at x; =0 at all time. The particles which are at x; =3at time t, have the material

L |t should be remarked that, for a real fluid, to achieve the given velocity and density fields in this and
some other problems may require body force distributions and/or a pressure density relationship that are not
realistic.
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coordinates X; =3. These particles move in such a way that x; = 3e(th) Thus, to find the mass
inside this material volume as a function of time, we have

367 a(t-tg)

j o8 “0) Adx, = poe (t_t°)A[3ea(t_t°)]=3poA.

(© Llnear momentum in the material volume
3e a(t-to) 3e a(t-to)

j poe )y Adxe, = j poe ) gx Adxge,

3e”(1o) 9e2(t-1o)
= poae_“(t_t")A _[ X dxe; = poae_“(t_t")A K

0
(d) Force acting on the material volume
dP 9 2 a(t—t )
—Ap,a‘e”V e .
dt 2 Lo 1
We see that both the linear momentum and the force increase exponentially with time. This is due
to the given data of density and velocity fields, which describe the space occupied by the fixed

}el = % Apoae“(t_t")el.

material increases exponentially with time, [0 <X < 3e“(t‘t0)] ,while the density decreases

exponentially [ poe_a(t_%)}to conserve the mass. We note also that at t =t,, the materials occupy

the space between x =0andx, =3, andF = % Apya’e; .

7.11 Do Problem 7.9 for the velocity field v = axe;and the density field p =k p, / X, and for
the cylindrical control volume bounded by x; =1and X, =3.

Ans. (a). %+pdivv = vla—'Oer%_ozx1 —k = '00 Lk () =0. That is, the conservation of
Dt 0% 0% xl Xy

mass equation is satisfied.

(b) Inside the control volume, m = [ pdV = J' k2 Adx1 kAp, In3, and Z_T:O

(c). Rate of inflow from the face x =1is [pvA] = {k&axlA} =kap, A
' X ¥ =1
-

Rate of outflow from the face x =3 is given by[ple]X 5= {k&axlA} =kap,A. There is
v % % =3
-
no flow across the cylindrical surface because flow is only in the x, direction. The net mass

inflow is 0, which is equal to the rate of increase of mass inside the control volume.

7.12  The center of mass X, ,, of a material volume is defined by the equation

MXg 1 = Jvm xpdV , where m= -[Vm pdVv
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Demonstrate that the linear momentum principle may be written in the form
J tds + [, pBaV =ma,p,

where a. , is the acceleration of the mass center.

. _ D
Ans. We have from the principle of linear momentum: IS tdS + .[v pBdv _E'[Vm pvdV
. D D D D
Now, since —(pdV )=0, therefore, | pvdV = | —(poxdV )=—|(oxdV )=—mX, ,, =MV¢ -
S (PdV) Jovav =[S (pxaV) =—[(pxaV ) == mxo =mve,

Therefore, JtdS + j pBAV = %mvc_m =mag -

7.13  Consider the following velocity field and density field

aX e __FPo
v P=
1+ at 1+ at
(a) Compute the total linear momentum and rate of increase of linear momentum in a cylindrical
control volume of cross-sectional area Aand bounded by the planes x =1and x; =3.
(b) Compute the net rate of outflow of linear momentum from the control volume of (a)
(c) Compute the total force on the material in the control volume.
(d) Compute the total kinetic energy and rate of increase of kinetic energy for the control volume
of (a).
(e) Compute the net rate of outflow of kinetic energy from the control volume.

V=

Ans. (a) Linear momentum is

3
4
P=J‘pvdV=L ax Adxelzp—Aa)J‘xlXmel [9_£j(PoAa o, _ APoha e,

ltatleat T (14 at) 2 2)1+at) T (1+at)
Rate of increase of linear momentum inside the control volume is
dP __8poAd’
dt (1+at)’

(b) Net rate of outflow of linear momentum in e, direction

:(pAvlz)x—s_(pAvlz)x—lzlpOA [ o’ 2~ o 2}2 8a2p0,§ :
1= L tat| (1+at)”  (1+at) (1+at)
(c) Total force = Rate of inc. of P inside control volume + net outflux of P
_8,00A052 ot 8a2p0A
(1+at) " (L+at)
(d) Total kinetic energy inside the control volume

3 2 2 3
KE=[Lpav -2 p_(a_xl] Adx, 1 LLUA Y 13 poPa?
271+ at(1+at 1 at ] 1+ t)
3
iKE: 13p, Ac .

" (1+at)
(e) Net rate of outflow of kinetic energy from the control volume=
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(lpAvfj —(EPAVEJ 1pA[ 216 & | _13d°pA
20 s 27 21vat| (e a) (1+a) ) (1+ )’

7.14  Consider the velocity and density fields

v=axe, p=pe

For an arbitrary timet, consider the material contained in the cylindrical control volume of cross-
sectional area A , bounded by x =0and x; =3.

(a) Determine the linear momentum and rate of increase of linear momentum in this control
volume.

(b) Determine the outflux of linear momentum.

(c) Determine the net resultant force that is acting on the material contained in the control
volume.

Ans. (a) Linear momentum inside the control volume:

3 3
0 0

3
= poae*a(t*to)Aj dexlel = ,Doaea(tt°)A|:%:| e]_ — % Apoae*a(tfto )el.
0

Rate of increase of linear momentum inside the control volume
dP 9 2 —a(t—t )
—=——a"Ap,e /e, .
dt 2 Lo 1
(b) Out flux of linear momentum from the control volume in thee, direction:
2 B 2 _ 2,2 _ 2,2 _ 2 -a(t-t,)
(pAVl )xl:S (pAVl ) . —(pAa X{ ) (pAa X{ ) 0 9Ap,a’e .

(c) The total force = rate of increase of linear momentum inside the control volume + net
momentum outflux from the control volume. Thus,

X =

F= —%azApoe_a(t_tO)el + 9Apoaze_a(t_t°)el = %Apoaze_a(t_t")el

We see that the force exerted on the material within the control volume decreases exponentially
with time. This is due to the given data of density field and velocity field, which states that within
the fixed space defined by 0 < x; <3, the density decreases exponentially with time while speed at

: o . 9
each spatial point is independent of time. We also note thatat t =t,,F = EApoazel, the same

results was obtained in Problem 7.10.

7.15 Do Problem 7.14 for the same velocity field, v = axe; but with p= k22 and the
el

cylindrical control volume bounded by x; =1andx; =3.

Ans. (a) Linear momentum inside the control volume:
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3
3 3

P=[pvaV = [ (koo / % )viAdxe; = [(kpo /%) (%) Adxies = poka Al dxge; = 2pkaAey
1

Rate of increase of linear momentum inside the control volume

dP

—=0.

dt

(b) Out flux of linear momentum from the control volume in thee, direction:

2 2 _ 2,2 _ 2,2 _ 2
(pAVl )X1:3 —(pAVl )Xl:]_ = (k(po / Xl)Aa Xl )Xl:?, (k(po / Xl)Aa Xl )Xl:]_ 2|(p0Aa .
(c) The total force = rate of increase of linear momentum inside the control volume + net
momentum outflux from the control volume F =0+ 2k p, Aa?e; = 2k p, Acr’e;

7.16  Consider the flow field v =k(xe, — ye, ) with p =constant. For a control volume defined
byx=0,x=2,y=0,y=2,z=0,z =2, determine the net resultant force and moment about the
origin (note misprint in text) that are acting on the material contained in this volume.

Ans. Since the flow is steady, the resultant force = net linear momentum outflux through the three
pairs of faces:
(i) through x=0and x=2,

(J'pvlvdA) 2—(jpv1vdA) 0=k2[.|"[,ox(xel—yez)dydz] Z—kz[”px(xel—yez)dydz]

X= X= X= x=0

2 2 2

=k%p | {J' (4e1—2ye2)dz]dy=2k2p [ (4e,-2ye, )dy i
y=0| z=0 y=0

(ii) through y=0and y=2,

(IpvzvdA)y:2 —(IpvzvdA) =k? Ujp(—y)(xel - yez)dxdz]y:2 —k? Ujp(—y)(xe1 - yez)dxdz]y:O

= kZpIXZZOUZZ:O(—erl +4e, )dz}dx = 2k2,o_[x2=0(—2xel +4e, )dx

= 2k2p[—x2e1 + 4xe2} =2k? p(—4e, +8e, ) =k®p(-8e, +16e,).

x=2

(iii) through z=0and z=2,
( [ ,ov3vdA)Z:2 —(_[ pV3VdA) , =0, (v3=0).

7=

y=0

Thus, the total net force
F = kzp(lﬁel _862)+ kzp(_SEl +1662 ) = kzp(8e1 + 862) .

The flow is steady, the resultant moment about a point = net moment of momentum outflux about
the same point. Take the point to be the origin, then
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(i) through x=0and x=2,
(j,ovl(rxv)dA)X=2 —(Ipvl(rxv)dA)X=0 =k? [pr(xe1 +Ye, +283)x(xe, — yez)dydz]xz2

- kZpUJ‘(xyzel +x2ze, - 2x2ye3)dydzl(:2 = kzpj'yzo['[zzo(Zyzel +4ze, -8ye3)dz}dy (i)

= kzpjjzo(4yel +8e, - 166, )dy = k*p(8e, +16¢, - 32¢;).
through y=0and y=2,
(Ipvz(rxv)dA) (J‘pv2 (rxv) dA) =k [Hp xe1+ye2+ze3)x(xe1—ye2)dxdz]

- k2p|:'“.(—y2261 — Xyze, + 2Xy eg)dxdz}y=2 - k2,0.|')(=0['[Zzzo(—4ze1 —2xze, + 8xe3)dz}dx

2
- kzpj‘yzo(—Be1 —4xe, +16xe; ) dx =k p(~16e, —8e, +32¢;).
(iii) through z=0and z=2,

(Ipv3(rx v)dA)Z:2 —(jpv3(rx V)dA)z=o =0

Thus, M, =k?p(8e, +16e, —32e5)+k?p(-16e, — 8¢, +32e5) =k p(-8e, +8e,).

7.17 For Hagen-Poiseuille flow in a pipe, v=C (r02 - rz)el. Calculate the momentum flux

across a cross-section. For the same flow rate, if the velocity is assumed to be uniform, what is
the momentum flux across a cross section? Compare the two results.

Ans. Momentum flux across a cross section
= [ pvidhe, = pCzjor" (r02 - r2)2 (27r)dre, = (pCzﬂrOB /3)e1
Volume flow rate is Q = [v,dA = Cﬁ" (ro2 - rz)(an)dr = C(;zr04 /2) .

