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a b s t r a c t

Estimating the number of people present in an image has many practical applications including visual
surveillance and public resource management. Recently, regression-based methods for people counting
have gained considerable importance, principally due to the capability of these methods to handle
crowded scenes. However, the principal drawback of regression-based methods is to find an optimal set
of features and a model, which is usually dependent on the crowd density. Encouraged by the recent
success of sparse representation, here, we develop a robust and scalable people counting method. Sparse
representation allows us to capture the hidden structure and semantic information in visual data and
leads to faster processing algorithms. In order to reduce the complexity of solving l1�minimization
problem, which resides at the heart of the sparse representation, a dimensionality reduction method
based on random projection is employed. The sparse representation framework provides new insight
that if sparsity in the classification problem is properly harnessed, feature extraction is no longer critical.
So, in addition to several hand-crafted features, we exploit the features obtained from pre-trained deep
Convolutional neural network and show these features perform competitively. Further, to render the
proposed method user friendly, we employ a semi-supervised elastic net to automatically annotate
unlabelled data with only a handful of user-labelled image frames. Our semi-supervised method exploits
temporal continuity in videos. We use extensive evaluations on the crowd analysis benchmark datasets
to demonstrate the effectiveness of our approach as well as its superiority over the state-of-the-art
regression-based people counting methods, in terms of accuracy and time.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of the number of people in a scene is a topic of
significant interest in areas such as safety and security, resource
management, urban planning and scheduling public transporta-
tion systems. Literature on people counting includes three con-
ceptually different techniques: counting by people detection,
counting by clustering and counting by regression.

In the counting by a detection technique [1,2], a classifier is
trained using the common features of pedestrian training images,
which usually include Haar-wavelets or histogram of oriented
gradients (HOG) [3]. A trained classifier is then applied in a sliding
window fashion across the whole image space to detect pedestrian
candidates. The detection performance can be further improved by
adopting a part-based detection technique or tracking validation
during frames. But, as the crowd becomes larger and denser,

detection and tracking tasks become impractical due to occlusions.
An alternative way is counting by clustering [4,5] which consists of
the steps of identifying and tracking visual features over time. This
technique assumes a crowd to be composed of individual entities,
each of which has a unique yet coherent motion pattern that can
be clustered to estimate the number of people. However, it needs
sophisticated trajectory management and in crowded environ-
ments, coherently moving features usually do not belong to the
same person. The counting by the regression technique [6,7]
counts people by learning a direct mapping from low-level image
features to the number of people by the use of supervised machine
learning algorithms. A popular approach is to extract several
global features with complementary nature from crowd segments
and combine them to form a bank of features and then a
regression function is trained to predict the people count. This
technique avoids segmentation/detection of individuals and esti-
mates the crowd density based on a holistic and collective
description of crowd patterns. Although counting by regression
is feasible for crowded environments and could achieve promising
results, it still suffers from serious weaknesses. In particular, Loy
et al. [8] reveal that the optimal feature set is different in sparse
and crowded scenes. In fact, the number of features carried by one
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pedestrian is heavily affected by camera perspective and crowd
density, also it is observed that different features can be more
important given various crowdedness levels. In addition, their
evaluations show that the actual performance of a regression
model can be quite different from what one may anticipate,
subject to the nature of data, especially when it is applied to
unseen crowd density.

Unlike regression techniques, our proposed method based on
sparse representation, does not need to select either the optimal
feature set or the regression model. The main idea behind sparse
representation is, if a collection of representative samples are
found, we should expect that a typical sample has a very sparse
representation with respect to such a learned basis. In other
words, given sufficient diversity in the training images, the new
test image can be well represented as a sparse linear combination
of the training set. This sparse representation would naturally
encode the semantic information of the image [9]. In order to
reduce the time complexity of finding the sparse representation,
random projection is utilized as our choice of dimensionality
reduction method.

It is commonly believed that the Sparse Representation-based
Classification (SRC) requires a rich set of training images of every
class that can span the variation under testing conditions. To fulfill
this requirement, we use a semi-supervised learning framework to
avoid exhaustive manual image annotation. Extensive experimen-
tal results suggest that our proposed method is fast, accurate and
scalable to large-scale datasets.

The remainder of the paper is organized as follows: the theory
of sparse representation is summarized in Section 2. Section 3
shows how to apply general classification framework to people
counting task. In Section 4 we discuss how we exploit semi-
supervised regression to deal with few labelled training samples
effectively. Experimental setup is explained in Section 5 and
results and discussion are presented in Section 6, followed by
conclusion remarks in Section 7.

2. Sparse representation

Sparse representation (SR) has proven to be an extremely power-
ful tool for acquiring, representing, and compressing high-
dimensional signals. This success is mainly due to the fact that
important classes of signals such as audio and images have naturally
sparse representations with respect to fixed bases e.g. Fourier and
Wavelet. Moreover, in recent years, efficient and fast algorithms have
been proposed for computing such representations [9]. The problem
solved by sparse representation is to search for the most compact
representation of a signal (image) in terms of a linear combination of
relatively few base elements in a basis or over-complete dictionary. If
the optimal representation is sufficiently sparse, it can be efficiently
computed by greedy methods or convex optimization. Typically, the
sparse representation technique is cast into an l1�minimization
problem, which is equivalent to the l0�minimization under some
conditions. This l0� l1 equivalence has provided computational
convenience as evidenced by Compressed Sensing (CS) [10].

In the recent years, variations and extensions of l1�minimization
have been applied to many computer vision tasks, including face
recognition [11], background modelling [12] and image classification
[13]. In almost all of these applications, using sparsity as a prior leads
to the state-of-the-art results [9]. The ability of sparse representation
to uncover semantic information derives in part from a simple but
important property of the data: although the images (or their
features) are naturally very high dimensional, in many applications
images belonging to the same class exhibit degenerate structure.
That is, they lie on or near low-dimensional subspaces or submani-
folds [9]. So, if a collection of representative samples are found, we

should expect that a typical sample has a very sparse representation
with respect to such a (possibly learned) basis. Such a sparse
representation, if computed correctly, could naturally encode the
semantic information of the image [9]. SRC seeks a sparse represen-
tation of the query image in terms of the over-complete dictionary
and then performs the recognition by checking which class yields the
least representation error. SRC can be considered as a generalization
of Nearest Neighbor (NN) and Nearest Feature Subspace (NFS).
Generally speaking, Nearest Feature based Classifiers (NFCs) aim to
find a representation of the query image, and classify it to the best
representor. According to the mechanism of representing the query
image, NFCs include Nearest Neighbor, Nearest Feature Line (NFL),
Nearest Feature Plane (NFP) and Nearest Feature Subspace. More
specifically, NN is the simplest one with no parameters, which
classifies the query image to its nearest neighbor. NN, NFL and NFP
all use a subset of the training samples with the same label to
represent the query image, while NFS represents the query image by
all the training samples of the same class. In general, the larger
samples lead to better stability of a method. The most generalized
classifier is SRC, which considers all possible supports (within each
class or across multiple classes) and adaptively chooses the minimal
number of training samples needed to represent each test sample. In
the next section, we show how this sparse representation can be
used in people counting application.

