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Preface

A number of years ago we published an edited volume that introduced the latest 
issues and techniques within the field of structural equation modeling (SEM). 
The volume received widespread attention as “a wonderful addition to the 
literature on SEM” and “a state-of-the-art communication from the frontiers of 
structural modeling.” But since new developments in the field of SEM continue 
to propagate at an incredible rate, we felt the need to collaborate on another 
edition that would reflect the progress that has been made in the past few years.

The purpose of this new edited volume is to introduce the latest developments 
and techniques in the SEM field. The goal is to provide an understandable working 
knowledge of the latest developments in SEM with a minimum of mathematical 
proofs. By focusing primarily on the application of each SEM technique with 
example cases and situations, we hope that the chapters are both enlightening 
and instructional. Each chapter assumes that the reader has already mastered the 
equivalent of a multivariate statistics course that included coverage of most basic 
SEM techniques. Anyone with a limited background in SEM can consult several 
other introductory books on SEM (e.g., Byrne, 1998; Schumacker & Lomax, 
1996; Raykov & Marcoulides, 2000) to familiarize themselves with the various 
issues in the application of these modeling techniques.

Each chapter in this volume contains an up-to-date description of a new 
development or technique in SEM and is often written by the author(s) who 
originally proposed the model or contributed substantially to its development. 
Each chapter also provides complete references to the pertinent literature on the 
topic. The decision regarding the selection and the organization of the chapters 
for this volume was quite challenging. Obviously, within a single edited volume, 
only a limited number of topics could be addressed. In the end, the choice of 
the mater-ial was governed by our own beliefs (and often heated discussions) 
concerning what are currently the most important new developments and 
techniques within the SEM field. The final topics selected for this volume 
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include latent variable mixture modeling, models for dealing with nonstandard 
and noncompliance samples, multilevel modeling, interaction modeling, new 
developments in the analysis of growth curve and longitudinal data, specification 
searches, item parceling, and equivalent models.

Muthén in Chapter 1 provides an overview of latent variable mixture modeling. 
Latent variable mixture modeling includes models with both categorical and 
continuous latent variables. Models that include a categorical latent variable 
are used to represent latent classes or mixtures in which group membership is 
not known but inferred from observed data. Conventional latent class, structural 
equation, and growth models are also extended and integrated into a general 
modeling framework. Model specifications and output using the Mplus program 
are provided throughout the chapter. In addition, Mplus input specifications for 
the analyses considered in the chapter are made available through a World Wide 
Web browser from http://www.statmodel.com/.

In Chapter 2, Yuan and Bentler examine multi-sample SEM modeling in what 
they refer to as nonstandard samples. The use of the term nonstandard samples 
is meant to include realistic data collection situations in which samples with 
missing data, nonnormal data and data with outliers are usually obtained. Since 
the current literature on multi-sample models of sample means and covariance 
matrices is based on either normal theory maximum likelihood or generalized 
least squares, there are some obvious limitations to the use of these approaches 
with nonstandard samples. This chapter attempts to offer a unified treatment of 
methods for estimating models of means and co variances in situations where 
nonstandard samples are encountered. Software examples for handling missing 
data, outliers, and nonnormal data are available through a World Wide Web 
browser from http://www.mvsoft.com/.

In Chapter 3, Jo and Muthén examine the problem of estimating treatment 
effects in design situations where participants do not always comply with a 
given treatment assignment. By looking at compliance status as a categorical 
latent variable, Jo and Muthén demonstrate how to deal with the problem from 
a broader SEM framework. Using data from three different studies (a) the Job 
Search Intervention study for unemployed workers, (b) the Study of Vitamin 
Supplement Effect on Survival Rates in young children, and (c) The Johns Hopkins 
Public School Preventive Intervention Study, Jo and Muthén demonstrate how 
the categorical latent variable approach can tackle compliance information in 
realistic situations. Generalizations of the approach to other modeling situations 
are also discussed and sample Mplus programs are provided in an appendix.

Multilevel modeling is an approach that can be used to analyze hierarchical 
(or clustered) data. In Chapter 4, Heck provides an introduction to multilevel 
modeling techniques using a SEM approach. Conceptual and methodological 
issues related to multilevel models are examined and general overviews of the 
mathematical details are provided. Step-by-step illustrations are also provided 
for examining several models such as multilevel confirmatory factor analysis, 
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multilevel path analysis, and multilevel models with latent variables. Model 
specifications and output using the Mplus program are provided throughout 
the chapter.

In Chapter 5, Jedidi and Ansari extend the discussion of multilevel modeling 
in the previous chapter and describe procedures for hierarchical Bayesian 
inference of multilevel structural equation models. In particular, they illustrate 
how Markov Chain Monte Carlo procedures like Gibbs sampling and Metropolis-
Hastings methods can be used to perform Bayesian inference, model checking, 
and model comparison without the need for multidimensional numerical 
integration. Using a customer satisfaction data set involving measurements on 
satisfaction, expectation disconfirmation, and performance variable, Jedidi and 
Ansari demonstrate the proposed estimation method and compare it to traditional 
multilevel methods.

Models with interaction and nonlinear effects are often encountered in the 
social and behavioral sciences. Kenny and Judd (1984) formulated the first 
nonlinear SEM model using a multiple indicant product approach. Several 
extensions for estimating and testing such models have been proposed in the 
literature (for a complete exposition on interaction and nonlinear effects in SEM, 
see the edited volume by Schumacker & Marcoulides, 1998). An important 
extension provided by Jöreskog and Yang in 1996 pointed out problems and 
issues related to modeling interaction effects with multiple indicant products and 
showed that only one product variable is needed to identify all the parameters 
of the model. Because one of the implications of using product variables turns 
out to be nonnormality, Yang-Jonsson (1997) examined the estimation of the 
Kenny and Judd model with three estimation methods: (i) maximum likelihood, 
(ii) weighted least squares, and (iii) weighted least squares on the augmented 
moment matrix. Yang-Jonsson found that maximum likelihood works well 
for samples with 400 to 3200 observations. However, her results revealed that 
asymptotic standard errors and chi-squares of the estimates are incorrectly 
computed. Using the Satorra-Bentler type scaling corrections, Yang-Wallentin 
and Jöreskog in Chapter 6 illustrate how both asymptotic standard error and chi-
squares of estimates in interaction models can be corrected for nonnormality. 
Interaction examples in the LISREL8.3 release are available through a World 
Wide Web browser at http://www.ssicentral.com/.

In Chapter 7, Duncan, Li, Duncan, Yang-Wallentin, Acock, and Hops consider 
the analysis of interaction effects in the context of latent growth curve modeling. 
Latent growth curve models (also referred to as latent change analysis models) 
allow researchers to investigate individual (intraindividual) development across 
time as well as between individual (interindividual) differences and similarities 
in change patterns (growth or decline) across time. However, to date, latent 
growth curve models have predominantly been used to examine linear effects. 
But researchers in the social and behavioral must often deal with complex 
models that involve interaction effects. As such, methods that permit one to 
consider interaction between dynamic, longitudinal change variables are essential 
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to ensuring a better understanding of patterns of change over time. Using the 
Jöreskog and Yang SEM interaction approach as a basis, Duncan et al extend 
the method to latent growth curve models.

In Chapter 8, Hamagami and McArdle examine how missing patterns of 
observations influence results obtained from longitudinal data analyses and 
examine whether the bivariate dual change score model can accurately recover 
characteristics of the data. Using SEM methodology, Hamagami and McArdle 
illustrate that characteristics of linear dynamic systems can be accurately 
evaluated. Generalizations of the approach to various incomplete data situations 
are examined via simulation and a pseudo-code for generating a system of time 
series based on the model is provided in an appendix.

The modification of an initially specified SEM model in order to improve 
data-to-model fit has been termed a specification search. Despite the fact 
that the SEM literature has demonstrated that specification errors “can have 
serious consequences” and that one should “attempt to correct these errors,” 
no optimal procedure or single strategy for conducting specification searches 
has been defined. Marcoulides and Drezner in Chapter 9 introduce a genetic 
algorithm as an alternative specification search approach for use in SEM. Using 
simple examples, an overview of genetic algorithms is provided along with a 
demonstration of an actual SEM specification search.

Item parcels are quite common in SEM models. The practice of item parceling 
generally involves summing or averaging together two or more items and using 
the result as the basic unit of analysis in the SEM model. Although the practice 
appears to have originated more than 30 years ago, there is still considerable 
controversy surrounding the use of item parcels; perhaps the use of item parcels 
depends on the unidimensionality of the items being summed or averaged 
together. In Chapter 10, Bandalos and Finney provide an extensive coverage 
of the topic of item parceling in SEM models and warn how uninformed use of 
item parcels may actually result in a poorer understanding of the relationships 
among sets of items.

The problem of equivalent models has been a concern since the earliest 
developmental stages of SEM. Equivalent models are those that provide identical 
statistical fit to the data as a hypothesized model but may imply very different 
substantive interpretations of the data. In the final chapter, Raykov and Penev 
provide an overview of problems associated with testing equivalent models and 
examine how individual case residuals may be useful for selecting between 
some equivalent models. Using examples in which individual case residuals are 
defined in terms of projections of subject raw data upon a model-generated space 
and provide additional fit indices, Raykov and Penev conclude that individual 
residuals are worthy adjuncts to substantive theories and offer considerations for 
ruling out some equivalent models. Model specifications using the SAS system 
and proof of the various propositions are provided in an appendix.

This volume could not have been completed without the assistance and support 
provided by many individuals. First, we would like to thank all the contributors 
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for their time and effort in preparing chapters for this volume. They all provided 
excellent chapters and worked diligently through the various publication 
stages. Our association with the Structural Equation Modeling journal has been 
invaluable in helping us to keep informed about new developments in theory 
and mathematical procedures relevant to SEM, and for this we wish to thank the 
Editorial Board, the ad hoc reviewers, and the many contributors to the journal. 
We are also greatly indebted to Larry Erlbaum for the encouragement and support 
that facilitated this work and other similar works. Thanks are also due to all 
the wonderful people on the editorial staff at Lawrence Erlbaum Associates for 
their assistance and support in putting together this volume. Finally, we thank 
our families for their love and for continually enduring a seemingly endless list  
of projects.

George A.Marcoulides 
Randall E.Schumacker
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1  
Latent Variable  

Mixture Modeling

Bengt O.Muthén 
University of California, Los Angeles

This chapter discusses models with latent variables that are continuous and/
or categorical. It also gives an overview of modeling issues related to cross-
sectional analysis using latent class models, modeling of longitudinal data using 
latent class models, and modeling of longitudinal data using a combination of 
continuous and categorical latent variables (growth mixture models). A series 
of examples are presented. The analyses are carried out within a general latent 
variable modeling f\work shown in the appendix using the Mplus program 
(Muthén & Muthén, 1998). Mplus input specifications for these analyses can be 
obtained from www.statmodel.com. To introduce the analyses, a brief overview 
of modeling ideas is presented in Figs. 1.1 to 1.3.

The top left part of Fig. 1.1 shows three distributions for a continuous outcome 
variable y. The idea is that the data consist of different groups of individuals, 
but the group membership is not observed. The two broken curves represent 
the distribution of y for two latent classes, c=0 and c=1, which have different 
means. These two distributions are not observed, but only the mixture of the 
two, shown by the solid curve. There are many examples of such unobserved 
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heterogeneity. An example often used in the statistic literature considers the 
length of fish in a stream. The analysis task is to find out how many cohorts of 
fish there are in the stream. In Fig. 1.1, there are two cohorts of fish, where the 
older fishes are longer. Alcohol researchers may consider brain wave responses 
to stimuli, measuring a P300 wave amplitude that is assumed to differ between 
individuals susceptible to alcohol dependence versus those who are not, with 
the interest in classifying individuals. Reading researchers may consider a latent 
class corresponding to reading disability and a class of normal readers with the 
interest in estimating the mean difference and classifying individuals as early as 
possible. The top right part shows the corresponding path diagram, using c to 
denote the latent categorical variable with two classes.

The bottom left part of Fig. 1.1 shows unobserved heterogeneity with respect 
to two continuous outcomes, y1 and y2. The line indicates a strong relationship 
between the outcomes, but this relationship is due to mixing three different classes 
of individuals, each having unrelated outcomes. The corresponding path diagram 

FIG. 1.1. Mixture modeling.
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is shown to the right, viewing y1 and y2 as indicators of the latent categorical 
variable c. This type of modeling is referred to as latent profile analysis or latent 
class analysis when the outcomes are categorical. The modeling has features 
similar to factor analysis in that it is assumed that a latent variable accounts for 
the association between the outcomes. This is also referred to as a conditional 
independence assumption, with the idea that if a sufficient number of classes is 
introduced, the independence is more and more likely to hold.

There is, however, a more profound aspect of the latent profile/class model 
that has interesting possibilities for model generalizations. This is that each 
latent class has different parameter values and possibly a different model. In 
latent profile/class analysis, the model is the same across classes—namely, an 
independence model. The parameter values differ across classes. For latent 
profile analysis, the mean for each outcome variable changes over classes, and 
in latent class analysis with binary outcomes, the probability of each outcome 
variable changes over classes. More complex class-specific models and changes 
in parameter values across classes are, however, possible. This realization leads 
to a huge set of new modeling opportunities indicated in Figs. 1.2 and 1.3.

FIG. 1.2. Mixture modeling.
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The top part of Fig. 1.2 shows a regression analysis with unobserved 
heterogeneity. The solid line gives the regression for the mixture, which is not 
correct for either class. The right part of the picture shows a generalization of 
the latent profile/class modeling, where y1–y4 are class indicators, but where the 
key interest is in capturing the variation across class in the regression of y5 on x. 
Here the arrow from c to y5 indicates that the intercept in y5 differs across classes, 
where-as the arrow from c to the arrow from x to y5 indicates that the slope in the 
regression differs across classes. In this way, the most important class variation 
in parameter values is for the regression model, and the latent profile part is 
merely a vehicle for making it easier to identify the classes.

The bottom part of Fig. 1.2 shows latent variable modeling where different 
classes have different growth models. An example is development of the frequency 
of heavy drinking, ages 18 to 30. The general population is likely to be quite 
heterogeneous with respect to this development. The left part of the figure shows 
two average growth curves as solid curves. A normative class shows a typical 
increase in this behavior in the early 20s, with a subsequent decline. However, 
less prevalent classes are present, such as the class of individuals whose heavy 

FIG. 1.3. General modeling framework.
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drinking does not decline in their late 20s. Within each class, there is further 
heterogeneity as indicated by the thinner curves. The path diagram on the right 
shows three continuous latent variables corresponding to the three growth factors 
of quadratic growth influencing the repeated measures on y. The arrows from the 
categorical latent variable c to these growth factors indicate that their means vary 
across the latent classes as seen in the graph on the left.

The modeling ideas in Figs. 1.1 and 1.2 may be summarized as in Fig. 1.3. 
Here, the modeling framework labeled D is the Mplus framework given in the 
appendix. A fuller discussion of this framework with references is given in 
Muthén (in press). Three different ellipses represent various special cases of the 
general framework.

On the right, an ellipse labeled A represents a framework where the latent 
variables η are continuous, including exploratory and confirmatory factor 
analysis, structural equation modeling (SEM), and latent growth curve modeling. 
This is the framework of conventional SEM as it has been practiced for the last 
couple of decades, using software such as AMOS, EQS, and LISREL.

On the left, an ellipse labeled B represents a framework where the latent 
variables c are categorical, including latent class analysis with or without 
covariates. Typically in the past, modeling using Framework B has been separate 
from modeling in Framework A.

The ellipse labeled C represents a framework where a combination of 
categorical and continuous latent variables is used. This includes latent profile 
analysis and mixture cluster analysis, both excluding continuous latent variables. 
Complier-average causal effect estimation in randomized trials is another 
application, discussed by Jo and Muthén (chap. 3, this volume). Growth mixture 
modeling is an example where both categorical and continuous latent variables 
are used.

TABLE 1.1 Summary of Techniques Using Latent Classes
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The square labeled D represents the general framework, adding direct 
indicators u for the categorical latent variables.

Because latent variable modeling with categorical latent variables is an 
emerging methodology, the summary of techniques using latent classes given in 
Table 1.1 may be useful. The techniques are defined by the characteristics given 
in the three columns. Here, LCA and LTA fall into Framework B, LPA falls into 
Framework C, LCGA falls into Framework B or C, GMM falls into Framework 
C, and GGMM falls into Framework D.

LATENT CLASS ANALYSIS

Latent class analysis (LCA) was introduced by Lazarsfeld and Henry (1968), 
Goodman (1974), Clogg (1995), and others. The setting is cross-sectional 
data with multiple items measuring a construct represented as a latent class 
variable. The aims are to identify items that indicate classes well, estimate  
class probabilities, relate class probabilities to covariates, and classify individuals 
into classes.

Consider the LCA model for the special case of binary outcomes u. Letting 
the categorical latent variable c have K classes (c=k; k=1, 2,…, K), the marginal 
probability for item uj=1 is

  (1)

while the joint probability of all us, assuming conditional independence, is

 (2)

There are two types of parameters—the conditional item probabilities for 
each class and the class probabilities. In the Mplus framework, LCA parameters 
are expressed in logit form, where

  (3)

 L=logit[P]=ln[P/(1−P)], (4)

for example, L=0 gives P=0.50, L=−1 gives P=0.27, L=1 gives P=0.73, L=−3 
gives P=0.05, and L=−10 gives P=0.00005.
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LCA Estimation and Testing
A by-product of LCA is estimated class probabilities for each individual, 
analogous to factor scores in factor analysis. These are estimates of

  (5)

Note that each individual is allowed fractional class membership and may have 
nonzero values for several classes.

In Mplus, parameters are estimated by maximum-likelihood estimation via the 
EM algorithm, where c is seen as missing data. The EM algorithm maximizes 
the expected complete-data log likelihood conditional on (ui1, ui2,…, uir) with 
respect to the parameters. The E step computes E(ci|ui1, ui2,…, uir) as the posterior 
probability for each class and E(ci uij|uij, ui2,…, uir) for each class and uj. The 
M step estimates P(uj|ck) and P(ck) parameters by regression and summation 
over individual posterior probabilities, respectively. Multiple starting values 
are strongly recommended because the likelihood may have several different  
local maxima.

As an overall test, the likelihood-ratio χ2 with H1 as the unrestricted multinomial 
may be used, although with many items the chi-square approximation is poor 
due to small cell sizes. Models with different number of classes can be compared 
using the Bayesian information criterion (Schwartz, 1978) 

 BIC=−2log L+r ln n, (6)

where r is the number of free parameters in the model. A low BIC value indicates 
a better fitting model.

LCA of Alcohol Dependence
Consider the example in Table 1.2, where in the National Longitudinal Survey 
of Youth (NLSY), nine diagnostic criteria for alcoholism were analyzed in a 
sample of 8,313 young adults (Muthén & Muthén, 1995). A three-class solution 
fit well as measured by the chi-square test against the unrestricted multinomial. In 
this solution, Class 1 is the most prevalent, with 75% showing low probabilities 
of endorsing the criteria. Class 2 has 21% of the individuals and has high 
probabilities for Larger and Major Role-Hazard, having to do with drinking 
larger amounts than planned and drinking while driving. Class 3 has 3% and has 
high probabilities for most criteria. Loosely speaking, one may think of Class 3 
as an alcohol dependence class, Class 2 as an alcohol abuse class, and Class 1 
as a problem-free class.

In this application, the classes appear to be ordered in the sense that the item 
probabilities increase from Class 1 to Class 2 to Class 3. However, this is not 
always the case in LCA. (For an example with unordered classes for antisocial 
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behavior, see, Muthén & Muthén, 1999.) With ordered classes, one may ask 
what advantage LCA has versus doing regular factor analysis of binary outcomes 
using continuous latent variables (see e.g., Muthén, 1989). The answer is that 
LCA helps find clusters of individuals who are similar, whereas this is difficult 
in factor analysis. For these data, factor analysis suggested two factors. The 
estimated factor scores from the two-factor solution are plotted in Fig. 1.4.

Figure 1.4 shows that there is no natural cut points on the factors by which 
to divide individuals into having different levels of alcohol problems. However, 
the figure also includes the three classes found by the LCA. The three classes 
appear to be arranged along the principal axis of the two factors, the two factors 
being correlated around 0.7 in this example. This analysis shows that LCA is 
a vehicle for finding clusters of individuals, thereby complementing a regular 
factor analysis. A related observation is that data that fit well by a K-class model 
often fit well by a K–1-dimensional factor analysis model. For a related proof of 
an exact relationship for latent profile analysis, see Bartholomew (1987).

In terms of the alcohol problem diagnosis, discussions often center around 
how many criteria need to be fulfilled to give a certain diagnosis. Here, the 
LCA solution can be used as guidance as shown in Table 1.3 (see also Nestadt 
et al., 1994, for a similar analysis of schizophrenia criteria). Each individual 
can be classified into the class with largest posterior probability, and the classes 
can then be cross-classified with the number of criteria met. Table 1.3 shows 

 TABLE 1.2 NLSY 1989: Latent Class Analysis of DSM–III–R Alcohol 
Dependence Criteria (n=8,313):
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 FIG. 1.4 Estimated factor scores from two-factor solution.

 TABLE 1.3 Latent Class Membership by Number of DSM–III–R Alcohol 
Dependence Criteria Met (n=8,313)
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that Class 1 membership supports requiring ≤1 criteria, Class 2 membership 
supports requiring 2–4 criteria, and Class 2 membership supports requiring ≥5  
criteria fulfilled.

LATENT CLASS ANALYSIS  
WITH COVARIATES

LCA with covariates (concomitant variables) has been considered by Bandeen-
Roche, Miglioretti, Zeger, and Rathouz (1997), Dayton and Macready (1988), 
Formann, (1992), and Heijden, Dressens, and Bockenholt (1996). This 
modeling considers a covariate x, where the probability that individual i falls in 
Class k of the latent class variable c is expressed through multinomial logistic 
regression as

  (7)

where αK=0, γK=0 so that =1, implying that the log odds of comparing 
Class k to the last Class K is

 log[P(ci=k|xi)/P(ci=K|xi)]=αk+γkxi. (8)

In addition,

  (9)

where the  s are the logit counterparts to the conditional item probabilities 
discussed earlier and ĸj is a direct effect parameter for the influence of x on uj. 
Muthén and Muthén (1999) gave an example of LCA with covariates applied to 
antisocial behavior classes related to age, gender, and ethnicity.

The model in Eqs. (7) and (9) relates to those considered in Clogg and Goodman 
(1985), studying invariance across groups of individuals similar to multiple-group 
analysis in SEM. A multiple-group analysis is not needed because the model in 
Eqs. (7) and (9) is sufficient for capturing across-group differences in parameters 
when the groups are represented by dummy x variables. For example, the direct 
effect of a group dummy variable x on a certain u implies that measurement 
invariance does not hold, but that the groups differ in their conditional item 
probabilities within class. The direct effect may vary across classes.

The LCA model with covariates also allows for direct dependencies among 
the us conditional on class (i.e., violations of the conditional independence 
assumption). A certain u variable may be changed into an x variable, which 
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allows for a direct effect of this u on another u, conditional on class. The other 
u variables are still conditionally independent given class.

CONFIRMATORY LATENT CLASS ANALYSIS  
WITH SEVERAL LATENT  

CLASS VARIABLES

Confirmatory latent class analysis (CLCA) with several latent class variables 
was introduced in Goodman (1974), considering a panel study with two waves. 
Figure 1.5 shows an example based on the antisocial behavior analysis of Muthén 
and Muthén (1999). Among the three dimensions found in a factor analysis of 

FIG. 1.5. Confirmatory latent class analysis with several latent class variables.



12 New Developments and Techniques in Structural Equation Modeling

17 binary antisocial behavior items, items measuring two factors interpreted 
as property offense and person offense are considered. The property offense 
factor was well measured by the items stole less than 50 and broken into a 
building, whereas the person offense factor was well measured by the items 
seriously threaten and intent to injure. The intent of the CLCA was to consider 
a dichotomized latent distribution for each of the two factors to capture non-
normality of each factor and to divide individuals into classes based on each 
factor dimension. It is also possible to relate the corresponding two dichotomous 
latent class variables c1 and c2 to each other. 

The way the CLCA model is drawn in Fig. 1.5 implies that the item 
probabilities for the threat and injure items should not vary across the c1 classes, 
and the item probabilities for the It 50 and bldg items should not vary across the 
c2 classes. In the Mplus framework, the analysis indicated by Fig. 1.5 is carried 
out by creating a latent class variable that combines the dichotomous c1 and c2 
variables into one latent class variable with four classes. Using the numbering 
of classes shown at the bottom of Fig. 1.5, Fig. 1.6 shows the implied equality 
restrictions on the item probabilities, where each number corresponds to one 
parameter and repeated numbers indicate equalities.

LATENT CLASS GROWTH ANALYSIS

In longitudinal data, the multiple indicators of latent classes may correspond 
to repeated univariate outcomes at different time points. This is the situation 
considered in LCGA (see Nagin, 1999). Here the classes define different trends 

FIG. 1.6. Restriction on the conditional probabilites for the items.
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over time in the item probabilities. For example, using a linear trend with an 
intercept and a slope,

  (11) 

the logits for the u items may be expressed as

  (11)

where ηui contains the intercept and slope growth factors expressed as

  (12) 

Here the  parameters capture effects on the us of time-varying covariates, 
varying across time but not across individuals, and the  parameters capture 
effects of time-invariant covariates on the growth factors. The growth factors have 
fixed values conditional on x (for the random counterpart, see next section).

As an example, data from Jackson, Sher, and Wood (1999) were reanalyzed. 
This analysis considers the co-occurrence of alcohol and tobacco use disorders— 
that is, the u variables correspond to two processes. In a college sample of 450 
students, Jackson et al. found five classes as shown in Fig. 1.7. The classes are 
defined by five repeated measures of alcohol disorder and, concurrently, five 
repeated measures of tobacco disorder. For example, Class 4 shows tobacco 
use disorder (see bottom panel), but no alcohol use disorder (see top panel). 
However, the Jackson et al. analysis does not take into account the time ordering 
for the measures, but use a regular LCA.

As an alternative analysis, LCGA was carried out for the two processes as 
shown in the path diagram of Fig. 1.8. For each process, two growth factors 
are used corresponding to linear growth, I and S. Each of the growth factors is 
influenced by a latent class variable specific to the process, so that the means of 
the growth factors change over classes. Three classes are used for each process, 
and the two sets of three-class variables c1 and c2 are related to each other.

The trends for each process are shown in Fig. 1.9. For each process, there 
is a chronic class with high probabilities throughout and a low class with low 
probabilities throughout. For the alcohol use disorders, there is also a declining 
class, whereas for the tobacco use disorders, there is an increasing class. These 
trends are approximations of those seen in Fig. 1.8, although the class probability 
curves in Fig. 1.8 for each process have been combined into fewer trend classes 
in Fig. 1.9. Figure 1.8 also shows the estimates of the joint probability table for 



14 New Developments and Techniques in Structural Equation Modeling

c1 and c2. The four classes with the smallest probabilities were not included in 
the Jackson et al. analysis.

GROWTH MIXTURE MODELING

The rest of this chapter considers growth mixture modeling of repeated measures 
data. In analyzing such data, individual differences in development are typically 
captured by random effects using mixed linear modeling or multilevel modeling. 
These random effects represent continuous variation across individuals in 
growth features such as initial status and rate of change. Often, however, more 
fundamental individual differences in development are present and need to be 

FIG. 1.7. Latent class analysis solution.
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allowed for to make the modeling realistic. Such fundamental differences in 
development can be described by latent trajectory classes, where each class has a 
different random effect growth model. Random effects and trajectory classes are 
latent variables. Random effects are continuous latent variables, and trajectory 
classes are categorical latent variables. Growth mixture modeling (Muthén, in 
press; Muthén & Shedden, 1999; Muthén, Brown et al., 2000) uses both types 
of latent variables to represent individual differences in development, resulting 
in a very flexible repeated measures analysis.

FIG. 1.8. Co-occurrence of alcohol use and tobacco disorder.
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Two examples clarify the ideas. Children in early school grades may be on a 
developmental path of reading disability, others may show mild forms of reading 
problems, whereas still others progress normally. Children in school may exhibit 
serious aggressive/disruptive behavior in the classroom, others may show more 
common forms of such behavior, whereas others show no such problems. The 
average trajectories of the three classes in these examples are different, and 
there is individual variation around the average trajectories. It is important to 
distinguish among individuals in the different classes because membership in 
different classes may have different antecedents and consequences. Growth 
mixture modeling provides estimates of the class probabilities, the average 
trajectory for each class, the trajectory variation in each class, and estimates 
of each individual’s most likely class membership. The probabilities of class 
membership can be related to background variables, and class membership can 
be used to predict other outcomes.

FIG. 1.9. Latent class growth analysis solution.
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Conventional Random Effects Modeling in a  
Latent Variable Framework
Consider a quadratic growth model for continuous outcomes yit (i=1, 2,…, n; 
t=1, 2,…, Τ) that can be described by three random effects η0i, η1i and η2i, and 
time-specific residuals ,

  (13)

In the latent variable framework, the random effects are referred to as growth 
factors (i.e., continuous latent variables). Here it is assumed that individuals are 
measured at the same time points so that the time scores xit=xt (deviations from 
this can be handled via missing data techniques). Assume that for substantive 
reasons it is of interest to define η0 as an initial status growth factor, setting 
the time score x1=0. Also for identification purposes, x2=1. With equidistant 
times of observation, the model would typically have xt=0, 1, 2,…, T–1. The 
time-specific residuals have zero means and covariance matrix Θ, typically 
with different variances and often with some off-diagonal elements to represent 
residual correlation across time.

The variation in the three-growth factors is expressed as,

 η0i=α0+γ0wi+ζ0i, (14)

 η1i=α1+γ1wi+ζ1i, (15)

 η2i=α2+γ2wi+ζ2i, (16)

where the αs are mean parameters and the ζs are residuals with zero means and 
covariance matrix Ψ and w is a time-variant covariate. Growth factors may be 
fixed or random. For example, with a fixed quadratic factor,

  

(17)

so that, conditional on w, there is no variation in η2.

Conventional Growth Modeling of Reading Data. The reading data set is from 
the Early Assessment of Reading Skills (EARS) study a multiple-cohort study 
design repeatedly measuring children from kindergarten through third grade 
in a suburb of Houston. One key aim of the EARS study was to investigate 
if early identification of children at risk for poor academic outcomes could be 
made using longitudinal data. The outcome variable considered here is word-
recognition skills repeatedly measured four times in Grade 1 and four times in 
Grade 2. In the current analyses, a subset of 411 children is considered. One cohort 
consisting of about half the children has data on all eight outcomes, whereas 
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a second cohort has data on only the first four outcomes. The measurement 
occasions were October, December, February, and May of Grades 1 and 2. The 
children were also measured during kindergarten, and the current analyses use 
a measure of phonemic awareness at the end of kindergarten as a predictor of 
word-recognition development.

Initial exploration of the reading data suggests that a linear growth model is 
suitable for the eight time points. The growth model in Eqs. (13) to (16) without 
the η2 term and without covariates is therefore used. The model allows the 
variances of the time-specific residuals  to vary across time. The estimated model 
has a rather poor model fit [n=411, number of parameters=13, χ2(31) =470.767 
(p=0.0000), log L=−1145.785, BIG=2369.812, CFI=0.897,RMSEA=0.186 (CI: 
.171, .201)]. Modification indexes point to a covariance between the residuals 
for time point 3 and 4 as by far the most important source of misfit, but freeing 
this parameter does not improve the model fit in important ways. The estimated 
mean line for this model is shown in Fig. 1.10 as a solid dark line together with 
observed data for a random sample of children. The individual observations 
suggest a considerable amount of heterogeneity in the word-recognition 
development, possibly including a separate low-achieving group of children 
marked by darker lines.

Conventional Growth Modeling of Aggression Data. The aggression data set 
is from a school-based preventive intervention study carried out by the Johns 
Hopkins Prevention Center in Baltimore public schools, Grades 1 to 7. Here only 
the control group is analyzed. The outcome variable of interest is teacher ratings 
of each child’s aggressive behavior in the classroom from Grade 1 to Grade 7. 
Teacher ratings of a child’s aggressive behavior were made from fall and spring 
for the first two grades and every spring in Grades 3 to 7. The ratings were made 
using the TOCA-R instrument, using an average of 10 items, each rated on a 
6-point scale from almost never to almost always. Information was also collected 
on other concurrent and distal outcomes, including school removal and juvenile 
court records. The current analyses focus on 80 boys in the control group.

The quadratic growth model of Eqs. (13) to (16) without covariates is 
applied to the nine time points for Grades 1 to 7 of the aggression data. The 
estimated model shows a slightly negative variance for the quadratic growth 
factor. Restricting the covariance matrix as in Eq. (17) gave a rather poor model 
fit [n=80, number of parameters=16, χ2(38)=73.54 (p=0.0005), log L=−627.28, 
BIC=1324.67, CFI=0.887, RMSEA=0.108 (CI: .070, .145)]. Modification 
indices point to correlations between time-specific residuals, but this does not 
improve the fit in important ways. A large modification index value is observed 
for the covariance between the intercept and quadratic growth factors, but this 
covariance cannot be included given the zero variance of the quadratic growth 
factor. It is not clear how to improve the fit of the model, although a suspicion 
is that the data contain more fundamental heterogeneity than can be captured by 
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the conventional growth model used here. The estimated mean growth curve for 
the model with 16 parameters is shown in Fig. 1.11. 

A Simple Growth Mixture Model
Model Specification. The quadratic growth model of Eqs. (13) to (16) can be 
extended to a growth mixture model for K latent trajectory classes, where in 
Class k (k=1, 2,…,K), 

 η0i=α0k+γ0k wi+ζ0i, (18)

 η1i=α1k+γ1k wi+ζ1i, (19)

 η2i=α2k+γ2k wi+ζ2i, (20)

FIG. 1.10. Word-recognition development.
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Here αk parameters vary across classes to capture different types of trajectories. If 
there is no covariate w, the αs are the means of the growth factors. For example, 
a class with a trajectory that is low and flat has a low α0 value, a zero α1 value, 
and a zero α2 value, whereas a class with a trajectory that accelerates from an 
early low level and then decelerates has a low low α0 value, a positive α1 value, 
and a negative α2 value. The γk parameters allow variation across class in how 
a covariate influences the growth factors. Class-specific covariance matrices Ψk 
are allowed for ζ. Class-specific covariance matrices Θk for ε in Eq. (13) are also 
allowed for. The growth curve shape can also vary across classes through class-
specific xit values in Eq. (13).

Model Fit. Tests of model fit require special attention in growth mixture 
modeling. It should be noted that a test against a completely unrestricted mean 
vector and covariance matrix, as in conventional structural equation modeling, 
is not used with mixture modeling. This is because the mixture modeling does 
not rely on normality assumptions where such summaries are natural. The set 
of sufficient statistics is nothing less than the raw data because the (mixture) 
distribution for the observed variables is not normal, but can be distinctly non-
normal as a function of the mixture of normals.

However, the model can be evaluated based on the fit of first- and second-
order moments in the following sense. For an estimated growth mixture model, 
estimated posterior probabilities of each individual’s membership in each class 

FIG. 1.11. Estimated mean growth curve of aggression.
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are obtained as shown in the appendix. These probabilities can be used to classify 
an individual into the class that he or she most likely belongs to. For each class, 
the raw data can be multiplied by the individual probabilities of that class to 
compute weighted sample mean vectors and covariance matrices for each class 
that can be compared to the corresponding model-estimated quantities.

The quality of a growth mixture model can also be evaluated based on the 
precision of the classification. For individuals classified into a given class, the 
average posterior probability of belonging to this class should be high, and the 
average posterior probability of belonging to each of the other classes should 
be low.

A key issue in growth mixture modeling is to determine the number of 
classes. For comparison of fit of models that have the same number of classes 
and are nested, the usual likelihood-ratio chi-square difference test of twice the 
difference in log likelihood values can be used. Comparison of models with 
different numbers of classes, however, cannot be done by likelihood-ratio chi-
square. Instead this is accomplished by a Bayesian information criterion (BIC; 
Schwartz, 1978) as mentioned in connection with LCA.

Growth Mixture Modeling of Reading Data
The next analysis step for the reading data is to try to account for heterogeneity 
in development using growth mixture modeling. The first task is to decide on the 
number of latent trajectory classes. A useful procedure for exploring the number 
of classes is to first fit a series of models that have zero growth factor covariance 
matrices Ψ (i.e., assuming that individuals are homogeneous with respect to their 
growth). Variation is still allowed for across individuals through time-specific 
variances in Θ. This type of modeling has been proposed by Nagin (1999) and was 
referred to as latent class growth mixture analysis (LCGA) earlier, given that the 
within-class homogeneity specification is analogous to LCA. Here LCGA is used 
to derive starting values for a growth mixture model. In particular, the estimated 
LCGA growth factor means are used as starting values, letting ψ be free.

The analysis of the number of classes relies to a large degree on the BIC 
values. Plotting the BIC values against the number of classes, the lowest point 
in the BIC curve is sought. For this part of the analysis, it is important to make a 
special investigation of the degree of class-invariance of the covariance matrices 
Ψk and Θk. Different degrees of invariance give different sets of BIC curves with 
different minima. In the reading data, a class with problematic word-recognition 
development is found. This class can be seen as a class at risk for reading failure 
in that it has almost zero growth rate. This class needs a class-specific growth 
factor covariance matrix ψ that shows larger intercept and slope variance than 
the other classes. Only in the two-class model is this not needed because the 
lowest class is less clearly a failing class.

Figure 1.12 shows a plot of the BIC values for the reading data, using 1 to 
6 classes. BIC values are shown for both LCGA and growth mixture modeling. 
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The one-class BIC value is for the conventional growth model. It is seen that BIC 
is improved by using more than one class, and that five classes seems optimal 
in the growth mixture modeling. The LCGA BIC values are considerably worse 
for any given number of classes, showing that it is important to allow for within-
class growth heterogeneity for this application.

For the five-class growth mixture model, the hypothesis of class-invariant 
growth factor covariance matrix Ψ is strongly rejected in favor of allowing Class 
1 to have a different growth factor covariance matrix [χ2(3)=80.13, p<.0000]. 
The estimated mean curves for the five-class growth mixture model are shown in 
Fig. 1.13. Classes 1 to 5 have class probabilities 0.14, 0.34, 0.30, 0.13, and 0.10. 
This means that the problematic Class 1 contains 56 children.

Figure 1.14 shows the quality of the classification using average posterior 
probabilities from the five-class model.

The posterior-probability-weighted sample means and the estimated means 
for the outcomes are shown in Fig. 1.15.

Muthén, Francis, Khoo, and Boscardin (in press) investigated the question of 
how early it was possible to classify children into the problematic Class 1. As was 
done in their investigation, it is possible to take the estimated model parameters as 
a given and study the posterior probabilities for a certain individual, varying the 
number of repeated measures available. The Muthén et al. investigation indicated 
that a good classification was already possible at the end of first grade.

FIG. 1.12. BIG values for reading data.
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Growth Mixture Modeling of Aggression Data
The BIC results for the aggression data using Classes 1 to 5 are shown in the top 
curve of Fig. 1.16. The BIC values indicate a better fit when allowing more than 
one class. It is seen that three classes is favored by BIC.

Inspection of the three-class growth mixture model shows that the likelihood 
could be significantly improved by allowing class-specific variances for the 
class with the lowest trajectory. This class shows considerably less fluctuation 
over time in aggression than the other two classes. In particular, the intercept 

FIG. 1.13. Estimated mean curves for the five-class growth mixture model for 
reading data.

FIG. 1.14. Average posterior probabilities from the five-class model.
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variance and the time-specific residual variances are lower for this class. The 
markedly lower BIC values in the bottom curve of Fig. 1.16 show the superior 
fit when allowing noninvariant variances for these models. With noninvariant 
variances, the lowest values are at Classes 3 and 5. The five-class solution has 
class probabilities 0.08, 0.45, 0.06, 0.09, 0.32, while the three-class solution has 
class probabilities 0.09, 0.52, and 0.39. The first and last classes are very similar 
in the two solutions.

For reasons of parsimony, and to have higher class counts, the three-class 
model is chosen here. Fig. 1.17 shows the estimated mean growth curves for the 
three-class model for Grades 1 to 7.

FIG. 1.15. Posterior-probability-weighted sample means and estimated means 
for reading data.
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FIG. 1.16. BIG plot for STD/GBG group.

FIG. 1.17. Three-class exploration for STD/GBG.
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Class 1 has the lowest probability, showing a high aggression level in early 
grades that decreases over time. Class 2 has the highest probability and shows 
a slightly increasing aggression trajectory. Class 3 consists of children showing 
very low, flat, and stable aggression trajectories. Figure 1.18 shows the quality 
of the classification using average posterior probabilities from the three-class 
model. The posterior-probability-weighted sample means and the estimated 
means for the outcomes are shown in Fig. 1.19.

FIG. 1.18. Average posterior probabilites from the three-class model.

FIG. 1.19. Posterior-probability-weighted sample means and estimated means 
for aggression.
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Growth Mixture Modeling With  
Antecedents and Consequences

Growth mixture modeling allows for class variation in how covariates influence 
the growth factors and also in how the growth classes influence variables other 
than the repeated measures. The former aspect is illustrated by the reading data 
and the latter aspect by the aggression data.

A Growth Mixture Model for Reading With a Covariate Predicting Class 
Membership. As discussed earlier, the growth mixture modeling produces 
posterior probabilities of class membership for each individual, and these can 
be used to classify individuals into their most likely class. Often the researcher 
wants to explore the profile of individuals in the different classes in terms of 
means of a set of background variables. This can be done using the individuals’ 
classifications, but a more powerful analysis is to bring the background variables 
directly into the growth mixture analysis.

The five-class growth mixture model for word-recognition development is 
now expanded to include a predictor of class membership. A phonemic awareness 
measure taken at the end of kindergarten is used as a predictor. This variable is a 
proxy for some of the important prerequisites that a child needs to fully benefit 
from the instruction in Grade 1.

The modeling of the influence of phonemic awareness on class membership 
can be expressed as in multinomial logistic regression,

  (21)

where cik=1 if Individual i belongs to Class k, A stands for phonemic awareness, 
 Here  (k=1, 2,…, K−1) express the effect of phonemic 

awareness on the log odds of being in Class k versus Class K. For a two-class 
model, this is a regular logistic regression except that the dependent variable  
is latent.

The estimates of the extended five-class growth mixture model showed 
a similar picture for the trajectory class shapes and the class probabilities, 
indicating a desirable stability in the five-class model. The estimates of the 
multinomial logistic regression show that the probability of being in a high class 
increases as a function of increasing phonemic awareness value. A plot of the 
class probabilities as a function of phonemic awareness is given in Fig. 1.20.

A Growth Mixture Model for Aggression With a Distal Outcome Predicted 
by Class Membership. Many research questions related to growth mixtures 
concern the consequences of being in a certain trajectory class. For example, in 
the aggression data, it may be asked whether members of the high class have 
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a higher risk for obtaining a juvenile court record. The juvenile court record 
variable is scored as u=1 versus u=0 for having a record before age 18 or not.

With a binary distal outcome, the class influence is described as the  
logit regression

 (22)

Here  is the log odds for ui=1 versus ui=0 for individual i in Class k. An odds 
estimate and a corresponding confidence interval are obtained by exponentiating 
the αk estimate and confidence limits.

The estimated growth mixture model for aggression and juvenile court record 
shows the same three classes as found earlier (see Fig. 1.8). The estimated odds 
for having a juvenile court record are 4.81 for Class 1, 0.61 for Class 2, and 0.49 
for Class 3. A likelihood-ratio test of no differential effect of class on the juvenile 
court record probability did not, however, give a strong rejection [χ2(2)=5.22, 
.05<p<.10] perhaps due to low power associated with the low sample size.

FIG. 1.20. Class probabilities as a function of phonemic awareness.
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COMPUTATIONAL ISSUES

Modeling with categorical latent variables presents the same potential 
computational problems as finite mixture analysis. Finite mixture analysis 
sometimes presents convergence problems and results in multiple maxima (see 
e.g., Titterington, Smith, & Makov, 1985). The degree of such complications 
is related to the information about the latent classes available in the data 
and the particular model applied. For example, growth mixture modeling of 
repeated measures data with clear trajectory classes may be less prone to such 
complications than a latent profile model for cross-sectional data. Models that 
allow for a larger degree of across-class variation in parameters are more likely 
to show such complications. Particularly sensitive are models with a large degree 
of across-class variation in variance-covariance parameters. For example, a 
latent profile model with across-variation in within-class variance is typically 
more difficult to fit than a latent profile model that only allows the means to 
vary across classes. In some cases, class-specific variances can lead to a small 
class with a singular covariance matrix giving an infinite likelihood value. The 
possibility of multiple maxima is well known in LCA, where random starting 
points are often used. For all models, the analyst is urged to search for multiple 
maxima to find the solution with the highest log likelihood value. In some cases, 
multiple maxima may be an indication of the need for more classes, as was 
observed in Muthén and Shedden (1999).

The identification status of a finite mixture model is difficult to assess, and 
general rules do not seem to be available in the literature. There is also a possible 
difference between theoretical and empirical nonidentification. Goodman (1974) 
observed theoretical nonidentification for a latent class model with four binary 
outcomes and three classes. Although this model has one parameter less than 
the unrestricted multinomial model, there is one indeterminacy among the 
parameters of the model that holds for any parameter values. Other models 
may be empirically nonidentified (i.e., in a region of the parameter space, 
the information matrix used to compute the estimated standard errors may be 
singular). In some cases, saddle points are found with a Hessian that has both 
positive and negative diagonal elements. These problems can possibly be avoided 
by using other starting values. It is recommended that mixture models be built 
up from relatively simple models, adding parameters stepwise and checking to 
which extent the log likelihood value improves.

CONCLUSIONS

This chapter has presented a series of latent variable models that introduce 
categorical latent variables in the form of clusters of individuals and in the form 
of latent trajectory classes. The models are special cases of a general latent 
variable modeling framework offering a unified view of seemingly disparate 
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models. Many other models not discussed here fit into this framework, including 
non-compliance modeling in randomized trials (see Jo & Muthén, chap. 3, this 
volume), mixture cluster analysis, mixture factor analysis, and mixture structural 
equation modeling. The general modeling framework offers a large set of new 
analysis opportunities going far beyond the conventional SEM of the last 
few decades. This chapter is offered as a stimulus for further methodological 
developments and applications using this general framework.

APPENDIX: A GENERAL LATENT  
VARIABLE FORMULATION

This section gives the statistical specification of the general latent variable mixture 
model used in Mplus, drawing on Muthén, Shedden, and Spisic (1999). Related 
technical descriptions are presented in Muthén and Muthén (1998; Appendix 
8) and Muthén and Shedden (1999). Applications are given in Muthén (in 
press), Muthén and Muthén (1999), and Muthén, Francis, Khoo, and Boscardin  
(in press).

GENERAL MODEL FORMULATION

The observed variables are x, y, and u, where x denotes a q×1 vector of covariates, 
y denotes a p×1 vector of continuous outcome variables, and u denotes an r×1 
vector of binary and ordered polytomous categorical outcome variables. The 
latent variables are η denoting an m×1 vector of continuous variables and c 
denoting a latent categorical variable with K classes, ci=(ci1, ci2,…ciK)’ where 
cik=1 if Individual i belongs to Class k and zero otherwise.

The model relates c to x by multinomial logistic regression using the K−1-
dimensional parameter vector of logit intercepts αc and the (K−1)×q parameter 
matrix of logit slopes Γc, where for k=1, 2,…, K

  (23)

where the last class is a reference class with coefficients standardized to zero, 

The latent classes of c influence both y and u. Consider first the y part of the 
model. Conditional on Class k,

  (24)

 ηi=αk+Bkηi+Γkxi+ζi, (25)
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where the residual vector εi is N(0, Θk) and the residual vector ζi is N(0, Ψk), both 
assumed to be uncorrelated with other variables. For u, conditional independence 
is assumed given ci and xi,

 P(ui1, ui2,…, uir|cii xi) = P(ui1|ci, xi)P(ui2|ci, xi) P(uir|ci, xi). (26)

The categorical variable uij(j=1, 2,…, r) with Sj-ordered categories follows an 
ordered polytomous logistic regression, where for Categories s=0, 1, 2,…, Sj−1 
and 

  (27)

  (28)

  (29)

where for ,  and conditional on  
Class k,

  (30)

 ηui=αuk+Γukxi, (31)

where Λuk is an r×f logit parameter matrix varying across the K classes, Kuk is 
an r×q logit parameter matrix varying across the K classes, αuk is an f×1 vector 
logit parameter vector varying across the K classes, and Γuk is an f×q logit 
parameter matrix varying across the K classes. The thresholds may be stacked in 
the  vectors  varying across the K classes.

Mplus uses maximum-likelihood with the EM algorithm, viewing ci as 
missing data. In the E step, the posterior probability of Individual i belonging to 
Class k is evaluated as

 pik=P(cik=1|yi, ui, xi)=P(cik=1|xi)[yi|ci, xi] [ui|cik=1]/[yi, ui|xi]. (32)

For certain individuals, prior or auxiliary information may restrict the admissible 
class membership to a subset of all the classes. This includes having individuals 
with known class membership. In this case, the posterior probabilities in Eq. (32) 
are renormed for each individual to add to one over the admissible set of classes. 
In Mplus, this is referred to as having training data.

The M step consists of three separate optimizations: for the y, x part using 
quasi-Newton; for the u, c, x part using Newton-Raphson and quasi-Newton; and 
for the c, x part using Newton-Raphson and quasi-Newton. Each M step need not 
be reaching an optimum, but often a few steps are sufficient.
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In Mplus, missing data assuming MAR (Little & Rubin, 1987) is allowed for 
with respect to y and u.

ACKNOWLEDGEMENT

The research was supported by grant K02 A A 00230–01 from NIAAA and by 
grant 40859 from NIMH. The work has benefited from discussions in Hendricks 
Brown’s Prevention Science Methodology group and Muthén’s Research 
Apprenticeship Course. The e-mail address is bmuthen@ucla.edu.

REFERENCES

Bandeen-Roche, K., Miglioretti, D.L., Zeger, S.L., & Rathouz, P.J. (1997). Latent variable 
regression for multiple discrete outcomes. Journal of the American Statistical Association, 
92, 1375–1386.

Bartholomew, D.J. (1987). Latent variable models and factor analysis. New York: Oxford 
University Press.

Clogg, C.C. (1995). Latent class models. In G.Arminger, C.C.Clogg, & M.E.Sobel (Eds.), 
Handbook of statistical modeling for the social and behavioral sciences (pp. 311–359). 
New York: Plenum.

Clogg, C.C., & Goodman, L.A. (1985). Simultaneous latent structural analysis in several 
groups. In N.B.Tuma, (Ed.), Sociological methodology, 1985 (pp. 81–110). San 
Francisco: Jossey-Bass.

Dayton, C.M., & Macready, G.B. (1988). Concomitant variable latent class models. Journal 
of the American Statistical Association, 83, 173–178.

Formann, A.K. (1992). Linear logistic latent class analysis for polytomous data. Journal of 
the American Statistical Association, 87, 476–486.

Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and 
unidentifiable models. Biometrika, 61, 215–231.

Heijden, P.G.M., Dressens, J., & Bockenholt, U. (1996). Estimating the concomitant-
variable latentclass model with the EM algorithm. Journal of Educational and Behavioral 
Statistics, 21, 215–229.

Jackson, K.M., Sher, K.J., & Wood, P.K. (1999). Trajectories of conjoint substance use 
disorders: A developmental, typological approach to comorbidity. Forthcoming in 
Alcoholism: Clinical and Experimental Research.

Lazarsfeld, P.F., & Henry. N.W. (1968). Latent structure analysis. New York:  
Houghton Mifflin.

Little, R.J., & Rubin, D.B. (1987). Statistical analysis with missing data. New  
York: Wiley.

Muthén, B. (1989). Dichotomous factor analysis of symptom data. In W.Eaton & 
G.Bohrnstedt (Eds.), Latent variable models for dichotomous outcomes: Analysis of 
data from the epidemiological catchment area program (pp. 19–65), A special issue of 
Sociological Methods & Research, 18, 19–65.

Muthén, B., & Muthén L. (1995). Tailoring Psychometric Techniques for Epidemiological 
and Clinical Applications. Technical report.



Latent Variable Mixture Modeling 33

Muthén, B. (in press). Second-generation structural equation modeling with a combination 
of categorical and continuous latent variables: New opportunities for latent class/latent 
growth modeling. In L.M.Collins, & A.Sayer (Eds.), New methods for the analysis of 
change. Washington, DC: American Psychological Assoction.

Muthén, B., Brown, C.H., Masyn, K., Jo, B., Khoo, S., Yang, C., Wang, C.P., & Kellam, 
S. (2000). General growth mixture modeling in randomized preventive interventions. 
Unpublished manuscript, University of California, Los Angeles.

Muthén, B., Khoo, S.T., Francis, D., & Kim Boscardin, C. (in press). Analysis of reading 
skills development from kindergarten through first grade: An application of growth 
mixture modeling to sequential processes. Multilevel modeling: Methodological 
advances, issues, and applications. In S.R.Reise & N.Duan (Eds.), NJ: Lawrence 
Erlbaum Associates.

Muthén, B. & Muthén, L. (1998). Mplus user’s guide. Los Angeles, CA: Muthén  
& Muthén.

Muthn, B., & Muthén, L. (1999). Integrating person-centered and variable-centered 
analysis: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical 
and Experimental Research, 24, 882–891.

Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using 
the EM algorithm. Biometrics, 55, 463–469.

Muthén B., Shedden, K., & Spisic, D. (1999). General latent variable mixture modeling. 
Technical report.

Nagin, D.S. (1999). Analyzing developmental trajectories: A semi-parametric, group-based 
approach. Psychological Methods, 4, 139–157.

Nestadt, G., Hanfelt, J., Liang, K.Y., Lamacz, M., Wolyniec, P., & Pulver., A.E. (1994). An 
evaluation of the structure of schizophrenia spectrum personality disorders. Journal of 
Personality Disorders, 8, 288–298.

Schwartz G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 
461−464.

Titterington, D.M., Smith, A.F.M., & Makov, U.E. (1985). Statistical analysis of finite 
mixture distributions. Chichester, England: Wiley.





35

2 
A Unified Approach to  
Multigroup Structural  

Equation Modeling With  
Nonstandard Samples

Ke-Hai Yuan 
University of North Texas

Peter M.Bentler 
University of California, Los Angeles

It is well known that structural equation modeling (SEM) has become one of 
the most popular methods in multivariate analysis, especially in the social and 
behavioral sciences. In a SEM model with latent variables, the relationships 
among observed (manifest) variables is formulated through unobserved (latent) 
constructs. Because measurement errors are explicitly accounted for, coefficients 
in key parts of a model are uninfluenced by errors of measurement, implying 
greater theoretical meaningfulness and cross-population stability to the parameters 
than might be achieved with methods such as regression or analysis of variance, 
which do not correct for unreliability. This stability is a key goal of theory testing 
with SEM, where a substantive theory or hypothesized causal relationship among 
the latent constructs, facilitated by path diagrams, can be tested through SEM. 
With the help of popular software such as LISREL (Jöreskog & Sörbom, 1993) 
and EQS (Bentler, 2001), applications as well as new technical developments in 
SEM have increased dramatically in the past decade (e.g., Austin & Calderόn, 
1996; Austin & Wolfle, 1991; Bollen, 1989; Tremblay & Gardner, 1996). There 
exists a vast amount of recent introductory (Byrne, 1994; Dunn, Everitt, & 
Pickles, 1993; Kline, 1998; Mueller, 1996; Schumacker & Lomax, 1996) and 
overview material (Bentler & Dudgeon, 1996; Browne & Arminger, 1995; 
Hoyle, 1995; Marcoulides & Schumacker, 1996).
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A commonly encountered situation is the existence of several samples. 
These may arise from one or several populations. If the samples are all from 
one population, their data can be combined for improved inference. However, 
if the samples are from several populations, it is important to understand how 
the populations might differ. For example, it might be interesting to know 
whether the factor structure of an established instrument, developed for a 
specific population, is also valid for other populations. In the context of SEM, 
it is natural to ask whether particular parameters, such as factor loadings, 
regression coefficients, or variances of factors, may be the same or different 
in various groups such as different ethnic, gender, or age groups. Motivated 
by such practical problems, Jöreskog (1971) developed a maximum likelihood 
approach to SEM with multiple groups. Sörbom (1974) studied differences in 
factor means across groups. Because practical data may not be normal, Bentler, 
Lee, and Weng (1987) and Muthén (1989) proposed a generalized least squares 
approach to parameter estimation and model test for multigroup structural 
models. Recently, Satorra (2000) and Satorra and Bentler (1999) proposed 
scaled tests in a multisample analysis of moment structures. The prior literature 
offers important guidance for multigroup modeling in practice. For example, 
standard software enables users to easily specify simultaneous estimation and 
evaluation of multigroup models.

With real data obtained under typical testing situations, nonstandard samples 
that contain missing data, nonnormal data and data with outliers are almost 
inevitable. As noted earlier, the literature on multigroup models of sample means 
and covariance matrices is based on either normal theory maximum likelihood 
or through generalized least squares. With nonstandard samples, however, there 
exist various limitations to the current methodologies for using sample moments 
for multigroup analysis. For example, the typical sample mean vector and sample 
covariance matrix are not defined when a sample contains missing data. For a 
complete sample with outliers, the sample mean and covariance matrix are biased 
estimates of their population counterparts. Even for a sample from a distribution 
with heavy tails, the sample moments may not converge at all or at least may not 
be efficient estimates of the corresponding population moments. These various 
drawbacks of the sample moments pass on to an analytical procedure that models 
these moments.