The uniform flow which has the same flow rate Q isgivenby: v=(Q/ ;rroz)e1 = (Cr02 /2)e.
The momentum flux across a cross section for this uniform flow is given by

PRV, = (7pC2ry 1 4)ey.

Thus, the momentum flux for the Hagen-Poiseuille flow is % that of the uniform flow.

7.18 Consider a steady flow of an incompressible viscous fluid of density p, flowing up a
vertical pipe of radius R . At the lower section of the pipe, the flow is uniform with a speed v, and
a pressure p; .After flowing upward through a distance ¢, the flow becomes fully developed with
a parabolic velocity distribution at the upper section, where the pressure is p, . Obtain an
expression for the fluid pressure drop p, — p, between the two sections in terms of p, R and the
frictional force F; , exerted on the fluid column from the wall though viscosity.
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Ans. Let the control volume encloses the fluid between the two sections. The linear momentum
theorem states that: For steady flow, Force on the fluid= Momentum outflux — momentum
influx.

The force on the fluid in the control volume is given by: (p, — p, ) A— pg(Al)—F;.
The momentum influx through the lower section = pvf (;rRz) .

The momentum outflux through the upper section J'pvj (2zrdr), where v, =C(R* —r?) . The
constant C can be obtain as follows
Q= ", 22rdr =22C | (R - r?)rdr = zCR* / 2=y (zR?) > C =2y / R?.

2V Lo 2
Thus, vuzﬁ(R -re).

Momentum outflux jOvaﬁ (2zrdr) = p27r(2v| / Rz)2 IOR(R2 —r?)?(rdr)

= (8pmv I R*) [ (R? ~r)? (rdr) = (8pmv? | R*)(R® 16) = 4pnviR? /3.
Thus, (py - py ) A- pg(Al)—F; =4pavPR? 13— pvf (zR%) = pvE (zR?) /3
—(p, - py)(7R?) = pVf (R?) / 3+ F; + pg(zR?)(¢). That is,

(pi—py)=pV 13+F¢ I (zR?)+ pgt .

7.19 A pile of chain on a table falls through a hole from the table under the action of gravity.
Derive the differential equation governing the hanging length x. [Assume the pile is large
compared with the hanging portion]

Ans. Using a control volume (Vc)2 [see Fig. 7.6-1 in Section7.6] enclosing the hanging down

portion x of the chain, we can obtain the same equation as that given in Eq. (iv) of Section 7.6,
i.e., with g denoting m/ /¢, mass per unit length:

ugx T = uxd?x/ dt? )
where T is the tension on the chain at the hole. Next, using a control volume enclosing the pile
above the table, then, since the particles of the chain pile stay essentially at rest at any given
instant (except those near the hole), we can assume that the rate of change of momentum inside
the control volume is zero (quasi-static approximation). Further, we assume that the net force
acting at the pile is the tension T at the hole (the reaction of the supporting table exactly balances
the weight of the pile). Then, the momentum principle gives:

T = p(dx/ dt)’ ).
Equations (1) and (2) give
d2x (dx )’
X=X—sr+| — 3
M +(dtj ®)

We note that this equation is a good approximation when the length of the pile is large compared
with the hanging portion x. Eventually, when the pile reduces to essentially a flat straight
segment on the table, Eq. (vi) of Section 7.6 becomes a better approximation.

Copyright 2010, Elsevier Inc
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7.20 A water jet of 5 cm. diameter moves at 12 m/sec, impinges on a curved vane which

deflects it 60° from its original direction. Neglect the weight, obtain the force exerted by the
liquid on the vane. (see Fig. 7.6-2 of Example 7.6.2).

Ans. Referring to Fig. 7.6-2, we have, v, =12 m/s, §=60°,volume flow rate

Q=v,(zd?/4) =12(72'(5 x1072)2 / 4) =235.6x10*m?,  pQv, =(998)(235.6x107*)(12) = 282N
Thus, force on the jet =

~pQu, (1-c0s60° Jey + pQY, 5in60°e, =~282(0.5)e, +282(0.866)e, = —141e, + 244e,N .

Force on the vane from the jet is 141e; — 244e,N .

7.21 A horizontal pipeline of 10 cm.diameter bends through 90°, and while bending, changes
its diameter to 5 cm. The pressure in the 10 cm. pipe is 140 kPa. Estimate the resultant force on

the bends when 0.005 m®/ sec .of water is flowing in the pipeline.

Ans. Let (v, py, A, )and (vg, pg, A ) denote upstream and downstream (speed, pressure and
cross-sectional area) respectively and Q the volume discharge. We have, Q =0.005 m3 /s,
v, =0.005/((0.1)" /4)=0.6366 m/s, vy =0.005/ (7(0.05) /4)=2546m/s

Upstream pressure p, =140,000 Pa. Down stream pressure can be obtained from Bernoulli

2 2
Equation: &+V—“ = Py +V—d. Thus,
p 2 p 2

Py = P, +§(v§ —v§)=14o,000+9—28(o.63662 —2.5462) —137,000.

Let e, be the direction of the incoming flow and e, be the direction after the 90° bend, then, we
have,
Momentum outflux = pQvy =(998)(.005)(2.546)e, =12.7¢,.

Momentum influx = pQv, =(998)(.005)(0.6366)=3.18e; .

Momentum principle gives: p,A,e; — Pg A€, + Fy = pQvye, — pQv, ey .

Force on water F,, =—(oQv, + p, A, )e; +(oQvq + Py Ay )2

—~(3.477+140,0007(0.1)7 / 4)Je, +(12.7 +1370007(0.05)° /4 e, = ~1100¢, + 282¢,N.

Thus, the force from water to the bend is —F,, =1100e; —282¢e,N.

7.22  Figure P7.1 shows a steady water jet of area A impinging onto the flat wall. Find the
force exerted on the wall. Neglect weight and viscosity of water.

Copyright 2010, Elsevier Inc
7-11



Lai et al, Introduction to Continuum Mechanics

y

Vo

Ans. Let the control volume be coincident with the outline of the flow shown in the figure.

Force on the liquid F_ = momentum outflux-momentum influx = 0— pQv,e;

Force on the wall = pQu,e, = pAV? e, .

7.23  Frequently in open channel flow, a high speed flow “jumps” to a low speed flow with an
abrupt rise in the water surface. This is known as a hydraulic jump. Referring to Fig. p7.2, if the
flow rate is Q per unit width, show that when the jump occurs, the relation between y; and y, .is

given by
1 / 8v7
Y2 =—ﬁ+—Y1 14—
2 2 9y
Assume the flow before and after the jump is uniform and the pressure distribution is hydrostatic.
7
L/—/
V.
B N y2
- VY

e

I

Ans. Use a control volume enclosing the water with an upstream section before the jump and a
downstream section after the jump. According to the momentum principle, the force on the fluid
per unit width is given by (neglect friction from the ground and air)

Fy = POy 12 pays 1 2= pQu, — pQuy, thus , (97/2)(y7 - ¥3 ) =Q(v2 — 1) =viya (V2 —v1).
Conservation of mass gives: Viy; =V, Y, =V, —Vy =ViYy /Y, —=Vp =Vy ( Yy — Y, )/ Y, . Therefore,
we have, (v, /2)(¥f - v3 ) =¥y (¥i-v2)-

The above equation shows that y; =y, is a root for the equation. This solution corresponds to a
flow without a jump. To look for the jump solution, we eliminate the factor (yl - yz)and obtain

9o (Yo +Y2)/2=VEY, = Y5+ y1¥, — (V2 1 g)y, =0

1
Vo=(112)) -y + y2 + @91 0) | =y 242y L+ (81 o)

Copyright 2010, Elsevier Inc
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7.24  If the curved vane of Example 7.6.2 moves with a velocity v <v, in the same direction as
the oncoming jet, find the resultant force exerted on the vane by the jet.

Ans. Fig. 7.6-2 of Example 7.6.2 is reproduced below.

Let the control volume surrounding the jet moves with the vane, then the flow is steady with
respect to the moving control volume.
Momentum outflux relative to the control volume =

PQ(V, —V)(cos e, +sinde, ) = pA(v, —V)*(cosde, +sinde,)
Momentum influx relative to the control volume is
2
PRV, —V)ey = pA(v, —V)“e
Thus, since the control volume moves with a constant speed, there is no extra term to be added to
the momentum equation for the fixed control volume case. Thus, force acting on the jet is

Fiee = PA(, ~V)? (oS0, + sin B, )~ pA, ~v)%e, = AV, —v)*[ (cos0-1)e, +sinde, |
and the force on the vane is
Fuane = PANV, _V)2 [(1— C059)61 —sin 6e2] .

7.25  For the half-arm sprinkler shown in Fig. P7.3, find the angular speed if
Q =0.566m"> / sec. Neglect friction.

d=2.54 cm | |
)
% 1.83m
Ans. Let the control volume V, rotate with the arm. Then, relative to the control volume, the
outflux of moment of momentum about an axis passing through O and perpendicular to the plane

of the paper is pQ(Q/ A)re3, where ryis the length of the arm. There is no influx of moment of

momentum about the same axis since the inflow is parallel to it. Since the control volume is
rotating with an angular velocity @ about the same axis, we need to add terms to the left hand
side of Eq. (7.9.8) , the moment of momentum principle. The terms that need to be added are

given in Eq. (7.9.9). With @ = we;and x = xe;, we have, @ x X = Xae, , a)x(a)xx) = —Xa)261 SO

that X x @ x ((ox x) =0. We also have,a, =0 and @ =0, therefore, the only non-zero term is

—2[xx(@xVv)dm=-2[ xe; x(wez x(Q/ A)e; ) pAdx = _2prJ‘0ro xdxe; = —pwQre;.

Adding this term to Eq. (7.9.8), whose left hand side is zero (because frictional torque is
neglected) and whose right hand side is the net moment of momentum outflux, we have,

Copyright 2010, Elsevier Inc
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—paQrles = pQ(Q/ A)re; - w=-Q/ (Ar,)). Now, A=r(2.54x107%)%/4=5.067x10""m?,

therefore, w=-Q/(Ar,)=-0.566/[(5.067 x 107)(1.83)]=—-610.4 rad /s .
The minus sign means the rotation is clockwise looking from the top.

7.26  The tank car shown in fig. P7.4 contains water and compressed air which is regulated to
force a water jet out of the nozzle at a constant rate of Q m® /sec. The diameter of the jet

isd cm., the initial total mass of the tank car is M, . Neglecting frictional forces, find the velocity
of the car as a function of time.

