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Abstract

Understanding the drug solubility behavior is likely the first essential requirement for designing the supercritical technology for pharmaceutical processing.

Therefore, this study utilizes different machine learning scenarios to simulate the solubility of twelve non-steroidal anti-inflammatory drugs (NSAIDs) in the

supercritical carbon dioxide (SCCO ). The considered NSAIDs are Fenoprofen, Flurbiprofen, Ibuprofen, Ketoprofen, Loxoprofen, Nabumetone, Naproxen,

Nimesulide, Phenylbutazone, Piroxicam, Salicylamide, and Tolmetin. Physical characteristics of the drugs (molecular weight and melting temperature),

operating conditions (pressure and temperature), and solvent property (SCCO  density) are effectively used to estimate the drug solubility. Monitoring and

comparing the prediction accuracy of twelve intelligent paradigms from three categories (artificial neural networks, support vector regression, and hybrid

neuro-fuzzy) approves that adaptive neuro-fuzzy inference is the best tool for the considered task. The hybrid optimization strategy adjusts the cluster radius

of the subtractive clustering membership function to 0.6111. This model estimates 254 laboratory-measured solubility data with the AAPRE = 3.13%, MSE = 

2.58 × 10 , and R  = 0.99919. The leverage technique confirms that outliers may poison less than four percent of the experimental data. In addition, the

proposed hybrid paradigm is more reliable than the equations of state and available correlations in the literature. Experimental measurements, model

predictions, and relevancy analyses justified that the drug solubility in SCCO  increases by increasing temperature and pressure. The results show that

Ibuprofen and Naproxen are the most soluble and insoluble drugs in SCCO , respectively.
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Introduction

Separation scenarios, including fluidization , liquid–liquid extraction , adsorption , crystallization , membrane , and microfluid absorption , are

continuously engaged in different industrial processes. Moreover, the processes operated with the supercritical fluids have a wide range of applications in

diverse fields, including extraction , reaction , food industry , nanoparticle decoration , nanosheet fabrication , tissue engineering , and pharmaceutical

processing . Water , propane , and carbon dioxide (CO )  are among materials potentially used as the supercritical medium. The unique characteristics,

such as mild critical temperature (31.1 °C) and pressure (73.8 bar) , provide carbon dioxide with diverse applications as a supercritical solvent . Furthermore,

carbon dioxide in the supercritical state is a low-cost and low viscous solvent with high diffusivity and solvating ability .

Application and interest in using the supercritical CO  (SCCO ) for pharmaceutical processing have been sharply increased recently .

Understanding the drug solubility in SCCO  is the central information for designing the supercritical-based pharmaceutical technology . The size , shape ,

surface structure , morphology , and crystallization process  of synthesized solid drugs are determined by their solubility in the supercritical fluid. In

addition, the economic success of the supercritical technology highly depends on reliable insight about the solid (drug) solubility in supercritical solvents .

Therefore, some researchers focused on laboratory measurements of solid drug solubility in supercritical CO . However, experimental

determination of pharmaceutical solubility in SCCO  is complex, expensive, and time-consuming . In addition, it is not possible to measure equilibrium

solubility in all ranges of desired operating conditions .

Hence, several empirical  and thermodynamic-based  correlations have been proposed to calculate the solid drug solubility in the CO  at the

supercritical state. Traditionally equations of state are the most utilized thermodynamic-based correlations for predicting the phase equilibria of

drugs/SCCO . Unfortunately, these thermodynamic-based methods have at least one temperature-dependent interaction parameter that must be

adjusted appropriately . Surprisingly, there is no general thermodynamic-based method for effectively monitoring the solubility of several solid drugs in

SCCO . Furthermore, it is claimed that equations of state often provide high levels of uncertainty  and sometimes wholly fail . On the other hand,

available empirical correlations have usually been developed for estimating the solubility of a specific solid drug in supercritical CO , and it is impossible to

find which correlation is better to use .

The non-steroidal anti-inflammatory drugs (NSAID) are often prescribed to reduce pain/fever/inflammation and prevent blood clots . The current research

intends to propose a universal intelligent model to predict the solubility of twelve NSAIDs (Fenoprofen, Flurbiprofen, Ibuprofen, Ketoprofen, Loxoprofen,

Nabumetone, Naproxen, Nimesulide, Phenylbutazone, Piroxicam, Salicylamide, and Tolmetin) in SCCO . For doing so, 2150 intelligent paradigms from three

different categories (i.e., artificial neural networks, hybrid neuro-fuzzy, and support vector regression) have been constructed, and their accuracy monitored.