Certain problems with nonstandard samples for single group analysis have 
been studied and discussed extensively by various authors. Allison (1987), Lee 
(1986), Muthén, Kaplan, and Hollis (1987), Arbuckle (1996), and Jamshidian 
and Bentler (1999), for example, discussed approaches to dealing with normal 
missing data. Arminger and Sobel (1990) and Yuan and Bentler (2000a) developed 
approaches for dealing with non-normal missing data. Techniques for identifying 
outliers or influential cases can be found in Tanaka, Watadani, and Moon (1991), 
Cadigan (1995), Lee and Wang (1996), Bollen and Arminger (1991), and 
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Berkane and Bentler (1988). Approaches to robust inference for SEM can be 
found in Yuan and Bentler (1998a, 1998b, 2000b). Compared with classical 
methods, which are based on sample means and covariance matrices, these new 
developments offer various advantages in model estimation and evaluation. It is 
the aim of this chapter to develop parallel methods for multigroup analysis with 
nonstandard samples.

There are various ways to develop multigroup methods for nonstandard 
samples. Our purpose is to give a unified treatment for multiple groups, aiming 
to adopt the various developments in the statistical literature in estimating 
population means and covariance matrices. Suppose we have m groups and 
denote the mean vectors and covariance matrices in the population as μj and Σj, 
j=1,…, m. Various methods have been developed for estimating μj and Σj with 
a nonstandard sample from the jth population. For example, the EM algorithm 
based on a normality assumption can be used to estimate μj and Σj for a normal 
sample with missing variables. There also exists an EM algorithm based on a 
multivariate t distribution that applies when a missing data sample possesses 
heavier tails as compared with the normal distribution. When a sample contains 
outliers or influential cases, there exist various robust methods for estimating 
μj and Σj. Our development is based on these new advances in estimating the 
population mean vectors μj and covariance matrices Σj.

Let  and Snj be working estimates for μj and Σj based on sample size 
nj, for j=1,…, m. Although it is anticipated that  and Snj might be better 
estimates than the sample mean vector  and covariance matrix Sj, we do 
not exclude the possibility  and Snj=Sj in the case of normal sampling 
with no missing data. Actually, we may just regard  as a data vector and 
Snj as a symmetric data matrix, which approach μj and Σj, respectively, as our 
information about the jth group increases. It is typical that the μj in all the groups 
are of the same dimension, but here we do not need to assume this. Instead, we 
denote the dimension of μj as pj. Let vech(·) be an operator that transforms a 
symmetric matrix into a vector by stacking the columns of the matrix leaving 
out the elements above the diagonal, snj=vech(Snj) and σj=vech(Σj). We use 

 and  We need to assume that each of our data vectors 
has an appropriate large sample property

  (1)

where Γj is a  matrix with  When , the 
sample moments based on a sample from a normal distribution, then
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where  is the Moore-Penrose generalized inverse of the duplication matrix Dpj 
(Magnus & Neudecker, 1988). In such a case, a consistent  is easily obtained 
by replacing Σj by Sj. However, we need to obtain a better estimator for Γj when 
dealing with a general nonstandard sample. As we see in the next section, our 
proposed inference procedure just depends on Eq. (1), and we do not need to 
have the raw data once  and a consistent  are available. Procedures 
for obtaining tnj and  are given in a later section, based on our experience  
with current estimation methodologies in the statistical literature for 
nonstandard samples.

Suppose we are interested in the mean and covariance structures  
 for j= 1,…, m. There are a variety of ways to use the information 

in Eq. (1) to estimate parameter  and evaluate the structures 
δj(βj). All involve minimizing some function of the distance between tnj and 
δj(βj). We choose the distance based on the normal theory likelihood function 
for the following reasons: (a) When data are normal, the estimator based on such 
a function is most efficient; (b) for data with influential cases or outliers, the 
robust mean vector and covariance matrix can be regarded as the sample mean 
vector and sample covariance matrix based on an approximately normal sample 
(Yuan, Chan &, Bentler, 2000); and (c) the estimation process of minimizing 
the maximum likelihood function is quite stable, which is very important when 
modeling several groups simultaneously.

With N=n1+…+nm, the maximum likelihood discrepancy function between tnj 
and δj(βj) given by

  (2a)

where

  (2b)

The analysis of multiple groups is interesting only when we put constraints on 
the separate βjs. In the most restricted case, when it is assumed that all samples 
come from the same population, parameters from each group may be constrained 
equal across groups. In a less restricted setting, only certain parameters such 
as factor means and loadings, or latent variable regression coefficients, may be 
constrained equal. Let the constraints be represented by a r×1 vector function

 h(θ)=0. (3)
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Estimation of θ involves minimizing Eq. (2) under Constraint (3). We denote 
such an estimator as  The classical likelihood ratio test statistic is widely 
known to be of the form  Let  and q be the number 
of unknown parameters in  We also need to assume  to study the 
statistical properties of θ.  When are based on samples from normal 
distributions, both δj=δj(βj) and Constraint (3) hold in the populations, then

  (4)

When data vectors tnj are used in Eq. (2), Eq. (4) will not hold in general. 
There also exists a likelihood ratio statistic for testing Constraint (3). Let  
be the estimate of θ without constraint (3). This  is just a collection of the 

 obtained by minimizing the function Fj(βj) in Eq. (2b). The commonly used 
likelihood ratio statistic in testing Constraint (3) is

  

which is also commonly referred to as the chi-square difference test. When all 
the samples follow multivariate normal distributions and  then

 

under the null hypothesis of correct model structures and correct constraint. With 
a nonstandard sample, however, the behavior of  will not asymptotically 
follow a chi-square distribution even when the null hypothesis is correct.

Similarly, when data are normal and  it is easy to obtain standard 
error estimates for  based on

 

The covariance matrix Ω is the inverse of the information or Hessian matrix 
associated with minimizing Eq. (2). For nonstandard samples, however, this 
matrix is inappropriate for obtaining standard errors. We need to find another Ω 
to replace the one based on inverting the information matrix.

The major purpose of this chapter is to give a unified treatment of multisample 
structural equation modeling based on minimizing Eq. (2) under Constraint (3). 
The most important results are appropriate standard errors for  and test statistics 
for evaluating the overall model structure and the constraint. These inferential 
procedures are in a later section. A further section gives brief guidelines for 
obtaining  and  for several nonstandard samples. Some concluding 
remarks and discussions are offered at the end of the chapter.
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MODEL INFERENCE

Under the null hypothesis of correct model structures about δj(βj) and correct 
constraint h(θ)=0, we first study the distribution of  before studying the 
properties of TML and  Rescaled statistics TRML and  then follow from 
our study of TML and  Since standard ML theory cannot be applied without 
the normality assumption for observed data, to obtain the properties of  we use 
a generalized estimating equation approach instead (e.g., Liang & Zeger, 1986; 
Yuan & Jennrich, 1998). We use dot on top of a function to imply derivative 
[e.g.,  We may omit the argument of a function 
if evaluated at the population value [e.g., δ=δ(θ0)].

To obtain , one generally has to work with the Lagrangian function

 

where λ is a r×1 vector of Lagrangian multipliers (e.g., Aitchison & Silvey, 
1958; Bentler & Dijkstra, 1985). Because  minimizes F(θ) under the 
constraint in equation (3), it follows from the Lagrange multiplier theorem (e.g.,  
Theorem 19.3 of Chong &  1996, p. 338) that  satisfies the generalized 
estimating equation

  (5)

where

 

Notice that G(θ, λ) is just the derivative of L with respect to (θ′, λ′)′. Since 
λ0=0,

 

Using a first-order Taylor expansion on Eq. (5) at (θ0, λ0), or equivalently using 
the estimating equation approach as in Yuan and Jennrich (1998), we obtain

  (6)

where 
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Denote

then it follows from Eq. (6) that

   (7)

Let  and ej=tnj−δj with Eq. (2b) we have

  (8)

It follows from Eq. (8) that

 

where  Because  and 
the various  are independent,

  (9)

where Πγ=diag(γ1Π1,…, γmПm). It follows from Eqs. (7) and (9) that

  (10)

where Ω=A11ПγA11. A consistent estimator  of Ω can be obtained when θ is 
replaced by  γj by nj/N, and Γj by  Standard errors of  follow from square 
roots of the diagonals of 

When data are normal,  and

 

Because

  (11)

and A11 is a generalized inverse of , we have

  (12)

where Ω=A11Πγ A11=A11. This corresponds to the standard results obtained when 
using the normality assumption for multiple samples.
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Equation (10) characterizes the distribution of  the parameter estimator 
obtained by minimizing Eq. (2) under Constraint (3). Parallel results for  
without the constraint are obtained when replacing A11 by A−1 in Eq. (7) to  
Eq. (12),

where

 

That is,

 

where Ω*=A−1ПγA−1. Notice that the Пγ matrix in Ω* is the same as the one in 
Ω, which is block diagonal. Because A is also block diagonal, the  in θ* 
are independent. The correlations between various  in Eq. (12), due to the 
Constraint (3), are totally characterized by A11.

Parallel to the likelihood ratio test based on the sample moments under 
normality, we would like to have statistics that can be used for inference with 
non-standard samples. For this purpose, we first study the statistic  
Rescaled statistics for testing the structures δj=δj(βj) and Constraint (3) are given 
next. A parallel version is also obtained when interest centers on testing the 
Constraint (3).

Using the Taylor expansion on  at θ0, we have

  (13)

where  lies between θ0 and  Using Eq. (11) of Yuan and Bentler (1998b), 
we have

  (14)
Let
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From Eq. (14), we have

  (15)

Similarly, from Eqs. (8) and (7), respectively, we obtain

 

and

  (16)

which further lead to

  (17)

Equation (11) implies

  (18)

It follows from Eqs. (16) and (18) that

  
19

Combining Eqs. (13), (15), (17), and (19) gives

  (20)

where
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Let

 

then it follows from Eq. (1) that  Now we have from  
Eq. (20)

  (21)

The first term on the right-hand side of Eq. (21) is a quadratic form in z. 
Consequently, the asymptotic distribution of  can be characterized 
as the distribution of a quadratic form of normal variates (e.g., Muirhead, 1982). 
Let  be the nonzero eigenvalues of UΓ and  be independent chi-square 
variates with degree of freedom 1. Then

  (22)

Unless all the  are equal, there is no simple distribution to describe the 
randomness of the right-hand side of Eq. (22). However, a simple rescaling on 
TML can result in a statistic that is better approximated by the  distribution. 
Let c=tr(UΓ)/(p*−q+r). Then the rescaled statistic

approaches a distribution with mean equal to that of  Similar statistics 
for inference based on sample covariance matrices have been proposed by 
Satorra and Bentler (1988) for single-sample analysis and by Satorra (2000) for 
multisample analysis. Simulation work in the single-sample case with the sample 
covariance matrix has shown that this type of correction works remarkably well 
under a variety of conditions (e.g., Curran, West, & Finch, 1996; Hu, Bentler, 
& Kano, 1992).

A special case results when data are normal and sample means and covariance 
matrices are used in Eq. (2). Then Γ=W−1. Since  is an idempotent 
matrix with rank (q−r), it follows from Eq. (21) that

  

which is the basis for the likelihood ratio statistic.
To study the property of the test statistic  we also need 

to characterize the distribution of  This can be obtained by replacing the 
A11 in (21) with A−1. Specifically, let
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then

   (23)

Because  is an idempotent matrix with rank q, there are only p*−q 
nonzero eigenvalues of U*Γ. Denote these as  j=1,…, p*−q, then

 

Similarly, letting c*=tr(U*Γ)/(p*−q), the rescaled statistic

 

approaches a distribution with mean equal to that of 
For testing Constraint h(θ)=0, based on Eqs. (20) and (23), the statistic  

can be expressed as

  (24)

It can be verified that

  (25)

and  is an idempotent matrix of rank r. It follows from 
Eqs. (24) and (25) that

 

where κj are the nonzero eigenvalues of (U−U*)Γ. Let  then

 

converges to a distribution with mean r. Satorra (2000) gave a rescaled version of 
the Wald-type statistic for testing a constraint like Eq. (3) when sample moment 
matrices are used in Eq. (2).

A more general version than testing h(θ)=0 is to test one set of constraints 
nested within another set of constraints. Let the two sets of constraints be 
represented by h(θ)=0 and g(θ)=0, and

  (26)
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A rescaled statistic for testing Eq. (26) can be derived similarly. Let Uh and 
Ug represent the U matrices corresponding to the constraints, then the likelihood 
ratio statistic  can be written as

 

Let rh and rg be the numbers of independent constraints in h(θ)=0 and g(θ)=0, 
respectively, then

 

we have

  (27)

Suppose a software has already had the rescaling option for nonstandard 
samples with constraint built in, but rescaling for nested models is still not 
available. Then we can get  using Eq. (27) in a straightforward way. Let  
and  be the likelihood ratio statistic and the rescaled statistic, respectively. 
Then  and similarly to obtain ĉh. Because p*−q+rh and p*−q+rg are 
just the degrees of freedom in the two models,  immediately follows from 
Eq. (27). The above procedure was developed by Satorra and Bentler (1999), 
where the rescaled statistic for nested models is given for sample moments.

ESTIMATING δj AND Γj FOR  
NONSTANDARD SAMPLES

Estimation of covariance matrices for nonstandard samples can be accomplished 
by various procedures described in the statistical literature. Because the most 
commonly encountered nonstandard situations in the social and behavioral 
sciences are probably non-normal samples, samples with outliers, and samples 
with missing data, we deal with each of these situations in sequence. The 
following procedures for estimating δj and Γj are based on our experience with 
various practical nonstandard samples. A further discussion of these procedures 
applied to exploratory factor analysis can be found in Yuan, Marshall, and 
Bentler (1999).

Non-Normal Data
When samples come from distributions with heavy tails that are not due to outliers, 
sample mean vectors and covariance matrices may still be unbiased estimates of 
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their population counterparts. For example, if a sample is from a multivariate t-
distribution, the sample does not contain outliers, but is still non-normal. In such 
a case, using sample mean vectors and covariance matrices in Eq. (2) still leads to 
consistent parameter estimates when all of the population second-order moments 
exist. To obtain consistent standard errors, we need to have the population 
fourth-order moment matrices to exist. Let   be the sample from the 
jth group with sample mean  let  with 
sample mean vector  and sample covariance matrix SYj. Then  and

 

is a consistent estimator of Γj in Eq. (1). Using the sample fourth-order moment 
matrix to estimate its population counterpart was first used by Browne (1982, 
1984) in the context of covariance structure analysis. Mooijaart and Bentler 
(1985) formulated an efficient way to compute SYj.

Data With Outliers
With non-normal data, sample moments are no longer the most efficient 
estimates of their population counterparts. If the non-normality is created by 
outliers, analysis based on sample moments can be misleading to a greater or 
lesser degree depending on the influence of the outliers. There are two ways to 
deal with outliers. One is to identify the influential cases through some analytical 
procedure and make a subjective decision whether to keep them. Another way 
is to use a robust approach. Regardless of whether any cases are outliers or 
just influential cases, their effect is automatically downweighted through this 
approach. Compared with an outlier-removal approach, the merit of a down-
weighting approach was discussed by Rousseeuw and van Zomeren (1990). 
We also use the downweighting approach here. We especially recommend the 
Huber-type weight because of its explicit control of the percentage of outliers 
when the majority of a data cloud follows a multivariate normal distribution.

For the sample  from the jth population, let

 

be the Mahalanobis distance and u1(t) and u2(t) be some non-negative scalar 
functions. Maronna (1976) defined robust M estimators  by solving the 
following equations: 

  (28a)
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and

  (28b)

If u1(t) and u2(t) are decreasing functions, cases with larger dijs will get smaller 
weights than those with smaller dijs. If a case lies far away from the majority of 
the data cloud, its effect is downweighted. A solution to Eq. (28) can be obtained 
through iteratively reweighted least squares (e.g., Green, 1984). The Huber-type 
weight is given by

  (29)

and u2(d2)={u1(d)}2/β (e.g., Tyler, 1983). Here r2 satisfies  
is the percentage of outliers one wants to control assuming the massive data 
cloud follows a multivariate normal distribution, and β is a constant such that 

. The scaling factor β makes the estimator  unbiased for Σj 
if sampling is from a pj-variate normal distribution. Notice that only the tuning 
parameter α needs to be decided in applying the Huber-type weight because r 
and β are just functions of α.

Let Xij, i=1,…, nj follow an elliptical distribution (e.g., Fang, Kotz, & Ng, 
1990) and  be a robust covariance matrix estimate. Snj generally does not 
converge to the population covariance matrix. Instead, it converges to a constant 
times the population covariance matrix: κjΣj. The positive scalar kj depends on 
the weight function used in the estimation procedure, as well as the unknown 
underlying distribution of the data. Because of this issue, we recommend using 
the Huber-type weight with the same α for every sample of the m groups. 
Because multiple samples are commonly obtained by administering the same 
questionnaire to m groups, the massive data cloud in each sample should resemble 
the massive data clouds of other samples, although one may contain fewer or 
more influential cases than the others. Actually, robust covariance matrices from 
separate samples are much more similar than traditional sample counterparts 
when data have heavy tails (Yuan, Marshall, & Weston, 1999). 

We resort to the estimating equation approach for getting a consistent estimator 
of Γj. Rewrite Eq. (28) as

  (30a)

where 

  (30b) 
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Then

  (31)

where  with

 

A consistent estimator of Γj can be obtained by using consistent estimates for Hj 
and Bj. These are given by

 

Normal Missing Data
Data are said to be missing completely at random (MCAR) if their absence 
does not depend on the missing values nor on the observed values of the other 
variables. Data are said to be missing at random (MAR) if the missing data do 
not depend on the missing values, but may depend on the observed values of 
other variables. For the jth sample with missing data, denote Xij as the vector 
of observed variables for the ith case with Dimension pij. Then E(Xij)=μij and 
Cov(Xij)=Σij are, respectively, subvector of μj and submatrix of Σj. Under the 
assumption of normality, the log likelihood function based on Xij is

  (32a)

The MLE of δj is actually obtained by maximizing

  (32b)

Consequently,  satisfies the following generalized estimating equation

  (33a)

where

  (33b)

A solution to Eq. (33) is straightforward using the EM algorithm developed in 
Dempster, Laird, and Rubin (1977). Specific steps are also discussed in detail in 
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Little and Rubin (1987). Assuming the missing data mechanism is MAR, using 
the result for generalized estimating equations (e.g., Liang & Zeger, 1986; Yuan 
& Jennrich, 1998), we have

  (34a)

where  with

  (34b)

A consistent estimate of Γj is given by

 

with

 

When Xij~N(μij,Σij), the corresponding observed information matrix is given 
by Âj (Kenward & Molenberghs, 1998; Little & Rubin, 1987) and  is 
consistent for Γj in Eq. (34). For a general non-normal distribution, the result 
in Eq. (34) is also correct as long as the missing data mechanism is MCAR. 
However, as discussed in Laird (1988), some bias may exist in using  to 
estimate δj0 when data are not normal and missing data are MAR. Ideally, it 
would be desirable to model a data set through ML to avoid bias. However, 
because of complexity of the real world, there are always discrepancies between 
the underlying distribution of the data and a carefully specified modeling 
distribution. So we would consider the normal distribution assumption for 
missing data to offer only a working assumption in multivariate analysis. 
Fortunately, for estimating population mean vectors and covariance matrices, a 
recent simulation study by Yuan and Bentler (2000a) indicated that the bias is 
minimal for a variety of nonnormal distributions. It is important to realize that 
once tnj is used in Eq. (2), the parameter estimate  is the same whatever missing 
data mechanism is assumed. The important question is this: Which procedure 
leads to a more accurate evaluation of model structures? According to the results 
for single-group analysis in Yuan and Bentler (2000a), inference based on Eq. 
(34) is much more accurate than that based on the observed information matrix. 
We recommend using Eq. (34) for estimating Γj.
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Non-normal Missing Data
When a sample contains both missing data and outliers, normal theory-based 
missing data procedures lead to inaccurate conclusions. As in the situation with 
complete data, appropriate downweighting procedures are needed for better 
inference. Little and Smith (1987) proposed several methods for such a purpose. 
Little (1988) further proposed the EM algorithm for modeling missing data 
by a multivariate t distribution as well as a multivariate contaminated normal 
distribution. Here we outline a procedure for using the multivariate t distribution 
to get  and 

The density of the p-variate t distribution with degrees of freedom k is  
given by

  (35)

If X follows Eq. (35) with k>2, then E(X)=μ and Cov(X)=kΣ/(k−2). So the 
MLE of Σ converges to κCov(X) with κ=(k−2)/k. As discussed previously, we 
recommend using t distributions with the same degrees of freedom for each of 
the m samples.

Denote Eq. (35) as Mtp(μ, Σ, k). Because a marginal distribution of Eq. (35) is 
also a t distribution with the same degrees of freedom (e.g., Fang, Kotz, & Ng, 
1990; Kano, 1994), if  its log likelihood function is

  (36a)

where δj=(μ′j, δ′j)′. The MLE of δj can be obtained by maximizing

  (36b)

Similarly, as in the last section,  satisfies the following generalized  
estimating equation

  (37a)

where

  (37b)

We can maximize Eq. (36) for δj and k simultaneously. However, a data set 
may not exactly follow a t distribution, and the simultaneous ML procedure may 
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not lead to the most efficient estimator of δj. In addition to requiring much more 
complicated computations, a nonadmissible MLE of k may occur with some 
practical data as discussed in Lange, Little, and Taylor (1989). Little (1988) 
recommended using several prefixed ks and then using the  corresponding to 
the largest  as the final parameter estimator. Real data examples in Yuan 
and Bentler (1998a, 1998b) indicate that most of the smaller ks (1≤k≤5) can 
effectively control the influence of outliers in SEM. In practice, we suggest 
following Little’s recommendation to try several prefixed k (e.g., 1≤k≤5). With 
a fixed k, the solution to Eq. (37) is straightforward using the EM algorithm 
developed in Little (1988).

As discussed for the normal theory based likelihood function, the t distribution 
in Eq. (36) is only a working assumption for downweighting outliers. Real data 
may not exactly follow such an assumption. Consequently, computations to obtain 
good standard error estimators need to be modified. We use a sandwichtype 
covariance matrix to describe the distribution of  With a MAR assumption for 
the missing data mechanism, this is given by

  (38a)

where  with

  (38b)

A consistent estimate of Γj is obtained from

  (38c)

with

 

When evidence suggests that a data set does closely follow the t distribution 
used in obtaining  we may use the inverse of the observed information matrix 

 instead of Eq. (38c) to describe the behavior of  However, the result in 
Eq. (38) is more accurate under violation of distributional assumptions. When the 
missing data mechanism is MAR, and the data set does not follow a multivariate 
t distribution, there may exist a bias for using  to estimate δj0 (Laird, 1988). 
That is, the  may not approach δj0 as the sample size increases. Based on results 
in Yuan and Bentler (2000a), we suspect that the bias would be minimal for most 
of the commonly encountered continuous distributions. Further studies on bias 
associated with the MLE from a misspecified t distribution and different missing 
data mechanisms would provide a valuable guide for future application of the 
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method. For the same reason as discussed for the normality working assumption 
in the previous subsection, our interest is to obtain a better description of the 
variability in 

DISCUSSION AND CONCLUSION

Motivated by the typical nonstandard samples for survey data in practice—
that is, samples with nonnormal distributions, missing data, and outliers—we 
proposed replacing the sample mean vectors and sample covariance matrices by 
more appropriate quantities tnj in the normal theory based likelihood function 
for multigroup SEM. Because the parameter estimator  depends on tnj, possible 
merits of tnj such as efficiency and robustness are inherited by  Standard errors 
of  are obtained through a generalized estimating equation approach. Two 
rescaled test statistics, one for the overall structural model with constraints, and 
one just for the constraints, are provided. Procedures for obtaining appropriate tnj 
for each situation, and their large sample covariance matrices, are given for each 
of several nonstandard sampling setups. Our approach is so general that it can be 
applied to any types of nonstandard samples once a new method for estimating 
the population mean vector and covariance matrix together with the associated Γ 
matrix are available for such samples.

We have chosen to use the normal theory-based likelihood function as the 
discrepancy function to measure the distance between tnj and δj(β) because of 
its relative advantage in reaching convergence. A generalized least squares 
approach using  as weights is equally general, and development along this 
line is straightforward.

It would be ideal to demonstrate the earlier procedures with a practical 
example for each of the various types of nonstandard samples considered. 
Due to the unavailability of multiple samples that contain the various features, 
such a demonstration is not done at present. Future research clearly should 
be directed to evaluating our proposals. Based on our experience with the 
inference procedures for various one-group nonstandard samples, we would 
expect the proposed procedures to generally give much more reliable model and 
parameter evaluation than classical procedures based on sample moments. Our 
recommendation is to use the proper methods given herein to estimate (μj, Σj) 
and Γj when nonstandard samples occur in practice, and follow the discussed 
procedure for model evaluation.
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It is well known that experimental designs based on randomization are powerful 
in terms of statistical analysis and inference. However, the estimation of treatment 
effects can be biased even with successful randomization unless everyone 
complies with the given treatment. Noncompliance is not only an obstacle to 
fair statistical comparison between the treatment group and the control group, 
but also a major threat to obtaining power to detect intervention effects (Jo, 
2000c). Depending on how noncompliance is dealt with in the estimation of 
treatment effects, different conclusions may be reached about the effect of the 
same intervention trial.

Figure 3.1 illustrates subgroups in the intervention trial based on treatment 
assignment and compliance. It is shown that belonging to the complier or non-
complier category is not randomized but chosen by individuals, whereas the 
assignment to treatment or control condition is randomized. In the treatment 
condition, compliance behavior is actually observed and individuals can be 
categorized into either the complier or noncomplier category. In the control 
condition, compliance behavior cannot be observed because treatment is never 
offered. Therefore, individuals in the control condition are potentially either 
complier or noncomplier, but cannot be categorized based on observed compliance 
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behavior. Potential compliers are individuals in the control condition who would 
comply with the treatment if it had been offered. Potential noncompliers are 
individuals in the control condition who would not comply with the treatment 
even if it had been offered.

Intent to Treat (ITT) analysis is a standard way to estimate treatment effects 
in randomized experimental designs. In this method, average outcomes are 
compared by randomized groups ignoring compliance status information. In 
other words, the treatment effect is estimated assuming that every subject in the 
treatment condition actually received the treatment. It is shown in Fig. 3.1 that 
the treatment (A+B) and the control (a+b) groups are statistically comparable in 
this method because both groups consist of both compliers and noncompliers. 
However, if only compliers are the targeted subpopulation of interest, there is 
a possible bias in the estimation of treatment effects by including noncompliers 
in the analysis.

As-treated analysis is another commonly used method to estimate intervention 
effects in the presence of noncompliance. This method focuses on the receipt of 
the treatment, but ignores the fact that compliance behavior is not randomized 
but chosen by individuals, and the characteristics of compliers are often different 
from those of the rest. For example, people with higher motivation or a special 
interest in the treatment are more likely to participate in that treatment. This 
method presents an unfair statistical comparison between groups, by comparing 
recipients (A) in the treatment group with nonrecipients (B+a+b) both in the 
treatment and the control group.

When compliers are the targeted subpopulation of interest, there is a possible 
bias in the estimation of treatment effects in the presence of noncompliance both 
in ITT and as-treated analysis. To counter this unfair comparison, the possibility 

FIG. 3.1. Randomization and compliance.
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of estimating causal effects of the treatment only for the individuals who actually 
received the treatment has been explored under the label Complier Average 
Causal Effect (CACE; Angrist, Imbens, & Rubin, 1996; Bloom, 1984; Imbens 
& Rubin, 1997; Little & Yau, 1998) estimation. This method not only provides 
the estimation of treatment effects only for compilers, but also presents a fair 
statistical comparison by comparing the compliers (A) in the treatment group to 
the potential compliers (a) in the control group (see Fig. 3.1).

The CACE estimation method has been applied using several approaches. The 
major technical difficulty involved in CACE approaches is that the compliance 
status of the individuals in the control condition is unknown. The unknown 
compliance status in the control group makes it difficult to differentiate effects 
of the treatment based on compliance status. One way to solve this problem is to 
use the instrumental variable (IV) approach, where treatment effect estimates are 
adjusted by considering the proportion of noncompliers (Bloom, 1984). More 
recently, a refined form of the IV approach with clear underlying assumptions 
has been proposed (Angrist, Imbens, & Rubin, 1996). A more efficient way 
to solve this problem is to identify potential compliance status of the control 
group individuals so that average outcomes can be directly compared based on 
randomization. This method has been demonstrated through a Bayesian approach 
that combines the use of EM and data-augmentation algorithms (Imbens & 
Rubin, 1997) and the maximum-likelihood estimation method using the EM 
algorithm (Little & Yau, 1998). The idea of CACE made dramatic progress 
in the estimation of treatment effects in the presence of noncompliance. By 
introducing Bayesian inferential methods and missing data techniques, this 
approach opened the possibility for more flexible model-based estimation of 
treatment effects.

Structural equation modeling has potential for flexible CACE modeling. 
However, the exploration possibility of CACE modeling in this area is limited 
within the conventional framework. Although the unknown compliance status 
in the control group can be naturally seen as a missing data problem in general, 
subgroups of individuals based on compliance status can be better understood 
as a latent variable in the structural equation modeling framework. The 
systematic role of compliance categories distiguishes latent membership from 
missing data in outcome measures. That is, individuals in different compliance 
categories can be seen as finite mixtures (Titterington, Smith, & Makov, 1985) 
of subpopulations that might have separate distributions and different model 
parameters. If the compliance status is known for everybody, this problem can 
be solved using the multiple-group approach in conventional structural equation 
modeling. Because the group membership is unknown for individuals in the 
control group, this problem cannot be solved unless discrete latent variables can 
be included in the model.
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The current study demonstrates that the problem of noncompliance can be 
dealt with in a broader framework of structural equation modeling by looking 
at compliance status as a categorical latent variable, and also demonstartes 
the flexibility of CACE modeling in this framework. To demonstrate how 
the latent variable approach works in dealing with compliance information in 
various situations, the Job Search Intervention Study for unemployed workers 
(Vinokur, Price, & Schul, 1995; Vinokur & Schul, 1997), the Study of Vitamin 
Supplement Effect on Survival Rates in young children (Imbens & Rubin, 
1997; Sommer et al., 1986; Sommer & Zeger, 1991), and the Johns Hopkins 
Public School Preventive Intervention Study (Ialongo et al., 1999) are used  
as examples.

This chapter is organized as follows. First, it defines model assumptions and the 
estimation method using the ML-EM algorithm. Second, it demonstrates CACE 
estimation with a single continuous outcome, with results compared to those 
from the ITT approach. Third, it demonstrates CACE estimation with a single 
categorical outcome, with results compared to those from the ITT approach. 
Fourth, it demonstrates CACE estimation with multiple outcomes, with results 
compared to those from CACE estimation using a single outcome measure. 
Fifth, it demonstrates growth mixture CACE estimation using repeated outcome 
measures with a trend. Results are compared to those from CACE estimation 
using a single outcome measure. The chapter concludes with discussion.

CACE ESTIMATION IN THE LATENT  
VARIABLE MODELING FRAMEWORK

Model Assumptions
The common purpose of the models used in this study is to estimate the 
treatment effect for the compliers (CACE) and to draw causal inference about 
this treatment effect through experimental designs based on randomization. In 
line with Rubin’s causal model, there are some general assumptions required 
to be able to make causal inference. In Rubin’s causal model approach, the 
possibility of statistical causal inference is built based on the effect of treatment 
assignment at the individual level (Holland, 1986; Rubin, 1974, 1978, 1980). 
The assumption of potential exposability (Holland, 1988) implies that the nature 
of the treatment should be alterable so that individuals have the possibility of 
exposure to either condition, although they cannot be exposed to the treatment 
and the control condition at the same time. When this basic assumption is 
satisfied, Stable Unit Treatment Value (SUTVA) implies that potential outcomes 
for each person are unrelated to the treatment status of other individuals (Rubin, 
1978, 1980, 1990). SUTVA and randomization in the study provide a statistical 
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means of causal inference at the population level. The models used to analyze 
compliance in this study assume randomization and SUTVA in line with 
Rubin’s causal model.

Assume the simplest experimental setting where there is only one outcome 
measure (y), the treatment assignment (T) is binary (1=treatment, 0=control), 
and the treatment received (D) has only two levels (1=received, 0=not tions of T 
and D, four types of subpopulations can be defined. These definitions received). 
By classifying the behavior types of the subjects based on combinaare based on 
the individual level, which is possible because of the assumption of potential 
exposability. An individual i cannot be exposed to the treatment (Ti=1) and the 
control condition (Ti=0) at the same time, but has the possibility of exposure to 
either condition.

Angrist et al. (1996) labeled the four categories as compiler, never-taker, 
defier, and always-taker. Compliers are subjects who do what they are assigned 
to do (Di=1|Ti=1, and Di=0|Ti=0). Never-takers are subjects who do not receive 
the treatment even if they are assigned to the treatment condition (Di= 0|Ti=1, 
and Di=0|Ti=0). Defiers are the subjects who do the opposite of what they are 
assigned to (Di=0|Ti=1, and Di=1|Ti=0). Always-takers are the subjects who 
always receive the treatment no matter which condition they are assigned to do 
(Di=1|Ti=1, and Di=1|Ti=0).

Among these four kinds of possible compliance behaviors, the current 
study focuses on compliers and never-takers. That is, it is assumed that there 
are neither defiers nor always-takers. This is a stronger assumption than 
monotonicity (Imbens & Angrist, 1994) in the instrumental variable approach, 
where it is assumed that there are no defiers. Although defiers and always-takers 
are also possible compliance behaviors, the existence of never-takers is a more 
commonly seen problem. In examples shown in this study, subjects were not 
allowed to choose a different treatment condition than the one to which they were 
assigned. For never-takers, it is assumed that the outcome is independent of the 
treatment assignment (the exclusion restriction; Angrist et al., 1996), implying no 
assignment effects of the treatment. Based on these assumptions (randomization, 
SUTVA, monotonicity, no always-takers, and the exclusion restriction), two kinds 
of subpopulations can be defined: never-takers and compliers. For simplicity, 
never-takers are labeled as noncompliers in this chapter.

CACE Estimation Using ML-EM
The randomization in the assignment of treatment condition provides the basis 
for identification in CACE models. In addition to the equality in the parameter 
values based on random assignment assumption, the observed compliance status 
among treatment group individuals (training data) also plays a key role in the 
estimation of the treatment effect for the compliers (CACE).
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Consider a single outcome variable yik for individual i within latent class k,

 yik=αk+ΓTkTi+εik, (1)

where latent categorical variable c has K levels of compliance status (k= 1, 2,…, 
K). c represents observed compliance status in the treatment group and latent 
compliance status in the control group. ci=(ci1, ci2,…, cik) has a multinomial 
distribution, where cik=1 if individual i belongs to class k and zero otherwise. 
The categorical latent variable approach may also be referred to as finite 
mixture modeling, where sampling units consist of subpopulations that might 
have separate distributions and different model parameters (Muthén et al., 
1997; Titterington, 1985). In finite mixture modeling, the number of mixture 
components is assumed to be known and fixed. For example, K=2 in examples 
shown in this study (k=1 for compilers, k=2 for noncompliers). εik represents 
the normally distributed residual with zero mean independent of treatment 
assignment T(1=treatment, 0=control). Let  be the residual variance 
within compliance class k. αk is the mean for the control group within latent 
class k, and ΓTk is the intervention effect within latent class k. The parameters of 
interest in the CACE model are αk,  and the proportion of the population 
from component k with =1. The proportion of compliers is π1, and the 
proportion of noncompliers is 1–π1=π2.

The identifiability of the model can be shown by solving for these parameters 
in terms of the population quantities that have observable counterparts in the form 
of consistent estimates. As a first step, π1 is directly identified as the observed 
proportion of compliers in the treatment condition P(k=1). The remaining 
parameters αk and ΓTk are identified based on observed means and πk.

Based on Eq. (1), the parameters that represent average treatment effects for 
compliers and noncompliers are defined as

 α1+ΓT1−(α1+0)=ΓT1=CACE (2)

 α2+ΓT2−(α2+0)=ΓT2, (3)

whereas the unknown control group means for compliers and noncompliers are

 µC, k=1=α1, (4)

 µC, k=2=α2, (5)

the treatment group means are

 µT,k=1=α1+ΓT1, (6)
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 µT,k=2=α2+ΓT2, (7)

and the overall control group mean is

 μc=π1 μC,k=1+π2μC,k=2. (8)

Because ΓT2=0 under the exclusion restriction assumption, α2 is directly identified 
from equation (7) as

 α2=μT,k=2. (9)

From Eqs. (4), (8), and (9), α1 can then be expressed in terms of known  
quantities as

 α1=(μC−π2μT,k=2)/π1 (10)

From Eqs. (6) and (10), the average treatment effect for compliers can be 
expressed in terms of known quantities:

 CACE=ΓT1=μT,k=1−(μC−π2 μT,k=2)/π1. (11)

The parameters  and  can then be identified from the mixture distribution 
of y (Eq. [1]). Because variances are not involved in the identification of ΓT1 as 
shown earlier, CACE models can be identified in the same way (Eq. [2]−[11]) 
when the outcome measure is categorical.

A single binary outcome variable uik for individual i within latent class k can 
be defined in a logit form as

  (12)

where =P(uik=1|cik=1). αuk represents the intercept in the logistic regression of 
u on T within compliance class k. ΓT1 can be defined as the treatment effect for 
compliers as in the CACE model with a continuous outcome measure.

This study also demonstrates CACE estimation in the random coefficient 
growth mixture modeling framework. The growth mixture CACE model can be 
expressed using a two-level formulation. Consider a single outcome variable y 
for individual i at time point h within compliance class k,

  (13)

where εihk represents a vector of normally distributed residuals with zero mean 
independent of other variables in the model. Let  and Sik are 
individually varying continuous latent variables representing initial level of 
outcome and growth rate (slope), respectively. The time scores h are 0, 1, 2,…, 
H, representing linear growth over time, which may be fixed at different values 



64 New Developments and Techniques in Structural Equation Modeling

depending on the distance between the measuring points. Individual variation in 
parameters Iik and Sik within compliance class k is specified in the second level as

 Iik=Ik+ζIik, (14)

 Sik=Sk+ΓTkTi+ζSik. (15)

In Eqs. (14) and (15), Ik and Sk represent intercept parameters of initial status 
and slope for each compliance class k. ζlik and ζsik can differ at different levels of 
compliance status, but the common residual variances V(ζIik)=ψI and V(ζsik)=ψs 
are used across different compliance classes for simplicity of illustration in the 
examples shown for this study. Based on randomization, initial status is not 
regressed on Ti but growth rate (slope) is regressed on Ti. ΓTk represents a mean 
shift in the slope when subject i belongs to the treatment condition and is allowed 
to vary across different compliance status. ΓT1 can be identified in the same way 
as in the estimation of CACE using a single outcome measure. The difference 
is that the intervention effect is identified based on means of growth rate (latent 
variable) instead of observed outcome means. In a growth modeling framework, 
treatment effects can be defined either as the difference between treatment and 
control conditions in the growth rate or as the difference between treatment and 
control conditions in the oucome measure at the final time point (Muthén & 
Curran, 1997). The second definition is used in the study for easier comparison 
between an ANCOVA approach using univariate outcome and growth mixture 
CACE modeling. Based on Eqs. (13), (14), and (15), the average treatment 
effects for compliers (CACE) can be defined at the last time point as

 CACE=ΓT1×H (16)

When covariates are present, the information carried by the covariates influences 
the CACE model in two ways. First, the precision in the regression of y (or 
η) on T is affected by inclusion of covariates (e.g., ANCOVA). Second, the 
class probability πi, is allowed to vary as a function of covariates. The logistic 
regression model of c on a vector of covariates x is decribed in a logit form as

 logit(π1i)=αc+βcxi, (17)

where π1i denotes the probability of being a complier. Because it is assumed that 
the treatment assignment is random, π1 is the same for the control and treatment 
groups. The logistic regression of compliance status also provides information 
about the characteristics of the compliers.

The maximum likelihood estimation method using the EM algorithm 
(Dempster, Laird, & Rubin, 1977; McLachlan & Krishnan, 1997; Tanner, 1996) 
is employed in the current study to estimate the unknown compliance status of 
each subject in the control condition and to estimate average treatment effects 
for compliers.
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Consider the sampling distribution of y and x from the mixture of  
k components

  (18)

where y and x represent observed data, θ represents model parameters, and πk 
represents the proportion of the population from component k  with 
The probability π is the parameter that determines the distribution of c. The 
observed data log likelihood is

  (19)

Given the proposed CACE model in the presence of both covariates (x) and 
continuous latent variables (η), the complete data log likelihood can be  
written as

  (20)

where

  (21)

In Eqs. (20) and (21), c represents categorical latent compliance class, and η 
represents continuous latent growth factors (e.g., I and S).

Maximum likelihood estimation using the EM algorithm maximizes the 
expected complete data log likelihood shown in Eq. (20). In maximizing the 
expected complete data log likelihood in Eq. (20), the E step computes the 
expected values of the complete data sufficient statistics given data and current 
parameter estimates. c is considered as missing data in this step. The conditional 
distribution of c given the observed data and the current value of model parameter 
estimates θ” is given by

  (22)

The M step computes the complete data ML estimates with complete data 
sufficient statistics replaced by their estimates from the E step. This procedure 
continues until it reaches optimal status. The M step maximizes

  (23)
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with respect to model parameters. pik is the posterior class probability of individual 
i, conditioning on observed data and model parameters, where πik=P(cik|xi).

In the current study, ML-EM estimation of CACE was carried out by the Mplus 
program (Muthén & Muthén, 1998). Parametric standard errors are computed 
from the information matrix of the ML estimator using both the first- and second-
order derivatives under the assumption of normally distributed outcomes. For 
more details about estimation procedures in general latent variable modeling, see 
Muthén and Shedden (1999) and the chapter authored by Muthén in this book. 
Aslo, check Mplus website (www.statmodel.com) for more examples.

ESTIMATION OF CACE WITH A SINGLE  
CONTINUOUS OUTCOME

This section demonstrates the estimation of CACE with a single continuous 
outcome using the Job Search Intervention Study for unemployed workers 
(JOBS II; Vinokur, Price, & Schul, 1995; Vinokur & Schul, 1997). The JOBS 
II Intervention Study is a randomized field experiment intended to prevent 
poor mental health and promote high-quality reemployment. The experimental 
condition consisted of five half-day training seminars, which included the 
application of problem-solving and decision-making group processes, inoculation 
against setbacks, provision of social support and positive regard from the trainers, 
and learning and practicing job search skills. The control condition consisted of 
a booklet briefly describing job search methods and tips.

TABLE 3.1 JOBS II: Sample Statistics (N=486)
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The present study focused on the high-risk status group based on previous 
studies (Price, van Ryn, & Vinokur, 1992; Vinokur, Price, & Shul, 1995), 
which indicated that the job search intervention had its primary impact on high-
risk respondents. Risk score was computed based on risk variables predicting 
depressive symptoms at follow-up (depression, financial strain, and assertiveness) 
in the screening data (Price et al., 1992). A total sample size of 486 was analyzed 
in this study after listwise deletion of cases that had missingness in covariates 
and outcome variables. The variables used in the current study are described  
in Table 3.1.

Depression and reemployment are the major outcome measures in the JOBS 
II intervention study. The level of depression 6 months after the intervention 
(Depress6) is used as a continuous outcome measure in this section. The effect of 
the intervention on reemployment is analyzed in a later section. Depression was 
measured with a subscale of 11 items based on the Hopkins Symptom Checklist 
(Derogatis, Lipman, Rickles, Uhlenuth, & Covi, 1974).

Table 3.2 shows the results from the JOBS II data analysis using the ITT 
approach. In this method, it is assumed that noncompliers receive the same 
effects from the intervention as compliers. Table 3.2 shows that there is a small 
and insignificant effect of the intervention on the level of depression (TX effect= 
−0.137, Effect size=0.189). The effect size of the treatment is calculated by 
dividing the outcome difference in treatment and control condition means by the 
square root of the variance pooled across the control and treatment groups. In 
the ITT analysis, economic hardship was found to be a significant predictor of 
the level of depression. Individuals had a higher level of depression if they had 
economic hardship.

TABLE 3.2 Intervention Effects on Depression: ITT Analysis
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Figure 3.2 illustrates the model to estimate differential treatment effects in 
the JOBS II Intervention Study using the CACE approach. This model has been 
previously analyzed by Little & Yau (1998) using the ML-EM, treating unknown 
compliance status as missing data (Little & Rubin, 1997). In this method, 
compliance status of control group individuals is estimated, and average causal 
effects of the treatment are estimated only for compliers. In this diagram, TX 
denotes treatment assignment (0=control, 1=treatment) and c denotes compliance 
status (0=noncompliance, 1=compliance). Individuals who completed at least 
one seminar were categorized as compliers (55% of treatment group individuals) 
and the rest were categorized as noncompliers. Here the compliance status of the 
control group is latent (unknown), and the compliance status of the treatment 
group is observed (known). The partly observed latent variable c is expressed as 
a square in a circle. In the path diagram in Fig. 3.2 and in the other path diagrams 
to appear later, squares represent observed variables and circles represent latent 
(missing) variables. The path from TX to y corresponds to the treatment effect. 
The arrow from c to this path indicates that the treatment effect is different 
depending on compliance status. The arrow from c to y means that the means are 
different between compliers and noncompliers in the control group. In this model, 
covariates (x) including baseline depression (Depress0) are used as predictors of 
not only the outcome measure (Depress6) but also the compliance status (c) to 
improve precision in the prediction of compliance status and the quality of the 
treatment effect estimates.

Table 3.3 shows the results from the CACE analysis of the JOBS II 
intervention. In the current study, effect sizes of CACE estimates were calculated 
in a conventional way by dividing the outcome difference in treatment and 
control condition means by the square root of the variance pooled across the 
control and treatment groups. A more correct way to calculate effect size is to 
use the pooled variance of each compliance class. However, this approach was 

FIG. 3.2. CACE estimation with a single continuous outcome.
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not chosen because standard deviations may vary depending on CACE models 
specified to estimate treatment effects, and this makes the comparison between 
models very difficult.

Table 3.3 shows that the intervention had a positive impact on the level of 
depression for compilers (TX effect=−0.351, Effect size=0.484). In this method, 
the treatment effect is significant, and its magnitude is much larger than that 
of the overall average effects in the ITT analysis (e.g., Effect size=0.189). 
The level of depression is significantly lower for compliers in the intervention 
condition compared with that of control condition individuals who could have 
complied if they had been assigned to the intervention condition. In the CACE 
analysis, economic hardship was found to be a significant predictor of the level 
of depression. It was also found that subjects complied more if they were older, 
more motivated, more educated, and less assertive.

The difference in the results from the ITT approach (Table 3.2) and those 
from the CACE approach (Table 3.3) implies that quite different conclusions 
are possible depending on the estimation method used to evaluate the effect of 

TABLE 3.3 Intervention Effects on Depression: CACE Analysis
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intervention treatment. According to the ITT analysis, the intervention did not have 
a significant effect on depression, and the magnitude of the effect was trivial. In 
contrast, the CACE analysis showed that the intervention had a significant effect 
on depression level for compliers and had a practically meaningful effect size.

ESTIMATION OF CACE WITH A SINGLE  
CATEGORICAL OUTCOME

This section demonstrates the estimation of CACE with a single categorical 
outcome using the Study of Vitamin Supplement Effect on Survival Rates in 
young children in Indonesia (Aceh Study; Imbens & Rubin, 1997; Sommer & 
Zeger, 1991; Sommer et al., 1986). The Aceh Study is a large-scale randomized 
controlled community trial conducted through a joint collaboration of the Dana 
Center for Preventive Ophthalmology at Johns Hopkins University, Hellen 
Keller International, and the Indonesian government in a province (Aceh) in 
Indonesia. The major goal of the Aceh Study is to examine the effectiveness of 
the intervention in reducing the mortality rate among infants and young children 
due to vitamin A deficiency. The study was originally aimed for children from 
12 to 85 months old, but some children under 12 months or over 85 months 
old were also included in the study. Therefore, the effect of the age of children 
needs to interpreted with caution in this study. In the intervention condition 
villages, there were village-based persons trained by the government to give out 
the capsules. They were supposed to give each child a capsule every 6 months. 
Parents were asked at the end of 1 year of intervention whether their children had 
received a vitamin A capsule in the past 6 months. A total sample size of 20,130 

TABLE 3.4 Aceh Study: Sample Statistics (N=20,130)
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was analyzed in this study after listwise deletion of cases that had missingness 
in covariates and outcome variables. The variables used in the current study are 
described in Table 3.4.

In the Aceh Study, the vital status of children at 1-year follow-up is the major 
outcome measure and is used as a binary outcome in this section. Vital status 
was measured at the end of 1 year of intervention. Sixty children died in the first 
6 months of the trial, 75 children died in the second 6 months of the trial, and 
19,995 children were alive at the end of the trial. Children who died either in the 
first or second 6-month trials were categorized as not survived, and children who 
were alive at the end of the trial were categorized as survived in this study. The 
survival rate among 10, 439 intervention condition children was 0.995, and the 
survival rate among 9,691 control condition children was 0.992.

Table 3.5 shows the results from the Aceh Study data analysis using the 
ITT approach. In this method, it is assumed that noncompliers receive the same 
effects from the intervention as compliers. Table 3.5 shows that the intervention 
had a significant effect on survival rates of young children (TX effect=0.446, 
Odds ratio=1.561). The logistic regression results show that the odds of survival 
are 1.561 times higher for children in the intervention condition than for children 
in the control condition. In the ITT analysis, child’s age and mortality rate of 
child’s siblings were found to be significant predictors of the survival rate. 
Children had a higher rate of survival if they were older and had fewer siblings 
who had died.

Figure 3.3 illustrates the model to estimate differential treatment effects in the 
Aceh Study using the CACE approach. The CACE estimation of the intervention 
effects in the Aceh Study has been previously analyzed without covariates using 
EM and data augmentation algorithms (Imbens & Rubin, 1997). The current 
study employs the EM algorithm and incorporates covariates in the model. For 
CACE estimation of the intervention, a dichotomous variable (c) was created 
based on the dosage of vitamin A each child had taken. Children who took one 
or two capsules were categorized as compliers (81% of intervention condition 

TABLE 3.5 Intervention Effects on Survival: ITT Analysis
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children) and the rest were categorized as noncompliers. In this model, covariates 
(x) are used as predictors of not only the outcome measure (Survival) but also the 
compliance status (c) to improve precision in the prediction of compliance status 
and the quality of the treatment effect estimates.

Table 3.6 shows the results from the Aceh Study data analysis using the 
CACE approach. The logistic regression of vital status in the CACE approach 
shows that the intervention had a significant effect on survival rates of young 
children (TX effect=0.813, Odds ratio=2.254), and the odds ratio is considerably 

FIG. 3.3. CACE estimation with a single categorical outcome.

TABLE 3.6 Intervention Effects on Survival: CACE Analysis
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higher than in the ITT approach (i.e., 1.561). The odds of survival are 2.254 
times higher for intervention condition children who actually took capsules than 
for control condition children who could have taken capsules if they had been 
assigned to the intervention condition. In the CACE analysis, child’s age and 
mortality rate of child’s siblings were found to be significant predictors of the 
survival rate. Children had a higher rate of survival if they were older and had 
fewer siblings who had died. It was also found that parents complied with the 
intervention more if they had higher socioeconomic status (SES) and if their 
children were older.

In the Aceh Study, both ITT and CACE approaches showed significant effects 
of the intervention on the vital status of young children. However, the magnitudes 
of the intervention effects are quite different in two approaches. These results 
imply that treatment effect estimates for categorical outcomes could be still 
sensitive to estimation method in the presence of noncompliance, although 
noncompliance rate is quite low (19%) and the sample size is very large.

ESTIMATION OF CACE WITH  
MULTIPLE OUTCOMES

This section demonstrates the estimation of CACE with multiple outcome 
measures using the JOBS II Study. The same subset of the JOBS II data with a 
sample size of 486 used earlier was analyzed in this section. The variables used 
in this section are described in Table 3.1. This section focuses on the estimation 
of the intervention effects on reemployment, which was one of the major goals 
of the JOBS II intervention. Reemployment status was determined 6 months after 
the intervention by classifying respondents working for 20 hours or more per 
week as reemployed (Employ6=1) and the rest as unemployed (Employ6=0).

Table 3.7 shows the results from the CACE analysis using a single categorical 
outcome (Employ6). The logistic regression of reemployment status in the 
CACE approach shows that the intervention did not have a significant effect on 
reemployment among intervention condition individuals, although they actually 
had complied with the intervention (TX effect=0.576, Odds ratio=1.779). In 
the CACE analysis using a single categorical outcome, it was found that age, 
education, and racial background were significant predictors of the reemployment. 
Individuals had a higher rate of reemployment if they were White, younger, and 
more educated. It was also found that individuals complied more if they were 
older, single, more motivated, more educated, and less assertive.

Figure 3.4 illustrates the model to estimate CACE using multiple outcomes in 
the JOBS II Intervention Study. In this method, compliance status (c) of control 
group individuals is estimated based on both outcomes, and intervention effects 
for compliers are also estimated for both outcomes. The binary and continuous 
outcomes are correlated through covariates, intervention assignment, and 
compliance status, but there is no direct relation between the binary outcome 
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TABLE 3.7 Intervention Effects on Employment: CACE Analysis

FIG. 3.4. CACE estimation with multiple outcomes.
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and the residual of the continuous outcome. The conditional independence 
between these two outcome measures is assumed for the simplicity in the model 
estimation, but this assumption may need to be relaxed. In this model, two major 
outcomes (Employ6 and Depress6) of the intervention are considered at the same 
time to improve the quality of parameter estimates in the categorical outcome 
(Employ6). The model is intended to increase the precision in the estimation of 
compliance status in the control condition by including a continuous outcome 
(Depress6), and consequently to increase the power to detect intervention effects 
on the categorical outcome (Employ6). 

Table 3.8 shows the results from the CACE analysis of the JOBS II 
intervention using multiple outcomes illustrated in Fig. 3.4. The logistic 
regression of reemployment status shows that the intervention had a positive 

TABLE 3.8 Intervention Effects on Employment and Depression:  
CACE Analysis
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effect on reemployment for compilers (TX effect=0.693, Odds ratio=2.000). In 
this method, the intervention effect is significant, and its magnitude is larger 
than that in the CACE analysis using a single categorical outcome only. 
The odds of reemployment are two times higher for intervention condition 
individuals who actually participated in intervention seminars than for control 
condition individuals who could have participated if they had been assigned to 
the intervention condition. The logistic regression of reemployment status also 
shows that age, education, and racial background were significant predictors of 
the reemployment. Individuals had a higher rate of reemployment if they were 
White, younger, and more educated. 

Table 3.8 also shows the estimation of intervention effects on the level of 
depression 6 months after the intervention. The results show that the intervention 
had a positive effect on depression for compliers (TX effect=−0.369, Effect 
size=0.509). The intervention effects on depression are slightly stronger in this 
model than in the CACE model using a continuous outcome only (see Table 
3.3). Among several covariates, economic hardship was found to be a significant 
predictor of the level of depression. It was also found that subjects complied 
more if they were older, more motivated, more educated, and less assertive.

The difference in the results from the CACE approach using a single outcome 
(Tables 3.3 and 3.7) and those from the CACE approach with multiple outcomes 
(Table 3.8) implies that the efficiency in CACE estimation can be improved 
by employing estimation models based on multiple outcomes. The difference 
between the two methods was not dramatic, but still affected the power to detect 
intervention effects.

GROWTH MIXTURE CACE ANALYSIS FOR MULTIPLE 
OUTCOMES WITH A TREND

This section demonstrates CACE estimation using repeated outcome measures 
with a trend using the Johns Hopkins Public School Preventive Intervention 
Study. In the previous section, multiple outcome measures are used in CACE 
estimation, but these outcomes were not repeated measures of the same outcome. 
When intervention studies are focused on the long-term effects of treatment, the 
outcome is often measured several times at specific intervals. In this case, one way 
to define the treatment effect is to use the difference between the treatment and 
the control group in the outcome measured at the last time point, conditioning on 
the outcome measured at the first time point (ANCOVA). Another way to define 
the treatment effect is to use a trend or growth trajectory of the subjects. This 
section demonstrates CACE estimation in these two alternative approaches.

The Johns Hopkins Public School Preventive Intervention Study was conducted 
by the Johns Hopkins University Preventive Intervention Research Center in 
1993–1994 (Ialongo et al., 1999). The study was designed to improve academic 
achievement and reduce early behavioral problems of school children. Based on 
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the life course/social field framework as described by Kellam and Rebok (1992), 
the study focused on successful adaptation to first grade as a means of improving 
social adaptational status over the life course. Teachers and first-grade children 
were randomly assigned to intervention conditions. The intervention impact was 
assessed in the spring of first and second grades. Two intervention programs 
were employed in the Johns Hopkins Public School Preventive Intervention 
Study: the Classroom-Centered Intervention and the Family-School Partnership 
Intervention. The present study focused on the comparison between the control 
group and the Family-School Partnership Intervention group. Intervention 
condition parents were asked to implement 66 take-home activities related to 
literacy and mathematics. Based on the level of completeness in home-learning 
activities, a dichotomous variable was created in this study. Parents who 
completed at least 35 activities were categorized as compilers (73% of parents) 
and the rest were categorized as noncompliers. The cutpoint was decided based 
on exploratory growth mixture analyses (Jo & Muthén, 2000), but the details are 
not discussed in this chapter. For illustration purpose, compliance in continuous 
measure was simply dichotomized in this example, but note that sensitivity of 
the CACE estimate to different thresholds needs to be carefully examined in 
practice (West & Sagarine, 2000). Figure 3.5 shows observed mean curves of 
attention deficit in the Johns Hopkins School Preventive Intervention Study.