1

0O

Ans. Let the control volume V, encloses the whole tank car and moves with the car. Then
relative to the control volume, the momentum outflux is

—pQ(4Q / ﬁdz)el =—4pQ? [ (zd%)e,.

There is no momentum influx. Since the control volume moves with the car which has an
acceleration a,e,, therefore, the momentum principle in the e, direction takes the form [see

Eq.(7.8.20}: (with al frictional/resistance force neglected):
~(Mg — pQt)(dv/dt) =—4pQ? / (zd?) . — dv/dt=[4pQ* / (zd?)]/ (M, — pQt).
Integrating, we have, v=-[4Q/(=d 2)] In ( M, - th) +C.
If the initial velocity is zero then we have
v=[4Q/ (zd?)][-In(M, - pQt)+InM, |.

7.27  For the one dimensional problem discussed in Section 7.10,

(a) from the continuity equation pv; = p,v, and the momentum equation p, — p, = p,V3 — V2,
obtain

V_zzl_L(&_l]
Vi 7/|\/|12 Py
y P, 1o oy P, 1o

(b) From the energy equation ——+—Vv; = ———=+—Vv;, obtain
r=lp 27 y-1p, 2

2 2 2
1+7_—1L&[v_z}7_—1£ Vi
2 2 2

(c) From the results of (a) and (b), obtain

2
P, 2 2\[ P2 2 (y-1 2
Py (1ym2)| P22 f 72 =0.
[le 7"‘1( T l)(p1] 7"'1( 2 7
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Ans. (a)

Using pvy = opV, P — Py = 2V§ PlV12 > P P2=0o\ )

1P (v w) {plvl]( : w) (plvl]( j( Lpplp g v

Py Py Py pvelpy vl
—>—12_ P2/P g Yo 1P /Pn pzlgl . That is, —2=1— L [pz 1}
i (Pl yp) V1 Wil ad V1 Vi Py
(b)
L&Jrlvz _r p2Jr V2 2 314,072 1o V2 = Pop 7™ r=1p V2

y=lp 27 y-1p, 2 2y p1 P2 IO1 2y Pt
I y-1v :&L&j y-1V3 17" 1) :pz(vz} v 1\,1( 2}
2 a2 p\p) 2 @& 2 af plw) 2 af(Vf
[note 7ol p, =2 and pv;=p,V, }
(©

2 2 2
Using Y2 =1- 5 (&—1}the equation 1+y_—1v_12=&(v_2}7__1\%[\%j_)
i MR 2 af mlv) 2 a\y
2
T (ﬁ—1J PAEI VI (ﬁ—1]
yM{ Py 2 yM{ Py

2
Al
yM{ Pt 7 M P

2 . 2
_ 1 ZE&J {—1+—7/_1 P 1 [ yMi+1 + 7= 11 [7/ Ml +27/M1 +1}
yM{ Py 2y 1 P 7M1 4 2y 7M1
Thus,
y-1 1 (p, Y -(+D)] p, 1 [yMZ41 L7l 1
1+ M2 = > L B R U A L 5 1 [72Mf’+2}/M12+1].
2 yM{ Py 2y Pr yM{ Y 2y 7M1

Rearranging,

_ 2 —(r+1) 2
r~lye_ 1 (&j 7+ pp 1 | yMP+l
2 yME Py 2y Pwl\/lf y
2
+}/—_1M12+7 ! 2 M1 +1-
2 2y 7M ( 1)
oo L (pzj ~(r+1) |, l:Ml +1} y-1 1 {1_2”\/@}
yM{ Py 2y plyMl 2r yME[ (r-1)

2 2(yM7? +1
That is, (ﬁj - (;/ ! ( J 0.
Py ()/+1 }/+1

The above equation has two solutlons.

1
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Dp=p

1 1
(2)p, =m[2/01v12 -(r-1) p1:|vor P2 =m[27M12 _(7/_1)] P

Copyright 2010, Elsevier Inc
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CHAPTER 8

8.1 Show that for an incompressible Newtonian fluid in Couette flow, the pressure at the
outer cylinder (r = Ro) is always larger than that at the inner cylinder. That is, obtain

[T (Ro) ]-[ T (R) ] = pj ro’ (r)dr

Ans. In Couette flow, v, =v, =0 and v, = Ar +E, [see Eq. (6.15.4) and (6.15.7)]. Thus,
r

T =Tp=T,;=-p, T;=Typ, =0, and T au[%—v—gjz function of r only .
ror
Ty + 10Ty + T —Too + Ty,

or r 06 r 0z
—pro’. Now, j —”d =—pj§°rw2(r)dr. Thus,.

Thus, the r-equation of motion = —pra)2 becomes:

aT
6r

[-T (Ro) |- [T (R) ] = pj re? (r)dr . The right hand side of this last equation is always
R
positive.

8.2 Show that the constitutive equation
T =1 +7, +73, With 7, + 4,07, /0t=2u,D, n=12,3

is equivalent to

T+a07 | 3t +8,0°7 | 0t? + a;0°¢ | 6t> =byD + b,0D / ot +b,0°D / ot
where
= (A + 2 +43),8 =(Ady + dpdg + Ao/ ) 85 = A dp g
by = 2( 44+ pip + 113), 0y = 2] (A + 2 ) + pip (A + 25) + pig (A + A1) |
b, = 2(pulo s + iyl + a2 )

Ans.
BB Ee B B 2R
_izslﬂ,-—'+§%ﬂi—=é(2yp—ri)+éézﬁ%
=2DL§Z;¢,J ir, +ééﬂ‘?_mz“' —r+§§j1._
That s, " .
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(Z%JQ_ZD[Z'H'J_TJ{ 6;2+11%J+[ %JJQ%}{%%J’%%j (i)

ot ot ot ot ot

Next, we have,

(M + Aol + Agy )0%T | 8% = (M + Mg + Aghy ) 0%y | 8% + (g dy + gl + A3l ) 0%, | B°
(Al + Aplg + Al ) 075 | O = (Aply + Ay ) 021y | B + Ay g0y | 0% + (M + Ap g ) 0%z, | OFF
+540%Ty | O + (Al + Aghy ) 0%1s | 0% + 1y 0p0%75 | O1°.

l.e.,

(Ao + g + 252 )75 | 087 =[ 24 (2 + 2g) + 25 (A + A ) + 2413 (2 + A1) [OD / 6t

~(Ap +25) 07y 1 8t — (A + A3 )07, | 8t — (2 + 44 ) 073 | 8t + A Ag0%zy | 0% + Ay 4%, | P (ii)

+ 2 200%T, | Ot2.
Finally, we have,
Wiaks S5 = hahaly Z? Aoy a;?
WP )
= 2,20 2D+ 2ty 7 7D, Mu?,a;tz ok Mga’z a2 3
that s, Mzﬂai—zzzﬂeuli—')+weuz§D+qu3§? zzaﬂ—%a’z—% (i)

Thus, (i) + (ii)+ (iii) gives

T4+ (A + A+ 45) 0T 1 3+ (Ady + Dl + Agy ) 02T 1 8% + Ay 2p 20T | 08
=2D(py + tp + 113) + 2 1 (Ao + A )+ 1p (M + A ) + 3 (Zp + 2y) |OD ] 2t
¥2( 12025 + iy g + pis/a 20 )O°D | O,

That is,
or _ 0°r a3 oD . &°D
+tay—+a,—+ag—=0,D+ —+b .
T+tq a2 ot at +by o ot
where

& =(h+A+4) 8, = (A + g + A ). 83 = A dp
by =2( 4 + a1y + 113),00 = 2 g1y (Bg + Ag) + iy (A + g ) + 113 (A + )|
b, :2(/“1/12/13 + Ly Ay +ﬂ3/1122)

8.3 Obtain the force-displacement relationship for the Kelvin-Voigt solid, which consists of a
dashpot (with damping coefficient 7 ) and a spring (with spring constant G ) connected in

parallel. Also, obtain its relaxation function.

Ans. Since the spring and the dashpot are connected in parallel, therefore, the total force is given
by: S =S, + Sgasn and the total displacement & is given by & = &5, = &g - NOW,

Copyright 2010, Elsevier Inc



8-3

Lai et al, Introduction to Continuum Mechanics

Sgp =Ge and Sy, = ﬂotlj therefore, S = Gg+77?j—t To find the relaxation function, we let

& =¢,H(t), where H(t)is the Heaviside function. Then S =Gg,H (t) +ne,0(t) . Thus, the
relaxation function is S /¢, =GH (t) + n5(t) .

8.4 (a) Obtain the force-displacement relationship for a dashpot (damping coefficient 7, )
and a Kelvin-Voigt solid (damping coefficient 7 and spring constant G, see the previous
problem) connected in series. (b) Obtain its relaxation function.

Ans. (a) Let S,, and Sy be the force transmitted by the Kelvin-Voight element and the dashpot
respectively and let &, and &4 be the elongation of the Kelvin-Voight element and the dashpot
respectively. Then we have, the total force is given by S =S, =S, (i) and the total displacement

is given by ¢ =gy + &, (ii), where S =770dd—t_s Sw=Gs&, +7 dd"" (iii). From (ii) and

(iii) we have, de _déq , déig :i+l(s_ngV):i+§_E(8_gd) (iv). Thus,
dt dt  dt 1, 7 0 7

d’ _(n+ne |0 Gde Gdey o oymod®e_(1+7)dS _ de

dt2 \ mm Jdt pdt p dt "7 G di? G dt °dt

Thus, the force-displacement relationship is given by:
(77+770)d8 de Mo d &
G dt Pdt G a2
(b) Let & =¢,H(t), where H(t) is Heaviside function. Then Eq. (V) gives
B, G g &G g4y, Sl 99 (vi)
dt  (m+m,)  (7+7m)

S+ V)

(7+m,) dt’
where & (t)is the Dirac function. The integration factor for this ODE is exp[Gt I(n+ 770)].

