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Preface to the Dover Edition

This edition, apart from minor corrections, is identical with the fourth
printing of the book originally published by Blaisdell Publishing
Company (later: Xerox College).

In the fifteen years since the preparation of the original manuscript
the field of interpolation and approximation has flourished greatly.
Perhaps several dozens of subtopics hardly mentioned in this book have
been developed to the point where each is now a separate discipline in
its own right.

Granted a copious reservoir of animal energy, it might indeed have
been possible to update the present work so as to take notice of some
of the significant recent achievements. But I think that the present work,
limited as it is, has a scope and a point of view which remain of
importance.

For the reader who wishes to pursue some of the recent developments,
I append here a list of books which cover a wide variety of topics.

Ahlberg, J. H., Nilson, E. N., and Walsh, J. L., The Theory of Splines
and Their Applications, Academic Press, N.Y., 1967.

Bezier, P., Numerical Control: Math. and Applications, Wiley & Sons,
N. Y., 1972.

Butzer, P. L., and Nessel, R. J., Fourier Analysis and Approximation,
Birkhaiiser Verlag, Basel, 1971.

Cheney, E. W., Introduction to Approximation Theory, McGraw-Hill,
N.Y., 1966.

Davis, P. J., and Rabinowitz, P., Numerical Integration, Academic Press,
N.Y., 1975.

Forest, A. R., "On On Coons' and Other Methods for the Representation
of Curved Surfaces," Computer Graphics and Image Processing, Vol.
I, 1972, pp. 341-359.

Freud, G., Orthogonal Polynomials, Pergamon Press, Oxford, 1971.
Goldstein, A. A., Constructive Real Analysis, Harper & Row, N.Y., 1967.
Karlin, S., and Studden, W., Tschebyscheff Systems with Applications in

Analysis and Statistics, Interscience, 1966.
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Foreword

During the past few decades, the subject of interpolation and approximation
has not been overly popular in American universities. Neglected in favor of
more abstract theories, it has been taught only where some staff member has
actively engaged in research in the field. This has resulted in a scarcity of
English language books at the intermediate level. Since the development of
high speed computing machinery, the flame of interest in interpolation and
approximation has burned brighter, and the realization that portions of the
theory are best presented through functional analysis has added additional
fuel to the flame. It has been my intention, therefore, to prepare a book
which would be at the level of students who have had some real variable,
some complex variable, some linear algebra, and, perhaps, a bit of integration
theory. The book would merge, insofar as possible, the real and the complex,
the concrete and the abstract, and would provide a place for general results
of these previous courses to find application and to pass in review.

A one semester course can be based on Chapters 2, 3, 4, 6, 7, and 8. The
problems, on the whole, are simple, and are intended to secure the material
presented rather than to extend the coverage of the book. The illustrative
examples are an integral part of the text, but a number of them lack complete
details and can be used as additional problems.

The fields of interpolation and approximation have been cultivated for
centuries. The amount of information available is truly staggering. Take,
for instance, the subject of orthogonal polynomials. A bibliography prepared
in the late 1930's contains several hundred pages of references, and the topic
continues to grow. I have had to anthologize. I have sought breadth rather
than depth, and have tried to display a variety of analytical techniques. To
some extent, I have been guided by what I consider "useful." Accordingly,
I have developed neither the calculus of finite differences, nor Lv spaces
(p 2, oo), nor approximation on infinite sets, for in my work with computa-
tion, I have rarely dealt with these things. On the other hand, I am aware
that utility cannot be made into a principle of selection for a mathematics
book. It comes down to this: I have included the topics that have caught my
imagination. I hope that the selection will introduce the student to some of
the best and encourage the scholar to seek the rest.

A word is in order on the portions of the book that are devoted to functional
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Viii FOREWORD

analysis. This subject is generally presented with spectral theory as its
culmination. Here, the elementary geometric portions are developed for
ultimate application to approximation theory. This is by no means new. In
1930, Dunham Jackson ended his book on the theory of approximation
with a chapter on the geometry of function space, and over the years, more
and more emphasis has been given to functional analysis. At its best,
functional analysis unifies many seemingly diverse situations in a wonderful
way and is a genuine principle of research. At its worst, it is a scintillating
wrapper that provides attractive packages, and camouflages with glamorous
language the fact that their content may be small or may have been originally
obtained in the drab workshops of hard analysis. Perhaps functional analysis
is analogous to Cartesian geometry which put an end to the synthetic
drudgery of Apollonius though the major theorems on conics are Greek.
Though the welding of functional analysis to conventional analysis has
produced an imperfect seam that is visible in practically every chapter of
this book, I believe that functional analysis is a good way to present many
of the topics, and that it can and should be introduced at an early stage of a
student's career.

This book derives from several teaching experiences. In the Spring of
1957 and again in the Spring of 1959, I presented a series of lectures on
approximation theory to the members of training programs in Numerical
Analysis that were held at the National Bureau of Standards in Washington,
D.C. under the sponsorship of the National Science Foundation. In 1959, I
gave a course in interpolation and approximation at the Harvard Summer
School, and have given shorter courses in special computer programs at
Wayne University and the University of Pennsylvania. Out of these varied
experiences and out of a day to day exposure to live computation in the
Applied Mathematics Division of the National Bureau of Standards, the
plan of the present book emerged. The liberal policy of the National Bureau
of Standards, encouraging study, research, and writing has enabled me to
carry this plan to fruition. The following chapters were prepared at the
Bureau: 5, and 9-14.

My debt to various works is clear, but I must single out Gontcharoff,
Natanson, Szego, and Walsh for special mention. My debt to my teachers
should be made more explicit. My concern with these matters extends back
to dissertation days when Ralph P. Boas interested me in interpolatory
function theory. The lectures of Stefan Bergman opened my eyes to the
beauty of orthogonal functions and the kernel function. The lectures and
subsequent work with J. L. Walsh deepened my interest in problems in the
complex plane. I had the pleasure of knowing and working with Michael
Fekete in the last years of his life. A wonderful man of that wonderful school
of Hungarian mathematicians, his single-minded insistence on simplicity and
elegance made an immediate impression on me.

To discharge my debt to my colleagues, I must thank Dr. Oved Shisha
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for his kind attentions to this book. I have profited greatly from many
discussions with him and from his detailed criticism of the manuscript.

From students (may their number increase) I have learned that though
mathematics proceeds from false starts and bungling, it is presented back-
wards, as a fait accompli. This may provide clean copy and heighten the
dramatic effect, but it taxes the understanding. There are many places in
this book where the masters of analysis work their magic. How did they
happen to get such and such an idea? This question has been asked me over
and over by students just beyond the advanced calculus stage. It can rarely
be answered, but one should say: tackle the problem yourself and you may
learn. The road to understanding is rough; to smooth it too much denies the
reality of creative genius.

Thanks go to Ellen Rigby who helped me with the figures and to Richard
Strafella for various tasks with the manuscript. These were done as part of
their Antioch College plan of quarters devoted to work.

PHILIP J. DAVIS
Washington, D.C.
Fall, 1961
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CHAPTER I

Introduction

This chapter contains material from algebra and analysis that will be of
use in the later portions of the book. It is presented here for ready refer-
ence and for review. The reader is assumed to be familiar with some of the
theorems. Other theorems may be less familiar and their proofs have been
given. Though Lv spaces are mentioned in Theorem 1.4.0, they do not re-
appear until Chapter VII, and only the elementary portions of measure
and integration theory are used.

1.1 Determinants. Let vi designate the n-tuple of numbers (ail, ail,
... , ain). For a constant a, we shall mean by avi the n-tuple (aail, aai2, ... ,
aain), while by v i + v,, we shall mean the n-tuple (ail + a71, ail + a,2, ...
ain + a,n). The letters e1, ... , en will designate the unit n-tuples (1, 0, 0,
... A) (0, 1 , 0, ... , 0), ...1(0)0)01.. . , 1 ) . The function of the n2 vari-
ables ai, (i) j = 1 , 21 ... , n), known as the determinant of those quantities,
is generally written

aIn

D=
a2l a22

ant ant * * *
ann

a2n

= 1ai,l = D(v1,v2, ... , vn). (1.1.1)

The determinant is completely characterized by the following three proper-
ties

(a) D(v1, v2, ... ) Vi) ... , vn) = D(v1, v2, ... , vi -+- v,)... , vn)

(i j) (Invariance).

(b) D(v1, v2, ... , avi , ... , vn) = aD(v1, v2, ... , vi, ...
)

vn) (1.1.2)

(Homogeneity).

(c) D(e1, e2, ... , en) = 1 (Normalization).

The whole of determinant theory can be built up from this starting point
and is related to the theory of the volume of an n-dimensional parallelo-
tope.

1



2 INTRODUCTION Ch. I

Given an n by n matrix A = (ai,), the determinant associated with this
matrix is designated by IA I or det A. If from the array A we delete the ith
row and the jth column, a certain (n - 1) by (n - 1) submatrix Ai, will
remain. The determinant associated with this submatrix is known as the
minor of the element ai,. The quantity (-1) i+j I Aij I is the cofactor of ai5.
For the cofactor we write Aij*. The following rules of computation for
determinants are fundamental.

(a) IA I = IA'I, A' = transpose of A = (a,i).
(b) If two rows (or columns) of A are interchanged,

producing a matrix A1, then IA I = - IA1I .

(c) If two rows (or columns) of A are identical, then IA I = 0.
(d) If a row (or column), v, of A is replaced by kv

producing a matrix Al, then IA1I = k IA I
(e) If a scalar multiple kvi of the ith row (or column)

is added to the jth row (or column) v,, (i 0 j) and (1.1.3)
the matrix A1 results, then IA I = IA1I.

(f) A determinant may be evaluated in terms of cofactors :

JAI = ai,Aij* 1 <j <n
i=1
n

_ I aijAi j* 1 < i < n.
j=1

The expansion (f) is of considerable utility for it reduces an n x n deter-
minant to a sum of n determinants of order n - 1. Coupled with the ele-
mentary equation Ia11I = all, it contains within it a recursive definition of
a determinant. The complete expansion of a determinant in terms of the
matrix elements is less useful theoretically and hardly at all numerically.

1.2 Solution of Linear Systems of Equations. Consider the system
of n linear equations in n unknowns x1, x2, ... , xn

n
I ai,x, = bi (i = 1, 2, ... , n). (1.2.1)
j=1

THEOREM 1.2.1 (Cramer's Rule). If J A I = I aij 10, then (1.2.1) possesses
a unique solution given by

Air*bi
x r = i=1

IA I

r = 1,2,...,n. (1.2.2)

THEOREM 1.2.2 (The Alternative Theorem). The homogeneous system

n
I aijx, = 0 (i = 1, 2, ... , n) (1.2.3)
j=1
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possesses a non-trivial solution (i.e., a solution other than x1 = x2 = =
xn = 0) if and only if IA I = 0. If for a fixed A = (ail) there are solutions
to the non-homogeneous system (1.2.1) for every selection of the quantities bi,
then JAI 0 and the homogeneous system has only the trivial solution.

1.3 Linear Vector Spaces. It will be useful to formulate many ques-
tions of interpolation and approximation theory within an abstract frame-
work. The notion of a linear vector space over a field F is therefore a basic
one.

DEFINITION 1.3.1. A linear vector space (or a linear space) X is a set of
elements (or vectors) x, y, ..., for which two types of operation are possible.
Any two elements x, y e X determine a unique element x + y e X as their
sum. Each element x e X and each scalar a of a given field F determine a
unique element ax e X as a scalar product. Vector sums and scalar prod-
ucts are required to obey the following laws.

(a) x±y=y±x.
(b) x + (y + z) = (x + y) + z.
(c) There exists a unique element 0 E X such that

x+0=xforallxEX.
(d) To each x e X there exists a unique inverse -x such

that x + (-x) = 0.
(e) a(flx) = (aq)x for all a, j9 E F, x e X.
(f) 0C (x + y) = ax + ay.
(g) (a+,9)x= ax+tlx.
(h) 1(x) = x.

(1.3.1)

Conditions (a)-(d) are frequently summed up by saying that the elements
of X form an Abelian group under addition. The element 0 is called the
zero vector.

In this book, the underlying field F of scalars will be either (1) the field
of real numbers, or (2) the field of complex numbers. We can, therefore,
speak either of a real or a.complex linear vector space.

DEFINITION 1.3.2. An expression of the form

a1x1
+

a2x2 + ... + a nxn ; ai c- F, xi e X

is called a linear combination of the x's.

DEFINITION 1.3.3. A finite set of vectors x1, ... , xn is linearly dependent
if we can find constants (i.e., scalars) a1, a2, ... , an, not all zero such that
alx1 + a2x2 + - - - + cnxn = 0. If such is not the case, the vectors are
called independent.
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DEFINITION 1.3.4. Let n be a positive integer. Suppose that we can find
n vectors x1, x2, ... , xn E X which are independent while every n + 1 vec-
tors are dependent. Then X is said to be a linear space of dimension n.
If no such n exists, then X is called an infinite dimensional space.

DEFINITION 1.3.5. A set of elements x1, x2, ... , is said to be a basis for
X if the xi are independent and if every x E X can be expressed (uniquely)
as a linear combination of the xi.

THEOREM 1.3.1. X has finite dimension n if and only if it has a basis of n
elements. If X has dimension n any n independent elements constitute a basis.

Ex. 1. The Real, n-dimensional, Cartesian Space R. This consists of vectors
x which are n-tuples of real numbers: x = (x1, x2, ... , xn). Let y = (y19 y29 ... , yn)
be a second vector. (x and y are considered equal if and only if xi = yi, i =
1, 29 ... , n.) Vector addition is defined by

x + y = (x1 + y1, x2 + y21 ... , xn + yn) .

Scalar multiplication is defined by ax = (ocxl, ocx2, ... , ocxn). We set 0 =
(0, 0, ... , 0) and -x = (-x1, -x2, ... , -xn). Then vectors, el = (1, 0, ... , 0),
e2 = (0, 11 ... , 0), ... , en = (0, 0, ... , 1), known as unit vectors, are independ-
ent.

Ex. 2. The Complex, n-dimensional, Cartesian Space Cn. This consists of n-
tuples of complex numbers: (z1, z2, ... , zn). The laws of combination are as in
Ex. 1.

Ex. 3. Linear Spaces of Functions. In this example, a function, considered
as a whole, is thought of as constituting an element of a space. Let S designate
a point set lying on the real axis. Consider the totality of real-valued functions
with domain S. Call this totality T. For f, g e T, define their sum f + g by means
of

(f + g) (x) = f(x) + g(x), x E S.

Define a scalar product by means of

(«f) (x) = ocf (x), x c- S.

(1.3.2)

(1.3.3)

Let the zero vector be the function of T that vanishes identically. Let -f desig-
nate the function defined by

( -h (x) = f(x), x ES. (1.3.4)

With these definitions, T is a linear vector space. If S contains more than a
finite number of points, T is of infinite dimension.

1.4 The Hierarchy of Functions. Our dealings will be almost ex-
clusively with functions of a single real or complex variable. We shall work
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with finite intervals in the real case and bounded sets in the complex case.
The deeper analytical properties of interpolation and approximation depend
to a great extent on what may be called "the degree of smoothness" of the
function approximated. In order of increasing smoothness, we shall deal
with: Lv functions, bounded functions, continuous functions, functions sat-
isfying a Lipschitz condition, differentiable functions, n-times differentiable
functions, infinitely differentiable functions, analytic functions, entire func-
tions, polynomials of restricted degree, constants. It will become apparent
in subsequent chapters that the processes of interpolation and approxima-
tion become stronger when applied to functions further down this list. We
shall now define these classes of functions and recall some basic facts about
them.

DEFINITION 1.4.0. Let p > 0. The class of functions f (x) which are
measurable and for which I f (x)I" is integrable over [a, b] is known as L"[a, b].
If p = 1, the class is designated by L[a, b].

THEOREM 1.4.0. (a) Lv[a, b] is a linear space. (b) If f e L[a, b], then

5
b

f > 0 and f (x) dx = 0 imply f = 0 almost everywhere. (c) If f e L[a, b],
a

then q(x) = f (x) dx is continuous. (d) If - oo < a < b < oo, then
fa

f e L2'[a, b], p' < p, implies f e L2'[a, b]. (e) If f e L2[a, b] with p Z 1, we can
b

find an absolutely continuous function q(x) such that If (x) - q(x)l P dx < e
for arbitrary e > 0. a

For these results, the reader is referred to standard texts on integration
theory.

Let S denote a point set in R,n or in the complex plane and P a point in
that set. Though Definitions 1.4.1-1.9.1 are meaningful for complex valued
functions of a real variable, we shall generally deal with real valued func-
tions whenever S is in R.

DEFINITION 1.4.1. A function f is bounded on S if there exists a constant
M such that

If (P) l< M for all P E S. (1.4.1)

If no such constant exists, the function is said to be unbounded on S. The
class of functions which are bounded on S will be designated by B(S). B(S)
is a linear space.

Ex. 1. The function y = sin x2 is bounded on - oo < x < oo.

Ex. 2. The Gamma function y = P(x) is unbounded on the interval 0 < x < 1,
and on the interval 1 < x < oo.
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Ex. 3. If [a, b] is a finite interval, f e B[a, b] and measurable there implies
f e L31[a, b] for all p > 0.

DEFINITION 1.4.2. Let the function f be defined on the set S. It is con-
tinuous at a point PO of S if

n f (Pn) _ .f (Po) (1.4.2)

whenever P. P0, Pn E S. If f is defined on an interval [a, b] and is con-
tinuous at x0 e [a, b], then given an s > 0, we can find a 6 such that

If (x) -.f (xo)I < E (1.4.3)

for all Ix - x0I < 6 in [a, b]. The 6 will depend upon f, x0, and E. The class
of functions continuous on I: [a, b] will be designated by C[a, b]. It is a
linear space.

It may occur that for a given f and E we can find a 6 for which (1.4.3)
holds independently of x0. This leads to the notion of uniform continuity.

DEFINITION 1.4.3. A function f is uniformly continuous over a set S if
given an E > 0, we can find a 6 such that

If (x1) - .f (x2)1 < E (1.4.4)

for all I x1 - x21 < 6; x1, x2 E S.
In one important case, the notions of continuity and uniform continuity

coincide :

THEOREM 1.4.1. A function which is continuous on a compact (i.e., closed
and bounded) point set is uniformly continuous there.

Ex. 1. The function A(x) = IxI is continuous on - 00 < x < oo.

Ex. 2. The function f (x) = (1 + e1/x)-1 is discontinuous at x = 0 however
f (O) may be defined, for lim P x) = 0 while lim f (x) = 1. It is continuous else-
where. z-'O+

1

Ex. 3. The function f (x) _ - is continuous on the open interval (0, 1) but
x

is not uniformly continuous there.

1

Ex. 4. The function f (x) = 1
x2

is uniformly continuous over the whole

line - oo < x < oo, for we have

1 - 1 - I x22 - x121
x2 - x1 I

(1x11 + I X21)

1 + x12 1 + x22 (1 + x12)(1 + x22) (1 + x12)(1 + x22)

1

Inasmuch as Ixi 1 < - , 1x11 + IX21 < 1
1 + x12 2 (1 + x12)(1 + x22)
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Thus, If (x1) - f (x2)I < s whenever Ix2 - x11 < s.

THEOREM 1.4.2 (First Mean Value Theorem for Integrals).

Let f, g e C [a, b]. Suppose moreover that g > 0 there. Then,

b b

f (x)g(x) dx = f (') g(x) dx (1.4.5)
a a

for some with a < < b. The theorem is also true if g e L[a, b], g > 0 a.e.
It is occasionally useful to have information about the best e which goes

with a given 6 in the definition of uniform continuity.

DEFINITION 1.4.4. Let f (x) be defined on an interval I. Set

w(b; f) = w(b) = sup If (x1) - f (X2)1 (1.4.6)

where the sup is taken over all pairs x1, x2 E I for which Ix1 - x21 < 6. The
function w(b) (which depends on f) is called the modulus of continuity of f
on I.

Ex. 5. f (x) = x2, I = (0, 1), w(b) = 26 - 62.

1
Ex. 6. f (x) _ -, I = (0, 1), w(b) _ +00.

x

1
Ex. 7. f (x) = sin - , I = (0, 1), w(b) - 2.

x

THEOREM 1.4.3. Let f (x) E C[a, b]. The modulus of continuity has the
following properties

w(0) = 0 (1.4.7)

If 0 < 61 < 62 then w(b1) < w(b2) (Monotonicity) (1.4.8)

w(b1 + 62) < WOO + w(b2) (Subadditivity) (1.4.9)

w(nb) < nw(b). (1.4.10)
Moreover, W(b) E C[0, b - a].

Proof : (1.4.7) is obvious. Since 1x1 - x21 < b1 implies 1x1 - x21 < 62, the
corresponding sup cannot decrease, and (1.4.8) follows. To prove (1.4.9), ob-
serve that if 0 < x2 - x1 < 61, then If (x1) - f (x2)1 < WOO < WOO + w02).
On the other hand, if b1 < x2 - x1 < b1 + 62, then x1 + 61 < x2 and
x2- (x1+b1)<b2.But,

I f (x1) - f (X2)1 < I f (x1) - f (x1 + 61)1 + I f (x1 + 61) - f (X2)1

< WOO + w(x2 - (x1 + 61)) < w(a1) + w(62).
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If (xl) - f (x2)I < wb1) + w(b2).Therefore, w(b1 + b2) = sup
61+a20<x2-x1<

(1.4.10) follows immediately from (1.4.9) by induction. From (1.4.8 and 9),
0 < w(b + 61) - w(b) < w(bl). Now, by Theorem 1.4.1, b1li im w(b1) = 0
and hence w is continuous at b.

1.5 Functions Satisfying a Lipschitz Condition

DEFINITION 1.5.1. Let f (x) be defined on an interval I and suppose we
can find two positive constants M and a such that

If(x1)-f(x2)I <MIx1-x21°`forallx1,x2EI. (1.5.1)

Then f is said to satisfy a Lipschitz Condition of order a. The class of such
functions will be designated by Lip a. When it is useful to put the constant
M in evidence, one writes LipM a.

THEOREM 1.5.1. Lip a is a linear space. If f e Lip a on I, then f is con-
tinuous; indeed, uniformly continuous on I. If f e Lip a with a > 1 then
f = constant. If f e Lip a, it may fail to be differentiable, but if it possesses a
derivative satisfying I f'(x)I < M then f ELip M 1. If a < j9 then Lip a Lip j9.
The conditions f e LipM a and w(b) < M 5 are equivalent.

d
Ex. 1. Let 0 < a < 1. Let x > 0, h > 0. Then

dx
[(x + h)a - xa] _

a[(x + h)«-1 - x«-1] < 0. Therefore (x + h)a - xa is decreasing for all x > 0
and hence (x + h)a - x°C < V. This means that xx e Lip a on any positive
interval.

1.6 Differentiable Functions

DEFINITION 1.6.1. Let f (x) be defined on an interval I. It is said to be
differentiable at a point x0 E I if the following limit exists

lim f (x) - f (x0)
= f ' (x0) . (1.6.1)

x - X0

If x0 is an end point of I then the limit in (1.6.1) is replaced by an appro-
priate one-sided limit. The function f (x) is differentiable on I if it is differ-
entiable at each point of I.

Ex. 1. A(x) = jxj is differentiable at all x : 0. At x = 0 it possesses right

and left hand derivatives lim , lim
A(x) - A(0)

x - 0

x

x 0 0 is

is differentiable.
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Ex. 3. f (x) = x . Though continuous at x = 0, f (x) fails to be differentiable
there. It is sometimes convenient to write f'(0) = + oo.

For differentiable functions, we have Rolle's Theorem and the Mean Value
Theorem :

THEOREM 1.6.1 (Rolle). Let f (x) E C[a, b] and be differentiable at each point
of (a, b). If f (a) = f (b) then there is a point x = with a < < b for which

f (x) E C[a, b] be differentiable at each point of (a, b).
Then we can find a with a < < b such that

f(b) = f (a) + (b - (1.6.2)

If f is differentiable at each point of I, its derivative f'(x) may exhibit a
wide variety of smoothness properties. A particularly noteworthy case is
where f'(x) is itself continuous on I. The class of functions that have a
continuous derivative on [a, b] is designated by Cl[a, b]. More generally,

DEFINITION 1.6.2. If f (x) is n times differentiable on [a, b] and if f (n)(x)
is itself continuous on [a, b], we shall write f (x) E Cn[a, b].

Cn[a, b] is a linear space of functions.

xk
Ex. 4. Let f (x) _

0

X > 0
X < 0.

Then, f E Ck-1 on - oo < x < oo. But f 0 Ck on any interval containing the
origin.

Ex. 5. Let f (x) = 1xi 2. Then f E C2, but f 0 C3 on any interval containing
the origin.

For functions having higher derivatives we have the following generalized
Rolle's Theorem.

THEOREM 1.6.3. Let n > 2. Suppose that f E C[a, b] and let f (n-1)(x) exist
at each point of (a, b). Suppose that f (x1) = f (x2) = . . . =f(x) = 0 for
a < xl < x2 < < xn < b. Then there is a point , x1 < < xn such that
i (n-1) 0.

Proof: We give the proof for n = 3. The general case is similar. Let
f (x1) =,f (x2) = f (x3) = 0. Since f is differentiable in x1 < x < x3, we can
find 1 and 2 such that x1 < 1 < x2 < 2 < x3 and f'( 1) = 0, 0.



10 INTRODUCTION Ch. I

Since f" also exists, a second application of Rolle's Theorem yields a
e1 < < 2 with f (2) 0.

Taylor's Theorem with the exact remainder and the various expressions
for the remainder involving higher derivatives constitute generalizations
of the Mean Value Theorem.

THEOREM 1.6.4. Let f (x) E Cn+1[a, b] and let x0 E [a, b]. Then for all

.. .a < x < b, f (x) = f (x0) -+- f'(xo)(x - x0)
f"(xo)

(x - x0)2 +2!

+ f (n)(x0) (x - x0)n + 1 Xf(n+l)(t)(x - t)n dt. (1.6.3)
nI n( x0

THEOREM 1.6.5. Let f (x) E Cn[a, b] and let f (n+1)(x) exist in (a, b). Then
there is a with a < < b such that

(b) = (a) + `a b-a +'L(a) (b-a)2+f() f() f ()( )
2!

f (n)(a) f (n+i)()+
n!

(b-a)n+
(n+

1) (b-a)n+l. (1.6.4)

A form of the remainder theorem (sometimes referred to as Young's form)
is useful on occasion.

THEOREM 1.6.6. Let f (x) be n + 1 times differentiable at x = x0. Then,

(n) (x
x = f(xo)+ f ' (xo)(x-xo)+...+

n1

f 0) (x - xo)nf()
(x--xo)n+1+ [f (n+')(x0) + E(x)] (1.6.5)

(n + 1)!

where

Proof: Set

lim E(x) = 0.

x - x0)n+1

R(x) = f (x) - f (x0) - f'(xo)(x - x0)
(

n
+ 1) f(n+1)(x0).

Then (1.6.5) is equivalent to showing that lim
R(x)

= 0. By differ-
entiating, we find that

x xo (x - x0)n+1

R(x0) = R'(x0) _ ... = R(n+1)(x0) = 0. (1.6.6)

Let E > 0. The functions

P(x) = R(x) + E(x - x0)n+l, Q(x) = R(x) - E(x - x0)n+l (1.6.7)
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are n + 1 times differentiable at x = x0. Moreover, P(k)(xo) = 0, Q(k)(xo) = 0,
k=0, 1,...,n,while P(n+')(xo) = E(n+ 1)! > 0,

Q(n+1)(xo) _ -(n + 1)! E <0.
This implies that P(x) increases monotonically in some interval (xo, xo + a)
while Q(x) decreases monotonically in (xo, x0 + 6). Therefore, for x in
(x0) xo + 6),

R(x) + E(x - xo)n+1 > 0

R(x) - E(x - xo)n+1 < 0.
Therefore,

- E
R(x)

< < E.
(x - xo)n+1

(1.6.8)

Since E is arbitrary, (1.6.8) implies that lim
R(x)

= 0. A similarR(x) x-,xo+ (x - xo)n+1

argument shows that l_im_ = 0, and the proof is complete.
X o (x - xo)n+1

1.7 Infinitely Differentiable Functions

DEFINITION 1.7.1. If f (x) E Cn[a, b] for n = 0, 1 , 2, ... , then f is called
infinitely differentiable in [a, b]. We shall write C 00 [a, b] for the class of such
functions.

Ex. 1. f (x) = x2 is infinitely differentiable on - oo < x < oo .

Ex. 2. f (x) =
1

is infinitely differentiable on - oo < x < oo.
1 + x2

00 cos nx
Ex. 3. f (x) = I nlog n is infinitely differentiable on - oo < x < oo . For

n1
00 1

since I cos nxi < 1 and I nlog n < oo , the original series converges absolutely and
n=l np

uniformly. Since moreover, for any integer p > 0 1 ;log n < oo, the differen-
n=1

tiated series of all orders converge uniformly and hence represent the respective
derivatives of f (x).

The functions of class CO°[a, b] form a linear space.
If f e C°° [a, b] and x0 E [a, b] we may form the Taylor expansion

°° (n) (X0.f(x)I f )(x-x0)n.
(1.7.1)

k=o n!

For a given x this series may or may not converge. If it converges, it may
or may not converge to f (x). The famous function that displays this
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behavior is

Ch. I

f (x) = e-x_2, X00; f(o)=O. (1.7.2)

This function is in C°°(- oo, oc) and

f( (n)(0) n=0,1,2,.... (1.7.3)

With x0 = 0, (1.7.1) converges to 0 for every x. There are an infinity of
functions of class C°° for which (1.7 3) holds. If (1.7.1) converges to f (x) over
an interval, we are led to the notion of an analytic function.

1.8 Functions Analytic on the Line

DEFINITION 1.8.1. Let f (x) be defined on [a, b] and assume that at each
point x0 E [a, b] there is a power series expression of f (x) valid in some
interval :

f (x) = ao + al(x - x0) + a2(x - x0)2 + ... , IX - x01 < p(xo). (1.8.1)

Then f (x) is said to be analytic on the interval. We write f (x) E A[a, b].

Ex. 1. f (x) = [(x)(x - 1)] -1 E A[e, 1 - E], 0 < E < 1 - E.

Ex. 2. f (x) = et2 dt is analytic over the entire line - oo < x < oo.
0X

Ex. 3. A(x) = jxj is not analytic over an interval containing x = 0 in its
interior. But it is "piece-wise" analytic.

THEOREM 1.8.1. A [a, b] is a linear space. If f (x) E A [a, b] then

f (x) E C°°[a, b].

The constants an of (1.8.1) are
1an - _ f (tz)(xo) n=0,1,....
n!

(1.8.2)

It does not follow conversely that if f e C°°[a, b] then f e A[a, b]. This
00 cos nx

is demonstrated by the example (1.7.2). Another example is f (x) =1 log nki n
which, as we have seen, is infinitely differentiable on - oo < x < oo and of
period 27r. The ideas of Theorem 12.3.2 will show that f (x) 0 A[--rr, in.

1.9 Functions Analytic in a Region

DEFINITION 1.9.1. Let R be a region of the complex plane and let f (z) be
a single valued function of the complex variable z defined in R. If z0 E R, f (z)
is said to be analytic at z0 (or regular at z0) if it has a representation of
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the form
00

f (z) = I an(z - zo)n
n =O

(1.9.1)

valid in some neighborhood of zo : Iz - zol < p(zo). If zo = oc, we require an
expansion of the form

C*

f(z) = I anz-n, Izl > p. (1.9.2)
n=0

A function is analytic (or regular) in R if it is analytic at each point of R.
We shall write A(R) for the class of such functions. A (R) is a linear space.

Ex. 1. The function f (z) =
2

is analytic in any region not containing
the points z = i.

I +z

z

Ex. 2. The function f (z) = et2 dt is analytic in any region not containing
z = oo . 0

Ex. 3. A branch of the function f (z) _ (z(z - 1)) i may be selected that is
regular in any rectangle 0 < E < x < 1 - E, - R < y < R.

The relationship between functions analytic on a line and functions ana-
lytic in a region is given by the following theorem.

THEOREM 1.9.1. Let f (x) E A[a, b]. Then we can find a region R containing
[a, b] into which f (x) can be continued analytically such that f (z) E A(R).

Proof: For each point x0 E [a, b] there is a quantity p(xo) and an expansion
00

f (x) = I an(x - x0)n valid in Ix - x0l < p(xo). (1.9.3)
n=0

When x is replaced by z = x + iy, (1.9.3) defines an analytic continuation
of f (x) into the circle Iz - x0l < p(xo). Let x0 run through the interval
[a, b]. The circles Iz - x0) < p(xo) cover [a, b]. Let R be the union of these
circles. R is an open set and is arcwise connected. For if p, q e R, join p
to x1 and q to x2, the centers of their respective circles. Then the are px1x2q
lies in R. R is therefore a region and f (x) can be continued analytically into
it.

Figure 1.9.1.
Cauchy's Theorem is a basic tool in complex analysis.
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THEOREM 1.9.2. Let R be a simply connected region and let f (z) E A(R).
Let zo lie in R and suppose that C is a simple, closed, rectifiable curve which
lies in R and which goes around zo in the positive sense. Then

f (n) (o) =
n! f W-

41 dz.
27ri Sc (z - zo)n+1 (1.9.4)

Whenever the Cauchy integral formula is employed, it will be understood
that C satisfies the above conditions.

Analytic functions may be completely characterized by the growth of
their derivatives, and this provides a second approach independent of power
series.

THEOREM 1.9.3 (Pringsheim). Let f (x) E C°°[a, b]. A necessary and suf-
cient condition that f e A [a, b] is that there exist a constant r > 0 such that

I f (n)(x)I < rnn! a < x < b, n = 0, 1, . . . (1.9.5)

Proof : Sufficiency. Let x0 be a fixed point in [a, b] and suppose that
(1.9.5) holds. By Theorem 1.6.5 we have for x e [a, b],

-n-1
f (k)(xo) x- x x- x.f (x ) 1 ( o)k + ( o)"` (1.9.6)

k = 0 k! n

This holds for all n, and _ (n, x) is between x and x0. In view of (1.9.5),

(x - xo)n
n!

<r" Ix-xoln,

1
so that if Ix - x0I < -, the remainder in (1.9.6) will converge to 0. The

r
function f possesses a power series expansion valid in a neighborhood of x0.
This means that f e A[a, b]. Necessity. If f e A[a, b], then by Theorem
1.9.1, we can find a simply connected region R containing [a, b] in which
f is analytic. Let C be a curve surrounding [a, b] and lying in R. Then, for
.xo e [a, b], we have from (1.9.4),

(n) x n! I f (z)I
ds .If (0)I 27T cIz-x0I n+1

(1.9.7)

If L(C) denotes the length of C and 6 is the minimum distance from C to
[a, b], then

macx If (z) I L(C)n! Mn!
If(n)(x)I <

27r 8n+1 - 8n a < x < b (1.9.8)

where M is a constant independent of n. It is now clear that we can find an
r that makes (1.9.5) true.



Sec. 1.11 POLYNOMIALS 15

Ex. 4. Suppose f e A[ -1, 1]. It is impossible to have P11) (0) _ (n!)2. For
then, (n!)2 < ran!, n = 0, 1, .... But, by Stirling's Theorem, Vln! -> oo so that
we cannot find such an r.

On the other hand, if f is analytic only in the semi-open interval 0 < x S 1
but is in C°°[0, 1], we may very well have f (n)(0) = (n!)2. A theorem to this
effect is developed in Chapter V.

Of great importance is the class of functions that are analytic in a circle
Cr: IzI < r. Here we have the fundamental theorem of Cauchy-Hadamard.

THEOREM 1.9.4. Let f (z) E A (Cr) but O A (Cr.) i f r' > r. This holds if and
only if

r-1 = lim sup
.f (n) (0)

n!

1/n
(1.9.9)

THEOREM 1.9.5 (Maximum Principle). Let f (z) be analytic in a region R
and not be constant there. Let zo lie in R. Then in any neighborhood of zo there
exists a point zi where I f (zi) I > I f (zo) 1. If f (zo) 0, then in any neighborhood
of zo there is a point z 2 where If (Z2)1 < If (z0) I

1.10 Entire Functions

DEFINITION 1.10.1. A function f (x) is called entire if it has a representation
of the form

00

(1.10.1)f (z) = I akzk valid for IzI < co.
k=0

We shall designate this class of functions by E. E is a linear space.

Ex. 1. Some examples of entire functions are

sin z z a 1
, 2z, ei dt, , the Bessel function Jn(z).

z 0 I'(z)

00

THEOREM 1.10.1. The function f (z) = I akzk is entire if and only if
k=0

lim I anI i/n = 0.
n oo

(1.10.2)

Proof : This follows from (1.9.9).

1.11 Polynomials

DEFINITION 1.11.1. By a polynomial of degree n is meant a function of the
form

pn(z) = aozn + a1zn-1 + ....+ an, ao 0 0. (1.11.1)
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The class of polynomials of degree < n will be designated by i'n.
One might distinguish between the classes of polynomials with real co-

efficients and with complex coefficients. It will usually be clear from the
context which class we are dealing with and separate notations will not be
introduced.

°Yn is a linear space.
The following basic facts about polynomials should be recalled.

THEOREM 1.11.1 (Fundamental Theorem of Algebra). If n > 1, a poly-
nomial of degree n possesses a complex root.

THEOREM 1.11.2 (Factorization Theorem). If pn(z) is a polynomial of
degree n then we may find n complex numbers z1, z2, ... , Z. such that

pn(z) = aozn + a1zn-1 + + an

ao(z - z 1) (z - z 2) . . . (z - zn) (ao 0).

The quantities zi need not be distinct. If there are r < n distinct roots
z1, z2, ... , zr, then for appropriate positive integers al, a2, ... , ar, satis-
fying al+a2+---+ar= n, we have

pn(z) = ao(z - z1)ai(z - z2)a2 . . . (Z - zr)ar. (1.11.2)

The ai are uniquely determined and the zero zi is known as an ai fold
zero. We have

Pn(zi) = pn'(zi) = . .. = pnaz -1>(zi) = 0, p(nai)(zi) 0 0. (1.11.3)

Conversely, these derivative conditions imply the above factorization.

THEOREM 1.11.3 (Uniqueness). If f (z) E £n and f vanishes at more than
n distinct points then it vanishes identically.

Proof: Let the degree off be k < n. By Theorem 1.11.2,

f (z) = ao(z - Z I) ... (Z - zk).

By hypothesis, we can find a point Z* z1, z2, ... , Zk such that f (z*) = 0.
Then, 0 = ao(z* - Z1) (Z* - zk) so that ao = 0. This implies that

f(z)=0.

1.12 Linear Functionals and the Algebraic Conjugate Space. In
many problems, we must associate a number with a function extracted from
a given class of functions. For instance, to each function f (x) that has a
continuous derivative on [a, b], we may want to associate the number

fa

b

(1 + [f I(X)]2)1 dx. To each function f (x, y) that is twice continuously

differentiable over a closed bounded region B, we may have to form the
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(af)2
x

number +
B
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2f dxdy or even more sim ly, (x ) y) wherep f o 0

(x 0) yo) E B. Such an association is known as a functional. An important
restriction is that the association behave linearly, and this leads to the
following definition.

DEFINITION 1.12.1. Let X be a linear vector space and to each x let
there be associated a unique real (or complex) number designated by L(x).
If for x, y e X and for all real (or complex) a, / we have

L(ax + fly) = aL(x) + 19L(y), (1.12.1)

then L is called a linear functional over X.

Ex. 1. X = C[a, b]. The elements of X are functions f (x).
b b

L(f) = dx or L(f) = x2fdx.
faxJa

a b
Ex. 2. X = C2[a, b]. L(f) = f -(a) + f'(b) - f

+
2

b n
Ex. 3. X = A[a, b]. L(f) = f (x) dx - laif (xi), a < xi < b.

a iEx.
4. X = A(R) where R is a region of the complex plane. Let C be a

rectifiable curve lying in R.

L(f) = f f (z) dz.
C

Ex. 5. X = R. x = (xl, x2, ... , xn). Let al, ... , an be fixed constants and
set

n
L(x) aixi.

i=1

Interpolation theory is concerned with reconstructing functions on the
basis of certain functional information assumed known. In many cases, the
functionals are linear.

Functionals can be added to one another and scalar products can be
formed. If, for instance, f e Cl[a, b] and

b
Li(f) =

a
f (x) dx and L2(f) =f'

a +
2

we can identify the functional

b a + bL(fa af(x)dx-]-2
with the expression aLl + t8L2. L is itself a linear functional. These observa-
tions form the basis for the following definition.
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DEFINITION 1.12.2. Let X be a given linear space and let Ll and L2 be
two linear functionals defined on X. The sum of Ll and L2 and the scalar
product of a and Ll are defined by

(a) (L1 + L2)(x) = L1(x) + L2(x), X E X
(1.12.2)

(b) (aL1)(x) = aL1(x).

It is a simple matter to show that the set of all linear functionals defined
on X combined by the above rules constitute a second linear space.

DEFINITION 1.12.3. Let X be a given linear space. The set of linear
functionals defined on X and combined by (1.12.2) forms a linear space
called the algebraic conjugate space of X and denoted by X*.

X*, then, has elements that are linear functionals. We can speak of
linear combinations, linear independence, dimension, bases, etc., for linear
functionals.

Ex. 6. X = C[a, b]. Let x1, x2, ... , xn be n distinct points lying in [a, b].
Let Lk(f) = f (xk) for f e X. Then L1, L2, ... , Ln are independent in X. For
otherwise, for constants al, ... , an not all zero, a1L1 + a2L2 + + anLn = 0
(the 0 functional). Thus, for all f E C[a, b], al f (xl) + a2 f (x2) + + an f (xn) = 0.
This is impossible. For if ak 0, we may find a continuous function for which
f (xk) = 1, f (xi) = 0, i = k. This leads to the contradiction ak = 0.

Ex. 7. X = Yn_2[a, b]. The above n functionals are linearly dependent. This
is a consequence of the Lagrange interpolation formula in Chapter H.

THEOREM 1.12.1. If X has dimension n then X* has dimension n also.
Proof: Let x1, x2, ... , xn be a basis (n independent elements). Then for

any x e X, x = a1x1 + a2x2 -+- + anxn in a unique way. Therefore,
L(x) = a1L(xl) + + anL(xn). For any x e X set

L1(x) = a1

L2(x) = a2
(1.12.3)

Ln(x) = an.

Li are linear functionals defined on X. They are independent, for, if not,
we would have f 1L1 + / 2L2 -+- + 1nLn = 0 with some fl, 0. Then,

NiL1(x,) + 1 2L2(x,) + ... + fl,L,(x,) + ... + j Ln(x,) = 0(x,) = 0.

iifi=j
But Li(x,) _ bi, = , so that we obtain /, = 0, a contradiction.

0 ifi
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This shows that the dimension of X* is at least n. We next show it is at
most n.

Suppose we have n + 1 functionals, L1, L2, ... , Ln+1. Consider the n + 1
n-tuples

[Li(x1), Li(x2), . . . , Li(xn)], i = 1 , 2, ... , n + 1.

Since Rn (or Cn) is of dimension n, these n-tuples cannot be independent.
Hence we can find numbers al, ... , an+1 not all zero such that

a1[L1(x1), . . . , L1(xn)] + . . an+1[Ln+1(x1), . . . , Ln+l(xn)]

= 0 = [0,0, ...,0].
Therefore

(al 1 + + an+1 ?z+1)(xi) = 0,

By taking linear combinations,

for i = 1, 2, ... , n.

(a1L1 + ... + an+1Ln+1)(x) = 0 for x e X.

Therefore L1, ... , Ln+l must be dependent and the dimension of X* is at
most, and hence, precisely n.

This theorem tells us that over a space X of dimension n any linear
functional can be expressed as a linear combination of n fixed independent
linear functionals.

1.13 Some Assorted Facts. Two special conformal maps.
A.

w= (z+z-1). (1.13.1)

Set w = u + iv and z = peie. The exterior of the unit circle, I z > 1, is
mapped conformally onto the w-plane with the interval -1 < u < 1 de-
leted. The image of the point (p cos 0, p sin 0) is the point

(j(p + p-1) cos 0, J(p - p-1) sin 0).

The circle IzI = p > 1 maps onto the ellipse

u = J(p + p-1) cos 0, v = -(p - p-1) sin 0, 0 < 0 < 27r. (1.13.2)

Figure 1.13.1.
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DEFINITION 1.13.1. The ellipse (1.13.2) will be designated by 4p, (p > 1).
The semi-axes of 4P are, respectively

a 2(P+ p-1)

b 2(p- p-1)

and hence

(1.13.3)

p = a + b = sum of semi-axes of 4P. (1.13.4)

The foci of 4P are at u = +1 so that f,, p > 1, forms a confocal family
of ellipses. The image of the unit circle under (1.13.1) is the interval
-1 < u < 1 traced from 1 to -1, thence back to 1.

When z is solved for w, we obtain

z=W+ /W2-1. (1.13.5)

For values of z outside the unit circle, that branch of the root must be
taken which leads to z(oo) = oo.

Figure 1.13.2 The Family 4P of Confocal Ellipses.

B.

z = cos w = cos (u + iv) = cos u cosh v - i sin u sinh v. (1.13.6)

Let R be the rectangle in the w plane with vertices at w = ai, ori +7T,
- ori + ,r, - ai. R is mapped onto the ellipse iffP, p = ea, with the two in-
tervals [1, a], [-a, -1], a = cosh a, deleted. As a point w traces out the
vertical sides of R, the image point z traces each of these two intervals
twice.
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Zorn's Lemma. Today, a mathematics book without this lemma would
be like an 18th century gentleman without his sword.

DEFINITION 1.13.2. A partial ordering of a set X is a binary relation
between elements designated by '<' and such that

x< y, y< z implies x< z (1.13.7)

x < x (1.13.8)

x <Y, y <x implies x = y.

If in addition for any x, y E X it is true that either

x < y or y<x, (1.13.9)

the set is called totally ordered (or, simply ordered).
If A is a subset of a partially ordered set, and if an element z satisfies

x <z for all xEA, (1.13.10)

then z is called an upper bound for A.
If z is an element of a partially ordered set X such that no element x e X,

x z satisfies
z <x (1.13.11)

then z is called a maximal element of X.

THEOREM 1.13.1 (ZORN'S LEMMA). Let X be a partially ordered set and
suppose that every totally ordered subset of X has an upper bound in X. Then
X has a maximal element.

Zorn's Lemma is known to be equivalent to the Axiom of Choice.
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NOTES ON CHAPTER I

Ch. I

1.1 Determinant theory developed from the point of view of n-dimen-
sional volume can be found in Schreier and Sperner [1], Chapter II.

1.4 For a discussion of when a function w(5) can be a modulus of con-
tinuity see Tieman [1], p. 109.

1.7 For more on infinitely differentiable functions, see Boas [4], pp.
150-156.

1.10 An up-to-date account of the theory of entire functions is given in
Boas [3].

1.12 For the algebraic conjugate space, see, e.g., Taylor [3], pp. 34-35.
1.13 Zorn's Lemma is discussed in Halmos [2], p. 62.

PROBLEMS

1. For what values of a and b are the curves y = axb bounded on [0, 1]?
1

2. For what values of a and b are the curves y =
[ -1, 1]? x2 + ax + b

bounded on

1 1

3. Show that - sin x and x sin - (properly defined at x = 0) are continuous
x x

over any finite interval.
4. Show that y = -x is uniformly continuous over the infinite interval

0<x<00.
5. Let f E C[a, b]. Use the first mean value theorem to show that

rb ' rb

n, oo a n' oo Ja
lim

17 Ja

6. Compute w(f ; 6) for f (x) = sin x on - oo < x < oo.
7. Compute w(f ; b) for f (x) = x2 - 3x + 1 on -1 <x < 1.
8. Let f (x) E Cl[a, b] and let f(x) be increasing and positive. Find w(b).
9. Let f (z) be analytic in JzJ < 1. Show that w(f; 6) < M6 for some M.

Generalize.
10. Let f (x) be periodic and integrable. Define the moving average of f by

means of
1 rx+h

fh(x) = - f (t) dt.
2h x-h

Prove : 1. fh(x) is periodic.
2. If f (x) E Cn then fh(x) E Cn+1.

3. w(/h; 6) < w(f ; 6) and hence f h is "smoother" than f.
4. If f is sufficiently smooth, (fh(x))' = (f')h.

11. Let f (x), g(x) E Lip a on [a, b]. Then the same is true of f(x) g(x).
12. Does x°C log x, a > 0, satisfy a Lipschitz condition on [0, 1]?
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13. If

then

f (x) E C2[a, b],

(a - b)f'(x) = f (a) - f (b) + I(b - J(a - x)2T"

forxE(a,b),a <e2 <x,x <$I< b.
14. Use the last result to show that

M1
<2M

h
+IM2h

where Mi = max if (i)(x)I and h = b - a. (Hadamard)
a<x<b

15. If lim
f (x + h) - 2f (x) -f- f (x - h)

exists, f (x) is said to have a second
h2

Riemann derivative at x. Use Theorem 1.6.6 to show that if f"(x) exists then the
above limit exists and equals it. Show, however, that there are many functions
that do not have a second derivative at x but have a second Riemann derivative.

16. Let f E Cl[a, b] and let f"(x) exist at each point of (a, b). Suppose f (a) =
f(a) = 0 and f (b) = 0. Then there is a point $, a < $ < b with f"($) = 0.
Generalize to functions having higher order zeros at k points.

17. If lim f (x) = a and lim f"(x) = 0 prove that lim f'(x) = 0 and
x ao x oo x-- 00

lim f"(x) = 0.
X--* 00

18. Let f (x), g(x) E C00[a, b] and a < x0 < b. If f (n)(x°) = 0, n = 0, 1, 2, .. .

do
then

dxn
(f (x) g(x)) IX0 = 0, n = 0, 1, ...
a, a, 00

19. If I anzn, I bnzn are analytic in Izi < 1, so is I anbnzn.
n=0 n=0 n=0

20. Use Theorem 1.9.3 to show that xi is in A[a, b] for any 0 < a < b < oo .
21. Show directly that eex satisfies the conditions of Theorem 1.9.3 on [0, 1].

z

22. Make use of Theorem 1.10.1 to show that f(z) = et2 dt is entire.
0

23. If f(z) is entire and satisfies J f(z)I > m jzjn for all Izi > r, then f is a poly-
nomial and its degree is at least n.

24. Let f e Y2 and suppose that f (a) = f(a) = 0, f (b) = 0 b 0 a. Then f = 0.
In general, if f e Y. and has roots of total multiplicity > n, then f - 0.

25. Prove that 2x can coincide with a polynomial at only a finite number of
points. Is this true when x is replaced by z?

26. Let f e A( - oo, oo) and f (k) (X) > 0 k = 0, 1, .... Then f(x) cannot coincide
with a polynomial infinitely often. Generalize.

27. If f(x) is a polynomial, then lim f (n)(x) = 0 for all x. Is the converse true?

28. The spaces Cn[a, b], C00[a, b], A[a, b], A(R), E are all infinite dimensional.
29. Y. defined on [a, b] has dimension n + 1. What about Y. defined on a set

S consisting of k points?
30. Let Ar designate the set of functions that are analytic in Izi < r but in no

disc z < r' with r' > r. Is Ar a linear space?
31. Let N be the space of all functions that are analytic in Izi < R and have

Izi = R as a natural boundary. Is N a linear space?



CHAPTER II

Interpolation

2.1 Polynomial Interpolation. This whole book can be regarded as a
theme and variation on two theorems : an interpolation theorem of great
antiquity and Weierstrass' approximation theorem of 1885. The simple
theorem of polynomial interpolation upon which much practical numerical
analysis rests says, in effect, that a straight line can be passed through two
points, a parabola through three, a cubic through four, and so on.

Figure 2.1.1.
Polynomial interpolation.

THEOREM 2.1.1. Given n + 1 distinct (real or complex) points zo, z1, ... , zn
and n + 1 (real or complex) values wo, wl, ... , wn. There exists a unique
polynomial pn(z) E °Yn for which

pn(zi) = wi i= 0,1)...,n. (2.1.1)

Proof: Set up a polynomial ao + a1z + ' + anzn with n + 1 undeter-
mined coefficients ai. The conditions (2.1.1) lead to the system of n + 1
linear equations in the a2:

ao+alzi+...+anz1n=wi i=0,...,n. (2.1.2)

The determinant of the system is the Vandermonde determinant formed
24
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f r o m zo, . . . , zn :

V(z0,z1,...,z7) =

I1 z n zn2...z nnI

To evaluate V, we may proceed as follows. Consider the function

I 1 z0 ... z0n
I

V (Z) = V(z0, zl, . . . , zn-11 Z) =

1 z
n

n-1 zn-1

(2.1.3)

(2.1.4)

V(z) is obviously in 'n. Furthermore it vanishes at zo, zl, . . . , zn-l, for
inserting these values in place of z yields two identical rows in the deter-
minant. Thus,

V(z0, zl, . . . , zn,-1, z) = A(z - z0)(z - zl) ... (z - zn-1) (2.1.5)

where A depends only on zo) Z1, ... , zn_1. To evaluate A, expand the deter-
minant in (2.1.4) by minors of its last row. We then see that the coefficient
of zn is V(zo, . . . , zn_l). Thus, we have

V(z0, zl, . . . , zn-1, z) = V (z0, . . . , zn-1)(z - z0)(z - zl) ... (z - zn-1) (2.1.6)

and hence we have the recursion formula

V(z0, zl, . . . , zn-1) Zn) = V(z0, . . . , zn-1)(zn - z0)(zn - z1) ... (Zn - zn-1)
(2.1.7)

Since V (zo, z 1) = z1 - zo, we have from (2-1-7),

V(z0, zl, Z2) = (zl - z0)(z2 - z0)(z2 - zl)

and by multiple applications of (2.1.7),
n

V (Z01 zl, ... , Zn) _ ft (zi - z5). (2.1.8)
i>j

By assumption, the points zo, zl, ... , zn are distinct. Therefore V 0 0.
There is consequently a unique solution to the system (2.1.2).

Here is a second proof that contains a useful line of reasoning. Consider
the system (2.1.2). If, when the right-hand side is 0 (wi = 0), the system
possesses only the trivial zero solution, Theorem 1.2.2 tells us that its
determinant does not vanish. Hence for an arbitrary right-hand side there is
one and only one solution. Now a zero right-hand side to (2.1.2) means that

1 z0 z02 ... z0n

1 zl z12 ... z1n
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pn(z) vanishes at n + 1 distinct points. By Theorem 1.11.3, ak = 0, k=
0, 1, . . . , n. The homogeneous equation possesses only the trivial solution
and the rest follows.

2.2 The General Problem of Finite Interpolation. In Theorem
2.1.1 we have reconstructed a polynomial e 9n on the basis of n + 1
values. Can we do it on the basis of n + 1 arbitrary pieces of linear infor-
mation? Can we do it for functions other than polynomials? These questions
lead to the following general problem.

Let X be a linear space of dimension n and let L1, L2, ... , L. be n given
linear functionals defined on X. For a given set of values w1, w2, ... , wn,
can we find an element of X, say x, such that

Li(x)=wi i = 1,21...,n? (2.2.1)

The answer is yes if the Li are independent in X*.

LEMMA 2.2.1. Let X have dimension n. If xl, ... , X. are independent in
X and L1, ... , Ln are independent in X* then

JLi(x;)l 0 0. (2.2.2)

Conversely, if either x1, ... , xn or L1, ... , L. are independent and (2.2.2)
holds then the other set is also independent.

Proof: Suppose that JLi(x;)l = 0. Then also JL;(xi)l = 0.
The system

a1L1(xl) + a2L2(x1) + . .. + anLn(xl) = 0

a1L1(xn) + a2L2(xn) + ... + anLn(xn) = 0

would have a nontrivial solution al, ... , an.
Then,

(a1L1 + a2L2 + ... + anLn)(xi) = 0 i = 1, 2, ... , n.

Since x1, ... , xn form a basis for X,

(a1L1 + a2L2 + ... + anLn)(x) = 0 x E X

and hence a1L1+ +anLn=0.
Therefore, L1, ... , L. are dependent contrary to our assumption.
To show the converse, we may trace the argument backwards.

THEOREM 2.2.2. Let a linear space X have dimension n and let L1, L2, ... ,
Ln be n elements of X*. The interpolation problem (2.2.1) possesses a solution
for arbitrary values w1, w2, ... , wn if and only if the Li are independent in
X*. The solution will be unique.
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Proof : In this generality, the theorem is nothing but a rewording of
Theorem 1.2.2. If the Li are independent and if x 1 . . . . . xn are independent,
then I Li(x;) I 0 by Lemma 2.2.1. Hence the system

or

L2(alxl+a2x2+...+anxn)=wi i= 1,2,...,n

a1Li(xl) + a2Li(x2) + ... + anLi(xn) = wi (2.2.3)

n
possesses a solution al, ... , an and the element aixi solves the inter-

polation problem. Conversely, if the problem (2.2.1) has a solution for
arbitrary wi, then (2.2.3) has a solution for arbitrary wi. By Theorem 1.2.2,
this implies that IL2(x;)I 0 and hence by Lemma 2.2.1, the Li are inde-
pendent.

The determinant I Li(x3)I is a generalized Gram determinant (cf. Chapter
8.7) and its nonvanishing is synonomous with the possibility of solution of
the interpolation problem. We may speak of independent systems of func-
tionals as having the "interpolation property." In the next section, we shall
study some spaces and functionals for which the interpolation problem can
be solved. But before passing to it, we should rid ourselves of the naive hope
that an interpolation problem can always be solved providing the number of
parameters equals the number of conditions.

Ex. 1. Let X designate the set of functions of the form ao + a2x2 defined on
[ -1, 1]. X has dimension 2. If L1(f) = f(xl) and L2(f) = f(x2), -1 < x1, x2 < 1,
then the generalized Gram determinant for the independent elements 1, x2 is

x12

1 x22
= (x2 - x1)(x2 + x1),

This vanishes if x1 = x2 or xl = -x2. In these cases L1 and L2 are not independ-
ent. The first case would be excluded trivially, but the second tells us that we
cannot force the even functions ao + a2x2 to take on arbitrary values at distinct
points.

Ex. 2. The strength of Theorem 2.1.1 is brought out by noting that it cannot
be extended as it stands to polynomial interpolation in several variables. Let
the powers in two real variables be listed as follows: po(x, y) = 1, p1(x, y) = x,
p2(x, y) = y, p3(x) y) = x2, p4(x) y) = xy, p5(x) y) = y2, p6(x, y) = . . . . . . . . I t is

not always possible, having been given n arbitrary distinct points (xi, yi), to
find a linear combination of p 0 . . . . . pn_1 that takes on preassigned values at
these points.

2.3 Systems Possessing the Interpolation Property. Many spaces
of functions and related systems of independent functionals are known and
have been studied in detail. We shall list some of the more common ones.
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Ex. 1. (Interpolation at discrete points)

X = Yn. L0(f) = f (zo)o L1(f) = f (zl), ... , Ln(f) = f (zn)

We assume that zi 0 z5, i j.

Ch. II

Ex. 2. (Taylor interpolation)

X = fin. L0(f) =f (zo), L1(f) = f '(zo), ... , Ln(f) = f (n)(zo).

Ex. 3. (Abel-Gontscharoff Interpolation)

X = Yn. L0(f) = f (zo), L1(f) =.f'(zl), L2(f) = f"(z2), ... , Ln(f) = f (n)(zn)

Ex. 4. (Lidstone Interpolation)

X = y2n+1 L1(f) = f (zo), L2(f) = f (zl)

L3(f) = f"(zo), L4(f) = f"(zl)

L2n+1(f) = f (271)(zo), L2n+2(f) = f (2n)(z1), (zo z1).

Ex. 5. (Simple Hermite or Osculatory Interpolation)

X = 92n-1 L1(f) = f (zl), L2(f) = f '(zl)

L3(f) = f (z2), L4(f) = f" (Z2)

L2n-1(f) = f (zn), L2n(f) = f"(zn), (zi 0 zi, 2 0 j)

Ex. 6. (Full Hermite Interpolation)
X = 9N. To avoid indexing difficulties, we list the functional information
employed without using the symbol L.

f (zo), f '(zo), ... , f (mo)(zo)

f (zl), f'(zl).... , f (mi)(zl)

f (zn), f" (z.) . . .. , f (mn)(zn)

(zi z5, N = mo + ml + ... + mn + n).

Ex. 7. (Generalized Taylor Interpolation)
X consists of the linear combinations of the n + 1 linearly independent functions
To(z), q 1(z), ... 9 gpn(z) that are analytic at zo.
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L0(f) = f (zo), L1(f) = f'(zo)) ...

Ln(f) = f (n)(zo).
1990)(zo)I 0 0.

Ex. 8. (Trigonometric Interpolation)
A linear combination of 1, cos x, ... , cos nx, sin x, sin 2x, ... , sin nx is known
as a trigonometric polynomial of degree < n. The corresponding linear space will
be designated by.l"n. It has dimension 2n + 1.

X = .ln. L0(f) = f (xo), L1(f) = f (x1), . . . , L2n(f) = f (x2n),

-,r < xo < x1 < .. < x2n < ir.

Ex. 9. (Fourier Series)

X = 5"n. L2k(f) =j f (x) cos kx dx, k = 0, 1, ... , n.

L2k-1(f) =j
_7r

f (x) sin kx dx, k = 1, 2, ... , n.

Before demonstrating that these functionals are independent over the
respective spaces, a few remarks are in order. Ex. 1 is, of course, Theorem
2.1.1. Exs. 1, 2, 5 are special cases of Ex. 6. Ex. 2 is a special case of Ex. 7
if we select Cpk(z) = zk. Ex. 9 is not generally thought of as an interpolation
process since the usual interpolatory processes make use of point data. But
it-and indeed all orthogonal expansions-fit into the present pattern, and
so we have listed it here.

The most direct way to show that the interpolation problem formed from
these examples has a solution is to exhibit the solution explicitly. For some
of the examples, we shall do this in subsequent sections. But it suffices to
show that the generalized Gram determinant does not vanish, (2.2.2), or
to apply the Alternative Theorem 1.2.2 directly.

Ex. 6. We shall show that if p E YN and satisfies

p(zo) = 0, p'(zo) = 0, ... , pmo(zo) = 0
p(z1) = 0, p'(zl) = 09 ... , pml(z1) = 0

(2.3.1)

p(zn) = 0, p'(zn) = 09 ... , pmn(zn) = 0

where N = mo + m1 + + Mn + n, then p must vanish identically. By the
Factorization Theorem, if p satisfies all conditions of (2.3.1) with the exception
of the last, i.e., pmn(zn) = 0, then we must have

p(z) = A(z)(z - zo)mo+1(z - z1)mi+1 ... (z - zn-1)mn-1+1(z - zn)mn,

A(z) = polynomial.
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By examining the degree of this product, it appears that A = constant. Since,
moreover,

p(mn)(zn) = A(mn)! (zn - z0)mo+1 .. . (zn - zn-1)mn-1+1 = 0

and zi zj, i 0 j, we have A = 0 and therefore p = 0. The homogeneous
interpolation problem has the zero solution only and hence the nonhomogeneous
problem possesses a unique solution.

Ex. 3. The generalized Gram determinant is

zo zo2 . . . Zon

0 1 2z1 ... n4 -1

0 0 2 . . n(n - 1)z2-2

0 0 0 ... n!

Ex. 4. Let p E Y2n+1. If p(2')(z0) = 0 for j = 0, 1, ... , n, then by Theorem
1.6.4, p(z) = a1(z - zo) + a3(z - z0)3 + ... + a2n+1(z - z0)2n+1. If now,

p(2n) (z1) = 0 then a2n+1 = 0 and p(2j) (z1) = 0, j = n - 1 , n - 29 ... , 0 implies,
by recurrence, that the remaining coefficients are 0. The homogeneous problem
possesses the 0 solution only, and so the nonhomogeneous problem has a solution
and it is unique.

As far as Ex. 7 is concerned, no proof is required, for condition (2.2.2)
has been built into the hypothesis. In this example, the crucial determinant
reduces to the Wronskian of the functions 00, ... , cn and we postulate
that it does not vanish at z0.

Ex. 8. The crucial determinant here is

1 cos x0 sin x0 cos 2x0 sin 2x0

1 cos x1 sin x1 cos 2x1 sin 2x1

cos nx0 sin nx

cos nx1 sin nx1

0

G =

1 cos x2n sin x2n cos 2x2n sin 2x2n . . . Cos nx2n sin nx2n

(2.3.2)

To evaluate G we reduce its elements to complex form. Multiply the 3rd, 5th, . . .

columns by i and add them respectively to the 2nd, 4th.... columns. We obtain

G = I 1 eix, sin x; e2ax; sin 2x5 ... enix; sin nx, l .

Multiply the 3rd, 5th, . . . columns by -2i and to them add the 2nd, 4th, .. .
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columns respectively:

(- 2i )nG = 1 eixi e - ixi e2ix; e - 2ixi . . . enixi e - nixil

Interchange the columns:

(-1)n(n+1)(-2i)nG = j.-nix; e-(n-1)i2'i . . . 1 . . . e(n-1)ixi enixil.

Multiply the jth row by enixi, j = 09 ... , 2n:

eni(xo+xi+ - - - +X2n)(-1)n(n+l) (-2i)nG = 1 eixi e2ixi ... e2nixil .

The determinant in the last line is a Vandermonde. Hence from (2.1.8),

2n
eni(xo+xi+ ... +x2n)(- I)n(n+l)(-2i)nG = JJ (eixi - e2xk).

j>k

In view of the conditions on the xj, ei" 0 eixk, j 0 k, and so G o 0.

Ex. 9. In view of the orthogonality of the sines and cosines (Chap. 8.3,
Ex. 3), the crucial determinant has positive quantities on the main diagonal
and 0's elsewhere and hence does not vanish.

2.4 Unisolvence. Let the functions f l (x), f2(x), ... , fn(x) be defined
on an interval I. Given n distinct points x , ,..., xn e I and n values wl, ... ,
wn, we will be able to solve uniquely the interpolation problem

n
I aifi(x5) = wj
i=o

if and only if

j = 1,2,...,n (2.4.1)

I fi(Xi)I 0. (2.4.2)

DEFINITION 2.4.1. A system of n functions 11 . . . . . .

f n defined on a point
set S is called unisolvent on S if (2.4.2) holds for every selection of n distinct
points lying in S.

Pointwise interpolation can always be carried out uniquely with a uni-
solvent system.

It follows that fl, ... , fn is unisolvent on S if and only if the only linear
combination of the f's that vanishes on n distinct points of S vanishes
identically.

Ex. 1. The system 1, x2 is unisolvent on [0, 1] but not on [ -1, 1].

Ex. 2. The system 1, x, x2, ... , xn is unisolvent over any interval [a, b].

Ex. 3. Suppose that w(x) does not vanish on [a, b]. Then

w(x), xw(x), x2w(x), ... , ew(x)
is unisolvent on [a, b].
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Ex. 4. The system of complex powers 1, z, z2, ... , zn is unisolvent over any
region.

Ex. 5. The trigonometric system

1 , cos x, cos 2x, ... , cos nx, sin x, sin 2x, ... , sin nx

is unisolvent on -ir < x < ff.

Ex. 6. Let ai be distinct values not in [a, b]. Then the system

1 1 1x +a1'x +a2, ...,x
+an

is unisolvent in [a, b]. For we shall prove in Chap. 11.3 that

1

xi + a5

n n

=ft(xi -x,)(ai -a;) IT
i>j i,j=1

(xi + a,).

As far as functions of one variable are concerned, unisolvent systems are
reasonably plentiful. In several dimensions, the situation is vastly different.
We have already had a hint of this in 2.2, Ex. 2 where we noticed that the
fundamental theorem of polynomial interpolation does not go over directly
to several variables.

THEOREM 2.4.1 (Haar). Let S be a point set in a Euclidean space of n-
dimension, Rn, n > 2. Suppose that S contains an interior point p. Let
fl, f2, ... , fn (n > 1) be defined on S and continuous in a neighborhood of p.
Then this set of functions cannot be unisolvent on S.

Proof: Let U be a ball with center at p and contained in S and sufficiently
small so that the fi are continuous in U. Select n distinct points p1, p2, ... ,
p,z e U. We may assume that I fi(p,)I 0 0, for otherwise the system is surely
not unisolvent. Hold the points p3, p4, ... , pn fixed. Now move the points
p1 and p2 continuously through U in such .a manner that the positions of p1
and p2 are interchanged. Since U has dimension >2, it is clear that this can
be carried out in such a manner that pl and p2 coincide neither with one
another nor with the remaining points. In this way we induce an inter-
change of two columns of the determinant I f i(p, )1. Its sign therefore changes.
Since the functions are continuous, there must be some intermediate posi-
tion of p1 and p2 for which the value of the determinant is zero.

In order to carry out this argument, it is not necessary to have an interior
point. It suffices if the set S contains a "ramification point;" that is to say,
a point p at which three arcs meet. Then by a process of "train switching"
we may carry out the same argument. It is surprising that unisolvence has
this topological aspect.
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Figure 2.4.1.

2.5 Representation Theorems: The Lagrange Formula. Let zo,
z1, ... , Z. be distinct and introduce the following polynomials of degree n :

l (z) (z - z0) (z - Z1) . . . (z - zk-1) (z - Zk+1) ... (z - Zn)
k (zk - z0)(zk - Z1) . . . (zk - zk-1)(zk - zk+1) . . . (zk - Zn

k = 0) 1,...,n. (2.5.1)
It is clear that

(2.5.2)

For given values w0, w1, ... , wn, the polynomial

n

pn(z) = I wklk(z)
k =O

is in Y. and takes on these values at the points zi :

Pn(zk) = Wk

(2.5.3)

k = 0,1,...,n. (2.5.4)

Formula (2.5.3) is the Lagrange Interpolation Formula. Since the interpola-
tion problem (2.5.4) has a unique solution, all other representations of the
solution must, upon rearrangement of terms, coincide with the Lagrange
polynomial.

An alternate form is useful. Introduce

w(z) = (z - z0)(z - Z1) ... (z - zn), (2.5.5)
Then,

w'(zk) - (Zk - z0)(zk - Z1) ... (zk - zk-1)(zk - Zk+1) ... (zk - zn) (2.5.6)

and hence from (2.5.1),

lk(z) _
w(z)

(z - Zk)W'(Zk)
The formula (2.5.3) becomes

n w(z)
p (z) = wn

k=o
k

(Z - Zk)W'(Zk)
(2.5.8)
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The polynomials lk(z) are called the fundamental polynomials for point-
wise interpolation.

The numbers wi are frequently the values of some function f (z) at the
points zi : wi = f (zi). The polynomial pn(z) given by (2.5.8) and formed
with these w's coincides with the function f (z) at the points z0, z1, ... , zn.
That is, if

pn(z) - In f (z )lk(z) - rrn f (zk) wlz)G
k= O

k
k= O (Z - Zk)wi (zk)

then

(2.5.9)

Pn(zk) = f (zk) k = 0, 1, ... , n. (2.5.10)

DEFINITION 2.5.1. We shall designate the unique polynomial of class
°Yn that coincides with f at Z 0 . . . . . . zn by pn(f ; z).

Suppose that q(z) E 9n. Then q is uniquely determined by the n + 1
values q(zi), i = 0, ... , n. Hence we must have

pn(q; z) = q(z) (2.5.11)

Now take q(z) = (z - u)', j = 0, 1, ... , n and regard u as an independent
variable. From (2.5.11) and (2.5.9),

n(Z

- u)' = I (zk - u)'lk(z) j = 0, 1, ... , n (2.5.12)
k=0

holding identically in z and u.
By selecting u = z we obtain

n
lk(z) - 1 (2.5.13)

k=0
n

(zk - z)'lk(z) = 0, j = 1, 2, . . . , n.
k=0

The n + 1 identities (2.5.13) are the Cauchy relations for the fundamental
polynomials lk(z).

The importance of the fundamental polynomials lies in the identity (2.5.2)
and the resulting simple explicit solution (2.5.9) of the interpolation prob-
lem. If we set

L0(f) = f (zo), L1(f) = f (zi), ... , Ln(f) = f (zn),

then (2.5.2) can be written as
Li(l;) = air. (2.5.14)

In anticipation of certain geometric developments in Chapter VIII, we will say
that the polynomials li(z) and the functionals Li are biorthonormal. For a
given set of independent functionals, we can always find a related biortho-
normal set of polynomials. Indeed, we have the following generalization of
Lagrange's formula.
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THEOREM 2.5.1. Let X be a linear space of dimension n. Let L1, L2, ... ,
L. be n independent functionals in X*. Then, there are determined uniquely n
independent elements of X, xl*, x2*, ... , xn*, such that

Li(x,*) = bij. (2.5.15)
For any x e X we have

n
x = Li(x)xi*.

i=1

For every choice of wl, ... , wn, the element

n
x = wixi

i-1

(2.5.16)

(2.5.17)

is the unique solution of the interpolation problem

Li(x) = wi, i = 1, 2, ... , n. (2.5.18)

P r o o f : Let x , ,., xn be a basis for X. By Lemma 2.2.1, lLi(x;)l 0 0.
If we set x;* = a,1x1 + - - - + ajnxn, then this determinant condition guar-
antees that the system (2.5.15) can be solved for a;i to produce a set of
elements x , * ,. .. , xn*. By Theorem 2.2.2, the solution to the interpolation
problem (2.5.15) is unique, for each j, and by Lemma 2.2.1, the xi* are
independent. n n

Denote y = Li(x)xi*. Then L,(y) _ Li(x)L;(xi*). Hence, by (2.5.15),
i=1 i=1

L;(y) = L,(x), j = 1, 2, ... , n. Again, since interpolation with the n con-
ditions Li is unique, y = x and this establishes (2.5.16). Equation (2.5.18)
is established similarly.

In this theorem and throughout the remainder of the book an asterisk
(*) will be applied to the symbol of an element whenever the element is one
of a biorthonormal or an orthonormal set. (Cf. Def. 8.3.1.) An asterisk on the
symbol of a space will be used to denote the conjugate space. (Cf. Def. 1.12.3.)

The solution to the interpolation problem (2.5.18) can be given in deter-
minantal form.

THEOREM 2.5.2. Let the hypotheses of Theorem 2.5.1 hold and let x1, ...
X. be a basis for X. If w1, . . . , wn are arbitrary numbers then the element

0 x1 x2 ... xn

w1 L1(x1) L1(x2) ... L1(xn)

x=- 1

G

I

(2.5.19)

I wn Ln(xl) Ln(x2) ... Ln(xn)

satisfies Li(x) = wi, i = 1, 21 ... , n.
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Proof: It is clear that x is a linear combination of x1, ... , x,, and hence
is in X. Furthermore, we have

0 L;(x1) L,(x2) ... L,(xn)

w1 L1(x1) L1(x2) .. . L1(xn)

L,(x)_-G
w, L,(x1) L,(x2) ... L,(xn)

I wn Ln(xI) Ln(x2) ... Ln(xn)

Expand this determinant by minors of the 1st column. The minor of each
nonzero element, with the exception of w,, is 0, for it contains two identical
rows. The cofactor of w, is - G. Hence, L, (x) = w,, j = 1, 2, ... , n.

Ex. 1. (Taylor Interpolation)
zn

The polynomials - , n = 0, 1, ... , and the functionals L,,(f) = f W (0), n =
n!

0, 1, ... , are biorthonormal.

J

X

Figure 2.5.1 Osculatory Interpolation at Two Points

p(x) = 3 - -1x2 R X) =
1

4 4 ) 1 + x2

p(+1) =f(+4 p'(+1) =f'(+1)

P(-') = f(-1), p'(-1) =f'(-').
Ex. 2. (Osculatory Interpolation)

Set w(z) = (z - z)(z -z) .. (z - z) 1 (z) =
w(z)

1 2 n, k (z - zk)w'(zk)
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The polynomials 1 - w(zk) (z - zk) lk2(z), (z - zk)lk2(z) of degree 2n - 1 and
the functionals w"(zk)

Lk(f) - f (zk), Mk(f) = f'(zk), k = 1 , 29 . . . , n

are biorthonormal.
The resulting expansion of type (2.5.17) is, therefore,

n w., (zk)
/

n

p2n_1(z) = I wk 1 - w. z ) (z - zk) 1k2(z) + I wk'(z - zk)1k2(z), (2.5.20)
k=1 (k k=1

and produces the unique element of 92n-1 which solves the "osculatory" inter-
polation problem

p(zk) = Wk

p'(zk) = Wk'

k = 1,2)...,n. (2.5.21)

Ex. 3. (Two Point Taylor Interpolation)
Let a and b be distinct points. The polynomial

n-1 Bk(z - b)k nlAk(z - a)k
p2n-1(z) = (z - a)n + (z - b)n (2.5.22)

k=0 k=0

dk f (z)
Ak

dzk [(z - b)n z =a

dk f (z)
Bk =

dzk [(z - a)n z =b

is the unique solution in Y2n-1 of the interpolation problem

p2n-1(a) = f (a), p2n-1(a) = f'(a), ... , p2n-j)(a) = f(n-1)(a)

p2n-1(b) = f (b), p'2n-1(b) = f'(b), ... , p2n=1)(b) = f (n-') (b).

(2.5.23)

(2.5.24)

Ex. 4. Exs. 1 , 2, 3 are, of course, special cases of the general Hermite inter-
polation problem. (Cf. Ex. 6, 2.3.) Let z1, z2, ... , Z. be n distinct points, al, ... , an

n
be n integers >I and N = al + a2 + + an - 1. Set w(z) _ J (z - zi)«i

and i=1

_ _lik(z) = w(z) k! dz(«i -k-1) w(z)
z=z i

(z - zi)k-«i d(«i-k-1) [(Z - Zj)i1
(2.5.25)

n n n

PN(Z) rilio(z) + ri'lil(z) + ... + ri«i-1)li«i-1(z) (2.5.26)
i=1 i=1 i=1

is the unique member of YN for which

PN(zl) = r1, p'N(zl) = r1', ... , pNi-1)(Z1) = ri«1-i)

(2.5.27)

PN(zn) = rn, p'N(zn) = rn', ... , pNn-1)(zn) = rn«-1).
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Ex. 5. Given the 2n + 1 points

-n' <X0 <X1 < ... <x2n <ir.

Ch. II

2n 2n

Construct the functions t;(x) = I-Tsin J(x - xk) II sin J(xj - xk), 0,
k=0 k=0

1, ... , 2n. If L;(f) = f (x;), then tj and Lj are biorthonormal.
Each function t;(x) is a linear combination of 1, cos x, ... , cos nx, sin x, ... ,

sin nx and hence is an element of 9-n.
To show this, observe that the numerator of tj is the product of 2n factors of

the form sin I(x - xk) = aeix/2 + #e-ix/2 for appropriate constants a and j9.
n

The product is therefore of the form I ckeikx, and is a combination of the
required form. The function k= -n

2n

T(x) _ I wktk(x) (2.5.28)
k=0

is therefore an element of .ln and is the unique solution of the interpolation
problem T(xk) = Wk, k = 0, 1, ... , 2n. Formula (2.5.28) is known as the Gauss
formula of trigonometric interpolation.

Ex. 6. Given n + 1 distinct points

0 <x0 <x1 < ... <xn <7T. Set
n n

C;(x) O (cos x - cos Xk) IT (cos x; - cos xk). (2.5.29)
k=0 k=0
k:t-j k:t-j

Then C; is a cosine polynomial of order <n (i.e., a function of the form
n
I ak cos kx) for which C;(xk) = bik. Given n + 1 distinct values wo, w1.... , wn

k=0
there is a unique cosine polynomial of order <n, C(x), for which C(xk) = Wk, k = 0,
19 ... , n. It is

n

C(x) = 2: WkCk(x).
k=0

Ex. 7. Given n distinct points 0 < x1 < < xn <7r. Set

(2.5.30)

n n
S; (x) = sin x IT (cos x - cos xk) IT (cos xf - cos xk). (2.5.31)

k=1 k=1
k:A 1 k:A 5

Then S,(x) is a sine polynomial of order <n for which S,(xk) = b;k. Given n
distinct values w1, w2, ... , wn, there is a unique sine polynomial of order
<n, S(x), for which S(xk) = Wk and it is

n

S(x) = I WkSk(x). (2.5.32)
k=1
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Ex. 8. Let zo, z1, ... , Zn be n + 1 distinct real (or complex) points. Let
wo, W19 ... , w,n be a second such set of m + 1 points. Set

P(Z) _ (Z - Zo) ... (z - zn),
Q(w) = (w - wo) ... (w - Wm),
Pj(z) = P(Z)/(Z - zj),
Qk(w) = Q(w)/(w - wk).

The (m + 1) (n + 1) polynomials

P,(z)Qk(w)w) =
Pj(zj)Qk(wk)

satisfy

(2.5.33)

ljk(zr, ws) = 6jr6ks- (2.5.34)
Hence

n m
p(z, w) = I I ,ujkljk(z, w) (2.5.35)

j=0 k=0

is a polynomial of degree <mn which satisfies the (m + 1) (n + 1) interpolation
conditions

0 91 9..., n
p(zj, Wk) = Pik k =0,1,...,m.

(2.5.36)

Formula (2.5.35) may be regarded as the generalization of the Lagrange formula
to two dimensions. Extensions to any number of variables will follow in a similar
fashion. It shows that by taking a sufficiently large number of powers of several
variables polynomial interpolation can be achieved.

2.6 Representation Theorems : The Newton Formula. The La-
grange formula (2.5.3) or (2.5.17) has one drawback. If we desire to pass
from a space of dimension n to a space of one higher dimension, we must
determine an entirely new set of elements yl*, y2*, ... , y,,,+1* that are not
related in a simple fashion to the old set xl*, x2*, ... , xn*. A representation
of Newton gets around this difficulty by taking linear combinations of both
the basis elements x1, x2, ... , and the prescribed functionals L1, L2, ... .
We shall first study this representation in the case of polynomial interpola-
tion.

Let zo, ... , Z. be n + 1 distinct points and form the n + 1 independent
Newton polynomials

1, z-z01 (z-zo)lz-zl),...,(z-zo)lz-zl)...(z-zn-1)
For given values wo, w1, ... , W. there is a unique member of 9n for which
p(zi) = wi, i = 0, 1, ... , n. Let us see if we can represent it in the form

p(z)=ao+ai(z-z0)+a2(Z-Z0)(z-Z1)+...

an(z - zo)(z - zl) ... (z - zn-1). (2.6.1)
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To determine the constants ail set z = zo, z = z1, ... , successively, and
solve the resulting linear equations:

a° = w°

WO

(2.6.2)

Note that for a fixed set of points z0, .... z, each ai is a certain linear
combination of the wi, and that, furthermore, a0 involves only w0 and z0; a1
involves only w0, w1, z0, z1 ; a2 involves only w0, w1, w2, z0, z1, Z2, etc.

DEFINITION 2.6.1. The constant a, is called the divided difference of the
jth order o f w0, w1, ... , w, with respect to z0, z1, ... , z5. It is designated by

a, = [w0, w1, ... , w;]. (2.6.3)

A compact formula for a, can be found by comparing (2.6.1) with the
Lagrange formula (2.5.8) with which it must coincide. The coefficient of zn

n
in (2.6.1) is an. The coefficient of zn in (2.5.8) is seen to be n wk . There-
fore, k =o w (zk)

an = [w0, w1, .
n w

wn] = I
k

(2.6.4)

k=0 w (zk)

where w(z) = wn(z) = (z - z0)(z - z1) . . . (z - zn). Thus, again, from (2.6.4),

a0=w0

a1 =

a2 =

a1 =
W1 - WO

z 1 - zo

1 fw2-w0 w1-w0
a2 = -z2-Z1 z2-z0 zl-z0

w1

z0 -Z I z1 - z0

WO + w1 + w2
(2.6.5)

(z0 - z1)(z0 - Z2) (Z1 - z0)(z1 - Z2) (Z2 - z0)(z2 - Z1)

If the wi are taken as the value of a function f at zi : f (zi) = wi, then we
may combine (2.6.1) and (2.6.3) to obtain

n

pn(f; z) = I If (z0), f (z1), . . . , f (zk)](z - z0)(z - z1) ... (z - zk-1)
k=0

(2.6.6)

w-1(z) = 1.
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This form of the interpolating polynomial is the finite Newton series for a
function f (z).

With zo, z1, ... , Z. fixed, introduce the linear functionals

L0(f) = f (zo)

L1(f) = f (zo) + f (z1)
zo - z1 z1 - zo

according to the scheme in (2.6.5). Then (2.6.6) becomes

n

Pn(f; Z) = JLI(f )wk-1(z)
k=0

(2.6.7)

(2.6.8)

Since wj(z) E °'n if 0 < j < n - 1 it follows that wj(z) = pn(wj(z); z) and
hence n

wj(z) Lk(wj(z))wk-1(z)
k=0

By setting j = 0, 1, 2, ... , in (2.6.9) successively we obtain

Lk(wj-l(z)) = akj

(2.6.9)

(2.6.10)

Comparing the biorthogonality relationships (2.6.10) and (2.5.14) our in-
troductory remarks become clear. Whereas wk(z) depends only on the points
zo, ... , zk, lk(Z) = lk,n(z) depends upon all the points z0, ... , zk, ... , zn. In
the Lagrange representation, we add an additional point and increase the
degree of the interpolating polynomial at the cost of changing all the funda-
mental polynomials. In the Newton representation, this can be accomplished
by adding one more term. The Newton representation has a permanence prop-
erty, and this is characteristic of Fourier series and other orthogonal and
biorthogonal expansions. (See 8.5.) The price that is paid for the convenience
of the permanence property is that the multipliers of the individual poly-
nomials are no longer simple values at a point, but certain linear com-
binations of these values.

This type of biorthonormality and permanence can be obtained in a
general setting.

THEOREM 2.6.1 (Biorthonormality Theorem or Generalized Newton Rep-
resentation). Let X be a linear space of infinite dimension. Let x1, x2, ....
be a sequence o f elements o f X such that f o r each n, x1, ... , X. are independent,
Suppose, further, that L1, L2, ... , is a sequence of linear functionals in X
such that for each n, the n x n determinant

Li(xj) 1n j=1 0. (2.6.11)
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Then there is determined uniquely two triangular systems of constants ai5,
bi, with aii 0 0 such that if

L1* = a11L1

L2* = a21L1 + a22L2

x1* = x1

x2* = b21x1 + x2

L3* = a31L1 + a32L2 + a33L3 x3* = b31x1 + b32x2 + x3

we have

(2.6.12)

Li*(xi*)=bi;, (2.6.13)

Proof: We want L1*(x1*) = 1. Therefore, a11L1(x1) = 1 or

all = (L1(x1))-1 0 0.