The ANFIS model with the subtractive clustering membership function and cluster radius of 0.6111 presents the most reliable prediction results. This

straightforward model can accurately predict the solubility of 12 NSAIDs in supercritical CO  in wide ranges of operating pressures and temperatures. To the

best of our knowledge, it is the most generalized approach developed for phase equilibria modeling of NSAIDs/SCCO  up to now.
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Material and methods

The collected drug solubility data, their sources, and ranges of experimental measurements have been reported in this section. Furthermore, the current

section has concisely introduced the applied machine learning methods.

Experimental data for anti-inflammatory drug solubility in SCCO

Development, as well as validation stages of all machine learning techniques, require an experimentally measured databank about the given problems.

Therefore, in the current research, the information of 254 experiments related to the anti-inflammatory drug solubility in supercritical CO  has been gathered

from eight trusted literature . A complete description of these experiments, including their range of operating pressures and temperatures,

the observed solubility levels, and numbers of available data for all anti-inflammatory drug/SCCO  systems, have been introduced in Table 1. It is also

necessary to highlight that subscript 1 and 2 are associated with the anti-inflammatory drug and supercritical carbon dioxide, respectively.

Table 1 Available laboratory measurements for solubility of anti-inflammatory drugs in supercritical CO .

Since the solubility of all anti-inflammatory drugs in supercritical CO  is planned to be estimated by a single model, it is necessary to include the drugs’

inherent characteristics in the modeling stage, too. Table 2 shows the molecular weight and melting temperature of the considered anti-inflammatory drugs.

It is better to note that each anti-inflammatory drug has its unique values for these properties. Therefore, the molecular weight and melting temperature can

be incorporated in the model’s entry to differentiate among different anti-inflammatory drugs.

Table 2 Physical properties of the considered anti-inflammatory drugs.

Although it is possible to extract some features from the experimental database  and utilize them as model’s entry, the current research aims to relate anti-

inflammatory drug solubility in SCCO  ( ) to the molecular weight ( ), melting temperature ( ), operating pressure (P), temperature (T), and SCCO

density ( ). The mathematical statement of this expression is shown by Eq. (1).

Three trustful relevancy analysis approaches, namely Spearman, Pearson, and Kendal, have been utilized to check whether the selected independent variables

are appropriate features for the model development . These techniques show the relevancy level between a pair of dependent-independent variables by a

coefficient in the range of minus one to plus one . The negative coefficients indicate indirect dependency, positive ones show a direct relationship, and zero

coefficient value is associated with no relevancy .

Figure 1 presents the observed coefficients of Spearman, Pearson, and Kendall techniques for interrelations of the anti-inflammatory drug solubility in SCCO

with the selected independent variables. This analysis approves that increasing the molecular weight and melting temperature of anti-inflammatory drugs

reduces their dissolution in the supercritical CO . On the other hand, raising pressure, temperature, and solvent density enhance drug solubility in the SCCO .

Furthermore, molecular weight and pressure have the weakest indirect and strongest direct influences on the drug solubility in the SCCO , respectively. The

performed relevancy analysis results can be considered a justification for the appropriate selection of the independent variables.

Figure 1

The value of Spearman, Pearson, and Kendall factors for relevancy between drug solubility and the corresponding influential variables.
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Machine learning methods have been extensively engaged in approximation , interpretation , action recognition , and classification  porpuses. This

study focuses on five artificial neural networks (ANN), four hybrid neuro-fuzzy types, and three kinds of support vector regression (SVR) to simulate anti-

inflammatory drug solubility in supercritical CO . The considered ANN models are multilayer perceptron neural network (MLPNN) , cascade feedforward

neural network (CFFNN) , recurrent neural network (RNN) , general regression neural network (GRNN) , and radial basis function neural networks

(RBFNN) . The efficiency of the support vector regression with the linear kernel (LSSVR-L) , polynomial kernel (LSSVR-P) , and Gaussian kernel (LSSVR-G)

are also evaluated over the considered purpose. The neuro-fuzzy models with the subtractive clustering membership function trained by the hybrid (ANFIS2-

H) and backpropagation (ANFIS2-BP) algorithms have also been applied in the current study . The last intelligent tools used in the present research are the

neuro-fuzzy models with the C-means clustering membership function trained by hybrid (ANFIS3-H) and backpropagation (ANFIS3-BP) optimization

strategies .

It should be mentioned that these paradigms can be viewed as advanced regression-based tools. Therefore, they have all limitations of the conventional

regression-based methods. Indeed, the developed intelligent schemes are only valid for the ranges of experimental data reported in Table 1. Utilizing these

models for extrapolation purposes is not suggested.

