

In the name of GOD

Linear vibration forced viscous damper

Report from a laboratory experiment conducted on?? 17-may-17 As part of vibration lab

Hamed Mahmoudian

http://amozeshrayegan.blog.ir

19 may 2017

Abstract:

Reviews impact damper and the frequency of the excitation force of amplitude and phase.

Gain and phase response curves against the frequency ratio.

Compare the experimental curves with a degree of freedom system frequency response theory.

Table of Contents

Abstract:i		
Table of Contentsii		
1.	Introduction and Background	
2.	Theory	
3.	List of Equipment Used	
4.	Procedure	
5.	Data	
6.	Discussion of Results	
7.	Conclusions	
8.	References	
9.	Appendix	Error! Bookmark not defined.

1. Introduction and Background

As you know, vibration equation of a dynamical system consisting of the mass, spring and damper

Figure 1-1 is as follows:

Mx + cx + kx = F(t)

General solution (vibration): Public solve the above equation (Equation call homogeneous without input) is as follows: Where A and B are constants determined from initial conditions. The roots of the characteristic equation are equal to the following values:

2. Theory

$$s_{1,2} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{k}{m}}$$

The definition of natural frequency and critical damping as follows:

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$c_c = 2\sqrt{km} = 2m\omega_n$$

As well as a dimensionless number defined as damping ratio (the ratio of actual damping damping system

Critical):

$$\xi = \frac{c}{c_c}$$

3. List of Equipment Used

The differential equation and the roots of the characteristic equation, terms and Expressed:

$$\ddot{x} + 2\xi \omega_n \dot{x} + \omega_n^2 x = \frac{1}{m} F(t)$$
$$s_{1,2} = (-\xi \pm \sqrt{\xi^2 - 1})\omega_n$$

4. Procedure

1 - Get tough spring, a weight of 800 grams and add to the junction of the bar springs

The static deflection of the beam read.

2 - Obtain the natural frequency of the system, the system Remove Mercury from

And drop off balance. Measure and record time of 10 swings.

3 Quantity mass and radius of the measure misalignment.

4 - To pass, while oil closed pores within 2.0 meters of the Lula install.

Prepare a paper record vibrations on the device. Meanwhile, place the disc on the screen holes Registration phase difference however you like.

5 - To get back to the low-speed ratio and engine speed by counting the number of times the disc Get in 30 seconds.

6 - Engine to deliver values in Table 1 and using the recorded vibrations, scope and

After reaching the stationary conditions of phase vibrations measure.

Private solutions (forced vibrations): By applying a force to the harmonic spring-mass system 7 Part 6 identically to pass through the pores, where the oil damper is open and the non-amortized

Repeated here. (Tables 2 and 3. (

8 dimensions needed to complete the tests measure here.

And damper Figure 1-1 in the equation of motion is as follows:

 $m\ddot{x}+c\dot{x}+kx=F_0\sin\omega t$

$$\ddot{x} + 2\xi \omega_n \dot{x} + \omega_n^2 x = \frac{1}{m} F_0 \sin \omega t$$

F0 is the maximum force. Private solve the equation

Where \Box input frequency (or frequency stimulation)

Above or amplitude of the vibrations of the system forced (after amortization of transient response) is as follows:

5. Data

 $x(t) = X \sin(\omega t + \varphi)$

Where X is the maximum amplitude and the phase difference between the call and input \Box obtained from the following formula:

$$X = \frac{F_0}{m \omega_n^2 \sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}}$$
$$\phi = tg^{-1} \left(\frac{2\xi \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

6. Discussion of Results

By defining the scope of force as a relationship without fluctuation range is obtained for the following:

$$\frac{mX}{Mr} = \frac{\left(\frac{\omega}{\omega_n}\right)^2}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(2\xi\frac{\omega}{\omega_n}\right)^2}}$$
$$\frac{mX}{Mr} = \frac{\left(\frac{\omega}{\omega_n}\right)^2}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(2\xi\frac{\omega}{\omega_n}\right)^2}}$$

7. Conclusions

The apparatus is the same universal frame includes the following sections:

1 -Tyr rigid at one end by a hinge joint and the other end connected to the frame by spring Helix with flexibility coefficient k is connected to the upper part.

2 - By a factor of c, which can be installed in different parts of the beam resulting in a loss factor The system can be changed by it. The c

oefficient of damper by opening and closing

For in it is adjustable valves.

3 - The electric motor is mounted on the beam and discs sideways into the era now. This Disks are asymmetric because of a hole in one side and thereby turning on the engine, a driving force in the direction perpendicular to the beam harmonic is created.

4 -Device recorded vibrations by a layer of paper and synchronous motors with constant speed Moved and installed by the AA at the free end of July, the vibration is recorded.

5 -Device registration phase difference as follows:

Stereoscope external device key to put the device in front of the screen labelled We take. Each circuit connecting a flash stereoscope (frequency driving force) is struck

Shining it on the screen with circular, the phase shift can be

8. References

Book

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=12&ved=0ahUKEwiCifi c2qjUAhXIcRQKHeLNB9oQFghoMAs&url=http%3A%2F%2Fsv.20file.org%2Fup1%2F541_0 .pdf&usg=AFQjCNGNphLg_X55M7i7uf6b7SV363Fyqg&sig2=IvZ4WopWguWTarKktUsNvg http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/vibrations_forced/vibration s_forced.htm