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Fractional Poisson Process in Terms of Alpha-Stable Densities

Abstract

by

Dexter Odchigue Cahoy

The link between fractional Poisson process (fPp) and α-stable density is established

by solving an integral equation. The result is then used to study the properties of

fPp such as asymptotical n-th arrival time, number of events distributions, covariance

structure, stationarity and dependence of increments, self-similarity, and intermit-

tency property. Asymptotically normal parameter estimators and their variants are

derived; their properties are studied and compared using synthetic data. An alterna-

tive fPp model is also proposed.Finally, the asymptotic distribution of a scaled fPp

random variable is shown to be free of some parameters; formulae for integer-order,

non-central moments are also derived.

Keywords : fractional Poisson process, α-stable, intermittency, scaled fPp, self-

similarity
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Chapter 1

Motivation and Introduction

1.1 Motivation

For almost two centuries, Poisson process served as the simplest, and yet one

of the most important stochastic models. Its main properties, namely, absence of

memory and jump-shaped increments model a large number of processes in several

scientific fields such as epidemiology, industry, biology, queueing theory, traffic flow,

and commerce (see Haight (1967, chap. 7)). On the other hand, there are many

processes that exhibit long memory (e.g., network traffic and other complex systems)

as well. It would be useful if one could generalize the standard Poisson process to

include systems or processes that don’t have rapid memory loss in the long run. It

is largely this appealing feature that drives this thesis to investigate further the sta-

tistical properties of a particular generalization of a Poisson process called fractional

Poisson process (fPp).

Moreover, the generalization has some parameters that need to be estimated in

order for the model to be applicable to a wide variety of interesting counting phe-

nomena. This problem also motivates us to find “good” parameter estimators for

would-be end users.
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We begin by summarizing the properties of Poisson distribution, Poisson process

and α−stable distribution.

1.2 Poisson Distribution

The distribution is due to Simeon Denis Poisson (1781-1840). The characteristic and

probability mass functions of a Poisson distribution are

φ(k) = exp[µ(eik − 1)] and P{X = n} =
µn

n!
e−µ, n = 0, 1, 2, . . . .

Some of the properties are:

(1) EX = µ, varX = µ.

(2) The factorial moment of the nth order:

EX(X − 1) . . . (X − n+ 1) = µn.

(3) Sum of independent Poisson random variables X1, X2, ..., Xm, with means

µ1, µ2, ..., µm, is a Poisson random variable X, with a mean µ = µ1 + µ2 + ... + µm.

When m = 2,

P(X = n) = P(X1 +X2 = n)

=
n∑

j=0

P(X1 +X2 = n|X1 = j)P(X1 = j)

=
n∑

j=0

P(X2 = n− j)P(X1 = j)

=
n∑

j=0

µn−j
2

(n− j)!
e−µ2

µj
1

j!
e−µ1

=
1

n!

(
n∑

j=0

n!

j!(n− j)!
µj

1µ
n−j
2

)
e−(µ1+µ2) =

(µ1 + µ2)
n

n!
e−(µ1+µ2).

(4) Let {Xj}, j = 1, 2, . . . ,m, be independent and have Poisson distribution

with means {µj}, j = 1, 2, . . . ,m. If n1 + n2 + . . .+ nm = s then

P

(
X1 = n1, X2 = n2, . . . , Xm = nm

∣∣∣∣S = s

)
= M (s; p1, . . . , pm))

2



where pj = µj/
∑m

j=1 µj, and M stands for the multinomial distribution. Whenm = 2,

the conditional distribution of X1 given X1 +X2 = n, is B(n, µ1/(µ1 + µ2)), where B

denotes the binomial distribution.

(5) Let Xj, j = 1, 2, 3, ..., be independent random variables taking the values 0

and 1 with probability q = 1 − p, and p, respectively. If M is a Poisson random

variable with mean µ, independent of {Xj}, then

S = X1 +X2 + · · ·+XM

is a Poisson random variable with mean pµ. Additionally,

P(X1 +X2 + · · ·+XM = n) =
∞∑

m=n

P(X1 +X2 + · · ·+XM = n|M = m)P(M = m)

=
∞∑

m=n

(
m

n

)
pnqm−nµ

m

m!
e−µ

=
(pµ)n

n!

∞∑
m=n

(qµ)m−n

(m− n)!
e−µ

=
(pµ)n

n!
e−pµ.

Note that the conditional probability

P(X1 +X2 + · · ·+XM = n|M = m) =

(
m

n

)
pnqm−n,

i.e., B(m;p) (see Feller (1950, chap. 6)).

(6) Suppose we play heads and tails for a large number of turns m with a coin such

that P(Xj = 1) = θ/m. The number of tails Sm you observe is distributed according

to the binomial distribution with sample size n and parameter θ ∈ (0, 1):

pm(n) ≡ P(Sm = n) =

(
m

n

)(
θ

m

)n(
1− θ

m

)m−n

.

The limiting distribution as m → ∞ when θ is constant can be easily derived as

follows: If n = 0, we have

p∞(0) = lim
m→∞

pm(0) = lim
m→∞

(
1− θ

m

)m

= e−θ.

3



Also,

pm(n+ 1)

pm(n)
=

m−n
n+1

θ
m

1− θ
m

→ θ

n+ 1
, m→∞.

Therefore, for all n ≥ 0,

p∞(n) =
θn

n!
e−θ.

This phenomenon is called the Poisson law of rare events, because, as m → ∞, tail

events are becoming rare with probability θ/m.

1.3 Poisson Process

Recall that a continuous-time stochastic process {N(t), t ≥ 0} is said to be a counting

process if it satisfies:

(a) N(t) ≥ 0,

(b) N(t) is integer-valued, and

(c) N(t1) ≤ N(t2), if t1 < t2.

Usually N is associated with the number of random events in the interval (t1, t2].

The random times Tj : 0 < T1 < T2 < T3 < · · · < Tn < . . . at which the function

N(t) changes its value are called the arrival or event times. Thus, TN(t) denotes the

arrival time of the last event before t, while TN(t)+1 is the first arrival time after t.

Alternatively, N(t) can be determined as the largest value of n for which the nth

event occurs before or at time t:

N(t) = max{n : Tn ≤ t}.

The time from fixed t since the last event

A(t) = t− TN(t)

is called the age at t, and the time from t until the next event

R(t) = TN(t)+1 − t

4



is called the residual life, or excess, at time t. The random variables

∆Tj ≡

{
T1, j = 1;

Tj − Tj−1, j > 1

are called interarrival or waiting times.

There exists an important relationship between N(t) and Tj: the number of events

by time t is greater than or equal to n if, and only if, the nth event occurs before or

at time T :

N(t) ≥ n⇐⇒ Tn ≤ t.

A counting process {N(t), t ≥ 0} is said to be a Poisson process if:

(a) N(0) = 0, and

(b) for every 0 ≤ s < t <∞, and h > 0, N(t)−N(s) is a Poisson random variable

with mean µ(t− s), i.e.,

P (N(t)−N(s) = n) = P (N(t+ h)−N(s+ h) = n)

= e−µ(t−s) (µ(t− s))n

n!
, n = 0, 1, 2, . . . ,

and, for every t0, t1, . . . , tl, 0 ≤ t0 < t1 < . . . < tl <∞, the increments

{N(t0);N(tk)−N(tk−1), k = 1, . . . , l}

form a set of independent random variables. Under the above conditions, the waiting

times ∆Tj have an exponential distribution: P(∆Tj > t) = e−µt, µ > 0. The positive

constant µ is called the rate or the intensity of the Poisson process. An equivalent

definition can be found in Feller (1950) and Ross (1996).

What follows summarizes some important properties of a Poisson process.

(1) The Poisson process has stationary and independent increments. It follows

that the Poisson distribution belongs to the class of infinitely divisible distributions

(see (Feller , 1966, pp. 173-179)).

(2) The probability distribution of the n-th arrival time is given by the Erlang

density (n-fold convolution of the exponential density f(t) = µ exp(−µt), t ≥ 0),

fn(t) = fn?(t) =
(µt)n−1

(n− 1)!
µe−µt, t ≥ 0,

5



with mean ETn = nµ0, and variance VarTn = nµ2
0, where µ0 = 1/µ.

(3) The probability distribution of the number of events N(t) which occurred up

to time t is given by Poisson’s law

P (N(t) = n) =
(µt)n

n!
e−µt, n = 0, 1, 2, . . . ,

with mean and variance EN(t) = VarN(t) = µt = t/µ0.

(4) The finite-dimensional probability distribution of the Poisson process is given

by the formula

P (N(t1) = n1, N(t2) = n2, . . . , N(tk) = nk)

= P (N(t1) = n1, N(t2)−N(t1) = n2 − n1, . . . , N(tk)−N(tk−1) = nk − nk1)

= P (N(t1) = n1)P (N(t2)−N(t1) = n2 − n1) . . . P (N(tk)−N(tk−1) = nk − nk1)

= P (N(t1) = n1)P (N(t2 − t1) = n2 − n1) . . . P (N(tk − tk−1) = nk − nk1)

=
tn1
1 (t2 − t1)

n2−n1 . . . µ(tk − tk−1)
nk−nk−1

n1!(n2 − n1)! . . . (nk − nk−1)!
µnke−µtk ,

0 < t1 < t2 < · · · < tk, 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk.

(5) The conditional probability distributions of the number of events are given by

P (N(t2) = n2|N(t1) = n1) =
[µ(t2 − t1)]

n2−n1

(n2 − n1)!
e−µ(t2−t1), n2 = 0, 1, 2, . . . ,

and

P (N(t1) = n1|N(t2) = n2) =

(
n2

n1

)(
t1
t2

)(
1− t1

t2

)n2−n1

, n1 = 0, 1, . . . , n2,

where t1 < t2.

(6) If t1 < t2 then the covariance function is given by

Cov(N(t1), N(t2)) = EN(t1)N(t2)− EN(t1)EN(t2)

= E{N(t1)[N(t1) +N(t2)−N(t1)]} − EN(t1)EN(t2)

= EN2(t1) + E{N(t1)[N(t2)−N(t1)]} − EN(t1)EN(t2)

= µt1 + (µt1)
2 + (µt1)(µ(t2 − t1))− µt1(µt2)

= µt1.

6



In the general case,

Cov(N(t1), N(t2)) = µmin{t1, t2} = [µ/2](t1 + t2 − |t1 − t2|).

(7) The above conditional distribution of arrival times P (T1 ∈ dt1, T2 ∈ dt2, . . . , Tn ∈

dtn|N(t) = n) is uniform in the simplex 0 < t1 < t2 < · · · < tn < t:

P (T1 ∈ dt1, T2 ∈ dt2, . . . , Tn ∈ dtn|N(t) = n) =
n!

tn
dt1 . . . dtn,

0 < t1 < t2 < · · · < tn < t.

Taking into account the corresponding theorem from the theory of order statistics, we

can say, that under the condition that n events have occurred in (0, t), the unordered

random times Tj, j = 1, 2, . . . , n at which events occur, are distributed independently

and uniformly in the interval (0, t).

(9) Lack of memory is an intrinsic property of the exponential distribution. If X

is a random variable with the exponential distribution,

P (T > t) = e−µt

then

P (T > t+ ∆t|T > t) =
P (T > t, T > t+ ∆t)

P (T > t)
= e−µ∆t.

(10) Suppose that {Ni(t), t ≥ 0}, i = 1, 2, . . . ,m are independent Poisson pro-

cesses with rates µ1, µ2, . . . , µm, then {
∑m

i=1Ni(t), t ≥ 0} is a Poisson process with

rate µ1 + µ2 + · · ·+ µm.

(11) The probabilities Pn(t) ≡ P (N(t) = n) obey the system of differential equa-

tions

dP0(t)

dt
= −µP0(t), p0(0) = 1;

dPn(t)

dt
= −µPn(t) + µPn−1(t), Pn(0) = δn0, n = 1, 2, 3, . . . .

(12) The characteristic function P̃ (k, t) = EeikN(t) of the Poisson process has the

form

P̃ (k, t) = exp[−µt(1− eik)], −∞ < k <∞,

7



and obeys the differential equation

dP̃ (k, t)

dt
= −µ(1− eik)P̃ (k, t), P̃ (k, 0) = 1.

More properties of the Poisson process can be found in Haight (1967), Kingman

(1993), Ross (1996). In addition, Karr (1991) and Grandell (1997) provide general-

izations and modifications of the Poisson process.

1.4 α-stable Distribution

The distribution has gained popularity since the 1960’s when Mandelbrot used stable

laws in modeling economic phenomena. Zolotarev (1986) has three representations of

an α−stable distribution in terms of characteristic functions. In this section, we base

our definitions from Gnedenko and Kolmogorov (1968), Samorodnitsky and Taqqu

(1994), and Uchaikin and Zolotarev (1999).

Definition 1 The common distribution FX of independent random variables X1, X2, . . . , Xn

belongs to the domain of attraction of the distribution F if there exist normalizing

sequences, an, bn > 0, such that

b−1
n

(
n∑

i=1

Xi − an

)
n→∞−→ X

in distribution.

The non-degenerate limit laws X are called stable laws. The above definition can

also be restated as follows: The probability distribution F has a domain of attraction

if and only if it is stable. Furthermore, the distribution of Xi is then said to be in

the domain of attraction of the distribution of X.

If an = 0 then X is said to have a strictly stable distribution.

A characteristic function representation of stable distributions that serves as an

equivalent but is a more rigorous definition is given below.

Definition 2 A random variable X is said to have a stable distribution if there

exist parameters α, β, γ, 0 < α ≤ 2,−1 ≤ β ≤ 1, γ > 0, and η ∈ R, such that the

8



characteristic function has the following form:

φ(t) =


exp

{
− γα|t|α

(
1− iβ (sign t) tan πα

2

)
+ itη

}
, α 6= 1,

exp

{
− γ|t|

(
1 + iβ 2

π
(sign t) ln |t|

)
+ itη

}
, α = 1.

The parameter α is called the stability index (tail parameter), and

sign t
df
=


1, t > 0,

0, t = 0,

−1, t < 0.

Adopting a notation from Samorodnitsky and Taqqu (1994), we writeX ∼ Sα(γ, β, η)

to say that X has a stable distribution Sα(γ, β, η), where γ is the scale parameter, β

is the skewness parameter, and η is the location parameter. If X ∼ Sα(γ, 0, 0) then

we have a symmetric α-stable distribution. When X ∼ Sα(γ, β, 0), with α 6= 1, we

get strictly stable distributions. For our current purposes, we are interested only in

the one-sided α-stable distributions with location parameter η equal to zero, scale

parameter γ equal to one, skewness parameter β equal to one, and the stability index

0 < α < 1. We denote this class of distributions as g(α)(x), and simply refer to it as

α+-stable distributions. Please note that α-stable densities have heavy, Pareto-type

tails, i.e.,

P (|X| > x) ∼ constant · x−α.