3. People counting based on sparse representation and
random projection

3.1. People counting as sparse representation

Suppose that we have a set of labelled (annotated) training
images from a pedestrian dataset where the number of people
present in each image is given. We assume these labelled training
images fxi; lig are from C different classes. Here, class (label) li is
equal to the count, i.e. number of people in the image xiARm,
where xi is the vector representation of the image, which could be
its raw pixels or features computed from the raw pixels. Given
sufficient training samples from the ith class, any new test sample
xtestARm from the same class, will approximately lie in the linear
span of the training samples associated with class i.

xtest �Σfjj lj ¼ igxjαj ¼ Xiαi ð1Þ

where XiARm�ni concatenates all of the images of class i. Since the
class label of the test image is initially unknown, we would form a
linear representation similar to Eq. (1), now in terms of all training
samples. We define a new matrix (dictionary) Ψ ARm�n for the
entire training set as the concatenation of all n¼Σ ini training
samples of all C classes:

xtest ¼ ½X1;X2;…;XC �α¼ΨαARm ð2Þ
where

α¼ ½…;0T ;αT
i ;0

T ;…�T ARn ð3Þ
α is a coefficient vector whose entries are zero except those
associated with the ith class. We notice that α is a highly sparse
vector and on average, only a fraction of 1=C coefficients are
nonzero and the dominant nonzero coefficients in the sparse
representation α reveal the true class of test image. Indeed, in
the test phase, we wish to represent a new unlabelled image in a
Ψ-dependent space in which the image has a sparse representa-
tion. In general, this vector is the sparsest solution to the system of
equations xtest ¼Ψα which is found by solving the following
optimization problem:

αn ¼ argmin‖α‖0 s:t: Ψα¼ xtest ð4Þ
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While the search for a sparse solution to a linear system is a
difficult problem in general, foundational results in the theory of
sparse representation show that the sparsest solution can be
exactly recovered by solving a tractable optimization problem
[14]. This is achieved by seeking α as the unique solution to the
optimization problem:

αn ¼ argmin‖α‖1 s:t: ‖Ψα�xtest‖2rϵ ð5Þ
where ϵ is the noise level in the observation. Eq. (5) can be
rewritten as follows using a Lagrangian multiplier:

αn ¼ argmin‖Ψα�xtest‖22þλ‖α‖1 ð6Þ
Fig. 1 shows an example of vector α recovered by solving Eq. (6).

3.2. The role of feature extraction

Conventional visual representations for creating the dictionary
Ψ, include local and global image descriptors. Local descriptors
like SIFT [15] are found on the premise that images can be
characterized by attributes computed on regions of the image;
however, global (whole image) descriptors do not require any
keypoint detection. They have the ability to characterize an entire
image with a single vector. Also, they are fast to build and efficient
to store. Moreover, the previous studies [16] show that global
descriptors are highly effective in describing the crowd density
when enough training samples are involved. Gist [17] represents
an image in terms of its responses to a bank of Gabor filters with
different frequencies and orientations. An image is divided into
tiles and the final feature descriptor would be the mean response
of tiles to steerable filters. HOG [3] counts the occurrences of
gradient orientation in localized portions of an image. It is a
window based descriptor densely sampled over all image points;
the window is divided into a square grid and the distribution of
edge orientations within each cell is computed.

Recently, in contrast to the hand-crafted features, learnt image
features with deep network structures have shown great potential
in various vision recognition tasks. Among these architectures, one
of the greatest breakthroughs in image classification is the deep
Convolutional Neural Network (CNN) [18], which has achieved the
state-of-the-art performance in the large-scale object recognition
task. Thanks to an optimized GPU implementation and new
regularization techniques, Krizhevsky et al. [18] successfully
applied CNNs to classification on the ImageNet dataset [19]. The
feature representation learned by this network shows excellent
performance not only on the ImageNet classification task it was
trained for, but also on a variety of other recognition tasks [20,21].
In this paper, we would evaluate whether features extracted from
a pre-trained CNN can be reused to the people counting task. To
the best of our knowledge, this is the first attempt to employ deep

learning to solve the pedestrian counting problem. For training
CNNs and subsequent feature extraction, we use the DeCAF code
[20] and instead of training a network from scratch, we use a pre-
trained model on ImageNet. We refer the reader to [18] for more
details on the architecture and training algorithm, which we
followed exactly. As the feature descriptor, we use DeCAF7; the
features taken from the final hidden layer, i.e. just before propa-
gating through the final fully connected layer to produce the class
predictions.

3.3. Dimensionality reduction

One major obstacle in real-world large-scale people counting is
the large scale of the training data and the high dimensional
feature vectors. A classical technique for addressing the problem of
high dimensionality is to project the data into a much lower-
dimensional feature space Rdðd5mÞ, such that the projected data
still retain the useful properties of the original images. From
Matten et al.'s study [22] one may infer that, all non-linear
dimensionality reduction techniques require the optimization of
some parameters and some of them suffer from memory complex-
ity issue. Also, when mon, where m is the feature dimension and
n is the number of training data, non-linear techniques have
computational disadvantages compared to the classical linear
algorithm, such as principal component analysis (PCA) [23]. Thus,
we selected PCA as the baseline dimensionality reduction techni-
que for our application; however, PCA is still expensive for high-
dimensional and large-scale image data; the computational com-
plexity of PCA is Oðm2nþm3Þ due to the matrix computation and
SVD eigenvalue decomposition [24]. A statistically optimal way of
dimensionality reduction is to project the data onto a random
lower-dimensional subspace that captures as much of the varia-
tion of data as possible. This technique is called Random Projection
(RP), which is computationally efficient and simple. In RP, the
original m-dimensional data is projected to a d-dimensional sub-
space through the origin, using a random matrix Φd�m whose
columns have unit lengths. The key idea of random projection
arises from the Johnson–Lindenstrauss lemma [25]: if points in a
vector space are projected onto a randomly selected subspace of
suitably high dimension, then the distances between the points
are approximately preserved. In contrast, PCA does not guarantee
(approximate) distance preservation between data point pairs.
Random projection is computationally very simple; its complexity
is bounded by O(mdn) and this could be even less when the data
matrix is sparse [24]. Applying such a linear projection on training
and test images, gives us a new observation:

~xtest ¼ΦxtestARd

~Ψ ¼ΦΨ ARd�n ð7Þ
Then the sparsest solution to α, would be obtained via a lower
complexity convex optimization:

αn ¼ argmin‖ ~Ψα� ~xtest‖22þλJαJ1 ð8Þ
Since d5m, the complexity is significantly reduced. RP offers clear
benefits over PCA; the choice of projection does not depend on the
data, it is much faster and as the projected dimension is decreased
and drops below a threshold, RP offers a gradual degradation in
the performance; however, the degradation suffered by PCA is not
necessarily so gradual. At smaller dimensions, PCA distorts the
data and this is mainly because the performance of PCA is
dependent on the sum of omitted eigenvalues [24]. The choice of
random matrixΦ is one of the key points of interest. The elements
of Φ are often Gaussian distributed, i.e. the entries are indepen-
dently sampled from a zero mean normal distribution Nð0;1Þ and
each row is normalized to unit length (makes rows orthogonal),
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Fig. 1. Representation of a test image as sparse linear combination of the
training set.
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and this is usually called Gaussian random matrix [11]. Another
eligible family is partial Fourier, or more generally, random rows of
any orthonormal matrix.