The denominator does not vanish by (2.6.11). We shall now carry out an
inductive proof. Assume that we have already determined

all
a21 a22

with a11a22 '

and ant ... ann bnl bn2
... bn,n-1 1

ann 0 0 and such that

Li*(xi*) = bi;, i, j = 1 , 2, ... , n. (2.6.14)

We will show that we can obtain first bn+1,1, bn+1,2. . bn+l,n) 1, and from
a knowledge of these values can then obtain an+1,1, an+1,2, , an+l,n+l
with an+1,n+1 0 and such that

Li*(xi*) = bi;, i, j = 1, 2, ... , n + 1. (2.6.15)

The conditions included in (2.6.15) that are not already contained in
(2.6.14) are

Li*(x*+1) =0 i = 1,2,...,n and
Ln+1(xi*) =0 i = 1) 2)...,n,

Ln+1(xn+1) = I. (2.6.16)
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The first n equations in (2.6.16) yield the system

bn+1,1L1*(xl) + bn+1,2L1*(x2) + ... + bn+l,nLi*(xn) = -Ll*(xn+1)

bn+1,1Ln*(x1) + bn+1,2Ln*(x2) + ... + bn }-1,nLn*(xn) Ln*(xn+l)

This system has a unique solution providing ILi*(x;)Inj=1 0. But from
Problem 19, Chapter II,

all 0 ... 0

a21 a22

I Li*(x;)I =

and an2 ' ' ' ann

I Li(xj)Inj=1

0.= a11a22 ... ann I Li(x;) In
%,j =l

Having determined the b's, or equivalently xn+ 1, consider the second group
of n + 1 equations in (2.6.16). This yields

an+1,1L1(xl*) + ' ' ' + an+l,n+1Ln+1(x1*) = 0

an+1,1L1(xn *) +

an+1,1Ll(xn+ 1) + '

. + an+l,n+1Ln+1(xn*) = 0

+ an+l,n+1Ln+j(xn+1) = 1

This system has a unique solution providing that

I L
n+1

i(xj
*)Ii,j=1 0.

But, again by Problem 19,

1 0

b21 1

ILa.(x*)In+l

bn+1,1 bn+2,1

0

0

' I Li(xf)I , j 11

= I Li(x,)Iin,j+1=1 0 0.
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Furthermore, an+l,n+l = alla22 ann I Li(x;)Ji =1/JLi(x;)Ji 11 0. We ob-
serve finally that at no stage is there any arbitrariness in our determination
of the constants and hence the solution is unique.

COROLLARY 2.6.2. Let X n designate the subspace o f X spanned by x1, ... ,
xn (i.e., the set of all linear combinations alxl + ' + anxn). If X E Xn then

n
x = I Lk*(x)xk*.

k=1
n n

Proof: If y = I Lk*(x)xk* then L,*(y) _ I Lk*(x)L;*(xk*) = L;*(x) by
k=1 k=1

(2.6.13). Since x1, ... , xn are independent, it follows from (2.6.12) that
xl*, ... , xn* are independent. Hence from (2.6.13) and Lemma 2.2.1 it
follows that L1, ... , Ln and consequently L,*, ... , Ln* are independent.
In view of this, L;*(y - x) = 0, j = 1, 2, ... , n implies y = x.

For a given x e X, the formal series
00

X ti I Lk*(x)xk*
k=1

(2.6.17)

is a biorthogonal expansion of the element x. In particular cases, the relation
of the series to x has been the object of vast investigations.

It will help to grasp the difference between the biorthonormality of
Lagrange type (2.5.15) and that of Newton type (2.6.15) if each is expressed
in the language of matrices. Let G designate the matrix (Li(x;)). Let A
designate the matrix (ai;) where the ai; are the quantities appearing in the
proof of Theorem 2.5.1. I is the unit matrix. Then, (2.5.15) may be expressed
as

GA' = I, A' = transpose of A. (2.6.18)

On the other hand, if A and B designate the lower triangular matrices taken
from the coefficient scheme of (2.6.12) then

AGB' = I.

Note that (2.6.19) is equivalent to

G = A-1(B')-1.

(2.6.19)

(2.6.20)

Now, A-1 is a lower triangular matrix with non-zero elements on its-princi-
pal diagonal and (B')-1 is an upper triangular matrix with 1's on its princi-
pal diagonal. (2.6.20) has a matrix formulation. A matrix G = (gi;) is said to be

regularly arranged if none of its principal minors i.e., g11,
g11 g12

Y21 g22
vanishes. If G is regularly arranged, then it can be expressed as the prod-
uct of a lower triangular matrix by an upper triangular matrix with 1's
on its principal diagonal. This is known as an LU-decomposition of G.
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The result of biorthogonalization can be expressed by means of deter-
minants.

THEOREM 2.6.3. With the notation of the previous theorem, let

G rr = (Lt(xj) I i,j=1
ten,

L1(x1) L1(x2) ... L1(x,)

T

1

G,-1

L*=-
' G

L,-1(x1) L,-1(x2) ... Lj-1(xj)

x1 x2 ... x;

L1(x1) L2(x1) L;(x1)

L1(x,-1) L2(x,-1) ... L,(x,-1)
L1 L2 ... L;

(2.6.21)

Proof: Expand these determinants according to the minors of the last
row. We see that x;* is a linear combination of x1, x2, ... , x; and L;* is a
linear combination of L1, L2, ... , L;. Moreover the coefficient of x; in x;*
is 1. Fix a j > 1. We shall show that Li* (x; *) = 0 for i < j. It suffices to
show that Li(x;*) = 0 for i < j. But

L1(x1) L1(x2) ... L1(x,)

L.(x;*) =
G,-1

L,-1(x1) L,-1(x2) ... L;-1(x,)

Li(x1) Li(x2) ... Li(x,)

=0

inasmuch as two rows are identical. Similarly, we can show that for fixed
i > 1, Li*(x;*) = 0 for j < i. It remains to show that Li*(xi*) = 1. Since
xi* = bi1x1 + bi2x2 + ' + bi,i_1xi-1 + xi, it suffices to show that Li*(xi) =
1. Now, from the second equation of (2.6.21), Li*(xi) = Gi/Gi = 1. The above
biorthogonal representation is unique and the theorem follows.

We now give some examples of biorthogonal systems of the Newton
type.
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Ex. 1. (Newton Polynomials). X is the space of all polynomials in z,

xl = 1 , x2 = z, x3 = z2, . . . , Ll (f) = f (z0), L2 (f) = f (zl), . . . ,

where zi are distinct points. Then,

1 z0 z02 . . . z0r-1

1 z1 z 12 . . . zi - i

Gr =

Ch. II

r-1

_ IT (zi - zj) (2.6.22)
i >j

1 z z2 ... zr-1r-1 r-1 r-1
I 1 z0 z02 ... z0j-1

1

Gj_1
2 j-11 zj-2 Zi-2 zj-2

1 z Z2 ... zj-1

This is a polynomial q(z) of degree j - 1 in z. Now q(zo) = q(zi) _ = q(zj-2) = 0
inasmuch as two rows are identical. Hence xj* = (z - zo)(z - zi) . . . (z - zj_I),
Corresponding to L j * we have the divided differences off at the points zo, zi, ... .
Formula (2.6.21) yields the representation

an = If (z0), f (zi), . . . , f (zn)]

1 1 ... I I I l 1 ... 1

z0 Zi ... zn z0 zl ... zn

(2.6.23)

n-1 n-1 . . . n-1z0 zl zn

f (z0) f (zl) . . . f (zn)

for divided differences.

n-1 n-1 . . . n-1z o z1 zn

z0 n zi n ... zn n

Ex. 2 (Abel-Gontscharoff Polynomials). These polynomials, Qn(z), arise from
biorthogonalizing the powers 1 , z, z2, ... , against the functionals Lo(f) _
f (z0), LI(f) = f,(zl), L2(f) = f"(z2), .... We have

Gr =

1 z z 2 zr-1
0 0 0

0 1 2z1 (r - 1)zi - 2

0 0 2 (r - 1)(r -2)z2-3

0 (r - 1)!

= 1! 2! 3! (r - 1)! (2.6.24)
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0 0 0

zo 1 0 0

z 2 2z1 2 0
1

Ln* (f) =
Gn+1

f(n)(zn)

n!

z0 n-1 (n - 1)zi -2 (n - 1)! 0

f (z0) f'(z1) f(n-1) (zn-1) f (n) (zn)

n2

(2.6.25)

. . . z
01 zo zo

0 1 2z1 nzi -1

1 0 0 2 .. n(n - 1)z2-2
(z) =Q (2.6.26)Gnn .

1 z z2 ... zn

Thus, in particular, we have

Q0(z)

Q1(z) = z - zo

Q2(z) = z2 - 2z1z + zo(2z1 - zo). (2.6.27)

The polynomials Q,z(z) are the Abel-Gontscharoff polynomials. A more tractable
representation can be found for Qn(z) in terms of iterated integration. Consider
the n-fold iterated integral

z z' z" z(n-1)

Tn(z) = n! dz' dz" dz" dz(n), n > 1. (2.6.28)
zo fl z2 zn-1

It is clear that T. is a polynomial of degree n with leading coefficient 1. Further-
more, Tn(zo) = 0, and by successive differentiation,

Tn'(z1) = 09 ... , T(n)(zn)
n!

Tnr) (zr)
0 for r > n.

r!

Thus, the biorthogonality conditions hold for Tn, and hence Tn = Q.

Ex. 3 (Bernoulli Polynomials). Let f (z) be analytic at z = 0 and assume
that f (0) 0 0. By rule

do n

dzn (f (z)est) _ X k skesz f(n-k)(z). (2.6.29)
k-0
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Hence,
dn

dzn
(f (z)est)

(n) sk f(n-k)(0)
z=0 k=0 k

Ch. II

(2.6.30)

z
is a polynomial of degree n in s. In particular, select f (z) = ez - 1 , a function

that is analytic in Izl < 2ir and f (0) 0 0. Hence, we may write

zest

ez - 1

°O 1 zest (n) co 1

n ez - 1 zn n Bn(s)zn (2.6.31)
n=0 0 n-0

for certain polynomials Bn(s) of degree n. (2.6.31) is valid for Izi < 2ir and can
be shown to hold uniformly in s and z provided s is confined to a closed bounded
region and z to a closed subset of I z I < 2ir. The polynomials Bn(z) are the Bernoulli
Polynomials. The generating function (2.6.31) provides a convenient way to
define them. For a general f (z), the resulting polynomials pn(s) defined by

a,

f (z)eSZ = I pn(s)zn (2.6.32)
n=0

are known as Appel Polynomials.
Differentiating (2.6.31) j times with respect to s we obtain

), IzI < 2-ff. (2.6.33
z

zj+lesz °O B(')(s)zn
=

e - 1 n=o n.

Set s = 0, 1 in (2.6.33), and subtract,

- 1
zj+i (ezez - 1

co
Bni)(1) - Bnj)(0)

= zn I z I < 27r, j = 0, 1, . .

n==0 nt

By the uniqueness theorem for power series we must have

B3+1(1) - B;+1(0)
= 1 while B(')(1) - B(')(0) = 0, r 0 j + 1. (2.6.34)(j+1)! r r

We see now that the polynomials Bo(x), B1(x), ... , and the functionals

L0(f) =f(0), L1(f) =f(1) -f(0),

L , L 3(f) =
2! 3!

form a biorthogonal set.

Ex. 4 (Orthogonal Polynomials). Though these polynomials will be treated
in detail in Chapter X, it is interesting to note how they fit in with Theorem
2.6.1 and Corollary 2.6.2. Let X = C[a, b]. Let w(x) be a fixed positive weight

b

function for which the integrals w(x)xn dx, n = 0, 1, 2.... , all exist. Introduce
a

b

the functionals Ln(f) = w(x)xnf (x) dx, n = 0, 1, 2, .... These are the weighted
a

moments off. It will then be possible to biorthonormalize the powers 1, x, x2, ... ,
against these functionals. (In Chapter VIII it will be shown that the
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determinant condition for this is fulfilled.) We then obtain a's and b's such that

b

Ln*(f) = + anlx + ... + annxn)f (x) dx (2.6.35)faw(x)(ano

pn(x) = bno + bnlx + ... + bnn-lxn-1 + xn

Ln*(p;(x)) = 6n2

A glance at the determinants (2.6.21) shows that the a's and b's in (2.6.35) are

proportional. Indeed, since Li(xi) = w(x)xix' dx = Lj(xi), the minors corre-

spondingsponding to elements xi and Li are equal. After accounting for the factors Gn-1
and Gn in front of these determinants, we find

If we now set

we shall have

i'i'zGn
Ln*(p;) = 6nf

Gn-1

b

Ln*(f) =aw(x)
G

Gn
pn(x) f (x) dx. (2.6.36)

J Gn-1 pn(x)pn*(x) =
Gn

(2.6.37)

b Gn-1 G;-1
w(x)

G
pn(x)

G
pj(x) dx

a n j
b

w(x)pn *(x) p5 *(x) dx. (2.6.38)
a

The polynomials pn * are called orthonormal over [a, b] with respect to the weight
w(x). They are determined up to a factor of ±1. (2.6.21) and (2.6.37) now give
us the following determinant representation for the orthonormal polynomials

(1, 1) (1, x) ... (1, xn)

Pn*(x) = Cn

where

(xn-1 , 1) (xn-1 , x) ... (xn-1 , xn)

and

(x, 1) (x, x) ... (x, xn)

fb

(xi, x5) = w(x)xi+i dx
a

Cn = (GnGn-1) -

xn

(2.6.39)

with Gn = I (xi, x3) ( ni,f=0'
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2.7 Successive Differences

DEFINITION 2.7.1. Let there be given a sequence of values yo, y1, ... .
The differences of adjacent values are designated by

Dyk=yk+1-yk, (2.7.1)

Higher differences are defined similarly

02yk = 0(Dyk) = Dyk+1 - L Yk = (Yk+2 Yk+1) - (yk+1 yk) (2.7.2)

In general,
An+1yk = 0(Onyk) = Onyk+1 - Onyk'

We define o°yk = yk

THEOREM 2.7.1. We have

00Ykyk
Alyk - Yk+1 _ Yk
02yk - yk+2 - 2yk+1 + Yk

03yk = Yk+3 - 3Yk+2 + 3Yk+1 Yk

In general,
n n n!

Onyk = I (-1) n-r yk+r,
r-0 r r = r! (n - r)! (2.7.4)

Proof: Formula (2.7.4) holds trivially for n = 0, and this begins an in-
ductive proof. Assume (2.7.4) true for n. Then,

n
On+1yk = 0(Onyk) = 0 I (- 1)n-r n

r=0 (r)Yk+r)

n nI (-1) n+l-ryk+r r - 1r=1

n+1 n + 1
I (-1)n+1-ryk+r

rr=O

_ I (-1) n-r () n
n Dyk+r = J(_1)n-r(n)

(yk+ l+r - Yk+r)
r=0 r r=0 r
n+1 n n (n)= I (-11 n+1-r r - 1 yk+r - I (-1) n-r r yk+r
r=1 / r=0

(;)] (:)Yk+fl+1+ + - (-1)n 0 yk

Thus, if the formula is true for n, it must be true for n + 1, and the induc-
tion is complete.
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COROLLARY 2.7.2. For k = 0 we have

n n
Onyo = I (-1)n-r r yr

r=0
(2.7.5)

In the case of interpolation at abscissas zo, z1, ... , that are spaced evenly :

zo = a, z1 = a -+ h, z2 = a + 2h, . . . , zn = a + nh, (2.7.6)

the divided differences may be given an elegant expression in terms of
successive differences. If w(z) = (z - zo)(z - z1) (z - zn), then

w'(zk) = (zk - z0)(zk - z1) . . . (zk - zk-1) (zk - zk+1) (zk zn).

Since zi - zi = (i - j)h,

w'(zk) _ (kh)(k - 1)h ... (h)(-h)(-2h) ... (- (n - k)h)
= hnk! (n - k)! (- 1)n-k. (2.7.7)

Therefore from (2.6.4),

n yk
17/7

k=0 w (zk)

- n / -1) n-kyk - 1 n -1 n-k n
hnik! n - k ! n! hn (

) kyk
k 0 ( ) k-0

Anyo
n! hn

We can therefore prove the following theorem.

(2.7.8)

THEOREM 2.7.3. Let p(z) be the unique polynomial of gn that takes on the
values yo, y1, ... , yn at the n + 1 points a, a -+ h, ... , a+ nh. Then

A2h2(z-a)(z-a-h)-+...pn(z)-yo-}-
h
y0(z-a)+

2!h2
1

+
n! h n

nyo(z - a)(z - a - h) (z - a - (n - 1)h). (2.7.9)

If pn(f ; z) interpolates to f at a, a + h, ... , a + nh then

;z) = f(a) Of(a) z - a
h

f(a)(z - a)(z - a - --}-+pn(f O2) + 2i1
h2

f(

+ Onf (a)(z - a)(z - a - h) (z - a - (n - 1)h). (2.7.10)
n! h"

We have written

Of (a) = f (a + h) - f (a)
02f (a) = f (a + 2h) - 2f (a + h) + f (a), etc. (2.7.11)
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Formulas (2.7.9) and (2.7.10) are known as Newton's forward difference
formulas.

If f (x) is defined at a, a + h, a + 2h, .... the formal series

00ti Okf(a)f x (z - a)(z - (z - a k-1h (2.7.12)
k =O

is called a Newton series for f.

Ex. 1. If f (x) = xn, then A f (x) = nhxn-1 + . The first difference is there-
fore a polynomial of degree n - 1. Similarly, we find Qnxn = n! ht' and & xn = 0
for p > n.

Ex. 2. If f (x) = eax then A f (x) = (eah - 1)Eax. Iterating this, Onf (x) _
(eah - 1)neax.

Ex. 3. If f (x) E Yn then the series (2.7.12) converges to f (x). From Ex. 1,
the series reduces to a sum of n + 1 terms and, by Theorem 2.7.3, is that member
of Y. which interpolates to f at a, a + h.... , a + nh. By uniqueness, it must
coincide with f.

Ex. 4. On the other hand, the function f (x) = sin 7rx has zeros at 0, ± 1,
±2, ... , so that with a = 0, h = 1, Okf (0) = 0. The series (2.7.12) is identically
zero and does not represent f (x) over any interval. An entire function may still
not be sufficiently restricted in its behavior to be represented by its Newton
series.

NOTES ON CHAPTER II
2.1 The discussion of polynomial interpolation in Chapters II and III can

be amplified by related material in any text on numerical analysis. Mention
should be made also of the numerous practical articles of H. E. Salzer
related to interpolation.

2.3 Abel-Gontscharoff Interpolation : J. M. Whittaker [1], p. 38; V. L.
Gontscharoff [1], pp. 84-86. Lidstone Interpolation: D. V. Widder [3],
R. P. Boas, Jr. [2]. Hermite's Interpolation : A. A. Markoff [1]; Gontscharoff
[1], p. 64. Hermite's formulas are rediscovered and republished every few
years. Generalized Taylor Interpolation : D. V. Widder [1], [2], I. M. Sheffer
[1]. Trigonometric Interpolation, A. Zygmund [1], Vol. II.

2.4 For additional examples of unisolvent systems, see Polya and Szego
[1], vol. II, pp. 45-52. Further theory is presented in Achieser [1], p. 67
et seq. and in Motzkin [1]. References to recent work related to Haar's
Theorem can be found in Buck [2].

2.5-2.6 General formulae of Lagrange and Newton type have been given
implicitly and explicitly by many authors. For instance, see the articles
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by Widder and Sheffer cited in 2.3. Also : W. E. Milne [1]. H. B. Curry [1]
develops these notions and contains some further references.

Bernoulli Polynomials: N. E. Norlund [1].
Appel Polynomials: Boas and Buck [1], E. D. Rainville [1].
2.7 For the algebraic side of differences, consult books on difference

calculus such as Fort [1]. There are extensive studies of the convergence of
interpolation series some of which are found in books : Norlund [1], Whit-
taker [1]. A. 0. Gelfand [1] has a noteworthy treatment of Newton series
and allied questions. See also Buck [1].

PROBLEMS

1. If V (X11 x2, ... , x,,) designates the Vandermonde determinant, show that
V(1,2,3,...,n) = 1! 2! 3! ... (n - 1)!

2. Can a parabola p be found for which p(0), p"(0), p"'(0) have preassigned

values? For whichp(x) dx, p(0), p'(0) have preassigned values?
-1

3. Construct a polynomial in Y3 for which p(O) = 1, p(l) = 3, p'(-1) = 4,
P""(0) = 0. Is the answer unique?

4. Three points lie on a nonvertical line. What happens when you try to fit
a parabola to them? A cubic? Formulate a general statement. A + Bx

5. Show that we can not always find a function of the form f (x) =
that passes through three points with distinct abscissas. 1 + Cx

6. Is it possible to fit a curve of the form f (x) = A + BeCx to the data
f(0) = 0,f(1) = 1,f(2) = I?

7. X consists of all functions of the form ao + alx + a2y + a3x2 + a4xy + a5y2
defined on -1 < x < 1, -1 < y < 1. Find a basis for X*.

8. Let X = Y,z considered on 0 < x < 1. Let 0 < xo < < xn < 1.
i

Prove that L,(/) = f (t) dt, j = 0, 1......n, are independent over X*.
fox A+Bx+Cx2

9. Select the constants A, ... , E so that 1 + Dx + Ex2 agrees with the

Maclaurin series expansion of ex as far as x4. How close is the resulting rational
function to ex over the interval lxl < io ?

10. If R(x) =
A + Bx
1- Cx ' can the interpolation problem R(0) = f (0), R'(0) _

f'(0), R"(0) = f"(0) always be solved? What about a similar problem for rational
functions of higher degree? The resulting rational functions are called the Pade
Approximants to f (x).

11. Let x0, x1, ... , X. be fixed. Let p(x) = ao + a1x + + anxn and
p(xi) = yi. Given an E > 0, we can find a 6 such that Iyi l < 6 implies I ai I < e.

12. Discuss the possibility of trigonometric interpolation with Taylor con-
ditions.

13. Discuss the possibility of osculatory trigonometric interpolation.
14. Let T (x) = a0 + a1 cos x + b1 sin x + + an cos nx + bn sin nx. Con-

sider einxT(x) = P2n(eix) and show that the number of real roots modulo 2ir of
T(x), each root counted with its multiplicity, is < 2n.
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15. If ao + a1 cos x + - - + an cos nx vanishes at n + 1 points,

0 < x0 < x1 . . . < xn < 7r,

Ch. II

it vanishes identically.
16. If b1 sin x + + bn sin nx vanishes at n points, 0 < x1 < < xn < 7r,

it vanishes identically.
17. Let s1, s2, ... , sn be distinct. Then the set eSlx, ... , eSnx is unisolvent over

any interval.
18. Show that pn(xn+1; x) = xn+1 - (x - xo)(x - x1) ... (x - xn).

n
19. Let G(x1, ... , xn) = (Li(x;)). Set Yk = akixi and T = (ai;). Then,

i=1

G(y19 ... , yn) = G(x1, ... , xn)T', T' = transpose of T. Prove a corresponding
result for a linear transformation of the L's.

20. In Theorem 2.5.1, determine the xi * explicitly in terms of determinants.
21. Prove the following "dual" of Theorem 2.5.1. Let X be a linear space of

dimension n and let x1, x2, ... , X. be n independent elements. Then, there are
determined uniquely n independent elements of X*, L1 *, ... , Ln *, such that
Li*(x,) aj . x2f (x1) - x1f (x2)22. Show that if the abscissas x1 0 x2, then L1 *(f) = and

x2 - x1
L2*(f) - f (X2) - f (XI) are biorthonormal to the functions 1, x. Interpret inx2 - x1
X = e1.

23. The functions
(-1)n sin z

and the functionalsz-n7r

Ln(f) =f(nir) n =0, ±1, ±2,..

are biorthonormal. The infinite expansion of form (2.6.17) is

°°

f (z) - sin z
(-1)nf (nor

n= - oo z - nor

It is called the Cardinal Series for f.
24. Biorthogonalize 1, x, x2, ... , against

1

121(x)Lo(f) = f (x) dx, L1(f) = dx.... .
o0

Compute the first three polynomials.
25. Let I Li(x1)I a j =1 0 0. Then there is a permutation of the elements

x1, x2, . . . , xn : x1', x2', . . . , xn

such that I L i (x;') I k =1 0 0, k = 1, 2, ... , n. (Cf. the hypotheses of Theorem
2.6.1.)

26. Compute the first four Bernoulli polynomials from (2.6.30) or (2.6.31).
1

27. Calculate the nth divided difference for f (x) = -.
n (n) X

28. Prove that f (n) = I
k

I&cf(O).
k =0
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29. Express x2, x3, x4 as linear combinations of 1, x, x(x - 1), x(x - 1) (x - 2),
x(x - 1)(x - 2)(x - 3).

30. Verify the formal Newton Series

(ea - 1)2eaz1 +(ea-1)z+
(

z(z-1)+ ,
1 1 z z(z - 1)

t - z t + t(t - 1) + t(t - 1)(t - 2) +
31. Verify the formal Newton series

log 2 (log 3 - 2 log 2)
log T(1 + z)

2
z(z - 1) +

3!
z(z - 1)(z - 2) +

(Hermite).



CHAPTER III

Remainder Theory

The results of the previous chapter are purely algebraic. They relate to
the possibility of carrying out interpolatory processes. But once these proc-
esses have been carried out, how good are the approximations that result?
Remainder theory deals with this question and is consequently of great
importance to numerical analysis as well as to various parts of pure analysis.

3.1 The Cauchy Remainder for Polynomial Interpolation

THEOREM 3.1.1. Let f (x) E Cn[a, b] and suppose that f (n+1) (x) exists at each
point of (a, b).

If,a Xn< b) then

f (x) - pn(f; x)
(x-x0)(x-xl)...(x-

(n + 1)!
xn2f(fl+1)()

(3.1.1)

where min (x, x0, x 1 . . . . . xn) < < max (x, x0, x1) ... , xn). The point
depends upon x, x0, x 1 . . . . . xn and f.

Proof: Since pn(f ; xk) = f (xk), the function f (x) - pn(f ; x) vanishes at
x = x0, x = x1, ... , x = xn. Let x be fixed and x0, xl, .... xn. Set

f (x) - NY; x)K(x) =
(x - x0) (x - xl) ... (x - xn)

and consider the following function of t :

(3.1.2)

W (t) = f (t) - pn(f; t) - (t - xo)(t - xl) ... (t - xn)K(x). (3.1.3)

The function W (t) vanishes at t = x0, t = xl, ... , t = xn. In addition, in
virtue of (3.1.2), it vanishes at the additional point t = x. By the general-
ized Rolle's Theorem 1.6.3, the function W(n+1)(t) must vanish at a point

with min (x, x0, . . . , xn) < < max (x, x0, . . . , xn). But from (3.1.3)

so that

and therefore

W(n+1)/t1 = f(n+1)(t) - (n + 1)! K(x)

0 = W (n -}- 1)! K(x)

K(x) =
1

(n + 1)!

56

(3.1.4)

(3.1.5)
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Inserting this in (3.1.2) we obtain (3.1.1). If x = xk, (3.1.1) holds trivially
with any .

COROLLARY 3.1.2. (Error in Linear Interpolation). Let f (x) E C'[a, b]
and suppose that f"(x) exists at each point of (a, b). Then, for a < x < b,

b - x x- a (x-a)(x-b)f(x) - b-af(a)+b-af(b) = 2

(3.1.6)

In most instances, the value of is not known exactly, and the following
estimate becomes of importance.

COROLLARY 3.1.3. Let

Rn(f; x) = f (x) - pn(f; x).

Then if f (x) E Cn+1[a, b],

(n+1) Ix-x01 Ix-x1l...lx-xnl.
IRn(f; x)I < max f (t) (n + 1)(

(3.1.7)

(3.1.8)

Ex. 1. A value for aresin (.5335) is obtained by interpolating linearly between
the values for x = .5330 and x = .5340. Estimate the error committed. We have
(aresin x)" = x(1 - x2)-z and (aresin x)" = (1 + 2x2) (1 - x2)- z . Since the 3rd
derivative is positive over .533 < x < .534, the maximum value of the 2nd
derivative occurs at x = .534. From (3.1.8),

.534 (.0005)2
J R11 < g

2
< 1.2 x 10-7.

(1 - (.534)2)'

A direct computation shows that the true error is 1.101 x 10-7.

This example points out the following facts. In order to use the estimate
(3.1.8) in practical work, it is necessary to have an expression for a higher
derivative of the function interpolated, and it is necessary to obtain an
upper bound for the value of this high derivative over a certain interval.
This might be a formidable task even for quite elementary functions. Think
of obtaining the 8th derivative of aresin x or, worse still, of

(1 + (x + 2)1 + (x + 3)i)l!

There are several ways in which this difficulty can be overcome. This
applies not only to the error estimate for interpolation, but to all error
estimates of mean value type, i.e., those involving higher derivatives. If
we are working with a tabulated function, we can estimate derivatives
by means of differences. The justification for this procedure is found in
Corollary 3.4.4. Secondly, if we are working with analytic functions and if we
are in a position to obtain an upper bound for the values of the function in
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the complex plane, then we can use (1.9.8) to estimate the derivative. This
process is summed up by the following result..

COROLLARY 3.1.4. Let f (x) E A (R) where R is a region that contains [a, b].
Let C be a closed curve that contains [a, b] in its interior and set L(C) =
length of C, MC = m ax If (z)I, 6 = minimum distance from C to [a, b]. Then,

R // .(= x - // ;x L(C)MC -x I x-xll...lx-xnl,
I nl f ) I I f l ) pnl f ) I

`Z7T6n+2 IX O IX

(3.1.9)

Ex. 2. Let f (x) _ [ex2-4 - 1]s. [a, b] -1, 1], n = 4, x0 = -1, x1 = A.-
X2 = 0, x3 = 1, x4 = 1. Estimate the error committed at x = by interpolation
at these points. Now f (z) is analytic in IzI < 2, and

I f (z) I = I ez2-4 113

< (l ez2 l + 1) 3 = (eRe(z2-4) + 1)3

2 2 i
= (ex -v -4 + 1)3.

If C: IzI = p, 1 < p < 2,

MC = m aC x I f (z) I < (ep2_4 + 1)3 < 21. L(C) = 27rp,

and 6 = p - 1. Write p = 2 - e. Then

L(C)MC (2ir)(2 - E)23
2ir8n+2 27r(1 - E)g

Since (3.1.9) is valid for any 0 < e < 2, we may select e = 0, leading to

R4(f;1)I < 21L(A)(1)(1)(1)(1) .11.

3.2 Convex Functions. Here we make a different sort of application
of the remainder theorem.

DEFINITION 3.2.1. Let f (x) be defined on [a, b]. Then f is said to be
convex on this interval if an arbitrary chord joining two points of the curve
is never below the curve.

XI X2 X3

Figure 3.2.1.
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Ex. 1. The parabola y = x2 is convex on any interval [a, b].

This definition can be recast in the language of interpolation. Let a
x1 < x2 < x3 < b and let pl(f ; x) be that element of 91 which coincides
with f at x1 and x3; then

f (x2) - pl(f; x2) < 0, x1 < x2 < x3. (3.2.1)

THEOREM 3.2.1. Let f"(x) exist on (a, b). Then f (x) is convex in every
closed subinterval if and only if f "(x) > 0 on (a, b).

Proof: By (3.1.6),

f (x2) - p1(f; x2) = (x2 - x1)(x2 - x3

Since (x2 - xl)(x2 - x3) < 0, f "(x) > 0 implies that the left hand side is
nonpositive and hence f is convex.

Suppose, conversely that f is convex but that f "(x) = k < 0 for some
a < x < b. Then, by definition of the second derivative,

lim f'(x +
h) -f'(x) = k
h

lim f'(x h) -f'(x)
= k.-h

Hence,
lira f'(x + h) - f '(x h)

= 2k
h

Since k < 0, for sufficiently small h, say for 0 < h < h1, we must have
f'(x + h) -f'(x - h) <k1h,k1 <0.

Hence
hl

'x - 'x- h A < hIkhA-k1h12.

o [f( + h) f( )J 0
1 2

Therefore f (x + h1) - 2f (x) + f (x - h1) < 0.

This tells us that the chord extended from x - h1 to x + h1 lies below the
curve at x and this contradicts the assumption of convexity.

If f lacks a second derivative, we can at least say that second differences
are nonnegative.

THEOREM 3.2.2. Let f (x) be convex in [a, b].

If a < x0 < x0 + h < x0 + 2h <b,
then

02f (x0) = f (xo -}- 2h) - 2f (xo + h) + f (x0) > 0. (3.2.2)

Proof : This inequality asserts that the midpoint of any chord lies above
or on the curve.
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3.3 Best Real Error Estimates; The Tschebyscheff Polynomials.
The error estimate (3.1.8) for polynomial interpolation splits into two
parts. The first part, amxaxb I f (n+1) (x) I , depends upon the function inter-

polated, but is independent of the manner in which the interpolation is
1

carried out. The second part, (n + 1)! ix - x01 ix - x1I Ix - xnI , is in-

dependent of the function, but depends upon the points. The estimate
(3.1.8) was obtained by replacing I f (n+l) I by amz xb I f (n+1) (x) I . This was a

pure expedient, and in many cases, of course, the error predicted by (3.1.8)
will be far greater than the actual error.

But since the first part is, so to speak, beyond our control, let us look at
the second part. A small error estimate will also result from a small second
part. Consider the quantity amxa b I (x - xo)(x - x1) . . . (x - xn)I. It de-
pends upon x0, x1.... , xn, and this leads us to the following important
and interesting question: how can we select points x0, x1, ... , xn in [a, b]
so that the maximum is as small as possible? As far as the estimate (3.1.8)
is concerned, this selection of points will be the best possible selection.
Indeed, it turns out that this choice of points is a happy choice as far as a
number of questions in interpolation theory are concerned. The answer to
the problem just posed is given by the zeros of the Tschebyscheff Poly-
nomials, and we now turn to their theory.

In deMoivre's formula (cos 0 + i sin 0)n = cos nO + i sin n0, set cos 0 = x.
IfO <0 <IT,sin0=1/1 -x2 >0.Then,

cos n0 + i sin n0 = (x + A/1_ x2)n.

If we expand this expression by the Binomial Theorem, and take the real
parts of the resulting equation, we obtain

cos n(arccos x) = cos n0 = xn + (n)
2

()xn_2x2 - 1)

+ (n)()xn_4x2 - 1)2 -+- . .. . (3.3.1)
4 l

Thus, cos n0 is a certain polynomial of degree n in cos 0.

DEFINITION 3.3.1. The Tschebyscheff polynomial of degree n is defined
by

T n(x) = cos (n arccos x) = xn +
(n)Xn-2(X2 - 1) + (n = 0, 1.... ).

2

(3.3.2)

There are a number of distinct families (in fact, infinitely many) of poly-
nomials that go by the name of "Tschebyscheff Polynomials." The poly-
nomials defined by (3.3.2) are the Tschebyscheff Polynomials, par excellence.
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When we have occasion to deal with other types of Tschebyscheff Poly-
nomials, we shall include some qualifying expression.

It is easy to compute the first few Tschebyscheff polynomials explicitly
using (3.3.2). We find

To(x) = 1

TI(x) x
T2(x) = 2x2 - 1
T3(x) = 4x3 - 3x (3.3.3)

T4(x)=8x4-8x2+1
T5(x) = 16x5 - 20x3 + 5x
T6(x) =32x6-48x4+ 18x2- 1

The Tschebyscheff polynomials satisfy a three term recurrence relation.

THEOREM 3.3.1.

Proof :
7'n+1(x) = 2xT n(x) - T n_1(x) n = 1, 2, .... (3.3.4)

cos (n + 1)0 = cos nO cos 0 - sin nO sin 0

cos (n - 1)0 = cos nO cos 0 + sin nO sin 0

Adding and rearranging,

cos (n + 1)0 = 2 cos nO cos 0 - cos (n - 1)0

Now set cos 0 = x, cos nO = Tn(x), and (3.3.4) is obtained.

COROLLARY 3.3.2.

Tn(x) = 2n-1xn + terms of lower degree. (3.3.5)

THEOREM 3.3.3. Tn(x) has simple zeros at the n points

2k - 1
xk=cos

2n
IT k = 1,2)...,n. (3.3.6)

On the closed interval -1 < x < 1, T n(x) has extreme values at the n + 1
points

2k'=cos 7r k=0,1,...,nx (3.3.7)k
2n

where it assumes the alternating values (-1 )k.
2k- 1

P T )
2k- 1

= 0= cosroof : n(xk) = cos n arc cos cos 2n 7T 2 7r ,

k= 1, 2,. .. , n. Now
n

inT '( n are o x)= 83 3n ( c .x) s
N/1 - x2

s ( ). .
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n (2k - 1
Hence, Tf'(xk) = - 2 sin 2 7r 0 and the zeros must be

1 1 xk

simple. Moreover,

Tn '(xk') = n 1 - cost
k7r

sin (kIT) = 0
n

fork = 1,21...,n - 1. Now,

T n(xk') = cos n are cos cos
k7r- = cos (k7r)
n

This is valid for k = 0, 1, ... , n. But for -1 < x < 1,

Tn(x) = cos (n are cos x)

and hence I T n(x) I < 1. This shows that the points xk' are extreme points.
It is easily shown that xk' are the only extreme points in -1 < x < 1.

DEFINITION 3.3.2. n(x) = 1 Tn(x).2n_1

Note that Tn(x) = xn + terms of lower degree.

THEOREM 3.3.4 (Tschebyscheff). Let 9n designate the class of all poly-
nomials of degree n with leading coefficient 1. Then, for any p e 9n,

_maxx l I Tn(x)I < _m ax 1 lp(x)I

Proof: On --1 < x < 1, I Tn I assumes its maximum value,
1

, n + 1

times at the points xk' = cos
r 2n_1

k = 0, 1, ... , n.
n 1

Suppose there were a p e 9n, with -m ax 1 I p(x)I < 2n-1 Form the dif.

ference Q(x) _ Tn(x) -- p(x). Clearly Q(x) E °9n_1. Now

lk
Q(x ') = ' (x ') - p(x ') _ ( ) - p(x '), k = 0, 1, ... , n.k n k k 2n-1 k

These quantities are alternatively + and - inasmuch as I p(xk') I <
1

2n-1

Therefore, there are n + 1 points where Q(x) takes values with alternating
signs. Q(x) therefore has n zeros. Since Q E °9n-1, it must vanish identically.
Thus, p(x) = T n(x). This yields

1 = max In(x)I = max lp(x)I <
2n-1 -1:5z:51 -1!5X<1 2n-1

This is a contradiction.
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COROLLARY 3.3.5. max I xn + alxn-1 + + an I > 2n-1-1:5X<1

COROLLARY 3.3.6. mxa b Ia0xn + alxn-1 + ... + an 1 > lao
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Figure 3.3.1 The Tschebyscheff Polynomials.

1

(b - a n

22n-1



64 REMAINDER THEORY Ch. IIIb-
Proof : Make the transformation

+ a
x = 2 + b

2
a

t converting [a, b]
into [-1, 1].

When polynomial interpolation is carried out on the zeros of Tn+1(x) :
xo, x1, ... , xn, then 7n+l(x) = (x - x0) (x - xn) and we have

R / x = Tn+l(x) (n+l)/ -1 1 /3.3.9f l )n(f )
(n

+ 1)!

and

I Rn(f ; x)I < 1 max I f (n+l)(x)1, -1 < x < 1. (3.3.10)2n(n + 1)I -1 <x<1

3.4 Divided Differences and Mean Values. We begin with a formal
identity for the remainder in polynomial interpolation.

THEOREM 3.4.1.

Rn(f; z) = f (z) - pn(f; z)

= If (Z)' f (z0) , . . , f (zn)] (z -
Proof: According to (2.6.23),

zo)(z - z1) ... (z - zn). (3.4.1)

1 1 1

Z z0
... Zn

Z2 zo2 ... zn2

If lz), f (z0), . . . . f (zn)] =

1 1 1

Z z z0 n

Z n z0 n ... zn n zn zU n ... zn n

f (Z) f (Z0)
... f (zn) zn+l z0+1 ... zn+1

(3.4.2)

Note that the denominator D is in 9n+1) and that it vanishes for zo, z1, ... ,
zn (identical columns). Hence we have

Z o Znn

D = (-1)n+1(z - zo)(z - z1) ... (z - zn)

I z0 n ... zn n I

It follows from this and by expanding the numerator of (3.4.2) in minors of
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the first column that the function

(D(z) = If (z), f (zo), . . . , f (zn)](z - zo)(z - zl) ... (z - zn)
equals f (z) + q(z), where q(z) E ?1' . Moreover, 1 (zi) = 0 i = 0, 1, ... , n.
Hence -q(zi) = f (zi). By the uniqueness of interpolation, q(z) = -pn(f ; z)
and (3.4.1) follows.

COROLLARY 3.4.2. Let f (x) E C [a, b] and suppose that f (n+1) (x) exists at
each point of (a, b). If a < x0 < xl < < xn < b, and x e [a, b], then

f(n+l)()
[f (x),f(x0), ... , f (xn)] = n

+ 1) (3.4.3)

where min (x, x0, ... , xn) < < max (x, x0) ... , xn).

Proof : Combine Theorem 3.4.1 with Theorem 3.1.1.

Divided differences may be regarded as generalizations of derivatives.
More precisely,

COROLLARY 3.4.3. Let f (x) E Cn+1[a, b]. Then if x e [a, b],

i=0,1,2,...n
(3.4.4)

In the case of equally spaced points, we obtain a mean value theorem for
successive differences. Let x0 = a, xl = a + h, ... , xn = a + nh. Then,

n)] =
An

f r o m (2.7.8), If (xo), f (x1), ... , f(x n
f (

hn
xo) . Combining this with

Corollary 3.4.2 letds to

COROLLARY 3.4.4. Let f (x) e C[a, b] and suppose that f (n)(x) exists at each
point of (a, b) ; then

Onf (x0) = hnf (n)( ) x0 < < xn. For n = 1, (3.4.5)

this is the simple mean value theorem.

Ex. 1. Tables of functions frequently list the first few differences. Suppose
that f has been tabulated at an interval of h and suppose that we obtain the
value of f at a point x between successive abscissas a and a + h by linear inter-
polation. By Cor. 3.1.2, the error committed, Rl, is

(x -a)(x -a -h)
a< Ae < a -}- h.f "(,e)2 ,

f(n+l)(x)
z im If (x), f (xo), .. . , f (xn)] = (n + 1)!

1
By (3.4.5) 02f (a) = h2f"(1) so that if "h is sufficiently small"

h2
02f (a).
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h2
Since max I (x - a)(x - a - h) I = - , it follows that

a<x<a+h 4

Ch. III

I R11 < J l L2f(a)l.

This leads to a rule of thumb long employed by computers: the error in linear
interpolation does not exceed I of the 2nd difference.

3.5 Interpolation at Coincident Points. In formulating the funda-
mental problem of polynomial interpolation, we have assumed that the
interpolating points are distinct. With a proper convention as to what in-
terpolation at coincident points means, this restriction can be overcome.
The convention arises from considerations of the following sort. Suppose
we interpolate to f (x) at the distinct points xo, x1, ... , xn. Then,

n

pn(f; x) = I If (x0), f (x1). . . . . f (xk)](x - x0) ... (x - xk-1). (3.5.1)
k=0

If we make x1, ... , xn "coincide" at xo by allowing x1, x2, ... , xn -* xo,
then, by (3.4.4), the limiting expression on the right hand side will be

;x= nf()(xo)x_xk. 3.5.2.( 0) ( )pn(f ) I
k-0 k!

The interpolation polynomial approaches the truncated Taylor expansion
for f (x) at xo. This is an interpolation in which the values f (xo), . .

f (n)(xo)
have been prescribed. This provides an interpretation for interpolation at
n + 1 coincident points.

In an analogous way, the following convention is introduced. Suppose
that among the n + 1 points xo, x1, ... , xn only j + 1 of them, xo, x1, ... , xp
are distinct. Suppose that in the list of points xo occurs no times, . . . , x,
occurs n, times so that no + n1 + - - - + n, = n + 1. Then, by interpola-
tion to f (x) at xo, x1, . . . , xn we shall understand the determination of the
unique polynomial of degree < n, pn(x), for which

pn(x0) = f (x0), pn'(x0) = f'(x0). . . . . pnno-1)(x0) = f (ft-1) (Xo)

(3.5.3)

pn(x,) = f (x,), pn'(x,) = f'(x,), . . . . pnnf-1)(x,) =,f(ni-1)(x').

This is a problem of Hermite interpolation and the existence and uniqueness
of this polynomial is guaranteed by Ex. 4, Ch. 2.5.

To justify this convention from the point of view of a limiting process,
in the way in which (3.5.2) was derived from (3.5.1), we should have to
study the limiting expressions of the divided differences when each of several
groups of arguments approach distinct limits. This would lead to the notion
of generalized divided differences and is a topic that will not be pursued in
this book.
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Having identified "coincident point" interpolation with Hermite inter-
polation, we point out that a remainder formula analogous to (3.1.1) is
easily obtained.

THEOREM 3.5.1. Let x0, x1, ... , X. be n + 1 distinct points in [a, b]. Let
no,n1,...,nn ben+1 integers >0. Let N=(no+nl+---+nn)+n.
Designate by HN(f; x) the unique element of 1N for which

HN)(f ; xi) =f(k) (xi) k = 0, 1, ... , ni, i=0,1, ... , n. (3.5.4)

Let f (x) E C[a, b] and suppose that f (N + 1)(x) exists in (a, b) ; then

f(N+1)()
f (x) - HN(f; X) = N 1)! (x -

x0)' o+1(x
- x1)ni+1

... (x - xn)nn+1

(3.5.5)
where min(x,x0)

Proof : Consider (f (x) - HN(f; x))/(x - x0)no+1 ... (x - xn)nn+l and pro-
ceed as in the proof of Theorem 3.1.1.

3.6 Analytic Functions : Remainder for Polynomial Interpolation.
Let f (z) be analytic in a closed simply connected region R. Let C be a
simple, closed, rectifiable curve that lies in R and contains the distinct
points z0, z1, ... , Zn in its interior. Consider the integral

I = 1
f(z)

dz. (3.6.1)
27T2 C (z - z0)(z - zl) ... (z - zn)

The integrand is analytic or has simple poles at zo, Z 1 , . .. , zn. Hence, by
the residue theorem,

nI=1
k =0 (Zk - z0) ... (Zk - zk-1)(Zk - Zk+1) ... (Zk - Zn)

Compare this with (2.6.4), (2.5.6) and obtain

If (zo), f (zl), ... , f (zn)] = I. (3.6.3)
By the same token,

If (z), (Z), ... , (Z)] = 1. f (t)f 0 f n 27T2 C(t-z)(t-z0),...,(t-zn)

From (3.4.1),

Rn(f; z) = f (Z) - Pn(f; z)
= If (z), f (z0), . . . , f (zn)](z - z0)(Z - Z) ... (z - zn)

zl) ... (z - zn) f (t) dt(z - zo) (z -

(3.6.4)

27Ti Jc(t-z)(t-zo)...(t-zn)'

dt, z E R.
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We have therefore proved

THEOREM 3.6.1 (Hermite). Under the above regularity conditions,

f (z) - pn(f; z) = Rn(f; Z)

- z- z - zt- zc27Ti (t 0)(t 1) (t n)( )

COROLLARY 3.6.2.

Ch. III

(3.6.5)

pn(f; z) =
1 w(t) - w(z) f (t) dt

(3.6.6)
27Ti c w(t)(t - z)

where w(z) = zn).

Proof: (z) = 1 f (t) dt. Subtract (3.6.5) from this.f 27T2 ct - z

COROLLARY 3.6.3. Formula (3.6.6) has meaning if the points z0, zl, ... , Zn
are not distinct and yields the polynomial that interpolates to fin the generalized
sense explained in 3.5.

Proof : We shall give only a brief indication of how this goes. For sim-
plicity, suppose that z° and zl are coincident and the other z's are distinct.
Then, w(z) _ (z - z0)2(z - z2) (z - zn) and so, w(z0) = 0, w'(z0) = 0.
From (3.6.6),

z) - 1 . w(t) f (t) dt = (z )pn(f 0 27x2 Jc w(t)(t - z0) f °
and

pn'(f; z0)

1 (z - z0)(z - zl) (z - zn) f (t) dt

1 a w(t) - w(z) f (t) dt

27ri c az (t - z) z =zo w(t)

1 f (t) dt = f'(z ).
27x2 C (t - z0)2 °

Now pn(f ; zi) i = 2, . . . , n is easily computed to be f (zi) and therefore
pn(f ; z) takes on interpolatory values as required.

COROLLARY 3.6.4. If f is analytic at z0 then
1

Z19Z21,
limn--Ipzo If (z0), f (zl), . . . , f (zn)] n! f (n)(z0)

1 f (z)

(3.6.7)

Proof : In the limit, I becomes = .. f (n)(z0). This is
the complex analog of (3.4.4). 27ri ic (z - z0)n+1
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Ex. 1. The limiting form of (3.6.5) as zl, ... , zn -. z° is the Taylor Series
with the exact complex remainder

.
z- z0 n+1 f (t)

dt.z- n f(k) (z0)
(z- z k- 1

C
f() I k! °) t-z0 t - zk= 0

0Cr

Figure 3.6.1.

A moment's consideration of the residue theorem should convince the
reader of the validity of the following generalization of formulas (3.6.5) and
(3.6.6). Let C consist of a finite number of mutually exterior curves C1, ...
Cr- Let fi(z) be a single valued analytic function in and on Ci i = 1, 2, . . . , r.
The functions fi need not be analytic continuations of one another. The
total configuration of functions fi(z) will be designated by f (z), and f will
be thought of as a certain analytic configuration. If, now, each of the points
z0, ... , zn is contained in the interior of some Ci, and if interpolation to
f (z) is carried out at these points, then formulas (3.6.3), (3.6.5), and (3.6.6)
are still valid.

Ex. 2. Formula (3.6.5) provides a complex analog of the estimate (3.1.8).
If 61 = minimum distance from zi to C and 6 = minimum distance from z to C
then,

R
; z) < L(C)MCI z - zol Iz - zll ... Iz - znl

n (.f I 2ir 6 60 61 ... 6n

3.7 Peano's Theorem and Its Consequences. If we examine, once
again, the Cauchy remainder for polynomial interpolation (3.1.1), we may
note the prominent role played by the portion f (n+1) If, for instance,
f E Yn, then f (n+1) = 0, and the remainder vanishes identically as it should.
For a fixed x, we may consider the remainder Rn(f ; x) = f (x) - pn(f ; x)
as a linear functional which operates on f and which annihilates all elements
of i'n. Peano observed that if a linear functional has this property, then it
must also have a simple representation in terms off (n+').

Without striving for full generality, consider functions of class Cn+1[a, b],
and let linear functionals of the following type be defined over this class.
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L(f) _ [ao(x)f (x) + al(x)f '(x) + ... + an(x) f(n)(x)] dx
fa

Ch. III

.9 o .91 in
+ biof (xio) + bilf'(xil) + + binf (n) (xin). (3.7.1)

i=1 i=1 i=1

The functions ai(x) are assumed to be piecewise continuous over [a, b]
and the points xi; to lie in [a, b].

THEOREM 3.7.1 (Peano). Let L(p) = 0 for all p e °Yn. Then, for all
f e Cn+1[a, b],

5
L(f) = f (n+1)(t)K(t) dt (3.7.2)

a

where
1

K(t) = nj Lx[(x - t) + ] (3.7.3)

and

(x-t), _ (x - t)n x > t

(x-t)+ =0 x<t. (3.7.4)

The notation Lx[(x - t)'] means that the functional L is applied to (x - t) n
considered as a function of x.

Proof : Taylor's Theorem with the exact remainder tells us that

f (x) = f (a) + f'(a)(x - a) + .. .

f (n)(a)(x - a)n 1+ - - t)dt.
n! n!

f7fn+1)(t)(x

b

We may evidently write the last term as 1 f (n+1)(t)(x - t)n dt. Now
n! a +

apply L to both sides of this expansion and recall that L vanishes for all
elements of fin. This yields

1 b

L(f) = n!
Lf f (n+l)(t)(x - t)+ dt. (3.7.5)

Since we have assumed a form (3.7.1) for L, we are working under hy-
potheses which allow an interchange of the functional L with the integral in
(3.7.5). Hence,

b

L(f) = 1 af (n+1)(t)Lx[(x - t)n ] dt. (3.7.6)
n. +

The function K(t) is called the Peano Kernel associated with the func-
tional L.
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COROLLARY 3.7.2. If, in addition to the above hypotheses, the kernel K(t)
does not change its sign on [a, b] then for all f e Cn+l[a, b],

f(n+l)()
L(f) _

(n
+ 1)! L(xn+l), a < < b (3.7.7)

Proof : From (3.7.2) and (1.4.5),

L( f) = K(t) dt a < < b (3.7.8)
a

Insert f = xn+l in (3.7.8) and obtain
b

L(xn+l) = (n + 1)!aK(t) dt (3.7.9)/

Combining these yields (3.7.7).

A functional that satisfies the conditions K(t) > 0 (or K(t) < 0) on [a, b]
is known as a positive (or negative) functional of order n. Many of the error
functionals that occur in numerical analysis are of this type.

Ex. 1. Kowalewski's Exact Remainder for Polynomial Interpolation. Let
n

x, x09 ... , xn be fixed in [a, b]. Let L(f) = Rn(f; x) = f (x) - I f (xk)fk(x).
(See (2.5.9)). k=0

Then,
n

n! K(t) = Lx(x - t)+ = (x - t)+ - (xk - t)+4k(x)
k=0

n

[(x - t)+ - (xk - t)+]4k(x).
k=0

The last equality follows from (2.5.13). We now put this in a more convenient
form. For fixed k we have by (3.7.4),

- t)+ - (xk - t)+] f (n+l)(t) dtj[(x
x

[(x - On - (xk - t)n] f(n+l)(t) dt + (xk - t)nf (n+l)(t) dt.
xkfax

Hence,

n! K(t) f (n+l)(t) dt
a

x n n x
fcn+l)(t) [(x - On - (xk - t)n]4(x) dt + 4(x) (xk - t)nf (n+l)(t) dt.

a k=0 k=0 xk

The inner sum in the second integral may be transformed by (2.5.13):

n n
[(x - on - (xk - t)n]4(x) = (x - On - (xk - t)n4(x)

k=0 k=0
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n

Since I (xk - t)'fk(x) = pn((x - On; x) = (x - t)n, the inner sum vanishes
k=0

identically. Thus, finally,
1 n x

L(f) = f (x) - pn(f; x) = n t k(x) (Xk - t)nf (n+1)(t) dt, f E Cn+l[a, b].
k-0 xk (3.7.10)

Ex. 2. (Integral remainder for linear interpolation.) The case n = 1, xo = a,
x-b x-a

xl = b is particularly noteworthy. Then 10(x) =
a b , 14(x) = b - -. From

(3.7.10),

x-b x-a
f(x) - a-bf(a) -b -af(b)

x-b x x-a b
b - a (t - a)f"(t) dt + b -

a
(t - b)f"(t) dt. (3.7.11)

a z

Introduce the following function defined over the square a < x < b, a < t < b

(t - a)(x - b)
b -a

G(x, t) _
(x -- a) (t - b)

b -a
Then we may write (3.7.11) in the form

t <X

x <t.

b

R1(f; X) = G(x, t) f" (t) dt
a

The function G(x, t) is, for fixed x, the Peano kernel for Rl(f ).
Let h(x) e C[a, b] and H" (x) = h(x). Set

b

fi(x) = G(x, t)h(t) dt.
a

(3.7.12)

(3.7.13)

(3.7.14)

Then, by (3.7.13),

O(x) = H(x) - pl(H; x) so that V"(x) = H"(x) = h(x).

Furthermore, O(a) = Ri(H; a) = 0, fi(b) = Ri(H; b) = 0.
Therefore the integral (3.7.14) solves the differential problem

0"(x)=h
0(a) _ fi(b) = 0.

(3.7.15)

The function G(x, t) is known as the Green's function for the differential system
(3.7.15). These remarks indicate the close relationship between Peano's kernels
and Green's functions, and hence between interpolation theory and the theory
of linear differential equations. Unfortunately, we shall not be able to pursue
this relationship.

Ex. 3. Let xl = xo + h, x2 = xo + 2h, x3 = x0 + 3h and set

L(f) = -f (xo) + 3f (xl) - 3f (x2) + f (x3) = 03f (xo)
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L annihilates all elements of Y2. Hence, n = 2 and

K(t) = 1 L(x - t)+ .2!

If we write this out explicity we find

2K(t) = (x3 - t)2 - 3(x2 - t)2 + 3(x1 - t)2 = (t - x0)2, x0 < t < x1

= (x3 - t)2 - 3(x2 - t)2 x1 < t < x2 (3.7.16)

_ (x3 - t) 2 x2 < t < x3

The kernel K(t) consists of 3 parabolic arches and is of class C1[xo, x3]. Thus, for
f E C3[xo, x3],

z$

L(f) = 03f (xo) =f K(t)f"'(t) dt. (3.7.17)
o

Note that K(t) > 0. We may apply (3.7.7) yielding

oaf (x) = f 03x3) = h3 Cf. (3.4.5).( f0
3!

Similar formulas hold for differences of all orders.

0 1 2 3

Figure 3.7.1 Peano Kernel for 3rd Difference, x0 = 0, h = 1.

Ex. 4. The Trapezoidal Rule and the Euler-MacLaurin Summation Formula.
Let

b b -a
L(f) = f(x) dx -

2
[f (a) + f (b)] (3.7.18)

a
b

be the error in estimating the definite integral f (x) dx by the trapezoidal rule
a

J(b - a)[f (a) + f (b)]. The rule is exact for linear functions, and, in particular,
for constants. If we select n = 0, we have

Then

(x - t)+ = S(x, t) =

b b -a
L,(S(x, t)) = S(x, t) dx - 2 [S(a, t) + S(b, t)]

a

1 for x > t

0 f o r x < t .

b b -adx -2 [0-}-1]=J(a-{-b)-t, t>a.
t
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Therefore

Ch. III

b

L(f) = - (t - J(a + b)) f'(t) dt. (3.7.19)
fa

b b -aL(f) = f(x)dx -
a n

f (a) .+ f (a + a) + f (a + 2Q) + .. .
2

+ f (a + (n - 1)a) + f (b) , a = 1 (b - a). (3.7.20)
2 n

An expression analogous to (3.7.19) is most conveniently obtained by adding
expressions of this form for each subinterval.

n-1 a+(k+1)a
L(f) (t - (a + (k + J)Q))f'(t) dt. (3.7.21)

k=0 a+ka

In particular, if we select a = 0, b = n, s = 1, then over k < t < k + 1, t -k - I
becomes t - [t] - 1, where [t] is the largest integer contained in t, and we
rewrite (3.7.21) as

f (x) dx +
f (0) + f (n)

_ [f (0) + f (1) + ... + f (n)]j
0n

2

fn
([t] - t + ) f' (t) dt. (3.7.22)

0

This is the simplest version of the Euler-MacLaurin summation formula.

Ex. 5. Remainder in Simpson's Rule. Let

1

L(f) f (x) dx - 3f (-1) - 3f (0) - 3f (1). L(p) = 0 if p E 9/3.

Figure 3.7.2 Kernel for Simpson's Rule.
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Applying (3.7.3) we find 6K(t) = L,[(x - t)+] or,

K(t)=-72(1 -t)3(3t+1) 0<t<1
K(t) = K(-t) -1 < t < 0

Note that K(t) < 0 so that Corollary 3.7.2 is applicable:

L(f) - 1 f f (4)

( ) - 4 - - f (4)( ) .

4! 4! 15 90

This leads to the following error for Simpson's rule:

1 (x) dx =f (-1) +43f (0) + . (1) -f(4)($)f
-1 of 3f 90

(3.7.23)

-1 < $ < 1. (3.7.24)

3.8 . Interpolation in Linear Spaces; General Remainder Theorem.
We cannot say too much in the general case, for the underlying structure
is too meagre. But it is instructive to derive what result we can, and this
will round off the formal algebraic work of 2.5, 2.6.

Given an element x in a linear space X, we interpolate to x by an appro-
priate linear combination of x1, ... , xn, alx1 + - - - + anxn, such that
Li(alx1 + . . . + anxn) = Li(x) i = 1 , 2, ... , n. Let

XR = x - (alx1 + . . . + anxn).

Then, Li(xR) = 0 i = 1, 21 ... , n.

THEOREM 3.8.1. Under the assumption that I Li(x,) l 0 0, we have

x xl ... xn

L1(x) L1(x1) ... L1(xn)

XR =

L1(x1) L1(x2) ... L1(xn)

I Ln(x) Ln(x1) ... Ln(xn) Ln(x1) Ln(x2) ... Ln(xn)

(3.8.1)

Proof : It is clear by expanding the numerator of (3.8.1) by the minors
of its first row that the right hand side of (3.8.1) is a linear combination of
x, x , ,..., x, and that the coefficient of x is precisely 1. Applying Li to
the right hand side (which we may do by letting it operate on each element
of the first row), we see that this row is identical with the (i + 1)st row and
hence Li(xR) = 0, i = 1 , 2, ... , n. Thus, the expression (3.8.1) has all the
properties the remainder element xR should have.

NOTES ON CHAPTER III
3.2 Hardy, Littlewood, and Polya [1], pp. 70-75. R. P. Boas, Jr. [4]

pp. 142-150.
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3.3 The Tschebyscheff polynomials are everywhere dense in the liter-
ature of numerical analysis, approximation theory, and special function
theory. The National Bureau of Standards, Table of Chebyshev Polynomials
[1] has an introduction by C. Lanczos that summarizes the properties of
these famous polynomials and indicates their use in numerical analysis.

3.6 J. L. Walsh [2] p. 50. For coincident points of interpolation, p. 53.
3.7 G. Peano [1], [2]. In recent years, Arthur Sard has called attention

to the utility of Peano's Theorem. A. Sard [1], [2]. Kowalewski's Remainder:
G. Kowalewski [1] pp. 21-24. For some of the kernels see Sard [1], Milne
[1], Kuntzmann [1] pp. 44-49, 152-157.

3.8 See references to 2.5, 2.6.

PROBLEMS

1. Loglo 12.7 has been computed by looking up loglo 12 and loglo 13 and
interpolating linearly between these values. Show that the error incurred is
<.004.

2. Formulate rules of thumb for the accuracy of quadratic, cubic, and
quartic interpolation on equidistant points. 0 1

3. A polynomial of degree n, pn(x), coincides with ex at the points
n - 1 n n n

,
n

. How large shall n be taken so as to insure that I ex - pn(x) I < 10-6

over 0 < x < 1 2
).4. Let f (z) = ez2, zi = l0

, i = 0, 19 ... , 10. Estimate Rlo(f; 120

5. Same problem with f (z) _ -\/9 ++ ,/z.
6. Write explicitly the remainder for simple osculatory interpolation at the

n + 1 points x0, x1, ... , xn. If f (2n+2) (x) > 0, the interpolant never exceeds the
function over the range of interest.

7. If p > 1, y = xv is convex on [0, a] for any a > 0.
8. A monotone increasing function of a convex function is itself convex.

True or false
4

9. Find necessary and sufficient conditions on the a's in order that I anxn
be convex on -1 < x < 1. n =O

10. T m(Tn(x)) = Tn(T m(x)) = T mn(x)
In particular,

Tn(2x2 - 1) = 2Tn2(x) - 1.

11. Tm(x)Tn(x) = i[Tm+n(x) + T m-n(x)]

12. Prove the identities 5 To(x) dx = T1(x), JT1(x) dx = IT2(x),

I Tn(x) dx = 1
(Tfl+l(x) Tn-1(x) n > 1.2 n+ 1 n- 1
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1

5
1

13. f'(0) -
2h

[f (h) - f ( -h)] = f (3)(x)K(x) dx 0 < h < 1
-1

(x + h)2 -h <x<0
4h

K(x) (x - h)2
4h

00

14. Derive this formula directly by integration by parts.
1

15. Show that f (-1) = f (0) - f'(0) + I f "(0) -}- f m(t)K(t) dt
-

where

16. Show that

K(t)
-1(1 - t)2 0 < t < 1

-J(1 + t)2 -1 < t < 0

-f (-1) - If (0) + If (1) - fl(f) = f(3)(x)K(x) dx

J(1 + x)2 -1 < x < 0

where K(x) = j(1 + 2x + 3x2) 0 < x <

J(1-x)2 <x<
17. Find the Peano kernel for 04f (x0), h = 1.
18. Derive the following formula of Euler-MacLaurin type

f (x) dx = (b - a) (f (a) + f (b)) + i (b - a)2(f'(a) - f'(b))
fa

b

b

+ 4 (x - a)2(x - b)2f(4)(x) dx.
a

19. Study the continuity class of K(t) for various functionals.

0 <x <h

otherwise



CHAPTER IV

Convergence Theorems for Interpolatory
Processes

4.1 Approximation by Means of Interpolation. Suppose that we
have been given certain information about a function. Perhaps we know
its values, or the values of its derivatives at certain points. Perhaps we
know its moments. How can we use this information to construct other
functions that will approximate it? This is the practical problem of numeri-
cal analysis. Theoretical analysis can go beyond. Having been given an
infinite number of facts about our function, how can we reconstruct the
function completely? Borrowing some terms from harmonic analysis, we
may say that the process of extracting functional information constitutes
an analysis of the function, while the process of reconstructing the function
from given functional information is a synthesis of the function.

One of the most surprising facts in the theory of interpolation and ap-
proximation is that the simplest and most natural approach to synthesis
leads to failure, or rather, to an impossibility. Given a function of class
C[a, b], what is more natural than to think that if a sequence of polynomials
p,z(f ; x) is set up that duplicates the function at n + 1 points of the inter-
val, then as n --* oo, p(f ; x) will converge to f (x) ? Yet, this may not be
the case. One of the first indications of this came around the turn of the
century when Meray and later Runge, investigated interpolation to certain

meromorphic functions. Runge looked at the function f (x) = 1 and1 + x2

found the following to be true : if p,z(f ; x) interpolates to f at n + 1 equi-
distant points of the interval jxj < 5, p,z converges to f only in the interval
jxj < 3.63 and diverges outside this interval. Although f is analytic on
the whole real axis, its singularities at ±i induce, so to speak, this diver-
gence. In 1912, Bernstein proved that equidistant interpolation over jxj < 1
to the function y = jxj diverges for 0 < jxj < 1.

These results relate to equidistant points of interpolation. The possibility
was still open that a more felicitous choice of points would give rise to a
convergent interpolation process. Some indications of this are contained in
(3.3.10) where interpolation on the zeros of the Tschebyscheff polynomials
minimizes certain error estimates. The hopes for this idea vanished when
Bernstein and Faber simultaneously discovered in 1914 that if any triangular

78
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system of interpolation points is prescribed in advance, we can construct
a continuous function for which the interpolation process carried out on
these points cannot converge uniformly to this function. Even the Tscheby-
scheff zeros as interpolation points fare badly, for in 1937, Marcinkiewicz
gave an example of a continuous function for which interpolation at these
zeros diverges at every point of (-1, 1).

Yet, the damage is not as great as one might think and can be repaired
in several ways. The first is to change the way the interpolation is carried
out by not insisting that for n + 1 points a polynomial of class °in be
employed. Fejer proved a remarkable theorem showing how- an interpola-
tion process with controlled derivative values can converge properly for all
continuous functions. The second way is not to insist on working with the
class of continuous functions, but to assume some smoothness properties.
The Tschebyscheff zeros (and the zeros of other orthogonal polynomials)
actually are a remarkable system of interpolating points. Bernstein showed
in 1916 that if f is a continuous function for which limo w(o; f) log 6 = 0,
interpolation at these points produces a properly convergent sequence of
polynomials. If interpolation is carried out on bounded sets, it suffices to
assume that our functions are analytic in certain regions. If interpolation is
carried out on unbounded sets, say the integers, then for convergence, we
shall have to assume that our functions are entire and of severely restricted
growth. Thus, if we are to have convergence, there must be a subtle inter-
play between the distribution of points of interpolation and the smoothness
or growth properties of the interpolated function. Though much is known
about this interplay, we shall be able to develop in this chapter only a few
of its broader features.

4.2 Triangular Interpolation Schemes. We first describe an inter-
polation scheme of great generality. Let there be given a triangular sequence
of real or complex points

zoo

T : z1o z11

z2o z21 z22 (4.2.1)

Suppose that a function f (z) has been defined on a region containing the
points of T, and let pn(f ; z) be that element of °in for which

pn(f; zni) _ .f (zni) i = 0, 1) ... , n
(4.2.2)n0,1,....

In other words, pn(f ; z) interpolates to f at the points of the (n + 1)st row
of T. The numbers in the rows of T may or may not be distinct. If they are
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not distinct, then the interpolation polynomial is to be formed in accord-
ance with the convention explained in 3.5.

We now ask the question, does

pn(f ; z) = f (z) ? (4.2.3)

In such generality, the answer is a resounding no, but the problem is to
delineate those circumstances under which the answer is yes.

In many cases of interest, the matrix T degenerates by having its elements
not depend upon the row, but only upon the column. In such a case, we can
drop the double indexing, and write the scheme as follows

For a scheme of this type, we have

z2

n

pn(f ; z) _ I If (z0), f (z1), . . . , f (zk)](z - z0), . . . , (z - zk-1)
k=0

(4.2.4)

(4.2.5)

and so the existence of lim pn(f ; z) is identical with the convergence of
the interpolation series

n--*oo

f (z) ti I If (z0), f (z1), . . . , f (zk)I (z - z0) (z - zk-1). (4.2.6)00

k=0

In order to appreciate the kinds of things that may occur with triangular
interpolation schemes, we shall consider a few examples.

1
Ex. 1. A scheme S is used with z° = 1, z1 = a, ... , zn =

n
+ 1 . The

7rinterpolated function is f (x) = x sin - which is continuous in - oo < x < oo.
X

Since f (zk) = 0, the interpolation polynomials pn(f ; x) are all identically zero.
The sequence pn(f ; x) converges, but not to f.

Ex. 2. On the other hand if f E gn, then no matter how the matrix T is
constituted, we shall always have p,n(f ; z) f (z) for m > n. Hence convergence
takes place to the proper value. In other words, if the class of interpolated
functions is sufficiently small (the class of all polynomials) a triangular scheme
is always convergent.

Ex. 3. A degenerate case of S is where all the points have a common value
z0. By our convention, the interpolating polynomials are the partial sums of the

(n) z
Taylor expansion of f : f (z0) + f'(z0)(z - z0) + + f

n!!
(z - z0)n. We have

convergence to f (z) if and only if f is analytic at z0 and the convergence holds
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throughout the largest circle I z - zol < p in which f (z) is analytic. On the other
hand, if f is merely of class C 0°, we may have divergence or convergence to a
wrong value.

Ex. 4. For zno, .. . znn select the (n + 1)st roots of 1. Call them wi. Choose
1 1

f (z) = . Then, pn(f ; z) = zn inasmuch as w jn =
w

= f (zn, ). Notice that
z

pn(f ; x) converges to 0 in I z I < 1, diverges for I z I > 1. The sequence converges
to f only at z = 1.

Ex. 5. A scheme S is used with zo = 0, z1 = 1, z2 = 29 .... Select f (z) =
(1 + Q) z, for a fixed or, with s 0 -1. It is easily verified through (2.7.10) that

z(z - 1) z(z - 1) (z - n + 1)
pn(f; Z) = 1 + az + Q2 + + an

2! n!

The convergence of the scheme is equivalent to the convergence of the series

00

Ian . For fixed z, this is the power series expansion
n=O n.

of (1 + a)z about s = 0. Now if z : 0, 1, 2, ... , (1 + Q)Z is analytic in I a I < 1
and has a singularity at s = -1. The series, and therefore pn(f ; z), is convergent
for IQI < 1 and divergent for I a I > 1.

4.3 A Convergence Theorem for Bounded Triangular Schemes.
If the points of interpolation are all confined to a bounded region of the
plane and if the function we are interpolating is analytic in a sufficiently
large region, then we shall have uniform convergence in a sub-region. This
theorem is of interest in itself and also because it illustrates the use of the
complex remainder (3.6.5) in estimating errors. This is a technique that can
be put to practical use in numerical analysis.

THEOREM 4.3.1. Let R, S, and T be bounded simply connected regions,
R c S c T, whose boundaries are CR, Cs, and CT, respectively. CT is a
simple, closed, rectifiable curve, and CS and CT are assumed to be disjoint.

Let b = minimum distance from CT to CR, maximum distance from

CS to CRand assume that < 1.

Let the points of a triangular system lie in R and let f (z) be analytic in and
on CT. Then pn(f ; z) converges to f uniformly in S.

Proof : From (3.6.5),

f (z) - pn(f; z) = Rn(f; z)

(z - zno)(z - znl) .. . (z - znn) f (t) dt
27T2 Cr (t - zno)(t - zn1) . (t - znn)(t - z) (4.3.1)
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Hence,
( ;

Z )I
1 Iz - zn0I ... I Z - znn I If (t) I ds (4.3.2)IRof )I

27T CT It - znnnOI...It-z I It - zI

For zik G R and z E Cs1 Iz - zikl < L .For zik E R and t G CT, It - zikl > 6.
If we set M = max If(t)I, d = min It - zI, then,

tECT tECT
zES

On+1 M ML(CT) (A)n+l1

I Rn(.f; Z) I <
27T CT bn+i d ds =

27Td b
(4.3.3)

where L(CT) = length of CT. This estimate holds uniformly for z e S.

Since - < 1, lim R f ; z) = 0 uniformly in S.
b

Figure 4.3.1.

Ex. 1. Let the points of the interpolation scheme all lie on the real segment
I = [ -a, a]. Select a 6 > 2a and let T be the set of points whose distance
from I is <6. If f (z) E A(T), the interpolatory scheme converges uniformly to
f on I. This is independent of the distribution of the interpolating points.

Figure 4.3.2.
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4.4 Lemniscates and Interpolation. More penetrating theorems can
be obtained by postulating a more regular distribution of the points in the
triangular scheme. An examination of equations (4.3.2) and (4.3.3) reveals
that the asymptotic behavior of the expression

I (z - zno)(z - znl) ... (z - znn)ll/(n+l)

contains the key to convergence. We will therefore investigate convergence
under the hypothesis that the following limit exists on certain sets of the
complex plane :

lim I(z - zn0)(z - zn1) ... (z - znn)I1/(n+1) _ y(z). (4.4.1)
n--o- oo

Here are some examples of triangular distributions of points with this
property.

Ex. 1. Let all the points zij consist of a single point zo. Then 1(z) = Iz - zol.

Ex. 2. Let zn0, zn1, ... , znn be the n + 1 zeros of the (n + 1)st Tschebyscheff
polynomial T,i+,(z). Then, (z - zno)(z - zn1) . (z - Znn) = Tn+l(z) (Def. 3.3.2).
Let z = pei0, w = J(z + z-1) J(peiO + P le-Z0). Then,

Tn(w) = j(pneinO + p-ne-in0). (4.4.2)

This may be proved by induction. It is true for n = 0 by (3.3.3). Assume it
is true for 0, 1, 2, . . . , n. By (3.3.4),

)(peie +
P le-io) (pnein9 +P 6-ino

1(pn-lei(n-1)0 +
P

n+le-i(n-1)0)

= j(pn+1e(n+1)i0 +
P

(n+1)e-(n+1)i0).

This proves the identity for n + 1.
From (4.4.2)

ReTn(w) _ J(pn + ppn) cos n0
ImTn(w) _ J(pn - p n) sin n0

and so

(4.4.3)

I Tn(w) I = J(p2n + 2 cos 2n0 + p_2n) j. (4.4.4)

Therefore, for w on 8p (cf. Def. (1.13.1)) we have

lim I Tn(w)l1/n = p, uniformly. (4.4.5)

Since Tn = 2- Tn,

Q(z) = lim I Tn(z))1/n = p/2, z E 8p. (4.4.6)

Ex. 3. A similar limit holds on 8P for the Legendre polynomials (cf. Theorem
12.4.5).
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Ex. 4. The points zno, .. , znn are evenly distributed on [ -1, 1]: znk =
2k

-1 + -. Here we have
n

Qn(z) = I(z - zno) ... (z - znn)I1/(n+1) =

=2

(z+1) z+ 21-- ...(z+1 -2)
n

(z+1 0 z+ 1 1 (z+1 n
2 n 2 n 2 n

1/(n+1)

1 /(n+1)

n
Therefore log Fan(z) = 1 I log z + 1 - - . By the definition of the inte-n+1k=0 2 n

z+ +1
gral, lim log lQn(z) = log - t dt = log Iz - uI du - log 2.

o 2 -1
+1

Hence, for all z outside [ -1, 1], (1(z) = exp j log lz - ul du.
-

Ex. 5. A wide generalization of Ex. 1 is contained in the next theorem.

THEOREM 4.4.1. Let z1, z2, ... , be a sequence that has k limit points
C2, . . . , Ck approached cyclically. That is,

llm znk+1 =
C1

llm znk+2 = C2

Then
J?4 znk+ k = Ck'o

r( z) = nlm I (z - z1) ... (z - zn)I1/n = I lz

uniformly on any set S that is bounded and such that

inf Izi - tI > 6>0 i= 1,2,..
t

(4.4.7)

(4.4.8)

Proof : We begin with the following observation which is really a slight
modification of the "consistency of Cesi ro summability."

Let Sbk(z) be a sequence of functions defined on a point set S and which
converges uniformly on S to a function (z). Assume that c6k(z) and (z)
are all bounded on S. Then, the sequence of arithmetic means

(l / n)[0l(z) + ... + On(z)]

also converges uniformly to O(z) on S. For, given an e > 0, we can find an
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M = m(E) such that 1sb(z) - cn(z)1 S s for all z e S and all n > m. Now, for
n>m,

Dn(z) _ (1 /n) [c1(z) + ....+ cn(z)] - O(z)

(1/n)[c1(z) + ... + cm(z)] + n
m

.
1

[( m 1(z)- (z))n n - m

+ ...._.}_ (cn(z) - O(z))] - (ml n)O(z)

Let Mm = m sx (I cb1(z) I + ... + 1 Sbr(z) I ), M = m sx I O(z) I . Hence,

Mm n - m 1 MM
I Dn(z)I S + (n - m)e + , z C -S.

n n n - m n

Keep m fixed and let n --> oo. We obtain, for n sufficiently large, i.e., for

n > max
Mm MM

E E

I Dn(z) I S s+ s+ s= 3E, z E S.

This inequality implies the uniform convergence stated.
We now turn to the proof of the theorem.

Let Oi(z) = log Iz - z. For z e S, log Iz - zi I z log 6, i = 1, 2, .... In
view of the cyclic limit conditions, the zi are bounded. Since S is bounded,
log Iz - zit s B for z e S, i = 1, 2, .... Thus, Oi(z) are uniformly bounded
in S; that is, we can find an M such that 1 0i(z) I S M, z e S, i = 1 , 2, ... .

The function log Iz - Sil is also bounded in S since the Ci are limit points
of the zk and the latter are bounded away from S.

Let N = nk + p, 0 s p < k and consider n and p as functions of N.
Then

i Ilog I (z - z1) ... (z - ZN) I11 N = - ci(z)N z-1

nin-1 n1n-1 ni p
I S6fk+1 + ... + -- I c6fk+k + - I S6nk+9Nnj-o Nnj-o Nnj-1

(If p = 0, the last sum is taken to be 0.) In view of (4.4.7), S6nk+i =

log I z - i = 1, 2, ... , k, uniformly on S. Hence, their mean values
n-1
I fk+i also approach this limit uniformly. Furthermore,

ni=o
P pi i pM

Onk+9 S L. I Onk+J I S S
nj=1 n5=1 n n
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P
As n -+ oo, 1 I nk+ approaches 0 uniformly in S. Since, finally, lim

n =
1

we have lira log I (z - z1) (z - z )1iIN = 1 log Iz - Cil uniformly
k k i=1
in S. The proof is completed by exponentiation.

Actually, (4.4.8) holds uniformly on any set S that is bounded and such
that is tl > b>0, i= 1,...,k.

Motivated by (4.4.8), we shall next study the loci given by

R z - z1)(z - z2) (z - zn) I = constant.

DEFINITION 4.4.1. Let z1, . . . , zn be n complex numbers not necessarily
distinct. For r > 0, the set of points satisfying

I (z - Z1)(Z - Z2) ... (Z - zn) I = rn (4.4.9)

is called a lemniscate and will be designated by I',.. The points zi are called
the foci of the lemniscate and r its radius. The set of points satisfying the
inequality

Rz - Z1)(Z - Z2) ... (Z - zn)I < rn (4.4.10)

will be designated by 2'.
With zi fixed and r varying, we may speak of a family of confocal lemni-

scates. Note that if r1 < r2 then Yri C: Yr2

Ex. 6. k = 1. 1z - Z11 = r is a family of concentric circles centered at z1.

Ex. 7. Let k = 2 and z1, z2 be distinct. Then, I z - z1I 1Z - z21 = r2 is the
locus of points which move in such a way that the product of their distances
to zl and to z2 is constant. If 0 < r < I I Z2 - zl l , then the locus consists of two
mutually exterior ovals, one surrounding z1 and the other z2. These are the
Ovals of Cas8ini. When r= I I Z2 - z11, we obtain the Lemni8cate of Bernoulli,
a figure 8 with a double point at I(z1 + z2). When r> I Iz2 - zll, the locus
consists of one closed contour containing z1 and z2 in its interior.

Figure 4.4.1 Confocal Lemniscates with Two Foci.
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The behavior of confocal families of lemniscates follows the pattern of
Example 7. If z1, . . . , zn are n distinct points and if r is sufficiently small,
the locus Ir consists of n closed contours surrounding precisely one of the
foci. As r increases, the contours increase in size until two or more of them
touch and then coalesce, reducing the number of contours. This coales-
cence continues until for sufficiently large r there is but one contour sur-
rounding all the foci. As r -* oo, the single contour becomes more and more
circular in its shape. If the zi are not all distinct, this picture can be modified
in an appropriate way.

Figure 4.4.2 Confocal Lemniscates with 3 Foci
IZ(Z - 1)(z - 2i)I = r3.

We shall now sketch the proofs of these facts. Consider the set Yr. It is
nonempty, f o r it contains the foci zl, ... , zn. It is open, for suppose z E Yr.
That is, Iz - Z1 I z - znl < rn. By the continuity of the absolute value,
this inequality must hold in a neighborhood of z. Yr is bounded. For let a
circle C1 contain the foci. Draw a second circle C2, concentric with C1, and
such that the difference of the radii of C2 and C1 is greater than r. For any
point z exterior to C2, Iz - zil > r. Hence 1z - Z11 1z - znl > rn. There-
fore no point exterior to C2 can be in -r,..

Let Or designate the set of points for which Iz - Z1 Iz - znI > rn.
Again, by continuity, if z E 0,., there is a whole neighborhood of z in 0,..
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Hence every point of 0,, is an exterior point of 2,,. The exterior of 2,, is
precisely Or. For suppose z is in the exterior of 2,, and that

(z - z1) ... (z - zn)I = Ip(z)I = rn.
Since p(z) 0 0, there is a whole neighborhood N of z whose closure lies in
the exterior of 2r and in which p(z) has no zero. By the Maximum Principle
(Theorem 1.9.5) p(z) cannot have a maximum or a minimum in the interior
of N. Therefore there is a point z' on the boundary of N at which

lp(z')I < Ip(z)I = rn.

This means that z' E 2r and this is a contradiction since z' is exterior to
Y,,. It follows that if Iz - z1I ... Iz - znl = rn, z cannot be exterior to 2,..
Thus, finally, Or is the complete exterior of 2r and I',. is its complete
boundary.

Since 2r is an open set, it consists of a certain number (finite or infinite)
of connected components. Each component must contain at least one of
the points zi. For, suppose C is a component which does not. On the bound-
ary of C we have lp(z) l = r, and by assumption, p(z) does not vanish in C.
Hence, by the Maximum Principle, both the maximum and the minimum
of lp(z)l in C, the closure of C, occur on the boundary of C. This means that
macx lp(z)l = m lp(z)l = r. Therefore lp(z)l is constant over C and this
implies that p(z) is constant over C. This is impossible. Thus, each of the
connected components of 2r must contain at least one of the points zi in
its interior, and so there are at most n such components.

Each of the components of 2r must be simply connected. For, let C be
a component and let I' be a simple closed curve lying in C. On I' we have
lp(z)l < r. Hence by the Maximum Principle, we have lp(z)l < r throughout
the interior of I'. Thus, the whole interior of I' belongs to 2,,. It follows
that C must be simply connected. For suppose not. Then there would be a
point a interior to I' with a E 2r and a 0 C. Let I be the closure of the
interior of F. Then A = I U C is a connected set that is in 2r and contains
C properly. This is impossible since C is a maximal connected subset. 2r
therefore consists of a number (not exceeding n) of simply connected regions
and the boundary of 2r consists of a number of contours each of which is
the complete boundary of a simply connected region.

n
At a point of I',, where the derivative of II (z - zi) does not vanish,

i=1
one can show, using the implicit function theorem for analytic functions,
that the lemniscate is an analytic curve.

What is the situation when r is sufficiently small? Assume that the points
z1, ... , zn are distinct. For r sufficiently small, the n circles 1z - zil < r
have no common points. Then if p < r, 2P must be contained in the union

n
of these circles. For otherwise, Iz - zil r and hence Iz - zil > rn > pn.

z=
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Moreover, since the points zi are interior to the components of $ P, it follows
that 2P consists of exactly n components with precisely one component
lying in each one of these circles. The lemniscate I'P consists of precisely n
ovals, one in each circle.

What happens when r is sufficiently large? Let a circle C of diameter D
contain all the points zi. If z is in C then lz - zil < D so that

n

IT 1z - zi l < Dn.
i=1

Therefore C is contained in any YP with p > D. Since we know that each
component of YP must contain at least one of the zi in it, it follows that
YP must consist of a single region containing this circle. The corresponding
lemniscate I'P consists of a single contour.

As r becomes very large, so also must lzl. With z far removed from zi,
the points zi may be regarded as a single iterated point and the lemniscate
is "almost" a circle.

The multiple points of lemniscates occur at the solutions of p'(z) = 0,

p(z) - JJ (z - zi). But it would take us out of our way to discuss the
i=1

interesting geometrical facts related to them.

LEMMA 4.4.2. Let cn(z), (z) be functions of a complex variable and sup-
pose that

lim l 0n(z) l l1n = l 0(z) l (4.4.11)

on a set S and uniformly on a subset S' c S. Let {an} be a sequence of complex
numbers for which

lim sup lanll/n = 1/r, 0 < r < oo. (4.4.12)

00

Then the series I ancn(z) converges at all points of S where lcb(z)l < r and
n=0

diverges at all points of S where l O(z) l > r. It converges uniformly at all points
of S' where l O(z) I< s < r.

Proof : Given a z e S ( {z: l (z) l < ri. For all n sufficiently large, we
have from (4.4.11), l n(z)11/n < r' for some 0 < r' < r. Select an r" with
r' < r" < r. Then for all n sufficiently large, we have from (4.4.12),

11n < 1l an l r '

Thus,
r' n

l ancn(z) I <
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Our infinite series is majorized by a convergent geometric series and must
itself be convergent.

If

z E S' C {z : 10(z) I< s}, s< r,

then the estimate I cn(z)I1/n < r', s < r' < r holds uniformly in this set and
the same reasoning allows us to conclude uniform convergence there.

Let z e S be such that I 0(z) I > r. Then for all n sufficiently large and for
some r' > r, I cn(z) 11/n > r'. Select an r" with r' > r" > r. Since

lim sup I an Il/n =
1

,
n- oo r

we can find a sequence of integers n1, n2, ... -k oo, with I an I1/nk > 1 . Hence
k r

r' nk
I anj.Snk(z) I > for all k sufficiently large. Since r'/r" > 1, the general

r
term of the series does not approach 0 and the series is divergent.

Ex. 8. Let cn(z) = zn. Then

n

I0n(z)I1/n = Izi for all lzl < oo and the limit
1 00

is uniform on any set. If lim sup I and we have convergence of I anzn forr n=0
I z i < r and divergence for I z I > r. Our lemma is therefore a simple modification
of the Cauchy-Hadamard Theorem for the radius of convergence of a power
series (Theorem 1.9.4).