Results and discussions

The focus of the present section is devoted to constructing different numbers of the considered intelligent paradigms through the trial-and-error tactic and

determining models with the lowest deviation from experimental measurements. Then the model with the highest accuracy is found applying the ranking

analysis. After this, several visual inspections have been directed to evaluate the selected model efficiency for estimating anti-inflammatory drugs’ solubility in

supercritical CO . The ability of the fabricated intelligent model to recall the physical-based behavior of the anti-inflammatory drug in the supercritical fluid

(variation of drug solubility by the operating conditions) has also been inspected in the present section.

Smart models’ construction

The present research employs five types of artificial neural networks (MLPNN, CFNN, RNN, GRNN, and RBFNN), three support vector regression kinds (LSSVR-

L, LSSVR-P, and LSSVR-G), and four hybrid neuro-fuzzy approaches (ANFIS2-H, ANFIS2-BP, ANFIS3-H, and ANFIS3-BP) for simulating the anti-inflammatory

drugs’ solubility in the supercritical CO . All these intelligent tools have their own unique features required to be appropriately determined. Table 3 expresses

both fixed and tunable elements of the applied machine learning methodologies in the present research. This table also indicates the range of the tunable

features of the intelligent paradigms during the trial-and-error process. The last column of Table 3 shows the numbers of the constructed models for all

individual smart categories. Cumulatively, 2150 intelligent estimators have been fabricated during the development stage.

Table 3 Complete information about 2150 constructed computational techniques by the trial-and-error procedure.

Training process

The actions followed to adjust hyperparameters of machine learning methods is known as the training process . This process utilizes historical data of a

given phenomenon and an optimization algorithm to perform this duty. The literature has already compared the accuracy and computation time of some

well-known training algorithms engaged in the training stage of machine learning methods . The training stage begins with randomly generated

hyperparameters. The estimated targets have been obtained by entering independent variables into an intelligent estimator. The deviation between the

calculated and actual values of the dependent variable is considered an objective function of the optimization algorithm. Indeed, the optimization algorithm

continuously updates the hyperparameters of the machine learning method to minimize the objective function or at least reduce it as much as possible. The

training stage finishes when the maximum number of iterations is reached or the objective function converges to the prespecified value .

A trained machine learning method is then possible to employ for estimating the target variable in unknown situations. All trained intelligent tools only

require the independent variables to do their duty.

It can be understood from Table 3 that the radial basis function and general regression neural networks, and support vector regression benefit from the

Gaussian function . Indeed, the first two models have the Gaussian-shape activation function, but the latest uses the Gaussian as the kernel function.

Smart models’ selection

In order to find the best structure of each smart method, it is necessary to quantize the prediction errors of the engineered models using appropriate

statistical criteria. Those models provided the lowest prediction errors finally selected as the best ones. In this way, it is also possible to determine the most

appropriate structural features. Table 4 presents the final twelve smart paradigms (one model per category) with the slightest prediction errors. This table also

displays the prediction errors of these selected models in terms of six uncertainty criteria (AAPRE%, MAE, RAE%, RRSE%, MSE, and R ). The calculated

uncertainties have been separately reported for the training and testing categories. Equations (2) to (7) express that only laboratory-measured ( ) and

calculated ( ) drug solubility, numbers of data (N), and the average value of solubilities ( ) are needed to quantize these accuracy criteria .
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Table 4 The best-selected property for the employed intelligent models and their related prediction accuracy.

Ranking analysis for finding the highest accurate smart model

The previous two sections applied a coupling technique based on the trial-and-error process and accuracy tracking to find the best topology of each smart

machine. Indeed, twelve models with the highest accuracy have been extracted from 2150 fabricated approaches.

The ranking technique is directed to find the most accurate estimator among these twelve smart methods. The outcome of performing the ranking technique

on the reported results in Table 4 has been plotted in Fig. 2. Indeed, AARPE%, MAE, RAE%, RRSE%, and R  with the same weight have been utilized for

conducting this ranking analysis. The GRNN and ANFIS2-H are the first ranked during the training and testing stages, respectively. On the other hand, the

worst model is the LSSVR-L, with the twelve ranking places for training and testing. The GRNN fails to extend its excellent ability in the training step to the

testing phase (it places at the fifth ranking). This finding may indicate the overfitting of the GRNN with the 216 hidden neurons and spread index of 1.3 × 

10 . The ANFIS2-H efficiency in the testing stage is better than its performance in the training stage (second and first rankings in the training and testing

phases). Figure 2 also indicates the performance of the selected intelligent approaches for the combination of the testing and training datasets.

