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Preface

Failure time regression (FTR) data are obtained by observing failure times
of units functioning under various values of explanatory variables (called also
regressors, stresses, covariables) such as temperature, voltage, load, pressure,
humidity, design, manufacture, etc. The purpose of the FTR data analysis is
to estimate reliability under specified values of interest of these variables. In
the particular case of accelerated life testing (ALT) data are collected from
experiments under higher than usual stress conditions and reliability under
usual (design) stress is estimated.
Models relating reliability characteristics to explanatory variables are called

failure time regression models. In ALT such models are called accelerated life
models.

Degradation data with explanatory variables are obtained when failure times
and quantities characterizing degradation of units under explanatory variables
are measured. Models relating degradation to explanatory variables and mod-
els relating intensity of failures to degradation and to these variables are used
for analysis of such data.
This book gives models and methods of statistical analysis for FTR (ALT)

and degradation data with explanatory variables.
Some chapters of books such as Statistical Reliability Theory (1989) by

L. Gertsbakh, Statistical Methods for Reliability Data (1998) by W. Meeker
and L. Escobar, Statistical Analysis of Reliability Data (2000) by M. Crowder,
A. Kimber, R. Smith and T. Sweeting, are also focused on these topics.
The books Statistical Methods in Accelerated Life Testing (1988) by R. Viertl

and Accelerated Testing: Statistical Models, Test Plans, and Data Analysis
(1990) by W. Nelson are entirely consecrated to models and statistical anal-
ysis of ALT data.
FTR models and methods of their analysis have much in common with

regression models in survival analysis. In the well-known books on survival
analysis of T. Fleming and D. Harrington, Counting Processes and Survival
Analysis (1991), and P. K. Andersen, O. Borgan, R. Gill and N. Keiding,
Statistical Models Based on Counting Processes (1993), data are presented
in the form of failure, censoring, and explanatory variable processes. Such
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data presentation has an important advantage since the data are viewed in
dynamics and can be analyzed using the theory of counting processes. In the
recent papers on statistical analysis of reliability data such data presentation
is found more and more often. We use it in the present book and consequently
some results from the theory of counting processes. Nevertheless, we tried to
minimize the number of required mathematical notions and avoided technical
details by explaining ideas and referring to papers and books where thorough
analysis can be found. A short review of used results from the stochastic
process theory is given in Appendix.
The most used FTR and ALT models are the parametric accelerated failure

time (AFT) and semiparametric proportional hazards (PH) model. Neverthe-
less, they are quite restricted and do not always agree well with real data. So a
number of models, which are alternatives or generalizations of them, are pre-
sented. A unified approach to the formulation of the models was used. It gives
the possibility to formulate new models and see relations between them and
well-known models. We think that most practical situations may be modeled
by one or another of the presented models.
For most models, estimation procedures from FTR censored with time-

varying and constant explanatory variables are given. In particular, plans of
experiments and estimation methods from ALT data are considered. Methods
for analysis of ALT data when the production process is unstable are given
also.
For the most important models formal goodness-of-fit tests are given.
In the statistical literature degradation and the failure time data are ana-

lyzed separately. We give methods of statistical analysis of degradation models
with the intensity of failures depending on the level of degradation and ex-
planatory variables.
We consider here only the classes of univariate models. These models can

be generalized to the case of multivariate life data as it was done, for example,
in our monographs Semiparametric Models in Accelerated Life Testing (1995)
and Additive and Multiplicative Semiparametric Models in Accelerated Life
Testing and Survival Analysis (1998), published in Queen’s Papers in Pure
and Applied Mathematics (Kingston, Canada).
Formal exposition of material did not leave a place for numerical examples

and diagnostic plots. Many such plots and examples for some of the models
can be found in the books of W. Nelson and W. Meeker and L. Escobar.
The recent book of T. Therneau and P. Grambsch, Modeling Survival Data.
Extending the Cox Model (2000), gives graphical analysis and many practical
recommendations on application of survival regression data, which can be
useful for analysis of FTR data. Many useful results related with our book
can be found also in the monographs Statistical and Probabilistic Models in
Reliability (1999), edited by D. Ionescu and N. Limnios, Recent Advances in
Reliability Theory (2000), edited by N. Limnios and M. Nikulin, Goodness-
of-fit Tests and Validity Models (2001), edited by C. Huber, N. Balakrishnan,
M. Nikulin and M. Mesbah.
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CHAPTER 1

Failure time distributions

1.1 Introduction

Suppose that the failure time T is a nonnegative, absolutely continuous ran-
dom variable. Failure-time distribution can be defined by one of the following
functions:

Survival function

The survival function

S(t) = P{T ≥ t}, t ≥ 0; (1.1)

for fixed t means the probability of survival up to time t.

Cumulative distribution function

The cumulative distribution function (c.d.f)

F (t) = P{T < t} = 1− S(t) (1.2)

for fixed t means the probability of failure before the moment t.

Probability density function

The probability density function is a function p(t) ≥ 0 such that for any t ≥ 0

F (t) =
∫ t

0

p(s)ds. (1.3)

If the cumulative distribution function has the derivative at the point t then

p(t) = lim
h→0

P(t ≤ T < t+ h)
h

= F ′(t) = −S′(t). (1.4)

For fixed t the probability density function characterizes the probability of
failure in a small interval after the moment t.

Hazard rate function

The hazard rate function

α(t) = lim
h→0

P(t ≤ T < t+ h | T > t)
h

=
p(t)
S(t)

, (1.5)
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for fixed t characterizes the probability of failure in a small interval after the
moment t, given survival to time t. So it means the risk of failure of the units
survived.

Cumulative hazard function

Cumulative hazard function

A(t) =
∫ t

0

α(u)du = −ln{S(t)}. (1.6)

The survival function can be found from the hazard rate or the cumulative
hazard function using the following relation:

S(t) = exp{−A(t)} = exp{−
∫ t

0

α(u)du}. (1.7)

The quantile function

The quantile function: for 0 < p < 1

tp = inf{t : F (t) ≥ p}. (1.8)

When F (t) is strictly increasing continuous function then

tp = F−1(p), 0 < p < 1. (1.9)

For fixed p the quantile tp means the time at which a specific proportion p of
the population fails.
Any of above considered functions can be found from another.

The mean and the variance

Important survival characteristics are the mean failure-time E(T ) and the
variance Var(T ):

E(T ) =
∫ ∞

0

S(t)dt, Var(T ) = 2
∫ ∞

0

tS(t)dt− {E(T )}2.

The mean and the variance can be found from any of the above considered
functions but not vice versa.

1.2 Parametric classes of failure time distributions

For many FTR models, failure time distributions under different constant
explanatory variables should belong to the same parametric class.
Classes of failure-time distributions can be formulated by specifying the

form of one of the considered functions: survival, cumulative distribution,
probability density, or hazard rate. In this chapter distributions will be clas-
sified by shape of the hazard rate function.
Analyzing failure-time data, the five most common shapes of hazard rates
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observed are: constant, monotone (increasing or decreasing), ∩-shaped, and
∪-shaped. The last includes three typical periods: burn in (or infant mortal-
ity) period, relatively low failure intensity period, and senility period, with
progressively increasing risk of failure.

1.2.1 Constant hazard rate

The only continuous distribution with constant hazard rate is the exponential
distribution.

Exponential distribution E(θ)

S(t, θ) = e−t/θ, t ≥ 0 (θ > 0),

p(t, θ) =
1
θ
e−t/θ t ≥ 0;

α(t, θ) = 1/θ;

tp = −θ ln(1− p); 0 < p < 1;

E(T ) = θ, Var(T ) = θ2.

Hazard rates for various values of the parameter θ are given in Figure 1.1.

t
54321

2.5

2

1.5

1

0.5

0

Figure 1.1

1.2.2 Monotone hazard rate

There are many families of survival distributions with a monotone hazard
rate.
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Weibull distribution W (θ, ν)

S(t, θ, ν) = exp
{
−( t

θ
)ν

}
(θ, ν > 0); t ≥ 0;

α(t, θ, ν) =
ν

θν
tν−1;

p(t, θ, ν) =
ν

θν
tν−1 exp

{
−( t

θ
)ν

}
;

tp = θ (− ln(1− p))1/ν ; 0 < p < 1;

E(T ) = θ Γ(1 + 1/ν), Var(T ) = θ2
(
Γ(1 + 2/ν)− Γ2(1 + 1/ν)

)
.

The hazard rate is a power function. Note that W (θ, 1) = E(θ).
With 0 < ν < 1 the hazard rate is decreasing from ∞ to 0 (Figure 1.2).
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Figure 1.2
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Figure 1.3

With ν > 1 the hazard rate is increasing from 0 to ∞ (Figure 1.3).

Gamma distribution G(θ, ν)

p(t, θ, ν) =
1

θνΓ(ν)
tν−1e−

t
θ (θ, ν > 0); t ≥ 0;

F (t, θ, ν) =
1

Γ(ν)

∫ t/θ

0

uν−1e−udu;

α(t, θ, ν) =
p(t, θ, ν)

1− F (t, θ, ν)
;

E(T ) = θν, Var(T ) = θ2ν.

Note that G(θ, 1) = E(θ).

With ν > 1 the hazard rate is increasing from 0 to 1
θ (Figure 1.4).
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Figure 1.4

With 0 < ν < 1 the hazard rate is decreasing from ∞ to 1
θ (Figure 1.5).
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Figure 1.5

Goodness-of-fit tests distinguish Weibull and gamma distributions only when
the size of the data is very large.

Gompertz-Makeham distribution GM(γ0, γ1, γ2)

S(t, θ) = exp{−γ0t− γ1

2
(e−γ2t − 1)}, (γ0, γ1 > 0, γ2 ∈ R);
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p(t, θ, ν) = (γ0 + γ1e
−γ2t) exp{−γ0t− γ1

2
(e−γ2t − 1)};

α(t, θ) = γ0 + γ1e
−γ2t.

Note that GM(γ0, γ1, 0) = E(γ0 + γ1).
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Figure 1.6

With γ2 > 0 the hazard rate is decreasing from γ0 + γ1 to γ0 (Figure 1.6).

With γ2 < 0 the hazard rate is increasing from γ0 + γ1 to ∞ (Figure 1.7).
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Mixture of two exponential distributions ME(θ1, θ2, p1)

S(t, θ1, θ2, p1) = p1 exp{− t

θ1
}+p2 exp{− t

θ2
} (0 < p1 < 1, p2 = 1−p1, θ2 > θ1 > 0);

p(t, θ1, θ2, p1) =
p1

θ1
exp{− t

θ1
}+ p2

θ2
exp{− t

θ2
};

α(t, θ1, θ2, p1) = p(t, θ1, θ2, p1)/S(t, θ1, θ2, p1);

E(T ) = p1θ1 + p2θ2.

The hazard rate is decreasing from c2 = p1
θ1
+ p2

θ2
to c1 = 1

θ2
(Figure 1.8).

t
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Figure 1.8

Generalized Weibull distribution GW (θ, ν, γ)

S(t, θ, ν, γ) = exp

{
1−

(
1 + (

t

θ
)ν

)1/γ
}
, (θ, ν, γ > 0); t ≥ 0; (1.10)

α(t, θ, ν, γ) =
ν

γθν
tν−1{1 + ( t

θ
)ν)1/γ−1;

tp = θ{(1− ln(1− p))γ − 1}1/ν ; 0 < p < 1.

Note that GW (θ, ν, 1) =W (θ, ν), GW (θ, 1, 1) = E(θ).
The generalized Weibull distribution was suggested by accelerated life mod-

els considered in the following chapter.
This class of distributions has very nice properties. In dependence of param-

eter values the hazard rate can be constant, monotone (increasing or decreas-
ing), ∩-shaped, and ∪- shaped. All moments of this distribution are finite.
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With ν > 1, ν > γ the hazard rate is increasing from 0 to ∞ (Figure 1.9).
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Figure 1.9

With ν = 1, γ < 1 the hazard rate is increasing from (γθ)−1 to ∞ (Figure
1.10).
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Figure 1.10

With 0 < ν < 1, ν < γ the hazard rate is decreasing from ∞ to 0 (Figure
1.11).
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Figure 1.11

With 0 < ν < 1, ν = γ the hazard rate is decreasing from∞ to θ−1 (Figure
1.12).
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Figure 1.12

Exponentiated Weibull distribution EW (θ, ν, γ).

S(t, θ, ν, γ) = 1−
{
1− exp[−( t

θ
)ν ]

}1/γ

(θ, ν, γ > 0); t ≥ 0; (1.11)



PARAMETRIC CLASSES OF FAILURE TIME DISTRIBUTIONS 11

α(t, θ, ν, γ) =
ν{1− exp[−( t

θ )
ν ]}(1−γ)/γ exp[−( t

θ )
ν ]( t

θ )
ν−1

γθ{1− (1− exp[−( t
θ )

ν ])}1/γ

tp = θ[− ln(1− pγ)]1/ν ; 0 < p < 1.

Note that EW (θ, ν, 1) =W (θ, ν), EW (θ, 1, 1) = E(θ).
This distribution was introduced by Efron (1988). Its properties were studed

by Mudholkar and Srivastava (1995). All moments of this distribution are
finite.

With ν > 1, ν ≥ γ the hazard rate is increasing from 0 to ∞.
With ν = 1, γ ≤ 1 the hazard rate is increasing from (γθ)−1 to ∞.
With 0 < ν < 1, ν < γ the hazard rate is decreasing from ∞ to 0.
With 0 < ν < 1, ν = γ the hazard rate is decreasing from θ−1 to 0.

Summary. For the values of parameters where the hazard rate is increasing
we have different families of survival distributions:

W (θ, ν): α(t) increases from 0 to ∞;
G(θ, ν): α(t) increases from 0 to c > 0;
GM(γ0, γ1, γ2): α(t) increases from c > 0 to ∞;
GW (θ, ν, γ): α(t) increases from c ≥ 0 to ∞;
EW (θ, ν, γ): α(t) increases from c ≥ 0 to ∞.

For the values of parameters where the hazard rate is decreasing:

W (θ, ν): α(t) decreases from ∞ to 0;
G(θ, ν): α(t) decreases from ∞ to c > 0;
ME(θ1, θ2, p1):α(t) decreases from c2 to c1, c2 > c1.
GM(γ0, γ1, γ2): α(t) decreases from c1 > 0 to c2 : 0 < c2 < c1;
GW (θ, ν, γ): α(t) decreases from ∞ to c ≥ 0;
EW (θ, ν, γ): α(t) decreases from 0 < c ≤ ∞ to 0.

1.2.3 ∩-shaped hazard rate
Lognormal distribution LN(µ, σ)

S(t, µ, σ) = 1− Φ
(
ln t− µ

σ

)
, (µ ∈ R, σ > 0); t ≥ 0; (1.12)

p(t, µ, σ) =
1
σt
ϕ

(
ln t− µ

σ

)
;

α(t, µ, σ) =
p(t, µ, σ)
S(t, µ, σ)

;

tp = eσΦ−1(p)+µ;
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E(T ) = eµ+σ2/2, Var(T ) = e2µ+σ2/2(eσ2 − 1).
Here Φ is the distribution function of the standard normal law,

ϕ(t) =
1√
2π

e−t2/2 = Φ′(x).

The hazard rate increases from 0 to its maximum value and then decreases to
0, i.e., it is ∩-shaped (Figure 1.13).

t
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Figure 1.13

If σ is large then the maximum is reached early in the life. Therefore, the
lognormal distribution is also used to model situations when the risk of failure
is decreasing.

Loglogistic distribution LL(θ, ν)

S(t, θ, ν) =
1

1 + ( t
θ )

ν
(θ, ν > 0); (1.13)

α(t, θ, ν) =
ν

θν
tν−1

(
1 + (

t

θ
)ν

)−1

;

p(t, θ, ν) =
ν

θν
tν−1

(
1 + (

t

θ
)ν

)−2

;

tp = θ(
p

1− p
)1/ν ; 0 < p < 1.

For 0 < ν ≤ 1 the mean does not exist. For ν > 1

E(T ) = θ Γ(1 + 1/ν) Γ(1− 1/ν).
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The variance exists for ν > 2:

Var(T ) = θ2{Γ(1 + 2/ν) Γ(1− 2/ν)− Γ2(1 + 1/ν) Γ2(1− 1/ν)}.
With ν > 1 the hazard rate increases from 0 to its maximum value and

then decreases to 0, i.e. it is ∩-shaped (Figure 1.14).

t
infinity0

Figure 1.14

Inverse Gaussian distribution IG(ν, θ)

F (t, θ, ν) = Φ

(
√
ν

(√
t

θ
−

√
θ

t

))
+ e2νΦ

(
−√

ν

(√
t

θ
+

√
θ

t

))
; (1.14)

p(t, θ, ν) =
√
νθt−3/2ϕ

(
√
ν

(√
t

θ
−

√
θ

t

))
, (θ, ν > 0); t ≥ 0;

α(t, θ, ν) =
p(t, θ, ν)

1− F (t, θ, ν)
;

E(T ) = θ, Var(T ) = θ2/ν.

The hazard rate increases from 0 to its maximum value and then decreases to
ν/2θ, i.e. it is ∩-shaped (Figure 1.15).
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Birnbaum and Saunders (1969) distribution BS(ν, θ)

F (t, θ, ν) = Φ

(
1
ν

(√
t

θ
−

√
θ

t

))
(θ, ν > 0); t ≥ 0;

p(t, θ, ν) =
1
2νt

(√
t

θ
+

√
θ

t

)
ϕ

(
1
ν

(√
t

θ
−

√
θ

t

))
;

tp =
θ

4

{
νΦ−1(p) +

√
4 + {νΦ−1(p)}2

}2

; 0 < p < 1;

α(t, θ, ν) =
p(t, θ, ν)

1− F (t, θ, ν)
;

E(T ) = θ

(
1 +

ν2

2

)
, Var(T ) = (

θ

ν
)2

(
1 +

5
4
ν2

)
.

The hazard rate increases from 0 to its maximum value and then decreases
to 1/2θν2, i.e., it is ∩-shaped.
The BS family is very similar to the IG family of distributions.

Generalized Weibull distribution GW (θ, ν, γ)

The generalized Weibull distribution was given by (1.10).

With γ > ν > 1 the hazard rate is increasing from 0 to its maximum value

c =
ν

γθ

(
γ(ν − 1)
γ − ν

) ν−1
ν

(
ν(γ − 1)
γ − ν

) 1−γ
γ

(1.15)
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and then decreases to 0, i.e., it is ∩-shaped (Figure 1.16).
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Figure 1.16

Exponentiated Weibull distribution EW (θ, ν, γ)

The exponentiated Weibull distribution was given by (1.11).

With γ < ν < 1 the hazard rate is increasing from 0 to its maximum value
c > 0 and then decreases to 0, i.e., it is ∩-shaped.
Summary: For the values of parameters where the hazard rate is ∩-shaped
we have:

LN(µ, σ): the hazard rate increases from 0 to its maximum value and then
decreases to 0;
LL(θ, ν): the hazard rate increases from 0 to its maximum value c > 0 and

then decreases to 0;
IG(ν, θ): the hazard rate increases from 0 to its maximum value c > 0 and

then decreases to c1, 0 < c1 < c ;
BS(ν, θ): the hazard rate increases from 0 to its maximum value c > 0 and

then decreases to c1, 0 < c1 < c ;
GW (θ, ν, γ): the hazard rate increases from 0 to its maximum value c > 0

and then decreases to 0;
EW (θ, ν, γ): the hazard rate increases from 0 to its maximum value c > 0

and then decreases to 0.
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1.2.4 ∪-shaped hazard rate
Generalized Weibull distribution GW (θ, ν, γ)

The generalized Weibull distribution was given by (1.10).
If 0 < γ < ν < 1 then the hazard rate is decreasing from∞ to its minimum

value

c =
ν

γθ

(
γ(1− ν)
ν − γ

) ν−1
ν

(
ν(1− γ)

νγ

) 1−γ
γ

and then increases to ∞, i.e., it is ∪-shaped (Figure 1.17).
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Exponentiated Weibull distribution EW (θ, ν, γ)

If γ > ν > 1 then the hazard rate is decreasing from ∞ to its minimum value
c and then increases to ∞.
Thus, for the values of parameters where the hazard rate is ∪-shaped we
have GW (θ, ν, γ) and EW (θ, ν, γ): the hazard rate decreases from ∞ to its
minimum value c > 0 and then increases to ∞.
In this chapter we consider only several basic probability models and no-

tions, which are often used in reliability and survival analysis. There are many
other important univariate continuous distributions which are useful in ap-
plications. Bagdonavičius and Nikulin (1995), Barlow and Proschan (1975),
Bayer (1994), Beichelt and Franken (1983), Bogdanoff and Kozin (1985), Bon-
neuil (1997), Gertsbakh and Kordonsky (1969), Gertsbakh (1989), Courgeau,
D., Lelièvre, E. (1989), Gnedenko and Ushakov (1995), Singpurwalla and Wil-
son (1999), Voinov and Nikulin (1993), Xie (2000) provide detailed informa-
tion on a wide range of different probabilistic parametric families and their
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applications arising in reliability and survival analysis. Statistical analysis of
these families can be found in Bain and Engelhardt (1991), Gerville-Réache
and Nikulin (2000), Greenwood and Nikulin (1996), Kalbfleisch and Pren-
tice (1980), Lawless (1982), Mann, Schafer and Singpurwalla (1974), Meeker
and Escobar (1998), Nelson (1990), Nikulin and Voinov (2000), Stacy (1962),
Voinov and Nikulin (1996), and Zacks (1992).





CHAPTER 2

Accelerated life models

2.1 Introduction

Accelerated life models relate the lifetime distribution to the explanatory vari-
able (stress, covariate, regressor). This distribution can be defined by the sur-
vival, cumulative distribution, or probability density functions. Nevertheless,
the sense of accelerated life models is best seen if they are formulated in terms
of the hazard rate function.
Suppose at first that the explanatory variable x(·) is a deterministic time

function:
x(·) = (x1(·), ..., xm(·))T : [0,∞) → B ∈ Rm.

If x(·) is constant in time, we shall write x instead of x(·) in all formulas.
Denote informally by Tx(·) the failure time under x(·) and by

Sx(·)(t) = P{Tx(·) ≥ t}, Fx(·)(t) = P{Tx(·) < t}, px(·)(t) = −S′
x(·)(t),

the survival, cumulative distribution, and probability density function, respec-
tively.
The hazard rate function under x(·) is

αx(·)(t) = lim
h↓0

1
h
P{Tx(·) ∈ [t, t+ h) | Tx(·) ≥ t} = −

S′
x(·)(t)

Sx(·)(t)
.

Denote by

Ax(·)(t) =
∫ t

0

αx(·)(u)du = −ln{Sx(·)(t)}
the cumulative hazard under x(·).
Each specified accelerated life model relates the hazard rate (or other func-

tion) to the explanatory variable in some particular way.
If the explanatory variable is a stochastic process X(t), t ≥ 0, and TX(·) is

the failure time under X(·), then denote by

Sx(·)(t) = P{TX(·) ≥ t|X(s) = x(s), 0 ≤ s ≤ t},
αx(·)(t) = −S′

x(·)(t)/Sx(·)(t), Ax(·)(t) = − ln{Sx(·)(t)}
the conditional survival, hazard rate, and cumulative hazard functions. In
this case the definitions of models should be understood in terms of these
conditional functions.
To be concise the word stress will be used for explanatory variable in this

chapter.
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2.2 Generalized Sedyakin’s model

2.2.1 Definition of the model

Accelerated life models could be at first formulated for constant explanatory
variables. Nevertheless, before formulating them, let us consider a method for
generalizing such models to the case of time-varying stresses.
In 1966 N. Sedyakin formulated the physical principle in reliability which

states that for two identical populations of units functioning under different
stresses x1 and x2, two moments t1 and t2 are equivalent if the probabilities
of survival until these moments are equal:

P{Tx1 ≥ t1} = Sx1(t1) = Sx2(t2) = P{Tx2 ≥ t2}.
If after these equivalent moments the units of both groups are observed under
the same stress x2, i.e. the first population is observed under the step-stress

x(τ) =
{

x1, 0 ≤ τ < t1,
x2, τ ≥ t1,

and the second all time under the constant stress x2, then for all s > 0

αx(·)(t1 + s) = αx2(t2 + s).

Using the idea of Sedyakin, Bagdonavičius (1978) generalized the model to the
case of any time-varying stresses by supposing that the hazard rate αx(·)(t)
at any moment t is a function of the value of the stress at this moment and of
the probability of survival until this moment. It is formalized by the following
definition.

Definition 2.1 The generalized Sedyakin’s (GS) model holds on a set of
stresses E if there exists on E × R+ a positive function g such that for all
x(·) ∈ E

αx(·)(t) = g
(
x(t), Sx(·)(t)

)
. (2.1)

Equivalently, the model can be written in the form

αx(·)(t) = g1

(
x(t), Ax(·)(t)

)
. (2.2)

with g1(x, s) = g(x, exp{−s}).
On sets of constant stresses the GS model is not a model at all: it always

holds. It is seen from the following proposition.

Proposition 2.1. If the hazard rates αx(t) > 0, t > 0 exist on a set of
constant stresses E1 then the GS model holds on E1.

Proof. For all x ∈ E1 we have:

αx(t) = αx(A−1
x (Ax(t))) = g1 (x,Ax(t)) ,

with g1(x, s) = αx(A−1
x (s)).

Thus, the GS model does not give any relations between the hazard rates
(or the survival functions) under different constant stresses. This model only
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shows the influence of stress variability in time on survival and gives the rule
of the hazard rate (or survival) function construction under any time-varying
stress from the hazard rate (or survival) functions under different constant
stresses. It is seen from the following proposition.

Proposition 2.2. If the GS model holds on a set E ⊃ E1 of stresses x(·) :
R+ → E1, then for all x(·) ∈ E

αx(·)(t) = αxt

(
A−1
xt

(Ax(·)(t))
)
, (2.3)

where xt is a constant stress equal to the value of the time-varying stress x(·)
at the moment t.

Proof. If the GS model holds on a set E ⊃ E1 then the formula (2.2) implies
that for all x ∈ E1

g1(x, s) = g1

{
x,Ax(A−1

x (s))
}
= αx(A−1

x (s)).

Thus,
αx(·)(t) = g1

{
x(t), Ax(·)(t)

}
= αxt

{
A−1
xt

(Ax(·)(t))
}
.

The fact that the GS model does not give relations between the survival un-
der different constant stresses is a cause of non-applicability of this model
for estimation of reliability under the design (usual) stress from accelerated
experiments. On the other hand, restrictions of this model when not only the
rule (2.3) but also some relations between survival under different constant
stressses are assumed, can be considered. These narrower models can be for-
mulated by using models for constant stressses and the rule (2.3). For example,
it will be shown later that the well known and mostly used accelerated failure
time model for time-varying stresses is a restriction of the GS model when
the survival functions under constant stresses differ only in scale.

2.2.2 GS model for step-stresses

The mostly used time-varying stresses in accelerated life testing (ALT) are
step-stresses: units are placed on test at an initial low stress and if they do
not fail in a predetermined time t1, the stress is increased. If they do not fail
in a predetermined time t2 > t1, the stress is increased once more, and so on.
Thus step-stresses have the form

x(u) =




x1, 0 ≤ u < t1,
x2, t1 ≤ u < t2,
· · · · · ·
xm, tm−1 ≤ u < tm,

(2.4)

where x1, · · · , xm are constant stresses. If m = 1, a step-stress is called simple.
Sets of step-stresses of the form (2.4) will be denoted by Em.
Let us consider the meaning of the rule (2.3) for step-stresses.
Let E1 be a set of constant stresses and E2 be a set of simple step-stresses
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of the form

x(u) =
{

x1, 0 ≤ u < t1,
x2, u ≥ t1,

(2.5)

where x1, x2 ∈ E1.
In the GS model the survival function under the simple (and general) step-

stress is obtained from the survival functions under constant stresses by the
rule of time-shift.

Proposition 2.3. If the GS model holds on E2 then the survival function
and the hazard rate under the stress x(·) ∈ E2 satisfy the equalities

Sx(·)(t) =
{

Sx1(t), 0 ≤ t < t1,
Sx2(t− t1 + t∗1), t ≥ t1,

(2.6)

and

αx(·)(t) =
{

αx1(t), 0 ≤ t < t1,
αx2(t− t1 + t∗1), t ≥ t1,

(2.7)

respectively; the moment t∗1 is determined by the equality Sx1(t1) = Sx2(t
∗
1).

Proof. Set
a = Ax1(t1) = Ax(·)(t1) = Ax2(t

∗
1). (2.8)

The equality (2.2) implies that the cumulative hazard satisfies the integral
equation

Ax(·)(t) =
∫ t

0

g
(
x(u), Ax(·)(u)

)
du. (2.9)

The equalities (2.8)-(2.9) imply that for all t ≥ t1

Ax(·)(t) = a+
∫ t

t1

g
(
x2, Ax(·)(u)

)
du

and

Ax2(t− t1 + t∗1) = a+
∫ t

t1

g (x2, Ax2(u− t1 + t∗1)) du.

So for all t ≥ t1 the functions Ax(·)(t) and Ax2(t− t1 + t∗1) satisfy the integral
equation

h(t) = a+
∫ t

t1

g (x2, h(u)) du

with the initial condition h(t1) = a. The solution of this equation is unique,
therefore we have

Ax(·)(t) = Ax2(t− t1 + t∗1), for all t ≥ t1.

It implies the equalities (2.6) and (2.7).
Corollary 2.1 Under conditions of Proposition 2.3 for all s ≥ 0

αx(·)(t1 + s) = αx2(t
∗
1 + s).

It is the model of Sedyakin.
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Let us consider a set Em of more general stepwise stresses of the form (2.4).
Set t0 = 0. We shall show that the rule of time-shift holds and for the general
step-stress.

Proposition 2.4. If the GS model holds on Em then the survival function
Sx(·)(t) satisfies the equalities:

Sx(·)(t) = Sxi
(t− ti−1 + t∗i−1), if t ∈ [ti−1, ti), (i = 1, 2, . . . ,m), (2.10)

where t∗i satisfy the equations

Sx1(t1) = Sx2(t
∗
1), . . . , Sxi

(ti − ti−1 + t∗i−1) = Sxi+1(t
∗
i ), (i = 1, . . . ,m− 1).

(2.11)
Proof. Proposition 2.3 implies that Proposition 2.4 holds for m = 2, i.e. we

have
Ax(·)(t) = Ax2(t− t1 + t∗1), for all t ∈ [t1, t2),

where t∗i verifies the equality Ax1(t1) = Ax2(t
∗
1).

Suppose that (2.10) holds for m = j − 1. Then

Ax(·)(t) = Axi
(t− ti−1 + t∗i−1) if t ∈ [ti−1, ti), (i = 1, · · · , j − 1), (2.12)

where

Ax1(t1) = Ax2(t
∗
1), . . . , Axi

(ti−ti−1+t∗i−1) = Axi+1(t
∗
i ), (t0 = 0, i = 1, . . . , j−2).

We shall prove that (2.10) holds for m = j. Continuity of the functions Ax(·)(t)
and Ax2(t), and the equalities (2.12) imply

Ax(·)(tj−1) = Axj−1(tj−1 − tj−2 + t∗j−2).

So the equation (2.2) implies for all t ∈ [tj−1, tj)

Ax(·)(t) = Ax(·)(tj−1) +
∫ t

tj−1

g
(
xj , Ax(·)(u)

)
du =

Axj−1(tj−1 − tj−2 + t∗j−2) +
∫ t

tj−1

g
(
xj , Ax(·)(u)

)
du. (2.13)

The definition of t∗j−1, given in (2.11), and the equation (2.9) imply for all
t ∈ [t1, t2)

Axj
(t− tj−1 + t∗j−1) = Axj

(t∗j−1) +
∫ t−tj−1+t

∗
j−1

t∗
j−1

g
(
xj , Axj

(u)
)
du =

Axj−1(tj−1 − tj−2 + t∗j−2) +
∫ t

tj−1

g
(
xj , Ax2(u− tj−1 + t∗j−1)

)
du. (2.14)

The equalities (2.13) and (2.14) imply that the functions Ax(·)(t) and Axj
(t−

tj−1 + t∗j−1) satisfy the integral equation

h(t) = a+
∫ t

tj−1

g (xj , h(u)) du for all t ∈ [tj−1, tj)
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with the initial condition h(tj−1) = b = Axj−1(tj−1−tj−2+t∗j−2). The solution
of this equation is unique, therefore for all t ∈ [tj−1, tj) we have

Ax(·)(t) = Axj
(t− tj−1 + t∗j−1).

In the literature on ALT (see Nelson (1990)) the model (2.10) is also called
the basic cumulative exposure model.

In terms of graphs of the cumulative hazard rate functions Ax(·)(t) (thick
curve) and Axi

(t) (m = 3, i = 1, 2, 3) the result of the proposition 2.2 is
illustrated by the Figure 2.1.

3

2
1

t1 t2

Figure 2.1.

N. Sedyakin called his model the physical principle in reliability meaning
that this model is very wide. Nevertheless, this model and its generalization
can be not appropriate in situations of periodic and quick change of the stress
level or when switch-up’s of the stress from one level to the another can imply
failures or shorten the life. Generalizations will be considered later.

2.3 Accelerated failure time model

2.3.1 Definition of the model for constant stresses

Suppose that under different constant stresses the survival functions differ
only in scale: for any x ∈ E1

Sx(t) = G{r(x) t}, (2.15)
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where the survival function G does not depend on x.
Applicability of this model in accelerated life testing was first noted by

Pieruschka (1961). It is the most simple and the most used model in FTR
data analysis and ALT.
Under the AFT model the distribution of the random variable

R = r(x)Tx

does not depend on x ∈ E1 and its survival function is G. Denote by m,σ2

and tp the mean, the variance, and the p-quantile of R, respectively.
The AFT model implies

E(Tx) = m/r(x), Var(Tx) = σ2/r2(x), tx(p) = tp/r(x),

where tx(p) is the p-quantile of Tx.
The coefficient of variation

E(Tx)√
Var(Tx)

=
m

σ

does not depend on x.
If the AFT model holds on E1 and the survival distribution under any

x ∈ E1 belongs to any of the classes given in Chapter 1 then the survival
distribution under any other y ∈ E1 also belongs to that class. Only the scale
parameter changes.
The survival functions under any x1, x2 ∈ E1 are related in the following

way:
Sx2(t) = Sx1{ρ(x1, x2) t},

where ρ(x1, x2) = r(x2)/r(x1).
Set ε = ln{r(x)}+ ln{Tx}, a(x) = − ln{r(x)}. Then

ln{Tx} = a(x) + ε.

The distribution of the random variable ε does not depend on x. The last
equality implies

Var(lnTx) = Var(ε).
The variance of the random variable ln{Tx} does not depend on x.

2.3.2 Definition of the model for time-varying stresses

The model (2.15) was generalized to the case of time-varying stresses by Bag-
donavičius (1978) supposing that the GS model also holds, i.e. the hazard
rates under time-varying stresses were obtained from the hazard rates under
constant stresses by the rule (2.3). It is seen from the following proposition.

Proposition 2.5. The GS model with the survival functions (2.15) on E1

holds on E ⊃ E1 if and only if there exist on E a positive function r and on
[0,∞) a positive function q such that for all x(·) ∈ E

αx(·)(t) = r{x(t)} q{Sx(·)(t))}. (2.16)
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Proof. Necessity: Denote by xt the constant stress equal to the value of the
time-varying stress x(·) at the moment t. The formula (2.15) implies that

αxt
(s) = α{r(xt)s} r(xt) = α{r(x(t))s} r(x(t)), A−1

xt
(s) =

1
r(x(t))

H(e−s),

where α = −G′/G, H = G−1. The formula (2.3) can be written in the form

αx(·)(t) = r{x(t)} q{Sx(·)(t))},
where q(p) = α{H(p)}.

Sufficiency: The model (2.16) is the particular case of the GS model. For
x ∈ E1 it implies

αx(t) = r(x) q{Sx(t))}
or

− S′
x(t)

Sx(t)) q{Sx(t))} = r(x).

Hence
Sx(t) = G{r(x) t},

with
G = H−1, H(p) =

∫ p

0

du

uq(u)
.

So we have a restriction of the GS model with the survival functions (2.15)
on E1. Proposition 2.5 suggests the following model.

Definition 2.2. The accelerated failure time (AFT) model holds on E if
there exists on E a positive function r and on [0,∞) a positive function q
such that for all x(·) ∈ E the formula (2.16) holds.

Under the AFT model the hazard rate αx(·)(t) at any moment t is propor-
tional to a function of the stress applied at this moment and to a function of
the probability of survival until t under x(·).
Let us find the expression of the survival function under time-varying stresses.

Proposition 2.6. Suppose that the integral∫ x

0

dv

q(v)
(2.17)

converges for all x ≥ 0.
The AFT model holds on a set of stresses E if and only if there exists a

survival function G such that for all x(·) ∈ E

Sx(·)(t) = G

(∫ t

0

r{x(u)} du

)
. (2.18)

Proof. The equation (2.16) is equivalent to the integral equation∫ Sx(·)(t)

0

dv

vq(v)
=
∫ t

0

r{x(u)} du. (2.19)
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The result follows immediately. The AFT model in the form (2.18) was given
by Cox and Oakes (1984).

2.3.3 AFT model for step-stresses

Let us find the form of the survival functions under simple step-stresses.

Proposition 2.7. If the AFT model holds on E2 then the survival function
under any stress x(·) ∈ E2 of the form (2.5) verifies the equality

Sx(·)(t) =
{

Sx1(t), 0 ≤ τ < t1,
Sx2(t− t1 + t∗1), τ ≥ t1,

(2.20)

where

t∗1 =
r(x1)
r(x2)

t1. (2.21)

Proof. The equality (2.15) implies

Sx1(t) = Sx2

(
r(x1)
r(x2)

t

)
, (2.22)

therefore the moment t∗1, given in Proposition 2.3, is defined by (2.21). ✷

If the AFT model holds on Em, the equality (2.22) implies that the moment
t∗i , defined by (2.11), has the form

t∗i =
1

r(xi+1)

i∑
j=1

r(xj)(tj − tj−1). (2.23)

Proposition 2.8. If the AFT model holds on Em then the survival function
Sx(·)(t) verifies the equalities:

Sx(·)(t) = G



i−1∑
j=1

r(xj)(tj − tj−1) + r(xi)(t− ti−1)


 =

Sxi


t− ti−1 +

1
r(xi)

i−1∑
j=1

r(xj)(tj − tj−1)


 , t ∈ [ti−1, ti), (i = 1, 2, ...,m).

(2.24)
Proof. The first equality is implied by the formula (2.18), the second by the

formulas (2.10) and (2.22).

2.3.4 Relations between the means and the quantiles

Suppose that x(·) is a time-varying stress. Denote by tx(·)(p) the p-quantile
of the random variable Tx(·), and by xτ = x(τ)1{t≥0} a constant stress equal
to the value of time-varying stress x(·) at the moment τ .
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Proposition 2.9. Suppose that the AFT model holds on E and x(·), xt ∈ E
for all t ≥ 0. Then ∫ tx(·)(p)

0

dτ

txτ
(p)

= 1. (2.25)

If the means E(Tx(·)), E(Txτ
) exist and are positive then

E

(∫ Tx(·)

0

dτ

E(Txτ
)

)
= 1. (2.26)

Proof. If the AFT model holds, the equality (2.18) implies that for any
x(·) ∈ E the cumulative distribution function G of the random variable

Tx(·)∫
0

r {x(s)} ds (2.27)

does not depend on x(·). Denote by m the mean of this random variable. For
the constant in time stress xτ holds

Txτ∫
0

r(xτ ) ds = r {xτ}Txτ
= r {x(τ)}Txτ

.

Taking the expectations of both sides we get

m = r {x(τ)}E(Txτ
). (2.28)

The equalities (2.27) and (2.28) imply

m = E



Tx(·)∫
0

r{x(τ)} dτ


 = E



Tx(·)∫
0

m

E(Txτ
)
dτ




= mE



Tx(·)∫
0

dτ

E(Txτ
)


 ,

and the equality (2.26) is obtained. The model (2.26) is the model of Miner
(1945).
Denote by t(p) the p-quantile of the random variable (2.27).
If τ is fixed, the equality (2.15) implies

t(p) = r{x(τ)} txτ
(p). (2.29)

We have

p = P{Tx(·) ≤ tx(·)(p)} = P



Tx(·)∫
0

r {x(τ)} dτ ≤
tx(·)(p)∫

0

r {x(τ)} dτ


 .
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It implies

t(p) =
∫ tx(·)(p)

0

r{x(τ)}dτ.
Using the last equality and the equality (2.29), the equality (2.25) is obtained.
Corollary 2.2. For the stress of the form (2.4) the formula (2.26) implies

m∑
k=1

E(Tk)
E(Txk

)
= 1, (2.30)

where

Tk =




0, Tx(·) < tk−1,
Tx(·) − tk−1, tk−1 ≤ Tx(·) < tk,
tk − tk−1, Tx(·) ≥ tk,

is the life in the interval [tk−1, tk) for the unit tested under the stress x(·).
The formula (2.25) implies that for tx(·)(p) ∈ [tk−1, tk) the following equality

holds:
k−1∑
i=1

ti − ti−1

txi
(p)

+
tx(·)(p)− tk−1

txk
(p)

= 1. (2.31)

The model (2.31) is the model of Peshes-Stepanova (see, Kartashov, 1979).
So all of the models (2.18),(2.24),(2.25), (2.30), (2.31) are implied by the AFT
model and illustrate various properties of this model.
In the case m = 2, the formula (2.30) can be written in the form

E(T1)
E(Tx1)

+
E(T2)
E(Tx2)

= 1, (2.32)

and the formula (2.31) can be written in the form

t1
tx1(p)

+
tx(·)(p)− t1

tx2(p)
= 1. (2.33)

So

E(Tx1) =
E(T1)

1− E(T2)
E(Tx2 )

, (2.34)

and
tx1(p) =

t1

1− tx(·)(p)−t1
tx2 (p)

, if tx(·)(p) ≥ t1. (2.35)

Thus, if the AFT model holds on E2 then E(T1), E(T2) and E(Tx2) determine
E(Tx1), and tx(·)(p) and tx2(p) determine tx1(p).

2.4 Proportional hazards model

2.4.1 Definition of the model for constant stresses

In survival analysis the most widely used model describing the influence of
covariates on the lifetime distribution is the proportional hazards (PH) or Cox
model, introduced by D.Cox (1972).
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Suppose that under different constant stresses x ∈ E1 the hazard rates are
proportional to a baseline hazard rate:

αx(t) = r(x) α0(t). (2.36)

For x ∈ E1 the survival functions have the form

Sx(t) = S
r(x)
0 (t) = exp{−r(x)A0(t)}, (2.37)

where

S0(t) = exp
{
−
∫ t

0

α0(u)du
}

, A0(t) =
∫ t

0

α0(u)du = − lnS0(t).

For any x0 ∈ E1 the PH model implies

αx(t) = ρ(x0, x)αx0(t), Sx(t) = Sρ(x0,x)
x0

(t), (2.38)

where
ρ(x0, x) = r(x)/r(x0). (2.39)

2.4.2 Definition of the model for time-varying stresses

In the statistical literature the following formal generalization of the PH model
to the case of time-varying stresses is used.

Definition 2.3. The proportional hazards (PH) model holds on a set of
stresses E if for all x(·) ∈ E

αx(·)(t) = r{x(t)} α0(t), (2.40)

This definition implies that

Ax(·)(t) =
∫ t

0

r{x(u)}dA0(u). (2.41)

In terms of survival functions the PH model is written :

Sx(·)(t) = exp
{
−
∫ t

0

r{x(u)}dA0(u)
}
. (2.42)

The model (2.40) is not natural when units are aging under constant stresses.
Indeed, denote by xt constant in time stress equal to the value of time-varying
stress x(·) at the moment t. Then

αxt
(t) = r{x(t)}α0(t),

which implies
αx(·)(t) = αxt

(t). (2.43)
For any t the hazard rate under the time-varying stress x(·) at the moment
t does not depend on the values of the stress x(·) before the moment t but
only on the value of it at this moment. It is not natural when the hazard
rates are not constant under constant stresses, i.e. when times-to-failure are
not exponential under constant stresses.
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Nevertheless, the PH model with time-varying stresses is very useful be-
cause the PH model with constant or time-varying stresses and time-varying
coefficients (see Sections 2.8.2 and 7.3.5) can be written as the usual PH model
with constant coefficients and time-varying ”explanatory variables”.
Note also that the PH model can be considered as a conditional model when

heterogeneity of units is observed. For example, if the AFT model with the
exponential distribution under constant stresses holds on a set E = E(1)×E(2)

of stresses of the form (x(1)(·), x(2)(·)):
αx(·)(t) = r1{x1(t)} r2{x2(t)},

then conditionally, given a fixed time-varying component x(2)(·), the PH model
holds on the set E(1):

αx(1)(·)(t) = r1{x1(t)} α0(t),

where α0(t) = r2{x2(t)}. Note that even for constant x(1) the conditional
distribution of Tx(1) given x(2)(·) is not necessarily exponential.

A natural generalization of the PH model for time-varying stresses is a
restriction of the GS model coinciding with the PH model on sets of constant
stresses.

Proposition 2.10. The GS model with the survival functions (2.37) on E1

holds on E ⊃ E1 iff for all x(·) ∈ E

αx(·)(t) = r{x(t)}α0

{
A−1

0

(
Ax(·)(t)
r{x(t)}

)}
. (2.44)

Proof. Necessity. The formula (2.36) implies that

αxt
(s) = r(xt) α0(s) = r{x(t)} α0(s), A−1

xt
(s) = A−1

0

{
s

r(x(t))

}
.

The formula (2.3) can be written in the form (2.43)
Sufficiency. The model (2.44) is the particular case of the GS model. For

x ∈ E1 it implies

αx(t) = r(x) α0

{
A−1

0

(
Ax(t)
r(x)

)}
or

∂

∂t
A−1

0

(
Ax(t)
r(x)

)
= 1.

Hence
Ax(t) = r(x)A0(t), αx(t) = r(x) α0(t).

So we have a restriction of the GS model with the survival functions (2.37)
on E1. ✷

Proposition 2.10 suggests the following model.

Definition 2.4. The modified proportional hazards (MPH) model holds on
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E if there exists on E a positive function r and on (0,∞) a positive function
α0 such that for all x(·) ∈ E the equality (2.44) with

A0(t) =
∫ t

0

α0(u)du

holds.

Let us consider the PH and MPH models for step-stresses.

2.4.3 PH and MPH models for simple step-stresses

Let us consider the expressions of the hazard rate, cumulative hazard, and
survival functions under the PH model for simple step-stresses x(·) ∈ E2.
The definition of the PH model implies the following result.

Proposition 2.11. If the PH model holds on E2 then for any x(·) ∈ E2

αx(·)(t) =
{

αx1(t), 0 ≤ t < t1,
αx2(t), t ≥ t1

=
{

r(x1)α0(t), 0 ≤ t < t1,
r(x2)α0(t), t ≥ t1,

Sx(·)(t) =

{
Sx1(t)

r(x1), 0 ≤ t < t1,

Sx1(t1)
Sx2 (t)

Sx2 (t1)
, t ≥ t1,

=

=

{
S0(t)r(x1), 0 ≤ t < t1,

S0(t1)r(x1)
(
S0(t)
S0(t1)

)r(x2)

, t ≥ t1.
(2.45)

The proposition implies for any x0 ∈ E1

αx(·)(t) =
{

ρ(x0, x1)αx0(t), 0 ≤ t < t1,
ρ(x0, x2)αx0(t), t ≥ t1.

Sx(·)(t) =




S
ρ(x0,x1)
x0 (t), 0 ≤ t < t1,

S
ρ(x0,x1)
x0 (t1)

(
Sx0 (t)

Sx0 (t1)

)ρ(x0,x2)

, t ≥ t1.
(2.46)

Taking x0 = x1 we have

αx(·)(t) =
{

αx1(t), 0 ≤ t < t1,
ρ(x1, x2)αx1(t), t ≥ t1.

(2.47)

Sx(·)(t) =

{
Sx1(t), 0 ≤ t < t1,

Sx1(t1)
(
Sx1 (t)

Sx1 (t1)

)ρ(x1,x2)

, t ≥ t1.

The PH model for simple step-stresses of the form (2.47) is called the tampered
failure rate (TFR) model (Bhattacharyya & Stoejoeti (1989)). The remark
concerning applicability of the PH hazards model for time-varying stresses
holds and for TFR model.
Let us consider the MPH model.
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Proposition 2.12. If the MPH model holds on a set of simple step-stresses
E2 then the survival function under stress x(·) ∈ E2 is

Sx(·)(t) =
{

Sx1(t), 0 ≤ t < t1,
Sx2(t− t1 + t∗1), t ≥ t1,

(2.48)

where

t∗1 = S−1
x1

(
(Sx1(t1))

ρ(x2,x1)
)
= S−1

x2

(
(Sx2(t1))

ρ(x2,x1)
)
. (2.49)

Proof. The equality (2.37) implies that

Sx2(t) = (Sx1(t))
ρ(x1,x2) .

Thus the moment t∗1 in Proposition 2.3, is defined by (2.49).

2.4.4 PH and MPH models for general step-stresses

If x ∈ Em is a general step-stress, then the PH model can be written in the
following forms: for any t ∈ [ti−1, ti)

αx(·)(t) = r(xi)α0(t), (t0 = 0, i = 1, ...,m), (2.50)

Sx(·)(t) =
i−1∏
j=1

(
S0(tj)

S0(tj−1)

)r(xj)( S0(t)
S0(ti−1)

)r(xi)

. (2.51)

For any x0 ∈ E1 and t ∈ [ti−1, ti)

αx(·)(t) = ρ(x0, xi) αx0(t),

Sx(·)(t) =
i−1∏
j=1

(
Sx0(tj)

Sx0(tj−1)

)ρ(x0,xj)( Sx0(t)
Sx0(ti−1)

)ρ(x0,xi)

. (2.52)

Proposition 2.13. If the MPH model holds on a set of step-stresses Em
then the survival function under stress x(·) ∈ Em is: for t ∈ [ti−1, ti)

Sx(·)(t) = Sxi
(t− ti−1 + t∗i−1) = S

r(xi)
0 (t− ti−1 + t∗i−1) (i = 1, · · · ,m), (2.53)

where t∗1 is defined by (2.48), and

t∗i = S−1
xi

(
(Sxi

(ti − ti−1 + t∗i−1))
ρ(xi+1,xi)

)
. (2.54)

Proof. The result of the proposition is implied by the formulas (2.10), (2.11),
and (2.37).
For any x0 ∈ E1, not necessary equal to xi,

Sx(·)(t) = Sρ(x0,xi)
x0

(t− ti−1 + t∗i−1), t ∈ [ti−1, ti) (i = 1, · · · ,m), (2.55)

where t∗1 = S−1
x0

(
(Sx0(t1))

ρ(x2,x1)
)
and

t∗i = S−1
x0

(
(Sx0(ti − ti−1 + t∗i−1))

ρ(xi+1,xi)
)
. (2.56)
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2.4.5 Relations between the PH and the AFT models

When does the PH model coincide with the AFT model? The answer is given
in the following two propositions. The first states that both models coincide
on sets of constant stresses if and only if the lifetime distributions are Weibull.
The second states that on wider sets (when a simple step-stress is added) both
models coincide if and only if the lifetime distributions under constant stresses
are exponential.
We suppose that if the AFT (or PH) model holds on E1 then the set r(E1)

has an interior point.

Proposition 2.14. The PH and AFT models are equivalent on E1 if and
only if the failure-time distribution is Weibull for all x ∈ E1

Proof. Sufficiency. If the failure-time distribution is Weibull and the PH
model holds on E1 then for all x ∈ E1

Sx(t) = e−( t
θ(x) )

α(x)

= S0(t)r(x),

Taking twice the logarithm of both sides, we obtain that for all t > 0

α(x)(ln t− ln θ(x)) = ln r(x) + ln(− lnS0(t)).

The function ln(− lnS0(t)) does not depend on x, hence α(x) = α = const
for all x ∈ E1, which implies

Sx(t) = e−( t
θ(x) )

α

,

i.e. the AFT model holds on E1.
If the failure-time distribution is Weibull and the AFT model holds then

Sx(t) = e−( t
θ(x) )

α

,

Ax(t) = (
t

θ(x)
)α, αx(t) = r(x) α0(t),

where r(x) = {θ(x)}−α and α0(t) = tα. So the PH model holds.
Necessity. Suppose that both the PH and AFT models hold on E1. It means

that functions S0, S1, r and ρ exist such that for all x ∈ E1

S1(ρ(x)t) = S0(t)r(x).

Taking twice the logarithm of both sides, we obtain for all t > 0

ln{− lnS1(ρ(x)t)} = ln r(x) + ln(− lnS0(t)). (2.57)

Set
g1(v) = ln(− lnS1(ev)), g0(v) = ln(− lnS0(ev)),

α(x) = ln ρ(x), β(x) = ln r(x).

The equality (2.57) can be written in the following way: for all u ∈ R, x ∈ E1

g1(u+ α(x)) = β(x) + g0(u).
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The set r(E1) has an interior point, i.e. contains an interval, so the set ρ(E1)
also has an interior point. Take x1, x2, x3 ∈ E1 such that

ρ(x2)/ρ(x1) 
= ρ(x3)/ρ(x2).

Then for all i, j = 1, 2, 3

g1(u+ α(xi))− g1(u+ α(xj)) = β(xi)− β(xj).

Setting
k1 = α(x2)− α(x1), k2 = α(x3)− α(x2),
l1 = β(x2)− β(x1), l2 = β(x3)− β(x2),

the last equality is written in the form: for all v ∈ R

g1(v + ki) = g1(v) + li (i = 1, 2, k1 
= k2).

It implies that
g1(v) = av + b, S1(t) = exp{−ebta}

and consequently
Sx(t) = exp{−eb(ρ(x)t)a}.

So the lifetime distribution is Weibull for all x ∈ E1.
Suppose that E1 is the set of constant stresses defined in Proposition 2.14,

x1, x2 ∈ E1 are two fixed constant stresses and a step-stress xs(·) has the form

xs(τ) =
{

x1, 0 ≤ τ < s,
x2, τ ≥ s,

(2.58)

where s is a fixed positive number.

Proposition 2.15. Suppose that a set E includes E1 and xs(·) for some
s > 0. The AFT and PH models are equivalent on E if and only if the time
to-failure is exponential for all x ∈ E1.

Proof. Necessity. Suppose that both the PH and the AFT models hold on
E. Proposition 2.14 implies for all x ∈ E1

Sx(t) = exp
{
−
(

t

θ(x)

)α}
. (2.59)

Set θi = θ(xi), i = 1, 2. Then

Sxi
(t) = exp

{
−
(

t

θi

)α}
, αxi

(t) =
α

θαi
tα−1. (2.60)

The PH model implies

αxs(·)(t) =
{

αx1(t), 0 < t < s,
αx2(t), t ≥ s,

and for all t > s

Sxs(·)(t) = exp{−
∫ t

0

αxs(·)(u)du} = exp{−
∫ s

0

αx1(u)du−
∫ t

s

αx2(u)du} =
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exp
{
−
(

s

θ1

)α
−
(

t

θ2

)α
+
(

s

θ2

)α}
. (2.61)

The AFT model implies for all t > s

Sxs(·)(t) = exp
{
−
(

s

θ1
+

t− s

θ2

)α}
(2.62)

The equalities (2.61) and (2.62) imply that for all t > s(
s

θ1

)α
+
(

t

θ2

)α
−
(

s

θ2

)α
= −

(
s

θ1
+

t− s

θ2

)α
. (2.63)

If α = 1, this equality is verified. Suppose that α 
= 1. For all t > s put

g(t) =
(

s

θ1

)α
+
(

t

θ2

)α
−
(

s

θ2

)α
−
(

s

θ1
+

t− s

θ2

)α
. (2.64)

The derivative of g(t) is

g
′
(t) =

α

θα2
tα−1

(
1−

(
θ2 − θ1

θ1

s

t
+ 1

)α−1
)


= 0 (2.65)

and for all t > s has the same sign for fixed θ1 
= θ2 and α 
= 1. So the
function g is increasing or decreasing but not constant in t which contradicts
the equality (2.63). The assumption α 
= 1 was false. So α = 1, and the
equality (2.59) implies that the lifetime distribution under any x ∈ E1 is
exponential:

Sx(t) = exp{− t

θ(x)
}, t ≥ 0.

Sufficiency. Suppose that the PH model holds on E and the failure-time is
exponential for all x ∈ E1. The formula (2.41) implies that for all x ∈ E1

Sx(t) = exp{−r(x)A0(t)}.
Exponentiality of the times-to-failure under x ∈ E1 and the last formula imply
that A0(t) = c t. The constant c can be included in r(x), so we have A0(t) = t.
The formula (2.35) implies that

Sx(·)(t) = exp
{
−
∫ t

0

r{x(u)}du
}
,

i.e. the AFT model holds on E.
Suppose that the AFT model holds on E and the failure-time is exponential

for all x ∈ E1, i.e. αx(t) = r(x). The formula (2.16) implies q(u) ≡ 1 and
consequently

αx(·)(t) = r(x(t)),

i.e. the PH model with α0(t) = 1 holds on E.
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2.4.6 Relations between the GS and the PH models

The GS model is more general then the AFT model. When is the PH model
also a GS model? It is given in the following proposition.

Proposition 2.16. Suppose that the PH model holds on the set E including
E1 and all stresses of the form (2.31) with s < δ, where δ is any positive
number.

The PH model is a GS model on E if and only if the time to-failure is
exponential for all x ∈ E1 and the PH model holds.

Proof. The PH model implies for all s < δ

αxs(·)(t) = αx2(t), t > s.

If the GS model also holds on E, then for all s < δ

αxs(·)(t) = αx2(t− s+ ϕ(s)), t > s,

where
ϕ(s) = A−1

x2
(Ax1(s)) (2.66)

is an increasing function. It implies that if both the GS and PH models hold
on E then for all s1 < δ and s2 < δ

αx2(t− s1 + ϕ(s1)) = αx2(t− s2 + ϕ(s2)), t > max(s1, s2).

Any function αx2(t) ≡const verifies this. Assume that the function αx2(t) is
not constant. Then

ϕ(s)− s = c = const for all s > 0,

because otherwise the function αx2(t) has two or more different periods. Note
that c 
= 0, because

Ax2(ϕ(s)) = Ax1(s) 
= Ax2(s).

The equalities
lim
s→0

Ax2(ϕ(s)) = lim
s→0

Ax1(s) = 0

and the monotonicity of ϕ(s) imply that lims→0 ϕ(s) = 0. So exists δ0 ∈ (0, δ)
such that

| ϕ(s)− s |<| c |, if 0 < s < δ0.

It contradicts the implication that ϕ(s)− s = c for any s > 0. It means that
the assumption that αx2(t) is not constant was false. So αx2(t) = α = const
which implies

Sx2(t) = e−αt

and the PH model leads for all x ∈ E1 to

Sx(t) = S0(t)r(x) = e−r(x)t, (2.67)

i.e., the failure time distribution is exponential for all x ∈ E1.
Suppose that for all x ∈ E1 the failure-time distribution is exponential and
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the PH model holds. The proof of Proposition 2.15 implies that the AFT
model and consequently the GS model also holds on E.

2.5 Generalized proportional hazards models

2.5.1 Introduction

The AFT, PH, and MPH models are rather restrictive.
Under the PH and MPHmodels lifetime distributions under constant stresses

are from the narrow class (2.3) of distributions: the ratio of the hazard rates
under any two different constant stresses is constant over time.
Under the AFT model the stress changes (locally, if the stress is not con-

stant) only the scale.
We shall consider generalizations of these two models in two directions.

Generalized proportional hazards models allow the ratios of hazard rates un-
der constant stresses to be not only constant but also increasing, decreasing,
and even have the cross-effects. Changing shape and scale models allow not
only scale but also shape change.

2.5.2 Definitions of the generalized proportional hazards models

Let us consider models which include AFT and PH models as particular cases.
This generalization was given by Bagdonavičius and Nikulin (1994), supposing
that the hazard rate at any moment t is proportional not only to a function of
the stress applied at this moment and to a baseline rate, but also to a function
of the probability of survival until t (or, equivalently, to the cumulative hazard
at t). This is formalized by the following definition.

Definition 2.5. The first generalized proportional hazards (GPH1) model
holds on E if for all x(·) ∈ E

αx(·)(t) = r{x(t)} q{Ax(·)(t)} α0(t). (2.68)

The particular cases of the GPH1 model are the PH model (q(u) ≡ 1) and
the AFT model (α0(t) ≡ α0 = const).
Similar generalization of the GS and PH models is the following model.

Definition 2.6. The second generalized proportional hazards (GPH2) model
holds on E if for all x(·) ∈ E

αx(·)(t) = u{x(t), Ax(·)(t)}α0(t). (2.69)

The particular cases of the GPH2 model are the GS model (α0(t) ≡ α0 =
const) and GPH1 model (u(x, s) = r(x) q(s))

Models of different levels of generality can be obtained by completely spec-
ifying q, parametrizing q, or considering q as unknown.

Proposition 2.17. The GPH1 model (2.68) holds on E if and only if sur-



GENERALIZED PROPORTIONAL HAZARDS MODELS 39

vival functions G and S0 exist such that for all x(·) ∈ E

Sx(·)(t) = G

{∫ t

0

r(x(τ))dH(S0(τ))
}
; (2.70)

here H = G−1 is the inverse to G function.
Proof. Suppose that the GPH1 model (2.68) holds on E. Define the function

H(u) by the formula

H(u) =
∫ − lnu

0

dv

q(v)
.

Then
∂H(Sx(·)(t))

∂t
=

1
q{Ax(·)(t)}αx(·)(t) = r{x(t)}α0(t).

So

Sx(·)(t) = G

{∫ t

0

r(x(τ))dA0(t)
}

,

where

A0(t) =
∫ t

0

α0(u)du.

Set S0(u) = G(A0(u)). Then (2.70) holds.
Vice versa, if the equality (2.70) holds for all x(·) ∈ E then

αx(·)(t) = α(H(Sx(·)(t)))r{x(t)}H ′{S0(t)}S′
0(t),

where α = −G
′
/G. Set

q(u) = α(H(e−u)), α0(t) = −H ′{S0(t)}S′
0(t).

Then for all x(·) ∈ E

αx(·)(t) = r{x(t)} q{Ax(·)(t)}α0(t).

So the GPH1 holds.
Set A0(u) = H(S0(u)). In terms of survival functions the GPH1 model is

written

Sx(·)(t) = G

(∫ t

0

r{x(u)}dA0(u)
)

, (2.71)

where

A0(u) =
∫ t

0

α0(u)du.

The formula (2.68) implies for the GPH1 model and constant stresses x ∈ E1

αx(t) = r{x} q{Ax(t)} α0(t), Sx(t) = G{r(x)H(S0(t))}. (2.72)

For any x1, x2 ∈ E1

Sx2(t) = G{ρ(x1, x2)H(Sx1(t))}, (2.73)

where ρ(x1, x2) = r(x2)/r(x1).
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Under the GPH2 model

αx(t) = u{x,Ax(t)}α0(t). (2.74)

2.5.3 Interpretation of the GPH and AFT models in terms of resource usage

Models of accelerated life can be formulated using the notion of the resource
introduced by Bagdonavičius and Nikulin (1995, 1999a, 2001b).
Let Ω be a population of units and suppose that the failure-time of units

under stress x(·) is defined by a non-negative absolutely continuous random
variable Tx(·) = Tx(·)(ω), ω ∈ Ω, with the survival function Sx(·)(t) and the
cumulative distribution function Fx(·)(t). The moment of failure of a concrete
item ω0 ∈ Ω is given by a nonnegative number Tx(·)(ω0).
The proportion Fx(·)(t) of units from Ω which fail until the moment t under

the stress x(·) is also called the uniform resource of population used until the
moment t. The same population of units Ω, observed under different stresses
x1(·) and x2(·) use different resources until the same moment t if Fx1(·)(t) 
=
Fx2(·)(t). In sense of equality of used resource the moments t1 and t2 are
equivalent if Fx1(·)(t1) = Fx2(·)(t2).
The random variable

RU = Fx(·)(Tx(·)) = 1− Sx(·)(Tx(·))

is called the uniform resource.
The distribution of the random variable RU does not depend on x(·) and

is uniform on [0, 1). The uniform resource of any concrete item ω0 ∈ Ω is
RU (ω0). It shows the proportion of the population Ω which fails until the
moment of the unit’s ω0 failure Tx(·)(ω0).

For any x(·) there exists one-to-one application between the set of values
of the r.v. Tx(·) and the set of values of the r.v. RU .

The considered definition of the resource is not unique. Take any decreasing
and continuous function H : (0, 1] → R such that the inverse G = H−1 of H
is a survival function. Then exists one-to-one application between the set of
values of the r.v. Tx(·) and the set of values of the r.v. RG = H(Sx(·)(Tx(·))),
too. In the case of the uniform resource H(p) = 1 − p, p ∈ (0, 1]. The distri-
bution of the random variable RG doesn’t depend on x(·) and the survival
function of RG is G.
The random variable RG is called the G-resource and the number

fGx(·)(t) = H(Sx(·)(t)),

is called the G-resource used until the moment t.
Accelerated life models can be formulated specifying the way of resource

usage.
Note that all definitions of accelerated life models were formulated in terms

of exponential resource usage, when G(t) = e−t, t ≥ 0 because the exponential
resource usage rate is nothing but the hazard rate and the used resource is
the cumulative hazard rate.
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Let αx(·)(t) and Ax(·)(t) be the hazard rate and the cumulative hazard rate
under x(·). The exponential resource is obtained by taking G(t) = e−t, t ≥ 0
and H(p) = G−1(p) = − ln p, so it is the random variable

R = Ax(·)(Tx(·))

with standard exponential distribution.
For any t the number Ax(·)(t) ∈ [0,∞) is the exponential resource used until

the moment t under stress x(·). The rate of exponential resource usage is the
hazard rate αx(·)(t).
The GPH1 and AFT models can be formulated in terms of other resources

than exponential.
Let us consider at first one particular resource. Suppose that x0 is a fixed

(for example, usual) stress and G = Sx0 . For any x(·) ∈ E ⊃ E1 set

fx(·)(t) = S−1
x0

(Sx(·)(t)).

Then the moment t under any stress x(·) ∈ E is equivalent to the moment
fx(·)(t) under the usual stress x0. The survival function of the resource R is
Sx0 .
Under the AFT model:

Sx(·)(t) = Sx0

(∫ t

0

r{x(u)}du
)

,

the Sx0-resource usage rate is

∂

∂t
fx(·)(t) = r{x(t)}.

If x ∈ E1 is constant then
∂

∂t
fx(t) = r(x),

and the resource usage rate is constant in time.
Let us consider now any survival function G, not necessarily equal to Sx0 .
Definition 2.7. The generalized multiplicative (GM) model with the re-

source survival function G holds on E if there exist a positive function r and
a survival function S0 such that for all x(·) ∈ E

∂fGx(·)(t)

∂t
= r{x(t)}∂f

G
0 (t)
∂t

,

where fG0 (t) = H(S0(t)). The definition implies that for all x(·) ∈ E

Sx(·)(t) = G

{∫ t

0

r(x(τ)) dH(S0(τ))
}

.

Proposition 2.17 implies that the GPH1 model holds on E if and only if there
exists a survival function G such that the GM model holds on E.
Thus, the GPH1 (or, equivalently, the GM) model means that the G-

resource usage rate at the moment t is proportional to a baseline rate with
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the proportionality constant depending on the value of stress applied at this
moment.

2.5.4 Characterization of the GPH1 model with constant stresses

Consider the choice of the function G in the GPH1 model. It will be shown
that if G is chosen from the class of survival functions of the form

G(t; θ, ν, γ) = G0 {(t/θ)ν , γ} ,
then for any values of θ, ν the same GPH1 model for constant stresses is
defined. So we can take θ = ν = 1. It shows that the number of unknown
parameters in the GPH1 models is the same (if γ is absent) as in the PH model
or one complementary parameter is added (if γ is one-dimensional). The last
case is the most interesting because it gives the possibility to formulate flexible
models with increasing or decreasing ratios of hazards.
In what follows we skip the parameter γ in all expressions.
Let the function G be continuous and strictly decreasing on [0,∞[, and set

G1(u) = G((u/θ)ν).

Let E1 = [x0, x1] ⊂ R be an interval of constant in time one-dimensional
stresses, {Sx, x ∈ [x0, x1]} be a class of continuous survival functions, such
that Sx(t) > Sy(t) for all x, y ∈ E1, x < y, t > 0,

H = G−1 :]0, 1] → [0,∞] and H1 = G−1
1

be the inverse functions of G and G1, respectively. If the GPH1 model with
the resource survival function G holds on E1, then the equality (2.73) implies
that

H(Sx(t)) = λ(x)H(Sx0(t)), t > 0, x ∈ [x0, x1], (2.75)
where λ(x) = ρ(x0, x). Then

H1(Sx(t)) = λ1/ν(x)H1(Sx0(t)), t > 0, x ∈ [x0, x1]. (2.76)

The inverse result also takes place:

Proposition 2.24. Assume that the function G is continuous and strictly
decreasing on [0,∞[ and the equality (2.75) holds. Then the equality (2.76)
also holds if and only if

G1(u) = G((u/θ)ν), u ∈ [0,∞),

for some positive constants θ and ν.
Proof.
1) It was just shown that if the GPH1 model holds for the survival function

G and G1(t) = G((t/θ)ν) then the GPH1 model holds for the survival function
G1.
2) Suppose that the GPH1 model holds for the survival functions G and

G1, i.e. the equalities (2.75) and (2.76) hold. Introduce a function D : [0,∞[→
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[0,∞[ such that D(u) = H1(G(u)), u ∈ [0,∞[. Then H1(p) = D(H(p)), p ∈
]0, 1], and the relation (2.76) can be rewritten as follows:

D(H(Sx(t))) = λ1/ν(x)D(H(Sx0(t)), t > 0, x ∈ [x0, x1].

Using (2.75) we obtain that

D(λ(x)H(Sx(t))) = λ1/ν(x)D(H(Sx0(t))), t > 0, x ∈ [x0, x1]

with the initial conditions D(0) = 0 and limu→∞ D(u) = ∞. Setting y =
H(Sx0(t)) we obtain that

D(λ(x)y) = λ1/ν(x)D(y), y ∈ [0,∞[, x ∈ [x0, x1],

or for v = ln y

Q(lnλ(x) + v) =
1
ν
ln(λ(x)) +Q(v), v ∈ R, x ∈ [x0, x1],

where Q(v) = ln(D(ev))). This equality leads to

Q(v) = av + b, a =
1
ν
.

It implies that D(y) = θ ya, where θ = eb. Consequently,

G(y) = G1(D(y)) = G1(θya) and G1(u) = G((u/θ)ν), u ∈ [0,∞[.

This proposition implies that, in particular, the PH model is a sub-model
of the GM (or GPH1) model when G is not only the standard exponential
but when it is any exponential or two-parameter Weibull survival function. So
sub-models of the GPH1 model can be obtained by fixing classes of resource
distributions.

2.5.5 Relations with the frailty models

Let us consider relations between the GPH1 models and the frailty models
with covariates.

The hazard rate can be influenced not only by the observable stress x(·)
but also by a non-observable positive random covariate Z, called the frailty
variable, see Hougaard (1995). Suppose that for all x(·) ∈ E

αx(·)(t|Z = z) = z r(x(t))α0(t).

Then

Sx(·)(t|Z = z) = exp{−z

∫ t

0

r(x(τ)) dA0(τ)}
and

Sx(·)(t) = E exp{−Z

∫ t

0

r(x(τ)) dA0(τ)} = G{
∫ t

0

r(x(τ))dA0(τ)},
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where G(s) = Ee−sZ . If we set S0(t) = G(A0(t)), then for all x(·) ∈ E

Sx(·)(t) = G{
∫ t

0

r(x(τ)) dH(S0(τ))},

where H = G−1. We obtained that the frailty model defined by a frailty
variable Z, the GM model with the survival function of the resource G(s) =
Ee−sZ , and the GPH1 model (cf. Proposition 2.17) with the function q(u) =
−euG′(H(e−u)) give the same survival function under any stress x(·) ∈ E.

2.5.6 Relations with the linear transformation models

Under constant stresses the GPH1 model is related with the linear transor-
mation (LT), Dabrowska & Doksum (1988), Cheng, Wei, Ying (1995).
Consider the set E1 of constant in time stresses and let Tx denote the time-

to-failure under the explanatory variable x ∈ E1. The LT model holds on E1

if for all x ∈ E1

h(Tx) = −βTx+ ε,

where h : [0,∞) → [0,∞) is a strictly increasing function, and ε is a random
error with distribution function Q. Under this model

Sx(t) = G{eβT x+h(t)} = G{eβT xH(S0(t))},
where G(t) = 1−Q(ln t), S0(t) = G{eh(t)}. Therefore, in the case of constant
in time stresses, the frailty model defined by the frailty variable Z, the GM
model with the survival function of the resource G(s) = Ee−sZ , the GPH1
model with the function q(u) = −euG′(H(e−u)), and the LT model with the
distribution function Q(x) = 1−G(lnx) of the random error ε give the same
expression of survival functions.

2.5.7 The main classes of the GPH models

Particular classes of the GPH models are important for survival analysis and
accelerated life testing. The numerous examples of real data show that taking
two constant in time covariates, say x1 and x2, the ratio αx2(t)/αx1(t) (which
is constant under the PH model), can be increasing or decreasing in time and
even a cross-effect of hazard rates can be observed.
Such data can be modeled by sub-models of the GPH1 or more general

GPH2 model. Let us consider some of them.

GPH models with monotone ratios of hazard rates

Let us consider the choice of the function q in the GPH1 model

αx(·)(t) = r{x(t)} q{Ax(·)(t)} α0(t).

The purpose is to obtain models with monotone ratios of the hazard rates
under constant stresses.
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Suppose that q(0) = 1. Otherwise one can consider the functions q1(u) =
q(u)/q(0) and r1(x) = q(0)r(x). We shall not consider complicated models
with more then one unknown parameter in the function q. The function q
being positive, the natural choice is taking one of the following functions
(having power and exponential rates):

q(u) = (1 + u)γ , eγu, (1 + γu)−1 (2.77)

where γ ∈ IR is an unknown scalar parameter.

1) GPHGW model

The most satisfying model is obtained by choosing the first from the func-
tions (2.77) (with reparametrization −γ + 1 instead of γ):

q(u) = (1 + u)−γ+1 (γ > 0). (2.78)

We have the model:

αx(·)(t) = r{x(t)}(1 +Ax(·)(t))−γ+1α0(t). (2.79)

The particular case of this model with γ = 1 is the PH model.
Under this model the ratios of the hazard rates under constant stresses may

be increasing or decreasing in various rates. Indeed, take x1, x2 ∈ E1 and set

c0 = r(x2)/r(x1).

Suppose that c0 > 1. Then

αx2(t)/αx1(t) = c0

{
1 + γ r(x2)A0(t)
1 + γ r(x1)A0(t)

}−1+ 1
γ

→ c
1
γ

0 as t → ∞;

here

A0(t) =
∫ t

0

α0(u)du.

The ratio αx2(t)/αx1(t) has the following properties:

a) if 0 < γ < 1, then the ratio αx2(t)/αx1(t) increases from the value c0 > 1
to the value

c∞ = c
1
γ

0 ∈ (c0,∞).

b) if γ = 1 (PH model), the ratio αx2(t)/αx1(t) is constant in time.

c) if γ > 1, then the ratio αx2(t)/αx1(t) decreases from the value c0 > 1 to
the value c∞ ∈ (1, c0).

So this model can be used in the case when the hazard rates under different
constant explanatory variables approach one another and in the case when
they are going away one from another.

In Proposition 2.17 we obtained that the survival function of the resource,
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defined in 2.5.3, is G = H−1 with

H(u) =
∫ − lnu

0

dv

q(v)
. (2.80)

It implies that under the model (2.79) the survival function of the resource
has the form

G(t) = exp
{
1− (1 + γt)

1
γ

}
. (2.81)

Proposition 2.24 implies that under constant stresses the model (2.79) is ob-
tained by taking the resource with any survival function from the family of
the generalized Weibull distribution:

G(t) = exp

{
1−

(
1 + (

t

θ
)ν
) 1

γ

}
. (2.82)

So the model (2.79) will be called the GPH model with the generalized Weibull
distribution of the resource, the GPHGW model.

If the failure-time Tx(·) distributions have finite supports [0, spx(·)), spx(·) <
∞ then the GPHGW model can be modified, taking γ < 0 in (2.79). Finite
supports are very possible in ALT: failures of units at different accelerated
stresses are concentrated in intervals with different finite right limits.
If γ < 0 then the survival function of the resource is

G(t) = exp
{
1− (1 + γt)1/γ

}
1[0,−1/γ)(t), (2.83)

and the right limit of the support of αx(·)(t) verifies the equality∫ spx(·)

0

r{x(u)}dH(S0(u)) = −1/γ, (2.84)

where S0 = exp{−A0}.
Similarly as in the case of γ > 0 the ratio of hazard rates αx2(t)/αx1(t) can

be increasing or decreasing in various rates on [0, spx2(·)). On [spx2(·), spx1(·))
the hazard rates are:αx2(t) = 0 and αx1(t) > 0.

