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Abstract  
This research addresses the significant challenge of limited mobility in individuals affected by limb amputation or spinal 

cord injuries. The study focuses on Brain-Machine Interface (BMI) systems, which decode neural activities to interpret 

users' intentions, fostering increased independence in performing tasks. Furthermore, BMI systems hold potential for 

technological advancements and improving the quality of life for broader populations. 
The primary objective is to decode continuous three-dimensional hand position by employing electrocorticography 

(ECoG) signals recorded from the motor cortex. Notably, the utilization of ECoG signals for estimating hand position in 

primates is crucial, given their long-term recording capabilities and access to comprehensive datasets. The research 

incorporates mathematical modeling, feature extraction, and estimation of motor activities based on the analyzed ECoG 

signals. Challenges include enhancing accuracy and computational efficiency compared to prior investigations. The 

proposed approach utilizes partial least squares (PLS) regression as the decoding method, demonstrating highly accurate 

estimation of movements with a notable average correlation coefficient of 0.718, effectively predicting motion trajectories 

compared to actual measurements. 

Keywords 
Brain-machine interfaces, ECoG signals, mathematical modeling, partial least squares regression, feature extraction, 

decoding. 
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1. Introduction 
Initiating a movement and making decisions for complex 

movements represent the most challenging aspects of 

motor control. In this process, the frontal cortex plays a 

fundamental role, and its performance depends on inputs 

from the cortical region, thalamus, and dopamine system. 

The motor cortex, a region of the cerebral cortex, is 

responsible for planning, controlling, and executing 

voluntary movements. This region is precisely located in 

front of the central sulcus in the frontal cortex. By 

recording signals from the motor cortex and interpreting 

and extracting motor information from them, direct 

communication between individuals and the external 

world becomes possible. This is particularly important for 

patients suffering from spinal cord injuries or severe 

neurodegenerative diseases, such as ALS, where the 

ability to move in limbs is compromised, but the brain 

activity related to these movements persists even years 

after the onset of disability. Brain-Machine Interface 

(BMI) systems harness the potential of these brain 

activities by receiving and interpreting the electrical 

signals from the brain, thereby generating the necessary 

control signals for external responses. These responses can 

include controlling a cursor on a display screen [1],[2],[3], 

moving prosthetic arms and fingers [4],[5], and even 

facilitating communication without the need for the 

individual's own speech system [6],[7]. BMI systems serve 

as tools that convert the electrical activity generated by 

neurons in the cortical region into instructions for specific 

applications, directly used to control external devices. 

Therefore, they have been considered as means to restore 

human cognitive or sensory-motor functions. The 

predominant approach in BMI research has been decoding 

motor variables based on single-unit activity (SUA) of 

neurons. Unfortunately, this approach has long-term 

stability issues and requires daily calibration to maintain 

reliable performance. To address this problem, 

Electrocorticography (ECoG) signals can be employed, 

where the collective neural activity is measured, providing 

a potentially more durable and stable approach. However, 

the long-term stability of decoding based on ECoG signals 

remains uncertain [8]. Due to the proximity of ECoG 

electrodes to the brain surface, the extracted information 

from these signals possesses high clarity and accuracy. 

However, compared to the information recorded within the 

cortical region that provides neuronal-level resolution, 

these signals lack high spatial resolution. Nevertheless, 

these signals provide much of the necessary information 

for decoding brain activities. 

Implanting electrodes directly into the brain, despite its 

high resolution, has an invasive nature. Therefore, 

researchers have introduced Electrocorticography (ECoG) 

where electrodes measure the electrical potential on the 

cortical surface without penetrating the brain tissue, 

whether on the pial or subdural surface. Its principles are 

similar to electroencephalography (EEG) and are also 

referred to as intracranial EEG. The recording electrodes 

in the ECoG method, due to their placement on the brain 

surface, offer higher spatial resolution compared to EEG 

recording and provide good frequency bandwidth and 

signal quality. The range of these signals is broader than 

EEG signals. This capability, coupled with the distance 

from signal sources such as EMG and EOG, improves the 

signal-to-noise ratio. The close proximity to the signal 

source enhances the notable improvement in the spatial 

resolution of this method [9]. 