Ex. 9. On(z) = Tn(z) = the nth Tschebyscheff polynomial. From (4.4.5),
1

Ic(z)I = lim ITn(z)I1/n = pfor zon 6'P. If lim suplanll/n =-, 1<r <oo,we con-
n- oo n- ao r

00

elude that the series I anTn(z) converges in the interior of ir, diverges in its
n=0

exterior and converges uniformly if any 0r-, r' < r. In the case of expansions
in Tschebyscheff polynomials, we have confocal ellipses of convergence as the
analog of circles of convergence for power series.

Ex. 10. Expansions in Legendre polynomials have ellipses of convergence.
Cf. Theorem 12.4.7.

THEOREM 4.4.3. Let 2P designate the lemniscate interior

R Z - 1)lz - W.- . ( - 4) I < pk.

Let z0, z1, ... , lie in YP and approach 1, ... , 4 cyclically; i.e., (4.4.7)
holds. Let f (z) be analytic in IL P, but not in any rP, with pl > p. If 2P
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consists of several mutually exterior regions, then f (z) is assumed to be a general
analytic configuration (cf. 3.6). If

pn(f; z) = ao + a1(z - zo) + + an(z - zo)(z - z1) . .. (z - zn-1)

interpolates to f at z 0 . . . . . zn, we have
(4.4.13)

nim pn(f ; Z) = f (z) Z E Yo (4.4.14)

and uniformly in any closed set lying in $8P. Exterior to $ P, the limit does
not exist. More precisely, we have

I .f (z) - pn(f; z)I < M(P'IP)n for z e 2P , p' < p. (4.4.15)

Furthermore
1/n - 1

lim sup I an I - - .
p

(4.4.16)

Proof : A closed set S lying in .L P must also lie in some 2P with p' < p.
Hence (4.4.15) implies (4.4.14), uniformly in S. We therefore prove (4.4.15).
Select a p' sufficiently close to p so that all the points zo, z1, ... , lie in YP .
Select p" with p' < p" < p. ]PP. consists of one or at most a finite number
of mutually exterior curves which may, possibly, meet at a finite number
of points. From the remarks at the end of 3.6, we have

1
(4.4.17).f (z) -- pn(.f ; Z) =

2 Jr" (t z//t - z ... (t - z t - Z)7T2 rP It 0)l 1) n)l

For z e PP, we have by (4.4.8),

I'M I(z - zo) . . . (z - zn)I1/(n+1) = I(z - S1) . . . ( - Sk)I1/k = p'
oo

uniformly. Hence, for some p' with p' < p' < p", and for n sufficiently
large, we have

I(z - zo)(z - z1) ... (Z - zn)I < (piii)n+l, z E I'P (4.4.18)

By the Maximum Principle, this inequality holds throughout 5tP..
Similarly we have

ni . I (t -- zo) . . . (t - zn)I1/(n+1) = P", t E P

uniformly. Hence, for some piv with p"' < piv < p", and n sufficiently large,

I (t - zo) ... (t - zn) I (piv)n+1, t E T'PN. (4.4.19)

We now use (4.4.18) and (4.4.19) to estimate (4.4.17) :
z- ' z

<
p... Y+1 If(t) I ds z E 4.4.20I f () pn(.f ) I

27r frP tv It - Z I P ( )
P
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Let L(I'PM) = length of I'PN, m = m ax If (t)I, 6 = minimum distance from
r pt to ]PP. and we have

mL(I' N) ai +1 , n

If (z) - pn(f; z)I < 2ir 6
P P

(pivy <M
PP (4.4.21)

for an appropriate constant M independent of n.
Consider next the number y defined by

lim sup Ia Il1n = 1 . (4.4.22)n
lu

We shall prove ju = p and establish (4.4.16). Suppose, first, that 4u < p.
By the above work, lim pn(f ; z) exists in 5 P. But by Lemma 4.4.2 and
Theorem 4.4.1, this limit does not exist at a point z exterior to Y. and
distinct from 1.... , G. Hence, at a point z ( 1, ... , G) belonging to Y

P

but exterior to YW the limit both exists and does not exist. This is im-
possible. Suppose, secondly, that ACC > p. By Lemma 4.4.2, pn(f ; z) con-
verges uniformly in closed subregions of Y. to a function that is analytic.
This is impossible, since by hypothesis 2' is the largest lemniscate of
analyticity. Hence p. = p. This establishes (4.4.16) and the fact that we have
divergence exterior to rP.

This theorem has a long history, going back, in various amounts of
generality, about a century. In the form stated, it is due to Walsh. More
general assumptions as to the "strength" of the limit points can and have
been made.

Interpolation processes may be found that yield expansions of analytic
functions in quite general regions. We shall, however, approach such ap-
proximations by other methods.

Ex. 11. Let z2n = 0, z2n+1 =1 n = 0, 1, .... Then k=2 and 1 = 0,
2 = 1. Define f (z) as 0 in a neighborhood of 1 and 1 in a neighborhood of 2.
We then have

p2n-1(f ; z) = ao + a1z + a2z(z - 1) + a3z2(z - 1)
+ a4z2(z - 1) 2 + ... + a2n-1zn (z - 1)n-1

p2n(f; z) = p2n-1(f; z) + a2nzn(z - 1)n.

In view of (2.6.6), (3.6.1), (3.6.3), we have

1 dz 1 dz
a2n-1 = 2-ffi C zn (z - 1)n a2n 2-ff i C zn+1(z - 1)n

where C is any contour containing 2 in its interior and C1 in its exterior. Hence,

1 do-1 1 2n- 2_ _ n 1
a2n-1 - (n - U! dzn-1 zn

z =1 ( 1) n 1

1 do-1 1 2n - 1== (- 1 )n-1
a2n

_
(n - 1) ! dzn-1 zn+1

z =1 n
n = 1, 2,

ao = 0.
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The interpolation series is therefore

0 + z + z(z - 1) - 2z2(z - 1) - 3z2(z - 1)2 + 6z3(z - 1)2 + ... .

In view of the fact that lim sup I an 11/n = 2 = 1/1 , the series converges in the

interior of the leminiscate I z(z - 1) I = and diverges in its exterior. The sum
of the series is 0 in the left lobe and 1 in the right lobe.

The fairly "arbitrary" shape of lemniscates displayed in Figure 4.4.2
leads one to suspect that quite general curves can be approximated by
them. This is indeed the case.

DEFINITION 4.4.2. Let E be a closed, bounded, and nonempty set in
the complex plane. By the closed p neighborhood of E, E(p), is meant the set
of all points whose distance from E is s p. That is,

E(p) _ U {z : Iz - wl < p}.
weE

THEOREM 4.4.4. Let E be a closed and bounded set in the complex
plane. For any p > 0, we can find a lemniscate I' such that I' 9 E (p)
- E and each component of E is separated from the exterior component
of the complement of E(p) by a component of I'.

This theorem (which we shall not use in the sequel and whose proof we
shall not give) goes back to Hilbert, and early proofs make use of potential
theory. In the generality stated, the theorem is due to Fekete. His methods
are somewhat more elementary. This theorem can be made the basis of
interpolation processes that yield expansions in general regions.

NOTES ON CHAPTER IV
4.2,4.4. Walsh [2], Chap. III, IV. Gontscharoff [1], Chap. V. For the

"strength" of limit points, see Korovkin [1]. Fekete's proof will be found
in Fekete [1].

PROBLEMS
1. Cosh z is approximated by a cubic polynomial found by interpolating at

the points ±J, ± i. Estimate the error over the unit circle.
2. Let znk be the n + 1st roots of unity. Compute 1(z). (Cf. (4.4.1))
3. Sketch the family r, whose foci are at ± 1, ±i.
4. Expand (1 + u)i and set u = z2 - 1 to obtain

(z2)j +
z2 - 1 + + (-1)n-1 1.3.5... (2n - 3) z2 - 1)n + .. .

2

Show that the series converges to z in the right open lobe of I z2 - 11 = 1 and
to -z in the left open lobe. What are the interpolation properties of the series?

5. Following Ex. 11, let z3,, = 0, z3n+1 = 1, z3n+2 =- 1. Define f (z) as -1, 0, 1
in the neighborhood of -1, 0, 1 respectively. Discuss.



94 CONVERGENCE THEOREMS FOR INTERPOLATORY PROCESSES Ch. IV

6. Interpret the mode of interpolation and the statement of Theorem 4.4.3
when zo, z1, . . . , consists of the k points i, 6 , 4 repeated cyclically.

7. Discuss the convergence of series of the form

ao + al(z - 1) + a2(z - 1)(2z - 1) + a3(z - 1)(2z - 1)(3z - 1) + .

8. Let m(z) map a simply connected region B conformally onto the unit
00

circle. Discuss the convergence of series of the form I an(m(z))n.
n=0



CHAPTER V

Some Problems of Infinite Interpolation

5.1 Characteristics of Such Problems. In Chapters 2 and 3, we
considered interpolation problems with a finite number of conditions. In
Chapter 4, we allowed the number of conditions to grow and, under certain
favorable circumstances, we obtained solutions in the form of infinite series
of polynomials. Not all problems involving an infinity of interpolating con-
ditions can be treated in this manner, and the present chapter explores
several alternate approaches.

In passing from a problem with a finite number of conditions to one with
an infinity of conditions, analytic as well as algebraic difficulties arise to
complicate the situation. If we look for a solution within a given class of
functions, we may be unsuccessful, or we may be too successful, for the
solution may not be unique. The following examples illustrate these possi-
bilities.

Ex. 1. Find a function analytic in I z I < r, for which f (n) (0) = (n!) 2 n =
0, 1, .... We must have

00 00

f (z) = 1., - (n!) 2zn = I n! zn.
n=0 n=0

This series has a zero radius of convergence and so the problem has no solution.
From (1.9.9), the interpolation problem f (n)(0) = an has a solution analytic in

I z I < r if and only if lim sup 1 I an I l/n < 1 . If it has a solution, the solution is
unique. n, ao n - re

.

Ex. 2. Given a set of points 0 < xl < x2 < . . . < 1 with lim xn = 1 and
n--"

('0a set of values yl, y21 ... , find a function of class C[0, 1] for which f (xi) = yi.
It should be clear that a necessary and sufficient condition that this interpolation
problem have a solution is that lim yn exists. Assuming this, we may then
solve the problem in an infinity of ways.

Ex. 3. Find a function of class C[0, 1] for which

1i

Jo
xnf (x) dx = n, n =0,1 .... .

95
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By Theorem 1.4.2,

nf (x) dxx
fo,

V2t omax if (x)l .

n + 1 - n + 1

Ch. V

I
1

The sequence of moments xnf (x) dx therefore approaches 0 as a limit and the
0

interpolation problem has no solution.

5.2 Guichard's Theorem. A natural generalization of the funda-
mental theorem for polynomial interpolation (Theorem 2.1.1) is the following
theorem of Guichard.

THEOREM 5.2.1. Let zo, z1, ... , be a sequence of distinct complex numbers
such that n1 i, m zn = oo. Let wo, w1, ... , be a completely arbitrary sequence of

complex values. Then there exists an entire function f (z) such that

.f(zn)=Wn n=0,1,.... (5.2.1)

We shall give two proofs of this theorem. The first is function-theoretic
in nature and is based upon theorems of Weierstrass and Mittag-Leffler
that have an interpolatory character. We shall state these theorems, but
refer to standard texts on complex variable for their proofs.

THEOREM 5.2.2 (The Weierstrass Product Theorem). Let zo = 0, z1, ... ,
be a sequence of distinct complex numbers for which lim zn = oo. Let

no, n1, ... , be a sequence of integers > 1. Then, for an appropriate selection
of integers pk, the product

ao z nk z 1 z 2 1 z pk nk

.f (z) = zn° fi 1 - - exp - -- - - + ... + - - (5.2.2)
k=1 zk zk 2 zk pk zk

converges for IzI < oo to an entire function that has a zero of order nk at zk,
k=0,1,....

THEOREM 5.2.3 (Mittag-Lefer's Partial Fraction Theorem). Let zo,
z1, ... , be a sequence of distinct points, and let lim zn = oo. For i =

n, oo

0, 1 , ... , let ail, a 2 , . .. , aini be given complex numbers. Then there exists
a meromorphic function having at each zi a principal part

a,,ai
2

,
, + + n{

(z - zi) (z - zi)2
... (z - zj)n'1ai

(5.2.3)

and analytic everywhere else.
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Proof of Theorem 5.2.1: By Theorem 5.2.2, construct a function q(z) that
is entire and has simple zeros at zi : q(zi) = 0 and g'(zi) 0 0, i = 0, 1, 2 - - .

By Theorem 5.2.3, construct a meromorphic function h(z) whose principal

part at zi is ,
wZ

and which is analytic everywhere else. Then the
9' (zi)(z - zi)

function f (z) = g(z)h(z) solves the interpolation problem, for the zeros of Y
cancel the poles of h so that f is an entire function. Moreover, in a neighbor-
hood of z = zi we have

f (z) = g(z)h(z) _ [q'(zi)(z - zi) + higher powers of (z - zi)]

X
Wi

+ r(z)
(zi)(z - zi)

where r(z) is analytic in a neighborhood of zi. Hence f (z) = wi as required.

5.3 A Second Approach: Infinite Systems of Linear Equations in
Infinitely Many Unknowns. A simple-minded approach to the problem
in Theorem 5.2.1 is the following. We are looking for an entire function

f(z)=ao+alz+a2z2-}-... (5.3.1)
for which

.f (zi) = wi, i = 1, 21 .... (5-3.2)

Regard the a's of (5.3.1) as unknowns and determine them so that the
conditions (5.3.2) hold. These conditions lead to

ao+alz1+a2z12+
ao+alz2+a2z22+
ao+alz3+a2z33+

. = wl

. = W2

. = W3
(5.3.3)

an infinite system of linear equations in the unknowns ao, al, .... Assum-
ing, for the moment, that we have succeeded in producing numbers ao,
a1, ... , which make the left hand of (5.3.3) converge to the right hand, it
follows from the properties of power series that the series (5.3.1) converges
absolutely for jzj < 1z1 , for IzI < Iz21, etc. Since lim z,z = oo, f (z) will be
entire and f (zi) = wi. The matter therefore hinges upon our ability to solve
the system (5.3.3). It should be clear that infinite problems of linear inter-
polation theory can always be reduced to such systems.

Questions relating to the existence and uniqueness of solutions of finite
systems of linear equations have been completely resolved. Not so for
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infinite systems. While much is known, much remains unknown. There is
no all-encompassing theory, but rather many different theories that have
their origins in the variety of assumptions that can be made about the
growth properties of the coefficients and of the solution. We shall prove a
theorem of Polya which gives a sufficient condition for the existence of a
solution of an infinite system. Polya's Theorem is interesting because it has
numerous applications to interpolation problems, and also because it is one
of the few theorems about infinite systems in which nothing is assumed
about the right-hand side.

THEOREM 5.3.1 (Polya). Let there be given an infinite set of linear equations
in infinitely many unknowns x1, x2, ... :

a11x1 + a12x2 +* * * = b1
a21x1+a22x2+... =b2

(5.3.4)

No assumptions are made about the b's, but as far as the a's are concerned we
assume

(A) Let q > 0 and n > 1 be arbitrary integers. From the infinite array of
coefficients

a1.q+1 a1,q+2 . .

an,,+1 an,q+2. .

(5.3.5)

we may select n columns such that the determinant formed by these columns
does not vanish.

(B) For j = 2, 3) ... , we have

lim a'-1,k = 0
k-- o0

ask
(5.3.6)

Under assumptions (A) and (B), we may find a solution xi to (5.3.4) with all
the infinite series absolutely convergent.

A solution will be constructed in a "blockwise" fashion. This will require
a preliminary description and a lemma. The first block of unknowns will be

x1, x2, .. . , xqi. (5.3.7)
The second block will be

(5.3.8)Xqi+1, Xq,+2, . . . , xq2.
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In general, the nth block of unknowns will be

x(,n-1+1, x(,n-1+2, . . . , xan. (5.3.9)

The numbers qi are certain integers satisfying 1 < q1 < q2 < , and will
be specified precisely in the proof below.

The first block of unknowns will be assumed to satisfy

a11x1 + a12x2
+*

. . + a1,(,lx(,1 = b1 (5.3.10)

The second block will be assumed to satisfy

al, (,1+1x(,1+1 + a1,a1+2x(,1+2 +

a2,(,1+1x(,1+1 + a2,(,1+2x(,1+2 + .
. .

+ a1,(,2x(,2 = 0

+ a2,(,2x(,2

= b2 - (a21x1 -+- a22x2 + . . .+ a2,(,1x(,1) (5.3.11)

By adding (5.3.10) to (5.3.11), we see that the first two blocks satisfy

a11x1 + . . . + a1 ,(,2x(,2 = b1

a21x1 + .
+ a2,,2x(,2 = b2

(5.3.12)

In general, the nth block will be assumed to satisfy

a1,(,n-1+1x(,n-1+1 a1,Qnx(,n =0

(5.3.13)

an-1,(,n-1+1x(,n-1 +1 + . + an-1,(,nx(,n = 0

an,Qn-1+1x(,n-1+1 + . . . + an,(,nx(,n

= bn - (an,lxl + an,2x2 + . + an,(,n-1x(,n-1) = bn

By addition, the first n blocks of unknowns will satisfy the n conditions,

a11x1 + a12x2 + . .. + a1 ,(,nx(,n = b1

an1x1 + an2x2 + . . . + an,(,nx(,n bn

(5.3.14)

But, in order to provide absolute convergence, we need more. We shall
require that (5.3.13) be solved subject to the condition that the terms of
the first n - 1 of its left-hand members be uniformly small in absolute
value.
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LEMMA 5.3.2. Let n and q be positive integers. Let b be arbitrary and
e > 0. Under conditions (A) and (B) of Theorem 5.3.1, we can find an integer
q' > q and values xQ,+1, xQ,+2, ... , xQ, such that

a1,q+1xq+1 + a1,Q,+2xq+2 + + a1,Q,xQ,, = 0

(5.3.15)

an-1,,+1x,+1 + an-1,,+2x,+2 + . . . + an-1,q'x,, = 0

an,,+lx,+1 + an,q+2x,+2 + . . + a,,Q,'xq ' = b

and such that

Ial,,+x,+li -f- ... + la1,,,,xa,l < e

(5.3.16)

I an-l,a+lxa+1I + . . . + Ian-1,q#xa l < e.

Proof: Let t1, . . . , to be n independent variables. In view of condition
(A), we can select n integers k1, k2, ... , kn with q < kl < k2 < < kn in
such a fashion that the determinant of the system

alkixki + alk2xk2 + . . . + alknxkn = tl

(5.3.17)

anklxki + ank2xk2 + . . . + anknxkn = to

does not vanish. The x's may therefore be solved as certain linear combina-
tions of the t's. Hence, for the is sufficiently small, the x's will also be small.
More than this, we may find a 6 > 0 such that I ti I < 6, i = 1, 2, ... , n
implies

E

I a,kixk1l + I ajk2xk2l + ... + Ia,knxknI < 2 j = 1, 2, ... , n. (5.3.18)

Now in view of condition (B), we can determine an integer q' > kn such
that

Ibi '° <min(6,e/2) forj=1,2,...,n-1. (5.3.19)
ana'

Now, set xk = 0 if q < k < q' and k k1, k2, ... , kn. Determine xki,
xk2, ... , xkn from the system (5.3.17) wherein we have set

t2 af° j=1,2,...,n-1
a.,,, (5.3.20)

to=0.
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In view of (5.3.19) and (5.3.20), we have It; I < 6 for j = 1, 2, ... , n and hence
(5.3.18) holds. If we set

b
xa. = then aja.xa.I =

ana'

Ibl <
2

by (5.3.19).
Finally,

aj ,a+1xa+1 + a, ,a+2xa+2 -}-
. . . + a, ,a,xa,,

b
a;klxk1 + a;k2xk2 + ... + a'knxkn + a5a'

a , = tf - t; = 0
a

j = 1,2,...,n- 1
and

an,a+lxa+1 + an,a+2xa+2 +*
+ ana,xa, =

anklxk1
+ ank2xk2 +

b
+anknxkn+ana' tn+b=bana

Thus, if xa+1, ... , xa have been selected in the above manner, all the
required conditions are fulfilled.

Proof of Theorem 5.3.1: We begin by dividing the unknowns into blocks
in an inductive fashion. In view of condition (A), the sequence all, a12, . ,

must contain infinitely many nonzero elements. Determine ql such that
ala,, 0 0. Now set xl = 0, x2 = 0, ... , xal_1 = 0, xal = bllala,l. Conditions
(5.3.10) imposed on the first block are satisfied. Suppose now that we have
obtained integers

ql < q2 <* < qn_1 and values x1, ... , xan-1

where n > 2. We take the next step as follows. Use Lemma 5.3.2 with
q = q1, b = bn' (Cf. (5.3.13)) and determine q' = qn and the values of
the nth block of unknowns, xan-1+1' ... , xan so that (5.3.15) is satisfied and
so that

1

I a9Vn-1+lxan-1+1I + .
. . + I ajanxan I <

2n
, 1 < j < n (5.3.21)

1
i.e., (5.3.16) with e =

2n
. Note that bn' involves only the values x1, ...

xan-1 so that this step may be taken. This completes the inductive defini-
tion.

In view of (5.3.13), it is easy to see that x1, x2, ... , satisfy the original
system (5.3.4)-at least in a blockwise fashion. Let j be fixed, i.e., consider
a fixed row. As soon as n > j, (5.3.21) holds, and this tells us that the jth
row must be absolutely convergent. From (5.3.14), we see that when n > j,
the jth row has partial sums a5lxl + + a janxan = b f, for the infinite



102 SOME PROBLEMS OF INFINITE INTERPOLATION Ch. V

00

sequence of indices qn, qn+1, .... Since I a;kxk converges, it follows that
00 k=1
I a;kxk = b;. This completes the proof.
k=1

It should be emphasized that nothing has been said about the uniqueness
of the solution. Quite the contrary. Under these conditions, there must be
an infinity of solutions. (See Prob. 7.)

5.4 Applications of Polya's Theorem. Theorem 5.3.1 will now be
applied to give a proof of a theorem similar to Theorem 5.2.1.

THEOREM 5.4.1. Let z1, z2, .... satisfy 0 < Iz1l < Iz2I < . . . , JiM Iznl =
p S oo. To each point z, associate a nonnegative integer m, and mf + 1
arbitrary values w,°, w,l, ... , w,m,. Then we can find a function f (z) that is
analytic in Izl < p and satisfies the interpolation conditions:

f (z;) = w,°, f'(z,) = wi 1, ... , f (mi)(z.) = w; m3 j = 1) 2, .... (5.4.1)

00

Proof: Assuming we have f (z) _ I akzk, with ak to be determined, we
have for s > 1, k0

00

f (8)(z) = I akk(k - 1) ... (k - s + 1)zk-s. (5.4.2)
k=0

The conditions (5.4.1) therefore lead to the infinite system

a°+z1a1 +z12a2+z13a3+ ... =w10
a1 + 2z1a2 + 3z12a3 + . . . = wll

2a2 + 6z1a3 + . . . = w12

(5.4.3)

(m,)! am3 + . . . = wl"Zf

a° + z2a1 + z22a2 + z23a3 + . . . = w2
a1 + 2z2 + 3z22a3 + . . . = w21

Now condition (B), (5.3.6) is satisfied. For if the jth row refers to an 8th
derivative at zp, s > 1, we have from (5.4.2)

a;-l,k+l-z,k(k-1)...(k-s+2) zp

aj,k+1 - k(k-1)...(k-s+1) =k-s+1--0.
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However, if the jth row relates to a value of f at a point, then the condition
Iz,-1I < Iz,I assures that the limit of a;_1,k/a;,k is zero. Consider the coeffi-
cients arising from the system (5.4.3). We shall prove that the determinant
formed from the first n rows and any n adjacent columns cannot vanish.
This will tell us that condition (A) is fulfilled. These determinants may be
thought of as generalized Vandermonde determinants. To avoid losing the
thread of the argument in a welter of indices, look at the specific case n =
4, ml = 2. The 4 x 4 determinant formed from the first 4 rows and 4
adjacent columns is

D=

(5.4.4)

Form the related system of linear homogeneous equations in 4 unknowns
v1,...,v4:

k k+1 k+2 k+3
z1 z1 z1 z1

kzi-1 (k + 1)zlk (k + 2)zi+1 (k +3
k(k - 1)zi -2 (k + 1)kzi -1 (k + 2)(k + 1)zlk (k + 3) (k + 2)zi + l

k 4+1 4+2 k+3
z2 z2

z1kv1 + zi+1v2 + zi+2v3 + zi+3v4 = 0
kzi -1v1 + (k + 1)zlkv2 + (k + 2)zi+1v3 + (k + 3)z1 ±2v4 = 0
k(k - 1)zi -2v1 + (k + 1)kz -1v2

+ (k + 2) (k + 1)zlkv3 + (k + 3) (k + 2)z
i
k+1V4 = 0

z2kv1+z2+1v2+z2+2v3+z2+3v4 = 0

(5.4.5)

If D = 0, then by Theorem 1.2.2, we can find v1, . . . , v4, not all zero, satis-
fying (5.4.5). With these values, form the polynomial

P(z) = vlzk + v2zk+1 + v3zk+2 + v4zk+3.

P is of degree < k + 3 and does not vanish identically. It has a k-fold zero
at z = 0 and in view of (5.4.5), a 3-fold zero at z1 and a zero at z2. That is,
it has zeros of total multiplicity k + 4. This is impossible, and hence D
0. (Cf. the argument used in 2.3, Ex. 6.)

We now employ Theorem 5.3.1 and obtain values a0, a1,. .. , for which
(5.4.3) holds, all series being absolutely convergent. Since, in particular,

00 00

I ak Iz;lk < 00, f (z) =I akzk is convergent in JzJ < p and the formal work
k=0 k=0
of (5.4.3) is valid.

Can one construct an analytic function whose derivatives at a point
have been prescribed in advance? Ex. 1 of 5.1 shows that this is not always
possible if the point is interior to the region of analyticity. But, by moving
the point to the boundary of this region, it becomes possible.
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THEOREM 5.4.2 (Borel). Given an arbitrary sequence of real numbers
m0, ml, ... , we can find a function which is analytic in (-1, 1) and for which

slim f (")(X) = Mn, n = 0, 1, .... (5.4.6)
00 00

Proof : Write, tentatively, f (x) _ I anxn, f'(x) = I nanxn-1, etc. On the
n=0 n=0

basis of these assumed expansions, set up the following infinite system of
linear equations for a0, all ....

ao+a1+a2+...=m0

a1+2a2+3a3+... =m1 (5.4.7)

2a2+6a3+...=m2

A typical column of coefficients of this system is 1, k, k(k - 1), k(k - 1) x
(k - 2), ... , so that condition (B) of Theorem 5.3.1 is immediate. Consider,
next, any n X n determinant formed from the first n rows of the coefficient
matrix of (5.4.7). By the addition of appropriate linear combinations of
the rows, it may be converted into a determinant whose typical column is
1, k, . . . , kn-1. This is a Vandermonde and does not vanish. Condition (A)
of Theorem 5.3.1 is satisfied, and we can find numbers a0, all ... , for which
all the series in (5.4.7) converge to the right-hand side.

00

Form f (x) = I anxn. By the first equation of (5.4.7), f (x) is analytic in
n=0

jxj < 1. By Abel's Theorem (see e.g., Titchmarsh, [1] p. 229) lim f (x) = mo.
00

Moreover, f'(x) _ I nanxn-1, Jxj < 1. In view of the second equation of
n=0

(5.4.7) and Abel's Theorem, lim f ' (x) = m1. In this way, we can establish
that (5.4.6) holds generally.

NOTES ON CHAPTER V
5.3-5.4 G. Polya [1]. R. G. Cooke [1]. Theorems 5.4.1 and 5.4.2 have

attracted wide attention and many proofs and generalizations can be found.
See, e.g., Polya [2], Ritt [1], Franklin [1].

PROBLEMS

1. Given 0 < x1 < x2 < < 1, lim xn = 1. Find necessary and sufficient
n, oo

conditions on an in order that the problem f (xn) = an n = 1, 2, ... , have a
solution f (x) that is differentiable in 0 < x < 1.
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2. Construct a function f (x) that satisfies

xf(x)'=f(x + 1), 0 <x < oo, f(n) = r(n), n = 1,2,..

is convex for 0 < x < oo, but is not r(x).
3. The function f (z) = el1(z+i) - 1 has an infinity of zeros in IzI < 1. Does

this contradict the uniqueness principle for analytic functions?
4. Prove the following generalization of the Lagrange interpolation formula.

Let z0, z1, ... , (00) be distinct points with lim zn = 00. Let w(z) be an entire
function with simple zeros at z0, z1, .... If n- oo

then

< 00,

00 akw(z)

w'z)(z-zk 0 ( k k

converges absolutely and uniformly in every Izi < R to an entire function f (z)
for which f (zk) = ak, k = 0, 1, ....

5. Specialize the result of the previous exercise by writing w(z) = sin z and
obtain a theorem for the cardinal series.

6. Let M(r) be an arbitrary positive function 0 < r < oo. We can find an
entire function f (z) such that max If (rei)I > M(r), 0 < r < oo. In other

0<0<21r
words, we can find an entire function whose growth is uniformly arbitrarily

00 z Ak

rapid. Hint: write f (z) = ao + I ak k and select ak and Ak sufficiently large.
(Poincar6.) k=1

7. Let the system I a;kxk = b;, j = 1, 2, ... , satisfy (A) and (B) of Theorem00

k=1
5.3.1. For any m > 0, show that we may obtain a solution with x1, x2, ... ,
prescribed arbitrarily, and hence there is an infinity of solutions.

00

8. Suppose that f (z) _ I anzn converges at z = 1. Show that f (1) = 1,
n=0

(1) (2) nf = f - _ . . . = f = . . . = 0 is impossible. Hence in Theorem
2 3 n+1

5.3.1 condition (A) cannot itself guarantee the existence of a solution.
9. Let mo, m1, ... , be an arbitrary sequence of real numbers. Show there

exists a function f of class C00[ -1, 1] f o r which f (n)(0) = Mn n = 0, 1, ... .
10. Let zn be distinct complex numbers with lim zn = oo . If Cn is completely

n-- o0
arbitrary, we can find an entire function f

(Z)
such that

z

zn

f(z)dz =cn n = 0, 1,...
n +1

11. Use a theorem on infinite interpolation to construct a function that is
analytic in I z I< 1 and has I z I= 1 as a natural boundary.
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12. Let x1, x2, .... be distinct real numbers that satisfy lim xn = oo. If
m0, ml, ... , are completely arbitrary real numbers, we can find u0, u1, ... ,

00

such that uixin = Mn n = 0, 1, ... , each series converging absolutely.
i=1

(R. P. Boas, Jr.)
13. The problems of Theorems 5.4.1 and 5.4.2 have an infinity of solutions.
14. There is no entire function that satisfies

f (1) = 19 f ( -1) = 0, f(2n+1)(0) = 0 n = 0, 1, ... .

15. Construct a function of class C 0° that satisfies the conditions of Prob. 14.



CHAPTER VI

Uniform Approximation

6.1 The Weierstrass Approximation Theorem. We come now to
the 2nd fundamental theorem of this book, the Weierstrass approximation
theorem of 1885.

f(x) - 8

Figure 6.1.1.

THEOREM 6.1.1. Let f (x) E C[a, b]. Given an s > Owe can find a polynomial
pn(x) (of sufficiently high degree) for which

If (x) - pn(x) I < E, a < x < b. (6.1.1)

Weierstrass' theorem asserts the possibility of uniform approximation by
polynomials to continuous functions over a closed interval.

It is instructive to contrast this theorem with Taylor's theorem for ana-
lytic functions for the two are often confounded. Suppose that f (z) is ana-

00

lytic in the circle IzI < R. Then we have f (z) = I akzk, convergent uniformly
k =O

in IzI < R. Hence it is clear that given an E > 0, we can take sufficiently
n

many terms of this power series and arrive at a polynomial pn(z) _ I akzk
k=0

for which If (z) - pn(z)l < E for IzI < R. A fortiori, on the real segment
-R < x < R we have If (x) - p(x) l < E. But for functions that are not
analytic, there is no expansion in power series. Yet Weierstrass' theorem
assures us we can approximate uniformly functions which are merely con-
tinuous. Given a sequence El, E2, ... -k 0, we can find polynomials

pn1(x) = a0n1 + a1n1x + ... + aninixni

pn2(x) = aon2 + aln2x + . . . + an2n2xn2 (6.1.2)

107
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for which If (x) - pnk(x) I < 6k, -R < x < R, k = 1, 21 .... Consequently
limp (x) = f (x) uniformly in - R < x < R.

k-- oo nk

From approximations, it is simple enough to go to expansions, for we can
write the "collapsing" series

.f (x) = pn1(x) + (pn2(x) - pni(x)) + (pn$(x) - pn2(x)) + ... (6.1.3)

which, evidently, converges to f (x) uniformly on -R < x < R. Thus,
briefly, an analytic function can be expanded in a uniformly convergent
power series, and a continuous but nonanalytic function can be expanded
in a uniformly convergent series of general polynomials, with no possibility
of rearranging its terms so as to produce a convergent power series.

6.2 The Bernstein Polynomials. There are many proofs of the
Weierstrass theorem, and we shall present S. Bernstein's proof. While it
is not the simplest conceptually, it is easily the most elegant.

DEFINITION 6.2.1. Let f (x) be defined on [0, 1]. The nth (n > 1) Bern-
stein polynomial for f (x) is given by

n k (nk(
B(f; x) = n k

- x). (6.2.1)
k 0

Notice that
(6.2.2)

It is clear that B. E °gn. In certain cases, it may degenerate and become
a polynomial of degree lower than n.

THEOREM 6.2.1.
n

Bn(.f X) _ AT O) (;)t (6.2.3)
t=o

where the differences have been computed from the functional values at
0/n, 1 /n, ... , (n - 1)/n, n/n.

Proof: Bn(f; x) i_ f
k (n)
n k

xk(1 - x)n-k
k =O

n f
(k\) (n)

xk n
-k n- k -1 n-k- fxn-k-9

l )
k=o n k ,=o

fl n-k (k\ (n) (n k"I I f
n k

(-1)n-k-fxn-j.

k of o
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Rearranging the summation, we obtain

n t

(;)
nk 1t-=nT

t
n t

xt
t -kf n -t ( ) if ( ): o k-0 :-o t k=o n k

n

DIf(0) xt
t=o

The last equality follows from (2.7.5).

Ex. 1. If f e 91m then Dtf (0) = 0 for t > m. (6.2.3) then implies that
Bn (f; x) E 91m for all n.

Ex. 2. Useful identities may be derived by applying (6.2.3) to the functions
1, x, x2. For f (x) = 1, we have 0°f (0) = 1, Alf (0) = 0, 02f (0) = 0, etc. Hence

Z
Bn(1; X) = G

n
xk(1 - x)n-k = 1.

k=O k

This, of course, is the binomial expansion for l n = (x + (1 - x) )n.

(6.2.4)

Ex. 3. For f(x) = x, we have O0f(0) =0,D'f(0) = 02f(0) =0,....
Hence, n

Bn(x; x) = k n xk(1 - x)n-k = 1 (n )x
= x. (6.2.5)k=o n k n 1

Ex. 4. For f (x) = x2, we have

Hence

Dof (0) = 0, Alf (0) = 1
-'

02f (0) =
2

, Osf (0) = 0, ... .
n2 n2

B (x2; x) k e n xk 1- x n-k = 1 n x+ 2 (n)
x2. 6.2.6n n k ( ) n2 1 n2 2 ( )

k=o

Ex. 5. Bn(e°x; x) = (xeain + (1 - x))n.

THEOREM 6.2.2 (Bernstein). Let f (x) be bounded on [0, 1]. Then

lim Bn(f; x) = f (x) (6.2.7)

at any point x e [0, 1] at which f is continuous. If f E C[0, I], the limit (6.2.7)
holds uniformly in [0, 1].

Proof : A. Note the identity

nI n -x)n-k-nx(1 - x).
k=o k l 1 l (6.2.8)
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To prove this, expand this sum into

k2 (n)xk(1 - X)"-k - 2nx k
(n) xk(1 - x)n-k

k=O k l / k=o k l

Ch. VI

+ n2x2
(n) xk(1 - x)n-k'
k

l

k=0

and combine this with identities (6.2.4), (6.2.5), and (6.2.6).
B. For a given 6 > 0 and for 0 < x < 1, we have

>alk/n xl -
(6.2.9)

This notation means that we sum over those values of k = 0, 1, ... , n

for which
k

- x > 6. To prove (6.2.9), note that
k - x 6 implies

n

1 k 2- x > 1. Hence
62 n

(;)X- x)
Ik/n-xl>d ( 62 >d n

n- X)2(

k
xk(1 - x)n-k

I n k 2 (n) nx(1 - x) 1- x)n-k =
32 k=o n

- x (k)xhi(1
a2n2 4n62

The last inequality follows since x(1 - x) < I for all x.

n
C. We have 1 = (n)xk(1 - x)n-k from (6.2.4). Hence,

k=o k
n

f (x) = I f (x) (n)Xk(l - x)n-k

k =O k
so that

n (k) (n)
f (x) - Bn(f ; x) = k 0f (x) - f n k

xk(1 - x)n-k
k

f(x) - f (k)) (n) xk(1 - x)n-k
n kIk/n-xI <a

+ f(x) - f (k)
n

(;)X1 - x)n-k.
Ik/n xj >_d

(fl)Xk(l - X)k
k 4na2

The function f (x) is assumed bounded in [0, 1]. Hence for some M > 0,
I f (x) I < M and for any two values a, # e [0, 1 ], I f (a) - f (i) I < 2M. Let
x be a point of continuity of f. Given an E > 0, we can find a 6 such that
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I f (x) - f (y) I < E whenever l y - xI < 6. Thus, using these estimates and
using this 6 in (6.2.9), we have

I f (x) - Bn(f; x) I < I

+ I
lk/n-xl >d

Ik/n -xl <d
f(X) -f(n)

f(X) -f(n)

(nk) xk(1 - x) n-k

(;)xk1 -

< (n)xk(' - x)n-k + 2M (n)Xk(I - x) n-k
Ik/n -xl <d k lk/n -xl >-d k

n

E
(n) xk(1 -x)n-k+ 2M - E+ M

k =O k 4n62 2n62

From this inequality, we see that If (x) - Bn(f; x) I < 2E for n sufficiently
large. Since E is arbitrary, (6.2.7) follows.

Suppose now that f e C[0, 1]; then f is uniformly continuous there.
Given an E > 0, we can find a 6 such that I f (x) - f (y) I < E for all x, y in
[0, 1] satisfying Ix - yI < 6. The above inequality holds independently of
the x selected and the convergence to f (x) is uniform in [0, 1]. We express
this as a corollary.

COROLLARY 6.2.3. If f (x) E C[0, I], then given an E > 0, we have for
all sufficiently large n,

If (x) - Bn(f; x) I < E, 0 < x < 1. (6.2.10)

Bernstein's Theorem not only proves the existence of polynomials of
uniform approximation, but provides a simple explicit representation for
them.

The results for [0, 1] are easily transferred to [a, b] by means of the linear
transformation

that converts [a, b] into [0, 1].

x-a
y= b-a

(6.2.11)

COROLLARY 6.2.4 (Theorem 6.1.1). Let f (x) e C[a, b]. Then given E > 0,
we can find a polynomial p(x) such that If (x) - p(x)I < E for a < x < b.

Proof : Consider g(y) = f (a + (b - a)y). g e C[0, I]. Hence given an E > 0
we can find a polynomial r(y) such that I g(y) - r(y) I S E, 0 S y < 1.

Set p(x) = r
x

a , which is a polynomial in x, and the required inequality
follows. b - a
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6.3 Simultaneous Approximation of Functions and Derivatives.
In contrast to other modes of approximation-in particular to Tscheby-
scheff or best uniform approximation which will be studied subsequently-
the Bernstein polynomials yield smooth approximants. If the approximated
function is differentiable, not only do we have Bn(f ; x) -+ f (x) but
Bn'(f ; x) -+ f'(x). A corresponding statement is true for higher derivatives.
The Bernstein polynomials therefore provide simultaneous approximation of
the function and its derivatives.

In order to make the force of this result felt, we call attention to the
following examples from real and complex analysis.

Ex. 1. Uniform approximation does not automatically carry with it approxi-

mation of the derivatives. Consider fn(x) = 1 sin nx on [0, 27r]. Since I fn(x)I < 1,
n n

the sequence fn converges to 0 uniformly on [0, 27r]. On the other hand, fn'(x)
cos nx, so that fn' does not approach 0' = 0.

This phenomenon may be present in sequences of polynomials. Let
1

fn(x) = n Tn(x), Cf. (3.3.2). Since I Tn(x)l < 1 on [-1, 1], it follows that

f n - * 0 uniformly there. Now, f n' (x) = (1 - x2)-1 sin (n arc cos x), and if we

set xn = cos , then f n' (xn) = csc
7T

. The sequence of derivatives of f.
2n 2n

cannot approach any function of C[-1, 1] uniformly.

Ex. 2. Uniform approximation of analytic functions by analytic functions is
totally different. Let R be a region bounded by a simple closed curve C. Let f (z)
and p(z) be two functions analytic in R and on C. Suppose that I f (z) - p(z)I < e
on C. By the Maximum Principle, this inequality, and hence uniform approxi-
mation, persists throughout R. Moreover, by Cauchy's Inequality (1.9.8) we
have

I f
(,n) (z) _ p(n)(z) n! L(C)

26+ 1 E (6.3.1)

for z confined to a point set S in R the distance of whose points from C is no
less than 6. For fixed S and n, allow s 0 and (6.3.1) tells us that the nth de-
rivative of the approximant is also a uniform approximation to the nth derivative
of the approximee. In the complex analytic case, uniform approximation over
regions carries with it the simultaneous uniform approximation, in the above
sense, of all the derivatives.

LEMMA 6.3.1. Let p > 0 be an integer. Then

B(P) (f; x) _ (n + p)! "
AV

t (n) xt 1 - x)n-t. (6.3.2)+, n! f (n+ tt = o p
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Proof : Apply Leibnitz' formula

(uv)(') _ (P. u(i)v(p-j)
j=o J

to (6.2.1) and obtain
n+p k )(n+p)jP p

Bn+p(f' x) f I (xk)(i)[(1 - x)n+p-k](p-i)
k =o n +p k o j

(6.3.3)

(6.3.4)

Now, we have (xk)(') = k! xk-u/(k - j)!, k - j > 0 and

[(1 - x)n+P-k](V-j) = (-1)p-i(n + p - k) I

X (1 - x)n+'-k/(n -f j - k)!, k - j < n.

Therefore (6.3.4) becomes

Bn+p(f; x) _
n+p p k (n + p)! P - 1 p-9xk-9 1- x n+j-k
k=o=o n + p (k-j)!(n+j-k)!(j)

0:5k-j<n
(6.3.5)

If we set k - j = t, k = t + j, we see that 0 < t < n, j = 0, l , ... , p,
corresponds to the range of the sum in (6.3.5). We may write (6.3.5) as

nxt(1-x)n-tV -1p-;p t+B(P)/
! ( 6 6)3;x=n-}-,(.f x) ( p) ) f ntl - t)!t-o (n 1-o + p

(6.3.2) now follows from (2.7.4).

THEOREM 6.3.2. Let f (x) E C2 [0, I] - Then

( .-

lim Bnp)(f; x) = f (p)(x) uniformly on [0, 1 ]. (6.3.7)

Proof: By (3.4.5) we have D2'f t = 1 f for some t
t t +

+ p (n + p)v
satisfying n +

< t <
n + p , t = 0, 1, ... , n. Hence from Lemma 6.3.1,

p

_ (n + py n (n)
B(P) x) - p

I f(pq t) xt(1 - x)n-t.
n.I (n + p) v t

It follows that

n! (n
!+

p /
p) B(p) (f; x) = I f (P) t (n)t( -(n + p)I nt=o

n,

n
(6.3.8)

1
t n

+ f(P) x)n-t.
t=o n t
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Since t <
t

< t + p , t = 0, 1, ... , n, it follows from the bounds onn+p n n+p
tthat set- t <t -}- p- t = p

n n+p n+p n+p
From the uniform continuity of f (p)(x), given an E > 0, we can find an

no such that for all n > no and all t, If (P) (Et) - f (p)(t/n)I < E. As in the proof of
Theorem 6.2.2, the second sum in (6.3.8) is less than E in absolute value for

p
n > no and for all x e [0, 1]. Furthermore, lim

n! (n + p) v
1, and by(n + p)!

Theorem 6.2.2, the first sum approaches f (p) (x) uniformly. The theorem
follows from this.

More general results may be established on the assumption that f (p) (x)
exists at individual points of the interval.

THEOREM 6.3.3. Let p be a fixed integer with 0 < p < n. If

m < f (P) (x) < M, 0 < x < 1 (6.3.9)
then

p

m <
n

B(ap)(f ; x) < M, 0 < x < 1. (6.3.10)

For p = 0, the multiplier of B,(ap) is to be interpreted as 1. If

f (P) (x) > 0, 0 < x < 1 (6.3.11)
then

B,(zp)(f;x) >0, 0 <x < 1. (6.3.12)

If f (x) is nondecreasing on 0 < x < 1, then Bn(f ; x) is nondecreasing there.
If f (x) is convex on 0 < x < 1 then Bn(f ; x) is convex there.

Proof: From (6.3.2) and (6.2.3) we have for p = 1, 2, ... , n,
n-p

Bnp)(f; x) = n(n - 1) ... (n - p + 1) I Opf t n - p xt(1 - x)n-p-t.
t=o n t

(6.3.13)
By the extended mean value theorem, Cor. 3.4.4,

opf (t) = 1 1zz--
For p = 0, this equality obviously holds with t = t/n. Hence,

np
B(p)(f x)Q - n(n-1)...(n-p+l) n

n-p_ f(P)(Et) n - p xt(1 - x)n-p-t.
t=0 t

In view of (6.3.9) and the fact that xt(1 - x)"- p-t > 0 on [0, 1], it follows
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that

M=M
n-p n

p xt(1 - x)n-p-t < Q < M
n-p n - p xt(1 - X)" - + = M.

t=o t t=o t

This demonstrates (6.3.10). (6.3.11) follows by setting m = 0.
If f (x) is nondecreasing, o f (t/n) > 0 and hence from (6.3.13) with p = 1,

Bn'(f ; x) > 0 on [0, 1] and this implies that Bn(f ; x) is nondecreasing.
Finally, if f is convex, then by (3.2.2), 02f (t/n) > 0. From (6.3.13) with
p = 2, this implies that Bn"(f ; x) > 0. By Theorem 3.2.1, this, in turn,
implies that Bn is convex in every closed subinterval of (0, 1). Since B.
is continuous, it is convex in [0, 1].

THEOREM 6.3.4. Let f (x) be convex in [0, 1]. Then, for n = 2, 3.... ,

Bn-1(f; x) > Bn(f; x), 0 < x < 1. (6.3.14)

If f e C[0, 1 ], the strict inequality holds unless f is linear in each of the intervals
j

1 , = 1 , 2, ... , n - 1. In this case, B _ ( ; x) = B ; X)'n- 1 n- 1 n 1 .f n (.f
x

Proof : In (6.2.1) set t =
x

and obtain1 -

(1 - x)-n(Bn-1(.f; x) - Bn(f; x))
n-1 k n- 1 n k n=(l+t) If -1 tk- If

tkk =o n k k o n k

-n-1 k n-1
tk

n-1 k-1 n-1
tk ltn

1 k
+ f (0) +

k=1
f n - 1 k - 1 + .f ( )

k-1 .f n -
n-1 (k)

(:)t'c- .f - f (0) - f (1)t= ckt, where
k=1

(n - 1)! Ji f k
ck (k - 1)! (n - k - 1)! k n-1

1 k-1 n k

+n-kf n- 1 k(n-k)f n
(6.3.15)

Now
k1

<
k

< k 1 ,
and since f is convex, the bracketed quantity inn - 1 n n

k

n-1
(6.3.15) is > 0 by Definition 3.2.1. Therefore Ick tk > 0 and (6.3.14) follows.

k=1

If is linear in each of the intervals i i , then all the c are 0f n-1 n-1 '
and hence Bn_1 = Bn. Conversely, if Bn_1 = B, then all the c, are 0, and
since f e C[0, I] and is convex, (6.3.15) implies that f is linear in each inter-
val.
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The geometric interpretation of these theorems is this. The Bernstein
approximant of a continuous function lies between the extreme values of
the function itself, and its higher derivatives are bounded by (6.3.10).
Monotonic and convex functions yield monotonic and convex approximants
respectively. In a word-and this is reflected in Figure 6.3.1-the Bernstein
approximants mimic the behavior of the function to a remarkable degree.

There is a price that must be paid for these beautiful approximation
properties : the convergence of the Bernstein polynomials is very slow.

x(1 - x)
Ex. 3. From (6.2.6) we have B,z(x2; x) - x2 = . The convergence

is like 1/n. n

It is far slower than what can be achieved by other means. If f is bounded,
then at a point where f"(x) exists and does not vanish, B,z( f; x) converges to
f (x) precisely like C/n. (See Theorem 6.3.6.) This fact seems to have precluded
any numerical application of Bernstein polynomials from having been made.
Perhaps they will find application when the properties of the approximant in
the large are of more importance than the closeness of the approximation.

1

0 1

Figure 6.3.1 Illustrating the Approximation Properties of the
Bernstein Polynomials of a Concave Function.

B2(f; x) =
2
(x - x2)

B4(f; x) = 2x - 3x2 + 2x3 - x4
B10(f ; x) = 3x - 30x3 + 105x4 189x5 + 210x6 - 160x7 + 90x8 - 35x9 + 6x10.

The graph off is polygonal and joins (0,0), (.2,.6), (.6,.8), (.9,.7), (1,0).
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LEMMA 6.3.5. There is a constant c independent of n such that for all x
in [0, 1],

(n) xk/ 1 - x) n-k < c

Ik/n-xl >n-. k l / n$

Proof : Consider the sums

(6.3.16)

Sm(x) _ (k - nx) m
n xk(1 - x)n-k . (6-3-17)

k=o k

We have already established by (6.2.4), (6.2.5), and (6.2.8), that So(x) = 1,
SI(x) = 0, S2(x) = nx(1 - x). Differentiating (6.3.17) we have

k - nx)m-1xk-1(1 - x)n-k-l[-mnx(1 - x) + (k - nx)2]Sm'(x) _ (;) (
k=o

_ -mnS _ (x) + Sm+l(x)
m 1 x(1 - x)

Hence,

(6.3.18)

Sm+1(x) = x(1 - x)[Sm'(x) + mnSm-1(x)]. (6.3.19)

We may conclude from this recurrence that each sum is a polynomial
in x and n. In particular, S. is of 1st, S4 is of 2nd, S5 is of 2nd, and S6 is of
3rd degree in n. Hence, for some constant c, I S6(x) I < cn3 for x in [0, 1].

Inasmuch as
k -x
n

n-1 implies
(k - nx)6 >

9
n$

I (;:) xk(1 - x) 1 (k - nx)6 xk(1 - x)n-k
Ik/n-xl >n1 nt k=0 k /

9 C= n sS6(x) < .

n2

THEOREM 6.3.6 (Voronovsky). Let f (x) be bounded in [0, 1] and let x0
be a point of [0, 1] at which f" (xo) exists. Then,

lim n[Bn(f; xo) - f (x0)] = Ixo(1 - xo)f"(xo). (6.3.20)

Proof : From Theorem 1.6.6 we have

X) = (x0) + 'x
x-x)+f"(xo)(x-xo)2+s(x)(x-x)2f() f(o) f(o)( 0 2 l o

where lim s(x) = 0. Set x = k
n

k k f"(xo) k 2

+
k k 2

f n = f (xo) + f'(xo) n
_ x° + 2 n - x°

s
n n - x°

(6.3.21)
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Multiply both sides of (6.3.21) by (n) xok(1 - x0) n-k and sum from k = 0
k

to k = n. In view of identities (6.2.4-6), we obtain
n n 2

Bn ; x) = f (x) + x0(1 - x0)f (x0) + I s k k - x0 n
)xoc(1_xo)n_c.o f o 0 2n ko nn k

(6.3.22)

Designate the third term in (6.3.22) by S. Let E > 0 be given. We can find
1

n sufficiently large that Ix - x01 <
-

implies (s(x) l < E. Hence,
211

IsI <
-Ik/n-xol <n s(n)

k 2 n

n
- x0

k
x0k(1 - X0)n-k

+ I
Ik/n-x01

?n-t

k k 2 ns n
n

_ x0 k xOk(1 - X0)n-k,

(6.3.23)

Thus,

S C E k- x 2 n x k 1- x) n-k + M (n)()x0k(1 - x) n-k
k/n-x01 -n

where M = sup s(x)(x - x0)2. By (6.2.8) and Lemma 6.3.5,
0<x<1

Ex0(1 - x0) MC
ISI < +n n

z

It follows from (6.3.22) that

n[Bn(f; x0) - f (x0)] -
x0 1 - x0)

f"(x0)
2

Since E is arbitrary, (6.3.20) follows.

6.4 Approximation by Interpolation: Fejer's Proof.

n2

(6.3.24)

THEOREM 6.4.1. Let X1, x2, ... , Xn be the zeros of the Tschebyscheff poly-

nomial T n (x), x; = cos
2j - 1

2n
7r . Let f (x) E C[ -1, I] and suppose that

H2n-1(f ; x) is that element of 92n-1 for which

H2n-1(f; Xk) = f (xk)

H2n-1(f; Xk) = 0

MC
_ InSI < Exo(1 - x0) +

k= 1,2)...,n.

Then, lim H2n-1(f; x) = f (x) uniformly in [-1, 1].

(6.4.1)

Proof: We are confronted here with a problem of Hermite interpolation.
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As already observed in (2.5.20), the general solution is given by

where

n n

H2n-1(f; X) = I ykAk(x) + I yk'Bk(x)
k=1 k=1

(6.4.2)

A
w(xk)x-x

2(X)
k(X) w(xk) ( k) k

Bk(x) = (x - xk)lk2(x)

lk(x) =
w(x)

, w(x) = (x - x1) ... (x - X"'). (6.4.3)
w'(xk)(x - xk)

In the present construction, we select Yk' = 0, k = 1, ... , n, so that
our interpolation polynomial reduces to

n

H2n-1(f ; x) = If (xk)Ak(x)
k=1

We next compute lk(x), w'(xk), wk"(x). Now

and hence,

1
w(x) = CnT n(x) = Cn cos (n are cos x), Cn = 2n-1

(6.4.4)

w'(x) n sin (n are cos x)
, and

Cn V1-x2
w"(x) x sin (n are cos x) n(1 - x2)j cos (n are cos x)=n -

Cn (1 - X2)-12 (1 - x2) s

At x = xk, cos (n arc cos x) = 0, and sin (n arc cos x) = sin ((k - 1)ir) _ (-1)k-1.

Therefore,
w'(xk) (- 1)k-1n w"(xk)

nxk( - 1)k-1

Cn V 1 -xk2
, Cn (1 - xk2)Q ,

xk2 T n(x) w"(xk) 1 - XXk
1k(X) /, 1- -n(x - xk)

2U (xk)
(x - xk) 1 -

x k
2

A /x = 1 - w"(xk) (X - x l 2/x = 1
xxk Tn2(x)(1 - xk2)

kl )
w'(xk)

k) k ( ) 1 - xk2 n2(x - xk)2

_ (1 -xxk)
Tn(X)

n(x - xk)

Formula (6.4.4) can be rewritten as

zH2n-1(f; x) =
k=

where

Ak(x) xxk)
Tn(X)

(6.4.6)
n(x - Xk)
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Observe that since I xkI < 1, Ak(x) > 0 for -1 < x < 1. Observe further
that n

H2,-,(I; x) _ I Ak(x)
k=1

is that unique polynomial P2n_1(x), of degree < 2n - 1, for which

P2n-l(xk) = 1, P2n-1(xk) = 0, k = 1, 2, ... , n.

The polynomial 1 fits these requirements and hence

n
H2,-,(I; x) _ Ak(x) = 1.

k=1

(6.4.7)

(6.4.8)

After these algebraic preliminaries we can turn to the proof of conver-
n n

gence. Since Ak(x) = 1, it follows that f (x) = If (x)Ak(x), so that
k=1 k=1

n

and

f (x) - H2n-1(f; X) = I (f (x) - f (xk))Ak(x)
k=1

n

If (x) - H2n-1(f ;
X) I

< I If (x) - f (xk) I Ak(x) (6.4.9)
k=1

Since f (x) E C[-1, 1], it is uniformly continuous there. This means that if
e > 0 is given, we can find a 6 > 0 such that

1x1 - x21 < 6 implies If (x1) - f (x2)I < F, -1 < x1, x2 < 1. (6.4.10)

For a given x in [-1, 1], split the indices k = 1, 2, ... , n into two sets :
I: Ix - xkI < 6. II: Ix - xkI > 6. Then,

If (x) - H2n-1(f; x)I < I I f (x) - f (xk)I Ak(x) + I If (x) - f (xk)I Ak(x).
keI keII

We now estimate each of these sums. In view of (6.4.10) and (6.4.8),

n

If (x) - f (xk) I Ak(x) < E 1 Ak(x) < E I Ak(x) = E
kEI kEI k=1

Consider next Ak(x) for I x - xkI > b, -1 < x < 1.

2
Ak(x) XXk)

Tn(x)

n(x - xk)
2

Now, 0 < 1 -xxk < 2, 1 T n(x) I < 1, IX - xkI > 6. Hence Ak(x) n2a2

Since f e C[ -1, 1 ], it is bounded on [ -1, 1 ] by some constant M :

If(x)I <M, -1 <x <1.
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Thus, If (x) - f (xk) I < 2M,

2 4M n 4M
I f (x) - f (xk) I Ak(x) < 2M .- <

n2a2
I 1 =

nag
.

kEII kEII k_1

4M
Combining these estimates, If (x) - H2n-1(f ; x)I <.6 +

n62
. Having been

given an s, 6 is determined. Select n so large that
4M

< E Thus, for n
n62

sufficiently large and for all -1 < x < 1, If (x) - H2n-1(f ; x)I < 2E.

6.5 Simultaneous Interpolation and Approximation. If f c- C[a, b],
it may be approximated uniformly by a polynomial. We know also that we
may interpolate to f at a set of points in [a, b]. Can these processes be
combined? Given n points x1, x2, ... , xn in [a, b] and given E > 0, can we
find a polynomial p(x) such that If (x) - p(x) I < E, x e [a, b], and p(xi) _
f (xi), i = 1, 2, ... , n? Such approximations may be very desirable.

f(x)+e
f (x)

Figure 6.5.1.

f(x) - e

THEOREM 6.5.1 (Walsh). Let S be a closed bounded point set in the complex
plane. Let z1, ... , zn be n distinct points of S. Suppose that f (z) is defined on
S and is uniformly approximable by polynomials there. Then it is uniformly
approximable by polynomials p that satisfy the auxiliary conditions

p(zi) = f (zi), i = 1, 2, ... , n.

Proof : Given an E > 0, select a polynomial p(z) such that

If(z) - p(z)I < E, z E S.
Set n

q(z) = I (f (Zk) p(zk))lk(z)
k=1

l (z)
W(Z)

k
(z - Zk)W'(Zk)
n

(6.5.2)w(z) _ JJ (z - zk).
k=1
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Then q(z) is the unique element of 9n_1 with q(zk) = f (zk) - p(zk), k =
1,2,...,n.Now

n
max Iq(z)I S I I f(zk) - p(zk)I max Ilk(z)I <.6M

zES k=1 zES

where n

M = I max I lk(z) I .
k =1 ZES

Note that M depends only upon S and z1, ... , zn. Set

(6.5.3)

p1(z) = p(z) + q(z). (6.5.4)
Then

p1(zk) = p(zk)+ q(zk) = f (zk), k=1,2,. . .,n.
Moreover,

If (z) - p1(z)I < If (z) - p(z)I + Iq(z)I < e + Me, z E S.

This inequality proves the theorem.

Ex. 1. By Weierstrass' Theorem, any f (x) E C[a, b] is uniformly approximable
by polynomials. Hence the answer to the question in the introductory para-
graph of 6.5 is "yes."

Ex. 2. Let f (z) be analytic in Izi < R. Since f (z) may be expanded in a
power series which is uniformly convergent there, it is uniformly approximable
there by polynomials. Let z1, ... , Z,, be distinct points in Izi < R. Then we can
find a polynomial p(z) with if (z) - p(z)l < e, Izi < R and p(zk) = f (zk), k =

6.6 Generalizations of the Weierstrass Theorem. The Weierstrass
Theorem has been generalized in many different directions. We shall meet
some of the results in Chapter XI where closure and completeness are
studied. Here, we shall look at generalizations to functions of N real vari-
ables. If a real function of N real variables is continuous on a closed bounded
set of RN, it may be approximated uniformly by polynomials in the N
variables. There are many proofs of this fact. One proof-an extension of
Theorem 6.2.2-makes use of generalized Bernstein polynomials : if f (x1,
x2, ... ) xN) is continuous on the hypercube C : 0 < x; s 1 , j = 1 , 2, ... , N,
then the generalized Bernstein polynomial

ni
B(f; x1, x2, . . . , XN) _ I -

ki =0

nN
(ni (n2\

=o k, k9N 1 2k

nN

\kN

k1 k2 kN
X f , k2 , . . . , xlki(1 - x1)ni-ki ... XNkN(1 - xN)nN-kNt

n1 n2 nN

(6.6.1)

converges uniformly in C to f as min n; -+ oo.
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In order to provide an alternate approach, and to present a result with a
more contemporary flavor, we shall prove the Stone-Weierstrass Theorem
and derive the N-dimensional Weierstrass Theorem as a consequence.
Stone's Theorem was inspired, in part, by an elementary proof of Weier-
strass' Theorem given by Lebesgue in 1908.

We shall limit our discussion to real functions that are defined on a
finite interval I of Rn : - oo < ai < xi < bi < oo. We designate points of
I by P, Q, etc.

LEMMA 6.6.1. Let F be a family of functions that are real and continuous
on I and such that

fl, f2 e F implies max [fl, f2] E F and min [fl, f2] e F. (6.6.2)

In order for a function f that is continuous on I to be uniformly approximable
by members of F, it is necessary and sufficient that for any two points Pl and
P2 of I and for any s > 0, there be a function t(P) E F such that

If (Pi) - t(Pi)I < e, i = 1, 2. (6.6.3)

Proof : If uniform approximation is possible, then given s > 0 we can
find a t(P) E F such that

if (P) - t(P)I < E, PEI
and so (6.6.3) follows trivially.

Conversely, suppose that (6.6.3) holds. Select a fixed Q E I and a fixed
s > 0. Then, for any point R, we can find a function t(P)(= t(P; Q, R, E))
such that If (Q) - t(Q) I < E and If (R) - t(R) I < E. In particular,

t(R) < f (R) + E. (6.6.4)

By continuity of t and f, this inequality must persist in a certain neighbor-
hood NR of R. As R runs over all the points of I, the corresponding neigh-
borhoods must cover I. Hence by the Heine-Borel Theorem, we can find a
finite number of them NRi, NRZ, ... , NRk that cover I. The corresponding
functions t(P; Q, Ri) satisfy

t(P; Q) Ri) < f (P) + E, P E Ni, i = 1, 2, ... , k. (6.6.5)
Define

t-(P; Q) = min {t(P; Q, R1), t(P; Q, R2), ... , t(P; Q, Rk)}. (6.6.6)

By (6.6.2), iterated, t- e F and by (6.6.5),

t-(P,Q) < f(P) + E, PEI. (6.6.7)

Again, for each i we have

If (Q) - t(Q; Q, Ri) I < E
so that

t(Q; Q, Ri) > f (Q) - E. (6.6.8)
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It follows from (6.6.6) that

t-(Q; Q) > f (Q) - E. (6.6.9)

By continuity, (6.6.9) must persist in a neighborhood 0 of Q :

t-(P; Q) > f (P) - E. (6.6.10)

Now let Q run over I. These neighborhoods cover I, and we may find a
finite number of them O1, 02, ... , 0, corresponding to Q1, ... , Q, that
cover I. Since

t-(P; Qi) > f (P) - E, P E 0i, i = 1, 2, ... , r, (6.6.11)

and since the Oi cover I, for every P E I, the inequality

t-(P; Qi) > f (P) - E (6.6.12)
must hold for some i.
If we set

s(P) = max {t-(P, Q1), ... , t-(P, Q,.)} (6.6.13)

then by what we have just said,

s(P) > f (P) - E, for all P E I. (6.6.14)

On the other hand, by (6.6.7), t-(P; Q) < f (P) + E, P E I for all Q. Hence,
s(P) < f (P) + E, P E I. Combining this with (6.6.14),

If (P) - s(P)I < E, PEI. (6.6.15)

Finally, by (6.6.2) iterated, s(P) e F.

Ex. 1. Let I be - oo < a < x < b < oo and F be the set of all piecewise
linear functions defined on I. It is easy to verify that F satisfies (6.6.2). Condi-
tion (6.6.3) can be satisfied with E = 0 by means of a linear function. Conclusion:
Every continuous function can be approximated uniformly on I by continuous
piecewise linear functions.

DEFINITION 6.6.1. Let F be a family of real valued functions. By the
lattice hull L of F is meant the intersection of all families of functions that
contain F and contain the functions max (f 1, f2) and min (fl, f2) whenever
they contain f 1 and f 2.

Note that F c L. If all the functions of F are continuous, then the
functions of L must also be continuous.

DEFINITION 6.6.2. An algebra s of real valued continuous functions
defined on I is a set of such functions that possesses the following property.

f1, f2 E d, c real, implies fl + f2 E Q, cf1 E V, f1 f2 E ,. (6.6.16)

Note that (6.6.16) implies that any polynomial in fl with real coefficients
and of the form al f1 + a2 f12 + + an f1n E d.
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LEMMA 6.6.2. Let d be an algebra of continuous real valued functions
defined on I. Let L designate its lattice hull. Then, the elements of L are uni-
formly approximable by elements of d.

Proof: Designate by 4 the set of functions that are uniformly approxi-
mable by elements of a. We shall show: (1) is an algebra and (2) if f E 4
then Ifle 4.
Since we have

max (f1,f2) = 2[(f1 + f2) + If1 - f2I]

min (f 1, f2) =
2
[(f1 + f2) - I f1 - f2I1

(6.6.17)

it follows from (1) and (2) that if f1, f2 e R then max (f1, f2) E 9, and
min (f1, f2) E 4. Since obviously d c 4, it will follow from Definition
6.6.1 that L 4. This will establish the lemma.

As far as (1) is concerned, we need only imitate the familiar proofs of
the elementary theorems on limits of sums and products. To prove (2),
observe that since the elements of d are continuous on I, they are bounded
there. Since an f e 4 is uniformly approximable by elements of d, it, too,
must be bounded there. Set M = sup I f (P)I. By Theorem 6.5.1, let P(t)

PEI
be a polynomial with P(O) = 0 and with IP(t) - Iti I < e for ItI < M. Since
the values of f lie in [- M, M], we have I P(f) - I f I I < E. But from (1)
and the remark following Definition 6.6.2, P(f) E 4. Hence we can find a
g e d such that I P(f) - gI < E. Combining these inequalities, I If I - gI < 2e
on I. Therefore If I E

THEOREM 6.6.3 (Stone-Weierstrass). Let d be an algebra of real valued
continuous functions defined on I. In order that an arbitrary continuous real
valued function f be uniformly approximable on I by elements of d, it is
necessary and sufcient that for any two points P1, P2 E I, and any e > 0, we
can find a g e d such that I f (Pi) - g(P2) I < e) i = 1, 2.

Proof: If f is uniformly approximable on I by elements in d, then this
condition obviously holds. Suppose, conversely, that the condition holds.
Let L(d) denote the lattice hull of Q and let f be continuous on I.
For any two points P1, P2 E I, and any e > 0, we can find a g e d (and a
fortiori e L(d)) such that If (Pi) - g(Pi) I < e, i = 1, 2. Hence, by Lemma
6.6.1 with F = L(d), we can approximate f uniformly on I by elements of
L(d). On the other hand, the elements of L(d) can, by Lemma 6.6.2,
be uniformly approximated by the elements of d itself. Combining these
two approximations, we can approximate f by elements of d.

COROLLARY 6.6.4. Let f (xl, ... , xv) be real and continuous on I. Then
it can be approximated uniformly on I by polynomials in x1, x2, ... , x.N.

Proof : For the algebra , take the set of polynomials in x1, x2, ... , XN.



126 UNIFORM APPROXIMATION Ch. VI

Let Pi : (xii)) X(0) ... , x 4 ), i = 1, 2, be distinct points and consider

g(x1, x2, x = P f (P2) - f (Pl) N
x _ x(1) x(2) - x(1)

N) f( 1) + N ( i a )( z a ).
(x(2) _ x(1)) 2 i =1

z z / (6.6.18)i=1

This is a polynomial in x 1 . . . . . xN and g(Pi) = f (Pi), i = 1, 2. The conditions
of Theorem 6.6.3 are satisfied with e = 0.

NOTES ON CHAPTER VI
6.2-6.3 Bernstein polynomials are described in Gontscharoff [1], Natan-

son [1], pp. 1-7, 174-182. Lorentz [1] is a penetrating study of these
interesting polynomials and includes a discussion of their behavior in the
complex plane, applications to moment problems, and generalizations.

For Theorem 6.3.4 and for applications of the Bernstein polynomials to
variation reducing approximations, see Schoenberg [1].

For a deeper study of the rate of convergence of the Fejer scheme in
Theorem 6.4.1, see Shisha et al. [1].

An interesting and unifying approach to Theorems 6.2.2, 6.4.1, and 12.2.8
(Bernstein and Fejer) is provided by the theory of positive linear functionals
as developed by Korovkin in [2].

6.5 Walsh [2], p. 310.
6.6 The Stone-Weierstrass theorem can be found in McShane and Botts

[1], Dieudonne [1], pp. 131-134. Dunford and Schwartz [1], pp. 272, 383-
385. The chapter by Stone in Buck [6] is highly recommended.

PROBLEMS

1. Let f (x) E C1[a, b]. If p(x) is a polynomial that approximates f' to within
x

s on [a, b] then q(x) = p(x) dx + f (a) is a polynomial that approximates f to
a

within (b - a)E on [a, b]. Extend to higher derivatives.
2. Let f (x) E C00[a, b]. Show (without using Bernstein polynomials) that we

can find a sequence of polynomials p,z(x) such that lim pn')(x) = f (')(x) uni-
formly on [a, b] j = 0, 1 n 00

3. Let pnk(x) = <1. Prove that the maximum

k k k

(n)
k

xk(1 - x)n-k, 0 < x

value occurs at x =
n

. If
n

-* x as n -* oo, Pnk is asymptotically equal to
(2.rnx(1 - x))-i.

4. Bernstein polynomials over the interval [a, b] may be defined by

1 n k n
)
()

k
)(x - a)k(b - x)n-k, h = b - a.Bn(f, a, b; x) = hn f a + n h

k=0

Prove a theorem analogous to Theorem 6.2.2.
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5. Compare B4( Vx; -) with A/ I.
6. Let S(x) = I2x - 11, 0 < x < 1. Compute B4(S(x); x), B6(S(x); x). Show

1 1 2n
that Ben S(x);

2
= 22n n

and study the rapidity of the approach to 0 of

S(J) - B2n(S(x); I)
7. Let f (x) = 0 for 0 < x < j, f (x) = x - j for I < x < 1. Show that

B2n(f ; x) has nth order contact with f at both 0 and 1.
8. Verify Voronovsky's Theorem for f (x) = ex by a direct computation.
9. Obtain an explicit expression for Bn(x3; x) and show directly that

lim n[Bn(x3; x) - x3] = 3x2(1 - x).

10. Let f (x) E C[a, b]. It is uniformly approximable on [a, b] by polynomials
with rational coefficients.

11. If f (x) E C[a, b], uniform approximation by polynomials with integer
coefficients is not necessarily possible.

12. Prove Ex. 1, 6.6 directly.



CHAPTER VII

Best Approximation

7.1 What is Best Approximation? In Chapter VI, we have studied
several situations in which functions can be approximated arbitrarily closely
by polynomials. It goes without saying that in order to achieve more and
more accuracy in the approximations, the approximants will (in general)
have to be of higher and higher degree. But it is of considerable importance
both for theory as well as for numerical practice to accomplish as much as
possible with polynomials of a fixed degree. For instance, how well can the
function x4 be approximated over 0 < x < 1 by a straight line? In order to
answer such a question, the notion of closeness of approximation must be
defined. Frequently, we measure the closeness of approximation over the
interval by taking the maximum deviation between the function and its
approximant. At other times, we may wish to use alternate definitions.
The maximum deviation considered over a finite set of points, or the integral
of the square of the deviations are frequently employed.

Once a criterion of closeness of approximation has been decided upon,
we may begin to answer specific questions. We may, for instance, look into
the problem of whether, among the elements of 9, there is one whose
closeness to a given function f (x) is not exceeded by any other element of
9n. If there is, it is known as a best approximation to f (x). Change the
criterion of closeness of approximation and the best approximation will
change.

Ex. 1. Approximate y = x4 over [0, 1] by a straight line 1(x) so that

(a) I (x4 - 1(x))2 dx = minimum
0

i ri

(b)
J

(x4 - 1(x)) 2 dx + (d/dx(x4 - 1(x)))2 dx = minimum
0 0

(c) oma xl J X4 - l(x) I = minimum

The answers are given by

(a) 1(x) = -4x - s
(b) 1(x) = 5 5x 16

(c) 1(x) = x - !?Y2Y2 = x - .236.
128
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Figure 7.1.1 Least Square and Best Uniform Linear
Approximations to x4 on [0, 1].

The major investigations in the theory of best approximation concern
themselves with (a) Under what circumstances is there a best approxima-
tion? If it exists, is it unique? (b) How can best approximations be charac-
terized analytically or geometrically? (c) How can the best approximants
be computed numerically? (d) What are the asymptotic properties of best
approximation? We shall prove theorems in all these categories.

It would be good to have an abstract mathematical structure to describe
properties of best approximation independently of the specific criterion of
closeness of approximation. Such a structure is furnished by the theory
of Normed Linear Spaces, and it is to this theory that we now turn.

7.2 Normed Linear Spaces

DEFINITION 7.2.1. A linear space X is called a normed linear space if for
each element x of the space there is defined a real number designated by IIxII
with the following properties:

(a)

(b)

(c)

IIxII > 0 (positivity)

IIxII = 0 if and only if x = 0 (definiteness)

IIaxli = Ia4 IIxII for every scalar a (homogeneity)
(7.2.1)

(d) (Ix + yII < IIxII + IIxII (triangle inequality)

The quantity IIxII is known as the norm of x.
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DEFINITION 7.2.2. A metric space is a collection of elements and a mea-
sure of distance d(x, y) defined for every ordered pair of elements. The
function d(x, y) is assumed to satisfy

(a) d(x, y) > 0
(b) d(x, y) = 0 if and only if x = y
(c) d(x, y) = d(y, x)

(7.2.2)

(d) d(x, y) + d(y, z) > d(x, z).

Note that the concept of a metric space is the more primitive one since
a normed linear space is a metric space under the definition

d(x, y) = IIx - yII. (7.2.3)

It is easily verified that (7.2.1) and (7.2.3) imply (7.2.2).
As an easy consequence of the norm postulates we have

IIxII - IIyII I < IIx - Y11, (7.2.4)

for IIxII = IIx - y + yII < II x - yII + II y ii
Therefore IIxII - I l y l l < IIx - yII
Similarly Ilyll - IIxII < Ily - xll = IIx - yII

and (7.2.4) follows.
The following examples of normed linear spaces find frequent applica-

tion.

Ex. 1. The real line - oo < x < oo with IIxII = jxl

Ex. 2. The real n-dimensional Cartesian space Rn of elements

x = (x1, x29 . . . , xn)

with the definition IIxII = (x12 + x22 + + xn2)1. This is known as the "square
norm."

Ex. 3. R. or C. with the definition IIxII = (l x1l + + Jxnl r)1/p, p > 1.
This is known as the "p norm." Properties (7.2.1)(a)-(c) are easy to verify.
Property (d) is the Minkowski Inequality and takes a number of steps to reach.

LEMMA 7.2.1. If x, y > 0, a, b > 0 and a + b = 1 then

x°`yb < ax + by.

Equality holds if and only if x = y.

Proof: Let t> 1, m < 1.Letf(t)=tm.
From Theorem 1.6.2,

(7.2.5)

f (t) = f (1) + (t - 1)f '(E) 1 < S < t.
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Hence tm = 1 + (t - 1)mEm-1.
Since Em-' < 1,
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tm < 1 + m(t - 1). (7.2.6)

Assume, for the moment that x > y > 0. Set t = x/y > 1, m = a, so that
1 - m = b. Then, from (7.2.6),

or

Hence

(x/y)a < 1 + a(x/y - 1)

xayl-a<y 4 a(x - y) =cr - (1 - a)y.

xayb < ax + by.

If 0 < x < y, we may interchange the roles of a and b and arrive at the
same inequality. If x = y, xayb = xa+b = x = ax + bx.

LEMMA 7.2.2 (Holder's Inequality). Let xk and Yk be complex. If p > 1,
and 11p + l 1q = 1,

n

xkyk
k=1

Note that 11p, 11q > 0.

n 1 /p In1 /q
I IxkI p IykIq
k=1 k=1

Proof: From Lemma 7.2.1, with x = Ixkl V IykIq
9L

'y n

I I xkl p l y
k=1 k=1

q

a= 1/p,b= 1 - l/p= 1/q, we have

I xk I p \11p/ l yk l g
11q

I xk I p I yk l q<1/p n + 1/q nn n

IxkI V IykIq I IxkI p IykIq
k=1 k=1 k=1 k=1

(7.2.7)

(7.2.8)

In 1/p
Summing (7.2.8) from k = 1 to k = n, and multiplying by I IxkI p

n 1/q k=1
X 1 Iykl q we obtain

k=1
n n 1/p n 1/q

I xkykl C I IxkI I IykIq
k=1 k=1 k=1

In n

(7.2.9)

Since I xkyk C I xkykl1 (7.2.7) follows. For equality, in (7.2.8) and hence
k=1 k=1

in (7.2.7) we must have

Ixkl p IykIq
n n

I IxkI p I IykIq
k=1 k=1

n

i.e.,
I xkI p = constant lyklq, k = 1, 2, ... , n. (7.2.10)
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Moreover,

unless

Ixillxi+yil11-1 <
i=1

n

< I I xkyk I
k=1

Ch. VII

XkYk = l xkykl eie, 0 = constant, k = 1, 2, ... , n. (7.2.11)

Hence (7.2.10) and (7.2.11) together are necessary and sufficient for equality
in (7.2.7).

THEOREM 7.2.3 (Minkowski's Inequality). If p > 1,
n 1/p n 1/p n 1/p

Ixi+yiip <- Ixilp + lyiip (7.2.12)
i=1 i=1 i=1

or, in the notation of Ex. 3., lix + yII < IIxII + Ilyll.

Proof: If p = 1 , (7.2.12) reduces to the triangle inequality. If p > 1,
n n

1 xi + yi I p = l x i + yi I I xi + yi 1 p-1
i=1 i=1

n n

< I xil I xi + yd" + lyil I xi + yd"
i=1 i=1

By Lemma 7.2.2,

Similarly,

xkyk
k=1

n 1/p n 11q

I xil p I xi + yiI (p-1)q
i=1 i=1
n 1/p n 1/q

(lxilP) Ixi+yilp
i=1 i=1

n n 1/p n 1/ q

l yi l I xi + yd" p-1 < 101 1 xi + yi I p
i=1 i=1 i=1

n 1/q
Combining these inequalities and dividing by I xi + yi l p we obtain
(7.2.12). i=1

Suppose that p > 1. If there is equality in (7.2.12), we must have

n n 1/p n 1/ q

I xi l I xi -I- yi l p-1 = I xi l p I xi + yi l p
i=1 i=1 i=1

and

n n 1/p n 1

1y11 I xi + yi l l-1 = I yi I p 1 xi + yi l p
i=1 i=1 i=1

q
(7.2.1 3)

n n n

I xi + yi l I xi + yi l p-1 = I xi l I xi + yi l p-1 + I yi l I xi + yi I p-1 (7.2.14)
i=1 i=1 i=1

By the remark following Lemma 7.2.2, (7.2.13) implies that

I xi I p = c1 I xi + yi 1 p, I yj p = c2 I xi + yi I p1 i = 1, 2, . .. , n.
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Assuming that neither the xi nor the yi are all zero,

1 xi l = constant I yi l , i = 1, 2, ... , n.
Since la + #1 < l a I + 1#1 unless a and 9 have the same direction, we con-
clude from (7.2.14) that

xi= Ixil e4,yi= Iyil e4, i= 1,2)...,n.
Hence,

xi = cyi i = 1, 2, ... , n, (7.2.15)
with c>0.

Ex. 4. The same linear space as in Ex. 2, with the definition Ilxii = max Ixjl.
1<j<n

This is known as the uniform norm. It is also called the p - oo norm in virtue
of the identity lim (Ix1I p + Ix2I p + + I xnI p)1/p = max Ix11. (Prove.) One

P o00 1<j<n
sometimes expresses this as lim 11 x11 p = 11 xll C .

Ex. 5. If {xi } and {yi } are two sequences of real or complex numbers such
00 00

that IxiI < oo, I yiI p < oo, p > 1, then
i=1 i=1

00 )1/p 00 /p 00 /p
Ixi + yil p - I Ixil p + I Iyil p (7.2.16)

i=1 i=1 i=1

This implies that the set of all infinite sequences {xi } with I xi I p < oo and
i=1

addition and scalar multiplication defined analogously to Ex. 1, 1.3, form a
I00 1/p

linear space with 11 {xi}1I =
i

I xiI p . This space is called the V space.
1

Ex. 6. Let B[a, b] be the set of all bounded functions defined in [a, b]. Define

Ilfll = a<zpb If W1.

Then we have a normed linear space. To prove (7.2.1)(d), observe that

If W1 <_ sup If Wk 19(x) I <_ sup 19(x) I
Hence,

If (x) + 9(x) I < If (X) I + I9(x) I <_ sup I f (X) I + sup I9(x) I

Since this is true for all x, it follows that

sup If (x) + 9(x) I <_ sup If (X) I + sup 19(x) I

Ex. 7. C[a, b] with the definition IIfII = max If (x) I is a normed linear
a <x<b

space.

Ex. 8. Let R be a region of the complex plane. The set of functions analytic
in R and bounded there forms a linear space B(R). It may be normed by defining
IIfII = sup If (0.

zER



134 BEST APPROXIMATION Ch. VII

Ex. 9. Let w(x) E C[a, b] and w(x) > 0. We may norm C[a, b] by defining
b

II f II = w(x)fl(x) dx (weighted square norm).
a

Ex. 10. Lp[a, b] (Cf. Def. 1.4.0) is a normed linear space for p > 1. We
b 1/p

define 11f II = 1f (x) l p dx . The triangle inequality is the Minkowski in-
a

equality for integrals.

(jb 1/p b /p (fg(x)PdxIP.
+ g(x)dx < I f (x)I P dx + (7.2.17)

a

For p > 1 this may be defined from the Holder inequality for integrals. This
states that if f c- Lp[a, b] and g e Lq[a, b], l/p + 1/q = 1, p > 1, then fg E L[a, b]
and

f (x)g(x) dxfa

b b /p b

(x)Ip dx gdx
(Elf

(JI(xwl

The proof runs parallel to that of Lemma 7.2.2. The particular case, p = 2,

f (x)g(x) dxfa

b (Sab2 (f1g2day (x)1dx (7.2.19)

is the very important Schwarz inequality.

Ex. 11. Let a < xi < x2 < ... < x,, < b. The linear space may be
normed as follows

IIpII = max lp(xj)l.1<j<n

7.3 Convex Sets.

DEFINITION 7.3.1. Let X be a linear space. If xi and x2 are two distinct
elements of X, the set of all elements of the form

x = tx1 + (1 - t)x2, 0 < t < 1 (7.3.1)

is called the line segment joining xi and x2.

DEFINITION 7.3.2. Let X be a linear space. A subset C of X is called
convex if C contains all the elements on the line segment joining any two
of its elements. That is, if x1, X2 e C then so does txi + (1 - t)x2, 0 < t < 1.

Ex. 1. In R2, a line segment, the quadrant x > 0, y > 0, the interior of an
ellipse are all convex sets. (Proofs?)

Ex. 2. The set of all polynomials with nonnegative coefficients is convex.

Ex. 3. Let X be a normed linear space. The ball IIxii < r is convex. For
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suppose 1 l x i i < r, I l y l l < r, and 0 < t < 1. Then

IItx + (1 - t)yff < Iti jlxii + 11 - tj Ifyll c tr + (1 - t)r = r.

Hence tx + (1 - t)y belongs to the set.

Figure 7.3.1 A Convex Set. Figure 7.3.2 The Convex Hull.

Figure 7.3.3.

DEFINITION 7.3.3. The convex hull of a given set S is the intersection of
all convex sets containing S.

Ex. 4. The convex hull of the point set x2 + y2 < 1, y > 0 is the semi-
circle x2 + y2 < 1, y > 0.

Ex. 5. The convex hull of the points P1, P29 ... , Pn lying in a plane may
be "found" by driving nails in at Pi and wrapping a string around the con-
figuration.

An elegant example of a normed linear space is furnished by the Minkowski
plane. Let there be given in the x, y plane a bounded, convex set S with
boundary C. We will suppose it contains the origin in its interior and that it
is symmetric with respect to the origin ; i.e., if (x, y) E S then (-x, -y) E S.
If P = (x, y) is a point other than the origin, the directed line extending
from (0, 0) to (x, y) can be shown to intersect C in precisely one point
W, y').
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Define
2

l i p II = 11(x, y)11 =
1'x2 + y

,2 , II (0, 0) 11 = 0. (7.3.2)
x,2 + y

It should be clear that the points of the plane interior to C have norm < 1,
those exterior to C have norm > 1, while those on C have norm = 1.

THEOREM 7.3.1. R2 normed by (7.3.2) is a normed linear space.

Proof: The requirements for a norm are (7.2.1) (a)-(d). The first three
are easy to check. The triangle inequality requires some ingenuity. We
wish to show that 11 P1 + P211 < 11 P1II + 11P211- If either 11 P111 = 0 or
11 P211 = 0, the inequality is trivial. Assume that neither is 0 and set

IiPlii+IIP211=t.
We can then write 11 P111 = ot, 11 P211 = (1 - O)t for some 0 < 0 < 1.

By homogeneity,
P, = P2

= 1.
of - e)t

This tells us that the two points
Pi

, P2 are located on C. By the
of (1 - o)t y

convexity of the closure of S, the point o
Pl

+ (1 - 0) P2

et (1 - e)t
1

t
(P1 + P2) is also in the closure of S and hence

1

t (P1 + P2)
1

=t11P1+P211<1.

Therefore,

II P1 + P211 < 11 P1 11 + II P211.

The same definition can be introduced in spaces of higher dimension.
C is called the gauge curve of the normed plane.

Ex. 6. If C is the unit circle, then llP11 = (x2 + y2)i, and we have the
Euclidean norm.

Ex. 7. If C is the square with sides x = ± 1, y = + 1, then

11PII = max (IxI, IyI).

Ex. 8. C is the square with sides x + y = ±1. Then II PII = IxI + IyI

7.4 The Fundamental Problem of Linear Approximation. Let X
be a normed linear space. Select n linearly independent elements x 1 . . . . . x,z.

Let y be an additional element. We wish to approximate y by an appropriate



Sec. 7.4 THE FUNDAMENTAL PROBLEM OF LINEAR APPROXIMATIONS 137

linear combination of the x1, ... , xn. The closeness of two elements will
be defined as the norm of their difference. We therefore would like to make
II y - (a1x1 + a2x2 -f- ' ' ' + anxn) II as small as possible. The element

y - (a1x1 + + anxn)

is called the error or discrepancy.