A total sample size of 286 was analyzed in this study after listwise deletion of 
cases that had missingness in covariates and outcome variables. The two major 
outcome measures in the Johns Hopkins Public School Preventive Intervention 
Study were academic achievement (CTBS mathematics and reading test scores) 
and the score Teacher Observation of Classroom Adaptation-Revised (TOCA-R) 
score (Werthamer-Larsson, Kellam, & Wheeler, 1991). Among these two outcome 

FIG. 3.5. Observed mean curves of attention deficit.
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 TABLE 3.9 The Johns Hopkins Public School Prevention Data: Sample 
Statistics (N=286)

TABLE 3.10 Intervention Effects on Attention Deficit: CACE Analysis
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measures, the TOCA-R score was used as the final outcome measure in this 
study. The TOCA-R is designed to assess each child’s adequacy of performance 
on the core tasks in the classroom as rated by the teacher. Among several areas 
that TOCA-R measures, attention deficit is the construct focused in this study. 
The attention deficit scale ranges from 1 to 6 and consists of TOCA-R items that 
measure hyperactivity, concentration problems, and impulsiveness. Table 3.9 
shows the sample statistics for the variables used in the analyses of this study.

Table 3.10 shows the results from the CACE analysis using a single outcome 
measured approximately 18 months after the intervention (AD18). In this 
approach, the outcome measured before the treatment (AD0) is used as one of 
covariates, and the outcome measured in the spring of the first grade (AD6) is 
ignored (i.e., ANCOVA). The results show that the intervention had a positive 
impact on children’s attention deficit when their parents were highly involved in 
the intervention activities (TX effect=−0.300, Effect size=0.271). It was assumed 
that there was no effect of intervention assignment for children with parents 
who had a very low level of compliance with the intervention activities, but this 
assumption may need to be relaxed. The assumption of the exclusion restriction 
is critical for the identifiability of CACE models, but can be unrealistic in some 
situations (Hirano et al., 2000; Jo, 2000a, 2000b). In the CACE analysis based 
on a single outcome measure, baseline attention deficit, gender, and free lunch 
program were found to be significant predictors of the level of attention deficit. 
Children had a higher level of attention deficit in spring of the second grade if 
their baseline attention deficit was higher, if they were boys, and if their SES 
level was low.

Figure 3.6 illustrates the growth mixture CACE model using repeated 
outcome measures. In this approach, all three measures of attention deficit are 

 FIG. 3.6. Growth mixture CACE estimation with repeated outcome measures.
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considered in the analysis. This approach is in line with the CACE approach 
using a single outcome measure in the sense that compliance status of control 
group individuals is estimated, and average causal effects of the treatment are 
estimated only for compliers. One difference between CACE models using 
growth mixtures and CACE models using a single outcome is that the first 
time point measure (AD0) is one of the outcome measures instead of one of 
the covariates. Because initial status (I) and growth rate (S) are separated in this 
model, the influence of background variables can be estimated separately for 
initial level of attention deficit and change of attention deficit. Another difference 
is that the growth mixture CACE model utilizes not only covariates, but also 
trajectory information to identify compliance class and increase efficiency in the 
estimation of intervention effects. Including a growth process in the estimation 
of CACE utilizes the idea of a general latent variable modeling framework, 

TABLE 3.11 Intervention Effects on Attention Deficit: Growth Mixture 
CACE Analysis
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where both categorical and continuous latent variables are incorporated (Muthén, 
1998; Muthén et al., 1997; Muthén & Shedden, 1999). That is, latent variables 
that represent growth trajectories are continuous as in conventional structural 
equation models, whereas the latent variable that represents compliance status 
is categorical.

In Fig. 3.6, initial status I has equal loadings (1, 1, 1) on three outcome 
measures representing initial status, which does not change over time. The time 
scores (h) are fixed at 0, 1, and 3 representing linear growth over time. The arrows 
from c to I and S mean that trajectory shapes are different between compliers 
and non-compliers in the control group. The arrow from TX to S corresponds 
to the mean shift in growth rate due to the treatment. The arrow from c to this 
path indicates that the treatment effect is different depending on the compliance 
status. The intervention effects for compliers (CACE) is defined as the difference 
in estimated attention deficit between the control and the treatment condition at 
the last time point (see Eq. [16]).

Table 3.11 shows the results from the estimation of treatment effects using 
growth mixture CACE modeling. The results show that the intervention had a 
positive impact on children’s attention deficit change when their parents were 
highly involved in the intervention activities (TX effect=0.306, Effect size= 
0.276). It is also shown that growth mixture CACE analysis has a slightly larger 
effect size and tighter confidence interval than the CACE analysis using the 
ANCOVA approach shown in Table 3.10. In the growth mixture CACE analysis, 
child’s gender and participation in the free lunch program were significant 
predictors of initial level of attention deficit, and parents’ racial background was 
a significant predictor of growth rate of attention deficit. Initial level of attention 

FIG. 3.7. Estimated mean curves of attention deficit.
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deficit was higher for boys with low SES. The level of attention deficit increased 
significantly faster for children from White families.

Figure 3.7 shows estimated mean attention deficit curves over time based on 
results in Table 3.11. This figure shows how attention deficit changed over time 
depending on parents’ compliance level and treatment assignment. It is shown 
that attention deficit among highly complying parents’ children maintained a 
low level over time, but the deficit could increase to a level even higher than 
that of less involved parents’ children at the second grade unless the intervention  
was given.

CONCLUSION

Noncompliance is a common problem in intervention studies, and one can arrive 
at different conclusions about the effect of the same intervention trial depending 
on how this problem is handled. Both ITT and CACE analyses are useful in their 
own contexts. However, the estimation of CACE was the focus of this study, 
because a major interest in intervention trials is often the estimation of treatment 
effects for individuals who actually receive the treatment.

The current study demonstrated that the problem of noncompliance can be 
dealt with in a broader framework of structural equation modeling by looking at 
compliance status as a categorical latent variable. To deal with compliance status 
as a latent variable, a broader framework of structural equation modeling was 
employed. This framework has two differences in the concept of latent variable 
from the conventional structural equation modeling. First, latent variable can 
be not only continuous but also categorical, whereas latent variable is only 
continuous in the conventional framework. Second, latent may mean missing 
for only a part of the total sample, whereas it usually means missing or unknown 
for everybody in the conventional framework.

This study demonstrated that the general latent variable approach is useful in 
improving the efficiency and interpretability of CACE estimation. Possibilities 
of flexible CACE modeling in a general latent variable modeling framework 
were demonstrated in various situations. The examples shown in this study imply 
that the difference in the estimation of treatment effects could be substantial 
depending not only on estimation approaches, but also modeling alternatives.

In the examples of intervention effect estimation using a single outcome 
measure, it was shown that the magnitude of treatment effects was considerably 
larger in the CACE approach than in the ITT approach. In the JOBS II study 
example using a continuous outcome measure, the intervention did not have 
a significant effect on depression, and the magnitude of the effect was trivial 
according to the ITT analysis. In contrast, the CACE analysis showed that the 
intervention had a significant effect on depression level for compliers and had a 
practically meaningful effect size. In the Aceh Study example using a categorical 
outcome measure, both ITT and CACE approaches showed significant effects 
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of the intervention on vital status of young children. However, the magnitudes 
of the intervention effects were quite different in two approaches, implying that 
treatment effect estimates for categorical outcomes could still be sensitive to 
estimation method in the presence of noncompliance even with a high compliance 
rate and a large sample size. In both examples, covariates were incorporated in 
CACE models to increase the precision in the estimation of compliance class and 
improve the power to detect treatment effects.

This study also demonstrated the use of multiple outcomes and growth 
trajectories in the estimation of CACE. It was shown that the quality of 
intervention effect estimates could be improved further within the CACE approach 
by employing models that utilize the information from multiple outcomes and 
growth trajectories. In the CACE estimation of the JOBS II study, the intervention 
effect on reemployment status was not significant when reemployment status 
was the only outcome in the model. In contrast, the intervention effect was 
significant and its magnitude was larger when both outcomes (reemployment and 
depression) were included in the model. In the CACE estimation of the Johns 
Hopkins study, the difference between ANCOVA and growth mixture approaches 
was small in terms of the magnitude of the intervention effects. However, the 
growth mixture CACE approach provided more detailed information about the 
intervention effects. It was found that the intervention had a positive impact 
on attention deficit among highly complying parents’ children. Initial level of 
attention deficit was higher for boys with low SES. The level of attention deficit 
increased significantly faster for children from White families.

APPENDIX

Mplus input for Table 3.3

title: CACE estimation with a single continuous outcome
data: file is jobs2.dat;
variable:  names are depress6 TX depress0 age motivat educat;
 names are assert nonmarr econhard nonwhite female employ6 c1 c2;
  usev are depress6 TX depress0-female c1 c2;
  classes-c(2);
  training=cl-c2;
analysis:  type=mixture;
model:
%OVERALL%
 C#l ON depress0-female;
 depress6 ON TX depress0-female;
 depress6;
 [depress6];
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Mplus input for Table 3.6

%C#1%
 [depress6];
 depress6 ON TX;
%C#2%
 [depress6];
 depress6 ON TX@0;

title: CACE estimation with a single categorical outcome
data: file is aceh.dat;
variable: names are survival TX age male ses health diepast nblind c1 c2;
 categorical are survival;
 classes=c(2);
 training=cl-c2;
analysis: type=mixture;
model:
%OVERALL%
 C#l ON age-nblind;
 survival ON TX age-nblind;
%C#1%
 [survival l*-4];
 survival ON TX;
%C#2%
 [survivals l*-3];
 survival ON TX@0;

Mplus input for Table 3.8

title: CACE estimation with multiple outcomes
data: file is jobs2.dat;
variable: names are depress6 employ6 TX depress0-female c1 c2;
 categorical are employ6;
 classes=c(2);
 training=cl-c2;
analysis: type=mixture;
model:
%OVERALL%
 C#l ON depress0-female;
 depress6 ON TX depress0-female;
 employ6 ON TX depress0-female;
 [depress6];
 depress6;
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Mplus input for Table 3.11

%C#1%
 [depress6];
 [employ6$ 1*1.0];
 depress6 ON TX;
 employ6 ON TX;
%C#2%
 [depress6];
 [employ6$l*0.5];
 depress6 ON TX@0;
 employ6 ON TX@0;

title: CACE estimation with repeated outcome measures
data: file is hopkins.dat;
variable: names are TX AD0 AD6 ADI8;
 names are male lunch page pmale nonwhite c1 c2;
 usev are AD0 AD6 AD 18 TX male-nonwhite c1 c2;
 classes = c(2);
 training = cl-c2;
analysis: type = mixture;
model:
%OVERALL%
 init by ADO-AD18@l;
 grow by AD0@0 AD6@1 AD18@3;
 [AD0-AD18@0];
 AD0-AD18 (1);
 grow ON TX male-nonwhite;
 init ON male-nonwhite;
 init;
 [init];
 grow;
 [grow];
 C#l ON male-nonwhite;
%C#1%
 [init];
 [grow];
 grow ON TX;
%C#2%
 [init];
 [grow];
 grow ON TX@0;
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4 
Multilevel Modeling  

With SEM

Ronald H.Heck 
University of Hawaii at Mānoa

Over the past two decades, concerns in various fields with conceptual and 
methodological issues in conducting research with hierarchical (or clustered) 
data have led to the development of multilevel modeling techniques. For 
example, research on organizations presents opportunities to study phenomena 
in hierarchical settings. Individuals work in departments nested within particular 
organizations within geographic regions and countries. These individuals interact 
with their social contexts in a variety of ways. Individuals within successive 
clusters may share some common characteristics (e.g., socialization patterns, 
traditions and values, and beliefs about work). Similarly, the individuals nested 
in these various contexts may also influence the properties of the groups.

Clustered data also result from the specific research design. In survey research, 
for example, individuals are often selected to participate in a study from some 
type of stratified random sampling design (e.g., individuals may be chosen from 
certain neighborhoods in particular cities and geographical areas). Longitudinal 
designs present another research situation where a series of measurements is 
nested within the individuals who participate in the study (Hox, 1998). In the past, 
researchers have had considerable difficulty analyzing data where individuals are 
nested within a series of hierarchical groupings. Ignoring such data structures 
can lead to false inferences about the relations among variables in a model, as 
well as missed insights about the social processes being studied.
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A variety of names have been used to refer to methods for analyzing hierarchical 
data structures: multilevel regression models, hierarchical linear models, mixed- 
and random-effects models, random coefficients models, and multilevel covariance 
structure models. The statistical theory for multilevel models has developed out 
of several streams of methodological work in different fields of inquiry, including 
biometric applications of mixed-model analysis of variance (ANOVA), random 
coefficients regression models in econometrics, and developments in the statistical 
theory of covariance component models and Bayesian estimation of linear models 
(Bock, 1989; de Leeuw & Kreft, 1986; Efron & Morris, 1975; Fisher, 1918, 
1925; Goldstein, 1987; Hartley & Rao, 1967; Laird & Ware, 1982; Lindley & 
Smith, 1972; Morris, 1995; Muthén, 1989; Muthén & Satorra, 1989; Raudenbush, 
1988; Raudenbush & Bryk, 1986; Rubin, 1950; Shigemasu, 1976; Smith, 1973; 
Wald, 1947; Wong & Mason, 1985).

The intent of this chapter is to provide an introduction to multilevel modeling 
techniques using structural equation modeling (SEM). Several conceptual 
and methodological issues in multilevel modeling are discussed, followed by 
the mathematical models underlying multilevel SEM. Finally, examples of a 
multilevel confirmatory factor analysis, multilevel path analysis, and multilevel 
modeling with latent variables are presented. The examples are intended to 
show, in simple terms, how to set up and conduct analyses step by step. For this 
reason, substantive issues are kept at a minimum, and the focus is placed on the 
methodological and practical issues in multilevel modeling with SEM.

OVERVIEW OF MULTILEVEL MODELING

Multilevel modeling is one of several approaches that can be used in analyzing 
clustered data. In studying organizations, for example, multilevel modeling is 
an attractive approach because it allows the incorporation of substantive theory 
about individual and organizational processes into the clustered sampling 
designs of survey research. Despite the existence of hierarchical data structures 
in behavioral and social sciences, past empirical studies often did not address 
them adequately (Bryk & Raudenbush, 1992), although substantive concerns 
about multilevel modeling including proper model specification (e.g., unit of 
analysis, aggregation effects, contextual effects) and the precision of parameter 
estimates with single-level analyses were periodically raised (e.g., Burstein, 1980; 
Cronbach & Webb, 1975; Goldstein, 1987; Lindley & Smith, 1972; Strenio, 
1981; Walsh, 1947). Applying the single-level linear model to hierarchical 
data produced several analytic difficulties, including a forced choice over the 
proper unit of analysis, trade-offs in measurement precision, and limitations in 
the methods used to estimate the model’s parameters (Raudenbush, 1995). In a 
way, this represented a blind spot in how researchers approached the analysis of 
hierarchical data.
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For many years, therefore, empirical work lagged behind the substantive 
theory of multilevel modeling because of the limitations of single-level 
analyses; that is, either individuals were the unit of analysis or groups were 
the unit of analysis. Researchers did not always consider the implications of 
the assumptions they made about measuring variables at their natural level and 
subsequently moving them from one level to another to maintain a single-level 
analysis. In hierarchical data sets, the lowest level of measurement is called the 
microlevel, with all higher level measurements called the macrolevel. Before 
multilevel techniques were available, researchers either had to disaggregate 
or aggregate variables in a hierarchical structure to construct a data set that 
could be analyzed on a single level. In the disaggregation approach to studying 
organizations, for example, the researcher would move variables conceptualized 
at the macrolevel (e.g., departmental and organizational levels) to the microlevel 
(e.g., the individual level) of the data structure. Organizational-level variables 
like productivity and organizational size might be combined with information 
about departmental leadership and individual employees’ workplace attitudes 
and motivation. The unit of analysis would then be individuals, and the analysis 
would be conducted using the number of individuals in the study as opposed to 
the number of organizations or departments.

Treating individuals as if they were independent of their various macrolevel 
groupings ignores the complexity inherent in the data and can introduce 
potentially important biases into the analysis. Single-level analyses require the 
researcher to assume all observations are independent; that is, that individuals 
within similar subunits and organizations share no common characteristics or 
perceptions. As similarities among individuals within groups become more 
pronounced (i.e., where the individuals within groups are more homogeneous), 
however, the model’s regression coefficients, standard errors, and associated 
tests of parameter significance become more biased (Muthén & Muthén, 1998; 
Muthén & Satorra, 1995). For example, the downward bias of standard errors 
in single-level analyses results in smaller estimates and, hence, more findings of 
significant parameters in the model.

Moreover, efficient estimation based on ordinary least squares (OLS) 
regression requires that the random errors in the equation are independent, 
normally distributed, and have constant variance (Bryk & Raudenbush, 1992). 
This assumption is often violated in hierarchical data sets. The random error 
components of multilevel data structures are more complex because the errors 
within each unit are dependent because they are common to every individual 
within the unit. Therefore, conducting an individual-level analysis implies 
that no systematic influence of macrolevel variables is expected. Hence, all 
macrolevel influence is incorporated into the error term of the model (Kreft & 
de Leeuw, 1998).

In the aggregation approach, the researcher would combine data from 
individuals and subunits within each organization to create an organizational-
level set of measures and then investigate between-organizational variation 
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in the aggregated measures. Because organizations are the unit of analysis in 
this case, the individual and department data would be used to develop mean 
scores on the variables for each organization. Unfortunately, the aggregation 
approach also presents problems for single-level analyses. One is that differences 
at the aggregate level typically appear stronger than they would be if within-
organizational variation were also incorporated into the analysis because all 
the variability present within each organizational unit (or subunit) is reduced 
to a single mean (Draper, 1995; Kaplan & Elliott, 1997). Ignoring individual 
variability and then making statements about individuals through conducting a 
group-level analyses is known as the ecological fallacy (Robinson, 1950).

A second problem is developing efficient estimates at the group level, in 
cases where the individual-level data for particular variables (e.g., minority 
status, low socioeconomic status [SES]) may be more sparse in some groups. 
Similarly, there may be fewer individuals in some groups than in others. These 
situations can result in less efficient prediction equations for these groups (Bryk 
& Raudenbush, 1992).

The unit of analysis problem suggests that OLS regression estimates are 
not robust to misspecification of the number of levels in the data structure 
(Raudenbush, 1995). Prior to the development of multilevel analytic techniques 
and their increased accessibility to researchers through emergent computer 
software, few satisfactory solutions to the analysis of clustered data emerged, 
although several approaches were laid out (e.g., Aitken & Longford, 1986; 
Cronbach, 1976; Cronbach & Webb, 1975; Dempster, Laird, & Rubin, 1977; 
Goldstein, 1987; Lindley & Smith, 1972; Muthén, 1989, 1991; Schmidt, 1969; 
Wong & Mason, 1985). Although analysis of variance methods offered partial 
answers to some of the questions posed with nested data (Draper, 1995), the 
general formulation of the multilevel linear model was not presented until the 
early 1970s (e.g., see Lindley & Smith, 1972).

Most important, the multilevel linear model provided a mathematical 
modeling environment within which researchers could investigate theories about 
relationships among variables at each level of the organizational or sampling 
hierarchy. Multilevel modeling allows the researcher to avoid the aggregation or 
disaggregation problem by considering both levels simultaneously in the analysis. 
Multilevel analysis provides a means to partition an outcome’s variance into 
different components (e.g., within and between units) and, within the analysis, a 
means to assign explanatory variables to different organizational levels.

Early use of multilevel modeling, however, was limited by the fact that 
only in cases of perfectly balanced sampling designs (i.e., equal group sizes) 
were closedform mathematical formulas available to estimate the variance 
and covariance components (Bryk & Raudenbush, 1992). Because variance 
and covariance components must be estimated, when sampling designs are 
unbalanced, iterative estimation procedures must be used to obtain efficient 
estimates. Dempster, Laird, and Rubin (1977) and Harville’s (1977) applications 
of maximum likelihood (ML) to the estimation of variance components provided 
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an initial means to estimate multilevel covariance structures for both balanced 
and unbalanced sampling designs (Dempster, Rubin, & Tsutakawa, 1981; Little 
& Rubin, 1987). ML estimation is based on characteristics of multivariate 
normality within the sample covariance matrix that are used to produce optimal 
(i.e., consistent and asymptotically efficient) estimates of the population 
parameters. Because of this, it requires relatively large sample sizes. More 
recently, statistical concerns about multilevel modeling under different sampling 
conditions and emerging solutions have drawn the attention of researchers (e.g., 
Kaplan & Ferguson, 1999; Morris, 1995; Muthén & Satorra, 1995).

Determining the extent to which the clustering is present is often the first step in 
deciding whether multilevel modeling will offer an improvement in the precision 
of estimates over previously used, single-level techniques (Longford, 1993). 
Often single-level analyses will suffice quite well depending on the structure and 
characteristics of specific data sets. Where variability due to clustering is present 
across levels, however, multilevel analyses yield better calibrated estimates 
of population parameters (intercepts, slopes, standard errors) than analyses 
conducted at a single level without adjustments for clustering effects. Through 
the use of an iterative fitting function such as ML, the parameter coefficients can 
be more appropriately weighted by considering the more complex covariance 
structure among the errors in multilevel analyses (i.e., because the errors within 
each unit are dependent). This affects the precision of the structural coefficients 
between groups because the amount of data available in each organization will 
generally vary (Bryk & Raudenbush, 1992).

Multilevel Regression Models
As the previous discussion implies, the choice of analytic paradigm requires 
the investigator to consider the research questions, theoretical model, and the 
structure of the data before considering the strengths and limitations of various 
multilevel techniques and software programs. A first type of multilevel analytic 
framework is the multilevel regression (or random coefficients) model. Multilevel 
regression is a general type of linear model where the values of the coefficients 
are assumed to vary as a probability distribution. In a single-level regression 
analysis, the coefficients describing the model, such as the intercept and slope, 
are considered as fixed values estimated from the sample data. For example, 
the regression coefficient describing the impact of employee job satisfaction on 
outcomes would be fixed at some weight for the model.

Conceptually, the multilevel regression model can be viewed as a hierarchical 
system of regression equations (Bryk & Raudenbush, 1992; Hox, 1998). In the 
multilevel formulation, the coefficients within each group (referred to as Level 
1 coefficients) can be treated as randomly varying. This general multilevel 
framework allows the formulation of several useful submodels that can be used 
to examine an outcome’s variance components at different levels (e.g., individual 
and group), the variability in intercepts that may be explained by individual- and 
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group-level variables, and the variability in slopes that may be explained by 
group-level variables. In this formulation, the level of organizational outcomes 
produced (i.e., the intercept) would be expected to be different in each organization 
in the study. Similarly, the effect of job satisfaction on outcomes (i.e., the slope) 
produced might be larger in some organizations than in others. The researcher 
might be interested in the average job satisfaction slope across the organizations, 
as well as how particular organizations deviate from the overall average slope. 
Organizational (Level 2) variables such as size and resource allocations might be 
included in the model to explain differences in outcome levels and differences in 
the effects of job satisfaction on outcomes.

The multilevel regression model can also be extended to examine multivariate 
models with latent variables by defining a measurement model at Level 1 that 
corrects observed indicators of the underlying constructs for measurement 
error. Individual- (Level 2) and group-level (Level 3) predictors and mediating 
variables can be added to the model to explain variation in the latent constructs. 
Until recently, the literature on multilevel regression modeling has not addressed 
the estimation of mediating effects (see Raudenbush & Sampson, 1999).

Multilevel Structural Equation Modeling
Hierarchical data structures may also be investigated with SEM. The SEM 
approach represents a synthesis of factor analytic techniques developed in 
psychology with simultaneous equation modeling (i.e., using a series of regression 
equations) modeling from econometrics and sociology (Kaplan, 1998). Structural 
equation models are particularly designed to accommodate latent variables 
(underlying constructs defined by observed indicators), measurement errors in 
both dependent and independent variables, direct and indirect effects, reciprocal 
causation, simultaneity, and interdependence (Jöreskog, 1977; Jöreskog & 
Sörbom, 1993). In recent years, researchers have worked to integrate multilevel 
regression modeling with SEM to provide a general methodological approach that 
would account for clustered sampling, population heterogeneity, measurement 
error, and simultaneous equations (e.g., Bryk & Raudenbush, 1992; Hox, 1995; 
Kaplan, 1998; Kaplan & Elliott, 1997; McArdle & Hamagami; 1996; Muthén, 
1989; 1990, 1991, 1992, 1994; Muthén & Satorra, 1989, 1995; Raudenbush, 
Rowan, & Kang, 1991; Raudenbush & Sampson, 1999; Willett & Sayer, 1996).

Several types of multilevel models can be investigated with SEM techniques 
including two-level factor (measurement) models that focus on the definition 
of latent (underlying) constructs through their observed indicators, path models 
that investigate two-level relationships among observed variables, and two-level 
structural models that focus on the relationships among latent and observed 
variables. It should be emphasized that the general multilevel formulation with 
SEM allows the specification of separate structural models with direct and 
indirect effects within and between organizations. Moreover, SEM methods 
can also be used to model individual growth trajectories with latent variables 
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(e.g., see Duncan & Duncan, 1996; Khoo & Muthén, 2000; Muthén & Muthén, 
1998; Willett & Sayer, 1996, for a thorough discussion of SEM methods in 
growth modeling) while also incorporating features of organizations. These latter 
methods are relatively complex; as such, this discussion is outside the scope of 
this introductory chapter.

Much of the methodological work on multilevel SEM is continuing at 
present, so there is still considerable debate over specific statistical issues that 
have surfaced within initial multilevel modeling efforts (e.g., potential biases 
in parameters, standard errors, and fit indexes resulting from sampling issues, 
effects of missing data, violations of normality, statistical power). As multilevel 
modeling becomes more accepted into the mainstream of quantitative modeling, 
it is expected that many of these issues will be resolved. Of course, in applying 
any statistical model to the analysis of data, one must remember that models are 
representations of reality and not the reality itself. The statistical model utilized 
is never a substitute for having strong theory and a thorough understanding of 
one’s data.

STRUCTURAL EQUATION MODELING  
WITH MPLUS

Although the SEM approach and corresponding computer software have been 
widely accepted in the analysis of single-level multivariate data, the techniques 
have not been widely applied to the analysis of multilevel data structures (Hox, 
1995; Muthén, 1994). Presently, these structures are difficult to analyze properly 
with most existing SEM software packages. The SEM approach is attractive 
for multilevel modeling, however, because it provides a flexible framework 
that makes possible the specification and testing of a wide variety of theoretical 
models. McDonald and Goldstein (1989), Muthén (1989, 1991, 1994), and 
Muthén and Satorra (1989) have provided much of the work underlying 
multilevel covariance structure analysis. More recently, there is an expanding 
literature on the use of SEM techniques in defining and testing multilevel models 
(e.g., Goldstein & McDonald, 1988; Hox, 1995, 1998; Kaplan, 1998; Kaplan & 
Elliott, 1997; McArdle & Hamagami, 1996; Muthén, 1997; Muthén & Muthén, 
1998; Muthén & Satorra, 1995).

One new software program that is designed to analyze multilevel data 
structures is Mplus (Muthén & Muthén, 1998). It represents a redesign, 
considerable extension, and replacement of the second author’s LISCOMP 
program (Muthén, 1988) and is designed for easy use by applied researchers. 
A defining feature of the program is its flexibility in handling numerous types 
of models with categorical observed and latent variables. Mplus can be used for 
analyzing single-level univariate and multivariate designs, multiple group designs 
with mean and threshold structures, designs with missing values, longitudinal 
(growth) designs, mixture model designs (i.e., where different individuals are 
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hypothesized to belong to different subpopulations whose membership must be 
inferred from the data), complex sample modeling using sampling weights and a 
cluster variable, and multilevel designs with hierarchical data obtained through 
cluster sampling.

The flexibility of the program in analyzing multilevel data should considerably 
enhance the analytic possibilities with SEM for research designs where individuals 
are nested in groups. Some of the general models include multilevel confirmatory 
factor analysis (used to examine the measurement properties of latent constructs 
within and across groups), multilevel path analysis, and multilevel SEM (which 
can include multilevel factor models and separate sets of predictors within and 
between groups). The program is also capable of examining multilevel models 
of individual growth.

The SEM used in Mplus consists of two interrelated submodels. Readers 
familiar with the general form of the SEM will notice slight differences in notation 
(see the Mplus User’s Guide for further discussion). The first is the measurement 
model that relates unobserved (latent) variables to their observed indicators. The 
general equation for the measurement model described in Mplus is

 yi=v+Ληi+Kxi+εi, (1)

where yi is described as a vector of observed dependent variables observed for 
individual i, ν is a vector of measurement intercepts, Λ is a matrix of measurement 
slopes, ηi is a set of latent variables, xi is a vector of independent (background) 
variables, K is a matrix of regression slopes, and  is a vector of measurement 
errors that is uncorrelated with other variables (Muthén & Muthén, 1998). The 
covariance matrix of  is denoted θ. As the reader can see from Eq. 1, the 
observed variables are linked to the underlying factors through the factor loading 
matrix (Λ).

The second model, the structural model, specifies the causal relationships 
among a set of latent variables to be explained (called endogenous variables). 
They are explained by specifying that they are causally dependent on other 
endogenous variables or a vector of exogenous (x) variables. Exogenous or 
independent variables are determined by causes outside of the model, and 
therefore are not explained by the model. The structural relationships in a model 
may be written as

 ηi=α+Bηi+Γxi+ζi, (2)

where ηi is a vector of endogenous factors for individual i, α is a parameter 
vector, B is a matrix of regression coefficients relating the endogenous factors 
to other endogenous factors, Γ is a matrix of regression coefficients relating the 
exogenous variables (xi) to the endogenous variables, and ζi is a vector of residu 
als (or errors in the equations), indicating that the endogenous variables are not 
perfectly predicted by the structural equations. The covariance matrix of ζ is 
denoted ψ.
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In cases where all variables are observed, the model of structural 
relationshipsreduces to a standard path analytic model:

 yi=α+Byi+Γxi+ζi. (3)

The approach was presented by Jöreskog in 1977. Since then, a great number 
of technical strides have been made in using SEM with real-world data, including 
problems of statistical power, violations of normality, strategies for handling 
missing data, indexes to assess the fit of models, and model modification strategies 
(Kaplan, 1998). For the interested reader, extended introductions to SEM can 
be found in Bollen (1989), Marcoulides and Hershberger (1997), Pedhazur and 
Schmelkin (1991), and Schumacker and Lomax (1996).

Options for Analyzing Multilevel Data
Researchers should be mindful of the multilevel structure of data present in many 
types of research (e.g., school or organizational studies). However, even if the 
multilevel nature of the data is taken into account, there are a variety of modeling 
options that can be considered (de Leeuw & Kreft, 1995). Mplus offers a couple 
of ways to deal with clustering effects that result from the study’s sampling 
design. For example, modeling with sample weights and a clustering variable 
allows for the standard errors and tests of model fit to take into account the 
weights (which yields a more accurate or unbiased estimation of the population 
parameters) as well as the nonindependence of the observations due to clustering 
(Kaplan & Ferguson, 1999; Muthén & Muthén, 1998). In applying sampling 
weights, observations may be weighted inversely proportional to their probability 
of selection from the population.

In a design-based approach, a single-level SEM analysis can be maintained 
using the conventional covariance matrix (i.e., based on the number of individuals 
in the study), after adjustments are made for design effects including the unequal 
subject selection probabilities and nonindependence of observations (Muthén 
& Satorra, 1995). Equal weighting of the estimates (as would occur in simple 
random sampling) would bias the estimates of the model’s parameters because of 
the oversampling of certain subpopulations. Essentially, the multilevel features 
in the data are treated as noise that is filtered out of the analysis to provide  
more precise estimates of the population parameters. This approach corresponds 
to single-level regression with weighting (see Muthén & Satorra, 1995, for 
further discussion).1 

1 Normalized sample weights may be applied to individual-level data in Mplus. In one example not 
included in the chapter, the Mplus weighted coefficients were identical to SPSS-weighted, single-
level regression coefficients. The standard error estimates were found to be somewhat larger 
using Mplus, however, because of adjustments made to also consider the effects of clustering 
(Muthén & Muthén, 1998).
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Mplus provides correct (robust) standard errors and chi-square test of model fit 
for clustered data and sampling weights. Readers interested in this approach can 
consult Chapter 10 in the Mplus User’s Guide (Muthén & Muthén, 1998).

An example of the design-based approach to clustered data might be where 
participants are selected at random from a set of organizations of differing sizes 
with the intent of producing an analysis focusing on the motivations of individuals. 
In this hypothetical analysis, the researcher would not be interested in examining 
how group-level variables that might account for variation in motivation levels 
between the groups, but she or he still wants to adjust the estimates for possible 
clustering effects (i.e., similarities among individuals within groups). Moreover, 
without applying sample weights, the subjects in oversampled groups, perhaps 
from smaller organizations, would exert undue influence on the population 
estimates of individuals’ work-related motivations.

Two-Level Disaggregated Analysis
In contrast to modeling with sampling weights, model-based approaches tend 
to focus more on the effects due to clustering than the effects due to design 
(Muthén & Satorra, 1995), although design effects can also be incorporated into 
multilevel modeling. The general statistical model for multilevel covariance 
structure analysis is complicated and difficult to implement as a practical matter 
because of the inherent complexities of computing separate covariance matrices 
for each unit (Hox, 1995; McArdle & Hamagami, 1996). This is because SEM 
techniques generally depend on large sample sizes for efficient estimation. One 
way to simplify the analysis of multilevel data structures using SEM techniques 
is to assume that there is one population of individuals that are clustered in 
groups. Instead of developing a separate covariance matrix for each unit, the 
individual data are decomposed into two separate models for the within- and 
between-groups structures (e.g., Cronbach & Webb, 1975; Muthén, 1991, 1994; 
Muthén & Satorra, 1989, 1995).

The goal of the analysis is to decompose the variation in a set of dependent 
variables into variance components associated with each level of a hierarchical 
data structure and explain the variation present at each level simultaneously 
using sets of predictors (Muthén & Muthén, 1998). For each individual, the total 
score is decomposed into an individual component (i.e., the individual deviation 
from the group mean) and a group component (i.e., the disaggregated group 
mean). This individual decomposition is used to compute separate within- and 
between-groups covariance matrixes (Hox, 1995).

As suggested previously, ignoring the presence of substantial similarities 
among individuals within groups can result in substantially biased estimates of 
the model’s parameters, standard errors, and fit indexes. The intraclass correlation 
describes the degree of correspondence within clusters or groups and may be 
expressed as

  (4)
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where σb
2 is the variability between groups and σw

2 is the within-group 
variability.

Therefore, ρ indicates the proportion of the total variability that can be attributed 
to variability between the groups. The intraclass correlation should be zero when 
the data are independent—thus, its magnitude depends on characteristics of the 
variable measured and the attributes of the groups. The larger the intraclass 
correlation, the larger the distortion in parameter estimation that results from 
ignoring this similarity. For example, in studies of school outcomes, intraclass 
correlations are often in the range of .10 to .25 (Hill & Rowe, 1996; Reynolds 
& Packer, 1992), suggesting considerable similarities due to clustering. In the 
absence of between-group variability (i.e., where the intraclass correlation is 
less than .05), however, there is little need to perform a multilevel analysis. In 
such cases where the observations are nearly independent, a single-level analysis 
would provide correct estimates of the parameters and standard errors.

To represent the hierarchical nature of the data in a multilevel SEM analysis, 
the subscript c is added to represent the cluster (group) component and / again 
represents the individual component. As an example, consider a number of items 
that are proposed to measure an underlying organizational leadership factor. 
Following Muthén’s (1991, 1994) discussion of multilevel covariance structure 
analysis, the multilevel measurement model can be expressed as

  (5)

where yci is a vector of observed leadership variables, v is a vector of intercepts 
(means), λ is a vector of factor loadings, ηci is the latent leadership factor, and 

 is a vector of residuals. Unlike conventional single-level analyses, where 
independence of observation is assumed over all N observations, in multilevel 
SEM, independence is only assumed over the C clusters (Muthén, 1991, 1994).

Because the groups are viewed as being randomly sampled, however, we need 
to specify the factor mean as randomly varying across organizations (Muthén, 
1991, 1994). We can express these relationships as:

  (6)

where α is the overall expectation (grand mean) for ηci, ηBc is a random 
factor component capturing organizational effects, and ηwci is a random factor 
component varying over individuals within their organizations. The between-
group component contains the group contribution to the individual’s score. 
The advantage of this technique is that group-centered deviation scores (for the 
pooled within-group covariance matrix) are uncorrelated with the disaggregated 
group means used for the betweengroups matrix (Hox, 1995). The between-factor 
component (ηBc) and the within-factor component (ηWci) are therefore independent, 
as in conventional random effects analysis of variance (ANOVA). Conditional 
on individual i being in organization c, the mean of factor ηci is α+ηBc, where ηBc 
varies randomly across organizations (Muthén, 1994). It is therefore possible to 
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specify organizational differences in two parameters; that is, α and the variance 
of ηBc (which we denote as ψB).

If we wish to examine the variance components of the latent factor, 
which we described in ψ, we can break the total factor variance down into 
a between-organization variance component and a within-organization  
variance component:

 V(ηci)=ΨT=ΨB+ΨW. (7)

As Muthén (1994) noted, from a substantive point of view, because the 
observed scores are not indepen dent for individuals in the same organization, we 
can estimate the proportion of the factor variance that is between-organizations 
(ψB) relative to the total factor variance (ψT). This corresponds to an adjustment 
made for the individual measurement properties of the observed variables 
comprising each factor (e.g., differing intraclass correlations). The latent 
variable counterpart of an intra-class correlation for observed variables (Eq. 4) 
can therefore be expressed as

 ΨB/(ΨB+ΨW). (8)

Similarly, we can also look at the residual variation  as the sum of a between-
group and a within-group component

 V(εci)=ΘB+ΘW (9)

We may also add observed and latent predictors at both the within- and 
between-group levels. This allows the specification of separate structural models 
at each level (Kaplan & Elliott, 1997). Following Muthén and Muthén’s (1998) 
discussion (see also Muthén & Satorra, 1995), the general two-level model 
considers a vector of observed variables that can contain cluster-specific, group-
level variables zc (c=1, 2,…, C) and within-group variables (yci and x’ci) for 
individual i in cluster c, where

  (10)

The asterisked components are independent between and within components of 
the respective variable vector (Muthén & Satorra, 1995). The between-group 
matrix contains the between-group predictors (zc), group-level variation in 
intercepts (yc), and group-level variation in the individual-level predictors (xc). 
Note that the within-group matrix contains the intercepts and individual-level 
predictors and zeros (0) for the group-level variables.

In the Mplus modeling framework, for example, variation in dependent 
variables such as organizational outcomes can be explained by several sources. 
These sources could include between-group predictors (zc) like organizational 
size, which are conceived of as affecting only the between-group variability 
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in organizational outcomes; individual-level predictors (e.g., individual 
demographics) that may be considered in some models as varying only within 
groups (xci)— that is, having no between-group variation; or individual-level 
predictors that may be decomposed into their own within- and between-group 
components (xc and xci). An example of this latter formulation might be a 
predictor such as employee motivation, which could vary across individuals 
in an organization and across the set of organizations. In some cases, the 
researcher might want to consider certain individual background variables 
(e.g., socioeconomic status [SES], minority status) as having between-group 
components as well.

This multilevel model can be translated into a between-cluster model with 
latent variables, which is written as

  (11)

  (12)

and a within-cluster model with latent variables, which can be written as

  (13)

  (14)

Equations (11) and (13) represent the measurement models liking observed 
variables to underlying factors for each level, and Eqs. (12) and (14) represent the 
latent variable structural models at each level. The general mean and covariance 
structure model (i.e., consisting of within- and between-group components) for 
two-level data (Muthén & Muthén, 1998) can be expressed as:

  (15)

  (16)

  (17)

For the interested reader, SEMs that are more general are also formulated in 
Schmidt and Wisenbaker (1986), McDonald and Goldstein (1989), and Muthén 
and Satorra (1995), and Muthén (1989, 1990).

Developing the Within- and BetweenGroup  
Covariance Matrixes
As suggested previously, the decomposition of variables from the sample data 
into their component parts can be used to compute a between-groups covariance 
matrix SB (the covariance matrix of the disaggregated group means YB) and a 
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within-groups covariance matrix Sw (the covariance matrix of the individual 
deviations from the group means Yw). The covariance matrixes are also 
orthogonal and additive:

  (18)

Muthén (1989, 1994) demonstrated that the pooled within-group sample 
covariance matrix Spw (instead of Sw) is the unbiased estimate of the population 
within-groups covariance matrix (Σw). This is calculated in a sample as

  (19)

This equation corresponds to the conventional equation for the covariance 
matrix of individual deviation scores, with N—C in the denominator instead of 
the usual N—1 (Muthén, 1994). It is important to note that analyzing the pooled 
within-group matrix instead of the total covariance matrix is one useful strategy 
for dealing with the bias resulting from cluster sampling (Muthén, 1989).2 
Because the pooled-within group covariance matrix is an unbiased estimate of 
the population within-groups covariance matrix (Σw), we can now estimate the 
population within-group structure by constructing this matrix.

The between-groups covariance matrix SB for the disaggregated group means 
for the sample is written as

  (20)

with  denoting the overall sample mean vector (Muthén & Satorra, 1995). 
It is important to note that SB is not a simple estimator of the population 
betweengroups covariance matrix (ΣB). It turns out that SB is a consistent and 
unbiased estimator of

 Σw+cΣB, (21)

where the scalar c reflects the group size (Muthén, 1994; Muthén &  
Muthén, 1998),

  (22)

2 Two-level disaggregated modeling with SEM results in estimates of the within-group parameters 
that are the same as those obtained through multilevel regression modeling (e.g., using Bryk, 
Raudenbush, & Congdon’s [1996] HLM program with group mean centering).
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For balanced data, c is the common group size. For unbalanced data and a large 
number of groups, one can proceed as if the group sizes were equal and calculate 
the scaling factor c as a combination of the observed cluster sizes similar to the 
mean (Muthén, 1994).

The ML estimate of Σw is Spw. Because the population counterpart of SB is a 
function of both ΣW+ΣB, as Muthén (1990) indicated, the ML estimate for ΣB is

  (23)

The SB and Spw sample matrixes are produced in Mplus as part of the two-level 
analysis (see Muthén & Muthén, 1998).

Estimation With Balanced and Unbalanced Groups
With balanced group sizes, ML can be used to estimate the model’s parameters. 
It should be remembered that ML estimation techniques depend on large sample 
sizes, preferably at both levels, for the estimates to have desirable asymptotic 
properties (e.g., Bassiri, 1988; Fotiu, 1989; Muthén, 1989). With unbalanced 
group sizes, it is often not practical to use conventional SEM estimation techniques 
such as ML because the fitting function involves terms for each distinct group 
size, including information on the mean vectors (Muthén, 1990, 1994). When 
ML estimation is used with unbalanced groups, it produces incorrect chi-square 
values, fit indexes and standard errors (Kaplan, 1998; Muthén, 1994).

With unbalanced group sizes, Muthén’s quasi-likelihood estimator (called 
MLM in Mplus) can be used to estimate the model’s parameters.3 This estimator 
is similar to a conventional two-population covariance structure analysis using 
ML estimation under normality (Muthén, 1994). Muthén (1991) demonstrated 
that the MLM fitting function is a consistent estimator of the population between-
group covariance matrix, where sample sizes are sufficiently large. Where the 
group sizes are not extremely different, MLM has produced satisfactory solutions, 
although it makes use of less information than ML (Hox, 1993, 1995; McDonald, 
1994; Muthén, 1990, 1994; Muthén & Muthén, 1998). MLM estimation in 
Mplus contains the Muthén-Satorra (1995) rescaling of chi-square statistic and 
standard errors, which produce corrected estimates for unbalanced group sizes 
(Muthén & Muthén, 1998). Mplus also offers another quasi-likelihood estimator 
(MLMV) that includes robust standard errors and a mean- and variance-adjusted 
chi-square test statistic (Muthén & Muthén, 1998).

3 Bayesian estimates can also be used to estimate the parameters in multilevel models (e.g., see 
Bryk & Raudenbush, 1992) especially when the number of groups in the study is small. These 
methods have not yet been widely applied to SEM.
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Statistical Power
In investigating multilevel data structures, researchers should also consider issues 
surrounding statistical power and the sensitivity of their models to hypothesis 
testing. Because power is defined as the probability of finding a significant 
effect if it indeed exists, power is closely tied to hypothesis testing. Tests of 
significance were designed to provide evidence with respect to an event having 
arisen because of sampling error. A t test is one statistical test that is often used 
to determine the significance of a model parameter, defined as the ratio of the 
estimate to its standard error (i.e., for a large sample, the required t ratio is 1.96 
at p=.05). The test of significance will therefore depend heavily on the accuracy 
of the standard error estimate. Unfortunately, in multilevel studies, when models 
are estimated with small numbers of groups (or unbalanced groups), the error 
variance is likely to be underestimated, resulting in standard error estimates of 
parameters that are too small and a greater likelihood of committing Type I errors 
(i.e., falsely rejecting the null hypothesis).

Estimating power also requires the researcher to consider the magnitudes 
(called effect sizes) and direction of any anticipated effects, the sample size (i.e., 
number of clusters or groups needed and their within-group sizes), and the likely 
within- and between-group variance (intraclass correlation) associated with the 
observations (see Cohen, 1988; Hoyle & Panter, 1995; Kaplan, 1995; Kish, 
1957, 1965; MacCallum, Roznowski, & Necowitz 1992; Muthén & Satorra, 
1995; Saris & Satorra, 1993; Satorra & Saris, 1985, for further discussion). 
For example, larger anticipated effects are related to greater statistical power. 
Detecting smaller effects would of course require larger numbers of groups to be 
included in the study. Of course, the best time to think about statistical power is 
in the design phase of studies. These issues and statistical power are so related 
that a small change in one can have a profound influence on power.

We also must consider the size of the interclass correlation. Barcikowski 
(1981) demonstrated that ignoring intraclass correlations in ANOVA studies can 
greatly inflate the chances of making Type I errors. For example, in a study with 
10 individuals in each group and a relatively small intraclass correlation of .2 
(20% of the variance is between groups), the significance level of .05 is raised to 
.28. Of course, using this inflated alpha level would result in many more findings 
of significance.

It is therefore important to note that, in the presence of small intraclass 
correlations (e.g., studies on school effects), it would be desirable to increase 
the number of groups included in the study to achieve more accurate estimates of 
parameters, standard errors, and error variances. This is especially important for 
obtaining accurate estimates of the model’s between-group parameters, because 
the number of individuals contributing information to the calculation of the 
model’s within-group parameters with maximum likelihood will generally be 
accurate if there are at least 200 or so subjects in the study (Boomsma, 1987; 
Chou & Bentler, 1995; Mok, 1995). Determining the required number of groups 
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needed in a study, however, is more problematic and depends on the anticipated 
effects and the complexity of the model being estimated. In samples that include 
a large number of groups, a change in the number of individuals within each 
group will have only a minimal impact on statistical power. However, when the 
sample is composed of a small number of groups, a relatively small change in 
the within-group size can have a substantial impact on statistical power (Duncan, 
T.E. personal communication, 1998).

Most discussions of sample size and related issues are based on the use of 
probability samples. Although individuals may be chosen at random within units, 
they are seldom assigned at random to their existing units. When convenience 
samples are used for groups, it is unclear what the effects might be. As emphasized 
by others (e.g., Busing, 1993; Hox, 1998; Kreft & de Leeuw, 1998; Mok, 1995), 
caution should certainly be exercised in putting strong credibility in results where 
the number of groups is small (i.e., N<100). Under these types of conditions, it is 
quite likely that the groups are not normally distributed. Accurately modeling the 
distribution of effects across a sample of groups that either may be nonrandom 
or depart from normality, therefore, is generally more of a problem in multilevel 
modeling than problems presented by the number of individuals sampled within 
each unit (e.g., Morris, 1995).

Similarly, missing data may potentially bias the analysis (Byrne, 1995). Of 
course, the best data-collection procedure is to have large numbers of observations 
per unit, relatively large numbers of units (Mason, 1995), and little or no missing 
data. Changes in any one of those conditions affect the completeness of our 
knowledge. In the real world, however, it is not always possible to utilize 
optimal sampling methods. Therefore, each individual study must be judged on 
its strengths and weaknesses, as well as how it contributes (whether flawed or 
not) to the development of research knowledge.

MULTILEVEL CONFIRMATORY  
FACTOR ANALYSIS

A first type of multilevel model is where researchers may wish to investigate 
underlying constructs through factor analysis. Many social processes are 
conceived as structural processes operating among unobserved constructs. Factor 
analysis is a useful general approach for investigating the relationships between 
constructs and their observed indicators because it provides a mathematical model 
that links the observations or manifestations of the underlying processes to the 
theories and constructs through which we interpret and understand them (Ecob 
& Cuttance, 1987). Through confirmatory factor analysis (CFA), the researcher 
can assess the reliability and validity of the measurements through the careful 
specification of constructs and their indicators prior to their actual testing with 
data. This is often a step that is given little attention in the preliminary stages 
of investigating theoretical models. The lack of measurement quality in defining 
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constructs can be an important limitation to the credibility of results stemming 
from the test of a particular theory.

With multilevel factor analysis, we can examine the stability of factor 
models within and across groups. For example, we can examine the amount 
of measurement error in the observed variables that define latent factors both 
within and between groups. The unreliability of these measures affects the 
decomposition of variance, which can affect the intraclass correlations (Muthén, 
1991). The individual-level error variance tends to inflate the contribution of 
within-level variation to the calculation of the intraclass correlation. Multilevel 
factor analysis, therefore, gives results that correspond to those that would be 
obtained from perfectly reliable measures (Muthén, 1994). When we look at 
an error-free variance ratio for the intraclass correlation, we are gaining a more 
precise estimate of the within- and between-level contributions. Through this 
process, we can test the construct validity of our proposed model and, hence, 
improve the credibility of our results by paying more attention to the reliability 
and validity of constructs comprising the theoretical model.

Although it is relatively easy to conceptualize multilevel factor models, 
actually fitting the models has presented sizable problems in the past because 
of the necessity of estimating the fixed and random coefficients across levels. 
As Muthén (1994) argued, factor analyses have typically ignored the multilevel 
character of the data. In part, this is because creating the proper within- and 
between-group covariance matrices, especially for unbalanced sampling designs, 
has been somewhat problematic in the past given the limitations of SEM software 
programs. As suggested previously, for multilevel analysis, Mplus (Muthén & 
Muthén, 1998) has the capability to create the necessary within–and betweengroup 
matrixes, although in the case of balanced group sizes, these matrixes can also be 
created (with some alterations) from other SEM software programs.

Specifying a Multilevel Factor Model
In this example, 384 employees in 56 organizations rated their managers’ 
leadership in 36 areas. We concentrate on a subset of the data—six items that we 
propose define two leadership factors. It is important to note that ML estimation 
is best applied to interval data because of assumptions about the normality of the 
data. Its use with ordinal data has been open to considerable debate (e.g., effects 
on fit indexes, parameter estimates). As the number of scale points increases, 
however, ordinal data behave more closely to interval data (Boomsma, 1987; 
Rigdon, 1998). However, one should look at the measurement properties of 
ordinal data (and scales developed) closely before deciding which estimation 
method to use. Currently, however, only ML and Muthén’s quasi-maximum 
likelihood estimator (MLM) are available for analyzing multilevel data with 
SEM techniques in Mplus.

The proposed multilevel factor model is presented in Fig. 4.1. The two latent 
factors of leadership (i.e., governance and evaluation) are enclosed in circles. 
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Each factor is defined by arrows leading to the three observed indicators (enclosed 
in rectangles) and their corresponding unique factors (i.e., with short arrows 
representing measurement error). The governance factor consists of the extent to 
which the manager involves employees in shared decision making (shdec), uses 
a team approach internally (team), and encourages the involvement of clients 
in policymaking (inclin). The evaluation factor consists of the extent to which 
the manager develops evaluation standards for assessing employee performance 
(evstan), uses systematic assessment procedures (syasse), and evaluates programs 
that are implemented (evprog).

As summarized in the figure, the multilevel factor model suggests that 
there are four orthogonal sources of variation for each observed variable. The 
withingroup sources of variation are the (a) individual variability common to the 
variables that load on each common factor, and (b) individual variability that is 
specific to each variable (its residual). The between-group sources are the (c) 
group variability common to the variables (i.e., shown at the group level with B 
as a suffix) that load on each factor, and the (d) group variability specific to each 
observed variable (the group-level residual).

The goal of the multilevel analysis is to summarize the within- and between-
group variation in this leadership model and establish whether the same 

FIG. 4.1. Proposed multilevel factor model.
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individual-level model holds at the organizational level. It is likely that there may 
be differences in the quality of measurement of items defining the factors that 
result from the multilevel nature of the data. For example, we may reasonably 
expect that employees within each organization differ to some extent in their 
assessments of a manager’s performance with respect to these two leadership 
dimensions. The within-groups model addresses the portion of variance in the 
factors that results from variation among individuals.

Similarly, we can expect that there are also differences in managers’ 
leadership performance across the organizations (i.e., between-organization 
variance). The between-groups model addresses across-group variation rather 
than acrossindividual variation (Muthén, 1991). Hence, we hypothesize that the 
same twomodel factor holds across organizations, but that there may be likely 
differences in the measurement quality of the items used to define the two 
leadership factors. Some of this difference is also likely due to the differing 
amounts of variance contributed by each variable across levels (i.e., the intraclass 
correlation). Alternately, we could also hypothesize that one general leadership 
factor may be sufficient to account for the variation in leadership between 
organizations. Of course, there are many additional possibilities to consider 
when multilevel factor models are conceptualized and tested.

Testing the Model

Muthén (1994) outlined four steps to examine multilevel data structures with 
SEM. At the first step, the researcher can propose and test a conventional, 
singlelevel model (using the total sample covariance matrix ST). Of course, the 
conventional analysis using the total sample (N=384) will be biased to some 
extent (e.g., depending on the size of the intraclass correlations) because of its 
failure to consider the nested effects of the data, but this will likely give some 
indication of the variables that can be used to serve as indicators of the latent 
constructs. The tests of model fit are likely to give rough estimates of the model’s 
adequacy. Moreover, we may be able to spot obvious misspecification, such as 
weak items or the presence of correlated error.

In this first, single-level test, the proposed two-factor model fit the data 
marginally (not tabled). After looking at the modification indexes, one covariance 
between errors was freed (i.e., the path between team and evstan in Fig. 4.1). 
The resulting model fit the data reasonably well [χ2 (7f)=20.06, p=.01, and 
RMSEA=.07, p=.16]. Each set of three items loaded well on its corresponding 
latent variable (with loadings ranging from .52−.81), and the errors were generally 
low (.35−.73).

Because the single-level model fit the data adequately, as a second step, 
we can examine the intraclass correlations for the observed indicators. The 
intraclass correlation summarizes the proportion of the total variation that lies 
between groups. They are examined to check whether ΣB=0. In this case, there 
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was considerable variation between groups for the six measures of leadership, 
with intraclass correlations ranging from about 4% to 23%. Because there was 
sufficient between-organizational variation in the observed variables, we can 
proceed to the third step (i.e., testing the within- and between-group models 
separately if desired) and the fourth step (i.e., testing the between and within 
components simultaneously) in the analysis. 

At Step 3, we may wish to estimate only the pooled within-group covariance 
matrix (N=328). This step can also be useful in determining where possible 
sources of misspecification may reside because there are no modification indexes 
available in Mplus for multilevel models. This pooled within-group analysis can 
be viewed as a model with no between-group structure imposed (Muthén, 1994). 
Once again, the resulting model estimated with maximum likelihood (not tabled) 
fit the data reasonably well [χ2 (7f)=23.7, p=.001, RMSEA=.085, p=.054].

At Step 4, the complete within- and between-group models are tested 
simultaneously. Figure 4.2 provides the Mplus input statements for this model. 
The initial lines in Fig. 4.2 identify the data file and variables used in the analysis. 
The variable statement also requires the user to identify the variable used to 
form the clusters (group). To test the complete (i.e., two-group) multilevel 
model with unbalanced group sizes, Muthén’s robust quasi-likelihood estimator 
(MLM) should be used because it provides the correct chi-square coefficient and 
standard errors. With unbalanced group sizes, the RMSEA is incorrect, so only 

FIG. 4.2. Mplus input instructions for multilevel leadership CFA.
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the chi-square can be used to estimate the overall model fit. Parameter estimates, 
however, are the same with either the MLM or ML estimation.

The model statements for a two-level analysis require a separate model to 
be specified between and within groups. For example, each between-group 
leadership factor is measured by three observed variables. This is specified 
using the BY statement, which is short for measured by. As part of the default 
specifications, Mplus fixes the first observed indicator specified for each factor 
at 1.0 to provide a metric for measuring the factor. The covariance between 
factors is automatically estimated by the program. In the within-groups 
measurement model, each leadership factor is similarly defined by three observed 
indicators. There is also one covariance between errors (identified in the initial 
analysis) that needs to be estimated. This parameter is included by using the  
WITH statement.

The actual output from Mplus is presented in Table 4.1. The information 
includes the cluster sizes, the intraclass correlations for the observed variables, the 
between- and within-group covariance matrixes, fit indexes, the unstandardized 
and standardized parameter estimates, and squared multiple correlations of the 
observed variables on the factors.