2. Background 
ECoG implants were first utilized in the 1950s by Dr. 

Penfield Wilder and Dr. Jasper Herbert in the well-known 

Montreal method to locate seizure foci in the brain [9]. 

Although this recording technique has been clinically used 

in human patients solely for diagnostic purposes, 

considering two crucial parameters, electrode placement, 

and implantation duration, it is rarely employed for 

research purposes on humans [10]. Nonetheless, 

researchers have successfully acquired ECoG recordings 

related to visual and motor information with the consent of 

patients and demonstrated the capability of this method 

through offline analysis [11] and [12]. In 2004, the first 

online ECoG-based brain-machine interface (BMI) for 

decoding hand movements was investigated [13]. This 

study involved four participants and focused on 

controlling a one-dimensional cursor, achieving accuracy 

ranging from 74% to 100% after a short training period of 

3 to 24 minutes. In 2008, another group successfully 

examined a two-dimensional cursor control system based 

on imagined or actual motor information [14]. Despite 

these promising results, current ECoG-BMI studies are 

limited to a restricted population of epileptic patients for a 

single training window lasting only a few hours per day 

[15]. 

3. Methodology 
This project primarily focuses on analyzing ECoG signals. 

To this end, a dataset provided by the Rekken Institute is 

utilized. The dataset consists of recordings obtained from 

contra-lateral cortical activity while a monkey used its 

hand for food-grasping tasks. Another notable aspect 

addressed in this section is the presentation of a high-

precision model for decoding hand positions using ECoG 

signals. Various linear and non-linear methods have been 

proposed for continuous hand decoding using ECoG 

signals. Linear models are often preferred due to their ease 

of implementation as they describe the entire movement 

process using a linear relationship. However, considering 

the complexity of the underlying brain processes, they may 

not necessarily be the best choice for modeling. One of the 

primary challenges of this model is to find the optimal 

parameters for partial least squares (PLS) regression, 

leading to improved hand position decoding. Therefore, 

PLS regression is implemented on this dataset, and the 

network architecture and training algorithm are fully 

described. 
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3.1. Dataset 
The dataset used in this study was obtained and shared by 

the Rekken Institute [16]. This dataset comprises three 

sessions of recorded electrocorticography (ECoG) from 

the subdural area beneath the skullcap of a Japanese 

macaque monkey named K, referred to as sECoG. The 

array utilized for monkey K consisted of a 64-channel 

electrode grid implanted in the left hemisphere of the 

brain, covering the frontal to parietal regions (Figure 1). 

During each experiment, the monkey was seated facing the 

experimenter, and its neck was securely held in place by a 

safety harness. The experimenter presented food morsels 

at short time intervals in front of the monkey's face, which 

the monkey received and consumed using its right hand. 

The monkeys were trained to retrieve the food from the 

experimenter using their left hand, opposite to the side of 

the implanted electrode. Each recording session lasted for 

15 minutes. A custom jacket with reflective markers was 

worn by the monkey to capture its movements. These 

markers were attached to the shoulder, elbow, and wrist of 

both the left and right hands. Concurrent with the 

experimental and neural signal recording, hand 

movements of the monkey were recorded using an optical 

motion capture system in three-dimensional space. Figure 

1 illustrates the position of the electrodes relative to the 

cortical sulci in monkey K. The cortical sulci are labeled 

as Ps, Cs, As, and Ips, respectively. 

 
Figure (1): illustrates the positioning of the electrodes relative 

to the cortical sulci in monkey K [16]. 