Moreover, it is well-known that the probability densities of α-stable random vari-

ables can be expressed in terms of elementary functions only in the following cases:

(1) Gaussian distribution S2(γ, β = 0, η) = N(µ, 2γ2) with probability density

function

f(x) =
(
2γ
√
π
)−1

e−(x−η)2/4γ2

,

(2) Lévy distribution S1/2(γ, 1, η), whose probability density function is

f(x) =
( γ

2π

)2 e−γ/2(x−η)

(x− η)3/2
,
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(3) and Cauchy distribution S1(γ, 0, η) with density function

f(x) =
γ

π ((x− η)2 + γ2)
.

Woyczynski (2001) studies α-stable distributions and processes as natural models

in many physical, biological, and economical phenomena. For other applications of

α-stable distributions, please see Willinger et al. (1998) and Crovella et al. (1998).

Multidimensional (and even ∞-dimensional) α-stable distributions were also studied

in Marcus and Woyczynski (1979).

1.4.1 Parameter Estimation

Numerous methods for estimating the stable index in various settings exist in the

available literature. For instance, Piryatinska (2005) and Piryatinska et al. (2006)

provide estimators of the stable index in tempered-alpha stable distributions. It

was Fama and Roll (1968, 1971) who constructed some of the first estimators for

symmetric stable distributions. Other estimators then followed based on different

criteria. In this subsection, we briefly review a few popular consistent estimators of

the stable index α.

Press Estimator

Press (1972) constructed a method-of-moments estimator based on a characteristic

function. Given symmetric X1, X2, . . . , Xn, the empirical characteristic function can

be defined as

φ̂(t) =
1

n

n∑
j=1

exp (itXj) ,

for every given t. With the preceding representation of the characteristic function,

and, for all 0 < α < 2,

|φ(t)| = exp (−κ|t|α) ,

where κ = γα and is sometimes called the scale parameter. Given two nonzero values

of t, t1 and t2 say, such that t1 6= t2, we can get two equations:

κ|t1|α = − ln(|φ(t1)|),
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and

κ|t2|α = − ln(|φ(t2)|).

Assume α 6= 1. Replacing φ(t) by its estimated values φ̂(t) and solving these two

equations simultaneously for κ and α, gives the asymptotically normal estimator

α̂P =

ln

(∣∣∣∣ ln(|φ̂(t1)|)
ln(|φ̂(t2)|)

∣∣∣∣)
ln
(∣∣t1/t2∣∣) .

Zolotarev’s Estimator

Zolotarev (1986) derived a method-of-moments estimator using the transformed ran-

dom variables. Let X1, X2, . . . , Xn be independently and identically distributed (IID)

according to a strictly stable distribution. In addition, define Uj = sign(Xj), and

Vi = ln(|Xj|), j = 1, 2, . . . , n. With the equality

1

α2
=

6

π2
var(V )− 3

2
var(U) + 1,

we can obtain an estimator of 1/α2,

1̂/α2 =
6

π2
S2

V −
3

2
S2

U + 1, (1.1)

where S2
U and S2

V are the unbiased sample variances of U1, U2, . . . , Un, and V1, V2, . . . , Vn,

respectively. Equation (1.1) gives the unbiased and consistent estimator α̂2.

Quadratic Estimators

The following consistent and asymptotically unbiased estimator of 1/α = γ was pro-

posed in Meerschaert and Scheffler (1998):

γ̂ ([Xj]j=1,...,n) =
ln+

∑n
j=1

(
Xj −X

)2
2 lnn

,

where ln+(x) = max{ln(x), 0}. The above estimator is shift-invariant but not scale-

invariant. A scale-invariant correction is introduced in Bianchi and Meerschaert
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(2000), and their corresponding estimator of γ is

φ̂ = γ̂ ([X0,j]j=1,...,n) ,

where [X0,j] = [(Xj − M̃n])/Mn, M̃n is the sample median of [Xj], and Mn is the

sample median of [|Xj − M̃n|]. They have further shown that

(1) φ̂n
p−→ 1/α , as n→∞, and that

(2) there exist some c̃n, n = 1, 2, . . ., and an α/2 stable random variable Y , with

E[lnY ] = 0 such that, as n→∞,

2 lnn
(
φ̂n − 1/α− c̃n

)
d−→ lnY.

Sampling-Based Estimators

Fan (2004) introduced an estimator using a U -statistic. Recall the following property

of strictly stable random variables:

X1 +X2 + · · ·+Xn

n1/α

d→ X1.

This implies that

lnn

(
ln |
∑n

j=1Xj|
lnn

− 1

α

)
d→ ln |X1|.

A natural estimator for α would then be

α̂ =
lnn

ln |
∑n

j=1Xj|
.

With the kernel

k(x1, x2, . . . , xm) =
ln |
∑m

j=1Xj|
lnm

, m ≤ n,

of a U -statistic

α̂−1
F = Um(k) =

(
n
m

)−1 ∑
1≤j1≤j2,...,jm

k (Xj1 , Xj2 , . . . , Xjm) , (1.2)
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he further proved that for IID strictly stable random variables, X1, X2, . . . , Xn,

√
nS−1

n

(
α̂−1

F − α−1
)

d→ N(0, 1), as n→∞, m = o(n1/2),

where

S2
n =

n∑
j=1

(
U

(−j)
n−1 = U

(−j)
n−1

)2

n− 1

p→ m2ζ1,

U
(−j)
n−1 is the jacknifed U -statistic (1.2), and

ζ1 = var

{
E
[
k(x1, x2, . . . , xm)

∣∣x1

]
− E
[
k(x1, x2, . . . , xm)

]}
.

He also modified his method by dividing the data (with n = lm observations) into l

independent sub-samples, each having m observations. For every sub-sample, we get

an estimator α̂−1
F j, and then the average

α̂−1
FI =

m∑
j=1

α̂−1
F j

m

is what he called the incomplete U -statistic estimator. He even proposed another

estimator based on a randomized resampling procedure which gives the estimator

α̂−1
FR =

ln |
∑m

j=1XjYj|
lnnp

,

where Yj ∼Bernoulli(p).

Other Estimators

Given IID positive random variables, X1, X2, . . . , Xn, with distribution F (x) satisfy-

ing

1− F (x) ∼ Cx−α, as x→∞,

and let Z1 ≥ Z2 ≥ · · ·Zn be the associated order statistics. Hill (1975) suggested the

following estimator:

α̂−1 =
1

m

m∑
j=1

log

(
Zi

Zm+1

)
,
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where m is chosen such that

m(n) →∞, m(n) = o(n), as n→∞,

to achieve consistency of α̂−1.

Additionally, Pickands (1975) proposed the estimator

α̂−1 =
(
log(2)

)−1
log

(
Zm − Z2m

Z2m − Z4m

)
,

where m is chosen appropriately. Similarly, Haan and Resnick (1980) derived the

estimator

α̂−1 =
(
log(m)

)−1
log

(
Z1

Zm

)
,

where

m→∞, m/n→ 0, as n→∞,

to attain asymptotic normality.

A description of the relationship between stable distributions and fractional cal-

culus through generalized diffusion equations can be found in Gorenflo and Mainardi

(1998). For other estimators of the tail index, please see DuMouchel (1983) and

Fan (2001). DuMouchel (1973) and Nolan (2001) also consider maximum-likelihood

estimation for stable distributions.

1.5 Outline of The Remaining Chapters

In Chapter 2, we cite relevant literature for the generalizations of the standard Poisson

process including fractional compound Poisson process. More specifically, we clearly

derive the transition from standard Poisson process to its fractional generalizations.

In Chapter 3, we restate known characteristics, and derive new properties of frac-

tional Poisson process (fPp). We also establish the link between fPp and α-stable

densities by solving an integral equation. The link then leads to an algorithm for gen-

erating fPp that eventually paves the way to discovering more interesting properties

(e.g., limiting scaled nth arrival time distribution, dependence and nonstationarity of

14



increments, intermittency, etc). We also derive the limiting distribution of a scaled

fPp random variable and its integer-order, non-central moments.

In Chapter 4, we derive method-of-moments estimators for the intensity rate µ

and fractional order ν. We show asymptotic normality of the estimators. We also

propose alternative estimators of µ. We then compare and test our estimators using

synthetic data.

In Chapter 5, we recapitulate the main points of this thesis, give some conclusions,

and enumerate research directions which we plan to pursue in the future.
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Chapter 2

Generalizations of the Standard
Poisson Process

A few generalizations of the ordinary or standard Poisson process exist (Repin

and Saichev , 2000; Jumarie, 2001; Laskin, 2003; Mainardi et al., 2004, 2005). These

generalizations add a parameter ν ∈ (0, 1], and is called the fractional exponent

of the process. In this chapter, we review some of the key concepts concerning the

extensions of the standard Poisson process. In addition, a work on Poisson fractional

processes, which is independent from our current investigation can be found in Wang

and Wen (2003), Wang et al. (2006), and Wang et al. (2007). A closely-related

fractional model for anomalous sub-diffusive processes is studied by Piryatinska et al.

(2005), and the relation between fractional calculus and multifractality is established

in Frisch and Matsumoto (2002).

2.1 Standard Poisson Process

For a standard Poisson process with intensity rate µ, we have

P0(t+ ∆t) = P0(t)P0(∆t) = P0(t)
{
1− P1(∆t)− P≥2(∆t)

}
.

Also, it can be simply shown that

P1(∆t) = µ∆t+ o(∆t), ∆t→ 0,
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and

P≥2(∆t) = o(∆t), ∆t→ 0.

That is, the probability that there’s a single event over a short time range ∆t is µ∆t,

and that the chance of having two or more events during ∆t is negligible. Hence,

P0(t+ ∆t) = P0(t)
{
1− µ∆t+ o(∆t)

}
.

Rearranging, and as ∆t→ 0, we obtain the equation

dP0(t)

dt
= −µP0(t), P0(0) = 1,

with the solution

P0(t) = e−µt.

Similarly, it can be straightforwardly shown that

Pn(t+ ∆t) = Pn(t)(1− µ∆t) + Pn−1(t)µ∆t, n ≥ 1.

Putting terms together, and letting ∆t→ 0, we get

dPn(t)

dt
= −µPn(t) + µPn−1(t), Pn(0) = δn0, n ≥ 1.

Thus, the standard Poisson process satisfies the following recursive family of equa-

tions:

dPn(t)

dt
= µ[Pn−1(t)− Pn(t)] + δn0δ(t), 0 ≤ t <∞, P−1(t) = 0, (2.1)

n = 1, 2, . . ., where δ(t) is the Dirac delta function. We can use mathematical in-

duction to solve the system (2.1) of difference equations; however, the method of

generating function is more convenient to use. Introducing the generating function

G(u, t) =
∞∑

n=0

unPn(t),

it is easy to verify that

Pn(t) =
1

n!

∂nG(u, t)

∂un

∣∣∣∣
u=0

(2.2)
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and

∂G(u, t)

∂u
= µ(u− 1)G(s, t). (2.3)

Equation (2.3) yields the solution

G(u, t) = exp[µ(u− 1)t],

and, using equation (2.2), we obtain the well-known probability of having n events

by time t

Pn(t) =
(µt)n

n!
e−µt. (2.4)

It is easy to see that Pn(t) satisfies the normalizing condition
∞∑

n=0

Pn(t) = 1. Conse-

quently, the waiting time density function ψ(t) is the probability density of an event

that occurred at time tk = tk−1 + t after the previous event that happened at time

tk−1. Now,

P (T > t) =

∞∫
t

ψ(t′)dt′ = 1−
t∫

0

ψ(t′)dt′,

or,

ψ(t) = − d

dt
P (T > t).

It is clear that
t∫

0

ψ(t′)dt′ is the probability of at least one event occurring during the

time interval [0, t]. Hence,

t∫
0

ψ(t′)dt′ =
∞∑

n=1

Pn(t) = 1− e−µt.

Thus,

ψ(t) = µe−µt.
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2.2 Standard Fractional Generalization I

Repin and Saichev (2000) generalize the standard Poisson process by defining the

Laplace transform of the waiting time density ψν(t) via the formula

{Lψν(t)}(λ) ≡
∞∫

0

e−λtψν(t)dt ≡ ψ̃ν(λ) =
µ

µ+ λν
. (2.5)

When ν = 1, the above transformation coincides with the Laplace transform of

the exponential waiting time density corresponding to the ordinary Poisson process,

i.e.,

ψ̃ν(λ) =
µ

µ+ λ
.

They also derived the succeeding fractional integral and differential (Saichev and

Woyczynski , 1997) equation based on the inverse Laplace transform of
{
ψ̃ν(λ)

}(
µ

µ+λν

)−1
=

1:

ψν(t) +
µ

Γ(ν)

t∫
0

[µ(t− τ)]ν−1ψν(τ)dτ =
µν

Γ(ν)
tν−1.

Notice that the preceding equation involving the waiting time density is equivalent

to

0D
ν
t ψν(t) + µψν(t) = δ(t),

where the Liouville derivative (Samko et al., 1993; Podlubny , 1999) operator 0D
ν
t =

dν/dtν is defined as

0D
ν
t ψν(τ) =

1

Γ(1− ν)

d

dt

t∫
0

ψν(τ)dτ

[µ(t− τ)]1−ν
.

Additionally, they represented their solution (waiting time density ψν(t)) in two dif-

ferent forms:

(i) ψν(t) = − d

dt
Prob(T > t), Prob(T > t) = Eν(−µtν), (2.6)

19



where

Eν(z) =
∞∑

n=0

zn

Γ(νn+ 1)

is the Mittag-Leffler (Saxena et al., 2002) function, and

(ii) ψν(t) =
1

t

∞∫
0

e−xφν(µt/x)dx, (2.7)

where

φν(ξ) =
sin(νπ)

π[ξν + ξ−ν + 2 cos(νπ)]
.

Observe that the Mittag-Leffler function is a fractional generalization of the expo-

nential function exp(z). For instance, at ν = 1, Eν(z) = E1(z) = exp(z). This

Mittag-Leffler type of a waiting time density has been widely used in finance and

economics (high-frequency), semiconductor (transport of charge carriers), and optics

(light propagation through random media). For more details of the above applica-

tions, please see Scalas et al. (2000a), Scalas et al. (2000b), Raberto et al. (2002),

Sabatelli et al. (2002), Uchaikin (2004), Uchaikin (2006), and Scalas (2006). On the

other hand, if we generalize the order of differentiation in (2.1) as follows:

0D
ν
t P

ν
n (t) = µ[P ν

n−1(t)− P ν
n (t)] + δn0δ(t), 0 ≤ t <∞, P ν

−1(t) = 0, (2.8)

we get the equality

0D
ν
t

∞∑
n=0

P ν
n (t) = 0, ∀ t > 0, (2.9)

where 0D
ν
t = dν/dtν is the Riemann-Liouville (Oldham and Spanier , 1974; Hilfer ,

2000; Kilbas et al., 2006) fractional derivative operator and is defined as

aD
ν
t f(t) =

1

Γ(1− ν)

d

dt

t∫
a

(t− τ)−νf(τ)dτ.
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For ν = 1, equation (2.9) satisfies the normalizing condition

∞∑
n=0

P ν
n (t) = 1,

i.e.,

0D
1
t 1 = 0.