First, we can examine the fit of the proposed model to the data. The χ2 (15f) 
for the within- and between-groups models was 30.148 (p=.01). Therefore, the 
addition of the between- structure added only about 6.5 chi-square points (from 
the χ2 in Step 3) with an additional 8 degrees of freedom.4 This increase in 
chi-square does not seem to be large. We can accept the model as a plausible 
representation of the data.

Once the fit of the model is determined to be adequate, it is important to 
assess the size of the parameter estimates. The Mplus standardized parameter 
estimates are summarized in Fig. 4.3. There are a number of different ways to 
standardize estimates in multilevel modeling with SEM. Mplus standardizes the 
between-level parameters by the between-level variances for latent and observed 
variables and the within-group parameters by the within-group variances for latent 
and observed variables. This is helpful in determining how much variance is 
explained at each level separately (L.Muthén, personal communication, 1998).

On the individual level, the loadings on the governance factor ranged from 
.50 to .57 and were all substantial and statistically significant (i.e., tested as the 
ratio of the unstandardized estimate to its standard error). This provides evidence 
that the observed variables serve as reliable indicators of the latent governance 
variable. The evaluation factor seems to be a bit better measured (with loading 

4 The reader may recall that for the single-level model, there were 7 degrees of freedom. In 
conventional covariance structure analysis with p variables and r parameters, the degrees of 
freedom are equal to p(p+1)/2−r. In this case, we have six variables and 14 parameters (i.e., 
the degrees of freedom is calculated as 42/2–14=7). To calculate the degrees of freedom in the 
multilevel case, we have p(p+1)−r parameters because there are both within- and between-groups 
covariance matrixes (42−27=15). The extra degree of freedom in the between-groups model is 
the result of not estimating the error covariance between team and evstan.
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TABLE 4.1 Mplus Output for Two-Factor Model
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TABLE 4.1 Mplus Output for Two-Factor Model (continued)



Multilevel Modeling with SEM 113



114 New Developments and Techniques in Structural Equation Modeling

TABLE 4.1 Mplus Output for Two-Factor Model (continued)

FIG. 4.3. Standardized Mplus parameter estimates.
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ranging from .69 to .78). The correlation between the factors within groups  
was .76. 

Similarly, on the group level, the factor loadings were also relatively high 
(ranging from .61 to 1.00). We would, of course, be a bit more cautious with 
this part of the model because of the relatively small number of groups in the 
study (N=56). There was a substantial correlation between the factors (.90), 
which suggests that perhaps one leadership factor would be enough to capture 
the between-group variation. Subsequent testing of one general between-group 
leadership factor, however, did not result in an improved model fit.

Finally, we may also wish to determine what proportion of the factor variance 
lies between groups. After adjusting for the measurement errors associated 
with each observed indicator, the factor variance components in Table 4.1 for 
governance were .110 (between groups) and .229 (within groups). The intraclass 
correlation for this factor was .32 [.110/(.110+.229)]. The factor variance 
components for evaluation were .240 (between groups) and .648 (within 
groups). The intraclass correlation for this factor was .27 [.240/(.240+.648)]. 
This suggests that measurement errors due to the observed indicators definitely 
affect the individual-level variance contributing to the intraclass correlations for 
each observed variable (Muthén, 1991).

MULTILEVEL PATH MODELS

A second type of multilevel SEM model is the multilevel path model. This is a 
simplified model that uses only observed variables instead of latent constructs. 
Unlike the general multilevel regression model, however, the path model allows 
researchers to investigate more complex relationships that include multiple 
dependent variables, intervening variables, and, therefore, indirect effects (i.e., 
combined effects through several paths). This can facilitate specifying separate 
sets of structural relationships within and between groups. Another advantage 
of formulating this type of multilevel model is that it allows the researcher to 
investigate simultaneously both direct effects and indirect effects (through other 
paths in the model). Indirect effects would be overlooked within the typical 
multilevel regression study. Although we could define a series of separate models, 
an advantage of using a multilevel structural model is that we can specify all 
of the hypothesized relations within one model (see Raudenbush & Sampson, 
1999, for a discussion of how to formulate similar models within a multilevel 
regression framework).

The multilevel path model, however, does not include separate error terms for 
the variables in the model (because all variables are observed), which potentially 
introduces sources of bias into the analysis of the model’s parameters. This is 
an important limitation for several reasons. First, as we noted in the previous 
multilevel factor model, the unreliability of the observed measures affects, to 
some extent, the variance decomposition of the variables across organizational 
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levels into their within- and between-organizational components (Muthén, 1991). 
Second, in the multilevel path model, measurement error in an outcome variable 
will affect precision, whereas measurement error in the input variables will 
affect the accuracy of the estimates (Kaplan, 1998). Where observed variables 
(e.g., scales) are being used, it would be important to examine the reliability of 
the items preliminarily. Where the specific focus is not on measurement error, 
however, path models can be a useful approach to the multilevel modeling of 
organizational processes.

Currently, Mplus is able to formulate and test multilevel structural models 
that contain random variation in intercepts, but not random variation in within-
group regression slopes (Muthén & Muthén, 1998).5 One recent formulation by 
Chou, Bentler, and Pentz (1998) opens this latter possibility, however, by using 
a twostage estimation method that draws on the slopes-as-outcomes approach 
(Burstein, 1980). The slope estimates are first computed within each unit based 
on the independent observations within that unit. These estimates are then placed 
in a new data matrix that can be analyzed through SEM. A major limitation of 
the approach, however, is that the error within each unit is not incorporated into 
the analysis (Chou et al., 1998).

Specifying a Multilevel Path Model
Consider an example where eighth-grade students (N =9,410) in 51 schools 
are measured on a standardized test of math skills at Grades 6 and 8. We can 
define separate structural models consisting of individual (within-school) student 
composition variables including female (coded 1), participation in the federally 
funded free or reduced school lunch program (coded 1), minority (coded 1), and 
previous student learning (as measured on the sixth-grade standardized math 
test). It is hypothesized that the student composition factors affect Grades 6 and 
8 learning. Moreover, it is hypothesized that Grade 6 math scores will affect 
Grade 8 math scores.

In the between-schools model, we can define a set of school-level variables that 
may impact Grades 6 and 8 school scores. These variables include community 
socioeconomic status (CSES), whether the student attends a middle school from 
Grade 6 to Grade 8 or stays in a K–8 school (coded 0=K–8 and 1=middle), 
and a composite indicator of school quality (ESS) collected from a survey of 
staff, parents, and students. The composite consists of six observed subscales 
including the quality of principal leadership, school emphasis on academics, high 
expectations for achievement, frequent monitoring of school progress, positive 
school climate, and positive home-school relations. Additionally, variables in the 
within-groups model can also be included in the between-groups model (see Eq. 

5 It is of interest to note that in Mplus each slope can be decomposed into a within-groups and a 
between-groups component.
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[10]). In this case, it is hypothesized that Grade 6 math scores (i.e., defined as the 
school mean math score) will affect Grade 8 school outcomes in math.

The Mplus input file is shown in Fig. 4.4. Structural relations between 
variables can be easily defined through model statements. They are specified by 
ON statements, which are short for regressed on. As shown in the Mplus model 
statements, there are no latent variables included in this model (i.e., there are 
no BY statements). Notice in Fig. 4.4 that the within-group predictors (lunch, 
minority, female) must be referred to in the between-group model (even if they 
are fixed at zero). This requires researchers to think about the theoretical reasons 
for how these variables are conceptualized in the between-groups model. In this 
example, all three within-group predictors were first fixed at zero; however, 
minority status was subsequently freed and estimated in the model statements in 
Fig. 4.4. Although participation in the lunch program would likely vary across 

FIG. 4.4. Mplus input statements for multilevel path model.



118 New Developments and Techniques in Structural Equation Modeling

schools, in this example, this variable was fixed because of multicollinearity 
problems (i.e., between lunch participation and CSES). Percent of females in the 
school was not conceptualized as varying across schools.

MLM estimation was used to estimate the model’s parameters because the 
group sizes were unbalanced. Although in typical modeling it is not necessary to 
set starting values because default values are automatically used, in multilevel 
modeling sometimes the model will not converge with default starting values. 
The model estimated in Fig. 4.4 required some individual starting values. These 
may be set by using asterisks in Mplus. At times, the starting values for the 
model’s parameters may need to be adjusted carefully to achieve a solution 
(i.e., sometimes shifting a starting value by .1 may make the difference in a 
model converging).

In this example, we begin by examining the intraclass correlations of the 
observed variables from the Mplus file (Step 2). The intraclass correlations 
for math6 and math8 were .11 and .12, respectively. This suggests that a bit 
over 10% of the variance in math scores lies between schools. This is sufficient 
betweengroup variation to proceed with the multilevel analysis.

The first attempt to test the complete within- and between-groups model (Step 
4) produced a chi-square coefficient (7) of 117 (p=.000). This did not represent 
a satisfactory fit of the model to the data. Although modification indexes are 
not available for multilevel models in Mplus, the user can often get a sense of 
the misspecification present by running the within- and between-group models 
separately (using ML estimation). On closer inspection, in this case the misfit 
was in the between-school model, because the individual model as specified (i.e., 
all variable paths estimated) fit the data perfectly [χ2(0)=0].

The between-level model was then examined separately [χ2(7)=33]. The 
modification indexes suggested freeing the parameters between minority status 
(minor) and math6 and between minority status and math8 to improve the 
model’s fit (see Fig. 4.4). When a within-group variable such as minority status 
is defined in the between-groups model, the between-groups component can be 
thought of as the percentage of students in the school who are minority. Once 
these two parameters were freed, the resulting fit of the full multilevel model was 
considered acceptable [χ2(5)=21.8, p=.001]. Although better fitting models could 
be obtained by freeing more between-group parameters, these modifications 
might make little sense substantively.

Given that the multilevel model fit the data reasonably well, the parameter 
estimates can be examined. The standardized estimates are summarized in Fig. 
4.5. Correlations among the predictors are not included in the figure for ease of 
presentation. The within- and between-groups models summarize a variety of 
direct and indirect effects. At the within-school level, sixth-grade math scores had 
the largest direct effect on eighth-grade math scores (.85). In contrast, the direct 
effects of the student composition variables on eighth-grade math outcomes were 
small. Additionally, the student composition variables produced small direct 
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effects on six-grade math scores. In turn, these variables exerted small indirect 
effects on Grade 8 math outcomes through grade 6 learning outcomes.

For the between-school model, the strongest predictor of eighth-grade school 
scores in math was sixth-grade school scores (.87). There was a weak direct 
effect associated school type (middle) on Grade 8 math scores (.13). This 
advantage, however, was negated by the negative indirect effect of school type 
on Grade 8 outcomes through Grade 6 outcomes (−.14×.87). Percent of minority 
students in the school (Minor B) also exerted a moderate indirect effect on Grade 
8 school outcomes (−.55×.87). The effect of CSES on Grade 8 outcomes was 
entirely indirect. Finally, the composite measure of school quality (ESS) was 
also significantly related to outcomes, but the effect was small.

We can also determine the variance accounted for at each level. Between 
schools, the variables in the model accounted for 88% of the between-school 
variance in eighth-grade math scores (with the 12% representing the errors in the 
equations) and 83% of the between-school variance in sixth-grade math scores. 
The within-school variables accounted for 75% of the within-school variance 
in eighthgrade math scores and 8% of the within-school variance in sixth-grade 
math scores.

FIG. 4.5. Mplus standardized estimates (*p<.05).
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Multilevel Structural Models With  
Latent Variables
We can also incorporate latent variables into the multilevel analysis, which can 
bring several benefits to the measurement of variables in a model and, hence, the 
accuracy of its structural relations. To illustrate this type of model, we also use the 
data set on organizational leadership (N=384 individuals within 56 organizations), 
where the sampling design is unbalanced. To simplify the presentation, let us 
assume that we have three leadership scales (i.e., each scale composed of several 
survey items). As summarized in Fig. 4.6, the three scales are proposed to define 
a single leadership latent variable. The three observed indicators are governance 
practices (e.g., shared decision making, client involvement, team-oriented work 
environment), organizational culture and climate (e.g., two-way communication, 
morale, high work standards, support for risk-taking), and task organization (e.g., 
effective assessment and evaluation procedures, staff development, utilization of 
employee skills, effective allocation of resources).

We hypothesize that the leadership factor varies across organizations and 
wish to examine how a set of variables within and between groups accounts 
for variance in perceptions of leadership. The proposed structural model may 
be conceptualized in a manner that is very similar to the multilevel factor 

FIG. 4.6. Proposed model of variables affecting leadership.
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model presented previously. For the within-group model, we propose that 
the individual’s organizational role affects leadership. For example, we can 
ask managers (coded 1) to complete a self-report of their leadership, and we 
can ask employees (coded 0) to complete a performance assessment of their 
immediate supervisor. We suspect that managers will systematically rate their 
leadership skills and activities more favorably than their employees will rate 
their managers’ leadership.

As in the multilevel factor model, the intercepts of the observed variables 
comprising leadership are hypothesized to vary across organizations. The group-
level variation is modeled in terms of a latent leadership factor (Lead B), which 
accounts for variance in the three indicators (gov B, orgclim B, taskor B). 
Similar to the MCFA example presented earlier, for each group-level variable, 
there is also a residual (represented by an arrow) that represents the group-level 
variability remaining after the observed variable has been taken into account 
(Gustafsson & Stahl, 1996).

One or more group-level predictors (z variables) can also be introduced to 
explain variation in factor mean across groups. In this example, the group-
level variables are organizational effectiveness and organizational type. In the 
between-group model, organizations are referred to as ineffective (coded 0) 
and effective (coded 1) according to the levels of outputs they produce. In this 
example, organizational type refers to service- (coded 0) and product-oriented 
(coded 1) organizations.

The proposed model presented in Fig. 4.6 provides a simple illustration of how 
separate structural models at both levels may be used to account for variance in 
leadership performance ratings while incorporating measurement error into the 
analysis at both levels. This allows a more refined estimation of the model’s 
structural parameters. Although beyond the scope of this simple example, we 
could also model separate sets of intervening variables if we wished.

For the variables comprising leadership, the intraclass correlations were 
.17 for governance, .22 for climate, and .24 for task organization. It appears, 
therefore, that there is sufficient variance in our measures of leadership at the 
organizational level to proceed with a multilevel analysis. Role is conceptualized 
as having no organizational-level variance and therefore is constrained to 0 in the 
between-groups model input statements in Fig. 4.7.

The Mplus model input statements in Fig. 4.7 identify the variable that is 
used to form the clusters and any variables that exist only at the group level 
(i.e., effectiveness and product). In the between-group model, group variation 
in leadership (Lead B) is measured by the three observed variables. Structural 
relations are defined by on statements. Once again, any within-group predictors 
must be defined in the between-groups model (i.e., blead on role@0). In the 
within-group measurement model, leadership (Lead) is similarly defined by the 
observed indicators. The single structural relationship examines the impact of 
organizational role on within-group ratings of leadership.
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Output From the Analysis
The overall fit of the model was good [χ2(9)=18.79, p=.03]. In Fig. 4.8, standardized 
estimates are presented. The three indicators of leadership loaded substantially 
on the within- and between-group leadership factor. This suggests the factor 
accounts for substantial within- and between-group variability in the observed 
variables. Organizational role exerted a small, but statistically significant, effect 
on leadership ratings (.21), suggesting that managers rate their leadership higher 
than their employees rate it. At the organizational level, effectiveness had a 
substantial effect on between-group leadership ratings (.41). Moreover, managers 
in product organizations were rated lower (−.44) in terms of their leadership. The 
organizational-level variables accounted for 44% of the between-group variance 
in leadership, whereas the one individual-level predictor accounted for only 4% 
of the within-group variance. Given the variety of information and the sensibility 
of the estimates, therefore, we can accept the model as a plausible representation 
of the data.

We can also determine how much of the factor variance is between groups. 
The within-group variance for leadership (lead) was .20. The between-level 
variance for leadership (Blead) was .08. The factor intraclass correlation was 
[.08/(.08+.20)], or about 29%. As the reader notes, although there is a relatively 
small amount of measurement error, especially within organizations, the 

FIG. 4.7. Mplus input statements for multilevel SEM.
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factor intraclass correlation of .29 is a bit higher than the separate intraclass 
correlations of the observed variables (i.e., ranging from .17 to .24). This 
gives a more accurate view of the amount of variation in leadership that exists  
across organizations.

CHAPTER SUMMARY

The goal of this chapter was to provide an overview of two-level, or disaggregated, 
modeling with SEM techniques. This is one approach that can be used to 
examine data obtained from cluster sampling. The examples were provided to 
give readers a sense of a few of the many substantive problems that can be 
addressed using these techniques. It is important to keep in mind the role of 
theory in defining and testing multilevel models. Multilevel SEM using Mplus 
allows the investigation of a wide range of theoretical models (e.g., multilevel 
models with latent variables, multilevel models with direct and indirect effects, 
separate models within and between groups). Despite some problems that may be 
encountered in setting up and running multilevel models with SEM, the approach 
can yield answers to a variety of research questions in the social and behavioral 
sciences concerning individual processes, group processes, and outcomes.

FIG. 4.8. Standardized Mplus parameter estimates (*p<.O5).
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Multilevel structural equation models (SEM) have become increasingly popular 
in the psychometric literature (Goldstein & McDonald, 1988; Longford & 
Muthén, 1992; McDonald & Goldstein, 1989; Muthén & Sattora, 1989; Muthén, 
1989,1994). The rapid growth of multilevel modeling stems from the importance 
of accounting for population heterogeneity to make valid inferences from data 
that have a nested or hierarchical structure. Such nested data structures are 
common in the social sciences. Here are some examples:

• In the educational literature, student performance data are often collected 
from a cluster sample obtained by first drawing a random sample of 
schools and then drawing a random sample of students from within each 
selected school. For example, in the Second International Mathematics 
Study (SIMS; Crosswhite, Dossey, Swafford, McKnight, & Cooney 1985), 
a national probability sample of school districts was selected, a sample 
of schools was drawn from within district, and a sample of two classes 
were selected from within each school. Here students are nested within 
classrooms, classrooms are nested within schools, and schools are nested 
within districts, thus forming a four-level nesting structure. Background 
vari-ables are observed at all the four levels of the hierarchy, and interest 
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could be in understanding how district-level, school-level, class-level, and 
studentspecific variables influence test performance.

• In marketing, firms interested in understanding the determinants of 
customer satisfaction often collect satisfaction and product/service quality 
data from an ongoing panel of customers. The resulting data have a two-
level structure. Here the multiple replications per customer constitute the 
Level 1 observation units, whereas the customer can be considered Level 
2 units or clusters. Explanatory variables are observed at the two levels 
of the hierarchy. Associated with the Level 1 units (i.e., the replications) 
are Level 1 variables such as service quality, which can affect customer 
satisfaction. Similarly, the Level 2 units (customers) can be described by 
demographic variables (e.g., income and age).

Additional examples of multilevel structures include data from longitudinal 
studies (e.g., Ansari, Morrin, & Gupta 1996; MacArdle & Hamagami, 1995) 
and data from surveys of various populations segments (e.g., different age group, 
different cultures). When examining such data structures, the researcher is often 
interested in drawing substantive conclusions regarding the nature of dependence 
of the response variable on the explanatory variables at different levels of the 
hierarchy. A qualitative understanding of this dependence can be achieved by 
constructing multilevel models of such data.

In this chapter, we focus on the substantive and methodological issues 
that arise in the Bayesian modeling of SEM of multilevel data. We describe 
the details of the hierarchical Bayesian approach and illustrate how to use 
Markov Chain Monte Carlo procedures (Gibbs sampling) to obtain sampling-
based inferences for multilevel SEM. These procedures circumvent the need 
for evaluating multidimensional integrals and are therefore especially suitable 
for multilevel data. We also discuss model comparison and model adequacy of 
multilevel SEM and how they can be handled using the simulation output from 
MCMC procedures. Previous multilevel SEM capture only mean heterogeneity 
by typically allowing individuals or groups (e.g., classrooms) to have different 
measurement intercepts. We generalize these approaches to capture both mean and 
covariance heterogeneity by allowing individuals to have different intercepts as 
well as different structural parameters. We also discuss how mean heterogeniety 
can be captured through factor means instead of measurement intercepts. We 
illustrate the Bayesian multilevel SEM using data from a longitudinal customer 
satisfaction study.

Because multilevel SEM models have been available for more than one 
decade, one might ask about the advantages of a hierarchical Bayesian approach 
relative to the traditional maximum likelihood (ML) approach. The hierarchical 
Bayesian approach provides several theoretical and practical advantages. From 
a practical viewpoint, Bayesian methods allow one to flexibly incorporate prior 
information, whenever possible, about model parameters. In addition, Bayesian 
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methods allow the estimation of individual-specific parameters while accounting 
for the uncertainty in such estimates. Specifically, the Bayesian multilevel 
SEM permits the direct estimation of factor scores along with the other model 
parameters, and therefore allows a proper accounting of uncertainty in making 
inferences regarding all unknown quantities in the model. From a theoretical 
viewpoint, Bayesian procedures do not rely on asymptotic inference and can 
be especially useful in nonlinear models (Arminger & Muthén, 1998) and 
binary data situations (Ansari & Jedidi, 2000) because these may require very 
large sample sizes for asymptotic properties to hold. Moreover, as we discuss 
later, by using MCMC procedures, we obtain simulation-based estimates 
of the parameters, hence circumventing the need for evaluating complex 
multidimensional integrals that are often required to implement ML methods 
on multilevel data.

The rest of the chapter is organized as follows. First, it describes the structure 
of a two-level factor analysis model in terms of the hierarchical Bayesian 
framework. Second, it discusses the Bayesian multilevel SEM. Third, it outlines 
the MCMC simulation procedure for estimating the multilevel SEM. Fourth, it 
illustrates the hierarchical Bayesian SEM using a customer satisfaction study. 
Fifth, it provides a summary and discusses directions for future research.

THE MULTILEVEL FACTOR  
ANALYSIS MODEL

Multilevel models mimic the hierarchical structure of the data and are natural 
tools for analyzing the structural relationships among the variables across the 
different levels of the hierarchy (Draper, 1995). In a multilevel model, the 
statistical formulation proceeds in stages. Submodels are specified at each 
level of the hierarchy; these different submodels are then linked together to 
arrive at a hierarchical model of the phenomenon of interest. For example, in 
modeling student achievement data, researchers typically begin by specifying 
a confirmatory factor analysis model for each student (Level 1 model) to 
capture within-classroom (or school) variations in test scores. Then they specify 
a second-level confirmatory factor model that describes the across-classroom 
variability of measurement intercepts (between-classroom variation). Thus, the 
second-level model captures the heterogeneity of students across classrooms. It 
is very well known in the psychometric literature that failure to control for such 
heterogeneity would lead to improper inferences about model parameters (e.g., 
inflated measurement reliabilities).

In this section, we describe a two-level factor analysis model. We focus on 
two-level models for ease of exposition. Generalizing to more than two levels is 
straightforward in a Bayesian hierarchical representation. Mean heterogeneity in 
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factor analysis models can be captured at either the measurement intercepts level 
or the factor means level. We discuss both of these specifications in turn.

Heterogeneous Intercepts

Suppose data come from I distinct individuals1 or groups (e.g., classrooms) 
indexed i=1 to I. Each individual i provides j=1 to ni observations (e.g, student 
responses) on a p dimensional vector xij of indicator (manifest) variables. The 
total number of observations in the two-level data is then given by N=Σini.

We assume that the manifest variables for the Level 1 observations for 
individual (e.g., classroom) i have a common factor structure:

 xij=αi+Λξij+δij, (1)

 ξij~N(0, Φ), j=1 to ni, (2)

 δij~N(0, Θ), (3)

where αt (p×1) is individual i’s mean vector, A is a p×r matrix of factor loadings 
(r≤p), Φ is a r×r positive definite covariance matrix of the factors, and Θ(p×p) 
is a diagonal matrix of measurement error variances. The vectors ξij, which 
represent the first-level factor scores, are assumed to be independent of the 
measurement error terms δij.

At the second level, the individual vector means αt vary in the population  
as follows:

 αi=α+Λbξb,i+δb,i, (4)

 ξb,i~N(0, Φb), i=1 to I, (5)

 δb,i~N(0, Θb). (6)

Here Λb is a loading matrix of dimension p×rb (rb<p), Φb is a factor covariance 
matrix of dimensions rb×rb, and Θb, is a diagonal covariance matrix. The 
secondlevel factor scores ξb,i are assumed to be independent of δb,i.

To examine the consequences of ignoring individual heterogeneity for 
multilevel data, we derive the implied unconditional mean μ and unconditional 

1 In this chapter, we use the word individual to denote either a set of observations from a group 
of individuals who belong to the same Level 1 unit of analysis (e.g., classroom) or a set of 
replications from one individual (e.g., longitudinal observations).
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covariance matrix Σ for an arbitrary observation xij. These quantities are  
given next:

  (7)

  (8)

Thus, the total covariance matrix Σ=V[xij] is the sum of a common within-
individual covariance matrix (Σw=ΛΦΛ′+Θ) and a common between-individual 
covariance matrix (ΣB=ΛbΦbΛ′b+Θb). Consequently, an aggregate analysis that 
ignores heterogeneity in measurement intercepts leads to misleading inferences 
about all model parameters. For example, suppose Λ=Λb; then the unconditional 
covariance matrix reduces to Λ(Φ+Φb)Λ′+Θ+Θb. Thus, an aggregate analysis 
that estimates ΛAggΦAggΛ′Agg+ΘAgg will recover A, but will fail to separate Φ from 
Φb and Θ from Θb.

The identification of the factor model in Eqs. (1) to (6) requires certain 
restrictions that depend on whether we have a confirmatory or an exploratory+ 
factor model. In confirmatory models, the loadings matrixes Λ and Λb should 
have certain elements restricted to zero. Furthermore, to fix the scale of the latent 
factors, one can either impose restrictions via the loadings matrixes (e.g., set 
the scale of the factor to the scale of an a priori chosen variable) or assume 
that Φ and Φb are correlation matrixes. It is also possible to impose cross-
level constraints such as Λ=Λb if the factor structure is invariant across levels. 
In exploratory factor analysis, Φ and Φb are typically assumed to be identity 
matrixes. Inaddition, we need to impose r(r–1)/2 restrictions on A and rb(rb−1)/b 
restrictions on Λb to account for rotational indeterminacies. Bock and Gibbons 
(1996) suggest one form in which these restrictions can be applied.

Equation (4) only captures the unobserved heterogeneity in measurement 
intercepts. However, as in consumer psychology, researchers may have a priori 
hypotheses on how the manifest variable means (or equivalently the measurement 
intercepts αi) vary as a function of individual-specific covariates (e.g., gender, 
age). In such situations, we can easily extend Eq. (4) to include both observed 
and unobserved sources of heterogeneity as follows: 
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where Zi is a matrix that contains individual specific covariates. The parameters 
in the vector β explain the individual differences in the measurement intercepts 
in terms of the individual-level covariates. In the remainder of the chapter, we 
mainly focus on the unobserved heterogeneity case for ease of exposition.

The prior setup for continuous variables can be extended to handle binary 
and mixed variable situations. Ansari and Jedidi (2000) developed a hierachichal 
Bayesian procedure for estimating multilevel factor models when the manifest 
variables are binary. The factor model in Eqs. (1) to (6) can be considered as 
a special case of the binary data situation. Because the manifest variables are 
binary, the xij in Eq. (1) can be treated as a latent (unobserved) variable, and 
the link between the observed binary variable  and the underlying latent 
variables for observation j of individual i can be written in terms of a threshold 
specification as follows:

 

The latent variables have meaning that depends on the context of the application. 
In psychometric studies dealing with achievement data, the latent variables 
refer to underlying ability variables. In biometric applications, these describe 
tolerances, whereas in consumer psychology studies, they refer to unobserved 
utility for products. Ansari and Jedidi discussed the identification restrictions 
for the binary multilevel factor analysis model and provided the details of 
the Markov Chain Monte Carlo procedures (Gibbs sampling and Metropolis-
Hastings) that they developed for parameter estimation. They also discussed 
and illustrated how to use the simulation output from the MCMC procedure to 
perform model checking and model comparison. In this chapter, we focus on the 
simpler situation involving continuous variables.

Heterogeneous Factor Means

It is clear that the multilevel factor model in Eqs. (1) to (6) captures group 
differences in measurement intercepts.2 However, in many situations, researchers 
are interested in modeling individual or group differences in latent constructs. 
For example, in achievement studies, researchers may be interested in comparing 
classrooms in terms of their mean levels on different types of abilities (e.g., 
spatial reasoning). Such individual differences can be modeled using different 
factor means ξi for the individuals. As heterogeneity is introduced using different 
factor means, the measurement intercepts αi can be assumed to be invariant (i.e., 

2 Because we set the factors means to zero in Eq. (2), differences in measurement intercepts are 
equivalent to differences in indicator variable means.
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αi=α for i=1 to I). Using the same notation as in Eqs. (1) to (3), the (heterogeneous 
factor means) Level 1 model can be written as:

 xij=α+Λξij+δij, (9)

 ξij~N(vi,Φ), j=1 to ni, (10)

 δij~N(0,Θ), (11)

where νi is (r×1) vector of individual-specific factor means.
The population distribution specifying the heterogeneity in individual-level 

parameters (Level 2) can be written as

 vi~N(0, Δ), (12)

for i=1 to I. In Eq. (12), the factor means νi for each individual come from a 
population normal distribution with mean zero and a covariance matrix Δ. We 
assume a zero mean for this distribution to fix the location of the grand mean 
and ensure identification of parameters. This is analogous to setting the factor 
means of the first group to zero in a multigroup (i.e., fixed effects) factor analysis 
model. The covariance matrix Δ describes the covariation in the factor means 
across individuals (between-individual variation). Note that our specification for 
the multilevel factor analysis model allows for heterogeneity in factor means, 
but assumes invariant Λ, Φ, and Θ. Ansari, Jedidi, and Dube (2001) discussed 
a general multilevel factor model where these parameters are heterogeneous in 
the population.

To further examine the impact of ignoring heterogeneity and compare the 
implications of capturing heterogeneity at the factor means level, we compute the 
unconditional mean and covariance matrix for an arbitrary observation. Taking 
into account the differences in factor means across groups, the unconditional 
mean for an arbitrary observation yi can be written as

 E[E[xij|i]]=E[α+Λvi]=α, (13)

and the unconditional covariance can be written as

 V[xij]=E[V(xij|i)]+V[E(xij|i)]

 =E[ΛΦΛ′+Θ]+V[α+Λvi] (14)

 =Λ(Φ+Δ)Λ′+Θ

 =Λ(ΦAgg)Λ′+Θ. (15)
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Comparing Eq. (8) and Eq. (15), it is clear that the heterogeneous factor means 
model is a special case of the heterogeneous intercepts model where the first- and 
second-level loading matrixes are invariant (i.e., Λ=Λb) and where the second-
level error covariance matrix is null (i.e., Θb=0). Therefore, the identification of 
the heterogeneous factor means model does not pose any additional restrictions 
beyond the ones that we discussed for the heterogeneous intercepts model.

Moreover, a close examination of Eq. (14) reveals that an analysis that ignores 
heterogeneity in factor means should recover Λ and Θ, but will fail to separate Φ 
and Δ. Consequently, two types of misleading inferences will result from using 
such an analysis. First, because the diagonal elements in ΦAgg are necessarily 
larger than the corresponding elements in Φ, factor reliability estimates will be 
inflated (Lord & Novick, 1968; Muthén, 1989). Second, the magnitude and signs 
of factor covariances in ΦAgg can be distorted. For example, if the elements Φ and 
Δ are of the same sign, then the magnitude of the elements of (ΦAgg would be 
amplified. Alternatively, if the off-diagonal elements of Φ and Δ are of opposite 
sign, then the off-diagonal elements ΦAgg may get attenuated or may indeed have 
the wrong sign.

To capture observed heterogeneity, the individual factor means νi can be 
specified to vary according to some a priori specified covariates (e.g., gender). 
As in MIMIC modeling (see Muthén, 1989), we treat this case by making each 
latent factor ξij a function of the individual covariates. This specification puts us 
within the framework of the full structural equation model that we discuss next. 
We treat the estimation of the multilevel factor model in Eqs. (9) to (12) as a 
special case of the full SEM.

THE MULTILEVEL STRUCTURAL  
EQUATION MODEL

As in the factor model, a multilevel SEM is specified in two stages. In the first 
stage, structural and measurement models are specified for each individual. In 
the second stage, a population distribution is specified to model the variation of 
the parameters across all individuals. In this section, we consider an SEM where 
mean heterogeneity is modeled through the factor means. Extension to the case 
where mean heterogeneity is represented through the measurement intercepts 
follows the same approach, and therefore we do not discuss it.

Let i=1 to I represent individuals or groups and let j=1 to ni index the 
observations belonging to the ith individual. Suppose each individual provides 
multivariate observations on q endogenous and p exogenous indicator (manifest) 
variables yij and xij, respectively. The associations among these manifest variables 
can be described in terms of latent constructs using an SEM. Let the (r×1) vector 
ξij and the (m×1) vector ηij, respectively, contain the exogenous and endogenous 
latent variables. As is well known, the complete model for individual i consists 



Bayesian Structural Equation Models for Multilevel Data 137

of a measurement model that describes the relationship among the observed and 
latent variables and a structural model that relates the exogenous and endogenous 
latent variables. Specifically, the measurement model for individual i can be 
written as

 xij=αx+Λxξij+δij

 yij=αy+Λyηij+εij (16)

for j=1 to ni, where αx and αy are p×1 and q×1 measurement intercept vectors, 
respectively, for the exogenous and endogenous indicator variables. The (p×r) 
matrix Λx and the (q×m) matrix Λy contain the factor loadings. The terms 
δij~N(0, Θx) and  represent the vectors of measurement errors. The 
p×p matrix Θx and the q×q matrix Θy are diagonal and contain the measurement 
error variances. The r latent factors in ξij are assumed to be normally distributed 
N(vi, Φ), where νi is a r vector of individual-specific factor means and Φ is a r×r 
covariance matrix of the exogenous factor scores.

The structural model that relates the latent constructs ξij and ηij for each 
individual i is

 Biηij=γ0i+Γiξij+ζij, (17)

where Bi is a triangular (m×m) matrix of structural parameters specifying the 
links among the endogenous latent variables, γ0i is a vector of structural intercept 
terms, Γi is a (m×r) coefficient matrix denoting the effects of ξij on ηij, and ζij is a 
m×1 vector of disturbances. The disturbances ζij are assumed to be uncorrelated 
with ξij and are distributed N(0, Ψ), where Ψ is a (m×m ) covariance matrix 
that captures the residual variation in the structural model. Note that, in this 
chapter, we only consider a recursive SEM (i.e., triangular Bi) with unrestricted 
(nondiagonal) error covariance matrix, Ψ.

The structural model is crucially important to researchers because it includes 
structural parameters that measure the impact of key antecedent variables on 
outcomes. In many research studies, this relationship is of primary interest, 
and researchers often focus on studying the individual differences in structural 
parameters. For example, market researchers are usually interested in determining 
how consumers react differentially to market stimuli (see Jedidi et al., 1997, for 
an example). Previous research on multilevel models has not allowed for such 
forms of heterogeneity. In contrast, we allow the structural coefficients (Bi, y0i, 
Γi) to vary across individuals. As we show later, this specification captures both 
mean and covariance heterogeneity.

To complete the specification of the multilevel SEM, we now describe how 
the individual-level measurement parameters {νi} and the structural parameters 
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πi={Bi, γ0i, Γi} are distributed in the population. As in the multilevel factor model, 
we assume that νi is distributed multivariate normal N(0, Δ) in the population. 
Recall that we assume a zero mean for this population distribution to fix the 
location of the grand factor mean and ensure identification. For the structural 
model, πi is assumed to be distributed multivariate normal  where 
Zi is a matrix that contains individual specific covariates (e.g., gender, ethnic 
group). Such a specification allows for both observed and unobserved sources 
of heterogeneity. Specifically, the inclusion of covariates through Zi allows a 
researcher to test for specific moderating effects. If individual-level covariates 
are not available, then Zi reduces to an identity matrix. The parameters in  
explain the individual differences in the structural parameters in terms of the 
individual-level covariates (e.g., demographics). The  matrix captures the 
covariation in the structural parameters resulting from unobserved individual-
level variables. Because of the scale indeterminacy of the endogenous factors, 
we impose E(γ0i)=0 for identification. Although the population mean of the 
structural intercepts is fixed to zero, the individual-level intercepts are estimable 
subject to this constraint. This is analogous to fixing the intercept of one group 
to zero in a multigroup analysis (see Joreskog, 1971; Sorbom, 1981).

Taking into account the individual-level models and the heterogeneity 
specifications, the complete two-stage model can be written as:

Stage 1:

Stage 2:

  (19)

We now develop a Bayesian methodology for estimating the parameters of the 
full hierarchical SEM described in Eqs. (18) and (19). Our Bayesian procedure 
allows the estimation of the multilevel factor model in Eqs. (9) to (12) as a 
special case.

(18)
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INFERENCE

Let wij={yij, xij} be the joint vector of manifest variables for an arbitrary 
observation j for individual i. According to the model represented in Eqs. (18) 
and (19), this observation comes from a multivariate normal distribution fi(wij; 
μi, Σi) with conditional mean vector

  (20)

and conditional covariance matrix

  (21)

Both the conditional mean and covariance matrix in Eqs. (20) and (21), 
respectively, vary across individuals. Therefore, the SEM specified in Eqs. 
(18) and (19) captures both mean and covariance heterogeneity. However, 
the traditional multilevel structural model, where the structural coefficients 
are set to be invariant across individuals (i.e., Γi=Γ and Bi=B), captures only  
mean heterogeneity.

The likelihood for individual i is

  (22)

and the unconditional likelihood for a random sample of I individuals is given 
by the continuous mixture

  (23)

where h(φ) is the continuous population distribution that captures the heterogeneity 
in the parameters for the individuals. The unconditional likelihood L given in 
Eq. (23) is a function of the parameters  
and cannot be written in closed form, making maximum likelihood estimation 
extremely difficult. We therefore use a simulation-based Bayesian approach that 
uses MCMC methods to estimate the parameters.

Bayesian inference requires the specification of priors for the model parameters. 

Let  The unknown parameters 

for the model are then given by . Lee (1981) and 
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Arminger and Muthén (1998) discussed different forms of prior distributions for 
factor analysis and covariance structure models. Appendix 1 describes the prior 
distributions over the parameters in our model.

Inference in the Bayesian framework also requires one to summarize the joint 
posterior of all unknowns. Because this posterior density is very complex, we 
use simulation-based methods to obtain random draws from the posterior density 
(see Appendixes 1 and 2 for details). Inference can then be based on the empirical 
distribution of the draws. The complexity of the posterior density precludes the 
use of direct methods for obtaining these draws. Therefore, we use Markov Chain 
Monte Carlo (MCMC) methods to obtain these draws (see Gamerman, 1997; 
Gelman et al., 1996; Robert & Casella, 1999, for details regarding Bayesian 
inference and Markov Chain Monte Carlo methods). Specifically, our MCMC 
procedure involves Gibbs sampling (Gelfand & Smith, 1990; Geman & Geman 
1984) steps in tandem with data augmentation (Tanner & Wong, 1987) to obtain 
the requisite draws. The MCMC methods require sampling parameter estimates 
from the full conditional distribution of each block of parameters. In the context 
of our multilevel SEM we need to generate random draws for the blocks (α, Λ, 
{ξij}, {ηij},  Each iteration of the MCMC procedure 
involves sequentially sampling from the full conditional distributions associated 
with each block of parameters. The MCMC procedure also provides samples 
of the factor scores fij={ξij,ηij} and νi, thus enabling posterior inference about  
these quantities.

The MCMC sampler is run for a large number of iterations. This iterative 
scheme of sequential draws generates a Markov chain that converges in 
distribution to the joint posterior under general conditions (Tierney, 1994). After 
passing through an initial transient phase, the chain converges to the posterior 
distribution of parameters. Geyer (1992) recommended a single long run to 
obtain a sample from the posterior, whereas Gelman and Rubin (1992) proposed 
multiple chains from different starting values to help diagnose convergence. 
Although convergence cannot be proved, a number of convergence diagnostics 
that use the statistical properties of the chain have been proposed in the literature. 
Cowles and Carlin (1996) and Brooks and Roberts (1998) provided detailed 
reviews of many of the methods proposed in the literature. After the chains have 
converged, a large sample of draws can be obtained to approximate the posterior 
distribution to any desired degree of accuracy. Appendix 2 describes the full 
conditional distributions and the simulation steps involved in each iteration of 
the MCMC procedure.

A CUSTOMER SATISFACTION APPLICATION

Many researchers have analyzed the antecedents of customer satisfaction (see 
Oliver, 1997, for a review). Typically, researchers have postulated that overall 
customer satisfaction with a product or service is affected by its perceived 
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performance and by the extent to which a customer’s expectations are met or 
disconfirmed (e.g., Johnson, Anderson, & Fornell, 1995; Oliver, 1993).

We used the hierarchical Bayesian approach to estimate an SEM of 
satisfaction using panel data from a study on campus-dining services conducted 
at a large northeastern university. The data were collected using the following 
procedure. The population of interest consisted of students who had purchased 
all-inclusive meal plans for the fall semester. At the beginning of the semester 
during registration week, subjects from the population were recruited using 
sign-up sheets circulated by experimenters in booths set up in dining outlets 
and dormitories at the university. Sixty individuals signed up to attend an 
information session; of these, 55 agreed to participate in the panel. Each subject 
who participated in the study was paid $50 and was required to complete a 
daily diary for 39 consecutive days using the following procedure. As soon as 
possible after dinner every day, subjects were required to record their degree of 
Satisfaction with the dining service and their perception of the service provider’s 
performance along key dimensions including Food, Service, and the Dining 
Environment. Subjects also recorded their expectancy Disconfirmation (i.e., the 
degree to which their expectations of performance were met or disconfirmed). 
All the observable variables (items) were measured using seven-point scales. 
We excluded two subjects from the analysis because of limited data for those 
individuals. Because of missing data for some subjects, our final data set 
contains 1,542 observations from the remaining 53 subjects. Therefore, we have 
an average of 29 observations per subject.

We specified a model in which customers’ Satisfaction (η) with the dining 
service depends on perception of the dining service’s performance on Food (ξ1), 
Service (ξ2), and the Dining Environment (ξ3). In addition, Satisfaction depends 
on Disconfirmation (ξ4). Satisfaction for each service episode was measured using 
the following three items: very dissatisfied to very satisfied (y1), felt terrible to 
delighted (y2), and liked very little to liked very much (y3). Food performance 
was measured using the following three observable indicators: unpalatable to 
palatable (x1), bad taste to good taste (x2), and not nutritious to nutritious (x3). 
Service performance was measured on four items: indifferent to responsive (x4), 
unfriendly to friendly (x5), inefficient to efficient (x6), and uncaring to caring (x7). 
Dining Environment was measured using three items: unpleasant to pleasant 
(x8), dirty to clean (x9), and stressful to relaxing (x10). Finally, Disconfirmation 
was measured using two much better than expected to much worse than expected 
items (x11 and x12). Figure 5.1 presents a graphical summary of the structure of 
the Satisfaction model. Note that, to avoid clutter, Figure 5.1 does not show the 
covariances among the factors.

To understand the nature of heterogeneity in the customer satisfaction 
process, we specified and estimated three models. The base model, Model 1, 
is the conventional SEM that assumes that the data come from a homogeneous 
population (i.e., no heterogeneity across respondent). Model 2, consistent with 
the extant literature on multilevel modeling, assumes that individuals differ only 
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in their factor means. Model 3 allows for both heterogeneity in factor means and 
heterogeneity in structural coefficients, and therefore subsumes the multilevel 
formulation (Model 2).

Because of the indeterminacy in the scales and origins of the factors, we 
imposed the following constraints to achieve identification. In all three models, 
for each factor we set the loading of one indicator variable to unity. In addition, 
following the usual practice in SEM, we set the mean of each factor to zero for 
Model 1. In contrast, for Models 2 and 3, we assume that the factor means νi 
vary across individuals with a grand mean E(vi)=0. As discussed earlier, we also 
set the population mean of the structural intercept to zero [i.e., E(γ0i)=0]. Note 
that the measurement parameters in Models 1, 2, and 3 are identified because 
each factor has at least two indicators and the factors are allowed to covary (see 
Bollen, 1989). The structural parameters in Models 1, 2 and 3 are also identified 
because the structural model is a multiple regression equation.

We used the MCMC procedure described in Section 4 and Appendix 2 to 
estimate Models 1 through 3 inclusive. The MCMC algorithm was coded using 
the C programming language. Furthermore, we estimated Model 1 using Proc 
Calis in SAS to compare our Bayesian estimates with those obtained from the 
maximum likelihood estimator (MLE). Appendix 1 reports the prior distributions 
we used. The parameter estimates for all models are based on 20,000 draws 
obtained after discarding the first 10,000 iterations.

FIG. 5.1. The structural equation model for satisfaction.
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Model Evaluation
Bayes factors (Kass & Raftery, 1995) have traditionally been used in Bayesian 
analysis to compare two models. The calculation of Bayes factors from the 
MCMC output is difficult for complex models. Therefore, we use the pseudo-
Bayes factor (PsBF; Geisser & Eddy, 1979; Gelfand, 1996) as a surrogate for 
the Bayes factor. The PsBF is based on the cross-validation predictive density of 
the data instead of the prior predictive density used in the calculation of Bayes 
factors. It can therefore be used even with improper priors. Moreover, it can be 
conveniently computed for SEM using the MCMC draws.

Let w be the observed data and let w(ijk) represent the data with the kth variable 
of observation j from individual i deleted. The cross-validation predictive density 
can then be written as

  (24)

where φ is the vector of all parameters in the model. The PsBF for comparing 
two models (M1 and M2) is expressed in terms of the product of cross-validation 
predictive densities and can be written as

  (25)

The PsBF summarizes the evidence provided by the data for M1 against M2, and 
its value can be interpreted as the number of times model M1 is more (or less) 
probable than model M2.

The PsBF for the multilevel SEM can be calculated easily from a sample of 
d MCMC draws (φ1,…,φd). Because φ is the vector of all parameters, including 
the factor scores, the responses wijk, i=1 to I, j=1 to ni, and k=1 to p+q are 
conditionally independent given φ. In such a situation, a Monte Carlo estimate 
of π(wijk|w(ijk)) can be obtained as

  (26)

where the univariate normal f(wijk; φ(t)) is evaluated at tth draw, φ(t) of the MCMC 
sampler. Gelfand (1996) provided the derivation for the prior equation. In 
practice, we can calculate the logarithms of the numerator and denominator of 
the PsBF, and these can be used for comparing different models. These can be 
considered as a surrogate for the log-marginal data likelihoods log(Pr(D)) from 
the models.
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To determine which model best represents the heterogeneity in the 
satisfaction data, we compared the three models using the PsBF. A model with 
a higher log(P(D)) is the preferred model. The log-marginal likelihood for 
the three models are log(Pr(D|M1))=−28462.63; log(Pr(D)|M2))=−28358.49 
and log(Pr(D|M3))=−28316.03, respectively, where M1, M2, and M3 denote, 
respectively, Models 1, 2, and 3. Hence, the data strongly support Model 2 over 
Model 1 and Model 3 over Model 2 and Model 1.

To further assess the fit of each model and investigate the diagnostic potential 
of goodness-of-fit measures when applied to heterogeneous data, we computed 
the aggregate Goodness-of-Fit Index (GFI) for each model. The aggregate 
GFI compares the estimated implied covariance matrix  for an arbitrary 
observation, with the sample covariance matrix S. For all models, we computed 
the implied covariance matrix using the mean parameter estimates  from the 
simulation output. The GFI statistics for Models 1, 2, and 3, respectively, are 0.99, 
0.97, and 0.98. The close correspondence between the aggregate GFI measures 
for the three models demonstrates that a goodness-of-fit measure that is based 
on the aggregate covariance matrix S (which is computed from the aggregate 
data) fails to discriminate among models when the data are heterogeneous. The 
reason is that S is not a sufficient statistic for model parameters in the presence 
of heterogeneity. See Jedidi, Jagpal, and DeSarbo (1997) for an example that 
illustrates this point.

Because the main focus of Models 2 and 3 is on capturing heterogeneity at 
the individual level, we computed individual-specific GFI statistics using the 
data and the implied covariance matrices for each individual (see Eq. [21] for the 
implied covariance matrix from Model 3). Table 5.1 reports these GFI statistics 
for the 53 individuals in the sample. A comparison of the columns for Models 
1 and 2 shows that the individual-level GFIs for both these models are low for 
most individuals. In fact, the GFI statistics from Models 1 and 2 are negative3 
for a number of individuals, showing that the two models do not fit the data 
for these individuals. Although Model 2 subsumes Model 1, the GFI statistics 
show that solely accounting for heterogeneity in factor means does not improve 
model fit at the individual level. It is apparent from comparing the GFI statistics 
from Model 3 with those obtained from the other two models that Model 3 
provides a marked improvement in fit for each individual. This shows that the 
traditional psychometric methods (e.g., multilevel models) do not fully capture 
the heterogeneity in our data.

In summary, regardless of which statistic we use (marginal likelihoods or the 
individual-level GFI statistics), Model 3, which includes heterogeneous structural 
parameters, is the preferred model. In addition, it is clear that the aggregate 
GFI statistic is not suitable for assessing model adequacy in the presence of 
heterogeneous data.

3 The GFI statistic could be negative if the model does not fit the data well (see Bollen, 1989).
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PARAMETER ESTIMATES

We now examine the parameter estimates from Models 1, 2, and 3. We first 
discuss the results from the measurement model and then analyze the structural 
model estimates. Table 5.2 shows the factor loadings from the measurement 
model. The MLE factor loadings reported in Column 3 are virtually identical 
to those obtained from the nonheterogeneous Bayesian model, Model 1 (see 
Column 4). This close similarity in estimates is expected because we used diffuse 
priors and our sample size is large (1,542 observations). It is also clear from 
Table 5.2 that the loading estimates differ only slightly across all three models. 
This finding is not surprising because we assumed common factor loadings for 
all individuals. Overall, all factor loadings are significant, suggesting that the 
indicators are reliable measures for the underlying factors.

TABLE 5.1 Model Fit: GFI Statistics for Each Subject
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Table 5.3 reports the measurement error variances. First, as in Table 5.2, 
the maximum likelihood estimates (MLE) are almost identical to those obtained 
from the nonheterogeneous Bayesian model, Model 1. Second, a comparison of 
the estimates from Models 1 and 2 and Models 1 and 3 suggests that ignoring  
factor mean heterogeneity and/or structural heterogeneity induces a slight 
estimation bias.

Table 5.4 reports the estimated covariance matrix Φ of the exogenous 
factors, ξij for Models 1, 2, and 3. For Models 2 and 3, the table also reports 
the covariance matrix A of the mean factor scores νi across individuals. As in 
the previous tables, the MLE estimates are very similar to those from Model 1. 
Recall that Model 2 only captures heterogeneity in the factor means, νi. It is well 
known that ignoring heterogeneity in factor means results in a confounding of the  

TABLE 5.2 Measurement Model Results: Factor Loadings
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within- and between-covariance matrixes of the factors (i.e., ΦModel1=ΦModel2=ΔModel2, 
see Eq. [14]). The results for the three models confirm this theoretical 
relationship. For example, the first row of Table 5.4 reveals that ΦFood-Food for 
Model 1 is 1.569. This value is approximately equal to the sum of the estimates 
ΦFood-Food=1.165 and ΔFood-Food=0.426 obtained from Model 2. Thus, if the factor 
means are heterogeneous (Model 2), the results from a conventional model that 
ignores heterogeneity will always underestimate the factor variances and inflate 
the measurement reliability. A similar relationship exists between the estimates 
for Models 1 and 3. 

TABLE 5.3 Measurement Model Results: Measurement Error Variances
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Focusing on the estimates for Φ for Model 3, we see that all the exogenous 
factors are positively correlated. The estimates of Δ show that the mean factor 
scores are also positively correlated across individuals. In addition, the large 
magnitudes of the diagonal elements of Δ show that there is considerable 
heterogeneity in factor means across individuals. 

Table 5.5 reports the regression coefficients from the structural model. In 
interpreting the table, recall that Model 3 captures heterogeneity in the impact of 
the antecedent constructs on Satisfaction by assuming that the individual-specific 
coefficients come from a multivariate normal population distribution  
The population mean,  for the structural coefficients and the standard deviation 
of the individual specific coefficients  are reported in Column 5 of the table. 
The mean estimates for Model 3 show that Satisfaction is significantly affected 
by perceived performance on Food, Service, and Environment. In addition, 
the positive coefficient for Discontinuation confirms the previous findings in 
the literature that better-than-expected performance increases Satisfaction. The 
magnitudes of the across-individuals standard deviations (see the last v Column) 

TABLE 5.4 Estimated Covariance Structure of Antecedent Factors
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are large and confirm that the importance weights of the antecedant dimensions 
on Satisfaction vary significantly across subjects. 

The differences in the magnitudes of the coefficients across the models show 
that ignoring heterogeneity leads to biased estimates of the structural parameters. 
Furthermore, both Models 1 and 2 seriously overstate statistical significance 
because they understate the posterior standard deviations of all structural 
parameter estimates. For example, the posterior standard deviation for Food is 
0.049 for M3, but only 0.028 for M1 and M2. In addition, the last row of Table 
5.5 shows that, by failing to allow for structural heterogeneity, Models 1 and 
2 understate the goodness-of-fit of the structural regression model (i.e., larger 
estimated structural error variance ψ). This result is not surprising because the 
unaccounted heterogeneity is absorbed by the structural error term.

Figure 5.2 presents a plot of the estimated exogeneous mean factor scores for 
each individual. These scores represent the average perception for the individuals 
along the three dimensions of the service. The figure also shows how individuals 
differ on their mean disconfirmation scores. It is clear from the figure that there 
is considerable heterogeneity in the mean factor scores for the individuals.

SUMMARY AND CONCLUSIONS

We illustrate procedures for performing simulation based Bayesian inference 
and model assessment for multilevel SEM. These procedures are appropriate 
if the heterogeneity in the population can be measured on a continuum and 
multiple observations are available for each individual. The MCMC approach 

 TABLE 5.5 Structural Model: Regression Coefficients
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discussed in this chapter uses data augmentation and therefore circumvents the 
need for complex multidimensional integration, which is necessary for MLE. An 
important feature of this approach is that it automatically provides individual-
specific estimates of model parameters and factor scores. Thus, it is possible 
to adequately account for the uncertainty in these quantities because as these 
are not computed based on the plug-in estimates of the other parameters. The 
procedures we report in this chapter can be naturally extended to data structures 
with multiple levels of nesting and can also be modified easily to handle 
binary, ordered, and censored multilevel data. Our multilevel SEM specification 
assumes that all the individuals have common factor loadings, factor covariance 
matrix, measurement error variances, and structural error covariance matrix. 
Our procedures can be extended to allow for more general form of covariance 
structure heterogeneity. Ansari et al. (2001) illustrate covariance heterogeneity 
in the context of factor analysis models. Ansari, Jedidi, and Jagpal (2000) made 
this extension for the SEM model.

We illustrate the Bayesian methodology using data from a satisfaction 
study. The results show that the structural parameters vary significantly in the 
population (i.e., it is incorrect to analyze the pooled data set using a conventional 
SEM). The estimates obtained by applying the standard (MLE) and the Bayesian 
procedures to a conventional SEM model (i.e., a model that does not allow for 
unobservable heterogeneity) were misleading, although the aggregate goodness-
of-fit statistic was high (GFI=0.99). In particular, the simple model understated 
the goodness of fit for the structural equation and provided biased estimates of 
the structural parameters. Perhaps most importantly, the simple model seriously 
understated the standard errors of the structural parameters. Finally, we show 
that the traditional multilevel methods do not fully capture the heterogeneity 
in our data. Thus, accounting for heterogeneity in both mean and covariance 
structures is important for obtaining proper inferences.

APPENDIX 1: PRIOR DISTRIBUTIONS

We specify the prior distribution over φ as a product of independent priors

  (i)

We use proper but diffuse priors over all model parameters. The priors for the 
measurement intercepts α are assumed to be multivariate normal N(k, A). The 
covariance matrix A can be specified to be diagonal with the elements (variances) 
set to large values to represent vague knowledge. The exact location of this 
distribution is no longer critical once a large variance is assumed; therefore, 
without loss of generality, ĸ can be set to zero. For the application we used N(0, 
100I), where I is an identity matrix with appropriate dimensionality.
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The combined factor loading matrix Λ has a patterned structure owing to the 
identification restrictions that require setting some of the elements of Λ to zero 
or one. We therefore specified independent multivariate normal priors over the 
free elements within each row of the matrix. We have for row k a prior N(gk, 
Hk). The covariance matrix Hk is specified to be diagonal with large variances 
to ensure a diffuse prior. Thus, the prior over the loading matrix is the product 
of the independent priors associated with the rows of Λ. In the application, we 
specified the prior distribution for each row to be N(0, 100I).

The precision matrix Δ–1 associated with the population distribution vi~N(0, 
Δ) is a r×r positive definite matrix. In keeping with standard Bayesian analysis 
of linear models, we assumed a Wishart prior W(δ,(δΩ)−1), where Ω–1 can be 
considered the expected prior precision of the νis. Smaller δ values correspond 
to vaguer prior distributions. For the application, we set δ=5 and Ω=I to ensure 
a proper prior.

The r×r precision matrix Φ–1 associated with the population distribution 
ξij~N(vi,Φ) is assumed to come from a Wishart prior W(ρ,(ρR)−1). Here R−1 
can be considered the expected prior precision of the ξijs. Smaller values of ρ 
correspond to vaguer prior distributions. For the satisfaction application, we used 
a prior of W(5,5I).