3.2. Preprocessing and 

Temporal-Frequency 

Description of ECoG Signals 

The ECoG signals were recorded simultaneously with 

a sampling frequency of 1 kHz, while the hand position 

was sampled at a frequency of 120 Hz. Initially, the ECoG 

signals were passed through a bandpass filter with a range 

of 0.1 to 600 Hz. Subsequently, the difference between the 

signal obtained from each channel at any given moment in 

time and the momentary average of the recorded signals 

for all channels was determined. This method, known as 

Common Average Reference (CAR), is a simple and 

effective approach for removing common noise across all 

channels [17]. Equation (1) illustrates the process by 

which this method is applied, where 𝑥𝑖  (𝑡) represents the 

raw recorded signal from channel 𝑖 , and 𝑥𝑖
𝐶𝐴𝑅(𝑡) 

represents the noise-reduced signal using the CAR 

method. 

(1) 𝑥𝑐ℎ
𝐶𝐴𝑅(𝑡) = 𝑥𝑐ℎ(𝑡) − ∑ 𝑥𝑛(𝑡)64

𝑛=1 ;       𝑐ℎ = 1: 64 
The motion tracker markers were sampled at a frequency 

of 20 Hz because the position data, which contained 

movement information, showed negligible variance in 

frequencies above 15 Hz. The three-dimensional hand 

trajectories were based on coordinates with the origin 

precisely at the midpoint between the two shoulders (X: 

left-right, Y: front-back, Z: up-down), where the X-axis 

aligns with the shoulders. The obtained coordinates were 

then normalized using z-score. To extract features from the 

time-frequency representation (spectrogram), the Morlet 

wavelet transform was employed. For each channel, 10 

central frequencies were created ranging from 10 Hz to 

150 Hz. To create the time dimension of the spectrogram 

for each channel, time windows of 1.1 seconds with a step 

size of 50 milliseconds were used. As illustrated in Figure 

2, the spectrogram was generated from t -1.1 to t to achieve 

a time-frequency representation of 1100 × 10 (Figure 2-a). 

To reduce the dimensionality of the feature matrix, a 

sampling rate of 100 milliseconds was applied to the time 

dimension, resulting in a 10 × 10 spectrogram matrix 

(Figure 2-b). Finally, each of the 10 frequencies was 

normalized using z-score over time (Figure 2-c). Thus, the 

preprocessed ECoG data were prepared for decoding 

movement information. 

3.3. Decoding Method 

The main objective of this research is to decode 

motion information using the PLS regression method. 

Therefore, the focus has been on finding the optimal 

transformation component. The parameter settings were 

carefully determined through extensive trial and error, 

considering the most favorable configuration for each 

parameter. The decoding method discussed here is 

designed to maximize the correlation coefficient between 

the actual hand movement trajectory and the predicted 

trajectory for the dataset used in this study. 

3.3.1. PLS Method 
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The method investigated in this research is the PLS 

method, which has recently gained attention in various 

studies due to its satisfactory accuracy [18]. In this study, 

PLS is utilized for decoding the hand motion pattern. The 

weaknesses and challenges associated with other 

regression methods have been overcome in this approach, 

as detailed below. 
PLS is a supervised feature extraction method that linearly 

transforms a low-level feature vector u ∈ 𝑅1×𝑚  into a 

lower-dimensional vector x ∈ 𝑅1×𝑙 by reducing the shared 

information among the extracted features. Moreover, the 

maximum information relevant to the target, which is the 

supervisor used in training the PLS model, will be present 

in the new features. 
If we denote the low-level feature matrix as X ∈ 𝑅𝑛×𝑚 and 

the target matrix as Y ∈ 𝑅𝑛×𝑝, where in these equations, n 

represents the number of training samples, m denotes the 

dimensionality of the low-level feature vector, and p 

represents the dimensionality of the target vector (i.e., the 

label used for supervised feature extraction). In the PLS 

transformation, these two matrices are decomposed in a 

way that maximizes the correlation between the projected 

components of these two matrices. 