But, for 0 < ν < 1, the left-hand side of equation (2.9) becomes

0D
ν
t 1 = 0D

ν
tH(t) =

dν1

dtν
=

1

Γ(1− ν)

d

dt

t∫
0

(t− τ)−ν1dτ, t > 0

where H(t) is the Heaviside unit step function. Letting u = t− τ , we get

0D
ν
t 1 =

1

Γ(1− ν)

d

dt

t∫
0

u−νdu

=
1

Γ(1− ν)

d

dt

(
u1−ν

1− ν

∣∣∣∣t
0

)

=
t−ν

Γ(1− ν)
.

This suggests that equation (2.8) does not meet the normalization condition. How-

ever, the normalization can be met by simply tweaking (2.8) as follows:

0D
ν
t P

ν
n (t) = µ[P ν

n−1(t)− P ν
n (t)] + δn0

[
0D

ν
tH(t)

]
, (2.10)

where 0 ≤ t < ∞, and 0 < ν ≤ 1. Hence, a fractional generalization of the ordinary

Poisson process satisfies the equation

0D
ν
t P

ν
n (t) = µ[P ν

n−1(t)− P ν
n (t)] + δn0

t−ν

Γ(1− ν)
, (2.11)

where 0 ≤ t <∞, and 0 < ν ≤ 1. Expression (2.11) is what Laskin (2003) called the

fractional Kolmogorov-Feller (Metzler and Klafter , 2000; Zaslavsky , 2002) equation.
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The system of equations (2.11) has been solved by Jumarie (2001) (see also El-Wakil

and Zahran (1999)) using the generating function method. Notice that multiplying

equation (2.11) by un and summing over n, we get

0D
ν
tGν(u, t) = µ

[ ∞∑
n=0

unP ν
n−1(t)−

∞∑
n=0

unP ν
n (t)

]
+

t−ν

Γ(1− ν)

= µ(u− 1)Gν(u, t) +
t−ν

Γ(1− ν)
.

This has a solution of the form

Gν(u, t) = Eν (µtν(u− 1)) , (2.12)

where Eν(z) is the Mittag-Leffler function given by its series representation

Eν(z) =
∞∑

n=0

zn

Γ(νn+ 1)
.

To check that (2.12) is indeed the solution of (2.11), we utilize the known Laplace

transform of the Riemann-Liouville fractional derivative operator (Miller and Ross ,

1993; West et al., 2003). Therefore,

L

{
0D

ν
tGν(u, t) = µ(u− 1)Gν(u, t) +

t−ν

Γ(1− ν)

}
⇒ λνG̃ν(u, λ) = µ(u− 1)G̃ν(u, λ) + λν−1.

This further implies that

G̃ν(u, λ) =
λν−1

λν − µ(u− 1)
=

1

λ
[
1− µ(u− 1)λ−ν

] . (2.13)
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Taking the Laplace transform of (2.12),

L

{
Eν (µtν(u− 1))

}
=

∞∫
0

e−λt

∞∑
k=0

[
µ(u− 1)tν

]k
Γ(νk + 1)

dt

=
∞∑

k=0

[
µ(u− 1)

]k
Γ(νk + 1)

∞∫
0

e−λttνkdt

=
∞∑

k=0

[
µ(u− 1)

]k
λ−νk−1

=
∞∑

k=0

1

λ

[
µ(u− 1)

λν

]k

=
1

λ

[
1

1− µ(u− 1)λ−ν

]
. (2.14)

Note that (2.14) is exactly (2.13), and that

Gν(u, t) =
∞∑

n=0

unP ν
n (t). (2.15)

Hence, the fractional generalization of the probability mass function (2.4) can be

shown (expanding over u, and rearranging (2.12) in the fashion of (2.15)) to be

P ν
n (t) =

(−z)n

n!

dn

dzn
Eν(z)

∣∣∣∣
z=−µtν

=
(µtν)n

n!

∞∑
k=0

(k + n)!

k!

(−µtν)k

Γ(ν(k + n) + 1)
. (2.16)

We verify that (2.16) satisfies the normalization condition as follows:

∞∑
n=0

P ν
n (t) =

∞∑
n=0

(µtν)n

n!

∞∑
k=0

(k + n)!

k!

(−µtν)k

Γ(ν(k + n) + 1)

=
∞∑

n=0

(µtν)n

n!

∞∑
k=n

k!

(k − n)!

(−µtν)k−n

Γ(νk + 1)

=
∞∑

k=0

k!

Γ(νk + 1)

k∑
n=0

(µtν)n (−µtν)k−n

n!(k − n)!

=
∞∑

k=0

(µtν)k (1− 1)k

Γ(νk + 1)
= 1.
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Furthermore, Laskin (2003) showed the moment generating function (MGF) of the

fractional Poisson process to be

Mν(s, t) =
∞∑

n=0

e−snP ν
n (t) =

∞∑
m=0

[µtν (e−s − 1)]
m

Γ(mν + 1)
, (2.17)

where

E [Nν(t)]
k = (−1)k ∂k

∂sk
Mν(s, t)

∣∣
s=0

.

Using the MGF, the first two moments of Nν(t) can be easily computed as

E [Nν(t)] = µNν(t) =
µtν

Γ(ν + 1)

and

E [Nν(t)]
2 = µNν(t) + µ2

Nν(t)

√
πΓ(1 + ν)

22ν−1Γ(ν + 1
2
)
.

The second order moment becomes trivial by using gamma’s duplication formula

(Abramowitz and Stegun, 1964, p. 256):

Γ(2ν) = (2π)−
1
2 22ν− 1

2 Γ(ν)Γ

(
ν +

1

2

)
.

This further indicates that the variance of the fractional Poisson process is

σ2
Nν(t) =

µtν

Γ(ν + 1)

{
1 +

µtν

Γ(ν + 1)

[
νB(ν, 1/2)

22ν−1
− 1

]}
, (2.18)

where

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

It is also apparent that, as ν → 1, the mean and variance tend to the mean (and

variance) of the ordinary Poisson process.

Consequently, the waiting time density for the fractional Poisson process is

ψν(t) = − d

dt
Pν(T > t) = − d

dt
P ν

0 (t) = − d

dt
Eν(−µtν). (2.19)
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Details on calculating P ν
0 (t) can be found in Jumarie (2001). The density (2.19)

above can be easily shown to be

ψν(t) = µtν−1Eν, ν(−µtν), (2.20)

where

Eα, β(z) =
∞∑

n=0

zn

Γ(αn+ β)

is the generalized two-parameter Mittag-Leffler function. In particular,

ψ1/2(t) = µt1/2−1E1/2,1/2

(
−µt1/2

)
,

where

E1/2,1/2 (−z) =
∞∑

n=0

(−z)n

Γ
(

n
2

+ 1
2

)
=

1√
π
− zE1/2,1(−z). (2.21)

Using the identity,

E1/2,1(−z) = ez2

Erfc(z),

where Erfc(z) is the complementary error function:

Erfc(t) =
2√
π

∫ ∞

z

e−u2

du,

we finally obtain,

ψ1/2(t) = µt−1/2

(
1√
π
− µt1/2e(µt1/2)

2

Erfc(µ
√
t)

)
=

µ√
πt
− µ2eµ2tErfc(µ

√
t). (2.22)

In addition, we can directly verify that the density (2.22) has the Laplace transform

(2.5) using the formula (Saxena et al., 2002)

∞∫
0

e−λtEν1,ν2 (patν1) tν2−1dt =
λ−ν2

(1− aλ−ν1)
.
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2.3 Standard Fractional Generalization II

From the preceding section, we see that the fractional generalization of the ordinary

Poisson process is not unique. Jumarie (2001) defines a function y(t) : R → R to be

continuous of order ν, 0 < ν < 1 when

y(t+ ∆t)− y(t) = o
[
(∆t)ν

]
,

and the finite fractional derivative of order ν of y(t) to be

dy

dtν
= lim

∆t↓0

y(t+ ∆t)− y(t)

(∆t)ν
.

The above definition leads to the next extension of the standard Poisson process: Let

Qν
n(∆t) be the probability that there are n arrivals in the small time interval ∆t.

Qν
1(∆t) = µ(∆t)ν , 0 < ν < 1,

Qν
n(∆t) = (∆t)νO(∆t), n ≥ 2.

This shows that

Q0(∆t) = 1− µ(∆t)ν ,

and the equation of the process is given by

P ν
n (t+ ∆t) = P ν

n (t)Qν
0(∆t) + P ν

n−1(t)Q
ν
1(∆t)

= P ν
n (t)− µ(∆t)ν

(
P ν

n (t)− P ν
n−1(t)

)
.

Passing to the limit yields

dP ν
n (t)

dtν
= −µ

(
P ν

n (t)− P ν
n−1(t)

)
, n ≥ 1,

where

dP ν
0 (t)

dtν
= −µP ν

0 (t).

Jumarie (2001) uses the operator d/(dt)ν instead of the fractional derivative oper-

ator (d/dt)ν . The above fractional difference-differential equation has the following

26



solution, which is claimed to be the probability that there are n arrivals or events by

time t (see Jumarie (2001) for the proof):

P̂ ν
n (t) = µn

(
tn

n!

)ν

e−µtν , n = 0, 1, 2, . . . .

But it is clear that this function does not meet the normalization condition, i.e.,

∞∑
n=0

µn

(
tn

n!

)ν

e−µtν 6= 1,

if ν 6= 1, and cannot be used to represent a probability distribution. This makes the

above generalization not a viable model of real-life random processes.

2.4 Non-Standard Fractional Generalization

Suppose we define a fractional Poisson process of order ν as a process in which there

is only at most one event or arrival in a small time interval ∆t with probabilities

Qν
0(∆t) = 1− µ

Γ(ν + 1)
(∆t)ν ,

and

Qν
1(∆t)

∼=
µ

Γ(ν + 1)
(∆t)ν .

Notice that Qν
1(∆t) exactly corresponds to n = 1 in equation (2.16). Then according

to the previous section, we shall get the equations

dP ν
n (t)

dtν
= − µ

Γ(ν + 1)

(
P ν

n (t)− P ν
n−1(t)

)
,

and

dP ν
0 (t)

dtν
= − µ

Γ(ν + 1)
P ν

0 (t),

where the solutions are

P̂ ν
n (t) =

(µtν)n

(n!)ν Γn(1 + ν)

∞∑
j=0

(−µtν)j

Γn(1 + ν)j!
, n = 0, 1, 2, . . . ,
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and

P̂ ν
0 (t) =

∞∑
j=0

(−µtν)j

Γn(1 + ν)j!
, n = 0, 1, 2, . . . ,

correspondingly. Jumarie (2001) considers this approach as a non-standard fractional

generalization of the standard Poisson process.

2.5 Fractional Compound Poisson Process

A stochastic process {X(t), t ≥ 0} is called a fractional compound Poisson process if

it can be represented as

X(t) =

N(t)∑
j=1

Yj,

where {Yj, j = 1, 2 . . .} is a family of independent and identically distributed random

variables with probability distribution p(Y ) , and {N(t), t ≥ 0} is a fractional Poisson

process. If we assume independence of {N(t), t ≥ 0} and {Yj, j = 1, 2 . . .} then we

can calculate the moment generating function Jν(s, t) of the fractional compound

Poisson process

Jν(s, t) = E
[
exp{sX(t)}

]
Yj ,N(t)

=
∞∑

n=0

E
[
exp{sX(t)

∣∣N(t) = n}
]
Yj
× P ν

n (t)

=
∞∑

n=0

E
[
exp{s(Y1 + Y2 + · · ·+ Yn)

∣∣N(t) = n}
]
Yj

× (µtν)n

n!

∞∑
k=0

(k + n)!

k!

(−µtν)k

Γ(ν(k + n) + 1)

=
∞∑

n=0

E
[
exp{sY1

∣∣N(t) = n}
]n
Yj
× (µtν)n

n!

∞∑
k=0

(k + n)!

k!

(−µtν)k

Γ(ν(k + n) + 1)
.

Moreover, if we let

g(s) = E
[
exp{sY }

]
Y
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be the moment generating function of the random variables Yj then we can easily

show that

Jν(s, t) =
∞∑

n=0

g(s)n × (µtν)n

n!

∞∑
k=0

(k + n)!

k!

(−µtν)k

Γ(ν(k + n) + 1)

=
∞∑

n=0

[g(s)µtν ]n

n!

∞∑
k=0

(k + n)!

k!

(−µtν)k

Γ(ν(k + n) + 1)

=
∞∑

n=0

[g(s)µtν ]n

n!

∞∑
k=n

k!

(k − n)!

(−µtν)k−n

Γ(νk + 1)

=
∞∑

k=0

k!

Γ(νk + 1)

k∑
n=0

[g(s)µtν ]n(−µtν)k−n

n!(k − n)!

= Eν(µt
ν(g(s)− 1)).

We can see that the kth order moment of X(t) can be obtained by

E
[
X(t)k

]
Yj ,N(t)

=
∂k

∂sk
Jν(s, t)

∣∣∣∣∣
s=0

.

When k = 1, we get

E
[
X(t)

]
Yj ,N(t)

=
∂

∂s
Jν(s, t)

∣∣∣∣∣
s=0

= (EY )

(
µtν

Γ(ν + 1)

)
.

More details can be found in Laskin (2003).

2.6 Alternative Fractional Generalization

A fractional generalization of the ordinary Poisson process using Caputo’s definition

can be found in Mainardi et al. (2004) and Mainardi et al. (2005). Observe that the

survival probability function (P (T > t) = Θ(t)) for the standard Poisson process

(with parameter µ) satisfies the ordinary differential equation

d

dt
Θ(t) = −µΘ(t), t ≥ 0, Θ(0+) = 1.
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The alternative generalization comes in by replacing the first derivative operator by

the fractional derivative (in Caputo’s sense) of order ν . Hence, we have now the new

ordinary fractional differential equation,

0D
∗ν
t Θ(t) = −µΘ(t), t ≥ 0, 0 < ν ≤ 1, Θ(0+) = 1, (2.23)

where Caputo’s derivative of a well-behaved function f(t) ∈ R+ is defined as

0D
∗ν
t f(t) =


1

Γ(1−ν)

∫ t

0
f (1)(τ)
(t−τ)ν dτ, 0 < ν < 1;

d
dt
f(t), ν = 1.