DEFINITION 7.4.1. A best approximation to y by linear combinations of
x1, ... , xn is an element alx1 + + anxn for which

II y - (a1x1 + ... + anxn) II < II y - (b1x1 + ... + bnxn) II

for every choice of constants b1, ... , bn.
A best approximation solves the problem of minimizing the error norm.

Ex. 1. Let X be C[0, 1] normed by I f II = max if (x)l. Take n = 1, x1 as
0<x<1

the function 1, and y the function ex. A best approximation to ex by constants
is the constant a that minimizes max ex - al. The (unique) solution is a =

0<x<1
J(e + 1) and the error norm is J(e - 1).

f2 dx Take n = 1, x1 theEx. 2. Let X be C[0, 1] normed by I f II = .

0

function 1, and y the function ex. A best approximation to ex by constants is

the constant a which minimizes (ex -a) 2dx . The (unique) solution is
0

given by e - 1 and the error norm is (J(4e - e2 - 3))1.

Ex. 3. Let X be R3 normed by IIxii = max 1xil. Take n = 2, x1 = (1, 0, 0),
1<i<3

x2 = (0, 1, 0) and y = (3, 5, 2). The minimum error norm is 2 and can be achieved
with any coefficients a1, a2, for which 13 - all < 2, 15 - a21 < 2. Though there
is a best approximation, it is not unique.

Ex. 4. Let X = Y1 normed by II f II = I f (0) 1 + 1f (1) 1. What constant is a
best approximant to the polynomial x? We have IIx - all = jai + 11 - al.
Hence, as a varies, the minimum value is 1 and is assumed for every 0 < a < 1.

The problem of finding best approximations can be pictured geometri-
cally. The set of all linear combinations a1x1 + + anxn form a linear
subspace of dimension n. We can picture this as a plane. The element y will
not, in general, lie in this plane, and we would like to locate the point of
the plane closest to y.

THEOREM 7.4.1. Given y and n linearly independent elements x1, ... , x,.
The problem of finding min 11 y - (a1x1 + ... + anxn) 11 has a solution.
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Proof: Consider the error norm

d (a1, a2, . . 1 an) = II y - (a1x1 + a2x2 + - ... + anxn) it (7.4.1)

as a function of the n real or complex variables a1, ... , an. This function
is continuous in the variables ai, for, the difference

Id(a1 , a2', ... , an) - d(al, a2, ... , an)l

_ II y - (a1'x1 + ... + anxn) II - II y - (alxl + ... + anxn) II
II (a1' a1)x1 + ... + (any - anxn II

la1' - all 11x111 + . + Ian' - anI Ilxnll. (7.4.2)

Figure 7.4.1.

The first inequality follows from (7.2.4) and the second from (7.2.1) (d), (c).
Since the x's are fixed, (7.4.2) implies that the difference of the d's must be
small if the difference of the a's is small. In a similar way, the function

h(a1, ... , an) = II aix1 + ... + anxn II (7.4.3)

is a continuous function of the a's.
Let S designate the spherical surface

S: Ia112 + 1a212 + ... + 1an12 = 1 (7.4.4)

in Rn (or Cn). S is closed and bounded and hence h must take on a minimum
value m > 0 there. The possibility m = 0 is ruled out for we should have
for some nonidentically vanishing ai, II a1x1 + - + anxn ll = 0. This im-
plies that a1x1 + + anxn = 0 and contradicts the assumption that the
x's are linearly independent. Now, writing r for (1a112 + 1a212 + - . . . + Ian12)j,

h(a1, ... , an) = r
a1 x1 + . . . + an xn
r r

(7.4.5)

so that
h(a1,... , an) > mr. (7.4.6)
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Moreover,

d = II y - (alxl + ... + anxn) II > II alxl + ... + anxn II - 11Y11

>mr - Ilyll. (7.4.7)

This inequality means that if we select coefficients that are very large, d
must be very large for it increases without limit as r - * oo. This in turn
means that in looking for a minimum value for d, we can confine our atten-
tions to a certain sphere in the a-space. More precisely, set

p= inf d(al, ... , an) and R= 1+P+IIyll
(7.4.8)

m

If lall2 + + I anI2 > R2, (7.4.7) implies

Hence
d>mR-Ilyll=1+P>P.

iIf d(al, ... , an) = inf d(a1,
11

(7.4.9)

. )an) (7.4.10)

where I refers to the whole space of the a's and II to the portion Ia1I2 +
+ Ian 12 G R2. Since d is continuous, the value of the right hand of (7.4.10)

is assumed in Ia1I2 + + I an12 < R2, and this completes the proof.

COROLLARY 7.4.2. Let f (x) E C[a, b] and n be a fixed integer. The problem

of finding min max If (x) - (a0 + alx + ' + anxn)l has a solution. As
ao,...,an a <x <b

we shall prove subsequently, the solution is unique. It is called the Tschebyscheff
approximation of degree < n to f (x). We shall designate it by Tn(f ; x).

COROLLARY 7.4.3. Let f (x) E C[a, b] and n be a fixed integer. Let p > 1.
b

The problem of finding min If (x) - (a0 + alx + ' + anxn) I " dx has a
ao,al,...,an a

solution. Such a solution yields a best approximation to f (x) in the sense of
least pth powers. We need only assume that f e Lv[a, b].

COROLLARY 7.4.4. Let B be a bounded region in the complex z plane. Let
f (z) be analytic in B and remain continuous in B, the closure of B. The prob-
lem of finding min max If (z) - (a0 + a1z + + anxn) I has a solution.

ao,...,an zE$

This polynomial will be proven unique in Theorem 7.5.6 and will be designated

by T n(f (z) ; z).

COROLLARY 7.4.5. Let x0, ... , xk be k + 1 distinct points. Let k > n. The
problem of determining min max If (xi) - (a0 + alai + + anxin)l has

a0....,an 0<i<k
a solution.
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COROLLARY 7.4.6. Let x0, ... , xk be k + 1 distinct points, k > n. The
k

problem of determining _min I (f (xi) - (ao + alai + + anxin))2 pos-

sesses a solution. This is the common problem of least squares data fitting by
polynomials.

COROLLARY 7.4.7. Let values aii, yi be given for 1 < i < p, 1 < j < n,
p > n. The problem of finding min max Jyi - (ai1x1 + ai2x2 + + ainxn) I

X) 1 < i < p

has a solution.

This is the "solution" of an over-determined system of linear equations,
accepting as the answer those values that render minimum the maximum
of the individual discrepancies. Other norms may be used. The most fre-
quently used norm is the square norm.

COROLLARY 7.4.8. Let Cp[-ir, ir] designate the linear space of functions
which are continuous on [-ir, ir] and are periodic: f (rr) = f (--rr). Then,
there is a trigonometric polynomial of order < n,

n n
Tn(x) = I ak cos kx + I bk sin kx

k=0 k=1

for which max if (x) - T n(x) I is minimum.-,r <x <,r

DEFINITION 7.4.2. For a given y ; x1.... , xn set

min II y - (alx1 + ... + anxn) En(y; x1, ... , xn) = En(y). (7.4.11)
ai

En(y) is the measure of best approximation that can be achieved when y is
approximated by linear combinations of the x's. Geometrically, it may be
thought of as the distance from y to the subspace spanned by x 1 . . . . . xn.

Evidently we have

E1(y) > E2(y) > E3(y) > . . (7.4.12)

This is true since linear combinations of x1, x2, ... , xk are also linear com-
binations of x1, x2, ... , Xk, xk+l.

7.5 Uniqueness of Best Approximation. We have observed that
under the hypothesis of Theorem 7.4.1 there is always one best approximant.
But there may be more than one. In fact, the best approximants form a
convex set.

THEOREM 7.5.1. Let S designate the set of best approximants to y in the
situation of Theorem 7.4.1. Then S is convex.
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Proof: Let x and w be two best approximants to y. Then, II y - x 1l =
En(?'), IIy - wII = E,,(y). Suppose that a > 0, j9 > 0 and of. + / = 1. Then

IIy-ax-/3wII = Ila(y-x)+My-w)II CaIIy - xII + #IIy - wII
_ (a + /3)En(y) = E71(y).

But ax + /3w is also a linear combination of x1, x2, ... , xn and hence
ax + jw must also be a best approximant.

COROLLARY 7.5.2. The set of best approximants consists either of one
element or of infinitely many elements.

Proof: For if it contains two distinct elements, it must contain the whole
line of elements joining the two.

Ex. 1. In Ex. 3, 7.4, the totality of best approximations is given by
13 - all < 2, 15 - all < 2. The points (a1, a2) lie in a square, a convex figure.

A fairly extensive sufficient condition can be given which assures the
uniqueness of the best approximation.

DEFINITION 7.5.1. A normed linear space X is called strictly convex if
IIxII < r, IIyII < r imply II x + yII < 2r unless x = y.

Ex. 2. The space C,, of complex sequences x = (x1.... , xn) with

In 1/p

IIxII = 11xilp , p > 1,

is strictly convex. For if

then

Therefore,

Hence

By (7.2.15),

IIxII C r, IIyII < r and IIx + yII = 2r,

2r = II x + yII c IIxII + IIyII < 2r.

IIx + yII = IIxII + IIyII

IIxII = IIyII = r.

xi/yi = A > 0 i = 1, 2.... , n.

Since IIxII = IIyII, A = 1, and so x = y.

Ex. 3. The normed linear spaces fp and L"[a, b], 1 < p < oo, are strictly
convex.

Ex. 4. The space C[ -1, 1] with 11f II = max if (x) l is not strictly convex.
-1 <x<1

For if f (x) = 1 - x2, g(x) = 1 - x4, II f II = IIgii = 1, 11f + gII = 2 but

f (x) 0 g(x).
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Ex. 5. R2 with 11 (XP X2)11 = max (1x11, Ix21) is not strictly convex for

11(1) 0) + (1) 1)11 = 11(1) °)II + II(111)11.

Ch. VII

THEOREM 7.5.3. In a normed linear space X with a strictly convex norm,
the problem of best approximation (posed in Theorem 7.4.1) has a unique
solution.

Proof: Suppose there are two distinct best approximants to y, ul and u2.
Then 11Y - U111 = 11Y - u211 = En(y) . Now y - ul and y - u2 are also dis-
tinct. Hence by strict convexity,

II (y - ul) + (y - 112)11 < 2En(y)

This is equivalent to IIy - 2(u1 + u2)II < En(y). But this would mean that
the element (u1 + u2), which is also a linear combination of x1, . . . , xn,
is closer to y than the minimum possible distance. This is a contradiction.

COROLLARY 7.5.4. Best approximation in the spaces L}[a, b], tv, 1 < p < oo
is unique.

The important case of best uniform approximation is, unfortunately, not
covered by the general result of Theorem 7.5.3 and must be treated by its
own methods.

We begin by establishing a geometric lemma whose utility will become
clear during the course of the proof of Theorem 7.5.6.

Figure 7.5.1.
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LEMMA 7.5.5. Let M and E < M/2 be fixed. Designate by I the set of
points Iz -,qMI < qE and by II the set of points common to IzI < M and
Iz - MI < E. Set p(q) = max Izl - z21. Then, for any 0 < q < 3, p(,q) < M.

z2EII
The same conclusion obviously holds if the whole figure is rotated about 0.

Proof: Since E < M12, < 1 < M E . The sets I and II have nos M + E
common point and appear as drawn in the figure. If 0 = TOM, then

sin 0 =
?7E

< 2. Hence 0 < 0 < 7r/6.
,qM

A moment's consideration leads one to the conclusion that p = PP'.
Hence,

p(q) = (M2 + g2M2 - 2M2,q cos 0')j + qE

< -
where 6 POM. Since Of , 0 < 7r/6, -cos B <

V32
. Hence,

p(,q) < M((1 + q2 +

Let f(,q)= (1 +q2-1/3,q)i+q/2.Then f(q)=1 if and only if = 0 or
=

3
(1/3 - 1) _ .976. Furthermore, f (2) _ (4 - 21/3)1 + _ .87 < 1.

Therefore when 0 < q < .976, f (q) < 1. Consequently p(q) < M for
0<'<3.

THEOREM 7.5.6 (Tonelli). Let S be a closed and bounded set in the complex
plane that contains more than n + 1 points. Let f (z) be continuous on S and
set

M = min max If (z) - p(z)I.
pEgri ZES

Let pn(z) be any polynomial that realizes this extreme value and set

(7.5.1)

r(z) = f (z) - pn(z) (7.5.2)
Then,

A. The number of distinct points of S at which jr(z) I takes on its maximum
value is greater than n + 1.

B. There is a unique solution to the problem (7.5.1).
Proof : There is first the trivial case in which M = 0. Then

so that
max If (z) - pn(z) I = 0

pn(z) =.f (z)

throughout S. This implies A. Since a minimizing polynomial must agree
with f in more than n + 1 points, it is uniquely determined for it is in gn.
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Assume next that M > 0. We first show that A implies B. Suppose that
pn, qn E 9n are two distinct polynomials for which

m ax If (z) - pn(z)I = m ax If (z) - gn(z)I = M.

Now, max If (z) - 2(pn(z) + gn(z))I

< m ax 2 If (z) - pn(z) I + max 2 If (z) - qn(z) I = M/2 + M/2 = M.
ZES

Since 2(pn + qn) E 9n, the definition of M implies that

masx If (z) - 11(pn(z) + qn(z)) I = M. (7.5.3)

This means that 2(pn + qn) is a minimizing polynomial.
Let z' be a point of S for which the maximum in (7.5.3) is achieved.

Then

M = If (z') - 2(pn(z') + gn(z'))I 21f (z') - pn(z')I + 2lf (z') - gn(z')I
< M/2 + M/2 = M.

This implies that

if (z') - 11(p.(z') + gn(z'))I = 2 If (z') - pn(z')I + 2 If (z') - gn(z')I
and if (z') - pn(z')I = M and If (z') - gn(z')I = M.

Since, moreover, Ia + bI = Ial + IbI implies that arg a = arg b (or ab = 0),
it follows that

f (z') - pn(z') = f (z') - qn(z') or pn(z') - qn(z') = 0.

According to A, there are at least n + 2 distinct points of type z'. Since
pn - qn e 9, it follows that pn = qn

To prove A, suppose the contrary, that Ir(z)I = M only at z1, z2, ... , zm
and m < + 1. Let q(z) be an element of °in for which

q(zi) = r(zi) i = 1, 2, ... , M.

We will show that for sufficiently small q,

Thus,
max I r(z) - nq(z) I < M. (7.5.4)

m ax If (z) - pn(z) - qq(z) I < M. (7.5.5)

Since pn + qq E 9n, this would contradict the definition of M in (7.5.1).
To prove (7.5.4),

(a) Select E < M/2.
(b) In view of the uniform continuity of r and q over S, determine 6 so

that
Ir(z1) - r(z2)I < E, I q(z1) - q(z2)I < E (7.5.6)

for Iz1 - z2I 6, z1, z2 E S.
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(c) Let C. designate the set of points of S lying in at least one of the
circles

Iz - zkI < 6 k=1,2)...,m.
LetTa=S-C6.ThenS=CaU T.

(d) Let M. = max Ir(z)I. (If Ta is empty, set M. = 0. Similarly below.)
ZET6

In view of the fact that Ir(z)I = M only at z 1 . . . . . zm, we have M. < M.
(e) Set max Iq(z) I = Q and select an q :

ZES

0<'q <min 3 M - Ma
,

2Q

Then,
mrx I r(z) - nq(z)I < max Ir(z)I + i x Iq(z)I

M - Ma M +Ma
<Ma+ 2Q Q= 2 <M. (7.5.7)

Now for C. Let Ck designate the set of points common to S and to

Iz - zkI < b.
m

Then, Ca = U Ck. If z e Ck, then Ir(z)I < M = I r(zk)I , and by (b)
k=1

I r(z) - r(zk)I < E < M/2.

Thus, the values of r(z) lie in a region Ilk as explained in the lemma. If
z E Ck, then by (b), I q(z) - q(zk) I < E ; but since q(zk) = r(zk), we have
I nq(z) - nr(zk) I Thus, for z e Ck, the values of qq(z) lie in a region Ik
Under the assumption on q,

I r(z) - nq(z)I < p( )) =max Izl - z2I < M.
ZiElk
Z2EIIk

This conclusion is independent of k and hence

I r(z) - q(z)I < M. (7.5.8)

Combining (7.5.8) with (7.5.7) we obtain (7.5.4). This completes the proof
of the Theorem. For further elaboration of a similar argument carried out
in the real domain, see the proof of Theorem 7.6.2.

We remark that if S contains n + 1 points, then M = 0 and B holds but
not A. If S contains fewer than n + 1 points, M = 0 and the solution is
not unique.

Ex. 6. Let S be a closed bounded point set in the complex plane containing
more than n - 1 points. The problem of finding

min max I zn - (an-lzn-1 + an-2zn-2 + ... + ao) (7.5.9)
ai Z ES

has a unique solution. The total expression above is a polynomial of degree n
with leading coefficient 1 whose maximum modulus over S is minimum. We
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will designate it by T,,(S; z). We note that it is frequently called the Tscheby-
scheff polynomial of degree n for S. This adds greatly to the ambiguity of the
expression "Tschebyscheff polynomial."

Ex. 7. Let S consist of n distinct points z1, ... , zn. Then

Tn(S; Z) = (Z - z1)(z - Z2) . . . (z - zn),

Ex. 8. Let S: [ -1, 1]. Then Tn(S; z) = Dn(z) (Cf. Def. 3.3.2).

Ex. 9. If C designates the unit circle, Tn(C; z) = zn. We shall prove that if
pn(z) = zn + alzn-1 + + an 0 zn, then max I pn(z) I > 1. Consider

zEC

q(z) = pn(z) = 1 + a1 + ... .+ an .
Zn z zn

The function q(z) is analytic in the closed exterior of C (including oo), and
q(oo) = 1. By the Maximum Principle, since q is not a constant,

max Iq(z)I > Iq(oo)I = 1.
jz1 = 1

Therefore, max I pn(z) I = max I zn I I q(z) I > 1.
IzI =1 IzI = 1

7.6 Best Uniform (Tschebyscheff) Approximation of Continuous
Functions. Let f e C[a, b]. We know by Theorem 7.5.6 that the problem
of finding mien m axb If (x) - p(x)I has a unique solution. Designate the solu-

PC-n
by pn(x) and set En(f) =amx b If (x) pn(x)I. (The polynomial pn(x)

is frequently called the Tschebyscheff approximation of degree < n to f (x).)

THEOREM 7.6.1. If f e C[a, b], then

E0(f) >- El(f) > ... and lim En(f) = 0. (7.6.1)
n- oo

Proof : We have already noted the monotonicity in (7.4.12).
Let E > 0 be given. By Weierstrass' theorem we can find a polynomial of
degree m, qm(x), such that If (x) - qm(x) I < E, a < x < b. Hence,

Em(f) = a xxb If (x) - pm(x) I < amx b If (x) - qm(x) I < E.

Thus, En(f) < E for all n > m, establishing the second assertion.
We shall now characterize the behavior of the best uniform approxi-

mants. An examination of the cases n = 0 and n = 1 will provide insight
to the general theorem and will help us to understand a simple, but fussy,
proof.

Let f (x) E C[a, b]. We are interested in solving the problem of finding
min max If (x) - cl. A glance at Figure 7.6.1 leads us to the following

c a z <b
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answer. Let m = min f (x), M = max f (x). Then the minimizing constant
is

and

a<x<b axb
c=2(m+M) (7.6.2)

Eo(f) = 2(M - m)

Figure 7.6.1.

Figure 7.6.2.

Figure 7.6.3.

(7.6.3)

Notice that when the error curve E(x) =f (x) - c is drawn, the value ±Eo
is assumed by it at least twice : once with a plus sign and once with a minus
sign. Suppose next that pl(x) = ao + alx solves the problem of finding
minnl a zxb If (x) - p(x)I. Consider the error curve E(x) = f (x) - pl(x). Set

E1 a x xb
If (x) pl(x)I Since I E(x) I is in C[a, b], this maximum is assumed

at least once. If it were taken on only once (Fig. 7.6.3) then by the addition
of an appropriate constant to p1(x) we could lower E1. This would contradict
the definition of El.
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Suppose E1 is taken on only two times. It must be taken on with opposite
signs, otherwise we can argue as above and lower E1. But even if it were
taken on with opposite signs, we could subtract from E(x), and hence from
the original pl(x), an appropriate linear function which would have the
effect of reducing the size of the maximum values without raising other
values in excess of this. This is more or less evident geometrically (look at
the dashed line in Fig. 7.6.4), but we can formalize the argument in this
way.

Figure 7.6.4.

Let E(x1) = +E1 and E(x2) = -El. By continuity, we can find two closed
intervals, Il containing x1, and I2 containing x2 such that E(x) > El/2 in Il
and E(x) < -E1/2 in I2. Il and I2 are disjoint, for s(x) is of opposite sign in
them. Pick a point x0 between x1 and x2, but exterior to these intervals,
and let 1(x) be a fixed linear function that passes through x0, is positive in
Il, and negative in I2. (Fig. 7.6.5)

Figure 7.6.5.

Let J designate the closure of the set [a, b] - I - I2, and write E1' =
max Je(x)l. We can obviously arrange matters so that J does not contain
xl or x2. Since the maximum of I E(x) l is assumed only at x1 and x2 we have
E1' < E1. Finally, select a quantity that satisfies

0 < q < (El - E1')/2 a zxb l (x)l. (7.6.4)
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amz b If (x) - p1(x) - qe(x) l = amx b l
E(x) - qe(x) l < E1 (7.6.5)

and this contradicts the definition of E1. To show this: on I1, by (7.6.4)

0 < 1(x) < (x)(E1 E1) < E1 < E (x ) .

2 max II(x)l 2
a<_x<_b

Hence E(x) > ql(x) and
IE(x) - 0x) l = E(x) - ne(x)

E1 - mm n qe (x) = E1 - something positive < E1.
XC-Ij

A similar argument holds for I2. Now for J. Using (7.6.4),

max J E(x) - ne (x) I < max I E(x) I + n m ax I e(x) I
C-J

m ax II(x)l (El - Elf)
<El + max Ie(x)I 2

<Ell+E1-El'=E1.
a <x <b

Therefore (7.6.5) holds.
It follows that there must be at least three points x1 < x2 < x3 where

E(xi) = +E1. The error must alternate in signs at these three points : E1,
-E1, E1 or -E1, E1, -E1. For one alternation has already been established,
and if we had, say, E1, -E1, -E1, the same argument could be used to
show that E1 could be lowered.

THEOREM 7.6.2 (The Tschebyscheff Equioscillation Theorem).
Let f (x) E C[a, b] and p(x) be the best uniform approximant to f of degree n.

Let E. =
m z xb

I f (x) - p(x) I and E(x) = f (x) - p(x). There are at least n + 2

points a< xl < x2 < .. < xn+2 < b where E(x) assumes the values ±En and
with alternating signs :

E(xi) = ±En i = 1,2)...,n+2
E(xi) = -e(xi+l) i = 1, 2, ... , n + 1.

Proof : Select an E so small that Ix1 - x21 < E implies

1 e(xl) - e(x2) < En/2.

(7.6.6)

This is possible by the uniform continuity of E(x). Divide [a, b] into
consecutive closed intervals of width < E. Call the intervals on which
I E(x) l assumes its maximum value Il, I21 ... , I,,n. Since c(x) can vary at
most En/2 in any of these intervals, we must have

E(x) > En/2 or E(x) < -En/2

there. Let u1, ... , um (= ± 1) be the sign of E(x) over these intervals. We
must prove that in this sequence there are at least n + 1 changes of sign.
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We do this by showing that if there were fewer than n + 1 changes, we
could find a polynomial whose E,, is less than that of p(x).

If all the u's were the same, by adding an appropriate constant to p(x)
we could get a better approximation. Suppose then, we go through the
intervals I1, ... , IM and group them into consecutive groups where the
u's have the same sign :

1st group I(1), J(2)
)

I(s1) First sign
2nd group I(i1+1) I(i1+2) ..,I(32) Second sign

First sign

kth group I(ik-1+1), ... , I(ik)

(Here we have written P') = I,, ... , I(ik) = I m, etc.)
This scheme displays k - 1 changes of sign so let us assume that

k-1 <n+1 or k<n+2.
Consider the intervals IU1), I(31+1). These intervals cannot be adjacent

for E(x) is 0 in neither and yet it has opposite signs there. Hence (with an
obvious notation) we can find an x1:

I(51) <x1 <I(31+1)

Similarly, J02) < x2 < I("2+1)

I(ik-1) < xk-1 < I(Jk-1+1).

Form the polynomial q(x) = (x1 - x)(x2 - x) (xk_1 - x).
Since we have assumed k < n + 2, it follows that k - 1 < n, so that
q(x) E 9,z. q(x) vanishes only at xi. Since the xi are between the intervals
I14 . . . , 1710 q must have constant sign over each of these intervals.

1st group

xi

2nd group

x2

Figure 7.6.6.

3rd group

X3

Over the first group of intervals q(x) = (x1 - x) . . . (xk_1 - x) is positive,
for all factors are positive. Over the second group q(x) is negative, for all
but the first factor are positive, etc. By selecting u = ±1 appropriately,
uq(x) will coincide with E(x) in sign over all the intervals I,, ... , I,,,,.
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We now claim that for q sufficiently small, p(x) + quq(x) will be a better
approximant to f than p is. This would be a contradiction. Let J be the
closure of [a, b] - 1 - I2 - - ,,,'Write E,z' = m ax Ie(x). Since the
maxima of I E(x) I are assumed only on the I's we have E,z' < E. Select an

that satisfies
0 < < (En -En')/2 max lq(x)l.

a <x<b
(7.6.7)

The rest of the argument parallels exactly the discussion following (7.6.5).

In one case it is possible to give an explicit construction of the best
uniform approximant.

COROLLARY 7.6.3. Let f (x) E C2 [a, b] and let f"(x) > 0 there. If ao + a1x
is the best uniform linear approximant to f, then

f (b) - f (a)a1 = b-a

( (a) + (c)) - .f (b) -f (a) a + c
ao = f f b-a 2 (7.6.8)

where c is the unique solution of f '(c) =
f (b) - f (a)

b-a

Proof: One solution to the equation f'(c) = f (b) - f (a) is guaranteed byb- a y

the mean value theorem. Since f" > 0, f is increasing, and hence this
solution is unique.

Now set E(x) = f (x) - (ao + a1x).

By our theorem, there are at least 3 distinct points x1 < x2 < x3 where
E(x) reaches its maximum absolute value. One point, x2, is interior to the
interval and hence E' (x2) = 0. Since E' (x) = f '(x) - a1, e' is also strictly
increasing. The other two extreme points of E(x) must therefore be at a and
b. Now with x1 = a, x2 = c, x3 = b, it follows that

.f (a) - (ao + ala) = - (.f (c) - (ao + arc)) = .f (b) - (ao + alb)
and

E'(c) = f'(c) - a1 = 0.

These conditions, rearranged, lead to (7.6.8).
The best uniform (Tschebyscheff) approximant is completely character-

ized by the property of equioscillation at n + 2 points. This property is
frequently the basis of numerical schemes for computing the approximant.

THEOREM 7.6.4. Let f (x) E C[a, b]. Given a q(x) E £n with

amx b l f (x) - q(x) I = 6.
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Let there be n + 2 points a < x1 < x2 < . < xn+2 < b such that

f (xi) - q(xi) _ ±6, i = 1, 2, ... , n + 2,

in an alternating fashion. Then,

Ch. VII

b = En(f) (7.6.9)

and q is the best uniform approximant to f in 9,t.

Proof: By definition, En(f) < b. Assume En(f) < b. Let p(x) be the best
uniform approximant. Then

q(xi) - p(xi) = q(xi) - f (x2) - (p(xi) - f (xi))

Since m axb If (x) - p(x) l = En(f) < b, then writing Ti = p(xi) - f (xi), we

have I-ril < b, q(xi) - p(xi) = ±b - -ri. The function q(x) - p(x) E
and has n + 2 points of alternation. It therefore has n + 1 zeros and
consequently must be identically zero by Theorem 1.11.3. Conclusion :

q(x) = p(x).

+.0006

Figure 7.6.7 Tschebyscheff's Equioscillation Theorem.

The best uniform approximant to cos
7T

x over [-1, 1] out of g5 is
2

p(x) = 0.9994032 - 1.2227967x2 + 0.2239903x4.
7T

E(x) = cos 2 x - p(x) assumes its extreme values at 5 + 2 points and with

alternating sign.

7.7 Best Approximation by Nonlinear Families. The situation
here is more complicated than in the case of linear families. A few examples
will suffice to show what can happen.
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Ex. 1. Consider the problem min max 10 - eax 1. By selecting a very large
a 1<x<2

and negative, the maximum can be made as small as desired. The problem is,
so to speak, solved by a = - oo.

Ex. 2. Consider the problem min max xa2l . For any value a,
a 0<x<1

maxl xa2lo =.
Thus, while no proper value solves the first problem, any value at all solves
the second.

One of the most familiar nonlinear families is fortunate enough to contain
best uniform approximations.

THEOREM 7.7.1. Let f (x) E C[a, b] and let m and n be fixed integers > 0.

The problem of finding min max (x) - aoxn + alxn-1 + + an has aa<x<b f box m + blxm-1 + ... + b
solution.

ox
m

Proof : There is some redundancy in the coefficients of the rational func-
tion. We can adjust them so that bog + b12 + - - - + bm2 = 1. As the b's
vary, we will certainly obtain some polynomials that do not vanish in [a, b].
If we set

inf max
ai,b, a < x < b

aoxn+...

f(x)-b0xm+

then 0 < 0 < oo. By the definition of 0, we can find a sequence of rational
functions

Rk(x)

so that if

then

Ak(x) n m
Ak(x) =1 ai (k)xn- Bk(x) =1 b(k)xm-i

Bk(x) ' i =0
i=0 j

Ak = a z xb If (x) - Rk(x) I ,

lim Ok = A.
k-- oo

(7.7.1)

The coefficients 0) are bounded due to the normalizing condition. The
coefficients ai are also bounded. This can be seen as follows. From (7.7.1),

Ok < f (x) - Rk(x) < Ok.
Hence

I Rk(x) I< Ak + a axb if (x) I< M

for some constant M. This means that

I Ak(x) I< M I Bk(x) I

(7.7.2)

(7.7.3)
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Since the are bounded, the polynomials Bk(x) are bounded on [a, b],
and therefore Ak(x) are bounded. Now if a family of polynomials of bounded
degrees are bounded, then its coefficients are bounded. (See Problem 40.)

Consider the points Pk : (a0 ) , aik), ... , a( k), bok>, b1 ... , 0)) in the
space R,,,+n+2. They lie in a bounded portion of that space. Hence, we may
select a subsequence Pk, that converges to a point

P' = a' a' a ' b' b' b '( 0 1 n 0 1 m)
Consider the rational functions corresponding to this subsequence, and
reindex the subsequence so that we have

lim aik) = ai' i = 0, 11 ... , n

Form

k-- 00

lim b(k) = b .'
7 7

j= 0,1,.. . , m.

RI(X) =

a0'xn + a1'xn-1 + . . . + an'

tm 1m-1 ... 'box + b1 x + + bm
If we can show that

(7.7.4)

(7.7.5)

a <x b If (x) - R'(x) I= (7.7.6)

then R' will be a best approximant and our proof is complete.
R', being rational, can have at most a finite number of infinities. Let

D(x) be the denominator of R'(x) and select an x in [a, b] such that D(x) 0.

At such a point we must have lim Rk(x) = R' (x) . Since
k- oo

'?'(X) = f (x) + Rk(x) - f (x) + '?'(X) - Rk(x)
I R' (x)1 < If (x)1 + If (x) - Rk(x) l + I R' (x) - Rk(x) I

hence
IR'(x)l < max If WI + Ok + Ek, Ek -0-0.

a<x<b

Setting It = sup Ok' and allowing k -+ oo,
k

I R'(x)I < a<x b If (x) I + it. (7.7.7)

The bound (7.7.7) holds uniformly for any x in [a, b] for which D(x) 0.
This, in turn, means that R'(x) cannot have any infinities on [a, b], for if it
did, there would be values of x in a neighborhood of the infinity where the
bound would be exceeded.

Let x be any point of [a, b]. Suppose first that D(x) 0. Then for k =
1,2,...,

If (x) - R' (x) I <- If (x) - Rk(x) I + I Rk(x) - R' (x) I

Ok + Vik where 'qk -0- 0.

Thus,
If (x) - R'(x) 1 < 0. (7.7.8)
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Suppose that D(x) = 0. Then we may find a sequence of points of [a, b], x1,
x2, ... , such that xi --> x, D(xi) 0. Then by (7.7.8), If (xi) - R'(xi) I < 0,
i = 1, 2, ... , and by continuity, If (x) - R' (x) I < A. We have therefore
shown that If (x) - R'(x)l < 0 throughout [a, b]. By the definition of 0,
this implies (7.7.6).

NOTES ON CHAPTER VII
Works on functional analysis that have been found useful include Banach

[1], Riesz-Sz. Nagy [1], Ljusternik and Sobolew [1], Kolmogorov and Fomin
[1], Taylor [3], Dunford and Schwartz [1], Zaanen [1].

7.2 The convexity of x', r > 1, can be used to prove (7.2.5). See Boas
[4], p. 148.

7.3 Eggleston [1] is a fine presentation of the theory of convex bodies.
7.4 Achieser [1].
7.5 For further results on uniqueness, see Hirschfeld [1], [2]. An exten-

sion of Theorem 7.5.6 to rational functions can be found in Walsh [2],
p. 363.

7.6 de la Vallee Poussin [1], Natanson [1]. The numerical side of best
uniform approximation by polynomials and rationals had to wait for the
development of electronic computing equipment. For part of the vast litera-
ture that has developed around this problem, see Remez [1], Stiefel [1],
Maehly and Witzgall [1], [2], Murnaghan and Wrench [1], [2]. Ward [1]
expounds the problem from the point of view of linear programming.

For a more abstract approach to problems of Tschebyscheff type see
Rivlin and Shapiro [1].

7.7 Approximation by nonlinear families is currently under investiga-
tion. See Motzkin [1], Rice [1], [2], [3]. See also Young [1].

PROBLEMS

1 . Let n be fixed. S consists of the 2n n-tuples A, B, ... , whose elements
are either 0 or 1. If we set d(A, B) = the number of places in which A and B
differ, then S becomes a metric space. This is the Hamming distance.

2. Let S be a collection of sets A, B, ... , each of which contains a finite
number of objects. If we set d(A, B) = number of objects in (A u B) - (A r1 B)
then S is a metric space. This is the Silverman distance.

3. Is the following a norm in R2: II(x, y)II = max (3 IxI + 2 IyI, 2 lxI + 3 IyI)?
n-1

4. In Rn, define 11 (al, ... , an) II = max ak+lxk . Is this a norm?
0<x<1 k=0

5. Does the following expression define a norm in Cl[a, b] :

Ii f 11 = amaxb [If (x)I, I f'(x) I ] ?
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6. Show that Rn can be normed as follows : Let w1, w2, ... , wn be a fixed
sequence of positive constants. Set IIxII = max w; I x j I .

1 <j <n
7. Prove that the postulate (7.2.1)(a) follows from (7.2.1)(c) and (7.2.1)(d).
8. Describe the gauge curve that gives rise to the norm II (x, y) II = 3 IxI + 2 IyI

in R2.
+1

9. In the space C[ -1, 1], is the norm I I f I I = I f (x) I dx strictly convex?
-

x2 y2

10. Let the ellipse
a2

+
b2

= 1 act as the gauge curve for a Minkowski plane.

Find the equation of the "Minkowski circle" of radius r and center (x0) y0)
11. Let C be a Minkowski gauge curve no part of which is a line segment.

Prove that the resulting norm is strictly convex.
12. If X is strictly convex, then IIxII = IIyll = r, x y implies

I1tx+(1 -t)yII <r for 0 <t <1.

Geometrically, the surface II x jI = r does not contain a line segment.
13. If a linear space X satisfies (7.2.1)(a), (c), (d) but if IIxII = 0 does not

necessarily mean that x = 0, then X is called a seminormed space. Show that
b

Cl[a, b] with II f II 2 = I f'(x) 12 dx is a seminormed space.
fa

14. Prove that Theorem 7.4.1 holds in a seminormed linear space. Formulate
several concrete examples.

15. Let X be a linear space and let 2 be a family of linear functionals taken
from X*. Show that IjxII = sup I L(x) I defines a seminorm on X. When is it a
norm? LEY

16. Show that the fundamental theorem 7.4.1 holds if the ai are allowed to
vary only over a preassigned closed set.

17. Interpret Holder's inequality (7.2.7) for p = 1 in the light of Ex. 4, 7.2.
18. Prove Young's criterion: Let y be a fixed element of a normed linear

space and let the variable element x be a function of n real or complex param-
eters al, ... , an defined for Iail < oo : x = x(al, ... , an). Suppose that (a)
I I x(al, ... , an) I I is a continuous function of its parameters (b) II x(al, ... , an) II < M
implies there is an N such that IaiI < N i = 1, 29 ... , n. Then the problem
min II y - x(a1.... , an) II has a solution.
at

19. Show that Young's criterion is not necessary for the existence of mini-
mizing parameters.

20. Solve the problem max I ex - ax - b I = minimum.
0<<x<1

1

21. Solve the problem I ex - al dx = minimum.
0

22. Solve the problem min max I X4 - axI . Is the solution unique?
a 0<x<<1

23. The problem of finding min I x - cx2l dx does not have a unique solu-
tion. C -1

24. Let Y2 be normed by IIpII = Ip(0) I + Ip(1) I + Ip(2) I . Determine the best
approximation to x2 by a constant.
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25. Referring to Figure 7.6.7, compare the accuracy of the best uniform
7r

approximant to cos
2

x with that of the Taylor approximant.

26. Let f (x) = 0, -1 < x < 0, f (x) = 1, 0 < x < 1. Compute

inin max If (x) -g(x)l.g(x)EC[-1,1] -1<x<1

27. Given n points in the plane Pi: (xi, yi) i = 1, 2, ... , n. P0 is one additional
point. Show that there exists a straight line through PO: y = aox + a1 such
that max I yi - (aoxi + al) I = minimum. Generalize.1 <i <n

28. Given n points in the plane P1, ... , Pn. Let d(Pi, f) designate the per-
pendicular distance from Pi to a straight line f. Show that there is a line f such
that max d(Pi, f) = minimum.

1 <i <n
29. Let f (x) E C[a, b] and consist of two linear portions. Determine the best

uniform linear approximant to f (x) over [a, b]. Interpret geometrically.
30. Let B[a, b] designate the space of functions that are bounded over [a, b].

The problem of finding min max I f (x) - p(x) I has a solution, but it is not
necessarily unique. pEgri a<x<b

31. Discuss the problem of minimizing max 11 - f (x) 1, where the approxi-
1<x<1

+1
mants f satisfy f e C[ -1, 1] and f (x) dx = 0.

-1
32. Let f (x) E C2[a, b] and be concave. P is a variable point on the curve and

T(x) is linear between (a, f (a)) and P, and between P and (b, f (b)). Show that
b

there is a position of P that minimizes f (x) - T (x) dx. Interpret the position
geometrically. a

33. Characterize S in Theorem 7.5.1 as the intersection of two convex sets.
34. The best uniform approximation to V1 + x2 on [0, 1] by a linear function

is .955 + .414 x.
35. Derive the approximation Vx2 + y2 .955 x + .414 y x > y > 0, and

determine the error incurred.
36. Find the best uniform approximation to V 1 + x3 by a straight line over

[0, 1].
37. Let w(x), f (x) E C[ -1, 1]. Prove there is one and only one polynomial in

Y. for which max w(x) I f (x) - p(x) I = minimum.
-1<x<1

38. Let p(x) = zk + alzk-1 + + an. If r is the lemniscate Ip(z)I = a, the
Tschebyscheff polynomial of degree nk for I' is [p(z)r.

39. Discuss the problem of finding min max Ix - a sin bxl .
a,b 0 <x < 1

40. A family of polynomials of bounded degree whose values on [a, b] are
bounded must have bounded coefficients.



CHAPTER VIII

Least Square Approximation

8.1 Inner Product Spaces. We come now to the approximation proc-
ess most commonly employed and most highly developed: least squares.
An abstract vantage point from which it is convenient to survey the common
features of various least square approximations is provided by the theory of
inner product spaces. If the subjects of algebra, geometry, and analysis can
be said to have a "center of gravity," it surely lies in this theory.

DEFINITION 8.1.1. A real linear space X with elements x will be called
an inner product space, if there has been defined for each two elements
x1, x2 a real number designated by (x1, x2) with the following properties

(a) (x1 + x2, x3) = (x1, x3) + (x2, x3) (Linearity)

(b) (x1, x2) = (x2, x1) (Symmetry)

(c) (ax1, x2) = a(x1, x2), a real (Homogeneity)

(d) (x, x) > 0, (x, x) = 0 if and only if x = 0 (Positivity)

(8.1.1)

The quantity (x1, x2) is called the inner product of x1 and x2.
A similar definition can be made for complex linear spaces. The inner

product (x1, x2) will be a complex number and (8.1.1)(b) must be replaced
by the condition

(b') (x1, x2) = (x2, x1) (Hermitian Symmetry) (8.1.1)

The bar in the above line designates the complex conjugate.

Ex. 1 . X = Rn. x = (x1, x2, ... , xn), y = (y1, y29 ... 9 yn). Let wi
n

positive numbers. Define (x, y) _ wixiyi.
i=1

Ex. 2. X is the complex Euclidean space, Cn with elements

x = (x1, x2, ... , xn), xi complex.

be n fixed

n
Define (x, y) _ wixiyi.

i=1

158
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Ex. 3. X = C[a, b]. If x = f (t), y = g(t), we define

(x, y) = (f, g) = f (t)g(t) dt.
a

Ex. 4. Let B designate a bounded two dimensional region. Let X designate
the space of functions f (x, y) that are continuous in the closure of B. w(x, y) is

a fixed positive continuous weight function. (f, g) = f (x, y)g(x, y)w(x, y) dx dy.

B

Ex. 5. Let B be a bounded simply connected region of the complex plane
with a simple, rectifiable boundary C. Let X be the complex linear space com-
posed of all functions analytic in B and continuous in B U C. The line integral

(f, g) = f (z)g(z) ds, ds2 = dx2 + dy2, is an inner product for X.
C

f
b

Ex. 6. Let X = L2[a, b], and write (f, g) = f (x)g(x) dx. (Cf. 7.2, Ex. 10,
with p = 2.) a

Note several simple consequences of (8.1.1). From (c), (0, x) = 0. From (c)
and (b'), (x1, ax2) = a(x1, x2). From (a) and (b) or (b'), (x1, x2 + x3) _
(x1, x2) + (x1, x3)

THEOREM 8.1.1 (The Schwarz Inequality).
In an inner product space,

I (x1, x2)12 < (x1, x1)(x2, x2). (8.1.2)

The equality sign holds if and only if xl and x2 are dependent.

Proof: If x2 = 0, the theorem reduces to the trivial inequality 0 S 0.
Assume then that x2 00. Let A be an arbitrary complex number. We have
from (8.1.1)(d),

(x1 + .ax2) x1 + .ax2) > 0.
This is equivalent to

This is true,

Hence,

(x1, x1) + )(x2, x1) + ) (x1, x2) + )) (x2, x2) > 0.

in particular, for the number

A = - (x1, x2)/(x2) x2).

x) x) - (x1, x2)(x2, x1) _ (x1, x2)(x2, x1)
( 1 1

(x2) x2) (x2, x2)

(xl) x2)(x2, x1)

(x2, x2)2
(x2, x2) > 0.
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Then,

Therefore

(x ' x) - (xl ) x2) (x2, x1)
1 1

(x2) x2)

(xl) x2)(x2, x1) < (xl) xl)(x2, x2),

or by (8.1.1)(b'), I (xl) x2)12 < (xl) x1)(x2, x2)'

Suppose that equality holds. The case x2 = 0 is trivial, so take x2 0.

By the above work we have

(x1 + ),x2) x1 + )x2) = 0 with A= - (x1) x2)/(x2, x2)'

Hence by (8.1.1)(d),d , x + AX = 0 and r = (xl' x2) x2y ( ) ( ) 1 2 1
(x21 x2)

Conversely if xl = ax2, then I(xl) x2)12 = 17 12 (x2) x2)2 = (xl) x1)(x2, x2)'

THEOREM 8.1.2. If X is an inner product space, the equation

IIxII = 1/(x, x)

defines a norm in X, and X becomes a normed linear space.

(8.1.3)

Proof: The quantity 1/(x, x) satisfies the requirements for a norm given
in (7.2.1). The only requirement that is not immediately evident is the
triangle inequality

lix + Y1I < IIxII + 11Y11.
This is equivalent to

IIx + yII2 < 11x112 + 2 IIxII Ilyll + IIy1I2

or (x + y' x + y) < (x, x) + 2V (x, x)V (y, y) + (y, y)'

Since (x + y, x + y) _ (x, x) + (y' x) + (x, y) + (y, y),

we must show (x, y) + (y, x) < 21/(x, x)1/(y, y).

But I (x, y) + (y' x) I < I (x, y) I + I (y, x) I < 2 I (x, y) 1.

(8.1.4)

Hence, it suffices to show J (x, y)I < (x, x) (y, y). But this is precisely
the Schwarz Inequality.

In view of Theorem 8.1.2, we can make every inner product space into a
normed linear space in a natural and automatic way.

Ex. 7. For e2, the Schwarz inequality (8.1.2) coincides with the Holder
inequality for infinite sequences. (Cf. (7.2.7) with p = 2.) The triangle inequality
(8.1.4) coincides with the Minkowski inequality (7.2.16).

Ex. 8. A similar observation holds for L2[a, b].
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THEOREM 8.1.3 (The Parallelogram Theorem). For any elements x and y
in an inner product space X we have

lix + y112 + Ilx - yll2 = 2 Ilxll2 + 2 Ilyll2.

Proof: Replace the norms by inner products and expand.

(8.1.5)

8.2 Angle Geometry for Inner Product Spaces. For two nonzero
elements in a real inner product space, we have, from (8.1.2),

1 < (xl ) x2)
_< 1.

II xl ll IIx2II

There is consequently a unique value of 0 in the range 0 < 0 <7T that

satisfies cos 0- (x1 , x2)

11X111 II x2I 1

DEFINITION 8.2.1. The angle 0 between elements x1, x2 in a real inner
product space is defined by

cos 0 = (xl' x2) 0 < 0 < IT. (8.2.1)
Ilxlll IIx2II

The justification of this definition lies in the fact that it extends the usual
formulas of Euclidean geometry.

Ex. 1. Let X = R3. For two elements x = (xl, x2, x3), y = (yl' Y2' y3), use
3

the inner product (x, y) _ xiyi. This leads to the norm (or distance from the
z=1

origin) IIxI12 = x12 + x22 + x32. Then

cos 0 =
xly1 + x2y2 + x3y3

(x12 + x22 + x32)1(y12 + y22 + Y3 2)J

In the case of a complex inner product space, the definition

I (x, y) f0 =cos
IIxII Ilyll

0<e<IT, (8.2.2)

is frequently employed, though this is not completely satisfactory. (See
Problem 13.)

Two special cases are particularly noteworthy.
A. 0 = 0. In this case, cos 0 = 1 and I (x, y) J =IIxII II y II According to
Theorem 8.1.1, the elements x1 and x2 are dependent : axl = tlx2. We may
say that x1 and x2 are parallel.
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B. 0 = it/2. In this case, the elements are perpendicular or orthogonal. Since
cos 0 = 0, I (x, y) I /IIxII II y II = 0, and this implies that (x, y) = 0. We some-
times write x _L y to express orthogonality and make the following definition.

DEFINITION 8.2.2. x 1 y if and only if (x, y) = 0.

Ex. 2. 0 is the only self orthogonal element.

Ex. 3. x l y implies y I x.

Ex. 4. y 1 x1, x2, . .. , xn implies ?/ 1 atxl + a2x2 + - - - + anxn.

Ex. 5. Pythagoras' Theorem. x J_ y implies

IIx + yII2 = IIxII2 + IIyII2

Ex. 6. The Law of Cosines. In a real inner product space,

IIx + yII2 = IIxII2 + IIyII2 + 2 IIxII IIyII cos 0.

The inner product has a geometric interpretation as a projection. This is
suggested by the accompanying two dimensional figure.

X X2
x2

Figure 8.2.1.

Let x1 and x2 be nonzero elements. Select a scalar A so that Ax2 is the projec-
tion of x1 on x2. Then

This means
Ax2 I xl - A'x2.

(Ax2, x1 - Ax2) = 0.

Therefore A(x2, x1) (x2, x2) = 0 and A _ (xl' x2) . This means that if
x2 0 0, (x2, x2)

projection of x1 on x2 = (xi' x2)
x2 . (8.2.3)

(x2, x2)

This equation serves to define projection in the abstract case.
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When the element x2 has unit length : 11 x2112 = (x2, x2) = 1, then

projection of x1 on x2 = (x1, x2)x2. (8.2.4)

8.3 Orthonormal Systems

DEFINITION 8.3.1. A set S of elements of an inner product space is called
orthonormal if

10 x y
(x, y) = x, y E S.

1 x=y
If we have merely

(8.3.1)

(x, y) = 0 for x - y, (8.3.2)

the set is called orthogonal.

n
Ex. 1. In R. with (x, y) _ I xiyi, the unit vectors

i=1

,0),(0, 1,09 ...,0)9...,(0,0,...9 1

form an orthonormal set.

Ex. 2. Let the n x n matrix Q be orthogonal, i.e., QQ' = I where Q' is the
transpose of Q and I is the unit matrix. The rows (or columns) of Q form an
orthonormal set in the space of Ex. 1.

Ex. 3. In C[ -7r, ir] or L2[ -7r, ,r], with (f, g) =J
- ir

f (x)g(x) dx, the functions

(27r)-4, 7r i cos x, 7r-4 sin x, i cos 2x, 7r-4 sin 2x, ... , form an ortho-
normal set.

Ex. 4. In C[ -1, 1] with ) = 1 f (x)g(x) dx , the (7r)-iT ,(f 9 -1 1 -x2 polynomials o

2
Tn(x), n = 1, 2, ... , Tn(x) = cos (n arc cos x), form an orthonormal set.

These are the Tschebyscheff Polynomials (cf. Def. 3.3.1).

+1
Ex. 5. In C[ -1, 1] or L2[ -1, 1], with (f, g) _ 'N/1 - x2f (x)g(x) dx the

sin [(m + 1) are cos x]
functions Um(x) = m = 0, 1, 2, ... , form an orthogonal
set. For i/ 1 - x2

f V1 1 - X2 Um(x) Un(x) dx = f sin (m + 1)0 sin (n + 1)0 d0
0 , m on.

J-1 o 7r= 2,m =n.
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2
The functions - U,z(x) are orthonormal. Actually, U,n(x) is a polynomial of

7r

degree m in [ -1, 1]; for, cos n6 = T,z(cos 0). Now

sin (n + 1)0 = sin n6 cos 0 + cos n6 sin 0 = sin n6 cos 0 + T,z(cos 0) sin 0.

Hence,
sin (n + 1)0 sin n6

sin 8 sin 8
cos 0 + Tn(cos 6).

sin (n + 1)0
By induction, therefore, is a polynomial of degree n in cos 0. U,n(x)

sin 0

are the Tschebyscheff polynomials of the second kind.

Ex. 6. In C[a, b] with (f, g) = A(x) f (x)g(x) dx, (A(x) E C[a, b] and > 0), the
a

eigenfunctions of the self-adjoint differential problem

Jy" + AA(x)y = 0
y(a) = y(b) = 0

corresponding to distinct eigenvalues are orthogonal.
Let y j and yk be two solutions of this problem corresponding to distinct values

i, Ak. Then
d

(Ak - A, )A (x)yk(x)y, (x) = y,yk" - yky," =

dx [y,yk' - yky;'].

Hence, (Ak - A,) A (x)yk(x)y; (x) dx = [y;yk' - yky j']a = 0.
a

THEOREM 8.3.1 (Pythagorean Theorem). If xl, ... , xn are orthogonal then

I1x1 +x2+... +XnII2= IIxII12+ 11x2112-+-- . . + IIxn1I2. (8.3.3)

Proof: The cross terms in the expanded inner product vanish.

THEOREM 8.3.2. Any finite set of nonzero orthogonal elements x1, x2, .. .
xn is linearly independent.

Proof: Suppose alxl + a2x2 + + anxn = 0 where the a's are not all 0.
Then,

0 = (0, Xk) = (alxl + . . . + anxn) xk) = ak(xk) Xk).

This implies that ak = 0, k = 1, 2, ... , n, a contradiction.
The previous theorem has a partial converse which is of great impor-

tance. An independent set, of course, is not necessarily orthogonal, but it
can be orthogonalized. That is, we can find linear combinations which are
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orthogonal. From among the many proofs, we select one that leads to the
Gram-Schmidt orthonormalizing process.

THEOREM 8.3.3. Let x1, x2, ... , be a finite or infinite sequence of elements
such that any finite number of elements x1, x2, ... , xk are linearly independ-
ent. Then, we can find constants

all
a21

such that the elements

are orthonormal:

x1* = a11x1

a22

a31 a32 a33

x2* = a21x1 + a22x2

x3* = a31x1 + a32x2 + a33x3
(8.3.4)

(xi*) xi*) = bi; i, j = 1, 2, .... (8.3.5)

Proof: Set, recursively,

yl = x1 and x1* = yl/ lI yl II

y2 = x2 (x2, x1*)x1* and x2* = y2/11y211

n
*

k )xk and xn +1 = yn+1/II yn+1 IIyn+1 = xn+1 - (x?c+1 , x * *

k=1

(8.3.6)

It is clear from the structure of this recursion that yn+1, and hence, xn+1, is
a linear combination of x1, x2, ... , xn+l. IIyiII cannot vanish inasmuch as
this would imply that yi = 0. But yi = xi + "lower" x's, and this would
contradict the assumption that the x's are independent. The xi* are normal:

* yi = 1.yip (yi, yd(xZ
'
xi

) y' 11yiF---
Z
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Finally we must prove that xn+1 (or y,,,+,) is orthogonal to x,,,*, xn_1, ... ,
xl*. A simple computation verifies that (y21 x1*) = 0. Assume that for
i < n, j < i we have proved (yi, x5 *) = 0. Then for j s n,

n

(yn+1, x9*) = (xn+1 - I (xn+1, xk*)xk*, xj*)
k=1

COROLLARY 8.3.4. The "leading coefficients" aii are positive.
For aii = (II yi II)-1

COROLLARY 8.3.5. We can find constants

bll
b21

b31

with b22> 0
such that

xi = b11x1*

b22

b32 b33

x2 = b21x1 * + b22x2*

(8.3.7)

Proof:

xn = bnlxl* + bn2x2* + ... + bnnxn*.

1

x1 = xl* so that b11 = .

n

(xn+l) xj*) I (xn+1) xk*)(xk*, xj*)
k=1

(xn+1) x,*) (xn+l) xj *) = 0.

all

- a21 1
x2 = x1 + x2

a22 a22

a21 1

a a xl
* + x2

22 11

a22

1

all

so that b21 = -a21 , b22 =
1

.

a22a11 a22
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It is clear that we may proceed step by step in this way, since a,, > 0,
1

j = 1, 2, .... Note that bii = - = IIyiII > 0.
aii

COROLLARY 8.3.6. xn* I x1, xn* I x 2 . . . . . . . . I xn_1.

Proof : xk = bklxl* + bk2x2* + ... + bkkxk* so that

k k

(xn*, xk) = xn*
) I bkixi* _ I bki(xn* , xi*) = 0 if k < n.
i=1 i=1

Note: In the subsequent portions of this book, we shall use the asterisk *
on symbols of elements to designate orthonormal elements, and on symbols
of spaces to designate conjugate spaces.

The following observation should be made. If x1, ... , xn and x1*, ... , xn
are related by (8.3.4), and we require that the latter are orthonormal and
akk >0) k = 1, 2, ... , n, then the constants ai, are determined uniquely.
(Prove!) The Gram-Schmidt process is merely one scheme for determining
them.

On the other hand, if we allow

Xk * = ak1x1 + ak2x2 + . . . + aknxn k=1,29..., n,
then there is much more freedom in the choice of the constants ai;. When-
ever we speak of orthogonalizing a sequence of elements x , ,...9 xn, the
reader should decide whether the statements made hold for the triangular
scheme (8.3.4) only, or whether they are valid for the more general scheme.

Ex. 7. The powers 1, x, x2, ... , are independent in C[a, b]. For, if

a0 + a1x + + anxn - 0, a < x < b,

then ai = 0, i = 0, 19 ... , n. If w(x) is a fixed positive, integrable function de-
fined on [a, b] then the integral

U9 g) = w(x) f (x)g(x) dx (8.3.8)
a

forms an inner product in C[a, b]. The powers may therefore be orthogonalized
with respect to this inner product and we obtain a set of polynomials

pn * (x) = knxn + .. . n=0,1,2,..., kn > 0

which are orthonormal in the sense that

w(x)p(x)pn*(xI dx = 8mn, m, ,n = 0, 19 .... (8.3.9)fa

b

In the case of a semi-infinite or an infinite interval [a, b], we must assume
b

that the weight factor w(x) is such that the integrals w(x)xn dx, n = 0, 1, ... ,
all exist. a
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The following special selections of [a, b] and w(x) have been studied exten-
sively, and the resulting orthonormal polynomials constitute the "classical"
orthonormal polynomials.

1. a = -1 b = 1 w(x) = 1 Legendre Polynomials
2. a = -1 b = 1 w(x) = (1 - x2)-j Tschebyscheff Polynomials

3. a -1 b = 1 w(x) = (1 - x2)
(of the First Kind)

Tschebyscheff Polynomials
of the Second Kind.

4. a = -1 b = 1 w(x) = (1 - x)a(1 + x)#;
a, 9 > -1 Jacobi Polynomials

5. a = 0 b = oo w(x) = xae x, a > -1, Laguerre Polynomials
6. a = - oo b = oo w(x) = e-x2 Hermite Polynomials

Ex. 8. We compute the first 3 Legendre polynomials using the scheme
Theorem 8.3.3.

x1 = 1, x2 = t, x3 = t2 . Y1 =1.
+1

11Y111 = dt = v2.
-1

1 1 +1

t,
V2

) = -
V2

-ltdt = 0

+1 2 3
Y2 = t. 11Y211 = t2 dt =

3
. x2

2
Jt.

(f- 1

3 3 1 1 1

Y3 = t2 - t2 2 t 2 t - t2, t2 -
V 2 V2 3

of

+(J1(t2 - 12dt 2 X10 x* -1
3IIy3I1 3 15 3 4 10 (t2

Though the Gram-Schmidt process may be employed, the Legendre polynomials
of higher degree are more expeditiously computed via recurrence. (See Chapter
X.)

Ex. 9. Let a < x1 < x2 < < xn+1 < b be n + 1 distinct points and w1,
w2, ... , wn+l be n + 1 positive weights. The expression

n+1
(f, g) _ wif (xi)g(xi)

i=1
(8.3.10)

is an inner product for Yn (but not for Ym, m > n, or for C[a, b]). We may
therefore orthonormalize the powers and arrive at a set of polynomials

for which
p0*(x), p1*(x), ... , pn*(x)

n+1
I wkpi*(xk)pj(xk) = 6ij 0 n. (8.3.11)

k
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These orthonormal polynomials are important in least square approximations
on discrete sets of points.

Ex. 10. Consider the situation of Ex. 5 of 8.1. The complex powers 1, z,
z2, ... , are independent elements of X. Hence, they may be orthonormalized

with respect to the inner product (f, g) = f (z)g(z) ds to arrive at a set of
C

polynomials po*(z), pl*(z), ... , for which

fc
pn*(z)pm*(z) ds = 6mn 0 < m, n < oo.

8.4 Fourier (or Orthogonal) Expansions

DEFINITION 8.4.1. Let x1 *, x2 *, ... , be a finite or infinite sequence of
cc

orthonormal elements. Let y be an arbitrary element. The series I (y, xn*)xn*
n=1

is the Fourier series for y. (If the sequence is finite we use a finite sum.) The
constants (y, xn*) are known as the Fourier coefficients of y.

One frequently writes

k=1,2,...

00

y I (y, xn*)xn*
n=1

to indicate that the right-hand sum is associated in a formal way with the
left-hand side. The relation between an element and its Fourier series has
been the object of vast investigations and theories.

In view of (8.2.4) we may write (8.4.1) in the form

cc

y ti I (Projection of y on xn*) (8.4.2)
n=1

and hence the Fourier series of an element is merely the sum of the projec-
tions of the element on a system of orthonormal elements.

If x1, x2, ... , 0 are orthogonal, but not necessarily normal, then

xk* = Xk/ II Xk II

are orthonormal so that (8.4.1) becomes

00 ) OC)

y
xk Xk = (yI xk)ti

n=1 y' 1Ixkll Ilxk1i k=1 (xk) Xk)
xk.

(8.4.1)

(8.4.3)

(8.4.4)

Again, by (8.2.3) this may be interpreted as

cc

y ti I (Projection of y on xn). (8.4.5)
n=1
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3

Ex. 1. In R3 with (x, y) _ I xiyi, select
i=1

Ch. VIII

x1* = (1, 0, 0), x2* = (0, 1, 0), x3* = (0, 0, 1).

For a given y = (a, b, c) we have (y, x1*) = a, (y, x2*) = b, (y, x3*) = c. The
summation (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) is the Fourier expansion
of Y.

Ex. 2. Take C[ -7r, 7r] or L2[ -7r, 7r] with (f, g) = f (x)g(x) dx. Orthonormal
ir

system: (27r)-i, (7r)-i sin x, (7r)-i cos x, (7r)-i sin 2x, ... .
a 0° 1 7T

f (x) - 2 + I ak cos kx + bk sin kx, ak = - f (x) cos kx dx
k=1 lT

This is the Fourier Series.

bk = - f (x) sin kx dx. (8.4.6)
1

f7r

Ex. 3. C[ -1, 1]. (f, g) = f (x)g(x) dx
. Orthonormal system

-N/1 - x2

),
i
T x .. .-iT x IT x

y0( )
2

1(
2

2( ),

+1
a0 +

cc

akTk(x) ak = 2 f (x) T k(x) dx

2 k=1 x2

This is the Tschebyscheff-Fourier Series.

(8.4.7)

In the simple case of finite dimensional spaces, the Fourier expansion of
an element coincides with the element. More precisely, the following theorem
holds.

THEOREM 8.4.1. Let x1, ... , xn be independent and let xi* be the x's ortho-
normalized. If w = a1x1 + - + anxn, then

n
w = I (w, xk* )xk* .

k=1

Proof: From Corollary 8.3.5, we have,

w = a1(b11x1*) + a2(b21x1* + b22x2*) + ' . . + an(bn1x1* + . .

(8.4.8)

. + bnnxn*)

= C1x1* + C2x2* + . . . + Cnxn*.

Now, for 1 < k < n,

(w, xk*) _ (C1x1* + + Cnxn*l xk*)

= C1(x1*, xk*) + + Ck(Xk*, Xk*) + + Cn(xn*, xk*) = Ck,

and (8.4.8) follows.
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n
Ex. 4. If p,z *(x) _ I k,;xj , k,,,z 0, are polynomials that are orthonormal

i=0
with respect to the inner product (f, g) then

n

p(x) = I (p, pk*)pk(x) (8.4.9)
k=0

for allpE9n.

Ex. 5. Let x 1 . . . . . xn ( 0) be an orthogonal set in Rn or an. Any element
in the space is equal to the sum of its projections on x1, ... , xn.

8.5 Minimum Properties of Fourier Expansions. Truncated Four-
ier expansions have the following minimum property.

THEOREM 8.5.1. Let x1*, x2*, .... be an orthonormal system and let y be
arbitrary. Then,

N

y - (y, xi*)xi*
i=1

for any selection of constants al, a2, ... , aN.

Proof:
N

y - aixi*
i=1

N

y - a,xi*

i=1

2 N N
y - aixi*, y - aixi*

i=1 i=1

(8.5.1)

N N N

(y, y) - aixi*, y) - ai(y, xi*) + aiaj(xi*, x,*)
i=1 i=1 i,,j=1

N N N

_ (y, y) - ajxi*, y) - d,(y, xi*) + Iai12
i=1 i=1 i=1

N N

+1 (xi*, y)(y, xi*) - (xi*, y)(y, xi*)
i=1 i=1

N N

_ (y, y) - 1(y, xi*)I2 + Jai - (y, xi*)I2.
i=1 i=1

Since the first two terms of the last member are independent of the a's, it

is clear that the minimum of
when

N
y - aixi*

i=1

2

is achieved when and only

ai = (y, x2*) i = 1, 2) ... , N; (8.5.2)

i.e., when the a's are the Fourier coefficients of y.
Least square problems of numerical analysis can be formulated in terms

of finding min y - aixi 11 in an appropriate inner product space. (Cf.,
11

N

ai i=1
e.g., Ex. 3.) The next corollary gives the solution to such problems.
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COROLLARY 8.5.2. Let x 1 . . . . . xv be an independent set of elements. The
problem o f finding that linear combination o f x 1 . . . . . xN which minimizes

N

y - =1aixi
i

is solved by (y, xi*)xi*.
i=1

The xi*'s are orthonormalized x's. The solution is unique. This tells us that
every least square problem is solved by an appropriate truncated Fourier
series.

COROLLARY 8.5.3. min
a, y - , a,x,

i=1

1

11y2 1(y, x2*)12.
i=1

Proof: Insert a2 = (y, x2*) in the last equality of the proof of Theorem
8.5.1.

Since this minimum value is > 0 we have

COROLLARY 8.5.4 (Bessel Inequality). If xi* are orthonormal, then

I (y, xi*)12 < IIy112.

i=1
(8.5.3)

COROLLARY 8.5.5. If xi* are an infinite .sequence of orthonormal elements
then

00

1(y5 xi*)12 < 11y112.

i=1
(8.5.4)

COROLLARY 8.5.6. If xi* are an infinite sequence of orthonormal elements
then

ilim (y, x2*) = 0
0.00

i.e., the Fourier coefficients of any element approach zero.

(8.5.5)

COROLLARY 8.5.7 (Minimum Property of Orthogonal Elements). Let x1,
x2, ... , xn be independent. Let xl*, x2*, ... , xn* be the xk's orthonormalized
according to the triangular scheme of Theorem 8.3.3. Then, for all selections of
constants al, ... , an-1, we have

11yn 1 =
xn*

ann

11 alx1 + a2x2 + . . . + an-lxn-1 + xn 11

The notation of (8.3.6) is employed.
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Proof : By Corollary 8.5.2, the problem

min II xn - (blxl + ... + bn-lxn-1) II

n-1 bi

is solved by I (xn, xk*)xk*. But from (8.3.6) this is precisely xn - yn.
k=1

Least square approximations (i.e., best approximations in an inner prod-
uct space) of an element y by a combination of given independent elements
x1, x2, ... , xn can be expressed in several ways : (1) as a linear combination
alxl + + anxn of the given elements, (2) as a linear combination
bl±l* ± + bnxn* of the orthonormalized x's. Although (1) may be more
convenient, (2) possesses the advantage of permanance. That is to say,
suppose we add an additional element xn+1 to our list and ask for best
approximations to y by linear combinations of xl, ... , xn, xn+1 Expressed
in form (1), the answer will be some al'xl + + a,,'x,, + an+ 1xn+1 where
the ak"s may bear no simple relation to the ak. Expressed in form (2), the
answer retains the first n coefficients and merely adds one more :

bx1* + bx* + . . + b x * + b x*1 2 2 n ,a n+1 n + 1

Ex. 1. If f E C[ -ir, 7r] or even of L2[ -ir, fr], then

V 7r

lira f (x) sin nx dx = lim f (x) cos nx dx = 0.

This is Riemann's Theorem and is a consequence of Corollary 8.5.5. It holds
under more general circumstances than demonstrated here.

Ex. 2. Let pn *(x) be the Legendre polynomials. If

+1

f E C[ -1, 1] then lim f (x)pn*(x) dx = 0.
n-.oo -1

Ex. 3. If f e L2[a, b], the problem of finding

has a unique solution.

n 2

min (f(x) - aixi dx
a fa i=0

Ex. 4. Solve the problem

-1

min (ex - ao - a1x - a2x2)2 dx.
a: J-1

Use the Legendre polynomials

xl* _ / x2* _ /Zx, x3* =J-\/10(x2 -1).
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The Fourier coefficients of ex are
+1 _

bo =
-

1ex dx = -N/I (e - 6-1),_V

+1
b1 = 2xex dx = 1/2 (2e-1),

+1 3-\/10 2e - 14e1
b2 = 10(x2 -)ex dx =

4 3f :1-1
The minimizing polynomial is therefore

90 2e - 14e1
p(x) _

(e-e-1)+3e_1x+16

3
(x2-

= 4 (e - 7e1)x2 + 3e-lx + 4 e1 -Vie.

ti .537x2 + 1.104x + .996.

Ch. VIII

Figure 8.5.1 Error in Least Square Approximation of ex by a Parabola.

Ex. 5. Let pn(x) = knnxn + be the Legendre polynomials. Then,

+1 pn(x) 2 22n+1(n!)4 +1

-1
(xn + alxn-1 + ... + an)2 dx (8.5.6)

k
dx =

(2n)! (2n + 1)!
<

-1 nn

for all selections of a's. (Use Theorem 10.3.5 and Theorem 10.3.4 for the equality.)

Ex. 6. Let Tn(x) = 2n-1xn + be the Tschebyscheff polynomial of the
first kind. Then,

xn + alxn-1 +2

dx =
7r c +1(

1
+1 (T (x))

n-2
n

222 22n-1 _ 1 V --1V'1-x
for all selections of a's. Here n > 1.

Ex. 7. Lanczos Economization.
00

dx (8.5.7)

If ° + akTk(x) is the Tschebyscheff-Fourier series of a continuous f (x)
2 k=1 ao n

(cf. 8.4.7), then the partial sum - + akTk(x) solves the problem of finding
+1 n 2 2 k=1

min f (x) - bkxk (1 - x2)- dx. But this partial sum is very nearly the
bi f-1 k =O

. . + an)2
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It
solution to the problem min rnax f (x) - I bkxk . For suppose that we write

a bt -1 <x<1 k=0
f (x) = 2 + a1T1(x) + - + anTn(x) + an+1Tn+1(x) plus a remainder which

a
we neglect. Then, f (x) - 2 + a1T1(x) + + anT,z(x) = an+1Tn+1(x). Since

an+1T n+l(x) has n + 2 equal maxima and minima alternating in sign, Theorem
7.6.4 tells us that the contents of the parenthesis is the best uniform approx-
imation to f (x) from gn. For this reason, the partial Tschebyscheff-Fourier
series are sometimes used as a starting point in determining best uniform
approximations.

If f is a polynomial, its Tschebyscheff-Fourier expansion can be obtained by
using the table, given in the Appendix, of powers as combinations of Tscheby-
scheff polynomials.

x x2 x3 x4 x5
Ex. 7A. Economize f (x) = 1 +

2
+

3
+

4
+

5
+

6
on the interval

[ -1, 1] allowing a tolerance of F = .05. We have,

f (x) = To + T1 + 3 2(To + T1) + 4 4(3Ti + T3)

+ 5 ' s(3T0 + 4T2 + T4) + s 116(10T1 + 5T3 + T5)

= i2oTo + s6 T1 + 120 T2 + s6 T3 + 12oT4 + s1TS

Since I Tn(x) cos (n arc cos x) 1, we can delete the last two terms and
we incur an error of at most i s "s < .05. Hence

i2oTo + 96T1 + 120T2 + 96T3
is in °93 and approximates f (x) to within .05 on [ -1, 1].

7rx
Ex. 7B. The Tschebyscheff-Fourier coefficients of cos

2
are

7rx
+ 1 cos 2 cos (n arc cos x)

1 dx
x2

1 7r (-1)k2J2k(l'/2)
_

o
cos

2
cosy cos fly dy =

0

n = 2k

n = 2k + 1

where Jn(x) is the Bessel Function of order n. (See, for instance, G. N. Watson
ffx

[1] p. 21.) Hence, cos :2 Jo(ir/2) - 2J2(ir/2)T2(x) + 2J4(ir/2)T4(x) - . The

partial sum of order 4 is = 0.9993966 - 1.2227432x2 + 0.2239366x4, and this
may be compared with the best uniform approximation given in Fig. 7.6.7.

8.6 The Normal Equations

THEOREM 8.6.1. Let x1, x-01 ... , xn be independent elements and let xl*,
x2*, ... , x,z* be the x's orthonormalized. Then, for any element y,

n

y - I (y' xk*)xk* x;*-
k=1
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Proof:
n

y - I (y' xk*)Xk*, xj

k=1
n

_ (y, x;*) - I (y, xk*)(xk*, x3*) _ (y, x5*) - (y, x;*) = 0.
k=1

COROLLARY 8.6.2. y minus its best approximation by linear combinations
of x1.... , xn is orthogonal to each x;.

Figure 8.6.1

In geometric language, we speak of the set of all possible linear com-
binations a1x1 + a2x2 +* anxn as constituting a linear manifold. A linear
manifold is a natural generalization of the notion of a plane through the
origin, and this corollary states that the shortest distance from a fixed
element to a point of a linear manifold is the length of an element perpendic-
ular to the manifold. (See also Def. 9.4.1.)

THEOREM 8.6.3. Let a1x1 + a2x2 + + anxn be the best approximation
to y from among the linear combinations o f x 1 . . . . . xn (assumed independent).
Then, the coefficients ai are the solution of the following system of equations.

a1(x1, x1) + a2(x2, x1) + ... + an(xn) x1) _ (y) x1)

(8.6.1)

a1(x1, xn) + a2(x2, xn) + ... + an(xn, xn) = (y, xn)

These equations are known as the normal equations.

Proof: By the previous corollary, (y - a1x1 - - anxn, x;) = 0. When
expanded, this is the jth equation of system (8.6.1).

8.7 Gram Matrices and Determinants

DEFINITION 8.7.1. Given a sequence of elements x1, x2, ... , xn in an
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inner product space. The n x n matrix

[(x1, x1) (x1, x2), .. . , (x1, xn) 1

G = ((xi, x,)) _

[(x1, x1) (xn, x2), ... , (xn, xn)

(8.7.1)

is known as the Gram matrix of x1, x2, ... , xn. Its determinant

9 = 9(x1) ... , xn) _ I(xi, x,)I _ I(x;) xi) (8.7.2)

is known as the Gram determinant of the elements.

The Gram matrix is the transpose of the coefficient matrix of the normal
equations. It is also the matrix of the bilinear form

n
(alxl + a2x2 + ... + anxn) blxl + b2x2 + ... + bnxn) _ I aib (xi, x,).

i,j=1
(8.7.3)

Notice that g(xl, ... , xn) is a symmetric function of its arguments. For,
consider g(xl, ... , xi.... ) x,, ... , xn) and suppose that xi and x, have been
interchanged yielding g(xl, ... , x;, ... ) xi, ... , xn). In the determinant
expression for the latter, interchange the ith and jth columns and the ith
and jth rows and obtain the determinant for the former.

n
LEMMA 8.7.1. Let yi = I ai,x,, i = 1, 2, ... , n. Let A designate the

j=1
matrix (ai,) and A be its conjugate transpose (a,i). Then

G(y1) y2.... , yn) = AG(xl, x2, ... , xn)A (8.7.4)
and

Proof :
9(y1, ... , yn) _ Idet A 1 2 g(xl, ... ) xn.) (8.7.5)

(x1, yl) (x1, y2) . . .

L(xn, y1) (xn, Y2)
... (xn, yn) j

(x1) x1) (x1) x2) ... (x1, xn) I all a21
... and

[(x1, x1) (xn, x2) ... (xn, xn) j [amn

= G(x1, x2) ... , xn)f .

a2n ann]
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Furthermore,

all a12

Lanl an2

(x1, yl) (x1, Y2)
... (x1, yn)

aln

.* ann] (xn, yl) (xn, Y2)
... (xn) Yn)

(yl' yl) (yl' Y2) (yl) yn)

= G(y1. ... , yn).

L(yn' yl) (yn) Y2)
... (yn' yn)J

Combining these two equations we obtain the first identity of the lemma.
The second comes from taking determinants and observing that IA I = IA I
As a special case,

g(o 1x1, o.2x2) . . . , Qnxn) = I or112 10.212 ... 10n 12 g(x1, x2, .. ) Xn). (8.7.6)

THEOREM 8.7.2. Let x1, ... , x,1 0. Then,

0 < g(x1) x2, ... , Xn) < 11x111211x2112 ...
IIXn112 (8.7.7)

The lower extreme g = 0 occurs if and only if the elements xi are dependent.
The upper extreme occurs if and only if the elements are orthogonal.

If the elements have been normalized : II xi II = 1, then we have

0 < g < 1. (8.7.8)

P r o o f : Suppose first that the x's are dependent. Then, we can find con-
stants al, ... , an not all zero such that a1x1 + a2x2 + + anxn = 0.
Suppose that of 0 0, and consider the transformation

yf-1 = xj-1
yf = a1x1 + a2x2 + ... + anxn = 0 (8.7.9)

x5+1y j+1 =

xn*yn =
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Since (y;, yi) -- (0, y,) = 0, 9(y1, ... )
yn) = 0.

Now

0 1 0 0

=Al Ia1

a2 ... a. ... aan

0 0 ... 0 1

Expanding this according to minors of the jth row, we find

lA1=O+O+...+a5.1 +0+.....+0=a;0.

It follows from Lemma 8.7.1 that g(xl, x2, ... ) xn) = 0.
Next, suppose that the x's are independent. Then by Theorem 8.3.3 we

can find constants a.5 such that the elements

Xk * = aklxl + ak2X2 +*+ akkxk, akk > O

are orthonormal. By our lemma,

1 = 1 b2;1 = g(x1*, x2*) ... , 9(x1, x2, ... , xn) 1 A 12

where

Hence,

IAl=

all 0

a21 a22 0

and an2 ' ' ' ann

a11a22"'ann

1 1 1.. , xn) = a 2 . a 2 ... a 2 > 0 . (8.7.10)
11 22 nn

Hence g = 0 occurs when and only when the x's are dependent.
We show next that

(8.7.11)1 <_ Ilxkll2.
akk2
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1 k-1 2

a
112 (from TheoremFrom (8.3.6),

2
= IIykII2 = xk - (xk, x;*)x;* < IIxk

kk =1
8.5.1 with ai = 0).

If the xi are orthogonal, then G is a matrix with IIxiII2 on the diagonal
and 0's elsewhere. In this case, q(xl) x2, ... , xn) = 11x1112 11x2112 ' ' IIxn112

Suppose, conversely, 9(x1, x2) ... , xn) = IIx1I12 11x2112... IIxn112. We have from

1 1 1
(8.7.10) g(xl, ... , xn) =

2 2 . Now since
2

< IIxkII2, it follows that

1

DD=

IIyk112 = 2 = 1141 2, k = 1, 2, ... , n. But from (8.3.6) and Corollary 8.5.3,
akk k-i k-1

IIyk112 = IIxk112

(xk, xi*)12. Hence 11 (Xkl xi*)12 = 0 for k = 1,
i=1 i=1

2, ... , n. This implies the orthogonality of the vectors xl, x2, ... , xn.

COROLLARY 8.7.3 (Hadamard's Determinant Inequality). Let D = (ai;)
be an n x n matrix with complex elements. Then,

I D12 < ll (lakl12 + Iak212 + ... + I akn12). (8.7.12)
k=1

If the elements ail satisfy I ai; I < M, i, j = 1, 2, ... , n, then

I D I Mnnn/2. (8.7.13)

Proof: Let xi designate the vector (ail, ail, ... ) ain ). Use the Hermitian

inner product (xi, x;) aika;k in C.
k=1

If D designates the conjugate transpose of D, I a;il , then

all a12

all ann akk

aln

a21 a22 ' a2n

anl an2 ' ' ' ann

= I (xi, x;) I = 9(x1, x2,

all a21 ' ' ' and

a12 a22 ' . . CIO

aln a2n ' ' ' ann

, Xn) < 11x111211X2112"' IIxnII2

n n
Now IIxiII2 = I aikaik = I I aik12 And, since, I DI = IDI, (8.7.12) follows. If

k=1 k=1

l ai,l < M, then Iak1I2 + Iak212 + ... + l akn12 < nM2, so that I D12 < nnM2n.

Ex. 1. (Gram's Criterion). Let fi(t) E C[a, b] i = 1, 2, ... , n. These functions
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are linearly independent if and only if the Gram determinant

i (t)f;(t) dt
faf

A similar result holds for fi(t) E L2[a, b].

> 0.

THEOREM 8.7.4. Let x1, x2, .... xn be independent. If

then,
b= min lly-(a1x1+a2x2+...+anxn)ll

, (8.7.14)
a,

62 = g(x1, x2) . . . , xn, y)

g(x1, x2) . . . , xn)
(8.7.15)

Proof: Let the minimizing element a1x1 + a2x2 + + anxn be called s.
Then

62=lfy-8112=(y-8,y-s)=(y-8, y) - (y - 8, s).

By Theorem 8.6.1, (y - s, s) = 0 so that

62 = (y - 8, y) _ (y, y) -- (8, y)
and

(8, y) _ (y, y) - 62. (8.7.16)

Write the normal equations in the following form and append to them the
expanded version of (8.7.16) :

a1(x1, x1) + a2(x2, x1) + ... + an(xn, x1) - (y, x1) = 0

(8.7.17,

al(xn) x1) + a2(xn, x2) + ... + an(xn) xn) - (y, xn) = 0

a1(x1, y) -I- a2(x2, y) + ... + an(xn) y) + [62 - (y) y)] = 0

If we introduce a dummy value an+1 = 1 as a coefficient of the elements
of the last column, then (8.7.17) becomes a system of n + 1 homogeneous
linear equation in n + 1 variables a1, ... , an, an+1 (= 1), which possesses
a nontrivial solution. The determinant of this system must therefore vanish :

(x1, x1) (x2, x1) ... (xn, x1) 0 - (y, x1)

= 0.

(x1, xn) (x2, xn) ... (xn, xn) 0 - (y, xn)

(x1, y) (x2, y) ... (xn, y) 62 - (y, y)
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Therefore

I (x1, x1) (x2, x1) ... (xn, x1) 0

(x1, xn) (x2, xn) ... (xn, xn) 0

(x1, y) (x2, y) ... (xn, y) 62

(x1, x1) (x2, x1)

Ch. VIII

(y, x1)

(x1) xn) (x2) xn) ... (xn, xn) (y, x)

(x1) y) (x2, y) ... (xn) y) (y, y)

and

62g(x1) x2, ... , xn) = g(x1) x2, ... , xn, y).

THEOREM 8.7.5. Let x , ,. xn be independent. The solution s to the
minimum problem

min IIy - (alx + . . + anxn)II
aZ

is given by

s=-

(x1) x1) (x2, x1) ...
(xn, x1) (y, x1)

(x1, xn) (x2, xn) ... (xn) xn) (y) xn)

x1 x2 ... xn 0

The remainder or error, y - s, is given by

x1) (x2) x1) ... (xn) x1) (y) x1)

g(xl, ... , xn).

(8.7.18)

y - s = - g(xl, ... , xn).

(x1, xn) (x2, xn) ... (xn, xn) (y, xn) (8.7.19)

xl x2 ...
xn y
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Proof : Froin the normal equations (8.6.1) and Cramer's rule (1.2.2) we
have

(y, x1)

(y, x2)

a1 = - g(xl, ... , xn), (8.7.20)

with similar formulas for the other a's. If we expand the determinant in
(8.7.18) according to the minors of the last row we obtain expressions for
the coefficients of the x's which coincide with those just mentioned.

Since

(x1, x1) (x2, x1) ... (xn, x1)

y=

(y, xn) (x2) xn) ... (xn, xn)

(x1, xn) (x2, xn) ... (xn, xn) 0

xl x2 ... xn y

adding (8.7.18) to (8.7.21) yields (8.7.19).

g(xl, ... ) xn), (8.7.21)

COROLLARY 8.7.6. Let the elements x1, x2, ... , be linearly independent
and be orthonormalized according to the Gram-Schmidt scheme yielding x1*,
x2 , .... Then,

(x1, x1) (x2, x1) . .. (xn) x1)

xn*=- 1

-V g(xl, . . .
)
xn-1)g(xl, . . .

) xn)
(x1, xn-1) (x2, xn-1) ... (xn) xn-1)

x1 x2 ... xn

n > 1)

x1* = X111/g(X1)-

The "leading coefficient" in xn*, an n, is given by

g(xl) ... , xn-1) n>1.nn
g(x1) ... 1 xn)

(x2, x1) ... (xn) x1)

(x2, x2) ... (xn, x2)

(8.7.22)

(8.7.23)
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Proof: Consider the minimum problem

min II xn - (alxl + + an_lxn-1) II

According to Corollary 8.5.7, the solution is given by

xn = xn - (alxl +
ann

According to (8.7.19),

xn - (alxl + ... + an-lxn-1)

.. + an-lxn-1),

Ch. VIII

ann > 0. (8.7.24)

I (xl) x1) (x2, x1) ... (xn-1) x1) (xn, x1)

(x1, xn-1) (x2) xn-1) ... (xn-1) xn-1) (xn) xn-1)

xl x2 .., xn-1 xn

- g(xl, . . . , xn-1)

(8.7.25)

From Corollary 8.5.7, 1 = xn
= min II X, - (a1x1 + + an-lx,-,)II,

2 0

, ,

.4, this minimum =and from Theorem 8.7 4, n . Hence (8.7.22)
follows from (8.7.24) and (8.7.23).

9(x ... x )
9(x1) ... , xn-1)

Ex. 2. The Legendre polynomials are given by

1 1

p2 * (x) _ 4 32
3 135

2

0 -a 0

1 x x2

2 0

8.8 Further Properties of the Gram Determinant

THEOREM 8.8.1. The Gram determinant g(xl, x2, ... , X.) has the following
properties.

(a) g is a symmetric function of its arguments. I

(b) 9(x1, ... , ox,, ... , xn) = Io12 9(x1, ... , xn)

(c) 9(x1) ... , x; + cxxk, ... , xn) = 9(x1) ... , xn), j =A k

(d) g'(xl' + XIII) x2, ... , xn) < g'(x1') x2, ... , xn)
+g (x1 )

x2,...,xn)
(e) 9(x1, ... , xn) < 9(x1) ... , x)g(xp+1, ... ) xn), 1 < p < n.

ann ann
aa
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Equality in (e) holds if and only if

(xi, x,) = 0 1 < i < p

(Compare Theorem 13.1.2.)

... , xn*. Then,

Proof : Statements (a) and (b) have already been proved. (c). Write the
left hand member of (8.8.1)(c) as a determinant of inner products. Expand
the inner products in the jth row and use the elementary properties of
determinants. Then expand the inner products in the jth column and do
likewise. (d). We may assume that x2, ... , xn are independent. Otherwise
both members of (8.8.1) (d) vanish and the inequality holds trivially. Ortho-
normalize x2, ... , xn and call the orthonormal vectors x2*,
from Theorem 8.5.1 and (8.7.15),

g1(x1' + x1", x2, . . . ) xn) _
q (x2, . . . , xn)

<
k=2

(xl , x2, . . .
)
xn)

nxli + xla - I (xl' + xl", xk*)xk*
k=2 /

n nxli - I (x1', xk*)xk* + xl" - I (xln, xk*)xk*
k=2 k=2 /

xli - (xl'' xk*)xk*
/

+

P -+-- 1 < j < it.

n

x1" - I (x1", xk*)xk*
k=2

g
(xln, x2, . . .