(2)                𝑿 = 𝐏𝑋 × 𝐓𝑋
𝑇 + 𝐄   

(3)                𝒀 = 𝐐𝑌 × 𝐔𝑌
𝑇 + 𝐅  

(4)                𝐱 = 𝐮 × (𝐏𝑋𝐏𝑋
𝑇)−1𝐏𝑋 

In equations (2) and (3), T𝑋 ∈ 𝑅𝑛×𝑙  and U𝑌 ∈ 𝑅𝑛×𝑙  

(referred to as scores) are obtained by projecting matrices 

𝑿  and 𝒀  onto matrices P𝑋 ∈ 𝑅𝑚×𝑙  and Q𝑌 ∈ 𝑅𝑝×𝑙 

(referred to as loadings), respectively. Moreover, "𝐄" and 

"𝐅" represent the error values in this decomposition. This 

decomposition should be performed in such a way that the 

projected matrices, namely T𝑋 and U𝑌, exhibit the highest 

correlation with each other. NIPALS and SIMPLS [19] are 

two commonly used methods for calculating PLS, and in 

this study, pre-existing MATLAB library codes based on 

the SIMPLS method were utilized. The SIMPLS method 

is faster and simpler compared to NIPALS. Once P𝑋  is 

computed using the training samples, the PLS 

components, denoted as x ∈ 𝑅1 𝑙 , are calculated using 

equation (4) for a given low-level feature vector u ∈ 𝑅1 𝑚 

[20], [18]. 

In this study, the extracted vector "𝑥", which represents the 

image of the vector " 𝑢 " in the PLS space, has been 

employed as the feature vector. To determine the optimal 

PLS transformation order (i.e., " 𝑙 "), a 10-fold cross-

validation strategy has been applied to the training dataset. 

This involved dividing the training dataset into 10 equal 

parts, where 9 parts were used for training the linear 

model, and the remaining part was used for testing the 

model and estimating the results. For each of these 10 

different scenarios, the value of " 𝑙" varied from 1 to a 

specified value (chosen as 100 in this study), and the 

training and result estimation process was repeated. In the 

next step, the average value of these results across all 10 

different scenarios was calculated to ultimately select the 

value of "𝑙" as the order of the extracted features that yields 

the best decoding results based on the minimum estimation 

error. 
Figure (3) illustrates an example of the computed curve 

depicting the relationship between the number of PLS 

latent components and decoding estimation error. The 

horizontal axis represents the dimensions of the extracted 

feature vector, while the vertical axis represents the 

decoding estimation error between the estimated position 

and the actual position of the hand in relation to the 

mentioned feature vector. This averaging across the 10 

obtained results using the 10-fold cross-validation method 

was performed. As evident from this figure, the best result 

for the given sample is achieved for 𝑙 = 15. 

 
Figure (3): depicts a curve illustrating the relationship 

between the number of extracted feature components and the 

prediction error. The optimal decoding result is achieved 

when the number of components yields the minimum 

estimation error. 

3.4. Evaluation Criteria 

In order to quantitatively assess the significance of the 

obtained results, two evaluation criteria have been utilized 

in this study. To measure the accuracy of estimating the 

hand's trajectory, the correlation between the actual and 

estimated hand trajectories has been calculated. This 

criterion, denoted as " 𝑟 " and computed according to 

Equation (5), takes values smaller than or equal to 1. As 

the correlation approaches 1, it indicates the highest 

similarity, while values deviating from 1 indicate lower 

similarity. 
The second criterion employed in this study is the root 

mean square of the normalized error (RMSE). Based on 

this criterion, a higher similarity between the actual and 

estimated trajectories leads to a value closer to zero, while 

a lower similarity results in a value closer to 1. Equation 

(6) illustrates the calculation method for this evaluation 

criterion. 
These evaluation criteria have been utilized to assess 

the importance and quality of the obtained results in a 

quantitative manner. 
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    (5)                 𝑟 =
∑ (𝑦(𝑡)−�̅�)(𝑦𝑑(𝑡)−�̅�𝑑)𝑇