3.4. Count estimation

Once the sparse vector αn has been recovered by Eq. (8), we can
estimate the count for the unlabelled test image. This step can be
regarded as class recognition in usual object classification
approaches. Ideally nonzero entries in αn will all be associated with
single class and we can easily assign the test sample to that class.
However, noise and modelling error may lead to small nonzero
entries associated with multiple (other) classes. One may design
different classifiers to resolve this issue. For instance, we can simply
assign xtest to the class with the largest (or few largest) entry in αn.
However, such heuristics do not harness the subspace structure
associated with images [11]. An alternative way is assigning xtest to
the class with the most contribution in αn i.e. the one with the most
number of nonzero coefficients in sparse vector αn. We know that
αn ¼ ½αT

1;α
T
2 ;…;αT

C �T , then we would compute the following ratio for
each class i:

ri ¼
‖αi‖1
‖α‖1

ð9Þ

And then assign xtest to the label i that maximizes ri [14]. A slightly
more sophisticated schema is, we classify xtest based on how well the
coefficients associated with all training samples of each class
reproduce xtest. We do it by comparing how well the different parts
of the estimated coefficients αn represent xtest and the minimum of
the representation error or the residual error is then used to identify
the correct class [11]. For each class i, let δi as a function that selects
the coefficients associated with ith class. For αARn, δiðαÞARn is a
vector whose only nonzero entries are associated with class i. Using
only the coefficients associated with the ith class, one can approx-
imate the given test sample xtest as bxtest ¼ΨδiðαnÞ. We then classify
xtest to the class that minimizes the residual error between xtest andbxtest:
min

i
resiðxtestÞ ¼ ‖xtest�δiðαnÞ‖2 ð10Þ

3.5. Sparse solution via fast l1-minimization

Although dimensionality reduction reduces the time complexity
significantly, finding an efficient and fast way to solve Eq. (8) would be
extremely beneficial. While the l1-minimization problems associated
with CS can be formulated as a linear program and readily solved by
classical methods in convex optimization, such as interior-point
methods [26,27], the computational complexity of those classical
second-order methods is often too high for high-dimensional image
data. These methods are accurate but problematic because of their
need to solve large systems of linear equations to compute Newton
steps and suffer from poor scalability for large-scale real-world
problems such as people counting. Due to a large number of real
applications in various fields, many new efficient accelerated algo-
rithms have been proposed over the past decade. In this section we
describe just our selected algorithms for solving the optimization
problem for the people counting application and we draw extensively
on the survey [28], which compares the performance of different l1-
minimizers in the context of face recognition. Homotopy is a fast l1-
minimization method for sparse optimization. This approach was first
studied in the context of lasso, which inspired a solution to the
forward stagewise linear regression problem called LARS [29] and
eventually led to the Homotopy algorithms for basis pursuit in [30,31].
Donoho et al. [31] showed that the Homotopy runsmuchmore rapidly
than general-purpose solvers when sufficient sparsity is present. If the
underlying solution has only d nonzeros, the Homotopy method

reaches that solution in only d iterative steps. The computational cost
of the Homotopy for l1-minimization is bounded by Oðdm2þdmnÞ and
this is a significant improvement from the interior-point methods.
According to the computational cost and extensive experiments
provided in [28], although the Homotopy is not a fast method for
recovering non-sparse signals, it performs very fast and accurate when
the signal is extremely sparse.

Inspired by iterative thresholding ideas, a great number of first-
order methods are also available. These methods are more efficient
and more scalable which can solve very large-scale l1-minimization
problems to medium accuracy. A special class of first-order methods
is called Augmented Lagrangian Methods (ALM) [32] in which their
basic idea is to eliminate equality constraints by adding an appro-
priate penalty term to the cost function that assigns a very high cost
to infeasible points. The goal is then to efficiently solve the uncon-
strained problem using an accelerated gradient algorithm [14]. ALM
methods differ from other penalty-based approaches by simulta-
neously estimating the optimal solution and Lagrange multipliers
iteratively. Compared to the classical interior-point methods, ALM
generally takes more iterations to converge to the optimal solution;
however, the biggest advantage of ALM is that each iteration is
composed of very elementary matrix–vector operations as against
matrix inversions or Gaussian eliminations used in the interior-point
methods. The principles of ALM can also be applied on the dual
problem of Eq. (8) and according to comprehensive comparisons
provided in [28], the dual ALM (DALM) algorithm performs the best
in the face recognition experiment, and scales well in terms of the
number of subjects. Computational time of DALM is dominated by
Oðm2þmnÞ that makes it one of the best l1-minimization methods
[28]. In brief, the Homotopy and DALM solvers provide a viable
solution to real-world; time-critical applications such as people
counting in which speed and scalability both play an important role.

4. Undersampled SRC

SRC shows powerful discriminative power when the training
samples are sufficient to construct an over-complete dictionary. It
is commonly believed that SRC always requires a rich set of
training images of each class that can span variations of that class
under testing conditions; however, without adequate training
samples as it is common in the real-world applications, the
dictionary is too small to sparsely represent the test sample,
yielding poor classification performance [33]. If the dictionary
consists of few images from each class, the nonzero coefficients of
αn would not concentrate on the correct class. This happens when
we cannot afford to obtain sufficient training samples (e.g bio-
metric datasets) or either when the collected training samples are
unlabelled (e.g. pedestrian datasets). For the former, some adap-
tive SRC methods have been proposed recently to deal with a small
dictionary using an auxiliary interclass variant dictionary to
represent the possible variations between the training and test
images for face recognition task [34] and constructing a graph
Laplacian which encodes the sparse representation relationship of
all samples [33]. In the case of latter, obviously increasing the
quantity and diversity of hand-labelled images improves the
performance of SRC; however, manual image annotation is a
tedious and labor-intensive task. Fortunately, in pedestrian data-
sets, there are a large number of unlabelled frames which provide
useful topological information. To exploit such an intrinsic dis-
tribution structure, we develop a semi-supervised learning frame-
work; in which instead of exhaustively annotating every single
frame, only a handful of frames are selected for annotation
automatically and actively. Here, the goal is to provide sufficient
labelled training samples for SRC via automatic image annotation,
which is basically labelling images with number of people in them
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in our application. We take an approach similar to [35] which uses
Semi-Supervised Elastic Net (SSEN) regression to predict frame
count, by incorporating correlation of sequential unlabelled frames
to penalize sudden prediction change. We then develop an
iterative procedure in which SSEN predicts the counts on the
unlabelled images and then the most confident unlabelled sam-
ples together with their predicted labels are added to enlarge the
training set. The labelling procedure would be repeated until
sufficient training samples are provided.

4.1. Elastic net

Elastic net (EN) is a novel shrinkage and selection method for
producing a sparse model with good prediction accuracy. It
encourages the grouping effect and elegantly handles the high-
dimensionality by reducing the redundant features which have less
relationship with the properties if pedestrians. Given a set of l labelled
samples fðxi; yiÞgli ¼ 1, where xiARm is the vector representation of the
image and yi is the corresponding label, EN optimizes the following
function:

β̂ ¼ argmin‖y�Xβ‖22þλ1‖β‖1þλ2‖β‖22 ð11Þ
where XARn�m is a stacked matrix of xis, yARn�1 is the concatenation
of yis and λ1 and λ2 are tuning parameters. To achieve the solution of
EN, let

Xn

ðnþmÞ�m ¼ ð1þλ2Þ�1=2 Xffiffiffi
λ

p
2I

 !
and yn

ðnþmÞ�1 ¼
y

0

� �
then Eq. (11) can be rewritten:

β̂n ¼ argmin‖yn�Xnβn‖22þγ‖βn‖1 ð12Þ
where γ ¼ λ1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þλ2Þ

p
; the detailed transformations can be found in

[36].

