
A Branch-and-Cut Algorithm for the Single-Commodity,
Uncapacitated, Fixed-Charge Network Flow Problem

Francisco Ortega
n-Side, Rue de la Longue Haie 17/001, 1348 Louvain-la-Neuve, Belgium

Laurence A. Wolsey
CORE and FSA, Université Catholique de Louvain, Voie du Roman Pays 34, 1348 Louvain-la-Neuve, Belgium

We present a branch-and-cut algorithm to solve the sin-
gle-commodity, uncapacitated, fixed-charge network
flow problem, which includes the Steiner tree problem,
uncapacitated lot-sizing problems, and the fixed-charge
transportation problem as special cases. The cuts used
are simple dicut inequalities and their variants. A crucial
problem when separating these inequalities is to find the
right cut set on which to generate the inequalities. The
prototype branch-and-cut system, bc–nd, includes a
separation heuristic for the dicut inequalities and prob-
lem-specific primal heuristics, branching, and pruning
rules. Computational results show that bc–nd is com-
petitive compared to a variety of special purpose algo-
rithms for problems with explicit flow costs. We also
examine how general purpose MIP systems perform on
such problems when provided with formulations that
have been tightened a priori with dicut inequalities.
© 2003 Wiley Periodicals, Inc.

Keywords: network design; fixed charge; branch and cut; dicut
inequalities; branching; heuristics; minimum-cost flow

1. INTRODUCTION

The single-commodity uncapacitated fixed-charge net-
work flow problem (UFC) is one of a large class of network
design problems. Specifically, given a digraph/network D
� (V, A), demands at the nodes, and fixed and variable
costs on the arcs, the problem is to select a set of arcs to be
opened and to find a feasible flow in the resulting network
such that the sum of the fixed arc costs plus the variable
flow costs is minimized.

Until recently, the commercial mixed-integer program-
ming solvers just used linear programming-based branch
and bound and did not perform at all well on most instances
of the UFC. In the last 4 years, these solvers have improved
remarkably and now generate cutting planes such as flow-
cover inequalities designed for simple fixed-charge flow
problems. However they still do not take full advantage of
the structure of the UFC.

This explains, in part, why much previous work has been
on the development of specialized algorithms for specific
variants of UFC. Chopra et al. [11] and Koch and Martin
[27] developed branch-and-cut codes for the Steiner tree
problem which can be viewed as a special case of the UFC
in which the flow costs are zero. Several branch-and-bound
algorithms have been described for the uncapacitated fixed-
charge transportation problem in which the underlying net-
work is bipartite (see, e.g., [5, 10, 34, 38]). Some production
planning problems such as the single-level and (series)
multilevel uncapacitated lot-sizing problem can be formu-
lated as a UFC, but here, again, specialized algorithms have
been developed (see, e.g., [7, 40]). Finally, for the single-
source UFC, Hochbaum and Segev in [23] presented a
Lagrangian relaxation algorithm and primal heuristics, and
very recently Cruz et al. [14] reported results obtained with
a branch-and-bound algorithm also based on a Lagrangian
relaxation.

Another standard approach for single-source UFCs is a
multicommodity reformulation. This was tested by Rardin
and Choe [36] and used to obtain tight formulations for trees
and Steiner trees [27, 29] and lot-sizing problems [35], and
its projection into the original space of variables was ana-
lyzed in Rardin and Wolsey [37]. Although this approach
leads to very tight linear programming formulations, the
linear programs are known to be very hard to solve (see, for
instance, [8]).

The original goal of this study was to test whether the
effectiveness of cutting planes in solving uncapacitated lot-

Received March 2001; accepted January 2003
Correspondence to: L. A. Wolsey; email: wolsey@core.ucl.ac.be
This work was carried out at CORE as part of a doctoral dissertation at
l’Université Catholique de Louvain

© 2003 Wiley Periodicals, Inc.

NETWORKS, Vol. 41(3), 143–158 2003

sizing problems [4, 42] extended to the more general and
more difficult UFC. In particular, we were interested in how
the prototype branch-and-cut system bc–opt [13] (which,
among others, generates path inequalities for fixed-charge
path networks generalizing the lot-sizing inequalities) be-
haved on such problems. Another question was whether the
UFC, lying somewhere between a general mixed-integer
program and highly structured problems such as the fixed-
charge transportation or Steiner problems, was at an appro-
priate level of generality for the study of cutting planes and
the development of algorithms.

One result of our study was that, whereas cuts based on
paths (as implemented in bc–opt) are fundamental for
lot-sizing problems, simple “dicut” inequalities [2] and their
variants are crucial for UFC and form the basis of the
branch-and-cut system bc–nd implemented here. Our test
set contains 31 “hard” instances that are not solved by either
Cplex [24], mp–opt [16], or bc–opt within 30 minutes.
bc–nd solves six of these instances to optimality, and the
average final duality gap for the other 25 instances is 4.4%,
while it is 30.40, 23.55, and 18.31% for the three systems
just cited. Additionally, all the “medium” instances (those
that are solved by exactly one of the general systems) are
solved with bc–nd.

The outline of the article is as follows: In Section 2, we
formulate the problem and give some definitions used
throughout the paper. In Section 3, we describe the dicut
inequality and its variants and consider the complexity of
the separation problem. Section 4 is devoted to a description
of bc–nd. The test instances are described in Section 5, and
the computational results, in Section 6. The latter includes a
brief report on the use of the multicommodity reformulation
mentioned above for single-source UFCs. Although seven
relatively small instances are solved just by linear program-
ming, none of the linear programming relaxations of the
other 13 instances tested was solved within 30 minutes.

Some conclusions and extensions are discussed in Sec-
tion 7.

2. PROBLEM FORMULATION

The UFC can be formulated as follows: Given a directed
graph D � (V, A), a demand vector b � (bi) for i � V,
and fixed and variable costs fij and cij for (i, j) � A, find
a set of arcs and a feasible flow in the resulting network that
minimizes the total cost. This problem is NP-hard, as it
generalizes the Steiner tree problem [17].

To describe the UFC as a mixed-integer program, define
xij to be the flow on arc (i, j) and yij � 1 if the arc (i, j)

is used (xij � 0) and yij � 0 otherwise. A resulting
formulation is

�UFC��
min �

�i, j��A

cijxij � �
�i, j��A

fijyij �1�

s.t.�
j�Vi

�

xji � �
j�Vi

�

xij � bi � i � V �2�

xij � Uyij � �i, j� � A �3�
xij � 0 � �i, j� � A, yij � �0, 1� � �i, j� � A, �4�

where Vi
� � { j � V : (i, j) � A} and Vi

� � { j � V : (j,
i) � A}, U is a large positive integer, and ¥i�V bi � 0.
Constraints (2) are the well-known conservation con-
straints, and constraints (3) are the forcing constraints that
guarantee that yij takes value one whenever xij is positive.
Note that it suffices to take U � ¥i�V:bi�0 bi.

As additional notation, we use VS � {i � V : bi 	 0}
to denote the set of supply nodes; VD � {i � V : bi � 0},
the set of demand nodes; and V0 � {i � V : bi � 0}, the
set of transshipment nodes. Let X be the set of vectors (x,
y) satisfying (2)–(4). The next proposition characterizes the
extreme points of conv(X) (see, e.g., Ahuja et al. [1]).

Proposition 2.1. Given (x, y) in X, let

F� x, y� � �a � A/0 � xa � U, ya � 1�

L� x, y� � �a � A/xa � 0, ya � �0, 1��

U� x, y� � �a � A/xa � U, ya � 1�.

Then, (x, y) is an extreme point of conv(X) if and only if the
graph Dx,y � (V, F(x, y)) contains no cycles.

This characterization will be used in Section 4 to devise
branching rules and a pruning criterion and also to fix
variables in the enumeration tree.

3. VALID INEQUALITIES

In this section, we describe the dicut inequality and its
variants. To present examples of the different inequalities,
we use the instance shown in Figure 1.

Consider a proper subset S of nodes for which the net
demand is positive, that is, b(S) � ¥i�S bi � 0. The set
XS, obtained by summing up the conservation constraints
(2) over all nodes in S, is known as a single-node flow set.
Mathematically, it takes the form

XS � �
�

�i, j�����S�

xij � �
�i, j�����S�

xij � �
i�S

bi �5�

� x, y� � ��A� 	 ��A� : xij � Uyij for �i, j� � A �6�
xij � 0, yij � �0, 1� for �i, j� � A, �7�

�

144 NETWORKS—2003

where ��(S) � {(i, j) � A : i � S, j � S} is the set of
arcs leaving S, and ��(S) � {(i, j) � A : i � S, j � S}
is the set of arcs entering S.