Its Laplace transform happens to be

L
{

0
D∗ν

t f(t)
}

= λν f̃(λ)− λν−1f(0+).

For more information on the theory and applications of Caputo derivative of order

ν > 0, please see Carpinteri and Mainardi (1997), and Caputo (2001). Now, solving

equation (2.23) using Laplace transform gives

L
{

0
D∗ν

t Θ(t)
}

= −µL
{
Θ(t)

}
=⇒ λνΘ̃(λ)− λν−1Θ(0+) = −µΘ̃(λ)

=⇒ Θ̃(λ) =
λν−1

µ+ λν
. (2.24)

Note that

L
{
Eν(−µtν)

}
= Θ̃(λ) =

λν−1

µ+ λν
.

By simple inspection, we can see that equation (2.24) automatically yields the solution

Θ(t), which is the Mittag-Leffler function

Eν(−µtν) =
∞∑

n=0

(
− µtν

)n
Γ(1 + νn)

as defined previously. A more rigorous solution to a more general class of prob-

lems that includes the above ordinary fractional differential equation can be found in

Carpinteri and Mainardi (1997).

30



Furthermore, the Poisson and Erlang distributions (corresponding to the nth ar-

rival or event time, n ∈ N) are generalized in what follows: It can be shown that

L
{(µt)n

n!
e−µt

}
=

µn

(µ+ λ)n+1
,

and

L
{
µ

(µt)n−1

(n− 1)!
e−µt

}
=

µn

(µ+ λ)n
.

From (1.80) of Podlubny (1999),

L
{
tν1n+ν2−1E(n)

ν1, ν2

(
± µtν1

)}
=

n!λν1−ν2

(λν1 ∓ µ)n+1
, ν1 > 0, ν2 > 0,

where

E(n)
ν1, ν2

(y) =
dn

dyn
Eν1, ν2(y).

When ν1 = ν, and ν2 = 1, we get

L
{
µntνnE

(n)
ν, 1

(
− µtν

)}
= L
{
µntνnE(n)

ν

(
− µtν

)}
=

n!λν−1µn

(λν + µ)n+1
, ν > 0.

This implies that a generalization of the Poisson distribution is given by

P ν
n (t) = P (Nν(t) = n) =

tνn

n!
E(n)

ν

(
− µtν

)
, (2.25)

where the Laplace transform of the probability mass function is

L
{
P ν

n (t)
}

=
λν−1µn

(µ+ λν)n+1
.

Accordingly, a generalization of the Erlang distribution is shown to be

f(T = T1 + T2 + · · ·+ Tn) = f ν
n(t) = µnν

tνn−1

(n− 1)!
E(n)

ν

(
− µtν

)
, (2.26)

where the Laplace transform of the probability density function is

L
{
f ν

n(t)
}

=
µn

(µ+ λν)n
.

When ν → 1, the distributions (2.25) and (2.26) converge to Poisson Distribution,

and Erlang distribution, respectively.
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Chapter 3

Fractional Poisson Process

From this chapter on, we adopt the first fractional generalization as it provides

a natural extension of the ordinary Poisson process, and refer to it as the fractional

Poisson process (fPp). When ν = 1, fPp becomes the standard (memoryless) Poisson

process. But when ν < 1, fPp physically exhibits a long-run memory property, that

is, events in non-overlapping time intervals are correlated. This makes the memory

“length” a function of the parameter ν, which is very attractive for further exploration.

In the subsequent discussion, we establish the link between fPp and α-stable densi-

ties by solving an integral equation, reformulate known and uncover new properties,

show that the asymptotic distribution of a scaled fPp random variable is indepen-

dent of some parameters and derive formulas for integral order, non-central moments,

and propose an alternative fractional generalization of the standard Poisson process

worthy of exploration.

3.1 Some Known Properties of fPp

As shown in Repin and Saichev (2000), and Laskin (2003), the waiting time density

varies as the ordinary Poisson process, with ψ(t) = µe−µt transitions to fPp, with

ψν(t) = µtν−1Eν, ν(−µtν), ν < 1. The above transition removes the characteristics of

the ordinary Poisson process (see section 3.2). Table 3.1 below compares some known
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properties of fPp with those of the standard Poisson process.

Table 3.1: Properties of fPp compared with those of the ordinary Poisson process.

Poisson process (ν = 1) Fractional Poisson Process (ν < 1)

P0(t) e−µt Eν(−µtν)

ψ(t) µe−µt µtν−1Eν, ν(−µtν)

Pn(t) (µt)n

n!
e−µt (µtν)n

n!

∑∞
k=0

(k+n)!
k!

(−µtν)k

Γ(ν(k+n)+1)

µN(t) µt µtν

Γ(ν+1)

σ2
N(t) µt µtν

Γ(ν+1)

{
1 + µtν

Γ(ν+1)

[
νB(ν,1/2)

22ν−1 − 1
]}

,

B(α, β) = Γ(α)Γ(β)
Γ(α+β)

E [N(t)]k ∂k

∂sk s
k exp [µ(s− 1)t]

∣∣
s=0

(−1)k ∂k

∂sk

∑∞
m=0

[µtν(e−s−1)]
m

Γ(mν+1)

∣∣
s=0

We also plot the mean and variance as a function of ν and time t below (Figures

(3.1) and (3.2)). As ν → 1, the mean and variance become that of the ordinary

Poisson process, that is, they both equal µt1. When ν → 0, the mean and variance

become constant µ. This suggests that fPp’s corresponding to small fractional orders

(close to ν = 0) have slowly varying mean and variance that depend little on time.
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Figure 3.1: The mean of fPp as a function of time t and fractional order ν.
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Figure 3.2: The variance of fPp as a function of time t and fractional order ν.

Figure 3.2 seems to indicate that, for large t’s the variance achieves the maximum

for a certain ν = ν(t) < 1. It would be interesting to investigate the properties of

this “maximum” in the future.

3.2 Asymptotic Behavior of the Waiting Time Den-

sity

The waiting (interarrival) time T with density ψ(t) plays a crucial role in renewal

theory. In the ordinary Poisson case, it has the exponential function ψ(t) = µe−µt.

Recall that Repin and Saichev (2000) came up with the density

ψν(t) =
1

t

∞∫
0

e−xφν(µt/x)dx, (3.1)
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where

φν(ξ) =
sin(νπ)

π[ξν + ξ−ν + 2 cos(νπ)]
.

The above formula allows us to find the waiting time density behavior for small and

large times. For instance, as t→∞,

ψν(t) =
sin(νπ)

πt

∫ ∞

0

exp(−x)dx
(µt/x)ν + (µt/x)−ν + 2 cos(πν)

=
sin(νπ)

πµνtν+1

∫ ∞

0

exp(−x)dx
x−ν + xν (µt)−2ν + 2 cos(πν) (µt)−ν . (3.2)

From (3.2), we see that

∫ ∞

0

exp(−x)dx
x−ν + xν (µt)−2ν + 2 cos(πν) (µt)−ν

t→∞−→
∫ ∞

0

xν exp(−x)dx = Γ(1 + ν).

Thus, equation (3.2) becomes

ψν(t) ∼
sin(νπ)

πµνtν+1
Γ(1 + ν), t→∞. (3.3)

Substituting the identities Γ(1+ν) = νΓ(ν) and π/ sin(πν) = Γ(1−ν)Γ(ν) into (3.3),

and simplifying the resulting equation, we observe that

ψν(t) ∼
νt−ν−1

µνΓ(1− ν)
, t→∞.

Similarly, as t→ 0,

ψν(t) =
sin(νπ)

πµ−νt1−ν

∫ ∞

0

exp(−x)dx
(µt)2ν x−ν + xν + 2 cos(πν) (µt)ν

∼ sin(νπ)

πµ−νt1−ν
Γ(1− ν), (3.4)

as ∫ ∞

0

exp(−x)dx
(µt)2ν x−ν + xν + 2 cos(πν) (µt)ν

t→0−→ Γ(1− ν).
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Using the previous identity involving the sine function, we can obtain the small-time

behavior of the probability density function:

ψν(t) ∼
tν−1

µ−νΓ(ν)
, t→ 0.

Expressing the above results in compact form, we get

ψν(t) ∼


µν

Γ(ν)
tν−1, t→ 0,

νµ−ν

Γ(1−ν)
t−ν−1, t→∞.

Additionally, expression (3.1) provides a useful formula for plotting the interarrival

time densities. Figure 3.3 below shows the log-log plot of the fPp waiting time

densities for different ν’s.
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Figure 3.3: Waiting time densities of fPp (3.1) using µ = 1, and ν = 0.1(0.1)1 (log-log
scale).
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3.3 Simulation of Waiting Time

A more thorough investigation of the properties of fPp may also be achieved by Monte

Carlo simulation. This aim convinces us to use the more convenient representation of

the interarrival time density, which is of the form (2.19). We now introduce a lemma

below.

Lemma. The three-parameter Mittag-Leffler function

Eν(−µ(ρt)ν) =
∞∑

k=0

[−µ(ρt)ν ]k

Γ(1 + νk)

can be expressed as

∞∫
0

e−µ(ρt)ν/τν

g(ν)(τ)dτ, 0 < ν ≤ 1, (3.5)

where g(ν)(τ) is the one-sided α-stable density (see Appendix), µ > 0, and ρ > 0.

Proof. Expanding the exponential function in equation (3.5)

e−µ(ρt)ν/τν

=
∞∑

k=0

1

k!
[−µ(ρt)ν/τ ν ]k

and using formula (A.2) for calculating negative order moments of the α-stable density∫ ∞

0

g(ν)(τ)τ−νkdτ =
k!

Γ(1 + νk)
,

we obtain

P (T > t) =
∞∑

k=0

1

k!

∫ ∞

0

[−µ(ρt)ν/τ ν ]kg(ν)(τ)dτ

=
∞∑

k=0

[−µ(ρt)ν ]k

k!

∫ ∞

0

τ−νkg(ν)(τ)dτ =
∞∑

k=0

[−µ(ρt)ν ]k

Γ(1 + νk)
= Eν [−µ(ρt)ν ].

The Lemma is proved. �

When ρ = 1, we state the following direct corollary of the above lemma without

proof.
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Theorem. The complementary cumulative distribution function,

P (T > t) = Eν(−µtν),

can be represented in the form

P (T > t) =

∞∫
0

e−µtν/τν

g(ν)(τ)dτ, (3.6)

where g(ν)(τ) is the one-sided α-stable density (see Appendix).

We now state a theorem that alternatively describes the distribution of the fPp

interarrival times, and that provides a tool for their simulation.

Theorem. The random variable T determined above has the same distribution as

T ′
d
=
|lnU |1/ν

µ1/ν
S(ν),

where S(ν) is a random variable distributed according to g(ν)(τ), U is uniformly dis-

tributed in [0, 1], and U is independent of S(ν).

Proof. Using the formula of total probability, we can represent equality (3.6) in the

form

P (T > t) =

∫ ∞

0

P (T > t|τ)g(ν)(τ)dτ,

where

P (T > t|τ) = e−µtν/τν

is the conditional distribution. This means that

P (T > t|τ) = P (U < e−µtν/τν

) = P

(
|lnU |1/ν

µ1/ν
τ > t

)
,

or

T |τ
d
=
|lnU |1/ν

µ1/ν
τ.
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Because τ is a fixed possible value of S(ν), we obtain the following equivalence

(in distribution) for the unconditional interarrival time:

T
d
=
|lnU |1/ν

µ1/ν
S(ν). �

We now cite the succeeding consequence that highlights the formula for generating

fPp waiting times.

Corollary. The random variable

T
d
=
| lnU1|1/ν

µ1/ν

sin(νπU2)[sin((1− ν)πU2)]
1/ν−1

[sin(πU2)]1/ν | lnU3|1/ν−1
, (3.7)

where U1, U2 and U3 are independently and uniformly distributed in [0, 1].

This result follows from Kanter’s algorithm of simulating S(ν) (Kanter , 1975).

It is worth mentioning that one can use the algorithm of Chambers et al. (1976) in

simulating stable random variables as well (see also Devroye (1986) and Janicki and

Weron (1994)). Below is the algorithm for generating n fPp interarrival times, which

will also be used in the subsequent calculations.

Algorithm

I. Generate U1, U2, U3 from U(0, 1).

II. Compute

T =
| lnU1|1/ν

µ1/ν

sin(νπU2)[sin((1− ν)πU2)]
1/ν−1

[sin(πU2)]1/ν | lnU3|1/ν−1
.

III. Repeat I and II n times.

When ν → 1, the above algorithm reduces to the well known formula of generating

random numbers from an exponential distribution, i.e.,

T
d
=
| lnU |
µ

.

Below are the goodness-of-fit test statistics (see Table 3.2), which signify favorable

results.
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Table 3.2: χ2 Goodness-of-fit Test Statistics with µ = 1.

ψν(t) χ2 Test Statistic Values Critical Values

ψ1/2(t) 31.0 χ2
29,0.05 = 42.5

ψ1(t) 27.5 χ2
29,0.1 = 39.1

3.4 The Limiting Scaled nth Arrival Time Distri-

bution

Let Sn = T1 + T2 + · · ·+ Tn, n = 1, 2, 3, . . . , be the nth arrival time, and

ψ∗n(t) = ψ ∗ ψ ∗ · · · ∗ ψ︸ ︷︷ ︸(t)
n times

be its probability density. Here, the Tj’s are mutually independent copies of the

interarrival random time T , and the symbol ∗ denotes the convolution operation

ψ ∗ ψ(t) ≡
t∫

0

ψ(t− τ)ψ(τ)dτ.

For the standard Poisson process, the interarrival time Tj is distributed according to

exp(1/µ), and that the nth arrival time Sn is Erlang (n, 1/µ) distributed. The n-fold

convolution is then

ψ∗n(t) = µ
(µt)n−1

(n− 1)!
e−µt.

A generalization of the preceding distribution exists and is given by (2.26). Now, let

Zn =
Sn − n/µ√

n/µ
.

It can be shown without difficulty that

fZn(x) = fSn(n/µ+
(√

n/µ
)
x)

√
n

µ
.

According to the Central Limit Theorem (CLT),

Ψ(n)(t) ≡ fZn(t) = (
√
n/µ)ψ∗n(n/µ+ t

√
n/µ) ⇒ 1√

2π
e−z2/2, n→∞. (3.8)
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Figure 3.4 below shows that Ψ(n)(t) already reaches its limit curve by n = 10.
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Figure 3.4: Scaled nth arrival time distributions for standard Poisson process (3.8)
with n = 1, 2, 3, 5, 10, 30, and µ = 1.