We assume independent inverse gamma prior for each of the ν=(p+q) 
measurement error precisions contained in Θ–1. That θk~IG(ak, bk),k=1 to v. In 
the application, we assumed αk=3 and bk=1,000 for all k.

The prior for the vector  is specified to be multivariate normal N(c, C). The 
covariance matrix C can be assumed to be diagonal and its entries chosen to 
represent vague knowledge. The exact location vector c is no longer critical once 
a large variance is assumed; hence, without loss of generality, we set c to zero. 
In the application we therefore set c=0 and C=100I.

We assumed a Wishart prior W(ρv, (ρvRv)–1) over the precision matrix  
associated with the structural parameters πi. Smaller ρv values correspond 
to vaguer prior distributions. We therefore set ρv=5 and Rv=0.1I. Finally, we 
assumed a Wishart W(ρψ,(ρψRψ)–1 prior over the precision matrix Ψ–1 of the 
structural model. If the structural model consists of a single equation, then an 
Inverse gamma prior over the single structural error variance parameter can be 
assumed instead. In the application we chose IG(3,1000) for the prior over the 
univariate ψ.

APPENDIX 2: FULL  
CONDITIONAL DISTRIBUTIONS

The MCMC methods require sampling parameter estimates from the full 
conditional distribution of each block of parameters. In the context of our 
multilevel structural equation model, we need to generate random draws for the 
following blocks of parameters:  
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Each iteration of the MCMC procedure involves sequentially sampling from the 
full conditional distributions associated with each block of parameters. 

The (l+1)th iteration of the MCMC algorithm requires us to generate random 
draws from the following full conditional distributions:

(a) The full conditional for the measurement intercepts α is a multivariate 
normal distribution. Using standard Bayesian theory regarding conjugacy, 
we see that the normal sampling density of wij and the normal prior N(κ, 
A) for α combine to give the conditional

  (i)

 where and  
and fij={ξij, ηij}.

(b) The loading matrix Λ is a patterned matrix containing both fixed and 
free elements. Of the fixed elements, some are fixed to zero, while others 
are fixed at one to impose identifiability constraints. Given the choice 
of the prior distributions, the full conditionals pertaining to the different 
rows are independent. Therefore, the rows can be handled sequentially. 
The normal priors combined with the normal likelihood for the manifest 
variables yield multivariate normal full conditional distributions for the 
free elements in each row of the loadings matrix Λ. Let λk be the vector 
of free elements in row k. The prior for λk is given by p(λk)=N(gk, Hk). Let 

 be the vector of factor scores corresponding to the elements in row 
k of Λ that are set to one and let f–ijk contain the remaining factor scores 
from fij. Form the adjusted variable  where  is a 
vector of ones. Given the prior, the vector λk can be sampled from the full 
conditional distribution given by

  (ii)

 where 

(c) The full conditional distribution for the factor scores ξij is a multivariate 
normal distribution. The mean and variance of this distribution 
can be obtained by considering the prior ξij~N(vi, Φ) and the two 
data sources for ξij. The first data we consider are ηij. Consider the 
SEM Biηij=γoi+Γiξij+ζij. Define  An intermediate 
posterior distribution for ξij can be written as  where 

This inter-
mediate posterior acts as a prior for the other data source xij. Taking into 
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account the measurement equation, xij=αx+Λxξij+δij,  the full conditional 
for ξij can be written as  where  and 

(d) The full conditional distribution for the individual-level factor means νi is 
a multivariate normal distribution. This can be derived by combining the 
normal sampling density ξij~N(vi, Φ) with the automatic prior vi~N(0, Δ). 
We have

  (iii)

 where  and  

(e) From standard Bayesian theory, we see that the full conditional distribution 
for the precision matrix Φ–1 of the individual-level factor scores is a 
Wishart distribution. This can be written as

  (iv)

 where 

(f) The full conditional for the precision matrix Δ–1 of the factor means is a 
Wishart distribution. Given the prior W(δ,(δΩ)–1), the full conditional can 
be written as

  (v)

(g) The full conditional distributions for the diagonal elements of the 
measurement error variances Θ (i.e., θk, k=1 to r) are independent inverse 
gamma distributions. These distributions follow from standard Bayesian 
theory and can be written as

  (vi)

 where λk is a vector containing the elements of row k of Λ.

(h) The full conditional for the factor scores ηij is a multivariate 
normal distribution. Consider the reduced form for the structural 
model  Let  Then the full 
conditional is given by  where  and 
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(i) The full conditional for the structural parameters πi={Bi, γoi, Γi} associated 
with individual i is a multivariate normal distribution. For a recursive 
system of simultaneous equations, the structural model Biηij=γi,o+Γiξij+ζij 
is a general triangular system (See Zellner, 1971). This system can be 
recast as  where  is an appropriately dimensioned 
matrix containing both the exogenous and endogenous factor scores. The 
key feature of a triangular system is that the determinant of the matrix 
of the coefficients of the endogenous variables η vanishes. Thus, we can 
treat the system  as a seemingly unrelated regression (SUR) 
system. Given the prior  the full conditional is given 
by  where  and  

(j) From standard Bayesian theory pertaining to linear models, the full 
conditional distribution for the precision matrix Ψ–1 of the structural model 
is Wishart and is given by

  (vii)

 where ρpos=ρψ+N and  and 

(k) The full conditional for the population structural parameters  is a 
multivariate normal distribution and can be written as

  (viii)

 where  and  .

(l) The full conditional for the precision matrix  of the individual-level 
structural parameters πi is a Wishart distribution. Given the prior W(ρv, 
(ρvRv)–1), the full conditional can be written as

  (ix)
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Kenny and Judd (1984) formulated a model with interaction effects of two latent 
variables and suggested using product variables to estimate the model. Using 
one and four product variables and simulation techniques, Yang-Jonsson (1997) 
studied the estimation of this model with three methods: maximum likelihood 
(ML), weighted least squares (WLS), and weighted least squares based on the 
augmented moment matrix (WLSA). Because the model implies non-normality, 
one would expect WLS and WLSA to be better than ML at least in large samples, 
but Yang-Jonsson (1997) found that ML often works well over a range of sample 
sizes from 400 to 3,200, except that asymptotic standard errors and chi-squares 
of ML estimates are, in principle, incorrectly computed. In this chapter, we show 
that both asymptotic standard errors and chi-squares for ML can be corrected for 
non-normality using Satorra-Bentler type scaling corrections.

The Kenny-Judd model is used as an example of a general model with non-
linear relationships between latent variables. Most of the arguments presented 
apply more generally than just to the Kenny-Judd model.

The Kenny-Judd model was defined earlier. Jöreskog and Yang (1996) and 
Yang-Jonsson (1997) showed that this model is identified using products of 
observed variables. Kenny and Judd suggested using four product variables, but 
in fact only one product variable is necessary for identification.
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The implications of using product variables are non-normality and constraints 
on the mean vector as well as on the covariance matrix. Hence, both the mean 
vector and the covariance matrix must be used in the analysis.

THE KENNY-JUDD MODEL

Kenny and Judd (1984) formulated a nonlinear regression equation:

 y =α+γ1ξ1+γ2ξ2+γ3ξ1ξ2+ζ, (1)

with the idea that there is an interactive effect of ξ1 and ξ2 on y in addition to the 
direct effects of each of ξ1 and ξ2 alone, and this interactive effect is manifesting 
itself in terms of an effect of the product of ξ1 and ξ2.

The variables ξ1 and ξ2 are latent variables that are not directly observable. 
Kenny and Judd (1984) considered the case when there are two observable 
indicators x1 and x2 of ξ1 and two observable indicators x3 and x4 of ξ2,  
such that

  (2)

Kenny and Judd (1984) did not include the constant intercept terms α and  
in Eqs. (1) and (2). The usual argument for leaving these out—that one can work 
with the observed variables in deviation scores from their means—is not valid 
here. The point is that even if y, ξ1, ξ2, and ζ in Eqs. (1) all have zero means, α 
will still be nonzero. As is seen later, the means of the observed variables are 
functions of other parameters in the model, and therefore the intercept terms 
have to be estimated jointly with all the other parameters.

We make the following assumptions:

1. ξ1 and ξ2 are bivariate normal with zero means
2. ζ~N(0, ψ)
3. δi~N(0, θi), i=1,…,4
4. δi is independent of δj for i≠j
5. δi is independent of ξj for i=1,…,4 and j=1, 2
6. ζ is independent of δi and ξj for i=1,…,4 and j=1, 2

Of these, Assumptions 4 to 6 are crucial and untestable, whereas Assumptions 
1 to 3 are not essential and testable.
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The model includes the product variable ξ1ξ2. To estimate the model, one 
needs some indicators of this. Kenny and Judd (1984) suggested using product 
variables xix3, x1x4, x2x3, x2x4 together with (y, x1, x2, x3, x4) to estimate the model, 
but any number of these product variables can be used. It is of interest to know 
if it is better to use one product variable or more than one. In this chapter, we 
refer to the model with one product variable as Model 1 and the model with four 
product variables as Model 2.

The consequences of product variables in the model are:

• y is not normal, although ξ1 and ξ2 are. The joint distribution of (y, x1, x2, 
x3, x4) is not multivariate normal, although that of (x1, x2, x3, x4) is.

• The mean of y is  So the mean vector of (y, x1, x2, x3, x4) is 
a function not only of  but also of γ3 and So both the 
mean vector and the covariance matrix of the observed variables should be 
used to estimate the model.

• Using one or more product variables x1x3, x1x4, x2x3, x2x4 together with y, xl, 
x2, x3, x4 to estimate the model implies still more non-normality and even 
more complicated constraints on both the mean vector and the covariance 
matrix of the observed variables.

For the model with one product variable,

  (3)

where

   (4)

the mean vector and covariance matrix of (y, x1, x2, x3, x4, x5) are 

  (5)

(6)
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where
  (7)

  (8)

  (9)

  (10)

  (11)

  (12)

  (13)

The parameter vector representing the independent parameters is

 

Model 1 has 9 degrees of freedom. This is obtained as the number of elements 
in μ (Eq. [6]) plus the number of distinct elements in Σ (Eq. [21]) minus the 
number of parameters in θ (Eq. [18]). With four product variables, the number 
of parameters is the same, but μ and Σ are extended with three more rows. Model 
2 has 36 degrees of freedom.

MAXIMUM LIKELIHOOD METHOD

Let z1, z2,…, zN be N independent observations of the random vector

 Z=(y, x1, x2, x3, x4, x5),

and let  and S be the sample mean vector and covariance matrix. Let μ and Σ 
be the corresponding population mean vector and covariance matrix. These are 
functions of the parameter vector

The maximum likelihood (ML) method will estimate θ by minimizing the  
fit function

  (14)

where k is the number of variables in z (here k=6). This fit function is derived 
from the ML principle based on the assumption that the observed variables z 
have a multinomial distribution (see e.g., Anderson, 1984, for a derivation of the 
multi-normal likelihood). Because of the product variables, this assumption does 



Robust Standard Errors and Chi-Squares for Interaction Models 163

not hold for the Kenny-Judd model. As stated previously, the random vector 
z is not multivariate normal. The approach studied here is that of using ML 
estimates of parameters, but with standard errors and chi-squares corrected for 
non-normality.

In this chapter, we consider ML estimation via the augmented moment matrix. 
The reason for this is that it implies skewness so that the sample mean vector and 
covariance matrix are not independent. Therefore, one should analyze a matrix 
that contains both the mean vector and the covariance matrix. Such a matrix 
is the augmented moment matrix. The correction of standard errors and chi-
squares involves the use of the asymptotic covariance matrix of the elements of 
the augmented moment matrix.

The sample augmented moment matrix is defined as

  (15)

This is the matrix of sample moments about zero for the vector z augmented 
with a variable, which is constant equal to 1 for every case. The corresponding 
population matrix is

  (16)
Let

 a′= (a11, a21, a22, a31,…,ak+1,k, 1)

be a vector of the nonduplicated elements of A, and let

 α′= (α11, α21, α22, α31,…, αk+1,k, 1)

be a vector of the corresponding population moments. Note that the last element 
in these matrices is a fixed constant equal to 1.

We first show that the ML fit function (Eq. [14]) is identically the same 
function θ as

  (17)

Using well-known formulas for the determinant and inverse of a partitioned 
matrix, it is readily verified that

  (18)

   (19)

  (20)
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Because

  (21)

the trace of A becomes

  (22)

  (23)

  (24)

  (25)

Substitution of Eqs. (18), (19), and (25) into Eq. (17) shows that the right-hand 
side of Eq. (17) is identically the same as the right-hand side of Eq. (14), except 
for the additive constant 1.

ASYMPTOTIC STANDARD ERRORS  
AND CHI-SQUARES

The asymptotic standard errors given by LISREL for ML estimates assumes 
that the observed variables have a multivariate normal distribution, which is not 
the case here. These standard errors are obtained from the inverse of the Fisher 
information matrix. This means that the standard errors are not asymptotically 
correct. However, Browne (1984) pointed out that it is possible to obtain correct 
asymptotic standard errors under non-normality if one has a consistent estimate 
of the asymptotic covariance matrix W of the vector s of the nonduplicated 
elements of the sample covariance matrix S.Browne (1984), gave a general 
formula for the asymptotic covariance matrix of  for ML estimates. This 
formula does not apply directly to our problem for two reasons. First, it applies 
only to covariance structures and not to a simultaneous mean and covariance 
structure. Second, it involves the inverse of W, which does not exist for Model 
2. Satorra and Bentler (1988) and Satorra (1989) gave another asymptotically 
equivalent formula that does not require the inverse of W. However, this formula 
still applies only to covariance structures, although it can easily be extended to 
more general moment structures. In this section, it is shown how Satorra and 
Bentler’s formula can be applied. This will facilitate a direct comparison of the 
two asymptotic standard errors and χ2 of ML estimates.

Consider the fit function

   (26)
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where F is Eq. (17).
Let Δ(s×t)=∂α/∂θ′, where s=(k+l)(k+2)/2 and t=the number of independent 

parameters in θ. Let n=N−1. Assume that A converges in probability to  as 
the sample size increases and let θ0 be the value of θ that minimizes   
We say that the model holds if  Furthermore, let

  (27)

evaluated at  and let

  (28)

where Δ0 is Δ evaluated at θ=θ0 The matrix V0 is

 

where D(k2×s) is the duplication matrix of Magnus and Neudecker (1988). Then 
the asymptotic covariance matrix of  is given by (Satorra, 1989)

  (29)

where Ω is the asymptotic covariance matrix a. Because of the last element of a, 
both V0 and Ω are singular, but none of them need’s to be inverted.

Furthermore, let  and  be Δ and E evaluated at  and let WNNT be a 
consistent estimate of nΩ under non-normality. Then a consistent estimate of 

 may be obtained by substituting  WNNT, and  for Δ0, Ω, and E0 in 
Eq. (29). Note that WNNT need not be inverted.

To test the model, one can use

  (30)

as a test statistic (Satorra & Bentler 1988), where1

  (31)

  (32)

1 Jöreskog et al. (1999) incorrectly gave the formula for h1 without the exponent–1.
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 is the weight matrix under normality, where K=D(D′D)-1. 
 is an orthogonal complement to  satisfying  and WNNT 

is computed by PRELIS under non-normality. The elements of WNNT are  
given by

 wgh,ij=nEst[ACov(agh, aij)]=nghij−aghaij,  (33) 

where

  (34)

is a fourth-order sample moment about zero.
If the model holds and is identified, c in Eq. (30) is approximately distributed 

as χ2 with d degrees of freedom, where d=s−t for ML.

SIMULATION DESIGN

Following the assumptions in the first section, we can generate data for the Kenny-
Judd model. Although we are generating normal variables, the product variables 
used in the analysis are not normal. As stated previously, there are 18 parameters 
in the Kenny-Judd model—namely,  θ3, 
θ4, α, and , i=1, 2, 3, 4. These must all be specified to generate data on the 
observed variables. We have chosen the following population parameter values:

 

The sample sizes used in the simulation are shown in Table 6.1
These sample sizes are considered to be from sufficiently small to sufficiently 

large. We chose 600 replications in this study (i.e., 600 parameter estimates of 
each sample size was estimated). Because of nonconvergence in ML, the actual 
number of replicates is less than 600. Table 6.2 shows the number of converged 
samples for each sample size. It is seen that nonconvergence is a serious problem 
for ML, particularly for N=100, but even for N=3,200 we did not get all samples 
to converge.

TABLE 6.1 Sample Sizes
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RESULTS

Asymptotic Standard Errors
LISREL computes estimated asymptotic standard errors for each parameter and 
each sample. It is well known (see e.g., Browne, 1984; Satorra, 1989) that these 
asymptotic standard errors for ML are incorrect when the observed variables 
are not multivariate normal, as they are in our study due to the use of product 
variables. The bias in standard errors is measured by a standard error ratio that is 
the ratio of the average estimated standard error and the empirical standard error 
of the parameter estimates. In this context, the latter is the standard deviation in 
the distribution of the parameter estimates and is taken to be the true standard 
error. A value of 1 for the standard error ratio indicates no bias, values below 1 
indicate underestimation, and values above 1 indicate overestimation.

The estimated standard error ratios are given in Table 6.3 for Model 1 and in 
Table 6.4 for Model 2. It is seen that before the correction the standard errors are 
almost always underestimated. The degree of underestimation does not decrease 
with increasing sample size; it is quite the contrary. The standard errors are more 
underestimated for Model 2 than for Model 1. This is in line with the interpretation 
that Model 2 introduces more non-normality in the observed variables due to the 
use of four product variables instead of only one product variable in Model 1. 
For N=3,200, the largest bias is −27% for Model 1 and −39% for Model 2. For 
γ3 and N=3,200, the bias is −9% for Model 1 and −29% for Model 2.

Using the formulas developed by Satorra and Bentler (1988) and Satorra 
(1989) the corrected asymptotic standard errors are computed and shown in the 
bottom half of Tables 6.3 and 6.4. It is seen that the corrected standard errors for 
Model 1 are slightly better for sample sizes 400 and larger. For sample sizes 100 
and 200, there are ups and downs. The correction works for some parameters and 
not for others for these two samples sizes.

For Model 2, the correction works much better for all parameters and all 
sample sizes. For N=100, the bias is −28% on average before the correction and 
−14% after correction. For N=3,200, the largest bias is −39% before correction 
and −27% after correction. For γ3 at the same sample size, the bias comes down 
from −29% to −7%. 

TABLE 6.2 Converged Samples
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Chi-Squared Goodness-of-Fit Statistic

To test a model, an asymptotic χ2 goodness-of-fit test is used. If the model holds, 
which is the case here, this χ2 should be distributed, in large sample, as χ2 with 
specified degrees of freedom. We investigate the extent to which this is the case 
by computing the mean and standard deviation of the chi-square values obtained 
from each sample. We also compute the percentage of chisquare values exceeding 

TABLE 6.3 Standard Error Ratios for Model 1 Model 1: One  
Product Variable
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the 95th and 99th percentile (P95 and P99) of the chi-square distribution. Table 
6.5 shows the results for before and after the corrections.

It is seen that, before corrections, there is a tendency to reject the models too 
often when the models hold. After the correction the χ2 are all underestimated 
for all the sample sizes and for both models. For Model 1, P95 and P99 perform 
worse for sample sizes 100 and better for other sample sizes. For sample size 

TABLE 6.4 Standard Error Ratios for Model 2 Model 2: Four  
Product Variables
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3,200, the P95 is exactly 5% as expected. For Model 2, P95 is worse after 
correction than before correction for all sample sizes. P99 is slightly better for 
sample sizes 1,600 and 3,200.

CONCLUSION

Using the formulas of Satorra (1989) and Satorra and Bentler (1988), one can 
compute the correct asymptotic standard errors and chi-squares of ML estimates 
under non-normality. The corrections work better for the model with four 
product variables (the model has more non-normality). Chi-squares after the 

TABLE 6.5 Distribution of χ2 TV=Target Value Model 1: One  
Product Variable
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corrections are not as good as we expected especially for the model with four 
product variables. For the model with one product variable they were better for 
larger sample sizes. A plausible explanation for the poor performance of the 
chi-square corrections is that the asymptotic covariance matrix involves eight-
order moments which are difficult to estimate accurately unless one has a very  
large sample.
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Researchers in the behavioral and social sciences often deal with complex 
models involving interaction and nonlinear effects in addition to main effects 
of variables. For hypotheses about interaction and nonlinear effects between 
continuous variables, analyses are frequently conducted using multiple regression 
techniques (e.g., Aiken & West, 1991; Jaccard, Turrisi, & Wan, 1990). However, 
concerns with these techniques have been raised regarding measurement error 
that often introduces bias in regression coefficients and lowers the power of 
statistical tests for these nonlinear effects (Busemeyer & Jones, 1983; Jaccard 
& Wan, 1995). Therefore, methods such as structural equation modeling (SEM) 
with latent variables, which can account for errors in measurement, have generally 
been recommended for modeling interaction and quadratic effects (Jaccard & 
Wan, 1996).

In the 1980s, Kenny and Judd (1984) provided one of the first examples of 
estimating structural equation models with interactions and quadratics in latent 
variables. Unfortunately, the procedure was difficult to use due to limitations 
in standard SEM softwares for handling of nonlinear constraints. Subsequent 
extensions of Kenny and Judd’s procedure have made their method more 
accessible to a broad audience of substantive researchers. Recent developments 
in software (LIS-REL 8; Jöreskog & Sörbom, 1993) and contributions by Jaccard 
and Wan (1995), Jöreskog and Yang (1996), and Ping (1995, 1996) have made 
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Kenny and Judd’s technique easier to apply and have provided a fresh look at 
the statistical issues involved. Other methods such as a multisample/multigroup 
method (Neale, 1998; Rigdon, Schumacker, & Wothke, 1998) and a two-stage 
least squares approach (Bollen, 1995) have also been proposed and recommended 
as viable alternatives. These developments have provided new opportunities for 
modeling interactions and quadratics within the SEM framework, which allow 
the incorporation of measurement error into model tests and parameter estimation 
(Jaccard & Wan, 1995).

EXTENDING THE ANALYSIS OF  
INTERACTION EFFECTS TO LATENT  

GROWTH MODELS

The existing SEM-based methods for interaction analysis are readily applicable for 
cross-sectional models involving interaction terms between continuous variables. 
Their utility in longitudinal studies, however, remains largely unexplored. Given 
an increasing interest in the analysis of change using longitudinal data (Collins 
& Horn, 1991; Collins & Sayer, in press), a method that allows consideration of 
interaction between dynamic, longitudinal change variables would be beneficial 
to gain a better understanding of issues related to the pattern of change over 
time. In this chapter, we consider interaction analysis in the context of latent 
growth modeling (LGM; McArdle, 1988; Meredith & Tisak, 1990; Muthén, 
1991). LGM allows for the analysis of intra- and interindividual trajectories in 
developmental models and has been shown to be quite flexible in addressing 
various questions related to growth or change (e.g., Duncan, Duncan, Strycker, 
Li, & Alpert, 1999; McArdle, 1998; Muthén, 1997; Muthén & Curran, 1997; 
Raykov, 1996; Stoolmiller, 1995; Willett & Sayer, 1994, 1996). For example, 
questions and hypotheses about determinants and outcomes of growth can be 
parameterized by focusing on predictors of slope scores and/or slope scores as 
predictors (e.g., Stoolmiller, Duncan, Bank, & Patterson, 1993; Walker, Acock, 
Bowman, & Li, 1996).

Although it is clear that latent curve analysis can be a useful tool for 
analyzing patterns and predictors of change, it is also important to consider 
extensions of the method to the analysis of more complex forms of dynamic 
system models (McArdle & Hamagami, in press), such as models involving 
interactive relationships between growth parameters. Modeling the interaction 
among change scores (slope factors) may be of substantive interest in hypotheses 
testing to determine how change in two latent attributes interact with one 
another to produce a joint effect on growth of an outcome (criterion) variable. 
This chapter provides an extension of latent variable interaction analysis to 
longitudinal models involving growth parameters. In the following section, a 
discussion of the extension of Jöreskog and Yang’s (1996) interaction method 
to latent growth curve models is provided. Specifically, we focus on interactions 
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between two latent growth slope factors and their joint effect on the slope factor 
of a criterion variable.

LATENT GROWTH MODELS WITH INTERACTION BETWEEN 
LATENT GROWTH (SLOPE) FACTORS

Suppose we are interested in a hypothesis about the dynamic influence of two 
exogenous latent growth variables, X and Z, on the rate of change in Y, in which X 
and Z are operationalized as time-changing latent slope predictors. For simplicity, 
we use a two-factor growth model of change (i.e., intercept, slope) for X, Z, and 
Y. In this hypothetical situation, we want to investigate the extent to which the 
impact of joint changes in X and Z influences changes in Y. More specifically, 
we examine whether the effect of longitudinal change in X on Y is influenced or 
moderated by the level of simultaneous change in Z, the moderator variable, by 
testing the interactive relationship between the two growth parameters (i.e., slope 
factors) on the slope of Y. As such, we question whether there is an interaction 
between two dynamic predictors, the growth trajectories of X and Z, that jointly 
influence the change in the criterion variable in addition to the direct effects of 
change in X and Z. In the following example, we present a model that illustrates 
the situation where two exogenous latent variables, consisting of growth curve 
factors, are hypothesized to interact with each other longitudinally to influence 
an endogenous latent growth slope factor. This hypothetical model is depicted 
in Fig. 7.1.

FIG. 7. 1. A hypothetical latent growth model with interaction  
between two slope factors.
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In Fig. 7.1, two growth variables (X and Z) are each measured by the time 
series of the repeated variables (x1, x2,…, xT for X and z1, z2,…, zT for Z). The 
latent product term of the exogenous variables, denoted by XZ, represents 
a multiplicative interaction between the latent slope factors X and Z, with 
its crossproduct indicators (not shown) formed by multiplying each of the 
corresponding observed indicators of X and Z. Details on the formulation of these 
two-way cross-product terms are presented in the section on model specification. 
Similar to the exogenous latent variables, there is a two-factor latent growth 
outcome variable (symbolized by Y) with Intercept and Slope, measured again 
by the time series of repeated variables Y[t], for t=1 to T.

Although the model shown in Fig. 7.1 is acknowledged to be complex compared 
with the conventional latent variable interaction models, in that it involves a time 
dimension, this specification is central to basic questions that are asked by many 
social science researchers in the study of change: Does longitudinal change in 
predictor variables influence the rate of change in an outcome variable? If so, 
does the simultaneous change in predictor variables interact to jointly influence 
the rate of change in the outcome variable?

There are various techniques for estimating latent interaction effects (see 
Schumacker & Marcoulides, 1998, for a review of currently available procedures). 
Among the full information-based methods (i.e., fitting a model to all parameters 
simultaneously), the Jöreskog and Yang (1996) procedure is the most relevant 
for applications within the latent growth curve modeling framework. This is 
because the Jöreskog and Yang approach involves specification of both first 
and second moments (i.e., the mean vector and covariance matrix) in model 
estimation. Other procedures (e.g., Jaccard & Wan, 1995; Ping, 1995, 1996) 
require centering of the raw scores (Jaccard & Wan, 1996) and therefore are 
not directly applicable to latent curve analysis, which utilizes both covariance 
and mean structures. In what follows, we outline the model specification for 
the interaction analysis of growth models within the LISREL framework (see 
Willett & Sayer’s 1994, well-regarded article on modeling growth/change using 
the LISREL approach). For the sake of continuity, we begin the presentation 
using a univariate two-factor growth model. We then build on to this example 
by specifying a multivariate growth model involving an interaction term between 
two exogenous latent slope factors.

Model Specifications Using the LISREL Approach
A Growth Model. We consider a univariate, two-factor (intercept, slope) growth 
model within a two-level latent variable growth modeling framework (Willett 
& Sayer, 1994). Assuming four equal-interval time points, Level 1 is a LISREL 
measurement model for endogenous variables Y:

  (1)
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where Y is a 4×1 vector of observed outcomes for the T=4 time points,  a 
4×1 intercept vector, Λ a 4×2 matrix of factor loadings, η a 2×1 vector of 
latent variables representing the growth (i.e., intercept, slope) parameters 
involving means and variances, and  a 4×1 vector of time-specific errors in the 
measurement of Y that are uncorrelated with η. As in classic factor analysis, it 
is assumed that the errors are normal and uncorrelated—that is,  with 
Θ= diag 

Equation (1) can be written as follows to represent the observed status Yi of 
an individual i at time t:

 

Note that the elements of  and Λy parameter matrixes are entirely constrained to 
contain prespecified values and constants (Willett & Sayer, 1994). The columns of 
Λ represent specific aspects of changes and are termed basis functions (Meredith 
& Tisak, 1990). There are various approaches to specifying the elements in Λ to 
reflect true change. Commonly used approaches include use of fixed numerical 
values or estimated values from the data. For example, a linear growth function 
can be specified using the loadings of constant Is in the first column (defining 
intercept) and t1=0, t2=1, t3=2, and t4=3 in the second column (defining slope) 
in Λ, so that η1 represents the initial status of individual i on his or her growth 
trajectory and η2 represents his or her linear growth rate across t1 to t4 on this 
trajectory. Alternatively, the growth can be specified as of t1=0, t2=1, t3=*, and 
t4=* in the second column of Λ, where * means that the loading is freely estimated 
from the data. With this formulation, the model becomes an unspecified growth 
function, where η1 represents the initial level of the growth trajectory and η2 
corresponds to an optimal shape function on the growth trajectory.

Level 2 is a structural model that shows the influence of latent variables on 
each other:

 η=α+Bη+ζ, (2)

where α(2×1) is a vector of intercepts (for endogenous ηs) or means (for 
exogenous ηs), B is a null matrix, and ζ(2×1) is a vector of deviations of the 
parameters from their respective means and distributed as ζ~N(0, Ψ) with Cov(ζ 
)Ψ. In estimating the model in Eqns. (1) and (2), one obtains estimates of the basis 
function loadings in Λ, the variances and covariance of latent growth factors in 
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Ψ, the error variances (or uniqueness variances) in  and latent growth mean 
estimates in α.

Growth Curve Model With a Product Term. Having briefly described the basic 
feature of an LGM, we now turn to the model shown in Fig. 7.1 and outline the 
model specification for the interaction analysis using Jöreskog-Yang’s (1996) 
method. To facilitate the presentation, a latent growth curve interaction model is 
presented in Fig. 7.2 using LISREL notation. Note that X in Fig. 7.1 is replaced 
by the Greek letter ξj (where j=1, 2), Z by ξk (where k=3, 4), and Y by ηl (where 
l=1, 2). The first two-factor (ξ1 and ξ2) univariate growth model on the upper-
left-hand side of Fig. 7.2 includes four repeated measures (x1,…, x4) with error 
variables δ1,…, δ4. The second two-factor (ξ3 and ξ4) univariate growth model on 
the upper right-hand-side of Fig. 7.2 includes four repeated measures (x5,…, x8) 
with error variables δ5,…, δ8. Finally, the twofactor (η1 and η2) univariate growth 
model on the bottom of Fig. 7.2 includes four repeated measures (y1,…, y4), 
with error variables ε,…, ε4. To recap, the top two growth components contain 
exogenous latent growth predictors and the bottom growth component contains 
an endogenous latent outcome variable. Note that we have used the unspecified 
growth specification with the third (λ3) and fourth (λ4) loadings free for the 
exogenous latent predictor variables (the rationale for doing so in this context is 
provided in the section on model specification).

Because our primary interest is in the interaction between the two slope 
factors (i.e., the rates of change in the exogenous latent growth variables), we 
focus on the slope factors of ξ2 (for the exogenous latent variable X) and ξ4 (for 
the exogenous latent variable Z) and their latent product term ξ2ξ4. The model in 
Fig. 7.2 contains two structural equations:

 η1=α1+γ11ξ1+γ13ξ3+ζ1, and (3)

 η2=α2+γ21ξ1+γ22ξ2+γ23ξ3+γ24ξ4+γ25ξ2ξ4+ζ2, (4)

where α in both equations denotes an intercept term and the variable of ζ is a 
disturbance term (assumed to be ζ~N[0, Ψ]), and γ11 through γ25 are regression 
parameters that relate the exogenous latent variables ξs and the latent product 
variable ξ2ξ4 to the intercept and slope components of growth in η. Equation 
(3) only contains the main effects of ξ1 and ξ3 on η1, and it defines the cross-
sectional relationship between exogenous latent variables and the endogenous 
latent variable. This is because these latent variables (ξ1, ξ3, and η1) are defined 
by the Time 1 measures and as such represent relationships among the latent 
attributes at the initial time point. Because of our focus on the slope factors, 
we do not consider an interaction term in Eq. (3). Equation (4) contains an 
interaction effect of ξ2 (slope or shape) and ξ4 (slope or shape) on η2 (slope or 
shape) in addition to the direct effects emanating from the initial level and shape 
factors in the equation, and this interaction effect is manifesting itself in terms 
of an effect of the latent product of ξ2 and ξ4.
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In the conventional analysis of latent interaction models, the interaction effect 
γ25 (in Eq. [4]) is of special interest because this parameter indicates how much the 
slope of η2 on ξ2 is predicted to change given a one unit change in the moderator 
variable ξ4 (Jaccard & Wan, 1996). In the context of longitudinal models, the 
prediction of either ξ2→η2 or ξ4→η2 represents the effect of a ξ’s slope on the 
slope of η. It is best viewed as a slope-to-slope relationship in a growth curve 
analysis. The ξ2ξ4 interaction signifies that the regression of η2 on the slope factor 
ξ2 depends on the specific slope value of ξ4 (a moderator) at which the effect of 
ξ2 slope on the η2 slope is measured. For example, to examine the regression of 
η2 on ξ2 at the particular slope value of ξ4, Eq. (4) can be rearranged as:

 η2=(γ22+γ25ξ4)ξ2+(α2+γ24ξ4)+ζ2. (5)

The term [(γ22+γ25ξ4)ξ2] is often referred to as the simple slope of the regression 
of η2 on ξ2 for a given ξ4 (Aiken & West, 1991; Jöreskog, 1998). Because of 
the slope-to-slope relationship in the growth model depicted in Fig. 7.2, this 
effect reflects the dynamic longitudinal influence of the exogenous latent 
variable ξ (operationalizing the slope of X) on the endogenous latent variable η 
(operationalizing the slope of Y).

Before presenting the LISREL X-measurement model for ξs and Y-
measurement model for η, we briefly mention the cross-product formulation in 
the context of latent growth models. When the two latent growth factors are 
measured by different indicators taken at the same time intervals (e.g., Time 1 
measure of factor ξ2 corresponds to Time 1 measure of factor ξ4), it is reasonable 

FIG. 7.2. A LISREL model with interaction between two slope factors.
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to form cross-product indicators based on measures corresponding to the same 
time point. To allow for formulation of cross-product terms at the observed 
variable level, a two-factor (level-shape) unspecified growth model (Meredith 
& Tisak, 1990) has to be considered in parameterizing the latent product term 
ξ2ξ4. In an unspecified model, only loadings representing the first two time points 
have to be constrained (i.e., t1=0, t2=1) for identification purposes. The remaining 
two loadings are freely estimated providing a shape model. Because the shape 
factor loading for the first time measurement point is fixed to zero (necessary 
for providing a reference point for the slope factor), only the measurement of 
t2, t3, and t4 for ξ2 and ξ4 can be used to form product variables as indicators of 
the latent product variable (ξ2ξ4). Although the selection of a reference point is 
largely arbitrary, future research needs to determine the consequences of this 
selection on product term exclusion.

Within the framework mentioned earlier, measures of the latent variables are 
selected from t2 and subsequent time points to form cross-product terms of x2x6, 
x3x7, and x4x8 as shown in Fig. 7.2. The x1x5 product variable is not used in the 
model because the loadings of the two original nonproduct observed variables 
(x1 and x5) on ξ2 and ξ4, respectively, are constrained to zero for identification 
purposes (see Fig. 7.2; x1=x5=0). Therefore, instead of using the x1x5 product 
indicator as a reference variable for scaling the latent product variable ξ2ξ4, the 
product indicator x2x6 is used (see Fig. 7.2; x2=x6=1 on ξ2 and ξ4, respectively).

Detailed formulation of the model presented in Fig. 7.2 using Jöreskog 
and Yang’s (1996) model specification and maximum likelihood estimation is 
presented next. The reader is referred to Jöreskog and Yang for more details (see 
also Yang-Jonsson, 1997). The reader is also encouraged to refer to the work by 
Jaccard and Wan (1996), which provides a simplified overview at the Jöreskog 
and Yang technique.

The LISREL specification for the Y-measurement model expressed in Eq. (1) 
can be used for the dependent growth variable, ηl (l=1, 2 for the intercept and 
slope, respectively), with factor loadings for t1 through t4 either constrained to 
values of 0, 1, 2, or 3 or freely estimated loadings with the first two prespecified 
value constraints for identification. In Fig. 7.2, we have chosen values that 
represent linear changes in the latent variable η. The Y-measurement model 
shown in Fig. 7.2 is expressed as

  (6)

where t1 through t4=0, 1, 2, 3.
The LISREL specification for the X-measurement model of exogenous latent 

variables, ξs, including the exogenous latent product variable, ξ2ξ4, is outlined in 
the following matrix form:
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As can be seen from Eq. (7), the latent product variable ξ2ξ4 has a set of 
indicators consisting of observed cross-product variables (i.e., x2x6, x3x7, and 
x4x8). The multiplication of indicator variables for the latent product variable 
(a set of nonlinear constraints necessary for model estimation) in Eq. (7) can 
be derived using the method outlined by Jöreskog and Yang (1996). These are 
formulated as

  (8)

  (9)

  (10)

Error parameters δ9, δ10, and δ11 in Eqs. (8) through (10) are outlined in a later 
part of this section. As can be seen, the multiplication of indicator variables 
leads to a series of nonlinear terms, including the factor loadings and factor 
and error variances. These terms, shown next, can be implemented in the latent 
variable interaction model using the LISREL 8 SEM program (Jöreskog & 
Sörbom, 1993).

The structural program of the model shown in Fig. 7.2 is:

  (11)

(7)
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where B is a null matrix. In this structural model, the interaction effect ξ2ξ4 
is of special interest in our presentation, because this parameter indicates how 
much the slope of η2 on ξ2 is predicted to change given a one unit change in the 
moderator variable ξ4.

As in the conventional modeling of interactions, exogenous latent variables 
are centered (i.e., variables given in mean deviation form). We maintain this 
convention in the growth model because it will not be necessary to answer 
the question about the influence of ξs on η. Even if ξs have zero means [i.e., 
E(ξ1)=E(ξ2)=E(ξ3)=E(ξ4)=0], the product term ξ2ξ4 does not have a zero mean in 
general. The latent exogenous latent mean vector (κ) is specified as:

 

Note that because the observed intercepts (the X-intercept vector  in Eq. 
[7]) are freely estimated, the nonproduct exogenous latent variable means are 
constrained to zero (κ1=κ2=κ3=κ4=0) to impose model identification restrictions. 
This specification implies that the means of ĸ have been recast into the vector 
of  Alternatively,  can be set at zero while estimating the means of κs. The 
mean of the product variable ξ2ξ4 equals Cov(ξ2, ξ4)=  The variance/covariance 
matrix (Φ) of (ξ1, ξ2, ξ3, ξ4, ξ2ξ4) is written as:

 

The only nonlinear constraint in the Φ matrix is the variance of the latent product 
variable, which must equal Var(ξ2)Var(ξ4)+Cov(ξ2ξ4)2. The ζ vector in Eq. (11) 
contains latent residuals distributed with zero mean vector and covariance 
matrix Ψ:
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Finally, the variance/covariance matrix of Θδ is:

The error variance for the product variables of x2x6, x3x7, and x4x8 are indicated 
as θ9, θ10, and θ11 in Θδ, which are formulated as:

Finally, the covariances of θ92, θ96, θ10,3, θ10,7, θ11,4, and θ11,8 Θδ are  
 More details on the 

derivation of nonlinear constraints of this model can be found in Li, Duncan, 
and Acock (2000).

Implementation of linear and nonlinear constraints for this model in LISREL 8 
(Jöreskog & Sörbom, 1993) is demonstrated next using an empirical example.

AN ILLUSTRATION

In this section, we provide an empirical example of the methodology described 
earlier. The example arises from an ongoing longitudinal study of the social 
influences of peers and family on the onset and maintenance of various substances 
in adolescence (for details of this study, see Duncan, Duncan, & Hops, 1994; 
Hops, Tildesley, Lichtenstein, Ary, & Sherman, 1990).
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Research Question
Peer substance use is consistently one of the best predictors of adolescent 
substance use (e.g., Brook, Brook, Gordon, Whiteman, & Cohen, 1990; Curran, 
Stice, & Chassin, 1997; Dishion & Loeber, 1985). Contact with drug-using peers 
and/or association with deviant peers is clearly the strongest proximal correlate 
of adolescent substance use. However, it has also been suggested that parental 
discipline exerts important influences on the development of early adolescent 
substance use and other problem behaviors (Patterson, 1982; Patterson, Reid, 
& Dishion, 1992). It is not surprising that parental supervision and involvement 
with their children would impact an adolescent’s level of contact with deviant 
peers and could limit access to unsupervised settings in which mutual influence 
processes unfold unabated by adult intervention (Ary, Duncan, Duncan, & Hops, 
1999; Dishion, Capaldi, Spracklen, & Li, 1995). It is therefore plausible that 
the impact of deviant peer association and/or peer substance use on adolescent 
substance use is moderated by parental discipline such as rule/limit setting. When 
levels of parental discipline are low, peer substance use will have greater impact 
on adolescent substance use; however, when the levels of parental discipline are 
high, the effect of peer substance use is diminished.

In line with this reasoning, it is postulated that change in peer substance use 
and parental discipline leads to change in adolescent substance use, and there 
is an interaction of the changes in peer substance use and parental discipline. 
Specifically, we hypothesize that the interaction between peer substance use and 
parental discipline is such that the relationship between the rate of change in peer 
substance use and the rate of change in adolescent substance use wanes as the 
rate of change in parental discipline practices increases over time.

Data
For illustration purposes, a subset of the study data from Year 4 through Year 
7 was obtained. Of the 530 participants at Year 4, those whose ages were 14 
through 16(N=441) were selected. Preliminary analyses indicate that there were 
no differences in the variables of interest across the four age groups in the sample 
data. After removing the participants with missing values, the final sample size 
was 328, which was used for the interaction analysis. Measures of adolescent 
substance use, substance use by peers, and parental discipline were used in the 
current interaction analysis. Details of these measures are described next.

Measures
Adolescent Substance Use. The measure of adolescent substance use was 
constructed from items assessing frequency of use as well as from self-reports of 
current use on alcohol, cigarettes, and marijuana. Use of each specific substance 
was measured on a 5-point scale via an algorithm incorporating self-reports of 
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use and frequency. The five levels on the scales represent: (0) never used, (1) 
use prior to the past 6 months, (2) current use less than four times a month, (3) 
current use between 4 and 29 times a month, and (4) current use 30 or more 
times a month. Although these scales were created from status and frequency 
information, the assumption is made that the underlying properties are continuous 
in nature. A sum of these three substance use items was created to form a general 
measure of adolescent substance use. This indicator of adolescent substance use 
ranges from 0 to 15, with higher scores indicating increased substance use.

Peer Substance Use. Target adolescents were asked to identify how many 
of their five closest friends had used alcohol, cigarette, or marijuana in the past 
year. Adolescents responded to the item ranging from 0 to 5, with 0 indicating no 
friends used a substance and 5 indicating five or more friends used a substance. 
An average of the three substance use items was created to represent a general 
measure of adolescents’ association with substance using peers. This indicator 
of peer substance use ranges from 0 to 5, with higher scores indicating greater 
levels of substance using peers.

Parental Discipline. Target adolescents were asked to respond to items that 
asked whether their parents had said or done anything to stop/criticize/punish 
the use of alcohol, cigarette, and marijuana during the last year. For example, 
on the use of cigarettes, adolescents were asked, “During the last year, my 
Mother/Father has punished me for smoking cigarettes.” There were four items 
per substance, each measured on a 4-point scale with 1 indicating never and 4 
repeatedly. Items were averaged to form a measure of parental discipline with 
higher scores indicating greater parental discipline.

Model Testing
Tests of fit for the interaction model presented previously were conducted 
using the LISREL (Jöreskog & Sörbom, 1993) maximum likelihood estimation 
procedure. The analyses involved both covariance and mean structures. We 
conducted the interaction analyses in two steps: (a) preliminary analyses of change 
on each variable over time, and (b) the interaction analysis. Step 1 analyses are 
considered prerequisite for the longitudinal interaction analysis because they 
allow us to establish evidence about change in the variables of interest. In the 
presence of observed change in the variables of interest, Step 2 allows us to 
examine whether changes in the independent variables (i.e., substance-using 
peers, parental discipline) jointly influence longitudinal change in the dependent 
variable (i.e., adolecent substance use). The LISREL script for the interaction 
analysis is presented in Appendix A.

Model fit evaluation will rely on the Root Mean Square Error of Approximation 
(RMSEA; Steiger & Lind, 1980), Comparative Fit Index (CFI; Bentler, 1990), 
and Non-Normed Fit Index (NNFI; also known as Tucker-Lewis index; Tucker & 
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Lewis, 1973). Values of the RMSEA less than 0.05 are considered an indication 
of good fit, with values between 0.05 and 0.08 indicating a reasonable fit. Values 
of CFI and NNFI greater than 0.90 are usually taken as evidence of a good fit (Hu 
& Bentler, 1995). In our interaction analysis, evaluation of fit also includes other 
aspects of the model such as the admissibility of various parameter estimates.

RESULTS OF THE EXAMPLE DATA

Table 7.1 displays univariate descriptive statistics for all measured variables used 
in our analyses. First, note that skewness and kurtosis are minimal, indicating that 
it is reasonable to assume the constructs are approximately normally distributed. 
Approximate normality justifies the use of normal theory maximum likelihood 
estimation techniques. Second, note that all observed variables show increases 
in mean level over time. However, variance increases were observed only in 
adolescent substance use.

Preliminary Analyses of Change:  
Step 1 Analyses
As a preliminary analysis to examine change in both the independent variables 
(peer substance use, parental discipline) and dependent variable (adolescent 
substance use), a univariate growth model was first tested for each variable of 
interest. A two-factor linear growth model was chosen that consisted of intercept 
and slope factors for each variable. Thus, the factor loadings for the four observed 
measures were fixed to 1.0 on the intercept factor and 0, 1, 2, and 3 on the slope 
factor. Main growth parameters in the model included the means and variances 
of the two latent growth factors and their covariance. Results of these univariate 
growth model analyses are summarized in Table 7.2.

The overall fit of each model was generally acceptable, suggesting a reasonable 
fit of the model to the observed data. Model parameter estimates revealed 
significant mean intercept and slope estimates (p<.05) for each latent variable. 
Of particular interest is the estimated growth rate in the latent growth factors 
where a significant increase in adolescent substance use, substance use by peers, 
and parental discipline existed over time. The variance of the intercept and slope 
is also statistically significant (p<.05), indicating individual variation around the 
mean at the initial level of the assessment (Year 4) and mean rate of change over 
time (Year 4 through Year 7). Finally, there was a significant (p<.05) estimate 
for the correlation between the intercept and slope factors, indicating adolescents 
who reported higher initial levels in all three measures tended to report smaller 
rates of increase in these measures over time.
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Interaction Analyses: Step 2 Analyses

Given significant mean level changes and variability in intra-individual 
differences in the developmental growth trajectories of all three latent variables, 
we now turn our attention to determining whether longitudinal change in peer 
substance use interacts with the longitudinal change in parental discipline to 
jointly influence adolescent developmental trajectories in substance use over the 
4-year measurement period. To model this interaction, we regressed the two 
latent growth factors (intercept, slope) of adolescent substance use on the latent 
growth variable predictors of peer substance use and parental discipline as well 
as the latent product of the two slope factors.

The model shown in Fig. 7.2 resulted in a chi-square of χ2(89, N=328)=457.926, 
p<.001, RMSEA-.093, NNFI=.905, and CFI=.911, indicating a marginal fit of 
the model to the observed data. Although the overall fit is somewhat problematic, 
it is good enough to use this model to illustrate how the procedure is applied for 
two reasons: (a) this model was specified a priori, and (b) examination of the 
solution indicated the absence of out-of-bounds parameter estimates. Appendix B 
presents an abbreviated LISREL output, including LISREL maximum likelihood 
estimates of interest (shown in the GAMMA matrix).

Although not particularly interesting, for completeness, we first focus briefly on 
the estimates of the regression parameters linking the exogenous latent intercept 
factors to the intercept of the endogenous latent variable. These estimates capture 
the predictability of individual differences in the initial level of adolescent 
substance use as a function of the initial level of exogenous latent variables in 
the prediction equation (see Eq. [3]). Therefore, they provide the crosssectional 
information with regard to the relationship between the independent variables 
and the dependent variable. The maximum likelihood estimates for the effects of 

 TABLE 7.2 Mode Fit Statistics and Parameter Estimates
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ξ1 (initial level of peer substance use) and ξ3 (initial level of parental discipline) 
on η1 (initial level of adolescent substance use) and their corresponding test 
statistics are as follows:

  

Results indicate that both peer substance use and parental discipline were 
significantly associated with initial level of adolescent substance use (p<.05). 
The estimates indicate that peer substance use at Year 4 (initial assessment) was 
related to adolescent initial substance use. The analysis also indicates that greater 
parental discipline tended to decrease the likelihood of adolescents’ substance 
use in the earlier years.

More interesting, however, are the estimates of the regression parameters 
linking the slope predictors involving the latent product interaction term to the 
outcome slope factor—adolescent substance use (see Eq. [4]). The maximum 
likelihood estimates for the ξs, including the covariate influence of initial levels 
and the effect of the interaction term (ξ2ξ4) on the growth factor (η2) of adolescent 
substance use and their corresponding test statistics are as follows:

 

The interaction effect (γ25=−.147) in the prior regression equation was statistically 
significant, as shown by the z value of −2.333 (p<.05). This significance term 
indicates an interaction between the two dynamic latent growth predictor variables 
(the slopes of ξ2 and ξ4), suggesting a joint influence of longitudinal changes in 
peer substance use and parental discipline on longitudinal changes in adolescent 
substance use. The estimated latent growth variable squared multiple correlation 
was .726 for the intercept factor and .663 for the slope factor, respectively, 
indicating that the latent growth predictor variables in the equation accounted 
for 73% of the variance in the initial level of adolescent substance use (η1) and, 
more important, 66% in the rate of change over time (η2).

Post Hoc Interaction Analyses
To better understand the interaction, it is helpful to further probe the effect 
following the conventional post hoc analyses similar to that of ANOVA 
interactions (see Aiken & West, 1991; Jaccard & Wan, 1996; Jaccard, Turrisi, 
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& Wan, 1990). Specifically, we examined whether the relationship between 
the longitudinal change in peer substance use and the longitudinal change in 
adolescent substance use varied as a function of different rates of change in 
parental discipline, the moderator variable, over time. First, we examined the 
slope of adolescent substance use on peer substance use at high and low slope 
(growth trajectory) values of parental discipline. Specifically, we used high 
(defined as one standard deviation above the mean) and low (defined as one 
standard deviation below the mean) slope values of parental discipline. The 
slope, b, at a given high or low value of parental discipline is given by

 b at Sξ4=b1+b3Sξ4, (12)

where Sξ4 is a specific slope value of ξ4. From the PHI matrix in the LISREL 
output, the variance of the latent slope factor of the parental discipline variable is 
1.714, and the square root of this is the estimated latent variable standard deviation 
(1.309), resulting in a low value of −1.309 (i.e., one estimated standard deviation 
below its mean) and a high value of 1.309 (i.e., one estimated standard deviation 
above its mean). Substituting these low and high values into the prior b slope 
equation, we obtained estimated values of 2.323 for low and 1.939 for high of 
parental discipline. The analyses indicate a stronger longitudinal effect of peers on 
adolescent substance use development when the longitudinal change in parental 
discipline trajectories is less pronounced (i.e., smaller rates of positive change).

The significant interaction between parental discipline and substance using 
peers also indicates that the impact of either one on adolescent substance use is 
conditional on the level of the other. Therefore, we extended the previous post 
hoc analyses and selected high and low values of both predictors. This analysis 
is summarized in Table 7.3. Estimated values are plotted in Fig. 7.3. The analysis 
showed an ordinal interaction (Lubin, 1961), with the largest difference between 
high and low parental discipline found at high peer substance use. The result 
suggests a stronger relationship between the rates of change in peer substance 
use and adolescent substance use when the positive rate of change in parental 
discipline is less pronounced.

Taken together, the interaction analyses indicate that the relationship between 
longitudinal change in peer substance use and longitudinal change in adolescent 

TABLE 7.3 Interpreting the Interaction Term
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substance use, becomes weakened over time as parents’ rate of change in 
discipline regarding their child’s substance use increases. Thus, the analysis 
appears to suggest that, to offset the strong impact of peers in the development 
of adolescent substance use, parents must increase their discipline efforts  
during adolescence.

DISCUSSION

In the fields of developmental research, a variety of interactive (moderator) models 
can be described. Interaction effects are common in the study of adolescent 
problem behavior development. For example, stressors such as maternal 
depression, daily hassles, separating and unemployment or health problems may 
serve to disrupt parental attention to the child’s behavior. This could, in turn, lead 
to difficulties in the parents’ ability to monitor their child effectively (Wahler & 
Dumas, 1989). In the same vein, parents’ use of substances could disrupt their 
monitoring practices (Dishion, Reid, & Patterson, 1988; Loeber, Farrington, 
Stouthamer-Loeber, & Van Kammen, 1998). Therefore, it is essential that we 
have suitable methods for incorporating these factors into our structural models 
that allow testing of functional complexities in relationships.

Using standard SEM-based procedures (i.e., Jöreskog & Yang, 1996), this 
chapter presented an extension of latent growth curve models that includes 
interactions between latent growth (slope) parameters. Model specifications for 
these interaction effects were discussed within the LISREL framework (Jöreskog 
& Sörbom, 1993). An illustrative example in the field of adolescent substance 
use followed. The results of the analyses show that it is possible to statistically 
capture interaction effects in the context of latent growth modeling.

FIG. 7.3. Graphic representation of interaction analysis.
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Many methodologists have noted the complexities of latent variable interaction 
analysis (see Jaccard & Wan, 1996; Schumacker & Marcoulides, 1998). We 
refer the reader to the work by Jöreskog (1998) for reviews of various SEM-
based procedures and Jaccard and Wan (1996) for their excellent discussion on 
practical issues in designing studies for SEM-based analyses of interaction effects. 
Various contributing chapters in the SEM interaction book edited by Schumacker 
and Marcoulides (1998) are also excellent sources for recent updates and issues 
in analyzing interaction and nonlinear effects in SEM. Here we highlight a few 
issues relevant to the application of the method presented in this chapter.

First, it is important to focus on interpretation of the interaction effect in the 
model because it involves simultaneous, dynamic change scores of the latent 
continuous predictors. In multiple regression involving interactions, values 
of change in η2 are predicted by a regression coefficient (slope), which gives 
the increase in Y resulting from a one unit increase in XZ. In the context of 
latent growth modeling, this would indicate change in η2 that is predicted by 
simultaneous and joint change in ξ2 and ξ4. So the interaction in this context 
represents a joint and concurrent change between two latent growth shape factors, 
ξ2 and ξ4. In the example used in this chapter, this would mean that when there 
are concurrent changes in parental discipline practices (positively increasing) 
and substance use peers (less steep but still positively increasing), their joint 
effect is enhanced. That is, steeper and positively increasing parental discipline 
over time is likely to slow down the impact of change in peer influence on the 
developmental trajectories of adolescent substance use. It is important to note that 
the negative interaction effect between the two slope factors in no way indicates 
decreases in the peer influence over time. Instead, this implies that higher rates 
of change in parental discipline along with smaller rates of positive change in 
peers is associated with low growth rates in adolescent substance use.

Second, we have not incorporated an interaction term in modeling the impact 
of initial levels of exogenous latent variables on either the initial levels or the 
rates of change of the endogenous variable because this would make the model 
more complex and more difficult to estimate. Therefore, considering model 
parsimony is a desirable characteristic of any interaction analysis. It is generally 
recommended that analyses be limited to tests of specific hypotheses under 
investigation (Rigdon, Schumacker, & Wothke, 1998). However, researchers 
may choose to use a two-step approach by modeling the static influence of the 
exogenous predictors on the growth factor of the endogenous variable and then 
conducting a longitudinal model such as the one presented in this chapter. This 
two-step approach is shown in the work by Li et al. (2000).

Third, we presented a common model of interest in latent growth modeling: 
The intercept-slope model (or level-shape model). This model is admittedly 
complex with regard to its specification because it involves latent intercepts 
of the growth parameters that may complicate model estimation as well as 
interpretation. A much simpler version of this model is a shape-only model in 
which the rate of growth is defined by a single shape factor (see Meredith & 
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Tisak, 1990). However, the highly restrictive set of model expectations (i.e., 
zero mean and zero variance in the intercept) often makes justification of these 
assumptions unlikely in practice. Thus, the choice between the level-shape and 
shape-only models must be made based on substantive theory and empirical data. 
If it is reasonable to assume that the intercept factor can be eliminated or if it is 
strictly proportional to the slope, the predictive model with the fewer parameters 
(in this case, the shape model) represents the preferred model. An example of 
this model is given by Duncan et al. (1999).

Fourth, a well-known problem in latent interaction analysis is that of the joint 
distribution of the observed variables. We need to point out that this problem also 
applies to growth curve models involving interaction effects where products of 
indicator variables are not normally distributed. For this reason, use of maximum 
likelihood estimation in the analysis of interaction in latent variables has been 
cautioned (see Jöreskog, 1998). Although Jöreskog and Yang (1996) proposed 
alternative estimation procedures, they are not without cost and may not be 
suitable for longitudinal studies, which often have small or medium sample sizes. 
Other techniques such as Bollen’s (1995) two-stage least squares procedure and 
Arminger and Muthén’s (1998) Bayesian approach, may provide future hope for 
longitudinal models.