Taking S � {3, 5, 6, 7} in the example, constraints (5)
and (6) take the form

x23 � x43 � x46 � x15 � x54 � x74 � 2

x23 � 5y23, x43 � 5y43, x46 � 5y46, x15 � 5y15,

x54 � 5y54, x74 � 5y74.

Because S has a positive demand of 2 units, every feasible
flow must contain at least 2 units entering S. Thus, at least
one arc of ��(S) � {(2, 3), (4, 3), (4, 6), (1, 5)}, the set
of arcs entering S, must be open. This is expressed in the
inequality

y23 � y43 � y46 � y15 � 1.

We now make a more general statement:

Proposition 3.1. For S � V with ¥i�S bi � 0, the basic
dicut inequality

�
�i, j�����S�

yij � 1

is valid for X.

These inequalities have been used to formulate the di-
rected Steiner tree problem [29].

Consider, again, the same subset S � {3, 5, 6, 7}. A
relaxation of the single-node flow set XS is obtained if x23

and x15 are replaced by their upper bounds and x54 and x74

are replaced by their lower bounds of zero. The resulting set
is

5y23 � x43 � x46 � 5y15 � 2,

y23, y15 � �0, 1�, x43, x46 � 0.

Applying coefficient reduction [31] or the mixed-integer
rounding (MIR) procedure [33] gives the inequality

2y23 � x43 � x46 � 2y15 � 2.

In general, we have the following result:

Proposition 3.2. For S � V with ¥i�S bi � 0, the mixed
dicut inequality

�
�i, j�����S�
C

xij � �
�i, j��C

b�S� yij � b�S�

is valid for X for all C � ��(S).

Further, taking S � {4, 5, 6, 7}, one such mixed dicut
inequality is

x14 � 4y37 � x15 � 4.

FIG. 1. Fixed-charge network flow example.

NETWORKS—2003 145

Now, the flow going from V
S � {1, 2, 3} to satisfy
demand in S passing through the arc (3, 7) is at most 3 units,
the supply of node 2. This observation allows us to tighten
the coefficient associated with y37 giving the valid inequal-
ity:

x14 � 3y37 � x15 � 4.

In general, for e � C � ��(S), let E(S) � {(i, j)
� A : i, j � S}, Ve,S

� � {i � S : bi � 0 and there exists
a dipath in GS � (S, E(S)) between the head node of e and
the node i}, Ve,S

� � {i � V
S : bi 	 0 and there exists a
dipath in GV
S � (V
S, E(V
S)) between the node i and the
tail node of e} and �e�S� � min�¥i�Ve,S

� bi, ¥i�Ve,S
� �bi��.

Proposition 3.3. For S � V with ¥i�S bi � 0, the simple
inflow–outflow inequality

�
�i, j�����S�
C

xij � �
�i, j��C

�ij�S� yij � b�S�

is valid for X for all C � ��(S).

This modification is important when the underlying
graph is sparse. For the single-item uncapacitated lot-sizing
problem, all the inequalities required to give a complete
description of the convex hull are of this type.

With S � {3, 4, 6, 7}, we obtain the following mixed
dicut inequality:

x23 � x14 � 5y54 � 5y56 � 5.

Now suppose that the contribution of the flow in arc (7, 4)
to satisfy the demand b(S) is measured separately. In this
case, the maximum flow that can pass through arc (5, 6)
using the arcs of E(S) other than arc (7, 4) in order to satisfy
the demand b(S) is 3 units, the demand of node 7. So, the
inequality

x23 � x14 � 5y54 � 3y56 � x74 � 5

is valid.
In general, given R � E(S), define Ve,S

R � {i � S : bi

� 0 and there exists a dipath in GS � (S, E(S)
R) between
the head node of e and the node i} and �e

R�S�
� ¥i�V e,S

R bi.

Proposition 3.4. For S � V with ¥i�S bi � 0, the inflow–
outflow inequality

�
�i, j������S�
C��R

xij � �
�i, j��C

�ij
R�S� yij � b�S�

is valid for X for all C � ��(S), R � E(S).

The above inequality is a particular case of the network
inequalities of van Roy and Wolsey [41].

With S � {3, 5, 6, 7}, another possible relaxation of XS

is given by

5y23 � 5y43 � x46 � 5y15 � 2 � x74, x74 � 5y74.

Letting, x�74 � 5y74 � x74 � 0 and y�74 � 1 � y74, we get

5y23 � 5y43 � x46 � 5y15 � x� 74 � 5y� 74 � 7.

Now applying the MIR procedure, we obtain

2y23 � 2y43 � x46 � 2y15 � x� 74 � 2y� 74 � 4,

and reintroducing the original variables, we get the follow-
ing valid inequality:

2y23 � 2y43 � x46 � 2y15 � 2 � � x74 � 3y74�.

The general expression is given in the next proposition:

Proposition 3.5. For S � V with ¥i�S bi � 0, the mixed
dicut with outflow inequality

�
�i, j�����S�
C�

xij � �
�i, j��C�

b�S� yij � b�S�

� �
�i, j��C�

� xij � r�S� yij�

is valid for X for all C� � ��(S) and C� � ��(S), with r(S)
� U � b(S).

Proof: The proof is a direct generalization of the pro-
cedure used in the example. Consider the following relax-
ation of XS:

�
�i, j�����S�
C�

xij � U �
�i, j��C�

yij � b�S� � �
�i, j��C�

xij

plus the constraints xij � Uyij for all (i, j) � ��(S) � C�

and all yij binary. Defining the variables x� ij � Uyij � xij,
and y� ij � 1 � yij, we can make the substitution xij � U
� Uy� ij � x� ij for (i, j) � C�. Now the previous constraint
can be rewritten as

�
�i, j�����S�
C�

xij � U �
�i, j��C�

yij � �
�i, j��C�

x� ij

� U �
�i, j��C�

y� ij � b�S� � U�C��.

Applying the MIR procedure, we get

146 NETWORKS—2003

�
�i, j�����S�
C�

xij � �
�i, j��C�

x� ij

� b�S��1 � �C�� � �
�i, j��C�

yij � �
�i, j��C�

y� ij�,

which, after substitution, back gives the required inequality.
■

At least two other classes of inequalities can potentially
be used in solving UFC. First, it is possible to mix dicut
inequalities for different sets S using the mixing procedure
of Günlük and Pochet [21]. A second class are the multi-
dicut inequalities. They were initially presented by Rardin
and Wolsey in [37] for the single-source case. A recent
version for the multiple-source case can be found in [30].

Before finally leaving the example in Figure 1, it can be
checked that all but one of the valid inequalities presented
are facet-defining. The complete description of conv(X),
obtained with the code Porta [12], contains 7143 facet
defining inequalities. Although only a small percentage of
these are dicut inequalities, our results below suggest that
they play an important role in closing the duality gap.

3.1. Difficulty of the Separation Problem

First, we formalize the separation problem for simple
dicut inequalities. To find a violated simple dicut inequality,
we look for a subset of nodes S such that b(S) � 0 and

�
�i, j�����S�

y� ij � 1.

This can be seen as a minimum-cut problem with an addi-
tional constraint to ensure that b(S) � 0. For i � V, define
variable zi � 1 if i belongs to S, and zi � 0 otherwise. The
separation problem reduces to solving the problem

� � min� �
�i, j��A

y� ijzj�1 � zi� : �
i�V

bizi

 0, zi � �0, 1� for all i � V�.

If � 	 1, the set S defined by {i � V : zi � 1} leads to a
violated inequality.

By reduction from the exact partitioning problem, the
separation problem associated with the simple dicut ine-
qualities can be shown to be NP-complete [18]. However,
for the single-source problem in which �VS� � 1, the
imposed constraint can be dropped. The separation problem
can then be solved in polynomial time. It can be reduced to
�VD� minimum s � t cut problems, where s is the source
and t varies over the set VD.

The problem of finding a violated mixed dicut inequality

can be stated as follows: Given a fractional point (x� , y�), we
look for S � V with b(S) � 0 and C � ��(S) such that

�
�i, j�����S�
C

x� ij � �
�i, j��C

b�S� y� ij � b�S�.

For a given S, finding the most violated inequality is trivial.
It suffices to set C � {i, j � ��(S) : x� ij � b(S) y� ij}.
Therefore, the principal difficulty regarding the separation
of dicut inequalities is to find the right set S.

For mixed dicut inequalities, the complexity of the sep-
aration problem is apparently still open (see [2]).