In the case of fPp,

ET =

∞∫
0

ψν(t)tdt = ∞,

and the CLT is no longer valid. Recall the Generalized Central Limit Theorem

(GCLT) (Gnedenko and Kolmogorov , 1968; Uchaikin and Zolotarev , 1999; Rachev ,

2003) which states that the only possible distributions with a domain of attraction

are stable. Let

Zν
n =

∑n
i=1 Ti

bn1/ν
.

By a simple algebraic manipulation, it can be straightforwardly shown that

fZν
n
(x) = fSν

n

(
bn1/νx

)
bn1/ν .
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Our goal now reduces to finding the constant b in the relation

bn1/νψ∗nν (tbn1/ν) → g(ν)(t), n→∞, (3.9)

where g(ν)(t) is a one-sided ν−stable probability density or ν+−stable probability

density.

Using formula (2.5) in getting the Laplace transform of the left-hand side of ex-

pression (3.9) gives

L{(bn1/ν)ψ∗nν (tbn1/ν)} =
[
ψ̃ν(λ/(bn

1/ν))
]n

=

[
µ

µ+ [λ/(bn1/ν)]ν

]n

=

[
1−

[
λ/bn1/ν

]ν
µ+ [λ/bn1/ν ]

ν

]n

=

[
1− λν/µbν

n+ λν/µbν

]n

n→∞−→ exp(−λν/µbν)

∼ 1− λν

µbν
, λ→∞.

Similarly, applying result (A.1) on the right hand side of expression (3.9), we obtain

1− λν/µbν ∼ 1− λν , λ→∞.

This yields the scaling constant

b = µ−1/ν .

Hence, we can deduce that

Ψ(n)
ν (t) ≡ fZν

n
(t) =

(
n

µ

)1/ν

ψ∗nν

(
t

(
n

µ

)1/ν
)

= n1/ν
◦
ψ
∗n

ν (tn1/ν)

n→∞−→ g(ν)(t),
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where
◦
ψν (t) = ψν(t)|µ=1 = tν−1Eν, ν(−tν).

The multiple integrals involved in the convolution can be computed by a Monte

Carlo technique. When µ = 1, Ψ
(n)
ν (t) is the probability density of the renormalized

sum (T1+T2+· · ·+Tn)/n1/ν , where Tj’s are distributed according to
◦
ψν (t). We could

directly simulate this sum using the above algorithm, and construct the corresponding

histogram, but the steep left tail of the waiting time densities makes observations or

points (from the left tail) less likely to be sampled. For the above reason, we find the

regular histogram as an unfavorable and inappropriate estimator. This leads us to

consider the Monte Carlo approach.

With n = 2, Ψ
(2)
ν (t) becomes the probability density of the scaled sum of two IID

random variables
(
(T1 +T2)/2

1/ν = T1/2
1/ν +T2/2

1/ν
)
, and can be represented as the

convolution of their densities pTj/21/ν (t):

Ψ(2)
ν (t) = pT2/21/ν ∗ pT1/21/ν (t) =

t∫
0

pT2/21/ν (t− t′)pT1/21/ν (t′)dt′.

Taking into account the relation

pTj/21/ν (t) = 21/ν
◦
ψν (21/νt),

and changing the variable of integration, we get

Ψ(2)
ν (t) =

21/νt∫
0

21/ν
◦
ψν (21/νt− τ)

◦
ψν (τ)dτ = E21/ν

◦
ψν (21/νt− T1).

Observe that the density

◦
ψν (21/νt− T1) =

1

21/νt− T1

∞∫
0

φν(2
1/νt− T1)/x)e

−xdx

can be expressed as

◦
ψν (21/νt− T1) = E

{
1(21/νt− T1)

(21/νt− T1)
φν((2

1/νt− T1)/E)

}
,
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where E = | lnU | and

1(x) =

{
0, x ≤ 0;

1, x > 0.

Consequently, the value

Ψ(2)
ν (t) = E

{
1(21/νt− T1)

(21/νt− T1)
21/νφν((2

1/νt− T1)/E)

}
can be estimated by

Ψ̂(2)
ν (t) =

1

N

N∑
j=1

{
1(21/νt− T1)

(21/νt− T1)
21/νφν((2

1/νt− T1)/E)

}
j

where T1 and E are independent random variables.

Continuing in a similar fashion for an arbitrary integer n, yields

Ψ(n)
ν (t) = E

{
1(n1/νt− Sn−1)

(n1/νt− Sn−1)
n1/νφν(n

1/νt− Sn−1)/E)

}
, (3.10)

where Sn−1 = T1 +T2 + · · ·+Tn−1. Thus, the corresponding estimator takes the form

Ψ̂(n)
ν (t) =

1

N

N∑
j=1

{
1(n1/νt− Sn−1)

(n1/νt− Sn−1)
n1/νφν((n

1/νt− Sn−1)/E)

}
j

. (3.11)

Using estimator (3.11), we computed the distributions Ψ
(n)
ν (t) for various n, with

ν = 0.5. Figure 3.5 presents the corresponding estimates (in log-log scale) of the

limiting distribution of the scaled nth arrival time. The figure also illustrates that

for n = 30, the simulated scaled nth arrival time distribution approaches the true

limiting stable distribution corresponding to ν = 0.5. Observe that the roughness of

the curve estimates is caused by the infinite variance of the random times.
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Figure 3.5: Scaled nth fPp arrival time distributions (3.11) corresponding to ν =
0.5, n = 1, 3, 10, 30, and µ = 1 (log-log scale).

3.5 Intermittency

Having the algorithm for simulating interarrival times, we can study special properties

of the fractional Poisson process that are difficult to analyze analytically.

Let us consider the unit-length time interval (0, 1), divide it into B bins, each of

length τ , and present the distribution of events or arrivals using a histogram. In this

particular investigation, we consider 50 bins only. With a standard Poisson process

having intensity rate µ, we observe some bins to be empty if µτ is of order 1, and

all bins to be completely filled if µτ � 1 (Figure 3.6, leftmost panel). Also, the

coefficient of variation (CV) or relative fluctuation (ratio of the standard deviation

to the first moment) of the random number of events is given by 1/
√
µτ , which tends

to 0 as µτ →∞, i.e., the distribution of events over the bins looks almost uniform.

Additionally, simulating fPp reveals its more significant property: the proportion

of empty bins does not vanish with µ, but tends to a finite limit depending on the
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order ν (Figure 3.6, center and rightmost panel). In other words, fractional Poisson

processes have empty bins at all scales even if the total number of events on the

interval under consideration becomes very large. These events form clusters on the

time axis with noticeable voids between them. Such behavior known as intermit-

tency can be studied using different techniques (Botet and Ploszajczak , 2002). In

this manuscript, we propose a simple measure to describe intermittency of fPp. We

introduce R(ν), which measures the proportion of empty bins. The proportion R(ν)

is specifically defined as the ratio of mean number of empty bins (ENB(ν)) to the

total number of bins (B), i.e., R(ν) = ENB(ν)/B. Figure 3.7 shows that R(ν) is a

decreasing function of ν, and smoothly falls between zero (almost all bins are filled

when fPp is close to the standard Poisson process) and one (almost all bins are empty

when ν is close to 0).
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Figure 3.6: Histograms for standard Poisson process (leftmost panel) and fractional
Poisson processes of orders ν = 0.9 & 0.5 (middle and rightmost panels).
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3.6 Stationarity and Dependence of Increments

In this section, we investigate the stationarity and dependence structure of the fPp

increments. Consider t1 < t2,

σ∆1,∆2 = cov

{
Nν(t1)−Nν(0), Nν(t2)−Nν(t1)

}
= cov

{
Nν(t1), Nν(t2)−Nν(t1)

}
= E

[
Nν(t1)

(
Nν(t2)−Nν(t1)

)]
− ENν(t1)E

(
Nν(t2)−Nν(t1)

)
= cov

{
Nν(t1), Nν(t2)

}
− σ2

Nν(t1)

= σ12 − σ2
Nν(t1).

It is clear that when ν = 1 (corresponding to the ordinary Poisson process), the

covariance above is zero. Figure 3.8 below demonstrates the dependence structure of

the fPp increments as t1 → t2, where t2 = 300, and ν < 1.
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Figure 3.8: Dependence structure of the fPp increments for fractional orders ν =
0.4, 0.6, 0.7, 0.8, 0.95, and 0.99999, with µ = 1.

Furthermore, recall (Samorodnitsky and Taqqu (1994)) that a real-valued process

{Nν(t), t ∈ S} has stationary increments if

{
Nν(t)−Nν(0), t ∈ S

} d
=
{
Nν(t+ ∆t)−Nν(∆t), t ∈ S

}
, for all ∆t ∈ S.

Considering the sampling times t1 = 600, t2 = 1200, t3 = 1800, and t4 = 2400, we

estimate the distribution of the increments

{
Nν(t1)−Nν(0)

}
,
{
Nν(t2)−Nν(t1)

}
,
{
Nν(t3)−Nν(t2)

}
, and

{
Nν(t4)−Nν(t3)

}
using a histogram, where

Nν(tj+1)−Nν(tj) =
∞∑

n=1

I[Sn,∞)(tj+1)I[0,Sn)(tj), 0 ≤ tj < tj+1 <∞.

Clearly, Nν(tj+1) − Nν(tj) counts the random times Sn that occur between fixed

times tj+1 and tj. This further implies that ∆t = t1 = 600. We now compare

the simulated distributions of the increments visually as most goodness-of-fit tests

assume independence, and are dependent on the binning scheme. Please note also
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that the existence of the zero frequencies highly depend on the binning procedure,

and their positions over the bins are not fixed a priori. These make chi-square and

Anderson-Darling tests (see Scholz and Stephens (1987); Best (1994)) trickier to use.

Below are the estimated distributions of the above four increments for ν = 0.6, 0.8,

and 0.99999 using a sample of size n = 5000. For ν close to one, we see a process

that has nearly stationary increments (see Figure 3.9). In contrast, Figures 3.10 and

3.11 (corresponding to ν = 0.6, 0.8) indicate nonstationarity of the fPp increments.

Notice also that the distribution of the increments seems to converge to δ(Nν(t +

∆t)−Nν(∆t)) as the sampling interval (tj, , tj+1] shifts away from the origin t0 = 0.
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Figure 3.9: Distribution of the fPp increments on the sampling intervals a)[0, 600],
b)(600, 1200], c) (1200, 1800], and (1800, 2400] corresponding to fractional order ν =
0.99999, and µ = 1.
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3.7 Covariance Structure and Self-Similarity

The covariance between two random variables Nν(t1) and Nν(t2) is defined as

σ12 = cov
{
Nν(t1), Nν(t2)

}
= E [Nν(t1)Nν(t2)]− E [Nν(t1)] E [Nν(t2)] .

A natural estimator of σ12 would then be

σ̂12 =
1

n

n∑
j=1

Nνj(t1)Nνj(t2)−


n∑

j=1

Nνj(t1)

n




n∑
k=1

Nνk(t2)

n


=

1

n

n∑
j=1

Nνj(t1)Nνj(t2)− µ̂Nν(t1)µ̂Nν(t2).

In addition, we model the covariance structure by fitting the function atb, where

parameters a and b are estimated using simple linear regression. Table 3.3 displays

the parameter estimates for different ν’s while Figure 3.12 illustrates b as a function

of ν, with µ = 1. Finding the theoretical functional dependence of b on ν would

require further study. Moreover, Figure 3.13 below presents the simulated covariance

(log-log scale) with the fitted model as t1 approaches t2 = 300, where t1 < t2. We

generally see good fits corresponding to various ν’s for the particular time interval

(0, 300).

Table 3.3: Parameter estimates of the fitted model atb, µ = 1.

ν fitted b fitted a

0.05 0.0777 2.0580
0.10 0.1595 2.1042
0.20 0.3298 2.1194
0.30 0.5061 2.0820
0.40 0.68412 1.9842
0.50 0.8534 1.9082
0.60 1.0264 1.7234
0.70 1.1857 1.5346
0.80 1.3331 3.7929
0.90 1.4560 0.9243
0.95 1.4761 4.3757

0.9999 1.0106 2.7471
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Below are the simulated two-dimensional covariance structures of fPp correspond-

ing to several ν’s.
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Figure 3.14: Two-dimensional covariance structure of fPp for fractional orders a)
ν = 0.25, b) ν = 0.5, c) ν = 0.75, and d) ν = 1, with µ = 1.

On the other hand, there are several but non-equivalent definitions of self-similarity

in the probabilistic sense. In this subsection, we try to explore the kind of self-

similarity property that fPp possesses. The standard definition says that a continuous-

time process {Nν(t), t ≥ 0} is self-similar if

Nν(at)
d
= aDNν(t), for all a ≥ 0,

where D, 0 < D < 1 is the self-similarity index, and “
d
=” refers to the equality of

finite-dimensional distributions. Estimating the self-similarity exponent is going to

be difficult in this case as fPp has nonstationary and dependent increments. Leland

et al. (1994), Weron et al. (2005), and Beran (1994) have more details on estimating

the self-similarity exponent in a time series setting. Nonetheless, we clearly see that

fPp has second-order self-similarity property, i.e.,

E
[
Nν(at)

]
= aνE

[
Nν(t)

]
,
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and

E

[(
Nν(at)− µNν(at)

)2]
= a2νE

[(
Nν(t)− µNν(t)

)2]
.

This property follows from Corollary 3.2 of Houdré and Kawai (2005).

3.8 Limiting Scaled Fractional Poisson Distribu-

tion

In the case of the standard Poisson process, the probability distribution for the ran-

dom number N(t) of events by time t obeys the Poisson law with EN(t) ≡ n = µt,

that approaches to a normal law at large n. That is,

Pn(t) =
(µt)n

n!
e−µt =

(n)n

n!
e−n n→∞−→ (2πn)−1/2 exp

{
−(n− n)2

2n

}
.

Recall that a generalization of the Poisson distribution is given by (2.25). Introducing

the quasi-continuous random variable Z = N(t)/n, we can easily deduce that

f(z;n) = n
nnz

Γ(nz + 1)
e−n

∼
√

n

2π
exp

{
−(z − 1)2

2/n

}
→ δ(z − 1), n→∞.

Lemma. Let Z = Nν(t)/nν be the scaled fPp random variable where ENν(t) ≡ nν =

µtν

Γ(ν+1)
. Then

EsNν(t) = Ee−λZ ∼ Eν(−λ′), λ′ = λΓ(ν + 1),

where λ = −n ln s, and Eν(z) is given by the Mittag-Leffler function

Eν(z) =
∞∑

n=0

zn

Γ(νn+ 1)
.
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Proof. Consider the distribution of Nν(t) for fPp (see Table 3.1). The corresponding

generating function has the form

Gν(s, t) ≡ EsNν(t) =
∞∑

n=0

snP ν
n (t)

=
∞∑

n=0

sn × (µtν)n

n!