4.2. Semi-supervised elastic net

One common way to construct a semi-supervised algorithm is to
add unlabelled data as a regularization term. In SSEN, this term is
created by exploiting the sequential information among unlabelled
frames. More precisely, given a set of training data, we assume some of
them are labelled, L¼ fðxi; yiÞgli ¼ 1, but most of them are unlabelled,
U ¼ fxjglþu

j ¼ lþ1. The user would only label a few data points and the
rest of unlabelled training data will be annotated automatically using
the semi-supervised model. The goal is to learn a function from both
small minority L and vast majority U. Generally, we observe that in
most sequential frames, pedestrian quantities change slightly or even
remain unchanged. Tan et al. [35] used this fact to add a regularization
term to EN in order to penalize sudden prediction change between
neighboring frames. So we would have

β̂ ¼ argmin‖y�Xβ‖22þλ1‖β‖1þλ2‖β‖22þλ3B ð13Þ
where B¼ ‖Dβ‖22 and D is a matrix that each row is obtained by
difference of xis of neighboring frames. Like before, Eq. (13) can be
simplified as

β̂n ¼ argmin‖ ~y� ~Xβn‖22þγ‖βn‖1 ð14Þ
where

~X ðnþmþ JΩ J Þ�m ¼ ð1þλ2Þ�1=2

Xffiffiffi
λ

p
2Iffiffiffi

λ
p

3D

0B@
1CA and

~yðnþmþ JΩ J Þ�1 ¼
y

0
0

0B@
1CA

where JΩJ denotes the cardinality of neighboring frame setΩ which
is constructed from neighboring unlabelled frames. Eq. (14) is a lasso-
type function that is usually solved using the LARS method [29];
however it can be solved much faster and more efficiently by
Homotopy or DALM methods descried earlier. The problem of
optimally selecting a handful of labelled samples plays a key role in
improving annotation performance and saving human-labor. It is
believed that given a fixed number of labelling budget, the most
representative frames (in the sense of covering different crowd
densities/counts) are the most useful ones to label. This brings in a
chicken-and-egg problem [37], without labelling all frames, how does
one know which ones are representative? Intuitively, the diversity
between the selected frames should be as large as possible. Therefore,
we employ a simple but effective way; we perform a k-means
clustering on the samples and randomly select equal number of
frames from each class as the labelled training data. Then, we exploit
the sequential unlabelled frames to create matrix D and solving Eq.
(14). SSEN weights are used to predict the count on unlabelled images
and the most confident unlabelled instances with predicted labels are
added to the initial labelled training set. SSEN is re-trained on the
updated training set and all the steps would be repeated till enough
training samples being annotated.

5. Experimental setup

To evaluate the performance of the proposed method, we carry
out a series of experiments on two benchmark pedestrian data-
sets. The UCSD dataset [6], as the largest pedestrian dataset in
terms of number of frames, was collected from two viewpoints
overlooking a pedestrian walkway. Example frames from both
viewpoints are shown in Fig. 2. Peds1 is an oblique view inclu-
ding around 33,000 frames with a high people count (0–46) and
Peds2 is a side-view including 34,000 frames (0–15 people). Peds1
contains crowded scenes and is substantially more challenging
than Peds2 because of travelling bicycles, skateboarders and golf
carts. In order to evaluate the accuracy of estimations, two widely
used metrics are employed; Mean Absolute Error (MAE) and Mean
Squared Error (MSE):

MAE¼ 1
Ntest

ΣNtest
i ¼ 1 jbci�ci j MSE¼ 1

Ntest
ΣNtest

i ¼ 1ðbci�ciÞ2 ð15Þ

where ci and bci are the actual and estimated counts of ith frame
and Ntest is the total number of test frames. So, to perform the
evaluations, we need a reliable ground-truth as the actual counts;
however, in UCSD dataset, just the first 4000 frames of each
dataset have already been used for ground-truth annotation. So,
we exhaustively annotated the whole dataset on the same region
of interest.

In addition to UCSD dataset, we would consider another widely
used dataset for people counting; the PETS 2009 dataset [38] which
contains three parts showing multi-view sequences containing
pedestrians walking in an outdoor environment. This dataset
includes scenarios specifically created for a contest on people
counting and density estimation. In the challenge, authors are
required to report the number of individuals within specific region
of interest for each frame for dataset S1, view 1 only. Dataset S1 has
three parts; S1-L1, S1-L2 and S1-L3 and the task is to report the
people count within regions (R0, R1 and R2), (R1 and R2) and R1
respectively [39]. An example frame of different scenarios is shown
in Fig. 3, along with the three regions of interest. The ground-truth
was generated by manually counting people in the specified regions
at each sampled frame. Although PETS 2009 is not a large dataset; a
wide variety of methods have been proposed and tested for this
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competition and we would like to evaluate our proposed method
on this dataset as well.

6. Results and discussion

6.1. Crowd counting results on UCSD dataset

We conduct extensive experiments to validate our proposed
method in different scenarios. For all the experiments, training
samples are randomly selected from the pedestrian dataset and
the remaining ones are used for testing. Randomly choosing the
training set ensures that our results and conclusions will not
depend on any special choice of training data. In all the following
graphs, the errors are shown in a logarithmic scale. Firstly, we
examine the role of features for creating dictionary within our
framework. We compare the performance on using different types
of feature descriptors including Gist, HOG, CNN features obtained
by DeCAF and raw sub-sampled binary image. Fig. 4 shows the
MAE across various feature spaces in conjunction with five
different training set sizes including 10k, 15k, 20k, 25k and 30k
images on Peds1 and Peds2 datasets. According to this figure, Gist
has the best overall performance over all training sizes in both
datasets and it is closely followed by HOG and DeCAF. Interestingly

DeCAF works well; although not better than Gist and it confirms
the previous studies which claim that the activations invoked by
an image within the top layers of a large CNN provide a high-level
descriptor of the visual content of the image. These results suggest
that instead of learning a counting model from scratch in every
new scene, the labelled data from other scenes or even from a
complete different dataset could be exploited to compensate for
the lack of labelled data in the new scene. To put it differently, our
proposed people counting method is independent of both training
dataset and feature representation which means the choice of an
”optimal” feature transformation is no longer critical; even CNN
features trained on a different dataset, should perform as well as
any other carefully hand-engineered features. Furthermore, we
observe that all the descriptors gain from involving more training
samples. The reason is that, when we have more diversity in the
training images, the new test image can be well represented as a
sparse linear combination of the training set; which in turn leads
to lower estimation error. Fig. 5 displays the crowd count esti-
mates using 30k training images and Gist feature representation
on Peds1 dataset; these estimates track the ground-truth well in
most of the test set. As discussed earlier, in order to reduce the
complexity of solving l1�minimization problem, random projec-
tion is employed as a fast and simple method to project the data
into a much lower-dimensional space. Here, we demonstrate the

Fig. 3. PETS 2009 pedestrian dataset. (a) Regions of interest, (b) S1L1-1 Sequence, (c) S1L1-2 Sequence, (d) S1L2-1 Sequence, (e) S1L3-1 Sequence, (f) S1L3-2 Sequence.