The above observations led us to consider using heuris-
tics to separate the various dicut inequalities. The separation
heuristic, based on searching for good candidate cut sets, is
presented in the next section.

4. BC–ND: A BRANCH-AND-CUT SYSTEM FOR
UFC

In this section, we describe the branch-and-cut system
bc–nd. We begin with some basic implementation issues;
then, we present the separation heuristic, the primal heuris-
tic, and branching rules and, finally, pruning and variable
fixing criteria.

4.1. The Basics

Our implementation is based on the Extended Modeling
and Optimisation Subroutine Library (EMOSL) of Xpress
[15]. This library implements a branch-and-bound algo-
rithm with a series of “entry points” that allow users to
include their own routines. Using these entry points, we can
generate cuts and add them to the matrix, apply heuristics,
and develop branching rules. At the top node, we used these
entry points to generate cuts and to apply a heuristic. In the
enumeration tree, we used the entry points to generate cuts,
prune a node, choose branching variables, and implement a
primal heuristic. Additionally, the library has routines to
access the information contained in the model file. Such
information is used to determine the digraph that defines the
instance being solved. The data structure used to store the
graph was borrowed from MCF [28].

Because several cuts can be generated from the same set
S, we set up a set pool to store the candidate sets. The set
pool is a dynamic doubly linked list. Sets are active until an
associated frequency parameter falls below a certain value,
at which point the set becomes inactive. How this parameter
is updated and when a set is declared inactive are described
later in the cut generation step.

4.2. Separation

The separation consists of the following steps: cut dele-
tion, shrinking, set generation, cut generation, and reopti-
mization. One realization of all these steps is called a pass.

NETWORKS—2003 147

The default number of passes at the top node has been fixed
at 30, whereas in the enumeration tree it has been fixed at 5.
We now describe each step of a pass:

• Cut deletion. Because the number of violated dicuts can
be large, keeping all of them in the matrix during all the
passes can be too expensive. Therefore, we eliminate the
nonbinding cuts from the matrix at the beginning of each
pass. Because some of the deleted cuts may be violated
later, we perform cut pool separation at the beginning of
the cut generation step. No cuts are deleted from the cut
pool.

• Shrinking. To reduce the size of the graph on which we
search for “interesting” subsets, the graph is shrunk based
on the current linear programming solution. Specifically,
whenever y� ij � 0.99 and x� ij � 10�6, the two end nodes
i, j are contracted into one supernode. The demand of the
new supernode is the sum of the demands. Only nodes are
contracted, so the resulting reduced graph typically con-
tains multiple arcs and loops. This shrinking procedure is
heuristic. Arcs with y� ij � 0 but x� ij � 0 are not used for
shrinking because the addition of the dicut inequalities
often forces yij � 0 artificially in the linear programming
relaxation, even when there is no flow in the correspond-
ing arc.

• Subset generation. The dicut inequalities are based on
“node subsets”. Therefore, finding good subsets can re-
duce the number of iterations of the cut generation and
also lead to a better top node reformulation. In our im-
plementation, three greedy procedures are used to gener-
ate subsets for a given fractional solution (x� , y�). They
differ in the choice of the initial node and in the quantity
used to enlarge the current set. Below, we describe these
choices:

— Initialize S � {i0} for i0 � VS � VD. Enlarge S,
using arg maxi{y� ij : (i, j) � ��(S), y� ij � (0, 1)}.

— Initialize S � {i0} for i0 � VS � VD. Enlarge S,
using arg maxi{x� ij � b(S)y� ij : (i, j) � ��(S), y� ij

� (0, 1)}.
— Given an arc a � (i0, j0) such that y� i0j0

is fractional,
two candidate sets S are built. In the first case, we
start with a set S such that j0 � S, b(S) � 0 and a
� ��(S), and we expand S using the criterion
maxi{x� ij � b(S)y� ij : (i, j) � ��(S), y� ij � (0, 1),
b(S) � bi � 0}. In the second case, we start with a
set S̃ � V
S such that i0 � V
S, b(V
S) 	 0, and a
� ��(V
S) and we expand V
S using the criterion
maxj{x� ij � �b(V
S)�y� ij : (i, j) � ��(V
S), y� ij � (0,
1), b(V
S) � bj 	 0}. The procedure stops either
when the maximum number of nodes allowed is
reached or when a violated inequality can be gener-
ated.

The three procedures are called sequentially. The sets
generated are stored in the set pool with the status “ac-
tive” and the frequency parameter initialized at zero.

• Cut generation. We start by performing cut pool separa-

tion. Then, for each active set S, three dicut inequalities
can be generated:

(a) Simple dicut. If ¥a���(S) y�a 	 1 � 0.015, then the
inequality

�
a����S�

ya � 1

is added to the cut pool.
(b) Simple inflow–outflow inequality. Define C � {a

� ��(S) : x�a � �a(S)y�a}. If ¥a���(S)
C x�a

� ¥a�C �a(S)y�a 	 b(S) � 0.015, then the in-
equality

�
a����S�
C

xa � �
a�C

�a�S�ya � b�S�

is added to the cut pool. The coefficient �ij(S) is
computed using a breadth-first search to determine
the sets Vij,S

� and Vij,S
� defined in Proposition 3.3.

Then, �ij�S� � min�b�S�, ¥k�Vij,S
� bk, ¥k�Vij,S

� �bk��.
(c) Mixed dicut with outflow. Define C� � {a

� ��(S) : x�a � b(S)y�a}, r(S) � U � b(S) and C�

� {a � ��(S) : x�a � r(S)y�a}. If ¥a���(S)
C� x�a

� ¥a�C� b(S)y�a 	 b(S) � ¥a�C� {x�a � r(S)y�a}
� 0.015, then the inequality

�
a����S�
C�

xa � �
a�C�

b�S�ya � b�S� � �
a�C�

�xa � r�S�ya�

is added to the cut pool.

If a cut is added to the cut pool, the frequency parameter
is increased by 1. Otherwise, it is decreased by 1, and the
next set is inspected.

Whenever the frequency parameter of a set is less than
�3, the set is declared inactive. Once, all the active sets
have been visited, the cuts generated are added into the
matrix.

The cut tolerance of 0.015 used above was selected
from a small set of candidate values by running on a subset
of the test instances.

● Reoptimization. If violated inequalities have been found,
the linear program is reoptimized. If the number of passes
is less than the maximum, go to the next pass. Otherwise,
go to the enumeration phase.

4.3. Primal Heuristics

Given the structure of UFC, we examined the possibility
of developing effective primal heuristics to find good fea-
sible solutions rapidly. After several attempts, motivated by
[14, 20, 22, 39], two heuristics were retained:

● Slope scaling [25]. This algorithm is based on the idea
that there exists a linear program,

148 NETWORKS—2003

�P�ĉ��min� �
�i, j��A

ĉijxij : �
j�Vi

�

xji � �
j�Vi

�

xij � bi @i�V,

0 � xij � U @�i, j��A� ,

which has the same optimal solution as that of the original
mixed-integer problem or, in other words, that there exists
a cost vector ĉ such that v(UFC) � v(P(ĉ)).

To find such a ĉ, a sequence {c� k}k�1
K of slopes are

constructed, such that c�K is not far from ĉ. Let xk be an
optimal solution of P(c� k). The slope at iteration k � 1 is
computed as follows:

c� ij
k�1 � �cij �

fij

xij
k if xij

k � 0

g� xk, xk�1, . . . , x1� otherwise,

where c and f are the original variable and fixed costs and
g� is a function that depends on the solutions of the
previous iterations. In our implementation, the first ob-
jective function is computed from the solution obtained
after the cut generation phase. Indeed, let (x� , y�) be such
a solution. The first objective function is given by

c� ij
1 � �cij �

fij

x� ij

if x� ij � 0

cij �
fij

U
otherwise.

Then, at iteration k � 1, we define the cost function as
follows:

c� ij
k�1 � �cij �

fij

xij
k if xij

k � 0

�c� ij
r � �1 � ���cij �

fij

U� otherwise,

where � � (0, 1), and r � {1, . . . , k � 1} is the last
iteration in which xij

r � 0 and the cost assigned was c� ij
r .

If xk�1 � xk, then stop. Otherwise, go to the next
iteration. If the maximum number of iterations is attained,
we stop. If no solution has been found, we apply a
rounding heuristic. Let A
 � {a � A : y�a � 0}. Find a
feasible flow x* using just the arcs of A
. Set y*a � 1 if
x*a � 0. Finally, (x*, y*) is the heuristic solution.