𝑡=1

√∑ (𝑦(𝑡)−�̅�)2(𝑦𝑑(𝑡)−�̅�𝑑)2𝑇
𝑡=1

 

(6)        𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑦(𝑡) − 𝑦𝑑(𝑡))2  𝑇

𝑡=1     

In these equations, 𝑦(𝑡)  and 𝑦𝑑(𝑡) represent the 

estimated and actual hand positions, respectively, at time 

sample 𝑡 . Furthermore, �̅� and �̅�𝑑  denote the average 

estimated and actual hand positions over 𝑇 time samples. 

4. Results and Discussion 
This section examines the roles of different regions of the 

brain cortex in motion control and identifies the region 

with the most motion-related information. This analysis 

greatly aids the decoding process by reducing computation 

time. Subsequently, using Partial Least Squares (PLS), the 

decoding of wrist, elbow, and shoulder positions in three 

dimensions (X, Y, and Z) is performed for the right hand. 

4.1. Results Obtained from 

the PLS Model 

After training the PLS model on the training dataset, its 

performance is evaluated using the test data. The available 

dataset consists of three recording sessions. Table (1) 

presents the decoding results for the wrist, elbow, and 

shoulder positions in three dimensions (X, Y, and Z) for 

each session. The average correlation coefficient (r) for all 

sessions using the PLS decoding model is calculated to be 

0.72, with an average RMSE of 0.20. 

 

Table (1): displays the motion decoding results for the right hand of monkey K using the PLS method. The model is evaluated 

based on two parameters: correlation coefficient (r) and root mean square error (RMSE). 

Location of the 

markers 

Session 1 Session 2 Session 3 Mean 

r RMSE r RMSE r RMSE r RMSE 

RWRI 

X 0.517 0.190 0.227 0.181 0.618 0.250 0.454±0.11 0.207±0.02 

Y 0.722 0.247 0.768 0.200 0.694 0.391 0.728±0.02 0.279±0.05 

Z 0.859 0.271 0.847 0.238 0.852 0.356 0.853±0.003 0.288±0.03 

RELB 

X 0.716 0.082 0.544 0.080 0.792 0.136 0.684±0.07 0.099±0.01 

Y 0.781 0.221 0.836 0.184 0.825 0.272 0.814±0.01 0.225±0.02 

Z 0.779 0.129 0.781 0.155 0.855 0.207 0.805±0.02 0.163±0.02 

RSHO 

X 0.785 0.036 0.602 0.040 0.503 0.042 0.630±0.08 0.039±0.001 

Y 0.698 0.107 0.799 0.063 0.719 0.114 0.739±0.03 0.094±0.01 

Z 0.720 0.069 0.701 0.688 0.852 0.606 0.758±0.04 0.454±0.19 

TOTAL AVERAGE 

r 0.718±0.02 

RMSE 0.205±0.03 

 

The presented model demonstrates satisfactory 

performance in decrypting the trajectory of the hand's 

elbow motion compared to the wrist and shoulder. Since 

the wrist position represents the complete path to the 

target, it is considered the primary comparison criterion. 

The decoding accuracy of the right hand's elbow trajectory 

in the X, Y, and Z directions is obtained as 0.45, 0.72, and 

0.85, respectively, indicating that the model achieves a 

higher correlation coefficient along the Z-axis. 

Additionally, the RMSE values for the right hand's elbow 

in the X, Y, and Z directions are calculated as 0.21, 0.28, 

and 0.29, respectively, indicating higher error in the Z 

dimension. Despite the satisfactory results and high 

accuracy of this approach, its practical implementation for 

large-scale datasets is challenging due to the extremely 

high computational time (over five hours for a single 

hand). 

Figure (4) illustrates an example of decrypting the 

trajectory of the right hand's elbow motion using PLS. In 

this figure, the blue line represents the actual motion path, 

while the red line represents the predicted motion path. 