Fig. 2. UCSD pedestrian dataset. (a) Peds1 and (b) Peds2.
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robustness of RP to preserve the similarities of the data points,
while reducing the original dimension, across different feature
representations in Fig. 6. We fix the training set size as 30k and use
the Gaussian random matrix for the projections. We can see that
Gist still performs the best in all the reduced dimensions in both
datasets; also the projected vectors retain their original perfor-
mance for up to even 90% reduction in the original dimension.
Surprisingly, RP preserves the similarity of feature vectors well
even when the data is projected to as low as 10% of original
dimensions. Using such an efficient dimensionality reduction
technique, the l1-minimization can be solved much faster without
losing too much accuracy. Our next experiment concerns with the
evaluation of RP vs. PCA as a baseline dimensionality reduction
technique, in terms of accuracy. Since Gist is the most reliable and
remarkable feature to represent the crowd density in our SR-based
counting method, we decided to continue the upcoming experi-
ments with it. Here, both RP and PCA are used to construct the
lower-dimensional space on different dimension fractions of Gist
using 30k training images; the accuracy (MAE) of the estimations
has been summarized in Fig. 7. It is observed that the error rate is
less affected using RP when dimension is reduced, in comparison
with PCA. This is mainly due to the fact that PCA is dependent on
the omitted eigenvalues, while RP continues to give accurate
results in lower dimensions. It seems that Gist feature descriptors
lie on a manifold that PCA is unable to handle it gracefully. We
should also note that RP has much less time complexity than PCA
which in total makes it the best candidate for dimensionality
reduction in our people counting task. We then study the
performance of two fast l1-solvers; Homotopy and DALM. We

evaluate the efficiency of these solvers on large training sets
including 10k, 15k, 20k, 25k and 30k images. In this experiment,
Gist feature descriptors of selected images are used to construct
the dictionary. The MAE rate of estimations can be observed in
Fig. 8. Homotopy produces smaller errors and outperforms DALM
in both datasets and converges in fewer steps. The objective of
next experiment is to compare different methods of count estima-
tion described in Section 3.3. It can be observed in Fig. 9that using
minimum residual error in Eq. (10) slightly outperforms using
maximization l1-ratio in Eq. (9); however, these two techniques
are both much better than averaging largest entries (peaks). In this
experiment, Gist feature descriptors of 30k images are used to
construct the dictionary.

6.2. Undersampled SRC

In all of the above experiments, we assumed that we have
sufficient labelled training samples, which is achieved via manual
annotation of the UCSD dataset. So as to significantly reduce the
amount of manual annotation and make our method much more
applicable in practice, we use SSEN which enables us to annotate
very few images. The goal of the following experiments is to
evaluate the effectiveness of exploiting semi-supervised learning
framework and especially SSEN for automatic labelling.

We start with a small dataset and choose l labelled samples
from the ground-truth (g) by performing k-means clustering on
the samples; then u sequential unlabelled frames are selected and
the rest of samples (g� l) is used as the test set. We evaluate the
inductive inference performance [37] of SSEN which is the error
rate on the ”unlabelled data in the test partition”. We examine the
effect of labelled and unlabelled data by measuring the MSE
performance across labelled set f10;50;100;200;400;600g given
unlabelled set f0;200;400;800;1000g on Peds1 and Peds2 data-
sets. Images are represented by their Gist feature descriptor and all
the λ parameters of SSEN are chosen by a 5-fold cross validation.
Fig. 10 shows clearly that when the number of labelled samples is
small, increasing the number of unlabelled samples remarkably
improves the annotation performance; which means that manual
labelling work can be greatly reduced without losing the perfor-
mance. We follow an iterative procedure aiming to obtain an
enlarged labelled dataset, in which we accept that the predictions
tend to be correct. During each iteration, the unlabelled samples in
the test partition are given predicted labels and then the most
confident unlabelled samples, together with their predicted labels,
are used to enlarge the training set. Ideally, these selected
unlabelled instances can finally help to learn a better classifier.
The learner is re-trained on the updated training set and the whole
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process iterates until stopping criterion is met; which in our case is
providing sufficient labelled samples for SRC. If SSEN wrongly
assigns labels to some unlabelled instances, the final performance
will be jeopardized due to the accumulation of mislabelled data.
For measuring the confidence of self-labelled samples, we utilizes
the information of the neighbors of each instance to identify and
remove the mislabelled examples; hence a less noisy training set is
obtained. Specifically in our application, the self-labelled samples
are sequential frames that pedestrian quantities of each frame in a
p-frame subset are the same or change slightly. So, any significant
change between the predicted counts of neighboring self-labelled

frames is considered as a mislabelled example. Once the possibly
mislabelled examples are identified, we simply discard them and
keeping the good ones intact and the filtered enlarged labelled
dataset would be used for the next iteration. It is worth noting that
we do not try to re-label the identified mislabelled examples
essentially in the next iteration. Since most of the neighbors of a
mislabelled example have been correctly labelled and moved to
enlarge the labelled training set; the sudden prediction change
could not be exploited any more due to the lack of neighbors, in
the next iteration. Alternatively, mislabelled examples would be
held out and annotated in the final iteration, in which our model
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Fig. 7. MAE rate of SR-based method using RP and PCA over reduced dimensions. (a) Peds1 and (b) Peds2.
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has been trained sufficiently with more confident labels of their
neighboring frames and would assign correct label to them with
high probability. In each iteration, 40% data are kept aside to
evaluate the performance of learned hypothesis, while the remain-
ing 60% data are partitioned into labelled set and unlabelled set
under the unlabel rate 75%, i.e. just 25% (of the 60%) data are used
as labelled examples while the remaining 75% (of the 60%) data are
used as unlabelled examples.

This iterative self-training labelling procedure is very beneficial
when the scale of initial labelled training samples is too small to
train SSEN with good generalization. Mislabelling of such large
amount of unlabelled data is unavoidable and SSEN or even any
other regression model would generate poor results. Since we
wish to keep the manual labelling effort minimum without
sacrificing accuracy, we start with a small labelled dataset, and
as the unlabelled training data sequentially arrives, we use SSEN to
predict the counts on them. The confident self-labelled samples
are added to the initial set and we treat them as labelled data;
consequently lack of enough labelled samples becomes less a
problem. One question maybe raised here; if iterative SSEN is a
reliable method for predicting frame count, why not use it to
annotate (and meanwhile estimate the counts) the whole dataset
rather than utilizing SSEN just for preparing the rich training set of
SRC? Although SSEN provides promising results on small datasets,
it is more prone to erroneous prediction on large-scale datasets in
comparison with SRC. Regression models, including SSEN, suffer
from serious problems such as poor tractability and expensive
training time, when they are generalized to large-scale datasets.
The iterative SSEN also needs couple of training iteration which
itself imposes more error and computational complexity.

Importantly, SSEN relies on the assumptions that the temporal
space is dense and abundant sequential unlabelled frames are
available; however this assumptions can be too stringent for many
real-world scenarios when continuous video recording is not
available.

We would like to examine the accuracy of the self-labelled
samples, so we repeat the SRC experiments this time with
predicted counts obtained by SSEN instead of the manual
ground-truth (actual counts). Tables 1 and 2 summarize the MAE
of supervised and semi-supervised SRC across five different train-
ing set sizes including 10k, 15k, 20k, 25k and 30k on Peds1 and
Peds2 datasets while using Gist and DeCAF feature representa-
tions. To have a fair comparison, the training and test partitions of
supervised and semi-supervised methods are kept similar in all
the experiments. Note, to achieve 30k labelled images of semi-
supervised SRC, just a total of 600 labelled images have been
initially used and then by exploiting iterative SSEN, the labelled set
would be enlarged gradually. Not surprisingly, the counting
accuracy is higher in the supervised SRC and this can be explained
by mislabelled examples and error accumulation; however, the
performance has not been affected significantly, confirming the
robustness of sparse representation to the noise introduced in the
self-labelling process. Gist still has the best overall performance in
the semi-supervised SRC over all training sizes in both datasets.

6.3. Comparison with other methods

To demonstrate the effectiveness of SR-based people counting
method on large-scale datasets, extensive comparative evaluations
are conducted against several popular methods. The goal of these
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experiments is to evaluate the capability of the available methods
to deal with large-scale datasets and verify their generalization
power. In all the upcoming experiments, training samples are
randomly selected from the datasets, then selected feature repre-
sentation is used to construct the dictionary and the rest of images
are used for testing purpose. For our proposed method, RP is then
employed and just 10% of original feature vector dimension is
used. Tables 3 and 4 compare the accuracy (MAE/MSE) of all the
following methods for estimating people count using different
training set sizes on Peds1 and Peds2 datasets respectively.

