Emulsion Processing - Homogenization -

Jochen Weiss

*Food Structure and Functionality Laboratories

Department of Food Science & Biotechnology University of Hohenheim Garbenstrasse 21, 70599 Stuttgart, Germany

Emulsion Workshop November 13-14th, 2008, Amherst, MA

Principle of Emulsion Formation

Emulsion Processing: Homogenizers

Homogenization is a unit operation using a class of processing equipment referred to as *homogenizers* that are geared towards reducing the size of droplets in liquid-liquid dispersions

Physiochemical Processes Occurring During Homogenization

General Homogenization Options

The order of ingredient addition and homogenization may have a large impact on product properties

Homogenization: Process Parameters

Energy density

- minimum droplet size achievable

Energy efficiency

- heat losses - manufacturing costs

Volume Flow Rates

- throughput - production time

Product rheology

- limitations - materials that can be homogenized

The Physics of Droplet Disruption

- Maintaining Force. Drop shape maintenance forces (Laplace Pressure)
- Disruptive Force. Drop disruption is due to drop-surface applied tangential stresses
- Weber-Number (We): The ratio between drop disrupting and drop maintaining forces, drop disruption occurs only above a critical Weber number
 - $We < We_{crit}$ or $t_{br} < t_{br,crit} \rightarrow$ droplet deformation
 - $We > We_{crit}$ or $t_{br} > t_{br,crit} \rightarrow$ droplet disruption
- **Deformation Time.** Droplets must be exposed to tangential stresses for a sufficient amount of time

$$p_c = \gamma \left(\frac{1}{r_1} + \frac{1}{r_2}\right) = \gamma \frac{4}{d}$$

Key Parameter: Energy Density E_v

$$E_{v} = \frac{\text{Energy input } E}{\text{homogenized volume } V} = \frac{P}{\dot{V}} = P_{v}t_{v}$$

- The volume specific energy input or the energy density E_{v} can simply be calculated from the power consumption and the volume flow rate
- The mean droplet diameter may often be empirically related to the energy density, *IF*, all other parameters are kept constant!

$$x_{1,2} = C(E_v)^b$$

How Droplets Are Disrupted: Flow Situations in Homogenizers

- Flow profiles are complex based on geometry of homogenizer.
- Flow may be laminar (rotational, simple shear, elongation) or turbulent.

Simple Deformation Scenarios For Liquid-Liquid Dispersions

Rotation ofElongation ofDisruption ofwhole dropletdropletdropletCirculation of"Neck"fluid within dropletFormation

Increased Exertion of Stress Due to Superimposed Flow Profile

Role of Emulsifiers in Emulsion Formation and Stabilization

Formation

Stabilization

Rapidly adsorb
Lower interfacial tension
Facilitate breakup

Generate repulsive forces
Form resistant membrane
Prevent Coalescence

Optimum Emulsifier Characteristics for Emulsion Formation

- Objective: to generate small stable droplets
 - Rapid adsorption
 - Lower interfacial Tension
 - Form protective membrane

Factors Affecting Droplet Size: Emulsifier Concentration

Corn O/W emulsion - Pandolfe (1995)

Once the emulsifier concentration exceeds a certain level the droplet size depends on the energy input of the homogenizer.

Fixed Homogenization Conditions (1000 psi)

Factors Affecting Droplet Size: Emulsifier Type

Characterizing Emulsifier Efficiency During Homogenization

 Maximum amount of oil that can be homogenized by fixed amount of emulsifier using standardized conditions (homogenization, pH, I, T)

– EAI (g oil / g emulsifier) – Emulsifier activity index

 Minimum amount of emulsifier required to achieve a given droplet size using standardized conditions (\$\overline\$, homogenization, pH, I, T)

 $-c_{min}$ (g emulsifier / g oil)

 Minimum droplet size that can be achieved by homogenization

 $-r_{min}$ (μm)

Homogenizers

High Speed Blender High Pressure Homogenizers Colloid Mill High Shear Dispersers Ultrasonic Disruptor Membrane Homogenizers

Homogenizers: A General Overview (II)

I. High Speed Blenders

- Low volume specific energy input (energy density)
- Energy input highly distributed in the stirred vessel (regions of low and high shear)
- Blender geometry and rotational speed are the prime parameters → turbulent flows preferred.
- Broad particle size distribution, large particles
- Need to avoid air incorporation to avoid foam formation
- Fairly inexpensive usually used for premix production

II. High Pressure Homogenizer (HPH)

- Most common used homogenizer in the food industry (milk, cream etc.)
- Disruptive energy comes from relaxation of high pressure build up across homogenization valve
- Pressures typically range from 50 to 500 bar (microfluidizer up to 1600 bar)
- Homogenization valve geometry of key importance → influences flow profile
- Homogenization may be single or multiple stage

Shear, Turbulent & Cavitation Forces

Physical Process Inside the Homogenization Valve

- On entering the homogenization valve, the flow speed greatly increases \rightarrow pressure drops (Bernoulli) to reach the vapor pressure p_D at point A
- Since p_D is lower than the external pressure $p_A \rightarrow$ cavitation and two phase fluid flow
- Pressure signal transduction in multi-phase flows is slower than in single phase flow → equilibration with external pressure occurs late (close to exit)
- Sudden pressure jump leads to collapse of cavitational bubbles and the flow reverts to a one-phase flow
- Droplet disruption is therefore due to
 - Laminar and turbulent flow at entrance of valve (a)
 - Growth of cavitational bubbles in zone (b)
 - Collapse of bubbles in zone (c)