Gt Gt Gt

Gt c -t _Gt
Thus, 9 sermo |- £l e 5(t) + 21 To_ e 99 and
+17) +17) dt
Gt Gt Gt
s+ = 0leC_ It e 5(t)dt + —2 110 ft e 99 gy
(1 70) oo rem) = o
t
_ 6‘0770G N EoN Mg {|:th/(77+770)5(0:| _ G Jt 5eG“(’7+’7°)dt}.That is,
(n+16) (7+1m5) SRR/

St &,n,G & = G £,n°G £ S
Se’to — olo n 0’1o e’7+’7°5(t)— __%do ~+ 0’1o e’7+’705(t) .
(n+m5) (n+m5) n+10 | (n+m,)° | (7+70)

s 26 -Gt
Thus, the relaxation function is —=77°—2e’7+’7° +&5(t).
o (7]+770) (77"'770)
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8.5 A linear Maxwell fluid, defined by Eq. (8.1.2), is between two parallel plates which are
one unit apart. Staring from rest, at timet =0, the top plate is given a displacement u = v,t while
the bottom plate remains fixed. Neglect inertia effects, obtain the shear stress history.

Ans. The velocity field for the fluid in this motion is given by (inertia neglected)
V; =VoH (t)X,, V, =v3 =0, where H(t)is the Heaviside Function. The only non-zero rate of

deformation component is Dy, =V, H (t)/2. Thus, from the constitutive equation for the linear

Maxwell fluid, we obtain, 312+/1dj—12= 1o H (t). Thus, %[Slzetm]z’uTvoetMH(t),That s,

t/a _ MV rt /2 _ MVt tia g Mot ta
St =2 e H(t)dt= /1 J,e"dt= ;t [/Ie }O_uvo(e 1).Thus,theshear

stress history is: Sy, = uv, (1—e‘“ ’1) :

8.6  Obtain Eq. (8.3.1)ie., S=2 ﬁw¢(t—t')D(t')dt', where g(t) =(u/ 2)e™"*, by solving

the linear non-homogeneous ordinary differential equation S + }L:l—f =2uD.

Ans. The integration factor for this ODE is exp[t/A]. That is the equation can be written as;
d (o tiz\_ 21 11 ti t A
E(Se )_7e D. Thus, Se —(Zﬂ/i)j,we D(t)dt —

>S=e"(2u/2)[ e"*D(t)dt. Thatis,

$=2 tw%e_(t_f)MD(t')dt' =2[' g(t-t)D(t )t

8.7  Show that for the linear Maxwell fluid, defined by Eq. (8.1.2), Ewyﬁ(t—t')J (t')dt' -t,

where ¢(t) is the relaxation function and J (t) is the creep compliance function.

Ans. Let S;, =S,H (t) be applied to the top plate of a channel of unit depth in which is the linear
Maxwell fluid. [H (t) is the unit step function, i.e., Heaviside function]. Neglecting inertia, the
velocity field is v(x; ) =V,X, , where v, is the velocity of the top plate. Then from the

constitutive equation S+ AdS/dt =2uD, we obtain S, + AS,5(t)=2uDy, =2u(V, / 2)= pdu, / dt,

where u, (t)is the displacement of the top plate. From ddito _3 +i805(t), we obtain

HooH
yl

J't Uy jts—odt +£It505(t) —u, S0y +28, =i(t + 1) . Thus, the creep compliance
° dt ou e J7, U

functionis: J(t)=u, /S, =(t+ A1)/ .

-t/

Since the relaxation function is ¢(t) = (u/ A)e™" ", therefore,
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[ o=t ()ar=[ ur eV @y ruor - inf e e
=" e @ )] e 1)t
Now _[ e (gt —[2e (t t)//I]t__oo_/i and

oty (t')dt' = J‘ioo (ﬂde_(t_t')u)(t')dt' _ [/m—(t—t')/zt :|

—00

t
—/1J' e gt = gt 42,
t'=—o00

Thus, [* g(t-t)a(t)at :/1+%(/1t—ﬂ,2)=/1+(t—/1)=t.

8.8 Obtain the storage modulus and loss modulus for the linear Maxwell fluid with a

(4
continuous relaxation spectrum defined by Eqg. (8.4.1), i.e., ¢ I T)e‘“ *da.
[0}

Ans. Let the shear strain be: 7, = 7,"" . For this strain history, the rate of deformation history is

d712

given by 2D;, = ot ia)yoei“’t. Thus, from the constitutive equation,

S=2[ g(t-t)D(t)dt’, wehave Sy, =2[ (t—t')Dy (t')dt' =iwy, [ p(t-t)e at’.
With ¢(t) f [H /ﬂ]e‘t”ldﬂ,we have,

o H ﬂ, ' ., w HI(A —t/A
Sy = ia))/OEOOJ.O T)e_(t_t )Me'a’t dAdt' = ia);/oj‘ﬂzo%

Now, J’t ot 2giot g7 _ Jt oA 2 o1 _ /1 e(l+ila))t/l..|.hus,
e t=—co (1+ii0)

t ' H ’
J. et /ﬂ.ela)t dt'd A

t'=—c0

Sz _jgiet J' Md/lzG*ei“’t, where G” =iw #d}t is the complex modulus.
Yo ,(1+ilo) L, (1+idw)

Now,

s o H(A) e (1-ide)H(4)

O =] iz = s @ irw) (1 i20)

_r (iwu,wz)H(ﬁ)M:joo_ A0*H (2) u,+ij°°_ oH(A) 4.
= (14 220?) 220 (14 220?) 220 (14 220?)

o A2w’H(A) or[* _AeHQ)

’ 270 3(1+ 120?)

Thus, G' =
Iﬂ=0,1(1+ 120°)

8.9 Show that the viscosity x of a linear Maxwell fluid, define by S = 2J‘;¢(t —t')D(t)dt’,

is related to the relaxation function ¢(t) and the memory function f (s) by the relation

u=["g(s)ds=—["sf (s)ds
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Ans. S, =2[0_ p(t-t)Dy, (t)dt'=-2[" $(s)Dy, (t-5)ds=2[_#(s)Dpp (t5)ds.

For simple shearing flow, v, =kx,, v, =v3=0, 2D, =k, so that

S, = kjio¢(s)ds —>u=S, k= I;‘:O¢(s)ds . Now, the memory function f (s)is related to the
relaxation function ¢(s) by the relation dg(s)/ds= f(s). Thus,

U= I¢ s)ds=[sg(s ] I ¢(S)ds_—j:sf(s)ds.

8.10  Show that the relaxation function for the Jeffrey model [Eq. (8.2.7)] with a, =0 is given
by [note: Reference to Eq.(8.2.7) is missing in the problem statement in the text]

Yo 2@ boal o

#(t) =Sﬁ=b—°Hl—lJe‘”ai +%5(t)}, &(t) = Dirac Function .
Y

Ans. Let the shear strain y;, be given by y, =7, H(t). Then 2D;, =dy;, / dt = y,5(t), where
o(t) is Dirac function. From the constitutive equation, we have,

6812 b }/0 bly_O@%as_lz_l_i —7/_0 b_0§+&@
ot 2 2 ot oy 2

N 2%(812&""‘1): et/ay, (b—°5+ﬁ@]

& a ot

o2 ”alzb—"_[t e”al5('t)dt+ﬁjt et/ 490 g
7o & " & dt

:b—°+ﬁ[e"a15(t)} b j 5(t)e“a1dt by blet/alﬁ(t)—%
a & &
Thus, the relaxation functlon is:

¢(t)si=b—°(1— it J ety B 5(t)= % Kl—lje-“aw%a(t)}

Yo 23, ab, 23 ab, b

8.11  Given the following velocity field: v; =0, v, =v(X), v;=0.Obtain (a) the particle

pathline equations using the current time as the reference time, (b) the relative right Cauchy-
Green deformation tensor and (c) the Rivlin-Ericksen tensors using the equation

Cio=l+(r-t)A +(r —t)2 A,/ 2+..(d) the Rivlin-Ericksen tensor A, using the recursive
equation, [A,]=[DA; / Dt]+[A][Vv]+[VVv]' [A] etc.

Ans. (a) Let x"=x/e; be the position at time z of the particle which is at x = x;e; at timet . Then
X =X{ (%, Xy, X3, 7) gives the pathline equation. Thus,

?;2_v1_0 (i), d; =v, =v(x) (ii), X =0 (iii)

Copyright 2010, Elsevier Inc
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with the initial conditions: X =X/ (X, X, X3,t). Eq (i) gives x = f (X, %o, X3 ) = X1, Eq. (iii)

gives x3 =g (X, Xy, X3) = X3. Eq. (ii) becomes, ((jji'zzv(xl)e Xo =V (% )7 +h(X, X, %),
T

— Xy =V(X )t +h(Xg, X0, Xg) > N (X, Xp, X3 ) = Xo V(X )t > X0 =X, +V(x)(z—1).

Thus, x; =X, X=X +V(X)(z—t), X3=Xs,

1 00 1 00
() [R]=[Vx{]=|(dv/dx)(z-t) 1 O|=|k(z-t) 1 0|, k=dv/dx
0 01 0 01
1 k(r=t) 0] 1 0 0] |1+k?*(r=t)’ k(z—t) O
[c]=[R]'[R]=l0 1 O|k(z=t) 1 0o|=| K(z-t) "
0 0 1 0 01 0 0 1

0 dx,
0 k 0
@ [Az]:{%}+[Al][Vv]+[Vv]T[A1],Where (A=K 0 of.Ths,
000
o(Ay).
8 o[58 e
Dt | | ot Dt J; Lot J;  ox
0 k oJfo 0 0] [k* 0 0 k? 00
[A][Vv]=|k 0 0|k 0 0|=/0 0 0] [W][A]=/0 0 0
0 0 0J/000 |0 00O 0 00
2k* 0 0
Thus, [A]=[A][VV]+[VV] [A]=| 0 © 0.
0 00

8.12  Given the following velocity field: v; =—kx;, v, =kx,, Vs =0. Obtain (a) the particle

pathline equations using the current time as the reference time, (b) the relative right Cauchy-
Green deformation tensor and (c) the Rivlin-Ericksen tensors using the equation

Cio=l+(r-t)A +(r —t)2 A,/ 2+..(d) the Rivlin-Ericksen tensor A, and Ajusing the recursive
equation, [A,]=[DA; / Dt]+[A][Vv]+[Vv]' [A] etc.

Copyright 2010, Elsevier Inc
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Ans. (a) (a) Let x"=x/e; be the position at time z of the particle which is at x = x;e; at timet .

Then X =X/ (X, X;, X3, 7) gives the pathline equation. Thus,

dxg . dx; L Oxg
—==v,=—kx (i), —==v,=kxs (ii), —==0 (iii
So==kg (@), E=va kg (i), =0 (i)
with the initial conditions: X, =X/ (X, X;,X3,t). Now,
%:—kxl’—ﬂnxi=—kr+g(x1,x2,x3)—>g(xl,xz,x3)=lnx1+kt
T

—>Inxg=—kr+Inx +kt > Inx —Inx =—k(r-t) > x = xle’k(”t).