) xn)

g (x2. . . . , xn) g (x2, . . . , xn)

Multiplying this inequality by the denominator, we arrive at (d).
(e) Let k satisfy 1 < k < p. Then, since there is more competition on the

left-hand side,

min Ilxk (ak+lxk+1 +* .. + anxn)II2 < min Ilxk (bk+lxk+1+ + bpx,)112.

Similarly,

min Ilx, - (cv+lxv+1 + ... + Cnxn)II2 < Ilxvll2.

Therefore by Theorem 8.7.4,

g(xk) xk+1, xk+2. . . . , xn) < g(xk) xk+1. . . . , xv)

g(xk+l) . . . , xn) g(xk+l) . . . , xi,)

and

9(xv) xv+1, ... , xn)
< g(x )

9(xv+P ... 1 xn)

(8.8.2)

(8.8.3)
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In particular, writing k = 1, k = 2, ... , p - 1 in (8.8.2) we have

9(x1, ... , xn) < 9(x1, ... ,x2,)
9(x2, ... , xn) 9(x2) ... , xp)

9(x2) ...,xn) 9(x2,...) xp)

9(x3) ... , xn) 9(x3, ... ) xp)

9(xp, ... ) xn)
< g(x )

g(x2,+D . . .
)
xn)

Multiplying these inequalities together,

9(x1, ... , xn)
g(xl, ... , x2,),

g(xp+1) . . . , xn)
or

g(x1, ... , xn) < g(x1, . . ) x2,)g(xp+1) .. , xn). (8.8.5)

Now, equality in (8.8.5) can hold if and only if it holds in each of the relations
(8.8.4) ; i.e., if and only if

and

min II x2, (cp+lxp+l + ... + Cnxn)112 = IIXP112 (8.8.6)
Ci

min II xk (ak+lxk+1 +* .. + anxn)II2 = in Il Xk (bk+lxk+1 + ... + bpxp)II2
aj bi

k = 1,2)...,p- 1. (8.8.7)

Now, by Corollary 8.5.3, (8.8.6) holds if and only if

(xp) x,)=0 j = p + 1,...,n.

Now (8.8.7) with k = p - 1 reads

minllxp-l-(apxp++anxn)II2= min
Ilxp-l-b2,x2,112.

J p

By the same principle, this holds if and only if x2,_1 j x2,+1, x 2 . . . . . . xn.

Considering k = p - 2, p - 3, . . . , 1 successively, we arrive at the stated
orthogonality conditions.

The Gram determinant has a very striking geometrical interpretation.
Let there be given n vectors in Rn : xi = (xil, xi2) ... , xin). These vectors
are the edges of a certain n-dimensional parallelotope (the generalization
of a parallelogram) whose volume will be designated by V = V(xl, x2, ... , xj.



Sec. 8.8 FURTHER PROPERTIES OF THE GRAM DETERMINANT 187

It can be shown that

V = absolute value of

x11 x12 x1 n

x21 x22 2n

xn1 xn2 * xnn

x3

01

Figure 8.8.1 Parallelotope in R3.

(8.8.8)

(Though elementary, the derivation of this formula is far from trivial.
axiomatic derivation can be found in Schreier and Sperner [1] Ch. II. )

Multiply the determinant in (8.8.8) by its transpose and obtain

I (xl, x1) (x1, x2) .. (xl, xn) I

V2 =

Hence,
n, xl) (xn, x2) ... (xn) xn)

An

=g(x1,...,xn). (8.8.9)

V(xl, ... , xn) = 1/g(x1) x2, ... , xn) . (8.8.10)

A derivation of (8.8.8) can be given via Theorem 8.7.4 if we assume by
way of analogy to the situation in 2 and 3 dimensions that the volume of
the parallelotope can be found by multiplying altitudes. That is, assume

V(x1, x2, . . . , xn) = IIx1II d(x2; x1) d(x3; x1, x2) ... d(xn; x1, x2, . . . , xn-1)

(8.8.11)

where d(x2 ; x1, x2) ... , x2_1) designates the distance from x2 to the linear
manifold spanned by x1, ... , ; 1. Since

d(x2 ; x1, x2) .
g(x1) x2, . . . , x2)

x2-1) _ x x )g(x 2, . . . , i-11,

(8.8.12)

g(x1) x2) g(x1) x2, x3) g(x1) x2, . . . , xn)V2-g(xl) ... =g(xl) ,xn).
g(x1) g(x1, x2) g(x1, x2, . . . , xn-1)

(8.8.13)
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8.9 Closure and Its Consequences

DEFINITION 8.9.1. A finite or infinite system of elements, x1, x2, , in a
normed linear space X is called closed if every element x e X can be
approximated arbitrarily closely by finite linear combinations of the xi.
That is, given x e X and e > 0, we can find constants al, ... , an such that

II x - (a1x1 + a2x2 + ... + anxn) II E. (8.9.1)

Ex. 1. Any set of n independent vectors xl, ... , xn in R. or C. is closed.
In this case, the approximation can be made perfect (Theorem 1.3.1). But one
can also argue as follows. Since xi are independent, g(xl, ... , xn) > 0. If

then

xi = (xil) xi2, . . . , xin),

x11
. . . xln

9(x19 . . . , Xn) _

xnl . . . Xnn

>0

Xin . . . xnn

and therefore I xi; I 0 0. Given any y, the system a1xl + a2x2 + + anxn = Y
may be solved for the ai.

Ex. 2. Let X be C[a, b] with II f II = max if (x)l. The powers 1, x, x2, .. .
a<x<b

are closed in X. This is a reformulation of the Weierstrass Theorem 6.1.1.

b

.. ,Ex. 3. Let X be C[a, b] with II f II 2 = I f (X) 12 dx. The powers 1, x, X211.
are closed in X. a

b

Ex. 4. Let X be L[a, b] with IifII = If (x) I dx. The powers 1, x, x2, ... .9
a

are closed in X. This is a generalization of the Weierstrass Theorem.
According to Theorem 1.4.0(e), given an E > 0, we can find an absolutely

continuous function g(x) such that
a

if (x) - g(x)I dx < E/2. Since g is continuous
E

we can find a polynomial p such that Ig(x) - p(x)I < , a < x < b and
b - 2(b - a)

hence,
aI

g(x) - p(x)I dx < E/2. Therefore by (7.2.17)

b

a
If (x) - g(x) + g(x) - p(x)I dx < E/2 +.6/2 =.6.

Ex. 5. Let X be the set of analytic functions that are continuous in IzI < 1.
Set

II f II = max if (z)j.
tz1<1
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The powers z, z2, z3, ... , are not closed in X. If they were, given an s > 0 we
could find constants a1.... , an such that

max 1 - (alz + a2z2 + + anzn)I < E.
Izl <1

Setting z = 0, we would have, in particular, 1 < E.

Before studying the implications of closure, it will be important to recall
a number of topological concepts. Let X be a metric space with a distance
function d(x, y). (Definition 7.2.2.) If x0 E X, the set U(xo, r) consisting of
all elements x e X for which d(x, x0) < r is called an open ball. An element x
of a subset S is called an interior element of S if there is an r > 0 such that
U(x, r) c S. In a metric space and hence in a normed linear space, the
notion of convergence can be defined :

DEFINITION 8.9.2. A sequence of elements {xn} of a metric space is said
to converge to an element x e X if

lim d(x, xn) = 0. (8.9.2)

In a normed linear space, (8.9.2) is equivalent to

lim lix - xn11 = 0. (8.9.2')

A convergent sequence cannot converge to two different elements; for
suppose lim d(x, xn) = 0 and lim d(y, xn) = 0. By (7.2.2)(d), 0 < d(x, y) <n oo n oo
d(x, xn) + d(y, xn). Allowing n - oo, we obtain d(x, y) = 0 and hence x = y.
We may speak of x as the limit of the sequence {xn} and write

lim x = X.n (8.9.3)

Convergence of type (8.9.2') is sometimes called convergence in norm or,
if the norm happens to be given by an integral expression, convergence in
the mean. In the case of normed linear spaces of functions, this serves to
distinguish it from other types of convergence (pointwise, uniform, etc.).
One must always make this distinction, for a sequence in a normed linear
space of functions may converge in norm without converging in the point-
wise sense.

+1 n I
Ex. 6. Let X be C[ -1, 1] with 11/112 = (f (x))2 dx. Let fn(x)

-1 +n4x2
Then,

+1 n 2

110 -fn 11 2 = -1 1 + n4x2 dx =
n

are tan n2 --* 0.

However, fn (0) ->- 00 .
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Let X be a metric space and S 9 X. The closure S of S is defined as the
set of all limits of convergent sequences of S. Obviously S c S. If S = S,
S is called closed. A set S is dense in X if S = X. X is separable if there is
in it a countable dense set.

If lim xn = x, then from d(xm) Xn) < d(x, xm) + d(x, xn) it follows that
we can make d(xm) Xn) < E for all m, n > N(E). But as in the case of the
metric space of rational numbers (with d(x, y) = Ix - yI ), the converse is
not true. It is important to distinguish those spaces in which it is true.

DEFINITION 8.9.3. A sequence of elements of X, {xn} is called a Cauchy
sequence, if for every E > 0, there is an integer N(E) such that d(xm, xn) < E
for all m, n > N(E). A space X is called complete if every Cauchy sequence
has a limit in X.

Specifically, if X is a complete normed linear space, and if for any e > 0,
we can find N(E) such that

II xm - Xnll < E, m, n > N(e), (8.9.4)

then there is an x e X such that

nl-i-m ll x - xn Il = 0. (8.9.5)

A complete normed linear space is often called a Banach Space.

Ex. 7. The complex Euclidian space Cn is complete and hence is a Banach
Space. Let xm = (xim), 4m),. . . , xn'12)). If {xm} is a Cauchy sequence, then

n
I xi'12) - xID)I 2 < E for m, p > N(s).

i=1

Hence, for any particular i, I xim) - xi11)l 2 < s for m, p > N(s). Thus, for each
i, xi'n) is a Cauchy sequence and has a limit xi : lim I xi - xi'n)I = 0. If we set

m-- 00

X = (x1, . .

n
Xn) then llx - xm112 = I Jxi - xim)I2 <.62 for m > N'(s).

i=1

Ex. 8. Let C[a, b] be normed by 11f 11 = max if (x)I. This space is complete.
a<x<b

For if max I f m(x) - fn(x)I < E, m, n > N(e) then the sequence f "'(x) is uni-
a<x<b

formly convergent on [a, b]. Hence there is a function f (x) e C[a, b] for which

I f (x) - fn(x)I < s, a < x < b, n > N'(s),

and this implies that fn converges to f in the norm considered.
b

Ex. 9. On the other hand, if X is C[a, b] normed by 11 f 11 2 =f j f (x) 12 dx,
a

then X is not complete. This can be shown by exhibiting a Cauchy sequence in
X which does not converge to an element of X.
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For simplicity take a = -1, b = 1 and let fn(x) be the continuous function

1-1 -1 <x < --- n
1 1

fn(x) = nx -- <x <
n n

-< <
1l

Let f (x) be the discontinuous function

x
n

-1 -1 << x < 0.
f(x)

1 0 <x < 1
Now

0 1/n 2

IIf (x) - fn(x) II 2 =J (-1 - nx) 2 dx + (1 - nx) 2 dx =
3n-1/n 0

And therefore lim IIf - fn II 2 = 0. f,,, converges (in norm) to f and is a fortiori

a Cauchy sequence. But it cannot converge in norm to a continuous function
g(x), for

IIf - gII = llf - fn+fn - gII <IIf - fnll + IIg - fnll

If therefore 11g - fn I I -> 0 and 11 f - f n II -- 0, then allowing n -- 00, we obtain

1

11 f - gII = 0. Thus, (1 + g(x)) 2 dx = 0 and (g(x) - 1)2 dx = 0.
J-1 0

This means that g(x) = -1 for -1 <x < 0 and g(x) = 1 for O <x < 1.

We now come to the fundamental theorem of orthonormal (Fourier)
expansions.

THEOREM 8.9.1. Let x1*, x2*, ... , be a sequence of orthonormal elements
in an inner product space X. The sequence may consist of only a finite number
of elements. Appropriate changes are then to be made below. Consider the
following seven statements.

(A) The xi* are closed in X.
(B) The Fourier series of any element y e X converges in norm to y; i.e.,

]im
ny _ (y' xk*)xk*

k=1
= 0. (8.9.6)

(C) Parseval's identity holds. That is, for any y e X,

00

(8.9.7)Ily11 2 = (y) y) = I I (y, xn*)I2.
n=1
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(C') The extended Parseval identity holds. That is, for any x, y e X,

00

(x, y) = I (x, xn*)(xn*, y). (8.9.8)
n=1

(D) There is no strictly larger orthonormal system containing x1*, x2*, ... .
(E) The elements x1*, x2*, ... , have the completeness property. That is,

y e X and (y, xk*) = 0, k = 1, 2, ... , implies y = 0.
(F) An element of X is determined uniquely by its Fourier coefficients. That

is, if (w, xk*) = (y, xk*) k = 1, 2, ... , then w = Y.
Then

A HB HC E-+ C' -* D HE F. (8.9.9)

If X is a complete inner produce space, D -k C and all seven statements are
equivalent :

AHBHCHC'HDHEHF. (8.9.10)

-- " to mean "implies and isWe have used "-k" to mean "implies" and "+-+"
implied by."

Proof: Assume A. Now

n
y - I (y, xk*)xk*

k=1

n
y - I akxk by (8.5.1) .

k=1

By A, the last expression can be made _<.6. If B holds, we can approximate
any element y by its Fourier segments ; hence xk* is closed. Thus A+--* B.

By orthogonality,

n n n

x - I (x, xk*)xk*, y - I (y, xk*)xk* _ (x) y) - I (x) xk*)(xk*, y)
k=1 k=1 k=1

By the Schwarz inequality,

n

(x, y) - I (x, xk*)(xk*, y)
k=1

x - (x, xk*)xk*
n

y -
I

(y, xk*)xk*

k=1k=1

If B holds, then the right-hand members both approach zero and hence
B-*C'.

By selecting x = y in C' it is clear that C holds. Hence C' -- C.
By Corollary 8.5.3,

n 2 n

0 < y - (y, xk*)xk* = 11 y112 - R Y, xk*) l2.
k=1 k=1

Hence C -k B, and thus A+-+ B H C H C'.
Assume A and suppose that x1*, x2*, ... , w, (w 0 xi*), is also an ortho-

normal system. This augmented system is also closed in X. Since A -k C',
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we have both 00

IIw1I2 = I (w, xk*)I2 + (w, w),
k=1

00IIw112kI I(w1xk*)I2
k=1

Hence (w, w) = 0 and this is a contradiction since IIwil = 1. This means
that A -). D.

Suppose there is a y e X, y 0 such that (y, xk*) = 0, k = 1, 2, ... .
Then, xl*, x2*, ... , y/ II y II would be an orthonormal system strictly larger
than xl*, x2*, .... Thus, D -+ E.

Suppose (w, xk*) = (y, xk*) k= 1, 2, .... Then (w-y, xk*) = 0 k =
1, 2, .... Assuming E, w - y = 0. Therefore E -+ F.

If E were false, we could find a z 0 0 with (z, xk*) = 0 k = 1 , 2, ... .
For any y, (y) xk*) = (y + z, xk*) k = 1, 2, .... So y and y + z would be
two distinct elements with the same Fourier coefficients. F would then be
false. Therefore F - * E. This completes the chain of implications (8.9.9).

Assume that X is complete. We will show that F -k B and this will estab-
lish the implications (8.9.10). Let w e X and consider the elements

n

For n > m, n

sn = (w, xk*)xk*.
k=1

we have sn - 8M = I (w, xk*)xk* so that
k=m+1

(8.9.11)

n

115n - sm112 = I I (w, xk*)12.
(8.9.12)

k=m+1
00

By (8.5.3), 11 (w, xk*)I2 < oo. Therefore given an E, we can find an N(E)
k=1

n
such that I 1(w, xk*)12<.6 for all m, n > N(s). Thus {sn} is a Cauchy

k=m+1

sequence, and by the assumed completeness of X converges to an element
seX:

lim IS - sn11 = 0. (8.9.13)

Let v be fixed and n > v. Then

(s - sn' xv*) _ (s, xv*) - (sn' xv*) _ (s, xv*) - (w, xv*)

By the Schwarz inequality,

I(s) xv*) - (w, xv*)I = 1(s - sn' xv*)I < II - sn11 11Xv*II = Its - snll-

In view of (8.9.13), we find that

(s, xv*) = (w, x,,*) v = 1, 2, .. .
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By F, this implies that s = w, so that (8.9.13) reads

lim
n

w - I (w, Xk*)Xk*
k=1

= 0.

But this is precisely B.
We remark in passing that Parseval's identity is a generalization of the

Theorem of Pythagoras 8.3.1.
The completeness property in (E) may be defined for any set of elements :

DEFINITION 8.9.4. A set of elements S in an inner product space X is
complete if

(y, x)=0 forallxES (8.9.14)
implies y = 0.

As we have seen, in a complete inner product space, completeness and
closure are equivalent concepts and some authors use these words with inter-
changed meaning. In Chapter XI, the notion of complete sequence is ex-
tended to normed linear spaces and the relation between closure and
completeness is probed further.

I
b

Ex. 10. Let X be C[a, b] with (f, g) = f (x)g(x) dx. Given an f e C[a, b], and
a

E > 0, we can find constants ak such that

If (x) - (ao + alx + ... + anxn) I < E a <x <b.
By integration,

b

a
(.f (x) - (ao + ....+ anxn))2 dx < E2(b - a).

It follows that the powers 1, x, x2, ... , are closed in X. All statements (A)-(F)
now follow with the elements xk * interpreted as certain modified Legendre
polynomials. In particular, if f e C[a, b] and if

b

a
f (x)xn dx = 0 n = 0, 1, 2, ... , then f (x) =-O.

Ex. 11. If X is L2[a, b] with the same inner product then the same con-
clusion holds (See Theorems 11.2.1 and 9.2.2).

Ex. 12. Fourier expansions of continuous functions in terms of Jacobi
polynomials converge in norm. b

Parseval's identity holds for such expansions. If w(x) > 0 and w(x) dx < oo
a

then these results may be extended to the class L2[a, b; w] of measurable

functions f for which w(x) I f 12 dx < oo.
a

THEOREM 8.9.2 (Riesz). Let X be a complete inner product space and let
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00

ak be constants such that I Iak12 < co. Let {xk*} be a complete orthonormal
k=1

sequence. Then there is a y e X such that

(y, xk*) = ak k = 1, 21 .... (8.9.15)

n
Proof : Consider the elements sn = akxk*.

n k=1 ao

Now Ilsn - sm112 = I Iakl2. In view of I Iakl2 < 00, {sn} is a Cauchy
k=m+1 k=1

sequence, and there is a y such that lim II y - s,,11 = 0. With k fixed and n > k,

IIy - sn11 = Ily - snll Ilxk*II > I (Y - sn, Xk*)l = I (Y' xk*) - akl

Allowing n - * oo, we obtain (8.9.15).

8.10 Further Geometrical Properties of Complete Inner Product
Spaces. We have seen in Theorem 8.5.1 that there is a minimum dis-
tance from a given element to a linear manifold. How can this be extended
to more general subsets? Theorem 8.10.1 provides a sufficient condition
of great importance.

THEOREM 8.10.1. Let X be a complete inner product space. Let M be a
closed (i.e., topologically), convex, and nonempty subset of X. Let y e X and set

d=zMily - xll.

Then there is a unique x0 in M such that

Ily - xoll=d.

y

Figure 8.10.1.

(8.10.1)

(8.10.2)

Proof : By (8.10.1) we can find a sequence of elements xn in M such that

hill Il y - xnll = d. (8.10.3)
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The parallelogram theorem (Theorem 8.1.3) tells us that

Ilxm-xnII2=2IIxm-y112+211xn-y112- 112y-xm-xnII2

=2IIxm-yII2+2IIxn-yll2-4 IIy-J(xm+xn)II2.

M is convex; hence J(xm + xn) is in M and IIy - 1(xm + xn)112 > d2. There-
fore,

Ilxm-xnII2 +2Ily-xnII2-4d2.
In view of (8.10.3), ll xm - xnII2 -k 0 as m, n -k oo. This means that {xm}
is a Cauchy sequence. Since X is complete, there is an x0 in X such that
11 xm - xo 11 - * 0. Since M is closed, x0 is in M. Now

Ily-x011 < IIy - xnll + Ilxn-x011 -)- d+0=d.

On the other hand, from (8.10.1), ll y - x011 >- d. Therefore ll y - xo ll = d.
Suppose we have x0 and x1 with IIy - xo II = IIy - x111 = d. Since M is

convex, J(x0 + x1) is in M. Hence,

d < IIy - J (xo + xl) I1 = I1 jy - Jxo + ly - Ixl 11

d d
<I IIy - xoll + j IIy-x111 = 2 +2 =d.

Therefore 11y - J(x0 + x1)11 = d. By the parallelogram law,

11x0-x1112=2 IIy-x0112+2 Ily-x1112-4Ily- J(x0 +x1)112
= 2d2+ 2d2- 4d2 = 0.

Therefore x0 = x1.

Ex. 1. In the plane, let M designate a nonempty, closed, convex set of
points. If P is a point not contained in M, there is a unique segment of minimum
length connecting P and M.

THEOREM 8.10.2. Let X be a complete inner product space and let M be a
closed linear subspace that is not the whole of X. Then there exists a nonzero
element z J. M, i.e., (z, y) = 0 for all y e M.

Proof: Let w 0 M. Set d = inf 11w - y II By Theorem 8.10.1, we can find
yem

a yo in M with 11w - yo it = d. Let z = w - yo. Now z 0, otherwise
w = yo e M. Since M is linear, yo + Cy is in M for all y e M and all C.
Hence, d < 11w - yo - CyI1 = liz - CyIl Then, I1z - Cyit2 - 112112 > 0. This
means that I C12 11y112 - C(y, Z) - C(z, y) > 0. In particular, select C =
od(z, y) where or is real.
Then,

J (Z' y) 12 {i2 11y112 - 2or) > 0 for all or.
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But for or > 0 and sufficiently small, .2 II y II 2 - 20 is negative. Hence
(z, y) = 0.

COROLLARY 8.10.3. The minimal element extending from a given element
to a closed linear subspace is perpendicular to the subspace.

Here is a second application of Theorem 8.10.1 more directly related to
questions of approximation theory.

THEOREM 8.10.4. Let M designate the set of polynomials of degree < n
that are convex on [a, b]. Let f (x) e L2[a, b]. Then the problem

b

min Ilf-pll, II1II2= Ifl2dx, (8.10.4)
a

possesses a unique solution.

Proof: A polynomial p(x) is convex on [a, b] if and only if p"(x) > 0 there.
If p and q are convex on [a, b], then tp(x) + (1 - t)q(x) is also convex on
[a, b] for 0 < t < 1, inasmuch as tp" + (1 - t)q" > 0. The set M is there-
fore convex.

We show next that M is a closed subset of L2[a, b]. Let pk(x) E M con-

verge to f (x) E L2[a, b] ; i.e., let k lim If (x) - pk(x) l2 dx = 0. Let q(x) be'fa
the best approximation to f (x) in 91,z (Cf. Cor. 8.5.2). Then,

b b

0 < 1f (x) - q(x) 12 dx <f 1f f (x) - pk(x)12 dx.
a a

b

Allowing k - * oo we have If (x) - q(x)2 dx = 0, so that f (x) = q(x) is
in gn. a

Let Po*(x), Pl*(x), ... , Pn*(x) designate the orthonormal polynomials
for [a, b]. Then,

f (x) - pk(x) - aokP0* (x) + + ankPn* (x), k = 1, 2, ...

for some constants aik and hence,

fa

b n

If (x) - pk(x) 12 dx = I I aik 12 --),.0.
i=0

Thus, lim aik = 0, i = 0, 1, ... , n.
k-- o0

n

Now If (z) - pk(z)I < laikl I Pi*(z)I ; hence over any bounded region in the
i=0

complex plane pk(z) -3 f (z) uniformly. Hence pk"(z) __*f "(z) uniformly there
and since pk"(x) > 0 on [a, b], it follows that f"(x) > 0 there. Thus M is
closed. The Theorem now follows by an application of Theorem 8.10.1.
We refer to Theorem 9.2.2 for the completeness of L2[a, b].
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NOTES ON CHAPTER VIII
General works that have been found useful include Halmos [1] and Aron-

szajn [1]. Also the references cited in Chapter 7.
8.1 For spaces that do not satisfy the positivity requirement (8.1.1)(d),

see Synge [1], Part III .
8.2 The Euclidean geometry of n dimensions is developed in Sommerville

[1]

8.5 For additional examples of Tschebyscheff expansions, see Murnaghan
and Wrench [2], Clenshaw [1]. Davis and Rabinowitz [2] presents an ex-
tensive survey of the applications of least square methods to numerical
analysis.

8.7-8.8 Kowalewski [2] pp. 223-229. Gantmacher [1], Vol. I. Kaczmarz
and Steinhaus [1] pp. 73-78, Szego [1] pp. 23-27.

8.9-8.10 Banach [1] Chap. IV, Kaczmarcz and Steinhaus [1], Chap. II.
Further discussion of Theorem 8.9.1 is in Olmstead [1].

PROBLEMS

1
7

1. If - oo < A, , t < oo, then lim cos Ax cos y x dx = 0, A 0 p. WhatT-.ao 2T _T
is the value of the limit for A = y?

2. If X is a real inner product space jjx + y ll = jjx - y ll if and only if
(x, y) = 0. What if X is a complex inner product space?

3. In a real inner product space jjxjj = Ifyll implies that

(x) x - y) = (y) y - x).
Give a geometric interpretation.

4. If X is a real inner product space, (x, y) = 0 if and only if flax + yll > ll ll

for all real a.
5. If xl and x2 are orthonormal, then xl + x2 and xl - x2 are orthogonal.

Geometrical interpretation?
6. Let ii xi ll = 1, i = 1, 2, ... , n. 11xi - x; jj = 1, i 0 j. Determine the angle

between xi and xj. Interpretation in R2 and R3?
7. Prove that an inner product space is strictly convex.
8. In a real inner product space (x, y) = 1[ 11 x + y 112 - 11 x - y ll 2]. In a com-

plex inner product space, Re (x, y) =
4

[ 11 x + y 112 - 11 x - y 112] Im (x, y) _
-4[llix + yll2 - Ilix - y112].

9. Give an example of a normed linear space in which the parallelogram
theorem fails.

10. In Cl[a, b] define
b

(1) (f) g) = f'(x)9'(x) dx
fa

b

(2) (f) 9) = f'(x)9'(x) dx + f (a)9(a).
a
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Which of these is an inner product?
11. Let X be a real Minkowski plane with points P. It is an inner product

space if and only if the locus 11P11 = 1 is an ellipse.
1 xn dx

12. Estimate
o

1 + x from above by the Schwarz inequality. Estimate from

below and above by using the mean value theorem for integrals. Compare with
the exact answer for n = 6.

13. In the case of a complex inner product space two definitions of angle are
x, y) Re x,

possible: (1) cos 0 = I ( , (2) cos 0 _ (
y) . According to (1), _ it/2

11x11 Ilyll 11x11 Ilyll
if and only if (x, y) = 0, but the law of cosines does not hold. According to (2),
the reverse is true.

14. Let X be an inner product space and x 1 . . . . . xn be n independent elements.
Introduce Lk(x) = (x, Xk) and use the LU decomposition of ((xi, x;)) (2.6.19) to
derive the orthonormalized x1 *, x2 *, ... , xn

15. Let n > 2. "Solve" the overdetermined system of real equations in x, y

alx + bly = cl

anx + bny = cn
n

by minimizing (ci - aix - biy)2.
i=1

16. Find the least square polynomial approximations of degrees 0, 2, and 4
to lxi over [ -1, 1].

17. Approximate x2 in L2[0, 1] by a combination of 1, x. By a combination
of x100, x101. Compare the answers.

18. In an inner product space, minimize

11x1 - X112 + 11X2 - x112 + + IIxn - x112

where x is a linear combination of x1.... , xn. Interpret geometrically.
19. Show that the value of y that minimizes the sum of the squares of the

n y 2 n n
"relative errors," 1 ' , is y = I aj2 aj.

y j=1 =1j=1 3

20. Let a triangle T have sides a, b, c. If P is a point in the plane, denote by
x, y, z, the distance from P to the sides. What position of P minimizes x + y + z?

21. With the notation of Problem 20, show that there is a point PL such that
x y z

-. This is known as the Lemoine Point of the triangle. Show that this
a b c

point minimizes x2 + y2 + z2. Hint: Use the Lagrange identity

(a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + Cz)2
+ (ay - bx)2 + (bz - cy)2 + (cx - az)2.

22. In Rn, Ily - AxI12 is minimized for x = x1 if and only if A'Ax1 = A'y.
23. Given 0 < x1 < x2 < < xn < 1; f k(x) = 1, 0 < x < xk; f k(x) = 0,

xk <x <1; k =1,2,...,n.Compute G(fl,f2,..,fn)
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24. If xi are normal: 11xill = 1, prove that the sequence ,un = g(x1, x2, ... , xn)
is nonincreasing.

25. Let the matrix G(x1, x2, ...
)
xn) have rank r. Then r of the elements

x1, ... , xn are linearly independent and n - r elements are linear combinations
of these.

26. Prove that Hadamard's determinant inequality is an equality if and only
if the rows or columns of D are orthogonal.

27. Prove that the n-dimensional volume, Vn, of the regular n-simplex of
side 1 (generalization to n dimensions of the equilateral triangle) is given by

1 n + 1
Vn = -

n! 2n

28. Let X be an inner product space and xI, . . . , xn be n independent elements.
Then, g (y, x1.... ) xn) _ (y, z) 1 2 for all y, and where z depends only on x1, ... , xn,
if and only if the dimension of X < n + 1. The z is unique. If the dimension of
X < n + 1, z = 0. The element z is known as the Grassman outer product of
x1, ... , xn.

29. Use the result of the last problem to generalize the formula of analytic
geometry for the distance from a point to a line. In Rn+1, let xl, ... , xn be
independent. Then, the distance d from y to the hyperplane spanned by x1.... , xn

Z)is given by d = (y' )

114
. Check the case n = 2.

30. Suppose there is a real valued function of n elements of an inner product
space V(x1, x2, ... , xn) such that (1) V (x1, ... , xn) = 1141 lIx211 I I xn I I when-
ever xl, . . . , xn are orthogonal. (2) V (x1, . . . , xj, . . . , xk, . . . , xn) = V (x1, . . . ,

xf + aXk, ... , xk) ... , xn) for all constants s and all j, k (j 0 k). Prove that
V(x1, . . . ) xn) = gi(xl) . . . , xn).

31. Give a geometric interpretation of Hadamard's Inequality and of in-
equality (8.8.1)(e).

32. Let g(x) E C2[0, 1] and suppose that g"(x) < 0 at some point x E [0, 1].
Suppose that a polynomial p(x) is such that Ig(x) - p(x)l < e for 0 < x < 1.
For a sufficiently small, there is a point 71 in [0, 1] where p"(ij) < 0.

33. What is the implication of the previous exercise about the possibility of
uniform convex polynomial approximations?

34. Let Yn designate a normed linear space of polynomials of degree < n. If
pk(z) is a sequence of elements of Yn for which II pk11 -- 0, then NO --*' 0 uniformly
on any bounded set.

35. If X satisfies all conditions for an inner product space, except that
(x, x) = 0 does not necessarily imply x = 0, X is called an indefinite inner
product space. Give examples of such a space. How much of the present chapter
is valid for such spaces?



CHAPTER IX

Hilbert Space

9.1 Introduction. Hilbert space is the natural generalization to an
infinite number of dimensions of the real or complex Euclidean spaces Rn
and C. There are many advantages to be gained from working in a Hilbert
space. In the first place, our spatial intuition acquired in 1, 2, and 3 dimen-
sions carries over to some extent, and theorems and processes can be "seen"
geometrically as well as analytically. In the second place, the norm in the
space is associated with a quadratic expression, so that the processes of
minimization lead to linear problems. Finally, all (separable) Hilbert spaces
are abstractly equivalent to one another. This means that the theorems
established have wide application.

DEFINITION 9.1.1. A complete inner product space will be called a
Hilbert space, H, if the following additional requirements are fulfilled

(a) H is infinite dimensional; that is, given any integer n, we
can find n independent elements. (9.1.1)

(b) There is a closed (or complete) sequence of elements in H.

We have already observed in Chapter VIII that inner product spaces have a
good bit of geometry associated with them. The requirement that H be
complete means that all the conditions A-F of Theorem 8.9.1 are equivalent.

Condition (9.1.1)(a) provides H with more dimensions than any Rn while
condition (b) restricts the number of dimensions to being countably infinite.
These conditions are largely a matter of convenience, and the practice of
authors with respect to them varies.

A Hilbert space is, at the very first level, a linear space. This linear space
may be either real or complex. Accordingly, the Hilbert Space is spoken of
as real or complex.

If X is an inner product space and the sequence x1, x2, ... , is complete,
we can find a subsequence xk1, xk2, ... (possibly finite) that is both complete
and independent. For, beginning with the first nonzero element, inspect
the sequence and strike out the first element that depends upon the previous
elements. Inspect the subsequence that remains and do the same. Proceeding
in this way we obtain a subsequence xk1, xk$, ... , of independent elements.
Moreover, any element xq struck from the list is a linear combination of a
certain number of elements of the subsequence : xq = alxk1 + - - - + apxk,,.

201



202 HILBERT SPACE

Figure 9.1.1 The Hierarchy of Linear Spaces.

Ch. IX

Hence, (y, xk.) = 0, i = 1, 2, ... , implies (y, xi) = 0, i = 1, 2, .... This
means that the subsequence is itself complete.

If X is an infinite dimensional complete inner product space, a finite
sequence x1, ... , X. cannot be complete. For, otherwise we may suppose
it to be independent, as above, and orthonormalize it to obtain a complete
orthonormal sequence xl*, ... , x,,*. In view of (8.9.6), any element y equals

n
I (y, xk*)xk* so that there cannot be n + 1 independent elements.

k=1
In view of this discussion and Theorem 8.3.3, condition (9.1.1) may be

replaced by
There is a complete orthonormal infinite

sequence of elements in H. (9.1.2)
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< E/2. If rationals rk are selected so that

Recall that a metric space S is separable if there is a denumerable dense
set of elements. Condition (9.1.1)(b) implies that H is separable. For let
{xi*} be a complete orthonormal sequence. The finite linear combinations
of the xi* with rational (real or complex) coefficients is a denumerable set.
Given y e H and E > 0, then by Theorem 8.9.1(B), for sufficiently large n,

n

y
I (y, Xk*)Xk*

k=1

then

Hence

n

I Irk (y, xk*)I2 < E2/4)
k=1

n n

I (y' Xk*)Xk* - I rkxk*
k=1 k=1
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2

< e2/4.

< e. This approximant to y is one of the denumerable
n

y - Irkxk*
k=1

set.
Hilbert spaces as defined here are sometimes called separable Hilbert

spaces, but we shall omit the qualifying term.
The following lemma is of occasional use.

LEMMA 9.1.1. Let xl*, ... , x,,* be n orthonormal elements in a Hilbert
space. We can augment these elements by x*+1, x2,. .. , such that xl*, x2*, ... ,
is complete and orthonormal.

Proof: The Hilbert space has a complete sequence y1, y21 .... The se-
quence xl*, ... , xn*, y1, y2, ... , is obviously complete (since (y, yi) = 0,
i = 1) 2, ... , already implies y = 0). By the process described above, we
can extract a subsequence that is complete and independent. The subse-
quence will begin with xl*, ... , x,,* since these elements are independent.
Orthonormalizing this subsequence, we obtain x , * ,. .. , xn* over again, plus
additional elements that we call x*+ 1, X :+ 2 ,. . . .

9.2 Three Hilbert Spaces. There are many known examples of Hil-
bert spaces, but we limit our presentation to three.

I

THEOREM 9.2.1. The set of all infinite sequences {a} for which
00

1ai12 < oo, (9.2.1)
i=11

augmented by the usual definitions for addition and scalar products and by
00

(a, b) aibi, a = {ai}, b = {bi}, (9.2.2)
i=1

as the definition of an inner product, constitutes a Hilbert space.
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It is called the sequential Hilbert space and is designated by t"2.

Proof : We have already observed in Ex. 5, 7.2, that e2 is a normed linear
space. For any two elements a, b of e2, we have by (7.2.9)

n _ In n

Iaibil < lail2 lbil2
i=1 i=1 i=1

ao _ ao _
Hence, l aibi l < oo and I aibi converges. The expression (a, b) is therefore

i=1 i=1
defined for all a, b e ?'2, and it is now a trivial computation to show that it
satisfies the requirements (8.1.1) (a)-(d) for an inner product.

We prove next that the space is complete. Let a(n) = {a} be a Cauchy
sequence. That is, let

ao

Jim II a(m) - a(n)ll2 = lam I Iapm) - azn)l2 = 0. (9.2.3)
m,n-+oo m,n-+aoi =1

For each fixed subscript i, then, we have lim I dm) - ain)l = 0. Each of
m,n--' o0

the sequences ail), a(2), ... , is therefore a Cauchy sequence of real or com-
plex numbers, and by the completeness of these spaces, possesses a limit:

lm dm) =ai, i = 1,2,3... (9.2.4)
"t-0. 00

For each integer k, set
°k2 = sup II a(m) - a(n) II 2. (9.2.5)

m,n>k
By (9.2.3), we have

kim dk=0.

Now for N arbitrary and for all m > n, we have

(9.2.6)

N ao

a(m) - a(n) 2 < a(m) - a(n) 2 - a(m) - a(n) 2 <
Or

2 9.2.7i z I l 2 a l -II II n ( )
i=1 i=1

In (9.2.7) keep N and n fixed and let m --* oo. Since we are dealing with a
finite sum, we have N

l ai - azn) l 2 S on 2 (9.2.8)
i=1

By Minkowski's inequality,
N N N

lail2
< Iain)l2 +

Jai - a(n)l2 (9.2.9)
i=1 i=1 i=1

II a(n)II + or..

This is true for all N. Keeping n fixed, allow N -} oo and obtain
ao 1

lail2 S IIa(n)II + dn. (9.2.10)
i=1

This shows us that the sequence {ai} is an element of L 2.
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We next show that

n1m Ila - a(n)ll = 0 (9.2.11)

where a = {ai } .
In (9.2.8) allow N - * oo. This yields

00

I ai - ai(rs)I2 < dn2.

i=1

In view of (9.2.6), (9.2.11) follows. The Cauchy sequence a(n) approaches
the element a as a limit.

The unit elements ul = ( 1 ) 0, ...), u2 = (0) 1 , 0, ...), ... , are independ-
ent and orthonormal. They are complete, for if a = (al, a2, ...) C_'/2, then
ai = (a, ui) = 0, i = 1 , 2, ... , implies a = 0.

II

The second Hilbert space is L2[a, b], consisting of all functions defined
on [a, b] which are measurable and for which If (X)12 is integrable. The
inner product is defined by

b

(f, q) = f (x)g(x) dx
fa

b

1 1 1 1 1 2 = (.f, .f) = (x)12 dx.Elf (9.2.13)

We may consider functions that are real valued or that are complex
valued. This leads to two separate spaces, but the proofs are the same for
each.

It should be recalled that two functions differing only on a set of zero
measure have the same Lebesgue integral. Hence, according to (9.2.13), there
are functions not identically zero with zero norm. In order to avoid this
difficulty, we treat as identical any two functions whose values differ on a
set of zero measure at most. This means that the elements of our space
should not be the functions themselves but equivalence classes of functions.
To set up the work in this form is a nicety, and we shall not insist upon it.

THEOREM 9.2.2. L2[a, b] with inner product (9.2.12) and the identification
of functions discussed above is a Hilbert space.

Proof : We have seen (Ex. 10, 7.2) that L2[a, b] is a normed linear space
and that the inner product expression (9.2.12) has meaning for f, Y E L2[a, b].
By Theorem 1.4.0, and simple properties of the integral, L2[a, b] is an inner
product space as well.

We next show that L2[a, b] is complete. That is, we show that every
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Cauchy sequence converges to an element of the space. In symbols,

lim
m,n-- oo

b

a
(9.2.14)

implies the existence of an f (x) e L2[a, b] for which

In view of (9.2.14), we can find a strictly increasing sequence of positive
integers n1, n2, ... , such that

If g is an arbitrary function of L2[a, b], then by the Schwarz inequality,
b

a
I q(x)I I fnk(x) -fnk+i(x)I dx < IIgII II fnk -fnk+1II < IIgII 2-k. Hence,

ao

J

b

a
I q(x)I I fnk(x) -fnk+1(x)I dx < IIgII (I + + .) = IIgIi

k=1

Thus, interchanging summation and integration,

I fm(X) - fn(X) I2 dx = mlim II fm - fn II2 = 0

J

b

lim If (x) - fn(X) I2 dx = Jim 11f - f n II 2 = 0. (9.2.15)
n-- oo a n-- oo

1

II fnk - fnk+l II < 2k, k = 1, 2, .... (9.2.16)

(9.2.17)

fa

b ao

IY(x)11 I fnk(x) - fnk+i(x)I dx < IIgII < oo.
k=1

This tells us that
00

I9(x) I I I f nk(x) -fnk+1(x) I< 00
k=1

(9.2.18)

00

almost everywhere on [a, b], and hence that 11 f nk(x) - fnk+1(x) I < oo al-
k=1

most everywhere. This last statement is true because if the series diverged
on a set of positive measure, we could take a test function q that was non-
zero on this set, and obtain a contradiction to (9.2.18).

00

Now I (fnk+1(x) - f nk(x)) must also converge almost everywhere. Its
k=1

partial sums are fnk+1(x) - fn1(x). Hence, for an appropriate function f (x)
defined almost everywhere,

l im fnk(x) = f (x) (9.2.19)

We next show that f (x) E L2[a, b]. In view of (9.2.19), for fixed j, we have
almost everywhere

k
im l f nk(x) - f nj (x) 12 = I f (x) - f nj (x) 12. Hence by Fatou's

lemma,
b

fa

b b

If (x) - f(x)l2 dx < Jim inf
a

I fnk(x) - fnf(x)I2 dx. (9.2.20)
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Now

Ilfnk - fni Il Ilfni - fni+1 II + Il fni+1 fni+211 + . . . + Ilfnk-1 - fnkil
1 1 1

<2+29+1+29-1'
Hence,

1
b

1

Ilink - fnfli 2 < 22j-2 , so that l km i f
a

I fnk(x) - fnj(x)I2 dx 229-2 < 00.
o 00

b

This means that If (x) - f n, (x) 12 dx < oo, so that f - f n f e L2[a, b]. Since
fa

f = (f - fn) ) + fn;, and each of these is in L2[a, b], their sum, f, must be
in L2La, b]. From (9.2.20) and the last inequality for the lim inf,

lim llf - fn; Ii = 0.
j * 00

Now IIf - fn II < 11f - fn, II + II fn; - fn II . The first term on the right can
be made arbitrarily small, as we have seen. The second can also be made
arbitrarily small in virtue of (9.2.14). Hence (9.2.15) follows.

To wind up the proof of the theorem, we must show that L2[a, b] is infinite
dimensional and contains a complete (or closed) sequence. The functions
1, x, x2, ... , are in L2[a, b] and are independent. Moreover, they are com-
plete. This will be established in Theorem 11.2.1.

The proof of completeness is capable of wide generalization. In the first
b

place, completeness holds with the norm, 11f II If (x)IV dx, p > 1.
fa

Secondly, positive weighting functions may be used. For p = 2, each weight
leads to a corresponding Hilbert space.

III

The third Hilbert space to be studied here is comprised of certain single
valued analytic functions. It has a totally different flavor from the two
previous spaces for the reason that convergence in norm now implies uni-
form convergence. A certain part of the discussion that follows could have
been abridged by employing the Lebesgue integral, but it is of some interest
to see the theory built up with only the Riemann integral.

Let B designate a fixed region (open connected set) lying in the complex
z plane. It is clear (intuitively at least for simple regions, and we shall not
pursue the topological question furthert) that we can find a sequence of
closed bounded regions B1, B21 ... , with the following properties

(a) B. is contained in B, n = 1, 21 ....
(b) Bn is contained in the interior of Bn+l, n = 1, 2, ....
(c) The sequence Bn exhausts B in the sense that any point of B (with

the exception of z = oo, if it lies in B) ultimately belongs to some
Bn and hence to all subsequent B's.

t See Walsh, [1], p. 10.
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If S in any closed bounded set in B then S is contained in B. for all n
sufficiently large. For suppose not. Then we shall be able to find a point
zl in S but not in B1, z2 in S but not in B2, .... The points z1, z2, ... have a
limit point z* oo which is in S. Now z* lies in some B. by hypothesis (c)
and hence is interior to Bm+1 by (b). A whole neighborhood of z* therefore
lies in B,n+1, and this means that an infinity of points of the sequence
z1, z2, . . . , lie in Bm+1. Let q (> m + 1) be such that zq E Bm+1. Then za, e Ba,.
This is a contradiction.

We shall deal with functions w(z) defined on B and possessing Riemann
integrals over Bn, n = 1 , 2, ... , for all sequences B.

If lim w(z) dx dy exists for all sequences Bn and its value is inde-
n --* oo ff

Bn
pendent of the particular sequence Bn assumed to satisfy (a)-(c), we shall
write

w(z) dx dy = lim w(z) dx dy. (9.2.21)ff n--*oo ff
B Bn

If w(z) > 0, and if for some sequence Bn we set I n =ffw(z) dx dy, then

Bn

Bn c Bn+1 implies that In is nondecreasing. Hence,
n

m In exists (or is
+ oo). Suppose that lim In = I < oo. Let Dn be a second sequence satis-
fying (a)-(c). A fixed Dn is contained in some Bk for k sufficiently large.
Hence

w(z) dx dy S w(z) dx dy S I. (9.2.22)

Dn Bk
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Thus lim w(z) dx dy = L < I.n-- I
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Dn

We may reverse the roles of the D's and the B's and obtain I < L.
Hence I = L, and this tells us that the limit is independent of the particular
selection of regions B.

DEFINITION 9.2.1. Let B be a region. The set of functions f (z) which
are single valued and analytic in B and for which

j'JIf(z)l2dxdY <oo. (9.2.23)

B

will be designated by L2(B).

Ex. 1. If B is bounded and f (z) remains analytic or even continuous in the
closure of B then f e L2(B).

LEMMA 9.2.3. If f (z) and q(z) e L2(B) then the linear combination of (z) +
by(z) e L2(B) for all complex constants a, b. L2(B) is therefore a linear space.

Proof : First of all, the combination of (z) + by(z) is single valued and
analytic in B. Now,

Iaf (z) + b9(z)12 + Iaf (z) - b9(z)12 = 2(IaI2 If(z)12 + IbI2 Ig(z)12).

Hence Iaf (z) + bg(z)I2 < 2(IaI2 I f (Z) 12 + IbI2 Ig(z)I2). Therefore

Jj'Iaf(z) + bq(z)I2 dx dy < 2 Ial2 If (z)12 dx dy + 2 IbI2 Iq(z)2I dx dy.

Bn Bn Bn

Allowing n - * oo, the last two integrals possess finite limits by hypothesis.

Therefore lim fj'laf(z) + bg(z) I2 dx dy exists and is < oo.
n-- ao

Bn

LEMMA 9.2.4. If f and q e L2(B) then fq dx dy exists.

B

Proof : The following is an algebraic identity :

2 1 -}- 2 1 + 2
fq=2If+912+2If+i9I2- 2 If12-

2
IgI2.

This expresses the function f g as a linear combination of nonnegative
functions.
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Integrating over Bn,

fffdxdY= 1 ff If+gl2dxdy+
Z ffIf+igl2dxdy2 2

Bn Bn Bn

- 1 + 2 Ifl2dxdy - 1
2
+ 2

I2
gI2dxdy.

Bn Bn

Since f and g are in L2(B), the previous lemma tells us that both f + g and
f + ig are in L2(B). The limits of each of the four integrals on the right,
as n -k oo exist independently of the sequence Bn and are < oo. This must
also be true of the integral on the left.

LEMMA 9.2.5. For f, g e L2(B), write

(f, g) = f q dx dy. (9.2.24)

B

The expression (f, g) is an inner product for L2(B). With it, L2(B) is an
inner product space and therefore a normed linear space wherein

11f 112 = If 12 dx dy. (9.2.25)

B

Proof: Since (f + g)li = fli + g , (ocf )q = a(fq), fq = gf, the algebraic
properties required of an inner product are evident by integrating over Bn

and passing to the limit. If (f, f) = I f 12 dx dy = 0, then I f 12 dx dy =

B Bn
0 for all n. Since If 12 is continuous over B, it follows that f (z) = 0 on Bn,
and hence throughout B.

LEMMA 9.2.6. Let Cr designate the closed circle I z - z01 < r. Suppose that
f (z) is analytic in Cr- If

then
f (z) = ao + al(z - zo) + a2(z - z0)2 + ... , (9.2.26)

ao r2n+2
j'j'If(z)I2dxdY = 7r J I an12

1
. (9.2.27)

n =O n -+-
CT

Proof: The series (9.2.26) converges uniformly and absolutely in Cr. For
this reason,

00 00

ff ffIf (z)12 dx dy = I am(z - zo)m I am(z - zo)m dx dy
m=0 m=0

Cr Cr
00

aman (z - zo)m(z - zo)n dx dy.
m,n =0

Cr
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Set z - zo = peie. Then
27r

j'j'(z - zo)m(z - zo)n dx dy = dOe(m-08 pm+n+l dp.
0 0

Cr

If m n, the inner integral vanishes. When m = n, we have
00 r2n+2

Thus, If (z)I2 dx dy = I J lanl2
n=o n +1

Cr

00 00

r2(n+l)

n + 1 .

r2n+2
THEOREM 9.2.7. Let f (z) = I an(z - z0)n. Then S = 7TJ Ian 12

1 <
00

n =O n =O n +
if and only if f e L2(Cr). If f e L2(Cr) then S = 11f II2.

Proof : Assume S < oo. Then, for some constant M,
r2n+2

IanI2 <M,n=0,1,....
n -}-- 1

Hence,

l anll/n <

00

If p designates the radius of convergence of I an(z - zo)n, then
n=0

1 = lira sup
Ian

l1/n < 1 .

P

M1/2n(n + 1)1/2n

n-- oo r

Thus, p > r and therefore f (z) is analytic in Iz - zoI < r. Select an r' with
0<r' <r. If C, is Iz - zoI < r', then by Lemma 9.2.6,

00
(r')2n+2

If(z)I2dxdy=ITI Ianl2
1

<S< oo.
n =O n -}-

CT

Therefore lim If (z)I2 dx dy < oo and therefore f e L2(Cr).
r'-- r

CT
Suppose, conversely, that f e L2(Cr). Then, for any r', 0 < r' < r, f (z) is

analytic in the closed circle I z - zol < r'. Hence by the lemma,
(r')2n+2

If(z)12dxdy=7T
I00

Ianl2
1

=S(r')< oo.
n =O n +Cr,

Moreover, lim S(r') exists and equals If 112 (< oo). For any N,

N

nl2
(r')2n+27T J Ia < S(r').

n =O n + 1
Allowing r'---). r-,

N r2n+2
7T IIanl2

1
<IIf112.

n =O n -}-
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This estimate is independent of N. Allowing N -- oo, we obtain

Ss11f112<o0.

Since S(r') < S, by allowing r' - * r- we have II f 112<- S and therefore S =
II f II 2.

LEMMA 9.2.8. Let f (z) e L2(B). Let r(zo) be the distance from a fixed point
zo e B to the boundary of B. Then,

If (zo)I 2< 11f112

,rr2(zo)
(9.2.28)

Proof : Let 0 < r' < r(z o) . Then the circle C,,: I z - z0 I s r' is contained

in B. This implies thatff I f (z) 12 dx dy S I f (z) 12 dx dy = II f 11 2. But from

C*. B
(9.2.27), ignoring all but the first term,

7r If(z0)I2r'2 = 7r Ia0I2r'2 S If(z)I2dxdy s IIfI12.

Then,
C?,

z)2s11f112.
If (o I

7Tr'2

This is true for all 0 < r' < r and hence (9.2.28) follows.

LEMMA 9.2.9. L2(B) is a complete inner product space.

Proof: Let { fn(z)} be a Cauchy sequence of functions in L2(B). Given an
e, we can find an N(E) such that

II fm(z) - fn(z) II S e, m, n > N(E). (9.2.29)

We wish to show the existence of an analytic function f (z) which is in L2(B)
and for which II f (z) - fn(z) II = 0. Select a fixed Bk. On Bk we have from

the previous Lemma,

z - z S 11fm - fnII (9.2.30)I fm( ) fn( )I
7rIr(z)

If p(> 0) designates the minimum distance from Bk to the boundary of B,
then we have uniformly in Bk,

Ifm(//z) -fn(z)I S
II f m - f n II /9.2.31). l

P

In view of (9.2.31) and (9.2.29), {fm(Z)} is a Cauchy sequence of functions
with respect to the norm II II = maBx I cb(z) I . (Cf. Ex. 8, 7.2.) The sequence

zc-k

therefore converges uniformly in Bk to a function f (z) which must be
analytic in the interior of Bk. Since Bk is arbitrary, f (z) must be analytic
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in the whole of B. Now, for n and k fixed, lim j'j'lfm(Z) - fn(z)I2 dx dy =
Bk

fJ'lf(z) - f(z)l2 dx dy. This is true because of the uniform convergence of
Bk

fm to f on Bk. For m, n > N(E) we have for all k,

ff _ ffI fm(z) - fn(z)I2 dx dy I fm(z) - fn(z)I2 dx dy S E2.
Bk B

Allowing m -k oo,

fj'lf(z) - fn(z)I2 dx dy S E2.
Bk

This statement is independent of k; hence

k in fj'lf(z) - fn(z)12 dx dy s E2
Bk

This implies that f (z) - fn(z) is in L2(B). Since fn(z) is in L2(B), their sum

f (z) is in L2(B). Sinceff If (z) - fn(z)I2 dx dy S e2 for n N(E), we have
B

convergence in norm to f (z).
Having established that L2(B) is a complete inner product space, it re-

mains only to show that L2(B) is infinite dimensional, that it contains a
closed sequence of elements, and we will have proved that L2(B) is a Hilbert
space. As with L2[a, b], we could refer to Theorem 11.4.8 telling us that
the complex powers are closed in L2(B) for certain types of region B. How-
ever, we shall prove a stronger result by means of the Frechet-Riesz repre-
sentation theorem whose proof will be given shortly.

THEOREM 9.2.10. L2(B) contains a complete sequence of functions. If B i8
bounded, or can be mapped 1-1 conformally onto a bounded region, then
L2(B) i8 a Hilbert space.

Proof : Let t be a fixed point of B. As is shown in 9.3, Ex. 4, Ln(f) _
f (n)(t), n = 0, 1, 2, ... , are bounded linear functionals over L2(B). By
Theorem 9.3.3, there exists, for each n, an element gn(z) e L2(B) such that

L.(f) = (f, gn) = .f (n) (t), f E L2(B). (9.2.32)

If now (f,gn)=0, n=0,1,..., then f(n)(t)=0, n = 0,1,..., and this
implies that f - 0. Therefore gn is a complete sequence of functions.

If B is bounded, then 1 , z, z2, ... , are independent and are all in L2(B).
Hence L2(B) is infinite dimensional. If B can be mapped 1-1 conformally
onto a bounded region D, then we can find an infinite sequence of
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independent functions in L2(B) by a change of variable. For, let D lie in the w

plane, w = u + iv, and suppose that

w = M(z), z = x + iy e B, (9.2.33)

maps B 1-1 conformally onto D. Let D,, be a sequence for D satisfying
(a)-(c). Let B,z be the images of D,, under the inverse map of (9.2.33). The
B. will be a sequence for B satisfying (a)-(c), If f (w) E L2(D), we have

au au

w 2 du dv = ax
If( )I fJlf(M(z))12 dx dy (9.2.34)

Dn Bn av av

ax ay

But by the Cauchy-Riemann equations,

au av au av

so that
au au

ax ay

av av

ax ay

ax ay ' ay ax '

au2 au2

ax + ay
au au
ax ay

M'(z)I2.

Thus, the rule for the transformation of our double integral under the
conformal map is

fj'Ifw)12 du dv = If (M(z))12 I M'(z) I2 dx dy. (9.2.35)
Dn Bn

The functions f (w) = 1, w, w2, ... , are clearly in L2(D). It follows from
(9.2.35), by allowing n -k oo, that their "images,"

(M(z))'zM'(z) n = 0, 1, ... ,

will be an infinite independent set of functions in L2(B).

9.3 Bounded Linear Functionals in Normed Linear Spaces and in
Hilbert Spaces. We may distinguish two types of linear functionals de-
fined on normed linear spaces: the bounded and the unbounded.

DEFINITION 9.3.1. Let L be a linear functional defined over the elements
of a normed linear space X. L is said to be bounded if there exists a constant
M such that

IL(x)l < M IIxII, for all x e X. (9.3.1)

If no such constant exists, the functional is called unbounded.
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I
b

Ex. 1. Let X = C[a, b], II f II = max f (x) 1. Let L (f) = w(x) f (x) dx for
a fixed w(x) E C[a, b]. Then, a <X:!5 b a

b b

I L(f )I
a

I w(x) I amaxb If (x) l dx < 11f 11
a

I w(x) I dx.

b

Inequality (9.3.1) is satisfied with M =f I w(x) I dx and L is bounded.
a

Ex. 2. Let
b

X = C[a, b], 11f 112 = (f (X))2 dx.
a

Let L(f) = f (xo) where a < x0 < b. L is unbounded. For we may construct a
sequence of functions f,, (x), n = 1, 2, ... , with fn (x0) = 1 and

fa

b

(fn(x))2 dx = En2 --*. 0.

This can be done in many ways. Now if L were bounded we should have

1 = L(fn)I < ME,
and this is impossible.

Ex. 3. Let X be an inner product space and x0 be a fixed element. Then
L(x) = (x, x0) is a linear functional defined on X. It is bounded, for

I L(x)I = I (x, xo)I < llxll llxoll-

Ex. 4. Let n be a fixed integer > 0. If t is a fixed point in a region B, then
the functional

L(f) =f(n)(t)
is bounded over L2(B).

Proof : Since t is an interior point, we can find a circle Cr: Iz - tI r contained
in B. Since

00

f(n)(t)
(z - t)n.f (z) = n!n-0

in Cr, then by (9.2.27),
00 I f(n)(t)I2

7
r2n+2 _

f (z) 2 dx dy < If (Z) I dx dy.
n!2 n+ 1 I I I In-0 ( ) ff ff

Cr B
For a particular n,

7rI f(n)(t)I2
r2n+2

1)
< I f (z) I 2 dx dy = 11 f 11 2.

n!2(n +
B

Therefore
n!Vn+1

I L(f ) I = I f (n) (t) I < /.n+1 f
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Some authors use the term "linear functional" to mean a bounded linear
functional. But in interpolation theory, the same formal functional may be
bounded or unbounded depending upon what space it is considered in, and
it is therefore better to stress the fact of boundedness whenever it occurs.

DEFINITION 9.3.2. Let F be a functional defined over a normed linear
space. F is said to be continuous if

xn -+ x implies F(xn) -+ F(x).

THEOREM 9.3.1. A linear functional L defined on a normed linear space X
is bounded if and only if it is continuous.

Proof: Let L be bounded. Then I L(x) I < M ll x II for all x e X. If now
Il xn - x 1l - * 0, then I L(xn) - L(x) l = I L(xn - x) l < M Il xn - x li . Therefore
I L(xn) - L(x) I - * 0.

Conversely, suppose that L is continuous and unbounded. Then we can

find a sequence of elements xn such that I L(xn) l > n II xn II . Set yn =
xn

.

1 L(xn) n Ilxnll
Then ll yn ll = . Hence II yn - oil - * 0. Now I L(yn) I = > 1. Since L

n n IIxnll
is continuous, L(yn) -k L(0) = 0, and this is a contradiction.

A norm may be associated with each bounded linear functional. Let I
designate the set of values M for which condition (9.3.1) holds. Let M' be
the inf of the set I. We can find Ml, M2, ... , e I such that Mn --o- M'. We
have I L(x) I < Mn Il x II for all x and for n = 1, 2, .... Keep x fixed and
allow n - * oo. Then, I L(x) I < M' II x II . This is true for all x. Therefore (9.3.1)
holds with M = M', and the set I has a minimum.

DEFINITION 9.3.3. Let L be a bounded linear functional defined on a
normed linear space X. Then IILII is defined as the minimum value M for
which (9.3.1) holds. We have, obviously,

IL(x)I < IILII Ilxll, X E X, (9.3.2)

and for every e > 0, we can find an xo e X for which

I L(xo) I > (IILII - -c) ll xo ll . (9.3.3)

An alternate formula for IILII is given by

L = sup I

L(x) 1 . 9.3.4
II II

XEp llxll ( )

For, L x L x so that
I L(x) I

< IILII and hence su I L(x) I < L .
I ()I <II II II II

Ilxll zp I x
II II

III
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On the other hand, given an e > 0 there is an x0 with (9.3.3) holding. There-

fore sup
I L(x) I I L(xo) I >

1

I L II - e. These two inequalities imply (9.3.4).
zIIxII Ilxoll

n
Ex. 5. X = C[a, b], II f II = max If (x) 1. Let L(f) _ I ak f (xk) where a <

n
a<_z<b

n k=1

Xk < b. Then, L(f) I < .1I ak I I f (xk) I < II f 11 11 ak 1. This implies that IILII
n k=1 k=1

I I ak I. On the other hand, construct an f (x) E C[a, b] such that I f (x) I 1,
k=1
a < x < b, and f (xk) = sgn ak, k = 1, 2, ... , n. Then, II f II = 1 and I L(f) I =

n n n

I ak I < II L 11 11 f II . This implies that 11 L II 11 ak 1. Therefore IILII = I I ak I
k=1 k=1 k=1

f
b

Ex. 6. X = C[a, b], II f 11 = max f (x) 1. Let L(f) = f (x)w(x) dx where
a <x <b a

w(x) is a fixed function of C[a, b]. A similar argument shows that

b

Il LII = I w(x)I dx.
fa

THEOREM 9.3.2. The set of all bounded linear functionals defined over a
normed linear space X is a linear space. Introducing the quantity IILI1 by
(9.3.4) makes this linear space into a normed linear space.

Proof : Let L1 and L2 be bounded linear functionals over X. Then, for any
x E X,

I (a,L, + a2L2) (x) l = I a1L1(x) + a2L2(x) I < I aI 111 L 11 IIxII + 1 a21 II L2 II IIxII

_ (Ia,I IILII -f- 1a21 IIL211) IIxII

This implies that a1L1 + a2L2 is a bounded linear functional.
Let L 0 0. Then there is a y 0 0 such that L(y) 0. Hence IILII =

su
I L(x) I IL(y) I > 0. Therefore L = 0 if and only if L = 0. Secondly,

zp IIxII Ilyll
II II y

II aL II = su
I aL(x) I = IaI sup

I L(x) I
= Ia I IILII Finally,

zp IlxII zIIxII

II L + L= I L,(x) + L2(x) I s sup I + I L2(x) I
= II L I + II L211 sup

p
sup

IIxII
11 21

z IIxII z IlxII

The postulates for a norm are therefore satisfied.

DEFINITION 9.3.4. The normed linear space of bounded linear functionals
defined on a given normed linear space X by means of (9.3.4) is known as
the normed conjugate space of X and is designated by X*.
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In a complete inner product space, bounded linear functionals possess a
particularly simple representation.

THEOREM 9.3.3 (Frechet-Riesz). If L is a bounded linear functional over a
complete inner product space X, then there exists a unique element x0 E X
such that

L(x) = (x, x0), x E X. (9.3.5)

Proof: Let M designate the set of elements x such that L(x) = 0. M is
clearly a linear space. Moreover, it is closed. For suppose that xn E M and
1I xn - x II -+ 0. Since L is bounded,

IL(x - xn)I < IILII fix - xnll --* 0.

Therefore L(x) - L(xn) - * 0. But L(xn) = 0. Hence L(x) = 0 and x e M.
Now there are two possibilities. (a) M is the whole space. In this case

L = 0 and we may take x0 = 0. (b) M is not the whole space. In this case,
by Theorem 8.10.2, we can find an element yo 0 which is 1 M. If we set

_ L(yo)yo
xo

IIyoII2

then we can show that

(9.3.6)

- x, ( )(x, xo) = L(yo)yo = L(x), X E X. 9.3.7
(yo' yo)

Now (9.3.7) is equivalent to

L(x)(yo, yo) = L(yo)(x) yo). (9.3.8)

Consider the elements L(x)yo - L(yo)x, x e X. These elements are in M,
for L(L(x)yo - L(yo)x) = L(x)L(yo) - L(yo)L(x) = 0. Hence yo is 1 to these
elements. This means that (L(x)yo - L(yo)x, yo) = 0 and this is precisely
(9.3.8).

The x0 is unique, for if

then

L(x) = (x, x0) = (x, x1), x E X,

(x, xo - x1) = 0, x E X.

If we select x = x0 - x1, this implies that II xo - X1112 =0 and hence

DEFINITION 9.3.5. The element x0 is known as the representer of the
linear functional L.

COROLLARY 9.3.4. Let L be a bounded linear functional over a complete
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inner product space. Let x0 be its representer. Then,

IILII = IIxoII (9.3.9)
and

I L(xo)I = IILII IIxoII. (9.3.10)

Proof: L(x) = (x, x0). Hence I L(x) I < J (x, x0) j < IIxoII II x II . This implies

I L < xo I . But I L I = su I L(x) I > I L(xo) I = I (xo1 xo) Ithat = . There-II II I I I zp IIxI
x IIxoll

I 11X011 II oll

fore IILII ? IIxoII and hence IILII = IIxoII. Finally, I L(xo) I = (xo, x0) _

IIxoII2 = IILII IIxoII

Ex. 7. In L2[a, b], every bounded linear functional has the form

L(f) = f (x)g(x) dx
a

with g(x) E L2[a, b]. In L2(B) such a functional has the form L(f) = f(z)g(z) dx dy

B
b

where g(z) E L2(B). Moreover, IILII2 = (g(x))2 dx or Ig(z)I2 dx dy.
fa

B

The representer of a functional has a simple formula in terms of a com-
plete orthonormal sequence.

THEOREM 9.3.5. Let H be a Hilbert space and xl*, x2*, ... , be a complete
orthonormal sequence of elements. If L is a bounded linear functional on H
then L(x) _ (x, y) where y has the Fourier expression

Moreover

a,
Y ti I L(xk*)xk*

k=1
a,

(9.3.11)

and

L(x) = I (x, xk*)L(xk*), x E H (9.3.12)
k=1

00IILII2 =1 I L(xk*)I2. (9.3.13)
k=1

Proof : Let y be the representer of L. Then
Go a, a,

By (8.9.8),

y ~' I (y, xk*)xk* = I (xk*, y)xk* = I L(xk*)xk*
k=1 k=1 k=1

L(x) = (x, y) = I (x, xk*)(xk*, y) _ I (x, xk*)L(xk*).
k=1 k=1

Finally, IILII2 = IIyII2. By (8.9.7),

IIyII2 = I I(y, xk*)12 = IL(xk*)I2.
k=1 k=1
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LEMMA 9.3.6 (Abel-Dini). Let wn > 0 and let I wn = oo. Then if Wn =
WI

+W2+...+wn, n=1

00 wn -
00

n=1 W.
while

wn
2
< 00.

n=1 Wn

Proof: W n increases to + oo.

(9.3.14)

(9.3.15)

wn+1 + wn+2 + + wn+ > wn+1 + . . . + wn+y

Wn+i Wn+2 Wn+P Wn+2,

=Wn+v-Wn=1- Wn
Wn+v Wn+p

For every fixed n, this last fraction approaches 1. Hence, from some p on,
the partial sums exceed, say, 1. The tails of a convergent series cannot all
exceed a fixed amount, and hence (9.3.14) diverges. We have

N 1 1 1 1

n=2 Wn-1 Wn W1 WN
Therefore the series

n=200

is convergent. Thus,

and a fortiori

1

n-1

00

00 W
n n-11 -

Wn n=2 W,-1Wn

00 w
n < 00

n=2 Wn-iWn

00 w n
.

2
< 00.

n1 Wn

LEMMA 9.3.7 (Landau). Let {an} be a fixed sequence of complex numbers
00

and suppose that I anbn converges for all sequences {bn} for which
n=1

00

Then,

00

Ilbnl2< 00.
n=1

00

I lanl2< 00.
n=1

Proof: Suppose that I lanl2 = oo. Set bn = an Then by
n=1 lail2 + ... + l anl2

.

00

(9.3.15) with wn = l anl2, 1 l bnl2 < oo. On the other hand, by (9.3.14),
ao n=1
I anbn = oo, and this contradicts the hypothesis.

n=1



Sec. 9.3 BOUNDED LINEAR FUNCTIONALS 221

THEOREM 9.3.8. Let H be a Hilbert space and {xn*} a complete ortho-
normal sequence. Let L be a linear functional defined on H and suppose that
for allxeHwe have 00

L(x) _ I (x, xk*)L(xk*). (9.3.16)
k=1

Then L is bounded on H and
00

11L112 = I I L(xk*) 12.
k=1

(9.3.17)

Proof : By Theorems 8.9.1(C) and 8.9.2, the set of all sequences bk =
(x, xk*), x e H, is identical to the set of all sequences {bk} for which

00

I Ibk12 < oo.
k=1

By Lemma 9.3.7,
00

I I L(xk*)I2 < oo.
k=1

Applying the Schwarz inequality to (9.3.16),
00 00 00

I L(x)I2 < I I (x, xk*)12 1 IL(xk*)I2 = IIxII2 I I L(xk*)I2.
k=1 k=1 k=1

L is therefore bounded, and (9.3.17) follows from (9.3.13).

For examples illustrating this theorem, see Corollary 12.5.5.

THEOREM 9.3.9. Let H be a Hilbert space . Let H* be its normed conjugate
space. Then H* can be made into a Hilbert space in such a way that H and
H* are essentially the same. More precisely, we can find a one to one corre-
spondence (H) between H and H* such that

(a) x1 H L1, x2 H L2 implies alx1 + a2x2 H a1L1 + a2L2.
(b) x H L implies IIxII = IILII
(c) An inner product can be introduced in H* by writing

(L1, L2) _ (x1, x2) where x1 -* L1, x2 H L2. (9-3-18)
(d) The norm arising from this inner product coincides

Lx
with the original norm in H* i.e., L I = sup I ( )

II I

zeH IIxII

Proof : Let {x*} be a complete orthonormal system in H. Let L E H*.
By Theorem 9.3.3, we have L(y) = (y, w) for a unique w e H and for all
y e H. The quantities (w, xi*) are the Fourier coefficients of w and hence,

00

IIwI12 = I (WI xi*)I2 < oo. The quantities (xi*, w) = (w, xi*) satisfy the
i=1 ao

same inequality I (xi*, w) 12 < oo and hence by Theorems 8.9.2 and
i=1

8.9.1(F), they are the Fourier coefficients of a unique element e H which
will be designated by w. Note that II w II = II w II
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Make the correspondence L -* w. This correspondence is one to one be-
tween the whole of H and the whole of H*. For, each L E H* determines a
w e H and each w determines a w. If L1 -k w1 and L2 -+ w2 then L1 0 L2
implies w1 0 w2. For we can find an x e H such that L1(x) 0 L2(x). There-
fore 0 L1(x) - L2(x) = (x, w1) - (x, w2). Hence w1 0 w2. Now w1 w2.

For otherwise, (w1, xi*) = (w2, xi*), i = 1, 2,. . .. Then (w1, xi*) = (w2, xi*),
i = 1 , 2, ... , implying w1 = w2.

Conversely, let v e H. Consider v as above and define L by means of
L(x) = (x, v). By the above, the element v corresponds to L. But v = v.
Thus v corresponds to some L in H*.

(a) Let x1 E-- L1, x2 H L2. Then,

L1(x) = (x, xl), L2(x) = (x, x2)
so that

(a1L1 + a2L2)(x) = a1L1(x) + a2L2(x) _ (x, d,1 + a2x2)

Now a1x1 + a2x2 = a1x1 + a2x2.

Hence (a1L1 + a2L2) (x) = (x, a1x1 + a2x2)

and therefore a1L1 + a2L2 H a1x1 + a2x2.

(b) If wH L then L(x) _ (x, w). Hence by (9.3.9), IILII = IILII = IIwII
(c) The inner product properties of (L1, L2) follow from those in H :

(LI + L2, L3) = (x1 + x2, x3) = (x1, x3) + (x2, x3) = (LI, L3) + (L2, L3).

(L1, L2) = (x1, x2) = (x2, x1) = (L2, L1).

(aLl, L2) _ (ax1) x2) = a(x1, x2) = a(LI, L2)
(L1, L1) = (x1, x1) = II x1 II 2 > 0 and = 0 if and only if x1 = 0,

hence if and only if L1 = 0.
(d) (L) L)i = (x, x)i = Ilxll = Ilxll. Since L(y) _ (y, x), y e H, IILII = Ilxll

Hence IILII = (L, L)i.
Thus, H* is an inner product space. To show completeness we need to

prove that II L,n - Ljj < e, m, n > N, implies the existence of an L with
I I L - Ln ll --* 0. Let L,, H x,z . Then II xn - xm II = ll Ln - Lm II < e for
m, n > N.. Thus, {xn} is a Cauchy sequence in H. Hence there is an
x: llx-xnll--0.If xE-- Lthen IIL - Lnll = llx - xnll -+. 0.

Finally, there is a complete orthonormal sequence in H*. For if {xk*} is
complete and orthonormal in H and xn* H Ln* then {L*} is complete and
orthonormal in H*. H* is therefore a Hilbert space.

In virtue of (9.3.18), the spaces H and H* are known as isomorphic and
isometric.

DEFINITION 9.3.6. Let X be an inner product space. Y is an arbitrary
subset of X. The set of elements x that are orthogonal to all elements of Y
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is known as the orthogonal complement of Y and is designated by Y-L. In
symbols : (x, y) = 0 for all x e Y-L and all y e Y.

Ex. 8. In R2, the orthogonal complement of the x axis is the y axis.

Ex. 9. Orthogonal complements are closed sets.

The following decomposition theorem holds.

THEOREM 9.3.10. Let X be a complete inner product space. Let M be a
closed linear subspace and M -L its orthogonal complement. Then any x e X
may be written uniquely as

where m EM and m- EM1.
(9.3.19)

Proof : We show first that M is complete. If {mk} is a Cauchy sequence of
elements of M, then by the completeness of X there is an element x E X
such that k im lix - mk ll = 0. But, by the closure of M, x must be in M.
Hence every Cauchy sequence of elements of M has a limit in M.

Let x E X be a fixed element and consider (m, x) as m varies over M. By
Theorem 9.3.3, there is an m1 E M such that (m, ml) = (m, x) for all m E M.
Write

x= m1+(x-ml). (9.3.20)

Now if m' E M, (x - m1, m') = (x, m') - (ml, m') = 0. Hence x - m1 E Ml.
The decomposition is unique. For suppose m1 + m11 = m2 + m21. Then

m1 - m2 = m21 - m11. But ml - M2 e M and m21 - m11 E M 1. Now the
only element simultaneously in M and M -L is 0 and hence ml = m2, m11 =
m2 1

DEFINITION 9.3.7. The unique element m determined from x is called
the projection of x on M : m = proj (x).

LEMMA 9.3.11. If X is a separable metric space and S is an arbitrary
subset of X, S is also separable.

Proof : Let {xk} be a sequence of elements that is dense in X. The set of
points x of X satisfying d(x, xk) < r is a ball of radius r centered at xk.
Designate it by U(xk, r) and consider all the balls U(xk, r) where r runs
through all the positive rational numbers. These form a denumerable set
and hence can be listed as a sequence U1, U21 ....

If x is an arbitrary element of X, and if V(x, p) is any ball with center at
x, then we can find an m such that x e Um V (x, p). For select an x, with
d(x, x,) < p/2 and a rational pl with d(x, x,) < pl < p/2. If z e U(x,, pl),
then d(z, x,) < pl. But d(z, x) < d(z, x,) + d(x,, x) < p/2 + p/2 = p and
hence z e V(x, p).
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Now consider the members of the sequence U1, U21 . , that have points
in common with S. These are also denumerable, and hence can be listed in
a sequence. Call them T1, T2, ....

For each k select a Yk E Tk n S. The sequence {Yk} is dense in S. For let
z e S and s > 0 be given. As we have seen, we can find a U,n such that
z e Um and Um V(z, E). Um contains a point of S and is therefore a T.
T. contains y, and hence d(yn, z) < E.

THEOREM 9.3.12. Let H be a Hilbert space and {xk*} be an orthonormal
sequence that is not complete. Then we can find a sequence of elements {yk*}
(finite or infinite) such that {xk*} and {yk*} together form a complete ortho-
normal set (cf. Lemma 9.1.1).

Proof : Designate by M the closed linear subspace generated by x1*,
x2*, .... That is, M consists of all finite linear combinations of xZ* plus
the limits of sequences of such combinations. M-1- is the orthogonal com-
plement of M. Since H is separable (cf. 9.1), Lemma 9.3.11 tells us that M1
is also separable. Let {zk} be a sequence of elements of M-1- that is dense in
M -L. Go through the sequence z1, z2, ... , and strike out any element that is
dependent on its predecessors. Call the independent sequence that remains

{Yk}. Orthonormalize this sequence to yield {yk*}. n

If z E Mand if E > 0 is given, we can find a linear combination I akyk*
n k=1

such that z - I akyk* < E. For, we can find a k such that IIz - zkII < E.
k=1

Now zk is either a y, or a linear combination of yl, y21 .... and hence a linear
combination of yl*, y2*, ... .

Since yk* E M1, (x,*, yk*) = 0 and hence the combined set {x,*}, {yk*} is
orthonormal. This combined set is closed in H. For let x e H. By Theorem
9.3.10 we can write x = m + m -L. Now by the definition of M, for appro-

priate constants bk, 11 m - I bkxk* < e/2. Furthermore, as we have just
k=1

seen, for appropriate constants bk',

This completes the proof.

q

M -L -I G bk yk*
k=1

p q

x bkxk* - I bk yk*
k=1 k=1

C E.

< e/2. Hence

THEOREM 9.3.13. Let H and K be two Hilbert spaces (either both real or
both complex). Then H and K are isomorphic and isometric. That is, we can
find a one to one mapping T of H onto K such that for all constants a, #

T(ocx1 + fix2) = aT(x1) + f T(x2), x1, X2 e H (9.3.21)
and such that

(T(x1), 7'(x2)) _ (x1, x2). (9.3.22)
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Proof : It suffices to take K as J2 (real or complex as the case may be).
For since isomorphisms and isometries are obviously transitive, the general
case can be proved by going through 12 as an intermediate space.

Let xl*, x2*, .... be a complete orthonormal sequence in H. For any
x c- H, the sequence of constants ak = (x, xk*), k = 1, 2, ... , is in C2 by
(8.9.7). Define T by T(x) _ {ak}. Conversely, by Theorem 8.9.2, to any
sequence {ak} E P, there is a unique element x c- H such that T(x) _ {ak}.

The linearity of T is obvious. Property (9.3.22) follows from (8.9.8).

9.4 Linear Varieties and Hyperplanes; Interpolation and Approx-
imation in Hilbert Space

DEFINITION 9.4.1. Let x1, ... , x,, be n independent elements of a
linear space. The set of all linear combinations

n
x0 ± aixi (9.4.1)

i=1

is known as a linear variety of dimension n.

DEFINITION 9.4.2. Let x1, x2, ... , X. be n independent elements of an
inner product space and let c1, c2, . . . , an be n given constants. The set of
elements y that simultaneously satisfy the n equations

(y, xi) = ci, i = 1, 2, ... , n, (9.4.2)

is known as a hyperplane of co-dimension n.

Ex. I. Linear varieties and hyperplanes are convex sets.

If x1, . . . , xn are orthonormalized to produce xl*, ... , xn*, then by
Corollary 8.3.5, we can write the variety in the form

n
x0 + aixi* (9.4.3)

i=1
and the hyperplane in the form

(y, xi*) = d p i = 1, 2, ... , n. (9.4.4)

In an inner product space of finite dimension n, the concepts of linear variety
and hyperplane are equivalent. More precisely, a linear variety of dimension p,
1 < p < n, is a hyperplane of co-dimension n - p and vice versa. For let

p
y = x0 + aixi* be a variety V of dimension p. Then (y, xk*) _ (x0, xk*)

i=1
f o r k = p + 1 , p + 2, ... , n and hence y lies on a hyperplane of co-dimen-
sion n -- p. Conversely, let y satisfy (y, xk*) = (x0, xk*), k = p + 1, . . . , n.

n
Since any element z has the expansion z = I (z, xk*)xk*, we have y =

P n p k=1
I (y, xk*)xk* + I (x0, xk*)xk* = x0 + I [(y' xk*) - (x0, xk*)]xk*. Hence y
k=1 k=p+l k=1
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lies on V. In the same way we can show that every hyperplane of co-dimen-
sion p is a linear variety of dimension n - p.

We begin with the problem of finite interpolation. This is essentially an
instance of Theorem 2.2.2.

THEOREM 9.4.1. Let X be an inner product space. Let x1, ... , xn be n
independent elements. Then given any set o f n constants c 1 . . . . . c, we can
find an element y such that

(y, xi) = ci, i = 1, 2, ... , n. (9.4.5)

Proof: We can find a solution among the linear combinations of the xi.
Set y = a1x1 + ' ' ' + anxn. Then (9.4.5) becomes

a1(x1) xi) + ... + an(xn, xi) = Ci, i = 1) 2, ... , n. (9.4.6)

The system (9.4.6) has determinant g(x1, ... , xn) 0 0 in view of the inde-
pendence of the xi. Hence there is a solution for any assignment of c's.

When we consider an interpolation problem with infinitely many con-
ditions, the situation is not so simple.

Ex. 2. In the sequential Hilbert space '2, let x1 = (1, 0, 0, ...), x2 = (0, 1, 0,
0) ... ), ... , and consider the problem

(y) xi) = 1, i = 1, 29 .... (9.4.7)

These conditions obviously require a solution of the form y = (1, 1, 1,. ..). But
this element is not in the Hilbert space.

THEOREM 9.4.2. Let {xi} be an infinite sequence of independent elements
of a Hilbert space H and let constants {ci} be given. A necessary and sufcient
condition that there exist an element y e H such that

is that 00

(9.4.8)

I IakI2 < oo (9.4.9)
k=1

where

(y,x) =ci, i= 1,2,...

dl =

(x1) x1) (x2) x1) ... (x1 , x1)

an =
1

1'9(x1) ... , xn-1)9(x1, ... , xn) (x1) xn-1) (x2, xn-1) ... (xn) xn-1)

C1 C C2 n

n > 1. (9.4.10)
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If there is a solution, it is unique if and only if {xi} is complete (or closed)
in H.

Proof: Orthonormalize the Xk using Theorem 8.3.3 and obtain xk*. In
view of (8.7.22), the conditions (9.4.8) imply

(y, xi*) = ai i = 1) 2, ... (9.4.11)

Conversely, it is easily shown through (8.3.7), that (9.4.11) implies (9.4.8).
Now if there is a y e H satisfying (9.4.11), then by Corollary 8.5.4, (9.4.9)
follows. Conversely, if (9.4.9) holds, then by Theorem 8.9.2, there is an
element y for which (9.4.11) and hence (9.4.8) holds.

Suppose that (yl, xi) = ci = (y2, xi). Then (y1 - y2) xi) = 0, i = 1, 2, ... .
If {xi} is complete then yl - y2 = 0 and yl = y2. If {xi} is incomplete, then
we can find an element z / 0 such that (z, xi) = 0, i = 1, 2, .... Hence,
(y) xi) = ci = (y + z) xi) so that the solution to (9.4.8) is not unique.

+1
Ex. 3. Under what circumstances can we have f (x)xn dx = cn, n = 0,

-1
19 ... , for f E L2[ -1, 1]? This is the moment problem for the space L2[ -1, 1].
Let pn * (x) = ano + anlx + - + annxn be the Legendre polynomials. Then the
moment conditions above are totally equivalent to

+

f f (x)pn * (x) dx = anoco + an1c1 + + anncn.

Hence, the necessary and sufficient condition is that
00

I I anoco + an1c1 + . . . + anncn 12 <
00.

n=0

Since the powers are complete in L2[ -1, 1] (Theorem 11.2.1), there can be at
most one solution.

Let X be an inner product space and xl, ... , xn be n independent ele-
ments. Let S be the linear subspace spanned by the x's. That is, S consists
of all linear combinations y = alxl + a2x2 + + anxn, or alternatively,
of all combinations y = alxl* + + anxn* where the xi* are the xi
orthonormalized (in any way). Take an element z e X which is not per-
pendicular to all the xi*, and let V consist of all the elements y E S for
which (y, z) = 1. V is a linear variety of dimension < n - 1. For suppose
that (x1*, z) 0. If y = alxl* + + anxn* and (y, z) = 1, then

a1(x1*, z) + + anxn*, z) = 1
and so

y =
xl*

+ a - (x2*' z) * + x* + ... +a - (xnz) xl*
+ x

(xl*IZ)
2 (xl*'z) x1 2 n (xl*,z) n

1

(9.4.12)
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n n

y = (z' xi*)xi*/ I (Z' xi*)I2. (9.4.13)
i=1 i=1

Since xl*, ... , xn* are independent, the elements - (xZ ' z) x1* + x.*,
(xl*, z)

Z

2, ... , n are easily seen to be independent. Hence (9.4.12) is of form (9.4.1)
and the elements of V lie on the variety (9.4.12). Conversely, all the ele-
ments of this variety are in S and satisfy (y, z) = 1. Hence they belong to V.

It is desired to find the element of V closest to the origin. That is, select
y e V such that IIyIl = minimum.

THEOREM 9.4.3. The unique solution to the above problem is given by

The minimal distance is given by
n

I1y112= I(z,xi*)12.
i=1

*)Proof : Set
n

I (z, x*) 12 = s 0, and write a.= (z' x + bi where the
i=1 s

n
bi are now to be determined. Now, 1 = (y, z) = 1 + I bi(xi*, z), so that
n

bi(xi*, z) = 0. But
i=1

i=1

yiI2 =1 1('II
+ bZ.

((x*
' z) + b

i=1 i=1 s s z

s n /
1 n- n

+ bi(xi*, z) + - I bi(z, xi*) + Ibi129

i=1 8 i=1 i=1

n
=1 -+

I

bJ2,

s i=1

The selection leading to the minimum
1

and the minimum value is -
s

IIyIi2 is uniquely given by bi = 0

We turn to a second problem of approximation under side conditions.
Let x1, x2, ... , X. be n independent elements and dl, ... , do be n given
constants.

Find

subject to
min Ilx - yll

Y

Ch. IX

(9.4.14)

(9.4.15)

(y, xi) = di, i = 1, 2, ... , n. (9.4.16)

Geometrically speaking, find the shortest distance from the element x to
the hyperplane (9.4.16).
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If we set w = x - y, our problem becomes that of finding

min llwll

subject to
(9.4.17)

(w, xi) = ci = (x, xi) - di, i = 1, 2, ... , n. (9.4.18)

If the x's are orthonormalized (by Theorem 8.3.3) yielding xl*, x2*, . . . , xn
then (9.4.18) is totally equivalent to

(w, xi*) = ai (9.4.19)
where ai are given by (9.4.10).