● Min cost flow. Here, we solve a minimum-cost flow
problem on the graph defined by the open arcs of the
current fractional solution. In other words, given a frac-
tional solution (x� , y�), we define the graph G
 � (V, A
),
where A
 � {(i, j) � A : y� ij � 0}. The objective
function is defined as

c� ij�x�� � �cij �
fij

x� ij

if x� ij � 0

cij �
fij

uij

otherwise
for all �i, j��A
.

The solution to this problem is obtained with the network
simplex implementation MCF [28]. The basis is stored
and reused as the initial basis in the next call.

The slope scaling procedure is called at the top node,
whereas the min-cost flow heuristic is called at 10 consec-
utive nodes every 100 nodes in the branch-and-bound tree.

4.4. Branching Rules

Whereas many specialized branch-and-cut codes use
simple variable branching rules such as most fractional,
most costly, etc., commercial MIP systems use pseudocosts
based on dual variable estimates. As UFC falls somewhat
between the general and the special purpose, we attempted
to compare some of the simple branching rules.

Below, we briefly present the variable and constraint
branching rules that have been tried:

• Variable Branching. The rules that we have studied are
— Closest to integer. Branch on the variable that max-

imizes wa � max{y�a, 1 � y�a} over the set of arcs
a � A such that y�a � (0, 1).

— Furthest from integer. This criteria is similar to the
previous one. Branch on the variable that minimizes
wa � max{y�a, 1 � y�a}.

— Maximum fixed charge. Branch on the variable for
which the fixed cost fa is maximum among those with
y�a fractional.

— Maximum remaining fixed charge. Branch on the
variable that maximizes wa � (1 � y�a) � fa among
those with y�a fractional.

— 2-strong branching (2-st). Select the two arcs a1, a2

with the biggest and second biggest fixed charge for
which y�ai is fractional. Then, compute (using five
iterations of dual simplex) a lower bound on the value
of the possible successor nodes, namely, z0

1, z1
1 for a1

and z0
2, z1

2 for a2 when the variable is fixed to zero
and one, respectively. Then, compute w1 � min{z0

1,
z1

1} and w2 � min{z0
2, z1

2} and branch on the arc ai

for which wi is larger.
• Constraint Branching. Branching can also be based on

linear inequalities. Here, we consider the possibility of
branching on subtour constraints, motivated by the fact
that optimal solutions of uncapacitated problems do not
contain cycles (Proposition 2.1). These inequalities have
the following form:

�
a�E�S�

ya � �S� � 1 @S � V.

Given the solution at the current node, determine a
fractional subtour, that is, a set S for which there exists
at least one arc a � E(S) with y�a fractional. Then,

— If the subtour is encountered for the first time, com-
pute its value, that is, l(S) � ¥a�E(S) y�a. If this
value is less than �S� � 1 and greater than or equal to
one, then the branching constraints chosen are
¥a�E(S) ya � l(S) and ¥a�E(S) ya � l(S). The

NETWORKS—2003 149

node to be solved in the next iteration is one of the
successors of the current node.

— Otherwise, if the subtour has already been used,
select the most fractional variable in E(S) to branch
on.

4.5. Pruning Criteria and Variable Fixing

When the variable and fixed costs are nonnegative, there
exists an optimal solution that is cycle-free (Proposition
2.1). This allows us to prune some nodes of the enumeration
tree and also provides a test allowing us to fix an arc
variable ya to zero, if arc a plus the arcs fixed to one form
a cycle. Both these tests are carried out before solving the
linear program at each node of the enumeration tree.

5. A SET OF TEST PROBLEMS

Several problem classes have been used to test our im-
plementation. Here, we describe the test instances and how
they have been generated. Some of the problems are from
the literature and the others have been randomly generated.
Problems are classified according to the number of source
nodes and the structure of the underlying graph. The differ-
ent classes of problems are shown below:

single source �
Grids
Kn

Kn � 1
Steiner
Multisegment
Multilevel LS

multisource�
Grids
Series-parallel
Kn

Planar
Random.

In all cases, the formulation that we have used is based on
(1)–(4) from Section 2. For the single-source cases, the
structure of the optimal extreme solutions says that for
every node only one inflow arc can have a positive flow.
Thus, the additional tree constraint ¥j�Vi

� yji � 1 is valid for
all i � V.

Now, we explain how the different instances have been
created or indicate their origin:

• Grids. Here, the graph is a two-dimensional rectangular
grid. The parameters used to generate a grid problem are
the width and the height (in number of nodes), the total
demand, the number of source and demand nodes, and
bounds on the costs. Demand and supply nodes are se-
lected randomly as well as is the fraction of the demand/
supply assigned to a node. The random number generator
is that of NETGEN [26]. The variable and fixed costs are
uniformly generated over the specified interval using the
C/C�� random number generator.

• Complete, Kn. The graph is complete. The number of
nodes, the bounds on the costs, and the total demand are
the parameters needed to specify an instance. The source
and demand nodes, the demands and supplies, and the
costs are chosen in the same way as for grid graphs.

• Random. Here, the number of nodes, arcs, source nodes,
demand nodes, total demand, and costs intervals are spec-
ified. The procedure iteratively selects an arc that has not
already been chosen and then assigns costs. Finally, we
define the source and demand nodes using the same
strategy as before.

• Planar. To generate planar graphs, we used the planar
graph generator included in LEDA [32]. The position and
the number of the source and demand nodes are deter-
mined with the uniform random number generator from
LEDA. The cost function is computed as for Grids.

• Series-parallel. Here, we use the series-parallel graph
generator from LEDA. The rest of the parameters, num-
ber of source and demand nodes, and demands and costs
are calculated as for planar graphs.

• Hochbaum, Kn � 1. These are single-source instances
taken from [23]. To clarify the description, suppose that
node 1 is the source node and {2, . . . , n} are the other
nodes. The set of arcs consist of (1, j) for every j � 1 and
(i, j) for every i, j � 1, i � j. So, the nodes {2, . . . , n}
induce a complete directed graph. The demand of each
node is uniformly selected from {0, 1, 2, . . . , 10}. The
fixed cost is a multiple of the variable cost. We use the
same factor 50 as in the paper. To generate the variable
costs, we randomly select n points in the plane that are
associated with each node. The variable cost of an arc
is then calculated as the distance between the points
corresponding to each end node. In other words, if
(wi, hi) and (wj, hj) are the coordinates of the nodes i and
j, the cost of the arc (i, j) is given by cij

� �(wi � wj)
2 � (hi � hj)

2.
• Steiner. These undirected instances were obtained from

the Steiner problem Library at ZIB ftp://ftp.zib.
de/pub/Packages/mp-testdata/index.html.
A complete description of all these problems can be
found in [27]. In our tests, we selected a small subset of
the instances:

— Beasley. Problems 1, 2, and 3 of series C described in
[6]. Instances from series B were not considered as
they are too easy.

— X: Instances brasil and berlin. These have complete
graphs and Euclidean weights.

— Mc7, Mc8, and Mc11. These instances were de-
scribed in [27].

The formulation that we have used is again (1)–(4) from
Section 2. An arbitrary node is defined as root node with
supply equal to the number of terminal nodes minus one.
Each terminal node has a demand of one unit. Undirected
edges have been modeled with two directed arcs.

● Multisegment. These are single-source problems with a
concave piecewise linear objective function (see [19] for
a survey on this kind of model). One of the instances
beavma, which comes from a practical harvesting prob-
lem in Chile, involves a planar graph and the objective
function has at most two segments per arc. The others are
randomly generated instances. mtest4ma has at most
four segments. g150x1100, k15x420, and p50x576

150 NETWORKS—2003

have two segments. The other three instances have three
segments. To model multiple segments, we use a directed
multigraph. The formulation used is given by xij � ¥k

xij
k , xij

k � uij
k yij

k and yij � ¥k yij
k � 1.

In other words, each arc with more than one segment is
repeated as many times as is the number of segments in
the objective function. The constraint that at most one of
the arcs can have a positive flow is then added.

● fixnet6 is a single source-problem from the MIPLIB [9].
● Multilevel lot-sizing. The production in series lot-sizing

problem [35] can be formulated as a single-source UFC
problem. The parameters required to generate these in-
stances are the number of periods, the number of levels,
the maximum demand, and the intervals for the costs. The
fixed and variable costs are uniformly selected from the
given interval, except that the fixed costs are zero on the
stock arcs. The demand is uniformly selected from zero to
the maximum demand. The supply is the negative sum of
all the demands. Note that this problem is polynomialy
solvable by dynamic programming. However, although
many strong valid inequalities are known that generalize
single-level inequalities, a complete description of the
convex hull is not known.