.. Xé , , k(Tft) ’
Similarly, E:kxz—mzzxze and x3=f (X, Xy, X3) = %g

k(z-t)

_ K(7—
Thus, X = x€ . X) = X,8 (=), X5 = X3,

efk(z'ft) 0 0 e72k(r7t) 0 0
o [R]=[vx]=| o Y o| [c]=[R]'[R]=s| o &V
0 0o 1 0 0 1
_ 2 3
Since e™2¢("Y —1% 2k(r—t)+£(r—t)2 1%(14)2 +..., therefore,
2 3!
ok 0 0] |4k* 0 0 , |8 0 0 5
2 o|(z-Y) 3 4|71
[C]=[1]+(z-t)] O 2k 0|+ 0 4k 0 —=+ 0 & 0] —
0 0 0/ |0 0 0 o o0 o °
ok 0 0 4?* 0 0 8k* 0 0
© [A]=| 0 2k 0], [A]=| 0 4k* 0|, [As]=| 0 8> 0
0 0 0 0 0 0 0 0 0
-k 0 0 2k 0 0
(d) with vy =—kx, Vv, =kxp, v3=0,[Vv]=| 0 k O|—>[A]=]| 0O 2k 0
0 00 0 00
d(A,). .
{2 {2], S
Dt ot Dt Ji; LatJ;  ox

[Ao)=[Ad[V]+[9v] [A)]

2k 0 OJ[-k 0 0] [—k 0 0][—2k 0 0] |4k* 0 O
0o 2« ollo k ol+]0 k ofl 0 2« ol=| 0 4k? o
o 0 olflo ool |o oollo oo |0 o0 o
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4% 0

Off—k 0 o] |-4k* 0 o0

[A][vv]=| 0 4k* 0|0 k O|=| 0 4k* of.
0 0 00 0O | 0O 0 0

-8k 0 0

Thus, [Ag]=[0]+[A,][VV]+[WV]' [A.]=| 0 8° 0.
0 0 0

8.13  Given the following velocity field: v; =kx;, Vv, =kx,, V3 =-2kx;. Obtain (a) the
particle pathline equations using the current time as the reference time, (b) the relative right
Cauchy-Green deformation tensor and (c) the Rivlin-Ericksen tensors using the equation

Co=l+(r-t)A +(r -t)2 A,/ 2+..(d) the Rivlin-Ericksen tensor A, and Ajusing the recursive
equation, [A,]=[DA; / Dt]+[A][VVv]+ [Vv]T [A;] etc.

Ans. (a) Let x’ = x{e; be the position at time z of the particle which is at x = x;e; at timet. Then
X; (X1, X2, X3,7 ) gives the pathline equation. Thus,

Yy @), P2v,mg i), PEoakg i)
dr dr dr
with the initial conditions: X =X/ (X;,X;,%3,t). Now,
%zkxl'—>Inx1'=kr+g(xl,x2,x3)—>g(xl,xz,xg)zlnxl—kt
T

—>Inx1’=kr+lnx1—kt—>Inxl'—lnxlzk(r_t)_>xileek(f—t)_

!

Similarly, Zﬁ =kxp —> X) = xzek(H) and x5 = x3e_2k(H). Thus,
T

X],- — Xlek(f*t), X/2 — Xzek(T*t)’ Xé — X3e*2k(f*t)

(b)

ke g 0 o 2K(r-t) 0 0
[Ft]{vx't }= 0o Y o | [c]=[R]'[R]=] o e*(Y 0

0 0 e 0 0 e ()
Since
2 3
p2K(7t) :1+2k(7_t)+%(1_t)2+%(T—t)3+.,,,
2 3

e Zg gk (r—t)+ 2 (- 643'; (c—t) +..

therefore, [C,]=[1]

Copyright 2010, Elsevier Inc
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2 3
2k 0 0 4k 0 0 , |8k 0 0 3
+( _ 2 (T_t) 3 (T_t)
r—t) 0 2k 0 |+ 0O 4k? 0 0 8 0 TR
0 0 -4k] | 0 0 16k 0 0 -64k%|
ok 0 0 4% 0 0 8k® 0 0
©[A]=] 0 2k 0 |, [A]=| 0 4k* 0 | [As]=| 0 8&° 0
0 0 -4k 0 0 16k? 0 0 -64k°
k 0 0 2k 0 0
(d) with vy =kx, Vv, =kxy, v3=-2kxz, [VV]=|0 k 0 [>[A]=] 0 2k 0
0 0 -2 0 0 -4k
1 8(A).
DA |_|0A +[VA{][v] > DA | | 9A ) ( 1)” v, =0+0=0
Dt ot Dt J; Lot J; o

[Az]=[A[VV]+[VV]' [Ad]

%k 0 01k 0o 07k o ol 0o 07 |4* 0 ©
o 2« ook ol+0ok o0/ o0 2 o0 |=| 0 42 o0
0 0 -4k|[0 0 —2k| [0 0 2|0 0 4| | o o 16k

Next,
4% 0 0 |k 0 o 4% 0 0
[As][v]=| 0 4k* 0 |0 k O |=| 0 4k 0
0 0 16k?|0 0 -2k 0 o0 -32k°

g8k® 0 0
Thus, [Ag]=[0]+[A,][VV]+[W] [A,]=| 0 8* 0 |Et
0 0 -64k°

8.14  Given the following velocity field: v; =kx,, Vv, =kx;, v =0. Obtain (a) the particle
pathline equations using the current time as the reference time, (b) the relative right Cauchy-
Green deformation tensor and (c) the Rivlin-Ericksen tensors using the equation

Co=1+(r-t)A +(z’-t)2 A, [ 2+..(d) the Rivlin-Ericksen tensor A, and Ajusing the recursive
equation, [A,]=[DA / Dt]+[AJ[VV]+[VV]' [A] etc.

Ans. (a) Let x’ = xe; be the position at time 7 of the particle which is at x = x;e; at timet. Then
X =X (X, X2, %q,7) gives the pathline equation. Thus,

B4y —og (i) |
dr

!

D2 v, —og (i, %:o (iii)

T
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with the initial conditions: X; = X/ (X, X, X3,t). Now,

dx d?x dxy d®x -

i) >—=kt; >—=k—==k > —-kX=0—>

(i) dr 2772 dr L7 42 1

X = Asinhkz + Bcoshkz — ¥, = Asinhkt + B cosh kt (iv)

(i) > x5 =%%= Acoshkz + Bsinhkz — x, = Acoshkt + Bsinhkt (v)
(iv) and (v) gives A=—x;sinhkt + x, coshkt, B = x coshkt — X, sinhkt
x; = % (coshktcoshkz —sinhktsinhkz)+ x, (coshktsinh kz —sinh ktcosh kz)
X5 = X, (coshktsinhkz —sinhktcosh k7 ) + X, (cosh kt cosh kz —sinh ktsinh k)
That is,
X =X coshk (7 —t)+ X, sinhk(z—t), X, =xsinhk(z—t)+X,coshk(z—t), X5=Xxg
coshk(z—t) sinhk(z-t) 0
[F]=[Vx{]=| sinhk(z-t) coshk(z—t) 0O,
0 0 1
(b)

cosh? x+sinh®x  2coshxsinhx 0O
[C.]=[R] [R]=| 2coshxsinhx sinh?x+cosh®x 0|, x=k(z—t)
0 0 1
Since

x? X3
cosh x :1+7+O(x4), sinhx = X+ O(x°)

3
cosh? x =1+ x% + O(x*), sinh?x=x%+0O(x*), sinhxcoshx=x+2%+0(x5)

1 2x% 4. x4 34 0
. 8 0 2k 0
[C]= 2x+§x3+... 1+2x%+... 0|=[1]+[2k 0 0|(z-t)
0 0 1 0O 0 O
42 0 0 0 8k 0
2 (T_t)z 3 T—'f)3
+ 0 4k° O 5 +| 8k 0O O 5 +...
0 0O O 0 0O O
Thus,
(©
0 2k 0 4% 0 0 0 8k 0
[Al=|2k 0 0] [Ay]=| 0 4k* 0| [As]=|8k 0 Ofet
0O 0 O 0 0 O 0 0 O

Copyright 2010, Elsevier Inc
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0 k 0 0 2 0
(d) with vy =kx,, Vv, =kx, v3=0,[Vv]=|k 0 0|—>[A]=|2k 0 0.
000 0 00
DA, ] [oA pA, ] [oa] (A
[ Dtl}:{#}r[v'%][v]_{ ot { 6'[1} F e kT0r0=0.
Jij ij Kk
[Ao]=[A[VV]+[V] [A(]
02k00k0—2k200 4% 0 0
[A][Vv]=|2k 0 Ofk 0 0|=| 0 2k* 0|->[A]=| 0 4k* Of.
0 0 0/flo0O0] |0 O0 O 0 0 0
Next, )
4? 0 0o k 0 0 4k® 0
[A][Vv]=| 0 4k* Ofk 0 o|=[4k® 0 oOf.
0 0 O0flo oo |0 o0 O
0 83 0
Thus, [Ag]=[0]+[A, ][] +[W] [A,]=|8* 0 o]
0 0 0

8.15  Given the velocity field in cylindrical coordinates: v, =0, v, =0, v, =v(r) , Obtain the
second Rivlin-Ericksen tensors Ay, N =2,3,...using the recursive formula.

0 0O 0 0 k
ans. [vv]=[0 0 0|, k=S, [A]=[W]+[W] |0 0 0
k 00 ' k 00

Since (A, ); =constant, independent of time and spac, therefore

o
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2k? 0 0|0 0 o] [0 O k]|2k?> 0 o [0 O O
-l o0 o0 oflo 0o ol«|0 0 0l 0 0 0|=/0 0 O
0 Ok 0 0| [0 0 0l 0 0 O] |0 OO

Thus, Ay =0,N=3,4...