Take notice that for the GPHGW model is a generalization of the positive
stable frailty model (PSFM) (see Hougaard (1986), Bar-Lev and Enis (1986),
Nikulin (1991)) with explanatory variables.
Indeed, suppose that γ > 1 and the frailty variable Z follows the positive

stable distribution with the density

pZ(z) = − 1
πz

exp{−αz + 1}
∞∑
k=1

(−1)k

k!
sin(παk)

Γ(αk + 1)
zαk

, z > 0,

where α = 1/γ is a stable index, 0 < α < 1. The survival function of the
resource

G(s) = Ee−sZ = exp{1− (1 + γt)1/γ}.
Then

q(u) = (1 + u)−γ+1, γ > 1.
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We have the positive stable frailty model with explanatory variables.

2) GPHGLL model

Taking the second from the functions (2.57), we have the model:

αx(·)(t) = r(x(t)) eγAx(·)(t) α0(t). (2.85)

If γ = 0, it becomes the usual PH model. For γ < 0

αx2(t)/αx1(t) = c0

{
1− γ r(x1)A0(t)
1− γ r(x2)A0(t)

}
→ 1 as t → ∞;

here c0 = r(x2)/r(x1).
The ratio αx2(t)/αx1(t) decreases from the value c0 > 1 to 1.
This model is not so interesting as the GPHGW model because it gives less

possibilities of choice: under it the hazard rates approach one another and
meet at infinity. Under the GPHGW model the hazard rates may approach
(but not meet) or go away one from another.
The formula (2.80) implies that for γ < 0 the survival function of the

resource has the form
G(t) = (1− γt)

1
γ . (2.86)

Proposition 2.24 implies that under constant stresses the model (2.85) is ob-
tained by taking the resource with any survival function from the family of
the generalized loglogistic distributions:

G(t) = (1− (t/θ)ν)1/γ . (2.87)

So the model (2.85) shall be called the GPH model with the generalized loglo-
gistic distribution of the resource, the GPHGLL model.

If the failure-time Tx(·) distributions have finite supports [0, spx(·)), spx(·) <
∞ then γ < 0 in (2.85). In this case the survival function of the resource is

G(t) = (1− γt)1/γ1[0,1/γ)(t), (2.88)

and the right limit of the support of αx(·)(t) verifies the equality∫ spx(·)

0

r{x(u)}dSγ0 (u)) = −1. (2.89)

Take notice that the GPHGLL model is a generalization of the gamma frailty
model (GFM) (see Vaupel et al. (1979)) with explanatory variables.
Indeed, suppose that the frailty variable Z follows a gamma distribution

with the scale parameter θ > 0, the shape parameter k > 0, and the density

pZ(z) =
zk−1

θkΓ(k)
e−z/θ, z > 0.

The survival function of the resource

G(s) = Ee−sZ = (1 + θt)−k.
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Set γ = −1/k < 0. Then

q(u) = − 1
λγ

eγu, γ < 0.

The proportionality constant can be included in α0 and q(u) can be written
in the form

q(u) = eγu, γ < 0.
We have the gamma frailty model with explanatory variables.
For constant in time stresses x1, x2 ∈ E1 and γ < 0 we obtain the generalized

proportional odds-rate (GPOR) model (Dabrowska & Doksum (1988)):

S−γ
x2

(t)− 1

S−γ
x2 (t)

=
r(x2)
r(x1)

S−γ
x1

(t)− 1

S−γ
x1 (t)

.

Let us consider the frailty model with the density pZ(z) which is the inverse
Laplace transformation of the survival function

G(t) = (1− γt)1/γ 1[0,1/γ)(t).

Then
q(u) = eγu, γ > 0.

The survival function of the resource is

G(t) = (1− γt)1/γ , γ < 0.

For γ > 0 the support of G is [0, 1/γ)

3) Inverse gaussian frailty model with explanatory variables.

Let us consider the GPH1 model with parametrization

q(u) =
1

1 + γu
, γ > 0.

We have the model

αx(·)(t) = r(x(t))
α0(t)

1 + γAx(·)(t)
.

Take notice that this model is the inverse gaussian frailty model with covari-
ates.
Indeed, suppose that the frailty variable Z has the inverse gaussian distri-

bution with the density

pZ(z) =
(σ
π

)1/2

e
√

4σθz−3/2e−θz−
σ
z , z > 0.

Then
q(u) =

2σ
u+ (4σθ)1/2

.

Including the proportionality constant
√

θ/σ in α0 and taking γ = (4σθ)−1/2,
we obtain q(u) = (1 + γu)−1.
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Under this model

αx2(t)/αx1(t) = c0
(1 + γ r(x1)A0(t))1/2 − 1
(1 + γ r(x2)A0(t))1/2 − 1

,

where c0 = r(x2)/r(x1). Suppose that c0 > 1. The ratio αx2(t)/αx1(t) in-
creases from the value 1 to

√
c0 > 1. So the hazard rates are equal at the be-

ginning of functionning and are going away one from another when t increases.
So under the inverse gaussian frailty model the hazard rates are supposed to
meet at zero. So it is not so interesting as the GPHGW model.
The survival function of the resource has the form

G(t) = exp
{
1
γ
(1−

√
1 + 2γt )

}
.

Proposition 2.24 implies that under constant stresses the model (2.79) is ob-
tained by taking the resource with any survival function from the family:

G(t) = exp

{
1
γ

(
1−

√
1 + (

t

θ
)ν
)}

.

GPH model with cross-effects of hazard rates

In some situations cross-effects of hazard rates may be observed. For example,
if the burn-in period exists and the stress influences mainly only units with
particular defects then the hazard rate under x2 may be greater than that
under x1 at the beginning of life but to the end of the burn-in under x2 the
burn-in under x1 is not yet finished and the hazard rate under x2 may be
smaller than that under x1.
To obtain a cross-effect of hazard rates consider the following sub-models

of GPH2:
1) First model with cross-effects Bagdonavicius and Nikulin (2000d)

αx(·)(t) = r(x(t))(1 +Ax(·)(t))γ
T x(t)+1 α0(t). (2.90)

Suppose that c0 = r(x2)/r(x1) > 1, (x1, x2 ∈ E1), and γTx2 < γTx1 < 0.
Then

αx2(t)/αx1(t) = c0
(1− γTx2 r(x2)A0(t))

−1− 1
γT x2

(1− γTx1 r(x1)A0(t))
−1− 1

γT x1

,

and
αx2(0)/αx1(0) = c0 > 1, lim

t→∞αx2(t)/αx1(t) = 0.

So we have a cross-effect of the hazard rates.
We shall denote this model by CRE1.
2) Second model with cross-effects (Devarajan and Ebrahimi (1998))

Ax(·)(t) = r(x(t))(A0(t))e
γT x(t)

.

The ratio
αx2(t)/αx1(t) = c(x1, x2)(A0(t))e

γT x2−eγT x1
,
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is monotone and takes values from 0 to ∞. So we have a cross-effect of the
hazard rates.
We shall denote this model by CRE2.

GPH1 models with specified G.

Let us consider GM models with G specified. These models are alternative to
the PH model, so rather restrictive, as the PH model is.
1) If the distribution of the resource is loglogistic,i.e.

G(t) =
1

1 + t
1{t≥0}, (2.91)

then q(t) = e−t and the GM model can be formulated in the following way:

αx(·)(t)
Sx(·)(t)

= r{x(t)}α0(t)
S0(t)

. (2.92)

If stresses are constant in time then we obtain the model
1

Sx(t)
− 1 = r(x) (

1
S0(t)

− 1). (2.93)

It is the analogue of the logistic regression model which is used for analysis
of dichotomous data when the probability of ”success” in dependence of some
factors is analyzed. The obtained model is near to the PH model when t is
small.
2) If the resource is lognormal, then

G(t) = 1− Φ(log t), t > 0,

where Φ is the distribution function of the standard normal law. If covariates
are constant in time then in terms of survival functions the GM model can be
written as follows:

Φ−1 (Sx(t)) = log (r(x)) + Φ−1 (S0(t)) . (2.94)

It is the generalized probit model (see Dabrowska & Doksum,1988).

2.5.8 Modification of the GPH1 models when the time-shift rule holds

The GPH1 models do not verify the rule (2.3). As for the PH model, a natural
situation when such models can be true when some non-observable stress
influences the reliability of units. For example, suppose that on a set E =
E(1) × E(2) of stresses of the form (x(1)(·), x(2)(·)) the AFT model holds:

αx(·)(t) = r1{x1(t)} r2{x2(t)}q{Sx(·)(t)}.
Then conditionally, given a fixed time-varying component x(2)(·), the GPH1
model holds on the set E(1):

αx(1)(·)(t) = r1{x1(t)} q{Sx(1)(·)(t)} α0(t),
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where α0(t) = r2{x2(t)}.
If the rule (2.3) is suggested by the data, the restriction of the GS model

coinciding with the GPH1 model on sets of constant stresses can be considered.

Proposition 2.18. The GS model with the survival functions (2.72) on E1

holds on E ⊃ E1 iff for all x(·) ∈ E

αx(·)(t) = r{x(t)}α{A−1
(
Ax(·)(t)

)}
α0

{
A−1

0

(
A−1(Ax(·)(t))

r{x(t)}
)}

, (2.95)

where A = − lnG, α = A
′
.

The proof is analogous to the proof of Proposition 2.17.
Proposition 2.18 suggests the following model.

Definition 2.8. The first modified generalized proportional hazards (MGPH1)
model holds on E if there exist a positive on E function r and hazard rates
α0 and α such that for all x(·) ∈ E the equality (2.95) with

A(t) =
∫ t

0

α(u)du, A0(t) =
∫ t

0

α0(u)du,

holds.

2.5.9 Relations between the survival functions under constant and
non-constant stresses.

As in the case of the AFT model, consider some useful relations between
survival functions under constant and time-varying stresses.
Proposition 2.19. Suppose that x(·), x(τ), x0 ∈ E for all τ ≥ 0.
If the GM model holds on E, then

Sx(·)(t) = G

(∫ t

0

H(Sx(τ)(t))
H(Sx0(t))

dH(Sx0(τ))
)

(2.96)

= G

(∫ t

0

H(Sx(τ)(τ)) d log H(Sx0(τ))
)

.

Proof.
The equality (2.70) implies that there exists the functional r1 : E → [0,∞)

such that

Sx(·)(t) = G

{∫ t

0

r1[x(τ)]dH(Sx0(τ))
}

. (2.97)

So for all fixed τ , τ ≤ t

r1 {x(τ)} = H(Sx(τ)(t))/H(Sx0(t)). (2.98)

Putting r1 {x(τ)} in the equality (2.97), the first of the equalities (2.96) is
obtained. Putting t = τ in (2.98) and the obtained expression of r1 {x(τ)} in
(2.97), the second of equalities (2.96) is obtained.
Let us consider the PH and MPH models for step-stresses.
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2.5.10 GPH1 and MGPH1 models for simple step-stresses

Propositon 2.20. If the GPH1 model holds on E2, x0 ∈ E1, then for any
x(·) ∈ E2

Sx(·)(t) =
{

G{r(x1)A0(t)}, 0 ≤ t < t1,
G{r(x1)A0(t) + r(x2)(A0(t)−A0(t1))}, t ≥ t1.

=
{

Sx1(t), 0 ≤ t < t1,
G{H(Sx1(t)) + ρ(x1, x2)(H(Sx1(t)− Sx1(t1))}, t ≥ t1.

=
{

G{ρ(x0, x1)(H(Sx0(t)), 0 ≤ t < t1,
G{ρ(x0, x1)H(Sx0(t1)) + ρ(x0, x2)(H(Sx0(t))−H(Sx0(t1)))}, t ≥ t1.

,

(2.99)
where ρ(x1, x2) = r(x2)/r(x1).

Let us consider the MGPH1 model.

Proposition 2.21. If the MGPH1 model holds on a set E2 of simple step-
stresses then for any x(·) ∈ E2, x0 ∈ E1

Sx(·)(t) =
{

Sx1(t), 0 ≤ t < t1,
Sx2(t− t1 + t∗1), t ≥ t1.

(2.100)

where
t∗1 = S−1

x0
{G(ρ(x2, x1)H(Sx0(t1)))}

If x2 is design stress, one can take x0 = x2 and we have the model

Sx(·)(t) =
{

G {ρ(x2, x1)H(Sx0(t))} , 0 ≤ t < t1,
Sx0(t− t1 + t∗1), t ≥ t1.

where
t∗1 = S−1

x0
{G(ρ(x0, x1)H(Sx0(t1)))}

Thus, the form of the survival function under stress x(·) is determined by the
survival function under stress x0.

2.5.11 General step-stresses

Proposition 2.22.If the GPH1 model holds on a set of general step-stresses
Em, then for any x ∈ Em of the form (2.4) and for any t ∈ [ti−1, ti) (i > 1)

Sx(·)(t) = G



i−1∑
j=1

r(xj)(A0(tj)−A0(tj−1) + r(xi)(A0(t)−A0(ti−1))




= G


H(Sxi

(t))−H(Sxi
(ti−1))) +

i−1∑
j=1

ρ(xi, xj)(H(Sxi
(tj))−H(Sxi

(tj−1)))



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= G


ρ(x0, xi)H(Sx0(t)) +

i−1∑
j=1

ρ(x0, xj)(H(Sx0(ti))−H(Sx0(ti−1)))


 .

(2.101)
Let us consider the MGPH1 model.

Proposition 2.23. If the MGPH1 model holds on a set of step-stresses of
the form (2.4) then for any t ∈ [ti−1, ti)

Sx(·)(t) = Sxi
(t− ti−1 + t∗i−1), (2.102)

where
t∗1 = S−1

x0
{G(ρ(x2, x1)H(Sx0(t1)))} ,

t∗i = S−1
x0

{
G(ρ(xi+1, xi)H(Sx0(ti − ti−1 + t∗i−1))

}
(i = 2, · · · ,m).

2.6 GAH and GAMH models

Definition 2.9. The generalized additive hazards (GAH) model holds on E
(Bagdonavičius and Nikulin (1995)), if there exist a function a on E and a
survival function S0 such that for all x(·) ∈ E

∂fGx(·)(t)

∂t
=

∂fG0 (t)
∂t

+ a(x(t)) (2.103)

with the initial conditions fG0 (0) = fGx(·)(0) = 0; here fG0 (t) = H(S0(t)).
So stress influences additively the rate of resource usage. The last equation

implies that

Sx(·)(t) = G

(
H(S0(t)) +

∫ t

0

a(x(τ))dτ
)

. (2.104)

In terms of exponential resource usage the GAH model can be written in the
form

αx(·)(t) = q{Ax(·)(t)}(α0(t) + a(x(t))).

The particular case of the GAH model is the additive hazards model (AH)
(Aalen (1980)):

αx(·)(t) = α0(t) + a(x(t)). (2.105)

Both the GPH1 and the GAH models can be included into the following
model.

Definition 2.10 The generalized additive-multiplicative hazards (GAMH)
model (Bagdonavicius and Nikulin (1997a)) holds on E if there exist functions
a and r (positive) on E and a survival function S0 such that for all x(·) ∈ E

∂fGx(·)(t)

∂t
= r{x(t)}∂f

G
0 (t)
∂t

+ a(x(t)) (2.106)

with the initial conditions fG0 (0) = fGx(·)(0) = 0; here fG0 (t) = H(S0(t)).
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So stress influences the rate of resource usage as multiplicatively as addi-
tively. The last equation implies that

Sx(·)(t) = G

(∫ t

0

r{x(τ)}dH(S0(τ)) +
∫ t

0

a(x(τ))dτ
)

. (2.107)

In terms of exponential resource usage the GAM model can be written in the
form:

αx(·)(t) = q{Ax(·)(t)}(r{x(t)}α0(t) + a(x(t))).
In the particular case of the exponential resource we obtain the additive-
multiplicative hazards (AMH) model (see Lin and Ying (1996)).

αx(·)(t) = r{x(t)}α0(t) + a(x(t)). (2.108)

The functions a and q are parametrized as the function ln r in the GM models
and the function q in the GPH models, respectively.

2.7 Changing shape and scale models

2.7.1 Definition of the model for constant stresses

Natural generalization of the AFT model (see Mann et al (1974)) is obtained
by supposing that different constant stresses x ∈ E1 influence not only the
scale but also the shape of survival distribution: there exist positive functions
on E1 θ(x) and ν(x) such that for any x ∈ E1

Sx(t) = Sx0

{(
t

θ(x)

)ν(x)}
; (2.109)

here x0 is fixed stress, for example, design (usual) stress.
This model has the following interpretation. For any x(·) ∈ E ⊃ E1 set

fx(·)(t) = S−1
x0

(Sx(·)(t)),

which is the Sx0 -resource used until the moment t.
Under the model (2.109) the resource usage rate under x ∈ E1 is

∂

∂t
fx(t) = r(x) tν(x)−1,

where r(x) = ν(x)/θ(x)ν(x).
The model (2.108) means that resource usage rate under stress x is increas-

ing, if ν(x) > 1, decreasing if 0 < ν(x) < 1, and constant if ν(x) = 1.
In the case ν(x) = 1 we have the AFT model. So under thr AFT model

resource usage rate is constant in time.
Let us consider generalizations of the model (2.108) to the case of time

varying stresses.

2.7.2 Definition of the model for time-varying stresses

Definition 2.11. The changing shape and scale (CHSS) model (Bagdon-
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avičius and Nikulin (2000d)) holds on E if there exist positive functions on E
r and ν such that for all x(·) ∈ E

∂fx(·)(t)
∂t

= r{x(t)} tν(x(t))−1. (2.110)

This equality implies that

Sx(·)(t) = Sx0

(∫ t

0

r{x(τ)}τν(x(τ))−1dτ

)
. (2.111)

Variation of stress changes locally not only the scale but also the shape of
distribution.
In terms of the hazard rate the model can be written in the form:

αx(·)(t) = r{x(t)} q(Ax(·)(t)) tν(x(t))−1. (2.112)

This model is not in the class of the GS models because the hazard rate
αx(·)(t) depends not only on x(t) and Ax(·)(t) but also on t.

If Sedyakin’s rule is suggested by the data, restriction of the GS model
coinciding with the model (2.100) on E1 can be considered.

Proposition 2.25. The GS model with the survival function (2.108) on E1

holds on E ⊃ E1 if and only if for any x(·) ∈ E

αx(·)(t) = {r(x(t))}1/ν(x(t))αx0

{
A−1
x0

(Ax(·)(t))
}{

ν(x(t))A−1
x0

(Ax(·)(t))
}1−1/ν(xt)

.
(2.113)

The proof is analogous to the proof of Proposition 2.10.
The proposition implies the following model.

Definition 2.12. The modified changing scale and shape model holds on E
if for any x(·) ∈ E the equality (2.113) holds.

In the particular case when ν(x) = 1 for any x, we have the MPH model.

2.7.3 CHSS and MCHSS models for simple step-stresses

Proposition 2.26. If the CHSS model holds on E2 then for any x(·) ∈ E2,
x0 ∈ E1 ⊂ E2

Sx(·)(t) =




Sx0

{(
t

θ(x1)

)ν(x1)
}

, 0 ≤ t < t1,

Sx0

{(
t1
θ(x1)

)ν(x1)

+
(

t
θ(x2)

)ν(x2) −
(

t1
θ(x2)

)ν(x2)
}

, t ≥ t1,

(2.114)

where θ(x) =
(
ν(x)
r(x)

)1/ν(x)

.
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In the particular case when x0 = x2 we have ν(x2) = θ(x2) = 1 and

Sx(·)(t) =




Sx0

{(
t

θ(x1)

)ν(x1)
}

, 0 ≤ t < t1,

Sx0

{(
t1
θ(x1)

)ν(x1)

+ t− t1

}
, t ≥ t1.

(2.115)

Proposition 2.27. If the MCHSS model holds on E2 then for any x(·) ∈ E2

Sx(·)(t) =
{

Sx1(t), 0 ≤ t < t1,
Sx2(t− t1 + t∗1), t ≥ t1,

(2.116)

where
t∗1 = θ(x2)(t1/θ(x1))ν(x1)/ν(x2).

2.7.4 CHSS and MCHSS models for general step-stresses

Proposition 2.28. If the CHSS model holds on Em then for any x(·) ∈ Em
and t ∈ [ti−1, ti)

Sx(·)(t) =

G



i−1∑
j=1

((
tj

θ(xj)

)ν(xj)

−
(

tj−1

θ(xj)

)ν(xj)
)

+
(

t

θ(xi)

)ν(xi)

−
(

ti−1

θ(xi)

)ν(xi)

 =

Sxi


θ(xi)


i−1∑
j=1

((
tj

θ(xj)

)ν(xj)

−
(

tj−1

θ(xj)

)ν(xj)
)
+

(
t

θ(xi)

)ν(xi)

−
(

ti−1

θ(xi)

)ν(xi)
)1/ν(xi)


 .

Proposition 2.29. If the MCHSS model holds on Em then for any x(·) ∈
E2

Sx(·)(t) = Sxi
(t− ti−1 + t∗i−1), t ∈ [ti−1, ti),

where

t∗1 = θ(x2)(t1/θ(x1))ν(x1)/ν(x2), t∗i = θ(xi+1){(ti−ti−1+t∗i−1)/θ(xi)}ν(xi)/ν(xi+1).

2.8 Generalizations

Schaebe and Viertl (1995) considered an axiomatic approach to model build-
ing.
Proposition 2.30. (Schaebe and Viertl (1995)). Suppose that there exists

a functional
a : E × E × [0,∞) → [0,∞)

such that for any x1(·), x2(·) ∈ E it is differentiable and increasing in t,

a(x1(·), x2(·), 0) = 0
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and
Tx2(·) ∼ a(x1(·), x2(·), Tx1(·)),

where ∼ denotes equality in distribution.
For any differentiable on [0,∞) c.d.f. F exists a functional b : E× [0,∞) →

[0,∞) such that for all x(·) ∈ E

Fx(·)(t) = F

(∫ t

0

b(x(·), u)du
)

. (2.117)

Proof. Fix x0(·) ∈ E and for all x(·) ∈ E put

a0(x(·), t) = F−1(Fx0(·)(a(x(·), x0(·), t))).
The distribution of the random variable R = a0(x(·), Tx(·)) does not depend
on x(·) and its c.d.f. is F . Put

b(x(·), t) = ∂

∂t
a0(x(·), t).

Then

a0(x(·), t) =
∫ t

0

b(x(u), u)du,

which implies

Fx(·)(t) = P{Tx(·) < t} = P{R < a0(x(·), t)} = F

(∫ t

0

b(x(u), u)du
)

.

✷

Remark 2.8. Set G(t) = 1 − F (t), Sx(·)(t) = 1 − Fx(·)(t), H = G−1,
fGx(·)(t) = H(Sx(·)(t)). The equality (2.117) implies that

∂

∂t
fGx(·)(t) = b(x(·), t). (2.118)

This model means that the rate of the G−resource usage is a functional of
stress and the time.
The above considered models are sub-models of this general model:
1) If b(x(·), t) = r(x(t)), we have the AFT model.
2) If b(x(·), t) = r(x(t))α0(t), we have the GM (or, equivalently, GPH1)

model.
3) If b(x(·), t) = r(x(t))α0(t) and the resource is exponential, i.e. G(t) =

e−t, t ≥ 0, we have the PH model.
4) If b(x(·), t) = r(x(t))tν(x(t))−1, we have the CHSH model.

2.8.1 AFT model with time dependent regression coefficients

The AFT model usually is parametrized (see Section 5) in the following form:

Sx(·)(t) = G

{∫ t

0

e−β
T x(u)du

}
, (2.119)
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where β = (β0, · · · , βm)T is a vector of unknown parameters. At any moment
t the resource usage rate

∂

∂t
fGx(·)(t) = e−β

T x(t)

depends only on the value of the explanatory variable at the moment t; here

x(t) = (x0(t), x1(t), · · · , xm(t))T , x0(t) ≡ 1.

Flexible models can be obtained by supposing that the coefficients β are
time-dependent, i.e. taking

∂

∂t
fGx(·)(t) = e−β

T (t)x(t) = e−
∑m

i=0
βi(t)xi(t).

If the function βi(·) is increasing or decreasing in time then the effect of ith
component of the explanatory variable is increasing or decreasing in time.
So we have the model

Sx(·)(t) = G

{∫ t

0

e−β
T (u)x(u)du

}
. (2.120)

It is the AFT model with time-dependent regression coefficients.
We shall consider the coefficients βi(t) in the form

βi(t) = βi + γigi(t), (i = 1, 2, ...,m),

where gi(t) are some specified deterministic functions or realizations of pre-
dictable processes. In such a case the AFT model with time dependent coef-
ficients and constant or time dependent explanatory variables can be written
in the usual form (2.119) with different interpretation of the explanatory vari-
ables. Indeed, set

θ = (θ0, θ1, · · · , θ2m)T = (β0, β1, · · · , βm, γ1, · · · , γm)T ,

z(·) = (z0(·), z1(·), · · · , z2m(·))T =

(1, x1(·), · · · , xm(·), x1(·)g1(·), · · · , xm(·)gm(·))T . (2.121)

Then

βT (u)x(u) = β0 +
m∑
i=1

(βi + γigi(t))xi(t) = θT z(u).

So the AFT model with the time dependent regression coefficients can be
written in the form

Sx(·) = G

{∫ t

0

e−θ
T z(u)du

}
. (2.122)

We have the AFT model where the unknown parameters and the explanatory
variables are defined by (2.121).
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2.8.2 PH model with time dependent regression coefficients

The PH model usually is parametrized (see Section 7) in the following form:

αx(·)(t) = e−β
T x(t)α0(t).

Similarly, as in the case of the AFT model, the PH model with time-dependent
regression coefficients has the form:

αx(·)(t) = e−β
T (t)x(t)α0(t). (2.123)

As in the case of the AFT model with time-dependent coefficients, the model
(2.123) with βi(t) = βi + γigi(t) can be written in the form of the usual PH
model

αx(·)(t) = e−θ
T z(t)α0(t),

where θ and z are defined by (2.121).

2.8.3 Partly parametric additive risk and Aalen’s models

McKeague and Sasieni (1994) give the following generalization of the additive
hazards model (2.105) with constant explanatory variables:

αx(t) = xT1 α(t) + βTx2,

where x1 and x2 are q and p dimensional components of the explanatory
variable x. Here α(t) = (α1, · · · , αq and β = (β1, · · · , βp)T are unknown. It
generalizes also the Aalen’s (1980) model

αx(t) = xTα(t).

2.9 Models including switch-up and cycling effects

Considering the GS model, it was noted that this (and also AFT) model may
not be appropriate when stress is periodic due to a quick change of its values.
The greater the number of stress cycles, the shorter the life of units. So the
effect of cycling must be included in the model. The GS model can be not
verified when switch-up’s of stress can imply failures of units or influence
their reliability in the future. We shall follow here Bagdonavičius and Nikulin
(2001d). Suppose that a periodic stress is differentiable. Then the number of
cycles in the interval [0, t] is

n(t) =
∫ t

0

| d1{x′(u) > 0} | .

Generalizing the GPH1 (or GM) model we suppose that the G-resource used
until the moment t has the form.

fGx(·)(t) =
∫ t

0

r1{x(u)}dH(S0(u)) +
∫ t

0

r2{x(u)}d | 1{x′(u) > 0} | (2.124)
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The second term includes the effect of cycling on resource usage. In terms of
survival functions

Sx(·)(t) = G

{∫ t

0

r1{x(u)}dH(S0(u)) +
∫ t

0

r2{x(u)} | d1{x′(u) > 0}
}

.

(2.125)
If amplitude is constant, r2{x(u)} = c can be considered.
The AFT model is generalized by the model

Sx(·)(t) = G

{∫ t

0

r1{x(u)}du+
∫ t

0

r2{x(u)} | d1{x′(u) > 0} |
}

. (2.126)

The GS and AFT models are not appropriate if x(·) is a step-stress with many
switch ons and switch offs which shorten the life of units.
An alternative to the GS model under step-stresses can be obtained by

taking into account the influence of switch-ups of stresses on reliability of
units. Switch-ups can imply failures of units. Suppose that an item is observed
under stress (2.4) and after the switch-off at the moment ti from the stress xi
to the stress xi+1 the survival function has a jump:

Sx(·)(ti) = Sx(·)(ti−) δi;

here δi is the probability for an item not to fail because of the switch-off at
the moment ti. In this case the GS model for step-stresses can be modified as
follows:

Sx(·)(t) = Sxi
(t− ti−1 + t∗∗i−1)), (2.127)

where

t∗∗1 = S−1
x2

{Sx1(t1) δ1}, t∗∗i = S−1
xi+1

{Sxi
(ti − ti−1 + t∗∗i−1)) δi}. (2.128)

Thus the time shift is modified by the jumps.
In this case the following model can be considered:

fGx(·)(t) =
∫ t

0

r1{x(u)}dH(S0(u)) +
∫ t

0

r2{x(u)}1(∆x(u) > 0)
| dx(u) |
| ∆x(u) |

+
∫ t

0

r3{x(u)}1(∆x(u) < 0)
| dx(u) |
| ∆x(u) | . (2.129)

The second and the third terms include the effect of switch-ons and switch-
offs (or vice versa), respectively, on resource usage. If the step-stress has two
values, the functions r2 and r3 can be constants.

2.10 Heredity hypothesis

Suppose that a process of production is unstable, i.e. the reliability of units
produced in non-intersecting time intervals I1 = (t0, t1], · · · , Im(tm−1, tm] is
different: under the same stress conditions the survival functions of units,
produced in the intervals Ii and Ij (i 
= j), are different. Here we shall follow
Bagdonavičius and Nikulin (1997f). Suppose that a failure time T

(i)
x of units
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produced in the interval Ii and functioning under a constant stress x ∈ E1 is a
non-negative random variable with the reliability function S

(i)
x (t) = P{T (i)

x >
t}.

The models of accelerated life are some hypotheses about the influence of the
applied stress on the reliability. For many models the reliability characteristics
under the usual stress x(0) often can be written via the reliability characteris-
tics under the accelerated stress x(1) and some function ρ(i)(x(0), x(1)) of the
stresses x(0) and x(1).

AFT model:
S

(i)

x(0)(t) = Sx(1)(t/ρ(i)(x(0), x(1))), (2.130)

where
ρ(i)(x0, x1) = r(i)(x1)/r(i)(x0) > 1.

GPH1 model:

S
(i)

x(0)(t) = G
{
H ◦ Sx(1)(t)/ρ(i)(x(0), x(1))

}
, (2.131)

GAH model:

S
(i)

x(0)(t) = G
{
H ◦ Sx(1)(t)− b(i)(x(0), x(1))t

}
, (2.132)

where
b(i)(x(0), x(1)) = a(i)(x(1))− a(i)(x(0)) > 0.

Definition 2.13. If the process of production is unstable, the model AFT(or
GPH1,GAH ) holds for units produced in each of the intervals Ii, and ρ(i)(x1, x2) =
ρ(x1, x2) for all i (the models AFT or GM) or b(i)(x1, x2) = b(x1, x2) (the
model GA) are the same for groups of units produced in different time inter-
vals, then the heredity hypothesis holds.

If the heredity hypothesis is satisfied on E and sufficiently large usual and
accelerated data are accumulated during a long period of observation then
good estimators of the functions ρ(x(0), x(1)) (or b(x(0), x(1))) can be obtained.
The reliability of newly produced units under the usual stress x0 can be es-
timated from accelerated life data under the stress x(1) > x(0), using the es-
timators ρ̂(x(0), x(1)) or b̂(x(0), x(1)) and without using the experiment under
the normal stress. The formulated hypothesis is called the heredity hypothe-
sis as it has some associations with the ”heredity principle” of Kartashov and
Perrote (1968) and is motivated by it.
The heredity principle is formulated as follows. Suppose units of ith group

are observed under the stress x and are characterized by some multivariate
technical parameter Wi(x). The parameter Wi is good if

c ≤ Wi(x) ≤ d, c, d ∈ Rk.

The parameter Wi is some function of the interior physical parameters νi of
units:

Wi(x) = fi(νi(x)).
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It is supposed that there exists a function φ such that

ν2(x) = φ(ν1(x), x).

The heredity principle states that the distribution of the random vectors νi(x)
can change going from one group of units to another but the functions fi and
φ are invariant.

Suppose that x1 is a usual stress and x2 > x1 an accelerated stress.
If one of the models AFT, GM, or GA and the heredity principle hold, then

sufficiently large data can be cumulative during a long period of observation
and good estimators of the functions ρ(x1, x2) or b(x1, x2) can be obtained.
The reliability of newly produced units under the usual stress x1 can be es-
timated from accelerated life data obtained under the accelerated stress x2,
using the estimators ρ̂(x1, x2) or b̂(x1, x2).

2.11 Summary

Models relating the lifetime distribution to possibly time dependent explana-
tory variables were considered in this chapter. As a rule they were defined in
terms of the hazard function. We give here a short survey of them.

1) Accelerated failure time (AFT) model:

αx(·)(t) = r{x(t)}q{Sx(·)(t)} ∼ Sx(·)(t) = G

{∫ t

0

r{x(u)}du
}

.

The model is parametric if the function G is from a specified parametric family
of distributions (such families are given in Chapter 1) and the function r is
parametrized (see Section 5.1):

r(x) = eβ
Tϕ(x), (2.133)

where β = (β0, · · · , βm)T is a vector of unknown parameters,

ϕ(x) = (ϕ0(x), · · · , ϕm(x))T , ϕ0(x) ≡ 1,

being a vector of specified real functions on the set of values of the explanatory
variable x(·) = (x0(·), · · · , xm(·)), x0 ≡ 1.
The model is semiparametric if one of the functions G or r is completely

unknown and other is parametrized.
The model is nonparametric if both functions G or r are completely un-

known. Estimation in this case is possible only under special plans of experi-
ments.

2) Proportional hazards (PH) model:

αx(·)(t) = r{x(t)}α(t).
The model is parametric if the function r is parametrized (as a rule in the
form (2.130), see Section 7.2) and α is from a specified parametric class of
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hazard functions. The model is semiparametric if one of the functions r and
α is completely unknown and other is parametrized.

3) Additive hazards (AH) model:

αx(·)(t) = α0(t) + a(x(t)).

The function a generally is parametrized in the form a(x) = γTx.
These models being narrow (explanatory variables influence locally only the

scale of the survival distribution for the AFT model, ratios or differences of
hazard rates are constant over time for the PH or AH model, respectively),
the last two being not very natural for aging units, a number of alternative
or wider models may be considered.
The natural generalizations of the AFT model are the following models.

4) Changing shape and scale (CHSS) model:

αx(·)(t) = r{x(t)}tν{x(t)}−1q{Ax(·)(t)}

∼ Sx(·)(t) = G

{∫ t

0

r{x(u)}uν{x(u)}−1du

}
.

Under this model, explanatory variables influence locally not only the scale
but also the shape of survival distribution.
The model may be considered as parametric or semiparametric. Generally

the function r is parametrized in the form (2.130) and the function ν in the
form ν(x) = exp{γTx}.

5) AFT model with time-dependent regression coefficients:

Sx(·)(t) = G

{∫ t

0

e−β
T (u)x(u)du

}
. (2.134)

with coefficients βi(t) in the form

βi(t) = βi + γigi(t), (i = 1, 2, ...,m),

where gi(t) are some specified deterministic functions or realizations of pre-
dictable processes. It can be written in the form of the usual AFT model

Sx(·) = G

{∫ t

0

e−θ
T z(u)du

}
, (2.135)

where
θ = (θ0, θ1, · · · , θ2m)T = (β0, β1, · · · , βm, γ1, · · · , γm)T ,

z(·) = (z0(·), z1(·), · · · , z2m(·))T =

(1, x1(·), · · · , xm(·), x1(·)g1(·), · · · , xm(·)gm(·))T .
Even if the explanatory variable x is constant in time, the explanatory vari-
able z(·) is time-dependent. So statistical analysis of this model can be done
using methods of statistical estimation for the usual AFT model with constant
regression coefficients and time-dependent explanatory variables.
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The following class of models generalizes in one or another sense both the
AFT and PH models.

6) First generalized proportional hazards (GPH1) model:

αx(·)(t) = r{x(t)}q{Ax(·)(t)}α(t).
It coincides with the AFT model if α(t) ≡ const or with the PH model if
q(u) ≡ const.
The model is parametric if the functions r and q are parametrized and

α is from a specified parametric family of hazard rates. We consider here
semiparametric models with r parametrized and q a specified parameter free
or parametrized function, α being completely unknown. The function r is
parametrized in the form (2.130). The possible parametrizations of the func-
tion q are q(u, γ) = (1 + u)γ , eγu, (1 + γu)−1. Under these parametrizations
the situations with approaching or going away hazard rates under various
constant explanatory variables may be modeled. Take notice that only one
complementary parameter γ is included in these models with respect to the
PH model.
Taking q(u) = e−u, we obtain the analogue of the logistic regression model,

taking
q(u) = ϕ(v)eu−v, v = Φ−1(1− e−u),

the generalized probit model is obtained. The last two models are alternatives
to the PH model.

7) Second generalized proportional hazards (GPH2) model:

αx(·)(t) = u{x(t), Ax(·)(t)}α(t).
It includes the GPH1 model as the particular case. The model CRE1 with
u(x, s) = r(x)(1 + s)γ

T x+1 and the model CRE2 with Ax(t) = r(x)A(t)e
γT x

are in the class of GPH2 models and situations with intersecting hazard rates
may be modeled using them.

8) PH model with time-dependent regression coefficients

αx(·)(t) = e−β
T (t)x(t)α0(t),

with coefficients βi(t) in the form

βi(t) = βi + γigi(t), (i = 1, 2, ...,m),

where gi(t) are specified deterministic functions or realizations of predictable
processes. It can be written in the form of the usual PH model

αx(·)(t) = eθ
T z(t) α0(t),

where
θ = (θ0, θ1, · · · , θ2m)T = (β0, β1, · · · , βm, γ1, · · · , γm)T ,

z(·) = (z0(·), z1(·), · · · , z2m(·))T =
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(1, x1(·), · · · , xm(·), x1(·)g1(·), · · · , xm(·)gm(·))T .
Even if the explanatory variable x is constant in time, the explanatory vari-
able z(·) is time-dependent. Statistical analysis of this model can be done
using methods of statistical estimation for the usual PH model with constant
regression coefficients and time-dependent explanatory variables.
The following model includes both the PH and AH models.

9) Additive-multiplicative hazards (AMH) model:

αx(·)(t) = r{x(t)}α0(t) + a(x(t)).

As the GPH1 model generalizes the PH model, the following model generalizes
the AH model.

10) Generalized additive hazards (GAH) model:

αx(·)(t) = q{Ax(·)(t)}(α0(t) + a(x(t))).

The GAHmodel is the AHmodel when q(u) ≡ 1. The function q is parametrized
as in the case of GPH1 models.

11) Aalen’s additive risk (AAR) model:

αx(t) = xTα(t).

This model allows the influence of each explanatory variable to vary separately
over time.

12) Partly parametric additive risk (PPAR) model

αx(t) = xT1 α(t) + βTx2,

where x1 and x2 are q and p dimensional components of the explanatory
variable x, α(t) = (α1(t), · · · , αq(t))T , β = (β1, · · · , βp)T are unknown. It
includes AAR and AH models as particular cases.

13) Generalized additive-multiplicative hazards (GAMH) model:

αx(·)(t) = q{Ax(·)(t)}(r{x(t)}α0(t) + a(x(t))).

If q(u) ≡ 1, then GAMH model is the AMH model.
A natural property of the models with time-varying explanatory variables

is given by Sedyakin’s rule which states that the hazard rate at any moment
t depends only on the value of the explanatory variable at this moment and
the probability to survive up to this moment.

14) Generalized Sedyakin’s (GS) model

αx(·)(t) = g
(
x(t), Sx(·)(t)

)
.

This model is too wide for AFT data analysis but it is useful for construction
of narrower models. Note that from the above considered models only the
AFT model verifies this rule. We discussed how to modify models to verify
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the rule. Such models are rather complicated for statistical analysis in the case
of general time-varying stresses. Nevertheless, if the explanatory variables are
step functions, then they are simple.
The GS model (and also AFT model) may not be appropriate when stress

is periodic with quick change of its values. The greater the number of stress
cycles, the shorter the life of units.
The GS and AFT models are also not appropriate if x(·) is a step-stress

with many switch ons and switch offs which shorten the life of units.
Models including the effect of cycling and the influence of switch-ups of

stresses on reliability were discussed in Section 2.9.
Most of the considered models may be used for analysis of data collected

during different time periods of unstable production process. It may be done
if the models have invariants which do not change going from one group of
produced units to another (see Section 2.10).
Good sources of information and further references on accelerated life mod-

els are Cox and Oakes (1984), Derringer (1982), Finkelstein (1999), Gertsbakh
and Kordonskiy (1969), Hirose (1997a,b), Hsieh (2000), Iuculano and Zanini
(1986), Lin and Ying (1995), LuValle (2000), Mazzuchi and Soyer (1992),
Meeker and Escobar (1998), Miner (1945), Meeter and Meeker (1994), Nelson
(1980, 1990), Nelson and Meeker (1991), Rukhin and Hsieh (1987), Schaebe
and Viertl (1995), Schaebe (1998), Schmoyer (1991), Sedyakin (1966), Shaked
and Singpurwalla (1983), Sethuraman and Singpurwalla (1982), Singpurwalla
(1971, 1987), Singpurwalla , Castellino and Goldschen (1975), Tibshirani and
Ciampi (1983), Viertl (1988), Viertl and Gurker (1995, 1998), Viertl and
Spencer (1991).



CHAPTER 3

Accelerated degradation models

3.1 Introduction

Failures of highly-reliable units are rare and failure time data can be very
scarce. Two ways of obtaining additional information about reliability of units
can be used. One way is to use higher levels of experimental factors or stresses
to increase the number of failures, and, hence, to obtain reliability information
quickly. Another way is to measure some parameters characterizing degrada-
tion (aging) of the product in time. Both methods can be combined: degrada-
tion and failure time data can be obtained at higher levels of stress, (see, for
example, Meeker, Escobar and Lu (1998), Singpurwalla (1995)). Analysis of
such data is possible if accelerated degradation models relating degradation
and failure times to the accelerating factors (stresses) are well chosen.
Degradation models with the explanatory variables may also be used to esti-

mate reliability when the environment is dynamic (see, Singpurwalla (1995)).
The explanatory variables may be uncontrollable by an experimenter in such
a case. For example, tire wear rate and failure times depend on quality of
roads, temperature, and other factors.
Accelerated degradation models can be used when optimal values of ex-

planatory variables are needed to maximize the reliability of the product, are
needed. For example, degradation of light emitting diodes is characterized
by their decreasing luminosity, and the rate of degradation depends on such
factors as type of silver, epoxy coating, epoxy lens material, initial curing
temperature, and curing duration, (see, Hamada (1995), Chiao and Hamada
(1996)).
Modeling accelerated degradation one must keep in mind that an unit may

be treated as failed when its degradation reaches a critical level (non-traumatic
failure) or when a traumatic event occurs. The probability of the traumatic
event may depend on the degradation level and on the explanatory variables.
For example, a puncture of a tire is more probable if thickness of the tire pro-
tector (degradation measure) is smaller and the load (the explanatory vari-
able) is heavier.
Thus, in the most general situations an accelerated degradation model must

include:
1. The stochastic process describing changing of the degradation level in

time;
2. Dependence of degradation process parameters on the explanatory vari-

ables;
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3. The stochastic process characterizing traumatic events;
4. Dependence of this process on degradation and the explanatory variables.

3.2 Degradation models

Suppose that an increasing stochastic process Z(t) describes the degradation
level of an item. Sometimes the functional form of the mean degradation
m(t) = E(Z(t)) is known, sometimes it is not. For example, the mean tire
protector wear rate m′(t) gradually decreases in time and after some short
period becomes practically constant. It can be modelled by m′(t) = γ0 +
γ1e

−γ2t. In this case the mean degradation

m(t) = γ0t+
γ1

γ2
(1− e−γ2t), γi > 0. (3.1)

If the initial accelerated wear period is absent, then m(t) = γ0t is a linear
function.
The mean relative luminosity of light-emitting diodes (see Mitsuo (1991))

is a nonlinear function d(t) = (1+ γ0t
γ1)−1 and the mean degradation can be

determined as

m(t) = γ0 t
γ1 . (3.2)

In such a case m(0) = 0, and the mean degradation is increasing. There exist
a one-to-one application between the values of m(t) and d(t).
In many situations (see Carey and Koenig (1991)) degradation approaches

a saturation point where deterioration ends (for example, where oxidation
ceases). The mean degradation can be defined by the function

m(t) = γ0(1− e−γ1tγ2 ), γi > 0. (3.3)

Usually one of the three general shapes for the mean degradation curve
m = m(t) is observed: linear, convex, or concave (see Dowling (1993), Lu and
Meeker (1993), Boulanger and Escobar (1994), Meeker and Escobar (1998),
Tseng, Hamada and Chiao (1994), Suzuki, Maki and Yokogawa (1993) ). This
shape can be suggested by data analysis or by knowlege of physics of the
degradation process. See, also, Chang (1992), Fukuda (1991), Nelson (1990),
Klinger (1992), Pieper and Tiedge (1983), Yu and Tseng (1999), Yanasigava
(1997), etc.
In what follows we suppose that m(t) is increasing and continuously differ-

entiable on [0,∞] and m(0) = 0.
Many uncontrollable factors imply variability of individual degradation

curves. Thus, the degradation curve of a concrete item ω is a trajectory
Z(t, ω), t ≥ 0 of a stochastic process Z.
Let us consider several classes of stochastic processes used to model the

degradation.
We assumed that the degradation process is non-negative and non-decreasing.

So we do not consider such well known stochastic processes as Wiener process
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and it’s generalizations because for such models it is possible that degradation
is decreasing in any interval.
We do not also consider models (they are numerous) defined by stochastic

processes with numerically untractable finite-dimensional distributions.

3.2.1 General degradation path model

The degradation process is modeled by a random process

Z = d(t, θ), θ = (θ1, θ2), θ1 ∈ Rk, θ2 ∈ Rl,

where θ1 is a possibly multidimentional random variable and θ2 is a non-
random parameter.
The form of the function d(t, θ) can be suggested by the form of the mean

degradation function or by individual degradation curves. For example, the
linear mean degradation model suggests the linear degradation path model:

Z = θt,

where θ is a positive random variable.
If tires are functioning at the same stress conditions, their wear is well

modeled by such a model.
The mean degradation model (3.2) suggests the degradation path model

Z = θ1t
θ2 .

If individual degradation curves do not intersect, the parameter θ1 should be
non-random and the parameter θ2 random, or vice versa, the parameter θ1
should be random and the parameter θ2 non-random. If these curves intersect,
both θ1 and θ2 should be random.

3.2.2 Gamma-process

Stochastic process is a gamma process with the shape parameter ν(t) and the
scale parameter σ, denoted by Z(t) ∈ G(ν(t), 1/σ), if
a) Z(0) = 0;
b) Z(t) has independent increments, i.e. for any 0 < t1 < · · · < tm the

random variables Z(t1), Z(t2)−Z(t1), · · · , Z(tm)−Z(tm−1) are independent;
c) the distribution of Z(t)− Z(s) is gamma with the density

pZ(t)−Z(s)(x) =
1

Γ(ν(t)− ν(s))
xν(t)−ν(s)−1 σ−(ν(t)−ν(s)) e−x/σ, x ≥ 0.

The gamma process is non-decreasing and its increments ∆Z(t) = Z(t +
∆t)− Z(t) are from the same family of gamma distributions.
The mean of the process Z(t) is σν(t). Thus, the degradation process with

the non-decreasing mean m(t) is modeled by the gamma process Z(t) ∈
G(m(t)/σ, 1/σ). In such a case

E(Z(t)) = m(t), Var(Z(t)) = σm(t), Cov(Z(s), Z(t)) = σm(s ∧ t).
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If the mean degradation is linear, m(t) = at, then the gamma process is
stationary, i.e. the distribution of Z(t)−Z(s) is a function of t−s. For detailed
treatment of gamma processes in degradation models see Cinlar (1980), Gaver
(1963), Singpurwalla (1995), Singpurwalla and Youngren (1998).

3.2.3 Shock processes

Assume that degradation results from shocks, each of them leading to an
increment of degradation.
Let Tn, (n ≥ 1) be the time of the nth shock and Xn the nth increment of

the degradation level. Denote by N(t) the number of shocks in the interval
[0, t]. Set X0 = 0.
The degradation process is given by

Z(t) =
∞∑

n=1

1{Tn ≤ t}Xn =
N(t)∑
n=0

Xn. (3.4)

Suppose that Tn are the moments of transition of the doubly stochastic Pois-
son (DSP) process. DSP process is a Poisson process with an intensity function
that is also random.
Suppose that this random intensity has the form

λ(t) = Y η(t), (3.5)

where η(t) is a deterministic function and Y is a nonnegative random variable
with finite expectation. So the distribution of the number of shocks up to time
t is defined by

P{N(t) = k} = E
{
(Y η(t))k

k!
exp{−Y η(t)}

}
. (3.6)

If Y is non-random, N is a non-homogenous Poisson process, in particular,
when Y η(t) = λt, N is a homogenous Poisson process.
Assume that X1, ,X2, · · · are conditionally independent given {Tn} and as-

sume that the c.d.f. and the probability density functions of Xn given {Tn}
are G and g, respectively.
For any random vector (Z1, Z2), Z1 ∈ Rk, Z2 ∈ Rl such that P{Z2 = z2} >

0, set

pZ1,Z2=z2(z1) =
∂

∂z1
P{Z1 ≤ z1, Z2 = z2}.

Proposition 3.1. The distribution of the random vector

(Z(t1), Z(t2)− Z(t1), · · · , Z(tm)− Z(tm−1))

is given by:

P{Z(t1) = 0, Z(t2)−Z(t1) = 0, · · · , Z(tm)−Z(tm−1) = 0} = P{N(tm) = 0};
(3.7)
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for any 1 ≤ k1 < · · · < ks ≤ m and uk1 , · · · , uks
> 0

pZ(tk1 )−Z(tk1−1),···,Z(tks )−Z(tks−1),Z(tl)−Z(tl−1)=0, l �=k1,···,ks
(uk1 , · · · , uks

) =
∞∑

i1=1

· · ·
∞∑

is=1

gi1(uk1) · · · gis
(uks
)P{N(tk1)−N(tk1−1) = i1, · · · ,

N(tks
)−N(tks−1) = is, N(tl)−N(tl−1) = 0, l 
= k1, · · · ks};

for any u1, · · · , um > 0

pZ(t1),Z(t2)−Z(t1),···,Z(tm)−Z(tm−1)(u1, u2, · · · , um) =
∞∑

i1=1

· · ·
∞∑

im=1

gi1(u1) · · · gim
(um)

P{N(t1) = i1, N(t2)−N(t1) = i2, · · · , N(tm)−N(tm−1) = im},
where gi is the convolution of i densities g,

P{N(t1) = i1, N(t2)−N(t1) = i2, · · · , N(tm)−N(tm−1) = im} =
η(t1)i1

i1!
· · · {η(tm)− η(tm−1)}im

im!
E{Y i1+···+ime−Y η(tm)}. (3.8)

Proof. Let us prove (3.8). Denote by Gi the c.d.f. of the sum of i i.i.d.
random variables with the c.d.f. G. For any uk1 , · · · , uks

> 0 we have

P{uk1 < Zk1 − Zk1−1 < uk1 + hk1 , · · · , uk1 < Zks
− Zks−1 < uks

+ hks
,

Z(tl)− Z(tl−1) = 0, l 
= k1, · · · , ks} =
∞∑

i1=1

· · ·
∞∑

is=1

P{uk1 <

Nk1∑
j=Nk1−1+1

Xj < uk1 + hk1 , · · · , uks
<

Nks∑
j=Nks−1+1

Xj < uks
+ hks

| Nk1 −Nk1−1 = i1,

· · · , Nks
−Nks−1 = is, N(tl)−N(tl−1) = 0, l 
= k1, · · · , ks}×

P{Nk1−Nk1−1 = i1, · · · , Nks
−Nks−1 = is, N(tl)−N(tl−1) = 0, l 
= k1, · · · , ks}

=
∞∑

i1=1

· · ·
∞∑

is=1

{Gi1(uk1 + hk1)−Gi1(uk1)} · · · {Gis
(uks

+ hks
)−Gis

(uks
)}×

P{Nk1−Nk1−1 = i1, · · · , Nks
−Nks−1 = is, N(tl)−N(tl−1) = 0, l 
= k1, · · · , ks}.

Dividing by hk1 · · ·hks
and going to the limit when hk1 , · · · , hks

→ 0, we
obtain (3.8).
Examples.

1) If the distribution of Y is gamma:

pY (y) =
cb

Γ(b)
yb−1e−cy, y ≥ 0,
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then

E{Y ke−Y η(tm)} = cbΓ(k + b)
Γ(b)(c+ ηm)k+b

.

2) If the distribution of Y is inverse Gaussian:

pY (y) = 1{y ≥ 0}
√

β

2πy3
exp{−1

2
β(y − µ)2

µ2y
},

then
E{Y ke−Y η(tm)}

= exp{−β

µ
(
√
1 + 2η(tm)µ2/β − 1− 1)}

(
µ√

1 + 2η(tm)µ2/β

)k

×

k−1∑
j=0

(k − 1 + j)!
(k − 1− j)!j!

(
µ

2β
√
1 + 2η(tm)µ2/β

)j

(k > 0),

E{e−Y η(tm)} =
∫ ∞

0

e−Y η(tm)

√
β

2π
y−

3
2 exp{−1

2
β

µ2

(y − µ)2

y
}.

A wide survey on shock processes is given in Wendt (1999). See also Kahle
and Wendt (2000), Wilson (2000). From here we shall follow the paper of
Bagdonavičius and Nikulin (2001).

3.3 Modeling the influence of explanatory variables

Suppose that the degradation process is observed under a possibly multi-
dimensional and time-dependent explanatory variable (stress, explanatory
variable, regressor) x(·) = (

x0(·), . . . , xs(·)
)T , consisting of fixed first coor-

dinate x0(t) ≡ 1 and of s one-dimensional stresses.
We assume in what follows that the deterministic or stochastic process x(·)

is bounded right continuous with finite left hand limits.
Denote informally by Zx(·)(t) the degradation level under stress x(·) at the

moment t.
We suppose that the process Zx(·) can be transformed via a time-transformation

to a process
Z(t), t ≥ 0,

which does not depend on x(·).
The moment of a non-traumatic failure under the explanatory variable x(·)

is
Tx(·) = sup{t : Zx(·)(t) < z0},

i.e. it is the moment when the degradation reaches a critical level z0 under
the explanatory variable x(·).
Let

Sx(·)(t) = P
{
Tx(·) > t | x(s), 0 ≤ s ≤ t

}
= P

{
Zx(·)(t) < z0 | x(s), 0 ≤ s ≤ t

}
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be the survival function of the random variable Tx(·), and x0(·) be fixed (for
example, usual) stress. Set

fx(·)(t) = S−1
x0(·)

(
Sx(·)(t)

)
.

Then for all x(·)
Sx0(·)

(
fx(·)(t)

)
= Sx(·)(t).

In terms of the probability of survival, the moment t under the explana-
tory variable x(·) is equivalent to the moment fx(·)(t) under the explanatory
variable x0(·).
Thus, it is natural to assume that the distribution of degradation process,

observed under stress x(·), at the moment t is the same as the distribution of
degradation process, observed under stress x0(·), at the moment fx(·)(t):

Zx(·)(t) = Zx0(·)(fx(·)(t)).

This model can be practically used if a concrete form of the functional fx(·)(t)
is assumed, i.e. an accelerated life model relating failure time to stress is given.
The simplest model is the AFT model which in terms of the functional

fx(·)(t) is formulated as follows

∂ fx(·)(t)
∂t

= r{x(t)},

with initial condition fx(·)(0) = 0; here r is a positive function on Rs+1.
This model implies that

fx(·)(t) =
∫ t

0

r(x(τ))dτ.

The function r is parametrized as follows:

r{x(t)} = eβT y(t),

where β =
(
β0, . . . , βs

)T is the vector of unknown parameters,

y(t) = φ(x(t)) and φ : Rs+1 → Rs+1,

where φ is a specified function. Possible forms of the function φ are discussed
in Chapter 2. We write x instead of y even when it is not so.
Thus, the AFT model implies that the moment t under the explanatory

variable x(·) is equivalent to the moment
t∫

0

eβT x(s) ds

under the explanatory variable x0(·). This implies
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Degradation model with explanatory variables:

Zx(·)(t) = Z(

t∫
0

eβT x(s) ds

)
. (3.9)

Using models different from the AFT model for time-transformation, more
complicated degradation models with explanatory variables can be considered.

3.4 Modeling the traumatic event process

Suppose that under explanatory variable x(·) the degradation process is de-
fined by the model (3.11).
Let Cx(·) be the moment of the traumatic failure under x(·). Assume that

Cx(·) is the first transition of a (possibly non-stationary) Poisson process
(N(t), t ≥ 0) with intensity λ(Zx(·)(t), x(t)) at the moment t which depends
on a value Zx(·)(t) of the degradation and the value x(t) of the explanatory
variable at this moment. This means that for any fixed t the conditional dis-
tribution (given trajectories of x(s), Zx(·)(s), 0 ≤ s ≤ t which we denote here
also x(s), Zx(·)(s), 0 ≤ s ≤ t ) of the random variable N(t) is the Poisson
distribution with the mean

∫ t

0
λ(Zx(·)(s), x(s))ds. In particular

P{Cx(·) > t | x(s), Zx(·)(s), 0 ≤ s ≤ t} =

P{N(t) = 0 | x(s), Zx(·)(s), 0 ≤ s ≤ t} = exp{−
∫ t

0

λ(Zx(·)(s), x(s))ds}.
(3.10)

To understand the sense of the function λ(z, x), consider the conditional prob-
ability of the traumatic event in a small interval (t, t+∆], given that until the
moment t the traumatic event did not occur yet and given x(s), Zx(·)(s), 0 ≤
s ≤ t. This probability is

P{t < Cx(·) ≤ t+∆ | Cx(·) > t, x(s), Zx(·)(s), 0 ≤ s ≤ t} =

1− exp{−
∫ t+∆

t

λ(Zx(·)(s), x(s))ds} ≈ λ{Zx(·)(t), x(t)}∆.
Thus if λ{Zx(·)(·), x(·)} is right-continuous at the point t, then λ{Zx(·)(t), x(t)}
is proportional to the conditional probability of the traumatic event in a small
interval given that at time t the traumatic event has not yet occurred, the
value of the explanatory variable was x(t), and the level of degradation was
Zx(·)(t).
Call λ(z, x) the traumatic event intensity (or killing rate). In what follows

we suppose that λ is continuous on [0,∞)×Rs . In such a case the conditional
survival function (3.12) is continuous and the conditional distribution of Cx(·)
is absolutely continuous with the density

pCx(·)|x(s),Zx(·)(s), 0≤s≤t(t)
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= λ{Zx(·)(t), x(t)} exp{−
∫ t

0

λ(Zx(·)(s), x(s))ds}. (3.11)

Let Ux(·) be the time to failure (traumatic or non-traumatic) of items ob-
served under stress x(·) and Tx(·) = sup{t : Zx(·)(t) < z0}. Then Ux(·) =
min(Tx(·), Cx(·)).
Denote by

Qx(·)(t) = P{Cx(·) > t | x(s), 0 ≤ s ≤ t} (3.12)

the survival function of the traumatic event time under explanatory variable
x(·). If x(·) influences only degradation but not the intensity of traumatic
events then the function Q does not depend on x(·).
Let

Gx(·)(t) = P{Ux(·) > t | x(s), 0 ≤ s ≤ t} (3.13)

be the survival function of the time to any kind of failure under the explana-
tory variable x(·), and

Sx(·)(t) = P{Tx(·) > t | x(s), 0 ≤ s ≤ t} (3.14)

be the survival function of the time to non-traumatic failure under the ex-
planatory variable x(·).
Proposition 3.2. The survival functions Gx(·)(t) and Qx(·)(t) have the

form:

Gx(·)(t) = E
{
exp{−

∫ t

0

λ
(
Zx(·)(s), x(s)

)
ds}1{Zx(·)(t)<z0} | x(s), 0 ≤ s ≤ t

}
,

(3.15)
and

Qx(·)(t) = E
{
exp{−

∫ t

0

λ
(
Zx(·)(s), x(s)

)
ds} | x(s), 0 ≤ s ≤ t

}
. (3.16)

Proof. Using the properties of conditional expectations we have:

Gx(·)(t) = P{Tx(·) > t, Cx(·) > t | x(s), 0 ≤ s ≤ t}
= P{Zx(·)(t) < z0, Cx(·) > t | x(s), 0 ≤ s ≤ t} =
E

{
1{Zx(·)(t)<z0,Cx(·)>t} | x(s), 0 ≤ s ≤ t

}
= E

{
E(1{Zx(·)(t)<z0,Cx(·)>t} | x(s), Zx(·)(s), 0 ≤ s ≤ t) | x(s), 0 ≤ s ≤ t

}
= E

{
1{Zx(·)(t)<z0}E(1{Cx(·)>t} | x(s), Zx(·)(s), 0 ≤ s ≤ t) | x(s), 0 ≤ s ≤ t

}
= E

{
1{Zx(·)(t)<z0}P{Cx(·) > t | x(s), Zx(·)(s), 0 ≤ s ≤ t}|x(s), 0 ≤ s ≤ t

}

= E
{
exp{−

∫ t

0

λ
(
Zx(·)(s), x(s)

)
ds}1{Zx(·)(t)<z0} | x(s), 0 ≤ s ≤ t

}
.

In the last step we used the formula (3.12). The formula (3.18) is proved
similarly.
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The intensity λ can be of different forms:

1. λ does not depend on the degradation and explanatory variables:

λ(z, x) = α0. (3.17)

Then the equalities (3.14)-(3.15) imply

Q(t) = e−α0t, Gx(·)(t) = Q(t) Sx(·)(t). (3.20)

2. λ does not depend on degradation but depends on explanatory variables
via the AFT model:

λ(z, x) = eβ∗T x, (3.18)

where β∗ = (β∗
0 , · · · , β∗

s )
T . We do not multiply the exponential by a constant

because, as noted at the beginning of Section 3, the first coordinate in x is
unity. Then

Qx(·)(t) = exp
{
−

∫ t

0

eβ∗T x(s)ds

}
, Gx(·)(t) = Qx(·)(t) Sx(·)(t). (3.19)

3. λ depends linearly on degradation and on explanatory variables via the
degradation:

λ(z, x) = α0 + α1z. (3.20)

Then

P{Cx(·) > t | x(s), Zx(·)(s), 0 ≤ s ≤ t} = exp{−α0t− α1

∫ t

0

Zx(·)(s)ds},
(3.21)

Qx(·)(t) = E
{
exp{−α0t− α1

∫ t

0

Zx(·)(s)ds} | x(s), 0 ≤ s ≤ t

}
, (3.22)

Gx(·)(t) = E
{
exp{−α0t− α1

∫ t

0

Zx(·)(s)ds}1{Zx(·)(t)<z0} | x(s), 0 ≤ s ≤ t

}
,

(3.23)
pCx(·)|x(s),Zx(·)(s), 0≤s≤t(t)

= {α0 + α1Zx(·)(t)} exp{−α0t− α1

∫ t

0

Zx(·)(s)ds}. (3.24)

4. λ depends linearly on degradation and via the degradation and the AFT
model on explanatory variables:

λ(z, x) = eβ∗T x(1 + αz). (3.25)

Then

P{Cx(·) > t | x(s), Zx(·)(s), 0 ≤ s ≤ t} = exp{−
∫ t

0

eβ∗T x(s)(1+αZx(·)(s))ds},

Qx(·)(t) = E
{
exp{−

∫ t

0

eβ∗T x(s)(1 + αZx(·)(s))ds} | x(s), 0 ≤ s ≤ t

}
,

(3.26)
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Gx(·)(t) =

E
{
exp{−

∫ t

0

eβ∗T x(s)(1 + αZx(·)(s))ds}1{Zx(·)(t)<z0} | x(s), 0 ≤ s ≤ t

}
.

(3.27)
5. λ depends by power rule on degradation and via the degradation and the

AFT model on explanatory variables:

λ(z, x) = eβ∗T x(1 + α1z
α2). (3.28)

Then
P{Cx(·) > t | x(s), Zx(·)(s), 0 ≤ s ≤ t} =

exp{−
∫ t

0

eβ∗T x(s)(1 + α1Z
α2
x(·)(s))ds},

Qx(·)(t) = E
{
exp{−

∫ t

0

eβ∗T x(s)(1 + α1Z
α2
x(·)(s))ds} | x(s), 0 ≤ s ≤ t

}
,

(3.29)
Gx(·)(t) =

E
{
exp{−

∫ t

0

eβ∗T x(s)(1 + α1Z
α2
x(·)(s))ds}1{Zx(·)(t)<z0} | x(s), 0 ≤ s ≤ t

}
.

(3.29)

Remark 3.1. The process generating traumatic events needs not to be a
Poisson process. In this case the model

Gx(·)(t) =

E
{
G{

∫ t

0

λ
(
Zx(·)(s), x(s)

)
ds}1{Tx(·) > t} | x(s), 0 ≤ s ≤ t

}
,

where G is a non-exponential survival function, can be considered.
At the end we note that Cox (1999), Doksum and Hoyland (1992), Dok-

sum and Normand (1995), Lawless, Hu and Cao (1995), Lehmann (2000),
Lu (1995), Whitmore (1995), Whitmore and Schenkelberg (1997), Whitmore,
Crowder and Lawless (1998) model degradation by a Wiener diffusion process.
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CHAPTER 4

Maximum likelihood estimation for
FTR data

4.1 Censored failure time data

Typically failure-time data are right censored. This means that failure time
T is known if it does not exceed a value C, called censoring time. Otherwise
it is only known that failure time T is greater than C.
Left censoring means that failure time T is known if it is greater or equal

to C, also called censoring time. Otherwise it is only known that failure time
T is smaller than C.
Left censoring is fairly rare in analysis of reliability data with explanatory

variables and is not considered here.
Right censoring mechanisms can be various:
1) If n units are tested a prespecified time t then censoring is called Type I

censoring. For all units censoring time C = t.
2) If a life test is terminated after a specified number r, r < n, of failures

occurs then censoring is called Type II censoring. For all units censoring time
C is the moment of the rth failure.
3) If units are put on test at different time points t1, · · · , tn, and the data

are to be analyzed at a fixed time point t, t > max ti, then censoring time for
the ith unit Ci = t − ti is non-random. Such censoring is called progressive
right censoring.
4) If the failure times T1, · · · , Tn and the censoring times C1, · · · , Cn are mu-

tually independent random variables then censoring will be called independent
right censoring. For example, if several failure modes are possible and interest
is focused on one particular failure mode then failure of any other mode can
be considered as random censoring time.
Type I censoring is a particular case of progressive right censoring. Both

are particular cases of independent right censoring.
Suppose that data are right censored, Ti and Ci are failure and censoring

times. Set
Xi = Ti ∧ Ci, δi = 1{Ti≤Ci} (i = 1, · · · , n),

where a ∧ b = min(a, b), 1A is the indicator of the event A.
Usually right censored data are presented in the following form:

(X1, δ1), · · · , (Xn, δn). (4.1)

If δi = 1 then it is known that a failure occurs at the moment Ti = Xi. If
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δi = 0 then it is known that the failure occurs after the moment Xi, i.e. the
unit is censored at the moment Ci = Xi.
There is another way to describe right censored data. Denote by

Ni(t) = 1{Xi≤t,δi=1} = 1{Ti≤t,Ti≤Ci} (4.2)

the number of failures of the ith unit in the interval [0, t]. It is equal to 1 if
failure is observed in this interval. Otherwise it is equal to 0.
Set

Yi(t) = 1{Xi≥t}.

It is equal to 1 when the ith unit is ”at risk” (i.e. it is not censored and not
failed) just prior the moment t.
Note that N(t) =

∑n
i=1Ni(t) is the number of observed failures of all units

in the interval [0, t] and Y (t) =
∑n

i=1 Yi(t) is the number of units at risk just
prior the moment t.
The stochastic processes N,Ni are examples of counting processes (see Ap-

pendix).
The data can be presented in the form

(N1(t), Y1(t), t ≥ 0), · · · , (Nn(t), Yn(t), t ≥ 0). (4.3)

The two ways of data presentation are equivalent. Indeed, if (Xi, δi) are given
then (Ni(t), Yi(t)), t ≥ 0 can be found using their definition. Vice versa, the
moment Xi is the moment of the jump of Yi(t) from 1 to 0. If Ni(t) has a
jump at Xi then Xi = Ti and δi = 1. If Ni(t) = 0 for any t ≥ 0 then Xi = Ci

and δi = 0.
One very important advantage of data presentation in the form (4.3) is the

following. The processes Ni and Yi show dynamics of failure and censoring
mechanism over time. If the values of {Ni(s), Yi(s), 0 ≤ s ≤ t, i = 1, · · · , n} are
known, the history of failures and censorings up to the moment t is known. The
data (4.3) gives all history of failures and censorings during the experiment.
The notion of the history is formalized by the notion of the filtration (see
Appendix, Huber (2000), Pons and Huber (2000)).
If the history up to the moment t is known then the values of Ni and Yi

(and of N and Y ) at the moment t are known, i.e. the stochastic processes
Ni, Yi, N, Y are adapted (see Appendix for the formal definitions).

4.2 Parametric likelihood function for right censored FTR data

Suppose that n units are tested. The ith unit is tested under possibly time-
varying explanatory variable x(i)(·). Suppose that distributions of all n units
under test are absolutely continuous with the survival functions Si(t, θ), the
probability densities pi(t, θ), and the hazard rates αi(t, θ), specified by a com-
mon possibly multidimentional parameter θ ∈ Θ ⊂ Rs. The distributions
of units tested under different explanatory variables or stresses generally are
different.
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Suppose that the data

(X1, δ1), · · · , (Xn, δn).

are right censored.
Denote by Gi the survival function of the censoring time Ci. We suppose

that the function Gi does not depend on θ.
Suppose that T1, · · · , Tn and C1, · · · , Cn are mutually independent.
Having a concrete realization of the data, an estimator of the parameter θ

should be found by maximizing the probability of such realization with respect
to θ. Let us formalize this.
Suppose that for i = i1, · · · , ik the realizations ti of the failure times Ti are

observed and for i 
= i1, · · · , ik the realizations ci of the censoring times Ci

are known. Then it is also known that Ci ≥ ti for i = i1, · · · , ik and Ti > ci
for i 
= i1, · · · , ik.
The probability of such concrete realization is zero because the failure times

are absolutely continuous. Therefore it is evident that under independent right
censoring the function to be maximized with respect to θ is

lim
h1,···,hn↓0

1
h1, · · · , hn

P{ti ≤ Ti ≤ ti + hi, Ti ≤ Ci, i = i1, · · · , ik,

ci ≤ Ci ≤ ci + hi, Ci < Ti, i 
= i1, · · · , ik}
=

∏
i=i1,···,ik

pi(ti, θ)Gi(ti)
∏

i�=i1,···,ik

gi(ci)Si(ci, θ), (4.4)

when the censoring times are also absolutely continuous, the survival functions
Si and Gi are differentiable at the points ti and ci, respectively, gi = −G′.
The members with Gi and gi do not contain θ, so they can be rejected.

Replacing ti by Xi when δi = 1 and ci by Xi when δi = 0, the likelihood
function is obtained:

L(θ) =
n∏

i=1

pδi
i (Xi, θ)S1−δi

i (Xi, θ) =
n∏

i=1

αδi
i (Xi, θ)Si(Xi, θ). (4.5)

If Ci are constants (Type I and progressive right censoring) then the function
to be maximized is

lim
hi1 ,···,hik

↓0
1

hi1 , · · · , hik

P{ti ≤ Ti ≤ ti + hi, Ti < Ci, i = i1, · · · , ik,

Ci < Ti, i 
= i1, · · · , ik} =
∏

i=i1,···,ik

pi(ti, θ)
∏

i�=i1,···,ik

Si(ci, θ). (4.6)

The functions Gi do not depend on θ, so the likelihood function has the same
form (4.5).
Type II censoring is rarely used in real applications because the time of

testing is not known before the rth failure occurs. In accelerated life testing
it is sometimes used for each of several groups of units tested under the same
stress when the failure time distribution is exponential for each value of the
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stress. In such a case exact confidence intervals for reliability characteristics
can be obtained even for small samples.
So in the case of Type II censoring we assume that pi = p, Si = S, αi = α.
Under Type II censoring a realization t1 ≤ · · · ≤ tr of the first r order

statistics T1n ≤ · · · ≤ Trn is observed. Then the function to be maximized is

lim
h1,···,hr↓0

1
h1, · · · , hr

P{t1 ≤ T1n ≤ t1 + h1, · · · , tr ≤ Trn ≤ tr + hr} =

n!
(n− r)!

r∏
i=1

p(ti, θ)Sn−r(tr, θ). (4.7)

The constant n!/(n − r)! does not depend on θ and can be rejected. The
likelihood function is

L(θ) =
r∏

i=1

p(Tin, θ)Sn−r(Trn, θ) =
n∏

i=1

pδi(Xi, θ)S1−δi(Xi, θ), (4.8)

The last equality is implied by the following: if Tj = Tin (i = 1, · · · , r) then
Xj = Tj∧Trn = Tin and δj = 1{Tj≤Trn} = 1; if Tj > Trn then Xj = Tj∧Trn =
Trn and δj = 1{Tj≤Trn} = 0.
The likelihhood function (4.8) has the form (4.5) as in the case of other

types of censorings.
The maximum likelihood (ML) estimator θ̂ of the parameter θ maximizes

the likelihood function (4.5). See also Hjort (1992).

4.3 Score function

Let us consider now the likelihood function (4.5). The logarithm of it is

lnL(θ) =
n∑

i=1

δi log{αi(Xi, θ)}+
n∑

i=1

log{Si(Xi, θ)}. (4.9)

It is maximized in the same point as the likelihood function.
If the functions αi(u, θ) are sufficiently smooth then the ML estimator ver-

ifies the equation:

U(θ̂) = 0,

where U is the score function:

U(θ) =
∂

∂θ
lnL(θ) =

(
∂

∂θ1
lnL(θ), · · · , ∂

∂θs
lnL(θ)

)T

. (4.10)

Set

Uj(θ) =
∂

∂θj
lnL(θ). (4.11)

The score function is the vector U(θ) = (U1(θ), · · · , Us(θ))T .
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The equality (4.9) implies

Uj(θ) =
n∑

i=1

δi
∂

∂θj
log{αi(Xi, θ)}+

n∑
i=1

∂

∂θj
log{Si(Xi, θ)}. (4.12)

It was mentioned that the data (4.1) can be given in the form (4.3). Let us
write lnL(θ) and U(θ) in terms of the processes Ni and Yi.
The trajectories of Ni have the form:

Ni(t) =
{

0, 0 ≤ t < Xi,
1, t ≥ Xi,

when δi = 1, and Ni(t) = 0 for all t ≥ 0 when δi = 0. So (see Appendix,
Section A.3):∫ ∞

0

log{αi(u, θ)}dNi(u) =
{

log{αi(Xi, θ)}, δi = 1,
0, δi = 0. = δi log{αi(Xi, θ)}.

(4.13)
The trajectories of Yi have the form:

Yi(t) =
{

1, 0 ≤ t ≤ Xi,
0, t > Xi.

So ∫ ∞

0

Yi(u)αi(u)du =
∫ Xi

0

αi(u)du = − log{Si(Xi, θ)}. (4.14)

The equalities (4.9),(4.12)-(4.14) imply that

lnL(θ) =
n∑

i=1

∫ ∞

0

log{αi(u, θ)}dNi(u)−
n∑

i=1

∫ ∞

0

Yi(u)αi(u, θ)du. (4.15)

Uj(θ) =
n∑

i=1

∫ ∞

0

∂

∂θj
log{αi(u, θ)}dNi(u)−

n∑
i=1

∫ ∞

0

Yi(u)
∂

∂θj
αi(u)du. (4.16)

4.4 Asymptotic properties of the maximum likelihood estimators

The asymptotic properties of the maximum likelihood estimator θ̂ are closely
related to the asymptotic properties of the score function U(θ).
Indeed, denote by θ0 the true value of the parameter θ. Using Taylor ex-

pansion of n−1/2Uj(θ) around θ0 in θ = θ̂, we obtain

−U(θ0) = U(θ̂)− U(θ0) =
(

∂

∂θj′
Uj(θ(j))

)
s×s

(θ̂ − θ0), (4.17)

where θ(j) are on the line segment between θ̂ and θ0. Set

I(θ) = (Ijj′)s×s =
(
− ∂

∂θj′
Uj(θ)

)
s×s

=
(
−∂

2 lnL(θ)
∂θj∂θj′

)
s×s

. (4.18)
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The equality (4.17) implies that

n1/2(θ̂ − θ0) =
(
− 1
n

∂

∂θj′
Ui(θ(j))

)−1

n−1/2U(θ0) =

(
− 1
n

∂

∂θj′
Uj(θ0)

)−1

n−1/2 U(θ0) + ∆ =
(
1
n
I(θ0)

)−1

n−1/2 U(θ0) + ∆.