An instance is named according to the graph type and its
size or origin. In the first case, a typical instance name is
tnxm, where t is the type of the graph; n, the number of
nodes, and m, the number of arcs. Graph types are g grid, p
planar, k complete, sp series-parallel, r random, l multi-
level lot-sizing, and h hochbaum. Instances coming from
the literature keep their original name.

Our test set consists of 39 multisource instances and 45
single-source instances. A complete list of the instances,
some of their principal characteristics, and the data sets can
be found in [43]. This site also contains two appendices
containing solutions of all the instances from the computa-
tional experiments described in the next section.

6. COMPUTATIONAL EXPERIMENTS

The computational results reported below can be viewed
as an attempt to answer the following questions:

Q1. How well do standard commercial mixed-integer pro-
gramming systems perform on this class of problems?

Q2. What is the effect of tightening the formulation of
UFC with dicut inequalities and their variants?

Q3. Can the specific structure of UFC be used to improve

features of the branch-and-cut process such as primal
heuristics, branching strategies, etc.?

Q4. Can anything be said about the complexity of different
instances of UFC as a function of the graph structure,
the number of source nodes, or the cost structure?

Q5. For specific classes of UFC, how effective is the
general approach of reformulating with dicuts as com-
pared with algorithms developed for the specific prob-
lem class?

Specifically, in Subsection 6.1, we report on the behavior
of three MIP systems on our test set and use the results to
obtain an initial classification of the difficulty of the 83 test
instances. In Subsection 6.2, we first present the results of
the preliminary tests carried out to define a default strategy
for bc–nd and then the results on the complete test set are
reported. In Subsection 6.3, we examine what happens when
we add the dicut inequalities found by bc–nd a priori at the
top node and then call the three systems. In Subsection 6.4,
we look at the effect of variations in some of the parameters,
such as the graph structure, the number of source nodes, and
the cost ratio. Additionally, comments on specialized codes
for the different special cases are presented at the end of this
section. Finally, in Subsection 6.5, we test the use of the
multicommodity reformulation.

6.1. Instance Classification

The three MIP systems used to solve the test instances
were Cplex 6.6 [24] on a Sun Ultra 60, 250 MHz, 256 MB
RAM running Sun Solaris 2.6, mp–opt v11.50o [16], and
bc–opt [13] on a Pentium II, 400 MHz, 128 MB RAM
running Windows NT 4.0. All the numerical tolerances
were fixed to 10�6. The maximum time per instance was
fixed to be 1800 CPU seconds.

Based on the results obtained, we classified the test
instances into three classes: Easy, Medium, and Hard.
An instance is Easy when at least two of the three systems
solve it to optimality. It is Medium when only one of the
systems solves it to optimality and Hard when no system
solves it. Among the 83 instances, 39 are Easy, 8 are
Medium, and 36 are Hard. Table 1 summarizes the results
for each system. The first line, # solved, is the number of
instances solved to optimality; the second
gap� is the av-
erage gap of unsolved instances, where gap � 100(BestIP
� BestBound)/(BestIP); and the third
�LP� is the aver-

TABLE 1. Instance classification: Summary of results.

Parameter

Hard (36 instances) Medium (8 instances) Easy (39 instances)

Cplex bc–opt mp–opt Cplex bc–opt mp–opt Cplex bc–opt mp–opt

solved 0 0 0 0 2 6 37 34 38

gap� 29.97 19.43 18.57 15.54 2.66 7.64 0.06 0.00 0.01

�LP� 45.42 69.50 67.45 41.47 87.43 81.10 69.02 90.73 93.98

NETWORKS—2003 151

age lower-bound improvement using the cuts of the system,
where �LP � 100(XLP � LP)/(BestIP � LP). Here, LP
is the value of the linear relaxation, XLP is the value of the
LP relaxation after the addition of systems cuts at the top
node, BestBound is the value of the lower bound at the end
of the enumeration, and BestIP is the value of the best
integer solution found.

6.2. Solving UFC with bc–nd

The first step when using a branch-and-cut system is to
define the default strategy to be adopted. In this case, we
had to decide the cut generation strategy, the branching
strategy, and the option of if and when to use the primal
heuristic. The results of these preliminary tests are presented
in the next subsection. bc–nd was run on a Pentium II, 400
MHz, 128 MB RAM under Windows NT 4.0.

6.2.1. Choosing a Default Strategy. The first step is the
cut generation strategy, namely, which families of inequal-
ities to use, how to separate these families, which cuts to
keep, and when and how often to separate.

To decide which variants of the dicut inequality to in-
clude in the final prototype, our first implementation in-
cluded simple dicut, mixed dicut, simple inflow–outflow,
and the mixed dicut with outflow inequalities. By evaluating
each of them separately on the test set, the best results were
obtained with just the simple dicut and the simple inflow–
outflow inequalities.

In choosing which cuts to keep, the first observation,
much as expected, is that simple dicut inequalities involving
just the 0–1 arc variables typically produce a much more
significant increase in the linear programming lower bound
than do the various mixed dicut inequalities which include
the flow variables. The second is that simultaneously adding
simple and mixed dicut inequalities for the same node set
seems to lead to LP degeneracy and increases running times.
So, the default for each active set is to add a violated simple
dicut inequality if possible and, if none is found, to try to
add just a simple inflow–outflow (mixed dicut) inequality.

How often to separate, when to delete cuts, and when to
make cut sets inactive were determined, in part, by testing
and, in part, by earlier experience with bc–opt. The final
strategy selected is as follows: Thirty passes are made,
nonbinding cuts are deleted at the beginning of each pass,
cut pool separation is performed, and a threshold of �3 is
used to discard node sets. This strategy is based on a
trade-off between the quality of the resulting lower bound
and the execution time, in that the LP relaxation is not too
difficult to solve and the memory requirements are reason-
able.

The second part concerns the branching rules: The rules
tested are least fractional, most fractional, maximum fixed
charge, and strong branching with a candidate list of two
elements. Thirteen instances were selected for this experi-
ment, of which three were Steiner tree instances and 10

multisource instances. The latter set contains four grid
graphs, two complete graphs, two planar graphs, and two
random graphs. The results are summarized in Table 2. The
first column gives the rule; the second, the number of
instances solved within 1800 seconds; the third, the average
number of nodes evaluated; and the fourth, the average
duality gap at the end of the enumeration for the unsolved
problems.

From Table 2, we conclude that, given the time limit, the
best strategy is to use either the branching selection rule
provided by the Xpress library or the maximum fixed
charge, max fa. To decide between them, an additional test
was carried out on the complete test set. The results showed
that with the Xpress rule 53 instances were solved, with an
average number of nodes visited of 4518.6 and an average
time to find an optimal solution of 177.47 seconds. On the
other hand, with the maximum fixed-charge rule, 52 in-
stances were solved, with an average number of visited
nodes of 4403.9 and an average solution time of 125.8
seconds. Somewhat arbitrarily, we selected the Xpress rule.

In addition, we chose best bound node selection, in the
belief that it is effective when the duality gaps after adding
cuts are very small.

The third part of this experiment is related to the effects
produced by the min-cost flow heuristic within the enumer-
ation phase of the algorithm. First, we select the instances
that need enumeration to be solved or, in other words, those
that are not solved at the top node by bc–nd. There are 59
such instances. Then, we use bc–nd without and with the
heuristic. The rest of the parameters are the same in both
runs. The results are summarized in Table 3. The first
column is the class, the second is the number of instances
falling within the class, the next four columns summarize
the results without using the heuristic, and the last four
summarize the results with the heuristic. The columns # sol
and
gap� are defined as before: sol0 is the average number
of nodes for the instances that are solved and unsol is the
average number of nodes for the instances that cannot be
solved either with or without the heuristic. An * appearing
as a superscript of
gap� means that no feasible solution has
been found for one instance.

The results reported in Table 3 show that 30 instances are
solved with the primal heuristic and 23 instances are solved
without the primal heuristic. For the instances solved to
optimality by both versions, the number of nodes needed to

TABLE 2. Branching rules.

Rule Solved
Avg #
nodes
gap�

least frac 3 11,075 1.87
most frac 1 13,838 2.55
max fa 7 7715 1.22
max 2-st 2 3137 1.80
subtour 3 7866 4.35
Xpress 7 17,253 1.94

152 NETWORKS—2003

prove optimality is significantly smaller when using the
heuristic. Also, for the instances that cannot be solved by
either version, the final gap is smaller when using the
heuristic. So, the default choice is to use the heuristic at a
frequency described in Subsection 4.3.