8.16  Using the equations given in Appendix 8.1 for cylindrical coordinates, verify that the
rré component of the third order tensor VT is given by:

10T, To +Typ
(VT)W:L ag_ rr r }

Ans. From the equations

8T
(VT). h — L T Tymi + Tl NO SUM ON M, SUM on g,
™ X,

ijm aqi~ gmi 197 qm)

andh, =1, hy=r, h, =1 I';pp=1Ty, =-1,all other I’y =0

we have,

_ 0Ty T,

(VT )rre h 00 +T 1ﬂqer +Trqrq9r :a_g"‘THrreer +Tr€F99r , thus,

=T 1 (1) 4Ty (1) > (vT) =2 T

(VT )rre %

8.17  Using the equations given in Appendix 8.1 for cylindrical coordinates, verify that the
ré6 component of the third order tensor VT is given by:

(VT) _10Ty T —Toy
0 r 00 r

Ans. From the equations

aT;
(VT )ijm hy = ™ — L+ Ty Tgmi +TigTqmj N0 SUM on m, sumon q
m

andh, =1, hy=r, h, =1 Ty =LTpy, =-1,all other Iy =0,
we have,

Copyright 2010, Elsevier Inc
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(VT), oM = 6;9 +Tqolqor + Trqlgee = (VT ), 40 Do =a;-—g+T99F%,r +Trelrgp
_0dT, 10T, T,-T
—(VT) " _a—;fﬂgg(—l)ﬂ,, (W)= (V) =7 829 799

8.18  Using the equations given in Appendix 8.1 for spherical coordinates, verify that the
rr¢ component of the third order tensor VT is given by:

w1y oL T, (Tor+T)
"¢ rsing o¢ r

Ans. From the equations
OTjj
(VT)ijm hy, = ax +Tgiqmi +Tiglqmj N0 SUM on'm, sumon g
m

andh, =1, hy=r, hy=rsing; I'ipy=1 T4 =sind,

Lypr =—SiNO,T 459 =080, T'ggr =1y, = cosd all other ' =0
we have,
ot 0Ty

(VT )Ny = ag +TarCgr + Trglggr = (V) 1 = 26 Ty L + Teg U pr

—>(VT)rr¢(rsin9) =

(—sin@)+T,4(-sin) -

1 JTy _ T¢r +Tr¢

_)(VT)W “rsing o r

8.19  Using the equations given in Appendix 8.1 for spherical coordinates, verify that the
¢p¢ component of the third order tensor VT is given by:

1 aT¢¢+(Tr¢+T¢r)+(T9¢+T¢9)cot¢9
rsin@ og¢ r r

Ans. From the equations

OTjj
(VT )ijm hy, = o —L 4 TiTgmi + TigTqmj N0 SUM on m, sum on g

hy =1 hy=r, hy=rsing; [y =1 Ty =sind,

L jgr =—SIiNO,T 459 = €080, T'yp =1 Ty, =cosd all other T =0
we have,

Copyright 2010, Elsevier Inc
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Ty
(VT) 51 = o6 — 2+ ToyTag + Tpal o

6

Ky
= (VT) jgs 1y a? +(Teg +Tgr )Ty +(Tag + o )T

=%+(Tr¢ + Ty )(sin 9)+ (Tg¢ +T¢9)cose

o1 Ty (T *Ter) | (Toy +Tyo)cot0
9 rsing o¢ r r

—(VT)

8.20  Given the velocity field in cylindrical coordinates: v, =0, v, =v(r), v, =0, obtain (a)
the first Rivlin-Ericksen tensor A; (b) VA, (c) the second Rivlin-Ericksen tensors A, , using the
recursive formula..

[ov, 1(ov, v, | T v(r)
—_ J— __V —_
or r( 9} 0z 0 o 0

Ans. [Vv]= Ny E(%+vrj N |_|& 5

or r\oé oz dr

1y, | |0 00
_ar r 00 az_ L i

0 k(r) o
[AJ=[W]+[W] =|k(r) 0 ol k:(%-@j

0 0 0

{(%j (] oy ]
(VAl)rmvg (VAl)r%vg (VAl)rwvg
~ (VA | = (VA Vo (VAL (VAL g0 Ve
(VAl)ngvg (VAl)Z%vg (VAl)Zzgvg

The components of the third order tensor (VAI) can be obtained from Appendix 8.1 as:

10Ay Ao+ Ay 2k 10A0 | Ar—Aw
VA r r —__=" V _ = :0
(VA = [r 00 r } r (VAL g r o0 r
10A, A
(VAo =150 7 "
10Ay  Ar—Aw _ _ 2K 1A, A, _
(VAdoo =+ 30 = 7 =0 (VA = (VA =y 5"+ =0

Copyright 2010, Elsevier Inc
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(VA =2 D P g (va),, =2 %0 P g (vay),, =2 P

w0 r 90 r 00 r 90 r 100
DA -2k/r 0 0| [-2kv/r O O
Thus, (—1j =vy| 0 2k/r 0Of=| O 2kv/r 0],
Pty 0 0 0 0
0 k(r) o 0 —v(r)/r 0] [kdv/dr 0 0
[A][Vv]=|k(r) O Ofdv/dr 0 0|= —kv/r 0],
0 0 0 0 0 0 0 0
0 dv/dr 0] 0 k(r) O| [kdv/dr O 0
[W]'[A]=|~v(r)/r 0 Ofk(r) 0 o0|= 0 —kv/r 0,
0 0 0f| O 0 O 0 0 0
oA k(dv/dr-v/r) 0 0| [2k* 0 0
A, - [Dl} AW+ [A]=2 o 0 o=l 0 0 of.
0 00 0 00

821 Derive Eq. (8.11.3), i.e., AN+1:%+AN (VW) +(Vv) Ay

Ans. We had {see Eq. (8.11.7)},

N N+1
D = (5% =ax- Aydx > —— D (d52)=D—dX Aydx+ax- 22N gy b dye A, P Thatis,
DtM DN+ Dt t Dt

N-+1
;Nu(ds ) =(Vv)dx- Aydx +dx- DS[N dx +dx- Ay (Vv)dx

=dx-(Vv)" Aydx +dx- Ay (Vv)dx + dx- DAtN dx

= dx-{(Vv)T Ay +Ay (Vv)+ DAtN }dx =dx- Ay, 0x.

DA

822 Let S=DT/Dt+TW-WT, where T is an objective tensor and W is the spin tensor,
show that S is objective, i.e., " =Q(t)SQ (t).

Ans. Since T is objective, therefore T" =Q(t)TQ' (t) and from Eq. (8.13.13),
=(dQ/dt)Q" (t)+Q(t)WQ' (t), therefore,
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s —£+TW -WT"
Dt

]
- 2T+ Q[ jQ +QTe% s [orQ |2

_dQ
dt

Now, Q(t)Q" ()_I—>
S Q( jQ rori® {QTdQ} [QTwQT ]

{ Q1q } [QWTQT (1) ]

That is,

+[QTQT|==Q +| QTQTQWQ' |

C2QT[QTQ" |-[QwQTQ() TQT (1)

dQ dQ’

Q (t)= _Q(I)T , therefore, the above equation becomes

S*:Q(t)[%-:JrTW WTJQ (1)=Q(t)SQ" (t).

8.23  Obtain the viscosity function and the two normal stress function for the nonlinear
viscoelastic fluid defined by S = [ 1, (s)[l —clt —s)]ds

Ans. For v; =kx,, v, =v5 =0, we have [see Section 8.9, Eq.(8.9.12)]

1 k(z-t) 0 1+k2(r=t)> —k(z—t) 0
[C@]=|k(z-t) K (z=t)+1 0|, [CHD)]=| —(r-1) 10
0 0 1 0 0 1
1+k%? ks 0 k%2 ks 0
[ct‘l(t—s)} ks 1 0 .Thus,[I—Ct‘l(t—s)]= Kk 0 0
0 0 1 0 0 O

0
Sll :_kZJSZ fZ(S)dS, 822 :0, 533 :0 y
0

0= Sll _822 :_kZJ‘SZ f2 (S)dS, Oy = 822 _833 =0.
0

8.24  Derive the following transformation laws [Eqgs.(8.13.8) and Eq. (8.13.12)] under a change
of frame.

Vi =Q(7)\Q" (r) and Ry =Q(r)RQ" (1)

Copyright 2010, Elsevier Inc
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Ans. Since F, = VR, and i, =V, R{ , therefore, from F (7)=Q(7)F ()Q" (t), we get
V(R =Q(7)VRQT (1)=[ Q(r)4Q" (7) || Q(r)RQ (1) |, where [ Q(r)V,QT () | s
symmetry tensor and [Q(r)RtQT (t)} is an orthogonal tensor. Therefore, the uniqueness of the

polar decomposition leads to

V; =Q(7)V,Q' (7) and R; =Q(7r)R,Q" (t).

8.25 From TE{M} and {%(T)} =Vv , show that
v 7=t v 7=t

T=T +TD+DT. [note misprint in the problem in text]

Ans. From J, (7)=F' ()T(z)F (), we have,

D"[;gf) _ DF[t;(f) T(e)R(e)+ K (¢) DI)(:) R (0)+FT (0)T(c) Dgff)
Thus, {DJ;ET)} = (V) T(R)+ 2L T()9V [Note F (1) =F (1)=1]
Now, Vv =D+ V(/=t therefore,
{M} =£+(D+W)TT+T(D+W):£+DT+TD+(WTT+TW)
Dr |, Dt Dt
DT

=5+ DT+TD+(TW-WT)=T +DT+TD

8.26  Consider Jy(7)=F " (¢)T(s)R " (). Show that (a) [ DIy(r) / Dr | _ is objective

and (b) [DJy(r)/Dr] _t:%—T(VV)T_(VV)T:% —(TD+DT).
= T

Ans. (@) Given Jy () =R (=) T(e)(F2) (2), and 33(z) =F*2(0) T (1) (F)' (7).
In a change of frame (see Section 8.13. Eq.(8.13.6), K, (7)=Q(7)R (r)QT (t), so that
P (0)=QF(1)QT(7) and (F*1) (1) =Q(r)(RY) ()QT(1).
Also, T (1) =Q()T(t)QT (). Thus
T(r) =R (PR (F)RETERTMR()(F?) (1)QT (1)
QRN ()T@(RY) (£)QT(1). Thatis,
Ju(7) =Q(1)3y(r) Q" (t) and DMIy(z) /DN =Q(t)(D L (x) /DM )QT (1) Thus,
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o] oo oo

(b) [DJy(r)/Dr]  =[DR*/Dz| T(t)+[DT/Dr] +T(t){D(F{1)T / Dr}

7=t

Now, F(z)R™(r)=1-[DF/Dr]R™(z)+F(s)| DR/ Dr|=0-
[ DR (r)/Dr] _ =-R™(t)[DR /D] _ R (t)=~[DR / Dz] _ =~[(W)FR(r)]

=t =t

=—(Vv). Thus,

[D3y(r)/Dr] =%—T(VV)T —(VV)T=%—T(D—W)—(D FW)T.
That is, the upper convected derivative of T can be written:
f{DJDL(T)} :%+TW—WT—(TD+ DT):'(I)' —(TD+DT).
T
t

8.27  Given the velocity field of a plane Couette flow: v; =0, v, =kx;. (a) For a Newtonian

fluid, find the stress field [T] and the co-rotational stress rate [‘?‘ J . (b) Consider a change of
frame (change of observer) described by:

X | [cosat —sinat][x [cosat —sinat
X _[sina)t cos@}{xj’ [Q]_Lina}t COSa)t}
Find [v*],[v*v*][D*]and[W*].