Figure 2

Ranking orders of the selected intelligent strategies in the learning and testing steps as well as over the whole of the datasets (testing + training).

It can be easily realized that the hybrid neuro-fuzzy model trained by the hybrid optimization methodology (ANFIS2-H) has the highest accuracy among 2150

initially constructed models. As Tables 3 and 4 report, this hybrid neuro-fuzzy tool has the Subtractive clustering membership function, and its adjusted

cluster radius is 0.6111. This optimized topology machine provides AAPRE = 3.13%, MAE = 1.92 × 10 , RAE = 2.51%, RRSE = 4.06%, MSE = 2.58 × 10 , and R  

= 0.99919 for simulating twelve anti-inflammatory drugs’ solubility in SCCO .

Performance evaluation

This section concentrates on different graphical inspections to visually investigate the proposed ANFIS2-H’s performance. The cross-plot for calculated and

actual drug solubilities in the SCCO  have been separately depicted for the development (training) and validation (testing) stages in Fig. 3. The legend of
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Fig. 3 shows that the red hexagonal symbols show training subdivision, while the blue squared symbols are associated with the testing phase. Revisit the

reported results in Table 4 clears that the regression coefficients for the development and validation stages are 0.99915 and 0.99963, respectively. It is clear

that the constructed ANFIS2-H approach accurately estimated both databases, i.e., training and testing subdivisions.

Figure 3

The calculated versus experimental values of the anti-inflammatory drug solubility in supercritical CO .

Average values of solubility of the concerned anti-inflammatory drugs in the supercritical CO  for experimental measurements and ANFIS2-H predictions

have been illustrated in Fig. 4. This figure can readily approve a satisfactory agreement between actual measurements and the proposed model predictions.

Moreover, it can be seen that Ibuprofen and Naproxen are the most soluble and low soluble anti-inflammatory drugs in the SCCO . Nabumetone and

Phenylbutazone with an almost equal average solubility level are the subsequent high soluble drugs in the considered supercritical fluid.

Figure 4

Average values of the laboratory-measured and calculated drug solubility in the considered supercritical system.

The capability of the generated ANFIS2-H with the optimized topology for estimating the phase equilibria of all possible drug/SCCO  systems has been

depicted in Fig. 5. This figure exhibits the model’s capability in terms of AAPRE%. It can be seen that the drug/SCCO  phase equilibria are simulated with the

AAPRE ranges from 1.04% (Phenylbutazone) to 6.05% (Nabumetone). As mentioned earlier, an overall AAPRE of the developed ANFIS2-H for predicting 254

solubility datasets is 3.13%. It should be noted that an AAPRE of lower than 10% is an acceptable accuracy from the modeling perspective. Meanwhile, the

highest observed uncertainty for predicting the Nabumetone solubility in supercritical carbon dioxide may be associated with either accompanied

measurement error in experimental data or ANFIS2-H inability to estimate the Nabumetone/SCCO  equilibrium accurately.

Figure 5
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The ANFIS2-H uncertainty in terms of AAPRE for estimating the phase equilibria of all drug/SCCO  systems.

Investigating the physical-based ability of the ANFIS2-H

The solubility of anti-inflammatory drugs in the given supercritical fluid is affected by the operating conditions, i.e., pressure and temperature. This physical-

based behavior is investigated from experimental and modeling perspectives. Indeed, this section explores the ability of the designed NAFIS2-H model for

correct tracing this type of behavior.

The variation of Fenoprofen solubility in the supercritical CO  by the isobaric temperature alteration has been shown in Fig. 6. This figure states that the

ANFIS2-H successfully understands and persuades the physical behavior of the Fenoprofen/SCCO  system at different operating conditions. Moreover, this

figure explains that the Fenoprofen solubility in the concerned supercritical fluid increases by increasing pressure as well as temperature. The positive effect of

the temperature on the drug solubility improves by increasing the pressure. It can be claimed that the highest amount of solubility in the SCCO  is achievable

at the maximum allowable pressure and temperature.

Figure 6

Phase behavior of the Fenoprofen/SCCO  binary system in different operating conditions.

It is worth noting that all other anti-inflammatory drugs also show a similar response to the alteration of the pressure/temperature. These experimental and

modeling discoveries fully agree with the previously anticipated results by the relevancy analysis (“Experimental data for anti-inflammatory drug solubility in

SCCO ” Section).

Endothermic drugs’ dissolution in the supercritical carbon dioxide may be responsible for the increasing effect of the temperature. On the other hand,

increasing the pressure increases the mass driving force to transfer the drug’s molecules to the supercritical phase. Increasing the density of the supercritical

fluid by increasing the pressure may be seen as another responsible for this observation.