THEOREM 9.4.4. Let H be a Hilbert space. Then

w = aixi

i=1

solves the problem (9.4.17), (9.4.18). Moreover,
n

minllw112=lai12.
i=1

(9.4.20)

(9.4.21)

Proof : The xi* may be augmented yielding a complete orthonormal
sequence for H (Lemma 9.1.1). Then, for any element w e H,

00

i=1

Any element w that satisfies (9.4.19) must therefore satisfy
n ao

IIw1I2 = lail2 + I I(w, xi*)12.
i=1 i=n+1

This expression is minimized if (w, xi*) = 0 for i = n + 1, n + 2, . . . , and
we are led to (9.4.20).

COROLLARY 9.4.5. In a Hilbert space let x1 0. The problem of finding

min w subject to w, x) = d, is solved by w =
dl

x . Furthermore,
II II ( 1 1

iil2
1

min w = Idll
II II

II xill

COROLLARY 9.4.6. The equation of any hyperplane of co-dimension 1 can
be written in the "normal" form

(y, x*) = d (9.4.22)

where x* is an appropriate element of unit length and d is the distance from
the origin to the hyperplane.

DEFINITION 9.4.3. The portion of a Hilbert space common to the hyper-
plane P: (x, xi) = ci, i = 1, 2, ... , n and to the ball Il x Il < r is called a
hypercircle, C.
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As before, orthonormalize x 1 . . . . . xn by the Gram-Schmidt process, and
complete the sequence of orthonormal elements yielding x1*, x2*, .... The
conditions (x, xi) = ci are equivalent to (x, xi*) = ai, i = 1, 2, . . . , n, where
the ai are given by (9.4.10). Hence, any element x of the hyperplane can be

n ao 00

written as x = I akxk* + I (x, xk*)xk* = w + I (x, xk*)xk*. The last
k=1 k=n+1 k=n+1 ao

equality follows from (9.4.20). Now, 11x112 = 11w112 + I (x, xk*) 12. If
k=n+1

X E Cr, r2 > 11x112 > IIwII 2. The element w is determined solely by xi and ci,
i = 1, 2, ... , n, and is independent of r. If r < IIwII, the hypercircle con-
tains no elements.

THEOREM 9.4.7 (The Hypercircle Inequality). Let w be the element of
the hyperplane P nearest to the origin. Then, for any x e Cr and any bounded
linear functional L we have

00

I L(x) - L(w)12 < (r2 - IIwII2) I I L(xk*)I2. (9.4.23)
k=n+1

If h is the representer of L, this may be written as
n

I L(x) - L(w) 1 2 < (r2 - IIwII 2) (11h112 - I I L(xk*) 12). (9.4.24)
k=1

Moreover, if IIwII < r, there is an element in Cr for which this inequality
becomes an equality.

00

Proof : From the above remarks, x - w =I (x, xk*)xk* and hence by
ao k=n+1

(9.3.12), L(x - w) = I (x, xk*)L(xk*). By the Schwarz inequality and
k=n+1 ao

(8.9.7), IL(x - w)12 < IIx - w1I2 I IL(xk*)I2. Since x - w 1 w,
k=n+1

IIx - w1I2 = IIx112 - IIwII2 <r2 - IIwII2.

Combining, we obtain (9.4.23). By (9.3.5), 1 IL(xk*)I2 = I I (xk*, h) 12 =
ao n k=n+1 k=n+1
I J (h, xk*) 12 - 1 I (xk*, h) 12. Again by (8.9.7) and (9.3.5), this is II h II 2 -

k=1 k=1
n
I I L(xk*) I2, giving us (9.4.24).

k=1
Assume now that IIwII < r. We shall exhibit an element in Cr for which

00

the inequality (9.4.23) becomes an equality. Let z = I L(xk*)xk*. If
k=n+1

z = 0, L(xk*) = 0, k = n + 1, .... In this case, the element x0 = w is in
Cr and equality in (9.4.23) holds trivially.

Ifz00,set
xo=w+Az (9.4.25)

where
(9.4.26)IAI - (r2 - Ilwil2)J/IIzII
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Now (xo, xi*) = (w, xi*) = ai, i = 1, 2, ... , n, and so xo E P. Moreover,
11x0112 = 11w112 + I A 12 I1z112 = r2, so that xo E Cr. Furthermore,

00

I L(xo - w)I = IAI IL(z)I = IAI I I L(xk*)I2 = IAI IIzII2
k=n+1

k=n+1

Thus, equality holds in (9.4.23) for x = xo.
It should be remarked that the element z has the alternate representation

n ?a

z = h I (h, xk*)xk* _ h I L(xk*)
k=1 k=1

(9.4.27)

for it is readily verified that the Fourier coefficients (with respect to xk*)
of z and of the middle member of (9.4.27) are identical.

The hypercircle inequality may be used to obtain bounds for L(x) having
been given certain information about x. This is illustrated by the following
example.

I
Ex. 4. Estimate x(t) dt on the basis of the following information:

and

00

_ (r2 - IIwII2)i Ilzll = (r2 - IIwII2) I IL(xk*)I2 .

x(t) E L2[ -1, 1], IIx(t)II < r, (9.4.28)(a)

1 1

x(t) dt = 1, t2x(t) dt = 1. (9.4.28)(b)
J-1 J-1

The relevant hyperplane is (x(t), xi(t)) = 1, i = 1, 2, where xl(t) = 1 and
x2(t) = t2. Orthonormalizing we obtain

x1*(t) =I v'2, x2*(t) X10 + 4 V10 t2.

The hyperplane equations can be written as

(x(t), x1*(t)) = i'\/-2 = al, (x(t), x2*(t)) =I V10 = a2.
Therefore,

w = w(t) + jV10(-j-\/10 + V10 t2) = £(5t2 - 1),
and

Now,
II w112 = a12 + a22 = 3.

L(xl*) _ \2 dt = V 2)

L(x2*) = h/10 t2) dt = 1g10,
and

L(w) _ I(5t2 - 1) dt = -7
s.
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By inspection, h = h(t) = 1 for -1 < t < I and h(t) = 0 elsewhere. Hence,
11h(t)JI = 1. Inequality (9.4.24) becomes

2

x(t) dt + is < (r2 - 3)(1 - 1 - as) = 128(r2 - 3). (9.4.29)

We may express this as
1

x(t) dt < - g + .6 (9.4.30)16 - s <-f- -
with s V - s /r2 - 3. Inequality (9.4.30) holds for all functions x(t) satisfying
the hypercircle conditions (9.4.28)(a), (b). Moreover, since one equality in
(9.4.30) occurs for some element in the hypercircle, the midpoint of the range,

- i g, can be taken as a "best" value of x(t) dt relative to the information
available. - i

NOTES ON CHAPTER IX
See the references on normed linear spaces and Hilbert spaces listed under

Chapters VII and VIII.
9.2 For interchange of summation and integration and Fatou's lemma

used in the proof of Theorem 9.2.2, see, e.g., Rudin [1], pp. 209-217. The
Hilbert space L2(B) can be found in Bergman [2], Chapter I, Behnke and
Sommer [1], pp. 256-282, Nehari [1], pp. 239-260. Related Hilbert spaces
formed by using line integrals as inner products are described in Walsh [2],
Chapter 6. Bergman and Schiffer [1] discuss Hilbert spaces of solutions of
elliptic partial differential equations.

9.4 For interpolation problems in L2(B) see Bergman [2], pp. 47-49,
Walsh and Davis [1]. The hypercircle inequality (Th. 9.4.7) is given in
Synge [1], Chapter 2, and in Golomb and Weinberger [1], p. 133, where
many applications to numerical analysis will be found.

PROBLEMS

00

1. Let wi > 0 and let 1u,2 designate the set of all sequences {ai } such that
00

wi Iail2 < oo. Set (a, b) _ wiaibi. Then t 2 is a Hilbert space.
i=1 i=1

2. Prove that all sequences of the form (a1, 0, a2, 0, a3, 0, ...) with
00

lail2 < 00
i=1

constitute a sub-Hilbert space of f2. Generalize.
3. Let M be a linear subspace of a Hilbert space H. Show by an example that

there may be a sequence x1*, x2*, ... , of orthonormal elements that are complete
for M but not for H.

4. If C is the unit circle, there are functions that are analytic in C but are
not in L2(C). Z

5. If f is in L2(B), is f in L2(B)? Is f (z) dz in L2(B)?

6. Let B be a finite region and z1, z2, ... , zn be n fixed points in B. Let H
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designate the set of all functions f (z) in L2(B) for which f (zk) = 0, k = 1, 2, ... , n.
Show that H is a sub-Hilbert space of L2(B). Generalize.

7. If C is the unit circle, find min 11 - zf (z)12 dx dy.
fc-L2(C)

C
b

8. If X = C[a, b] with II f II = max I f (x) I , are either F(f) = f2(x) dx or
a<x<b a

F(f) = f 2(x1) - f2 (X2), a < x1, x2 < b continuous functionals?
1 1

9. X = C[0, 1] with 11f II =0I If (x) I dx. Let F(f) =o1f2(x) dx. Show that F

is not a continuous functional.
1 h

10. In L2[ -1, 1], set Lh(f) =
2h

f (x) dx, 0 < h < 1. Compute 11 LhII and
study lim jjLh11. h

11. X is a real normed linear space. If L is an additive and continuous
functional, it must be homogeneous and hence is a bounded linear functional.

12. Let X be a finite dimensional normed linear space. Then any linear
functional L is bounded on X.

13. A linear transformation of one Hilbert space into another is a mapping
T for which T (alxl + a2x2) = al T (xl) + a2T (x2) . A linear transformation U is
called isometric if JIU(x)ll = jjxjj for all x E H. Prove that if U is isometric,
(Ux, Uy) = (x, y) and hence an isometry sends orthogonal systems into orthogo-
nal systems.

14. If U is an isometry that maps H onto (the whole of) itself, then { U(x,z) }
is complete if and only if {x,,} is complete.

15. Let {x2*} and {y2*} be two complete orthonormal systems for a Hilbert
00

space H. The transformation U aixi aiyi * is isometric.
i=1 i=1

16. Exhibit the isomorphism and isometry of R,,, and R,z *.
17. If X is an inner product space of infinite dimension, a hyperplane in X

is also of infinite dimension.
18. Formulate an interpolation problem in Hilbert space that has infinitely

many conditions and has infinitely many independent solutions.
19. Discuss the interpolation problem (y, x1) = 1, (y, xk) = 0, k = 2, 39 ... .9

in a Hilbert space.
20. Formulate Theorem 9.4.2 as a theorem about a system of infinitely many

linear equations in infinitely many unknowns.
21. In f2, what are necessary and sufficient conditions that the elements

xl = (all, 0, 0, . . . ), x2 = (a21, a22, 0, 0, . . . ), x3 = (a31, a32, a33, 0, 0, . . .) be inde-
pendent? Be complete? Orthogonalize them.

22. Discuss the solution of the system
xl = al

-x1+x2 =a2
-x2 +x3 =a3

from the point of view of Theorem 9.4.2.



CHAPTER X

Orthogonal Polynomials

10.1 General Properties of Real Orthogonal Polynomials. Let
[a, b] be a finite or infinite interval and let w(x) be a positive weight function

b

defined there. We assume that the integrals n= 0, 1, ... ,
all exist. Employ an inner product

faW(X)Xndx,

b

(f, g) = (q, f) = w(x) f (x)q(.x) dx (10.1.1)
a

and orthonormalize (by means of Theorem 8.3.3) the sequence of powers
1, x, x2, ... 'with respect to this inner product. Designate the polynomials
obtained by

pn*(x) = knxn + ..., kn > 0. (10.1.2)

Polynomials that are merely orthogonal without being necessarily normal
will be designated by pn throughout this chapter.

Observe that if p e £n_1 then

(p, pn) = 0. (10.1.3)

This follows from Corollary 8.3.5 and the definition of orthogonality.
Though determinant expressions for orthogonal polynomials can be ob-

tained from Corollary 8.7.6, they appear to be of limited importance. The
following theorem, however, is of great utility.

THEOREM 10.1.1. Real orthonormal polynomials satisfy a three term re-
currence relationship.

pn* (x) _ (anx + bn)pn -1(x) - cnpn -2(x) it = 2, 3..... (10.1.4)

The following form is particularly convenient for machine computation

P-1 = 0
P0 = 1

pn-+ 1(x) = xpn*(x) - (xpn*, pn*)pn*(x) - (p7,, pn)'pn-1(x)

n=0,1,2,...
pn*(x) = pn(x)/(pn)pn)1 71 = 0, 1, 2, ...

234
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Proof: It is clear that pn*(x) (defined by (10.1.5)) is a polynomial of degree
n and is normal. We shall prove by induction that they are orthogonal.
Assume that we have proved (p,n*, p;*) = 0 for j = 0, 1, ... , m - 1 and
f o r m = 0, 1, ... , n. We wish to show that (p*+1, p;*) = 0 for j = 0,
1, ..., n. Now,

(pn+l) p;*) _ (xpn* - (xpn*, pn*)pn* - (poi, pn)'pn-15 p;*)

= (xpn*, p;*) -
(xpn*,

pn*)(pn*, p;*) -- (pn, pn)i(pn-1) p;*).

Also (xpn*, p;*) _ (pn*, xp;*) as can be seen by referring to (10.1.1). For
j = 0, 1, 2, ... , n - 2 we have by our induction hypothesis

(pn*, p;*) = 0, (pn-1' p;*) = 0, (pn*) XP;*) = 0

since xpn* is a polynomial of degree < n - 1. Hence (pn4.1, pj*) = 0 for
j=0,1,2,...,n-2.Forj=n-lwehave

(pn+1) pn1) = xpn*, pn-1) - 0 - (pn) pn)'

Now, (xpn) pn -1) = (pn, xp *_ 1) . By the recurrence,

1.

xpn1 =Pn+7 n-1 +/pn-2

Hence, (pn, xpn -1) _ (pn ' pn + apn -1 + fpn - 2) = (pn , pn) by our induction
hypothesis. Hence (xpn*, pn -1) _ (pn, pn) and therefore (pn + 1, p*n-1) = 0.
Finally, (pn ; 1 pn*) = (xpn*, pn*) - (xpn*) pn*) - 0 = 0. In this way, the
induction is carried to n + 1. Equation (10.1.4) follows from (10.1.5).

Further identification of the coefficients of the recursion is often useful.

THEOREM 10.1.2. Let pn*(x) = knxn + snxn-1 + be orthonormal poly-
nomials. Then the coefficients in the recurrence

are given by
pn* = (anx + bn)pn-1 - Cnpn-2

a = kn , b = a sn
?c k n n (kn

n-1

kn-2 knkn-2Cn = a = 2n
kn-1 kn -1

8n-1

kn-1

(10.1.4)

n = 2,3,.... (10.1.6)

Proof : The first two identities are obtained by inserting knxn + snxn-1 + ' '
into (10.1.4) and comparing the coefficients of xn and xn-1. The third identity
can be proved in this way :

0 = (pn* pn-2) _ (anxpn-1 + bnpn-1 - Cnpn-2) pn-2)

= an(xpn-1, pn-2) - Cn
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But

(XP* -11
* xpn-2) _ (p* k xn-1)n-1, pn-2) - (pn-1' n-1, n-2

Ch. X

= kn-2 (p*_,) k n- l xn-1) - kn-2 kn-2

kn-1
n kn-1

(pn *- 1, pn *-l ) = k
n-1

The formula for c,, is now apparent.

THEOREM 10.1.3. The zeros q f real orthogonal polynomials are real, simple,
and are located in the interior of [a, b].

Proof: Let n (> 1) be fixed. If were of constant sign in [a, b], say

positive, then w(x)p(x) dx = (pa, p0) > 0. But this contradicts orthog-

onality. Hence pn(x1) = 0 for some x1 e (a, b). Suppose that there is a

zero at x1 which is multiple. Then pn(x) would be a polynomial of degree
(x -x1)2

2

n - 2. Hence 0 = pn(x), pn(x) = 11
pn(x) > 0 and this is

(x-x1)2 (x-x1)
impossible. Therefore every zero is simple. Suppose now that pn(x) has j
zeros x1, x2, ... , x; and no others lying in (a, b). Then,

pn(x)(x - x1)(x - x2) ... (x - xj) = Pn-,(x)(x - x1)2(x - x2)2 ...(x - x1)2

where Pn_, is a polynomial of degree n - j that does not change sign in
(a, b). Hence, (pn(x), (x - x]) ... (x - xj)) = (Pn_j, (x - x1)2... (x - x,)2).

The right-hand side cannot vanish. But the left vanishes if j < n, so that
j > n. But j > n is impossible, and therefore j = n.

THEOREM 10.1.4. Let f (x) E C[a, b] ; then the Fourier segment

n

U l Pk*)Pk*(X)
k= =0

must coincide with f (x) in at least n + 1 points of (a, b).
n

Proof : Let Rn(x) = f (x) - I (f, Pk*)pk*(x).
Then from Theorem 8.6.1

k=0
we know that (Rn(x), pk*(x)) = 0, k = 0, 1, ... , n. In particular,

(Rn(x)) p0*) = 0 = (Rn(x), 1).

Hence Rn(x) must vanish somewhere in (a, b). Suppose now that it changes
sign at a< x1 < x2 < < x, < b and at no other points of (a, b). Then,
Rn(x) is of constant and alternating sign in the segments

(a, x1), (x1, x2), ... , (x,, b),

and this is true of the polynomial (x - x1) (x - x1). Thus, the product
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R,z(x)(x - x1) (x - x,) has constant sign in (a, b) and

(R",(x)(x-xl)...(x-x,), 1) =-(Rn(x),(x-x)...(x-x;))

cannot vanish. But by orthogonality it must vanish for j S n. Hence
j > n and the theorem follows.

n=0,1 pt.

(a) (b)

(c)

Figure 10.1.1 Coincidence of a Function and its Fourier
Approximants.

DEFINITION 10.1.1. Let p,,*(x), n = 0, 1, ... , be a system of real ortho-
normal polynomials. The symmetric function

n

K -(XI y) = .1 Pk*(x)Pk*(y)
k=0

is called the kernel polynomial of order n of the orthonormal system.

The kernel polynomial has the following reproducing property.

THEOREM 10.1.5. For any polynomial P E 9,z,

(P(x), K.(x, y))x = P(y)

(10.1.7)

(10.1.8)



238 ORTHOGONAL POLYNOMIALS Ch. X

Conversely, if K(x, y) is a polynomial of degree n at most in x and in y and if

(P(x), K(x, y))x = P(y) (10.1.9)

holds for all P(x) e 9n then K(x, y) = Kn(x, y).

The subscript x is placed outside the inner product to indicate the integra-
tion variable.

n
Proof: P(x) = I (P, pk*) pk* (x) by Theorem 8.4.1. Hence,

k=0
n n

(P(x), K. (x, y))x = I (Ppk*)pk*(x), I pk*(x)pk*(y))
k=0 x(kO'

n n

I (P, pk*)pm*(y)(pk*(x), pm*(x)) _ I (P, pk*)pk*(y) = P(y)
m,k=O k=0

Suppose now, that (P(x), K(x, y))x = P(y) for all P E gn. Select P(x) _
Kn(x, w). Then, (Kn(x, w), K(x, y))x = Kn(y, w). But, also, in view of
(10.1.8), (Kn(x, w), K(x, y))x = (K(x, y), Kn(x, w))x = K(w, y). Hence,

Kn(y) W) = Kn(w) Y) = K(w, y).

An alternate expression may be given for the kernel polynomial.

THEOREM 10.1.6 (Christoffel-Darboux). Let pn*(x) = knxn ± , n =
0, 1, ... , be real orthonormal polynomials. Then,

n

K x) ) = *(x)pk*(y) =
kn pn+1(x)pn*(y) - pn*(x)pn+1(y) (10.1.10)

n( y
k =O kn+1 x- y

Proof : Designate the right-hand member of (10.1.10) by K(x, y). Consider
y fixed. Then the numerator of K is a polynomial of degree <n + 1 in x.
Moreover it vanishes when x = y and hence is divisible by x - y. Thus,
K(x, y) is a polynomial of degree <n in both x and y. We shall show that
if p(x) E 9n, (p(x), K(x, y))x = p(y) and hence by the previous theorem
we will have K(x, y) = Kn(x, y). Now,

(p(x), K(x, y))x = kn
([Pn*+I(X)Pn*(Y) - pn*(x)pn*+1(y)],

p(x) - p(y)
kn+1 x - y ,x

+ kn p(y) pn * (x)
kn+1

pn+1(x) - pn+1(y)
X - y x

+ kn W,
pn*(y) - pn*(x)

p(y) pn+1
kn+1 x - y x

Observe that p(x) p(y) and pn*(x) pn*(y) are polynomials of degreex-y x-y
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<n - I in x (or equal 0 if n = 0). Hence by orthogonality, the first and
third of the inner products on the right hand vanish. Then,

(p(x), K(x, y)) =
kn

p(y) (P*(X), pn+1(x) I P+1(y)
xy x

But,

kn

kn+1

Hence

Pn+i(x) - Pn+1(y)
x - y nL yx-

= knxn + = pn * (x) + polynomial of lower degree.

kn Pn+ 1(y) - pn+ 1(x) = 1
kn+1 (Pn*(X)) x - y x

and the theorem follows.

COROLLARY 10.1.7.

n

=
kn {p1(x)p*(x) - P * , (x)p* (x) (10.1.11)k=o(p.*(X)12

kn+1 n+ n n n+1

Proof : Allow y -- x in 10.1.10 and evaluate the right-hand limit by
de l'Hospital's rule.

10.2 Complex Orthogonal Polynomials. Let C be a rectifiable
curve or are lying in the plane of the complex variable z = x + iy. Consider
the linear space of all polynomials with complex coefficients and for z on C.
The complex powers 1, z, z2, ... , are independent elements, for if we had
ao + a1z + a2z2 + ... + anzn - 0 on C it would follow from the funda-
mental theorem of algebra that ao = a1 = = an = 0. In this space,

(f, g) =cf (z)g(z) ds (10.2.1)

forms an inner product If (z)12 ds = 0 implies f (z) = 0 . Hence, by
c

Theorem 8.3.3 we may orthogonalize the powers and arrive at a set of
polynomials

pn*(z)=knzn+... ; kn>0, n = 0, 1,..., (10.2.2)

that are orthonormal:

fPn*(z)Pm*(z) ds = 6., (10.2.3)

yn+1 - xn+1

+...

The pn*(z) are known as the complex orthonormal polynomials corresponding
to C. If w(z) is a positive function of the complex variable z defined on C,
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then, with appropriate integrability conditions,

(f, g) =
cf

(z)g(z)w(z) ds (10.2.4)

also constitutes an inner product and gives rise to a set of orthonormal
polynomials. The polynomials arising from (10.2.3) or (10.2.4) are associated
with the name of G. Szego who first studied their properties extensively.

Complex orthogonal polynomials may also be constructed with double
integrals. Let B designate a bounded region (open connected set) lying in
the complex plane. If we introduce the inner product

(f, g) = f (z)q(z) dx dy (10.2.5)

B
or

(f, g) = f (z)q(z)w(z) dx dy (10.2.6)

B

for a suitable positive weight function w(z), then sets of orthonormal poly-
nomials can be generated. These orthogonal polynomials are associated
with the names of T. Carleman and S. Bergman. (Cf. 9.2, III. )

1
Ex. 1. The powers zn, n = 0, 1, 2, ... , are orthonormal on Izl = r.

For V 2irr2n+1

27r

1 zn 1 zm ds - 1 znzm ds = 1 ei(m-n)9 d8

Li =r 1/2irr2n+ V 2,7rr2m+1 27rr(m+n+1)

f
zi =r 2" o

-0ifm nand1ifm = n.

n-{-1 zn
Ex. 2. The powers

+
rn+1, n = 0, 1, 2, ... , are orthonormal over the

region Izi < r.

Ex. 3. The Tschebyscheff polynomials of the first kind, Tn(w), are orthogonal
on every ellipse J'P (see 1.13) with respect to the weight function 11 - w21-J.

That is,
T m(w)Tn(w)

Imn =
4P 11 - w2I

Idwi = 0, m:n; IdwI = d8 (10.2.7)

= element of are in the w-plane.

Proof : Let

then by (4.4.2)
w = J (z + z-1), z = peie;

Tn(w) - . (Pneine +
P

ne-in6).



Sec. 10.2

Now

and

ax ay

at, av

Hence, by transforming to the z plane,

I = 1

(PmeimO +
P

me imo)(Pne in0 +
P

nein0)
Jdzm, n I

4

f
zI = P IzI

ax ay

au au

when m : n.

Ex. 4. The Tschebyscheff Polynomials of the Second Kind

-}- 1

pn*(z) = 2
n (p2n+2 -

P 2n-2)-i Un(z),
Ir (10.2.8)

Un(z) = (1 - z2)-j sin [(n + 1) are cos z],

are orthonormal over the ellipse t°o'P with respect to the inner product

(f, g) = j'j'f(z)(z) dx dy.

Proof : Under the conformal map z = cos w, z = x + iy, w = u + iv, the
interior of the rectangle R with vertices at ai, ai + IT, - ai + IT, - ai is mapped
onto the ellipse tSP' consisting of the interior of S'P with the two segments
[ -a, -1], [ 1, a] deleted. Now, Un(z) = (1 - z2)- sin [(n + 1)w] and

dx dy =

Hence,

I m,n

2 - 1
dw/dz = j(1 - z 2) so that I dwl =

Iz
121 Jdzl
z

1 2"
(PmeimO +

P
me im0)(pne ino +

P nein0) d9 = 04 0
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I1-w2I 11z2 11.
2 IzI

du dv =
dz

dw

2

dw dv - 11 - z21 du dv.

Um(z) Un(z) dx dy = Um(z) U,(z) dx dy

ep 41

= sin (m + 1)w sin (n + 1)w du dv.

B
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With p = m + 1, r = n + 1, and since

sin p(u + iv) = sin pu cosh pv + i cos pu sinh pv,

Q Q

cosh pv cosh rv dv sin pu sin ru du + sinh pv sinh rv dv
J-Q 0 -a

x cos pu cos ru du
0

Ch. X

+ i sinh pv cosh rv dv cos pu sin ru du -
J-Q o

Q

if-a cosh pv sinh rv dv f sin pu cos ru du
0

Now sinh pv cosh rv and cosh pv sinh rv are odd functions of v. Their integral
over [ -a, a] therefore vanishes. Furthermore,

0

7r 0, per
sin pu sin ru du = cos pu cos ru du = r

0 2, p = r.

Hence, 1Mn = 0 for m n. Now

1
Q

'ffIV,V =ff f cosh2 pv + sinh2 pv dv = 2pv dv =
IT sinh 2p1

2 -Q Jacosh 2p
IT

But p = ea. Hence, 1P,2 = 4p (P - P").

Ex. 5. Let S designate the square with sides x = + 1, y = + 1, and write

(f, 9) =sf (z)9(z) ds.

The following polynomials are orthonormal with respect to this inner product.

so(z) = .35355

s1(z) = .30619z

s2(z) = .25877z2

s3(z) = .21348z3

s4(z) _ .18697z4 + .14957

s5(z) = .15811z5 + .18070z

ss(z) = .13396z6 + .20049z2

s7(z) = .11372z7 + .20905z3

s8(z) = .09656z8 + .20627z4 - .00666

Though in isolated cases there are recurrence formulas relating successive
complex orthogonal polynomials, there does not appear to be a general
theorem of this sort. The identity used in the real case to establish the
recurrence : (xpn*, Pm*) = (pn*, xpm*) does not carry over to the complex
case where the inner product is Hermitian.
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Theorem 10.1.3 tells us the location of the zeros of real orthogonal poly-
nomials. L. Fejer found a remarkably simple proof of a theorem that covers
a wide variety of cases, both real and complex.

LEMMA 10.2.1 (Fejer's Principle). Let S designate a closed bounded convex
set lying in the complex plane. zl is a point exterior to S. Then we may find a
point z' such that

1z-z'I<Iz-z1I for allzES. (10.2.9)

Figure 10.2.1.

t

Proof : We can find a line e that separates zl and S, i.e., zl and S lie on
opposite sides of e. This geometrically evident fact can be established easily
by the methods of the theory of convex bodies, but we shall not do so
here (Cf. Prob. 23). Drop a perpendicular from zl to / and call its foot z'.
Then if z is any point on the "S side of t," it is no trouble to show that
Iz - z'I < Iz - z1I. In particular, (10.2.9) follows.

DEFINITION 10.2.1. Let S be a set of points lying in the complex plane
and F a family of functions of a complex variable defined on S. For each
f c- F let there be defined a real, nonnegative quantity designated by III f III
satisfying the following property : for distinct f and g, the condition

If (z) l< I g(z) I whenever g(z) 0
and

If (z)l = Ig(z) whenever g(z) = 0
(10.2.10)

implies

Ill .f 111 < Illglll . (10.2.11)

The quantity III f III will be known as a Fejer or monotonic norm for F. (It
should be distinguished from the norms in a normed linear space.)

Here are some examples of monotonic norms. In each case F is the class
of polynomials zn + alzn-1 -}- + an with ai complex.
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Ex. 6. Let S be a closed bounded point set. If finite, it should contain at
least n points. IIIf III - max I f (z) I .

Ex. 7. Let S be a rectifiable curve or are.

IIIfIII =sIf(z)IPd8. P > 0.

Ex. 8. Let S be a closed bounded region.

111f III = if (z)IP dx dy, p > 0.
S

Ex. 9. Let S be a rectifiable are,

111f III = elf(z'l9d8, p > 0.
fS

In Ex. 6, there must be at least one point in S where I f I < IgI, for otherwise
if I = IgI = 0 throughout S and this is impossible since S has at least n points.
In the other examples, If I < IgI certainly implies IIIf III < IIIgIII But since If I < IgI
in at least one point, the monotonic character of the integrals tells us that the
inequality may be strengthened to IIIf III < III ON .

THEOREM 10.2.2 (Fejer's Convex Hull Theorem). Let F designate the
family of polynomials zn + alzn-1 + + an with ai complex. Let III

III
be

a monotonic norm on F relative to a point set S. Let the problem

min IIIzn + alzn-1 + ... + anIII (10.2.12)
2

be solved by a polynomial p(z). Then the zeros of p(z) all lie in the closure of
the convex hull of S. (Def. 7.3.3).

Proof : Let p(z) = (z - z1) ... (z - zn). Assume that a typical root, z1,
lies exterior to the closure of the convex hull of S. This closure is also convex.
By Fejer's principle, we can find a z' such that

Iz - z'I < Iz-z1I forallzeS.
Hence, if we set

q(z) = (z

we have for z in S,

-z')(z-z2).. (z - zn) (0 p(z)), (10.2.13)

Iq(z)I < Ip(z)I whenever p(z) 0
and (10.2.14)

Iq(z)I = Ip(z)I whenever p(z) = 0.

Hence, IIIgIII < IIIgIII, so that p could not possibly have been a minimal
polynomial as asserted. Therefore z1 must be in the closure of the convex
hull of S.
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COROLLARY 10.2.3. The zeros of complex orthogonal polynomials lie in
the closure of the convex hull of the point sets over which the integration is
performed. If the point set lies on the real axis and is contained in [a, b], the
orthogonal polynomials have real coefficients and the zeros lie in [a, b].

Proof : Cor. 8.5.7, Ex. 7, 8 of 10.2 with p = 2, and Theorem 10.2.2.

In contradistinction to the real case, no assertion can be made about the
simplicity of the roots; indeed, zn are orthogonal over circles IzI = r, but
have an n-fold zero at z = 0.

The kernel polynomials of a real or complex system of orthogonal poly-
nomials solve an important extremal problem. (Cf. Theorem 9.4.3.)

THEOREM 10.2.3. Let z0 be an arbitrary point in the complex plane and
p(z) an arbitrary element of °in. The problem of finding

max Ip(zo)l (10.2.15)
subject to

pEyn

IIPII = 1 (10.2.16)
is solved by

zee Kn(z, z0)
q(z) =

1/K
(10.2.17 )

n(z0 z0)

where Kn(z, z0) is the kernel polynomial
n

Kn(z, z0) I pk*(z)pk*(zo) (10.2.18)
k =0

and 6, 0 < 0 < 27r, is arbitrary. The maximum value of (10.2.15) is "V Kn(z0, z0).

Proof : Let {pn*} be the orthonormal polynomials appropriate to the norm
n

Then an arbitrary p E gn can be written as p(z) _ I akpk*(z) with
n k =O

IIp112 = I Iak12, (Theorem 8.4.1). Hence
k=0

Ip(zo)I2 =
n

I akpk*(zo)
k=0

< I Iak121
lPk*(zo)12.

k=0 k=0

n n

nom`

Hence Ip(zo)I2 < L, l pk*(z0)I2 = Kn(z0, z0) whenever Iipll = 1. On the other
k=0

hand, q(z) E 9n, and

IIgIl2 =
e'°Kn(z, z0) ei°Kn(z, z0)

V Kn(zo) z0) V Kn(zo, zo)

1 n

K /z z
(pk*(z)pk*(zo), p;*(z)p;*(zo))

nl 0+ 0) ?,k 0

1 n
I pk*(zo)pk*(zo) = 1.

Kn(z0, z0) k=O
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Furthermore,

Iq(z0)I = \/Kn(z0, z0)

Ex. 10. Let Y. be an inner product space of real or complex polynomials
of degree < n. If zo is an arbitrary point in the complex plane, then L(f) = f (zo)
is a bounded linear functional over Y. and 11L112 = Kn(zo, z0).

10.3 The Special Function Theory of the Jacobi Polynomials.
There is an extensive literature that contains many identities and inter-
relationships between the real orthogonal polynomials generated by simple
weighting functions. We shall content ourselves with presenting the most
important identities for the class of polynomials known as the Jacobi
polynomials.

For simplicity, the fundamental interval is selected as [-1, +1]. The
relevant weight function is

w(x) = (1 - x)°`(1 + x)', a > -1, /1 > -1. (10.3.1)

If the exponents are between -1 and 0, then the weight has a singularity
at the corresponding end point, but possesses a finite integral. Indeed,

+ r(a + 1)r(# + 1)- (1 - x)°`(1 + x)fl dx = 2'+ fl +1 (10.3.2)1 r(a +j9+ 2)
This is readily established by setting t = 2 (1 + x) and using the standard
integral for the beta function.

The orthonormal polynomials that result from orthonormalizing 1, x,

x2, ... , with respect to the inner product (f, q) = f (x)q(x)w(x) dx byfl
means of the Gram-Schmidt process are called the Jacobi polynomials, and
will be designated by pn°`" (x).

The following special selections of a and / carry special names.
a = 0, = 0: Legendre polynomials
a = - 2, _ -2 : Tschebyscheff polynomials (of the first kind).
a = 2, / =

2:
Tschebyscheff polynomials of the second kind.

a = fl: Ultraspherical polynomials.
We shall also employ orthogonal Jacobi polynomials, P;zx,fl)(x), that have

been standardized by requiring that

P'(1) = F(n + a + 1)
IF (n + 1) I' (a + 1)

(10.3.3)

THEOREM 10.3.1 (Rodrigues' Formula).

p(«,") (x) _
1)n (1 - x)-«(1 + x)-fl

do {(1 - x)"+«(1 + x)n+fl10.3.4
n 2nn! dxn } ( )
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P0

Figure 10.3.1 The Legendre Polynomials.

Proof: Consider first the expression

n

Qn(x) (1 - x) -a(1 + x) -, dxn
{(1 - x)n+°`(1 + x)n+'}. (10.3.5)
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By Leibnitz' Formula, we have,

(n) (-1)j(n + a)(n + a - 1) .. .Qn(x) _ (1 - x)-«(1 + x)-P X
5=0

Ch. X

X (n+ a- j + 1)(1 -x)n+«-j(n+fl)(n+#- 1)...
X (n+#-n+j+l)(1 +x)n+p-n+j

X
(n) (-1)'(n+a)(n+oc-1)...(n+a-j+1)

=0

X(1 1)...(fl+j+ 1)(1 +x)f
_ n -13 r(n+a+ 1) r(n++l)

x 31-}-x3.
=o r(n+a-+1)r(# +j +1) ( ) n-( )

(10.3.6)

It is clear from this that Qn(x) is a polynomial of degree n. Note also that
di

dx' [(1 - x)n+«(1 + x)n+#] vanishes at +1 and -1 if 0 <j < n.

We now show that Qn is orthogonal to all polynomials in gn-1 and hence
is, up to a constant, equal to Pn°`'")(x).

Let s(x) be such a polynomial. Then,

5 +,(I - x)"(1 + x)flQn(x) s(x) dx

+1 do

1 dxn {(1 -
x)n+«(1 + x)n+,l} s(x) dx.

Integrating by parts,

do-1 +1
I =dxn-1 {(1 -x)(1 + x)n + fl}

1-1

+1 do-1

- 1
{(1 - x)n +°`(1 + x)n + fl}s' (x) dx.

-1 dxn_1

The first term vanishes. Integrate by parts n times.

+1
I = (-1)n (1 - x)n+a(1 + x)n+fls(1)(x) dx = 0

J-1

inasmuch as s(x) E 9n-1 and s( )(x) = 0. We can therefore write Pn(x) _
I'(n + a + 1)

2n, and hence fromcQ/ x). From (10.3.6), Qn(1) = (-1)n
r(a + 1)`fin(

n

(10.3.3), c =
nn1 2
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COROLLARY 10.3.2.
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n r(n+a+1) I'(n+j9+1)P(n«,')(x) = j=o j!I'(n+a-j+1)(n-j)!I'(18+j+1)
x - 1 n-,

(x

1 f
X

2 2

n n+a n+/-t x -1n-, +
j=0 j n -F' 2 2

where we extend the binomial symbol
z

(?1) to noninteger values in an obvious way.

COROLLARY 10.3.3.

Pn('x")(-x) _ (-1)nPn"°C)(x).

Pn ('x") ( -1 ) = (-'Y' I(n + + 1)
I,(n + 1)r(# + 1)

THEOREM 10.3.4. Pn°`'9)(x) = Knxn -+- Snxn-1 -+-

where

K = 1 2n+a+
n 2n n

and

(10.3.7)

a- 2n-+ - a 1
Sn

2n n- 1 (10.3.8)

Proof : We begin by establishing two identities for binomial coefficients.
For jx j < 1 we have

(1 + x) p _ ` (Pxn, (1 + x)a = ` xm
00

n==o n m

00

Hence, (1 + x) P+a _
(p\ ("xtm

m,n=o n m

Therefore

ao n pIxn I n- .

n=o =0 J

I (V) = 1 do (1 + x)P+Q

j =o j n - j n! dxn X=0

Furthermore, Al + x) p-1 = X n p xn-1. Hence,00 ()
n=1 n

(10.3.9)

px(1 + x)P+Q-1 = I xn I j
(p)n=o 3=1

n -j
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Therefore

n p 1 doIj px(1 + x) P+a-1
=1 n n! dxn x=0

p do do-1

n!
X

dxn (1 +
x) P+6-1

+ n dxn-1 (1 +
x)

Ch. X

x=0

(P±o_1
(10.3.10)n-

To prove the theorem, we use Corollary 10.3.2. Notice that

(x - 1)n-i(x + 1)' = [xn-; - (n - j)xn-;-1 + ...][xf + jxi-1 + ...]

= xn + (2j - n)xn-1 + ...

It is now clear that

n -}-
K In 2n =o j

,x) (n + )
n -j

1 (2n + a + j9

2n n
(10.3.11)

The last equality follows from (10.3.9).
In the same way,

2nSn=
n+a n+1'(2j-n)j=o j n - jI

=21 n+a n+, - nY n +a n -+-
j=o n -

j
j=o n -

=2(n+a) 2n+a+/9-1
nn-1

= (a-2n+oc+/ 1 .

n-
THEOREM 10.3.5.

2n + a -+-
n

(10.3.12)

(1 - x)a(1 + x)I(pn«,fl)(x))2 dx

2 a+fl+1 I' (n + a + 1) I' (n +
(2n+ a+ /9+ 1) I'(n+ 1)I'(n+ a+/9-}-- 1)

Proof: Write (1 - x)a(1 + x)' = w(x) and Pna,fl) = Pn
1 1

I = w(x)[Pn(x)]2 dx =f w(x)Pn(x)Pn(x) dx.
J-1 1

Now, Pn(x) = Knxn + polynomial of lower degree; hence,
1 (-1)nK 5+1 do

I = Kn w(x)Pn(x)xn dx = n xn
n

{(1 - x)"+,(1 + x)n+'} dx.
-1 2"n! -1 dx
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Integrate by parts n times and obtain

+1
I = n (1 - x) n+a(1 + x) n+fl dx.

2n

By (10.3.2) we have

I = Kn I'(n + oc + 1) I'(n + /9 + 1)
2n I'(2n -} cx + 8 + 2)

and the theorem follows.

COROLLARY 10.3.6. The orthonormal Jacobi polynomials are given by

(MA _ (2n + a + /9 + 1) I'(n + 1) I'(n + a + /9 + 1)pn (x) rn+ a+ 1)r(n+ + 1) P(n (x).

(10.3.13)

COROLLARY 10.3.7. The kernel polynomial of the orthonormal system has
the following expression :

n

Kn(x, Y) _ I p;a' (x)pj(x")(y)

j=0

1 Kn P na 4)(x) pna")(y) - Pna,fl)(x)PPx4)(y)

l i pn II 2 Kn+1 x-y

_ (n+1)!I'(n+a+i9+2)
2a+P(2n+ a+/9+2)I'(n+ a+ 1)I'(n+/9+ 1)

Pna 4)(x)Pna")(y) - Pna")(x) pna +1(y)

x-y

Proof : This is an application of (10.1.7), (10.3.7), (10.3.13), and Theorem
10.3.5.

THEOREM 10.3.8. The Jacobi polynomials Pn"")(x) satisfy the following
second order linear differential equation.

(1-x2)y"+[(/9-a)-(a+/9+ 2)x]y'+n(n+a+j9+1)y=0

Proof : Note that for any q,

d
[(1 - x)'+1(1 + x)fl+1 '] =

dx q 1 - x)a(1 + x)#

(10.3.14)

X [(1 - x2)q" + {(/9 - a) - (a + fi + 2)x}q']. (10.3.15)
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Figure 10.3.2 The Kernel Polynomial for a = = 0.

K7(x, 0)
35

- 693x4 + 315x2 - 351{429x6 }
512

Ch. X

Hence we may write the differential equation (10.3.14) in the alternate form

(1 - x)-a(1 + x)-# d
[(1 - x)a+1(1 + x)#+1 '] = -n(n + oc + + 1)

dx
y y

(10.3.16)

Let y = Pna'")(x), w(x) _ (1 - x)a(1 + x)' and q(x) E We shall show
that the expression occurring on the left side of (10.3.16) is orthogonal to
q(x). Hence the left-hand side must coincide with y apart from a constant
multiplier. Now,

+1 d
I = -1 w(x)(1 - x)-a(1 + x)-fl

dx [(1 - x)a+1(1 + x)fl+1y']q(x) dx

+1 d

-1 dx [(1 - x)a+1(1 + x)fl+1y']q(x) dx.

Integrate by parts,
+1I = - (1 - x)'+1(1 + x)O+1y'q' dx. (10.3.17)

Integrate by parts once again,

+1dI =
-1 d [(1 - x)a+1(1 + x)O+1q']y dx.x

Now from (10.3.15) we observe that

d
[(1 - x)a+1(1 + x)'+1q'] _ (1 -- x)a(1 + x)Op(x) where p(x) E

dx
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Hence I = (1 - x)«(1 + x)#P( «'fl)(x)p(x) dx = 0.

Thus, certainly,

(1 - x2)y" + {(j - a) - x(a + j + 2)}y' = cy for some constant c.

To determine c, set P( «'fl)(x) = y = Knxn + . Then dealing only with
the highest powers, -n(n - 1)Knxn - n(a + j9 + 2)Knxn = cKnxn. Hence
c = -n(n + a + j9 + 1) as required.

THEOREM 10.3.9. The Jacobi polynomials Pn«'fl)(x) satisfy the following
three-term linear recurrence relation

where

Pn«,fl)(x) = (Anx + Bn)Pn«,fl1(x) - CnPn«f2(x) (10.3.18)

A
-(2n±a+/-1)(2n+a+/)

n 2n(n+a+ (10.3-19)

B = (a2 j2) (2n + a -F 1)
10.3.20n 2n(n+a+fl)(2n+a+#-2) ( )

Cn 10.3.21)n
n(n+a+fl)(2n+a+#-2)

Proof : We combine (10.1.6), (10.3.7), (10.3.8), and (10.3.13). If
AnPP«"")(x), then

An =
Kn B = Kn Sn Sn-1

n Kn-1 n Kn_1 Kn Kn-1

The expressions above result from this.

C

=
2 KnKn-2

n
a' n-1 n-1

THEOREM 10.3.10. In a neighborhood of w = 0, we have
00 2«+#

Pn«,I)(z)wn = «
n= R(1 - w + R)(1 + w + R)''

R = +A/1 - 2zw + w2.

The multivalued functions are taken positive for w = 0.

(10.3.22)

Proof : Cauchy's Theorem tells us that for analytic functions,

(n) (Z) = ni. f (t) dt (10.3.23)f
27T2

f
(t-z)n+l

where C is a closed curve containing z in its interior.
Consider the function (1 - z)n+«(1 + z)n+fi. In a simply connected region

that does not contain ± 1 in its interior, it is possible to define a single valued



254 ORTHOGONAL POLYNOMIALS Ch. X

analytic branch. Hence,

do n! (1 - t)n+a(1 -L t)n+I9(1 - z)'(1 +z)'" = dt
dzn 27ri c (t - z)n+l

where C is a closed curve that contains z in its interior, but does not contain
either z = 1 or z = -1. From Rodrigues' formula (10.3.4),

p(«Az = (-1)n n! (1 - z)-°`(1 + z)-fl(1 - t)n+«(1 + t)n+# dt
n () 2nn! 27ri c (t - z)n+1

1 (1-t\j'1+t\('t2-1\ n dt

27ri Jc 1 - z 1 + z 2(t-z) t-z
The points z = ± 1 are excluded from consideration here.

In this integral, make the change of variable

t2- 1 1 1

Write
2(t - z) w

t=-(1 - V1 -2wz+w2). (10.3.24)
w

t = 1
(1 - R) where R = 1/1 - 2zw + w2. (10.3.25)

W

Now t - z = Iw(z2 - 1) + and so a neighborhood of t = z is mapped
conformally onto a neighborhood of w = 0.

dt = 1 R-1 -wdR and
dR -w - z

26)(10 3

th t
dw w2 dw dw R

.-

aso
dt t - z

Moreover,
dw Rw

1 -}- t 1+ I /W - R/w 2

1 +z 1 +z 1 +w+ R
and

1 -t 1 - 1/w+ R/w 2

1 -z 1 -z 1 - w+ R
Hence,

2«+# dwP "9 (z) =
27ri Jci (1 - w +

R)a(1

+ w + R)'wn+1 R

C1 is the image of C under the conformal transformation and is a closed
curve containing the origin w = 0 in its interior.

Applying Cauchy's formula in the w-plane, we see that

Pn«,#)(z) =
1 do 2a+#

n! dwn R(1 - w + R)°`(1 + w + R)' W=0

Now, considered as a function of w, R-1(1 - w + R)-'(1 + w + R) -fl is
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analytic in a neighborhood of the origin, and we have (10.3.22). For z = ± 1,
the identity can be verified directly.

NOTES ON CHAPTER X
General references on orthogonal polynomials include Szego [1], Tricomi

[1], Sansone [1], Jackson [2], Alexits [1]. The bibliography referred to in
the Foreword is the publication of Shohat, Hille, and Walsh [1].

10.1 For an analog of Theorem 10.1.4 for trigonometric Fourier series,
see Tricomi [1] pp. 75-76. A converse of Theorem 10.1.1 was found by
Favard and independently by Natanson. See Favard [1]. Also relevant is
Dickinson, Pollak, and Wannier [1].

10.2 Ex. 3., Walsh [2] Chap. VI. Ex. 4., Nehari [1]. Ex. 5.: these and more
extensive values were computed on the IBM 704 at the National Bureau of
Standards. For Fejer's Principle see Fejer [1].

PROBLEMS

1. The powers x72 cannot be orthogonal on [ -1, 1] with respect to any
weight function w(x).

2. Let w(-x) = w(x) and suppose that pn(x) are orthogonal with respect to
+1

(A 9) = f (x)9(x)w(x) dx. Then pn(-x) _ (-1)npn(x)
-1

3. How do orthogonal polynomials change when the interval [ -1, 1] is
shifted linearly to [a, b] and the weight function changed correspondingly?

4. Let po(z) = 1, pn(z) = zn-1(z - zo) n = 1, 2, .... Prove that for m 0 n,
p (z)p (z) dsm n

C l z - zol 2
= 0 on all circles C: lzl = R > lzol.f

5. Let l ai l < 1. Prove that the functions

1 - lall2 1

ri(z) 2,r 1 - alz '
1 - lanl2 (z - a1) ... (z - an-1)

rn(z) =
2ir (1 - alz) (1 - a2 z) (1 - anz

are orthonormal in the sense that rm(z) rn z ds = 6m n (Takenaka ,Walsh).I
=1

6. Let pn * (x) be orthonormal with respect to the inner product (f, g) _
b

f (x)g(x)w(x) dx. If Kn(x, y) is the kernel polynomial, and if x0 < a, the poly-

nomialsnomials Kn(x0, x) are orthogonal with respect to the inner product (f, g) =
ab

f (x)g(x)w(x)(x - xo) dx.

7. Let pn * (x) be orthonormal with respect to the inner product (f, g) _

))

+ 1 ao

f (x)g(x)w(x) dx, w(x) > 0. Prove that I (pk*(x))2 = oo for -1 < x < 1.
-1 k =O
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Check this divergence directly for the Legendre polynomials at x = 0.
8. Using polynomials of degree 1 and IIIf III = maBx If (z) 1, prove that if C is

zc-

the circle of smallest radius that contains a closed bounded set B, then the
center of C lies in the convex hull of B.

9. In the previous problem, give an example to show that the center of C
may fall on the boundary of the convex hull of B.

10. Check explicitly for n = 1, 2, 3, 4 that the polynomials orthonormal over
the square have their zeros in the square. (Cf. 10.2, Ex. 5.)

11. Prove that -1)
P,z (0) = 0, n odd, and that Pn (0) = (-1)n/2 246 n..

Pn(x) are the Legendre polynomials with normalization (10.3.3).
n 2k + 1 +1

12. The polynomial p(x) = 1 2 Pk(x) satisfies dx = 1 for
j = 0, 1, , n. k=o -1,

M 4j + 1 (2j)!
13. Show that the polynomial p(x) = I (-1)'

225+1 2 P23(x) satisfies
1 1 j=0

p(x) dx = 1, p(x)xi dx = 0 j = 1, 2, ... , 2M.
J-1 -1

14. Let the n zeros of P(',#) be x1..... xn. Then x1 +X2+--- -{- xn =
n(j9 - a)

2n +a+
15. Verify (10.3.22) directly for z = ±1.

+
16. Show that in Yn[ -1, 1] with (f, g) =f f (x)g(x) dx, L(p) = p'(xo) is a

-
bounded linear functional, and compute its norm. Generalize.

17. If

00

00

f (z) = I akTk(x), I XI < 1 with I IQ < 00,
k=0 k=0

then
x ak-1 a k+1f (t) dt = const +

2k )Tk(x), IxI < 1.
1 k=1

18. The expansion of f (x) in Tschebyscheff polynomials of the first kind is
identical to the development of f (cos 0) in a cosine series.

IT 4 16
T2(x) -19. Are cos x

2
- - T1(x) -

97r

1
V2[ - p2T2(x) + p4T4(x) .], p=V2-1.

21. If curves C and D are related by the transformation w = az + b, what
is the relationship between the orthonormal polynomials over C and those over
D? What if the inner product is an area integral?

22. How do the symmetries of a curve influence the structure of its orthogonal
polynomials (see Ex. 5, 10.2)?

23. Let S be a closed, bounded, convex set in the plane. Let z1 be a point
exterior to S. Show: 1. The problem of finding min I z1 - z I has a unique solu-

zES

tion, z'. 2. At z' draw the line t perpendicular to the segment zlz'. Then S lies
on one side of t. 3. The point z' satisfies the condition (10.2.9) (0. Shisha).

n even.



CHAPTER XI

The Theory of Closure and Completeness

11.1 The Fundamental Theorem of Closure and Completeness.
Theorem 8.9.1 related the concepts of closure and completeness for inner
product spaces. In the present section, we shall do this for normed linear
spaces.

DEFINITION 11.1.1. The sequence of elements {xk} is complete in a
normed linear space X if L(xk) = 0, k = 1 , 2, ... , L E X*, implies L = 0.
X* is the normed conjugate space of X.

(In an inner product space, there are now two definitions of complete
sequences, Definition 8.9.4 and Definition 11.1.1. If the space is complete,
these definitions are equivalent.)

Closed

Space

Sequence

A subspace is closed if it
contains all its limit points.

A sequence is closed if
every element of the space
can be approximated ar-
bitrarily closely by finite
linear combinations of the
elements of the sequence.

Complete

A space is complete if every
Cauchy sequence has a limit
in the space.

A sequence {xn} is complete
ifL(xn) =0,n=0, 1, ...,
L E X*, implies L = 0.

The fundamental theorem is that closure and completeness are equivalent
concepts. This emerges as a consequence of the Hahn-Banach Extension
Theorem, and it is to this that we now turn.

DEFINITION 11.1.2. Let X be a linear space and Y a linear subspace.
Let L be a linear functional defined on Y. A linear functional L1 is called
an extension of L to X if L1(x) is defined for all x e X and if L1(x) = L(x)
for x e Y.

257
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Ex. 1. X is the space of all functions defined on [a, b]. Let Y be the subspace
C[a, b]. Let a < x1 < b and set L(f) = lim f (x). Let L1(f) = f (x1). Then L1
is an extension of L from Y to X. X X 1

THEOREM 11.1.1. Let X be a real normed linear space and Y a linear
subspace. (Y 0 X). Let p(x) be a real valued functional defined on the elements
of X and possessing the following normlike properties

p (x) > 0 ; X E X

p(x + y) < p(x) + p(y) ; x, y E X (11.1.1)

p(2x) _),p(x) ; x E X, A > 0.

Let L be a real linear functional defined on Y that satisfies

L(x) < p(x), X G Y. (11.1.2)

Then L can be extended to be a linear functional L1 defined on X and such
that

L1(x) < p(x), x ex.
Proof : 1. Select an x0 E X but 0 Y. Take x, y e Y. Then

L(y) - L(x) = L(y - x) < p(y - x).

Now p(y - x) <p(y + x0) + p(-x - x0) so that

(11.1.3)

-p(-x - x0) - L(x) < p(y + x0) - L(y); x, y E Y.

Think of y as fixed in Y and x as varying in Y. Then the last inequality
shows that -p(-x - x0) - L(x) is bounded above. Similarly, for varying
y, p(y + x0) - L(y) is bounded below. If we set

r1 = sup [-p(-x - x0) - L(x)]
XEY

r2 = inf [p(y + xo) - L(y)e

then we must have - oo < r1 < r2 < oo. Select a number r such that
r1 < r < r2. Then,

-p(-x - x0) - L(x) < r < p(y + x0) - L(y) (11.1.4)

for any x, y e Y.
2. Consider the linear subspace Yo consisting of all elements y of the

form y = x + 2x0, x e Y. Each element in Yo has a unique representation
in this form. For suppose, y e Yo, and y = x1 + ),1x0 = x2 + ),2x0. Then
x1 - x2 = (Al - A2)x0. If Al 0 )2 then x0 would be a linear combination of
x1, x2 and hence in Y. This contradicts our selection of x0. Therefore Al = A2
and hence also x1 = x2.

Define L1 on Yo by means of

L1(y) = L(x) + ),r.
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Now if y e Y, A = 0 and hence L1(y) = L(y), y e Y. Since L is linear, it
follows easily that Ll is linear.

We wish to prove next that
L1(y) Sp(y) for all y e Yo. (11.1.5)

Decompose y into the form y = xl + 2xo. We need only deal with the case
when A 0 0. From (11.1.4) we have

-p xl -xo-L xl <r <p xl+xo -L xl

xl 1
Now if A > 0, p + xo = p(xl + 2xo) and the second inequality re-
duces to

r<lp(xi+2xo)-1L(xi)
or

Li(y) = L(xi) + ),r < p(xi + 2xo).
If A < 0, the first inequality may be employed :

xl - xo = 1 p(xi + 2xo) ; hence, p(xi + 2xo) - L(xl) > ),r and thep
A

conclusion is as before.
3. Consider, finally, all the linear functionals that extend L to some

linear subspace containing Y and which satisfy the condition (11.1.5). A
partial ordering L' < L" is defined amongst these functionals by agreeing
that L' < L" means that L" is an extension of L'. With this ordering,
every totally ordered subset is seen to have an upper bound, i.e., the func-
tional which is defined over the union of the domains of definition of the
individual functionals and which takes on the values assigned by them.
Zorn's Lemma (Theorem 1.13.1) tells us that there exists a maximal exten-
sion Ll. This linear functional is defined over the entire space X, for if not,
it could have been further extended by the process described under 2.

If the space X is separable, the use of Zorn's Lemma (and hence the
axiom of choice) can be avoided.

A functional p(x) satisfying 11.1.1 is known as a convex functional.

THEOREM 11.1.2 (Hahn-Banach). Let X be a real normed linear space
and Y a subspace. Let L be defined on Y and have norm IILII - there. Then
there is a linear functional Ll which extends L to X and such that II Ll II X _

IILII y.

Proof : Set p(x) = II L II Y II x II The functional p(x) is readily seen to fulfill
the requirements (11.1.1). Therefore, by the previous theorem, we may
extend L to Ll so that

L1(x) < IILII p IIxii, x e X.
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Since also
-L1(x) = L1(-x) < IILIIY I1-xll = IILIIY Ilxll

it follows that
I L1(x)I < IILIIY Ilxll

Hence,

so that

su I L,(x) l < IILII
XEX Ilxll

Y

IILII < IILIIY.

But L = su I

L(x)I
= su I L,(x)I < su I

L,(x)I = L and therefore
II II Y

XCY IIxII xEp 11X II
-xEp 114 I

II l li x

II L ll Y < II Li ll x. Thus, finally II L1 II X = IILIIY
This extension theorem also holds in complex normed linear spaces. To

establish this, we make use of a simple device which associates a unique
real normed linear space XR to each complex normed linear space X. In
this way, the burden of the proof is thrown back to the real situation.

DEFINITION 11.1.3. Let X be a complex normed linear space. The space
XR will consist of the same elements as X. Addition in XR will be identical
with addition in X. If a is real and x e XR then ax will be the element
(a + iO)x = ax of X. II x II in XR will equal II x II in X. If L is a bounded (and
complex) linear functional defined on X, then by LR we shall mean the real
valued functional defined on XR by means of

LR(x) = Real part of L(x). (11.1.6)

The x in the left-hand member is considered to lie in XR while in the
right it is considered to lie in X.

LEMMA 11.1.3. If L is a bounded linear functional on X, then LR is a
bounded linear functional on XR.

Proof: Let x, y e XR and a, b be real.

LR(ax + by) = Re L(ax + by)
= Re {aL(x) + bL(y)} = a Re L(x) + b Re L(y)

= aLR(x) + bLR(y)

Therefore LR is linear on XR. Also

ILR(x)I = IRe L(x)I < I L(x)I < IILII IIxllx = IILII II xll xR (11.1.7)

Therefore LR is bounded on XR, and II LR II < IILII
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LEMMA 11.1.4. If L is a linear functional on X then

L(x) = LR(x) - iLR(ix).

Conversely if A is a linear functional on XR, then the equation

L(x) = A(x) - i11(ix)

defines a linear functional on X.

(11.1.8)

(11.1.9)

Proof: If L(x) = Re L(x) + i Im L(x), x e X, then

L(ix) = Re L(ix) + i Im L(ix)
= i Re L(x) - Im L(x).

Therefore Im L(x) = -Re L(ix) = -LR(ix), so (11.1.8) follows. Conversely,
given x, y e X, from (11.1.9) we see that

L(x + y) = 11(x + y) - iA(ix + iy)
=11(x) + A(y) - i11(ix) - iA(iy)

L(x) + L(y).

Moreover, if a is real,
L(ax) =11(ax) - iA(iax)

= a11(x) - iaA(ix) = aL(x).
Finally, L(ix) = A(ix) - iA(-x)

= i[11(x) - iA(ix)] = iL(x).
Thus, L is linear over X.

THEOREM 11.1.5 (Bohnenblust-Sobczyk-Suchomlinoff). Let X be a com-
plex normed linear space and Y a subspace. Let L be a complex linear functional
defined on Y and have norm JILIl Y there. Then there is a linear functional
LI that extends L to X and such that II LI 11x = II L 11 p

Proof : Write L(x) = LR(x) + iLI(x), x E Y where LR and LI are real
valued. By Lemma 11.1.3, LR is a bounded real valued linear functional
defined on YR, the real normed linear space associated with Y. Extend LR
to XR by Theorem 11.1.2, and obtain a real, bounded, linear functional
LI,R for which L1,R(x) = LR(x), X E YR and for which IILI,RII = IILRII
Define

LI(x) = LI,R(x) - iLI,R(ix). (11.1.10)

By Lemma 11.1.4, LI is a linear functional defined on the whole of X. It is
an extension of L. For let x e Y. Then, by (11.1.8) (taking the X as the
present Y),

L(x) = LR(x) - iLR(ix) = LI,R(x) - iL1,R(ix) = LI(x).
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We must finally prove that II L1 II =IILII . Since L1 is an extension of L, it
is clear that IILII < IIL. On the other hand, suppose that L1(x) = rei°,
x e X. Then,

I L1(x)l = r = Re L1(e-iex) = L1,R(e-iex) < If LI,RII Ile-zexli

= II L1,RII IIxII = IILRII IIxII < IILII IIxII

The last inequality was observed after (11.1.7). Therefore, for all x e X,
I Li (x) I

IIxII
IILII, so that IIL1II . IILII Thus, IIL1II = IILII

THEOREM 11.1.6. Let X be a normed linear space and Y a linear subspace.
Let x0 E X, but x0 0 Y and suppose that d = inf II y - x011 > 0. Then we can

find a bounded linear functional, L, on X such that

L(x) = 0 x E Y

L(xo) = 1

IILII = d-1.

(11.1.11)

Proof : As in Theorem 11.1.1, let Yo be the linear subspace of elements
of the form x + )xo, x e Y. This decomposition is unique. Construct an L
over Yo as follows :

L(y) =A for y=x+2xo. (11.1.12)

In particular, L(x) = 0 whenever x e Y, and L(xo) = L(0 + 1 x0) = 1.
Now

IL(y)I IAI R 1 1

Ilyli Ilyll IIx -f Axoll

X
Since - - E Y,

Hence

> d.

X
+

xo

L =su IL(y)l <1.
II II Yo

YE 0

P
Ilyll d

On the other hand, we can find a sequence of elements {xn} E Y such that
slim iixn - x011 = d. Now x,,, - x0 E Yo so that

I L(xn - x0)1 < IILIIYo lixn - x011

But L(xn) = 0, n = 1 , 2, ... , and L(xo) = 1.

Hence,

so that

1 < IILII Y011xn - x011,

1 s IILIIYo d.
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Therefore II L II y,, > d and we must have

IILIIY0=d

We now apply Theorem 11.1.5 to extend L from Yo to X with preservation
of norm.

THEOREM 11.1.7 (Banach). Let X be a normed linear space (real or com-
plex). A sequence of elements {xk} is closed if and only if it is complete.

Proof : Suppose {xk} is closed. Let L E X* and suppose that L(xk) = 0
k = 1, 2, .... Given any x e X, we may approximate x arbitrarily closely
by finite combinations of xk : II x - alxl - a2x2 - - anxn II < e for some
coefficients ak. Then,

I L(x) I = I L(x - alxl - anxn) I

IILII Il x - alxl - anxn 11 s IILII e.

Allow a -* 0 and obtain L(x) = 0. Since x is arbitrary, L = 0.
Conversely, suppose that L(xk) = 0, k = 1 , 2, ... , implies L = 0. Let x0

be an element of X and let Y be the linear subspace comprised of all finite
linear combinations of x1, x2, .... We wish to prove d =.inf II xo - y II = 0.

YcY

Suppose the contrary. Then by the previous theorem, we can find an L
such that L(y) = 0, y e Y and L(xo) = 1. In particular, L(xk) = 0, k=
1, 21 .... But by completeness, this implies L = 0 and contradicts L(xo)
= 1.

Ex. 2. Let X be a complete inner product space. Any L E X* has the repre-
sentation L(x) = (x, x0) for some x0 e X. Hence, the definition of completeness
of {Xk} is that (xk, x) = 0, k = 1, 2, ... , implies x = 0. In this case, the present
theorem gives us the equivalence of A and E of Theorem 8.9.1.

Ex. 3. Select X = C[a, b], 11f II = max If (x)1. By Weierstrass' Theorem,
a<z<b

the powers 1, x, x2, ... , are closed. For a given g(x) e C the linear functional
b b

L(f) = f (x)g(x) dx is in X X. Hence xng(x) dx = 0, n = 0, 1, 2, ... , implies
Ja a

g(x) 0.

Ex. 4. Let {rd be the set of all rational numbers lying in a < x < b. Let
Si (x) be the step function defined by

Si(x) = 1 a < x < ri
Si(x) = 0 ri < x < b.

Then the system {Si(x)} is closed in L2[a, b].
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Proof : Let f (x) E L2[a, b]. Suppose that f (x)Si(x) dx = 0, i = 1, 2, ... .
rt a

Using the definition of Si, f (x) dx = 0, i = 1, 2, ... , and hence the function
t a

F(t) = f (x) dx is zero at the rational points. But F(t) E C[a, b] and hence
a

F(t) = 0. It follows that f (x) = 0 almost everywhere. The system {Si(x)} is
accordingly complete and hence, closed.

Ex. 5. Let D be a bounded multiply connected region and let A(D) be the
normed linear space of functions that are analytic in D and continuous in D
plus its boundary. II f II = m ax If (z)1. The sequence of functions 1, z, z2, ... , is

not closed in A(D). For if the sequence were closed, it would be complete. Now
let zo be a point in one of the "holes" of D. Consider the linear functional L(f) =

1

27ri
f (z) dz, where C is a contour lying in D and containing zo in its interior.

C

L is bounded over A(D) and L(zn) = 0, n = 0, 1, .... Therefore L = 0 by
1 1

completeness, but is in A(D) and L = 1. Hence we have a
Z - zo z - zocontradiction.

Though completeness and closure are equivalent, it is convenient to
employ both terms so that attention may be called to the appropriate
defining property.

The property of closure is transitive.

THEOREM 11.1.8 (Lauricella). Let X be a normed linear space and let {xn}
be a closed system. Then a second system {yn} is closed in X if and only if it
is closed in {xn}. By this we mean that each xn can be approximated arbitrarily
closely by linear combinations of the yn.

P r o o f : The necessity is trivial. To prove sufficiency, let x e X and pre-
scribe e > 0. Since {xk} is closed we may find constants al, ... , aN such
that II x - alxl - - - - - aNxN II < e/2. We may obviously assume that each
ai 0 0, otherwise we simply ignore that coefficient. Since {y,} is closed in
{Xk)1we may find constants bil, b 1 2 . . . . . biN., i = 1, 2, ... , N such that

II xi - bilyl - bi2y2 -
E

biNtyNt II <
2N NIaiI

i = 1,2,. ..,N.

If we set wi = ai(bilyl + bi2y2 +* * * + biNjYNi), i = 1,21..., N,

then, I I aixi - wi II < 2N ,
i = 1, 2, ... , N.
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Now, by the triangle inequality,

IIx-wl-W2-
= IIx.- alxl - .

- Wnll

.. - aNxN - wl - W2-...-WN+alxl+...+aNxNII
IIx - alxl aNxN I I + II alxl - w,11 + ... + I I aNxN - WN II

E E
+2N=E.

In this way, we approximate x to within e by wl + + wN, which is a
combination of the y's.

11.2 Completeness of the Powers and Trigonometric Systems for
L2[a, b]

THEOREM 11.2.1. The powers 1, x, x2, ... , are complete over L2[a,b].

Proof : Let f (x) E L2[a, b] and assume that

xnf (x) dx = 0
fa

n=0,1,2,....

F(x) = f (t) dt. (11.2.1)
aX

Then F(x) E C[a, b]. In particular F(a) = 0, F(b) = 0. Integrating by parts,

0 =f (x) dx = xnF(x)
a

b b

- n xn-1 F(x) dx.
a a

b

It follows that xn-1F(x) dx = 0 n=1,2 .... .
a

Now by Ex. 3, Section 11.1, the powers are complete for C[a, b] with II f II =
max If (x)l, and this implies that F(x) = 0. Therefore f (x) = 0 almost

a <z <b
everywhere.

COROLLARY 11.2.2. The sequence of orthonormal polynomials on [a, b],
pn*(x) = knxn + , kn > 0, has all the properties A-F of Theorem 8.9.1
j or f e L2[a, b].

A corresponding theorem for the trigononometric functions can be de-
rived from the powers by a change of variable, but we prefer the following
proof which makes use of an interesting analytic device.
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LEMMA 11.2.3. Let f (x) E C[-7r, 7r] and suppose that

and

ff(x)cosnxdx=o
,T

n = 0, 1, ... , (11.2.2)

f7T
f (x) sin nx dx = 0 n = 1 2 (11 2 3)

Then f (x) - 0.

_

7T

, , .... . .

Proof : If T,z(x) is an arbitrary trigonometric polynomial, it follows from
7r

(11.2.2) and (11.2.3) that f (x)T,z(x) dx = 0. Assume that f (x) # 0. Then

there is a point x0 interior to [-7r, 7r] at which f (xo) 0. For the sake of
argument, assume that f (xo) = m > 0. Then by continuity, we can find an
interval I : x0 - 6 < x < x0 + b contained in (-7r, 7r) throughout which
f (x) > m/2. Construct the trigonometric function

t(x) = 1 - cos 6 + cos (x - x0). (11.2.4)

For x0 - 6 < x < xo + 6, cos (x - x0) > cos b and therefore t(x) > 1. For
x = x0 ± 6, t(x) = 1. Elsewhere in [-7r, 7r], -1 < cos (x - x0) < cos 6 so
that

-cos b < t(x) < 1 and therefore It(x) I < 1.

Now consider the trigonometric polynomial of order n, Tn(x) = [t(x)]n.
It is clear that

Tn(x) > 1 forll: x0 -6<x<x0 +b
Tn(x)=1 for x=x ±b

I Tn(x)l < 1 for I2: the remaining portions of [-ir, 7r].
But

0
=f7T

f (x)Tn(x) dx = f (x)Tn(x) dx + f (x)Tn(x) dx,
-7r Ii IZ

so that = -f . Now f (x)Tn(x) dx < If (x)I dx and is thereforef',

Z fZ JZ
bounded as n -* oo. Since t(x) > 1 on I,, t(x) > 1 + E on, say,

6 bI3: xo-2 <x <x0+2

Therefore, Tn(x) = [t(x)]n > (1 + e)n on I3 and

i,'1

f(x)T(x) dx >
m

T n(x) dx >
m

(1 + E)n.
2 I3 2

This is a contradiction since f,' + oo while is bounded. The assumption
Ii IZ

that f (x) # 0 cannot be maintained.
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THEOREM 11.2.4. The system of functions cos nx, n = 0, 1, ... , sin nx,
n = 1,2,..., is complete in L2[-7r,77].

Proof : Let f (x) E L2[-7r, 7r]. We shall show that the conditions (11.2.2)
and (11.2.3) imply ,f (x) = 0 almost everywhere. This will imply complete.
ness for L2[-7r, 7r] by Ex. 2 of Section 11.1. The function

x
F(x) = f (t) dt (11.2.5)

-,r

is in C[-7r, 7r] and F(-7r) = 0, F(IT) = 0. The last follows from (11.2.2)
with n = 0. If T (x) designates an arbitrary trigonometric polynomial,

5 f (x) T (x) dx = 0. But

ff(x)T(x) dx = F(x) T (x) F(x) T' (x) dx.
it -,r -,r

Hence F(x) T' (x) dx = 0 for all derivatives T' of trigonometric poly-
_

Ir

nomials.

In particular, F(x)
sin nx dx = 0 n = 1, 2..... Consider nowf cos nx

G(x) = F(x) - c, c = 1 F(x) dx. (11.2.6)
21r -,r

Then it is easily verified that
'T sin nx

G(x) dx = 0
cos mx

n=1,2,...,
m=0,1,2,....

By Lemma 11.2.3, G(x) - 0. Therefore F(x) = c. But F(Ir) = 0, so that
F(x) - 0. Accordingly f (x) = 0 almost everywhere.

COROLLARY 11.2.5. The sequence of sines and cosines satisfies all the
conditions A-F of Theorem 8.9.1 for f e L2[ - Ir, 7T]. In particular, we have
the Parseval identity

1 f 00f (x)]2 dx = Jao2 + 1 (ant + bn2)[
IT Tr n=1

1

fir
1 'an =f(x)cosnxdx, bn =f(x)sinnxdx.

Ir 7r - 7T

(11.2.7)

11.3 The Miintz Closure Theorem. Suppose that one has been given
a sequence of powers {xPk}. Under what circumstances can continuous func-
tions or functions in L2 be approximated by linear combinations of these
powers? Miintz gave an extensive discussion of this problem and used a
method that is a beautiful application of Theorem 8.7.4.
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LEMMA 11.3.1 (Cauchy). If

Dn =

then

1 1 1

al + b1 a1 + b2 ... a1 + bn

1 1 1

an±b1 an+b2 an+bn

(11.3.1)

n

fJ (ai - a,)(bi - b,)

Dn = z>' n (11.3.2)

IT (ai + b,)
i,j = 1

Proof : Regard the ai's and the b;'s as 2n independent variables and think
of Dn as expanded and put over a common denominator. This common

n
denominator is IT (ai + b;). Each individual term is of degree -1 so that

i,j = 1
Dn is of degree -n. The common denominator has n2 factors and hence is
of degree n2. It follows that the numerator must be a polynomial of degree
n2-ninthea'sandb's.

Note that if ai = a;, the ith row and the jth row of Dn will be identical,
and D. = 0. A similar observation holds if bi = b;. It follows that the

n n
numerator must contain a factor of the form JT(aj - a;) IT(bi - b;).

i>j i>j

Each product here contains 1 + 2 + + (n - n(n - 1)
1) = 2 factors so

that the complete product contains n(n - 1) factors. The degree is there-
fore correct and we must have

n
i >jDn = Cn

(ai - a,)(bi - b,)
n

IT (ai + b,)
i,j=1

(11.3.3)

where cn is a constant independent of the a's and b's. We shall show that
Cn = 1.

1 1

a1+b1 a1+bn

Note that anDn =

an an

a.+b1 a.+bn
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a1+b1 a1+bn

1LmnDn =
ao

1 1

an-1 + b1 an-1 + bn

1 1

Also

lim lim anDn =
bn-+ oo an-+ ao

so that

But from (11.3.3),

1 ... 1 0
a1 + b1 a1 + bn-1

(11.3.4)

= Dn_1, (11.3.5)

1 1

an-1 + b1
... an-1

+ bn-1

lim lim anDn = 1.
bn-- oo an * ao

n-1

n-1 n-1
an JJ (an - a,) (bn - b;)

anDn Cn j=1 j=1
n n-1

Dn-1 cn-1 ft (an + b) JT(bn
+ a )

j=1 j=1

it follows that

lim lim anDn = 1 = Cn
bn- * ao an-- ao D Cn-1 n-1

Therefore, C. = Cn-1. It is easily verified that c1 = 1. Hence an = 1.

LEMMA 11.3.2. Let pi 0 p,. Then, assuming pi, q > -1,

(11.3.6)

(11.3.7 )

(11.3.8)

1

62 = min I x4 - alxpi - a292 anxpnl2 dx
ak 0 IT

n pi - q 2

12q+li=1 pi+q+
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4 pi p2 pn

Proof: From Theorem 8.7.4, 62 =
g(x , x , x , . . . , x . Now (x, x's) _

1 g(xpi, xp2, ,xpn)
x°`x' dx = 1 . Therefore

0 oc + # }- 1

1 1

p1 + P1 + 1 p1 + pn + 1

g(xpi xpn) =

n n

fi (pi - pi)2 ft (pi + pi + 1)
i>j i,j=1

A similar expression is found for g(x4, x " 1 ,..., xpn). We then have

g(x4, xpi, ... , xpn)

&111 xpri)

pn+p1+1 pn+pn+1

(q - p1)2(q - P2)2 ... (q - pn)2
(q+p1+ 1)(q+p2+1) ... (q+Pn+1) (q+q+1)(p1+1+q) .. (pn+l+q)

1 IT (q - pi)2
2q+ 1i=1(q+pi-+- 1)2

THEOREM 11.3.3 (Mi ntz). Let {xp} be a given infinite set of distinct
powers with p > -1. In order that this system be closed in L2(0, 1) it is neces-
sary and sufficient that the exponents {p} contains a sequence {pi} such that
either

00

or

or

lim pi = -, (pi + ) = oo,
i=1

lim pi = p, - < p < oo,

pi = 00,
00

Pi 0, 1 - = oo.
i=1 Pi

Proof : Note that the condition p > -I insures that xp e L2(0' 1). The
powers 1, x, x2, ... , are closed in L2(0, 1) by Theorem 11.2.1. Hence, {xp}
will be closed in L2(0' j) if and only if each power x4, q = 0, 1, ... , is
approximable. This follows from Theorem 11.1.8. Thus, for each q, we must
be able to find a sequence P11 P2, ... , such that

1

lim min ix4 - a1xp1 - a2xp2 - - anxpnl2 dx = 0.
n--.oo ai 0
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Referring to Lemma 11.3.2, for each q we must be able to find a sequence
{Pk} such that

lim ft(_pZ q 2 = 0. (11.3.12)
n--* 00 1i=i p:+q+

Sufficiency. Suppose that {p} has a finite limit point p with p 0 -1. Now

lim pi q = p q (11.3.13)p+q+l
Since p > -I and q > 0, it is easily verified that -1 < p q < 1.

p -f-- q I- I
Given an E > 0, we have for i > nE, 2 < 1 - E. Hence,
(11.3.12) holds. pi + q +

1

Suppose we can select a sequence (p} with (11.3.9) holding. Write

l A q 2 =
i=1 pi+q-+- 1 i=1

1 -pi+2 1n-I' 1 +pi+2, (11.3.14)
q+ I i=1 q+

Since lim pi = -J, we have, ultimately, 0 < pi + A < 1. Therefore,
q+ I

0<1 -pi+1<1
q + I

and the numerator of the right hand of (11.3.14) remains bounded. More-

over, since (pi +) = oo, the denominator diverges to + oot. Condition
i=1 q + 4

(11.3.12) is therefore fulfilled.
Finally, suppose we can select a sequence with (11.3.11) holding. Write

ui(_p
- q

f1+_± 1 (11.3.15)i=1 pi + q+ 1 i=1 pi i=1 pi

In view of the hypothesis, the numerator converges to 0 while the denom-
inator diverges to + oo. Hence criterion (11.3.12) is fulfilled.
Necessity. Suppose that the set of exponents {p} contains no sequence {pi}
fulfilling either (11.3.9, 10, or 11). Then {p} must be either

00

(A) a sequence {pi} with lim p, (pi + 1) < oo, or
i=1

00 1

(B) a sequence {pi} with lim pi = oo, - < oo, or
i=1 pi

(C) a sequence {pi} which can be split into two sub-sequences {ri}, {si},
one of type (A) and one of type (B).

t See, e.g., K. Knopp [1], p. 219.
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In case (A), refer to (11.3.14). Select a q 0 pl, p21 .... The numerator
converges to zero if and only if one factor vanishes. This is impossible and
hence the numerator has a positive limit. Similarly, the denominator con-
verges to a positive limit. This means that (11.3.12) does not hold and xQ
cannot be approximated arbitrarily closely by xvi, XV 2, ... .

In case (B), refer to (11.3.15). If q 0 pl, p21 .... then the numerator and
the denominator of its right hand side converge to a nonzero value. Again,
arbitrarily close approximation of x° is impossible. _ I r 2

In case (C
°°

H si - g
i=1 si+q+ 1

oo - 2

0 < b < oo. Then, ll(_pi q = ab. Again, (11.3.12) does not hold.
i = i pi + q + 1

THEOREM 11.3.4 (Miintz). Let {p} be a sequence of distinct nonnegative
numbers. In order that {x9} be closed in C[0, I] it is sufficient that

One of the p's is 0 and {p} contains a sequence {pi}
00

or that

for which lim pi = oo and I 1 = oo,
i=1 pi

pi 00

(11.3.16)

One of the p's is 0 and {p} contains a sequence {pi}
for which lim pi = p, 0<p< oo. (11.3.17)

i*o0

Proof: Let n > 0, pi > 0, then
N

xn _ aixpi
i=1

sn
0

nl

=n
x

N air it "i-i
0

to-1 _ I
n

dt
i=1

N pi-i
tn_1 _ aipit dt (11.3.18)

ni-1

N
aipitPi-i 2

to-1 dt .

i=1 nf

If (11.3.16) holds, pi - 1 ---->. oo, and
00

00l: 1<I 1

2 pi pi
00 The set of

functions xvi-1, x92-1, ... , is therefore closed in L2[0, 1]. By the inequality
N

(11.3.18), for n - 1 = 0, 1, 2, ... , max xn - aix1i can be made
0<x<1 i=1

arbitrarily small by appropriate selection of ai. The set xvi, X"2, ... , is
therefore closed in x, x2, .... By adjoining 1, the augmented set will be
closed in 1, x, x2, ... and hence in C[0, 1].

Suppose next that (11.3.17) holds and that p > 1. According to Theorem
11.3.3, {i'} will be closed in L2[0, I] and the remainder of the proof is as

= b, where, as we know from the discussion, 0 < a < oo ;
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above. If, however, p < 1, select a constant c > 0 such that cpi > 1, ulti-
mately. Then, {xc"t} is closed in C[0, I]. Take an f (x) E C[0, I] and let
g(x) = f (xc). For appropriate constants ai.

Setting x' = xc,

max
0<x-<1

max
0:5x,:51

n

f(XC) -
i=1

n
f(x') - ax'vi

i=1

< E.

< E.

11.4 Closure Theorems for Classes of Analytic Functions

LEMMA 11.4.1. Let C be a rectifiable arc (with end points a and b included)
of length L. Let f (z) be defined on C, be continuous, and have w(o) as its modulus
of continuity. Let zo = a, z1.... , zn =b be points of C taken in order along
C. Suppose that Iz - zi I < 6 for z in the arc zizi+l, i = 0, 11 ... , n - 1.
Then,

n-1
f (z) dz - I f (zi)(zi+1 - zi) < w(6)L. (11.4.1)

c i=0

n-1 n-1
Proof : f (z) dz - G f (zi)(zi+1 - ZZ)

= I (f (z) - f (zi)) dz
C i=0 i=0 zZ

n-1 zZ+iI If (z) - f (zi) I ds.
i=0 zZ

Along C from zi to zi+1, we have Iz - ziI < 6 so that If (z) - f (zi)I < w(6).

Hence,
n-1 zZ+i n-1 zZ+1I If (z) - f (z) I ds < I w(6) ds = w(6)L.
i=0 zi i=0 z=

DEFINITION 11.4.1. A Jordan curve in the plane is a homeomorphic image
of a circle. That is, it is a point set whose points (x, y) can be represented
parametrically x = f (6), y = g(O) where (a) f and g are continuous and
periodic functions of period 2ir and (b) f (01) = f (02), g(01) = g(02) implies

1

(61 - 02) = integer.that
27T

In the work that follows, some facts about Jordan curves will be used
without proof.

THEOREM 11.4.2 (Runge). Let C be a Jordan curve and let f (z) be analytic
in the interior of and on C. Given e > 0, we may find a rational function R(z)
whose poles lie exterior to C and such that

If (z) - R(z)I <.6 (11.4.2)
for z inside and on C.
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Proof: We may find a contour C' consisting of a finite number of analytic
arcs which contains C in its interior and inside and on which f (z) is still

analytic. For z inside and on C, (z) = 1 ,
f (t) dt. For arbitrar ty lf

27r2 c't - z

and t2,
f (t1) - f (t2) - f (t1) - f (t2) - f (t2)(t1 - t2) so that
t1 - z t2 - z tl - z (t1 - z) (t2 - z)

f (t1) f (t2)
t1-z t2-z

If(t1) -f(t2)I + If(t2)1 It1- t21

It1-zI It1-zlit2-zI

t

Figure 11.4.1.
(A)

Figure 11.4.2.

1

Now let t1 and t2 lie on C' and I t1 - t2I < b. Furthermore, set w(b) = the
modulus of continuity of f on C', M = max If (z)I, and p = minimum dis-
tance from C to C'. Then, for z in and on C and t on C',

f (t1) f (t2)
t1-z t2-z

w(b) Mb

P P2

Therefore for t on C', f (t) is uniformly continuous for z in and on C: Itt - z y

has a modulus of continuity SZ(b) independent of z.
Given an E > 0. Let L' be the length of C'. Determine b so small that

SZ(b) < 27rE/L'. Determine sufficiently many points to, t1, . . . , t,z = to on C'
so that I t - ti I < b, t e titi+l, i = 0, 1, . . . , n - 1. By Lemma 11.4.1,

1 f (t) dt 1 nrr1 f (ti)
I2lTijc' t-z 27ri 0

t-z(ti1-ti) ()L < E. The rational func-
27r

tion R(z) =
1

'-i f (ti) (ti+1
- ti) fulfills the requirements of the theorem.2

I
7ri i = o ti - z
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THEOREM 11.4.3 (Runge). Let C be a Jordan curve and let A(C) designate
the linear space of functions that are analytic inside and on C. Then the powers
1, z, z2, ... , are closed in A (C).

Proof : We shall show first that if t is a fixed point exterior to C, the

particular function
1

can be uniformly approximated inside and on C.t - z
There are two cases to consider. (A) The point t lies so far from C that a
line e can be drawn separating t and C. (B) No such line can be drawn. In
case A, it is clear that we can draw a circle G that contains C in its interior
and such that e' separates t from G.

(B)

Figure 11.4.3.

Let zo be the center of G. Then we have,

1 1 z - zo
t-z t - zo (t-zo)2

This series converges uniformly in z for

(11.4.3)

< p < 1. All points z in
z - zo

t - zo
G and hence inside and on C satisfy this inequality. The convergence is there-
fore uniform inside and on C. If e > 0 is prescribed, we need only take
sufficiently many terms of (11.4.3) and arrive at a polynomial z which

1
approximates uniformly inside and on C.t - z

A simple modification of the expansion (11.4.3) allows us to conclude as

much for the particular functions
c

n n = 11 2, ... , and hence for
1 (t - z)

any polynomial in
t

.-z
In case B, we proceed as follows : Since C is bounded, we can go out far

enough and find a point t* that can be separated from C by a line e. Join t
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and t* by a curve L lying exterior to C. Let d be the minimum distance from
L to C. Select a sequence of points on L, t = to, t1, . . . , tN = t*, such that
I ti+1 - ti l < d, i = 0, ... , N - 1. Now

1 1 t - tl (t - tl)2
+ -.... (11.4.4)

t - z tl - z (t1 - z)2 (t1 - z)3

This series converges uniformly and absolutely for
t - tl

< r < 1; hence,
1 tl - z

in the exterior of every circle I z - tl I > - I t - t. Since I t - tl I < d, the
r

series converges uniformly inside and on C. If e > 0 is prescribed, we can
therefore find an integer N1 such that

1 1
Pt-z N1 tlz E< 2N'

z inside and on C, (11.4.5)

where PN1 designates an appropriate polynomial of degree N1:

P 1 = N1
Ak

Nl tI -Z k = (t, -

By a similar argument, we can approximate Ak by a inpolynomial
L_ V(tl -

t2 z
uniformly inside and on C up to an error of

2N(N1 + 1)
. Combining-

these individual approximations, we arrive at a polynomial PN 2(
t2

1

zsuch that

1PN - P
N1 tlz 2 (t2-z < E

z inside and on C. (11.4.6)
2N

We can therefore set up a chain of approximations,

1

PNk (tk z
- P ---

Nk+ 1 tk+1 - z

E z inside and on C,
2N' k= 1,2,...,N- 1. (11.4.7)

Once we have arrived at to = t*, we use case A to change to an approxima-
tion in powers of z :

PN - P(z) S

<2 z inside and on C.