(c) Find the co-rotational stress rate for the starred frame
(d) Verify that the two stress rates are related by the objective tensorial relation.

Ans.

(a) [Vv]zﬁ) 8} [D]:[k(/)2 kéz}, [W]:L(c/)2 _kolz]Thus, stress tensor is

[T]{_op —Op}LZ!{k(/)Z k(/)Z}{;E fﬂ
o7 5 G T S

k> 0 k2 0
Co-rotational stress rate is: ﬁ ]z[DT}{ﬂ }:{ﬂ }

Dt 0 —,uk2 0 —,uk2
(b) From Eq. (5.56.12) of Chapter 5, we have,
[v* ()] =[QV]+[(dQ/ dt)x] =[Qu] +| (dQ/ dt)QTx* |. Thus,

v, | [coswt —sinet][ 0 —sinwt —cosat][ coswt sinwt]| ¥ | .
=T +w ) i . |- Since,
vi | Lsinet cosat ||V, cosot  —sinot || -sinwt cosot || x;
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x| [ cosat sinet]] x
X5 —sinot coswt

*} —> X% = COSwix, +SiNatx, =V, = k(COSa)th +sin a)tx;)
X2

Therefore,

* — * - * - 2 * -
v, v, sin a)t} [0 _1}[)(1} —(cosa)tsm Xy +sin a)txz) {—Xz}
+o +o

Vv, | [ V2COSot 1 0

*

X

Xo (cos2 wtx, +Sin ot cos a)tx;)

from which, we get,

[(V*V*)]:k[—(sinZwt)/Z —sin% ot ]+w{(1) _01}

cos?ot  (sin2mt)/2
D] k{—(sin 20t)/ 2 (Cf)SZa)t)/Z} WA= k{ 0 -1/ 2} m{o —1} |
(cos2at)/2  (sin2at)/2 1/2 0 1 0
(c) For the Newtonian fluid, the stress field in the starred-frame is:
[T*]:{—p—,uk(sin 20t) 1k cos 2t }
pk(cos2at)  —p+uk(sin2at) |’
where the indeterminate pressure p is time independent. Thus,

Dt —(sin2awt) (cos2amt)

[T*W*] k Lk cos2mt p + uksin 2wt Lk cos 2wt p + uksin 2wt

=— ] @

2| —p+pk(sin2wt)  —ukcos2emt —p+ pksin2amt  —puk cos 2wt
- —puk cos2mt — pksin 2wt —uk cos 2mt — uksin 2ot

M Err i By

- w
2| —p—uksin2wt  uk cos2mt —p—uksin2wt  uk cos 2wt

Thus,

- .k ukcos2mt  pksin 2wt cos2mt  sin2wt
[TW}—[WT]zk ) +2uak| .
uksin2wt  —uk cos 2wt sin2mt  —cos 2wt

Thus, T~ =[DT*/Dt]+[T*W*—W*T*]:,uk{

@ [Q] T J[oT

_|cosat  —sinwt uk? 0 coswt  sinat | K2 cos2awt  sin2mt
sinet  cosat || g _,k2 | -sinet cosat] sin2at  —cos2at

cos2wt  sin2wt
sin2wt —cos2wt

Thus, we have

T =@ Jer

8.28  Given the velocity field: v; =—kx;, Vv, =kX,, v =0. Obtain (a) the stress field for a
second-order fluid (b) the co-rotational derivative of the stress tensor
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&k 0 0
Ans. (a) [Vv]=| 0 k 0|=[D], [w]=[0],
0 00
2k 0 0 2k 0 0][-2k 0 0] |4k
[A]=[2D]=| 0 2k O|->[A'=| 0 2k 0 0 2k O|=| 0 4k
0 0 0 0 0 o]0 0 0] o0

[A]=| DAL/ DU+ Ay (W)-+(Vv)T Ay |=| Ay (VW) +(V)T A |

2k 0 Ol[-k 0 0] [-k 0 0][-2k 0 o] |4k* 0 0
=l 0 2k 0|0 k O|+|] 0 k 0| 0 2k O|=|] 0 4k
0O o0 of/lo ool |0 0o0f[O0O 0 O 0 0

o O

The second-order fluid is defined by Eq.(8.18.6):
T=—pl+ A + 1A] + 11A5 —

29k 0 0 4? 0 0 4?* 0 0
[T]=-p[1]+| O 2k O|+um,| O 4k* O|+u| O 4k* 0O
0 0 0 0 0 0 0 0 0

Ty =—p— 2k +4(, +#3)k2, Ty =—p+ 2k +4(u, +#3)k2’ Ty3=—p.

To obtain the pressure p, we first calculate the acceleration:
Kk 0 0f-k¢] | KX
[a]=[ov/at]+[VV][v]=]| O k O ke, |=|k®x

0 0 0}l O 0
Equations of motion ?zpai then give
X.
j
SR, Py, P g, thus,
0% 0%,y 0%,

p=—pk? (¢ +x3)/2+C.
(b) The co-rotational derivative of T: T =DT/Dt+TW-WT. Since W=0 :

1 00
aT. ot
[('? )i}: [Ej = 2Ly +—Ly, |= _8_pvl_8_pV2 010
j Dt Jj; X 0Xy 0% 0X 00 1
100
=k[@x1—@x2j 010 =pk(—k2x12+k2x§) 010 =pk(v22—vf)[l]
% )y o 00 1

Copyright 2010, Elsevier Inc
8-21



8-22

Lai et al, Introduction to Continuum Mechanics

8.29  Show that the Lower Convected derivative of A, is A,,i.e., Aj=A,.

Ans. From Eq.(8.19.22),

8.30  The Reiner-Rivlin fluid is defined by the constitutive equation:

T=-pl+S, S=¢(l5,13)D+g(l5,13)D?
where |, are the scalar invariants of D . Obtain the stress components for this fluid in a simple
shearing flow.

Ans. In a simple shearing flow, v; =kx,, v, = v3=0,

0 k/2 0 k?/4 0 0 ,
[D]=|k/2 0 0| [D*|-] 0 K14 0| |2=—k7, l3=0
0 0 0 0 0 0
0 k/2 0 k2/4 0 0
[T]=-p[1]+a(k*140)|ki2 0 0|+g(k*/40) 0 K*/4 0f.
0 0 0 0 0 0

N
8.31  The exponential of a tensor A is defined as: exp[A]=1+ Z%A” . If A is an objective
1 n-

tensor, is exp[A] also objective?

Ans. Yes. Because
A"=Q(1)AQT (1) (A") =Q(1)AQT (1)Q(1)AQT (1) =Q(1)AXQT (1)
(A7) =Q()ANQT (1)

«\N . L . .
That is, (A ) is objective for all N . As a consequence, exp[A] is objective.

8.32  Why is it that the following constitutive equation is not acceptable:
T=-pl+S, S=a(VV), where v is velocity and « is a constant

Ans. Because Vv is not objective.
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8.33  Let daand dA denote the differential area vectors at time rand timet respectively. For
an incompressible fluid, show that

[DNdaZ/DzN] =dA-[DNc;1/DTN] (0A=—dA-MydA

r=t T=

where da is the magnitude of da and the tensors M are known as the White-Metzner tensors.

Ans. From Eq. (3.27.12), we have, [note here dA is the reference area and da is the area at the

running time r1], daz(detF)(F‘l)T dA . For an incompressible fluid, (detF)=1, so that
da= (Ffl)T dA, da-da= (Ffl)T dA-(F’l)T dA = olA-(lfl)(lfl)T dA = dA-(FTF)fl dA.
That is, da® = dA-C; dA . Thus,

N 2 NA~-1 NA~-1
Dda 1 _ga 25| da=—dA-MydA, whereMy =—| >t |
Dr ; Dr ot Dr t

8.34  (a) Verify that Oldroyd's lower convected derivatives of the identity tensor | are the
Rivlin-Ericksen tensor A . (b) Verify that Oldroyd upper derivatives of the identity tensor are

the negative White-Metzner tensors [see Prob. 8.33 for the definition of White-Metzner tensor].

Ans. (a) The Nth lower convected derivative of T is given by
[DNaL/DeN | where 3, (7)=F (¢)T()R(r). For T=1,

=t

T _ D"J, _ DNCt(T) _
Ji(7)=F (7)R(r)=Ci(r). Thus, |: DN }_t _{Tlt =Ay

(b) The Nth upper convected derivative of T is given by
~ T
[D"3y /DN | where 3y (r)=F 7 (7)T(e)(R) (7). For T=1,

Ju(7)= Ffl(T)(F{l)T (r)=C!(r). Thus, {D[)N%Lt . {%Lt =M.

8.35  Obtain the equation T=DT/Dt+TVv+ (Vv)T T, where Tis the lower convected
derivative of T.

Ans. By definition, the lower convected derivative is [DJ L (z’) / DTL:t , Where

3. (7)=F () T()R(z). Thus, [DI (7)/ D] =[ DR /Dz| _ T(t)R (1)

=t
+ K (t)[DT/Dr] R (t)+F (t)T(t)[DFT / Dr} .
Now, | DR (¢)/Dr| =DR'/Dt=(DR /Dt)" =(Vv)" [see Eq.(8.12.3)] and Fy(t)=1,

7=t

therefore,

Copyright 2010, Elsevier Inc
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T:{M} =E+TVV+(VV)TT.
Dr . Dt

8.36  Consider the following constitutive equation:

S+4(D.S/Dt)=2uD, where(D.S/Dt)=8 +a(DS+SD) and § is co-rotational derivative
of S. Obtain the shear stress function and the two normal stress functions for this fluid.