∞∑
k=0

(k + n)!

k!

(−µtν)k

Γ(ν(k + n) + 1)

=
∞∑

n=0

(sµtν)n

n!

∞∑
k=0

(k + n)!

k!

(−µtν)k

Γ(ν(k + n) + 1)

=
∞∑

k=0

k!

Γ(νk + 1)

k∑
n=0

[sµtν ]n(−µtν)k−n

n!(k − n)!

= Eν(µt
ν(s− 1))

= Eν((s− 1)Γ(ν + 1)nν),

as nν = µtν/Γ(1 + ν). Introducing the scaled random variable Z = Nν(t)/nν , and

new parameter λ = −n ln s, we get the generating function

EsNν(t) = Ee−λZ = Eν((e
−λ/nν − 1)Γ(ν + 1)nν).

At large nν (pertaining to large time t),

(e−λ/nν − 1)Γ(ν + 1)nν = e−λ/nνΓ(ν + 1)nν − Γ(ν + 1)nν

=

(
1− λ

nν

+
(λ/nν)

2

2!
− · · ·

)
Γ(ν + 1)nν − Γ(ν + 1)nν

= −λΓ(ν + 1) +

[
(λ/nν)

2

2!
− · · ·

]
Γ(ν + 1)nν

∼ −λΓ(ν + 1).

Thus,

Ee−λZ ∼ Eν(−λ′), λ′ = λΓ(ν + 1). �
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Theorem. Let Z = Nν(t)/nν be the scaled fPp random variable where nν = µtν

Γ(ν+1)
.

Then

fν(z;nν)
nν→∞−→ fν(z) =

[Γ(ν + 1)]1/ν

ν
g(ν)

((
z

Γ(ν + 1)

)−1/ν
)
z−1−1/ν . (3.12)

Proof. From the lemma above, we have

Ee−λZ ≡
∞∫

0

e−λzfν(z)dz ∼ Eν(−λ′), λ′ = λΓ(ν + 1). (3.13)

Comparing equation (3.13) with formula (6.9.8) of Uchaikin and Zolotarev (1999),

Eν(−λ′) = ν−1

∞∫
0

exp(−λ′x)g(ν)(x−1/ν)x−1−1/νdx

= ν−1

∞∫
0

exp(−λΓ(ν + 1)x)g(ν)(x−1/ν)x−1−1/νdx.

Letting z = Γ(ν + 1)x, we obtain

Eν(−λ′) =

∞∫
0

e−λz

{
[Γ(ν + 1)]1/ν

ν
g(ν)

((
z

Γ(ν + 1)

)−1/ν
)
z−1−1/ν

}
dz,

which shows that the random variable Z has a non-degenerate limit distribution (3.12)

as nν →∞ (see also Uchaikin (1999)). Hence,

fν(z;nν)
nν→∞−→ fν(z) =

[Γ(ν + 1)]1/ν

ν
g(ν)

((
z

Γ(ν + 1)

)−1/ν
)
z−1−1/ν . �

The moments can be calculated (using (A.2)) as

EZk =
1

ν

∞∫
0

zk

{
[Γ(ν + 1)]1/ν

ν
g(ν)

((
z

Γ(ν + 1)

)−1/ν
)
z−1−1/ν

}
dz.
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Letting y = (z/Γ(ν + 1))−1/v, we get

EZk = [Γ(ν + 1)]k
∞∫

0

y−νkg(ν)(y)dy

=
[Γ(1 + ν)]kΓ(1 + k)

Γ(1 + kν)
.

Moreover, to verify the formula

fν(z) =
∞∑

k=0

(−z)k

k!Γ(1− (k + 1)ν)[Γ(ν + 1)]k+1
, (3.14)

we can apply the asymptotic formula of the Mittag-Leffler function, which is given

by

Eν(−x) ∼ −
∞∑

n=0

(−x)n

Γ(1− nν)
.

Getting the Laplace transform of the density (3.14),∫ ∞

0

e−λzfν(z)dz =
∞∑

k=0

(−1)k

k!Γ(1− (k + 1)ν)[Γ(ν + 1)]k+1

∫ ∞

0

zke−λzdz

=
∞∑

k=0

(−1)k

k!Γ(1− (k + 1)ν)[Γ(ν + 1)]k+1

(
1

λ
k!

1

λk

)
n=k+1

=
∞∑

n=1

(−1)n−1

Γ(1− nν) [Γ(1 + ν)λ]n

= −
∞∑

n=1

[−λΓ(ν + 1)]−n

Γ(1− nν)

= Eν(−λΓ(ν + 1)), (3.15)

we arrive at equation (3.13).
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As z → 0 (using (A.4) ), we obtain

fν(z) =
[Γ(ν + 1)]1/ν

ν

∞∑
n=1

(−1)n−1

n!

nν

Γ(1− nν)

[(
z

Γ(ν + 1)

)−1/ν
]−nν−1

z−1−1/ν

=
1

Γ(ν + 1)

∞∑
n=1

(−1)n−1

(n− 1)!

1

Γ(1− nν)

[
z

Γ(ν + 1)

]n−1

k=n−1
=

∞∑
k=0

(−z)k

k!Γ(1− (k + 1)ν)[Γ(ν + 1)]k+1

→ fν(0) =
1

Γ(1 + ν)Γ(1− ν)
=

sin(νπ)

νπ
. (3.16)

We also see that, EZ = 1, and EZ2 = 2νB(ν, 1+ν), so that the relative fluctuation,

or CV of the random variable Z can be computed as

δν ≡ σZ/EZ =
√

2νB(ν, 1 + ν)− 1 =


1, ν = 0,√
π/2− 1, ν = 1/2

0, ν = 1.

If ν = 1/2 then we can obtain an explicit expression for f1/2(z). Using equa-

tion (3.12), we have

f1/2(z) =

{
Γ
(

1
2

+ 1
)}2

1
2

g(1/2)

((
z

Γ(1
2

+ 1)

)−2
)
z−3.

=
π

2
g(1/2)

((
z√
π/2

)−2
)
z−3.

From equation (A.3),

g(1/2)

((
z√
π/2

)−2
)

= 4
z3

π2
e−z2/π.

Thus, we get

f1/2(z) =
2

π
e−z2/π, z ≥ 0.

The family of these limit distributions (in log-log scale) is plotted in Figure 3.15.

The values of density (3.12) for different ν’s, and z’s can be found in Appendix B.
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Figure 3.15: Limiting distribution (3.12) for ν= 0.1(0.1)0.9 and 0.95, with µ =1.

3.9 Alternative fPp

Another generalization based on the analogy with fractional Brownian motion can be

formulated as follows: instead of the stochastic differential equation

dνBν

dtν
= W (t),

where W (t) is a white Gaussian noise, we consider the equation

dνYν

dtν
= X(t). (3.17)

The random function X(t) denotes the standard Poisson flow

X(t) =
∞∑

j=1

δ(t− T (j)),
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where T (j) = T1 +T2 + . . . Tj, and T1, T2, . . . Tj are independent random variables with

common density

ψ(t) = µe−µt, t ≥ 0, µ > 0.

Integrating the stochastic fractional differential equation (3.17) yields (Kilbas et al.,

2006)

Yν(t) =
1

Γ(ν)

∫ t

0

X(τ)dτ

(t− τ)1−ν

=
1

Γ(ν)

N(t)∑
j=1

∫ t

0

δ(τ − T (j))dτ

(t− τ)1−ν

=

N(t)∑
j=1

1

Γ(ν)

1

(t− T (j))1−ν
+

.

It is easy to see that, for ν = 1, the process becomes the standard Poisson process.

The stochastic process (3.17) can be interpreted as a resulting signal generated by

the Poisson flow of pulses, each of which giving the contribution

A(t− T (j)) =
1

Γ(ν)(t− T (j))1−ν
+

. (3.18)

It is also well known that, when N(t) = n (see Ross (1996)), the unordered random

times T (1), T (2), . . . , T (n) at which events occur, are distributed independently and

uniformly in the interval (0, t). Therefore,

Yν(t)|N(t)=n =
n∑

j=1

Aj,
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where Aj is determined by equation (3.18). Now,

P (Aj > y) = P
(
Γ(ν)(t− T (j))1−ν < y−1

)
= P

(
t− T (j) < [Γ(ν)y]−1/(1−ν)

)
= P

(
T (j) > t− [Γ(ν)y]−1/(1−ν)

)
= P

(
T (j) < [Γ(ν)y]−1/(1−ν)

)
=

1

t [Γ(ν)y]1/(1−ν)
.

Because ν > 0, the expectation of Aj exists, and according to the law of large num-

bers, the limit distribution of the scaled random variable Z has the degenerate limit

distribution fν(z) = δ(z − 1). Figure 3.16 illustrates the sample paths of standard

Poisson process, fPp, and the alternative fPp.
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Figure 3.16: Sample trajectories of (a) standard Poisson process, (b) fPp, and (c)
the alternative fPp generated by stochastic fractional differential equation (3.17), with
ν = 0.5.
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Chapter 4

Estimation

In the succeeding discussion, we propose parameter estimators and establish some

important statistical properties. We also construct alternative parameter estimators,

which are hoped to be improved versions (in some sense) of the original estimators.

We test and compare these estimators using synthetic data.

4.1 Method of Moments

We derive method-of-moments estimators for parameters ν, and µ, based on the first

two moments of a transformed random variable T . It is important to emphasize that

the Hill (1975), Pickands (1975), and Haan and Resnick (1980) estimators can be

used to estimate these parameters as well. However, the above estimators are using

only a portion of the data making these estimators statistically questionable. It is

this drawback that motivates us to look for estimators that utilize, or even optimize

the use, of all available data or information.

Recall that

T
d
=
| lnU |1/ν

µ1/ν
S(ν), (4.1)

where U has U(0, 1) distribution, S(ν) is one-sided α−stable, and the random vari-

ables U and S(ν) are statistically independent. Since the first moment doesn’t exist,

we consider the log-transformation of the absolute value of the original random vari-

able T . But T > 0, hence the absolute sign can be omitted.
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The formulation (4.1) above implies that

ln(T )
d
= ln

(
| lnU |1/ν

µ1/ν
S(ν)

)
. (4.2)

Simplifying (4.2), we get the equivalent expression

ln(T )
d
=

1

ν
ln

(
| lnU |
µ

)
+ ln(S(ν)). (4.3)

Taking the expectation of (4.3), we obtain the equality

E ln(T ) =
1

ν

[
E ln(| lnU |)− ln(µ)

]
+ E ln(S(ν)). (4.4)

Our task now is to obtain the first moments of the random variables ln(| lnU |) and

ln(S(ν)). In doing so, we start by finding the distribution of the former random

variable. Let Y = | lnU | = − lnU . The random variable Y is known to have the

distribution e−y, y > 0. Then using a standard statistical technique in finding the

distribution of the monotone transformation X = lnY , we can easily show that X

has the probability density function

fX(x) = ex−ex

, x ∈ R.

Thus, the first moment of ln(| lnU |) can be calculated now as

EX =

∫
R
xex−ex

dx =

∫
R+

ln(y)e−ydy = −C. (4.5)

If we let y = ex then the above equality becomes the well-known integral formula

involving Euler’s constant C ∼= 0.57721566490153286. We omit the proof here as it

can be found in many related sources (see Boros and Moll (2004)).

The next step is to find the expectation of ln(S(ν)). Zolotarev (1986, p. 213-220)

shows that

E ln(S(ν)) = C
(

1

ν
− 1

)
. (4.6)
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When (4.5) and (4.6) are substituted into (4.4), the equality becomes

E ln(T ) =
1

ν
((−C)− ln(µ)) + C

(
1

ν
− 1

)
= − ln(µ)

ν
− C. (4.7)

From equation (4.7), we obtain

µ = exp(−ν[E ln(T ) + C]). (4.8)

Alternatively, the second moment of the log-transformed random variable T is

given by

E [ln(T )]2 = E

[
ln

((
| lnU |
µ

)1/ν

S(ν)

)]2

= E

[
1

ν
ln

(
| lnU |
µ

)
+ ln(S(ν))

]2

. (4.9)

Expanding the right hand side (RHS) of (4.9), we obtain the equality

E [ln(T )]2 = E

[
1

ν2
(ln(| lnU |)− ln(µ))2 +

2

ν
ln

(
| lnU |
µ

)
ln(S(ν)) + ln(S(ν))2

]
= E

[
1

ν2
(ln(| lnU |)− ln(µ))2 +

2

ν
ln(| lnU |) ln(S(ν))

− 2

ν
ln(µ) ln(S(ν)) + ln(S(ν))2

]
(4.10)

= E

(
1

ν2

{
[ln(| lnU |)]2 − 2 ln(µ) ln(| lnU |) + ln(µ)2

}
+

2

ν
ln(| lnU |) ln(S(ν))− 2

ν
ln(µ) ln(S(ν)) + ln(S(ν))2

)
.

From another integral formula involving the Euler constant, we can easily obtain

E [ln(| lnU |)]2 = EX2 =

∫
R
x2ex−ex

dx =

∫
R+

ln(y)2e−ydy = C2 +
π2

6
. (4.11)
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Note that π2/6 = ζ(2) is the value of the Riemann zeta function at the point 2.

Furthermore, Bening et al. (2004) reveals that

E [ln(S(ν))]2 =

(
1

ν
− 1

)2

C2 +
π2

6

(
1

ν2
− 1

)
. (4.12)

Using equation (4.11), equation (4.12), and the independence between U and S(ν),

equation (4.10) becomes

E [ln(T )]2 =
π2

3ν2
+

(ln(µ))2

ν2
+ C2 − π2

6
+

2C ln(µ)

ν
. (4.13)

From (4.8),

ln(µ) = −ν[E ln(T ) + C]. (4.14)

Substituting (4.14) into (4.13) and simplifying the resulting expression, we can come

up with

E [ln(T )]2 − [E ln(T )]2 +
π2

6
=

π2

3ν2
.

This implies that

ν2 =
π2

3 (σ2
ln T + π2/6)

.

Thus, an estimator for ν is

ν̂ =
π√

3
(
σ̂2

ln T + π2/6
) (4.15)

and from (4.8),

µ̂ = exp

(
− ν̂

(
Ê ln(T ) + C

))
= exp

(
− ν̂

(
µ̂ln T + C

))
(4.16)

is an estimator for µ.

In the sequel, we construct alternative estimators of µ. Recall that the first

moment of the random variable Nν(t) is ENν(t) = µtν
/
Γ(ν+1). This directly suggests

that

µ̂ =
µ̂Nν(t)Γ(1 + ν̂)

tν̂
(4.17)
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is an estimator of µ, where t =
∑n

j=1 tj. Note that the number of jumps by time t is

a possible estimator of µNν(t).