Finally, although it is a useful tool for studying nonlinear dynamic relations, 
the extension of Jöreskog and Yang’s (1996) procedure to LGMs requires careful 
model parameterization. Because of the procedure’s complexity, specification of 
the nonlinear constraints is a tedious and error-prone task. This is a common 
concern that has been echoed by a number of researchers (Jaccard & Wan, 
1996; Jöreskog & Yang, 1996; Laplante, Sabourin, Cournoyer, & Wright, 
1998; Li et al., 1998; Neale, 1998; Ping, 1998). As such, “utmost care must 
be taken to specify the constraints in the model correctly” (Jöreskog & Yang, 
1996, p. 85). One solution to this is to simplify the estimating procedure. For 
example, Jöreskog, Sörbom, du Toit, and du Toit (1999) have shown a simple 
way of estimating non-linear models by means of latent variable scores. This 
method involves estimating a measurement model using observed variables and 
generating the latent variable scores. In a follow-up step, the structural model of 
interest is estimated using these latent variable scores as observed variables. As 
illustrated by Jöreskog et al. (1999) and Yang-Jonsson (1998), the method may 
represent a simpler way to model interaction compared with the one proposed by 
Jöreskog and Yang (1996).

In summary, the modeling method illustrated in this chapter shows that 
interaction analyses with latent variables can be extended to analyses of more 
complex, dynamic models involving interactive relationships between growth 
(slope) parameters. Although the method described has potential, much remains 
to be done on its applicability. Applications of modeling interactions among 
change scores (growth factors) are likely to expand theoretical models, in 
which structural relationships among a set of variables have conventionally 
been limited to either direct or indirect effects. These analytic tools will also 
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allow researchers to more vigorously test hypotheses concerning the effects of 
interactions between dynamic latent attributes on the development of behavioral 
outcomes of interest.

APPENDIX A

The following LISREL script is used for estimating the interaction presented 
in this chapter. The raw data file specified (lgmint.dat) can be obtained on  
our website.

Interaction: an intercept-slope model using LISREL 8
DATA NI=16 NO=328
RAW FILE=lgmint.dat
LABEL
y1 y2 y3 y4 x1 x2 x3 x4 z1 z2 z3 z4 int1 int2 int3 int4
SELECT
1 2 3 4 9 10 11 12 5 6 7 8 14 15 16/
MODEL NY=4 NX=11 NE=2 NK=5 TD=sy TE=di PS=sy GA=fu KA=fr
 TX=fu TY=fu
LK
Int_Peer Slp_Peer Int_Par Slp_Par Pe_by_pa
LE
Intcept Slope
FIXly(1,1)ly(2,1)ly(3,1)ly(4,1)
VALUE 1 ly(1,1) ly(2,1) ly(3,1) ly(4,1)
FIX ly(1,2) ly(2,2) ly(3,2) ly(4,2)
VALUE 0 ly(1,2)
VALUE 1 ly(2,2)
VALUE 2 ly(3,2)
VALUE 3 ly(4,2)
FIX lx(1,1) lx(2,1) lx(3,1) lx(4,1)
VALUE 1 lx(1,1) lx(2,1) lx(3,1) lx(4,1)
FIX lx(1,2) lx(2,2) lx(3,2) lx(4,2)
VALUE 0 lx(1,2)
VALUE 1 lx(2,2)
FREE lx(3,2)
FREE lx(4,2)
START .60 lx(3,2) lx(4,2)
FIX lx(5,3) lx(6,3) lx(7,3) lx(8,3)
VALUE 1 lx(5,3) lx(6,3) lx(7,3) lx(8,3)
FIX lx(5,4) lx(6,4) lx(7,4) lx(8,4)
VALUE 0 lx(5,4)
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VALUE 1 lx(6,4)
FREE lx(7,4)
FREE lx(8,4)
START .3 lx(7,4) lx(8,4)
PA PH
1
11
111
1111
00001
PAGA
10100
11111
FIX lx(9,5)
VALUE 1 lx(9,5)
CO lx(10,5)=lx(3,2)*lx(7,4)
CO lx(11,5)=lx(4,2)*lx(8,4)
CO lx(9,2)=tx(6)
CO lx(9,4)=tx(2)
CO lx(10,2)=tx(7)*lx(3,2)
CO lx(10,4)=tx(3)*lx(7,4)
CO lx(11,2)=tx(8)*lx(4,2)
CO lx(11,4)=tx(4)*lx(8,4)
PA AL
11
START 3.5 al 1
START 1.3 al 2
PA TX
11111111111
CO tx(9)=tx(2)*tx(6)
CO tx(10)=tx(3)*tx(7)
CO tx(11)=tx(4)*tx(7)
CO ph(5,5)=ph(2,2)*ph(4,4)+ph(4,2)**2
CO td(9,9)=tx(2)**2*td(6,6)+tx(6)**2*td(2,2)+ph(2,2)*td(6,6)+c
ph(4,4)*td(2,2)+td(2,2)*td(6,6)
CO td(10,10)=tx(3)**2*td(7,7)+tx(7)**2*td(3,3)+lx(3,2)**2*ph(2,2)*td(7,7)+c
lx(7,4)**2*ph(4,4)*td(3,3)+td(3,3)*td(7,7)
CO td(11,11)=tx(4)**2*td(8,8)+tx(8)**2*td(4,4)+lx(4,2)**2*ph(2,2)*td(8,8)+c
lx(8,4)**2*ph(4,4)*td(4,4)+td(4,4)*td(8,8)
CO td(9,2)=tx(6)*td(2,2)
CO td(9,6)=tx(2)*td(6,6)
CO td(10,3)=tx(7)*td(3,3)
CO td(10,7)=tx(3)*td(7,7)
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CO td(11,4)=tx(8)*td(4,4)
CO td(11,8)=tx(4)*td(8,8)
PA KA
00001
CO ph(5,5)=ph(2,2)*ph(4,4)+ ph(4,2)**2
COka(5)=ph(4,2)
START .5 td(1,1)−td(4,4)
START 1 td(5,5)−td(8,8)
START 1.8 te(1,1)
START .9 te(2,2)−te(3,3)
START 1 ty 1−ty 4
START 2.0 tx 1−tx 4
START 2.0 tx 5−tx 8
START 6.0 tx9−tx 11
START .1 ga 1 1
START .9 ga 2 5
START .02 phi(4,4) phi(1,1) phi(2,2) phi(5,5)
START .01 phi(3,3)
START 1.6 ps(1,1)
START 1.5 ps(2,2)
FREEps(2,1)
START .01 ps(2,1)
OUT SC AD=OFF NS ND=4 EP=.00001

APPENDIX B

The following presents abbreviated LISREL output for the interaction analysis.
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In developmental studies, we often sample data from numerous subjects on 
numerous occasions. We hypothesize for a model of certain attributes and 
attempt to test its validity empirically (Diggle, Liang, & Zeger, 1994; Kessler 
& Greenberg, 1981; Lindsey, 1993). In fitting and evaluating these models, we 
pay attention to several issues such as serial dependency (Jones, 1991; Jones & 
Ackerson, 1990; Jones & Boadi-Boateng, 1991; Nunez-Anton & Woodworth, 
1994; Rosner & Nunoz, 1988), deterministic models (Tuma & Hannan, 1984), and 
individual variations in developmental processes (Baltes & Nesselroade, 1973; 
Nesselroade & Baltes, 1979; Nesselroade, 1991; Nesselroade & Boker, 1994; 
Wohlwill, 1973). Dynamical system models deal with serial autodependency 
and cross-variable dependency among variables across time (Brown, 1988; 
Coleman, 1964; Huckfeldt, Kohfeld, & Likens, 1982; Newell & Molenaar, 
1998; Sheinerman, 1996; Tuma & Hannan, 1984; Vallicher & Nowak, 1994). 
However, most dynamic system models do not deal effectively with individual 
variations in a developmental process (Allison, 1990; Arminger, 1986; Brown, 
1988, 1995; Coleman, 1964, 1968; cf. Nesselroade & Boker, 1994; Tuma & 
Hannan, 1984).

There are many common problems in longitudinal data collection that need 
to be dealt with in subsequent analyses. In a typical longitudinal study, for 
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example, we invariably encounter missing observations due to subject refusal 
in follow-up, death, inability to locate subjects, schedule conflicts, unavoidable 
illness, and so forth. It is advisable to investigate how missing observations 
might influence the results of data analyses. This investigation helps impinge on 
our ability to draw inferences (see Little & Rubin, 1987; Schafer, 1997). Monte 
Carlo simulations enable us to draw some reasonable conclusions concerning 
how missing patterns can affect dynamic structures of some system. These 
Monte Carlo simulations need to be likened to our real situation as close as 
possible (McArdle & Hamagami, 1991, 1992).

There are also many statistical issues in longitudinal data analyses. For example, 
the simple and practical use of a “change score as a dependent variable” has been 
popular in much prior research (e.g., Burr & Nesselroade, 1990; Collins & Horn, 
1991; Rogosa, Brandt, & Zimowski, 1982). Previous critiques of simple change 
score models have focused on: (a) initial value dependencies, (b) unreliability 
of difference score measurements, and (c) regression to the mean (Cronbach & 
Furby, 1970; Foerster, 1995; Kessler, 1977; Raykov, 1999). However, practical 
use of change scores as a dependent variable is also defended (Allison, 1990) as 
long as level and slope dependencies are taken into account in modeling (Kessler, 
1977). The model distinguishes between a true change score and raw change 
score to remove measurement errors (Cronbach & Furby, 1970; Raykov, 1993).

Here we focus on some recently developed linear discrete dynamic system 
models (McArdle & Hamagami, 1999). The analyses presented here are designed 
to overcome some of these problems. These dynamic models combine three 
important aspects: (a) linear dynamic processes, (b) the methodology of structural 
equation models to account for data collected by sparse repeated measures due to 
data attrition or data-collection design (McArdle, 1994; McArdle & Hamagami, 
1992; McArdle & Woodcock, 1997), and (c) individual variations about dynamic 
processes. The dynamic models presented here are also compared with a new 
multilevel regression model with change scores as a dependent variable. We 
also demonstrate why the traditional change score model is unable to capture 
dynamic characteristics when missing data problems are introduced.

To provide a practical overview of these models, we use Monte Carlo 
simulation methods (Bratley, Fox, & Schrage, 1987; Gamerman, 1998; Gilbert 
& Troitzsch, 1999; Keen & Spain, 1994; Law & Kelton, 1999; Mooney, 1997; 
Ross, 1996; Rubinstein, 1981; Zeigler, Kim, & Praehofer, 2000). Prior simulation 
models related to dynamic system are discussed elsewhere (Cacciabue, 1998; 
Pooch & Wall, 1998; van den Bosch & van der Klauw, 1994). In the first part 
of these analyses, we simulate a longitudinal data set that is balanced (i.e., all 
subjects are possibly measured on all occasions), and we compare the recovery 
of a structural dynamic model and the traditional regression model. In the 
second set of analyses, we degrade this balanced data in one way or another so 
that the observations are formed as unbalanced and evaluate the same dynamic 
system parameter estimates. Finally, we summarize results of the balanced 
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data and the unbalanced data and conclude with some cautionary notes about 
dynamic modeling.

METHODS

Dynamic System Approaches
Dynamic processes generally are represented by one or more differential 
equations or difference equations simultaneously (Brown & Rothery, 1993; 
Goldberg, 1986; Sheinerman, 1996). A differential equation describes a process 
of change phenomenon. A dependent variable in a differential equation is a rate 
of change, whereas a predictor can be a constant or exogenous variables that 
have some functional relationship with how the outcome variable changes.

A model of univariate growth curve analysis (e.g., Anderson, 1993; McArdle 
& Epstein, 1987; Meredith & Tisak, 1990; Raykov, 1993; Rogosa, Brandt, & 
Zimowski, 1982) is far easier than multivariate dynamic models due to the fact 
that, with simultaneous parallel time series, we need to introduce a concept of 
coupling among target variables over time. Coupling in dynamic systems refers 
to a condition that a rate of change of one variable is perturbed by a state of 
another variable. This concept needs to be discerned from the cross-lagged effect 
in time series models where the previous state variable predicts the present state 
(not rate of change).

In contrast, when we have a system of repeated measures, coupling at each 
successive time is cumulatively compounded, propagated, or contaminated 
by coupling effects of all the previous time points (for details, see McArdle 
& Hamagami, 1999). It is well known that cross-sectional data collections are 
inadequate in analyzing dynamic characteristics of repeated measures (Bell, 
1953; Collins & Horn, 1991; Wohlwill, 1973). To these classical statements we 
add the fact that most cross-sectional analyses ignore the dynamic propagations 
of preceding coupling effects from one variable to another (see Coleman, 1968; 
Tuma & Hannan, 1984).

In scientific terms, any dynamic system is based on a set of rates of change 
or difference scores as dependent variables (Alligood, Sauer, & Yorke, 1996; 
Cambel, 1993). However, in general, the complexity of the underlying system 
creates a limit on the number of data points needed for an accurate dynamic 
analysis. For instance, if we were interested in an interrelationship between 
two variables X and Y and we assume that the dynamic system is linear in a 
mathematical form, we express the dynamic system in terms of a system of 
differential equations as

 dy/dt=βyy+γxx

 dx/dt=βxx+γyy, (1)
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where dy/dt and dx/dt are instantaneous rates of change and parameters β and 
γ are parameters of the system that determine longitudinal profiles of X and Y. 
Analytical solutions for a dynamic system are solutions of differential equations 
(or difference equations). Unfortunately, complicated dynamic systems do not 
yield analytical solutions. They are often put in a form of multivariate nonlinear 
regression models, where X and Y are treated as dependent variables rather than 
rates of change for X and Y. In computational science, dynamical systems are 
usually solved by numerical approximations such as Runge-Kutta methods (see 
technical expositions of numerical analysis of differential equation modeling 
in Lindfield and Penny (1995), DeWolf and Wiberg (1993), Kamenski and 
Dimitrov (1993), Fox (1963), Hertzberg and Asbjornsen (1977). Data analyses 
of the dynamic system model have been often based on nonlinear least squares 
approaches (e.g., Brown, 1988, 1995; Tuma & Hannan, 1984). Arminger (1986) 
applied a two-step method to decompose dynamic effects by means of the 
maximum likelihood estimation for the linear dynamic system. However, this 
approach requires analytical solutions of the dynamic system to be known.

Dynamic Data Simulation

The equations according to which simulation data are generated are presented 
in Table 8.1. (The appendix gives simplified or pseudocodes for generating 
simulation data.) We generated a data set of 100 subjects, each of which is 
measured on 20 different occasions.

The process of simulation begins by establishing a set of population parameters. 
The initial conditions and additive constants of both X and Y variables are 
generated. Then a difference score between the previous score and current score 
is computed as a function of a dual change score model. Then a latent score is 
generated by adding a latent difference score and the previous latent score. Finally, 
the current manifest score is computed by adding the current latent score and the 
current error term. Using this computational approach, scores are recursively 
generated from occasion 1 to occasion T=20 based on self-feedback, coupling, 
and constant change parameters. Scores for each subject on both the X and Y 
variables are generated for each occasion. This 100 by 40 matrix constitutes the 
balanced data matrix. This data-generation procedure is repeated 100 times for 
Monte Carlo simulation analyses. Simulated latent growth trajectories are shown 
in Fig. 8.1, and manifest growth trajectories are shown in Fig. 8.2. Latent growth 
curves portray developmental trajectories without adding random disturbances 
or uniqueness, whereas manifest growth curves simulate real data that include 
measurement errors and uniqueness.

In the next step, we generated incomplete data by degrading the 100 by 40 
balanced data using various incomplete data paradigms. For each incomplete 
data type, we repeated the data-generation procedure 100 times, and we analyzed 
these data separately. The listing of types of incomplete data is provided in Table 
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TABLE 8.1 Specification of Equations and Population Values Used in Monte 
Carlo Simulation
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FIG. 8.1. N=100 individual growth trajectories of X and Y latent scores 
simulated based on a bivariate dual-change score model.
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8.2. Also Fig. 8.3 depicts an example of how missing patterns are constructed. In 
this figure, numerals in circles or rectangles indicate temporal events. (A circle 
indicates a missing observation, whereas a square indicates that Variables X and 
Y are measured.) Figures 8.4 and 8.5 depict manifest growth curves for these 
alternative incomplete data structures.

MODELS

Latent Difference Score  
Dynamical Models
A structural equation modeling (SEM) approach was used to solve the linear 
dynamic system. This SEM does not require analytical solutions of dynamic sys- 
tems. We address five critical issues about our dynamic modeling approach:

1. The change models apply directly to the latent variables (true scores) but 
only indirectly to the observed variable. We separate true scores and error 
scores at each time point. Then we apply a dynamic model directly to  
true scores.

2. The change models are defined as deterministic over time. That is, rate 
of change does not show intra-individual variation across time. A rate of 
change is mathematically defined as error-free across time. However, a 
rate of change should show interindividual differences.

3. The change models are based on differences for observed scores measured 
discretely over periods of time. We stress this because, to model change 
phenomena with differentials, we need finely tuned measurement 
schemes that allow continuous observation of variables. One example 
of this is a chart of EKG or EEG, where measurements are obtained  
without interruptions.

4. The change model accounts for the means, variances, and covariances of 
the observed data.

5. The change model is defined as a linear difference equation rather than a 
nonlinear difference equation. Nonlinear dynamic systems are extremely 
complex and volatile because they are sensitive to the initial conditions of 
multiple time series and nonlinear models would provide an unpredictable 
result (see Alligood et a1., 1996). In addition, fitting nonlinear models 
demands a lot of information to estimate parameters with precision.

Further, we recognize that there are individual differences among subjects in 
terms of how people start and grow (McArdle & Esptein, 1987; Nesselroade, 
1991). These individual differences for the level and rate of change should be 
incorporated into the dynamic system models. In other words, we dismiss the 
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FIG. 8.2. N=100 individual growth trajectories of X and Y manifest variable 
scores simulated based on bivariate dual-change score model.
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TABLE 8.2 Listing of the Incomplete Data Structure
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FIG. 8.3. Designs of missing data structures (square denotes observed; circle 
denotes unobserved; numerals show occasion numbers).
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FIG. 8.4. N=100 Y manifest variable growth curves generated by alternative 
strategies of degrading data.
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 FIG. 8.5. N=100 Y manifest variable growth curves generated by alternative 
strategies of degrading data.
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idea of a single-subject approach (a time series model) to analyze multivariate 
multiple-subject repeated measures data.

The bivariate dynamic models we use here are an extended version of 
univariate dynamic models (McArdle, 1994). A significant difference between 
univariate and bivariate models is that, in the latter, a dynamic effect of one 
variable on the other variable comes into existence. Dynamic effects between 
variables is called coupling effects. Therefore, in the bivariate model, there 
are two dynamic parameters (i.e., self-feedback [we call it β] and coupling [we  
call it γ]).

Latent Difference Score Algebra

Technical details of the bivariate change score model, along with a univariate 
change score model, are provided in McArdle and Hamagami (1999). The 
bivariate dual-change score model is characterized by three components of 
dynamics. They are the proportionate change parameter (self-feedback, β), the 
constant change parameter (additive change, µs), and the proportionate external 
impact (coupling, γ).

Also, it is very important to note that a self-feedback effect at each successive 
time represents cumulatively compounding or propagation of a variable from 
all the previous time points, as well as an interaction effect at each successive 
time consisting of cumulative coupling effects of all the previous time points. 
These compound effects are nonlinear and multiplicative over time. Thus, cross-
sectional approaches are clearly inappropriate in analyzing dynamic characteristics 
of repeated measures because they ignore propagations of preceding coupling 
effects and self-feedback effects.

We assume that a manifest score (Y[t] or X[t]) is sum of a true score (y[t] or 
x[t]) and a disturbance score (ey[t] or ex[t]):

 Y[t]n=y[t]n+ey[t]n

 X[t]n=x[t]n+ex[t]n. (2)

We define Δy[t] (or Δx[t]) as a latent difference score between two adjacent 
occasions. So algebraically difference scores for x and y are expressed as

 Δ y[t]n=y[t]n−y[t−1]n

 Δ x[t]n=x[t]n−x[t−1]n. (3)

In a dynamic system, a temporal index or time plays a critical role. The nature 
of the dynamic system is determined by mathematical forms of these difference 
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scores. In the dual-change score model, we express a dynamic system algebraically 
at time t in a temporal scale as

 Δ y[t]n=αy syn+βy y[t−1]n+γx x[t−1]n

 Δ x[t]n=αx sxn+βx x[t−1]n+γy y[t−1]n. (4)

This representation simply says that a difference score between time t and 
time t−1 (Δy[t]n) is the sum of three terms: a self-feedback effect (βy y[t−1]n), 
a linear constant effect (αy syn), and a coupling effect by the counterpart (γx 
x[t−1]n). Mathematical terms are defined in Table 8.3. With a difference score 
mathematically defined, we algebraically manipulate a difference equation, a 
current score, and a preceding score. In the end, we express a system that has 
current scores as dependent variables and immediate past scores as predictors, 
symbolically expressed as,

This dynamic model true score is then disturbed by an error term of the observed 
variable (i.e., uniqueness). This uniqueness term is a part of interindividual 
or between-persons differences. Other parts of the interindividual difference  
comes from variability in the initial score (or level score) and variability in the 
slope score.

Refer back to Table 8.3 for definition of all variables and dynamic parameters 
in the model. Figure 8.6 represents a path diagram (Wright, 1934) of the 
bivariate difference score dynamic model. In a path diagram, a circle represents 
an unobserved variable, whereas a square represents a measured variable. A 
single-headed arrow represents a deterministic structural coefficient, whereas 
a doubleheaded arrow represents a stochastic coefficient. Labels in Fig. 8.6 

(5)

(6)
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correspond to mathematical symbols in the prior equations. In Fig. 8.6, three 
dots mean that there are more repeated measures, latent true scores, and a latent 
rate of change between the initial and terminal sequences.

Multilevel Change Score  
Regression Model

A practical approach to examining a change phenomenon is the use of multiple 
regression models with the raw change score as the dependent variable (Allison, 

TABLE 8.3 Definition of Mathematical Symbols and Variables of a 
Difference Score Dynamic Model
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FIG. 8.6. A path diagram representing a bivariate dual-change score model.
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1987). This methodology is easy to implement. However, ease of implementation 
does not necessarily yield unbiased estimates of the true nature of change.

This traditional approach regresses a raw change score of Y (ΔY) on scores 
at a previous occasion (Y[t−1] and X[t−1]) and separately regresses a change 
score of X (ΔX) on scores at a previous occasion (Y[t– 1] and X[t−1]). Note 
that the simultaneous nature of the system approach is ignored in the traditional 
regression model. Yet the regression model can be used to represent a dynamic 
structure of the bivariate dual-change score model, and the regression estimates 
may be close to the estimates obtained from more complex models (i.e., the 
regression model estimates self-feedback, coupling, and a constant linear  
change parameters).

We want to recognize that this simple method has been supported by some 
(Allison, 1990; Cronbach & Furby, 1970; Kessler, 1977; Raykov, 1999), but 
criticized by others (Cronbach & Furby, 1970; Foerster, 1995; Kessler, 1977; 
Raykov, 1999). From these critiques we know that the traditional regression 
method does not permit an accurate estimation of initial conditions, individual 
differences of initial conditions and true linear change scores, and covariation 
between initial conditions and true linear change scores.

Estimation With Incomplete Data

Incompleteness of longitudinal data is inevitable. Many researchers have dealt 
with missingness in the repeated measures (Allison, 1987; Bell, 1953; Helms, 
1992; Kiiveri, 1987; Lange, Westlake, & Spence, 1976; Little & Rubin, 1987; 
Schafer, 1997). Structural equation models have been applied to incomplete data 
structures (Allison, 1987; McArdle & Aber, 1990; McArdle & Anderson, 1990; 
McArdel, 1994; McArdle & Hamagami, 1991, 1992; McArdle & Nesselroade, 
1994). Neal (1995) developed the computer program called Mx (see Hamagami, 
1997) capable of the missing data analysis. The Mx program is designed to 
perform the full information structural equation modeling as well as raw data 
incomplete structural equation modeling. Parameterization of dynamic models 
with incomplete data is executed by the Mx individualized structural equation 
modeling approach (Neal, 1995).

During Mx’s estimation, each individual vector of repeated measures is fitted 
to a certain structural equation model and deviation between the expectation 
based on estimated parameters and an individual observed vector is summed 
over all subjects and used as a model fit criterion. These computational steps are 
repeated until convergence criteria are satisfied.

The traditional change score regression models presented next were performed 
with SAS PROC MIXED to deal with nested repeated measures effects. The Mx 
was used to analyze structural dynamic system models.
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Evaluation of Goodness-of-Fit
Three sets of model fit indexes were used to evaluate the overall fit of each 
incomplete data paradigm against the population dynamic system. We provide 
some definitions here because some aspects are novel.

The first misfit index was computed as the sum of squared deviations between 
parameter estimates and population parameter values. Mathematically, the 
squared deviation index is computed as

 fθ=∑(q−θ)2,

where q is a bootstrap parameter estimate and θ is a population parameter value.
The second misfit index expresses the deviation of the sample eigen-system 

of a model from that of the population eigen-system. Eigenvalues of the dynamic 
system are calculated by eigen-system decompostion of the community matrix 
of the dynamic model. Specifically, if a dynamic system is expressed in a matrix 
form as

 

then, the community matrix of the dynamic system is the second matrix that 
includes all dynamic parameters in the above equation. The eigenvalues of the 
community matrix characterize the nature of the dynamic system (see Tuma et 
a1., 1984). Thus, deviation from the population eigenvalues is a discrepancy 
between the sample dynamic system and the population dynamic system. An 
eigen deviation index (fλ) is defined as the sum of squared difference between the 
sample eigenvalue and expected eigenvalue divided by the squared population 
eigenvalue. Namely,

 

where li is a sample eigenvalue, λi is a population eigenvalue of the community 
matrix and fλ is a defined as follows. When the sample model replicates the 
population model exactly, fλ is 0. However, when the eigen system is the complex 
value, fλ becomes the complex number as well. Thus, there needs to be some 
generalized eigen fit index that enables comparison between a real number fit 
index and a complex number fit index. A solution is the use of a distance measure 
of the complex number in the complex plane. In the complex plane, the real part 
of the complex number is evaluated at the abscissa and the imaginary part is 
evaluated at the ordinate in the complex Cartesian coordinate. Thus, if fλ=a+bi, 
where a is the real part and bi is the imaginary part of the complex number, the 
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distance measure of the complex plane (fc) is defined as the distance between a 
real-imaginary coordinate and the origin of the complex plane—that is,

 fc=(a2+b2)1/2.

Furthermore, this distance measure fc, can be rescaled as a normed centrality 
index, fe (McDonald & Marsh, 1990), of the dynamic parameters using  
the equation
 fe=exp(−.5fc).

This normed index of centrality ranges from 0 to 1. The perfect reproduction of 
the dynamic eigen structure is 1, whereas 0 indicates that the estimated dynamic 
characteristics and population dynamics do not match.

The three misfit indexes, fθ, fc, and fe, are used to evaluate how well the 
population dynamic system is reconstructed across different estimation methods.

RESULTS

Results of Complete Data Analyses
We use the acronym DSEM to designate the dual-change score structural equation 
model and MDIF to represent multilevel difference score regression model. 
Balanced data sets are generated using several different population parameter 
sets. We were able to recover population parameter values at all attempts using 
a balanced data structure. Therefore, to avoid redundancy, we limit reporting to 
data analyses based on one population parameter set.

Table 8.4 summarizes the results of bivariate difference equation SEM analyses 
based on the complete data. The first column of Table 8.4 designates all the 
parameters involved in the model, the second column enumerates their respective 
parametric values (θ), the third column enumerates parameter estimates (q), the 
fourth column enumerates differences between the population parameters and 
the parameter estimates (i.e., q-θ), the fifth column enumerates standard errors 
of parameters (i.e., ), and the sixth column enumerates a ratio between 
a difference between parameter and its estimate and its standard errors (i.e., 

). Both self-feedback (βx and βy) and coupling parameters 
(γxy and γyx) are accurately recovered. Means and standard deviations of initial 
conditions and constant slopes are accurately recovered as well. Uniqueness 
parameters for both X and Y variables were accurately recovered. All in all, the 
linear latent difference equation model has correctly and accurately recovered 
the dynamic characteristics of the complete data.

Table 8.5 summarizes results of the multilevel regression analyses of change 
scores. In these simulations, two kinds of balanced data were compared: one set 
contained measurement errors in time series, whereas the second set excluded 
measurement errors. We use the term stochastic data to refer to the first set 
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TABLE 8.4 Results of Bivariate Dual-Change Score Model for Latent 
Difference Dynamics Fitted to the Complete Data (N=100, T=20)
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TABLE 8.5 Results of Multilevel Difference Score Regression (MDIF) 
Models Applied to Simulation Data Generated Based on Bivariate Dual-

Change Score Dynamic Models
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and the term deterministic data for the second data type. As seen in the table, 
the traditional approach was able to recover dynamic parameters as long as all 
subjects provided all data points in the process. Namely, all subjects provided 
19 difference scores in the process over the span of 20 occasions. However, the 
precision of parameter estimates was not as good as that of the bivariate dual-
change score SEM except when population coupling parameters were set to zero 
in the simulation.

Results for Incomplete Data Analyses
The odd-number occasion paradigm involved 50% reduction of data density 
compared with the complete data structure. The five occasion incomplete data 
scheme lost 75% of data density. Four consecutive occasion, three consecutive 
occasion, and two consecutive occasion incomplete data sets were degraded as 
20%, 15%, and 10% retention rate over the complete data structure. Finally, the 
completely cross-sectional single occasion data maintain only 5% of original 
data density.

When the MDIF was fitted to incomplete simulation data, we were no longer 
able to recover the characteristics of bivariate dynamics. Table 8.6 summarizes 
results of the multilevel regression approach to incomplete data with measurement 
errors and Table 8.7 summarizes results of the multilevel regression approach 
to incomplete data without measurement errors. The only case in which the 
MDIF model recovered dynamic parameters was when the data were generated 
without measurement errors and all 20 occasions were included in the simulation 
data. Whether the missing data were generated with or without measurement 
errors in the dynamic process makes no difference. Clearly, the MDIF failed to 
recover the dynamic characteristics (i.e., linear change parameters, self-feedback 
parameters, and coupling parameters in all incomplete data paradigms) and the 
density of data structure did not matter because neither the least sparse data (the 
odd-number occasion paradigm) nor the most sparse data (the two occasion data 
paradigm) led to accurate estimation of population parameters.

Table 8.8 summarizes the results of parameter estimation of DSEM applied 
to these alternative incomplete data sets. Analyses of highly dense data sets (10 
repeated measures) and moderately dense data sets (4 or 5 repeated measures) 
resulted in consistently accurate estimation of the population parameters. Especially 
dynamic parameters (i.e., self-feedback parameters [β] and coupling parameters 
[γ]) are accurately recovered even if the data were inflicted with 50% or more 
damage. The initial condition parameters  and the constant 
change parameters  were accurately recovered as well.

When we analyzed three-occasion and two-occasion data sets, we found 
surprisingly consistent results for DSEM. Even if more than 85% of data points 
were eliminated, we were able to capture approximate dynamical structures of 
self-feedback and coupling parameters as well as initial conditions. However, 
we note that, as expected, the correlations among the initial conditions and latent 
linear slopes are no longer orthogonal.
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With regard to analyses of a cross-sectional data structure where 95% of 
data points are lost, we were no longer able to estimate uniqueness in DSEM. 
Because all points are completely randomly extracted for each subject, a general 
trend across Occasion 1 and Occasion 20 roughly resembles the complete data 
structure. Hence, estimates of dynamic parameters were not gravely off the 
population values. However, stochastic parameters including standard deviations 
of initial conditions, constant slopes, uniqueness, and all factor correlations were 
inaccurately estimated.

There were several cases that indicate that parameter estimates were 
numerically imprecise. When we extracted only middle parts or only the terminal 
parts of the original data, the DSEM did not recover the dynamic parameters or 
the level and slope parameters. In addition, the bootstrap standard errors were 
large, indicating that these parameter estimates were highly unstable.

When we extracted only five occasions equally spaced, we were not able 
to recover latent means and we observed large bootstrap standard errors. By 
systematically skipping a fair amount of occasions, overall shapes of growth 
trajectories were inevitably distorted. Understandably, means of slope scores 
were deviated from the population means. However, the dynamic parameters 
(β and γ) were close to the population parameter values. Results of nonrandom 
level and slope selection paradigms were very similar to those of the equally 
spaced five-occasion data paradigm as expected because nonrandom selections 
were performed on the equally spaced five-occasion data.

A summary of all misfit indexes (fθ, fc, and fe) are listed in Table 8.9. These 
indexes indicate that the dual change score SEM is both highly accurate 
and superior to the multilevel difference score regression (MDIF) model in 
identifying characteristics of population dynamics. The DSEM approach was 
able to accurately recover the eigen system of the dynamic model, whereas 
the multilevel model was not. The fc=0 orfe=1 means that the simulation model 
recovered the identical eigen system of the population dynamic model. The 
DSEM was able to recover the correct eigen system when fitted to a majority of 
the incomplete data paradigms. For the cases where the data extraction included 
only the middle or last part of the time sequence, however, it was unsuccessful. 
For the bivariate DSEM, a majority of incomplete paradigms led to that fc=0 
or fe=1. In contrast, estimation by the MDIF approach clearly came up short 
in approximating the true dynamics. Given these simulation results, the dual-
change score model was able to recover the dynamic eigen system even if data 
structures were highly degraded.

DISCUSSION
The present chapter dealt with both theoretical and practical issues of dynamic 
system modeling under varying degrees of data quality. We compared results 
of the bivariate dual-change score SEM with those of the traditional regression 
MDIF models that use difference scores as a dependent variable. We found 
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Table 8.9 Summary of Misfit Indexes for the Alternative Data-Extraction 
Structures by the Dynamic Modeling Method
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that the traditional approach was only reliable when (a) all 20 data points were 
available, (b) there were no coupling interaction between x and y variables, 
and (c) an error term was set to 0 on all occasions. The traditional regression 
model failed to recover population dynamic parameters when (a) the data were 
incomplete, (b) coupling parameters were introduced, and (c) residuals were 
introduced in the time series.

The bivariate dual-change score SEM outperformed the traditional regression 
model in reproducing characteristics of the population dynamic system. The 
dual-change score SEM enabled us to recover population parameters under a 
majority of incomplete data paradigms. Based on Monte Carlo simulation with 
incomplete data, we found that one does not need to collect hundreds of data 
points to extract dynamic characteristics. It seems that when data-extraction 
paradigms allow the overall trajectories proximate to the population trajectories, 
our dynamic SEM enables us to recover population parameters accurately. Thus, 
we found that no more than five repeated measures were sufficient to recover 
the population parameters given that the overall trajectories showed resemblance 
to the population trajectories. Surprisingly, results based on only two or three 
consecutive measurements could recover the overall dynamic features as well as 
could more dense data paradigms.

Traditional cross-sectional data schemes failed to yield accurate estimates of 
several parameters. However, even with cross-sectional data, the DSEM was 
able to roughly recover the dynamic parameters (i.e., self-feedback and coupling 
parameters) as long as the cross-sectional data were drawn from the full set 
completely at random (Little & Rubin, 1987). Stochastic terms (variance and 
covariance) were not accurately recovered as the density of data deteriorates. 
Hence, cross-sectional design should not be used as replacements for long-term 
repeated measures designs.

When an overall trajectory was represented by only the middle or terminal 
parts of data, the DSEM could not accurately recover the dynamic parameters. 
These data-extraction paradigms failed to establish the true initial condition of the 
dynamics. This suggests that an initial condition (or level) needs to be established 
to accurately portray dynamic characteristics, and the dynamic characteristics 
are sensitive to initial conditions. Furthermore, these incomplete data paradigms 
extract only portions of data where there is little motion (i.e., shapes of the 
growth were flat). Not surprisingly, it is difficult to estimate dynamic parameters 
when data show no movement across time.

All in all, deterioration of data did not seriously worsen ability to recover the 
population parameter by our DSEM dynamic system. We have to emphasize that 
degradation of data is not systematic in a majority of missing data paradigms. 
We conformed to the principle of MCAR (missing completely at random) in 
degrading our data set.

Dynamic systems are tested and utilized in bioengineering, physical, kinetic 
chemical, ecological, econometric, and other computational sciences. In social 
sciences, researchers are gradually beginning to see the utility of the dynamic 
modeling. However, it has not been seen that SEM can be applied to account 
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for attributes of dynamic systems. The traditional approach to analyze change 
scores has been the use of a least squares regression model with change scores 
as a dependent variable. However, there exists a long controversy about and 
argument against the use of change scores (Allison, 1990; Cronbach & Furby, 
1970). According to our simulation results, a multilevel regression model failed 
when the data were perturbed by missing data conditions, stochastic terms, and 
influences of external forces. Thus, a use of the regression model with a change 
score as a dependent variable warrants caution.

The current simulation study was prompted by our desire to show that 
bivariate difference equation systems can be structured by SEM methodology 
and the conviction that the approach works better than the traditional regression 
model approach. Before we actually apply this bivariate linear difference 
equation model to empirical data, we are compelled to demonstrate how well 
our dynamic models really work. Data collected in social science experiments 
are frequently short-circuited; even if they are collected repeatedly, the repeated 
measures are in general localized and short-ranged. Therefore, we were also 
prompted to examine how much data are necessary to extract dynamic features 
if we were lucky to have repeated measures data sets.

Our simulation study convincingly illustrated that bivariate difference equation 
systems can be modeled by SEM. Although we reported results based on one set 
of population parameters, we have examined a wide variety of bivariate dynamic 
population parameters such as changing a sign of β or γ, decreasing or increasing 
magnitude of self-feedback or coupling, nullifying coupling, and so forth. In 
all the instances we attempted so far, simulated dynamic system features are 
consistently and accurately recovered with our model. Our model is thus robust 
and consistent. In contrast, the traditional regression model approach failed 
to accurately capture characteristics of the dynamic system in all incomplete 
data paradigms. Thus, we argue against the use of the least squares regression 
approaches with change scores as a dependent variable to characterize the 
dynamic nature of multivariate variables systems.

Our simulation analyses showed that characteristics of linear dynamic systems 
can be evaluated by SEM methodology. We have simply translated bivariate 
difference score equations into a latent variable path model. Our model, as it turns 
out, does not require any analytical solution or Runge-Kutta types of numerical 
solution for a system of differential equations. Therefore, it is highly practical. 
Furthermore, our model incorporates individual differences among initial 
conditions and constant change scores to dynamic processes, whereas a single 
bivariate time-series model generally fails to characterize individual differences. 
Therefore, our model is suitable for analyzing multiple-subject, multivariate 
repeated measures data that are prevalent in social science research.

There may be other more practical ways to estimate the linear dynamic 
parameters of our simulation. For example, the simplification of a bivariate 
system proposed by Coleman (1968) may be fitted using nonlinear mixed model 
program (SAS PROC NLMIXED). Also the techniques described by Nesselroade 
and Boker (1994), Boker and Nesselroade (in press), and Boker and Graham 
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(1998) may apply to these same models as well. These alternative techniques 
were not studied here, but might prove useful in future work.

An extension of this simulation study is currently in progress. This phase 
of the study includes structuring univariate second-order dynamic models, 
structuring bivariate second-order dynamic systems, examining alternative 
systematic data-selection effects on dynamic parameters, and stochastic difference  
equation models.

 APPENDIX
The following is pseudocodes for generating a system of time series based on 
the difference equation model.

Step [1]: Establish population parameters for a bivariate dynamical system

Step [2]: For Subject 1 to Subject 100, recursively generate X and Y scores from 
time 1 to time 20. In this step, first generate initial conditions for variables X 
and Y for each subject, then generate latent true scores and perturbed observed 
scores at each time point.
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APPENDIX TABLE 8.1

Results of a Single-Level Difference Score Regression Model Applied to 
Alternative Deterministic Data Based on Alternative Missing Data Paradigms.
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There is much current research in the machine learning and statistics communities 
on algorithms for discovering knowledge and structure in data. Although many 
scholars (e.g., Selvin & Stuart, 1966) in the statistics community in the 1960s 
and 1970s considered such data-exploration activities as fishing or data dredging, 
Tukey (1977) argued that statistical theory needed to adapt to the scientific 
method. More than two decades hence, it appears that the statistics community 
has adopted Tukey’s perspectives and acknowledged that model search is a 
critical and unavoidable step in the model-fitting process (Glymour, Madigan, 
Pregibon, & Smyth, 1997).

Most currently used model-fitting processes attempt to optimize some fit 
function with respect to a set of specified free and constrained parameters for 
a given collection of data. If the specified model does not fit, then the model 
is modified in an effort to improve the fit. In the structural equation modeling 
(SEM) literature, Bentler (1995), Glymour, Schienes, Spirtes, and Kelly (1987), 
Jöreskog and Sörbom (1990), Spirtes, Scheines, and Glymour (1990), and 
Marcoulides, Drezner, and Schumacker (1998) are just a few examples of the 
researchers who have introduced automated modification search procedures to 
improve model fit. It should be obvious that the starting point of SEM is a very 
demanding one, ideally requiring that the complete details of a proposed model 
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be specified before being fitted and tested with data. Unfortunately, in many 
substantive areas, this may be too strong a requirement because theories are often 
poorly developed or even nonexistent. Because of these potential limitations, 
Jöreskog and Sörbom (1993) distinguished among three situations concerning 
model fitting and testing in SEM. The three situations include: (a) the strictly 
confirmatory situation in which a single formulated model is either accepted 
or rejected, (b) the alternative models or competing models situation in which 
several models are formulated and one of them is selected, and (c) the model-
generating situation in which an initial model is specified and if it does not fit the 
data it is modified and repeatedly tested until some fit is obtained.

The strictly confirmatory situation is rare in practice because most researchers 
are simply not willing to reject a proposed model without at least suggesting 
some alternative models. The alternative or competing model situation is also not 
very popular because researchers usually prefer not to specify alternative models 
beforehand (Raykov & Marcoulides, 2000). As it turns out, model generating is 
the most common and preferred situation encountered in practice. In fact, most 
researchers feel that when

extensive resources have been spent on data collection and all possible efforts have been 
laid down in formulating a model, but the data analysis indicates that the model does not 
fit…rather than accept this fact and leave it at that, it makes more sense to modify the 
model so as to fit the data better. (Sörbom, 1989, p. 384)

As a consequence, model-modification searches are common practice in SEM 
applications, and most available SEM computer programs provide researchers 
with options to try and improve model fit.

The modification of an initially specified model to improve fit has been termed 
a specification search (Long, 1983). A specification search is conducted with the 
intent to detect and correct specification errors between a proposed model and the 
true model characterizing the population and variables under study. Despite that 
the SEM literature has demonstrated that specification errors “can have serious 
consequences” and that one should “attempt and correct those errors,” it has not 
defined an optimal procedure or a single strategy for conducting specification 
searches (MacCallum, 1986, p. 109). The most common approach for conducting 
specification searches in SEM is to change parameter restrictions (e.g., free up 
or constrain) in the proposed model one at a time and examine one of the many 
tests that have been developed (e.g., Lagrange Multiplier tests and Modification 
indices) to evaluate hypotheses concerning whether a restriction is statistically 
inconsistent with the data (Bentler, 1986; Sörbom, 1989).

A more recent specification search approach involves using a Tabu search 
procedure (Marcoulides, Drezner, & Schumacker, 1998). The Tabu search 
procedure builds on entler and Chou’s (1990) recommendation to use the “all 
possible subset selection of parameters” and MacCallum’s (1986) suggestion 
to continue the specification search even after a model with a nonsignificant  
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chi-square has been obtained. The Tabu procedure is a simple and effective 
heuristic local search that proceeds by examining a neighborhood of the current 
solution. Unlike traditional search procedures (e.g., steepest descent), where the 
search terminates when there is no further improvement in the neighborhood with 
respect to the fit function, the Tabu procedure allows the search to exploit inferior 
solutions. This flexibility helps the search in getting out of local optimality when 
taking uphill moves. In addition, to avoid cycling, Tabu search imposes a sort 
of off-limits status (i.e., a tabu status) to those attributes recently involved in the 
choice of the new solution.

Although the Tabu search procedure has been shown to be very effective in 
SEM specification searches (Drezner, Marcoulides, & Salhi, 1999; Marcoulides, 
Drezner, & Schumacker, 1998), its success as a local heuristic often depends on 
the choice of the Tabu size and the definition of the neighborhood (Salhi, 1998). 
In contrast, adaptive search procedures have proved to be quite effective in such 
large-scale optimization problems (Salhi, 1998). A genetic algorithm is one 
type of adaptive heuristic search procedure that is carried out on a population 
of points (i.e., several solutions are considered simultaneously). Because of this, 
genetic algorithms are more robust than existing heuristic search methods. A 
genetic algorithm performs a sort of multidimensional search by maintaining 
a population of potential solutions and encourages information and exchange 
between solutions. Thus, the population undergoes a simulated evolution in 
which the relatively good solutions reproduce at each generation while the 
relatively bad solutions die. Another characteristic of a genetic algorithm that 
makes it somewhat different than other heuristic search procedures is that model 
parameters are not manipulated, but rather a coding of the parameter set is 
directly manipulated. Finally, and perhaps most important, a genetic algorithm 
generates information about a population of candidate solutions over any number 
of selected iterations.

The purpose of this chapter is to introduce a genetic algorithm as an 
alternative specification search approach for use in SEM. The chapter illustrates 
how a genetic algorithm can be used to discover the correct population model. 
The chapter is divided into several sections. The next two sections present a 
general overview and terminology needed to understand genetic algorithms. In 
the third section, an implementation of a genetic algorithm is illustrated using a 
simple function. Subsequently, a genetic algorithm is presented for conducting 
specification searches in SEM using a small example model. The final section 
of the chapter discusses the use of genetic algorithms and their implications for 
model selection in structural equation modeling (SEM).

OVERVIEW OF GENETIC ALGORITHMS

Genetic algorithms are adaptive heuristic search procedures that are capable 
of dealing with large-scale optimization problems (for a complete discussion, 
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see Salhi, 1998). Genetic algorithms (GA) were first introduced by Holland 
(1975) as a way to emulate the processes observed in biological evolution to 
solve game theory and pattern-recognition problems. The main idea behind GA 
is that a Darwinian survival of the fittest strategy can be modeled for solving 
optimization problems. Based on this strategy, a population of chromosomes 
evolves over a number of different generations with only the best surviving 
from one generation to the next. Thus, evaluation of an optimization problem 
takes place on chromosomes (rather than model parameters), and there are 
chromosomal encoding and decoding processes that relate to the problem under 
study in a biologically evolutionary process.

In terms of specific optimization processes, the goal of a GA is to find the 
optimum of a given function F over a given search space S. For example, the 
search space S may be of cardinality 2N (such as that for the number of possible 
equations in a multiple regression analysis with N=26 predictor variables would 
be equal to 67,108,864). A point of the search space S is then described by a 
vector of N bits, and F is a function able to compute a real value for each of the 
2N vectors. In the initialization step, a set of points in the search space (commonly 
referred to as a starting population of individuals) is selected (either at random 
or user-specified). Subsequently, a GA iteration occurs in four sequential steps 
(evaluation, selection, reproduction, and replacement) until a stopping criterion 
is met. The four sequential steps are depicted in Fig. 9.1 and described as follows 
(in a later section, these steps are illustrated and expanded using an example 
SEM model):

1. Evaluation: The function F is computed so that a starting population of 
individuals can be ordered from best to worst.

2. Selection: Pairs of individuals (quite often called parents) are selected 
(although an individual can appear in any number of pairs).

3. Reproduction: Offspring are produced by the pairs of individuals (i.e., by 
the parents).

4. Replacement: A new population of individuals is generated by replacing 
some old members of the population with new ones.

Genetic algorithms use a vocabulary borrowed from natural genetics. Some other 
useful terminology includes the following:

1. Chromosome: A string of binary codes representing a solution to an 
objective function. For example, 0101100011 could be used to represent a 
possible solution to an objective function. It is important to note that there 
are a number of possible chromosome coding schemes that can be used 
to set up a genetic algorithm. Besides the binary, other popular coding 
schemes include the decimal, character, and integer number representation 
(Reeves, 1993).

2. Genes: A binary coding representation of a chromosome (i.e., the 0 or 1).
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3. Population: A set of chromosomes used at each iteration of the algorithm. 
4. Operators: Manipulations that occur to the chromosomes (these include 

crossover, mutation, and reproduction).
5. Crossover: A manipulation that occurs when two individuals (parents) 

exchange parts of their corresponding chromosomes to create a new 
chromosome.

6. Mutation: A manipulation that occurs when the gene of an individual is 
changed to form a new chromosome.

7. Reproduction: A manipulation that occurs when two individuals (parents) 
join to generate a new chromosome.

8. Neighbor: Two chromosomes are considered neighbors if the string of 
binary codes representing each chromosome differs by one gene. For 
example, the two chromosomes 111111 and 111110 are neighbors.

AN EXAMPLE OPTIMIZATION OF A SIMPLE FUNCTION
In this section, we discuss the basic features of a GA for the optimization of a 
simple function. The function is defined as

 

with any value of x being equal to either 0 or 1. The problem is to maximize 
the function f.

FIG. 9. 1. The basic steps of a genetic algorithm.
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It is clear that the prior function has only 25=32 possible solutions with the 
values of the objective function varying from f=0 to f=3. To construct a GA 
that maximizes the function f, the following major components of an algorithm 
are needed.

Initial Population
Using a binary vector as a chromosome to represent values of the variables xi, 
the initial population of size four is selected and involves randomly generated 
members of the possible solutions to the function f. Assuming that the following 
four chromosomes were genererated provides:

Genetic Operators
During the search operations of the genetic algorithm, several genetic operators 
are used. As mentioned earlier, genetic operators (crossover, mutation, and 
reproduction) are manipulations that occur to the chromosomes. To illustrate the 
crossover operator for Chromosomes 1 and 2, assume that the crossover point 
was to occur after the third gene:

010 | 01

110 | 11.

The resulting offspring are

010 | 11

110 | 01.

These offspring both evaluate to f=2. Because the offspring are better than 
Chromosomes 3 and 4 in the initial population, the old chromosomes are replaced 
in the population with the new ones.

To illustrate mutation (i.e., the altering of one or more genes in a chromosome), 
assume that the second gene of Chromosome 2 was selected for mutation. 
Because the second gene in this chromosome is a 1, it would be flipped to a 0. 
Hence, the chromosome after this mutation would become equal to

10011.

This particular mutation leads to f=2, and so it is also replaced in the population.
The processes of crossover and mutation continue for several cycles until 

finally the following best chromosome is generated
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10101,

which corresponds to the optimal value of f=3. Table 9.1 provides the 
chromosomes for the 32 possible solutions to the example function, together 
with the value of the function for each possible neighbor based on the genetic 
operators. For example, Chromosome 1 evaluates to f=0 and has Chromosomes 
17, 9, 5, 3, and 2 as neighbors. Chromosome 17 evaluates to f=1, whereas 
Chromosome 22 evaluates to f=3 (the optimal value), so no further improvement 
would be needed beyond this point in the search cycle.

IMPLEMENTING A GENETIC ALGORITHM  
IN STRUCTURAL EQUATION MODELING

There are a number of special issues that must be considered before a GA 
procedure can be set up to conduct a specification search in SEM. These  
issues include:

1. Choosing a criterion for the selection of a model,
2. Generating an initial (starting) population,
3. Defining the population size,
4. Selecting pairs of individuals (parents),
5. Deciding whether to improve the offspring, and
6. Establishing a stopping criterion.

Each of the aformentioned issues is described next, followed by a listing of GA 
search procedure steps for conducting specification searches in SEM.

Criterion for the Selection of a Model
There are many criteria that have been proposed in the SEM literature for evaluating 
the goodness-of-fit of a specified model (for an overview, see Marcoulides & 
Hershberger, 1997; Marsh, Balla, & Hau, 1996; Raykov & Marcoulides, 2000). 
Most criteria define goodness-of-fit in terms of the discrepancy between the 
observed and the model implied covariance matrices, although some combine 
this criterion with a parsimony criterion (Marcoulides & Hershberger, 1997). 
This parsimony principle has been reflected in many descriptive fit indices 
particularly the parsimony-related ones (e.g., Bollen, 1989; Marcoulides & 
Hershberger, 1997; Mulaik et a1., 1989; Raykov & Marcoulides, 1999). In 
general, those among the fit indices that follow the parsimony principle introduce 
penalties for model compexity, yielding less favorable values for models having 
more parameters or fewer degrees of freedom (Raykov & Marcoulides, 1999). 
Accordingly, for two models with comparable overall fit indices, the preferred 
model is the one that has fewer free parameters (i.e., more degrees of freedom; 
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Mulaik, 1998). Given the plethora of fit indices available in the SEM literature 
and because there is no best index, we chose to rely on one of the most popular 
fit as the criterion for the selection of a model in our GA search: the so-called 
noncentrality parameter (NCP; Bentler, P.M., personal communication, April 
23, 1998). The NCP (where NCP=χ2−df) basically serves as a measure of the 
discrepancy between the observed covariance and model implied covariance 
matrices. It is regarded by some researchers as “a natural measure of badness-
of-fit of a covariance structure model” (Steiger, 1990, p. 177). Obviously this 
criterion could easily be replaced by any other available fit index presented in 
the literature (e.g., χ2/df, Normed Fit Index [NFI], or Root Mean Square Error of 
Approximation [RMSEA]; Bentler & Bonett, 1980; Jöreskog & Sörbom, 1993; 
Steiger, 1989, 1998).

Generating an Initial Population
In accordance with the confirmatory nature of SEM, a researcher provides an 
initial starting model (i.e., a user-specified theoretical model) that serves as a 
starting population member for the genetic algorithm. If a number of alternative 
models can initially be specified, these models should also be included in 
the initial (starting) population. Once the user-specified model or models are 
provided, other members of the initial population can be randomly generated. 
Interestingly, even an exploratory approach can be implemented by starting with 
a randomly generated initial model or an initial model where all parameters are 
constrained to zero (or all parameters are set free—a null model).

Selecting the Population Size
A number of interrelated issues must be considered when selecting the appropriate 
population size to use in a GA procedure. In general, increasing the population 
size will usually lead to better solutions as long as the number of generations 
is also increased appropriately. In other words, a large population size basically 
increases the chance of finding good solutions (or even the optimal solution) in 
the initial population. Of course, larger population sizes decrease the likelihood 
that particular pairs of individuals (parents) get selected to produce offspring 
that perhaps lead to the optimal solution. As such, selecting large population 
sizes should always be accompanied by an increase in the number of generations 
so that pairs of individuals have roughly the same likelihood of being selected 
throughout the procedure. The number of generations is roughly proportional 
to the square of the population size, and large population sizes require more 
computer time to generate the initial population.
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Selecting a Pair of Individuals
A pair of individuals (parents) is always selected randomly for reproduction. The 
GA can then be set to either select many pairs of individuals for each generation 
and produce many offspring every generation or generate many offspring from 
one pair of parents and select the best offspring for inclusion in the population.

The Issue of Improving or Not  
Improving Offspring
Another important decision that must be made when implementing a GA procedure 
in SEM is whether to apply a descent algorithm (or any other local search 
algorithm) on the offspring. In simple terms, applying a descent algorithm on the 
offspring involves checking all possible gene changes until no better solution can 
be found by changing a single gene. The GA presented in this chapter applies 
a simple steepest-descent algorithm on offspring (but it could easily be adapted 
to other search procedures; see Drezner et a1., 1999; Marcoulides et a1., 1998; 
Marcoulides & Drezner, 1999). Thus, using a descent algorithm, all neighbors of 
a chromosome are checked to find whether there is one with an improved value 
of the objective function. For example, the chromosome 00000 considered as 
part of the maximization problem presented earlier has five neighbors:

10000
01000
00100
00010
00001

If any of these neighbors has an improved value of the objective function, the 
search proceeds only with that neighbor, and the five genes of this chromosome 
are examined. This process continues until no other neighbors can be found 
that improve the value of the objective function. As such, although applying 
the descent algorithm greatly improves the performance of the GA, with large 
models it can be computationally demanding and time-consuming. For example, 
each row presented in Table 9.1 represents an application of the descent algorithm 
procedure.

Stopping Criterion
There are several ways that one can control the number of generations over 
which a genetic algorithm iterates (i.e., the stopping criterion). One can simply 
run the algorithm with a fixed, prespecified number of generations or run the 
algorithm until a given number of generations does not change the population. 
Alternatively, one can even stop the algorithm after a given time period and 
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accept the best solution in the final population as the preferred solution or report 
all the members of the population for consideration. The GA discussed in this 
chapter was forced to run until 50 generations did not change the population.

The GA Search Procedure Steps
The genetic algorithm consists of the following sequential steps:

1. An initial (starting) population is generated.
2. A pair of individuals (parents) is randomly selected.
3. The parents are merged to produce offspring.
4. The offspring are improved by a steepest-descent (or another) algorithm.
5. If the offspring’s objective function is better than (or equal to) the worst 

population member, the worst population member is replaced by the 
offspring as long as it is not identical to an existing population member. 

6. A mutation that is not related to the process of generating an offspring is 
executed. This means that a population member is randomly selected and 
one of its genes is randomly selected and changed. If the mutation results 
in a better population member, it is accepted as long as it is not identical 
to an existing population member. If not, the mutation is ignored. The 
algorithm returns to Step 2 for another iteration.