Ans. With v; =kx,, Vv, =Vv3 =0, the rate of deformation tensor and spin tensor are:

0 k/2 0 0 k/2 0 os
[D]=|k/2 0 0 [W]=|-k/2 0 0]. Since the flow is steady, E:O'
0 0 O 0 0 O

The co-rotational derivative is, for symmetric S: § —sw-Ws=SwW+ (SW)T . Now,

‘ =Sz S 0 c K —S12 =Sz Sy
[SW]ZE —S» Su 0, [SW] ) Su Sa Sy
~Ss, Sy O o 0 0
K _2812 S1l - S22 _832 K 2812 Sll + S22 832
E ]:E Su-S» 28 Sy |, [SD]+[DS]=7{Su+Sn  25n  Su .
—S3 Sa1 0 S32 Sa1 0
Thus, D.S/Dt=$ +a(DS +SD) gives
DSl k 2(a—1)512 (1+a)811+(a—1)522 (a—1)832
OS5, 20e)sy (@ra)sy
(a—1)Ss, (1+a)Sy 0

Therefore, S + 1% =2uD —

S;+ k(e -1)S;, =0 (i), Slz+(%kj[(l+a)8n+(a—1)822]=,uk (ii) ,

8134-%'((0{—1)523:0 (iii), Sy +Ak(1+a)Sy, =0 (),

Now, (iii) , (v) and (vi) give Sy3=Sy3 =S33=0. Eq. (i) gives S;; = Ak(1-a)S;,, Eq.(iv) gives
Sy =—2k(1+a)S;, , thus, with

A(K) =1+(1-a® )(2k)", we have,

Sip =uk ! AKK), Sy =Auk®(1-a)l AK), Sy =-Auk?(1+a)l AK)

The shear stress function is S;, = xk / A(k) . The normal stress functions are:

01 =Sy1 — Sy = 24k | A(K), 0, =Sy, — Sgg = —Auk® (1+a) 1 AK).
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8.37  Obtain the apparent viscosity and the normal stress functions for the Oldroyd 3-constant
fluid [see (C) of Section 8.20].

Ans. For the simple shearing flow,

0 k/2 0 0 k/2 0
[D]=|k/2 0 of [W]=|-k/2 0 o0
0 0 0 0 0 0

. =25, Si1—Sp Sz
S = [O]+[SW]—[WS] :(k / 2) S11—-S,, 2Sy; Sa1 |,
—S3; S31 0
25y, S11+52 Sp
[SD]+[DS]=(k/2)| S13+S 28, Sy |,

S23 S13 0
$=8 —(SD+DS)=(k/2)|-2S,, O 0 |,
~2S,, 0 0
—&k%/2 0 0 ,[1 00
D =[o]+[pW]-[wD]=| 0 k?/2 0], DD=kT 0
0 0 0 000
k% 0 0 —2,uk? uk 0
D=D -2D*=| 0 0 0 ,2u(D+%,D)=| 4k 0 0
0 00 0 0 0
. Sll_Zkﬂ'lSlZ SlZ_kﬂ'lSZZ S13_kﬂ’.l823
S+A4S=| S5 kA4S, S Sys
S13 - kﬂ1523 S23 s33

S+ A48 =2u(D+ 4,D)—

S11—2kAS;; S;p—kASy; Sig—kASy | | -24,uk® uk 0

S12 —k4S2 S22 S23 =| Kk 0 0
S13 —kA4Sy3 S23 Sa3 0 U
Thus,

Syy =Sy =S33=5,3=0, S, =k, S;;—2kAS;, =—24,uk?, so that, we have,
Sip =k, Sy;=2uk?(4—4,), all other S;; =0. The apparent viscosity is

ﬂ(k)=312/k =p, o1 =T — Ty =2#k2(ﬂi—/12): 01 =Ty —T33=0.

Copyright 2010, Elsevier Inc
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8.38  Obtain the apparent viscosity and the normal stress functions for the Oldroyd 4-constant
fluid [see (D) of Section 8.20]

Ans. For the simple shearing flow

0 k/2 0 0 k/2 0 25, S11-Sy; Sy
[D]=|k/2 0 o} [W]=|-k/2 0 0|8 Z(Ej S1-S», 25, Sy |,
0 0 0 0 0 0 -S4, Sa; 0

—4S;,  —2S,, —2S,3

$=8 —(SD+DS)=(k/2)|-2S,, O 0 |,
—2S,, 0 0
—k%/2 0 0 ,
D =[o]+[pW]-[wD]=| 0 k?/2 0], DD=kT 0
0 0 0
-1 00 1 0 0] |-k 00
~ 6] 2 k2 k2
D=D—2D=7010—7010=000,
0O 0O 0 0O 0O 0O
0 k/2 0
0 0 0
S+ A4S+ 11y (rS)D =2u(D+ 1,0} >
S11—2kA4 S, S1p — kA3 Sg; + 4ok (511 +Sg + S33) 12 S;3—kA4Sy
S12 K2y Spp + :uok(Sll +Sg + 333)/ 2 S Sy3
S13 —k4Sy3 Sy3 S33 T
—2,uk? uk 0
= uk 0 0
0 0 O

hus, Sy, =Sp5 =S33 =S13 =0, 11— 2KAS1,=—24,41K?, Spp + pokSyy /2= 41k
From which, we get, with B(k) = (L+ 4 u,k?),
S1=2uk? (A= 22) 1 B(K), Spp = prk 1+ Zpt10k? ) B(K)..
Thus, the apparent viscosity is: 7(k) =Sy, /K = u(L+ Appiek?) I B(K).
Normal stress functions are: oy =Ty, — Ty, = 2uk® (4 — 4,) I B(K), & =Ty, —Ta3=0.
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-1 00 010
839 Given[Q]=/0 1 0| and[N]=[0 0 0| and
0 0 1 0 0O

{ni} {ni}
A = k(N + NT) and A, = 2k2NTN . (a) Verify that QA,Q" =—A, and QA,Q" = A, . (b) From
T=—pl+f(A,A;)and Qf (A, A,)QT :f(QAlQT,QAZQT) , show that QT (k)Q" =T (k)

and (c) From the results of part (b), show that the viscometric functions have the properties:

0 k 0 00o0J010] (0 0 0
AnS-(a)[A1]=k[(N+NT)J=k 00andA22k2{1oooooo 2k% 0
000 0 0 0ff0 0 0] |0 0 O
-1 0 0][o k 0][-1 0 0 0 k 0
[QAQ" |=| 0 10]k00{0 10—k00]_[A1]
0 0 1]j0 0 0f[0 0 1 000
-1 0 0]/0 O O|f-1 0 0] (0O O O
[QAZQT}O 10]0 2k 0|l 0 10{0 2k* 0|=[A,]
0 0 110 0 0/0 01/ |0 0 O

(b)
QT(K)QT =Q[-pl +f(A,A;)]QT =—pl +Qf (AA,)QT
=—pl +f(QAQT,QAQT ) =—pl +1(-A; (k) A, (K)).
Now, A;(-k)=-A;(k) and A, (-k)=A,(k), thus,.
QT(k)Q" =—pl +f(A.(=k),A;(—k))and QT(-k)Q" =—pl +f(A(k),A,(k)).
Thatis, QT(-k)Q" =T(k) and QT(k)Q" =T(-k)
-1 0 0][Ty; Ty, Tl[-1 00
(c) [Q][T(k)][QT]: 0 1 O||Tyy Ty Tp3|| 0 1 0j=-Tyy Ty To
0 0 1Ty Top Taa||0 0 1| |-Tay Tap Tag
QT(—k)Q" =T (k) > Tyy (k) =Tuy (k). Tao(-k)=Tao(k), Teg(~k)=Tas(k)
T (k) =Tia(k), —Tig(—k)=Tig(k), —Ts(- ) Ty3(k). Thus,
o1(k)=01(-k), o,(k)=0,(-k), S(k)==S(-k). [Note, in viscometric flow, T3 =T,3 =0].

Tll _T12 _T13

8.40  For the velocity field given in example 8.21.2, i.e., v, =0, v, =0, v, =v(r), (a) obtain
the stress components in terms of the shear stress function S (k) and the normal stress functions
o1(k) and o, (k), where k =dv/dr, (b) obtain the following velocity distribution for the
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Poiseuille flow under a pressure gradient of (—f ): v(r)= LR;/( fr/2)dr, where y is the inverse

shear stress function, and (c)obtain the relation (Rf /2)=[1/(7rR3f2)]8( f?’Q)laf .

Ans. (a) In example 8.21.2, we see that the velocity field v, =0, v, =0, v, =v(r)describes a
viscometric flow with the nonzero Rivlin-Ericksen tensors given by

0 k(r) o 0 0 0
[A]=|k(r) 0 0|, [A]=]0 2k*(r) O ,
o o o] 0 0 0

i N

where n; =e,, N, =e,, n3=e, andk(r)=dv/dr (see Example 8.10.2, but, note the differences
in the order of bases). Thus the stress components with respect to the basis {ni } are given by (See
section 8.22):

S;r =7(k), S;; =S =01(k), Syt —Spyg :az(k), S,0=5,9p=0.

(b) With S;; depending only on r, the equations of motion become:

Sy, Sy —Sgg P ap 10 op
+ =0 =0 (i rS,, )———=0 (i
or r or . 06 i ar( ) oz (i)

N o(op sy o (op s o(op
Eaq. (i) gives —| — =0, Eq. (ii) gives —| — |=0 and Eq. (iii) gives —| — |=0
09 8r(6z} a9 89[62} G- g 82[62)
Thus, op/oz=aconstant=—f . Eq. (iii) becomes
10 0 fr C . -
s —(rs;) = f—>a (rS,,)=-fr—>S, ==t Since S,, must be finite at r =0, thus,
C=0and S, =—fr/2. Now, S, =7(k) where (k) is the shear stress function and k =dv/dr.

Thus, 7(k)=—fr/2. Inverting this equation, we have, k=7 (=fr/2) =y(-fr/2). Since
z(k) is an odd function of k , therefore, y is also an odd function of k , so that
k=—y(fr/2)>dv/dr=—y(fr/2)—>dv=—y(fr/2)dr.

Thus, v(R)—v(r):—'[R (fr/2)dr . Since v(R)=0, therefore, v(r):ery(frIZ)dr.
(c) The volume discharge is given by Q = I (r 27rrdr.Therefore,
7Z'I r)dr? _n{[ JRrZ } —nj r —dr_ﬂjoery(frIZ)dr
Thus, Q/;er' rzy(frlz)dr. Let fr/2=s—dr=2ds/ f andr?=4s?/ 2, then,
R/2

Q/z=]" riy(fri2)dr=[" "(8s%/ 1%)y(s)s > °Q/ z =]
Differentiating the last equation with respectto f , we obtain

S M Al )
Thus, y(R—ijz L M

zR3f%2  of

Rf/2

Y 8s%y(s)ds.
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