The grand combination of these inequalities leads to

1

t-z - P(z) <e, z inside and on C (11.4.8)

for an appropriate polynomial P(z).
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The theorem is now completed by using Theorem 11.4.2. Let f (z) be
analytic inside and on C. Then we can find points t1.... , tM exterior to C
and constants al, ... , am such that

M ak
f(z) - k=1 z - tk 2

z inside and on C. (11.4.9)

But for each k, we can find a polynomial PMk(z), of appropriate degree
Mk, such that

ak

z - tk
E

2M
z inside and on C, k = 1,2,...,M.

(11.4.10)

By combining these inequalities we obtain a polynomial P(z) for which

If (z) - P(z) I < E, z inside and on C.

Theorem 11.4.3 can be extended. It is sufficient to assume only that f (z)
is analytic inside C and continuous inside and on C. The proof of this exten-
sion depends upon a continuity theorem for mapping functions. We cannot
go into this matter in detail. It must suffice to present the leading ideas.

Let B be a simply connected region whose boundary is a Jordan curve.
A sequence of bounded simply connected regions B,z will be said to con-
verge to B from the outside if

(A) Each B,z contains B (the closure of B).

(B) Bn contains Bn+i
(C) The set Bl n B2 contains no point exterior to B.

For each B, we can find such a convergent sequence. Let z = 0 be interior
to B. Map Bn conformally onto the unit circle IwI < 1 by means of cn(z).
B is mapped by O(z). These mapping functions are fixed by requiring that
cn(0) = c(0) = 0; On'(0) > 0, 0(0) > 0. Map Bn onto B by means of w =
mn(z); m-(0) = 0, mn'(0) > 0.

THEOREM 11.4.4. With the above notation,

n lr On(z) = O(z)
(11.4.11)

lim mn(z) = z
n- cc

the limits holding uniformly in B.
For a proof of this theorem, the reader is referred to Walsh [11, p. 32.

DEFINITION 11.4.2. Let C be a Jordan curve lying in the z-plane. W(C)
will designate the normed linear space of functions that are analytic in C
and continuous inside and on C. The norm is defined by

. - PMk(z)

II f 11 = max If (z) I. (11.4.12)
ztn'
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THEOREM 11.4.5 (Walsh). The powers 1, z, z2, ... , are closed in W(C).

Proof: Let C be the boundary of the finite region B. Let Bn be a sequence
of simply connected regions that converge to B from the outside. Let f (z)
be analytic in B and continuous in A Then f (m,,(z)) will be analytic in B.
Given an E, we can by Theorem 11.4.4 select an n such that

If (mn(z)) - f (z)I < , z E B.
2)

By Theorem 11.4.3, we can find a polynomial P(z) such that

If (mn(z)) - P(z)I , z E
2

Combining these two inequalities yields the required approximation.
Uniform approximation in the complex plane by polynomials has one

feature that distinguishes it sharply from the real case. If a sequence of
analytic functions converges uniformly in a region, the limit of the sequence
is analytic. Thus, in regions, at least, only analytic functions can be approxi-
mated uniformly by polynomials. However, this does not rule out the possi-
bility of more general functions being approximated uniformly on sets that
lack interior points. Nor does it rule out the possibility of several distinct
analytic functions (noncontinuable one to the other) from being simul-
taneously approximated over mutually exterior regions.

A half century of work on the problem of uniform approximation in the
complex plane by such mathematicians as Runge, Walsh, Lavrentieff,
Keldysch, and Mergelyan has led to the following definitive theorems.

DEFINITION 11.4.2. A closed set S in the plane will be said to separate
the plane if the complement of S is not connected.

G"a
(A)

Figure 11.4.4.

(B)

THEOREM 11.4.6. Let S be a closed bounded set that does not separate the
plane. Let f (z) be continuous on S and be analytic at interior points of S.
Then f (z) may be uniformly approximated on S by polynomials.
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We formulate a converse as a separate theorem.

THEOREM 11.4.7. Let S be a closed bounded set. If every function f (z) that
is continuous on S and analytic at its interior points can be approximated
uniformly on S by polynomials, then S does not separate the plane.

Ex. 1. Let B1, B29 ... , Bn be n mutually exterior bounded regions, with
contours C1, ... , Cn as boundaries. If fk is analytic in Bk and continuous in
Bk, k = 1, 29 ... , n, then even though the functions fk may have nothing to do
with one another (i.e., are not analytic continuations of one another) we can
find a sequence of polynomials that converges uniformly to f k in Bk simul-
taneously for k = 1 , 29 ... , n.

Ex. 2 (Walsh). Let C be a Jordan are. If f (z) is continuous on C then it can
be approximated uniformly by polynomials in z. When C is a segment of the
real axis then this reduces to Weierstrass' theorem.

We terminate this section with a discussion of the closure of the powers
1 , z, z2, ... , in the Hilbert space L2(B). Here again, the nature of the region
B plays a crucial role.

A bounded region B of the complex plane whose boundary C is a Jordan
curve has the following property : the complement of B U C is a single
simply connected region whose boundary is exactly C. The class of regions
with this property is more extensive than the regions bounded by Jordan
curves. For such regions B, the powers are closed in L2(B).

Ex. 3. B is the disc IzI < 1 with 0 < x < 1 excluded. B does not have this
property, for the complement of B U C is IzI > 1 whose boundary IzI = 1 is
only a part of C.

THEOREM 11.4.8 (Carleman-Farrell). Let B be a bounded simply connected
region with boundary C. It is assumed that the complement of B U C is a
single region whose boundary is exactly C. Then, the set of functions {zn},
n = 0, 1.... is closed in L2(B).

Proof : As in Theorem 11.4.5, the proof depends upon the continuity of
mapping functions.

Let B. be a sequence of regions bounded by Jordan curves which con-
verge to B from the outside. Let w = mn(z) map Bn conformally on B,
mn(0) = 0, mn'(0) > 0. We assume that z = 0 is interior to B. (For the
possibility of this type of convergence and for the uniform continuity of
the mapping functions, (11.4.11), the reader is referred to Walsh [1], p. 35.)

Let f (z) E L2(B). Consider the composite function

fn(Z) = f (mn(z))mn'(z). (11.4.13)
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fn(z) is analytic throughout the interior of B. We shall show first that

lim If (z) - f n(z) I2 dx dy = 0. (11.4.14)
n-00

B

Let B' designate any closed Jordan region contained in the interior of B.
Then,

ffIf - fn12dxdy = If- fnl2dxdy + ffIf - fnl2dxdy. (11.4.15)

B B' B - B'

Now m,,(z) -* z, mn'(z) -* 1 uniformly on B'. Hence, fn(z) -*f (z) uniformly

on B' and this implies that ITii - fn 12 dx dy - * 0. Now, since If - fn12 <

2If12+2Ifni2, B

If-fnl2dxdy <2 If I2dxdy+2 Ifnl2dxdy. (11.4.16)

)JB. B-B' B-B'

Given an E > 0, since f e L2(B), we may select a closed set G B such

that If 12 dx dy - If 12 dx dy < E/6. If B' is now chosen so that G B'
B G

we have 2 If 12 dx dy < E/2. Now,

B-B'

I fnl2 dx dy = If (mn(z))I2 I mn'(z)I2 dx dy = If (w)I2 dAw

B-B' B-B' Sn

where Sn is the image of B - B' under w = mn(z) and where dAw is the
area element in the w variable. Now, by the continuity of the mapping
function, for sufficiently large n, Sn lies in B - B' and hence, as we have
just seen,

2 I fn l 2 dx dy < E/2. (11.4.17)

B - B'

Combining these inequalities leads to (11.4.14).
Since f n(z) is analytic throughout Bn, it is analytic in Bn+1. Hence by

Theorem 11.4.3, we can find a polynomial p(z) such that

I fn(z) - p(z)I < E, z E Bn+1 , (11.4.18)
and therefore

I fn(z) - p(z)12 dx dy I fn(Z) - p(z) I2 dx dy
B Bn + 1 (11.4.19)

ofBn+l <E2.area ofB1.
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By combining (11.4.14) and (11.4.19), we can find a polynomial p(z) such

thatff If (z) - p(z) I2 dx dy is arbitrarily small. The powers are therefore
B

closed in L2(B).

COROLLARY 11.4.9. If B is a region as indicated, then orthonormal poly-
nomials, knzn +0 , kn > 0, in L2(B) possess the properties A-F of Theorem
8.9.1.

11.5 Closure Theorems for Normed Linear Spaces. One closed
system may be used to generate other closed systems.

THEOREM 11.5.1. Let X be a Banach space (i.e., a complete normed linear
space). Let {xk} be a sequence that is closed in X and such that

limsupllxnlll1n= 1, 0 <a< oo. (11.5.1)

Let {zn} be a sequence of distinct complex numbers such that

0<Iznl <p<a-1. (11.5.2)

Then the sequence of elements
00

yn=Iznkxk, n = 1,2,... (11.5.3)
is closed in X. k=1

Proof : By equation (11.5.3) we mean, of course, that

lim
m- ao

M

yn
znkxk

k=1
=0, n=1,2,..

00To show that the series I zkxk converges to an element y (we omit the sub-
k=1

scripts), consider the sequence of elements

Now,

Iiy(V+q) - y(p) II =

py(P)=Izkxk.
k=1

qr
G zkxk

k=p+1

qI II xkIl I zkl.
k=p+1

(11.5.4)

(11.5.5)

00

In view of (11.5.1), the radius of convergence of the power series l II xk II zk
k=1

is r', so that for z in the range IzI < p, this series is convergent. For a given
e > 0, we can find N so large that for all p > N and all q > 1,

q

I IIxkII I zkl < E.
k=p+1
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The same holds for I I y(v+v) - y(P) II . The sequence {y(P)} is therefore a Cauchy
sequence. Since X is a complete space, there is a y such that

-II=0.JIIy
Let L E X*, then IL(y) - L(y( ))I < IILII IIy - y(P)II. Hence,

00

L(yn) = I L(xk)znk, n = 1, 2, ...
k=0

00

Consider now the power series f (z) = I L(xk)zk. We have
k=0

I L(xk)I < IILII IIxkII

Therefore, by (11.5.1), f (z) is analytic in I z I < o.-'. Suppose that L(yn) = 0,
n = 1, 2, . . . ; then , f (zn) = 0. Therefore the zeros of f (z) have a limit point
interior to IzI < a-1. By the uniqueness theorem for analytic functions,
f (z) - 0. This implies that L(xk) = 0, n = 1, 2, .... Since {xk} is assumed
complete, it follows that L = 0. Thus, the only solution of L(yk) = 0,
k = 1, 2, ... , is L = 0. By Theorem 11.1.7, {Yk} is closed in X.

00

COROLLARY 11.5.2 (Szasz). Let F(z) = I ckzk, ck real, be a fixed power
k = 0 ao

series and let r > 0 be its radius of convergence. Assume that 1 = 00
n=1 kn

where k1 < k2 < is the sequence of all those integers > 1 for which ck 0-
If now {tn} is a sequence of distinct real numbers satisfying

0<Itnl <r1<r, (11.5.6)
then the sequence of functions

fn(x) F(tnx), n = 1, 2, ... ,

is complete in L2(0, 1). If co 0, it is also complete in C(0, 1).

(11.5.7)

Proof : Set xn = Cnxn. Theorems 11.3.3 and 11.3.4 imply that {cnxn} is
closed in L2[0, 1 ] and in C[0, 1]. Now, 11 cnxn I I C[ o,i ] = I cnI and I I cnxn I I L2[ o,1 _

I cnI . Hence, Jim sup IIc xnIIlln = Jim sup lc ljn = 1 r. The corollary
2n 1

n nI !

now follows.

Ex. 1. Let F(z) = (1 + z)4 where s is real and : 0, 1, 2, .... Under these
conditions, none of the Maclaurin coefficients of F(z) vanishes, and r = 1. Let
{tn} be a sequence of points satisfying I tnl 1 - e, n = 0, 1, .... Then, (1 + tnx)s
is complete in L2[0, 1] and in C[0, 1].

A sequence that is "sufficiently close" to a complete sequence is itself
complete. We present two theorems to this effect.
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THEOREM 11.5.3 (Birkhoff). Let H be a Hilbert space and {xn*} be a
complete orthonormal system. Let {yn*} be a second orthonormal system. If

00

II X.* - yn* II 2 < oo,
n=1

then {yn*} is also complete.

Proof : (1) If for some N > 0,
00

(11.5.8)

I Ilxk* yk*II2 < 1, (11.5.9)
N+1

then the system xl*, x2*, ... , xN*, yN + 1 yN + 2 , is complete in H. For,
suppose there were an element w 0 orthogonal to all these. Then

00 00 00

IIwII2-II(w,xk*)I2= I I(w,xk*)I2= I I(w,xk*-yk*)I2
k=1 k=N+1 k=N+1

00 00

< I IIwII2
IIxk* yk* II2 = IIw112

I IIxk* -- yk* II2 < IIw112,
k=N+1 k=N+1

a contradiction. 00

(2) Suppose for some N, Il xk* - yk* II 2 < 1. Set
N+1

00

Zk = xk * - (xk*) y;*)y;* k = 1,2,...,N.
j=N+1

Then the system, z1, z2, ... , zN, yN+1, yN+2) , is complete in H. For let
w be orthogonal to these elements. Then

00

0 = (w, Zk) = w, Xk * - I (xk yj*) yj*
j=N+1

= (w, xk*) - (xk*l y;*) (w, y;*) = (w, xk*)
j=N+1

Therefore (w, xk*) = 0, k = 1) 2, ... , N. By part (1), w = 0.
00

To prove the theorem, select N so large that l II xk* - yk* II 2 < 1. Let S
N+1

designate the orthogonal complement of {y1, yN + 2) }, i.e., the set of all
elements orthogonal to these elements. For j > N + 1, and for 1 < k < N,

00

(Zk, y;*) = (xk*, y;*) - I (xk*, y2,*)(y,o*, y;*) = (xk*, y;*) - (xk*, yj*) = 0.
p=N+1

Hence zl, z2, . . . , ZN E S. Since z1, , ZN, yN + 1, , is complete, S cannot
contain elements other than linear combinations of z1, ... , ZN. Thus, S is
a finite dimensional space of dimension < N. Note further that the elements
yl*, y2*, ... , yN* are in S. Since they are orthonormal, they are independent
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and hence span S. The elements z1, z2, ... , zN are therefore linear combina-
tions of yl*, y2*1 ... , yN*. If, therefore, (w, yk*) = 0, k = 1, 2, ... , it
follows that w 1 z1, z2, ... , z, yN + 11 ... , and hence w = 0.

THEOREM 11.5.4 (Paley-Wiener-Boas). Let X be a nonmed linear space
and suppose that {xn} is closed in X. If {yn} is a sequence such that for some
number A,, 0 < A < 1, and for all finite sequences of constants a1, a2, ... , an,
we have

n

I ak(xk - Yk)
1

Mien {yn} is also closed in X.

<A
n

I akxk
k=1

(11.5.10)

Proof: Let Xi be the subspace of X spanned by {xn}. That is, X1 consists
n

of all finite linear combinations I akxk. Let L E X* with L(yk) = 0, k=
k=1

1, 2, .... We shall estimate the norm of L on X1.
n

L lakxk)
1

n

L I ak(xk yk
1

IILII
n

lakxk
1

< IILII
n

I akxk yk)
k=1

Hence, over X1, the norm of L does not exceed )IILII
By Theorem 11.1.5, we may extend L to the whole of X without increas-

ing the norm. Call the extension F :

F(xk) = L(xk), k = 1, 2 ... , (11.5.11)

II FII = IILIIx i.

Now, since {xk} is complete, F(xk) - L(xk) = 0, k = 1, 2) ... , implies that
F = L. Therefore IILII = II FII = IILII X1 < AIILII. Since 0 < A < 1, this im-
plies that L = 0. Therefore {yn} is complete and closed in X.

COROLLARY 11.5.5. Let H be a Hilbert space and let {xk*} be a complete
orthonormal sequence. Let {yk} be any sequence such that

n

I akxk* yk)
k=1

n

Iak12. 0 <A,<1 (11.5.12)
k=1

for every sequence {ak} of complex members. Then {Yk} is also complete. In
particular, (11.5.12) holds if

00

1Iixk* yk112<1.

k=1
(11.5.13)

n n 112

Proof: I I akl2 =
11

I akxk so that (11.5.12) implies (11.5.10). Note that
k=1 k=1
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under the assumption (11.5.13),
n

lak(Xk* Yk)
k=1

n

I ak I I I xk* Yk i l<
k=1

InI lak12

k=1

so that (11.5.12) holds with Al replacing A.

COROLLARY 11.5.6 (Schafke). If (11.5.10) holds with 0 < A < 2, hen {yn}
is closed if and only if {x} is closed.

Proof: We need only show that {yn} closed
n

(11.5.10) and the triangle inequality, lakxk
11k=1

11 n

Hence a x 11 <
1

k=1
k k - 1 -

(11.5.10), we have

n

akyk
k=

n

I IakI2 I Ilxk* YkII2
k=1 k=1

implies {xn} closed. From
n n

akyk akxI= kk1 I
1

Combining this once again with

I a(x -y) < aky (/11.5.14l )
k=1

k k k
11 1 -A 11k=1 k

11.

Now if 0 < A <j then 0< A
< 1, and (11.5.14) implies by Theorem

11.5.4 that {xn} is closed.
1 - A

Ex. 2 (Duffin-Eachus). Let L2[ -ir, 7r] designate the space of complex valued
functions of a real variable which are measurable on [ -?r, Ir] and for which

(f, f) =
f 7T

f (x)f (x) dx < oo. Let {An}, n = 0, +1, +2, ... , be a sequence of
_

7r

complex numbers such that
log 2

In - nl <Q < =.22...,n =0, ±1, +2,.... (11.5.15)

Then the sequence of "nonharmonic" oscillations {eiAnxli s complete in L2[ -Ir, 7r].

Proof : For simplicity of notation, think of the integers n = 0, -E 1, + 29 ...,
as indexed Il, I2, ... , and designate AI. by A. I An - InI < a, n = 1, 2, .... As

eilnx
one can verify using Theorem 11.2.4, _ is a complete orthonormal set for

v 2Ir
L2[ -7r, 7r]. Furthermore, if f e L2[ -Ir, 7r], then

i
Iix'f (x)II = J(fir Ix'.f (x)i2 dx < fr' IIfIi-

In Corollary 11.5.5, set
1

e'Akx

ilkx Yk =xk
-N/ 2r

e
-N/27r
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Then

G - x' G akij()k - Ik)j
j=13 ! k=1

For arbitrary constants a1, . .

n

an,

ak (yk - xk * )
k=1

00 I.j

j=1 j

V2,7,

n eilkz
I aki'(Ak - Ik)j -k =1 _2-ff

n ebl kz ao i j (Ak - 'k)
I ak = 'ik=1

I
1 11

ao 1 n eilkz

<I x'I ak2'(Ak-Ik)'
j=1 j! k=1 V2-ff

ao 7, j n
_ I . I Jak12 1Ak - Ik12j

j=1 j k=1
ao Q171 n n

< j Jak12 =
(e'g'T

- 1) Jak12
1 k =l k =l

log 2
Since o < , ea'T - 1 < 1, and condition (11.5.12) is fulfilled.

IT

Ex. 3. Let {hn*(z)} be complete and orthonormal for L2(B). If fn(z) E L2(B)
00

and if I ff lhn *(z) - fn(z)I 2 dx dy < 1, then { fn} is complete in L2(B). In par-
n=1

B 00 n + 1 2

ticular, if B is the unit circle,
I ff

zn - fn(z) dx dy < 1 implies
n=1

that {fn} is complete. IZI <1

NOTES ON CHAPTER XI
11.1 Davis and Fan [I] has a generalization of Theorem 11.1.7.
11.2-11.3 Kaczmarz and Steinhaus [1], Natanson [1].
11.4 Walsh [2], Chapter I. Behnke and Sommer [1], pp. 244-249. For

a proof of Theorems 11.4.6, 11.4.7 see Walsh [2], pp. 367-371.
11.5 For Theorem 11.5.1 Kaczmarz and Steinhaus [1], p. 145, Davis

and Fan [1]. Theorem 11.5.3 is due to G. D. Birkhoff. The present formula-
tion and proof is due to G. Birkhoff and G.-C. Rota [1]. For Theorem 11.5.4,
R. P. Boas [1], Davis and Fan [1]. For additional references to this type of
result see Buck [3], pp. 349-350.

PROBLEMS

1. If {xn } is complete in X and if x, = ally,

x2 = a21y1 + a22y2

Yk - Xk* = 1 eilkz (ei(Ak-Ik)x - 1).
V2,

1 n eiIkX

then {yn } is complete in X.
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2. In f2, x1 = (all, 0, 0, 0, ... )

x2 = (a21, a22, 0, 0, 0, . .. )

x3 = (a31, a32, a33, 0, 0, 0) . . . )

If aii > 0, prove that {xi} is closed.
3. If a sequence {x,,} is complete for a space X, it is complete for every

subspace.
1

4. Let w(x) E C[0, 1] and
w(x)

> s > 0 there. The set {w(x) fn(x)} is closed in

L2[0, 1] if and only if {fn(x)} is.
5. Discuss the second Riemann derivative (Prob. 15, Ch. 1) as an extension

(in the sense of linear functionals) of the ordinary second derivative.
6. If p(x) is a convex functional defined on a linear space X, the set of elements

x defined by p(x) < c is convex.
7. If C is a convex set in a linear space X, a boundary point of C may be

defined as a point x for which we can find two line segments xlx and xx2 such
that all the interior points of xlx are in C while none of the interior points of
xx2 are in C. Prove that the boundary of p(x) < c is given by p(x) = c.

8. Let X be a normed linear space and Y a linear subspace. Let x0 E X but
Y. A necessary and sufficient condition that inf Ily - x011 < d is that if

L E X* and L(x0) = 1, L(y) = 0, y e Y, then 11 L11 >
d

9. Give a second proof of this theorem in a Hilbert space.
10. The interval [a, b] is divided into n equal parts at a = x0 < x1 <

< xn = b. A function f (x) is in C[a, b], is linear between the xi and xi+1, and
f (xi) = yi = rational. The set of all such f's, n = 1 , 2, ... , is denumerable and
closed in C[a, b].

X
11. Let Tr(x) _ - , 0 < x < r; T,.(x) = 1, r < x < 1. If rn is the sequence of

r - - -
rationals lying in 0 < x < 1, is {T rri (x) } closed in L2[0, 1]?

12. Two solutions in L2[0, 1] to the moment problem

11

Jo
f (x)xn = mn n = 0, 19 ... ,

must be equal almost everywhere.
13. S consists of a finite or infinite set of disjoint closed intervals in [0, 1].

Prove that S is uniquely determined by its moments

mn = I xn dx, n = 0, 1, 2, ...
S

14. Remove one term from the trigonometric set of Theorem 11.2.4. The
resulting set is not complete in L2[ -ir, ir].
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15. Let 0 < a < ir. Set f (x) = -1 for -7r - a < x < -it + a, f (x) = 0 for
-7r + a <x <ir -a,f(x) = 1 for 7r - a <x <Ir + a. Show that

+a sin nx
f(x)cosnxdx=0.

i_IT_a

Hence, show that 1, sin x, cos x, ... , is not complete in L2[c, d] with c < -Ir,
d >Ir.

16. Consider the space of complex valued functions of a real variable x that

are measurable on [ -Ir, Ir] and for which
f7T

I f (x)12 dx < oo. Prove that the set
_

7T

of functions {einx } n = 0, ± 1, + 2, ... , is complete in this space.
1

17. Let Hn be the n x n matrix whose i, jth element is . (The
[1! 2! ... (n_ 1)!]4 i + j - 1

Hilbert matrix.) Show that det Hn = Obtain an asymp-

totic expression for det Hn as n --* oo and compare with the exact value when
n = 4.

18. Let ai, bi be distinct and set

A(x) = (x - a1)(x - a2) ... (X- an),

B(x) = (x - bl)(x - b2) ... (X- bn),

A(x)
Ai(x) _

Bi(x)

A (ai)(x - ai)
B(x)

B'(bi)(x - i)

1
If C designates the matrix (ai - b, , then C-1 = (ci;) where

ci; = (a; - bi)A;(bi)Bi(a;).

(_ 1)i+3 (n _}_ i - 1)r (n .+ j - 1)!
19. If Hn 1 = si;, then si; _

(Cf. Prob. 17.) i + - 1 [(i - 1)! (i - 1)!]2(n - 2)! (n - j)!

20. Is the set of functions x, x, x , ... , closed in C[0, 1]?
21. The set of functions x1010, x1010+1, x1010+2. . . . , is closed in L2[0, 1].
22. Let pn be the nth prime number. Then xv', xp2,... , is closed in L2[0, 1].
23. Does the Muntz theorem hold as stated for an arbitrary interval [a, b]?

24. Formulate a theorem as to when f (x)xAn dx = 0, n = 0, 1, ... , implies
f(x)-0. 1 0

25. If f e L2[0, 1] and mn = f (x)xn dx, then {mn} E f2. However, the con-
verse doesn't necessarily hold. o

1 1 1

26. The sequence
x -1 1 ' x -1 2 ' x 1 3 ' ' , is complete in L2[0, 1].

27. If 0 < a < b, the sequence 1 , log (x + 1), log (x + 2), ... , is complete in
L2[a, b].
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28. The sequence fn(z) = nzn n = 1, 2, ... , converges to 0 uniformly on

every closed subset of I z ( < 1, but lim ff I f n (z) 12 0 0.
n-- ao

IzI <1

29. Let A(C) be the space of functions that are analytic in C: Izl < 1 and
continuous in I zI < 1 with II f II = max 1/(z)!. If one of the powers is omitted

IzI <1
from the sequence {zn}, n = 0, 19 ... , the resulting sequence is not closed in the
space.

30. Let C designate a circle. The origin is assumed to be exterior to C. If
w(z) is in A(C) and does not vanish in the closed circle, then the sequence w(z),
zw(z), z2w(z), ... , is closed in A(C). In particular, the sequence zn, zn+l, ... is
closed in A(C) for any n. Generalize.

31. If B is bounded and multiply connected, then 1 , z, . . . . . . . . a r e not closed
in L2(B).

32. If f (z) is continuous on IzI = 1, it can be approximated uniformly by
linear combinations of 1, z, z2, ... , z, 22, ....

33. Let C be a smooth arc and let f (z) be continuous on C. Show that

fc
f (z)zn ds = 0, n = 0, 1, ... ,

implies f (z) - 0. Generalize. What if C is a closed curve?
34. Let {xk * } be a complete orthonormal system for a Hilbert space H. Show

that x1 * - x2 *, x2 * - x3 *, x3 * - x4 *, ... , is also complete. The conclusion may
be false if {Xk*} is merely complete.

35. In a Hilbert space, let {x*} be complete and orthonormal. Let {yn } be
an arbitrary sequence for which (xn *, yn) : 0 n = 1, 29 .... If

1: 1 (xn yn )00

n=1 (Yn' yn)

2)
< 1,

then {yn} is complete.



CHAPTER XII

Expansion Theorems for Orthogonal Functions

We have seen that under fairly general circumstances, Fourier expansions
converge in the mean to the elements that gave rise to them. But for many
purposes of mathematics, convergence in the mean is not sufficiently strong :
we may want pointwise convergence, or even uniform convergence. In the
present chapter we take three orthogonal systems and develop expansion
theorems for them. They are (1) The sines and cosines, (2) The Legendre
polynomials, (3) Complex orthogonal polynomials. In many ways, the be-
havior of (1) and (2) are very similar. The complex analytic case (3) is quite
different and serves as a striking contrast to the first two.

1 1
12.1 The Historical Fourier Series. The system _ , _ sin x,'V27r

V T
1 1 1

cos x, sin 2x, cos 2x, .. . , is orthonormal on [-7r, 7r] with re-_

spect to the inner product (f, q) = f (x)g(x) dx. The Fourier series of
f (x) is therefore

a° °°
(12.1.1)f(x)ti-+ I akcos kx + bksin kx

2 k=1

where

Ex. 1.

k = f (x) cos kxdx, k = 0, 1, . .ra

151(x)=sinkxdx k = 1,2,...

f (x) =
1 0<x<,r

-1 -7r<x<0

(12.1.2)

4 sin 3x sin 5x
f(x) -- (sin x +

3
+

5
+

290
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Ex. 2.

Ex. 3.

Ex. 4.
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2
0<x<,r

2
-,r <x <0

sin 2x sin 3x
f (x) - sin x +

2
+

3
+

f(x) = Ixl, -I' <x <IT,

it 4 cos 3x cos 5x
f(x)

2
- (cosx +

32
+ 52 +

7r (

f (x) = x2, -r < x C r,

7r2
f (x) 4 cos x -

cos 3x
32

THEOREM 12.1.1. Let f (x) be continuous and periodic in [-7r, 7r], (f (Ir) =
f (-ir)), and suppose that the Fourier series of f (x) converges uniformly there.
Then it converges to f (x).

a °°
Proof : If ° + I ak cos kx + bk sin bx converges uniformly, it will con-

2 k=1
verge to a continuous function of period 27r. Call the sum g(x) :

a° 00

g(x) + I ak cos kx + bk sin kx.
2 k=1

Since we may integrate a uniformly convergent series term by term, we have
by orthogonality

(g, cos kx) = ak, (g, sin kx) = bk.

But by definition of the Fourier coefficients,

(f, cos kx) = ak (f, sin kx) = bk.

Hence (f - g, cos kx) = 0, k = 0, 1 , 2, ... , (f - g, sin kx) = 0, k = 1, 2, ... .
By the completeness of the sines and cosines (Theorem 11.2.3), f - g = 0
and hence f - g.

cos 2x -
2z

COROLLARY 12.1.2. Let f (x) be continuous and periodic in [-7T, IT] and
00

have Fourier coefficients ak, bk. Let I j ak l + I bk l < oo. Then the Fourier series
k=1

off converges absolutely and uniformly to f (x), -7T < x < 7r.
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Proof : Since l ak cos kx + bk sin kxl < l akl + lbkl, it follows from the
Weierstrass "M test" that the Fourier series converges uniformly and
absolutely. By Theorem 12.1.1, it converges to f (x).

Ex. 5. In Examples 3 and 4 just considered, the sum of the Fourier coeffi-
cients converges absolutely. Hence we may replace the by

The smoothness of the function drastically affects the size of the Fourier
coefficients : the smoother the function the more rapid is the decrease of
the coefficients. The study of the convergence of Fourier series is largely
the study of the interplay between assumptions of smoothness and con-
clusions about convergence.

THEOREM 12.1.3. Let f (x) be periodic in [-7r, 7r], (f (7r) = f (-7r), f'(7r) =
f'(-7T)) and be of class C2 there. Then, the Fourier series of f (x) converges
uniformly and absolutely to f (x).

1 l"
Proof: an = - f (x) cos nx dx, n = 1, 2, .... Integrate by parts.

-IT

an = f (x) sin nx
lrn

f' (x) cos nx
urn2

V
1 1 '- - f'(x) sin nx dx = - f'(x) sin nx dx

urn -,T Trn - ,
V - 1 f " (x) cos nx dx = - 1 fff f " (x) cos nx dx.

. 7rn2 Trn2 -IT

We use the fact that f (7r) = f (-7r), f'(IT) = f'(-7r). Since f" is continuous
on [-7r, 7r], we have l f"(x)l < M, -7r < x < IT, so that

2M
lanl < n2

A similar inequality can be derived for bn. The conclusion now follows by
applying Corollary 12.1.2.

In the above proof, the convergence of I l an l + l bn l is guaranteed by

the convergence of I 1 . The strength of the power n2 is unnecessary for
1n2

convergence and can be reduced to nl + E, e > 0. The appropriate smoothness
is that the derivative of the function satisfy a Lipschitz condition.

THEOREM 12.1.4. Let f (x) e Cn[-7r, IT], for some n > 1, and have period
2ir. (f (-ir) = f (ir), f'(-ir) _ f'(ir), ... , f (n)(-ir) = f (n)(7r).)Suppose that
f ( )(x) satisfies a Lipschitz condition of order a : 0 < a < 1. Then the Fourier

const
coefficients of f satisfy l ak l , l bk l <1W-+. J= = 112, ... , and the Fourier

series converges uniformly to f (x) in [-IT, 7r].
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1 f -,r/n
an = - f'(x' + 7r/n) sin x' -}-- - dx7Tn

,r -,r/n n

Proof : We prove the case n = 1. The cases n > 1 follow from this case
by integration by parts as in Theorem 12.1.3.

1 'T 1 "
Consider an = - f (x) cos nx dx = - j'f'(x) sin nx dx. In this last

7T -ir 7Tn -7T

integral, set x = x' + - . Then, for n > 1,
n

n1

rT1T1
7Tn -,r -,r/n
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f'(x' + 7T/n) sin nx' dx'

1= f'(x + 7T/n) sin nx dx,
7Tn -7r

where we have extended the definition of f (x) by periodicity. Thus,

1
an

2I
7T/n) - f'(x)] sin nx dx.

7Tn f
7r 1 7T

Now If '(x + 7r/n) - f'(x)l < C
n

all x. Hence janl
27rn C

y
n

27r =

const
n1 +« A similar inequality can be established for bn. Since

00

I l an I+ I bn l< 00,
n=1

the series converges uniformly.

THEOREM 12.1.5. Let f (x) be continuous and periodic in [-7r, 7r], and
have a derivative f ' (x) that is piecewise continuous in [-7T, 7T]. Then the
Fourier series of f (x) converges uniformly and absolutely in [-7T, 7T] to f (x).

f '(x) sin nx dx. Writeroof : By the above work, for n > 1, an = -
7rn fP -ir

anf'(x) sin nx dx. Since f' is piecewise continuous, it is in L2[-7T, 7r].f 00

1

7T 7r

By Corollary 11.2.5, (an')2 < oo. Now
n=1

°° °° 1 °° 1 cx

fanl = - I an'I
n2

(a n')2 < 00.
n=1 n=1 n (n=1 n-1

00

00

Hence l and < 00. A similar argument shows that 1bnI< oo. The
n=1 n=1

theorem now follows by Corollary 12.1.2.
We note in passing that it is sufficient to assume that f'(x) e L2[-7T, in.

One can show that the integration by parts is still valid, and the remainder
of the proof holds as before.
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Ex. 6. If f (x) is a continuous, periodic, piecewise linear function, its Fourier
series converges uniformly and absolutely to f (x).

-7r

Figure 12.1.1.

+ 7r

More penetrating analyses of the convergence of Fourier series are based
upon the study of its partial sums, rather than its coefficients. It is assumed
that f is defined on -7r < x < 7r and then extended over the whole axis
periodically.

LEMMA 12.1.6. The following is a trigonometric identity:

+ cos x + cos 2x + + cos nx =
sin (n + )x

(12.1.3)
x

2 sin -
2

Proof:

Hence

or,
n

2 + I cos kx =
k=i

COROLLARY 12.1.7.

x
sin (k +

2
)x - sin (k -

2
)x = 2 sin 2 cos kx.

X
2 sin I cos kx = {sin (k + 2 )x - sin (k - -)x

}2 k=o k=O

= sin (n + j)x - sin (- J)x

sin (n +
2
)x

x
2 sin -

2

1 1 n
K,z(x, t) _ + - cos nx cos nt + sin nx sin nt

27r 7T k=1

1 sin (n+j)(x-t)
7r 2sin -(x - t)

COROLLARY 12.1.8.
1 7T sin (n + -)t dt

7r o sin it
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The function Kn(x, t) is called the Dirichlet kernel and stands in the same
relation to the orthogonal system of sines and cosines as does the Kernel
Polynomial to systems of orthogonal polynomials. The Dirichlet kernel will
reproduce, under integration, finite trigonometric sums of the form

n

Ak cos kx + Bk sin kx.
k= =0

00

DEFINITION 12.1.1. Let f (x) ti + I ak cos kx + bk sin kx. Thena°
2 k=0

a n

Sn(f ; x) = Sn(x) _ -° + 1 ak cos kx + bk sin kx.
2 k=1

LEMMA 12.1.9.

S(x) - (x) = 1

7r f (x + t) -f - f (x - t) - 2f (x)
sin (n + - U t dt2)n f

27T t
sin -

2

Proof :

S (x) _ K (x, t) (t) dt = 1 f sin (n + -)(x - t)
(t) dt.fn n f

27T 7r Sill J(x - t) f
>r

(12.1.4)

Figure 12.1.2 The Dirichlet Kernel K6(x, 0).
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Set t = t' + x.

S (X) -
1 7T-x

f
(tt + x) sin (n + 1)t'

dt'n
27T -,r-x sin t'

1 f (x + t) sin(n+ )t dt
27T - 7r sin it

where the f has now been extended by periodicity. Thus,

1 sin (n + )t 1 ° sin (n + )t
Sn(x) = f (x + t) dt + f (x + t) dt.

27r o sin it 27r - sill it

In the last integral, set t' _ -t, and obtain,

Sn(x)
27r 0 [f (x + t)

+f
(x

sin (n + )t
dt. (12.1.5)- t)] sin it

Now, from Corollary 12.1.8,
1 sin(n+ )t

f (x) 27r o
2f (x) t

dt. (12.1.6)

sin -
2

The lemma follows by subtracting (12.1.6) from (12.1.5).

THEOREM 12.1.10 (Riemann-Lebesgue). Let f (x) E L[a, b]. Then

b b

lim f (x) cos tx dx = lim f (x) sin tx dx = 0 (12.1.7)
t *00 a t--* 00 a

Proof: For sufficiently smooth functions, say those belonging to class
C1 [a, b], this is proved very simply by integration by parts :

a

b 1 b

f (x) cos tx dx = [1(b) sin tb - f (a) sin to - fa f'(x) sin tx dx .

Hence,

f (x) cos tx dx
fa

1 b

t
I f (b) I+ If (a) I+

a
I f'(x) I dx .

Allowing t -* oo, we obtain the stated limit. A similar argument holds for
the sine.

Suppose now that f e L[a, b]. Given E > 0, we can find a polynomial
b

p(x) such that If (x) - g(x)I dx < E. (See Ex. 4, 8.9.) Now,
a

(x) cos tx dx
fa'f

b

(f (x) - p(x)) cos tx dx + p(x) cos tx dx
fa' fa

If (x) - p(x)I dx +
a

(x) cos tx dx
fap
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As argued above, lim p(x) cos tx dx = 0, and hence,
t-. a, a

b

lim sup ,f (x) cos tx dx < E.
t- ao a

Since E is arbitrary, lim f (.x) cos tx dx = 0.
t-. a, a

LEMMA 12.1.11. Let f E L[ - ir, ir]. For any b such that 0 < 6 <7T,

S x- x= 1 fOf(x ± t) +f(x - t) - 2f(x)
sin n tdt

2-7T fo t
sill -

2

+ En where En --* oo as n --* oc. (12.1.8)

Proof: Write the integral (12.1.4) in the form . Notice that over
o s

[b, ir], the integrand is an integrable function and hence by the Riemann-

Lebesgue Theorem, --* 0 as n --* oo.7T

s

LEMMA 12.1.12. Let f (x) E L[-ir, ir]. We have lim S,jx) - f (x) = 0 if-
and only if

n ao

lim
a

[f(x + t) + f(x - t) - 2 (x)]
sin (n + )t

dt = 0. 12.1.9
--.a, 0

f t ( )
n

Proof: Consider x as fixed and write

92(t) = f (x + t) + f (x - t) - 2f (x). (12.1.10)

By Lemma 12.1.11, Sn(x) - f (x) --* 0 if and only if

lim
s

t
sin (n + -)t

dt = 0.
n-- co fo () t

sin -

Now,
2

a
sin (n + 2 )t2o dtff(t)

t

- f°(t) sin (n + J)t dt +
s

q?(t) 2 - 1 sin (n n -1- J)t dt.
0 t 0 t t

sin
2

sin 2

Inasmuch as 2 - 1 has no singularity at the origin, it is integrable over
t t

sin -
2

[0, b]. Hence, by the Riemann-Lebesgue Theorem, this last integral -> 0
as n -> oo, and the lemma follows.
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THEOREM 12.1.13 (Riemann's Principle of Localization).
Let f (x) E L[-7T, 7r] and have a Fourier Series

jf(x)+ acosnx + bsinnx.
n=1

The convergence of this series to f (x) at a fixed point x depends only upon
the behavior of f (x) in an arbitrarily small neighborhood of x.

Proof: By Lemma 12.1.12, convergence to f (x) depends upon

lim [f (x + t) + J'(x - t) - 2f (x)]
sin n

t dt.
f06 t

Now this integral utilizes the values of f (x) only in the interval (x - 6,
x + b).

THEOREM 12.1.14 (Dini's Criterion). Let x be fixed and suppose that

Jo

92(t)

t
dt < oo. (12.1.11)

Then the Fourier series of f (x) converges at x to f (x).

Proof: Under the h othesis a fi(t) sin n + t dt -* 0 by the Riemann-Yp
o t

( -) Y

Lebesgue Theorem. The theorem follows from Lemma 12.1.12.

COROLLARY 12.1.15. Let f (x) be differentiable at x. Then the Fourier series
of f (x) converges at x to f (x).

Proof:

lim f (X + t) - f (x) = lim f (x - t) - f (x)
t-.o t t--.o t

= f'(x).

In a neighborhood of x, these two fractions, and consequently their sum,
a

fi(t) , are bounded functions of t. Thus) 99(t) dt < oo.
t o t
Actually, still less is required for convergence.

COROLLARY 12.1.16. Let f satisfy a Lipschitz condition of order a > 0
at x. Then the Fourier series of f (x) converges at x to f (x).

Proof: If (x + t) - f (x) I < Ct°`; hence

< 2Ct°` -1, andf dt < 00.
t o t

f(x + t) - f(x,
t

< Ct°` -1. Thus

If f has a simple jump discontinuity at a point, the Fourier Series con-
verges to a value half way between the ends of the jump. To make this
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precise, we shall suppose that at a point x, the two limits

lim f (x + t) = f (x+), lim f (x + t) = f (x-) (12.1.12)

exist. Suppose moreover, that at x, f has both a right-hand derivative

lim
f (x+t) -.f(x ) = f (x) (12.1.13)t0+ t

and a left-hand derivative

lim
f (x + t) - f (x-)

(12.1.14)t.0 t

THEOREM 12.1.17. Let f e L[ - 7r, 7r] and at the point x satisfy the above
conditions. Then the Fourier Series for f (x) converges to the value

2(f(x+)+f(x))
Proof: As in Lemma 12.1.9, we have

S (x) - 2[f(x+) + f (x-)] =
1 q?(t) sin (n + 2)t

dt
"` 27r

f7T

t
sin -

2

where we now write

(p(t) = f (x + t) + f (x - t) - 2[2(f (x+) + f (x-))] (12.1.15)

A parallel argument shows that Dini's criterion (12.1.11) is valid with this

qp(t). However,
92(t)

t
f(x + t) -f(x+)

t
+

f(x-t)-f(x-)
t

and in

view of (12.1.13) and (12.1.14), we can find a b sufficiently small so that
(12.1.11) holds.

COROLLARY 12.1.18. Let f e L[ -7T, 7r] and be piecewise smooth (each piece
is in C1) in I = [a, b], -7T< a < b <7T. Then the Fourier series off con-
verges at all points of I. Its sum is f (x) at points of continuity and

2 (f (x+) + f (X-))

at points of discontinuity.

12.2 Fejer's Theory of Fourier Series. The theory of divergent
series makes much of a particular mode of summation introduced by E.

00

Cesaro. If an infinite series I a,, diverges, its partial sums
n=0

sn = a0 -+- ... + an ,

of course, do not possess a limit. But it is quite possible that the averages
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of the partial sums 1 (so + Si + + sn) have a limit s. In such a case,
n + 1

00

the series I an is said to be (C, 1) summable to the value s and we write
n=0

00

s=Ian, (C,1)
n=0

(12.2.1)

Ex. 1. an = (-1)n. The series 1 - 1 + 1 - 1 + 1 - is divergent. The
partial sums are 1, 0, 1, 0, 1, 0, 1, 0 . Their averages are 1, , -9, , 5 , 19 ... .
The sequence of averages converges to 1. Thus = 1 - 1 + 1 - 1 + ... ,
(C, 1).

Ex. 2. an = (-1)nn. The series -1 + 2 - 3 + 4 - 5 + is divergent.
The partial sums are -1, 1, - 2, 2, - 3, 3, - 4, 4 . Their averages are -1,
0, -, 0, - 5, 0, - ?, 09 .... This sequence does not converge and henc3 the
series is not summable (C, 1).

00

As we have already proved (cf. 4.4), if I a7 is convergent, then it is (C, 1)
summable to the same value. n =O

A family of summability methods of increasing strength is provided by
Cesaro summability of rth order (r > -1).

00

DEFINITION 12.2.1. Given a series I an. Associate with it the formal
00 n=0

power series f (x) _ anxn and define constants snr) by means of the formal
equation n = o

f (x)
00

I s(r)xn
(1 - x)r+l n=0 n

If

lim n = s

n

then we shall write
00

s1an,(C,r).
n=0

(12.2.2)

(12.2.3)

(12.2.4)

In 1904 L. Fejer made the remarkable discovery that the Fourier series
of a continuous function f (x) is uniformly (C, 1) summable to f (x). This
stands in strong contrast to known fact (duBois-Reymond, 1876, cf. Theorem
14.4.15) that there are continuous functions whose Fourier series are diver-
gent at a point. Corresponding to the (C, 1) sums there is a kernel analogous
to the Dirichlet kernel. The latter is oscillating, but Fejer's kernel is positive.
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LEMMA 12.2.1. The following is a trigonometrical identity:

nx
sine -

x 3 2(n - 2)x=

x2 2 sin -
2

x
Proof: sin (k - 2 )x sin =

2
[cos (k - l )x - cos kx]. Hence,

n x
I sin (k - 4)x sin = 2 1 (cos (k - 1)x - cos kx)

k=1 2 k=1

(12.2.5)

n

= sin
x

I sin (k - 2)x = 2[1 - cos nx] = sine
nx

2k=1 2
Therefore

n
sin (k - -1)x

k=1

sin2-
2

x
sin -

2
n

LEMMA 12.2.2. Let Sn(x) = a° + I ak cos kx + bk sin kx be the partial
2 k=1 1

sum of the Fourier series off (x). Let .n(x) = - (S0(x) + Sl(x) + + Sn_1(x)).
n

Then,
n

sine -
2

t
1

n(x)
27Tn 0

f7T

If (x + t) +f (x - t)] t e
dt. (12.2.6)

(sin -
2

Proof: From (12.1.5), S .(x) = 1
0

If (x + t) -}- f (x - t)]
sin (k + e t

dt.
27r t

sin -
2

Hence,

2

sine
nt
nt

0

'T 2
dt.[f (x + t) + f (x - t)]

ty(sin

n
sin2 - t

COROLLARY 12.2.3, dt = 1.
1

J7T

2

7rn 0 t
sin2

2

= 1
[f (x + t) + f (x -- t)] n 1 sin (k + )t dt

7r

f7T

n(x
2 n t =

sin
k 0-

nx
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Proof: Take f (x) 1. Then the above integral is o (x) for the Fourier
series 1 + 0 + 0 + . It is readily verified that orn(x) - I.

COROLLARY 12.2.4. The Fejer sums an(x) are bounded by the bounds of
f (x) itself; that is to say, if m < f (x) < M then m < o (x) < M.

Proof: If f (x) < M then f (x + t) + f (x - t) < 2M so that

nt
2M

sine
2

Qn(x) < dt = M.
2lrn

f7r
t

sin2 -
2

Similarly for the lower bound.

LEMMA 12.2.5.

Then we have

For a fixed x set qv(t) = f (x + t) + f (x - t) - 2f(x) and

2irn t
sin2-

2

(12.2.7)

cn(x) - f (x) =
0

IITKn(t)co(1) dt

Kn(t) _

n
sine - t

1 2

(12.2.8)

Proof : By Corollary 12.2.3
n

sine-
2

t
1

.f (x)

f7T

sin2
t

f (x) dt.

2

By subtracting (12.2.9) from (12.2.6) we obtain (12.2.8).

The function Kn(t) _

not only

but also

(12.2.9)

is known as the Fejer kernel. It satisfies

Kn(t) > 0 (12.2.10)

Kdt = constant, n = 1, 2, ... , (Cor. 11.2.3), (12.2.11)
0

and

n
sine - t

2

t
27rn sine -

2

lim Mn((5) = 0 (12.2.12)

where
Mn(o) = max K,,(t).



Sec. 12.2 FEJER'S THEORY OF FOURIER SERIES 303

nt
sine -

This last follows from 2 < in b < t <7T.
(5 2

27rn sine
t
2 27rn sin 2
2 2

Continuous functions that satisfy the three conditions (12.2.10, 11, 12)
are known as general Fejer kernels.

Figure 12.2.1 Fejer's Kernel K6(t).

LEMMA 12.2.6. lim sup I Qn(x) - f (x)I < lim sup Kn(t) I g7(t)I dt.
n- oo n- oo o

Proof: From (12.2.8),

I an(x) - f WI 0Kn(t) I(t)I dt

o

s

< Kn(t) I (t)I dt + aKn(t)192(t)I dt

s 7r

< Kn(t) 19(t)I dt + 19? (t)I dt.
0 .,s

Now, in view of (12.2.12), we have
s

lim sup IQn(x) - f (x)I < lim sup IKr(t) Iq?(t)I dt.
noSUP n--SUP

0

THEOREM 12.2.7. Let f (x) E L[-7r, ir] and be continuous at the point x.
Then

lim Qn(x) = f (x). (12.2.13)
n- oo

Proof : 92(t) = f (x + t) + f (x - t) - 2f (x). If f is continuous at x, given
an E > 0, we can find a b > 0 such that I qq(t) I < E for all 0 < t < 6. Now,

ra a

with this b, Kn(t) I q?(t)I dt <.e Kn(t) dt < E Kn(t) dt =
E

. By Lemma
0 0 0 2



304 EXPANSION THEOREMS FOR ORTHOGONAL FUNCTIONS Ch. XII

12.2.6, lim sup I o (x) - f (x) I <
E

. But s is arbitrary and hence

n
lim Qn(x) _ ,f (x).
-oo

This conclusion can be strengthened under the assumption that f (.x) is
continuous in some closed interval I : [a, b].

THEOREM 12.2.8. Let f (x) E L[ - ir, 7r] and E C[a, b] where -7T< a < b <7T.
Then lim o,t(x) = f (x) uniformly in I: [a, b].

Proof: f (x) is uniformly continuous in I. Hence, given an E, we can find
a b such that

Iq?(t)I = If (x + t) + f (x - t) - 2f (x)I

< I f (x + t) - f (x) I + I f (x - t) - f (x) I < E

for 0 < t < 6 and for all x in I. As before,
s

l(x) - f (x) I < Kn(t) I q?(t) I dt + Mn(b) I 9? (t) I dt.
o s

Now,

jI(t)I dt <
o

f7T

0

f 7T

If(x+t)I dt+ 0If(x-t)I dt+2
f 7T

If(x)I dt

If (x + t) I dt + 27r If (x) I= If (t) I dt + 27r If (x)I.
_

7r f- 7T

For x e I, f is continuous and hence I f I < M. Thus,
f 7T

I q?(t) I dt < If (t) I dt + 27TM = const.,
6

f7r
Finally, for all x e I,

xEI.

s

I n(x) - f (x) I < Ef dt + Mn(o) coast. < + Mn(b) coast.
0 2

This bound is independent of x, and hence the convergence is uniform.

COROLLARY 12.2.9. Let f (x) be continuous and periodic in [-,rr, rr]. Then
it may be approximated uniformly by trigonometric polynomials.

Proof : The trigonometric polynomials Urn(x) will serve as approximants.

THEOREM 12.2.10. Let f E L[-7T, rr] and suppose that at a point x, f (x)
has left-hand and right-hand limits, f (x+) and f (x-); then

lim Or(x) _ 11f (x+) + f (x-)]. (12.2.14)
11-- 00
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Proof: As before, we can write

orn(x) - 1[f (x+) + f (x-)] =0Kn(t)q?(t) dt

where we now write 92(t) = f (x + t) + f (x - t) - 2[1(f (x+) + f (x-))]. The
proof now proceeds as in Theorem 12.2.7.

12.3 Fourier Series of Periodic Analytic Functions. We turn from
periodic functions of great generality to periodic functions that are also
analytic. Naturally, convergence must be uniform (Theorem 12.1.3), but
the Fourier series emerges as a transformed version of the Laurent expan-
sion, and convergence takes place over an entire strip of the complex plane.

It will be more convenient to deal with the complex form of the Fourier
series and to assume that we are dealing with a complex function that has
the complex period p :

f(z)=f(z+p). (12.3.1)
In the real Fourier series

00

f(x)ti 2 +I an cos nx + bn sin nx (12.3.2)
n=1

place cos nx = J(einx + e-inx), sin nx = Z (-einx + (3-inx), and obtain
2

a0 001 -)an-ibn_ einx
+n=1

+00
f(x)rvICneinx

00

where

(a_+_ib'n e-inx.
2

(12.3.3)

(12.3.4)

ao an -ibn an + ibn
Co = 2 , Cn = 2 , C-n = 2 = Cn (12.3.5)

In general, a complex Fourier series with a complex period p is one that can
be written in the form

00

f (z) ^.' ane2nz/p
- ao

where
1 zo+p

an = - f dz.
P zo

(12.3.6)

If z0 and p are real and if an = d-n, then (12.3.6) reduces to a real Fourier
series.

Let us suppose that we have a function f (z) defined on a line L: z0 + dp,
- oo < or < oo, lying in the complex plane. f (z) will be assumed to have
period p and be analytic on L. We can continue the function f (z) from the
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line into the complex plane, and in view of periodicity, it is clear that we
can find an infinite strip of constant width parallel to L and containing L
in which f (z) may be assumed to be both periodic and analytic. There is a
largest such strip. In certain instances it may degenerate to a half-plane or
the entire plane. The maximum strip of analyticity of f (z) will be called S
and can be described in the following way

S: - oo < t1 < Im (Z)- < t2 < oo. (12.3.7)
p

Figure 12.3.1.

THEOREM 12.3.1. Let f (z) be analytic in S and have period p. Then
+00

f (z) = I ake27Tinz/p

k= - oo
(12.3.8)

where
1 zo +p

ak = - f (z)e dz.
p zo

(12.3.9)

The series (12.3.8) converges uniformly and absolutely in every substrip
S': t1 < t1' < IM (z/p) < t2' < t2.

Proof : Make the change of variable

w = e(2,ffiz/p) z = p log w. (12.3.10)
27r2

This function maps the strip S into the annulus

A : e-27rt2 < IwI < e-27rt1 (12.3.11)
in the w-plane.

As a matter of fact, each period rectangle is mapped into the annulus so
that the infinity of points of S, z ± mp, m integer, have the same image in
A. In view of the analyticity and periodicity of f (z), the function g(w) =
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f (TV;; log w will be single valued and analytic in the annulus. It therefore
27x2

has a Laurent expansion
+00

g(w) _ I bnwn
n= - oo

with

(12.3.12)

bn 1, g(w) dw n=0,+1,+2,.... (12.3.13)n
27r2 c wn+1

C is any circle jwj = p contained in A. In particular, select p = e-2,ffIm(zo/p).

The series (12.3.12) converges uniformly and absolutely in any sub-annulus.
Passing back to the w variable,

00

.f (z) = g(e2mriz/p) = I bne27rinz/p. (12.3.14)
n= - oo

The integrals for bn become

zo +p
b = 1 z)e - (n +1)(27riz/p) . 27x2 e2Triz/p

dz (12.3.15)n
27x2 fZ0

f (

p

This is identical to (12.3.9).

THEOREM 12.3.2. Let

where

and

00

f (z) = I ane2mrinz/p

n= - oo

lim sup log l an i = A
oo 27rn

(12.3.16)

(12.3.17)

lim inf
1

log ia_n l = B (12.3.18)
n- + oo 27rn

- oo <A < B < oo.

Then f (z) is analytic and periodic in the strip A < Im (Z) < B, but is
z p z

analytic in no larger strip A < Im < B1 or Al < IM < B;
Al<A,B1>B. p p

00 00

Proof: Consider the series janW"+ I a_nw n = gl(w) + 92M. The
n=0 n=1

radius of convergence r1 of g1 is given by (Theorem 1.9.4)

1
= lim sup l an 11/n = e2,4 .

n-oorl

The radius of convergence r2 of g2 is

r2 = lim sup Ia-nI1/n = e-21rB.
n--1-00
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Since A < B, 91 + 92 is regular in the annulus e - 27rB < M < e - 27Td and can-
not be continued analytically into a larger annulus over either the inner or
outer circle. Applying (12.3.10), f (z) is analytic in the strip

A < Im (z/p) < B,
but in no larger strip.

Ex. 1. Let 0 < r < 1.
1 00

_ I rkwk for I rwI < 1.1 -rw k=0
Hence

Similarly

Adding,

1
00

= I rkeikz for reiz I < 1, i.e., for Im z > log r.
iz1 -re k=O

1 00

= I rke ikz for Im z < -log r.
1 -re-iz k=o

1 -r2 1 1

1 + r2 - 2r cos z 1 - reiz + 1 - re i
00

- 1 = 1 + 2 1 rk cos kz
k=1

convergent uniformly and absolutely for log r < Im z < -log r. This is the
Poisson kernel of Potential Theory.

cos z e2iz + 1
= 2 2iz - 1 . The only singularities are on the realEx. 2. Cot z =

sin z
e

axis, and hence we anticipate two Fourier expansions, one valid in Im z > 0
and the other in Im z < 0. For instance,

e2iz 00

-(i cot z _ I e2ikz valid for le2izl < 1, i.e., for Im z > 0.
1 e2iz k=1

12.4 Convergence of the Legendre Series for Analytic Functions.
In this section, P. designates the Legendre polynomials standardized by

Pn(1) = 1.

LEMMA 12.4.1. Let w = J(z + z-1) ; then,
n

Pn(w) _ I a,an-'zn-2j

l j=0
a. _ (2j)! (12.4.1)(j!)222'

Proof: From the generating identity (10.3.22) we have

1 00

2
= I Pn(w)tn.1-2wt+t n-o

Now (1 - tz)-i(1 - t/z)-i = (1 - 2wt +t2)-j. Moreover,

00 00

f.-.(1- tz)_ atnzn, (1 - t/z)_ a(12.4.2)
n=0 n=0 z
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Hence,
ao 00 n

(1 - 2wt + t2)-j _ ajakt'+kzk-i _ to I a'an_'zn-25.
j,k=0 n=0 j=0

Comparing coefficients, we obtain (12.4.1).

COROLLARY 12.4.2. I Pn(x) I < 1, -1 < x < 1.
n

Proof: Set z = eie, then w = cos 0. Hence, Pn(cos 0) _ 1 a;an_;ei(n-22)O.

n j=0
Therefore, I Pn(cos 0) I < I a,an_, = Pn(cos 0) = Pn(1) = 1.

j=0

LEMMA 12.4.3. The quantities a, defined by (12.4.1) are positive and de-

creasing. The quantities - 1 are positive and increase with j. Moreover,
an

lim 1/7rnan = 1.

lim
an-'

= 1, for j fixed,n- oo a
n

(12.4.3)

(12.4.4)

a;an_; < an, j = 0, 1, 2, ... , n. (12.4.5)

Proof: (12.4.3) and (12.4.4) are proved by Stirling's formula. The remain-
ing statements are clear from inspecting the formula

1 1a0=1, an=

LEMMA 12.4.4. Let

Then

n

Rn(z) _ ,
an-' - 1 a,z-22. (12.4.6)

j=0 an

lim Rn(z) = 0

uniformly in the exterior of every circle Izl > p > 1.

00

(12.4.7)

Now,Proof : Given an e > 0. Select N = N(e) so large that I p-2' <
j =N+1

N n
Rn(z) = ` (an-j - 1 a,z-2i

,G
an-j

j=0 an N+1 an
We have

1 ajz-2a.

N (i2 - 1 a z-2i < N an-, - 1 a -2i
a - I Iz

0 n 0 an
N 00

< (a.-N f a, Iz-21 < an-N - 1 a' Iz-2u1
an j=0 an j=0

(aflN - 1 I Z I S
(a.-N - 1 p

VIZI2-1 an 2-an
1
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The second inequality here is due to the fact that
an-'

- 1 increases with j.
an

The last follows since r/%/2 - 1 is decreasing for r > 1. Again, since

0 <
an-' - 1 a < an-,af < 1,
an an

n n aoan- - 1 a'z_2j I IzI-2j < 1 IzI-25.

N+1 an N+1 N+1

Thus, for IzI p > 1,

I Rn (z) I
an-N - 1 P + E.

an p2- 1

Now since lim an-N = 1, we can find an N1 = N1(N) E) such that
n- ao

an-1V
an

- 1 < E for all n > N1. Thus, for all n > N1, and for all IzI > p > 1,
an

I Rn(z) I < E(1 + p(p2 - 1)4). (12.4.7) follows from this inequality.

THEOREM 12.4.5 (Laplace-Heine). Let w = J(z + z-1). (Cf. 1.13.) Then,

lim
V(1

- z-2)jP(w) = 1 (12.4.8)
znn-- ao

uniformly in IzI > p > 1, and

'S/2Trn(w2 - 1)+Pn(w)
lim = 1 (12.4.9)

n- oo (w + 1/w2 - 1)+

uniformly in the exterior of any region that contains -1 < w < 1. Further-
more,

lim I p, z E 9P, (12.4.10)

and uniformly on all offP, p > p' > 1.

P(w) n
n n z-2j. Hence, n - I a.z-2j = R (z). Byn n nanz j = 0 an anz j=0

n
(12.4.2) we have I az-25 -+ (1 - z-2)-i and Rn(z) ---)- 0, both uniformly in

j=0
any I z > p > 1. Therefore

Pn(w)
a zn

(1 - z-2)_

n

uniformly. Since 1/n7ran -+ 1, (12.4.8) follows. Now with appropriate
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interpretations of the square root, a simple calculation shows that (1 - z-2) _

21/w2 - 1
and (12.4.10) follows from (12.4.8).

W+ w2- 1
Finally,

V7rn (1 - z-2)JI IPn(w)I
= 1Izln + En(z) (12.4.11)

where sn(z) - * 0 uniformly in Izl > p > 1. Thus, also (1 + en(z))11 n - * 1
uniformly there. Extracting the nth root of both sides of (12.4.11) we obtain

lim l Pn(w)I"jn = lzl
n--* 00

uniformly in Izl > p > 1, and this is equivalent to (12.4.10).
LEMMA 12.4.6. If

(12.4.12)

+1 Pn(t)
dt> n = 0> 1 > 2>0 )1 )2 ). . .

(/12.4.13z-t > l )

and w = J(z + z-1), then

where
k=n+1 Z

(12.4.14)

IrnkI <7T n=0,1,2,... ; k = n + 1, n+2,.... (12.4.15)

The function Qn(z) is known as the Legendre function of the second kind. It
is also a solution of the differential equation (10.3.14) with a = # = 0, but
is linearly independent of Pn(z). The integral (12.4.13) defines Qn(z) as a
single valued function for all z in the plane with -1 < z < 1 deleted.
Actually Qn(z) may be continued analytically to the whole finite plane save at
-1, +1 as a multivalued function, but we shall not need this continuation.

+1
Proof: From (12.4.13) we have Qn(w) = z Pn(t) dt, and settin1 z2-2zt+ 1 g

Pn(cos 0) sin 0 d6
t = cos 0, Qn(w)

2 cos 6 1

1 + 2z z

Now
eze e_i0

sin 6 1 1 z z

z 2 cos 0 1 2i ei° - e_i0

1- -}._- 1-- 1-
z z2 z z

00 inkQn(w) = I

1 00 eie m (e_4°\m °° sin mO

22 z z zmm=1 m 1
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The last series converges uniformly and absolutely for 0 < 0 < IT and for all
f7T 0° sin m0 00

dnmjzj > p > 1. Hence, Qn(w) = Pn(cos 0)
m I mm=1 z m-1 z

where

dnnt = fPn(cos 0) sin mO d0. (12.4.16)
0

Since by Corollary 12.4.2, Pn(cos 0)1 < 1, (12.4.15) follows. Again setting
cos 0 = t, we have

+1 sin (m cos-1 t)
ornm = -1 Pn(t) 1 -

t2
dt. (12.4.17)

sin (m cos' -t)
But = Um_1(t) is a polynomial of degree m - 1. Hence, by

V1-t2
orthogonality, for m - 1 < n, i.e., for m < n + 1, 0nm = 0. This estab-
lishes (12.4.14).

THEOREM 12.4.7 (K. Neumann). Let f (z) be analytic in the interior of
4eP, p > 1, but not in the interior of any &P, with p' > p. Then,

00

with
f (z) = L, anPn(z)

n=0

2n + 1 + 1

an
2

-1.f (x)Pn(x) dx

or

2n+ 1 +1
an

= 2n+ln! -1
f (n)(x)(1 - x2)n dx. (12.4.20)

The series converges absolutely and uniformly on any closed set in the interior
of eP. The series diverges exterior to of P. Moreover,

lim sup l an l ljn =
1

. (12.4.21)
n- oo p

Conversely, let {an} be a sequence of constants satisfying (12.4.21) with
p > 1. Then the series (12.4.18) converges uniformly and absolutely on any
closed set in the interior of of P to a function f (z) for which (12.4.18-20) holds.
The series diverges outside offP .

Proof: Let {an} be a sequence of constants for which lim sup lanll'n =
1 ,

n- oo p
00

1 < p < oo. Then by Lemma 4.4.2 and (12.4.10), the series I anPn(z)
n=0
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converges in the interior of of P to an analytic function f (z). The convergence is
uniform inside every t , p' < p. The series diverges outside of P. We have,

+1 2k +1 00 +12k -}- 1
f(x)P(x) dx = I a P (x) Pk(x) dx = ak.

2 -1 7. 2 n n
n=0 -1

This follows from uniform convergence, the orthogonality of the Pn's, and
(10.3.13). The alternate expression (12.4.20) is formed from (12.4.19) by
using Rodrigues' formula and integrating by parts.

Suppose, conversely, that f (z) is analytic in the interior of offP, p > 1.
We will estimate the size of the constants

+1
2n + 1 f (t)Pn(t) dt. (12.4.22)an =

2 -

Select a p' with 1 < p' < p. Then f (z) is analytic in and on of P-. Hence we
may write for -1 < t < 1,

= 1 f (z) dzf (t) .

27x2 8P- Z - t

Combining the two equations,

1
an = 2n -}- 1

Pn f (z) dz dt
47x2 -1 n BP- z - t

=
2n +,

1
+f (Z)f-

(t) dt dz = 2n
+

1
27x2 8P'

11

z - t 27x2 8P, f (z)Qn(z) dz.

Therefore

(12.4.23)

(12.4.24)

I anI <
2n + 1

L(off ,) max If (z) I max IQ (z)I (12.4.25)
27T P n

where L(offP,) designates the length of offP, . Now from Lemma 12.4.6,
00

Qn(z) _ k where z = -(v + v-1). As z describes the ellipse of P,, v
k=n+1 V

describes the circle IvI = p'. Hence, from inequality (12.4.15),

-n

max I Qn(z) I <

00
7T

k
= p')

P k=n+1 (PI) k - 1

Combining this with (12.4.25), I an I < c(2n + 1)(p')-ft where c is a constant

that depends upon p' but not on n. Therefore lim sup IanI""n < 1 . Since
p' < p is arbitrary, it follows that p

lim sup I an 11/n <
1

. . (12.4.26)
,rc- ao p
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00

A slight modification of the first part of the proof now tells us that l anPn(z)
n =O

converges absolutely and uniformly in the interior of of P. If now,

lim sup I an I1/n >
1

,

n- oo p
00

then I anPn(z) would converge uniformly in the interior of a larger ellipse
n=0

SPN, p" > p, and hence provide an analytic continuation of f (z) there. By
hypothesis this is impossible, since ep is the largest ellipse in which f (z) is
analytic. Hence we must have

lim sup Ia nI1/n = 1 . (12.4.28)
n- oo p

12.5 Complex Orthogonal Expansions. Let B be a region of the
complex plane for which L2(B) is a Hilbert space. (Cf. Theorem 9.2.10.)

LEMMA 12.5.1. Let {h*(z)} be a sequence of functions of class L2(B) that are

orthonormal with respect to the inner product (f, g) = fq dx dy. Then,
B

°° 1I Ihn*(z)12 < 2
n=1 7rr(z)

where z e B, and r(z) is the distance from z to the boundary of B.

Proof: For fixed z, L(f) = f (z) is a bounded linear functional over L2(B)
(cf. Ex. 4, 9.3). Consider the problem of minimizing 11f 112 from among
those combinations f = alh1* + + anhn* for which f (z) = 1. By Theorem
9.4.3, the minimum value is

n 1

1 Ihz*(z)12Y

i=1
In -1

By (9.2.28), 7rr2(z) 1 < 11f 112 = I hi*(z)I2 , where f is the minimizing
i=1

n
function. Then, I I hi*(z)I2 < 1 . This inequality is independent of n

j=1 7rr2(z)

and hence (12.5.1) follows.

(12.4.27)

(12.5.1)

THEOREM 12.5.2. Let {hn*(z)} be a complete orthonormal system for L2(B).
If the sequence of constants {an} satisfies

the series

00

I IanI2 < 00,
n=1

(12.5.2)

00

.f (z) = I anhn*(z) (12.5.3)
n=1

converges absolutely and uniformly in every closed bounded set contained in B
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to a function f (z) of class L2(B) and for which

an = (f) hn*), n = 1, 2, .... (12.5.4)

Conversely, if f (z) E L2(B) and coefficients an are defined by (12.5.4), then
the series (12.5.3) converges to f (z) absolutely and uniformly in every closed
bounded set contained in B.

Proof : Assume (12.5.2). By the Schwarz inequality and (12.5.1),
n n n 14

.1 lakhk*(z)I < I IakI2 I Ihk*(z)I2 <
k=m k=m k=m

co i 1

11ak12 ' -
k=m 1/7rr(z)

Let B' designate a closed bounded set contained in B. Then there is a
minimum distance r from B' to the boundary of B. Therefore,

n 1 ao
4

l akhk * (z) I < /- I ak l 2
k=m _

"V 7rr k =,m

throughout B'. In view of (12.5.1), for m sufficiently large the left-hand
side can be made arbitrarily small uniformly for all n > m and for all z in
B'. Therefore (12.5.3) converges uniformly and absolutely to a function f (z)
which must be analytic in B'. Since B' is an arbitrary subregion of B, f (z)
must be analytic in B. n

We must show that f (z) E L2(B). Set fn(z) _ I akhk*(z). Then

k=1
n

II f71 (z) - fn(z) II 2 = 1 lak12.
M

In view of (12.5.1), {fm(Z)} is a Cauchy sequence and hence by the complete-
ness of L2(B) (Lemma 9.2.9) it converges in norm to a function g(z) E L2(B).
But precisely as in the proof of Lemma 9.2.9, convergence in norm implies
uniform convergence on closed bounded subregions of B. Hence f "'(z) --* g(z)
on B'. Therefore f (z) = g(z) and is in L2(B).

Consider (f, hk*) - (fn, hk*) =(f - fn, hk*) for n > k. We have,

I (f hk*) (fn, hk*)I2 < II f -- .fn1111 hk*II = 11f - fnll '

Since lim 11 f - fn 11 = 0, (fn, hk*) (f, hk*). But for n > k we have by
n-> oo

orthogonality, (fn, hk*) = ak. Therefore, ak = (f, hk*).
Conversely, let f (z) E L2(B). Define constants ak = (f, hk*). Since {hk*} is

00

closed, it follows from Theorem 8.9.1C that 11f 112 = 1 lak12 < oo. Now,
k=1
00

apply the first part of the present theorem. The series I akhk*(z) converges
k=1

uniformly and absolutely to a function, call it g(z), which is in L2(B) and for
which (g, hk*) = ak = (f, hk*). Thus (g - f, hk*) = 0 k = 1, 2, .... By
Theorem 8.9.1, this implies that g - f = 0.
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COROLLARY 12.5.3. Let B be a bounded simply connected region whose
boundary is C. Suppose that the complement of B + C is a single region whose
boundary is exactly C. Then, any f e L2(B) may be expanded in a series of
orthogonal polynomials that is uniformly and absolutely convergent in closed
subsets of B.

Proof: Under these assumptions, the powers 1, z, z2, ... , are complete in
L2(B), and hence there is a complete orthonormal system of polynomials.
(Cf. Theorem 11.4.8.)

Note the implication of Theorem 12.5.2. If f (z) is single valued and
analytic in the closed region B, it may not necessarily possess a power series
expansion that converges to f in B. But it can be expanded in a series of
orthogonal functions that converge uniformly in arbitrary bounded sub-
regions.

THEOREM 12.5.4. Let L be a linear functional defined on L2(B) and which
is applicable term by term to series of analytic functions that converge uniformly
in closed bounded subsets of B. Then L is bounded over L2(B).

Proof: Let {hn*(z)} be a complete orthonormal sequence for L2(B). For
00

any f E L2(B), f (z) = I (f, hn*)hn*(z), converging uniformly in every closed
n=1 ao

bounded subset of B. Hence for all f e L2(B), L (f )_ I (f) hn*)L(hn*).
n=1

The proof is completed by application of Theorem 9.3.8.

COROLLARY 12.5.5. The following linear functionals are bounded over
L2(B).

(1) L(f) = f (n) (zo), n = 0, 1, ... , where zo is a point of B.

(2) L(f) = I w(z) f (z) dz where C is a rectifiable arc lying in B and w(z) is
c

continuous.

(3) L(f) = w(z) f (z) dx dy where G is a closed region contained in B and

G

w(z) is continuous there.

Proof: Each of these linear functionals can be applied term by term to
uniformly convergent series of analytic functions in B.

Ex. 1. Any finite linear combination of linear functionals mentioned above
is bounded over L2(B).

12.6 Reproducing Kernel Functions. Let S designate a point set
lying in the space of one or more real or complex variables. We shall
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designate points of S by P, Q, ... , etc. X will denote a complete inner
product space of functions defined on S.

DEFINITION 12.6.1. A function of two variables P and Q in S, K(P, Q),
is called a reproducing kernel function for the space X if

(a) For each fixed Q E S, K(P, Q), considered as a function of P is in X.
(b) For every function f (P) E X and for every point Q E S, the reproduc-

ing property
.f (Q) = (.f (P), K(P, Q))p (12.6.1)

holds. The subscript outside the last parenthesis (which will be frequently
omitted) indicates that Q is held constant and the inner product is formed
on the variable P.

THEOREM 12.6.1 (Aronszajn). A necessary and sufficient condition that X
have a reproducing kernel function is that for each fixed Q E S, the linear
functional

be bounded :
L(f) =f(Q) (12.6.2)

IL(f)I<-cQIIfII (12.6.3)

for some constant cQ and for all f e X.

Proof: Suppose first that K(P, Q) is a reproducing kernel. Then,

f(Q) = (f(P), K(P, Q))P.
By the Schwarz inequality,

If (Q)I2 < (f (P),f (P))(K(P, Q), K(P, Q))P (12.6.4)

= II f 112 K(Q, Q).

The last identity follows by the reproducing property of K. Hence (12.6.3)
holds with cQ = 1/K(Q,, Q).

Suppose, conversely, that (12.6.3) holds for each fixed Q. By Theorem
9.3.3, we can find a function g(P) = gQ(P) E X such that

.f (Q) = L(f) = (.f (P), gQ(P)). (12.6.5)

Now set K(P, Q) = gQ(P) and it is clear that K is a reproducing kernel.

THEOREM 12.6.2. If X possesses a reproducing kernel, the kernel is unique.

Proof: Suppose we have two reproducing kernels K(P, Q), J(P, Q). Let
Q be fixed; then

IIK(P, Q) - J(P, Q)II2 = (K(P, Q) - J(P, Q), K(P, Q) - J(P, Q))P
= (K(P, Q) - J(P, Q), K(P, Q))P - (K(P, Q)

- J(P, Q), J(P, Q))P.
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Since K and J are both reproducing kernels, each of the two inner products
is equal to K(Q, Q) - J(Q, Q). Hence IIK(P, Q) - J(P, Q)II2 = 0 and hence
K(P, Q) = J(P, Q) for all P. Since Q is arbitrary, it holds for all P and Q.

THEOREM 12.6.3. If X possesses a reproducing kernel K(P, Q) then

K(R, Q) = K(Q, R). (12.6.6)

Proof: Let P, Q, and R be three points in S. Then, by the reproducing
property,

Similarly,
(K(P, Q), K(P1 R))P = K(R, Q). (12.6.7)

(K(P, R), K(P, Q))P = K(Q, R). (12.6.8)

But by the Hermitian symmetry of the inner product, the left-hand sides
must be complex conjugate quantities.

If X has a reproducing kernel, then convergence in norm implies point-
wise convergence. More precisely,

THEOREM 12.6.4. Let X have a reproducing kernel and let lim II f - fn lI = 0.
Then, for each P E S, n---o°

fn(P) = f(P). (12.6.9)

The convergence holds uniformly in every subset S' of S over which K(Q, Q)
is bounded.

Proof I f (Q) - fn(Q)I2 = I (f (P) - fn(P), K(P, Q))PI2

II f - fn112 (K(P, Q), K(P) Q))P

= II f - fn hI 2 K(Q, Q) < II f - fn 1I 2 M

where M is a bound for K(Q, Q) in S'. The theorem follows by allowing
n-)- 00.

COROLLARY 12.6.5. I f X has a reproducing kernel, then the Fourier ex-
pansion of a function in a complete orthonormal system converges pointwise to
the function and uniformly over subsets of S for which K(Q, Q) is bounded.

Proof : Theorem 8.9.1(b).
If X has a reproducing kernel, the representer of a bounded linear func-

tional has a very simple expression.

THEOREM 12.6.6. Let X have a reproducing kernel K(P, Q), and let L be
a bounded linear functional defined on X . Then the function

h(Q) = LPK(P, Q) (12.6.10)
is in X and for all f E X,

L(f) _ (f (Q), h(Q)). (12.6.11)
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(The subscript in LP indicates that Q is held fixed and L is applied to K(P, Q)
as a function of P.)

Proof : By Theorem 9.3.3, there is an h(P) E X such that L(f) _ (f, h)
for all f e X. Hence,

LPK(P, Q) =

COROLLARY 12.6.7.

K(P, Q), h(P))P = (h(P), K(P, Q))P = h(Q).

IILII2 = LQLPK(P, Q).

Proof : From Corollary 9.3.4 we have,

IILII2 = (h(Q), h(Q)) = LQ(h(Q)) = LQLpK(P, Q)-

(12.6.12)

Ex. 1. Let Y. be an inner product space of real or complex polynomials of
degree < n as in 10.1 or 10.2. The linear functional L(f) = f (zo) is bounded.
(Ex. 10, 10.2.) The kernel polynomial is a reproducing kernel for Yn. (Theorem
10.1.5.)

Ex. 2. Let B be a region of the complex plane. If z e B, then L(f) = f (z)
is a bounded linear functional over L2(B) (Ex. 4, 9.3). Hence by Lemma 9.2.9
and Theorem 12.6.1, L2(B) has a reproducing kernel. If L2(B) is a Hilbert space
and if {h,z *(z) } is a complete orthonormal sequence, the reproducing kernel has
the representation

00

K(z, w) _ I hn*(z)hn*(w). (12.6.13)
n=1

K(z, w) is known as the Bergman kernel for the region B. This representation
rests upon the following theorems.

THEOREM 12.6.8. Let {hn*(z)} be a complete orthonormal system in L2(B).
For fixed w e B, the series (12.6.13) converges uniformly and absolutely in
every closed bounded subregion B' contained in B. The sum is analytic in
z e B and of class L2(B). Furthermore, (K(z, w), hk*(z))z = hk*(w).

00

Proof : By Lemma 12.5.1, 1 I hn* (w) I2 < oo. The theorem now follows
n=1

by applying Theorem 12.5.2.

THEOREM 12.6.9. Let {h*(z)} be a complete orthonormal system for L2(B).
Then (12.6.13) is a (and hence the) reproducing kernel for L2(B); that is, for
all f (z) E L2(B) we have

f (w) = (f (z), K(z, w))z = f (z) K(z, w) dx dy. (12.6.14)

B
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00

Proof: Since f e L2(B), f (z) = I (f, hk*)hk*(z). Now from Theorem
k=1

12.6.8, (K(z, w), hk*(z))z = hk*(w). From Theorem 8.9.1(C'),

00 00

(f (z), K(z, w))z = I (f, hk*)(hk*(z), K(z, w))z = I (f, hk*)hk*(w) =f (w)
k=1 k=1

COROLLARY 12.6.10. Let {hn*(z)} be a complete orthonormal sequence for
L2(B). Suppose that L is a bounded linear functional defined on L2(B). Then

00

is the representer of L, and

h(w) = I hn*(w) L(hn*(z)) (12.6.15)
n=1

00

11L112 = I I L(hn* (z)) l2 = Lu,LzK(z, w). (12.6.16)
n=1

Proof: Use Theorems 9.3.5 and 12.6.9.

Ex. 3. Let B designate the circle lzl < 1. The functions

-{- 1
zn (n = 0, 1, 2, ... )

IT

are complete and orthonormal in L2(B). Hence the reproducing kernel for L2(B)
is

K(z,w)=$n+1

1zn2Un= (12.6.17)
ir(1 - zw)2n=o iT

Ex. 4. Consider an ellipse S'P (Definition 1.13.1). Designate its inside by 4p.
As we have seen in Ex. 4, 10.2, the polynomials

pn*(z) = 2 n + 1 (P 2n+2 - 0-2n-2 )-'Un(z)--
7r

Un(z) = (1 - z2) 4 sin [(n + 1) are cos z]

are orthonormal for L2
(4,P).

They are also complete (Theorem 11.4.8). Hence
the reproducing kernel for L2(gP) is

4 00 Un(z) Un(w)K(z, w) _ (n + 1) 2n+2 - -2n-2n=0 P P
(12.6.18)

Ex. 5. Let zo be interior to B: lzl < 1. If zo e B, the linear functional

L(f) = f(')(zo) j, integer > 0, (12.6.19)

is bounded over L2(B). (Ex. 4, 9.3.) Its representer g(w) is given by

9(w) =
d(5) 1 - (-1)'(j + 1)! w'
dz(5) 7r(1 - zw)2 z=z0 7r(1 - z0w)'+2
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-1 +1

1
Figure 12.6.1 Kernel Function for Unit Circle, K(x, x) _ 7r(1 - x2)2

1
In particular, the conjugate representer for L(f) = f (z0) is Itszw)2 ' Its- 0
norm is 111112 =

7r(1 1z012)2

It should be observed that the bilinear expression (12.6.13) is not neces-
sarily convergent for an arbitrary Hilbert space of functions. Thus, over
L2[ - 7r, 7r] we are led to the formal series

1 00+ - cos kx cos kt + sin kx sin kt.
27r 7T k=1

According to Corollary 12.1.7, convergence would be equivalent to the
lsin(n+ J)(x-t)

existence and finiteness of lim K,z(x, t) =1im But for-
n-'oo n--o. oo 7r 2 sin J(x - t)

any selection of x and t, this limit does not exist.
In a space with a reproducing kernel, complete sets of functions can be

generated conveniently from complete sets of functionals.

THEOREM 12.6.11. Let X be a complete inner product space of functions
that has a reproducing kernel K(P, Q). If {Lk} is a sequence of bounded linear
functionals on X such that f c- X, Lk(f) = 0, k = 1 , 2, ... , implies f = 0,
then the functions

hn(Q) = Ln,PK(P, Q) n = 1, 2, ... , (12.6.20)

form a complete set for X.

Proof : By Theorem 12.6.6, L,,(f) _ (f (Q), hn(Q)). Hence {hn(Q)} is a
complete sequence of functions, by Definition 8.9.4.
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Ex. 6. Let B be a region that has a Bergman kernel function K(z, w). Let
z' be a point of B and suppose that zi lie in B and lim zi = z'. Then the functions

do
is 00

K(zi, w) i = 1, 2, ... , and the functions K(z, w) n = 0, 19 ... , are
dz'z z = z'

complete for L2(B).

A further example of a reproducing kernel comes from the topic of
differential equations.

Ex. 7. Let X consist of all functions F(x) of the form
x

F(x) = f (t) dt, 0 < x < 1 (12.6.21)
0

where f (t) E L2[0, 1]. If G(x) =
defined by

z

°

Now

where

Hence, if we write

we have

1 1

(F, G) = fo f (x)g(x) dx =0F'(x)G'(x) dx. (12.6.22)

F'(t)K'(t, x) dt, (12.6.23)F(x) = fox F'(t) dt = fol

K'(t,x)=1 0<t<x
K'(t,x) = 0 x <t <1.

K(t,x) =t 0 <t <x
K(t,x) =x x <t < 1,

(12.6.24)

(12.6.25)

F(x) = (F(t), K(t, x)) (12.6.26)

K(t, x) is the reproducing kernel for X.
The reader may recognize K'(t, x) as the Green's function for the differential

system y' = 0, y(O) = 0. This is an instance of the following more inclusive situ-
ation. Let X denote the space of functions defined on [a, b] that can be written
as an n-fold iterated integral

x (n) x

F(x) = dx f (x) dx
a a

with f (x) e L2[a, b]. Introduce the bilinear differential expression

(12.6.27)

b

(F, G) = a,(x)F(')(x)G(5)(x) dx (12.6.28)
aj=0

ao(x) > 0, a,z(x) > 0; ai(x) > 0, i = 1, 2, ... , n - 1.
For F = G, this leads to the norm (or energy integral)

b

JIF112 = (F, F) _ a,(x)[F(2)(x)]2 dx. (12.6.29)
aj=0

g(t) dt, then an inner product (F, G) will be
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The energy integral has associated with it the Euler-Lagrange differential
equation

n
I (-1)j(aj(x)F(5)(x))(j) = 0. (12.6.30)

j=0

Consider also the 2n boundary conditions
nI (-1)j(aj(x)F(j)(x))(j-m) = 0 (12.6.31)

j=m

atx =aandx =b,m = 1,2,...,n.
Then, if K(x, t) is the Green's function for the differential system (12.6.30, 31),

it is also the reproducing kernel for the function space X. (Compare also the
Peano kernel of 3.7.)

Ex. 8. In Ex. 7, K(x, x) = x, and from (12.6.4),
'1

F'(t)12 dt.I F(x)12 < x II F112 = X f,
0

This exhibits the boundedness of the linear functional L(F) = F(x) in this
space.

Ex. 9. Let X = L2[ -ir, yr]. This is not, properly speaking a function space,
but a space of equivalence classes in which two functions are equivalent if and
only if they differ on a set of at most zero measure. The functional L(f) = f (x),
relevant to the definition of a reproducing kernel, is not defined.