(4.19)
Note that

Ijj′(θ) =
n∑

i=1

∫ ∞

0

∂2

∂θjθj′
log{αi(u, θ)}dNi(u)−

n∑
i=1

∫ ∞

0

Yi(u)
∂2

∂θjθj′
αi(u, θ)du.

(4.20)
If ∆ P→ 0 then the asymptotic distributions of the random variables

n1/2(θ̂ − θ0) and (
1
n
I(θ0))−1n−1/2U(θ0) (4.21)

are the same.
So if ( 1

n I(θ0))
−1 converges in probability to a nonrandom matrix then the

asymptotic properties of the maximum likelihood estimator θ̂ can be obtained
from the asymptotic properties of the score function U(θ).
Note that the components (4.16) of the score statistic can be written in the

form
Uj(θ) = Uj(∞, θ), (4.22)

where

Uj(t, θ) =
n∑

i=1

∫ t

0

∂

∂θj
log{αi(u, θ)}dMi(u, θ), (4.23)

and

Mi(t, θ) = Ni(t)−
∫ t

0

Yi(u)αi(u, θ)du. (4.24)

Set

U
(n)
j (t, θ) = n−1/2Uj(t, θ), H

(n)
ij (t, θ) = n−1/2 ∂

∂θj
log{αi(u, θ)}. (4.25)

Then

U
(n)
j (t, θ) =

n∑
i=1

∫ t

0

H
(n)
ij (u, θ)dMi(u, θ) (j = 1, · · · , s). (4.26)

If we are interested not only in the asymptotic distribution of the ML es-
timator θ̂ but also in goodness-of-fit, it is very useful to have asymptotic
properties not only of the random variable U(θ) but also of the stochastic
process U(·, θ) = (U1(·, θ), · · · , Us(·, θ))T .
The score statistics of the form

Uj(τ, θ) =
n∑

i=1

∫ τ

0

Hij(u, θ)}dMi(u, θ), (4.27)
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are obtained and in the case of semiparametric estimation using such models
as PH, AFT, GPH, CHSS, etc. Semiparametric estimation is used when the
baseline function of the model is completely unknown and is treated as an
unknown infinite-dimensional parameter. The functions H(n)

ij (u, θ) usually are
not deterministic, as here, but (left-continuous) stochastic processes.
The most asymptotic results can be obtained using the fact that the stochas-

tic processes Mi(t, θ) are martingales with respect to the filtration generated
by the data (see Appendix, Sections A.5, A.6). Under some assumptions on
the processes H(n)

ij (u, θ) the stochastic processes Uj(t, θ) are also martingales
or local martingales (see Appendix, Sections A.9, A.10). So the limit distri-
bution of the score statistics can be obtained by applying the central limit
theorem for martingales (see Appendix, Theorem A.7).
Proofs of the asymptotic properties of the ML estimators under indepen-

dent right censoring were given by Borgan (1984) and can also be found in
Andersen, Borgan, Gill and Keiding (1993, Section VI.1.11). We give only
some comments on the conditions of Borgan.
These conditions are:

a) There exists a neighborhood Θ0 of the true value θ0 of θ such that for
all i, θ ∈ Θ0 the derivatives of αi(u, θ) up to the third order with respect to θ
exist and are continuous in θ for θ ∈ Θ0, and the integrals∫ t

0

αi(u, θ)du

for any finite t may be three times differentiated with respect to θ ∈ Θ0 by
interchanging the order of integration and differentiation.

Indeed, these conditions are needed when writing the Taylor expansion
(4.17) and differentiating the score function by interchanging the order of
integration and differentiation.

b) There exists a positively definite matrix Σ0 = (σjj′)m×m such that

n−1
n∑

i=1

∫ ∞

0

∂ logαi(u, θ0)
∂θj

∂ logαi(u, θ0)
∂θj′

αi(u, θ0)Yi(u)du
P→ σjj′ , (4.28)

n−1
n∑

i=1

∫ ∞

0

(
∂ logαi(u, θ0)

∂θj

)2

1{|n−1/2 ∂ log αi(u,θ0)
∂θj

|≥ε}Yi(v)αi(u, θ0) du
P→ 0.

(4.29)

These are the conditions of the Theorem A.7 for the score function U(θ0) to
be asymptotically normal. The first condition is just condition on convergence
in probability of the predictable covariations of the score process and the
second is the Lindeberg condition. Theorem A.7 implies that under these
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conditions
n−1/2U(θ0)

D→ N(0,Σ0); as n→ ∞. (4.30)
The first condition (4.29) can be written in the following form:

n−1
n∑

i=1

∫ ∞

0

{
∂2αi(u, θ0)
∂θj∂θj′

− ∂2 log{αi(u, θ0)}
∂θj∂θj′

αi(u, θ0)
}
Yi(u)du

P→ σjj′ .

(4.31)
The equality (4.20) implies that

−n−1Ijj′(θ) = n−1
n∑

i=1

∫ ∞

0

{
∂2 αi(u, θ)
∂θj∂θj′

− ∂2 log{αi(u, θ)}
∂θj∂θj′

αi(u, θ)
}
Yi(u)du

−n−1
n∑

i=1

∫ ∞

0

∂2 log{αi(u, θ)}
∂θj∂θj′

dMi(u), (4.32)

whereMi are given by (4.24). By (4.31) the first term converges in probability
to σjj′). If

n−2
n∑

i=1

∫ ∞

0

(
∂2

∂θj∂θj′
log{αi(u, θ0)}

)2

αi(u, θ0)Yi(u)du
P→ 0. (4.33)

then by Corollary A.6 the second term of the right side of (4.32) converges in
probability to zero. So

n−1I(θ0)
P→ Σ0,

and
(n−1I(θ0)−1n−1/2U(θ0)

D→ N(0,Σ−1
0 ) as n→ ∞. (4.34)

If to the conditions a) and b) to add conditions under which ∆ D→ 0 then (cf.
(4.19))

n1/2(θ̂ − θ0)
D→ N(0,Σ−1

0 ).
These conditions are related with the third derivatives of the hazard functions
in the neighborhood of θ0 because ∆ shows the difference between the second
derivatives of the hazard functions (cf. 4.19) at the points θ(i) and θ0. So the
last group of conditions is

c) For any n and i there exist measurable functions gin and hin not depend-
ing on θ such that for all t ≥ 0

supθ∈Θ0 | ∂3 αi(u, θ)
∂θj∂θj′∂θj”

|≤ gin(u), (4.35)

and

supθ∈Θ0 | ∂
3 logαi(u, θ)
∂θj∂θj′∂θj”

|≤ hin(u), (4.36)

for all j, j′, j”. Moreover

n−1
n∑

i=1

∫ ∞

0

gin(u)Yi(u)du, n−1
n∑

i=1

∫ ∞

0

hin(u)αi(u, θ0)Yi(u)du,
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n−1
n∑

i=1

∫ ∞

0

(
∂2

∂θj∂θj′
log{αi(u, θ0)}

)2

αi(u, θ0)Yi(u)du

all converge in probability to finite quantities as n→ ∞, and, for all ε > 0

n−1
n∑

i=1

∫ ∞

0

hin(u)1{n−1/2h
−1/2
in

(u)≥ε}αi(u, θ0)Yi(u)du
P→ 0.

Theorem 4.1. (Borgan (1984)) Under independent right censoring and the
conditions a)-c) , with a probability tending to one, the equation U(θ) = 0 has
a solution θ̂ such that θ̂ P→ θ0,

n−1/2U(θ0)
D→ N(0,Σ0), n1/2(θ̂ − θ0)

D→ N(0,Σ−1
0 ), (4.37)

and the matrix Σ0 may be consistently estimated by n−1I(θ̂).

Theorem 4.1 implies that

U(θ0)T I−1(θ̂0)U(θ0)
D→ χ2(s). (4.38)

and
(θ̂ − θ0)T I(θ̂) (θ̂ − θ0)

D→ χ2(s), (4.39)
where χ2(s) denotes the chi-square law with s degrees of freedom. The statistic
at the left side of (4.38) is called the score statistic, and the statistic at the
left side of (4.39) is called the Wald statistic. (See, for example, Greenwood
and Nikulin (1996)).
The Wald statistic is asymptotically equivalent to the likelihood ratio statis-

tic 2(lnL(θ̂) − lnL(θ0)). It is seen from the following considerations. Using
Taylor expansion of ln(θ0) around θ̂, we have

2 (lnL(θ̂)− lnL(θ0)) = −2U(θ̂) + (θ̂ − θ0)T I(θ̂)(θ̂ − θ0) + δ =

(θ̂ − θ0)T I(θ̂)(θ̂ − θ0) + δ.

It can be shown that under the assumptions of Theorem 4.1 δ P→ 0, and hence

2 (lnL(θ̂)− lnL(θ0))
D→ χ2(m). (4.40)

So if n is large then the distribution of the the ML estimator θ̂ is approximated
by the normal law:

θ̂ ≈ N(θ0, nΣ−1
0 ), (4.41)

and the distributions of the Wald, score and likelihood ratio statistics are
approximated by the chi-square distribution with m degrees of freedom.
The covariance matrix nΣ−1

0 is estimated by I(θ̂).

4.5 Approximate confidence intervals

The delta method given in Appendix, Section A.15, gives a method of confi-
dence interval construction for reliability characteristics.
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Suppose that θ̂ = (θ̂1, · · · , θ̂s)T is an estimator of θ = (θ1, · · · , θs)T and it is
known that

an(θ̂ − θ) D→ Np(0,Σ−1
0 (θ)) as an → ∞. (4.42)

For example, θ̂ may be the maximum likelihood estimator.
Suppose that g : Rp → R is a function verifying the conditions of Theorem

A.10. This theorem implies that

an(g(θ)− g(θ̂)) D→ N(0, Jg(θ)Σ−1
0 (θ)JT

g (θ)), (4.43)

with

Jg(θ) =
(
∂g(θ)
∂θ1

, · · · , ∂g(θ)
∂θs

)T

.

If n is large then (4.42) implies that

θ̂ ≈ Ns(θ,Σ−1(θ)) (4.44)

where
Σ(θ) = a2

nΣ0(θ).
The convergence (4.43) implies that

g(θ̂) ≈ Ns(g(θ), JT
g (θ)Σ

−1(θ)Jg(θ)), (4.45)

Suppose that a−2
n I(θ̂) is a consistent estimator of Σ0(θ).

We have
g(θ̂)− g(θ)

σg(θ̂)
≈ N(0, 1), (4.46)

where
σ2

g(θ̂) = JT
g (θ̂)I

−1(θ̂)Jg(θ̂). (4.47)
This may be used to construct (see, for example, Bagdonavičius, Nikoulina
and Nikulin (1997)) an approximated confidence interval for g(θ). The most
used functions in this book functions

g(θ) = S(t, θ), g(θ) = tp(θ), g(θ) = m(θ),

i.e. the survival function, the p−quantile and the mean. The survival function
takes values in the interval (0, 1], so the approximation by the normal law is
improved by using the transformations

Q(t, θ) = ln
S(t, θ)

1− S(t, θ)
.

Taking into account that

(ln
u

1− u
)′ =

1
u(1− u)

and using (4.46), it is obtained that

Q(t, θ̂)−Q(t, θ)

σQ(θ̂)
≈ N(0, 1),
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where

σQ(θ̂) =
1

S(t, θ̂)(1− S(t, θ̂))
σg(θ̂). (4.48)

It implies that

P{Q(t, θ̂)− σQ(θ̂)w1−α/2 ≤ Q(t, θ) ≤ Q(t, θ̂) + σQ(θ̂)w1−α/2} ≈ 1− α,

where w1−α/2 is the (1 − α/2)-quantile of the standard normal law. Solving
the inequalities with respect to S(t, θ) we obtain that an approximated (1−α)-
confidence interval for the survival function is(

(1 +
1− S(t, θ̂)

S(t, θ̂)
eσQ(θ̂)w1−α/2)−1, (1 +

1− S(t, θ̂)

S(t, θ̂)
e−σQ(θ̂)w1−α/2)−1

)
.

(4.49)
Analogously, if

g(θ) = tp(θ) or g(θ) = m(θ)

then the function g takes positive values and the approximation is improved
by using the transformation

K(θ) = ln g(θ).

Taking into account that (lnu)′ = 1/u and using (4.46), it is obtained that

K(θ̂)−K(θ)

σK(θ̂)
≈ N(0, 1),

where

σK(θ̂) =
1

g(θ̂)
σg(θ̂). (4.50)

It implies an approximate (1− α)-confidence interval for g(θ):(
g(θ̂) exp{−σK(θ̂)w1−α/2}, g(θ̂) exp{σK(θ̂)w1−α/2}

)
. (4.51)

4.6 Some remarks on semiparametric estimation

Going through accelerated life models one can see (see Section 2.11) that
generally the cumulative hazard Ax(·) can be written as a functional of a
baseline function A(t), which does not depend on x(·), and a finite-dimensional
parameter θ:

Ax(·)(t) = g(t, θ, A(s), x(s), 0 ≤ s ≤ t),

and
∂

∂θ
log{αx(·)(t)} = w(t, θ, A(s), A′(s), A′′(s), x(s), 0 ≤ s ≤ t).

If for a concrete model the function A is completely unknown then this model
is semiparameric. It contains parametric submodels with A specified. Under
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any such submodel the parameter θ can be estimated by the parametric max-
imum likelihood estimator using the score function (cf. 4.23):

U(θ) =
n∑

i=1

∞∫
0

w(t, θ, A(s), A′(s), A′′(s), x(i)(s), 0 ≤ s ≤ t)×

{dNi(t)− Yi(t)dg(t, θ, A(s), x(i)(s), 0 ≤ s ≤ t)}, (4.52)

It will be seen in the following sections that if A is unknown then for any fixed
θ a consistent estimator Ã(·, θ) can be easily obtained using the martingale
property of the difference dNi(t) − Yi(t)dg(t, θ, A(s), x(i)(s), 0 ≤ s ≤ t), or
other considerations. This estimator may be explicit (AFT, PH, and many
other models) or defined recurrently (GPH, GAH, and other models). As a rule
A is a baseline cumulative hazards and Ã is some modification of the Nelson-
Aalen estimator (Appendix, Section A.13). The weights w do not depend on
A,A′, A′′ for the PH model and depend only on A for some models (GPH,
for example). In such a case the unknown function A is replaced in (4.52) by
the estimator Ã and modified score function for estimation of θ is obtained.
Under regularity conditions such estimator is semiparametrically efficient in
the sense that the asymptotic covariance matrix of n1/2(θ̂ − θ) under the
semiparametric model and under the worst parametric model coincide. Strict
definitions of semiparametric efficiency see in Andersen et al (1993) or Bickel
et al (1993).
For some models the weight depends also on α = A′, α′ = A′′, or both. In

such a case two ways are possible. Generally the properties of θ̂ do not depend
much on the weight and the first possibility is to replace the optimal weight w
by some appropriate simpler weight. An other way is to estimate the baseline
hazard α, sometimes α′ by some kernel estimators.
The final estimator of A is Â(t) = Ã(t, θ̂).
Estimators of reliability characteristics are obtained by replacing θ and A

by their estimations in the expressions of these characteristics.



CHAPTER 5

Parametric AFT model

5.1 Parametrization of the AFT model

Let
x(·) = (x0(·), ..., xm(·))T ,

be a possibly time-varying and multidimensional explanatory variable; here
x0(t) ≡ 1 and x1(·), ..., xm(·) are univariate explanatory variables.

Under the AFT model the survival function under x(·) is

Sx(·)(t) = S0

(∫ t

0

r(τ)dτ
)

. (5.1)

If the explanatory variables are constant over time then the model (5.1) is
written as

Sx(·)(t) = S0 (r(x)t) . (5.2)
The function r is parametrized in the following form:

r(x) = e−β
T z, (5.3)

where β = (β0, · · · , βm)T is a vector of unknown parameters and

z = (z0, · · · , zm)T = (ϕ0(x), · · · , ϕm(x))T

is a vector of specified functions ϕi, with ϕ0(t) ≡ 1.
Under the parametrized AFT model the survival function under x(·) is

Sx(·)(t) = S0

(∫ t

0

e−β
T x(τ)dτ

)
, (5.4)

and xj(·) (j = 1, . . . ,m) are not necessarily the observed explanatory vari-
ables. They may be some specified functions ϕj(x). Nevertheless, we use the
same notation xj for ϕj(x).

If the explanatory variables are constant over time then the model (5.4) is
written as

Sx(t) = S0

(
e−β

T x t
)
, (5.5)

and the logarithm of the failure time Tx under x may be written as

ln{Tx} = βTx + ε,

where the survival function of the random variable ε does not depend on x
and is S(t) = S0(ln t). Note that in the case of lognormal failure-time distri-
bution the distribution of ε is normal and we have the standard multiple linear
regression model.
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For time-varying explanatory variables the distribution of the random vari-
able

R =
∫ T(x·)

0

e−β
T x(τ)dτ

is parameter-free with the survival function S0(t)
Let us discuss the choice of the functions ϕi.

5.1.1 Interval valued explanatory variables

Suppose at first that the explanatory variables are interval-valued (load, tem-
perature, stress, voltage, pressure).

If the model (5.2) holds on E0, then for all x1, x2 ∈ E0

Sx2(t) = Sx1(ρ(x1, x2)t), (5.6)

where the function ρ(x1, x2) = r(x2)/r(x1) shows the degree of scale variation.
It is evident that ρ(x, x) = 1.

Suppose at first that x is one-dimensional. The rate of scale variation with
respect is defined by the infinitesimal characteristic (see Viertl (1988)):

δ(x) = lim
∆x→0

ρ(x, x + ∆x)− ρ(x, x)
∆x

= [log r(x)]′. (5.7)

So for all x ∈ E0 the function r(x) is given by the formula:

r(x) = r(x0) exp




x∫
x0

δ(v) dv


 , (5.8)

where x0 ∈ E0 is a fixed explanatory variable.
Suppose that δ(x) is proportional to a specified function u(x) :

δ(x) = αu(x).

In this case
r(x) = e−β0−β1ϕ1(x), (5.9)

where ϕ1(x) is the primitive of u(x), β0, β1 are unknown parameters.

Example 5.1. δ(x) = α, ϕ1(x) = x, i.e. the rate of scale changing is
constant. Then

r(x) = e−β0−β1x. (5.10)
It is the log-linear model.

Example 5.2. δ(x) = α/x, ϕ1(x) = lnx. Then

r(x) = e−β0−β1log x = α1x
β1 . (5.11)

It is the power rule model.

Example 5.3. δ(x) = α/x2, ϕ1(x) = −1/x. Then

r(x) = e−β0−β1/x = α1e
−β1/x. (5.12)
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It is the Arrhenius model.
Example 5.4. δ(x) = α/x(1− x), ϕ1(x) = ln x

1−x . Then

r(x) = e−β0−β1 ln x
1−x = α1

(
x

1− x

)−β1

, 0 < x < 1. (5.13)

It is the Meeker-Luvalle model (1995).
The Arrhenius model is used to model product life when the explanatory

variable is the temperature, the power rule model - when the explanatory
variable is voltage, mechanical loading, the log-linear model is applied in en-
durance and fatigue data analysis, testing various electronic components (see
Nelson (1990)). The model of Meeker-Luvalle is used when x is the proportion
of humidity.

If it is not very clear which of the first three models to choose, one can take
a larger class of models. For example, all these models are the particular cases
of the class of models determined by

δ(x) = αxγ

with unknown γ or, in terms of the function r(x), by

r(x) =

{
e−β0−β1(x

ε−1)/ε, if ε �= 0;

e−β0−β1log x, if ε = 0.
(5.14)

In this case the parameter ε must be estimated.
The model (5.6) can be generalized. One can suppose that δ(x) is a linear

combination of some specified functions of the explanatory variable:

δ(x) =
k∑
i=1

αi ui(x).

In such a case

r(x) = exp

{
−β0 −

k∑
i=1

βizi(x)

}
, (5.15)

where zi(x) are specified functions of the explanatory variable, β0, . . . , βk are
unknown (possibly not all of them) parameters.

Example 5.5. δ(x) = 1/x + α/x2.
Then

r(x) = e−β0−β1log x−β2/x = α1xe
−β2/x, (5.16)

where β1 = −1. It is the Eyring model, applied when the explanatory variable
x is the temperature.

Example 5.6. δ(x) =
k∑
i=1

αi/x
i.

Then

r(x) = exp

{
−β0 − β1log x−

k−1∑
i=1

βi/x
i

}
. (5.17)
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It is the generalized Eyring model.
Suppose now that the explanatory variable x = (x1, · · · , xm) is multidimen-

sional.
If there are no interactions between x1, · · · , xm then the model

r(x) = exp


−β0 −

m∑
i=1

ki∑
j=1

βijzij(xi)


 , (5.18)

could be used; here zij(xi) are specified functions, βij are unknown parame-
ters.

Example 5.7. If the influence of the first explanatory variable is defined
by the power rule model and the influence of the second by the Arrhenius
model then we have the model

r(x1, x2) = exp {−β0 − β1log x1 − β2/x2} . (5.19)

So k1 = k2 = 1 here.
If there is interaction between the explanatory variables then complemen-

tary terms should be included.
Example 5.8. Suppose that there is interaction between the explanatory

variables x1 and x2 defined in Example 5.7. Then the model

r(x1, x2) = exp {−β0 − β1log x1 − β2/x2 − β3(log x1)/x2} . (5.20)

could be considered.

5.1.2 Discrete and categorical explanatory variables.

If the explanatory variables are discrete (number of simultaneous users of a
system, number of hardening treatments) then the form of the functions have
the same form as in the case of interval-valued explanatory variables, i.e. ϕj
may be ϕj(x) = x, ln x or 1/x.

If the jth explanatory variable is categorical (location, manufacturer, de-
sign) and take kj different values, then xj(·) is understood as a (kj − 1)-
dimensional vector

xj(·) = (xj1(·), ..., xj,kj−1(·))T ,
taking kj different values

(0, 0, · · · , 0)T , (1, 0, · · · , 0)T , (0, 1, 0, · · · , 0)T , · · · , (0, 0, · · · , 0, 1)T ,
and βj is (kj − 1)-dimensional:

βj = (βj1, ..., βj,kj−1)T .

So, if the jth explanatory variable is categorical, and others are interval-valued
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or discrete then

βTx = β0+β1x1+· · ·+βj−1xj−1+
kj−1∑
l=1

βjlxjl+βj+1xj+1+· · ·+βmxm. (5.21)

The obtained model is equivalent to the model (5.5) with m+kj−2 univariate
explanatory variables. If kj = 2, the explanatory variable xj is dichotomous,
taking two values 0 or 1.

5.2 Interpretation of the regression coefficients

Suppose that the explanatory variables are constant over time. Then under
the AFT model (5.5) the p-quantile of the failure time Tx is

tp(x) = eβ
T xS−1

0 (1− p), (5.22)

so the logarithm
ln{tp(x)} = βTx + cp (5.23)

is a linear function of the regression parameters; here cp = ln(S−1
0 (1− p)).

Let
m(x) = E{Tx}

be the mean life of units under x. Then

m(x) = eβ
T x

∫ ∞

0

S0(u)du (5.24)

and the logarithm
ln{m(x)} = βTx + c (5.25)

is also a linear function of the regression parameters; here

c = ln
{∫ ∞

0

S0(u)du
}

.

Denote by

MR(x, y) =
m(y)
m(x)

and QR(x, y) =
tp(y)
tp(x)

(5.26)

the ratio of means and quantiles, respectively.
For the AFT model

MR(x, y) = QR(x, y) = eβ
T (y−x). (5.27)

So eβ
T (y−x) is the ratio of means, corresponding to the explanatory variables

x and y.
Let us consider the interpretation of the parameters βj under the model(5.5).

5.2.1 Models without interactions

a) Interval-valued or discrete explanatory variables
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Suppose that the jth explanatory variable xj is interval-valued or discrete.
Then

eβj =
e(x1, ..., xj + 1, ..., xm)
e(x1, ..., xj , ..., xm)

= MRj , (5.28)

is the ratio of means corresponding to the change of xj by the unity.

b) Categorical explanatory variables

Suppose that xj = (xj1, ·, ..., xj,kj−1)T is categorical. Its first value is (0, · · · , 0)T
and the (i+1)th value is (0, · · · , 0, 1, 0, · · · , 0)T , where the unity is the ith co-
ordinate. Then

eβji =
e(x1, ..., xj−1, (0, 0, · · · , 0, 1, 0, · · · , 0), xj+1, ..., xm)

e(x1, ..., xj−1, (0, 0, · · · , 0), xj+1, ..., xm)
= MRji (5.29)

is the ratio of means corresponding to the change of xj from the first to the
(i + 1)th value.

5.2.2 Models with interactions

If the influence of the jth explanatory variable on the mean life is different
under various values of other explanatory variables then there is interaction
between the explanatory variables and the model must be modified.

a) Interaction between interval-valued or discrete explanatory variables

If there are two interval-valued or discrete explanatory variables and there
is interaction between them then

βTx = β0 + β1x1 + β2x2 + β3x1x2. (5.30)

For three explanatory variables

βTx = β0+β1x1+β2x2+β3x3+β4x1x2+β5x1x3+β6x2x3+β7x1x2x3, (5.31)

and so on.
In the case of two explanatory variables the ratio of means

MR2(x1) =
m(x1, x2 + 1)
m(x1, x2)

= eβ1+β3x1 (5.32)

depends on the value of x1.
So

eβ1+β3x1 (5.33)

is the ratio of means corresponding to the change of x2 by the unity, the other
explanatory variable being fixed and equal to x1

b) Interaction between interval-valued or discrete and categorical explana-
tory variables

Suppose that there are two explanatory variables: x1 is interval-valued or
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discrete and x2 is categorical, with k2 possible values. Then

βTx = β1x1 +
k2−1∑
i=1

β2ix2i +
k2−1∑
i=1

β12ix1x2i, (5.34)

and the mean ratio

MR2i(x1) =
e(x1, (0, ..., 0, 1, 0, · · · , 0))

e(x1, (0, ..., 0))
= eβ2i+β12ix1 (5.35)

depends on the value of x1.
So in this example

eβ2i+β12ix1

is the ratio of means corresponding to the change of x2 from the first to the
(i + 1)th value, other explanatory variable being fixed and equal to x1.

c) Interaction between categorical explanatory variables

Suppose that both x1 and x2 are categorical with three values for each.
Then

x1 = (x11, x12)T , x2 = (x21, x22)T ,

and
βTx = β11x11 + β12x12 + β21x21 + β22x22 + β1121x11x21+

β1122x11x22 + β1221x12x21 + β1222x12x22.

In this case the ratio

MR22(x1) =
e(x1, (1, 0))
e(x1, (0, 0))

= eβ21+β1121x11+β1221x12

depends on the value of x1 = (x11, x12)T .
So

eβ21+β1121x11+β1221x12

is the ratio of means corresponding to the change of x2 from the first to the sec-
ond value, other explanatory variable being fixed and equal to x1 = (x11, x12)T .

Generalization is evident if the explanatory variables take three or more
values.

5.2.3 Time dependent regression coefficients

Let us consider the AFT model with time dependent explanatory variables
(see section 2.8.1):

Sx(·) = G

{∫ t

0

e−β
T (u)x(u)du

}
. (5.36)

We shall consider the coefficients βi(t) in the form

βi(t) = βi + γigi(t), (i = 1, 2, ...,m),
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where gi(t) are some specified deterministic functions or realizations of pre-
dictable processes. In such a case the AFT model with time dependent coef-
ficients and constant or time dependent explanatory variables can be written
in the form (5.4) with different interpretation of the explanatory variables.
Indeed, set

θ = (θ0, θ1, · · · , θ2m)T = (β0, β1, · · · , βm, γ1, · · · , γm)T ,

z(·) = (z0(·), z1(·), · · · , z2m(·))T =

(1, x1(·), · · · , xm(·), x1(·)g1(·), · · · , xm(·)gm(·))T . (5.37)

Then

βT (u)x(u) = β0 +
m∑
i=1

(βi + γigi(t))xi(t) = θT z(u).

So the AFT model with the time dependent regression coefficients can be
written in the form

Sz(·) = G

{∫ t

0

e−θ
T z(u)du

}
. (5.38)

We have the AFT model where the unknown parameters and the explanatory
variables are defined by (5.37).

5.3 FTR data analysis: scale-shape families of distributions

5.3.1 Model and data

Let us consider the AFT model:

Sx(·)(t) = S0

(∫ t

0

e−β
T x(τ)dτ

)
, (5.39)

or the AFT model (5.36) with time dependent regression coefficients, and
suppose that S0 belongs to a specified scale-shape class of survival functions:

S0(t) = G0 {(t/η)ν} (η, ν > 0).

For example, if for t > 0

G0(t) = e−t, G0(t) = (1 + t)−1, G0(t) = 1− Φ(ln t),

then we obtain the families of the Weibull, loglogistic, lognormal distributions,
respectively. Here Φ is the distribution function of the standard normal law.

The parameter η can be included in the coefficient β0, so suppose that

S0(t;σ) = G0(t1/σ), σ = 1/ν.

Take notice that if the AFT model with time dependent regression coeffi-
cients βi(t) = βi + γigi(t) is considered, then, even in the case of constant
explanatory variables, the model (5.36) is reduced to the AFT model (5.38),
which is equivalent to (5.39) with time dependent explanatory variables z(·).
So all results obtained for the AFT model with time-dependent explanatory
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variables can be rewritten for the AFT model with time dependent regres-
sion coefficients and constant or time dependent explanatory variables. In all
formulas

m, β = (β1, · · · , βm)T , x(i)(·) = (x(i)
1 (·), · · · , x(i)

m (·))T
must be replaced by

2m, θ = (β1, · · · , βm, γ1, · · · , γm)T ,

z(i)(·) = (x(i)
1 (·), · · · , x(i)

m (·), x(i)
1 (·)g1(·), · · · , x(i)

m (·)gm(·))T
respectively.

Plan of experiments:
n units are observed. The ith unit is tested under the value

x(i)(·) = (x(i)
0 (·), ..., x(i)

m (·))T
of a possibly time-varying and multidimensional explanatory variable

x(·) = (x0(·), ..., xm(·))T .
The data are supposed to be independently right censored.
Let Ti and Ci be the failure and censoring times of the ith unit,

Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}.

Denote by Si the survival function Sx(i)(·). The model (5.4) may be written
in the form

Si(t;β, σ) = G0

{(∫ t

0

e−β
T x(i)(u)du

)1/σ
}

. (5.40)

If x(i) is constant then

Si(t) = G

(
ln t− βTx(i)

σ

)
, (5.41)

where
G(u) = G0(eu), u ∈ R.

Note that the distribution of the random variable

Ri =

{∫ T
x(i)(·)

0

e−β
T x(i)(τ)dτ

}1/σ

(5.42)

is parameter-free with the survival function G0. For the constant x(i):

Ri =
{
Tx(i)e−β

T x(i)
}1/σ

.

Set

g(u) = −G′(u), h(u) =
g(u)
G(u)

(5.43)

For the Weibull law:

G(u) = e−e
u

, g(u) = eue−e
u

, h(u) = eu, (lnh)′(u) = 1; (5.44)
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for the loglogistic law:

G(u) = (1 + eu)−1, g(u) =
eu

(1 + eu)2
,

h(u) = eu(1 + eu)−1, (lnh)′(u) = (1 + eu)−1; (5.45)

for the lognormal law:

G(u) = 1− Φ(u), g(u) = ϕ(u), h(u) =
ϕ(u)

1− Φ(u)
, (lnh)′(u) = h(u)− u,

(5.46)
with

ϕ(t) =
1√
2π

e−t
2/2.

5.3.2 Maximum likelihood estimation of the regression parameters

The likelihood function is

L(β, σ) =
n∏
i=1


 1

σ
e−β

T x(i)(Xi)

(∫ Xi

0

e−β
T x(i)(u)du

)−1

×

h

(
1
σ

ln(
∫ Xi

0

e−β
T x(i)(u)du)

)}δi

G

(
1
σ

ln(
∫ Xi

0

e−β
T x(i)(u)du)

)
. (5.47)

If x(i) are constant then the likelihood function is

L(β, σ) =
n∏
i=1

{
1

σXi
h

(
lnXi − βTx(i)

σ

)}δi

G

(
lnXi − βTx(i)

σ

)
. (5.48)

The score functions are

Ul(β;σ) =
∂ lnL(β, σ)

∂βl
=

1
σ

n∑
i=1

z
(i)
l (β)ai(β, σ) +

n∑
i=1

δi

(
z
(i)
l (β)− x

(i)
l (Xi)

)

(l = 0, 1, ...,m),

Um+1(β;σ) =
∂ lnL(β, σ)

∂σ
=

1
σ

n∑
i=1

{vi(β, σ)ai(β, σ)− δi}; (5.49)

here

vi(β, σ) =
1
σ

ln(
∫ Xi

0

e−β
T x(i)(u)du), ai(β, σ) = h(vi(β, σ))−δi(lnh)′(vi(β, σ)),

z
(i)
l (β) =

∫Xi

0
x

(i)
l (u)e−β

T x(i)(u)du∫Xi

0
e−βT x(i)(u)du

, (5.50)
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and the function h is given by (5.43). In the case of constant explanatory
variables the score functions are

Ul(β;σ) =
∂ lnL(β, σ)

∂βl
=

1
σ

n∑
i=1

x
(i)
l ai(β, σ), (l = 0, 1, ...,m),

Um+1(β;σ) =
∂ lnL(β, σ)

∂σ
=

1
σ

n∑
i=1

{vi(β, σ)ai(β, σ)− δi}, (5.51)

where

vi(β, σ) =
lnXi − βTx(i)

σ
, ai(β, σ) = h(vi(β, σ))− δi(lnh)′(vi(β, σ)),

(5.52)
and (lnh)′(u) is given in (5.43).
The maximum likelihood estimators β̂j , σ̂, are obtained by solving the sys-

tem of equations
Ul(β, σ) = 0 (l = 0, 1, ...,m + 1).

5.3.3 Estimators of the main reliability characteristics

Suppose that x(·) = (x1(·), · · · , xm(·))T is an arbitrary explanatory variable
which may be different from x(i)(·), (i = 1, · · · , n).

Estimator of the survival function Sx(·)(t):

Ŝx(·)(t) = G0

{(∫ t

0

e−β̂
T x(u)du

)1/σ̂
}

. (5.53)

In the case when x is constant, the estimator of the survival function Sx(t) is

Ŝx(t) = G

(
ln t− β̂Tx

σ̂

)
. (5.54)

If the AFT model with time dependent regression coefficients is considered
then

Ŝz(·)(t) = G0

{(∫ t

0

e−θ̂
T z(u)du

)1/σ̂
}

,

where
θ = (β1, · · · , βm, γ1, · · · , γm)T ,

z(i)(·) = (x(i)
1 (·), · · · , x(i)

m (·), x(i)
1 (·)g1(·), · · · , x(i)

m (·)gm(·))T .

Estimator of the p-quantile tp(x(·))

The estimator t̂p(x(·)) verifies the equation:
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G0



(∫ t̂p(x(·))

0

e−β̂
T x(u)du

)1/σ̂

 = 1− p. (5.55)

If x is constant then

t̂p(x) = eβ̂
T x{G−1

0 (1− p)}σ̂. (5.56)

Estimator of the mean failure time m(x(·)):

m̂(x(·)) =
∫ ∞

0

Ŝx(·)(u)du. (5.57)

If x is constant then

m̂(x) = σ̂eβ̂
T x

∫ ∞

0

uσ̂−1G0(u)du (5.58)

Estimators of the mean ratios

The mean ratio MR(x, y) (see (5.27)) is estimated by

M̂R(x, y) = eβ̂
T (y−x). (5.59)

1) Models without interactions.

a) Interval or discrete explanatory variable xj .

The mean ratio MRj , (see (5.28 )), is estimated by

M̂Rj = eβ̂j . (5.60)

b) Categorical explanatory variable xj .

The mean ratio MRji,(see (5.29)), is estimated by

M̂Rji = eβ̂ji . (5.61)

2) Models with interactions.

a) Interval-valued (discrete) × Interval (discrete) variables.
If two interval (discrete) explanatory variables, for example, x1 and x2 interact
then the mean ratio MR2(x1), (see (5.32 )), is estimated by

M̂R2(x1) = eβ̂1+β̂3x1 . (5.62)

b) Interval-valued (discrete) × categorical

If an interval (discrete) explanatory variable x1 interacts with a k2-valued
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categorical explanatory variable x2, then the mean ratio MR2i(x1), (see the
model (5.35 )), is estimated by

M̂R2i(x1) = eβ̂2i+β̂12ix1 . (5.63)

c) Categorical × categorical explanatory variables.
If two categorical explanatory variables x1 and x2 (with, say, 3 possible values)
interact, then the mean ratio MR22 is estimated by

eβ̂21+β̂1121x11+β̂1221x12 . (5.64)

5.3.4 Asymptotic distribution of the regression parameters estimators

Under regularity conditions (see Chapter 4) the distribution of the maximum
likelihood estimators (β̂, σ̂)T for large n is approximated by the normal law:

(β̂, σ̂)T ≈ Nm+2((β, σ)T ,Σ−1(β, σ)).

The covariance matrix Σ−1(β, σ) is estimated by

I−1(β̂, σ̂) = (I ls(β̂, σ̂))(m+2)×(m+2), (5.65)

where
I(β, σ) = (Ilk(β, σ))(m+2)×(m+2) (5.66)

is a matrix with the following elements:

Ils(β, σ) = −∂2 lnL(β, σ)
∂βl∂βs

, Il,m+1(β, σ) = −∂2 lnL(β, σ)
∂βl∂σ

,

Im+1,m+1(β, σ) = −∂2 lnL(β, σ)
∂σ2

(l, s = 0, · · · ,m).

In particular, the variance of the estimator β̂j is estimated by

V̂ar{β̂j} = Ijj(β̂, σ̂) (5.67)

and
β̂j − βj

(V̂arβ̂j)1/2
≈ N(0, 1), (j = 0, · · · ,m). (5.68)

The expressions for the elements of the matrix I(β, σ) are (see notation in
(5.50)):

Ils(β, σ) =
1
σ2

n∑
i=1

y
(i)
l (β)y(i)

s (β))ci(β, σ)− 1
σ

n∑
i=1

y
(i)
ls (β)(ai(β, σ) + σδi),

Il,m+1(β, σ) =
1
σ2

n∑
i=1

y
(i)
l (β)(vi(β, σ)ci(β, σ) + ai(β, σ)), l, s = 0, ...,m.

Im+1,m+1(β, σ) =
1
σ
Um+1(β, σ) +

1
σ2

n∑
i=1

vi(β, σ)(vi(β, σ)ci(β, σ) + ai(β, σ)),

(5.69)
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where
ci(β, σ) = h′(vi(β, σ))− δi(lnh)

′′
(vi(β, σ)),

y
(i)
ls (β) =

∫Xi

0
x

(i)
l (u)e−β

T x(i)(u)du
∫Xi

0
x

(i)
s (u)e−β

T x(i)(u)du(∫Xi

0
e−βT x(i)(u)du

)2

−
∫Xi

0
x

(i)
l (u)x(i)

s (u)e−β
T x(i)(u)du∫Xi

0
e−βT x(i)(u)du

. (5.70)

If x(i) are constant in time then

Ils(β, σ) =
1
σ2

n∑
i=1

x
(i)
l x(i)

s ci(β, σ),

Il,m+1(β, σ) =
1
σ
Ul(β, σ) +

1
σ2

n∑
i=1

x
(i)
l vi(β, σ)ci(β, σ),

Im+1,m+1(β, σ) =
1
σ
Um+1(β, σ) +

1
σ2

n∑
i=1

vi(β, σ)(vi(β, σ)ci(β, σ) + ai(β, σ)).

(5.71)
Take notice that in the case of time dependent regression coefficients m,β, x(i)

are replaced by 2m, θ, z(i).

5.3.5 Approximate confidence intervals for the main reliability
characteristics

The survival functions, quantiles, mean lifetimes, and mean ratios are func-
tions of the parameters β and σ. So the asymptotic distributions and approx-
imate confidence intervals for them are obtained by using the delta method.
Forms of approximate confidence intervals for such functions are given in
Chapter 4 (the formulas (4.49), (4.51)).

Approximate confidence intervals for the survival functions

The formula (4.49) implies that for any x(·) = (x0(·), x1(·), · · · , xm(·)) ∈ E0,
x0(·) = 1, an approximate (1−α)-confidence interval for the survival function
Sx(·)(t) is defined by the formula(

1 +
1− Ŝx(·)(t)

Ŝx(·)(t)
exp{±σ̂Qx(·)(t)w1−α/2}

)−1

, (5.72)

where wα is the α-quantile of the normal law N(0, 1) and (see (4.47), (4.48)
and (5.53))

σ̂2
Qx(·)(t) =

JTSx(·)(t)
I−1(β̂, σ̂)JSx(·)(t)

Ŝ2
x(·)(t)(1− Ŝx(·)(t))2

, (5.73)
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JTSx(·)(t) = −G′(G−1(Ŝx(·)(t)))
σ̂2
Qx(·)(t)

×
(
σ̂Qx(·)(t)

∫ t
0
xT (u)e−β̂

T x(u)du∫ t
0
e−β̂T x(u)du

, ln{
∫ t

0

e−β̂
T x(u)du}

)
.

If x is constant in time, then

JTSx(t) = −G′(G−1(Ŝx(t)))
σ̂2
Qx

(t)
×
(
σ̂Qx

(t)xT , ln t− β̂Tx
)
.

Approximate confidence intervals for the quantiles

The formula (4.51) implies that an approximate (1 − α)-confidence interval
for the p-quantile tp(x(·)) is

t̂p(x(·)) exp{±σ̂Kp(x(·))w1−α/2}, (5.74)

where (see (4.47), (4.50) and (5.22))

σ̂2
Kp(x(·)) =

1
t̂2p(x(·))

JTtp(x(·))I
−1(β̂, σ̂)Jtp(x(·)),

where

JTtp(x(·)) = eβ̂
T x(t̂p(x(·)))

(∫ t̂p(x(·))

0

x(u)e−β̂
T x(u)du, (G−1

0 (1− p))σ̂ lnG−1
0 (1− p)

)
.

For constant in time x we have

JTtp(x) = t̂p(x)(x, lnG−1
0 (1− p)).

Approximate confidence interval for the mean lifetime

The formula (4.51) implies that an approximate (1 − α)-confidence interval
for the mean lifetime m(x(·)) is

m̂(x(·)) exp
{
± σ̂m(x(·))(β̂, σ̂)

m̂(x(·)) w1−α/2

}
, (5.75)

where
σ̂2
m(x(·)) = JTm(x(·))I

−1(β̂, σ̂)Jm(x(·)),

Jm(x(·)) =
∫ ∞

0

JSx(·)(t)dt.

If x=const then

σ̂2
m(x)(β̂, σ̂) =

m+1∑
l=0

m+1∑
s=0

bl(β̂, σ̂)I ls(β̂, σ̂)bs(β̂, σ̂),



106 PARAMETRIC AFT MODEL

and

bi(β̂, σ̂) =
∂

∂β̂i
m̂(x) = m̂(x)xi (i = 0, 1, ...,m),

bm+1(β̂, σ̂) =
∂

∂σ̂
m̂(x) =

m̂(x)
σ̂

+ σ̂eβ̂
T x

∫ ∞

0

uσ̂−1G0(u) lnu du.

Approximated confidence intervals for the mean ratios

The formula (4.51) implies that an approximate (1 − α)-confidence interval
for the mean ratio MR(x, y) is:(

exp{β̂T (y − x)− σ̂MR}w1−α/2, exp{β̂T (y − x) + σ̂MR}w1−α/2
)
, (5.76)

where

σ̂2
MR =

m∑
l=0

m∑
s=0

(yl − xl)I ls(β̂, σ̂)(ys − xs). (5.77)

5.3.6 Tests for nullity of the regression coefficients

Let us consider the hypothesis

Hk1,k2,···,kl
: βk1 = · · · = βkl

= 0, (1 ≤ k1 ≤ k2 ≤ · · · ≤ kl). (5.78)

Under this hypothesis the explanatory variables xk1 , · · · , xkl
do not improve

the prediction. If Hk1,k2,···,kl
is verified, these variables are excluded from the

model. In particular case, the hypothesis

H1,2,···,m : β1 = · · · = βm = 0

means that none of the explanatory variables improve the prediction, i.e.
there is no regression. From the practical point of view the most interesting
hypothesis is

Hk : βk = 0, (k = 1, ...,m).

It means that the model with and without the explanatory variable xk gives
the same prediction.

Likelihood ratio test.

Let
L̂ = L(β̂, σ̂) = max

σ,β
L(β, σ) (5.79)

be the maximum of the likelihood function under the full model with m ex-
planatory variables and

L̂k1...kl
= max

σ,β:βk1=...=βkl
=0

L(β, σ) (5.80)
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be the maximum of the likelihood function under the hypothesis Hk1...kl
which

is the maximum of the likelihood function, corresponding to the model with
(m− l) explanatory variables {x1, ..., xm} \ {xk1 , ..., xkl

}.
If n is large then the distribution of the likelihood ratio statistic (see (4.40))

:

LR(∗) = −2 ln
L(β, σ)

L̂
(5.81)

is approximately chi-square with m+2 degrees of freedom. Under Hk1...kl
the

coefficients βk1 , · · · , βkl
are equal to zero in (5.81).

Similarly under Hk1...kl
the distribution of the likelihood ratio statistic

LR(∗∗) = −2 ln
L(β, σ)
L̂k1...kl

(5.82)

is approximately chi-square with m− l+2 degrees of freedom. The coefficients
βk1 , · · · , βkl

are equal to zero in (5.82).
It can be shown that the statistics

LR(∗∗) and LR(∗) − LR(∗∗)

are asymptotically independent.
Thus, under Hk1...kl

the distribution of the likelihood ratio test statistic

LRk1,...,kl
= −2 ln

L̂k1...kl

L̂
(5.83)

is approximated by the chi-square distribution with l = (m+2)− (m− l+2)
degrees of freedom when n is large.

The hypothesis Hk1...kl
: βk1 = ... = βkl

= 0 is rejected with the significance
level α if

LRk1,...,kl
> χ2

1−α(l); (5.84)

the hypothesis H12...m : β1 = ... = βm = 0 is rejected if

LR1,...,m > χ2
1−α(m);

the hypothesis Hk : βk = 0 is rejected if

LRk > χ2
1−α(1).

The statistic LRk is often used in stepwise regression procedures when the
problem of including or rejecting the explanatory variable xk is considered.

In the particular case the likelihood ratio test statistics may be used when
testing hypothesis about absence of interactions. For example, for the model
with

βTx = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + β6x2x3

the hypothesis H456 : β4 = β5 = β6 = 0 or H5 : β5 = 0 may be tested.
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Wald’s tests

Let Ak1..kl
(β̂, σ̂) be the submatrix of I−1(β̂, σ̂) which is in the intersection

of the k1, ..., kl rows and k1, ..., kl columns. Under Hk1,...,kl
and large n the

distribution of the statistic (see (4.39))

Wk1...kl
= (β̂k1 , ..., β̂kl

)TA−1
k1...kl

(β̂, σ̂)(β̂k1 , ..., β̂kl
)T

is approximated by the chi-square distribution with l degrees of freedom.
The hypothesis Hk1...kl

is rejected with the significance level α if

Wk1...kl
> χ2

1−α(l),

the hypothesis H12...m is rejected if

W1...m > χ2
1−α(m),

and the hypothesis Hk is rejected if

Wk =
β̂2
k

Ikk(β̂, σ̂)
=

β̂2
k

V̂ar (β̂k)
> χ2

1−α(1).

Score tests

If n is large then the distribution of the statistic (see (4.38)) :

(Uk1(β, σ), · · · , Ukl
(β, σ))T Ak1...kl

(β̂, σ̂) (Uk1(β, σ), · · · , Ukl
(β, σ))

is approximately chi-square with l degrees of freedom. Under Hk1...kl
the limit

distribution of this statistic does not change if (β, σ) (with the components
βi = 0 for i = k1, · · · , kl) is replaced by (β̃, σ̃) verifying the condition

L(β̃, σ̃) = max
σ,β:βk1=...=βkl

=0
L(β, σ).

So the score statistic is

Uk1...kl
= (Uk1(β̃, σ̃), · · · , Ukl

(β̃, σ̃))T Ak1...kl
(β̂, σ̂) (Uk1(β̃, σ̃), · · · , Ukl

(β̃, σ̃)).

The hypothesis Hk1...kl
is rejected with the significance level α if

Uk1...kl
> χ2

1−α(l).

5.3.7 Residual plots

Let us consider the random variables

R̂i =

(∫ Xi

0

e−β̂
T x(i)(u)du

)1/σ̂

,

called the standardized residuals. They are a particular case of more general
Cox-Snell residuals (see Cox and Snell(1968)).
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If x(i) are constant then

R̂i =
(
e−β̂

T x(i)
Xi

)1/σ̂

.

It was noted (see (5.42)) that the random variables

Ri =

(∫ Ti

0

e−β
T x(i)(u)du

)1/σ

are i.i.d. with the parameter-free survival function G0. So if n is large, the
random variables

R̃i =

(∫ Ti

0

e−β̂
T x(i)(u)du

)1/σ̂

are approximately i.i.d. with the parameter-free survival function. Not all R̃i

are observed when there is right censoring. So

R̂i = R̃i if δi = 1,

i.e. if the ith unit is not censored. Therefore the plot only of R̂i for which δi = 1
are used. The points (Xi, R̂i) with δi = 1 are dispersed around a horizontal
line in a horizontal band. Strong departures from linearlity or increasing (de-
creasing) width of the band indicate that the AFT model or parametrization
of this model may be false.

Another way of graphical model checking could be comparing the parameter-
free survival function G0 and its Kaplan-Meier (1958) estimator (see Ap-
pendix, Section A13) obtained from the residuals ε̂i.

In practice the residuals are at first transformed. Indeed, take notice that
the random variables with a specified parameter-free distribution G0 may be
transformed to the random variables with any other parameter-free distribu-
tion. So the residuals ε̂i are transformed in such a way that the Kaplan-Meier
estimator obtained from these transformed residuals estimates not G0 but the
survival function of some standard distribution such as uniform on (0, 1) or
the standard exponential.

The random variables
ε̂ui = 1−G0(R̂i)

are called the uniformly standardized residuals.
Denote by

SU (t) = t1(0,1)(t)
the survival function of the uniform distribution on (0, 1). The random vari-
ables

εui = 1−G0(Ri)
are i.i.d. with the survival function SU . So when n is large then

(ε̂u1 , δ1), · · · , (ε̂un, δn)
can be interpreted as right censored data corresponding to the survival dis-
tribution SU .
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Denote by ŜU the Kaplan-Meier (1958) estimator (see Appendix) of SU .
Under the AFT model and for i suh that δi = 1 the points

(ui, vi) = (ε̂ui , 1− Ŝ(ε̂ui )), (i = 1, · · · , n)
should be dispersed around the line

v = u, u ∈ [0, 1].

Strong departure from linearity indicates that the AFTmodel or its parametriza-
tion may be false.

Alternatively, the distribution G0 can be transformed to the standard ex-
ponential distribution E(1) with the survival function

SE(t) = e−t1(0,∞)(t).

The random variables

ε̂Ei = − ln[1−G0(R̂i)], (i = 1, · · · , n),
are called the exponentially standardized residuals. When n is large then

(ε̂Ei , δi), , (i = 1, · · · , n),
can be interpreted as right censored data corresponding to the survival distri-
bution SE . Denote by ŜE(t) the Kaplan-Meier estimator of SE(t). Under the
AFT model and for i such that δi = 1 the points

(ui, vi) = (ε̂Ei ,− ln[ŜE(ε̂Ei )]), (i = 1, · · · , n)
should be dispersed around the line

v = u, u ≥ 0.

Several examples of residual plots from actual data can be found in Meeker
and Escobar (1998).

5.4 FTR data analysis: generalized Weibull distribution

5.4.1 Model

Families of scale-shape distributions such as Weibull, loglogistic, lognormal
do not give ∪-shaped hazard rates.

A family which allows all possible forms of the hazard rate (constant, in-
creasing, decreasing, ∩-shaped, ∪-shaped) is the generalized Weibull distribu-
tion with the survival function

S0(t) = exp {1− (1 + (t/θ)ν)γ} (γ, θ, ν > 0).

If the AFT model with baseline generalized Weibull distribution is used, the
parameter θ can be included in the coefficient β0, so we suppose that

S0(t) = exp {1− (1 + tν)γ} (γ, ν > 0). (5.85)
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Under the AFT model the survival function Sx(i)(·) has the form

Si(t;β, ν, γ) = exp

{
1−

(
1 + (

∫ t

0

e−β
T x(i)(u)du)ν

)γ}
, (5.86)

and for the constant x(i)

Si(t;β, ν, γ) = exp
{
1−

(
1 + (e−β

T x(i)

t)ν
)γ}

. (5.87)

Set

fi(t, β, γ) =
∫ t

0

e−β
T x(i)(u)du.

5.4.2 Maximum likelihood estimation for the regression parameters

Similarly as in 5.1.5 we obtain the likelihood function

L(β, ν, γ) =
n∏
i=1

{
νγ (1 + (fi(Xi, β, γ))ν)

γ−1
e−β

T x(i)(Xi) (fi(Xi, β, γ))
ν−1

}δi

× exp {1− (1 + (fi(Xi, β, γ))ν)
γ} . (5.88)

If x(i) are constant then

L(β, ν, γ) =
n∏
i=1

{
νγe−νβ

T x(i)
Xi

ν−1
(
1 + (e−β

T x(i)
Xi)ν

)γ−1
}δi

×

exp
{
1−

(
1 + (e−β

T x(i)
Xi)ν

)γ}
. (5.89)

In the case of constant explanatory variables the score functions are

Ul(β, ν, γ) =
∂ lnL(β, ν, γ)

∂βl
= ν

n∑
i=1

x
(i)
l (γ ωi(β, ν, γ)− δiui(β, ν, γ))

(l = 0, · · · ,m),

Um+1(β, ν, γ) =
∂ lnL(β, ν, γ)

∂ν
=

D

ν
− 1

ν

n∑
i=1

(γ ωi(β, ν, γ)− δiui(β, ν, γ)) ln zi(β, ν),

Um+2(β, ν, γ) =
∂ lnL(β, ν, γ)

∂γ
=

D

γ
−

n∑
i=1

{(1 + zi(β, ν))γ − δi) ln(1 + zi(β, ν))} ,

(5.90)
where

D =
n∑
i=1

δi, zi(β, ν) =
(
e−β

T x(i)
Xi

)ν
,
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ui(β, ν, γ) = 1 + (γ − 1)
zi(β, ν)

1 + zi(β, ν)
,

ωi(β, ν, γ) = (1 + zi(β, ν))γ−1zi(β, ν). (5.91)

When the explanatory variables are time-varying the formulas are slightly
more complicated.

The maximum likelihood estimators β̂, ν̂, γ̂ are obtained by solving the
system of equations

Ul(β, ν, γ) = 0 (l = 0, 1, ...,m + 2).

5.4.3 Estimators of the main reliability characteristics

Suppose that x(·) is an arbitrary explanatory variable.

Estimator of the survival function Sx(·)(t):

Ŝx(·)(t) = exp

{
1−

(
1 + (

∫ t

0

e−β̂
T x(u)du)ν̂

)γ̂}
. (5.92)

If x is constant then

Ŝx(t) = exp
{
1−

(
1 + (e−β̂

T xt)ν̂
)γ̂}

. (5.93)

Estimator of the p-quantile

The estimator t̂p(x(·)) verifies the equation:

Ŝx(·)(t̂p(x(·))) = 1− p. (5.94)

If x is constant then

t̂p(x) = {(1− ln (1− p))1/γ̂ − 1}1/ν̂eβ̂
T x. (5.95)

Estimator of the mean failure time m(x(·)):

m̂(x(·)) =
∫ ∞

0

Ŝx(·)(u)du. (5.96)

If x is constant then

m̂(x) = eβ̂
T x+1

∫ ∞

0

exp{−(1 + uν̂)γ̂}du. (5.97)
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Estimators of the mean ratios

Estimators of the mean ratios have the same forms (5.59)-(5.64) as in the case
of the scale-shape family of distributions.

5.4.4 Asymptotic distribution of the regression parameters

The distribution of the maximum likelihood estimators (β̂, ν̂, γ̂)T for large n
is approximated by the normal law:

(β̂, ν̂, γ̂)T ≈ Nm+3((β, ν, γ)T ,Σ−1(β, ν, γ)). (5.98)

The covariance matrix Σ−1(β, ν, γ) is estimated by

I−1(β̂, ν̂, γ̂) = (I ls(β̂, ν̂, γ̂))(m+3)×(m+3), (5.99)

where
I(β, ν, γ) = (Ilk(β, ν, γ))(m+3)×(m+3) (5.100)

is a matrix of minus second partial derivatives of lnL(β, ν, γ) with respect
to its arguments. Under constant explanatory variables we have (the indices
l (l = 0, · · · ,m), m+1 and m+2 mean the derivatives with respect βl, ν and
γ, respectively):

Ils(β, ν, γ) =

ν2
n∑
i=1

x
(i)
l x

(i)
s

1 + zi(β, ν)
{γ ωi(β, ν, γ) (1 + γzi(β, ν))− δi (ui(β, ν, γ)− 1)} ,

Il,m+1(β, ν, γ) = −1
ν
Ul(β, ν, γ)−

n∑
i=1

x
(i)
l

ln zi(β, ν)
1 + zi(β, ν)

{γωi(β, ν, γ) (1 + γzi(β, ν))− δi (ui(β, ν, γ)− 1)} ,

Il,m+2(β, ν, γ) =

−ν

n∑
i=1

x
(i)
l

{
ωi(β, ν, γ) (1 + γ ln(1 + zi(β, ν)))− δi

zi(β, ν)
1 + zi(β, ν)

}
,

(l, s = 0, ...,m).
Im+1,m+1(β, ν, γ) =

1
ν
Um+1(β, ν, γ) +

1
ν2

n∑
i=1

ln2 zi(β, ν)
1 + zi(β, ν)

{γ ωi(β, ν, γ)(1 + γzi(β, ν))

−δi (ui(β, ν, γ)− 1)}+
1
ν2

n∑
i=1

ln zi(β, ν) {γ ωi(β, ν, γ)− δiui(β, ν, γ)} ,

Im+1,m+2(β, ν, γ) =

1
ν

n∑
i=1

zi(β, ν) ln zi(β, ν)
1 + zi(β, ν)

{(1 + zi(β, ν))γ + γ(1 + zi(β, ν))γ ln (1 + zi(β, ν))− δi} ,
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Im+2,m+2(β, ν, γ) =

D

γ2
+

n∑
i=1

(1 + zi(β, ν))γ ln2(1 + zi(β, ν)), (5.101)

In particular, the variances of the estimators β̂j , ν̂, γ̂ are estimated by

V̂ar{β̂j} = Ijj(β̂, ν̂, γ̂), V̂ar{ν̂} = Im+1,m+1(β̂, ν̂, γ̂),

V̂ar{γ̂} = Im+2,m+2(β̂, ν̂, γ̂).

5.4.5 Approximate confidence intervals for the main reliability
characteristics

Approximate (1 − α) confidence intervals for the survival function, the p-
quantile and the mean life under any x are obtained as in the case of the
scale-shape families of distributions with the only difference that the functions
Q and K contain m + 3 parameters instead of m + 2.

Approximate confidence intervals for the survival functions

For any x = (x0, x1, · · · , xm) ∈ E0, x0 = 1, an approximate (1−α)-confidence
interval for the survival function Sx(t) is defined by the formula(

1 +
1− Ŝx(t)
Ŝx)(t)

exp{±σ̂Qx
w1−α/2}

)−1

,

where wα is the α-quantile of the normal law N(0, 1) and

σ̂2
Qx

=
1

(1− Ŝx(t))2

m+2∑
l=0

m+2∑
s=0

al(β̂, ν̂, γ̂)I ls(β̂, ν̂, γ̂)as(β̂, ν̂, γ̂),

where

al(β̂, ν̂, γ̂) = −am+1(β̂, ν̂, γ̂) ν xl/(ln t− β̂Tx) (l = 0, · · · ,m),

am+1(β̂, ν̂, γ̂) = −γ (e−β̂
T xt)ν̂

(
1 + (e−β̂

T xt)ν̂
)γ̂−1

(ln t− β̂Tx),

am+2(β̂, ν̂, γ̂) = −(1− lnSx(t)) ln{1 + (e−β̂
T xt)ν̂}.

Approximate confidence intervals for the quantiles

An approximate (1− α)-confidence interval for the p-quantile tp(x) is

t̂p(x) exp{±σ̂Kp(x)w1−α/2},
where

σ̂2
Kp(x) =

m+2∑
l=0

m+2∑
s=0

bl(β̂, ν̂, γ̂) I ls(β̂, ν̂, γ̂) bs(β̂, ν̂, γ̂),
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where
bl(β̂, ν̂, γ̂) = xl (l = 0, 1, ...,m), bm+1(β̂, ν̂, γ̂) = 1,

bm+2(β̂, ν̂, γ̂) =

− 1
νγ2

ln(1− ln(1− p))(1− ln(1− p))1/γ̂
{
(1− ln(1− p))1/γ̂

}−1

.

Approximate confidence interval for the mean lifetime

An approximate (1− α)-confidence interval for the mean lifetime m(x) is

m̂(x) exp

{
± σ̂m(x)(β̂, σ̂)

m̂(x)
w1−α/2

}
,

where

σ̂2
m(x) =

m+2∑
l=0

m+2∑
s=0

cl(β̂, ν̂, γ̂) I ls(β̂, ν̂, γ̂) cs(β̂, ν̂, γ̂),

and
cl(β̂, ν̂, γ̂) = xlm(x) (l = 0, 1, ...,m),

cm+1(β̂, ν̂, γ̂) = −γeβ̂
T x+1

∫ ∞

0

uν̂(1 + uν̂)γ̂−1 exp{−(1 + uν̂)γ̂} lnu du,

cm+2(β̂, ν̂, γ̂) = −eβ̂
T x+1

∫ ∞

0

(1 + uν̂)γ̂ exp{−(1 + uν̂)γ̂} ln(1 + uν) du.

Approximated confidence intervals for the mean ratios

An approximate (1− α)-confidence interval for the mean ratio MR(x, y) is:(
exp{β̂T (y − x)− σ̂MR}w1−α/2, exp{β̂T (y − x) + σ̂MR}w1−α/2

)
,

where

σ̂2
MR =

m∑
l=0

m∑
s=0

(yl − xl)I ls(β̂, σ̂)(ys − xs).

5.4.6 Tests for nullity of the regression coefficients

All results of Section 5.3.6 are evidently reformulated for consideration in this
section.

Likelihood ratio tests

The hypothesis Hk1...kl
: βk1 = ... = βkl

= 0 is rejected with the significance
level α if

LRk1,...,kl
> χ2

1−α(l), (5.102)
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where

LRk1,...,kl
= −2 ln

{maxν,γ,β:βk1=...=βkl
=0 L(β, ν, γ)

maxβ,ν,γ L(β, ν, γ)

}
(5.103)

Wald’s tests

The hypothesis Hk1...kl
is rejected with the significance level α if

Wk1...kl
> χ2

1−α(l), (5.104)

where

Wk1...kl
= (β̂k1 , ..., β̂kl

)TA−1
k1...kl

(β̂, ν̂, γ̂)(β̂k1 , ..., β̂kl
)T , (5.105)

and Ak1..kl
(β̂, ν̂, γ̂) is the submatrix of I−1(β̂, ν̂, γ̂) which is in the intersection

of the k1, ..., kl rows and k1, ..., kl columns.

Score tests

The hypothesis Hk1...kl
is rejected with the significance level α if

Uk1...kl
> χ2

1−α(l),

where

Uk1...kl
=

(Uk1(β̃, ν̃γ̃), · · · , Ukl
(β̃, ν̃, γ̃))T Ak1...kl

(β̂, ν̂, γ̂) (Uk1(β̃, ν̃, γ̃), · · · , Ukl
(β̃, ν̃, γ̃)),

and (β̃, ν̃, γ̃)) verifies the equality

L(β̃, ν̃, γ̃)) = max
ν,γ,β:βk1=...=βkl

=0
L(β, ν, γ).

5.4.7 Residual plots

All discussion of Section 5.3.7 holds and for the case of the generalized baseline
distribution with the only difference that the standartized residuals are defined
as

R̂i =

{
1 +

(∫ Xi

0

e−β̂
T x(i)(u)du

)ν}γ

− 1, (5.106)

and, when data is sufficiently large, are interpreted as failure or censoring
times from right censored data from the standard exponential distribution.
So here R̂E

i = R̂i and R̂U
i = 1− e−R̂i .

If x(i) are constant then

R̂i =
{
1 +

(
e−β̂

T x(i)
Xi

)ν}γ
− 1. (5.107)
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5.5 FTR data analysis: exponential distribution

5.5.1 Model

Suppose that the baseline survival distribution is exponential:

S0(t) = e−t/θ.

The parameter θ can be included in the coefficient β0, so we suppose that

S0(t) = e−t.

Under the AFT model the survival function Si = Sx(i)(·) and the hazard rate
αi = αx(i)(·) are

Si(t) = exp
{
−
∫ t

0

exp{−βTx(i)(u)}du
}

, αi(t) = e−β
T x(i)(t). (5.108)

Under constant x(i):

Si(t) = exp{− exp (−βTx(i))t}, αi(t) = e−β
T x(i)

. (5.109)

5.5.2 Maximum likelihood estimation of the regression parameters

The likelihood function is

L(β) =
n∏
i=1

{αi(Xi)}δi Si(Xi) =

exp

{
−

n∑
i=1

(
δiβ

Tx(i)(Xi) +
∫ Xi

0

exp{−βTx(i)(u)}du
)}

. (5.110)

For constant x(i):

L(β) = exp

{
−

n∑
i=1

(δiβTx(i) + e−β
T x(i)

Xi)

}
. (5.111)

The score functions are

Ul(β) =
∂ lnL(β)

∂βl
= −

n∑
i=1

(
δi x

(i)
l (Xi)−

∫ Xi

0

x
(i)
l (u) exp{−βTx(i)(u)}du

)
.

(5.112)
For constant x(i):

Ul(β) =
∂ lnL(β)

∂βl
= −

n∑
i=1

x
(i)
l (δi − e−β

T x(i)
Xi). (5.113)

Denote by β̂ the maximum likelihood estimator of β.
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5.5.3 Estimators of the main reliability characteristics

The estimators of the survival function Sx(t), the p-quantile tp(x) and the
mean m(x) are

Ŝx(t) = exp{−e−β̂
T xt}, t̂p(x) = −e−β̂

T x ln (1− p), m̂(x) = eβ̂
T x.
(5.114)

5.5.4 Asymptotic properties of the regression parameters

The law of β̂ for large n is approximated by the normal law:

β̂ ≈ N(β,Σ−1(β)).

The covariance matrix Σ−1(β) is estimated by

I−1(β̂) = (I ls(β̂))(m+1)×(m+1)

where
I(β̂) = (Ils(β̂)), (l, s = 0, ...,m),

and

Ils(β) = −∂2 lnL(β)
∂βl∂βs

=
n∑
i=1

∫ Xi

0

x
(i)
l (u)x(i)

s (u) exp {−βTx(i)(u)}du. (5.115)

For constant x(i):

Ils(β) =
n∑
i=1

x
(i)
l x(i)

s exp {−βTx(i)}Xi. (5.116)

5.5.5 Approximate confidence intervals for the main reliability
characteristics

Set

û = (
m∑
l=0

m∑
s=0

xlxsI
ls(β̂))1/2. (5.117)

Approximate (1− α)-confidence interval for Sx(t):

(
1 +

1− Ŝx(t)
Ŝx(t)

exp{±σ̂Qx
w1−α/2}

)−1

. (5.118)

where

σ̂Qx
=

ln{Ŝx(t)}
1− Ŝx(t)

û.
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Approximate (1− α) confidence interval for tp(x):

t̂p(x) exp{±û w1−α/2}. (5.119)

Approximate (1− α)-confidence interval for the mean m(x):

m̂(x) exp{±û w1−α/2}. (5.120)

5.5.6 Tests for nullity of the regression coefficients

All results of Section 5.3.6 are evidently reformulated for consideration in this
section.

Likelihood ratio tests

The hypothesis Hk1...kl
: βk1 = ... = βkl

= 0 is rejected with the significance
level α if

LRk1,...,kl
> χ2

1−α(l), (5.121)

where

LRk1,...,kl
= −2 ln

{maxβ:βk1=...=βkl
=0 L(β)

maxβ L(β)

}
(5.122)

Wald’s tests

The hypothesis Hk1...kl
is rejected with the significance level α if

Wk1...kl
> χ2

1−α(l), (5.123)

where
Wk1...kl

= (β̂k1 , ..., β̂kl
)TA−1

k1...kl
(β̂)(β̂k1 , ..., β̂kl

)T , (5.124)

and Ak1..kl
(β̂) is the submatrix of I−1(β̂) which is in the intersection of the

k1, ..., kl rows and k1, ..., kl columns.

Score tests

The hypothesis Hk1...kl
is rejected with the significance level α if

Uk1...kl
> χ2

1−α(l),

where

Uk1...kl
= (Uk1(β̃), · · · , Ukl

(β̃))T Ak1...kl
(β̂) (Uk1(β̃), · · · , Ukl

(β̃)),

and β̃ verifies the equality

L(β̃) = max
β:βk1=...=βkl

=0
L(β).
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5.5.7 Residual plots

All discussion of Section 5.3.7 holds and for the case of the generalized baseline
distribution with the only difference that the standartized residuals are defined
as

R̂i =
∫ Xi

0

e−β̂
T x(i)(u)du, (5.125)

and, when data is sufficiently large, are interpreted as failure or censoring
times from right censored data from the standard exponential distribution.
So here R̂E

i = R̂i and R̂U
i = 1− e−R̂i .

If x(i) are constant then

R̂i = e−β̂
T x(i)

Xi. (5.126)

5.6 Plans of experiments in accelerated life testing

The purpose of ALT is to give estimators of the main reliability characteristics
under usual (design) stress using data of accelerated experiments when units
are tested at higher than usual stress conditions.

A stress x2(·) is higher than a stress x1(·), x2(·) > x1(·), if for any t ≥ 0 the
inequality Sx1(·)(t) ≥ Sx2(·)(t) holds and exists t0 > 0 such that Sx1(·)(t0) >
Sx2(·)(t0).

Denote by x0 = (x00, x01, · · · , x0m), x00 = 1, the usual stress.
If the AFT model holds on a set of stresses E then for any x(·) ∈ E:

Sx(·)(t) = S0

(∫ t

0

r{x(τ)}dτ
)

. (5.127)

If x(τ) ≡ x = const than
Sx(t) = S0(r(x)t). (5.128)

Generally accelerated life testing experiments are done under an one-dimensional
stress (m=1), sometimes under two-dimensional (m = 2).

Several plans of experiments may be used in ALT.

5.6.1 First plan of experiments

Let x1, ..., xk be constant over time accelerated stresses:

x0 < x1 < ... < xk;

here xi = (xi0, xi1, · · · , xim), xi0 = 1. The usual stress x0 is not used during
experiments.

k groups of units are tested. The ith group of ni units,
∑k

i=1 ni = n, is
tested under the stress xi. The data can be complete or independently right
censored.

If the form of the function r is completely unknown and this plan of exper-
iments is used, the function Sx0 can not be estimated even if it is supposed
to know a parametric family to which belongs the distribution Sx0(t).
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For example, if S0(t) = e−(t/θ)α

then for constant stresses

Sx(t) = exp
{
−
(
r(x)
θ

t

)α}
.

Under the given plan of experiments the parameters

α,
r(x1)

θ
, · · · , r(xk)

θ

and the functions Sx1(t), ..., Sxk
(t) may be estimated. Nevertheless, the func-

tion r(x) being completely unknown, the parameter r(x0) can not be writ-
ten as a known function of these estimated parameters. So r(x0) and, conse-
quently, Sx0(t) can not be estimated.

Thus, the function r must be chosen from some class of functions. Usually
the model

Sx(t) = S0(e−β
T xt), (5.129)

with x = (x0, · · · , xm)T , β = (β0, · · · , βm)T is used, where xj may be not
the stress components but some functions ϕj(x) of them. The form of the
functions ϕj(x) is discussed in Section 5.1.

The choice of the functions ϕj(x) is very important in accelerated life testing
because the usual stress is not in the region of the stresses used in the exper-
iment, and bad choice of the model may give bad estimators of the reliability
characteristics under the usual stress.

5.6.2 Second plan of experiments

In step-stress accelerated life testing the plan of experiments is as follows.
n units are placed on test at an initial low stress and if it does not fail in

a predetermined time t1, the stress is increased and so on. Thus, all units are
tested under the step-stress

x(τ) =




x1, 0 ≤ τ < t1,
x2, t1 ≤ τ < t2,
· · · · · ·
xk, tk−1 ≤ τ < tk;

(5.130)

here xj = (xj0, · · · , xjm)T , xj0 = 1, t0 = 0, tk = ∞.
In this case the function r(x) should be also parametrized because, even

when the usual stress is used until the moment t1, the data of failures occurring
after this moment do not give any information about the reliability under the
usual stress when the function r(x) is unknown.

Thus, the model

Sx(·)(t) = S0

(∫ t

0

e−β
T x(τ)dτ

)
(5.131)

should be used. For step-stresses it is written in the form (cf.(2.24)):if t ∈
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[ti−1, ti), i = 1, · · · , k

Sx(·)(t) = S0


1{i>1}

i−1∑
j=1

e−β
T xj (tj − tj−1) + e−β

T xi(t− ti−1)


 . (5.132)

As in the case of the first plan, xjl may be not the stress components but
some specified functions of them and good choice of these functions is also
very important.

5.6.3 Third plan of experiments

Application of the first two plans may not give satisfactory results because
assumptions on the form of the function r(x) are done. These assumptions
can not be statistically verified because of lack of experiments under the usual
stress.

If the function r(x) is completely unknown, and the coefficient of variation
(defined as the ratio of the standard deviation and the mean) of failure times
is not too large, the following plan of experiments may be used.

Suppose that the failure time under the usual stress x0 takes large values
and most of the failures occur after the moment t2 given for the experiment.

Two groups of units are tested:

a) The first group of n1 units under a constant accelerated stress x1;

b) The second group of n2 units under a step-stress: time t1 under x1, and
after this moment under the usual stress x0 until the moment t2, i.e. under
the stress:

x2(τ) =
{

x1, 0 ≤ τ ≤ t1,
x0, t1 < τ ≤ t2.

Units use much of their resources until the moment t1 under the accelerated
stress x1, so after the switch-up failures occur in the interval [t1, t2] even
under usual stress. The figure 5.1 illustrates this phenomenon. We denote by
fx0 , fx1 , and fx2 the densities of failure times under stresses x0, x1, and x2,
respectively. The area under fx0 in the interval [0, t2] is very small but the
area under fx2 in the interval [t1, t2] (when the units of the second group are
under the usual stress x0) is large.
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t1 r t1

fx1
fx2 fx0

t

Figure 5.1

The AFT model implies that

Sx1(u) = Sx0(ru),

where r = r(x1)/r(x0), and

Sx2(·)(u) =
{

Sx0(ru), 0 ≤ u ≤ t1,
Sx0(rt1 + u− t1), t1 < u ≤ t2,

or, shortly,
Sx2(·)(t) = Sx0(r(u ∧ t1) + (u− t1) ∨ 0), (5.133)

with a ∧ b = min(a, b) and a ∨ b = max(a, b).
It will be shown in the next chapter that if the third plan is used, and both

functions Sx0 and r(x) are completely unknown, semiparametric estimation
of Sx0 is possible.

The third plan may be modified. The moment t1 may be chosen as random.
The most natural is to choose t1 as the moment when the failures begin to
occur.

5.6.4 Fourth plan of experiments

If the failure-time distribution under the usual stress is exponential, exact
confidence intervals can be obtained using the following plan of experiments.

k groups of units are observed. The ith group of ni units is tested under
one-dimensional constant stress x(i) until the rith failure (ri ≤ ni) (type II
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censoring). The failure moments of the ith group are

Ti1 ≤ · · · ≤ Tiri
(i = 1, 2, · · · , k).

5.7 Parametric estimation in ALT under the AFT model

Suppose that the baseline survival function S0 in the AFT model (5.1) belongs
to a specified class of distributions.

Each of the above mentioned plans of experiments is a particular case of
the plan of experiments considered in Section 5.3.1.