The influence of isothermal pressure alteration on the Tolmetin dissolution in carbon dioxide in the supercritical state has been exhibited in Fig. 7. Excellent

compatibility between laboratory-measured data points and ANFIS2-H predictions is observable from this figure. Like the previous analysis, the Tolmetin
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solubility in the SCCO  continuously intensifies by raising pressure or temperature. It can also be observed that the effect of pressure on the drug solubility at

high temperatures is stronger than the lower ones.

Figure 7

Experimental and modeling tracking of the pressure–temperature phase behavior of the Tolmetin/SCCO  system.

As previously stated, the drug type also affects the magnitude of the solubility in supercritical CO . The y -pressure profiles of several anti-inflammatory

drugs in the presence of CO  in the supercritical state have been presented in Fig. 8. This figure shows outstanding compatibility between laboratory-

measured information and those results calculated by the designed ANFIS2-H machine. Indeed, the proposed estimator easily distinguishes/discriminates the

solubility of different anti-inflammatory drugs in the SCCO . This figure easily justifies the gradual increase of the anti-inflammatory drugs’ solubility by

equilibrium pressure.

Figure 8

The way that anti-inflammatory drug solubility in supercritical CO  changes by the pressure (T = 313.15 K).

Analyzing data validity

Machine learning strategies gain their knowledge from the historical behavior of a concerning phenomenon (here, anti-inflammatory drug solubility in CO  at

supercritical state). Experimentations have the highest importance level to provide machine learning strategies with such insights. On the other hand, the

laboratory-measured or real-field historical data is inevitably poisoned by outliers . The measurement error, instrument’ wrong calibration, and

environmental side effects on the experimentation are the primary sources of the outlier . If the outlier information highly poisons an experimental databank

used for model development, the reliability of the constructed approach is under question. Hence, the leverage tactic is suggested to inspect the validity of

the experimental data . This tactic plots the standard residual (SR) against the Hat index (H) to find valid as well as suspect information. Equations (8) to (11)

define the formula of these variables.
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here, RE  and SD represent the average value of the residual error and standard deviation, respectively.

The consequence of applying the leverage tactic on the gathered database for anti-inflammatory drug-SCCO  systems has been published in Fig. 9. Only one

segment of Fig. 9 is valid, and all other five parts are suspect. This tactic confirms that 244 out of 254 experiments are valid, and the outlier may poison only

less than four percent of the historical datasets. The accomplished analysis in this stage reveals that the collected databased used for model construction is

mainly valid. Thus, the proposed ANFIS2-H is solely allowed to be used for estimating anti-inflammatory drug solubility in supercritical CO  from molecular

weight, melting temperature, pressure, solvent density, and temperature.

Figure 9

Analyzing the laboratory-measured solubility data for identifying valid and suspect information.

Conclusion

This study systematically compared the prediction accuracy of 2150 intelligent estimators from three different categories (artificial neural networks, hybrid

neuro-fuzzy, and support vector regression) to estimate anti-inflammatory drug solubility in supercritical CO . The conducted comparisons approved that the

adaptive neuro-fuzzy inference system with the subtractive clustering membership function (ANFIS2-H) has the highest accuracy for the considered objective.

The cluster radius of this ANFIS2-H model adjusted by the hybrid optimization algorithm is 0.6111. The ANFIS2-H model estimated 254 laboratory-measured

solubility data with the AAPRE = 3.13%, MSE = 2.58 × 10 , and R  = 0.99919. Furthermore, the AAPRE associated with each NSAID-SCCO  phase equilibrium

ranges from 1.04 to 6.05%. In addition, the LSSVR with the linear kernel function shows the worst predictive performance for estimating the NSAID’s solubility

in the SCCO . The relevancy analyses performed by three diverse scenarios justified that increasing the drug’s molecular weight and melting temperature

decreases their solubility in supercritical CO . In addition, experimental observations, modeling findings, and relevancy analyses indicated that increasing

pressure, temperature, and SCCO  density raise the drug solubility in supercritical solvents. The leverage methodology showed that only ten datasets are

potential outliers, and all other experiments have been conducted on a valid basis. Both modeling and experimental observations clarified that the maximum

and minimum tendency of the supercritical CO  is devoted to the Ibuprofen and Naproxen drugs, respectively. Coupling the developed intelligent scenario

with an optimization technique to precisely locate the operating conditions that maximize each anti-inflammatory drug’s solubility in supercritical carbon

dioxide may be considered as a next research step in this field.
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