6.2.2. Using the Default Strategy: Results. Table 4
summarizes the results obtained by bc–nd with the default
strategy for the set of test instances. The maximum time
limit and the tolerances are fixed as before. The measures
reported here are the same as in Table 1 with, in addition,

gap0�, the average duality gap at the beginning of the
enumeration, where gap0 � 100(firstIP � LP)/firstIP.

In comparing Table 4 with Table 1, we observe that, for
the hard instances, the duality gap after 30 minutes is
dramatically reduced. Moreover, the six medium instances
can be solved within the limit time. The two unsolved
medium instances are Kn � 1 instances that were solved by
bc–opt. The average value of �LP, the improvement
obtained by reformulating the problem using the dicuts, is
92.61%. In other words, a large part of the gap is directly
closed by the dicut inequalities. In fact, 24 instances are
solved without enumeration. It is also worth pointing out
that the average duality gap at the top node for the 36 Hard
instances is 20.08%. Table 5 shows
gap0� for each class of
graph.

6.3. Effectiveness of Dicut Inequalities

Given the classification of Subsection 6.1, we would like
to study how much the dicut inequalities alone contribute to
the overall improvement. To that aim, the instances are first
reformulated using bc–nd and then given to the three
systems, Cplex 6.6, mp–opt 11.50o, and bc–opt under
the same conditions as in Subsection 6.1, namely, with a
time limit of 1800 CPU seconds, all tolerances fixed to
10�6, and the system default strategy for the cut generation
and the enumeration. The reformulation of each instance is
obtained using the default strategy of bc–nd. The results
are summarized in Table 6. The measures reported are the
following: # solved is the number of instances solved and

gapi� and
gapr� are the average gap of the nonsolved
instances using the original formulation and the improved
formulation.
Nodesi� and
Nodesr� are the average number
of nodes used to solve the original and the improved for-
mulation. Finally,
Ti� and
Tr� are the average time needed
to solve the original and the improved formulation. It turns
out that five Hard instances are solved by exactly one
system and nine Hard instances by the three systems.

We also observe that all the Easy and Medium in-
stances can be solved to optimality with the three systems.
Moreover, compared with Table 1, the number of nodes and
the time required are reduced. Fourteen of the 31 Hard
instances are now solved. For the other 22 instances, the
final duality gap is considerably reduced.

6.4. Structure and Comparison with Specialized Codes

In this subsection, we look at the subclasses of the UFC
appearing in our test set. In Table 7, we consider their
difficulty based on the classification of Subsection 6.1. The
first four columns give the results for the single-source
instances, and the last four columns, for the multisource

TABLE 4. bc–nd summary results.

Parameter
Hard

(36 instances)
Medium

(8 instances)
Easy

(39 instances)

solved 8 6 39

gap� 6.67 1.18 0.00

gap0� 20.08 24.11 1.17

�LP� 85.25 97.23 98.46

TABLE 3. Results with and without the heuristic.

Class # Instances

Without heuristic With heuristic

sol.
gap�

nodes�

sol.
gap�

nodes�

sol0 unsol sol0 unsol

grid 8 2 7.0* 621 8167 4 5.0 423 1399
Kn 6 3 12.0 455 14,342 4 3.8 182 37,913
plan 10 1 9.0 53 4660 1 4.1 17 7138
rand 5 1 5.0 5661 10,200 2 2.3 923 17,849
s–p 2 2 0 2073 — 2 0 6 —

stein 8 2 3.0 69 2120 2 2.3 16 986
m–s 5 3 5.0 35 1574 3 0.6 19 473
grid 3 2 0 18 — 3 0 9 —
Kn � 1 8 0 � — 385 3 12.9 769 342
Kn 4 4 0 28 — 3 0 18 —
l–s 1 1 0 3 — 1 0 23 —

Total 59 23 30

NETWORKS—2003 153

instances. In each case, the first three columns give the
number of Hard, Medium, and Easy instances in the
class, and the last column, the average improvement ob-
tained with the dicut inequalities at the top node using
bc–nd.

We see that of the single-source instances 14 are Hard,
five Medium, and 26 Easy, while of the multisource in-
stances, 22 are Hard, three Medium, and 13 Easy. Below
we analyze the results by problem class:

Single-source instances. The average gap reduction for
these instances is 92.10%, meaning that dicut inequalities
are effective when solving single-source instances. We now
discuss the results obtained for each specific subclass of
UFC:

● Steiner. These are the only single-source instances for
which bc–nd performs poorly in that the gap reduction
obtained is only 94% as opposed to 99% on the other
instances. One possible reason is that the UFC formula-
tion (1)–(4) is unsuitable for the Steiner problem and, in
addition, that the number of flow and setup variables is
doubled so as to produce a directed network flow prob-
lem. However, compared to the three general systems,
bc–nd is much more effective. In Table 9, we see that on
the seven hard instances the final duality gap with bc–nd
is 2.54%, while for Cplex, bc–opt, and mp–opt, it is
49.21, 43.14, and 24.94%, respectively. However, if the
dicut-tightened formulation is given to the three systems,
six of these seven instances are solved at least once.

This is one of the most well-studied special cases of
the UFC. Recently, Koch and Martin [27] developed a
successful branch-and-cut code for the undirected Steiner
tree problem. The Steiner instances in the test set are all
solved to optimality without branching by their special-
ized code within 20 seconds. However, as the authors
pointed out, these remarkable solution times are due, in

part, to the specialized preprocessing that leads to signif-
icant reductions in the size of the network. For example,
brasil initially has 58 nodes and 1653 edges, whereas
after preprocessing it has 39 nodes and 113 edges and the
number of terminal nodes is reduced from 25 to 10.
Similar reductions are obtained for the other instances.

● Kn � 1. Among the eight instances in the test set, bc–nd
can solve three of them: the easy instance and two hard
instances. It is interesting to point out that the two me-
dium instances of this class were solved by bc–opt
using path inequalities. Moreover, the two hard instances
solved by bc–nd were not solved by the commercial
codes after the reformulation. However, after reformula-
tion, all three general codes were able to solve the me-
dium and easy instances.

The main difficulty encountered is that the number of
variables involved in each dicut is fairly large, and, thus,
the LP relaxation becomes difficult to solve. In fact, the
LP relaxation of these instances is quite degenerate even
without adding the dicuts. These difficulties are only
significant for instances with more than 50 nodes.

Note also that these instances are those for which the
heuristics give the worst results. In Hochbaum and Segev
[23], where these instances were introduced, two La-
grangian relaxations were studied. The first is obtained by
relaxing the forcing constraints (3), and the second, by
relaxing the flow balance constraints (2). They also in-
corporate three primal heuristics into their algorithm.
They report a final average gap (defined as in Section 6.1)
of 3%, with CPU times going from 10 to 80 seconds. The
average gap, when the first primal solution is found, is
around 8%.

Additionally, they define a measure of the complexity
of an instance depending on the cost function. The pa-
rameter is defined as the ratio between the maximum
demand and twice the ratio between the fixed and variable
cost. One of their empirical conclusions is that when the

TABLE 6. Reformulated instances: Summary of results.

Parameter

Hard (36 instances) Medium (8 instances) Easy (39 instances)

Cplex bc–opt mp–opt Cplex bc–opt mp–opt Cplex bc–opt mp–opt

Solved 12 9 11 8 8 8 39 39 39

gapi� 29.97 19.43 18.57 15.54 2.66 7.64 0.06 0.00 0.01

gapr� 8.24 6.27 6.24 0.00 0.00 0.00 0.0 0.0 0.0

Nodesi� — — — 426,337 48,578 28,826 53,074 6620 10,687

Nodesr� — — — 667 62 1688 466 495 2061

Ti� — — — 1800 840 582 203 169 83

Tr� — — — 132 23 134 5 14 21

TABLE 5. Initial duality gap.

Multisource Single source

grid Kn plan rand s–p stein m–s grid Kn � 1 Kn l–s plan

5.97 8.76 5.31 6.94 0.30 10.59 1.04 0.01 84.5 0.04 0 0

154 NETWORKS—2003

parameter lies in the interval [0.05, 0.1] the instances
seems to be hard. For the instances in our test set, the
value of this parameter is 0.1.