The first plan is the particular case of that general plan taking

x(i) =




x1, i = 1, · · · , n1,
x2, i = n1 + 1, · · · , n1 + n2,
· · · · · ·
xk, i =

∑k−1
j=1 nj + 1, · · · , n,

(5.134)

where xj = (xj0, · · · , xjm) (i = 1, · · · , k).
Second plan: x(i)(·) = x(·) for any i = 1, · · · , n, where

x(τ) =




x1, 0 ≤ τ < t1,
x2, t1 ≤ τ < t2,
· · · · · ·
xk, tm−1 ≤ τ < tk,

(5.135)

and xj = (xj0, · · · , xjm) (i = 1, · · · , k).
Note the difference. In the case of the first plan the constant stress xj is

used all time of the experiment for the jth group of units. In the case of the
second plan the constant stress xj is used in the interval [tj−1, tj) for all units.

Third plan:
x(i)(τ) = x1, τ ≥ 0, (i = 1, · · · , n1);

x(i)(τ) =
{

x1, τ < t1,
x0, τ ∈ [t1, t2],

(i = n1 + 1, · · · , n), (5.136)

where xj = (xj0, · · · , xjm) (i = 1, 2).

5.7.1 Maximum likelihood estimation

First plan:

The likelihood function may have the forms (5.48) (shape-scale families of
distributions), (5.89) (generalized Weibull distribution), (5.111) (exponential
distribution). The score functions have, respectively, the forms (5.51), (5.90),
and (5.113).

Second plan:

The likelihood function may have the forms (5.47) (shape-scale families of
distribution), (5.89) (generalized Weibull distribution), (5.111) (exponential
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distribution). The score functions for the first and the third case have the
forms (5.49) and (5.113).Take notice that all integrals in the expressions of
the likelihood and score functions are sums, because the stress is piecewise
constant. For example, if Xi ∈ [tj−1, tj), (j = 1, · · · , k), then

∫ Xi

0

e−β
T x(i)(u)du = 1{j>1}

j−1∑
s=1

e−β
T xs(ts − ts−1) + e−β

T xj (Xi − tj−1),

and for l = 1, · · · ,m∫ Xi

0

x
(i)
l (u)e−β

T x(i)(u)du = 1{j>1}
j−1∑
s=1

xsl e
−βT xs(ts−ts−1)+e−β

T xj (Xi−tj−1).

Third plan:

The function r(x) is not parametrized and its form is supposed to be com-
pletely unknown. So we can not use expressions obtained for the parametrized
model in the previous sections.

Let us consider this plan when the failure time distribution under the usual
stress belongs to a family of shape-scale distributions:

Sx0(t) = S0 ((t/θ)
α) .

Under the AFT model

Sx(·)(t) = S0

{(∫ t

0

r{x(τ)}dτ/θ
)α}

,

where r(x0) = 1. It implies :

Sx1(t) = S0

((
rt

θ

)α)
, (5.137)

Sx2(·)(t) = S0 {((r(t1 ∧ t) + (t− t1) ∨ 0)/θ)α} , (5.138)

where r = r(x1).
Set

ρ = ln r, ψ = ln θ, S(t) = S0(et), f(t) = −S′(t), λ(t) = f(t)/S(t).
(5.139)

Then
Sx1(t) = S(α(ln t + ρ− ψ)); (5.140)

Sx2(·)(t) =
{

S(α(ln t + ρ− ψ)), t ≤ t1,
S(α(ln (eρt1 + t− t1)− ψ)), t > t1.

(5.141)

Denote by r2 the number of failures of the second group until the moment t1.
The likelihood function

L =
n1∏
j=1

f(α(lnT1j + ρ− ψ))
α

T1j

r2∏
j=1

f(α(lnT2j + ρ− ψ))
α

T2j
×
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m2∏
j=r2+1

f(α(ln (eρt1 + T2j − t1)− ψ))
α

eρt1 + T2j − t1
×

Sn2−m2(α(ln (eρt1 + t2 − t1)− ψ)). (5.142)

The maximum likelihood estimators verify the system of equations

Ui(α, ρ, ψ) = 0 (i = 1, 2, 3),

where

U1(α, ρ, ψ) =
∂ lnL

∂α
=

n1∑
j=1

(ln f)′(c(T1j))
c(T1j)

α
+

n1 + m2

α

+
r2∑
j=1

(ln f)′(c(T2j))
c(T2j)

α
+

m2∑
j=r2+1

(ln f)′(d(T2j))
d(T2j)

α
−(n2−m2)λ(d(t2))

d(t2)
α

,

U2(α, ρ, ψ) =
∂ lnL

∂ρ
=

n1∑
j=1

(ln f)′(c(T1j))α +
r2∑
j=1

(ln f)′(c(T2j))α

+
m2∑

j=r2+1

(ln f)′(d(T2j))
αeρt1

eρt1 + T2j − t1
−

m2∑
j=r2+1

eρt1
eρt1 + T2j − t1

− (n2 −m2)λ(d(t2))
αeρt1

eρt1 + t2 − t1
,

U3(α, ρ, ψ) =
∂ lnL

∂ψ
= −α


 n1∑
j=1

(ln f)′(c(T1j)) +
r2∑
j=1

(ln f)′(c(T2j))

+
m2∑

j=r2+1

(ln f)′(d(T2j))− (n2 −m2)λ(d(t2))


 , (5.143)

c(u) = α(lnu + ρ− ψ), d(u) = α(ln (eρt1 + u− t1)− ψ).

In the case of Weibull, loglogistic, and lognormal distributions:

(ln f)′(t) = et; (ln f)′(t) =
1− et

1 + et
; (ln f)′(t) = −t, (5.144)

respectively, and

λ(t) = et; λ(t) = (1 + e−t)−1; λ(t) =
ϕ(t)

1− Φ(t)
, (5.145)

respectively.

Fourth plan:

Suppose that the failure-time distribution under the usual stress is expo-
nential, i.e. the model (5.109) is considered.
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k groups of units are observed. The ith group of ni units is tested under
one-dimensional constant stress x(i) until the rith failure (ri ≤ ni) (type II
censoring). The failure moments of the ith group are

Ti1 ≤ · · · ≤ Tiri
(i = 1, 2, · · · , k).

The survival and the probability density functions under stress x(i) are

Sx(i)(t, β) = exp{−eβ
T x(i)

t}, px(i)(t, β) = eβ
T x(i)

exp{−eβ
T x(i)

t},
x(i) = (1, xi1), β = (β0, β1).

The likelihood function

L(β) =
k∏
i=1

ri∏
j=1

px(i)(Tij , β)Sni−ri

x(i) (Tiri
, β) =

k∏
i=1

rie
βT x(i)

exp{−eβ
T x(i)

Ui},

where

Ui =
ri∑
j=1

Tij + (ni − ri)Tiri
.

The score function is

U(β) =
k∑
i=1

x(i)(ri − eβ
T x(i)

Ui).

Set r =
∑k

i=1 ri. The ML estimator β̂1 of the parameter β1 verifies the equa-
tion

r −
∑k

i=1 rix1i

∑k
i=1 eβ̂1x1iUi∑k

i=1 x1ieβ̂1x1iUi
= 0, (5.146)

and
eβ̂0 =

r∑k
i=1 eβ̂1x1iui

. (5.147)

5.7.2 Estimators of the main reliability characteristics under the usual stress

First and second plans

Estimators of the survival function Sx0(t), p-quantile tp(x0), and the mean
failure time m(x0) under the usual stress x0 are calculated using the formulas
(5.54), (5.56), and (5.58) (shape-scale families of distributions), (5.93), (5.95),
and (5.97) (generalized Weibull distribution), (5.114) (exponential distribu-
tion), and taking x = x0 in all formulas.

Choosing specified family of shape-scale distributions and parametrization
of r(x), concrete formulas of estimators are obtained.
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Example 5.9. If Tx0 has the Weibull distribution, i.e.

Sx0(t) = e−(t/θ)ν

, t ≥ 0,

and the Arrhenius parametrization is choosed (for example, stress is temper-
ature), i.e.

r(x) = e−β0−β1/x,

then G(t) = exp{exp(−t)},

Ŝx0(t) = exp

{
− exp{ ln t− β̂0 − β̂1/x0

σ̂
}
}

, t̂p(x0) = eβ̂0+β̂1/x0(− ln (1− p))σ̂.

Example 5.10. If Tx0 has the loglogistic distribution, i.e.

Sx0(t) = (1 + (t/θ)ν)−1, t ≥ 0,

and the power rule parametrization is chosen (for example, stress is voltage),
i.e.

r(x) = e−β0−β1 ln x,

then
G(t) = (1 + et)−1,

So

Ŝx0(t) =

[
1 + exp

(
ln t− β̂0 − β̂1 lnx0

σ̂

)]−1

, t̂p(x0) = eβ̂0+β̂1 lnx0

(
p

1− p

)σ̂
.

Example 5.11. If Tx0 has the lognormal law and the Eyring parametriza-
tion is chosen, i.e.

r(x) = e−β0−β1 ln x−β2/x,

then G(t) = 1− Φ(t), and

Ŝx0(t) = 1− Φ

(
ln t− β̂0 − β̂1 lnx0 − β̂2/x0

σ̂

)
,

t̂p(x0) = eβ̂0+β̂1 ln x0+β̂2/x0+σ̂Φ−1(p).

Example 5.12. Suppose that the time-to-failure Tx0 has the Weibull law
and the stress x = (x1, x2)T is bidimensional (for example, voltage and tem-
perature) and the parametrization (5.19) is chosen. Then

Ŝx0(t) = exp

{
− exp

{
ln t− β̂0 − β̂1 lnx10 − β̂2/x20

σ̂

}}
,

t̂p(x0) = eβ̂0+β̂1 lnx10+β̂2/x20{− ln (1− p)}σ̂.

Third plan
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If α̂, ρ̂, ψ̂ are the maximum likelihood estimators of α, ρ, ψ then the estima-
tors of the survival function Sx0(t), the p-quantile tp(x0), and the mean life
m(x0) are

Ŝx0(t) = S(α̂(ln t− ψ̂)), t̂p(x0) = exp{ψ̂ +
1
α̂
S−1(1− p)},

m̂(x0) =
∫ ∞

0

Ŝx0(t)dt.

In the case of Weibull, loglogistic, and lognormal distributions

S−1(p) = ln (− ln (1− p)); S−1(p) = − ln (
1
p
− 1); S−1(p) = Φ−1(1− p),

respectively.

Fourth plan

Estimators of the survival function Sx0(t), p-quantile tp(x0), and the mean
failure time m(x0) under the usual stress x0 are calculated using the formulas
(5.114) (and taking x = x0) in all formulas.

5.7.3 Asymptotic distribution of the regression parameters

First plan

a) Shape-scale families of distributions

Under regularity conditions (see Chapter 4) the distribution of the maxi-
mum likelihood estimators (β̂, σ̂)T for large n is approximated by the normal
law:

(β̂, σ̂)T ≈ Nm+2((β, σ)T ,Σ−1(β, σ)), (5.148)
and the covariance matrix Σ−1(β, σ) is estimated by the random matrix

I−1(β̂, σ̂) = (I ls(β̂, σ̂))(m+2)×(m+2), (5.149)

where
I(β, σ) = (Ilk(β, σ))(m+2)×(m+2) (5.150)

is a matrix with the elements given by (5.71).

b) Generalized Weibull family of distributions

The distribution of the maximum likelihood estimators (β̂, ν̂, γ̂)T for large
n is approximated by the normal law:

(β̂, ν̂, γ̂)T ≈ Nm+3((β, ν, γ)T ,Σ−1(β, ν, γ)). (5.151)

The covariance matrix Σ−1(β, ν, γ) is estimated by

I−1(β̂, ν̂, γ̂) = (I ls(β̂, ν̂, γ̂))(m+3)×(m+3), (5.152)

where
I(β, ν, γ) = (Ilk(β, ν, γ))(m+3)×(m+3) (5.153)
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is a matrix with the elements given by (5.101).

c) Exponential distribution

The law of β̂ for large n is approximated by the normal law:

β̂ ≈ N(β,Σ−1(β)). (5.154)

The covariance matrix Σ−1(β) is estimated by

I−1(β̂) = (I ls(β̂))(m+1)×(m+1)

where
I(β̂) = (Ils(β̂)), (l, s = 0, ...,m),

is a matrix with the elements given by (5.116).

Second plan

a) Shape-scale families of distributions

The distribution of the maximum likelihood estimators (β̂, σ̂)T for large n
is approximated by the normal law (5.148), the covariance matrix Σ−1(β, σ)
is estimated by I−1(β̂, σ̂), and the elements of I(β, σ) are given by (5.69).

b) Exponential distribution

The distribution of the maximum likelihood estimator β̂ for large n is ap-
proximated by the normal law (5.154), the covariance matrix Σ−1(β) is esti-
mated by I−1(β̂), and the elements of I(β) are given by (5.115).

Third plan

Shape-scale families of distributions

The distribution of the maximum likelihood estimators (α̂, ρ̂, ψ̂) for large n
is approximated by the normal law:

(α̂, ρ̂, ψ̂) ≈ N3((α̂, ρ̂, ψ̂),Σ−1(α̂, ρ̂, ψ̂)),

and the covariance matrix Σ−1(α̂, ρ̂, ψ̂) is estimated by the random matrix

I−1(α̂, ρ̂, ψ̂) =
∥∥∥I ls(α̂, ρ̂, ψ̂)

∥∥∥
3×3

, (5.155)

and
I(α, ρ, ψ) = ‖Iij(α, ρ, ψ)‖3×3 (5.156)

is a symmetric matrix with the following elements :

I11 = −∂2 lnL

∂α2
= − 1

α2




n1∑
j=1

(ln f)′′(c(T1j))[c(T1j)]2 − n1 −m2

+
r2∑
j=1

(ln f)′′(c(T2j))[c(T2j)]2 +
m2∑

j=r2+1

(ln f)′′(d(T2j))[d(T2j)]2−
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(n2 −m2)λ′(d(t2))[d(t2)]2
}
,

I12 = I21 = −∂2 lnL

∂α∂ρ
= −

n1∑
j=1

(ln f)′′(c(T1j))c(T1j)−
r2∑
j=1

(ln f)′′(c(T2j))

−
m2∑

j=r2+1

(ln f)′′(d(T2j))d(T2j) + (n2 −m2)λ′(d(t2))
eρt1

eρt1 + t2 − t1

− 1
α
U2(α, ρ, ψ)− 1

α

m2∑
j=r2+1

eρt1
eρt1 + T2j − t1

,

I13 = I31 = −∂2 lnL

∂α∂ψ
=

n1∑
j=1

(ln f)′′(c(T1j))c(T1j) +
r2∑
j=1

(ln f)′′(c(T2j))c(T2j)

+
m2∑

j=r2+1

(ln f)′′(d(T2j))d(T2j)− (n2 −m2)λ′(d(t2))d(t2)− 1
α
U3(α, ρ, ψ),

I22 = −∂2 lnL

∂ρ2
= −α2

n1∑
j=1

(ln f)′′(c(T1j))− α2
r2∑
j=1

(ln f)′′(c(T2j))

−α2
m2∑

j=r2+1

(ln f)′′(d(T2j))
(

eρt1
eρt1 + T2j − t1

)2

−

m2∑
j=r2+1

[α(ln f)′(d(T2j))− 1]
eρt1(T2j − t1)

(eρt1 + T2j − t1)2

+(n2 −m2)λ′(d(t2))
(

αeρt1
eρt1 + t2 − t1

)2

+ (n2 −m2)λ(d(t2))
αeρt1(t2 − t1)

(eρt1 + t2 − t1)2
,

I23 = I32 = −∂2 lnL

∂ρ∂ψ
= α2




n1∑
j=1

(ln f)′′(c(T1j)) +
r2∑
j=1

(ln f)′′(c(T2j))

+
m2∑

j=r2+1

(ln f)′′(d(T2j))
eρt1

eρt1 + T2j − t1
− (n2 −m2)λ′(d(t2))

eρt1
(eρt1 + t2 − t1)


 ,

I33 = −∂2 lnL

∂ψ2
= −α2


 n1∑
j=1

(ln f)′′(c(T1j)) +
r2∑
j=1

(ln f)′′(c(T2j))

+
m2∑

j=r2+1

(ln f)′′(d(T2j))− (n2 −m2)λ′(d(t2))


 . (5.157)
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In the case of Weibull, loglogistic, and lognormal distributions

(ln f)′′(t) = et; (ln f)′′(t) =
−2et

(1 + et)2
; (ln f)′′(t) = −1, (5.158)

respectively, and

λ′(t) = et; λ′(t) =
et

(1 + et)2
; λ′(t) = −t

ϕ(t)
1− Φ(t)

+
(

ϕ(t)
1− Φ(t)

)2

, (5.159)

respectively. See also, for example, Meeker and Hahn (1978).

5.7.4 Confidence intervals for the main reliability characteristics

First and second plans

Approximate confidence intervals for the survival function Sx0(t), p-quantile
tp(x0), and the mean failure time m(x0) under the usual stress x0 are given in
Section 5.3.5 (shape-scale families of distributions), Section 5.4.5 (generalized
Weibull distribution), Section 5.5.5 (exponential distribution). Take x = x0

in all formulas.

Third plan

Approximate (1− α) confidence interval for Sx0(t)

(
1 +

1− Ŝx0(t)
Ŝx0(t)

exp{∓σ̂Q0w1−α/2}
)−1

,

where

σ̂Q0 = − S′(S−1(Ŝx0(t)))
Ŝx0(t)(1− Ŝx0(t))

×

(
(ln t− ψ̂)2I11(α̂, ρ̂, ψ̂)− 2α̂(ln t− ψ̂)I13(α̂, ρ̂, ψ̂) + α̂2I33(α̂, ρ̂, ψ̂)

)1/2

.

σ̂2
Kp

=
(
S−1(1− p)

α2

)2

I11 − S−1(1− p)
α2

I13 + I33.

Approximate (1− α) confidence interval for tp(x0)

t̂p(x0) exp{±σ̂Kp
w1−α/2},

σ̂2
Kp

=
(
S−1(1− p)

α2

)2

I11 − S−1(1− p)
α2

I13 + I33.
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Fourth plan

It is easy to show (cf. Lawless (1982)) that the random variables

X2
1 = 2eβ

T z(1)U1, · · · ,X2
k = 2eβ

T z(k)
Uk

are independent and the random variable X2
i is chi-square distributed with

2ri degrees of freedom.
Set

Ai = eβ̂i−βi (i = 0, 1).

The equalities (5.146) and (5.147) imply that A1 verifies the equation

r −
∑k

i=1 riz1i

∑k
i=1 Az1i

1 X2
i∑k

i=1 z1iA
z1i
1 X2

i

= 0,

and

A0 =
2r∑k

i=1 Az1i
1 X2

i

.

The last equalities imply that the vector (A0, A1) is a function of X2
1 , · · · ,X2

1 .
So the distribution of this vector is parameter-free.

Generating values of k independent chi-squared random variables X2
1 , · · · ,X2

k ,
the α-quantiles Cα of the random variable

C =
eβ̂z

(0)

eβz(0)
= A0A

z10
1

can be obtained. So the (1− α) confidence interval for eβx
(0)

is(
eβ̂x

(0)
/C1−α/2 , eβ̂x

(0)
/Cα/2

)
.

Hence,

(1− α)- confidence interval for the survival function Sx0(t):

(
exp{−eβ̂

T x(0)

Cα/2
t} , exp{− eβ̂

T x(0)

C1−α/2
t}
)

.

(1− α)- confidence interval for the p-quantile tp(x(0)) :

(
−Cα/2e

−β̂T x(0)
ln(1− p) , −C1−α/2e−β̂

T x(0)
ln(1− p)

)
.

(1− α)- confidence interval for the mean m(x(0)):

(
Cα/2e

−β̂T x(0)
, C1−α/2e−β̂

T x(0)
ln(1− p)

)
.
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The results of this chapter were explained also in Bagdonavičius and Nikulin
(1994, 1995), Gerville-Réache and Nikoulina (1999,2000), Bagdonavičius, Gerville-
Réache, Nikoulina and Nikulin (2000), Bagdonavičius, Gerville-Réache and
Nikulin (2001), Glaser (1984), Hirose (1987,1993,1997a,b), Khamis and Hig-
gins (1998), Klein and Basu (1981), Nelson and Macarthur (1992), Rodrigues,
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CHAPTER 6

Semiparametric AFT model

6.1 FTR data analysis

6.1.1 Introduction

Let us consider the AFT model:

Sx(·)(t) = S0

(∫ t

0

e−βT x(u)du

)
, (6.1)

and suppose that the baseline survival function S0 is completely unknown.
Note that the parameter β = (β1, · · · , βm)T and the vector of the explanatory
variables x(·) = (x1(·), · · · , xm(·))T have notm+1 (as in the case of parametric
models) butm coordinates, because the term βT

0 x0(t) ≡ β0 may be included in
the unknown function S0. So x1(·), · · · , xm(·) are one-dimensional explanatory
variables.
Suppose that n units are observed. The ith unit is tested under the ex-

planatory variable x(i)(·) = (x(i)
1 (·), ..., x(i)

m (·))T .
The data are supposed to be independently right censored and may be

presented in the form

(Xi, δi, x
(i)(t), 0 ≤ t ≤ Xi), (i = 1, · · · , n)

or

(Ni(t), Yi(t), x(i)(t), 0 ≤ t ≤ sup{s : Yi(s) > 0}), (i = 1, · · · , n).
Denote by Si and αi the survival and the hazard rate functions under x(i)(·).

Under the AFT model

αi(t;β) = α0

{∫ t

0

e−βT x(i)(u)du

}
e−βT x(i)(t),

where α0 = −S′
0/S0 is the baseline hazard function. If x(i) is constant then

αi(t, β) = α0

(
e−βT x(i)

t
)
e−βT x(i)

.

Take notice that if the AFT model

Sx(·)(t) = S0

(∫ t

0

e−βT (u) x(u)du

)
,

with time dependent regression coefficients βi(t) = βi + γigi(t) is considered,
then even in the case of constant explanatory variables it is reduced to the



136 SEMIPARAMETRIC AFT MODEL

AFT model (6.1) with explanatory variables z(·) instead of x(·), where
z(·) = (x1(·), · · · , xm(·), x1(·)g1(·), · · · , xm(·)gm(·))T

So all results obtained for the AFT model with time-dependent explanatory
variables can be rewritten for the AFT model with time dependent regres-
sion coefficients and constant or time dependent explanatory variables. In all
formulas

m, β = (β1, · · · , βm)T , x(i)(·) = (x(i)
1 (·), · · · , x(i)

m (·))T

must be replaced by

2m, θ = (β1, · · · , βm, γ1, · · · , γm)T ,
z(i)(·) = (x(i)

1 (·), · · · , x(i)
m (·), x(i)

1 (·)g1(·), · · · , x(i)
m (·)gm(·))T

respectively.

6.1.2 Semiparametric estimation of the regression parameters

If S0 is specified then the parametric maximum likelihood estimators of the
parameters βj are obtained by solving the system of equations

Uj(β) = 0, (j = 1, · · · ,m),

with (cf. (4.22))

Uj(β) =
n∑

i=1

∫ ∞

0

W
(i)
j (u, β) {dNi(u)− Yi(u) dA0{fi(u, β)}}, (6.2)

where

fi(t, β) =
∫ t

0

e−βT x(i)(v)dv, A0(t) = − ln{S0(t)}, W
(i)
j (t, β) =

∂

∂βj
log{αi(t, β)} = −x(i)

j (t)− α′
0 (fi(t, β))

α0 (fi(t, β))

∫ t

0

x
(i)
j (u)e−βT x(i)(u)du.

If S0 is unknown then the score functions Uj depend not only on β but also
on unknown functions A0, α0, and α′

0.
The idea of semiparametric estimation of β is to replace the unknown base-

line cumulative hazard function A0 in (6.2) by its efficient estimator (still
depending on β), and the weight function W

(i)
j (t, β) by a suitable function

which does not depend on the unknown baseline functions α0 and α
′
0. In

such a way the obtained modified score function does not contain unknown
infinite-dimensional parameters A0, α0 and α′

0 and contains only the finite-
dimensional parameter β.
The optimal weights depend on the derivative of the baseline hazard rate

for which estimation is complicated when the law is unknown. So simplest
weights

W
(i)
j (t, β) = x

(i)
j (t) (6.3)
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may be chosen. They are optimal when the baseline distribution is exponential
and do not depend on unknown parameters. The greater the stress at the
moment t the greater the weight at this moment.
Different weights do not influence much the efficiency of the estimators

but good choice of an estimator Ã0(t, β) (which should replace the baseline
cumulative hazard function A0 in (6.2)) is crucial.
The idea of the estimator Ã0(t, β) construction is as follows.
The random variables

T ∗
i (β) = fi(Ti, β) =

∫ Ti

0

e−βT x(i)(v)dv

have the same survival function S0. Set

C∗
i (β) = fi(Ci, β), X∗

i (β) = fi(Xi, β) = T ∗
i (β) ∧ C∗

i (β),

δ∗i = 1{T∗
i
(β)≤C∗

i
(β)} = δi.

Then the pairs
(X∗

1 (β), δ
∗
1), · · · , (X∗

n(β), δ
∗
n) (6.4)

may be considered as censored data from an experiment, in which all n units
have the same survival function S0 and cumulative hazard function A0. The
function A0 may be estimated by the Nelson-Aalen estimator Ã0(t, β)(see
Appendix, Section A14). This estimator depends on β because the data (6.4)
depend on β, and has the form

Ã0(t, β) =
∫ t

0

dN∗(u, β)
Y ∗(u, β)

=
n∑

i=1

∫ t

0

dNi(gi(u, β))∑n
l=1 Yl(gl(u, β))

, (6.5)

where gi(u, β) is the function inverse to fi(u, β) with respect to the first ar-
gument, and

N∗(t, β) =
n∑

i=1

N∗
i (t, β), N∗

i (t, β) = 1{X∗
i
(β)≤t,δ∗

i
=1} = Ni(gi(t, β)),

Y ∗(t, β) =
n∑

i=1

Y ∗
i (t, β), Y ∗

i (t, β) = 1{X∗
i
(β)≥t} = Yi(gi(t, β)).

Replacing the function A0 by Ã0(t, β) and using the weight (6.3) in (6.2), mod-
ified score functions Ũj(β), depending only on β, are obtained. The random
vector

Ũ(β) = (Ũ1(β), · · · , Ũm(β))T

has the form:

Ũ(β) =
n∑

i=1

∫ ∞

0

x(i)(u)
(
dNi(u)− Yi(u) dÃ0{fi(u, β)}

)
=

n∑
i=1

∫ ∞

0

{x(i)(u)− x̄(fi(u, β), β)}dNi(u), (6.6)
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where

x̄(v, β) =

∑n
j=1 x

(j)(gj(v, β))Yj(gj(v, β))∑n
j=1 Yj(gj(v, β))

. (6.7)

Note that it is calculated very simply:

Ũ(β) =
n∑

i=1

δi {x(i)(Xi)− x̄(fi(Xi, β), β)}.

If x(i) are constant then

Ũ(β) =
n∑

i=1

δi{x(i) − x̄(e−βT x(i)
Xi, β)}, (6.8)

where

x̄(u, β) =

∑n
j=1 x

(j)1{lnXj−βT x(j)≥lnu}∑n
j=1 1{lnXj−βT x(j)≥lnu}

.

We obtained the score function identical to the score function for the rank
estimator given by Lin and Geyer (1992).
If the parameter β is one-dimensional then the function (6.8) may have

jumps only at the points

lnXl − lnXl′

x(l) − x(l′) (x(l) �= x(l′)),

and is constant between them. If β is multi-dimensional then the function
U(β) may have jumps only on the hyper-planes

βT (x(l) − x(l′)) = lnXl − lnXl′ ,

and is constant in the regions bounded by them.
The values of the random vector Ũ(β) are dispersed around zero but may

be not equal to zero for all values of the parameter β. So an estimator of the
parameter β may be obtained by minimizing the distance of Ũ(β) from zero.
Denote by B0 ⊂ Rm a set such that for any β̃ ∈ B0 the value ||Ũ(β̃)|| is

minimizing the distance ||Ũ(β)|| of Ũ(β) from zero:

β̃ = Argminβ∈Rm ||Ũ(β)||.
When n is finite, the set B0 contains an infinite number of elements (see
comments after the formula (6.8)).
To have an unique estimator of the parameter β one may do as follows.
The value exp{βTx} (and βTx) shows the influence of the constant explana-

tory variable x on the lifetimes of units. Suppose that x(0) is a standard value
of the explanatory variable vector (for example the mean of all x(i) in FTR
analysis or the usual stress in ALT). An unique estimator of the parameter β
may be defined as

β̂ = Argmaxβ̃∈B0
(β̃Tx(0)) or β̂ = Argminβ̃∈B0

(β̃Tx(0)),
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or
β̂ =

(
Argminβ̃∈B0

(β̃Tx(0)) + Argmaxβ̃∈B0
(β̃Tx(0))

)
/2.

6.1.3 Estimators of the main reliability characteristics

Suppose that x(·) is an arbitrary explanatory variable which may be different
from x(i)(·), (i = 1, · · · , n).

Estimator of the survival function Sx(·)(t):

It was noted that the pairs (6.4) may be considered as censored data from
an experiment, in which all n units have the same survival function S0. So
at first the baseline survival function S0 is estimated by the Kaplan-Meier
estimator S̃0(t, β)(see Appendix, Chapter A14). This estimator depends on β
because the data (6.4) depend on β, and is the product integral (see Appendix,
Chapter A15)

S̃0(t, β) =π0≤s≤t

(
1− dÃ0(s, β

)
=

∏
j:δj=1,fj(Xj ,β)≤t

(
1− 1∑n

l=1 1{fl(Xl,β)≥fj(Xj ,β)}

)
. (6.9)

The formula (6.1) implies an estimator of the survival function Sx(·)(t):

Ŝx(·)(t) = S̃0

(∫ t

0

e−β̂T x(u)du, β̂

)
=

∏
j:δj=1,fj(Xj ,β̂)≤fx(·)(t,β̂)

(
1− 1∑n

l=1 1{fl(Xl,β̂)≥fj(Xj ,β̂)}

)
, (6.10)

where

fx(·)(t, β̂) =
∫ t

0

e−β̂T x(u)du. (6.11)

If x and x(i) are constant then

Ŝx(t) =
∏

j:δj=1,Xj≤t eβ̂T (x(j)−x)

(
1− 1∑n

l=1 1{Xl≥Xj exp{β̂T (x(l)−x(j))}}

)
.

(6.12)

Estimator of the p-quantile tp(x(·))
:

t̂p(x(·)) = sup{t : Ŝx(·)(t) ≥ 1− p}. (6.13)
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Estimator of the mean failure time m(x(·)):

m̂(x(·)) = −
∫ ∞

0

u dŜx(·)(u) =
n∑

j=1

δj gx(·)(fj(Xj , β̂), β̂)×

{S̃0(fj(Xj , β̂)−, β̂)− S̃0(fj(Xj , β̂), β̂)}, (6.14)
where gx(·)(t, β) is the function inverse to fx(·)(t, β) with respect to the first
argument, X0 = 0.
If x is constant then

m̂(x) =
n∑

j=1

δj e
β̂T (x−x(j))Xj{S̃0(e−β̂T (x(j−1)

Xj−, β̂)− S̃0(e−β̂T (x(j)
Xj , β̂)}

(6.15)
The estimator of the mean may be underestimated if the last X∗

i (β̂) is the
censoring time.

Estimators of the mean ratios

The mean ratio MR(x, y) (see (5.26)) is estimated by

M̂R(x, y) = eβ̂
T (y−x). (6.16)

6.1.4 Asymptotic distribution of the regression parameters estimators

Tsiatis (1990), Wei et al (1990), Ying (1993) (constant explanatory variables),
Robins and Tsiatis (1992), Lin and Ying (1995) (time-dependent explanatory
variables) give asymptotic properties of the regression parameters for random
right censored data. In all above mentioned papers, boundedness of the density
of the censoring variable is required.
In the case of accelerated life testing when type one censoring is generally

used, this condition does not hold. Bagdonavičius and Nikulin (2000b) give
asymptotic properties of the estimators under the third plan of experiments
(see Section 5.6.3).
The limit distribution of the score function Ũ is obtained using the The-

orem A7 because the score function (6.6) can be written as an integral of a
predictable process with respect to a martingale:

Ũ(β0) =
n∑

i=1

∫ ∞

0

{x(i)(u)− x̄(fi(u, β0), β0)}dMi(u, β0).

Under regularity conditions and constant explanatory variables

n−1/2Ũ(β0)
D→ N(0, B),

where
B =

∫ ∞

0

ϕ(u, β0) dA0(u),
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ϕ(u, β) = P limn−1
n∑

i=1

{x(i)(gi(u, β))− x̄(u, β)}⊗2Yi(gi(u, β)).

P lim denotes the limit in probability. If β �= β0 then

n−1Ũ(β) P→ U(β),

where U(β) is non-random function, U(β0) = 0.
If the score function Ũ(β) would be differentiable then using the Taylor

series expansion (cf. (4.17)), the result

n1/2(β̂ − β0) = (n−1 ∂

∂β
Ũ(β0))−1n−1/2Ũ(β0) + oP (1)

could be obtained under regularity conditions. Unfortunately, the score func-
tion Ũ(β) is a discrete function of β and the limit distribution of the estimator
β̂ can not be obtained using the Taylor series expansion. Instead, under reg-
ularity conditions (see the above mentioned papers) the matrix of derivatives
of the differentiable limit function U(β) can be used and the following result
holds:

n1/2(β̂ − β0) = (
∂

∂β
U(β0))−1n−1/2Ũ(β0) + oP (1).

Set C = ( ∂
∂βU(β0)). So

n1/2(β̂− β0) = C−1n−1
n∑

i=1

∫ ∞

0

{x(i)(u)− x̄(fi(u, β0), β0)}dMi(u, β0) + op(1).

(6.17)
Hence the asymptotic law of β:

n1/2(β̂ − β0)
D→ N(0, C−1BC−1). (6.18)

Expression of the matrix C under constant explanatory variables is

C =
∫ ∞

0

uϕ(u, β0) dα0(u) +B.

The asymptotic covariance matrix of β̂ involves the derivative of the baseline
hazard rate.
Estimator of the matrix B is evident

B̂ = n−1
n∑

i=1

∫ ∞

0

{x(i) − x̄(u, β̂)}⊗21{lnXi−β̂T x(i)≥lnu}dÃ0(u, β̂).

The matrix C could be estimated by

Ĉ = n−1
n∑

i=1

∫ ∞

0

u {x(i) − x̄(u, β̂)}⊗21{lnXi−β̂T x(i)≥lnu}α̃
′
0(u, β̂)du+ B̂,

where
α̃′

0(t, β̂) = b−2

∫ ∞

0

K ′{(t− u)/b}dÃ0(u)
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is a kernel function estimator of the derivative α′
0(t). Conditions on K, α0,

and the censoring mechanism should be established for consistence of the
estimator Ĉ.
Robins and Tsiatis (1992) propose other way: to estimate the matrix C by

numerical derivatives of n−1Ũ(β) at β̂:

Ĉ = (Ĉij)m×m, Ĉij =
1
2
n−1/2 Ũi(β̂ + n−1/2cjej)− Ũi(β̂ − n−1/2cjej)

cj
,

where e1 = (1, 0, · · · , 0), · · · , em = (0, 0, · · · , 1), and cj > 0 are fixed constants.
Unfortunately, as noted by Lin and Ying (1995), this approach can yield rather
different estimators for varying step sizes and will be unreliable in finite sample
since Ũi(β) are neither continuous nor monotone.

6.1.5 Tests for nullity of the regression coefficients.

Let us consider the hypothesis

Hk1,k2,···,kl
: βk1 = · · · = βkl

= 0, (1 ≤ k1 < k2 < · · · < kl). (6.19)

Set (see (6.10),(6.14) for the notations fi, gi)

gji(β) = gj{fi(Xi, β), β},
and

I(β) = (Isr(β))m×m

the matrix with the elements

Isr(β) =
n∑

i=1

δi




n∑
j=1

x(j)
s {gji(β)}x(j)

r {gji(β)}Yj{gji(β)}
n∑

j=1

Yj{gji(β)}−

n∑
j=1

x(j)
s {gji(β)}Yj{gji(β)}

n∑
j=1

x(j)
r {gji(β)}Yj{gji(β)}


 /


 n∑

j=1

Yj{gji(β)}



2

.

Lin and Ying (1995) proved that under the hypothesis H0
k1,k2,···,kl

: βk1 =
β0
k1
, · · · , βkl

= β0
kl
, random right censoring and some smoothness conditions on

the explanatory variables, the baseline density, its derivative, and the density
of the censoring variables, the score statistic

inf
βk1=β0

k1
,···,βkl

=β0
kl

,|β̂s−βs|≤ε,s �=k1,···,kl

ŨT (β)I−1(β̂)Ũ(β)

is asymptotically chi-square distributed with l degrees of freedom, for every
fixed ε > 0. So the hypothesis Hk1,k2,···,kl

is rejected with the approximate
significance level α if

Wk1...kl
> χ2

1−α(l);
here

Wk1...kl
= inf

βk1=···=βkl
=0,|β̂s−βs|≤ε,s �=k1,···,kl

ŨT (β)I−1(β̂)Ũ(β).
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If x(i) are constant then
Isr(β) =

n∑
i=1

δi

∑n
j=1 x

(j)
s x

(j)
r aji(β)

∑n
j=1 aji(β)−

∑n
j=1 x

(j)
s aji(β)

∑n
j=1 x

(j)
r aji(β)(∑n

j=1 aji(β)
)2 ,

where
aji(β) = 1{Xj≥eβT (x(j)−x(i))Xi}.

6.2 Semiparametric estimation in ALT

Suppose that the baseline survival function S0 in the AFT model (5.1) is
completely unknown. In Section 5 several plans of ALT were discussed.
The first plan of experiments ( Section 5.6.1 ) may be used when the function

r is parametrized and the model has the form (6.1).
The second plan (Section 5.6.2) can not be used because when S0 is un-

known and all units are tested under the same step-stress (5.131), then the
score function (6.6) does not depend on β.
If the third plan is used (Section 5.6.3), semiparametric estimation of the

survival function under the usual stress is possible even when both functions
S0 and r are unknown.
The fourth plan (Section 5.6.4) is used when the baseline distribution is

exponential. So it is not used when S0 is completely unknown.

6.2.1 First plan of experiments: parametrized r and unknown S0

The first plan is the particular case of the plan of experiments considered in
6.1.1, when x(i) have the form (5.134). So the score function has the form
(6.6).
Estimators of the main reliability characteristics under the usual stress x(0)

are defined by formulas (6.11)-(6.15), taking x(0) instead of x in all formulas.

6.2.2 Third plan of experiments: unspecified S0 and r

Suppose that the AFT model (5.1) holds. Redefining r(x) := r(x)/r(x0), this
model may be written:

Sx(·)(t) = Sx(0)

(∫ t

0

r{x(τ)}dτ
)
. (6.20)

Take notice that then r(x(0)) = 1.
Suppose that the functions r and S0(t) (or, equivalently, r and Sx(0)(t)) are

completely unknown, and the third plan of experiments is considered.
Let x(1) > x(0) be an accelerated constant stress.
Two groups of units are tested. The first group of n1 units is tested under
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the accelerated stress x(1) and a complete sample

T11 ≤ ... ≤ T1n1

is obtained. The second group of n2 units is tested under the step-stress

x(2)(u) =
{

x(1), 0 ≤ u ≤ t1,
x(0), t1 < u ≤ t2,

and a type I censored sample

T21 ≤ ... ≤ T2m2

is obtained (m2 ≤ n2).
Here m2 is the random number of failures of units of the second group.
The moment t1 is supposed to be such that after the switch-up from stress

x(1) to stress x(0), a sufficiently large number of failures under the usual stress
x(0) can be obtained in [t1, t2].
Set

Si = Sx(i) , αi = αx(i) , Ai = − lnSi, (i = 0, 1, 2),

fi(u, r) =
{

ru, i = 1,
r(u ∧ t1) + (u− t1) ∨ 0, i = 2,

gi(u, r) =
{

u/r, i = 1,
r(u ∧ t1) + (u− rt1) ∨ 0, i = 2.

Under the AFT model Si(u) = S0 (fi(u, r)). Analogously as in the case of the
first plan (cf.(6.5)) define the Nelson-Aalen type estimator

Ã0(s, r) =
2∑

i=1

∫ t

0

dNi(gi(u, r))∑n
l=1 Yl(gl(u, r))

=

∫ s

0

dN1(u/r) + dN2((u/r) ∧ t1 + (u− rt1) ∨ 0)
Y1(u/r) + Y2((u/r) ∧ t1 + (u− rt1) ∨ 0)

, (6.21)

and the Kaplan-Meier type estimator

S̃0(s, r) =
∏

(i,j)∈B(s)

(
1− 1

Y1(T1i) + Y2(t1 ∧ T1i + r((T1i − t1) ∨ 0))

)
×

(
1− 1

Y2(T2j) + Y1(t1 ∧ T2j + (T2j−t1
r ) ∨ 0)

)
, (6.22)

where

B(s) = {(i, j)| rT1i ≤ s, r(T2j ∧ t1) + (T2j − t1) ∨ 0 ≤ s}.
The modified score function (cf.(6.6)) is

Ũ(β) =
2∑

i=1

∫ ∞

0

x(i)(u)
(
dNi(u)− Yi(u) dÃ0{fi(u, β)}

)
=
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(x(0) − x(1))
∫ t2

t1

Y1(t1 + u−t1
r )dN2(u)− Y2(u)dN1(t1 + u−t1

r )
Y1(t1 + u−t1

r ) + Y2(u)
The score function is defined as follows:

Û(r) =
∫ t2

t1

Y1(t1 + u−t1
r )dN2(u)− Y2(u)dN1(t1 + u−t1

r )
Y1(t1 + u−t1

r ) + Y2(u)
, (6.23)

or

Û(r) =
∑

j:T2j>t1

Y1(t1 +
T2j−t1

r )

Y1(t1 +
T2j−t1

r ) + Y2(T2j)
−

∑
j:T1j>t1

Y2(t1 + r(T1j − t1))
Y1(T1j) + Y2(t1 + r(T1j − t1))

.

It is an increasing step function, Û(0) < 0, Û(∞) > 0 with the probability 1.
The estimator of the parameter r :

r̂ = Û−1(0) = sup {r : Û(r) ≤ 0}. (6.24)

The following initial estimator may be taken:

r̃ = (T2m2 − t1)/(T1k − t1),

where k satisfies the inequalities

k − 1
n1

<
m2

n2
≤ k

n1
.

It is implied by the equality (cf. (2.33))

r = (tx2(·)(p)− t1)/(tx1(p)− t1).

The survival function Sx0(t) is estimated by:

Ŝx0(t) = Ŝ0(t) = S̃0(t, r̂). (6.25)

The quantile tp(x(0)) is estimated by

t̂p(x(0)) = sup{t : Ŝx(0)(t) ≥ 1− p} (6.26)

and the mean time-to-failure m(x(0)) = E(Tx(0)) by

m̂(x(0)) = −
∫ ∞

0

udŜx(0)(u). (6.27)

6.2.3 Asymptotic properties of the estimators

Let us consider asymptotic properties of the estimator r̂. First we obtain the
asymptotic distribution of the function Û(r) which may be written in the
following way:

Û(r) =
∫ t2

t1

Ŝ2(u−)dŜ1(t1 + u−t1
r )− Ŝ1(t1 + u−t1

r −)dŜ2(u)

(n1/n)Ŝ1(t1 + u−t1
r −) + (n2/n)Ŝ(u−)

, (6.28)
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where Ŝi is the empirical survival function for the ith group of units:

Ŝi(u) = 1−Ni(u)/ni, u ≥ 0, i = 1, 2.

Suppose that n1/n → l1 ∈ (0, 1), n2/n → l2 = 1 − l1. Then (Appendix,
Section A.13)

an(Ŝi − Si)
D→ Vi on D[0, s], (6.29)

where
s ∈ [0,∞) (i = 1) or s ∈ [0, t2] (i = 2),

Vi is a mean zero Gaussian process such that for all 0 ≤ s1 ≤ s2 ≤ s:

Cov (Vi(s1), Vi(s2)) = l3−i(1− Si(s1))Si(s2), (i = 1, 2). (6.30)

Set

U(r) =
∫ t2

t1

S2(u)dS1(t1 + u−t1
r )− S1(t1 + u−t1

r )dS2(u)
l1S1(t1 + u−t1

r ) + l2S2(u)
. (6.31)

Proposition 6.1. Suppose that Si are absolutely continuous and Si(u) > 0
for all u ≥ 0. Then

an(Û(r)− U(r)) D→ W (r), (6.32)

where

W (r) =
∫ t2

t1

Z2(u)dV1(t1 +
u− t1

r
)− Z1(u)dV2(u)−

W1(u)d(l1S1(t1 +
u− t1

r
) + l2S2(u)),

Z1(u) = S1(t1 +
u− t1

r
)/(l1S1(t1 +

u− t1
r

) + l2S2(u)),

Z2(u) = (1− l1Z1(u))/l2,

W1(u) =
S2(u)V1(t1 + u−t1

r )− S1(t1 + u−t1
r )V2(u)

(l1S1(t1 + u−t1
r ) + l2S2(u))2

.

Proof. Set

Ẑ1(u) =
Ŝ1(t1 + u−t1

r −)
l1Ŝ1(t1 + u−t1

r −) + l2Ŝ2(u−)
, Ẑ2(u) = (1− l1Ẑ1(u))/l2.

Using (6.29) and the functional delta method (see Appendix, Theorem A.10)
we obtain

an(Ẑ1(·)− Z1(·)) D→ l2W1(·), an(Ẑ2(·)− Z2(·)) D→ −l1W1(·). (6.33)

Noting that
an(Û(r)− U(r)) =

an

{∫ t2

t1

Ẑ2(u)dŜ1(t1 +
u− t1

r
)− Z2(u)dŜ1(t1 +

u− t1
r

)−
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∫ t

t1

Ẑ1(u)dŜ2(u)− Z1(u)dŜ2(u)
}
,

using (6.29), (6.33) and the functional delta method for stochastic integrals
(Theorem A.11), we obtain (6.32).
Denote by r0 the true value of r under the AFT model. Under the AFT

model U(r0) = 0.

Proposition 6.2. Under assumptions of the proposition 6.1 and the AFT
model

anÛ(r0)
D→ W (r0), (6.34)

and
E{W (r0)} = 0, Var {W (r0)} = S2(t1)− S2(t2). (6.35)

Proof. Taking into account the equality S1(t1 + (u − t1)/r) = S2(u) for
u ≥ t1 we obtain

W (r0) = V1(t1 +
t2 − t1
r0

)− V1(t1)− V2(t2) + V2(t1)−
∫ t

t1

[V1(t1 +
u− t1
r0

)− V2(u)]d lnS2(u).

Calculation of Var {W (r0)} is tedious but elementary.
Remark 6.1. The proposition 4.2 implies that if n1 and n2 are large, then

P{−u1−α
2
< Û(r0) < u1−α

2
} ≈ 1− α,

where

u1−α
2
= w1−α

2

{
n

n1n2
(Ŝ2(t1)− Ŝ2(t2))

}1/2

,

w1−α
2
is the (1− α/2) quantile of the standard normal distribution, and

Ŝ2(s) = Ŝ0(r̂(s ∧ t1) + (s− t1) ∨ 0)

is the estimator of the survival function S2 = Sx2 .
So the approximating (1− α) confidence interval for r0 is (r, r̄), where

r = sup {r : Û(r) ≥ u1−α
2
}, r̄ = inf {r : Û(r) ≤ −u1−α

2
}. (6.36)

Proposition 6.3. Suppose that the densities fi = −S′
i are continuous and

positive on [0,∞[ (i = 1, 2). Then

an(r̂ − r0)
D→ W (r0)

U ′(r0)
. (6.37)

Proof. Under the assumption of the proposition the function U(r) is differen-
tiable and decreasing on [0,∞[ and U(r0) = 0.
Taking into account that r̂ = Û−1(0), r0 = U−1(0),

an(Û(r0)− U(r0)) = anÛ(r0)
D→ W (r0)
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and using the functional delta method (Theorem A12) we obtain (6.37).
Remark 6.2. It can be shown that

U ′(r0) = −(t2 − t1)α0(r0t1 + t2 − t1)S0(r0t1 + t2 − t1)+∫ t2−t1

0

v α0(r0t1 + v)dS0(r0t1 + v), (6.38)

where α0(u) = −S′
0(u)/S0(u) is the failure rate under the usual stress.

Let us consider the asymptotic properties of the estimator

Â0 = Ã0(s, r̂).

It can be written in the form : for s ∈ [0, r̂t1 + t− t1]

Â0(s) = −
∫ s

0

k1dŜ1(u/r̂) + k2dŜ2((u/r̂) ∧ t1 + (u− r̂t1) ∨ 0)
k1Ŝ1(u/r̂−) + k2Ŝ2((u/r̂) ∧ t1 + (u− r̂t1) ∨ 0−) (6.39)

and for s > r̂t1 + t2 − t1

Â0(s) = Â0(r̂t1 + t2 − t1)−
∫ s

r̂t1+t2−t1

dŜ1(u/r̂)
Ŝ1(u/r̂−)

, (6.40)

where k1 = n1/n, k2 = n2/n.

Proposition 6.4. Under the assumptions of the proposition 6.3

an(Â0(s)−A0(s))
D→ − W (r0)

r0U ′(r0)
{l1sα0(s) + l2(s ∧ (r0t1))α0(s ∧ (r0t1 + t2 − t1))}−

l1V1(s/r0)
S0(s)

− l2V2(( s
r0

∧ t1 + (s− r0t1) ∨ 0) ∧ t2)
S0(s ∧ (r0t1 + t2 − t1))

. (6.41)

Proof.
Using the functional delta method (Theorem A13) we obtain for all s ≥ 0

the convergence

an{Ŝ1(·/r̂)− S1(·/r0)} D→ Q1(·) on D(0, s) as n1 → ∞, (6.42)

where

Q1(u) = −W (r0)
U ′(r0)

u

r0
S′

0(u) + V1(u/r0).

Analogously,

an{Ŝ2(
·
r̂
∧ t1 + (· − r̂t1) ∨ 0)− S2(

·
r0

∧ t1 + (· − r0t1) ∨ 0)} D→ Q2(·), (6.43)

on D(0, r0t1 + t2 − t1), as n2 → ∞,

where

Q2(u) = −W (r0)
U ′(r0)

(
u

r0
∧ t1)S′

0(u) + V2(
u

r0
∧ t1 + (u− r0t1) ∨ 0).
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The results (6.42) and (6.43) imply

an{[k1Ŝ1(·/r̂−) + k2Ŝ2(
·
r̂
∧ t1 + (· − r̂t1) ∨ 0−)]−1−

[l1S1(·/r0) + l2S2(
·
r0

∧ t1 + (· − r0t1) ∨ 0)]−1} D→ − l1Q1(·) + l2Q2(·)
S2

0(·)
on D[0, r0t1 + t2 − t1] as ni → ∞, ki → li (i = 1, 2).

Using the functional delta method for stochastic integrals we obtain

an(Â0(s)−A0(s))
D→ − l1Q1(s) + l2Q2(s)

S0(s)
as ni → ∞, ki → li (i = 1, 2).

(6.44)
The right side of (6.44) may be written in the form (6.41).
If s > r0t1 + t2 − t1, we obtain

an(Â0(s)−A0(s))
D→ − l1Q1(r0t1 + t2 − t1) + l2Q2(r0t1 + t2 − t1)

S0(r0t1 + t2 − t1)
−

Q1(s)
S0(s)

+
Q1(r0t1 + t2 − t1)
S0(r0t1 + t2 − t1)

which may be written in the form (6.41).

Corollary 6.1. Under the assumptions of the proposition for all s ≥ 0

an(Â0(s)−A0(s))
D→ N(0, σ2

s), an(Ŝ0(s)−S0(s))
D→ N(0, σ2

sS
2
0(s)), (6.45)

an(t̂p(x0)− tp(x0))
D→ N(0, σ2

s/α
2
0(tp(x0))), (6.46)

where
σ2
s =(

l1sα0(s) + l2(s ∧ (r0t1))α0(s ∧ (r0t1 + t2 − t1))
r0U ′(r0)

)2

(S0(t1)−S0(r0t1+t2−t1))

+l1l2

(
l1(1− S0(s))

S0(s)
+

l2(1− S0(s ∧ (r0t1 + t2 − t1)))
S0(s ∧ (r0t1 + t2 − t1))

)
. (6.47)

Proof. Take s ∈ [0, r0t1 + t2 − t1]. Then

E {W (r0)(l1V1(s/r0) + l2V2((s/r0) ∧ t1 + (s− r0t1) ∨ 0))} = 0.

So the expression of σ2
s is obtained by using expressions of the variances

of W (r0), V1(s/r0) and V2((s/r0) ∧ t1 + (s− r0t1) ∨ 0) done by the formulas
(6.35) and (6.30) and from the result (6.41).
Take s > r0t1 + t2 − t1. Then

E
{
W (r0)

(
l2V2(t2)

S0(r0t1 + t2 − t1)
+

V1(s/r0)
S0(s)

)}
= 0.

The limit distribution of the estimator Ŝ0(t) is obtained by the delta method
using the fact that

Ŝ0(s) =π0≤u≤s(1− dÂ0(u)).
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The limit distribution of t̂p(x0) is obtained by using Theorem A.12.
Replacing the unknown functions S0 and α0 by their estimators Ŝ0 and α̂0

in (6.47), we obtain an estimator σ̂2
s of σ2

s . The function α0 is estimated by

α̂0(s) = b−1

∫ ∞

0

K(
s− u

b
)dÂ0(u) =

α̂0(s) = b−1

∫ ∞

0

K

(
s− u

b

)
dN1(u/r̂) + dN2((u/r̂) ∧ t1 + (u− r̂t1) ∨ 0)
Y1(u/r̂) + Y2[(u/r̂) ∧ t1 + (u− r̂t1) ∨ 0]

=

b−1




n1∑
j=1

K
(

s−r̂T1j

b

)
Y1(T1j) + Y2[T1j ∧ t1 + r̂(T1j − t1) ∨ 0]

+

m2∑
j=1

K( s−r̂(T2j∧t1)−(T2j−t1)∨0
b )

Y1(T2j ∧ t1 +
T2j−t1

r̂ ∨ 0) + Y2(T2j)


 ,

where K is the kernel function with the window size b. The derivative U ′(r0)
(see (6.47)) can also be estimated by the numerical derivative

1
2
n−1/2 Ũ(r̂ + n−1/2c)− Ũ(r̂ − n−1/2c)

c
,

where c is a positive constant.

6.2.4 Approximate confidence intervals

Approximate (1− α)-confidence interval for Sx0(s):

{
1 +

1− Ŝ0(s)
Ŝ0(s)

exp{± σ̂sw1−α
2

an(1− Ŝ0(s))
}
}−1

, (6.48)

where σ̂s is obtained by replacing the unknown functions S0 and α0 by their
estimators Ŝ0 and α̂0 in the expression (6.47).

Approximate confidence interval for the quantile tp(x0):

t̂p(x0) exp
{
∓ σ̂sw1−α

2

an t̂p(x0) α̂0{t̂p(x0)}

}
. (6.49)

6.2.5 Case of random moments of switch-up of stresses

The considered plan of experiments can be modified. In the preliminary ex-
periments the time interval in which failures begin to appear is unknown, and
the moment t1, when switch-up from x(1) to x(0) is done, is difficult to choose.
A better plan of experiments is to switch up at the random moment, for

example, at the moment of, say, kth failure of the tested group, i.e. when
failures really begin to appear.
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Suppose that two groups of units are tested: the first group of n1 units
are tested under the constant in time accelerated stress x1 and the complete
sample T11, · · · , T1n1 or in terms of order statistics

T1,(1) ≤ ... ≤ T1,(n1)

is obtained. The second group of n2 units is tested under stress x1 until the
kth failure and after this moment under usual stress x0 until the moment t,
i.e. under stress

x2(u) =
{

x1 if 0 ≤ u < T2,(k)

x0 if T2,(k) ≤ u ≤ t

and the type I censored sample

T2,(1) ≤ · · ·T2,(k) ≤ · · · ≤ T2,(m2)

is obtained (m2 ≤ n2).
The purpose, as before, is to estimate the reliability function S0 = Sx(0) ,

the p-quantile tp(x(0)), and the mean value m(x0) under usual stress x(0).
Denote by S1 = Sx(1) and S

(n2)
2 = S

(n2)

x(2)(·) the reliability functions of the
times-to-failure for the units of the first and the second groups, respectively,
by A

(n2)
2 = −lnS(n2)

2 -the cumulative failure rate function for the units of the
second group. Then

S
(n2)
2 (τ) = −

∫ ∞

0

P
(
T2i > τ |T2,(k) = u

)
dST2,(k)(u),

where T2j are the times to failure under stress x(2)(·) (possibly not all ob-
served), j = 1, · · · , n2. We suppose that T2j are absolutely continuous with
positive densities on [0,∞). Then there exist a survival function S2 such that

n
1/2
2 (S(n)

2 − S2)
D−→ 0 as n2 → ∞.

Denote by N1(u), N2(u) the numbers of observed failures in the interval
[0, u] and by Y1(u), Y2(u)-the numbers of units at risk just before the moment
u for the units of the first and the second group, respectively, r = r(x). Note
that r(x(0)) = 1. If the AFT model holds, the moment u under stress x0 is
equivalent to the moments u/r and (u/r) ∧ T2,(k) + (u − rT2,(k)) ∨ 0 under
stresses x(1) and x(2)(·), respectively. So the estimator (depending on r) of
the cumulative hazard rate function A0 = −ln{Sx(0)} is

Ã0(s, r) =
∫ s

0

dN1(ur ) + dN2

(
u
r ∧ T2,(k) + (u− rT2,(k)) ∨ 0

)
Y1(ur ) + Y2

(
u
r ∧ T2,(k) + (u− rT2,(k)) ∨ 0

) .

The estimator of the reliability function S0 is the product-integral

S̃0(s, r) =π0≤u≤s(1− dÃ0(u, r)).

Then the estimators for S1 and S2 are

S̃1(s, r) = S̃0(rs, r), S̃2(s, r) = S̃0(r(s ∧ T2,(k)) + (s− T2,(k)) ∨ 0, r).
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Under the AFT model the moment u under stress x2(·) is equivalent to the
moment

u ∧ T2,(k) +
u− T2,(k)

r
∨ 0

under stress x1. The score function is defined as

Û(r) =∫ ∞

0

Y1(u ∧ T2,(k) +
u−T2,(k)

r ∨ 0)dN2(u)− Y2(u)dN1(u ∧ T2,(k) +
u−T2,(k)

r ∨ 0)

Y1(u ∧ T2,(k) +
u−T2,(k)

r ∨ 0) + Y2(u)

=
m2∑
j=1

Y1(T2,(j) ∧ T2,(k) +
T2,(j)−T2,(k)

r ∨ 0)

Y1(T2,(j) ∧ T2,(k) +
T2,(j)−T2,(k)

r ∨ 0) + Y2(T2,(j))
−

n1∑
j=1

Y2(T1,(j) ∧ T2,(k) + r(T1,(j) − T2,(k)) ∨ 0)
Y1(T1,(j)) + Y2(T1,(j) ∧ T2,(k) + r(T1,(j) − T2,(k)) ∨ 0)

.

The function Û is an increasing step function of r. If we assume that times
to failure are absolutely continuous random variables with supports on [0,∞[,
then we have that Û(0) < 0, Û(∞) > 0 with the probability 1.
The estimator of the parameter r is defined in the following manner:

r̂ = Û−1(0) = sup {r : Û(r) ≤ 0}.
The cumulative failure-rate function A0 and the survival function S0 under

the usual stress can be estimated by

Â0(s) = Ã0(s, r̂), Ŝ0(s) = S̃0(s, r̂).

The estimators Â0(s) and Ŝ0(s) are

Â0(s) =
∫ s

0

dN1(ur̂ ) + dN2

[
u
r̂ ∧ T2,(k) + (u− r̂T2,(k)) ∨ 0

]
Y1(ur̂ ) + Y2

[
u
r̂ ∧ T2,(k) + (u− r̂T2,(k)) ∨ 0

] =

∑
j: T1,(j)≤ s

r̂

1
Y1(T1,(j)) + Y2[T1,(j) ∧ T2,(k) + r̂(T1,(j) − T2,(k)) ∨ 0]

+

∑
j: T2,(j)≤ s

r̂ ∧T2,(k)+(s−r̂T2,(k))∨0

1

Y1[T2,(j) ∧ T2,(k) +
T2,(j)−T2,(k)

r̂ ∨ 0] + Y2(T2,(j))
.

and

Ŝ0(s) =
∏

(i,j)∈B(s)

(
1− 1

Y1(T1,(i)) + Y2(T1,(i) ∧ T2,(k) + r̂(T1,(i) − T2,(k)) ∨ 0)

)
×

(
1− 1

Y2(T2,(j)) + Y1(T2,(j) ∧ T2,(k) +
T2,(j)−T2,(k)

r̂ ∨ 0)

)
,

where

B(s) = {(i, j)|r̂T1,(i) ≤ s; r̂(T2,(j) ∧ T2,(k)) + (T2,(j) − T2,(k)) ∨ 0 ≤ s}.
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The estimator of the mean time to failure under the normal stress x(0) :

m̂(x(0)) = −
∫ ∞

0

sdŜ0(s) = −
n1∑
i=1

r̂T1,(i)∆Ŝ0(r̂T1,(i))−
r2∑
i=1

r̂T2,(i)∆Ŝ0(r̂T2,(i))

−
m2∑

i=r2+1

(T2,(i) − T2,(k) + r̂T2,(k))∆Ŝ0(T2,(i) − T2,(k) + r̂T2,(k)).

The asymptotic properties of estimators are given in Bagdonavičius and Nikulin
(1999b). See also Duchesne (2000), Duchesne and Lawless (2000), etc.
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CHAPTER 7

The Cox or PH model

7.1 Introduction

Let

x(·) = (x1(·), ..., xm(·))T ,
be a possibly time-varying and multidimensional explanatory variable; here
x1(·), ..., xm(·) are one-variate explanatory variables.
Under the PH or Cox model the hazard rate under x(·) is

αx(·)(t) = r{x(t)}α(t). (7.1)

We shall consider only semiparametric estimation, because under the as-
sumption that the survival distribution under a specified value of the ex-
planatory variable x ∈ E1 belongs to any family considered in Chapter 1
(with exception of the exponential and Weibull families) the survival distri-
bution under any other value y ∈ E1 does not belong to the same family. In the
case of the exponential or Weibull distributions under constant explanatory
variables the PH model coincides with the AFT model. Parametric estimation
for the AFT model is considered in Chapter 5.

7.2 Parametrization of the PH model

The function r is parametrized in the following form:

r(x) = eβ
T z, (7.2)

where β = (β1, · · · , βm)T is a vector of unknown parameters and

z = (z1, · · · , zm)T = (ϕ1(x), · · · , ϕm(x)T

is a vector of specified functions ϕi. In what follows we use the same notation
xj for zj = ϕj(x).
The parametrized PH model has the form

αx(·)(t) = eβ
T x(t) α(t). (7.3)

The baseline hazard rate function α(t) is supposed to be unknown.
Let us discuss the choice of the functions ϕi.



156 THE COX OR PH MODEL

7.3 Interpretation of the regression coefficients

Suppose that the explanatory variables are constant over time.

7.3.1 Interval valued explanatory variables

Suppose at first that the explanatory variables are interval-valued (load, tem-
perature, stress, voltage, pressure).
If the model (7.3) holds on E0, then for all x1, x2 ∈ E0 the hazard ratio is

HR(x1, x2) = αx2(t)/αx1(t) = ρ(x1, x2), (7.4)

where ρ(x1, x2) = r(x2)/r(x1). It is evident that ρ(x, x) = 1.
Suppose at first that x is one-dimensional. The speed of hazard rate varia-

tion with respect to x is defined by the infinitesimal characteristic:

δ(x) = lim
∆x→0

ρ(x, x+∆x)− ρ(x, x)
∆x

= [log r(x)]′. (7.5)

So for all x ∈ E0 the function r(x) is given by the formula:

r(x) = r(x0) exp




x∫
x0

δ(v) dv


 , (7.6)

where x0 ∈ E0 is a fixed explanatory variable.
Suppose that δ(x) is proportional to a specified function u(x) :

δ(x) = αu(x).

In this case
r(x) = eβ0+β1ϕ1(x), (7.7)

where ϕ1(x) is the primitive of u(x), β0, β1 are unknown parameters.

So we have the model

αx(t) = eβ0+β1ϕ1(x) α(t).

Taking into consideration that the function α(t) is unknown, the parameter
β0 can be included in this function and the model

αx(t) = eβ1ϕ1(x) α(t) (7.8)

is obtained.
Example 7.1. δ(x) = α, ϕ1(x) = x. Then

r(x) = eβ1x. (7.9)

It is the log-linear model.
Example 7.2. δ(x) = α/x, ϕ1(x) = lnx. Then

r(x) = eβ1log x = xβ1 . (7.10)
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Example 7.3. δ(x) = α/x2, ϕ1(x) = 1/x. Then

r(x) = eβ1/x. (7.11)

Example 7.4. δ(x) = α/x(1− x), ϕ1(x) = ln x
1−x . Then

r(x) = eβ1 ln x
1−x =

(
x

1− x

)β1

, 0 < x < 1. (7.12)

The infinitesimal characteristic δ(x) may be taken as a linear combination
of some specified functions of the explanatory variable:

δ(x) =
k∑
i=1

αi ui(x).

In such a case

r(x) = exp

{
k∑

i=1

βizi(x)

}
, (7.13)

where zi(x) are specified functions of the explanatory variable, β1, . . . , βk are
unknown (possibly not all of them) parameters.

Example 7.5. δ(x) =
k∑
i=1

αi/x
i.

Then

r(x) = exp

{
β1log x+

k−1∑
i=1

βi/x
i

}
. (7.14)

Suppose now that the explanatory variable x = (x1, · · · , xm)T is multidi-
mensional.
If there is no interaction between x1, · · · , xm then the model

r(x) = exp




m∑
i=1

ki∑
j=1

βijzij(xi)


 , (7.15)

could be used; here zij(xi) are specified functions, βij are unknown parame-
ters.

Example 7.6. If the influence of the first explanatory variable is defined
as in Example 7.2 and the influence of the second as in Example 7.3 then we
have the model

r(x1, x2) = exp {β1log x1 + β2/x2} . (7.16)

So k1 = k2 = 1 here.
If there is interaction between the explanatory variables then complemen-

tary terms should be included.
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Example 7.7. Suppose that there is interaction between the explanatory
variables x1 and x2 defined in Example 7.6. Then the model

r(x1, x2) = exp {β1log x1 + β2/x2 + β3log x1/x2} . (7.17)

could be considered.

7.3.2 Discrete and categorical explanatory variables

If the explanatory variables are discrete then the form of the functions have
the same form as in the case of interval-valued explanatory variables, i.e. ϕj
may be ϕj(x) = x, ln x or 1/x.
If the jth explanatory variable is categorical and take kj different values,

then xj(·) is understood as a (kj − 1)-dimensional vector

xj(·) = (xj1(·), ..., xj,kj−1(·))T ,
taking kj different values

(0, 0, · · · , 0)T , (1, 0, · · · , 0)T , (0, 1, 0, · · · , 0)T , · · · , (0, 0, · · · , 0, 1)T ,
and βj is (kj − 1)-dimensional:

βj = (βj1, ..., βj,kj−1)T .

So, if the jth explanatory variable is categorical, and others are interval-valued
or discrete then

βTx = β0+β1x1+· · ·+βj−1xj−1+
kj−1∑
l=1

βjlxjl+βj+1xj+1+· · ·+βmxm. (7.18)

The obtained model is equivalent to the model (5.5) withm+kj−2 univariate
explanatory variables. If kj = 2, the explanatory variable xj is dichotomous,
taking two values 0 or 1.
Let us consider the interpretation of the parameters βj under the model(7.3).

7.3.3 Models without interactions

a) Interval-valued or discrete explanatory variables

Suppose that the jth explanatory variable xj is interval-valued or discrete.
Then

eβj =
α(x1,...,xj+1,...,xm)(t)
α(x1,...,xj ,...,xm)(t)

, (7.19)

is the ratio of hazard rates corresponding to the change of xj by the unity.

b) Categorical explanatory variables

Suppose that xj = (xj1, ·, ..., xj,kj−1)T is categorical. Its first value is (0, · · · , 0)T
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and the (i+1)th value is (0, · · · , 0, 1, 0, · · · , 0)T , where the unity is the ith co-
ordinate. Then

eβji =
α(x1,...,xj−1,(0,0,···,0,1,0,···,0),xj+1,...,xm)(t)

α(x1, ..., xj−1, (0, 0, · · · , 0), xj+1, ..., xm)(t)
(7.20)

is the ratio of hazard rates corresponding to the change of xj from the first to
the (i+ 1)th value.

7.3.4 Models with interactions

a) Interaction between interval-valued or discrete explanatory variables

If there are two interval-valued or discrete explanatory variables and there
is interaction between them then

βTx = β0 + β1x1 + β2x2 + β3x1x2. (7.21)

For three explanatory variables

βTx = β0+β1x1+β2x2+β3x3+β4x1x2+β5x1x3+β6x2x3+β7x1x2x3, (7.22)

and so on.
In the case of two explanatory variables the ratio of hazard rates is

α(x1,x2+1)(t)
α(x1,x2)(t)

= eβ1+β3x1 (7.23)

depends on the value of x1.
So

eβ1+β3x1 (7.24)

is the ratio of hazard rates corresponding to the change of x2 by the unity,
other explanatory variable being fixed and equal to x1

b) Interaction between interval-valued or discrete and categorical explana-
tory variables

Suppose that there are two explanatory variables: x1 is interval-valued or
discrete and x2 is categorical, with k2 possible values. Then

βTx = β1x1 +
k2−1∑
i=1

β2ix2i +
k2−1∑
i=1

β12ix1x2i, (7.25)

and the mean ratio
α(x1,(0,...,0,1,0,···,0))(t)

α(x1,(0,...,0))(t)
= eβ2i+β12ix1 (7.26)

depends on the value of x1.
So in this example

eβ2i+β12ix1 (7.27)
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is the ratio of hazard rates corresponding to the change of x2 from the first to
the (i+ 1)th value, other explanatory variable being fixed and equal to x1.

c) Interaction between categorical explanatory variables

Suppose that both x1 and x2 are categorical with three values for each.
Then

x1 = (x11, x12)T , x2 = (x21, x22)T ,

and
βTx = β11x11 + β12x12 + β21x21 + β22x22+

β1121x11x21 + β1122x11x22 + β1221x12x21 + β1222x12x22. (7.28)

In this case the ratio
α(x1,(1,0))

α(x1,(0,0))
= eβ21+β1121x11+β1221x12 (7.29)

depends on the value of x1 = (x11, x12)T .
So

eβ21+β1121x11+β1221x12 (7.30)

is the ratio of hazard rates corresponding to the change of x2 from the first
to the second value, other explanatory variable being fixed and equal to x1 =
(x11, x12)T .
Generalization is evident if the explanatory variables take three or more

values.

7.3.5 Time dependent regression coefficients

We shall consider the vector of regression coefficients β(t) in the form (5.37)
as was done for the AFT model, so the model (2.120) can be written as the
usual PH model:

αx(·)(t) = eθ
T z(t) α0(t),

where the unknown parameter and the explanatory variables are defined by
the formula (5.37).

7.4 Semiparametric FTR data analysis for the PH model

7.4.1 Model and data

Let us consider the PH model:

αx(·)(t) = eβ
T x(t) α(t). (7.31)

The baseline hazard rate function α(t) is supposed to be unknown.
In terms of the survival functions

Sx(·)(t) = exp
{
−

∫ t

0

eβ
T x(u)dA(u)

}
, (7.32)
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where

A(t) =
∫ t

0

α(u)du.

The parameter β = (β1, · · · , βm)T and the vector of the explanatory variables
x(·) = (x1(·), · · · , xm(·))T have m coordinates.

Data

n units are observed. The ith unit is tested under the value x(i)(·) =
(x(i)

1 (·), ..., x(i)
m (·))T of a possibly time-varying and multidimensional explana-

tory variable x(·).
The data are supposed to be right censored.
Let Ti and Ci be the failure and censoring times of the ith unit,

Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}.

In Chapter 4 was noted that right censored data may be presented in the form
(4.1) or (4.3).
Denote by Si and αi the survival and the hazard rate functions under x(i)(·).

Under the AFT model they have the forms:

Si(t;β) = exp
{
−

∫ t

0

eβ
T x(i)(u)dA(u)

}
, αi(t;β) = eβ

T x(i)(t)α(t). (7.33)

If x(i) is constant then

Si(t, β) = exp
{
−eβT x(i)

A(t)
}
= S(t)e

βT x(i)

, αi(t, β) = eβ
T x(i)

α0(t);
(7.34)

here S(t) = exp{−A(t)} is the baseline survival function.

7.4.2 Semiparametric estimation of the regression parameters

Two equivalent methods of semiparametric estimation of the regression pa-
rameters β are considered here. The idea of the first is the same as in the
case of the AFT model: write the parametric score function U and obtain the
modified score function from it by replacing the unknown baseline cumula-
tive hazard function A(t) by its estimator Ã(t, β) (depending on β). Another
method is to write the parametric likelihood function as a product of two fac-
tors: one depending only on β and other depending on both β and A. The first
factor is called the partial likelihood function. The estimator of the parameter
β is obtained by maximizing this function.
It is interesting to note that both methods give exactly the same estimators.

First method

If α is specified then under the model (3.2) the maximum likelihood estimator
of the parameter β is obtained by solving the system of equations

Uj(β) = 0, (j = 1, · · · ,m),
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where (see (4.22))

Uj(β) =
n∑
i=1

∫ ∞

0

∂

∂βj
log{αi(u, β)}{dNi(u)− Yi(u)αi(u, β)du}.

In the particular case of the PH model

log{αi(t, β)} = βTx(i)(t) + lnα(t),
∂

∂βj
log{αi(t, β)} = x

(i)
j (t).

So the functions Uj(β) can be written in the form

Uj(β) =
n∑
i=1

∫ ∞

0

x
(i)
j (u) {dNi(u)− Yi(u)eβ

T x(i)(u)} dA(u). (7.35)

If α is unknown then the score functions Uj depend not only on β but also
on the unknown function A.
The estimator Ã0(t, β) is implied by Theorem A.2:

E{Ni(t)} = E{
∫ t

0

Yi(u)αi(u, β)du} = E{
∫ t

0

Yi(u) eβ
T x(i)(u)dA(u)}. (7.36)

Set

S(0)(v, β) =
n∑
i=1

Yi(v) eβ
T x(i)(v). (7.37)

The equality (7.36) implies

E{N(t)} = E{
∫ t

0

S(0)(u, β)dA(u)}. (7.38)

This induces an estimator Ã(t, β) for A(t) defined by the equation:

N(t) =
∫ t

0

S(0)(u, β)dÃ(u, β).

So

Ã(t, β) =
∫ t

0

dN(u)
S(0)(u, β)

. (7.39)

Replacing the function A0 by Ã0(t, β) in (7.38), the modified score functions
Ũj(β), depending only on β, are obtained. The random vector

Ũ(β) = (Ũ1(β), · · · , Ũm(β))T

has the form:

Ũ(β) =
n∑
i=1

∫ ∞

0

x(i)(u){dNi(u)− Yi(u)eβ
T x(i)(u)} dN(u)

S(0)(u, β)
,

or, shortly,

Ũ(β) =
n∑
i=1

∫ ∞

0

{x(i)(u)− E(u, β)} dNi(u), (7.40)
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where

E(v, β) =
S(1)(v, β)
S(0)(v, β)

,

S(1)(v, β) =
n∑
i=1

x(i)(v)Yi(v) eβ
T x(i)(v).

Note that for the PH model the optimal weights

x(i)(t) =
∂

∂β
log{αi(t, β)}

do not depend on β and A. It was not so in the case of the AFT model.
The score function is calculated very simply:

Ũ(β) =
∑

i: δi=1


x(i)(Xi)−

∑
j:Xj≥Xi

xj(Xi) eβ
T xj(Xi)

∑
l:Xl≥Xi

eβT xl(Xi)


 . (7.41)

If x(i) are constant then

Ũ(β) =
∑

i: δi=1


x(i) −

∑
j:Xj≥Xi

xj(Xi) eβ
T xj

∑
l:Xl≥Xi

eβT xl


 . (7.42)

Second method

The score function (7.40) may be obtained another way using the notion of
the partial likelihood.
Indeed, write the full parametric likelihood function as a product of several

terms:

L =
n∏
i=1

αδi
i (Xi, β)Si(Xi, β)

=
n∏
i=1

(∫ ∞

0

αi(u, β) dNi(u)
)δi

exp
{
−

∫ ∞

0

Yi(u)αi(u, β) du
}

=
n∏
i=1

(∫ ∞

0

eβ
T xi(u)dNi(u)
S(0)(u, β)

)δi n∏
i=1

(∫ ∞

0

α0(u)S(0)(u, β)dNi(u)
)δi

×

exp
{
−

∫ ∞

0

α0(u)S(0)(u, β) du
}
.