Moreover, rearranging terms in (4.4) yields

1

ν
ln(µ) =

1

ν

[
E ln(| lnU |)

]
+ E ln(S(ν))− E ln(T )

= E ln(| lnU |) + ν E ln(S(ν))− ν E ln(T ). (4.18)

Therefore, we can easily deduce that

µ̂ = exp

(
̂E ln(| lnU |) + ν̂ ̂E ln(S(ν))− ν̂ Ê ln(T )

)
. (4.19)

Observe that we know time t, ν̂ is given by (4.15), and U and S(ν̂) can be generated

using our algorithm described earlier. We plan to explore the maximum likelihood

estimation and other estimation techniques in the future.

4.2 Asymptotic Normality of Estimators

We show asymptotic normality of our estimators for ν and µ. From the preceding

section, we observe that

E ln(| lnU |) = −C and E [ln(| lnU |)]2 = C2 +
π2

6
.

A further calculation using Mathematica shows that

E [ln(| lnU |)]3 = −C3 − Cπ2

2
− 2ζ(3)

and

E [ln(| lnU |)]4 = C2
(
C2 + π2

)
+

3π4

20
+ 8Cζ(3).

Additionally, we have

E ln(S(ν)) = C
(

1

ν
− 1

)
,
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and

E [ln(S(ν))]2 =

(
1

ν
− 1

)2

C2 +
π2

6

(
1

ν2
− 1

)
.

Zolotarev (1986) provides the following formula for finding the higher log-moments

of S(ν):

E (ln |S(ν)|)k =
(
dkwν(s)/ds

k
) ∣∣

s=0
,

where

wν(s) =
Γ(1− s/ν)

Γ(1− s)
.

To calculate these moments, we need to find the power series expansion of wν(s).

This turns out to be easier if we first expand

lnwν(s) = ln Γ(1− s/ν)− ln Γ(1− s)

into a power series (Bening et al., 2004). Using the log-gamma expansion

ln Γ(1− θ) = Cθ +
∞∑

k=2

ζ(k)

k
θk,

we get

lnwν(s) = C
(

1

ν
− 1

)
s+

π2

12

(
1

ν2
− 1

)
s2 +

1

3
ζ(3)

(
1

ν3
− 1

)
s3

+
1

4
ζ(4)

(
1

ν4
− 1

)
s4 +

1

5
ζ(5)

(
1

ν5
− 1

)
s5 +O(s6)

and, hence,

wν(s) = 1 + C
(

1

ν
− 1

)
s+

[
π2

12

(
1

ν2
− 1

)
+

1

2
C2

(
1

ν2
− 1

)2 ]
s2

+

[
1

3
ζ(3)

(
1

ν3
− 1

)
+

1

6
C3

(
1

ν
− 1

)3

+ C
(

1

ν
− 1

)(
1

ν2
− 1

)
π2

12

]
s3

+
1

1440

[(
1

ν3
− 1

ν4

)(
60C4(ν − 1)3 − 60C2π2(ν − 1)2(1 + ν)

+ π4(ν − 3)(1 + ν)(3 + ν) + 480C(ν3 − 1)ζ(3)

)]
s4 +O(s5).
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The kth log-moment of S(ν) is simply the coefficient of the term sk/k! in the above

power series expansion (can also be obtained via
(
dkwν(s)/ds

k
) ∣∣

s=0
). In particular,

the third and fourth log-moments can be shown to be

E [ln(S(ν))]3 =
−2(ν − 1)3C3 + Cπ2(ν − 1)2(1 + ν)− 4(ν3 − 1)ζ(3)

2ν3

and

E [ln(S(ν))]4 =
1

60

[(
1

ν3
− 1

ν4

)(
60C4(ν − 1)3 − 60C2π2(ν − 1)2(1 + ν)

+ π4(ν − 3)(1 + ν)(3 + ν) + 480C(ν3 − 1)ζ(3)

)]
,

respectively. In addition, our derivations above show that

µln T = −
(

ln(µ)

ν
+ C

)
and σ2

ln T =
π2

3

(
1

ν2
− 1

2

)
.

The second, third, and fourth order moments of lnT are

E (lnT )2 = C2 − π2 (ν2 − 2)

6ν2
+

ln(µ) [2Cν + ln(µ)]

ν2
,

E (lnT )3 = − [Cν + ln(µ)][2C2ν2 − π2(ν2 − 2) + 2 ln(µ)(2Cν + ln(µ))]

2ν3
− 2ζ(3),

and

E (lnT )4 =
1

60ν4

{
60C4ν4 − 60C2ν2(ν2 − 2) + π4(28− 20ν2 + ν4)

+ 60 ln(µ)[2Cν + ln(µ)]

(
2C2ν2 − π2(ν2 − 2) + 2Cν ln(µ) + [ln(µ)]2

)

+ 480ν3[Cν + ln(µ)]ζ(3)

}
,
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correspondingly. We now calculate the higher-order central moments of the random

variable lnT . After a tedious algebraic manipulation, we get

µ3 = E (lnT − µln T )3

= E

{
1

ν
ln

(
| lnU |
µ

)
+ ln(S(ν))−

[
−
(

ln(µ)

ν
+ C

)]}3

= −2ζ(3)

and

µ4 = E (lnT − µln T )4 =
π4(28− 20ν2 + ν4)

60ν4
.

If we let

lnT =

n∑
j=1

lnTj

n
and σ̂2

ln T =

n∑
j=1

(
lnTj − lnT

)2
n

then

√
n

(
lnT n − µln T

σ̂2
ln T − σ2

ln T

)
d−→N

[ (
0
0

)
,

(
σ2

ln T µ3

µ3 µ4 − σ4
ln T

) ]
,

where µ3, µ4, and σ2
ln T are defined above. We state Cramer’s theorem (see (Ferguson,

1996; Lehmann, 1999) ) below without proof.

Theorem (Cramer). Let g be a mapping g: Rd → Rk such that ġ(x) is continuous

in a neighborhood of θ ∈ Rd. If Xn is a sequence of d-dimensional random vectors

such that
√
n(Xn − θ)

d→ X, then

√
n
(
g(Xn)− g(θ)

) d→ ġ(θ)X.

In particular, if
√
n(Xn − θ)

d→ N(0,Σ) where Σ is a d× d covariance matrix, then

√
n
(
g(Xn)− g(θ)

) d→ N(0, ġ(θ)Σġ(θ)T ).
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For σ2
ln T > 0, we can now use Cramer’s theorem to show asymptotic normality of

our parameter estimators. Thus,

√
n (ν̂ − ν)

d−→ N

[
0,

18π2

(6σ2
ln T + π2)

3

(
µ4 − σ4

ln T

)]

d−→ N

0,
18π2

(π4(32−20ν2−ν4)
90ν4

)
(6σ2

ln T + π2)
3


d−→ N

[
0,

π6 (32− 20ν2 − ν4)

5 (6σ2
ln T + π2)

3
ν4

]

d−→ N

[
0,

ν2 (32− 20ν2 − ν4)

40

]
.

The last line of the preceding simplification is attained by substituting σ2
ln T = π2

3

(
1
ν2 − 1

2

)
.

Similarly, the estimator µ̂ can be rewritten as

µ̂ = exp
(
− ν̂ (µ̂ln T + C)

)
= exp

− π√
3(σ̂2

ln T + π2/6)

(µ̂ln T + C)

 .

Let

g(µln T , σ
2
ln T ) = exp

(
− π√

3(σ2
ln T + π2/6)

(µln T + C)

)
.

The gradient then becomes

ġ(µln T , σ
2
ln T ) =


−
√

2π√
π2+6σ2

ln T

exp

(
−
√

2π(µln T +C)√
π2+6σ2

ln T

)
3
√

2π(µln T +C)

(π2+6σ2
ln T )

3/2 exp

(
−
√

2π(µln T +C)√
π2+6σ2

ln T

)
 .

By Cramer’s theorem,
√
n
(
µ̂− µ

) d−→ N
[
0, σ2

a

]
,
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where

σ2
a = ġ(µln T , σ

2
ln T )T

(
σ2

ln T µ3

µ3 µ4 − σ4
ln T

)
ġ(µln T , σ

2
ln T )

=

µ2

[
20π4(2− ν2)− 3π2(ν4 + 20ν2 − 32)(lnµ)2

120π2

−
720ν3(lnµ)ζ(3)

]
120π2

. (4.20)

Therefore, we have shown that our method-of-moments estimators are asymptoti-

cally normal (asymptotically unbiased). We can now approximate the (1 − ε)100%

confidence interval for µ, and ν as

µ̂± zε/2

√√√√√ µ̂2

[
20π4(2− ν̂2)− 3π2(ν̂4 + 20ν̂2 − 32)(ln µ̂)2 − 720ν̂3(ln µ̂)ζ(3)

]
120π2

,

and

ν̂ ± zε/2

√
ν̂2 (32− 20ν̂2 − ν̂4)

40
,

correspondingly, where zε/2 satisfies 2P (Z > zε/2) = ε.

4.3 Numerical Experiment

We computationally compare and test our estimators using the mean absolute devi-

ation (MAD) and the square root of mean squared error (
√

MSE ) as our criteria.

Recall our method-of-moments estimators for the fractional order ν (4.15) and the

intensity rate µ (4.16):

ν̂mm =
π√

3
(
σ̂2

ln T + π2/6
)

and

µ̂mm = exp

(
− ν̂

(
Ê ln(T ) + C

))
= exp

(
− ν̂

(
µ̂ln T + C

))
.
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Moreover, we try to improve the above estimators by bootstrapping, and avoid the

computationally demanding algorithms based on U-statistics. Hence, we can directly

obtain estimators ν̂b and µ̂b. Finally, we consider estimators (4.17) and (4.19) as well:

µ̂3 =
µ̂N(t)Γ(1 + ν̂)

tν̂
,

and

µ̂4 = exp

(
̂E ln(| lnU |) + ν̂ ̂E ln(S(ν))− ν̂ Ê ln(T )

)
.

4.3.1 Simulated fPp Data

We generate n = 100 samples of fPp jump times with sample sizes N=50, 200, and

1000. We then estimate the parameters, and average them over the 100 samples. The

tables below reveal the sample means ν̂ and µ̂, MAD and
√

MSE using simulated fPp

data for various µ’s and ν’s.

Tables 4.1 and 4.2 indicate that there is no significant gain in bootstrapping the

method-of-moments estimators ν̂mm and µ̂mm. Note that we generate 500 bootstrap

samples, each of which has a sample size equal to the number of jumps (N) considered.

In addition, Tables 4.3 and 4.4 disclose that the errors for all estimators of ν are getting

under 5%, indicating a reputable performance. Observe that µ̂3 is still inadequate

for µ even at N= 1000, and the errors are worse for larger µ values. But µ̂3 could be

improved if we have a better estimator of µN(t).

Furthermore, Tables 4.1-4.4 empirically confirm that the method-of-moments es-

timators are asymptotically unbiased, and could be regarded as reasonable starting

values (except µ̂3 maybe) for better iterative estimation procedures. Overall, the

method-of-moments estimators did fairly well for various ν and µ values.
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Table 4.1: Test statistics for comparing parameter (ν, µ) = (0.9, 10) estimators using
a simulated fPp data.

N=50 N=200 N= 1000

Mean MAD
√

MSE Mean MAD
√

MSE Mean MAD
√

MSE

ν̂mm 0.9117 0.0620 0.0762 0.8962 0.0347 0.0424 0.9008 0.0128 0.0141
ν̂b 0.9244 0.0625 0.0762 0.9001 0.0340 0.0424 0.9016 0.0127 0.0141
µ̂mm 10.4699 1.8899 2.2788 10.0410 0.8682 1.0814 10.0550 0.4130 0.5130
µ̂b 10.9976 2.0310 2.5017 10.1843 0.8727 1.1008 10.0842 0.4153 0.5192
µ̂3 10.2452 2.5923 3.4187 9.2606 2.7007 3.4624 9.6752 2.3714 3.0529
µ̂4 10.4673 2.3887 3.1407 9.9801 1.3064 1.6491 10.1417 0.6004 0.7405

Table 4.2: Test statistics for comparing parameter (ν, µ) = (0.3, 1) estimators using
a simulated fPp data.

N=50 N=200 N= 1000

Mean MAD
√

MSE Mean MAD
√

MSE Mean MAD
√

MSE

ν̂mm 0.3079 0.0268 0.0346 0.3012 0.0142 0.0173 0.3001 0.0059 0.0073
ν̂b 0.3169 0.0298 0.0374 0.3036 0.0145 0.0173 0.3006 0.0059 0.0073
µ̂mm 1.0358 0.2109 0.2600 1.0015 0.0945 0.1187 1.0096 0.0473 0.0616
µ̂b 1.0728 0.2286 0.2832 1.0088 0.0964 0.1216 1.0110 0.0473 0.0624
µ̂3 0.9275 0.5806 0.7505 0.8846 0.5718 0.7481 0.9403 0.6383 0.8226
µ̂4 1.0722 0.2861 0.3735 1.0104 0.1567 0.1972 1.0138 0.0668 0.0849

Table 4.3: Test statistics for comparing parameter (ν, µ) = (0.2, 100) estimators
using a simulated fPp data.

N=50 N=200 N= 1000

Mean MAD
√

MSE Mean MAD
√

MSE Mean MAD
√

MSE

ν̂mm 0.2062 0.0202 0.0264 0.2008 0.0090 0.0100 0.2008 0.0041 0.0054
ν̂b 0.2128 0.0226 0.0283 0.2024 0.0092 0.0100 0.2012 0.0042 0.0055
µ̂mm 140.68 65.65 108.79 107.83 24.26 31.88 102.36 10.13 13.42
µ̂b 172.49 89.13 150.84 112.96 26.51 35.03 103.35 10.29 13.77
µ̂3 126.69 86.16 124.96 100.74 71.86 107.60 108.75 74.64 91.43
µ̂4 140.07 70.57 109.80 107.52 26.20 33.66 102.23 11.74 15.04
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Table 4.4: Test statistics for comparing parameter (ν, µ) = (0.6, 1000) estimators
using a simulated fPp data.

N=50 N=200 N= 1000

Mean MAD
√

MSE Mean MAD
√

MSE Mean MAD
√

MSE

ν̂mm 0.6041 0.0552 0.0693 0.6052 0.0306 0.0374 0.5999 0.0119 0.0141
ν̂b 0.6178 0.0555 0.0707 0.6091 0.0310 0.0387 0.6008 0.0119 0.0141
µ̂mm 1540 962 2042 1160 398 536 1019 143 189
µ̂b 1838 1160 2459 1220 423 580 1030 143 189
µ̂3 1400 999 2051 1033 676 920 1128 567 737
µ̂4 1601 1005 2098 1171 420 580 1017 147 187
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Chapter 5

Summary, Conclusions, and Future
Research Directions

In this chapter, we provide a synopsis of the preceding discussions. We also detail

our conclusions, and outline possible research extensions.