High Pressure Homogenizer: Efficiency Requirements

- Valve Type
 - Flat, toothed or knife edge
- Homogenization Pressure
 - Gap Size
- Counter Pressure

HPH Efficiency Requirements

- Homogenization valves are therefore designed with the following criteria in mind
 - Ensure sufficient time for growth of cavitational bubbles
 - "Explosive" increase of pressure towards the exit
 - Maximum height of the "Dirac-like" pressure increase
- Base process parameters for the user are homogenization pressure $p_{\rm H}$ and external (exit) pressure $p_{\rm A}$
- The exit pressure may be increased through
 - Increased pressure in connected process equipment
 - Introduction of secondary pressure valve
 - Introduction of secondary homogenization valve

HPH: Influence of Homogenization Pressure (Energy Density)

High Pressure Homogenizer: Influence of Viscosity Ratio

Influence of Disperse and Continuous Phase Viscosity

Viscosity Ratio: Small droplets can only be formed when viscosity ratio of oil to aqueous phase is between 0.05 and 5. It is therefore important to control viscosity ratio.

Laminar Flow Conditions, O/W Emulsions, Fast Emulsifier (Schubert and Armbruster, 1992)

Number of Passes

From HPH to Microfluidizer (MF) A Small Design Change with a Large Effect

- In addition to pressure changes leading to cavitation, fluid jets also impinge in a mixing chamber
- Extremely turbulent flow situation and very high shear forces cause additional disruption of droplets
- Higher homogenization pressures possible
- NO MOVING PARTS! → low maintenance
- But: stronger possibility for blockage

HPH and MF Comparison

III. Colloid Mills (CM)

- Droplet disruption in colloid mills occurs in a flow channel between a rotor-stator assembly
- The rotor may have a large variety of surface profiles (toothed)
- Typical rotational speeds are n=3000 min⁻¹
- Due to the conical design, the emulsions is transported without external pressure application
- The size of the gap alters residence time in the channel and exerted forces

IV: High Shear Disperser (HSD) – (Ultra) Turrax

- HSD or Ultra-Turrax Systems are rotor-stator systems similar to colloid mills
- They are composed of coaxial intermeshing rings with radial openings
- The fluid enters in the center of the systems and is accelerated by the rotor
- As it passes through the system, the fluid is accelerated and decelerated multiple times which results in high tangential forces
- Rotational speeds may be as high as n=20000 min⁻¹

High Shear Disperser (HSD): Principle of Droplet Disruption

- The pre-emulsion is transported through the radial openings of the rotor systems and mixes with the liquid in the gap between the rotor and the stator
- High shear forces and turbulent flow situations arise that lead to a disruption of droplets

HSD: Complexity of Flow Profiles

HSD: Influence of Geometry of Rotor-Stator System

V. Ultrasonic Homogenizer (UH)

- Piezo-electric or magnetorestrictive transducers generate sound waves with frequencies > 20 kHz
- Associated pressure gradients cause deformation of droplets
- Cavitation caused by drop of local pressure below the vapor pressure of the solvent generates turbulent flow and high shear
- Can be run in batch or continuous using a flow cell

Typical Design of a Continuous Ultrasonic Homogenizer

Ultrasonic Homogenizer :

Process Parameters

Frequency

- Size of cavitational bubbles decreases with increasing frequency
- Wave intensity
- A minimum pressure drop is required to initiate cavitation → below critical wave intensities, almost no droplet disruption
- Above the critical pressure, direct relationship between applied intensity and achievable particle size

Sonication time

 Disruption and stabilization are kinetic events, thus, a minimum sonication time is required to achieve droplet disruption

Hydrostatic pressure

Initially, improved emulsification (up to 5 bar), above 5 bar, decreased efficiency

Dissolved gas concentration

Increased number of cavitational events but reduced intensity of cavitational collapse due to dampening

• Viscosity & Temperature

- Influences droplet disruption

Ultrasonic Homogenizer: Emulsifier Properties Play a Key Role

- The relationship between energy density, volume fraction and achievable mean droplet diameter depends strongly on the emulsifier.
- For slow emulsifiers (bottom), achievable particle sizes increase with increasing volume fraction
- For fast emulsifiers (top), smaller emulsion can be obtained even at high dispersed phase concentrations

Ultrasonic Homogenizer: Peculiarity in Size Distribution Development

VI. Membrane Homogenizers (MH)

- Dispersed phase or emulsion pushed through microporous membrane into continuous phase
- High energy efficiency
- Narrow particle size distribution possible
- Droplet size typically 2-3 × pore size
- For high dispersed phase concentrations, recirculation is needed
 → time consuming
- Process parameters include:
 - Membrane pore size and material
 - Volume flow rates
 - Applied trans-membrane pressure
 - Others: temperature, viscosity, etc.

O/W Produced by Membrane

Direct Comparison of Homogenizers

Selecting a Homogenizer

- Define desired product characteristics
 - Particle size distribution, viscosity
- Define desired production conditions
 - Batch/Continuous, throughput, hygiene, temperature
- Identify, Test & Compare Homogenizers
 - High speed blender, high pressure valve, colloid mill, ultrasonic, membrane etc.
- Optimize Homogenization Conditions
 - Pressure, flow rate, rotation speed, time, temperature, emulsifier type, emulsifier concentration

Which Homogenizer to Buy?

Recap:

Factors Affecting Droplet Size

Homogenizer

- Machine Parameters (Pressure, Rotation Speed, Time)
- Energy Density

Component Phases

- Interfacial Tension
- Viscosity

Emulsifier

- Adsorption Kinetics
- Interfacial Tension Reduction
- Stabilization of Droplets Against Aggregation