We set 00 = 1.
The first term in the full likelihood depends on β and does not depend

on the unknown baseline hazard rate function α0(t). It is called the partial
likelihood function:

L̃(β) =
n∏
i=1

(∫ ∞

0

eβ
T xi(u)dNi(u)
S(0)(u, β)

)δi

. (7.43)
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In terms of (Xi, δi) it is written simply:

L̃(β) =
∏

i:δi=1

eβ
T xi(Xi)

S(0)(Xi, β)
=

∏
i:δi=1

eβ
T xi(Xi)∑

j:Xj≥Xi

eβ
T xj(Xi)

. (7.44)

So

ln L̃(β) =
n∑
i=1

δi{βTxi(Xi)− lnS(0)(Xi, β)},

and

Ũ(β) =
n∑
i=1

δi(xi(Xi)− E(Xi, β)) =
n∑
i=1

∫ ∞

0

{x(i)(u)− E(u, β)} dNi(u).

It is the score function (7.40).

7.4.3 Estimators of the main reliability characteristics

Suppose that x(·) is an arbitrary explanatory variable which may be different
from x(i)(·), (i = 1, · · · , n).

Estimator of the survival function Sx(·)(t):

The formula (7.39) implies that the baseline cumulative hazard and A(t) and
the cumulative hazard Ax(·)(t) are estimated by the statistics

Â(t) = Ã(t, β̂), Âx(·)(t) =
∫ t

0

eβ̂
T x(u)dÂ(u) =

∫ t

0

eβ̂
T x(u) dN(u)

S(0)(u, β̂)
.

(7.45)
The estimator of the survival function Sx(·)(t) is the product integral

Ŝx(·)(t) = Π0≤u≤t(1− dÂx(·)(u)) =
∏
s:s≤t

(
1− eβ̂

T x(u)∆N(s)

S(0)(s, β̂)

)
. (7.46)

The estimator (7.46) is calculated simply:

Ŝx(·)(t) =
∏

j:δj=1

(
1− eβ̂

T x(Xj)

S(0)(Xj , β̂)

)
=

∏
j:δj=1


1− eβ̂

T x(Xj)∑
l:Xl≥Xj

eβ̂
T xl(Xj)


 .

(7.47)
If x is constant then

Ŝx(t) =
∏

j:δj=1


1− eβ̂

T x∑
l:Xl≥Xj

eβ̂T xl


 . (7.48)



SEMIPARAMETRIC FTR DATA ANALYSIS FOR THE PH MODEL 165

Estimator of the p-quantile tp(x(·))

t̂p(x(·)) = sup{t : Ŝx(·)(t) ≥ 1− p}. (7.49)

Estimator of the mean failure time m(x(·)):

m̂(x) =
∑

j:δj=1

Xj{Ŝx(·)(Xj−)− Ŝx(·)(Xj)} (7.50)

The estimator of the mean may be underestimated if the last Xi is the cen-
soring time.

Estimators of the hazard ratios

The hazard ratio HR(x, y) (see (7.4)) is estimated by

ĤR(x, y) = eβ̂
T (y−x). (7.51)

7.4.4 Asymptotic distribution of the regression parameters estimators

The score function (7.40) can be written in the form

Ũ(β) = Ũ(τ, β),

where τ = sup{t : ∑n
i=1 Yi(t) > 0},

Ũ(t, β) =
n∑
i=1

∫ t

0

{x(i)(v)− E(v, β)}dMi(v, β), (7.52)

and

Mi(t, β) = Ni(t)−
∫ t

0

αi(v, β)dv = Ni(t)−
∫ t

0

Yi(v) eβ
T x(i)(v)dA(v).

The components of the random vector Ũ(β) = (Ũ1(β), · · · , Ũm(β))T have the
form

Ũj(β) = Ũj(τ, β), (7.53)

where

Ũj(t, β) =
n∑
i=1

∫ t

0

{x(i)
j (v)−Ej(v, β)}dMi(v, β), (7.54)

and Ej(v, β) is the jth component of E(v, β):

Ej(v, β) = S
(1)
j (v, β)/S(0)(v, β), S

(1)
j (v, β) =

n∑
i=1

x
(i)
j (v)Yi(v) eβ

T x(i)(v).

(7.55)



166 THE COX OR PH MODEL

Asymptotic properties of the regression parameter β are investigated similarly
as in the case of parametric regression models because the structure of the
score function (7.53) is the same as the structure of the score function (4.22).
The score functions (7.53) (semiparametric estimation under the PH model)
and the score functions (4.22) (parametric estimation in the regression models)
have the form (4.27) with only difference that in the first case

Hij(t, θ) =
∂

∂θj
ln{αi(t, θ)},

and in the second:
Hij(t, β) = x

(i)
j (t)− Ej(t, β).

Denote by β0 the true value of the parameter β. Similarly as in Chapter 4
(formula (4.19))

n1/2(β̂ − β0) =
(
1
n
I(β0)

)−1

m×m

n−1/2 U(β0) + ∆, (7.56)

where (cf. (4.18))

I(β0) =
(
− ∂

∂βj′
Uj(β)

)
m×m

=
∫ τ

0

V (u, β)dN(u), (7.57)

and V (u, β) = (Vjj′(β))m×m is the matrix with the elements

Vjj′(t, β) =
S

(2)
jj′ (t, β)

S(0)(t, β)
− S

(1)
j (t, β)S(1)

j′ (t, β)

(S(0)(t, β))2
,

S
(2)
jj′ (t, β) =

n∑
i=1

x
(i)
j (t)x(i)

j′ (t)Yi(t) e
βT x(i)(t). (7.58)

If ∆ P→ 0 then the asymptotic distributions of the random variables

n1/2(β̂ − β0) and
(
1
n
I(β0

)−1

n−1/2Ũ(β0) (7.59)

are the same and

n1/2(β̂ − β0) =
(
1
n
I(β0

)−1 n∑
i=1

∫ τ

0

{x(i)(v)− E(v, β)}dMi(v, β) + op(1).

(7.60)
So if the random matrix n−1 I(β0) converges in probability to a nondegen-
erated nonrandom matrix then the asymptotic properties of the maximum
likelihood estimator β̂ can be obtained from the asymptotic properties of the
score function Ũ(β).
Theorem A.7 implies that if the processes x(i)

j (v) − Ej(v, β0) are caglad
adapted on [0, τ ], for all t ∈ [0, τ ]

<
1√
n
Uj ,

1√
n
Uj′ > (t, β0) >

P→ σjj′(t, β0), (7.61)
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<
1√
n
Uεj(τ) >

P→ 0, (7.62)

and for any t ∈ [0, τ ] the matrix Σ0(t) = (σjj′(t, β0)) is positively definite
then the score function Ũ(θ0) is asymptotically normal:

n−1/2U(β0)
D→ N(0,Σ0(τ)) as n → ∞, (7.63)

moreover,
n−1/2U(·, β0)

D→ Z(·, β0) on (D[0, τ ])m, (7.64)

where Z is am-variate Gaussian process having components with independent
increments, Zj(0) = 0 a.s. and for all 0 ≤ s ≤ t ≤ τ :

cov(Zj(s), Zj′(t)) = σjj′(s).

The predictable covariations (7.61) and (7.62) are

<
1√
n
Uj ,

1√
n
Uj′ > (t, β0) =

1
n

n∑
i=1

∫ t

0

{x(i)
j (v)− Ej(v, β)}{x(i)

j′ (v)− Ej′(v, β)}Yi(v) eβT x(i)(v)dA(v)

=
1
n

∫ τ

0

Vjj′(u, β0)S(0)(u, β0)dA(u), (7.65)

<
1
n
Uεj > (t, β0) =

1
n

n∑
i=1

∫ t

0

{x(i)
j (v)− Ej(v, β0)}21{|x(i)

j
(v)−Ej(v,β)|≥√

nε}Yi(v) e
βT x(i)(v)dA(v).

(7.66)
Which sufficient conditions are needed for (7.61) and (7.62) to hold?
The convergence (7.61) holds if the stochastic process n−1Vjj′S

(0) (cf.(7.65))
stabilizes when n is large. This stabilization holds if the stochastic processes
n−1S(i) stabilize and S(0) (its square is in the denominator of Vjj′ expression)
approaches a positive function on [0, τ ] when n is going to infinity.
For the convergence (7.62) to hold, a complementary condition on bounded-

ness of the explanatory variables is needed (the indicator should go to zero).
If even the function under the integral (7.66) is small when n is large, the
integral may be large if A(τ) = ∞. So a natural condition is A(τ) < ∞.
Conditions on differentiability of the limit functions of the stochastic pro-

cesses n−1S(i) are needed when writing the Taylor expansion (7.56) and dif-
ferentiating the score function by interchanging the order of integration and
differentiation.
Denote by ‖A‖ = supi,j |aij | the norm of any matrix A,

S(2)(t, β) = (S(2)
jj′ (t, β))m×m.

So let us consider the following conditions.
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Asumptions A:
a) There exists a neighborhood B of β0 and the scalar, m-vector, and m×m
matrix functions s(0)(t, β), s(1)(t, β), and s(2)(t, β) such that for k = 0, 1, 2

sup
β∈B, t∈[0,τ ]

‖ 1
n
S(k)(t, β)− s(k)(t, β)‖ P→ 0.

b) s(k)(t, β) are continuous functions of β ∈ B uniformly in t ∈ [0, τ ] and
bounded on B × [0, τ ].
c) supt∈[0,τ ] s

(0)(t, β) > 0.

d) ∂
∂β s

(0)(t, β) = s(1)(t, β) and ∂2

∂β2 s
(0)(t, β) = s(2)(t, β).

e) For all i, j (i = 1, · · · , n; j = 1, · · · ,m)

sup
t∈[0,τ ]

|x(i)
j (t)| < ∞.

f) A(τ) < ∞.
g) The matrix

Σ0(τ) =
∫ τ

0

v(u, β)s(0)(u, β)dA(u)

is positively definite; here

v = s(2)/s(0) − eeT , e = s(1)/s(0).

Note that Assumptions A are sufficient for the matrix n−1 I(β0) to converge
in probability to the matrix Σ(β0) because

1
n
I(β0)− <

1√
n
Uj ,

1√
n
Uj′ > (τ, β0) =

1
n

∫ τ

0

Vjj′(u, β0)dM(u, β0)
P→ 0;

here dM(u, β0) = dN(u) − S(0)(u, β0)dA(u). The last convergence is implied
by the Corollary A6.
Assumptions A are sufficient not only for the asymptotic normality of Ũ

and for convergence in probability of n−1I(β0) but also for the convergence
in probability to zero of the term ∆.
The following result is implied by Andersen and Gill (1982).

Theorem 7.1. Assume conditions A hold. Then
1) there exists a neighborhood of β0 within which, with probability tending

to 1 as n → ∞, the root β̂ of the system of equations U(β) = 0 is uniquely
defined;
2) β̂ P→ β0;

3) n−1/2U(·, β0)
D→ Z(·, β0) on (D[0, τ ])m;

4) n1/2(β̂ − β0)
D→ N(0,Σ−1(β0));

5) ‖ 1
n I(β̂)− Σ(β0)‖ P→ 0.
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7.4.5 Asymptotic distribution of the main reliability characteristics

In the books on survival analysis, the limit distribution of the baseline cumu-
lative hazard estimator is usually done. In the case of FTR data it is more
important to give the asymptotic distribution of the estimator Ŝx(t). There-
fore we give the proof of the following theorem.

Theorem 7.2. Under the assumptions of Theorem 7.1 for all t ∈ [0, τ ]

n1/2{Ŝx(t)− Sx(t)} D→ N(0, S2
x(t)σ

2
x(t, β0)) as n → ∞,

where

σ2
x(t, β0) = bT (t, β0)Σ−1(β0) b(t, β0) + e2β

T
0 x

∫ t

0

dA(v)
s(0)(v, β0)

and

b(t, β0) = xAx(t)− eβ
T
0 x

∫ t

0

e(v, β0)dA(v).

Proof. Let us consider the difference

√
n(Âx(t)−Ax(t)) =

√
n

(
eβ̂

T x0

∫ t

0

dN(v)

S(0)(v, β̂)
−Ax(t)

)
=

√
n

{(
eβ̂

T x − eβ
T
0 x

) ∫ t

0

dN(v)
S(0)(v, β0)

+eβ
T
0 x

∫ t

0

(
1

S(0)(v, β̂)
− 1
S(0)(v, β0)

)
dN(v)+

(
eβ̂

T x − eβ
T
0 x

) ∫ t

0

(
1

S(0)(v, β̂)
− 1
S(0)(v, β0)

)
dN(v)+

eβ
T
0 x

(∫ t

0

dN(v)
S(0)(v, β0)

−A(t)
)}

.

Write the finite increments formula for differences in first three terms:
√
n(Âx(t)−Ax(t)) =

√
n(β̂ − β0)T

{
x eβ

∗T x

∫ t

0

dN(v)
S(0)(v, β0)

− eβ
T
0 x

∫ t

0

E(v, β∗∗)
S(0)(v, β∗∗)

dN(v)
}

+eβ
T
0 x

√
n(β̂ − β0)T

√
n(β̂ − β0)

1√
n
xT

∫ t

0

E(v, β∗∗)
S(0)(v, β∗∗)

dN(v)+

eβ
T
0 x

√
n

∫ t

0

dM(v)
S(0)(v, β0)

,

where β∗, β∗∗ are points on the line segment between β0 and β̂. Note that

xeβ
∗T x0

∫ t

0

dN(v)
S(0)(v, β0)

− eβ
T
0 x

∫ t

0

E(v, β∗)
S(0)(v, β∗)

dN(v) P→ b(t, β0).
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and
1√
n
xT

∫ t

0

E(v, β∗)
S(0)(v, β∗)

dN(v) P→ 0 uniformly on [0, τ ].

The formula (7.60 ) and the result 5) from Theorem 7.1 imply
√
n(Âx(t)−Ax(t)) = bT (t, β0)Σ−1(β0)n−1/2Ũ(τ, β0)+

eβ
T
0 x

√
n

∫ t

0

dM(v)
S(0)(v, β0)

+ ∆(t, β0) = A1(t) +A2(t) + ∆(t),

where
sup
[0,τ ]

|∆(t)| P→ 0.

The formulas (7.65) and (7.66) imply that for all 0 ≤ t ≤ τ

< A1, A1 > (t) P→ bT (t, β0)Σ−1(β0)b(t, β0)

and
< A1ε, A1ε > (t) P→ 0.

For all 0 ≤ t ≤ τ the predictable variation

< A2, A2 > (t) = e2β
T
0 xn

∫ t

0

dA(v)
S(0)(v, β0)

P→ e2β
T
0 x

∫ t

0

dA(v)
s(0)(v, β0)

and

< A2ε, A2ε > (t) = e2β
T
0 xn

∫ t

0

1
{| e

βT
0

x√
n

S(0)(v,β0
|≥ε}

dA(v)
S(0)(v, β0)

P→ 0.

The predictable covariation

< A1(t), A2 > (t) =

2bT (t, β0)Σ−1(β0)eβ
T
0 x

n∑
i=1

∫ t

0

{xi(v)− E(v, β0)} e
β0xYi(v)

S(0)(v, β0)
dA(v) = 0.

Corollary A.5 implies that

n1/2{Âx(·)−Ax(·)} D→ Z∗(·, β0) on (D[0, τ ]), (7.67)

where Z∗ is the mean zero Gaussian process such that for all 0 ≤ s ≤ t ≤ τ :

cov(Z∗(s), Z∗(t)) = σ2
x(s ∧ t, β0).

In particular, for any t ∈ [0, τ ]

n1/2{Âx(t)−Ax(t)} D→ N(0, σ2
x(t, β0)) as n → ∞.

The delta method implies the result of the theorem.
Corollary. If tp(x) < τ and αx(tp(x)) > 0 then under Assumptions A

n1/2{t̂p(x)− tp(x)} D→ N(0, σ2(tp(x), β0)/α2
x(tp(x))) as n → ∞. (7.68)

Proof. Note that
t̂p(x) = Â−1

x (− ln(1− p)).
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The convergence (7.67) and Theorem A.10 imply that

n1/2{t̂p(x)− tp(x)} D→ −Z∗(tp(x))
αx(tp(x))

,

which implies (7.68).

7.4.6 Tests for nullity of the regression coefficients

Let us consider the hypothesis

Hk1,k2,···,kl
: βk1 = · · · = βkl

= 0, (1 ≤ k1 ≤ k2 ≤ · · · ≤ kl). (7.69)

If Hk1,k2,···,kl
is verified, the variables xk1 , · · · , xkl

are excluded from the
model. In this particular case, the hypothesis

H1,2,···,m : β1 = · · · = βm = 0

means that none of the explanatory variables improve the prediction, i.e. there
is no regression.
The hypothesis

Hk : βk = 0, (k = 1, ...,m).

means that the model with and without the explanatory variable xk gives the
same prediction.

Likelihood ratio test

Let
L̂ = L(β̂) = max

β
L(β) (7.70)

be the maximum of the partial likelihood function under the full model with
m explanatory variables and

L̂k1...kl
= max

β:βk1=...=βkl
=0
L̃(β) (7.71)

be the maximum of the likelihood function under the hypothesisHk1...kl
which

is the maximum of the likelihood function, corresponding to the model with
(m− l) explanatory variables {x1, ..., xm} \ {xk1 , ..., xkl

}.
If n is large then the distribution of the likelihood ratio statistic (see (4.40)):

LR(∗) = −2 ln L̃(β)
L̂

(7.72)

is approximately chi-square with m degrees of freedom. Under Hk1...kl
the

coefficients βk1 , · · · , βkl
are equal to zero in (7.72).

Similarly under Hk1...kl
the distribution of the likelihood ratio statistic

LR(∗∗) = −2 ln L(β)
L̂k1...kl

(7.73)
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is approximately chi-square with m − l degrees of freedom. The coefficients
βk1 , · · · , βkl

are equal to zero in (7.73).
It can be shown that the statistics

LR(∗∗) and LR(∗) − LR(∗∗)

are asymptotically independent.
Thus, under Hk1...kl

the distribution of the likelihood ratio test statistic

LRk1,...,kl
= −2 ln L̂k1...kl

L̂
(7.74)

is approximated by the chi-square distribution with l = m− (m− l) degrees
of freedom when n is large.
The hypothesis Hk1...kl

: βk1 = ... = βkl
= 0 is rejected with the significance

level α if
LRk1,...,kl

> χ2
1−α(l); (7.75)

the hypothesis H12...m : β1 = ... = βm = 0 is rejected if

LR1,...,m > χ2
1−α(m);

the hypothesis Hk : βk = 0 is rejected if

LRk > χ2
1−α(1).

The statistic LRk is often used in stepwise regression procedures when the
problem of including or rejecting the explanatory variable xk is considered.
In the particular case the likelihood ratio test statistics may be used when

testing hypotheses about absence of interactions. For example, for the model
with

βTx = β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + β6x2x3

the hypothesis H456 : β4 = β5 = β6 = 0 or H5 : β5 = 0 may be tested.

Wald’s tests

Let Ak1..kl
(β̂) be the submatrix of I−1(β̂) which is in the intersection of the

k1, ..., kl rows and k1, ..., kl columns. Under Hk1,...,kl
and large n the distribu-

tion of the statistic (see (4.39))

Wk1...kl
= (β̂k1 , ..., β̂kl

)TA−1
k1...kl

(β̂)(β̂k1 , ..., β̂kl
)T

is approximated by the chi-square distribution with l degrees of freedom.
The hypothesis Hk1...kl

is rejected with the significance level α if

Wk1...kl
> χ2

1−α(l),

the hypothesis H12...m is rejected if

W1...m > χ2
1−α(m),
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and the hypothesis Hk is rejected if

Wk =
β̂2
k

Ikk(β̂)
=

β̂2
k

V̂ar (β̂k)
> χ2

1−α(1).

Score tests

If n is large then the distribution of the statistic (see (4.38)):

(Uk1(β), · · · , Ukl
(β))T Ak1...kl

(β̂) (Uk1(β), · · · , Ukl
(β))

is approximately chi-square with l degrees of freedom. Under Hk1...kl
the limit

distribution of this statistic does not change if β (with the components βi = 0
for i = k1, · · · , kl) is replaced by β̃ verifying the condition

L(β̃) = max
β:βk1=...=βkl

=0
L(β).

So the score statistic is

Uk1...kl
= (Uk1(β̃), · · · , Ukl

(β̃))T Ak1...kl
(β̂) (Uk1(β̃), · · · , Ukl

(β̃)).

The hypothesis Hk1...kl
is rejected with the significance level α if

Uk1...kl
> χ2

1−α(l).

7.4.7 Graphical test for the PH model

If the explanatory variables are constant then under the PH model

Ax(t) = eβ
T xA(t).

Hence
lnAx(t) = βTx+ lnA(t).

Under different values of x the graphs of the time functions lnAx(t) are par-
allel. So, if x is discrete or categorical with s possible values and the data are
stratified into s groups according to these values, then the Nelson-Aalen esti-
mators Âj(t) (j = 1, · · · , s) may be constructed. Then the graphs of ln Âj(t)
should be approximately parallel under the PH model.

7.4.8 Stratified PH model

In some situations when the PH model is not verified under the vector x =
(x1, · · · , xm) of the explanatory variables, the units can be divided into disjoint
groups or strata such that in each stratum the PH model

αx(t) = eβ
T xAj(t) (j = 1, · · · , s). (7.76)

The baseline hazard αj is distinct for each stratum but the regression param-
eters β are common.
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The model (7.76) is called the stratified PH model. All data are used for
estimation of the parameter β.
Generally the stratified PH model is used when the influence of, say, the

first p components x1, · · · , xp of the vector of the explanatory variables x =
(x1, · · · , xm)T on the survival is studied and the components xp+1, · · · , xm are
treated as discrete or categorical confounding variables. The strata are defined
by the different values of the confounding variables.
The partial likelihood for the stratified PH model is defined as the product

of the partial likelihood functions corresponding the distinct strata:

L(β) =
s∏

j=1

Lj(β). (7.77)

One can read more about the Cox model, for example, in Altman and
Andersen (1986), Andersen and Gill (1982), Andersen, Borgan, Gill and Kei-
ding (1993), Aranda-Ordaz (1983), Arjas (1988), Bagdonavičius and Nikulin
(1997d), Breslow (1975a,b), Breslow and Crowley (1982), Chappelle (1992),
Cox and Oakes (1984), Fleming and Harrington (1991), Huber (2000), Th-
erneau and Grambsch (2000).



CHAPTER 8

GPH models: FTR analysis

8.1 Introduction

We shall consider only semiparametric estimation, because under any specified
GPH1 model a unique parametric family of survival distributions such that
for any constant explanatory variable the survival distribution belongs to this
family can be found. For example, for the GPHGW model this family is the
family of generalized Weibull distributions, for theGPHGLL model this family
is the family of generalized loglogistic distributions, etc. But under a specified
GPH1 model and the corresponding class of survival distributions this model
coincides with the AFT model. Parametric estimation for the AFT model is
considered in Chapter 5.

8.2 Semiparametric FTR data analysis for the GPH1 models

8.2.1 Models

Let us consider the GPH1 model:

αx(·)(t) = eβ
T x(t) q{Ax(·)(t), γ} α(t). (8.1)

The baseline hazard rate function α(t) is supposed to be unknown. The
function q belongs to a specified class of functions:

1) q(u; γ) = (1 + u)−γ+1, (GPHGW model);
2) q(u; γ) = eγu, (GPHGLL model);
3) q(u; γ) = (1 + γu)−1, (IGF model).

Other parametrizations can be considered.
It was shown in Chapter 2 that if under the GPHGW model the ratio of

the hazard rates under any two different constant explanatory variables is
superior to 1 at the beginning of functioning then these ratios are increasing
(0 < γ < 1) or decreasing (γ > 1) but remain superior to 1. In the case
of the PH model the ratio of hazard rates is constant. Under the GPHGLL

model this ratio goes to 1, i.e. the hazard rates meet at infinity. Under the
IGF model the hazard rates are equal at the beginning of functioning and
the ratio of the hazard rates are monotone time functions.
Under the GPH1 model the survival function Sx(·)(t) has the form

Sx(·)(t) = G
{∫ t

0

eβ
T x(u)dA(u); γ

}
, (8.2)
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where

A(t) =
∫ t

0

α(u)du

is the baseline cumulative hazard and G(t; γ) is the survival function of the
resource (see Chapter 2.5.3). The function G(t; γ) is the inverse of the function

H(u; γ) =
∫ − lnu

0

dv

q(v; γ)

with respect to the first argument. The cumulative hazard function is:

Ax(·)(t) = − lnG
{∫ t

0

eβ
T x(u)dA(u); γ

}
. (8.3)

For the GPHGW model:

Ax(·)(t) =
{
1 + γ

∫ t

0

eβ
T x(u)dA(u)

} 1
γ

− 1, (γ �= 0),

Ax(·)(t) = exp
{∫ t

0

eβ
T x(u)dA(u)

}
− 1, (γ = 0). (8.4)

If γ < 0, the support is finite (see Section 2.5.7). For the GPHGLL model:

Ax(·)(t) = − 1
γ
ln

{
1− γ

∫ t

0

eβ
T x(u)dA(u)

}
, (γ �= 0),

Ax(·)(t) =
∫ t

0

eβ
T x(u)dA(u), (γ = 0). (8.5)

If γ > 0, the support is finite (see Section 2.5.7). For the IGF model:

Ax(·)(t) =
1
γ

{(
1 + 2γ

∫ t

0

eβ
T x(u)dA(u)

)1/2

− 1
}
, (γ �= 0),

Ax(·)(t) =
∫ t

0

eβ
T x(u)dA(u), (γ = 0). (8.6)

8.2.2 Data

n units are observed. The ith unit is tested under the value x(i)(·) of a possibly
time-varying and multidimensional explanatory variable x(·).
The data are supposed to be independently right censored.
Let Ti and Ci be the failure and censoring times of the ith unit,

Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}.

In Chapter 4 it was noted that right censored data may be presented in the
form (4.1) or (4.3).
Denote by Si, αi and Ai the survival, hazard rate, and cumulative hazard

functions under x(i)(·).
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8.2.3 Semiparametric estimation of the parameters θ

Procedures for semiparametric estimation in GPH1 models for any specified
q with time-varying covariates and properties of these estimators were given
by Bagdonavičius & Nikulin (1994, 1995, 1997a,b). An interesting applica-
tion of this model was considered by Ceci, Delattre, Hoffmann and Mazliak
(2000). In the case of constant covariates, semiparametric estimation for lin-
ear transformation models was given by Dabrowska & Doksum (1988b) and
Cheng, Wei & Ying (1995). Dabrowska & Doksum considered a resampling
scheme for computing maximum rank likelihood estimation. Cheng, Wei &
Ying (1995) considered methods of estimation based on generalised estimat-
ing equations. Murphy, Rossini & Van der Vaart (1997) considered estimation
for the proportional odds model (the GPH1 model with the standard loglogis-
tic distribution of the resource) and constant covariates. Andersen, Borgan,
Gill & Keiding (1993) discuss estimation in the gamma frailty model with
covariates by using the EM algorithm. Parner (1998) considered estimation
in the correlated gamma-frailty model. Bagdonavičius & Nikulin (2001) give
estimation for the GPH1 models using a modified partial likelihood method.
Let us consider estimation by the general method used in this book: con-

struction of modified score functions by replacing the unknown infinite-dimen-
sional parameter in the parametric score functions by its efficient estimator
depending on finite-dimensional parameters of the model.
Denote by

θ = (β1, · · · , βm, γ)T = (θ1, · · · , θm+1)T

the finite-dimensional parameters of the model.
If α is completely known then under the model (8.1) the parametric maxi-

mum likelihood estimator of the parameter θ is obtained by solving the system
of equations

Uj(θ) = 0, (j = 1, · · · ,m+ 1),
where

Uj(θ) =
n∑
i=1

∫ ∞

0

w
(i)
j (u, θ,A){dNi(u)− Yi(u)αi(u, θ)du},

where

w
(i)
j (t, θ, A) =

∂

∂βj
log{αi(t, θ)} = x(i)

j (t) + (ln q)
′
1{Ai(t, θ), γ}

∂

∂βj
Ai(t, θ),

(j = 1, · · · ,m),

w
(i)
m+1(t, θ, A) =

∂

∂γ
log{αi(t, θ)} =

(ln q)′2{Ai(t, θ), γ}+ (ln q)′1{Ai(t, θ), γ}
∂

∂γ
Ai(t, θ); (8.7)

here (ln q)′l(t, γ) denotes the partial derivative of ln q(t, γ) with respect to the
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lth argument (l = 1, 2). Note that

∂

∂βj
Ai(t, θ) = q(Ai(t, θ), γ)

∫ t

0

x
(i)
j (u)e

βT x(i)(u)dA(u),

∂

∂γ
Ai(t, θ) = (− lnG)′2(H(e−Ai(t,θ), γ), γ). (8.8)

So the functions Uj(θ) can be written in the form

Uj(θ) =
n∑
i=1

∫ ∞

0

w
(i)
j (u, θ,A) {dNi(u)− Yi(u)eβ

T x(i)(u) q(Ai(u, θ), γ) dA(u)}.
(8.9)

If α is unknown then the score functions Uj depend not only on θ but also on
the unknown function A.
The estimator Ã(t, θ) of A(t) is implied by Theorem A.1:

E{Ni(t)} = E
{∫ t

0

Yi(u) eβ
T x(i)(u) q{Ai(u, θ), γ}dA(u)

}
. (8.10)

Set

S(0)(v, θ, A) =
n∑
i=1

Yi(v) eβ
T x(i)(v)q{Ai(v, θ), γ}. (8.11)

The equality (8.10) implies:

E{N(t)} = E
{∫ t

0

S(0)(u, θ,A)dA(u)
}
. (8.12)

This induces the estimator Ã(t, θ) of A(t) defined by the equation:

N(t) =
∫ t

0

S(0)(u−, θ, Ã) dÃ(u, θ).

The estimator Ã can be found recurrently:

Ã(t, θ) =
∫ t

0

dN(u)
S(0)(u−, θ, Ã) . (8.13)

Replacing the function A by Ã(t, θ) in (8.9), the modified score functions
Ũj(θ), depending only on θ, are obtained. The random vector

Ũ(θ) = (Ũ1(θ), · · · , Ũm+1(θ))T

has the form:

Ũ(θ) =
n∑
i=1

∫ ∞

0

w(i)(u, θ)
{
dNi(u)− Yi(u)eβT x(i)(u) q(Ãi(u, θ), γ)

dN(u)
S(0)(u, θ)

}
,

where

Ãi(v, θ) = − lnG
{∫ t

0

eβ
T x(i)(u)dÃ(u, θ); γ

}
, (8.14)



SEMIPARAMETRIC FTR DATA ANALYSIS FOR THE GPH1 MODELS 179

S(0)(v, θ) = S(0)(v, θ, Ã), w(i)(u, θ) = (w(i)
1 (u, θ), · · · , w(i)

m+1(u, θ))
T ,

w
(i)
j (u, θ) = w

(i)
j (u, θ, Ã).

Shortly,

Ũ(θ) =
n∑
i=1

∫ ∞

0

{w(i)(u, θ)− E(u, θ)} dNi(u), (8.15)

where

E(v, θ) =
S(1)(v, θ)
S(0)(v, θ)

, S(1)(v, θ) =
n∑
i=1

w(i)(v, θ)Yi(v) eβ
T x(i)(v)q{Ãi(v, θ), γ}.

Note that as in the case of the PH model we consider the optimal weights.

8.2.4 Algorithm for computing the score functions

Suppose at first that there is no ex aequo. Let T(1) < ... < T(r) be observed
and ordered failure times, r ≤ n. Here (i) notes the index of the unit which
failure is observed the ith.
The formulas (8.11), (8.13), and (8.14) imply that for fixed θ the estimator

Ã(t; θ) is calculated by the following recurrent formulas:

Ã(0; θ) = 0, Ã(T(1); θ) =

(
n∑
i=1

Yi(T(1))eβ
T x(i)(T(1))

)−1

,

and for j = 1, ..., r − 1
Ã(T(j+1); θ) =

Ã(T(j); θ)+

(
n∑
i=1

Yi(T(j+1))eβ
T x(i)(T(j+1))q∗(

j∑
l=1

eβ
T x(i)(T(l))∆Ã(T(l); θ), γ)

)−1

,

(8.16)
where

T(0) = 0, ∆Ã(T(l); θ) = Ã(T(l); θ)−Ã(T(l−1); θ), q∗(t, γ) = q(− lnG(t, γ), γ)
So the score function is calculated simply:

Ũj(θ) =
r∑
i=1

{w((i))
j (T(i), θ)− Ej(T(i), θ)}, (8.17)

where

Ej(T(i), θ) =
S

(1)
j (T(i), θ)
S(0)(T(i), θ)

,

S(0)(T(i), θ) =
n∑
s=1

Ys(T(i)) eβ
T x(s)(T(i))q{Ãs(T(i), θ), γ},

S
(1)
j (T(i), θ) =

n∑
s=1

w
(s)
j (T(i), θ)Ys(T(i)) eβ

T x(s)(T(i))q{Ãs(T(i), θ), γ},
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w
(s)
j (T(i), θ) = x

(s)
j (T(i))+q′1{Ãs(T(i), θ), γ}

i∑
l=1

x
(s)
j (T(l))eβ

T x(s)(T(l))∆Ã(T(l); θ),

(j = 1, · · · ,m)

Ãs(T(i), θ) = − lnG(
i∑
l=1

eβ
T x(s)(T(l))∆Ã(T(l); θ); γ),

w
(s)
m+1(T(i), θ) = (ln q)′2{Ãs(T(i), θ), γ}+

(ln q)′1(Ãs(T(i), θ), γ) (− lnG)′2{
i∑
l=1

eβ
T x(s)(T(l))∆Ã(T(l); θ); γ}. (8.18)

If x(s) are constant then

xs(T(i)) = xs,
i∑
l=1

eβ
T x(s)(T(l)∆Ã(T(l); θ) = eβ

T x(s)
Ã(T(i); θ),

i∑
l=1

x
(s)
j (T(l))eβ

T x(s)(T(l))∆Ã(T(l); θ) = x
(s)
j eβ

T x(s)
Ã(T(i); θ)

in (8.18).
Note that to find an initial estimator θ̂(0) verifying the equations (8.17) you

need an initial estimator Â(0)(t) and vice versa: to find an initial estimator
Â(0)(t) = Ã(t, θ̂(0)) you need an initial estimator θ̂(0). This magic circle can
be entered in the following way.
The initial estimator θ̂(0) can be obtained (see Vonta (2000) for the case of

constant explanatory variables and uncensored data) as follows: the baseline
cumulative hazard function A is approximated by a piecewise linear function

A(t, µ) =
∫ t

0

r∑
i=1

1(ai−1,ai](s)e
µids,

where 0 = a0 < a1 < · · · < ar =∞ are given constants and µ = (µ1, · · · , µr)T
are unknown parameters.
Then the parametric model

Sx(·)(t;µ, β, γ) = G

{
r∑
i=1

eµi

∫ t

0

eβ
T x(u)1(ai−1,ai](u)du, γ

}

can be considered. Denote by µ̂(0), β̂(0), γ̂(0) the parametric maximum likeli-
hood estimators of the parameters µ, β, γ. So θ̂(0) = (β̂(0), γ̂(0)) can be con-
sidered as an initial estimator for θ.
If the initial estimator θ̂(0) is obtained then the initial estimator Ã(0)(t, θ̂(0))

is obtained recurrently by (8.16) using θ = θ̂(0) = (β̂(0), γ̂(0)). The estimator
θ̂(1) is obtained by solving the equations Ũj(θ) = 0, where Ũj(θ) are given
by (8.17), and using Ã(0)(t, θ̂(0)) instead of Ã(t, θ). And so on: the estimator
Ã(1)(t, θ̂(1)) is obtained recurrently by (8.16) using θ = θ̂(1), etc.
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8.2.5 Expressions of the score functions for specified GPH1 models

For any specified GPH1 model the score functions are computed using the
formulas (8.16)-(8.18). The functions q, − lnG, q∗, q′1, (ln q)′1, (− lnG)′2 are
different for different models.

GPHGW model

q(u, γ) = (1 + u)−γ+1; − lnG(u, γ) = {1 + γu} 1
γ − 1, (γ �= 0),

− lnG(u, 0) = eu − 1; q∗(u, γ) = {1 + γu} 1−γ
γ (γ �= 0), q∗(u, 0) = eu;

q′1(u, γ) = (1− γ)(1 + u)−γ ; (ln q)′1(u, γ) =
1− γ
1 + u

;

(− lnG)′2(u, γ) = {1 + γu} 1−γ
γ
(1 + γu) ln(1 + γu)− γu

γ2
, (γ �= 0)

(− lnG)′2(u, 0) =
u2

2
eu.

GPHGLL model

q(u, γ) = eγu; − lnG(u, γ) = − 1
γ
ln(1− γu), (γ �= 0); − lnG(u, γ) = u;

q∗(u, γ) = (1− γu)−1; q′1(u, γ) = γe
γu; (ln q)′1(u, γ) = γ;

(− lnG)′2(u, γ) =
(1− γu) ln(1− γu) + γu

γ2(1− γu) , (γ �= 0), (− lnG)′2(u, 0) =
u2

2
.

IGF model

q(u, γ) = (1 + γu)−1; − lnG(u, γ) = 1
γ
{(1 + 2γu) 12 − 1}, (γ �= 0),

(− lnG)′2(u, 0) = u; q∗(u, γ) = (1 + 2γu)−
1
2 ;

q′1(u, γ) = −γ(1 + γu)−2; (ln q)′1(u, γ) = −γ(1 + γu)−1;

(− lnG)′2(u, γ) =
(1 + 2γu)1/2 − (1 + γu)

γ2(1 + 2γu)1/2
, (γ �= 0), (− lnG)′2(u, 0) = −u

2

2
.

Similarly as in the case of the PH model the score function (8.15) may be
obtained by other way-using the notion of the modified partial likelihood (see
Bagdonavicius and Nikulin (1999)).
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8.2.6 Case of ex aequo

Suppose that ex aequo are possible. Let T ∗
1 < ... < T

∗
r be observed and ordered

distinct failure times, r ≤ n. Note by di the number of failures at the moment
T ∗
i . Let (i1), · · · , (idi

) be the indices of the units failed at T ∗
i .

The estimator Ã(t; θ) is calculated by the following recurrent formulas :

Ã(0; θ) = 0, Ã(T ∗
1 ; θ) = d1

(
n∑
i=1

Yi(T ∗
1 )e

βT x(i)(T∗
1 )

)−1

;

for j = 1, ..., r − 1
Ã(T ∗

j+1; θ) =

Ã(T ∗
j ; θ)+dj+1

(
n∑
i=1

Yi(T ∗
j+1)e

βT x(i)(T∗
j+1)q∗(

j∑
l=1

eβ
T x(i)(T∗

l )∆Ã(T ∗
l ; θ), γ)

)−1

.

(8.19)
So the score function is modified:

Ũj(θ) =
r∑
i=1

ki∑
s=1

{w((is))
j (T ∗

i , θ)− Ej(T ∗
i , θ)}. (8.20)

8.2.7 Estimators of the main reliability characteristics

Suppose that x(·) is an arbitrary explanatory variable which may be different
from x(i)(·), (i = 1, · · · , n).

Estimator of the survival function Sx(·)(t):

The estimator of the survival function Sx(·)(t) is

Ŝx(·)(t) = G
{∫ t

O

eβ̂
T x(u)dÃ(u, θ̂), γ̂

}
= G

{∫ t

O

eβ̂
T x(u) dN(u)

S(0)(u, θ̂)
, γ̂

}
.

(8.21)
This estimator is calculated simply:

Ŝx(·)(t) = G




∑
i:T(i)≤t

eβ̂
T x(T(i))

S(0)(T(i), θ̂)
, γ̂


 , (8.22)

where S(0)(T(i), θ̂) is calculated using the formula (8.18). If x is constant then

Ŝx(t) = G




∑
i:T(i)≤t

eβ̂
T x

S(0)(T(i), θ̂)
, γ̂


 . (8.23)
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Estimator of the p-quantile tp(x(·))

t̂p(x(·)) = sup{t : Ŝx(·)(t) ≥ 1− p}. (8.24)

Estimator of the mean failure time m(x(·)):

m̂(x) =
∑
j:δj=1

Xj{Ŝx(·)(Xj−)− Ŝx(·)(Xj)} (8.25)

The estimator of the mean may be underestimated if the last Xi is the cen-
soring time.

8.2.8 Some remarks on asymptotic distribution estimators

Investigations by simulation (see Hafdi (2000), Hafdi, El Himdi and al (2001))
show good properties of estimators (even in the case of finite supports of failure
time distributions) for finite samples.
For models with specified specified G (or q) the asymptotic properties of

the estimators of the regression parameters and reliability characteristics are
given by Bagdonavičius and Nikulin (1997a, grouped data, 1997b, general
right censored data), for models with parametrized via γ - by Bagdonavičius
and Nikulin (2001). The proofs of asymptotic properties are rather technical
and are not given here.
As an example, we give the asymptotic properties of estimators for the

GPHLL model with constant explanatory variables. The properties are anal-
ogous for other GPH1 models.
Denote by θ0 the true value of the parameter θ and set

zj(u; θ) =
(

xj(u)
Ãj(u; θ)

)
, S(2)(u; θ) =

n∑
i=1

∂w(i)(u; θ)
∂θ

Yj(u)eθ
T zj(u;θ),

S
(0)
∗ (u; θ) =

n∑
i=1

Yi(u)e2θ
T zi(u;θ), S

(1)
∗ (u; θ) =

n∑
i=1

w(i)(u; θ)Yi(u)e2θ
T zi(u;θ).

Conditions A:
a) There exists a neighborhood Θ of θ0 and continuous on Θ uniformly in
t ∈ [0, τ ] and bounded on Θ × [0, τ ] scalar functions s(0)(u; θ), s(0)∗ (u; θ),
vector functions s(1)(u; θ), s(1)∗ (u; θ) and (k + 1) × (k + 1) matrix s(2)(u; θ)
such that s(0)(u; θ0) > 0 on [0, τ ],

sup
θ∈Θ, u∈[0,τ ]

‖ 1
n
S(i)(u; θ)− s(i)(u; θ)‖ → 0

sup
θ∈Θ, u∈[0,τ ]

‖ 1
n
S

(i)
∗ (u; θ)− s(i)∗ (u; θ)‖ → 0
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sup
θ∈Θ, u∈[0,τ ]

∥∥∥∥∂E(u; θ)∂θ
− ∂e(u; θ)

∂θ

∥∥∥∥ P→ 0, as n→ ∞,

where e(u; θ) = s(1)(u; θ)/s(0)(u; θ).
b) A(τ) <∞.
Set

e∗(u; θ) = s
(0)
∗ (u; θ)/s(0)(u; θ), h(t; θ) = exp{−γ

∫ t

0

e∗(u; θ)dA(u)},

g(u; θ) =
s(1)(u; θ)s(0)∗ (u; θ)− s(0)(u; θ)s(1)∗ (u; θ)

s(0)(u; θ)
,

w(u; θ) = e(u; θ)− γ

h(u; θ)s(0)(u; θ)

∫ τ

u

g(v; θ)h(v; θ)dA(v).

Denote by A⊗2 the product AAT , J(u) = 1{Y (u)>0}.
c)

1
n

n∑
i=1

∫ τ

0

J(u){w(i)(u; θ0)− w(u; θ0)}⊗2eθ
T
0 zi(u;θ0)Yi(u)dA(u)

P→ Σ(θ0).

d) The matrix

Σ1(θ0) = −
∫ τ

0

{
s(2)(u; θ0)− ∂e(u; θ0)

∂θ
s(0)(u; θ0)

}
dA0(u)

is positive definite.

Theorem 8.1. Under Conditions A

n1/2(θ̂ − θ0) D→ N(0,Σ−1
1 (θ0)Σ(θ0)

(
Σ−1

1 (θ0)
)T
).

Set

C(θ0) = −
∫ t

0

∂

∂θ
lnS(0)(u; θ0)dA(u),

Hi(u; θ0) = J(u)
[
C(θ0)Σ−1

1 (θ0){w(i)(u; θ0)− w(u; θ0)}+ 1
s(0)(u; θ0)

]
,

vi(u; θ0) = Σ1(θ0){wi(u; θ0)− w(u; θ0)} =
(
v
(1)
i (u; θ0)
v
(2)
i (u; θ0)

)
,

cix(u; θ0) = γ0e
βT
0 xHi(u; θ0)+eβ

T
0 xA(t)v(2)

i (u; θ0)+γ0A(t)eβ
T
0 x{v(1)

i (u; θ0)}Tx,
where v(1)

i (u; θ) has the dimension k.

Condition B

1
n

n∑
i=1

∫ t

0

c2ix(u; θ0)Yi(u)e
θT
0 zi(u;θ)dA(u) P→ σ11x(t),

1
n

n∑
i=1

∫ t

0

cix(u; θ0)v
(2)
i (u; θ0)Yi(u)e

θT
0 zi(u;θ0)dA(u) P→ σ12x(t),
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1
n

n∑
i=1

∫ t

0

(v(2)
i (u; θ0))

2Yi(u)eθ
T
0 zi(u;θ0)dA(u) P→ σ22x(t).

Set

σ21x = σ12x, g1x(t) =
1
γ0
S1−γ0
x (t), g2x(t) = − 1

γ0
Sx(t) lnSx(t).

Theorem 8.2. Under Conditions A and B for all t ∈ [0, τ ]
√
n{Ŝx(t)− Sx(t)} D→ N(0, σ2

x(t)),

where σ2
x(t) =

∑2
i=1

∑2
j=1 gix(t)σijx(t)gjx(t).

8.2.9 Graphical tests for the GPH1 models

If the explanatory variables x1, x2 are constant then under the GPH1 model
(cf. (2.73)):

H(e−Ax2 (t), γ) = eβ
T (x2−x1)H(e−Ax1 (t), γ).

Hence
lnH(e−Ax2 (t), γ)− lnH(e−Ax1 (t), γ) = βT (x2 − x1).

Under different values of x the graphs of the time functions lnH(e−Ax(t), γ)
are parallel. So, if x is discrete or categorical with s possible values and the
data are stratified into s groups according to these values, then the Nelson-
Aalen estimators Âj(t) (j = 1, · · · , s) may be constructed and the parameter
γ estimated. Then the graphs of lnH(e−Âx(t), γ̂) should be approximately
parallel under the PH1 model.
So under the GPHGW model the graphs of

ln | (1 + Âj(t))γ̂ − 1 |, (γ̂ �= 0),
ln ln(1 + Âj(t)), (γ̂ = 0);

under the GPHGLL model the graphs of

ln | 1− e−γ̂Âj(t) |, (γ̂ �= 0), ln Âj(t), (γ̂ = 0);

and for the IGF model the graphs of

ln{Âj(t) + γ̂2 Â
2
j (t)}, (γ̂ �= 0), ln Âj(t), (γ̂ = 0)

are approximately parallel.

8.3 Semiparametric FTR data analysis: intersecting hazards

8.3.1 Model and data

Let us consider the GPH2 model with constant explanatory variables:

αx(t) = u{x,Ax(t)}α(t). (8.26)
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The baseline hazard rate function α(t) is supposed to be unknown. A cross-
effect of hazard rates is obtained under the following parametrizations:
1) CRE1 model:

αx(t) = eβ
T x(1 +Ax(t))γ

T x+1 α(t) (8.27)

or in terms of the baseline cumulative hazard

αx(t) = eβ
T x(1− γTxeβT xA(t))−1−1/γT x α(t),

Ax(t) = (1− γTxeβT xA(t))−1/γT x − 1, (8.28)
where x = (x1, · · · , xm)T , β = (β1, · · · , βm)T , γ = (γ1, · · · , γm)T .
2) CRE2 model:

αx(t) = e(β+γ)T x(A(t))e
γT x−1 α(t), Ax(t) = e(β+γ)T xγTx

−1
(A(t))e

γT x

.
(8.29)

The data are the same as in Chapter 8.2.1.
Denote by Si, αi and Ai the survival, hazard rate, and cumulative hazard

functions under x(i)(·).

8.3.2 Semiparametric estimation of the parameters θ

Semiparametric estimation for the GPH2 models using is given in Bagdon-
avičius and Nikulin (2000d), for the second model by Hsieh (2000), Ebrahimi
(1998).
If α is completely known then similarly as in the case of the GPH1 models

we obtain that the parametric maximum likelihood estimator of the parameter
θ = (β1, · · · , βm, γ1, · · · , γm)T is obtained by solving the system of equations

Uj(θ) = 0, (j = 1, · · · , 2m),
where

Uj(θ) =
n∑
i=1

∫ ∞

0

w
(i)
j (t, θ, A){dNi(u)− Yi(u)αi(u, θ)du}; (8.30)

for the CRE1 model:

w
(i)
j (t, θ, A) =

∂

∂βj
log{αi(t, θ)} =

x
(i)
j e

βT x(i)
A(t)

1− γTx(i)eβT x(i)A(t)
,

w
(i)
m+j(t, θ, A) =

∂

∂γj
log{αi(t, θ)} =

1
γTx(i)

{
x

(i)
j

γTx(i)
ln{1− γTx(i)eβ

T x(i)
A(t)}+ w(i)

j (t, θ, A)− x(i)
j

}

(j = 1, · · · ,m); (8.31)
for the CRE2 model:

w
(i)
j (t, θ, A) = x

(i)
j ,
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w
(i)
m+j(t, θ, A) = x

(i)
j {1 + eγT x(i)

lnA(t)} (j = 1, · · · ,m). (8.32)
For the first model set

B(x, θ,A(t)) = (1− γTx eβT xA(t))−1−1/(γT x), (8.33)

and for the second

B(x, θ,A(t)) = eγ
T x{A(t)}eγT x−1. (8.34)

If α is unknown then the score functions Uj depend not only on θ but also on
the unknown function A.
Similarly as for the GPH1 models the estimator Ã(t, θ) of A(t) can be found

recurrently:

Ã(t, θ) =
∫ t

0

dN(u)
S(0)(u−, θ, Ã) , (8.35)

where

S(0)(v, θ, A) =
n∑
i=1

Yi(v) eβ
T x(i)(v)B(x(i), θ, A(v)). (8.36)

Replacing the function A by Ã(t, θ) in (8.30), the modified score functions
Ũj(θ), depending only on θ, are obtained:

Ũj(θ) =
n∑
i=1

∫ ∞

0

{w(i)
j (u, θ, Ã)− Ej(u, θ, Ã)} dNi(u), (8.37)

where

Ej(v, θ, A) =
S

(1)
j (v, θ, A)
S(0)(v, θ, A)

,

S
(1)
j (v, θ, A) =

n∑
i=1

w
(i)
j (v, θ, A)Yi(v) e

βT x(i)(v)B(x(i), θ, A(v)).

8.3.3 Algorithm for computing the score functions

Suppose at first that there is no ex aequo. Let T(1) < ... < T(r) be observed
and ordered failure times, r ≤ n. Here (i) notes the index of the unit which
failure is observed the ith.
For fixed θ the estimator Ã(t; θ) is calculated by the following recurrent

formulas:

Ã(0; θ) = 0, Ã(T(1); θ) =

(
n∑
i=1

Yi(T(1))eβ
T x(i)

)−1

;

for j = 1, ..., r − 1

Ã(T(j+1); θ) = Ã(T(j); θ) +

(
n∑
i=1

Yi(T(j+1))eβ
T x(i)

B(x(i), θ, Ã(T(j), θ))

)−1

,

(8.38)
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where T(0) = 0. So the score function is calculated simply:

Ũj(θ) =
r∑
i=1

{w((i))
j (T(i), θ, Ã)− Ej(T(i), θ, Ã)}. (8.39)

The initial estimator for θ is obtained approximating the baseline hazard rate
by a piecewise constant function

α(t, µ) =
r∑
i=1

eµi 1(ai−1,ai](t),

where 0 = a0 < a1 < · · · < ar =∞ are given constants and µ = (µ1, · · · , µr)T
are unknown parameters.
Then the parametric model (corresponding to the CRE1 model)

αx(t) = eβ
T x

(
1− γTxeβT x

∫ t

0

r∑
i=1

1(ai−1,ai](s)e
µids

)−1−1/γT x

×

r∑
i=1

eµi 1(ai−1,ai](t), (8.40)

or (corresponding to the CRE2 model)

αx(t) = e(β+γ)Tx

(∫ t

0

r∑
i=1

1(ai−1,ai](s)e
µids

)eγT x−1 r∑
i=1

eµi 1(ai−1,ai](t),

(8.41)
can be used to obtain the initial estimator of θ.
The initial estimator Ã(0)(t, θ(0)) is obtained recurrently using (8.38). The

estimator θ̂(1) is obtained by solving the equations Ũj(θ) = 0, where Ũj(θ) are
given by (8.39) with Ã(0)(t, θ(0)) replacing Ã(t, θ). And so on.

8.3.4 Case of ex aequo

Suppose that ex aequo are possible. Let T ∗
1 < ... < T

∗
r be observed and ordered

distinct failure times, r ≤ n. Note by di the number of failures at the moment
T ∗
i . Let (i1), · · · , (idi

) be the indices of the units failed at T ∗
i .

The estimator Ã(t; θ) is calculated by the following recurrent formulas :

Ã(0; θ) = 0, Ã(T ∗
1 ; θ) = d1

(
n∑
i=1

Yi(T ∗
1 )e

βT x(i)

)−1

;

for j = 1, ..., r − 1

Ã(T ∗
j+1; θ) = Ã(T

∗
j ; θ) + dj+1

(
n∑
i=1

Yi(T ∗
j+1)e

βT x(i)
B(x(i), θ, Ã(T ∗

j ; θ))

)−1

.

(8.42)
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So the score function is modified:

Ũj(θ) =
r∑
i=1

ki∑
s=1

{w((is))
j (T ∗

i , θ, Ã)− Ej(T ∗
i , θ, Ã)}. (8.43)

8.3.5 Estimators of the main reliability characteristics

Suppose that x(·) is an arbitrary explanatory variable which may be different
from x(i)(·), (i = 1, · · · , n).

Estimator of the survival function Sx(·)(t):

The estimator of the survival function Sx(·)(t) for the first model is

Ŝx(·)(t) = exp
{
1− (1− γ̂Tx eβ̂T xÃ(t, θ̂))−1/(γ̂T x)

}
; (8.44)

for the second model

Ŝx(·)(t) = exp
{
−eβ̂T x(Ã(t, θ̂))e

γ̂T x

}
. (8.45)

Estimator of the p-quantile tp(x(·))

t̂p(x(·)) = sup{t : Ŝx(·)(t) ≥ 1− p}. (8.46)

Estimator of the mean failure time m(x(·)):

m̂(x) =
∑
j:δj=1

Xj{Ŝx(·)(Xj−)− Ŝx(·)(Xj)} (8.47)

The estimator of the mean may be underestimated if the last Xi is the cen-
soring time.

Asymptotic properties of the estimators are given by Bagdonavičius and
Nikulin (2000d). See also, Ciampi and Etezadi-Amoli (1985), Hyde (1977),
Nielsen, Gill, Andersen and Sorensen (1992), Vonta (2000).
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CHAPTER 9

Changing scale and shape model

9.1 Parametric FTR data analysis

Let us consider the CHSS model in the form:

Sx(·)(t) = S0

(∫ t

0

eβ
T x(u)ueγT x(u)−1du

)
, (9.1)

where β = (β0, · · · , βm)T , γ = (γ0, · · · , γm)T , x(·) = (x0(·), · · · , xm(·))T ,
x0(t) ≡ 1, and S0 belongs to a specified scale-shape class of survival func-
tions:

S0(t) = G0 {(t/η)ν} (η, ν > 0).

The parameter η can be included in the coefficient β0, so suppose that

S0(t;σ) = G0(t1/σ), σ = 1/ν.

Suppose that n units are observed. The ith unit is tested under the explana-
tory variable x(i)(·).
The data are supposed to be right censored.
Set Si = Sx(i) . Under the model (9.1)

Si(t;β, γ, σ) = G0

{(∫ t

0

eβ
T x(i)(u)ueγT x(i)(u)−1du

)1/σ
}
. (9.2)

Set

G(u) = G0(eu), u ∈ R, g(u) = −G′(u), h(u) = g(u)/G(u),

θ = (βT , γT , σ)T , fi(t, θ) =
∫ t

0

eβ
T x(i)(u)ueγT x(i)(u)−1du.

The likelihood function is

L(θ) =
n∏

i=1

{
1
σ
eβ

T x(i)(Xi)XeγT x(i)(Xi)−1
i (fi(Xi, θ))

−1 ×

h

(
1
σ
ln(fi(Xi, θ))

)}δi

G

(
1
σ
ln(fi(Xi, θ))

)
. (9.3)

Denote by θ̂ the maximum likelihood estimator of the parameter θ.
Estimator of the survival function Sx(·)(t):
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Ŝx(·)(t) = G0

{(∫ t

0

eβ̂
T x(u)ueγ̂T x(u)−1du

)1/σ̂
}
. (9.4)

Full FTR data analysis can be done similarly as for the AFT model.
We shall follow from here Bagdonavičius and Nikulin (1999a, 1999b, 2000)

9.2 Semiparametric FTR data analysis

Let us consider the CHSS model in the form:

Sx(·)(t) = S0

(∫ t

0

eβ
T x(u)ueγT x(u)−1du

)
, (9.5)

where β = (β1, · · · , βm)T , γ = (γ1, · · · , γm)T , x(·) = (x1(·), · · · , xm(·))T , and
suppose that the baseline survival function S0 is completely unknown. If γ = 0,
we have the AFT model.
Suppose that the data is as in the previous section. As in Chapter 6, it can

be presented in the form

(X1, δ1), · · · , (Xn, δn).

or
(N1(t), Y1(t), t ≥ 0), · · · , (Nn(t), Yn(t), t ≥ 0).

Denote by Si and αi the survival and the hazard rate functions under x(i)(·).
The hazard rates are:

αi(t; θ) = α0

{∫ t

0

eβ
T x(i)(u)ueγT x(i)(u)−1du

}
eβ

T x(i)(t)te
γT x(i)(t)−1;

here α0 = −S′
0/S0 is the baseline hazard function and θ = (βT , γT )T . If x(i)

is constant then

αi(t; θ) = α0

{
e(β−γ)T x(i)

te
γT x(i)

}
eβ

T x(i)
te

γT x(i)−1;

9.2.1 Semiparametric estimation of the regression parameters

If S0 is specified then the maximum likelihood estimator of the parameter θ
is obtained by solving the system of equations

U(θ) = 0,

where

U(θ) =
n∑

i=1

∫ ∞

0

∂

∂θ
log{αi(u, θ)}{dNi(u)− Yi(u) dA0{fi(u, θ)}},

fi(t, θ) =
∫ t

0

eβ
T x(i)(u)ueγT x(i)(u)−1du, A0(t) = − ln{S0(t)}.
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Note that
∂

∂β
log{αi(t, θ)} =

x(i)(t) +
α′

0 (fi(t, θ))
α0 (fi(t, θ))

∫ t

0

x(i)(u)eβ
T x(i)(u)ueγT x(i)(u)−1du,

∂

∂γ
log{αi(t, θ)} =

x(i)(t)eγ
T x(i)(t) ln t+

α′
0 (fi(t, θ))
α0 (fi(t, θ))

∫ t

0

x(i)(u)e(β+γ)T x(i)(u)ueγT x(i)(u)−1du.

If S0 is unknown then the score function U depends not only on θ but also on
unknown functions A0, α0 and α′

0.
The idea of semiparametric estimation of θ is the same as in the case of

the AFT model: to replace in the expression of U(θ) the unknown baseline
cumulative hazard function A0 by its good estimator (still depending on θ),
and the weight functions by suitable functions which do not depend on the
unknown baseline functions α0 and α′

0. In such a way the obtained modi-
fied score function does not contain unknown infinite-dimensional parameters
A0, α0, and α′

0 and contains only the finite-dimensional parameter θ.
The optimal weights depend on the derivative of the baseline hazard rate

which estimation is complicated when the law is unknown. So simplest weights
x

(i)
j (t) (in the first m score functions) and x(i)

j (t)e
γT x(i)(t) ln t (in the last m

score functions) may be chosen. They are optimal when the baseline distribu-
tion is exponential.
The idea of the estimator Ã0(t, β) construction is the same as in the case

of the AFT model: A0 is estimated by the Nelson-Aalen estimator

Ã0(t, θ) =
n∑

i=1

∫ t

0

dNi(gi(u, θ))∑n
l=1 Yl(gl(u, θ))

,

where gi(u, θ) is the function inverse to fi(u, θ) with respect to the first argu-
ment.
Replacing the function A0 by Ã0(t, β) and using the above mentioned

weights, modified score function Ũ(θ), depending only on θ, is obtained:

Ũ(θ) = (ŨT
1 (θ), Ũ

T
2 (θ))

T , (9.6)

where

Ũ1(θ) =
n∑

i=1

∫ ∞

0

{x(i)(u)− x̄1(fi(u, θ), θ)}dNi(u),

Ũ2(θ) =
n∑

i=1

∫ ∞

0

{x(i)(u)eγ
T x(i)(u) lnu− x̄2(fi(u, θ), θ)}dNi(u),

x̄1(v, θ) =

∑n
j=1 x

(j)(gj(v, θ))Yj(gj(v, θ))∑n
j=1 Yj(gj(v, θ))

,
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x̄2(v, θ) =

∑n
j=1 x

(j)(gj(v, θ))eγ
T x(j)(gj(v,θ)) ln gj(v, θ)Yj(gj(v, θ))∑n
j=1 Yj(gj(v, θ))

.

The values of the random vector Ũ(θ) are dispersed around zero. An esti-
mator of the parameter θ is obtained by minimizing the distance of Ũ(θ) from
zero.

9.2.2 Estimators of the main reliability characteristics

Suppose that x(·) is an arbitrary explanatory variable which may be different
from x(i)(·), (i = 1, · · · , n). Set

fx(·)(t, θ) =
∫ t

0

eβ
T x(u)ueγT x(u)−1du.

Estimator of the survival function Sx(·)(t):

Similarly as in the case of AFT model:

Ŝx(·)(t) =
∏

j:δj=1,fj(Xj ,θ̂)≤fx(·)(t,θ̂)

(
1− 1∑n

l=1 1{fl(Xl,θ̂)≥fj(Xj ,θ̂)}

)
. (9.7)

Estimator of the p-quantile tp(x(·))

t̂p(x(·)) = sup{t : Ŝx(·)(t) ≥ 1− p}. (9.8)

Estimator of the mean failure time m(x(·)):

m̂(x(·)) = −
∫ ∞

0

u dŜx(·)(u) =
n∑

j=1

δj gx(·)(fj(Xj , θ̂), θ̂)×

{S̃0(fj(Xj , θ̂)−, θ̂)− S̃0(fj(Xj , θ̂), θ̂)}, (9.9)
where gx(·)(t, θ) is the function inverse to fx(·)(t, θ) with respect to the first
argument, X0 = 0.

9.3 Semiparametric estimation in ALT

9.3.1 First plan of experiments

The first plan is the particular case of the plan of experiments considered in
9.2.1., when x(i) have the form (5.135). So the score function has the form
(9.4).
Estimators of the main reliability characteristics under the usual stress x0

are defined by (9.5)-(9.7), taking x0 instead of x(·) in all formulas.
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9.3.2 Case of unspecified functions r and α

Suppose that the CHSS model holds on a set of stresses E:

Sx(·)(t) = S0

(∫ t

0

r{x(u)}uα{x(u)}−1du

)
,

and the functions r, α, and S0(t) are completely unknown. Then the third
plan of experiments considered in 6.2.2 may be considered.
Set

S0 = Sx0 , S1 = Sx1 , S2 = Sx2(·), Ai = − lnSi (i = 1, 2, 0),

θ = r(x1)/α(x1), α = α(x1), S∗
0 (t) = Sx0(θt).

Under the CHSS model
Sx1(t) = S

∗
0 (t

α),

and

Sx2(·)(t) =
{
S∗

0 (t
α), 0 ≤ t < t1,

S∗
0 (t

α
1 +

t−t1
θ ), t ≥ t1,

which implies that

lnαx1(t) = lnα
∗
0(t

α) + lnα+ (α− 1) ln t,
and

lnαx2(t) =
{
lnα∗

0(t
α) + lnα+ (α− 1) ln t, 0 ≤ t < t1,

lnα∗
0(t

α
1 +

t−t1
θ )− ln θ, t ≥ t1,

Suppose at first that S∗ is known. Then

∂ lnαx1(t)
∂α

= (lnα∗
0)

′(tα)tα ln t+
1
α
+ ln t,

∂ lnαx1(t)
∂θ

= 0,

∂ lnαx2(t)
∂α

=
{
(lnα∗

0)
′(tα)tα ln t+ 1

α + ln t, 0 ≤ t < t1,
(lnα∗

0)
′(tα1 +

t−t1
θ )tα1 ln t1, t ≥ t1,

∂ lnαx2(t)
∂θ

=
{
0, 0 ≤ t < t1,
(lnα∗

0)
′(tα)(−(t− t1)/θ2)− θ−1, t ≥ t1,

Similarly as in 6.2.2 for the AFT model we obtain score functions (with opti-
mal weights for S∗(t) = exp{−t}):

Ũ1(α, θ) =∫ ∞

0

(
1
α
+ lnu)

{
dN1(u)− Y1(u)

dN1(u) + dN2(g2(f1(u;α, θ);α, θ))
Y1(u) + Y2(g2(f1(u;α, θ);α, θ))

}
+

∫ t1

0

(
1
α
+ lnu)

{
dN2(u)− Y2(u)

dN1(g1(f2(u;α, θ);α, θ)) + dN2(u)
Y1(g1(f2(u;α, θ);α, θ)) + Y2(u)

}
=

1
α

∫ t2

t1

{
1 + ln(tα1 +

v − t1
θ

)
}
×
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Y2(v)dN1((tα1 +
v−t1

θ )1/α)− Y1((tα1 +
v−t1

θ )1/α))dN2(v)
Y1((tα1 +

v−t1
θ )1/α)) + Y2(v)

.

By the same way we obtain

Ũ2(α, θ) = −1
θ

∫ t2

t1

Y1(g1 ◦ f2(u))dN2(u)− Y2(u)dN1(g1 ◦ f2(u))
Y1(g1 ◦ f2(u)) + Y2(u)

.

Hence the two modified score functions may be considered:

Û1(α, θ) =∫ t2

t1

ln(tα1 +
u− t1
θ

)
Y2(u)dN1((tα1 +

u−t1
θ )1/α)− Y1((tα1 +

u−t1
θ )1/α))dN2(u)

Y1((tα1 +
u−t1

θ )1/α)) + Y2(u)
and

Û2(α, θ) =
∫ t2

t1

Y1(tα1 +
v−t1

θ )dN2(u)− Y2(u)dN1(tα1 +
v−t1

θ )
Y1(tα1 +

v−t1
θ ) + Y2(u)

.

The function Û2(α, θ) is increasing with respect to θ under any fixed α and
limθ→+0 Û2(α, θ) < 0, limθ→+∞ Û2(α, θ) > 0 a.s. Define

θ̃(α) = sup {θ : Û(α, θ) ≤ 0}. (9.10)

The estimator α is defined as the minimizer of | Û1(α, θ̃(α)) |.
The survival function Sx0(t) is estimated by:

Ŝx0(t) =
∏

(i,j)∈B(t)

(
1− 1

Y1(T1i) + Y2(t1 ∧ T1i + θ̂((T α̂
1i − tα̂1 ) ∨ 0))

)
×

(
1− 1

Y2(T2j) + Y1(((t1 ∧ T2j)α̂ +
T2j−t1

θ̂
∨ 0)1/α̂)

)
, (9.11)

where

B(t) = {(i, j)| θ̂T α̂
1i ≤ t, θ̂(T2j ∧ t1)α̂ + (T2j − t1) ∨ 0 ≤ t}.

The quantile tp(x0) is estimated by

t̂p(x0) = sup{t : Ŝx0(t) ≥ 1− p}
and the mean time-to-failure m(x0) by

m̂(x0) =
∫ ∞

0

Ŝx0(u) du.



CHAPTER 10

GAH and GAMH models

10.1 GAH model

Let us consider the generalized additive hazards model:

Sx(·)(t) = G{H(S0(t)) +
∫ t

0

γTx(τ)dτ}.

with a specified G, H = G−1 and an unknown baseline survival function S0.
In the particular case G(t) = e−t, t ≥ 0, we have the additive hazards model.

Suppose that n units are observed and the ith unit is tested under the
explanatory variable x(i)(·) = (x(i)

1 (·), ..., x(i)
m (·))T .

Assume that the data are right censored and the multiplicative intensity
model holds. The data can be presented in the form

(X1, δ1, x
(1)(·)), · · · , (Xn, δn, x

(n)(·)).
or

(N1(t), Y1(t), x(i)(t), t ≥ 0), · · · , (Nn(t), Yn(t), x(i)(t), t ≥ 0).

Denote by Si and αi the survival and the hazard rate functions under x(i)(·)
and set α = −G′/G, ψ = α ◦H.
The Doob-Meyer decomposition of N =

∑
i Ni implies that

dN(t) = dM(t) +
n∑

i=1

ψ(Si(t))Yi(t){dH(S0(t)) + γTx(i)(t)dt}

and∫ t

0

J(u)(dN(u)− S
(0)
∗ (u, γ)du)

S(0)(u)
=

∫ t

0

J(u)dH(S0(u)) +
∫ t

0

J(u)dM(u)
S(0)(u)

,

(10.1)
where

J(u) = 1{Y (u)>0}, S(0)(u, γ) =
n∑

i=1

Yi(u)ψ(Si(u)),

S
(0)
∗ (u, γ) =

n∑
i=1

Yi(u)ψ(Si(u))γTx(i)(u).

If Y (t) > 0, then ∫ t

0

J(u)dH(S0(u)) = H(S0(t)). (10.2)
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The equalities (10.1) and (10.2) imply that a reasonable estimator Ĥ0(t, γ)
for H0(t) = H(S0(t)) (still depending on γ) is determined by the recurrent
equation

Ĥ0(t, γ) =
∫ t

0

J(u)
dN(u)− S̃

(0)
∗ (u, γ)du

S̃(0)(u, γ)
,

where

S̃(0)(u, γ) =
n∑

i=1

Yi(u)α(Ĥi(u, γ)), S̃
(0)
∗ (u, γ) =

n∑
i=1

Yi(u)α(Ĥi(u, γ))γTx(i)(u),

Ĥi(u, γ) = Ĥ0(u−, γ) +
∫ u

0

γTx(i)(v)dv.

Set τ∗ = sup{t : Y (t) > 0}. Using the fact that

dMi(u) = dNi(u)− Yi(u)α(Hi(u, γ))dHi(u, γ)

with

Hi(u, γ) = H0(u) +
∫ u

0

γTx(i)(v)dv,

Bagdonavičius and Nikulin (1997a) proposed to estimate the parameter γ by
solving the estimating equations

U(γ, τ) = 0,

where the estimating function is given by the next formula

U(t, γ) =
n∑

i=1

∫ t

0

x(i)(u){dNi(u)− Yi(u)α(Ĥi(u, γ))dĤi(u, γ)} =

n∑
i=1

∫ t

0

{x(i)(u)− Ẽ(u, γ)}
{
dNi(u)− Yi(u)α(Ĥi(u, γ))γTx(i)(u)du

}
,

Ẽ(u, γ) =
S̃(1)(u, γ)
S̃(0)(u, γ)

, S̃(1)(γ, u) =
n∑

i=1

x(i)(u)Yi(u)α(Ĥi(u, γ)).

These equations generalize the estimating equations of Lin and Ying (1994)
for the additive hazards model (taking α(p) ≡ 1).

If we denote by γ̂ the estimator of γ then the estimator of the survival
function Sx(·)(t) is

Ŝx(·)(t) = G

{
H̃0(t, γ̂) +

∫ t

0

γ̂Tx(u)du
}
.

Asymptotic properties of the estimators are given in Bagdonavičius and Nikulin
(1997b).
If several groups of units (as in ALT) are tested, then implicit estimator

of the parameters γ (see Bagdonavičius and Nikulin (1995)) can be obtained.
Let us consider them.



GAH MODEL 199

Suppose that ni units are tested under the stress x(i)(·) (i = 1, 2, ..., k),
n =

∑k
i=1 ni. The data can be presented in the form

(Xij , δij , x
(i)(·))

or
(Nij(t), Yij(t), x(i)(t), t ≥ 0) (i = 1, · · · , k; j = 1, · · · , ni).

Set

Ni(t) =
ni∑

j=1

Nij(t), N(t) =
k∑

i=1

Ni(t), Yi(t) =
ni∑

j=1

Yij(t), Y (t) =
k∑

i=1

Yi(t).

The functions S(0) and S
(0)
∗ in the equality (10.1) can be written

S(0)(u) =
k∑

i=1

Yi(u)ψ(Si(u)),

S
(0)
∗ (u, γ) =

k∑
i=1

Yi(u)γTx(i)(u)ψ(Si(u)),

and the survival functions Si can be estimated by the Kaplan-Meier estimators

Ŝi(t) =
∏
u≤t

(
1− ∆Ni(u)

Yi(u)

)

where ∆Ni(u) = Ni(u)−Ni(u− 0). So the equalities (10.1) and (10.2) imply
that a reasonable estimator for H0(t)) (still depending on γ) is

Ĥ0(t)) =
∫ t

0

J(u)
dN(u)− S̃

(0)
∗ (u, γ)du

S̃(0)(u)
,

where

S̃(0)(u) =
k∑

i=1

Yi(u)ψ(Ŝi(u)),

S̃
(0)
∗ (u, γ) =

k∑
i=1

Yi(u)γTx(i)(u)ψ(Ŝi(u)).

The parameter γ is estimated by solving the estimating equations

U(τ, γ) = 0,

where
U(t, γ) =

k∑
i=1

∫ t

0

xi(u)
{
dNi(u)− Yi(u)ψ(Ŝi(u−))

(
dH(Ŝ0(u)) + γTx(i)(u)du

)}
=

k∑
i=1

∫ t

0

{xi(u)− Ẽ(u)}
{
dNi(u)− Yi(u)ψ(Ŝi(u−))γTx(i)(u)du

}
,
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where

Ẽ(u) =
S̃(1)(u)
S̃(0)(u)

, S̃(1)(u) =
k∑

i=1

x(i)(u)Yi(u)ψ(Ŝi(u−)).

Denote by γ̂ the estimator satisfying this equation. Note that it has an
explicit form:

γ̂ =

{
k∑

i=1

∫ τ

0

(x(i)(u)− Ẽ(u))⊗2Yi(u)ψ(Ŝi(u−))du

}−1

×
{

k∑
i=1

∫ τ

0

(x(i)(u)− Ẽ(u))dNi(u)

}
. (10.3)

The estimator of the survival function under any x(·) is

Ŝx(·)(t) = G

{∫ t

0

J(u)
dN(u)− S̃

(0)
∗ (u, γ̂)du

S̃(0)(u)
+

∫ t

0

γ̂Tx(u)du

}
. (10.4)

Asymptotic properties of the simplified estimators (10.3) and (10.4) were stud-
ied also by Bordes (1996).

10.2 GAMH model

Let us consider the generalized additive-multiplicative hazards model:

Sx(·)(t) = G

{∫ t

0

eβT z(u)dH(S0(u)) +
∫ t

0

γTw(u)du
}
.

with specifiedG,H = G−1 and an unknown baseline survival function S0, here
β = (β1, ..., βp)T , γ = (γ1, ..., γs)T xT (t) = (zT (t), wT (t)). Set θ = (βT , γT )T .

If p = m or s = m, we have the GPH or the GAH model, respectively.
Suppose that n units are observed and the ith unit is tested under the

explanatory variable x(i)(·).
Assume that the data are right censored and the multiplicative intensity

model holds.
Denote by Si and αi the survival and the hazard rate functions under x(i)(·)

and set α = −G′/G, ψ = α ◦H.
Similarly as in the case of the GAH model, Bagdonavičius and Nikulin

(1997a) proposed to estimate the parameter θ by solving the estimating equa-
tions

U(τ, θ) = 0,
where

U(t, θ) =
n∑

i=1

∫ t

0

J(u){x(i)(u)−Ẽ(u, θ)}
{
dNi(u)− Yi(u)α(Ĥi(u, θ))γTw(i)(u)du

}
,

Ĥi(u, θ) =
∫ u−

0

eβT z(i)(v)dĤ0(v, θ) +
∫ u

0

γTw(i)(v)dv.
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Ĥ0(t, θ) =
∫ t

0

J(u)
dN(u)− S̃

(0)
∗ (u, θ)du

S̃(0)(u, θ)
,

S̃(0)(u, θ) =
n∑

i=1

Yi(u)eβT z(i)(u)α(Ĥi(u, θ)),

S̃
(0)
∗ (u, θ) =

n∑
i=1

Yi(u)α(Ĥi(u, θ))γTw(i)(u),

Ẽ(u, θ) =
S̃(1)(u, θ)
S̃(0)(u, θ)

, S̃(1)(u, θ) =
n∑

i=1

x(i)(u)Yi(u)eβT z(i)(u)α(Ĥi(u, θ)).