First, we compare our approach with a state-of-the-art counting
by the regression method. We select features and the regression
method that are both representative and promising in terms of
originally reported performance [6]. The combination of three type
of low-level global features has been widely used in the related
papers; Segment (e.g. area, perimeter), Edge (e.g. internal edge
length and orientation) and Texture (e.g. Entropy) features; which
we call them SET here. These features are extracted from crowd
segments, perspective normalised [6] and a feature vector is formed
by concatenating them which is used as the input for the regression

Table 2
Comparison of supervised and semi-supervised SRC on Peds2 dataset.

Method Feature MAE MSE

10k 15k 20k 25k 30k 10k 15k 20k 25k 30k

Sup. Gist 0.12 0.09 0.08 0.06 0.07 0.24 0.12 0.10 0.07 0.10
Semi-Sup. Gist 0.25 0.21 0.17 0.14 0.10 0.31 0.26 0.23 0.20 0.16
Sup. DeCAF 0.12 0.09 0.07 0.07 0.07 0.14 0.10 0.08 0.07 0.07
Semi-Sup. DeCAF 0.24 0.21 0.17 0.15 0.11 0.29 0.22 0.18 0.14 0.10

Table 3
Counting accuracy of different methods over various training sizes on Peds1 dataset.

Method Feature MAE MSE

10k 15k 20k 25k 30k 10k 15k 20k 25k 30k

SR-RP Gist 0.16 0.14 0.08 0.07 0.06 0.23 0.13 0.09 0.08 0.06
SR-RP DeCAF 0.39 0.27 0.21 0.16 0.15 1.09 0.65 0.43 0.30 0.22
Regression SET 8.72 6.76 5.89 5.69 5.42 97.84 66.23 56.02 53.93 54.33
SR-Pooling SIFT 9.73 8.39 7.59 7.37 7.10 149.10 123.33 105.01 99.70 90.61
NN Gist 2.90 2.26 2.17 1.76 1.62 13.28 9.12 8.50 5.64 5.09
Lin-SVM Gist 1.03 1.01 1.01 1.02 1.01 2.14 2.11 2.08 1.99 2.03
RBF-SVM Gist 0.23 0.15 0.12 0.11 0.10 0.31 0.25 0.21 0.19 0.17
BOF SIFT 9.75 8.31 7.74 7.42 7.20 152.53 119.24 107.31 100.30 95.21
VLAD SIFT 9.73 8.38 7.52 7.30 7.14 150.41 120.74 104.26 100.14 95.37
Fisher SIFT 9.85 8.40 7.57 7.35 7.01 152.10 123.41 104.96 99.27 90.54

Table 1
Comparison of supervised and semi-supervised SRC on Peds1 dataset.

Method Feature MAE MSE

10k 15k 20k 25k 30k 10k 15k 20k 25k 30k

Sup. Gist 0.16 0.14 0.08 0.07 0.06 0.23 0.13 0.09 0.08 0.06
Semi-Sup. Gist 0.25 0.20 0.17 0.15 0.13 0.35 0.30 0.24 0.19 0.16
Sup. DeCAF 0.39 0.27 0.21 0.16 0.15 1.09 0.65 0.43 0.30 0.22
Semi-Sup. DeCAF 0.50 0.48 0.45 0.38 0.31 1.10 0.99 0.87 0.80 0.75

Table 4
Counting accuracy of different methods over various training sizes on Peds2 dataset.

Method Feature MAE MSE

10k 15k 20k 25k 30k 10k 15k 20k 25k 30k

SR-RP Gist 0.12 0.09 0.08 0.06 0.07 0.24 0.12 0.10 0.07 0.10
SR-RP DeCAF 0.12 0.09 0.07 0.07 0.07 0.14 0.10 0.08 0.07 0.07
Regression SET 2.48 2.05 1.91 1.88 1.82 8.26 6.23 5.57 5.55 5.54
SR-Pooling SIFT 3.10 2.62 2.54 2.39 2.21 16.03 12.55 11.93 10.70 9.34
NN Gist 0.40 0.37 0.31 0.17 0.10 0.64 0.60 0.50 0.23 0.15
Lin-SVM Gist 0.30 0.29 0.29 0.30 0.26 0.34 0.33 0.33 0.33 0.32
RBF-SVM Gist 0.15 0.13 0.12 0.11 0.10 0.24 0.18 0.16 0.15 0.13
BOF SIFT 3.30 2.70 2.49 2.42 2.10 15.60 12.91 11.34 10.92 9.93
VLAD SIFT 3.04 2.60 2.55 2.39 2.10 15.61 12.41 12.09 10.49 9.23
Fisher SIFT 2.97 2.68 2.45 2.37 2.11 15.00 13.18 11.30 10.56 9.35
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model. We select Gaussian Process Regression (GPR) which was
reported as one of the most accurate ones to handle the crowd
density [6]. Although regression models could achieve promising
results on small datasets, they suffer from serious weaknesses when
they are generalized on large-scale datasets. Loy et al. [8] reveal that
the actual performance of regression models can be quite different
from what we anticipate, especially when they are applied to an
unseen density, they tend to overestimate or underestimate subject
to nature of data. Another key weakness is their poor tractability to
large training datasets. Usually when more and more data is
involved they are unable to adequately capture the non-linear trend
in the feature space. They also need online training which takes a lot
of time, in particular the time complexity of GPR is bounded by
Oðn3Þ which is a limitation in large datasets. Besides, selecting the
optimal feature combination is an important step which is very
dependant on the crowd structure and density.

We observed that gradient-based global descriptors (especially
Gist) perform well in predicting count in large-scale datasets; this
motivated us to examine the effectiveness of local gradient-based
descriptors in the sparse representation framework as well.
Initially, some local descriptors like SIFT [15] are extracted from
an image and then each local descriptor is encoded into a sparse
code using a dictionary learning technique. After obtaining the
sparse codes, we pool them into a single vector using max pooling.
Ge et al. [40] used this idea to derive a compact yet discriminative
image representation from multiple types of features for large-
scale image retrieval and achieved significant results on bench-
mark retrieval datasets; however, the aggregated local features
cannot capture the crowd patterns properly.

We next compare SRC with three classical classifiers, namely,
NN, linear SVM and non-linear SVM with RBF kernel within the
context of people counting on large-scale datasets. We can observe
that SRC outperforms NN in both datasets and this is essentially
because NN independently evaluates the distance between the test
sample and one training sample; in contrast, SRC uses a linear
combination of all the training samples to represent the test
sample and classify it into the class with the minimum deviation
and this justifies SRC achievement. Essentially, the training sam-
ples are not uncorrelated and the distance between the test and
training samples should not be independently calculated, rather;
the relationship between different training instances should be
taken into account. NN performs a linear search and adopts only
one sample in O(n); while SRC finds the sparsest representation in
Oðn2Þ. The multi-class SVM classifier is implemented using the
LIBSVM [41], which uses a one-against-one decomposition strat-
egy. We select two kernels, linear and Gaussian radial basis
function (RBF). Linear SVM is not appropriate for separating Gist
features of different crowd densities; nevertheless, better perfor-
mance is achieved using non-linear kernels like RBF; however our
method is still better than best of SVM. When the classes in
training data are non-separable by the SVM, SRC might have an
advantage over the SVM classifier, depending on similarity
between the test vector and the training exemplars from the same
class. All the parameters and also the best model are estimated
through 5-fold cross-validation over a large training set and this
step is really time-consuming. Also, the time complexity of non-
linear SVM is generally between Oðn2Þ and Oðn3Þ depending on the
number of iterations [41]; however this depends a lot on the
solving techniques. In brief, SRC outperforms traditional classifiers,
meanwhile, it is faster and does not need any model/parameter
selection. Finally, the proposed SR-based method is compared with
state-of-the-art image retrieval methods including Bag of Features
(BOF) [42] and aggregation-based representation, i.e. Fisher Vector
[43] and VLAD [44]. In the former, a set of local image patches is
sampled using a keypoint detector and a vector of visual descrip-
tors is evaluated on each patch independently. The resulting

distribution of descriptors is then quantified to convert it to a
histogram of votes for codebook centers and the resulting global
descriptor vector is used as a characterization of the image. In
Fisher and VLAD methods, a bag of local features in an image is
converted into a global, fixed size vector representation through
vector quantization. We observe that the evaluated retrieval
methods, easily fail to estimate crowd density in all large-scale
datasets and global image descriptors outperform the local ones in
general. We also compare the average processing time spent on a
test image to estimate its count using different methods on Peds1
dataset while using 30k training images in Table 5; notice that the
training time has not been considered here.