The correlation coefficients for the X, Y, and Z dimensions 

are 0.61, 0.69, and 0.85, respectively. 



 JCME.N.O.013                     2441پاییز ویژه  -  21، شماره 4دوره مهندسی مکاترونیک،فصلنامه      
 
 

21 
 

 

 
Figure (4) illustrates a sample of decoding the three-

dimensional wrist position using PLS. The number of 

components is set to 14. The blue path represents the actual 

motion trajectory, while the red path represents the 

predicted motion trajectory. The correlation coefficients for 

the X, Y, and Z dimensions are 0.61, 0.69, and 0.85, 

respectively. 

4.2. Decoding Motor and 

Somatosensory Cortical 

Information 

The selection of different brain regions for decoding 

motor-related information has always been a challenge for 

researchers aiming to improve results. In this study, to 

address the computational time issue in the PLS model, a 

proposed approach involves excluding channels with 

minimal motor-related information. Consequently, the 

crucial and influential roles of the primary motor cortex 

(M1) and primary somatosensory cortex (S1) in motor 

control have been investigated. 

4.2.1. Channel Selection 

As depicted in Figure 5, regions M1 and S1 are located on 

both sides of the central sulcus (Figure 5a). Referring to 

the arrangement of the ECoG electrode array beneath the 

skull, channels corresponding to M1 and S1 are 

individually selected for decoding. This enables the 

identification of brain regions that contain richer motor-

related information. By increasing their influence and 

eliminating channels with lesser motor information, the 

decoding methods can improve the speed and accuracy of 

decoding. 

                 
(a)                                                                   (b) 

Figure (5): displays the precise location of M1 and S1 regions relative to the brain sulci. (a) The central sulcus is situated 

between the M1 and S1 regions [19]. (b) The electrode array placement on the left hemisphere of the monkey brain is depicted. 

The 64-channel electrode array covers the area from the frontal to the parietal region. The channels marked in blue correspond 

to the M1 region, while the channels in pink represent the S1 region. 

 

 

4.2.2. Decoding the S1 Region 

As shown in Figure 5b, the pink-colored channels have 

been selected as the S1 region. Table 2 presents the results 

of decoding the right-hand wrist position, with decoding 

accuracy calculated for the X, Y, and Z dimensions as 

0.37, 0.65, and 0.81, respectively. Although there was a 

slight decrease in decoding accuracy, the computational 

time reduced to approximately one-sixth of the total 

channel processing time. 
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Table (2): presents the decoding of the wrist motion trajectory for the S1 region in monkey K using the PLS method. The model 

was evaluated using two performance parameters: correlation coefficient (r) and root mean square error (RMSE). 

Location of the 
markers 

Session 1 Session 2 Session 3 Mean 

r RMSE r RMSE r RMSE r RMSE 

RWRI 

X 0.468 0.191 0.139 0.196 0.496 0.283 0.367±0.11 0.223±0.02 

Y 0.643 0.272 0.653 0.253 0.645 0.417 0.647±0.003 0.314±0.05 

Z 0.802 0.311 0.820 0.309 0.800 0.406 0.807±0.006 0.342±0.03 

TOTAL AVERAGE 
r 0.607±0.07 

RMSE 0.293±0.02 

4.2.3. Decoding the M1 Region 

As shown in Figure 5b, the blue-colored channels have 

been selected as the M1 region and used for decoding in 

the model. The results obtained from this region are 

indicated in Table 3. These results demonstrate the crucial 

role of the M1 region in motor control within the cortical 

brain area, emphasizing its significance for decoding 

motor information. By decoding information specifically 

from this region, researchers are enabled to achieve the 

desired accuracy without decoding all the  

channels. Table 3 presents the results of decoding the 

right-hand wrist position, with decoding accuracy for the 

X, Y, and Z dimensions being 0.39, 0.75, and 0.87, 

respectively. By comparing these results to the case where 

all channels were used for decoding, it becomes evident 

that despite the decrease in accuracy in the X dimension, 

the decoding accuracy has increased in the other two 

dimensions. Consequently, not only the computational 

time issue has been resolved, but the overall accuracy of 

the model has also improved to some extent. 
 