AN EXAMPLE SEM ANALYSIS

Model Definition and Chromosomal Coding
The approach used in this chapter to demonstrate the GA procedure for conducting 
specifications searches in SEM is similar to that implemented by numerous 
other researchers (e.g, Costner & Schoenberg, 1973; Herting & Costner, 1985; 
MacCallum, 1986; Marcoulides et a1., 1998; Spirtes et a1., 1990; Saris, dePijper 
& Zegwaart, 1979; Saris, Sattora, & Sörbom, 1987): (a) utilize data for which 
there is a known correct model, (b) initially fit a mispecified model to the data, 
and (c) determine whether a specification search leads to the correct model.

A simple confirmatory factor analytic model based on five observed variables 
with two common factors is used for illustrative purposes, but it should be obvious 
that the procedure can be adapted to any type of SEM model encountered. The 
example factor loading matrix has the following structure:
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For this model, variances of the factors are 1.0 and covariance among the two 
factors is set at σ21=0.3. Using the previous true model, the following population 
covariance matrix is generated:

Although any number of possible specification errors can be made in this true 
model, for illustrative purposes, we misspecified the two factor loading matrices 
presented next:

and generated a covariance matrix for a sample of size n=5,000 drawn from the 
known population model.

Accordingly, the model is defined by the following equation:

 x=Λξ+δ,

or simply

 

where x is the vector of observed data on the variables of interest, ξ is the vector 
of latent variables, A is the factor loading matrix, and δ is the error terms vector. 
From the prior equation and with the usual assumptions of E(ξ)=0, E(δ)=0, and δ 
uncorrelated with ξ it follows that the covariance matrix of x implied by a model 
M has the form 

 Σ=ΛΦΛ′+Θ,
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where Θ is a diagonal matrix containing the error variances and Φ is the 
correlation matrix of the latent variables.

To set up the GA, one must consider the special structure of the previous 
matrices and set up a chromosomal coding scheme of the parameter set that can 
be manipulated. Looking at the covariance matrix of x, it is clear that the factor 
loading matrix A has potentially 10 elements, the Φ matrix has only 1 element, and 
the Θ matrix has 5 elements. Using a binary vector as a chromosome to represent 
these three matrices leads to the following chromosomal coding scheme:

 

The prior chromosome therefore has 16 genes. Each gene is ordered according 
to the proposed structure for the first column in A, the second column in A, the 
covariance between the two factors in Φ, and the five error terms in Θ. A value 
of 0 in the chromosome means that the particular element is fixed, and a 1 means 
that the particular element is free. It is important to emphasize again that model 
parameters are never directly manipulated in a GA, only that the chromosomal 
codings are manipulated. Of course, it should be obvious that with more 
complicated models the length of the chromosome also increases. For example, 
looking at the model presented in Fig. 9.2 and defined by the equations 

 

FIG. 9.2. Example structural model.
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the factor loading matrix alone has a chromosomal code of 
111000000000111000000000111.

Generating the Initial Population
Returning to the example confirmatory factor analysis model presented earlier, 
the next step is to generate the initial population. Before this is done, however, 
and to be able to trace and report the complete GA procedure introduced in this 
chapter, an important assumption is made concerning the matrix Θ. In particular, 
it is assumed that the five elements of the matrix in Θ (i.e., the error terms) 
will always be free (and therefore remain at a value of 1 in the chromosomal 
coding). Based on this assumption, the chromosome for the previous model can 
be written with only 11 genes as1

 

whose results are much easier to track and report.
Now suppose that in addition to the previously misspecified model, three other 

models were randomly generated to form the following four initial population 
members evaluated to their corresponding estimated NCP:

1 It is important to note that the only reason this assumption is introduced is to make the chapter 
presentation of the GA easy to follow.

2 The GA search procedure persented herein was programmed in FORTRAN and implemented 
alongside the LISREL8 program (Jöreskog & Sörbom, 1993). However, because the GA does 
not compute parameter estimates and fit statistics but uses the values generated by LISREL8, any 
other SEM program could also be used. In summary, each evaluation of the objective function 
for the GA is performed by iteratively creating and running an input file for LISREL8 until the 
stopping criterion is met.

Tracing the GA Search Procedure2

Using this initial population, consider a crossover operation that combines 
Chromosomes 1 and 2. The crossover point is after Gene 5. This leads to the 
following result:
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which ends up being a better chromosome than Chromosome 4 in the 
initial population generated and so is replaced to yield the following new  
population (sorted):

To illustrate mutation (for further details, see section on Improving Offspring 
Using a Descent Algorithm), assume that Chromosome 2 is selected and that the 
mutated gene is Gene 4. The chromosome after this mutation is equal to:

Because this leads to a smaller NCP value, the mutation is accepted and the 
chromosome is replaced in the population. This leads to the following new 
population (sorted):

It is important to note that if Chromosomes 4 and 1 were to be selected for 
a merge, the merge would not be accepted because the resulting chromosome is 
identical to Parent 1. Similarly, if Chromosome 3 were randomly selected for a 
mutation on Gene 11, because the generated chromosome

is worse than the original member, it is also not accepted. Thus, the population 
remains the same. At the next iteration, Chromosomes 4 and 2 are merged  
to yield

Because this new offspring is better than the worst population member, it is 
replaced in the population, which leads to the following population (sorted): 
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Chromosome 4 is selected next for mutation and Gene 6 is randomly selected to 
produce a new chromosome

However, because it is worse than the previous Chromosome 4 (which 
incidentally is the worst chromosome of the population), it is rejected. Thus, 
the population remains unchanged. Chromosomes 4 and 1 are then merged to 
produce the chromosome

which is also not better than the worst population member. Chromosome 3 and 
Gene 3 are then randomly selected for mutation to produce the chromosome

which is not better than the original population member.
Chromosomes 2 and 1 are then merged to produce

which is better than the worst population member and thus replaces population 
member 4 yielding the following population (sorted):

Chromosome 2 is then selected and Gene 3 is randomly picked for mutation to 
produce the much better chromosome

which is also replaced in the following population

A merge between Chromosomes 2 and 3 results in a chromosome that is identical 
to Chromosome 3, and thus the population remains unchanged. Chromosome 3 
is then selected and Gene 4 is randomly picked for mutation to produce
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which, because it is worse than the original member, is rejected. Chromosome 1 
is then merged with Chromosome 3 to produce

which is also not better than the worst population member, and thus the population 
remains unchanged.

At the next iteration, Chromosome 1 is selected and Gene 8 is randomly 
picked for mutation to produce

which is replaced in the following population:

The processes of crossover and mutation continue for 50 more cycles until finally 
Chromosome 1 is accepted as the best solution.

Improving Offspring Using a Descent Algorithm
As discussed in a previous section, using a descent algorithm on each offspring 
improves the performance of the genetic algorithm because it checks all possible 
mutations of a chromosome. For example, consider the initial population created 
earlier as

All possible mutations of the chromosomes are as follows:

For Chromosome 1



Specification Searches in Structural Equation Modeling 265

For Chromosome 4

For Chromosome 2

For Chromosome 3
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As illustrated earlier, the best mutation for each chromosome is selected and the 
process continues until no better mutation is found.

CONCLUSION

This chapter introduced a GA procedure for conducting specification searches 
in SEM. Using data with known structure, the performance of an adaptive 
GA procedure was illustrated. Although GAs have been used extensively for 
solving other types of large-scale optimization problems, their application to the 
SEM literature is new and a great deal of research remains to be done. There 
is no doubt that model specification searches in SEM are extremely difficult 
especially whenever the number of possible alternative models is high. Thus, 
there is a definite usefulness to any automated procedure that can make such a 
chaotic situation somewhat more manageable. We believe that GA specification 
searches will quickly prove to be quite helpful for improving models that are not 
fundamentally misspecified, but are incorrect only to the extent that they have 
some missing paths or parameters that are involved in unnecessarily restrictive 
constraints. Nevertheless, despite the fact that GA specification searches will 
generally find the best models according to a given fit criteria, all final generated 
models need to be cross-validated before any real validity can be claimed. In 
the case that equivalent models are encountered, GA specification searches 
will lead one to a list of population models, but it is the responsibility of the 
researcher to decide which model to accept as the best model. To date, no 
automated specification search can make such a decision. Therefore, as long as 
researchers keep in mind that the best use of automatic search procedures is to 
narrow attention to models on a recommendation list (a sort of top-10 list), the 
procedure will not be abused in empirical applications.
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The use of item parcels in structural equation modeling (SEM) has become 
quite common in recent years. The practice of parceling involves summing or 
averaging together two or more items and using the resulting sum or average 
as the basic unit of analysis in SEM. This practice appears to have originated 
with the work of Cattell (1956; 1974) and has become increasingly popular 
in applied research areas such as education, psychology, and marketing. We 
conducted a review of the use of parceling by examining issues of the following 
journals from 1989 to the present: Journal of Educational Measurement, Journal 
of Educational Psychology, Applied Psychological Measurement, American 
Educational Research Journal, Educational and Psychological Measurement, 
Structural Equation Modeling, and Journal of Marketing Research. We found 
that, of 317 applied SEM or CFA studies, 62 (19.6%) employed some type of 
parceling procedure. More specifically, we found the following percentages 
within each journal: Journal of Educational Measurement, 60%; Journal of 
Educational Psychology, 23%; Applied Psychological Measurement, 25%; 
American Educational Research Journal, 33%; Educational and Psychological 
Measurement, 18%; Structural Equation Modeling, 13%; and Journal of 
Marketing Research, 9%.

The use of parcels has been advocated on several grounds. Parcels are said 
to be more reliable than individual items and to have more definitive rotational 



270 New Developments and Techniques in Structural Equation Modeling

results (Cattell & Burdsal, 1975; Kishton & Widaman, 1994). Increased reliability 
was cited most frequently as a reason for parceling in our review of the literature 
(29%). Another commonly offered advantage for the use of item parceling is that 
parcels have distributions that are more continuous and normally distributed than 
those of individual items, and thus conform more closely to the assumptions of 
common normal theory-based estimation methods such as maximum likelihood 
(ML). In our review of the literature, approximately 8% of the studies employing 
parceling cited this as a reason for doing so. A typical example of this rationale 
is found in Bridgeman and Rock (1993): “In order to better approximate the 
linear factor model assumption of multivariate normality, item parcels rather 
than individual items were analyzed” (p. 317). In the area of education, item 
distributions that lack normality and continuity often manifest themselves in the 
presence of so-called difficulty factors. References to problems with difficulty 
factors are commonly found in factor analyses of dichotomously scored items, 
such as those typically found on achievement and aptitude tests (e.g., Cook, 
Dorans, & Eignor, 1988). In the area of organizational research, Bagozzi and 
his colleagues (Bagozzi & Edwards, 1998; Bagozzi & Heatherton, 1994) have 
suggested that the use of parceling (referred to in their papers as a partial 
disaggregation model) results in the estimation of fewer model parameters because 
factor loadings and measurement error variances need only be estimated for each 
parcel rather than for each item. Because of this, it is commonly argued that the 
use of parcels may be beneficial in studies involving small samples because it 
will result in a more optimal variable to sample size ratio and thus more stable 
parameter estimates. In our review of the literature, 22.6% of the studies that 
used parceling referred to improving the variable to sample size ratio, 21% used 
parceling due to small sample sizes, and 29% stated that they used parceling to 
obtain more stable parameter estimates. For example, Gottfried, Fleming, and 
Gottfried (1994) stated, “To reduce further the number of variables and hence 
keep the models’ degrees of freedom reasonable, variables were combined by 
averaging to create two indicators per factor” (p. 107). Similarly, Vandenberg 
and Scarpello (1991) provided the following reasoning:

Creating subscales is the procedure recommended when item-to-subject ratios are too 
low to obtain stable factor solutions (Marsh & Hocevar, 1988). That is, if all 44 of the 
original items had been used, the ratio would have been less than 3 subjects per item. 
This is far below the ideal ratio of 10:1 (Nunnally, 1978) and even below the acceptable 
lower-bound limit of a 5:1 ratio. By creating subscales (three for each measure for a 
total of 12), an 8.3:1 ratio was maintained, (p. 206).

However, the assumption that smaller parameter to sample size ratios will 
necessarily result in greater stability of parameter estimates has been called into 
question by recent studies (e.g., MacCallum, Widaman, Zhang, & Hong, 1999; 
Marsh, Hau, Balla, & Grayson, 1998).

In our review of the literature, we encountered several other reasons for 
item parceling. These included arguments that parceling reduces the influence 
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of idiosyncratic features of the items and simplifies the interpretation of model 
parameters. For example, Chapman and Tunmer (1995) stated,

The main reasons for our adoption of this procedure in the present experiment are that 
each variable should be more reliable and should have a smaller unique component, 
and idiosyncratic wording of individual items should have less effect on factor loadings 
(Marsh & O’Neil, 1984). (p. 160)

Finally, some authors argued for the use of parceling on the grounds that 
parceled solutions will typically result in better model fit than solutions at the 
item level (e.g., Thompson & Melancon, 1996). As is argued in this chapter, 
however, this seeming improvement in fit may actually mask important model 
misspecifications.

Despite the apparent advantages alluded to earlier, the use of item parceling 
is not without controversy. Perhaps most important, the use of parceling depends 
on the unidimensionality of the items being combined (Bandalos, in review; 
Cattell, 1956, 1974; Hall et a1., 1999), an assumption that is rarely tested. 
Of the articles that used parceling in our review of the literature, only 32.3% 
described the dimensionality of the items either by referencing previous studies 
of dimensionality or conducting an exploratory or confirmatory factor analysis 
on the items. The remaining articles, whether using newly or previously created 
scales, made no specific mention of dimensionality. Therefore, it cannot be 
assumed that when item parceling is practiced it is conducted within a set of 
unidimensional items. This is problematic in that, when this assumption is not 
met the use of parcels can obscure rather than clarify the factor structure of the 
data (West, Finch, & Curran, 1995). Another disadvantage of parceling is that 
it can result in biased estimates of other model parameters in some situations 
(Bandalos, in review; Hall et a1., 1999). Finally, the use of item parcels will 
not yield as stringent a test of SEM models as would analyses based on the 
individual items because not as many free parameters are being tested as in 
models based on individual items.

PREVIOUS RESEARCH ON ITEM PARCELING

Despite the widespread use of parceling and the questions regarding its use, 
few studies have investigated whether, and under what conditions, parceling 
may be a defensible strategy. Of those studies that have been done, most have 
utilized actual data sets for which the true factor structure is not known (Bagozzi 
& Heatherton, 1994; Bagozzi & Edwards, 1998; Gribbons & Hocevar, 1998; 
Michael & Bachelor, 1988; Takahashi & Nasser, 1996; Thompson & Melancon, 
1996). Because of this, it is not possible to determine from these studies how 
the use of parceling impacts recovery of a true factor structure or the accuracy 
of parameter estimates. The effects of parceling have therefore been assessed in 
these studies by comparing parcel- and item-based solutions.
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For example, Michael and Bachelor (1988) used an existing data set 
consisting of 90 items to conduct exploratory factor analyses (EFA) on both 
item-level and parceled data. Although the factor solutions produced by the 
item- and parcel-level analyses were not completely consistent, these authors 
concluded that “if the scales of the measures are quite homogenous” (p. 102), 
the outcomes of these two analyses are likely to be similar. In a similar study, 
Takahashi and Nasser (1996), using an existing data set, formed parcels of 2, 
3, 4, and 5 items. They found that the ad hoc fit indexes (GFI, NNFI, CFI, and 
ECVI) and the chi-square values for a CFA model improved as the number of 
items per parcel increased (and the number of parcels decreased). Thompson and 
Melancon (1996) used an existing data set consisting of 76 items to illustrate 
how items could be parceled together to ameliorate situations in which item 
level distributions are nonnormal. Items were parceled together “with the view 
of maximizing normality” (p. 9) presumably by parceling together items with 
positively and negatively skewed distributions, as suggested by Gorsuch (1983). 
Their results demonstrate that the parcel distributions were indeed more normally 
distributed than the item distributions and that the fit of maximum likelihood 
CFA solutions improved as the number of parcels decreased (and the number of 
items per parcel increased).

Bagozzi and his colleagues (Bagozzi & Heatherton, 1994; Bagozzi & Edwards, 
1998) include the parceling approach as one level in a hierarchical series of 
item aggregation strategies that ranges from item-level analyses through parcel-, 
subscale-, and total scale-based analyses. These researchers argued that item 
level or totally disaggregated models are “unlikely to be applied successfully” 
(Bagozzi & Heatherton, 1994, p. 43) when the number of items is greater than 
four or five. However, these authors stated that the totally disaggregated model 
may be useful for scale development and refinement. They also argued that the 
parcel-level or partially disaggregated model will result in less measurement error 
than the item-level model and may be preferred for that reason. Nonetheless, 
they pointed out that parcels may provide misleading results if not constructed 
carefully, and provided the following guidelines for parceling items together: (a) 
items must be valid individual measures of the construct of interest, (b) items 
must be at the same level of specificity both within and across parcels (i.e., items 
and scales or subscales should not be parceled together), and (c) items within a 
parcel must be unidimensional.

In their 1994 study, Bagozzi and Heatherton, using a real data set, demonstrated 
the use of models at various levels of aggregation in estimating a second-order 
factor structure. In this study, the item-level model did not fit the data, whereas 
both the parcel and subscale-level models fit satisfactorily. The item-level model 
apparently resulted in large modification indexes for covariances among various 
measurement error variances. The authors interpreted this as possible evidence 
of method effects; more generally, it could be interpreted as evidence of an 
unmodeled secondary factor of some kind. As is seen in later sections, this type 
of influence can be effectively masked through the use of parceling. Bagozzi 
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and Edwards (1998) used data from several scales to demonstrate similarities 
and differences among models at different levels of aggregation. Although the 
models using parcel- and item-level data resulted in approximately equal factor 
correlations, the two models differed with respect to the results obtained for 
multiple group analyses investigating the invariance of factor structures across 
groups of males and females. Finally, Gribbons and Hocevar (1998) conducted 
several CFA studies at different levels of aggregation on an 80-item self-concept 
scale. They found that, although the parcel- and subscale-level analyses differed 
little in goodness-of-fit, both were superior to the item-level results in this regard. 
They recommended that method effects be modeled when using item-level 
analyses and that large sample sizes be used to ensure stability of the estimates 
of these effects.

We are aware of four studies in which the effects of item parceling were 
investigated either experimentally or analyticallly. Marsh, Hau, Balla, and Gray 
son (1998), using simulated data, found that CFA solutions based on two (six-
item), three (four-item), four (three-item), or six (two-item) parcels resulted in 
greater numbers of proper solutions than analyses based on the two, three, four, 
or six individual items. However, solutions based on the 12 individual items 
resulted in proper solutions for all samples. The chi-square/df ratio increased 
with the number of parcels used and was highest for solutions based on the 
individual items. The results with regard to proper solutions are consistent with 
those of Yuan, Bentler, and Kano (1997), who showed that CFA solutions based 
on parcels had greater power and smaller mean squared error that those based on 
individual items when the numbers of items used was equivalent to the number 
of parcels.

Recent simulation studies by Bandalos (in review) and Hall, Snell, and 
Singer Foust (1999) are of interest because they allow for the comparison of 
factor structures and parameter estimates obtained from parcel-based solutions 
to known population values. These studies are discussed in some detail because 
they illustrate several important issues that come into play when item parceling 
is used. Two investigations were included in the Bandalos (in review) study. 
In the first, coarsely categorized data with non-normal item distributions were 
simulated to study the efficacy of item parceling in ameliorating problems 
associated with such data. Results indicate that, when item distributions were 
non-normally distributed, the use of item parceling resulted in rejection rates that 
were much closer to the nominal .05 level than did use of individual items.

The second investigation of the Bandalos (in review) study was concerned 
with whether the use of item parceling could obscure a true multifactor solution. 
In this study, data were simulated to fit a complex three-factor structure in which 
half of the items with primary loadings on each of two main factors had additional 
loadings on a secondary factor (see Fig. 10.1). Primary loadings were set at .7, 
secondary loadings at .4, and measurement error variances at .3 for all items. A 
misspecified two-factor structure, in which the secondary factor was omitted, 
was then fit to both parceled and unparceled data. Items were parceled in two 
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FIG. 10.1. Model from Study 2 of Bandalos (in review).
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ways. In the within parceling condition, items with secondary loadings were 
placed in the same parcel, whereas in the across parceling condition, items with 
secondary loadings were placed in different parcels. Although both parceling 
strategies resulted in lower rejection rates than use of the individual items, use of 
the across parceling strategy resulted in substantially lower rejection rates than 
the within parceling strategy. Because the model was misspecified, however, 
a failure to reject the model represents a Type II error. Thus, parceling items 
with a shared secondary influence into different parcels resulted in the greatest 
number of Type II errors for this scenario. With regard to parameter estimate 
bias, substantial positive bias was found for the correlation between the two 
primary factors for both the within and across parceling strategies, with the 
latter approach resulting in slightly lower levels of bias. Parameter estimates for 
both of the paths from the two exogenous factors to the endogenous factor were 
negatively biased. However, this bias was not as severe as that observed in the 
factor correlation. Use of the individual items resulted in greater levels of bias 
than did either parceling strategy.

In the study by Hall et a1. (1999), both simulated and empirical data sets 
were used to demonstrate the effects of parceling on parameter estimates and 
goodness-of-fit. In the simulated data, six items were generated to have primary 
loadings on one factor. In addition, two of these items had secondary loadings 
on another factor. The model also contained an endogenous factor (see Fig. 
10.2). The relationship of the secondary factor to the endogenous factor was 
manipulated to determine the effect of parceling on this relationship. Parcels 
were formed in two ways: Items sharing the secondary loading were parceled 
into either the same parcel (isolated uniqueness strategy) or different parcels 
(distributed uniqueness strategy). These strategies correspond to the within and 
across parceling strategies, respectively, from the Bandalos (in review) study. 
Models were then analyzed in which all parcels were forced to load on only the 
primary factor; the secondary factor was omitted. Thus, the models analyzed 
were misspecified.

Results show that the goodness-of-fit for the parcels based on the distributed 
uniqueness strategy was not as good as that for the isolated uniqueness strategy 
when the secondary factor did not influence any other factor in the model. 
However, when the secondary factor also influenced an endogenous factor, the 
fit for the model based on distributed uniqueness parcels was superior to that for 
the model using the isolated uniqueness strategy. In the latter case, the estimate of 
the path from the primary to the endogenous factor was biased for both parceling 
strategies, although more bias was found for the distributed uniqueness strategy.

Hall et a1. (1999) explained these results in terms of the treatment of the 
variance resulting from the secondary factor. When the two items that were 
influenced by the secondary factor were put into separate parcels, the influence 
of the secondary factor became common to two of the parcels. This source of 
variation thus became shared variance and was reflected in higher loadings for 
those parcels. Basically, then, this strategy allowed for the variance associated 



276 New Developments and Techniques in Structural Equation Modeling

with the secondary factor to be absorbed into the primary factor. However, when 
the secondary factor was not related to an additional endogenous factor in the 
model, the path from the primary factor to the endogenous factor was attenuated 
because the proportion of variance shared by the new primary factor with the 
endogenous factor was smaller. This resulted in a poorer fit for this model as 
compared with the isolated uniqueness model. When the isolated uniqueness 
strategy was used, the variance associated with the secondary factor was isolated 
into one parcel. Thus, the variance due to the secondary factor was absorbed 
into the error term for the parcel with which it was associated instead of into the 
primary factor. This strategy resulted in a better model fit because the path from 
the primary factor to the endogenous factor was not biased.

FIG. 10.2. Model from Hall, Snell, and Singer Foust (1999).
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The relative goodness-of-fit of the distributed and isolated uniqueness 
strategies was reversed for the situation in which the secondary factor influenced 
the endogenous as well as the primary exogenous factor. In this case, the fit of 
the model using the distributed uniqueness strategy was better than that for the 
isolated uniqueness strategy. In the distributed uniqueness strategy, the shared 
variance associated with the secondary factor was absorbed into the primary 
factor. Thus, the secondary factor was still able to have an influence on the 
endogenous factor somewhat indirectly, although this resulted in an upward 
bias of the path from the primary to the endogenous factor. However, because 
the variance associated with the secondary factor was isolated in the error term 
in the isolated uniqueness strategy, it was unable to have any influence on the 
endogenous factor, resulting in a greater lack of fit.

These results are consistent with those of the Bandalos (in review) study, in 
which an endogenous factor was influenced by two primary factors. However, 
in the Bandalos study, the omitted secondary factor did not influence the 
endogenous factor. Under this scenario, when using the across or distributed 
strategy, the effects of the secondary factor were absorbed into both primary 
factors. This resulted in more shared variance between these two factors and 
inflated the estimate of the factor correlation. However, the estimates of the 
paths from the two exogenous to the endogenous factor were negatively biased 
because the extra variance that was absorbed into the exogenous factors was not 
shared with the endogenous factor.

Based on the results of their study, Hall et a1. (1999) made several 
recommendations for practice. First, item parceling should be used only when 
items are uni-dimensional. Use of the isolated uniqueness parceling strategy 
can increase the unidimensionality of a factor by forcing the influence of a 
secondary factor into the error term. It should be noted, however, that the model 
in this case is actually misspecified and will mask the true factor structure of the 
items. Because of this, Hall et a1. suggested that this strategy works best when 
the secondary factor has a relatively weak influence on the items. In practice, 
however, it may be difficult to identify the secondary factor to accomplish this 
type of parceling, as well as to determine how strong its influence is. Use of the 
distributed parceling strategy, because it results in the variance associated with the 
secondary factor being treated as shared primary factor variance, can also mask 
a true multifactor structure. Thus, it appears that the defensibility of either the 
isolated or distributed uniqueness strategies depends on whether the researcher is 
comfortable with treating the secondary factor (or factors) as ignorable.

THEORETICAL FRAMEWORK

A recent article by MacCallum et a. (1999) provided a theoretical framework for 
the results found in the studies by Hall et a1. (1999) and Bandalos (in review). 
This section and the next summarize their framework and relate it to these two 
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studies. Although the purpose of the study was to investigate the relationship 
between the variable to factor ratio, level of communality, and sample size in 
the context of exploratory factor analysis (EFA), this study provides a general 
framework that underlies both exploratory and confirmatory factor analyses. 
The discussion hinges on the manner in which sampling error affects parameter 
estimation in these procedures. Using a framework adapted from an earlier article 
by MacCallum and Tucker (1991), MacCallum et a1. showed that there are two 
sources of sampling error that come into play when a sample covariance matrix 
is used as an estimator of the population parameters of a factor analysis model. 
Using the notation of MacCallum et a1., the population covariance matrix Σyy 
can be expressed in terms of matrixes of common and unique factor scores and 
their loadings as:

 Σyy=ΩΣxxΩ′, (1)

where Ω is a matrix of loadings for common and unique factors (Ω=[Λ, Θ] and 
Σxx is partitioned as

  (2)

Here Σcc is a population covariance matrix for the common factors, Σuu is 
a population covariance matrix of the unique factors, Σcu is the population 
covariance matrix of common and unique factors, and Σuc is the transpose of 
Σcu. If factors are standardized in the population, these matrixes would contain 
correlations instead of covariances. Further, unique factors are usually taken to 
be uncorrelated with each other and with the common factors. Thus, matrixes 
Σcu and Σuc must contain all zeros, and matrix Σuu is an identity matrix. Matrix 
Σxx then becomes

  (3)

Substituting from Eq. (3) into Eq. (1), we obtain the familiar result

 Σyy=ΛΦΛ′+Θ2. (4)

In the sample, the model specified in Eq. (1) will not hold exactly. The factor 
loadings in Ω represent fixed values for each individual in the population and 
thus will have the same values in the sample and population (although the sample 
estimates of these may differ across samples due to estimation error). However, 
the matrix of covariances among the factors will depend on the sample analyzed. 
The sample matrix of covariances among the common and unique factors is: 

  (5)
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In particular, even when the assumption of zero correlations among the unique 
factors and among the unique and common factors holds in the population, these 
elements will typically deviate from zero in the sample simply because of random 
sampling fluctuations. The matrixes Ccu and Cuc will thus not be zero, and the 
matrix Cuu will not be diagonal. The decomposition of the sample covariance 
matrix Cyy resulting from Eqs.(1) and (5) will be:

 Cyy=ΛCccΛ′+ΛCcuΘ′+ΘCucΛ′+ΘCuuΘ′. (6)

The nonzero elements in Ccu, Cuc, and Cuu will result in a lack of fit of the model 
implied by Eq. (1) to the sample covariance matrix. This, then, is one source of 
sampling error that will affect both EFA and CFA solutions.

The second way in which sampling error affects the fit of the model in the 
sample can be seen from Eq. (6). Note that the unique loadings in Θ essentially 
serve as weights for the matrixes Ccu, Cuc, and Cuu. When common factor loadings 
or communalities are high, these unique loadings will be low, and the elements 
in Ccu, Cuc, and Cuu will not have as great an impact on the solution for Cyy. 
However, with lower communalities, the weights in Θ will be larger, and the 
elements of Ccu, Cuc, and Cuu will be weighted more heavily. Thus, it can be seen 
that, when communalities are high, a smaller sample size may be sufficient to 
obtain accurate results. The finding that, with more reliable or highly determined 
variables, one may not need as large a sample size is consistent with previous 
research (e.g., Bandalos, 1993; Velicer & Fava, 1998). This suggests that 
parceling items to reduce the variable to factor ratio may not be necessary for 
obtaining more accurate or stable solutions.

RELEVANCE TO ITEM PARCELING

In the context of item parceling, the framework provided by MacCallum et a1. 
(1999) is relevant because it provides an explanation for the improvement in 
model fit associated with parceled solutions. With regard to the first sampling 
effect described by MacCallum et a1., one result of parceling is to reduce 
the size of the matrixes Cuu, Ccu, and Cuc with a consequent reduction in the 
contribution from error resulting from unmodeled associations in these matrixes. 
This produces a better fit of the sample matrix Cyy to the model implied by 
Eq. (4) and is one reason that parceled solutions provide a better fit of the 
model to the data. In addition, as shown by Bandalos (in review) and Hall 
et a1. (1999), parceling can be done in such a way that items with correlated 
uniquenesses, or nonzero diagonal elements in Cuu, are parceled together. When 
these parcels are then treated as indicators of the same factor, the correlated 
uniqueness is reformulated as shared common variance and becomes part of the 
modeled variance in the diagonal of Ccc rather than of unmodeled associations 
in the off-diagonal elements of Cuu. However, parameter estimates of structural 



280 New Developments and Techniques in Structural Equation Modeling

paths from the factor into which the shared variance is incorporated to other 
endogenous variables in the model may be biased when this type of parceling 
is used. These effects are illustrated in the studies by Bandalos and Hall et a1., 
as described earlier.

With regard to the second sampling effect of MacCallum et a1., the size of the 
elements of Θ affect the fit of the model through their use as weighting elements 
for the matrixes Ccu, Cuc, and Cuu, as seen in Eq. (6). One effect of parceling is 
to reduce the size of the elements of Θ. This is because parcels, being based 
on several items, are more reliable indicators of a construct than are individual 
items, and have less error variance. A second reason that parceling improves 
model-data fit is thus due to the reduction in the impact of the matrixes Ccu, Cuc, 
and Cuu on the solution. Another consequence of the reduction in error variance is 
greater efficiency of parceled solutions relative to solutions based on individual 
items. This effect is reflected in the finding by Marsh et a1. (1998) that parceled 
solutions result in a greater number of proper solutions than solutions based 
on the same number of items. Similarly, Yuan et a1. (1997) have shown that 
solutions based on parcels have more power and yield more efficient estimates 
of model parameters than do solutions based on the same number of items. These 
effects can be understood in the context of the higher levels of communality 
associated with item parcels, which results in greater stability and power.

The use of parceling can thus be seen to reduce the lack of fit of Cyy to the 
model implied by Eq. (4) in three complementary ways: by reducing the size of 
the matrixes Cuu, Ccu, and Cuc; by reducing the contribution of these elements to 
the sample matrix Cyy; and by reformulating variance due to cross-loadings. The 
first two effects occur to some degree for any type of parceling regardless of how 
items are parceled together or whether secondary factors are involved. Note that 
these sources of error reduction function independently of each other. When all 
effects are strong, a substantial improvement in fit would be expected over the 
corresponding item-level solution.

These results also have a bearing on the argument that the use of parceling is 
necessary in applications with a large number of variables relative to the sample 
size. The framework provided by MacCallum et a1. (1999) demonstrates the 
mediating effect of the level of communality on the variable to sample size ratio. 
As sample size increases, the covariances in Ccu, Cuc, and Cuu tend toward their 
population values of zero, resulting in less error in fitting Cyy to Eq. (4). However, 
this effect is mediated by the size of the communalities: When communalities 
are high, the nonzero elements of Ccu, Cuc, and Cuu receive less weight in the 
solution, as described previously. In such situations, the impact of sample size in 
reducing the error associated with these nonzero covariances is less pronounced. 
In situations such as these, the emphasis on the need for item parceling may 
be exaggerated. With smaller communalities, these elements are weighted more 
heavily into the solution, and sample size plays a greater role in reducing this 
source of error. In these cases, the use of item parceling results in a greater 
reduction in error.
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Finally, it would be expected that the use of item parcels rather than individual 
items would result in the largest improvement in model fit for situations in 
which the influence of secondary factors is fairly strong and the communalities 
of the items are fairly low. In the study by Hall et a1. (1999), communalities 
are quite high (.89), and the influence of the secondary factor was fairly strong 
with the two loadings set at .4 and .5. Similarly, in the Bandalos (in review) 
study, communalities were .7 and secondary loadings were set at .4. Even in 
these situations, however, the influence of the parceling strategies on model fit  
was substantial.

RECOMMENDATIONS REGARDING  
THE USE OF ITEM PARCELING

Having established the necessary background, we use this section to consider 
in more depth the validity of arguments for item parceling and establish what 
we consider to be defensible as well as undesirable applications of this practice. 
We note here that the advantages cited for parceling differ across studies using 
achievement or aptitude scales and those using attitude or personality measures.

In the area of achievement and aptitude measurement, items are nearly 
always scored in a binary right/wrong format (although the increasing use of 
performance assessments has resulted in some changes in this traditional format). 
Items responses are thus, by definition, not normally distributed or continuous. 
Because traditional approaches to SEM assume the use of continuous, normally 
distributed data, methods of improving the normality and continuity of variable 
distributions is of major concern to researchers in these areas. This concern 
predates the use of SEM and was discussed in the literature as early as 1941 
(Ferguson, 1941) in the context of so-called difficulty factors, which were 
found to arise in the factor analysis of binary data. As explained by McDonald 
and Ahlawat (1974), difficulty factors result from the fact that the regression 
of assumed continuous latent factors on binary items is nonlinear and is thus 
misspecified under a traditional linear factor analysis model. Carroll (1983) 
also pointed out that factor analyses of binary-scored achievement test items 
are affected by differences in guessing across items. Item parceling is one 
method that has been commonly used to circumvent these problems in factor 
analysis as well as in SEM. Cook, Dorans, and Eignor (1988) presented one 
application in the CFA area. These authors described the use of parcels as a 
way to linearize the nonlinear factor/item relationship and recommended that 
parcels be created that have approximately equal means (or difficulty levels) and 
variances. These are referred to as parallel parcels and are widely used in CFAs 
of cognitive test data. In our analysis, the applications of parceling in situations 
such as these are among the more defensible in the CFA literature. We base 
this judgement on the fact that the instruments in these studies have typically 
been investigated extensively and the factor structures are well known to the 
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researchers and the parceling is carried out within clearly unidimensional factors. 
In our opinion, this constitutes a necessary (although not a sufficient) condition 
for parceling. However, it should be noted that recent developments in nonlinear 
factor analysis may negate the need to parcel binary items as they allow for the 
express modeling of the nonlinear item/factor relationship (see e.g., Mislevy, 
1986; Muthén & Muthén, 1998).

Another situation involving cognitive test data in which parceling is typically 
used is that in which sets of questions refer to the same stimulus material. A 
common example of this is the inclusion of a reading passage that is followed by 
a set of reading comprehension items based on that passage. In situations such 
as these, it can be argued that the items violate the assumption of conditional 
independence, in which the construct being measured by the test is assumed to 
account for all of the covariation among the items. Wainer and Kiely (1987) 
introduced the concept of testlets to describe these situations as well as other 
sets of locally dependent items such as those developed for use in computerized 
adaptive tests (CATs). Items within a testlet are aggregated as bundles or parcels 
for purposes of analysis. The use of testlets represents a situation in which we 
feel that the use of parceling may be defended on theoretical grounds. This is 
because the reason for the dependence among items that necessitates the parceling 
approach is explicitly defined in these situations, and the unidimensionality of 
the items used to form a parcel is typically well-established.

In contrast, we are unconvinced by many of the arguments advanced by 
researchers in the areas of personality and attitude measurement for the use of item 
parceling. A common reason cited by advocates of item parceling in these areas 
is that parceled solutions result in a better fit of the model to the data as compared 
with item-based solutions (Bagozzi & Edwards, 1998; Bagozzi & Heatherton, 
1994; Michael & Bachelor, 1988; Takahashi & Nasser, 1996; Thompson & 
Melancon, 1996). In our view, the fact that parceled solutions improve the fit of 
the model does not constitute a convincing argument for the use of this practice. 
We base this view on the explanation provided earlier in this chapter of the 
manner in which this improvement in fit is achieved. It can be recalled that the use 
of item parceling was shown to improve fit in two complementary ways: through 
a reduction in the size of the matrixes Cuu, Ccu, and Cuc and through the reduction 
in the elements of Θ that serve as weights for these matrixes. Certain types of 
parceling may further improve fit by reconfiguring the correlated uniquenesses 
in Cuu as shared variance. Because in most applications the model to which the 
elements of Cyy are fit typically does not allow for uncorrelated uniquenesses, 
this reconfiguration results in an improvement in model-data fit. In our view, the 
crucial point with regard to these improvements in fit is that they are obtained by 
limiting the influence of the nonzero off-diagonal elements of Cuu, Ccu, and Cuc 
rather than by either eliminating or modeling them explicitly. Thus, although the 
use of item parceling may minimize the influence of these sources of lack of fit, 
it does nothing to either remove or explain them. Although it may be the case 
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that these unmodeled sources of variance are the result of random sampling error 
or sampling bias, they may also have resulted from unmodeled factors. In the 
latter case, the improvement in fit realized through the use of item parceling is 
obtained at the expense of masking some type of misspecification of the model.

In any applied study, it is not possible to know whether the model has been 
correctly specified. Lack of fit may occur because of sampling error, model 
misspecification, or a combination of these. In practice, however, researchers 
are unlikely to be able to determine with certainty which of these is operating. 
Although goodness-of-fit indexes may be used to assess the fit of the model 
to the data, adequate and even good model fit can be obtained for models that 
are misspecified. This appears to be particularly true for models that use item 
parceling. Thus, goodness-of-fit indexes supply no assurance that one’s model 
is correctly specified. Because the use of item parceling can mask model 
misspecification in various ways, the fit of a parcel-based model is superior to 
that of the item-based solution. However, it is not clear to us what the value of 
this improvement in fit is if it is obtained for a misspecified model. Many of 
those who advocate the uncritical use of item parceling appear to justify this 
practice on the basis that it improves the fit of the model over that of the item-
based solution. This seems to suggest that the primary aim of model testing is 
to obtain a good fit. However, we would argue that the primary value of model 
testing is in obtaining information that may be useful in understanding how and 
why the variables being modeled are related. This type of information is crucial 
to studies in which the purpose relates to scale development, refinement, or 
testing. Researchers may argue that their use of parceling was justified because 
their model’s lack of fit was due to sampling error, not model misspecification. 
However, the use of parceling seems to preclude the possibility of an informed 
decision on this issue because misspecification may easily have been masked 
by the use of parceling. We feel that a more defensible strategy would be to 
model at the item level to illuminate possible sources of misspecification. If 
misspecification seems likely, the researcher can then determine whether it is 
ignorable or should be modeled.

Other arguments advanced in defense of item parceling relate to the fact that 
the items on the scales may not have been well constructed. For example, the 
assertion that parceling is useful in reducing the idiosyncrasies introduced by 
individual items seems to beg the question of why the items are eliciting such 
idiosyncratic responses. It is expected that different items on a scale will elicit 
somewhat different responses: That is the purpose of including multiple items. 
However, if responses were so idiosyncratic as to result in large amounts of 
unique variance, we would begin to wonder if they were actually measuring the 
same construct as the other items. Similarly, the argument that item parceling be 
used to reduce the number of error covariances required to obtain a good fit of 
the model leads us to ask what is driving these covariances. As discussed earlier 
such covariances may be due to random sampling error. However, they may also 
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be due to nuisance factors, method factors, or some possibly substantively or 
theoretically interesting factor that has not been modeled. (Although we speak 
in terms of only one such factor for the sake of simplicity, there is no reason that 
such factors would be limited to one. Many such factors may exist.) A related 
source of lack of fit in CFA models pertains to double loading items or items 
influenced by modeled factors other than those they were intended to measure. 
Because in typical CFA applications items are constrained to load only on the 
factors they were designed to measure, such double loadings are not modeled 
and will result in model lack of fit. Depending on whether the factors associated 
with the double loadings are intercorrelated, this lack of fit could be manifested 
in bias of the item loadings, uniquenesses, and/or in correlated uniquenesses, as 
well as in a failure to account for the variance of the double loading indicators. 
As shown by Bandalos (in review), parceling these items together with other 
such items can mask lack of fit due to such double loading items.

Because the use of item parceling can hide sources of model misfit such as 
those described, we feel that a more informative approach to the problem of lack 
of fit would be to attempt to identify, if possible, the nature of the mechanism 
behind it. We realize that identification may not be possible and that if secondary 
factors or double loading items are identified, they may be legitimately regarded 
as unimportant and ignorable. It is also possible that such effects may be sample 
specific, resulting from random sampling error or sampling bias. We are not 
advocating that ever minor factor be identified and modeled, but simply that an 
attempt be made to do so before resorting to parceling as an easy fix to such 
problems. This approach seems to be in the best interest of creating well-defined 
and interpretable scales. It is our impression that researchers too often use item 
parceling as a way to disguise faulty measurement rather than expending the 
time and effort necessary to improve their scales.

Another way in which item parceling improves the fit of the model is by 
increasing the reliability of indicators. Because item parcels are based on multiple 
items, they necessarily have greater reliability than do individual items. However, 
the extent to which this improvement in fit is realized depends on the reliability 
of the original items. It is obvious that this improvement in fit is most marked for 
items with low communalities. The influence from this source of improvement 
in fit for items with fairly high communalities may be negligible. In the context 
of scale development and refinement, our preference would be for researchers to 
devote more resources to developing more reliable items before resorting to the 
use of item parceling to compensate for low item communalities.

Related arguments have been advanced that relate to the stability of solutions in 
the presence of small samples, large numbers of items, or both. These arguments 
assert that the use of parceling results in less sampling error and thus more stable 
parameter estimates due to reductions in the variable to sample size ratio. As 
noted in the discussion of the MacCallum et a1. (1999) study, such an increase 
in stability is most marked for situations in which items communalities are low. 
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In such situations, it is generally true that the use of item parceling results in 
better fitting and more stable solutions, although the extent of the improvement 
depends on the sample size, level of communality of the variables, and number 
of variables. However, if the purpose of the study is instrument development, as 
alluded to before, we suggest that the presence of low item communalities may 
serve as an indicator of problems with the items. These may be the result of such 
things as poorly worded or ambiguous items or a lack of homogeneity among 
the items. In our view, such problems may represent fundamental weaknesses in 
the items that should be investigated and, if possible, remedied before resorting 
to parceling as a solution. Although the use of item parceling masks low 
communalities among the items, it does not change the fact that the items may 
be poor measures of the construct under investigation. We are cognizant that 
low communalities can result from a lack of variance associated with the use of 
binary response formats or response scales based on a limited number of options. 
We suggest that, when possible, response formats be designed to include the 
largest number of response options among which respondents can reasonably 
be expected to differentiate. However, in some situations, most notably the 
assessment of achievement and aptitudes, this may not be possible.

Another set of reasons that have been offered for item parceling have to do 
with the lack of normality and continuity of item distributions. Although these 
problems are most likely to occur in achievement and aptitude measurement, 
they are certainly not restricted to those areas. When possible, we recommend 
that instrument developers use a sufficient number of scale points, which may 
ameliorate problems with non-normality and lack of continuity to some degree. 
This suggestion was made earlier in the context of low item communalities 
resulting from a lack of item-level variance. When it is not possible to increase 
the number of scale points, item parcels yield distributions that are more normally 
distributed and continuous in nature than the item distributions. Parceling 
together items with opposite levels of skew and kurtosis yields the best results 
with regard to normality of the resulting distributions. This is the motivation 
behind the creation of the parallel parcels used by researchers such as Cook, 
Dorans, and Eignor (1988). Although the use of item parceling results in more 
normally distributed and continuous item distributions, we caution researches 
against the uninformed use of this practice. The use of item parceling can result 
in distortions of the factor structure among the items as well as parameter 
estimate bias in factor correlations and structural paths in the model. In situations 
such as these, we feel the use of item parceling is defensible only if the factor 
structure of the items is well established and if the researcher is willing to assume 
that any secondary factors that may be masked through the use of parceling  
are ignorable.

Finally, in our review of the literature, many researchers (22.6%) referred to 
the greater parsimony achieved through the use of item parceling. We find this use 
of the term parsimony to be somewhat at variance with recent conceptualizations 
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by such theorists as Mulaik (e.g., Mulaik, et a1., 1989). In describing the principle 
of parsimony, Mulaik et a1. referred to the Kantian view that

…the principle is not to be applied uncritically, for against it one could cite another 
regulative principle, that the varieties of things are not to be rashly diminished if we are 
to capture the individuality and distinctness of things in experience, (p. 437)

We feel that the use of item parceling too often results in a failure to capture 
distinctive effects that may be of interest. Mulaik et al. went on to describe the 
manner in which parsimony is related to the degree to which a model is fasifiable. 
In this context, they explained how “…each degree of freedom in the test of a 
structural equation model corresponds to an independent condition by which 
the model can be discontinued” (p. 437). When item parcels are used in lieu of 
items, fewer, rather than more, degrees of freedom are obtained. For example, a 
one-factor CFA model based on 12 items has 54 degrees of freedom. The same 
model based on six 2-item parcels will have 9 degrees of freedom. It is obvious 
that the model based on items is subjected to more possibly discontinuing tests 
than the model based on parcels. Thus, although parcel-based models may be 
more parsimonious in the somewhat superficial sense of reducing the number 
of entities to be modeled, they do not satisfy the more important principle of 
greater fasifiability.

Based on the prior discussion, the crucial factor in a researcher’s decision to 
use item parceling appears to be the degree to which he or she is willing to make 
the assumption that the use of item parceling has not masked any substantively 
and/or theoretically important sources of lack of fit. These sources of lack of 
fit typically, in CFA applications, involve some sort of unmodeled minor or 
secondary factor, which results in covariances among the uniquenessess or may 
result from items that load on more than one factor. To make the judgment that 
these sources of lack of fit are unimportant and thus ignorable, researchers must 
have some information regarding the mechanism driving them. Because such 
judgments are concerned with the relationship among items, this information 
can only be obtained at the item level. Therefore, we feel that the use of item 
parceling for situations in which the purpose of the study is to develop or test a 
scale may be, at best, uninformative and, at worst, deceptive.

Model misspecifications such as those described herein can occur for several 
reasons. In longitudinal studies, unique variances for the same items measured 
at different points in time are often hypothesized, or found empirically, to be 
correlated. One reason this may occur is the presence of practice or memory 
effects. It is also possible that characteristics of the items or the respondents 
that are unrelated to the construct or factor being measured may be consistent 
across time points. In cross-sectional studies, correlated uniquenesses could 
occur as a result of method effects or response sets. The presence of method 
factors related to positively and negatively worded items (cf. Benson & Hocevar, 
1985; Marsh, 1996) is perhaps the most commonly discussed source. Other such 
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effects may have to do with similarities in wording among two or more items or 
even the contiguous positioning of items on a page. Another possibility is that 
items could have causal effects on each other. This could be related to memory 
or practice effects or to the sensitizing effects of earlier on later items. Items 
may also share common variance with modeled latent factors other than those 
they are hypothesized to measure. Such shared variance typically manifests itself 
as a double loading and, when left unmodeled, may result in biased loadings 
and uniquenesses as well as correlated uniquenesses depending on whether the 
factors involved are correlated.

There are several ways in which researchers could attempt to identify the types 
of secondary influences discussed earlier. An analysis of item content may reveal 
content or wording similarities among items that could result in shared variance. 
The presence of method effects, such as those sometimes found for positively 
and negatively oriented items on personality and attitude scales, are another 
possible source of shared variance. Similarly, difficulty factors in binary data can 
have this effect. If effects such as these are not apparent, another possibility is to 
make use of the modification indexes. (MIs; also called Lagrange Multiplier or 
[LM] tests) provided by SEM programs. Large MIs for correlated uniquenesses 
suggest the items have some unmodeled source of shared variance: The problem 
in this case would be in determining what this is and whether it is ignorable. 
Large MIs for unmodeled item loadings suggest shared variance between an item 
and a factor other than that on which it was hypothesized to load. Finally, Hall 
et a1. (1999) suggested that a sensitivity analysis could be conducted in which 
items are parceled in different ways. If the method of parceling has no effect on 
parameter estimates, it may be safe to assume that any unmodeled sources of 
variance are at least not associated with other variables in the model.

If secondary influences can be identified, the researcher has several choices. 
One would be to model them explicitly. An example of this is provided by a 
study by Marsh (1996), in which factors reflecting the effects of positively and 
negatively worded items were modeled. We recommend this option for situations 
in which secondary factors can be identified and measured, and in particular 
for situations in which it is possible that the secondary factor may have effects 
on other variables or factors in the model. This approach has the advantage of 
providing an explicit rationale for the presence of the secondary factor, and is 
thus more theoretically pleasing. Explicit modeling of such a factor may also 
result in the removal of bias in other model parameters that could result from 
a failure to take this factor into account. A second option would be to use a 
parceling strategy that would force the influence of the secondary factor into 
the uniqueness term. This could be done by parceling together items that share 
the same secondary influence, as suggested by Hall et a1. (1999). Use of this 
strategy would depend on both the researcher’s ability to identify such items 
and willingness to ignore the mechanism driving the shared variance. It should 
be noted, however, that this strategy can result in biased estimates of structural 
parameters if the secondary factor is related to other constructs in the model. 
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Unmodeled variance associated with double loading items could be modeled 
explicitly or such items could be modified or eliminated in future revisions of 
the scale.

Based on the prior arguments, our position on the use of item parceling is as 
follows. We are unable to support the use of item parceling in studies involving 
scale development, refinement, or testing. This would preclude the use of parceling 
in most applications of CFA reviewed for this chapter. We base this position on 
the reasons given earlier as well as the simple fact that, in such studies, it is the 
structure of the relationships among items, rather than of item parcels, that is 
of interest. Given the possibilities for distortion of the factors structure that are 
inherent in parcels, it seems unlikely that analysis at the parcel level will result 
in information that is useful in understanding relationships among the items.

In many applications, the focus is on the relationships among several latent 
factors in the model. Although measurement models for the latent factors may be 
included in the overall model, interest in such studies is typically centered on the 
structural rather than the measurement parameters. In situations such as these, 
we find the use of item parcels more defensible, contingent on the following 
conditions. These are that unidimensional factor structures of the latent constructs 
have been well established in other studies and parcels are formed within these 
factors. A third condition is that the researchers are willing to assume that any 
secondary influences on the items being parceled are unrelated to other variables 
or factors in the model. Failure to meet this assumption may result in biased 
estimates of structural parameters involving the parceled items.

WAYS OF FORMING PARCELS

Aside from the work of Hall et a1. (1999), few recent researchers have studied 
the issue of how items might best be formed into parcels. However, animated 
arguments concerning this issue can be found in the factor analytic literature of 
the 1960s and 1970s. In particular, Comrey (1970) preferred the development 
of parcels based on items with similar content. Cattell (1974), however, argued 
forcefully against this approach, referring to it as “this ‘face validity’ whore in 
the family of psychometric validities” (p. 109). Cattell proposed the technique of 
radial item parceling and demonstrated its use in several articles (Cattell, 1956, 
1974; Cattell & Burdsal, 1975). Essentially, the radial parceling technique is 
carried out by conducting an initial factor analysis and then combining the pair 
of items whose loadings have the highest coefficient of congruence. The pair of 
items with the next highest level of congruence is then combined, and so on, until 
all items have been formed into parceled pairs. If four-item pairs are desired, the 
process is repeated on the two-item pairs. This process can be extended to obtain 
parcels consisting of any number of items that is a multiple of 2. Cattell argued 
for the use of item parcels rather than individual items in factor analysis because 
of their greater reliability, which results in a greater probability of reaching 
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simple structure and greater structural consistency across samples (Cattell, 1974; 
Cattell & Burdsal, 1975). Cattell (1974) also argued that the solutions obtained 
from item-and parcel-level factoring are essentially the same. However, for the 
comparisons between item- and parcel-level solutions presented in his article, the 
coefficients of congruence between the two solutions ranged from .11 to .63 In 
our view, this is not convincing evidence of the similarity of the solutions.

Barrett and Kline (1981) conducted an independent investigation of the radial 
parceling technique. One interesting result of this study, which was also found in 
Cattell (1974), was that items from different factors were often parceled together. 
Cattell suggested that this happens because, with real data, factor structures do 
not reflect perfect simple structure. A similar point has been made more recently 
in the SEM literature by Browne and Cudeck (1992) among others. Although 
we agree with this view, we would add that the lack of simple structure may 
reflect substantively meaningless nuisance factors or may be identifying a more 
complex, but theoretically meaningful, structure.

Kishton and Widaman (1994) proposed two alternative methods for 
parceling items and illustrated their use with an empirical data set. In the first 
of these, it was assumed that items to be parceled together represented the same 
unidimensional construct. These items are assigned randomly to parcels, and 
the internal consistency and dimensionality of each parcel are assessed. Parcels 
meeting some pre-specified criteria in these areas are then considered acceptable 
for use in further analyses. The second method assumes that the construct being 
measured is multidimensional and that a “single, broad construct spanning the 
multiple dimensions” (p. 762) may be of interest. In this method, items from 
the different dimensions are randomly assigned to different parcels so that 
each parcel contains the same number of items from each dimension. These 
parcels are then used as indicators of the multidimensional construct. Kishton 
and Widaman used these two methods to form parcels and concluded that both 
were ‘quite effective.’ This evaluation was based on the fact that both solutions 
were found to provide acceptable fits to the data. We have already expressed 
our opinion on this basis for advocating item parceling. Given the framework 
established by MacCallum et a1. (1999) and described earlier in this chapter, it 
can be seen that the second of these two approaches results in factors that reflect 
the shared variance of the different dimensions, as well as any unique variance 
an item may share with that of other items in its parcel. It is not clear to us what 
is gained through this procedure over simply using subscale scores from each 
dimension as indicators of the construct. If the purpose of the parceling is to 
obtain indicators with higher reliability, the latter procedure is superior. Clearly, 
however, any differential predictability the original dimensions may have had is 
lost in the parceled solution when this type of strategy is used.

Several of the studies we reviewed used strategies similar to Cattell’s radial 
parceling (e.g., combining items with the highest correlations or with similar 
factor loadings; 8%) or used Kishton and Widaman’s (1994) method of random 
assignment of items within a dimension (13%). However, the most commonly 
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used method of forming parcels was to systematically group together items that 
were arranged contiguously on the scale (i.e., Items 1–3, Items 4–6, etc.) within a 
dimension or factor (29%). Odd/even splits of items were also used (3%). Some 
researchers used parceling methods that combined positively and negatively 
oriented items in an attempt to circumvent possible method effects (6.5%).

Of the studies involving achievement or aptitude scales, 50% combined items 
in such a way as to produce parcels with approximately equal difficulty levels. 
Another common method used in this area was to parcel together items based 
on the same stimulus, such as a series of questions based on the same reading 
passage (20%). This is the testlet approach described by Wainer and Kiely 
(1987). Random assignment of items to parcels within a dimension was used in 
20% of these studies.

We have already expressed our views on the use of item parcels. We hope that 
researchers carefully consider the advantages and disadvantages of this approach 
when considering the use of parceling. For situations in which the researcher feels 
that this approach would be efficacious, we offer the following advice with regard 
to forming item parcels. Because the relative efficacy of the approaches described 
earlier has not been studied systematically, we are currently able to offer only 
tentative recommendations in this area. However, one general principal does seem 
clear: Items should be combined only within well-documented unidimensional 
domains. We previously discussed how the formation of parcels based on multi-
dimensional items can result in distortions of the factor structure and biased 
parameter estimates, as well as a loss of information regarding the possible 
differential effects of the dimensions on other variables in the model. Given this 
caveat, it seems to us that the method used for parceling items should depend 
on the researcher’s purpose in forming parcels. If the researchers is concerned 
about non-normality or possible dependencies among items based on the same 
stimulus, the parceling strategy should be designed to alleviate these problems. 
If the purpose of parceling is to obtain indicators with higher communalities, we 
would recommend combining items with the highest levels of congruence within 
dimensions. This could be based on coefficients of congruence, as suggested 
by Cattell (1956, 1974). This approach seems most likely to retain the item-
level factor structure. At the risk of appearing tedious, we would again point out 
that any of these parceling procedures may obscure rather than clarify the factor 
structure and/or result in bias in other parameter estimates.

In our survey of the use of parceling in applied studies, it became apparent 
that practitioners often do not provide sufficient detail with regard to their use of 
this practice. In some cases, authors did not even explicitly state that parceling 
was being used. In a number of cases (13%), no information was provided with 
regard to how parcels were formed, and 47% of the articles that used parceling 
did not provide any indication of why parcels were used in lieu of items. Also 
several articles (27%) simply noted that parceling was completed within content 
areas, but did not explain exactly how the items were assigned to parcels. In 
many studies, it was extremely difficult to determine how many items were on 
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the original scale, how many items were in each parcel, and how many parcels 
were formed.