● Lot-sizing. All these instances turn out to be easy, with
mp–opt being the fastest. We observe that the strength-
ened lower-bound XLP obtained with dicuts using
bc–nd is better than that obtained with the path inequal-
ities from bc–opt. One possible reason is that, for un-
capacitated lot-sizing problems, appropriately chosen in-
flow–outflow inequalities resemble the path inequalities
that give a complete description of the convex hull of
solutions in the single-item case and also provide strong
valid inequalities for multilevel problems.

● Multisegment. bc–nd seems to be highly effective on this
class. For example, the two instances beavma and
mtest4ma are both solved without enumeration. Neither
could be solved with the versions of Cplex and mp–opt
available 4 years ago, although bc–opt was able to solve
both instances, making extensive use of the path inequal-
ities. Now, mp–opt also solves them both at the top
node, even more rapidly than does bc–nd.

● Grids, planar and Kn. Eight of the 16 instances are solved
without enumeration, and for the other instances, the
average gap reduction at the top node is 99.93%. For
identical graph and cost structure, the single-source in-
stances appear to be much easier than are the multisource
instances. For such instances, no specialized code is
known.

● Other single-source instances. During the development of
bc–nd, we received a new set of 36 instances used by
Cruz et al. [14], who implemented a Lagrangian relax-
ation to solve the single-source case of UFC. The in-
stances are randomly generated in the plane with 16–32
nodes and 30–248 arcs. The objective function is defined
using the Euclidean distance between node i and j, such
that the ratio between the fixed and variable cost is fixed.
The values of that ratio are 1/10, 1, and 10/1. Each
instance is solved by bc–nd within 2 seconds, several of
them without enumeration.

Multisource instances. Although 23 of the 38 instances
can be solved to optimality by bc–nd, these instances are
considerably more difficult to solve than are the single-
source instances. In particular, the average gap reduction is

only 90%. The exceptions are the instances defined on
series-parallel graphs on which both bc–nd and mp–opt
perform well.

We do not know of any other code developed for this
type of model.

6.4.1. Importance of Fixed/Variable Cost Ratio. In this
experiment, we took a subset of 27 instances of different
kinds from our list and solved them with bc–nd (default
strategy) for four ratios: 10, 100, 1000, and � (that means fij

� 1, cij � 0). A summary of the results is presented in
Table 8, which is organized as follows: The first two col-
umns give the class and the number of instances used in the
experiment; the next four columns give in the first line #
solved and in the second line
gap�, both defined as before;
the last four columns give the average value of �LP in the
first line and the average solution time of the solved in-
stances in the second line. The single-source instances were
put all together in one line S-s, due to the homogeneity of
the results obtained. A * appearing as superscript of
gap�
means that one of the instances was not solved due to a
numerical problem.

As we might expect, instances become harder when the
fixed/variable cost ratio increases. For the single-source
instances, the execution time increases when the ratio in-
creases, but the gap reduction at the top node does not show
a clear trend. In the multisource case, we observe that the
gap reduction decreases when the cost ratio increases. How-
ever, some strange behavior is observed. For example, the
time required for the grid graphs and planar graphs is much
smaller when the cost ratio is 103 than when it is 102. The
same occurs for series-parallel graphs for ratios 103 and �.
Finally, the number of instances solved to optimality de-
creases when the cost ratio increases.

6.5. The Multicommodity Reformulation

Here, we first present the multicommodity reformulation
[36] and then we describe our results. We introduce new
variables zij

k to represent the flow in arc (i, j) � A with
destination k � VD. The resulting formulation is then

TABLE 7. Complexity depending on problem subclass.

Single source Multisource

Hard Medium Easy �LP Hard Medium Easy �LP

grid 0 3 3 99.97 6 0 2 90.92
Kn 0 0 5 99.84 3 0 3 89.38
plan 0 0 5 99.99 9 0 1 92.47
rand — — — — 3 0 2 89.30
s–p — — — — 1 3 5 99.10

stein 7 1 0 94.83 — — — —
m–s 2 0 6 98.91 — — — —
Kn � 1 5 2 1 62.62 — — — —
l–s 0 0 4 99.99 — — — —

NETWORKS—2003 155

min �
k�VD

�
�i, j��A

cijxij
k � �

�i, j��A

fijyij

�
j�Vi

�

zji
k � �

j�Vi
�

zij
k � di

k � i � V, k � VD

zij
k � bkyij � �i, j� � A, k � VD

zij
k � 0 � i � V, k � VD, yij � �0, 1� � �i, j� � A,

where d1
k � �bk, dk

k � bk, di
k � 0 for i � V
{1, k} and

all k � VD. In Table 9, we show which single-source
instances are solved by Cplex 7.5 and/or mp–opt12.29
within 1800 seconds. These results were obtained on a
DELL 1 GhZ computer with 256 MB RAM.

For each of the instances in Table 9, the linear programming
solution is integer. However, for all the other 13 in-
stances tested, g150x1650, g200x740d, g200x740e,
h50x2450, h50x2450b, h50x2450c, h50x2450e,
h80x6320, h80x6320b, h80x6320c, h80x6320d,
mc8, and mc11, neither code was able to solve the linear
program within the allotted time of 1800 seconds.

It is not known how to obtain a tight multicommodity
reformulation for multisource instances of the UFC. The

obvious generalization is to use the formulation given
above, but with dk

i a variable for all sources i � VS and
demand nodes k � VD, along with the additional con-
straints

�
k

dk
i � �bi for i � VS.

For the four instances shown in Table 10, the linear
programming bound is weak and the reformulation does not
appear to be very effective. As classified above, r30x160
is an Easy instance and g200x740, g55x188, and
k20x380 are Hard instances. However, when solved by
bc–nd as in Section 6.2.2, g200x740 ends with a gap of
0.33% and the other two Hard instances are solved.

7. CONCLUSIONS

In spite of the improvements brought about by the intro-
duction of cutting planes into commercial mixed-integer
programming systems, it appears that the solution of unca-
pacitated fixed-charge network design problems is signifi-
cantly improved by the use of dicut inequalities either

TABLE 8. Modifying the cost ratio: Summary of results.

#
Instances

Solved
gap�
�LP�
T�

10 102 103 � 10 102 103 �

S–s 9 8 8 8 7 99.43 88.9 91.54 97.70
0* 0.12 0.73 2.1 13.7 277.1 531 873.7

grid 5 4 3 3 0 99.45 96.40 95.91 86.62
5�2 1.5 5.0 9.0 36.5 258.6 50 —

plan 5 5 4 3 0 99.95 99.17 99.21 85.96
0 0.2 1.0 9.0 100.2 514.5 6 —

rand 5 4 4 4 0 97.59 97.16 95.99 75.89
0.015 7.3 9.0 19.0 24.5 43.2 235 —

s–p 2 2 2 2 2 100 100 99.98 99.54
0 0 0 0 3 16.5 445 51.5

TABLE 9. A multicommodity formulation: Single-source instances.

Single-source instances

Name LP

Cplex mp-opt

BestIP Time # Nodes BestIP Time # Nodes

beasleyC2 144 144 3 0 144 14 0
beasleyC3 754 754 74 0 1800lp

berlin 1044 1044 151 0 1044 70 0
brasil 13,655 13,655 409 0 13,655 242 0
g150x1100 1800lp 71,816 1085 0
g200x740c 680,124 680,124 135 0 680,124 323 0
mc7 3417 3417 1594 0 1800lp

156 NETWORKS—2003

within a special-purpose system such as bc–nd or by
giving a dicut-strengthened reformulation to an MPS sys-
tem. Another important step in the development has been
the use of a dynamic active node set list as part of the
separation heuristic for dicut inequalities. This has been
particularly important for certain single-source instances
where the number of potential node sets has exploded
rapidly.

Further work on the choice of dicut inequalities is cer-
tainly needed. It would be interesting to design and test
separation routines for input–output inequalities, and pre-
liminary tests indicate that the mixing (Günluk and Pochet
[21]) of dicut inequalities may be valuable. Also, given that
the multidicut inequalities arise from the projection of the
multicommodity formulation for single-source problems
[37], a good separation inequality for these inequalities
would be very helpful in improving the bounds, and one
possibility might be to generate some of these inequalities
through mixing. There clearly is also a need to find new
classes of valid inequalities and heuristics for multisource
instances.

Another difficulty concerns actual MIP systems. One
reason that bc–nd does not more significantly outperform
“dicut reformulation � an MIP system” is that the MIP
system uses its powerful preprocessor to reduce the tight-
ened formulation, while bc–nd keeps the initial tightened
formulation as it needs the network structure for cut gener-
ation and its primal heuristics. This handicap will only be
overcome when the MPS subroutine libraries provide a
two-way mapping between the original and preprocessed
matrices.