5.1 Summary

At the outset, we were able to provide an algorithm to generate the fractional Poisson

process. We also presented typical sample paths of fPp, standard Poisson process,

and the alternative fPp (see Figure 3.16). These paths indicated that realizations of

the standard Poisson process have generally shorter waiting times than fPp. We have

also computed the limiting distributions of the scaled nth arrival or event time for

fPp using the algorithm. We have shown that fPp’s have empty bins between clusters

of events for all time scales using simple intermittency measures.

Secondly, we proposed an alternative fPp generated by the stochastic differential

equation

dνYν

dtν
=

∞∑
j=1

δ(t− T (j)),
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whose solution is

Yν(t) =

N(t)∑
j=1

1

Γ(ν)

1

(t− T (j))1−ν
+

.

We also showcased the covariance structure of fPp with attempts to describe it in

a closed form; its increments are dependent and nonstationary. This indicates that

the properties of fPp are quite different from the properties of the standard Poisson

process. We also described the limiting distribution of Z = N(t)/E
[
N(t)

]
for all the

three processes above, and the second-order self-similarity property of fPp has been

established.

Lastly, we were able to find asymptotically normal estimators of the parameters

of the fractional Poisson process.

5.2 Conclusions

Results generally showed appealing and promising features of fPp for real-life appli-

cations. Additionally, substantial results are already obtained, albeit the study still

calls for more in-depth explorations. Nevertheless, we can conclude that α-stable

densities are useful in analyzing the theoretical and numerical properties of an im-

portant fractional stochastic process called fractional Poisson process. Finally, we

have implemented fractional Poisson process (fPp).

5.3 Future Research Directions

Intensive numerical and theoretical investigations have been done, but a number of

matters are still left undone which could be considered as possible research extensions

of the current exploration. These may include: construction of a larger class of

counting models by extending the fractional order to 1 < ν < 2; expansion of fPp

to fractional Poisson fields; expression of fPp in terms of tempered-stable densities;

derivation of a model based on nonconstant intensity rate corresponding to 0 < ν < 2;

investigation of the multiscaling property and long-range dependence of fPp; enlarging

the class of counting process to include waiting times that are heavy-tailed for small
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time magnitudes but exponential for large times; and lastly, applying this theory to

model real physical phenomena, such as network traffic, particle streams, economic

“events”, etc.
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Appendix

Appendix A. Some Properties of α+-Stable Densi-

ties

The α+-stable density, or one-sided alpha-stable distribution, denoted by g(α)(t) is

determined by its Laplace transform as follows (Samorodnitsky and Taqqu, 1994;

Uchaikin and Zolotarev , 1999):

{Lg(α)(t)}(λ) ≡ g̃(α)(λ) ≡
∞∫

0

g(α)(t)e−λtdt = e−λα

. (A.1)

It is equal to 0 on the negative semiaxis including the origin, positive on the positive

semiaxis and satisfies the normalization condition

∞∫
0

g(α)(t)dt = 1.

The term “stable” means that these densities belong to the class of the Lévy stable

laws : the convolution of two α+-densities is again the α+-density (up to a scale

factor):

t∫
0

g(α)(t− t′)g(α)(t′)dt′ = 2−1/αg(α)(2−1/αt).

This is easily seen in terms of Laplace transforms:

g̃(α)(λ)g̃(α)(λ) = g̃(α)(21/αλ).
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The main property of the densities is that they play the role of limit distributions

beyond the central limit theorem. Namely, if T1, T2, . . . , Tn are independent and

identically distributed random variables with P (Tj > t) ∼ at−α, t → ∞, then the

probability density of their sum

f∑
Tj

(t) ∼ [aΓ(1− α)]1/α g(α)
(
[aΓ(1− α)]1/α t

)
Let us give some other important properties of these densities:

(i) when α→ 1, g(α)(t) → δ(t− 1);

(ii) moments of the densities (Mellin transform):

∞∫
0

g(α)(t)tνdt =

{
Γ(1− ν/α)/Γ(1− ν), −∞ < ν < α;

∞, ν ≥ α,
(A.2)

(iii) only one of the densities is expressed through elementary functions:

g(1/2)(t) =
1

2
√
π
t−3/2 exp[−1/(4t)], t > 0; (A.3)

(iv) the densities can be represented in the form of a convergent series as t→ 0

g(α)(t) =
∞∑

n=1

(−1)n−1

n!

nα

Γ(1− nα)
t−nα−1; (A.4)

(v) for numerical calculations, the following integral formula is more convenient:

g(α)(t) =
αt1/(α−1)

π(1− α)

π/2∫
−π/2

exp
{
−tα/(α−1)U(φ;α)

}
U(φ;α)dφ, (A.5)

where

U(φ;α) =

[
sin(α(φ+ π/2))

cosφ

]α/(α−1)
cos ((α− 1)φ+ απ/2)

cosφ
;
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(vi) the following asymptotical approximation obtained by saddle-point method

is useful:

g(α)(t) ∼ 1√
2π(1− α)α

(t/α)(α−2)/(2−2α) exp[−(1− α)(t/α)−α/(1−α)], t→ 0. (A.6)

Results of numerical calculations according to (A.3) for α = 1/2 and (A.5) for all

other values of α are represented in Figure A below. The detailed description of the

Levy stable distributions and their applications can also be found in Samorodnitsky

and Taqqu (1994) and Uchaikin and Zolotarev (1999).

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t

g((νν
)) (t

)

νν == 0.5νν == 0.6

νν == 0.7

νν == 0.8

νν == 0.9

Figure A : α+-Stable Densities.
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Appendix B. Scaled fPp Density (3.12)Values

Table 5.1: Probability density (3.12) values for ν = 0.05(0.05)0.50 and z =
0.0(0.1)3.0.

z \ ν 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.0 0.996 0.984 0.963 0.936 0.900 0.858 0.810 0.757 0.699 0.637
0.1 0.902 0.893 0.879 0.859 0.833 0.803 0.768 0.728 0.683 0.635
0.2 0.817 0.811 0.801 0.787 0.770 0.750 0.725 0.697 0.665 0.629
0.3 0.740 0.736 0.730 0.721 0.711 0.698 0.683 0.665 0.643 0.619
0.4 0.670 0.668 0.664 0.660 0.655 0.648 0.641 0.631 0.619 0.605
0.5 0.606 0.606 0.605 0.604 0.603 0.601 0.599 0.597 0.593 0.588
0.6 0.549 0.549 0.550 0.552 0.553 0.556 0.559 0.562 0.565 0.568
0.7 0.497 0.498 0.500 0.503 0.508 0.513 0.519 0.527 0.535 0.545
0.8 0.450 0.452 0.455 0.459 0.465 0.472 0.481 0.492 0.505 0.519
0.9 0.407 0.409 0.413 0.418 0.425 0.434 0.445 0.458 0.474 0.492
1.0 0.369 0.371 0.375 0.381 0.389 0.398 0.410 0.425 0.442 0.463
1.1 0.334 0.336 0.340 0.347 0.355 0.365 0.377 0.392 0.411 0.433
1.2 0.302 0.305 0.309 0.315 0.323 0.333 0.346 0.361 0.380 0.403
1.3 0.273 0.276 0.280 0.286 0.294 0.304 0.316 0.331 0.349 0.372
1.4 0.247 0.250 0.254 0.260 0.267 0.277 0.288 0.302 0.320 0.341
1.5 0.224 0.226 0.230 0.236 0.243 0.251 0.262 0.275 0.291 0.311
1.6 0.203 0.205 0.208 0.213 0.220 0.228 0.238 0.250 0.264 0.282
1.7 0.183 0.185 0.189 0.193 0.199 0.206 0.215 0.226 0.239 0.254
1.8 0.166 0.168 0.171 0.175 0.180 0.187 0.194 0.204 0.214 0.227
1.9 0.150 0.152 0.155 0.158 0.163 0.168 0.175 0.183 0.192 0.202
2.0 0.136 0.137 0.140 0.143 0.147 0.152 0.157 0.164 0.171 0.178
2.1 0.123 0.124 0.126 0.129 0.133 0.137 0.141 0.146 0.151 0.156
2.2 0.111 0.112 0.114 0.117 0.119 0.123 0.126 0.130 0.134 0.136
2.3 0.101 0.102 0.103 0.105 0.107 0.110 0.113 0.115 0.117 0.118
2.4 0.091 0.092 0.093 0.095 0.097 0.099 0.100 0.102 0.103 0.102
2.5 0.082 0.083 0.084 0.085 0.087 0.088 0.089 0.090 0.089 0.087
2.6 0.074 0.075 0.076 0.077 0.078 0.079 0.079 0.079 0.077 0.074
2.7 0.067 0.068 0.068 0.069 0.070 0.070 0.070 0.069 0.067 0.063
2.8 0.061 0.061 0.062 0.062 0.062 0.062 0.062 0.060 0.057 0.052
2.9 0.055 0.055 0.056 0.056 0.056 0.056 0.055 0.053 0.049 0.044
3.0 0.050 0.050 0.050 0.050 0.050 0.049 0.048 0.046 0.042 0.036
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Table 5.2: Probability density (3.12) values for ν = 0.05(0.05)0.50 and z =
3.1(0.1)5.0.

z \ ν 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

3.1 0.045 0.045 0.045 0.045 0.045 0.044 0.042 0.040 0.036 0.030
3.2 0.041 0.041 0.041 0.040 0.040 0.039 0.037 0.034 0.030 0.024
3.3 0.037 0.037 0.037 0.036 0.035 0.034 0.032 0.029 0.025 0.020
3.4 0.033 0.033 0.033 0.032 0.032 0.030 0.028 0.025 0.021 0.016
3.5 0.030 0.030 0.030 0.029 0.028 0.027 0.025 0.022 0.018 0.013
3.6 0.027 0.027 0.027 0.026 0.025 0.023 0.021 0.018 0.015 0.010
3.7 0.025 0.024 0.024 0.023 0.022 0.021 0.018 0.016 0.012 0.008
3.8 0.022 0.022 0.022 0.021 0.020 0.018 0.016 0.013 0.010 0.006
3.9 0.020 0.020 0.019 0.019 0.017 0.016 0.014 0.011 0.008 0.005
4.0 0.018 0.018 0.017 0.017 0.015 0.014 0.012 0.009 0.007 0.004
4.1 0.016 0.016 0.016 0.015 0.014 0.012 0.010 0.008 0.005 0.003
4.2 0.015 0.015 0.014 0.013 0.012 0.011 0.009 0.007 0.004 0.002
4.3 0.013 0.013 0.013 0.012 0.011 0.009 0.008 0.006 0.004 0.002
4.4 0.012 0.012 0.011 0.011 0.009 0.008 0.007 0.005 0.003 0.001
4.5 0.011 0.011 0.010 0.009 0.008 0.007 0.006 0.004 0.002 0.001
4.6 0.010 0.010 0.009 0.008 0.007 0.006 0.005 0.003 0.002 0.001
4.7 0.009 0.009 0.008 0.007 0.007 0.005 0.004 0.003 0.001 0.001
4.8 0.008 0.008 0.007 0.007 0.006 0.005 0.003 0.002 0.001
4.9 0.007 0.007 0.007 0.006 0.005 0.004 0.003 0.002 0.001
5.0 0.007 0.006 0.006 0.005 0.004 0.003 0.002 0.002 0.001
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Table 5.3: Probability density (3.12) values for ν = 0.55(0.05)0.95 and z =
0.0(0.1)3.0.

z \ ν 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.0 0.572 0.504 0.436 0.368 0.300 0.234 0.170 0.109 0.052
0.1 0.582 0.525 0.464 0.401 0.335 0.267 0.199 0.131 0.064
0.2 0.588 0.542 0.491 0.435 0.373 0.306 0.234 0.158 0.079
0.3 0.590 0.556 0.516 0.469 0.414 0.351 0.278 0.194 0.100
0.4 0.587 0.565 0.537 0.502 0.458 0.402 0.331 0.241 0.131
0.5 0.581 0.570 0.555 0.533 0.502 0.458 0.395 0.305 0.176
0.6 0.570 0.570 0.568 0.561 0.547 0.520 0.474 0.392 0.248
0.7 0.555 0.565 0.575 0.584 0.589 0.586 0.567 0.510 0.367
0.8 0.536 0.555 0.576 0.600 0.626 0.652 0.674 0.673 0.578
0.9 0.514 0.540 0.571 0.609 0.656 0.715 0.791 0.888 0.981
1.0 0.489 0.520 0.559 0.608 0.674 0.766 0.906 1.154 1.768
1.1 0.461 0.495 0.539 0.598 0.678 0.799 1.001 1.425 2.970
1.2 0.431 0.467 0.514 0.576 0.666 0.803 1.043 1.563 2.470
1.3 0.400 0.435 0.482 0.545 0.634 0.772 1.001 1.354 0.068
1.4 0.368 0.401 0.445 0.504 0.585 0.701 0.852 0.753
1.5 0.335 0.366 0.405 0.455 0.519 0.595 0.614 0.190
1.6 0.303 0.329 0.361 0.400 0.442 0.464 0.353 0.012
1.7 0.272 0.293 0.317 0.342 0.358 0.327 0.150
1.8 0.241 0.257 0.273 0.284 0.275 0.205 0.043
1.9 0.212 0.223 0.231 0.228 0.199 0.112 0.007
2.0 0.185 0.191 0.191 0.177 0.135 0.052 0.001
2.1 0.160 0.161 0.154 0.133 0.085 0.020
2.2 0.137 0.134 0.122 0.096 0.049 0.006
2.3 0.116 0.110 0.095 0.066 0.026 0.001
2.4 0.098 0.089 0.072 0.044 0.013
2.5 0.082 0.071 0.053 0.028 0.006
2.6 0.067 0.056 0.038 0.017 0.002
2.7 0.055 0.043 0.027 0.010 0.001
2.8 0.044 0.033 0.018 0.005
2.9 0.036 0.025 0.012 0.003
3.0 0.028 0.018 0.008 0.001
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Table 5.4: Probability density (3.12) values for ν = 0.55(0.05)0.95 and z =
3.1(0.1)5.0.

z \ ν 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

3.1 0.022 0.013 0.005 0.001
3.2 0.017 0.009 0.003
3.3 0.013 0.007 0.002
3.4 0.010 0.005 0.001
3.5 0.008 0.003 0.001
3.6 0.006 0.002
3.7 0.004 0.001
3.8 0.003 0.001
3.9 0.002 0.001
4.0 0.002
4.1 0.001
4.2 0.001
4.3 0.001
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