Because this type of information could have a bearing on the interpretation 
of study results, we make several recommendations with regard to the reporting 
of results for studies that use item parceling. First, an explanation should be 
provided regarding why it was deemed necessary to form parcels instead of 
using item-level data. We also feel that a clear treatment of both the advantages 
and disadvantages of parceling would provide the most informative basis for the 
interpretation of results. Second, the dimensionality of the items should be clearly 
documented with references to studies in which this has been established. Third, 
the number of items contributing to each factor and the total number of items on 
the original scale should be noted, along with the number of parcels and items 
within each parcel. Fourth, the manner in which parceling was accomplished 
should be completely described to enable readers to more carefully evaluate 
and, if desired, replicate the study. Finally, if the purpose of parceling is to 
obtain more normally distributed indicators, the distributions of the items prior 
to parceling and the distribution of the parcels should be noted.

CONCLUSIONS

Although the applied studies we reviewed cited various sources in defense of the 
practice of parceling, the work of Marsh (Marsh, 1987, 1988, 1990a, 1990b, 1990c, 
1992a, 1992b, 1993; Marsh & Hocevar, 1985; Marsh & Hocevar, 1988; Marsh 
& O’Neill, 1984) was cited most often (69.6% of the studies using parceling that 
cited a reference for doing so cited one of these articles). However, we find it 
interesting to note that, although the earliest article by Marsh and his colleagues 
(Marsh & O’Neill, 1984) included statements regarding both the advantages and 
disadvantages of item parceling, the arguments advanced in the latter category 
were all but ignored in the applied studies we reviewed. Specifically, those citing 
Marsh refer to the advantages of parsimony, including more normally distributed 
indictors, less idiosyncratic indicator variance, more reliable indicators, less 
unique variance, ability to use a smaller sample size, and reductions in computer 
resources. However, Marsh and O’Neill also listed the following disadvantages 
of parceling: Information about the individual items will be lost, items being 
parceled must be reasonably unidimensional, and parameter estimates and factor 
scores derived from parceled analyses will be dependent on the particular items 
parceled together. To these we would add the very real possibilities of obscuring 
the true factor structure of the items and obtaining biased estimates for other 
model parameters. Such effects have been demonstrated in recent studies by 
Bandalos (in review) and Hall et a1. (1999). In only one study that we reviewed 
(Mitchell, 1993) were disadvantages of parceling cited as well as advantages. 
It is difficult to know whether Mitchell is the only researcher other than Marsh 
who is aware of the disadvantages of parceling or the only one who sees the 
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importance in explicitly stating them. Whatever the case, we find the widespread, 
uncritical use of item parceling, in Breckler’s (1990) words, “cause for concern.” 
In many cases, it appears to us that the use of item parceling is motivated by 
the improvement in fit that can be obtained through the use of this practice. 
However, such increases in fit are largely artifactual and are likely to be obtained 
at the expense of masking model misspecification of some kind. We therefore 
feel that if the purpose of one’s study is to better understand the relationships 
among items, analysis at the parcel level is unlikely to be useful.

Primary arguments for the use of item parceling are that it will result in 
indicators with greater reliability and in more stable parameter estimates. 
Although these arguments are true to some degree, the results of MacCallum et 
a1. (1999) as well as our own unpublished simulation work indicate that these 
benefits will be most evident for situations in which the communalities of the 
variables are low and the sample size small. In situations such as these, any 
results, whether based on items or parcels, are likely to be untrustworthy. In 
situations with more moderate communalities and/or sample sizes, the benefits 
of item parceling are less pronounced. In such cases, we feel that the risk of 
masking model misspecifications and/or of obtaining biased parameter estimates 
will in most cases outweigh the increases in reliability and stability that will  
be obtained.

Improvements in parsimony were the second most frequently cited reason for 
the use of parceling. However, as discussed earlier, we feel that this argument 
for parsimony is not in keeping with recent conceptualizations. In particular, 
arguments that the use of parceling results in more parsimonious solutions are 
true only in the sense that parceling yields fewer parameters to be estimated. 
However, the use of item parcels also results in fewer degrees of freedom, and 
thus fewer ways in which the model can be tested.

The previous remarks apply to the use of parceling in both CFA and full 
structural modeling applications. However, we particularly caution against 
the use of item parceling in studies involving scale development, refinement, 
and testing. In these applications, we feel that the information obtained from 
modeling at the item level is crucial in determining whether and to what degree 
unmodeled shared variance is present. Such shared variance could be the result 
of such things as methods effects, practice or memory effects, similarities in 
wording, or response sets. We feel that information about such effects can be 
extremely valuable in the scale development process and should be carefully 
considered by the researcher. Unmodeled shared variance could also be the 
result of nuisance factors. If so, the researchers may choose to ignore this source 
of variance. However, the crucial point, in our view, is that it is not possible 
to make any determination about the source of such variance in the absence 
of information obtained at the item level. Because the use of item parceling 
can obscure the presence of unmodeled variance, analysis at the parcel level 
cannot provide information with regard to its source. Therefore, to paraphrase 
Cattell (1974), we have no use for this parceling whore in the family of scale 
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development procedures. Given this, we find it distressing that, of the 62 studies 
using item parceling we found in our review of the literature, 82.3% were CFA 
applications involving some type of scale development process.

Given the prior discussion, we offer the following recommendations 
regarding the use of item parceling. We have already given our view on the use 
of parceling in scale development studies. In other contexts, such as the inclusion 
of parcel-based measurement models in studies of the relationships among 
latent constructs, we recommend that parceling only be conducted on scales 
for which unidimensionality has been clearly established in previous research. 
Parcels should then be formed within each unidimensional factor. Researchers 
using parcels should also be reasonably sure that any secondary factors that 
may influence the dimensionality of the items being parceled are ignorable and 
do not affect other constructs in the model. We would also urge researchers to 
provide full explanations of the parceling process in their manuscripts. These 
should include explanations of why parceling was deemed appropriate, how the 
unidimensionality of the items being parceled was established, and the procedure 
used to parcel items. Researchers should also report the numbers of both items 
and parcels and the number of items in each parcel. If parceling has been 
used to obtain indicators that are more normally distributed, the distributional 
characteristics of the items as well as the parcels should be reported. Finally, 
researchers should clearly point out both the advantages and disadvantages of 
item parceling.

Is the use of item parceling in SEM studies cause for concern? Although 
the use of this practice may be efficacious in some situations, we feel that 
uninformed and uncritical use of parceling may have resulted in poorer, rather 
than greater, understanding of the relationships among sets of items. We hope 
that the discussion provided in this chapter results in a more critical view of this 
procedure among SEM practitioners.
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Structural equation models are currently widely used in the behavioral, social, 
and educational sciences. They permit the modeling of complex multivariate 
phenomena, whereby measurement errors are accounted for both in the dependent 
and explanatory variables. Application of these models for testing behavioral and 
social theories has been on the increase for a considerable period of time. A large 
body of literature on evaluation of model fit has accumulated over the past two 
decades (e.g., Bollen, 1989; Browne & Cudeck, 1993). However, essentially 
all of it has been concerned with indexes of overall goodness-of-fit. Thereby, 
little attention has been paid to the assessment of model fit at the individual  
subject level.

The problem of equivalent structural equation models has drawn substantial 
methodological interest over the last 10 years or so, although insightful discus-
sions of it can already be found in the literature of the 1960s and 1970s (e.g., 
Bollen, 1989; Breckler, 1990; Hayduk, 1996; Hershberger, 1994; Jöreskog & 
Sörböm, 1996; Lee & Hershberger, 1991; Luijben, 1991; MacCallum, Wegener, 
Uchino, & Fabrigar, 1993; Raykov, 1997; Raykov & Penev, 1999; Raykov & 
Marcoulides, in press; Stelzl, 1986; Williams, Bozdogan, & Aiman-Smith, 
1996). Equivalent models cannot be differentiated between using overall fit 
measures because the models are typically associated with identical goodness-
of-fit indexes, such as chi-square values and descriptive fit indexes, degrees of 
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freedom and p values, as well as identical residual covariance matrices. For 
essential any structural equation model there exist potentially many models 
equivalent to it. They represent equally plausible means to description of the data 
as the initial model, yet generally lead to different, incompatible, or contradictory 
substantive explanations of the studied phenomenon. Some equivalent models 
can be obtained using specifically developed rules by Stelzl (1986), Lee and 
Hershberger (1990), or Hershberger (1994), unlike other equivalent models that 
contain parameter restrictions (e.g., Raykov & Penev, 1999). Thus, the problem 
of equivalent models represents a serious threat to behavioral and social theory 
development and construct validation using the SEM methodology. Therefore, 
unless the problem is dealt with, an originally considered model—regardless of 
how well it fits the data—remains only one possible means of its description and 
explanation (e.g., Breckler, 1990; MacCallum et a1., 1993).

The present chapter has a twofold goal. First, a general approach to the 
construction of individual case residuals in structural equation models is discussed. 
The method is based on projection from the raw data space on a model-generated 
subspace and generalizes the observational (Bartlett-based) residuals by Bollen 
and Arminger (1991). Second, this approach is used to examine similarities and 
possible differences between some equivalent models with respect to subject 
level fit.

The intention of this chapter is to respond to the lack of wider research 
attention in SEM that evaluation of fit at the individual case level has received 
so far, as opposed to overall fit to the empirical covariance matrix, as well as 
to address issues pertaining to potential applicability of individual residuals 
in the difficult process of selection between equivalent models. A reason for 
this lack of attention may well be the inherent difficulty of estimating subject 
residuals. It stems from the fact that, although many structural equation models 
regress observed on latent variables and the latter possibly on other unobserved 
variables, unlike the case in regression analysis, no exact measurements of the 
(explanatory) latent variables are available. Nonetheless, it is both important and 
informative to develop and utilize such individual residuals of structural equation 
models, which conceptually resemble the widely employed residuals within 
the framework of the general linear model (e.g., Neter, Kutner, Nachsheim, & 
Wasserman, 1996). These individual residuals may be particularly beneficial for 
a deeper understanding of model fit and equivalent models. Unfortunately, to our 
knowledge, only a few publications in the behavioral and social science literature 
have dealt with estimation of subject level residuals in SEM or closely related 
topics (e.g., Hopper & Mathews, 1983; Bollen & Arminger, 1991; Neale, 1997; 
cf. Lange, Westlake, & Spence, 1976; Reise & Widaman, 1999). The present 
chapter aims at contributing to this discussion by generalizing work of Bollen 
and Arminger and addressing issues pertaining to applicability of individual 
case residuals as a potentially useful adjunct to substantive considerations when 
dealing with equivalent models (McDonald, 1997; McDonald, 1998).
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NOTATION, DEFINITIONS,  
AND BACKGROUND

This chapter utilizes notation commonly employed in the SEM literature 
(e.g., Bollen, 1989). In it, y=(y1,y2, …yp)′ is the vector of observed data on p 
manifest variables of interest (p>1), γ denotes the vector of all parameter of 
a structural equation model M under consideration, Ω is its parameters space 
containing all possible values of γ, and Σ(γ) is the covariance matrix implied by 
M at γ. (Underlining denotes vector and priming stands for transposition in this 
chapter. As usual in social and behavioral research, we assume throughout that 
all considered covariance matrices, in particular error covariance matrices, are 
positive definite and hence variable variances are positive.) Repeated use of some 
linear algebra notions is also made, particularly the concepts of column space and 
projection on a subspace, which are discussed next (e.g., Graybill, 1983).

Spaces
Instrumental for the following discussion are matrices of factor loadings or 
closely related quantities of structural equation models. Like essentially all 
matrices currently used in behavioral and social research, those of concern will 
contain only real numbers as elements and have at least one nonzero entry. If the 
q columns of a matrix A of size p×q are designated by a1, a2,…, aq, then the rank 
of A, denoted rk(A), is the number of its linearly independent columns. If p>q 
and rk(A)=q, A is called a full-rank matrix. The column space of A is definedz 
as the set R(A) of all possible linear combinations of a1, a2, …, aq—that is, all 
vectors in Rp (the set of all p-tuples of real numbers) that are representable as 
α1a1+α2a2+…+αqαq, where α1, α2, …, αq are real numbers. Alternatively, the 
null space of A, denoted N(A), is defined as the set of all vectors x in Rp that 
are orthogonal to R(A). That is, N(A) comprises all vectors x for which x′A=0 
holds. If two equal-size matrices A and B have the same null spaces [i.e., N(A) 
=N(B)], then their column spaces are identical too—that is, R(A)=R(B) holds as 
well (e.g., Graybill, 1983).

Projections
A fundamental role in the remainder of this chapter is played by projections 
from the space of observed data, Rp, on a model-generated lower dimensional 
subspace. Let y be an individual data vector from Rp, and let A be a matrix of 
size p×q with p>q. The projection of y on the column space of A using a weight 
matrix Θ that is positively definite and symmetric is defined as 

 uΘ=A(A′Θ−1A)−A′Θ−1y, (1)
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regardless of the rank of A, where (A′Θ−1A)− is a generalized inverse of  
A′Θ−1A (e.g., Christensen, 1989). This generalized inverse is defined by the 
characteristic property

 A′Θ−1A(A′Θ−lA)−A′Θ−1A=A′Θ−1A (2)

and always exists (e.g., Rao, 1973). Because the matrix A′Θ−1A is obviously 
symmetric (Θ being symmetric), it is possible to construct such a generalized 
inverse of it, which is also symmetric and in addition fulfills the relation

 (A′Θ−1A)−A′Θ−1A(A′Θ−1A)−=(A′Θ−1A)−. (3)

This can be achieved using the spectral decomposition of A (e.g,. Christensen, 
1989). This generalized inverse is the so-called Moore-Penrose inverse, which 
always exists and is unique, and is used throughout this chapter (it is easily 
obtained with SAS/IML procedure GINV; see also Appendix 2). Thus, irrespective 
of the number of linearly independent columns of the considered matrix A, the 
result of the projection uΘ defined by Eq. (1) is unique and always exists (e.g., 
Rao, 1973). The matrix that produces the projection by postmultiplication with 
y is called projection matrix. For the case in Eq. (1), the projection matrix is 
A(A′Θ−1A)−A′Θ−1.

For the purpose of this chapter, the attractive feature of the projection outcome 
is that uΘ represents the closest to y point from the column space of A, in the 
distance dΘ(.,.) defined (induced) by the matrix Θ as

 dΘ(x, z)=(x−z)′Θ−1(x−z), (4)

where x and z are points from Rp. In the special case Θ=Ip, the identity matrix 
of size p, Eq. (1) defines the orthogonal (Euclidean) projection on R(A), which 
is used in the method of ordinary least squares. The difference between the 
original data point and its projection then represents the well-known residual in 
conventional regression models (with error covariance matrix Ip). When the error 
covariance matrix Θ is not the identity matrix within the general linear model 
framework, Eq. (1) defines an oblique projection on R(A), which is used in the 
method of weighted least squares. The difference between the raw data point 
and its projection then represents the residual in these more general regression 
models. This chapter uses this general projection idea to obtain individual 
residuals also in the SEM context.

Linear Structural Relationship Models
This chapter is concerned with linear structural relationship (LISREL)  
models. They are covered by the comprehensive Submodel 3B of the general 
structural equation model underlying the widely circulated SEM program LISREL 
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(Jöreskog & Sörböm, 1996). This general model, in different yet equivalent 
notational forms, underlies also most other available SEM programs, such as 
EQS, AMOS, SEPATH, Mx, RAMONA (Arbuckle, 1997; Bentler, 1995; Browne 
& Mels, 1994; Neale, 1997; Steiger, 1999). Accordingly, a LISREL model is one 
that is defined by the pair of equations: 

 η=Bη+ζ and  (5)

 y=Λη+ε, (6)

where η is the q×1 vector of latent variables (factors), B the q×q matrix of 
structural regression coefficients relating the latent variables among themselves, 
Λ is the p×q factor loading matrix, ζ is the q×1 structural regression residual 
vector with covariance matrix denoted Ψ, and ε is the p×1 error terms vector with 
covariance matrix Θ. In addition, a standard assumption (Jöreskog & Sörböm, 
1996) is that of invertibility of the matrix Iq-B, which is similarly made in the 
present chapter. Throughout the reminder, we also assume that the considered 
LISREL models are identified and that as usual error means vanish and errors 
are uncorrelated with factors.

Equations (6) and (5) define the relationships between the observed and 
latent variables and among the latent variables, respectively. In the standard 
nomenclature, they are correspondingly referred to as measurement model and 
structural model of the model in question (e.g., Bollen, 1989). To avoid the 
tautological repetition of model, we call Eq. (6) measurement part and Eq. (5) 
structural part of the considered model. We emphasize that Eqs. (5) and (6) 
define the most general LISREL model that encompasses the so-called general 
LISREL model. The latter uses a different (but not necessary) notation for the 
latent independent variables and their indicators (Jöreskog & Sörböm, 1996). 
Currently, the LISREL model in Eqs. (5) and (6) covers essentially all models 
used in routine application of the SEM methodology in the social, behavioral 
and educational sciences.

For the aims of this chapter, as indicated earlier, we deal with LISREL 
models having more observed variables than factors (i.e., models with p>q). This 
requirement is not considered here to be limiting substantially the generality of 
the following discussion. This is because structural equation models, like factor 
analysis models used in behavioral and social research, are often based on less 
latent than manifest variables. That the condition p>q holds is necessitated by the 
projection approach underlying this discussion. For its method to be applicable, it 
is essential to be able to project from a higher dimensional subspace generated by 
the observed variables (viz. Rp) on a lower dimensional subspace generated by the 
fewer factors of an entertained model. Under these circumstances, the approach 
followed in the sequel allows estimation of individual case residuals. (We note as 
an aside that the same assumption, p>q, is needed for the observational residuals 
of Bollen & Arminger, 1991, to exist.) The class of LISREL models with more 
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manifest variables than latent factors, which is of concerns to this chapter, covers 
a great deal of current SEM utilizations in the social and behavioral sciences.1

Solving Eq. (5) in terms of η and substituting the result into Eq. (6), one obtains 
what can be referred to as a reduced form of the considered LISREL model:

 y=Λ(Iq−B)−1ζ+ε=Aζ+ε, (7)

where

 A=Λ(Iq−B)−1. (8)

Evidently, A=Λ if B=0, as is the case in confirmation factor analysis models; 
alternatively, if B≠0, then, according to Eq. (7), a structural equation model 
with explanatory relationships between its latent variables is rewritten as a factor 
analysis model for their indicators (cf. Bollen & Arminger, 1991). In terms of 
either the original or reduced forms of a LISREL model—that is, Eqs. (5) and 
(6), or (7), respectively—its implied covariance matrix is:

 Σ(γ)=AψA′+Θ=Λ(Iq−B)−1ψ(Iq−B′)−1Λ′+Θ=ΛΦΛ′+Θ, (9)

where Φ is the covariance matrix of the factors in η (e.g., Bollen, 1989).

Equivalent Models
Two LISREL models M1 and M2 with parameter spaces Ω1 and Ω2 are called 
equivalent, denoted M1~M2, if they give rise to the same sets of implied 
covariance matrices (e.g., Stelzl, 1986; cf. Raykov & Penev, 1999). That is, M1 
~M2 if and only if the following set identity holds:

 {Σ1(γ1) for γ1 from Ω1}={Σ2(γ2) for γ2 from Ω2},

where Σ1(γ1) and Σ2(γ2) are the implied covariance matrices by M1 and M2, 
respectively, and {.} denotes set defined within brackets. Thus, for two equivalent 
LISREL models, the implied covariance matrices are identical at appropriately 
chosen points γ1 and γ2 in their parameter spaces (e.g., Raykov & Penev, 1999). 
In other words, if the equivalent models M1 and M2 (with possibly different 
numbers of latent factors q1 and q2) are defined as

  (10)

  (11)

1 The term factor is used in this chapter to refer to latent variables other than the observed 
variable error or structural regression residual terms (i.e., other than  δs, and ζs in the LISREL 
terminology; Jöreskog & Sörböm, 1996).
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respectively, with Φ1 and Φ2 and Θε1 and Θε2 being their corresponding factor 
and error covariance matrices (see Eqns. [5] and [6]), then for their reproduced 
covariance matrices follows that

  (12)

We emphasize that Σ is common to the whole set of models equivalent to a 
given one, not only to a particular pair of equivalent models from that set.

Classes of Equivalent LISREL Models
Equation (12) states the identity of the implied covariance matrices by two 
equivalent models, M1~M2, and relates a number of constituent matrices 
containing model parameters. Differences and similarities between same (role-
playing) matrices across the models allow one to make useful distinctions among 
several classes of equivalent models that necessarily differ in at least one of 
these matrices.

First, many equivalent models are associated with identical factor loading 
matrices, Λ1=Λ2 (see Eq. [5]). For example, such are models obtained from an 
initial one using the replacement rule by Lee and Hershberger (1990) or Stelzl’s 
(1986) rules subsumed under it. This is because all changes introduced by the 
replacement rule in an original model are confined to its structural part (e.g., 
MacCallum et a1., 1993). Because these models are identical in their measurement 
parts and factor loading matrices, the spaces generated by their columns are 
obviously identical as well [i.e., R(Λ1)=R(Λ2)]. However, not all equivalent 
models to a given one have necessarily the same factor loading matrices. For 
example, models resulting from an application of the inverse indicator rule by 
Hershberger (1994) differ in their measurement parts and have distinct factor 
loading matrices. Furthermore, equivalent models can have different factor 
loading matrices that possess identical column spaces. For example, Models A1 
and A2 in Raykov and Penev (1999, Fig. 8) have different numbers of latent 
variables and hence different factor loading matrices, A1≠Λ2. Λ2. However, as 
can be shown directly, their column spaces are identical [i.e., R(Λ1)=R(Λ2)].

Second, many equivalent models have identical error covariance matrices, 
Θε1=Θε2. Such models are those resulting from applications of the replacement 
rule or Stelzl’s rules. Alternatively, not all equivalent models have identical error 
covariance matrices. For example, Models M1 and M2 in Raykov and Penev 
(1999, Fig. 7; see Fig. 11.1) are identical in their error variances yet different in 
error covariances. Indeed, in M1, the latent variables are related and the error 
covariances are all zero, whereas in M2, the latent factors are unrelated yet most 
of the error covariances are free (as opposed to fixed to 0) model parameters, 
although constrained for equality, indicating possible uncaptured sources of 
common latent variance for the pertinent observed variables.
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In short, two or more equivalent models may be identical or differ from one 
another in their (a) factor loading matrices, (b) factor loading matrices’ column 
spaces, (c) error covariance matrices, and/or (d) their structural parts (Eq. [6]).

A DEFINITION OF INDIVIDUAL CASE RESIDUALS

For each studied subject, with data vector yi=(yi1, yi2, …, yip)′, a generalization 
of the observational (Bartlett-based) residuals of Bollen and Arminger (1991) to 
the case of arbitrary-rank factor loading matrix of a LISREL model M with more 
observed than latent variables is obtained using the earlier discussed projection 
method (i=1, …, N; N denotes sample size in this chapter). The resulting 
individual residuals are defined as the difference between the subject’s raw data 

FIG. 11.1 Models M1 and M2 (Raykov & Penev, 1999, Fig. 7; all four  
error covariances are constrained for equality; the pairs of test per factor  

are tau-equivalent).
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point and its projection on the column space of the factor loading matrix A in 
the reduced form of M—that is, as

  (13)

(see Eqns. [1] and [7]; i=1, …, N). That is, for each subject and a given LISREL 
model M, the individual residual in Eq. (13) is the shortest distance between 
his or her raw data point and the space spanned by the columns of its matrix 
A in the distance metric induced by the error covariance matrix of M. For ease 
of reference, throughout the remainder of this chapter, we call  in Eq. (13) 
individual case residual (for the ith subject, i=1, …, N, ICR).

We emphasize that the ICR is not a scalar but a p-dimensional vector. 
Thereby, each of its components reflects the unexplained (unaccounted for) by 
the model part of the individual datum on the variable in question. That is, the 
jth component of  represents that part of the datum yij of the ith subject on 
the jth analyzed variable, which is not accounted for by the model (i=1, …, N, j= 
1, …, p). The SAS program provided in Appendix 2 estimates for each subject 
their ICR, with one component per studied variable, once it is given the raw data 
set and the estimates of the Λ and Θ matrices of a fitted LISREL model (with 
more observed than latent variables, see Lemma 1 below).

If for the model under consideration its factor loading matrix Λ is of full 
rank, the matrix A′Θ−1A is invertible, and hence its (unique) inverse (A′Θ−1A)−1 
substitutes the generalized inverse (A′Θ−1A)− in Eq. (13) that represents the general 
ICR definition due to (A′Θ−1 A)−=(A′Θ−1 A)−1 holding then. In this special case,  
is identical to the observational (Bartlett-based) residuals of Bollen and Arminger 
(1991) for the reduced form of the model. Unlike their residuals, however, the 
ICR in Eq. (13) can be applied regardless of the rank of the factor loading matrix 
A (or corresponding matrix A, see Lemma 1 in the next subsection). That is, the 
ICR exist (and are unique) also when not all columns of A (or A) are linearly 
independent, whereas the Bollen and Arminger’s residuals can be obtained only 
for full-rank factor loading matrices (or A matrices). Hence, the ICR can be 
used with a number of structured equation models having less-than-full-rank 
factor loading matrices that are not infrequently utilized by behavioral and social 
scientists (e.g., Grayson & Marsh, 1994), in contrast to Bollen and Arminger’s 
observational (Bartlett-based) residuals, which cannot be employed because they 
do not exist due to the singularity of the critical matrix A′Θ−1A.

Simplified Expression
The ICR definition in Eq. (13) can be simplified using the following statement, 
which is proved in Appendix 1.

Lemma 1. The column spaces of a m×n matrix C and of the matrix CK, where 
the n×n matrix K is nonsingular, are identical (m and n are integer numbers).
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Because the matrix Iq-B in the general LISREL model (Eqs. [5] and [6]) was 
assumed nonsingular (as is the case effectively in all structural equation models 
currently used in social and behavioral research practice; e.g., Jöreskog & Sörböm, 
1996), so is its inverse, (Iq-B)−1. Because A results when multiplying Λ from the 
right with (Iq-B)−1 (see Eqns. [6]−[8]), A is of full rank if and only if Λ is so 
(e.g., Rao, 1973). Moreover, for C=Λ and K=(Iq-B)−1, Lemma 1 implies that the 
column spaces of A and A are identical. Therefore, projecting the raw data point 
y on R(A) is the same as projecting that point on the identical space R(Λ)=R(A), 
and hence the results of these two projections coincide. Thus, the ICR obtained 
either way are identical because they by definition are the differences between 
the point being projected and its projection. This demonstrates the validity of the 
following simplification of the ICR general definition in Eq. (13).

Proposition 1. For every structural equation model having less latent than 
observed variables, the individual case residuals are also obtained as:

  (14)

We stress that the ICR are defined for any structural equation model M 
with more observed variables than latent factors (and positively definite error 
covariance matrix, as assumed throughout this chapter). Thus, they exist and 
are unique regardless of the particular specification of M and irrespective of the 
observed variables’ distribution. That is, for any structural equation model with 
more observed that latent variables, one can obtain subject level residuals with 
this projection method.

Comparison to Regression Residuals
Because latent variables are not observed or even observable, we consider the 
ICR in Eq. (13) or (14) as one possible approach to defining individual level 
residuals for structural equation models. Because unobserved variables are not 
measured precisely, unlike predictors are assumed in regression analysis, the 
present need not be the only conceivable way of defining residuals at the subject 
data level within the SEM framework. Another possible approach is discussed 
in the next section and compared with this one.

We note that the ICR cannot be considered full analogs of the widely used 
residuals in regression analysis (e.g., Neter et a1., 1996). The reason is that the 
ICR are not strictly based on model-predicted individual values that are of crucial 
importance for the definition of the regression residuals. As mentioned, this is in 
turn due to the lack of (precise) measurements of the unobserved variables in SEM 
and hence possibility to define exact individual predictions for a LISREL model, 
unlike the situation in regression analysis. Nonetheless, we emphasize that the 
present ICR follow the same conceptual idea underlying the regression residuals, 
and thus provide valuable information about the relationship between subject 
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data and fitted model(s). This is because an individual level residual in Eq. (13) 
or (14) is the difference between a subject’s raw data point and its closest point, 
in the distance defined by the error covariance matrix, in the observed variable 
subspace spanned by the accounted for part of the model under consideration. 
In this sense, the ICR contain information about the minimal distance between 
any studied subject and the model. Therefore, the ICR may be used for a number 
of modeling-related purposes in social and behavioral research, such as (a) 
outliers’ detection, (b) studying potentially influential points, or (c) identification 
of persons markedly inconsistent with a considered model, as demonstrated by 
Bollen and Arminger (1991) for models with full-rank factor loading matrices. 
Aims (a) to (c) are typically accomplished by examining those individuals with 
the highest distances from the model (see also Reise & Widaman, 1999).

Relationship to Other Subject  
Level Residuals
The present ICR differ from subject level residuals that can be obtained using 
the so-called raw data maximum likelihood (RDML) method of model fitting 
(Arbuckle, 1996; Neale, 1997; see also Hopper & Mathews, 1983; Lange et a1., 
1976; Reise & Widaman, 1999). The latter residuals are based on an alternative 
to the present approach, which used the likelihood ratio test statistic for a fitted 
mean structure model rather than a projection method. With the RDML method, 
raw data residuals can be defined in terms of subject data vector’s contribution 
to the likelihood ratio test statistic, viz. as

 ci=(yi−µ(γ)′Σ(γ)−1(γi−μ(γ)), (15)

where Σ(γ) is the model-implied covariance matrix, in practice taken at the solution 
point for γ (fit function minimizer), and similarly μ(γ) is the model-implied mean 
vector, practically taken at that point as well.2 For ease of reference, we call the 
indexes defined in Eq. (15) RDML residuals.

The RDML residuals have been shown to be quite useful in examining 
individual subject contributions to the overall chi-square fit index (e.g., Neale, 
1997; Reise & Widaman, 1999). At the same time, it is noted that they are 
identical, for each studied person, across all members of a set of equivalent mean 
structure models. This identity follows from the fact that they are defined only in 

2 Equation (15) covers the case of no missing values for the ith subject (i=1, …, N). With missing 
values, Σ(γ) in Eq. (15) is modified by deleting those of its rows and columns that correspond to 
the variables on which values are missing for the ith subject (for details, see Arbuckle, 1996), 
and the logarithm of its determinant is added to the right-hand side of Eq. (15) (i=1, …, N). This 
modification does not invalidate the present argument in the main text.
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terms of (a) the raw data vector yi(i=1, …, N), and (b) the model-implied first- 
and second-order moments, viz. the elements of Σ(γ) and μ(γ) at the solution 
point. However, all constituents of the right-hand side of Eq. (15), mentioned 
in (a) and (b) are identical across all members of a considered set of equivalent 
mean structure models. Hence, for each subject, the RDML residuals in Eq. (15) 
are the same for any member of that set.

Furthermore, use of the RDML residuals is strictly justified only with multi-
normal data, because they capitalize on the specific form of the likelihood ratio 
test statistic (see Eq. [15]). In contrast, the ICR definition in Eq. (13) or (14) 
does not make any assumptions regarding the observed variable distributions. 
Moreover, although the RDML residual confounds into a single number the 
discrepancies between individual data point and model across all studied variables 
(dimensions), the ICR keeps these discrepancies separate and thus provides a 
more complete picture of the distance of a personal data point to the accounted 
for part of a fitted model.

INDIVIDUAL RESIDUALS AND  
EQUIVALENT STRUCTURAL  

EQUATION MODELS

The following statement proved in Appendix 1 shows an important limitation of 
the ICR in Eq. (13) or (14) for purposes of differentiation between equivalent 
models in the case of full-rank factor loading matrices.

Proposition 2

Any pair of equivalent models with full-rank factor loading matrices that have 
identical column spaces and less latent than observed variables are associated 
with identical ICR for the same subjects.

Proposition 2 also implies that the observational (Bartlett-based) residuals by 
Bollen and Arminger (1991) cannot be used to discern among such equivalent 
models because, being a special case of the ICR, their residuals are identical for the 
same subject across the models. This model class encompasses many equivalent 
models resulting from one another via applications of the replacement rule or 
Stelzl’s (1986) rules. We stress that Proposition 2 does not require identity of the 
error covariance matrices or the factor loading matrices in considered equivalent 
models—it only assumes identity of the spaces spanned by the columns of these 
loading matrices (and that they have full rank). Thus, Proposition 2 covers a large 
class of LISREL models of possible interest in behavioral and social research. 
As a byproduct of Proposition 2, we obtain the following relationship.
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Corollary
For equivalent models M1~M2 with full-rank factor loading matrices Λ1 and Λ2 
having identical column spaces (and less latent than observed variables) and 
identical error covariance matrices Θε1=Θε2=Θ say,

  (16)

The validity of Eq. (16) follows from the fact that each of its sides is used 
to define the pertinent model ICR as projections of the same data points on 
identical spaces, R(A1)=R(A2)=R(Λ1)=R(Λ2) (see Lemma 1), employing the 
common error covariance matrix Θ as a weight matrix. Because these residuals 
are then identical due to Proposition 2, simple algebra on their definition Eqs. 
(13) and (14) yields Eq. (16).

Furthermore, the proof of Proposition 2 in Appendix 1 demonstrates in Eq. 
(A1.7) another representation of the ICR for a given structural equation model 
with a full-rank matrix A (and less latent than observed variables):

  (17)

We thereby note that in Eq. (17) the matrix Σ remains the same regardless 
of which member of a set of equivalent models is focused on, whereas the 
matrices A, B, Ψ, and Θ generally differ across the set (and at the same time 
AΨA′+Θ=Σ is unchanged; see Eq. [12] and earlier discussion on different 
classes of equivalent models).

EXTENDED INDIVIDUAL  
CASE RESIDUALS

The preceding discussion indicates instances of lack of discernibility between 
equivalent models at the individual fit level using the ICR in Eq. (13) or (14). 
Thereby, we noted that the class of models covered by Proposition 2 is very 
wide (e.g., contains those models with less latent than observed variables and 
identical full-rank factor loading matrices, on which the popular replacement 
rule by Lee & Hershberger [1990] is applicable). That is, for very many models 
of interest in practice (e.g., MacCallum et a1., 1993), between which a social or 
behavioral researcher is typically interested in differentiating, the ICR are not 
helpful because they are identical for the same subjects in all models. This result 
provides another illustration of the great difficulty in managing the equivalent 
models problem in SEM. In addition to lack of discernibility at the overall fit 
level, which has been well known for many years, Proposition 2 is indicating 
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many interesting cases where equivalent models are not discernible at the subject 
fit level using the ICR.

Notwithstanding this finding, however, we would like to suggest that a modified 
definition of ICR yields in general different indices of subject fit for certain 
equivalent models. These are the extended individual case residuals (EICR) 
that result after a rescaling of the coordinate system whose axes represent the 
components of the individual residuals and subsequent application of the general 
projection approach used thus far. The rescaling is specific to a considered 
structural equation model M (with less latent than observed variables) and has 
the goal of highlighting the discrepancy between M and the analyzed raw data 
y. To this end, the rescaling is carried out using the error covariance matrix Θ 
of M (assumed positive define throughout this chapter)—that is, the coordinate 
axes are adjusted to account for the interrelationships between the unexplained 
terms of M, viz. its errors, as reflected in its error covariance matrix. That is, in 
the rescaled data space projected are the raw data that are then Θ−1/2y, where Θ−1/2 
is the inverse of the square root of Θ (Θ−1/2y represents the original individual 
raw data point after the rescaling of the space). By using Θ−1/2 rather than Θ−1, 
this adjustment conforms to the raw data metric in which it is carried out. (The 
error covariance matrix contains second-order moments of the error terms, which 
suggests as necessary for this purpose to use the square root of the matrix.) The 
space on which the point Θ−1/2y is projected is then correspondingly spanned by 
the columns of Θ−1/2 A—that is, R(Θ−1/2 A)—due to the carried out rescaling, 
where A is the factor loading matrix of M or its reduced form (see Eqs. [5]  
and [7]).

If all columns of A are linearly independent (i.e., A is of full rank) after this 
rescaling, the orthogonal projection matrix of interest here is:

 ΘPA=Θ−1/2A(A′Θ−1A)−1A′Θ−1/2. (18)

The matrix ΘPA is obtained from the standard formula X(X′X)−1X′ for orthogonal 
projection on R(X) for a given matrix X (e.g., Christensen, 1989), whereby Θ−1/2 
A is substituted for X according to the prior discussion. Therefore, for the ith 
subject raw data point, its projection on the space R(Θ−1/2 A) of interest is

 νΘ
i=ΘPA(Θ−1/2yi)

 =Θ−1/2A(A′Θ−1A)−1A′Θ−1/2(Θ−1/2yi)

 =Θ−1/2A(A′Θ−1A)−1A′Θ−1yi, (19)

i=1, …, N. Thus, the projection result, vΘ
i, has the property that it represents the 

unique point of R(Θ−1/2 A), which is closest to the raw data point Θ−1/2yi in the 
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Euclidean (unweighted) distance between Θ−1/2yi and R(Θ−1/2 A), i=1, …, N (e.g., 
Seber, 1977).

If the columns of A are not linearly independent (i.e., A is not of full rank, 
and hence the ordinary inverse [A′Θ−1A]−1 does not exist), then the projection 
matrix of concern here is

 ΘPA=Θ−1/2A(A′Θ−1A)−A′Θ−1/2, (20)

where (A′Θ−1A)− is a generalized inverse of A′Θ−1A. Again, we can take this 
generalized inverse to be the unique (and always existing) Moore-Penrose inverse 
(Christensen, 1989). This justifies use of the same symbol ΘPA, regardless of the 
rank of A, in Eqs. (18), (19), and (20).

Thus, the proposed EICR are defined as

  (21)

i=1, …, N). A simplified expression for the EICR is arrived at using the following 
auxiliary statement demonstrated in Appendix 1.

Lemma 2
If D and F are equal-size matrices with identical column spaces and K is a 
nonsingular matrix that is multiplication-conform with them, then the column 
spaces of KD and KF are also identical.

To obtain the simplified expression for the EICR, Lemma 1 ensured before 
that the column spaces of the matrices A and Λ are identical. Then Lemma 2 
implies that the column spaces of Θ−1/2A and Θ−1/2Λ are identical too—that is, 
R(Θ−1/2A)=R(Θ−1/2Λ). (Because Θ is assumed throughout positive definite, Θ−1/2 
is nonsingular as well.) Therefore, projecting the data point Θ−1/2y on R(Θ−1/2A) 
is the same as projecting the point on the identical space R(Θ−1/2 A). Hence, the 
individual residuals obtained either way are identical because they, by definition, 
are the differences between the (same) point being projected and its (identical) 
projection. That is, the EICR are also defined as

  (22)

Equation (22) shows a direct relationship between the EICR and the ICR 
defined in Eq. (13):

  (23)
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Differences in Extended Individual Case  
Residuals for the Same Subjects
The next statement points out cases of equivalent models where the EICR in Eq. 
(21) or (22) can differ for the same subject across the models.

Proposition 3. A pair of equivalent models having full-rank factor loading 
matrices with identical column spaces (and less latent than observed variables) 
are in general associated with different EICR for the same subject.

The validity of the statement is implied from Proposition 2 and Eq. (23) 
relating the ICR in Eq. (13) to the EICR in Eq. (22). Indeed, the premises of 
Proposition 3 ensure that the ICR for the same subject are identical across the 
models due to Proposition 2. Hence, according to Eq. (23), the EICR result after 
identical ICR are multiplied by the model-specific error covariance matrix that 
may or may not be identical across the models (see discussion on different classes 
of equivalent models in an earlier section). Specifically, for equivalent models 
with full-rank factor loading matrices having identical column spaces as well as 
identical error covariance matrices, both their ICR and EICR are identical for 
each subject. Alternatively, these types of equivalent models with differing error 
covariance matrices, Θε1≠Θε2, are generally associated with different EICR for 
the same person because, due to Eq. (23), their EICR result after premultiplying 
identical ICR with different matrices, Θε1 and Θε2, respectively. An example of 
such equivalent models in presented in Raykov and Penev (1999, Fig. 7) and was 
discussed earlier in this chapter; for completeness of this discussion, the models 
are reproduced in Fig. 11.1 as well.

Within the set of models with full-rank factor loading matrices having 
identical column spaces, this class of equivalent models associated with 
generally different EICR for the same subject also contains the following pairs 
of equivalent models. They have two latent variables measured by the same 
number k≥2 of tau-equivalent tests (Jöreskog, 1971) and are obtained from one 
another in the same way as model M2 is obtained from M1 in Fig. 11.1 (i.e., by 
exchanging the latent covariance in one of them with equal covariances between 
the corresponding indicator errors for each factor in the other model—viz., 1st 
and k+1st, 1st and k+2nd, …, 1st and 2kth indicator errors; 2nd and k+1st, 2nd and 
k+2nd, …, 2nd and 2kth indicator errors, …, kth and k+1st, kth and k+2nd, …, kth 
and 2kth indicator errors). Further members of this class of equivalent models 
with generally differing ICR for the same subject are those having two of their 
independent latent variables measured with the same number of tau-equivalent 
tests and being identical in all other aspects, except obtained from one another 
in the same way M2 is from M1 (see Fig. 11.1).

Whereas the EICR for the same subject differ in general across equivalent 
models in this class, the following statement holds true and is demonstrated 
in Appendix 1. It shows yet another aspect in which equivalent models are 
associated with identical fit-related quantities beyond the overall fit indexes.
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Proposition 4. For each subject, the sum of squares of the components of 
their extended individual case residuals  (i=1, …, N) is invariant across two 
equivalent models M1 and M2, with full-rank factor loading matrices having 
identical column spaces (and less latent than observed variables).

Thus, the Euclidean norm (sum of squares of components) of the EICR 
cannot be used to differentiate between these equivalent models. Hence, the sum 
of these norms of all EICR across the studied group of persons (cases) cannot be 
used for this purpose either.

DISCUSSION AND CONCLUSION

The aim of this chapter was to discuss a general method of constructing individual 
case residuals for structural equation models and to address issues pertaining to 
their possible utility for differentiation between some equivalent models. The 
described individual level residuals, the ICR and EICR defined in Eqs. (13) and 
(22), capitalize on projection of raw data on model-specific generated spaces. 
These residuals exist and are unique for any structural equation model with 
more observed than latent variables. The ICR and EICR quantify, in the metric 
induced by the error covariance matrix, the distance between any subject’s raw 
data vector to its closest point in the subspace generated by the accounted for 
part of the model. As such distances, the outlined individual level residuals 
appear to be useful in modeling-related analytic activities for which subject’s 
data discrepancy from model-generated manifolds is of substantive importance, 
as demonstrated by Bollen and Arminger (1991) for a special case of the ICR 
in Eq. (13).

Utility of Individual Case Residuals
The described individual level residuals in this chapter represent a generalization 
and an extension of Bollen and Arminger’s (1991) observational (Bartlett-based) 
residuals, and thus are more generally applicable. The present residuals can be 
used for (a) evaluation of subject level fit to the raw data, as opposed to indexes 
of overall model fit to the sample covariance matrix (and possibly means); and (b) 
possible formal differentiation between some equivalent models via the extended 
individual residuals. These beneficial features of the EICR in Eq. (22) stem from 
their definition as projection of subject’s data point in such a way that highlights 
discrepancies between the sample covariance matrix and the part of the model 
explained by its latent factors, as reflected in its error covariance matrix. Like 
the ICR in Eq. (13) and the Bollen and Arminger observational (Bartlett-based) 
residuals, the EICR can be used in empirical research with normal or non-normal 
variable distributions.

As mentioned before, the described individual residuals in the preceding 
sections of this chapter may also be beneficial in the identification of multivariate 
outliers that have not been found so by earlier analyses, and of subjects that do 
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not obey (even to an approximate degree) a considered model but may not have 
been found alternatively to exhibit aberrant characteristics. Further research is 
needed to establish in more detail the specific utility of these individual residuals 
in this regard. However, for purposes of outlier identification or subjects markedly 
violating a model of interest, it seems natural to consider as a possible criterion 
the magnitude of the absolute value of the standardized components of the ICR 
and/or the EICR (cf. Bollen & Arminger, 1991).

Relationship to Regression Residuals and  
Limitations of the Individual Case Residuals
The projection method underlying this chapter yields in its individual level 
residuals conceptual counterparts of the widely used residuals in regression 
analysis models. At the same time, the individual residuals discussed in this 
chapter do not represent strict analogs within the SEM framework of the 
regression residuals. This limitation follows from the fact that in SEM there are 
no recorded observations of the latent variables, and therefore it is not possible 
to determine exact model-based predictions for each subject. As also stressed 
throughout the chapter, the ICR and EICR are limited to LISREL models with 
more observed variables than latent factors due to their projection rationale, 
rather than existing for all possible structural equation models.

Another limitation of the ICR residuals discussed in this chapter is that 
LISREL models are best fitted with large samples (i.e., results obtained with 
them are most trustworthy then). Although the ICR and EICR definitions do not 
require explicitly large samples to be used, small samples are not likely to yield 
a trustworthy estimate of the empirical covariance matrix to begin with. Because 
the ICR and EICR depend critically on the particular fitted model and especially 
its estimates, and because with small samples the latter may be misleading, so 
can these individual level residuals be with these samples. Further research is 
needed to present a more informed opinion on this issue, yet for the same reason 
any factor that leads to a seriously biased estimate of the covariance matrix may 
adversely affect the present individual residuals as subject fit indicators. Hence, 
preliminary explorative work on variable distributions and in particular outliers 
may well enhance the utility and amount of trustworthy information contained in 
the present individual residuals when obtained subsequently.

Discerning Between Equivalent Models  
Using Individual Case Residuals
The proposed EICR in Eq. (22) were shown to potentially differ, for the same 
subject, across pairs of equivalent models. The class of such models contains 
equivalent models having full-rank factor loading matrices with identical 
column spaces, less latent than observed variables, and different error covariance 
matrices. This class does not cover models obtained from one another using the 
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replacement rule or Stelzl’s rules (1986), but consists of other important models 
for social and behavioral research.

Given the unquestioned complexity and difficulty of the problem of equivalent 
models, presently we have no information on whether there may be other classes 
of equivalent models for which the EICR or other related individual level residuals 
may differ in general or be identical for the same subjects. Similarly, we have 
no information as to whether there may be other classes of equivalent models 
for which the ICR defined in Eq. (13) are different, or identical, for the same 
subjects. Like the earlier raised issues pertaining to subject level fit in SEM, we 
do encourage further research in this area of the study of equivalent models. It is 
our view that (a) the differentiation between equivalent models, and in this regard 
the development of statistical means to aid it, is of major help to behavioral and 
social scientists in managing the consequential and difficult problem of equivalent 
models (e.g., Breckler, 1990; MacCallum et a1., 1993); and (b) indexes of raw 
data level fit are informative for evaluation of fit of structural equation models, 
in addition to the overall goodness-of-fit measures such as the chi-square value 
and related fit indexes, including the covariance residuals.

The class of equivalent models with full-rank factor loading matrices having 
identical column spaces and differing error covariance matrices, for the members 
of which there are in general differences in the EICR, covers important models 
for behavioral and social research. This is because error covariances may be 
resulting from important omitted variables. With the EICR, the present chapter 
suggests a method that may help differentiate between such models, and hence 
appears to present a promising tool in examining some issues pertaining to model 
misspecification as well.

Although this chapter has shown that within a certain class of equivalent 
models the EICR generally differ for the same subject across the models, it is 
as yet unclear what an optimal way may be of utilizing such differences for 
purposes of selection between these models. Further research will hopefully 
inform the development of such ways. In this regard, it appears that the 
standardized EICR components mentioned before may offer a promising option. 
For example, if one of the considered equivalent models is associated with an 
inordinate number of excessive standardized EICR on a number of dimensions, 
unlike other models, one may consider ruling out the former model on grounds 
of substantial inconsistency with the analyzed data set. Such a decision, however, 
may be overruled by substantive considerations if they indicate that model as a 
viable candidate means of data description and explanation.

Individual Case Residuals and  
the “True” Model
The individual level residuals of this chapter, the EICR and/or ICR, do not 
necessarily have the potential of finding out the “true” model that has generated 
the analyzed data, whichever that model may be. This is because the residuals do 
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not contain sufficient information that can help to identify that model based on 
only a sample of data. Similarly, the individual residuals do not contain sufficient 
information that may indicate for one or more equivalent models specific 
relationships to the true model. The discussion of individual residuals with the 
SEM framework in this chapter was only meant to suggest additional indexes of 
fit of considered models, which operate at the individual subject level and inform 
about model proximity to the raw data. In our view, in addition to substantive 
considerations, these indexes may be helpful in the process of ruling out one or 
more members of an appropriate set of equivalent models as a means of data 
description and explanation. In those cases, the behavioral or social researcher 
may be in a position to decrease the number of competing equivalent models 
as equally plausible means for this purpose. In this possibility to contribute to 
ruling out some equivalent models as candidate means of a studied phenomenon 
explanation, we see the potential of the individual residuals of Eq. (13) and 
particularly Eq. (23) to help researchers as an adjunct to substantive theories and 
considerations, or such of underlying design and/or temporal sequence features, 
in the complex and at times controversial process of model selection in the social 
and behavioral sciences.

APPENDIX 1: PROOFS OF LEMMA 1 AND  
LEMMA 2, AND PROPOSITIONS 2 AND 4

Proof of Lemma 1
We show that the null spaces of C and CK are identical, from which it follows 
that the spaces spanned by their columns are identical as well (e.g., Graybill, 
1983; see also introductory section of this chapter). To prove that N(C)= N(CK), 
we demonstrate that either null space is contained in the other. Indeed, if x is 
from N(C), x′C=0 holds by definition, then x′CK=0 is true as well (i.e., x is from 
N[CK] too). Conversely, if z is from N(CK) then z′CK=0 by definition. Because 
K was assumed nonsingular, it follows that z′C=0 as well (i.e., z is from N[C] 
too). Hence, N(C)=N(CK). Therefore, R(C)=R(CK).

Proof of Lemma 2
Let x be from R(KD). Thus, x is a linear combination of the columns of KD (i.e., 
x=KDz, where z has as its elements the weights of that combination). Because 
K is nonsingular, it follows that K−1x=Dz (i.e., K−1 x is a linear combination of 
the columns of D), or in other words K−1 x is from R(D) that here is assumed 
identical to R(F). Thus, K−1 x is a linear combination of the columns of F too 
(i.e., K−1x=Fv), or in other words x=KFv. The last means that x is also from 
R(KF). This shows that any element of R(KD) is an element of R(KF) as well. 
In the same way, one shows the reverse, viz., that any element of R(KF) is also 
an element of R(KD), which with the immediately preceding statement implies 
that R(KD)=R(KF).
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Proof of Proposition 2
Denote by Φ1 and Φ2 the covariance matrices of the latent factors comprised 
in η1 and η2, respectively, in the measurement parts of two corresponding 
equivalent LISREL models M1~M2 (see Eqs. [10] and [11]). Then given the 
earlier assumption of positive definite covariance matrices (i.e., Θε1>0, Θε2>0, 
Φ1>0, and Φ2>0), it follows that  =Θεi>0, i=1, 2, where Σ denotes 
for simplicity Σ(γ), the common implied covariance matrix by both equivalent 
models (see Eq. [12]). Now use is made of the following formula (2.9) from Rao 
(1973, p. 33) for inverting a complex sum of matrices:

 (A+BDB′)−1=A−1−A−1BEB′A−1+A−1BE(E+D)−1EB′A′−1, (A1.1)

where

 E=(B′A−1B)−1.3 (A1.2)

When the substitution

 A=Σ, B=Λi, and D=−Φi (A1.3)

is made in (A1.1), the latter implies (for i=1 and 2)

 

Multiplying both sides of Eq. (A1.4) from the left by  and from the right 
by Λi, we obtain after cancellations

  (A1.5)

that is,

  (A1.6)

Then the pertinent projection matrix, after direct substitutions and 
simplifications, is obtained as (see Eqs. [A1.4] and [A1.6]):

  (A1.7)

3 The last appearance of the matrix B in the right-hand side of Eq. (A. 1.1) should be B′, as in this 
chapter, rather than as untransposed B like in the cited formula 2.9 on p. 33 of Rao (1973) where 
there is a typographical error.

(A1.4)
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(Cancellation details pertaining to the derivations of Eqs. [A1.5] and [A1.7] can 
be obtained from the authors on request.)

Equation (A1.7) implies that, to obtain the ICR in Eq. (13) for either model, 
M1 or M2, one uses the procedure of weighted least squares (e.g., Bollen & 
Arminger, 1991) with the same weighting matrix, viz. Σ. Thereby, one in fact 
projects on the same subspace, R(Λ1)=R(Λ2), because their identity was assumed 
(as a condition of Proposition 2). Thus, the results of these identical projections 
coincide, and hence for every subject the ICR with model M1 is identical to his 
or her ICR with model M2.

Proof of Proposition 4

From Proposition 1 and the proof of Proposition 2—particularly Eq. (A 1.7)—
follows that  say. Under the 
premises of the present proposition, in the same way as that of deriving Eq. 
(A1.7), we obtain 

Now for a specific observation vector y from Rp, let  and  be its 
EICR (defined in Eq. [23]) with regard to two equivalent models, M1 and M2, 
respectively. Then for the squared Euclidean norm of these residuals, we have

  (i=1, 2).

Note that the matrix PΣ is not symmetric, but  is symmetric (see first 
paragraph of this proof; i.e.,  Writing out the matrix  
and carrying out resulting cancellations shows that  Hence, 
the right-hand side of Eq. (A1.8) simplifies for M1 to

  (A1.9)

Using Eq. (A1.4) for  Eq. (A1.9) yields after cancellations

  (A1.10)

We note that the right-hand side of Eq. (A 1.10) does not depend on Θε1. In 
exactly the same way, we obtain for  the following expression 

 

(A1.8)
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For the case R(A1=R(A2) of identical spanned spaces that we are dealing with 
in this proposition, the last two equalities imply

 ||h1
Θε1||2=||h2

Θε2||2=Y′[Σ−1−Σ−1PΣ]Y (A1.12)

because PΣ is the projection matrix on identical spaces.

APPENDIX 2: SAS SOURCE CODE FOR  
OBTAINING THE INDIVIDUAL CASE  

RESIDUAL (ICR) AND EXTENDED  
INDIVIDUAL CASE RESIDUAL (EICR)  

ESTIMATES FOR MODELS M1 AND  
M2 (SEE FIG. 11.1)

DATA EICR;
INF1LE ‘F1LE_NAME’; * GIVE NAME OF FILE WITH RAW DATA;
INPUT Y1 Y2 Y3 Y4;
PROC IML;
USE ICR VAR {Y1 Y2 Y3 Y4};
READ ALL VAR _NUM_ INTO Y_1;
Y=Y_l’;
THETA1={.321 0 0 0, 0 .313 0 0, 0 0 .312 0, 0 0 0 .297};
* THESE AND NEXT NUMBERS ARE THE ESTIMATES OF;
* THE ERROR COVARIANCE MATRIX OF MODELS M1 AND M2.;
* THAT ARE OBTAINED USING A SEM PROGRAM, ON ‘FILE-NAME’;
THETA2={.321 0 .109 .109, 0 .313 .109 .109, .109 .109
.312 0, .109 .109 0 .297};
LAMBDA1={1 0, 1 0, 0 1, 0 1}; * SEE FIGURE 1;
LAMBDA2=LAMBDA1;
N=NROW(Y);
TH1_INV=INV (THETA1);
TH2_INV=INV (THETA2);
CALL EIGEN (VAL, VECT, TH1_INV);
VAL=SQRT (VAL);
TH1P12=VECT*DIAG(VAL)*VECT’;*THIS IS THETA1 TO−1/2;
CALL EIGEN (VAL, VECT, TH2_INV);
VAL=SQRT (VAL);
TH2P12=VECT*DIAG (VAL)*VECT’; * THIS IS THETA2 TO −1/2;
MATRIX1=I(N) −LAMBDA1*INV (LAMBDA1’ *TH1_INV* LAMBDA1)*
LAMBDA1’ *TH1_INV;
MATRIX2=I(N)—LAMBDA2*INV (LAMBDA2′ *TH2_INV* LAMBDA2)*
LAMBDA2′*TH2_INV;
ICR1=(MATRIX1*Y)′; * THESE ARE (13) FOR MODEL M1;
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ICR2=(MATRIX2*Y)′; * THESE ARE (13) FOR MODEL M2;
EICR1=(TH1P12*MATRIX1*Y)′; * THESE ARE (23) FOR MODEL M1;
EICR2=(TH2P12*MATRIX2*Y)′; * THESE ARE (23) FOR MODEL M2;
FILE ‘EICRM1.0UT′; * GIVE NAME OF FILE OF EICR FOR M1;
DO I=1 TO NROW (EICR1);
DO J=1 TO N;
PUT(EICR1[I,J])+2 @;
END; PUT; END; CLOSEFILE ‘EICRM1.OUT; * GIVE SAME FILE NAME;
FILE ‘EICRM2.0UT; * GIVE NAME OF FILE OF EICR FOR M2;
DO I=1 TO NROW (EICR2);
DO J=1 TO N;
PUT(EICR2[I,J])+2@;
END; PUT; END; CLOSEFILE ‘EICRM2.OUT * GIVE SAME FILE NAME;
QUIT;

Note. For other equivalent models, corresponding changes in the number 
of matrix rows and columns, as well as columns of the raw data file, are in  
general needed.
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