These equations generalize the estimating equations Lin and Ying (1996) for
the additive-multiplicative model ( taking α(p) ≡ 1).

The estimator of the survival function under any x(·) = (zT (·), wT (·))T ∈ E
is

Ŝx(·)(t) = G

{∫ t

0

J(u)eβ̂T z(u) dN(u)− S̃
(0)
∗ (u, θ̂)du

S̃(0)(u, θ̂)
+

∫ t

0

γ̂Tw(u)du

}
.

Asymptotic properties of estimators are given by Bagdonavičius and Nikulin
(1997a).
If several groups of units (as in ALT) are tested, then simpler estimators

can be obtained (Bagdonavičius and Nikulin (1995)), solving the estimating
equations U(τ, θ) = 0, where

U(t, θ) =
k∑

i=1

∫ t

0

J(u){xi(u)−Ẽ(u, β)}
{
dNi(u)− Yi(u)ψ(Ŝi(u−))γTwi(u)du

}
.

Ẽ(u, β) =
S̃(1)(u, β)
S̃(0)(u, β)

, S̃(0)(u, β) =
k∑

i=1

Yi(u)eβT zi(u)ψ(Ŝi(u)),

S̃(1)(u, β) =
k∑

i=1

xi(u)Yi(u)eβT zi(u)ψ(Ŝi(u−)).

The estimator of the survival function under x(·) ∈ E is

Ŝx(·)(t) = G

{∫ t

0

J(u)eβ̂T z(u) dN(u)− S̃
(0)
∗ (u, γ̂)du

S̃(0)(u, β̂)
+

∫ t

0

γ̂Tw(u)du

}
.

The estimator γ̂ can be written as explicit function of β̂.
Asymptotic properties of estimators are given by Bagdonavičius and Nikulin

(1998).

10.3 AAR model

Let us consider Aalens additive risk model:

αx(·)(t) = xT (t)α(t)
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with unknown baseline function α(·) = (α1(·), · · · , αm(·))T .
Suppose that n units are observed and the ith unit is tested under the

explanatory variable x(i)(·).
Assume that the data are right censored and the multiplicative intensity

model holds.
Denote by Si and αi the survival and the hazard rate functions under x(i)(·).
Let us consider a submodel

α(t) = α0(t) + ηϕ(t), (10.5)

in which η is a one-dimensional parameter and ϕ,α0 is a given m-vector of
functions.
The score function obtained from the parametric likelihood function for the

parameter η is

U(η) =
n∑

i=1

∫ ∞

0

∂

∂η
logαi(t)(dNi(t)− Yi(t)αi(t)dt) =

n∑
i=1

∫ ∞

0

ϕT (t)x(i)(t)
αi(t)

(dNi(t)− Yi(t)(x(i)(t))T dA(t)),

where

A(t) =
∫ t

0

α(u)du.

The weights ϕT (t)x(i)(t)(αi(t))−1 depend on the hazard rates αi(u). If A is
unknown and we want to estimate it, the estimator should be the same for all
ϕ. Setting U(η) = 0 for all functions ϕ implies that for all t

x(i)(t)
αi(t)

(dNi(t)− Yi(t)(x(i)(t))T dA(t)) = 0,

which implies the estimator (still depending on αi):

Ã(t) =
n∑

j=1

∫ t

0

(
n∑

i=1

x(i)(u)(x(i)(t))T (αi(u))−1)−1x(j)(u)(αj(u))−1dNj(u).

(10.6)
Replacing αi(u) by 1 in the expression of the estimator, we obtain the Aalen’s
ordinary least squares (OLS) estimator Âls.

To obtain efficient estimators of A the hazard rates αi should be replaced
in (10.6) by their estimators

α̂i(t) = (x(i)(t))T α̂(t),

where

α̂(t) =
1
b

∫ ∞

O

K

(
t− u

b

)
dÂls(u);

K is a left-continuous kernel function of bounded variation, having integral 1,
support (ε, 1] for some 0 < ε < 1, and b > 0 is a bandwidth parameter.
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Thus, we have the weighted least squares (WLS) estimator given by Huffer
and McKeague (1991):

Â(t) =
n∑

j=1

∫ t

0

Ĥj(u)dNj(u), (10.7)

where

Ĥj(u) = (
n∑

i=1

x(i)(u)(x(i)(t))T (α̂i(u))−1)−1x(j)(u)(α̂j(u))−1. (10.8)

In practice the gain of efficiency when using the WHS estimator instead of
OWS estimator is small.
The WHS estimator is not very sensitive to the choice of kernel function.

Taking the kernel to be constant on (ε, 1], the estimator α̂(t) is proportional
to the sum of increments of Âls. The estimators of the cumulative hazard
Ax(·) and the survival function Sx(·) are

Âx(·)(t) =
n∑

j=1

∫ t

0

xT (u)Ĥj(u)dNj(u) =
∑

j:δi=1,Xj≤t

xT (Xj)Ĥj(Xj),

Ŝx(·)(t) =π0≤s≤t(1− dÂx(·)(s)) =
∏

j:δi=1,Xj≤t

(
1− xT (Xj)Ĥj(Xj)

)
.

Asymptotic properties of the estimator Â are given in Huffer and McKeague
(1991), Andersen et al (1993), Section VII.4.2. See also McKeague and Utical
(1991).

10.4 PPAR model

Let us consider the partly parametric additive risk model:

αx(t) = xT
1 α(t) + βTx2, (10.9)

where x1 and x2 are q and p dimensional components of the explanatory
variable x, α(t) = (α1, · · · , αq, β = (β1, · · · , βp)T are unknown, with unknown
baseline function α(·) = (α1(·), · · · , αq(·))T .
Suppose that the data is as in the previous section. The estimation pro-

cedure given by McKeague and Sasieni (1994), is analogous as in the case
of AAR model: under the submodel of (10.9) with α defined by (10.5) the
maximum likelihood estimators of the parameters η and β verify the system
of equations

U1(η, β) =
n∑

i=1

∫ ∞

0

∂

∂η
logαi(t)(dNi(t)− Yi(t)αi(t)dt) =

n∑
i=1

∫ ∞

0

ϕT (t)x(i)
1

αi(t)
(dNi(t)− Yi(t)(x

(i)
1 )T dA(t)− βTx2Yi(t)dt) = 0,
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U2(η, β) =
n∑

i=1

∫ ∞

0

∂

∂β
logαi(t)(dNi(t)− Yi(t)αi(t)dt =

n∑
i=1

∫ ∞

0

x
(i)
2

αi(t)
(dNi(t)− Yi(t)(x

(i)
1 )T dA(t)− βTx

(i)
2 Yi(t)dt) = 0. (10.10)

If A is unknown and we want to estimate it, the estimator should be the same
for all ϕ. Setting U1(η, β) = 0 for all functions ϕ implies that for all t

x(i)

αi(t)
(dNi(t)− Yi(t)(x

(i)
1 )T dA(t)− βTx

(i)
2 Yi(t)dt) = 0,

which implies the estimator (still depending on αi and β):

Ã(t) =
n∑

j=1

∫ t

0

(
n∑

i=1

x
(i)
1 (x(i)

1 )TYi(u)(αi(u))−1)−1x
(j)
1 (αj(u))−1×

(dNj(u)− βTx
(j)
2 Yj(u)du). (10.11)

Shortly,

Ã(t) =
∫ t

0

(AT
1 (u)W (u)A1(u))−1(AT

1 (u)W (u)dN(u)−AT
1 (u)W (u)A2(u)βdu),

(10.12)
where W (t) = diag(αj(t)) (diagonal matrix with elements αj(t) on the diago-
nal), A1(t) = (x(1)

1 Y1(t), · · · , x(n)
1 Yn(t))T , A2(t) = (x(1)

2 Y1(t), · · · , x(n)
2 Yn(t))T ,

N(t) = (N1(t), · · · , Nn(t))T .
Replacing A by Ã in the equation (10.10) and solving with respect to β, we

obtain the estimator (still depending on αi) for β:

β̃ =
(∫ ∞

0

AT
2 (u)H(u)A2(u)du

)−1 ∫ ∞

0

AT
2 (u)H(u)dN(u), (10.13)

where H = W −WA1(AT
1 WA1)−1AT

1 W .
Replacing W by the identity matrix I yields an estimator β̂. Replacing β

in (10.12) by β̂ and using I in place of W gives unbiased, consistent, and
asymptotically Gaussian estimator of A.

As in the previous section, properties of estimators can be slightly improved
defining estimators of β and A, taking consistent estimators of αi in the
expression of W (see McKeague and Sasieni (1994)). See also Gasser and
Muller (1979).
The estimators of the cumulative hazard Ax(·) and the survival function

Sx(·) are

Âx(·)(t) =
n∑

j=1

∫ t

0

xT
1 dÂ(u) + β̂Tx2t,

Ŝx(·)(t) =π0≤s≤t(1− dÂx(·)(s)).
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Asymptotic properties of the estimator Â are given in McKeague and Sasieni
(1994).



 

B E S T  P R C I C E S  S E R I E S



CHAPTER 11

Estimation when a process of
production is unstable

Suppose that a process of production is unstable, i.e. the reliability of units
produced in nonintersecting time intervals I1 = (t0, t1], · · · , Iq(tm−1, tm] is
different: under the same stress conditions the survival functions of units,
produced in the intervals Ii and Ij (i �= j), are different.

If the heredity hypothesis (Definition 2.13) is satisfied on E and sufficiently
large usual and accelerated data are accumulated during a long period of ob-
servations, then good estimators of the functions ρ(x(0), x(1)) (or b(x(0), x(1)))
can be obtained. The reliability of newly produced units under the usual stress
x0 can be estimated from accelerated life data under the stress x(1) > x(0),
using the estimators ρ̂(x(0), x(1)) or b̂(x(0), x(1)) and without using the experi-
ment under the normal stress. We shall follow here Bagdonavičius and Nikulin
(1997f).

11.1 Application of the AFT model

Suppose that for units produced in each of fixed time intervals Ii the AFT
model holds.

If the function r(x) and the survival function Sx(0) are completely unknown,
the third plan of experiments (Chapter 5.6.3) may be used for units produced
in the interval Ii.

Two groups of units are tested:
a) The first group of n(i)

1 units under a constant accelerated stress x(1);
b) The second group of n(i)

2 units under a step-stress: time t(i)1 under x(1),
and after this moment under the usual stress x(0) until the moment t(i)2 , i.e.
under the stress:

x(2i)(τ) =

{
x(1), 0 ≤ τ ≤ t(i)1 ,

x(0), t
(i)
1 < τ ≤ t(i)2 .

In the particular case when some failures can be obtained in the interval
[0, t(i)2 ] under the usual stress, the value t(i)1 = 0 may be taken in the second
experiment, i.e. the units may be tested only under x(0).

Set r = ρ(x(0), x(1)). The parameter r is the same for units produced in
different time intervals under the heredity hypothesis. The estimator r̂(i) of
the parameter r is defined by the formula (6.24)(adding the upper index (i) in
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all formulas). The asymptotic distribution of this estimator is given by (6.37).
So

a(i)n (r̂(i) − r0) D→ N(0, (σ(i)
r )2), (11.1)

where

(σ(i)
r )2 =

S
(i)
2 (t1)− S(i)

2 (t2)
{(U (i))′(r0)}2

, (11.2)

and (U (i))′(r0) is given by (6.38).
The estimator obtained from all data is

r̂ =
∑m

i=1 a
(i)r̂(i)∑m

i=1 a
(i)

. (11.3)

If sufficiently large preliminary data is accumulated, the estimator r̂ has small
variance. The reliability of newly produced units can be estimated using the
data from experiments under the accelerated stress x(1). If Ŝx(1) , t̂p(x(1)) and
m̂(x(1)) are estimators of the survival function, p-quantile and mean under x(1)

obtained from such experiments, then the estimator of the survival function
under the usual stress x(0) are:

Ŝx(0)(t) = Ŝx(1)(t/r̂), t̂p(x(0)) = r̂ t̂p(x(1)), m̂(x(0)) = r̂ m̂(x(1)). (11.4)

Suppose that the models are parametric, for example,

S
(i)

x(0)(t) = S0

((
t/θ(i)

)α(i))

for the units produced in the ith time interval. If the AFT model

S
(i)
x(·)(t) = S0




(∫ t

0

r{x(τ)}dτ/θ(i)
)α(i)


 ,

holds then the heredity hypothesis means that the function r(·) does not
depend on i.

Suppose that for a group of units produced in some time interval the above
considered experiment is used. Then the estimator of r := r(x(1))/r(x(0)) is
r̂(i) = eρ̂

(i)
, where the estimator ρ̂(i) is obtained from the system of equations

(5.143). The unified estimator from q groups of units is obtained using the
formula (11.3). The reliability of newly produced units can be estimated using
the data from an experiment under the accelerated stress x(1). The estima-
tors of the reliability characteristics have the form (11.4), expressions of the
estimators Ŝx(1) , t̂p(x(1)) and m̂(x(1)) being evidently different then in the
nonparametric case.

11.2 Application of the GPH1 model

Suppose that for the units produced in a particular time interval (we skip the
upper index (i)) the GPH1 model with specified q (or, equivalently, G) holds.
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Suppose that nj units are tested under the stress x(j) (j=0,1), the data are
right censored and the multiplicative intensity model holds.

Denote Nj(t) the numbers of observed failures and Yj(t) - the numbers of
units at risk just prior to t for the jth group on test.

We suppose that all failure and censoring processes are censored at the
moment τ .

The parameter ρ = ρ(x(0), x(1)) (which is common for units produced in
different intervals) is estimated by solving the estimating equations

U(ρ, τ) = 0,

where

U(ρ, t) = N2(t)− ρ(x1, x2)
∫ t

0

ψ(Ŝ2(u−))Y2(u)dH ◦ Ŝ1(u),

and Ŝ1, Ŝ2 are the Kaplan-Meier estimators of the reliability functions S1 and
S2. So we obtain the estimator

ρ̂ = ρ̂(x1, x2) =
N2(τ)∫ τ

0
ψ(Ŝ2(u−))Y2(u)dH ◦ Ŝ1(u)

.

Suppose that the estimator ρ̂ is obtained from the preliminary experiments
and the heredity principle is satisfied. If the newly produced units are tested
only under the accelerated stress x(1) and the Kaplan-Meier estimator S̃x(1)

is obtained, then the reliability function Sx(0) can be estimated as follows:

S̃x(0)(t) = G
{
ρ̂H ◦ S̃x(1)(t)

}
.

Let us consider the asymptotic properties of the estimators ρ̂ and b̂;
Set n = n0 + n1 and suppose that

nj/n→ lj ∈]0, 1[, sup
u∈[0,τ ]

|Yj(u)/ni − yj(u)| P→ 0 as n→ ∞.

Then √
n(ρ̂− ρ) =

√
n
An

Bn
=

√
n×

M2(τ) + ρ
{∫ τn

0
ψ ◦ S2(u)Y2(u)dH ◦ S1(u)−

∫ τn

0
ψ ◦ Ŝ2(u−)Y2(u)dH ◦ Ŝ1(u)

}
∫ τn

0
ψ ◦ Ŝ2(u)Y2(u)dH ◦ Ŝ1(u)

.

We have
Bn

n

P→
∫ τ

0

ψ ◦ S2(u)l2y2(u)dH ◦ S1(u) = B.

By Theorem A7
Mj√
n

D→ Vj in D[0, τ ],

where Vj is a Gaussian martingale with Vj(0) = 0 and for all 0 ≤ s ≤ t ≤ τ
Cov (Vj(s), Vj(t)) = σ2

j (s),
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where

σ2
j (s) = lj

∫ s

0

yj(u)αj(u)du.

The Kaplan-Meier estimators are asymptotically Gaussian (see Theorem A9):

√
n(Ŝj − Sj)(·) D→ −Sj(·)

lj

∫ ·

0

dVj(u)
yj(u)

in D[0, τ ].

So we have:

1√
n
An =

1√
n

{
M2(τn)− ρ[

∫ τn

0

(
ψ ◦ Ŝ2(u)− ψ ◦ S2(u)

)
Y2(u)dH ◦ S1(u)+

∫ τn

0

ψ ◦ S2(u)Y2(u)d(H ◦ Ŝ1(u)−H ◦ S1(u))]

}
+ op(1)

D→
∫ τ

0

(a1(u)dV1(u) + a2(u)dV2(u)) = ZM .

Note that

E(ZM ) = 0, Var (ZM ) =
∫ τ

0

a21(u)dσ
2
1(u) + a22(u)dσ

2
2(u),

√
n(ρ̂− ρ) D→ N(0, σ2

ρ),

where σ2
ρ = Var (ZM )/B2. The variance σ2

ρ can be consistently estimated by
the statistic

σ̂2
ρ = V̂ar (ZM )/B̂2,

where

B̂ = Bn/n, V̂ar (ZM ) =
1
n

∫ τn

0

(â21(u)dN1(u) + â22(u)dN2(u)),

â1(u) =
ρ̂

Y1(u)

{
ψ ◦ Ŝ2(τn)Y2(τn)H ′ ◦ Ŝ1(τn)Ŝ1(τn)−

∫ τn

u

H ′ ◦ Ŝ1(v)Ŝ1(v)d(ψ ◦ Ŝ2(v)Y2(v))

}
,

â2(u) =

{
1 +

ρ̂

Y2(u)

∫ τn

u

Y2(v)ψ′ ◦ Ŝ2(v)Ŝ2(v)dH ◦ Ŝ1(v)

}
.

Taking into account that ρ is positive, the rate of convergence to the normal
distribution can be increased considering the estimator ρ̂∗ = ln ρ̂. If we denote
ρ∗ = ln ρ, then

√
n (ρ̂∗ − ρ∗) D→ N(0, σ2

ρ∗), where σ2
ρ∗ =

σ2
ρ

ρ2
.

The variance σ2
ρ∗ can be consistently estimated by σ̂2

ρ∗ = σ̂2
ρ/ρ̂

2.
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If during m different periods the estimators

ρ̂∗(1) = ln ρ̂(1), ..., ρ̂∗(m) = ln ρ̂(m) and b̂(1), ..., b̂(m)

are obtained and the heredity principle is satisfied, we can determine

ρ̂∗ =
m∑

i=1

ρ̂∗(i)

σ̂
(i)
ρ∗
/

m∑
i=1

1

σ̂
(i)
ρ∗
, ρ̂ = eρ̂

∗
,

where (σ̂(i)
ρ∗ )2 is the estimator of the variance of ρ̂∗

(i)
.

The estimator ρ̂ is used to estimate the newly produced units from the data
from testing of these units under the accelerated stress x(1). The estimator of
the survival function under the usual stress is

Sx(0)(t) = G
{
H ◦ Ŝx(1)(t)/ρ̂)

}
.
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CHAPTER 12

Goodness-of-fit for accelerated life
models

12.1 Goodness-of-fit for the GS model

Let Em be a set of step-stresses of the form

x(τ) =




x1, 0 ≤ τ < t1,
x2, t1 ≤ τ < t2,
· · · · · ·
xm, tm−1 ≤ τ < tm.

(12.1)

Set t0 = 0.
If the GS model holds on Em then the survival function Sx(·)(t) verifies the

equality:

Sx(·)(t) = Sxi
(t− ti−1 + t∗i−1), if t ∈ [ti−1, ti) (i = 1, 2, . . . ,m), (12.2)

where t∗i can be found by solving the equations

Sx1(t1) = Sx2(t
∗
1), . . . , Sxi

(ti − ti−1 + t∗i−1) = Sxi+1(t
∗
i ) (i = 1, . . . ,m− 1).

(12.3)
Note also that

Sx(·)(ti) = Sxi+1(t
∗
i ).

The moment ti under the stress x(·) is equivalent to the moment t∗i under the
stress xi+1.
We considered several alternatives to the GS model. For example, under

the PH model the time-shift rule does not take place if failure times under
constant stresses are not exponentially distributed.
Another alternative was formulated by taking into account the influence of

switch-ups of stresses on reliability of units: after the switch-up at the moment
ti from the stress xi to the stress xi+1 the survival function has a jump:

Sx(·)(ti) = Sx(·)(ti−) δi;
here δi is the probability for an unit not to fail because of the switch-up at
the moment ti. In this case the GS model for step-stresses can be modified as
follows:

Sx(·)(t) = Sxi
(t− ti−1 + t∗∗i−1)), (12.4)

where

t∗∗1 = S−1
x2

{Sx1(t1) δ1}, t∗∗i = S−1
xi+1

{Sxi
(ti − ti−1 + t∗∗i−1)) δi}. (12.5)
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12.1.1 Test statistic for the GS model

Suppose that a group of n0 units is tested under the step-stress (12.1) and m
groups of n1, · · · , nm units are tested under constant in time stresses x1 · · · , xm
(x1 < · · · < xm), respectively. The units are observed time tm given for the
experiment.
We write x(·) < y(·) if Sx(·)(t) > Sy(·)(t) for all t > 0.
The idea of goodness-of-fit is based on comparing two estimators Â

(1)
x(·) and

Â
(2)
x(·) of the cumulative hazard rate Ax(·). One estimator can be obtained from

the experiment under the step-stress (12.1) and another from the experiments
under the stresses x1, · · · , xm by using the equalities (12.2) and (12.3).
Denote by Ni(t) and Yi(t) the numbers of observed failures in the interval

[0, t] and the number of units at risk just prior the moment t, respectively,
for the group of units tested under the stress xi and N(t), Y (t) the analogous
numbers for the group of units tested under the stress x(·).
Set

αi = αxi
, α = αx(·), Ai = Axi

, A = Ax(·) (i = 1, ...,m).

If the GS model holds on E = {x1, · · · , xm, x(·)}, then the cumulative hazard
A can be written in terms of cumulative hazards Ai (cf. (12.2) and (12.3)):

A(t) = Ai(t− ti−1 + t∗i−1), t ∈ [ti−1, ti) (i = 1, ...,m), (12.6)

where
t∗0 = 0, t∗1 = A−1

2 (A1(t1)), · · · ,
t∗i = A−1

i+1(Ai(ti − ti−1 + t∗i−1)) (i = 1, ...,m− 1). (12.7)

The first estimator Â(1) of the cumulative hazard A is the Nelson-Aalen esti-
mator obtained from the experiment under the step-stress (12.1):

Â(1)(t) =
∫ t

0

dN(v)
Y (v)

.

The second is suggested by the GS model (formulas (12.6) and (12.7)) and is
obtained from the experiments under constant stresses:

Â(2)(t) = Âi(t− ti−1 + t̂∗i−1), t ∈ [ti−1, ti), (i = 1, ...,m),

where

t̂∗0 = 0, t̂∗1 = Â−1
2 (Â1(t1)), · · · , t̂∗i = Â−1

i+1(Âi(ti − ti−1 + t̂∗i−1)),

Â−1
i (s) = inf{u : Âi(u) ≥ s}, Âi(t) =

∫ t

0

dNi(v)
Yi(v)

(i = 1, ...,m).

The test is based on the statistic

Tn =
∫ tm

0

K(v) d{Â(1)(t)− Â(2)(t)}, (12.8)

where K is the weight function.
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We shall consider the weight functions of the type: for v ∈ [ti, ti +∆ti)

K(v) =
1√
n

Y (v)Yi+1(v − ti + t̂∗i )
Y (v) + Yi+1(v − ti + t̂∗i )

g

(
Y (v) + Yi+1(v − ti + t̂∗i )

n

)
,

where g is a nonnegative bounded continuous function with bounded variation
on [0, 1] and n =

∑m
i=0 ni.

Take notice that the properties of this statistic are different from the proper-
ties of the logrank-type statistics (see, for example, Moreau, Maccario, Lelouch
and Huber (1992)) used testing the hypothesis of the equality of survival func-
tions. The properties of Tn would be similar if t∗i would be known. The problem
is that the points t∗i are unknown and are estimated. Thus when seeking the
limit distribution of the statistic Tn we must keep in mind that the estimators
Âi are approaching Ai with the same rate as the estimators t̂∗i are approaching
t∗i .
The condition x1 < · · · < xm implies that

P{Tn is defined} → 1 as ni → ∞.

12.1.2 Asymptotic distribution of the test statistic

To find the asymptotic distribution of the test statistic, consider at first the
asymptotic distribution of the estimators t̂∗i .

Assumptions A.
a) The hazard rates αi are positive and continuous on (0,∞);
b) Ai(t) < ∞ for all t < 0;
c) n → ∞, ni/n → li, li ∈ (0, 1).

Lemma 12.1. Suppose that Assumptions A hold. Then

√
n(t̂∗j − t∗j )

D→ aj

j∑
l=1

djl{Ul(t∗l−1 +∆tl−1)− Ul+1(t∗l )}, (12.9)

where

djl =
j−1∏
s=l

cs, l = 1, ..., j − 1; djj = 1,

aj =
1

αj+1(t∗j )
, cs =

αs+1(t∗s +∆ts)
αs+1(t∗s)

,

U1, · · · , Um and U are independent Gaussian martingales with Ui(0) = U(0) =
0 and

Cov (Ui(s1), Ui(s2)) =
1
li

1− Si(s1 ∧ s2)
Si(s1 ∧ s2)

:= σ2
i (s1 ∧ s2),

Cov (U(s1), U(s2)) =
1
l0

1− S(s1 ∧ s2)
S(s1 ∧ s2)

:= σ2(s1 ∧ s2)
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with Si = exp{−Ai}, S = exp{−A}.
Proof. Under Assumptions A for any t ∈ (0, tm) the estimators Âi and Â(1)

are uniformly consistent on [0, t], and
√

n(Âi −Ai)
D→ Ui,

√
n(Â(1) −A) D→ U (12.10)

on D[0, t].
We prove (12.9) by recurrence. If i = 1 then

√
n(t̂∗1−t∗1) =

√
n(Â−1

2 (Â1(t1))−A−1
2 (Â1(t1)))+

√
n(A−1

2 (Â1(t1))−A−1
2 (A1(t1))).
(12.11)

For any 0 < s1 < s2 < ∞ Theorem A12 implies
√

n(Â−1
2 −A−1

2 ) D→ U∗
2 (12.12)

on D[s1, s2], where

U∗
2 (s) = −e−sU2(A−1

2 (s))
p2(A−1

2 (s))
and pi is the density of Txi

. Note that

U∗
2 (A1(t1)) = −U2(t∗1)

α2(t∗1)
. (12.13)

Consistency of the estimator Â1(t1), the convergence (12.12), and the formula
(12.13) imply that

√
n{Â−1

2 (Â1(t1))−A−1
2 (Â1(t1))} D→ −U2(t∗1)

α2(t∗1)
= −a1U2(t∗1). (12.14)

Using the delta method (Theorem A10) and the convergence (12.10), we ob-
tain
√

n{A−1
2 (Â1(t1))−A−1

2 (A1(t1))} D→ 1
α2(t∗1)

U1(t1) = a1U1(t∗0+∆t0). (12.15)

Thus (12.11), (12.14) and (12.15) imply that
√

n(t̂∗1 − t∗1)
D→ a1d11{U1(t∗0 +∆t0)− U2(t∗1)}.

Suppose that (12.9) holds for i = j. Then similarly as in the case i = 1 we
have
√

n(t̂∗j+1 − t∗j+1) =
√

n{Â−1
j+2(Âj+1(t̂∗j +∆tj))−A−1

j+2(Aj+1(t∗j +∆tj))} =
√

n{Â−1
j+2(Âj+1(t̂∗j +∆tj))−A−1

j+2(Âj+1(t̂∗j +∆tj))}+
√

n{A−1
j+2(Âj+1(t̂∗j +∆tj))−A−1

j+2(Aj+1(t̂∗j +∆tj))} =
√

n{A−1
j+2(Aj+1(t̂∗j +∆tj))−A−1

j+2(Aj+1(t∗j +∆tj))} =
aj+1{Uj+1(t∗j +∆tj)− Uj+2(t∗j+1)}+ aj+1

cj
aj

√
n(t̂∗j − t∗j ) + ∆n,
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where ∆n
P→ 0 as n → 0. The last formula and the assumption of recurrency

imply that
√

n(t̂∗j+1 − t∗j+1)
D→ aj+1{Uj+1(t∗j +∆tj)− Uj+2(t∗j+1)}+ aj+1

cj
aj

aj×
{

j−1∑
l=1

j−1∏
s=l

cs{Ul(t∗l−1 +∆tl−1)− Ul+1(t∗l )}+ Uj(t∗j−1 +∆tj−1)− Uj+1(t∗j )

}
=

aj+1

{
Uj+1(t∗j +∆tj)− Uj+2(t∗j+1) +

j∑
l=1

j∏
s=l

cs{Ul(t∗l−1 +∆tl−1)− Ul+1(t∗l )}
}
=

aj+1

j+1∑
l=1

dj+1,l{Ul(t∗l−1 +∆tl−1)− Ul+1(t∗l )}.

Let us consider the limit distribution of the statistic Tn. Note that uniformly
on [0, tm]

K(v)√
n

P→ k(v) =
l0li+1

l0 + li+1
S(v) g ((l0 + li+1)S(v)) .

Set
ej = aj{k(tj) αj+1(t∗j )− k(tj +∆tj) αj+1(t∗j +∆tj)

+
∫ t∗j +∆tj

t∗
j

αi+1(t∗i +∆ti)(v)d k(v + tj − t∗j )}, (j = 1, ...,m− 1),

and f0 = fm = 0, fi =
∑m−1

j=i ejdji, (i = 1, ...,m− 1).

Theorem 12.1. Under Assumptions A

Tn
D→

∫ tm

0

k(v)dU(v) +
m−1∑
i=0

{fi+1Ui+1(t∗i +∆ti)− fiUi+1(t∗i )

−
∫ t∗i +∆ti

t∗
i

k(v + ti − t∗i )dUi+1(v)}. (12.16)

Proof. Write the statistic (12.8) in the form

Tn =
∫ tm

0

K(v) d{Â(1)(t)−A(t)}

+
m−1∑
i=1

∫ t̂∗i

t∗
i

K(v + ti − t̂∗i ) dÂi+1(v)−
m−1∑
i=1

∫ t̂∗i +∆ti

t∗
i
+∆ti

K(v + ti − t̂∗i ) dÂi+1(v)

−
m−1∑
i=1

∫ t∗i +∆ti

t∗
i

{K(v + ti − t̂∗i )−K(v + ti − t∗i )} dÂi+1(v)

−
m−1∑
i=0

∫ t∗i +∆ti

t∗
i

K(v + ti − t∗i ) d{Âi+1(v)−Ai+1(v)}.
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Under Assumptions A∫ tm

0

K(v) d{Â(1)(t)−A(t)} =
∫ tm

0

k(v) dU(v) + op(1),

∫ t̂∗i

t∗
i

K(v + ti − t̂∗i ) dÂi+1(v) = k(ti)αi+1(t∗i )
√

n(t̂∗i − t∗i ) + op(1),

∫ t̂∗i +∆ti

t∗
i
+∆ti

K(v+ti−t̂∗i ) d Âi+1(v) = k(ti+∆ti)αi+1(t∗i+∆ti)
√

n(t̂∗i−t∗i )+op(1),

∫ t∗i +∆ti

t∗
i

{K(v + ti − t̂∗i )−K(v + ti − t∗i )} d Âi+1(v) = −
∫ t∗i +∆ti

t∗
i

αi+1(v) d k(v + ti − t∗i )
√

n(t̂∗i − t∗i ) + op(1),

∫ t∗i +∆ti

t∗
i

K(v+ti−t∗i ) d{Âi+1(v)−Ai+1(v)} =
∫ t∗i +∆ti

t∗
i

k(v+ti−t∗i ) dUi+1(v)+op(1),

where op(1)
P→ 0 as n → ∞. So the statistic Tn can be written in the form:

Tn =
∫ tm

0

k(v)dU(v) +
m−1∑
i=1

k(ti)αi+1(t∗i )
√

n(t̂∗i − t∗i )−

m−1∑
i=1

k(ti +∆ti)αi+1(t∗i +∆ti)
√

n(t̂∗i − t∗i )+

m−1∑
i=1

∫ t∗i +∆ti

t∗
i

αi+1(v) d k(v + ti − t∗i )
√

n(t̂∗i − t∗i )

−
m−1∑
i=0

∫ t∗i +∆ti

t∗
i

k(v + ti − t∗i ) dUi+1(v) + op(1). (12.17)

The lemma implies that
m−1∑
i=1

{k(ti)αi+1(t∗i )−k(ti+∆ti)αi+1(t∗i+∆ti)+
∫ t∗i +∆ti

t∗
i

αi+1(v)d k(v+ti−t∗i )}×

√
n(t̂∗i − t∗i ) =

m−1∑
i=1

ei

i∑
l=1

dil{Ul(t∗l−1 +∆tl−1)− Ul+1(t∗l )}+ op(1)

=
m−1∑
l=1

(
m−1∑
i=l

eidil

)
{Ul(t∗l−1 +∆tl−1)− Ul+1(t∗l )}+ op(1)

=
m−1∑
l=1

fl{Ul(t∗l−1 +∆tl−1)− Ul+1(t∗l )}+ op(1)
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=
m−2∑
i=0

fi+1Ui+1(t∗i +∆ti)−
m−1∑
i=1

fiUi+1(t∗i ) + op(1). (12.18)

The formulas (12.17) and (12.18) imply the result of the theorem.

Corollary 12.1. Under the assumptions of the theorem

Tn
D→ N(0, σ2

T ),

with

σ2
T =

∫ tm

0

k2(v) d σ2(v) +
m−1∑
i=0

{f2
i+1σ

2
i+1(t

∗
i +∆ti) + fi(fi − 2fi+1)σ2

i+1(t
∗
i )−

2fi+1

∫ t∗i +∆ti

t∗
i

k(v + ti − t∗i ) d σ2
i+1(v) +

∫ t∗i +∆ti

t∗
i

k2(v + ti − t∗i ) d σ2
i+1(v)}.
(12.19)

If m = 2 then

σ2
T =

∫ tm

0

k2(v) d σ2(v) + f2
1 (σ

2
1(t1) + σ2

2(t
∗
1))− 2f1

∫ t1

0

k(v) d σ2
1(v)+

∫ t1

0

k2(v) d σ2
1(v) +

∫ ∞

t∗1

k2(v + t1 − t∗1) d σ2
2(v).

Remark 12.1. The variance σ2
T can be consistently estimated by the statis-

tic

σ̂2
T =

∫ tm

0

k̂2(v)dσ̂2(v) +
m−1∑
i=0

{f̂2
i+1σ̂

2
i (t̂

∗
i +∆ti) + f̂i(f̂i − 2f̂i+1)σ̂2

i (t̂
∗
i )−

2f̂i+1

∫ t̂∗i +∆ti

t̂∗
i

k̂(v + ti − t̂∗i )d σ̂2
i (v) +

∫ t̂∗i +∆ti

t̂∗
i

k̂2(v + ti − t̂∗i ) d σ̂2
i+1(v)},

where

k̂(v) = K(v)/
√

n, σ̂2(v) =
n

n0

(
1

Ŝ(v)
− 1

)
, σ̂2

i (v) =
n

ni

(
1

Ŝi(v)
− 1

)
,

Ŝ and Ŝi are the empirical survival functions,

f̂0 = f̂m = 0, f̂i =
2m−1∑
s=i

êsd̂si (i = 1, · · · ,m− 1),

ês = âs

(
k̂(ts)− k̂(ts +∆ts)− k̂(ts) α̂s+1(t̂∗s) + k̂(ts +∆ts) α̂s+1(t̂∗s +∆ts)

−
∫ t̂∗s+∆ts

t̂∗s

k̂(v + ts − t̂∗s)d Âs+1(v)

)
,
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d̂si =
s−1∏
l=i

ĉl, i = 1, ..., s− 1, d̂ss = 1,

ĉl =
α̂l+1(t̂∗l +∆tl)

α̂l+1(t̂∗l )
, âs =

1
α̂s+1(t̂∗s)

,

and α̂s+1(t̂∗s), α̂s+1(t̂∗s +∆ts) are the kernel estimators:

α̂s+1(t̂∗s) =
1
b

∫ tm

0

Ker

(
t̂∗i − u

b

)
dÂi+1(u),

α̂s+1(t̂∗s +∆ts) =
1
b

∫ tm

0

Ker

(
t̂∗i +∆ts − u

b

)
dÂi+1(u);

here Ker is a kernel function.

12.1.3 The test

The hypothesis

H0 : GS model holds on E = {x1, · · · , xm, x(·)}
is rejected with the approximative significance level α, if(

T

σ̂T

)2

> χ2
1−α(1),

where χ2
1−α(1) is the (1− α)-quantile of the chi-square distribution with one

degree of freedom.

12.1.4 Consistency and the power of the test against approaching
alternatives

Let us find the power of the test against the following alternatives:

H1 : PH model with specified non-exponential time-to-failure

distributions under constant stresses

Under H1

Â(1)(v) P→ A
(1)
∗ (v) = Ai(v), v ∈ [ti, ti+1) (i = 0, · · · ,m− 1)

Â(2)(v) P→ A(2)(v) = Ai(v − ti + t∗i ), v ∈ [ti, ti+1) (i = 0, · · · ,m− 1),
and

1√
n
K(v) P→ k∗(v),

where for v ∈ [ti, ti+1)

k∗(v) =
l0li+1S

(1)
∗ (v)Si(v − ti + t∗i )

l0S
(1)
∗ (v) + li+1Si(v − ti + t∗i )

g
(
l0S

(1)
∗ (v) + li+1Si(v − ti + t∗i )

)
,
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and S
(1)
∗ (v) = exp{−A

(1)
∗ (v)}. Convergence is uniform on [0, tm].

Proposition 12.1. Assume that Assumptions A hold under H1 and

∆∗ =
∫ tm

0

k∗(v) d{A(1)(v)−A(v)} 
= 0.

Then the test is consistent against H1.

Proof. Write the test statistic in the form

Tn =
∫ ∞

0

K(v) d{Â(1)(v)−A
(1)
∗ (v)} −

∫ ∞

0

K(v) d{Â(2)(v)−A(2)(v)}+
∫ ∞

0

K(v) d{A(1)
∗ (v)−A(2)(v)} = T1n + T2n + T3n. (12.20)

Analogously as in the case when seeking the limit distribution of the statistic
Tn under the hypothesis H0, we obtain that under H1

T1n + T2n
D→ N(0, σ∗

T
2),

where σ∗
T

2 has the same form (12.19) with only difference that k is replaced
by k∗ and σ2(t) is replaced by

(σ(1))2(t) =
1
l0

(
1

S(1)(t)
− 1

)
.

Under H1 we have

σ̂2
T

P→ σ∗
T

2 (12.21)

and
T1n + T2n

σ̂T

D→ N(0, 1). (12.22)

The third member in (12.20) can be written in the form

T3n =
m−1∑
i=1

∫ ti+1

ti

K(v) {αi+1(v)− αi+1(v − ti + t∗i )} dv. (12.23)

The assumptions of the proposition and the equalities (12.20)-(12.23) imply
that under H1

1√
n
T3n

P→ ∆∗,
Tn

σ̂T

P→ ∞.

Thus under H1

P

{(
T

σ̂T

)2

> χ2
1−α(1)

}
→ 1.

The proposition is proved.
Remark 12.2. If αi are increasing (decreasing) then the test is consistent

against H1.
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Proof. We shall show by recurrence that ti > t∗i for all i. Indeed, the in-
equalities x1 < · · · < xm imply that

S1(t∗1) > S2(t∗1) = S1(t),

which give t1 > t∗1. If we assume that ti−1 > t∗i−1 then

Si+1(t∗i ) = Si(ti − ti−1 + t∗i−1) > Si(ti − ti−1 + ti−1) = Si(ti) > Si+1(ti),

which imply ti > t∗i . If αi are increasing (decreasing) then ∆∗ > 0 (∆∗ < 0)
under H1. The proposition implies the consistency of the test.
Let us consider the sequence of approaching alternatives

Hn : PH with αi(t) =
(

t

θi

) ε√
n

with fixed ε > 0 (i = 1, · · · ,m). Then

T3n
P→ µ = −ε

m−1∑
i=1

∫ ti+1

ti

k∗(v) ln(1 +
t∗i − ti

v
)dv > 0

and
Tn

σ̂T

D→ N(a, 1),
(

T

σ̂T

)2
D→ χ2(1, a),

where a = µ/σ∗
T and χ2(1, a) denotes the chi-square distribution with one

degree of freedom and the noncentrality parameter a (or a random variable
having such distribution).
The power function of the test is approximated by the function

β = lim
n→∞P

{(
T

σ̂T

)2

> χ2
1−α(1) | Hn

}
= P

{
χ2(1, a) > χ2

1−α(1)
}
. (12.24)

Let us find the power of the test against the following alternatives:

H2 : the model (12.4) with specified time-to-failure

distributions under constant stresses

Under H2

Â(1)(v) P→ A
(1)
∗∗ (v) = Ai(v − ti + t∗∗i ), v ∈ [ti, ti+1) (i = 0, · · · ,m− 1),

Â(2)(v) P→ A(2)(v) = Ai(v − ti + t∗i ), v ∈ [ti, ti+1) (i = 0, · · · ,m− 1),
and

1√
n
K(v) P→ k∗∗(v),

where for v ∈ [ti, ti+1)

k∗∗(v) =
l0li+1S

(1)
∗∗ (v)Si(v − ti + t∗i )

l0S
(1)
∗∗ (v) + li+1Si(v − ti + t∗i )

g
(
l0S

(1)
∗∗ (v) + li+1Si(v − ti + t∗i )

)
,
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and S
(1)
∗∗ (v) = exp{−A

(1)
∗∗ (v)}. Convergence is uniform on [0, tm].

Proposition 12.2. Assume that Assumptions A hold under H2 and

∆∗∗ =
∫ ∞

0

k∗∗(v) d{A(1)(t)−A(t)} 
= 0.

Then the test is consistent against H2.

Proof. Write the test statistic in the form (12.20). Analogously as in the case
when seeking the limit distribution of the statistic Tn under the hypothesis
H0, we obtain that under H2

T1n + T2n
D→ N(0, σ∗∗

T
2),

where σ∗
T

2 has the same form (12.19) with only difference that k is replaced
by k∗∗ and σ2(t) is replaced by

(σ(1))2(t) =
1
l1

(
1

S(1)(t)
− 1

)
.

The third member in (12.20) can be written in the form

T3n =
m−1∑
i=1

∫ ti+1

ti

K(v) {αi+1(v − ti + t∗∗i )− αi+1(v − ti + t∗i )}dv.

The assumptions of the proposition and the the last equality imply that
1√
n
T3n

P→ ∆∗∗,
Tn

σ̂T

P→ ∞.

Remark 12.3. If αi are increasing (decreasing) then the test is consistent
against H2.

Proof. Let us show by recurrence that t∗∗i > t∗i . Really, the inequalities
x1 < · · · < xm imply that

S2(t∗∗1 ) = S1(t1) δ1 < S1(t1) = S2(t∗1),

which give t∗∗1 > t∗1. If we assume that t∗∗i−1 > t∗i−1 then

Si+1(t∗∗i ) = Si(ti−ti−1+t∗∗i−1) δi < Si(ti−ti−1+t∗∗i−1) < Si(ti−ti−1+t∗i−1) = Si+1(t∗i ),

which imply t∗∗i > t∗i . If αi are increasing (decreasing) then ∆ > 0 (∆ < 0)
under H2. Proposition 12.2 implies the consistency of the test.
Let us consider the sequence of approaching alternatives

Hn : the model (12.4) with specified time-to-failure distributions

under constant stresses and δi = 1− εi√
n
.

Let us find the limit of
√

n(t∗∗i − t∗i ) by recurrence. If i = 1, then

√
n(t∗∗1 − t∗1) =

√
n

{
S−1

2

(
S1(t1)(1− ε1√

n
)
)
− S−1

2 (S1(t1))
}
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→ − ε1

α2(t∗1)
= −a1ε1

Suppose that
√

n(t∗∗i − t∗i ) −→ ai

i∑
j=1

dijεj , (12.25)

where ai, dij are defined in the formulation of Lemma 2.1. Then

√
n(t∗∗i+1 − t∗i+1) =

√
n(S−1

i+2

(
Si+1(ti+1 − ti + t∗∗i )(1−

εi+1√
n
)
)
−

S−1
i+2(Si+1(ti+1 − ti + t∗i )) =

√
n

1
pi+2(t∗i+1)

×
{
pi+1(ti+1 − ti + t∗i )(t

∗∗
i − t∗i )− Si+1(ti+1 − ti + t∗i )

εi+1√
n

}
+ o(1) =

1
pi+2(t∗i+1)


−pi+1(ti+1 − ti + t∗i )ai

i∑
j=1

dijεj − Si+1(ti+1 − ti + t∗i )εi+1




+o(1) = ai+1

i+1∑
j=1

di+1,jεj + o(1).

We note pi the densities of Txi
. Thus the convergence (12.25) holds for all i.

It implies that

T3n
P→ µ = −

m−1∑
i=1

ai

i∑
j=1

dij εj

∫ ti+1

ti

k(v) dαi+1(v − ti + t∗i )

and
Tn

σ̂T

D→ N(a, 1),
(

Tn

σ̂T

)2
D→ χ2(1, | a |),

where a = µ/σ∗∗
T .

The parameter µ is positive (negative) if the functions αi are convex (con-
cave).
The power function of the test is approximated by the function (12.24) with

a = µ/σ∗∗
T .

One can see also Bagdonavičius and Nikoulina (1997), Bagdonavičius and
Nikulin (1995, 1998, 2001, 2001a), Nikulin and Solev (1999, 2001).

12.2 Goodness-of-fit for the model with absence of memory

If the PH model holds on a set E of time-varying explanatory variables then
for any x(·) ∈ E

αx(·)(t) = αxt
(t), (12.26)

where xt is constant explanatory variable equal to the value of time-varying
explanatory variable x(·) at the moment t. For any t the hazard rate under
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the time-varying stress x(·) at the moment t does not depend on the values of
the stress x(·) before the moment t but only on the value of stress at this mo-
ment. It is not natural when the hazard rates are not constant under constant
stresses.
The equality (12.26) defines a model which means that the hazard rate

under any time-varying stress at any moment t does not depend on the values
of stress before this moment.
Let us call this model the absence of memory (AM) model. This model

is wider than the PH model because it does not specify relations between
survival distributions under different constant stresses. The PH model is a
submodel of it.
The AM model (and the PH model) is not natural for aging units and its

application should be carefully studied. A formal goodness-of-fit test would
be useful.
The most used time-varying stresses in accelerated life testing are the step-

stresses: units are placed on test at an initial low stress and if they do not
fail in a predetermined time t1, the stress is increased. If they do not fail in a
predetermined time t2 > t1, the stresses is increased once more, and so on.
Let us consider a set Em of step-stresses of the form (12.1).
If the AM model holds on Em and x(·) ∈ Em then

αx(·)(t) = αxi
(t), if t ∈ [ti−1, ti), (i = 1, 2, . . . ,m). (12.27)

It can be written in terms of the cumulative hazards Ax(·) and Axi
:

Ax(·)(t) = Axi
(t)−Axi

(ti−1) + 1{i≥2}
i−1∑
j=1

(Axj
(tj)−Axj

(tj−1)), t ∈ [ti−1, ti)

(i = 1, ...,m). (12.28)

A very possible alternative to this model is the generalized Sedyakin (GS)
model:

αx(·)(t) = g
(
x(t), Sx(·)(t)

)
.

Set

αi = αxi
, α = αx(·), Ai = Axi

, A = Ax(·) (i = 1, ...,m).

If the GS model holds on Em and x(·) ∈ Em then the formulas (12.6) and
(12.7) hold.
Let us consider goodness-of-fit tests given by Bagdonavičius and Levulienė

(2001).

12.2.1 Logrank-type test statistic for the AM model

Suppose that a group of n0 units is tested under the step-stress (12.1) and m
groups of n1, · · · , nm units are tested under constant in time stresses x1 · · · , xm,
respectively.
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Suppose that at first that x1 < · · · < xm. The units are observed time tm
given for the experiment.
The idea of goodness-of-fit is based on comparing two estimators Â

(1)
x(·) and

Â
(2)
x(·) of the cumulative hazard rate Ax(·). One estimator can be obtained from

the experiment under step-stress (12.1) and another from the experiments
under stresses x1, · · · , xm by using the equalities (12.28).
Denote by Ni(t) and Yi(t) the number of observed failures in the interval

[0, t] and the number of units at risk just prior the moment t, respectively,
for the group of units tested under the stress xi and N(t), Y (t) the analogous
numbers for the group of units tested under the stress x(·).
The first estimator Â(1) of the accumulated hazard A is the Nelson -Aalen

estimator obtained from the experiment under the step-stress (12.1):

Â(1)(t) =
∫ t

0

dN(v)
Y (v)

.

The second is suggested by the AM model (formula (12.28)) and is obtained
from the experiments under the constant stresses:

Â(2)(t) = Âi(t)− Âi(ti−1) + 1{i≥2}
i−1∑
j=1

(Âj(tj)− Âj(tj−1)), t ∈ [ti−1, ti),

(12.29)
where

Âi(t) =
∫ t

0

dNi(v)
Yi(v)

(i = 1, ...,m).

The first test is based on the logrank-type statistic

Tn = Tn(tm), where Tn(t) =
∫ t

0

K(v) d{Â(1)(t)− Â(2)(t)}; (12.30)

here K is the weight function.
Similarly as in the case of classical logrank tests (see Fleming and Harring-

ton (1991)), we shall consider the weight functions of the following type: for
v ∈ [ti−1, ti)

K(v) =
1√
n

Y (v)Yi(v)
Y (v) + Yi(v)

g

(
Y (v) + Yi(v)

n

)
,

where n =
∑m

i=0 ni and g is a nonnegative bounded continuous function with
bounded variation on [0, 1].

12.2.2 Asymptotic distribution of the logrank-type test statistic

Assumptions A.
a) The hazard rates αi are positive and continuous on (0,∞);
b) Ai(tm) < ∞ ;
c) n → ∞, ni/n → li, li ∈ (0, 1).
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Under Assumptions A for any t ∈ (0, tm] the estimators Âi and Â(1) are
uniformly consistent on [0, t], and

√
n(Âi −Ai)

D→ Ui,
√

n(Â(1) −A) D→ U

on D[0, t]. Here U and U1, · · · , Um are independent Gaussian martingales with
Ui(0) = U(0) = 0, and

Cov (Ui(s1), Ui(s2)) =
1
li

1− Si(s1 ∧ s2)
Si(s1 ∧ s2)

:= σ2
i (s1 ∧ s2),

Cov (U(s1), U(s2)) =
1
l0

1− S(s1 ∧ s2)
S(s1 ∧ s2)

:= σ2(s1 ∧ s2),

with Si = exp{−Ai}, S = exp{−A}.
Let us consider the limit distribution of the stochastic process Tn(t), t ∈

[0, tm]. Note that

K(v)√
n

P→ k(v) =
l0liS(v)Si(v)

l0S(v) + liSi(v)
g (l0S(v) + liSi(v)) , v ∈ [ti−1, ti).

The convergence is uniform on [0, tm].

Proposition 12.3. Under Assumptions A

Tn(t)
D→ Vk(t) =

∫ t

0

k(v)dU(v)− 1{i ≥ 2}
i−1∑
j=1

∫ tj

tj−1

k(v)dUj(v)−

∫ t

ti−1

k(v)dUi(v), t ∈ [ti−1, ti), i = 1, · · · ,m, t0 = 0 on D[0, tm].

(12.31)

Proof. For t ∈ [ti−1, ti), i = 1, · · · ,m, write the statistic (12.30) in the form

Tn(t) =
∫ t

0

K(v) d{Â(1)(t)−A(t)} −
∫ t

0

K(v) d{Â(2)(t)−A(t)}

=
∫ t

0

J(v)K(v)
dM(v)
Y (v)

− 1{i ≥ 2}
i−1∑
j=1

∫ t

0

Jj(v)K(v)
dMj(t)
Yj(t)

−

∫ t

ti−1

Ji(v)K(v)
dMi(t)
Yi(t)

,

where

M(t) = N(t)−
∫ t

0

Y (u)dA(u), Mi(t) = Ni(t)−
∫ t

0

Yi(u)dAi(u),

J(t) = 1{Y (t)>0}, Ji(t) = 1{Yi(t)>0}.
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Note that

<

∫ t

0

J(v)K(v)
dM(v)
Y (v)

>=
∫ t

0

J(v)K2(v)
dA(v)
Y (v)

P→
∫ t

0

k2(v)
dA(v)
l0S(v)

and for any ε > 0:

<

∫ t

0

J(v)
K(v)
Y (v)

1{|K(v)
Y (v) |≥ε}dM(v) >=

∫ t

0

J(v)
K2(v)
Y (v)

1{|K(v)
Y (v) |≥ε}dA(v)

P→ 0

on D[0, tm]. The Theorem A7 implies that∫ t

0

J(v)K(v)
dM(v)
Y (v)

D→
∫ t

0

k(v)
(

α(v)
l0S(v)

)1/2

dW (v),

on D[0, tm]; hereW is the standard Wiener process. The limit process has the
same variance-covariance structure as the Gaussian process∫ t

0

k(v)dU(v).

So ∫ t

0

J(v)K(v)
dM(v)
Y (v)

D→
∫ t

0

k(v)dU(v).

Analogously it is obtained that∫ t

0

Ji(v)K(v)
dMi(v)
Yi(v)

D→
∫ t

0

k(v)dUi(v)

on D[0, tm].
Corollary 12.2. Under the assumptions of the theorem

Cov(Vk(s), Vk(t)) = σ2
Vk
(s ∧ t)

where

σ2
Vk
(t) =

∫ t

0

k2(v)d σ2(v) + 1{i ≥ 2}
i−1∑
j=1

∫ tj

tj−1

k2(t)dσ2
j (v)

+
∫ t

ti−1

k2(t)dσ2
i (v)

=
∫ t

0

k2(v)
l0S(v)

dA(v) + 1{i ≥ 2}
i−1∑
j=1

∫ tj

tj−1

k2(t)
ljSj(v)

dAj(v)1{i ≥ 2}

+
∫ t

ti−1

k2(t)
liSi(v)

dAi(v), t ∈ [ti−1, ti), i = 1, · · · ,m, t0 = 0,

and
Tn

D→ N(0, σ2
Vk
(tm)),

Proposition 12.4. The variance σ2
Vk
(tm) can be consistently estimated by
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the statistic

σ̂2
Vk
(tm) =

∫ tm

0

K2(v)
dN(v)
Y 2(v)

+
m∑
i=1

∫ ti

ti−1

K2(v)
dNi(v)
Y 2
i (v)

.

Proof. Let us consider the difference∫ tm

0

K2(v)
dN(v)
Y 2(v)

−
∫ tm

0

k2(v)
dA(v)
l0S(v)

=

∫ tm

0

J(v)K2(v)
Y (v)dA(v) + dM(v)

Y 2(v)
−

∫ tm

0

k2(v)
dA(v)
l0S(v)

=

∫ tm

0

J(v)
(

K2(v)/n
(n0/n)Y (v)

− k2(v)
l0S(v)

)
dA(v)+

∫ tm

0

J(v)K2(v)
dM(v)
Y 2(v)

+
∫ tm

0

(1− J(v))
dA(v)
l0S(v)

= B1 +B2 +B3.

We have

| B1 |≤ sup
[0,tm]

| K2(v)/n
(n0/n)Y (v)

− k2(v)
l0S(v)

| A(tm) P→ 0,

and

< B2 >= <

∫ tm

0

J(v)K2(v)
dM(v)
Y 2(v)

>=

=
∫ tm

0

J(v)K4(v)
dA(v)
Y 3(v)

≤ 1
n
sup

[0,tm]

(K(v)//
√

n)4

(Y (v)/n)3
A(tm)

P→ 0,

which imply that Bi
P→ 0 (i = 1, 2). Convergence B3

P→ 0 is evident.

12.2.3 Logrank-type test

The hypothesis

H0 : αx(·)(t) = αxi
(t), t ∈ [ti−1, ti) (i = 1, · · · ,m)

(or the AM model) is rejected with the approximative significance level α, if(
Tn

σ̂Vk
(tm)

)2

> χ2
1−α(1),

where χ2
1−α(1) is the (1− α)-quantile of the chi-square distribution with one

degree of freedom.

12.2.4 Consistency and the power of the test against the approaching
alternatives

Let us find the power of the test against the following alternatives:

H1 : GS model with specified non-exponential time-to-failure
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distributions under constant stresses
Under H1

Â(1)(v) P→ A
(1)
∗ (v) = Ai(v − ti−1 + t∗i−1), v ∈ [ti−1, ti) (i = 1, · · · ,m),

where t∗i can be found by solving the equations

A1(t1) = A2(t1∗), · · · , Ai(ti − ti−1 + t∗i−1) = Ai+1(t∗i )

(i = 1, · · · ,m− 1),

Â(2)(v) P→ A(2)(v) = Ai(t)−Ai(ti−1) + 1{i≥2}
i−1∑
j=1

(Aj(tj)−Aj(tj−1)),

v ∈ [ti−1, ti) (i = 1, ...,m),
and

1√
n
K(v) P→ k∗(v), Y (v)/n0

P→ S
(1)
∗ (v)

where S
(1)
∗ (v) = exp{−A

(1)
∗ (v)}, and for v ∈ [ti−1, ti)

k∗(v) =
l0liS

(1)
∗ (v)Si(v)

l0S
(1)
∗ (v) + liSi(v)

g
(
l0S

(1)
∗ (v) + liSi(v)

)

=
l0liSi(v)Si(v − ti−1 + t∗i−1)

l0Si(v − ti−1 + t∗i−1) + liSi(v)
g

(
l0Si(v − ti−1 + t∗i−1) + liSi(v)

)
.

Convergence is uniform on [0, tm].

Proposition 12.5. Suppose that Assumptions A hold and

∆∗ = ∆∗(tm) 
= 0,
where

∆∗(t) = 1{i≥2}
i−1∑
j=1

∫ tj

tj−1

k∗(v) {αj(v − tj−1 + t∗j−1)− αj(v)}dv+

∫ t

ti−1

k∗(v) {αi(v − ti−1 + t∗i−1)− αi(v)}dv.
Then the test is consistent against H1.

Proof. Write the test statistic in the form

Tn =
∫ tm

0

K(v) d{Â(1)(v)−A
(1)
∗ (v)} −

∫ tm

0

K(v) d{Â(2)(v)−A(2)(v)}+
∫ tm

0

K(v) d{A(1)
∗ (v)−A(2)(v)} = T1n + T2n + T3n. (12.32)

As in the case when seeking the limit distribution of the statistic Tn under
the hypothesis H0, we obtain that under H1

T1n + T2n
D→ N(0, σ∗

Vk

2(tm)),
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where σ∗
Vk

2(t) has the same form as in Corollary 12.2 with only difference that
k(v) is replaced by k∗(v) and σ2(v) is replaced by

(σ(1))2(v) =
1
l0

(
1

S
(1)
∗ (v)

− 1
)

,

i.e.

σ∗
Vk

2(t) =
∫ t

0

k2
∗(v)

l0S∗(v)
dA∗(v) + 1{i ≥ 2}

i−1∑
j=1

∫ tj

tj−1

k2
∗(t)

ljSj(v)
dAj(v)

+
∫ t

ti−1

k2(t)
liSi(v)

dAi(v), t ∈ [ti−1, ti), i = 1, · · · ,m, t0 = 0. (12.33)

Under H1 we have
σ̂2
Vk
(t) P→ σ∗

Vk

2(t) (12.34)
uniformly on D[0, tm], and

T1n + T2n

σ∗
Vk
(tm)

D→ N(0, 1). (12.35)

The third member in (12.32) can be written in the form

T3n =
m∑
i=1

∫ ti

ti−1

K(v) {αi(v − ti−1 + t∗i−1)− αi(v)} dv. (12.36)

The assumptions of the proposition and the equalities (12.32)-(12.36) imply
that under H1

1√
n
T3n

P→ ∆∗,
Tn

σ̂Vk
(tm)

P→ ∞.

Thus under H1

P

{(
T

σ̂T

)2

> χ2
1−α(1)

}
→ 1.

Proposition 12.6. If αi are increasing (decreasing) then the test is con-
sistent against H1.

Proof. We shall show by recurrence that ti > t∗i for all i. The inequalities
x1 < · · · < xm imply that

S1(t1∗) > S2(t1∗) = S1(t),

which give t1 > t1
∗. If we assume that ti−1 > t∗i−1 then

Si+1(t∗i ) = Si(ti − ti−1 + t∗i−1) > Si(ti − ti−1 + ti−1) = Si(ti) > Si+1(ti),

which imply ti > t∗i . If αi are increasing (decreasing) then ∆∗ > 0 (∆∗ < 0)
under H1. The proposition implies the consistency of the test.
Let us consider the sequence of the approaching alternatives

Hn : GS with αi(t) =
(

t

θi

) εi√
n

(12.37)
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with fixed εi > 0 (i = 1, · · · ,m). Then

T3n
P→ µ =

m∑
i=1

εi

∫ ti

ti−1

k∗(v) ln(1 +
t∗i−1 − ti−1

v
)dv < 0,

and
Tn

σ̂Vk
(tm)

D→ N(a, 1),
(

T

σ̂Vk
(tm)

)2
D→ χ2(1, a),

where a = −µ/σ∗
T , and χ2(1, a) denotes the chi-square distribution with one

degree of freedom and the noncentrality parameter a (or the random variable
having such distribution).
The power function of the test is approximated by the function

β = lim
n→∞P

{(
T

σ̂Vk
(tm)

)2

> χ2
1−α(1) | Hn

}
= P

{
χ2(1, a) > χ2

1−α(1)
}
.

(12.38)

12.2.5 Kolmogorov-type test

The logrank-type test may be bad if the step-explanatory variable is not
monotone, i.e. the condition x1 < · · · < xm is not satisfied. In such a case the
following Kolmogorov-type test may be used.
The limit process Vk(t) obtained in the Proposition 12.3 is a zero mean

Gaussian martingale with the covariance function

Cov(Vk(s), Vk(t)) = σ2
Vk
(s ∧ t)

It implies that Vk(t) = W (σ2
Vk
(t)), where W is the standard Wiener process.

We have

1
σVk

(tm)
sup

0≤t≤tm

| Vk(t) |= sup
0≤t≤tm

| W
(

σ2
Vk
(t)

σ2
Vk
(tm)

)
|= sup

0≤u≤1
| W (u) | .

(12.39)
The variance σ2

Vk
(t) is consistently estimated by the statistic

σ̂2
Vk
(t) =

∫ t

0

K2(v)
Y 2(v)

dN(v) +
i−1∑
j=1

∫ tj

tj−1

K2(t)
Y 2
j (v)

dNj(v)1{i ≥ 2}

+
∫ t

ti−1

K2(t)
Y 2
i (v)

dAi(v), t ∈ [ti−1, ti), i = 1, · · · ,m.

So the test statistic is

ZK =
1

σ̂Vk
(tm)

sup
t∈[0,tm]

|
∫ t

0

K(v) d{Â(1)(v)− Â(2)(v)} | . (12.40)

If n → ∞ then
ZK

D→ sup
0≤u≤1

| W (u) | .
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Denote by W1−α the (1 − α)-quantile of the supremum of the Wiener pro-
cess on the interval [0, 1]. The hypothesis H0 is rejected with approximative
significance level α if ZK > W1−α.
Consistence of the first test against H1 implies consistence of this test

against H1 because the convergence Tn
P→ ∞ implies the convergence ZK

P→
∞.
Let us consider the sequence of the approaching alternatives (2.39). Simi-

larly as in the case of the hypothesis H0 we have

Tn(t) =
∫ t

0

K(v) d{Â(1)(v)−A
(1)
∗ (v)} −

∫ t

0

K(v) d{Â(2)(v)−A(2)(v)}+
∫ t

0

K(v) d{A(1)
∗ (v)−A(2)(v)} = T1n(t) + T2n(t) + T3n(t)

D→ Vk
∗ (t) + ∆∗(t)

on D[0, tm], where

Vk
∗ (t) =

∫ t

0

k∗(v)dU∗(v)−
i−1∑
j=1

∫ tj

tj−1

k∗(v)dUj(v)1{i ≥ 2} −
∫ t

ti−1

k(v)dUi(v)

t ∈ [ti−1, ti), i = 1, · · · ,m, t0 = 0,

U∗ is a Gaussian martingale with U∗(0) = 0, and

Cov (U∗(s1), U∗(s2)) =
1
l0

1− S∗(s1 ∧ s2)
S∗(s1 ∧ s2)

,

with S∗ = exp{−A∗},

∆∗(t) = 1{i≥2}
i−1∑
j=1

εj

∫ tj

tj−1

k∗(v) ln(1 +
t∗j−1 − tj−1

v
)dv+

εi

∫ t

ti−1

k∗(v) ln(1 +
t∗i−1 − ti−1

v
)dv < 0, t ∈ [ti−1, ti).

Analogously as in the case of the hypothesis H0,

Vk
∗ (t) =W (σ2

Vk
(t)),

and

1
σ̂Vk

(tm)
sup

t∈[0,tm]

| Tn(t) |D→ sup
t∈[0,tm]

| W
(

σ2
Vk
(t)

σ2
Vk
(tm)

)
+

∆∗(t)
σVk

(tm)
|

= sup
0≤u≤1

| W (u) +
1
c
∆∗(h(cu)) |,

where h(s) is the function inverse to σVk
(t), and c = σVk

(tm).
Bagdonavičius and Levulienė (2001) investigated by simulation the prop-

erties of both tests under various alternatives. They showed that in the case
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of monotone stresses the logrank-type test is slightly more powerful then the
Kolmogorov-type test.
Their results show that it is possible to find such plan of experiment with

nonmonotone explanatory variables that a logrank-type test does not dis-
tinguish the hypothesis H0 from the alternatives and is even biased. The
Kolmogorov-type test can be used for such explanatory variables. The power
of the test increases when the size of the data increases or the alternatives go
away from the null hypothesis.
So the practical recommendation: use the logrank-type test for monotone

stresses and the Kolmogorov-type test for nonmonotone stresses.

12.3 Goodness-of-fit for the AFT model

Suppose that the first two moments of the failure times under the explanatory
variables x(·) ∈ E exist. Let x(i)(·) ∈ E1 be explanatory variables of the form

x(i)(τ) =




xn(1,i), 0 ≤ τ < ti1,
xn(2,i), ti1 ≤ τ < ti2,
· · · · · · · · · · · ·
xn(m,i), τ ≥ ti,m−1,

where n(1, i), · · · , n(m, i) are the permutations of numbers 1, 2, · · · ,m. xi ∈ E
are constant explanatory variables; tij ∈ [0,+∞) are the moments of switching
over from one constant explanatory variable to another one (i = 1, · · · , N ; j =
1, · · · ,m). In the particular case when ti1 = ∞, explanatory variable x(i)(·)
can be constant.
Suppose that s (s > m) experiments are carried out and ni units are tested

under explanatory variable x(i)(·) in the ith experiment (i = 1, 2, · · · , s).
Let T

(i)
j1 , · · · , T (i)

jni
be the lives of units under the constant explanatory vari-

able xj in the ith experiment.
If the AFT model holds, the following equalities are true:

m∑
j=1

rjT
(i)
jk − 1 = σRik (i = 1, 2, · · · , s)

where rj = r(xj)/a; σ > 0; Rik are independent identically distributed
random variables with means E(Rik) = 0 and variances Var(Rik) = 1 (k =
1, · · · , ni). The means τ

(i)
j = E(T (i)

jk ) satisfy the equations

m∑
j=1

rjτ
(i)
j − 1 = 0 (i = 1, 2, · · · , s).

Set

T
(i)
k =

(
T

(i)
1k , · · · , T (i)

mk

)T

, T
(i)
j· = (1/ni)

ni∑
k=1

T
(i)
jk , T

(i)
· =

(
T

(i)
1· , · · · , T (i)

m·
)T

,
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S
(i)
0 = (1/ni)

ni∑
k=1

(
T

(i)
k − T

(i)
·

)(
T

(i)
k − T

(i)
·

)T

, τ (i) = E(T (i)
k )

and define the estimates of parameters r = (r1, · · · , rm)T by minimizing the
sum

s∑
i=1

ni

(
rTT

(i)
· − 1

)2

.

The normal equations have the form
s∑

i=1

niT
(i)
·

(
T

(i)
·

)T

r =
s∑

i=1

niT
(i)
· . (12.41)

Suppose that a system of vectors τ (i), i = 1, 2, · · · , s has a rank m. This con-
dition is satisfied practically in all cases when x(i)(·) are different explanatory
variables. Under the AFT model the solution of normal equations r̂ converges
with probability one (as min ni → ∞, ni/max ni → li > 0) to the param-
eters r satisfying a system of equations rTτ (i) − 1 = 0 (i = 1, · · · , s) and the
estimator

σ̂2 =

(
1/

(
s∑

i=1

ni − s

))
s∑

i=1

ni∑
k=1




m∑
j=1

r̂j(T
(i)
jk − T

(i)
j· )




2

converges with probability one to a parameter σ2 satisfying the equation

rTB(i)r = σ2,

where (B(i) = E(S(i)
0 )).

Theorem 12.2. Assume that

1) the AFT model holds on E;
2) there exist two moments of the random variables T(·), x(·) ∈ E;
3) the system of vectors τ (i), i = 1, · · · , s has a rank m.

Then the asymptotical distribution of the statistic

Y 2 = (1/σ̂2)
s∑

i=1

ni

(
r̂TT (i) − 1

)2

is chi-square with s−m degrees of freedom as

min ni → ∞,
ni

max ni
→ li > 0.

Proof. Set

n = max ni; L =
(√

l1, · · · ,
√

ls

)T

; T = (
√

liT
(i)
j· ),



236 GOODNESS-OF-FIT FOR ACCELERATED LIFE MODELS

the s×m matrix; Z(r) =
√

K(Tr − L). In such a case
s∑

i=1

ni

(
rTT

(i)
· − 1

)2

= (Z(r))T Z(r).

Let C be a s×m matrix with elements
√

liτ
(i)
j (i = 1, · · · , s; j = 1, · · · ,m).

From the assumption 3) of the theorem it follows that the rank of the matrix
C is equal to m. The equalities

rank CTC = rank C =M

implies that a random matrix TTT → CTC with probability one. Therefore,
the solution of the equation (12.41) is the statistic

r̂ =
(
TTT

)−1
TTL

provided min ni is sufficiently large. The distribution of a random variable
(1/σ2) (Z(r))T Z(r) converges to a chi-square distribution with s degrees of
freedom.
Let us consider the limit distribution of a random variable

min
r
(Z(r))T Z(r) = (Z(r̂))T Z(r̂).

It is easy to show that the random vector Z(R̂) can be expressed in the form:

Z(r̂) = (E − T (TTT )−1TT)
√

n(Tr − L),

where E is a s × s identity matrix. The former implies that the asymptotic
distributions of random variables

Z(r̂) and (E − C(CTC)−1CT)Z(r)

are the same. The matrix

A = E − C(CTC)−1CT

is idempotent, i.e. AA = A. This implies that asymptotic distributions of
random variables (Z(r̂))T Z(r̂) and (Z(r))T AZ(r) are the same. The random
variable

1
σ̂2
(Z(r))T AZ(r)

has asymptotically a chi-square distribution with s − m degrees of freedom.
This follows from the equality

rank A = tr(A) = s−m

and from the fact that σ̂ → σ with probability one. Thus, the proof is com-
pleted.
Corollary 12.3. Under assumptions of the theorem the asymptotic distri-

bution of the statistic

χ2 =
s∑

i=1

ni(r̂TT
(i)
· − 1)2/(r̂TS

(i)
0 r̂)



GOODNESS-OF-FIT FOR THE PH MODEL 237

is chi-square with s−m degrees of freedom.

If the AFT model is not true, the estimators r̂ converges, on the whole,
with probability one to some value r0 but some of the equalities

r0τ
(i) − 1 = 0 or rT

0 B(i)r0 = σ2 (i = 1, .., s)

take no place. If the sequence of alternatives is such that | νi |< const, where

νi =
√

ni(rT
0 τ (i) − 1)/(rT

0 B(i)r0)1/2,

the asymptotic distribution of the statistic χ2 is noncentral chi-square with

s−m degrees of freedom and the noncentrality parameter
s∑

i=1

ν2
i .

The statistic χ2 can be used as a test statistic when samples are sufficiently
large.

12.4 Goodness-of-fit for the PH model

Let us consider tests for the PH hypothesis

H0 : αx(·)(t) = eβ
T x(t)α(t),

where β and α are unknown regression parameter and baseline function, re-
spectively.
Suppose that n units are tested. The ith unit is tested under the explanatory

variable x(i)(·).
Suppose that the data are right censored. Denote by Ti and Ci the failure

and censoring times,

Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}, Ni(t) = 1{Ti ≤ t, δi = 1},

Yi(t) = 1{Xi≥t}, N(t) =
n∑

i=1

Ni(t) and Y (t) =
n∑

i=1

Yi(t).

We assume that at the nonrandom moment τ all censoring and failure pro-
cesses are censored.

12.4.1 Score tests

Let us consider general score tests for checking the adequacy of the PH model
based on likelihood functions under more general models including this model.
Examples of such models are:

GPHGW model (any ratio of the hazard rates under constant explanatory
variables increases (or decreases) from a finite value to a finite value but the
hazard rates do not intersect or meet):

αx(·)(t) = eβ
T x(t)(1 +Ax(·)(t))γα(t);

GPHGLL model (any ratio of hazard rates increases or decreases from a finite
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value to 1, i.e. the hazard rates meet at infinity):

αx(·)(t) = eβ
T x(t)+γAx(t) α(t);

IGF model (the ratio of hazard increases (or decreases) from 1 to a finite
value, i.e. the hazard rates meet at zero):

αx(·)(t) = eβ
T x(t) α(t)

1 + γAx(·)(t)
;

two GPH2 models with cross-effects of the hazard rates:

αx(·)(t) = eβ
T x(t)(1 +Ax(·)(t))γ

T x(t) α(t),

αx(·)(t) = e(β+γ)Tx(t)(A(t))e
γT x(t)−1 α(t);

PH model with time-varying regression coefficients:

αx(·)(t) = eβ
T (t)x(t)α(t) = exp{

m∑
j=1

βj(t)xj(t)}α(t),

where βj(t) = βj+γj gj(t), βj , γj are unknown parameters and gj(·) are spec-
ified deterministic functions or paths of predictable processes. For example,
gj(t) = t; ln t; 1{t≤t0}; N(t−); F̂ (t−), etc.
Set

A(t) =
∫ t

0

α(u)du, θ = (θ1, · · · , θm+r)T = (β1, · · · , βm, γ1, · · · , γr)T ,

where r = 1, when γ is one-dimensional (GPH1 models), and r = m, when γ
is m-dimensional (in the case of GPH2 models and models with time-varying
coefficients). Each of above mentioned models is an alternative to the PH
model if γ 
= 0.

Test statistics

If A is completely known then under any of the above mentioned alternatives
the parametric maximum likelihood estimator of the parameter θ is obtained
by solving the system of equations

Uj(τ ; θ,A) = 0, (j = 1, · · · ,m+ r),

where

Uj(t; θ,A) =
n∑

i=1

∫ t

0

∂

∂θj
log{αi(t, θ)}{dNi(u)− Yi(u)αi(u, θ)du}.

Note that if A is unknown, then the partial derivative

∂

∂θj
log{αi(t, θ)} = w

(i)
j (t, θ, A)
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depends on a finite dimensional parameter θ = (βT , γT )T and a infinite di-
mensional parameter A. Under the PH model γ = 0 and A is the baseline
hazard corresponding to this model.
Set

Ûj = Ûj(τ), where Ûj(t) = Uj(t, (β̂T , 0T )T , Â),

where β̂ is the partial likelihood estimator of the regression parameter β and
Â is the Breslow (1975b) estimator of the baseline cumulative hazard under
the PH model.
Note that under PH model

Ûj = 0, (j = 1, · · · ,m)
and

Ûj(t) =
n∑

i=1

∫ t

0

ŵ
(i)
j (u)dM̂i(u), (j = m+ 1, · · · ,m+ r), (12.42)

where M̂i(t) are the martingale residuals corresponding to the PH model:

M̂i(t) = Ni(t)−
∫ t

0

Yi(u) eβ̂
T x(i)(u)dÂ(u) = Ni(t)−

∫ t

0

Yi(u) eβ̂
T x(i)(u) dN(u)

S(0)(u, β̂)
,

S(0)(t, β) =
∑n

i=1 Yi(t) eβ
T x(i)(u), ŵ(i)

j (t) = w
(i)
j (t, (β̂

T , 0T )T , Â).