On the whole, results suggest that SR-based people counting
method is superior to all the other evaluated techniques and the
errors of our method are significantly less than the others'
including state-of-the-art counting by regression. In brief, the best
performance can be achieved by using the Gist descriptor for
creating the dictionary, Homotopy l1-minimizer and minimum-
residual error as the count estimation method; meanwhile ran-
dom projection is exploited as the dimensionality reduction
technique.

6.4. SRC on small datasets

The proposed SR-based people counting method performs well
in predicting counts in large datasets; however, we are also
interested in evaluating it on smaller datasets, which are popular
in counting by regression papers. We follow the experimental
protocol in [6], where the training set consists of 1200 and 1000
frames for Peds1 and Peds2 datasets respectively, and the remain-
ing 2800 and 3000 frames are held out as the test set. Table 6
presents the counting accuracy of our method versus [6] as the
state-of-the-art regression-based method. Although the error rates
are not as small as the larger datasets (e.g. 30k images); our
proposed method still outperforms the regression-base method,
even with CNN feature representation. Obviously, as the data
keeps getting bigger, SRC is coming to play a key role in providing
better estimations and the superiority of SRC would be more
remarkable. Notice that these conditions are different from the
“Undersampled SRC”; here the dictionary is rich enough to span
variations of different classes under testing conditions because the

Table 5
Average processing time of a test image in seconds across different methods.

Method Time Details

SR-RP 0.55 Gist extraction: 0.1, Test time (l1-min): 0.45
Regression 2.10 SET extraction: 1, GPR test time: 1.10
SR-Pooling 0.80 Encoding: 0.6, SIFT extraction: 0.2, Query time: 0.005
NN 0.60 Gist extraction: 0.1, Linear search: 0.5
Lin-SVM 0.30 Gist extraction: 0.1, SMV test time: 0.2
RBF-SVM 0.30 Gist extraction: 0.1, SVM test time: 0.2
BOF 1.84 Encoding: 1.55, SIFT extraction: 0.2, Query time: 0.09
VLAD 0.37 Encoding: 0.15, SIFT extraction: 0.2, Query time: 0.02
Fisher 0.86 Encoding: 0.16, SIFT extraction: 0.2, Query time: 0.5

Table 6
Counting accuracy of SR-based and regression-based methods on UCSD dataset.

Method Feature Peds1 Peds2

MAE MSE MAE MSE

SR-RP Gist 0.55 4.13 0.74 2.03
SR-RP DeCAF 0.87 6.69 0.97 3.62
GPR [6] SET 3.65 7.41 1.58 2.16
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test set is not very big and crowd patterns of training/test sets are
not too different. So, there is no need to enlarge the labelled
training set any more.

6.5. Crowd counting results on PETS 2009 dataset

We conduct some experiments to validate our proposed
method on PETS dataset as well. We would compare the perfor-
mance of different feature descriptors, including Gist, HOG and
CNN features obtained by DeCAF to represent the crowd density in
the proposed SR-based counting method. According to the best
results obtained on UCSD dataset, we would exploit Homotopy
method as the l1-minimizer and RP is also employed for dimen-
sionality reduction and just 10% of original feature vector is used.
First, we compare the proposed SR-based counting method with
all the methods described earlier, i.e. regression method, retrieval
methods, general classifiers. Table 7 reports the counting accuracy
(MAE) of count estimations on PETS dataset. For each test video
sequence, the task is to report the count on specified regions of
interest. Training images are selected from other sequences avail-
able in the PETS dataset that were not used for the test purpose.

Similar to the results obtained on UCSD dataset, we observe
that our method outperforms all the other evaluated methods. In
this dataset, Gist still has the best overall performance through all
sequences and it is closely followed by HOG and DeCAF. CNN
features trained on ImageNet dataset perform as well as hand-
crafted features; however local descriptors fail to represent the
crowd density using either retrieval or sparse coding methods. SRC
also outperforms traditional classifiers and regression method
(GPR). Fig. 11 shows the estimated number of people using Gist
feature representations with respect to time for considered
regions over S1L1-1 sequences of PETS dataset. We notice that
our method is able to provide a good estimate in almost all cases.

Next, we compare our method with the most successful
methods of people counting participated in PETS 2009 competi-
tion; these methods have been chosen according to exhaustive
performance evaluation performed in [52]. Here we briefly intro-
duce these methods; greater details of each method can be found
in the corresponding papers. For people counting, Chan et al. [45]
segment the video into crowd regions moving in different direc-
tions, using a mixture of dynamic textures. Different low-level
global features are extracted from each segment and the number
of people per segment is estimated using Gaussian process
regression. Alahi et al. [46] create degraded foreground silhouettes
from some binary images and these silhouettes are then used as
the atoms of a multi-silhouette dictionary to model the presence
of individuals at given locations on an occupancy grid. An

occupancy vector is constructed from the observed data using a
re-weighted Lasso method. Albiol et al.'s [47] method is based on
detecting salient points or corners, along with their motion
vectors. A motion vector with respect to the previous frame is
estimated using a multi-resolution block matching technique for
each detected corner. Statistical measures on this data would be
used to estimate the number of people. Choudri et al.'s [48]
method is based on scale-weighted pixel counting to approximate
the number of people in a region of interest. The foreground pixels
are explicitly classified and pixels that are not of interest are
updated as background and finally a head detector is used for
human detection and counting. Paetzold et al. [49] present a
counting by a detection method based on fusing spatial informa-
tion of an adapted HOG with temporal information by exploiting
distinctive motion characteristics of different human body parts.
An algorithm is then applied to validate the trajectories associated
with a human and a count is made of the resulting detections to
identify the number of individuals in a scene. In Conte et al.'s [50]
method, SURF [53] features are extracted from images, which is
followed by a Support Vector Regression (ϵ-SVR) function to
estimate the number of people present in the scene. Subburaman
et al. [51] employ a head detector based on boosted cascade of
integral features. To prune the search region for the head detector,
an interest point detector based on gradient orientation feature is
applied to locate regions similar to the top of head region from
gray level images.

Table 8 compares the MAE of our proposed method against
aforementioned counting methods. As it can be inferred, the

Table 7
Counting estimation error of different methods on PETS 2009 dataset.