However, let us not ignore the most famous reproducing kernel of them all:
the Dirac delta function K(x, y) = 6(x - y). The reproducing integral expression

f (x) _ .f (y) 6(x - y) dy

and the (divergent) orthogonal expansion

(12.6.32)

1 1 00 1 1 00

6(x - y) = - + - I cos kx cos ky + sin kx sin ky =
2,7r

+ - I cos k(x - y)
k-1 k=1

(12.6.33)

are basic to the theory of the 6 function. Though many suggestive things can
be done formally, a proper relation between the 6 function and reproducing
kernels must be sought within a different framework of ideas.

The intimate relationship between reproducing kernels and completeness
may be strengthened.

THEOREM 12.6.12. Let L2(B) be a Hilbert space and let K(z, w) be its
reproducing kernel. Let {hn*(z)} be an orthonormal system. This system is
complete if and only if 00

K(z, z) _ I l hk*(z)12, z e B. (12.6.34)
k=1
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Proof: If {h*(z)} is complete, (12.6.34) follows directly from Theorem
12.6.8 and (12.6.13). Suppose the system is incomplete. Then by Theorem
9.3.12 we may find nonzero functions q,z*(z) such that the combined system
{h*}, {g*} is complete and ortlionormal. By (12.6.13),

K(z, z) = I Ihk*(z)I2 + I Iqk*(z)I2.
k=1 k=1

a,

Hence K(z, z) > I Ihk*(z)12 at some point of B.
k=1

A similar criterion holds for L2[a, b].

THEOREM 12.6.13 (Vitali). The orthonormal sequence {f*(x)} is complete
for L2[a, b] if and only if

00 t

f n* (x) dx = t - a, a < t < b. (12.6.35)
n=1 a

Proof : For S(x) E L2[a, b], and assuming the sequence complete, we have
b ao b 2

by Theorem 8.9.1(C), S2(x) dx = I S(x) f * (x) dx . Fix t in [a, b]
a n=1 a

and select S(x) = 1, a < x < t, S(x) = 0, t < x < b. This yields (12.6.35)
immediately.

Conversely, suppose that (12.6.35) holds. As we have seen, this tells us
that Parseval's Identity holds for step functions S(x) of the above type.
As in the proof of Theorem 8.9.1 (C - * B), the sequence {f*(x)} is therefore
closed in the set of these S's. By Ex. 4, 11.1, the step functions Si are closed
in L2[a, b]. By the transitivity of closure, (Theorem 11.1.8), {f*} is closed
in L2[a, b].

The relationship between (12.6.34) and (12.6.35) is this : whereas the for-
mer is the kernel identity, the latter is an integrated form of this identity.
Starting with the symbolic equation,

a,

8(x - y) = I fn*(x)fn*(y)
n=1

as suggested by (12.6.33), a single integration yields

u ao u
1 = 8(x - y) dy = I fn*(x) .fn*(y) dy

a n=1 a

A second integration yields

u ao u u
/

oo u
yu - a = dx = .fn*(x) dx .fn*(y) dy = I fn*(x) dx .

a n=1 a a n=1 a

We conclude this chapter by giving a useful alternative expression for
the kernel function for L2(B) in a case where B is fairly simple.
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THEOREM 12.6.14. Let w = m(z) map a region B 1-1 conformally onto
the unit circle C. Then, the reproducing kernel for L2(B) is

K(z, t) = m' (z)m' (t) , z, t e B. (12.6.36)
7r(1 - m(z)m(t))2

Proof: Let the map inverse to m be z = M(w). Then, m(M(w)) - w and
m'(M(w))M'(w) = 1. For any f, g e L2(B), we have

(f, g) = f (z)g(z) dx dy = f (M(w))g(M(w)) I M'(w)12 du dv,

B c (w=u+iv).
This follows from (9.2.35) and the method of Lemma 9.2.4. The system

of functions un(z) = n + 1 (m(z))nm'(z), n = 0, 1, ... , is complete and
7r

orthonormal for L2(B). For

- 7T

n + 1 (f, un) _ .f (z)(m(z))nm'(z) dx dy
B

f (M(w))wnm'(M(w)) IM'(w)l2 du dv

C

f (M(w)) M'(w)w'n du A.

C

Hence (f, un) = 0 n = 0, 1, . . . , implies, by the completeness of 1, w, w2,
... , over L2(C), that f (M(w))M'(w) = 0. Since M' 0 0, f = 0. Therefore
{un} is complete for L2(B). Similarly for orthonormality.

By Theorem 12.6.9,
1 00

K(z, t) = - (n + 1)(m(z))nm'(z)(m(t))nm'(t).
7rn=0

00

In view of the identity (1 - x)-2 =1 (n + 1)xn, we obtain (12.6.36).
n=0

COROLLARY 12.6.15. Let w = m(z) map B onto the unit circle. The map-
ping is normalized by requiring that m(t) = 0, m' (t) > 0 where t is a fixed
point in B. Then, z

m(z) = const K(z, t) dz. (12.6.37)
c

1
Proof : Since m(t) = 0, K(z, t) _ - m'(z)m'(t). Hence

7r

7T

c

z

m,(t)
K(z, t) dz.
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If B has a sufficiently smooth boundary, (see Theorem 11.4.8), there is a
complete orthonormal set of polynomials in L2(B), and K(z, t) can, in prin-
ciple, be computed directly by (12.6.13). Equation (12.6.37) then gives an
elementary representation for the mapping function.

Ex. 10. Let C designate the unit circle Izl < 1 and CS be C with the radius
0 < x < 1 deleted. Note that CS does not fulfill the condition of Theorem
11.4.8. The powers 1, z, z2, ... , cannot be complete in L2(CS). For assume they
were. The removal of 0 < x < 1 does not affect the double integrals. Hence,

zn n = 0, 1, ... , is a complete orthonormal system for both L2(C)
JE+7:r

1

and L2(CS). This implies that KC(z, t) = KC3(z, t). By (12.6.37), this is absurd.

NOTES ON CHAPTER XII
12.1-12.2 Zygmund [1] is an exhaustive treatise on this topic.
12.3 See, e.g., Behnke and Sommer [1] pp. 249-256.
12.4 Jackson [2] pp. 63-68. Szego [1], Chapter 9; Hobson [1], Chapter 2;

Rainville [1], Chapter 10.
12.5 Bergman [2]. Nehari [1].
12.6 Bergman [2]. Aronszajn [2]. Bergman and Schiffer [1], Part B,

Chapter II. Example 5: Golomb and Weinberger [1]. For further criteria
as in Theorem 12.6.12, see Tricomi [1] pp. 26-30.

PROBLEMS

1. How do the symmetries (1) f (-x) = f (x), (2) f ( - x) = f (x), (3)
f (x + 7r) = f (x), (4) f (x + ir) = f (x) influence the structure of the Fourier
coefficients of f (x) ?

2. What is the Fourier series of a trigonometric polynomial?
3. What is the Fourier series for cosh x?

4 sin (2j + 1) kt
4. Sgn sin kt = - k = 1, 2, .... Discuss the convergence.

Irk =0 2j + 1
8 00 sine nx

5. Isin xI = -
7rn=14n2 - 1

6. Let 0 <h < it and f (x) = 1 for Ixl < h, f (x) = 0 for h < IxI < ,r.

2h 1 sin kh
f (x) ^' 2 + kh

cos kx .

k=1

Convergence?
00 r sin x

7. Discuss the convergence of I rn sin nx = 1 - 2r cos x + r2n=1
1 - r cos z

8. Prove that for Iri < 19
1 2r cos z

= 1 + r cos z + r2 cos 2z + - -- + r2
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The expansion is convergent in an infinite strip parallel to the x axis.
rsinz

9. Prove that are tan 1 - cos z = r sin z + . r2 sin 2z + , and discuss
the convergence.

10. Set f (x) = ezx in Parseval's Theorem on [0, 27r] and derive the identity
e27Tz+1 1 00 1

7r Ie27Tz - 1 z + 2z
n-1

z2 + n

11. Prove that If (z)I2 dz = I I anl2 6-47rn Im (zo/D).
P o n= - ooz

12. Use Theorem 12.2.7 to prove that if f (x) is continuous
Fourier series of f (x) converges at x, it converges to f (x).

13. Is there a (C, 1) sum of the formal kernel

1 1
00

27r
+ - I cos nx cos nt + sin nx sin nt 9

k=1

14.
00

(xI ,IanPn(x)
k=0

where an = 0, n odd, ao = 1, a2 = i

2n + 1
an = (n 1)(n + 2) P n(0) n =3,4,....-

15. Iff(x) = 1,0 <x < 1,f(x) = -1, -1 <x < 0, then
00 4k + 3x ' -1

(
P2k+1(x)f() k=0 2k+1 k+l

at x and if the

16. Let 0 < a < 1. Show by Rodrigues' Formula and integration by parts
that

where

1
00

a P (x)n n- X)a(1
n =O

1 3a
a

0 2a(1 - a) '
al 2a(1 - a)(2 - a) ' an 2a(1 - a)(2 - a) ... (n + 1 -a)'

Discuss convergence.
1 -h2 cc

17.
s

= 1 (2n + 1)hnPn(z). Discuss convergence.
(1 - 2hz + h2) n=o

18. Use Theorem 12.4.7 to conclude that if f e C'[ -1, 1] and if the deriva-
tives are "not too large," then f can be continued analytically into the complex
plane.

19 The Bar man kernel for IzI < r is
r2

5 ir(r2 - zw) 2
20. Verify by Vitali's Theorem that cos nx, n = 0, 1 , 2, ... , is complete for

L2[0, 7r].
21. Apply Vitali's Theorem to Pn(x) and obtain an identity for the Legendre

polynomials.

1 zo +p

J

00



CHAPTER XIII

Degree of Approximation

13.1 The Measure of Best Approximation. Let X be a normed
linear space and {xi} a sequence of independent elements. For an arbitrary
y c- X, there is a best approximation to y from among the linear combina-
tions of x1, x2, ... , x, and we have already defined the measure of best
approximation by means of

n
En(y) = min y - aixi (13.1.1)

at i=1

(See (7:4.11).) We know that E1 > E2 > ... > 0. The limit is 0 if and
only if y can be approximated arbitrarily closely by combinations of x1,
x2, .... Hence we have (cf. Theorem 7.6.1)

THEOREM 13.1.1. lim En(y) = 0 for all y e X if and only if {xi} is
closed in X.

n-oo

In the present chapter, the rapidity with which En(y) approaches zero
will be studied.

Ex. 1. The quantities En(y) are computed easily when X is an inner product
space. Assuming, as we may, that we have orthonormalized the {xi } to yield
{xi* }, then by Corollary 8.5.3,

n

En2(y) = IIyII 2 I I (y, xk*)I2.
k=1

If X is a Hilbert space and {xi *I is complete and orthonormal, then by Theorem
8.9.1 (C),

00

En2(y) I I (y9 xk*)I2.
k=n+1

Note that in the Hilbert space situation, En(y) may approach zero with
arbitrary rapidity. For let E1, E2 be an arbitrary nonincreasing sequence
of nonnegative numbers with lim an = 0. Setn, oo

a1 = V E12 - E22, a2 = V822 - E32, .
Then, 00

ai2 = (E12 - E22) + (E22 - E32) + .. = E12 < 00.
i=1

328
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Hence, there is an element y with Fourier coefficients {ai}. Now,
00

E.2(Y) _ I (Ek2 - Ek+0 = En+1*
k=n+1

The arbitrary approach to zero holds in a Banach space as well. The proof
is somewhat more involved and preliminary work is necessary.

THEOREM 13.1.2. The quantities En(y) have the following properties

n

En(y + bixi) = En(y) (13.1.2)
i=1

En(y + z) < En(y) + En(z) (13.1.3)

En(dy) = 10rl En(y) (13.1.4)

En(y - z) >- l En(y) - En(z) l (13.1.5)

En(y + o'z) is a continuous function of or. If or is real, it is a convex
function. If En(z) > 0, lim En(y + cxz) = 00. (13.1.6)

jal *00

Proof :
n

(2). Let En(y) = y - aixi
i=1

n n nEn y+Ibixi =min y+Jbixi-Icixi
i=1 ct i=1 i=1

= min
CZ

(3). If En(y) =

n

y - I (ci - bixi
i=1

triangle inequality for norms,

But En(y + z) = min
a=

(4). Let En(y) _

= E.W.

n
and En(z) = z - cixi , then by the

i=1
n

(y + z) - I (bi + cixi < En(y) + En(z)

(y + z) aixi
i=1

n

y aixi
i=1

lorl En(y)

. Then,

i=1

n
o'y - daixi

i=1

(y+z)-1 (bi+ci)xi
i=1

> En(cxy)

It follows that if or 0 0, En(y) = En O< 1 E (cxy). Hence En(dy) >
or Idl

l°I En(y). Combining these yields (13.1.4). If o = 0 the statement is trivial.
(5). En(y) = En(z + y - z) < En(z) + En(y - z). Hence, En(y - z) >

En(y) - En(z). Similarly, En(y - z) = En(z - y) > En(z) - En(y)
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(6). By (13.1.5),

I En(y + d1z) - En(y + o z) En((dl - c12)z) = Idl - 021 En(z)

Continuity follows from this. Let 0 < t < 1. Then

En(y + (to1 + (1 - t)o2)z) = En(t(y + orlz) + (1 - t)(y + o2z))

tEn(y + orlz) + (1 - t)En(y + or2z),

and this implies convexity. Finally,

En(y + oz) > En(oz) - En(y) = ICI En(z) - En(y)

If En(z) 0 0, lim En(y + oz) = oo.

LEMMA 13.1.3. Let X be a normed linear space and x1, x2, ... , a sequence
of independent elements. For arbitrary x e X write

i
E, (x) = min x - aixi . (13.1.7)

a=
11 i=1 11

If e is a number that satisfies e > E,+1(x), we can find a or such that

Ej(x + orx,+1) = e. (13.1.8)

Proof: Suppose that E;+1(x) =

Ej(x - of+1x,+1) = min
bi

j+1
x - aixi

i=1

j

x - a,+1x,+1- bixi
i=1

. Then,

j+1

x - aixi
i=1

= Ei+1(x)

= E,+1(x - a,+1x;+1) <- (by (7.4.12)) E;(x - a;+1x;+1).

j
Hence E,(x - a;+1x;+1) = E;+1(x). Now E;(x;+1) = min x;+1 - aixi > 0,

z i=1
otherwise the x's would be dependent. Hence, by (13.1.6) we can find a or
such that E,(x + o'x,+1) > e. Thus, E5(x - a;+1x;+1) < e < Ej(x + o''x;+1).
By the continuity property (13.1.6), the proper or can be found.

THEOREM 13.1.4. Let X be a normed linear space and x1, x2, ... , xn, xn+1
a sequence of independent elements. If el > e2 > > en > 0 are prescribed,
we can find a linear combination

y = b1x1 + b2x2 + .. ' + bnxn + bn+lxn+1
such that

Ek(y) = ek k = 1, 2, . . . , n (13.1.9)
and

IIyII = el. (13.1.10)



Sec. 13.1 THE MEASURE OF BEST APPROXIMATION 331

Proof : Since En+1(0) = 0, there is, by Lemma 13.1.3, a constant bn+l
such that

En(0 + bn+lxn+1) = en.

Since en_1 > en, there is, by the Lemma, a bn such that

En-1(bnxn + bn+lxn+1) = en-1.

By (13.1.2), En(bnxn + bn+lxn+1) = En(bn+lxn+1) = en- Since en_2 >- en-1,
there is a bn_1 such that

En-2(bn-lxn-1 + bnxn + bn+lxn+1) = en-2

Then, En-1(bn-lxn-1 + bnxn + bn+lxn+1) = En-1(bnxn + bn+lxn+1) = en-1, and

En(bn-lxn-1 + bnxn + bn+lxn+1) = En(bn+lxn+1) = en.

Continuing in this way, we can find an element z = b2x2 + + - bn+lxn+1

such that
En(z) = e, En-1(z) = en-1, . . . , E1(z) = el.

Now el = E1(z) = men II b2x2 + -f - bn+lxn+1 - bx1II. Select a b that yields

the minimum value. Call it -b1. Then if y = b1x1 + b2x2 + + bn+lxn+1,
conditions (13.1.9-10) hold.

LEMMA 13.1.5. Let K be a bounded subset of a normed linear space X.
Suppose that X has finite dimension N. If {Yk} is an arbitrary sequence of
elements of K, we may find a subsequence yki, yk2) ... , that converges to an
element y e X : lim IIy - ykn II = 0. If K is closed, y e K, and K is said
to be sequentially compact.

Proof : Let x1, x2, ... , xN be a set of independent elements of X. Then
the elements x of K satisfy II x II = II alxl + + aNxN II < M for some M.
Employing the notation of the proof of Theorem 7.4.1, we have from (7.4.6),
M >> Ilxll >_ mr, r = (Ia1I2 + + IaNI2)j, for every x e K. The coefficients
of elements of K satisfy (Ia1I2 + + IaN12)j< M/m, and in particular,

N
I a; I < M/m. If yk = a(k)xi then I I < M/m, j = 1, ... , N and the points

Pk : (a1kr, a2k), ... , aN>) lie in a bounded portion of RN or CN. By the
Bolzano-Weierstrass Theorem, we can find a convergent subsequence {Pkn}
of {Pk} with Pkn = P. Let P : (b1..... bN). We have li, m b; for

N

11Y-yknll I and so lim
j=1

IIy - yknll = 0.

If K is closed, it contains all its limit points and hence y e K.
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THEOREM 13.1.6 (Bernstein). Let X be a complete normed linear space.
Let {xi} be a sequence of independent elements. Given an arbitrary sequence
e1 en= 0, we can find ayEXsuch that

n

En(y)=en, n = 1) 2,.... (13.1.11)

Proof : For each n, use Theorem 13.1.4 to determine a linear combination
n+1

yn = I such that Ek(yn) = ek, k = 1, 2, ... , n and Ilynli = e1. We
j=1

will show that a suitable subsequence of (yn) converges to the required y.
k

For each k, k = 1, 2, ... , let zn,k =1 b,(n,k)x; be a linear combination
j=1

of x1, ... , xk yielding a best approximation to yn. Then, IIyn - zn,kll < IIynll
Hence, Il zn.kll < IIYn II + II zn.k - yn ll < II yn II + II yn II = 2e1. Let k be fixed.
The set of elements zn k is bounded. By Lemma 13.1.5, we can find a sub-
sequence zn ,k converging to an element

k

wk = I c,,kx, i.e., l II Wk - zn,,.kll = 0'
j=1

For sufficiently large p (depending upon k), IIWk - zn,,kll < ek. Consequently,

Il wk Yny ll < II wk - zn,,k ll + II zn,,,k ynV 11 < ek + ek = 2ek'

Again, for sufficiently large p and q,

Il ynp - yna II < II wk - Yn, II + II Wk - yna II < 2ek + 2ek = 4ek.

Now
k
i, m ek = 0; hence {yn,} is a Cauchy sequence. Since X is complete,

{yn,} converges to an element y e X. For sufficiently large p,

ek = Ek(ynd = II Yn,, - znV.kll
k

By the continuity of the norm, ek = 11Y - Wkll = y - I cf.kxl . Thus, for
j=1

k
each k, Ek(y) < ek. Now if there were a linear combination I d,x; for which

j=1
k k

y - j d;x5 < ek, then for sufficiently large p, ynv - I d;x, < ek.
j=1 j=1

However for n. > k, Ek(ynd = ek and this is a contradiction. Therefore,
Ek(y) =ek,k= 1,2,....

COROLLARY 13.1.7. Let En(f) =min max f (X) - aixi Then given
a= aSx<b i=p

e0 e1 > > 0, lim en = 0, we can find an f e C[a, b] with En(f) = en
n = 0 1 n- oo

This theorem tells us that in order to obtain nontrivial asymptotic
theorems for En(x), we must operate in a normed linear space that is not
complete. As an example, when f e C[a, b] and polynomial approximation



Sec. 13.2 DEGREE OF APPROXIMATION WITH SOME SQUARE NORMS 333

is considered, En(f) can go to zero with arbitrary rapidity. This is not the
case for f c- Cl[a, b]. As subspaces of smoother and smoother functions are
considered, En(f) goes to zero more and more rapidly. This is a phenomenon
that pervades the theory of the asymptotics of approximation.

13.2 Degree of Approximation with Some Square Norms

THEOREM 13.2.1. Let B be the unit circle, and set

En2(f) = min if (z) - ao - alz - ... - anznl2 dx dy, (13.2.1)
ai ff

B f c- L2(B).

I f f is analytic in z < p, p > 1 , but not in I z I < p' with p' > p, then

Jim sup [En(f )]i/n = 1 / p. (13.2.2)
00

Proof : Let f (z) have the Taylor expansion f (z) = I akzk where
k=0

lim sup IakIIlk = 11P

n
+ 1 zn are orthonormal in L2(B),

°° 7T k -}- 1
f (z) = ak zk

k = o k -}- 1 7r

is the Fourier expansion off. By Ex. 1, 13.1,

00

JEW )12
k=n+lk+1

Jak 12.

Given s > 0, we have for k > N(s), laklIlk < 1/p + E, so that lakl2 <
/+ s)2k. Therefore, for n > N(E),(11p

/
00 IT 00 ir(i p+ E)2n+2

l En(f) 12 < k 1
(1/p +

E)2k rr I (11p + .6)2k =
1 - E

2 .
(11p + )

It follows from this that

lim sup [En(f )]1/n < 1/P + E
n-- oo

Since s is arbitrary, slim sup [En(f )],/n < I /P.
1 - EOn the other hand, to an arbitrarily given E > 0, we have laklIlk >

for an increasing sequence of integers k = k1, k2, .... Hence, P

(1/p-E)2kf.IT Iakfl2> IT

k5 + 1 k5 + 1

But,

[Ekj_,(f )]2
IT

lak,I2
(11p - E)2kf.7T -

ki+1 ki+1
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Hence,

Now,

Therefore

Since E is arbitrary,

lim sup [En(f )]1/n > (11p - E).

lim sup [En(f )]1/n > l/p.
n--. oo

Consequently (13.2.1) holds.
A similar theorem can be proved for least square approximation of ana-

lytic functions on [-1, 1] by polynomials. The same technique of proof is
used and is based on Corollary 10.3.6 and Theorem 12.4.7.

THEOREM 13.2.2. Let

)1/[2(k3_1)]
(1I p - E)k,l([Ek,-1(f

)]1/(ki-1) > (_.
k; + 1

7T /[2(k3 - 1A
lim k' = 1 and lim = 1.

- oo k, - 1 - (k, + 1

+1

En2(f) = min If (x) - ao - alx - anxnl2 dx. (13.2.3)
at f- I

If f is analytic in 9P, but not in any ofp. with p' > p, then

lim sup [En(f )]1/n = l/p. (13.2.4)

Note that the larger 9, is assumed to be, the more rapid is the approxima-
tion.

Ex. 1. If f is an entire function and En(f) is defined either by (13.2.1) or
(13.2.3), then lim [En(f )]1/n = 0.

13.3 Degree of Approximation with Uniform Norm. We begin
with an easily established theorem that shows the relationship between
smoothness and degree of approximation.

THEOREM 13.3.1. Let f (x) E Cv[ - 7r, IT] for some p > 1 and have period 2ir.

(f (-7r) = f (7r), f '(-7r) = f '(7r), ... , f (V)(-7T) = f

Suppose that f (v) (x) satisfies a Lipschitz condition of order a, 0 < a < 1. If
n

En(f) = min max
f (X)

- I Ck cos kx + dk sin kx , then
Ck,dk -Ir < X:5 r k=0

const
En(f) < np-1+« (13.3.1)
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Proof: Let Sn(x) be the nth partial sum of the Fourier expansion of f
and ak, bk its Fourier coefficients. Then,

En(f) < max 1f (x) - Sn(x) l = max
-7Sx5 7 -7Sx<T

C
By Theorem 12.1.4, l ak I , I bk l<

k p+«

Hence

00I
k=1

k = 1,2,...

00

s I
k=n+1

°° dx const
En (f) < 2c I

k p+« < 2c n x p+x < n p-1+«k=n+1

The estimate in (13.3.1) was obtained by using the partial sums of the
Fourier series of f as a comparison function. There is no reason to suppose
that these are the most efficient trigonometric polynomials of order n to
use, and, indeed, D. Jackson has found that other polynomials lead to a
better estimate.

LEMMA 13.3.2. Let f (x) be periodic on [ -7T, 7r] and let ak, bk be its Fourier
coefficients. Then, for arbitrary constants Pn,k, the linear combination

n

cn(f ; x) =
a°

+ I Pn.k(ak cos kx + bk sin kx), (13.3.2)
2 k=1

can be expressed as
1 'T

an(f ; x) = f (x + t)Kn(t) dt (13.3.3)
7T 7T

where the kernel Kn(t) is given by
n

Kn(t) _ + I pn,k cos kt. (13.3.4)
k=1

Proof : See the proof of Lemma 12.1.9.

Ex. 1. If Pn k - 1, then Qn(f ; x) = Sn(f ; x), and

n sin (n + 1)t
Kn(t) _ + I cos kt =

t2
= the Dirichlet kernel.

k=1 2sin 2

n -k
Ex. 2. If Pn,k =

n
, then Qn(f ; x) are the Fejer sums (Lemma 12.2.2)

and Kn(t) is the Fejer kernel.

LEMMA 13.3.3. If Kn(t) > 0 for -r < t < 7r, then

I f7TI = - JIti Kn(t) dt < 7T 1/1 - Pn1 (13.3.5)r -V 2
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Proof: Since - < sin t, 0 < t <
IT

, (draw a graph),
7T 2

2
7TI = - Kn(t) dt < sin

t
Kn(t) dt

7T -f 2 2

f I
S sine - Kn(t) dt) Kn(t) dt

-W 2 -ff

Now,

j-V
Kn(t) dt =7T2

and

sine
t

K(t) dt = f(1 - cos t)
1

-}- G Pcos kt dtnxfff 2 n 2 - 2 k=1

1 7T

2 2 - Pni COs2 t dt = 2 (1 - Pnl)

Combining this information, we obtain (13.3.5).

LEMMA 13.3.4 (Korovkin). If Kn(t) > 0 and if f e C[-7T, 7T] and is
periodic, then

n(f; x) -f(x)I < w 1
()(I

+
M

7T

m - 1 - Pn1
1/2

for any integer m > 0. w(6) is the modulus of continuity of f (x).

(13.3.6)

1 "
Proof : Qn(f ; x) - f (x) 5{f(x + t) - f (x)} Kn(t) dt.

7T -ir

"
((f; x) - f (x) I < fIf(x + t) - f (x) I Kn(t) dt <

1

fw(ltl)Kn(t) dt.
7T 7T

Notice that if A > 0,
w(),8) < (A, + 1)w(6). (13.3.7)

For set A = n + 0, where n is an appropriate integer and 0 < 0 < 1. Then

w(),8) = w(na + 06) < w(no) + w(06) < nw(a) + w(6)
_ (n + 1)w(6) < (A, + 1)w(6).

1
These inequalities follow from (1.4.8)-(1.4.10). Let 6 = - and A = m Iti;

then w(I tI) < (m I tI + 1)w - . Hence,
m

m

1 1 "
I or n(f ; x) -f (x) I < r w

m - (m ,t, + 1)Kn(t) dt.
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1 "
Applying (13.3.5), and - K, ,,(t) dt = 1, we obtain (13.3.6).

-ir

LEMMA 13.3.5. For n = 1 , 2, ... , we can find kernels IRn(t) such that
n

lzn(t) _ + I Pnk cos kt, (13.3.8)
k=1

n(t)>0 -7r<t<7T, (13.3.9)

IT
Pn1 = Cos n+2

Proof : For every fixed n > 1, set

nn(t) = An l a0 + alz + ... + anzn l2
where

(13.3.10)

(13.3.11)

a =sink+
+ 2

1) k = 0, 1, ...,n, (13.3.12)k n

An = [2(a02 ,+ a12 + .. + ant) ]-1, (13.3-13)
andz=e' .

Property (13.3.9) is obvious.

n n n

.an(t) = An j ajzj I a jzj = An j a jak e2( j-k)t
j=0 j=0 j,k=0

In n-1 n-2
= An I aja j + 2 .1 a ja j+1 cost + 2 I ajaj+2 cos 2t + + 2(a0an) cos nt

j=0 j=0 j=0

Hence (13.3.8) follows by inspection. Finally, observe that

IT k7T = 1 sink + 1 7T+ sin
k - 1

cos sin ITn+ 2 n+ 2 2 n+ 2 n+2

or,
IT

ak`lcosn+ 2 = J(ak-2+ ak)

7r
Hence, cos

;_+_2
ak _ 1 = (ak-2ak-1 + ak-lak)

n+1 n+1
Therefore, cos I ak _ 1 = j I (a 2ak`1 + ak-lak) . Since

n + 2k-0 k=0

a_1=sin 0=an+1=sin
n + 2 Ir=0,n+2

7r
cos n

+
2 (ao2 +a, 2 + + an 2) = anal + ala2 + + an_lan. Now the

coefficient of cost in kn(t) is 2An(a0a1 + + an_lan), and therefore
(13.3.13) implies (13.3.10).
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THEOREM 13.3.6 (Jackson). Let f (x) E C[ -7T, 7r] and be periodic. If
n

En(f) = min max If(x) - j ak cos kx + bk sin kxI, (13.3.14)
ak,bk -7r<X<7r k=0

then

En (f) < 1 +
7.22 w 1n

. (13.3.15)

w(b) is the modulus of continuity of f.

Proof: Use the kernels Kn(t) to form on(f ; x). Then,

En(f) < _maxx I f (x) - qn(f; x) I <
w (l)

1 +
nir

n 2
1 - cos

7T 7T 7T

Now, 1 - cos = 1/2 sin . Since sin x < x for 0 < x < - ,n+2 2(n+2) 2

n7r 7T n7r2 n2
1-}- 2 1-cosn+

2
<1-+ -2n-+

- 4 <1+ 2

The study of the degree of approximation to continuous functions by
polynomials can be referred to Theorem 13.3.6 by a change of variable.

THEOREM 13.3.7 (Jackson). Let f (x) E C[ -1, 1 ] and set

n

En(f) = min -ma xx lI
If

(x) - I aixi1. (13.3.17)
z=0

Then,
I 7.2 1

En(f) < 1 + 2 w n

where w(b) is the modulus of continuity of f.

(13.3.18)

Proof: Set q(x) = f (cos x). Then 9 is continuous, periodic, and even in
[-7r, 7r]. Using I n(t), form Q(f ; x). By (13.3.4),

dn(9; x) =
a0

2 + Pn.k ak cos kx,
k=1

where ak are the Fourier coefficients of q(x). From the proof of Theorem
13.3.6,

7r2

_m zx I9(x) - Orn(9; x)I + 2 w n
Now,

w(b; 9) =max 19(x1) - 9(x2)1 = mzxIx
X21 1xi« 1f (cos xi) - f (cos x2)I
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Since

Hence,

d- cos x
dx

< 1, I COS x1 - COS x2 1 I x1 - x21

Iximax aIf (cos x1) - f (cos x2)I <Iximxax 6If (x1) - f(x2)I = w(b;f)

Therefore,

max
-7T<x<7T

a n
f (cos x) - 2 - I p,,,, cos kx

k=1

Setting y = cos x,

max
-1:5 y<1 f(y)- r2 1< 1 -}- 2 w -

;f).

2 11-}-2 wn;f

a n
° - I Pnk cos (k are cos y)

2 k=1

Since cos (k are cos y) = Tk(y),

Hence,

a
°

n

pn(y) =
2

+ I Pnk cos (k are cos y) E
k=1

2)(j).
En(f) S max I f (y) - P.(y)I < 1+ w1<y<1 2 n

NOTES ON CHAPTER XIII
13.1 Tieman [1] pp. 50-55.
13.2-13.3 Much is known about the degree of approximation. For ana-

lytic functions, consult Walsh [2], [3]. For real functions, Jackson [1], Bern-
stein [1], Natanson [1], Tieman [1], Korovkin [2], Alexits [1], Zygmund [1],
vol. I.

PROBLEMS

00

n
1. Let the radius of convergence of f (z) = I anzn be R. Set Sn(z) _ I akzk.

Show that n = O k = O

1/n r

lim s u p Max I f (z) - Sn(z)I =
R

, for r < Rr
IzI <'r I

1/n r

and lim sup max I Sn(z) I = - , for r > R.
R -

2. Let p be a fixed number > 1, and let X be the space of functions that are

analytic in IzI <p. For f E X, set II f II2 = I f(z)I2 dx dy. Show that X is not
complete.

I Z I <1

3. Discuss the degree of approximation of a periodic analytic function by its
Fourier series.
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4. Discuss the rapidity of convergence in L2(gP) of the best polynomial
approximants to functions that are analytic in J'o p' > p.

5. The kernel

Kn(t)
3

2n(2n2 + 1

is known as Jackson's kernel. Show that

t
sin 2

nt 2
sin -

2
=

t
n + 2[(n - 1) cos t + (n - 2) cos 2t + + cos (n - 1)t]

sin -
2

and hence that
2nd-` 2

Kn(t) _ + L, P2n-2,k cos kt where
k=1

3
P2n-2,1 - 1 - 2n2

6. Show that Jackson's kernel is of Fej 6r's type on [ -7r, 7r]. (See 12.2.)



CHAPTER XIV

Approximation of Linear Functionals

14.1 Rules and Their Determination. Numerical analysis has given
rise to many approximate formulas for interpolation, extrapolation, differ-
entiation, and integration. These formulas, frequently called "rules," are
not only of practical importance, but very frequently have an unusual
interest in their own right. Integrals, derivatives at a point, etc., are linear
functionals defined over appropriate linear spaces of functions, and the
problem of rule formation is equivalent to the approximation of these
functionals by linear combinations of prescribed linear functionals.

ra+2h h
Ex. 1. f (x) dx

3
[f (a) + 4f (a + h) + f (a + 2h)] (Simpson's Rule).

a

Ex. 2. f (a) J[f (a - h) + f (a + h)] (Linear Interpolation).

Ex. 3. f (a + h) Pw f (a) +
h

2
[ f'(a) + f'(a + h)] (Trapezoidal Rule for Differ-

ential Equations).

In general, the prescribed linear functionals are values of a function at a
point. Occasionally, as in Ex. 3, derivatives are employed. Integrals over
subintervals have not been used to any extent as approximating linear
functionals, but they, too, are possible, and might conceivably become
important.

Two roads may be taken to develop rules : (a) The method of inter-
polation and (b) The method of approximation. Let L1, L2, . . . , L. be n
prescribed "elementary" linear functionals. It is desired to approximate a
given linear functional L by linear combinations of the Li :

L a1L1 + a2L2 + ....+ anLn. (14.1.1)

The remainder or error

E = L - (a1L1 + .. + anLn) (14.1.2 )

is itself a linear functional. (Note that in this chapter, the symbols E, En
will be used with a different meaning than in Chapters 7, 13.) The method
of interpolation selects constants ai in such a way that E vanishes on n

341
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prescribed elements xl, ... , xn :

E(xi) = 0 i = 1, 2, ... , n.

Ch. XIV

(14.1.3)

We may say that the constants ai are determined so that E is orthogonal
to x1, ... , xn. The theory of this method has been discussed extensively
in 2.2.

Ex. 4. The rules of Ex. 1, Ex. 2, Ex. 3 are exact for Y31 91, and Y2, respec-
tively.

Method (a) has had a long history and by far the bulk of the approximate
formulas of numerical analysis are of this type. The method of approxima-
tion (b) is a recent one and has certain advantages and disadvantages over
(a). Here we assume that we are dealing with a normed linear space X of
functions and that the functionals in question L, Li, belong to the normed
conjugate space X*. We wish then to determine constants ai such that

IIL - (a1L1 + a2L2 + + anLn) II = minimum. (14.1.4)

In the case where X is a Hilbert space so that X and X* are essentially
the same (Theorem 9.3.9) the problem of approximation of functionals can
be handled by orthogonalization methods. We therefore note :

THEOREM 14.1.1. The problem (14.1.4) possesses a solution.

Proof : Apply Theorem 7.4.1 to X*.

THEOREM 14.1.2. Let H be a Hilbert space and L, L1, ... , Ln be bounded
linear functionals, the last n assumed independent. Let x, x1, ... , xn be their

n n
representers. If x - aixi = minimum, then L - aiL2 = minimum.

=1 i=1

14.2 The Gauss-Jacobi Theory of Approximate Integration. One
of the finest examples of rules of interpolatory type is that of Gauss-Jacobi.
Here the approximating linear functionals are not prescribed in advance,
but the problem is to determine them so that the rule will be exact for
polynomials of maximal degree. Let w(x) > 0 be a weight function defined
on [a, b]. If n distinct points x1, ... , xn are specified in advance, then we
know that we can find coefficients w1, . . . , wn such that the rule

b n
L(f) = w(x) f (x) dx 1 Wk f (xk) (14.2.1)

a k=1

will be exact for 9n_1. If we treat both the xk and the wk as 2n unknowns,
then, perhaps, we can arrange matters in such a way that the rule will be
exact for g2n_1, (i.e., linear combinations of the 2n powers 1, x, x2, ... , x2n-1)

For such a rule to have practical importance, the points xi must lie in the
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interval [a, b], although for analytic functions, this condition could be
waived.

This is indeed possible as was found by Gauss and generalized by Jacobi.
The solution exhibits a surprising relation to the orthogonal polynomials
generated by the weight w(x).

THEOREM 14.2.1 (Gauss-Jacobi). Let w(x) > 0 be a weight function defined
on [a, b] with corresponding orthogonal polynomials pn(x), n > 1. Let the zeros
of pn(x) be a < x1 < x2 < < xn < b. Then, we can find positive constants
w1, w2, ... , wn such that

b n

I
w(x)p(x) dx = I wkp(xk) (14.2.2)

a k=1
whenever p(x) E g2n-1

Proof : Given a p(x) as above. Let q(x) E take on the values of
p(x) at x , ,.) xn. We can write it in the Lagrange form

x =, x4 x, x= w(x) ,W(x) = f (x - x.q()
k=1

p( k) kl ) k( ) (x - xk)wi (xk)
k =1

k)

The polynomial p(x) - q(x) therefore has zeros at x1, ... , xn and conse-
quently p(x) - q(x) = pn(x)rn-1(x) for some polynomial rn-1(x) E 9n-1
Therefore, in view of the orthogonality of pn(x) to polynomials of lower
degree,

b b b

w(x)p(x) dx = w(x)[q(x) + pn(x)rn_1(x)] dx = w(x)q(x) dxfa a a
n n b

w(x) I p(xk)Lk(x) dx = w(x)(k(x) dx p(xk).
k=1 k=1 afab

If we set
b

wk = w(x)4(x) dx
fa

(14.2.3)

then the identity (14.2.2) holds. Now t'k(x) E 9n-1 and vanishes at x1, ... ,
xk_1, xk+1, ... , xn. Therefore (Gk(x))2 E 72n-2 and vanishes at these same
points. Moreover ek(xk) = 1. Hence,

n
// //

b

wk = w,( k(xj))2 - w(x)[&'k(x)]2 dx > 0.
j=1 a

The abscissas xi are the zeros of certain polynomials, and are generally
irrational numbers. If computing is done by hand, it is a nuisance to deal
with many digits, and so in years gone by the Gauss rule was not popular.
High speed digital computers, on the other hand, do not distinguish between
"simple" numbers such as .500000000 and more "complicated" ones such
as .577350269. The Gauss rules, which are excellent for large classes of
functions arising in practise, have therefore been rehabilitated in the eyes
of computers and are much employed.
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The following remainder theorem holds for the Gauss-Jacobi rule.

THEOREM 14.2.2 (A. Markoff). Let w(x) and x1, ... , xn be as in the
previous theorem. Let f (x) E C2n[a, b]. Then,

b n f (2n) (,,)
En (.f) = w(x) f (x) dx - Jwkf (xk) =

21
(14.2.4)

a k=1 (2n). kn

where kn is the leading coefficient of the orthonormal polynomial pn*(x) associ-
ated with w(x), and where a < q < b.

Proof : The device here is to employ Hermite interpolation with each
abscissa repeated once. Let h2n-1(x) be that polynomial of 12n-1 for which
h2n-l (xk) = f (xk), h2n -1(xk) = f (xk), k = 1, 2, . . , n. Then according to
Theorem 3.5.1, we have

(2n)
//x)

=h_(x)+.f (E(x))(x-x)2(x-x)2.. x-x 2 (14.2.5)f l 2n 1 (2n)! l l 2 ( n)

for a < x < b and a < fi(x) < b. Notice that by Theorem 1.6.6 applied to

//x) - h _ (x), f (x) - h2n-1(x) E C[a, b] and hence (2n)( (x)) is alsofl 2n 1 f \
(x - x1)2 . . . (x - xn)2

continuous. Multiply (14.2.5) by w(x) :

w/ x x= w x x+ f
W(X)

[pn*(x)]2

14.2.6l )f ( ) ( ) 2n-1( )
(2n) !

k 2 ( )
n

where pn* (x) is the orthonormal polynomial of degree n associated with
w(x). Integrate (14.2.6), and employ the mean value theorem for integrals :

Ibw(x)f(x) ab

(2n) ! kn2 a

Ibf(2n)((x))w(x)[pn*(x)]2dx = w(x)h2n-1(x) dx +
1

dx

b fb

a
w(x)h2n-1(x) dx + k 2 w(x)[pn*(x)]2 dx

(2n)! n a

f (= I wkf (xk) + ( 2
k=1 (2n)! kn

(2n)
)

COROLLARY 14.2.3. For the Jacobi weight w(x) = (1 - x)a(1 + x)fl,
a> -1, j9> -1, andforf(x)EC2n[-1, 1], then

22n+a+1+1r(n + a + 1)I'(n + /9 + 1)F(n + OC + l9 + 1)n! f (2n) (77)
I'(2n + a + # + 1) I'(2n + a + # + 2)(2n) !

For a = # = 0, this reduces to
(14.2.7)

22n+1(n!)4
En(f) = + 1.f (2n)(14.2.8)

(2n
)[(2n)]3



Sec. 14.3 NORMS OF FUNCTIONALS AS ERROR ESTIMATES 345

14.3 Norms of Functionals as Error Estimates. Let X be a
normed linear space and L a bounded linear functional defined on X. Then,
as in (9.3.2),

IL(x)I < IILII IIxll, x e X. (14.3.1)

IILII is independent of x. This fundamental inequality may be made the
basis of error estimates for the linear rules of numerical analysis. Let L be
a given functional and let a rule R be an approximation to L. Then con-
struct the error

E=L- R. (14.3.2)

The smaller the norm II E II = I I L - R II , the better the approximation of R
to L.

Ex. 1. Let X be the linear space of continuous functions on [a, b] that have
a bounded, piecewise continuous derivative. Let 11f II = sup If'(x) I + If (a)j.

a<x<b
Then X is a normed linear space. If K(x) is a bounded, piecewise continuous

b

function on [a, b], then L(f) = f'(x)K(x) dx is a bounded linear functional
a ^b b

on X. Since I L(f) I sup I f'(x) I I K(x) I dx < II f II I K(x) I dx, it follows
b a<x<b a a

that IILII < I K(x) I dx. On the other hand, the function sgn K(x) is bounded
a z

and piecewise continuous in [a, b]. Hence the function g(x) = sgn K(t) dt is in
b b a

X, and g(a) = 0. Also L(g) _ (sgn K(x))K(x) dx = I K(x)I dx. If K(x) # 0,
a a

b

then II gII = sup I sgn K(x) I = 1. Hence, I L(g) I = II g II I K(x) I dx. Therefore
a <x <b b a

IILII > EIK(x)l dx, and hence IILII = IK(x)I dx.
a

As a specific instance, the error in the trapezoidal rule (cf. Ex. 4, 3.7) is
given by

b

E(f) = f (x) dx - b -
a

f (a) + f (a + Q) + f (a + 2Q) +
a n L 2

Therefore (cf. (3.7.21) ),

+f(a+(n -1)Q)+f(b) Q=b -a
2 n

n-1 a+(k+1)a
E(f) = - ,G (t - (a + (k + I)a))f'(t) dt.

k=0 a+ka

Hence, by the above work,

n-1 a+(k+1)a na2 (b - a)2
IILII=I It-(a+(k+j)a)Idt=4

4nk=0 a+ka

Therefore I E(f) I <
'

Ilf11 (b -a 2

4n
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Ex. 2. In the space L2(B) where B is the unit circle, consider the inter-
polation formula f (0) I(f (h) + f (-h)), where 0 < h < 1. Set

E(f) = f (0) - 1(f (h) + f ( -h))-
By Corollary 12.5.5, E is bounded over L2(B). From Corollary 12.6.7,

and from (12.6.17),
IlEll2 = EwEZK(z, w),

1

K(z, w)
7r(1 - zw)2

Hence,
1 1 1 1 1- 3h2w2 + h4341

EzK(z, w) 7r 27r [(1 - hw)2 + (1 + hw)2 ;r (1 - h2iv2)2

1 3h4 - h8
l Ell 2 - h4)2 .

h2 V3 -h4
lF,ll _ -

\/7r -h4
( )

h2 V3 - h4
IE(f) - If(z)I2dxdy

V7r (1 - h4)
121<1

3
Note that as h -* 0, 11 Ell - h2. As h -* 1-, ljE ll --* oo. This reflects the fact

that f (0) - 2(f (1) + f (-1)) is not bounded over L2(B).

Ex. 3. Let Sp be the ellipse of Def. 1.13.1. Let E be a bounded linear func-
tional over L2 (91,) and suppose that E (1) = E(z) _ = E(zn) = 0. From (12.6.18),

, 4 00 IE(rJk)I2
II

II 2 =
7r

._I (k + 1) p 2n+1

As concrete examples, the following values may be cited. Select the ellipse
Sp with a = 2, b = 1/3, p = 3.732. Approximate integration over [ --1, 1] is
considered.

Rule n Norm of Error
Trapezoidal 1 5.08 x 10-2
Simpson 3 3.72 x 10-3
Gauss 7 point 13 8.75 x 10-9
Gauss 10 point 19 3.87 x 10-12
Gauss 16 point 31 6.70 x 10-19

14.4 Weak* Convergence. Numerous modes of convergence have
been defined and studied for normed linear spaces. One mode, known as
weak* convergence, is particularly relevant to the problem of approxima-
tion of linear functionals. In order to see how it fits into the scheme of things,
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it is convenient to make several preliminary definitions, some of which have
been met before.

DEFINITION 14.4.1. (Strong or ordinary convergence in X.) A sequence
of elements {xn} is said to converge strongly to x if lim lix - xn II = 0
(cf. 7.2).

Ex. 1. If H is a Hilbert space and {xk * } is a complete orthonormal sequence,
n

then for arbitrary x e H, the Fourier segments I (x, xk * )xk * converge strongly
to x (Theorem 8.9.1, B). k=1

DEFINITION 14.4.2. (Weak convergence in X.) A sequence of elements
{xn} is said to converge weakly to x if slim I L(x) - L(xn)l = 0 for all L E X*

(X* is the normed conjugate space of X).

Ex. 2. Let H be a Hilbert space. Then, any orthonormal sequence {xk * }
converges weakly to 0. For by Theorem 9.3.3, L(xk*) = (xk*, x) for an appro-
priate x e H. By Theorem 8.9.1, C, kl m I L(xk *) - L(0) I = 0. On the other hand,

{xk * } does not converge strongly to 0, for II xk * - 011 = 1

In the normed linear space X*, there are also several modes of conver-
gence.

DEFINITION 14.4.3. Strong convergence in X*. A sequence of elements
{L} of X* is said to converge strongly to L if lim II L - Ln II = 0. This
parallels Definition 14.4.1.

n-- ao

n
Ex. 3. X = C[a, b] with If 11 = max if (x)I . Let Ln(f) = I aknf (xkn) where

n a<x<b k=1
a < Xkn < b and

n
lim I I aknf = 0. Then, in view of Ex. 5, 9.3, Ln --o. 0 strongly.

00 k=1

Less useful is

DEFINITION 14.4.4. Weak convergence in X*. A sequence of elements
{L} of X* is said to converge weakly in X* to L if lim I L*(Ln) - L*(L) I = 0
for every element L* E (X*)*.

n ao

An intermediate mode is

DEFINITION 14.4.5. Weak* convergence : A sequence of elements {L}
of X* has a weak* limit L if

lim I Ln(x) - L(x)I = 0 (14.4.1)
forallxeX.
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Weak* convergence is precisely what is required for the convergence of
approximate rules, for we would like the approximate answers obtained,
Ln(x), to approach the true answer L(x), for any element x.

Ex. 4. X = C[a, b], 11f 11 = max If (x)I. Let
a<x<b

xoo

x1o, x11

x20' x21, x22

be a triangular sequence of points of [a, b] such that

xno = a, xnn = b, xnk < xn.k+l and lim max (xn.k+1 - xn.k) = 0.

n b

Set Ln(f) _ I f (xnk)(xn,k - xn,k-1) If L(f) =f f (x) dx, then by the proper-
k=1 a

ties of the Riemann integral, Ln(f) -* L(f) for every f e X. L is the weak*
limit of {Ln}.

Ex. 5. X = C[ -1, 1], 11f 11 = max If (x)I I. Let the functions Kn(x) satisfy
-1 <x<1 +1

Fejer's conditions (cf. 12.2.10-.12) : Kn(x) integrable and > 0, Kn(x) dx = 1,
J-1

and if Mn((5) = max Kn(x), then lim Mn((S) = 0 for all 0 < 6 < 1. Set
+1 6< 1xI < 1 n- oo

Ln(,f)
=f-

f (x)Kn(x) dx, L(f) = f (0). Then, Ln converges weakly to L. For,
1

+1 +6

L(/) - Ln(f) _ (,f (0) - .f (x))Kn(x) dx = (,f (0) - .f (x))Kn(x) dx
-1 -6

1 -6
+a(f (0) - f (x))Kn(x) dx + (f (0) - f (x))Kn(x) dx.

-1
Hence

I L(f) - Ln(.f )I < If (0) - f( )I -
sKn(x) dx

-6

+ Mn(o) If (0) -.f (x) I dx -1- If (0) -.f (x)I dx
a -1

+1 +1

If (0) - f(Of Kn(x) dx + Mn(6) +I f (0) - f (x) I dx, where -6 < 6.
-1 -1

ryAllow n-* oo;then limsupIL(f) -L,1(f)I <If(0)
Since 6 is arbitrary and f is continuous, we conclude that lim Ln(f) = L(f

n-- oo
+1

Employing the Dirac cS function: f (0) = f (x)6(x) dx, we may speak of the
-

Fejer kernels Kn(x) as "converging" to 6(x) in the above sense.
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A sequence of functionals can have only one weak* limit. For suppose
that L and M are both weak* limits of {Ln}. Then, for all x e X, Ln(x) - * L(x)
and Ln(x) -k M(x). Hence L(x) = M(x) for all x e X, and this means that
L = M.

Strong convergence in X* implies weak* convergence. For, assume that
lim IIL - Ln II = 0. Then, for any x e X, IL(x) - Ln(x) l = I (L - Ln) (x) l <

n 00

On the other hand, weak* convergence does not necessarily imply strong
convergence. As in Ex. 2, this is most easily seen in a Hilbert space. If
{xn*} is an orthonormal system, set Ln(x) = (x, xn*). Then, Ln(x) -+ 0 for
all x e H so that 0 is the weak* limit of {Ln}. On the other hand, 110 - Ln II =
Il xn* II = I.

However, in a Hilbert space, if L is the weak* limit of {Ln} and if IILnII

IILII, then IIL - Lni1 --* 0. For let Ln(y) = (y, xn) and L(y) = (y, x). Then
(y, xn) --k (y, x) for all y e H. In particular, (x, xn) --k (x, x). Moreover
(xn) Xn) -- k (x, x). Now,

IIL-LnII2=Iix-xn112

= (x, x) - (x, xn) - (xn, x) + (xn, xn) -* (x, x) - (x, x) - (x, x)
+ (x,x) =0.

LEMMA 14.4.1. Let X be a complete metric space (cf. 7.2). Suppose that
Un = U(xn) e) is a sequence of closed balls such that U1 U2 , and
lim 8n= 0. Then, there is an x e X with x e Un, n = 1, 2, ....
n- c)

Proof: Given e, we can find N such that en < e for all n > N. If m > n,
then Um g U. and hence xm E U. Therefore d(xr, xn) < e for all m,
n > N, and {xm} is a Cauchy sequence. Now X is a complete space and so
there is an x e X with lim d(x, xn) = 0. Let Uf be one of the balls. The

n- 00
elements x;, x,+1, ... , all belong to U;. Since U1 is closed, the limit x e U;
and hence belongs to all the balls.

THEOREM 14.4.2. Let X be a complete normed linear space. Suppose that
{Ln} is a sequence of bounded linear functionals such that for all x E X, the
sequence of constants {L(x)} is convergent. Then, we can find an M such that

IILnII <M n = 1) 2,.... (14.4.2)

Proof : Suppose that (14.4.2) were not true. Then, lim sup IILnII = x.

For a given x0 e X, consider the closed ball U(xo, e) consisting of those
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elements x for which II x - x011 <.6. It is now claimed that

I Ln(x) I < K n = 1, 2.... ; x E U(x0) E) (14.4.3)

is impossible. For take any y e X, y 0 0. Then

.6y

z
-xo

Il y ll

is clearly in U(x0, E). Now, Ln(z) = E L,n(y) + Ln(xo). Hence,
Il y ll

E

I Ln(y)I - I Ln(x0)l <
Il y ll

E

L, (y) + Ln(xo)
Ilyll

= I Ln(z) I < K.

This implies that I Ln(y) l < (K + I Ln(x0 {Ln(xo)}) l) II y ISince converges,
E

the sequence I Ln(xo)I is bounded. For some constant K1, therefore, I Ln(y)I <
K1 Il y ll for all y e X. This tells us that ll Ln ll < K1, contrary to our assump-
tion.

Take a U(xo, E). As has just been established, we can find an index n1
and an element x1 E U(xo, E) for which

I Lnl(xl)I > 1. (14.4.5)

Since Lnl is continuous, we can assume that x1 is in the interior of U(xo, E)
and can therefore find a second ball centered at x1, U(x1, El), with U(x1, E1) c:
U(xo, E) such that I Lnl(x)I > 1 for all x e U(xl, E1). But again, the quantities
I Ln(x) I cannot be bounded for x e U(xl, E1). Hence, we can find an n2> n1
for which I Ln2(x2) I > 2. We proceed in this way. A sequence of balls
U(xn, En), each contained in the previous one, can be found for which
I Lnj(x)I > j, x E U(xi) Ei). Moreover we may choose En --- 0. Since X is com-
plete, we can by Lemma 14.4.1 find an element x' lying in each of the nested
sequence of balls. Then ILn,(x') I > j, j = 1, 2, .... This contradicts the
hypothesis that {Ln(x)} is convergent for all x. The assumption that

lim sup ll Ln II = 00

must have been fallacious.

COROLLARY 14.4.3. Under the hypothesis of the last theorem, we can find a
bounded linear functional L for which

lim Ln(x) = L(x), x e X.

Proof : For a given x e X, define L(x) by means of

L(x) = lim Ln(x).

(14.4.6)

(14.4.7)
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Now
L(ax + by) = lim Ln(ax + by) = lim {aLn(x) + bLn(y)}

n-- oo n-- oo

= a lim Ln(x) + b lim Ln(y) = aL(x) + bL(y).

The functional L is therefore linear.
By the theorem, there is an M such that II Ln II < M, n = 1, 2, .... Take

an x e X. Then, I Ln(x) I < I I Ln I I I I x I I < M I I x I I . From (14.4.7), I L(x) I < M ll x II
Accordingly, L is bounded and II L II < M.

A similar theorem holds when the Ln are linear operators which send the
elements of one complete normed linear space X into a second such space Y.

We now come to the fundamental theorem of weak* convergence. Many
men have made contributions toward the final statement. Among them are
Osgood, Vitali, Lebesgue, Polya, and Banach.

THEOREM 14.4.4. Let X be a complete normed linear space, and let L, L1,
L2, .... be bounded linear functionals defined on X. In order that L be the
weak* limit of the sequence {Lk}, it is necessary and sufcient that

IILkII <M k = 1,2,..., (14.4.8)

for some constant M, and that

lim Lk(x;) = L(x;) j = 1, 2, ... (14.4.9)
k -- co

for some sequence of elements {x;} that is closed in X.
In this connection, the constants IILkII are known as the Lebesgue Con-

stants.

Proof: Sufficiency. We shall show that (14.4.8-9) implies that

lim Ln(x) = L(x)

for all x e X. Take an x e X. Given an E, we can, in view of the closure of
{x;}, find constants al, ... , ak such that 11X - yk II < E where

yk = alxl + . . . + akxk.

Now L(x) - Ln(x) = L(x) - L(yk) ± L(yk) - Ln(yk) + Ln(yk) - Ln(x) so
that

IL(x) - Ln(x) l < IL(x) - L(yk) I + I L(yk) - Ln(yk) I + I Ln(yk) - Ln(x) I

IILII IIx - Ykll + I L(yk) - Ln(yk)I + II Lnil IIx - ykll-

Keep k fixed and allow n -+ oo. By (14.4.9), we have lim Ln(yk) = L(yk).
Using this and (14.4.8), we have lim sup IL(x) - Ln(x)I < IILII E + ME.

n-- oo

Since E is arbitrary, this implies that lim Ln(x) = L(x).n oo
Necessity. (14.4.9) is trivial. (14.4.8) follows from Theorem 14.4.2.
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The fundamental theorem of weak* convergence can be applied usefully
in two ways. Since conditions (14.4.8-9) are sufficient, they can be used to
demonstrate the convergence of a sequence of functionals. Since they are
also necessary, they can also be used to demonstrate the impossibility of
convergence. Examples of both types of application follow. Some of the
results have been obtained previously.

Ex. 6. Convergence of Bernstein Polynomials.
Let X = C[0, 1], IIf II = max if (x)I. Let x be a fixed point in [0, 1] and set

0 <x<1

k n
Ln(f) _ f n k xk(1 - x)n-k

Bn(f; X) (14.4.10)
k=0

and
L(f) = f (x). (14.4.11)

n n
Now, from 9.3, Ex. 5, 11 Ln 11 = G k xk(1 - x)n-k = 1. Furthermore (6.2, Ex. 5)

k=0
Ln(e ) = (1 - x + xeil n)n so that lim Ln(eAX) = elx = L(e'x). The system of

n, oo
exponentials 1 , ex, e2x, ... , is closed in C[0, 1]. This follows from Weierstrass'
Theorem (on the interval [1, e]) by a change of variable. Applying Theorem
14.4.4, we learn that Bn(f; x) --* f (x).

Ex. 7. Fejor Summability of Fourier Series.
Let X be the set of functions that are continuous and periodic on [ -?r, ir],
IIf II = max if (x) 1. Let x be a fixed point in the interval and set L(f) = f (x),

-1T<x<7T
Ln(f) = an(f; x) = the Fejor sums for f (cf. Lemma 12.2.2). For an integer p,
sin px has the Fourier expansion 0 +0 + + sin px +0 +0 + , and
hence, for n sufficiently large, its Fejer sums (the averages of the partial sums

of the series) must be
(n - p) sin px

-- sin px. A similar remark holds for cos px.
n

Thus, L n
sin px , L sin px

Now, Ln(f
1 f Ir

f (x + t)
sin2 nt/2

dt.I. ) =
cos px cos px 27rn _,f (sin t/2)2

sin2 nt/2
Since the kernel is positive, 11 Ln jj

1
= dt = 1. An application of the

2?rn _,T (sin t/2)2
Theorem 14.4.4 yields an(f; x) --* f (x).

Ex. 8. Convergence of Quadrature Processes.
Let X = C[a, b], 11f 11 = max If (x)I . Suppose that we have been given a tri-

a <x _<b
angular system of abscissas and weights

x11 all
x21 x22 a21 a22

x31 x32 x33 a31 a32 a33 (14.4.12)
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and we construct a sequence of quadrature rules from them:
n

Ln(f) _ I and (xnk) n = 1, 29 .... (14.4.13)
k=1

Under what circumstances can we assert that
b

lim Ln(f) = f(x)dx,f EC[a,b]? (14.4.14)
n-- oo a

n

Inasmuch as II Ln II = I l ankl , an application of Theorem 14.4.4 yields:
k=1

THEOREM 14.4.5 (Polya). Let there be given a sequence of quadrature rules
{L}. We have

lim Ln(f) = f (x) dx for all f e C[a, b]
a

if and only if

and

for some constant M.

b

lim Ln(xk) = xk dx k = 0, 1, ...
n-.oo

a

n
I land <M

k=1
n = 1,2,...

COROLLARY 14.4.6 (Stekloff). Let ank > 0. Then (14.4.14) holds if and
only if (14.4.15) holds.

n n
Proof : I l and = I ank = Ln(1). Now if (14.4.15) holds then Ln(1) is

k=1 k=1
bounded. Hence (14.4.16) holds and (14.4.14) follows. Conversely if (14.4.14)
holds, (14.4.15) holds trivially.

COROLLARY 14.4.7 (Stieltjes). Let w(x) be a weight function on [a, b].
Let xni be the abscissas and wni be the weights in the Gauss-Jacobi quadrature
formula. Then,

b n
w(x) f (x) dx =

n
il m wnif (xni) (14.1.17)

a i=1
for all f (x) E C[a, b].

b n
Proof : Here we take L(f) = w(x) f (x) dx. If Ln(f) _ wnif (xni) then

b a i=1
Ln(xk) = xk dx for 0 < k < 2n - 1. Moreover the weights wni are all

fa n
positive. Hence l wni l = b - a.

i=1 b

Actually, more may be proved : Ln(f) --* w(x) f (x) dx for any bounded
a

f (x) for which the Riemann integral faW(x)f (x) dx exists.
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Ex. 9. Equidistributed Sequences.
A particular instance of the scheme (14.4.12) is

x1 x2

X1 h

x1 x2 x3

leading to the equation

1 n

ao n I f (xk)
n k=1

1

h h

2 2

h h h

3 3 3

h=b -a,

b

(14.4.18)

b
f (x) dx, f e C[a, b]. (14.4.19)-a a

The theory of this equation will now be developed.

LEMMA 14.4.8. Let F and G be two families of bounded, Riemann inte-
grable functions on [a, b]. If (14.4.19) holds for all f e F, and if for each g e G
and e > 0, we can find f 1, f2 E F such that

f1<q<f2 a < x < b

- f1) dx < e,j(f2

then (14.4.19) holds for all g e G.

(14.4.20)

Proof :

1 [fl(xl) + f1(x2) -f - ... + f1(xn)] < 1 [9(x1) -f - ... + 9(x )]
n n n

[f2(x1) + + f2(xn)]n
Hence,

b 1

fl(x) dx < lira inf - [q(x1) + + q(xn)]
a n

n

b

[9(x1) + + q(xn)] < f2(x) dx.limao sup -n a-
In view of (14.4.20), the lira inf and the lira sup can be made arbitrarily

1
close, and hence lim - [q(x1) + + q(xn)] exists. Call it I. Then,

n
b b

j'fi(x)dx < I < f2(x) dx.
a fa
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Then,
b b b

0 I - g(x) dx < f2(x) dx - fl(x) dx < e.
a a a

Since E is arbitrary, I = g(x) dx.
fa

COROLLARY 14.4.9. Let R[a, b] designate the space of bounded, Riemann
integrable functions on [a, b]. The limit (14.4.19) holds for all f E C[a, b] if
and only if it holds for all f e R[a, b].

Proof: Since C[a, b] c R[a, b], it remains to prove the "only if" part.
Let F = C[a, b] and G = R[a, b]. Take a g e R[a, b]. We can obviously
assume that g is nonnegative. (For otherwise add a sufficiently large con-
stant.) Observe first that we can find piecewise constant functions f 1 and f2
such that (14.4.20) holds. For, by an elementary property of the Riemann
integral, we can find a sub-division a = o < s1 < < E,_1 < b

n
such that the upper sum U =1 Mk(Ek - Ek-1) and the lower sum L =

n k=1
I mk(k - Ek-1) differ by less than E : U - L < E. Here we have written

k=1
Mk = sup f (x), Mk = inf f (x). Now setf2(x) = Mk on 4-1 < x < Ek,

4-1 < x < 4 k-1 < X:< k
k = 1, 2, ... , n - 1 and f2(x) = M,, on n_1 < x < ,,. Use a similar defi-
nition for f 1.

We wish to show next that we can find two functions f 1 and 12 E F =
C[a, b] such that the approximation (14.4.20) holds. This type of approxi-
mation has a transitivity property, so that by what we have just proved,
it suffices to take g as positive and piecewise constant. Such functions g
are linear combinations with positive coefficients of functions of the type
h(x) = 1 for c < x < d, h(x) = 0 elsewhere in [a, b] (a < c < d < b). For
sufficiently small b, define a continuous function ha by means of h6(x) _
1+6 f o r c < x < d, h6(x)=b f o r a < x < c - b and d + b <"x < b,
h6(x) = linear for c - b < x < c, d < x < d + b. Then it is easily verified

that h6(x) > h(x) + b and 0 < (ha(x) - h(x)) dx can be made arbitrarily
a

small for b sufficiently small. A similar process can be carried out on the
under side of h.

DEFINITION 14.4.6. A sequence of points {xk} lying in [a, b] is called
equidistributed in [a, b] if (14.4.19) holds for all f e C [a, b].

The word "equidistributed" arises from the following property of such
sequences. Let [orl, 02] be any interval contained in [a, b] and let Nn[cx1, d2]
designate the number of points among the x1, x2, ... , xn that lie in

° 1 < x < Q2.
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Then,

llm 1 Nn[Or1, d2] _ Or2 - Or,b-a

Ch. XIV

(14.4.21)

In other words, each interval contains, asymptotically, a fraction of the
terms of the sequence in direct proportion to its length. This is a simple
consequence of Corollary 14.4.9 by selecting f = 1 on Or1 < x < d2 and
f = 0 elsewhere.

COROLLARY 14.4.10. Let C2,[a, b] designate the space of continuous and
periodic (i.e., f (a) = f (b)) functions on [a, b]. The limit (14.4.19) holds for
all f e Cp[a, b] if and only if it holds for all f e C[a, b].

Proof : Since C,o[a, b] c: C[a, b], it remains to prove the "only if" part.
Let F = Cp[a, b] and G = C[a, b]. Take g e C[a, b]. We may evidently

K
suppose it to be positive. Let M = max g(x). Select K so that > 1,

a <z<b g(a)
K 1 + 1 -1

b
> 1. Pick an q so that 0 < q < min b - a, EM-1K-1

a b

Define a continuous function I(x) by means of I(a) = , I(b) =
g(a) g(b)

I(x) = 1 for a +,q < x < b -,q, and I(x) = linear elsewhere. Then t(x) > 1.
Set f2(x) = I(x)g(x). Then f2(x) > g(x) and f2(x) is continuous. Moreover,
f2(a) = I(a)g(a) = K = I(b)g(b) = f2(b), so that f2 e C2,[a, b]. Finally,

b b KM
d< a

+7 KM
d = KMd 1 1

)
a

x xxX- x(f2( ) g( ))
a g(a)

b-n g(b) ?7

<S.+
g(a) g(b)

A similar process can be carried out on the under side of g to yield an fl.

THEOREM 14.4.11. The sequence {xk} is equidistributed in [a, b] if and
only if (14.4.19) holds for a sequence of functions {fk(x)} that is closed in C[a, b]
or C,o[a, b] with 11f II = ma xb If (x)I.

b 1 n

Proof : Set L(f) = f (x) dx, L(f) = - I f (xk) . Then, II Ln II = 1. Apply
a nk=1

Theorem 14.4.4 and Corollary 14.4.10.

As yet, we have not exhibited an equidistributed sequence. The simplest
one is provided by

THEOREM 14.4.12 (Bohl-Sierpinski-Weyl). Let 0 be an irrational number,
and set xn = the fractional part of n6, i.e., xn = nO - [n6], where [n6] is the
largest integer < n6. Then {xn} is equidistributed in [0, 1].
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P r o o f : The functions e2vikx, k = 0, ± 1 , ± 2, ... , are closed in C2,[0, I]
with II f II = max If (x)I. Hence by Theorem 14.4.11, it suffices to show0<x<1

1

I
1

that lim [e27rikx1 + . .
+ e2Trikxn] = e2Trikz dx, k = 0, ±1, ±2, . . . . For

0

k = 0, the limit holds trivially. For k 0 09 e27rikx dx = 0. Since e27rikx' _

e27rik(.7e - [ael) - e 21rikiO 0

1 [e2zrikxl + . . . + e27rikxn] = 1 [e27rik + (e27rik°)2 +
. . . + (e27rik°)n]

n n
e27rikne - 1

(e2m)
n e27rike - 1

Since 0 is irrational, e27rik0 0 1. For k= ±19±29. . ., the exponential
expression is bounded as n -> oo and the limit 0 is obtained.

Ex. 10. A nonexistence theorem for quadratures.
We have seen that it is indeed possible to have

n
I ank f (xk) -- f (x) dx for f e C[a, b].

k=1 a

Notice that the left-hand member involves a double array of weights. Would
it be possible to replace it with a single array and have

ao b

I akf (xk) = f (x) dx
k=1 a

(14.4.22)

for all f e C[a, b]? Such a formula would obviously be much simpler. In (14.4.22)
we assume that ak = 0, a < Xk < b, the Xk are distinct, and both the ak and the
Xk are independent of f. An application of Theorem 14.4.4 will show this is
impossible :

b ao

THEOREM 14.4.13. It is impossible to have f (x) dx = I akf (xk) for all
a k=1

f e C[a, b] under the above conditions on ak and xk.

Proof : Note first that if (14.4.22) holds, then the xk must be dense in
[a, b]. For, suppose there were an interval I contained in [a, b] which is free
of abscissas xk. Let I' be an interval interior to I. Then it is clear that we
may find a continuous function f (x) which is zero exterior to I and is posi-
tive interior to I'. Then, f (xk) = 0, k = 1, 2, ... , since all the xk lie outside

b ao

I. Thus, 0 < f (x) dx = I akf (xk) = 0.
a k=1 b

Work in X = C[a, b], II f II = amaxb I f (x) 1. Set L(f) = f (x) dx and
fan n

Ln (f) = I akf (xk). Then, I I L I I = b - a, II Ln II = I I ak I By Theorem 14.4.4,
k=1 k=1
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n
if Ln(f) -- L(f) for all f E X, we can find an M such that I l akl < M for

oo k=1
all n. That is, I ak must converge absolutely.

k=1
Select a k for which a < xk < b. Designate by I. the interval

xk - E X <xk+E.
We can choose E sufficiently small so that I. will be contained in a < x < b.
The abscissas xi lying in I. will form a subset of all abscissas, and of the
former, by choosing a small enough, we can also guarantee that xk will be
the one which possesses the minimum subscript. In order of increasing
subscripts the abscissas lying in I. will be designated by Xk = xn2(E), ... ,
where, moreover, lim n2(e) = oo.

E-1.0

For each e construct the following continuous triangular shaped function :

fe(x) = 0 for x exterior to I.
fe(x) = linear Xk - E < x < Xk + e
fE(xk) = 1

fe(x) = linear Xk < x < xk + e.

Then I fe(x)l < 1 and fE(x) dx = E. Also,
fa

E = I ajfe(xj) = akfe(xk) + I
j=o j=2

00

Therefore, I E - akI I l an,(E)I. Now let E --*. 0. The left side approaches
j=

ak 0 0. Since n2(E) -k oo, the right side approaches zero. This is a contra-
diction and (14.4.22) is impossible.

Ex. 11. Divergence of Fourier Series of a Continuous Function. This is
developed in the final two theorems.

THEOREM 14.4.14 (Fejer). Let

1 sin (n + 1)t

dt. (14.4.23)Pn - 27r t
sin -

2
Then,

Proof: We have

1
7r/2

Pn = -
IT f- 7r/2

Pn 4
lim =-lon 7r2g

sin (2n + 1)t
sin t

dt = Jo7T/2 sin (2n + 1)t'
dt.

sin t

(14.4.24)
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Hence,
2 /2 Isin (2n 1)t i 2 7T/2

1 1

P,Z= dt+- Isin(2n-+ - 1)tI dtn o t 7r o sin t t

= In + IIn

Now the function 1 - 1 is nonnegative on 0, 1andO < Isin (2n + 1)ti < 1.
sin t t 2

r/2 '

Therefore, 0 < II < 2 1 - 1 dt, and the integrals II are
bounded. Again,

n
7T o (sint t n

I 2

0

(n+1)ir/(2n+1) sin (2n + 1)tI dt - 2 (n+1)Tr/(2n+1) sin (2n + 1)tI
dt

n 7T t 7r 7T/2 t

But,

= IIIn - IVn.

2

L12

n+1)Tr/(2n+1) sin (2n + 1)tl 2 (n+1)Tr/(2n+1) dt
0<IVn=- dt<- -.

7T t 7T

f7T/2

t

Since lim n + 1)7r = IT
, lim IVn = 0. Changing variables,

n oo 2n + 1 2 n oo

Hin
2 sin (2n + 1)tdt = 2

(n+l)sin
J(fl+lhT/(2n+1) t 7T 0 t

- Jof7r Isin tI
dt

2 (n+1)ir Isin t(
dt

t +7T t

Now,
=V+Vin.

2 ' 1 1 1VIn=
0

t+7T+t+97T+...+t+n7r sintdt

2

7r
_ - Sn(t) sin t dt,

7T o

1 1 1

where Sn(t) =
t + 7r + t + 27r + + t + n, On 0 < t <7T we have,

1 1 1 1 1 1-+ <S (t) <-+ ++ . We now em-
27r 37T (n + 1)7r 7r 27T n7T

ploy the well known property of the harmonic series :

1 1 1
1 +2+3+...+n-logn=yn,nim yn=y=.577...
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Thus,

and

1 1
- (log (n + 1) + y11+1 - 1) < Sn(t) < - (log n + yn),
IT IT

2 'T 2

2 (log (n + 1) + Yn+1 - 1)
o

sin t dt < VI- <
7T2

(log n + yn)osin t dt.
7T

"

Therefore, lim
Vin = 4

. Now = V + VI - IV + II and the
n- ao log n 7r2 An n n n

theorem follows from the individual limiting behaviors.

THEOREM 14.4.15 (du Bois-Reymond). There exists a continuous function
whose Fourier series diverges at x = 0.

Proof : From (12.1.5), the partial sum of the Fourier series evaluated at

x = 0 is L ( ) = 1 sin (n + )t
f (t) dt. Work in the s ace X : C[-7r, 7r],n f

27r ir t p
sin -

2

f (-7T) = f (in), II f II = _max If (x) I. Since, II Ln II = Pn - oo, the theorem
follows from Theorem 14.4.4.

NOTES ON CHAPTER XIV
14.1 For a glance at the integration rules available, see Stroud [1].
14.2 Markoff [1], Chapters V-VII, Szego [1], pp. 47-48, Hobson [1] pp.

76-83.
14.3 Sard [1], Nikolsky [1], Davis [2], [3], Davis and Rabinowitz [1],

Golomb and Weinberger [1], Krilov [1] Chapter 8.
14.4 Ljusternik and Sobolew [1] pp. 131-136. Feldheim [1], Krilov [1],

Chapter 12. For equidistributed sequences, see Polya and Szego [1] vol. I,
pp. 67-77. Theorem 14.4.13, Davis [1]. On the other hand, if duplications
in the abscissas are allowed, (14.4.22) is possible. See John [1].

PROBLEMS

1. Can constants a1, a2, x1, x2 he determined so that the differentiation rule
of "Gauss type" f'(0) = al f (x1) + a2 f (x2) is valid for f = 1, x, x2, x3?

2. Integrate the Bernstein polynomial Bn( f; x) over [0, 1] and interpret what
is obtained.

3. Let {pn * (x) } be orthonormal polynomials with respect to the inner product
+1

U9 g) = w(x) f (x)g(x) dx. Let xl, ... , xn and w1, ... , wn be the abscissas
-1
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and weights of the corresponding Gauss-Jacobi integration rule. The polynomials
p0*, , p*_1 are also orthonormal with respect to the inner product

n
(f.- 9) =I wkf (xk)9(xk)k1

4. The error in the Gauss rule of order n over [a, b] is

(b - a)2n+122n+l(n!)4 f(2n)( )

(2n + 1)[(2n)!]3

5. In problems 5, 6, 7, and 8, En(f) designates the error in the Gauss rule
of order n over [ -1, 1]. Determine En(x2n).

6. If f is analytic, then En(f) =
1 f (z)Qn(z) A. (Cf. (12.4.13).)

7r2 C Pn(z)

7. Prove that lim En(f) = 0 if f is a bounded Riemann integrable function
on[-1, 1].

8. Study the rapidity of convergence to 0 of En(f) where f is analytic on
[-1, 1]. n

9. Let Qn(f) I wnkf (xnk), n = 1, ... , be a sequence of quadrature rules
b k=1

for f (x) dx. Suppose that Qn is exact for fin. If for some s, the abscissas
fa

satisfy a + E < xnk < b - E, then for sufficiently large n, w 1 . . . . . wnn must
have a change in sign.

10. Derive Landau's Theorem (Lemma 9.3.7) as a consequence of Theorem
14.4.4.

11. Study the behavior as n --o- oo of the sequence

an = Isin 1 sin 2 sin 3 sin ni.

12. Study the behavior as n --o- oo of the sequence

an = [0] + [20] + ... + [n0]
for 0 rational and irrational.

13. A triangular sequence xn1, xn2. 9 xnn (n = 1, 2, ...) is called equi-
1 n b

distributed on [a, b] if lim - I f (xnk) = f (x) dx for all f E C[a, b]. Give simple
n k=1 a

examples of equidistributed triangular sequences.
14. Find necessary and sufficient conditions that a triangular sequence be

equidistributed.
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Short Guide to the Orthogonal Polynomials
I

Name: Legendre Symbol: Pn(x) Interval; [-1, 1]

Weight: 1 Standardization: P,,,(1) = 1

+1 2
Norm: -1 (Pn(x))2 dx =

2n 1

[n/2]

Explicit Expression: P (x) = 1 (-1)m (n\ 2n - 2m xn_2m
n (X) n m=0 m n

Recurrence Relation: (n + 1)Pn+l(x) = (2n + 1)xPn(x) - nPn_1(x)

Differential Equation: (1 - x2)y" - 2xy' + n(n + 1)y = 0

y = Pn(x)

1 n do
Rodrigues' Formula: Pn(x) _ ( )

{(1 - x2)n
2n n! dxn

00

Generating Function: R-1 = I P(x)z; -1 < x < 1 , I Z I < 1,
n=0

R=1/1 -2xz+z2.
Inequality: I Pn(x) I < 1, -1 < x < 1.

II

Name : Tschebysheff, First Kind Symbol : T(x) Interval: [-1, 1]

Weight : (1 - x2) - j Standardization : T(1) = 1
+ i ,r/2, n00

Norm: (1 - x2)-j (Tn(x))2 dx =J-i t7r, n=0
[n/2l

Explicit Expression:
n (-1)m (n - m - 1) (2x)n_2m = cos (n arccos x)
2 m=0 m! (n - 2m)!
= Tn(x)

Recurrence Relation : T n+l(x) = 2xTn (x) - T n_1(x)

Differential Equation: (1 - x2)y" - xy' + n2y = 0

y = T n(x)
(-1)n(1 - x2) 1 7T do {(1 - x2)n- T-Rodrigues' Formula:

2n+lI'(n + 1) dxn
} n(x)

Generating Function:
1 - xz

2 = I00

Tn(x)zn, -1 < x < 1, jzj < 1.
1 - 2xz -}- z n =O

Inequality: ITn(x)I < 1, -1 < x < 1.
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III

Name: Tschebysheff, Second Kind Symbol: Un(x) Interval: [-1, 1]

Weight: (1 - x2)j Standardization: U,,(1) = n + 1

5
+

7T

Norm: (1 - x2)'[Un(x)]2 dx = 2

[nl2] (m - n)t
Explicit Expression: Un(x) = I (-1)'n (2x)n-2m

m=0 m! (n - 2m)!

U (cos e) =
sin (n + 1)0

n sin 6

Recurrence Relation: Un+l(x) = 2xUn(x) - Un_1(x)

Differential Equation: (1 - x2)y" - 3xy' + n(n + 2)y = 0

y = Un(x)
(-1)n(n + 1)1/7r do - 2Rodrigues' Formula: Un(x) =

1 - x2 2n+lr n 3 dx'z
{(1 x)n+}

( ) ( 2)

1
00

Generating Function: = I Un(x)zn, -1 < x < 1, Iz( < 1.
1- 2xz + z2 n = 0

Inequality: I Un(x) I < n + 1, -1 < x < 1.

IV

Name: Jacobi Symbol: Pn,T)(x) Interval: [-1, 1]

Weight: (1 - x)«(1 + x)y; a, p > -1

Standardization:
n + a

n

5
+i

Norm: (1 - x)1(1 + x)I[PP«'#)(x)]2 dx
-l

201+#+lr(n + a + 1)I'(n + + 1)
(2n + a +# + 1)n! I'(n +a +#+1)

Explicit Expression :
n

1 n n + oc n + (x - I )n-m(x + 1)m
n

2n M=O( m n- m
Recurrence Relation: 2(n + 1)(n + a + j9 + 1)(2n + a + fl)Pn«!1(x)

_(2n+a+fl +1)[(a2-j92)+(2n+a+fl +2)
x (2n + a + fl)x]Pn«,")(x)

- 2(n + a)(n + j9)(2n + a + j9 + 2)Pn«,fl(x)
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Differential Equation:
(1 -x2)y" +(9- oc- (x+ +2)x)y' -+-n(n -+-a+/9+1)y=0

y = PP«,")(x)

Rodrigues' Formula:
oPn«,#)(x) = (

1)n {(i - x)n+«(1 + x)n+#1
2nn! 1- x)'(1 x O d

dxn
J

Generating Function:
00R-1(1 - z + R)-«(1 + z + R)-' = 12- «-flPn«" (x)zn,

n=0
R= 1 / 1 - 2xz -+- z2, I Z I < 1

[(n +q n°if q=max(a,/9)
n

Inequality: max P (OCA(x)I = j I Pn`,fl)(x') I n if q <
-1:5z:51 I

n x' is one of the two maximum points nearest

#-a

V

Name: Generalized Laguerre Symbol: L(') (x) Interval: [0, oo]

_ n
Weight: xxe-x, a > -1 Standardization: L(a)(x) _ ) xn -}-

n!
°° I'(n + oc + 1)

Norm: o x«e-x(Ln°`)(x))2 dx = n
n

Explicit Expression: L(°`)(x) _ (-1)m n + a 1 xmn
m=o n-m m!

Recurrence Relation :

(n+1)Ln+1(x)=[(2n+ a+1)-x]Ln)(x) -(n+a)Ln(' 1(x)
Differential Equation: xy" + (a + 1 - x)y' + ny = 0

y = Ln`) (x)

dn

Rodrigues' Formula: L(x) = 1 n + xn

n ! x`e-x dxn
{xe_X}

xz °°
Generating Function: (1 - z)-a-1 exp = Ln`)(x)zn

z - 1 n=0

Inequality: I Ln ()(x) I r(n + a - 1)
ex/2

x > 0
n!I'a+1 a>0

IL(a)(x)I
2- r(a+n+1)

ex,2
x>0

n n!I'(oc+1) -1 <a<0
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VI

Name: Hermite Symbol: Hn(x) Interval: [- oo, 00]

Weight: a-x2 Standardization: Hn(x) = 2nxn +

f_+ct:3e_x2[Hn(x)]2Norm: dx = 2nn!

[n/2] (2x)n-2m

Explicit Expression: Hn(x) = n! I (-1)m
m=o m! (n - 2m)!

Recurrence Relation: Hn+l(x) = 2xHn(x) - 2nHn_1(x)

Differential Equation: y" - 2xy' + 2ny = 0

y = Hn(x)
do

Rodrigues' Formula: Hn(x) _ (-1)nex2

(e-x2)
dxn

2 - 00 Hn(X)Zn
Generating Function: e2xz-z =

n=O n!

Inequality: I H m(x)I < ex2/2 22m m! [2 - 1 (2m1 , x > 02 22m m

+ 2)!

I H2m+1(x) I s
xex2 i2 (2m

m + 1)1'
x> 0

l
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Table of the Tschebyscheff Polynomials
T0(x) - 1

T1(x) = x

T2(x)=2x2- 1
T 3(X) = 4x3 - 3x

T4(x)=8x4-8x2+1
T5(x) = 16x5 - 20x3 + 5x

T 6(X) = 32x6 - 48x4 + 18x2 - 1

T 7(X) = 64x7 - 112x5 + 56x3 - 7x

T8(x) = 128x8 - 256x6 + 160x4 - 32x2 + 1

T8(x) = 256x9 - 576x7 + 432x5 - 120x3 + 9x

T10(x) = 512x10 - 1280x8 + 1120x6 - 400x4 + 50x2 - 1

T11(x) = 1024x11 - 2816x9 + 2816x7 - 1232x5 + 220x3 - llx

T12(x) = 2048x12 - 6144x10 + 6912x8 - 3584x6 + 840x4 - 72x2 + 1
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Table of Powers as Combinations of the Tschebyscheff
Polynomials

1 = To

X= Ti

1
X2 =2-(To + TO

x3 =1 (3T + T)4 3

x4=1 (3T +4T 4T80 2

1
x5 = 16 (10T1 + 5T3 + T5)

1
x6 =

32
(10 To + 15T2 + 6T4 + T6)

1
X7 =

64
(35T1 + 21T3 + 7T5 + TO

x8 = 1 (35T + 56T+ 28T4 + 8T6 + T8)
128 ° 2

x9 = 1 (126T1 + 84T3+ 36T5 + 9T? + T9)
256

x10 = 1 (126T o 210T2 + 120T4 + 45T6 + 10T8 + T10)
512 °

x11= 1 (462T, +
1024 1

x12= 1 (462T0 +792T2 +495T4+220T6+66T8+12T10+T12)
2048
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Table of the Legendre Polynomials
Po=1
P1 = x

P =1(3x2-1)2 2

P3 = 1 (5x3 - 3x)3 2

P4 = 1 (35x4 - 30X2+3)4 8

P5= 1 (63x5 - 70x3 + 15x)8

P6= 1

s =1 (231x6 - 315x4 + 105x2 - 5)
16

P7
1

16
(429x7-693X5+ 315x3 - 35x)

P8 = 1 (6435x8 - 12012x6 + 6930x4 - 1260x2 + 35)8 128
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Table of Powers as Linear Combinations of the
Legendre Polynomials

xo = PO

x1 = P1
1x2=3(2P2+Po)

x3 = 1 (2P3+ 3P,)5

x4 = 1 (8P + 20P2 + 7P )
35 4 0

1
x5 = 63(8P5 +28P3 +27P1)

x6 = 1 (16P6+ 72P4 +1 110P2 + 33Po)
231 4

x7 =
1

(16P7 +88P +182P3+143P1)
429 5

x8 = 1 (128P + 832P6 + 2160P4 + 2600P2 + 715Po)
6435 8
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trigonometric, 29

polynomial interpolation, 24
polynomial interpolation, remainder

for, 67
polynomials, 15
polynomials,

Abel-Gontscharoff, 46
Appel, 48, 53
Bernoulli, 47, 48, 53
Bernstein, 108, 126
fundamental, 34
Hermite, 168
Jacobi, 168, 246
Laguerre, 168
Legendre, 83, 168, 184, 246
Newton, 46
orthogonal, 48, 234
Tschebyscheff, 60, 63, 163, 240, 246



polynomials, (contd.)
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