In dependence on the alternative the weights ŵ
(i)
j (t) have the following

forms:

for the GPHGW model:

ŵ
(i)
j (t) = ln{1 + eβ̂

T x(i)(t)Â(t)}; (12.43)

for the GPHGLL model:

ŵ
(i)
j (t) = eβ

T x(i)(t)Â(t); (12.44)

for the IGF model:

ŵ
(i)
j (t) = eβ

T x(i)(t)Â(t); (12.45)

for the first GPH2 model:

ŵ
(i)
j (t) = x

(i)
j (t) ln{1 + eβ̂

T x(i)(t)Â(t)}; (12.46)

for the second GPH2 model:

ŵ
(i)
j (t) = x

(i)
j (t) ln{1 + Â(t)}; (12.47)

for the models with time-varying coefficients

ŵ
(i)
j (t) = x

(i)
j (t)gj(t). (12.48)

The test is based on the statistics

Û = (Ûm+1, · · · , Ûm+r)T . (12.49)
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To construct a test we need the asymptotic distribution of Û under the PH
model.

Asymptotic properties of the test statistics

Set
ŵ(i)(t) = (ŵ(i)

m+1(t), · · · , ŵ(i)
m+r(t))

T ,

S(1)(t, β) =
n∑

i=1

x(i)(t)Yi(t) eβ
T x(i)(t),

S(2)(t, β) =
n∑

i=1

(x(i)(t))⊗2Yi(t) eβ
T x(i)(t),

E(t, β) =
S(1)(t, β)
S(0)(t, β)

, S̃(1)(t, β) =
n∑

i=1

ŵ(i)(t)Yi(t) eβ
T x(i)(t),

Ẽ(t, β) =
S̃(1)(t, β)
S(0)(t, β)

, S̃(2)(t, β) =
n∑

i=1

ŵ(i)(t)(x(i)(t))TYi(t) eβ
T x(i)(t),

˜̃S
(2)

(t, β) =
n∑

i=1

(ŵ(i)(t))⊗2Yi(t) eβ
T x(i)(t).

Denote by β0 the true value of β.
Suppose that Conditions A of Chapter 5 are verified. Suppose also that

conditions analogous to the conditions a)-d) not only for S(i) but also for

S̃(i), (i = 1, 2) and ˜̃S
(2)

are verified.
The Doob-Meier decomposition, the formulas (7.60), Theorem 7.1 and the

delta method imply that

n−1/2Û(t) = n−1/2
n∑

i=1

∫ t

0

{ŵ(i)(u)− Ẽ(u, β̂)}dNi(u) =

n−1/2
n∑

i=1

∫ t

0

{ŵ(i)(u)− Ẽ(u, β̂)}dMi(u)+

n−1/2

∫ t

0

{Ẽ(u, β0)− Ẽ(u, β̂)}S(0)(t, β0)dA(u) =

n−1/2
n∑

i=1

∫ t

0

{ŵ(i)(u)− Ẽ(u, β0)}dMi(u)−

n−1

∫ t

0

∂Ẽ(u, β0)
∂β

S(0)(u, β0)dA(u)n1/2(β̂ − β0) + op(1) =

n−1/2
n∑

i=1

∫ t

0

{ŵ(i)(u)− Ẽ(u, β0)}dMi(u)−
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Σ∗(t)Σ−1(τ)n−1/2
n∑

i=1

∫ τ

0

{x(i)(u)− E(u, β0)}dMi(u) + op(1), (12.50)

where Σ(t) and Σ∗(t) are the limits in probability of the random matrices (cf.
(7.58)),

Σ̂(t) = n−1

∫ t

0

V (u, β̂)dN(u), Σ̂∗(t) = n−1

∫ t

0

Ṽ (u, β̂)dN(u),

V (t, β) =
S(2)(t, β)
S(0)(t, β)

− (E(t, β))⊗2
, Ṽ (t, β) =

S̃(2)(t, β)
S(0)(t, β)

− Ẽ(t, β)ET (t, β).

(12.51)
So

< n−1/2Û > (t) = n−1
n∑

i=1

∫ t

0

{ŵ(i)(u)− Ẽ(u, β0)}⊗2eβ
T
0 x(i)(u)Yi(u)dA(u)−

2Σ∗(t)Σ−1(τ)n−1
n∑

i=1

∫ t

0

{ŵ(i)(u)− Ẽ(u, β0)}{x(i)(u)− E(u, β0)}T eβ
T
0 x(i)(u)×

Yi(u)dA(u) + Σ∗(t)Σ−1(τ)n−1
n∑

i=1

∫ τ

0

{x(i)(u)− E(u, β0)}⊗2eβ
T
0 x(i)(u)×

Yi(u)dA(u)Σ−1(τ)(Σ∗(t))T + op(1) = Σ∗∗(t)− Σ∗(t)Σ−1(τ)(Σ∗(t))T + op(1),
where Σ∗∗(t) is the limit in probability of the random matrice

Σ̂∗∗(t) = n−1

∫ t

0

˜̃V (u, β̂)dN(u),

˜̃V (u, β) =
˜̃S

(2)

(t, β)
S(0)(t, β)

−
(
Ẽ(t, β)

)⊗2

. (12.52)

Similarly as proving the Lindeberg condition (7.62) (see Andersen, Borgan,
Gill and Keiding (1993)) it can be shown that

n−1
n∑

i=1

∫ τ

0

{ŵ(i)
j (u)−Ẽj(u, β0)}21{|ŵ(i)

j
(u)−Ẽj(u,β0|≥

√
nε}e

βT
0 x(i)

Yi(u)dA(u)
P→ 0.

Theorem A.7 implies that the stochastic process n−1/2Û converges in distri-
bution to a zero mean Gaussian process, in particular

n−1/2Û
D→ Nr(0,D),

where D = Σ∗∗(τ)− Σ∗(τ)Σ−1(τ)(Σ∗(τ))T .

Test

The critical region of the chi-square type test with approximate significance
level α is T > χ2

1−α(r), where

T = n−1ÛT D̂Û , (12.53)
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D̂ = Σ̂∗∗(τ)− Σ̂∗(τ)Σ̂−1(τ)(Σ̂∗(τ))T . (12.54)

The calculation of the test statistic is simple:

U =
n∑

j=1

δj{ŵ(i)(Xj)− Ẽ(Xj , β̂)}, Σ̂(τ) = n−1
n∑

j=1

δjV (Xj , β̂),

Σ̂∗(τ) = n−1
n∑

j=1

δj Ṽ (Xj , β̂), Σ̂∗∗(τ) = n−1
n∑

j=1

δj
˜̃V (Xj , β̂), (12.55)

where V, Ṽ , ˜̃V are defined by the formulas (12.50),(12.51), and ŵ(i) by (12.43)-
(12.48).
Note that if the alternative is the PH model with time-varying coefficients

then
Ṽ (u, β) = G(u)V (u, β), ˜̃V (u, β) = G(u)V (u, β)G(u)T ,

where G(u) is a diagonal matrix with the elements g1(u), · · · , gm(u) on the
diagonal. In this case the test statistic (12.52) coincides with the statistic
of Grambsch and Therneau (1994) obtained using generalized least squares
procedure. In dependence of the choice of gj particular cases of such statis-
tic are (or are equivalent) the test statistics given by Cox (1972), Moreau,
O’Quigley, Mesbah (1985), Lin (1991), Nagelkerke, Oosting, Hart (1984), Gill
and Schumacher (1987). The test with the weight (12.47) is equivalent to the
test of Quantin et al (1996). In the case of univariate explanatory variable
Grambsch and Therneau (1994) show how the function β(t) can be visual-
ized by smoothing plots of V −1(Xi, β̂)r̂i + β̂ with δi = 1 versus Xi; here
r̂i = x(i)(Xi) − E(Xi, β̂) are Schoenfeld residuals (1980), β̂ is the partial
likelihood estimator.

12.4.2 Tests based on estimated score process

The estimated score process under the PH model is defined as

Û(t) = U(t, β̂) =
n∑

i=1

∫ t

0

{x(i)(u)− E(u, β̂)} dNi(u) =
n∑

i=1

∫ t

0

x(i)(u)dM̂i(u).

So it is a special case of the process with the components (12.42) and ŵ(i)(u) =
x(i)(u). In this case Ṽ = ˜̃V = V , Σ∗∗ = Σ∗ = Σ and by (12.49)

n−1/2Û(t) = n−1/2
n∑

i=1

∫ t

0

{x(i)(u)− E(u, β0)}dMi(u)−

Σ(t)Σ−1(τ)n−1/2
n∑

i=1

∫ τ

0

{x(i)(u)− E(u, β0)}dMi(u) + op(1) =

n−1/2U(t, β0)− Σ(t)Σ−1(τ)n−1/2U(τ, β0) + op(1) := B(t) + op(1). (12.56)
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Denote by σjj′(s) the elements of the matrix Σ(t). By Theorem 7.1

n−1/2Û(·) D→ Z(·, β0)− Σ(t)Σ−1(τ)Z(τ, β0) on (D[0, τ ])m, (12.57)

where Z is am-variate Gaussian process having components with independent
increments, Zj(0) = 0 a.s. and for all 0 ≤ s ≤ t ≤ τ :

cov(Zj(s), Zj′(t)) = σjj′(s).

Note that Zj(t) =W (σjj(t)), where W is the standard Wiener process.
Using the fact that that under one-dimensional explanatory variables the

limit of the estimated score process can be transformed to the Brownian
bridge, Wei (1984) proposed the following test for this case.
Set a(t) = σ11(t). The formula (12.55) implies that

n−1/2Û(t) D→ W (a(t))− a(t)
a(τ)

W (a(τ)) on D[0, τ ]. (12.58)

We have
Û(·)√
na(τ)

D→ W

(
a(·)
a(τ)

)
− a(·)

a(τ)
W (1)

on D[0, τ ]. Then

sup
t∈[0,τ ]

| Û(t)√
na(τ)

| D→ sup
u∈[0,1]

| W (u)− uW (1) | = K,

and

T = sup
t∈[0,τ ]

| Û(t)√
nâ(τ)

|D→ K;

here

â(τ) =
1
n

∫ t

0

V (u, β̂)dN(u).

So the statistic T converges in distribution to the supremum of the Brownian
bridge, i.e. the limit distribution is Kolmogorov. Denote by Kα the α-quantile
of the random variable K.

Test (univariate case)

The approximate critical region with the significance level α is

T > K1−α.

If x(i)(·) are m-dimensional, then the components of the limit process (12.56)
can not be transformed to the Brownian bridges because they are dependent.
Lin et al. (1993) propose to use a statistic

T = sup
t

m∑
j=1

{σ̂jj(τ)}1/2 | Ûj(t) |, (12.59)
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where Uj(t) is the jth component of the estimated score statistic Û(t) and
σ̂jj(τ, β̂) are the diagonal elements of Σ̂−1(τ).
The limit distribution of the statistic T can be generated through simula-

tion.
Indeed, the equalities

E{Mi(t)} = 0 and Cov {Mi(s),Mi(t)} = E{Ni(s)Ni(t)}

imply that if Vi is a random variable which does not depend on Ni(·), then

E{ViNi(t)} = E{Mi(t)} = 0, Cov {ViNi(s), ViNi(t)} = Cov {Mi(s),Mi(t)}.

So the covariance structure of the stochastic processes ViNi(·) and Ni(·) is
the same.
By replacingMi(·) withNi(·)Vi , where V1, · · · , Vn are independent standard

normal variables which are independent of (Yi(·), Ni(·), x(i)(·)), and replacing
β by β̂, Σ by Σ̂ in the expression of B(t) given in (12.55), we obtain the
stochastic process

B̂(t) = n−1/2
n∑

i=1

∫ t

0

{x(i)(u)− E(u, β̂)}VidNi(u)−

Σ̂(t)Σ̂−1(τ)n−1/2
n∑

i=1

∫ τ

0

{x(i)(u)− E(u, β̂)}VidNi(u).

The conditional (given {Ni(·), Yi(·), x(i)(·)}) distribution of B̂(·) has the same
limit as the unconditional distribution of B(·), consequently, the same as the
unconditional distribution of n−1/2Û(t) (see Appendix of Lin et al (1993)). So
the distribution of the statistic T can be approximated by simulating samples
{Vi; i = 1, · · · , n} while fixing the data {Ni(·), Yi(·), x(i)}.
Set

T̂ = sup
t

m∑
j=1

{σ̂jj(τ)}1/2 | n1/2B̂(t) |

Test (multivariate case)

Let t0 be the observed value of T . Then the P -value P(T > t0) can be ap-
proximated by P(T̂ > t0), the latter probability being approximated through
simulation of the values of T̂ .
Remark 12.4. Goodness-of-fit for the AH model based on the estimated

score process are obtained similarly and are given in Kim et al (1998).
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12.4.3 Tests based on linear combinations of martingale residuals with two
variable weights

Lin et al. (1993) considered one-dimensional statistics of the form (we write the
evident generalization of them when explanatory variables are time-varying)

U (1)(t, x) =
n∑

i=1

∫ t

0

1{x(i)(u)≤x}dM̂i(u),

U (2)(t, x) =
n∑

i=1

∫ t

0

1{β̂T x(i)(u)≤x}dM̂i(u),

where M̂i are the martingale residuals, and the event {x(i)(u) ≤ x}means that
all the m components of x(i)(u) are not larger than the respective components
of x. For the second statistic x is a one-dimensional variable.
Under each fixed x the statistics U (1)(t, x) and U (2)(t, x) are special cases

of the process with the components (12.42) and ŵ(i)(u, x) = ŵ(1i)(u, x) =
1{x(i)(u)≤x} and ŵ(i)(u, x) = ŵ(2i)(u, x) = 1{β̂Tx(i)(u)≤x}, respectively.
By (12.49)

n−1/2U (j)(t, x) = n−1/2
n∑

i=1

∫ t

0

{ŵ(ji)(u, x)− Ẽ(j)(u, x, β0)}dMi(u)

−Σ∗
j (t, x)Σ

−1(τ)n−1/2
n∑

i=1

∫ τ

0

{x(i)(u)− E(u, β0)}dMi(u) + op(1),

where Σ∗
j (t, x) is the limit in probability of the random matrix Σ̂∗

j (t, x). Note

that Σ̂∗
j and

˜E(j) are the special cases of Σ̂∗ and Ẽ taking ŵ(i) = ŵ(ji) in
all definitions. So, as in previous section, the distribution of n−1/2U (j)(t, x) is
approximated by the distribution of the statistic

n−1/2Û (j)(t, x) = n−1/2
n∑

i=1

∫ t

0

{ŵ(ji)(u)− Ẽ(j)(u, β̂)}VidNi(u)−

Σ̂∗
j (t)Σ̂

−1(τ)n−1/2
n∑

i=1

∫ τ

0

{x(i)(u)− E(u, β̂)}VidNi(u).

The global test statistic for assessment of the PH model is

T = sup
t,x

| n−1/2U (1)(t, x) | .

Set
T̂ = sup

t,x
| n−1/2Û (1)(t, x) | .

Let t0 be the observed value of T . Then the P -value P(T > t0) can be ap-
proximated by P(T̂ > t0), the latter probability being approximated through
simulation of the values of T̂ .
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Computing of the P -value may be time consuming if the explanatory vari-
ables are not constant or step functions with a small number of different
values.

12.5 Goodness-of-fit for the GPH models

12.5.1 Estimators used for goodness-of-fit test construction

We shall consider construction of goodness-of-fit tests for the GPH1 models
in two cases when
1. q is specified, i.e. tests for some relatively narrow models (logistic regression
model being an example);

2. q is parametrized via the parameter γ, i.e. tests for wider models (such as
GPHGW , GPHGLL, etc.).
Suppose that s groups of units are tested. The ith group of ni units is tested

under the explanatory variable xi(·). The data are right censored.
Denote by Tij and Cij the failure and censoring times,

Xij = Tij ∧ Cij , δij = I{Tij ≤ Cij}, Nij(t) = 1{Tij≤t,δij=1},

Yij(t) = 1{Xij≥t}, Ni(t) =
ni∑
j=1

Nij , Yi(t) =
ni∑
j=1

Yij ,

N(t) =
s∑

i=1

Ni(t) Y (t) =
s∑

i=1

Yi(t).

We assume that at the nonrandom moment τ all experiments are censored.
We’ll construct tests for the hypothesis

H0 : αi(t) = eβ
T xi(t)q(Ai(t); γ)α0(t),

where the function q is completely specified (models of the first level) or
parametrized via some parameter γ (models of the second level), α0 is an
unknown baseline function.
The function q can depend on x(i) (as in the GPH2 models). We do not

write this variable in the expressions of q but this possibility can be taken in
mind. The formulas do not change.
We’ll write all formulae in this chapter for the more general model of the

second level which includes γ. If q is specified, all needed slight modifications
will be indicated.
Let

Âi(t) =
∫ t

0

dNi(y)
Yi(y)

be the Nelson-Aalen estimator of Ai(t) = Axi(·)(t). Denote θ = (βT , γT )T .
The modified partial score function has the form U(θ) = U(θ, τ), where

U(θ, t) =
s∑

i=1

∫ t

0

{z̃i(u, γ)− Ẽ(u, θ)}dNi(u),
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where
z̃i(u, γ) = (xTi (u), (ln q(Âi(u); γ))′γ)

T

Ẽ(u, θ) =
S̃(1)(u, θ)
S̃(0)(u, θ)

, S̃(0)(u, θ) =
s∑

i=1

S̃
(0)
i (u, θ),

S̃
(0)
i (u, θ) = eβ

T xi(u)Yi(u)q(Âi(u), γ), S̃(1)(u, θ) =
s∑

i=1

S̃
(1)
i (u, θ),

S̃
(1)
i (u, θ) = z̃i(u; γ)S̃

(0)
i (u, θ).

For the models of the first level z̃i(u, γ) is changed by xi(u) and the argument
γ is absent in q.
Denote by θ̂ the estimator, verifying the equation U(θ̂) = 0 and

S
(0)
i (u, θ) = eβ

T xi(u)Yi(u)q(Ai(u), γ), S(0)(u, θ) =
s∑

i=1

S
(0)
i (u, θ),

zi(u, γ) = (xi(u), (ln q(Ai(u), γ))′γ)
T , E(u, θ) =

S(1)(u, θ)
S(0)(u, θ)

,

S
(1)
i (u, θ) = zi(u, γ)S

(0)
i (u, θ), S(1)(u, θ) =

s∑
i=1

S
(1)
i (u, θ),

S̃
(0)
∗i (u, θ) = eβ

T xi(u)Yi(u)q′1(Âi(u), γ), S̃
(1)
∗i (u, θ) = z̃i(u, γ)S̃

(0)
∗i (u, θ),

where q′1 is the (partial) derivative of the function q with respect to the first
argument.
Denote by θ0 the true value of θ.
Assumptions A:
a) there exist nonnegative functions yi, continuous and positive on [0, τ ] such
that

sup
0≤t≤τ

| Yi(t)
n

− yi(t) | P→ 0, as n → ∞,
ni

n
→ li ∈ (0, 1);

b) A0(τ) < ∞;
c) there exist a neighborhood U(γ0) of γ0 such that q(u, γ) is positive and
continuously differentiable on [0, τ ]× U(γ0);
d) Sxi(·)(τ) > 0 (i = 1, 2).
For the models of the first level c) is changed by the condition of positiveness
and continuous differentiability of q on [0, τ ].
Set

s
(0)
i (u, θ) = eβ

T xi(u)yi(u)q(Ai(u), γ); s
(1)
i (u, θ) = zi(u, γ)s

(0)
i (u, θ),

s
(0)
∗i (u, θ) = eβ

T xi(u)yi(u)q′1(Ai(u), γ), s
(1)
∗i (u, θ) = zi(u, γ)s

(0)
∗i (u, θ),

s(j)(u, θ) =
s∑

i=1

s
(j)
i (u, θ), e(u, θ) =

s(1)(u, θ)
s(0)(u, θ)

.
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In the case of the models of the first level zi(u, γ) = xi(u), q′1 = q′ and the
argument γ is absent in all formulas.
Denote B = B(τ), where

B(t) =
s∑

i=1

∫ t

0

∂

∂θ
(zi(u, γ0)− e(u, θ0))s

(0)
i (u, θ0)dA0(u).

Proposition 12.7. Suppose that the matrix B is non singular. Under As-
sumptions A there exists a neighbourhood of θ0 within which, with probability
tending to 1 as n → ∞, the root θ̂ of U(θ, τ) = 0 is uniquely defined and

n1/2(θ̂ − θ0)
D→ N(0,Σ∗),

where

Σ∗ = B−1Σ(B−1)T , Σ =
s∑

i=1

∫ τ

0

hi(v; θ0)hi(v; θ0)T s
(0)
i (v; θ0)dA0(v),

hi(v; θ0) = zi(v; γ0)− e(v; θ0)+

1
yi(v)

∫ t

v

s(1)(u, θ0)s
(0)
∗i (u, θ0)− s

(1)
∗i (u, θ0)s(0)(u, θ0)

s(0)(u, θ0)
dA0(u).

The proposition is proved similarly as in Bagdonavičius & Nikulin (1997)
for the generalized multiplicative models. Presence of the parameter γ (which
does not take place in that paper) does not change the proof significantly.

12.5.2 Tests for the models with specified q

Let us consider models with specified q and unidimensional explanatory vari-
ables.
The estimated score process is

Û(t) =
s∑

j=1

∫ t

0

(xj(u)− Ẽ(u; θ̂))dNj(u) =
s∑

j=1

∫ t

0

(xj(u)− Ẽ(u; θ̂))dMj(u)−

∫ t

0

(Ẽ(u; θ̂)− E(u; θ0))S(0)(u, θ0)dA0(u)−
∫ t

0

(Ẽ(u; θ̂)− E(u; θ0))dM(u),

(12.60)
where the martingale Mi(t) = Ni(t)−

∫ t

0
αxi

(u)Yi(u)du, M(t) =
∑s

i=1 Mi(t).
Using the Lenglart’s inequality and Assumptions A we obtain:

for all δ > 0, ε > 0, t ∈ [0, τ ]

P{n−1/2

∫ t

0

(Ẽ(u; θ̂)− E(u; θ0))dM(u) ≥ ε} ≤

δ

ε
P{n−1

∫ τ

0

(Ẽ(u; θ̂)− E(u; θ0))2S(0)(u, θ0)dA0(u) ≥ δ}.
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So the normed third term in (9.58) converges in probability to zero uniformly
on [0, τ ].
Assumptions A imply

√
nq(Âi(u)) =

√
nq(Ai(u)) + q′1(Ai(u))

√
n

∫ u

0

dMi(v)
Yi(v)

+ op(1)

uniformly on [0, τ ]. Consider the second term: we have

√
n(Ẽ(u; θ̂)− E(u; θ0)) =

∂ei(u, θ0)
∂θ

√
n(θ̂ − θ0)+

s∑
j=1

S
(1)
∗j (u, θ0)S(0)(u, θ0)− S

(0)
∗j (u, θ0))S(1)(u, θ0)

(S(0)(u, θ0))2
√

n

∫ u

0

dMj(v)
Yj(v)

+ op(1),

uniformly on [0, τ ]; here θ∗ is on the line segment [θ0, θ̂] and

n−1/2Û(t) = n−1/2
s∑

j=1

∫ t

0

hj(v, θ0)dMj(v)− a(t)
a(τ)

∫ τ

0

hj(v, θ0)dMj(v)+ op(1)

D→ W (g(t))− a(t)
a(τ)

W (g(τ)) on D[0, τ ];

here

g(t) =
s∑

j=1

∫ t

0

h2
j (v, θ0)s

(0)
j (v, θ0)dA0(v)),

a(t) =
∫ t

0

∂

∂θ
e(u, θ0)s(0)(u, θ0)dA0(u)

and W is the standard Wiener process. We have

Û(·)√
ng(τ)

D→ W

(
g(·)
g(τ)

)
− a(·)

a(τ)
W (1) on D[0, τ ].

Set

ψ(u) =
a(g−1(g(τ)u))

a(τ)
, u ∈ [0, 1].

Then

sup
t∈[0,τ ]

| Û(t)√
ng(τ)

| D→ sup
u∈[0,1]

| W (u)− ψ(u)W (1) | = Vψ.

In the case of PH model a = g, ψ(u) = u and Vψ is the Brownian bridge. The
function ψ : [0, 1]→ [0, 1] is increasing, ψ(0) = 0, ψ(1) = 1. We have

T = sup
t∈[0,τ ]

| Û(t)√
nĝ(t)

|D→ Vψ,

where

ĝ(t) =
1
n

s∑
i=1

∫ t

0

H2
i (u; θ̂)S̃

(0)
i (u, θ̂)

dN(u)

S̃(0)(u, θ̂)
, Hi(u; θ̂) = xi(u)− Ẽ(u, θ̂)+
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1
Yi(u)

∫ t

u

(S̃(1)(v, θ̂)S̃(0)
∗i (v, θ̂)− S̃

(1)
∗i (v, θ̂)S̃

(0)(v, θ̂))

(S̃(0)(v, θ̂))2
dN(v).

Denote by Vψ,α the α-quantile of the random variable Vψ,

ψ̂(u) = â(ĝ−1(ĝ(τ)u))/â(τ)),

where

ĝ−1(s) = sup{u : ĝ(u) < s}, â(t) =
∫ t

0

∂

∂θ̂
Ẽ(a, θ̂)dN(u).

The quantiles Vψ,α can be approximated by Vψ̂,α which can be obtained by
simulating the standard Wiener process in the jump points of ψ̂. The approx-
imate critical region with the significance level α is T > Vψ̂,1−α.
In the case of the PH model the statistic T coincides with the statistic of

Wei (1984):

ĝ(t) = â(t) = n−1

∫ t

0

S̃(2)(u, β̂)S(0)(u, β̂)− (S(1)(u, β̂))2

(S(0)(u, β̂))2
dN(u),

where S(i)(u, β̂) =
∑

xij(u)e
β̂T xj(u)Yj(u) and Vψ is the Brownian bridge.

12.5.3 Tests for the models with specified or parametrized q

Let us consider the models of the first or second level with possibly multidi-
mensional explanatory variables.
The idea of goodness-of-fit statistic construction is similar to the idea of

goodness-of-fit statistic construction for the PH model given by Lin (1991):
consider a weighted score function

UK(θ, t) =
k∑

i=1

∫ t

0

K(u){z̃i(u, γ)− Ẽ(u, θ)}dNi(u)

and an estimator θ̂K , verifying the condition UK(θ̂K , τ) = 0. The weight func-
tion K(u) is a IF -predictable stochastic process that converges in probability
to a nonnegative bounded function k(u) uniformly in u ∈ [0, τ ]. For exam-
ple, K(u) = e−Â0(u). Under the hypothesis H0 both estimators θ̂I (obtained
when K(u) = I(u) ≡ 1) and θ̂K (K 
= I) are asymptotically normal with the
same mean θ0. Under alternatives both estimators θ̂I and θ̂K should be also
asymptotically normal but with different means, so the test statistic may be
constructed in terms of the difference θ̂I − θ̂K . In the case of the models of
the first level (which are particular cases of the models of the second level)
θ = β and γ is not present in the all following formulae.

Proposition 12.8. Under Assumptions A and nonsingularity of BK and BI

n1/2(θ̂K − θ̂I)
D→ N(0,Σ∗∗

kI),
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where
Σ∗∗
kI = Σ

∗
kk − Σ∗

kI − Σ∗
Ik +Σ

∗
II , Σ∗

kI = B−1
k ΣkI(B−1

I )T ,

ΣkI =
2∑

i=1

∫ t

0

hki(v, θ0)hIi(v, θ0)s
(0)
i (v, θ0)dA0(u),

hki(v; θ0) = k(v)(zi(v, γ0)− e(v; θ0))+

1
yi(v)

∫ t

v

k(u)
s(1)(u, θ0)s

(0)
∗i (u, θ0)− s

(1)
∗i (u, θ0)s(0)(u, θ0)

s(0)(u, θ0)
dA0(u),

Bk = Bk(τ), , Bk(t) =
2∑

i=1

∫ t

0

k(u)
∂

∂θ
(zi(u, γ0)− e(u, θ0))s

(0)
i (u, θ0)dA0(u).

Sketch of the proof. Using method similar as in Bagdonavičius & Nikulin
(1997) we show that the predictable covariation

<
1√
n
UK ,

1√
n
UI > (t, θ0) =

1
n

2∑
i=1

∫ t

0

HKi(v, θ0)HIi(v, θ0)S
(0)
i (v, θ0)dA0(u)+op(1),

uniformly on [0, τ ], where

HKi(v; θ0) = K(u)(z̃i(v, γ0)− Ẽ(v; θ0))+

1
Yi(v)

∫ t

v

K(u)
S(1)(u, θ0)S

(0)
∗i (u, θ0)− S

(1)
∗i (u, θ0)S(0)(u, θ0)

S(0)(u, θ0)
dA0(u)

and
θ̂K

P→ θ0, θ̂I
P→ θ0.

So

cov(
√

n(θ̂K − θ0),
√

n(θ̂I − θ0))→ B−1
k ΣkI(B−1

I )T = Σ∗
kI as n → ∞.

The statistic of chi-squared type test can be defined as

Tn = (θ̂K − θ̂I)T (Σ̂∗∗
KI)

−1(θ̂K − θ̂I), (12.61)

where

Σ̂∗∗
KI = Σ̂

∗
KK − Σ̂∗

KI − Σ̂∗
IK + Σ̂

∗
II , Σ̂∗

K1K2
= B̂−1

K1
Σ̂K1K2(B̂

−1
K2
)T ,

B̂K =
1
n

∫ τ

0

K(u)
∂

∂θ
(z̃i(u, γ̂)− Ẽ(u, θ̂))dN(u),

Σ̂K1K2 =
1
n

s∑
i=1

∫ τ

0

HK1i(v, θ̂)H
T
K2i(v, θ̂)S̃

(0)
i (v, θ̂)dÂ0(v),

where HKi(v, θ̂) is obtained from HKi(v, θ0) replacing θ0 by θ̂ and dA0(u) by
dÂ0(u) = dN(u)/S̃(0)(u, θ̂). The distribution of the statistic Tn is approxi-
mated by the chi-square distribution with two degrees of freedom.
Example. Consider the hypothesis

H0g : αi(t) = eβ
T xi(t)+γAi(t)α0(t), γ < 0,
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i.e. the GPHGLL model against alternatives, including the alternative

H1 : αi(t) = eβ
T xi(t)

1
1 + δt

α∗
0(t), δ > 0,

i.e. the IGF model.
The test statistic in this case is simple:

B̂K = − 1
n

∫ τ

0

K(u)
∂

∂θ
Ẽ(u, θ̂)dN(u),

Σ̂K1K2 =
1
n

∫ τ

0

K1(u)K2(u)
∂

∂θ
Ẽ(u, θ̂)dN(u),

and z̃i(u) = (xi(u), Âi(u)) in the expression of Ẽ(u, θ̂).

12.6 Goodness-of-fit for parametric regression models

The most used parametric regression model in analysis of the FTR data is
the AFT model. Note that if the explanatory variables are constant then, un-
der specified survival distributions, this model coincides with some specified
GPH1 model. For example, under the Weibull, loglogistic, lognormal, general-
ized Weibull, generalized loglogistic distribution under constant explanatory
variables the AFT model is equivalent to the PH, logistic regression, general-
ized probit, GPHGW , GPHGLL model, respectively. In the case when these
models do not coincide with the AFT model, the survival distributions under
different constant explanatory variables are not from the same classes and
parametric methods are not very attractive.
So let us consider model checking techniques for the parametric AFT model

Sx(·)(t) = S0

(∫ t

0

e−βT x(u)du, η

)
, (12.62)

with specified parametric form of the baseline survival function S0(t, η). In
terms of the hazard rates

αx(t, θ) = α0

(∫ t

0

e−βT x(u)du, η

)
e−βT x(t),

where α0 are the baseline hazard rate.

12.6.1 Likelihood ratio tests

Let us consider the alternative: the AFT model with time-varying regression
coefficients:

Sx(·)(t) = S0

(∫ t

0

e−µT z(u)du, η

)
, (12.63)

where
µ = (β1, · · · , βm, γ1, · · · , γr)T .



GOODNESS-OF-FIT FOR PARAMETRIC REGRESSION MODELS 253

So µT z(u) =
∑m

i=1(βj+γj gj(u))xj(u) = βTx(u)+γT g(u)x(u), where gj(·) are
specified deterministic functions or paths of predictable processes and g(u) is
the diagonal matrix with the elements gj(u) on the diagonal. Examples of gj(t)
are t; ln t; 1{t≤t0}; N(t−); F̂ (t−), etc. Set ν = (µT , ηT )T , θ = (βT , ηT )T . If
γ = 0, the model coincides with the AFT model.
Denote by ν̂ = (θ̂T , γT )T and θ̃ the maximum likelihood estimators of

the parameters ν and θ under the models (12.62) and (12.61), respectively.
Note that if the baseline function is from classes considered in Chapter 5, the
estimation in both the AFT and the alternative models is identical. In the
alternative model the vector z(·) can be considered as a vector of explanatory
variables. Denote by L(ν) = L(θ, η) the likelihood function under the model
(12.62).
The likelihood ratio statistic is:

2 (lnL(θ̂, γ̂)− lnL(θ̃, 0)). (12.64)

If n is large then the distribution of the likelihood ratio statistic (cf.(4.40))
approximated by the chi-square law with m degrees of freedom.

12.6.2 Numerical methods for assessing goodness-of-fit

Let us consider numerical methods for assessing goodness-of-fit for paramet-
ric regression models. Such methods were developed by Lin and Spiekerman
(1996).
Following Lin and Spiekerman, let us consider model checking techniques

for the AFT model with constant explanatory variables.
Note that that for any x the survival function, cumulative hazard and haz-

ard rate of the random variable

ε = lnTx − βTx

are S(t) = S0(et), A(t) = A0(et) and α(t) = etα0(et), respectively.
The idea of the first goodness-of-fit test is to compare the parametric and

semiparametric estimators of the cumulative hazard A.
Suppose that the explanatory variables are constant and the data are inde-

pendent replicates {Xi, δi, x
(i)} of {X, δ, x} or, equivalently, independent repli-

cates {Ni(·), Yi(·), x(i)} of {N(·), Y (·), x}, where N(t) = 1{X≤t,δ=1}, Y (t) =
1{X≥t}.
The formula (6.14) implies that the semiparametric estimator of A has the

form

Â(sem)(t) = Ã0(et, β̂s) =
n∑

i=1

∫ et

0

dNi(eβ̂
T
s x(i)

u)∑n
l=1 Yl(eβ̂

T
s x(l)

u)
=

∑n
i=1 δi1{lnXi−β̂T

s x(i)≤t}∑n
l=1 1{lnXl−β̂T

s x(l)≥lnXi−β̂T
s x(i)}

,

where β̂s is the semiparametric estimator of β defined by (6.19).
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Let Â(par)(t) = A(t, η̂) be the parametric estimator of A(t, η); here η̂ is the
parametric maximum likelihood estimator of η defined by the score function
of the form (4.16).
The first goodness-of-fit test is based on the statistic

W (t) = n1/2{Â(par)(t)− Â(sem)(t)}.
This statistic can be written in the following way:

W (t) = n1/2{A(t, η̂)−A(t, η0)}−n1/2{Ã(t, β̂s)−Ã(t, β0)}−n1/2{Ã(t, β0)−A(t, η0)} =
W1(t)−W2(t)−W3(t);

here Ã(t, β) = Ã0(et, β).
Denote by θ̂ = (β̂T , η̂T )T the parametric estimator of θ. The delta method

implies that

W1(t) =
∂

∂η
A(t, η0)n1/2(η̂− η0) + op(1) = (0,

∂

∂η
A(t, η0))n1/2(θ̂− θ0)+ op(1).

The formulas (4.21)-(4.24) imply that

n1/2(θ̂ − θ0) = (n−1I(θ0))−1n−1/2U(θ0) + op(1),

n−1/2U(θ0) = n−1/2
n∑

i=1

∫ ∞

0

∂

∂θ
lnαi(v, θ0)dMi(v, θ0) =

n−1/2
n∑

i=1

∫ ∞

−∞
gi(v, η0)dM∗

i (v, θ0),

where
M∗

i (v, θ0) =Mi(ev+βT
0 x(i)

, θ0),

gi(v, η0) = (−(x(i))T (lnα)′1(v, η0), ((lnα)′2(v, η0)T )T .

So

W1(t) = (0,
∂

∂η
A(t, η0))(n−1I(θ0))−1n−1/2

n∑
i=1

∫ ∞

−∞
gi(v, η0)dM∗

i (v, θ0)

The formula (6.14) and the Doob-Meier decomposition of Ni imply that

W3(t) = n1/2

{
n∑

i=1

∫ et

0

dNi(eβ
T
0 x(i)

u)∑n
l=1 Yl(eβ

T
0 x(l)

u)
−A(t, η0)

}
= n1/2

{
n∑

i=1

∫ t

−∞

Yi(eβ
T
0 x(i)+v)α(v, η0)dv + dMi(eβ

T
0 x(i)+v, θ0)∑n

l=1 Yl(eβ
T
0 x(l)+v)

−
∫ t

−∞
α(v, η0)dv

}
=

n−1/2
n∑

i=1

∫ t

−∞

dM∗
i (v, θ0)

n−1
∑n

l=1 1{lnXl−βT
0 x(l)≥v}

.
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Set ȳ(v, β) = x̄(ev, β), where x̄(v, β) is defined by (6.18). We have

W2(t) = n1/2

{
n∑

i=1

∫ et

0

dNi(eβ̂
T
s x(i)

u)∑n
l=1 Yl(eβ̂

T
s x(l)

u)
−

n∑
i=1

∫ et

0

dNi(eβ
T
0 x(i)

u)∑n
l=1 Yl(eβ

T
0 x(l)

u)

}
=

n1/2

{
n∑

i=1

∫ t

−∞

Yi(eβ̂
T x(i)+v){α(v + (β̂s − β0)Tx(i), η0)− α(v, η0)}dv∑n

l=1 Yl(eβ̂
T
s x(l)+v)

+
n∑

i=1

∫ t

−∞

dMi(eβ̂
T
s x(i)+v, θ0)∑n

l=1 Yl(eβ̂
T
s x(l)+v)

−
n∑

i=1

∫ t

−∞

dMi(eβ
T
0 x(i)+v, θ0)∑n

l=1 Yl(eβ
T
0 x(l)+v)

}
=

∫ t

−∞
ȳT (v, β0)dα(v, η0)n1/2(β̂s − β0) + op(1).

By Chapter 6.1.4

n1/2(β̂s − β0) = Σ−1
∗ n−1/2

n∑
i=1

∫ ∞

−∞
{x(i) − ȳ(v, β0)}dM∗

i (v, β) + op(1).

So we have

W (t) = (0,
∂

∂η
A(t, η0))(n−1I(θ0))−1n−1/2

n∑
i=1

∫ ∞

−∞
gi(v, η0)dM∗

i (v, β0)−

∫ t

−∞
ȳT (v, β0)dα(v, η0)Σ−1

∗ n−1/2
n∑

i=1

∫ t

−∞
(x(i) − ȳ(v, β0)dM∗

i (v, β0)−

n−1/2
n∑

i=1

∫ t

−∞

dM∗
i (v, β0)

n−1
∑n

l=1 1{lnXl−βT
0 x(l)≥v}

.

The null distribution of W (u) is approximated by a zero-mean Gaussian pro-
cess Ŵ (u) whose distribution can be generated through simulation. By re-
placing M∗

i (u, β0) with N∗
i (u, β0)Vi = Ni(eu+βT

0 x(i)
)Vi, where V1, · · · , Vn are

independent standard normal variables which are independent of Yi, Ni, x
(i),

and replacing the finite dimensional parameters by their respective estimators,
we obtain

Ŵ (t) = (0,
∂

∂η
A(t, η̂))(n−1I(θ̂))−1n−1/2

n∑
i=1

∫ ∞

−∞
gi(v, η0)Vi dN

∗
i (v, β̂)−

∫ t

−∞
x̄T (v, β̂)dα(v, η̂) Σ̂−1n−1/2

n∑
i=1

∫ t

−∞
{x(i) − ȳ(v, β̂)}Vi dN

∗
i (v, β̂)−

n−1/2
n∑

i=1

∫ t

−∞

Vi dN
∗
i (v, β̂)

n−1
∑n

l=1 1{lnXl−β̂T x(l)≥v}
,

where

Σ̂∗ = n−1
n∑

i=1

∫ ∞

−∞
1{lnXi−βT x(i)≥u}{x(i) − ȳ(u, β0)}⊗2dα(u, η̂).
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When approximating the distribution ofW , the variables Vi are considered as
random and the trajectories {Ni(·), Yi(·), x(i)} as fixed. The conditional (given
{Ni(·), Yi(·), x(i)}) distribution of Ŵ has the same limit as the unconditional
distribution ofW . So the distribution ofW can be approximated by simulating
samples {Vi; i = 1, · · · , n} while fixing the data {Ni(·), Yi(·), x(i)}.
The supremum test statistic is Q = supt∈[0,τ ] | W (t) |. It is supposed that

at the moment τ the failure and the censoring processes are stopped. Let q
be the observed value of Q and let Q̂ = supt∈[0,τ ] | Ŵ (t) |. Then the P -value
P(Q > q), can be approximated by P(Q̂ > q), the latter probability being
approximated through simulation.
If the baseline hazard function is incorrectly parametrized but the AFT

model is valid, then the semiparametric estimator A(sem)(t) converges to the
true A(t) whereas the parametric estimator A(par)(t) converges to a limit
which is different from A(t) at least for some t. Therefore the supremum test
is consistent against any mis-specification of the baseline hazard function.
Similarly as in the semiparametric case let us consider the statistics

U (1)(t, x) =
n∑

i=1

∫ t

0

1{x(i)(u)≤x}dM̂i(u),

U (2)(t, x) =
n∑

i=1

∫ t

0

1{β̂T x(i)(u)≤x}dM̂i(u),

where M̂i are the (parametric) martingale residuals

M̂i(t) = Ni(t)−
∫ t

0

Yi(u)αi(u, θ̂)du.

Set ŵ(1i)(u, x) = 1{x(i)(u)≤x} and ŵ(2i)(u, x) = 1{β̂T x(i)(u)≤x}. Similarly as
for the above considered statistic W1 (see also Chapter 9.5.3) the statistics
U (j)(t, x) can be written

n−1/2U (j)(t, x) = n−1/2
n∑

i=1

ŵ(ji)(t, x)Mi(t)−J (j)(t, x; θ0)n1/2(θ̂−θ0)+op(1) =

n−1/2
n∑

i=1

ŵ(ji)(t, x)Mi(t)− J (j)(t, x; θ0)(n−1I(θ0))−1×

n−1/2
n∑

i=1

∫ ∞

−∞
gi(v, η0)dM∗

i (v, β0) + op(1),

where

J (j)(t, x; θ0) = n−1
n∑

i=1

ŵ(ji)(t, x)
∫ t

0

Yi(u)
∂

∂θ
αi(u, θ0)du.

As in the case of the statistic W (t), the distribution of U (j)(t, x) is approxi-
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mated by the distribution of the statistic

n−1/2Û (j)(t, x) = n−1/2
n∑

i=1

ŵ(ji)(t, x)ViNi(t)− J (j)(t, x; θ̂)(n−1I(θ̂))−1×

n−1/2
n∑

i=1

∫ ∞

−∞
gi(v, η̂)VidN

∗
i (v, β̂).

The conditional (given {Ni(·), Yi(·), x(i)}) distribution of n−1/2U (j) has the
same limit as the unconditional distribution of n−1/2U(j).
The test statistic is defined as

T = sup
t,x

| n−1/2Û (1)(t, x) | .

The P -values of the statistic T can be estimated through simulation.
The test is consistent against any departure from the assumed parametric

model (Lin and Spiekerman (1996)).
If one of the considered tests rejects the model, it means that there is mis-

specification for some aspects of the model. It can be bad choice of the AFT
model, of the link function r(x), of the parametrization of the baseline function
A, etc.
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CHAPTER 13

Estimation in degradation models

13.1 Introduction

Suppose that degradation under the explanatory variable x(·) is determined
by a stochastic process (cf. (3.11))

Zx(·)(t) = Z


 t∫

0

eβ
T x(s) ds


 . (13.1)

Set

m(t) = E(Z(t)), mx(·)(t) = E(Zx(·)(t)) = m


 t∫

0

eβ
T x(s) ds


 . (13.2)

The moment of the nontraumatic failure under explanatory variable x(·) is

Tx(·) = sup{t : Zx(·)(t) < z0}.

It is the moment when degradation under x(·) attains a critical level z0.
Let Cx(·) be the moment of the traumatic failure under x(·) and let us

consider the model discussed in Chapter 3:

P{Cx(·) > t | x(s), Zx(·)(s), 0 ≤ s ≤ t} = exp{−
∫ t

0

λ
(
Zx(·)(s), x(s)

)
ds}
(13.3)

In the particular case when the values of all explanatory variables are fixed,
the model without explanatory variables

P{C > t | Z(s), 0 ≤ s ≤ t} = exp{−
∫ t

0

λ (Z(s)) ds} (13.4)

may be considered. In this chapter we consider statistical estimation of relia-
bility characteristics using degradation and failure time data with explanatory
variables. In the case when traumatic failure times and degradation processes
are dependent, this topic was considered by Bagdonavičius and Nikulin (2001)
and Bagdonavičius et al. (2001).
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13.2 Linear path models

Estimation procedures from degradation data using general path models are
given in the book of Meeker and Escobar (1998) We consider only such topics
which are not considered there.
The intensity of the traumatic failures is characterized by the function

λ(z, x) given in (13.3). In the preliminary stage of investigation, the form
of this function is generally unknown. So the problem of its nonparametric
estimation arises. The graph of obtained estimator gives an idea on the form
of it.
We shall consider the most simple case of the linear path model when the

intensity λ at any moment depends only on the value of degradation (and on
the explanatory variable via degradation): λ = λ(z). Generalizations for more
general path models is one of the interesting directions of research.
One of the main applications of the linear path models is related with

analysis of tire wear (degradation). Traumatic failures of tires are related with
the production defects, mechanical damages, fatigue of the tire components,
etc. So the traumatic failures can be of different modes.
The purpose of this book is to give analysis of failure time and degradada-

tion data with explanatory variables. Nevertheless, for better understanding
of further generalizations to the case of data with explanatory variables, we
give at first analysis of failure time and degradation data without explanatory
variables.

13.2.1 Model without explanatory variables

Suppose that under fixed values of the explanatory variables the wear process
Z(t) is modeled by the linear path model

Z(t) = t/A, t ≥ 0;
here A is a positive random variable with the distribution function π.
Suppose that a unit fails because of the natural cause (the degradation

attains the critical level z0) or because of traumatic events of one of s possible
types (modes).
Denote by

T (0) = z0 A

the time of nontraumatic failure, and by T (k) (k = 1, · · · , s) the failure time
corresponding to the kth traumatic failure mode.
The reliability function S(0)(t) and the mean E(T (0)) of the random variable

T (0) are

S(0)(t) = P (T (0) > t) = 1− π(t/z0) E(T (0)) = z0

∫ ∞

0

a dπ(a). (13.5)

We suppose that the random variables T (1), · · · , T (s) are conditionally inde-
pendent (given A = a) and for any k the model (13.4) with C = T (k) is true.
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So the conditional survival function of T (k) is

S(k)(t | a) = P(T (k) > t|A = a) = P(T (k) > t|Z(s) = s/a) =

exp
(
−
∫ t

0

λ(k)(s/a)ds
)
= exp

(−aΛ(k)(t/a)
)
, (13.6)

where

Λ(k)(z) =
∫ z

0

λ(k)(y)dy.

The conditional probability density function of T (k) is

p(k)(t | a) = λ(k)(t/a)e−aΛ
(k)(t/a). (13.7)

The failure time of an unit is the random variable

T = min(T (0), T (1), · · · , T (s)).

Set

Λ(z) =
s∑
i=1

Λ(i)(z).

The survival function and the mean of the random variable T are

S(t) = P (T > t) =
∫ ∞

t/z0

e−aΛ(t/a)dπ(a), (13.8)

E(T ) = E(T (0))−
∫ ∞

0

a2dπ(a)
∫ z0

0

(z0 − y)e−aΛ(y)dΛ(y). (13.9)

Set

V =




0, if T = T (0),
1, if T = T (1),
· · · · · ·
s, if T = T (s)

(13.10)

The random variable V is the indicator of the failure mode. The 0 failure
mode is nontraumatic. Other failure modes are traumatic.

13.2.2 Nonparametric estimation of the cumulative intensities

Suppose that the cumulative intensities Λ(k) are completely unknown. The
purpose is to estimate

Λ(k)(z), 0 ≤ z ≤ z0.

Suppose that n units are on test and the failure moments Ti, the indicators
of the failure modes Vi (cf. (13.10)) and the degradation values

Zi = Ti/Ai (13.11)

at the failure moments Ti are observed. Thus, the data are:

(T1, Z1, V1), · · · , (Tn, Zn, Vn). (13.12)
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The formula (13.11) implies that the degradation ratesAi are known. There-
fore the data can be defined as n independent copies of the vector (A,AT, V ):

(A1, Z1, V1), · · · , (An, Zn, Vn). (13.13)

For k = 1, · · · , s and 0 ≤ z ≤ z0 set

N (k)
n (z) =

n∑
i=1

1{Zi≤z,Vi=k}.

It is the number of units having a failure of the kth mode before the wear
attains the level z.

Lemma 13.1. Let Fz be the σ-algebra generated by the random variables
A1, · · · , An and N (1)

n (y), · · · , N (s)
n (y), y ≤ z. Then the counting process N (k)

n (z)
can be written as the sum

N (k)
n (z) =

∫ z

0

λ(k)(y)Yn(y)dy +M (k)
n (z),

where

Yn(z) =
n∑
i=1

Ai1{Zi≥z} =
∑
Zi≥z

Ai, (13.14)

and (M (k)
n (z), 0 ≥ z ≥ z0) is a martingale with respect to the filtration (Fz, 0 ≤

z ≤ z0).

Proof. Let 0 ≤ y < z ≤ z0. It is sufficient to prove that

E{N (k)
n (z)−N (k)

n (y) | Fy} = E{
∫ z

y

λ(k)(u)Yn(u)du | Fy}.

Additivity of mathematical expectation implies that it is sufficient to prove
this for n = 1.
If A1 = a and Z1 ≤ y then N

(k)
1 (z) = N

(k)
1 (y). If A1 = a and Z1 > y then

the random variable N (k)
1 (z) takes two values, 0 and 1, and (we write a ≤ b, c

for a ≤ b, a ≤ c)

P{N (k)
1 (z) = 1 | Z1 > y, A1 = a} =

P{ay < T
(k)
1 ≤ az, T

(1)
1 , · · · , T (s)

1 | T1 > ay, A1 = a} =
eaΛ(y)

∫ az

ay

p(k)(t | a)
∏
l �=k

Sl(t | a)dt = eaΛ(y)a

∫ z

y

λ(k)(u)e−aΛ(u)du.

Thus,

E{N (k)
1 (z)−N

(k)
1 (y) | Fy} = 1{Z1>y}A1

∫ z

y

λ(k)(u)e−A1{Λ(u)−Λ(y)}du.

Analogously, for u > y

E{1{Z1>u} | Fy} = 1{Z1>y}e
−A1{Λ(u)−Λ(y)},
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thus

E{
∫ z

y

λ(k)(u)Y1(u)du | Fy} = A1

∫ z

y

λ(k)(u)E{1{Z1>u} | Fy}du =

1{Z1>y}A1

∫ z

y

λ(k)(u)e−A1{Λ(u)−Λ(y)}du.

The lemma implies that optimal estimators of the cumulative intensities
Λ(k)(z) are Nelson-Aalen type (see Andersen et al (1993),p.p. 177-178 ):

Λ̂(k)(z) =
∫ z

0

Y −1
n (y) dN (k)

n (y)

=
∑

Zi≤z,Vi=k

Y −1
n (Zi) =

∑
Zi≤z,Vi=k


 ∑
Zj≥Zi

Aj




−1

.

Thus

Λ̂(k)
n (z) =

∑
Zi≤z,Vi=k


 ∑
Zj≥Zi

Tj
Zj




−1

. (13.15)

The estimator is correctly defined if Zi ≥ z and Vi = k for some i. If such i
do not exist then the estimator is defined as 0.
Note the remarkable fact that for nonparametric estimation of the cumula-

tive intensities we do not need to specify the form of distribution π.
The estimators Λ̂(k)

n (z) are piecewise-constant right-continuous functions,
i.e. they are random elements of the Skorokhod space D[0, z0] (see Appendix,
Section A12). The properties of Nelson-Aalen type estimators are well known
(see Andersen et al (1993)). In our special case the following result holds.

Theorem 13.1. If EA < ∞, then the estimator Λ̂(k)
n (z) is consistent, and

the random vector function
√
n
(
Λ̂(1)
n (z)− Λ1(z), · · · , Λ̂(s)

n (z)− Λs(z)
)

converges in distribution on the space D[0, z0] × · · · ×D[0, z0] to the random
vector (

W1(σ2
1(z)), · · · ,Ws(σ2

s(z) )
)
,

where

σ2
k(z) =

∫ z

0

λ(k)(y)
b(y)

dy, b(z) = E
(
Ae−AΛ(z)

)
and W1(z), · · · ,Ws(z) are independent standard Wiener processes.

13.2.3 Nonparametric estimation of unconditional reliability characteristics

Under the given plan of experiments estimation of the unconditional reliability
characteristics is trivial.
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The survival function S(t) (cf. (13.8)) is estimated by the empirical survival
function

Ŝ(t) =
1
n

n∑
i=1

1{Ti>t}.

The mean failure time is estimated by the empirical mean:

ÊT = T =
1
n

n∑
i=1

Ti.

The probability p(k)(t) of the failure of the kth mode in the interval [0, t],
and the probability p(k) of the failure of the kth mode in the interval [0,∞)
are estimated by:

p̂(k)(t) =
1
n

n∑
i=1

1{Vi=k,Ti≤t}, p̂(k) =
1
n

n∑
i=1

1{Vi=k}.

The probability p(tr)(t) of a traumatic failure in the interval [0, t] and the
probability p(tr) of the a traumatic failure during the experiment are estimated
by

p̂(tr)(t) =
1
n

n∑
i=1

1{Vi �=0,Ti≤t}, p̂(tr) =
1
n

n∑
i=1

1{Vi �=0}.

13.2.4 Prediction of the residual reliability characteristics

Suppose that at the moment t the degradation level is measured to be z.
Using the estimators of the cumulative intensities obtained from the above
considered experiment, the residual reliability characteristics can be predicted.
For z ∈ [0, z0] denote by

Q(∆; t, z) = P (T ≤ t+∆ | T > t, Z(t) = z) (13.16)

the conditional probability to fail in the interval (t, t + ∆] given that at the
moment t a unit is functioning and its degradation value is z. This probability
can be written in terms of the cumulative intensity Λ: for ∆ < t(z0/z − 1)

Q(∆; t, z) = 1− exp
{
− t

z
(Λ(z(1 + ∆/t))− Λ(z))

}
; (13.17)

if ∆ ≥ t(z0/z − 1) then Q(∆, t, z) = 1.
The probability Q(∆; t, z) is estimated by: for ∆ < t(z0/z − 1)

Q̂(∆; t, z) = 1− exp
{
− t

z

(
Λ̂n(z(1 + ∆/t))− Λ̂n(z)

)}
;

if ∆ ≥ t(z0/z − 1) then Q̂(∆, t, z) = 1.
For z ∈ [0, z0] denote by

Q(k)(∆; t, z) = P (T ≤ t+∆, V = k | T > t, Z(t) = z) (13.18)
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the conditional probability to have a traumatic failure of the kth mode in
the interval (t, t +∆] given that at the moment t an unit is functioning and
its degradation value is z. This probability can be written in terms of the
cumulative intensities Λ(i): for k = 1, · · · , s

Q(k)(∆; t, z) =
t

z

∫ min{z(1+∆/t),z0}

z

exp
{
− t

z
(Λ(y)− Λ(z))

}
dΛ(k)(y).

(13.19)
The probability Q(k)(∆; t, z) is estimated by:

Q̂(k)(∆; t, z) =
t

z

∫ min{z(1+∆/t),z0}

z

exp
{
− t

z

(
Λ̂(y)− Λ̂(z)

)}
dΛ̂(k)(y)

=
t

z
exp

{
t

z
Λ̂(z)

} ∑
z<Zi<min{z(1+∆/t),z0},Vi=k

exp
{
− t

z
Λ̂(Zi)

}
Y −1
n (Zi).

Analogously, the conditional probability to have a nontraumatic failure in the
interval (t, t + ∆] given that at the moment t an unit is functioning and its
degradation value is z, has the form: for ∆ < t(z0/z − 1)

Q(0)(∆; t, z) = P (T ≤ t+∆, V = 0 | T > t, Z(t) = z) = 0, (13.20)

and for ∆ ≥ t(z0/z − 1)

Q(0)(∆; t, z) = exp
{
− t

z
(Λ(z0)− Λ(z))

}
. (13.21)

The probability Q(0)(∆; t, z) is estimated by: for ∆ < t(z0/z − 1)
Q̂(0)(∆; t, z) = 0,

and for ∆ ≥ t(z0/z − 1)

Q̂(0)(∆; t, z) = exp
{
− t

z

(
Λ̂(z0)− Λ̂(z)

)}
.

For z ∈ [0, z0] denote by
Q(tr)(∆; t, z) = P (T ≤ t+∆, V 
= 0 | T > t, Z(t) = z) (13.22)

the conditional probability to have a traumatic failure in the interval (t, t+∆]
given that at the moment t an unit is functioning and its degradation value is
z. This probability can be written in terms of the cumulative intensities Λ(i):
for ∆ < t(z0/z − 1)

Q(tr)(∆; t, z) = 1− exp
{
− t

z
(Λ(z(1 + ∆/t))− Λ(z))

}
; (13.23)

if ∆ ≥ t(z0/z − 1) then

Q(tr)(∆; t, z) = 1− exp
{
− t

z
(Λ(z0)− Λ(z))

}
. (13.24)
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The probability Q(tr)(∆; t, z) is estimated by: for ∆ < t(z0/z − 1)

Q̂(tr)(∆; t, z) = 1− exp
{
− t

z

(
Λ̂(z(1 + ∆/t))− Λ̂(z)

)}
;

if ∆ ≥ t(z0/z − 1) then

Q̂(tr)(∆; t, z) = 1− exp
{
− t

z

(
Λ̂(z0)− Λ̂(z)

)}
.

13.2.5 Prediction of the ideal reliability characteristics

The random variable T (0) means the failure time of a tire when all traumatic
failure modes are eliminated. The survival function and the mean of T (0) are:

S(0)(t) = P (T (0) > t) = 1− π(t/z0), E(T (0)) = z0 E(A). (13.25)

The mean E(T (0)) shall be called the ideal resource of the tire, correspond-
ing to the nontraumatic failure.
The survival function S(0)(t) is estimated by

Ŝ(0)(t) = 1− π̂n(t/z0) =
1
n

n∑
i=1

1{z0Ai>t}

The ideal resource E(T (0)) is estimated by

ÊT (0) = z0

∫ ∞

0

a dπ̂n(a) =
z0
n

n∑
i=1

Ai.

The random variable T (0k) = min (T (0), T (k)) is the failure time of an unit
when all traumatic failure modes, with exception of the kth, are eliminated.
Note that if t < az0 then

P (T (0k) > t | A = a) = P (T (k) > t | A = a) = e−aΛ
(k)(t/a),

and if t ≥ az0 then P (T (0k) > t | A = a) = 0. It implies that the survival
function S(0k)(t) of the random variable T (0k) is

S(0k)(t) = P (T (0k) > t) =
∫ ∞

t/z0

e−aΛ
(k)(t/a)dπ(a), (13.26)

and the mean E(T (0k)), called the ideal resource of a unit, corresponding to
the kth failure mode, is

E(T (0k)) =
∫ ∞

0

S(0k)(t)dt =
∫ ∞

0

a dπ(a)
∫ z0

0

e−aΛ
(k)(z)dz.

It may be written in the form

E(T (0k)) = E(T (0))−
∫ ∞

0

a2dπ(a)
∫ z0

0

(z0 − y)e−aΛ
(k)(y)dΛ(k)(y). (13.27)
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The estimator of the survival function S(0k)(t) is

Ŝ(0k)(t) =
∫ ∞

t/z0

e−aΛ̂
(k)
n (t/a)dπ̂n(a) =

1
n

∑
z0Ai>t

e−AiΛ̂
(k)
n (t/Ai)

The estimator of the ideal resource is

ÊT
(0k)

= ÊT
(0) −

∫ ∞

0

a2dπ̂(a)
∫ z0

0

(z0 − y)e−aΛ̂
(k)
n (y−)dΛ̂(k)

n (y) =

= ÊT
(0) − 1

n

n∑
i=1

A2
i

∑
Vj=k

(z0 − Zj)e−AiΛ̂
(k)
n (Zj−)Y −1

n (Zj).

13.2.6 Prediction of the reliability characteristics related with elimination of
particular failure modes

Suppose that the cause of a particular traumatic failure mode is supposed
to be eliminated. Note that elimination of a failure mode may increase the
number of failures of other modes. Indeed, if, say, the kth failure mode is
present then some failures of, say, the lth mode may be not observed if these
failures are preceded by a failure of the kth mode.
Denote by T (−l) = min(T (0), T (1), · · · , T (l−1), T (l+1), · · · , T (s)) the failure

time of an unit when the lth failure mode is absent.
Set

Λ(−l)(z) =
∑
i�=l
Λ(i)(z)

The survival function and the mean of the random variable T (−l) are

S(−l)(t) =
∫ ∞

t/z0

e−aΛ
(−l)(t/a)dπ(a), (13.28)

E(T (−l)) = E(T (0))−
∫ ∞

0

a2dπ(a)
∫ z0

0

(z0 − y)e−aΛ
(−l)(y)dΛ(−l)(y). (13.29)

The estimator of the survival function S(−l)(t) is

Ŝ(−l)(t) =
∫ ∞

t/z0

e−aΛ̂
(−l)
n (t/a)dπ̂n(a) =

1
n

∑
z0Ai>t

e−AiΛ̂
(−l)
n (t/Ai).

The estimator of E(T (−l)) is

ÊT
(−l)

= ÊT
(0) − 1

n

n∑
i=1

A2
i

∑
Vj �=l

(z0 − Zj)e−AiΛ̂
(−l)
n (Zj−)Y −1

n (Zj).

Denote by p(k)
(−l) the probability of the failure of the kth mode when the cause

of, say, the lth traumatic failure mode is eliminated. For k = 1, · · · , s, k 
= l,
this probability is

p
(k)
(−l) =

∫ ∞

0

adπ(a)
∫ z0

0

e−aΛ
(−l)(x)dΛ(k)(x), (13.30)
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and for k = 0

p
(0)
(−l) =

∫ ∞

0

e−aΛ
(−l)(z0)dπ(a). (13.31)

The estimator of the probability p(k)
(−l):

p̂
(k)
(−l) =

∫ ∞

0

adπ̂(a)
∫ z0

0

e−aΛ̂
(−l)
n (x)dΛ̂(k)

n (x) =

1
n

n∑
i=1

Ai
∑
Vj=k

e−AiΛ̂
(−l)
n (Zj−)Y −1

n (Zj),

p̂
(0)
(−l) =

∫ ∞

0

e−aΛ̂
(−l)
n (z0)dπ̂(a) =

1
n

n∑
i=1

e−AiΛ̂
(−l)
n (z0).

The probability of the failure of the kth mode in the interval [0, t] when the
cause of the lth traumatic failure mode is eliminated, is

p
(k)
(−l)(t) =

∫ ∞

0

adπ(a)
∫ min{t/a,z0}

0

e−aΛ
(−l)(x)(x)dΛ(k)(x) (k, l 
= 0, k 
= l),

(13.32)

p
(0)
(−l)(t) =

∫ t/z0

0

e−aΛ
(−l)(z0)dπ(a). (13.33)

The estimator of the probability p(k)
(−l)(t):

p̂
(k)
(−l)(t) =

∫ ∞

0

adπ̂(a)
∫ min{t/a,z0}

0

e−aΛ̂
(−l)
n (x)dΛ̂(k)

n (x) =

1
n

n∑
i=1

Ai
∑

Vj=k,Zj≤min{t/Ai,z0}
e−AiΛ̂

(−l)
n (Zj−)Y −1

n (Zj) (k = 1, · · · , s),

and

p̂
(0)
(−l)(t) =

∫ t/z0

0

e−aΛ̂
(−l)
n (z0)dπ̂(a) =

1
n

n∑
i=1,Ai≤t/z0

e−AiΛ̂
(−l)
n (z0).

The probability of a traumatic failure when the cause of the lth traumatic
failure mode is eliminated, is

p
(tr)
(−l) =

∫ ∞

0

adπ(a)
∫ z0

0

e−aΛ
(−l)(x)dΛ(−l)(x), (13.34)

and the probability of a traumatic failure in the interval [0, t] when the cause
of the lth traumatic failure mode is eliminated, is

p
(tr)
(−l)(t) =

∫ ∞

0

adπ(a)
∫ min{t/a,z0}

0

e−aΛ
(−l)(x)(x)dΛ(−l)(x). (13.35)
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The probability p(tr)
(−l) is estimated by

p
(tr)
(−l) = 1−

1
n

n∑
i=1

e−AiΛ̂
(−l)
n (z0).

The probability p(tr)
(−l)(t) is estimated by

p
(tr)
(−l)(t) = 1−

1
n

n∑
i=1

e−AiΛ̂
(−l)
n (min{t/Ai,z0}).

13.2.7 Semiparametric and parametric estimation

The graphs of the estimators Λ̂(k)
n (z) give an idea of the form of the cumula-

tive intensity functions Λ(k)(z). So the functions λ(k)(z) may be chosen from
specified classes. Then semiparametric or parametric estimation of the reli-
ability characteristics can be done. Semiparametric estimation is used when
the distribution of the random variable A is completely unknown. Parametric
estimation is used when the distribution of A is taken from a specified family
of distributions.
Analysis of the tire failure time and wear data by nonparametric meth-

ods (see Bagdonavičius et al (2000, 2001)) shows that the intensities λ(k)(z)
typically have one of the following forms:

αkz
νk , αk(z − uk)νk (13.36)

(production defects and defects caused by fatigue of tire components) or

βk + αkz
νk (13.37)

(failures caused by the mechanical damages).
Suppose that the function λ(k)(z) is from a class of functions

λ(k)(z) = λ(k)(z, γk),

where γk is a possibly multidimensional parameter. For example, in the case
of the classes (13.36)-(13.37) the parameter γk is (αk, νk), (αk, νk, uk) or
(αk, βk, νk).
Suppose that the data are of the form (13.12).
If Vi = k (k = 1, . . . , s) then Ti = T

(k)
i and Ai are observed and and it is

known that T (l)
i > T

(k)
i , l 
= k. The term of likelihood function corresponding

to the ith unit is

p(k)(Ti | Ai)
∏
l �=k

S(l)(Ti | Ai) pA(Ai) = λ(k)(Zi)
s∏
l=1

S(l)(Ti | Ai) pA(Ai),

where pA(a) is the density function of A. In the case of semiparametric esti-
mation this term is absent.
If Vi = 0 then Ai are observed and it is known that T

(k)
i > T

(0)
i = z0Ai, k 
=
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0. The term of likelihood function corresponding to the ith unit is
s∏
l=1

S(l)(Ti) | Ai
)
pA(Ai).

Set

δi =
{
1, if Vi = k, k = 1, . . . , s,
0, if Vi = 0.

The likelihood function is

L =
n∏
i=1

{
λ(Vi)(Zi)

}δi s∏
l=1

S
(l)
i (Ti | Ai) pA(Ai),

We write B0 = 1 even when B is not defined. Note that

λ(Vi)(Zi) =
s∑
k=1

λ(k)(Zi)1{Vi=k}, S(l)(Ti | Ai) = exp{−Ai Λ(k)(Zi)}.

If Vi = 0 then δi = 0 and {λ(Vi)(Zi)}δi = 1.
So

lnL =
n∑
i=1

s∑
k=1

ln{λ(k)(Zi)}1{Vi=k} −
n∑
i=1

s∑
k=1

Ai Λ(k)(Zi) + ln pA(Ai).

Estimators γ̂k verify the equations

∂ lnL
∂γk

=
n∑
i=1

∂

∂γk
ln{λ(k)(Zi; γ̂k)}1{Vi=k} −

n∑
i=1

Ai
∂

∂γk
Λ(k)(Zi; γ̂k) = 0.

(13.38)
Example 13.1.

λ(k)(z;αk, νk) = αkz
νk .

The solution of the equations (13.38) is

α̂k =
nk (ν̂k + 1)∑n
i=1 Ti Z

ν̂k
i

,

and ν̂k verifies the equation

1
nk

n∑
i=1

1{Vi=k} lnZi −
∑n
i=1 Ti Z

ν̂k
i lnZi∑n

i=1 Ti Z
ν̂k
i

+
1

ν̂k + 1
= 0;

here

nk =
n∑
i=1

1{Vi=k}.

Example 13.2.
λ(k)(z;αk, βk, νk) = βk + αkz

νk .
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The estimators α̂k, β̂k, ν̂k verify the equations
n∑
i=1

1{Vi=k}
β̂k + α̂kZ

ν̂k
i

−
n∑
i=1

Ti = 0,

(ν̂k + 1)
n∑
i=1

Z ν̂k
i

β̂k + α̂kZ
ν̂k
i

1{Vi=k} −
n∑
i=1

TiZ
ν̂k
i = 0,

(ν̂k + 1)
n∑
i=1

Z ν̂k
i lnZi

β̂k + α̂kZ
ν̂k
i

1{Vi=k} −
n∑
i=1

TiZ
ν̂k
i

{
lnZi − 1

ν̂k + 1

}
= 0.

After estimation of the parameters γk of the functions Λ(k)(z) = Λ(k)(z, γk),
these functions are estimated by

Λ̂(k)(z) = Λ(k)(z, γ̂k)

Semiparametric predictors of the conditional, ideal, etc. reliability character-
istics are obtained evidently: in the expressions (13.16)-(13.35) of these char-
acteristics all functions Λ(k)(t) are replaced by their estimators Λ̂(k)(t), and
the distribution function π(a) by its estimator

π̂(a) =
n∑
i=1

1{Ai≤a}. (13.39)

The main unconditional reliability characteristics (see Chapter 13.2.3.) can
be estimated using the formulas (13.8), (13.9),

p(k) = P (V = k) =∫ ∞

0

dπ(a)
∫
t(k)≤z0a,t1,···,tk−1,tk+1,···,tm

p1(t1 | a) · · · pm(tm | a)dt1 · · · dtm

=
∫ ∞

0

adπ(a)
∫ z0

0

e−aΛ(x)dΛ(k)(x), (13.40)

p(k)(t) = P (V = k, T ≤ t) =
∫ ∞

0

adπ(a)
∫ min{t/a,z0}

0

e−aΛ(x)dΛ(k)(x).

(13.41)

p(0) = P (V = 0) =
∫ ∞

0

dπ(a)
∫
z0a≤t1,···,tm

f1(t1 | a) · · · fm(tm | a)dt1 · · · dtm

=
∫ ∞

0

e−aΛ(z0)dπ(a) = 1−
s∑
i=1

pi, (13.42)

p(0)(t) = P (V = 0, T ≤ t) =
∫ t/z0

0

e−aΛ(z0)dπ(a), (13.43)

p(tr) = P (V 
= 0) =
∫ ∞

0

adπ(a)
∫ z0

0

e−aΛ(x)dΛ(x), (13.44)

p(tr)(t) = P (V 
= 0, T ≤ t) =
∫ ∞

0

adπ(a)
∫ min{t/a,z0}

0

e−aΛ(x)dΛ(x). (13.45)
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Semiparametric estimators of these reliability characteristics are obtained by
replacing all functions Λ(k)(t) by their estimators Λ̂(k)(t), and the distribution
function π(a) by it’s estimator π̂.
In the case of parametric estimation the distribution function π is taken

from a specified family of distributions

π(a) = π(a, η),

and the estimators η̂ of the unknown parameters η of this distribution are
estimated by the method of maximum likelihood using the complete data

A1, · · · , An.
The real data show that the families of the gamma and Weibull distributions
are the good choices. Applicability of a specified family is verified using the
standard goodness-of-fit tests.
Parametric estimators and predictors of the main reliability characteristics

are obtained as follows: in the expressions (13.40)-(13.45) and (13.16)-(13.35)
all functions Λ(k)(t) are replaced by their estimators Λ̂(k)(t), and the distri-
bution function π(a) by its estimator π̂(a) = π(a, η̂).

13.2.8 Right censored data

Semiparametric and parametric estimation can be evidently modified when
units are observed not necessary until the failure (nontraumatic or traumatic).
Observation of the ith unit may be censored at the moment Ci (random or
nonrandom). We suppose that at the moment Ci the value of the degradation
Zi is measured. So in the case of censoring Ai = Ci/Zi and Vi is not observed.
The likelihood function (supposing that the censoring moments Ci do not

depend on the degradation and traumatic failure processes) is

L =
n∏
i=1

{
λ(Vi)(Zi)

}δiεi

s∏
l=1

S
(l)
i (Ti ∧ Ci | Ai) pA(Ai),

where εi = 1{Ti≤Ci} and

δi =
{
1, if Vi = k, k = 1, . . . , s,
0, if Vi = 0.

Then

lnL =
n∑
i=1

εi

s∑
k=1

ln{λ(k)(Zi)}1{Vi=k} −
n∑
i=1

s∑
k=1

Ai Λ(k)(Zi) + ln pA(Ai).

After the estimation of the parameters γk the functions Λ(k)(z) are estimated
by Λ̂(k)(z) = Λ(k)(z, γ̂k). Semiparametric and parametric estimators and pre-
dictors of the main reliability characteristics are obtained using the same
formulas as in the uncensored case. See, for example, Huber (2000).
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13.2.9 Model with explanatory variables

Suppose that the degradation process Zx(·)(t) under the explanatory variable
x(·) is modeled by

Zx(·)(t) = A−1

∫ t

0

eβ
T x(s) ds, t ≥ 0,

where A is a positive random variable with the distribution π.
Denote by T

(0)
x(·) the moment of the nontraumatic failure under x(·), and

by T (k)
x(·) (k = 1, · · · , s) the moment of the traumatic failure of the kth mode

under x(·).
We suppose that the random variables T (1)

x(·), · · · , T (s)
x(·) are conditionally in-

dependent (given A = a) but depend on the degradation level.
Suppose that the model (13.3) is true for each k. Then the conditional

survival function of T (k)
x(·) is

S
(k)
x(·)(t | a) = P(T (k)

x(·) > t|A = a) = exp
{
−
∫ t

0

λ(k)(a−1

∫ s

0

eβ
T x(u) du)ds

}

= exp

{
−a

∫ a−1fx(·)(t,β)

0

e−β
T x(gx(·)(av,β)) dΛ(k)(v)

}
,

where
Λ(k)(z) =

∫ z

0

λ(k)(y)dy,

and
gx(·)(t, β) = f−1

x(·)(t, β)

is the inverse function of

fx(·)(t, β) =
∫ t

0

eβ
T x(s) ds.

with respect to the first argument.
If x =const then

fx(t, β) = eβ
T xt, gx(t, β) = e−β

T xt

and
S(k)
x (t | a) = exp

{
−ae−βT xΛ(k)(a−1eβ

T xt)
}
.

13.2.10 Nonparametric estimation of the cumulative intensities

Suppose that the cumulative intensities Λk are completely unknown.
The purpose is to estimate Λk(z), 0 ≤ z ≤ z0.
Suppose that n units are on test. The ith unit is tested under explana-

tory variable x(i)(·), and the failure moments Ti, failure modes Vi and the
degradation levels

Zi = A−1
i fx(i)(·)(Ti, β)
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at the failure moments Ti are observed. So the data has the form

(T1, Z1, V1, x
(1)), · · · , (Tn, Zn, Vn, x(n)). (13.46)

For k = 1, · · · , s and 0 ≤ z ≤ z0 set

N (k)
n (z) =

n∑
i=1

N
(k)
in (z), N

(k)
in (z) = 1{Zi≤z,Vi=k}.

The parameter β shows the influence of the explanatory variables on the degra-
dation. The intensities of the traumatic events λ(k)(z) do not depend on β and
the distribution of the traumatic events depend on β only via degradation. So
for estimation of the parameter β the data (T1, Z1, x

(1)), · · · , (Tn, Zn, x(n)) is
used.
Note that the random variables

Ai(β) = Z−1
i fx(i)(·)(Ti, β)

are independent identically distributed with the mean, say m, which does not
depend on β. So the parameter β is estimated by the method of least squares,
minimizing the sum

n∑
i=1

(Ai(β)−m)2,

which gives the system of equations

n
n∑
i=1

Z−2
i

∫ Ti

0

x(i)(u)eβ
T x(i)(u)du

∫ Ti

0

eβ
T x(i)(u)du−

n∑
i=1

Z−1
i

∫ Ti

0

x(i)(u)eβ
T x(i)(u)du

n∑
i=1

Z−1
i

∫ Ti

0

eβ
T x(i)(u)du = 0. (13.47)

If x(i) are constant then this system has the form

n
n∑
i=1

x(i){Z−1
i eβ

T x(i)
Ti}2 −

n∑
i=1

Z−1
i x(i)eβ

T x(i)
Ti

n∑
i=1

Z−1
i eβ

T x(i)
Ti = 0.