Method Feature Sequence

S1L1-1 S1L1-2 S1L2-1 S1L3-1 S1L3-2

R0 R1 R2 R0 R1 R2 R1 R2 R1 R1

SR-RP Gist 1.30 1.23 0.71 1.01 0.70 0.99 1.95 1.90 0.86 0.01
SR-RP HOG 1.80 1.87 0.91 1.79 0.96 1.31 2.32 2.43 1.01 0.41
SR-RP DeCAF 2.10 2.14 1.10 2.08 0.96 1.30 2.50 2.63 1.20 0.86
Regression SET 6.35 5.43 3.15 4.11 2.76 1.34 9.73 7.65 7.19 4.77
SR-Pooling SIFT 9.23 5.21 4.02 6.93 3.60 4.04 9.65 6.25 7.87 3.97
NN Gist 3.60 2.13 1.10 5.11 2.10 1.01 6.51 2.50 4.76 0.10
Lin-SVM Gist 3.41 2.00 1.09 5.13 1.90 1.29 6.12 2.64 4.64 1.10
RBF-SVM Gist 3.44 2.10 0.99 5.05 1.90 1.05 6.38 2.73 4.75 0.93
BOF SIFT 10.01 8.21 3.76 7.24 2.10 4.87 12.67 5.89 7.10 3.76
VLAD SIFT 8.45 7.11 3.42 7.13 2.00 5.10 9.59 5.10 7.68 2.89
Fisher SIFT 10.76 8.43 4.99 7.97 2.54 5.03 13.34 9.76 8.55 4.08

Fig. 11. Count estimation result on PETS dataset (S1L1-1).
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proposed SR-RP method performs robustly throughout all the
sequences and especially shows a promising performance on very
dense crowd sequences such as S1L2-1 and S1L3-1.

6.6. Discussion and future work

Discriminative feature representation plays an important role
for achieving the state-of-the-art performance in image classifica-
tion. In particular, learning spare representation has recently
achieved impressive results and found many applications in
machine learning and computer vision fields. Sparse coding
represents an input data as a linear combination of a few items
from a dictionary. The performance of sparse representation is
closely related to the dictionary, which should faithfully and
discriminatively represent the test image. The SRC algorithm
naively uses all the training samples as the dictionary and achieves
promising performance in many applications including people
counting. Improvements in computational and memory efficiency
of the SRC method make it a more practical solution to be
implemented for real-time applications. To this aim, in this paper,
we utilized fast l1-solvers and dimensionality reduction technique.
For some applications, however, rather than using the entire set of
training data as dictionary, it is computationally advantageous to
learn a compact dictionary from training data. Different algorithms
have been developed for learning such dictionaries in an unsu-
pervised and supervised fashion; however recent research indi-
cates that the dictionaries obtained in an unsupervised way, may
not necessarily be the best for classification [54].

Many efforts have been dedicated to embedding the discrimi-
native information into the representations via supervised learn-
ing [54]. Supervised learning approaches can be divided into
different categories [55]: while the algorithms in the first group,
learn multiple or class-specific dictionaries to promote discrimi-
nation, the second set of approaches incorporate discriminative
terms into the objective function of dictionary learning and the
last type of approaches learn a compact dictionary by merging or
selecting dictionary items from an initially large dictionary. Taking
a step further, some researchers designed dictionaries for the
situations that the present training instances are different from the
testing instances. For instance, Zhu et al. [56] utilized weakly
labelled data from other visual domains as the auxiliary source
data for enhancing the original learning system and their frame-
work only requires a small set of labelled samples in the source
domain.

Nevertheless, most dictionary learning algorithms are of high
time complexity and converge slowly; moreover, they may get
trapped in local minimum [55]; consequently, efficient dictionary
learning on large-scale data still remains a challenging task. It is

worth noting that submodular optimization has become a sensible
trend to solve large-scale problems in computer vision and as an
example, Jiang et al. [55] exploited submodularity and monotoni-
city properties of object function to construct a dictionary from a
set of dictionary item candidates. Possible future work includes
exploring supervised dictionary learning methods to propose an
efficient method to learn a compact and discriminative dictionary
for large-scale people counting application. When the dictionary is
large and the data dimension is high, learning sparse representa-
tions is a computationally challenging problem and this is the
direction in which we would like to extend our work.

Furthermore, although the literature of image classification is
predominated by local and global hand-crafted features; deep
learning methodologies have been utilized recently to obtain
machine-learned features for image classification and have shown
great potential in various visual recognition tasks. In this paper,
the features obtained by CNN yields encouraging results. Mean-
while, various architectures and techniques have been proposed to
enhance the learning capacity. Recently, Shao et al. [57] proposed a
multispectral neural network to learn features from multicolumn
deep neural networks to obtain an effective low-dimensional
embedding, which led to a more discriminative feature than that
of CNN. However, deep architectures often require a large amount
of labelled data for supervised training; their training would take
very long time and a large number of hyper-parameters should be
tuned. Alternatively, proposing an optimal solution can be con-
sidered as a generalized way to extract the most meaningful
features for any user-defined application. As a successful example,
in [58] the authors developed an evolutionary learning methodol-
ogy to automatically generate domain-adaptive global feature
descriptors for image classification using multiobjective genetic
programming. An intriguing question for future work is whether
this framework could be useful for people counting/detection
applications.

7. Conclusion

In this paper, we proposed an extremely accurate and scalable
people counting method based on sparse representation. Sparsity
provides a powerful tool for inferring high-dimensional image
data that have complex low-dimensional structure. Methods like
l1-minimization offer computational tools to extract such struc-
tures and help harness the semantic of data. In order to reduce the
computation complexity of l1-minimization solvers for finding
such sparse representation, random projection is employed as a
fast and simple dimensionality reduction method which preserves
the similarities of the data vectors well. According to our extensive

Table 8
Crowd counting estimation error of different counting methods on PETS 2009.

Sequence Region Method

SR-RP (Our) Chan [45] Alahi [46] Albiol [47] Choduri [48] Patzold [49] Conte [50] Subburaman [51]

S1L1-1 R0 1.30 2.46 – 1.42 1.29 2.75 1.38 5.95
R1 1.23 2.28 – – 2.23 2.58 2.14 1.90
R2 0.71 0.99 – – 0.70 1.38 7.60 2.50

S1L1-2 R0 1.01 1.41 4.20 1.77 3.26 2.35 1.14 2.08
R1 0.70 0.69 2.30 – 3.18 1.58 0.80 1.86
R2 0.99 1.23 1.87 – 1.04 1.58 0.87 0.86

S1L2-1 R1 1.95 5.89 6.50 1.94 3.70 6.37 2.18 2.40
R2 1.90 4.48 4.00 – 4.17 6.08 3.25 1.40

S1L3-1 R1 0.86 0.98 0.90 1.36 0.67 4.70 2.95 7.00

S1L3-2 R1 0.01 – 8.83 – 16.50 24.38 – 16.00
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experiments on two benchmark datasets, the proposed SR-based
people counting method achieves the best performance in com-
parison with all evaluated methods including counting by regres-
sion techniques. The key to this success is choosing the dictionary
in such a way that sufficient diversity is provided in training
samples and exploiting the discriminative power of image descrip-
tors especially Gist in characterizing the crowd density; however,
our numerical results consistently demonstrate that if sparsity is
properly harnessed, the choice of global features is no longer
critical. We showed that the features extracted from a deep
Convolutional network trained in a fully supervised fashion on a
large, fixed set of object recognition task can be reused to other
tasks such as people counting.

In addition, in order to provide the labelled training set with
sufficient diversity, a semi-supervised learning framework is
employed to enable image annotation with just a few labelled
sample images through exploiting the sequential information of
readily available vast quantity of unlabelled data. “Big data” offers
great potential to exploit the discriminative power of SRC; more-
over, noisy and mislabelled training set can be handled uniformly
and robustly within the same classification framework.
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