Table (3): presents the decoding of the wrist motion trajectory for the M1 region in monkey K using the PLS method. The 

model was evaluated using two performance parameters: correlation coefficient (r) and root mean square error (RMSE). 

Location of the 
markers 

Session 1 Session 2 Session 3 Mean 

r RMSE r RMSE r RMSE r RMSE 

RWRI 

X 0.437 0.196 0.208 0.191 0.517 0.274 0.387±0.09 0.220±0.02 

Y 0.767 0.227 0.770 0.211 0.714 0.367 0.750±0.01 0.268±0.04 

Z 0.859 0.271 0.896 0.234 0.871 0.331 0.875±0.01 0.278±0.02 

TOTAL AVERAGE 
r 0.671±0.07 

RMSE 0.255±0.02 

4.3. Comparison of PLS 

Method Performance in the 

Three Axes of X, Y, and Z 

Movement Separately 

To provide a better comparison, the results have been 

calculated separately for each movement axis in terms of 

the average r and RMSE According to Table 4, the average 

correlation coefficient for the proposed model was lower 

in the X axis compared to the Y and Z axes (P < 0.01). As 

shown in Table 4, the parameter r for the PLS method 

estimated the correlation between the predicted trajectory 

and the actual wrist motion trajectory to be 0.60, 0.76, and 

0.81 for the X, Y, and Z axes, respectively, indicating a 

considerable level of accuracy. 

4.4. Comparison of PLS 

Method Performance in 

Predicting Trajectories of 

Right Hand's Wrist, Elbow, 

and Shoulder 

One of the significant advantages of this research is the 

simultaneous recording of movements in the right hand's 

wrist, elbow, and shoulder. By predicting the trajectory of 

movement in all three regions, the model's decoding 

capability in terms of positional indicators has been 

enhanced. According to Table 5, after decoding the motion 

information by the proposed model, the values of two 

evaluation parameters, namely, r and RMSE, have been 

estimated for all three parts of the right hand. It is evident 
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that the correlation coefficient between the predicted and 

actual motion trajectory has slightly decreased for the wrist 

compared to the shoulder and elbow. Through variance 

analysis, it was determined that the proposed method had 

better decoding performance in predicting the trajectory of 

elbow movements in the right hand. 

5. Conclusion 
In this study, we presented the results of estimating hand 

position using the proposed model, which is based on 

partial least squares (PLS) regression. The decoding 

capability of this method was evaluated separately for each 

axis and position using the r and RMSE parameters. The 

decoding results of motion information using the PLS 

method yielded an average correlation coefficient of 

0.718±0.02 and an RMSE of 0.205±0.03. These results 

indicate the high accuracy of the proposed model. 

Despite the satisfactory accuracy of the PLS method, 

it is important to note that the performance of BMI systems 

and the improvement of degrees of freedom in prosthetic 

limbs benefit from increased decoding accuracy.  

Based on our study, the following recommendations 

are proposed for future research: 
1. Investigate the performance of alternative decoding 

methods, such as deep neural networks, to further improve 

the accuracy of decoding motion information. 
2. Explore the use of frequency-pass filters specific to 

brain waves for BMI systems, which can enhance the 

decoding performance. 
3. Conduct comparative studies between the PLS 

method and other regression techniques to assess their 

respective advantages and limitations in decoding hand 

motion. 
4. Expand the study to include a larger dataset and a 

more diverse range of hand motions to validate the 

generalizability of the proposed model. 
By addressing these recommendations, future research 

can contribute to the advancement of decoding techniques 

and the development of more accurate and robust systems 

for BMI and prosthetic limb control. 
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