(13.48)
For estimation of the cumulative intensities suppose at first that the param-
eters β are known.
Note that the data (Ti, Vi, Zi, x(i)) is equivalent to the data (Ti, N

(k)
i (z), k =

1, . . . , s, 0 ≤ z ≤ z0, x
(i)). Indeed, the random variables Zi and Vi define the

stochastic processes N (k)
i (z), 0 ≤ z ≤ z0. Vice versa, if N (k)(z) = 0 for all

0 ≤ z ≤ z0 and k = 1, . . . , s, then Vi = 0 and Zi = z0. If there exist k 
= 0 and
zi such that N

(k)
i (zi−) = 0, N (k)

i (zi) = 1, then Vi = k and Zi = zi.
If β is known then the data (Ti, Vi, Zi, x(i)) is equivalent to the data
(Ai, Vi, Zi, x(i)) and hence, to the data (Ai, N

(k)
i (z), k = 1, . . . , s, 0 ≤

z ≤ z0), because the random variables Zi, Ti, and Ai have the following
relations:Ai = Zi/fxi

(Ti, β).
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Let Fz be the σ-algebra generated by the random variables A1, · · · , An and
N

(1)
n (y), · · · , N (s)

n (y), y ≤ z.
Set fi = fx(i) , gi = gx(i) , S(k)

i = S
(k)

x(i) , S
(k)
i = S

(k)

x(i) .

Lemma 13.2. The counting process N (k)
n (z) can be written as the sum

N (k)
n (z) =

z∫
0

Yn(y, β)λ(k)(y) dy +M (k)
n (z, β),

where

Yn(z, β) =
n∑
i=1

Yin(z, β),

Yin(z, β) = Ai exp
{− βTx(i)(gi(Aiz, β))

}
1{Zi≥z},

and (M (k)
n (z), 0 ≥ z ≥ z0) is a martingale with respect to the filtration (Fz, 0 ≤

z ≤ z0).

Proof. Let 0 ≤ y < z ≤ z0. It is sufficient to prove that

E{N (k)
1 (z)−N

(k)
1 (y) | Fy} = E{

∫ z

y

λ(k)(u)Y (k)
1 (u)du | Fy}.

If A1 = a and Z1 ≤ y then N
(k)
1 (z) = N

(k)
1 (y). If A1 = a and Z1 > y then

the random variable N (k)
1 (z) takes two values, 0 and 1, and

P{N (k)
1 (z) = 1 | Z1 > y, A1 = a} == P

{
N

(k)
1 (z) = 1 | A1 = a, T1 > g1(ay, β)

}
=

= P
{
g1(ay, β) < T

(k)
1 ≤ g1(az, β), T

(1)
1 , · · · , T (s)

1 | A1 = a, T1 > g1(ay, β)
}

=
1

s∏
l=1

S
(l)
1 (g1(ay, β) | a)

g1(az,β)∫
g1(ay,β)

p
(k)
1 (t | a)

∏
l �=k

S
(l)
1 (t | a) dt =

= exp
{
a

y∫
0

e−β
T x(1)(g1(au,β))dΛ(u)

}
a

z∫
y

λ(k)(v)×

exp
{
− a

v∫
0

e−β
T x(1)(g1(au,β))dΛ(u)

}
e−β

T x(1)(g1(av,β)) dv.

So

E
{
N

(k)
1 (z)−N

(k)
1 (y) | Fy

}
= 1{Z1>y} exp

{
A1

y∫
0

e−β
T x(1)(g1(A1u,β))dΛ(u)

}
×
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A1

z∫
y

λ(k)(v) exp
{
−A1

v∫
0

e−β
T x(1)(g1(A1u,β))dΛ(u)

}
e−β

T x(1)(g1(A1v,β)) dv.

(13.49)
If A1 = a and Z1 ≤ y then 1{Zi≥z} = 0. If A1 = a, Z1 > y then for v > y

P
{
1{Z1≥v} = 1 | A1 = a, Z1 > y

}
= P

{
Z1 ≥ v | A1 = a, Z1 > y

}

= exp
{
a

y∫
0

e−β
T x(1)(g1(au,β))dΛ(u)

}
exp

{
− a

v∫
0

e−β
T x(1)(g1(au,β))dΛ(u)

}
.

E

{ z∫
y

Y
(k)
1 (u, β)λ(k)(u) du | Fy

}
= 1{Z1>y} exp

{
A1

y∫
0

e−β
T x(1)(g1(A1u,β))dΛ(u)

}
×

A1

z∫
y

λk(v) exp
{
−A1

v∫
0

e−β
T x(1)(g1(A1u,β))dΛ(u)

}
e−β

T x(1)(g1(A1v,β)) dv.

(13.50)
The result of the lemma follows from the equalities (13.49) and (13.50).
Corollary 13.1. If β is known the optimal estimators of the cumulative

intensities are
Λ̃(k)
n (z, β) =

∑
i:Zi≤z,Vi=k

(Y (k)
n (Zi, β))−1

=
∑

i:Zi≤z,Vi=k

( ∑
j:Zj≥Zi

fj(Tj , β)
Zj

exp
{− βTx(j)(Tj)

})−1

. (13.51)

Remark 13.1. If xi(t) ≡ xi = const (i = 1, . . . , n) then the estimator
(13.51) does not depend on β and is:

Λ̂(k)
n (z) =

z∫
0

dN
(k)
n (y)

Yn(y)
=

∑
i:Zi≤z,Vi=k

( ∑
j:Zj≥Zi

Tj
Zj

)−1

. (13.52)

Remark 13.2. If the degradation values are measured at the moments of
switch-ups from one constant value to another then under the piecewise-constant
explanatory variables the estimators (13.51) can be modified to obtain estima-
tors which do not depend on β.

Indeed, suppose that the explanatory variables x(i)(·) have the form

x(i)(t) = x
(i)
l , t ∈ [ti,l−1, til),

where 0 ≤ ti0 < ti1 < . . . < timi
=∞ and x(i)

1 , . . . , x
(i)
mi are constant explana-

tory variables. Lemma 13.2 implies that

Y
(k)
in (z) = Aie

−βT x(i)(gi(Aiz,β))1{Zi≥z}.
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Note that

ti,l−1 ≤ gi(Aiz, β) ≤ til ⇐⇒ fi(ti,l−1, β) ≤ Aiz ≤ fi(til, β).

So
Y

(k)
in (z) = Aie

−βT x
(i)
l 1{Zi≥z}

when
A−1
i fi(ti,l−1, β) ≤ z ≤ A−1

i fi(til, β).

Suppose that at the moments til ≤ Ti the values of degradation are measured.
Set

Zil = Z(til) = A−1
i fi(til, β).

Then

∆Zil = Zil − Zi,l−1 = A−1
i

til∫
ti,l−1

eβ
T x

(i)
l du = A−1

i eβ
T x

(i)
l ∆til,

which implies

A−1
i eβ

T x
(i)
l =

∆Zil
∆til

;

here ∆til = til − ti,l−1.
So the function Y (k)

in (z) can be written in the form

Y
(k)
in (z) =

∆til
∆Zil

1{Zi≥z},

if Zi,l−1 ≤ z ≤ Zil, l − 1, . . . , µi, where
µi = max{l : ti,l−1 ≤ Ti} and Ziµi

= Zi.

We have

Y
(k)
in (z) =

µi∑
l=1

∆til
∆Zil

1{Zi≥z,Zi,l−1≤z≤Zil}.

The estimator Λ̃(k)
n (z, β) does not depend on β and can be written in the

following form

Λ̂(k)
n (z) =

z∫
0

dN
(k)
n (y)

Yn(y)
=

∑
i:Zi≤z,Vi=k

( ∑
j:Zj≥Zi

∑
l:Zj,l−1≤Zi≤Zjl

∆tjl
∆Zjl

)−1

.

(13.53)
Note that under known β the triplets (Ti, Vi, Zi) are equivalent to the triplets
(Ti, Vi, Zil, l = 1, . . . , µi), because

∆Zil =
Zi

fi(Ti, β)
eβ

T xil∆til, Zil =
l∑
s=1

∆Zis.

So the adding of the measurements Zil, l 
= µi does not change the filtration
considered in Lemma 13.2.
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If the explanatory variables are more complicated time-varying and the data
are (13.46) then the estimators of the cumulative intensities are obtained from
replacing β by β̂ in (13.51):

Λ̂(k)
n (z) = Λ̃(k)

n (z, β̂) =

z∫
0

dN
(k)
n (y)

Y
(k)
n (y, β̂)

=
∑

i:Zi≤z,Vi=k

(Y (k)
n (Zi, β̂))−1

=
∑

i:Zi≤z,Vi=k

( ∑
j:Zj≥Zi

fj(Tj , β)
Zj

exp
{− β̂Tx(j)(gi(

Zi
Zj

fj(Tj , β), β))
})−1

.

(13.54)

13.2.11 Estimation and prediction of the reliability under given explanatory
variables

Estimation and prediction of the reliability under given explanatory variables
is done similarly as in the case when the explanatory variables are absent.
Indeed, all reliability characteristics (13.8)-(13.9), (13.16)-(13.35), (13.40)-

(13.45) can be rewritten to this more general case. For example, the survival
function Sx(·) under the explanatory variable Tx(·) generalizes the survival
function S(t) (cf.(13.8)) and is

Sx(·)(t) =
∫ ∞

t/z0

exp

{
−a

∫ a−1fx(·)(t,β)

0

e−β
T x(gx(·)(av,β))dΛ(v)

}
dπ(a),

(13.55)
the probability p

(k)
x(·) of a failure of the kth mode under x(·) generalizes the

probability p(k) (cf. (13.40)) and is

p
(k)
x(·) =

∫ ∞

0

adπ(a)
∫ z0

0

e−β
T x(gx(·)(az,β))×

exp
{
−a

∫ z

0

e−β
T x(gx(·)(au,β))dΛ(u)

}
dΛ(k)(z),

the conditional probability

Qx(·)(∆; t, z) = P (Tx(·) ≤ t+∆ | Tx(·) > t,Zx(·)(t) = z) (13.56)

to fail in the interval (t, t+∆] under x(·) given that at the moment t a unit is
functioning and its degradation value is z generalizes the probability Q(∆; t, z)
(cf. (13.17)) and is:

Qx(·)(∆; t, z) = 1− exp

−fx(·)(t, β)

z

∫ z
fx(·)(t+∆,β)

fx(·)(t,β)

e−β
T x(gx(·)(av,β))dΛ(v)


 ,

if ∆ < gx(·)(
z0
z
fx(·)(t, β), β)− t;

otherwise Q(∆, t, z) = 1.
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And so on. Expressions of other reliability characteristics can be found
in Bagdonavičius et al (2001). Estimation of them is evident: the unknown
parameters β, cumulative intensities Λ(k), and the distribution function π are
replaced by their estimators in all expressions. The estimator of β verifies
the equations (13.47) or (13.48), the estimators of Λ(k) are given by (13.51),
(13.52) or (13.54), and the estimator of π is

π̂(a) =
n∑
i=1

1{fi(Ti,β̂)≤aZi}.

Semiparametric and parametric estimation procedures considered in 13.2.7
and 13.2.8. can be generalized (see Bagdonavičius et al (2001)).

13.3 Gamma and shock processes

In general path models the finite-dimensional distributions of the degrada-
tion process are degenerate. It is not so in the case of most other processes
such as gamma and shock processes. Now we shall follow Bagdonavičius and
Nikulin (2001). Suppose that the model (13.3) with degradation process de-
fined by (13.1) is considered. Assume that finite-dimensional distributions of
the stochastic process Z(t) are not degenerated.
The function λ(z, x) is supposed to have a specified form, for example, one

of the forms (3.19), (3.21), (3.23), (3.28), (3.31).

13.3.1 Data and likelihood structure when the form of the mean degradation
form is specified

Suppose that n items are observed. The ith item is observed under the vector
of explanatory variables x(i)(·) = (

x
(i)
1 (·), . . . , x(i)

s (·)
)T , and at the moments

0 < ti1 < ti2 < .... < timi

the values Zx(i)(·)(tij) of the degradation level are supposed to be measured
without errors.
The values of explanatory variables are supposed to be observed during the

experiment. Most often they should be constant in time or step-functions.
Set

Zi(t) = Zx(i)(·)(t), Zij = Zi(tij).

The value Zij is measured if a traumatic event does not occur in the interval
[0, tij ] and Zi,j−1 < z0. The value Zij is not measured if a traumatic event
occurs before the moment tij or Zi,j−1 ≥ z0.
Denote by Ci the moment of the traumatic failure of the ith unit. Set

∆Zij = Zij − Zi,j−1, Zi0 = 0, ti,mi+1 =∞.
The structure and the size of the data is determined by the following non-

intersecting events:
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1) Ai0: a traumatic failure occurs before the moment ti1. Then only the
moment of the traumatic event Ci is observed;
2) Aij (j = 1, · · · ,mi−1): a traumatic event occurs in the interval (tij , ti,j+1]

and Zij < z0. Then the values of degradation Zi1, · · · , Zij and the moment of
the traumatic event Ci are observed.
3) Bij (j = 1, · · · ,mi): a traumatic event occurs after the moment tij ,

Zi,j−1 < z0, Zij ≥ z0. Then the values of degradation Zi1, · · · , Zij are observed
and the moment of traumatic event is censored at the moment tij , i.e. it is
known that Ci > tij .
Denote by ηi the observed number of degradation measurements of the ith

item. Set

δi =
{
1, if the traumatic event of the ith item is observed,
0, otherwise.

Take notice that

Aij = {ηi = j, δi = 1} , (j = 1, · · · ,mi − 1),
Bij = {ηi = j, δi = 0} (j = 1, · · · ,mi),

Ai0 = {ηi = 0, δi = 0} = {ηi = 0} .
Suppose that the functionm(t) is parametrized via parameters γ = (γ0, ..., γm)T :

m = m(t; γ),

and it is supposed to be continuously differentiable. Then the mean degrada-
tion under x(·) has the form

mx(·)(t;β, γ) = m

(∫ t

0

eβ
T x(s) ds; γ

)
.

For example, in the case of the model (3.1)

∆mij(β, γ) = γ0

tij∫
ti,j−1

eβ
T x(i)(s)ds+

γ1

γ2
exp{−γ2

ti,j−1∫
0

eβ
T x(i)(s)ds}

(
1− exp{−γ2

tij∫
ti,j−1

eβ
T x(i)(s) ds}

)
.

Denote by τx(·) = E{Tx(·) | x(·)} the mean time needed to attain the level
z0 under x(·).
Our purpose is to estimate reliability characteristics

mx(·)(t), Sx(·)(t), τx(·), Qx(·)(t), Gx(·)(t),

and the coefficients βj , where x(·) is possibly different from x(1)(·), · · · , x(n)(·).
The coefficient βj shows the influence of component xj(·) of the vector x(·) =(
x0(·), . . . xs(·)

)T on the degradation.
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In what follows we denote by pX the probability density function and by
FX the cumulative distribution function of any random variable X. Set

pCi>t,Zi1,...,Zij
(zi1, ..., zij) =

∫ ∞

t

pCi,zi1,...,zij
(v, zi1, ..., zij)dv.

On the sets Ai0, Aij (j = 1, · · · ,mi−1) and Bij (j = 1, · · · ,mi) the likelihood
function has respectively the following forms

L =
n∏
i=1

pCi
(Ci);

L =
n∏
i=1

pCi,Zi1,...,Zij
(Ci, Zi1, ..., Zij),

and

L =
n∏
i=1

pCi>tij ,Zi1,...,Zij
(Zi1, ..., Zij).

Thus, the likelihood function given x(1)(·), · · · , x(n)(·) is

L =
n∏
i=1

pki

Ci
(Ci) p

δi(1−ki)
Ci,Zi1,...,Zij

(Ci, Zi1, ..., Zij)|j=ηi
×

p
(1−δi)(1−ki)
Ci>tij ,Zi1,...,Zij

(Zi1, ..., Zij)|j=ηi
. (13.57)

where ki = 1{ηi=0} and A0 = 1, when A is not defined. The parameters to
be estimated are the parameters of the function λ(z, x) and the parameters
of the process Zx(·)(t).

13.3.2 Estimation of degradation characteristics and reliability when
traumatic events do not depend on degradation

Suppose that the traumatic event intensity does not depend on degradation.
Then the likelihood function (13.57) has the form

L(θ∗) =
n∏
i=1

p
ki+(1−ki)δi
Ci

(Ci) S
1−ki)
Ci

(tiηi
) p(1−ki)
Zi1,...,Zij

(Zi1, ..., Zij)|j=ηi
. (13.58)

Example 13.3. Gamma process.

The density function of degradation measurements has the form:

pZi1,...,Zij
(zi1, ..., zij =

j∏
l=1

p∆Zil
(∆zil),

where

p∆Zij
(s; θ) =

1
Γ(νij(θ))σ2νij(θ)

sνij(θ)−1e−s/σ
2
, s ≥ 0,
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νij(β, γ, σ2) =
∆mij(β, γ)

σ2

and
∆mij(β, γ) = mij(β, γ)−mi,j−1(β, γ) =

m


 tij∫

0

eβ
T x(i)(s) ds; γ


−m


 ti,j−1∫

0

eβ
T x(i)(s) ds; γ


 .

Set θ = (βT , γT , σ2)T . If the model (3.19) is considered then the likelihood
function depends on the parameters θ∗ = (θ, α0). In the case of the model
(3.21) the likelihood function depends on θ∗ = (θ, β∗).

Example 13.4. Shock process

The density function of degradation measurements has the form:

pZi1,...,Zij
(zi1, ..., zij) = p∆Zi1,...,∆Zij

(∆zi1, ...,∆zij).

Set

sij(β) =
∫ tij

0

eβ
T x(i)(u)du, si0(β) = 0.

For ∆zi1 = ... = ∆zij = 0:

p∆Zi1,...,∆Zij
(∆zi1, ...,∆zij) = P{N(sij(β)) = 0};

for ∆zik1 , ...,∆ziks
> 0, ∆zil = 0, l 
= k1, ..., ks, 1 ≤ k1 < ..., ks ≤ j;

p∆Zi1,...,∆Zij
(∆zi1, ...,∆zij) =

∞∑
l1=1

· · ·
∞∑
ls=1

gl1(zik1) · · · gls(ziks
)×

P{N(sik1(β))−N(sik1−1(β)) = l1, · · · , N(siks
(β))−N(siks−1(β)) = ls,

N(sil(β))−N(si,l−1(β)) = 0, l 
= k1, · · · ks};
for ∆zi1, ...,∆zij > 0:

p∆Zi1,...,∆Zij
(∆zi1, ...,∆zij =

∞∑
l1=1

· · ·
∞∑
lj=1

gl1(zi1) · · · glj (zij)×

P{N(si1(β))−N(si0(β)) = l1, · · · , N(sij(β))−N(sij−1(β)) = lj}.
In the particular case when N(t) is an homogenous Poisson process with the
parameter λ, and Xn have exponential distribution with the parameter µ we
have: for ∆zi1 = ... = ∆zij = 0:

p∆Zi1,...,∆Zij
(∆zi1, ...,∆zij) = exp{−λsij(β)};

for ∆zik1 , ...,∆ziks
> 0, ∆zil = 0, l 
= k1, ..., ks, 1 ≤ k1 < ..., ks ≤ j;

p∆Zi1,...,∆Zij
(∆zi1, ...,∆zij)

= exp{−λsij(β)−µ(∆zik1 + ...+∆ziks
}
s∏
r=1

∞∑
lr=1

{λµ(sikr
(β)− si,kr−1(β))}lr
lr!(lr − 1)!
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for ∆zi1, ...,∆zij > 0:

p∆Zi1,...,∆Zij
(∆zi1, ...,∆zij)

= exp{−λsij(β)− µ(∆zi1 + ...+∆zij}
j∏
r=1

∞∑
lr=1

{λµ(sir(β)− si,r−1(β))}lr
lr!(lr − 1)! .

Denote by θ̂∗ the maximum likelihood estimator of θ∗. Then the estimators
of mx(·)(t), Sx(·)(t) and τx(·) are

m̂x(·)(t) = m


 t∫

0

eβ̂
T x(s) ds; γ̂


 ,

τ̂x(·) = sup{t : m̂x(·)(t) < z0}, Ŝx(·)(t) = Sx(·)(t, θ̂).
For example, in the case of the gamma-process

Ŝx(·)(t) =
1

Γ(ν̂x(·)(t))
σ2ν̂x(·)(t)

∫ z0

0

xν̂x(·)(t)−1e−x/σ̂
2
dx,

where ν̂x(·)(t) = m̂x(·)(t)/σ̂2.
In the case of shock models

Sx(·)(t) =
∞∑
i=0

Gi(z0)P{N(fx(·)(t)) = i},

where G0(z0) = 1 and an estimator of this survival function is obtained by
replacing unknown parameters by their maximum likelihood estimators. For
example, in the particular case when N(t) is an homogenous Poisson pro-
cess with the parameter λ, and Xn have exponential distribution with the
parameter µ, we have:

Ŝx(·)(t) = e
−λ̂

∫ t

0
eβ̂T x(u)du

{
1 +

∞∑
l=1

{λ̂µ̂ ∫ t
0
eβ̂

T x(u)du}l
l!(l − 1)!

∫ z0

0

vl−1e−µ̂vdv

}
.

For the model (3.19) the estimators of Q and Gx(·) are

Q̂(t) = e−α̂0t, Ĝx(·)(t) = Q̂(t) Ŝx(·)(t)

and for the model (3.21) the estimators of Qx(·) and Gx(·) are

Q̂x(·)(t) = exp
{
−
∫ t

0

eβ̂
∗T x(s)ds

}
, Ĝx(·)(t) = Q̂x(·)(t) Ŝx(·)(t).

Asymptotic properties and confidence intervals

Asymptotic properties of the estimators are obtained using standard likeli-
hood theory and the Fisher information matrix.
Set

I(θ̂∗) = −∂2 lnL(θ̂∗)
∂θ∗2 .
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When n is large, an approximate (1− α)-confidence interval for mx(·)(t) is:

(
m̂x(·)(t) exp{− σ̂t

m̂x(·)(t)
√
n
w1−α/2}, m̂x(·)(t) exp{ σ̂t

m̂x(·)(t)
√
n
w1−α/2}

)
,

where w1−α/2 is the (1− α/2) – quantile of the standard normal distribution
and

σ̂2
t =

(∂m̂x(·)(t)
∂θ̂∗

)T
Î−1(θ̂∗)

∂m̂x(·)(t)

∂θ̂∗
.

An approximate (1− α)-confidence interval for τx(·) is:

(
τ̂x(·) exp{−

ûτx(·)

τ̂x(·)
√
n
y1−α/2}, τ̂x(·) exp{

ûτx(·)

τ̂x(·)
√
n
y1−α/2}

)
,

where
ûτx(·) = σ̂t/m̂

′
x(·)(τ̂x(·)).

13.3.3 Estimation of reliability and degradation characteristics when
traumatic events depend on degradation

At first we suppose that the intensity of traumatic events depends linearly on
degradation and does not depend on explanatory variables:

Gx(·)(t) = E
{
exp{−α0t− α1

∫ t

0

Zx(·)(s)ds}1{Zx(·)(t)<z0} | x(s), 0 ≤ s ≤ t

}
,

is considered. We assume also that Zx(·)(0) = 0.
The parameter α1 characterizes the influence of degradation on the intensity

of traumatic events.
Set θ∗ = (θT , α0, α1)T and ∆τi = max1≤l≤mi

∆til. The formula (3.24)
implies that for small ∆τi, for all t ∈ [tij , ti,j+1) and

Zi1 ≤ ... ≤ Zij < z0, Zi0 = 0, (j = 1, ...,mi − 1),
we have

P{Ci > t | x(i)(s), 0 ≤ s ≤ t, Zi1, ..., Zij}
≈ exp {−α0t− α1 (Sij + Zij(t− tij))} ,

where

Sij =
1
2

j∑
k=1

(Zi,k−1 + Zik)∆tik, Si0 = 0, Zi0 = 0.

This approximation is used because of the fact that the σ-algebra gen-
erated by x(s), Zx(s), 0 ≤ s ≤ t is near to the σ-algebra generated by
x(s), Zi1, ..., Zij , 0 ≤ s ≤ t and the integral

∫ t
0
Zx(·)(s)ds is near to the sum

Sij + Zij(t− tij) when ∆τi is small. For t = timi

P{Ci > t | x(i)(s), 0 ≤ s ≤ t, Zi1, ..., Zimi
} ≈ exp {−α0t− Simi

} .
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The formula (3.27) implies that for all t ∈ [tij , ti,j+1) (j = 0, · · · ,mi − 1)
the conditional density of Ci is

pCi|x(i)(s), 0≤s≤t, Zi1,...,Zij
(t)

≈ (α0 + α1Zij) exp {−α0t− α1 (Sij + Zij(t− tij))}
and for t ∈ (0, ti1),

pCi|x(i)(s), 0≤s≤t(t) ≈ α0 e
−α0t.

Then the likelihood function is approximated by the function:
n∏
i=1

p1−ki

Zi1,...,Zij
(Zi1, ..., Zij ; θ)|j=ηi

e−α0Vi−α1(Siηi
+Ziηi

(Vi−tiηi
))×

(α0 + α1Ziηi
)ki+δi(1−ki), (13.59)

where

Vi =
{

Ci, si δi = 1
tiηi

, si δi = 0.

Let θ̂∗ = (θ̂, α̂) be the maximum likelihood estimators. The estimators m̂x(·)(t),
Ŝx(·)(t) and τ̂x(·)(t) have the the same forms as in the previous section; the
expressions for θ̂∗ are evidently different.
The survival function of the time to failure Gx(·)(t) is estimated by the

statistic

Ĝx(·)(t) = exp
{
−α̂0t− α̂1

∫ t

0

m̂x(·)(s)ds
}
1{m̂x(·)(t) < z0}.

For example, if x(t) ≡ x = const and m′
1(t) = γ0 + γ1e

−γ2t, then

m(t) = γ0t+
γ1

γ2
(1− e−γ2t)

and

Ĝx(·)(t) = exp
{
−α̂0t− α̂1[γ̂0e

β̂T x t
2

2
+
γ̂1

γ̂2
t+

γ̂1

γ̂2
2

e−β̂
T x(e−γ̂2e

β̂T xt − 1)]
}
×

1{γ̂0e
β̂T xt+

γ̂1

γ̂2
(1− e−γ̂2e

−β̂T xt) < z0}.
Now we suppose that the intensity of traumatic events at any moment t

depends not only on the level of degradation but also on the values of the
explanatory variables at this moment. So, we consider the model (3.30) and
suppose that

Gx(·)(t) = E
{
exp{−

∫ t

0

eβ
∗T x(s)(1 + αZx(·)(s)ds}×

1{Zx(·)(t)<z0} | x(s), 0 ≤ s ≤ t
}
,

where the parameters β∗ = (β∗
0 , · · · , β∗

s )
T and α show the influence of ex-

planatory variables and degradation on the intensity of traumatic moments,
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respectively. The intensity at the moment t would be eλ
T x(t), if degradation

were absent.
The approximation of the likelihood function (13.59) is generalized simply

to this more general case. Set θ∗ = (θ, α, β∗). If the ∆τi are small, then the
likelihood function can be approximated by the function

L(θ∗) =
n∏
i=1

p1−ki

Zi1,...,Zij
(Zi1, ..., Zij ; θ)|j=ηi

exp{
∫ Vi

0

eβ
∗T x(i)(v)dv−

α[
1
2

ηi∑
k=1

(Zi,k−1e
β∗T x(i)(ti,k−1) + Zike

β∗T x(i)(tik))+

Ziηi
(eβ

∗T x(i)(Vi) − eβ
∗T x(i)(tiηi

)]}
(
eβ

∗T x(i)(tiηi
)(1 + αZiηi

)
)ki+δi(1−ki)

.

(13.60)
The estimators m̂x(·)(t), Ŝx(·)(t) and τ̂x(·)(t) have the the same forms as in
previous section.
The survival function Gx(·)(·) is estimated by the statistic

Ĝx(·)(t) = exp{−
∫ t

0

e{β̂
∗}Tx(s)(1 + α̂m̂x(·)(s))ds}1{m̂x(·)(t) < z0}.

The influence of increasing degradation on intensity of the traumatic process
can be nonlinear. The methodology of estimation is the same. For example, if
the model is

Gx(·)(t) = E
{
exp{−

∫ t

0

λ
(
Zx(·)(s), x(s)

)
ds}1{Zx(·)(t)<z0} | x(s), 0 ≤ s ≤ t

}
,

with the intensity

λ(z, x) = eβ
∗T x(1 + α1z

α2),

i.e. with power rule influence of degradation on the intensity of traumatic
events, then, in constructing the likelihood function, the integrals in the con-
ditional survival functions are approximated in similar manner to the linear
case.

13.3.4 Estimation when the form of the mean degradation is unknown

Suppose that the mean degradation mx(·)(t) is completely unknown.
Denote by gx(·)(t, β) = f−1

x(·)(t, β) the inverse of the increasing continuous
function (given x(·))

fx(·)(t, β) =
∫ t

0

eβ
T x(u)du.

For all x(·) the process
Zx(·)(gx(·)(t)) = σ2γ(t)
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is a gamma-process which does not depend on x(·) and
E
{
Zx(·)(gx(·)(t))

}
= m(t), Var

{
Zx(·)(gx(·)(t))

}
= σm(t), (13.61)

where m(t) is a completely unknown function.
As a rule the explanatory variable x is constant in time or a step function.

If x(t) ≡ x = const, then

fx(t;β) = eβ
T xt, gx(t;β) = e−β

T xt.

If x(·) is a step function of the form
x(t) = xl, t ∈ [sl−1, sl] (l = 1, ..., ri; s0 = 0),

then
fx(·)(t;β) = s∗l−1(β) + eβ

T xl(t− sl−1), t ∈ [sl−1, sl],

gx(·)(t;β) = sl−1 + e−β
T xl(t− s∗l−1(β)), t ∈ [s∗l−1(β), s

∗
l (β)],

where

s∗l (β) =
l∑
j=1

eβ
T xj (sj − sj−1), l = 1, ..., ri, ; s∗0(β) = 0.

Suppose that the data are the same as in the previous section.
The process Zi(t) = Zx(i)(·)(t) is defined on [0, tiηi

]. The process

Z̃i(t) =
mi∑
j=1

{
Zi(ti,j−1) +

t− ti,j−1

tij − ti,j−1
(Zi(tij)− Zi(ti,j−1))

}
×

1[ti,j−1,tij ](t)1{tij ≤ Ui},
is a piecewise-linear approximation of the process Zi(t) and is also defined on
[0, tiηi

].
The equalities (13.61) imply that for all i = 1, ..., n

E
{
Z̃i(gi(t, β))

}
≈ m(t), Var

{
Z̃i(gi(t, β))

}
≈ σm(t),

if the differences ∆tij are small; here gi := gx(i) . Set fi := fx(i) .
The processes Z̃i(gi(t, β)) are censored at the moments t∗i (β) = gi(tiηi

, β).
Order these censoring moments:

t∗(1)(β) < · · · < t∗(n)(β).

For t ∈ [0, t∗(1)(β)) set

m̃(t, β) =
1
n

n∑
i=1

Z̃i(gi(t, β))

and for t ∈ [t∗(j−1)(β), t
∗
(j)(β)) set

m̃(t, β) =
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m̃(t∗(j−1)(β)) +
1

n− j + 1

n∑
i:t∗

i
(β)>t∗(j−1)(β)

(
Z̃i(gi(t, β))− Z̃i(gi(t∗(j−1)(β), β))

)
.

Obvious modifications can be made if there are ex aequo among these censor-
ing moments.
Let us consider, for example, the case when the degradation process is

gamma. Set ∆Zij = Zij − Zi,j−1. Then ∆Zij = σ∆γij

∆γij ∼ G

(
1,
∆mij(β)

σ

)
= G(1, νij(β, σ)),

where
∆mij(β) = m(fi(tij ;β);β)−m(fi(ti,j−1;β);β).

For the models (3.20) and (3.22) the likelihood function is written in the
form (13.58) and for the models (3.23) and (3.28) in the forms (12.59) and
(12.60), respectively, with only the difference that νij(θ) (defined in Example
13.3) are replaced by

νij(θ) = ∆m̃ij(β)/σ,

where
∆m̃ij(β) = m̃(fi(tij ;β);β)− m̃(fi(ti,j−1;β);β).

Denote by θ̂∗, the maximum likelihood estimator of the parameter θ∗. The
function m(t) is estimated by the statistic m̂(t) = m̃(t, β̂) and is defined for
all t, such that

n∑
i=1

1{t ≤
∫ tiηi

0

eβ̂
T x(i)(u)du} > 0.

The estimator of the mean degradation mx(·)(t) under any explanatory vari-
able x(·) is estimated by the statistic

m̂x(·)(t) = m̂(
∫ t

0

eβ̂
T x(u)du)

and is defined for all t, such that
n∑
i=1

1{
∫ t

0

eβ̂
T x(u)du ≤

∫ tiηi

0

eβ̂
T x(i)(u)du} > 0.



APPENDIX A

Some results from stochastic process
theory

A.1 Stochastic process. Filtration

Definition A1. A collection of random variables X = X(t), t ≥ 0 defined on
the same probability space (Ω,F ,P) is called a stochastic process.

Definition A2. For any fixed ω ∈ Ω the real function {X(·, ω)} is called
the path of a stochastic process X.

An event occurs almost surely (a.s.) if it occurs with the probability one.

Definition A.3. A stochastic process is
1. Cadlag, if its trajectories are right-continuous with finite left-hand limits;
2. Caglad, if its trajectories are left-continuous with finite right-hand limits;
3. Square integrable, if sup0≤t<∞E{X(t)}2 < ∞ ;
4. Bounded, if sup0≤t<∞ | X(t) |< C =const a.s.

In Chapter 4 it was noted that right censored data may be presented in the
form

(X1, δ1), · · · , (Xn, δn). (A.1)

or, equivalently,

(N1(t), Y1(t), t ≥ 0), · · · , (Nn(t), Yn(t), t ≥ 0), (A.2)

where

Ni(t) = 1{Xi≤t,δi=1}, Yi(t) = 1{Xi≥t}, Xi = Ti ∧ Ci, δi = 1{Ti ≤ Ci},
(A.3)

Ti and Ci being failure and censoring times of the ith unit (i = 1, · · · , n). The
random variables Ti and Ci are supposed to be defined on the probability
space (Ω,F ,P).
Note that N(t) =

∑n
i=1 Ni(t) and Y (t) =

∑n
i=1 Yi(t) are the number of

observed failures in the interval [0, t] and the number of units at risk just
prior the moment t, respectively.
The stochastic processes Ni and Yi show dynamics of failures and censorings

over time. If the values of {Ni(s), Yi(s), 0 ≤ s ≤ t, i = 1, · · · , n} are known,
the history of failures and censorings in the interval [0, t] is known. The data
(1.2) gives all history of failures and censorings during the experiment. The
notion of the history is formalized by the following notion of the filtration.
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Denote by
Ft = σ{Ni(s), Yi(s), 0 ≤ s ≤ t}

the σ-algebra generated by Ni(s), Yi(s), 0 ≤ s ≤ t.
The σ-algebra Ft contains all events related with failure and censoring

processes which can occur until the moment t.
It is clear that Fs ⊂ Ft ⊂ F , 0 ≤ s ≤ t.

Definition A4. The family of σ-algebras F = {Ft, t ≥ 0} is called the
filtration (or history) generated by the data (1.2).

Definition A5. A stochastic process is adapted to the filtration F if for any
fixed t ≥ 0 the random variable X(t) is Ft-measurable, i.e. for any Borel set
B of R the event {X(t) ∈ B} ∈ Ft.

If a process is F-adapted then its value is known at the moment t given the
history in the interval [0, t].

A.2 Counting process

Definition A.6. An adapted to a filtration F process {X(t), t ≥ 0} is called a
counting process if X(0) = 0, X(t) < ∞ a.s. for all t > 0, and its trajectories
are right continuous nondecreasing piecewise constant with jumps of size 1.

The processes Ni and N are counting processes.

Definition A.7. A multivariate process (X1(t), ...,Xm(t), t ≥ 0) is called
a multivariate counting process if each Xj is a counting process and no two
component processes jump at the same time with probability one.

We suppose that the failure times Ti are absolutely continuous random
variables, so (N1(t), ..., Nn(t)) is a multivariate counting process.

A.3 Stochastic integral

Let Y = Y (t, ω), t ≥ 0, ω ∈ Ω be a cadlag finite variation process, i.e. with
cadlag paths and such that for all ω ∈ Ω, t ≥ 0 the supremum

sup
m∑

i=1

| Y (ti)− Y (ti−1) |

is finite; the supremum is taken with respect to all partitions 0 = t0 ≤ t1 ≤
· · · ≤ tm = t of the interval [0, t].
In this book the stochastic integral of the stochastic process X with respect

to the stochastic integral Y :∫ t

0

X(u)dY (u) =
∫

[0,t]

X(u)dY (u),
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is understood as a pathwise Lebesque-Stieltjes integral. By convention, Y (0−) =
0, so ∫ 0

0

X(u)dY (u) = X(0)Y (0).

If the paths of the process Y are right-continuous step-functions (in particular,
if Y is a counting process) then∫ t

0

X(u)dY (u) =
∑

i:τi≤t

X(τi)∆Y (τi); (A.4)

here τ1 < · · · < τm are jump points of Y , ∆Y (τi) = Y (τi)− Y (τi−1).
If a cadlag finite variation process

Y (u) =
∫ t

0

Z(u)du

is a pathwise Lebesque integral of a process Z(u) then∫ t

0

X(u)dY (u) =
∫ t

0

X(u)Z(u)du. (A.5)

Integration by parts formula. If both X and Y are cadlag finite variation
processes then∫ t

0

X(u−)dY (u) = X(t)Y (t)−X(0)Y (0)−
∫ t

0

Y (u)dX(u) (A.6)

= X(t)Y (t)−X(0)Y (0)−
∫ t

0

Y (u−)dX(u)−
∑

0<u≤t

∆X(u)∆Y (u).

Estimating parameters and testing hypothesis we need properties of processes
of the type

U(t) = (U1(t), ..., Um(t))T ,

where

Uj(t) =
n∑

i=1

Uij(t) , Uij(t) =
∫ t

0

Hij(u) dMi(u) (i = 1, ..., n), (A.7)

Hij are left-continuous processes, and

Mi(t) = Ni(t)−
∫ t

0

Yi(u)αi(u)du. (A.8)

Properties of the process U(t) can be studied using the fact that Uj(t) are
(local) martingales. To define the notion of a martingale we need the notion
of the conditional expectation.

A.4 Conditional expectation

Suppose that the random variable X has the finite mean E(X).
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Definition A.8. The conditional expectation of the random variable X with
respect to the σ-algebra Ft ⊂ F is a random variable Y , denoted by E(X | Ft),
such that
1. Y is Ft measurable;

2. E(X1B) = E(Y 1B) for all B ∈ Ft.

The conditional expectation exists and is a.s. unique. It minimizes the dis-
tance E(X − X̃)2 in the class Ht of all Ft - measurable random variables
X̃.
The random variable X is not necessary Ft - measurable. The conditional

expectation Y = E(X | Ft) is the nearest to X random variable which is Ft

- measurable.

Properties of the conditional expectation:

a) E{E(X | Ft)} = E(X);
b) for s ≤ t

E{E(X | Fs) | Ft} = E{E(X | Ft) | Fs} = E(X | Fs) a.s.

c) if Y is Ft - measurable, then

E(XY | Ft) = Y E(X | Ft) a.s. ,

in particular
E(Y | Ft) = Y a.s.

d) if a, b ∈ R, then

E(aX1 + bX2 | Ft) = aE(X1 | Ft) + bE(X2 | Ft);

e) (Jensen’s inequality). If g is a convex real-valued function then

E(g(X) | Ft) ≥ g(E(X | Ft));

f) if X ≤ Y then E(X | Ft) ≤ E(Y | Ft);
g) if A ∈ Ft is an atom of Ft, (i.e. P(A) > 0 and P(B) = P(A) or

P(B) = 0 for any B ⊂ A, B ∈ Ft) then for almost all ω ∈ A

E(X | Ft)(ω) =
1

P(A)
E(X1A).

A.5 Martingale

Definition A.9. A cadlag process M(t), t ≥ 0 is called a martingale (sub-
martingale) with respect to the filtration F if
1. M is adapted;

2. E | M(t)| < ∞ for all 0 ≤ t < ∞;

3. E(M(t) | Fs) = M(s) (E(M(t) | Fs) ≥ M(s)) a.s. for all t ≥ s ≥ 0.
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So the process M is a F-martingale if, for any t ≥ s ≥ 0, Fs - measurable
random variable which is nearest to M(t), is M(s).
The conditional mean E(M(t)−M(s) | Fs) does not depend on the history

up to the moment s and is equal to 0.
The counting processesNi are nonnegative right-continuous F-submartingales

because Ni(t)−Ni(s) ≥ 0 for any t ≥ s ≥ 0 and hence E{Ni(t)−Ni(s) ≥ 0 |
Fs} ≥ 0.

A.6 Predictable process and Doob-Meyer decomposition

Definition A.10. A process {H(t, ω), t ≥ 0, ω ∈ Ω} is predictable if it is
measurable with respect to the σ-algebra on [0,∞) × Ω generated by adapted
left-continuous processes.

In particular, left continuous adapted processes and deterministic measur-
able functions are predictable (see Fleming and Harrington (1991), Andersen
et al (1993)). Namely such predictable processes are usually used in this book.
IfH is a predictable process then the random variableH(t) is Ft−-measurab-

le; here
Ft− = σ{Ni(s), Yi(s), 0 ≤ s < t, i = 1, · · · , n}.

So the value of a predictable process is known at the moment t if the history
in the interval [0, t) is known.
Suppose that the process H has the form:

H(t) = Z 1(a,b](t),

where Z is a Fa-measurable random variable and 0 ≤ a < b are fixed num-
bers. It is left-continuous and F-adapted, hence F-predictable. Predictable
processes which are sums of finite number of such processes are called simple
predictable processes. It can be shown that any bounded predictable processes
can be written as the limit of increasing sequences of simple predictable pro-
cesses.
We shall use the famous Doob-Meyer decomposition of submartingales as

sums of predictable processes and martingales.

Theorem A.1. (Doob-Meyer decomposition). Let X be a right con-
tinuous nonnegative F-submartingale. Then there exists a right-continuous
martingale M and an non-decreasing right-continuous predictable process Λ
such that E(Λ(t)) < ∞ and

X(t) = M(t) + Λ(t) a.s.

for any t ≥ 0. If Λ(0) = 0 a.s. then this decomposition is a.s. unique, i.e. if
X∗(t) = M∗(t) + Λ∗(t) for any t ≥ 0 with Λ∗(0) = 0, then for any t ≥ 0,

P{M∗(t) �= M(t)} = P{Λ∗(t) �= Λ(t)}.

The process Λ is called the compensator of the submartingale X.
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Let us consider the data (A.2). The counting processes Ni and N are sub-
martingales. Let us find their compensators with respect to the filtration F
generated by the data.

Theorem A.2. Suppose that
1) the failure times T1, · · · , Tn are absolutely continuous random variables;
2) the failure times T1, · · · , Tn and the censoring times C1, · · · , Cn are mutually
independent.

Then the compensator of the counting process Ni is

Λi(t) =
∫ t

0

Yi(u)αi(u)du. (A.9)

Proof. Let us consider the process Mi(t). We skip the index i in all expres-
sions. Let us show that M(t), t ≥ 0 verifies the three axioms of a martingale.

N(t) is evidently Ft - measurable. Let us consider the integral

Λ(t) =
∫ t

0

Y (u)α(u)du = A(X ∧ t);

here

A(t) =
∫ t

0

α(u)du.

The random variable X ∧ t is Ft - measurable because for any t ≤ x

{X ∧ t ≤ x} = Ω ∈ Ft,

and for any t > x

{X ∧ t ≤ x} = {X > x}c = {N(u) = 0, Y (u) = 1, 0 ≤ u ≤ x}c ∈ Fx ⊂ Ft.

The function A is continuous, so A(X ∧ t) is also Ft - measurable.
The mean E | M(t) | is finite for any t ≥ 0:

E|M(t)| ≤ EN(t)+E
∫ t

0

1{X ≥ u}α(u)du ≤ 1+
∫ t

0

P(T ≥ u,C ≥ u)α(u)du ≤

1 +
∫ t

0

P(T ≥ u)α(u)du = 2− ST (t) ≤ 2.

Independence of the pairs (X1, δ1), · · · , (Xn, δn) implies that the conditional
expectation ofMi(t) with respect to the σ-algebra generated byNj(u), Yj(u), 0 ≤
u ≤ s, j = 1, · · · , n is the same as the conditional expectation of Mi(t) with
respect to the σ-algebra generated by Ni(u), Yi(u), 0 ≤ u ≤ s. So we can
suppose that Fs is the last one. As previously, we skip the index i in what
follows.
Take 0 ≤ s ≤ t. On the event {X ≤ s} we have :

N(t)−N(s) = 1{s<X≤t,T≤C} = 0,∫ t

0

Y (u)α(u)du−
∫ s

0

Y (u)α(u)du =
∫

(s,t]

1{X ≥ u}α(u)du = 0.
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So M(t) = M(s) on {X ≤ s}. If P{X > s} = 0 then M(t) = M(s) a.s., which
implies

E(M(t)|Fs) = E(M(s)|Fs) = M(s) a.s.

Suppose that P(X > s) > 0. Then the event {X > s} = {N(u) = 0, Y (u) =
1, 0 ≤ u ≤ s} is an atom of Fs and on {X > s} a.s. (the property g) of the
conditional expectation)

E(M(t)−M(s)|Fs) = E

(
1{s<X≤t,T≤C} −

∫
(s,t]

1{X≥u}α(u)du|Fs

)
=

1
P(X > s)

E

(
1{s<X≤t,T≤C})−

∫
(s,t]

1{X≥u}α(u)du

)
=

1
P(X > s)

{∫
(s,t]

P(C ≥ u)pT (u)du−
∫

(s,t]

P(C ≥ u, T ≥ u)α(u)du

}
= 0.

We denoted by pT the probability density of T .
The process Λi(t) = Λi(t ∧ Xi) is predictable because it is continuous and

adapted.

A.7 Predictable variation and predictable covariation

Jensen’s inequality for the conditional expectation implies that the squareM2

of a square-integrable F-martingale is a F-submartingale:

E{M2(t) | Fs} ≥ (E{M(t) | Fs})2 = M2(s).

Doob-Meyer theorem implies that this submartingale has a compensator.

Definition A.11. The compensator < M,M > of the F-submartingale M2

is called the predictable variation of the F-martingale M .

If M1 and M2 are two square-integrable F-martingales then the equality

M1M2 =
1
4
(M1 +M2)2 − 1

4
(M1 −M2)2

implies that the product M1M2 is a difference of two submartingales with
predictable variations

1
4

< M1 +M2,M1 +M2 > and
1
4

< M1 −M2,M1 −M2 >

.
Definition A.12. The process

< M1,M2 >=
1
4
(< M1 +M2,M1 +M2 > − < M1 −M2,M1 −M2 >)

is called the predictable covariation of martingales M1 and M2.
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The definition implies that the difference

M∗
12 = M1M2− < M1,M2 >

is a F-martingale.
Theorem A.3. Suppose that the conditions of Theorem A.2 are verified.

Then the predictable variations and covariations of the counting process Ni

martingales Mi = Ni − Λi are:

< Mi,Mi > (t) = Λi(t), < Mi(t),Mi′(t) >= 0 (i �= i′) (A.10)

Proof. Let us consider the process M∗
ii′ = Mi(t)Mi′(t) (i �= i′).

Take 0 ≤ s ≤ t. On the event {Xi ≤ s} we have : Mi(t) = Mi(s) and hence

E{Mi(t)Mi′(t) | Fs} = Mi(s)E{Mi′(t) | Fs} = Mi(s)Mi′(s).

The same on the event {Xi′ ≤ s}. Independence of the martingales Mi and
Mi′ implies that on the event {Xi > s,Xi′ > s}

E{Mi(t)Mi′(t) | Fs} = 1
P(Xi > s,Xi′ > s)

E{Mi(t)1{Xi>s}Mi′(t)1{Xi′>s}}

= E{Mi(t) | Fs}E{Mi′(t) | Fs} = Mi(s)Mi′(s).

Let us consider the process M∗
i = M2

i − Λi. We skip indices in what follows.
Note that N2(t) = N(t). We have

∆ = M∗(t)−M∗(s) = N(t)−N(s)−
∫

(s,t]

Y (u)α(u)du−2N(t)
∫ t

0

Y (u)α(u)du+

2N(s)
∫ s

0

Y (u)α(u)du+ 2
∫ t

s

(∫ v

0

Y (u)α(u)du
)

Y (v)α(v)dv =

∆1 +∆2 +∆3 +∆4 +∆5.

From the part a) of the proof we have that E{∆1 +∆2 | Fs} = 0.
If X ≤ s then ∆ = 0.
If P{X > s} = 0 then ∆ = 0 and E{∆ | Fs} = 0 a.s.
Suppose that P{X > s} > 0. Then on the set {X > s} we have N(s) = 0

and ∆4 = 0. So on this set

E{∆ | Fs} = 1
P{X > s}E

{
−2

∫ t

0

1{s<T≤t,T≤C,T≥u,C≥u}α(u)du+

2
∫ t

s

(∫ v

0

α(u)du
)
1{X ≥ v}α(v)dv

}
=

1
P{X > s}

{
−2

∫ t

0

(∫ t

s∨u

P{X ≥ v}α(v)dv
)

α(u)du+

2
∫ t

s

(∫ v

0

α(u)du
)
P{X ≥ v}α(v)dv

}
= 0.
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Corollary A.1. Under the assumptions of the theorem for any t1, t2 ≥ s

E{Mi(t1)Mi′(t2)−Mi(s)Mi′(s)− 1{i=i′}

∫ t1∧t2

s

Yi(u)αi(u)du | Fs} = 0

(A.11)

Proof. Suppose that t2 ≥ t1 ≥ s. Then

E{Mi(t1)Mi′(t2)−Mi(s)Mi′(s)− 1{i=i′}

∫ t1

s

Yi(u)αi(u)du | Fs} =

E{Mi(t1)Mi′(t1)−Mi(s)Mi′(s)− 1{i=i′}

∫ t1

s

Yi(u)αi(u)du+Mi(t1)×

(Mi′(t2)−Mi′(t1)) | Fs} = E{Mi(t1)E{Mi′(t2)−Mi′(t1) | Ft1} | Fs} = 0.

A.8 Stochastic integrals with respect to martingales

Let us consider integrals of the form (A.7). Under some assumptions these
integrals are martingales and their predictable variations and covariations
can be found.

Theorem A.4. Suppose that Mi are counting process Ni martingales, and
Hij are predictable processes such that for all t ≥ 0, i = 1, ...,m, j = 1, ..., n

E |
∫ t

0

Hij(u)dMi(u) |< ∞. (A.12)

Then Uij are F-martingales and

< Uij , Ui′j′ > (t) =
∫ t

0

Hij(u)Hi′j′(u)d < Mi,Mi′ > (u) =

{ ∫ t

0
Hij(u)Hij′(u)Yi(u)αi(u)du, i = i′,

0, i �= i′.
(A.13)

In particular,

< Uij , Uij > (t) =
∫ t

0

H2
ij(u)d < Mi,Mi > (u) =

∫ t

0

H2
ij(u)Yi(u)αi(u)du,

(A.14)

Proof. The result is implied by Theorem T6 given in Brémaud (1981, Ch.1).
We shall consider the theorem under stronger condition that Hij are bounded
predictable processes and Ni are the counting processes given in Theorem A2.
1) Suppose that Hij are simple predictable processes of the form:

Hij(t) = Zij1(aij ,bij ], (A.15)

where Zij is a bounded Faij
-measurable random variables.

Let us show that Uij are F-martingales. We skip the indices.



298 SOME RESULTS FROM STOCHASTIC PROCESS THEORY

The process
U(t) = Z (M(t ∧ b)−M(t ∧ a))

is Ft-measurable and E | U(t) |< ∞ for all t > 0.
Fix t > s ≥ 0. If (a, b] ∩ (s, t] = ∅ then U(t) = U(s) and E{U(t) − U(s) |

Fs} = 0.
If (a, b] ∩ (s, t] �= ∅ then

E{U(t)− U(s) | Fs} = E{Z(M(t ∧ b)−M(s ∧ a)) | Fs} =
E{Z E{M(t ∧ b)−M(s ∨ a) | Fs∧a} | Fs} = 0.

Let us show (1.13). Fix i, j, i′, j′. Ordered 0, aij , bij , ai′j′ , bi′j′ ,+∞ can take
from 2 to 6 values. Denote these values by t0 < · · · < tm. Set H

(k)
ij =

Zij1{(tk−1,tk]⊂(aij ,bij ]}. Then for s ∈ [tk−1, tk)

E{Uij(t)Ui′j′(t)− Uij(s)Ui′j′(s) | Fs} =
E{Uij(t ∧ tk)Ui′j′(t ∧ tk)− Uij(s)Ui′j′(s) | Fs}+

m∑
l=k+1

E{E{Uij(t ∧ tl)Ui′j′(t ∧ tl)− Uij(t ∧ tl−1)Ui′j′(tl−1) | Ft∧tl−1} | Fs}

= E{(Uij(t ∧ tk)− Uij(s))(Ui′j′(t ∧ tk)− Ui′j′(s)) | Fs}+
m∑

l=k+1

E{E{(Uij(t∧tl)−Uij(t∧tl−1))(Ui′j′(t∧tl)−Ui′j′(t∧tl−1)) | Ft∧tl−1} | Fs}

= H
(k)
ij H

(k)
i′j′E{(Mi(t ∧ tk)−Mi(s))(Mi′(t ∧ tk)−Mi′(s)) | Fs}+

m∑
l=k+1

E{H(l)
ij H

(l)
i′j′E{(Mi(t∧tl)−Mi(t∧tl−1))(Mi′(t∧tl)−Mi′(t∧tl−1)) | Ftl−1}

| Fs} = H
(k)
ij H

(k)
i′j′E{< Mi,Mi′ > (t ∧ tk)− < Mi,Mi′ > (s) | Fs}+

m∑
l=k+1

E{H(l)
ij H

(l)
i′j′E{< Mi,Mi′ > (t∧tl)− < Mi,Mi′ > (t∧tl−1) | Ftl−1} | Fs} =

E{
t∧tk∫
s

H
(k)
ij H

(k)
i′j′ d < Mi,Mi′ > (u) | Fs}+

m∑
l=k+1

E{E{
t∧tl∫

t∧tl−1

H
(l)
ij H

(l)
i′j′d < Mi,Mi′ > (u) | Ftl−1} | Fs} =

E{
t∫

s

Hij(u)Hi′j′(u) d < Mi,Mi′ > (u) | Fs}.
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2) If Hij are finite sums of simple predictable processes: Hij =
∑mij

l=1 Hijl,
then

E{Uij(t)−Uij(s) | Fs} =
∫ t

s

Hij(u) dMi(u) | Fs} =
mij∑
l=1

∫ t

s

Hijl(u) dMi(u) | Fs} = 0,

and

E{Uij(t)Ui′j′(t)−Uij(s)Ui′j′(s)−1{i=i′}

∫ t

s

Hij(u)Hij′(u)Yi(u)αi(u)du | Fs} =
mij∑
l=1

mi′j′∑
l′=1

E{
∫ t

0

Hijl(u) dMi(u)
∫ t

0

Hi′j′l′(u) dMi′(u)−
∫ s

0

Hijl(u) dMi(u)
∫ s

0

Hi′j′l′(u) dMi′(u)

−1{i=i′}

∫ t

s

Hijl(u)Hij′l′(u)Yi(u)αi(u)du | Fs} = 0.

3) If Hij is any bounded predictable process then it can be written as the
limit of increasing sequence of simple predictable processes. Monotone class
arguments can be used to get the result of the theorem (see Fleming and
Harrington (1991)).
Corollary A.2. The processes Uj =

∑n
i=1 Uij are F-martingales and

< Uj , Uj′ > (t) =
n∑

i=1

∫ t

0

Hij(u)Hij′(u)d < Mi,Mi > (u)

=
n∑

i=1

∫ t

0

Hij(u)Hij′(u)Yi(u)αi(u)du, (A.16)

Corollary A.3. The means and the covariances of the statistics Uj have
the form

E(Uj(t)) = 0, (A.17)
Cov(Uj(s), Uj′(t)) = E(< Uj , Uj′ > (s ∧ t)) =

E

(
n∑

i=1

∫ s∧t

0

Hij(u)Hij′(u)Yi(u)αi(u)du

)
; (A.18)

in particular

Var(Uj(t)) = E(< Uj , Uj > (t)) = E

(
n∑

i=1

∫ t

0

H2
ij(u)Yi(u)αi(u)du

)
.

(A.19)

Proof. Uj is a martingale, so E(Uj(t)) = E(Uj(0)) = 0.
Mjj′ = UjUj′− < Uj , Uj′ > is a martingale,Mjj′(0) = 0, soE{Uj(t)Uj′(t)} =

E{< Uj , Uj′ > (t)}. If s ≤ t then the last equality implies that

Cov(Uj(s), Uj′(t))−E(< Uj , Uj′ > (s)) =

E{Uj(s)Uj′(s)− < Uj , Uj′ > (s)}+E{Uj(s)(Uj′(t) − Uj′(s))}
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= E{Uj(s)E{Uj′(t) − Uj′(s) | Fs}} = 0.

The condition (1.12) may be hard to verify in practice or not even true.
By chance, application of the central limit theorem for martingales may be
done if Ui are not necessary martingales. It is sufficient if they are the local
martingales. In such a case weaker and easier verified conditions are needed.
So we need the notion of localization.

A.9 Localization

Definition A.13. A random variable T is called the stopping time if for all
t ≥ 0

{T ≤ t} ∈ Ft .

As a rule the stopping time is the moment when a certain event occurs.
For example, it can be the moment when the ith failure occurs. If the history
up to the moment t is known then it is known whether or not such event has
already occurred.

Definition A.14. A sequence of stopping times {Tn} is called a localizing
sequence if Tn

P→ ∞.

Definition A.15. A process X has a certain property locally if there exists
a localizing sequence {Tn} such that for each n the process X(t∧ Tn)1{Tn>0}
has the property.

So a process X is locally bounded if there exist constants cn and a localizing
sequence {Tn} such that

sup
t≤Tn

| X(t) |≤ cn a.s. on {Tn > 0}.

It can be shown that any left-continuous adapted process is locally bounded.
A process M is a local martingale if there exists a localizing sequence {Tn}

such that for each n the process

M(t ∧ Tn)1{Tn>0}

is a martingale.

Theorem A.5. (Optional stopping theorem). If M(t), t ≥ 0 is a right-
continuous martingale and T is a stopping time then X(t∧T ) is a martingale.

See the proof in Fleming and Harrington (1991).

A.10 Stochastic integrals with respect to martingales
(continuation)

Theorem A.6. Suppose that assumptions of Theorem A.1 hold, Hij are left-
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continuous adapted processes. Then Uij and Ui are local square-integrable F-
martingales

Proof. We skip indexes i and j in what follows. We need to show that there
exists a localizing sequence {Tn} such that for all n the process∫ t∧Tn

0

H(u)dM(u)1{Tn>0}

is a F-martingale.
H is a locally bounded process. So there exist constants cn and a localizing

sequence {Tn} such that
| H(t ∧ Tn) |≤ cn a.s. on {Tn > 0}.

Then ∫ t

0

H̃n(u)dM̃n(u) =
∫ t∧Tn

0

H(u)dM(u)1{Tn>0}, (A.20)

where
H̃n(t) = H(t ∧ Tn)1{Tn>0}, M̃n(t) = M(t ∧ Tn).

For fixed n the process H̃n(t) is left-continuous adapted and bounded. The
optional stopping theorem implies that M̃n(t) is a F-martingale. For all t ∈
[0,∞] and any fixed n

|
∫ t

0

H̃n(u)dM̃n(u) |=|
∫ t∧Tn

0

H(u)dN(u)−
∫ t∧Tn

0

H(u)α(u)Y (u)du | ≤ cn + cnA(Tn). (A.21)

So the integral in the left side of (1.20) verifies the conditions of Theorem A.3.
It implies that this integral is a F-martingale.

A.11 Weak convergence

Let us consider the space D, where D = D[0, τ ] is a space of cadlag functions
on [0, τ ] or D = R. Denote by Dp = D1 × · · · × Dp the product of p such
spaces.
Let ρ(x, y) be the distance between the functions x and y, x, y ∈ D. It

can be defined in various ways. In the space D = D[0, τ ] the most used are
Skorokhod and supremum norm distances. Let Λ = {λ(·)} be the set of strictly
increasing continuous functions on [0, τ ] such that λ(0) = 0, λ(τ) = τ .

Skorohod metric:
ρ(x, y) =

inf{ε > 0 : exists λ ∈ Λ : sup
0≤t≤τ

| λ(t)− t |≤ ε, sup
0≤t≤τ

| x(t)− y(λ(t)) |≤ ε};
(A.22)
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Supremum norm metric:

ρ(x, y) = sup
0≤t≤τ

| x(t)− y(t) | . (A.23)

In the space D = R the most used is
Euclidean metric

ρ(x, y) =| x− y | . (A.24)

An open ε-ball with center x is defined as Bε(x) = {y : ρ(x, y) < ε}. A set
G ⊂ D is open if for any x ∈ G there exists an open ball Bε(x) ⊂ G. The
boundary ∂G of the set G is a set of points x ∈ G such that in any open ball
Bε(x) there exist points y, z ∈ D : y ∈ G, z /∈ G.
The smallest σ-algebra containing all open sets of D is called the Borel

σ-algebra of D and is denoted by B(D). The smallest σ-algebra containing all
sets of the form A = A1×· · ·As, where A1, · · · , As are open sets of D1, · · · ,Ds,
respectively, is called the Borel σ-algebra of Ds and is denoted by Bs(Ds).
We use capital letters for random elements and small letters for non-random

elements. So, if we write X ∈ D when D = R, it means that X = X(ω) is a
random variable defined on the probability space (Ω,F ,P). If we write x ∈ D,
it means that x is a real number.
If we write X ∈ D when D = D[0, τ ], it means that X = X(t, ω) is a cadlag

stochastic process on [0, τ ] , i.e. for any fixed t ∈ [0, t] X(t, ·) is a random
variable defined on the probability space (Ω,F ,P) and for any fixed ω ∈ Ω
the trajectory X(·, ω) is a real cadlag function on [0, τ ]. If we write x ∈ D, it
means that x is a real cadlag function on [0, τ ].
If we write X ∈ Ds, it means that X = (X1, · · · ,Xs)T , where Xi ∈ Di,

(i = 1, · · · , s).
Any X ∈ Ds generates a probability measure PX on (Ds,Bs(Ds)):

PX(B) = P{X ∈ B}, for any B ∈ Bs(Ds).

Definition A.16. The sequence {X(n)}, X(n) ∈ Ds, weakly converges to
X ∈ Ds if for any B ∈ Bs(Ds) such that PX(∂B) = 0 we have:

PX(n)
(B)→ PX(B).

Weak convergence is denoted by X(n) D→ X.
The Borel σ-algebra generated by the Skorohod metric is wider then the σ-

algebra generated by the supremum norm metric. So weak convergence in the
sense of Skorohod metric implies weak convergence in the sense of supremum
norm metric. If the limit process is continuous, both convergences are equiv-
alent. In all applications considered here the limit processes are continuous
Gaussian processes.
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A.12 Central limit theorem for martingales

The limit distribution of integrals (1.4) can be found by using the central
limit theorem for martingales, Rebolledo (1980). This theorem is based on
the following property of Gaussian processes with independent increments.

Characterization of Gaussian processes with independent incre-
ments. Suppose that for all t ≥ 0 the matrix Σ(t) = (σjj′(t))m×m is deter-
ministic positively definite, σjj′(0) = 0.

A m-variate stochastic process V = (V1, · · · , Vm) is a Gaussian process
having components with independent increments and

E(Vj(t)) = 0 and Cov(Vj(s), Vj′(t)) = σjj′(s ∧ t) (s, t ≥ 0)

if and only if Vi are locally square integrable martingales with continuous paths
such that for all t ≥ 0

Vj(0) = 0, < Vj , Vj′ > (t) = σjj′(t) (j, j′ = 1, · · · ,m).

So if the jumps of the martingales U
(n)
j on [0, τ ] tend to zero (Lindenberg

condition) and
< U

(n)
j , U

(n)
j′ > (t) P→ σjj′(t) for all t ∈ [0, τ ] as n → ∞ then the following

convergence should be expected:

U (n) = (U (n)
1 , ..., U (n)

m )T D→ V = (V1, ..., Vm)T on (D[0, τ ])m. (A.25)

Exact formulation of the expression if the jumps of the martingales U
(n)
j on

[0, τ ] tend to zero is given in the following theorem.
Fix k ∈ N and set

U
(n)
j (t) =

n∑
i=1

∫ t

0

H
(n)
ij (v) dMi(v)

or

U
(n)
j (t) =

k∑
i=1

∫ t

0

H
(n)
ij (v) dMi(v),

and

U
(n)
jε (t) =

n∑
i=1

∫ t

0

H
(n)
ij (v)1{|H(n)

ij (v)| ≥ ε} dMi(v)

or

U
(n)
jε (t) =

k∑
i=1

∫ t

0

H
(n)
ij (v)1{|H(n)

ij (v)| ≥ ε} dMi(v),

respectively (j = 1, · · · ,m). Fix a moment τ .

Theorem A.7. Suppose that the multiplicative intensity model holds and
a) the integrals

Λi(t) =
∫ t

0

Yi(u)αi(u)du
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are continuous on [0, τ ];

b) H
(n)
ij (v) are left-continuous with finite right limits adapted processes on

[0, τ ];

c) < U
(n)
j , U

(n)
j′ > (t) P→ σjj′(t) for all t ∈ [0, τ ] as n → ∞;

d) < U
(n)
jε , U

(n)
jε > (t) P→ 0 for all t ∈ [0, τ ] as n → ∞;

e) the matrix Σ(t) = (σjj′(t))m×m is positively definite for all t ∈ [0, τ ].
Then

U (n) = (U (n)
1 , ..., U (n)

m )T D→ V = (V1, ..., Vm)T on (D[0, τ ])m,

where V is a m-variate Gaussian process having components with independent
increments, Vj(0) = 0 a.s. and for all 0 ≤ s ≤ t ≤ τ :

cov(Vj(s), Vj′(t)) = σjj′(s).

Corollary A.4. Under the assumptions of the theorem

U (n)(τ) D→ N(0,Σ(τ)) as n → ∞.

Corollary A.5. Suppose that a(t) is a m× 1 non-random vector.
If the assumptions of Theorem A.7 are verified for j, j′ = 1, · · · ,m+ 1,

< U
(n)
j (τ), U (n)

m+1(t) >= 0 (j = 1, · · ·m),
and a univariate process Z(n) is the linear combination

Z(n)(t) = aT (t)U (n)(τ) + U
(n)
m+1(t),

then
Z(n) D→ Z,

where Z is a zero mean Gaussian process with independent increments and

Cov(Z(s), Z(t)) = aT (s)Σm×m(τ) a(t) + σm+1,m+1(s);

Set M (n)(t) =
∑n

i=1 Mi(t).

Theorem A.8. (Lenglart’s inequality, Lenglart (1977)). Suppose that H is
an adapted caglad process. Then for all ε, η, τ > 0

P

{
sup
[0,τ ]

{
∫ t

0

H(s)dM (n)(s)}2 ≥ ε

}
≤ η

ε
+P

{∫ τ

0

H2(s)d < M (n) > (s) ≥ η

}
.

Corollary A.6. The convergence∫ τ

0

(H(n)(s))2d < M (n) > (s) P→ 0



NONPARAMETRIC ESTIMATORS OF THE CUMULATIVE HAZARDANDTHE SURVIVAL FUNCTION305

implies the convergence

sup
[0,τ ]

∫ t

0

H(n)(s)dM (n)(s) P→ 0.

A.13 Nonparametric estimators of the cumulative hazard and the
survival function

Let us consider nonparametric estimation of the cumulative hazard and the
survival function from the data (1.2) when the failure times T1, · · · , Tn are
identically distributed. Theorem A.2 implies that

E{N(t)} = E{
∫ t

0

Y (u) dA(u)}, (A.26)

where

A(t) =
∫ t

0

α(u) du

is the cumulative hazard function. The equality holds even when the func-
tion A is not necessary continuous, i.e; ex aequo of failures are possible. This
equality implies that an estimator of the cumulative hazard function can be
defined as a solution of the integral equation

Â(t) =
∫ t

0

dN(u)
Y (u)

=
∑

j:δj=1,Xj≤t

1
nj

, (A.27)

where

nj = Y (Xj) =
n∑

l=1

1{Xl≥Xj}

is the number of units at risk just prior to Xj . It is the Nelson-Aalen estimator
of the cumulative hazard A.
The equality

S(t) = 1 +
∫ t

0

dS(u) = 1−
∫ t

0

S(u)dA(u)

implies the following equation for an estimator of the survival function S:

Ŝ(t) = 1−
∫ t

0

Ŝ(u−)dÂ(u)
or

Ŝ(t) = 1−
∫ t

0

Ŝ(u−)dN(u)
Y (u)

. (A.28)

Hence

Ŝ(t) = Ŝ(t−)
(
1− ∆N(t)

Y (t)

)
,
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where ∆N(t) = N(t)−N(t−). It gives

Ŝ(t) =
∏

s:s≤t

(
1− ∆N(s)

Y (s)

)
=

∏
j:δj=1,Xj≤t

(
1− 1

nj

)
. (A.29)

If there are ex aequo, and T 0
1 < · · · < T 0

m are the distinct moments of
observed failures, di is a number of failures at the moment T 0

i , and ni = Y (T 0
i )

is the number of units at risk just prior to T 0
i then

Â(t) =
∑

i:T 0
i
≤t

di

ni
, Ŝ(t) =

∏
i:T 0

i
≤t

(
1− di

ni

)
. (A.30)

Let Gi be the survival function of the censoring time Ci.

Theorem A.9. If the failure times T1, · · · , Tn are absolutely continuous ran-
dom variables, the failure times T1, · · · , Tn and the censoring times C1, · · · , Cn

are mutually independent, and there exists a survival function G with G(τ−) >
0 such that

sup
s∈[0,τ ]

| n−1
n∑

i=1

Gi(s)−G(s) |→ 0 as n → ∞,

then

n1/2(Â−A) D→ U, n1/2(Ŝ − S) D→ −S U as n → ∞, (A.31)

on D[0, τ ], where U is a Gaussian martingale with U(0) = 0 and

Cov (U(s), U(t)) = σ2(s ∧ t) =
∫ s∧t

0

dA(u)
y(u)

, (A.32)

where y(u) = S(u)G(u−).

A.14 Product-integral

Let X(t), t ≥ 0 be a cadlag stochastic process. Denote by t1, · · · , tm(t) the
jump points of X in the interval [0, t] and ∆X(ti) = X(ti) − X(ti−1). Note
that m(t) is random.

Definition A.17 The stochastic process

Z(t) =π0≤s≤t(1 + dX(s)) =
m(t)∏
i=1

(1 + ∆X(ti)) exp{X(t)−
m(t)∑
i=1

∆X(ti)}
(A.33)

is called the product-integral of the process X.
If the paths of X are continuous then

Z(t) =π0≤s≤t(1 + dX(s)) = eX(t). (A.34)
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If the paths of X are step-functions, then

Z(t) =π0≤s≤t(1 + dX(s)) =
m(t)∏
i=1

(1 + ∆X(ti)). (A.35)

We set
π0≤s≤t(1− dX(s)) =π0≤s≤t (1 + d(−X(s))) . (A.36)

If the cumulative hazard function A(·) is continuous then the survival function
can be written as the product-integral:

S(t) = e−A(t) =π0≤s≤t(1− dA(s)). (A.37)

The Nelson-Aalen estimator of the function A(t) is a step-function with jumps
1/nj at the points Xj : δj = 1. So

π0≤s≤t(1− dÂ(s)) =
∏

j:δj=1,Xj≤t

(
1−∆Â(Xj)

)
=

∏
j:δj=1,Xj≤t

(
1− 1

nj

)
= Ŝ(t), (A.38)

where Ŝ(t) is the Kaplan-Meier estimator. So

Ŝ(t) =π0≤s≤t(1− dÂ(s)). (A.39)

The same relation holds if there are ex aequo: the estimator Â has jumps
di/ni at the points T 0

i , so

π0≤s≤t(1− dÂ(s)) =
∏

j:T 0
j
≤t

(
1− dj

nj

)
= Ŝ(t). (A.40)

A.15 Delta method

The most of the estimators and test statistics used here are functionals of cad-
lag stochastic processes. In many situations weak convergence of such func-
tionals can be obtained by using the functional delta method. We refer to the
book of Andersen et al. (1993), where this method is described and give here
several results implied by this method and used in this book. Convergence is
considered in the sense of supremum norm.
Let {an} be a sequence of real numbers.
Theorem A.10. Let g = (g1, · · · , gq) : Rp → Rq be a differentiable vector-

function, and

Jg(x) =‖ ∂gi(x)
∂xj

‖q×p

be the Jacobi matrix of partial derivatives of coordinate functions gi.
If

an(X(n) − x) D→ Z as an → ∞
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on Rp, then

an(g(X(n))− g(x)) D→ Jg(x)Z as an → ∞. (A.41)

on Rq.

Theorem A.11. Suppose that
1) {Xn

1 ∈ D[0, τ ]} and {Xn
2 ∈ D[0, τ ]} are sequences of cadlag stochastic

processes, the second being of bounded variation and bounded by a positive
constant M;

2) X1,X2 ∈ D[0, τ ] are cadlag stochastic processes of bounded variation the
second being bounded by M such that

(an(Xn
1 −X1), an(Xn

2 −X2))
D→ (Z1, Z2),

on D[0, τ ]×D[0, τ ]; here Z1, Z2 ∈ D[0, τ ] .
Then

an

(∫ ·

0

Xn
1 dXn

2 −
∫ ·

0

X1dX2

)
D→

∫ ·

0

Z1dX2 +
∫ ·

0

X1dZ2 (A.42)

on D[0, τ ]. If Z2 is not of bounded variation then the last integral is defined
by ∫ t

0

X1(u)dZ2(u) = X1(t)Z2(t)−X1(0)Z2(0)−
∫ t

0

Z2(u)dX1(u).

Theorem A.12. Suppose that
1) x ∈ D[0, τ ] is a nondecreasing function, differentiable at the point

x−1(p) = inf{t : x(t) ≥ p} ∈ (0, τ),
where p ∈ R is a fixed number.

2) {X(n) ∈ D[0, τ ]} is a sequence of nondecreasing stochastic processes such
that

an(Xn − x) D→ Z

on D[0, τ ]; here Z ∈ D[0, τ ] is a nondecreasing process, continuous at the
point x−1(p).

Then

an((Xn)−1(p)− x−1(p)) D→ −Z(x−1(p))
x′(x−1(p))

. (A.43)

Theorem A.13. Suppose that
1) x is a continuously differentiable function on [0, τ ];
2) ϕ = ϕ(t, θ) : A×Bε(θ0)→ R, Bε(θ0) ⊂ Rs, A = [0, τ0] or (0, τ0), is a

continuous non-decreasing in t function such that 0 < ϕ(t, θ0) < τ for t ∈ A;
3) {X(n) ∈ D[0, τ ]} is a sequence of stochastic processes such that

an(Xn − x) D→ Z
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on D[0, τ ], where Z is a continuous on [0, τ ] stochastic process;
4) {θ̂(n)} is a sequence of random variables such that

an(θ̂(n) − θ0)
D→ Y.

Then

an(Xn(ϕ(·, θ̂(n)
0 ))− x(ϕ(·, θ0))

D→ Z(ϕ(·, θ0)) + x′(ϕ(·, θ0))Y (A.44)

on D(A).

Theorem A.14. Suppose that {X(n) ∈ D[0, τ ]} is a sequence of cadlag
stochastic processes and

an(Xn −X) D→ Z

on D[0, τ ], where Z and X are continuous on [0, τ ] stochastic processes.
Then

an

(π0≤s≤t(1 + dXn(s))−π0≤s≤t(1 + dX(s))
) D→ eX Z. (A.45)
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Bagdonavičius, V. and Nikulin, M. (1999c) Generalized Proportional Hazards
Model Based on Modified Partial Likelihood, Lifetime Data Analysis, 5,
329-350.
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Génŕalisé de Cox: Etude par Simulation. Bordeaux: Preprint 0102, Univer-
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