Obvious developments are to extend the system to tackle
single-commodity capacitated fixed-charge network design
problems and to multicommodity problems. For the capac-
itated problem, the set XS (5)–(7) modified with active
capacity constraints is the natural starting point as a variety
of valid inequalities (flow cover, mixed integer rounding,
etc.) can be generated for the modified XS, and the heuristics
to generate good node sets S probably need only minor
modifications. For multicommodity problems, nearly all the
inequalities used to date are direct adaptations of single-
commodity inequalities.

REFERENCES

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows,
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] A. Atamtürk, On the network design cut set polyhedra,
Draft, Department of Industrial Ingineering and Operations
Research, University of California at Berkley, 1999.

[3] M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nem-
hauser, “Network models,” Handbooks in OR, Elsevier,
Amsterdam, 1995, Vol. 7.

[4] I. Barany, T.J. van Roy, and L.A. Wolsey, Uncapacitated
lot-sizing: The convex hull of solutions, Math Program Stud
22 (1984), 32–43.

[5] R.S. Barr, F. Glover, and D. Klingman, A new optimization
method for large scale fixed charge transportation problems,
Oper Res 29 (1981), 448–463.

[6] J.E. Beasley, An sst-based algorithm for the steiner problem
in graphs, Networks 19 (1989), 1–16.

[7] G. Belvaux, Modelling and solving lot-sizing problems by
mixed integer programming, Ph.D. thesis, F.S.A.—Univer-
sité catholique de Louvain, 1998.

[8] D. Bienstock, Experiments with a network design algorithm
using epsilon-approximate linear programs, Technical re-
port TR-1999-4, Computational Optimization Research
Center, Columbia University, New York, 1996.

[9] R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savels-
bergh, An updated mixed integer programming library: MI-
PLIB 3.0, Optima 58 (1998), 12–15. Problems available at
http://www.caam.rice.edu/bixby/miplib/miplib.html.

[10] A.V. Cabot and S.S. Erenguc, Some branch and bound
procedures for fixed-cost transportation problems, Nav Res
Log Q 31 (1984), 145–154.

[11] S. Chopra, E. Gorres, and M.R. Rao, Solving a Steiner tree
problem on a graph using branch and cut, ORSA J Comput
4 (1992), 320–335.

[12] T. Christof and A. Löbel, PORTA—A polyhedron repre-
sentation and transformation algorithm, ZIB, Konrad-Zuse-
Zentrum für Informationstechnik Berlin.

[13] C. Cordier, H. Marchand, R. Laundy, and L.A. Wolsey.
bc–opt: A branch and cut code for mixed integer pro-
grams, Math Program 86 (1999), 335–353.

[14] F.R.B. Cruz, J. MacGregor Smith, and G.R. Mateus, Solv-
ing to optimality the uncapacitated fixed-charge network
flow problem, Comput Oper Res 25 (1998), 67–81.

TABLE 10. A multicommodity formulation: Multisource instances.

Multisource instances

Name LP

Cplex mp–opt

XLP Best LB BestIP Time # Nodes XLP Best LB BestIP Time # Nodes

g200x740 36,432.8 40,844.9 40,897.3 76,468 1800 601 39,767.0 39,767.0 1800 100
g55x188 17,763.0 19,709.2 20,865.7 26,748 1800 2771 18,908.8 19,283.7 29,283 1800 600
k20x380 1339.9 1601.3 1756.5 2018 1800 2425 1516.7 1587.2 2156 1800 1900
r30x160 15,786.6 17,759.3 20,160.1 22,979 1800 7646 18,314 19,153.8 23,776 1800 1400

NETWORKS—2003 157

[15] Dash Associates, XPRESS-MP extended modelling and op-
timisation subroutine library, Reference manual, Release
11, Blisworth House, Blisworth, Northants NN73BX, U.K.,
1999.

[16] Dash Associates, XPRESS-MP, Reference manual, Release
11, Blisworth House, Blisworth, Northants NN73BX, U.K.,
1999.

[17] M.R. Garey and D.S. Johnson, Computers and intractability:
A guide to the theory of NP-completeness, W.H. Freeman,
San Francisco, 1979.

[18] M.X. Goemans, personal communication, Dec. 1998.

[19] G.M. Guisewite and P.M. Pardalos, Minimum concave-cost
network flow problems, Ann Oper Res 25 (1990), 75–100.

[20] O. Günlük, A branch-and-cut algorithm for capacitated net-
work design problems, Math Program 86 (1999), 17–39.

[21] O. Günlük and Y. Pochet, Mixing mixed-integer inequali-
ties, Math Program 90 (1998), 429–457.

[22] J.W. Herrman, G. Ioannou, I. Minis, R. Nagi, and J.M.
Proth, Design of material flow networks in manufacturing
facilities, Technical research report T.R.94-50, ISRI, Uni-
versity of Maryland, 1994.

[23] D. Hochbaum and A. Segev, Analysis of a flow problem
with fixed charges, Networks 19 (1989), 291–312.

[24] ILOG, Cplex 6.5, User’s manual, 2000.

[25] D. Kim and P. Pardalos, A solution approach to the fixed
charge network flow problem using a dynamic slope scaling
procedure, Oper Res Lett 24 (1998), 195–203.

[26] D. Klingman, A. Napier, and J. Stutz, Netgen: A program
for generating large scale capacitated assignment, transpor-
tation, and minimum-cost flow network problems, Mgmt
Sci 20 (1974), 814–820.

[27] T. Koch and A. Martin, Solving Steiner tree problems in
graphs to optimality, Networks 32 (1998), 207–232.

[28] A. Löbel, MCF: A network simplex implementation, Kon-
rad–Zuse–Zentrum für Informationstechnik Berlin, http://
www.zib.de/Optimization/Software/Mcf/, 2000.

[29] T.L. Magnanti and L.A. Wolsey, “Optimal trees,” Hand-
books in OR, Elsevier, Amsterdam, 1995, Vol. 7, Chapter 9.

[30] H. Marchand, A. Martin, R. Weismantel, and L.A. Wolsey,
Cutting planes in integer and mixed integer programming,

DP 9953, CORE, Université catholique de Louvain-la-
Neuve, 1999.

[31] R.K. Martin and L. Schrage, Subset coefficient reduction
cuts for 0/1 mixed integer programing, Oper Res 33 (1985),
505–526.

[32] K. Mehlhorn, S. Näher, M. Seel, and C. Uhrig, The LEDA
user manual, Version 4.1. http://www.mpi-sb.mpg.de/
LEDA/MANUAL/MANUAL.html, 2000.

[33] G.L. Nemhauser and L.A. Wolsey, Integer and combinato-
rial optimization, Wiley-Interscience Series in Discrete
Mathematics and Optimization, Wiley, New York, 1988.

[34] U.S. Palekar, M.K. Karwan, and S. Zionts, A branch and
bound method for the fixed charge transportation problem,
Mgmt Sci 36 (1990), 1092–1105.

[35] Y. Pochet and L.A. Wolsey, Algorithms and reformulations
for lot sizing problems, DIMACS Ser DM TCS 20 (1995),
245–293.

[36] R.L. Rardin and U. Choe, Tighter relaxations of fixed
charge network flow problems, Technical report J-79-18,
Industrial and System Engineering, Georgia Institute of
Technology, Atlanta, GA, 1979.

[37] R.L. Rardin and L.A. Wolsey, Valid inequalities and pro-
jecting the multicommodity extended formulation for unca-
pacitated fixed charge network flow problems, Eur J Oper
Res 71 (1993), 95–109.

[38] J.E. Schaffer, Use of penalties in the branch and bound
procedure for the fixed charge transportation problem, Eur J
Oper Res 43 (1989), 305–312.

[39] M. Sun, J.E. Aronson, P.G. McKeown, and D. Drinka, A
tabu search heuristic procedure for the fixed charge trans-
portation problem, Eur J Oper Res 106 (1998), 441–456.

[40] S. van Hoesel, Models and algorithms fot the single item
lot-sizing problem, Ph.D. thesis, Erasmus University, Rot-
terdam, 1991.

[41] T.J. van Roy and L.A. Wolsey, Valid inequalities and sep-
aration for uncapacitated fixed charge networks, Oper Res
Lett 4 (1985), 105–112.

[42] T.J. van Roy and L.A. Wolsey, Solving mixed integer
programming problems using automatic reformulation,
Oper Res 33 (1987), 45–57.

[43] L.A. Wolsey, Personal webpage, http://www.core.ucl.ac.be/
wolsey/default.htm.

158 NETWORKS—2003

